xref: /openbmc/linux/kernel/sched/core.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
15 
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
18 
19 #include "../workqueue_internal.h"
20 #include "../../fs/io-wq.h"
21 #include "../smpboot.h"
22 
23 #include "pelt.h"
24 #include "smp.h"
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/sched.h>
28 
29 /*
30  * Export tracepoints that act as a bare tracehook (ie: have no trace event
31  * associated with them) to allow external modules to probe them.
32  */
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
39 
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
41 
42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
43 /*
44  * Debugging: various feature bits
45  *
46  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
47  * sysctl_sched_features, defined in sched.h, to allow constants propagation
48  * at compile time and compiler optimization based on features default.
49  */
50 #define SCHED_FEAT(name, enabled)	\
51 	(1UL << __SCHED_FEAT_##name) * enabled |
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 	0;
55 #undef SCHED_FEAT
56 #endif
57 
58 /*
59  * Number of tasks to iterate in a single balance run.
60  * Limited because this is done with IRQs disabled.
61  */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63 
64 /*
65  * period over which we measure -rt task CPU usage in us.
66  * default: 1s
67  */
68 unsigned int sysctl_sched_rt_period = 1000000;
69 
70 __read_mostly int scheduler_running;
71 
72 /*
73  * part of the period that we allow rt tasks to run in us.
74  * default: 0.95s
75  */
76 int sysctl_sched_rt_runtime = 950000;
77 
78 /*
79  * __task_rq_lock - lock the rq @p resides on.
80  */
81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
82 	__acquires(rq->lock)
83 {
84 	struct rq *rq;
85 
86 	lockdep_assert_held(&p->pi_lock);
87 
88 	for (;;) {
89 		rq = task_rq(p);
90 		raw_spin_lock(&rq->lock);
91 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
92 			rq_pin_lock(rq, rf);
93 			return rq;
94 		}
95 		raw_spin_unlock(&rq->lock);
96 
97 		while (unlikely(task_on_rq_migrating(p)))
98 			cpu_relax();
99 	}
100 }
101 
102 /*
103  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
104  */
105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
106 	__acquires(p->pi_lock)
107 	__acquires(rq->lock)
108 {
109 	struct rq *rq;
110 
111 	for (;;) {
112 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
113 		rq = task_rq(p);
114 		raw_spin_lock(&rq->lock);
115 		/*
116 		 *	move_queued_task()		task_rq_lock()
117 		 *
118 		 *	ACQUIRE (rq->lock)
119 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
120 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
121 		 *	[S] ->cpu = new_cpu		[L] task_rq()
122 		 *					[L] ->on_rq
123 		 *	RELEASE (rq->lock)
124 		 *
125 		 * If we observe the old CPU in task_rq_lock(), the acquire of
126 		 * the old rq->lock will fully serialize against the stores.
127 		 *
128 		 * If we observe the new CPU in task_rq_lock(), the address
129 		 * dependency headed by '[L] rq = task_rq()' and the acquire
130 		 * will pair with the WMB to ensure we then also see migrating.
131 		 */
132 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
133 			rq_pin_lock(rq, rf);
134 			return rq;
135 		}
136 		raw_spin_unlock(&rq->lock);
137 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
138 
139 		while (unlikely(task_on_rq_migrating(p)))
140 			cpu_relax();
141 	}
142 }
143 
144 /*
145  * RQ-clock updating methods:
146  */
147 
148 static void update_rq_clock_task(struct rq *rq, s64 delta)
149 {
150 /*
151  * In theory, the compile should just see 0 here, and optimize out the call
152  * to sched_rt_avg_update. But I don't trust it...
153  */
154 	s64 __maybe_unused steal = 0, irq_delta = 0;
155 
156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
157 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
158 
159 	/*
160 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
161 	 * this case when a previous update_rq_clock() happened inside a
162 	 * {soft,}irq region.
163 	 *
164 	 * When this happens, we stop ->clock_task and only update the
165 	 * prev_irq_time stamp to account for the part that fit, so that a next
166 	 * update will consume the rest. This ensures ->clock_task is
167 	 * monotonic.
168 	 *
169 	 * It does however cause some slight miss-attribution of {soft,}irq
170 	 * time, a more accurate solution would be to update the irq_time using
171 	 * the current rq->clock timestamp, except that would require using
172 	 * atomic ops.
173 	 */
174 	if (irq_delta > delta)
175 		irq_delta = delta;
176 
177 	rq->prev_irq_time += irq_delta;
178 	delta -= irq_delta;
179 #endif
180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
181 	if (static_key_false((&paravirt_steal_rq_enabled))) {
182 		steal = paravirt_steal_clock(cpu_of(rq));
183 		steal -= rq->prev_steal_time_rq;
184 
185 		if (unlikely(steal > delta))
186 			steal = delta;
187 
188 		rq->prev_steal_time_rq += steal;
189 		delta -= steal;
190 	}
191 #endif
192 
193 	rq->clock_task += delta;
194 
195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
196 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
197 		update_irq_load_avg(rq, irq_delta + steal);
198 #endif
199 	update_rq_clock_pelt(rq, delta);
200 }
201 
202 void update_rq_clock(struct rq *rq)
203 {
204 	s64 delta;
205 
206 	lockdep_assert_held(&rq->lock);
207 
208 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
209 		return;
210 
211 #ifdef CONFIG_SCHED_DEBUG
212 	if (sched_feat(WARN_DOUBLE_CLOCK))
213 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
214 	rq->clock_update_flags |= RQCF_UPDATED;
215 #endif
216 
217 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
218 	if (delta < 0)
219 		return;
220 	rq->clock += delta;
221 	update_rq_clock_task(rq, delta);
222 }
223 
224 static inline void
225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
226 {
227 	csd->flags = 0;
228 	csd->func = func;
229 	csd->info = rq;
230 }
231 
232 #ifdef CONFIG_SCHED_HRTICK
233 /*
234  * Use HR-timers to deliver accurate preemption points.
235  */
236 
237 static void hrtick_clear(struct rq *rq)
238 {
239 	if (hrtimer_active(&rq->hrtick_timer))
240 		hrtimer_cancel(&rq->hrtick_timer);
241 }
242 
243 /*
244  * High-resolution timer tick.
245  * Runs from hardirq context with interrupts disabled.
246  */
247 static enum hrtimer_restart hrtick(struct hrtimer *timer)
248 {
249 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
250 	struct rq_flags rf;
251 
252 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
253 
254 	rq_lock(rq, &rf);
255 	update_rq_clock(rq);
256 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
257 	rq_unlock(rq, &rf);
258 
259 	return HRTIMER_NORESTART;
260 }
261 
262 #ifdef CONFIG_SMP
263 
264 static void __hrtick_restart(struct rq *rq)
265 {
266 	struct hrtimer *timer = &rq->hrtick_timer;
267 
268 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
269 }
270 
271 /*
272  * called from hardirq (IPI) context
273  */
274 static void __hrtick_start(void *arg)
275 {
276 	struct rq *rq = arg;
277 	struct rq_flags rf;
278 
279 	rq_lock(rq, &rf);
280 	__hrtick_restart(rq);
281 	rq_unlock(rq, &rf);
282 }
283 
284 /*
285  * Called to set the hrtick timer state.
286  *
287  * called with rq->lock held and irqs disabled
288  */
289 void hrtick_start(struct rq *rq, u64 delay)
290 {
291 	struct hrtimer *timer = &rq->hrtick_timer;
292 	ktime_t time;
293 	s64 delta;
294 
295 	/*
296 	 * Don't schedule slices shorter than 10000ns, that just
297 	 * doesn't make sense and can cause timer DoS.
298 	 */
299 	delta = max_t(s64, delay, 10000LL);
300 	time = ktime_add_ns(timer->base->get_time(), delta);
301 
302 	hrtimer_set_expires(timer, time);
303 
304 	if (rq == this_rq())
305 		__hrtick_restart(rq);
306 	else
307 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
308 }
309 
310 #else
311 /*
312  * Called to set the hrtick timer state.
313  *
314  * called with rq->lock held and irqs disabled
315  */
316 void hrtick_start(struct rq *rq, u64 delay)
317 {
318 	/*
319 	 * Don't schedule slices shorter than 10000ns, that just
320 	 * doesn't make sense. Rely on vruntime for fairness.
321 	 */
322 	delay = max_t(u64, delay, 10000LL);
323 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
324 		      HRTIMER_MODE_REL_PINNED_HARD);
325 }
326 
327 #endif /* CONFIG_SMP */
328 
329 static void hrtick_rq_init(struct rq *rq)
330 {
331 #ifdef CONFIG_SMP
332 	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
333 #endif
334 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
335 	rq->hrtick_timer.function = hrtick;
336 }
337 #else	/* CONFIG_SCHED_HRTICK */
338 static inline void hrtick_clear(struct rq *rq)
339 {
340 }
341 
342 static inline void hrtick_rq_init(struct rq *rq)
343 {
344 }
345 #endif	/* CONFIG_SCHED_HRTICK */
346 
347 /*
348  * cmpxchg based fetch_or, macro so it works for different integer types
349  */
350 #define fetch_or(ptr, mask)						\
351 	({								\
352 		typeof(ptr) _ptr = (ptr);				\
353 		typeof(mask) _mask = (mask);				\
354 		typeof(*_ptr) _old, _val = *_ptr;			\
355 									\
356 		for (;;) {						\
357 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
358 			if (_old == _val)				\
359 				break;					\
360 			_val = _old;					\
361 		}							\
362 	_old;								\
363 })
364 
365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
366 /*
367  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
368  * this avoids any races wrt polling state changes and thereby avoids
369  * spurious IPIs.
370  */
371 static bool set_nr_and_not_polling(struct task_struct *p)
372 {
373 	struct thread_info *ti = task_thread_info(p);
374 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
375 }
376 
377 /*
378  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
379  *
380  * If this returns true, then the idle task promises to call
381  * sched_ttwu_pending() and reschedule soon.
382  */
383 static bool set_nr_if_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
387 
388 	for (;;) {
389 		if (!(val & _TIF_POLLING_NRFLAG))
390 			return false;
391 		if (val & _TIF_NEED_RESCHED)
392 			return true;
393 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
394 		if (old == val)
395 			break;
396 		val = old;
397 	}
398 	return true;
399 }
400 
401 #else
402 static bool set_nr_and_not_polling(struct task_struct *p)
403 {
404 	set_tsk_need_resched(p);
405 	return true;
406 }
407 
408 #ifdef CONFIG_SMP
409 static bool set_nr_if_polling(struct task_struct *p)
410 {
411 	return false;
412 }
413 #endif
414 #endif
415 
416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
417 {
418 	struct wake_q_node *node = &task->wake_q;
419 
420 	/*
421 	 * Atomically grab the task, if ->wake_q is !nil already it means
422 	 * its already queued (either by us or someone else) and will get the
423 	 * wakeup due to that.
424 	 *
425 	 * In order to ensure that a pending wakeup will observe our pending
426 	 * state, even in the failed case, an explicit smp_mb() must be used.
427 	 */
428 	smp_mb__before_atomic();
429 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
430 		return false;
431 
432 	/*
433 	 * The head is context local, there can be no concurrency.
434 	 */
435 	*head->lastp = node;
436 	head->lastp = &node->next;
437 	return true;
438 }
439 
440 /**
441  * wake_q_add() - queue a wakeup for 'later' waking.
442  * @head: the wake_q_head to add @task to
443  * @task: the task to queue for 'later' wakeup
444  *
445  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
446  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
447  * instantly.
448  *
449  * This function must be used as-if it were wake_up_process(); IOW the task
450  * must be ready to be woken at this location.
451  */
452 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
453 {
454 	if (__wake_q_add(head, task))
455 		get_task_struct(task);
456 }
457 
458 /**
459  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
460  * @head: the wake_q_head to add @task to
461  * @task: the task to queue for 'later' wakeup
462  *
463  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
464  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
465  * instantly.
466  *
467  * This function must be used as-if it were wake_up_process(); IOW the task
468  * must be ready to be woken at this location.
469  *
470  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
471  * that already hold reference to @task can call the 'safe' version and trust
472  * wake_q to do the right thing depending whether or not the @task is already
473  * queued for wakeup.
474  */
475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
476 {
477 	if (!__wake_q_add(head, task))
478 		put_task_struct(task);
479 }
480 
481 void wake_up_q(struct wake_q_head *head)
482 {
483 	struct wake_q_node *node = head->first;
484 
485 	while (node != WAKE_Q_TAIL) {
486 		struct task_struct *task;
487 
488 		task = container_of(node, struct task_struct, wake_q);
489 		BUG_ON(!task);
490 		/* Task can safely be re-inserted now: */
491 		node = node->next;
492 		task->wake_q.next = NULL;
493 
494 		/*
495 		 * wake_up_process() executes a full barrier, which pairs with
496 		 * the queueing in wake_q_add() so as not to miss wakeups.
497 		 */
498 		wake_up_process(task);
499 		put_task_struct(task);
500 	}
501 }
502 
503 /*
504  * resched_curr - mark rq's current task 'to be rescheduled now'.
505  *
506  * On UP this means the setting of the need_resched flag, on SMP it
507  * might also involve a cross-CPU call to trigger the scheduler on
508  * the target CPU.
509  */
510 void resched_curr(struct rq *rq)
511 {
512 	struct task_struct *curr = rq->curr;
513 	int cpu;
514 
515 	lockdep_assert_held(&rq->lock);
516 
517 	if (test_tsk_need_resched(curr))
518 		return;
519 
520 	cpu = cpu_of(rq);
521 
522 	if (cpu == smp_processor_id()) {
523 		set_tsk_need_resched(curr);
524 		set_preempt_need_resched();
525 		return;
526 	}
527 
528 	if (set_nr_and_not_polling(curr))
529 		smp_send_reschedule(cpu);
530 	else
531 		trace_sched_wake_idle_without_ipi(cpu);
532 }
533 
534 void resched_cpu(int cpu)
535 {
536 	struct rq *rq = cpu_rq(cpu);
537 	unsigned long flags;
538 
539 	raw_spin_lock_irqsave(&rq->lock, flags);
540 	if (cpu_online(cpu) || cpu == smp_processor_id())
541 		resched_curr(rq);
542 	raw_spin_unlock_irqrestore(&rq->lock, flags);
543 }
544 
545 #ifdef CONFIG_SMP
546 #ifdef CONFIG_NO_HZ_COMMON
547 /*
548  * In the semi idle case, use the nearest busy CPU for migrating timers
549  * from an idle CPU.  This is good for power-savings.
550  *
551  * We don't do similar optimization for completely idle system, as
552  * selecting an idle CPU will add more delays to the timers than intended
553  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
554  */
555 int get_nohz_timer_target(void)
556 {
557 	int i, cpu = smp_processor_id(), default_cpu = -1;
558 	struct sched_domain *sd;
559 
560 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
561 		if (!idle_cpu(cpu))
562 			return cpu;
563 		default_cpu = cpu;
564 	}
565 
566 	rcu_read_lock();
567 	for_each_domain(cpu, sd) {
568 		for_each_cpu_and(i, sched_domain_span(sd),
569 			housekeeping_cpumask(HK_FLAG_TIMER)) {
570 			if (cpu == i)
571 				continue;
572 
573 			if (!idle_cpu(i)) {
574 				cpu = i;
575 				goto unlock;
576 			}
577 		}
578 	}
579 
580 	if (default_cpu == -1)
581 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
582 	cpu = default_cpu;
583 unlock:
584 	rcu_read_unlock();
585 	return cpu;
586 }
587 
588 /*
589  * When add_timer_on() enqueues a timer into the timer wheel of an
590  * idle CPU then this timer might expire before the next timer event
591  * which is scheduled to wake up that CPU. In case of a completely
592  * idle system the next event might even be infinite time into the
593  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594  * leaves the inner idle loop so the newly added timer is taken into
595  * account when the CPU goes back to idle and evaluates the timer
596  * wheel for the next timer event.
597  */
598 static void wake_up_idle_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 
602 	if (cpu == smp_processor_id())
603 		return;
604 
605 	if (set_nr_and_not_polling(rq->idle))
606 		smp_send_reschedule(cpu);
607 	else
608 		trace_sched_wake_idle_without_ipi(cpu);
609 }
610 
611 static bool wake_up_full_nohz_cpu(int cpu)
612 {
613 	/*
614 	 * We just need the target to call irq_exit() and re-evaluate
615 	 * the next tick. The nohz full kick at least implies that.
616 	 * If needed we can still optimize that later with an
617 	 * empty IRQ.
618 	 */
619 	if (cpu_is_offline(cpu))
620 		return true;  /* Don't try to wake offline CPUs. */
621 	if (tick_nohz_full_cpu(cpu)) {
622 		if (cpu != smp_processor_id() ||
623 		    tick_nohz_tick_stopped())
624 			tick_nohz_full_kick_cpu(cpu);
625 		return true;
626 	}
627 
628 	return false;
629 }
630 
631 /*
632  * Wake up the specified CPU.  If the CPU is going offline, it is the
633  * caller's responsibility to deal with the lost wakeup, for example,
634  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
635  */
636 void wake_up_nohz_cpu(int cpu)
637 {
638 	if (!wake_up_full_nohz_cpu(cpu))
639 		wake_up_idle_cpu(cpu);
640 }
641 
642 static void nohz_csd_func(void *info)
643 {
644 	struct rq *rq = info;
645 	int cpu = cpu_of(rq);
646 	unsigned int flags;
647 
648 	/*
649 	 * Release the rq::nohz_csd.
650 	 */
651 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
652 	WARN_ON(!(flags & NOHZ_KICK_MASK));
653 
654 	rq->idle_balance = idle_cpu(cpu);
655 	if (rq->idle_balance && !need_resched()) {
656 		rq->nohz_idle_balance = flags;
657 		raise_softirq_irqoff(SCHED_SOFTIRQ);
658 	}
659 }
660 
661 #endif /* CONFIG_NO_HZ_COMMON */
662 
663 #ifdef CONFIG_NO_HZ_FULL
664 bool sched_can_stop_tick(struct rq *rq)
665 {
666 	int fifo_nr_running;
667 
668 	/* Deadline tasks, even if single, need the tick */
669 	if (rq->dl.dl_nr_running)
670 		return false;
671 
672 	/*
673 	 * If there are more than one RR tasks, we need the tick to effect the
674 	 * actual RR behaviour.
675 	 */
676 	if (rq->rt.rr_nr_running) {
677 		if (rq->rt.rr_nr_running == 1)
678 			return true;
679 		else
680 			return false;
681 	}
682 
683 	/*
684 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 	 * forced preemption between FIFO tasks.
686 	 */
687 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 	if (fifo_nr_running)
689 		return true;
690 
691 	/*
692 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 	 * if there's more than one we need the tick for involuntary
694 	 * preemption.
695 	 */
696 	if (rq->nr_running > 1)
697 		return false;
698 
699 	return true;
700 }
701 #endif /* CONFIG_NO_HZ_FULL */
702 #endif /* CONFIG_SMP */
703 
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707  * Iterate task_group tree rooted at *from, calling @down when first entering a
708  * node and @up when leaving it for the final time.
709  *
710  * Caller must hold rcu_lock or sufficient equivalent.
711  */
712 int walk_tg_tree_from(struct task_group *from,
713 			     tg_visitor down, tg_visitor up, void *data)
714 {
715 	struct task_group *parent, *child;
716 	int ret;
717 
718 	parent = from;
719 
720 down:
721 	ret = (*down)(parent, data);
722 	if (ret)
723 		goto out;
724 	list_for_each_entry_rcu(child, &parent->children, siblings) {
725 		parent = child;
726 		goto down;
727 
728 up:
729 		continue;
730 	}
731 	ret = (*up)(parent, data);
732 	if (ret || parent == from)
733 		goto out;
734 
735 	child = parent;
736 	parent = parent->parent;
737 	if (parent)
738 		goto up;
739 out:
740 	return ret;
741 }
742 
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 	return 0;
746 }
747 #endif
748 
749 static void set_load_weight(struct task_struct *p, bool update_load)
750 {
751 	int prio = p->static_prio - MAX_RT_PRIO;
752 	struct load_weight *load = &p->se.load;
753 
754 	/*
755 	 * SCHED_IDLE tasks get minimal weight:
756 	 */
757 	if (task_has_idle_policy(p)) {
758 		load->weight = scale_load(WEIGHT_IDLEPRIO);
759 		load->inv_weight = WMULT_IDLEPRIO;
760 		return;
761 	}
762 
763 	/*
764 	 * SCHED_OTHER tasks have to update their load when changing their
765 	 * weight
766 	 */
767 	if (update_load && p->sched_class == &fair_sched_class) {
768 		reweight_task(p, prio);
769 	} else {
770 		load->weight = scale_load(sched_prio_to_weight[prio]);
771 		load->inv_weight = sched_prio_to_wmult[prio];
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777  * Serializes updates of utilization clamp values
778  *
779  * The (slow-path) user-space triggers utilization clamp value updates which
780  * can require updates on (fast-path) scheduler's data structures used to
781  * support enqueue/dequeue operations.
782  * While the per-CPU rq lock protects fast-path update operations, user-space
783  * requests are serialized using a mutex to reduce the risk of conflicting
784  * updates or API abuses.
785  */
786 static DEFINE_MUTEX(uclamp_mutex);
787 
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790 
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793 
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796 
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799 
800 #define for_each_clamp_id(clamp_id) \
801 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802 
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 	return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807 
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812 
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 {
815 	if (clamp_id == UCLAMP_MIN)
816 		return 0;
817 	return SCHED_CAPACITY_SCALE;
818 }
819 
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 				 unsigned int value, bool user_defined)
822 {
823 	uc_se->value = value;
824 	uc_se->bucket_id = uclamp_bucket_id(value);
825 	uc_se->user_defined = user_defined;
826 }
827 
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 		  unsigned int clamp_value)
831 {
832 	/*
833 	 * Avoid blocked utilization pushing up the frequency when we go
834 	 * idle (which drops the max-clamp) by retaining the last known
835 	 * max-clamp.
836 	 */
837 	if (clamp_id == UCLAMP_MAX) {
838 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 		return clamp_value;
840 	}
841 
842 	return uclamp_none(UCLAMP_MIN);
843 }
844 
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 				     unsigned int clamp_value)
847 {
848 	/* Reset max-clamp retention only on idle exit */
849 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 		return;
851 
852 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854 
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 				   unsigned int clamp_value)
858 {
859 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 	int bucket_id = UCLAMP_BUCKETS - 1;
861 
862 	/*
863 	 * Since both min and max clamps are max aggregated, find the
864 	 * top most bucket with tasks in.
865 	 */
866 	for ( ; bucket_id >= 0; bucket_id--) {
867 		if (!bucket[bucket_id].tasks)
868 			continue;
869 		return bucket[bucket_id].value;
870 	}
871 
872 	/* No tasks -- default clamp values */
873 	return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875 
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 	struct uclamp_se uc_max;
882 
883 	/*
884 	 * Tasks in autogroups or root task group will be
885 	 * restricted by system defaults.
886 	 */
887 	if (task_group_is_autogroup(task_group(p)))
888 		return uc_req;
889 	if (task_group(p) == &root_task_group)
890 		return uc_req;
891 
892 	uc_max = task_group(p)->uclamp[clamp_id];
893 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 		return uc_max;
895 #endif
896 
897 	return uc_req;
898 }
899 
900 /*
901  * The effective clamp bucket index of a task depends on, by increasing
902  * priority:
903  * - the task specific clamp value, when explicitly requested from userspace
904  * - the task group effective clamp value, for tasks not either in the root
905  *   group or in an autogroup
906  * - the system default clamp value, defined by the sysadmin
907  */
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 	struct uclamp_se uc_max = uclamp_default[clamp_id];
913 
914 	/* System default restrictions always apply */
915 	if (unlikely(uc_req.value > uc_max.value))
916 		return uc_max;
917 
918 	return uc_req;
919 }
920 
921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 	struct uclamp_se uc_eff;
924 
925 	/* Task currently refcounted: use back-annotated (effective) value */
926 	if (p->uclamp[clamp_id].active)
927 		return (unsigned long)p->uclamp[clamp_id].value;
928 
929 	uc_eff = uclamp_eff_get(p, clamp_id);
930 
931 	return (unsigned long)uc_eff.value;
932 }
933 
934 /*
935  * When a task is enqueued on a rq, the clamp bucket currently defined by the
936  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937  * updates the rq's clamp value if required.
938  *
939  * Tasks can have a task-specific value requested from user-space, track
940  * within each bucket the maximum value for tasks refcounted in it.
941  * This "local max aggregation" allows to track the exact "requested" value
942  * for each bucket when all its RUNNABLE tasks require the same clamp.
943  */
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 				    enum uclamp_id clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 
951 	lockdep_assert_held(&rq->lock);
952 
953 	/* Update task effective clamp */
954 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955 
956 	bucket = &uc_rq->bucket[uc_se->bucket_id];
957 	bucket->tasks++;
958 	uc_se->active = true;
959 
960 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
961 
962 	/*
963 	 * Local max aggregation: rq buckets always track the max
964 	 * "requested" clamp value of its RUNNABLE tasks.
965 	 */
966 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 		bucket->value = uc_se->value;
968 
969 	if (uc_se->value > READ_ONCE(uc_rq->value))
970 		WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972 
973 /*
974  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975  * is released. If this is the last task reference counting the rq's max
976  * active clamp value, then the rq's clamp value is updated.
977  *
978  * Both refcounted tasks and rq's cached clamp values are expected to be
979  * always valid. If it's detected they are not, as defensive programming,
980  * enforce the expected state and warn.
981  */
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 				    enum uclamp_id clamp_id)
984 {
985 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 	struct uclamp_bucket *bucket;
988 	unsigned int bkt_clamp;
989 	unsigned int rq_clamp;
990 
991 	lockdep_assert_held(&rq->lock);
992 
993 	bucket = &uc_rq->bucket[uc_se->bucket_id];
994 	SCHED_WARN_ON(!bucket->tasks);
995 	if (likely(bucket->tasks))
996 		bucket->tasks--;
997 	uc_se->active = false;
998 
999 	/*
1000 	 * Keep "local max aggregation" simple and accept to (possibly)
1001 	 * overboost some RUNNABLE tasks in the same bucket.
1002 	 * The rq clamp bucket value is reset to its base value whenever
1003 	 * there are no more RUNNABLE tasks refcounting it.
1004 	 */
1005 	if (likely(bucket->tasks))
1006 		return;
1007 
1008 	rq_clamp = READ_ONCE(uc_rq->value);
1009 	/*
1010 	 * Defensive programming: this should never happen. If it happens,
1011 	 * e.g. due to future modification, warn and fixup the expected value.
1012 	 */
1013 	SCHED_WARN_ON(bucket->value > rq_clamp);
1014 	if (bucket->value >= rq_clamp) {
1015 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 	}
1018 }
1019 
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 	enum uclamp_id clamp_id;
1023 
1024 	if (unlikely(!p->sched_class->uclamp_enabled))
1025 		return;
1026 
1027 	for_each_clamp_id(clamp_id)
1028 		uclamp_rq_inc_id(rq, p, clamp_id);
1029 
1030 	/* Reset clamp idle holding when there is one RUNNABLE task */
1031 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034 
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 	enum uclamp_id clamp_id;
1038 
1039 	if (unlikely(!p->sched_class->uclamp_enabled))
1040 		return;
1041 
1042 	for_each_clamp_id(clamp_id)
1043 		uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045 
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 	struct rq_flags rf;
1050 	struct rq *rq;
1051 
1052 	/*
1053 	 * Lock the task and the rq where the task is (or was) queued.
1054 	 *
1055 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 	 * price to pay to safely serialize util_{min,max} updates with
1057 	 * enqueues, dequeues and migration operations.
1058 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 	 */
1060 	rq = task_rq_lock(p, &rf);
1061 
1062 	/*
1063 	 * Setting the clamp bucket is serialized by task_rq_lock().
1064 	 * If the task is not yet RUNNABLE and its task_struct is not
1065 	 * affecting a valid clamp bucket, the next time it's enqueued,
1066 	 * it will already see the updated clamp bucket value.
1067 	 */
1068 	if (p->uclamp[clamp_id].active) {
1069 		uclamp_rq_dec_id(rq, p, clamp_id);
1070 		uclamp_rq_inc_id(rq, p, clamp_id);
1071 	}
1072 
1073 	task_rq_unlock(rq, p, &rf);
1074 }
1075 
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 			   unsigned int clamps)
1080 {
1081 	enum uclamp_id clamp_id;
1082 	struct css_task_iter it;
1083 	struct task_struct *p;
1084 
1085 	css_task_iter_start(css, 0, &it);
1086 	while ((p = css_task_iter_next(&it))) {
1087 		for_each_clamp_id(clamp_id) {
1088 			if ((0x1 << clamp_id) & clamps)
1089 				uclamp_update_active(p, clamp_id);
1090 		}
1091 	}
1092 	css_task_iter_end(&it);
1093 }
1094 
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 	struct task_group *tg = &root_task_group;
1099 
1100 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 		      sysctl_sched_uclamp_util_min, false);
1102 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 		      sysctl_sched_uclamp_util_max, false);
1104 
1105 	rcu_read_lock();
1106 	cpu_util_update_eff(&root_task_group.css);
1107 	rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112 
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 				void *buffer, size_t *lenp, loff_t *ppos)
1115 {
1116 	bool update_root_tg = false;
1117 	int old_min, old_max;
1118 	int result;
1119 
1120 	mutex_lock(&uclamp_mutex);
1121 	old_min = sysctl_sched_uclamp_util_min;
1122 	old_max = sysctl_sched_uclamp_util_max;
1123 
1124 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 	if (result)
1126 		goto undo;
1127 	if (!write)
1128 		goto done;
1129 
1130 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 		result = -EINVAL;
1133 		goto undo;
1134 	}
1135 
1136 	if (old_min != sysctl_sched_uclamp_util_min) {
1137 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 			      sysctl_sched_uclamp_util_min, false);
1139 		update_root_tg = true;
1140 	}
1141 	if (old_max != sysctl_sched_uclamp_util_max) {
1142 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 			      sysctl_sched_uclamp_util_max, false);
1144 		update_root_tg = true;
1145 	}
1146 
1147 	if (update_root_tg)
1148 		uclamp_update_root_tg();
1149 
1150 	/*
1151 	 * We update all RUNNABLE tasks only when task groups are in use.
1152 	 * Otherwise, keep it simple and do just a lazy update at each next
1153 	 * task enqueue time.
1154 	 */
1155 
1156 	goto done;
1157 
1158 undo:
1159 	sysctl_sched_uclamp_util_min = old_min;
1160 	sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 	mutex_unlock(&uclamp_mutex);
1163 
1164 	return result;
1165 }
1166 
1167 static int uclamp_validate(struct task_struct *p,
1168 			   const struct sched_attr *attr)
1169 {
1170 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172 
1173 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 		lower_bound = attr->sched_util_min;
1175 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 		upper_bound = attr->sched_util_max;
1177 
1178 	if (lower_bound > upper_bound)
1179 		return -EINVAL;
1180 	if (upper_bound > SCHED_CAPACITY_SCALE)
1181 		return -EINVAL;
1182 
1183 	return 0;
1184 }
1185 
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 				  const struct sched_attr *attr)
1188 {
1189 	enum uclamp_id clamp_id;
1190 
1191 	/*
1192 	 * On scheduling class change, reset to default clamps for tasks
1193 	 * without a task-specific value.
1194 	 */
1195 	for_each_clamp_id(clamp_id) {
1196 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 		unsigned int clamp_value = uclamp_none(clamp_id);
1198 
1199 		/* Keep using defined clamps across class changes */
1200 		if (uc_se->user_defined)
1201 			continue;
1202 
1203 		/* By default, RT tasks always get 100% boost */
1204 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 			clamp_value = uclamp_none(UCLAMP_MAX);
1206 
1207 		uclamp_se_set(uc_se, clamp_value, false);
1208 	}
1209 
1210 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 		return;
1212 
1213 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 			      attr->sched_util_min, true);
1216 	}
1217 
1218 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 			      attr->sched_util_max, true);
1221 	}
1222 }
1223 
1224 static void uclamp_fork(struct task_struct *p)
1225 {
1226 	enum uclamp_id clamp_id;
1227 
1228 	for_each_clamp_id(clamp_id)
1229 		p->uclamp[clamp_id].active = false;
1230 
1231 	if (likely(!p->sched_reset_on_fork))
1232 		return;
1233 
1234 	for_each_clamp_id(clamp_id) {
1235 		uclamp_se_set(&p->uclamp_req[clamp_id],
1236 			      uclamp_none(clamp_id), false);
1237 	}
1238 }
1239 
1240 static void __init init_uclamp(void)
1241 {
1242 	struct uclamp_se uc_max = {};
1243 	enum uclamp_id clamp_id;
1244 	int cpu;
1245 
1246 	mutex_init(&uclamp_mutex);
1247 
1248 	for_each_possible_cpu(cpu) {
1249 		memset(&cpu_rq(cpu)->uclamp, 0,
1250 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 		cpu_rq(cpu)->uclamp_flags = 0;
1252 	}
1253 
1254 	for_each_clamp_id(clamp_id) {
1255 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 			      uclamp_none(clamp_id), false);
1257 	}
1258 
1259 	/* System defaults allow max clamp values for both indexes */
1260 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 	for_each_clamp_id(clamp_id) {
1262 		uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 		root_task_group.uclamp_req[clamp_id] = uc_max;
1265 		root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1267 	}
1268 }
1269 
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 				  const struct sched_attr *attr)
1275 {
1276 	return -EOPNOTSUPP;
1277 }
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 				  const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1283 
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1285 {
1286 	if (!(flags & ENQUEUE_NOCLOCK))
1287 		update_rq_clock(rq);
1288 
1289 	if (!(flags & ENQUEUE_RESTORE)) {
1290 		sched_info_queued(rq, p);
1291 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1292 	}
1293 
1294 	uclamp_rq_inc(rq, p);
1295 	p->sched_class->enqueue_task(rq, p, flags);
1296 }
1297 
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1299 {
1300 	if (!(flags & DEQUEUE_NOCLOCK))
1301 		update_rq_clock(rq);
1302 
1303 	if (!(flags & DEQUEUE_SAVE)) {
1304 		sched_info_dequeued(rq, p);
1305 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1306 	}
1307 
1308 	uclamp_rq_dec(rq, p);
1309 	p->sched_class->dequeue_task(rq, p, flags);
1310 }
1311 
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1313 {
1314 	if (task_contributes_to_load(p))
1315 		rq->nr_uninterruptible--;
1316 
1317 	enqueue_task(rq, p, flags);
1318 
1319 	p->on_rq = TASK_ON_RQ_QUEUED;
1320 }
1321 
1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1325 
1326 	if (task_contributes_to_load(p))
1327 		rq->nr_uninterruptible++;
1328 
1329 	dequeue_task(rq, p, flags);
1330 }
1331 
1332 /*
1333  * __normal_prio - return the priority that is based on the static prio
1334  */
1335 static inline int __normal_prio(struct task_struct *p)
1336 {
1337 	return p->static_prio;
1338 }
1339 
1340 /*
1341  * Calculate the expected normal priority: i.e. priority
1342  * without taking RT-inheritance into account. Might be
1343  * boosted by interactivity modifiers. Changes upon fork,
1344  * setprio syscalls, and whenever the interactivity
1345  * estimator recalculates.
1346  */
1347 static inline int normal_prio(struct task_struct *p)
1348 {
1349 	int prio;
1350 
1351 	if (task_has_dl_policy(p))
1352 		prio = MAX_DL_PRIO-1;
1353 	else if (task_has_rt_policy(p))
1354 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 	else
1356 		prio = __normal_prio(p);
1357 	return prio;
1358 }
1359 
1360 /*
1361  * Calculate the current priority, i.e. the priority
1362  * taken into account by the scheduler. This value might
1363  * be boosted by RT tasks, or might be boosted by
1364  * interactivity modifiers. Will be RT if the task got
1365  * RT-boosted. If not then it returns p->normal_prio.
1366  */
1367 static int effective_prio(struct task_struct *p)
1368 {
1369 	p->normal_prio = normal_prio(p);
1370 	/*
1371 	 * If we are RT tasks or we were boosted to RT priority,
1372 	 * keep the priority unchanged. Otherwise, update priority
1373 	 * to the normal priority:
1374 	 */
1375 	if (!rt_prio(p->prio))
1376 		return p->normal_prio;
1377 	return p->prio;
1378 }
1379 
1380 /**
1381  * task_curr - is this task currently executing on a CPU?
1382  * @p: the task in question.
1383  *
1384  * Return: 1 if the task is currently executing. 0 otherwise.
1385  */
1386 inline int task_curr(const struct task_struct *p)
1387 {
1388 	return cpu_curr(task_cpu(p)) == p;
1389 }
1390 
1391 /*
1392  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393  * use the balance_callback list if you want balancing.
1394  *
1395  * this means any call to check_class_changed() must be followed by a call to
1396  * balance_callback().
1397  */
1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 				       const struct sched_class *prev_class,
1400 				       int oldprio)
1401 {
1402 	if (prev_class != p->sched_class) {
1403 		if (prev_class->switched_from)
1404 			prev_class->switched_from(rq, p);
1405 
1406 		p->sched_class->switched_to(rq, p);
1407 	} else if (oldprio != p->prio || dl_task(p))
1408 		p->sched_class->prio_changed(rq, p, oldprio);
1409 }
1410 
1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1412 {
1413 	const struct sched_class *class;
1414 
1415 	if (p->sched_class == rq->curr->sched_class) {
1416 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 	} else {
1418 		for_each_class(class) {
1419 			if (class == rq->curr->sched_class)
1420 				break;
1421 			if (class == p->sched_class) {
1422 				resched_curr(rq);
1423 				break;
1424 			}
1425 		}
1426 	}
1427 
1428 	/*
1429 	 * A queue event has occurred, and we're going to schedule.  In
1430 	 * this case, we can save a useless back to back clock update.
1431 	 */
1432 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1433 		rq_clock_skip_update(rq);
1434 }
1435 
1436 #ifdef CONFIG_SMP
1437 
1438 /*
1439  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1440  * __set_cpus_allowed_ptr() and select_fallback_rq().
1441  */
1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1443 {
1444 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1445 		return false;
1446 
1447 	if (is_per_cpu_kthread(p))
1448 		return cpu_online(cpu);
1449 
1450 	return cpu_active(cpu);
1451 }
1452 
1453 /*
1454  * This is how migration works:
1455  *
1456  * 1) we invoke migration_cpu_stop() on the target CPU using
1457  *    stop_one_cpu().
1458  * 2) stopper starts to run (implicitly forcing the migrated thread
1459  *    off the CPU)
1460  * 3) it checks whether the migrated task is still in the wrong runqueue.
1461  * 4) if it's in the wrong runqueue then the migration thread removes
1462  *    it and puts it into the right queue.
1463  * 5) stopper completes and stop_one_cpu() returns and the migration
1464  *    is done.
1465  */
1466 
1467 /*
1468  * move_queued_task - move a queued task to new rq.
1469  *
1470  * Returns (locked) new rq. Old rq's lock is released.
1471  */
1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 				   struct task_struct *p, int new_cpu)
1474 {
1475 	lockdep_assert_held(&rq->lock);
1476 
1477 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1478 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1479 	set_task_cpu(p, new_cpu);
1480 	rq_unlock(rq, rf);
1481 
1482 	rq = cpu_rq(new_cpu);
1483 
1484 	rq_lock(rq, rf);
1485 	BUG_ON(task_cpu(p) != new_cpu);
1486 	enqueue_task(rq, p, 0);
1487 	p->on_rq = TASK_ON_RQ_QUEUED;
1488 	check_preempt_curr(rq, p, 0);
1489 
1490 	return rq;
1491 }
1492 
1493 struct migration_arg {
1494 	struct task_struct *task;
1495 	int dest_cpu;
1496 };
1497 
1498 /*
1499  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1500  * this because either it can't run here any more (set_cpus_allowed()
1501  * away from this CPU, or CPU going down), or because we're
1502  * attempting to rebalance this task on exec (sched_exec).
1503  *
1504  * So we race with normal scheduler movements, but that's OK, as long
1505  * as the task is no longer on this CPU.
1506  */
1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 				 struct task_struct *p, int dest_cpu)
1509 {
1510 	/* Affinity changed (again). */
1511 	if (!is_cpu_allowed(p, dest_cpu))
1512 		return rq;
1513 
1514 	update_rq_clock(rq);
1515 	rq = move_queued_task(rq, rf, p, dest_cpu);
1516 
1517 	return rq;
1518 }
1519 
1520 /*
1521  * migration_cpu_stop - this will be executed by a highprio stopper thread
1522  * and performs thread migration by bumping thread off CPU then
1523  * 'pushing' onto another runqueue.
1524  */
1525 static int migration_cpu_stop(void *data)
1526 {
1527 	struct migration_arg *arg = data;
1528 	struct task_struct *p = arg->task;
1529 	struct rq *rq = this_rq();
1530 	struct rq_flags rf;
1531 
1532 	/*
1533 	 * The original target CPU might have gone down and we might
1534 	 * be on another CPU but it doesn't matter.
1535 	 */
1536 	local_irq_disable();
1537 	/*
1538 	 * We need to explicitly wake pending tasks before running
1539 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1540 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1541 	 */
1542 	flush_smp_call_function_from_idle();
1543 
1544 	raw_spin_lock(&p->pi_lock);
1545 	rq_lock(rq, &rf);
1546 	/*
1547 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 	 * we're holding p->pi_lock.
1550 	 */
1551 	if (task_rq(p) == rq) {
1552 		if (task_on_rq_queued(p))
1553 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1554 		else
1555 			p->wake_cpu = arg->dest_cpu;
1556 	}
1557 	rq_unlock(rq, &rf);
1558 	raw_spin_unlock(&p->pi_lock);
1559 
1560 	local_irq_enable();
1561 	return 0;
1562 }
1563 
1564 /*
1565  * sched_class::set_cpus_allowed must do the below, but is not required to
1566  * actually call this function.
1567  */
1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1569 {
1570 	cpumask_copy(&p->cpus_mask, new_mask);
1571 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1572 }
1573 
1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1575 {
1576 	struct rq *rq = task_rq(p);
1577 	bool queued, running;
1578 
1579 	lockdep_assert_held(&p->pi_lock);
1580 
1581 	queued = task_on_rq_queued(p);
1582 	running = task_current(rq, p);
1583 
1584 	if (queued) {
1585 		/*
1586 		 * Because __kthread_bind() calls this on blocked tasks without
1587 		 * holding rq->lock.
1588 		 */
1589 		lockdep_assert_held(&rq->lock);
1590 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1591 	}
1592 	if (running)
1593 		put_prev_task(rq, p);
1594 
1595 	p->sched_class->set_cpus_allowed(p, new_mask);
1596 
1597 	if (queued)
1598 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1599 	if (running)
1600 		set_next_task(rq, p);
1601 }
1602 
1603 /*
1604  * Change a given task's CPU affinity. Migrate the thread to a
1605  * proper CPU and schedule it away if the CPU it's executing on
1606  * is removed from the allowed bitmask.
1607  *
1608  * NOTE: the caller must have a valid reference to the task, the
1609  * task must not exit() & deallocate itself prematurely. The
1610  * call is not atomic; no spinlocks may be held.
1611  */
1612 static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 				  const struct cpumask *new_mask, bool check)
1614 {
1615 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1616 	unsigned int dest_cpu;
1617 	struct rq_flags rf;
1618 	struct rq *rq;
1619 	int ret = 0;
1620 
1621 	rq = task_rq_lock(p, &rf);
1622 	update_rq_clock(rq);
1623 
1624 	if (p->flags & PF_KTHREAD) {
1625 		/*
1626 		 * Kernel threads are allowed on online && !active CPUs
1627 		 */
1628 		cpu_valid_mask = cpu_online_mask;
1629 	}
1630 
1631 	/*
1632 	 * Must re-check here, to close a race against __kthread_bind(),
1633 	 * sched_setaffinity() is not guaranteed to observe the flag.
1634 	 */
1635 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 		ret = -EINVAL;
1637 		goto out;
1638 	}
1639 
1640 	if (cpumask_equal(&p->cpus_mask, new_mask))
1641 		goto out;
1642 
1643 	/*
1644 	 * Picking a ~random cpu helps in cases where we are changing affinity
1645 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 	 * immediately required to distribute the tasks within their new mask.
1647 	 */
1648 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1649 	if (dest_cpu >= nr_cpu_ids) {
1650 		ret = -EINVAL;
1651 		goto out;
1652 	}
1653 
1654 	do_set_cpus_allowed(p, new_mask);
1655 
1656 	if (p->flags & PF_KTHREAD) {
1657 		/*
1658 		 * For kernel threads that do indeed end up on online &&
1659 		 * !active we want to ensure they are strict per-CPU threads.
1660 		 */
1661 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1663 			p->nr_cpus_allowed != 1);
1664 	}
1665 
1666 	/* Can the task run on the task's current CPU? If so, we're done */
1667 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 		goto out;
1669 
1670 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 		struct migration_arg arg = { p, dest_cpu };
1672 		/* Need help from migration thread: drop lock and wait. */
1673 		task_rq_unlock(rq, p, &rf);
1674 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1675 		return 0;
1676 	} else if (task_on_rq_queued(p)) {
1677 		/*
1678 		 * OK, since we're going to drop the lock immediately
1679 		 * afterwards anyway.
1680 		 */
1681 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1682 	}
1683 out:
1684 	task_rq_unlock(rq, p, &rf);
1685 
1686 	return ret;
1687 }
1688 
1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1690 {
1691 	return __set_cpus_allowed_ptr(p, new_mask, false);
1692 }
1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1694 
1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1696 {
1697 #ifdef CONFIG_SCHED_DEBUG
1698 	/*
1699 	 * We should never call set_task_cpu() on a blocked task,
1700 	 * ttwu() will sort out the placement.
1701 	 */
1702 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1703 			!p->on_rq);
1704 
1705 	/*
1706 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 	 * time relying on p->on_rq.
1709 	 */
1710 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 		     p->sched_class == &fair_sched_class &&
1712 		     (p->on_rq && !task_on_rq_migrating(p)));
1713 
1714 #ifdef CONFIG_LOCKDEP
1715 	/*
1716 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1718 	 *
1719 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1720 	 * see task_group().
1721 	 *
1722 	 * Furthermore, all task_rq users should acquire both locks, see
1723 	 * task_rq_lock().
1724 	 */
1725 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 				      lockdep_is_held(&task_rq(p)->lock)));
1727 #endif
1728 	/*
1729 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1730 	 */
1731 	WARN_ON_ONCE(!cpu_online(new_cpu));
1732 #endif
1733 
1734 	trace_sched_migrate_task(p, new_cpu);
1735 
1736 	if (task_cpu(p) != new_cpu) {
1737 		if (p->sched_class->migrate_task_rq)
1738 			p->sched_class->migrate_task_rq(p, new_cpu);
1739 		p->se.nr_migrations++;
1740 		rseq_migrate(p);
1741 		perf_event_task_migrate(p);
1742 	}
1743 
1744 	__set_task_cpu(p, new_cpu);
1745 }
1746 
1747 #ifdef CONFIG_NUMA_BALANCING
1748 static void __migrate_swap_task(struct task_struct *p, int cpu)
1749 {
1750 	if (task_on_rq_queued(p)) {
1751 		struct rq *src_rq, *dst_rq;
1752 		struct rq_flags srf, drf;
1753 
1754 		src_rq = task_rq(p);
1755 		dst_rq = cpu_rq(cpu);
1756 
1757 		rq_pin_lock(src_rq, &srf);
1758 		rq_pin_lock(dst_rq, &drf);
1759 
1760 		deactivate_task(src_rq, p, 0);
1761 		set_task_cpu(p, cpu);
1762 		activate_task(dst_rq, p, 0);
1763 		check_preempt_curr(dst_rq, p, 0);
1764 
1765 		rq_unpin_lock(dst_rq, &drf);
1766 		rq_unpin_lock(src_rq, &srf);
1767 
1768 	} else {
1769 		/*
1770 		 * Task isn't running anymore; make it appear like we migrated
1771 		 * it before it went to sleep. This means on wakeup we make the
1772 		 * previous CPU our target instead of where it really is.
1773 		 */
1774 		p->wake_cpu = cpu;
1775 	}
1776 }
1777 
1778 struct migration_swap_arg {
1779 	struct task_struct *src_task, *dst_task;
1780 	int src_cpu, dst_cpu;
1781 };
1782 
1783 static int migrate_swap_stop(void *data)
1784 {
1785 	struct migration_swap_arg *arg = data;
1786 	struct rq *src_rq, *dst_rq;
1787 	int ret = -EAGAIN;
1788 
1789 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 		return -EAGAIN;
1791 
1792 	src_rq = cpu_rq(arg->src_cpu);
1793 	dst_rq = cpu_rq(arg->dst_cpu);
1794 
1795 	double_raw_lock(&arg->src_task->pi_lock,
1796 			&arg->dst_task->pi_lock);
1797 	double_rq_lock(src_rq, dst_rq);
1798 
1799 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 		goto unlock;
1801 
1802 	if (task_cpu(arg->src_task) != arg->src_cpu)
1803 		goto unlock;
1804 
1805 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1806 		goto unlock;
1807 
1808 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1809 		goto unlock;
1810 
1811 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1813 
1814 	ret = 0;
1815 
1816 unlock:
1817 	double_rq_unlock(src_rq, dst_rq);
1818 	raw_spin_unlock(&arg->dst_task->pi_lock);
1819 	raw_spin_unlock(&arg->src_task->pi_lock);
1820 
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Cross migrate two tasks
1826  */
1827 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 		int target_cpu, int curr_cpu)
1829 {
1830 	struct migration_swap_arg arg;
1831 	int ret = -EINVAL;
1832 
1833 	arg = (struct migration_swap_arg){
1834 		.src_task = cur,
1835 		.src_cpu = curr_cpu,
1836 		.dst_task = p,
1837 		.dst_cpu = target_cpu,
1838 	};
1839 
1840 	if (arg.src_cpu == arg.dst_cpu)
1841 		goto out;
1842 
1843 	/*
1844 	 * These three tests are all lockless; this is OK since all of them
1845 	 * will be re-checked with proper locks held further down the line.
1846 	 */
1847 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 		goto out;
1849 
1850 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1851 		goto out;
1852 
1853 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1854 		goto out;
1855 
1856 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1857 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1858 
1859 out:
1860 	return ret;
1861 }
1862 #endif /* CONFIG_NUMA_BALANCING */
1863 
1864 /*
1865  * wait_task_inactive - wait for a thread to unschedule.
1866  *
1867  * If @match_state is nonzero, it's the @p->state value just checked and
1868  * not expected to change.  If it changes, i.e. @p might have woken up,
1869  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1870  * we return a positive number (its total switch count).  If a second call
1871  * a short while later returns the same number, the caller can be sure that
1872  * @p has remained unscheduled the whole time.
1873  *
1874  * The caller must ensure that the task *will* unschedule sometime soon,
1875  * else this function might spin for a *long* time. This function can't
1876  * be called with interrupts off, or it may introduce deadlock with
1877  * smp_call_function() if an IPI is sent by the same process we are
1878  * waiting to become inactive.
1879  */
1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1881 {
1882 	int running, queued;
1883 	struct rq_flags rf;
1884 	unsigned long ncsw;
1885 	struct rq *rq;
1886 
1887 	for (;;) {
1888 		/*
1889 		 * We do the initial early heuristics without holding
1890 		 * any task-queue locks at all. We'll only try to get
1891 		 * the runqueue lock when things look like they will
1892 		 * work out!
1893 		 */
1894 		rq = task_rq(p);
1895 
1896 		/*
1897 		 * If the task is actively running on another CPU
1898 		 * still, just relax and busy-wait without holding
1899 		 * any locks.
1900 		 *
1901 		 * NOTE! Since we don't hold any locks, it's not
1902 		 * even sure that "rq" stays as the right runqueue!
1903 		 * But we don't care, since "task_running()" will
1904 		 * return false if the runqueue has changed and p
1905 		 * is actually now running somewhere else!
1906 		 */
1907 		while (task_running(rq, p)) {
1908 			if (match_state && unlikely(p->state != match_state))
1909 				return 0;
1910 			cpu_relax();
1911 		}
1912 
1913 		/*
1914 		 * Ok, time to look more closely! We need the rq
1915 		 * lock now, to be *sure*. If we're wrong, we'll
1916 		 * just go back and repeat.
1917 		 */
1918 		rq = task_rq_lock(p, &rf);
1919 		trace_sched_wait_task(p);
1920 		running = task_running(rq, p);
1921 		queued = task_on_rq_queued(p);
1922 		ncsw = 0;
1923 		if (!match_state || p->state == match_state)
1924 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1925 		task_rq_unlock(rq, p, &rf);
1926 
1927 		/*
1928 		 * If it changed from the expected state, bail out now.
1929 		 */
1930 		if (unlikely(!ncsw))
1931 			break;
1932 
1933 		/*
1934 		 * Was it really running after all now that we
1935 		 * checked with the proper locks actually held?
1936 		 *
1937 		 * Oops. Go back and try again..
1938 		 */
1939 		if (unlikely(running)) {
1940 			cpu_relax();
1941 			continue;
1942 		}
1943 
1944 		/*
1945 		 * It's not enough that it's not actively running,
1946 		 * it must be off the runqueue _entirely_, and not
1947 		 * preempted!
1948 		 *
1949 		 * So if it was still runnable (but just not actively
1950 		 * running right now), it's preempted, and we should
1951 		 * yield - it could be a while.
1952 		 */
1953 		if (unlikely(queued)) {
1954 			ktime_t to = NSEC_PER_SEC / HZ;
1955 
1956 			set_current_state(TASK_UNINTERRUPTIBLE);
1957 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1958 			continue;
1959 		}
1960 
1961 		/*
1962 		 * Ahh, all good. It wasn't running, and it wasn't
1963 		 * runnable, which means that it will never become
1964 		 * running in the future either. We're all done!
1965 		 */
1966 		break;
1967 	}
1968 
1969 	return ncsw;
1970 }
1971 
1972 /***
1973  * kick_process - kick a running thread to enter/exit the kernel
1974  * @p: the to-be-kicked thread
1975  *
1976  * Cause a process which is running on another CPU to enter
1977  * kernel-mode, without any delay. (to get signals handled.)
1978  *
1979  * NOTE: this function doesn't have to take the runqueue lock,
1980  * because all it wants to ensure is that the remote task enters
1981  * the kernel. If the IPI races and the task has been migrated
1982  * to another CPU then no harm is done and the purpose has been
1983  * achieved as well.
1984  */
1985 void kick_process(struct task_struct *p)
1986 {
1987 	int cpu;
1988 
1989 	preempt_disable();
1990 	cpu = task_cpu(p);
1991 	if ((cpu != smp_processor_id()) && task_curr(p))
1992 		smp_send_reschedule(cpu);
1993 	preempt_enable();
1994 }
1995 EXPORT_SYMBOL_GPL(kick_process);
1996 
1997 /*
1998  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1999  *
2000  * A few notes on cpu_active vs cpu_online:
2001  *
2002  *  - cpu_active must be a subset of cpu_online
2003  *
2004  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2005  *    see __set_cpus_allowed_ptr(). At this point the newly online
2006  *    CPU isn't yet part of the sched domains, and balancing will not
2007  *    see it.
2008  *
2009  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2010  *    avoid the load balancer to place new tasks on the to be removed
2011  *    CPU. Existing tasks will remain running there and will be taken
2012  *    off.
2013  *
2014  * This means that fallback selection must not select !active CPUs.
2015  * And can assume that any active CPU must be online. Conversely
2016  * select_task_rq() below may allow selection of !active CPUs in order
2017  * to satisfy the above rules.
2018  */
2019 static int select_fallback_rq(int cpu, struct task_struct *p)
2020 {
2021 	int nid = cpu_to_node(cpu);
2022 	const struct cpumask *nodemask = NULL;
2023 	enum { cpuset, possible, fail } state = cpuset;
2024 	int dest_cpu;
2025 
2026 	/*
2027 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 	 * will return -1. There is no CPU on the node, and we should
2029 	 * select the CPU on the other node.
2030 	 */
2031 	if (nid != -1) {
2032 		nodemask = cpumask_of_node(nid);
2033 
2034 		/* Look for allowed, online CPU in same node. */
2035 		for_each_cpu(dest_cpu, nodemask) {
2036 			if (!cpu_active(dest_cpu))
2037 				continue;
2038 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2039 				return dest_cpu;
2040 		}
2041 	}
2042 
2043 	for (;;) {
2044 		/* Any allowed, online CPU? */
2045 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2046 			if (!is_cpu_allowed(p, dest_cpu))
2047 				continue;
2048 
2049 			goto out;
2050 		}
2051 
2052 		/* No more Mr. Nice Guy. */
2053 		switch (state) {
2054 		case cpuset:
2055 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 				cpuset_cpus_allowed_fallback(p);
2057 				state = possible;
2058 				break;
2059 			}
2060 			/* Fall-through */
2061 		case possible:
2062 			do_set_cpus_allowed(p, cpu_possible_mask);
2063 			state = fail;
2064 			break;
2065 
2066 		case fail:
2067 			BUG();
2068 			break;
2069 		}
2070 	}
2071 
2072 out:
2073 	if (state != cpuset) {
2074 		/*
2075 		 * Don't tell them about moving exiting tasks or
2076 		 * kernel threads (both mm NULL), since they never
2077 		 * leave kernel.
2078 		 */
2079 		if (p->mm && printk_ratelimit()) {
2080 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2081 					task_pid_nr(p), p->comm, cpu);
2082 		}
2083 	}
2084 
2085 	return dest_cpu;
2086 }
2087 
2088 /*
2089  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2090  */
2091 static inline
2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2093 {
2094 	lockdep_assert_held(&p->pi_lock);
2095 
2096 	if (p->nr_cpus_allowed > 1)
2097 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2098 	else
2099 		cpu = cpumask_any(p->cpus_ptr);
2100 
2101 	/*
2102 	 * In order not to call set_task_cpu() on a blocking task we need
2103 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2104 	 * CPU.
2105 	 *
2106 	 * Since this is common to all placement strategies, this lives here.
2107 	 *
2108 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 	 *   not worry about this generic constraint ]
2110 	 */
2111 	if (unlikely(!is_cpu_allowed(p, cpu)))
2112 		cpu = select_fallback_rq(task_cpu(p), p);
2113 
2114 	return cpu;
2115 }
2116 
2117 void sched_set_stop_task(int cpu, struct task_struct *stop)
2118 {
2119 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2121 
2122 	if (stop) {
2123 		/*
2124 		 * Make it appear like a SCHED_FIFO task, its something
2125 		 * userspace knows about and won't get confused about.
2126 		 *
2127 		 * Also, it will make PI more or less work without too
2128 		 * much confusion -- but then, stop work should not
2129 		 * rely on PI working anyway.
2130 		 */
2131 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2132 
2133 		stop->sched_class = &stop_sched_class;
2134 	}
2135 
2136 	cpu_rq(cpu)->stop = stop;
2137 
2138 	if (old_stop) {
2139 		/*
2140 		 * Reset it back to a normal scheduling class so that
2141 		 * it can die in pieces.
2142 		 */
2143 		old_stop->sched_class = &rt_sched_class;
2144 	}
2145 }
2146 
2147 #else
2148 
2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 					 const struct cpumask *new_mask, bool check)
2151 {
2152 	return set_cpus_allowed_ptr(p, new_mask);
2153 }
2154 
2155 #endif /* CONFIG_SMP */
2156 
2157 static void
2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2159 {
2160 	struct rq *rq;
2161 
2162 	if (!schedstat_enabled())
2163 		return;
2164 
2165 	rq = this_rq();
2166 
2167 #ifdef CONFIG_SMP
2168 	if (cpu == rq->cpu) {
2169 		__schedstat_inc(rq->ttwu_local);
2170 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2171 	} else {
2172 		struct sched_domain *sd;
2173 
2174 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2175 		rcu_read_lock();
2176 		for_each_domain(rq->cpu, sd) {
2177 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2178 				__schedstat_inc(sd->ttwu_wake_remote);
2179 				break;
2180 			}
2181 		}
2182 		rcu_read_unlock();
2183 	}
2184 
2185 	if (wake_flags & WF_MIGRATED)
2186 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2187 #endif /* CONFIG_SMP */
2188 
2189 	__schedstat_inc(rq->ttwu_count);
2190 	__schedstat_inc(p->se.statistics.nr_wakeups);
2191 
2192 	if (wake_flags & WF_SYNC)
2193 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2194 }
2195 
2196 /*
2197  * Mark the task runnable and perform wakeup-preemption.
2198  */
2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2200 			   struct rq_flags *rf)
2201 {
2202 	check_preempt_curr(rq, p, wake_flags);
2203 	p->state = TASK_RUNNING;
2204 	trace_sched_wakeup(p);
2205 
2206 #ifdef CONFIG_SMP
2207 	if (p->sched_class->task_woken) {
2208 		/*
2209 		 * Our task @p is fully woken up and running; so its safe to
2210 		 * drop the rq->lock, hereafter rq is only used for statistics.
2211 		 */
2212 		rq_unpin_lock(rq, rf);
2213 		p->sched_class->task_woken(rq, p);
2214 		rq_repin_lock(rq, rf);
2215 	}
2216 
2217 	if (rq->idle_stamp) {
2218 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2219 		u64 max = 2*rq->max_idle_balance_cost;
2220 
2221 		update_avg(&rq->avg_idle, delta);
2222 
2223 		if (rq->avg_idle > max)
2224 			rq->avg_idle = max;
2225 
2226 		rq->idle_stamp = 0;
2227 	}
2228 #endif
2229 }
2230 
2231 static void
2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2233 		 struct rq_flags *rf)
2234 {
2235 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2236 
2237 	lockdep_assert_held(&rq->lock);
2238 
2239 #ifdef CONFIG_SMP
2240 	if (p->sched_contributes_to_load)
2241 		rq->nr_uninterruptible--;
2242 
2243 	if (wake_flags & WF_MIGRATED)
2244 		en_flags |= ENQUEUE_MIGRATED;
2245 #endif
2246 
2247 	activate_task(rq, p, en_flags);
2248 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2249 }
2250 
2251 /*
2252  * Called in case the task @p isn't fully descheduled from its runqueue,
2253  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254  * since all we need to do is flip p->state to TASK_RUNNING, since
2255  * the task is still ->on_rq.
2256  */
2257 static int ttwu_remote(struct task_struct *p, int wake_flags)
2258 {
2259 	struct rq_flags rf;
2260 	struct rq *rq;
2261 	int ret = 0;
2262 
2263 	rq = __task_rq_lock(p, &rf);
2264 	if (task_on_rq_queued(p)) {
2265 		/* check_preempt_curr() may use rq clock */
2266 		update_rq_clock(rq);
2267 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2268 		ret = 1;
2269 	}
2270 	__task_rq_unlock(rq, &rf);
2271 
2272 	return ret;
2273 }
2274 
2275 #ifdef CONFIG_SMP
2276 void sched_ttwu_pending(void *arg)
2277 {
2278 	struct llist_node *llist = arg;
2279 	struct rq *rq = this_rq();
2280 	struct task_struct *p, *t;
2281 	struct rq_flags rf;
2282 
2283 	if (!llist)
2284 		return;
2285 
2286 	/*
2287 	 * rq::ttwu_pending racy indication of out-standing wakeups.
2288 	 * Races such that false-negatives are possible, since they
2289 	 * are shorter lived that false-positives would be.
2290 	 */
2291 	WRITE_ONCE(rq->ttwu_pending, 0);
2292 
2293 	rq_lock_irqsave(rq, &rf);
2294 	update_rq_clock(rq);
2295 
2296 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2297 		if (WARN_ON_ONCE(p->on_cpu))
2298 			smp_cond_load_acquire(&p->on_cpu, !VAL);
2299 
2300 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2301 			set_task_cpu(p, cpu_of(rq));
2302 
2303 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2304 	}
2305 
2306 	rq_unlock_irqrestore(rq, &rf);
2307 }
2308 
2309 void send_call_function_single_ipi(int cpu)
2310 {
2311 	struct rq *rq = cpu_rq(cpu);
2312 
2313 	if (!set_nr_if_polling(rq->idle))
2314 		arch_send_call_function_single_ipi(cpu);
2315 	else
2316 		trace_sched_wake_idle_without_ipi(cpu);
2317 }
2318 
2319 /*
2320  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2321  * necessary. The wakee CPU on receipt of the IPI will queue the task
2322  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2323  * of the wakeup instead of the waker.
2324  */
2325 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2326 {
2327 	struct rq *rq = cpu_rq(cpu);
2328 
2329 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2330 
2331 	WRITE_ONCE(rq->ttwu_pending, 1);
2332 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
2333 }
2334 
2335 void wake_up_if_idle(int cpu)
2336 {
2337 	struct rq *rq = cpu_rq(cpu);
2338 	struct rq_flags rf;
2339 
2340 	rcu_read_lock();
2341 
2342 	if (!is_idle_task(rcu_dereference(rq->curr)))
2343 		goto out;
2344 
2345 	if (set_nr_if_polling(rq->idle)) {
2346 		trace_sched_wake_idle_without_ipi(cpu);
2347 	} else {
2348 		rq_lock_irqsave(rq, &rf);
2349 		if (is_idle_task(rq->curr))
2350 			smp_send_reschedule(cpu);
2351 		/* Else CPU is not idle, do nothing here: */
2352 		rq_unlock_irqrestore(rq, &rf);
2353 	}
2354 
2355 out:
2356 	rcu_read_unlock();
2357 }
2358 
2359 bool cpus_share_cache(int this_cpu, int that_cpu)
2360 {
2361 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2362 }
2363 
2364 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2365 {
2366 	/*
2367 	 * If the CPU does not share cache, then queue the task on the
2368 	 * remote rqs wakelist to avoid accessing remote data.
2369 	 */
2370 	if (!cpus_share_cache(smp_processor_id(), cpu))
2371 		return true;
2372 
2373 	/*
2374 	 * If the task is descheduling and the only running task on the
2375 	 * CPU then use the wakelist to offload the task activation to
2376 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2377 	 * nr_running is checked to avoid unnecessary task stacking.
2378 	 */
2379 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2380 		return true;
2381 
2382 	return false;
2383 }
2384 
2385 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2386 {
2387 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2388 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2389 			return false;
2390 
2391 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2392 		__ttwu_queue_wakelist(p, cpu, wake_flags);
2393 		return true;
2394 	}
2395 
2396 	return false;
2397 }
2398 #endif /* CONFIG_SMP */
2399 
2400 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2401 {
2402 	struct rq *rq = cpu_rq(cpu);
2403 	struct rq_flags rf;
2404 
2405 #if defined(CONFIG_SMP)
2406 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2407 		return;
2408 #endif
2409 
2410 	rq_lock(rq, &rf);
2411 	update_rq_clock(rq);
2412 	ttwu_do_activate(rq, p, wake_flags, &rf);
2413 	rq_unlock(rq, &rf);
2414 }
2415 
2416 /*
2417  * Notes on Program-Order guarantees on SMP systems.
2418  *
2419  *  MIGRATION
2420  *
2421  * The basic program-order guarantee on SMP systems is that when a task [t]
2422  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2423  * execution on its new CPU [c1].
2424  *
2425  * For migration (of runnable tasks) this is provided by the following means:
2426  *
2427  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2428  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2429  *     rq(c1)->lock (if not at the same time, then in that order).
2430  *  C) LOCK of the rq(c1)->lock scheduling in task
2431  *
2432  * Release/acquire chaining guarantees that B happens after A and C after B.
2433  * Note: the CPU doing B need not be c0 or c1
2434  *
2435  * Example:
2436  *
2437  *   CPU0            CPU1            CPU2
2438  *
2439  *   LOCK rq(0)->lock
2440  *   sched-out X
2441  *   sched-in Y
2442  *   UNLOCK rq(0)->lock
2443  *
2444  *                                   LOCK rq(0)->lock // orders against CPU0
2445  *                                   dequeue X
2446  *                                   UNLOCK rq(0)->lock
2447  *
2448  *                                   LOCK rq(1)->lock
2449  *                                   enqueue X
2450  *                                   UNLOCK rq(1)->lock
2451  *
2452  *                   LOCK rq(1)->lock // orders against CPU2
2453  *                   sched-out Z
2454  *                   sched-in X
2455  *                   UNLOCK rq(1)->lock
2456  *
2457  *
2458  *  BLOCKING -- aka. SLEEP + WAKEUP
2459  *
2460  * For blocking we (obviously) need to provide the same guarantee as for
2461  * migration. However the means are completely different as there is no lock
2462  * chain to provide order. Instead we do:
2463  *
2464  *   1) smp_store_release(X->on_cpu, 0)
2465  *   2) smp_cond_load_acquire(!X->on_cpu)
2466  *
2467  * Example:
2468  *
2469  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2470  *
2471  *   LOCK rq(0)->lock LOCK X->pi_lock
2472  *   dequeue X
2473  *   sched-out X
2474  *   smp_store_release(X->on_cpu, 0);
2475  *
2476  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2477  *                    X->state = WAKING
2478  *                    set_task_cpu(X,2)
2479  *
2480  *                    LOCK rq(2)->lock
2481  *                    enqueue X
2482  *                    X->state = RUNNING
2483  *                    UNLOCK rq(2)->lock
2484  *
2485  *                                          LOCK rq(2)->lock // orders against CPU1
2486  *                                          sched-out Z
2487  *                                          sched-in X
2488  *                                          UNLOCK rq(2)->lock
2489  *
2490  *                    UNLOCK X->pi_lock
2491  *   UNLOCK rq(0)->lock
2492  *
2493  *
2494  * However, for wakeups there is a second guarantee we must provide, namely we
2495  * must ensure that CONDITION=1 done by the caller can not be reordered with
2496  * accesses to the task state; see try_to_wake_up() and set_current_state().
2497  */
2498 
2499 /**
2500  * try_to_wake_up - wake up a thread
2501  * @p: the thread to be awakened
2502  * @state: the mask of task states that can be woken
2503  * @wake_flags: wake modifier flags (WF_*)
2504  *
2505  * If (@state & @p->state) @p->state = TASK_RUNNING.
2506  *
2507  * If the task was not queued/runnable, also place it back on a runqueue.
2508  *
2509  * Atomic against schedule() which would dequeue a task, also see
2510  * set_current_state().
2511  *
2512  * This function executes a full memory barrier before accessing the task
2513  * state; see set_current_state().
2514  *
2515  * Return: %true if @p->state changes (an actual wakeup was done),
2516  *	   %false otherwise.
2517  */
2518 static int
2519 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2520 {
2521 	unsigned long flags;
2522 	int cpu, success = 0;
2523 
2524 	preempt_disable();
2525 	if (p == current) {
2526 		/*
2527 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2528 		 * == smp_processor_id()'. Together this means we can special
2529 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2530 		 * without taking any locks.
2531 		 *
2532 		 * In particular:
2533 		 *  - we rely on Program-Order guarantees for all the ordering,
2534 		 *  - we're serialized against set_special_state() by virtue of
2535 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2536 		 */
2537 		if (!(p->state & state))
2538 			goto out;
2539 
2540 		success = 1;
2541 		trace_sched_waking(p);
2542 		p->state = TASK_RUNNING;
2543 		trace_sched_wakeup(p);
2544 		goto out;
2545 	}
2546 
2547 	/*
2548 	 * If we are going to wake up a thread waiting for CONDITION we
2549 	 * need to ensure that CONDITION=1 done by the caller can not be
2550 	 * reordered with p->state check below. This pairs with mb() in
2551 	 * set_current_state() the waiting thread does.
2552 	 */
2553 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2554 	smp_mb__after_spinlock();
2555 	if (!(p->state & state))
2556 		goto unlock;
2557 
2558 	trace_sched_waking(p);
2559 
2560 	/* We're going to change ->state: */
2561 	success = 1;
2562 
2563 	/*
2564 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2565 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2566 	 * in smp_cond_load_acquire() below.
2567 	 *
2568 	 * sched_ttwu_pending()			try_to_wake_up()
2569 	 *   STORE p->on_rq = 1			  LOAD p->state
2570 	 *   UNLOCK rq->lock
2571 	 *
2572 	 * __schedule() (switch to task 'p')
2573 	 *   LOCK rq->lock			  smp_rmb();
2574 	 *   smp_mb__after_spinlock();
2575 	 *   UNLOCK rq->lock
2576 	 *
2577 	 * [task p]
2578 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2579 	 *
2580 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2581 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2582 	 *
2583 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2584 	 */
2585 	smp_rmb();
2586 	if (p->on_rq && ttwu_remote(p, wake_flags))
2587 		goto unlock;
2588 
2589 	if (p->in_iowait) {
2590 		delayacct_blkio_end(p);
2591 		atomic_dec(&task_rq(p)->nr_iowait);
2592 	}
2593 
2594 #ifdef CONFIG_SMP
2595 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2596 	p->state = TASK_WAKING;
2597 
2598 	/*
2599 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2600 	 * possible to, falsely, observe p->on_cpu == 0.
2601 	 *
2602 	 * One must be running (->on_cpu == 1) in order to remove oneself
2603 	 * from the runqueue.
2604 	 *
2605 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2606 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2607 	 *   UNLOCK rq->lock
2608 	 *
2609 	 * __schedule() (put 'p' to sleep)
2610 	 *   LOCK rq->lock			  smp_rmb();
2611 	 *   smp_mb__after_spinlock();
2612 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2613 	 *
2614 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2615 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2616 	 */
2617 	smp_rmb();
2618 
2619 	/*
2620 	 * If the owning (remote) CPU is still in the middle of schedule() with
2621 	 * this task as prev, considering queueing p on the remote CPUs wake_list
2622 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2623 	 * let the waker make forward progress. This is safe because IRQs are
2624 	 * disabled and the IPI will deliver after on_cpu is cleared.
2625 	 *
2626 	 * Ensure we load task_cpu(p) after p->on_cpu:
2627 	 *
2628 	 * set_task_cpu(p, cpu);
2629 	 *   STORE p->cpu = @cpu
2630 	 * __schedule() (switch to task 'p')
2631 	 *   LOCK rq->lock
2632 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
2633 	 *   STORE p->on_cpu = 1		LOAD p->cpu
2634 	 *
2635 	 * to ensure we observe the correct CPU on which the task is currently
2636 	 * scheduling.
2637 	 */
2638 	if (smp_load_acquire(&p->on_cpu) &&
2639 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2640 		goto unlock;
2641 
2642 	/*
2643 	 * If the owning (remote) CPU is still in the middle of schedule() with
2644 	 * this task as prev, wait until its done referencing the task.
2645 	 *
2646 	 * Pairs with the smp_store_release() in finish_task().
2647 	 *
2648 	 * This ensures that tasks getting woken will be fully ordered against
2649 	 * their previous state and preserve Program Order.
2650 	 */
2651 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2652 
2653 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2654 	if (task_cpu(p) != cpu) {
2655 		wake_flags |= WF_MIGRATED;
2656 		psi_ttwu_dequeue(p);
2657 		set_task_cpu(p, cpu);
2658 	}
2659 #else
2660 	cpu = task_cpu(p);
2661 #endif /* CONFIG_SMP */
2662 
2663 	ttwu_queue(p, cpu, wake_flags);
2664 unlock:
2665 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2666 out:
2667 	if (success)
2668 		ttwu_stat(p, task_cpu(p), wake_flags);
2669 	preempt_enable();
2670 
2671 	return success;
2672 }
2673 
2674 /**
2675  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2676  * @p: Process for which the function is to be invoked.
2677  * @func: Function to invoke.
2678  * @arg: Argument to function.
2679  *
2680  * If the specified task can be quickly locked into a definite state
2681  * (either sleeping or on a given runqueue), arrange to keep it in that
2682  * state while invoking @func(@arg).  This function can use ->on_rq and
2683  * task_curr() to work out what the state is, if required.  Given that
2684  * @func can be invoked with a runqueue lock held, it had better be quite
2685  * lightweight.
2686  *
2687  * Returns:
2688  *	@false if the task slipped out from under the locks.
2689  *	@true if the task was locked onto a runqueue or is sleeping.
2690  *		However, @func can override this by returning @false.
2691  */
2692 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2693 {
2694 	bool ret = false;
2695 	struct rq_flags rf;
2696 	struct rq *rq;
2697 
2698 	lockdep_assert_irqs_enabled();
2699 	raw_spin_lock_irq(&p->pi_lock);
2700 	if (p->on_rq) {
2701 		rq = __task_rq_lock(p, &rf);
2702 		if (task_rq(p) == rq)
2703 			ret = func(p, arg);
2704 		rq_unlock(rq, &rf);
2705 	} else {
2706 		switch (p->state) {
2707 		case TASK_RUNNING:
2708 		case TASK_WAKING:
2709 			break;
2710 		default:
2711 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2712 			if (!p->on_rq)
2713 				ret = func(p, arg);
2714 		}
2715 	}
2716 	raw_spin_unlock_irq(&p->pi_lock);
2717 	return ret;
2718 }
2719 
2720 /**
2721  * wake_up_process - Wake up a specific process
2722  * @p: The process to be woken up.
2723  *
2724  * Attempt to wake up the nominated process and move it to the set of runnable
2725  * processes.
2726  *
2727  * Return: 1 if the process was woken up, 0 if it was already running.
2728  *
2729  * This function executes a full memory barrier before accessing the task state.
2730  */
2731 int wake_up_process(struct task_struct *p)
2732 {
2733 	return try_to_wake_up(p, TASK_NORMAL, 0);
2734 }
2735 EXPORT_SYMBOL(wake_up_process);
2736 
2737 int wake_up_state(struct task_struct *p, unsigned int state)
2738 {
2739 	return try_to_wake_up(p, state, 0);
2740 }
2741 
2742 /*
2743  * Perform scheduler related setup for a newly forked process p.
2744  * p is forked by current.
2745  *
2746  * __sched_fork() is basic setup used by init_idle() too:
2747  */
2748 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2749 {
2750 	p->on_rq			= 0;
2751 
2752 	p->se.on_rq			= 0;
2753 	p->se.exec_start		= 0;
2754 	p->se.sum_exec_runtime		= 0;
2755 	p->se.prev_sum_exec_runtime	= 0;
2756 	p->se.nr_migrations		= 0;
2757 	p->se.vruntime			= 0;
2758 	INIT_LIST_HEAD(&p->se.group_node);
2759 
2760 #ifdef CONFIG_FAIR_GROUP_SCHED
2761 	p->se.cfs_rq			= NULL;
2762 #endif
2763 
2764 #ifdef CONFIG_SCHEDSTATS
2765 	/* Even if schedstat is disabled, there should not be garbage */
2766 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2767 #endif
2768 
2769 	RB_CLEAR_NODE(&p->dl.rb_node);
2770 	init_dl_task_timer(&p->dl);
2771 	init_dl_inactive_task_timer(&p->dl);
2772 	__dl_clear_params(p);
2773 
2774 	INIT_LIST_HEAD(&p->rt.run_list);
2775 	p->rt.timeout		= 0;
2776 	p->rt.time_slice	= sched_rr_timeslice;
2777 	p->rt.on_rq		= 0;
2778 	p->rt.on_list		= 0;
2779 
2780 #ifdef CONFIG_PREEMPT_NOTIFIERS
2781 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2782 #endif
2783 
2784 #ifdef CONFIG_COMPACTION
2785 	p->capture_control = NULL;
2786 #endif
2787 	init_numa_balancing(clone_flags, p);
2788 #ifdef CONFIG_SMP
2789 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
2790 #endif
2791 }
2792 
2793 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2794 
2795 #ifdef CONFIG_NUMA_BALANCING
2796 
2797 void set_numabalancing_state(bool enabled)
2798 {
2799 	if (enabled)
2800 		static_branch_enable(&sched_numa_balancing);
2801 	else
2802 		static_branch_disable(&sched_numa_balancing);
2803 }
2804 
2805 #ifdef CONFIG_PROC_SYSCTL
2806 int sysctl_numa_balancing(struct ctl_table *table, int write,
2807 			  void *buffer, size_t *lenp, loff_t *ppos)
2808 {
2809 	struct ctl_table t;
2810 	int err;
2811 	int state = static_branch_likely(&sched_numa_balancing);
2812 
2813 	if (write && !capable(CAP_SYS_ADMIN))
2814 		return -EPERM;
2815 
2816 	t = *table;
2817 	t.data = &state;
2818 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2819 	if (err < 0)
2820 		return err;
2821 	if (write)
2822 		set_numabalancing_state(state);
2823 	return err;
2824 }
2825 #endif
2826 #endif
2827 
2828 #ifdef CONFIG_SCHEDSTATS
2829 
2830 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2831 static bool __initdata __sched_schedstats = false;
2832 
2833 static void set_schedstats(bool enabled)
2834 {
2835 	if (enabled)
2836 		static_branch_enable(&sched_schedstats);
2837 	else
2838 		static_branch_disable(&sched_schedstats);
2839 }
2840 
2841 void force_schedstat_enabled(void)
2842 {
2843 	if (!schedstat_enabled()) {
2844 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2845 		static_branch_enable(&sched_schedstats);
2846 	}
2847 }
2848 
2849 static int __init setup_schedstats(char *str)
2850 {
2851 	int ret = 0;
2852 	if (!str)
2853 		goto out;
2854 
2855 	/*
2856 	 * This code is called before jump labels have been set up, so we can't
2857 	 * change the static branch directly just yet.  Instead set a temporary
2858 	 * variable so init_schedstats() can do it later.
2859 	 */
2860 	if (!strcmp(str, "enable")) {
2861 		__sched_schedstats = true;
2862 		ret = 1;
2863 	} else if (!strcmp(str, "disable")) {
2864 		__sched_schedstats = false;
2865 		ret = 1;
2866 	}
2867 out:
2868 	if (!ret)
2869 		pr_warn("Unable to parse schedstats=\n");
2870 
2871 	return ret;
2872 }
2873 __setup("schedstats=", setup_schedstats);
2874 
2875 static void __init init_schedstats(void)
2876 {
2877 	set_schedstats(__sched_schedstats);
2878 }
2879 
2880 #ifdef CONFIG_PROC_SYSCTL
2881 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
2882 		size_t *lenp, loff_t *ppos)
2883 {
2884 	struct ctl_table t;
2885 	int err;
2886 	int state = static_branch_likely(&sched_schedstats);
2887 
2888 	if (write && !capable(CAP_SYS_ADMIN))
2889 		return -EPERM;
2890 
2891 	t = *table;
2892 	t.data = &state;
2893 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2894 	if (err < 0)
2895 		return err;
2896 	if (write)
2897 		set_schedstats(state);
2898 	return err;
2899 }
2900 #endif /* CONFIG_PROC_SYSCTL */
2901 #else  /* !CONFIG_SCHEDSTATS */
2902 static inline void init_schedstats(void) {}
2903 #endif /* CONFIG_SCHEDSTATS */
2904 
2905 /*
2906  * fork()/clone()-time setup:
2907  */
2908 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2909 {
2910 	unsigned long flags;
2911 
2912 	__sched_fork(clone_flags, p);
2913 	/*
2914 	 * We mark the process as NEW here. This guarantees that
2915 	 * nobody will actually run it, and a signal or other external
2916 	 * event cannot wake it up and insert it on the runqueue either.
2917 	 */
2918 	p->state = TASK_NEW;
2919 
2920 	/*
2921 	 * Make sure we do not leak PI boosting priority to the child.
2922 	 */
2923 	p->prio = current->normal_prio;
2924 
2925 	uclamp_fork(p);
2926 
2927 	/*
2928 	 * Revert to default priority/policy on fork if requested.
2929 	 */
2930 	if (unlikely(p->sched_reset_on_fork)) {
2931 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2932 			p->policy = SCHED_NORMAL;
2933 			p->static_prio = NICE_TO_PRIO(0);
2934 			p->rt_priority = 0;
2935 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2936 			p->static_prio = NICE_TO_PRIO(0);
2937 
2938 		p->prio = p->normal_prio = __normal_prio(p);
2939 		set_load_weight(p, false);
2940 
2941 		/*
2942 		 * We don't need the reset flag anymore after the fork. It has
2943 		 * fulfilled its duty:
2944 		 */
2945 		p->sched_reset_on_fork = 0;
2946 	}
2947 
2948 	if (dl_prio(p->prio))
2949 		return -EAGAIN;
2950 	else if (rt_prio(p->prio))
2951 		p->sched_class = &rt_sched_class;
2952 	else
2953 		p->sched_class = &fair_sched_class;
2954 
2955 	init_entity_runnable_average(&p->se);
2956 
2957 	/*
2958 	 * The child is not yet in the pid-hash so no cgroup attach races,
2959 	 * and the cgroup is pinned to this child due to cgroup_fork()
2960 	 * is ran before sched_fork().
2961 	 *
2962 	 * Silence PROVE_RCU.
2963 	 */
2964 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2965 	/*
2966 	 * We're setting the CPU for the first time, we don't migrate,
2967 	 * so use __set_task_cpu().
2968 	 */
2969 	__set_task_cpu(p, smp_processor_id());
2970 	if (p->sched_class->task_fork)
2971 		p->sched_class->task_fork(p);
2972 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2973 
2974 #ifdef CONFIG_SCHED_INFO
2975 	if (likely(sched_info_on()))
2976 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2977 #endif
2978 #if defined(CONFIG_SMP)
2979 	p->on_cpu = 0;
2980 #endif
2981 	init_task_preempt_count(p);
2982 #ifdef CONFIG_SMP
2983 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2984 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2985 #endif
2986 	return 0;
2987 }
2988 
2989 unsigned long to_ratio(u64 period, u64 runtime)
2990 {
2991 	if (runtime == RUNTIME_INF)
2992 		return BW_UNIT;
2993 
2994 	/*
2995 	 * Doing this here saves a lot of checks in all
2996 	 * the calling paths, and returning zero seems
2997 	 * safe for them anyway.
2998 	 */
2999 	if (period == 0)
3000 		return 0;
3001 
3002 	return div64_u64(runtime << BW_SHIFT, period);
3003 }
3004 
3005 /*
3006  * wake_up_new_task - wake up a newly created task for the first time.
3007  *
3008  * This function will do some initial scheduler statistics housekeeping
3009  * that must be done for every newly created context, then puts the task
3010  * on the runqueue and wakes it.
3011  */
3012 void wake_up_new_task(struct task_struct *p)
3013 {
3014 	struct rq_flags rf;
3015 	struct rq *rq;
3016 
3017 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3018 	p->state = TASK_RUNNING;
3019 #ifdef CONFIG_SMP
3020 	/*
3021 	 * Fork balancing, do it here and not earlier because:
3022 	 *  - cpus_ptr can change in the fork path
3023 	 *  - any previously selected CPU might disappear through hotplug
3024 	 *
3025 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3026 	 * as we're not fully set-up yet.
3027 	 */
3028 	p->recent_used_cpu = task_cpu(p);
3029 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3030 #endif
3031 	rq = __task_rq_lock(p, &rf);
3032 	update_rq_clock(rq);
3033 	post_init_entity_util_avg(p);
3034 
3035 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3036 	trace_sched_wakeup_new(p);
3037 	check_preempt_curr(rq, p, WF_FORK);
3038 #ifdef CONFIG_SMP
3039 	if (p->sched_class->task_woken) {
3040 		/*
3041 		 * Nothing relies on rq->lock after this, so its fine to
3042 		 * drop it.
3043 		 */
3044 		rq_unpin_lock(rq, &rf);
3045 		p->sched_class->task_woken(rq, p);
3046 		rq_repin_lock(rq, &rf);
3047 	}
3048 #endif
3049 	task_rq_unlock(rq, p, &rf);
3050 }
3051 
3052 #ifdef CONFIG_PREEMPT_NOTIFIERS
3053 
3054 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3055 
3056 void preempt_notifier_inc(void)
3057 {
3058 	static_branch_inc(&preempt_notifier_key);
3059 }
3060 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3061 
3062 void preempt_notifier_dec(void)
3063 {
3064 	static_branch_dec(&preempt_notifier_key);
3065 }
3066 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3067 
3068 /**
3069  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3070  * @notifier: notifier struct to register
3071  */
3072 void preempt_notifier_register(struct preempt_notifier *notifier)
3073 {
3074 	if (!static_branch_unlikely(&preempt_notifier_key))
3075 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3076 
3077 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3078 }
3079 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3080 
3081 /**
3082  * preempt_notifier_unregister - no longer interested in preemption notifications
3083  * @notifier: notifier struct to unregister
3084  *
3085  * This is *not* safe to call from within a preemption notifier.
3086  */
3087 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3088 {
3089 	hlist_del(&notifier->link);
3090 }
3091 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3092 
3093 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3094 {
3095 	struct preempt_notifier *notifier;
3096 
3097 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3098 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3099 }
3100 
3101 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3102 {
3103 	if (static_branch_unlikely(&preempt_notifier_key))
3104 		__fire_sched_in_preempt_notifiers(curr);
3105 }
3106 
3107 static void
3108 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3109 				   struct task_struct *next)
3110 {
3111 	struct preempt_notifier *notifier;
3112 
3113 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3114 		notifier->ops->sched_out(notifier, next);
3115 }
3116 
3117 static __always_inline void
3118 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3119 				 struct task_struct *next)
3120 {
3121 	if (static_branch_unlikely(&preempt_notifier_key))
3122 		__fire_sched_out_preempt_notifiers(curr, next);
3123 }
3124 
3125 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3126 
3127 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3128 {
3129 }
3130 
3131 static inline void
3132 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3133 				 struct task_struct *next)
3134 {
3135 }
3136 
3137 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3138 
3139 static inline void prepare_task(struct task_struct *next)
3140 {
3141 #ifdef CONFIG_SMP
3142 	/*
3143 	 * Claim the task as running, we do this before switching to it
3144 	 * such that any running task will have this set.
3145 	 */
3146 	next->on_cpu = 1;
3147 #endif
3148 }
3149 
3150 static inline void finish_task(struct task_struct *prev)
3151 {
3152 #ifdef CONFIG_SMP
3153 	/*
3154 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3155 	 * We must ensure this doesn't happen until the switch is completely
3156 	 * finished.
3157 	 *
3158 	 * In particular, the load of prev->state in finish_task_switch() must
3159 	 * happen before this.
3160 	 *
3161 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3162 	 */
3163 	smp_store_release(&prev->on_cpu, 0);
3164 #endif
3165 }
3166 
3167 static inline void
3168 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3169 {
3170 	/*
3171 	 * Since the runqueue lock will be released by the next
3172 	 * task (which is an invalid locking op but in the case
3173 	 * of the scheduler it's an obvious special-case), so we
3174 	 * do an early lockdep release here:
3175 	 */
3176 	rq_unpin_lock(rq, rf);
3177 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3178 #ifdef CONFIG_DEBUG_SPINLOCK
3179 	/* this is a valid case when another task releases the spinlock */
3180 	rq->lock.owner = next;
3181 #endif
3182 }
3183 
3184 static inline void finish_lock_switch(struct rq *rq)
3185 {
3186 	/*
3187 	 * If we are tracking spinlock dependencies then we have to
3188 	 * fix up the runqueue lock - which gets 'carried over' from
3189 	 * prev into current:
3190 	 */
3191 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3192 	raw_spin_unlock_irq(&rq->lock);
3193 }
3194 
3195 /*
3196  * NOP if the arch has not defined these:
3197  */
3198 
3199 #ifndef prepare_arch_switch
3200 # define prepare_arch_switch(next)	do { } while (0)
3201 #endif
3202 
3203 #ifndef finish_arch_post_lock_switch
3204 # define finish_arch_post_lock_switch()	do { } while (0)
3205 #endif
3206 
3207 /**
3208  * prepare_task_switch - prepare to switch tasks
3209  * @rq: the runqueue preparing to switch
3210  * @prev: the current task that is being switched out
3211  * @next: the task we are going to switch to.
3212  *
3213  * This is called with the rq lock held and interrupts off. It must
3214  * be paired with a subsequent finish_task_switch after the context
3215  * switch.
3216  *
3217  * prepare_task_switch sets up locking and calls architecture specific
3218  * hooks.
3219  */
3220 static inline void
3221 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3222 		    struct task_struct *next)
3223 {
3224 	kcov_prepare_switch(prev);
3225 	sched_info_switch(rq, prev, next);
3226 	perf_event_task_sched_out(prev, next);
3227 	rseq_preempt(prev);
3228 	fire_sched_out_preempt_notifiers(prev, next);
3229 	prepare_task(next);
3230 	prepare_arch_switch(next);
3231 }
3232 
3233 /**
3234  * finish_task_switch - clean up after a task-switch
3235  * @prev: the thread we just switched away from.
3236  *
3237  * finish_task_switch must be called after the context switch, paired
3238  * with a prepare_task_switch call before the context switch.
3239  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3240  * and do any other architecture-specific cleanup actions.
3241  *
3242  * Note that we may have delayed dropping an mm in context_switch(). If
3243  * so, we finish that here outside of the runqueue lock. (Doing it
3244  * with the lock held can cause deadlocks; see schedule() for
3245  * details.)
3246  *
3247  * The context switch have flipped the stack from under us and restored the
3248  * local variables which were saved when this task called schedule() in the
3249  * past. prev == current is still correct but we need to recalculate this_rq
3250  * because prev may have moved to another CPU.
3251  */
3252 static struct rq *finish_task_switch(struct task_struct *prev)
3253 	__releases(rq->lock)
3254 {
3255 	struct rq *rq = this_rq();
3256 	struct mm_struct *mm = rq->prev_mm;
3257 	long prev_state;
3258 
3259 	/*
3260 	 * The previous task will have left us with a preempt_count of 2
3261 	 * because it left us after:
3262 	 *
3263 	 *	schedule()
3264 	 *	  preempt_disable();			// 1
3265 	 *	  __schedule()
3266 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3267 	 *
3268 	 * Also, see FORK_PREEMPT_COUNT.
3269 	 */
3270 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3271 		      "corrupted preempt_count: %s/%d/0x%x\n",
3272 		      current->comm, current->pid, preempt_count()))
3273 		preempt_count_set(FORK_PREEMPT_COUNT);
3274 
3275 	rq->prev_mm = NULL;
3276 
3277 	/*
3278 	 * A task struct has one reference for the use as "current".
3279 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3280 	 * schedule one last time. The schedule call will never return, and
3281 	 * the scheduled task must drop that reference.
3282 	 *
3283 	 * We must observe prev->state before clearing prev->on_cpu (in
3284 	 * finish_task), otherwise a concurrent wakeup can get prev
3285 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3286 	 * transition, resulting in a double drop.
3287 	 */
3288 	prev_state = prev->state;
3289 	vtime_task_switch(prev);
3290 	perf_event_task_sched_in(prev, current);
3291 	finish_task(prev);
3292 	finish_lock_switch(rq);
3293 	finish_arch_post_lock_switch();
3294 	kcov_finish_switch(current);
3295 
3296 	fire_sched_in_preempt_notifiers(current);
3297 	/*
3298 	 * When switching through a kernel thread, the loop in
3299 	 * membarrier_{private,global}_expedited() may have observed that
3300 	 * kernel thread and not issued an IPI. It is therefore possible to
3301 	 * schedule between user->kernel->user threads without passing though
3302 	 * switch_mm(). Membarrier requires a barrier after storing to
3303 	 * rq->curr, before returning to userspace, so provide them here:
3304 	 *
3305 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3306 	 *   provided by mmdrop(),
3307 	 * - a sync_core for SYNC_CORE.
3308 	 */
3309 	if (mm) {
3310 		membarrier_mm_sync_core_before_usermode(mm);
3311 		mmdrop(mm);
3312 	}
3313 	if (unlikely(prev_state == TASK_DEAD)) {
3314 		if (prev->sched_class->task_dead)
3315 			prev->sched_class->task_dead(prev);
3316 
3317 		/*
3318 		 * Remove function-return probe instances associated with this
3319 		 * task and put them back on the free list.
3320 		 */
3321 		kprobe_flush_task(prev);
3322 
3323 		/* Task is done with its stack. */
3324 		put_task_stack(prev);
3325 
3326 		put_task_struct_rcu_user(prev);
3327 	}
3328 
3329 	tick_nohz_task_switch();
3330 	return rq;
3331 }
3332 
3333 #ifdef CONFIG_SMP
3334 
3335 /* rq->lock is NOT held, but preemption is disabled */
3336 static void __balance_callback(struct rq *rq)
3337 {
3338 	struct callback_head *head, *next;
3339 	void (*func)(struct rq *rq);
3340 	unsigned long flags;
3341 
3342 	raw_spin_lock_irqsave(&rq->lock, flags);
3343 	head = rq->balance_callback;
3344 	rq->balance_callback = NULL;
3345 	while (head) {
3346 		func = (void (*)(struct rq *))head->func;
3347 		next = head->next;
3348 		head->next = NULL;
3349 		head = next;
3350 
3351 		func(rq);
3352 	}
3353 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3354 }
3355 
3356 static inline void balance_callback(struct rq *rq)
3357 {
3358 	if (unlikely(rq->balance_callback))
3359 		__balance_callback(rq);
3360 }
3361 
3362 #else
3363 
3364 static inline void balance_callback(struct rq *rq)
3365 {
3366 }
3367 
3368 #endif
3369 
3370 /**
3371  * schedule_tail - first thing a freshly forked thread must call.
3372  * @prev: the thread we just switched away from.
3373  */
3374 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3375 	__releases(rq->lock)
3376 {
3377 	struct rq *rq;
3378 
3379 	/*
3380 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3381 	 * finish_task_switch() for details.
3382 	 *
3383 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3384 	 * and the preempt_enable() will end up enabling preemption (on
3385 	 * PREEMPT_COUNT kernels).
3386 	 */
3387 
3388 	rq = finish_task_switch(prev);
3389 	balance_callback(rq);
3390 	preempt_enable();
3391 
3392 	if (current->set_child_tid)
3393 		put_user(task_pid_vnr(current), current->set_child_tid);
3394 
3395 	calculate_sigpending();
3396 }
3397 
3398 /*
3399  * context_switch - switch to the new MM and the new thread's register state.
3400  */
3401 static __always_inline struct rq *
3402 context_switch(struct rq *rq, struct task_struct *prev,
3403 	       struct task_struct *next, struct rq_flags *rf)
3404 {
3405 	prepare_task_switch(rq, prev, next);
3406 
3407 	/*
3408 	 * For paravirt, this is coupled with an exit in switch_to to
3409 	 * combine the page table reload and the switch backend into
3410 	 * one hypercall.
3411 	 */
3412 	arch_start_context_switch(prev);
3413 
3414 	/*
3415 	 * kernel -> kernel   lazy + transfer active
3416 	 *   user -> kernel   lazy + mmgrab() active
3417 	 *
3418 	 * kernel ->   user   switch + mmdrop() active
3419 	 *   user ->   user   switch
3420 	 */
3421 	if (!next->mm) {                                // to kernel
3422 		enter_lazy_tlb(prev->active_mm, next);
3423 
3424 		next->active_mm = prev->active_mm;
3425 		if (prev->mm)                           // from user
3426 			mmgrab(prev->active_mm);
3427 		else
3428 			prev->active_mm = NULL;
3429 	} else {                                        // to user
3430 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3431 		/*
3432 		 * sys_membarrier() requires an smp_mb() between setting
3433 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3434 		 *
3435 		 * The below provides this either through switch_mm(), or in
3436 		 * case 'prev->active_mm == next->mm' through
3437 		 * finish_task_switch()'s mmdrop().
3438 		 */
3439 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3440 
3441 		if (!prev->mm) {                        // from kernel
3442 			/* will mmdrop() in finish_task_switch(). */
3443 			rq->prev_mm = prev->active_mm;
3444 			prev->active_mm = NULL;
3445 		}
3446 	}
3447 
3448 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3449 
3450 	prepare_lock_switch(rq, next, rf);
3451 
3452 	/* Here we just switch the register state and the stack. */
3453 	switch_to(prev, next, prev);
3454 	barrier();
3455 
3456 	return finish_task_switch(prev);
3457 }
3458 
3459 /*
3460  * nr_running and nr_context_switches:
3461  *
3462  * externally visible scheduler statistics: current number of runnable
3463  * threads, total number of context switches performed since bootup.
3464  */
3465 unsigned long nr_running(void)
3466 {
3467 	unsigned long i, sum = 0;
3468 
3469 	for_each_online_cpu(i)
3470 		sum += cpu_rq(i)->nr_running;
3471 
3472 	return sum;
3473 }
3474 
3475 /*
3476  * Check if only the current task is running on the CPU.
3477  *
3478  * Caution: this function does not check that the caller has disabled
3479  * preemption, thus the result might have a time-of-check-to-time-of-use
3480  * race.  The caller is responsible to use it correctly, for example:
3481  *
3482  * - from a non-preemptible section (of course)
3483  *
3484  * - from a thread that is bound to a single CPU
3485  *
3486  * - in a loop with very short iterations (e.g. a polling loop)
3487  */
3488 bool single_task_running(void)
3489 {
3490 	return raw_rq()->nr_running == 1;
3491 }
3492 EXPORT_SYMBOL(single_task_running);
3493 
3494 unsigned long long nr_context_switches(void)
3495 {
3496 	int i;
3497 	unsigned long long sum = 0;
3498 
3499 	for_each_possible_cpu(i)
3500 		sum += cpu_rq(i)->nr_switches;
3501 
3502 	return sum;
3503 }
3504 
3505 /*
3506  * Consumers of these two interfaces, like for example the cpuidle menu
3507  * governor, are using nonsensical data. Preferring shallow idle state selection
3508  * for a CPU that has IO-wait which might not even end up running the task when
3509  * it does become runnable.
3510  */
3511 
3512 unsigned long nr_iowait_cpu(int cpu)
3513 {
3514 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3515 }
3516 
3517 /*
3518  * IO-wait accounting, and how its mostly bollocks (on SMP).
3519  *
3520  * The idea behind IO-wait account is to account the idle time that we could
3521  * have spend running if it were not for IO. That is, if we were to improve the
3522  * storage performance, we'd have a proportional reduction in IO-wait time.
3523  *
3524  * This all works nicely on UP, where, when a task blocks on IO, we account
3525  * idle time as IO-wait, because if the storage were faster, it could've been
3526  * running and we'd not be idle.
3527  *
3528  * This has been extended to SMP, by doing the same for each CPU. This however
3529  * is broken.
3530  *
3531  * Imagine for instance the case where two tasks block on one CPU, only the one
3532  * CPU will have IO-wait accounted, while the other has regular idle. Even
3533  * though, if the storage were faster, both could've ran at the same time,
3534  * utilising both CPUs.
3535  *
3536  * This means, that when looking globally, the current IO-wait accounting on
3537  * SMP is a lower bound, by reason of under accounting.
3538  *
3539  * Worse, since the numbers are provided per CPU, they are sometimes
3540  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3541  * associated with any one particular CPU, it can wake to another CPU than it
3542  * blocked on. This means the per CPU IO-wait number is meaningless.
3543  *
3544  * Task CPU affinities can make all that even more 'interesting'.
3545  */
3546 
3547 unsigned long nr_iowait(void)
3548 {
3549 	unsigned long i, sum = 0;
3550 
3551 	for_each_possible_cpu(i)
3552 		sum += nr_iowait_cpu(i);
3553 
3554 	return sum;
3555 }
3556 
3557 #ifdef CONFIG_SMP
3558 
3559 /*
3560  * sched_exec - execve() is a valuable balancing opportunity, because at
3561  * this point the task has the smallest effective memory and cache footprint.
3562  */
3563 void sched_exec(void)
3564 {
3565 	struct task_struct *p = current;
3566 	unsigned long flags;
3567 	int dest_cpu;
3568 
3569 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3570 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3571 	if (dest_cpu == smp_processor_id())
3572 		goto unlock;
3573 
3574 	if (likely(cpu_active(dest_cpu))) {
3575 		struct migration_arg arg = { p, dest_cpu };
3576 
3577 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3578 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3579 		return;
3580 	}
3581 unlock:
3582 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3583 }
3584 
3585 #endif
3586 
3587 DEFINE_PER_CPU(struct kernel_stat, kstat);
3588 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3589 
3590 EXPORT_PER_CPU_SYMBOL(kstat);
3591 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3592 
3593 /*
3594  * The function fair_sched_class.update_curr accesses the struct curr
3595  * and its field curr->exec_start; when called from task_sched_runtime(),
3596  * we observe a high rate of cache misses in practice.
3597  * Prefetching this data results in improved performance.
3598  */
3599 static inline void prefetch_curr_exec_start(struct task_struct *p)
3600 {
3601 #ifdef CONFIG_FAIR_GROUP_SCHED
3602 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3603 #else
3604 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3605 #endif
3606 	prefetch(curr);
3607 	prefetch(&curr->exec_start);
3608 }
3609 
3610 /*
3611  * Return accounted runtime for the task.
3612  * In case the task is currently running, return the runtime plus current's
3613  * pending runtime that have not been accounted yet.
3614  */
3615 unsigned long long task_sched_runtime(struct task_struct *p)
3616 {
3617 	struct rq_flags rf;
3618 	struct rq *rq;
3619 	u64 ns;
3620 
3621 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3622 	/*
3623 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3624 	 * So we have a optimization chance when the task's delta_exec is 0.
3625 	 * Reading ->on_cpu is racy, but this is ok.
3626 	 *
3627 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3628 	 * If we race with it entering CPU, unaccounted time is 0. This is
3629 	 * indistinguishable from the read occurring a few cycles earlier.
3630 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3631 	 * been accounted, so we're correct here as well.
3632 	 */
3633 	if (!p->on_cpu || !task_on_rq_queued(p))
3634 		return p->se.sum_exec_runtime;
3635 #endif
3636 
3637 	rq = task_rq_lock(p, &rf);
3638 	/*
3639 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3640 	 * project cycles that may never be accounted to this
3641 	 * thread, breaking clock_gettime().
3642 	 */
3643 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3644 		prefetch_curr_exec_start(p);
3645 		update_rq_clock(rq);
3646 		p->sched_class->update_curr(rq);
3647 	}
3648 	ns = p->se.sum_exec_runtime;
3649 	task_rq_unlock(rq, p, &rf);
3650 
3651 	return ns;
3652 }
3653 
3654 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3655 
3656 void arch_set_thermal_pressure(struct cpumask *cpus,
3657 			       unsigned long th_pressure)
3658 {
3659 	int cpu;
3660 
3661 	for_each_cpu(cpu, cpus)
3662 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3663 }
3664 
3665 /*
3666  * This function gets called by the timer code, with HZ frequency.
3667  * We call it with interrupts disabled.
3668  */
3669 void scheduler_tick(void)
3670 {
3671 	int cpu = smp_processor_id();
3672 	struct rq *rq = cpu_rq(cpu);
3673 	struct task_struct *curr = rq->curr;
3674 	struct rq_flags rf;
3675 	unsigned long thermal_pressure;
3676 
3677 	arch_scale_freq_tick();
3678 	sched_clock_tick();
3679 
3680 	rq_lock(rq, &rf);
3681 
3682 	update_rq_clock(rq);
3683 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3684 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3685 	curr->sched_class->task_tick(rq, curr, 0);
3686 	calc_global_load_tick(rq);
3687 	psi_task_tick(rq);
3688 
3689 	rq_unlock(rq, &rf);
3690 
3691 	perf_event_task_tick();
3692 
3693 #ifdef CONFIG_SMP
3694 	rq->idle_balance = idle_cpu(cpu);
3695 	trigger_load_balance(rq);
3696 #endif
3697 }
3698 
3699 #ifdef CONFIG_NO_HZ_FULL
3700 
3701 struct tick_work {
3702 	int			cpu;
3703 	atomic_t		state;
3704 	struct delayed_work	work;
3705 };
3706 /* Values for ->state, see diagram below. */
3707 #define TICK_SCHED_REMOTE_OFFLINE	0
3708 #define TICK_SCHED_REMOTE_OFFLINING	1
3709 #define TICK_SCHED_REMOTE_RUNNING	2
3710 
3711 /*
3712  * State diagram for ->state:
3713  *
3714  *
3715  *          TICK_SCHED_REMOTE_OFFLINE
3716  *                    |   ^
3717  *                    |   |
3718  *                    |   | sched_tick_remote()
3719  *                    |   |
3720  *                    |   |
3721  *                    +--TICK_SCHED_REMOTE_OFFLINING
3722  *                    |   ^
3723  *                    |   |
3724  * sched_tick_start() |   | sched_tick_stop()
3725  *                    |   |
3726  *                    V   |
3727  *          TICK_SCHED_REMOTE_RUNNING
3728  *
3729  *
3730  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3731  * and sched_tick_start() are happy to leave the state in RUNNING.
3732  */
3733 
3734 static struct tick_work __percpu *tick_work_cpu;
3735 
3736 static void sched_tick_remote(struct work_struct *work)
3737 {
3738 	struct delayed_work *dwork = to_delayed_work(work);
3739 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3740 	int cpu = twork->cpu;
3741 	struct rq *rq = cpu_rq(cpu);
3742 	struct task_struct *curr;
3743 	struct rq_flags rf;
3744 	u64 delta;
3745 	int os;
3746 
3747 	/*
3748 	 * Handle the tick only if it appears the remote CPU is running in full
3749 	 * dynticks mode. The check is racy by nature, but missing a tick or
3750 	 * having one too much is no big deal because the scheduler tick updates
3751 	 * statistics and checks timeslices in a time-independent way, regardless
3752 	 * of when exactly it is running.
3753 	 */
3754 	if (!tick_nohz_tick_stopped_cpu(cpu))
3755 		goto out_requeue;
3756 
3757 	rq_lock_irq(rq, &rf);
3758 	curr = rq->curr;
3759 	if (cpu_is_offline(cpu))
3760 		goto out_unlock;
3761 
3762 	update_rq_clock(rq);
3763 
3764 	if (!is_idle_task(curr)) {
3765 		/*
3766 		 * Make sure the next tick runs within a reasonable
3767 		 * amount of time.
3768 		 */
3769 		delta = rq_clock_task(rq) - curr->se.exec_start;
3770 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3771 	}
3772 	curr->sched_class->task_tick(rq, curr, 0);
3773 
3774 	calc_load_nohz_remote(rq);
3775 out_unlock:
3776 	rq_unlock_irq(rq, &rf);
3777 out_requeue:
3778 
3779 	/*
3780 	 * Run the remote tick once per second (1Hz). This arbitrary
3781 	 * frequency is large enough to avoid overload but short enough
3782 	 * to keep scheduler internal stats reasonably up to date.  But
3783 	 * first update state to reflect hotplug activity if required.
3784 	 */
3785 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3786 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3787 	if (os == TICK_SCHED_REMOTE_RUNNING)
3788 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3789 }
3790 
3791 static void sched_tick_start(int cpu)
3792 {
3793 	int os;
3794 	struct tick_work *twork;
3795 
3796 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3797 		return;
3798 
3799 	WARN_ON_ONCE(!tick_work_cpu);
3800 
3801 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3802 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3803 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3804 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3805 		twork->cpu = cpu;
3806 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3807 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3808 	}
3809 }
3810 
3811 #ifdef CONFIG_HOTPLUG_CPU
3812 static void sched_tick_stop(int cpu)
3813 {
3814 	struct tick_work *twork;
3815 	int os;
3816 
3817 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3818 		return;
3819 
3820 	WARN_ON_ONCE(!tick_work_cpu);
3821 
3822 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3823 	/* There cannot be competing actions, but don't rely on stop-machine. */
3824 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3825 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3826 	/* Don't cancel, as this would mess up the state machine. */
3827 }
3828 #endif /* CONFIG_HOTPLUG_CPU */
3829 
3830 int __init sched_tick_offload_init(void)
3831 {
3832 	tick_work_cpu = alloc_percpu(struct tick_work);
3833 	BUG_ON(!tick_work_cpu);
3834 	return 0;
3835 }
3836 
3837 #else /* !CONFIG_NO_HZ_FULL */
3838 static inline void sched_tick_start(int cpu) { }
3839 static inline void sched_tick_stop(int cpu) { }
3840 #endif
3841 
3842 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3843 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3844 /*
3845  * If the value passed in is equal to the current preempt count
3846  * then we just disabled preemption. Start timing the latency.
3847  */
3848 static inline void preempt_latency_start(int val)
3849 {
3850 	if (preempt_count() == val) {
3851 		unsigned long ip = get_lock_parent_ip();
3852 #ifdef CONFIG_DEBUG_PREEMPT
3853 		current->preempt_disable_ip = ip;
3854 #endif
3855 		trace_preempt_off(CALLER_ADDR0, ip);
3856 	}
3857 }
3858 
3859 void preempt_count_add(int val)
3860 {
3861 #ifdef CONFIG_DEBUG_PREEMPT
3862 	/*
3863 	 * Underflow?
3864 	 */
3865 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3866 		return;
3867 #endif
3868 	__preempt_count_add(val);
3869 #ifdef CONFIG_DEBUG_PREEMPT
3870 	/*
3871 	 * Spinlock count overflowing soon?
3872 	 */
3873 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3874 				PREEMPT_MASK - 10);
3875 #endif
3876 	preempt_latency_start(val);
3877 }
3878 EXPORT_SYMBOL(preempt_count_add);
3879 NOKPROBE_SYMBOL(preempt_count_add);
3880 
3881 /*
3882  * If the value passed in equals to the current preempt count
3883  * then we just enabled preemption. Stop timing the latency.
3884  */
3885 static inline void preempt_latency_stop(int val)
3886 {
3887 	if (preempt_count() == val)
3888 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3889 }
3890 
3891 void preempt_count_sub(int val)
3892 {
3893 #ifdef CONFIG_DEBUG_PREEMPT
3894 	/*
3895 	 * Underflow?
3896 	 */
3897 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3898 		return;
3899 	/*
3900 	 * Is the spinlock portion underflowing?
3901 	 */
3902 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3903 			!(preempt_count() & PREEMPT_MASK)))
3904 		return;
3905 #endif
3906 
3907 	preempt_latency_stop(val);
3908 	__preempt_count_sub(val);
3909 }
3910 EXPORT_SYMBOL(preempt_count_sub);
3911 NOKPROBE_SYMBOL(preempt_count_sub);
3912 
3913 #else
3914 static inline void preempt_latency_start(int val) { }
3915 static inline void preempt_latency_stop(int val) { }
3916 #endif
3917 
3918 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3919 {
3920 #ifdef CONFIG_DEBUG_PREEMPT
3921 	return p->preempt_disable_ip;
3922 #else
3923 	return 0;
3924 #endif
3925 }
3926 
3927 /*
3928  * Print scheduling while atomic bug:
3929  */
3930 static noinline void __schedule_bug(struct task_struct *prev)
3931 {
3932 	/* Save this before calling printk(), since that will clobber it */
3933 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3934 
3935 	if (oops_in_progress)
3936 		return;
3937 
3938 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3939 		prev->comm, prev->pid, preempt_count());
3940 
3941 	debug_show_held_locks(prev);
3942 	print_modules();
3943 	if (irqs_disabled())
3944 		print_irqtrace_events(prev);
3945 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3946 	    && in_atomic_preempt_off()) {
3947 		pr_err("Preemption disabled at:");
3948 		print_ip_sym(KERN_ERR, preempt_disable_ip);
3949 	}
3950 	if (panic_on_warn)
3951 		panic("scheduling while atomic\n");
3952 
3953 	dump_stack();
3954 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3955 }
3956 
3957 /*
3958  * Various schedule()-time debugging checks and statistics:
3959  */
3960 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3961 {
3962 #ifdef CONFIG_SCHED_STACK_END_CHECK
3963 	if (task_stack_end_corrupted(prev))
3964 		panic("corrupted stack end detected inside scheduler\n");
3965 
3966 	if (task_scs_end_corrupted(prev))
3967 		panic("corrupted shadow stack detected inside scheduler\n");
3968 #endif
3969 
3970 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3971 	if (!preempt && prev->state && prev->non_block_count) {
3972 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3973 			prev->comm, prev->pid, prev->non_block_count);
3974 		dump_stack();
3975 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3976 	}
3977 #endif
3978 
3979 	if (unlikely(in_atomic_preempt_off())) {
3980 		__schedule_bug(prev);
3981 		preempt_count_set(PREEMPT_DISABLED);
3982 	}
3983 	rcu_sleep_check();
3984 
3985 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3986 
3987 	schedstat_inc(this_rq()->sched_count);
3988 }
3989 
3990 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3991 				  struct rq_flags *rf)
3992 {
3993 #ifdef CONFIG_SMP
3994 	const struct sched_class *class;
3995 	/*
3996 	 * We must do the balancing pass before put_prev_task(), such
3997 	 * that when we release the rq->lock the task is in the same
3998 	 * state as before we took rq->lock.
3999 	 *
4000 	 * We can terminate the balance pass as soon as we know there is
4001 	 * a runnable task of @class priority or higher.
4002 	 */
4003 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4004 		if (class->balance(rq, prev, rf))
4005 			break;
4006 	}
4007 #endif
4008 
4009 	put_prev_task(rq, prev);
4010 }
4011 
4012 /*
4013  * Pick up the highest-prio task:
4014  */
4015 static inline struct task_struct *
4016 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4017 {
4018 	const struct sched_class *class;
4019 	struct task_struct *p;
4020 
4021 	/*
4022 	 * Optimization: we know that if all tasks are in the fair class we can
4023 	 * call that function directly, but only if the @prev task wasn't of a
4024 	 * higher scheduling class, because otherwise those loose the
4025 	 * opportunity to pull in more work from other CPUs.
4026 	 */
4027 	if (likely((prev->sched_class == &idle_sched_class ||
4028 		    prev->sched_class == &fair_sched_class) &&
4029 		   rq->nr_running == rq->cfs.h_nr_running)) {
4030 
4031 		p = pick_next_task_fair(rq, prev, rf);
4032 		if (unlikely(p == RETRY_TASK))
4033 			goto restart;
4034 
4035 		/* Assumes fair_sched_class->next == idle_sched_class */
4036 		if (!p) {
4037 			put_prev_task(rq, prev);
4038 			p = pick_next_task_idle(rq);
4039 		}
4040 
4041 		return p;
4042 	}
4043 
4044 restart:
4045 	put_prev_task_balance(rq, prev, rf);
4046 
4047 	for_each_class(class) {
4048 		p = class->pick_next_task(rq);
4049 		if (p)
4050 			return p;
4051 	}
4052 
4053 	/* The idle class should always have a runnable task: */
4054 	BUG();
4055 }
4056 
4057 /*
4058  * __schedule() is the main scheduler function.
4059  *
4060  * The main means of driving the scheduler and thus entering this function are:
4061  *
4062  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4063  *
4064  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4065  *      paths. For example, see arch/x86/entry_64.S.
4066  *
4067  *      To drive preemption between tasks, the scheduler sets the flag in timer
4068  *      interrupt handler scheduler_tick().
4069  *
4070  *   3. Wakeups don't really cause entry into schedule(). They add a
4071  *      task to the run-queue and that's it.
4072  *
4073  *      Now, if the new task added to the run-queue preempts the current
4074  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4075  *      called on the nearest possible occasion:
4076  *
4077  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4078  *
4079  *         - in syscall or exception context, at the next outmost
4080  *           preempt_enable(). (this might be as soon as the wake_up()'s
4081  *           spin_unlock()!)
4082  *
4083  *         - in IRQ context, return from interrupt-handler to
4084  *           preemptible context
4085  *
4086  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4087  *         then at the next:
4088  *
4089  *          - cond_resched() call
4090  *          - explicit schedule() call
4091  *          - return from syscall or exception to user-space
4092  *          - return from interrupt-handler to user-space
4093  *
4094  * WARNING: must be called with preemption disabled!
4095  */
4096 static void __sched notrace __schedule(bool preempt)
4097 {
4098 	struct task_struct *prev, *next;
4099 	unsigned long *switch_count;
4100 	struct rq_flags rf;
4101 	struct rq *rq;
4102 	int cpu;
4103 
4104 	cpu = smp_processor_id();
4105 	rq = cpu_rq(cpu);
4106 	prev = rq->curr;
4107 
4108 	schedule_debug(prev, preempt);
4109 
4110 	if (sched_feat(HRTICK))
4111 		hrtick_clear(rq);
4112 
4113 	local_irq_disable();
4114 	rcu_note_context_switch(preempt);
4115 
4116 	/*
4117 	 * Make sure that signal_pending_state()->signal_pending() below
4118 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4119 	 * done by the caller to avoid the race with signal_wake_up().
4120 	 *
4121 	 * The membarrier system call requires a full memory barrier
4122 	 * after coming from user-space, before storing to rq->curr.
4123 	 */
4124 	rq_lock(rq, &rf);
4125 	smp_mb__after_spinlock();
4126 
4127 	/* Promote REQ to ACT */
4128 	rq->clock_update_flags <<= 1;
4129 	update_rq_clock(rq);
4130 
4131 	switch_count = &prev->nivcsw;
4132 	if (!preempt && prev->state) {
4133 		if (signal_pending_state(prev->state, prev)) {
4134 			prev->state = TASK_RUNNING;
4135 		} else {
4136 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4137 
4138 			if (prev->in_iowait) {
4139 				atomic_inc(&rq->nr_iowait);
4140 				delayacct_blkio_start();
4141 			}
4142 		}
4143 		switch_count = &prev->nvcsw;
4144 	}
4145 
4146 	next = pick_next_task(rq, prev, &rf);
4147 	clear_tsk_need_resched(prev);
4148 	clear_preempt_need_resched();
4149 
4150 	if (likely(prev != next)) {
4151 		rq->nr_switches++;
4152 		/*
4153 		 * RCU users of rcu_dereference(rq->curr) may not see
4154 		 * changes to task_struct made by pick_next_task().
4155 		 */
4156 		RCU_INIT_POINTER(rq->curr, next);
4157 		/*
4158 		 * The membarrier system call requires each architecture
4159 		 * to have a full memory barrier after updating
4160 		 * rq->curr, before returning to user-space.
4161 		 *
4162 		 * Here are the schemes providing that barrier on the
4163 		 * various architectures:
4164 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4165 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4166 		 * - finish_lock_switch() for weakly-ordered
4167 		 *   architectures where spin_unlock is a full barrier,
4168 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4169 		 *   is a RELEASE barrier),
4170 		 */
4171 		++*switch_count;
4172 
4173 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4174 
4175 		trace_sched_switch(preempt, prev, next);
4176 
4177 		/* Also unlocks the rq: */
4178 		rq = context_switch(rq, prev, next, &rf);
4179 	} else {
4180 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4181 		rq_unlock_irq(rq, &rf);
4182 	}
4183 
4184 	balance_callback(rq);
4185 }
4186 
4187 void __noreturn do_task_dead(void)
4188 {
4189 	/* Causes final put_task_struct in finish_task_switch(): */
4190 	set_special_state(TASK_DEAD);
4191 
4192 	/* Tell freezer to ignore us: */
4193 	current->flags |= PF_NOFREEZE;
4194 
4195 	__schedule(false);
4196 	BUG();
4197 
4198 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4199 	for (;;)
4200 		cpu_relax();
4201 }
4202 
4203 static inline void sched_submit_work(struct task_struct *tsk)
4204 {
4205 	if (!tsk->state)
4206 		return;
4207 
4208 	/*
4209 	 * If a worker went to sleep, notify and ask workqueue whether
4210 	 * it wants to wake up a task to maintain concurrency.
4211 	 * As this function is called inside the schedule() context,
4212 	 * we disable preemption to avoid it calling schedule() again
4213 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4214 	 * requires it.
4215 	 */
4216 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4217 		preempt_disable();
4218 		if (tsk->flags & PF_WQ_WORKER)
4219 			wq_worker_sleeping(tsk);
4220 		else
4221 			io_wq_worker_sleeping(tsk);
4222 		preempt_enable_no_resched();
4223 	}
4224 
4225 	if (tsk_is_pi_blocked(tsk))
4226 		return;
4227 
4228 	/*
4229 	 * If we are going to sleep and we have plugged IO queued,
4230 	 * make sure to submit it to avoid deadlocks.
4231 	 */
4232 	if (blk_needs_flush_plug(tsk))
4233 		blk_schedule_flush_plug(tsk);
4234 }
4235 
4236 static void sched_update_worker(struct task_struct *tsk)
4237 {
4238 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4239 		if (tsk->flags & PF_WQ_WORKER)
4240 			wq_worker_running(tsk);
4241 		else
4242 			io_wq_worker_running(tsk);
4243 	}
4244 }
4245 
4246 asmlinkage __visible void __sched schedule(void)
4247 {
4248 	struct task_struct *tsk = current;
4249 
4250 	sched_submit_work(tsk);
4251 	do {
4252 		preempt_disable();
4253 		__schedule(false);
4254 		sched_preempt_enable_no_resched();
4255 	} while (need_resched());
4256 	sched_update_worker(tsk);
4257 }
4258 EXPORT_SYMBOL(schedule);
4259 
4260 /*
4261  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4262  * state (have scheduled out non-voluntarily) by making sure that all
4263  * tasks have either left the run queue or have gone into user space.
4264  * As idle tasks do not do either, they must not ever be preempted
4265  * (schedule out non-voluntarily).
4266  *
4267  * schedule_idle() is similar to schedule_preempt_disable() except that it
4268  * never enables preemption because it does not call sched_submit_work().
4269  */
4270 void __sched schedule_idle(void)
4271 {
4272 	/*
4273 	 * As this skips calling sched_submit_work(), which the idle task does
4274 	 * regardless because that function is a nop when the task is in a
4275 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4276 	 * current task can be in any other state. Note, idle is always in the
4277 	 * TASK_RUNNING state.
4278 	 */
4279 	WARN_ON_ONCE(current->state);
4280 	do {
4281 		__schedule(false);
4282 	} while (need_resched());
4283 }
4284 
4285 #ifdef CONFIG_CONTEXT_TRACKING
4286 asmlinkage __visible void __sched schedule_user(void)
4287 {
4288 	/*
4289 	 * If we come here after a random call to set_need_resched(),
4290 	 * or we have been woken up remotely but the IPI has not yet arrived,
4291 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4292 	 * we find a better solution.
4293 	 *
4294 	 * NB: There are buggy callers of this function.  Ideally we
4295 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4296 	 * too frequently to make sense yet.
4297 	 */
4298 	enum ctx_state prev_state = exception_enter();
4299 	schedule();
4300 	exception_exit(prev_state);
4301 }
4302 #endif
4303 
4304 /**
4305  * schedule_preempt_disabled - called with preemption disabled
4306  *
4307  * Returns with preemption disabled. Note: preempt_count must be 1
4308  */
4309 void __sched schedule_preempt_disabled(void)
4310 {
4311 	sched_preempt_enable_no_resched();
4312 	schedule();
4313 	preempt_disable();
4314 }
4315 
4316 static void __sched notrace preempt_schedule_common(void)
4317 {
4318 	do {
4319 		/*
4320 		 * Because the function tracer can trace preempt_count_sub()
4321 		 * and it also uses preempt_enable/disable_notrace(), if
4322 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4323 		 * by the function tracer will call this function again and
4324 		 * cause infinite recursion.
4325 		 *
4326 		 * Preemption must be disabled here before the function
4327 		 * tracer can trace. Break up preempt_disable() into two
4328 		 * calls. One to disable preemption without fear of being
4329 		 * traced. The other to still record the preemption latency,
4330 		 * which can also be traced by the function tracer.
4331 		 */
4332 		preempt_disable_notrace();
4333 		preempt_latency_start(1);
4334 		__schedule(true);
4335 		preempt_latency_stop(1);
4336 		preempt_enable_no_resched_notrace();
4337 
4338 		/*
4339 		 * Check again in case we missed a preemption opportunity
4340 		 * between schedule and now.
4341 		 */
4342 	} while (need_resched());
4343 }
4344 
4345 #ifdef CONFIG_PREEMPTION
4346 /*
4347  * This is the entry point to schedule() from in-kernel preemption
4348  * off of preempt_enable.
4349  */
4350 asmlinkage __visible void __sched notrace preempt_schedule(void)
4351 {
4352 	/*
4353 	 * If there is a non-zero preempt_count or interrupts are disabled,
4354 	 * we do not want to preempt the current task. Just return..
4355 	 */
4356 	if (likely(!preemptible()))
4357 		return;
4358 
4359 	preempt_schedule_common();
4360 }
4361 NOKPROBE_SYMBOL(preempt_schedule);
4362 EXPORT_SYMBOL(preempt_schedule);
4363 
4364 /**
4365  * preempt_schedule_notrace - preempt_schedule called by tracing
4366  *
4367  * The tracing infrastructure uses preempt_enable_notrace to prevent
4368  * recursion and tracing preempt enabling caused by the tracing
4369  * infrastructure itself. But as tracing can happen in areas coming
4370  * from userspace or just about to enter userspace, a preempt enable
4371  * can occur before user_exit() is called. This will cause the scheduler
4372  * to be called when the system is still in usermode.
4373  *
4374  * To prevent this, the preempt_enable_notrace will use this function
4375  * instead of preempt_schedule() to exit user context if needed before
4376  * calling the scheduler.
4377  */
4378 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4379 {
4380 	enum ctx_state prev_ctx;
4381 
4382 	if (likely(!preemptible()))
4383 		return;
4384 
4385 	do {
4386 		/*
4387 		 * Because the function tracer can trace preempt_count_sub()
4388 		 * and it also uses preempt_enable/disable_notrace(), if
4389 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4390 		 * by the function tracer will call this function again and
4391 		 * cause infinite recursion.
4392 		 *
4393 		 * Preemption must be disabled here before the function
4394 		 * tracer can trace. Break up preempt_disable() into two
4395 		 * calls. One to disable preemption without fear of being
4396 		 * traced. The other to still record the preemption latency,
4397 		 * which can also be traced by the function tracer.
4398 		 */
4399 		preempt_disable_notrace();
4400 		preempt_latency_start(1);
4401 		/*
4402 		 * Needs preempt disabled in case user_exit() is traced
4403 		 * and the tracer calls preempt_enable_notrace() causing
4404 		 * an infinite recursion.
4405 		 */
4406 		prev_ctx = exception_enter();
4407 		__schedule(true);
4408 		exception_exit(prev_ctx);
4409 
4410 		preempt_latency_stop(1);
4411 		preempt_enable_no_resched_notrace();
4412 	} while (need_resched());
4413 }
4414 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4415 
4416 #endif /* CONFIG_PREEMPTION */
4417 
4418 /*
4419  * This is the entry point to schedule() from kernel preemption
4420  * off of irq context.
4421  * Note, that this is called and return with irqs disabled. This will
4422  * protect us against recursive calling from irq.
4423  */
4424 asmlinkage __visible void __sched preempt_schedule_irq(void)
4425 {
4426 	enum ctx_state prev_state;
4427 
4428 	/* Catch callers which need to be fixed */
4429 	BUG_ON(preempt_count() || !irqs_disabled());
4430 
4431 	prev_state = exception_enter();
4432 
4433 	do {
4434 		preempt_disable();
4435 		local_irq_enable();
4436 		__schedule(true);
4437 		local_irq_disable();
4438 		sched_preempt_enable_no_resched();
4439 	} while (need_resched());
4440 
4441 	exception_exit(prev_state);
4442 }
4443 
4444 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4445 			  void *key)
4446 {
4447 	return try_to_wake_up(curr->private, mode, wake_flags);
4448 }
4449 EXPORT_SYMBOL(default_wake_function);
4450 
4451 #ifdef CONFIG_RT_MUTEXES
4452 
4453 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4454 {
4455 	if (pi_task)
4456 		prio = min(prio, pi_task->prio);
4457 
4458 	return prio;
4459 }
4460 
4461 static inline int rt_effective_prio(struct task_struct *p, int prio)
4462 {
4463 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4464 
4465 	return __rt_effective_prio(pi_task, prio);
4466 }
4467 
4468 /*
4469  * rt_mutex_setprio - set the current priority of a task
4470  * @p: task to boost
4471  * @pi_task: donor task
4472  *
4473  * This function changes the 'effective' priority of a task. It does
4474  * not touch ->normal_prio like __setscheduler().
4475  *
4476  * Used by the rt_mutex code to implement priority inheritance
4477  * logic. Call site only calls if the priority of the task changed.
4478  */
4479 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4480 {
4481 	int prio, oldprio, queued, running, queue_flag =
4482 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4483 	const struct sched_class *prev_class;
4484 	struct rq_flags rf;
4485 	struct rq *rq;
4486 
4487 	/* XXX used to be waiter->prio, not waiter->task->prio */
4488 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4489 
4490 	/*
4491 	 * If nothing changed; bail early.
4492 	 */
4493 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4494 		return;
4495 
4496 	rq = __task_rq_lock(p, &rf);
4497 	update_rq_clock(rq);
4498 	/*
4499 	 * Set under pi_lock && rq->lock, such that the value can be used under
4500 	 * either lock.
4501 	 *
4502 	 * Note that there is loads of tricky to make this pointer cache work
4503 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4504 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4505 	 * task is allowed to run again (and can exit). This ensures the pointer
4506 	 * points to a blocked task -- which guaratees the task is present.
4507 	 */
4508 	p->pi_top_task = pi_task;
4509 
4510 	/*
4511 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4512 	 */
4513 	if (prio == p->prio && !dl_prio(prio))
4514 		goto out_unlock;
4515 
4516 	/*
4517 	 * Idle task boosting is a nono in general. There is one
4518 	 * exception, when PREEMPT_RT and NOHZ is active:
4519 	 *
4520 	 * The idle task calls get_next_timer_interrupt() and holds
4521 	 * the timer wheel base->lock on the CPU and another CPU wants
4522 	 * to access the timer (probably to cancel it). We can safely
4523 	 * ignore the boosting request, as the idle CPU runs this code
4524 	 * with interrupts disabled and will complete the lock
4525 	 * protected section without being interrupted. So there is no
4526 	 * real need to boost.
4527 	 */
4528 	if (unlikely(p == rq->idle)) {
4529 		WARN_ON(p != rq->curr);
4530 		WARN_ON(p->pi_blocked_on);
4531 		goto out_unlock;
4532 	}
4533 
4534 	trace_sched_pi_setprio(p, pi_task);
4535 	oldprio = p->prio;
4536 
4537 	if (oldprio == prio)
4538 		queue_flag &= ~DEQUEUE_MOVE;
4539 
4540 	prev_class = p->sched_class;
4541 	queued = task_on_rq_queued(p);
4542 	running = task_current(rq, p);
4543 	if (queued)
4544 		dequeue_task(rq, p, queue_flag);
4545 	if (running)
4546 		put_prev_task(rq, p);
4547 
4548 	/*
4549 	 * Boosting condition are:
4550 	 * 1. -rt task is running and holds mutex A
4551 	 *      --> -dl task blocks on mutex A
4552 	 *
4553 	 * 2. -dl task is running and holds mutex A
4554 	 *      --> -dl task blocks on mutex A and could preempt the
4555 	 *          running task
4556 	 */
4557 	if (dl_prio(prio)) {
4558 		if (!dl_prio(p->normal_prio) ||
4559 		    (pi_task && dl_prio(pi_task->prio) &&
4560 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4561 			p->dl.dl_boosted = 1;
4562 			queue_flag |= ENQUEUE_REPLENISH;
4563 		} else
4564 			p->dl.dl_boosted = 0;
4565 		p->sched_class = &dl_sched_class;
4566 	} else if (rt_prio(prio)) {
4567 		if (dl_prio(oldprio))
4568 			p->dl.dl_boosted = 0;
4569 		if (oldprio < prio)
4570 			queue_flag |= ENQUEUE_HEAD;
4571 		p->sched_class = &rt_sched_class;
4572 	} else {
4573 		if (dl_prio(oldprio))
4574 			p->dl.dl_boosted = 0;
4575 		if (rt_prio(oldprio))
4576 			p->rt.timeout = 0;
4577 		p->sched_class = &fair_sched_class;
4578 	}
4579 
4580 	p->prio = prio;
4581 
4582 	if (queued)
4583 		enqueue_task(rq, p, queue_flag);
4584 	if (running)
4585 		set_next_task(rq, p);
4586 
4587 	check_class_changed(rq, p, prev_class, oldprio);
4588 out_unlock:
4589 	/* Avoid rq from going away on us: */
4590 	preempt_disable();
4591 	__task_rq_unlock(rq, &rf);
4592 
4593 	balance_callback(rq);
4594 	preempt_enable();
4595 }
4596 #else
4597 static inline int rt_effective_prio(struct task_struct *p, int prio)
4598 {
4599 	return prio;
4600 }
4601 #endif
4602 
4603 void set_user_nice(struct task_struct *p, long nice)
4604 {
4605 	bool queued, running;
4606 	int old_prio;
4607 	struct rq_flags rf;
4608 	struct rq *rq;
4609 
4610 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4611 		return;
4612 	/*
4613 	 * We have to be careful, if called from sys_setpriority(),
4614 	 * the task might be in the middle of scheduling on another CPU.
4615 	 */
4616 	rq = task_rq_lock(p, &rf);
4617 	update_rq_clock(rq);
4618 
4619 	/*
4620 	 * The RT priorities are set via sched_setscheduler(), but we still
4621 	 * allow the 'normal' nice value to be set - but as expected
4622 	 * it wont have any effect on scheduling until the task is
4623 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4624 	 */
4625 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4626 		p->static_prio = NICE_TO_PRIO(nice);
4627 		goto out_unlock;
4628 	}
4629 	queued = task_on_rq_queued(p);
4630 	running = task_current(rq, p);
4631 	if (queued)
4632 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4633 	if (running)
4634 		put_prev_task(rq, p);
4635 
4636 	p->static_prio = NICE_TO_PRIO(nice);
4637 	set_load_weight(p, true);
4638 	old_prio = p->prio;
4639 	p->prio = effective_prio(p);
4640 
4641 	if (queued)
4642 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4643 	if (running)
4644 		set_next_task(rq, p);
4645 
4646 	/*
4647 	 * If the task increased its priority or is running and
4648 	 * lowered its priority, then reschedule its CPU:
4649 	 */
4650 	p->sched_class->prio_changed(rq, p, old_prio);
4651 
4652 out_unlock:
4653 	task_rq_unlock(rq, p, &rf);
4654 }
4655 EXPORT_SYMBOL(set_user_nice);
4656 
4657 /*
4658  * can_nice - check if a task can reduce its nice value
4659  * @p: task
4660  * @nice: nice value
4661  */
4662 int can_nice(const struct task_struct *p, const int nice)
4663 {
4664 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4665 	int nice_rlim = nice_to_rlimit(nice);
4666 
4667 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4668 		capable(CAP_SYS_NICE));
4669 }
4670 
4671 #ifdef __ARCH_WANT_SYS_NICE
4672 
4673 /*
4674  * sys_nice - change the priority of the current process.
4675  * @increment: priority increment
4676  *
4677  * sys_setpriority is a more generic, but much slower function that
4678  * does similar things.
4679  */
4680 SYSCALL_DEFINE1(nice, int, increment)
4681 {
4682 	long nice, retval;
4683 
4684 	/*
4685 	 * Setpriority might change our priority at the same moment.
4686 	 * We don't have to worry. Conceptually one call occurs first
4687 	 * and we have a single winner.
4688 	 */
4689 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4690 	nice = task_nice(current) + increment;
4691 
4692 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4693 	if (increment < 0 && !can_nice(current, nice))
4694 		return -EPERM;
4695 
4696 	retval = security_task_setnice(current, nice);
4697 	if (retval)
4698 		return retval;
4699 
4700 	set_user_nice(current, nice);
4701 	return 0;
4702 }
4703 
4704 #endif
4705 
4706 /**
4707  * task_prio - return the priority value of a given task.
4708  * @p: the task in question.
4709  *
4710  * Return: The priority value as seen by users in /proc.
4711  * RT tasks are offset by -200. Normal tasks are centered
4712  * around 0, value goes from -16 to +15.
4713  */
4714 int task_prio(const struct task_struct *p)
4715 {
4716 	return p->prio - MAX_RT_PRIO;
4717 }
4718 
4719 /**
4720  * idle_cpu - is a given CPU idle currently?
4721  * @cpu: the processor in question.
4722  *
4723  * Return: 1 if the CPU is currently idle. 0 otherwise.
4724  */
4725 int idle_cpu(int cpu)
4726 {
4727 	struct rq *rq = cpu_rq(cpu);
4728 
4729 	if (rq->curr != rq->idle)
4730 		return 0;
4731 
4732 	if (rq->nr_running)
4733 		return 0;
4734 
4735 #ifdef CONFIG_SMP
4736 	if (rq->ttwu_pending)
4737 		return 0;
4738 #endif
4739 
4740 	return 1;
4741 }
4742 
4743 /**
4744  * available_idle_cpu - is a given CPU idle for enqueuing work.
4745  * @cpu: the CPU in question.
4746  *
4747  * Return: 1 if the CPU is currently idle. 0 otherwise.
4748  */
4749 int available_idle_cpu(int cpu)
4750 {
4751 	if (!idle_cpu(cpu))
4752 		return 0;
4753 
4754 	if (vcpu_is_preempted(cpu))
4755 		return 0;
4756 
4757 	return 1;
4758 }
4759 
4760 /**
4761  * idle_task - return the idle task for a given CPU.
4762  * @cpu: the processor in question.
4763  *
4764  * Return: The idle task for the CPU @cpu.
4765  */
4766 struct task_struct *idle_task(int cpu)
4767 {
4768 	return cpu_rq(cpu)->idle;
4769 }
4770 
4771 /**
4772  * find_process_by_pid - find a process with a matching PID value.
4773  * @pid: the pid in question.
4774  *
4775  * The task of @pid, if found. %NULL otherwise.
4776  */
4777 static struct task_struct *find_process_by_pid(pid_t pid)
4778 {
4779 	return pid ? find_task_by_vpid(pid) : current;
4780 }
4781 
4782 /*
4783  * sched_setparam() passes in -1 for its policy, to let the functions
4784  * it calls know not to change it.
4785  */
4786 #define SETPARAM_POLICY	-1
4787 
4788 static void __setscheduler_params(struct task_struct *p,
4789 		const struct sched_attr *attr)
4790 {
4791 	int policy = attr->sched_policy;
4792 
4793 	if (policy == SETPARAM_POLICY)
4794 		policy = p->policy;
4795 
4796 	p->policy = policy;
4797 
4798 	if (dl_policy(policy))
4799 		__setparam_dl(p, attr);
4800 	else if (fair_policy(policy))
4801 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4802 
4803 	/*
4804 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4805 	 * !rt_policy. Always setting this ensures that things like
4806 	 * getparam()/getattr() don't report silly values for !rt tasks.
4807 	 */
4808 	p->rt_priority = attr->sched_priority;
4809 	p->normal_prio = normal_prio(p);
4810 	set_load_weight(p, true);
4811 }
4812 
4813 /* Actually do priority change: must hold pi & rq lock. */
4814 static void __setscheduler(struct rq *rq, struct task_struct *p,
4815 			   const struct sched_attr *attr, bool keep_boost)
4816 {
4817 	/*
4818 	 * If params can't change scheduling class changes aren't allowed
4819 	 * either.
4820 	 */
4821 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4822 		return;
4823 
4824 	__setscheduler_params(p, attr);
4825 
4826 	/*
4827 	 * Keep a potential priority boosting if called from
4828 	 * sched_setscheduler().
4829 	 */
4830 	p->prio = normal_prio(p);
4831 	if (keep_boost)
4832 		p->prio = rt_effective_prio(p, p->prio);
4833 
4834 	if (dl_prio(p->prio))
4835 		p->sched_class = &dl_sched_class;
4836 	else if (rt_prio(p->prio))
4837 		p->sched_class = &rt_sched_class;
4838 	else
4839 		p->sched_class = &fair_sched_class;
4840 }
4841 
4842 /*
4843  * Check the target process has a UID that matches the current process's:
4844  */
4845 static bool check_same_owner(struct task_struct *p)
4846 {
4847 	const struct cred *cred = current_cred(), *pcred;
4848 	bool match;
4849 
4850 	rcu_read_lock();
4851 	pcred = __task_cred(p);
4852 	match = (uid_eq(cred->euid, pcred->euid) ||
4853 		 uid_eq(cred->euid, pcred->uid));
4854 	rcu_read_unlock();
4855 	return match;
4856 }
4857 
4858 static int __sched_setscheduler(struct task_struct *p,
4859 				const struct sched_attr *attr,
4860 				bool user, bool pi)
4861 {
4862 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4863 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4864 	int retval, oldprio, oldpolicy = -1, queued, running;
4865 	int new_effective_prio, policy = attr->sched_policy;
4866 	const struct sched_class *prev_class;
4867 	struct rq_flags rf;
4868 	int reset_on_fork;
4869 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4870 	struct rq *rq;
4871 
4872 	/* The pi code expects interrupts enabled */
4873 	BUG_ON(pi && in_interrupt());
4874 recheck:
4875 	/* Double check policy once rq lock held: */
4876 	if (policy < 0) {
4877 		reset_on_fork = p->sched_reset_on_fork;
4878 		policy = oldpolicy = p->policy;
4879 	} else {
4880 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4881 
4882 		if (!valid_policy(policy))
4883 			return -EINVAL;
4884 	}
4885 
4886 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4887 		return -EINVAL;
4888 
4889 	/*
4890 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4891 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4892 	 * SCHED_BATCH and SCHED_IDLE is 0.
4893 	 */
4894 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4895 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4896 		return -EINVAL;
4897 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4898 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4899 		return -EINVAL;
4900 
4901 	/*
4902 	 * Allow unprivileged RT tasks to decrease priority:
4903 	 */
4904 	if (user && !capable(CAP_SYS_NICE)) {
4905 		if (fair_policy(policy)) {
4906 			if (attr->sched_nice < task_nice(p) &&
4907 			    !can_nice(p, attr->sched_nice))
4908 				return -EPERM;
4909 		}
4910 
4911 		if (rt_policy(policy)) {
4912 			unsigned long rlim_rtprio =
4913 					task_rlimit(p, RLIMIT_RTPRIO);
4914 
4915 			/* Can't set/change the rt policy: */
4916 			if (policy != p->policy && !rlim_rtprio)
4917 				return -EPERM;
4918 
4919 			/* Can't increase priority: */
4920 			if (attr->sched_priority > p->rt_priority &&
4921 			    attr->sched_priority > rlim_rtprio)
4922 				return -EPERM;
4923 		}
4924 
4925 		 /*
4926 		  * Can't set/change SCHED_DEADLINE policy at all for now
4927 		  * (safest behavior); in the future we would like to allow
4928 		  * unprivileged DL tasks to increase their relative deadline
4929 		  * or reduce their runtime (both ways reducing utilization)
4930 		  */
4931 		if (dl_policy(policy))
4932 			return -EPERM;
4933 
4934 		/*
4935 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4936 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4937 		 */
4938 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4939 			if (!can_nice(p, task_nice(p)))
4940 				return -EPERM;
4941 		}
4942 
4943 		/* Can't change other user's priorities: */
4944 		if (!check_same_owner(p))
4945 			return -EPERM;
4946 
4947 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4948 		if (p->sched_reset_on_fork && !reset_on_fork)
4949 			return -EPERM;
4950 	}
4951 
4952 	if (user) {
4953 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4954 			return -EINVAL;
4955 
4956 		retval = security_task_setscheduler(p);
4957 		if (retval)
4958 			return retval;
4959 	}
4960 
4961 	/* Update task specific "requested" clamps */
4962 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4963 		retval = uclamp_validate(p, attr);
4964 		if (retval)
4965 			return retval;
4966 	}
4967 
4968 	if (pi)
4969 		cpuset_read_lock();
4970 
4971 	/*
4972 	 * Make sure no PI-waiters arrive (or leave) while we are
4973 	 * changing the priority of the task:
4974 	 *
4975 	 * To be able to change p->policy safely, the appropriate
4976 	 * runqueue lock must be held.
4977 	 */
4978 	rq = task_rq_lock(p, &rf);
4979 	update_rq_clock(rq);
4980 
4981 	/*
4982 	 * Changing the policy of the stop threads its a very bad idea:
4983 	 */
4984 	if (p == rq->stop) {
4985 		retval = -EINVAL;
4986 		goto unlock;
4987 	}
4988 
4989 	/*
4990 	 * If not changing anything there's no need to proceed further,
4991 	 * but store a possible modification of reset_on_fork.
4992 	 */
4993 	if (unlikely(policy == p->policy)) {
4994 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4995 			goto change;
4996 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4997 			goto change;
4998 		if (dl_policy(policy) && dl_param_changed(p, attr))
4999 			goto change;
5000 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5001 			goto change;
5002 
5003 		p->sched_reset_on_fork = reset_on_fork;
5004 		retval = 0;
5005 		goto unlock;
5006 	}
5007 change:
5008 
5009 	if (user) {
5010 #ifdef CONFIG_RT_GROUP_SCHED
5011 		/*
5012 		 * Do not allow realtime tasks into groups that have no runtime
5013 		 * assigned.
5014 		 */
5015 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5016 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5017 				!task_group_is_autogroup(task_group(p))) {
5018 			retval = -EPERM;
5019 			goto unlock;
5020 		}
5021 #endif
5022 #ifdef CONFIG_SMP
5023 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5024 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5025 			cpumask_t *span = rq->rd->span;
5026 
5027 			/*
5028 			 * Don't allow tasks with an affinity mask smaller than
5029 			 * the entire root_domain to become SCHED_DEADLINE. We
5030 			 * will also fail if there's no bandwidth available.
5031 			 */
5032 			if (!cpumask_subset(span, p->cpus_ptr) ||
5033 			    rq->rd->dl_bw.bw == 0) {
5034 				retval = -EPERM;
5035 				goto unlock;
5036 			}
5037 		}
5038 #endif
5039 	}
5040 
5041 	/* Re-check policy now with rq lock held: */
5042 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5043 		policy = oldpolicy = -1;
5044 		task_rq_unlock(rq, p, &rf);
5045 		if (pi)
5046 			cpuset_read_unlock();
5047 		goto recheck;
5048 	}
5049 
5050 	/*
5051 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5052 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5053 	 * is available.
5054 	 */
5055 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5056 		retval = -EBUSY;
5057 		goto unlock;
5058 	}
5059 
5060 	p->sched_reset_on_fork = reset_on_fork;
5061 	oldprio = p->prio;
5062 
5063 	if (pi) {
5064 		/*
5065 		 * Take priority boosted tasks into account. If the new
5066 		 * effective priority is unchanged, we just store the new
5067 		 * normal parameters and do not touch the scheduler class and
5068 		 * the runqueue. This will be done when the task deboost
5069 		 * itself.
5070 		 */
5071 		new_effective_prio = rt_effective_prio(p, newprio);
5072 		if (new_effective_prio == oldprio)
5073 			queue_flags &= ~DEQUEUE_MOVE;
5074 	}
5075 
5076 	queued = task_on_rq_queued(p);
5077 	running = task_current(rq, p);
5078 	if (queued)
5079 		dequeue_task(rq, p, queue_flags);
5080 	if (running)
5081 		put_prev_task(rq, p);
5082 
5083 	prev_class = p->sched_class;
5084 
5085 	__setscheduler(rq, p, attr, pi);
5086 	__setscheduler_uclamp(p, attr);
5087 
5088 	if (queued) {
5089 		/*
5090 		 * We enqueue to tail when the priority of a task is
5091 		 * increased (user space view).
5092 		 */
5093 		if (oldprio < p->prio)
5094 			queue_flags |= ENQUEUE_HEAD;
5095 
5096 		enqueue_task(rq, p, queue_flags);
5097 	}
5098 	if (running)
5099 		set_next_task(rq, p);
5100 
5101 	check_class_changed(rq, p, prev_class, oldprio);
5102 
5103 	/* Avoid rq from going away on us: */
5104 	preempt_disable();
5105 	task_rq_unlock(rq, p, &rf);
5106 
5107 	if (pi) {
5108 		cpuset_read_unlock();
5109 		rt_mutex_adjust_pi(p);
5110 	}
5111 
5112 	/* Run balance callbacks after we've adjusted the PI chain: */
5113 	balance_callback(rq);
5114 	preempt_enable();
5115 
5116 	return 0;
5117 
5118 unlock:
5119 	task_rq_unlock(rq, p, &rf);
5120 	if (pi)
5121 		cpuset_read_unlock();
5122 	return retval;
5123 }
5124 
5125 static int _sched_setscheduler(struct task_struct *p, int policy,
5126 			       const struct sched_param *param, bool check)
5127 {
5128 	struct sched_attr attr = {
5129 		.sched_policy   = policy,
5130 		.sched_priority = param->sched_priority,
5131 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5132 	};
5133 
5134 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5135 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5136 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5137 		policy &= ~SCHED_RESET_ON_FORK;
5138 		attr.sched_policy = policy;
5139 	}
5140 
5141 	return __sched_setscheduler(p, &attr, check, true);
5142 }
5143 /**
5144  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5145  * @p: the task in question.
5146  * @policy: new policy.
5147  * @param: structure containing the new RT priority.
5148  *
5149  * Return: 0 on success. An error code otherwise.
5150  *
5151  * NOTE that the task may be already dead.
5152  */
5153 int sched_setscheduler(struct task_struct *p, int policy,
5154 		       const struct sched_param *param)
5155 {
5156 	return _sched_setscheduler(p, policy, param, true);
5157 }
5158 EXPORT_SYMBOL_GPL(sched_setscheduler);
5159 
5160 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5161 {
5162 	return __sched_setscheduler(p, attr, true, true);
5163 }
5164 EXPORT_SYMBOL_GPL(sched_setattr);
5165 
5166 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5167 {
5168 	return __sched_setscheduler(p, attr, false, true);
5169 }
5170 
5171 /**
5172  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5173  * @p: the task in question.
5174  * @policy: new policy.
5175  * @param: structure containing the new RT priority.
5176  *
5177  * Just like sched_setscheduler, only don't bother checking if the
5178  * current context has permission.  For example, this is needed in
5179  * stop_machine(): we create temporary high priority worker threads,
5180  * but our caller might not have that capability.
5181  *
5182  * Return: 0 on success. An error code otherwise.
5183  */
5184 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5185 			       const struct sched_param *param)
5186 {
5187 	return _sched_setscheduler(p, policy, param, false);
5188 }
5189 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5190 
5191 static int
5192 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5193 {
5194 	struct sched_param lparam;
5195 	struct task_struct *p;
5196 	int retval;
5197 
5198 	if (!param || pid < 0)
5199 		return -EINVAL;
5200 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5201 		return -EFAULT;
5202 
5203 	rcu_read_lock();
5204 	retval = -ESRCH;
5205 	p = find_process_by_pid(pid);
5206 	if (likely(p))
5207 		get_task_struct(p);
5208 	rcu_read_unlock();
5209 
5210 	if (likely(p)) {
5211 		retval = sched_setscheduler(p, policy, &lparam);
5212 		put_task_struct(p);
5213 	}
5214 
5215 	return retval;
5216 }
5217 
5218 /*
5219  * Mimics kernel/events/core.c perf_copy_attr().
5220  */
5221 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5222 {
5223 	u32 size;
5224 	int ret;
5225 
5226 	/* Zero the full structure, so that a short copy will be nice: */
5227 	memset(attr, 0, sizeof(*attr));
5228 
5229 	ret = get_user(size, &uattr->size);
5230 	if (ret)
5231 		return ret;
5232 
5233 	/* ABI compatibility quirk: */
5234 	if (!size)
5235 		size = SCHED_ATTR_SIZE_VER0;
5236 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5237 		goto err_size;
5238 
5239 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5240 	if (ret) {
5241 		if (ret == -E2BIG)
5242 			goto err_size;
5243 		return ret;
5244 	}
5245 
5246 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5247 	    size < SCHED_ATTR_SIZE_VER1)
5248 		return -EINVAL;
5249 
5250 	/*
5251 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5252 	 * to be strict and return an error on out-of-bounds values?
5253 	 */
5254 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5255 
5256 	return 0;
5257 
5258 err_size:
5259 	put_user(sizeof(*attr), &uattr->size);
5260 	return -E2BIG;
5261 }
5262 
5263 /**
5264  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5265  * @pid: the pid in question.
5266  * @policy: new policy.
5267  * @param: structure containing the new RT priority.
5268  *
5269  * Return: 0 on success. An error code otherwise.
5270  */
5271 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5272 {
5273 	if (policy < 0)
5274 		return -EINVAL;
5275 
5276 	return do_sched_setscheduler(pid, policy, param);
5277 }
5278 
5279 /**
5280  * sys_sched_setparam - set/change the RT priority of a thread
5281  * @pid: the pid in question.
5282  * @param: structure containing the new RT priority.
5283  *
5284  * Return: 0 on success. An error code otherwise.
5285  */
5286 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5287 {
5288 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5289 }
5290 
5291 /**
5292  * sys_sched_setattr - same as above, but with extended sched_attr
5293  * @pid: the pid in question.
5294  * @uattr: structure containing the extended parameters.
5295  * @flags: for future extension.
5296  */
5297 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5298 			       unsigned int, flags)
5299 {
5300 	struct sched_attr attr;
5301 	struct task_struct *p;
5302 	int retval;
5303 
5304 	if (!uattr || pid < 0 || flags)
5305 		return -EINVAL;
5306 
5307 	retval = sched_copy_attr(uattr, &attr);
5308 	if (retval)
5309 		return retval;
5310 
5311 	if ((int)attr.sched_policy < 0)
5312 		return -EINVAL;
5313 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5314 		attr.sched_policy = SETPARAM_POLICY;
5315 
5316 	rcu_read_lock();
5317 	retval = -ESRCH;
5318 	p = find_process_by_pid(pid);
5319 	if (likely(p))
5320 		get_task_struct(p);
5321 	rcu_read_unlock();
5322 
5323 	if (likely(p)) {
5324 		retval = sched_setattr(p, &attr);
5325 		put_task_struct(p);
5326 	}
5327 
5328 	return retval;
5329 }
5330 
5331 /**
5332  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5333  * @pid: the pid in question.
5334  *
5335  * Return: On success, the policy of the thread. Otherwise, a negative error
5336  * code.
5337  */
5338 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5339 {
5340 	struct task_struct *p;
5341 	int retval;
5342 
5343 	if (pid < 0)
5344 		return -EINVAL;
5345 
5346 	retval = -ESRCH;
5347 	rcu_read_lock();
5348 	p = find_process_by_pid(pid);
5349 	if (p) {
5350 		retval = security_task_getscheduler(p);
5351 		if (!retval)
5352 			retval = p->policy
5353 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5354 	}
5355 	rcu_read_unlock();
5356 	return retval;
5357 }
5358 
5359 /**
5360  * sys_sched_getparam - get the RT priority of a thread
5361  * @pid: the pid in question.
5362  * @param: structure containing the RT priority.
5363  *
5364  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5365  * code.
5366  */
5367 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5368 {
5369 	struct sched_param lp = { .sched_priority = 0 };
5370 	struct task_struct *p;
5371 	int retval;
5372 
5373 	if (!param || pid < 0)
5374 		return -EINVAL;
5375 
5376 	rcu_read_lock();
5377 	p = find_process_by_pid(pid);
5378 	retval = -ESRCH;
5379 	if (!p)
5380 		goto out_unlock;
5381 
5382 	retval = security_task_getscheduler(p);
5383 	if (retval)
5384 		goto out_unlock;
5385 
5386 	if (task_has_rt_policy(p))
5387 		lp.sched_priority = p->rt_priority;
5388 	rcu_read_unlock();
5389 
5390 	/*
5391 	 * This one might sleep, we cannot do it with a spinlock held ...
5392 	 */
5393 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5394 
5395 	return retval;
5396 
5397 out_unlock:
5398 	rcu_read_unlock();
5399 	return retval;
5400 }
5401 
5402 /*
5403  * Copy the kernel size attribute structure (which might be larger
5404  * than what user-space knows about) to user-space.
5405  *
5406  * Note that all cases are valid: user-space buffer can be larger or
5407  * smaller than the kernel-space buffer. The usual case is that both
5408  * have the same size.
5409  */
5410 static int
5411 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5412 			struct sched_attr *kattr,
5413 			unsigned int usize)
5414 {
5415 	unsigned int ksize = sizeof(*kattr);
5416 
5417 	if (!access_ok(uattr, usize))
5418 		return -EFAULT;
5419 
5420 	/*
5421 	 * sched_getattr() ABI forwards and backwards compatibility:
5422 	 *
5423 	 * If usize == ksize then we just copy everything to user-space and all is good.
5424 	 *
5425 	 * If usize < ksize then we only copy as much as user-space has space for,
5426 	 * this keeps ABI compatibility as well. We skip the rest.
5427 	 *
5428 	 * If usize > ksize then user-space is using a newer version of the ABI,
5429 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5430 	 * detect the kernel's knowledge of attributes from the attr->size value
5431 	 * which is set to ksize in this case.
5432 	 */
5433 	kattr->size = min(usize, ksize);
5434 
5435 	if (copy_to_user(uattr, kattr, kattr->size))
5436 		return -EFAULT;
5437 
5438 	return 0;
5439 }
5440 
5441 /**
5442  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5443  * @pid: the pid in question.
5444  * @uattr: structure containing the extended parameters.
5445  * @usize: sizeof(attr) for fwd/bwd comp.
5446  * @flags: for future extension.
5447  */
5448 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5449 		unsigned int, usize, unsigned int, flags)
5450 {
5451 	struct sched_attr kattr = { };
5452 	struct task_struct *p;
5453 	int retval;
5454 
5455 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5456 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5457 		return -EINVAL;
5458 
5459 	rcu_read_lock();
5460 	p = find_process_by_pid(pid);
5461 	retval = -ESRCH;
5462 	if (!p)
5463 		goto out_unlock;
5464 
5465 	retval = security_task_getscheduler(p);
5466 	if (retval)
5467 		goto out_unlock;
5468 
5469 	kattr.sched_policy = p->policy;
5470 	if (p->sched_reset_on_fork)
5471 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5472 	if (task_has_dl_policy(p))
5473 		__getparam_dl(p, &kattr);
5474 	else if (task_has_rt_policy(p))
5475 		kattr.sched_priority = p->rt_priority;
5476 	else
5477 		kattr.sched_nice = task_nice(p);
5478 
5479 #ifdef CONFIG_UCLAMP_TASK
5480 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5481 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5482 #endif
5483 
5484 	rcu_read_unlock();
5485 
5486 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5487 
5488 out_unlock:
5489 	rcu_read_unlock();
5490 	return retval;
5491 }
5492 
5493 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5494 {
5495 	cpumask_var_t cpus_allowed, new_mask;
5496 	struct task_struct *p;
5497 	int retval;
5498 
5499 	rcu_read_lock();
5500 
5501 	p = find_process_by_pid(pid);
5502 	if (!p) {
5503 		rcu_read_unlock();
5504 		return -ESRCH;
5505 	}
5506 
5507 	/* Prevent p going away */
5508 	get_task_struct(p);
5509 	rcu_read_unlock();
5510 
5511 	if (p->flags & PF_NO_SETAFFINITY) {
5512 		retval = -EINVAL;
5513 		goto out_put_task;
5514 	}
5515 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5516 		retval = -ENOMEM;
5517 		goto out_put_task;
5518 	}
5519 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5520 		retval = -ENOMEM;
5521 		goto out_free_cpus_allowed;
5522 	}
5523 	retval = -EPERM;
5524 	if (!check_same_owner(p)) {
5525 		rcu_read_lock();
5526 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5527 			rcu_read_unlock();
5528 			goto out_free_new_mask;
5529 		}
5530 		rcu_read_unlock();
5531 	}
5532 
5533 	retval = security_task_setscheduler(p);
5534 	if (retval)
5535 		goto out_free_new_mask;
5536 
5537 
5538 	cpuset_cpus_allowed(p, cpus_allowed);
5539 	cpumask_and(new_mask, in_mask, cpus_allowed);
5540 
5541 	/*
5542 	 * Since bandwidth control happens on root_domain basis,
5543 	 * if admission test is enabled, we only admit -deadline
5544 	 * tasks allowed to run on all the CPUs in the task's
5545 	 * root_domain.
5546 	 */
5547 #ifdef CONFIG_SMP
5548 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5549 		rcu_read_lock();
5550 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5551 			retval = -EBUSY;
5552 			rcu_read_unlock();
5553 			goto out_free_new_mask;
5554 		}
5555 		rcu_read_unlock();
5556 	}
5557 #endif
5558 again:
5559 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5560 
5561 	if (!retval) {
5562 		cpuset_cpus_allowed(p, cpus_allowed);
5563 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5564 			/*
5565 			 * We must have raced with a concurrent cpuset
5566 			 * update. Just reset the cpus_allowed to the
5567 			 * cpuset's cpus_allowed
5568 			 */
5569 			cpumask_copy(new_mask, cpus_allowed);
5570 			goto again;
5571 		}
5572 	}
5573 out_free_new_mask:
5574 	free_cpumask_var(new_mask);
5575 out_free_cpus_allowed:
5576 	free_cpumask_var(cpus_allowed);
5577 out_put_task:
5578 	put_task_struct(p);
5579 	return retval;
5580 }
5581 
5582 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5583 			     struct cpumask *new_mask)
5584 {
5585 	if (len < cpumask_size())
5586 		cpumask_clear(new_mask);
5587 	else if (len > cpumask_size())
5588 		len = cpumask_size();
5589 
5590 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5591 }
5592 
5593 /**
5594  * sys_sched_setaffinity - set the CPU affinity of a process
5595  * @pid: pid of the process
5596  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5597  * @user_mask_ptr: user-space pointer to the new CPU mask
5598  *
5599  * Return: 0 on success. An error code otherwise.
5600  */
5601 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5602 		unsigned long __user *, user_mask_ptr)
5603 {
5604 	cpumask_var_t new_mask;
5605 	int retval;
5606 
5607 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5608 		return -ENOMEM;
5609 
5610 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5611 	if (retval == 0)
5612 		retval = sched_setaffinity(pid, new_mask);
5613 	free_cpumask_var(new_mask);
5614 	return retval;
5615 }
5616 
5617 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5618 {
5619 	struct task_struct *p;
5620 	unsigned long flags;
5621 	int retval;
5622 
5623 	rcu_read_lock();
5624 
5625 	retval = -ESRCH;
5626 	p = find_process_by_pid(pid);
5627 	if (!p)
5628 		goto out_unlock;
5629 
5630 	retval = security_task_getscheduler(p);
5631 	if (retval)
5632 		goto out_unlock;
5633 
5634 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5635 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5636 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5637 
5638 out_unlock:
5639 	rcu_read_unlock();
5640 
5641 	return retval;
5642 }
5643 
5644 /**
5645  * sys_sched_getaffinity - get the CPU affinity of a process
5646  * @pid: pid of the process
5647  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5648  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5649  *
5650  * Return: size of CPU mask copied to user_mask_ptr on success. An
5651  * error code otherwise.
5652  */
5653 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5654 		unsigned long __user *, user_mask_ptr)
5655 {
5656 	int ret;
5657 	cpumask_var_t mask;
5658 
5659 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5660 		return -EINVAL;
5661 	if (len & (sizeof(unsigned long)-1))
5662 		return -EINVAL;
5663 
5664 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5665 		return -ENOMEM;
5666 
5667 	ret = sched_getaffinity(pid, mask);
5668 	if (ret == 0) {
5669 		unsigned int retlen = min(len, cpumask_size());
5670 
5671 		if (copy_to_user(user_mask_ptr, mask, retlen))
5672 			ret = -EFAULT;
5673 		else
5674 			ret = retlen;
5675 	}
5676 	free_cpumask_var(mask);
5677 
5678 	return ret;
5679 }
5680 
5681 /**
5682  * sys_sched_yield - yield the current processor to other threads.
5683  *
5684  * This function yields the current CPU to other tasks. If there are no
5685  * other threads running on this CPU then this function will return.
5686  *
5687  * Return: 0.
5688  */
5689 static void do_sched_yield(void)
5690 {
5691 	struct rq_flags rf;
5692 	struct rq *rq;
5693 
5694 	rq = this_rq_lock_irq(&rf);
5695 
5696 	schedstat_inc(rq->yld_count);
5697 	current->sched_class->yield_task(rq);
5698 
5699 	/*
5700 	 * Since we are going to call schedule() anyway, there's
5701 	 * no need to preempt or enable interrupts:
5702 	 */
5703 	preempt_disable();
5704 	rq_unlock(rq, &rf);
5705 	sched_preempt_enable_no_resched();
5706 
5707 	schedule();
5708 }
5709 
5710 SYSCALL_DEFINE0(sched_yield)
5711 {
5712 	do_sched_yield();
5713 	return 0;
5714 }
5715 
5716 #ifndef CONFIG_PREEMPTION
5717 int __sched _cond_resched(void)
5718 {
5719 	if (should_resched(0)) {
5720 		preempt_schedule_common();
5721 		return 1;
5722 	}
5723 	rcu_all_qs();
5724 	return 0;
5725 }
5726 EXPORT_SYMBOL(_cond_resched);
5727 #endif
5728 
5729 /*
5730  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5731  * call schedule, and on return reacquire the lock.
5732  *
5733  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5734  * operations here to prevent schedule() from being called twice (once via
5735  * spin_unlock(), once by hand).
5736  */
5737 int __cond_resched_lock(spinlock_t *lock)
5738 {
5739 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5740 	int ret = 0;
5741 
5742 	lockdep_assert_held(lock);
5743 
5744 	if (spin_needbreak(lock) || resched) {
5745 		spin_unlock(lock);
5746 		if (resched)
5747 			preempt_schedule_common();
5748 		else
5749 			cpu_relax();
5750 		ret = 1;
5751 		spin_lock(lock);
5752 	}
5753 	return ret;
5754 }
5755 EXPORT_SYMBOL(__cond_resched_lock);
5756 
5757 /**
5758  * yield - yield the current processor to other threads.
5759  *
5760  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5761  *
5762  * The scheduler is at all times free to pick the calling task as the most
5763  * eligible task to run, if removing the yield() call from your code breaks
5764  * it, its already broken.
5765  *
5766  * Typical broken usage is:
5767  *
5768  * while (!event)
5769  *	yield();
5770  *
5771  * where one assumes that yield() will let 'the other' process run that will
5772  * make event true. If the current task is a SCHED_FIFO task that will never
5773  * happen. Never use yield() as a progress guarantee!!
5774  *
5775  * If you want to use yield() to wait for something, use wait_event().
5776  * If you want to use yield() to be 'nice' for others, use cond_resched().
5777  * If you still want to use yield(), do not!
5778  */
5779 void __sched yield(void)
5780 {
5781 	set_current_state(TASK_RUNNING);
5782 	do_sched_yield();
5783 }
5784 EXPORT_SYMBOL(yield);
5785 
5786 /**
5787  * yield_to - yield the current processor to another thread in
5788  * your thread group, or accelerate that thread toward the
5789  * processor it's on.
5790  * @p: target task
5791  * @preempt: whether task preemption is allowed or not
5792  *
5793  * It's the caller's job to ensure that the target task struct
5794  * can't go away on us before we can do any checks.
5795  *
5796  * Return:
5797  *	true (>0) if we indeed boosted the target task.
5798  *	false (0) if we failed to boost the target.
5799  *	-ESRCH if there's no task to yield to.
5800  */
5801 int __sched yield_to(struct task_struct *p, bool preempt)
5802 {
5803 	struct task_struct *curr = current;
5804 	struct rq *rq, *p_rq;
5805 	unsigned long flags;
5806 	int yielded = 0;
5807 
5808 	local_irq_save(flags);
5809 	rq = this_rq();
5810 
5811 again:
5812 	p_rq = task_rq(p);
5813 	/*
5814 	 * If we're the only runnable task on the rq and target rq also
5815 	 * has only one task, there's absolutely no point in yielding.
5816 	 */
5817 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5818 		yielded = -ESRCH;
5819 		goto out_irq;
5820 	}
5821 
5822 	double_rq_lock(rq, p_rq);
5823 	if (task_rq(p) != p_rq) {
5824 		double_rq_unlock(rq, p_rq);
5825 		goto again;
5826 	}
5827 
5828 	if (!curr->sched_class->yield_to_task)
5829 		goto out_unlock;
5830 
5831 	if (curr->sched_class != p->sched_class)
5832 		goto out_unlock;
5833 
5834 	if (task_running(p_rq, p) || p->state)
5835 		goto out_unlock;
5836 
5837 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5838 	if (yielded) {
5839 		schedstat_inc(rq->yld_count);
5840 		/*
5841 		 * Make p's CPU reschedule; pick_next_entity takes care of
5842 		 * fairness.
5843 		 */
5844 		if (preempt && rq != p_rq)
5845 			resched_curr(p_rq);
5846 	}
5847 
5848 out_unlock:
5849 	double_rq_unlock(rq, p_rq);
5850 out_irq:
5851 	local_irq_restore(flags);
5852 
5853 	if (yielded > 0)
5854 		schedule();
5855 
5856 	return yielded;
5857 }
5858 EXPORT_SYMBOL_GPL(yield_to);
5859 
5860 int io_schedule_prepare(void)
5861 {
5862 	int old_iowait = current->in_iowait;
5863 
5864 	current->in_iowait = 1;
5865 	blk_schedule_flush_plug(current);
5866 
5867 	return old_iowait;
5868 }
5869 
5870 void io_schedule_finish(int token)
5871 {
5872 	current->in_iowait = token;
5873 }
5874 
5875 /*
5876  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5877  * that process accounting knows that this is a task in IO wait state.
5878  */
5879 long __sched io_schedule_timeout(long timeout)
5880 {
5881 	int token;
5882 	long ret;
5883 
5884 	token = io_schedule_prepare();
5885 	ret = schedule_timeout(timeout);
5886 	io_schedule_finish(token);
5887 
5888 	return ret;
5889 }
5890 EXPORT_SYMBOL(io_schedule_timeout);
5891 
5892 void __sched io_schedule(void)
5893 {
5894 	int token;
5895 
5896 	token = io_schedule_prepare();
5897 	schedule();
5898 	io_schedule_finish(token);
5899 }
5900 EXPORT_SYMBOL(io_schedule);
5901 
5902 /**
5903  * sys_sched_get_priority_max - return maximum RT priority.
5904  * @policy: scheduling class.
5905  *
5906  * Return: On success, this syscall returns the maximum
5907  * rt_priority that can be used by a given scheduling class.
5908  * On failure, a negative error code is returned.
5909  */
5910 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5911 {
5912 	int ret = -EINVAL;
5913 
5914 	switch (policy) {
5915 	case SCHED_FIFO:
5916 	case SCHED_RR:
5917 		ret = MAX_USER_RT_PRIO-1;
5918 		break;
5919 	case SCHED_DEADLINE:
5920 	case SCHED_NORMAL:
5921 	case SCHED_BATCH:
5922 	case SCHED_IDLE:
5923 		ret = 0;
5924 		break;
5925 	}
5926 	return ret;
5927 }
5928 
5929 /**
5930  * sys_sched_get_priority_min - return minimum RT priority.
5931  * @policy: scheduling class.
5932  *
5933  * Return: On success, this syscall returns the minimum
5934  * rt_priority that can be used by a given scheduling class.
5935  * On failure, a negative error code is returned.
5936  */
5937 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5938 {
5939 	int ret = -EINVAL;
5940 
5941 	switch (policy) {
5942 	case SCHED_FIFO:
5943 	case SCHED_RR:
5944 		ret = 1;
5945 		break;
5946 	case SCHED_DEADLINE:
5947 	case SCHED_NORMAL:
5948 	case SCHED_BATCH:
5949 	case SCHED_IDLE:
5950 		ret = 0;
5951 	}
5952 	return ret;
5953 }
5954 
5955 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5956 {
5957 	struct task_struct *p;
5958 	unsigned int time_slice;
5959 	struct rq_flags rf;
5960 	struct rq *rq;
5961 	int retval;
5962 
5963 	if (pid < 0)
5964 		return -EINVAL;
5965 
5966 	retval = -ESRCH;
5967 	rcu_read_lock();
5968 	p = find_process_by_pid(pid);
5969 	if (!p)
5970 		goto out_unlock;
5971 
5972 	retval = security_task_getscheduler(p);
5973 	if (retval)
5974 		goto out_unlock;
5975 
5976 	rq = task_rq_lock(p, &rf);
5977 	time_slice = 0;
5978 	if (p->sched_class->get_rr_interval)
5979 		time_slice = p->sched_class->get_rr_interval(rq, p);
5980 	task_rq_unlock(rq, p, &rf);
5981 
5982 	rcu_read_unlock();
5983 	jiffies_to_timespec64(time_slice, t);
5984 	return 0;
5985 
5986 out_unlock:
5987 	rcu_read_unlock();
5988 	return retval;
5989 }
5990 
5991 /**
5992  * sys_sched_rr_get_interval - return the default timeslice of a process.
5993  * @pid: pid of the process.
5994  * @interval: userspace pointer to the timeslice value.
5995  *
5996  * this syscall writes the default timeslice value of a given process
5997  * into the user-space timespec buffer. A value of '0' means infinity.
5998  *
5999  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6000  * an error code.
6001  */
6002 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6003 		struct __kernel_timespec __user *, interval)
6004 {
6005 	struct timespec64 t;
6006 	int retval = sched_rr_get_interval(pid, &t);
6007 
6008 	if (retval == 0)
6009 		retval = put_timespec64(&t, interval);
6010 
6011 	return retval;
6012 }
6013 
6014 #ifdef CONFIG_COMPAT_32BIT_TIME
6015 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6016 		struct old_timespec32 __user *, interval)
6017 {
6018 	struct timespec64 t;
6019 	int retval = sched_rr_get_interval(pid, &t);
6020 
6021 	if (retval == 0)
6022 		retval = put_old_timespec32(&t, interval);
6023 	return retval;
6024 }
6025 #endif
6026 
6027 void sched_show_task(struct task_struct *p)
6028 {
6029 	unsigned long free = 0;
6030 	int ppid;
6031 
6032 	if (!try_get_task_stack(p))
6033 		return;
6034 
6035 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6036 
6037 	if (p->state == TASK_RUNNING)
6038 		printk(KERN_CONT "  running task    ");
6039 #ifdef CONFIG_DEBUG_STACK_USAGE
6040 	free = stack_not_used(p);
6041 #endif
6042 	ppid = 0;
6043 	rcu_read_lock();
6044 	if (pid_alive(p))
6045 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6046 	rcu_read_unlock();
6047 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6048 		task_pid_nr(p), ppid,
6049 		(unsigned long)task_thread_info(p)->flags);
6050 
6051 	print_worker_info(KERN_INFO, p);
6052 	show_stack(p, NULL, KERN_INFO);
6053 	put_task_stack(p);
6054 }
6055 EXPORT_SYMBOL_GPL(sched_show_task);
6056 
6057 static inline bool
6058 state_filter_match(unsigned long state_filter, struct task_struct *p)
6059 {
6060 	/* no filter, everything matches */
6061 	if (!state_filter)
6062 		return true;
6063 
6064 	/* filter, but doesn't match */
6065 	if (!(p->state & state_filter))
6066 		return false;
6067 
6068 	/*
6069 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6070 	 * TASK_KILLABLE).
6071 	 */
6072 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6073 		return false;
6074 
6075 	return true;
6076 }
6077 
6078 
6079 void show_state_filter(unsigned long state_filter)
6080 {
6081 	struct task_struct *g, *p;
6082 
6083 #if BITS_PER_LONG == 32
6084 	printk(KERN_INFO
6085 		"  task                PC stack   pid father\n");
6086 #else
6087 	printk(KERN_INFO
6088 		"  task                        PC stack   pid father\n");
6089 #endif
6090 	rcu_read_lock();
6091 	for_each_process_thread(g, p) {
6092 		/*
6093 		 * reset the NMI-timeout, listing all files on a slow
6094 		 * console might take a lot of time:
6095 		 * Also, reset softlockup watchdogs on all CPUs, because
6096 		 * another CPU might be blocked waiting for us to process
6097 		 * an IPI.
6098 		 */
6099 		touch_nmi_watchdog();
6100 		touch_all_softlockup_watchdogs();
6101 		if (state_filter_match(state_filter, p))
6102 			sched_show_task(p);
6103 	}
6104 
6105 #ifdef CONFIG_SCHED_DEBUG
6106 	if (!state_filter)
6107 		sysrq_sched_debug_show();
6108 #endif
6109 	rcu_read_unlock();
6110 	/*
6111 	 * Only show locks if all tasks are dumped:
6112 	 */
6113 	if (!state_filter)
6114 		debug_show_all_locks();
6115 }
6116 
6117 /**
6118  * init_idle - set up an idle thread for a given CPU
6119  * @idle: task in question
6120  * @cpu: CPU the idle task belongs to
6121  *
6122  * NOTE: this function does not set the idle thread's NEED_RESCHED
6123  * flag, to make booting more robust.
6124  */
6125 void init_idle(struct task_struct *idle, int cpu)
6126 {
6127 	struct rq *rq = cpu_rq(cpu);
6128 	unsigned long flags;
6129 
6130 	__sched_fork(0, idle);
6131 
6132 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6133 	raw_spin_lock(&rq->lock);
6134 
6135 	idle->state = TASK_RUNNING;
6136 	idle->se.exec_start = sched_clock();
6137 	idle->flags |= PF_IDLE;
6138 
6139 	scs_task_reset(idle);
6140 	kasan_unpoison_task_stack(idle);
6141 
6142 #ifdef CONFIG_SMP
6143 	/*
6144 	 * Its possible that init_idle() gets called multiple times on a task,
6145 	 * in that case do_set_cpus_allowed() will not do the right thing.
6146 	 *
6147 	 * And since this is boot we can forgo the serialization.
6148 	 */
6149 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6150 #endif
6151 	/*
6152 	 * We're having a chicken and egg problem, even though we are
6153 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6154 	 * lockdep check in task_group() will fail.
6155 	 *
6156 	 * Similar case to sched_fork(). / Alternatively we could
6157 	 * use task_rq_lock() here and obtain the other rq->lock.
6158 	 *
6159 	 * Silence PROVE_RCU
6160 	 */
6161 	rcu_read_lock();
6162 	__set_task_cpu(idle, cpu);
6163 	rcu_read_unlock();
6164 
6165 	rq->idle = idle;
6166 	rcu_assign_pointer(rq->curr, idle);
6167 	idle->on_rq = TASK_ON_RQ_QUEUED;
6168 #ifdef CONFIG_SMP
6169 	idle->on_cpu = 1;
6170 #endif
6171 	raw_spin_unlock(&rq->lock);
6172 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6173 
6174 	/* Set the preempt count _outside_ the spinlocks! */
6175 	init_idle_preempt_count(idle, cpu);
6176 
6177 	/*
6178 	 * The idle tasks have their own, simple scheduling class:
6179 	 */
6180 	idle->sched_class = &idle_sched_class;
6181 	ftrace_graph_init_idle_task(idle, cpu);
6182 	vtime_init_idle(idle, cpu);
6183 #ifdef CONFIG_SMP
6184 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6185 #endif
6186 }
6187 
6188 #ifdef CONFIG_SMP
6189 
6190 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6191 			      const struct cpumask *trial)
6192 {
6193 	int ret = 1;
6194 
6195 	if (!cpumask_weight(cur))
6196 		return ret;
6197 
6198 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6199 
6200 	return ret;
6201 }
6202 
6203 int task_can_attach(struct task_struct *p,
6204 		    const struct cpumask *cs_cpus_allowed)
6205 {
6206 	int ret = 0;
6207 
6208 	/*
6209 	 * Kthreads which disallow setaffinity shouldn't be moved
6210 	 * to a new cpuset; we don't want to change their CPU
6211 	 * affinity and isolating such threads by their set of
6212 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6213 	 * applicable for such threads.  This prevents checking for
6214 	 * success of set_cpus_allowed_ptr() on all attached tasks
6215 	 * before cpus_mask may be changed.
6216 	 */
6217 	if (p->flags & PF_NO_SETAFFINITY) {
6218 		ret = -EINVAL;
6219 		goto out;
6220 	}
6221 
6222 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6223 					      cs_cpus_allowed))
6224 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6225 
6226 out:
6227 	return ret;
6228 }
6229 
6230 bool sched_smp_initialized __read_mostly;
6231 
6232 #ifdef CONFIG_NUMA_BALANCING
6233 /* Migrate current task p to target_cpu */
6234 int migrate_task_to(struct task_struct *p, int target_cpu)
6235 {
6236 	struct migration_arg arg = { p, target_cpu };
6237 	int curr_cpu = task_cpu(p);
6238 
6239 	if (curr_cpu == target_cpu)
6240 		return 0;
6241 
6242 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6243 		return -EINVAL;
6244 
6245 	/* TODO: This is not properly updating schedstats */
6246 
6247 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6248 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6249 }
6250 
6251 /*
6252  * Requeue a task on a given node and accurately track the number of NUMA
6253  * tasks on the runqueues
6254  */
6255 void sched_setnuma(struct task_struct *p, int nid)
6256 {
6257 	bool queued, running;
6258 	struct rq_flags rf;
6259 	struct rq *rq;
6260 
6261 	rq = task_rq_lock(p, &rf);
6262 	queued = task_on_rq_queued(p);
6263 	running = task_current(rq, p);
6264 
6265 	if (queued)
6266 		dequeue_task(rq, p, DEQUEUE_SAVE);
6267 	if (running)
6268 		put_prev_task(rq, p);
6269 
6270 	p->numa_preferred_nid = nid;
6271 
6272 	if (queued)
6273 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6274 	if (running)
6275 		set_next_task(rq, p);
6276 	task_rq_unlock(rq, p, &rf);
6277 }
6278 #endif /* CONFIG_NUMA_BALANCING */
6279 
6280 #ifdef CONFIG_HOTPLUG_CPU
6281 /*
6282  * Ensure that the idle task is using init_mm right before its CPU goes
6283  * offline.
6284  */
6285 void idle_task_exit(void)
6286 {
6287 	struct mm_struct *mm = current->active_mm;
6288 
6289 	BUG_ON(cpu_online(smp_processor_id()));
6290 	BUG_ON(current != this_rq()->idle);
6291 
6292 	if (mm != &init_mm) {
6293 		switch_mm(mm, &init_mm, current);
6294 		finish_arch_post_lock_switch();
6295 	}
6296 
6297 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6298 }
6299 
6300 /*
6301  * Since this CPU is going 'away' for a while, fold any nr_active delta
6302  * we might have. Assumes we're called after migrate_tasks() so that the
6303  * nr_active count is stable. We need to take the teardown thread which
6304  * is calling this into account, so we hand in adjust = 1 to the load
6305  * calculation.
6306  *
6307  * Also see the comment "Global load-average calculations".
6308  */
6309 static void calc_load_migrate(struct rq *rq)
6310 {
6311 	long delta = calc_load_fold_active(rq, 1);
6312 	if (delta)
6313 		atomic_long_add(delta, &calc_load_tasks);
6314 }
6315 
6316 static struct task_struct *__pick_migrate_task(struct rq *rq)
6317 {
6318 	const struct sched_class *class;
6319 	struct task_struct *next;
6320 
6321 	for_each_class(class) {
6322 		next = class->pick_next_task(rq);
6323 		if (next) {
6324 			next->sched_class->put_prev_task(rq, next);
6325 			return next;
6326 		}
6327 	}
6328 
6329 	/* The idle class should always have a runnable task */
6330 	BUG();
6331 }
6332 
6333 /*
6334  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6335  * try_to_wake_up()->select_task_rq().
6336  *
6337  * Called with rq->lock held even though we'er in stop_machine() and
6338  * there's no concurrency possible, we hold the required locks anyway
6339  * because of lock validation efforts.
6340  */
6341 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6342 {
6343 	struct rq *rq = dead_rq;
6344 	struct task_struct *next, *stop = rq->stop;
6345 	struct rq_flags orf = *rf;
6346 	int dest_cpu;
6347 
6348 	/*
6349 	 * Fudge the rq selection such that the below task selection loop
6350 	 * doesn't get stuck on the currently eligible stop task.
6351 	 *
6352 	 * We're currently inside stop_machine() and the rq is either stuck
6353 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6354 	 * either way we should never end up calling schedule() until we're
6355 	 * done here.
6356 	 */
6357 	rq->stop = NULL;
6358 
6359 	/*
6360 	 * put_prev_task() and pick_next_task() sched
6361 	 * class method both need to have an up-to-date
6362 	 * value of rq->clock[_task]
6363 	 */
6364 	update_rq_clock(rq);
6365 
6366 	for (;;) {
6367 		/*
6368 		 * There's this thread running, bail when that's the only
6369 		 * remaining thread:
6370 		 */
6371 		if (rq->nr_running == 1)
6372 			break;
6373 
6374 		next = __pick_migrate_task(rq);
6375 
6376 		/*
6377 		 * Rules for changing task_struct::cpus_mask are holding
6378 		 * both pi_lock and rq->lock, such that holding either
6379 		 * stabilizes the mask.
6380 		 *
6381 		 * Drop rq->lock is not quite as disastrous as it usually is
6382 		 * because !cpu_active at this point, which means load-balance
6383 		 * will not interfere. Also, stop-machine.
6384 		 */
6385 		rq_unlock(rq, rf);
6386 		raw_spin_lock(&next->pi_lock);
6387 		rq_relock(rq, rf);
6388 
6389 		/*
6390 		 * Since we're inside stop-machine, _nothing_ should have
6391 		 * changed the task, WARN if weird stuff happened, because in
6392 		 * that case the above rq->lock drop is a fail too.
6393 		 */
6394 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6395 			raw_spin_unlock(&next->pi_lock);
6396 			continue;
6397 		}
6398 
6399 		/* Find suitable destination for @next, with force if needed. */
6400 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6401 		rq = __migrate_task(rq, rf, next, dest_cpu);
6402 		if (rq != dead_rq) {
6403 			rq_unlock(rq, rf);
6404 			rq = dead_rq;
6405 			*rf = orf;
6406 			rq_relock(rq, rf);
6407 		}
6408 		raw_spin_unlock(&next->pi_lock);
6409 	}
6410 
6411 	rq->stop = stop;
6412 }
6413 #endif /* CONFIG_HOTPLUG_CPU */
6414 
6415 void set_rq_online(struct rq *rq)
6416 {
6417 	if (!rq->online) {
6418 		const struct sched_class *class;
6419 
6420 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6421 		rq->online = 1;
6422 
6423 		for_each_class(class) {
6424 			if (class->rq_online)
6425 				class->rq_online(rq);
6426 		}
6427 	}
6428 }
6429 
6430 void set_rq_offline(struct rq *rq)
6431 {
6432 	if (rq->online) {
6433 		const struct sched_class *class;
6434 
6435 		for_each_class(class) {
6436 			if (class->rq_offline)
6437 				class->rq_offline(rq);
6438 		}
6439 
6440 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6441 		rq->online = 0;
6442 	}
6443 }
6444 
6445 /*
6446  * used to mark begin/end of suspend/resume:
6447  */
6448 static int num_cpus_frozen;
6449 
6450 /*
6451  * Update cpusets according to cpu_active mask.  If cpusets are
6452  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6453  * around partition_sched_domains().
6454  *
6455  * If we come here as part of a suspend/resume, don't touch cpusets because we
6456  * want to restore it back to its original state upon resume anyway.
6457  */
6458 static void cpuset_cpu_active(void)
6459 {
6460 	if (cpuhp_tasks_frozen) {
6461 		/*
6462 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6463 		 * resume sequence. As long as this is not the last online
6464 		 * operation in the resume sequence, just build a single sched
6465 		 * domain, ignoring cpusets.
6466 		 */
6467 		partition_sched_domains(1, NULL, NULL);
6468 		if (--num_cpus_frozen)
6469 			return;
6470 		/*
6471 		 * This is the last CPU online operation. So fall through and
6472 		 * restore the original sched domains by considering the
6473 		 * cpuset configurations.
6474 		 */
6475 		cpuset_force_rebuild();
6476 	}
6477 	cpuset_update_active_cpus();
6478 }
6479 
6480 static int cpuset_cpu_inactive(unsigned int cpu)
6481 {
6482 	if (!cpuhp_tasks_frozen) {
6483 		if (dl_cpu_busy(cpu))
6484 			return -EBUSY;
6485 		cpuset_update_active_cpus();
6486 	} else {
6487 		num_cpus_frozen++;
6488 		partition_sched_domains(1, NULL, NULL);
6489 	}
6490 	return 0;
6491 }
6492 
6493 int sched_cpu_activate(unsigned int cpu)
6494 {
6495 	struct rq *rq = cpu_rq(cpu);
6496 	struct rq_flags rf;
6497 
6498 #ifdef CONFIG_SCHED_SMT
6499 	/*
6500 	 * When going up, increment the number of cores with SMT present.
6501 	 */
6502 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6503 		static_branch_inc_cpuslocked(&sched_smt_present);
6504 #endif
6505 	set_cpu_active(cpu, true);
6506 
6507 	if (sched_smp_initialized) {
6508 		sched_domains_numa_masks_set(cpu);
6509 		cpuset_cpu_active();
6510 	}
6511 
6512 	/*
6513 	 * Put the rq online, if not already. This happens:
6514 	 *
6515 	 * 1) In the early boot process, because we build the real domains
6516 	 *    after all CPUs have been brought up.
6517 	 *
6518 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6519 	 *    domains.
6520 	 */
6521 	rq_lock_irqsave(rq, &rf);
6522 	if (rq->rd) {
6523 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6524 		set_rq_online(rq);
6525 	}
6526 	rq_unlock_irqrestore(rq, &rf);
6527 
6528 	return 0;
6529 }
6530 
6531 int sched_cpu_deactivate(unsigned int cpu)
6532 {
6533 	int ret;
6534 
6535 	set_cpu_active(cpu, false);
6536 	/*
6537 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6538 	 * users of this state to go away such that all new such users will
6539 	 * observe it.
6540 	 *
6541 	 * Do sync before park smpboot threads to take care the rcu boost case.
6542 	 */
6543 	synchronize_rcu();
6544 
6545 #ifdef CONFIG_SCHED_SMT
6546 	/*
6547 	 * When going down, decrement the number of cores with SMT present.
6548 	 */
6549 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6550 		static_branch_dec_cpuslocked(&sched_smt_present);
6551 #endif
6552 
6553 	if (!sched_smp_initialized)
6554 		return 0;
6555 
6556 	ret = cpuset_cpu_inactive(cpu);
6557 	if (ret) {
6558 		set_cpu_active(cpu, true);
6559 		return ret;
6560 	}
6561 	sched_domains_numa_masks_clear(cpu);
6562 	return 0;
6563 }
6564 
6565 static void sched_rq_cpu_starting(unsigned int cpu)
6566 {
6567 	struct rq *rq = cpu_rq(cpu);
6568 
6569 	rq->calc_load_update = calc_load_update;
6570 	update_max_interval();
6571 }
6572 
6573 int sched_cpu_starting(unsigned int cpu)
6574 {
6575 	sched_rq_cpu_starting(cpu);
6576 	sched_tick_start(cpu);
6577 	return 0;
6578 }
6579 
6580 #ifdef CONFIG_HOTPLUG_CPU
6581 int sched_cpu_dying(unsigned int cpu)
6582 {
6583 	struct rq *rq = cpu_rq(cpu);
6584 	struct rq_flags rf;
6585 
6586 	/* Handle pending wakeups and then migrate everything off */
6587 	sched_tick_stop(cpu);
6588 
6589 	rq_lock_irqsave(rq, &rf);
6590 	if (rq->rd) {
6591 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6592 		set_rq_offline(rq);
6593 	}
6594 	migrate_tasks(rq, &rf);
6595 	BUG_ON(rq->nr_running != 1);
6596 	rq_unlock_irqrestore(rq, &rf);
6597 
6598 	calc_load_migrate(rq);
6599 	update_max_interval();
6600 	nohz_balance_exit_idle(rq);
6601 	hrtick_clear(rq);
6602 	return 0;
6603 }
6604 #endif
6605 
6606 void __init sched_init_smp(void)
6607 {
6608 	sched_init_numa();
6609 
6610 	/*
6611 	 * There's no userspace yet to cause hotplug operations; hence all the
6612 	 * CPU masks are stable and all blatant races in the below code cannot
6613 	 * happen.
6614 	 */
6615 	mutex_lock(&sched_domains_mutex);
6616 	sched_init_domains(cpu_active_mask);
6617 	mutex_unlock(&sched_domains_mutex);
6618 
6619 	/* Move init over to a non-isolated CPU */
6620 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6621 		BUG();
6622 	sched_init_granularity();
6623 
6624 	init_sched_rt_class();
6625 	init_sched_dl_class();
6626 
6627 	sched_smp_initialized = true;
6628 }
6629 
6630 static int __init migration_init(void)
6631 {
6632 	sched_cpu_starting(smp_processor_id());
6633 	return 0;
6634 }
6635 early_initcall(migration_init);
6636 
6637 #else
6638 void __init sched_init_smp(void)
6639 {
6640 	sched_init_granularity();
6641 }
6642 #endif /* CONFIG_SMP */
6643 
6644 int in_sched_functions(unsigned long addr)
6645 {
6646 	return in_lock_functions(addr) ||
6647 		(addr >= (unsigned long)__sched_text_start
6648 		&& addr < (unsigned long)__sched_text_end);
6649 }
6650 
6651 #ifdef CONFIG_CGROUP_SCHED
6652 /*
6653  * Default task group.
6654  * Every task in system belongs to this group at bootup.
6655  */
6656 struct task_group root_task_group;
6657 LIST_HEAD(task_groups);
6658 
6659 /* Cacheline aligned slab cache for task_group */
6660 static struct kmem_cache *task_group_cache __read_mostly;
6661 #endif
6662 
6663 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6664 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6665 
6666 void __init sched_init(void)
6667 {
6668 	unsigned long ptr = 0;
6669 	int i;
6670 
6671 	wait_bit_init();
6672 
6673 #ifdef CONFIG_FAIR_GROUP_SCHED
6674 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6675 #endif
6676 #ifdef CONFIG_RT_GROUP_SCHED
6677 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6678 #endif
6679 	if (ptr) {
6680 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6681 
6682 #ifdef CONFIG_FAIR_GROUP_SCHED
6683 		root_task_group.se = (struct sched_entity **)ptr;
6684 		ptr += nr_cpu_ids * sizeof(void **);
6685 
6686 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6687 		ptr += nr_cpu_ids * sizeof(void **);
6688 
6689 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6690 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6691 #endif /* CONFIG_FAIR_GROUP_SCHED */
6692 #ifdef CONFIG_RT_GROUP_SCHED
6693 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6694 		ptr += nr_cpu_ids * sizeof(void **);
6695 
6696 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6697 		ptr += nr_cpu_ids * sizeof(void **);
6698 
6699 #endif /* CONFIG_RT_GROUP_SCHED */
6700 	}
6701 #ifdef CONFIG_CPUMASK_OFFSTACK
6702 	for_each_possible_cpu(i) {
6703 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6704 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6705 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6706 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6707 	}
6708 #endif /* CONFIG_CPUMASK_OFFSTACK */
6709 
6710 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6711 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6712 
6713 #ifdef CONFIG_SMP
6714 	init_defrootdomain();
6715 #endif
6716 
6717 #ifdef CONFIG_RT_GROUP_SCHED
6718 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6719 			global_rt_period(), global_rt_runtime());
6720 #endif /* CONFIG_RT_GROUP_SCHED */
6721 
6722 #ifdef CONFIG_CGROUP_SCHED
6723 	task_group_cache = KMEM_CACHE(task_group, 0);
6724 
6725 	list_add(&root_task_group.list, &task_groups);
6726 	INIT_LIST_HEAD(&root_task_group.children);
6727 	INIT_LIST_HEAD(&root_task_group.siblings);
6728 	autogroup_init(&init_task);
6729 #endif /* CONFIG_CGROUP_SCHED */
6730 
6731 	for_each_possible_cpu(i) {
6732 		struct rq *rq;
6733 
6734 		rq = cpu_rq(i);
6735 		raw_spin_lock_init(&rq->lock);
6736 		rq->nr_running = 0;
6737 		rq->calc_load_active = 0;
6738 		rq->calc_load_update = jiffies + LOAD_FREQ;
6739 		init_cfs_rq(&rq->cfs);
6740 		init_rt_rq(&rq->rt);
6741 		init_dl_rq(&rq->dl);
6742 #ifdef CONFIG_FAIR_GROUP_SCHED
6743 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6744 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6745 		/*
6746 		 * How much CPU bandwidth does root_task_group get?
6747 		 *
6748 		 * In case of task-groups formed thr' the cgroup filesystem, it
6749 		 * gets 100% of the CPU resources in the system. This overall
6750 		 * system CPU resource is divided among the tasks of
6751 		 * root_task_group and its child task-groups in a fair manner,
6752 		 * based on each entity's (task or task-group's) weight
6753 		 * (se->load.weight).
6754 		 *
6755 		 * In other words, if root_task_group has 10 tasks of weight
6756 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6757 		 * then A0's share of the CPU resource is:
6758 		 *
6759 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6760 		 *
6761 		 * We achieve this by letting root_task_group's tasks sit
6762 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6763 		 */
6764 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6765 #endif /* CONFIG_FAIR_GROUP_SCHED */
6766 
6767 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6768 #ifdef CONFIG_RT_GROUP_SCHED
6769 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6770 #endif
6771 #ifdef CONFIG_SMP
6772 		rq->sd = NULL;
6773 		rq->rd = NULL;
6774 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6775 		rq->balance_callback = NULL;
6776 		rq->active_balance = 0;
6777 		rq->next_balance = jiffies;
6778 		rq->push_cpu = 0;
6779 		rq->cpu = i;
6780 		rq->online = 0;
6781 		rq->idle_stamp = 0;
6782 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6783 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6784 
6785 		INIT_LIST_HEAD(&rq->cfs_tasks);
6786 
6787 		rq_attach_root(rq, &def_root_domain);
6788 #ifdef CONFIG_NO_HZ_COMMON
6789 		rq->last_blocked_load_update_tick = jiffies;
6790 		atomic_set(&rq->nohz_flags, 0);
6791 
6792 		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6793 #endif
6794 #endif /* CONFIG_SMP */
6795 		hrtick_rq_init(rq);
6796 		atomic_set(&rq->nr_iowait, 0);
6797 	}
6798 
6799 	set_load_weight(&init_task, false);
6800 
6801 	/*
6802 	 * The boot idle thread does lazy MMU switching as well:
6803 	 */
6804 	mmgrab(&init_mm);
6805 	enter_lazy_tlb(&init_mm, current);
6806 
6807 	/*
6808 	 * Make us the idle thread. Technically, schedule() should not be
6809 	 * called from this thread, however somewhere below it might be,
6810 	 * but because we are the idle thread, we just pick up running again
6811 	 * when this runqueue becomes "idle".
6812 	 */
6813 	init_idle(current, smp_processor_id());
6814 
6815 	calc_load_update = jiffies + LOAD_FREQ;
6816 
6817 #ifdef CONFIG_SMP
6818 	idle_thread_set_boot_cpu();
6819 #endif
6820 	init_sched_fair_class();
6821 
6822 	init_schedstats();
6823 
6824 	psi_init();
6825 
6826 	init_uclamp();
6827 
6828 	scheduler_running = 1;
6829 }
6830 
6831 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6832 static inline int preempt_count_equals(int preempt_offset)
6833 {
6834 	int nested = preempt_count() + rcu_preempt_depth();
6835 
6836 	return (nested == preempt_offset);
6837 }
6838 
6839 void __might_sleep(const char *file, int line, int preempt_offset)
6840 {
6841 	/*
6842 	 * Blocking primitives will set (and therefore destroy) current->state,
6843 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6844 	 * otherwise we will destroy state.
6845 	 */
6846 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6847 			"do not call blocking ops when !TASK_RUNNING; "
6848 			"state=%lx set at [<%p>] %pS\n",
6849 			current->state,
6850 			(void *)current->task_state_change,
6851 			(void *)current->task_state_change);
6852 
6853 	___might_sleep(file, line, preempt_offset);
6854 }
6855 EXPORT_SYMBOL(__might_sleep);
6856 
6857 void ___might_sleep(const char *file, int line, int preempt_offset)
6858 {
6859 	/* Ratelimiting timestamp: */
6860 	static unsigned long prev_jiffy;
6861 
6862 	unsigned long preempt_disable_ip;
6863 
6864 	/* WARN_ON_ONCE() by default, no rate limit required: */
6865 	rcu_sleep_check();
6866 
6867 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6868 	     !is_idle_task(current) && !current->non_block_count) ||
6869 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6870 	    oops_in_progress)
6871 		return;
6872 
6873 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6874 		return;
6875 	prev_jiffy = jiffies;
6876 
6877 	/* Save this before calling printk(), since that will clobber it: */
6878 	preempt_disable_ip = get_preempt_disable_ip(current);
6879 
6880 	printk(KERN_ERR
6881 		"BUG: sleeping function called from invalid context at %s:%d\n",
6882 			file, line);
6883 	printk(KERN_ERR
6884 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6885 			in_atomic(), irqs_disabled(), current->non_block_count,
6886 			current->pid, current->comm);
6887 
6888 	if (task_stack_end_corrupted(current))
6889 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6890 
6891 	debug_show_held_locks(current);
6892 	if (irqs_disabled())
6893 		print_irqtrace_events(current);
6894 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6895 	    && !preempt_count_equals(preempt_offset)) {
6896 		pr_err("Preemption disabled at:");
6897 		print_ip_sym(KERN_ERR, preempt_disable_ip);
6898 	}
6899 	dump_stack();
6900 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6901 }
6902 EXPORT_SYMBOL(___might_sleep);
6903 
6904 void __cant_sleep(const char *file, int line, int preempt_offset)
6905 {
6906 	static unsigned long prev_jiffy;
6907 
6908 	if (irqs_disabled())
6909 		return;
6910 
6911 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6912 		return;
6913 
6914 	if (preempt_count() > preempt_offset)
6915 		return;
6916 
6917 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6918 		return;
6919 	prev_jiffy = jiffies;
6920 
6921 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6922 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6923 			in_atomic(), irqs_disabled(),
6924 			current->pid, current->comm);
6925 
6926 	debug_show_held_locks(current);
6927 	dump_stack();
6928 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6929 }
6930 EXPORT_SYMBOL_GPL(__cant_sleep);
6931 #endif
6932 
6933 #ifdef CONFIG_MAGIC_SYSRQ
6934 void normalize_rt_tasks(void)
6935 {
6936 	struct task_struct *g, *p;
6937 	struct sched_attr attr = {
6938 		.sched_policy = SCHED_NORMAL,
6939 	};
6940 
6941 	read_lock(&tasklist_lock);
6942 	for_each_process_thread(g, p) {
6943 		/*
6944 		 * Only normalize user tasks:
6945 		 */
6946 		if (p->flags & PF_KTHREAD)
6947 			continue;
6948 
6949 		p->se.exec_start = 0;
6950 		schedstat_set(p->se.statistics.wait_start,  0);
6951 		schedstat_set(p->se.statistics.sleep_start, 0);
6952 		schedstat_set(p->se.statistics.block_start, 0);
6953 
6954 		if (!dl_task(p) && !rt_task(p)) {
6955 			/*
6956 			 * Renice negative nice level userspace
6957 			 * tasks back to 0:
6958 			 */
6959 			if (task_nice(p) < 0)
6960 				set_user_nice(p, 0);
6961 			continue;
6962 		}
6963 
6964 		__sched_setscheduler(p, &attr, false, false);
6965 	}
6966 	read_unlock(&tasklist_lock);
6967 }
6968 
6969 #endif /* CONFIG_MAGIC_SYSRQ */
6970 
6971 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6972 /*
6973  * These functions are only useful for the IA64 MCA handling, or kdb.
6974  *
6975  * They can only be called when the whole system has been
6976  * stopped - every CPU needs to be quiescent, and no scheduling
6977  * activity can take place. Using them for anything else would
6978  * be a serious bug, and as a result, they aren't even visible
6979  * under any other configuration.
6980  */
6981 
6982 /**
6983  * curr_task - return the current task for a given CPU.
6984  * @cpu: the processor in question.
6985  *
6986  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6987  *
6988  * Return: The current task for @cpu.
6989  */
6990 struct task_struct *curr_task(int cpu)
6991 {
6992 	return cpu_curr(cpu);
6993 }
6994 
6995 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6996 
6997 #ifdef CONFIG_IA64
6998 /**
6999  * ia64_set_curr_task - set the current task for a given CPU.
7000  * @cpu: the processor in question.
7001  * @p: the task pointer to set.
7002  *
7003  * Description: This function must only be used when non-maskable interrupts
7004  * are serviced on a separate stack. It allows the architecture to switch the
7005  * notion of the current task on a CPU in a non-blocking manner. This function
7006  * must be called with all CPU's synchronized, and interrupts disabled, the
7007  * and caller must save the original value of the current task (see
7008  * curr_task() above) and restore that value before reenabling interrupts and
7009  * re-starting the system.
7010  *
7011  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7012  */
7013 void ia64_set_curr_task(int cpu, struct task_struct *p)
7014 {
7015 	cpu_curr(cpu) = p;
7016 }
7017 
7018 #endif
7019 
7020 #ifdef CONFIG_CGROUP_SCHED
7021 /* task_group_lock serializes the addition/removal of task groups */
7022 static DEFINE_SPINLOCK(task_group_lock);
7023 
7024 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7025 					    struct task_group *parent)
7026 {
7027 #ifdef CONFIG_UCLAMP_TASK_GROUP
7028 	enum uclamp_id clamp_id;
7029 
7030 	for_each_clamp_id(clamp_id) {
7031 		uclamp_se_set(&tg->uclamp_req[clamp_id],
7032 			      uclamp_none(clamp_id), false);
7033 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7034 	}
7035 #endif
7036 }
7037 
7038 static void sched_free_group(struct task_group *tg)
7039 {
7040 	free_fair_sched_group(tg);
7041 	free_rt_sched_group(tg);
7042 	autogroup_free(tg);
7043 	kmem_cache_free(task_group_cache, tg);
7044 }
7045 
7046 /* allocate runqueue etc for a new task group */
7047 struct task_group *sched_create_group(struct task_group *parent)
7048 {
7049 	struct task_group *tg;
7050 
7051 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7052 	if (!tg)
7053 		return ERR_PTR(-ENOMEM);
7054 
7055 	if (!alloc_fair_sched_group(tg, parent))
7056 		goto err;
7057 
7058 	if (!alloc_rt_sched_group(tg, parent))
7059 		goto err;
7060 
7061 	alloc_uclamp_sched_group(tg, parent);
7062 
7063 	return tg;
7064 
7065 err:
7066 	sched_free_group(tg);
7067 	return ERR_PTR(-ENOMEM);
7068 }
7069 
7070 void sched_online_group(struct task_group *tg, struct task_group *parent)
7071 {
7072 	unsigned long flags;
7073 
7074 	spin_lock_irqsave(&task_group_lock, flags);
7075 	list_add_rcu(&tg->list, &task_groups);
7076 
7077 	/* Root should already exist: */
7078 	WARN_ON(!parent);
7079 
7080 	tg->parent = parent;
7081 	INIT_LIST_HEAD(&tg->children);
7082 	list_add_rcu(&tg->siblings, &parent->children);
7083 	spin_unlock_irqrestore(&task_group_lock, flags);
7084 
7085 	online_fair_sched_group(tg);
7086 }
7087 
7088 /* rcu callback to free various structures associated with a task group */
7089 static void sched_free_group_rcu(struct rcu_head *rhp)
7090 {
7091 	/* Now it should be safe to free those cfs_rqs: */
7092 	sched_free_group(container_of(rhp, struct task_group, rcu));
7093 }
7094 
7095 void sched_destroy_group(struct task_group *tg)
7096 {
7097 	/* Wait for possible concurrent references to cfs_rqs complete: */
7098 	call_rcu(&tg->rcu, sched_free_group_rcu);
7099 }
7100 
7101 void sched_offline_group(struct task_group *tg)
7102 {
7103 	unsigned long flags;
7104 
7105 	/* End participation in shares distribution: */
7106 	unregister_fair_sched_group(tg);
7107 
7108 	spin_lock_irqsave(&task_group_lock, flags);
7109 	list_del_rcu(&tg->list);
7110 	list_del_rcu(&tg->siblings);
7111 	spin_unlock_irqrestore(&task_group_lock, flags);
7112 }
7113 
7114 static void sched_change_group(struct task_struct *tsk, int type)
7115 {
7116 	struct task_group *tg;
7117 
7118 	/*
7119 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7120 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7121 	 * to prevent lockdep warnings.
7122 	 */
7123 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7124 			  struct task_group, css);
7125 	tg = autogroup_task_group(tsk, tg);
7126 	tsk->sched_task_group = tg;
7127 
7128 #ifdef CONFIG_FAIR_GROUP_SCHED
7129 	if (tsk->sched_class->task_change_group)
7130 		tsk->sched_class->task_change_group(tsk, type);
7131 	else
7132 #endif
7133 		set_task_rq(tsk, task_cpu(tsk));
7134 }
7135 
7136 /*
7137  * Change task's runqueue when it moves between groups.
7138  *
7139  * The caller of this function should have put the task in its new group by
7140  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7141  * its new group.
7142  */
7143 void sched_move_task(struct task_struct *tsk)
7144 {
7145 	int queued, running, queue_flags =
7146 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7147 	struct rq_flags rf;
7148 	struct rq *rq;
7149 
7150 	rq = task_rq_lock(tsk, &rf);
7151 	update_rq_clock(rq);
7152 
7153 	running = task_current(rq, tsk);
7154 	queued = task_on_rq_queued(tsk);
7155 
7156 	if (queued)
7157 		dequeue_task(rq, tsk, queue_flags);
7158 	if (running)
7159 		put_prev_task(rq, tsk);
7160 
7161 	sched_change_group(tsk, TASK_MOVE_GROUP);
7162 
7163 	if (queued)
7164 		enqueue_task(rq, tsk, queue_flags);
7165 	if (running) {
7166 		set_next_task(rq, tsk);
7167 		/*
7168 		 * After changing group, the running task may have joined a
7169 		 * throttled one but it's still the running task. Trigger a
7170 		 * resched to make sure that task can still run.
7171 		 */
7172 		resched_curr(rq);
7173 	}
7174 
7175 	task_rq_unlock(rq, tsk, &rf);
7176 }
7177 
7178 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7179 {
7180 	return css ? container_of(css, struct task_group, css) : NULL;
7181 }
7182 
7183 static struct cgroup_subsys_state *
7184 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7185 {
7186 	struct task_group *parent = css_tg(parent_css);
7187 	struct task_group *tg;
7188 
7189 	if (!parent) {
7190 		/* This is early initialization for the top cgroup */
7191 		return &root_task_group.css;
7192 	}
7193 
7194 	tg = sched_create_group(parent);
7195 	if (IS_ERR(tg))
7196 		return ERR_PTR(-ENOMEM);
7197 
7198 	return &tg->css;
7199 }
7200 
7201 /* Expose task group only after completing cgroup initialization */
7202 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7203 {
7204 	struct task_group *tg = css_tg(css);
7205 	struct task_group *parent = css_tg(css->parent);
7206 
7207 	if (parent)
7208 		sched_online_group(tg, parent);
7209 
7210 #ifdef CONFIG_UCLAMP_TASK_GROUP
7211 	/* Propagate the effective uclamp value for the new group */
7212 	cpu_util_update_eff(css);
7213 #endif
7214 
7215 	return 0;
7216 }
7217 
7218 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7219 {
7220 	struct task_group *tg = css_tg(css);
7221 
7222 	sched_offline_group(tg);
7223 }
7224 
7225 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7226 {
7227 	struct task_group *tg = css_tg(css);
7228 
7229 	/*
7230 	 * Relies on the RCU grace period between css_released() and this.
7231 	 */
7232 	sched_free_group(tg);
7233 }
7234 
7235 /*
7236  * This is called before wake_up_new_task(), therefore we really only
7237  * have to set its group bits, all the other stuff does not apply.
7238  */
7239 static void cpu_cgroup_fork(struct task_struct *task)
7240 {
7241 	struct rq_flags rf;
7242 	struct rq *rq;
7243 
7244 	rq = task_rq_lock(task, &rf);
7245 
7246 	update_rq_clock(rq);
7247 	sched_change_group(task, TASK_SET_GROUP);
7248 
7249 	task_rq_unlock(rq, task, &rf);
7250 }
7251 
7252 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7253 {
7254 	struct task_struct *task;
7255 	struct cgroup_subsys_state *css;
7256 	int ret = 0;
7257 
7258 	cgroup_taskset_for_each(task, css, tset) {
7259 #ifdef CONFIG_RT_GROUP_SCHED
7260 		if (!sched_rt_can_attach(css_tg(css), task))
7261 			return -EINVAL;
7262 #endif
7263 		/*
7264 		 * Serialize against wake_up_new_task() such that if its
7265 		 * running, we're sure to observe its full state.
7266 		 */
7267 		raw_spin_lock_irq(&task->pi_lock);
7268 		/*
7269 		 * Avoid calling sched_move_task() before wake_up_new_task()
7270 		 * has happened. This would lead to problems with PELT, due to
7271 		 * move wanting to detach+attach while we're not attached yet.
7272 		 */
7273 		if (task->state == TASK_NEW)
7274 			ret = -EINVAL;
7275 		raw_spin_unlock_irq(&task->pi_lock);
7276 
7277 		if (ret)
7278 			break;
7279 	}
7280 	return ret;
7281 }
7282 
7283 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7284 {
7285 	struct task_struct *task;
7286 	struct cgroup_subsys_state *css;
7287 
7288 	cgroup_taskset_for_each(task, css, tset)
7289 		sched_move_task(task);
7290 }
7291 
7292 #ifdef CONFIG_UCLAMP_TASK_GROUP
7293 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7294 {
7295 	struct cgroup_subsys_state *top_css = css;
7296 	struct uclamp_se *uc_parent = NULL;
7297 	struct uclamp_se *uc_se = NULL;
7298 	unsigned int eff[UCLAMP_CNT];
7299 	enum uclamp_id clamp_id;
7300 	unsigned int clamps;
7301 
7302 	css_for_each_descendant_pre(css, top_css) {
7303 		uc_parent = css_tg(css)->parent
7304 			? css_tg(css)->parent->uclamp : NULL;
7305 
7306 		for_each_clamp_id(clamp_id) {
7307 			/* Assume effective clamps matches requested clamps */
7308 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7309 			/* Cap effective clamps with parent's effective clamps */
7310 			if (uc_parent &&
7311 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7312 				eff[clamp_id] = uc_parent[clamp_id].value;
7313 			}
7314 		}
7315 		/* Ensure protection is always capped by limit */
7316 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7317 
7318 		/* Propagate most restrictive effective clamps */
7319 		clamps = 0x0;
7320 		uc_se = css_tg(css)->uclamp;
7321 		for_each_clamp_id(clamp_id) {
7322 			if (eff[clamp_id] == uc_se[clamp_id].value)
7323 				continue;
7324 			uc_se[clamp_id].value = eff[clamp_id];
7325 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7326 			clamps |= (0x1 << clamp_id);
7327 		}
7328 		if (!clamps) {
7329 			css = css_rightmost_descendant(css);
7330 			continue;
7331 		}
7332 
7333 		/* Immediately update descendants RUNNABLE tasks */
7334 		uclamp_update_active_tasks(css, clamps);
7335 	}
7336 }
7337 
7338 /*
7339  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7340  * C expression. Since there is no way to convert a macro argument (N) into a
7341  * character constant, use two levels of macros.
7342  */
7343 #define _POW10(exp) ((unsigned int)1e##exp)
7344 #define POW10(exp) _POW10(exp)
7345 
7346 struct uclamp_request {
7347 #define UCLAMP_PERCENT_SHIFT	2
7348 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7349 	s64 percent;
7350 	u64 util;
7351 	int ret;
7352 };
7353 
7354 static inline struct uclamp_request
7355 capacity_from_percent(char *buf)
7356 {
7357 	struct uclamp_request req = {
7358 		.percent = UCLAMP_PERCENT_SCALE,
7359 		.util = SCHED_CAPACITY_SCALE,
7360 		.ret = 0,
7361 	};
7362 
7363 	buf = strim(buf);
7364 	if (strcmp(buf, "max")) {
7365 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7366 					     &req.percent);
7367 		if (req.ret)
7368 			return req;
7369 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7370 			req.ret = -ERANGE;
7371 			return req;
7372 		}
7373 
7374 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7375 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7376 	}
7377 
7378 	return req;
7379 }
7380 
7381 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7382 				size_t nbytes, loff_t off,
7383 				enum uclamp_id clamp_id)
7384 {
7385 	struct uclamp_request req;
7386 	struct task_group *tg;
7387 
7388 	req = capacity_from_percent(buf);
7389 	if (req.ret)
7390 		return req.ret;
7391 
7392 	mutex_lock(&uclamp_mutex);
7393 	rcu_read_lock();
7394 
7395 	tg = css_tg(of_css(of));
7396 	if (tg->uclamp_req[clamp_id].value != req.util)
7397 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7398 
7399 	/*
7400 	 * Because of not recoverable conversion rounding we keep track of the
7401 	 * exact requested value
7402 	 */
7403 	tg->uclamp_pct[clamp_id] = req.percent;
7404 
7405 	/* Update effective clamps to track the most restrictive value */
7406 	cpu_util_update_eff(of_css(of));
7407 
7408 	rcu_read_unlock();
7409 	mutex_unlock(&uclamp_mutex);
7410 
7411 	return nbytes;
7412 }
7413 
7414 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7415 				    char *buf, size_t nbytes,
7416 				    loff_t off)
7417 {
7418 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7419 }
7420 
7421 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7422 				    char *buf, size_t nbytes,
7423 				    loff_t off)
7424 {
7425 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7426 }
7427 
7428 static inline void cpu_uclamp_print(struct seq_file *sf,
7429 				    enum uclamp_id clamp_id)
7430 {
7431 	struct task_group *tg;
7432 	u64 util_clamp;
7433 	u64 percent;
7434 	u32 rem;
7435 
7436 	rcu_read_lock();
7437 	tg = css_tg(seq_css(sf));
7438 	util_clamp = tg->uclamp_req[clamp_id].value;
7439 	rcu_read_unlock();
7440 
7441 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7442 		seq_puts(sf, "max\n");
7443 		return;
7444 	}
7445 
7446 	percent = tg->uclamp_pct[clamp_id];
7447 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7448 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7449 }
7450 
7451 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7452 {
7453 	cpu_uclamp_print(sf, UCLAMP_MIN);
7454 	return 0;
7455 }
7456 
7457 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7458 {
7459 	cpu_uclamp_print(sf, UCLAMP_MAX);
7460 	return 0;
7461 }
7462 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7463 
7464 #ifdef CONFIG_FAIR_GROUP_SCHED
7465 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7466 				struct cftype *cftype, u64 shareval)
7467 {
7468 	if (shareval > scale_load_down(ULONG_MAX))
7469 		shareval = MAX_SHARES;
7470 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7471 }
7472 
7473 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7474 			       struct cftype *cft)
7475 {
7476 	struct task_group *tg = css_tg(css);
7477 
7478 	return (u64) scale_load_down(tg->shares);
7479 }
7480 
7481 #ifdef CONFIG_CFS_BANDWIDTH
7482 static DEFINE_MUTEX(cfs_constraints_mutex);
7483 
7484 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7485 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7486 /* More than 203 days if BW_SHIFT equals 20. */
7487 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7488 
7489 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7490 
7491 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7492 {
7493 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7494 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7495 
7496 	if (tg == &root_task_group)
7497 		return -EINVAL;
7498 
7499 	/*
7500 	 * Ensure we have at some amount of bandwidth every period.  This is
7501 	 * to prevent reaching a state of large arrears when throttled via
7502 	 * entity_tick() resulting in prolonged exit starvation.
7503 	 */
7504 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7505 		return -EINVAL;
7506 
7507 	/*
7508 	 * Likewise, bound things on the otherside by preventing insane quota
7509 	 * periods.  This also allows us to normalize in computing quota
7510 	 * feasibility.
7511 	 */
7512 	if (period > max_cfs_quota_period)
7513 		return -EINVAL;
7514 
7515 	/*
7516 	 * Bound quota to defend quota against overflow during bandwidth shift.
7517 	 */
7518 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7519 		return -EINVAL;
7520 
7521 	/*
7522 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7523 	 * unthrottle_offline_cfs_rqs().
7524 	 */
7525 	get_online_cpus();
7526 	mutex_lock(&cfs_constraints_mutex);
7527 	ret = __cfs_schedulable(tg, period, quota);
7528 	if (ret)
7529 		goto out_unlock;
7530 
7531 	runtime_enabled = quota != RUNTIME_INF;
7532 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7533 	/*
7534 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7535 	 * before making related changes, and on->off must occur afterwards
7536 	 */
7537 	if (runtime_enabled && !runtime_was_enabled)
7538 		cfs_bandwidth_usage_inc();
7539 	raw_spin_lock_irq(&cfs_b->lock);
7540 	cfs_b->period = ns_to_ktime(period);
7541 	cfs_b->quota = quota;
7542 
7543 	__refill_cfs_bandwidth_runtime(cfs_b);
7544 
7545 	/* Restart the period timer (if active) to handle new period expiry: */
7546 	if (runtime_enabled)
7547 		start_cfs_bandwidth(cfs_b);
7548 
7549 	raw_spin_unlock_irq(&cfs_b->lock);
7550 
7551 	for_each_online_cpu(i) {
7552 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7553 		struct rq *rq = cfs_rq->rq;
7554 		struct rq_flags rf;
7555 
7556 		rq_lock_irq(rq, &rf);
7557 		cfs_rq->runtime_enabled = runtime_enabled;
7558 		cfs_rq->runtime_remaining = 0;
7559 
7560 		if (cfs_rq->throttled)
7561 			unthrottle_cfs_rq(cfs_rq);
7562 		rq_unlock_irq(rq, &rf);
7563 	}
7564 	if (runtime_was_enabled && !runtime_enabled)
7565 		cfs_bandwidth_usage_dec();
7566 out_unlock:
7567 	mutex_unlock(&cfs_constraints_mutex);
7568 	put_online_cpus();
7569 
7570 	return ret;
7571 }
7572 
7573 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7574 {
7575 	u64 quota, period;
7576 
7577 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7578 	if (cfs_quota_us < 0)
7579 		quota = RUNTIME_INF;
7580 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7581 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7582 	else
7583 		return -EINVAL;
7584 
7585 	return tg_set_cfs_bandwidth(tg, period, quota);
7586 }
7587 
7588 static long tg_get_cfs_quota(struct task_group *tg)
7589 {
7590 	u64 quota_us;
7591 
7592 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7593 		return -1;
7594 
7595 	quota_us = tg->cfs_bandwidth.quota;
7596 	do_div(quota_us, NSEC_PER_USEC);
7597 
7598 	return quota_us;
7599 }
7600 
7601 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7602 {
7603 	u64 quota, period;
7604 
7605 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7606 		return -EINVAL;
7607 
7608 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7609 	quota = tg->cfs_bandwidth.quota;
7610 
7611 	return tg_set_cfs_bandwidth(tg, period, quota);
7612 }
7613 
7614 static long tg_get_cfs_period(struct task_group *tg)
7615 {
7616 	u64 cfs_period_us;
7617 
7618 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7619 	do_div(cfs_period_us, NSEC_PER_USEC);
7620 
7621 	return cfs_period_us;
7622 }
7623 
7624 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7625 				  struct cftype *cft)
7626 {
7627 	return tg_get_cfs_quota(css_tg(css));
7628 }
7629 
7630 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7631 				   struct cftype *cftype, s64 cfs_quota_us)
7632 {
7633 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7634 }
7635 
7636 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7637 				   struct cftype *cft)
7638 {
7639 	return tg_get_cfs_period(css_tg(css));
7640 }
7641 
7642 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7643 				    struct cftype *cftype, u64 cfs_period_us)
7644 {
7645 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7646 }
7647 
7648 struct cfs_schedulable_data {
7649 	struct task_group *tg;
7650 	u64 period, quota;
7651 };
7652 
7653 /*
7654  * normalize group quota/period to be quota/max_period
7655  * note: units are usecs
7656  */
7657 static u64 normalize_cfs_quota(struct task_group *tg,
7658 			       struct cfs_schedulable_data *d)
7659 {
7660 	u64 quota, period;
7661 
7662 	if (tg == d->tg) {
7663 		period = d->period;
7664 		quota = d->quota;
7665 	} else {
7666 		period = tg_get_cfs_period(tg);
7667 		quota = tg_get_cfs_quota(tg);
7668 	}
7669 
7670 	/* note: these should typically be equivalent */
7671 	if (quota == RUNTIME_INF || quota == -1)
7672 		return RUNTIME_INF;
7673 
7674 	return to_ratio(period, quota);
7675 }
7676 
7677 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7678 {
7679 	struct cfs_schedulable_data *d = data;
7680 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7681 	s64 quota = 0, parent_quota = -1;
7682 
7683 	if (!tg->parent) {
7684 		quota = RUNTIME_INF;
7685 	} else {
7686 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7687 
7688 		quota = normalize_cfs_quota(tg, d);
7689 		parent_quota = parent_b->hierarchical_quota;
7690 
7691 		/*
7692 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7693 		 * always take the min.  On cgroup1, only inherit when no
7694 		 * limit is set:
7695 		 */
7696 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7697 			quota = min(quota, parent_quota);
7698 		} else {
7699 			if (quota == RUNTIME_INF)
7700 				quota = parent_quota;
7701 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7702 				return -EINVAL;
7703 		}
7704 	}
7705 	cfs_b->hierarchical_quota = quota;
7706 
7707 	return 0;
7708 }
7709 
7710 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7711 {
7712 	int ret;
7713 	struct cfs_schedulable_data data = {
7714 		.tg = tg,
7715 		.period = period,
7716 		.quota = quota,
7717 	};
7718 
7719 	if (quota != RUNTIME_INF) {
7720 		do_div(data.period, NSEC_PER_USEC);
7721 		do_div(data.quota, NSEC_PER_USEC);
7722 	}
7723 
7724 	rcu_read_lock();
7725 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7726 	rcu_read_unlock();
7727 
7728 	return ret;
7729 }
7730 
7731 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7732 {
7733 	struct task_group *tg = css_tg(seq_css(sf));
7734 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7735 
7736 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7737 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7738 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7739 
7740 	if (schedstat_enabled() && tg != &root_task_group) {
7741 		u64 ws = 0;
7742 		int i;
7743 
7744 		for_each_possible_cpu(i)
7745 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7746 
7747 		seq_printf(sf, "wait_sum %llu\n", ws);
7748 	}
7749 
7750 	return 0;
7751 }
7752 #endif /* CONFIG_CFS_BANDWIDTH */
7753 #endif /* CONFIG_FAIR_GROUP_SCHED */
7754 
7755 #ifdef CONFIG_RT_GROUP_SCHED
7756 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7757 				struct cftype *cft, s64 val)
7758 {
7759 	return sched_group_set_rt_runtime(css_tg(css), val);
7760 }
7761 
7762 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7763 			       struct cftype *cft)
7764 {
7765 	return sched_group_rt_runtime(css_tg(css));
7766 }
7767 
7768 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7769 				    struct cftype *cftype, u64 rt_period_us)
7770 {
7771 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7772 }
7773 
7774 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7775 				   struct cftype *cft)
7776 {
7777 	return sched_group_rt_period(css_tg(css));
7778 }
7779 #endif /* CONFIG_RT_GROUP_SCHED */
7780 
7781 static struct cftype cpu_legacy_files[] = {
7782 #ifdef CONFIG_FAIR_GROUP_SCHED
7783 	{
7784 		.name = "shares",
7785 		.read_u64 = cpu_shares_read_u64,
7786 		.write_u64 = cpu_shares_write_u64,
7787 	},
7788 #endif
7789 #ifdef CONFIG_CFS_BANDWIDTH
7790 	{
7791 		.name = "cfs_quota_us",
7792 		.read_s64 = cpu_cfs_quota_read_s64,
7793 		.write_s64 = cpu_cfs_quota_write_s64,
7794 	},
7795 	{
7796 		.name = "cfs_period_us",
7797 		.read_u64 = cpu_cfs_period_read_u64,
7798 		.write_u64 = cpu_cfs_period_write_u64,
7799 	},
7800 	{
7801 		.name = "stat",
7802 		.seq_show = cpu_cfs_stat_show,
7803 	},
7804 #endif
7805 #ifdef CONFIG_RT_GROUP_SCHED
7806 	{
7807 		.name = "rt_runtime_us",
7808 		.read_s64 = cpu_rt_runtime_read,
7809 		.write_s64 = cpu_rt_runtime_write,
7810 	},
7811 	{
7812 		.name = "rt_period_us",
7813 		.read_u64 = cpu_rt_period_read_uint,
7814 		.write_u64 = cpu_rt_period_write_uint,
7815 	},
7816 #endif
7817 #ifdef CONFIG_UCLAMP_TASK_GROUP
7818 	{
7819 		.name = "uclamp.min",
7820 		.flags = CFTYPE_NOT_ON_ROOT,
7821 		.seq_show = cpu_uclamp_min_show,
7822 		.write = cpu_uclamp_min_write,
7823 	},
7824 	{
7825 		.name = "uclamp.max",
7826 		.flags = CFTYPE_NOT_ON_ROOT,
7827 		.seq_show = cpu_uclamp_max_show,
7828 		.write = cpu_uclamp_max_write,
7829 	},
7830 #endif
7831 	{ }	/* Terminate */
7832 };
7833 
7834 static int cpu_extra_stat_show(struct seq_file *sf,
7835 			       struct cgroup_subsys_state *css)
7836 {
7837 #ifdef CONFIG_CFS_BANDWIDTH
7838 	{
7839 		struct task_group *tg = css_tg(css);
7840 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7841 		u64 throttled_usec;
7842 
7843 		throttled_usec = cfs_b->throttled_time;
7844 		do_div(throttled_usec, NSEC_PER_USEC);
7845 
7846 		seq_printf(sf, "nr_periods %d\n"
7847 			   "nr_throttled %d\n"
7848 			   "throttled_usec %llu\n",
7849 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7850 			   throttled_usec);
7851 	}
7852 #endif
7853 	return 0;
7854 }
7855 
7856 #ifdef CONFIG_FAIR_GROUP_SCHED
7857 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7858 			       struct cftype *cft)
7859 {
7860 	struct task_group *tg = css_tg(css);
7861 	u64 weight = scale_load_down(tg->shares);
7862 
7863 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7864 }
7865 
7866 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7867 				struct cftype *cft, u64 weight)
7868 {
7869 	/*
7870 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7871 	 * values which are 1, 100 and 10000 respectively.  While it loses
7872 	 * a bit of range on both ends, it maps pretty well onto the shares
7873 	 * value used by scheduler and the round-trip conversions preserve
7874 	 * the original value over the entire range.
7875 	 */
7876 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7877 		return -ERANGE;
7878 
7879 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7880 
7881 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7882 }
7883 
7884 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7885 				    struct cftype *cft)
7886 {
7887 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7888 	int last_delta = INT_MAX;
7889 	int prio, delta;
7890 
7891 	/* find the closest nice value to the current weight */
7892 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7893 		delta = abs(sched_prio_to_weight[prio] - weight);
7894 		if (delta >= last_delta)
7895 			break;
7896 		last_delta = delta;
7897 	}
7898 
7899 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7900 }
7901 
7902 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7903 				     struct cftype *cft, s64 nice)
7904 {
7905 	unsigned long weight;
7906 	int idx;
7907 
7908 	if (nice < MIN_NICE || nice > MAX_NICE)
7909 		return -ERANGE;
7910 
7911 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7912 	idx = array_index_nospec(idx, 40);
7913 	weight = sched_prio_to_weight[idx];
7914 
7915 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7916 }
7917 #endif
7918 
7919 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7920 						  long period, long quota)
7921 {
7922 	if (quota < 0)
7923 		seq_puts(sf, "max");
7924 	else
7925 		seq_printf(sf, "%ld", quota);
7926 
7927 	seq_printf(sf, " %ld\n", period);
7928 }
7929 
7930 /* caller should put the current value in *@periodp before calling */
7931 static int __maybe_unused cpu_period_quota_parse(char *buf,
7932 						 u64 *periodp, u64 *quotap)
7933 {
7934 	char tok[21];	/* U64_MAX */
7935 
7936 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7937 		return -EINVAL;
7938 
7939 	*periodp *= NSEC_PER_USEC;
7940 
7941 	if (sscanf(tok, "%llu", quotap))
7942 		*quotap *= NSEC_PER_USEC;
7943 	else if (!strcmp(tok, "max"))
7944 		*quotap = RUNTIME_INF;
7945 	else
7946 		return -EINVAL;
7947 
7948 	return 0;
7949 }
7950 
7951 #ifdef CONFIG_CFS_BANDWIDTH
7952 static int cpu_max_show(struct seq_file *sf, void *v)
7953 {
7954 	struct task_group *tg = css_tg(seq_css(sf));
7955 
7956 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7957 	return 0;
7958 }
7959 
7960 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7961 			     char *buf, size_t nbytes, loff_t off)
7962 {
7963 	struct task_group *tg = css_tg(of_css(of));
7964 	u64 period = tg_get_cfs_period(tg);
7965 	u64 quota;
7966 	int ret;
7967 
7968 	ret = cpu_period_quota_parse(buf, &period, &quota);
7969 	if (!ret)
7970 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7971 	return ret ?: nbytes;
7972 }
7973 #endif
7974 
7975 static struct cftype cpu_files[] = {
7976 #ifdef CONFIG_FAIR_GROUP_SCHED
7977 	{
7978 		.name = "weight",
7979 		.flags = CFTYPE_NOT_ON_ROOT,
7980 		.read_u64 = cpu_weight_read_u64,
7981 		.write_u64 = cpu_weight_write_u64,
7982 	},
7983 	{
7984 		.name = "weight.nice",
7985 		.flags = CFTYPE_NOT_ON_ROOT,
7986 		.read_s64 = cpu_weight_nice_read_s64,
7987 		.write_s64 = cpu_weight_nice_write_s64,
7988 	},
7989 #endif
7990 #ifdef CONFIG_CFS_BANDWIDTH
7991 	{
7992 		.name = "max",
7993 		.flags = CFTYPE_NOT_ON_ROOT,
7994 		.seq_show = cpu_max_show,
7995 		.write = cpu_max_write,
7996 	},
7997 #endif
7998 #ifdef CONFIG_UCLAMP_TASK_GROUP
7999 	{
8000 		.name = "uclamp.min",
8001 		.flags = CFTYPE_NOT_ON_ROOT,
8002 		.seq_show = cpu_uclamp_min_show,
8003 		.write = cpu_uclamp_min_write,
8004 	},
8005 	{
8006 		.name = "uclamp.max",
8007 		.flags = CFTYPE_NOT_ON_ROOT,
8008 		.seq_show = cpu_uclamp_max_show,
8009 		.write = cpu_uclamp_max_write,
8010 	},
8011 #endif
8012 	{ }	/* terminate */
8013 };
8014 
8015 struct cgroup_subsys cpu_cgrp_subsys = {
8016 	.css_alloc	= cpu_cgroup_css_alloc,
8017 	.css_online	= cpu_cgroup_css_online,
8018 	.css_released	= cpu_cgroup_css_released,
8019 	.css_free	= cpu_cgroup_css_free,
8020 	.css_extra_stat_show = cpu_extra_stat_show,
8021 	.fork		= cpu_cgroup_fork,
8022 	.can_attach	= cpu_cgroup_can_attach,
8023 	.attach		= cpu_cgroup_attach,
8024 	.legacy_cftypes	= cpu_legacy_files,
8025 	.dfl_cftypes	= cpu_files,
8026 	.early_init	= true,
8027 	.threaded	= true,
8028 };
8029 
8030 #endif	/* CONFIG_CGROUP_SCHED */
8031 
8032 void dump_cpu_task(int cpu)
8033 {
8034 	pr_info("Task dump for CPU %d:\n", cpu);
8035 	sched_show_task(cpu_curr(cpu));
8036 }
8037 
8038 /*
8039  * Nice levels are multiplicative, with a gentle 10% change for every
8040  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8041  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8042  * that remained on nice 0.
8043  *
8044  * The "10% effect" is relative and cumulative: from _any_ nice level,
8045  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8046  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8047  * If a task goes up by ~10% and another task goes down by ~10% then
8048  * the relative distance between them is ~25%.)
8049  */
8050 const int sched_prio_to_weight[40] = {
8051  /* -20 */     88761,     71755,     56483,     46273,     36291,
8052  /* -15 */     29154,     23254,     18705,     14949,     11916,
8053  /* -10 */      9548,      7620,      6100,      4904,      3906,
8054  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8055  /*   0 */      1024,       820,       655,       526,       423,
8056  /*   5 */       335,       272,       215,       172,       137,
8057  /*  10 */       110,        87,        70,        56,        45,
8058  /*  15 */        36,        29,        23,        18,        15,
8059 };
8060 
8061 /*
8062  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8063  *
8064  * In cases where the weight does not change often, we can use the
8065  * precalculated inverse to speed up arithmetics by turning divisions
8066  * into multiplications:
8067  */
8068 const u32 sched_prio_to_wmult[40] = {
8069  /* -20 */     48388,     59856,     76040,     92818,    118348,
8070  /* -15 */    147320,    184698,    229616,    287308,    360437,
8071  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8072  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8073  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8074  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8075  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8076  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8077 };
8078 
8079 #undef CREATE_TRACE_POINTS
8080