xref: /openbmc/linux/kernel/sched/core.c (revision 56ca9db8)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132 
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140 
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146 
147 __read_mostly int scheduler_running;
148 
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154 
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157 
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162 	__acquires(rq->lock)
163 {
164 	struct rq *rq;
165 
166 	local_irq_disable();
167 	rq = this_rq();
168 	raw_spin_lock(&rq->lock);
169 
170 	return rq;
171 }
172 
173 #ifdef CONFIG_SCHED_HRTICK
174 /*
175  * Use HR-timers to deliver accurate preemption points.
176  */
177 
178 static void hrtick_clear(struct rq *rq)
179 {
180 	if (hrtimer_active(&rq->hrtick_timer))
181 		hrtimer_cancel(&rq->hrtick_timer);
182 }
183 
184 /*
185  * High-resolution timer tick.
186  * Runs from hardirq context with interrupts disabled.
187  */
188 static enum hrtimer_restart hrtick(struct hrtimer *timer)
189 {
190 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191 
192 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193 
194 	raw_spin_lock(&rq->lock);
195 	update_rq_clock(rq);
196 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 	raw_spin_unlock(&rq->lock);
198 
199 	return HRTIMER_NORESTART;
200 }
201 
202 #ifdef CONFIG_SMP
203 
204 static void __hrtick_restart(struct rq *rq)
205 {
206 	struct hrtimer *timer = &rq->hrtick_timer;
207 
208 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209 }
210 
211 /*
212  * called from hardirq (IPI) context
213  */
214 static void __hrtick_start(void *arg)
215 {
216 	struct rq *rq = arg;
217 
218 	raw_spin_lock(&rq->lock);
219 	__hrtick_restart(rq);
220 	rq->hrtick_csd_pending = 0;
221 	raw_spin_unlock(&rq->lock);
222 }
223 
224 /*
225  * Called to set the hrtick timer state.
226  *
227  * called with rq->lock held and irqs disabled
228  */
229 void hrtick_start(struct rq *rq, u64 delay)
230 {
231 	struct hrtimer *timer = &rq->hrtick_timer;
232 	ktime_t time;
233 	s64 delta;
234 
235 	/*
236 	 * Don't schedule slices shorter than 10000ns, that just
237 	 * doesn't make sense and can cause timer DoS.
238 	 */
239 	delta = max_t(s64, delay, 10000LL);
240 	time = ktime_add_ns(timer->base->get_time(), delta);
241 
242 	hrtimer_set_expires(timer, time);
243 
244 	if (rq == this_rq()) {
245 		__hrtick_restart(rq);
246 	} else if (!rq->hrtick_csd_pending) {
247 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 		rq->hrtick_csd_pending = 1;
249 	}
250 }
251 
252 static int
253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254 {
255 	int cpu = (int)(long)hcpu;
256 
257 	switch (action) {
258 	case CPU_UP_CANCELED:
259 	case CPU_UP_CANCELED_FROZEN:
260 	case CPU_DOWN_PREPARE:
261 	case CPU_DOWN_PREPARE_FROZEN:
262 	case CPU_DEAD:
263 	case CPU_DEAD_FROZEN:
264 		hrtick_clear(cpu_rq(cpu));
265 		return NOTIFY_OK;
266 	}
267 
268 	return NOTIFY_DONE;
269 }
270 
271 static __init void init_hrtick(void)
272 {
273 	hotcpu_notifier(hotplug_hrtick, 0);
274 }
275 #else
276 /*
277  * Called to set the hrtick timer state.
278  *
279  * called with rq->lock held and irqs disabled
280  */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 	/*
284 	 * Don't schedule slices shorter than 10000ns, that just
285 	 * doesn't make sense. Rely on vruntime for fairness.
286 	 */
287 	delay = max_t(u64, delay, 10000LL);
288 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 		      HRTIMER_MODE_REL_PINNED);
290 }
291 
292 static inline void init_hrtick(void)
293 {
294 }
295 #endif /* CONFIG_SMP */
296 
297 static void init_rq_hrtick(struct rq *rq)
298 {
299 #ifdef CONFIG_SMP
300 	rq->hrtick_csd_pending = 0;
301 
302 	rq->hrtick_csd.flags = 0;
303 	rq->hrtick_csd.func = __hrtick_start;
304 	rq->hrtick_csd.info = rq;
305 #endif
306 
307 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 	rq->hrtick_timer.function = hrtick;
309 }
310 #else	/* CONFIG_SCHED_HRTICK */
311 static inline void hrtick_clear(struct rq *rq)
312 {
313 }
314 
315 static inline void init_rq_hrtick(struct rq *rq)
316 {
317 }
318 
319 static inline void init_hrtick(void)
320 {
321 }
322 #endif	/* CONFIG_SCHED_HRTICK */
323 
324 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
325 /*
326  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
327  * this avoids any races wrt polling state changes and thereby avoids
328  * spurious IPIs.
329  */
330 static bool set_nr_and_not_polling(struct task_struct *p)
331 {
332 	struct thread_info *ti = task_thread_info(p);
333 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
334 }
335 
336 /*
337  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
338  *
339  * If this returns true, then the idle task promises to call
340  * sched_ttwu_pending() and reschedule soon.
341  */
342 static bool set_nr_if_polling(struct task_struct *p)
343 {
344 	struct thread_info *ti = task_thread_info(p);
345 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
346 
347 	for (;;) {
348 		if (!(val & _TIF_POLLING_NRFLAG))
349 			return false;
350 		if (val & _TIF_NEED_RESCHED)
351 			return true;
352 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
353 		if (old == val)
354 			break;
355 		val = old;
356 	}
357 	return true;
358 }
359 
360 #else
361 static bool set_nr_and_not_polling(struct task_struct *p)
362 {
363 	set_tsk_need_resched(p);
364 	return true;
365 }
366 
367 #ifdef CONFIG_SMP
368 static bool set_nr_if_polling(struct task_struct *p)
369 {
370 	return false;
371 }
372 #endif
373 #endif
374 
375 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
376 {
377 	struct wake_q_node *node = &task->wake_q;
378 
379 	/*
380 	 * Atomically grab the task, if ->wake_q is !nil already it means
381 	 * its already queued (either by us or someone else) and will get the
382 	 * wakeup due to that.
383 	 *
384 	 * This cmpxchg() implies a full barrier, which pairs with the write
385 	 * barrier implied by the wakeup in wake_up_list().
386 	 */
387 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
388 		return;
389 
390 	get_task_struct(task);
391 
392 	/*
393 	 * The head is context local, there can be no concurrency.
394 	 */
395 	*head->lastp = node;
396 	head->lastp = &node->next;
397 }
398 
399 void wake_up_q(struct wake_q_head *head)
400 {
401 	struct wake_q_node *node = head->first;
402 
403 	while (node != WAKE_Q_TAIL) {
404 		struct task_struct *task;
405 
406 		task = container_of(node, struct task_struct, wake_q);
407 		BUG_ON(!task);
408 		/* task can safely be re-inserted now */
409 		node = node->next;
410 		task->wake_q.next = NULL;
411 
412 		/*
413 		 * wake_up_process() implies a wmb() to pair with the queueing
414 		 * in wake_q_add() so as not to miss wakeups.
415 		 */
416 		wake_up_process(task);
417 		put_task_struct(task);
418 	}
419 }
420 
421 /*
422  * resched_curr - mark rq's current task 'to be rescheduled now'.
423  *
424  * On UP this means the setting of the need_resched flag, on SMP it
425  * might also involve a cross-CPU call to trigger the scheduler on
426  * the target CPU.
427  */
428 void resched_curr(struct rq *rq)
429 {
430 	struct task_struct *curr = rq->curr;
431 	int cpu;
432 
433 	lockdep_assert_held(&rq->lock);
434 
435 	if (test_tsk_need_resched(curr))
436 		return;
437 
438 	cpu = cpu_of(rq);
439 
440 	if (cpu == smp_processor_id()) {
441 		set_tsk_need_resched(curr);
442 		set_preempt_need_resched();
443 		return;
444 	}
445 
446 	if (set_nr_and_not_polling(curr))
447 		smp_send_reschedule(cpu);
448 	else
449 		trace_sched_wake_idle_without_ipi(cpu);
450 }
451 
452 void resched_cpu(int cpu)
453 {
454 	struct rq *rq = cpu_rq(cpu);
455 	unsigned long flags;
456 
457 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
458 		return;
459 	resched_curr(rq);
460 	raw_spin_unlock_irqrestore(&rq->lock, flags);
461 }
462 
463 #ifdef CONFIG_SMP
464 #ifdef CONFIG_NO_HZ_COMMON
465 /*
466  * In the semi idle case, use the nearest busy cpu for migrating timers
467  * from an idle cpu.  This is good for power-savings.
468  *
469  * We don't do similar optimization for completely idle system, as
470  * selecting an idle cpu will add more delays to the timers than intended
471  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
472  */
473 int get_nohz_timer_target(void)
474 {
475 	int i, cpu = smp_processor_id();
476 	struct sched_domain *sd;
477 
478 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
479 		return cpu;
480 
481 	rcu_read_lock();
482 	for_each_domain(cpu, sd) {
483 		for_each_cpu(i, sched_domain_span(sd)) {
484 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
485 				cpu = i;
486 				goto unlock;
487 			}
488 		}
489 	}
490 
491 	if (!is_housekeeping_cpu(cpu))
492 		cpu = housekeeping_any_cpu();
493 unlock:
494 	rcu_read_unlock();
495 	return cpu;
496 }
497 /*
498  * When add_timer_on() enqueues a timer into the timer wheel of an
499  * idle CPU then this timer might expire before the next timer event
500  * which is scheduled to wake up that CPU. In case of a completely
501  * idle system the next event might even be infinite time into the
502  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
503  * leaves the inner idle loop so the newly added timer is taken into
504  * account when the CPU goes back to idle and evaluates the timer
505  * wheel for the next timer event.
506  */
507 static void wake_up_idle_cpu(int cpu)
508 {
509 	struct rq *rq = cpu_rq(cpu);
510 
511 	if (cpu == smp_processor_id())
512 		return;
513 
514 	if (set_nr_and_not_polling(rq->idle))
515 		smp_send_reschedule(cpu);
516 	else
517 		trace_sched_wake_idle_without_ipi(cpu);
518 }
519 
520 static bool wake_up_full_nohz_cpu(int cpu)
521 {
522 	/*
523 	 * We just need the target to call irq_exit() and re-evaluate
524 	 * the next tick. The nohz full kick at least implies that.
525 	 * If needed we can still optimize that later with an
526 	 * empty IRQ.
527 	 */
528 	if (tick_nohz_full_cpu(cpu)) {
529 		if (cpu != smp_processor_id() ||
530 		    tick_nohz_tick_stopped())
531 			tick_nohz_full_kick_cpu(cpu);
532 		return true;
533 	}
534 
535 	return false;
536 }
537 
538 void wake_up_nohz_cpu(int cpu)
539 {
540 	if (!wake_up_full_nohz_cpu(cpu))
541 		wake_up_idle_cpu(cpu);
542 }
543 
544 static inline bool got_nohz_idle_kick(void)
545 {
546 	int cpu = smp_processor_id();
547 
548 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
549 		return false;
550 
551 	if (idle_cpu(cpu) && !need_resched())
552 		return true;
553 
554 	/*
555 	 * We can't run Idle Load Balance on this CPU for this time so we
556 	 * cancel it and clear NOHZ_BALANCE_KICK
557 	 */
558 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
559 	return false;
560 }
561 
562 #else /* CONFIG_NO_HZ_COMMON */
563 
564 static inline bool got_nohz_idle_kick(void)
565 {
566 	return false;
567 }
568 
569 #endif /* CONFIG_NO_HZ_COMMON */
570 
571 #ifdef CONFIG_NO_HZ_FULL
572 bool sched_can_stop_tick(struct rq *rq)
573 {
574 	int fifo_nr_running;
575 
576 	/* Deadline tasks, even if single, need the tick */
577 	if (rq->dl.dl_nr_running)
578 		return false;
579 
580 	/*
581 	 * FIFO realtime policy runs the highest priority task (after DEADLINE).
582 	 * Other runnable tasks are of a lower priority. The scheduler tick
583 	 * isn't needed.
584 	 */
585 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
586 	if (fifo_nr_running)
587 		return true;
588 
589 	/*
590 	 * Round-robin realtime tasks time slice with other tasks at the same
591 	 * realtime priority.
592 	 */
593 	if (rq->rt.rr_nr_running) {
594 		if (rq->rt.rr_nr_running == 1)
595 			return true;
596 		else
597 			return false;
598 	}
599 
600 	/* Normal multitasking need periodic preemption checks */
601 	if (rq->cfs.nr_running > 1)
602 		return false;
603 
604 	return true;
605 }
606 #endif /* CONFIG_NO_HZ_FULL */
607 
608 void sched_avg_update(struct rq *rq)
609 {
610 	s64 period = sched_avg_period();
611 
612 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
613 		/*
614 		 * Inline assembly required to prevent the compiler
615 		 * optimising this loop into a divmod call.
616 		 * See __iter_div_u64_rem() for another example of this.
617 		 */
618 		asm("" : "+rm" (rq->age_stamp));
619 		rq->age_stamp += period;
620 		rq->rt_avg /= 2;
621 	}
622 }
623 
624 #endif /* CONFIG_SMP */
625 
626 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
627 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
628 /*
629  * Iterate task_group tree rooted at *from, calling @down when first entering a
630  * node and @up when leaving it for the final time.
631  *
632  * Caller must hold rcu_lock or sufficient equivalent.
633  */
634 int walk_tg_tree_from(struct task_group *from,
635 			     tg_visitor down, tg_visitor up, void *data)
636 {
637 	struct task_group *parent, *child;
638 	int ret;
639 
640 	parent = from;
641 
642 down:
643 	ret = (*down)(parent, data);
644 	if (ret)
645 		goto out;
646 	list_for_each_entry_rcu(child, &parent->children, siblings) {
647 		parent = child;
648 		goto down;
649 
650 up:
651 		continue;
652 	}
653 	ret = (*up)(parent, data);
654 	if (ret || parent == from)
655 		goto out;
656 
657 	child = parent;
658 	parent = parent->parent;
659 	if (parent)
660 		goto up;
661 out:
662 	return ret;
663 }
664 
665 int tg_nop(struct task_group *tg, void *data)
666 {
667 	return 0;
668 }
669 #endif
670 
671 static void set_load_weight(struct task_struct *p)
672 {
673 	int prio = p->static_prio - MAX_RT_PRIO;
674 	struct load_weight *load = &p->se.load;
675 
676 	/*
677 	 * SCHED_IDLE tasks get minimal weight:
678 	 */
679 	if (idle_policy(p->policy)) {
680 		load->weight = scale_load(WEIGHT_IDLEPRIO);
681 		load->inv_weight = WMULT_IDLEPRIO;
682 		return;
683 	}
684 
685 	load->weight = scale_load(sched_prio_to_weight[prio]);
686 	load->inv_weight = sched_prio_to_wmult[prio];
687 }
688 
689 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
690 {
691 	update_rq_clock(rq);
692 	if (!(flags & ENQUEUE_RESTORE))
693 		sched_info_queued(rq, p);
694 	p->sched_class->enqueue_task(rq, p, flags);
695 }
696 
697 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
698 {
699 	update_rq_clock(rq);
700 	if (!(flags & DEQUEUE_SAVE))
701 		sched_info_dequeued(rq, p);
702 	p->sched_class->dequeue_task(rq, p, flags);
703 }
704 
705 void activate_task(struct rq *rq, struct task_struct *p, int flags)
706 {
707 	if (task_contributes_to_load(p))
708 		rq->nr_uninterruptible--;
709 
710 	enqueue_task(rq, p, flags);
711 }
712 
713 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 	if (task_contributes_to_load(p))
716 		rq->nr_uninterruptible++;
717 
718 	dequeue_task(rq, p, flags);
719 }
720 
721 static void update_rq_clock_task(struct rq *rq, s64 delta)
722 {
723 /*
724  * In theory, the compile should just see 0 here, and optimize out the call
725  * to sched_rt_avg_update. But I don't trust it...
726  */
727 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
728 	s64 steal = 0, irq_delta = 0;
729 #endif
730 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
731 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
732 
733 	/*
734 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
735 	 * this case when a previous update_rq_clock() happened inside a
736 	 * {soft,}irq region.
737 	 *
738 	 * When this happens, we stop ->clock_task and only update the
739 	 * prev_irq_time stamp to account for the part that fit, so that a next
740 	 * update will consume the rest. This ensures ->clock_task is
741 	 * monotonic.
742 	 *
743 	 * It does however cause some slight miss-attribution of {soft,}irq
744 	 * time, a more accurate solution would be to update the irq_time using
745 	 * the current rq->clock timestamp, except that would require using
746 	 * atomic ops.
747 	 */
748 	if (irq_delta > delta)
749 		irq_delta = delta;
750 
751 	rq->prev_irq_time += irq_delta;
752 	delta -= irq_delta;
753 #endif
754 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
755 	if (static_key_false((&paravirt_steal_rq_enabled))) {
756 		steal = paravirt_steal_clock(cpu_of(rq));
757 		steal -= rq->prev_steal_time_rq;
758 
759 		if (unlikely(steal > delta))
760 			steal = delta;
761 
762 		rq->prev_steal_time_rq += steal;
763 		delta -= steal;
764 	}
765 #endif
766 
767 	rq->clock_task += delta;
768 
769 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
770 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
771 		sched_rt_avg_update(rq, irq_delta + steal);
772 #endif
773 }
774 
775 void sched_set_stop_task(int cpu, struct task_struct *stop)
776 {
777 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
778 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
779 
780 	if (stop) {
781 		/*
782 		 * Make it appear like a SCHED_FIFO task, its something
783 		 * userspace knows about and won't get confused about.
784 		 *
785 		 * Also, it will make PI more or less work without too
786 		 * much confusion -- but then, stop work should not
787 		 * rely on PI working anyway.
788 		 */
789 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
790 
791 		stop->sched_class = &stop_sched_class;
792 	}
793 
794 	cpu_rq(cpu)->stop = stop;
795 
796 	if (old_stop) {
797 		/*
798 		 * Reset it back to a normal scheduling class so that
799 		 * it can die in pieces.
800 		 */
801 		old_stop->sched_class = &rt_sched_class;
802 	}
803 }
804 
805 /*
806  * __normal_prio - return the priority that is based on the static prio
807  */
808 static inline int __normal_prio(struct task_struct *p)
809 {
810 	return p->static_prio;
811 }
812 
813 /*
814  * Calculate the expected normal priority: i.e. priority
815  * without taking RT-inheritance into account. Might be
816  * boosted by interactivity modifiers. Changes upon fork,
817  * setprio syscalls, and whenever the interactivity
818  * estimator recalculates.
819  */
820 static inline int normal_prio(struct task_struct *p)
821 {
822 	int prio;
823 
824 	if (task_has_dl_policy(p))
825 		prio = MAX_DL_PRIO-1;
826 	else if (task_has_rt_policy(p))
827 		prio = MAX_RT_PRIO-1 - p->rt_priority;
828 	else
829 		prio = __normal_prio(p);
830 	return prio;
831 }
832 
833 /*
834  * Calculate the current priority, i.e. the priority
835  * taken into account by the scheduler. This value might
836  * be boosted by RT tasks, or might be boosted by
837  * interactivity modifiers. Will be RT if the task got
838  * RT-boosted. If not then it returns p->normal_prio.
839  */
840 static int effective_prio(struct task_struct *p)
841 {
842 	p->normal_prio = normal_prio(p);
843 	/*
844 	 * If we are RT tasks or we were boosted to RT priority,
845 	 * keep the priority unchanged. Otherwise, update priority
846 	 * to the normal priority:
847 	 */
848 	if (!rt_prio(p->prio))
849 		return p->normal_prio;
850 	return p->prio;
851 }
852 
853 /**
854  * task_curr - is this task currently executing on a CPU?
855  * @p: the task in question.
856  *
857  * Return: 1 if the task is currently executing. 0 otherwise.
858  */
859 inline int task_curr(const struct task_struct *p)
860 {
861 	return cpu_curr(task_cpu(p)) == p;
862 }
863 
864 /*
865  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
866  * use the balance_callback list if you want balancing.
867  *
868  * this means any call to check_class_changed() must be followed by a call to
869  * balance_callback().
870  */
871 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
872 				       const struct sched_class *prev_class,
873 				       int oldprio)
874 {
875 	if (prev_class != p->sched_class) {
876 		if (prev_class->switched_from)
877 			prev_class->switched_from(rq, p);
878 
879 		p->sched_class->switched_to(rq, p);
880 	} else if (oldprio != p->prio || dl_task(p))
881 		p->sched_class->prio_changed(rq, p, oldprio);
882 }
883 
884 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
885 {
886 	const struct sched_class *class;
887 
888 	if (p->sched_class == rq->curr->sched_class) {
889 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
890 	} else {
891 		for_each_class(class) {
892 			if (class == rq->curr->sched_class)
893 				break;
894 			if (class == p->sched_class) {
895 				resched_curr(rq);
896 				break;
897 			}
898 		}
899 	}
900 
901 	/*
902 	 * A queue event has occurred, and we're going to schedule.  In
903 	 * this case, we can save a useless back to back clock update.
904 	 */
905 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
906 		rq_clock_skip_update(rq, true);
907 }
908 
909 #ifdef CONFIG_SMP
910 /*
911  * This is how migration works:
912  *
913  * 1) we invoke migration_cpu_stop() on the target CPU using
914  *    stop_one_cpu().
915  * 2) stopper starts to run (implicitly forcing the migrated thread
916  *    off the CPU)
917  * 3) it checks whether the migrated task is still in the wrong runqueue.
918  * 4) if it's in the wrong runqueue then the migration thread removes
919  *    it and puts it into the right queue.
920  * 5) stopper completes and stop_one_cpu() returns and the migration
921  *    is done.
922  */
923 
924 /*
925  * move_queued_task - move a queued task to new rq.
926  *
927  * Returns (locked) new rq. Old rq's lock is released.
928  */
929 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
930 {
931 	lockdep_assert_held(&rq->lock);
932 
933 	p->on_rq = TASK_ON_RQ_MIGRATING;
934 	dequeue_task(rq, p, 0);
935 	set_task_cpu(p, new_cpu);
936 	raw_spin_unlock(&rq->lock);
937 
938 	rq = cpu_rq(new_cpu);
939 
940 	raw_spin_lock(&rq->lock);
941 	BUG_ON(task_cpu(p) != new_cpu);
942 	enqueue_task(rq, p, 0);
943 	p->on_rq = TASK_ON_RQ_QUEUED;
944 	check_preempt_curr(rq, p, 0);
945 
946 	return rq;
947 }
948 
949 struct migration_arg {
950 	struct task_struct *task;
951 	int dest_cpu;
952 };
953 
954 /*
955  * Move (not current) task off this cpu, onto dest cpu. We're doing
956  * this because either it can't run here any more (set_cpus_allowed()
957  * away from this CPU, or CPU going down), or because we're
958  * attempting to rebalance this task on exec (sched_exec).
959  *
960  * So we race with normal scheduler movements, but that's OK, as long
961  * as the task is no longer on this CPU.
962  */
963 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
964 {
965 	if (unlikely(!cpu_active(dest_cpu)))
966 		return rq;
967 
968 	/* Affinity changed (again). */
969 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
970 		return rq;
971 
972 	rq = move_queued_task(rq, p, dest_cpu);
973 
974 	return rq;
975 }
976 
977 /*
978  * migration_cpu_stop - this will be executed by a highprio stopper thread
979  * and performs thread migration by bumping thread off CPU then
980  * 'pushing' onto another runqueue.
981  */
982 static int migration_cpu_stop(void *data)
983 {
984 	struct migration_arg *arg = data;
985 	struct task_struct *p = arg->task;
986 	struct rq *rq = this_rq();
987 
988 	/*
989 	 * The original target cpu might have gone down and we might
990 	 * be on another cpu but it doesn't matter.
991 	 */
992 	local_irq_disable();
993 	/*
994 	 * We need to explicitly wake pending tasks before running
995 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
996 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
997 	 */
998 	sched_ttwu_pending();
999 
1000 	raw_spin_lock(&p->pi_lock);
1001 	raw_spin_lock(&rq->lock);
1002 	/*
1003 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1004 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1005 	 * we're holding p->pi_lock.
1006 	 */
1007 	if (task_rq(p) == rq && task_on_rq_queued(p))
1008 		rq = __migrate_task(rq, p, arg->dest_cpu);
1009 	raw_spin_unlock(&rq->lock);
1010 	raw_spin_unlock(&p->pi_lock);
1011 
1012 	local_irq_enable();
1013 	return 0;
1014 }
1015 
1016 /*
1017  * sched_class::set_cpus_allowed must do the below, but is not required to
1018  * actually call this function.
1019  */
1020 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1021 {
1022 	cpumask_copy(&p->cpus_allowed, new_mask);
1023 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1024 }
1025 
1026 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1027 {
1028 	struct rq *rq = task_rq(p);
1029 	bool queued, running;
1030 
1031 	lockdep_assert_held(&p->pi_lock);
1032 
1033 	queued = task_on_rq_queued(p);
1034 	running = task_current(rq, p);
1035 
1036 	if (queued) {
1037 		/*
1038 		 * Because __kthread_bind() calls this on blocked tasks without
1039 		 * holding rq->lock.
1040 		 */
1041 		lockdep_assert_held(&rq->lock);
1042 		dequeue_task(rq, p, DEQUEUE_SAVE);
1043 	}
1044 	if (running)
1045 		put_prev_task(rq, p);
1046 
1047 	p->sched_class->set_cpus_allowed(p, new_mask);
1048 
1049 	if (running)
1050 		p->sched_class->set_curr_task(rq);
1051 	if (queued)
1052 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1053 }
1054 
1055 /*
1056  * Change a given task's CPU affinity. Migrate the thread to a
1057  * proper CPU and schedule it away if the CPU it's executing on
1058  * is removed from the allowed bitmask.
1059  *
1060  * NOTE: the caller must have a valid reference to the task, the
1061  * task must not exit() & deallocate itself prematurely. The
1062  * call is not atomic; no spinlocks may be held.
1063  */
1064 static int __set_cpus_allowed_ptr(struct task_struct *p,
1065 				  const struct cpumask *new_mask, bool check)
1066 {
1067 	unsigned long flags;
1068 	struct rq *rq;
1069 	unsigned int dest_cpu;
1070 	int ret = 0;
1071 
1072 	rq = task_rq_lock(p, &flags);
1073 
1074 	/*
1075 	 * Must re-check here, to close a race against __kthread_bind(),
1076 	 * sched_setaffinity() is not guaranteed to observe the flag.
1077 	 */
1078 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1079 		ret = -EINVAL;
1080 		goto out;
1081 	}
1082 
1083 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1084 		goto out;
1085 
1086 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1087 		ret = -EINVAL;
1088 		goto out;
1089 	}
1090 
1091 	do_set_cpus_allowed(p, new_mask);
1092 
1093 	/* Can the task run on the task's current CPU? If so, we're done */
1094 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1095 		goto out;
1096 
1097 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1098 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1099 		struct migration_arg arg = { p, dest_cpu };
1100 		/* Need help from migration thread: drop lock and wait. */
1101 		task_rq_unlock(rq, p, &flags);
1102 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1103 		tlb_migrate_finish(p->mm);
1104 		return 0;
1105 	} else if (task_on_rq_queued(p)) {
1106 		/*
1107 		 * OK, since we're going to drop the lock immediately
1108 		 * afterwards anyway.
1109 		 */
1110 		lockdep_unpin_lock(&rq->lock);
1111 		rq = move_queued_task(rq, p, dest_cpu);
1112 		lockdep_pin_lock(&rq->lock);
1113 	}
1114 out:
1115 	task_rq_unlock(rq, p, &flags);
1116 
1117 	return ret;
1118 }
1119 
1120 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1121 {
1122 	return __set_cpus_allowed_ptr(p, new_mask, false);
1123 }
1124 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1125 
1126 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1127 {
1128 #ifdef CONFIG_SCHED_DEBUG
1129 	/*
1130 	 * We should never call set_task_cpu() on a blocked task,
1131 	 * ttwu() will sort out the placement.
1132 	 */
1133 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1134 			!p->on_rq);
1135 
1136 	/*
1137 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1138 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1139 	 * time relying on p->on_rq.
1140 	 */
1141 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1142 		     p->sched_class == &fair_sched_class &&
1143 		     (p->on_rq && !task_on_rq_migrating(p)));
1144 
1145 #ifdef CONFIG_LOCKDEP
1146 	/*
1147 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1148 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1149 	 *
1150 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1151 	 * see task_group().
1152 	 *
1153 	 * Furthermore, all task_rq users should acquire both locks, see
1154 	 * task_rq_lock().
1155 	 */
1156 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1157 				      lockdep_is_held(&task_rq(p)->lock)));
1158 #endif
1159 #endif
1160 
1161 	trace_sched_migrate_task(p, new_cpu);
1162 
1163 	if (task_cpu(p) != new_cpu) {
1164 		if (p->sched_class->migrate_task_rq)
1165 			p->sched_class->migrate_task_rq(p);
1166 		p->se.nr_migrations++;
1167 		perf_event_task_migrate(p);
1168 	}
1169 
1170 	__set_task_cpu(p, new_cpu);
1171 }
1172 
1173 static void __migrate_swap_task(struct task_struct *p, int cpu)
1174 {
1175 	if (task_on_rq_queued(p)) {
1176 		struct rq *src_rq, *dst_rq;
1177 
1178 		src_rq = task_rq(p);
1179 		dst_rq = cpu_rq(cpu);
1180 
1181 		p->on_rq = TASK_ON_RQ_MIGRATING;
1182 		deactivate_task(src_rq, p, 0);
1183 		set_task_cpu(p, cpu);
1184 		activate_task(dst_rq, p, 0);
1185 		p->on_rq = TASK_ON_RQ_QUEUED;
1186 		check_preempt_curr(dst_rq, p, 0);
1187 	} else {
1188 		/*
1189 		 * Task isn't running anymore; make it appear like we migrated
1190 		 * it before it went to sleep. This means on wakeup we make the
1191 		 * previous cpu our targer instead of where it really is.
1192 		 */
1193 		p->wake_cpu = cpu;
1194 	}
1195 }
1196 
1197 struct migration_swap_arg {
1198 	struct task_struct *src_task, *dst_task;
1199 	int src_cpu, dst_cpu;
1200 };
1201 
1202 static int migrate_swap_stop(void *data)
1203 {
1204 	struct migration_swap_arg *arg = data;
1205 	struct rq *src_rq, *dst_rq;
1206 	int ret = -EAGAIN;
1207 
1208 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1209 		return -EAGAIN;
1210 
1211 	src_rq = cpu_rq(arg->src_cpu);
1212 	dst_rq = cpu_rq(arg->dst_cpu);
1213 
1214 	double_raw_lock(&arg->src_task->pi_lock,
1215 			&arg->dst_task->pi_lock);
1216 	double_rq_lock(src_rq, dst_rq);
1217 
1218 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1219 		goto unlock;
1220 
1221 	if (task_cpu(arg->src_task) != arg->src_cpu)
1222 		goto unlock;
1223 
1224 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1225 		goto unlock;
1226 
1227 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1228 		goto unlock;
1229 
1230 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1231 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1232 
1233 	ret = 0;
1234 
1235 unlock:
1236 	double_rq_unlock(src_rq, dst_rq);
1237 	raw_spin_unlock(&arg->dst_task->pi_lock);
1238 	raw_spin_unlock(&arg->src_task->pi_lock);
1239 
1240 	return ret;
1241 }
1242 
1243 /*
1244  * Cross migrate two tasks
1245  */
1246 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1247 {
1248 	struct migration_swap_arg arg;
1249 	int ret = -EINVAL;
1250 
1251 	arg = (struct migration_swap_arg){
1252 		.src_task = cur,
1253 		.src_cpu = task_cpu(cur),
1254 		.dst_task = p,
1255 		.dst_cpu = task_cpu(p),
1256 	};
1257 
1258 	if (arg.src_cpu == arg.dst_cpu)
1259 		goto out;
1260 
1261 	/*
1262 	 * These three tests are all lockless; this is OK since all of them
1263 	 * will be re-checked with proper locks held further down the line.
1264 	 */
1265 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1266 		goto out;
1267 
1268 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1269 		goto out;
1270 
1271 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1272 		goto out;
1273 
1274 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1275 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1276 
1277 out:
1278 	return ret;
1279 }
1280 
1281 /*
1282  * wait_task_inactive - wait for a thread to unschedule.
1283  *
1284  * If @match_state is nonzero, it's the @p->state value just checked and
1285  * not expected to change.  If it changes, i.e. @p might have woken up,
1286  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1287  * we return a positive number (its total switch count).  If a second call
1288  * a short while later returns the same number, the caller can be sure that
1289  * @p has remained unscheduled the whole time.
1290  *
1291  * The caller must ensure that the task *will* unschedule sometime soon,
1292  * else this function might spin for a *long* time. This function can't
1293  * be called with interrupts off, or it may introduce deadlock with
1294  * smp_call_function() if an IPI is sent by the same process we are
1295  * waiting to become inactive.
1296  */
1297 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1298 {
1299 	unsigned long flags;
1300 	int running, queued;
1301 	unsigned long ncsw;
1302 	struct rq *rq;
1303 
1304 	for (;;) {
1305 		/*
1306 		 * We do the initial early heuristics without holding
1307 		 * any task-queue locks at all. We'll only try to get
1308 		 * the runqueue lock when things look like they will
1309 		 * work out!
1310 		 */
1311 		rq = task_rq(p);
1312 
1313 		/*
1314 		 * If the task is actively running on another CPU
1315 		 * still, just relax and busy-wait without holding
1316 		 * any locks.
1317 		 *
1318 		 * NOTE! Since we don't hold any locks, it's not
1319 		 * even sure that "rq" stays as the right runqueue!
1320 		 * But we don't care, since "task_running()" will
1321 		 * return false if the runqueue has changed and p
1322 		 * is actually now running somewhere else!
1323 		 */
1324 		while (task_running(rq, p)) {
1325 			if (match_state && unlikely(p->state != match_state))
1326 				return 0;
1327 			cpu_relax();
1328 		}
1329 
1330 		/*
1331 		 * Ok, time to look more closely! We need the rq
1332 		 * lock now, to be *sure*. If we're wrong, we'll
1333 		 * just go back and repeat.
1334 		 */
1335 		rq = task_rq_lock(p, &flags);
1336 		trace_sched_wait_task(p);
1337 		running = task_running(rq, p);
1338 		queued = task_on_rq_queued(p);
1339 		ncsw = 0;
1340 		if (!match_state || p->state == match_state)
1341 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1342 		task_rq_unlock(rq, p, &flags);
1343 
1344 		/*
1345 		 * If it changed from the expected state, bail out now.
1346 		 */
1347 		if (unlikely(!ncsw))
1348 			break;
1349 
1350 		/*
1351 		 * Was it really running after all now that we
1352 		 * checked with the proper locks actually held?
1353 		 *
1354 		 * Oops. Go back and try again..
1355 		 */
1356 		if (unlikely(running)) {
1357 			cpu_relax();
1358 			continue;
1359 		}
1360 
1361 		/*
1362 		 * It's not enough that it's not actively running,
1363 		 * it must be off the runqueue _entirely_, and not
1364 		 * preempted!
1365 		 *
1366 		 * So if it was still runnable (but just not actively
1367 		 * running right now), it's preempted, and we should
1368 		 * yield - it could be a while.
1369 		 */
1370 		if (unlikely(queued)) {
1371 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1372 
1373 			set_current_state(TASK_UNINTERRUPTIBLE);
1374 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1375 			continue;
1376 		}
1377 
1378 		/*
1379 		 * Ahh, all good. It wasn't running, and it wasn't
1380 		 * runnable, which means that it will never become
1381 		 * running in the future either. We're all done!
1382 		 */
1383 		break;
1384 	}
1385 
1386 	return ncsw;
1387 }
1388 
1389 /***
1390  * kick_process - kick a running thread to enter/exit the kernel
1391  * @p: the to-be-kicked thread
1392  *
1393  * Cause a process which is running on another CPU to enter
1394  * kernel-mode, without any delay. (to get signals handled.)
1395  *
1396  * NOTE: this function doesn't have to take the runqueue lock,
1397  * because all it wants to ensure is that the remote task enters
1398  * the kernel. If the IPI races and the task has been migrated
1399  * to another CPU then no harm is done and the purpose has been
1400  * achieved as well.
1401  */
1402 void kick_process(struct task_struct *p)
1403 {
1404 	int cpu;
1405 
1406 	preempt_disable();
1407 	cpu = task_cpu(p);
1408 	if ((cpu != smp_processor_id()) && task_curr(p))
1409 		smp_send_reschedule(cpu);
1410 	preempt_enable();
1411 }
1412 EXPORT_SYMBOL_GPL(kick_process);
1413 
1414 /*
1415  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1416  */
1417 static int select_fallback_rq(int cpu, struct task_struct *p)
1418 {
1419 	int nid = cpu_to_node(cpu);
1420 	const struct cpumask *nodemask = NULL;
1421 	enum { cpuset, possible, fail } state = cpuset;
1422 	int dest_cpu;
1423 
1424 	/*
1425 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1426 	 * will return -1. There is no cpu on the node, and we should
1427 	 * select the cpu on the other node.
1428 	 */
1429 	if (nid != -1) {
1430 		nodemask = cpumask_of_node(nid);
1431 
1432 		/* Look for allowed, online CPU in same node. */
1433 		for_each_cpu(dest_cpu, nodemask) {
1434 			if (!cpu_online(dest_cpu))
1435 				continue;
1436 			if (!cpu_active(dest_cpu))
1437 				continue;
1438 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1439 				return dest_cpu;
1440 		}
1441 	}
1442 
1443 	for (;;) {
1444 		/* Any allowed, online CPU? */
1445 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1446 			if (!cpu_online(dest_cpu))
1447 				continue;
1448 			if (!cpu_active(dest_cpu))
1449 				continue;
1450 			goto out;
1451 		}
1452 
1453 		/* No more Mr. Nice Guy. */
1454 		switch (state) {
1455 		case cpuset:
1456 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1457 				cpuset_cpus_allowed_fallback(p);
1458 				state = possible;
1459 				break;
1460 			}
1461 			/* fall-through */
1462 		case possible:
1463 			do_set_cpus_allowed(p, cpu_possible_mask);
1464 			state = fail;
1465 			break;
1466 
1467 		case fail:
1468 			BUG();
1469 			break;
1470 		}
1471 	}
1472 
1473 out:
1474 	if (state != cpuset) {
1475 		/*
1476 		 * Don't tell them about moving exiting tasks or
1477 		 * kernel threads (both mm NULL), since they never
1478 		 * leave kernel.
1479 		 */
1480 		if (p->mm && printk_ratelimit()) {
1481 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1482 					task_pid_nr(p), p->comm, cpu);
1483 		}
1484 	}
1485 
1486 	return dest_cpu;
1487 }
1488 
1489 /*
1490  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1491  */
1492 static inline
1493 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1494 {
1495 	lockdep_assert_held(&p->pi_lock);
1496 
1497 	if (p->nr_cpus_allowed > 1)
1498 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1499 
1500 	/*
1501 	 * In order not to call set_task_cpu() on a blocking task we need
1502 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1503 	 * cpu.
1504 	 *
1505 	 * Since this is common to all placement strategies, this lives here.
1506 	 *
1507 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1508 	 *   not worry about this generic constraint ]
1509 	 */
1510 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1511 		     !cpu_online(cpu)))
1512 		cpu = select_fallback_rq(task_cpu(p), p);
1513 
1514 	return cpu;
1515 }
1516 
1517 static void update_avg(u64 *avg, u64 sample)
1518 {
1519 	s64 diff = sample - *avg;
1520 	*avg += diff >> 3;
1521 }
1522 
1523 #else
1524 
1525 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1526 					 const struct cpumask *new_mask, bool check)
1527 {
1528 	return set_cpus_allowed_ptr(p, new_mask);
1529 }
1530 
1531 #endif /* CONFIG_SMP */
1532 
1533 static void
1534 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1535 {
1536 #ifdef CONFIG_SCHEDSTATS
1537 	struct rq *rq = this_rq();
1538 
1539 #ifdef CONFIG_SMP
1540 	int this_cpu = smp_processor_id();
1541 
1542 	if (cpu == this_cpu) {
1543 		schedstat_inc(rq, ttwu_local);
1544 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1545 	} else {
1546 		struct sched_domain *sd;
1547 
1548 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1549 		rcu_read_lock();
1550 		for_each_domain(this_cpu, sd) {
1551 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1552 				schedstat_inc(sd, ttwu_wake_remote);
1553 				break;
1554 			}
1555 		}
1556 		rcu_read_unlock();
1557 	}
1558 
1559 	if (wake_flags & WF_MIGRATED)
1560 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1561 
1562 #endif /* CONFIG_SMP */
1563 
1564 	schedstat_inc(rq, ttwu_count);
1565 	schedstat_inc(p, se.statistics.nr_wakeups);
1566 
1567 	if (wake_flags & WF_SYNC)
1568 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1569 
1570 #endif /* CONFIG_SCHEDSTATS */
1571 }
1572 
1573 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1574 {
1575 	activate_task(rq, p, en_flags);
1576 	p->on_rq = TASK_ON_RQ_QUEUED;
1577 
1578 	/* if a worker is waking up, notify workqueue */
1579 	if (p->flags & PF_WQ_WORKER)
1580 		wq_worker_waking_up(p, cpu_of(rq));
1581 }
1582 
1583 /*
1584  * Mark the task runnable and perform wakeup-preemption.
1585  */
1586 static void
1587 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1588 {
1589 	check_preempt_curr(rq, p, wake_flags);
1590 	p->state = TASK_RUNNING;
1591 	trace_sched_wakeup(p);
1592 
1593 #ifdef CONFIG_SMP
1594 	if (p->sched_class->task_woken) {
1595 		/*
1596 		 * Our task @p is fully woken up and running; so its safe to
1597 		 * drop the rq->lock, hereafter rq is only used for statistics.
1598 		 */
1599 		lockdep_unpin_lock(&rq->lock);
1600 		p->sched_class->task_woken(rq, p);
1601 		lockdep_pin_lock(&rq->lock);
1602 	}
1603 
1604 	if (rq->idle_stamp) {
1605 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1606 		u64 max = 2*rq->max_idle_balance_cost;
1607 
1608 		update_avg(&rq->avg_idle, delta);
1609 
1610 		if (rq->avg_idle > max)
1611 			rq->avg_idle = max;
1612 
1613 		rq->idle_stamp = 0;
1614 	}
1615 #endif
1616 }
1617 
1618 static void
1619 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1620 {
1621 	lockdep_assert_held(&rq->lock);
1622 
1623 #ifdef CONFIG_SMP
1624 	if (p->sched_contributes_to_load)
1625 		rq->nr_uninterruptible--;
1626 #endif
1627 
1628 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1629 	ttwu_do_wakeup(rq, p, wake_flags);
1630 }
1631 
1632 /*
1633  * Called in case the task @p isn't fully descheduled from its runqueue,
1634  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1635  * since all we need to do is flip p->state to TASK_RUNNING, since
1636  * the task is still ->on_rq.
1637  */
1638 static int ttwu_remote(struct task_struct *p, int wake_flags)
1639 {
1640 	struct rq *rq;
1641 	int ret = 0;
1642 
1643 	rq = __task_rq_lock(p);
1644 	if (task_on_rq_queued(p)) {
1645 		/* check_preempt_curr() may use rq clock */
1646 		update_rq_clock(rq);
1647 		ttwu_do_wakeup(rq, p, wake_flags);
1648 		ret = 1;
1649 	}
1650 	__task_rq_unlock(rq);
1651 
1652 	return ret;
1653 }
1654 
1655 #ifdef CONFIG_SMP
1656 void sched_ttwu_pending(void)
1657 {
1658 	struct rq *rq = this_rq();
1659 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1660 	struct task_struct *p;
1661 	unsigned long flags;
1662 
1663 	if (!llist)
1664 		return;
1665 
1666 	raw_spin_lock_irqsave(&rq->lock, flags);
1667 	lockdep_pin_lock(&rq->lock);
1668 
1669 	while (llist) {
1670 		p = llist_entry(llist, struct task_struct, wake_entry);
1671 		llist = llist_next(llist);
1672 		ttwu_do_activate(rq, p, 0);
1673 	}
1674 
1675 	lockdep_unpin_lock(&rq->lock);
1676 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1677 }
1678 
1679 void scheduler_ipi(void)
1680 {
1681 	/*
1682 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1683 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1684 	 * this IPI.
1685 	 */
1686 	preempt_fold_need_resched();
1687 
1688 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1689 		return;
1690 
1691 	/*
1692 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1693 	 * traditionally all their work was done from the interrupt return
1694 	 * path. Now that we actually do some work, we need to make sure
1695 	 * we do call them.
1696 	 *
1697 	 * Some archs already do call them, luckily irq_enter/exit nest
1698 	 * properly.
1699 	 *
1700 	 * Arguably we should visit all archs and update all handlers,
1701 	 * however a fair share of IPIs are still resched only so this would
1702 	 * somewhat pessimize the simple resched case.
1703 	 */
1704 	irq_enter();
1705 	sched_ttwu_pending();
1706 
1707 	/*
1708 	 * Check if someone kicked us for doing the nohz idle load balance.
1709 	 */
1710 	if (unlikely(got_nohz_idle_kick())) {
1711 		this_rq()->idle_balance = 1;
1712 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1713 	}
1714 	irq_exit();
1715 }
1716 
1717 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1718 {
1719 	struct rq *rq = cpu_rq(cpu);
1720 
1721 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1722 		if (!set_nr_if_polling(rq->idle))
1723 			smp_send_reschedule(cpu);
1724 		else
1725 			trace_sched_wake_idle_without_ipi(cpu);
1726 	}
1727 }
1728 
1729 void wake_up_if_idle(int cpu)
1730 {
1731 	struct rq *rq = cpu_rq(cpu);
1732 	unsigned long flags;
1733 
1734 	rcu_read_lock();
1735 
1736 	if (!is_idle_task(rcu_dereference(rq->curr)))
1737 		goto out;
1738 
1739 	if (set_nr_if_polling(rq->idle)) {
1740 		trace_sched_wake_idle_without_ipi(cpu);
1741 	} else {
1742 		raw_spin_lock_irqsave(&rq->lock, flags);
1743 		if (is_idle_task(rq->curr))
1744 			smp_send_reschedule(cpu);
1745 		/* Else cpu is not in idle, do nothing here */
1746 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1747 	}
1748 
1749 out:
1750 	rcu_read_unlock();
1751 }
1752 
1753 bool cpus_share_cache(int this_cpu, int that_cpu)
1754 {
1755 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1756 }
1757 #endif /* CONFIG_SMP */
1758 
1759 static void ttwu_queue(struct task_struct *p, int cpu)
1760 {
1761 	struct rq *rq = cpu_rq(cpu);
1762 
1763 #if defined(CONFIG_SMP)
1764 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1765 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1766 		ttwu_queue_remote(p, cpu);
1767 		return;
1768 	}
1769 #endif
1770 
1771 	raw_spin_lock(&rq->lock);
1772 	lockdep_pin_lock(&rq->lock);
1773 	ttwu_do_activate(rq, p, 0);
1774 	lockdep_unpin_lock(&rq->lock);
1775 	raw_spin_unlock(&rq->lock);
1776 }
1777 
1778 /*
1779  * Notes on Program-Order guarantees on SMP systems.
1780  *
1781  *  MIGRATION
1782  *
1783  * The basic program-order guarantee on SMP systems is that when a task [t]
1784  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1785  * execution on its new cpu [c1].
1786  *
1787  * For migration (of runnable tasks) this is provided by the following means:
1788  *
1789  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1790  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1791  *     rq(c1)->lock (if not at the same time, then in that order).
1792  *  C) LOCK of the rq(c1)->lock scheduling in task
1793  *
1794  * Transitivity guarantees that B happens after A and C after B.
1795  * Note: we only require RCpc transitivity.
1796  * Note: the cpu doing B need not be c0 or c1
1797  *
1798  * Example:
1799  *
1800  *   CPU0            CPU1            CPU2
1801  *
1802  *   LOCK rq(0)->lock
1803  *   sched-out X
1804  *   sched-in Y
1805  *   UNLOCK rq(0)->lock
1806  *
1807  *                                   LOCK rq(0)->lock // orders against CPU0
1808  *                                   dequeue X
1809  *                                   UNLOCK rq(0)->lock
1810  *
1811  *                                   LOCK rq(1)->lock
1812  *                                   enqueue X
1813  *                                   UNLOCK rq(1)->lock
1814  *
1815  *                   LOCK rq(1)->lock // orders against CPU2
1816  *                   sched-out Z
1817  *                   sched-in X
1818  *                   UNLOCK rq(1)->lock
1819  *
1820  *
1821  *  BLOCKING -- aka. SLEEP + WAKEUP
1822  *
1823  * For blocking we (obviously) need to provide the same guarantee as for
1824  * migration. However the means are completely different as there is no lock
1825  * chain to provide order. Instead we do:
1826  *
1827  *   1) smp_store_release(X->on_cpu, 0)
1828  *   2) smp_cond_acquire(!X->on_cpu)
1829  *
1830  * Example:
1831  *
1832  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1833  *
1834  *   LOCK rq(0)->lock LOCK X->pi_lock
1835  *   dequeue X
1836  *   sched-out X
1837  *   smp_store_release(X->on_cpu, 0);
1838  *
1839  *                    smp_cond_acquire(!X->on_cpu);
1840  *                    X->state = WAKING
1841  *                    set_task_cpu(X,2)
1842  *
1843  *                    LOCK rq(2)->lock
1844  *                    enqueue X
1845  *                    X->state = RUNNING
1846  *                    UNLOCK rq(2)->lock
1847  *
1848  *                                          LOCK rq(2)->lock // orders against CPU1
1849  *                                          sched-out Z
1850  *                                          sched-in X
1851  *                                          UNLOCK rq(2)->lock
1852  *
1853  *                    UNLOCK X->pi_lock
1854  *   UNLOCK rq(0)->lock
1855  *
1856  *
1857  * However; for wakeups there is a second guarantee we must provide, namely we
1858  * must observe the state that lead to our wakeup. That is, not only must our
1859  * task observe its own prior state, it must also observe the stores prior to
1860  * its wakeup.
1861  *
1862  * This means that any means of doing remote wakeups must order the CPU doing
1863  * the wakeup against the CPU the task is going to end up running on. This,
1864  * however, is already required for the regular Program-Order guarantee above,
1865  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1866  *
1867  */
1868 
1869 /**
1870  * try_to_wake_up - wake up a thread
1871  * @p: the thread to be awakened
1872  * @state: the mask of task states that can be woken
1873  * @wake_flags: wake modifier flags (WF_*)
1874  *
1875  * Put it on the run-queue if it's not already there. The "current"
1876  * thread is always on the run-queue (except when the actual
1877  * re-schedule is in progress), and as such you're allowed to do
1878  * the simpler "current->state = TASK_RUNNING" to mark yourself
1879  * runnable without the overhead of this.
1880  *
1881  * Return: %true if @p was woken up, %false if it was already running.
1882  * or @state didn't match @p's state.
1883  */
1884 static int
1885 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1886 {
1887 	unsigned long flags;
1888 	int cpu, success = 0;
1889 
1890 	/*
1891 	 * If we are going to wake up a thread waiting for CONDITION we
1892 	 * need to ensure that CONDITION=1 done by the caller can not be
1893 	 * reordered with p->state check below. This pairs with mb() in
1894 	 * set_current_state() the waiting thread does.
1895 	 */
1896 	smp_mb__before_spinlock();
1897 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1898 	if (!(p->state & state))
1899 		goto out;
1900 
1901 	trace_sched_waking(p);
1902 
1903 	success = 1; /* we're going to change ->state */
1904 	cpu = task_cpu(p);
1905 
1906 	if (p->on_rq && ttwu_remote(p, wake_flags))
1907 		goto stat;
1908 
1909 #ifdef CONFIG_SMP
1910 	/*
1911 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1912 	 * possible to, falsely, observe p->on_cpu == 0.
1913 	 *
1914 	 * One must be running (->on_cpu == 1) in order to remove oneself
1915 	 * from the runqueue.
1916 	 *
1917 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
1918 	 *      UNLOCK rq->lock
1919 	 *			RMB
1920 	 *      LOCK   rq->lock
1921 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
1922 	 *
1923 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1924 	 * from the consecutive calls to schedule(); the first switching to our
1925 	 * task, the second putting it to sleep.
1926 	 */
1927 	smp_rmb();
1928 
1929 	/*
1930 	 * If the owning (remote) cpu is still in the middle of schedule() with
1931 	 * this task as prev, wait until its done referencing the task.
1932 	 *
1933 	 * Pairs with the smp_store_release() in finish_lock_switch().
1934 	 *
1935 	 * This ensures that tasks getting woken will be fully ordered against
1936 	 * their previous state and preserve Program Order.
1937 	 */
1938 	smp_cond_acquire(!p->on_cpu);
1939 
1940 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1941 	p->state = TASK_WAKING;
1942 
1943 	if (p->sched_class->task_waking)
1944 		p->sched_class->task_waking(p);
1945 
1946 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1947 	if (task_cpu(p) != cpu) {
1948 		wake_flags |= WF_MIGRATED;
1949 		set_task_cpu(p, cpu);
1950 	}
1951 #endif /* CONFIG_SMP */
1952 
1953 	ttwu_queue(p, cpu);
1954 stat:
1955 	if (schedstat_enabled())
1956 		ttwu_stat(p, cpu, wake_flags);
1957 out:
1958 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1959 
1960 	return success;
1961 }
1962 
1963 /**
1964  * try_to_wake_up_local - try to wake up a local task with rq lock held
1965  * @p: the thread to be awakened
1966  *
1967  * Put @p on the run-queue if it's not already there. The caller must
1968  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1969  * the current task.
1970  */
1971 static void try_to_wake_up_local(struct task_struct *p)
1972 {
1973 	struct rq *rq = task_rq(p);
1974 
1975 	if (WARN_ON_ONCE(rq != this_rq()) ||
1976 	    WARN_ON_ONCE(p == current))
1977 		return;
1978 
1979 	lockdep_assert_held(&rq->lock);
1980 
1981 	if (!raw_spin_trylock(&p->pi_lock)) {
1982 		/*
1983 		 * This is OK, because current is on_cpu, which avoids it being
1984 		 * picked for load-balance and preemption/IRQs are still
1985 		 * disabled avoiding further scheduler activity on it and we've
1986 		 * not yet picked a replacement task.
1987 		 */
1988 		lockdep_unpin_lock(&rq->lock);
1989 		raw_spin_unlock(&rq->lock);
1990 		raw_spin_lock(&p->pi_lock);
1991 		raw_spin_lock(&rq->lock);
1992 		lockdep_pin_lock(&rq->lock);
1993 	}
1994 
1995 	if (!(p->state & TASK_NORMAL))
1996 		goto out;
1997 
1998 	trace_sched_waking(p);
1999 
2000 	if (!task_on_rq_queued(p))
2001 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2002 
2003 	ttwu_do_wakeup(rq, p, 0);
2004 	if (schedstat_enabled())
2005 		ttwu_stat(p, smp_processor_id(), 0);
2006 out:
2007 	raw_spin_unlock(&p->pi_lock);
2008 }
2009 
2010 /**
2011  * wake_up_process - Wake up a specific process
2012  * @p: The process to be woken up.
2013  *
2014  * Attempt to wake up the nominated process and move it to the set of runnable
2015  * processes.
2016  *
2017  * Return: 1 if the process was woken up, 0 if it was already running.
2018  *
2019  * It may be assumed that this function implies a write memory barrier before
2020  * changing the task state if and only if any tasks are woken up.
2021  */
2022 int wake_up_process(struct task_struct *p)
2023 {
2024 	return try_to_wake_up(p, TASK_NORMAL, 0);
2025 }
2026 EXPORT_SYMBOL(wake_up_process);
2027 
2028 int wake_up_state(struct task_struct *p, unsigned int state)
2029 {
2030 	return try_to_wake_up(p, state, 0);
2031 }
2032 
2033 /*
2034  * This function clears the sched_dl_entity static params.
2035  */
2036 void __dl_clear_params(struct task_struct *p)
2037 {
2038 	struct sched_dl_entity *dl_se = &p->dl;
2039 
2040 	dl_se->dl_runtime = 0;
2041 	dl_se->dl_deadline = 0;
2042 	dl_se->dl_period = 0;
2043 	dl_se->flags = 0;
2044 	dl_se->dl_bw = 0;
2045 
2046 	dl_se->dl_throttled = 0;
2047 	dl_se->dl_yielded = 0;
2048 }
2049 
2050 /*
2051  * Perform scheduler related setup for a newly forked process p.
2052  * p is forked by current.
2053  *
2054  * __sched_fork() is basic setup used by init_idle() too:
2055  */
2056 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2057 {
2058 	p->on_rq			= 0;
2059 
2060 	p->se.on_rq			= 0;
2061 	p->se.exec_start		= 0;
2062 	p->se.sum_exec_runtime		= 0;
2063 	p->se.prev_sum_exec_runtime	= 0;
2064 	p->se.nr_migrations		= 0;
2065 	p->se.vruntime			= 0;
2066 	INIT_LIST_HEAD(&p->se.group_node);
2067 
2068 #ifdef CONFIG_FAIR_GROUP_SCHED
2069 	p->se.cfs_rq			= NULL;
2070 #endif
2071 
2072 #ifdef CONFIG_SCHEDSTATS
2073 	/* Even if schedstat is disabled, there should not be garbage */
2074 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2075 #endif
2076 
2077 	RB_CLEAR_NODE(&p->dl.rb_node);
2078 	init_dl_task_timer(&p->dl);
2079 	__dl_clear_params(p);
2080 
2081 	INIT_LIST_HEAD(&p->rt.run_list);
2082 	p->rt.timeout		= 0;
2083 	p->rt.time_slice	= sched_rr_timeslice;
2084 	p->rt.on_rq		= 0;
2085 	p->rt.on_list		= 0;
2086 
2087 #ifdef CONFIG_PREEMPT_NOTIFIERS
2088 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2089 #endif
2090 
2091 #ifdef CONFIG_NUMA_BALANCING
2092 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2093 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2094 		p->mm->numa_scan_seq = 0;
2095 	}
2096 
2097 	if (clone_flags & CLONE_VM)
2098 		p->numa_preferred_nid = current->numa_preferred_nid;
2099 	else
2100 		p->numa_preferred_nid = -1;
2101 
2102 	p->node_stamp = 0ULL;
2103 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2104 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2105 	p->numa_work.next = &p->numa_work;
2106 	p->numa_faults = NULL;
2107 	p->last_task_numa_placement = 0;
2108 	p->last_sum_exec_runtime = 0;
2109 
2110 	p->numa_group = NULL;
2111 #endif /* CONFIG_NUMA_BALANCING */
2112 }
2113 
2114 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2115 
2116 #ifdef CONFIG_NUMA_BALANCING
2117 
2118 void set_numabalancing_state(bool enabled)
2119 {
2120 	if (enabled)
2121 		static_branch_enable(&sched_numa_balancing);
2122 	else
2123 		static_branch_disable(&sched_numa_balancing);
2124 }
2125 
2126 #ifdef CONFIG_PROC_SYSCTL
2127 int sysctl_numa_balancing(struct ctl_table *table, int write,
2128 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2129 {
2130 	struct ctl_table t;
2131 	int err;
2132 	int state = static_branch_likely(&sched_numa_balancing);
2133 
2134 	if (write && !capable(CAP_SYS_ADMIN))
2135 		return -EPERM;
2136 
2137 	t = *table;
2138 	t.data = &state;
2139 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2140 	if (err < 0)
2141 		return err;
2142 	if (write)
2143 		set_numabalancing_state(state);
2144 	return err;
2145 }
2146 #endif
2147 #endif
2148 
2149 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2150 
2151 #ifdef CONFIG_SCHEDSTATS
2152 static void set_schedstats(bool enabled)
2153 {
2154 	if (enabled)
2155 		static_branch_enable(&sched_schedstats);
2156 	else
2157 		static_branch_disable(&sched_schedstats);
2158 }
2159 
2160 void force_schedstat_enabled(void)
2161 {
2162 	if (!schedstat_enabled()) {
2163 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2164 		static_branch_enable(&sched_schedstats);
2165 	}
2166 }
2167 
2168 static int __init setup_schedstats(char *str)
2169 {
2170 	int ret = 0;
2171 	if (!str)
2172 		goto out;
2173 
2174 	if (!strcmp(str, "enable")) {
2175 		set_schedstats(true);
2176 		ret = 1;
2177 	} else if (!strcmp(str, "disable")) {
2178 		set_schedstats(false);
2179 		ret = 1;
2180 	}
2181 out:
2182 	if (!ret)
2183 		pr_warn("Unable to parse schedstats=\n");
2184 
2185 	return ret;
2186 }
2187 __setup("schedstats=", setup_schedstats);
2188 
2189 #ifdef CONFIG_PROC_SYSCTL
2190 int sysctl_schedstats(struct ctl_table *table, int write,
2191 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2192 {
2193 	struct ctl_table t;
2194 	int err;
2195 	int state = static_branch_likely(&sched_schedstats);
2196 
2197 	if (write && !capable(CAP_SYS_ADMIN))
2198 		return -EPERM;
2199 
2200 	t = *table;
2201 	t.data = &state;
2202 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2203 	if (err < 0)
2204 		return err;
2205 	if (write)
2206 		set_schedstats(state);
2207 	return err;
2208 }
2209 #endif
2210 #endif
2211 
2212 /*
2213  * fork()/clone()-time setup:
2214  */
2215 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2216 {
2217 	unsigned long flags;
2218 	int cpu = get_cpu();
2219 
2220 	__sched_fork(clone_flags, p);
2221 	/*
2222 	 * We mark the process as running here. This guarantees that
2223 	 * nobody will actually run it, and a signal or other external
2224 	 * event cannot wake it up and insert it on the runqueue either.
2225 	 */
2226 	p->state = TASK_RUNNING;
2227 
2228 	/*
2229 	 * Make sure we do not leak PI boosting priority to the child.
2230 	 */
2231 	p->prio = current->normal_prio;
2232 
2233 	/*
2234 	 * Revert to default priority/policy on fork if requested.
2235 	 */
2236 	if (unlikely(p->sched_reset_on_fork)) {
2237 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2238 			p->policy = SCHED_NORMAL;
2239 			p->static_prio = NICE_TO_PRIO(0);
2240 			p->rt_priority = 0;
2241 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2242 			p->static_prio = NICE_TO_PRIO(0);
2243 
2244 		p->prio = p->normal_prio = __normal_prio(p);
2245 		set_load_weight(p);
2246 
2247 		/*
2248 		 * We don't need the reset flag anymore after the fork. It has
2249 		 * fulfilled its duty:
2250 		 */
2251 		p->sched_reset_on_fork = 0;
2252 	}
2253 
2254 	if (dl_prio(p->prio)) {
2255 		put_cpu();
2256 		return -EAGAIN;
2257 	} else if (rt_prio(p->prio)) {
2258 		p->sched_class = &rt_sched_class;
2259 	} else {
2260 		p->sched_class = &fair_sched_class;
2261 	}
2262 
2263 	if (p->sched_class->task_fork)
2264 		p->sched_class->task_fork(p);
2265 
2266 	/*
2267 	 * The child is not yet in the pid-hash so no cgroup attach races,
2268 	 * and the cgroup is pinned to this child due to cgroup_fork()
2269 	 * is ran before sched_fork().
2270 	 *
2271 	 * Silence PROVE_RCU.
2272 	 */
2273 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2274 	set_task_cpu(p, cpu);
2275 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2276 
2277 #ifdef CONFIG_SCHED_INFO
2278 	if (likely(sched_info_on()))
2279 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2280 #endif
2281 #if defined(CONFIG_SMP)
2282 	p->on_cpu = 0;
2283 #endif
2284 	init_task_preempt_count(p);
2285 #ifdef CONFIG_SMP
2286 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2287 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2288 #endif
2289 
2290 	put_cpu();
2291 	return 0;
2292 }
2293 
2294 unsigned long to_ratio(u64 period, u64 runtime)
2295 {
2296 	if (runtime == RUNTIME_INF)
2297 		return 1ULL << 20;
2298 
2299 	/*
2300 	 * Doing this here saves a lot of checks in all
2301 	 * the calling paths, and returning zero seems
2302 	 * safe for them anyway.
2303 	 */
2304 	if (period == 0)
2305 		return 0;
2306 
2307 	return div64_u64(runtime << 20, period);
2308 }
2309 
2310 #ifdef CONFIG_SMP
2311 inline struct dl_bw *dl_bw_of(int i)
2312 {
2313 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2314 			 "sched RCU must be held");
2315 	return &cpu_rq(i)->rd->dl_bw;
2316 }
2317 
2318 static inline int dl_bw_cpus(int i)
2319 {
2320 	struct root_domain *rd = cpu_rq(i)->rd;
2321 	int cpus = 0;
2322 
2323 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2324 			 "sched RCU must be held");
2325 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2326 		cpus++;
2327 
2328 	return cpus;
2329 }
2330 #else
2331 inline struct dl_bw *dl_bw_of(int i)
2332 {
2333 	return &cpu_rq(i)->dl.dl_bw;
2334 }
2335 
2336 static inline int dl_bw_cpus(int i)
2337 {
2338 	return 1;
2339 }
2340 #endif
2341 
2342 /*
2343  * We must be sure that accepting a new task (or allowing changing the
2344  * parameters of an existing one) is consistent with the bandwidth
2345  * constraints. If yes, this function also accordingly updates the currently
2346  * allocated bandwidth to reflect the new situation.
2347  *
2348  * This function is called while holding p's rq->lock.
2349  *
2350  * XXX we should delay bw change until the task's 0-lag point, see
2351  * __setparam_dl().
2352  */
2353 static int dl_overflow(struct task_struct *p, int policy,
2354 		       const struct sched_attr *attr)
2355 {
2356 
2357 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2358 	u64 period = attr->sched_period ?: attr->sched_deadline;
2359 	u64 runtime = attr->sched_runtime;
2360 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2361 	int cpus, err = -1;
2362 
2363 	if (new_bw == p->dl.dl_bw)
2364 		return 0;
2365 
2366 	/*
2367 	 * Either if a task, enters, leave, or stays -deadline but changes
2368 	 * its parameters, we may need to update accordingly the total
2369 	 * allocated bandwidth of the container.
2370 	 */
2371 	raw_spin_lock(&dl_b->lock);
2372 	cpus = dl_bw_cpus(task_cpu(p));
2373 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2374 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2375 		__dl_add(dl_b, new_bw);
2376 		err = 0;
2377 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2378 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2379 		__dl_clear(dl_b, p->dl.dl_bw);
2380 		__dl_add(dl_b, new_bw);
2381 		err = 0;
2382 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2383 		__dl_clear(dl_b, p->dl.dl_bw);
2384 		err = 0;
2385 	}
2386 	raw_spin_unlock(&dl_b->lock);
2387 
2388 	return err;
2389 }
2390 
2391 extern void init_dl_bw(struct dl_bw *dl_b);
2392 
2393 /*
2394  * wake_up_new_task - wake up a newly created task for the first time.
2395  *
2396  * This function will do some initial scheduler statistics housekeeping
2397  * that must be done for every newly created context, then puts the task
2398  * on the runqueue and wakes it.
2399  */
2400 void wake_up_new_task(struct task_struct *p)
2401 {
2402 	unsigned long flags;
2403 	struct rq *rq;
2404 
2405 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2406 	/* Initialize new task's runnable average */
2407 	init_entity_runnable_average(&p->se);
2408 #ifdef CONFIG_SMP
2409 	/*
2410 	 * Fork balancing, do it here and not earlier because:
2411 	 *  - cpus_allowed can change in the fork path
2412 	 *  - any previously selected cpu might disappear through hotplug
2413 	 */
2414 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2415 #endif
2416 
2417 	rq = __task_rq_lock(p);
2418 	activate_task(rq, p, 0);
2419 	p->on_rq = TASK_ON_RQ_QUEUED;
2420 	trace_sched_wakeup_new(p);
2421 	check_preempt_curr(rq, p, WF_FORK);
2422 #ifdef CONFIG_SMP
2423 	if (p->sched_class->task_woken) {
2424 		/*
2425 		 * Nothing relies on rq->lock after this, so its fine to
2426 		 * drop it.
2427 		 */
2428 		lockdep_unpin_lock(&rq->lock);
2429 		p->sched_class->task_woken(rq, p);
2430 		lockdep_pin_lock(&rq->lock);
2431 	}
2432 #endif
2433 	task_rq_unlock(rq, p, &flags);
2434 }
2435 
2436 #ifdef CONFIG_PREEMPT_NOTIFIERS
2437 
2438 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2439 
2440 void preempt_notifier_inc(void)
2441 {
2442 	static_key_slow_inc(&preempt_notifier_key);
2443 }
2444 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2445 
2446 void preempt_notifier_dec(void)
2447 {
2448 	static_key_slow_dec(&preempt_notifier_key);
2449 }
2450 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2451 
2452 /**
2453  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2454  * @notifier: notifier struct to register
2455  */
2456 void preempt_notifier_register(struct preempt_notifier *notifier)
2457 {
2458 	if (!static_key_false(&preempt_notifier_key))
2459 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2460 
2461 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2462 }
2463 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2464 
2465 /**
2466  * preempt_notifier_unregister - no longer interested in preemption notifications
2467  * @notifier: notifier struct to unregister
2468  *
2469  * This is *not* safe to call from within a preemption notifier.
2470  */
2471 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2472 {
2473 	hlist_del(&notifier->link);
2474 }
2475 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2476 
2477 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478 {
2479 	struct preempt_notifier *notifier;
2480 
2481 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2482 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2483 }
2484 
2485 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2486 {
2487 	if (static_key_false(&preempt_notifier_key))
2488 		__fire_sched_in_preempt_notifiers(curr);
2489 }
2490 
2491 static void
2492 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2493 				   struct task_struct *next)
2494 {
2495 	struct preempt_notifier *notifier;
2496 
2497 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2498 		notifier->ops->sched_out(notifier, next);
2499 }
2500 
2501 static __always_inline void
2502 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2503 				 struct task_struct *next)
2504 {
2505 	if (static_key_false(&preempt_notifier_key))
2506 		__fire_sched_out_preempt_notifiers(curr, next);
2507 }
2508 
2509 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2510 
2511 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2512 {
2513 }
2514 
2515 static inline void
2516 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2517 				 struct task_struct *next)
2518 {
2519 }
2520 
2521 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2522 
2523 /**
2524  * prepare_task_switch - prepare to switch tasks
2525  * @rq: the runqueue preparing to switch
2526  * @prev: the current task that is being switched out
2527  * @next: the task we are going to switch to.
2528  *
2529  * This is called with the rq lock held and interrupts off. It must
2530  * be paired with a subsequent finish_task_switch after the context
2531  * switch.
2532  *
2533  * prepare_task_switch sets up locking and calls architecture specific
2534  * hooks.
2535  */
2536 static inline void
2537 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2538 		    struct task_struct *next)
2539 {
2540 	sched_info_switch(rq, prev, next);
2541 	perf_event_task_sched_out(prev, next);
2542 	fire_sched_out_preempt_notifiers(prev, next);
2543 	prepare_lock_switch(rq, next);
2544 	prepare_arch_switch(next);
2545 }
2546 
2547 /**
2548  * finish_task_switch - clean up after a task-switch
2549  * @prev: the thread we just switched away from.
2550  *
2551  * finish_task_switch must be called after the context switch, paired
2552  * with a prepare_task_switch call before the context switch.
2553  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2554  * and do any other architecture-specific cleanup actions.
2555  *
2556  * Note that we may have delayed dropping an mm in context_switch(). If
2557  * so, we finish that here outside of the runqueue lock. (Doing it
2558  * with the lock held can cause deadlocks; see schedule() for
2559  * details.)
2560  *
2561  * The context switch have flipped the stack from under us and restored the
2562  * local variables which were saved when this task called schedule() in the
2563  * past. prev == current is still correct but we need to recalculate this_rq
2564  * because prev may have moved to another CPU.
2565  */
2566 static struct rq *finish_task_switch(struct task_struct *prev)
2567 	__releases(rq->lock)
2568 {
2569 	struct rq *rq = this_rq();
2570 	struct mm_struct *mm = rq->prev_mm;
2571 	long prev_state;
2572 
2573 	/*
2574 	 * The previous task will have left us with a preempt_count of 2
2575 	 * because it left us after:
2576 	 *
2577 	 *	schedule()
2578 	 *	  preempt_disable();			// 1
2579 	 *	  __schedule()
2580 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2581 	 *
2582 	 * Also, see FORK_PREEMPT_COUNT.
2583 	 */
2584 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2585 		      "corrupted preempt_count: %s/%d/0x%x\n",
2586 		      current->comm, current->pid, preempt_count()))
2587 		preempt_count_set(FORK_PREEMPT_COUNT);
2588 
2589 	rq->prev_mm = NULL;
2590 
2591 	/*
2592 	 * A task struct has one reference for the use as "current".
2593 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2594 	 * schedule one last time. The schedule call will never return, and
2595 	 * the scheduled task must drop that reference.
2596 	 *
2597 	 * We must observe prev->state before clearing prev->on_cpu (in
2598 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2599 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2600 	 * transition, resulting in a double drop.
2601 	 */
2602 	prev_state = prev->state;
2603 	vtime_task_switch(prev);
2604 	perf_event_task_sched_in(prev, current);
2605 	finish_lock_switch(rq, prev);
2606 	finish_arch_post_lock_switch();
2607 
2608 	fire_sched_in_preempt_notifiers(current);
2609 	if (mm)
2610 		mmdrop(mm);
2611 	if (unlikely(prev_state == TASK_DEAD)) {
2612 		if (prev->sched_class->task_dead)
2613 			prev->sched_class->task_dead(prev);
2614 
2615 		/*
2616 		 * Remove function-return probe instances associated with this
2617 		 * task and put them back on the free list.
2618 		 */
2619 		kprobe_flush_task(prev);
2620 		put_task_struct(prev);
2621 	}
2622 
2623 	tick_nohz_task_switch();
2624 	return rq;
2625 }
2626 
2627 #ifdef CONFIG_SMP
2628 
2629 /* rq->lock is NOT held, but preemption is disabled */
2630 static void __balance_callback(struct rq *rq)
2631 {
2632 	struct callback_head *head, *next;
2633 	void (*func)(struct rq *rq);
2634 	unsigned long flags;
2635 
2636 	raw_spin_lock_irqsave(&rq->lock, flags);
2637 	head = rq->balance_callback;
2638 	rq->balance_callback = NULL;
2639 	while (head) {
2640 		func = (void (*)(struct rq *))head->func;
2641 		next = head->next;
2642 		head->next = NULL;
2643 		head = next;
2644 
2645 		func(rq);
2646 	}
2647 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2648 }
2649 
2650 static inline void balance_callback(struct rq *rq)
2651 {
2652 	if (unlikely(rq->balance_callback))
2653 		__balance_callback(rq);
2654 }
2655 
2656 #else
2657 
2658 static inline void balance_callback(struct rq *rq)
2659 {
2660 }
2661 
2662 #endif
2663 
2664 /**
2665  * schedule_tail - first thing a freshly forked thread must call.
2666  * @prev: the thread we just switched away from.
2667  */
2668 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2669 	__releases(rq->lock)
2670 {
2671 	struct rq *rq;
2672 
2673 	/*
2674 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2675 	 * finish_task_switch() for details.
2676 	 *
2677 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2678 	 * and the preempt_enable() will end up enabling preemption (on
2679 	 * PREEMPT_COUNT kernels).
2680 	 */
2681 
2682 	rq = finish_task_switch(prev);
2683 	balance_callback(rq);
2684 	preempt_enable();
2685 
2686 	if (current->set_child_tid)
2687 		put_user(task_pid_vnr(current), current->set_child_tid);
2688 }
2689 
2690 /*
2691  * context_switch - switch to the new MM and the new thread's register state.
2692  */
2693 static __always_inline struct rq *
2694 context_switch(struct rq *rq, struct task_struct *prev,
2695 	       struct task_struct *next)
2696 {
2697 	struct mm_struct *mm, *oldmm;
2698 
2699 	prepare_task_switch(rq, prev, next);
2700 
2701 	mm = next->mm;
2702 	oldmm = prev->active_mm;
2703 	/*
2704 	 * For paravirt, this is coupled with an exit in switch_to to
2705 	 * combine the page table reload and the switch backend into
2706 	 * one hypercall.
2707 	 */
2708 	arch_start_context_switch(prev);
2709 
2710 	if (!mm) {
2711 		next->active_mm = oldmm;
2712 		atomic_inc(&oldmm->mm_count);
2713 		enter_lazy_tlb(oldmm, next);
2714 	} else
2715 		switch_mm(oldmm, mm, next);
2716 
2717 	if (!prev->mm) {
2718 		prev->active_mm = NULL;
2719 		rq->prev_mm = oldmm;
2720 	}
2721 	/*
2722 	 * Since the runqueue lock will be released by the next
2723 	 * task (which is an invalid locking op but in the case
2724 	 * of the scheduler it's an obvious special-case), so we
2725 	 * do an early lockdep release here:
2726 	 */
2727 	lockdep_unpin_lock(&rq->lock);
2728 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2729 
2730 	/* Here we just switch the register state and the stack. */
2731 	switch_to(prev, next, prev);
2732 	barrier();
2733 
2734 	return finish_task_switch(prev);
2735 }
2736 
2737 /*
2738  * nr_running and nr_context_switches:
2739  *
2740  * externally visible scheduler statistics: current number of runnable
2741  * threads, total number of context switches performed since bootup.
2742  */
2743 unsigned long nr_running(void)
2744 {
2745 	unsigned long i, sum = 0;
2746 
2747 	for_each_online_cpu(i)
2748 		sum += cpu_rq(i)->nr_running;
2749 
2750 	return sum;
2751 }
2752 
2753 /*
2754  * Check if only the current task is running on the cpu.
2755  *
2756  * Caution: this function does not check that the caller has disabled
2757  * preemption, thus the result might have a time-of-check-to-time-of-use
2758  * race.  The caller is responsible to use it correctly, for example:
2759  *
2760  * - from a non-preemptable section (of course)
2761  *
2762  * - from a thread that is bound to a single CPU
2763  *
2764  * - in a loop with very short iterations (e.g. a polling loop)
2765  */
2766 bool single_task_running(void)
2767 {
2768 	return raw_rq()->nr_running == 1;
2769 }
2770 EXPORT_SYMBOL(single_task_running);
2771 
2772 unsigned long long nr_context_switches(void)
2773 {
2774 	int i;
2775 	unsigned long long sum = 0;
2776 
2777 	for_each_possible_cpu(i)
2778 		sum += cpu_rq(i)->nr_switches;
2779 
2780 	return sum;
2781 }
2782 
2783 unsigned long nr_iowait(void)
2784 {
2785 	unsigned long i, sum = 0;
2786 
2787 	for_each_possible_cpu(i)
2788 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2789 
2790 	return sum;
2791 }
2792 
2793 unsigned long nr_iowait_cpu(int cpu)
2794 {
2795 	struct rq *this = cpu_rq(cpu);
2796 	return atomic_read(&this->nr_iowait);
2797 }
2798 
2799 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2800 {
2801 	struct rq *rq = this_rq();
2802 	*nr_waiters = atomic_read(&rq->nr_iowait);
2803 	*load = rq->load.weight;
2804 }
2805 
2806 #ifdef CONFIG_SMP
2807 
2808 /*
2809  * sched_exec - execve() is a valuable balancing opportunity, because at
2810  * this point the task has the smallest effective memory and cache footprint.
2811  */
2812 void sched_exec(void)
2813 {
2814 	struct task_struct *p = current;
2815 	unsigned long flags;
2816 	int dest_cpu;
2817 
2818 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2819 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2820 	if (dest_cpu == smp_processor_id())
2821 		goto unlock;
2822 
2823 	if (likely(cpu_active(dest_cpu))) {
2824 		struct migration_arg arg = { p, dest_cpu };
2825 
2826 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2827 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2828 		return;
2829 	}
2830 unlock:
2831 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2832 }
2833 
2834 #endif
2835 
2836 DEFINE_PER_CPU(struct kernel_stat, kstat);
2837 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2838 
2839 EXPORT_PER_CPU_SYMBOL(kstat);
2840 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2841 
2842 /*
2843  * Return accounted runtime for the task.
2844  * In case the task is currently running, return the runtime plus current's
2845  * pending runtime that have not been accounted yet.
2846  */
2847 unsigned long long task_sched_runtime(struct task_struct *p)
2848 {
2849 	unsigned long flags;
2850 	struct rq *rq;
2851 	u64 ns;
2852 
2853 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2854 	/*
2855 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2856 	 * So we have a optimization chance when the task's delta_exec is 0.
2857 	 * Reading ->on_cpu is racy, but this is ok.
2858 	 *
2859 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2860 	 * If we race with it entering cpu, unaccounted time is 0. This is
2861 	 * indistinguishable from the read occurring a few cycles earlier.
2862 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2863 	 * been accounted, so we're correct here as well.
2864 	 */
2865 	if (!p->on_cpu || !task_on_rq_queued(p))
2866 		return p->se.sum_exec_runtime;
2867 #endif
2868 
2869 	rq = task_rq_lock(p, &flags);
2870 	/*
2871 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2872 	 * project cycles that may never be accounted to this
2873 	 * thread, breaking clock_gettime().
2874 	 */
2875 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2876 		update_rq_clock(rq);
2877 		p->sched_class->update_curr(rq);
2878 	}
2879 	ns = p->se.sum_exec_runtime;
2880 	task_rq_unlock(rq, p, &flags);
2881 
2882 	return ns;
2883 }
2884 
2885 /*
2886  * This function gets called by the timer code, with HZ frequency.
2887  * We call it with interrupts disabled.
2888  */
2889 void scheduler_tick(void)
2890 {
2891 	int cpu = smp_processor_id();
2892 	struct rq *rq = cpu_rq(cpu);
2893 	struct task_struct *curr = rq->curr;
2894 
2895 	sched_clock_tick();
2896 
2897 	raw_spin_lock(&rq->lock);
2898 	update_rq_clock(rq);
2899 	curr->sched_class->task_tick(rq, curr, 0);
2900 	update_cpu_load_active(rq);
2901 	calc_global_load_tick(rq);
2902 	raw_spin_unlock(&rq->lock);
2903 
2904 	perf_event_task_tick();
2905 
2906 #ifdef CONFIG_SMP
2907 	rq->idle_balance = idle_cpu(cpu);
2908 	trigger_load_balance(rq);
2909 #endif
2910 	rq_last_tick_reset(rq);
2911 }
2912 
2913 #ifdef CONFIG_NO_HZ_FULL
2914 /**
2915  * scheduler_tick_max_deferment
2916  *
2917  * Keep at least one tick per second when a single
2918  * active task is running because the scheduler doesn't
2919  * yet completely support full dynticks environment.
2920  *
2921  * This makes sure that uptime, CFS vruntime, load
2922  * balancing, etc... continue to move forward, even
2923  * with a very low granularity.
2924  *
2925  * Return: Maximum deferment in nanoseconds.
2926  */
2927 u64 scheduler_tick_max_deferment(void)
2928 {
2929 	struct rq *rq = this_rq();
2930 	unsigned long next, now = READ_ONCE(jiffies);
2931 
2932 	next = rq->last_sched_tick + HZ;
2933 
2934 	if (time_before_eq(next, now))
2935 		return 0;
2936 
2937 	return jiffies_to_nsecs(next - now);
2938 }
2939 #endif
2940 
2941 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2942 				defined(CONFIG_PREEMPT_TRACER))
2943 
2944 void preempt_count_add(int val)
2945 {
2946 #ifdef CONFIG_DEBUG_PREEMPT
2947 	/*
2948 	 * Underflow?
2949 	 */
2950 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2951 		return;
2952 #endif
2953 	__preempt_count_add(val);
2954 #ifdef CONFIG_DEBUG_PREEMPT
2955 	/*
2956 	 * Spinlock count overflowing soon?
2957 	 */
2958 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2959 				PREEMPT_MASK - 10);
2960 #endif
2961 	if (preempt_count() == val) {
2962 		unsigned long ip = get_lock_parent_ip();
2963 #ifdef CONFIG_DEBUG_PREEMPT
2964 		current->preempt_disable_ip = ip;
2965 #endif
2966 		trace_preempt_off(CALLER_ADDR0, ip);
2967 	}
2968 }
2969 EXPORT_SYMBOL(preempt_count_add);
2970 NOKPROBE_SYMBOL(preempt_count_add);
2971 
2972 void preempt_count_sub(int val)
2973 {
2974 #ifdef CONFIG_DEBUG_PREEMPT
2975 	/*
2976 	 * Underflow?
2977 	 */
2978 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2979 		return;
2980 	/*
2981 	 * Is the spinlock portion underflowing?
2982 	 */
2983 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2984 			!(preempt_count() & PREEMPT_MASK)))
2985 		return;
2986 #endif
2987 
2988 	if (preempt_count() == val)
2989 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
2990 	__preempt_count_sub(val);
2991 }
2992 EXPORT_SYMBOL(preempt_count_sub);
2993 NOKPROBE_SYMBOL(preempt_count_sub);
2994 
2995 #endif
2996 
2997 /*
2998  * Print scheduling while atomic bug:
2999  */
3000 static noinline void __schedule_bug(struct task_struct *prev)
3001 {
3002 	if (oops_in_progress)
3003 		return;
3004 
3005 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3006 		prev->comm, prev->pid, preempt_count());
3007 
3008 	debug_show_held_locks(prev);
3009 	print_modules();
3010 	if (irqs_disabled())
3011 		print_irqtrace_events(prev);
3012 #ifdef CONFIG_DEBUG_PREEMPT
3013 	if (in_atomic_preempt_off()) {
3014 		pr_err("Preemption disabled at:");
3015 		print_ip_sym(current->preempt_disable_ip);
3016 		pr_cont("\n");
3017 	}
3018 #endif
3019 	dump_stack();
3020 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3021 }
3022 
3023 /*
3024  * Various schedule()-time debugging checks and statistics:
3025  */
3026 static inline void schedule_debug(struct task_struct *prev)
3027 {
3028 #ifdef CONFIG_SCHED_STACK_END_CHECK
3029 	BUG_ON(task_stack_end_corrupted(prev));
3030 #endif
3031 
3032 	if (unlikely(in_atomic_preempt_off())) {
3033 		__schedule_bug(prev);
3034 		preempt_count_set(PREEMPT_DISABLED);
3035 	}
3036 	rcu_sleep_check();
3037 
3038 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3039 
3040 	schedstat_inc(this_rq(), sched_count);
3041 }
3042 
3043 /*
3044  * Pick up the highest-prio task:
3045  */
3046 static inline struct task_struct *
3047 pick_next_task(struct rq *rq, struct task_struct *prev)
3048 {
3049 	const struct sched_class *class = &fair_sched_class;
3050 	struct task_struct *p;
3051 
3052 	/*
3053 	 * Optimization: we know that if all tasks are in
3054 	 * the fair class we can call that function directly:
3055 	 */
3056 	if (likely(prev->sched_class == class &&
3057 		   rq->nr_running == rq->cfs.h_nr_running)) {
3058 		p = fair_sched_class.pick_next_task(rq, prev);
3059 		if (unlikely(p == RETRY_TASK))
3060 			goto again;
3061 
3062 		/* assumes fair_sched_class->next == idle_sched_class */
3063 		if (unlikely(!p))
3064 			p = idle_sched_class.pick_next_task(rq, prev);
3065 
3066 		return p;
3067 	}
3068 
3069 again:
3070 	for_each_class(class) {
3071 		p = class->pick_next_task(rq, prev);
3072 		if (p) {
3073 			if (unlikely(p == RETRY_TASK))
3074 				goto again;
3075 			return p;
3076 		}
3077 	}
3078 
3079 	BUG(); /* the idle class will always have a runnable task */
3080 }
3081 
3082 /*
3083  * __schedule() is the main scheduler function.
3084  *
3085  * The main means of driving the scheduler and thus entering this function are:
3086  *
3087  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3088  *
3089  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3090  *      paths. For example, see arch/x86/entry_64.S.
3091  *
3092  *      To drive preemption between tasks, the scheduler sets the flag in timer
3093  *      interrupt handler scheduler_tick().
3094  *
3095  *   3. Wakeups don't really cause entry into schedule(). They add a
3096  *      task to the run-queue and that's it.
3097  *
3098  *      Now, if the new task added to the run-queue preempts the current
3099  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3100  *      called on the nearest possible occasion:
3101  *
3102  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3103  *
3104  *         - in syscall or exception context, at the next outmost
3105  *           preempt_enable(). (this might be as soon as the wake_up()'s
3106  *           spin_unlock()!)
3107  *
3108  *         - in IRQ context, return from interrupt-handler to
3109  *           preemptible context
3110  *
3111  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3112  *         then at the next:
3113  *
3114  *          - cond_resched() call
3115  *          - explicit schedule() call
3116  *          - return from syscall or exception to user-space
3117  *          - return from interrupt-handler to user-space
3118  *
3119  * WARNING: must be called with preemption disabled!
3120  */
3121 static void __sched notrace __schedule(bool preempt)
3122 {
3123 	struct task_struct *prev, *next;
3124 	unsigned long *switch_count;
3125 	struct rq *rq;
3126 	int cpu;
3127 
3128 	cpu = smp_processor_id();
3129 	rq = cpu_rq(cpu);
3130 	prev = rq->curr;
3131 
3132 	/*
3133 	 * do_exit() calls schedule() with preemption disabled as an exception;
3134 	 * however we must fix that up, otherwise the next task will see an
3135 	 * inconsistent (higher) preempt count.
3136 	 *
3137 	 * It also avoids the below schedule_debug() test from complaining
3138 	 * about this.
3139 	 */
3140 	if (unlikely(prev->state == TASK_DEAD))
3141 		preempt_enable_no_resched_notrace();
3142 
3143 	schedule_debug(prev);
3144 
3145 	if (sched_feat(HRTICK))
3146 		hrtick_clear(rq);
3147 
3148 	local_irq_disable();
3149 	rcu_note_context_switch();
3150 
3151 	/*
3152 	 * Make sure that signal_pending_state()->signal_pending() below
3153 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3154 	 * done by the caller to avoid the race with signal_wake_up().
3155 	 */
3156 	smp_mb__before_spinlock();
3157 	raw_spin_lock(&rq->lock);
3158 	lockdep_pin_lock(&rq->lock);
3159 
3160 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3161 
3162 	switch_count = &prev->nivcsw;
3163 	if (!preempt && prev->state) {
3164 		if (unlikely(signal_pending_state(prev->state, prev))) {
3165 			prev->state = TASK_RUNNING;
3166 		} else {
3167 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3168 			prev->on_rq = 0;
3169 
3170 			/*
3171 			 * If a worker went to sleep, notify and ask workqueue
3172 			 * whether it wants to wake up a task to maintain
3173 			 * concurrency.
3174 			 */
3175 			if (prev->flags & PF_WQ_WORKER) {
3176 				struct task_struct *to_wakeup;
3177 
3178 				to_wakeup = wq_worker_sleeping(prev);
3179 				if (to_wakeup)
3180 					try_to_wake_up_local(to_wakeup);
3181 			}
3182 		}
3183 		switch_count = &prev->nvcsw;
3184 	}
3185 
3186 	if (task_on_rq_queued(prev))
3187 		update_rq_clock(rq);
3188 
3189 	next = pick_next_task(rq, prev);
3190 	clear_tsk_need_resched(prev);
3191 	clear_preempt_need_resched();
3192 	rq->clock_skip_update = 0;
3193 
3194 	if (likely(prev != next)) {
3195 		rq->nr_switches++;
3196 		rq->curr = next;
3197 		++*switch_count;
3198 
3199 		trace_sched_switch(preempt, prev, next);
3200 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3201 	} else {
3202 		lockdep_unpin_lock(&rq->lock);
3203 		raw_spin_unlock_irq(&rq->lock);
3204 	}
3205 
3206 	balance_callback(rq);
3207 }
3208 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3209 
3210 static inline void sched_submit_work(struct task_struct *tsk)
3211 {
3212 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3213 		return;
3214 	/*
3215 	 * If we are going to sleep and we have plugged IO queued,
3216 	 * make sure to submit it to avoid deadlocks.
3217 	 */
3218 	if (blk_needs_flush_plug(tsk))
3219 		blk_schedule_flush_plug(tsk);
3220 }
3221 
3222 asmlinkage __visible void __sched schedule(void)
3223 {
3224 	struct task_struct *tsk = current;
3225 
3226 	sched_submit_work(tsk);
3227 	do {
3228 		preempt_disable();
3229 		__schedule(false);
3230 		sched_preempt_enable_no_resched();
3231 	} while (need_resched());
3232 }
3233 EXPORT_SYMBOL(schedule);
3234 
3235 #ifdef CONFIG_CONTEXT_TRACKING
3236 asmlinkage __visible void __sched schedule_user(void)
3237 {
3238 	/*
3239 	 * If we come here after a random call to set_need_resched(),
3240 	 * or we have been woken up remotely but the IPI has not yet arrived,
3241 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3242 	 * we find a better solution.
3243 	 *
3244 	 * NB: There are buggy callers of this function.  Ideally we
3245 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3246 	 * too frequently to make sense yet.
3247 	 */
3248 	enum ctx_state prev_state = exception_enter();
3249 	schedule();
3250 	exception_exit(prev_state);
3251 }
3252 #endif
3253 
3254 /**
3255  * schedule_preempt_disabled - called with preemption disabled
3256  *
3257  * Returns with preemption disabled. Note: preempt_count must be 1
3258  */
3259 void __sched schedule_preempt_disabled(void)
3260 {
3261 	sched_preempt_enable_no_resched();
3262 	schedule();
3263 	preempt_disable();
3264 }
3265 
3266 static void __sched notrace preempt_schedule_common(void)
3267 {
3268 	do {
3269 		preempt_disable_notrace();
3270 		__schedule(true);
3271 		preempt_enable_no_resched_notrace();
3272 
3273 		/*
3274 		 * Check again in case we missed a preemption opportunity
3275 		 * between schedule and now.
3276 		 */
3277 	} while (need_resched());
3278 }
3279 
3280 #ifdef CONFIG_PREEMPT
3281 /*
3282  * this is the entry point to schedule() from in-kernel preemption
3283  * off of preempt_enable. Kernel preemptions off return from interrupt
3284  * occur there and call schedule directly.
3285  */
3286 asmlinkage __visible void __sched notrace preempt_schedule(void)
3287 {
3288 	/*
3289 	 * If there is a non-zero preempt_count or interrupts are disabled,
3290 	 * we do not want to preempt the current task. Just return..
3291 	 */
3292 	if (likely(!preemptible()))
3293 		return;
3294 
3295 	preempt_schedule_common();
3296 }
3297 NOKPROBE_SYMBOL(preempt_schedule);
3298 EXPORT_SYMBOL(preempt_schedule);
3299 
3300 /**
3301  * preempt_schedule_notrace - preempt_schedule called by tracing
3302  *
3303  * The tracing infrastructure uses preempt_enable_notrace to prevent
3304  * recursion and tracing preempt enabling caused by the tracing
3305  * infrastructure itself. But as tracing can happen in areas coming
3306  * from userspace or just about to enter userspace, a preempt enable
3307  * can occur before user_exit() is called. This will cause the scheduler
3308  * to be called when the system is still in usermode.
3309  *
3310  * To prevent this, the preempt_enable_notrace will use this function
3311  * instead of preempt_schedule() to exit user context if needed before
3312  * calling the scheduler.
3313  */
3314 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3315 {
3316 	enum ctx_state prev_ctx;
3317 
3318 	if (likely(!preemptible()))
3319 		return;
3320 
3321 	do {
3322 		preempt_disable_notrace();
3323 		/*
3324 		 * Needs preempt disabled in case user_exit() is traced
3325 		 * and the tracer calls preempt_enable_notrace() causing
3326 		 * an infinite recursion.
3327 		 */
3328 		prev_ctx = exception_enter();
3329 		__schedule(true);
3330 		exception_exit(prev_ctx);
3331 
3332 		preempt_enable_no_resched_notrace();
3333 	} while (need_resched());
3334 }
3335 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3336 
3337 #endif /* CONFIG_PREEMPT */
3338 
3339 /*
3340  * this is the entry point to schedule() from kernel preemption
3341  * off of irq context.
3342  * Note, that this is called and return with irqs disabled. This will
3343  * protect us against recursive calling from irq.
3344  */
3345 asmlinkage __visible void __sched preempt_schedule_irq(void)
3346 {
3347 	enum ctx_state prev_state;
3348 
3349 	/* Catch callers which need to be fixed */
3350 	BUG_ON(preempt_count() || !irqs_disabled());
3351 
3352 	prev_state = exception_enter();
3353 
3354 	do {
3355 		preempt_disable();
3356 		local_irq_enable();
3357 		__schedule(true);
3358 		local_irq_disable();
3359 		sched_preempt_enable_no_resched();
3360 	} while (need_resched());
3361 
3362 	exception_exit(prev_state);
3363 }
3364 
3365 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3366 			  void *key)
3367 {
3368 	return try_to_wake_up(curr->private, mode, wake_flags);
3369 }
3370 EXPORT_SYMBOL(default_wake_function);
3371 
3372 #ifdef CONFIG_RT_MUTEXES
3373 
3374 /*
3375  * rt_mutex_setprio - set the current priority of a task
3376  * @p: task
3377  * @prio: prio value (kernel-internal form)
3378  *
3379  * This function changes the 'effective' priority of a task. It does
3380  * not touch ->normal_prio like __setscheduler().
3381  *
3382  * Used by the rt_mutex code to implement priority inheritance
3383  * logic. Call site only calls if the priority of the task changed.
3384  */
3385 void rt_mutex_setprio(struct task_struct *p, int prio)
3386 {
3387 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3388 	struct rq *rq;
3389 	const struct sched_class *prev_class;
3390 
3391 	BUG_ON(prio > MAX_PRIO);
3392 
3393 	rq = __task_rq_lock(p);
3394 
3395 	/*
3396 	 * Idle task boosting is a nono in general. There is one
3397 	 * exception, when PREEMPT_RT and NOHZ is active:
3398 	 *
3399 	 * The idle task calls get_next_timer_interrupt() and holds
3400 	 * the timer wheel base->lock on the CPU and another CPU wants
3401 	 * to access the timer (probably to cancel it). We can safely
3402 	 * ignore the boosting request, as the idle CPU runs this code
3403 	 * with interrupts disabled and will complete the lock
3404 	 * protected section without being interrupted. So there is no
3405 	 * real need to boost.
3406 	 */
3407 	if (unlikely(p == rq->idle)) {
3408 		WARN_ON(p != rq->curr);
3409 		WARN_ON(p->pi_blocked_on);
3410 		goto out_unlock;
3411 	}
3412 
3413 	trace_sched_pi_setprio(p, prio);
3414 	oldprio = p->prio;
3415 
3416 	if (oldprio == prio)
3417 		queue_flag &= ~DEQUEUE_MOVE;
3418 
3419 	prev_class = p->sched_class;
3420 	queued = task_on_rq_queued(p);
3421 	running = task_current(rq, p);
3422 	if (queued)
3423 		dequeue_task(rq, p, queue_flag);
3424 	if (running)
3425 		put_prev_task(rq, p);
3426 
3427 	/*
3428 	 * Boosting condition are:
3429 	 * 1. -rt task is running and holds mutex A
3430 	 *      --> -dl task blocks on mutex A
3431 	 *
3432 	 * 2. -dl task is running and holds mutex A
3433 	 *      --> -dl task blocks on mutex A and could preempt the
3434 	 *          running task
3435 	 */
3436 	if (dl_prio(prio)) {
3437 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3438 		if (!dl_prio(p->normal_prio) ||
3439 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3440 			p->dl.dl_boosted = 1;
3441 			queue_flag |= ENQUEUE_REPLENISH;
3442 		} else
3443 			p->dl.dl_boosted = 0;
3444 		p->sched_class = &dl_sched_class;
3445 	} else if (rt_prio(prio)) {
3446 		if (dl_prio(oldprio))
3447 			p->dl.dl_boosted = 0;
3448 		if (oldprio < prio)
3449 			queue_flag |= ENQUEUE_HEAD;
3450 		p->sched_class = &rt_sched_class;
3451 	} else {
3452 		if (dl_prio(oldprio))
3453 			p->dl.dl_boosted = 0;
3454 		if (rt_prio(oldprio))
3455 			p->rt.timeout = 0;
3456 		p->sched_class = &fair_sched_class;
3457 	}
3458 
3459 	p->prio = prio;
3460 
3461 	if (running)
3462 		p->sched_class->set_curr_task(rq);
3463 	if (queued)
3464 		enqueue_task(rq, p, queue_flag);
3465 
3466 	check_class_changed(rq, p, prev_class, oldprio);
3467 out_unlock:
3468 	preempt_disable(); /* avoid rq from going away on us */
3469 	__task_rq_unlock(rq);
3470 
3471 	balance_callback(rq);
3472 	preempt_enable();
3473 }
3474 #endif
3475 
3476 void set_user_nice(struct task_struct *p, long nice)
3477 {
3478 	int old_prio, delta, queued;
3479 	unsigned long flags;
3480 	struct rq *rq;
3481 
3482 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3483 		return;
3484 	/*
3485 	 * We have to be careful, if called from sys_setpriority(),
3486 	 * the task might be in the middle of scheduling on another CPU.
3487 	 */
3488 	rq = task_rq_lock(p, &flags);
3489 	/*
3490 	 * The RT priorities are set via sched_setscheduler(), but we still
3491 	 * allow the 'normal' nice value to be set - but as expected
3492 	 * it wont have any effect on scheduling until the task is
3493 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3494 	 */
3495 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3496 		p->static_prio = NICE_TO_PRIO(nice);
3497 		goto out_unlock;
3498 	}
3499 	queued = task_on_rq_queued(p);
3500 	if (queued)
3501 		dequeue_task(rq, p, DEQUEUE_SAVE);
3502 
3503 	p->static_prio = NICE_TO_PRIO(nice);
3504 	set_load_weight(p);
3505 	old_prio = p->prio;
3506 	p->prio = effective_prio(p);
3507 	delta = p->prio - old_prio;
3508 
3509 	if (queued) {
3510 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3511 		/*
3512 		 * If the task increased its priority or is running and
3513 		 * lowered its priority, then reschedule its CPU:
3514 		 */
3515 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3516 			resched_curr(rq);
3517 	}
3518 out_unlock:
3519 	task_rq_unlock(rq, p, &flags);
3520 }
3521 EXPORT_SYMBOL(set_user_nice);
3522 
3523 /*
3524  * can_nice - check if a task can reduce its nice value
3525  * @p: task
3526  * @nice: nice value
3527  */
3528 int can_nice(const struct task_struct *p, const int nice)
3529 {
3530 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3531 	int nice_rlim = nice_to_rlimit(nice);
3532 
3533 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3534 		capable(CAP_SYS_NICE));
3535 }
3536 
3537 #ifdef __ARCH_WANT_SYS_NICE
3538 
3539 /*
3540  * sys_nice - change the priority of the current process.
3541  * @increment: priority increment
3542  *
3543  * sys_setpriority is a more generic, but much slower function that
3544  * does similar things.
3545  */
3546 SYSCALL_DEFINE1(nice, int, increment)
3547 {
3548 	long nice, retval;
3549 
3550 	/*
3551 	 * Setpriority might change our priority at the same moment.
3552 	 * We don't have to worry. Conceptually one call occurs first
3553 	 * and we have a single winner.
3554 	 */
3555 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3556 	nice = task_nice(current) + increment;
3557 
3558 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3559 	if (increment < 0 && !can_nice(current, nice))
3560 		return -EPERM;
3561 
3562 	retval = security_task_setnice(current, nice);
3563 	if (retval)
3564 		return retval;
3565 
3566 	set_user_nice(current, nice);
3567 	return 0;
3568 }
3569 
3570 #endif
3571 
3572 /**
3573  * task_prio - return the priority value of a given task.
3574  * @p: the task in question.
3575  *
3576  * Return: The priority value as seen by users in /proc.
3577  * RT tasks are offset by -200. Normal tasks are centered
3578  * around 0, value goes from -16 to +15.
3579  */
3580 int task_prio(const struct task_struct *p)
3581 {
3582 	return p->prio - MAX_RT_PRIO;
3583 }
3584 
3585 /**
3586  * idle_cpu - is a given cpu idle currently?
3587  * @cpu: the processor in question.
3588  *
3589  * Return: 1 if the CPU is currently idle. 0 otherwise.
3590  */
3591 int idle_cpu(int cpu)
3592 {
3593 	struct rq *rq = cpu_rq(cpu);
3594 
3595 	if (rq->curr != rq->idle)
3596 		return 0;
3597 
3598 	if (rq->nr_running)
3599 		return 0;
3600 
3601 #ifdef CONFIG_SMP
3602 	if (!llist_empty(&rq->wake_list))
3603 		return 0;
3604 #endif
3605 
3606 	return 1;
3607 }
3608 
3609 /**
3610  * idle_task - return the idle task for a given cpu.
3611  * @cpu: the processor in question.
3612  *
3613  * Return: The idle task for the cpu @cpu.
3614  */
3615 struct task_struct *idle_task(int cpu)
3616 {
3617 	return cpu_rq(cpu)->idle;
3618 }
3619 
3620 /**
3621  * find_process_by_pid - find a process with a matching PID value.
3622  * @pid: the pid in question.
3623  *
3624  * The task of @pid, if found. %NULL otherwise.
3625  */
3626 static struct task_struct *find_process_by_pid(pid_t pid)
3627 {
3628 	return pid ? find_task_by_vpid(pid) : current;
3629 }
3630 
3631 /*
3632  * This function initializes the sched_dl_entity of a newly becoming
3633  * SCHED_DEADLINE task.
3634  *
3635  * Only the static values are considered here, the actual runtime and the
3636  * absolute deadline will be properly calculated when the task is enqueued
3637  * for the first time with its new policy.
3638  */
3639 static void
3640 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3641 {
3642 	struct sched_dl_entity *dl_se = &p->dl;
3643 
3644 	dl_se->dl_runtime = attr->sched_runtime;
3645 	dl_se->dl_deadline = attr->sched_deadline;
3646 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3647 	dl_se->flags = attr->sched_flags;
3648 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3649 
3650 	/*
3651 	 * Changing the parameters of a task is 'tricky' and we're not doing
3652 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3653 	 *
3654 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3655 	 * point. This would include retaining the task_struct until that time
3656 	 * and change dl_overflow() to not immediately decrement the current
3657 	 * amount.
3658 	 *
3659 	 * Instead we retain the current runtime/deadline and let the new
3660 	 * parameters take effect after the current reservation period lapses.
3661 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3662 	 * before the current scheduling deadline.
3663 	 *
3664 	 * We can still have temporary overloads because we do not delay the
3665 	 * change in bandwidth until that time; so admission control is
3666 	 * not on the safe side. It does however guarantee tasks will never
3667 	 * consume more than promised.
3668 	 */
3669 }
3670 
3671 /*
3672  * sched_setparam() passes in -1 for its policy, to let the functions
3673  * it calls know not to change it.
3674  */
3675 #define SETPARAM_POLICY	-1
3676 
3677 static void __setscheduler_params(struct task_struct *p,
3678 		const struct sched_attr *attr)
3679 {
3680 	int policy = attr->sched_policy;
3681 
3682 	if (policy == SETPARAM_POLICY)
3683 		policy = p->policy;
3684 
3685 	p->policy = policy;
3686 
3687 	if (dl_policy(policy))
3688 		__setparam_dl(p, attr);
3689 	else if (fair_policy(policy))
3690 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3691 
3692 	/*
3693 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3694 	 * !rt_policy. Always setting this ensures that things like
3695 	 * getparam()/getattr() don't report silly values for !rt tasks.
3696 	 */
3697 	p->rt_priority = attr->sched_priority;
3698 	p->normal_prio = normal_prio(p);
3699 	set_load_weight(p);
3700 }
3701 
3702 /* Actually do priority change: must hold pi & rq lock. */
3703 static void __setscheduler(struct rq *rq, struct task_struct *p,
3704 			   const struct sched_attr *attr, bool keep_boost)
3705 {
3706 	__setscheduler_params(p, attr);
3707 
3708 	/*
3709 	 * Keep a potential priority boosting if called from
3710 	 * sched_setscheduler().
3711 	 */
3712 	if (keep_boost)
3713 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3714 	else
3715 		p->prio = normal_prio(p);
3716 
3717 	if (dl_prio(p->prio))
3718 		p->sched_class = &dl_sched_class;
3719 	else if (rt_prio(p->prio))
3720 		p->sched_class = &rt_sched_class;
3721 	else
3722 		p->sched_class = &fair_sched_class;
3723 }
3724 
3725 static void
3726 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3727 {
3728 	struct sched_dl_entity *dl_se = &p->dl;
3729 
3730 	attr->sched_priority = p->rt_priority;
3731 	attr->sched_runtime = dl_se->dl_runtime;
3732 	attr->sched_deadline = dl_se->dl_deadline;
3733 	attr->sched_period = dl_se->dl_period;
3734 	attr->sched_flags = dl_se->flags;
3735 }
3736 
3737 /*
3738  * This function validates the new parameters of a -deadline task.
3739  * We ask for the deadline not being zero, and greater or equal
3740  * than the runtime, as well as the period of being zero or
3741  * greater than deadline. Furthermore, we have to be sure that
3742  * user parameters are above the internal resolution of 1us (we
3743  * check sched_runtime only since it is always the smaller one) and
3744  * below 2^63 ns (we have to check both sched_deadline and
3745  * sched_period, as the latter can be zero).
3746  */
3747 static bool
3748 __checkparam_dl(const struct sched_attr *attr)
3749 {
3750 	/* deadline != 0 */
3751 	if (attr->sched_deadline == 0)
3752 		return false;
3753 
3754 	/*
3755 	 * Since we truncate DL_SCALE bits, make sure we're at least
3756 	 * that big.
3757 	 */
3758 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3759 		return false;
3760 
3761 	/*
3762 	 * Since we use the MSB for wrap-around and sign issues, make
3763 	 * sure it's not set (mind that period can be equal to zero).
3764 	 */
3765 	if (attr->sched_deadline & (1ULL << 63) ||
3766 	    attr->sched_period & (1ULL << 63))
3767 		return false;
3768 
3769 	/* runtime <= deadline <= period (if period != 0) */
3770 	if ((attr->sched_period != 0 &&
3771 	     attr->sched_period < attr->sched_deadline) ||
3772 	    attr->sched_deadline < attr->sched_runtime)
3773 		return false;
3774 
3775 	return true;
3776 }
3777 
3778 /*
3779  * check the target process has a UID that matches the current process's
3780  */
3781 static bool check_same_owner(struct task_struct *p)
3782 {
3783 	const struct cred *cred = current_cred(), *pcred;
3784 	bool match;
3785 
3786 	rcu_read_lock();
3787 	pcred = __task_cred(p);
3788 	match = (uid_eq(cred->euid, pcred->euid) ||
3789 		 uid_eq(cred->euid, pcred->uid));
3790 	rcu_read_unlock();
3791 	return match;
3792 }
3793 
3794 static bool dl_param_changed(struct task_struct *p,
3795 		const struct sched_attr *attr)
3796 {
3797 	struct sched_dl_entity *dl_se = &p->dl;
3798 
3799 	if (dl_se->dl_runtime != attr->sched_runtime ||
3800 		dl_se->dl_deadline != attr->sched_deadline ||
3801 		dl_se->dl_period != attr->sched_period ||
3802 		dl_se->flags != attr->sched_flags)
3803 		return true;
3804 
3805 	return false;
3806 }
3807 
3808 static int __sched_setscheduler(struct task_struct *p,
3809 				const struct sched_attr *attr,
3810 				bool user, bool pi)
3811 {
3812 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3813 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3814 	int retval, oldprio, oldpolicy = -1, queued, running;
3815 	int new_effective_prio, policy = attr->sched_policy;
3816 	unsigned long flags;
3817 	const struct sched_class *prev_class;
3818 	struct rq *rq;
3819 	int reset_on_fork;
3820 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3821 
3822 	/* may grab non-irq protected spin_locks */
3823 	BUG_ON(in_interrupt());
3824 recheck:
3825 	/* double check policy once rq lock held */
3826 	if (policy < 0) {
3827 		reset_on_fork = p->sched_reset_on_fork;
3828 		policy = oldpolicy = p->policy;
3829 	} else {
3830 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3831 
3832 		if (!valid_policy(policy))
3833 			return -EINVAL;
3834 	}
3835 
3836 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3837 		return -EINVAL;
3838 
3839 	/*
3840 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3841 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3842 	 * SCHED_BATCH and SCHED_IDLE is 0.
3843 	 */
3844 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3845 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3846 		return -EINVAL;
3847 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3848 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3849 		return -EINVAL;
3850 
3851 	/*
3852 	 * Allow unprivileged RT tasks to decrease priority:
3853 	 */
3854 	if (user && !capable(CAP_SYS_NICE)) {
3855 		if (fair_policy(policy)) {
3856 			if (attr->sched_nice < task_nice(p) &&
3857 			    !can_nice(p, attr->sched_nice))
3858 				return -EPERM;
3859 		}
3860 
3861 		if (rt_policy(policy)) {
3862 			unsigned long rlim_rtprio =
3863 					task_rlimit(p, RLIMIT_RTPRIO);
3864 
3865 			/* can't set/change the rt policy */
3866 			if (policy != p->policy && !rlim_rtprio)
3867 				return -EPERM;
3868 
3869 			/* can't increase priority */
3870 			if (attr->sched_priority > p->rt_priority &&
3871 			    attr->sched_priority > rlim_rtprio)
3872 				return -EPERM;
3873 		}
3874 
3875 		 /*
3876 		  * Can't set/change SCHED_DEADLINE policy at all for now
3877 		  * (safest behavior); in the future we would like to allow
3878 		  * unprivileged DL tasks to increase their relative deadline
3879 		  * or reduce their runtime (both ways reducing utilization)
3880 		  */
3881 		if (dl_policy(policy))
3882 			return -EPERM;
3883 
3884 		/*
3885 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3886 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3887 		 */
3888 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3889 			if (!can_nice(p, task_nice(p)))
3890 				return -EPERM;
3891 		}
3892 
3893 		/* can't change other user's priorities */
3894 		if (!check_same_owner(p))
3895 			return -EPERM;
3896 
3897 		/* Normal users shall not reset the sched_reset_on_fork flag */
3898 		if (p->sched_reset_on_fork && !reset_on_fork)
3899 			return -EPERM;
3900 	}
3901 
3902 	if (user) {
3903 		retval = security_task_setscheduler(p);
3904 		if (retval)
3905 			return retval;
3906 	}
3907 
3908 	/*
3909 	 * make sure no PI-waiters arrive (or leave) while we are
3910 	 * changing the priority of the task:
3911 	 *
3912 	 * To be able to change p->policy safely, the appropriate
3913 	 * runqueue lock must be held.
3914 	 */
3915 	rq = task_rq_lock(p, &flags);
3916 
3917 	/*
3918 	 * Changing the policy of the stop threads its a very bad idea
3919 	 */
3920 	if (p == rq->stop) {
3921 		task_rq_unlock(rq, p, &flags);
3922 		return -EINVAL;
3923 	}
3924 
3925 	/*
3926 	 * If not changing anything there's no need to proceed further,
3927 	 * but store a possible modification of reset_on_fork.
3928 	 */
3929 	if (unlikely(policy == p->policy)) {
3930 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3931 			goto change;
3932 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3933 			goto change;
3934 		if (dl_policy(policy) && dl_param_changed(p, attr))
3935 			goto change;
3936 
3937 		p->sched_reset_on_fork = reset_on_fork;
3938 		task_rq_unlock(rq, p, &flags);
3939 		return 0;
3940 	}
3941 change:
3942 
3943 	if (user) {
3944 #ifdef CONFIG_RT_GROUP_SCHED
3945 		/*
3946 		 * Do not allow realtime tasks into groups that have no runtime
3947 		 * assigned.
3948 		 */
3949 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3950 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3951 				!task_group_is_autogroup(task_group(p))) {
3952 			task_rq_unlock(rq, p, &flags);
3953 			return -EPERM;
3954 		}
3955 #endif
3956 #ifdef CONFIG_SMP
3957 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3958 			cpumask_t *span = rq->rd->span;
3959 
3960 			/*
3961 			 * Don't allow tasks with an affinity mask smaller than
3962 			 * the entire root_domain to become SCHED_DEADLINE. We
3963 			 * will also fail if there's no bandwidth available.
3964 			 */
3965 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3966 			    rq->rd->dl_bw.bw == 0) {
3967 				task_rq_unlock(rq, p, &flags);
3968 				return -EPERM;
3969 			}
3970 		}
3971 #endif
3972 	}
3973 
3974 	/* recheck policy now with rq lock held */
3975 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3976 		policy = oldpolicy = -1;
3977 		task_rq_unlock(rq, p, &flags);
3978 		goto recheck;
3979 	}
3980 
3981 	/*
3982 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3983 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3984 	 * is available.
3985 	 */
3986 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3987 		task_rq_unlock(rq, p, &flags);
3988 		return -EBUSY;
3989 	}
3990 
3991 	p->sched_reset_on_fork = reset_on_fork;
3992 	oldprio = p->prio;
3993 
3994 	if (pi) {
3995 		/*
3996 		 * Take priority boosted tasks into account. If the new
3997 		 * effective priority is unchanged, we just store the new
3998 		 * normal parameters and do not touch the scheduler class and
3999 		 * the runqueue. This will be done when the task deboost
4000 		 * itself.
4001 		 */
4002 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4003 		if (new_effective_prio == oldprio)
4004 			queue_flags &= ~DEQUEUE_MOVE;
4005 	}
4006 
4007 	queued = task_on_rq_queued(p);
4008 	running = task_current(rq, p);
4009 	if (queued)
4010 		dequeue_task(rq, p, queue_flags);
4011 	if (running)
4012 		put_prev_task(rq, p);
4013 
4014 	prev_class = p->sched_class;
4015 	__setscheduler(rq, p, attr, pi);
4016 
4017 	if (running)
4018 		p->sched_class->set_curr_task(rq);
4019 	if (queued) {
4020 		/*
4021 		 * We enqueue to tail when the priority of a task is
4022 		 * increased (user space view).
4023 		 */
4024 		if (oldprio < p->prio)
4025 			queue_flags |= ENQUEUE_HEAD;
4026 
4027 		enqueue_task(rq, p, queue_flags);
4028 	}
4029 
4030 	check_class_changed(rq, p, prev_class, oldprio);
4031 	preempt_disable(); /* avoid rq from going away on us */
4032 	task_rq_unlock(rq, p, &flags);
4033 
4034 	if (pi)
4035 		rt_mutex_adjust_pi(p);
4036 
4037 	/*
4038 	 * Run balance callbacks after we've adjusted the PI chain.
4039 	 */
4040 	balance_callback(rq);
4041 	preempt_enable();
4042 
4043 	return 0;
4044 }
4045 
4046 static int _sched_setscheduler(struct task_struct *p, int policy,
4047 			       const struct sched_param *param, bool check)
4048 {
4049 	struct sched_attr attr = {
4050 		.sched_policy   = policy,
4051 		.sched_priority = param->sched_priority,
4052 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4053 	};
4054 
4055 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4056 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4057 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4058 		policy &= ~SCHED_RESET_ON_FORK;
4059 		attr.sched_policy = policy;
4060 	}
4061 
4062 	return __sched_setscheduler(p, &attr, check, true);
4063 }
4064 /**
4065  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4066  * @p: the task in question.
4067  * @policy: new policy.
4068  * @param: structure containing the new RT priority.
4069  *
4070  * Return: 0 on success. An error code otherwise.
4071  *
4072  * NOTE that the task may be already dead.
4073  */
4074 int sched_setscheduler(struct task_struct *p, int policy,
4075 		       const struct sched_param *param)
4076 {
4077 	return _sched_setscheduler(p, policy, param, true);
4078 }
4079 EXPORT_SYMBOL_GPL(sched_setscheduler);
4080 
4081 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4082 {
4083 	return __sched_setscheduler(p, attr, true, true);
4084 }
4085 EXPORT_SYMBOL_GPL(sched_setattr);
4086 
4087 /**
4088  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4089  * @p: the task in question.
4090  * @policy: new policy.
4091  * @param: structure containing the new RT priority.
4092  *
4093  * Just like sched_setscheduler, only don't bother checking if the
4094  * current context has permission.  For example, this is needed in
4095  * stop_machine(): we create temporary high priority worker threads,
4096  * but our caller might not have that capability.
4097  *
4098  * Return: 0 on success. An error code otherwise.
4099  */
4100 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4101 			       const struct sched_param *param)
4102 {
4103 	return _sched_setscheduler(p, policy, param, false);
4104 }
4105 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4106 
4107 static int
4108 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4109 {
4110 	struct sched_param lparam;
4111 	struct task_struct *p;
4112 	int retval;
4113 
4114 	if (!param || pid < 0)
4115 		return -EINVAL;
4116 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4117 		return -EFAULT;
4118 
4119 	rcu_read_lock();
4120 	retval = -ESRCH;
4121 	p = find_process_by_pid(pid);
4122 	if (p != NULL)
4123 		retval = sched_setscheduler(p, policy, &lparam);
4124 	rcu_read_unlock();
4125 
4126 	return retval;
4127 }
4128 
4129 /*
4130  * Mimics kernel/events/core.c perf_copy_attr().
4131  */
4132 static int sched_copy_attr(struct sched_attr __user *uattr,
4133 			   struct sched_attr *attr)
4134 {
4135 	u32 size;
4136 	int ret;
4137 
4138 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4139 		return -EFAULT;
4140 
4141 	/*
4142 	 * zero the full structure, so that a short copy will be nice.
4143 	 */
4144 	memset(attr, 0, sizeof(*attr));
4145 
4146 	ret = get_user(size, &uattr->size);
4147 	if (ret)
4148 		return ret;
4149 
4150 	if (size > PAGE_SIZE)	/* silly large */
4151 		goto err_size;
4152 
4153 	if (!size)		/* abi compat */
4154 		size = SCHED_ATTR_SIZE_VER0;
4155 
4156 	if (size < SCHED_ATTR_SIZE_VER0)
4157 		goto err_size;
4158 
4159 	/*
4160 	 * If we're handed a bigger struct than we know of,
4161 	 * ensure all the unknown bits are 0 - i.e. new
4162 	 * user-space does not rely on any kernel feature
4163 	 * extensions we dont know about yet.
4164 	 */
4165 	if (size > sizeof(*attr)) {
4166 		unsigned char __user *addr;
4167 		unsigned char __user *end;
4168 		unsigned char val;
4169 
4170 		addr = (void __user *)uattr + sizeof(*attr);
4171 		end  = (void __user *)uattr + size;
4172 
4173 		for (; addr < end; addr++) {
4174 			ret = get_user(val, addr);
4175 			if (ret)
4176 				return ret;
4177 			if (val)
4178 				goto err_size;
4179 		}
4180 		size = sizeof(*attr);
4181 	}
4182 
4183 	ret = copy_from_user(attr, uattr, size);
4184 	if (ret)
4185 		return -EFAULT;
4186 
4187 	/*
4188 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4189 	 * to be strict and return an error on out-of-bounds values?
4190 	 */
4191 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4192 
4193 	return 0;
4194 
4195 err_size:
4196 	put_user(sizeof(*attr), &uattr->size);
4197 	return -E2BIG;
4198 }
4199 
4200 /**
4201  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4202  * @pid: the pid in question.
4203  * @policy: new policy.
4204  * @param: structure containing the new RT priority.
4205  *
4206  * Return: 0 on success. An error code otherwise.
4207  */
4208 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4209 		struct sched_param __user *, param)
4210 {
4211 	/* negative values for policy are not valid */
4212 	if (policy < 0)
4213 		return -EINVAL;
4214 
4215 	return do_sched_setscheduler(pid, policy, param);
4216 }
4217 
4218 /**
4219  * sys_sched_setparam - set/change the RT priority of a thread
4220  * @pid: the pid in question.
4221  * @param: structure containing the new RT priority.
4222  *
4223  * Return: 0 on success. An error code otherwise.
4224  */
4225 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4226 {
4227 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4228 }
4229 
4230 /**
4231  * sys_sched_setattr - same as above, but with extended sched_attr
4232  * @pid: the pid in question.
4233  * @uattr: structure containing the extended parameters.
4234  * @flags: for future extension.
4235  */
4236 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4237 			       unsigned int, flags)
4238 {
4239 	struct sched_attr attr;
4240 	struct task_struct *p;
4241 	int retval;
4242 
4243 	if (!uattr || pid < 0 || flags)
4244 		return -EINVAL;
4245 
4246 	retval = sched_copy_attr(uattr, &attr);
4247 	if (retval)
4248 		return retval;
4249 
4250 	if ((int)attr.sched_policy < 0)
4251 		return -EINVAL;
4252 
4253 	rcu_read_lock();
4254 	retval = -ESRCH;
4255 	p = find_process_by_pid(pid);
4256 	if (p != NULL)
4257 		retval = sched_setattr(p, &attr);
4258 	rcu_read_unlock();
4259 
4260 	return retval;
4261 }
4262 
4263 /**
4264  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4265  * @pid: the pid in question.
4266  *
4267  * Return: On success, the policy of the thread. Otherwise, a negative error
4268  * code.
4269  */
4270 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4271 {
4272 	struct task_struct *p;
4273 	int retval;
4274 
4275 	if (pid < 0)
4276 		return -EINVAL;
4277 
4278 	retval = -ESRCH;
4279 	rcu_read_lock();
4280 	p = find_process_by_pid(pid);
4281 	if (p) {
4282 		retval = security_task_getscheduler(p);
4283 		if (!retval)
4284 			retval = p->policy
4285 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4286 	}
4287 	rcu_read_unlock();
4288 	return retval;
4289 }
4290 
4291 /**
4292  * sys_sched_getparam - get the RT priority of a thread
4293  * @pid: the pid in question.
4294  * @param: structure containing the RT priority.
4295  *
4296  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4297  * code.
4298  */
4299 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4300 {
4301 	struct sched_param lp = { .sched_priority = 0 };
4302 	struct task_struct *p;
4303 	int retval;
4304 
4305 	if (!param || pid < 0)
4306 		return -EINVAL;
4307 
4308 	rcu_read_lock();
4309 	p = find_process_by_pid(pid);
4310 	retval = -ESRCH;
4311 	if (!p)
4312 		goto out_unlock;
4313 
4314 	retval = security_task_getscheduler(p);
4315 	if (retval)
4316 		goto out_unlock;
4317 
4318 	if (task_has_rt_policy(p))
4319 		lp.sched_priority = p->rt_priority;
4320 	rcu_read_unlock();
4321 
4322 	/*
4323 	 * This one might sleep, we cannot do it with a spinlock held ...
4324 	 */
4325 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4326 
4327 	return retval;
4328 
4329 out_unlock:
4330 	rcu_read_unlock();
4331 	return retval;
4332 }
4333 
4334 static int sched_read_attr(struct sched_attr __user *uattr,
4335 			   struct sched_attr *attr,
4336 			   unsigned int usize)
4337 {
4338 	int ret;
4339 
4340 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4341 		return -EFAULT;
4342 
4343 	/*
4344 	 * If we're handed a smaller struct than we know of,
4345 	 * ensure all the unknown bits are 0 - i.e. old
4346 	 * user-space does not get uncomplete information.
4347 	 */
4348 	if (usize < sizeof(*attr)) {
4349 		unsigned char *addr;
4350 		unsigned char *end;
4351 
4352 		addr = (void *)attr + usize;
4353 		end  = (void *)attr + sizeof(*attr);
4354 
4355 		for (; addr < end; addr++) {
4356 			if (*addr)
4357 				return -EFBIG;
4358 		}
4359 
4360 		attr->size = usize;
4361 	}
4362 
4363 	ret = copy_to_user(uattr, attr, attr->size);
4364 	if (ret)
4365 		return -EFAULT;
4366 
4367 	return 0;
4368 }
4369 
4370 /**
4371  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4372  * @pid: the pid in question.
4373  * @uattr: structure containing the extended parameters.
4374  * @size: sizeof(attr) for fwd/bwd comp.
4375  * @flags: for future extension.
4376  */
4377 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4378 		unsigned int, size, unsigned int, flags)
4379 {
4380 	struct sched_attr attr = {
4381 		.size = sizeof(struct sched_attr),
4382 	};
4383 	struct task_struct *p;
4384 	int retval;
4385 
4386 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4387 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4388 		return -EINVAL;
4389 
4390 	rcu_read_lock();
4391 	p = find_process_by_pid(pid);
4392 	retval = -ESRCH;
4393 	if (!p)
4394 		goto out_unlock;
4395 
4396 	retval = security_task_getscheduler(p);
4397 	if (retval)
4398 		goto out_unlock;
4399 
4400 	attr.sched_policy = p->policy;
4401 	if (p->sched_reset_on_fork)
4402 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4403 	if (task_has_dl_policy(p))
4404 		__getparam_dl(p, &attr);
4405 	else if (task_has_rt_policy(p))
4406 		attr.sched_priority = p->rt_priority;
4407 	else
4408 		attr.sched_nice = task_nice(p);
4409 
4410 	rcu_read_unlock();
4411 
4412 	retval = sched_read_attr(uattr, &attr, size);
4413 	return retval;
4414 
4415 out_unlock:
4416 	rcu_read_unlock();
4417 	return retval;
4418 }
4419 
4420 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4421 {
4422 	cpumask_var_t cpus_allowed, new_mask;
4423 	struct task_struct *p;
4424 	int retval;
4425 
4426 	rcu_read_lock();
4427 
4428 	p = find_process_by_pid(pid);
4429 	if (!p) {
4430 		rcu_read_unlock();
4431 		return -ESRCH;
4432 	}
4433 
4434 	/* Prevent p going away */
4435 	get_task_struct(p);
4436 	rcu_read_unlock();
4437 
4438 	if (p->flags & PF_NO_SETAFFINITY) {
4439 		retval = -EINVAL;
4440 		goto out_put_task;
4441 	}
4442 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4443 		retval = -ENOMEM;
4444 		goto out_put_task;
4445 	}
4446 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4447 		retval = -ENOMEM;
4448 		goto out_free_cpus_allowed;
4449 	}
4450 	retval = -EPERM;
4451 	if (!check_same_owner(p)) {
4452 		rcu_read_lock();
4453 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4454 			rcu_read_unlock();
4455 			goto out_free_new_mask;
4456 		}
4457 		rcu_read_unlock();
4458 	}
4459 
4460 	retval = security_task_setscheduler(p);
4461 	if (retval)
4462 		goto out_free_new_mask;
4463 
4464 
4465 	cpuset_cpus_allowed(p, cpus_allowed);
4466 	cpumask_and(new_mask, in_mask, cpus_allowed);
4467 
4468 	/*
4469 	 * Since bandwidth control happens on root_domain basis,
4470 	 * if admission test is enabled, we only admit -deadline
4471 	 * tasks allowed to run on all the CPUs in the task's
4472 	 * root_domain.
4473 	 */
4474 #ifdef CONFIG_SMP
4475 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4476 		rcu_read_lock();
4477 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4478 			retval = -EBUSY;
4479 			rcu_read_unlock();
4480 			goto out_free_new_mask;
4481 		}
4482 		rcu_read_unlock();
4483 	}
4484 #endif
4485 again:
4486 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4487 
4488 	if (!retval) {
4489 		cpuset_cpus_allowed(p, cpus_allowed);
4490 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4491 			/*
4492 			 * We must have raced with a concurrent cpuset
4493 			 * update. Just reset the cpus_allowed to the
4494 			 * cpuset's cpus_allowed
4495 			 */
4496 			cpumask_copy(new_mask, cpus_allowed);
4497 			goto again;
4498 		}
4499 	}
4500 out_free_new_mask:
4501 	free_cpumask_var(new_mask);
4502 out_free_cpus_allowed:
4503 	free_cpumask_var(cpus_allowed);
4504 out_put_task:
4505 	put_task_struct(p);
4506 	return retval;
4507 }
4508 
4509 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4510 			     struct cpumask *new_mask)
4511 {
4512 	if (len < cpumask_size())
4513 		cpumask_clear(new_mask);
4514 	else if (len > cpumask_size())
4515 		len = cpumask_size();
4516 
4517 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4518 }
4519 
4520 /**
4521  * sys_sched_setaffinity - set the cpu affinity of a process
4522  * @pid: pid of the process
4523  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4524  * @user_mask_ptr: user-space pointer to the new cpu mask
4525  *
4526  * Return: 0 on success. An error code otherwise.
4527  */
4528 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4529 		unsigned long __user *, user_mask_ptr)
4530 {
4531 	cpumask_var_t new_mask;
4532 	int retval;
4533 
4534 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4535 		return -ENOMEM;
4536 
4537 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4538 	if (retval == 0)
4539 		retval = sched_setaffinity(pid, new_mask);
4540 	free_cpumask_var(new_mask);
4541 	return retval;
4542 }
4543 
4544 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4545 {
4546 	struct task_struct *p;
4547 	unsigned long flags;
4548 	int retval;
4549 
4550 	rcu_read_lock();
4551 
4552 	retval = -ESRCH;
4553 	p = find_process_by_pid(pid);
4554 	if (!p)
4555 		goto out_unlock;
4556 
4557 	retval = security_task_getscheduler(p);
4558 	if (retval)
4559 		goto out_unlock;
4560 
4561 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4562 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4563 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4564 
4565 out_unlock:
4566 	rcu_read_unlock();
4567 
4568 	return retval;
4569 }
4570 
4571 /**
4572  * sys_sched_getaffinity - get the cpu affinity of a process
4573  * @pid: pid of the process
4574  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4575  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4576  *
4577  * Return: 0 on success. An error code otherwise.
4578  */
4579 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4580 		unsigned long __user *, user_mask_ptr)
4581 {
4582 	int ret;
4583 	cpumask_var_t mask;
4584 
4585 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4586 		return -EINVAL;
4587 	if (len & (sizeof(unsigned long)-1))
4588 		return -EINVAL;
4589 
4590 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4591 		return -ENOMEM;
4592 
4593 	ret = sched_getaffinity(pid, mask);
4594 	if (ret == 0) {
4595 		size_t retlen = min_t(size_t, len, cpumask_size());
4596 
4597 		if (copy_to_user(user_mask_ptr, mask, retlen))
4598 			ret = -EFAULT;
4599 		else
4600 			ret = retlen;
4601 	}
4602 	free_cpumask_var(mask);
4603 
4604 	return ret;
4605 }
4606 
4607 /**
4608  * sys_sched_yield - yield the current processor to other threads.
4609  *
4610  * This function yields the current CPU to other tasks. If there are no
4611  * other threads running on this CPU then this function will return.
4612  *
4613  * Return: 0.
4614  */
4615 SYSCALL_DEFINE0(sched_yield)
4616 {
4617 	struct rq *rq = this_rq_lock();
4618 
4619 	schedstat_inc(rq, yld_count);
4620 	current->sched_class->yield_task(rq);
4621 
4622 	/*
4623 	 * Since we are going to call schedule() anyway, there's
4624 	 * no need to preempt or enable interrupts:
4625 	 */
4626 	__release(rq->lock);
4627 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4628 	do_raw_spin_unlock(&rq->lock);
4629 	sched_preempt_enable_no_resched();
4630 
4631 	schedule();
4632 
4633 	return 0;
4634 }
4635 
4636 int __sched _cond_resched(void)
4637 {
4638 	if (should_resched(0)) {
4639 		preempt_schedule_common();
4640 		return 1;
4641 	}
4642 	return 0;
4643 }
4644 EXPORT_SYMBOL(_cond_resched);
4645 
4646 /*
4647  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4648  * call schedule, and on return reacquire the lock.
4649  *
4650  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4651  * operations here to prevent schedule() from being called twice (once via
4652  * spin_unlock(), once by hand).
4653  */
4654 int __cond_resched_lock(spinlock_t *lock)
4655 {
4656 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4657 	int ret = 0;
4658 
4659 	lockdep_assert_held(lock);
4660 
4661 	if (spin_needbreak(lock) || resched) {
4662 		spin_unlock(lock);
4663 		if (resched)
4664 			preempt_schedule_common();
4665 		else
4666 			cpu_relax();
4667 		ret = 1;
4668 		spin_lock(lock);
4669 	}
4670 	return ret;
4671 }
4672 EXPORT_SYMBOL(__cond_resched_lock);
4673 
4674 int __sched __cond_resched_softirq(void)
4675 {
4676 	BUG_ON(!in_softirq());
4677 
4678 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4679 		local_bh_enable();
4680 		preempt_schedule_common();
4681 		local_bh_disable();
4682 		return 1;
4683 	}
4684 	return 0;
4685 }
4686 EXPORT_SYMBOL(__cond_resched_softirq);
4687 
4688 /**
4689  * yield - yield the current processor to other threads.
4690  *
4691  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4692  *
4693  * The scheduler is at all times free to pick the calling task as the most
4694  * eligible task to run, if removing the yield() call from your code breaks
4695  * it, its already broken.
4696  *
4697  * Typical broken usage is:
4698  *
4699  * while (!event)
4700  * 	yield();
4701  *
4702  * where one assumes that yield() will let 'the other' process run that will
4703  * make event true. If the current task is a SCHED_FIFO task that will never
4704  * happen. Never use yield() as a progress guarantee!!
4705  *
4706  * If you want to use yield() to wait for something, use wait_event().
4707  * If you want to use yield() to be 'nice' for others, use cond_resched().
4708  * If you still want to use yield(), do not!
4709  */
4710 void __sched yield(void)
4711 {
4712 	set_current_state(TASK_RUNNING);
4713 	sys_sched_yield();
4714 }
4715 EXPORT_SYMBOL(yield);
4716 
4717 /**
4718  * yield_to - yield the current processor to another thread in
4719  * your thread group, or accelerate that thread toward the
4720  * processor it's on.
4721  * @p: target task
4722  * @preempt: whether task preemption is allowed or not
4723  *
4724  * It's the caller's job to ensure that the target task struct
4725  * can't go away on us before we can do any checks.
4726  *
4727  * Return:
4728  *	true (>0) if we indeed boosted the target task.
4729  *	false (0) if we failed to boost the target.
4730  *	-ESRCH if there's no task to yield to.
4731  */
4732 int __sched yield_to(struct task_struct *p, bool preempt)
4733 {
4734 	struct task_struct *curr = current;
4735 	struct rq *rq, *p_rq;
4736 	unsigned long flags;
4737 	int yielded = 0;
4738 
4739 	local_irq_save(flags);
4740 	rq = this_rq();
4741 
4742 again:
4743 	p_rq = task_rq(p);
4744 	/*
4745 	 * If we're the only runnable task on the rq and target rq also
4746 	 * has only one task, there's absolutely no point in yielding.
4747 	 */
4748 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4749 		yielded = -ESRCH;
4750 		goto out_irq;
4751 	}
4752 
4753 	double_rq_lock(rq, p_rq);
4754 	if (task_rq(p) != p_rq) {
4755 		double_rq_unlock(rq, p_rq);
4756 		goto again;
4757 	}
4758 
4759 	if (!curr->sched_class->yield_to_task)
4760 		goto out_unlock;
4761 
4762 	if (curr->sched_class != p->sched_class)
4763 		goto out_unlock;
4764 
4765 	if (task_running(p_rq, p) || p->state)
4766 		goto out_unlock;
4767 
4768 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4769 	if (yielded) {
4770 		schedstat_inc(rq, yld_count);
4771 		/*
4772 		 * Make p's CPU reschedule; pick_next_entity takes care of
4773 		 * fairness.
4774 		 */
4775 		if (preempt && rq != p_rq)
4776 			resched_curr(p_rq);
4777 	}
4778 
4779 out_unlock:
4780 	double_rq_unlock(rq, p_rq);
4781 out_irq:
4782 	local_irq_restore(flags);
4783 
4784 	if (yielded > 0)
4785 		schedule();
4786 
4787 	return yielded;
4788 }
4789 EXPORT_SYMBOL_GPL(yield_to);
4790 
4791 /*
4792  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4793  * that process accounting knows that this is a task in IO wait state.
4794  */
4795 long __sched io_schedule_timeout(long timeout)
4796 {
4797 	int old_iowait = current->in_iowait;
4798 	struct rq *rq;
4799 	long ret;
4800 
4801 	current->in_iowait = 1;
4802 	blk_schedule_flush_plug(current);
4803 
4804 	delayacct_blkio_start();
4805 	rq = raw_rq();
4806 	atomic_inc(&rq->nr_iowait);
4807 	ret = schedule_timeout(timeout);
4808 	current->in_iowait = old_iowait;
4809 	atomic_dec(&rq->nr_iowait);
4810 	delayacct_blkio_end();
4811 
4812 	return ret;
4813 }
4814 EXPORT_SYMBOL(io_schedule_timeout);
4815 
4816 /**
4817  * sys_sched_get_priority_max - return maximum RT priority.
4818  * @policy: scheduling class.
4819  *
4820  * Return: On success, this syscall returns the maximum
4821  * rt_priority that can be used by a given scheduling class.
4822  * On failure, a negative error code is returned.
4823  */
4824 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4825 {
4826 	int ret = -EINVAL;
4827 
4828 	switch (policy) {
4829 	case SCHED_FIFO:
4830 	case SCHED_RR:
4831 		ret = MAX_USER_RT_PRIO-1;
4832 		break;
4833 	case SCHED_DEADLINE:
4834 	case SCHED_NORMAL:
4835 	case SCHED_BATCH:
4836 	case SCHED_IDLE:
4837 		ret = 0;
4838 		break;
4839 	}
4840 	return ret;
4841 }
4842 
4843 /**
4844  * sys_sched_get_priority_min - return minimum RT priority.
4845  * @policy: scheduling class.
4846  *
4847  * Return: On success, this syscall returns the minimum
4848  * rt_priority that can be used by a given scheduling class.
4849  * On failure, a negative error code is returned.
4850  */
4851 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4852 {
4853 	int ret = -EINVAL;
4854 
4855 	switch (policy) {
4856 	case SCHED_FIFO:
4857 	case SCHED_RR:
4858 		ret = 1;
4859 		break;
4860 	case SCHED_DEADLINE:
4861 	case SCHED_NORMAL:
4862 	case SCHED_BATCH:
4863 	case SCHED_IDLE:
4864 		ret = 0;
4865 	}
4866 	return ret;
4867 }
4868 
4869 /**
4870  * sys_sched_rr_get_interval - return the default timeslice of a process.
4871  * @pid: pid of the process.
4872  * @interval: userspace pointer to the timeslice value.
4873  *
4874  * this syscall writes the default timeslice value of a given process
4875  * into the user-space timespec buffer. A value of '0' means infinity.
4876  *
4877  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4878  * an error code.
4879  */
4880 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4881 		struct timespec __user *, interval)
4882 {
4883 	struct task_struct *p;
4884 	unsigned int time_slice;
4885 	unsigned long flags;
4886 	struct rq *rq;
4887 	int retval;
4888 	struct timespec t;
4889 
4890 	if (pid < 0)
4891 		return -EINVAL;
4892 
4893 	retval = -ESRCH;
4894 	rcu_read_lock();
4895 	p = find_process_by_pid(pid);
4896 	if (!p)
4897 		goto out_unlock;
4898 
4899 	retval = security_task_getscheduler(p);
4900 	if (retval)
4901 		goto out_unlock;
4902 
4903 	rq = task_rq_lock(p, &flags);
4904 	time_slice = 0;
4905 	if (p->sched_class->get_rr_interval)
4906 		time_slice = p->sched_class->get_rr_interval(rq, p);
4907 	task_rq_unlock(rq, p, &flags);
4908 
4909 	rcu_read_unlock();
4910 	jiffies_to_timespec(time_slice, &t);
4911 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4912 	return retval;
4913 
4914 out_unlock:
4915 	rcu_read_unlock();
4916 	return retval;
4917 }
4918 
4919 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4920 
4921 void sched_show_task(struct task_struct *p)
4922 {
4923 	unsigned long free = 0;
4924 	int ppid;
4925 	unsigned long state = p->state;
4926 
4927 	if (state)
4928 		state = __ffs(state) + 1;
4929 	printk(KERN_INFO "%-15.15s %c", p->comm,
4930 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4931 #if BITS_PER_LONG == 32
4932 	if (state == TASK_RUNNING)
4933 		printk(KERN_CONT " running  ");
4934 	else
4935 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4936 #else
4937 	if (state == TASK_RUNNING)
4938 		printk(KERN_CONT "  running task    ");
4939 	else
4940 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4941 #endif
4942 #ifdef CONFIG_DEBUG_STACK_USAGE
4943 	free = stack_not_used(p);
4944 #endif
4945 	ppid = 0;
4946 	rcu_read_lock();
4947 	if (pid_alive(p))
4948 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4949 	rcu_read_unlock();
4950 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4951 		task_pid_nr(p), ppid,
4952 		(unsigned long)task_thread_info(p)->flags);
4953 
4954 	print_worker_info(KERN_INFO, p);
4955 	show_stack(p, NULL);
4956 }
4957 
4958 void show_state_filter(unsigned long state_filter)
4959 {
4960 	struct task_struct *g, *p;
4961 
4962 #if BITS_PER_LONG == 32
4963 	printk(KERN_INFO
4964 		"  task                PC stack   pid father\n");
4965 #else
4966 	printk(KERN_INFO
4967 		"  task                        PC stack   pid father\n");
4968 #endif
4969 	rcu_read_lock();
4970 	for_each_process_thread(g, p) {
4971 		/*
4972 		 * reset the NMI-timeout, listing all files on a slow
4973 		 * console might take a lot of time:
4974 		 */
4975 		touch_nmi_watchdog();
4976 		if (!state_filter || (p->state & state_filter))
4977 			sched_show_task(p);
4978 	}
4979 
4980 	touch_all_softlockup_watchdogs();
4981 
4982 #ifdef CONFIG_SCHED_DEBUG
4983 	sysrq_sched_debug_show();
4984 #endif
4985 	rcu_read_unlock();
4986 	/*
4987 	 * Only show locks if all tasks are dumped:
4988 	 */
4989 	if (!state_filter)
4990 		debug_show_all_locks();
4991 }
4992 
4993 void init_idle_bootup_task(struct task_struct *idle)
4994 {
4995 	idle->sched_class = &idle_sched_class;
4996 }
4997 
4998 /**
4999  * init_idle - set up an idle thread for a given CPU
5000  * @idle: task in question
5001  * @cpu: cpu the idle task belongs to
5002  *
5003  * NOTE: this function does not set the idle thread's NEED_RESCHED
5004  * flag, to make booting more robust.
5005  */
5006 void init_idle(struct task_struct *idle, int cpu)
5007 {
5008 	struct rq *rq = cpu_rq(cpu);
5009 	unsigned long flags;
5010 
5011 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5012 	raw_spin_lock(&rq->lock);
5013 
5014 	__sched_fork(0, idle);
5015 	idle->state = TASK_RUNNING;
5016 	idle->se.exec_start = sched_clock();
5017 
5018 	kasan_unpoison_task_stack(idle);
5019 
5020 #ifdef CONFIG_SMP
5021 	/*
5022 	 * Its possible that init_idle() gets called multiple times on a task,
5023 	 * in that case do_set_cpus_allowed() will not do the right thing.
5024 	 *
5025 	 * And since this is boot we can forgo the serialization.
5026 	 */
5027 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5028 #endif
5029 	/*
5030 	 * We're having a chicken and egg problem, even though we are
5031 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5032 	 * lockdep check in task_group() will fail.
5033 	 *
5034 	 * Similar case to sched_fork(). / Alternatively we could
5035 	 * use task_rq_lock() here and obtain the other rq->lock.
5036 	 *
5037 	 * Silence PROVE_RCU
5038 	 */
5039 	rcu_read_lock();
5040 	__set_task_cpu(idle, cpu);
5041 	rcu_read_unlock();
5042 
5043 	rq->curr = rq->idle = idle;
5044 	idle->on_rq = TASK_ON_RQ_QUEUED;
5045 #ifdef CONFIG_SMP
5046 	idle->on_cpu = 1;
5047 #endif
5048 	raw_spin_unlock(&rq->lock);
5049 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5050 
5051 	/* Set the preempt count _outside_ the spinlocks! */
5052 	init_idle_preempt_count(idle, cpu);
5053 
5054 	/*
5055 	 * The idle tasks have their own, simple scheduling class:
5056 	 */
5057 	idle->sched_class = &idle_sched_class;
5058 	ftrace_graph_init_idle_task(idle, cpu);
5059 	vtime_init_idle(idle, cpu);
5060 #ifdef CONFIG_SMP
5061 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5062 #endif
5063 }
5064 
5065 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5066 			      const struct cpumask *trial)
5067 {
5068 	int ret = 1, trial_cpus;
5069 	struct dl_bw *cur_dl_b;
5070 	unsigned long flags;
5071 
5072 	if (!cpumask_weight(cur))
5073 		return ret;
5074 
5075 	rcu_read_lock_sched();
5076 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5077 	trial_cpus = cpumask_weight(trial);
5078 
5079 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5080 	if (cur_dl_b->bw != -1 &&
5081 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5082 		ret = 0;
5083 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5084 	rcu_read_unlock_sched();
5085 
5086 	return ret;
5087 }
5088 
5089 int task_can_attach(struct task_struct *p,
5090 		    const struct cpumask *cs_cpus_allowed)
5091 {
5092 	int ret = 0;
5093 
5094 	/*
5095 	 * Kthreads which disallow setaffinity shouldn't be moved
5096 	 * to a new cpuset; we don't want to change their cpu
5097 	 * affinity and isolating such threads by their set of
5098 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5099 	 * applicable for such threads.  This prevents checking for
5100 	 * success of set_cpus_allowed_ptr() on all attached tasks
5101 	 * before cpus_allowed may be changed.
5102 	 */
5103 	if (p->flags & PF_NO_SETAFFINITY) {
5104 		ret = -EINVAL;
5105 		goto out;
5106 	}
5107 
5108 #ifdef CONFIG_SMP
5109 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5110 					      cs_cpus_allowed)) {
5111 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5112 							cs_cpus_allowed);
5113 		struct dl_bw *dl_b;
5114 		bool overflow;
5115 		int cpus;
5116 		unsigned long flags;
5117 
5118 		rcu_read_lock_sched();
5119 		dl_b = dl_bw_of(dest_cpu);
5120 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5121 		cpus = dl_bw_cpus(dest_cpu);
5122 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5123 		if (overflow)
5124 			ret = -EBUSY;
5125 		else {
5126 			/*
5127 			 * We reserve space for this task in the destination
5128 			 * root_domain, as we can't fail after this point.
5129 			 * We will free resources in the source root_domain
5130 			 * later on (see set_cpus_allowed_dl()).
5131 			 */
5132 			__dl_add(dl_b, p->dl.dl_bw);
5133 		}
5134 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5135 		rcu_read_unlock_sched();
5136 
5137 	}
5138 #endif
5139 out:
5140 	return ret;
5141 }
5142 
5143 #ifdef CONFIG_SMP
5144 
5145 #ifdef CONFIG_NUMA_BALANCING
5146 /* Migrate current task p to target_cpu */
5147 int migrate_task_to(struct task_struct *p, int target_cpu)
5148 {
5149 	struct migration_arg arg = { p, target_cpu };
5150 	int curr_cpu = task_cpu(p);
5151 
5152 	if (curr_cpu == target_cpu)
5153 		return 0;
5154 
5155 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5156 		return -EINVAL;
5157 
5158 	/* TODO: This is not properly updating schedstats */
5159 
5160 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5161 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5162 }
5163 
5164 /*
5165  * Requeue a task on a given node and accurately track the number of NUMA
5166  * tasks on the runqueues
5167  */
5168 void sched_setnuma(struct task_struct *p, int nid)
5169 {
5170 	struct rq *rq;
5171 	unsigned long flags;
5172 	bool queued, running;
5173 
5174 	rq = task_rq_lock(p, &flags);
5175 	queued = task_on_rq_queued(p);
5176 	running = task_current(rq, p);
5177 
5178 	if (queued)
5179 		dequeue_task(rq, p, DEQUEUE_SAVE);
5180 	if (running)
5181 		put_prev_task(rq, p);
5182 
5183 	p->numa_preferred_nid = nid;
5184 
5185 	if (running)
5186 		p->sched_class->set_curr_task(rq);
5187 	if (queued)
5188 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5189 	task_rq_unlock(rq, p, &flags);
5190 }
5191 #endif /* CONFIG_NUMA_BALANCING */
5192 
5193 #ifdef CONFIG_HOTPLUG_CPU
5194 /*
5195  * Ensures that the idle task is using init_mm right before its cpu goes
5196  * offline.
5197  */
5198 void idle_task_exit(void)
5199 {
5200 	struct mm_struct *mm = current->active_mm;
5201 
5202 	BUG_ON(cpu_online(smp_processor_id()));
5203 
5204 	if (mm != &init_mm) {
5205 		switch_mm(mm, &init_mm, current);
5206 		finish_arch_post_lock_switch();
5207 	}
5208 	mmdrop(mm);
5209 }
5210 
5211 /*
5212  * Since this CPU is going 'away' for a while, fold any nr_active delta
5213  * we might have. Assumes we're called after migrate_tasks() so that the
5214  * nr_active count is stable.
5215  *
5216  * Also see the comment "Global load-average calculations".
5217  */
5218 static void calc_load_migrate(struct rq *rq)
5219 {
5220 	long delta = calc_load_fold_active(rq);
5221 	if (delta)
5222 		atomic_long_add(delta, &calc_load_tasks);
5223 }
5224 
5225 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5226 {
5227 }
5228 
5229 static const struct sched_class fake_sched_class = {
5230 	.put_prev_task = put_prev_task_fake,
5231 };
5232 
5233 static struct task_struct fake_task = {
5234 	/*
5235 	 * Avoid pull_{rt,dl}_task()
5236 	 */
5237 	.prio = MAX_PRIO + 1,
5238 	.sched_class = &fake_sched_class,
5239 };
5240 
5241 /*
5242  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5243  * try_to_wake_up()->select_task_rq().
5244  *
5245  * Called with rq->lock held even though we'er in stop_machine() and
5246  * there's no concurrency possible, we hold the required locks anyway
5247  * because of lock validation efforts.
5248  */
5249 static void migrate_tasks(struct rq *dead_rq)
5250 {
5251 	struct rq *rq = dead_rq;
5252 	struct task_struct *next, *stop = rq->stop;
5253 	int dest_cpu;
5254 
5255 	/*
5256 	 * Fudge the rq selection such that the below task selection loop
5257 	 * doesn't get stuck on the currently eligible stop task.
5258 	 *
5259 	 * We're currently inside stop_machine() and the rq is either stuck
5260 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5261 	 * either way we should never end up calling schedule() until we're
5262 	 * done here.
5263 	 */
5264 	rq->stop = NULL;
5265 
5266 	/*
5267 	 * put_prev_task() and pick_next_task() sched
5268 	 * class method both need to have an up-to-date
5269 	 * value of rq->clock[_task]
5270 	 */
5271 	update_rq_clock(rq);
5272 
5273 	for (;;) {
5274 		/*
5275 		 * There's this thread running, bail when that's the only
5276 		 * remaining thread.
5277 		 */
5278 		if (rq->nr_running == 1)
5279 			break;
5280 
5281 		/*
5282 		 * pick_next_task assumes pinned rq->lock.
5283 		 */
5284 		lockdep_pin_lock(&rq->lock);
5285 		next = pick_next_task(rq, &fake_task);
5286 		BUG_ON(!next);
5287 		next->sched_class->put_prev_task(rq, next);
5288 
5289 		/*
5290 		 * Rules for changing task_struct::cpus_allowed are holding
5291 		 * both pi_lock and rq->lock, such that holding either
5292 		 * stabilizes the mask.
5293 		 *
5294 		 * Drop rq->lock is not quite as disastrous as it usually is
5295 		 * because !cpu_active at this point, which means load-balance
5296 		 * will not interfere. Also, stop-machine.
5297 		 */
5298 		lockdep_unpin_lock(&rq->lock);
5299 		raw_spin_unlock(&rq->lock);
5300 		raw_spin_lock(&next->pi_lock);
5301 		raw_spin_lock(&rq->lock);
5302 
5303 		/*
5304 		 * Since we're inside stop-machine, _nothing_ should have
5305 		 * changed the task, WARN if weird stuff happened, because in
5306 		 * that case the above rq->lock drop is a fail too.
5307 		 */
5308 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5309 			raw_spin_unlock(&next->pi_lock);
5310 			continue;
5311 		}
5312 
5313 		/* Find suitable destination for @next, with force if needed. */
5314 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5315 
5316 		rq = __migrate_task(rq, next, dest_cpu);
5317 		if (rq != dead_rq) {
5318 			raw_spin_unlock(&rq->lock);
5319 			rq = dead_rq;
5320 			raw_spin_lock(&rq->lock);
5321 		}
5322 		raw_spin_unlock(&next->pi_lock);
5323 	}
5324 
5325 	rq->stop = stop;
5326 }
5327 #endif /* CONFIG_HOTPLUG_CPU */
5328 
5329 static void set_rq_online(struct rq *rq)
5330 {
5331 	if (!rq->online) {
5332 		const struct sched_class *class;
5333 
5334 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5335 		rq->online = 1;
5336 
5337 		for_each_class(class) {
5338 			if (class->rq_online)
5339 				class->rq_online(rq);
5340 		}
5341 	}
5342 }
5343 
5344 static void set_rq_offline(struct rq *rq)
5345 {
5346 	if (rq->online) {
5347 		const struct sched_class *class;
5348 
5349 		for_each_class(class) {
5350 			if (class->rq_offline)
5351 				class->rq_offline(rq);
5352 		}
5353 
5354 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5355 		rq->online = 0;
5356 	}
5357 }
5358 
5359 /*
5360  * migration_call - callback that gets triggered when a CPU is added.
5361  * Here we can start up the necessary migration thread for the new CPU.
5362  */
5363 static int
5364 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5365 {
5366 	int cpu = (long)hcpu;
5367 	unsigned long flags;
5368 	struct rq *rq = cpu_rq(cpu);
5369 
5370 	switch (action & ~CPU_TASKS_FROZEN) {
5371 
5372 	case CPU_UP_PREPARE:
5373 		rq->calc_load_update = calc_load_update;
5374 		account_reset_rq(rq);
5375 		break;
5376 
5377 	case CPU_ONLINE:
5378 		/* Update our root-domain */
5379 		raw_spin_lock_irqsave(&rq->lock, flags);
5380 		if (rq->rd) {
5381 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5382 
5383 			set_rq_online(rq);
5384 		}
5385 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5386 		break;
5387 
5388 #ifdef CONFIG_HOTPLUG_CPU
5389 	case CPU_DYING:
5390 		sched_ttwu_pending();
5391 		/* Update our root-domain */
5392 		raw_spin_lock_irqsave(&rq->lock, flags);
5393 		if (rq->rd) {
5394 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5395 			set_rq_offline(rq);
5396 		}
5397 		migrate_tasks(rq);
5398 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5399 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5400 		break;
5401 
5402 	case CPU_DEAD:
5403 		calc_load_migrate(rq);
5404 		break;
5405 #endif
5406 	}
5407 
5408 	update_max_interval();
5409 
5410 	return NOTIFY_OK;
5411 }
5412 
5413 /*
5414  * Register at high priority so that task migration (migrate_all_tasks)
5415  * happens before everything else.  This has to be lower priority than
5416  * the notifier in the perf_event subsystem, though.
5417  */
5418 static struct notifier_block migration_notifier = {
5419 	.notifier_call = migration_call,
5420 	.priority = CPU_PRI_MIGRATION,
5421 };
5422 
5423 static void set_cpu_rq_start_time(void)
5424 {
5425 	int cpu = smp_processor_id();
5426 	struct rq *rq = cpu_rq(cpu);
5427 	rq->age_stamp = sched_clock_cpu(cpu);
5428 }
5429 
5430 static int sched_cpu_active(struct notifier_block *nfb,
5431 				      unsigned long action, void *hcpu)
5432 {
5433 	int cpu = (long)hcpu;
5434 
5435 	switch (action & ~CPU_TASKS_FROZEN) {
5436 	case CPU_STARTING:
5437 		set_cpu_rq_start_time();
5438 		return NOTIFY_OK;
5439 
5440 	case CPU_DOWN_FAILED:
5441 		set_cpu_active(cpu, true);
5442 		return NOTIFY_OK;
5443 
5444 	default:
5445 		return NOTIFY_DONE;
5446 	}
5447 }
5448 
5449 static int sched_cpu_inactive(struct notifier_block *nfb,
5450 					unsigned long action, void *hcpu)
5451 {
5452 	switch (action & ~CPU_TASKS_FROZEN) {
5453 	case CPU_DOWN_PREPARE:
5454 		set_cpu_active((long)hcpu, false);
5455 		return NOTIFY_OK;
5456 	default:
5457 		return NOTIFY_DONE;
5458 	}
5459 }
5460 
5461 static int __init migration_init(void)
5462 {
5463 	void *cpu = (void *)(long)smp_processor_id();
5464 	int err;
5465 
5466 	/* Initialize migration for the boot CPU */
5467 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5468 	BUG_ON(err == NOTIFY_BAD);
5469 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5470 	register_cpu_notifier(&migration_notifier);
5471 
5472 	/* Register cpu active notifiers */
5473 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5474 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5475 
5476 	return 0;
5477 }
5478 early_initcall(migration_init);
5479 
5480 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5481 
5482 #ifdef CONFIG_SCHED_DEBUG
5483 
5484 static __read_mostly int sched_debug_enabled;
5485 
5486 static int __init sched_debug_setup(char *str)
5487 {
5488 	sched_debug_enabled = 1;
5489 
5490 	return 0;
5491 }
5492 early_param("sched_debug", sched_debug_setup);
5493 
5494 static inline bool sched_debug(void)
5495 {
5496 	return sched_debug_enabled;
5497 }
5498 
5499 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5500 				  struct cpumask *groupmask)
5501 {
5502 	struct sched_group *group = sd->groups;
5503 
5504 	cpumask_clear(groupmask);
5505 
5506 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5507 
5508 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5509 		printk("does not load-balance\n");
5510 		if (sd->parent)
5511 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5512 					" has parent");
5513 		return -1;
5514 	}
5515 
5516 	printk(KERN_CONT "span %*pbl level %s\n",
5517 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5518 
5519 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5520 		printk(KERN_ERR "ERROR: domain->span does not contain "
5521 				"CPU%d\n", cpu);
5522 	}
5523 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5524 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5525 				" CPU%d\n", cpu);
5526 	}
5527 
5528 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5529 	do {
5530 		if (!group) {
5531 			printk("\n");
5532 			printk(KERN_ERR "ERROR: group is NULL\n");
5533 			break;
5534 		}
5535 
5536 		if (!cpumask_weight(sched_group_cpus(group))) {
5537 			printk(KERN_CONT "\n");
5538 			printk(KERN_ERR "ERROR: empty group\n");
5539 			break;
5540 		}
5541 
5542 		if (!(sd->flags & SD_OVERLAP) &&
5543 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5544 			printk(KERN_CONT "\n");
5545 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5546 			break;
5547 		}
5548 
5549 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5550 
5551 		printk(KERN_CONT " %*pbl",
5552 		       cpumask_pr_args(sched_group_cpus(group)));
5553 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5554 			printk(KERN_CONT " (cpu_capacity = %d)",
5555 				group->sgc->capacity);
5556 		}
5557 
5558 		group = group->next;
5559 	} while (group != sd->groups);
5560 	printk(KERN_CONT "\n");
5561 
5562 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5563 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5564 
5565 	if (sd->parent &&
5566 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5567 		printk(KERN_ERR "ERROR: parent span is not a superset "
5568 			"of domain->span\n");
5569 	return 0;
5570 }
5571 
5572 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5573 {
5574 	int level = 0;
5575 
5576 	if (!sched_debug_enabled)
5577 		return;
5578 
5579 	if (!sd) {
5580 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5581 		return;
5582 	}
5583 
5584 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5585 
5586 	for (;;) {
5587 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5588 			break;
5589 		level++;
5590 		sd = sd->parent;
5591 		if (!sd)
5592 			break;
5593 	}
5594 }
5595 #else /* !CONFIG_SCHED_DEBUG */
5596 # define sched_domain_debug(sd, cpu) do { } while (0)
5597 static inline bool sched_debug(void)
5598 {
5599 	return false;
5600 }
5601 #endif /* CONFIG_SCHED_DEBUG */
5602 
5603 static int sd_degenerate(struct sched_domain *sd)
5604 {
5605 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5606 		return 1;
5607 
5608 	/* Following flags need at least 2 groups */
5609 	if (sd->flags & (SD_LOAD_BALANCE |
5610 			 SD_BALANCE_NEWIDLE |
5611 			 SD_BALANCE_FORK |
5612 			 SD_BALANCE_EXEC |
5613 			 SD_SHARE_CPUCAPACITY |
5614 			 SD_SHARE_PKG_RESOURCES |
5615 			 SD_SHARE_POWERDOMAIN)) {
5616 		if (sd->groups != sd->groups->next)
5617 			return 0;
5618 	}
5619 
5620 	/* Following flags don't use groups */
5621 	if (sd->flags & (SD_WAKE_AFFINE))
5622 		return 0;
5623 
5624 	return 1;
5625 }
5626 
5627 static int
5628 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5629 {
5630 	unsigned long cflags = sd->flags, pflags = parent->flags;
5631 
5632 	if (sd_degenerate(parent))
5633 		return 1;
5634 
5635 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5636 		return 0;
5637 
5638 	/* Flags needing groups don't count if only 1 group in parent */
5639 	if (parent->groups == parent->groups->next) {
5640 		pflags &= ~(SD_LOAD_BALANCE |
5641 				SD_BALANCE_NEWIDLE |
5642 				SD_BALANCE_FORK |
5643 				SD_BALANCE_EXEC |
5644 				SD_SHARE_CPUCAPACITY |
5645 				SD_SHARE_PKG_RESOURCES |
5646 				SD_PREFER_SIBLING |
5647 				SD_SHARE_POWERDOMAIN);
5648 		if (nr_node_ids == 1)
5649 			pflags &= ~SD_SERIALIZE;
5650 	}
5651 	if (~cflags & pflags)
5652 		return 0;
5653 
5654 	return 1;
5655 }
5656 
5657 static void free_rootdomain(struct rcu_head *rcu)
5658 {
5659 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5660 
5661 	cpupri_cleanup(&rd->cpupri);
5662 	cpudl_cleanup(&rd->cpudl);
5663 	free_cpumask_var(rd->dlo_mask);
5664 	free_cpumask_var(rd->rto_mask);
5665 	free_cpumask_var(rd->online);
5666 	free_cpumask_var(rd->span);
5667 	kfree(rd);
5668 }
5669 
5670 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5671 {
5672 	struct root_domain *old_rd = NULL;
5673 	unsigned long flags;
5674 
5675 	raw_spin_lock_irqsave(&rq->lock, flags);
5676 
5677 	if (rq->rd) {
5678 		old_rd = rq->rd;
5679 
5680 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5681 			set_rq_offline(rq);
5682 
5683 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5684 
5685 		/*
5686 		 * If we dont want to free the old_rd yet then
5687 		 * set old_rd to NULL to skip the freeing later
5688 		 * in this function:
5689 		 */
5690 		if (!atomic_dec_and_test(&old_rd->refcount))
5691 			old_rd = NULL;
5692 	}
5693 
5694 	atomic_inc(&rd->refcount);
5695 	rq->rd = rd;
5696 
5697 	cpumask_set_cpu(rq->cpu, rd->span);
5698 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5699 		set_rq_online(rq);
5700 
5701 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5702 
5703 	if (old_rd)
5704 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5705 }
5706 
5707 static int init_rootdomain(struct root_domain *rd)
5708 {
5709 	memset(rd, 0, sizeof(*rd));
5710 
5711 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5712 		goto out;
5713 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5714 		goto free_span;
5715 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5716 		goto free_online;
5717 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5718 		goto free_dlo_mask;
5719 
5720 	init_dl_bw(&rd->dl_bw);
5721 	if (cpudl_init(&rd->cpudl) != 0)
5722 		goto free_dlo_mask;
5723 
5724 	if (cpupri_init(&rd->cpupri) != 0)
5725 		goto free_rto_mask;
5726 	return 0;
5727 
5728 free_rto_mask:
5729 	free_cpumask_var(rd->rto_mask);
5730 free_dlo_mask:
5731 	free_cpumask_var(rd->dlo_mask);
5732 free_online:
5733 	free_cpumask_var(rd->online);
5734 free_span:
5735 	free_cpumask_var(rd->span);
5736 out:
5737 	return -ENOMEM;
5738 }
5739 
5740 /*
5741  * By default the system creates a single root-domain with all cpus as
5742  * members (mimicking the global state we have today).
5743  */
5744 struct root_domain def_root_domain;
5745 
5746 static void init_defrootdomain(void)
5747 {
5748 	init_rootdomain(&def_root_domain);
5749 
5750 	atomic_set(&def_root_domain.refcount, 1);
5751 }
5752 
5753 static struct root_domain *alloc_rootdomain(void)
5754 {
5755 	struct root_domain *rd;
5756 
5757 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5758 	if (!rd)
5759 		return NULL;
5760 
5761 	if (init_rootdomain(rd) != 0) {
5762 		kfree(rd);
5763 		return NULL;
5764 	}
5765 
5766 	return rd;
5767 }
5768 
5769 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5770 {
5771 	struct sched_group *tmp, *first;
5772 
5773 	if (!sg)
5774 		return;
5775 
5776 	first = sg;
5777 	do {
5778 		tmp = sg->next;
5779 
5780 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5781 			kfree(sg->sgc);
5782 
5783 		kfree(sg);
5784 		sg = tmp;
5785 	} while (sg != first);
5786 }
5787 
5788 static void free_sched_domain(struct rcu_head *rcu)
5789 {
5790 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5791 
5792 	/*
5793 	 * If its an overlapping domain it has private groups, iterate and
5794 	 * nuke them all.
5795 	 */
5796 	if (sd->flags & SD_OVERLAP) {
5797 		free_sched_groups(sd->groups, 1);
5798 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5799 		kfree(sd->groups->sgc);
5800 		kfree(sd->groups);
5801 	}
5802 	kfree(sd);
5803 }
5804 
5805 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5806 {
5807 	call_rcu(&sd->rcu, free_sched_domain);
5808 }
5809 
5810 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5811 {
5812 	for (; sd; sd = sd->parent)
5813 		destroy_sched_domain(sd, cpu);
5814 }
5815 
5816 /*
5817  * Keep a special pointer to the highest sched_domain that has
5818  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5819  * allows us to avoid some pointer chasing select_idle_sibling().
5820  *
5821  * Also keep a unique ID per domain (we use the first cpu number in
5822  * the cpumask of the domain), this allows us to quickly tell if
5823  * two cpus are in the same cache domain, see cpus_share_cache().
5824  */
5825 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5826 DEFINE_PER_CPU(int, sd_llc_size);
5827 DEFINE_PER_CPU(int, sd_llc_id);
5828 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5829 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5830 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5831 
5832 static void update_top_cache_domain(int cpu)
5833 {
5834 	struct sched_domain *sd;
5835 	struct sched_domain *busy_sd = NULL;
5836 	int id = cpu;
5837 	int size = 1;
5838 
5839 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5840 	if (sd) {
5841 		id = cpumask_first(sched_domain_span(sd));
5842 		size = cpumask_weight(sched_domain_span(sd));
5843 		busy_sd = sd->parent; /* sd_busy */
5844 	}
5845 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5846 
5847 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5848 	per_cpu(sd_llc_size, cpu) = size;
5849 	per_cpu(sd_llc_id, cpu) = id;
5850 
5851 	sd = lowest_flag_domain(cpu, SD_NUMA);
5852 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5853 
5854 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5855 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5856 }
5857 
5858 /*
5859  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5860  * hold the hotplug lock.
5861  */
5862 static void
5863 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5864 {
5865 	struct rq *rq = cpu_rq(cpu);
5866 	struct sched_domain *tmp;
5867 
5868 	/* Remove the sched domains which do not contribute to scheduling. */
5869 	for (tmp = sd; tmp; ) {
5870 		struct sched_domain *parent = tmp->parent;
5871 		if (!parent)
5872 			break;
5873 
5874 		if (sd_parent_degenerate(tmp, parent)) {
5875 			tmp->parent = parent->parent;
5876 			if (parent->parent)
5877 				parent->parent->child = tmp;
5878 			/*
5879 			 * Transfer SD_PREFER_SIBLING down in case of a
5880 			 * degenerate parent; the spans match for this
5881 			 * so the property transfers.
5882 			 */
5883 			if (parent->flags & SD_PREFER_SIBLING)
5884 				tmp->flags |= SD_PREFER_SIBLING;
5885 			destroy_sched_domain(parent, cpu);
5886 		} else
5887 			tmp = tmp->parent;
5888 	}
5889 
5890 	if (sd && sd_degenerate(sd)) {
5891 		tmp = sd;
5892 		sd = sd->parent;
5893 		destroy_sched_domain(tmp, cpu);
5894 		if (sd)
5895 			sd->child = NULL;
5896 	}
5897 
5898 	sched_domain_debug(sd, cpu);
5899 
5900 	rq_attach_root(rq, rd);
5901 	tmp = rq->sd;
5902 	rcu_assign_pointer(rq->sd, sd);
5903 	destroy_sched_domains(tmp, cpu);
5904 
5905 	update_top_cache_domain(cpu);
5906 }
5907 
5908 /* Setup the mask of cpus configured for isolated domains */
5909 static int __init isolated_cpu_setup(char *str)
5910 {
5911 	int ret;
5912 
5913 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5914 	ret = cpulist_parse(str, cpu_isolated_map);
5915 	if (ret) {
5916 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5917 		return 0;
5918 	}
5919 	return 1;
5920 }
5921 __setup("isolcpus=", isolated_cpu_setup);
5922 
5923 struct s_data {
5924 	struct sched_domain ** __percpu sd;
5925 	struct root_domain	*rd;
5926 };
5927 
5928 enum s_alloc {
5929 	sa_rootdomain,
5930 	sa_sd,
5931 	sa_sd_storage,
5932 	sa_none,
5933 };
5934 
5935 /*
5936  * Build an iteration mask that can exclude certain CPUs from the upwards
5937  * domain traversal.
5938  *
5939  * Asymmetric node setups can result in situations where the domain tree is of
5940  * unequal depth, make sure to skip domains that already cover the entire
5941  * range.
5942  *
5943  * In that case build_sched_domains() will have terminated the iteration early
5944  * and our sibling sd spans will be empty. Domains should always include the
5945  * cpu they're built on, so check that.
5946  *
5947  */
5948 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5949 {
5950 	const struct cpumask *span = sched_domain_span(sd);
5951 	struct sd_data *sdd = sd->private;
5952 	struct sched_domain *sibling;
5953 	int i;
5954 
5955 	for_each_cpu(i, span) {
5956 		sibling = *per_cpu_ptr(sdd->sd, i);
5957 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5958 			continue;
5959 
5960 		cpumask_set_cpu(i, sched_group_mask(sg));
5961 	}
5962 }
5963 
5964 /*
5965  * Return the canonical balance cpu for this group, this is the first cpu
5966  * of this group that's also in the iteration mask.
5967  */
5968 int group_balance_cpu(struct sched_group *sg)
5969 {
5970 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5971 }
5972 
5973 static int
5974 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5975 {
5976 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5977 	const struct cpumask *span = sched_domain_span(sd);
5978 	struct cpumask *covered = sched_domains_tmpmask;
5979 	struct sd_data *sdd = sd->private;
5980 	struct sched_domain *sibling;
5981 	int i;
5982 
5983 	cpumask_clear(covered);
5984 
5985 	for_each_cpu(i, span) {
5986 		struct cpumask *sg_span;
5987 
5988 		if (cpumask_test_cpu(i, covered))
5989 			continue;
5990 
5991 		sibling = *per_cpu_ptr(sdd->sd, i);
5992 
5993 		/* See the comment near build_group_mask(). */
5994 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5995 			continue;
5996 
5997 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5998 				GFP_KERNEL, cpu_to_node(cpu));
5999 
6000 		if (!sg)
6001 			goto fail;
6002 
6003 		sg_span = sched_group_cpus(sg);
6004 		if (sibling->child)
6005 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6006 		else
6007 			cpumask_set_cpu(i, sg_span);
6008 
6009 		cpumask_or(covered, covered, sg_span);
6010 
6011 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6012 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6013 			build_group_mask(sd, sg);
6014 
6015 		/*
6016 		 * Initialize sgc->capacity such that even if we mess up the
6017 		 * domains and no possible iteration will get us here, we won't
6018 		 * die on a /0 trap.
6019 		 */
6020 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6021 
6022 		/*
6023 		 * Make sure the first group of this domain contains the
6024 		 * canonical balance cpu. Otherwise the sched_domain iteration
6025 		 * breaks. See update_sg_lb_stats().
6026 		 */
6027 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6028 		    group_balance_cpu(sg) == cpu)
6029 			groups = sg;
6030 
6031 		if (!first)
6032 			first = sg;
6033 		if (last)
6034 			last->next = sg;
6035 		last = sg;
6036 		last->next = first;
6037 	}
6038 	sd->groups = groups;
6039 
6040 	return 0;
6041 
6042 fail:
6043 	free_sched_groups(first, 0);
6044 
6045 	return -ENOMEM;
6046 }
6047 
6048 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6049 {
6050 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6051 	struct sched_domain *child = sd->child;
6052 
6053 	if (child)
6054 		cpu = cpumask_first(sched_domain_span(child));
6055 
6056 	if (sg) {
6057 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6058 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6059 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6060 	}
6061 
6062 	return cpu;
6063 }
6064 
6065 /*
6066  * build_sched_groups will build a circular linked list of the groups
6067  * covered by the given span, and will set each group's ->cpumask correctly,
6068  * and ->cpu_capacity to 0.
6069  *
6070  * Assumes the sched_domain tree is fully constructed
6071  */
6072 static int
6073 build_sched_groups(struct sched_domain *sd, int cpu)
6074 {
6075 	struct sched_group *first = NULL, *last = NULL;
6076 	struct sd_data *sdd = sd->private;
6077 	const struct cpumask *span = sched_domain_span(sd);
6078 	struct cpumask *covered;
6079 	int i;
6080 
6081 	get_group(cpu, sdd, &sd->groups);
6082 	atomic_inc(&sd->groups->ref);
6083 
6084 	if (cpu != cpumask_first(span))
6085 		return 0;
6086 
6087 	lockdep_assert_held(&sched_domains_mutex);
6088 	covered = sched_domains_tmpmask;
6089 
6090 	cpumask_clear(covered);
6091 
6092 	for_each_cpu(i, span) {
6093 		struct sched_group *sg;
6094 		int group, j;
6095 
6096 		if (cpumask_test_cpu(i, covered))
6097 			continue;
6098 
6099 		group = get_group(i, sdd, &sg);
6100 		cpumask_setall(sched_group_mask(sg));
6101 
6102 		for_each_cpu(j, span) {
6103 			if (get_group(j, sdd, NULL) != group)
6104 				continue;
6105 
6106 			cpumask_set_cpu(j, covered);
6107 			cpumask_set_cpu(j, sched_group_cpus(sg));
6108 		}
6109 
6110 		if (!first)
6111 			first = sg;
6112 		if (last)
6113 			last->next = sg;
6114 		last = sg;
6115 	}
6116 	last->next = first;
6117 
6118 	return 0;
6119 }
6120 
6121 /*
6122  * Initialize sched groups cpu_capacity.
6123  *
6124  * cpu_capacity indicates the capacity of sched group, which is used while
6125  * distributing the load between different sched groups in a sched domain.
6126  * Typically cpu_capacity for all the groups in a sched domain will be same
6127  * unless there are asymmetries in the topology. If there are asymmetries,
6128  * group having more cpu_capacity will pickup more load compared to the
6129  * group having less cpu_capacity.
6130  */
6131 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6132 {
6133 	struct sched_group *sg = sd->groups;
6134 
6135 	WARN_ON(!sg);
6136 
6137 	do {
6138 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6139 		sg = sg->next;
6140 	} while (sg != sd->groups);
6141 
6142 	if (cpu != group_balance_cpu(sg))
6143 		return;
6144 
6145 	update_group_capacity(sd, cpu);
6146 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6147 }
6148 
6149 /*
6150  * Initializers for schedule domains
6151  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6152  */
6153 
6154 static int default_relax_domain_level = -1;
6155 int sched_domain_level_max;
6156 
6157 static int __init setup_relax_domain_level(char *str)
6158 {
6159 	if (kstrtoint(str, 0, &default_relax_domain_level))
6160 		pr_warn("Unable to set relax_domain_level\n");
6161 
6162 	return 1;
6163 }
6164 __setup("relax_domain_level=", setup_relax_domain_level);
6165 
6166 static void set_domain_attribute(struct sched_domain *sd,
6167 				 struct sched_domain_attr *attr)
6168 {
6169 	int request;
6170 
6171 	if (!attr || attr->relax_domain_level < 0) {
6172 		if (default_relax_domain_level < 0)
6173 			return;
6174 		else
6175 			request = default_relax_domain_level;
6176 	} else
6177 		request = attr->relax_domain_level;
6178 	if (request < sd->level) {
6179 		/* turn off idle balance on this domain */
6180 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6181 	} else {
6182 		/* turn on idle balance on this domain */
6183 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6184 	}
6185 }
6186 
6187 static void __sdt_free(const struct cpumask *cpu_map);
6188 static int __sdt_alloc(const struct cpumask *cpu_map);
6189 
6190 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6191 				 const struct cpumask *cpu_map)
6192 {
6193 	switch (what) {
6194 	case sa_rootdomain:
6195 		if (!atomic_read(&d->rd->refcount))
6196 			free_rootdomain(&d->rd->rcu); /* fall through */
6197 	case sa_sd:
6198 		free_percpu(d->sd); /* fall through */
6199 	case sa_sd_storage:
6200 		__sdt_free(cpu_map); /* fall through */
6201 	case sa_none:
6202 		break;
6203 	}
6204 }
6205 
6206 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6207 						   const struct cpumask *cpu_map)
6208 {
6209 	memset(d, 0, sizeof(*d));
6210 
6211 	if (__sdt_alloc(cpu_map))
6212 		return sa_sd_storage;
6213 	d->sd = alloc_percpu(struct sched_domain *);
6214 	if (!d->sd)
6215 		return sa_sd_storage;
6216 	d->rd = alloc_rootdomain();
6217 	if (!d->rd)
6218 		return sa_sd;
6219 	return sa_rootdomain;
6220 }
6221 
6222 /*
6223  * NULL the sd_data elements we've used to build the sched_domain and
6224  * sched_group structure so that the subsequent __free_domain_allocs()
6225  * will not free the data we're using.
6226  */
6227 static void claim_allocations(int cpu, struct sched_domain *sd)
6228 {
6229 	struct sd_data *sdd = sd->private;
6230 
6231 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6232 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6233 
6234 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6235 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6236 
6237 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6238 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6239 }
6240 
6241 #ifdef CONFIG_NUMA
6242 static int sched_domains_numa_levels;
6243 enum numa_topology_type sched_numa_topology_type;
6244 static int *sched_domains_numa_distance;
6245 int sched_max_numa_distance;
6246 static struct cpumask ***sched_domains_numa_masks;
6247 static int sched_domains_curr_level;
6248 #endif
6249 
6250 /*
6251  * SD_flags allowed in topology descriptions.
6252  *
6253  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6254  * SD_SHARE_PKG_RESOURCES - describes shared caches
6255  * SD_NUMA                - describes NUMA topologies
6256  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6257  *
6258  * Odd one out:
6259  * SD_ASYM_PACKING        - describes SMT quirks
6260  */
6261 #define TOPOLOGY_SD_FLAGS		\
6262 	(SD_SHARE_CPUCAPACITY |		\
6263 	 SD_SHARE_PKG_RESOURCES |	\
6264 	 SD_NUMA |			\
6265 	 SD_ASYM_PACKING |		\
6266 	 SD_SHARE_POWERDOMAIN)
6267 
6268 static struct sched_domain *
6269 sd_init(struct sched_domain_topology_level *tl, int cpu)
6270 {
6271 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6272 	int sd_weight, sd_flags = 0;
6273 
6274 #ifdef CONFIG_NUMA
6275 	/*
6276 	 * Ugly hack to pass state to sd_numa_mask()...
6277 	 */
6278 	sched_domains_curr_level = tl->numa_level;
6279 #endif
6280 
6281 	sd_weight = cpumask_weight(tl->mask(cpu));
6282 
6283 	if (tl->sd_flags)
6284 		sd_flags = (*tl->sd_flags)();
6285 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6286 			"wrong sd_flags in topology description\n"))
6287 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6288 
6289 	*sd = (struct sched_domain){
6290 		.min_interval		= sd_weight,
6291 		.max_interval		= 2*sd_weight,
6292 		.busy_factor		= 32,
6293 		.imbalance_pct		= 125,
6294 
6295 		.cache_nice_tries	= 0,
6296 		.busy_idx		= 0,
6297 		.idle_idx		= 0,
6298 		.newidle_idx		= 0,
6299 		.wake_idx		= 0,
6300 		.forkexec_idx		= 0,
6301 
6302 		.flags			= 1*SD_LOAD_BALANCE
6303 					| 1*SD_BALANCE_NEWIDLE
6304 					| 1*SD_BALANCE_EXEC
6305 					| 1*SD_BALANCE_FORK
6306 					| 0*SD_BALANCE_WAKE
6307 					| 1*SD_WAKE_AFFINE
6308 					| 0*SD_SHARE_CPUCAPACITY
6309 					| 0*SD_SHARE_PKG_RESOURCES
6310 					| 0*SD_SERIALIZE
6311 					| 0*SD_PREFER_SIBLING
6312 					| 0*SD_NUMA
6313 					| sd_flags
6314 					,
6315 
6316 		.last_balance		= jiffies,
6317 		.balance_interval	= sd_weight,
6318 		.smt_gain		= 0,
6319 		.max_newidle_lb_cost	= 0,
6320 		.next_decay_max_lb_cost	= jiffies,
6321 #ifdef CONFIG_SCHED_DEBUG
6322 		.name			= tl->name,
6323 #endif
6324 	};
6325 
6326 	/*
6327 	 * Convert topological properties into behaviour.
6328 	 */
6329 
6330 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6331 		sd->flags |= SD_PREFER_SIBLING;
6332 		sd->imbalance_pct = 110;
6333 		sd->smt_gain = 1178; /* ~15% */
6334 
6335 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6336 		sd->imbalance_pct = 117;
6337 		sd->cache_nice_tries = 1;
6338 		sd->busy_idx = 2;
6339 
6340 #ifdef CONFIG_NUMA
6341 	} else if (sd->flags & SD_NUMA) {
6342 		sd->cache_nice_tries = 2;
6343 		sd->busy_idx = 3;
6344 		sd->idle_idx = 2;
6345 
6346 		sd->flags |= SD_SERIALIZE;
6347 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6348 			sd->flags &= ~(SD_BALANCE_EXEC |
6349 				       SD_BALANCE_FORK |
6350 				       SD_WAKE_AFFINE);
6351 		}
6352 
6353 #endif
6354 	} else {
6355 		sd->flags |= SD_PREFER_SIBLING;
6356 		sd->cache_nice_tries = 1;
6357 		sd->busy_idx = 2;
6358 		sd->idle_idx = 1;
6359 	}
6360 
6361 	sd->private = &tl->data;
6362 
6363 	return sd;
6364 }
6365 
6366 /*
6367  * Topology list, bottom-up.
6368  */
6369 static struct sched_domain_topology_level default_topology[] = {
6370 #ifdef CONFIG_SCHED_SMT
6371 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6372 #endif
6373 #ifdef CONFIG_SCHED_MC
6374 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6375 #endif
6376 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6377 	{ NULL, },
6378 };
6379 
6380 static struct sched_domain_topology_level *sched_domain_topology =
6381 	default_topology;
6382 
6383 #define for_each_sd_topology(tl)			\
6384 	for (tl = sched_domain_topology; tl->mask; tl++)
6385 
6386 void set_sched_topology(struct sched_domain_topology_level *tl)
6387 {
6388 	sched_domain_topology = tl;
6389 }
6390 
6391 #ifdef CONFIG_NUMA
6392 
6393 static const struct cpumask *sd_numa_mask(int cpu)
6394 {
6395 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6396 }
6397 
6398 static void sched_numa_warn(const char *str)
6399 {
6400 	static int done = false;
6401 	int i,j;
6402 
6403 	if (done)
6404 		return;
6405 
6406 	done = true;
6407 
6408 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6409 
6410 	for (i = 0; i < nr_node_ids; i++) {
6411 		printk(KERN_WARNING "  ");
6412 		for (j = 0; j < nr_node_ids; j++)
6413 			printk(KERN_CONT "%02d ", node_distance(i,j));
6414 		printk(KERN_CONT "\n");
6415 	}
6416 	printk(KERN_WARNING "\n");
6417 }
6418 
6419 bool find_numa_distance(int distance)
6420 {
6421 	int i;
6422 
6423 	if (distance == node_distance(0, 0))
6424 		return true;
6425 
6426 	for (i = 0; i < sched_domains_numa_levels; i++) {
6427 		if (sched_domains_numa_distance[i] == distance)
6428 			return true;
6429 	}
6430 
6431 	return false;
6432 }
6433 
6434 /*
6435  * A system can have three types of NUMA topology:
6436  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6437  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6438  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6439  *
6440  * The difference between a glueless mesh topology and a backplane
6441  * topology lies in whether communication between not directly
6442  * connected nodes goes through intermediary nodes (where programs
6443  * could run), or through backplane controllers. This affects
6444  * placement of programs.
6445  *
6446  * The type of topology can be discerned with the following tests:
6447  * - If the maximum distance between any nodes is 1 hop, the system
6448  *   is directly connected.
6449  * - If for two nodes A and B, located N > 1 hops away from each other,
6450  *   there is an intermediary node C, which is < N hops away from both
6451  *   nodes A and B, the system is a glueless mesh.
6452  */
6453 static void init_numa_topology_type(void)
6454 {
6455 	int a, b, c, n;
6456 
6457 	n = sched_max_numa_distance;
6458 
6459 	if (sched_domains_numa_levels <= 1) {
6460 		sched_numa_topology_type = NUMA_DIRECT;
6461 		return;
6462 	}
6463 
6464 	for_each_online_node(a) {
6465 		for_each_online_node(b) {
6466 			/* Find two nodes furthest removed from each other. */
6467 			if (node_distance(a, b) < n)
6468 				continue;
6469 
6470 			/* Is there an intermediary node between a and b? */
6471 			for_each_online_node(c) {
6472 				if (node_distance(a, c) < n &&
6473 				    node_distance(b, c) < n) {
6474 					sched_numa_topology_type =
6475 							NUMA_GLUELESS_MESH;
6476 					return;
6477 				}
6478 			}
6479 
6480 			sched_numa_topology_type = NUMA_BACKPLANE;
6481 			return;
6482 		}
6483 	}
6484 }
6485 
6486 static void sched_init_numa(void)
6487 {
6488 	int next_distance, curr_distance = node_distance(0, 0);
6489 	struct sched_domain_topology_level *tl;
6490 	int level = 0;
6491 	int i, j, k;
6492 
6493 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6494 	if (!sched_domains_numa_distance)
6495 		return;
6496 
6497 	/*
6498 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6499 	 * unique distances in the node_distance() table.
6500 	 *
6501 	 * Assumes node_distance(0,j) includes all distances in
6502 	 * node_distance(i,j) in order to avoid cubic time.
6503 	 */
6504 	next_distance = curr_distance;
6505 	for (i = 0; i < nr_node_ids; i++) {
6506 		for (j = 0; j < nr_node_ids; j++) {
6507 			for (k = 0; k < nr_node_ids; k++) {
6508 				int distance = node_distance(i, k);
6509 
6510 				if (distance > curr_distance &&
6511 				    (distance < next_distance ||
6512 				     next_distance == curr_distance))
6513 					next_distance = distance;
6514 
6515 				/*
6516 				 * While not a strong assumption it would be nice to know
6517 				 * about cases where if node A is connected to B, B is not
6518 				 * equally connected to A.
6519 				 */
6520 				if (sched_debug() && node_distance(k, i) != distance)
6521 					sched_numa_warn("Node-distance not symmetric");
6522 
6523 				if (sched_debug() && i && !find_numa_distance(distance))
6524 					sched_numa_warn("Node-0 not representative");
6525 			}
6526 			if (next_distance != curr_distance) {
6527 				sched_domains_numa_distance[level++] = next_distance;
6528 				sched_domains_numa_levels = level;
6529 				curr_distance = next_distance;
6530 			} else break;
6531 		}
6532 
6533 		/*
6534 		 * In case of sched_debug() we verify the above assumption.
6535 		 */
6536 		if (!sched_debug())
6537 			break;
6538 	}
6539 
6540 	if (!level)
6541 		return;
6542 
6543 	/*
6544 	 * 'level' contains the number of unique distances, excluding the
6545 	 * identity distance node_distance(i,i).
6546 	 *
6547 	 * The sched_domains_numa_distance[] array includes the actual distance
6548 	 * numbers.
6549 	 */
6550 
6551 	/*
6552 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6553 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6554 	 * the array will contain less then 'level' members. This could be
6555 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6556 	 * in other functions.
6557 	 *
6558 	 * We reset it to 'level' at the end of this function.
6559 	 */
6560 	sched_domains_numa_levels = 0;
6561 
6562 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6563 	if (!sched_domains_numa_masks)
6564 		return;
6565 
6566 	/*
6567 	 * Now for each level, construct a mask per node which contains all
6568 	 * cpus of nodes that are that many hops away from us.
6569 	 */
6570 	for (i = 0; i < level; i++) {
6571 		sched_domains_numa_masks[i] =
6572 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6573 		if (!sched_domains_numa_masks[i])
6574 			return;
6575 
6576 		for (j = 0; j < nr_node_ids; j++) {
6577 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6578 			if (!mask)
6579 				return;
6580 
6581 			sched_domains_numa_masks[i][j] = mask;
6582 
6583 			for_each_node(k) {
6584 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6585 					continue;
6586 
6587 				cpumask_or(mask, mask, cpumask_of_node(k));
6588 			}
6589 		}
6590 	}
6591 
6592 	/* Compute default topology size */
6593 	for (i = 0; sched_domain_topology[i].mask; i++);
6594 
6595 	tl = kzalloc((i + level + 1) *
6596 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6597 	if (!tl)
6598 		return;
6599 
6600 	/*
6601 	 * Copy the default topology bits..
6602 	 */
6603 	for (i = 0; sched_domain_topology[i].mask; i++)
6604 		tl[i] = sched_domain_topology[i];
6605 
6606 	/*
6607 	 * .. and append 'j' levels of NUMA goodness.
6608 	 */
6609 	for (j = 0; j < level; i++, j++) {
6610 		tl[i] = (struct sched_domain_topology_level){
6611 			.mask = sd_numa_mask,
6612 			.sd_flags = cpu_numa_flags,
6613 			.flags = SDTL_OVERLAP,
6614 			.numa_level = j,
6615 			SD_INIT_NAME(NUMA)
6616 		};
6617 	}
6618 
6619 	sched_domain_topology = tl;
6620 
6621 	sched_domains_numa_levels = level;
6622 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6623 
6624 	init_numa_topology_type();
6625 }
6626 
6627 static void sched_domains_numa_masks_set(int cpu)
6628 {
6629 	int i, j;
6630 	int node = cpu_to_node(cpu);
6631 
6632 	for (i = 0; i < sched_domains_numa_levels; i++) {
6633 		for (j = 0; j < nr_node_ids; j++) {
6634 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6635 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6636 		}
6637 	}
6638 }
6639 
6640 static void sched_domains_numa_masks_clear(int cpu)
6641 {
6642 	int i, j;
6643 	for (i = 0; i < sched_domains_numa_levels; i++) {
6644 		for (j = 0; j < nr_node_ids; j++)
6645 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6646 	}
6647 }
6648 
6649 /*
6650  * Update sched_domains_numa_masks[level][node] array when new cpus
6651  * are onlined.
6652  */
6653 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6654 					   unsigned long action,
6655 					   void *hcpu)
6656 {
6657 	int cpu = (long)hcpu;
6658 
6659 	switch (action & ~CPU_TASKS_FROZEN) {
6660 	case CPU_ONLINE:
6661 		sched_domains_numa_masks_set(cpu);
6662 		break;
6663 
6664 	case CPU_DEAD:
6665 		sched_domains_numa_masks_clear(cpu);
6666 		break;
6667 
6668 	default:
6669 		return NOTIFY_DONE;
6670 	}
6671 
6672 	return NOTIFY_OK;
6673 }
6674 #else
6675 static inline void sched_init_numa(void)
6676 {
6677 }
6678 
6679 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6680 					   unsigned long action,
6681 					   void *hcpu)
6682 {
6683 	return 0;
6684 }
6685 #endif /* CONFIG_NUMA */
6686 
6687 static int __sdt_alloc(const struct cpumask *cpu_map)
6688 {
6689 	struct sched_domain_topology_level *tl;
6690 	int j;
6691 
6692 	for_each_sd_topology(tl) {
6693 		struct sd_data *sdd = &tl->data;
6694 
6695 		sdd->sd = alloc_percpu(struct sched_domain *);
6696 		if (!sdd->sd)
6697 			return -ENOMEM;
6698 
6699 		sdd->sg = alloc_percpu(struct sched_group *);
6700 		if (!sdd->sg)
6701 			return -ENOMEM;
6702 
6703 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6704 		if (!sdd->sgc)
6705 			return -ENOMEM;
6706 
6707 		for_each_cpu(j, cpu_map) {
6708 			struct sched_domain *sd;
6709 			struct sched_group *sg;
6710 			struct sched_group_capacity *sgc;
6711 
6712 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6713 					GFP_KERNEL, cpu_to_node(j));
6714 			if (!sd)
6715 				return -ENOMEM;
6716 
6717 			*per_cpu_ptr(sdd->sd, j) = sd;
6718 
6719 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6720 					GFP_KERNEL, cpu_to_node(j));
6721 			if (!sg)
6722 				return -ENOMEM;
6723 
6724 			sg->next = sg;
6725 
6726 			*per_cpu_ptr(sdd->sg, j) = sg;
6727 
6728 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6729 					GFP_KERNEL, cpu_to_node(j));
6730 			if (!sgc)
6731 				return -ENOMEM;
6732 
6733 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6734 		}
6735 	}
6736 
6737 	return 0;
6738 }
6739 
6740 static void __sdt_free(const struct cpumask *cpu_map)
6741 {
6742 	struct sched_domain_topology_level *tl;
6743 	int j;
6744 
6745 	for_each_sd_topology(tl) {
6746 		struct sd_data *sdd = &tl->data;
6747 
6748 		for_each_cpu(j, cpu_map) {
6749 			struct sched_domain *sd;
6750 
6751 			if (sdd->sd) {
6752 				sd = *per_cpu_ptr(sdd->sd, j);
6753 				if (sd && (sd->flags & SD_OVERLAP))
6754 					free_sched_groups(sd->groups, 0);
6755 				kfree(*per_cpu_ptr(sdd->sd, j));
6756 			}
6757 
6758 			if (sdd->sg)
6759 				kfree(*per_cpu_ptr(sdd->sg, j));
6760 			if (sdd->sgc)
6761 				kfree(*per_cpu_ptr(sdd->sgc, j));
6762 		}
6763 		free_percpu(sdd->sd);
6764 		sdd->sd = NULL;
6765 		free_percpu(sdd->sg);
6766 		sdd->sg = NULL;
6767 		free_percpu(sdd->sgc);
6768 		sdd->sgc = NULL;
6769 	}
6770 }
6771 
6772 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6773 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6774 		struct sched_domain *child, int cpu)
6775 {
6776 	struct sched_domain *sd = sd_init(tl, cpu);
6777 	if (!sd)
6778 		return child;
6779 
6780 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6781 	if (child) {
6782 		sd->level = child->level + 1;
6783 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6784 		child->parent = sd;
6785 		sd->child = child;
6786 
6787 		if (!cpumask_subset(sched_domain_span(child),
6788 				    sched_domain_span(sd))) {
6789 			pr_err("BUG: arch topology borken\n");
6790 #ifdef CONFIG_SCHED_DEBUG
6791 			pr_err("     the %s domain not a subset of the %s domain\n",
6792 					child->name, sd->name);
6793 #endif
6794 			/* Fixup, ensure @sd has at least @child cpus. */
6795 			cpumask_or(sched_domain_span(sd),
6796 				   sched_domain_span(sd),
6797 				   sched_domain_span(child));
6798 		}
6799 
6800 	}
6801 	set_domain_attribute(sd, attr);
6802 
6803 	return sd;
6804 }
6805 
6806 /*
6807  * Build sched domains for a given set of cpus and attach the sched domains
6808  * to the individual cpus
6809  */
6810 static int build_sched_domains(const struct cpumask *cpu_map,
6811 			       struct sched_domain_attr *attr)
6812 {
6813 	enum s_alloc alloc_state;
6814 	struct sched_domain *sd;
6815 	struct s_data d;
6816 	int i, ret = -ENOMEM;
6817 
6818 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6819 	if (alloc_state != sa_rootdomain)
6820 		goto error;
6821 
6822 	/* Set up domains for cpus specified by the cpu_map. */
6823 	for_each_cpu(i, cpu_map) {
6824 		struct sched_domain_topology_level *tl;
6825 
6826 		sd = NULL;
6827 		for_each_sd_topology(tl) {
6828 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6829 			if (tl == sched_domain_topology)
6830 				*per_cpu_ptr(d.sd, i) = sd;
6831 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6832 				sd->flags |= SD_OVERLAP;
6833 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6834 				break;
6835 		}
6836 	}
6837 
6838 	/* Build the groups for the domains */
6839 	for_each_cpu(i, cpu_map) {
6840 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6841 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6842 			if (sd->flags & SD_OVERLAP) {
6843 				if (build_overlap_sched_groups(sd, i))
6844 					goto error;
6845 			} else {
6846 				if (build_sched_groups(sd, i))
6847 					goto error;
6848 			}
6849 		}
6850 	}
6851 
6852 	/* Calculate CPU capacity for physical packages and nodes */
6853 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6854 		if (!cpumask_test_cpu(i, cpu_map))
6855 			continue;
6856 
6857 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6858 			claim_allocations(i, sd);
6859 			init_sched_groups_capacity(i, sd);
6860 		}
6861 	}
6862 
6863 	/* Attach the domains */
6864 	rcu_read_lock();
6865 	for_each_cpu(i, cpu_map) {
6866 		sd = *per_cpu_ptr(d.sd, i);
6867 		cpu_attach_domain(sd, d.rd, i);
6868 	}
6869 	rcu_read_unlock();
6870 
6871 	ret = 0;
6872 error:
6873 	__free_domain_allocs(&d, alloc_state, cpu_map);
6874 	return ret;
6875 }
6876 
6877 static cpumask_var_t *doms_cur;	/* current sched domains */
6878 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6879 static struct sched_domain_attr *dattr_cur;
6880 				/* attribues of custom domains in 'doms_cur' */
6881 
6882 /*
6883  * Special case: If a kmalloc of a doms_cur partition (array of
6884  * cpumask) fails, then fallback to a single sched domain,
6885  * as determined by the single cpumask fallback_doms.
6886  */
6887 static cpumask_var_t fallback_doms;
6888 
6889 /*
6890  * arch_update_cpu_topology lets virtualized architectures update the
6891  * cpu core maps. It is supposed to return 1 if the topology changed
6892  * or 0 if it stayed the same.
6893  */
6894 int __weak arch_update_cpu_topology(void)
6895 {
6896 	return 0;
6897 }
6898 
6899 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6900 {
6901 	int i;
6902 	cpumask_var_t *doms;
6903 
6904 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6905 	if (!doms)
6906 		return NULL;
6907 	for (i = 0; i < ndoms; i++) {
6908 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6909 			free_sched_domains(doms, i);
6910 			return NULL;
6911 		}
6912 	}
6913 	return doms;
6914 }
6915 
6916 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6917 {
6918 	unsigned int i;
6919 	for (i = 0; i < ndoms; i++)
6920 		free_cpumask_var(doms[i]);
6921 	kfree(doms);
6922 }
6923 
6924 /*
6925  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6926  * For now this just excludes isolated cpus, but could be used to
6927  * exclude other special cases in the future.
6928  */
6929 static int init_sched_domains(const struct cpumask *cpu_map)
6930 {
6931 	int err;
6932 
6933 	arch_update_cpu_topology();
6934 	ndoms_cur = 1;
6935 	doms_cur = alloc_sched_domains(ndoms_cur);
6936 	if (!doms_cur)
6937 		doms_cur = &fallback_doms;
6938 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6939 	err = build_sched_domains(doms_cur[0], NULL);
6940 	register_sched_domain_sysctl();
6941 
6942 	return err;
6943 }
6944 
6945 /*
6946  * Detach sched domains from a group of cpus specified in cpu_map
6947  * These cpus will now be attached to the NULL domain
6948  */
6949 static void detach_destroy_domains(const struct cpumask *cpu_map)
6950 {
6951 	int i;
6952 
6953 	rcu_read_lock();
6954 	for_each_cpu(i, cpu_map)
6955 		cpu_attach_domain(NULL, &def_root_domain, i);
6956 	rcu_read_unlock();
6957 }
6958 
6959 /* handle null as "default" */
6960 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6961 			struct sched_domain_attr *new, int idx_new)
6962 {
6963 	struct sched_domain_attr tmp;
6964 
6965 	/* fast path */
6966 	if (!new && !cur)
6967 		return 1;
6968 
6969 	tmp = SD_ATTR_INIT;
6970 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6971 			new ? (new + idx_new) : &tmp,
6972 			sizeof(struct sched_domain_attr));
6973 }
6974 
6975 /*
6976  * Partition sched domains as specified by the 'ndoms_new'
6977  * cpumasks in the array doms_new[] of cpumasks. This compares
6978  * doms_new[] to the current sched domain partitioning, doms_cur[].
6979  * It destroys each deleted domain and builds each new domain.
6980  *
6981  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6982  * The masks don't intersect (don't overlap.) We should setup one
6983  * sched domain for each mask. CPUs not in any of the cpumasks will
6984  * not be load balanced. If the same cpumask appears both in the
6985  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6986  * it as it is.
6987  *
6988  * The passed in 'doms_new' should be allocated using
6989  * alloc_sched_domains.  This routine takes ownership of it and will
6990  * free_sched_domains it when done with it. If the caller failed the
6991  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6992  * and partition_sched_domains() will fallback to the single partition
6993  * 'fallback_doms', it also forces the domains to be rebuilt.
6994  *
6995  * If doms_new == NULL it will be replaced with cpu_online_mask.
6996  * ndoms_new == 0 is a special case for destroying existing domains,
6997  * and it will not create the default domain.
6998  *
6999  * Call with hotplug lock held
7000  */
7001 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7002 			     struct sched_domain_attr *dattr_new)
7003 {
7004 	int i, j, n;
7005 	int new_topology;
7006 
7007 	mutex_lock(&sched_domains_mutex);
7008 
7009 	/* always unregister in case we don't destroy any domains */
7010 	unregister_sched_domain_sysctl();
7011 
7012 	/* Let architecture update cpu core mappings. */
7013 	new_topology = arch_update_cpu_topology();
7014 
7015 	n = doms_new ? ndoms_new : 0;
7016 
7017 	/* Destroy deleted domains */
7018 	for (i = 0; i < ndoms_cur; i++) {
7019 		for (j = 0; j < n && !new_topology; j++) {
7020 			if (cpumask_equal(doms_cur[i], doms_new[j])
7021 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7022 				goto match1;
7023 		}
7024 		/* no match - a current sched domain not in new doms_new[] */
7025 		detach_destroy_domains(doms_cur[i]);
7026 match1:
7027 		;
7028 	}
7029 
7030 	n = ndoms_cur;
7031 	if (doms_new == NULL) {
7032 		n = 0;
7033 		doms_new = &fallback_doms;
7034 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7035 		WARN_ON_ONCE(dattr_new);
7036 	}
7037 
7038 	/* Build new domains */
7039 	for (i = 0; i < ndoms_new; i++) {
7040 		for (j = 0; j < n && !new_topology; j++) {
7041 			if (cpumask_equal(doms_new[i], doms_cur[j])
7042 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7043 				goto match2;
7044 		}
7045 		/* no match - add a new doms_new */
7046 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7047 match2:
7048 		;
7049 	}
7050 
7051 	/* Remember the new sched domains */
7052 	if (doms_cur != &fallback_doms)
7053 		free_sched_domains(doms_cur, ndoms_cur);
7054 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7055 	doms_cur = doms_new;
7056 	dattr_cur = dattr_new;
7057 	ndoms_cur = ndoms_new;
7058 
7059 	register_sched_domain_sysctl();
7060 
7061 	mutex_unlock(&sched_domains_mutex);
7062 }
7063 
7064 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7065 
7066 /*
7067  * Update cpusets according to cpu_active mask.  If cpusets are
7068  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7069  * around partition_sched_domains().
7070  *
7071  * If we come here as part of a suspend/resume, don't touch cpusets because we
7072  * want to restore it back to its original state upon resume anyway.
7073  */
7074 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7075 			     void *hcpu)
7076 {
7077 	switch (action) {
7078 	case CPU_ONLINE_FROZEN:
7079 	case CPU_DOWN_FAILED_FROZEN:
7080 
7081 		/*
7082 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7083 		 * resume sequence. As long as this is not the last online
7084 		 * operation in the resume sequence, just build a single sched
7085 		 * domain, ignoring cpusets.
7086 		 */
7087 		num_cpus_frozen--;
7088 		if (likely(num_cpus_frozen)) {
7089 			partition_sched_domains(1, NULL, NULL);
7090 			break;
7091 		}
7092 
7093 		/*
7094 		 * This is the last CPU online operation. So fall through and
7095 		 * restore the original sched domains by considering the
7096 		 * cpuset configurations.
7097 		 */
7098 
7099 	case CPU_ONLINE:
7100 		cpuset_update_active_cpus(true);
7101 		break;
7102 	default:
7103 		return NOTIFY_DONE;
7104 	}
7105 	return NOTIFY_OK;
7106 }
7107 
7108 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7109 			       void *hcpu)
7110 {
7111 	unsigned long flags;
7112 	long cpu = (long)hcpu;
7113 	struct dl_bw *dl_b;
7114 	bool overflow;
7115 	int cpus;
7116 
7117 	switch (action) {
7118 	case CPU_DOWN_PREPARE:
7119 		rcu_read_lock_sched();
7120 		dl_b = dl_bw_of(cpu);
7121 
7122 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7123 		cpus = dl_bw_cpus(cpu);
7124 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7125 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7126 
7127 		rcu_read_unlock_sched();
7128 
7129 		if (overflow)
7130 			return notifier_from_errno(-EBUSY);
7131 		cpuset_update_active_cpus(false);
7132 		break;
7133 	case CPU_DOWN_PREPARE_FROZEN:
7134 		num_cpus_frozen++;
7135 		partition_sched_domains(1, NULL, NULL);
7136 		break;
7137 	default:
7138 		return NOTIFY_DONE;
7139 	}
7140 	return NOTIFY_OK;
7141 }
7142 
7143 void __init sched_init_smp(void)
7144 {
7145 	cpumask_var_t non_isolated_cpus;
7146 
7147 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7148 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7149 
7150 	sched_init_numa();
7151 
7152 	/*
7153 	 * There's no userspace yet to cause hotplug operations; hence all the
7154 	 * cpu masks are stable and all blatant races in the below code cannot
7155 	 * happen.
7156 	 */
7157 	mutex_lock(&sched_domains_mutex);
7158 	init_sched_domains(cpu_active_mask);
7159 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7160 	if (cpumask_empty(non_isolated_cpus))
7161 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7162 	mutex_unlock(&sched_domains_mutex);
7163 
7164 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7165 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7166 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7167 
7168 	init_hrtick();
7169 
7170 	/* Move init over to a non-isolated CPU */
7171 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7172 		BUG();
7173 	sched_init_granularity();
7174 	free_cpumask_var(non_isolated_cpus);
7175 
7176 	init_sched_rt_class();
7177 	init_sched_dl_class();
7178 }
7179 #else
7180 void __init sched_init_smp(void)
7181 {
7182 	sched_init_granularity();
7183 }
7184 #endif /* CONFIG_SMP */
7185 
7186 int in_sched_functions(unsigned long addr)
7187 {
7188 	return in_lock_functions(addr) ||
7189 		(addr >= (unsigned long)__sched_text_start
7190 		&& addr < (unsigned long)__sched_text_end);
7191 }
7192 
7193 #ifdef CONFIG_CGROUP_SCHED
7194 /*
7195  * Default task group.
7196  * Every task in system belongs to this group at bootup.
7197  */
7198 struct task_group root_task_group;
7199 LIST_HEAD(task_groups);
7200 
7201 /* Cacheline aligned slab cache for task_group */
7202 static struct kmem_cache *task_group_cache __read_mostly;
7203 #endif
7204 
7205 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7206 
7207 void __init sched_init(void)
7208 {
7209 	int i, j;
7210 	unsigned long alloc_size = 0, ptr;
7211 
7212 #ifdef CONFIG_FAIR_GROUP_SCHED
7213 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7214 #endif
7215 #ifdef CONFIG_RT_GROUP_SCHED
7216 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7217 #endif
7218 	if (alloc_size) {
7219 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7220 
7221 #ifdef CONFIG_FAIR_GROUP_SCHED
7222 		root_task_group.se = (struct sched_entity **)ptr;
7223 		ptr += nr_cpu_ids * sizeof(void **);
7224 
7225 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7226 		ptr += nr_cpu_ids * sizeof(void **);
7227 
7228 #endif /* CONFIG_FAIR_GROUP_SCHED */
7229 #ifdef CONFIG_RT_GROUP_SCHED
7230 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7231 		ptr += nr_cpu_ids * sizeof(void **);
7232 
7233 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7234 		ptr += nr_cpu_ids * sizeof(void **);
7235 
7236 #endif /* CONFIG_RT_GROUP_SCHED */
7237 	}
7238 #ifdef CONFIG_CPUMASK_OFFSTACK
7239 	for_each_possible_cpu(i) {
7240 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7241 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7242 	}
7243 #endif /* CONFIG_CPUMASK_OFFSTACK */
7244 
7245 	init_rt_bandwidth(&def_rt_bandwidth,
7246 			global_rt_period(), global_rt_runtime());
7247 	init_dl_bandwidth(&def_dl_bandwidth,
7248 			global_rt_period(), global_rt_runtime());
7249 
7250 #ifdef CONFIG_SMP
7251 	init_defrootdomain();
7252 #endif
7253 
7254 #ifdef CONFIG_RT_GROUP_SCHED
7255 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7256 			global_rt_period(), global_rt_runtime());
7257 #endif /* CONFIG_RT_GROUP_SCHED */
7258 
7259 #ifdef CONFIG_CGROUP_SCHED
7260 	task_group_cache = KMEM_CACHE(task_group, 0);
7261 
7262 	list_add(&root_task_group.list, &task_groups);
7263 	INIT_LIST_HEAD(&root_task_group.children);
7264 	INIT_LIST_HEAD(&root_task_group.siblings);
7265 	autogroup_init(&init_task);
7266 #endif /* CONFIG_CGROUP_SCHED */
7267 
7268 	for_each_possible_cpu(i) {
7269 		struct rq *rq;
7270 
7271 		rq = cpu_rq(i);
7272 		raw_spin_lock_init(&rq->lock);
7273 		rq->nr_running = 0;
7274 		rq->calc_load_active = 0;
7275 		rq->calc_load_update = jiffies + LOAD_FREQ;
7276 		init_cfs_rq(&rq->cfs);
7277 		init_rt_rq(&rq->rt);
7278 		init_dl_rq(&rq->dl);
7279 #ifdef CONFIG_FAIR_GROUP_SCHED
7280 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7281 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7282 		/*
7283 		 * How much cpu bandwidth does root_task_group get?
7284 		 *
7285 		 * In case of task-groups formed thr' the cgroup filesystem, it
7286 		 * gets 100% of the cpu resources in the system. This overall
7287 		 * system cpu resource is divided among the tasks of
7288 		 * root_task_group and its child task-groups in a fair manner,
7289 		 * based on each entity's (task or task-group's) weight
7290 		 * (se->load.weight).
7291 		 *
7292 		 * In other words, if root_task_group has 10 tasks of weight
7293 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7294 		 * then A0's share of the cpu resource is:
7295 		 *
7296 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7297 		 *
7298 		 * We achieve this by letting root_task_group's tasks sit
7299 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7300 		 */
7301 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7302 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7303 #endif /* CONFIG_FAIR_GROUP_SCHED */
7304 
7305 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7306 #ifdef CONFIG_RT_GROUP_SCHED
7307 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7308 #endif
7309 
7310 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7311 			rq->cpu_load[j] = 0;
7312 
7313 		rq->last_load_update_tick = jiffies;
7314 
7315 #ifdef CONFIG_SMP
7316 		rq->sd = NULL;
7317 		rq->rd = NULL;
7318 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7319 		rq->balance_callback = NULL;
7320 		rq->active_balance = 0;
7321 		rq->next_balance = jiffies;
7322 		rq->push_cpu = 0;
7323 		rq->cpu = i;
7324 		rq->online = 0;
7325 		rq->idle_stamp = 0;
7326 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7327 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7328 
7329 		INIT_LIST_HEAD(&rq->cfs_tasks);
7330 
7331 		rq_attach_root(rq, &def_root_domain);
7332 #ifdef CONFIG_NO_HZ_COMMON
7333 		rq->nohz_flags = 0;
7334 #endif
7335 #ifdef CONFIG_NO_HZ_FULL
7336 		rq->last_sched_tick = 0;
7337 #endif
7338 #endif
7339 		init_rq_hrtick(rq);
7340 		atomic_set(&rq->nr_iowait, 0);
7341 	}
7342 
7343 	set_load_weight(&init_task);
7344 
7345 #ifdef CONFIG_PREEMPT_NOTIFIERS
7346 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7347 #endif
7348 
7349 	/*
7350 	 * The boot idle thread does lazy MMU switching as well:
7351 	 */
7352 	atomic_inc(&init_mm.mm_count);
7353 	enter_lazy_tlb(&init_mm, current);
7354 
7355 	/*
7356 	 * During early bootup we pretend to be a normal task:
7357 	 */
7358 	current->sched_class = &fair_sched_class;
7359 
7360 	/*
7361 	 * Make us the idle thread. Technically, schedule() should not be
7362 	 * called from this thread, however somewhere below it might be,
7363 	 * but because we are the idle thread, we just pick up running again
7364 	 * when this runqueue becomes "idle".
7365 	 */
7366 	init_idle(current, smp_processor_id());
7367 
7368 	calc_load_update = jiffies + LOAD_FREQ;
7369 
7370 #ifdef CONFIG_SMP
7371 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7372 	/* May be allocated at isolcpus cmdline parse time */
7373 	if (cpu_isolated_map == NULL)
7374 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7375 	idle_thread_set_boot_cpu();
7376 	set_cpu_rq_start_time();
7377 #endif
7378 	init_sched_fair_class();
7379 
7380 	scheduler_running = 1;
7381 }
7382 
7383 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7384 static inline int preempt_count_equals(int preempt_offset)
7385 {
7386 	int nested = preempt_count() + rcu_preempt_depth();
7387 
7388 	return (nested == preempt_offset);
7389 }
7390 
7391 void __might_sleep(const char *file, int line, int preempt_offset)
7392 {
7393 	/*
7394 	 * Blocking primitives will set (and therefore destroy) current->state,
7395 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7396 	 * otherwise we will destroy state.
7397 	 */
7398 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7399 			"do not call blocking ops when !TASK_RUNNING; "
7400 			"state=%lx set at [<%p>] %pS\n",
7401 			current->state,
7402 			(void *)current->task_state_change,
7403 			(void *)current->task_state_change);
7404 
7405 	___might_sleep(file, line, preempt_offset);
7406 }
7407 EXPORT_SYMBOL(__might_sleep);
7408 
7409 void ___might_sleep(const char *file, int line, int preempt_offset)
7410 {
7411 	static unsigned long prev_jiffy;	/* ratelimiting */
7412 
7413 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7414 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7415 	     !is_idle_task(current)) ||
7416 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7417 		return;
7418 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7419 		return;
7420 	prev_jiffy = jiffies;
7421 
7422 	printk(KERN_ERR
7423 		"BUG: sleeping function called from invalid context at %s:%d\n",
7424 			file, line);
7425 	printk(KERN_ERR
7426 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7427 			in_atomic(), irqs_disabled(),
7428 			current->pid, current->comm);
7429 
7430 	if (task_stack_end_corrupted(current))
7431 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7432 
7433 	debug_show_held_locks(current);
7434 	if (irqs_disabled())
7435 		print_irqtrace_events(current);
7436 #ifdef CONFIG_DEBUG_PREEMPT
7437 	if (!preempt_count_equals(preempt_offset)) {
7438 		pr_err("Preemption disabled at:");
7439 		print_ip_sym(current->preempt_disable_ip);
7440 		pr_cont("\n");
7441 	}
7442 #endif
7443 	dump_stack();
7444 }
7445 EXPORT_SYMBOL(___might_sleep);
7446 #endif
7447 
7448 #ifdef CONFIG_MAGIC_SYSRQ
7449 void normalize_rt_tasks(void)
7450 {
7451 	struct task_struct *g, *p;
7452 	struct sched_attr attr = {
7453 		.sched_policy = SCHED_NORMAL,
7454 	};
7455 
7456 	read_lock(&tasklist_lock);
7457 	for_each_process_thread(g, p) {
7458 		/*
7459 		 * Only normalize user tasks:
7460 		 */
7461 		if (p->flags & PF_KTHREAD)
7462 			continue;
7463 
7464 		p->se.exec_start		= 0;
7465 #ifdef CONFIG_SCHEDSTATS
7466 		p->se.statistics.wait_start	= 0;
7467 		p->se.statistics.sleep_start	= 0;
7468 		p->se.statistics.block_start	= 0;
7469 #endif
7470 
7471 		if (!dl_task(p) && !rt_task(p)) {
7472 			/*
7473 			 * Renice negative nice level userspace
7474 			 * tasks back to 0:
7475 			 */
7476 			if (task_nice(p) < 0)
7477 				set_user_nice(p, 0);
7478 			continue;
7479 		}
7480 
7481 		__sched_setscheduler(p, &attr, false, false);
7482 	}
7483 	read_unlock(&tasklist_lock);
7484 }
7485 
7486 #endif /* CONFIG_MAGIC_SYSRQ */
7487 
7488 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7489 /*
7490  * These functions are only useful for the IA64 MCA handling, or kdb.
7491  *
7492  * They can only be called when the whole system has been
7493  * stopped - every CPU needs to be quiescent, and no scheduling
7494  * activity can take place. Using them for anything else would
7495  * be a serious bug, and as a result, they aren't even visible
7496  * under any other configuration.
7497  */
7498 
7499 /**
7500  * curr_task - return the current task for a given cpu.
7501  * @cpu: the processor in question.
7502  *
7503  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7504  *
7505  * Return: The current task for @cpu.
7506  */
7507 struct task_struct *curr_task(int cpu)
7508 {
7509 	return cpu_curr(cpu);
7510 }
7511 
7512 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7513 
7514 #ifdef CONFIG_IA64
7515 /**
7516  * set_curr_task - set the current task for a given cpu.
7517  * @cpu: the processor in question.
7518  * @p: the task pointer to set.
7519  *
7520  * Description: This function must only be used when non-maskable interrupts
7521  * are serviced on a separate stack. It allows the architecture to switch the
7522  * notion of the current task on a cpu in a non-blocking manner. This function
7523  * must be called with all CPU's synchronized, and interrupts disabled, the
7524  * and caller must save the original value of the current task (see
7525  * curr_task() above) and restore that value before reenabling interrupts and
7526  * re-starting the system.
7527  *
7528  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7529  */
7530 void set_curr_task(int cpu, struct task_struct *p)
7531 {
7532 	cpu_curr(cpu) = p;
7533 }
7534 
7535 #endif
7536 
7537 #ifdef CONFIG_CGROUP_SCHED
7538 /* task_group_lock serializes the addition/removal of task groups */
7539 static DEFINE_SPINLOCK(task_group_lock);
7540 
7541 static void sched_free_group(struct task_group *tg)
7542 {
7543 	free_fair_sched_group(tg);
7544 	free_rt_sched_group(tg);
7545 	autogroup_free(tg);
7546 	kmem_cache_free(task_group_cache, tg);
7547 }
7548 
7549 /* allocate runqueue etc for a new task group */
7550 struct task_group *sched_create_group(struct task_group *parent)
7551 {
7552 	struct task_group *tg;
7553 
7554 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7555 	if (!tg)
7556 		return ERR_PTR(-ENOMEM);
7557 
7558 	if (!alloc_fair_sched_group(tg, parent))
7559 		goto err;
7560 
7561 	if (!alloc_rt_sched_group(tg, parent))
7562 		goto err;
7563 
7564 	return tg;
7565 
7566 err:
7567 	sched_free_group(tg);
7568 	return ERR_PTR(-ENOMEM);
7569 }
7570 
7571 void sched_online_group(struct task_group *tg, struct task_group *parent)
7572 {
7573 	unsigned long flags;
7574 
7575 	spin_lock_irqsave(&task_group_lock, flags);
7576 	list_add_rcu(&tg->list, &task_groups);
7577 
7578 	WARN_ON(!parent); /* root should already exist */
7579 
7580 	tg->parent = parent;
7581 	INIT_LIST_HEAD(&tg->children);
7582 	list_add_rcu(&tg->siblings, &parent->children);
7583 	spin_unlock_irqrestore(&task_group_lock, flags);
7584 }
7585 
7586 /* rcu callback to free various structures associated with a task group */
7587 static void sched_free_group_rcu(struct rcu_head *rhp)
7588 {
7589 	/* now it should be safe to free those cfs_rqs */
7590 	sched_free_group(container_of(rhp, struct task_group, rcu));
7591 }
7592 
7593 void sched_destroy_group(struct task_group *tg)
7594 {
7595 	/* wait for possible concurrent references to cfs_rqs complete */
7596 	call_rcu(&tg->rcu, sched_free_group_rcu);
7597 }
7598 
7599 void sched_offline_group(struct task_group *tg)
7600 {
7601 	unsigned long flags;
7602 
7603 	/* end participation in shares distribution */
7604 	unregister_fair_sched_group(tg);
7605 
7606 	spin_lock_irqsave(&task_group_lock, flags);
7607 	list_del_rcu(&tg->list);
7608 	list_del_rcu(&tg->siblings);
7609 	spin_unlock_irqrestore(&task_group_lock, flags);
7610 }
7611 
7612 /* change task's runqueue when it moves between groups.
7613  *	The caller of this function should have put the task in its new group
7614  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7615  *	reflect its new group.
7616  */
7617 void sched_move_task(struct task_struct *tsk)
7618 {
7619 	struct task_group *tg;
7620 	int queued, running;
7621 	unsigned long flags;
7622 	struct rq *rq;
7623 
7624 	rq = task_rq_lock(tsk, &flags);
7625 
7626 	running = task_current(rq, tsk);
7627 	queued = task_on_rq_queued(tsk);
7628 
7629 	if (queued)
7630 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7631 	if (unlikely(running))
7632 		put_prev_task(rq, tsk);
7633 
7634 	/*
7635 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7636 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7637 	 * to prevent lockdep warnings.
7638 	 */
7639 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7640 			  struct task_group, css);
7641 	tg = autogroup_task_group(tsk, tg);
7642 	tsk->sched_task_group = tg;
7643 
7644 #ifdef CONFIG_FAIR_GROUP_SCHED
7645 	if (tsk->sched_class->task_move_group)
7646 		tsk->sched_class->task_move_group(tsk);
7647 	else
7648 #endif
7649 		set_task_rq(tsk, task_cpu(tsk));
7650 
7651 	if (unlikely(running))
7652 		tsk->sched_class->set_curr_task(rq);
7653 	if (queued)
7654 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7655 
7656 	task_rq_unlock(rq, tsk, &flags);
7657 }
7658 #endif /* CONFIG_CGROUP_SCHED */
7659 
7660 #ifdef CONFIG_RT_GROUP_SCHED
7661 /*
7662  * Ensure that the real time constraints are schedulable.
7663  */
7664 static DEFINE_MUTEX(rt_constraints_mutex);
7665 
7666 /* Must be called with tasklist_lock held */
7667 static inline int tg_has_rt_tasks(struct task_group *tg)
7668 {
7669 	struct task_struct *g, *p;
7670 
7671 	/*
7672 	 * Autogroups do not have RT tasks; see autogroup_create().
7673 	 */
7674 	if (task_group_is_autogroup(tg))
7675 		return 0;
7676 
7677 	for_each_process_thread(g, p) {
7678 		if (rt_task(p) && task_group(p) == tg)
7679 			return 1;
7680 	}
7681 
7682 	return 0;
7683 }
7684 
7685 struct rt_schedulable_data {
7686 	struct task_group *tg;
7687 	u64 rt_period;
7688 	u64 rt_runtime;
7689 };
7690 
7691 static int tg_rt_schedulable(struct task_group *tg, void *data)
7692 {
7693 	struct rt_schedulable_data *d = data;
7694 	struct task_group *child;
7695 	unsigned long total, sum = 0;
7696 	u64 period, runtime;
7697 
7698 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7699 	runtime = tg->rt_bandwidth.rt_runtime;
7700 
7701 	if (tg == d->tg) {
7702 		period = d->rt_period;
7703 		runtime = d->rt_runtime;
7704 	}
7705 
7706 	/*
7707 	 * Cannot have more runtime than the period.
7708 	 */
7709 	if (runtime > period && runtime != RUNTIME_INF)
7710 		return -EINVAL;
7711 
7712 	/*
7713 	 * Ensure we don't starve existing RT tasks.
7714 	 */
7715 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7716 		return -EBUSY;
7717 
7718 	total = to_ratio(period, runtime);
7719 
7720 	/*
7721 	 * Nobody can have more than the global setting allows.
7722 	 */
7723 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7724 		return -EINVAL;
7725 
7726 	/*
7727 	 * The sum of our children's runtime should not exceed our own.
7728 	 */
7729 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7730 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7731 		runtime = child->rt_bandwidth.rt_runtime;
7732 
7733 		if (child == d->tg) {
7734 			period = d->rt_period;
7735 			runtime = d->rt_runtime;
7736 		}
7737 
7738 		sum += to_ratio(period, runtime);
7739 	}
7740 
7741 	if (sum > total)
7742 		return -EINVAL;
7743 
7744 	return 0;
7745 }
7746 
7747 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7748 {
7749 	int ret;
7750 
7751 	struct rt_schedulable_data data = {
7752 		.tg = tg,
7753 		.rt_period = period,
7754 		.rt_runtime = runtime,
7755 	};
7756 
7757 	rcu_read_lock();
7758 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7759 	rcu_read_unlock();
7760 
7761 	return ret;
7762 }
7763 
7764 static int tg_set_rt_bandwidth(struct task_group *tg,
7765 		u64 rt_period, u64 rt_runtime)
7766 {
7767 	int i, err = 0;
7768 
7769 	/*
7770 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7771 	 * kernel creating (and or operating) RT threads.
7772 	 */
7773 	if (tg == &root_task_group && rt_runtime == 0)
7774 		return -EINVAL;
7775 
7776 	/* No period doesn't make any sense. */
7777 	if (rt_period == 0)
7778 		return -EINVAL;
7779 
7780 	mutex_lock(&rt_constraints_mutex);
7781 	read_lock(&tasklist_lock);
7782 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7783 	if (err)
7784 		goto unlock;
7785 
7786 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7787 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7788 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7789 
7790 	for_each_possible_cpu(i) {
7791 		struct rt_rq *rt_rq = tg->rt_rq[i];
7792 
7793 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7794 		rt_rq->rt_runtime = rt_runtime;
7795 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7796 	}
7797 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7798 unlock:
7799 	read_unlock(&tasklist_lock);
7800 	mutex_unlock(&rt_constraints_mutex);
7801 
7802 	return err;
7803 }
7804 
7805 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7806 {
7807 	u64 rt_runtime, rt_period;
7808 
7809 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7810 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7811 	if (rt_runtime_us < 0)
7812 		rt_runtime = RUNTIME_INF;
7813 
7814 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7815 }
7816 
7817 static long sched_group_rt_runtime(struct task_group *tg)
7818 {
7819 	u64 rt_runtime_us;
7820 
7821 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7822 		return -1;
7823 
7824 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7825 	do_div(rt_runtime_us, NSEC_PER_USEC);
7826 	return rt_runtime_us;
7827 }
7828 
7829 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7830 {
7831 	u64 rt_runtime, rt_period;
7832 
7833 	rt_period = rt_period_us * NSEC_PER_USEC;
7834 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7835 
7836 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7837 }
7838 
7839 static long sched_group_rt_period(struct task_group *tg)
7840 {
7841 	u64 rt_period_us;
7842 
7843 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7844 	do_div(rt_period_us, NSEC_PER_USEC);
7845 	return rt_period_us;
7846 }
7847 #endif /* CONFIG_RT_GROUP_SCHED */
7848 
7849 #ifdef CONFIG_RT_GROUP_SCHED
7850 static int sched_rt_global_constraints(void)
7851 {
7852 	int ret = 0;
7853 
7854 	mutex_lock(&rt_constraints_mutex);
7855 	read_lock(&tasklist_lock);
7856 	ret = __rt_schedulable(NULL, 0, 0);
7857 	read_unlock(&tasklist_lock);
7858 	mutex_unlock(&rt_constraints_mutex);
7859 
7860 	return ret;
7861 }
7862 
7863 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7864 {
7865 	/* Don't accept realtime tasks when there is no way for them to run */
7866 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7867 		return 0;
7868 
7869 	return 1;
7870 }
7871 
7872 #else /* !CONFIG_RT_GROUP_SCHED */
7873 static int sched_rt_global_constraints(void)
7874 {
7875 	unsigned long flags;
7876 	int i, ret = 0;
7877 
7878 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7879 	for_each_possible_cpu(i) {
7880 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7881 
7882 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7883 		rt_rq->rt_runtime = global_rt_runtime();
7884 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7885 	}
7886 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7887 
7888 	return ret;
7889 }
7890 #endif /* CONFIG_RT_GROUP_SCHED */
7891 
7892 static int sched_dl_global_validate(void)
7893 {
7894 	u64 runtime = global_rt_runtime();
7895 	u64 period = global_rt_period();
7896 	u64 new_bw = to_ratio(period, runtime);
7897 	struct dl_bw *dl_b;
7898 	int cpu, ret = 0;
7899 	unsigned long flags;
7900 
7901 	/*
7902 	 * Here we want to check the bandwidth not being set to some
7903 	 * value smaller than the currently allocated bandwidth in
7904 	 * any of the root_domains.
7905 	 *
7906 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7907 	 * cycling on root_domains... Discussion on different/better
7908 	 * solutions is welcome!
7909 	 */
7910 	for_each_possible_cpu(cpu) {
7911 		rcu_read_lock_sched();
7912 		dl_b = dl_bw_of(cpu);
7913 
7914 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7915 		if (new_bw < dl_b->total_bw)
7916 			ret = -EBUSY;
7917 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7918 
7919 		rcu_read_unlock_sched();
7920 
7921 		if (ret)
7922 			break;
7923 	}
7924 
7925 	return ret;
7926 }
7927 
7928 static void sched_dl_do_global(void)
7929 {
7930 	u64 new_bw = -1;
7931 	struct dl_bw *dl_b;
7932 	int cpu;
7933 	unsigned long flags;
7934 
7935 	def_dl_bandwidth.dl_period = global_rt_period();
7936 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7937 
7938 	if (global_rt_runtime() != RUNTIME_INF)
7939 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7940 
7941 	/*
7942 	 * FIXME: As above...
7943 	 */
7944 	for_each_possible_cpu(cpu) {
7945 		rcu_read_lock_sched();
7946 		dl_b = dl_bw_of(cpu);
7947 
7948 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7949 		dl_b->bw = new_bw;
7950 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7951 
7952 		rcu_read_unlock_sched();
7953 	}
7954 }
7955 
7956 static int sched_rt_global_validate(void)
7957 {
7958 	if (sysctl_sched_rt_period <= 0)
7959 		return -EINVAL;
7960 
7961 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7962 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7963 		return -EINVAL;
7964 
7965 	return 0;
7966 }
7967 
7968 static void sched_rt_do_global(void)
7969 {
7970 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7971 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7972 }
7973 
7974 int sched_rt_handler(struct ctl_table *table, int write,
7975 		void __user *buffer, size_t *lenp,
7976 		loff_t *ppos)
7977 {
7978 	int old_period, old_runtime;
7979 	static DEFINE_MUTEX(mutex);
7980 	int ret;
7981 
7982 	mutex_lock(&mutex);
7983 	old_period = sysctl_sched_rt_period;
7984 	old_runtime = sysctl_sched_rt_runtime;
7985 
7986 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7987 
7988 	if (!ret && write) {
7989 		ret = sched_rt_global_validate();
7990 		if (ret)
7991 			goto undo;
7992 
7993 		ret = sched_dl_global_validate();
7994 		if (ret)
7995 			goto undo;
7996 
7997 		ret = sched_rt_global_constraints();
7998 		if (ret)
7999 			goto undo;
8000 
8001 		sched_rt_do_global();
8002 		sched_dl_do_global();
8003 	}
8004 	if (0) {
8005 undo:
8006 		sysctl_sched_rt_period = old_period;
8007 		sysctl_sched_rt_runtime = old_runtime;
8008 	}
8009 	mutex_unlock(&mutex);
8010 
8011 	return ret;
8012 }
8013 
8014 int sched_rr_handler(struct ctl_table *table, int write,
8015 		void __user *buffer, size_t *lenp,
8016 		loff_t *ppos)
8017 {
8018 	int ret;
8019 	static DEFINE_MUTEX(mutex);
8020 
8021 	mutex_lock(&mutex);
8022 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8023 	/* make sure that internally we keep jiffies */
8024 	/* also, writing zero resets timeslice to default */
8025 	if (!ret && write) {
8026 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8027 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8028 	}
8029 	mutex_unlock(&mutex);
8030 	return ret;
8031 }
8032 
8033 #ifdef CONFIG_CGROUP_SCHED
8034 
8035 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8036 {
8037 	return css ? container_of(css, struct task_group, css) : NULL;
8038 }
8039 
8040 static struct cgroup_subsys_state *
8041 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8042 {
8043 	struct task_group *parent = css_tg(parent_css);
8044 	struct task_group *tg;
8045 
8046 	if (!parent) {
8047 		/* This is early initialization for the top cgroup */
8048 		return &root_task_group.css;
8049 	}
8050 
8051 	tg = sched_create_group(parent);
8052 	if (IS_ERR(tg))
8053 		return ERR_PTR(-ENOMEM);
8054 
8055 	sched_online_group(tg, parent);
8056 
8057 	return &tg->css;
8058 }
8059 
8060 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8061 {
8062 	struct task_group *tg = css_tg(css);
8063 
8064 	sched_offline_group(tg);
8065 }
8066 
8067 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8068 {
8069 	struct task_group *tg = css_tg(css);
8070 
8071 	/*
8072 	 * Relies on the RCU grace period between css_released() and this.
8073 	 */
8074 	sched_free_group(tg);
8075 }
8076 
8077 static void cpu_cgroup_fork(struct task_struct *task)
8078 {
8079 	sched_move_task(task);
8080 }
8081 
8082 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8083 {
8084 	struct task_struct *task;
8085 	struct cgroup_subsys_state *css;
8086 
8087 	cgroup_taskset_for_each(task, css, tset) {
8088 #ifdef CONFIG_RT_GROUP_SCHED
8089 		if (!sched_rt_can_attach(css_tg(css), task))
8090 			return -EINVAL;
8091 #else
8092 		/* We don't support RT-tasks being in separate groups */
8093 		if (task->sched_class != &fair_sched_class)
8094 			return -EINVAL;
8095 #endif
8096 	}
8097 	return 0;
8098 }
8099 
8100 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8101 {
8102 	struct task_struct *task;
8103 	struct cgroup_subsys_state *css;
8104 
8105 	cgroup_taskset_for_each(task, css, tset)
8106 		sched_move_task(task);
8107 }
8108 
8109 #ifdef CONFIG_FAIR_GROUP_SCHED
8110 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8111 				struct cftype *cftype, u64 shareval)
8112 {
8113 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8114 }
8115 
8116 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8117 			       struct cftype *cft)
8118 {
8119 	struct task_group *tg = css_tg(css);
8120 
8121 	return (u64) scale_load_down(tg->shares);
8122 }
8123 
8124 #ifdef CONFIG_CFS_BANDWIDTH
8125 static DEFINE_MUTEX(cfs_constraints_mutex);
8126 
8127 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8128 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8129 
8130 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8131 
8132 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8133 {
8134 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8135 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8136 
8137 	if (tg == &root_task_group)
8138 		return -EINVAL;
8139 
8140 	/*
8141 	 * Ensure we have at some amount of bandwidth every period.  This is
8142 	 * to prevent reaching a state of large arrears when throttled via
8143 	 * entity_tick() resulting in prolonged exit starvation.
8144 	 */
8145 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8146 		return -EINVAL;
8147 
8148 	/*
8149 	 * Likewise, bound things on the otherside by preventing insane quota
8150 	 * periods.  This also allows us to normalize in computing quota
8151 	 * feasibility.
8152 	 */
8153 	if (period > max_cfs_quota_period)
8154 		return -EINVAL;
8155 
8156 	/*
8157 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8158 	 * unthrottle_offline_cfs_rqs().
8159 	 */
8160 	get_online_cpus();
8161 	mutex_lock(&cfs_constraints_mutex);
8162 	ret = __cfs_schedulable(tg, period, quota);
8163 	if (ret)
8164 		goto out_unlock;
8165 
8166 	runtime_enabled = quota != RUNTIME_INF;
8167 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8168 	/*
8169 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8170 	 * before making related changes, and on->off must occur afterwards
8171 	 */
8172 	if (runtime_enabled && !runtime_was_enabled)
8173 		cfs_bandwidth_usage_inc();
8174 	raw_spin_lock_irq(&cfs_b->lock);
8175 	cfs_b->period = ns_to_ktime(period);
8176 	cfs_b->quota = quota;
8177 
8178 	__refill_cfs_bandwidth_runtime(cfs_b);
8179 	/* restart the period timer (if active) to handle new period expiry */
8180 	if (runtime_enabled)
8181 		start_cfs_bandwidth(cfs_b);
8182 	raw_spin_unlock_irq(&cfs_b->lock);
8183 
8184 	for_each_online_cpu(i) {
8185 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8186 		struct rq *rq = cfs_rq->rq;
8187 
8188 		raw_spin_lock_irq(&rq->lock);
8189 		cfs_rq->runtime_enabled = runtime_enabled;
8190 		cfs_rq->runtime_remaining = 0;
8191 
8192 		if (cfs_rq->throttled)
8193 			unthrottle_cfs_rq(cfs_rq);
8194 		raw_spin_unlock_irq(&rq->lock);
8195 	}
8196 	if (runtime_was_enabled && !runtime_enabled)
8197 		cfs_bandwidth_usage_dec();
8198 out_unlock:
8199 	mutex_unlock(&cfs_constraints_mutex);
8200 	put_online_cpus();
8201 
8202 	return ret;
8203 }
8204 
8205 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8206 {
8207 	u64 quota, period;
8208 
8209 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8210 	if (cfs_quota_us < 0)
8211 		quota = RUNTIME_INF;
8212 	else
8213 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8214 
8215 	return tg_set_cfs_bandwidth(tg, period, quota);
8216 }
8217 
8218 long tg_get_cfs_quota(struct task_group *tg)
8219 {
8220 	u64 quota_us;
8221 
8222 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8223 		return -1;
8224 
8225 	quota_us = tg->cfs_bandwidth.quota;
8226 	do_div(quota_us, NSEC_PER_USEC);
8227 
8228 	return quota_us;
8229 }
8230 
8231 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8232 {
8233 	u64 quota, period;
8234 
8235 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8236 	quota = tg->cfs_bandwidth.quota;
8237 
8238 	return tg_set_cfs_bandwidth(tg, period, quota);
8239 }
8240 
8241 long tg_get_cfs_period(struct task_group *tg)
8242 {
8243 	u64 cfs_period_us;
8244 
8245 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8246 	do_div(cfs_period_us, NSEC_PER_USEC);
8247 
8248 	return cfs_period_us;
8249 }
8250 
8251 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8252 				  struct cftype *cft)
8253 {
8254 	return tg_get_cfs_quota(css_tg(css));
8255 }
8256 
8257 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8258 				   struct cftype *cftype, s64 cfs_quota_us)
8259 {
8260 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8261 }
8262 
8263 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8264 				   struct cftype *cft)
8265 {
8266 	return tg_get_cfs_period(css_tg(css));
8267 }
8268 
8269 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8270 				    struct cftype *cftype, u64 cfs_period_us)
8271 {
8272 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8273 }
8274 
8275 struct cfs_schedulable_data {
8276 	struct task_group *tg;
8277 	u64 period, quota;
8278 };
8279 
8280 /*
8281  * normalize group quota/period to be quota/max_period
8282  * note: units are usecs
8283  */
8284 static u64 normalize_cfs_quota(struct task_group *tg,
8285 			       struct cfs_schedulable_data *d)
8286 {
8287 	u64 quota, period;
8288 
8289 	if (tg == d->tg) {
8290 		period = d->period;
8291 		quota = d->quota;
8292 	} else {
8293 		period = tg_get_cfs_period(tg);
8294 		quota = tg_get_cfs_quota(tg);
8295 	}
8296 
8297 	/* note: these should typically be equivalent */
8298 	if (quota == RUNTIME_INF || quota == -1)
8299 		return RUNTIME_INF;
8300 
8301 	return to_ratio(period, quota);
8302 }
8303 
8304 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8305 {
8306 	struct cfs_schedulable_data *d = data;
8307 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8308 	s64 quota = 0, parent_quota = -1;
8309 
8310 	if (!tg->parent) {
8311 		quota = RUNTIME_INF;
8312 	} else {
8313 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8314 
8315 		quota = normalize_cfs_quota(tg, d);
8316 		parent_quota = parent_b->hierarchical_quota;
8317 
8318 		/*
8319 		 * ensure max(child_quota) <= parent_quota, inherit when no
8320 		 * limit is set
8321 		 */
8322 		if (quota == RUNTIME_INF)
8323 			quota = parent_quota;
8324 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8325 			return -EINVAL;
8326 	}
8327 	cfs_b->hierarchical_quota = quota;
8328 
8329 	return 0;
8330 }
8331 
8332 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8333 {
8334 	int ret;
8335 	struct cfs_schedulable_data data = {
8336 		.tg = tg,
8337 		.period = period,
8338 		.quota = quota,
8339 	};
8340 
8341 	if (quota != RUNTIME_INF) {
8342 		do_div(data.period, NSEC_PER_USEC);
8343 		do_div(data.quota, NSEC_PER_USEC);
8344 	}
8345 
8346 	rcu_read_lock();
8347 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8348 	rcu_read_unlock();
8349 
8350 	return ret;
8351 }
8352 
8353 static int cpu_stats_show(struct seq_file *sf, void *v)
8354 {
8355 	struct task_group *tg = css_tg(seq_css(sf));
8356 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8357 
8358 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8359 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8360 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8361 
8362 	return 0;
8363 }
8364 #endif /* CONFIG_CFS_BANDWIDTH */
8365 #endif /* CONFIG_FAIR_GROUP_SCHED */
8366 
8367 #ifdef CONFIG_RT_GROUP_SCHED
8368 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8369 				struct cftype *cft, s64 val)
8370 {
8371 	return sched_group_set_rt_runtime(css_tg(css), val);
8372 }
8373 
8374 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8375 			       struct cftype *cft)
8376 {
8377 	return sched_group_rt_runtime(css_tg(css));
8378 }
8379 
8380 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8381 				    struct cftype *cftype, u64 rt_period_us)
8382 {
8383 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8384 }
8385 
8386 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8387 				   struct cftype *cft)
8388 {
8389 	return sched_group_rt_period(css_tg(css));
8390 }
8391 #endif /* CONFIG_RT_GROUP_SCHED */
8392 
8393 static struct cftype cpu_files[] = {
8394 #ifdef CONFIG_FAIR_GROUP_SCHED
8395 	{
8396 		.name = "shares",
8397 		.read_u64 = cpu_shares_read_u64,
8398 		.write_u64 = cpu_shares_write_u64,
8399 	},
8400 #endif
8401 #ifdef CONFIG_CFS_BANDWIDTH
8402 	{
8403 		.name = "cfs_quota_us",
8404 		.read_s64 = cpu_cfs_quota_read_s64,
8405 		.write_s64 = cpu_cfs_quota_write_s64,
8406 	},
8407 	{
8408 		.name = "cfs_period_us",
8409 		.read_u64 = cpu_cfs_period_read_u64,
8410 		.write_u64 = cpu_cfs_period_write_u64,
8411 	},
8412 	{
8413 		.name = "stat",
8414 		.seq_show = cpu_stats_show,
8415 	},
8416 #endif
8417 #ifdef CONFIG_RT_GROUP_SCHED
8418 	{
8419 		.name = "rt_runtime_us",
8420 		.read_s64 = cpu_rt_runtime_read,
8421 		.write_s64 = cpu_rt_runtime_write,
8422 	},
8423 	{
8424 		.name = "rt_period_us",
8425 		.read_u64 = cpu_rt_period_read_uint,
8426 		.write_u64 = cpu_rt_period_write_uint,
8427 	},
8428 #endif
8429 	{ }	/* terminate */
8430 };
8431 
8432 struct cgroup_subsys cpu_cgrp_subsys = {
8433 	.css_alloc	= cpu_cgroup_css_alloc,
8434 	.css_released	= cpu_cgroup_css_released,
8435 	.css_free	= cpu_cgroup_css_free,
8436 	.fork		= cpu_cgroup_fork,
8437 	.can_attach	= cpu_cgroup_can_attach,
8438 	.attach		= cpu_cgroup_attach,
8439 	.legacy_cftypes	= cpu_files,
8440 	.early_init	= true,
8441 };
8442 
8443 #endif	/* CONFIG_CGROUP_SCHED */
8444 
8445 void dump_cpu_task(int cpu)
8446 {
8447 	pr_info("Task dump for CPU %d:\n", cpu);
8448 	sched_show_task(cpu_curr(cpu));
8449 }
8450 
8451 /*
8452  * Nice levels are multiplicative, with a gentle 10% change for every
8453  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8454  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8455  * that remained on nice 0.
8456  *
8457  * The "10% effect" is relative and cumulative: from _any_ nice level,
8458  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8459  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8460  * If a task goes up by ~10% and another task goes down by ~10% then
8461  * the relative distance between them is ~25%.)
8462  */
8463 const int sched_prio_to_weight[40] = {
8464  /* -20 */     88761,     71755,     56483,     46273,     36291,
8465  /* -15 */     29154,     23254,     18705,     14949,     11916,
8466  /* -10 */      9548,      7620,      6100,      4904,      3906,
8467  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8468  /*   0 */      1024,       820,       655,       526,       423,
8469  /*   5 */       335,       272,       215,       172,       137,
8470  /*  10 */       110,        87,        70,        56,        45,
8471  /*  15 */        36,        29,        23,        18,        15,
8472 };
8473 
8474 /*
8475  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8476  *
8477  * In cases where the weight does not change often, we can use the
8478  * precalculated inverse to speed up arithmetics by turning divisions
8479  * into multiplications:
8480  */
8481 const u32 sched_prio_to_wmult[40] = {
8482  /* -20 */     48388,     59856,     76040,     92818,    118348,
8483  /* -15 */    147320,    184698,    229616,    287308,    360437,
8484  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8485  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8486  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8487  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8488  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8489  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8490 };
8491