1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 #include <linux/scs.h> 15 16 #include <asm/switch_to.h> 17 #include <asm/tlb.h> 18 19 #include "../workqueue_internal.h" 20 #include "../../fs/io-wq.h" 21 #include "../smpboot.h" 22 23 #include "pelt.h" 24 #include "smp.h" 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/sched.h> 28 29 /* 30 * Export tracepoints that act as a bare tracehook (ie: have no trace event 31 * associated with them) to allow external modules to probe them. 32 */ 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 39 40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 41 42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 43 /* 44 * Debugging: various feature bits 45 * 46 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 47 * sysctl_sched_features, defined in sched.h, to allow constants propagation 48 * at compile time and compiler optimization based on features default. 49 */ 50 #define SCHED_FEAT(name, enabled) \ 51 (1UL << __SCHED_FEAT_##name) * enabled | 52 const_debug unsigned int sysctl_sched_features = 53 #include "features.h" 54 0; 55 #undef SCHED_FEAT 56 #endif 57 58 /* 59 * Number of tasks to iterate in a single balance run. 60 * Limited because this is done with IRQs disabled. 61 */ 62 const_debug unsigned int sysctl_sched_nr_migrate = 32; 63 64 /* 65 * period over which we measure -rt task CPU usage in us. 66 * default: 1s 67 */ 68 unsigned int sysctl_sched_rt_period = 1000000; 69 70 __read_mostly int scheduler_running; 71 72 /* 73 * part of the period that we allow rt tasks to run in us. 74 * default: 0.95s 75 */ 76 int sysctl_sched_rt_runtime = 950000; 77 78 /* 79 * __task_rq_lock - lock the rq @p resides on. 80 */ 81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 82 __acquires(rq->lock) 83 { 84 struct rq *rq; 85 86 lockdep_assert_held(&p->pi_lock); 87 88 for (;;) { 89 rq = task_rq(p); 90 raw_spin_lock(&rq->lock); 91 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 92 rq_pin_lock(rq, rf); 93 return rq; 94 } 95 raw_spin_unlock(&rq->lock); 96 97 while (unlikely(task_on_rq_migrating(p))) 98 cpu_relax(); 99 } 100 } 101 102 /* 103 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 104 */ 105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 106 __acquires(p->pi_lock) 107 __acquires(rq->lock) 108 { 109 struct rq *rq; 110 111 for (;;) { 112 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 113 rq = task_rq(p); 114 raw_spin_lock(&rq->lock); 115 /* 116 * move_queued_task() task_rq_lock() 117 * 118 * ACQUIRE (rq->lock) 119 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 120 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 121 * [S] ->cpu = new_cpu [L] task_rq() 122 * [L] ->on_rq 123 * RELEASE (rq->lock) 124 * 125 * If we observe the old CPU in task_rq_lock(), the acquire of 126 * the old rq->lock will fully serialize against the stores. 127 * 128 * If we observe the new CPU in task_rq_lock(), the address 129 * dependency headed by '[L] rq = task_rq()' and the acquire 130 * will pair with the WMB to ensure we then also see migrating. 131 */ 132 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 133 rq_pin_lock(rq, rf); 134 return rq; 135 } 136 raw_spin_unlock(&rq->lock); 137 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 138 139 while (unlikely(task_on_rq_migrating(p))) 140 cpu_relax(); 141 } 142 } 143 144 /* 145 * RQ-clock updating methods: 146 */ 147 148 static void update_rq_clock_task(struct rq *rq, s64 delta) 149 { 150 /* 151 * In theory, the compile should just see 0 here, and optimize out the call 152 * to sched_rt_avg_update. But I don't trust it... 153 */ 154 s64 __maybe_unused steal = 0, irq_delta = 0; 155 156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 157 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 158 159 /* 160 * Since irq_time is only updated on {soft,}irq_exit, we might run into 161 * this case when a previous update_rq_clock() happened inside a 162 * {soft,}irq region. 163 * 164 * When this happens, we stop ->clock_task and only update the 165 * prev_irq_time stamp to account for the part that fit, so that a next 166 * update will consume the rest. This ensures ->clock_task is 167 * monotonic. 168 * 169 * It does however cause some slight miss-attribution of {soft,}irq 170 * time, a more accurate solution would be to update the irq_time using 171 * the current rq->clock timestamp, except that would require using 172 * atomic ops. 173 */ 174 if (irq_delta > delta) 175 irq_delta = delta; 176 177 rq->prev_irq_time += irq_delta; 178 delta -= irq_delta; 179 #endif 180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 181 if (static_key_false((¶virt_steal_rq_enabled))) { 182 steal = paravirt_steal_clock(cpu_of(rq)); 183 steal -= rq->prev_steal_time_rq; 184 185 if (unlikely(steal > delta)) 186 steal = delta; 187 188 rq->prev_steal_time_rq += steal; 189 delta -= steal; 190 } 191 #endif 192 193 rq->clock_task += delta; 194 195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 196 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 197 update_irq_load_avg(rq, irq_delta + steal); 198 #endif 199 update_rq_clock_pelt(rq, delta); 200 } 201 202 void update_rq_clock(struct rq *rq) 203 { 204 s64 delta; 205 206 lockdep_assert_held(&rq->lock); 207 208 if (rq->clock_update_flags & RQCF_ACT_SKIP) 209 return; 210 211 #ifdef CONFIG_SCHED_DEBUG 212 if (sched_feat(WARN_DOUBLE_CLOCK)) 213 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 214 rq->clock_update_flags |= RQCF_UPDATED; 215 #endif 216 217 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 218 if (delta < 0) 219 return; 220 rq->clock += delta; 221 update_rq_clock_task(rq, delta); 222 } 223 224 static inline void 225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func) 226 { 227 csd->flags = 0; 228 csd->func = func; 229 csd->info = rq; 230 } 231 232 #ifdef CONFIG_SCHED_HRTICK 233 /* 234 * Use HR-timers to deliver accurate preemption points. 235 */ 236 237 static void hrtick_clear(struct rq *rq) 238 { 239 if (hrtimer_active(&rq->hrtick_timer)) 240 hrtimer_cancel(&rq->hrtick_timer); 241 } 242 243 /* 244 * High-resolution timer tick. 245 * Runs from hardirq context with interrupts disabled. 246 */ 247 static enum hrtimer_restart hrtick(struct hrtimer *timer) 248 { 249 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 250 struct rq_flags rf; 251 252 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 253 254 rq_lock(rq, &rf); 255 update_rq_clock(rq); 256 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 257 rq_unlock(rq, &rf); 258 259 return HRTIMER_NORESTART; 260 } 261 262 #ifdef CONFIG_SMP 263 264 static void __hrtick_restart(struct rq *rq) 265 { 266 struct hrtimer *timer = &rq->hrtick_timer; 267 268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 269 } 270 271 /* 272 * called from hardirq (IPI) context 273 */ 274 static void __hrtick_start(void *arg) 275 { 276 struct rq *rq = arg; 277 struct rq_flags rf; 278 279 rq_lock(rq, &rf); 280 __hrtick_restart(rq); 281 rq_unlock(rq, &rf); 282 } 283 284 /* 285 * Called to set the hrtick timer state. 286 * 287 * called with rq->lock held and irqs disabled 288 */ 289 void hrtick_start(struct rq *rq, u64 delay) 290 { 291 struct hrtimer *timer = &rq->hrtick_timer; 292 ktime_t time; 293 s64 delta; 294 295 /* 296 * Don't schedule slices shorter than 10000ns, that just 297 * doesn't make sense and can cause timer DoS. 298 */ 299 delta = max_t(s64, delay, 10000LL); 300 time = ktime_add_ns(timer->base->get_time(), delta); 301 302 hrtimer_set_expires(timer, time); 303 304 if (rq == this_rq()) 305 __hrtick_restart(rq); 306 else 307 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 308 } 309 310 #else 311 /* 312 * Called to set the hrtick timer state. 313 * 314 * called with rq->lock held and irqs disabled 315 */ 316 void hrtick_start(struct rq *rq, u64 delay) 317 { 318 /* 319 * Don't schedule slices shorter than 10000ns, that just 320 * doesn't make sense. Rely on vruntime for fairness. 321 */ 322 delay = max_t(u64, delay, 10000LL); 323 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 324 HRTIMER_MODE_REL_PINNED_HARD); 325 } 326 327 #endif /* CONFIG_SMP */ 328 329 static void hrtick_rq_init(struct rq *rq) 330 { 331 #ifdef CONFIG_SMP 332 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start); 333 #endif 334 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 335 rq->hrtick_timer.function = hrtick; 336 } 337 #else /* CONFIG_SCHED_HRTICK */ 338 static inline void hrtick_clear(struct rq *rq) 339 { 340 } 341 342 static inline void hrtick_rq_init(struct rq *rq) 343 { 344 } 345 #endif /* CONFIG_SCHED_HRTICK */ 346 347 /* 348 * cmpxchg based fetch_or, macro so it works for different integer types 349 */ 350 #define fetch_or(ptr, mask) \ 351 ({ \ 352 typeof(ptr) _ptr = (ptr); \ 353 typeof(mask) _mask = (mask); \ 354 typeof(*_ptr) _old, _val = *_ptr; \ 355 \ 356 for (;;) { \ 357 _old = cmpxchg(_ptr, _val, _val | _mask); \ 358 if (_old == _val) \ 359 break; \ 360 _val = _old; \ 361 } \ 362 _old; \ 363 }) 364 365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 366 /* 367 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 368 * this avoids any races wrt polling state changes and thereby avoids 369 * spurious IPIs. 370 */ 371 static bool set_nr_and_not_polling(struct task_struct *p) 372 { 373 struct thread_info *ti = task_thread_info(p); 374 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 375 } 376 377 /* 378 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 379 * 380 * If this returns true, then the idle task promises to call 381 * sched_ttwu_pending() and reschedule soon. 382 */ 383 static bool set_nr_if_polling(struct task_struct *p) 384 { 385 struct thread_info *ti = task_thread_info(p); 386 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 387 388 for (;;) { 389 if (!(val & _TIF_POLLING_NRFLAG)) 390 return false; 391 if (val & _TIF_NEED_RESCHED) 392 return true; 393 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 394 if (old == val) 395 break; 396 val = old; 397 } 398 return true; 399 } 400 401 #else 402 static bool set_nr_and_not_polling(struct task_struct *p) 403 { 404 set_tsk_need_resched(p); 405 return true; 406 } 407 408 #ifdef CONFIG_SMP 409 static bool set_nr_if_polling(struct task_struct *p) 410 { 411 return false; 412 } 413 #endif 414 #endif 415 416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 417 { 418 struct wake_q_node *node = &task->wake_q; 419 420 /* 421 * Atomically grab the task, if ->wake_q is !nil already it means 422 * its already queued (either by us or someone else) and will get the 423 * wakeup due to that. 424 * 425 * In order to ensure that a pending wakeup will observe our pending 426 * state, even in the failed case, an explicit smp_mb() must be used. 427 */ 428 smp_mb__before_atomic(); 429 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 430 return false; 431 432 /* 433 * The head is context local, there can be no concurrency. 434 */ 435 *head->lastp = node; 436 head->lastp = &node->next; 437 return true; 438 } 439 440 /** 441 * wake_q_add() - queue a wakeup for 'later' waking. 442 * @head: the wake_q_head to add @task to 443 * @task: the task to queue for 'later' wakeup 444 * 445 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 446 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 447 * instantly. 448 * 449 * This function must be used as-if it were wake_up_process(); IOW the task 450 * must be ready to be woken at this location. 451 */ 452 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 453 { 454 if (__wake_q_add(head, task)) 455 get_task_struct(task); 456 } 457 458 /** 459 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 460 * @head: the wake_q_head to add @task to 461 * @task: the task to queue for 'later' wakeup 462 * 463 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 464 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 465 * instantly. 466 * 467 * This function must be used as-if it were wake_up_process(); IOW the task 468 * must be ready to be woken at this location. 469 * 470 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 471 * that already hold reference to @task can call the 'safe' version and trust 472 * wake_q to do the right thing depending whether or not the @task is already 473 * queued for wakeup. 474 */ 475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 476 { 477 if (!__wake_q_add(head, task)) 478 put_task_struct(task); 479 } 480 481 void wake_up_q(struct wake_q_head *head) 482 { 483 struct wake_q_node *node = head->first; 484 485 while (node != WAKE_Q_TAIL) { 486 struct task_struct *task; 487 488 task = container_of(node, struct task_struct, wake_q); 489 BUG_ON(!task); 490 /* Task can safely be re-inserted now: */ 491 node = node->next; 492 task->wake_q.next = NULL; 493 494 /* 495 * wake_up_process() executes a full barrier, which pairs with 496 * the queueing in wake_q_add() so as not to miss wakeups. 497 */ 498 wake_up_process(task); 499 put_task_struct(task); 500 } 501 } 502 503 /* 504 * resched_curr - mark rq's current task 'to be rescheduled now'. 505 * 506 * On UP this means the setting of the need_resched flag, on SMP it 507 * might also involve a cross-CPU call to trigger the scheduler on 508 * the target CPU. 509 */ 510 void resched_curr(struct rq *rq) 511 { 512 struct task_struct *curr = rq->curr; 513 int cpu; 514 515 lockdep_assert_held(&rq->lock); 516 517 if (test_tsk_need_resched(curr)) 518 return; 519 520 cpu = cpu_of(rq); 521 522 if (cpu == smp_processor_id()) { 523 set_tsk_need_resched(curr); 524 set_preempt_need_resched(); 525 return; 526 } 527 528 if (set_nr_and_not_polling(curr)) 529 smp_send_reschedule(cpu); 530 else 531 trace_sched_wake_idle_without_ipi(cpu); 532 } 533 534 void resched_cpu(int cpu) 535 { 536 struct rq *rq = cpu_rq(cpu); 537 unsigned long flags; 538 539 raw_spin_lock_irqsave(&rq->lock, flags); 540 if (cpu_online(cpu) || cpu == smp_processor_id()) 541 resched_curr(rq); 542 raw_spin_unlock_irqrestore(&rq->lock, flags); 543 } 544 545 #ifdef CONFIG_SMP 546 #ifdef CONFIG_NO_HZ_COMMON 547 /* 548 * In the semi idle case, use the nearest busy CPU for migrating timers 549 * from an idle CPU. This is good for power-savings. 550 * 551 * We don't do similar optimization for completely idle system, as 552 * selecting an idle CPU will add more delays to the timers than intended 553 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 554 */ 555 int get_nohz_timer_target(void) 556 { 557 int i, cpu = smp_processor_id(), default_cpu = -1; 558 struct sched_domain *sd; 559 560 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 561 if (!idle_cpu(cpu)) 562 return cpu; 563 default_cpu = cpu; 564 } 565 566 rcu_read_lock(); 567 for_each_domain(cpu, sd) { 568 for_each_cpu_and(i, sched_domain_span(sd), 569 housekeeping_cpumask(HK_FLAG_TIMER)) { 570 if (cpu == i) 571 continue; 572 573 if (!idle_cpu(i)) { 574 cpu = i; 575 goto unlock; 576 } 577 } 578 } 579 580 if (default_cpu == -1) 581 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 582 cpu = default_cpu; 583 unlock: 584 rcu_read_unlock(); 585 return cpu; 586 } 587 588 /* 589 * When add_timer_on() enqueues a timer into the timer wheel of an 590 * idle CPU then this timer might expire before the next timer event 591 * which is scheduled to wake up that CPU. In case of a completely 592 * idle system the next event might even be infinite time into the 593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 594 * leaves the inner idle loop so the newly added timer is taken into 595 * account when the CPU goes back to idle and evaluates the timer 596 * wheel for the next timer event. 597 */ 598 static void wake_up_idle_cpu(int cpu) 599 { 600 struct rq *rq = cpu_rq(cpu); 601 602 if (cpu == smp_processor_id()) 603 return; 604 605 if (set_nr_and_not_polling(rq->idle)) 606 smp_send_reschedule(cpu); 607 else 608 trace_sched_wake_idle_without_ipi(cpu); 609 } 610 611 static bool wake_up_full_nohz_cpu(int cpu) 612 { 613 /* 614 * We just need the target to call irq_exit() and re-evaluate 615 * the next tick. The nohz full kick at least implies that. 616 * If needed we can still optimize that later with an 617 * empty IRQ. 618 */ 619 if (cpu_is_offline(cpu)) 620 return true; /* Don't try to wake offline CPUs. */ 621 if (tick_nohz_full_cpu(cpu)) { 622 if (cpu != smp_processor_id() || 623 tick_nohz_tick_stopped()) 624 tick_nohz_full_kick_cpu(cpu); 625 return true; 626 } 627 628 return false; 629 } 630 631 /* 632 * Wake up the specified CPU. If the CPU is going offline, it is the 633 * caller's responsibility to deal with the lost wakeup, for example, 634 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 635 */ 636 void wake_up_nohz_cpu(int cpu) 637 { 638 if (!wake_up_full_nohz_cpu(cpu)) 639 wake_up_idle_cpu(cpu); 640 } 641 642 static void nohz_csd_func(void *info) 643 { 644 struct rq *rq = info; 645 int cpu = cpu_of(rq); 646 unsigned int flags; 647 648 /* 649 * Release the rq::nohz_csd. 650 */ 651 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 652 WARN_ON(!(flags & NOHZ_KICK_MASK)); 653 654 rq->idle_balance = idle_cpu(cpu); 655 if (rq->idle_balance && !need_resched()) { 656 rq->nohz_idle_balance = flags; 657 raise_softirq_irqoff(SCHED_SOFTIRQ); 658 } 659 } 660 661 #endif /* CONFIG_NO_HZ_COMMON */ 662 663 #ifdef CONFIG_NO_HZ_FULL 664 bool sched_can_stop_tick(struct rq *rq) 665 { 666 int fifo_nr_running; 667 668 /* Deadline tasks, even if single, need the tick */ 669 if (rq->dl.dl_nr_running) 670 return false; 671 672 /* 673 * If there are more than one RR tasks, we need the tick to effect the 674 * actual RR behaviour. 675 */ 676 if (rq->rt.rr_nr_running) { 677 if (rq->rt.rr_nr_running == 1) 678 return true; 679 else 680 return false; 681 } 682 683 /* 684 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 685 * forced preemption between FIFO tasks. 686 */ 687 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 688 if (fifo_nr_running) 689 return true; 690 691 /* 692 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 693 * if there's more than one we need the tick for involuntary 694 * preemption. 695 */ 696 if (rq->nr_running > 1) 697 return false; 698 699 return true; 700 } 701 #endif /* CONFIG_NO_HZ_FULL */ 702 #endif /* CONFIG_SMP */ 703 704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 706 /* 707 * Iterate task_group tree rooted at *from, calling @down when first entering a 708 * node and @up when leaving it for the final time. 709 * 710 * Caller must hold rcu_lock or sufficient equivalent. 711 */ 712 int walk_tg_tree_from(struct task_group *from, 713 tg_visitor down, tg_visitor up, void *data) 714 { 715 struct task_group *parent, *child; 716 int ret; 717 718 parent = from; 719 720 down: 721 ret = (*down)(parent, data); 722 if (ret) 723 goto out; 724 list_for_each_entry_rcu(child, &parent->children, siblings) { 725 parent = child; 726 goto down; 727 728 up: 729 continue; 730 } 731 ret = (*up)(parent, data); 732 if (ret || parent == from) 733 goto out; 734 735 child = parent; 736 parent = parent->parent; 737 if (parent) 738 goto up; 739 out: 740 return ret; 741 } 742 743 int tg_nop(struct task_group *tg, void *data) 744 { 745 return 0; 746 } 747 #endif 748 749 static void set_load_weight(struct task_struct *p, bool update_load) 750 { 751 int prio = p->static_prio - MAX_RT_PRIO; 752 struct load_weight *load = &p->se.load; 753 754 /* 755 * SCHED_IDLE tasks get minimal weight: 756 */ 757 if (task_has_idle_policy(p)) { 758 load->weight = scale_load(WEIGHT_IDLEPRIO); 759 load->inv_weight = WMULT_IDLEPRIO; 760 return; 761 } 762 763 /* 764 * SCHED_OTHER tasks have to update their load when changing their 765 * weight 766 */ 767 if (update_load && p->sched_class == &fair_sched_class) { 768 reweight_task(p, prio); 769 } else { 770 load->weight = scale_load(sched_prio_to_weight[prio]); 771 load->inv_weight = sched_prio_to_wmult[prio]; 772 } 773 } 774 775 #ifdef CONFIG_UCLAMP_TASK 776 /* 777 * Serializes updates of utilization clamp values 778 * 779 * The (slow-path) user-space triggers utilization clamp value updates which 780 * can require updates on (fast-path) scheduler's data structures used to 781 * support enqueue/dequeue operations. 782 * While the per-CPU rq lock protects fast-path update operations, user-space 783 * requests are serialized using a mutex to reduce the risk of conflicting 784 * updates or API abuses. 785 */ 786 static DEFINE_MUTEX(uclamp_mutex); 787 788 /* Max allowed minimum utilization */ 789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 790 791 /* Max allowed maximum utilization */ 792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 793 794 /* All clamps are required to be less or equal than these values */ 795 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 796 797 /* Integer rounded range for each bucket */ 798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 799 800 #define for_each_clamp_id(clamp_id) \ 801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 802 803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 804 { 805 return clamp_value / UCLAMP_BUCKET_DELTA; 806 } 807 808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 809 { 810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 811 } 812 813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 814 { 815 if (clamp_id == UCLAMP_MIN) 816 return 0; 817 return SCHED_CAPACITY_SCALE; 818 } 819 820 static inline void uclamp_se_set(struct uclamp_se *uc_se, 821 unsigned int value, bool user_defined) 822 { 823 uc_se->value = value; 824 uc_se->bucket_id = uclamp_bucket_id(value); 825 uc_se->user_defined = user_defined; 826 } 827 828 static inline unsigned int 829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 830 unsigned int clamp_value) 831 { 832 /* 833 * Avoid blocked utilization pushing up the frequency when we go 834 * idle (which drops the max-clamp) by retaining the last known 835 * max-clamp. 836 */ 837 if (clamp_id == UCLAMP_MAX) { 838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 839 return clamp_value; 840 } 841 842 return uclamp_none(UCLAMP_MIN); 843 } 844 845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 846 unsigned int clamp_value) 847 { 848 /* Reset max-clamp retention only on idle exit */ 849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 850 return; 851 852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 853 } 854 855 static inline 856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 857 unsigned int clamp_value) 858 { 859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 860 int bucket_id = UCLAMP_BUCKETS - 1; 861 862 /* 863 * Since both min and max clamps are max aggregated, find the 864 * top most bucket with tasks in. 865 */ 866 for ( ; bucket_id >= 0; bucket_id--) { 867 if (!bucket[bucket_id].tasks) 868 continue; 869 return bucket[bucket_id].value; 870 } 871 872 /* No tasks -- default clamp values */ 873 return uclamp_idle_value(rq, clamp_id, clamp_value); 874 } 875 876 static inline struct uclamp_se 877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 878 { 879 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 880 #ifdef CONFIG_UCLAMP_TASK_GROUP 881 struct uclamp_se uc_max; 882 883 /* 884 * Tasks in autogroups or root task group will be 885 * restricted by system defaults. 886 */ 887 if (task_group_is_autogroup(task_group(p))) 888 return uc_req; 889 if (task_group(p) == &root_task_group) 890 return uc_req; 891 892 uc_max = task_group(p)->uclamp[clamp_id]; 893 if (uc_req.value > uc_max.value || !uc_req.user_defined) 894 return uc_max; 895 #endif 896 897 return uc_req; 898 } 899 900 /* 901 * The effective clamp bucket index of a task depends on, by increasing 902 * priority: 903 * - the task specific clamp value, when explicitly requested from userspace 904 * - the task group effective clamp value, for tasks not either in the root 905 * group or in an autogroup 906 * - the system default clamp value, defined by the sysadmin 907 */ 908 static inline struct uclamp_se 909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 910 { 911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 912 struct uclamp_se uc_max = uclamp_default[clamp_id]; 913 914 /* System default restrictions always apply */ 915 if (unlikely(uc_req.value > uc_max.value)) 916 return uc_max; 917 918 return uc_req; 919 } 920 921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 922 { 923 struct uclamp_se uc_eff; 924 925 /* Task currently refcounted: use back-annotated (effective) value */ 926 if (p->uclamp[clamp_id].active) 927 return (unsigned long)p->uclamp[clamp_id].value; 928 929 uc_eff = uclamp_eff_get(p, clamp_id); 930 931 return (unsigned long)uc_eff.value; 932 } 933 934 /* 935 * When a task is enqueued on a rq, the clamp bucket currently defined by the 936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 937 * updates the rq's clamp value if required. 938 * 939 * Tasks can have a task-specific value requested from user-space, track 940 * within each bucket the maximum value for tasks refcounted in it. 941 * This "local max aggregation" allows to track the exact "requested" value 942 * for each bucket when all its RUNNABLE tasks require the same clamp. 943 */ 944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 945 enum uclamp_id clamp_id) 946 { 947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 948 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 949 struct uclamp_bucket *bucket; 950 951 lockdep_assert_held(&rq->lock); 952 953 /* Update task effective clamp */ 954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 955 956 bucket = &uc_rq->bucket[uc_se->bucket_id]; 957 bucket->tasks++; 958 uc_se->active = true; 959 960 uclamp_idle_reset(rq, clamp_id, uc_se->value); 961 962 /* 963 * Local max aggregation: rq buckets always track the max 964 * "requested" clamp value of its RUNNABLE tasks. 965 */ 966 if (bucket->tasks == 1 || uc_se->value > bucket->value) 967 bucket->value = uc_se->value; 968 969 if (uc_se->value > READ_ONCE(uc_rq->value)) 970 WRITE_ONCE(uc_rq->value, uc_se->value); 971 } 972 973 /* 974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 975 * is released. If this is the last task reference counting the rq's max 976 * active clamp value, then the rq's clamp value is updated. 977 * 978 * Both refcounted tasks and rq's cached clamp values are expected to be 979 * always valid. If it's detected they are not, as defensive programming, 980 * enforce the expected state and warn. 981 */ 982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 983 enum uclamp_id clamp_id) 984 { 985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 986 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 987 struct uclamp_bucket *bucket; 988 unsigned int bkt_clamp; 989 unsigned int rq_clamp; 990 991 lockdep_assert_held(&rq->lock); 992 993 bucket = &uc_rq->bucket[uc_se->bucket_id]; 994 SCHED_WARN_ON(!bucket->tasks); 995 if (likely(bucket->tasks)) 996 bucket->tasks--; 997 uc_se->active = false; 998 999 /* 1000 * Keep "local max aggregation" simple and accept to (possibly) 1001 * overboost some RUNNABLE tasks in the same bucket. 1002 * The rq clamp bucket value is reset to its base value whenever 1003 * there are no more RUNNABLE tasks refcounting it. 1004 */ 1005 if (likely(bucket->tasks)) 1006 return; 1007 1008 rq_clamp = READ_ONCE(uc_rq->value); 1009 /* 1010 * Defensive programming: this should never happen. If it happens, 1011 * e.g. due to future modification, warn and fixup the expected value. 1012 */ 1013 SCHED_WARN_ON(bucket->value > rq_clamp); 1014 if (bucket->value >= rq_clamp) { 1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1016 WRITE_ONCE(uc_rq->value, bkt_clamp); 1017 } 1018 } 1019 1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1021 { 1022 enum uclamp_id clamp_id; 1023 1024 if (unlikely(!p->sched_class->uclamp_enabled)) 1025 return; 1026 1027 for_each_clamp_id(clamp_id) 1028 uclamp_rq_inc_id(rq, p, clamp_id); 1029 1030 /* Reset clamp idle holding when there is one RUNNABLE task */ 1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1033 } 1034 1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1036 { 1037 enum uclamp_id clamp_id; 1038 1039 if (unlikely(!p->sched_class->uclamp_enabled)) 1040 return; 1041 1042 for_each_clamp_id(clamp_id) 1043 uclamp_rq_dec_id(rq, p, clamp_id); 1044 } 1045 1046 static inline void 1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1048 { 1049 struct rq_flags rf; 1050 struct rq *rq; 1051 1052 /* 1053 * Lock the task and the rq where the task is (or was) queued. 1054 * 1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1056 * price to pay to safely serialize util_{min,max} updates with 1057 * enqueues, dequeues and migration operations. 1058 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1059 */ 1060 rq = task_rq_lock(p, &rf); 1061 1062 /* 1063 * Setting the clamp bucket is serialized by task_rq_lock(). 1064 * If the task is not yet RUNNABLE and its task_struct is not 1065 * affecting a valid clamp bucket, the next time it's enqueued, 1066 * it will already see the updated clamp bucket value. 1067 */ 1068 if (p->uclamp[clamp_id].active) { 1069 uclamp_rq_dec_id(rq, p, clamp_id); 1070 uclamp_rq_inc_id(rq, p, clamp_id); 1071 } 1072 1073 task_rq_unlock(rq, p, &rf); 1074 } 1075 1076 #ifdef CONFIG_UCLAMP_TASK_GROUP 1077 static inline void 1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1079 unsigned int clamps) 1080 { 1081 enum uclamp_id clamp_id; 1082 struct css_task_iter it; 1083 struct task_struct *p; 1084 1085 css_task_iter_start(css, 0, &it); 1086 while ((p = css_task_iter_next(&it))) { 1087 for_each_clamp_id(clamp_id) { 1088 if ((0x1 << clamp_id) & clamps) 1089 uclamp_update_active(p, clamp_id); 1090 } 1091 } 1092 css_task_iter_end(&it); 1093 } 1094 1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1096 static void uclamp_update_root_tg(void) 1097 { 1098 struct task_group *tg = &root_task_group; 1099 1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1101 sysctl_sched_uclamp_util_min, false); 1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1103 sysctl_sched_uclamp_util_max, false); 1104 1105 rcu_read_lock(); 1106 cpu_util_update_eff(&root_task_group.css); 1107 rcu_read_unlock(); 1108 } 1109 #else 1110 static void uclamp_update_root_tg(void) { } 1111 #endif 1112 1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1114 void *buffer, size_t *lenp, loff_t *ppos) 1115 { 1116 bool update_root_tg = false; 1117 int old_min, old_max; 1118 int result; 1119 1120 mutex_lock(&uclamp_mutex); 1121 old_min = sysctl_sched_uclamp_util_min; 1122 old_max = sysctl_sched_uclamp_util_max; 1123 1124 result = proc_dointvec(table, write, buffer, lenp, ppos); 1125 if (result) 1126 goto undo; 1127 if (!write) 1128 goto done; 1129 1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1132 result = -EINVAL; 1133 goto undo; 1134 } 1135 1136 if (old_min != sysctl_sched_uclamp_util_min) { 1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1138 sysctl_sched_uclamp_util_min, false); 1139 update_root_tg = true; 1140 } 1141 if (old_max != sysctl_sched_uclamp_util_max) { 1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1143 sysctl_sched_uclamp_util_max, false); 1144 update_root_tg = true; 1145 } 1146 1147 if (update_root_tg) 1148 uclamp_update_root_tg(); 1149 1150 /* 1151 * We update all RUNNABLE tasks only when task groups are in use. 1152 * Otherwise, keep it simple and do just a lazy update at each next 1153 * task enqueue time. 1154 */ 1155 1156 goto done; 1157 1158 undo: 1159 sysctl_sched_uclamp_util_min = old_min; 1160 sysctl_sched_uclamp_util_max = old_max; 1161 done: 1162 mutex_unlock(&uclamp_mutex); 1163 1164 return result; 1165 } 1166 1167 static int uclamp_validate(struct task_struct *p, 1168 const struct sched_attr *attr) 1169 { 1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1172 1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1174 lower_bound = attr->sched_util_min; 1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1176 upper_bound = attr->sched_util_max; 1177 1178 if (lower_bound > upper_bound) 1179 return -EINVAL; 1180 if (upper_bound > SCHED_CAPACITY_SCALE) 1181 return -EINVAL; 1182 1183 return 0; 1184 } 1185 1186 static void __setscheduler_uclamp(struct task_struct *p, 1187 const struct sched_attr *attr) 1188 { 1189 enum uclamp_id clamp_id; 1190 1191 /* 1192 * On scheduling class change, reset to default clamps for tasks 1193 * without a task-specific value. 1194 */ 1195 for_each_clamp_id(clamp_id) { 1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1197 unsigned int clamp_value = uclamp_none(clamp_id); 1198 1199 /* Keep using defined clamps across class changes */ 1200 if (uc_se->user_defined) 1201 continue; 1202 1203 /* By default, RT tasks always get 100% boost */ 1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1205 clamp_value = uclamp_none(UCLAMP_MAX); 1206 1207 uclamp_se_set(uc_se, clamp_value, false); 1208 } 1209 1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1211 return; 1212 1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1215 attr->sched_util_min, true); 1216 } 1217 1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1220 attr->sched_util_max, true); 1221 } 1222 } 1223 1224 static void uclamp_fork(struct task_struct *p) 1225 { 1226 enum uclamp_id clamp_id; 1227 1228 for_each_clamp_id(clamp_id) 1229 p->uclamp[clamp_id].active = false; 1230 1231 if (likely(!p->sched_reset_on_fork)) 1232 return; 1233 1234 for_each_clamp_id(clamp_id) { 1235 uclamp_se_set(&p->uclamp_req[clamp_id], 1236 uclamp_none(clamp_id), false); 1237 } 1238 } 1239 1240 static void __init init_uclamp(void) 1241 { 1242 struct uclamp_se uc_max = {}; 1243 enum uclamp_id clamp_id; 1244 int cpu; 1245 1246 mutex_init(&uclamp_mutex); 1247 1248 for_each_possible_cpu(cpu) { 1249 memset(&cpu_rq(cpu)->uclamp, 0, 1250 sizeof(struct uclamp_rq)*UCLAMP_CNT); 1251 cpu_rq(cpu)->uclamp_flags = 0; 1252 } 1253 1254 for_each_clamp_id(clamp_id) { 1255 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1256 uclamp_none(clamp_id), false); 1257 } 1258 1259 /* System defaults allow max clamp values for both indexes */ 1260 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1261 for_each_clamp_id(clamp_id) { 1262 uclamp_default[clamp_id] = uc_max; 1263 #ifdef CONFIG_UCLAMP_TASK_GROUP 1264 root_task_group.uclamp_req[clamp_id] = uc_max; 1265 root_task_group.uclamp[clamp_id] = uc_max; 1266 #endif 1267 } 1268 } 1269 1270 #else /* CONFIG_UCLAMP_TASK */ 1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1273 static inline int uclamp_validate(struct task_struct *p, 1274 const struct sched_attr *attr) 1275 { 1276 return -EOPNOTSUPP; 1277 } 1278 static void __setscheduler_uclamp(struct task_struct *p, 1279 const struct sched_attr *attr) { } 1280 static inline void uclamp_fork(struct task_struct *p) { } 1281 static inline void init_uclamp(void) { } 1282 #endif /* CONFIG_UCLAMP_TASK */ 1283 1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1285 { 1286 if (!(flags & ENQUEUE_NOCLOCK)) 1287 update_rq_clock(rq); 1288 1289 if (!(flags & ENQUEUE_RESTORE)) { 1290 sched_info_queued(rq, p); 1291 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1292 } 1293 1294 uclamp_rq_inc(rq, p); 1295 p->sched_class->enqueue_task(rq, p, flags); 1296 } 1297 1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1299 { 1300 if (!(flags & DEQUEUE_NOCLOCK)) 1301 update_rq_clock(rq); 1302 1303 if (!(flags & DEQUEUE_SAVE)) { 1304 sched_info_dequeued(rq, p); 1305 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1306 } 1307 1308 uclamp_rq_dec(rq, p); 1309 p->sched_class->dequeue_task(rq, p, flags); 1310 } 1311 1312 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1313 { 1314 if (task_contributes_to_load(p)) 1315 rq->nr_uninterruptible--; 1316 1317 enqueue_task(rq, p, flags); 1318 1319 p->on_rq = TASK_ON_RQ_QUEUED; 1320 } 1321 1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1323 { 1324 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1325 1326 if (task_contributes_to_load(p)) 1327 rq->nr_uninterruptible++; 1328 1329 dequeue_task(rq, p, flags); 1330 } 1331 1332 /* 1333 * __normal_prio - return the priority that is based on the static prio 1334 */ 1335 static inline int __normal_prio(struct task_struct *p) 1336 { 1337 return p->static_prio; 1338 } 1339 1340 /* 1341 * Calculate the expected normal priority: i.e. priority 1342 * without taking RT-inheritance into account. Might be 1343 * boosted by interactivity modifiers. Changes upon fork, 1344 * setprio syscalls, and whenever the interactivity 1345 * estimator recalculates. 1346 */ 1347 static inline int normal_prio(struct task_struct *p) 1348 { 1349 int prio; 1350 1351 if (task_has_dl_policy(p)) 1352 prio = MAX_DL_PRIO-1; 1353 else if (task_has_rt_policy(p)) 1354 prio = MAX_RT_PRIO-1 - p->rt_priority; 1355 else 1356 prio = __normal_prio(p); 1357 return prio; 1358 } 1359 1360 /* 1361 * Calculate the current priority, i.e. the priority 1362 * taken into account by the scheduler. This value might 1363 * be boosted by RT tasks, or might be boosted by 1364 * interactivity modifiers. Will be RT if the task got 1365 * RT-boosted. If not then it returns p->normal_prio. 1366 */ 1367 static int effective_prio(struct task_struct *p) 1368 { 1369 p->normal_prio = normal_prio(p); 1370 /* 1371 * If we are RT tasks or we were boosted to RT priority, 1372 * keep the priority unchanged. Otherwise, update priority 1373 * to the normal priority: 1374 */ 1375 if (!rt_prio(p->prio)) 1376 return p->normal_prio; 1377 return p->prio; 1378 } 1379 1380 /** 1381 * task_curr - is this task currently executing on a CPU? 1382 * @p: the task in question. 1383 * 1384 * Return: 1 if the task is currently executing. 0 otherwise. 1385 */ 1386 inline int task_curr(const struct task_struct *p) 1387 { 1388 return cpu_curr(task_cpu(p)) == p; 1389 } 1390 1391 /* 1392 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1393 * use the balance_callback list if you want balancing. 1394 * 1395 * this means any call to check_class_changed() must be followed by a call to 1396 * balance_callback(). 1397 */ 1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1399 const struct sched_class *prev_class, 1400 int oldprio) 1401 { 1402 if (prev_class != p->sched_class) { 1403 if (prev_class->switched_from) 1404 prev_class->switched_from(rq, p); 1405 1406 p->sched_class->switched_to(rq, p); 1407 } else if (oldprio != p->prio || dl_task(p)) 1408 p->sched_class->prio_changed(rq, p, oldprio); 1409 } 1410 1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1412 { 1413 const struct sched_class *class; 1414 1415 if (p->sched_class == rq->curr->sched_class) { 1416 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1417 } else { 1418 for_each_class(class) { 1419 if (class == rq->curr->sched_class) 1420 break; 1421 if (class == p->sched_class) { 1422 resched_curr(rq); 1423 break; 1424 } 1425 } 1426 } 1427 1428 /* 1429 * A queue event has occurred, and we're going to schedule. In 1430 * this case, we can save a useless back to back clock update. 1431 */ 1432 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1433 rq_clock_skip_update(rq); 1434 } 1435 1436 #ifdef CONFIG_SMP 1437 1438 /* 1439 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1440 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1441 */ 1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1443 { 1444 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1445 return false; 1446 1447 if (is_per_cpu_kthread(p)) 1448 return cpu_online(cpu); 1449 1450 return cpu_active(cpu); 1451 } 1452 1453 /* 1454 * This is how migration works: 1455 * 1456 * 1) we invoke migration_cpu_stop() on the target CPU using 1457 * stop_one_cpu(). 1458 * 2) stopper starts to run (implicitly forcing the migrated thread 1459 * off the CPU) 1460 * 3) it checks whether the migrated task is still in the wrong runqueue. 1461 * 4) if it's in the wrong runqueue then the migration thread removes 1462 * it and puts it into the right queue. 1463 * 5) stopper completes and stop_one_cpu() returns and the migration 1464 * is done. 1465 */ 1466 1467 /* 1468 * move_queued_task - move a queued task to new rq. 1469 * 1470 * Returns (locked) new rq. Old rq's lock is released. 1471 */ 1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1473 struct task_struct *p, int new_cpu) 1474 { 1475 lockdep_assert_held(&rq->lock); 1476 1477 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1478 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1479 set_task_cpu(p, new_cpu); 1480 rq_unlock(rq, rf); 1481 1482 rq = cpu_rq(new_cpu); 1483 1484 rq_lock(rq, rf); 1485 BUG_ON(task_cpu(p) != new_cpu); 1486 enqueue_task(rq, p, 0); 1487 p->on_rq = TASK_ON_RQ_QUEUED; 1488 check_preempt_curr(rq, p, 0); 1489 1490 return rq; 1491 } 1492 1493 struct migration_arg { 1494 struct task_struct *task; 1495 int dest_cpu; 1496 }; 1497 1498 /* 1499 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1500 * this because either it can't run here any more (set_cpus_allowed() 1501 * away from this CPU, or CPU going down), or because we're 1502 * attempting to rebalance this task on exec (sched_exec). 1503 * 1504 * So we race with normal scheduler movements, but that's OK, as long 1505 * as the task is no longer on this CPU. 1506 */ 1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1508 struct task_struct *p, int dest_cpu) 1509 { 1510 /* Affinity changed (again). */ 1511 if (!is_cpu_allowed(p, dest_cpu)) 1512 return rq; 1513 1514 update_rq_clock(rq); 1515 rq = move_queued_task(rq, rf, p, dest_cpu); 1516 1517 return rq; 1518 } 1519 1520 /* 1521 * migration_cpu_stop - this will be executed by a highprio stopper thread 1522 * and performs thread migration by bumping thread off CPU then 1523 * 'pushing' onto another runqueue. 1524 */ 1525 static int migration_cpu_stop(void *data) 1526 { 1527 struct migration_arg *arg = data; 1528 struct task_struct *p = arg->task; 1529 struct rq *rq = this_rq(); 1530 struct rq_flags rf; 1531 1532 /* 1533 * The original target CPU might have gone down and we might 1534 * be on another CPU but it doesn't matter. 1535 */ 1536 local_irq_disable(); 1537 /* 1538 * We need to explicitly wake pending tasks before running 1539 * __migrate_task() such that we will not miss enforcing cpus_ptr 1540 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1541 */ 1542 flush_smp_call_function_from_idle(); 1543 1544 raw_spin_lock(&p->pi_lock); 1545 rq_lock(rq, &rf); 1546 /* 1547 * If task_rq(p) != rq, it cannot be migrated here, because we're 1548 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1549 * we're holding p->pi_lock. 1550 */ 1551 if (task_rq(p) == rq) { 1552 if (task_on_rq_queued(p)) 1553 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1554 else 1555 p->wake_cpu = arg->dest_cpu; 1556 } 1557 rq_unlock(rq, &rf); 1558 raw_spin_unlock(&p->pi_lock); 1559 1560 local_irq_enable(); 1561 return 0; 1562 } 1563 1564 /* 1565 * sched_class::set_cpus_allowed must do the below, but is not required to 1566 * actually call this function. 1567 */ 1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1569 { 1570 cpumask_copy(&p->cpus_mask, new_mask); 1571 p->nr_cpus_allowed = cpumask_weight(new_mask); 1572 } 1573 1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1575 { 1576 struct rq *rq = task_rq(p); 1577 bool queued, running; 1578 1579 lockdep_assert_held(&p->pi_lock); 1580 1581 queued = task_on_rq_queued(p); 1582 running = task_current(rq, p); 1583 1584 if (queued) { 1585 /* 1586 * Because __kthread_bind() calls this on blocked tasks without 1587 * holding rq->lock. 1588 */ 1589 lockdep_assert_held(&rq->lock); 1590 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1591 } 1592 if (running) 1593 put_prev_task(rq, p); 1594 1595 p->sched_class->set_cpus_allowed(p, new_mask); 1596 1597 if (queued) 1598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1599 if (running) 1600 set_next_task(rq, p); 1601 } 1602 1603 /* 1604 * Change a given task's CPU affinity. Migrate the thread to a 1605 * proper CPU and schedule it away if the CPU it's executing on 1606 * is removed from the allowed bitmask. 1607 * 1608 * NOTE: the caller must have a valid reference to the task, the 1609 * task must not exit() & deallocate itself prematurely. The 1610 * call is not atomic; no spinlocks may be held. 1611 */ 1612 static int __set_cpus_allowed_ptr(struct task_struct *p, 1613 const struct cpumask *new_mask, bool check) 1614 { 1615 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1616 unsigned int dest_cpu; 1617 struct rq_flags rf; 1618 struct rq *rq; 1619 int ret = 0; 1620 1621 rq = task_rq_lock(p, &rf); 1622 update_rq_clock(rq); 1623 1624 if (p->flags & PF_KTHREAD) { 1625 /* 1626 * Kernel threads are allowed on online && !active CPUs 1627 */ 1628 cpu_valid_mask = cpu_online_mask; 1629 } 1630 1631 /* 1632 * Must re-check here, to close a race against __kthread_bind(), 1633 * sched_setaffinity() is not guaranteed to observe the flag. 1634 */ 1635 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1636 ret = -EINVAL; 1637 goto out; 1638 } 1639 1640 if (cpumask_equal(&p->cpus_mask, new_mask)) 1641 goto out; 1642 1643 /* 1644 * Picking a ~random cpu helps in cases where we are changing affinity 1645 * for groups of tasks (ie. cpuset), so that load balancing is not 1646 * immediately required to distribute the tasks within their new mask. 1647 */ 1648 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 1649 if (dest_cpu >= nr_cpu_ids) { 1650 ret = -EINVAL; 1651 goto out; 1652 } 1653 1654 do_set_cpus_allowed(p, new_mask); 1655 1656 if (p->flags & PF_KTHREAD) { 1657 /* 1658 * For kernel threads that do indeed end up on online && 1659 * !active we want to ensure they are strict per-CPU threads. 1660 */ 1661 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1662 !cpumask_intersects(new_mask, cpu_active_mask) && 1663 p->nr_cpus_allowed != 1); 1664 } 1665 1666 /* Can the task run on the task's current CPU? If so, we're done */ 1667 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1668 goto out; 1669 1670 if (task_running(rq, p) || p->state == TASK_WAKING) { 1671 struct migration_arg arg = { p, dest_cpu }; 1672 /* Need help from migration thread: drop lock and wait. */ 1673 task_rq_unlock(rq, p, &rf); 1674 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1675 return 0; 1676 } else if (task_on_rq_queued(p)) { 1677 /* 1678 * OK, since we're going to drop the lock immediately 1679 * afterwards anyway. 1680 */ 1681 rq = move_queued_task(rq, &rf, p, dest_cpu); 1682 } 1683 out: 1684 task_rq_unlock(rq, p, &rf); 1685 1686 return ret; 1687 } 1688 1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1690 { 1691 return __set_cpus_allowed_ptr(p, new_mask, false); 1692 } 1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1694 1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1696 { 1697 #ifdef CONFIG_SCHED_DEBUG 1698 /* 1699 * We should never call set_task_cpu() on a blocked task, 1700 * ttwu() will sort out the placement. 1701 */ 1702 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1703 !p->on_rq); 1704 1705 /* 1706 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1707 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1708 * time relying on p->on_rq. 1709 */ 1710 WARN_ON_ONCE(p->state == TASK_RUNNING && 1711 p->sched_class == &fair_sched_class && 1712 (p->on_rq && !task_on_rq_migrating(p))); 1713 1714 #ifdef CONFIG_LOCKDEP 1715 /* 1716 * The caller should hold either p->pi_lock or rq->lock, when changing 1717 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1718 * 1719 * sched_move_task() holds both and thus holding either pins the cgroup, 1720 * see task_group(). 1721 * 1722 * Furthermore, all task_rq users should acquire both locks, see 1723 * task_rq_lock(). 1724 */ 1725 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1726 lockdep_is_held(&task_rq(p)->lock))); 1727 #endif 1728 /* 1729 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1730 */ 1731 WARN_ON_ONCE(!cpu_online(new_cpu)); 1732 #endif 1733 1734 trace_sched_migrate_task(p, new_cpu); 1735 1736 if (task_cpu(p) != new_cpu) { 1737 if (p->sched_class->migrate_task_rq) 1738 p->sched_class->migrate_task_rq(p, new_cpu); 1739 p->se.nr_migrations++; 1740 rseq_migrate(p); 1741 perf_event_task_migrate(p); 1742 } 1743 1744 __set_task_cpu(p, new_cpu); 1745 } 1746 1747 #ifdef CONFIG_NUMA_BALANCING 1748 static void __migrate_swap_task(struct task_struct *p, int cpu) 1749 { 1750 if (task_on_rq_queued(p)) { 1751 struct rq *src_rq, *dst_rq; 1752 struct rq_flags srf, drf; 1753 1754 src_rq = task_rq(p); 1755 dst_rq = cpu_rq(cpu); 1756 1757 rq_pin_lock(src_rq, &srf); 1758 rq_pin_lock(dst_rq, &drf); 1759 1760 deactivate_task(src_rq, p, 0); 1761 set_task_cpu(p, cpu); 1762 activate_task(dst_rq, p, 0); 1763 check_preempt_curr(dst_rq, p, 0); 1764 1765 rq_unpin_lock(dst_rq, &drf); 1766 rq_unpin_lock(src_rq, &srf); 1767 1768 } else { 1769 /* 1770 * Task isn't running anymore; make it appear like we migrated 1771 * it before it went to sleep. This means on wakeup we make the 1772 * previous CPU our target instead of where it really is. 1773 */ 1774 p->wake_cpu = cpu; 1775 } 1776 } 1777 1778 struct migration_swap_arg { 1779 struct task_struct *src_task, *dst_task; 1780 int src_cpu, dst_cpu; 1781 }; 1782 1783 static int migrate_swap_stop(void *data) 1784 { 1785 struct migration_swap_arg *arg = data; 1786 struct rq *src_rq, *dst_rq; 1787 int ret = -EAGAIN; 1788 1789 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1790 return -EAGAIN; 1791 1792 src_rq = cpu_rq(arg->src_cpu); 1793 dst_rq = cpu_rq(arg->dst_cpu); 1794 1795 double_raw_lock(&arg->src_task->pi_lock, 1796 &arg->dst_task->pi_lock); 1797 double_rq_lock(src_rq, dst_rq); 1798 1799 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1800 goto unlock; 1801 1802 if (task_cpu(arg->src_task) != arg->src_cpu) 1803 goto unlock; 1804 1805 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1806 goto unlock; 1807 1808 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1809 goto unlock; 1810 1811 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1812 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1813 1814 ret = 0; 1815 1816 unlock: 1817 double_rq_unlock(src_rq, dst_rq); 1818 raw_spin_unlock(&arg->dst_task->pi_lock); 1819 raw_spin_unlock(&arg->src_task->pi_lock); 1820 1821 return ret; 1822 } 1823 1824 /* 1825 * Cross migrate two tasks 1826 */ 1827 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1828 int target_cpu, int curr_cpu) 1829 { 1830 struct migration_swap_arg arg; 1831 int ret = -EINVAL; 1832 1833 arg = (struct migration_swap_arg){ 1834 .src_task = cur, 1835 .src_cpu = curr_cpu, 1836 .dst_task = p, 1837 .dst_cpu = target_cpu, 1838 }; 1839 1840 if (arg.src_cpu == arg.dst_cpu) 1841 goto out; 1842 1843 /* 1844 * These three tests are all lockless; this is OK since all of them 1845 * will be re-checked with proper locks held further down the line. 1846 */ 1847 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1848 goto out; 1849 1850 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1851 goto out; 1852 1853 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1854 goto out; 1855 1856 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1857 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1858 1859 out: 1860 return ret; 1861 } 1862 #endif /* CONFIG_NUMA_BALANCING */ 1863 1864 /* 1865 * wait_task_inactive - wait for a thread to unschedule. 1866 * 1867 * If @match_state is nonzero, it's the @p->state value just checked and 1868 * not expected to change. If it changes, i.e. @p might have woken up, 1869 * then return zero. When we succeed in waiting for @p to be off its CPU, 1870 * we return a positive number (its total switch count). If a second call 1871 * a short while later returns the same number, the caller can be sure that 1872 * @p has remained unscheduled the whole time. 1873 * 1874 * The caller must ensure that the task *will* unschedule sometime soon, 1875 * else this function might spin for a *long* time. This function can't 1876 * be called with interrupts off, or it may introduce deadlock with 1877 * smp_call_function() if an IPI is sent by the same process we are 1878 * waiting to become inactive. 1879 */ 1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1881 { 1882 int running, queued; 1883 struct rq_flags rf; 1884 unsigned long ncsw; 1885 struct rq *rq; 1886 1887 for (;;) { 1888 /* 1889 * We do the initial early heuristics without holding 1890 * any task-queue locks at all. We'll only try to get 1891 * the runqueue lock when things look like they will 1892 * work out! 1893 */ 1894 rq = task_rq(p); 1895 1896 /* 1897 * If the task is actively running on another CPU 1898 * still, just relax and busy-wait without holding 1899 * any locks. 1900 * 1901 * NOTE! Since we don't hold any locks, it's not 1902 * even sure that "rq" stays as the right runqueue! 1903 * But we don't care, since "task_running()" will 1904 * return false if the runqueue has changed and p 1905 * is actually now running somewhere else! 1906 */ 1907 while (task_running(rq, p)) { 1908 if (match_state && unlikely(p->state != match_state)) 1909 return 0; 1910 cpu_relax(); 1911 } 1912 1913 /* 1914 * Ok, time to look more closely! We need the rq 1915 * lock now, to be *sure*. If we're wrong, we'll 1916 * just go back and repeat. 1917 */ 1918 rq = task_rq_lock(p, &rf); 1919 trace_sched_wait_task(p); 1920 running = task_running(rq, p); 1921 queued = task_on_rq_queued(p); 1922 ncsw = 0; 1923 if (!match_state || p->state == match_state) 1924 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1925 task_rq_unlock(rq, p, &rf); 1926 1927 /* 1928 * If it changed from the expected state, bail out now. 1929 */ 1930 if (unlikely(!ncsw)) 1931 break; 1932 1933 /* 1934 * Was it really running after all now that we 1935 * checked with the proper locks actually held? 1936 * 1937 * Oops. Go back and try again.. 1938 */ 1939 if (unlikely(running)) { 1940 cpu_relax(); 1941 continue; 1942 } 1943 1944 /* 1945 * It's not enough that it's not actively running, 1946 * it must be off the runqueue _entirely_, and not 1947 * preempted! 1948 * 1949 * So if it was still runnable (but just not actively 1950 * running right now), it's preempted, and we should 1951 * yield - it could be a while. 1952 */ 1953 if (unlikely(queued)) { 1954 ktime_t to = NSEC_PER_SEC / HZ; 1955 1956 set_current_state(TASK_UNINTERRUPTIBLE); 1957 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1958 continue; 1959 } 1960 1961 /* 1962 * Ahh, all good. It wasn't running, and it wasn't 1963 * runnable, which means that it will never become 1964 * running in the future either. We're all done! 1965 */ 1966 break; 1967 } 1968 1969 return ncsw; 1970 } 1971 1972 /*** 1973 * kick_process - kick a running thread to enter/exit the kernel 1974 * @p: the to-be-kicked thread 1975 * 1976 * Cause a process which is running on another CPU to enter 1977 * kernel-mode, without any delay. (to get signals handled.) 1978 * 1979 * NOTE: this function doesn't have to take the runqueue lock, 1980 * because all it wants to ensure is that the remote task enters 1981 * the kernel. If the IPI races and the task has been migrated 1982 * to another CPU then no harm is done and the purpose has been 1983 * achieved as well. 1984 */ 1985 void kick_process(struct task_struct *p) 1986 { 1987 int cpu; 1988 1989 preempt_disable(); 1990 cpu = task_cpu(p); 1991 if ((cpu != smp_processor_id()) && task_curr(p)) 1992 smp_send_reschedule(cpu); 1993 preempt_enable(); 1994 } 1995 EXPORT_SYMBOL_GPL(kick_process); 1996 1997 /* 1998 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 1999 * 2000 * A few notes on cpu_active vs cpu_online: 2001 * 2002 * - cpu_active must be a subset of cpu_online 2003 * 2004 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2005 * see __set_cpus_allowed_ptr(). At this point the newly online 2006 * CPU isn't yet part of the sched domains, and balancing will not 2007 * see it. 2008 * 2009 * - on CPU-down we clear cpu_active() to mask the sched domains and 2010 * avoid the load balancer to place new tasks on the to be removed 2011 * CPU. Existing tasks will remain running there and will be taken 2012 * off. 2013 * 2014 * This means that fallback selection must not select !active CPUs. 2015 * And can assume that any active CPU must be online. Conversely 2016 * select_task_rq() below may allow selection of !active CPUs in order 2017 * to satisfy the above rules. 2018 */ 2019 static int select_fallback_rq(int cpu, struct task_struct *p) 2020 { 2021 int nid = cpu_to_node(cpu); 2022 const struct cpumask *nodemask = NULL; 2023 enum { cpuset, possible, fail } state = cpuset; 2024 int dest_cpu; 2025 2026 /* 2027 * If the node that the CPU is on has been offlined, cpu_to_node() 2028 * will return -1. There is no CPU on the node, and we should 2029 * select the CPU on the other node. 2030 */ 2031 if (nid != -1) { 2032 nodemask = cpumask_of_node(nid); 2033 2034 /* Look for allowed, online CPU in same node. */ 2035 for_each_cpu(dest_cpu, nodemask) { 2036 if (!cpu_active(dest_cpu)) 2037 continue; 2038 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2039 return dest_cpu; 2040 } 2041 } 2042 2043 for (;;) { 2044 /* Any allowed, online CPU? */ 2045 for_each_cpu(dest_cpu, p->cpus_ptr) { 2046 if (!is_cpu_allowed(p, dest_cpu)) 2047 continue; 2048 2049 goto out; 2050 } 2051 2052 /* No more Mr. Nice Guy. */ 2053 switch (state) { 2054 case cpuset: 2055 if (IS_ENABLED(CONFIG_CPUSETS)) { 2056 cpuset_cpus_allowed_fallback(p); 2057 state = possible; 2058 break; 2059 } 2060 /* Fall-through */ 2061 case possible: 2062 do_set_cpus_allowed(p, cpu_possible_mask); 2063 state = fail; 2064 break; 2065 2066 case fail: 2067 BUG(); 2068 break; 2069 } 2070 } 2071 2072 out: 2073 if (state != cpuset) { 2074 /* 2075 * Don't tell them about moving exiting tasks or 2076 * kernel threads (both mm NULL), since they never 2077 * leave kernel. 2078 */ 2079 if (p->mm && printk_ratelimit()) { 2080 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2081 task_pid_nr(p), p->comm, cpu); 2082 } 2083 } 2084 2085 return dest_cpu; 2086 } 2087 2088 /* 2089 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2090 */ 2091 static inline 2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2093 { 2094 lockdep_assert_held(&p->pi_lock); 2095 2096 if (p->nr_cpus_allowed > 1) 2097 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2098 else 2099 cpu = cpumask_any(p->cpus_ptr); 2100 2101 /* 2102 * In order not to call set_task_cpu() on a blocking task we need 2103 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2104 * CPU. 2105 * 2106 * Since this is common to all placement strategies, this lives here. 2107 * 2108 * [ this allows ->select_task() to simply return task_cpu(p) and 2109 * not worry about this generic constraint ] 2110 */ 2111 if (unlikely(!is_cpu_allowed(p, cpu))) 2112 cpu = select_fallback_rq(task_cpu(p), p); 2113 2114 return cpu; 2115 } 2116 2117 void sched_set_stop_task(int cpu, struct task_struct *stop) 2118 { 2119 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2120 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2121 2122 if (stop) { 2123 /* 2124 * Make it appear like a SCHED_FIFO task, its something 2125 * userspace knows about and won't get confused about. 2126 * 2127 * Also, it will make PI more or less work without too 2128 * much confusion -- but then, stop work should not 2129 * rely on PI working anyway. 2130 */ 2131 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2132 2133 stop->sched_class = &stop_sched_class; 2134 } 2135 2136 cpu_rq(cpu)->stop = stop; 2137 2138 if (old_stop) { 2139 /* 2140 * Reset it back to a normal scheduling class so that 2141 * it can die in pieces. 2142 */ 2143 old_stop->sched_class = &rt_sched_class; 2144 } 2145 } 2146 2147 #else 2148 2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2150 const struct cpumask *new_mask, bool check) 2151 { 2152 return set_cpus_allowed_ptr(p, new_mask); 2153 } 2154 2155 #endif /* CONFIG_SMP */ 2156 2157 static void 2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2159 { 2160 struct rq *rq; 2161 2162 if (!schedstat_enabled()) 2163 return; 2164 2165 rq = this_rq(); 2166 2167 #ifdef CONFIG_SMP 2168 if (cpu == rq->cpu) { 2169 __schedstat_inc(rq->ttwu_local); 2170 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2171 } else { 2172 struct sched_domain *sd; 2173 2174 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2175 rcu_read_lock(); 2176 for_each_domain(rq->cpu, sd) { 2177 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2178 __schedstat_inc(sd->ttwu_wake_remote); 2179 break; 2180 } 2181 } 2182 rcu_read_unlock(); 2183 } 2184 2185 if (wake_flags & WF_MIGRATED) 2186 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2187 #endif /* CONFIG_SMP */ 2188 2189 __schedstat_inc(rq->ttwu_count); 2190 __schedstat_inc(p->se.statistics.nr_wakeups); 2191 2192 if (wake_flags & WF_SYNC) 2193 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2194 } 2195 2196 /* 2197 * Mark the task runnable and perform wakeup-preemption. 2198 */ 2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2200 struct rq_flags *rf) 2201 { 2202 check_preempt_curr(rq, p, wake_flags); 2203 p->state = TASK_RUNNING; 2204 trace_sched_wakeup(p); 2205 2206 #ifdef CONFIG_SMP 2207 if (p->sched_class->task_woken) { 2208 /* 2209 * Our task @p is fully woken up and running; so its safe to 2210 * drop the rq->lock, hereafter rq is only used for statistics. 2211 */ 2212 rq_unpin_lock(rq, rf); 2213 p->sched_class->task_woken(rq, p); 2214 rq_repin_lock(rq, rf); 2215 } 2216 2217 if (rq->idle_stamp) { 2218 u64 delta = rq_clock(rq) - rq->idle_stamp; 2219 u64 max = 2*rq->max_idle_balance_cost; 2220 2221 update_avg(&rq->avg_idle, delta); 2222 2223 if (rq->avg_idle > max) 2224 rq->avg_idle = max; 2225 2226 rq->idle_stamp = 0; 2227 } 2228 #endif 2229 } 2230 2231 static void 2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2233 struct rq_flags *rf) 2234 { 2235 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2236 2237 lockdep_assert_held(&rq->lock); 2238 2239 #ifdef CONFIG_SMP 2240 if (p->sched_contributes_to_load) 2241 rq->nr_uninterruptible--; 2242 2243 if (wake_flags & WF_MIGRATED) 2244 en_flags |= ENQUEUE_MIGRATED; 2245 #endif 2246 2247 activate_task(rq, p, en_flags); 2248 ttwu_do_wakeup(rq, p, wake_flags, rf); 2249 } 2250 2251 /* 2252 * Called in case the task @p isn't fully descheduled from its runqueue, 2253 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2254 * since all we need to do is flip p->state to TASK_RUNNING, since 2255 * the task is still ->on_rq. 2256 */ 2257 static int ttwu_remote(struct task_struct *p, int wake_flags) 2258 { 2259 struct rq_flags rf; 2260 struct rq *rq; 2261 int ret = 0; 2262 2263 rq = __task_rq_lock(p, &rf); 2264 if (task_on_rq_queued(p)) { 2265 /* check_preempt_curr() may use rq clock */ 2266 update_rq_clock(rq); 2267 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2268 ret = 1; 2269 } 2270 __task_rq_unlock(rq, &rf); 2271 2272 return ret; 2273 } 2274 2275 #ifdef CONFIG_SMP 2276 void sched_ttwu_pending(void *arg) 2277 { 2278 struct llist_node *llist = arg; 2279 struct rq *rq = this_rq(); 2280 struct task_struct *p, *t; 2281 struct rq_flags rf; 2282 2283 if (!llist) 2284 return; 2285 2286 /* 2287 * rq::ttwu_pending racy indication of out-standing wakeups. 2288 * Races such that false-negatives are possible, since they 2289 * are shorter lived that false-positives would be. 2290 */ 2291 WRITE_ONCE(rq->ttwu_pending, 0); 2292 2293 rq_lock_irqsave(rq, &rf); 2294 update_rq_clock(rq); 2295 2296 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 2297 if (WARN_ON_ONCE(p->on_cpu)) 2298 smp_cond_load_acquire(&p->on_cpu, !VAL); 2299 2300 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 2301 set_task_cpu(p, cpu_of(rq)); 2302 2303 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2304 } 2305 2306 rq_unlock_irqrestore(rq, &rf); 2307 } 2308 2309 void send_call_function_single_ipi(int cpu) 2310 { 2311 struct rq *rq = cpu_rq(cpu); 2312 2313 if (!set_nr_if_polling(rq->idle)) 2314 arch_send_call_function_single_ipi(cpu); 2315 else 2316 trace_sched_wake_idle_without_ipi(cpu); 2317 } 2318 2319 /* 2320 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 2321 * necessary. The wakee CPU on receipt of the IPI will queue the task 2322 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 2323 * of the wakeup instead of the waker. 2324 */ 2325 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2326 { 2327 struct rq *rq = cpu_rq(cpu); 2328 2329 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2330 2331 WRITE_ONCE(rq->ttwu_pending, 1); 2332 __smp_call_single_queue(cpu, &p->wake_entry.llist); 2333 } 2334 2335 void wake_up_if_idle(int cpu) 2336 { 2337 struct rq *rq = cpu_rq(cpu); 2338 struct rq_flags rf; 2339 2340 rcu_read_lock(); 2341 2342 if (!is_idle_task(rcu_dereference(rq->curr))) 2343 goto out; 2344 2345 if (set_nr_if_polling(rq->idle)) { 2346 trace_sched_wake_idle_without_ipi(cpu); 2347 } else { 2348 rq_lock_irqsave(rq, &rf); 2349 if (is_idle_task(rq->curr)) 2350 smp_send_reschedule(cpu); 2351 /* Else CPU is not idle, do nothing here: */ 2352 rq_unlock_irqrestore(rq, &rf); 2353 } 2354 2355 out: 2356 rcu_read_unlock(); 2357 } 2358 2359 bool cpus_share_cache(int this_cpu, int that_cpu) 2360 { 2361 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2362 } 2363 2364 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 2365 { 2366 /* 2367 * If the CPU does not share cache, then queue the task on the 2368 * remote rqs wakelist to avoid accessing remote data. 2369 */ 2370 if (!cpus_share_cache(smp_processor_id(), cpu)) 2371 return true; 2372 2373 /* 2374 * If the task is descheduling and the only running task on the 2375 * CPU then use the wakelist to offload the task activation to 2376 * the soon-to-be-idle CPU as the current CPU is likely busy. 2377 * nr_running is checked to avoid unnecessary task stacking. 2378 */ 2379 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 2380 return true; 2381 2382 return false; 2383 } 2384 2385 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2386 { 2387 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 2388 if (WARN_ON_ONCE(cpu == smp_processor_id())) 2389 return false; 2390 2391 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2392 __ttwu_queue_wakelist(p, cpu, wake_flags); 2393 return true; 2394 } 2395 2396 return false; 2397 } 2398 #endif /* CONFIG_SMP */ 2399 2400 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2401 { 2402 struct rq *rq = cpu_rq(cpu); 2403 struct rq_flags rf; 2404 2405 #if defined(CONFIG_SMP) 2406 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 2407 return; 2408 #endif 2409 2410 rq_lock(rq, &rf); 2411 update_rq_clock(rq); 2412 ttwu_do_activate(rq, p, wake_flags, &rf); 2413 rq_unlock(rq, &rf); 2414 } 2415 2416 /* 2417 * Notes on Program-Order guarantees on SMP systems. 2418 * 2419 * MIGRATION 2420 * 2421 * The basic program-order guarantee on SMP systems is that when a task [t] 2422 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2423 * execution on its new CPU [c1]. 2424 * 2425 * For migration (of runnable tasks) this is provided by the following means: 2426 * 2427 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2428 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2429 * rq(c1)->lock (if not at the same time, then in that order). 2430 * C) LOCK of the rq(c1)->lock scheduling in task 2431 * 2432 * Release/acquire chaining guarantees that B happens after A and C after B. 2433 * Note: the CPU doing B need not be c0 or c1 2434 * 2435 * Example: 2436 * 2437 * CPU0 CPU1 CPU2 2438 * 2439 * LOCK rq(0)->lock 2440 * sched-out X 2441 * sched-in Y 2442 * UNLOCK rq(0)->lock 2443 * 2444 * LOCK rq(0)->lock // orders against CPU0 2445 * dequeue X 2446 * UNLOCK rq(0)->lock 2447 * 2448 * LOCK rq(1)->lock 2449 * enqueue X 2450 * UNLOCK rq(1)->lock 2451 * 2452 * LOCK rq(1)->lock // orders against CPU2 2453 * sched-out Z 2454 * sched-in X 2455 * UNLOCK rq(1)->lock 2456 * 2457 * 2458 * BLOCKING -- aka. SLEEP + WAKEUP 2459 * 2460 * For blocking we (obviously) need to provide the same guarantee as for 2461 * migration. However the means are completely different as there is no lock 2462 * chain to provide order. Instead we do: 2463 * 2464 * 1) smp_store_release(X->on_cpu, 0) 2465 * 2) smp_cond_load_acquire(!X->on_cpu) 2466 * 2467 * Example: 2468 * 2469 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2470 * 2471 * LOCK rq(0)->lock LOCK X->pi_lock 2472 * dequeue X 2473 * sched-out X 2474 * smp_store_release(X->on_cpu, 0); 2475 * 2476 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2477 * X->state = WAKING 2478 * set_task_cpu(X,2) 2479 * 2480 * LOCK rq(2)->lock 2481 * enqueue X 2482 * X->state = RUNNING 2483 * UNLOCK rq(2)->lock 2484 * 2485 * LOCK rq(2)->lock // orders against CPU1 2486 * sched-out Z 2487 * sched-in X 2488 * UNLOCK rq(2)->lock 2489 * 2490 * UNLOCK X->pi_lock 2491 * UNLOCK rq(0)->lock 2492 * 2493 * 2494 * However, for wakeups there is a second guarantee we must provide, namely we 2495 * must ensure that CONDITION=1 done by the caller can not be reordered with 2496 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2497 */ 2498 2499 /** 2500 * try_to_wake_up - wake up a thread 2501 * @p: the thread to be awakened 2502 * @state: the mask of task states that can be woken 2503 * @wake_flags: wake modifier flags (WF_*) 2504 * 2505 * If (@state & @p->state) @p->state = TASK_RUNNING. 2506 * 2507 * If the task was not queued/runnable, also place it back on a runqueue. 2508 * 2509 * Atomic against schedule() which would dequeue a task, also see 2510 * set_current_state(). 2511 * 2512 * This function executes a full memory barrier before accessing the task 2513 * state; see set_current_state(). 2514 * 2515 * Return: %true if @p->state changes (an actual wakeup was done), 2516 * %false otherwise. 2517 */ 2518 static int 2519 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2520 { 2521 unsigned long flags; 2522 int cpu, success = 0; 2523 2524 preempt_disable(); 2525 if (p == current) { 2526 /* 2527 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2528 * == smp_processor_id()'. Together this means we can special 2529 * case the whole 'p->on_rq && ttwu_remote()' case below 2530 * without taking any locks. 2531 * 2532 * In particular: 2533 * - we rely on Program-Order guarantees for all the ordering, 2534 * - we're serialized against set_special_state() by virtue of 2535 * it disabling IRQs (this allows not taking ->pi_lock). 2536 */ 2537 if (!(p->state & state)) 2538 goto out; 2539 2540 success = 1; 2541 trace_sched_waking(p); 2542 p->state = TASK_RUNNING; 2543 trace_sched_wakeup(p); 2544 goto out; 2545 } 2546 2547 /* 2548 * If we are going to wake up a thread waiting for CONDITION we 2549 * need to ensure that CONDITION=1 done by the caller can not be 2550 * reordered with p->state check below. This pairs with mb() in 2551 * set_current_state() the waiting thread does. 2552 */ 2553 raw_spin_lock_irqsave(&p->pi_lock, flags); 2554 smp_mb__after_spinlock(); 2555 if (!(p->state & state)) 2556 goto unlock; 2557 2558 trace_sched_waking(p); 2559 2560 /* We're going to change ->state: */ 2561 success = 1; 2562 2563 /* 2564 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2565 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2566 * in smp_cond_load_acquire() below. 2567 * 2568 * sched_ttwu_pending() try_to_wake_up() 2569 * STORE p->on_rq = 1 LOAD p->state 2570 * UNLOCK rq->lock 2571 * 2572 * __schedule() (switch to task 'p') 2573 * LOCK rq->lock smp_rmb(); 2574 * smp_mb__after_spinlock(); 2575 * UNLOCK rq->lock 2576 * 2577 * [task p] 2578 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2579 * 2580 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2581 * __schedule(). See the comment for smp_mb__after_spinlock(). 2582 * 2583 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 2584 */ 2585 smp_rmb(); 2586 if (p->on_rq && ttwu_remote(p, wake_flags)) 2587 goto unlock; 2588 2589 if (p->in_iowait) { 2590 delayacct_blkio_end(p); 2591 atomic_dec(&task_rq(p)->nr_iowait); 2592 } 2593 2594 #ifdef CONFIG_SMP 2595 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2596 p->state = TASK_WAKING; 2597 2598 /* 2599 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2600 * possible to, falsely, observe p->on_cpu == 0. 2601 * 2602 * One must be running (->on_cpu == 1) in order to remove oneself 2603 * from the runqueue. 2604 * 2605 * __schedule() (switch to task 'p') try_to_wake_up() 2606 * STORE p->on_cpu = 1 LOAD p->on_rq 2607 * UNLOCK rq->lock 2608 * 2609 * __schedule() (put 'p' to sleep) 2610 * LOCK rq->lock smp_rmb(); 2611 * smp_mb__after_spinlock(); 2612 * STORE p->on_rq = 0 LOAD p->on_cpu 2613 * 2614 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2615 * __schedule(). See the comment for smp_mb__after_spinlock(). 2616 */ 2617 smp_rmb(); 2618 2619 /* 2620 * If the owning (remote) CPU is still in the middle of schedule() with 2621 * this task as prev, considering queueing p on the remote CPUs wake_list 2622 * which potentially sends an IPI instead of spinning on p->on_cpu to 2623 * let the waker make forward progress. This is safe because IRQs are 2624 * disabled and the IPI will deliver after on_cpu is cleared. 2625 * 2626 * Ensure we load task_cpu(p) after p->on_cpu: 2627 * 2628 * set_task_cpu(p, cpu); 2629 * STORE p->cpu = @cpu 2630 * __schedule() (switch to task 'p') 2631 * LOCK rq->lock 2632 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 2633 * STORE p->on_cpu = 1 LOAD p->cpu 2634 * 2635 * to ensure we observe the correct CPU on which the task is currently 2636 * scheduling. 2637 */ 2638 if (smp_load_acquire(&p->on_cpu) && 2639 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 2640 goto unlock; 2641 2642 /* 2643 * If the owning (remote) CPU is still in the middle of schedule() with 2644 * this task as prev, wait until its done referencing the task. 2645 * 2646 * Pairs with the smp_store_release() in finish_task(). 2647 * 2648 * This ensures that tasks getting woken will be fully ordered against 2649 * their previous state and preserve Program Order. 2650 */ 2651 smp_cond_load_acquire(&p->on_cpu, !VAL); 2652 2653 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2654 if (task_cpu(p) != cpu) { 2655 wake_flags |= WF_MIGRATED; 2656 psi_ttwu_dequeue(p); 2657 set_task_cpu(p, cpu); 2658 } 2659 #else 2660 cpu = task_cpu(p); 2661 #endif /* CONFIG_SMP */ 2662 2663 ttwu_queue(p, cpu, wake_flags); 2664 unlock: 2665 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2666 out: 2667 if (success) 2668 ttwu_stat(p, task_cpu(p), wake_flags); 2669 preempt_enable(); 2670 2671 return success; 2672 } 2673 2674 /** 2675 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 2676 * @p: Process for which the function is to be invoked. 2677 * @func: Function to invoke. 2678 * @arg: Argument to function. 2679 * 2680 * If the specified task can be quickly locked into a definite state 2681 * (either sleeping or on a given runqueue), arrange to keep it in that 2682 * state while invoking @func(@arg). This function can use ->on_rq and 2683 * task_curr() to work out what the state is, if required. Given that 2684 * @func can be invoked with a runqueue lock held, it had better be quite 2685 * lightweight. 2686 * 2687 * Returns: 2688 * @false if the task slipped out from under the locks. 2689 * @true if the task was locked onto a runqueue or is sleeping. 2690 * However, @func can override this by returning @false. 2691 */ 2692 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 2693 { 2694 bool ret = false; 2695 struct rq_flags rf; 2696 struct rq *rq; 2697 2698 lockdep_assert_irqs_enabled(); 2699 raw_spin_lock_irq(&p->pi_lock); 2700 if (p->on_rq) { 2701 rq = __task_rq_lock(p, &rf); 2702 if (task_rq(p) == rq) 2703 ret = func(p, arg); 2704 rq_unlock(rq, &rf); 2705 } else { 2706 switch (p->state) { 2707 case TASK_RUNNING: 2708 case TASK_WAKING: 2709 break; 2710 default: 2711 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 2712 if (!p->on_rq) 2713 ret = func(p, arg); 2714 } 2715 } 2716 raw_spin_unlock_irq(&p->pi_lock); 2717 return ret; 2718 } 2719 2720 /** 2721 * wake_up_process - Wake up a specific process 2722 * @p: The process to be woken up. 2723 * 2724 * Attempt to wake up the nominated process and move it to the set of runnable 2725 * processes. 2726 * 2727 * Return: 1 if the process was woken up, 0 if it was already running. 2728 * 2729 * This function executes a full memory barrier before accessing the task state. 2730 */ 2731 int wake_up_process(struct task_struct *p) 2732 { 2733 return try_to_wake_up(p, TASK_NORMAL, 0); 2734 } 2735 EXPORT_SYMBOL(wake_up_process); 2736 2737 int wake_up_state(struct task_struct *p, unsigned int state) 2738 { 2739 return try_to_wake_up(p, state, 0); 2740 } 2741 2742 /* 2743 * Perform scheduler related setup for a newly forked process p. 2744 * p is forked by current. 2745 * 2746 * __sched_fork() is basic setup used by init_idle() too: 2747 */ 2748 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2749 { 2750 p->on_rq = 0; 2751 2752 p->se.on_rq = 0; 2753 p->se.exec_start = 0; 2754 p->se.sum_exec_runtime = 0; 2755 p->se.prev_sum_exec_runtime = 0; 2756 p->se.nr_migrations = 0; 2757 p->se.vruntime = 0; 2758 INIT_LIST_HEAD(&p->se.group_node); 2759 2760 #ifdef CONFIG_FAIR_GROUP_SCHED 2761 p->se.cfs_rq = NULL; 2762 #endif 2763 2764 #ifdef CONFIG_SCHEDSTATS 2765 /* Even if schedstat is disabled, there should not be garbage */ 2766 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2767 #endif 2768 2769 RB_CLEAR_NODE(&p->dl.rb_node); 2770 init_dl_task_timer(&p->dl); 2771 init_dl_inactive_task_timer(&p->dl); 2772 __dl_clear_params(p); 2773 2774 INIT_LIST_HEAD(&p->rt.run_list); 2775 p->rt.timeout = 0; 2776 p->rt.time_slice = sched_rr_timeslice; 2777 p->rt.on_rq = 0; 2778 p->rt.on_list = 0; 2779 2780 #ifdef CONFIG_PREEMPT_NOTIFIERS 2781 INIT_HLIST_HEAD(&p->preempt_notifiers); 2782 #endif 2783 2784 #ifdef CONFIG_COMPACTION 2785 p->capture_control = NULL; 2786 #endif 2787 init_numa_balancing(clone_flags, p); 2788 #ifdef CONFIG_SMP 2789 p->wake_entry.u_flags = CSD_TYPE_TTWU; 2790 #endif 2791 } 2792 2793 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2794 2795 #ifdef CONFIG_NUMA_BALANCING 2796 2797 void set_numabalancing_state(bool enabled) 2798 { 2799 if (enabled) 2800 static_branch_enable(&sched_numa_balancing); 2801 else 2802 static_branch_disable(&sched_numa_balancing); 2803 } 2804 2805 #ifdef CONFIG_PROC_SYSCTL 2806 int sysctl_numa_balancing(struct ctl_table *table, int write, 2807 void *buffer, size_t *lenp, loff_t *ppos) 2808 { 2809 struct ctl_table t; 2810 int err; 2811 int state = static_branch_likely(&sched_numa_balancing); 2812 2813 if (write && !capable(CAP_SYS_ADMIN)) 2814 return -EPERM; 2815 2816 t = *table; 2817 t.data = &state; 2818 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2819 if (err < 0) 2820 return err; 2821 if (write) 2822 set_numabalancing_state(state); 2823 return err; 2824 } 2825 #endif 2826 #endif 2827 2828 #ifdef CONFIG_SCHEDSTATS 2829 2830 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2831 static bool __initdata __sched_schedstats = false; 2832 2833 static void set_schedstats(bool enabled) 2834 { 2835 if (enabled) 2836 static_branch_enable(&sched_schedstats); 2837 else 2838 static_branch_disable(&sched_schedstats); 2839 } 2840 2841 void force_schedstat_enabled(void) 2842 { 2843 if (!schedstat_enabled()) { 2844 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2845 static_branch_enable(&sched_schedstats); 2846 } 2847 } 2848 2849 static int __init setup_schedstats(char *str) 2850 { 2851 int ret = 0; 2852 if (!str) 2853 goto out; 2854 2855 /* 2856 * This code is called before jump labels have been set up, so we can't 2857 * change the static branch directly just yet. Instead set a temporary 2858 * variable so init_schedstats() can do it later. 2859 */ 2860 if (!strcmp(str, "enable")) { 2861 __sched_schedstats = true; 2862 ret = 1; 2863 } else if (!strcmp(str, "disable")) { 2864 __sched_schedstats = false; 2865 ret = 1; 2866 } 2867 out: 2868 if (!ret) 2869 pr_warn("Unable to parse schedstats=\n"); 2870 2871 return ret; 2872 } 2873 __setup("schedstats=", setup_schedstats); 2874 2875 static void __init init_schedstats(void) 2876 { 2877 set_schedstats(__sched_schedstats); 2878 } 2879 2880 #ifdef CONFIG_PROC_SYSCTL 2881 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 2882 size_t *lenp, loff_t *ppos) 2883 { 2884 struct ctl_table t; 2885 int err; 2886 int state = static_branch_likely(&sched_schedstats); 2887 2888 if (write && !capable(CAP_SYS_ADMIN)) 2889 return -EPERM; 2890 2891 t = *table; 2892 t.data = &state; 2893 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2894 if (err < 0) 2895 return err; 2896 if (write) 2897 set_schedstats(state); 2898 return err; 2899 } 2900 #endif /* CONFIG_PROC_SYSCTL */ 2901 #else /* !CONFIG_SCHEDSTATS */ 2902 static inline void init_schedstats(void) {} 2903 #endif /* CONFIG_SCHEDSTATS */ 2904 2905 /* 2906 * fork()/clone()-time setup: 2907 */ 2908 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2909 { 2910 unsigned long flags; 2911 2912 __sched_fork(clone_flags, p); 2913 /* 2914 * We mark the process as NEW here. This guarantees that 2915 * nobody will actually run it, and a signal or other external 2916 * event cannot wake it up and insert it on the runqueue either. 2917 */ 2918 p->state = TASK_NEW; 2919 2920 /* 2921 * Make sure we do not leak PI boosting priority to the child. 2922 */ 2923 p->prio = current->normal_prio; 2924 2925 uclamp_fork(p); 2926 2927 /* 2928 * Revert to default priority/policy on fork if requested. 2929 */ 2930 if (unlikely(p->sched_reset_on_fork)) { 2931 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2932 p->policy = SCHED_NORMAL; 2933 p->static_prio = NICE_TO_PRIO(0); 2934 p->rt_priority = 0; 2935 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2936 p->static_prio = NICE_TO_PRIO(0); 2937 2938 p->prio = p->normal_prio = __normal_prio(p); 2939 set_load_weight(p, false); 2940 2941 /* 2942 * We don't need the reset flag anymore after the fork. It has 2943 * fulfilled its duty: 2944 */ 2945 p->sched_reset_on_fork = 0; 2946 } 2947 2948 if (dl_prio(p->prio)) 2949 return -EAGAIN; 2950 else if (rt_prio(p->prio)) 2951 p->sched_class = &rt_sched_class; 2952 else 2953 p->sched_class = &fair_sched_class; 2954 2955 init_entity_runnable_average(&p->se); 2956 2957 /* 2958 * The child is not yet in the pid-hash so no cgroup attach races, 2959 * and the cgroup is pinned to this child due to cgroup_fork() 2960 * is ran before sched_fork(). 2961 * 2962 * Silence PROVE_RCU. 2963 */ 2964 raw_spin_lock_irqsave(&p->pi_lock, flags); 2965 /* 2966 * We're setting the CPU for the first time, we don't migrate, 2967 * so use __set_task_cpu(). 2968 */ 2969 __set_task_cpu(p, smp_processor_id()); 2970 if (p->sched_class->task_fork) 2971 p->sched_class->task_fork(p); 2972 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2973 2974 #ifdef CONFIG_SCHED_INFO 2975 if (likely(sched_info_on())) 2976 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2977 #endif 2978 #if defined(CONFIG_SMP) 2979 p->on_cpu = 0; 2980 #endif 2981 init_task_preempt_count(p); 2982 #ifdef CONFIG_SMP 2983 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2984 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2985 #endif 2986 return 0; 2987 } 2988 2989 unsigned long to_ratio(u64 period, u64 runtime) 2990 { 2991 if (runtime == RUNTIME_INF) 2992 return BW_UNIT; 2993 2994 /* 2995 * Doing this here saves a lot of checks in all 2996 * the calling paths, and returning zero seems 2997 * safe for them anyway. 2998 */ 2999 if (period == 0) 3000 return 0; 3001 3002 return div64_u64(runtime << BW_SHIFT, period); 3003 } 3004 3005 /* 3006 * wake_up_new_task - wake up a newly created task for the first time. 3007 * 3008 * This function will do some initial scheduler statistics housekeeping 3009 * that must be done for every newly created context, then puts the task 3010 * on the runqueue and wakes it. 3011 */ 3012 void wake_up_new_task(struct task_struct *p) 3013 { 3014 struct rq_flags rf; 3015 struct rq *rq; 3016 3017 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3018 p->state = TASK_RUNNING; 3019 #ifdef CONFIG_SMP 3020 /* 3021 * Fork balancing, do it here and not earlier because: 3022 * - cpus_ptr can change in the fork path 3023 * - any previously selected CPU might disappear through hotplug 3024 * 3025 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3026 * as we're not fully set-up yet. 3027 */ 3028 p->recent_used_cpu = task_cpu(p); 3029 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 3030 #endif 3031 rq = __task_rq_lock(p, &rf); 3032 update_rq_clock(rq); 3033 post_init_entity_util_avg(p); 3034 3035 activate_task(rq, p, ENQUEUE_NOCLOCK); 3036 trace_sched_wakeup_new(p); 3037 check_preempt_curr(rq, p, WF_FORK); 3038 #ifdef CONFIG_SMP 3039 if (p->sched_class->task_woken) { 3040 /* 3041 * Nothing relies on rq->lock after this, so its fine to 3042 * drop it. 3043 */ 3044 rq_unpin_lock(rq, &rf); 3045 p->sched_class->task_woken(rq, p); 3046 rq_repin_lock(rq, &rf); 3047 } 3048 #endif 3049 task_rq_unlock(rq, p, &rf); 3050 } 3051 3052 #ifdef CONFIG_PREEMPT_NOTIFIERS 3053 3054 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3055 3056 void preempt_notifier_inc(void) 3057 { 3058 static_branch_inc(&preempt_notifier_key); 3059 } 3060 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3061 3062 void preempt_notifier_dec(void) 3063 { 3064 static_branch_dec(&preempt_notifier_key); 3065 } 3066 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3067 3068 /** 3069 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3070 * @notifier: notifier struct to register 3071 */ 3072 void preempt_notifier_register(struct preempt_notifier *notifier) 3073 { 3074 if (!static_branch_unlikely(&preempt_notifier_key)) 3075 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3076 3077 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3078 } 3079 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3080 3081 /** 3082 * preempt_notifier_unregister - no longer interested in preemption notifications 3083 * @notifier: notifier struct to unregister 3084 * 3085 * This is *not* safe to call from within a preemption notifier. 3086 */ 3087 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3088 { 3089 hlist_del(¬ifier->link); 3090 } 3091 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3092 3093 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3094 { 3095 struct preempt_notifier *notifier; 3096 3097 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3098 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3099 } 3100 3101 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3102 { 3103 if (static_branch_unlikely(&preempt_notifier_key)) 3104 __fire_sched_in_preempt_notifiers(curr); 3105 } 3106 3107 static void 3108 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3109 struct task_struct *next) 3110 { 3111 struct preempt_notifier *notifier; 3112 3113 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3114 notifier->ops->sched_out(notifier, next); 3115 } 3116 3117 static __always_inline void 3118 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3119 struct task_struct *next) 3120 { 3121 if (static_branch_unlikely(&preempt_notifier_key)) 3122 __fire_sched_out_preempt_notifiers(curr, next); 3123 } 3124 3125 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3126 3127 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3128 { 3129 } 3130 3131 static inline void 3132 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3133 struct task_struct *next) 3134 { 3135 } 3136 3137 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3138 3139 static inline void prepare_task(struct task_struct *next) 3140 { 3141 #ifdef CONFIG_SMP 3142 /* 3143 * Claim the task as running, we do this before switching to it 3144 * such that any running task will have this set. 3145 */ 3146 next->on_cpu = 1; 3147 #endif 3148 } 3149 3150 static inline void finish_task(struct task_struct *prev) 3151 { 3152 #ifdef CONFIG_SMP 3153 /* 3154 * After ->on_cpu is cleared, the task can be moved to a different CPU. 3155 * We must ensure this doesn't happen until the switch is completely 3156 * finished. 3157 * 3158 * In particular, the load of prev->state in finish_task_switch() must 3159 * happen before this. 3160 * 3161 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3162 */ 3163 smp_store_release(&prev->on_cpu, 0); 3164 #endif 3165 } 3166 3167 static inline void 3168 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3169 { 3170 /* 3171 * Since the runqueue lock will be released by the next 3172 * task (which is an invalid locking op but in the case 3173 * of the scheduler it's an obvious special-case), so we 3174 * do an early lockdep release here: 3175 */ 3176 rq_unpin_lock(rq, rf); 3177 spin_release(&rq->lock.dep_map, _THIS_IP_); 3178 #ifdef CONFIG_DEBUG_SPINLOCK 3179 /* this is a valid case when another task releases the spinlock */ 3180 rq->lock.owner = next; 3181 #endif 3182 } 3183 3184 static inline void finish_lock_switch(struct rq *rq) 3185 { 3186 /* 3187 * If we are tracking spinlock dependencies then we have to 3188 * fix up the runqueue lock - which gets 'carried over' from 3189 * prev into current: 3190 */ 3191 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3192 raw_spin_unlock_irq(&rq->lock); 3193 } 3194 3195 /* 3196 * NOP if the arch has not defined these: 3197 */ 3198 3199 #ifndef prepare_arch_switch 3200 # define prepare_arch_switch(next) do { } while (0) 3201 #endif 3202 3203 #ifndef finish_arch_post_lock_switch 3204 # define finish_arch_post_lock_switch() do { } while (0) 3205 #endif 3206 3207 /** 3208 * prepare_task_switch - prepare to switch tasks 3209 * @rq: the runqueue preparing to switch 3210 * @prev: the current task that is being switched out 3211 * @next: the task we are going to switch to. 3212 * 3213 * This is called with the rq lock held and interrupts off. It must 3214 * be paired with a subsequent finish_task_switch after the context 3215 * switch. 3216 * 3217 * prepare_task_switch sets up locking and calls architecture specific 3218 * hooks. 3219 */ 3220 static inline void 3221 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3222 struct task_struct *next) 3223 { 3224 kcov_prepare_switch(prev); 3225 sched_info_switch(rq, prev, next); 3226 perf_event_task_sched_out(prev, next); 3227 rseq_preempt(prev); 3228 fire_sched_out_preempt_notifiers(prev, next); 3229 prepare_task(next); 3230 prepare_arch_switch(next); 3231 } 3232 3233 /** 3234 * finish_task_switch - clean up after a task-switch 3235 * @prev: the thread we just switched away from. 3236 * 3237 * finish_task_switch must be called after the context switch, paired 3238 * with a prepare_task_switch call before the context switch. 3239 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3240 * and do any other architecture-specific cleanup actions. 3241 * 3242 * Note that we may have delayed dropping an mm in context_switch(). If 3243 * so, we finish that here outside of the runqueue lock. (Doing it 3244 * with the lock held can cause deadlocks; see schedule() for 3245 * details.) 3246 * 3247 * The context switch have flipped the stack from under us and restored the 3248 * local variables which were saved when this task called schedule() in the 3249 * past. prev == current is still correct but we need to recalculate this_rq 3250 * because prev may have moved to another CPU. 3251 */ 3252 static struct rq *finish_task_switch(struct task_struct *prev) 3253 __releases(rq->lock) 3254 { 3255 struct rq *rq = this_rq(); 3256 struct mm_struct *mm = rq->prev_mm; 3257 long prev_state; 3258 3259 /* 3260 * The previous task will have left us with a preempt_count of 2 3261 * because it left us after: 3262 * 3263 * schedule() 3264 * preempt_disable(); // 1 3265 * __schedule() 3266 * raw_spin_lock_irq(&rq->lock) // 2 3267 * 3268 * Also, see FORK_PREEMPT_COUNT. 3269 */ 3270 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3271 "corrupted preempt_count: %s/%d/0x%x\n", 3272 current->comm, current->pid, preempt_count())) 3273 preempt_count_set(FORK_PREEMPT_COUNT); 3274 3275 rq->prev_mm = NULL; 3276 3277 /* 3278 * A task struct has one reference for the use as "current". 3279 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3280 * schedule one last time. The schedule call will never return, and 3281 * the scheduled task must drop that reference. 3282 * 3283 * We must observe prev->state before clearing prev->on_cpu (in 3284 * finish_task), otherwise a concurrent wakeup can get prev 3285 * running on another CPU and we could rave with its RUNNING -> DEAD 3286 * transition, resulting in a double drop. 3287 */ 3288 prev_state = prev->state; 3289 vtime_task_switch(prev); 3290 perf_event_task_sched_in(prev, current); 3291 finish_task(prev); 3292 finish_lock_switch(rq); 3293 finish_arch_post_lock_switch(); 3294 kcov_finish_switch(current); 3295 3296 fire_sched_in_preempt_notifiers(current); 3297 /* 3298 * When switching through a kernel thread, the loop in 3299 * membarrier_{private,global}_expedited() may have observed that 3300 * kernel thread and not issued an IPI. It is therefore possible to 3301 * schedule between user->kernel->user threads without passing though 3302 * switch_mm(). Membarrier requires a barrier after storing to 3303 * rq->curr, before returning to userspace, so provide them here: 3304 * 3305 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3306 * provided by mmdrop(), 3307 * - a sync_core for SYNC_CORE. 3308 */ 3309 if (mm) { 3310 membarrier_mm_sync_core_before_usermode(mm); 3311 mmdrop(mm); 3312 } 3313 if (unlikely(prev_state == TASK_DEAD)) { 3314 if (prev->sched_class->task_dead) 3315 prev->sched_class->task_dead(prev); 3316 3317 /* 3318 * Remove function-return probe instances associated with this 3319 * task and put them back on the free list. 3320 */ 3321 kprobe_flush_task(prev); 3322 3323 /* Task is done with its stack. */ 3324 put_task_stack(prev); 3325 3326 put_task_struct_rcu_user(prev); 3327 } 3328 3329 tick_nohz_task_switch(); 3330 return rq; 3331 } 3332 3333 #ifdef CONFIG_SMP 3334 3335 /* rq->lock is NOT held, but preemption is disabled */ 3336 static void __balance_callback(struct rq *rq) 3337 { 3338 struct callback_head *head, *next; 3339 void (*func)(struct rq *rq); 3340 unsigned long flags; 3341 3342 raw_spin_lock_irqsave(&rq->lock, flags); 3343 head = rq->balance_callback; 3344 rq->balance_callback = NULL; 3345 while (head) { 3346 func = (void (*)(struct rq *))head->func; 3347 next = head->next; 3348 head->next = NULL; 3349 head = next; 3350 3351 func(rq); 3352 } 3353 raw_spin_unlock_irqrestore(&rq->lock, flags); 3354 } 3355 3356 static inline void balance_callback(struct rq *rq) 3357 { 3358 if (unlikely(rq->balance_callback)) 3359 __balance_callback(rq); 3360 } 3361 3362 #else 3363 3364 static inline void balance_callback(struct rq *rq) 3365 { 3366 } 3367 3368 #endif 3369 3370 /** 3371 * schedule_tail - first thing a freshly forked thread must call. 3372 * @prev: the thread we just switched away from. 3373 */ 3374 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3375 __releases(rq->lock) 3376 { 3377 struct rq *rq; 3378 3379 /* 3380 * New tasks start with FORK_PREEMPT_COUNT, see there and 3381 * finish_task_switch() for details. 3382 * 3383 * finish_task_switch() will drop rq->lock() and lower preempt_count 3384 * and the preempt_enable() will end up enabling preemption (on 3385 * PREEMPT_COUNT kernels). 3386 */ 3387 3388 rq = finish_task_switch(prev); 3389 balance_callback(rq); 3390 preempt_enable(); 3391 3392 if (current->set_child_tid) 3393 put_user(task_pid_vnr(current), current->set_child_tid); 3394 3395 calculate_sigpending(); 3396 } 3397 3398 /* 3399 * context_switch - switch to the new MM and the new thread's register state. 3400 */ 3401 static __always_inline struct rq * 3402 context_switch(struct rq *rq, struct task_struct *prev, 3403 struct task_struct *next, struct rq_flags *rf) 3404 { 3405 prepare_task_switch(rq, prev, next); 3406 3407 /* 3408 * For paravirt, this is coupled with an exit in switch_to to 3409 * combine the page table reload and the switch backend into 3410 * one hypercall. 3411 */ 3412 arch_start_context_switch(prev); 3413 3414 /* 3415 * kernel -> kernel lazy + transfer active 3416 * user -> kernel lazy + mmgrab() active 3417 * 3418 * kernel -> user switch + mmdrop() active 3419 * user -> user switch 3420 */ 3421 if (!next->mm) { // to kernel 3422 enter_lazy_tlb(prev->active_mm, next); 3423 3424 next->active_mm = prev->active_mm; 3425 if (prev->mm) // from user 3426 mmgrab(prev->active_mm); 3427 else 3428 prev->active_mm = NULL; 3429 } else { // to user 3430 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3431 /* 3432 * sys_membarrier() requires an smp_mb() between setting 3433 * rq->curr / membarrier_switch_mm() and returning to userspace. 3434 * 3435 * The below provides this either through switch_mm(), or in 3436 * case 'prev->active_mm == next->mm' through 3437 * finish_task_switch()'s mmdrop(). 3438 */ 3439 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3440 3441 if (!prev->mm) { // from kernel 3442 /* will mmdrop() in finish_task_switch(). */ 3443 rq->prev_mm = prev->active_mm; 3444 prev->active_mm = NULL; 3445 } 3446 } 3447 3448 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3449 3450 prepare_lock_switch(rq, next, rf); 3451 3452 /* Here we just switch the register state and the stack. */ 3453 switch_to(prev, next, prev); 3454 barrier(); 3455 3456 return finish_task_switch(prev); 3457 } 3458 3459 /* 3460 * nr_running and nr_context_switches: 3461 * 3462 * externally visible scheduler statistics: current number of runnable 3463 * threads, total number of context switches performed since bootup. 3464 */ 3465 unsigned long nr_running(void) 3466 { 3467 unsigned long i, sum = 0; 3468 3469 for_each_online_cpu(i) 3470 sum += cpu_rq(i)->nr_running; 3471 3472 return sum; 3473 } 3474 3475 /* 3476 * Check if only the current task is running on the CPU. 3477 * 3478 * Caution: this function does not check that the caller has disabled 3479 * preemption, thus the result might have a time-of-check-to-time-of-use 3480 * race. The caller is responsible to use it correctly, for example: 3481 * 3482 * - from a non-preemptible section (of course) 3483 * 3484 * - from a thread that is bound to a single CPU 3485 * 3486 * - in a loop with very short iterations (e.g. a polling loop) 3487 */ 3488 bool single_task_running(void) 3489 { 3490 return raw_rq()->nr_running == 1; 3491 } 3492 EXPORT_SYMBOL(single_task_running); 3493 3494 unsigned long long nr_context_switches(void) 3495 { 3496 int i; 3497 unsigned long long sum = 0; 3498 3499 for_each_possible_cpu(i) 3500 sum += cpu_rq(i)->nr_switches; 3501 3502 return sum; 3503 } 3504 3505 /* 3506 * Consumers of these two interfaces, like for example the cpuidle menu 3507 * governor, are using nonsensical data. Preferring shallow idle state selection 3508 * for a CPU that has IO-wait which might not even end up running the task when 3509 * it does become runnable. 3510 */ 3511 3512 unsigned long nr_iowait_cpu(int cpu) 3513 { 3514 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3515 } 3516 3517 /* 3518 * IO-wait accounting, and how its mostly bollocks (on SMP). 3519 * 3520 * The idea behind IO-wait account is to account the idle time that we could 3521 * have spend running if it were not for IO. That is, if we were to improve the 3522 * storage performance, we'd have a proportional reduction in IO-wait time. 3523 * 3524 * This all works nicely on UP, where, when a task blocks on IO, we account 3525 * idle time as IO-wait, because if the storage were faster, it could've been 3526 * running and we'd not be idle. 3527 * 3528 * This has been extended to SMP, by doing the same for each CPU. This however 3529 * is broken. 3530 * 3531 * Imagine for instance the case where two tasks block on one CPU, only the one 3532 * CPU will have IO-wait accounted, while the other has regular idle. Even 3533 * though, if the storage were faster, both could've ran at the same time, 3534 * utilising both CPUs. 3535 * 3536 * This means, that when looking globally, the current IO-wait accounting on 3537 * SMP is a lower bound, by reason of under accounting. 3538 * 3539 * Worse, since the numbers are provided per CPU, they are sometimes 3540 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3541 * associated with any one particular CPU, it can wake to another CPU than it 3542 * blocked on. This means the per CPU IO-wait number is meaningless. 3543 * 3544 * Task CPU affinities can make all that even more 'interesting'. 3545 */ 3546 3547 unsigned long nr_iowait(void) 3548 { 3549 unsigned long i, sum = 0; 3550 3551 for_each_possible_cpu(i) 3552 sum += nr_iowait_cpu(i); 3553 3554 return sum; 3555 } 3556 3557 #ifdef CONFIG_SMP 3558 3559 /* 3560 * sched_exec - execve() is a valuable balancing opportunity, because at 3561 * this point the task has the smallest effective memory and cache footprint. 3562 */ 3563 void sched_exec(void) 3564 { 3565 struct task_struct *p = current; 3566 unsigned long flags; 3567 int dest_cpu; 3568 3569 raw_spin_lock_irqsave(&p->pi_lock, flags); 3570 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3571 if (dest_cpu == smp_processor_id()) 3572 goto unlock; 3573 3574 if (likely(cpu_active(dest_cpu))) { 3575 struct migration_arg arg = { p, dest_cpu }; 3576 3577 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3578 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3579 return; 3580 } 3581 unlock: 3582 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3583 } 3584 3585 #endif 3586 3587 DEFINE_PER_CPU(struct kernel_stat, kstat); 3588 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3589 3590 EXPORT_PER_CPU_SYMBOL(kstat); 3591 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3592 3593 /* 3594 * The function fair_sched_class.update_curr accesses the struct curr 3595 * and its field curr->exec_start; when called from task_sched_runtime(), 3596 * we observe a high rate of cache misses in practice. 3597 * Prefetching this data results in improved performance. 3598 */ 3599 static inline void prefetch_curr_exec_start(struct task_struct *p) 3600 { 3601 #ifdef CONFIG_FAIR_GROUP_SCHED 3602 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3603 #else 3604 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3605 #endif 3606 prefetch(curr); 3607 prefetch(&curr->exec_start); 3608 } 3609 3610 /* 3611 * Return accounted runtime for the task. 3612 * In case the task is currently running, return the runtime plus current's 3613 * pending runtime that have not been accounted yet. 3614 */ 3615 unsigned long long task_sched_runtime(struct task_struct *p) 3616 { 3617 struct rq_flags rf; 3618 struct rq *rq; 3619 u64 ns; 3620 3621 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3622 /* 3623 * 64-bit doesn't need locks to atomically read a 64-bit value. 3624 * So we have a optimization chance when the task's delta_exec is 0. 3625 * Reading ->on_cpu is racy, but this is ok. 3626 * 3627 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3628 * If we race with it entering CPU, unaccounted time is 0. This is 3629 * indistinguishable from the read occurring a few cycles earlier. 3630 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3631 * been accounted, so we're correct here as well. 3632 */ 3633 if (!p->on_cpu || !task_on_rq_queued(p)) 3634 return p->se.sum_exec_runtime; 3635 #endif 3636 3637 rq = task_rq_lock(p, &rf); 3638 /* 3639 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3640 * project cycles that may never be accounted to this 3641 * thread, breaking clock_gettime(). 3642 */ 3643 if (task_current(rq, p) && task_on_rq_queued(p)) { 3644 prefetch_curr_exec_start(p); 3645 update_rq_clock(rq); 3646 p->sched_class->update_curr(rq); 3647 } 3648 ns = p->se.sum_exec_runtime; 3649 task_rq_unlock(rq, p, &rf); 3650 3651 return ns; 3652 } 3653 3654 DEFINE_PER_CPU(unsigned long, thermal_pressure); 3655 3656 void arch_set_thermal_pressure(struct cpumask *cpus, 3657 unsigned long th_pressure) 3658 { 3659 int cpu; 3660 3661 for_each_cpu(cpu, cpus) 3662 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 3663 } 3664 3665 /* 3666 * This function gets called by the timer code, with HZ frequency. 3667 * We call it with interrupts disabled. 3668 */ 3669 void scheduler_tick(void) 3670 { 3671 int cpu = smp_processor_id(); 3672 struct rq *rq = cpu_rq(cpu); 3673 struct task_struct *curr = rq->curr; 3674 struct rq_flags rf; 3675 unsigned long thermal_pressure; 3676 3677 arch_scale_freq_tick(); 3678 sched_clock_tick(); 3679 3680 rq_lock(rq, &rf); 3681 3682 update_rq_clock(rq); 3683 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 3684 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 3685 curr->sched_class->task_tick(rq, curr, 0); 3686 calc_global_load_tick(rq); 3687 psi_task_tick(rq); 3688 3689 rq_unlock(rq, &rf); 3690 3691 perf_event_task_tick(); 3692 3693 #ifdef CONFIG_SMP 3694 rq->idle_balance = idle_cpu(cpu); 3695 trigger_load_balance(rq); 3696 #endif 3697 } 3698 3699 #ifdef CONFIG_NO_HZ_FULL 3700 3701 struct tick_work { 3702 int cpu; 3703 atomic_t state; 3704 struct delayed_work work; 3705 }; 3706 /* Values for ->state, see diagram below. */ 3707 #define TICK_SCHED_REMOTE_OFFLINE 0 3708 #define TICK_SCHED_REMOTE_OFFLINING 1 3709 #define TICK_SCHED_REMOTE_RUNNING 2 3710 3711 /* 3712 * State diagram for ->state: 3713 * 3714 * 3715 * TICK_SCHED_REMOTE_OFFLINE 3716 * | ^ 3717 * | | 3718 * | | sched_tick_remote() 3719 * | | 3720 * | | 3721 * +--TICK_SCHED_REMOTE_OFFLINING 3722 * | ^ 3723 * | | 3724 * sched_tick_start() | | sched_tick_stop() 3725 * | | 3726 * V | 3727 * TICK_SCHED_REMOTE_RUNNING 3728 * 3729 * 3730 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 3731 * and sched_tick_start() are happy to leave the state in RUNNING. 3732 */ 3733 3734 static struct tick_work __percpu *tick_work_cpu; 3735 3736 static void sched_tick_remote(struct work_struct *work) 3737 { 3738 struct delayed_work *dwork = to_delayed_work(work); 3739 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3740 int cpu = twork->cpu; 3741 struct rq *rq = cpu_rq(cpu); 3742 struct task_struct *curr; 3743 struct rq_flags rf; 3744 u64 delta; 3745 int os; 3746 3747 /* 3748 * Handle the tick only if it appears the remote CPU is running in full 3749 * dynticks mode. The check is racy by nature, but missing a tick or 3750 * having one too much is no big deal because the scheduler tick updates 3751 * statistics and checks timeslices in a time-independent way, regardless 3752 * of when exactly it is running. 3753 */ 3754 if (!tick_nohz_tick_stopped_cpu(cpu)) 3755 goto out_requeue; 3756 3757 rq_lock_irq(rq, &rf); 3758 curr = rq->curr; 3759 if (cpu_is_offline(cpu)) 3760 goto out_unlock; 3761 3762 update_rq_clock(rq); 3763 3764 if (!is_idle_task(curr)) { 3765 /* 3766 * Make sure the next tick runs within a reasonable 3767 * amount of time. 3768 */ 3769 delta = rq_clock_task(rq) - curr->se.exec_start; 3770 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3771 } 3772 curr->sched_class->task_tick(rq, curr, 0); 3773 3774 calc_load_nohz_remote(rq); 3775 out_unlock: 3776 rq_unlock_irq(rq, &rf); 3777 out_requeue: 3778 3779 /* 3780 * Run the remote tick once per second (1Hz). This arbitrary 3781 * frequency is large enough to avoid overload but short enough 3782 * to keep scheduler internal stats reasonably up to date. But 3783 * first update state to reflect hotplug activity if required. 3784 */ 3785 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 3786 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 3787 if (os == TICK_SCHED_REMOTE_RUNNING) 3788 queue_delayed_work(system_unbound_wq, dwork, HZ); 3789 } 3790 3791 static void sched_tick_start(int cpu) 3792 { 3793 int os; 3794 struct tick_work *twork; 3795 3796 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3797 return; 3798 3799 WARN_ON_ONCE(!tick_work_cpu); 3800 3801 twork = per_cpu_ptr(tick_work_cpu, cpu); 3802 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 3803 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 3804 if (os == TICK_SCHED_REMOTE_OFFLINE) { 3805 twork->cpu = cpu; 3806 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3807 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3808 } 3809 } 3810 3811 #ifdef CONFIG_HOTPLUG_CPU 3812 static void sched_tick_stop(int cpu) 3813 { 3814 struct tick_work *twork; 3815 int os; 3816 3817 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3818 return; 3819 3820 WARN_ON_ONCE(!tick_work_cpu); 3821 3822 twork = per_cpu_ptr(tick_work_cpu, cpu); 3823 /* There cannot be competing actions, but don't rely on stop-machine. */ 3824 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 3825 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 3826 /* Don't cancel, as this would mess up the state machine. */ 3827 } 3828 #endif /* CONFIG_HOTPLUG_CPU */ 3829 3830 int __init sched_tick_offload_init(void) 3831 { 3832 tick_work_cpu = alloc_percpu(struct tick_work); 3833 BUG_ON(!tick_work_cpu); 3834 return 0; 3835 } 3836 3837 #else /* !CONFIG_NO_HZ_FULL */ 3838 static inline void sched_tick_start(int cpu) { } 3839 static inline void sched_tick_stop(int cpu) { } 3840 #endif 3841 3842 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3843 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3844 /* 3845 * If the value passed in is equal to the current preempt count 3846 * then we just disabled preemption. Start timing the latency. 3847 */ 3848 static inline void preempt_latency_start(int val) 3849 { 3850 if (preempt_count() == val) { 3851 unsigned long ip = get_lock_parent_ip(); 3852 #ifdef CONFIG_DEBUG_PREEMPT 3853 current->preempt_disable_ip = ip; 3854 #endif 3855 trace_preempt_off(CALLER_ADDR0, ip); 3856 } 3857 } 3858 3859 void preempt_count_add(int val) 3860 { 3861 #ifdef CONFIG_DEBUG_PREEMPT 3862 /* 3863 * Underflow? 3864 */ 3865 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3866 return; 3867 #endif 3868 __preempt_count_add(val); 3869 #ifdef CONFIG_DEBUG_PREEMPT 3870 /* 3871 * Spinlock count overflowing soon? 3872 */ 3873 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3874 PREEMPT_MASK - 10); 3875 #endif 3876 preempt_latency_start(val); 3877 } 3878 EXPORT_SYMBOL(preempt_count_add); 3879 NOKPROBE_SYMBOL(preempt_count_add); 3880 3881 /* 3882 * If the value passed in equals to the current preempt count 3883 * then we just enabled preemption. Stop timing the latency. 3884 */ 3885 static inline void preempt_latency_stop(int val) 3886 { 3887 if (preempt_count() == val) 3888 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3889 } 3890 3891 void preempt_count_sub(int val) 3892 { 3893 #ifdef CONFIG_DEBUG_PREEMPT 3894 /* 3895 * Underflow? 3896 */ 3897 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3898 return; 3899 /* 3900 * Is the spinlock portion underflowing? 3901 */ 3902 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3903 !(preempt_count() & PREEMPT_MASK))) 3904 return; 3905 #endif 3906 3907 preempt_latency_stop(val); 3908 __preempt_count_sub(val); 3909 } 3910 EXPORT_SYMBOL(preempt_count_sub); 3911 NOKPROBE_SYMBOL(preempt_count_sub); 3912 3913 #else 3914 static inline void preempt_latency_start(int val) { } 3915 static inline void preempt_latency_stop(int val) { } 3916 #endif 3917 3918 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3919 { 3920 #ifdef CONFIG_DEBUG_PREEMPT 3921 return p->preempt_disable_ip; 3922 #else 3923 return 0; 3924 #endif 3925 } 3926 3927 /* 3928 * Print scheduling while atomic bug: 3929 */ 3930 static noinline void __schedule_bug(struct task_struct *prev) 3931 { 3932 /* Save this before calling printk(), since that will clobber it */ 3933 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3934 3935 if (oops_in_progress) 3936 return; 3937 3938 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3939 prev->comm, prev->pid, preempt_count()); 3940 3941 debug_show_held_locks(prev); 3942 print_modules(); 3943 if (irqs_disabled()) 3944 print_irqtrace_events(prev); 3945 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3946 && in_atomic_preempt_off()) { 3947 pr_err("Preemption disabled at:"); 3948 print_ip_sym(KERN_ERR, preempt_disable_ip); 3949 } 3950 if (panic_on_warn) 3951 panic("scheduling while atomic\n"); 3952 3953 dump_stack(); 3954 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3955 } 3956 3957 /* 3958 * Various schedule()-time debugging checks and statistics: 3959 */ 3960 static inline void schedule_debug(struct task_struct *prev, bool preempt) 3961 { 3962 #ifdef CONFIG_SCHED_STACK_END_CHECK 3963 if (task_stack_end_corrupted(prev)) 3964 panic("corrupted stack end detected inside scheduler\n"); 3965 3966 if (task_scs_end_corrupted(prev)) 3967 panic("corrupted shadow stack detected inside scheduler\n"); 3968 #endif 3969 3970 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 3971 if (!preempt && prev->state && prev->non_block_count) { 3972 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 3973 prev->comm, prev->pid, prev->non_block_count); 3974 dump_stack(); 3975 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3976 } 3977 #endif 3978 3979 if (unlikely(in_atomic_preempt_off())) { 3980 __schedule_bug(prev); 3981 preempt_count_set(PREEMPT_DISABLED); 3982 } 3983 rcu_sleep_check(); 3984 3985 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3986 3987 schedstat_inc(this_rq()->sched_count); 3988 } 3989 3990 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 3991 struct rq_flags *rf) 3992 { 3993 #ifdef CONFIG_SMP 3994 const struct sched_class *class; 3995 /* 3996 * We must do the balancing pass before put_prev_task(), such 3997 * that when we release the rq->lock the task is in the same 3998 * state as before we took rq->lock. 3999 * 4000 * We can terminate the balance pass as soon as we know there is 4001 * a runnable task of @class priority or higher. 4002 */ 4003 for_class_range(class, prev->sched_class, &idle_sched_class) { 4004 if (class->balance(rq, prev, rf)) 4005 break; 4006 } 4007 #endif 4008 4009 put_prev_task(rq, prev); 4010 } 4011 4012 /* 4013 * Pick up the highest-prio task: 4014 */ 4015 static inline struct task_struct * 4016 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4017 { 4018 const struct sched_class *class; 4019 struct task_struct *p; 4020 4021 /* 4022 * Optimization: we know that if all tasks are in the fair class we can 4023 * call that function directly, but only if the @prev task wasn't of a 4024 * higher scheduling class, because otherwise those loose the 4025 * opportunity to pull in more work from other CPUs. 4026 */ 4027 if (likely((prev->sched_class == &idle_sched_class || 4028 prev->sched_class == &fair_sched_class) && 4029 rq->nr_running == rq->cfs.h_nr_running)) { 4030 4031 p = pick_next_task_fair(rq, prev, rf); 4032 if (unlikely(p == RETRY_TASK)) 4033 goto restart; 4034 4035 /* Assumes fair_sched_class->next == idle_sched_class */ 4036 if (!p) { 4037 put_prev_task(rq, prev); 4038 p = pick_next_task_idle(rq); 4039 } 4040 4041 return p; 4042 } 4043 4044 restart: 4045 put_prev_task_balance(rq, prev, rf); 4046 4047 for_each_class(class) { 4048 p = class->pick_next_task(rq); 4049 if (p) 4050 return p; 4051 } 4052 4053 /* The idle class should always have a runnable task: */ 4054 BUG(); 4055 } 4056 4057 /* 4058 * __schedule() is the main scheduler function. 4059 * 4060 * The main means of driving the scheduler and thus entering this function are: 4061 * 4062 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4063 * 4064 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4065 * paths. For example, see arch/x86/entry_64.S. 4066 * 4067 * To drive preemption between tasks, the scheduler sets the flag in timer 4068 * interrupt handler scheduler_tick(). 4069 * 4070 * 3. Wakeups don't really cause entry into schedule(). They add a 4071 * task to the run-queue and that's it. 4072 * 4073 * Now, if the new task added to the run-queue preempts the current 4074 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4075 * called on the nearest possible occasion: 4076 * 4077 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4078 * 4079 * - in syscall or exception context, at the next outmost 4080 * preempt_enable(). (this might be as soon as the wake_up()'s 4081 * spin_unlock()!) 4082 * 4083 * - in IRQ context, return from interrupt-handler to 4084 * preemptible context 4085 * 4086 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4087 * then at the next: 4088 * 4089 * - cond_resched() call 4090 * - explicit schedule() call 4091 * - return from syscall or exception to user-space 4092 * - return from interrupt-handler to user-space 4093 * 4094 * WARNING: must be called with preemption disabled! 4095 */ 4096 static void __sched notrace __schedule(bool preempt) 4097 { 4098 struct task_struct *prev, *next; 4099 unsigned long *switch_count; 4100 struct rq_flags rf; 4101 struct rq *rq; 4102 int cpu; 4103 4104 cpu = smp_processor_id(); 4105 rq = cpu_rq(cpu); 4106 prev = rq->curr; 4107 4108 schedule_debug(prev, preempt); 4109 4110 if (sched_feat(HRTICK)) 4111 hrtick_clear(rq); 4112 4113 local_irq_disable(); 4114 rcu_note_context_switch(preempt); 4115 4116 /* 4117 * Make sure that signal_pending_state()->signal_pending() below 4118 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4119 * done by the caller to avoid the race with signal_wake_up(). 4120 * 4121 * The membarrier system call requires a full memory barrier 4122 * after coming from user-space, before storing to rq->curr. 4123 */ 4124 rq_lock(rq, &rf); 4125 smp_mb__after_spinlock(); 4126 4127 /* Promote REQ to ACT */ 4128 rq->clock_update_flags <<= 1; 4129 update_rq_clock(rq); 4130 4131 switch_count = &prev->nivcsw; 4132 if (!preempt && prev->state) { 4133 if (signal_pending_state(prev->state, prev)) { 4134 prev->state = TASK_RUNNING; 4135 } else { 4136 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4137 4138 if (prev->in_iowait) { 4139 atomic_inc(&rq->nr_iowait); 4140 delayacct_blkio_start(); 4141 } 4142 } 4143 switch_count = &prev->nvcsw; 4144 } 4145 4146 next = pick_next_task(rq, prev, &rf); 4147 clear_tsk_need_resched(prev); 4148 clear_preempt_need_resched(); 4149 4150 if (likely(prev != next)) { 4151 rq->nr_switches++; 4152 /* 4153 * RCU users of rcu_dereference(rq->curr) may not see 4154 * changes to task_struct made by pick_next_task(). 4155 */ 4156 RCU_INIT_POINTER(rq->curr, next); 4157 /* 4158 * The membarrier system call requires each architecture 4159 * to have a full memory barrier after updating 4160 * rq->curr, before returning to user-space. 4161 * 4162 * Here are the schemes providing that barrier on the 4163 * various architectures: 4164 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4165 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4166 * - finish_lock_switch() for weakly-ordered 4167 * architectures where spin_unlock is a full barrier, 4168 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4169 * is a RELEASE barrier), 4170 */ 4171 ++*switch_count; 4172 4173 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 4174 4175 trace_sched_switch(preempt, prev, next); 4176 4177 /* Also unlocks the rq: */ 4178 rq = context_switch(rq, prev, next, &rf); 4179 } else { 4180 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4181 rq_unlock_irq(rq, &rf); 4182 } 4183 4184 balance_callback(rq); 4185 } 4186 4187 void __noreturn do_task_dead(void) 4188 { 4189 /* Causes final put_task_struct in finish_task_switch(): */ 4190 set_special_state(TASK_DEAD); 4191 4192 /* Tell freezer to ignore us: */ 4193 current->flags |= PF_NOFREEZE; 4194 4195 __schedule(false); 4196 BUG(); 4197 4198 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4199 for (;;) 4200 cpu_relax(); 4201 } 4202 4203 static inline void sched_submit_work(struct task_struct *tsk) 4204 { 4205 if (!tsk->state) 4206 return; 4207 4208 /* 4209 * If a worker went to sleep, notify and ask workqueue whether 4210 * it wants to wake up a task to maintain concurrency. 4211 * As this function is called inside the schedule() context, 4212 * we disable preemption to avoid it calling schedule() again 4213 * in the possible wakeup of a kworker and because wq_worker_sleeping() 4214 * requires it. 4215 */ 4216 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4217 preempt_disable(); 4218 if (tsk->flags & PF_WQ_WORKER) 4219 wq_worker_sleeping(tsk); 4220 else 4221 io_wq_worker_sleeping(tsk); 4222 preempt_enable_no_resched(); 4223 } 4224 4225 if (tsk_is_pi_blocked(tsk)) 4226 return; 4227 4228 /* 4229 * If we are going to sleep and we have plugged IO queued, 4230 * make sure to submit it to avoid deadlocks. 4231 */ 4232 if (blk_needs_flush_plug(tsk)) 4233 blk_schedule_flush_plug(tsk); 4234 } 4235 4236 static void sched_update_worker(struct task_struct *tsk) 4237 { 4238 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4239 if (tsk->flags & PF_WQ_WORKER) 4240 wq_worker_running(tsk); 4241 else 4242 io_wq_worker_running(tsk); 4243 } 4244 } 4245 4246 asmlinkage __visible void __sched schedule(void) 4247 { 4248 struct task_struct *tsk = current; 4249 4250 sched_submit_work(tsk); 4251 do { 4252 preempt_disable(); 4253 __schedule(false); 4254 sched_preempt_enable_no_resched(); 4255 } while (need_resched()); 4256 sched_update_worker(tsk); 4257 } 4258 EXPORT_SYMBOL(schedule); 4259 4260 /* 4261 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4262 * state (have scheduled out non-voluntarily) by making sure that all 4263 * tasks have either left the run queue or have gone into user space. 4264 * As idle tasks do not do either, they must not ever be preempted 4265 * (schedule out non-voluntarily). 4266 * 4267 * schedule_idle() is similar to schedule_preempt_disable() except that it 4268 * never enables preemption because it does not call sched_submit_work(). 4269 */ 4270 void __sched schedule_idle(void) 4271 { 4272 /* 4273 * As this skips calling sched_submit_work(), which the idle task does 4274 * regardless because that function is a nop when the task is in a 4275 * TASK_RUNNING state, make sure this isn't used someplace that the 4276 * current task can be in any other state. Note, idle is always in the 4277 * TASK_RUNNING state. 4278 */ 4279 WARN_ON_ONCE(current->state); 4280 do { 4281 __schedule(false); 4282 } while (need_resched()); 4283 } 4284 4285 #ifdef CONFIG_CONTEXT_TRACKING 4286 asmlinkage __visible void __sched schedule_user(void) 4287 { 4288 /* 4289 * If we come here after a random call to set_need_resched(), 4290 * or we have been woken up remotely but the IPI has not yet arrived, 4291 * we haven't yet exited the RCU idle mode. Do it here manually until 4292 * we find a better solution. 4293 * 4294 * NB: There are buggy callers of this function. Ideally we 4295 * should warn if prev_state != CONTEXT_USER, but that will trigger 4296 * too frequently to make sense yet. 4297 */ 4298 enum ctx_state prev_state = exception_enter(); 4299 schedule(); 4300 exception_exit(prev_state); 4301 } 4302 #endif 4303 4304 /** 4305 * schedule_preempt_disabled - called with preemption disabled 4306 * 4307 * Returns with preemption disabled. Note: preempt_count must be 1 4308 */ 4309 void __sched schedule_preempt_disabled(void) 4310 { 4311 sched_preempt_enable_no_resched(); 4312 schedule(); 4313 preempt_disable(); 4314 } 4315 4316 static void __sched notrace preempt_schedule_common(void) 4317 { 4318 do { 4319 /* 4320 * Because the function tracer can trace preempt_count_sub() 4321 * and it also uses preempt_enable/disable_notrace(), if 4322 * NEED_RESCHED is set, the preempt_enable_notrace() called 4323 * by the function tracer will call this function again and 4324 * cause infinite recursion. 4325 * 4326 * Preemption must be disabled here before the function 4327 * tracer can trace. Break up preempt_disable() into two 4328 * calls. One to disable preemption without fear of being 4329 * traced. The other to still record the preemption latency, 4330 * which can also be traced by the function tracer. 4331 */ 4332 preempt_disable_notrace(); 4333 preempt_latency_start(1); 4334 __schedule(true); 4335 preempt_latency_stop(1); 4336 preempt_enable_no_resched_notrace(); 4337 4338 /* 4339 * Check again in case we missed a preemption opportunity 4340 * between schedule and now. 4341 */ 4342 } while (need_resched()); 4343 } 4344 4345 #ifdef CONFIG_PREEMPTION 4346 /* 4347 * This is the entry point to schedule() from in-kernel preemption 4348 * off of preempt_enable. 4349 */ 4350 asmlinkage __visible void __sched notrace preempt_schedule(void) 4351 { 4352 /* 4353 * If there is a non-zero preempt_count or interrupts are disabled, 4354 * we do not want to preempt the current task. Just return.. 4355 */ 4356 if (likely(!preemptible())) 4357 return; 4358 4359 preempt_schedule_common(); 4360 } 4361 NOKPROBE_SYMBOL(preempt_schedule); 4362 EXPORT_SYMBOL(preempt_schedule); 4363 4364 /** 4365 * preempt_schedule_notrace - preempt_schedule called by tracing 4366 * 4367 * The tracing infrastructure uses preempt_enable_notrace to prevent 4368 * recursion and tracing preempt enabling caused by the tracing 4369 * infrastructure itself. But as tracing can happen in areas coming 4370 * from userspace or just about to enter userspace, a preempt enable 4371 * can occur before user_exit() is called. This will cause the scheduler 4372 * to be called when the system is still in usermode. 4373 * 4374 * To prevent this, the preempt_enable_notrace will use this function 4375 * instead of preempt_schedule() to exit user context if needed before 4376 * calling the scheduler. 4377 */ 4378 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4379 { 4380 enum ctx_state prev_ctx; 4381 4382 if (likely(!preemptible())) 4383 return; 4384 4385 do { 4386 /* 4387 * Because the function tracer can trace preempt_count_sub() 4388 * and it also uses preempt_enable/disable_notrace(), if 4389 * NEED_RESCHED is set, the preempt_enable_notrace() called 4390 * by the function tracer will call this function again and 4391 * cause infinite recursion. 4392 * 4393 * Preemption must be disabled here before the function 4394 * tracer can trace. Break up preempt_disable() into two 4395 * calls. One to disable preemption without fear of being 4396 * traced. The other to still record the preemption latency, 4397 * which can also be traced by the function tracer. 4398 */ 4399 preempt_disable_notrace(); 4400 preempt_latency_start(1); 4401 /* 4402 * Needs preempt disabled in case user_exit() is traced 4403 * and the tracer calls preempt_enable_notrace() causing 4404 * an infinite recursion. 4405 */ 4406 prev_ctx = exception_enter(); 4407 __schedule(true); 4408 exception_exit(prev_ctx); 4409 4410 preempt_latency_stop(1); 4411 preempt_enable_no_resched_notrace(); 4412 } while (need_resched()); 4413 } 4414 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4415 4416 #endif /* CONFIG_PREEMPTION */ 4417 4418 /* 4419 * This is the entry point to schedule() from kernel preemption 4420 * off of irq context. 4421 * Note, that this is called and return with irqs disabled. This will 4422 * protect us against recursive calling from irq. 4423 */ 4424 asmlinkage __visible void __sched preempt_schedule_irq(void) 4425 { 4426 enum ctx_state prev_state; 4427 4428 /* Catch callers which need to be fixed */ 4429 BUG_ON(preempt_count() || !irqs_disabled()); 4430 4431 prev_state = exception_enter(); 4432 4433 do { 4434 preempt_disable(); 4435 local_irq_enable(); 4436 __schedule(true); 4437 local_irq_disable(); 4438 sched_preempt_enable_no_resched(); 4439 } while (need_resched()); 4440 4441 exception_exit(prev_state); 4442 } 4443 4444 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4445 void *key) 4446 { 4447 return try_to_wake_up(curr->private, mode, wake_flags); 4448 } 4449 EXPORT_SYMBOL(default_wake_function); 4450 4451 #ifdef CONFIG_RT_MUTEXES 4452 4453 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4454 { 4455 if (pi_task) 4456 prio = min(prio, pi_task->prio); 4457 4458 return prio; 4459 } 4460 4461 static inline int rt_effective_prio(struct task_struct *p, int prio) 4462 { 4463 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4464 4465 return __rt_effective_prio(pi_task, prio); 4466 } 4467 4468 /* 4469 * rt_mutex_setprio - set the current priority of a task 4470 * @p: task to boost 4471 * @pi_task: donor task 4472 * 4473 * This function changes the 'effective' priority of a task. It does 4474 * not touch ->normal_prio like __setscheduler(). 4475 * 4476 * Used by the rt_mutex code to implement priority inheritance 4477 * logic. Call site only calls if the priority of the task changed. 4478 */ 4479 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4480 { 4481 int prio, oldprio, queued, running, queue_flag = 4482 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4483 const struct sched_class *prev_class; 4484 struct rq_flags rf; 4485 struct rq *rq; 4486 4487 /* XXX used to be waiter->prio, not waiter->task->prio */ 4488 prio = __rt_effective_prio(pi_task, p->normal_prio); 4489 4490 /* 4491 * If nothing changed; bail early. 4492 */ 4493 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4494 return; 4495 4496 rq = __task_rq_lock(p, &rf); 4497 update_rq_clock(rq); 4498 /* 4499 * Set under pi_lock && rq->lock, such that the value can be used under 4500 * either lock. 4501 * 4502 * Note that there is loads of tricky to make this pointer cache work 4503 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4504 * ensure a task is de-boosted (pi_task is set to NULL) before the 4505 * task is allowed to run again (and can exit). This ensures the pointer 4506 * points to a blocked task -- which guaratees the task is present. 4507 */ 4508 p->pi_top_task = pi_task; 4509 4510 /* 4511 * For FIFO/RR we only need to set prio, if that matches we're done. 4512 */ 4513 if (prio == p->prio && !dl_prio(prio)) 4514 goto out_unlock; 4515 4516 /* 4517 * Idle task boosting is a nono in general. There is one 4518 * exception, when PREEMPT_RT and NOHZ is active: 4519 * 4520 * The idle task calls get_next_timer_interrupt() and holds 4521 * the timer wheel base->lock on the CPU and another CPU wants 4522 * to access the timer (probably to cancel it). We can safely 4523 * ignore the boosting request, as the idle CPU runs this code 4524 * with interrupts disabled and will complete the lock 4525 * protected section without being interrupted. So there is no 4526 * real need to boost. 4527 */ 4528 if (unlikely(p == rq->idle)) { 4529 WARN_ON(p != rq->curr); 4530 WARN_ON(p->pi_blocked_on); 4531 goto out_unlock; 4532 } 4533 4534 trace_sched_pi_setprio(p, pi_task); 4535 oldprio = p->prio; 4536 4537 if (oldprio == prio) 4538 queue_flag &= ~DEQUEUE_MOVE; 4539 4540 prev_class = p->sched_class; 4541 queued = task_on_rq_queued(p); 4542 running = task_current(rq, p); 4543 if (queued) 4544 dequeue_task(rq, p, queue_flag); 4545 if (running) 4546 put_prev_task(rq, p); 4547 4548 /* 4549 * Boosting condition are: 4550 * 1. -rt task is running and holds mutex A 4551 * --> -dl task blocks on mutex A 4552 * 4553 * 2. -dl task is running and holds mutex A 4554 * --> -dl task blocks on mutex A and could preempt the 4555 * running task 4556 */ 4557 if (dl_prio(prio)) { 4558 if (!dl_prio(p->normal_prio) || 4559 (pi_task && dl_prio(pi_task->prio) && 4560 dl_entity_preempt(&pi_task->dl, &p->dl))) { 4561 p->dl.dl_boosted = 1; 4562 queue_flag |= ENQUEUE_REPLENISH; 4563 } else 4564 p->dl.dl_boosted = 0; 4565 p->sched_class = &dl_sched_class; 4566 } else if (rt_prio(prio)) { 4567 if (dl_prio(oldprio)) 4568 p->dl.dl_boosted = 0; 4569 if (oldprio < prio) 4570 queue_flag |= ENQUEUE_HEAD; 4571 p->sched_class = &rt_sched_class; 4572 } else { 4573 if (dl_prio(oldprio)) 4574 p->dl.dl_boosted = 0; 4575 if (rt_prio(oldprio)) 4576 p->rt.timeout = 0; 4577 p->sched_class = &fair_sched_class; 4578 } 4579 4580 p->prio = prio; 4581 4582 if (queued) 4583 enqueue_task(rq, p, queue_flag); 4584 if (running) 4585 set_next_task(rq, p); 4586 4587 check_class_changed(rq, p, prev_class, oldprio); 4588 out_unlock: 4589 /* Avoid rq from going away on us: */ 4590 preempt_disable(); 4591 __task_rq_unlock(rq, &rf); 4592 4593 balance_callback(rq); 4594 preempt_enable(); 4595 } 4596 #else 4597 static inline int rt_effective_prio(struct task_struct *p, int prio) 4598 { 4599 return prio; 4600 } 4601 #endif 4602 4603 void set_user_nice(struct task_struct *p, long nice) 4604 { 4605 bool queued, running; 4606 int old_prio; 4607 struct rq_flags rf; 4608 struct rq *rq; 4609 4610 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4611 return; 4612 /* 4613 * We have to be careful, if called from sys_setpriority(), 4614 * the task might be in the middle of scheduling on another CPU. 4615 */ 4616 rq = task_rq_lock(p, &rf); 4617 update_rq_clock(rq); 4618 4619 /* 4620 * The RT priorities are set via sched_setscheduler(), but we still 4621 * allow the 'normal' nice value to be set - but as expected 4622 * it wont have any effect on scheduling until the task is 4623 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4624 */ 4625 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4626 p->static_prio = NICE_TO_PRIO(nice); 4627 goto out_unlock; 4628 } 4629 queued = task_on_rq_queued(p); 4630 running = task_current(rq, p); 4631 if (queued) 4632 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4633 if (running) 4634 put_prev_task(rq, p); 4635 4636 p->static_prio = NICE_TO_PRIO(nice); 4637 set_load_weight(p, true); 4638 old_prio = p->prio; 4639 p->prio = effective_prio(p); 4640 4641 if (queued) 4642 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4643 if (running) 4644 set_next_task(rq, p); 4645 4646 /* 4647 * If the task increased its priority or is running and 4648 * lowered its priority, then reschedule its CPU: 4649 */ 4650 p->sched_class->prio_changed(rq, p, old_prio); 4651 4652 out_unlock: 4653 task_rq_unlock(rq, p, &rf); 4654 } 4655 EXPORT_SYMBOL(set_user_nice); 4656 4657 /* 4658 * can_nice - check if a task can reduce its nice value 4659 * @p: task 4660 * @nice: nice value 4661 */ 4662 int can_nice(const struct task_struct *p, const int nice) 4663 { 4664 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4665 int nice_rlim = nice_to_rlimit(nice); 4666 4667 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4668 capable(CAP_SYS_NICE)); 4669 } 4670 4671 #ifdef __ARCH_WANT_SYS_NICE 4672 4673 /* 4674 * sys_nice - change the priority of the current process. 4675 * @increment: priority increment 4676 * 4677 * sys_setpriority is a more generic, but much slower function that 4678 * does similar things. 4679 */ 4680 SYSCALL_DEFINE1(nice, int, increment) 4681 { 4682 long nice, retval; 4683 4684 /* 4685 * Setpriority might change our priority at the same moment. 4686 * We don't have to worry. Conceptually one call occurs first 4687 * and we have a single winner. 4688 */ 4689 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4690 nice = task_nice(current) + increment; 4691 4692 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4693 if (increment < 0 && !can_nice(current, nice)) 4694 return -EPERM; 4695 4696 retval = security_task_setnice(current, nice); 4697 if (retval) 4698 return retval; 4699 4700 set_user_nice(current, nice); 4701 return 0; 4702 } 4703 4704 #endif 4705 4706 /** 4707 * task_prio - return the priority value of a given task. 4708 * @p: the task in question. 4709 * 4710 * Return: The priority value as seen by users in /proc. 4711 * RT tasks are offset by -200. Normal tasks are centered 4712 * around 0, value goes from -16 to +15. 4713 */ 4714 int task_prio(const struct task_struct *p) 4715 { 4716 return p->prio - MAX_RT_PRIO; 4717 } 4718 4719 /** 4720 * idle_cpu - is a given CPU idle currently? 4721 * @cpu: the processor in question. 4722 * 4723 * Return: 1 if the CPU is currently idle. 0 otherwise. 4724 */ 4725 int idle_cpu(int cpu) 4726 { 4727 struct rq *rq = cpu_rq(cpu); 4728 4729 if (rq->curr != rq->idle) 4730 return 0; 4731 4732 if (rq->nr_running) 4733 return 0; 4734 4735 #ifdef CONFIG_SMP 4736 if (rq->ttwu_pending) 4737 return 0; 4738 #endif 4739 4740 return 1; 4741 } 4742 4743 /** 4744 * available_idle_cpu - is a given CPU idle for enqueuing work. 4745 * @cpu: the CPU in question. 4746 * 4747 * Return: 1 if the CPU is currently idle. 0 otherwise. 4748 */ 4749 int available_idle_cpu(int cpu) 4750 { 4751 if (!idle_cpu(cpu)) 4752 return 0; 4753 4754 if (vcpu_is_preempted(cpu)) 4755 return 0; 4756 4757 return 1; 4758 } 4759 4760 /** 4761 * idle_task - return the idle task for a given CPU. 4762 * @cpu: the processor in question. 4763 * 4764 * Return: The idle task for the CPU @cpu. 4765 */ 4766 struct task_struct *idle_task(int cpu) 4767 { 4768 return cpu_rq(cpu)->idle; 4769 } 4770 4771 /** 4772 * find_process_by_pid - find a process with a matching PID value. 4773 * @pid: the pid in question. 4774 * 4775 * The task of @pid, if found. %NULL otherwise. 4776 */ 4777 static struct task_struct *find_process_by_pid(pid_t pid) 4778 { 4779 return pid ? find_task_by_vpid(pid) : current; 4780 } 4781 4782 /* 4783 * sched_setparam() passes in -1 for its policy, to let the functions 4784 * it calls know not to change it. 4785 */ 4786 #define SETPARAM_POLICY -1 4787 4788 static void __setscheduler_params(struct task_struct *p, 4789 const struct sched_attr *attr) 4790 { 4791 int policy = attr->sched_policy; 4792 4793 if (policy == SETPARAM_POLICY) 4794 policy = p->policy; 4795 4796 p->policy = policy; 4797 4798 if (dl_policy(policy)) 4799 __setparam_dl(p, attr); 4800 else if (fair_policy(policy)) 4801 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4802 4803 /* 4804 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4805 * !rt_policy. Always setting this ensures that things like 4806 * getparam()/getattr() don't report silly values for !rt tasks. 4807 */ 4808 p->rt_priority = attr->sched_priority; 4809 p->normal_prio = normal_prio(p); 4810 set_load_weight(p, true); 4811 } 4812 4813 /* Actually do priority change: must hold pi & rq lock. */ 4814 static void __setscheduler(struct rq *rq, struct task_struct *p, 4815 const struct sched_attr *attr, bool keep_boost) 4816 { 4817 /* 4818 * If params can't change scheduling class changes aren't allowed 4819 * either. 4820 */ 4821 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4822 return; 4823 4824 __setscheduler_params(p, attr); 4825 4826 /* 4827 * Keep a potential priority boosting if called from 4828 * sched_setscheduler(). 4829 */ 4830 p->prio = normal_prio(p); 4831 if (keep_boost) 4832 p->prio = rt_effective_prio(p, p->prio); 4833 4834 if (dl_prio(p->prio)) 4835 p->sched_class = &dl_sched_class; 4836 else if (rt_prio(p->prio)) 4837 p->sched_class = &rt_sched_class; 4838 else 4839 p->sched_class = &fair_sched_class; 4840 } 4841 4842 /* 4843 * Check the target process has a UID that matches the current process's: 4844 */ 4845 static bool check_same_owner(struct task_struct *p) 4846 { 4847 const struct cred *cred = current_cred(), *pcred; 4848 bool match; 4849 4850 rcu_read_lock(); 4851 pcred = __task_cred(p); 4852 match = (uid_eq(cred->euid, pcred->euid) || 4853 uid_eq(cred->euid, pcred->uid)); 4854 rcu_read_unlock(); 4855 return match; 4856 } 4857 4858 static int __sched_setscheduler(struct task_struct *p, 4859 const struct sched_attr *attr, 4860 bool user, bool pi) 4861 { 4862 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4863 MAX_RT_PRIO - 1 - attr->sched_priority; 4864 int retval, oldprio, oldpolicy = -1, queued, running; 4865 int new_effective_prio, policy = attr->sched_policy; 4866 const struct sched_class *prev_class; 4867 struct rq_flags rf; 4868 int reset_on_fork; 4869 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4870 struct rq *rq; 4871 4872 /* The pi code expects interrupts enabled */ 4873 BUG_ON(pi && in_interrupt()); 4874 recheck: 4875 /* Double check policy once rq lock held: */ 4876 if (policy < 0) { 4877 reset_on_fork = p->sched_reset_on_fork; 4878 policy = oldpolicy = p->policy; 4879 } else { 4880 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4881 4882 if (!valid_policy(policy)) 4883 return -EINVAL; 4884 } 4885 4886 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4887 return -EINVAL; 4888 4889 /* 4890 * Valid priorities for SCHED_FIFO and SCHED_RR are 4891 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4892 * SCHED_BATCH and SCHED_IDLE is 0. 4893 */ 4894 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4895 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4896 return -EINVAL; 4897 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4898 (rt_policy(policy) != (attr->sched_priority != 0))) 4899 return -EINVAL; 4900 4901 /* 4902 * Allow unprivileged RT tasks to decrease priority: 4903 */ 4904 if (user && !capable(CAP_SYS_NICE)) { 4905 if (fair_policy(policy)) { 4906 if (attr->sched_nice < task_nice(p) && 4907 !can_nice(p, attr->sched_nice)) 4908 return -EPERM; 4909 } 4910 4911 if (rt_policy(policy)) { 4912 unsigned long rlim_rtprio = 4913 task_rlimit(p, RLIMIT_RTPRIO); 4914 4915 /* Can't set/change the rt policy: */ 4916 if (policy != p->policy && !rlim_rtprio) 4917 return -EPERM; 4918 4919 /* Can't increase priority: */ 4920 if (attr->sched_priority > p->rt_priority && 4921 attr->sched_priority > rlim_rtprio) 4922 return -EPERM; 4923 } 4924 4925 /* 4926 * Can't set/change SCHED_DEADLINE policy at all for now 4927 * (safest behavior); in the future we would like to allow 4928 * unprivileged DL tasks to increase their relative deadline 4929 * or reduce their runtime (both ways reducing utilization) 4930 */ 4931 if (dl_policy(policy)) 4932 return -EPERM; 4933 4934 /* 4935 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4936 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4937 */ 4938 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4939 if (!can_nice(p, task_nice(p))) 4940 return -EPERM; 4941 } 4942 4943 /* Can't change other user's priorities: */ 4944 if (!check_same_owner(p)) 4945 return -EPERM; 4946 4947 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4948 if (p->sched_reset_on_fork && !reset_on_fork) 4949 return -EPERM; 4950 } 4951 4952 if (user) { 4953 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4954 return -EINVAL; 4955 4956 retval = security_task_setscheduler(p); 4957 if (retval) 4958 return retval; 4959 } 4960 4961 /* Update task specific "requested" clamps */ 4962 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 4963 retval = uclamp_validate(p, attr); 4964 if (retval) 4965 return retval; 4966 } 4967 4968 if (pi) 4969 cpuset_read_lock(); 4970 4971 /* 4972 * Make sure no PI-waiters arrive (or leave) while we are 4973 * changing the priority of the task: 4974 * 4975 * To be able to change p->policy safely, the appropriate 4976 * runqueue lock must be held. 4977 */ 4978 rq = task_rq_lock(p, &rf); 4979 update_rq_clock(rq); 4980 4981 /* 4982 * Changing the policy of the stop threads its a very bad idea: 4983 */ 4984 if (p == rq->stop) { 4985 retval = -EINVAL; 4986 goto unlock; 4987 } 4988 4989 /* 4990 * If not changing anything there's no need to proceed further, 4991 * but store a possible modification of reset_on_fork. 4992 */ 4993 if (unlikely(policy == p->policy)) { 4994 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4995 goto change; 4996 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4997 goto change; 4998 if (dl_policy(policy) && dl_param_changed(p, attr)) 4999 goto change; 5000 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 5001 goto change; 5002 5003 p->sched_reset_on_fork = reset_on_fork; 5004 retval = 0; 5005 goto unlock; 5006 } 5007 change: 5008 5009 if (user) { 5010 #ifdef CONFIG_RT_GROUP_SCHED 5011 /* 5012 * Do not allow realtime tasks into groups that have no runtime 5013 * assigned. 5014 */ 5015 if (rt_bandwidth_enabled() && rt_policy(policy) && 5016 task_group(p)->rt_bandwidth.rt_runtime == 0 && 5017 !task_group_is_autogroup(task_group(p))) { 5018 retval = -EPERM; 5019 goto unlock; 5020 } 5021 #endif 5022 #ifdef CONFIG_SMP 5023 if (dl_bandwidth_enabled() && dl_policy(policy) && 5024 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 5025 cpumask_t *span = rq->rd->span; 5026 5027 /* 5028 * Don't allow tasks with an affinity mask smaller than 5029 * the entire root_domain to become SCHED_DEADLINE. We 5030 * will also fail if there's no bandwidth available. 5031 */ 5032 if (!cpumask_subset(span, p->cpus_ptr) || 5033 rq->rd->dl_bw.bw == 0) { 5034 retval = -EPERM; 5035 goto unlock; 5036 } 5037 } 5038 #endif 5039 } 5040 5041 /* Re-check policy now with rq lock held: */ 5042 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 5043 policy = oldpolicy = -1; 5044 task_rq_unlock(rq, p, &rf); 5045 if (pi) 5046 cpuset_read_unlock(); 5047 goto recheck; 5048 } 5049 5050 /* 5051 * If setscheduling to SCHED_DEADLINE (or changing the parameters 5052 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 5053 * is available. 5054 */ 5055 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 5056 retval = -EBUSY; 5057 goto unlock; 5058 } 5059 5060 p->sched_reset_on_fork = reset_on_fork; 5061 oldprio = p->prio; 5062 5063 if (pi) { 5064 /* 5065 * Take priority boosted tasks into account. If the new 5066 * effective priority is unchanged, we just store the new 5067 * normal parameters and do not touch the scheduler class and 5068 * the runqueue. This will be done when the task deboost 5069 * itself. 5070 */ 5071 new_effective_prio = rt_effective_prio(p, newprio); 5072 if (new_effective_prio == oldprio) 5073 queue_flags &= ~DEQUEUE_MOVE; 5074 } 5075 5076 queued = task_on_rq_queued(p); 5077 running = task_current(rq, p); 5078 if (queued) 5079 dequeue_task(rq, p, queue_flags); 5080 if (running) 5081 put_prev_task(rq, p); 5082 5083 prev_class = p->sched_class; 5084 5085 __setscheduler(rq, p, attr, pi); 5086 __setscheduler_uclamp(p, attr); 5087 5088 if (queued) { 5089 /* 5090 * We enqueue to tail when the priority of a task is 5091 * increased (user space view). 5092 */ 5093 if (oldprio < p->prio) 5094 queue_flags |= ENQUEUE_HEAD; 5095 5096 enqueue_task(rq, p, queue_flags); 5097 } 5098 if (running) 5099 set_next_task(rq, p); 5100 5101 check_class_changed(rq, p, prev_class, oldprio); 5102 5103 /* Avoid rq from going away on us: */ 5104 preempt_disable(); 5105 task_rq_unlock(rq, p, &rf); 5106 5107 if (pi) { 5108 cpuset_read_unlock(); 5109 rt_mutex_adjust_pi(p); 5110 } 5111 5112 /* Run balance callbacks after we've adjusted the PI chain: */ 5113 balance_callback(rq); 5114 preempt_enable(); 5115 5116 return 0; 5117 5118 unlock: 5119 task_rq_unlock(rq, p, &rf); 5120 if (pi) 5121 cpuset_read_unlock(); 5122 return retval; 5123 } 5124 5125 static int _sched_setscheduler(struct task_struct *p, int policy, 5126 const struct sched_param *param, bool check) 5127 { 5128 struct sched_attr attr = { 5129 .sched_policy = policy, 5130 .sched_priority = param->sched_priority, 5131 .sched_nice = PRIO_TO_NICE(p->static_prio), 5132 }; 5133 5134 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5135 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5136 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5137 policy &= ~SCHED_RESET_ON_FORK; 5138 attr.sched_policy = policy; 5139 } 5140 5141 return __sched_setscheduler(p, &attr, check, true); 5142 } 5143 /** 5144 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5145 * @p: the task in question. 5146 * @policy: new policy. 5147 * @param: structure containing the new RT priority. 5148 * 5149 * Return: 0 on success. An error code otherwise. 5150 * 5151 * NOTE that the task may be already dead. 5152 */ 5153 int sched_setscheduler(struct task_struct *p, int policy, 5154 const struct sched_param *param) 5155 { 5156 return _sched_setscheduler(p, policy, param, true); 5157 } 5158 EXPORT_SYMBOL_GPL(sched_setscheduler); 5159 5160 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5161 { 5162 return __sched_setscheduler(p, attr, true, true); 5163 } 5164 EXPORT_SYMBOL_GPL(sched_setattr); 5165 5166 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5167 { 5168 return __sched_setscheduler(p, attr, false, true); 5169 } 5170 5171 /** 5172 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5173 * @p: the task in question. 5174 * @policy: new policy. 5175 * @param: structure containing the new RT priority. 5176 * 5177 * Just like sched_setscheduler, only don't bother checking if the 5178 * current context has permission. For example, this is needed in 5179 * stop_machine(): we create temporary high priority worker threads, 5180 * but our caller might not have that capability. 5181 * 5182 * Return: 0 on success. An error code otherwise. 5183 */ 5184 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5185 const struct sched_param *param) 5186 { 5187 return _sched_setscheduler(p, policy, param, false); 5188 } 5189 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5190 5191 static int 5192 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5193 { 5194 struct sched_param lparam; 5195 struct task_struct *p; 5196 int retval; 5197 5198 if (!param || pid < 0) 5199 return -EINVAL; 5200 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5201 return -EFAULT; 5202 5203 rcu_read_lock(); 5204 retval = -ESRCH; 5205 p = find_process_by_pid(pid); 5206 if (likely(p)) 5207 get_task_struct(p); 5208 rcu_read_unlock(); 5209 5210 if (likely(p)) { 5211 retval = sched_setscheduler(p, policy, &lparam); 5212 put_task_struct(p); 5213 } 5214 5215 return retval; 5216 } 5217 5218 /* 5219 * Mimics kernel/events/core.c perf_copy_attr(). 5220 */ 5221 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5222 { 5223 u32 size; 5224 int ret; 5225 5226 /* Zero the full structure, so that a short copy will be nice: */ 5227 memset(attr, 0, sizeof(*attr)); 5228 5229 ret = get_user(size, &uattr->size); 5230 if (ret) 5231 return ret; 5232 5233 /* ABI compatibility quirk: */ 5234 if (!size) 5235 size = SCHED_ATTR_SIZE_VER0; 5236 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5237 goto err_size; 5238 5239 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5240 if (ret) { 5241 if (ret == -E2BIG) 5242 goto err_size; 5243 return ret; 5244 } 5245 5246 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5247 size < SCHED_ATTR_SIZE_VER1) 5248 return -EINVAL; 5249 5250 /* 5251 * XXX: Do we want to be lenient like existing syscalls; or do we want 5252 * to be strict and return an error on out-of-bounds values? 5253 */ 5254 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5255 5256 return 0; 5257 5258 err_size: 5259 put_user(sizeof(*attr), &uattr->size); 5260 return -E2BIG; 5261 } 5262 5263 /** 5264 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5265 * @pid: the pid in question. 5266 * @policy: new policy. 5267 * @param: structure containing the new RT priority. 5268 * 5269 * Return: 0 on success. An error code otherwise. 5270 */ 5271 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5272 { 5273 if (policy < 0) 5274 return -EINVAL; 5275 5276 return do_sched_setscheduler(pid, policy, param); 5277 } 5278 5279 /** 5280 * sys_sched_setparam - set/change the RT priority of a thread 5281 * @pid: the pid in question. 5282 * @param: structure containing the new RT priority. 5283 * 5284 * Return: 0 on success. An error code otherwise. 5285 */ 5286 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5287 { 5288 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5289 } 5290 5291 /** 5292 * sys_sched_setattr - same as above, but with extended sched_attr 5293 * @pid: the pid in question. 5294 * @uattr: structure containing the extended parameters. 5295 * @flags: for future extension. 5296 */ 5297 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5298 unsigned int, flags) 5299 { 5300 struct sched_attr attr; 5301 struct task_struct *p; 5302 int retval; 5303 5304 if (!uattr || pid < 0 || flags) 5305 return -EINVAL; 5306 5307 retval = sched_copy_attr(uattr, &attr); 5308 if (retval) 5309 return retval; 5310 5311 if ((int)attr.sched_policy < 0) 5312 return -EINVAL; 5313 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5314 attr.sched_policy = SETPARAM_POLICY; 5315 5316 rcu_read_lock(); 5317 retval = -ESRCH; 5318 p = find_process_by_pid(pid); 5319 if (likely(p)) 5320 get_task_struct(p); 5321 rcu_read_unlock(); 5322 5323 if (likely(p)) { 5324 retval = sched_setattr(p, &attr); 5325 put_task_struct(p); 5326 } 5327 5328 return retval; 5329 } 5330 5331 /** 5332 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5333 * @pid: the pid in question. 5334 * 5335 * Return: On success, the policy of the thread. Otherwise, a negative error 5336 * code. 5337 */ 5338 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5339 { 5340 struct task_struct *p; 5341 int retval; 5342 5343 if (pid < 0) 5344 return -EINVAL; 5345 5346 retval = -ESRCH; 5347 rcu_read_lock(); 5348 p = find_process_by_pid(pid); 5349 if (p) { 5350 retval = security_task_getscheduler(p); 5351 if (!retval) 5352 retval = p->policy 5353 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5354 } 5355 rcu_read_unlock(); 5356 return retval; 5357 } 5358 5359 /** 5360 * sys_sched_getparam - get the RT priority of a thread 5361 * @pid: the pid in question. 5362 * @param: structure containing the RT priority. 5363 * 5364 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5365 * code. 5366 */ 5367 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5368 { 5369 struct sched_param lp = { .sched_priority = 0 }; 5370 struct task_struct *p; 5371 int retval; 5372 5373 if (!param || pid < 0) 5374 return -EINVAL; 5375 5376 rcu_read_lock(); 5377 p = find_process_by_pid(pid); 5378 retval = -ESRCH; 5379 if (!p) 5380 goto out_unlock; 5381 5382 retval = security_task_getscheduler(p); 5383 if (retval) 5384 goto out_unlock; 5385 5386 if (task_has_rt_policy(p)) 5387 lp.sched_priority = p->rt_priority; 5388 rcu_read_unlock(); 5389 5390 /* 5391 * This one might sleep, we cannot do it with a spinlock held ... 5392 */ 5393 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5394 5395 return retval; 5396 5397 out_unlock: 5398 rcu_read_unlock(); 5399 return retval; 5400 } 5401 5402 /* 5403 * Copy the kernel size attribute structure (which might be larger 5404 * than what user-space knows about) to user-space. 5405 * 5406 * Note that all cases are valid: user-space buffer can be larger or 5407 * smaller than the kernel-space buffer. The usual case is that both 5408 * have the same size. 5409 */ 5410 static int 5411 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5412 struct sched_attr *kattr, 5413 unsigned int usize) 5414 { 5415 unsigned int ksize = sizeof(*kattr); 5416 5417 if (!access_ok(uattr, usize)) 5418 return -EFAULT; 5419 5420 /* 5421 * sched_getattr() ABI forwards and backwards compatibility: 5422 * 5423 * If usize == ksize then we just copy everything to user-space and all is good. 5424 * 5425 * If usize < ksize then we only copy as much as user-space has space for, 5426 * this keeps ABI compatibility as well. We skip the rest. 5427 * 5428 * If usize > ksize then user-space is using a newer version of the ABI, 5429 * which part the kernel doesn't know about. Just ignore it - tooling can 5430 * detect the kernel's knowledge of attributes from the attr->size value 5431 * which is set to ksize in this case. 5432 */ 5433 kattr->size = min(usize, ksize); 5434 5435 if (copy_to_user(uattr, kattr, kattr->size)) 5436 return -EFAULT; 5437 5438 return 0; 5439 } 5440 5441 /** 5442 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5443 * @pid: the pid in question. 5444 * @uattr: structure containing the extended parameters. 5445 * @usize: sizeof(attr) for fwd/bwd comp. 5446 * @flags: for future extension. 5447 */ 5448 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5449 unsigned int, usize, unsigned int, flags) 5450 { 5451 struct sched_attr kattr = { }; 5452 struct task_struct *p; 5453 int retval; 5454 5455 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5456 usize < SCHED_ATTR_SIZE_VER0 || flags) 5457 return -EINVAL; 5458 5459 rcu_read_lock(); 5460 p = find_process_by_pid(pid); 5461 retval = -ESRCH; 5462 if (!p) 5463 goto out_unlock; 5464 5465 retval = security_task_getscheduler(p); 5466 if (retval) 5467 goto out_unlock; 5468 5469 kattr.sched_policy = p->policy; 5470 if (p->sched_reset_on_fork) 5471 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5472 if (task_has_dl_policy(p)) 5473 __getparam_dl(p, &kattr); 5474 else if (task_has_rt_policy(p)) 5475 kattr.sched_priority = p->rt_priority; 5476 else 5477 kattr.sched_nice = task_nice(p); 5478 5479 #ifdef CONFIG_UCLAMP_TASK 5480 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5481 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5482 #endif 5483 5484 rcu_read_unlock(); 5485 5486 return sched_attr_copy_to_user(uattr, &kattr, usize); 5487 5488 out_unlock: 5489 rcu_read_unlock(); 5490 return retval; 5491 } 5492 5493 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5494 { 5495 cpumask_var_t cpus_allowed, new_mask; 5496 struct task_struct *p; 5497 int retval; 5498 5499 rcu_read_lock(); 5500 5501 p = find_process_by_pid(pid); 5502 if (!p) { 5503 rcu_read_unlock(); 5504 return -ESRCH; 5505 } 5506 5507 /* Prevent p going away */ 5508 get_task_struct(p); 5509 rcu_read_unlock(); 5510 5511 if (p->flags & PF_NO_SETAFFINITY) { 5512 retval = -EINVAL; 5513 goto out_put_task; 5514 } 5515 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5516 retval = -ENOMEM; 5517 goto out_put_task; 5518 } 5519 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5520 retval = -ENOMEM; 5521 goto out_free_cpus_allowed; 5522 } 5523 retval = -EPERM; 5524 if (!check_same_owner(p)) { 5525 rcu_read_lock(); 5526 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5527 rcu_read_unlock(); 5528 goto out_free_new_mask; 5529 } 5530 rcu_read_unlock(); 5531 } 5532 5533 retval = security_task_setscheduler(p); 5534 if (retval) 5535 goto out_free_new_mask; 5536 5537 5538 cpuset_cpus_allowed(p, cpus_allowed); 5539 cpumask_and(new_mask, in_mask, cpus_allowed); 5540 5541 /* 5542 * Since bandwidth control happens on root_domain basis, 5543 * if admission test is enabled, we only admit -deadline 5544 * tasks allowed to run on all the CPUs in the task's 5545 * root_domain. 5546 */ 5547 #ifdef CONFIG_SMP 5548 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5549 rcu_read_lock(); 5550 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5551 retval = -EBUSY; 5552 rcu_read_unlock(); 5553 goto out_free_new_mask; 5554 } 5555 rcu_read_unlock(); 5556 } 5557 #endif 5558 again: 5559 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5560 5561 if (!retval) { 5562 cpuset_cpus_allowed(p, cpus_allowed); 5563 if (!cpumask_subset(new_mask, cpus_allowed)) { 5564 /* 5565 * We must have raced with a concurrent cpuset 5566 * update. Just reset the cpus_allowed to the 5567 * cpuset's cpus_allowed 5568 */ 5569 cpumask_copy(new_mask, cpus_allowed); 5570 goto again; 5571 } 5572 } 5573 out_free_new_mask: 5574 free_cpumask_var(new_mask); 5575 out_free_cpus_allowed: 5576 free_cpumask_var(cpus_allowed); 5577 out_put_task: 5578 put_task_struct(p); 5579 return retval; 5580 } 5581 5582 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5583 struct cpumask *new_mask) 5584 { 5585 if (len < cpumask_size()) 5586 cpumask_clear(new_mask); 5587 else if (len > cpumask_size()) 5588 len = cpumask_size(); 5589 5590 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5591 } 5592 5593 /** 5594 * sys_sched_setaffinity - set the CPU affinity of a process 5595 * @pid: pid of the process 5596 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5597 * @user_mask_ptr: user-space pointer to the new CPU mask 5598 * 5599 * Return: 0 on success. An error code otherwise. 5600 */ 5601 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5602 unsigned long __user *, user_mask_ptr) 5603 { 5604 cpumask_var_t new_mask; 5605 int retval; 5606 5607 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5608 return -ENOMEM; 5609 5610 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5611 if (retval == 0) 5612 retval = sched_setaffinity(pid, new_mask); 5613 free_cpumask_var(new_mask); 5614 return retval; 5615 } 5616 5617 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5618 { 5619 struct task_struct *p; 5620 unsigned long flags; 5621 int retval; 5622 5623 rcu_read_lock(); 5624 5625 retval = -ESRCH; 5626 p = find_process_by_pid(pid); 5627 if (!p) 5628 goto out_unlock; 5629 5630 retval = security_task_getscheduler(p); 5631 if (retval) 5632 goto out_unlock; 5633 5634 raw_spin_lock_irqsave(&p->pi_lock, flags); 5635 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5636 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5637 5638 out_unlock: 5639 rcu_read_unlock(); 5640 5641 return retval; 5642 } 5643 5644 /** 5645 * sys_sched_getaffinity - get the CPU affinity of a process 5646 * @pid: pid of the process 5647 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5648 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5649 * 5650 * Return: size of CPU mask copied to user_mask_ptr on success. An 5651 * error code otherwise. 5652 */ 5653 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5654 unsigned long __user *, user_mask_ptr) 5655 { 5656 int ret; 5657 cpumask_var_t mask; 5658 5659 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5660 return -EINVAL; 5661 if (len & (sizeof(unsigned long)-1)) 5662 return -EINVAL; 5663 5664 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5665 return -ENOMEM; 5666 5667 ret = sched_getaffinity(pid, mask); 5668 if (ret == 0) { 5669 unsigned int retlen = min(len, cpumask_size()); 5670 5671 if (copy_to_user(user_mask_ptr, mask, retlen)) 5672 ret = -EFAULT; 5673 else 5674 ret = retlen; 5675 } 5676 free_cpumask_var(mask); 5677 5678 return ret; 5679 } 5680 5681 /** 5682 * sys_sched_yield - yield the current processor to other threads. 5683 * 5684 * This function yields the current CPU to other tasks. If there are no 5685 * other threads running on this CPU then this function will return. 5686 * 5687 * Return: 0. 5688 */ 5689 static void do_sched_yield(void) 5690 { 5691 struct rq_flags rf; 5692 struct rq *rq; 5693 5694 rq = this_rq_lock_irq(&rf); 5695 5696 schedstat_inc(rq->yld_count); 5697 current->sched_class->yield_task(rq); 5698 5699 /* 5700 * Since we are going to call schedule() anyway, there's 5701 * no need to preempt or enable interrupts: 5702 */ 5703 preempt_disable(); 5704 rq_unlock(rq, &rf); 5705 sched_preempt_enable_no_resched(); 5706 5707 schedule(); 5708 } 5709 5710 SYSCALL_DEFINE0(sched_yield) 5711 { 5712 do_sched_yield(); 5713 return 0; 5714 } 5715 5716 #ifndef CONFIG_PREEMPTION 5717 int __sched _cond_resched(void) 5718 { 5719 if (should_resched(0)) { 5720 preempt_schedule_common(); 5721 return 1; 5722 } 5723 rcu_all_qs(); 5724 return 0; 5725 } 5726 EXPORT_SYMBOL(_cond_resched); 5727 #endif 5728 5729 /* 5730 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5731 * call schedule, and on return reacquire the lock. 5732 * 5733 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 5734 * operations here to prevent schedule() from being called twice (once via 5735 * spin_unlock(), once by hand). 5736 */ 5737 int __cond_resched_lock(spinlock_t *lock) 5738 { 5739 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5740 int ret = 0; 5741 5742 lockdep_assert_held(lock); 5743 5744 if (spin_needbreak(lock) || resched) { 5745 spin_unlock(lock); 5746 if (resched) 5747 preempt_schedule_common(); 5748 else 5749 cpu_relax(); 5750 ret = 1; 5751 spin_lock(lock); 5752 } 5753 return ret; 5754 } 5755 EXPORT_SYMBOL(__cond_resched_lock); 5756 5757 /** 5758 * yield - yield the current processor to other threads. 5759 * 5760 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5761 * 5762 * The scheduler is at all times free to pick the calling task as the most 5763 * eligible task to run, if removing the yield() call from your code breaks 5764 * it, its already broken. 5765 * 5766 * Typical broken usage is: 5767 * 5768 * while (!event) 5769 * yield(); 5770 * 5771 * where one assumes that yield() will let 'the other' process run that will 5772 * make event true. If the current task is a SCHED_FIFO task that will never 5773 * happen. Never use yield() as a progress guarantee!! 5774 * 5775 * If you want to use yield() to wait for something, use wait_event(). 5776 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5777 * If you still want to use yield(), do not! 5778 */ 5779 void __sched yield(void) 5780 { 5781 set_current_state(TASK_RUNNING); 5782 do_sched_yield(); 5783 } 5784 EXPORT_SYMBOL(yield); 5785 5786 /** 5787 * yield_to - yield the current processor to another thread in 5788 * your thread group, or accelerate that thread toward the 5789 * processor it's on. 5790 * @p: target task 5791 * @preempt: whether task preemption is allowed or not 5792 * 5793 * It's the caller's job to ensure that the target task struct 5794 * can't go away on us before we can do any checks. 5795 * 5796 * Return: 5797 * true (>0) if we indeed boosted the target task. 5798 * false (0) if we failed to boost the target. 5799 * -ESRCH if there's no task to yield to. 5800 */ 5801 int __sched yield_to(struct task_struct *p, bool preempt) 5802 { 5803 struct task_struct *curr = current; 5804 struct rq *rq, *p_rq; 5805 unsigned long flags; 5806 int yielded = 0; 5807 5808 local_irq_save(flags); 5809 rq = this_rq(); 5810 5811 again: 5812 p_rq = task_rq(p); 5813 /* 5814 * If we're the only runnable task on the rq and target rq also 5815 * has only one task, there's absolutely no point in yielding. 5816 */ 5817 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5818 yielded = -ESRCH; 5819 goto out_irq; 5820 } 5821 5822 double_rq_lock(rq, p_rq); 5823 if (task_rq(p) != p_rq) { 5824 double_rq_unlock(rq, p_rq); 5825 goto again; 5826 } 5827 5828 if (!curr->sched_class->yield_to_task) 5829 goto out_unlock; 5830 5831 if (curr->sched_class != p->sched_class) 5832 goto out_unlock; 5833 5834 if (task_running(p_rq, p) || p->state) 5835 goto out_unlock; 5836 5837 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5838 if (yielded) { 5839 schedstat_inc(rq->yld_count); 5840 /* 5841 * Make p's CPU reschedule; pick_next_entity takes care of 5842 * fairness. 5843 */ 5844 if (preempt && rq != p_rq) 5845 resched_curr(p_rq); 5846 } 5847 5848 out_unlock: 5849 double_rq_unlock(rq, p_rq); 5850 out_irq: 5851 local_irq_restore(flags); 5852 5853 if (yielded > 0) 5854 schedule(); 5855 5856 return yielded; 5857 } 5858 EXPORT_SYMBOL_GPL(yield_to); 5859 5860 int io_schedule_prepare(void) 5861 { 5862 int old_iowait = current->in_iowait; 5863 5864 current->in_iowait = 1; 5865 blk_schedule_flush_plug(current); 5866 5867 return old_iowait; 5868 } 5869 5870 void io_schedule_finish(int token) 5871 { 5872 current->in_iowait = token; 5873 } 5874 5875 /* 5876 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5877 * that process accounting knows that this is a task in IO wait state. 5878 */ 5879 long __sched io_schedule_timeout(long timeout) 5880 { 5881 int token; 5882 long ret; 5883 5884 token = io_schedule_prepare(); 5885 ret = schedule_timeout(timeout); 5886 io_schedule_finish(token); 5887 5888 return ret; 5889 } 5890 EXPORT_SYMBOL(io_schedule_timeout); 5891 5892 void __sched io_schedule(void) 5893 { 5894 int token; 5895 5896 token = io_schedule_prepare(); 5897 schedule(); 5898 io_schedule_finish(token); 5899 } 5900 EXPORT_SYMBOL(io_schedule); 5901 5902 /** 5903 * sys_sched_get_priority_max - return maximum RT priority. 5904 * @policy: scheduling class. 5905 * 5906 * Return: On success, this syscall returns the maximum 5907 * rt_priority that can be used by a given scheduling class. 5908 * On failure, a negative error code is returned. 5909 */ 5910 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5911 { 5912 int ret = -EINVAL; 5913 5914 switch (policy) { 5915 case SCHED_FIFO: 5916 case SCHED_RR: 5917 ret = MAX_USER_RT_PRIO-1; 5918 break; 5919 case SCHED_DEADLINE: 5920 case SCHED_NORMAL: 5921 case SCHED_BATCH: 5922 case SCHED_IDLE: 5923 ret = 0; 5924 break; 5925 } 5926 return ret; 5927 } 5928 5929 /** 5930 * sys_sched_get_priority_min - return minimum RT priority. 5931 * @policy: scheduling class. 5932 * 5933 * Return: On success, this syscall returns the minimum 5934 * rt_priority that can be used by a given scheduling class. 5935 * On failure, a negative error code is returned. 5936 */ 5937 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5938 { 5939 int ret = -EINVAL; 5940 5941 switch (policy) { 5942 case SCHED_FIFO: 5943 case SCHED_RR: 5944 ret = 1; 5945 break; 5946 case SCHED_DEADLINE: 5947 case SCHED_NORMAL: 5948 case SCHED_BATCH: 5949 case SCHED_IDLE: 5950 ret = 0; 5951 } 5952 return ret; 5953 } 5954 5955 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5956 { 5957 struct task_struct *p; 5958 unsigned int time_slice; 5959 struct rq_flags rf; 5960 struct rq *rq; 5961 int retval; 5962 5963 if (pid < 0) 5964 return -EINVAL; 5965 5966 retval = -ESRCH; 5967 rcu_read_lock(); 5968 p = find_process_by_pid(pid); 5969 if (!p) 5970 goto out_unlock; 5971 5972 retval = security_task_getscheduler(p); 5973 if (retval) 5974 goto out_unlock; 5975 5976 rq = task_rq_lock(p, &rf); 5977 time_slice = 0; 5978 if (p->sched_class->get_rr_interval) 5979 time_slice = p->sched_class->get_rr_interval(rq, p); 5980 task_rq_unlock(rq, p, &rf); 5981 5982 rcu_read_unlock(); 5983 jiffies_to_timespec64(time_slice, t); 5984 return 0; 5985 5986 out_unlock: 5987 rcu_read_unlock(); 5988 return retval; 5989 } 5990 5991 /** 5992 * sys_sched_rr_get_interval - return the default timeslice of a process. 5993 * @pid: pid of the process. 5994 * @interval: userspace pointer to the timeslice value. 5995 * 5996 * this syscall writes the default timeslice value of a given process 5997 * into the user-space timespec buffer. A value of '0' means infinity. 5998 * 5999 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 6000 * an error code. 6001 */ 6002 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 6003 struct __kernel_timespec __user *, interval) 6004 { 6005 struct timespec64 t; 6006 int retval = sched_rr_get_interval(pid, &t); 6007 6008 if (retval == 0) 6009 retval = put_timespec64(&t, interval); 6010 6011 return retval; 6012 } 6013 6014 #ifdef CONFIG_COMPAT_32BIT_TIME 6015 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 6016 struct old_timespec32 __user *, interval) 6017 { 6018 struct timespec64 t; 6019 int retval = sched_rr_get_interval(pid, &t); 6020 6021 if (retval == 0) 6022 retval = put_old_timespec32(&t, interval); 6023 return retval; 6024 } 6025 #endif 6026 6027 void sched_show_task(struct task_struct *p) 6028 { 6029 unsigned long free = 0; 6030 int ppid; 6031 6032 if (!try_get_task_stack(p)) 6033 return; 6034 6035 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 6036 6037 if (p->state == TASK_RUNNING) 6038 printk(KERN_CONT " running task "); 6039 #ifdef CONFIG_DEBUG_STACK_USAGE 6040 free = stack_not_used(p); 6041 #endif 6042 ppid = 0; 6043 rcu_read_lock(); 6044 if (pid_alive(p)) 6045 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 6046 rcu_read_unlock(); 6047 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 6048 task_pid_nr(p), ppid, 6049 (unsigned long)task_thread_info(p)->flags); 6050 6051 print_worker_info(KERN_INFO, p); 6052 show_stack(p, NULL, KERN_INFO); 6053 put_task_stack(p); 6054 } 6055 EXPORT_SYMBOL_GPL(sched_show_task); 6056 6057 static inline bool 6058 state_filter_match(unsigned long state_filter, struct task_struct *p) 6059 { 6060 /* no filter, everything matches */ 6061 if (!state_filter) 6062 return true; 6063 6064 /* filter, but doesn't match */ 6065 if (!(p->state & state_filter)) 6066 return false; 6067 6068 /* 6069 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 6070 * TASK_KILLABLE). 6071 */ 6072 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 6073 return false; 6074 6075 return true; 6076 } 6077 6078 6079 void show_state_filter(unsigned long state_filter) 6080 { 6081 struct task_struct *g, *p; 6082 6083 #if BITS_PER_LONG == 32 6084 printk(KERN_INFO 6085 " task PC stack pid father\n"); 6086 #else 6087 printk(KERN_INFO 6088 " task PC stack pid father\n"); 6089 #endif 6090 rcu_read_lock(); 6091 for_each_process_thread(g, p) { 6092 /* 6093 * reset the NMI-timeout, listing all files on a slow 6094 * console might take a lot of time: 6095 * Also, reset softlockup watchdogs on all CPUs, because 6096 * another CPU might be blocked waiting for us to process 6097 * an IPI. 6098 */ 6099 touch_nmi_watchdog(); 6100 touch_all_softlockup_watchdogs(); 6101 if (state_filter_match(state_filter, p)) 6102 sched_show_task(p); 6103 } 6104 6105 #ifdef CONFIG_SCHED_DEBUG 6106 if (!state_filter) 6107 sysrq_sched_debug_show(); 6108 #endif 6109 rcu_read_unlock(); 6110 /* 6111 * Only show locks if all tasks are dumped: 6112 */ 6113 if (!state_filter) 6114 debug_show_all_locks(); 6115 } 6116 6117 /** 6118 * init_idle - set up an idle thread for a given CPU 6119 * @idle: task in question 6120 * @cpu: CPU the idle task belongs to 6121 * 6122 * NOTE: this function does not set the idle thread's NEED_RESCHED 6123 * flag, to make booting more robust. 6124 */ 6125 void init_idle(struct task_struct *idle, int cpu) 6126 { 6127 struct rq *rq = cpu_rq(cpu); 6128 unsigned long flags; 6129 6130 __sched_fork(0, idle); 6131 6132 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6133 raw_spin_lock(&rq->lock); 6134 6135 idle->state = TASK_RUNNING; 6136 idle->se.exec_start = sched_clock(); 6137 idle->flags |= PF_IDLE; 6138 6139 scs_task_reset(idle); 6140 kasan_unpoison_task_stack(idle); 6141 6142 #ifdef CONFIG_SMP 6143 /* 6144 * Its possible that init_idle() gets called multiple times on a task, 6145 * in that case do_set_cpus_allowed() will not do the right thing. 6146 * 6147 * And since this is boot we can forgo the serialization. 6148 */ 6149 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6150 #endif 6151 /* 6152 * We're having a chicken and egg problem, even though we are 6153 * holding rq->lock, the CPU isn't yet set to this CPU so the 6154 * lockdep check in task_group() will fail. 6155 * 6156 * Similar case to sched_fork(). / Alternatively we could 6157 * use task_rq_lock() here and obtain the other rq->lock. 6158 * 6159 * Silence PROVE_RCU 6160 */ 6161 rcu_read_lock(); 6162 __set_task_cpu(idle, cpu); 6163 rcu_read_unlock(); 6164 6165 rq->idle = idle; 6166 rcu_assign_pointer(rq->curr, idle); 6167 idle->on_rq = TASK_ON_RQ_QUEUED; 6168 #ifdef CONFIG_SMP 6169 idle->on_cpu = 1; 6170 #endif 6171 raw_spin_unlock(&rq->lock); 6172 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6173 6174 /* Set the preempt count _outside_ the spinlocks! */ 6175 init_idle_preempt_count(idle, cpu); 6176 6177 /* 6178 * The idle tasks have their own, simple scheduling class: 6179 */ 6180 idle->sched_class = &idle_sched_class; 6181 ftrace_graph_init_idle_task(idle, cpu); 6182 vtime_init_idle(idle, cpu); 6183 #ifdef CONFIG_SMP 6184 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6185 #endif 6186 } 6187 6188 #ifdef CONFIG_SMP 6189 6190 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6191 const struct cpumask *trial) 6192 { 6193 int ret = 1; 6194 6195 if (!cpumask_weight(cur)) 6196 return ret; 6197 6198 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6199 6200 return ret; 6201 } 6202 6203 int task_can_attach(struct task_struct *p, 6204 const struct cpumask *cs_cpus_allowed) 6205 { 6206 int ret = 0; 6207 6208 /* 6209 * Kthreads which disallow setaffinity shouldn't be moved 6210 * to a new cpuset; we don't want to change their CPU 6211 * affinity and isolating such threads by their set of 6212 * allowed nodes is unnecessary. Thus, cpusets are not 6213 * applicable for such threads. This prevents checking for 6214 * success of set_cpus_allowed_ptr() on all attached tasks 6215 * before cpus_mask may be changed. 6216 */ 6217 if (p->flags & PF_NO_SETAFFINITY) { 6218 ret = -EINVAL; 6219 goto out; 6220 } 6221 6222 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6223 cs_cpus_allowed)) 6224 ret = dl_task_can_attach(p, cs_cpus_allowed); 6225 6226 out: 6227 return ret; 6228 } 6229 6230 bool sched_smp_initialized __read_mostly; 6231 6232 #ifdef CONFIG_NUMA_BALANCING 6233 /* Migrate current task p to target_cpu */ 6234 int migrate_task_to(struct task_struct *p, int target_cpu) 6235 { 6236 struct migration_arg arg = { p, target_cpu }; 6237 int curr_cpu = task_cpu(p); 6238 6239 if (curr_cpu == target_cpu) 6240 return 0; 6241 6242 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6243 return -EINVAL; 6244 6245 /* TODO: This is not properly updating schedstats */ 6246 6247 trace_sched_move_numa(p, curr_cpu, target_cpu); 6248 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6249 } 6250 6251 /* 6252 * Requeue a task on a given node and accurately track the number of NUMA 6253 * tasks on the runqueues 6254 */ 6255 void sched_setnuma(struct task_struct *p, int nid) 6256 { 6257 bool queued, running; 6258 struct rq_flags rf; 6259 struct rq *rq; 6260 6261 rq = task_rq_lock(p, &rf); 6262 queued = task_on_rq_queued(p); 6263 running = task_current(rq, p); 6264 6265 if (queued) 6266 dequeue_task(rq, p, DEQUEUE_SAVE); 6267 if (running) 6268 put_prev_task(rq, p); 6269 6270 p->numa_preferred_nid = nid; 6271 6272 if (queued) 6273 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6274 if (running) 6275 set_next_task(rq, p); 6276 task_rq_unlock(rq, p, &rf); 6277 } 6278 #endif /* CONFIG_NUMA_BALANCING */ 6279 6280 #ifdef CONFIG_HOTPLUG_CPU 6281 /* 6282 * Ensure that the idle task is using init_mm right before its CPU goes 6283 * offline. 6284 */ 6285 void idle_task_exit(void) 6286 { 6287 struct mm_struct *mm = current->active_mm; 6288 6289 BUG_ON(cpu_online(smp_processor_id())); 6290 BUG_ON(current != this_rq()->idle); 6291 6292 if (mm != &init_mm) { 6293 switch_mm(mm, &init_mm, current); 6294 finish_arch_post_lock_switch(); 6295 } 6296 6297 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 6298 } 6299 6300 /* 6301 * Since this CPU is going 'away' for a while, fold any nr_active delta 6302 * we might have. Assumes we're called after migrate_tasks() so that the 6303 * nr_active count is stable. We need to take the teardown thread which 6304 * is calling this into account, so we hand in adjust = 1 to the load 6305 * calculation. 6306 * 6307 * Also see the comment "Global load-average calculations". 6308 */ 6309 static void calc_load_migrate(struct rq *rq) 6310 { 6311 long delta = calc_load_fold_active(rq, 1); 6312 if (delta) 6313 atomic_long_add(delta, &calc_load_tasks); 6314 } 6315 6316 static struct task_struct *__pick_migrate_task(struct rq *rq) 6317 { 6318 const struct sched_class *class; 6319 struct task_struct *next; 6320 6321 for_each_class(class) { 6322 next = class->pick_next_task(rq); 6323 if (next) { 6324 next->sched_class->put_prev_task(rq, next); 6325 return next; 6326 } 6327 } 6328 6329 /* The idle class should always have a runnable task */ 6330 BUG(); 6331 } 6332 6333 /* 6334 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6335 * try_to_wake_up()->select_task_rq(). 6336 * 6337 * Called with rq->lock held even though we'er in stop_machine() and 6338 * there's no concurrency possible, we hold the required locks anyway 6339 * because of lock validation efforts. 6340 */ 6341 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6342 { 6343 struct rq *rq = dead_rq; 6344 struct task_struct *next, *stop = rq->stop; 6345 struct rq_flags orf = *rf; 6346 int dest_cpu; 6347 6348 /* 6349 * Fudge the rq selection such that the below task selection loop 6350 * doesn't get stuck on the currently eligible stop task. 6351 * 6352 * We're currently inside stop_machine() and the rq is either stuck 6353 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6354 * either way we should never end up calling schedule() until we're 6355 * done here. 6356 */ 6357 rq->stop = NULL; 6358 6359 /* 6360 * put_prev_task() and pick_next_task() sched 6361 * class method both need to have an up-to-date 6362 * value of rq->clock[_task] 6363 */ 6364 update_rq_clock(rq); 6365 6366 for (;;) { 6367 /* 6368 * There's this thread running, bail when that's the only 6369 * remaining thread: 6370 */ 6371 if (rq->nr_running == 1) 6372 break; 6373 6374 next = __pick_migrate_task(rq); 6375 6376 /* 6377 * Rules for changing task_struct::cpus_mask are holding 6378 * both pi_lock and rq->lock, such that holding either 6379 * stabilizes the mask. 6380 * 6381 * Drop rq->lock is not quite as disastrous as it usually is 6382 * because !cpu_active at this point, which means load-balance 6383 * will not interfere. Also, stop-machine. 6384 */ 6385 rq_unlock(rq, rf); 6386 raw_spin_lock(&next->pi_lock); 6387 rq_relock(rq, rf); 6388 6389 /* 6390 * Since we're inside stop-machine, _nothing_ should have 6391 * changed the task, WARN if weird stuff happened, because in 6392 * that case the above rq->lock drop is a fail too. 6393 */ 6394 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6395 raw_spin_unlock(&next->pi_lock); 6396 continue; 6397 } 6398 6399 /* Find suitable destination for @next, with force if needed. */ 6400 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6401 rq = __migrate_task(rq, rf, next, dest_cpu); 6402 if (rq != dead_rq) { 6403 rq_unlock(rq, rf); 6404 rq = dead_rq; 6405 *rf = orf; 6406 rq_relock(rq, rf); 6407 } 6408 raw_spin_unlock(&next->pi_lock); 6409 } 6410 6411 rq->stop = stop; 6412 } 6413 #endif /* CONFIG_HOTPLUG_CPU */ 6414 6415 void set_rq_online(struct rq *rq) 6416 { 6417 if (!rq->online) { 6418 const struct sched_class *class; 6419 6420 cpumask_set_cpu(rq->cpu, rq->rd->online); 6421 rq->online = 1; 6422 6423 for_each_class(class) { 6424 if (class->rq_online) 6425 class->rq_online(rq); 6426 } 6427 } 6428 } 6429 6430 void set_rq_offline(struct rq *rq) 6431 { 6432 if (rq->online) { 6433 const struct sched_class *class; 6434 6435 for_each_class(class) { 6436 if (class->rq_offline) 6437 class->rq_offline(rq); 6438 } 6439 6440 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6441 rq->online = 0; 6442 } 6443 } 6444 6445 /* 6446 * used to mark begin/end of suspend/resume: 6447 */ 6448 static int num_cpus_frozen; 6449 6450 /* 6451 * Update cpusets according to cpu_active mask. If cpusets are 6452 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6453 * around partition_sched_domains(). 6454 * 6455 * If we come here as part of a suspend/resume, don't touch cpusets because we 6456 * want to restore it back to its original state upon resume anyway. 6457 */ 6458 static void cpuset_cpu_active(void) 6459 { 6460 if (cpuhp_tasks_frozen) { 6461 /* 6462 * num_cpus_frozen tracks how many CPUs are involved in suspend 6463 * resume sequence. As long as this is not the last online 6464 * operation in the resume sequence, just build a single sched 6465 * domain, ignoring cpusets. 6466 */ 6467 partition_sched_domains(1, NULL, NULL); 6468 if (--num_cpus_frozen) 6469 return; 6470 /* 6471 * This is the last CPU online operation. So fall through and 6472 * restore the original sched domains by considering the 6473 * cpuset configurations. 6474 */ 6475 cpuset_force_rebuild(); 6476 } 6477 cpuset_update_active_cpus(); 6478 } 6479 6480 static int cpuset_cpu_inactive(unsigned int cpu) 6481 { 6482 if (!cpuhp_tasks_frozen) { 6483 if (dl_cpu_busy(cpu)) 6484 return -EBUSY; 6485 cpuset_update_active_cpus(); 6486 } else { 6487 num_cpus_frozen++; 6488 partition_sched_domains(1, NULL, NULL); 6489 } 6490 return 0; 6491 } 6492 6493 int sched_cpu_activate(unsigned int cpu) 6494 { 6495 struct rq *rq = cpu_rq(cpu); 6496 struct rq_flags rf; 6497 6498 #ifdef CONFIG_SCHED_SMT 6499 /* 6500 * When going up, increment the number of cores with SMT present. 6501 */ 6502 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6503 static_branch_inc_cpuslocked(&sched_smt_present); 6504 #endif 6505 set_cpu_active(cpu, true); 6506 6507 if (sched_smp_initialized) { 6508 sched_domains_numa_masks_set(cpu); 6509 cpuset_cpu_active(); 6510 } 6511 6512 /* 6513 * Put the rq online, if not already. This happens: 6514 * 6515 * 1) In the early boot process, because we build the real domains 6516 * after all CPUs have been brought up. 6517 * 6518 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6519 * domains. 6520 */ 6521 rq_lock_irqsave(rq, &rf); 6522 if (rq->rd) { 6523 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6524 set_rq_online(rq); 6525 } 6526 rq_unlock_irqrestore(rq, &rf); 6527 6528 return 0; 6529 } 6530 6531 int sched_cpu_deactivate(unsigned int cpu) 6532 { 6533 int ret; 6534 6535 set_cpu_active(cpu, false); 6536 /* 6537 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6538 * users of this state to go away such that all new such users will 6539 * observe it. 6540 * 6541 * Do sync before park smpboot threads to take care the rcu boost case. 6542 */ 6543 synchronize_rcu(); 6544 6545 #ifdef CONFIG_SCHED_SMT 6546 /* 6547 * When going down, decrement the number of cores with SMT present. 6548 */ 6549 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6550 static_branch_dec_cpuslocked(&sched_smt_present); 6551 #endif 6552 6553 if (!sched_smp_initialized) 6554 return 0; 6555 6556 ret = cpuset_cpu_inactive(cpu); 6557 if (ret) { 6558 set_cpu_active(cpu, true); 6559 return ret; 6560 } 6561 sched_domains_numa_masks_clear(cpu); 6562 return 0; 6563 } 6564 6565 static void sched_rq_cpu_starting(unsigned int cpu) 6566 { 6567 struct rq *rq = cpu_rq(cpu); 6568 6569 rq->calc_load_update = calc_load_update; 6570 update_max_interval(); 6571 } 6572 6573 int sched_cpu_starting(unsigned int cpu) 6574 { 6575 sched_rq_cpu_starting(cpu); 6576 sched_tick_start(cpu); 6577 return 0; 6578 } 6579 6580 #ifdef CONFIG_HOTPLUG_CPU 6581 int sched_cpu_dying(unsigned int cpu) 6582 { 6583 struct rq *rq = cpu_rq(cpu); 6584 struct rq_flags rf; 6585 6586 /* Handle pending wakeups and then migrate everything off */ 6587 sched_tick_stop(cpu); 6588 6589 rq_lock_irqsave(rq, &rf); 6590 if (rq->rd) { 6591 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6592 set_rq_offline(rq); 6593 } 6594 migrate_tasks(rq, &rf); 6595 BUG_ON(rq->nr_running != 1); 6596 rq_unlock_irqrestore(rq, &rf); 6597 6598 calc_load_migrate(rq); 6599 update_max_interval(); 6600 nohz_balance_exit_idle(rq); 6601 hrtick_clear(rq); 6602 return 0; 6603 } 6604 #endif 6605 6606 void __init sched_init_smp(void) 6607 { 6608 sched_init_numa(); 6609 6610 /* 6611 * There's no userspace yet to cause hotplug operations; hence all the 6612 * CPU masks are stable and all blatant races in the below code cannot 6613 * happen. 6614 */ 6615 mutex_lock(&sched_domains_mutex); 6616 sched_init_domains(cpu_active_mask); 6617 mutex_unlock(&sched_domains_mutex); 6618 6619 /* Move init over to a non-isolated CPU */ 6620 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6621 BUG(); 6622 sched_init_granularity(); 6623 6624 init_sched_rt_class(); 6625 init_sched_dl_class(); 6626 6627 sched_smp_initialized = true; 6628 } 6629 6630 static int __init migration_init(void) 6631 { 6632 sched_cpu_starting(smp_processor_id()); 6633 return 0; 6634 } 6635 early_initcall(migration_init); 6636 6637 #else 6638 void __init sched_init_smp(void) 6639 { 6640 sched_init_granularity(); 6641 } 6642 #endif /* CONFIG_SMP */ 6643 6644 int in_sched_functions(unsigned long addr) 6645 { 6646 return in_lock_functions(addr) || 6647 (addr >= (unsigned long)__sched_text_start 6648 && addr < (unsigned long)__sched_text_end); 6649 } 6650 6651 #ifdef CONFIG_CGROUP_SCHED 6652 /* 6653 * Default task group. 6654 * Every task in system belongs to this group at bootup. 6655 */ 6656 struct task_group root_task_group; 6657 LIST_HEAD(task_groups); 6658 6659 /* Cacheline aligned slab cache for task_group */ 6660 static struct kmem_cache *task_group_cache __read_mostly; 6661 #endif 6662 6663 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6664 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6665 6666 void __init sched_init(void) 6667 { 6668 unsigned long ptr = 0; 6669 int i; 6670 6671 wait_bit_init(); 6672 6673 #ifdef CONFIG_FAIR_GROUP_SCHED 6674 ptr += 2 * nr_cpu_ids * sizeof(void **); 6675 #endif 6676 #ifdef CONFIG_RT_GROUP_SCHED 6677 ptr += 2 * nr_cpu_ids * sizeof(void **); 6678 #endif 6679 if (ptr) { 6680 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 6681 6682 #ifdef CONFIG_FAIR_GROUP_SCHED 6683 root_task_group.se = (struct sched_entity **)ptr; 6684 ptr += nr_cpu_ids * sizeof(void **); 6685 6686 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6687 ptr += nr_cpu_ids * sizeof(void **); 6688 6689 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6690 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6691 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6692 #ifdef CONFIG_RT_GROUP_SCHED 6693 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6694 ptr += nr_cpu_ids * sizeof(void **); 6695 6696 root_task_group.rt_rq = (struct rt_rq **)ptr; 6697 ptr += nr_cpu_ids * sizeof(void **); 6698 6699 #endif /* CONFIG_RT_GROUP_SCHED */ 6700 } 6701 #ifdef CONFIG_CPUMASK_OFFSTACK 6702 for_each_possible_cpu(i) { 6703 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6704 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6705 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6706 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6707 } 6708 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6709 6710 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6711 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6712 6713 #ifdef CONFIG_SMP 6714 init_defrootdomain(); 6715 #endif 6716 6717 #ifdef CONFIG_RT_GROUP_SCHED 6718 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6719 global_rt_period(), global_rt_runtime()); 6720 #endif /* CONFIG_RT_GROUP_SCHED */ 6721 6722 #ifdef CONFIG_CGROUP_SCHED 6723 task_group_cache = KMEM_CACHE(task_group, 0); 6724 6725 list_add(&root_task_group.list, &task_groups); 6726 INIT_LIST_HEAD(&root_task_group.children); 6727 INIT_LIST_HEAD(&root_task_group.siblings); 6728 autogroup_init(&init_task); 6729 #endif /* CONFIG_CGROUP_SCHED */ 6730 6731 for_each_possible_cpu(i) { 6732 struct rq *rq; 6733 6734 rq = cpu_rq(i); 6735 raw_spin_lock_init(&rq->lock); 6736 rq->nr_running = 0; 6737 rq->calc_load_active = 0; 6738 rq->calc_load_update = jiffies + LOAD_FREQ; 6739 init_cfs_rq(&rq->cfs); 6740 init_rt_rq(&rq->rt); 6741 init_dl_rq(&rq->dl); 6742 #ifdef CONFIG_FAIR_GROUP_SCHED 6743 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6744 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6745 /* 6746 * How much CPU bandwidth does root_task_group get? 6747 * 6748 * In case of task-groups formed thr' the cgroup filesystem, it 6749 * gets 100% of the CPU resources in the system. This overall 6750 * system CPU resource is divided among the tasks of 6751 * root_task_group and its child task-groups in a fair manner, 6752 * based on each entity's (task or task-group's) weight 6753 * (se->load.weight). 6754 * 6755 * In other words, if root_task_group has 10 tasks of weight 6756 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6757 * then A0's share of the CPU resource is: 6758 * 6759 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6760 * 6761 * We achieve this by letting root_task_group's tasks sit 6762 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6763 */ 6764 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6765 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6766 6767 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6768 #ifdef CONFIG_RT_GROUP_SCHED 6769 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6770 #endif 6771 #ifdef CONFIG_SMP 6772 rq->sd = NULL; 6773 rq->rd = NULL; 6774 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6775 rq->balance_callback = NULL; 6776 rq->active_balance = 0; 6777 rq->next_balance = jiffies; 6778 rq->push_cpu = 0; 6779 rq->cpu = i; 6780 rq->online = 0; 6781 rq->idle_stamp = 0; 6782 rq->avg_idle = 2*sysctl_sched_migration_cost; 6783 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6784 6785 INIT_LIST_HEAD(&rq->cfs_tasks); 6786 6787 rq_attach_root(rq, &def_root_domain); 6788 #ifdef CONFIG_NO_HZ_COMMON 6789 rq->last_blocked_load_update_tick = jiffies; 6790 atomic_set(&rq->nohz_flags, 0); 6791 6792 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func); 6793 #endif 6794 #endif /* CONFIG_SMP */ 6795 hrtick_rq_init(rq); 6796 atomic_set(&rq->nr_iowait, 0); 6797 } 6798 6799 set_load_weight(&init_task, false); 6800 6801 /* 6802 * The boot idle thread does lazy MMU switching as well: 6803 */ 6804 mmgrab(&init_mm); 6805 enter_lazy_tlb(&init_mm, current); 6806 6807 /* 6808 * Make us the idle thread. Technically, schedule() should not be 6809 * called from this thread, however somewhere below it might be, 6810 * but because we are the idle thread, we just pick up running again 6811 * when this runqueue becomes "idle". 6812 */ 6813 init_idle(current, smp_processor_id()); 6814 6815 calc_load_update = jiffies + LOAD_FREQ; 6816 6817 #ifdef CONFIG_SMP 6818 idle_thread_set_boot_cpu(); 6819 #endif 6820 init_sched_fair_class(); 6821 6822 init_schedstats(); 6823 6824 psi_init(); 6825 6826 init_uclamp(); 6827 6828 scheduler_running = 1; 6829 } 6830 6831 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6832 static inline int preempt_count_equals(int preempt_offset) 6833 { 6834 int nested = preempt_count() + rcu_preempt_depth(); 6835 6836 return (nested == preempt_offset); 6837 } 6838 6839 void __might_sleep(const char *file, int line, int preempt_offset) 6840 { 6841 /* 6842 * Blocking primitives will set (and therefore destroy) current->state, 6843 * since we will exit with TASK_RUNNING make sure we enter with it, 6844 * otherwise we will destroy state. 6845 */ 6846 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6847 "do not call blocking ops when !TASK_RUNNING; " 6848 "state=%lx set at [<%p>] %pS\n", 6849 current->state, 6850 (void *)current->task_state_change, 6851 (void *)current->task_state_change); 6852 6853 ___might_sleep(file, line, preempt_offset); 6854 } 6855 EXPORT_SYMBOL(__might_sleep); 6856 6857 void ___might_sleep(const char *file, int line, int preempt_offset) 6858 { 6859 /* Ratelimiting timestamp: */ 6860 static unsigned long prev_jiffy; 6861 6862 unsigned long preempt_disable_ip; 6863 6864 /* WARN_ON_ONCE() by default, no rate limit required: */ 6865 rcu_sleep_check(); 6866 6867 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6868 !is_idle_task(current) && !current->non_block_count) || 6869 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6870 oops_in_progress) 6871 return; 6872 6873 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6874 return; 6875 prev_jiffy = jiffies; 6876 6877 /* Save this before calling printk(), since that will clobber it: */ 6878 preempt_disable_ip = get_preempt_disable_ip(current); 6879 6880 printk(KERN_ERR 6881 "BUG: sleeping function called from invalid context at %s:%d\n", 6882 file, line); 6883 printk(KERN_ERR 6884 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 6885 in_atomic(), irqs_disabled(), current->non_block_count, 6886 current->pid, current->comm); 6887 6888 if (task_stack_end_corrupted(current)) 6889 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6890 6891 debug_show_held_locks(current); 6892 if (irqs_disabled()) 6893 print_irqtrace_events(current); 6894 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6895 && !preempt_count_equals(preempt_offset)) { 6896 pr_err("Preemption disabled at:"); 6897 print_ip_sym(KERN_ERR, preempt_disable_ip); 6898 } 6899 dump_stack(); 6900 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6901 } 6902 EXPORT_SYMBOL(___might_sleep); 6903 6904 void __cant_sleep(const char *file, int line, int preempt_offset) 6905 { 6906 static unsigned long prev_jiffy; 6907 6908 if (irqs_disabled()) 6909 return; 6910 6911 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6912 return; 6913 6914 if (preempt_count() > preempt_offset) 6915 return; 6916 6917 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6918 return; 6919 prev_jiffy = jiffies; 6920 6921 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6922 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6923 in_atomic(), irqs_disabled(), 6924 current->pid, current->comm); 6925 6926 debug_show_held_locks(current); 6927 dump_stack(); 6928 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6929 } 6930 EXPORT_SYMBOL_GPL(__cant_sleep); 6931 #endif 6932 6933 #ifdef CONFIG_MAGIC_SYSRQ 6934 void normalize_rt_tasks(void) 6935 { 6936 struct task_struct *g, *p; 6937 struct sched_attr attr = { 6938 .sched_policy = SCHED_NORMAL, 6939 }; 6940 6941 read_lock(&tasklist_lock); 6942 for_each_process_thread(g, p) { 6943 /* 6944 * Only normalize user tasks: 6945 */ 6946 if (p->flags & PF_KTHREAD) 6947 continue; 6948 6949 p->se.exec_start = 0; 6950 schedstat_set(p->se.statistics.wait_start, 0); 6951 schedstat_set(p->se.statistics.sleep_start, 0); 6952 schedstat_set(p->se.statistics.block_start, 0); 6953 6954 if (!dl_task(p) && !rt_task(p)) { 6955 /* 6956 * Renice negative nice level userspace 6957 * tasks back to 0: 6958 */ 6959 if (task_nice(p) < 0) 6960 set_user_nice(p, 0); 6961 continue; 6962 } 6963 6964 __sched_setscheduler(p, &attr, false, false); 6965 } 6966 read_unlock(&tasklist_lock); 6967 } 6968 6969 #endif /* CONFIG_MAGIC_SYSRQ */ 6970 6971 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6972 /* 6973 * These functions are only useful for the IA64 MCA handling, or kdb. 6974 * 6975 * They can only be called when the whole system has been 6976 * stopped - every CPU needs to be quiescent, and no scheduling 6977 * activity can take place. Using them for anything else would 6978 * be a serious bug, and as a result, they aren't even visible 6979 * under any other configuration. 6980 */ 6981 6982 /** 6983 * curr_task - return the current task for a given CPU. 6984 * @cpu: the processor in question. 6985 * 6986 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6987 * 6988 * Return: The current task for @cpu. 6989 */ 6990 struct task_struct *curr_task(int cpu) 6991 { 6992 return cpu_curr(cpu); 6993 } 6994 6995 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6996 6997 #ifdef CONFIG_IA64 6998 /** 6999 * ia64_set_curr_task - set the current task for a given CPU. 7000 * @cpu: the processor in question. 7001 * @p: the task pointer to set. 7002 * 7003 * Description: This function must only be used when non-maskable interrupts 7004 * are serviced on a separate stack. It allows the architecture to switch the 7005 * notion of the current task on a CPU in a non-blocking manner. This function 7006 * must be called with all CPU's synchronized, and interrupts disabled, the 7007 * and caller must save the original value of the current task (see 7008 * curr_task() above) and restore that value before reenabling interrupts and 7009 * re-starting the system. 7010 * 7011 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7012 */ 7013 void ia64_set_curr_task(int cpu, struct task_struct *p) 7014 { 7015 cpu_curr(cpu) = p; 7016 } 7017 7018 #endif 7019 7020 #ifdef CONFIG_CGROUP_SCHED 7021 /* task_group_lock serializes the addition/removal of task groups */ 7022 static DEFINE_SPINLOCK(task_group_lock); 7023 7024 static inline void alloc_uclamp_sched_group(struct task_group *tg, 7025 struct task_group *parent) 7026 { 7027 #ifdef CONFIG_UCLAMP_TASK_GROUP 7028 enum uclamp_id clamp_id; 7029 7030 for_each_clamp_id(clamp_id) { 7031 uclamp_se_set(&tg->uclamp_req[clamp_id], 7032 uclamp_none(clamp_id), false); 7033 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 7034 } 7035 #endif 7036 } 7037 7038 static void sched_free_group(struct task_group *tg) 7039 { 7040 free_fair_sched_group(tg); 7041 free_rt_sched_group(tg); 7042 autogroup_free(tg); 7043 kmem_cache_free(task_group_cache, tg); 7044 } 7045 7046 /* allocate runqueue etc for a new task group */ 7047 struct task_group *sched_create_group(struct task_group *parent) 7048 { 7049 struct task_group *tg; 7050 7051 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7052 if (!tg) 7053 return ERR_PTR(-ENOMEM); 7054 7055 if (!alloc_fair_sched_group(tg, parent)) 7056 goto err; 7057 7058 if (!alloc_rt_sched_group(tg, parent)) 7059 goto err; 7060 7061 alloc_uclamp_sched_group(tg, parent); 7062 7063 return tg; 7064 7065 err: 7066 sched_free_group(tg); 7067 return ERR_PTR(-ENOMEM); 7068 } 7069 7070 void sched_online_group(struct task_group *tg, struct task_group *parent) 7071 { 7072 unsigned long flags; 7073 7074 spin_lock_irqsave(&task_group_lock, flags); 7075 list_add_rcu(&tg->list, &task_groups); 7076 7077 /* Root should already exist: */ 7078 WARN_ON(!parent); 7079 7080 tg->parent = parent; 7081 INIT_LIST_HEAD(&tg->children); 7082 list_add_rcu(&tg->siblings, &parent->children); 7083 spin_unlock_irqrestore(&task_group_lock, flags); 7084 7085 online_fair_sched_group(tg); 7086 } 7087 7088 /* rcu callback to free various structures associated with a task group */ 7089 static void sched_free_group_rcu(struct rcu_head *rhp) 7090 { 7091 /* Now it should be safe to free those cfs_rqs: */ 7092 sched_free_group(container_of(rhp, struct task_group, rcu)); 7093 } 7094 7095 void sched_destroy_group(struct task_group *tg) 7096 { 7097 /* Wait for possible concurrent references to cfs_rqs complete: */ 7098 call_rcu(&tg->rcu, sched_free_group_rcu); 7099 } 7100 7101 void sched_offline_group(struct task_group *tg) 7102 { 7103 unsigned long flags; 7104 7105 /* End participation in shares distribution: */ 7106 unregister_fair_sched_group(tg); 7107 7108 spin_lock_irqsave(&task_group_lock, flags); 7109 list_del_rcu(&tg->list); 7110 list_del_rcu(&tg->siblings); 7111 spin_unlock_irqrestore(&task_group_lock, flags); 7112 } 7113 7114 static void sched_change_group(struct task_struct *tsk, int type) 7115 { 7116 struct task_group *tg; 7117 7118 /* 7119 * All callers are synchronized by task_rq_lock(); we do not use RCU 7120 * which is pointless here. Thus, we pass "true" to task_css_check() 7121 * to prevent lockdep warnings. 7122 */ 7123 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7124 struct task_group, css); 7125 tg = autogroup_task_group(tsk, tg); 7126 tsk->sched_task_group = tg; 7127 7128 #ifdef CONFIG_FAIR_GROUP_SCHED 7129 if (tsk->sched_class->task_change_group) 7130 tsk->sched_class->task_change_group(tsk, type); 7131 else 7132 #endif 7133 set_task_rq(tsk, task_cpu(tsk)); 7134 } 7135 7136 /* 7137 * Change task's runqueue when it moves between groups. 7138 * 7139 * The caller of this function should have put the task in its new group by 7140 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7141 * its new group. 7142 */ 7143 void sched_move_task(struct task_struct *tsk) 7144 { 7145 int queued, running, queue_flags = 7146 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7147 struct rq_flags rf; 7148 struct rq *rq; 7149 7150 rq = task_rq_lock(tsk, &rf); 7151 update_rq_clock(rq); 7152 7153 running = task_current(rq, tsk); 7154 queued = task_on_rq_queued(tsk); 7155 7156 if (queued) 7157 dequeue_task(rq, tsk, queue_flags); 7158 if (running) 7159 put_prev_task(rq, tsk); 7160 7161 sched_change_group(tsk, TASK_MOVE_GROUP); 7162 7163 if (queued) 7164 enqueue_task(rq, tsk, queue_flags); 7165 if (running) { 7166 set_next_task(rq, tsk); 7167 /* 7168 * After changing group, the running task may have joined a 7169 * throttled one but it's still the running task. Trigger a 7170 * resched to make sure that task can still run. 7171 */ 7172 resched_curr(rq); 7173 } 7174 7175 task_rq_unlock(rq, tsk, &rf); 7176 } 7177 7178 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7179 { 7180 return css ? container_of(css, struct task_group, css) : NULL; 7181 } 7182 7183 static struct cgroup_subsys_state * 7184 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7185 { 7186 struct task_group *parent = css_tg(parent_css); 7187 struct task_group *tg; 7188 7189 if (!parent) { 7190 /* This is early initialization for the top cgroup */ 7191 return &root_task_group.css; 7192 } 7193 7194 tg = sched_create_group(parent); 7195 if (IS_ERR(tg)) 7196 return ERR_PTR(-ENOMEM); 7197 7198 return &tg->css; 7199 } 7200 7201 /* Expose task group only after completing cgroup initialization */ 7202 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7203 { 7204 struct task_group *tg = css_tg(css); 7205 struct task_group *parent = css_tg(css->parent); 7206 7207 if (parent) 7208 sched_online_group(tg, parent); 7209 7210 #ifdef CONFIG_UCLAMP_TASK_GROUP 7211 /* Propagate the effective uclamp value for the new group */ 7212 cpu_util_update_eff(css); 7213 #endif 7214 7215 return 0; 7216 } 7217 7218 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7219 { 7220 struct task_group *tg = css_tg(css); 7221 7222 sched_offline_group(tg); 7223 } 7224 7225 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7226 { 7227 struct task_group *tg = css_tg(css); 7228 7229 /* 7230 * Relies on the RCU grace period between css_released() and this. 7231 */ 7232 sched_free_group(tg); 7233 } 7234 7235 /* 7236 * This is called before wake_up_new_task(), therefore we really only 7237 * have to set its group bits, all the other stuff does not apply. 7238 */ 7239 static void cpu_cgroup_fork(struct task_struct *task) 7240 { 7241 struct rq_flags rf; 7242 struct rq *rq; 7243 7244 rq = task_rq_lock(task, &rf); 7245 7246 update_rq_clock(rq); 7247 sched_change_group(task, TASK_SET_GROUP); 7248 7249 task_rq_unlock(rq, task, &rf); 7250 } 7251 7252 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7253 { 7254 struct task_struct *task; 7255 struct cgroup_subsys_state *css; 7256 int ret = 0; 7257 7258 cgroup_taskset_for_each(task, css, tset) { 7259 #ifdef CONFIG_RT_GROUP_SCHED 7260 if (!sched_rt_can_attach(css_tg(css), task)) 7261 return -EINVAL; 7262 #endif 7263 /* 7264 * Serialize against wake_up_new_task() such that if its 7265 * running, we're sure to observe its full state. 7266 */ 7267 raw_spin_lock_irq(&task->pi_lock); 7268 /* 7269 * Avoid calling sched_move_task() before wake_up_new_task() 7270 * has happened. This would lead to problems with PELT, due to 7271 * move wanting to detach+attach while we're not attached yet. 7272 */ 7273 if (task->state == TASK_NEW) 7274 ret = -EINVAL; 7275 raw_spin_unlock_irq(&task->pi_lock); 7276 7277 if (ret) 7278 break; 7279 } 7280 return ret; 7281 } 7282 7283 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7284 { 7285 struct task_struct *task; 7286 struct cgroup_subsys_state *css; 7287 7288 cgroup_taskset_for_each(task, css, tset) 7289 sched_move_task(task); 7290 } 7291 7292 #ifdef CONFIG_UCLAMP_TASK_GROUP 7293 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7294 { 7295 struct cgroup_subsys_state *top_css = css; 7296 struct uclamp_se *uc_parent = NULL; 7297 struct uclamp_se *uc_se = NULL; 7298 unsigned int eff[UCLAMP_CNT]; 7299 enum uclamp_id clamp_id; 7300 unsigned int clamps; 7301 7302 css_for_each_descendant_pre(css, top_css) { 7303 uc_parent = css_tg(css)->parent 7304 ? css_tg(css)->parent->uclamp : NULL; 7305 7306 for_each_clamp_id(clamp_id) { 7307 /* Assume effective clamps matches requested clamps */ 7308 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7309 /* Cap effective clamps with parent's effective clamps */ 7310 if (uc_parent && 7311 eff[clamp_id] > uc_parent[clamp_id].value) { 7312 eff[clamp_id] = uc_parent[clamp_id].value; 7313 } 7314 } 7315 /* Ensure protection is always capped by limit */ 7316 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7317 7318 /* Propagate most restrictive effective clamps */ 7319 clamps = 0x0; 7320 uc_se = css_tg(css)->uclamp; 7321 for_each_clamp_id(clamp_id) { 7322 if (eff[clamp_id] == uc_se[clamp_id].value) 7323 continue; 7324 uc_se[clamp_id].value = eff[clamp_id]; 7325 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7326 clamps |= (0x1 << clamp_id); 7327 } 7328 if (!clamps) { 7329 css = css_rightmost_descendant(css); 7330 continue; 7331 } 7332 7333 /* Immediately update descendants RUNNABLE tasks */ 7334 uclamp_update_active_tasks(css, clamps); 7335 } 7336 } 7337 7338 /* 7339 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7340 * C expression. Since there is no way to convert a macro argument (N) into a 7341 * character constant, use two levels of macros. 7342 */ 7343 #define _POW10(exp) ((unsigned int)1e##exp) 7344 #define POW10(exp) _POW10(exp) 7345 7346 struct uclamp_request { 7347 #define UCLAMP_PERCENT_SHIFT 2 7348 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7349 s64 percent; 7350 u64 util; 7351 int ret; 7352 }; 7353 7354 static inline struct uclamp_request 7355 capacity_from_percent(char *buf) 7356 { 7357 struct uclamp_request req = { 7358 .percent = UCLAMP_PERCENT_SCALE, 7359 .util = SCHED_CAPACITY_SCALE, 7360 .ret = 0, 7361 }; 7362 7363 buf = strim(buf); 7364 if (strcmp(buf, "max")) { 7365 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7366 &req.percent); 7367 if (req.ret) 7368 return req; 7369 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 7370 req.ret = -ERANGE; 7371 return req; 7372 } 7373 7374 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7375 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7376 } 7377 7378 return req; 7379 } 7380 7381 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7382 size_t nbytes, loff_t off, 7383 enum uclamp_id clamp_id) 7384 { 7385 struct uclamp_request req; 7386 struct task_group *tg; 7387 7388 req = capacity_from_percent(buf); 7389 if (req.ret) 7390 return req.ret; 7391 7392 mutex_lock(&uclamp_mutex); 7393 rcu_read_lock(); 7394 7395 tg = css_tg(of_css(of)); 7396 if (tg->uclamp_req[clamp_id].value != req.util) 7397 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7398 7399 /* 7400 * Because of not recoverable conversion rounding we keep track of the 7401 * exact requested value 7402 */ 7403 tg->uclamp_pct[clamp_id] = req.percent; 7404 7405 /* Update effective clamps to track the most restrictive value */ 7406 cpu_util_update_eff(of_css(of)); 7407 7408 rcu_read_unlock(); 7409 mutex_unlock(&uclamp_mutex); 7410 7411 return nbytes; 7412 } 7413 7414 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7415 char *buf, size_t nbytes, 7416 loff_t off) 7417 { 7418 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7419 } 7420 7421 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7422 char *buf, size_t nbytes, 7423 loff_t off) 7424 { 7425 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7426 } 7427 7428 static inline void cpu_uclamp_print(struct seq_file *sf, 7429 enum uclamp_id clamp_id) 7430 { 7431 struct task_group *tg; 7432 u64 util_clamp; 7433 u64 percent; 7434 u32 rem; 7435 7436 rcu_read_lock(); 7437 tg = css_tg(seq_css(sf)); 7438 util_clamp = tg->uclamp_req[clamp_id].value; 7439 rcu_read_unlock(); 7440 7441 if (util_clamp == SCHED_CAPACITY_SCALE) { 7442 seq_puts(sf, "max\n"); 7443 return; 7444 } 7445 7446 percent = tg->uclamp_pct[clamp_id]; 7447 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7448 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7449 } 7450 7451 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7452 { 7453 cpu_uclamp_print(sf, UCLAMP_MIN); 7454 return 0; 7455 } 7456 7457 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7458 { 7459 cpu_uclamp_print(sf, UCLAMP_MAX); 7460 return 0; 7461 } 7462 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7463 7464 #ifdef CONFIG_FAIR_GROUP_SCHED 7465 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7466 struct cftype *cftype, u64 shareval) 7467 { 7468 if (shareval > scale_load_down(ULONG_MAX)) 7469 shareval = MAX_SHARES; 7470 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7471 } 7472 7473 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7474 struct cftype *cft) 7475 { 7476 struct task_group *tg = css_tg(css); 7477 7478 return (u64) scale_load_down(tg->shares); 7479 } 7480 7481 #ifdef CONFIG_CFS_BANDWIDTH 7482 static DEFINE_MUTEX(cfs_constraints_mutex); 7483 7484 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7485 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7486 /* More than 203 days if BW_SHIFT equals 20. */ 7487 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 7488 7489 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7490 7491 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7492 { 7493 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7494 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7495 7496 if (tg == &root_task_group) 7497 return -EINVAL; 7498 7499 /* 7500 * Ensure we have at some amount of bandwidth every period. This is 7501 * to prevent reaching a state of large arrears when throttled via 7502 * entity_tick() resulting in prolonged exit starvation. 7503 */ 7504 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7505 return -EINVAL; 7506 7507 /* 7508 * Likewise, bound things on the otherside by preventing insane quota 7509 * periods. This also allows us to normalize in computing quota 7510 * feasibility. 7511 */ 7512 if (period > max_cfs_quota_period) 7513 return -EINVAL; 7514 7515 /* 7516 * Bound quota to defend quota against overflow during bandwidth shift. 7517 */ 7518 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 7519 return -EINVAL; 7520 7521 /* 7522 * Prevent race between setting of cfs_rq->runtime_enabled and 7523 * unthrottle_offline_cfs_rqs(). 7524 */ 7525 get_online_cpus(); 7526 mutex_lock(&cfs_constraints_mutex); 7527 ret = __cfs_schedulable(tg, period, quota); 7528 if (ret) 7529 goto out_unlock; 7530 7531 runtime_enabled = quota != RUNTIME_INF; 7532 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7533 /* 7534 * If we need to toggle cfs_bandwidth_used, off->on must occur 7535 * before making related changes, and on->off must occur afterwards 7536 */ 7537 if (runtime_enabled && !runtime_was_enabled) 7538 cfs_bandwidth_usage_inc(); 7539 raw_spin_lock_irq(&cfs_b->lock); 7540 cfs_b->period = ns_to_ktime(period); 7541 cfs_b->quota = quota; 7542 7543 __refill_cfs_bandwidth_runtime(cfs_b); 7544 7545 /* Restart the period timer (if active) to handle new period expiry: */ 7546 if (runtime_enabled) 7547 start_cfs_bandwidth(cfs_b); 7548 7549 raw_spin_unlock_irq(&cfs_b->lock); 7550 7551 for_each_online_cpu(i) { 7552 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7553 struct rq *rq = cfs_rq->rq; 7554 struct rq_flags rf; 7555 7556 rq_lock_irq(rq, &rf); 7557 cfs_rq->runtime_enabled = runtime_enabled; 7558 cfs_rq->runtime_remaining = 0; 7559 7560 if (cfs_rq->throttled) 7561 unthrottle_cfs_rq(cfs_rq); 7562 rq_unlock_irq(rq, &rf); 7563 } 7564 if (runtime_was_enabled && !runtime_enabled) 7565 cfs_bandwidth_usage_dec(); 7566 out_unlock: 7567 mutex_unlock(&cfs_constraints_mutex); 7568 put_online_cpus(); 7569 7570 return ret; 7571 } 7572 7573 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7574 { 7575 u64 quota, period; 7576 7577 period = ktime_to_ns(tg->cfs_bandwidth.period); 7578 if (cfs_quota_us < 0) 7579 quota = RUNTIME_INF; 7580 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7581 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7582 else 7583 return -EINVAL; 7584 7585 return tg_set_cfs_bandwidth(tg, period, quota); 7586 } 7587 7588 static long tg_get_cfs_quota(struct task_group *tg) 7589 { 7590 u64 quota_us; 7591 7592 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7593 return -1; 7594 7595 quota_us = tg->cfs_bandwidth.quota; 7596 do_div(quota_us, NSEC_PER_USEC); 7597 7598 return quota_us; 7599 } 7600 7601 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7602 { 7603 u64 quota, period; 7604 7605 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7606 return -EINVAL; 7607 7608 period = (u64)cfs_period_us * NSEC_PER_USEC; 7609 quota = tg->cfs_bandwidth.quota; 7610 7611 return tg_set_cfs_bandwidth(tg, period, quota); 7612 } 7613 7614 static long tg_get_cfs_period(struct task_group *tg) 7615 { 7616 u64 cfs_period_us; 7617 7618 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7619 do_div(cfs_period_us, NSEC_PER_USEC); 7620 7621 return cfs_period_us; 7622 } 7623 7624 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7625 struct cftype *cft) 7626 { 7627 return tg_get_cfs_quota(css_tg(css)); 7628 } 7629 7630 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7631 struct cftype *cftype, s64 cfs_quota_us) 7632 { 7633 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7634 } 7635 7636 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7637 struct cftype *cft) 7638 { 7639 return tg_get_cfs_period(css_tg(css)); 7640 } 7641 7642 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7643 struct cftype *cftype, u64 cfs_period_us) 7644 { 7645 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7646 } 7647 7648 struct cfs_schedulable_data { 7649 struct task_group *tg; 7650 u64 period, quota; 7651 }; 7652 7653 /* 7654 * normalize group quota/period to be quota/max_period 7655 * note: units are usecs 7656 */ 7657 static u64 normalize_cfs_quota(struct task_group *tg, 7658 struct cfs_schedulable_data *d) 7659 { 7660 u64 quota, period; 7661 7662 if (tg == d->tg) { 7663 period = d->period; 7664 quota = d->quota; 7665 } else { 7666 period = tg_get_cfs_period(tg); 7667 quota = tg_get_cfs_quota(tg); 7668 } 7669 7670 /* note: these should typically be equivalent */ 7671 if (quota == RUNTIME_INF || quota == -1) 7672 return RUNTIME_INF; 7673 7674 return to_ratio(period, quota); 7675 } 7676 7677 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7678 { 7679 struct cfs_schedulable_data *d = data; 7680 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7681 s64 quota = 0, parent_quota = -1; 7682 7683 if (!tg->parent) { 7684 quota = RUNTIME_INF; 7685 } else { 7686 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7687 7688 quota = normalize_cfs_quota(tg, d); 7689 parent_quota = parent_b->hierarchical_quota; 7690 7691 /* 7692 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7693 * always take the min. On cgroup1, only inherit when no 7694 * limit is set: 7695 */ 7696 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7697 quota = min(quota, parent_quota); 7698 } else { 7699 if (quota == RUNTIME_INF) 7700 quota = parent_quota; 7701 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7702 return -EINVAL; 7703 } 7704 } 7705 cfs_b->hierarchical_quota = quota; 7706 7707 return 0; 7708 } 7709 7710 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7711 { 7712 int ret; 7713 struct cfs_schedulable_data data = { 7714 .tg = tg, 7715 .period = period, 7716 .quota = quota, 7717 }; 7718 7719 if (quota != RUNTIME_INF) { 7720 do_div(data.period, NSEC_PER_USEC); 7721 do_div(data.quota, NSEC_PER_USEC); 7722 } 7723 7724 rcu_read_lock(); 7725 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7726 rcu_read_unlock(); 7727 7728 return ret; 7729 } 7730 7731 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7732 { 7733 struct task_group *tg = css_tg(seq_css(sf)); 7734 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7735 7736 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7737 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7738 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7739 7740 if (schedstat_enabled() && tg != &root_task_group) { 7741 u64 ws = 0; 7742 int i; 7743 7744 for_each_possible_cpu(i) 7745 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7746 7747 seq_printf(sf, "wait_sum %llu\n", ws); 7748 } 7749 7750 return 0; 7751 } 7752 #endif /* CONFIG_CFS_BANDWIDTH */ 7753 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7754 7755 #ifdef CONFIG_RT_GROUP_SCHED 7756 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7757 struct cftype *cft, s64 val) 7758 { 7759 return sched_group_set_rt_runtime(css_tg(css), val); 7760 } 7761 7762 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7763 struct cftype *cft) 7764 { 7765 return sched_group_rt_runtime(css_tg(css)); 7766 } 7767 7768 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7769 struct cftype *cftype, u64 rt_period_us) 7770 { 7771 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7772 } 7773 7774 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7775 struct cftype *cft) 7776 { 7777 return sched_group_rt_period(css_tg(css)); 7778 } 7779 #endif /* CONFIG_RT_GROUP_SCHED */ 7780 7781 static struct cftype cpu_legacy_files[] = { 7782 #ifdef CONFIG_FAIR_GROUP_SCHED 7783 { 7784 .name = "shares", 7785 .read_u64 = cpu_shares_read_u64, 7786 .write_u64 = cpu_shares_write_u64, 7787 }, 7788 #endif 7789 #ifdef CONFIG_CFS_BANDWIDTH 7790 { 7791 .name = "cfs_quota_us", 7792 .read_s64 = cpu_cfs_quota_read_s64, 7793 .write_s64 = cpu_cfs_quota_write_s64, 7794 }, 7795 { 7796 .name = "cfs_period_us", 7797 .read_u64 = cpu_cfs_period_read_u64, 7798 .write_u64 = cpu_cfs_period_write_u64, 7799 }, 7800 { 7801 .name = "stat", 7802 .seq_show = cpu_cfs_stat_show, 7803 }, 7804 #endif 7805 #ifdef CONFIG_RT_GROUP_SCHED 7806 { 7807 .name = "rt_runtime_us", 7808 .read_s64 = cpu_rt_runtime_read, 7809 .write_s64 = cpu_rt_runtime_write, 7810 }, 7811 { 7812 .name = "rt_period_us", 7813 .read_u64 = cpu_rt_period_read_uint, 7814 .write_u64 = cpu_rt_period_write_uint, 7815 }, 7816 #endif 7817 #ifdef CONFIG_UCLAMP_TASK_GROUP 7818 { 7819 .name = "uclamp.min", 7820 .flags = CFTYPE_NOT_ON_ROOT, 7821 .seq_show = cpu_uclamp_min_show, 7822 .write = cpu_uclamp_min_write, 7823 }, 7824 { 7825 .name = "uclamp.max", 7826 .flags = CFTYPE_NOT_ON_ROOT, 7827 .seq_show = cpu_uclamp_max_show, 7828 .write = cpu_uclamp_max_write, 7829 }, 7830 #endif 7831 { } /* Terminate */ 7832 }; 7833 7834 static int cpu_extra_stat_show(struct seq_file *sf, 7835 struct cgroup_subsys_state *css) 7836 { 7837 #ifdef CONFIG_CFS_BANDWIDTH 7838 { 7839 struct task_group *tg = css_tg(css); 7840 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7841 u64 throttled_usec; 7842 7843 throttled_usec = cfs_b->throttled_time; 7844 do_div(throttled_usec, NSEC_PER_USEC); 7845 7846 seq_printf(sf, "nr_periods %d\n" 7847 "nr_throttled %d\n" 7848 "throttled_usec %llu\n", 7849 cfs_b->nr_periods, cfs_b->nr_throttled, 7850 throttled_usec); 7851 } 7852 #endif 7853 return 0; 7854 } 7855 7856 #ifdef CONFIG_FAIR_GROUP_SCHED 7857 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7858 struct cftype *cft) 7859 { 7860 struct task_group *tg = css_tg(css); 7861 u64 weight = scale_load_down(tg->shares); 7862 7863 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7864 } 7865 7866 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7867 struct cftype *cft, u64 weight) 7868 { 7869 /* 7870 * cgroup weight knobs should use the common MIN, DFL and MAX 7871 * values which are 1, 100 and 10000 respectively. While it loses 7872 * a bit of range on both ends, it maps pretty well onto the shares 7873 * value used by scheduler and the round-trip conversions preserve 7874 * the original value over the entire range. 7875 */ 7876 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7877 return -ERANGE; 7878 7879 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7880 7881 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7882 } 7883 7884 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7885 struct cftype *cft) 7886 { 7887 unsigned long weight = scale_load_down(css_tg(css)->shares); 7888 int last_delta = INT_MAX; 7889 int prio, delta; 7890 7891 /* find the closest nice value to the current weight */ 7892 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7893 delta = abs(sched_prio_to_weight[prio] - weight); 7894 if (delta >= last_delta) 7895 break; 7896 last_delta = delta; 7897 } 7898 7899 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7900 } 7901 7902 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7903 struct cftype *cft, s64 nice) 7904 { 7905 unsigned long weight; 7906 int idx; 7907 7908 if (nice < MIN_NICE || nice > MAX_NICE) 7909 return -ERANGE; 7910 7911 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7912 idx = array_index_nospec(idx, 40); 7913 weight = sched_prio_to_weight[idx]; 7914 7915 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7916 } 7917 #endif 7918 7919 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7920 long period, long quota) 7921 { 7922 if (quota < 0) 7923 seq_puts(sf, "max"); 7924 else 7925 seq_printf(sf, "%ld", quota); 7926 7927 seq_printf(sf, " %ld\n", period); 7928 } 7929 7930 /* caller should put the current value in *@periodp before calling */ 7931 static int __maybe_unused cpu_period_quota_parse(char *buf, 7932 u64 *periodp, u64 *quotap) 7933 { 7934 char tok[21]; /* U64_MAX */ 7935 7936 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7937 return -EINVAL; 7938 7939 *periodp *= NSEC_PER_USEC; 7940 7941 if (sscanf(tok, "%llu", quotap)) 7942 *quotap *= NSEC_PER_USEC; 7943 else if (!strcmp(tok, "max")) 7944 *quotap = RUNTIME_INF; 7945 else 7946 return -EINVAL; 7947 7948 return 0; 7949 } 7950 7951 #ifdef CONFIG_CFS_BANDWIDTH 7952 static int cpu_max_show(struct seq_file *sf, void *v) 7953 { 7954 struct task_group *tg = css_tg(seq_css(sf)); 7955 7956 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7957 return 0; 7958 } 7959 7960 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7961 char *buf, size_t nbytes, loff_t off) 7962 { 7963 struct task_group *tg = css_tg(of_css(of)); 7964 u64 period = tg_get_cfs_period(tg); 7965 u64 quota; 7966 int ret; 7967 7968 ret = cpu_period_quota_parse(buf, &period, "a); 7969 if (!ret) 7970 ret = tg_set_cfs_bandwidth(tg, period, quota); 7971 return ret ?: nbytes; 7972 } 7973 #endif 7974 7975 static struct cftype cpu_files[] = { 7976 #ifdef CONFIG_FAIR_GROUP_SCHED 7977 { 7978 .name = "weight", 7979 .flags = CFTYPE_NOT_ON_ROOT, 7980 .read_u64 = cpu_weight_read_u64, 7981 .write_u64 = cpu_weight_write_u64, 7982 }, 7983 { 7984 .name = "weight.nice", 7985 .flags = CFTYPE_NOT_ON_ROOT, 7986 .read_s64 = cpu_weight_nice_read_s64, 7987 .write_s64 = cpu_weight_nice_write_s64, 7988 }, 7989 #endif 7990 #ifdef CONFIG_CFS_BANDWIDTH 7991 { 7992 .name = "max", 7993 .flags = CFTYPE_NOT_ON_ROOT, 7994 .seq_show = cpu_max_show, 7995 .write = cpu_max_write, 7996 }, 7997 #endif 7998 #ifdef CONFIG_UCLAMP_TASK_GROUP 7999 { 8000 .name = "uclamp.min", 8001 .flags = CFTYPE_NOT_ON_ROOT, 8002 .seq_show = cpu_uclamp_min_show, 8003 .write = cpu_uclamp_min_write, 8004 }, 8005 { 8006 .name = "uclamp.max", 8007 .flags = CFTYPE_NOT_ON_ROOT, 8008 .seq_show = cpu_uclamp_max_show, 8009 .write = cpu_uclamp_max_write, 8010 }, 8011 #endif 8012 { } /* terminate */ 8013 }; 8014 8015 struct cgroup_subsys cpu_cgrp_subsys = { 8016 .css_alloc = cpu_cgroup_css_alloc, 8017 .css_online = cpu_cgroup_css_online, 8018 .css_released = cpu_cgroup_css_released, 8019 .css_free = cpu_cgroup_css_free, 8020 .css_extra_stat_show = cpu_extra_stat_show, 8021 .fork = cpu_cgroup_fork, 8022 .can_attach = cpu_cgroup_can_attach, 8023 .attach = cpu_cgroup_attach, 8024 .legacy_cftypes = cpu_legacy_files, 8025 .dfl_cftypes = cpu_files, 8026 .early_init = true, 8027 .threaded = true, 8028 }; 8029 8030 #endif /* CONFIG_CGROUP_SCHED */ 8031 8032 void dump_cpu_task(int cpu) 8033 { 8034 pr_info("Task dump for CPU %d:\n", cpu); 8035 sched_show_task(cpu_curr(cpu)); 8036 } 8037 8038 /* 8039 * Nice levels are multiplicative, with a gentle 10% change for every 8040 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8041 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8042 * that remained on nice 0. 8043 * 8044 * The "10% effect" is relative and cumulative: from _any_ nice level, 8045 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8046 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8047 * If a task goes up by ~10% and another task goes down by ~10% then 8048 * the relative distance between them is ~25%.) 8049 */ 8050 const int sched_prio_to_weight[40] = { 8051 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8052 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8053 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8054 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8055 /* 0 */ 1024, 820, 655, 526, 423, 8056 /* 5 */ 335, 272, 215, 172, 137, 8057 /* 10 */ 110, 87, 70, 56, 45, 8058 /* 15 */ 36, 29, 23, 18, 15, 8059 }; 8060 8061 /* 8062 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8063 * 8064 * In cases where the weight does not change often, we can use the 8065 * precalculated inverse to speed up arithmetics by turning divisions 8066 * into multiplications: 8067 */ 8068 const u32 sched_prio_to_wmult[40] = { 8069 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8070 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8071 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8072 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8073 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8074 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8075 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8076 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8077 }; 8078 8079 #undef CREATE_TRACE_POINTS 8080