xref: /openbmc/linux/kernel/sched/core.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include <linux/sched/rseq_api.h>
81 #include <trace/events/sched.h>
82 #undef CREATE_TRACE_POINTS
83 
84 #include "sched.h"
85 #include "stats.h"
86 #include "autogroup.h"
87 
88 #include "autogroup.h"
89 #include "pelt.h"
90 #include "smp.h"
91 #include "stats.h"
92 
93 #include "../workqueue_internal.h"
94 #include "../../io_uring/io-wq.h"
95 #include "../smpboot.h"
96 
97 /*
98  * Export tracepoints that act as a bare tracehook (ie: have no trace event
99  * associated with them) to allow external modules to probe them.
100  */
101 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
112 
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 #ifdef CONFIG_SCHED_DEBUG
116 /*
117  * Debugging: various feature bits
118  *
119  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
120  * sysctl_sched_features, defined in sched.h, to allow constants propagation
121  * at compile time and compiler optimization based on features default.
122  */
123 #define SCHED_FEAT(name, enabled)	\
124 	(1UL << __SCHED_FEAT_##name) * enabled |
125 const_debug unsigned int sysctl_sched_features =
126 #include "features.h"
127 	0;
128 #undef SCHED_FEAT
129 
130 /*
131  * Print a warning if need_resched is set for the given duration (if
132  * LATENCY_WARN is enabled).
133  *
134  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
135  * per boot.
136  */
137 __read_mostly int sysctl_resched_latency_warn_ms = 100;
138 __read_mostly int sysctl_resched_latency_warn_once = 1;
139 #endif /* CONFIG_SCHED_DEBUG */
140 
141 /*
142  * Number of tasks to iterate in a single balance run.
143  * Limited because this is done with IRQs disabled.
144  */
145 #ifdef CONFIG_PREEMPT_RT
146 const_debug unsigned int sysctl_sched_nr_migrate = 8;
147 #else
148 const_debug unsigned int sysctl_sched_nr_migrate = 32;
149 #endif
150 
151 __read_mostly int scheduler_running;
152 
153 #ifdef CONFIG_SCHED_CORE
154 
155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
156 
157 /* kernel prio, less is more */
158 static inline int __task_prio(struct task_struct *p)
159 {
160 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
161 		return -2;
162 
163 	if (rt_prio(p->prio)) /* includes deadline */
164 		return p->prio; /* [-1, 99] */
165 
166 	if (p->sched_class == &idle_sched_class)
167 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
168 
169 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
170 }
171 
172 /*
173  * l(a,b)
174  * le(a,b) := !l(b,a)
175  * g(a,b)  := l(b,a)
176  * ge(a,b) := !l(a,b)
177  */
178 
179 /* real prio, less is less */
180 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
181 {
182 
183 	int pa = __task_prio(a), pb = __task_prio(b);
184 
185 	if (-pa < -pb)
186 		return true;
187 
188 	if (-pb < -pa)
189 		return false;
190 
191 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
192 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
193 
194 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
195 		return cfs_prio_less(a, b, in_fi);
196 
197 	return false;
198 }
199 
200 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
201 {
202 	if (a->core_cookie < b->core_cookie)
203 		return true;
204 
205 	if (a->core_cookie > b->core_cookie)
206 		return false;
207 
208 	/* flip prio, so high prio is leftmost */
209 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
210 		return true;
211 
212 	return false;
213 }
214 
215 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
216 
217 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
218 {
219 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
220 }
221 
222 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
223 {
224 	const struct task_struct *p = __node_2_sc(node);
225 	unsigned long cookie = (unsigned long)key;
226 
227 	if (cookie < p->core_cookie)
228 		return -1;
229 
230 	if (cookie > p->core_cookie)
231 		return 1;
232 
233 	return 0;
234 }
235 
236 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
237 {
238 	rq->core->core_task_seq++;
239 
240 	if (!p->core_cookie)
241 		return;
242 
243 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
244 }
245 
246 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
247 {
248 	rq->core->core_task_seq++;
249 
250 	if (sched_core_enqueued(p)) {
251 		rb_erase(&p->core_node, &rq->core_tree);
252 		RB_CLEAR_NODE(&p->core_node);
253 	}
254 
255 	/*
256 	 * Migrating the last task off the cpu, with the cpu in forced idle
257 	 * state. Reschedule to create an accounting edge for forced idle,
258 	 * and re-examine whether the core is still in forced idle state.
259 	 */
260 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
261 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
262 		resched_curr(rq);
263 }
264 
265 /*
266  * Find left-most (aka, highest priority) task matching @cookie.
267  */
268 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
269 {
270 	struct rb_node *node;
271 
272 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
273 	/*
274 	 * The idle task always matches any cookie!
275 	 */
276 	if (!node)
277 		return idle_sched_class.pick_task(rq);
278 
279 	return __node_2_sc(node);
280 }
281 
282 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
283 {
284 	struct rb_node *node = &p->core_node;
285 
286 	node = rb_next(node);
287 	if (!node)
288 		return NULL;
289 
290 	p = container_of(node, struct task_struct, core_node);
291 	if (p->core_cookie != cookie)
292 		return NULL;
293 
294 	return p;
295 }
296 
297 /*
298  * Magic required such that:
299  *
300  *	raw_spin_rq_lock(rq);
301  *	...
302  *	raw_spin_rq_unlock(rq);
303  *
304  * ends up locking and unlocking the _same_ lock, and all CPUs
305  * always agree on what rq has what lock.
306  *
307  * XXX entirely possible to selectively enable cores, don't bother for now.
308  */
309 
310 static DEFINE_MUTEX(sched_core_mutex);
311 static atomic_t sched_core_count;
312 static struct cpumask sched_core_mask;
313 
314 static void sched_core_lock(int cpu, unsigned long *flags)
315 {
316 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
317 	int t, i = 0;
318 
319 	local_irq_save(*flags);
320 	for_each_cpu(t, smt_mask)
321 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
322 }
323 
324 static void sched_core_unlock(int cpu, unsigned long *flags)
325 {
326 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
327 	int t;
328 
329 	for_each_cpu(t, smt_mask)
330 		raw_spin_unlock(&cpu_rq(t)->__lock);
331 	local_irq_restore(*flags);
332 }
333 
334 static void __sched_core_flip(bool enabled)
335 {
336 	unsigned long flags;
337 	int cpu, t;
338 
339 	cpus_read_lock();
340 
341 	/*
342 	 * Toggle the online cores, one by one.
343 	 */
344 	cpumask_copy(&sched_core_mask, cpu_online_mask);
345 	for_each_cpu(cpu, &sched_core_mask) {
346 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
347 
348 		sched_core_lock(cpu, &flags);
349 
350 		for_each_cpu(t, smt_mask)
351 			cpu_rq(t)->core_enabled = enabled;
352 
353 		cpu_rq(cpu)->core->core_forceidle_start = 0;
354 
355 		sched_core_unlock(cpu, &flags);
356 
357 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
358 	}
359 
360 	/*
361 	 * Toggle the offline CPUs.
362 	 */
363 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
364 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
365 
366 	for_each_cpu(cpu, &sched_core_mask)
367 		cpu_rq(cpu)->core_enabled = enabled;
368 
369 	cpus_read_unlock();
370 }
371 
372 static void sched_core_assert_empty(void)
373 {
374 	int cpu;
375 
376 	for_each_possible_cpu(cpu)
377 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
378 }
379 
380 static void __sched_core_enable(void)
381 {
382 	static_branch_enable(&__sched_core_enabled);
383 	/*
384 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
385 	 * and future ones will observe !sched_core_disabled().
386 	 */
387 	synchronize_rcu();
388 	__sched_core_flip(true);
389 	sched_core_assert_empty();
390 }
391 
392 static void __sched_core_disable(void)
393 {
394 	sched_core_assert_empty();
395 	__sched_core_flip(false);
396 	static_branch_disable(&__sched_core_enabled);
397 }
398 
399 void sched_core_get(void)
400 {
401 	if (atomic_inc_not_zero(&sched_core_count))
402 		return;
403 
404 	mutex_lock(&sched_core_mutex);
405 	if (!atomic_read(&sched_core_count))
406 		__sched_core_enable();
407 
408 	smp_mb__before_atomic();
409 	atomic_inc(&sched_core_count);
410 	mutex_unlock(&sched_core_mutex);
411 }
412 
413 static void __sched_core_put(struct work_struct *work)
414 {
415 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
416 		__sched_core_disable();
417 		mutex_unlock(&sched_core_mutex);
418 	}
419 }
420 
421 void sched_core_put(void)
422 {
423 	static DECLARE_WORK(_work, __sched_core_put);
424 
425 	/*
426 	 * "There can be only one"
427 	 *
428 	 * Either this is the last one, or we don't actually need to do any
429 	 * 'work'. If it is the last *again*, we rely on
430 	 * WORK_STRUCT_PENDING_BIT.
431 	 */
432 	if (!atomic_add_unless(&sched_core_count, -1, 1))
433 		schedule_work(&_work);
434 }
435 
436 #else /* !CONFIG_SCHED_CORE */
437 
438 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
439 static inline void
440 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
441 
442 #endif /* CONFIG_SCHED_CORE */
443 
444 /*
445  * Serialization rules:
446  *
447  * Lock order:
448  *
449  *   p->pi_lock
450  *     rq->lock
451  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
452  *
453  *  rq1->lock
454  *    rq2->lock  where: rq1 < rq2
455  *
456  * Regular state:
457  *
458  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
459  * local CPU's rq->lock, it optionally removes the task from the runqueue and
460  * always looks at the local rq data structures to find the most eligible task
461  * to run next.
462  *
463  * Task enqueue is also under rq->lock, possibly taken from another CPU.
464  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
465  * the local CPU to avoid bouncing the runqueue state around [ see
466  * ttwu_queue_wakelist() ]
467  *
468  * Task wakeup, specifically wakeups that involve migration, are horribly
469  * complicated to avoid having to take two rq->locks.
470  *
471  * Special state:
472  *
473  * System-calls and anything external will use task_rq_lock() which acquires
474  * both p->pi_lock and rq->lock. As a consequence the state they change is
475  * stable while holding either lock:
476  *
477  *  - sched_setaffinity()/
478  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
479  *  - set_user_nice():		p->se.load, p->*prio
480  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
481  *				p->se.load, p->rt_priority,
482  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
483  *  - sched_setnuma():		p->numa_preferred_nid
484  *  - sched_move_task()/
485  *    cpu_cgroup_fork():	p->sched_task_group
486  *  - uclamp_update_active()	p->uclamp*
487  *
488  * p->state <- TASK_*:
489  *
490  *   is changed locklessly using set_current_state(), __set_current_state() or
491  *   set_special_state(), see their respective comments, or by
492  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
493  *   concurrent self.
494  *
495  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
496  *
497  *   is set by activate_task() and cleared by deactivate_task(), under
498  *   rq->lock. Non-zero indicates the task is runnable, the special
499  *   ON_RQ_MIGRATING state is used for migration without holding both
500  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
501  *
502  * p->on_cpu <- { 0, 1 }:
503  *
504  *   is set by prepare_task() and cleared by finish_task() such that it will be
505  *   set before p is scheduled-in and cleared after p is scheduled-out, both
506  *   under rq->lock. Non-zero indicates the task is running on its CPU.
507  *
508  *   [ The astute reader will observe that it is possible for two tasks on one
509  *     CPU to have ->on_cpu = 1 at the same time. ]
510  *
511  * task_cpu(p): is changed by set_task_cpu(), the rules are:
512  *
513  *  - Don't call set_task_cpu() on a blocked task:
514  *
515  *    We don't care what CPU we're not running on, this simplifies hotplug,
516  *    the CPU assignment of blocked tasks isn't required to be valid.
517  *
518  *  - for try_to_wake_up(), called under p->pi_lock:
519  *
520  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
521  *
522  *  - for migration called under rq->lock:
523  *    [ see task_on_rq_migrating() in task_rq_lock() ]
524  *
525  *    o move_queued_task()
526  *    o detach_task()
527  *
528  *  - for migration called under double_rq_lock():
529  *
530  *    o __migrate_swap_task()
531  *    o push_rt_task() / pull_rt_task()
532  *    o push_dl_task() / pull_dl_task()
533  *    o dl_task_offline_migration()
534  *
535  */
536 
537 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
538 {
539 	raw_spinlock_t *lock;
540 
541 	/* Matches synchronize_rcu() in __sched_core_enable() */
542 	preempt_disable();
543 	if (sched_core_disabled()) {
544 		raw_spin_lock_nested(&rq->__lock, subclass);
545 		/* preempt_count *MUST* be > 1 */
546 		preempt_enable_no_resched();
547 		return;
548 	}
549 
550 	for (;;) {
551 		lock = __rq_lockp(rq);
552 		raw_spin_lock_nested(lock, subclass);
553 		if (likely(lock == __rq_lockp(rq))) {
554 			/* preempt_count *MUST* be > 1 */
555 			preempt_enable_no_resched();
556 			return;
557 		}
558 		raw_spin_unlock(lock);
559 	}
560 }
561 
562 bool raw_spin_rq_trylock(struct rq *rq)
563 {
564 	raw_spinlock_t *lock;
565 	bool ret;
566 
567 	/* Matches synchronize_rcu() in __sched_core_enable() */
568 	preempt_disable();
569 	if (sched_core_disabled()) {
570 		ret = raw_spin_trylock(&rq->__lock);
571 		preempt_enable();
572 		return ret;
573 	}
574 
575 	for (;;) {
576 		lock = __rq_lockp(rq);
577 		ret = raw_spin_trylock(lock);
578 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
579 			preempt_enable();
580 			return ret;
581 		}
582 		raw_spin_unlock(lock);
583 	}
584 }
585 
586 void raw_spin_rq_unlock(struct rq *rq)
587 {
588 	raw_spin_unlock(rq_lockp(rq));
589 }
590 
591 #ifdef CONFIG_SMP
592 /*
593  * double_rq_lock - safely lock two runqueues
594  */
595 void double_rq_lock(struct rq *rq1, struct rq *rq2)
596 {
597 	lockdep_assert_irqs_disabled();
598 
599 	if (rq_order_less(rq2, rq1))
600 		swap(rq1, rq2);
601 
602 	raw_spin_rq_lock(rq1);
603 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
604 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
605 
606 	double_rq_clock_clear_update(rq1, rq2);
607 }
608 #endif
609 
610 /*
611  * __task_rq_lock - lock the rq @p resides on.
612  */
613 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
614 	__acquires(rq->lock)
615 {
616 	struct rq *rq;
617 
618 	lockdep_assert_held(&p->pi_lock);
619 
620 	for (;;) {
621 		rq = task_rq(p);
622 		raw_spin_rq_lock(rq);
623 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
624 			rq_pin_lock(rq, rf);
625 			return rq;
626 		}
627 		raw_spin_rq_unlock(rq);
628 
629 		while (unlikely(task_on_rq_migrating(p)))
630 			cpu_relax();
631 	}
632 }
633 
634 /*
635  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
636  */
637 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
638 	__acquires(p->pi_lock)
639 	__acquires(rq->lock)
640 {
641 	struct rq *rq;
642 
643 	for (;;) {
644 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
645 		rq = task_rq(p);
646 		raw_spin_rq_lock(rq);
647 		/*
648 		 *	move_queued_task()		task_rq_lock()
649 		 *
650 		 *	ACQUIRE (rq->lock)
651 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
652 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
653 		 *	[S] ->cpu = new_cpu		[L] task_rq()
654 		 *					[L] ->on_rq
655 		 *	RELEASE (rq->lock)
656 		 *
657 		 * If we observe the old CPU in task_rq_lock(), the acquire of
658 		 * the old rq->lock will fully serialize against the stores.
659 		 *
660 		 * If we observe the new CPU in task_rq_lock(), the address
661 		 * dependency headed by '[L] rq = task_rq()' and the acquire
662 		 * will pair with the WMB to ensure we then also see migrating.
663 		 */
664 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
665 			rq_pin_lock(rq, rf);
666 			return rq;
667 		}
668 		raw_spin_rq_unlock(rq);
669 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
670 
671 		while (unlikely(task_on_rq_migrating(p)))
672 			cpu_relax();
673 	}
674 }
675 
676 /*
677  * RQ-clock updating methods:
678  */
679 
680 static void update_rq_clock_task(struct rq *rq, s64 delta)
681 {
682 /*
683  * In theory, the compile should just see 0 here, and optimize out the call
684  * to sched_rt_avg_update. But I don't trust it...
685  */
686 	s64 __maybe_unused steal = 0, irq_delta = 0;
687 
688 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
689 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
690 
691 	/*
692 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
693 	 * this case when a previous update_rq_clock() happened inside a
694 	 * {soft,}irq region.
695 	 *
696 	 * When this happens, we stop ->clock_task and only update the
697 	 * prev_irq_time stamp to account for the part that fit, so that a next
698 	 * update will consume the rest. This ensures ->clock_task is
699 	 * monotonic.
700 	 *
701 	 * It does however cause some slight miss-attribution of {soft,}irq
702 	 * time, a more accurate solution would be to update the irq_time using
703 	 * the current rq->clock timestamp, except that would require using
704 	 * atomic ops.
705 	 */
706 	if (irq_delta > delta)
707 		irq_delta = delta;
708 
709 	rq->prev_irq_time += irq_delta;
710 	delta -= irq_delta;
711 #endif
712 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
713 	if (static_key_false((&paravirt_steal_rq_enabled))) {
714 		steal = paravirt_steal_clock(cpu_of(rq));
715 		steal -= rq->prev_steal_time_rq;
716 
717 		if (unlikely(steal > delta))
718 			steal = delta;
719 
720 		rq->prev_steal_time_rq += steal;
721 		delta -= steal;
722 	}
723 #endif
724 
725 	rq->clock_task += delta;
726 
727 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
728 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
729 		update_irq_load_avg(rq, irq_delta + steal);
730 #endif
731 	update_rq_clock_pelt(rq, delta);
732 }
733 
734 void update_rq_clock(struct rq *rq)
735 {
736 	s64 delta;
737 
738 	lockdep_assert_rq_held(rq);
739 
740 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
741 		return;
742 
743 #ifdef CONFIG_SCHED_DEBUG
744 	if (sched_feat(WARN_DOUBLE_CLOCK))
745 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
746 	rq->clock_update_flags |= RQCF_UPDATED;
747 #endif
748 
749 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
750 	if (delta < 0)
751 		return;
752 	rq->clock += delta;
753 	update_rq_clock_task(rq, delta);
754 }
755 
756 #ifdef CONFIG_SCHED_HRTICK
757 /*
758  * Use HR-timers to deliver accurate preemption points.
759  */
760 
761 static void hrtick_clear(struct rq *rq)
762 {
763 	if (hrtimer_active(&rq->hrtick_timer))
764 		hrtimer_cancel(&rq->hrtick_timer);
765 }
766 
767 /*
768  * High-resolution timer tick.
769  * Runs from hardirq context with interrupts disabled.
770  */
771 static enum hrtimer_restart hrtick(struct hrtimer *timer)
772 {
773 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
774 	struct rq_flags rf;
775 
776 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
777 
778 	rq_lock(rq, &rf);
779 	update_rq_clock(rq);
780 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
781 	rq_unlock(rq, &rf);
782 
783 	return HRTIMER_NORESTART;
784 }
785 
786 #ifdef CONFIG_SMP
787 
788 static void __hrtick_restart(struct rq *rq)
789 {
790 	struct hrtimer *timer = &rq->hrtick_timer;
791 	ktime_t time = rq->hrtick_time;
792 
793 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
794 }
795 
796 /*
797  * called from hardirq (IPI) context
798  */
799 static void __hrtick_start(void *arg)
800 {
801 	struct rq *rq = arg;
802 	struct rq_flags rf;
803 
804 	rq_lock(rq, &rf);
805 	__hrtick_restart(rq);
806 	rq_unlock(rq, &rf);
807 }
808 
809 /*
810  * Called to set the hrtick timer state.
811  *
812  * called with rq->lock held and irqs disabled
813  */
814 void hrtick_start(struct rq *rq, u64 delay)
815 {
816 	struct hrtimer *timer = &rq->hrtick_timer;
817 	s64 delta;
818 
819 	/*
820 	 * Don't schedule slices shorter than 10000ns, that just
821 	 * doesn't make sense and can cause timer DoS.
822 	 */
823 	delta = max_t(s64, delay, 10000LL);
824 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
825 
826 	if (rq == this_rq())
827 		__hrtick_restart(rq);
828 	else
829 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
830 }
831 
832 #else
833 /*
834  * Called to set the hrtick timer state.
835  *
836  * called with rq->lock held and irqs disabled
837  */
838 void hrtick_start(struct rq *rq, u64 delay)
839 {
840 	/*
841 	 * Don't schedule slices shorter than 10000ns, that just
842 	 * doesn't make sense. Rely on vruntime for fairness.
843 	 */
844 	delay = max_t(u64, delay, 10000LL);
845 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
846 		      HRTIMER_MODE_REL_PINNED_HARD);
847 }
848 
849 #endif /* CONFIG_SMP */
850 
851 static void hrtick_rq_init(struct rq *rq)
852 {
853 #ifdef CONFIG_SMP
854 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
855 #endif
856 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
857 	rq->hrtick_timer.function = hrtick;
858 }
859 #else	/* CONFIG_SCHED_HRTICK */
860 static inline void hrtick_clear(struct rq *rq)
861 {
862 }
863 
864 static inline void hrtick_rq_init(struct rq *rq)
865 {
866 }
867 #endif	/* CONFIG_SCHED_HRTICK */
868 
869 /*
870  * cmpxchg based fetch_or, macro so it works for different integer types
871  */
872 #define fetch_or(ptr, mask)						\
873 	({								\
874 		typeof(ptr) _ptr = (ptr);				\
875 		typeof(mask) _mask = (mask);				\
876 		typeof(*_ptr) _val = *_ptr;				\
877 									\
878 		do {							\
879 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
880 	_val;								\
881 })
882 
883 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
884 /*
885  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
886  * this avoids any races wrt polling state changes and thereby avoids
887  * spurious IPIs.
888  */
889 static inline bool set_nr_and_not_polling(struct task_struct *p)
890 {
891 	struct thread_info *ti = task_thread_info(p);
892 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
893 }
894 
895 /*
896  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
897  *
898  * If this returns true, then the idle task promises to call
899  * sched_ttwu_pending() and reschedule soon.
900  */
901 static bool set_nr_if_polling(struct task_struct *p)
902 {
903 	struct thread_info *ti = task_thread_info(p);
904 	typeof(ti->flags) val = READ_ONCE(ti->flags);
905 
906 	for (;;) {
907 		if (!(val & _TIF_POLLING_NRFLAG))
908 			return false;
909 		if (val & _TIF_NEED_RESCHED)
910 			return true;
911 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
912 			break;
913 	}
914 	return true;
915 }
916 
917 #else
918 static inline bool set_nr_and_not_polling(struct task_struct *p)
919 {
920 	set_tsk_need_resched(p);
921 	return true;
922 }
923 
924 #ifdef CONFIG_SMP
925 static inline bool set_nr_if_polling(struct task_struct *p)
926 {
927 	return false;
928 }
929 #endif
930 #endif
931 
932 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
933 {
934 	struct wake_q_node *node = &task->wake_q;
935 
936 	/*
937 	 * Atomically grab the task, if ->wake_q is !nil already it means
938 	 * it's already queued (either by us or someone else) and will get the
939 	 * wakeup due to that.
940 	 *
941 	 * In order to ensure that a pending wakeup will observe our pending
942 	 * state, even in the failed case, an explicit smp_mb() must be used.
943 	 */
944 	smp_mb__before_atomic();
945 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
946 		return false;
947 
948 	/*
949 	 * The head is context local, there can be no concurrency.
950 	 */
951 	*head->lastp = node;
952 	head->lastp = &node->next;
953 	return true;
954 }
955 
956 /**
957  * wake_q_add() - queue a wakeup for 'later' waking.
958  * @head: the wake_q_head to add @task to
959  * @task: the task to queue for 'later' wakeup
960  *
961  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
962  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
963  * instantly.
964  *
965  * This function must be used as-if it were wake_up_process(); IOW the task
966  * must be ready to be woken at this location.
967  */
968 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
969 {
970 	if (__wake_q_add(head, task))
971 		get_task_struct(task);
972 }
973 
974 /**
975  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
976  * @head: the wake_q_head to add @task to
977  * @task: the task to queue for 'later' wakeup
978  *
979  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
980  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
981  * instantly.
982  *
983  * This function must be used as-if it were wake_up_process(); IOW the task
984  * must be ready to be woken at this location.
985  *
986  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
987  * that already hold reference to @task can call the 'safe' version and trust
988  * wake_q to do the right thing depending whether or not the @task is already
989  * queued for wakeup.
990  */
991 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
992 {
993 	if (!__wake_q_add(head, task))
994 		put_task_struct(task);
995 }
996 
997 void wake_up_q(struct wake_q_head *head)
998 {
999 	struct wake_q_node *node = head->first;
1000 
1001 	while (node != WAKE_Q_TAIL) {
1002 		struct task_struct *task;
1003 
1004 		task = container_of(node, struct task_struct, wake_q);
1005 		/* Task can safely be re-inserted now: */
1006 		node = node->next;
1007 		task->wake_q.next = NULL;
1008 
1009 		/*
1010 		 * wake_up_process() executes a full barrier, which pairs with
1011 		 * the queueing in wake_q_add() so as not to miss wakeups.
1012 		 */
1013 		wake_up_process(task);
1014 		put_task_struct(task);
1015 	}
1016 }
1017 
1018 /*
1019  * resched_curr - mark rq's current task 'to be rescheduled now'.
1020  *
1021  * On UP this means the setting of the need_resched flag, on SMP it
1022  * might also involve a cross-CPU call to trigger the scheduler on
1023  * the target CPU.
1024  */
1025 void resched_curr(struct rq *rq)
1026 {
1027 	struct task_struct *curr = rq->curr;
1028 	int cpu;
1029 
1030 	lockdep_assert_rq_held(rq);
1031 
1032 	if (test_tsk_need_resched(curr))
1033 		return;
1034 
1035 	cpu = cpu_of(rq);
1036 
1037 	if (cpu == smp_processor_id()) {
1038 		set_tsk_need_resched(curr);
1039 		set_preempt_need_resched();
1040 		return;
1041 	}
1042 
1043 	if (set_nr_and_not_polling(curr))
1044 		smp_send_reschedule(cpu);
1045 	else
1046 		trace_sched_wake_idle_without_ipi(cpu);
1047 }
1048 
1049 void resched_cpu(int cpu)
1050 {
1051 	struct rq *rq = cpu_rq(cpu);
1052 	unsigned long flags;
1053 
1054 	raw_spin_rq_lock_irqsave(rq, flags);
1055 	if (cpu_online(cpu) || cpu == smp_processor_id())
1056 		resched_curr(rq);
1057 	raw_spin_rq_unlock_irqrestore(rq, flags);
1058 }
1059 
1060 #ifdef CONFIG_SMP
1061 #ifdef CONFIG_NO_HZ_COMMON
1062 /*
1063  * In the semi idle case, use the nearest busy CPU for migrating timers
1064  * from an idle CPU.  This is good for power-savings.
1065  *
1066  * We don't do similar optimization for completely idle system, as
1067  * selecting an idle CPU will add more delays to the timers than intended
1068  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1069  */
1070 int get_nohz_timer_target(void)
1071 {
1072 	int i, cpu = smp_processor_id(), default_cpu = -1;
1073 	struct sched_domain *sd;
1074 	const struct cpumask *hk_mask;
1075 
1076 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1077 		if (!idle_cpu(cpu))
1078 			return cpu;
1079 		default_cpu = cpu;
1080 	}
1081 
1082 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1083 
1084 	rcu_read_lock();
1085 	for_each_domain(cpu, sd) {
1086 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1087 			if (cpu == i)
1088 				continue;
1089 
1090 			if (!idle_cpu(i)) {
1091 				cpu = i;
1092 				goto unlock;
1093 			}
1094 		}
1095 	}
1096 
1097 	if (default_cpu == -1)
1098 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1099 	cpu = default_cpu;
1100 unlock:
1101 	rcu_read_unlock();
1102 	return cpu;
1103 }
1104 
1105 /*
1106  * When add_timer_on() enqueues a timer into the timer wheel of an
1107  * idle CPU then this timer might expire before the next timer event
1108  * which is scheduled to wake up that CPU. In case of a completely
1109  * idle system the next event might even be infinite time into the
1110  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1111  * leaves the inner idle loop so the newly added timer is taken into
1112  * account when the CPU goes back to idle and evaluates the timer
1113  * wheel for the next timer event.
1114  */
1115 static void wake_up_idle_cpu(int cpu)
1116 {
1117 	struct rq *rq = cpu_rq(cpu);
1118 
1119 	if (cpu == smp_processor_id())
1120 		return;
1121 
1122 	if (set_nr_and_not_polling(rq->idle))
1123 		smp_send_reschedule(cpu);
1124 	else
1125 		trace_sched_wake_idle_without_ipi(cpu);
1126 }
1127 
1128 static bool wake_up_full_nohz_cpu(int cpu)
1129 {
1130 	/*
1131 	 * We just need the target to call irq_exit() and re-evaluate
1132 	 * the next tick. The nohz full kick at least implies that.
1133 	 * If needed we can still optimize that later with an
1134 	 * empty IRQ.
1135 	 */
1136 	if (cpu_is_offline(cpu))
1137 		return true;  /* Don't try to wake offline CPUs. */
1138 	if (tick_nohz_full_cpu(cpu)) {
1139 		if (cpu != smp_processor_id() ||
1140 		    tick_nohz_tick_stopped())
1141 			tick_nohz_full_kick_cpu(cpu);
1142 		return true;
1143 	}
1144 
1145 	return false;
1146 }
1147 
1148 /*
1149  * Wake up the specified CPU.  If the CPU is going offline, it is the
1150  * caller's responsibility to deal with the lost wakeup, for example,
1151  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1152  */
1153 void wake_up_nohz_cpu(int cpu)
1154 {
1155 	if (!wake_up_full_nohz_cpu(cpu))
1156 		wake_up_idle_cpu(cpu);
1157 }
1158 
1159 static void nohz_csd_func(void *info)
1160 {
1161 	struct rq *rq = info;
1162 	int cpu = cpu_of(rq);
1163 	unsigned int flags;
1164 
1165 	/*
1166 	 * Release the rq::nohz_csd.
1167 	 */
1168 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1169 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1170 
1171 	rq->idle_balance = idle_cpu(cpu);
1172 	if (rq->idle_balance && !need_resched()) {
1173 		rq->nohz_idle_balance = flags;
1174 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1175 	}
1176 }
1177 
1178 #endif /* CONFIG_NO_HZ_COMMON */
1179 
1180 #ifdef CONFIG_NO_HZ_FULL
1181 bool sched_can_stop_tick(struct rq *rq)
1182 {
1183 	int fifo_nr_running;
1184 
1185 	/* Deadline tasks, even if single, need the tick */
1186 	if (rq->dl.dl_nr_running)
1187 		return false;
1188 
1189 	/*
1190 	 * If there are more than one RR tasks, we need the tick to affect the
1191 	 * actual RR behaviour.
1192 	 */
1193 	if (rq->rt.rr_nr_running) {
1194 		if (rq->rt.rr_nr_running == 1)
1195 			return true;
1196 		else
1197 			return false;
1198 	}
1199 
1200 	/*
1201 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1202 	 * forced preemption between FIFO tasks.
1203 	 */
1204 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1205 	if (fifo_nr_running)
1206 		return true;
1207 
1208 	/*
1209 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1210 	 * if there's more than one we need the tick for involuntary
1211 	 * preemption.
1212 	 */
1213 	if (rq->nr_running > 1)
1214 		return false;
1215 
1216 	return true;
1217 }
1218 #endif /* CONFIG_NO_HZ_FULL */
1219 #endif /* CONFIG_SMP */
1220 
1221 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1222 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1223 /*
1224  * Iterate task_group tree rooted at *from, calling @down when first entering a
1225  * node and @up when leaving it for the final time.
1226  *
1227  * Caller must hold rcu_lock or sufficient equivalent.
1228  */
1229 int walk_tg_tree_from(struct task_group *from,
1230 			     tg_visitor down, tg_visitor up, void *data)
1231 {
1232 	struct task_group *parent, *child;
1233 	int ret;
1234 
1235 	parent = from;
1236 
1237 down:
1238 	ret = (*down)(parent, data);
1239 	if (ret)
1240 		goto out;
1241 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1242 		parent = child;
1243 		goto down;
1244 
1245 up:
1246 		continue;
1247 	}
1248 	ret = (*up)(parent, data);
1249 	if (ret || parent == from)
1250 		goto out;
1251 
1252 	child = parent;
1253 	parent = parent->parent;
1254 	if (parent)
1255 		goto up;
1256 out:
1257 	return ret;
1258 }
1259 
1260 int tg_nop(struct task_group *tg, void *data)
1261 {
1262 	return 0;
1263 }
1264 #endif
1265 
1266 static void set_load_weight(struct task_struct *p, bool update_load)
1267 {
1268 	int prio = p->static_prio - MAX_RT_PRIO;
1269 	struct load_weight *load = &p->se.load;
1270 
1271 	/*
1272 	 * SCHED_IDLE tasks get minimal weight:
1273 	 */
1274 	if (task_has_idle_policy(p)) {
1275 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1276 		load->inv_weight = WMULT_IDLEPRIO;
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * SCHED_OTHER tasks have to update their load when changing their
1282 	 * weight
1283 	 */
1284 	if (update_load && p->sched_class == &fair_sched_class) {
1285 		reweight_task(p, prio);
1286 	} else {
1287 		load->weight = scale_load(sched_prio_to_weight[prio]);
1288 		load->inv_weight = sched_prio_to_wmult[prio];
1289 	}
1290 }
1291 
1292 #ifdef CONFIG_UCLAMP_TASK
1293 /*
1294  * Serializes updates of utilization clamp values
1295  *
1296  * The (slow-path) user-space triggers utilization clamp value updates which
1297  * can require updates on (fast-path) scheduler's data structures used to
1298  * support enqueue/dequeue operations.
1299  * While the per-CPU rq lock protects fast-path update operations, user-space
1300  * requests are serialized using a mutex to reduce the risk of conflicting
1301  * updates or API abuses.
1302  */
1303 static DEFINE_MUTEX(uclamp_mutex);
1304 
1305 /* Max allowed minimum utilization */
1306 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1307 
1308 /* Max allowed maximum utilization */
1309 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1310 
1311 /*
1312  * By default RT tasks run at the maximum performance point/capacity of the
1313  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1314  * SCHED_CAPACITY_SCALE.
1315  *
1316  * This knob allows admins to change the default behavior when uclamp is being
1317  * used. In battery powered devices, particularly, running at the maximum
1318  * capacity and frequency will increase energy consumption and shorten the
1319  * battery life.
1320  *
1321  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1322  *
1323  * This knob will not override the system default sched_util_clamp_min defined
1324  * above.
1325  */
1326 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1327 
1328 /* All clamps are required to be less or equal than these values */
1329 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1330 
1331 /*
1332  * This static key is used to reduce the uclamp overhead in the fast path. It
1333  * primarily disables the call to uclamp_rq_{inc, dec}() in
1334  * enqueue/dequeue_task().
1335  *
1336  * This allows users to continue to enable uclamp in their kernel config with
1337  * minimum uclamp overhead in the fast path.
1338  *
1339  * As soon as userspace modifies any of the uclamp knobs, the static key is
1340  * enabled, since we have an actual users that make use of uclamp
1341  * functionality.
1342  *
1343  * The knobs that would enable this static key are:
1344  *
1345  *   * A task modifying its uclamp value with sched_setattr().
1346  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1347  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1348  */
1349 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1350 
1351 /* Integer rounded range for each bucket */
1352 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1353 
1354 #define for_each_clamp_id(clamp_id) \
1355 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1356 
1357 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1358 {
1359 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1360 }
1361 
1362 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1363 {
1364 	if (clamp_id == UCLAMP_MIN)
1365 		return 0;
1366 	return SCHED_CAPACITY_SCALE;
1367 }
1368 
1369 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1370 				 unsigned int value, bool user_defined)
1371 {
1372 	uc_se->value = value;
1373 	uc_se->bucket_id = uclamp_bucket_id(value);
1374 	uc_se->user_defined = user_defined;
1375 }
1376 
1377 static inline unsigned int
1378 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1379 		  unsigned int clamp_value)
1380 {
1381 	/*
1382 	 * Avoid blocked utilization pushing up the frequency when we go
1383 	 * idle (which drops the max-clamp) by retaining the last known
1384 	 * max-clamp.
1385 	 */
1386 	if (clamp_id == UCLAMP_MAX) {
1387 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1388 		return clamp_value;
1389 	}
1390 
1391 	return uclamp_none(UCLAMP_MIN);
1392 }
1393 
1394 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1395 				     unsigned int clamp_value)
1396 {
1397 	/* Reset max-clamp retention only on idle exit */
1398 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1399 		return;
1400 
1401 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1402 }
1403 
1404 static inline
1405 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1406 				   unsigned int clamp_value)
1407 {
1408 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1409 	int bucket_id = UCLAMP_BUCKETS - 1;
1410 
1411 	/*
1412 	 * Since both min and max clamps are max aggregated, find the
1413 	 * top most bucket with tasks in.
1414 	 */
1415 	for ( ; bucket_id >= 0; bucket_id--) {
1416 		if (!bucket[bucket_id].tasks)
1417 			continue;
1418 		return bucket[bucket_id].value;
1419 	}
1420 
1421 	/* No tasks -- default clamp values */
1422 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1423 }
1424 
1425 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1426 {
1427 	unsigned int default_util_min;
1428 	struct uclamp_se *uc_se;
1429 
1430 	lockdep_assert_held(&p->pi_lock);
1431 
1432 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1433 
1434 	/* Only sync if user didn't override the default */
1435 	if (uc_se->user_defined)
1436 		return;
1437 
1438 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1439 	uclamp_se_set(uc_se, default_util_min, false);
1440 }
1441 
1442 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1443 {
1444 	struct rq_flags rf;
1445 	struct rq *rq;
1446 
1447 	if (!rt_task(p))
1448 		return;
1449 
1450 	/* Protect updates to p->uclamp_* */
1451 	rq = task_rq_lock(p, &rf);
1452 	__uclamp_update_util_min_rt_default(p);
1453 	task_rq_unlock(rq, p, &rf);
1454 }
1455 
1456 static inline struct uclamp_se
1457 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1458 {
1459 	/* Copy by value as we could modify it */
1460 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1461 #ifdef CONFIG_UCLAMP_TASK_GROUP
1462 	unsigned int tg_min, tg_max, value;
1463 
1464 	/*
1465 	 * Tasks in autogroups or root task group will be
1466 	 * restricted by system defaults.
1467 	 */
1468 	if (task_group_is_autogroup(task_group(p)))
1469 		return uc_req;
1470 	if (task_group(p) == &root_task_group)
1471 		return uc_req;
1472 
1473 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1474 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1475 	value = uc_req.value;
1476 	value = clamp(value, tg_min, tg_max);
1477 	uclamp_se_set(&uc_req, value, false);
1478 #endif
1479 
1480 	return uc_req;
1481 }
1482 
1483 /*
1484  * The effective clamp bucket index of a task depends on, by increasing
1485  * priority:
1486  * - the task specific clamp value, when explicitly requested from userspace
1487  * - the task group effective clamp value, for tasks not either in the root
1488  *   group or in an autogroup
1489  * - the system default clamp value, defined by the sysadmin
1490  */
1491 static inline struct uclamp_se
1492 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1493 {
1494 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1495 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1496 
1497 	/* System default restrictions always apply */
1498 	if (unlikely(uc_req.value > uc_max.value))
1499 		return uc_max;
1500 
1501 	return uc_req;
1502 }
1503 
1504 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1505 {
1506 	struct uclamp_se uc_eff;
1507 
1508 	/* Task currently refcounted: use back-annotated (effective) value */
1509 	if (p->uclamp[clamp_id].active)
1510 		return (unsigned long)p->uclamp[clamp_id].value;
1511 
1512 	uc_eff = uclamp_eff_get(p, clamp_id);
1513 
1514 	return (unsigned long)uc_eff.value;
1515 }
1516 
1517 /*
1518  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1519  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1520  * updates the rq's clamp value if required.
1521  *
1522  * Tasks can have a task-specific value requested from user-space, track
1523  * within each bucket the maximum value for tasks refcounted in it.
1524  * This "local max aggregation" allows to track the exact "requested" value
1525  * for each bucket when all its RUNNABLE tasks require the same clamp.
1526  */
1527 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1528 				    enum uclamp_id clamp_id)
1529 {
1530 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1531 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1532 	struct uclamp_bucket *bucket;
1533 
1534 	lockdep_assert_rq_held(rq);
1535 
1536 	/* Update task effective clamp */
1537 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1538 
1539 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1540 	bucket->tasks++;
1541 	uc_se->active = true;
1542 
1543 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1544 
1545 	/*
1546 	 * Local max aggregation: rq buckets always track the max
1547 	 * "requested" clamp value of its RUNNABLE tasks.
1548 	 */
1549 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1550 		bucket->value = uc_se->value;
1551 
1552 	if (uc_se->value > READ_ONCE(uc_rq->value))
1553 		WRITE_ONCE(uc_rq->value, uc_se->value);
1554 }
1555 
1556 /*
1557  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1558  * is released. If this is the last task reference counting the rq's max
1559  * active clamp value, then the rq's clamp value is updated.
1560  *
1561  * Both refcounted tasks and rq's cached clamp values are expected to be
1562  * always valid. If it's detected they are not, as defensive programming,
1563  * enforce the expected state and warn.
1564  */
1565 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1566 				    enum uclamp_id clamp_id)
1567 {
1568 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1569 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1570 	struct uclamp_bucket *bucket;
1571 	unsigned int bkt_clamp;
1572 	unsigned int rq_clamp;
1573 
1574 	lockdep_assert_rq_held(rq);
1575 
1576 	/*
1577 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1578 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1579 	 *
1580 	 * In this case the uc_se->active flag should be false since no uclamp
1581 	 * accounting was performed at enqueue time and we can just return
1582 	 * here.
1583 	 *
1584 	 * Need to be careful of the following enqueue/dequeue ordering
1585 	 * problem too
1586 	 *
1587 	 *	enqueue(taskA)
1588 	 *	// sched_uclamp_used gets enabled
1589 	 *	enqueue(taskB)
1590 	 *	dequeue(taskA)
1591 	 *	// Must not decrement bucket->tasks here
1592 	 *	dequeue(taskB)
1593 	 *
1594 	 * where we could end up with stale data in uc_se and
1595 	 * bucket[uc_se->bucket_id].
1596 	 *
1597 	 * The following check here eliminates the possibility of such race.
1598 	 */
1599 	if (unlikely(!uc_se->active))
1600 		return;
1601 
1602 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1603 
1604 	SCHED_WARN_ON(!bucket->tasks);
1605 	if (likely(bucket->tasks))
1606 		bucket->tasks--;
1607 
1608 	uc_se->active = false;
1609 
1610 	/*
1611 	 * Keep "local max aggregation" simple and accept to (possibly)
1612 	 * overboost some RUNNABLE tasks in the same bucket.
1613 	 * The rq clamp bucket value is reset to its base value whenever
1614 	 * there are no more RUNNABLE tasks refcounting it.
1615 	 */
1616 	if (likely(bucket->tasks))
1617 		return;
1618 
1619 	rq_clamp = READ_ONCE(uc_rq->value);
1620 	/*
1621 	 * Defensive programming: this should never happen. If it happens,
1622 	 * e.g. due to future modification, warn and fixup the expected value.
1623 	 */
1624 	SCHED_WARN_ON(bucket->value > rq_clamp);
1625 	if (bucket->value >= rq_clamp) {
1626 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1627 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1628 	}
1629 }
1630 
1631 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1632 {
1633 	enum uclamp_id clamp_id;
1634 
1635 	/*
1636 	 * Avoid any overhead until uclamp is actually used by the userspace.
1637 	 *
1638 	 * The condition is constructed such that a NOP is generated when
1639 	 * sched_uclamp_used is disabled.
1640 	 */
1641 	if (!static_branch_unlikely(&sched_uclamp_used))
1642 		return;
1643 
1644 	if (unlikely(!p->sched_class->uclamp_enabled))
1645 		return;
1646 
1647 	for_each_clamp_id(clamp_id)
1648 		uclamp_rq_inc_id(rq, p, clamp_id);
1649 
1650 	/* Reset clamp idle holding when there is one RUNNABLE task */
1651 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1652 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1653 }
1654 
1655 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1656 {
1657 	enum uclamp_id clamp_id;
1658 
1659 	/*
1660 	 * Avoid any overhead until uclamp is actually used by the userspace.
1661 	 *
1662 	 * The condition is constructed such that a NOP is generated when
1663 	 * sched_uclamp_used is disabled.
1664 	 */
1665 	if (!static_branch_unlikely(&sched_uclamp_used))
1666 		return;
1667 
1668 	if (unlikely(!p->sched_class->uclamp_enabled))
1669 		return;
1670 
1671 	for_each_clamp_id(clamp_id)
1672 		uclamp_rq_dec_id(rq, p, clamp_id);
1673 }
1674 
1675 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1676 				      enum uclamp_id clamp_id)
1677 {
1678 	if (!p->uclamp[clamp_id].active)
1679 		return;
1680 
1681 	uclamp_rq_dec_id(rq, p, clamp_id);
1682 	uclamp_rq_inc_id(rq, p, clamp_id);
1683 
1684 	/*
1685 	 * Make sure to clear the idle flag if we've transiently reached 0
1686 	 * active tasks on rq.
1687 	 */
1688 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1689 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1690 }
1691 
1692 static inline void
1693 uclamp_update_active(struct task_struct *p)
1694 {
1695 	enum uclamp_id clamp_id;
1696 	struct rq_flags rf;
1697 	struct rq *rq;
1698 
1699 	/*
1700 	 * Lock the task and the rq where the task is (or was) queued.
1701 	 *
1702 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1703 	 * price to pay to safely serialize util_{min,max} updates with
1704 	 * enqueues, dequeues and migration operations.
1705 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1706 	 */
1707 	rq = task_rq_lock(p, &rf);
1708 
1709 	/*
1710 	 * Setting the clamp bucket is serialized by task_rq_lock().
1711 	 * If the task is not yet RUNNABLE and its task_struct is not
1712 	 * affecting a valid clamp bucket, the next time it's enqueued,
1713 	 * it will already see the updated clamp bucket value.
1714 	 */
1715 	for_each_clamp_id(clamp_id)
1716 		uclamp_rq_reinc_id(rq, p, clamp_id);
1717 
1718 	task_rq_unlock(rq, p, &rf);
1719 }
1720 
1721 #ifdef CONFIG_UCLAMP_TASK_GROUP
1722 static inline void
1723 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1724 {
1725 	struct css_task_iter it;
1726 	struct task_struct *p;
1727 
1728 	css_task_iter_start(css, 0, &it);
1729 	while ((p = css_task_iter_next(&it)))
1730 		uclamp_update_active(p);
1731 	css_task_iter_end(&it);
1732 }
1733 
1734 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1735 #endif
1736 
1737 #ifdef CONFIG_SYSCTL
1738 #ifdef CONFIG_UCLAMP_TASK
1739 #ifdef CONFIG_UCLAMP_TASK_GROUP
1740 static void uclamp_update_root_tg(void)
1741 {
1742 	struct task_group *tg = &root_task_group;
1743 
1744 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1745 		      sysctl_sched_uclamp_util_min, false);
1746 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1747 		      sysctl_sched_uclamp_util_max, false);
1748 
1749 	rcu_read_lock();
1750 	cpu_util_update_eff(&root_task_group.css);
1751 	rcu_read_unlock();
1752 }
1753 #else
1754 static void uclamp_update_root_tg(void) { }
1755 #endif
1756 
1757 static void uclamp_sync_util_min_rt_default(void)
1758 {
1759 	struct task_struct *g, *p;
1760 
1761 	/*
1762 	 * copy_process()			sysctl_uclamp
1763 	 *					  uclamp_min_rt = X;
1764 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1765 	 *   // link thread			  smp_mb__after_spinlock()
1766 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1767 	 *   sched_post_fork()			  for_each_process_thread()
1768 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1769 	 *
1770 	 * Ensures that either sched_post_fork() will observe the new
1771 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1772 	 * task.
1773 	 */
1774 	read_lock(&tasklist_lock);
1775 	smp_mb__after_spinlock();
1776 	read_unlock(&tasklist_lock);
1777 
1778 	rcu_read_lock();
1779 	for_each_process_thread(g, p)
1780 		uclamp_update_util_min_rt_default(p);
1781 	rcu_read_unlock();
1782 }
1783 
1784 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1785 				void *buffer, size_t *lenp, loff_t *ppos)
1786 {
1787 	bool update_root_tg = false;
1788 	int old_min, old_max, old_min_rt;
1789 	int result;
1790 
1791 	mutex_lock(&uclamp_mutex);
1792 	old_min = sysctl_sched_uclamp_util_min;
1793 	old_max = sysctl_sched_uclamp_util_max;
1794 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1795 
1796 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1797 	if (result)
1798 		goto undo;
1799 	if (!write)
1800 		goto done;
1801 
1802 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1803 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1804 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1805 
1806 		result = -EINVAL;
1807 		goto undo;
1808 	}
1809 
1810 	if (old_min != sysctl_sched_uclamp_util_min) {
1811 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1812 			      sysctl_sched_uclamp_util_min, false);
1813 		update_root_tg = true;
1814 	}
1815 	if (old_max != sysctl_sched_uclamp_util_max) {
1816 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1817 			      sysctl_sched_uclamp_util_max, false);
1818 		update_root_tg = true;
1819 	}
1820 
1821 	if (update_root_tg) {
1822 		static_branch_enable(&sched_uclamp_used);
1823 		uclamp_update_root_tg();
1824 	}
1825 
1826 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1827 		static_branch_enable(&sched_uclamp_used);
1828 		uclamp_sync_util_min_rt_default();
1829 	}
1830 
1831 	/*
1832 	 * We update all RUNNABLE tasks only when task groups are in use.
1833 	 * Otherwise, keep it simple and do just a lazy update at each next
1834 	 * task enqueue time.
1835 	 */
1836 
1837 	goto done;
1838 
1839 undo:
1840 	sysctl_sched_uclamp_util_min = old_min;
1841 	sysctl_sched_uclamp_util_max = old_max;
1842 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1843 done:
1844 	mutex_unlock(&uclamp_mutex);
1845 
1846 	return result;
1847 }
1848 #endif
1849 #endif
1850 
1851 static int uclamp_validate(struct task_struct *p,
1852 			   const struct sched_attr *attr)
1853 {
1854 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1855 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1856 
1857 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1858 		util_min = attr->sched_util_min;
1859 
1860 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1861 			return -EINVAL;
1862 	}
1863 
1864 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1865 		util_max = attr->sched_util_max;
1866 
1867 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1868 			return -EINVAL;
1869 	}
1870 
1871 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1872 		return -EINVAL;
1873 
1874 	/*
1875 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1876 	 *
1877 	 * We need to do that here, because enabling static branches is a
1878 	 * blocking operation which obviously cannot be done while holding
1879 	 * scheduler locks.
1880 	 */
1881 	static_branch_enable(&sched_uclamp_used);
1882 
1883 	return 0;
1884 }
1885 
1886 static bool uclamp_reset(const struct sched_attr *attr,
1887 			 enum uclamp_id clamp_id,
1888 			 struct uclamp_se *uc_se)
1889 {
1890 	/* Reset on sched class change for a non user-defined clamp value. */
1891 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1892 	    !uc_se->user_defined)
1893 		return true;
1894 
1895 	/* Reset on sched_util_{min,max} == -1. */
1896 	if (clamp_id == UCLAMP_MIN &&
1897 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1898 	    attr->sched_util_min == -1) {
1899 		return true;
1900 	}
1901 
1902 	if (clamp_id == UCLAMP_MAX &&
1903 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1904 	    attr->sched_util_max == -1) {
1905 		return true;
1906 	}
1907 
1908 	return false;
1909 }
1910 
1911 static void __setscheduler_uclamp(struct task_struct *p,
1912 				  const struct sched_attr *attr)
1913 {
1914 	enum uclamp_id clamp_id;
1915 
1916 	for_each_clamp_id(clamp_id) {
1917 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1918 		unsigned int value;
1919 
1920 		if (!uclamp_reset(attr, clamp_id, uc_se))
1921 			continue;
1922 
1923 		/*
1924 		 * RT by default have a 100% boost value that could be modified
1925 		 * at runtime.
1926 		 */
1927 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1928 			value = sysctl_sched_uclamp_util_min_rt_default;
1929 		else
1930 			value = uclamp_none(clamp_id);
1931 
1932 		uclamp_se_set(uc_se, value, false);
1933 
1934 	}
1935 
1936 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1937 		return;
1938 
1939 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1940 	    attr->sched_util_min != -1) {
1941 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1942 			      attr->sched_util_min, true);
1943 	}
1944 
1945 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1946 	    attr->sched_util_max != -1) {
1947 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1948 			      attr->sched_util_max, true);
1949 	}
1950 }
1951 
1952 static void uclamp_fork(struct task_struct *p)
1953 {
1954 	enum uclamp_id clamp_id;
1955 
1956 	/*
1957 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1958 	 * as the task is still at its early fork stages.
1959 	 */
1960 	for_each_clamp_id(clamp_id)
1961 		p->uclamp[clamp_id].active = false;
1962 
1963 	if (likely(!p->sched_reset_on_fork))
1964 		return;
1965 
1966 	for_each_clamp_id(clamp_id) {
1967 		uclamp_se_set(&p->uclamp_req[clamp_id],
1968 			      uclamp_none(clamp_id), false);
1969 	}
1970 }
1971 
1972 static void uclamp_post_fork(struct task_struct *p)
1973 {
1974 	uclamp_update_util_min_rt_default(p);
1975 }
1976 
1977 static void __init init_uclamp_rq(struct rq *rq)
1978 {
1979 	enum uclamp_id clamp_id;
1980 	struct uclamp_rq *uc_rq = rq->uclamp;
1981 
1982 	for_each_clamp_id(clamp_id) {
1983 		uc_rq[clamp_id] = (struct uclamp_rq) {
1984 			.value = uclamp_none(clamp_id)
1985 		};
1986 	}
1987 
1988 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1989 }
1990 
1991 static void __init init_uclamp(void)
1992 {
1993 	struct uclamp_se uc_max = {};
1994 	enum uclamp_id clamp_id;
1995 	int cpu;
1996 
1997 	for_each_possible_cpu(cpu)
1998 		init_uclamp_rq(cpu_rq(cpu));
1999 
2000 	for_each_clamp_id(clamp_id) {
2001 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2002 			      uclamp_none(clamp_id), false);
2003 	}
2004 
2005 	/* System defaults allow max clamp values for both indexes */
2006 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2007 	for_each_clamp_id(clamp_id) {
2008 		uclamp_default[clamp_id] = uc_max;
2009 #ifdef CONFIG_UCLAMP_TASK_GROUP
2010 		root_task_group.uclamp_req[clamp_id] = uc_max;
2011 		root_task_group.uclamp[clamp_id] = uc_max;
2012 #endif
2013 	}
2014 }
2015 
2016 #else /* CONFIG_UCLAMP_TASK */
2017 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2018 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2019 static inline int uclamp_validate(struct task_struct *p,
2020 				  const struct sched_attr *attr)
2021 {
2022 	return -EOPNOTSUPP;
2023 }
2024 static void __setscheduler_uclamp(struct task_struct *p,
2025 				  const struct sched_attr *attr) { }
2026 static inline void uclamp_fork(struct task_struct *p) { }
2027 static inline void uclamp_post_fork(struct task_struct *p) { }
2028 static inline void init_uclamp(void) { }
2029 #endif /* CONFIG_UCLAMP_TASK */
2030 
2031 bool sched_task_on_rq(struct task_struct *p)
2032 {
2033 	return task_on_rq_queued(p);
2034 }
2035 
2036 unsigned long get_wchan(struct task_struct *p)
2037 {
2038 	unsigned long ip = 0;
2039 	unsigned int state;
2040 
2041 	if (!p || p == current)
2042 		return 0;
2043 
2044 	/* Only get wchan if task is blocked and we can keep it that way. */
2045 	raw_spin_lock_irq(&p->pi_lock);
2046 	state = READ_ONCE(p->__state);
2047 	smp_rmb(); /* see try_to_wake_up() */
2048 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2049 		ip = __get_wchan(p);
2050 	raw_spin_unlock_irq(&p->pi_lock);
2051 
2052 	return ip;
2053 }
2054 
2055 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2056 {
2057 	if (!(flags & ENQUEUE_NOCLOCK))
2058 		update_rq_clock(rq);
2059 
2060 	if (!(flags & ENQUEUE_RESTORE)) {
2061 		sched_info_enqueue(rq, p);
2062 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2063 	}
2064 
2065 	uclamp_rq_inc(rq, p);
2066 	p->sched_class->enqueue_task(rq, p, flags);
2067 
2068 	if (sched_core_enabled(rq))
2069 		sched_core_enqueue(rq, p);
2070 }
2071 
2072 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2073 {
2074 	if (sched_core_enabled(rq))
2075 		sched_core_dequeue(rq, p, flags);
2076 
2077 	if (!(flags & DEQUEUE_NOCLOCK))
2078 		update_rq_clock(rq);
2079 
2080 	if (!(flags & DEQUEUE_SAVE)) {
2081 		sched_info_dequeue(rq, p);
2082 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2083 	}
2084 
2085 	uclamp_rq_dec(rq, p);
2086 	p->sched_class->dequeue_task(rq, p, flags);
2087 }
2088 
2089 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2090 {
2091 	enqueue_task(rq, p, flags);
2092 
2093 	p->on_rq = TASK_ON_RQ_QUEUED;
2094 }
2095 
2096 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2097 {
2098 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2099 
2100 	dequeue_task(rq, p, flags);
2101 }
2102 
2103 static inline int __normal_prio(int policy, int rt_prio, int nice)
2104 {
2105 	int prio;
2106 
2107 	if (dl_policy(policy))
2108 		prio = MAX_DL_PRIO - 1;
2109 	else if (rt_policy(policy))
2110 		prio = MAX_RT_PRIO - 1 - rt_prio;
2111 	else
2112 		prio = NICE_TO_PRIO(nice);
2113 
2114 	return prio;
2115 }
2116 
2117 /*
2118  * Calculate the expected normal priority: i.e. priority
2119  * without taking RT-inheritance into account. Might be
2120  * boosted by interactivity modifiers. Changes upon fork,
2121  * setprio syscalls, and whenever the interactivity
2122  * estimator recalculates.
2123  */
2124 static inline int normal_prio(struct task_struct *p)
2125 {
2126 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2127 }
2128 
2129 /*
2130  * Calculate the current priority, i.e. the priority
2131  * taken into account by the scheduler. This value might
2132  * be boosted by RT tasks, or might be boosted by
2133  * interactivity modifiers. Will be RT if the task got
2134  * RT-boosted. If not then it returns p->normal_prio.
2135  */
2136 static int effective_prio(struct task_struct *p)
2137 {
2138 	p->normal_prio = normal_prio(p);
2139 	/*
2140 	 * If we are RT tasks or we were boosted to RT priority,
2141 	 * keep the priority unchanged. Otherwise, update priority
2142 	 * to the normal priority:
2143 	 */
2144 	if (!rt_prio(p->prio))
2145 		return p->normal_prio;
2146 	return p->prio;
2147 }
2148 
2149 /**
2150  * task_curr - is this task currently executing on a CPU?
2151  * @p: the task in question.
2152  *
2153  * Return: 1 if the task is currently executing. 0 otherwise.
2154  */
2155 inline int task_curr(const struct task_struct *p)
2156 {
2157 	return cpu_curr(task_cpu(p)) == p;
2158 }
2159 
2160 /*
2161  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2162  * use the balance_callback list if you want balancing.
2163  *
2164  * this means any call to check_class_changed() must be followed by a call to
2165  * balance_callback().
2166  */
2167 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2168 				       const struct sched_class *prev_class,
2169 				       int oldprio)
2170 {
2171 	if (prev_class != p->sched_class) {
2172 		if (prev_class->switched_from)
2173 			prev_class->switched_from(rq, p);
2174 
2175 		p->sched_class->switched_to(rq, p);
2176 	} else if (oldprio != p->prio || dl_task(p))
2177 		p->sched_class->prio_changed(rq, p, oldprio);
2178 }
2179 
2180 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2181 {
2182 	if (p->sched_class == rq->curr->sched_class)
2183 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2184 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2185 		resched_curr(rq);
2186 
2187 	/*
2188 	 * A queue event has occurred, and we're going to schedule.  In
2189 	 * this case, we can save a useless back to back clock update.
2190 	 */
2191 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2192 		rq_clock_skip_update(rq);
2193 }
2194 
2195 #ifdef CONFIG_SMP
2196 
2197 static void
2198 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2199 
2200 static int __set_cpus_allowed_ptr(struct task_struct *p,
2201 				  const struct cpumask *new_mask,
2202 				  u32 flags);
2203 
2204 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2205 {
2206 	if (likely(!p->migration_disabled))
2207 		return;
2208 
2209 	if (p->cpus_ptr != &p->cpus_mask)
2210 		return;
2211 
2212 	/*
2213 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2214 	 */
2215 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2216 }
2217 
2218 void migrate_disable(void)
2219 {
2220 	struct task_struct *p = current;
2221 
2222 	if (p->migration_disabled) {
2223 		p->migration_disabled++;
2224 		return;
2225 	}
2226 
2227 	preempt_disable();
2228 	this_rq()->nr_pinned++;
2229 	p->migration_disabled = 1;
2230 	preempt_enable();
2231 }
2232 EXPORT_SYMBOL_GPL(migrate_disable);
2233 
2234 void migrate_enable(void)
2235 {
2236 	struct task_struct *p = current;
2237 
2238 	if (p->migration_disabled > 1) {
2239 		p->migration_disabled--;
2240 		return;
2241 	}
2242 
2243 	if (WARN_ON_ONCE(!p->migration_disabled))
2244 		return;
2245 
2246 	/*
2247 	 * Ensure stop_task runs either before or after this, and that
2248 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2249 	 */
2250 	preempt_disable();
2251 	if (p->cpus_ptr != &p->cpus_mask)
2252 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2253 	/*
2254 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2255 	 * regular cpus_mask, otherwise things that race (eg.
2256 	 * select_fallback_rq) get confused.
2257 	 */
2258 	barrier();
2259 	p->migration_disabled = 0;
2260 	this_rq()->nr_pinned--;
2261 	preempt_enable();
2262 }
2263 EXPORT_SYMBOL_GPL(migrate_enable);
2264 
2265 static inline bool rq_has_pinned_tasks(struct rq *rq)
2266 {
2267 	return rq->nr_pinned;
2268 }
2269 
2270 /*
2271  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2272  * __set_cpus_allowed_ptr() and select_fallback_rq().
2273  */
2274 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2275 {
2276 	/* When not in the task's cpumask, no point in looking further. */
2277 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2278 		return false;
2279 
2280 	/* migrate_disabled() must be allowed to finish. */
2281 	if (is_migration_disabled(p))
2282 		return cpu_online(cpu);
2283 
2284 	/* Non kernel threads are not allowed during either online or offline. */
2285 	if (!(p->flags & PF_KTHREAD))
2286 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2287 
2288 	/* KTHREAD_IS_PER_CPU is always allowed. */
2289 	if (kthread_is_per_cpu(p))
2290 		return cpu_online(cpu);
2291 
2292 	/* Regular kernel threads don't get to stay during offline. */
2293 	if (cpu_dying(cpu))
2294 		return false;
2295 
2296 	/* But are allowed during online. */
2297 	return cpu_online(cpu);
2298 }
2299 
2300 /*
2301  * This is how migration works:
2302  *
2303  * 1) we invoke migration_cpu_stop() on the target CPU using
2304  *    stop_one_cpu().
2305  * 2) stopper starts to run (implicitly forcing the migrated thread
2306  *    off the CPU)
2307  * 3) it checks whether the migrated task is still in the wrong runqueue.
2308  * 4) if it's in the wrong runqueue then the migration thread removes
2309  *    it and puts it into the right queue.
2310  * 5) stopper completes and stop_one_cpu() returns and the migration
2311  *    is done.
2312  */
2313 
2314 /*
2315  * move_queued_task - move a queued task to new rq.
2316  *
2317  * Returns (locked) new rq. Old rq's lock is released.
2318  */
2319 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2320 				   struct task_struct *p, int new_cpu)
2321 {
2322 	lockdep_assert_rq_held(rq);
2323 
2324 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2325 	set_task_cpu(p, new_cpu);
2326 	rq_unlock(rq, rf);
2327 
2328 	rq = cpu_rq(new_cpu);
2329 
2330 	rq_lock(rq, rf);
2331 	BUG_ON(task_cpu(p) != new_cpu);
2332 	activate_task(rq, p, 0);
2333 	check_preempt_curr(rq, p, 0);
2334 
2335 	return rq;
2336 }
2337 
2338 struct migration_arg {
2339 	struct task_struct		*task;
2340 	int				dest_cpu;
2341 	struct set_affinity_pending	*pending;
2342 };
2343 
2344 /*
2345  * @refs: number of wait_for_completion()
2346  * @stop_pending: is @stop_work in use
2347  */
2348 struct set_affinity_pending {
2349 	refcount_t		refs;
2350 	unsigned int		stop_pending;
2351 	struct completion	done;
2352 	struct cpu_stop_work	stop_work;
2353 	struct migration_arg	arg;
2354 };
2355 
2356 /*
2357  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2358  * this because either it can't run here any more (set_cpus_allowed()
2359  * away from this CPU, or CPU going down), or because we're
2360  * attempting to rebalance this task on exec (sched_exec).
2361  *
2362  * So we race with normal scheduler movements, but that's OK, as long
2363  * as the task is no longer on this CPU.
2364  */
2365 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2366 				 struct task_struct *p, int dest_cpu)
2367 {
2368 	/* Affinity changed (again). */
2369 	if (!is_cpu_allowed(p, dest_cpu))
2370 		return rq;
2371 
2372 	update_rq_clock(rq);
2373 	rq = move_queued_task(rq, rf, p, dest_cpu);
2374 
2375 	return rq;
2376 }
2377 
2378 /*
2379  * migration_cpu_stop - this will be executed by a highprio stopper thread
2380  * and performs thread migration by bumping thread off CPU then
2381  * 'pushing' onto another runqueue.
2382  */
2383 static int migration_cpu_stop(void *data)
2384 {
2385 	struct migration_arg *arg = data;
2386 	struct set_affinity_pending *pending = arg->pending;
2387 	struct task_struct *p = arg->task;
2388 	struct rq *rq = this_rq();
2389 	bool complete = false;
2390 	struct rq_flags rf;
2391 
2392 	/*
2393 	 * The original target CPU might have gone down and we might
2394 	 * be on another CPU but it doesn't matter.
2395 	 */
2396 	local_irq_save(rf.flags);
2397 	/*
2398 	 * We need to explicitly wake pending tasks before running
2399 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2400 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2401 	 */
2402 	flush_smp_call_function_queue();
2403 
2404 	raw_spin_lock(&p->pi_lock);
2405 	rq_lock(rq, &rf);
2406 
2407 	/*
2408 	 * If we were passed a pending, then ->stop_pending was set, thus
2409 	 * p->migration_pending must have remained stable.
2410 	 */
2411 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2412 
2413 	/*
2414 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2415 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2416 	 * we're holding p->pi_lock.
2417 	 */
2418 	if (task_rq(p) == rq) {
2419 		if (is_migration_disabled(p))
2420 			goto out;
2421 
2422 		if (pending) {
2423 			p->migration_pending = NULL;
2424 			complete = true;
2425 
2426 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2427 				goto out;
2428 		}
2429 
2430 		if (task_on_rq_queued(p))
2431 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2432 		else
2433 			p->wake_cpu = arg->dest_cpu;
2434 
2435 		/*
2436 		 * XXX __migrate_task() can fail, at which point we might end
2437 		 * up running on a dodgy CPU, AFAICT this can only happen
2438 		 * during CPU hotplug, at which point we'll get pushed out
2439 		 * anyway, so it's probably not a big deal.
2440 		 */
2441 
2442 	} else if (pending) {
2443 		/*
2444 		 * This happens when we get migrated between migrate_enable()'s
2445 		 * preempt_enable() and scheduling the stopper task. At that
2446 		 * point we're a regular task again and not current anymore.
2447 		 *
2448 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2449 		 * more likely.
2450 		 */
2451 
2452 		/*
2453 		 * The task moved before the stopper got to run. We're holding
2454 		 * ->pi_lock, so the allowed mask is stable - if it got
2455 		 * somewhere allowed, we're done.
2456 		 */
2457 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2458 			p->migration_pending = NULL;
2459 			complete = true;
2460 			goto out;
2461 		}
2462 
2463 		/*
2464 		 * When migrate_enable() hits a rq mis-match we can't reliably
2465 		 * determine is_migration_disabled() and so have to chase after
2466 		 * it.
2467 		 */
2468 		WARN_ON_ONCE(!pending->stop_pending);
2469 		task_rq_unlock(rq, p, &rf);
2470 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2471 				    &pending->arg, &pending->stop_work);
2472 		return 0;
2473 	}
2474 out:
2475 	if (pending)
2476 		pending->stop_pending = false;
2477 	task_rq_unlock(rq, p, &rf);
2478 
2479 	if (complete)
2480 		complete_all(&pending->done);
2481 
2482 	return 0;
2483 }
2484 
2485 int push_cpu_stop(void *arg)
2486 {
2487 	struct rq *lowest_rq = NULL, *rq = this_rq();
2488 	struct task_struct *p = arg;
2489 
2490 	raw_spin_lock_irq(&p->pi_lock);
2491 	raw_spin_rq_lock(rq);
2492 
2493 	if (task_rq(p) != rq)
2494 		goto out_unlock;
2495 
2496 	if (is_migration_disabled(p)) {
2497 		p->migration_flags |= MDF_PUSH;
2498 		goto out_unlock;
2499 	}
2500 
2501 	p->migration_flags &= ~MDF_PUSH;
2502 
2503 	if (p->sched_class->find_lock_rq)
2504 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2505 
2506 	if (!lowest_rq)
2507 		goto out_unlock;
2508 
2509 	// XXX validate p is still the highest prio task
2510 	if (task_rq(p) == rq) {
2511 		deactivate_task(rq, p, 0);
2512 		set_task_cpu(p, lowest_rq->cpu);
2513 		activate_task(lowest_rq, p, 0);
2514 		resched_curr(lowest_rq);
2515 	}
2516 
2517 	double_unlock_balance(rq, lowest_rq);
2518 
2519 out_unlock:
2520 	rq->push_busy = false;
2521 	raw_spin_rq_unlock(rq);
2522 	raw_spin_unlock_irq(&p->pi_lock);
2523 
2524 	put_task_struct(p);
2525 	return 0;
2526 }
2527 
2528 /*
2529  * sched_class::set_cpus_allowed must do the below, but is not required to
2530  * actually call this function.
2531  */
2532 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2533 {
2534 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2535 		p->cpus_ptr = new_mask;
2536 		return;
2537 	}
2538 
2539 	cpumask_copy(&p->cpus_mask, new_mask);
2540 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2541 }
2542 
2543 static void
2544 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2545 {
2546 	struct rq *rq = task_rq(p);
2547 	bool queued, running;
2548 
2549 	/*
2550 	 * This here violates the locking rules for affinity, since we're only
2551 	 * supposed to change these variables while holding both rq->lock and
2552 	 * p->pi_lock.
2553 	 *
2554 	 * HOWEVER, it magically works, because ttwu() is the only code that
2555 	 * accesses these variables under p->pi_lock and only does so after
2556 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2557 	 * before finish_task().
2558 	 *
2559 	 * XXX do further audits, this smells like something putrid.
2560 	 */
2561 	if (flags & SCA_MIGRATE_DISABLE)
2562 		SCHED_WARN_ON(!p->on_cpu);
2563 	else
2564 		lockdep_assert_held(&p->pi_lock);
2565 
2566 	queued = task_on_rq_queued(p);
2567 	running = task_current(rq, p);
2568 
2569 	if (queued) {
2570 		/*
2571 		 * Because __kthread_bind() calls this on blocked tasks without
2572 		 * holding rq->lock.
2573 		 */
2574 		lockdep_assert_rq_held(rq);
2575 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2576 	}
2577 	if (running)
2578 		put_prev_task(rq, p);
2579 
2580 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2581 
2582 	if (queued)
2583 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2584 	if (running)
2585 		set_next_task(rq, p);
2586 }
2587 
2588 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2589 {
2590 	__do_set_cpus_allowed(p, new_mask, 0);
2591 }
2592 
2593 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2594 		      int node)
2595 {
2596 	if (!src->user_cpus_ptr)
2597 		return 0;
2598 
2599 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2600 	if (!dst->user_cpus_ptr)
2601 		return -ENOMEM;
2602 
2603 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2604 	return 0;
2605 }
2606 
2607 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2608 {
2609 	struct cpumask *user_mask = NULL;
2610 
2611 	swap(p->user_cpus_ptr, user_mask);
2612 
2613 	return user_mask;
2614 }
2615 
2616 void release_user_cpus_ptr(struct task_struct *p)
2617 {
2618 	kfree(clear_user_cpus_ptr(p));
2619 }
2620 
2621 /*
2622  * This function is wildly self concurrent; here be dragons.
2623  *
2624  *
2625  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2626  * designated task is enqueued on an allowed CPU. If that task is currently
2627  * running, we have to kick it out using the CPU stopper.
2628  *
2629  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2630  * Consider:
2631  *
2632  *     Initial conditions: P0->cpus_mask = [0, 1]
2633  *
2634  *     P0@CPU0                  P1
2635  *
2636  *     migrate_disable();
2637  *     <preempted>
2638  *                              set_cpus_allowed_ptr(P0, [1]);
2639  *
2640  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2641  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2642  * This means we need the following scheme:
2643  *
2644  *     P0@CPU0                  P1
2645  *
2646  *     migrate_disable();
2647  *     <preempted>
2648  *                              set_cpus_allowed_ptr(P0, [1]);
2649  *                                <blocks>
2650  *     <resumes>
2651  *     migrate_enable();
2652  *       __set_cpus_allowed_ptr();
2653  *       <wakes local stopper>
2654  *                         `--> <woken on migration completion>
2655  *
2656  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2657  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2658  * task p are serialized by p->pi_lock, which we can leverage: the one that
2659  * should come into effect at the end of the Migrate-Disable region is the last
2660  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2661  * but we still need to properly signal those waiting tasks at the appropriate
2662  * moment.
2663  *
2664  * This is implemented using struct set_affinity_pending. The first
2665  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2666  * setup an instance of that struct and install it on the targeted task_struct.
2667  * Any and all further callers will reuse that instance. Those then wait for
2668  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2669  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2670  *
2671  *
2672  * (1) In the cases covered above. There is one more where the completion is
2673  * signaled within affine_move_task() itself: when a subsequent affinity request
2674  * occurs after the stopper bailed out due to the targeted task still being
2675  * Migrate-Disable. Consider:
2676  *
2677  *     Initial conditions: P0->cpus_mask = [0, 1]
2678  *
2679  *     CPU0		  P1				P2
2680  *     <P0>
2681  *       migrate_disable();
2682  *       <preempted>
2683  *                        set_cpus_allowed_ptr(P0, [1]);
2684  *                          <blocks>
2685  *     <migration/0>
2686  *       migration_cpu_stop()
2687  *         is_migration_disabled()
2688  *           <bails>
2689  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2690  *                                                         <signal completion>
2691  *                          <awakes>
2692  *
2693  * Note that the above is safe vs a concurrent migrate_enable(), as any
2694  * pending affinity completion is preceded by an uninstallation of
2695  * p->migration_pending done with p->pi_lock held.
2696  */
2697 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2698 			    int dest_cpu, unsigned int flags)
2699 {
2700 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2701 	bool stop_pending, complete = false;
2702 
2703 	/* Can the task run on the task's current CPU? If so, we're done */
2704 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2705 		struct task_struct *push_task = NULL;
2706 
2707 		if ((flags & SCA_MIGRATE_ENABLE) &&
2708 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2709 			rq->push_busy = true;
2710 			push_task = get_task_struct(p);
2711 		}
2712 
2713 		/*
2714 		 * If there are pending waiters, but no pending stop_work,
2715 		 * then complete now.
2716 		 */
2717 		pending = p->migration_pending;
2718 		if (pending && !pending->stop_pending) {
2719 			p->migration_pending = NULL;
2720 			complete = true;
2721 		}
2722 
2723 		task_rq_unlock(rq, p, rf);
2724 
2725 		if (push_task) {
2726 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2727 					    p, &rq->push_work);
2728 		}
2729 
2730 		if (complete)
2731 			complete_all(&pending->done);
2732 
2733 		return 0;
2734 	}
2735 
2736 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2737 		/* serialized by p->pi_lock */
2738 		if (!p->migration_pending) {
2739 			/* Install the request */
2740 			refcount_set(&my_pending.refs, 1);
2741 			init_completion(&my_pending.done);
2742 			my_pending.arg = (struct migration_arg) {
2743 				.task = p,
2744 				.dest_cpu = dest_cpu,
2745 				.pending = &my_pending,
2746 			};
2747 
2748 			p->migration_pending = &my_pending;
2749 		} else {
2750 			pending = p->migration_pending;
2751 			refcount_inc(&pending->refs);
2752 			/*
2753 			 * Affinity has changed, but we've already installed a
2754 			 * pending. migration_cpu_stop() *must* see this, else
2755 			 * we risk a completion of the pending despite having a
2756 			 * task on a disallowed CPU.
2757 			 *
2758 			 * Serialized by p->pi_lock, so this is safe.
2759 			 */
2760 			pending->arg.dest_cpu = dest_cpu;
2761 		}
2762 	}
2763 	pending = p->migration_pending;
2764 	/*
2765 	 * - !MIGRATE_ENABLE:
2766 	 *   we'll have installed a pending if there wasn't one already.
2767 	 *
2768 	 * - MIGRATE_ENABLE:
2769 	 *   we're here because the current CPU isn't matching anymore,
2770 	 *   the only way that can happen is because of a concurrent
2771 	 *   set_cpus_allowed_ptr() call, which should then still be
2772 	 *   pending completion.
2773 	 *
2774 	 * Either way, we really should have a @pending here.
2775 	 */
2776 	if (WARN_ON_ONCE(!pending)) {
2777 		task_rq_unlock(rq, p, rf);
2778 		return -EINVAL;
2779 	}
2780 
2781 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2782 		/*
2783 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2784 		 * anything else we cannot do is_migration_disabled(), punt
2785 		 * and have the stopper function handle it all race-free.
2786 		 */
2787 		stop_pending = pending->stop_pending;
2788 		if (!stop_pending)
2789 			pending->stop_pending = true;
2790 
2791 		if (flags & SCA_MIGRATE_ENABLE)
2792 			p->migration_flags &= ~MDF_PUSH;
2793 
2794 		task_rq_unlock(rq, p, rf);
2795 
2796 		if (!stop_pending) {
2797 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2798 					    &pending->arg, &pending->stop_work);
2799 		}
2800 
2801 		if (flags & SCA_MIGRATE_ENABLE)
2802 			return 0;
2803 	} else {
2804 
2805 		if (!is_migration_disabled(p)) {
2806 			if (task_on_rq_queued(p))
2807 				rq = move_queued_task(rq, rf, p, dest_cpu);
2808 
2809 			if (!pending->stop_pending) {
2810 				p->migration_pending = NULL;
2811 				complete = true;
2812 			}
2813 		}
2814 		task_rq_unlock(rq, p, rf);
2815 
2816 		if (complete)
2817 			complete_all(&pending->done);
2818 	}
2819 
2820 	wait_for_completion(&pending->done);
2821 
2822 	if (refcount_dec_and_test(&pending->refs))
2823 		wake_up_var(&pending->refs); /* No UaF, just an address */
2824 
2825 	/*
2826 	 * Block the original owner of &pending until all subsequent callers
2827 	 * have seen the completion and decremented the refcount
2828 	 */
2829 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2830 
2831 	/* ARGH */
2832 	WARN_ON_ONCE(my_pending.stop_pending);
2833 
2834 	return 0;
2835 }
2836 
2837 /*
2838  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2839  */
2840 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2841 					 const struct cpumask *new_mask,
2842 					 u32 flags,
2843 					 struct rq *rq,
2844 					 struct rq_flags *rf)
2845 	__releases(rq->lock)
2846 	__releases(p->pi_lock)
2847 {
2848 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2849 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2850 	bool kthread = p->flags & PF_KTHREAD;
2851 	struct cpumask *user_mask = NULL;
2852 	unsigned int dest_cpu;
2853 	int ret = 0;
2854 
2855 	update_rq_clock(rq);
2856 
2857 	if (kthread || is_migration_disabled(p)) {
2858 		/*
2859 		 * Kernel threads are allowed on online && !active CPUs,
2860 		 * however, during cpu-hot-unplug, even these might get pushed
2861 		 * away if not KTHREAD_IS_PER_CPU.
2862 		 *
2863 		 * Specifically, migration_disabled() tasks must not fail the
2864 		 * cpumask_any_and_distribute() pick below, esp. so on
2865 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2866 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2867 		 */
2868 		cpu_valid_mask = cpu_online_mask;
2869 	}
2870 
2871 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2872 		ret = -EINVAL;
2873 		goto out;
2874 	}
2875 
2876 	/*
2877 	 * Must re-check here, to close a race against __kthread_bind(),
2878 	 * sched_setaffinity() is not guaranteed to observe the flag.
2879 	 */
2880 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2881 		ret = -EINVAL;
2882 		goto out;
2883 	}
2884 
2885 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2886 		if (cpumask_equal(&p->cpus_mask, new_mask))
2887 			goto out;
2888 
2889 		if (WARN_ON_ONCE(p == current &&
2890 				 is_migration_disabled(p) &&
2891 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2892 			ret = -EBUSY;
2893 			goto out;
2894 		}
2895 	}
2896 
2897 	/*
2898 	 * Picking a ~random cpu helps in cases where we are changing affinity
2899 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2900 	 * immediately required to distribute the tasks within their new mask.
2901 	 */
2902 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2903 	if (dest_cpu >= nr_cpu_ids) {
2904 		ret = -EINVAL;
2905 		goto out;
2906 	}
2907 
2908 	__do_set_cpus_allowed(p, new_mask, flags);
2909 
2910 	if (flags & SCA_USER)
2911 		user_mask = clear_user_cpus_ptr(p);
2912 
2913 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2914 
2915 	kfree(user_mask);
2916 
2917 	return ret;
2918 
2919 out:
2920 	task_rq_unlock(rq, p, rf);
2921 
2922 	return ret;
2923 }
2924 
2925 /*
2926  * Change a given task's CPU affinity. Migrate the thread to a
2927  * proper CPU and schedule it away if the CPU it's executing on
2928  * is removed from the allowed bitmask.
2929  *
2930  * NOTE: the caller must have a valid reference to the task, the
2931  * task must not exit() & deallocate itself prematurely. The
2932  * call is not atomic; no spinlocks may be held.
2933  */
2934 static int __set_cpus_allowed_ptr(struct task_struct *p,
2935 				  const struct cpumask *new_mask, u32 flags)
2936 {
2937 	struct rq_flags rf;
2938 	struct rq *rq;
2939 
2940 	rq = task_rq_lock(p, &rf);
2941 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2942 }
2943 
2944 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2945 {
2946 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2947 }
2948 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2949 
2950 /*
2951  * Change a given task's CPU affinity to the intersection of its current
2952  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2953  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2954  * If the resulting mask is empty, leave the affinity unchanged and return
2955  * -EINVAL.
2956  */
2957 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2958 				     struct cpumask *new_mask,
2959 				     const struct cpumask *subset_mask)
2960 {
2961 	struct cpumask *user_mask = NULL;
2962 	struct rq_flags rf;
2963 	struct rq *rq;
2964 	int err;
2965 
2966 	if (!p->user_cpus_ptr) {
2967 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2968 		if (!user_mask)
2969 			return -ENOMEM;
2970 	}
2971 
2972 	rq = task_rq_lock(p, &rf);
2973 
2974 	/*
2975 	 * Forcefully restricting the affinity of a deadline task is
2976 	 * likely to cause problems, so fail and noisily override the
2977 	 * mask entirely.
2978 	 */
2979 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2980 		err = -EPERM;
2981 		goto err_unlock;
2982 	}
2983 
2984 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2985 		err = -EINVAL;
2986 		goto err_unlock;
2987 	}
2988 
2989 	/*
2990 	 * We're about to butcher the task affinity, so keep track of what
2991 	 * the user asked for in case we're able to restore it later on.
2992 	 */
2993 	if (user_mask) {
2994 		cpumask_copy(user_mask, p->cpus_ptr);
2995 		p->user_cpus_ptr = user_mask;
2996 	}
2997 
2998 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2999 
3000 err_unlock:
3001 	task_rq_unlock(rq, p, &rf);
3002 	kfree(user_mask);
3003 	return err;
3004 }
3005 
3006 /*
3007  * Restrict the CPU affinity of task @p so that it is a subset of
3008  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3009  * old affinity mask. If the resulting mask is empty, we warn and walk
3010  * up the cpuset hierarchy until we find a suitable mask.
3011  */
3012 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3013 {
3014 	cpumask_var_t new_mask;
3015 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3016 
3017 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3018 
3019 	/*
3020 	 * __migrate_task() can fail silently in the face of concurrent
3021 	 * offlining of the chosen destination CPU, so take the hotplug
3022 	 * lock to ensure that the migration succeeds.
3023 	 */
3024 	cpus_read_lock();
3025 	if (!cpumask_available(new_mask))
3026 		goto out_set_mask;
3027 
3028 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3029 		goto out_free_mask;
3030 
3031 	/*
3032 	 * We failed to find a valid subset of the affinity mask for the
3033 	 * task, so override it based on its cpuset hierarchy.
3034 	 */
3035 	cpuset_cpus_allowed(p, new_mask);
3036 	override_mask = new_mask;
3037 
3038 out_set_mask:
3039 	if (printk_ratelimit()) {
3040 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3041 				task_pid_nr(p), p->comm,
3042 				cpumask_pr_args(override_mask));
3043 	}
3044 
3045 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3046 out_free_mask:
3047 	cpus_read_unlock();
3048 	free_cpumask_var(new_mask);
3049 }
3050 
3051 static int
3052 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3053 
3054 /*
3055  * Restore the affinity of a task @p which was previously restricted by a
3056  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3057  * @p->user_cpus_ptr.
3058  *
3059  * It is the caller's responsibility to serialise this with any calls to
3060  * force_compatible_cpus_allowed_ptr(@p).
3061  */
3062 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3063 {
3064 	struct cpumask *user_mask = p->user_cpus_ptr;
3065 	unsigned long flags;
3066 
3067 	/*
3068 	 * Try to restore the old affinity mask. If this fails, then
3069 	 * we free the mask explicitly to avoid it being inherited across
3070 	 * a subsequent fork().
3071 	 */
3072 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3073 		return;
3074 
3075 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3076 	user_mask = clear_user_cpus_ptr(p);
3077 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3078 
3079 	kfree(user_mask);
3080 }
3081 
3082 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3083 {
3084 #ifdef CONFIG_SCHED_DEBUG
3085 	unsigned int state = READ_ONCE(p->__state);
3086 
3087 	/*
3088 	 * We should never call set_task_cpu() on a blocked task,
3089 	 * ttwu() will sort out the placement.
3090 	 */
3091 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3092 
3093 	/*
3094 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3095 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3096 	 * time relying on p->on_rq.
3097 	 */
3098 	WARN_ON_ONCE(state == TASK_RUNNING &&
3099 		     p->sched_class == &fair_sched_class &&
3100 		     (p->on_rq && !task_on_rq_migrating(p)));
3101 
3102 #ifdef CONFIG_LOCKDEP
3103 	/*
3104 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3105 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3106 	 *
3107 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3108 	 * see task_group().
3109 	 *
3110 	 * Furthermore, all task_rq users should acquire both locks, see
3111 	 * task_rq_lock().
3112 	 */
3113 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3114 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3115 #endif
3116 	/*
3117 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3118 	 */
3119 	WARN_ON_ONCE(!cpu_online(new_cpu));
3120 
3121 	WARN_ON_ONCE(is_migration_disabled(p));
3122 #endif
3123 
3124 	trace_sched_migrate_task(p, new_cpu);
3125 
3126 	if (task_cpu(p) != new_cpu) {
3127 		if (p->sched_class->migrate_task_rq)
3128 			p->sched_class->migrate_task_rq(p, new_cpu);
3129 		p->se.nr_migrations++;
3130 		rseq_migrate(p);
3131 		perf_event_task_migrate(p);
3132 	}
3133 
3134 	__set_task_cpu(p, new_cpu);
3135 }
3136 
3137 #ifdef CONFIG_NUMA_BALANCING
3138 static void __migrate_swap_task(struct task_struct *p, int cpu)
3139 {
3140 	if (task_on_rq_queued(p)) {
3141 		struct rq *src_rq, *dst_rq;
3142 		struct rq_flags srf, drf;
3143 
3144 		src_rq = task_rq(p);
3145 		dst_rq = cpu_rq(cpu);
3146 
3147 		rq_pin_lock(src_rq, &srf);
3148 		rq_pin_lock(dst_rq, &drf);
3149 
3150 		deactivate_task(src_rq, p, 0);
3151 		set_task_cpu(p, cpu);
3152 		activate_task(dst_rq, p, 0);
3153 		check_preempt_curr(dst_rq, p, 0);
3154 
3155 		rq_unpin_lock(dst_rq, &drf);
3156 		rq_unpin_lock(src_rq, &srf);
3157 
3158 	} else {
3159 		/*
3160 		 * Task isn't running anymore; make it appear like we migrated
3161 		 * it before it went to sleep. This means on wakeup we make the
3162 		 * previous CPU our target instead of where it really is.
3163 		 */
3164 		p->wake_cpu = cpu;
3165 	}
3166 }
3167 
3168 struct migration_swap_arg {
3169 	struct task_struct *src_task, *dst_task;
3170 	int src_cpu, dst_cpu;
3171 };
3172 
3173 static int migrate_swap_stop(void *data)
3174 {
3175 	struct migration_swap_arg *arg = data;
3176 	struct rq *src_rq, *dst_rq;
3177 	int ret = -EAGAIN;
3178 
3179 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3180 		return -EAGAIN;
3181 
3182 	src_rq = cpu_rq(arg->src_cpu);
3183 	dst_rq = cpu_rq(arg->dst_cpu);
3184 
3185 	double_raw_lock(&arg->src_task->pi_lock,
3186 			&arg->dst_task->pi_lock);
3187 	double_rq_lock(src_rq, dst_rq);
3188 
3189 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3190 		goto unlock;
3191 
3192 	if (task_cpu(arg->src_task) != arg->src_cpu)
3193 		goto unlock;
3194 
3195 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3196 		goto unlock;
3197 
3198 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3199 		goto unlock;
3200 
3201 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3202 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3203 
3204 	ret = 0;
3205 
3206 unlock:
3207 	double_rq_unlock(src_rq, dst_rq);
3208 	raw_spin_unlock(&arg->dst_task->pi_lock);
3209 	raw_spin_unlock(&arg->src_task->pi_lock);
3210 
3211 	return ret;
3212 }
3213 
3214 /*
3215  * Cross migrate two tasks
3216  */
3217 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3218 		int target_cpu, int curr_cpu)
3219 {
3220 	struct migration_swap_arg arg;
3221 	int ret = -EINVAL;
3222 
3223 	arg = (struct migration_swap_arg){
3224 		.src_task = cur,
3225 		.src_cpu = curr_cpu,
3226 		.dst_task = p,
3227 		.dst_cpu = target_cpu,
3228 	};
3229 
3230 	if (arg.src_cpu == arg.dst_cpu)
3231 		goto out;
3232 
3233 	/*
3234 	 * These three tests are all lockless; this is OK since all of them
3235 	 * will be re-checked with proper locks held further down the line.
3236 	 */
3237 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3238 		goto out;
3239 
3240 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3241 		goto out;
3242 
3243 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3244 		goto out;
3245 
3246 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3247 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3248 
3249 out:
3250 	return ret;
3251 }
3252 #endif /* CONFIG_NUMA_BALANCING */
3253 
3254 /*
3255  * wait_task_inactive - wait for a thread to unschedule.
3256  *
3257  * If @match_state is nonzero, it's the @p->state value just checked and
3258  * not expected to change.  If it changes, i.e. @p might have woken up,
3259  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3260  * we return a positive number (its total switch count).  If a second call
3261  * a short while later returns the same number, the caller can be sure that
3262  * @p has remained unscheduled the whole time.
3263  *
3264  * The caller must ensure that the task *will* unschedule sometime soon,
3265  * else this function might spin for a *long* time. This function can't
3266  * be called with interrupts off, or it may introduce deadlock with
3267  * smp_call_function() if an IPI is sent by the same process we are
3268  * waiting to become inactive.
3269  */
3270 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3271 {
3272 	int running, queued;
3273 	struct rq_flags rf;
3274 	unsigned long ncsw;
3275 	struct rq *rq;
3276 
3277 	for (;;) {
3278 		/*
3279 		 * We do the initial early heuristics without holding
3280 		 * any task-queue locks at all. We'll only try to get
3281 		 * the runqueue lock when things look like they will
3282 		 * work out!
3283 		 */
3284 		rq = task_rq(p);
3285 
3286 		/*
3287 		 * If the task is actively running on another CPU
3288 		 * still, just relax and busy-wait without holding
3289 		 * any locks.
3290 		 *
3291 		 * NOTE! Since we don't hold any locks, it's not
3292 		 * even sure that "rq" stays as the right runqueue!
3293 		 * But we don't care, since "task_running()" will
3294 		 * return false if the runqueue has changed and p
3295 		 * is actually now running somewhere else!
3296 		 */
3297 		while (task_running(rq, p)) {
3298 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3299 				return 0;
3300 			cpu_relax();
3301 		}
3302 
3303 		/*
3304 		 * Ok, time to look more closely! We need the rq
3305 		 * lock now, to be *sure*. If we're wrong, we'll
3306 		 * just go back and repeat.
3307 		 */
3308 		rq = task_rq_lock(p, &rf);
3309 		trace_sched_wait_task(p);
3310 		running = task_running(rq, p);
3311 		queued = task_on_rq_queued(p);
3312 		ncsw = 0;
3313 		if (!match_state || READ_ONCE(p->__state) == match_state)
3314 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3315 		task_rq_unlock(rq, p, &rf);
3316 
3317 		/*
3318 		 * If it changed from the expected state, bail out now.
3319 		 */
3320 		if (unlikely(!ncsw))
3321 			break;
3322 
3323 		/*
3324 		 * Was it really running after all now that we
3325 		 * checked with the proper locks actually held?
3326 		 *
3327 		 * Oops. Go back and try again..
3328 		 */
3329 		if (unlikely(running)) {
3330 			cpu_relax();
3331 			continue;
3332 		}
3333 
3334 		/*
3335 		 * It's not enough that it's not actively running,
3336 		 * it must be off the runqueue _entirely_, and not
3337 		 * preempted!
3338 		 *
3339 		 * So if it was still runnable (but just not actively
3340 		 * running right now), it's preempted, and we should
3341 		 * yield - it could be a while.
3342 		 */
3343 		if (unlikely(queued)) {
3344 			ktime_t to = NSEC_PER_SEC / HZ;
3345 
3346 			set_current_state(TASK_UNINTERRUPTIBLE);
3347 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3348 			continue;
3349 		}
3350 
3351 		/*
3352 		 * Ahh, all good. It wasn't running, and it wasn't
3353 		 * runnable, which means that it will never become
3354 		 * running in the future either. We're all done!
3355 		 */
3356 		break;
3357 	}
3358 
3359 	return ncsw;
3360 }
3361 
3362 /***
3363  * kick_process - kick a running thread to enter/exit the kernel
3364  * @p: the to-be-kicked thread
3365  *
3366  * Cause a process which is running on another CPU to enter
3367  * kernel-mode, without any delay. (to get signals handled.)
3368  *
3369  * NOTE: this function doesn't have to take the runqueue lock,
3370  * because all it wants to ensure is that the remote task enters
3371  * the kernel. If the IPI races and the task has been migrated
3372  * to another CPU then no harm is done and the purpose has been
3373  * achieved as well.
3374  */
3375 void kick_process(struct task_struct *p)
3376 {
3377 	int cpu;
3378 
3379 	preempt_disable();
3380 	cpu = task_cpu(p);
3381 	if ((cpu != smp_processor_id()) && task_curr(p))
3382 		smp_send_reschedule(cpu);
3383 	preempt_enable();
3384 }
3385 EXPORT_SYMBOL_GPL(kick_process);
3386 
3387 /*
3388  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3389  *
3390  * A few notes on cpu_active vs cpu_online:
3391  *
3392  *  - cpu_active must be a subset of cpu_online
3393  *
3394  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3395  *    see __set_cpus_allowed_ptr(). At this point the newly online
3396  *    CPU isn't yet part of the sched domains, and balancing will not
3397  *    see it.
3398  *
3399  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3400  *    avoid the load balancer to place new tasks on the to be removed
3401  *    CPU. Existing tasks will remain running there and will be taken
3402  *    off.
3403  *
3404  * This means that fallback selection must not select !active CPUs.
3405  * And can assume that any active CPU must be online. Conversely
3406  * select_task_rq() below may allow selection of !active CPUs in order
3407  * to satisfy the above rules.
3408  */
3409 static int select_fallback_rq(int cpu, struct task_struct *p)
3410 {
3411 	int nid = cpu_to_node(cpu);
3412 	const struct cpumask *nodemask = NULL;
3413 	enum { cpuset, possible, fail } state = cpuset;
3414 	int dest_cpu;
3415 
3416 	/*
3417 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3418 	 * will return -1. There is no CPU on the node, and we should
3419 	 * select the CPU on the other node.
3420 	 */
3421 	if (nid != -1) {
3422 		nodemask = cpumask_of_node(nid);
3423 
3424 		/* Look for allowed, online CPU in same node. */
3425 		for_each_cpu(dest_cpu, nodemask) {
3426 			if (is_cpu_allowed(p, dest_cpu))
3427 				return dest_cpu;
3428 		}
3429 	}
3430 
3431 	for (;;) {
3432 		/* Any allowed, online CPU? */
3433 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3434 			if (!is_cpu_allowed(p, dest_cpu))
3435 				continue;
3436 
3437 			goto out;
3438 		}
3439 
3440 		/* No more Mr. Nice Guy. */
3441 		switch (state) {
3442 		case cpuset:
3443 			if (cpuset_cpus_allowed_fallback(p)) {
3444 				state = possible;
3445 				break;
3446 			}
3447 			fallthrough;
3448 		case possible:
3449 			/*
3450 			 * XXX When called from select_task_rq() we only
3451 			 * hold p->pi_lock and again violate locking order.
3452 			 *
3453 			 * More yuck to audit.
3454 			 */
3455 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3456 			state = fail;
3457 			break;
3458 		case fail:
3459 			BUG();
3460 			break;
3461 		}
3462 	}
3463 
3464 out:
3465 	if (state != cpuset) {
3466 		/*
3467 		 * Don't tell them about moving exiting tasks or
3468 		 * kernel threads (both mm NULL), since they never
3469 		 * leave kernel.
3470 		 */
3471 		if (p->mm && printk_ratelimit()) {
3472 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3473 					task_pid_nr(p), p->comm, cpu);
3474 		}
3475 	}
3476 
3477 	return dest_cpu;
3478 }
3479 
3480 /*
3481  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3482  */
3483 static inline
3484 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3485 {
3486 	lockdep_assert_held(&p->pi_lock);
3487 
3488 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3489 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3490 	else
3491 		cpu = cpumask_any(p->cpus_ptr);
3492 
3493 	/*
3494 	 * In order not to call set_task_cpu() on a blocking task we need
3495 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3496 	 * CPU.
3497 	 *
3498 	 * Since this is common to all placement strategies, this lives here.
3499 	 *
3500 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3501 	 *   not worry about this generic constraint ]
3502 	 */
3503 	if (unlikely(!is_cpu_allowed(p, cpu)))
3504 		cpu = select_fallback_rq(task_cpu(p), p);
3505 
3506 	return cpu;
3507 }
3508 
3509 void sched_set_stop_task(int cpu, struct task_struct *stop)
3510 {
3511 	static struct lock_class_key stop_pi_lock;
3512 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3513 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3514 
3515 	if (stop) {
3516 		/*
3517 		 * Make it appear like a SCHED_FIFO task, its something
3518 		 * userspace knows about and won't get confused about.
3519 		 *
3520 		 * Also, it will make PI more or less work without too
3521 		 * much confusion -- but then, stop work should not
3522 		 * rely on PI working anyway.
3523 		 */
3524 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3525 
3526 		stop->sched_class = &stop_sched_class;
3527 
3528 		/*
3529 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3530 		 * adjust the effective priority of a task. As a result,
3531 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3532 		 * which can then trigger wakeups of the stop thread to push
3533 		 * around the current task.
3534 		 *
3535 		 * The stop task itself will never be part of the PI-chain, it
3536 		 * never blocks, therefore that ->pi_lock recursion is safe.
3537 		 * Tell lockdep about this by placing the stop->pi_lock in its
3538 		 * own class.
3539 		 */
3540 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3541 	}
3542 
3543 	cpu_rq(cpu)->stop = stop;
3544 
3545 	if (old_stop) {
3546 		/*
3547 		 * Reset it back to a normal scheduling class so that
3548 		 * it can die in pieces.
3549 		 */
3550 		old_stop->sched_class = &rt_sched_class;
3551 	}
3552 }
3553 
3554 #else /* CONFIG_SMP */
3555 
3556 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3557 					 const struct cpumask *new_mask,
3558 					 u32 flags)
3559 {
3560 	return set_cpus_allowed_ptr(p, new_mask);
3561 }
3562 
3563 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3564 
3565 static inline bool rq_has_pinned_tasks(struct rq *rq)
3566 {
3567 	return false;
3568 }
3569 
3570 #endif /* !CONFIG_SMP */
3571 
3572 static void
3573 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3574 {
3575 	struct rq *rq;
3576 
3577 	if (!schedstat_enabled())
3578 		return;
3579 
3580 	rq = this_rq();
3581 
3582 #ifdef CONFIG_SMP
3583 	if (cpu == rq->cpu) {
3584 		__schedstat_inc(rq->ttwu_local);
3585 		__schedstat_inc(p->stats.nr_wakeups_local);
3586 	} else {
3587 		struct sched_domain *sd;
3588 
3589 		__schedstat_inc(p->stats.nr_wakeups_remote);
3590 		rcu_read_lock();
3591 		for_each_domain(rq->cpu, sd) {
3592 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3593 				__schedstat_inc(sd->ttwu_wake_remote);
3594 				break;
3595 			}
3596 		}
3597 		rcu_read_unlock();
3598 	}
3599 
3600 	if (wake_flags & WF_MIGRATED)
3601 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3602 #endif /* CONFIG_SMP */
3603 
3604 	__schedstat_inc(rq->ttwu_count);
3605 	__schedstat_inc(p->stats.nr_wakeups);
3606 
3607 	if (wake_flags & WF_SYNC)
3608 		__schedstat_inc(p->stats.nr_wakeups_sync);
3609 }
3610 
3611 /*
3612  * Mark the task runnable and perform wakeup-preemption.
3613  */
3614 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3615 			   struct rq_flags *rf)
3616 {
3617 	check_preempt_curr(rq, p, wake_flags);
3618 	WRITE_ONCE(p->__state, TASK_RUNNING);
3619 	trace_sched_wakeup(p);
3620 
3621 #ifdef CONFIG_SMP
3622 	if (p->sched_class->task_woken) {
3623 		/*
3624 		 * Our task @p is fully woken up and running; so it's safe to
3625 		 * drop the rq->lock, hereafter rq is only used for statistics.
3626 		 */
3627 		rq_unpin_lock(rq, rf);
3628 		p->sched_class->task_woken(rq, p);
3629 		rq_repin_lock(rq, rf);
3630 	}
3631 
3632 	if (rq->idle_stamp) {
3633 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3634 		u64 max = 2*rq->max_idle_balance_cost;
3635 
3636 		update_avg(&rq->avg_idle, delta);
3637 
3638 		if (rq->avg_idle > max)
3639 			rq->avg_idle = max;
3640 
3641 		rq->wake_stamp = jiffies;
3642 		rq->wake_avg_idle = rq->avg_idle / 2;
3643 
3644 		rq->idle_stamp = 0;
3645 	}
3646 #endif
3647 }
3648 
3649 static void
3650 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3651 		 struct rq_flags *rf)
3652 {
3653 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3654 
3655 	lockdep_assert_rq_held(rq);
3656 
3657 	if (p->sched_contributes_to_load)
3658 		rq->nr_uninterruptible--;
3659 
3660 #ifdef CONFIG_SMP
3661 	if (wake_flags & WF_MIGRATED)
3662 		en_flags |= ENQUEUE_MIGRATED;
3663 	else
3664 #endif
3665 	if (p->in_iowait) {
3666 		delayacct_blkio_end(p);
3667 		atomic_dec(&task_rq(p)->nr_iowait);
3668 	}
3669 
3670 	activate_task(rq, p, en_flags);
3671 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3672 }
3673 
3674 /*
3675  * Consider @p being inside a wait loop:
3676  *
3677  *   for (;;) {
3678  *      set_current_state(TASK_UNINTERRUPTIBLE);
3679  *
3680  *      if (CONDITION)
3681  *         break;
3682  *
3683  *      schedule();
3684  *   }
3685  *   __set_current_state(TASK_RUNNING);
3686  *
3687  * between set_current_state() and schedule(). In this case @p is still
3688  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3689  * an atomic manner.
3690  *
3691  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3692  * then schedule() must still happen and p->state can be changed to
3693  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3694  * need to do a full wakeup with enqueue.
3695  *
3696  * Returns: %true when the wakeup is done,
3697  *          %false otherwise.
3698  */
3699 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3700 {
3701 	struct rq_flags rf;
3702 	struct rq *rq;
3703 	int ret = 0;
3704 
3705 	rq = __task_rq_lock(p, &rf);
3706 	if (task_on_rq_queued(p)) {
3707 		/* check_preempt_curr() may use rq clock */
3708 		update_rq_clock(rq);
3709 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3710 		ret = 1;
3711 	}
3712 	__task_rq_unlock(rq, &rf);
3713 
3714 	return ret;
3715 }
3716 
3717 #ifdef CONFIG_SMP
3718 void sched_ttwu_pending(void *arg)
3719 {
3720 	struct llist_node *llist = arg;
3721 	struct rq *rq = this_rq();
3722 	struct task_struct *p, *t;
3723 	struct rq_flags rf;
3724 
3725 	if (!llist)
3726 		return;
3727 
3728 	/*
3729 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3730 	 * Races such that false-negatives are possible, since they
3731 	 * are shorter lived that false-positives would be.
3732 	 */
3733 	WRITE_ONCE(rq->ttwu_pending, 0);
3734 
3735 	rq_lock_irqsave(rq, &rf);
3736 	update_rq_clock(rq);
3737 
3738 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3739 		if (WARN_ON_ONCE(p->on_cpu))
3740 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3741 
3742 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3743 			set_task_cpu(p, cpu_of(rq));
3744 
3745 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3746 	}
3747 
3748 	rq_unlock_irqrestore(rq, &rf);
3749 }
3750 
3751 void send_call_function_single_ipi(int cpu)
3752 {
3753 	struct rq *rq = cpu_rq(cpu);
3754 
3755 	if (!set_nr_if_polling(rq->idle))
3756 		arch_send_call_function_single_ipi(cpu);
3757 	else
3758 		trace_sched_wake_idle_without_ipi(cpu);
3759 }
3760 
3761 /*
3762  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3763  * necessary. The wakee CPU on receipt of the IPI will queue the task
3764  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3765  * of the wakeup instead of the waker.
3766  */
3767 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3768 {
3769 	struct rq *rq = cpu_rq(cpu);
3770 
3771 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3772 
3773 	WRITE_ONCE(rq->ttwu_pending, 1);
3774 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3775 }
3776 
3777 void wake_up_if_idle(int cpu)
3778 {
3779 	struct rq *rq = cpu_rq(cpu);
3780 	struct rq_flags rf;
3781 
3782 	rcu_read_lock();
3783 
3784 	if (!is_idle_task(rcu_dereference(rq->curr)))
3785 		goto out;
3786 
3787 	rq_lock_irqsave(rq, &rf);
3788 	if (is_idle_task(rq->curr))
3789 		resched_curr(rq);
3790 	/* Else CPU is not idle, do nothing here: */
3791 	rq_unlock_irqrestore(rq, &rf);
3792 
3793 out:
3794 	rcu_read_unlock();
3795 }
3796 
3797 bool cpus_share_cache(int this_cpu, int that_cpu)
3798 {
3799 	if (this_cpu == that_cpu)
3800 		return true;
3801 
3802 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3803 }
3804 
3805 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3806 {
3807 	/*
3808 	 * Do not complicate things with the async wake_list while the CPU is
3809 	 * in hotplug state.
3810 	 */
3811 	if (!cpu_active(cpu))
3812 		return false;
3813 
3814 	/* Ensure the task will still be allowed to run on the CPU. */
3815 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3816 		return false;
3817 
3818 	/*
3819 	 * If the CPU does not share cache, then queue the task on the
3820 	 * remote rqs wakelist to avoid accessing remote data.
3821 	 */
3822 	if (!cpus_share_cache(smp_processor_id(), cpu))
3823 		return true;
3824 
3825 	if (cpu == smp_processor_id())
3826 		return false;
3827 
3828 	/*
3829 	 * If the wakee cpu is idle, or the task is descheduling and the
3830 	 * only running task on the CPU, then use the wakelist to offload
3831 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3832 	 * the current CPU is likely busy. nr_running is checked to
3833 	 * avoid unnecessary task stacking.
3834 	 *
3835 	 * Note that we can only get here with (wakee) p->on_rq=0,
3836 	 * p->on_cpu can be whatever, we've done the dequeue, so
3837 	 * the wakee has been accounted out of ->nr_running.
3838 	 */
3839 	if (!cpu_rq(cpu)->nr_running)
3840 		return true;
3841 
3842 	return false;
3843 }
3844 
3845 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3846 {
3847 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3848 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3849 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3850 		return true;
3851 	}
3852 
3853 	return false;
3854 }
3855 
3856 #else /* !CONFIG_SMP */
3857 
3858 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3859 {
3860 	return false;
3861 }
3862 
3863 #endif /* CONFIG_SMP */
3864 
3865 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3866 {
3867 	struct rq *rq = cpu_rq(cpu);
3868 	struct rq_flags rf;
3869 
3870 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3871 		return;
3872 
3873 	rq_lock(rq, &rf);
3874 	update_rq_clock(rq);
3875 	ttwu_do_activate(rq, p, wake_flags, &rf);
3876 	rq_unlock(rq, &rf);
3877 }
3878 
3879 /*
3880  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3881  *
3882  * The caller holds p::pi_lock if p != current or has preemption
3883  * disabled when p == current.
3884  *
3885  * The rules of PREEMPT_RT saved_state:
3886  *
3887  *   The related locking code always holds p::pi_lock when updating
3888  *   p::saved_state, which means the code is fully serialized in both cases.
3889  *
3890  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3891  *   bits set. This allows to distinguish all wakeup scenarios.
3892  */
3893 static __always_inline
3894 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3895 {
3896 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3897 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3898 			     state != TASK_RTLOCK_WAIT);
3899 	}
3900 
3901 	if (READ_ONCE(p->__state) & state) {
3902 		*success = 1;
3903 		return true;
3904 	}
3905 
3906 #ifdef CONFIG_PREEMPT_RT
3907 	/*
3908 	 * Saved state preserves the task state across blocking on
3909 	 * an RT lock.  If the state matches, set p::saved_state to
3910 	 * TASK_RUNNING, but do not wake the task because it waits
3911 	 * for a lock wakeup. Also indicate success because from
3912 	 * the regular waker's point of view this has succeeded.
3913 	 *
3914 	 * After acquiring the lock the task will restore p::__state
3915 	 * from p::saved_state which ensures that the regular
3916 	 * wakeup is not lost. The restore will also set
3917 	 * p::saved_state to TASK_RUNNING so any further tests will
3918 	 * not result in false positives vs. @success
3919 	 */
3920 	if (p->saved_state & state) {
3921 		p->saved_state = TASK_RUNNING;
3922 		*success = 1;
3923 	}
3924 #endif
3925 	return false;
3926 }
3927 
3928 /*
3929  * Notes on Program-Order guarantees on SMP systems.
3930  *
3931  *  MIGRATION
3932  *
3933  * The basic program-order guarantee on SMP systems is that when a task [t]
3934  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3935  * execution on its new CPU [c1].
3936  *
3937  * For migration (of runnable tasks) this is provided by the following means:
3938  *
3939  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3940  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3941  *     rq(c1)->lock (if not at the same time, then in that order).
3942  *  C) LOCK of the rq(c1)->lock scheduling in task
3943  *
3944  * Release/acquire chaining guarantees that B happens after A and C after B.
3945  * Note: the CPU doing B need not be c0 or c1
3946  *
3947  * Example:
3948  *
3949  *   CPU0            CPU1            CPU2
3950  *
3951  *   LOCK rq(0)->lock
3952  *   sched-out X
3953  *   sched-in Y
3954  *   UNLOCK rq(0)->lock
3955  *
3956  *                                   LOCK rq(0)->lock // orders against CPU0
3957  *                                   dequeue X
3958  *                                   UNLOCK rq(0)->lock
3959  *
3960  *                                   LOCK rq(1)->lock
3961  *                                   enqueue X
3962  *                                   UNLOCK rq(1)->lock
3963  *
3964  *                   LOCK rq(1)->lock // orders against CPU2
3965  *                   sched-out Z
3966  *                   sched-in X
3967  *                   UNLOCK rq(1)->lock
3968  *
3969  *
3970  *  BLOCKING -- aka. SLEEP + WAKEUP
3971  *
3972  * For blocking we (obviously) need to provide the same guarantee as for
3973  * migration. However the means are completely different as there is no lock
3974  * chain to provide order. Instead we do:
3975  *
3976  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3977  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3978  *
3979  * Example:
3980  *
3981  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3982  *
3983  *   LOCK rq(0)->lock LOCK X->pi_lock
3984  *   dequeue X
3985  *   sched-out X
3986  *   smp_store_release(X->on_cpu, 0);
3987  *
3988  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3989  *                    X->state = WAKING
3990  *                    set_task_cpu(X,2)
3991  *
3992  *                    LOCK rq(2)->lock
3993  *                    enqueue X
3994  *                    X->state = RUNNING
3995  *                    UNLOCK rq(2)->lock
3996  *
3997  *                                          LOCK rq(2)->lock // orders against CPU1
3998  *                                          sched-out Z
3999  *                                          sched-in X
4000  *                                          UNLOCK rq(2)->lock
4001  *
4002  *                    UNLOCK X->pi_lock
4003  *   UNLOCK rq(0)->lock
4004  *
4005  *
4006  * However, for wakeups there is a second guarantee we must provide, namely we
4007  * must ensure that CONDITION=1 done by the caller can not be reordered with
4008  * accesses to the task state; see try_to_wake_up() and set_current_state().
4009  */
4010 
4011 /**
4012  * try_to_wake_up - wake up a thread
4013  * @p: the thread to be awakened
4014  * @state: the mask of task states that can be woken
4015  * @wake_flags: wake modifier flags (WF_*)
4016  *
4017  * Conceptually does:
4018  *
4019  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4020  *
4021  * If the task was not queued/runnable, also place it back on a runqueue.
4022  *
4023  * This function is atomic against schedule() which would dequeue the task.
4024  *
4025  * It issues a full memory barrier before accessing @p->state, see the comment
4026  * with set_current_state().
4027  *
4028  * Uses p->pi_lock to serialize against concurrent wake-ups.
4029  *
4030  * Relies on p->pi_lock stabilizing:
4031  *  - p->sched_class
4032  *  - p->cpus_ptr
4033  *  - p->sched_task_group
4034  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4035  *
4036  * Tries really hard to only take one task_rq(p)->lock for performance.
4037  * Takes rq->lock in:
4038  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4039  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4040  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4041  *
4042  * As a consequence we race really badly with just about everything. See the
4043  * many memory barriers and their comments for details.
4044  *
4045  * Return: %true if @p->state changes (an actual wakeup was done),
4046  *	   %false otherwise.
4047  */
4048 static int
4049 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4050 {
4051 	unsigned long flags;
4052 	int cpu, success = 0;
4053 
4054 	preempt_disable();
4055 	if (p == current) {
4056 		/*
4057 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4058 		 * == smp_processor_id()'. Together this means we can special
4059 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4060 		 * without taking any locks.
4061 		 *
4062 		 * In particular:
4063 		 *  - we rely on Program-Order guarantees for all the ordering,
4064 		 *  - we're serialized against set_special_state() by virtue of
4065 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4066 		 */
4067 		if (!ttwu_state_match(p, state, &success))
4068 			goto out;
4069 
4070 		trace_sched_waking(p);
4071 		WRITE_ONCE(p->__state, TASK_RUNNING);
4072 		trace_sched_wakeup(p);
4073 		goto out;
4074 	}
4075 
4076 	/*
4077 	 * If we are going to wake up a thread waiting for CONDITION we
4078 	 * need to ensure that CONDITION=1 done by the caller can not be
4079 	 * reordered with p->state check below. This pairs with smp_store_mb()
4080 	 * in set_current_state() that the waiting thread does.
4081 	 */
4082 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4083 	smp_mb__after_spinlock();
4084 	if (!ttwu_state_match(p, state, &success))
4085 		goto unlock;
4086 
4087 	trace_sched_waking(p);
4088 
4089 	/*
4090 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4091 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4092 	 * in smp_cond_load_acquire() below.
4093 	 *
4094 	 * sched_ttwu_pending()			try_to_wake_up()
4095 	 *   STORE p->on_rq = 1			  LOAD p->state
4096 	 *   UNLOCK rq->lock
4097 	 *
4098 	 * __schedule() (switch to task 'p')
4099 	 *   LOCK rq->lock			  smp_rmb();
4100 	 *   smp_mb__after_spinlock();
4101 	 *   UNLOCK rq->lock
4102 	 *
4103 	 * [task p]
4104 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4105 	 *
4106 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4107 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4108 	 *
4109 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4110 	 */
4111 	smp_rmb();
4112 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4113 		goto unlock;
4114 
4115 #ifdef CONFIG_SMP
4116 	/*
4117 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4118 	 * possible to, falsely, observe p->on_cpu == 0.
4119 	 *
4120 	 * One must be running (->on_cpu == 1) in order to remove oneself
4121 	 * from the runqueue.
4122 	 *
4123 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4124 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4125 	 *   UNLOCK rq->lock
4126 	 *
4127 	 * __schedule() (put 'p' to sleep)
4128 	 *   LOCK rq->lock			  smp_rmb();
4129 	 *   smp_mb__after_spinlock();
4130 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4131 	 *
4132 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4133 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4134 	 *
4135 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4136 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4137 	 * care about it's own p->state. See the comment in __schedule().
4138 	 */
4139 	smp_acquire__after_ctrl_dep();
4140 
4141 	/*
4142 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4143 	 * == 0), which means we need to do an enqueue, change p->state to
4144 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4145 	 * enqueue, such as ttwu_queue_wakelist().
4146 	 */
4147 	WRITE_ONCE(p->__state, TASK_WAKING);
4148 
4149 	/*
4150 	 * If the owning (remote) CPU is still in the middle of schedule() with
4151 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4152 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4153 	 * let the waker make forward progress. This is safe because IRQs are
4154 	 * disabled and the IPI will deliver after on_cpu is cleared.
4155 	 *
4156 	 * Ensure we load task_cpu(p) after p->on_cpu:
4157 	 *
4158 	 * set_task_cpu(p, cpu);
4159 	 *   STORE p->cpu = @cpu
4160 	 * __schedule() (switch to task 'p')
4161 	 *   LOCK rq->lock
4162 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4163 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4164 	 *
4165 	 * to ensure we observe the correct CPU on which the task is currently
4166 	 * scheduling.
4167 	 */
4168 	if (smp_load_acquire(&p->on_cpu) &&
4169 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4170 		goto unlock;
4171 
4172 	/*
4173 	 * If the owning (remote) CPU is still in the middle of schedule() with
4174 	 * this task as prev, wait until it's done referencing the task.
4175 	 *
4176 	 * Pairs with the smp_store_release() in finish_task().
4177 	 *
4178 	 * This ensures that tasks getting woken will be fully ordered against
4179 	 * their previous state and preserve Program Order.
4180 	 */
4181 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4182 
4183 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4184 	if (task_cpu(p) != cpu) {
4185 		if (p->in_iowait) {
4186 			delayacct_blkio_end(p);
4187 			atomic_dec(&task_rq(p)->nr_iowait);
4188 		}
4189 
4190 		wake_flags |= WF_MIGRATED;
4191 		psi_ttwu_dequeue(p);
4192 		set_task_cpu(p, cpu);
4193 	}
4194 #else
4195 	cpu = task_cpu(p);
4196 #endif /* CONFIG_SMP */
4197 
4198 	ttwu_queue(p, cpu, wake_flags);
4199 unlock:
4200 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4201 out:
4202 	if (success)
4203 		ttwu_stat(p, task_cpu(p), wake_flags);
4204 	preempt_enable();
4205 
4206 	return success;
4207 }
4208 
4209 /**
4210  * task_call_func - Invoke a function on task in fixed state
4211  * @p: Process for which the function is to be invoked, can be @current.
4212  * @func: Function to invoke.
4213  * @arg: Argument to function.
4214  *
4215  * Fix the task in it's current state by avoiding wakeups and or rq operations
4216  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4217  * to work out what the state is, if required.  Given that @func can be invoked
4218  * with a runqueue lock held, it had better be quite lightweight.
4219  *
4220  * Returns:
4221  *   Whatever @func returns
4222  */
4223 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4224 {
4225 	struct rq *rq = NULL;
4226 	unsigned int state;
4227 	struct rq_flags rf;
4228 	int ret;
4229 
4230 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4231 
4232 	state = READ_ONCE(p->__state);
4233 
4234 	/*
4235 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4236 	 * possible to, falsely, observe p->on_rq == 0.
4237 	 *
4238 	 * See try_to_wake_up() for a longer comment.
4239 	 */
4240 	smp_rmb();
4241 
4242 	/*
4243 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4244 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4245 	 * locks at the end, see ttwu_queue_wakelist().
4246 	 */
4247 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4248 		rq = __task_rq_lock(p, &rf);
4249 
4250 	/*
4251 	 * At this point the task is pinned; either:
4252 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4253 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4254 	 *  - queued, and we're holding off schedule	 (rq->lock)
4255 	 *  - running, and we're holding off de-schedule (rq->lock)
4256 	 *
4257 	 * The called function (@func) can use: task_curr(), p->on_rq and
4258 	 * p->__state to differentiate between these states.
4259 	 */
4260 	ret = func(p, arg);
4261 
4262 	if (rq)
4263 		rq_unlock(rq, &rf);
4264 
4265 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4266 	return ret;
4267 }
4268 
4269 /**
4270  * cpu_curr_snapshot - Return a snapshot of the currently running task
4271  * @cpu: The CPU on which to snapshot the task.
4272  *
4273  * Returns the task_struct pointer of the task "currently" running on
4274  * the specified CPU.  If the same task is running on that CPU throughout,
4275  * the return value will be a pointer to that task's task_struct structure.
4276  * If the CPU did any context switches even vaguely concurrently with the
4277  * execution of this function, the return value will be a pointer to the
4278  * task_struct structure of a randomly chosen task that was running on
4279  * that CPU somewhere around the time that this function was executing.
4280  *
4281  * If the specified CPU was offline, the return value is whatever it
4282  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4283  * task, but there is no guarantee.  Callers wishing a useful return
4284  * value must take some action to ensure that the specified CPU remains
4285  * online throughout.
4286  *
4287  * This function executes full memory barriers before and after fetching
4288  * the pointer, which permits the caller to confine this function's fetch
4289  * with respect to the caller's accesses to other shared variables.
4290  */
4291 struct task_struct *cpu_curr_snapshot(int cpu)
4292 {
4293 	struct task_struct *t;
4294 
4295 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4296 	t = rcu_dereference(cpu_curr(cpu));
4297 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4298 	return t;
4299 }
4300 
4301 /**
4302  * wake_up_process - Wake up a specific process
4303  * @p: The process to be woken up.
4304  *
4305  * Attempt to wake up the nominated process and move it to the set of runnable
4306  * processes.
4307  *
4308  * Return: 1 if the process was woken up, 0 if it was already running.
4309  *
4310  * This function executes a full memory barrier before accessing the task state.
4311  */
4312 int wake_up_process(struct task_struct *p)
4313 {
4314 	return try_to_wake_up(p, TASK_NORMAL, 0);
4315 }
4316 EXPORT_SYMBOL(wake_up_process);
4317 
4318 int wake_up_state(struct task_struct *p, unsigned int state)
4319 {
4320 	return try_to_wake_up(p, state, 0);
4321 }
4322 
4323 /*
4324  * Perform scheduler related setup for a newly forked process p.
4325  * p is forked by current.
4326  *
4327  * __sched_fork() is basic setup used by init_idle() too:
4328  */
4329 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4330 {
4331 	p->on_rq			= 0;
4332 
4333 	p->se.on_rq			= 0;
4334 	p->se.exec_start		= 0;
4335 	p->se.sum_exec_runtime		= 0;
4336 	p->se.prev_sum_exec_runtime	= 0;
4337 	p->se.nr_migrations		= 0;
4338 	p->se.vruntime			= 0;
4339 	INIT_LIST_HEAD(&p->se.group_node);
4340 
4341 #ifdef CONFIG_FAIR_GROUP_SCHED
4342 	p->se.cfs_rq			= NULL;
4343 #endif
4344 
4345 #ifdef CONFIG_SCHEDSTATS
4346 	/* Even if schedstat is disabled, there should not be garbage */
4347 	memset(&p->stats, 0, sizeof(p->stats));
4348 #endif
4349 
4350 	RB_CLEAR_NODE(&p->dl.rb_node);
4351 	init_dl_task_timer(&p->dl);
4352 	init_dl_inactive_task_timer(&p->dl);
4353 	__dl_clear_params(p);
4354 
4355 	INIT_LIST_HEAD(&p->rt.run_list);
4356 	p->rt.timeout		= 0;
4357 	p->rt.time_slice	= sched_rr_timeslice;
4358 	p->rt.on_rq		= 0;
4359 	p->rt.on_list		= 0;
4360 
4361 #ifdef CONFIG_PREEMPT_NOTIFIERS
4362 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4363 #endif
4364 
4365 #ifdef CONFIG_COMPACTION
4366 	p->capture_control = NULL;
4367 #endif
4368 	init_numa_balancing(clone_flags, p);
4369 #ifdef CONFIG_SMP
4370 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4371 	p->migration_pending = NULL;
4372 #endif
4373 }
4374 
4375 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4376 
4377 #ifdef CONFIG_NUMA_BALANCING
4378 
4379 int sysctl_numa_balancing_mode;
4380 
4381 static void __set_numabalancing_state(bool enabled)
4382 {
4383 	if (enabled)
4384 		static_branch_enable(&sched_numa_balancing);
4385 	else
4386 		static_branch_disable(&sched_numa_balancing);
4387 }
4388 
4389 void set_numabalancing_state(bool enabled)
4390 {
4391 	if (enabled)
4392 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4393 	else
4394 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4395 	__set_numabalancing_state(enabled);
4396 }
4397 
4398 #ifdef CONFIG_PROC_SYSCTL
4399 static void reset_memory_tiering(void)
4400 {
4401 	struct pglist_data *pgdat;
4402 
4403 	for_each_online_pgdat(pgdat) {
4404 		pgdat->nbp_threshold = 0;
4405 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4406 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4407 	}
4408 }
4409 
4410 int sysctl_numa_balancing(struct ctl_table *table, int write,
4411 			  void *buffer, size_t *lenp, loff_t *ppos)
4412 {
4413 	struct ctl_table t;
4414 	int err;
4415 	int state = sysctl_numa_balancing_mode;
4416 
4417 	if (write && !capable(CAP_SYS_ADMIN))
4418 		return -EPERM;
4419 
4420 	t = *table;
4421 	t.data = &state;
4422 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4423 	if (err < 0)
4424 		return err;
4425 	if (write) {
4426 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4427 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4428 			reset_memory_tiering();
4429 		sysctl_numa_balancing_mode = state;
4430 		__set_numabalancing_state(state);
4431 	}
4432 	return err;
4433 }
4434 #endif
4435 #endif
4436 
4437 #ifdef CONFIG_SCHEDSTATS
4438 
4439 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4440 
4441 static void set_schedstats(bool enabled)
4442 {
4443 	if (enabled)
4444 		static_branch_enable(&sched_schedstats);
4445 	else
4446 		static_branch_disable(&sched_schedstats);
4447 }
4448 
4449 void force_schedstat_enabled(void)
4450 {
4451 	if (!schedstat_enabled()) {
4452 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4453 		static_branch_enable(&sched_schedstats);
4454 	}
4455 }
4456 
4457 static int __init setup_schedstats(char *str)
4458 {
4459 	int ret = 0;
4460 	if (!str)
4461 		goto out;
4462 
4463 	if (!strcmp(str, "enable")) {
4464 		set_schedstats(true);
4465 		ret = 1;
4466 	} else if (!strcmp(str, "disable")) {
4467 		set_schedstats(false);
4468 		ret = 1;
4469 	}
4470 out:
4471 	if (!ret)
4472 		pr_warn("Unable to parse schedstats=\n");
4473 
4474 	return ret;
4475 }
4476 __setup("schedstats=", setup_schedstats);
4477 
4478 #ifdef CONFIG_PROC_SYSCTL
4479 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4480 		size_t *lenp, loff_t *ppos)
4481 {
4482 	struct ctl_table t;
4483 	int err;
4484 	int state = static_branch_likely(&sched_schedstats);
4485 
4486 	if (write && !capable(CAP_SYS_ADMIN))
4487 		return -EPERM;
4488 
4489 	t = *table;
4490 	t.data = &state;
4491 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4492 	if (err < 0)
4493 		return err;
4494 	if (write)
4495 		set_schedstats(state);
4496 	return err;
4497 }
4498 #endif /* CONFIG_PROC_SYSCTL */
4499 #endif /* CONFIG_SCHEDSTATS */
4500 
4501 #ifdef CONFIG_SYSCTL
4502 static struct ctl_table sched_core_sysctls[] = {
4503 #ifdef CONFIG_SCHEDSTATS
4504 	{
4505 		.procname       = "sched_schedstats",
4506 		.data           = NULL,
4507 		.maxlen         = sizeof(unsigned int),
4508 		.mode           = 0644,
4509 		.proc_handler   = sysctl_schedstats,
4510 		.extra1         = SYSCTL_ZERO,
4511 		.extra2         = SYSCTL_ONE,
4512 	},
4513 #endif /* CONFIG_SCHEDSTATS */
4514 #ifdef CONFIG_UCLAMP_TASK
4515 	{
4516 		.procname       = "sched_util_clamp_min",
4517 		.data           = &sysctl_sched_uclamp_util_min,
4518 		.maxlen         = sizeof(unsigned int),
4519 		.mode           = 0644,
4520 		.proc_handler   = sysctl_sched_uclamp_handler,
4521 	},
4522 	{
4523 		.procname       = "sched_util_clamp_max",
4524 		.data           = &sysctl_sched_uclamp_util_max,
4525 		.maxlen         = sizeof(unsigned int),
4526 		.mode           = 0644,
4527 		.proc_handler   = sysctl_sched_uclamp_handler,
4528 	},
4529 	{
4530 		.procname       = "sched_util_clamp_min_rt_default",
4531 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4532 		.maxlen         = sizeof(unsigned int),
4533 		.mode           = 0644,
4534 		.proc_handler   = sysctl_sched_uclamp_handler,
4535 	},
4536 #endif /* CONFIG_UCLAMP_TASK */
4537 	{}
4538 };
4539 static int __init sched_core_sysctl_init(void)
4540 {
4541 	register_sysctl_init("kernel", sched_core_sysctls);
4542 	return 0;
4543 }
4544 late_initcall(sched_core_sysctl_init);
4545 #endif /* CONFIG_SYSCTL */
4546 
4547 /*
4548  * fork()/clone()-time setup:
4549  */
4550 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4551 {
4552 	__sched_fork(clone_flags, p);
4553 	/*
4554 	 * We mark the process as NEW here. This guarantees that
4555 	 * nobody will actually run it, and a signal or other external
4556 	 * event cannot wake it up and insert it on the runqueue either.
4557 	 */
4558 	p->__state = TASK_NEW;
4559 
4560 	/*
4561 	 * Make sure we do not leak PI boosting priority to the child.
4562 	 */
4563 	p->prio = current->normal_prio;
4564 
4565 	uclamp_fork(p);
4566 
4567 	/*
4568 	 * Revert to default priority/policy on fork if requested.
4569 	 */
4570 	if (unlikely(p->sched_reset_on_fork)) {
4571 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4572 			p->policy = SCHED_NORMAL;
4573 			p->static_prio = NICE_TO_PRIO(0);
4574 			p->rt_priority = 0;
4575 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4576 			p->static_prio = NICE_TO_PRIO(0);
4577 
4578 		p->prio = p->normal_prio = p->static_prio;
4579 		set_load_weight(p, false);
4580 
4581 		/*
4582 		 * We don't need the reset flag anymore after the fork. It has
4583 		 * fulfilled its duty:
4584 		 */
4585 		p->sched_reset_on_fork = 0;
4586 	}
4587 
4588 	if (dl_prio(p->prio))
4589 		return -EAGAIN;
4590 	else if (rt_prio(p->prio))
4591 		p->sched_class = &rt_sched_class;
4592 	else
4593 		p->sched_class = &fair_sched_class;
4594 
4595 	init_entity_runnable_average(&p->se);
4596 
4597 
4598 #ifdef CONFIG_SCHED_INFO
4599 	if (likely(sched_info_on()))
4600 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4601 #endif
4602 #if defined(CONFIG_SMP)
4603 	p->on_cpu = 0;
4604 #endif
4605 	init_task_preempt_count(p);
4606 #ifdef CONFIG_SMP
4607 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4608 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4609 #endif
4610 	return 0;
4611 }
4612 
4613 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4614 {
4615 	unsigned long flags;
4616 
4617 	/*
4618 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4619 	 * required yet, but lockdep gets upset if rules are violated.
4620 	 */
4621 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4622 #ifdef CONFIG_CGROUP_SCHED
4623 	if (1) {
4624 		struct task_group *tg;
4625 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4626 				  struct task_group, css);
4627 		tg = autogroup_task_group(p, tg);
4628 		p->sched_task_group = tg;
4629 	}
4630 #endif
4631 	rseq_migrate(p);
4632 	/*
4633 	 * We're setting the CPU for the first time, we don't migrate,
4634 	 * so use __set_task_cpu().
4635 	 */
4636 	__set_task_cpu(p, smp_processor_id());
4637 	if (p->sched_class->task_fork)
4638 		p->sched_class->task_fork(p);
4639 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4640 }
4641 
4642 void sched_post_fork(struct task_struct *p)
4643 {
4644 	uclamp_post_fork(p);
4645 }
4646 
4647 unsigned long to_ratio(u64 period, u64 runtime)
4648 {
4649 	if (runtime == RUNTIME_INF)
4650 		return BW_UNIT;
4651 
4652 	/*
4653 	 * Doing this here saves a lot of checks in all
4654 	 * the calling paths, and returning zero seems
4655 	 * safe for them anyway.
4656 	 */
4657 	if (period == 0)
4658 		return 0;
4659 
4660 	return div64_u64(runtime << BW_SHIFT, period);
4661 }
4662 
4663 /*
4664  * wake_up_new_task - wake up a newly created task for the first time.
4665  *
4666  * This function will do some initial scheduler statistics housekeeping
4667  * that must be done for every newly created context, then puts the task
4668  * on the runqueue and wakes it.
4669  */
4670 void wake_up_new_task(struct task_struct *p)
4671 {
4672 	struct rq_flags rf;
4673 	struct rq *rq;
4674 
4675 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4676 	WRITE_ONCE(p->__state, TASK_RUNNING);
4677 #ifdef CONFIG_SMP
4678 	/*
4679 	 * Fork balancing, do it here and not earlier because:
4680 	 *  - cpus_ptr can change in the fork path
4681 	 *  - any previously selected CPU might disappear through hotplug
4682 	 *
4683 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4684 	 * as we're not fully set-up yet.
4685 	 */
4686 	p->recent_used_cpu = task_cpu(p);
4687 	rseq_migrate(p);
4688 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4689 #endif
4690 	rq = __task_rq_lock(p, &rf);
4691 	update_rq_clock(rq);
4692 	post_init_entity_util_avg(p);
4693 
4694 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4695 	trace_sched_wakeup_new(p);
4696 	check_preempt_curr(rq, p, WF_FORK);
4697 #ifdef CONFIG_SMP
4698 	if (p->sched_class->task_woken) {
4699 		/*
4700 		 * Nothing relies on rq->lock after this, so it's fine to
4701 		 * drop it.
4702 		 */
4703 		rq_unpin_lock(rq, &rf);
4704 		p->sched_class->task_woken(rq, p);
4705 		rq_repin_lock(rq, &rf);
4706 	}
4707 #endif
4708 	task_rq_unlock(rq, p, &rf);
4709 }
4710 
4711 #ifdef CONFIG_PREEMPT_NOTIFIERS
4712 
4713 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4714 
4715 void preempt_notifier_inc(void)
4716 {
4717 	static_branch_inc(&preempt_notifier_key);
4718 }
4719 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4720 
4721 void preempt_notifier_dec(void)
4722 {
4723 	static_branch_dec(&preempt_notifier_key);
4724 }
4725 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4726 
4727 /**
4728  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4729  * @notifier: notifier struct to register
4730  */
4731 void preempt_notifier_register(struct preempt_notifier *notifier)
4732 {
4733 	if (!static_branch_unlikely(&preempt_notifier_key))
4734 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4735 
4736 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4737 }
4738 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4739 
4740 /**
4741  * preempt_notifier_unregister - no longer interested in preemption notifications
4742  * @notifier: notifier struct to unregister
4743  *
4744  * This is *not* safe to call from within a preemption notifier.
4745  */
4746 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4747 {
4748 	hlist_del(&notifier->link);
4749 }
4750 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4751 
4752 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4753 {
4754 	struct preempt_notifier *notifier;
4755 
4756 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4757 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4758 }
4759 
4760 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4761 {
4762 	if (static_branch_unlikely(&preempt_notifier_key))
4763 		__fire_sched_in_preempt_notifiers(curr);
4764 }
4765 
4766 static void
4767 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4768 				   struct task_struct *next)
4769 {
4770 	struct preempt_notifier *notifier;
4771 
4772 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4773 		notifier->ops->sched_out(notifier, next);
4774 }
4775 
4776 static __always_inline void
4777 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4778 				 struct task_struct *next)
4779 {
4780 	if (static_branch_unlikely(&preempt_notifier_key))
4781 		__fire_sched_out_preempt_notifiers(curr, next);
4782 }
4783 
4784 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4785 
4786 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4787 {
4788 }
4789 
4790 static inline void
4791 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4792 				 struct task_struct *next)
4793 {
4794 }
4795 
4796 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4797 
4798 static inline void prepare_task(struct task_struct *next)
4799 {
4800 #ifdef CONFIG_SMP
4801 	/*
4802 	 * Claim the task as running, we do this before switching to it
4803 	 * such that any running task will have this set.
4804 	 *
4805 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4806 	 * its ordering comment.
4807 	 */
4808 	WRITE_ONCE(next->on_cpu, 1);
4809 #endif
4810 }
4811 
4812 static inline void finish_task(struct task_struct *prev)
4813 {
4814 #ifdef CONFIG_SMP
4815 	/*
4816 	 * This must be the very last reference to @prev from this CPU. After
4817 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4818 	 * must ensure this doesn't happen until the switch is completely
4819 	 * finished.
4820 	 *
4821 	 * In particular, the load of prev->state in finish_task_switch() must
4822 	 * happen before this.
4823 	 *
4824 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4825 	 */
4826 	smp_store_release(&prev->on_cpu, 0);
4827 #endif
4828 }
4829 
4830 #ifdef CONFIG_SMP
4831 
4832 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4833 {
4834 	void (*func)(struct rq *rq);
4835 	struct callback_head *next;
4836 
4837 	lockdep_assert_rq_held(rq);
4838 
4839 	while (head) {
4840 		func = (void (*)(struct rq *))head->func;
4841 		next = head->next;
4842 		head->next = NULL;
4843 		head = next;
4844 
4845 		func(rq);
4846 	}
4847 }
4848 
4849 static void balance_push(struct rq *rq);
4850 
4851 /*
4852  * balance_push_callback is a right abuse of the callback interface and plays
4853  * by significantly different rules.
4854  *
4855  * Where the normal balance_callback's purpose is to be ran in the same context
4856  * that queued it (only later, when it's safe to drop rq->lock again),
4857  * balance_push_callback is specifically targeted at __schedule().
4858  *
4859  * This abuse is tolerated because it places all the unlikely/odd cases behind
4860  * a single test, namely: rq->balance_callback == NULL.
4861  */
4862 struct callback_head balance_push_callback = {
4863 	.next = NULL,
4864 	.func = (void (*)(struct callback_head *))balance_push,
4865 };
4866 
4867 static inline struct callback_head *
4868 __splice_balance_callbacks(struct rq *rq, bool split)
4869 {
4870 	struct callback_head *head = rq->balance_callback;
4871 
4872 	if (likely(!head))
4873 		return NULL;
4874 
4875 	lockdep_assert_rq_held(rq);
4876 	/*
4877 	 * Must not take balance_push_callback off the list when
4878 	 * splice_balance_callbacks() and balance_callbacks() are not
4879 	 * in the same rq->lock section.
4880 	 *
4881 	 * In that case it would be possible for __schedule() to interleave
4882 	 * and observe the list empty.
4883 	 */
4884 	if (split && head == &balance_push_callback)
4885 		head = NULL;
4886 	else
4887 		rq->balance_callback = NULL;
4888 
4889 	return head;
4890 }
4891 
4892 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4893 {
4894 	return __splice_balance_callbacks(rq, true);
4895 }
4896 
4897 static void __balance_callbacks(struct rq *rq)
4898 {
4899 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4900 }
4901 
4902 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4903 {
4904 	unsigned long flags;
4905 
4906 	if (unlikely(head)) {
4907 		raw_spin_rq_lock_irqsave(rq, flags);
4908 		do_balance_callbacks(rq, head);
4909 		raw_spin_rq_unlock_irqrestore(rq, flags);
4910 	}
4911 }
4912 
4913 #else
4914 
4915 static inline void __balance_callbacks(struct rq *rq)
4916 {
4917 }
4918 
4919 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4920 {
4921 	return NULL;
4922 }
4923 
4924 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4925 {
4926 }
4927 
4928 #endif
4929 
4930 static inline void
4931 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4932 {
4933 	/*
4934 	 * Since the runqueue lock will be released by the next
4935 	 * task (which is an invalid locking op but in the case
4936 	 * of the scheduler it's an obvious special-case), so we
4937 	 * do an early lockdep release here:
4938 	 */
4939 	rq_unpin_lock(rq, rf);
4940 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4941 #ifdef CONFIG_DEBUG_SPINLOCK
4942 	/* this is a valid case when another task releases the spinlock */
4943 	rq_lockp(rq)->owner = next;
4944 #endif
4945 }
4946 
4947 static inline void finish_lock_switch(struct rq *rq)
4948 {
4949 	/*
4950 	 * If we are tracking spinlock dependencies then we have to
4951 	 * fix up the runqueue lock - which gets 'carried over' from
4952 	 * prev into current:
4953 	 */
4954 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4955 	__balance_callbacks(rq);
4956 	raw_spin_rq_unlock_irq(rq);
4957 }
4958 
4959 /*
4960  * NOP if the arch has not defined these:
4961  */
4962 
4963 #ifndef prepare_arch_switch
4964 # define prepare_arch_switch(next)	do { } while (0)
4965 #endif
4966 
4967 #ifndef finish_arch_post_lock_switch
4968 # define finish_arch_post_lock_switch()	do { } while (0)
4969 #endif
4970 
4971 static inline void kmap_local_sched_out(void)
4972 {
4973 #ifdef CONFIG_KMAP_LOCAL
4974 	if (unlikely(current->kmap_ctrl.idx))
4975 		__kmap_local_sched_out();
4976 #endif
4977 }
4978 
4979 static inline void kmap_local_sched_in(void)
4980 {
4981 #ifdef CONFIG_KMAP_LOCAL
4982 	if (unlikely(current->kmap_ctrl.idx))
4983 		__kmap_local_sched_in();
4984 #endif
4985 }
4986 
4987 /**
4988  * prepare_task_switch - prepare to switch tasks
4989  * @rq: the runqueue preparing to switch
4990  * @prev: the current task that is being switched out
4991  * @next: the task we are going to switch to.
4992  *
4993  * This is called with the rq lock held and interrupts off. It must
4994  * be paired with a subsequent finish_task_switch after the context
4995  * switch.
4996  *
4997  * prepare_task_switch sets up locking and calls architecture specific
4998  * hooks.
4999  */
5000 static inline void
5001 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5002 		    struct task_struct *next)
5003 {
5004 	kcov_prepare_switch(prev);
5005 	sched_info_switch(rq, prev, next);
5006 	perf_event_task_sched_out(prev, next);
5007 	rseq_preempt(prev);
5008 	fire_sched_out_preempt_notifiers(prev, next);
5009 	kmap_local_sched_out();
5010 	prepare_task(next);
5011 	prepare_arch_switch(next);
5012 }
5013 
5014 /**
5015  * finish_task_switch - clean up after a task-switch
5016  * @prev: the thread we just switched away from.
5017  *
5018  * finish_task_switch must be called after the context switch, paired
5019  * with a prepare_task_switch call before the context switch.
5020  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5021  * and do any other architecture-specific cleanup actions.
5022  *
5023  * Note that we may have delayed dropping an mm in context_switch(). If
5024  * so, we finish that here outside of the runqueue lock. (Doing it
5025  * with the lock held can cause deadlocks; see schedule() for
5026  * details.)
5027  *
5028  * The context switch have flipped the stack from under us and restored the
5029  * local variables which were saved when this task called schedule() in the
5030  * past. prev == current is still correct but we need to recalculate this_rq
5031  * because prev may have moved to another CPU.
5032  */
5033 static struct rq *finish_task_switch(struct task_struct *prev)
5034 	__releases(rq->lock)
5035 {
5036 	struct rq *rq = this_rq();
5037 	struct mm_struct *mm = rq->prev_mm;
5038 	unsigned int prev_state;
5039 
5040 	/*
5041 	 * The previous task will have left us with a preempt_count of 2
5042 	 * because it left us after:
5043 	 *
5044 	 *	schedule()
5045 	 *	  preempt_disable();			// 1
5046 	 *	  __schedule()
5047 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5048 	 *
5049 	 * Also, see FORK_PREEMPT_COUNT.
5050 	 */
5051 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5052 		      "corrupted preempt_count: %s/%d/0x%x\n",
5053 		      current->comm, current->pid, preempt_count()))
5054 		preempt_count_set(FORK_PREEMPT_COUNT);
5055 
5056 	rq->prev_mm = NULL;
5057 
5058 	/*
5059 	 * A task struct has one reference for the use as "current".
5060 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5061 	 * schedule one last time. The schedule call will never return, and
5062 	 * the scheduled task must drop that reference.
5063 	 *
5064 	 * We must observe prev->state before clearing prev->on_cpu (in
5065 	 * finish_task), otherwise a concurrent wakeup can get prev
5066 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5067 	 * transition, resulting in a double drop.
5068 	 */
5069 	prev_state = READ_ONCE(prev->__state);
5070 	vtime_task_switch(prev);
5071 	perf_event_task_sched_in(prev, current);
5072 	finish_task(prev);
5073 	tick_nohz_task_switch();
5074 	finish_lock_switch(rq);
5075 	finish_arch_post_lock_switch();
5076 	kcov_finish_switch(current);
5077 	/*
5078 	 * kmap_local_sched_out() is invoked with rq::lock held and
5079 	 * interrupts disabled. There is no requirement for that, but the
5080 	 * sched out code does not have an interrupt enabled section.
5081 	 * Restoring the maps on sched in does not require interrupts being
5082 	 * disabled either.
5083 	 */
5084 	kmap_local_sched_in();
5085 
5086 	fire_sched_in_preempt_notifiers(current);
5087 	/*
5088 	 * When switching through a kernel thread, the loop in
5089 	 * membarrier_{private,global}_expedited() may have observed that
5090 	 * kernel thread and not issued an IPI. It is therefore possible to
5091 	 * schedule between user->kernel->user threads without passing though
5092 	 * switch_mm(). Membarrier requires a barrier after storing to
5093 	 * rq->curr, before returning to userspace, so provide them here:
5094 	 *
5095 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5096 	 *   provided by mmdrop(),
5097 	 * - a sync_core for SYNC_CORE.
5098 	 */
5099 	if (mm) {
5100 		membarrier_mm_sync_core_before_usermode(mm);
5101 		mmdrop_sched(mm);
5102 	}
5103 	if (unlikely(prev_state == TASK_DEAD)) {
5104 		if (prev->sched_class->task_dead)
5105 			prev->sched_class->task_dead(prev);
5106 
5107 		/* Task is done with its stack. */
5108 		put_task_stack(prev);
5109 
5110 		put_task_struct_rcu_user(prev);
5111 	}
5112 
5113 	return rq;
5114 }
5115 
5116 /**
5117  * schedule_tail - first thing a freshly forked thread must call.
5118  * @prev: the thread we just switched away from.
5119  */
5120 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5121 	__releases(rq->lock)
5122 {
5123 	/*
5124 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5125 	 * finish_task_switch() for details.
5126 	 *
5127 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5128 	 * and the preempt_enable() will end up enabling preemption (on
5129 	 * PREEMPT_COUNT kernels).
5130 	 */
5131 
5132 	finish_task_switch(prev);
5133 	preempt_enable();
5134 
5135 	if (current->set_child_tid)
5136 		put_user(task_pid_vnr(current), current->set_child_tid);
5137 
5138 	calculate_sigpending();
5139 }
5140 
5141 /*
5142  * context_switch - switch to the new MM and the new thread's register state.
5143  */
5144 static __always_inline struct rq *
5145 context_switch(struct rq *rq, struct task_struct *prev,
5146 	       struct task_struct *next, struct rq_flags *rf)
5147 {
5148 	prepare_task_switch(rq, prev, next);
5149 
5150 	/*
5151 	 * For paravirt, this is coupled with an exit in switch_to to
5152 	 * combine the page table reload and the switch backend into
5153 	 * one hypercall.
5154 	 */
5155 	arch_start_context_switch(prev);
5156 
5157 	/*
5158 	 * kernel -> kernel   lazy + transfer active
5159 	 *   user -> kernel   lazy + mmgrab() active
5160 	 *
5161 	 * kernel ->   user   switch + mmdrop() active
5162 	 *   user ->   user   switch
5163 	 */
5164 	if (!next->mm) {                                // to kernel
5165 		enter_lazy_tlb(prev->active_mm, next);
5166 
5167 		next->active_mm = prev->active_mm;
5168 		if (prev->mm)                           // from user
5169 			mmgrab(prev->active_mm);
5170 		else
5171 			prev->active_mm = NULL;
5172 	} else {                                        // to user
5173 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5174 		/*
5175 		 * sys_membarrier() requires an smp_mb() between setting
5176 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5177 		 *
5178 		 * The below provides this either through switch_mm(), or in
5179 		 * case 'prev->active_mm == next->mm' through
5180 		 * finish_task_switch()'s mmdrop().
5181 		 */
5182 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5183 		lru_gen_use_mm(next->mm);
5184 
5185 		if (!prev->mm) {                        // from kernel
5186 			/* will mmdrop() in finish_task_switch(). */
5187 			rq->prev_mm = prev->active_mm;
5188 			prev->active_mm = NULL;
5189 		}
5190 	}
5191 
5192 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5193 
5194 	prepare_lock_switch(rq, next, rf);
5195 
5196 	/* Here we just switch the register state and the stack. */
5197 	switch_to(prev, next, prev);
5198 	barrier();
5199 
5200 	return finish_task_switch(prev);
5201 }
5202 
5203 /*
5204  * nr_running and nr_context_switches:
5205  *
5206  * externally visible scheduler statistics: current number of runnable
5207  * threads, total number of context switches performed since bootup.
5208  */
5209 unsigned int nr_running(void)
5210 {
5211 	unsigned int i, sum = 0;
5212 
5213 	for_each_online_cpu(i)
5214 		sum += cpu_rq(i)->nr_running;
5215 
5216 	return sum;
5217 }
5218 
5219 /*
5220  * Check if only the current task is running on the CPU.
5221  *
5222  * Caution: this function does not check that the caller has disabled
5223  * preemption, thus the result might have a time-of-check-to-time-of-use
5224  * race.  The caller is responsible to use it correctly, for example:
5225  *
5226  * - from a non-preemptible section (of course)
5227  *
5228  * - from a thread that is bound to a single CPU
5229  *
5230  * - in a loop with very short iterations (e.g. a polling loop)
5231  */
5232 bool single_task_running(void)
5233 {
5234 	return raw_rq()->nr_running == 1;
5235 }
5236 EXPORT_SYMBOL(single_task_running);
5237 
5238 unsigned long long nr_context_switches(void)
5239 {
5240 	int i;
5241 	unsigned long long sum = 0;
5242 
5243 	for_each_possible_cpu(i)
5244 		sum += cpu_rq(i)->nr_switches;
5245 
5246 	return sum;
5247 }
5248 
5249 /*
5250  * Consumers of these two interfaces, like for example the cpuidle menu
5251  * governor, are using nonsensical data. Preferring shallow idle state selection
5252  * for a CPU that has IO-wait which might not even end up running the task when
5253  * it does become runnable.
5254  */
5255 
5256 unsigned int nr_iowait_cpu(int cpu)
5257 {
5258 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5259 }
5260 
5261 /*
5262  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5263  *
5264  * The idea behind IO-wait account is to account the idle time that we could
5265  * have spend running if it were not for IO. That is, if we were to improve the
5266  * storage performance, we'd have a proportional reduction in IO-wait time.
5267  *
5268  * This all works nicely on UP, where, when a task blocks on IO, we account
5269  * idle time as IO-wait, because if the storage were faster, it could've been
5270  * running and we'd not be idle.
5271  *
5272  * This has been extended to SMP, by doing the same for each CPU. This however
5273  * is broken.
5274  *
5275  * Imagine for instance the case where two tasks block on one CPU, only the one
5276  * CPU will have IO-wait accounted, while the other has regular idle. Even
5277  * though, if the storage were faster, both could've ran at the same time,
5278  * utilising both CPUs.
5279  *
5280  * This means, that when looking globally, the current IO-wait accounting on
5281  * SMP is a lower bound, by reason of under accounting.
5282  *
5283  * Worse, since the numbers are provided per CPU, they are sometimes
5284  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5285  * associated with any one particular CPU, it can wake to another CPU than it
5286  * blocked on. This means the per CPU IO-wait number is meaningless.
5287  *
5288  * Task CPU affinities can make all that even more 'interesting'.
5289  */
5290 
5291 unsigned int nr_iowait(void)
5292 {
5293 	unsigned int i, sum = 0;
5294 
5295 	for_each_possible_cpu(i)
5296 		sum += nr_iowait_cpu(i);
5297 
5298 	return sum;
5299 }
5300 
5301 #ifdef CONFIG_SMP
5302 
5303 /*
5304  * sched_exec - execve() is a valuable balancing opportunity, because at
5305  * this point the task has the smallest effective memory and cache footprint.
5306  */
5307 void sched_exec(void)
5308 {
5309 	struct task_struct *p = current;
5310 	unsigned long flags;
5311 	int dest_cpu;
5312 
5313 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5314 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5315 	if (dest_cpu == smp_processor_id())
5316 		goto unlock;
5317 
5318 	if (likely(cpu_active(dest_cpu))) {
5319 		struct migration_arg arg = { p, dest_cpu };
5320 
5321 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5322 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5323 		return;
5324 	}
5325 unlock:
5326 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5327 }
5328 
5329 #endif
5330 
5331 DEFINE_PER_CPU(struct kernel_stat, kstat);
5332 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5333 
5334 EXPORT_PER_CPU_SYMBOL(kstat);
5335 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5336 
5337 /*
5338  * The function fair_sched_class.update_curr accesses the struct curr
5339  * and its field curr->exec_start; when called from task_sched_runtime(),
5340  * we observe a high rate of cache misses in practice.
5341  * Prefetching this data results in improved performance.
5342  */
5343 static inline void prefetch_curr_exec_start(struct task_struct *p)
5344 {
5345 #ifdef CONFIG_FAIR_GROUP_SCHED
5346 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5347 #else
5348 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5349 #endif
5350 	prefetch(curr);
5351 	prefetch(&curr->exec_start);
5352 }
5353 
5354 /*
5355  * Return accounted runtime for the task.
5356  * In case the task is currently running, return the runtime plus current's
5357  * pending runtime that have not been accounted yet.
5358  */
5359 unsigned long long task_sched_runtime(struct task_struct *p)
5360 {
5361 	struct rq_flags rf;
5362 	struct rq *rq;
5363 	u64 ns;
5364 
5365 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5366 	/*
5367 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5368 	 * So we have a optimization chance when the task's delta_exec is 0.
5369 	 * Reading ->on_cpu is racy, but this is ok.
5370 	 *
5371 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5372 	 * If we race with it entering CPU, unaccounted time is 0. This is
5373 	 * indistinguishable from the read occurring a few cycles earlier.
5374 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5375 	 * been accounted, so we're correct here as well.
5376 	 */
5377 	if (!p->on_cpu || !task_on_rq_queued(p))
5378 		return p->se.sum_exec_runtime;
5379 #endif
5380 
5381 	rq = task_rq_lock(p, &rf);
5382 	/*
5383 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5384 	 * project cycles that may never be accounted to this
5385 	 * thread, breaking clock_gettime().
5386 	 */
5387 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5388 		prefetch_curr_exec_start(p);
5389 		update_rq_clock(rq);
5390 		p->sched_class->update_curr(rq);
5391 	}
5392 	ns = p->se.sum_exec_runtime;
5393 	task_rq_unlock(rq, p, &rf);
5394 
5395 	return ns;
5396 }
5397 
5398 #ifdef CONFIG_SCHED_DEBUG
5399 static u64 cpu_resched_latency(struct rq *rq)
5400 {
5401 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5402 	u64 resched_latency, now = rq_clock(rq);
5403 	static bool warned_once;
5404 
5405 	if (sysctl_resched_latency_warn_once && warned_once)
5406 		return 0;
5407 
5408 	if (!need_resched() || !latency_warn_ms)
5409 		return 0;
5410 
5411 	if (system_state == SYSTEM_BOOTING)
5412 		return 0;
5413 
5414 	if (!rq->last_seen_need_resched_ns) {
5415 		rq->last_seen_need_resched_ns = now;
5416 		rq->ticks_without_resched = 0;
5417 		return 0;
5418 	}
5419 
5420 	rq->ticks_without_resched++;
5421 	resched_latency = now - rq->last_seen_need_resched_ns;
5422 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5423 		return 0;
5424 
5425 	warned_once = true;
5426 
5427 	return resched_latency;
5428 }
5429 
5430 static int __init setup_resched_latency_warn_ms(char *str)
5431 {
5432 	long val;
5433 
5434 	if ((kstrtol(str, 0, &val))) {
5435 		pr_warn("Unable to set resched_latency_warn_ms\n");
5436 		return 1;
5437 	}
5438 
5439 	sysctl_resched_latency_warn_ms = val;
5440 	return 1;
5441 }
5442 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5443 #else
5444 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5445 #endif /* CONFIG_SCHED_DEBUG */
5446 
5447 /*
5448  * This function gets called by the timer code, with HZ frequency.
5449  * We call it with interrupts disabled.
5450  */
5451 void scheduler_tick(void)
5452 {
5453 	int cpu = smp_processor_id();
5454 	struct rq *rq = cpu_rq(cpu);
5455 	struct task_struct *curr = rq->curr;
5456 	struct rq_flags rf;
5457 	unsigned long thermal_pressure;
5458 	u64 resched_latency;
5459 
5460 	arch_scale_freq_tick();
5461 	sched_clock_tick();
5462 
5463 	rq_lock(rq, &rf);
5464 
5465 	update_rq_clock(rq);
5466 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5467 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5468 	curr->sched_class->task_tick(rq, curr, 0);
5469 	if (sched_feat(LATENCY_WARN))
5470 		resched_latency = cpu_resched_latency(rq);
5471 	calc_global_load_tick(rq);
5472 	sched_core_tick(rq);
5473 
5474 	rq_unlock(rq, &rf);
5475 
5476 	if (sched_feat(LATENCY_WARN) && resched_latency)
5477 		resched_latency_warn(cpu, resched_latency);
5478 
5479 	perf_event_task_tick();
5480 
5481 #ifdef CONFIG_SMP
5482 	rq->idle_balance = idle_cpu(cpu);
5483 	trigger_load_balance(rq);
5484 #endif
5485 }
5486 
5487 #ifdef CONFIG_NO_HZ_FULL
5488 
5489 struct tick_work {
5490 	int			cpu;
5491 	atomic_t		state;
5492 	struct delayed_work	work;
5493 };
5494 /* Values for ->state, see diagram below. */
5495 #define TICK_SCHED_REMOTE_OFFLINE	0
5496 #define TICK_SCHED_REMOTE_OFFLINING	1
5497 #define TICK_SCHED_REMOTE_RUNNING	2
5498 
5499 /*
5500  * State diagram for ->state:
5501  *
5502  *
5503  *          TICK_SCHED_REMOTE_OFFLINE
5504  *                    |   ^
5505  *                    |   |
5506  *                    |   | sched_tick_remote()
5507  *                    |   |
5508  *                    |   |
5509  *                    +--TICK_SCHED_REMOTE_OFFLINING
5510  *                    |   ^
5511  *                    |   |
5512  * sched_tick_start() |   | sched_tick_stop()
5513  *                    |   |
5514  *                    V   |
5515  *          TICK_SCHED_REMOTE_RUNNING
5516  *
5517  *
5518  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5519  * and sched_tick_start() are happy to leave the state in RUNNING.
5520  */
5521 
5522 static struct tick_work __percpu *tick_work_cpu;
5523 
5524 static void sched_tick_remote(struct work_struct *work)
5525 {
5526 	struct delayed_work *dwork = to_delayed_work(work);
5527 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5528 	int cpu = twork->cpu;
5529 	struct rq *rq = cpu_rq(cpu);
5530 	struct task_struct *curr;
5531 	struct rq_flags rf;
5532 	u64 delta;
5533 	int os;
5534 
5535 	/*
5536 	 * Handle the tick only if it appears the remote CPU is running in full
5537 	 * dynticks mode. The check is racy by nature, but missing a tick or
5538 	 * having one too much is no big deal because the scheduler tick updates
5539 	 * statistics and checks timeslices in a time-independent way, regardless
5540 	 * of when exactly it is running.
5541 	 */
5542 	if (!tick_nohz_tick_stopped_cpu(cpu))
5543 		goto out_requeue;
5544 
5545 	rq_lock_irq(rq, &rf);
5546 	curr = rq->curr;
5547 	if (cpu_is_offline(cpu))
5548 		goto out_unlock;
5549 
5550 	update_rq_clock(rq);
5551 
5552 	if (!is_idle_task(curr)) {
5553 		/*
5554 		 * Make sure the next tick runs within a reasonable
5555 		 * amount of time.
5556 		 */
5557 		delta = rq_clock_task(rq) - curr->se.exec_start;
5558 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5559 	}
5560 	curr->sched_class->task_tick(rq, curr, 0);
5561 
5562 	calc_load_nohz_remote(rq);
5563 out_unlock:
5564 	rq_unlock_irq(rq, &rf);
5565 out_requeue:
5566 
5567 	/*
5568 	 * Run the remote tick once per second (1Hz). This arbitrary
5569 	 * frequency is large enough to avoid overload but short enough
5570 	 * to keep scheduler internal stats reasonably up to date.  But
5571 	 * first update state to reflect hotplug activity if required.
5572 	 */
5573 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5574 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5575 	if (os == TICK_SCHED_REMOTE_RUNNING)
5576 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5577 }
5578 
5579 static void sched_tick_start(int cpu)
5580 {
5581 	int os;
5582 	struct tick_work *twork;
5583 
5584 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5585 		return;
5586 
5587 	WARN_ON_ONCE(!tick_work_cpu);
5588 
5589 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5590 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5591 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5592 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5593 		twork->cpu = cpu;
5594 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5595 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5596 	}
5597 }
5598 
5599 #ifdef CONFIG_HOTPLUG_CPU
5600 static void sched_tick_stop(int cpu)
5601 {
5602 	struct tick_work *twork;
5603 	int os;
5604 
5605 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5606 		return;
5607 
5608 	WARN_ON_ONCE(!tick_work_cpu);
5609 
5610 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5611 	/* There cannot be competing actions, but don't rely on stop-machine. */
5612 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5613 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5614 	/* Don't cancel, as this would mess up the state machine. */
5615 }
5616 #endif /* CONFIG_HOTPLUG_CPU */
5617 
5618 int __init sched_tick_offload_init(void)
5619 {
5620 	tick_work_cpu = alloc_percpu(struct tick_work);
5621 	BUG_ON(!tick_work_cpu);
5622 	return 0;
5623 }
5624 
5625 #else /* !CONFIG_NO_HZ_FULL */
5626 static inline void sched_tick_start(int cpu) { }
5627 static inline void sched_tick_stop(int cpu) { }
5628 #endif
5629 
5630 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5631 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5632 /*
5633  * If the value passed in is equal to the current preempt count
5634  * then we just disabled preemption. Start timing the latency.
5635  */
5636 static inline void preempt_latency_start(int val)
5637 {
5638 	if (preempt_count() == val) {
5639 		unsigned long ip = get_lock_parent_ip();
5640 #ifdef CONFIG_DEBUG_PREEMPT
5641 		current->preempt_disable_ip = ip;
5642 #endif
5643 		trace_preempt_off(CALLER_ADDR0, ip);
5644 	}
5645 }
5646 
5647 void preempt_count_add(int val)
5648 {
5649 #ifdef CONFIG_DEBUG_PREEMPT
5650 	/*
5651 	 * Underflow?
5652 	 */
5653 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5654 		return;
5655 #endif
5656 	__preempt_count_add(val);
5657 #ifdef CONFIG_DEBUG_PREEMPT
5658 	/*
5659 	 * Spinlock count overflowing soon?
5660 	 */
5661 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5662 				PREEMPT_MASK - 10);
5663 #endif
5664 	preempt_latency_start(val);
5665 }
5666 EXPORT_SYMBOL(preempt_count_add);
5667 NOKPROBE_SYMBOL(preempt_count_add);
5668 
5669 /*
5670  * If the value passed in equals to the current preempt count
5671  * then we just enabled preemption. Stop timing the latency.
5672  */
5673 static inline void preempt_latency_stop(int val)
5674 {
5675 	if (preempt_count() == val)
5676 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5677 }
5678 
5679 void preempt_count_sub(int val)
5680 {
5681 #ifdef CONFIG_DEBUG_PREEMPT
5682 	/*
5683 	 * Underflow?
5684 	 */
5685 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5686 		return;
5687 	/*
5688 	 * Is the spinlock portion underflowing?
5689 	 */
5690 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5691 			!(preempt_count() & PREEMPT_MASK)))
5692 		return;
5693 #endif
5694 
5695 	preempt_latency_stop(val);
5696 	__preempt_count_sub(val);
5697 }
5698 EXPORT_SYMBOL(preempt_count_sub);
5699 NOKPROBE_SYMBOL(preempt_count_sub);
5700 
5701 #else
5702 static inline void preempt_latency_start(int val) { }
5703 static inline void preempt_latency_stop(int val) { }
5704 #endif
5705 
5706 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5707 {
5708 #ifdef CONFIG_DEBUG_PREEMPT
5709 	return p->preempt_disable_ip;
5710 #else
5711 	return 0;
5712 #endif
5713 }
5714 
5715 /*
5716  * Print scheduling while atomic bug:
5717  */
5718 static noinline void __schedule_bug(struct task_struct *prev)
5719 {
5720 	/* Save this before calling printk(), since that will clobber it */
5721 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5722 
5723 	if (oops_in_progress)
5724 		return;
5725 
5726 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5727 		prev->comm, prev->pid, preempt_count());
5728 
5729 	debug_show_held_locks(prev);
5730 	print_modules();
5731 	if (irqs_disabled())
5732 		print_irqtrace_events(prev);
5733 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5734 	    && in_atomic_preempt_off()) {
5735 		pr_err("Preemption disabled at:");
5736 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5737 	}
5738 	if (panic_on_warn)
5739 		panic("scheduling while atomic\n");
5740 
5741 	dump_stack();
5742 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5743 }
5744 
5745 /*
5746  * Various schedule()-time debugging checks and statistics:
5747  */
5748 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5749 {
5750 #ifdef CONFIG_SCHED_STACK_END_CHECK
5751 	if (task_stack_end_corrupted(prev))
5752 		panic("corrupted stack end detected inside scheduler\n");
5753 
5754 	if (task_scs_end_corrupted(prev))
5755 		panic("corrupted shadow stack detected inside scheduler\n");
5756 #endif
5757 
5758 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5759 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5760 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5761 			prev->comm, prev->pid, prev->non_block_count);
5762 		dump_stack();
5763 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5764 	}
5765 #endif
5766 
5767 	if (unlikely(in_atomic_preempt_off())) {
5768 		__schedule_bug(prev);
5769 		preempt_count_set(PREEMPT_DISABLED);
5770 	}
5771 	rcu_sleep_check();
5772 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5773 
5774 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5775 
5776 	schedstat_inc(this_rq()->sched_count);
5777 }
5778 
5779 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5780 				  struct rq_flags *rf)
5781 {
5782 #ifdef CONFIG_SMP
5783 	const struct sched_class *class;
5784 	/*
5785 	 * We must do the balancing pass before put_prev_task(), such
5786 	 * that when we release the rq->lock the task is in the same
5787 	 * state as before we took rq->lock.
5788 	 *
5789 	 * We can terminate the balance pass as soon as we know there is
5790 	 * a runnable task of @class priority or higher.
5791 	 */
5792 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5793 		if (class->balance(rq, prev, rf))
5794 			break;
5795 	}
5796 #endif
5797 
5798 	put_prev_task(rq, prev);
5799 }
5800 
5801 /*
5802  * Pick up the highest-prio task:
5803  */
5804 static inline struct task_struct *
5805 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5806 {
5807 	const struct sched_class *class;
5808 	struct task_struct *p;
5809 
5810 	/*
5811 	 * Optimization: we know that if all tasks are in the fair class we can
5812 	 * call that function directly, but only if the @prev task wasn't of a
5813 	 * higher scheduling class, because otherwise those lose the
5814 	 * opportunity to pull in more work from other CPUs.
5815 	 */
5816 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5817 		   rq->nr_running == rq->cfs.h_nr_running)) {
5818 
5819 		p = pick_next_task_fair(rq, prev, rf);
5820 		if (unlikely(p == RETRY_TASK))
5821 			goto restart;
5822 
5823 		/* Assume the next prioritized class is idle_sched_class */
5824 		if (!p) {
5825 			put_prev_task(rq, prev);
5826 			p = pick_next_task_idle(rq);
5827 		}
5828 
5829 		return p;
5830 	}
5831 
5832 restart:
5833 	put_prev_task_balance(rq, prev, rf);
5834 
5835 	for_each_class(class) {
5836 		p = class->pick_next_task(rq);
5837 		if (p)
5838 			return p;
5839 	}
5840 
5841 	BUG(); /* The idle class should always have a runnable task. */
5842 }
5843 
5844 #ifdef CONFIG_SCHED_CORE
5845 static inline bool is_task_rq_idle(struct task_struct *t)
5846 {
5847 	return (task_rq(t)->idle == t);
5848 }
5849 
5850 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5851 {
5852 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5853 }
5854 
5855 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5856 {
5857 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5858 		return true;
5859 
5860 	return a->core_cookie == b->core_cookie;
5861 }
5862 
5863 static inline struct task_struct *pick_task(struct rq *rq)
5864 {
5865 	const struct sched_class *class;
5866 	struct task_struct *p;
5867 
5868 	for_each_class(class) {
5869 		p = class->pick_task(rq);
5870 		if (p)
5871 			return p;
5872 	}
5873 
5874 	BUG(); /* The idle class should always have a runnable task. */
5875 }
5876 
5877 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5878 
5879 static void queue_core_balance(struct rq *rq);
5880 
5881 static struct task_struct *
5882 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5883 {
5884 	struct task_struct *next, *p, *max = NULL;
5885 	const struct cpumask *smt_mask;
5886 	bool fi_before = false;
5887 	bool core_clock_updated = (rq == rq->core);
5888 	unsigned long cookie;
5889 	int i, cpu, occ = 0;
5890 	struct rq *rq_i;
5891 	bool need_sync;
5892 
5893 	if (!sched_core_enabled(rq))
5894 		return __pick_next_task(rq, prev, rf);
5895 
5896 	cpu = cpu_of(rq);
5897 
5898 	/* Stopper task is switching into idle, no need core-wide selection. */
5899 	if (cpu_is_offline(cpu)) {
5900 		/*
5901 		 * Reset core_pick so that we don't enter the fastpath when
5902 		 * coming online. core_pick would already be migrated to
5903 		 * another cpu during offline.
5904 		 */
5905 		rq->core_pick = NULL;
5906 		return __pick_next_task(rq, prev, rf);
5907 	}
5908 
5909 	/*
5910 	 * If there were no {en,de}queues since we picked (IOW, the task
5911 	 * pointers are all still valid), and we haven't scheduled the last
5912 	 * pick yet, do so now.
5913 	 *
5914 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5915 	 * it was either offline or went offline during a sibling's core-wide
5916 	 * selection. In this case, do a core-wide selection.
5917 	 */
5918 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5919 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5920 	    rq->core_pick) {
5921 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5922 
5923 		next = rq->core_pick;
5924 		if (next != prev) {
5925 			put_prev_task(rq, prev);
5926 			set_next_task(rq, next);
5927 		}
5928 
5929 		rq->core_pick = NULL;
5930 		goto out;
5931 	}
5932 
5933 	put_prev_task_balance(rq, prev, rf);
5934 
5935 	smt_mask = cpu_smt_mask(cpu);
5936 	need_sync = !!rq->core->core_cookie;
5937 
5938 	/* reset state */
5939 	rq->core->core_cookie = 0UL;
5940 	if (rq->core->core_forceidle_count) {
5941 		if (!core_clock_updated) {
5942 			update_rq_clock(rq->core);
5943 			core_clock_updated = true;
5944 		}
5945 		sched_core_account_forceidle(rq);
5946 		/* reset after accounting force idle */
5947 		rq->core->core_forceidle_start = 0;
5948 		rq->core->core_forceidle_count = 0;
5949 		rq->core->core_forceidle_occupation = 0;
5950 		need_sync = true;
5951 		fi_before = true;
5952 	}
5953 
5954 	/*
5955 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5956 	 *
5957 	 * @task_seq guards the task state ({en,de}queues)
5958 	 * @pick_seq is the @task_seq we did a selection on
5959 	 * @sched_seq is the @pick_seq we scheduled
5960 	 *
5961 	 * However, preemptions can cause multiple picks on the same task set.
5962 	 * 'Fix' this by also increasing @task_seq for every pick.
5963 	 */
5964 	rq->core->core_task_seq++;
5965 
5966 	/*
5967 	 * Optimize for common case where this CPU has no cookies
5968 	 * and there are no cookied tasks running on siblings.
5969 	 */
5970 	if (!need_sync) {
5971 		next = pick_task(rq);
5972 		if (!next->core_cookie) {
5973 			rq->core_pick = NULL;
5974 			/*
5975 			 * For robustness, update the min_vruntime_fi for
5976 			 * unconstrained picks as well.
5977 			 */
5978 			WARN_ON_ONCE(fi_before);
5979 			task_vruntime_update(rq, next, false);
5980 			goto out_set_next;
5981 		}
5982 	}
5983 
5984 	/*
5985 	 * For each thread: do the regular task pick and find the max prio task
5986 	 * amongst them.
5987 	 *
5988 	 * Tie-break prio towards the current CPU
5989 	 */
5990 	for_each_cpu_wrap(i, smt_mask, cpu) {
5991 		rq_i = cpu_rq(i);
5992 
5993 		/*
5994 		 * Current cpu always has its clock updated on entrance to
5995 		 * pick_next_task(). If the current cpu is not the core,
5996 		 * the core may also have been updated above.
5997 		 */
5998 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5999 			update_rq_clock(rq_i);
6000 
6001 		p = rq_i->core_pick = pick_task(rq_i);
6002 		if (!max || prio_less(max, p, fi_before))
6003 			max = p;
6004 	}
6005 
6006 	cookie = rq->core->core_cookie = max->core_cookie;
6007 
6008 	/*
6009 	 * For each thread: try and find a runnable task that matches @max or
6010 	 * force idle.
6011 	 */
6012 	for_each_cpu(i, smt_mask) {
6013 		rq_i = cpu_rq(i);
6014 		p = rq_i->core_pick;
6015 
6016 		if (!cookie_equals(p, cookie)) {
6017 			p = NULL;
6018 			if (cookie)
6019 				p = sched_core_find(rq_i, cookie);
6020 			if (!p)
6021 				p = idle_sched_class.pick_task(rq_i);
6022 		}
6023 
6024 		rq_i->core_pick = p;
6025 
6026 		if (p == rq_i->idle) {
6027 			if (rq_i->nr_running) {
6028 				rq->core->core_forceidle_count++;
6029 				if (!fi_before)
6030 					rq->core->core_forceidle_seq++;
6031 			}
6032 		} else {
6033 			occ++;
6034 		}
6035 	}
6036 
6037 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6038 		rq->core->core_forceidle_start = rq_clock(rq->core);
6039 		rq->core->core_forceidle_occupation = occ;
6040 	}
6041 
6042 	rq->core->core_pick_seq = rq->core->core_task_seq;
6043 	next = rq->core_pick;
6044 	rq->core_sched_seq = rq->core->core_pick_seq;
6045 
6046 	/* Something should have been selected for current CPU */
6047 	WARN_ON_ONCE(!next);
6048 
6049 	/*
6050 	 * Reschedule siblings
6051 	 *
6052 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6053 	 * sending an IPI (below) ensures the sibling will no longer be running
6054 	 * their task. This ensures there is no inter-sibling overlap between
6055 	 * non-matching user state.
6056 	 */
6057 	for_each_cpu(i, smt_mask) {
6058 		rq_i = cpu_rq(i);
6059 
6060 		/*
6061 		 * An online sibling might have gone offline before a task
6062 		 * could be picked for it, or it might be offline but later
6063 		 * happen to come online, but its too late and nothing was
6064 		 * picked for it.  That's Ok - it will pick tasks for itself,
6065 		 * so ignore it.
6066 		 */
6067 		if (!rq_i->core_pick)
6068 			continue;
6069 
6070 		/*
6071 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6072 		 * fi_before     fi      update?
6073 		 *  0            0       1
6074 		 *  0            1       1
6075 		 *  1            0       1
6076 		 *  1            1       0
6077 		 */
6078 		if (!(fi_before && rq->core->core_forceidle_count))
6079 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6080 
6081 		rq_i->core_pick->core_occupation = occ;
6082 
6083 		if (i == cpu) {
6084 			rq_i->core_pick = NULL;
6085 			continue;
6086 		}
6087 
6088 		/* Did we break L1TF mitigation requirements? */
6089 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6090 
6091 		if (rq_i->curr == rq_i->core_pick) {
6092 			rq_i->core_pick = NULL;
6093 			continue;
6094 		}
6095 
6096 		resched_curr(rq_i);
6097 	}
6098 
6099 out_set_next:
6100 	set_next_task(rq, next);
6101 out:
6102 	if (rq->core->core_forceidle_count && next == rq->idle)
6103 		queue_core_balance(rq);
6104 
6105 	return next;
6106 }
6107 
6108 static bool try_steal_cookie(int this, int that)
6109 {
6110 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6111 	struct task_struct *p;
6112 	unsigned long cookie;
6113 	bool success = false;
6114 
6115 	local_irq_disable();
6116 	double_rq_lock(dst, src);
6117 
6118 	cookie = dst->core->core_cookie;
6119 	if (!cookie)
6120 		goto unlock;
6121 
6122 	if (dst->curr != dst->idle)
6123 		goto unlock;
6124 
6125 	p = sched_core_find(src, cookie);
6126 	if (p == src->idle)
6127 		goto unlock;
6128 
6129 	do {
6130 		if (p == src->core_pick || p == src->curr)
6131 			goto next;
6132 
6133 		if (!is_cpu_allowed(p, this))
6134 			goto next;
6135 
6136 		if (p->core_occupation > dst->idle->core_occupation)
6137 			goto next;
6138 
6139 		deactivate_task(src, p, 0);
6140 		set_task_cpu(p, this);
6141 		activate_task(dst, p, 0);
6142 
6143 		resched_curr(dst);
6144 
6145 		success = true;
6146 		break;
6147 
6148 next:
6149 		p = sched_core_next(p, cookie);
6150 	} while (p);
6151 
6152 unlock:
6153 	double_rq_unlock(dst, src);
6154 	local_irq_enable();
6155 
6156 	return success;
6157 }
6158 
6159 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6160 {
6161 	int i;
6162 
6163 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6164 		if (i == cpu)
6165 			continue;
6166 
6167 		if (need_resched())
6168 			break;
6169 
6170 		if (try_steal_cookie(cpu, i))
6171 			return true;
6172 	}
6173 
6174 	return false;
6175 }
6176 
6177 static void sched_core_balance(struct rq *rq)
6178 {
6179 	struct sched_domain *sd;
6180 	int cpu = cpu_of(rq);
6181 
6182 	preempt_disable();
6183 	rcu_read_lock();
6184 	raw_spin_rq_unlock_irq(rq);
6185 	for_each_domain(cpu, sd) {
6186 		if (need_resched())
6187 			break;
6188 
6189 		if (steal_cookie_task(cpu, sd))
6190 			break;
6191 	}
6192 	raw_spin_rq_lock_irq(rq);
6193 	rcu_read_unlock();
6194 	preempt_enable();
6195 }
6196 
6197 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6198 
6199 static void queue_core_balance(struct rq *rq)
6200 {
6201 	if (!sched_core_enabled(rq))
6202 		return;
6203 
6204 	if (!rq->core->core_cookie)
6205 		return;
6206 
6207 	if (!rq->nr_running) /* not forced idle */
6208 		return;
6209 
6210 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6211 }
6212 
6213 static void sched_core_cpu_starting(unsigned int cpu)
6214 {
6215 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6216 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6217 	unsigned long flags;
6218 	int t;
6219 
6220 	sched_core_lock(cpu, &flags);
6221 
6222 	WARN_ON_ONCE(rq->core != rq);
6223 
6224 	/* if we're the first, we'll be our own leader */
6225 	if (cpumask_weight(smt_mask) == 1)
6226 		goto unlock;
6227 
6228 	/* find the leader */
6229 	for_each_cpu(t, smt_mask) {
6230 		if (t == cpu)
6231 			continue;
6232 		rq = cpu_rq(t);
6233 		if (rq->core == rq) {
6234 			core_rq = rq;
6235 			break;
6236 		}
6237 	}
6238 
6239 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6240 		goto unlock;
6241 
6242 	/* install and validate core_rq */
6243 	for_each_cpu(t, smt_mask) {
6244 		rq = cpu_rq(t);
6245 
6246 		if (t == cpu)
6247 			rq->core = core_rq;
6248 
6249 		WARN_ON_ONCE(rq->core != core_rq);
6250 	}
6251 
6252 unlock:
6253 	sched_core_unlock(cpu, &flags);
6254 }
6255 
6256 static void sched_core_cpu_deactivate(unsigned int cpu)
6257 {
6258 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6259 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6260 	unsigned long flags;
6261 	int t;
6262 
6263 	sched_core_lock(cpu, &flags);
6264 
6265 	/* if we're the last man standing, nothing to do */
6266 	if (cpumask_weight(smt_mask) == 1) {
6267 		WARN_ON_ONCE(rq->core != rq);
6268 		goto unlock;
6269 	}
6270 
6271 	/* if we're not the leader, nothing to do */
6272 	if (rq->core != rq)
6273 		goto unlock;
6274 
6275 	/* find a new leader */
6276 	for_each_cpu(t, smt_mask) {
6277 		if (t == cpu)
6278 			continue;
6279 		core_rq = cpu_rq(t);
6280 		break;
6281 	}
6282 
6283 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6284 		goto unlock;
6285 
6286 	/* copy the shared state to the new leader */
6287 	core_rq->core_task_seq             = rq->core_task_seq;
6288 	core_rq->core_pick_seq             = rq->core_pick_seq;
6289 	core_rq->core_cookie               = rq->core_cookie;
6290 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6291 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6292 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6293 
6294 	/*
6295 	 * Accounting edge for forced idle is handled in pick_next_task().
6296 	 * Don't need another one here, since the hotplug thread shouldn't
6297 	 * have a cookie.
6298 	 */
6299 	core_rq->core_forceidle_start = 0;
6300 
6301 	/* install new leader */
6302 	for_each_cpu(t, smt_mask) {
6303 		rq = cpu_rq(t);
6304 		rq->core = core_rq;
6305 	}
6306 
6307 unlock:
6308 	sched_core_unlock(cpu, &flags);
6309 }
6310 
6311 static inline void sched_core_cpu_dying(unsigned int cpu)
6312 {
6313 	struct rq *rq = cpu_rq(cpu);
6314 
6315 	if (rq->core != rq)
6316 		rq->core = rq;
6317 }
6318 
6319 #else /* !CONFIG_SCHED_CORE */
6320 
6321 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6322 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6323 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6324 
6325 static struct task_struct *
6326 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6327 {
6328 	return __pick_next_task(rq, prev, rf);
6329 }
6330 
6331 #endif /* CONFIG_SCHED_CORE */
6332 
6333 /*
6334  * Constants for the sched_mode argument of __schedule().
6335  *
6336  * The mode argument allows RT enabled kernels to differentiate a
6337  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6338  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6339  * optimize the AND operation out and just check for zero.
6340  */
6341 #define SM_NONE			0x0
6342 #define SM_PREEMPT		0x1
6343 #define SM_RTLOCK_WAIT		0x2
6344 
6345 #ifndef CONFIG_PREEMPT_RT
6346 # define SM_MASK_PREEMPT	(~0U)
6347 #else
6348 # define SM_MASK_PREEMPT	SM_PREEMPT
6349 #endif
6350 
6351 /*
6352  * __schedule() is the main scheduler function.
6353  *
6354  * The main means of driving the scheduler and thus entering this function are:
6355  *
6356  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6357  *
6358  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6359  *      paths. For example, see arch/x86/entry_64.S.
6360  *
6361  *      To drive preemption between tasks, the scheduler sets the flag in timer
6362  *      interrupt handler scheduler_tick().
6363  *
6364  *   3. Wakeups don't really cause entry into schedule(). They add a
6365  *      task to the run-queue and that's it.
6366  *
6367  *      Now, if the new task added to the run-queue preempts the current
6368  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6369  *      called on the nearest possible occasion:
6370  *
6371  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6372  *
6373  *         - in syscall or exception context, at the next outmost
6374  *           preempt_enable(). (this might be as soon as the wake_up()'s
6375  *           spin_unlock()!)
6376  *
6377  *         - in IRQ context, return from interrupt-handler to
6378  *           preemptible context
6379  *
6380  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6381  *         then at the next:
6382  *
6383  *          - cond_resched() call
6384  *          - explicit schedule() call
6385  *          - return from syscall or exception to user-space
6386  *          - return from interrupt-handler to user-space
6387  *
6388  * WARNING: must be called with preemption disabled!
6389  */
6390 static void __sched notrace __schedule(unsigned int sched_mode)
6391 {
6392 	struct task_struct *prev, *next;
6393 	unsigned long *switch_count;
6394 	unsigned long prev_state;
6395 	struct rq_flags rf;
6396 	struct rq *rq;
6397 	int cpu;
6398 
6399 	cpu = smp_processor_id();
6400 	rq = cpu_rq(cpu);
6401 	prev = rq->curr;
6402 
6403 	schedule_debug(prev, !!sched_mode);
6404 
6405 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6406 		hrtick_clear(rq);
6407 
6408 	local_irq_disable();
6409 	rcu_note_context_switch(!!sched_mode);
6410 
6411 	/*
6412 	 * Make sure that signal_pending_state()->signal_pending() below
6413 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6414 	 * done by the caller to avoid the race with signal_wake_up():
6415 	 *
6416 	 * __set_current_state(@state)		signal_wake_up()
6417 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6418 	 *					  wake_up_state(p, state)
6419 	 *   LOCK rq->lock			    LOCK p->pi_state
6420 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6421 	 *     if (signal_pending_state())	    if (p->state & @state)
6422 	 *
6423 	 * Also, the membarrier system call requires a full memory barrier
6424 	 * after coming from user-space, before storing to rq->curr.
6425 	 */
6426 	rq_lock(rq, &rf);
6427 	smp_mb__after_spinlock();
6428 
6429 	/* Promote REQ to ACT */
6430 	rq->clock_update_flags <<= 1;
6431 	update_rq_clock(rq);
6432 
6433 	switch_count = &prev->nivcsw;
6434 
6435 	/*
6436 	 * We must load prev->state once (task_struct::state is volatile), such
6437 	 * that we form a control dependency vs deactivate_task() below.
6438 	 */
6439 	prev_state = READ_ONCE(prev->__state);
6440 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6441 		if (signal_pending_state(prev_state, prev)) {
6442 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6443 		} else {
6444 			prev->sched_contributes_to_load =
6445 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6446 				!(prev_state & TASK_NOLOAD) &&
6447 				!(prev->flags & PF_FROZEN);
6448 
6449 			if (prev->sched_contributes_to_load)
6450 				rq->nr_uninterruptible++;
6451 
6452 			/*
6453 			 * __schedule()			ttwu()
6454 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6455 			 *   if (prev_state)		    goto out;
6456 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6457 			 *				  p->state = TASK_WAKING
6458 			 *
6459 			 * Where __schedule() and ttwu() have matching control dependencies.
6460 			 *
6461 			 * After this, schedule() must not care about p->state any more.
6462 			 */
6463 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6464 
6465 			if (prev->in_iowait) {
6466 				atomic_inc(&rq->nr_iowait);
6467 				delayacct_blkio_start();
6468 			}
6469 		}
6470 		switch_count = &prev->nvcsw;
6471 	}
6472 
6473 	next = pick_next_task(rq, prev, &rf);
6474 	clear_tsk_need_resched(prev);
6475 	clear_preempt_need_resched();
6476 #ifdef CONFIG_SCHED_DEBUG
6477 	rq->last_seen_need_resched_ns = 0;
6478 #endif
6479 
6480 	if (likely(prev != next)) {
6481 		rq->nr_switches++;
6482 		/*
6483 		 * RCU users of rcu_dereference(rq->curr) may not see
6484 		 * changes to task_struct made by pick_next_task().
6485 		 */
6486 		RCU_INIT_POINTER(rq->curr, next);
6487 		/*
6488 		 * The membarrier system call requires each architecture
6489 		 * to have a full memory barrier after updating
6490 		 * rq->curr, before returning to user-space.
6491 		 *
6492 		 * Here are the schemes providing that barrier on the
6493 		 * various architectures:
6494 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6495 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6496 		 * - finish_lock_switch() for weakly-ordered
6497 		 *   architectures where spin_unlock is a full barrier,
6498 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6499 		 *   is a RELEASE barrier),
6500 		 */
6501 		++*switch_count;
6502 
6503 		migrate_disable_switch(rq, prev);
6504 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6505 
6506 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6507 
6508 		/* Also unlocks the rq: */
6509 		rq = context_switch(rq, prev, next, &rf);
6510 	} else {
6511 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6512 
6513 		rq_unpin_lock(rq, &rf);
6514 		__balance_callbacks(rq);
6515 		raw_spin_rq_unlock_irq(rq);
6516 	}
6517 }
6518 
6519 void __noreturn do_task_dead(void)
6520 {
6521 	/* Causes final put_task_struct in finish_task_switch(): */
6522 	set_special_state(TASK_DEAD);
6523 
6524 	/* Tell freezer to ignore us: */
6525 	current->flags |= PF_NOFREEZE;
6526 
6527 	__schedule(SM_NONE);
6528 	BUG();
6529 
6530 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6531 	for (;;)
6532 		cpu_relax();
6533 }
6534 
6535 static inline void sched_submit_work(struct task_struct *tsk)
6536 {
6537 	unsigned int task_flags;
6538 
6539 	if (task_is_running(tsk))
6540 		return;
6541 
6542 	task_flags = tsk->flags;
6543 	/*
6544 	 * If a worker goes to sleep, notify and ask workqueue whether it
6545 	 * wants to wake up a task to maintain concurrency.
6546 	 */
6547 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6548 		if (task_flags & PF_WQ_WORKER)
6549 			wq_worker_sleeping(tsk);
6550 		else
6551 			io_wq_worker_sleeping(tsk);
6552 	}
6553 
6554 	/*
6555 	 * spinlock and rwlock must not flush block requests.  This will
6556 	 * deadlock if the callback attempts to acquire a lock which is
6557 	 * already acquired.
6558 	 */
6559 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6560 
6561 	/*
6562 	 * If we are going to sleep and we have plugged IO queued,
6563 	 * make sure to submit it to avoid deadlocks.
6564 	 */
6565 	blk_flush_plug(tsk->plug, true);
6566 }
6567 
6568 static void sched_update_worker(struct task_struct *tsk)
6569 {
6570 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6571 		if (tsk->flags & PF_WQ_WORKER)
6572 			wq_worker_running(tsk);
6573 		else
6574 			io_wq_worker_running(tsk);
6575 	}
6576 }
6577 
6578 asmlinkage __visible void __sched schedule(void)
6579 {
6580 	struct task_struct *tsk = current;
6581 
6582 	sched_submit_work(tsk);
6583 	do {
6584 		preempt_disable();
6585 		__schedule(SM_NONE);
6586 		sched_preempt_enable_no_resched();
6587 	} while (need_resched());
6588 	sched_update_worker(tsk);
6589 }
6590 EXPORT_SYMBOL(schedule);
6591 
6592 /*
6593  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6594  * state (have scheduled out non-voluntarily) by making sure that all
6595  * tasks have either left the run queue or have gone into user space.
6596  * As idle tasks do not do either, they must not ever be preempted
6597  * (schedule out non-voluntarily).
6598  *
6599  * schedule_idle() is similar to schedule_preempt_disable() except that it
6600  * never enables preemption because it does not call sched_submit_work().
6601  */
6602 void __sched schedule_idle(void)
6603 {
6604 	/*
6605 	 * As this skips calling sched_submit_work(), which the idle task does
6606 	 * regardless because that function is a nop when the task is in a
6607 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6608 	 * current task can be in any other state. Note, idle is always in the
6609 	 * TASK_RUNNING state.
6610 	 */
6611 	WARN_ON_ONCE(current->__state);
6612 	do {
6613 		__schedule(SM_NONE);
6614 	} while (need_resched());
6615 }
6616 
6617 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6618 asmlinkage __visible void __sched schedule_user(void)
6619 {
6620 	/*
6621 	 * If we come here after a random call to set_need_resched(),
6622 	 * or we have been woken up remotely but the IPI has not yet arrived,
6623 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6624 	 * we find a better solution.
6625 	 *
6626 	 * NB: There are buggy callers of this function.  Ideally we
6627 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6628 	 * too frequently to make sense yet.
6629 	 */
6630 	enum ctx_state prev_state = exception_enter();
6631 	schedule();
6632 	exception_exit(prev_state);
6633 }
6634 #endif
6635 
6636 /**
6637  * schedule_preempt_disabled - called with preemption disabled
6638  *
6639  * Returns with preemption disabled. Note: preempt_count must be 1
6640  */
6641 void __sched schedule_preempt_disabled(void)
6642 {
6643 	sched_preempt_enable_no_resched();
6644 	schedule();
6645 	preempt_disable();
6646 }
6647 
6648 #ifdef CONFIG_PREEMPT_RT
6649 void __sched notrace schedule_rtlock(void)
6650 {
6651 	do {
6652 		preempt_disable();
6653 		__schedule(SM_RTLOCK_WAIT);
6654 		sched_preempt_enable_no_resched();
6655 	} while (need_resched());
6656 }
6657 NOKPROBE_SYMBOL(schedule_rtlock);
6658 #endif
6659 
6660 static void __sched notrace preempt_schedule_common(void)
6661 {
6662 	do {
6663 		/*
6664 		 * Because the function tracer can trace preempt_count_sub()
6665 		 * and it also uses preempt_enable/disable_notrace(), if
6666 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6667 		 * by the function tracer will call this function again and
6668 		 * cause infinite recursion.
6669 		 *
6670 		 * Preemption must be disabled here before the function
6671 		 * tracer can trace. Break up preempt_disable() into two
6672 		 * calls. One to disable preemption without fear of being
6673 		 * traced. The other to still record the preemption latency,
6674 		 * which can also be traced by the function tracer.
6675 		 */
6676 		preempt_disable_notrace();
6677 		preempt_latency_start(1);
6678 		__schedule(SM_PREEMPT);
6679 		preempt_latency_stop(1);
6680 		preempt_enable_no_resched_notrace();
6681 
6682 		/*
6683 		 * Check again in case we missed a preemption opportunity
6684 		 * between schedule and now.
6685 		 */
6686 	} while (need_resched());
6687 }
6688 
6689 #ifdef CONFIG_PREEMPTION
6690 /*
6691  * This is the entry point to schedule() from in-kernel preemption
6692  * off of preempt_enable.
6693  */
6694 asmlinkage __visible void __sched notrace preempt_schedule(void)
6695 {
6696 	/*
6697 	 * If there is a non-zero preempt_count or interrupts are disabled,
6698 	 * we do not want to preempt the current task. Just return..
6699 	 */
6700 	if (likely(!preemptible()))
6701 		return;
6702 	preempt_schedule_common();
6703 }
6704 NOKPROBE_SYMBOL(preempt_schedule);
6705 EXPORT_SYMBOL(preempt_schedule);
6706 
6707 #ifdef CONFIG_PREEMPT_DYNAMIC
6708 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6709 #ifndef preempt_schedule_dynamic_enabled
6710 #define preempt_schedule_dynamic_enabled	preempt_schedule
6711 #define preempt_schedule_dynamic_disabled	NULL
6712 #endif
6713 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6714 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6715 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6716 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6717 void __sched notrace dynamic_preempt_schedule(void)
6718 {
6719 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6720 		return;
6721 	preempt_schedule();
6722 }
6723 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6724 EXPORT_SYMBOL(dynamic_preempt_schedule);
6725 #endif
6726 #endif
6727 
6728 /**
6729  * preempt_schedule_notrace - preempt_schedule called by tracing
6730  *
6731  * The tracing infrastructure uses preempt_enable_notrace to prevent
6732  * recursion and tracing preempt enabling caused by the tracing
6733  * infrastructure itself. But as tracing can happen in areas coming
6734  * from userspace or just about to enter userspace, a preempt enable
6735  * can occur before user_exit() is called. This will cause the scheduler
6736  * to be called when the system is still in usermode.
6737  *
6738  * To prevent this, the preempt_enable_notrace will use this function
6739  * instead of preempt_schedule() to exit user context if needed before
6740  * calling the scheduler.
6741  */
6742 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6743 {
6744 	enum ctx_state prev_ctx;
6745 
6746 	if (likely(!preemptible()))
6747 		return;
6748 
6749 	do {
6750 		/*
6751 		 * Because the function tracer can trace preempt_count_sub()
6752 		 * and it also uses preempt_enable/disable_notrace(), if
6753 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6754 		 * by the function tracer will call this function again and
6755 		 * cause infinite recursion.
6756 		 *
6757 		 * Preemption must be disabled here before the function
6758 		 * tracer can trace. Break up preempt_disable() into two
6759 		 * calls. One to disable preemption without fear of being
6760 		 * traced. The other to still record the preemption latency,
6761 		 * which can also be traced by the function tracer.
6762 		 */
6763 		preempt_disable_notrace();
6764 		preempt_latency_start(1);
6765 		/*
6766 		 * Needs preempt disabled in case user_exit() is traced
6767 		 * and the tracer calls preempt_enable_notrace() causing
6768 		 * an infinite recursion.
6769 		 */
6770 		prev_ctx = exception_enter();
6771 		__schedule(SM_PREEMPT);
6772 		exception_exit(prev_ctx);
6773 
6774 		preempt_latency_stop(1);
6775 		preempt_enable_no_resched_notrace();
6776 	} while (need_resched());
6777 }
6778 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6779 
6780 #ifdef CONFIG_PREEMPT_DYNAMIC
6781 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6782 #ifndef preempt_schedule_notrace_dynamic_enabled
6783 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6784 #define preempt_schedule_notrace_dynamic_disabled	NULL
6785 #endif
6786 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6787 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6788 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6789 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6790 void __sched notrace dynamic_preempt_schedule_notrace(void)
6791 {
6792 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6793 		return;
6794 	preempt_schedule_notrace();
6795 }
6796 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6797 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6798 #endif
6799 #endif
6800 
6801 #endif /* CONFIG_PREEMPTION */
6802 
6803 /*
6804  * This is the entry point to schedule() from kernel preemption
6805  * off of irq context.
6806  * Note, that this is called and return with irqs disabled. This will
6807  * protect us against recursive calling from irq.
6808  */
6809 asmlinkage __visible void __sched preempt_schedule_irq(void)
6810 {
6811 	enum ctx_state prev_state;
6812 
6813 	/* Catch callers which need to be fixed */
6814 	BUG_ON(preempt_count() || !irqs_disabled());
6815 
6816 	prev_state = exception_enter();
6817 
6818 	do {
6819 		preempt_disable();
6820 		local_irq_enable();
6821 		__schedule(SM_PREEMPT);
6822 		local_irq_disable();
6823 		sched_preempt_enable_no_resched();
6824 	} while (need_resched());
6825 
6826 	exception_exit(prev_state);
6827 }
6828 
6829 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6830 			  void *key)
6831 {
6832 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6833 	return try_to_wake_up(curr->private, mode, wake_flags);
6834 }
6835 EXPORT_SYMBOL(default_wake_function);
6836 
6837 static void __setscheduler_prio(struct task_struct *p, int prio)
6838 {
6839 	if (dl_prio(prio))
6840 		p->sched_class = &dl_sched_class;
6841 	else if (rt_prio(prio))
6842 		p->sched_class = &rt_sched_class;
6843 	else
6844 		p->sched_class = &fair_sched_class;
6845 
6846 	p->prio = prio;
6847 }
6848 
6849 #ifdef CONFIG_RT_MUTEXES
6850 
6851 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6852 {
6853 	if (pi_task)
6854 		prio = min(prio, pi_task->prio);
6855 
6856 	return prio;
6857 }
6858 
6859 static inline int rt_effective_prio(struct task_struct *p, int prio)
6860 {
6861 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6862 
6863 	return __rt_effective_prio(pi_task, prio);
6864 }
6865 
6866 /*
6867  * rt_mutex_setprio - set the current priority of a task
6868  * @p: task to boost
6869  * @pi_task: donor task
6870  *
6871  * This function changes the 'effective' priority of a task. It does
6872  * not touch ->normal_prio like __setscheduler().
6873  *
6874  * Used by the rt_mutex code to implement priority inheritance
6875  * logic. Call site only calls if the priority of the task changed.
6876  */
6877 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6878 {
6879 	int prio, oldprio, queued, running, queue_flag =
6880 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6881 	const struct sched_class *prev_class;
6882 	struct rq_flags rf;
6883 	struct rq *rq;
6884 
6885 	/* XXX used to be waiter->prio, not waiter->task->prio */
6886 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6887 
6888 	/*
6889 	 * If nothing changed; bail early.
6890 	 */
6891 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6892 		return;
6893 
6894 	rq = __task_rq_lock(p, &rf);
6895 	update_rq_clock(rq);
6896 	/*
6897 	 * Set under pi_lock && rq->lock, such that the value can be used under
6898 	 * either lock.
6899 	 *
6900 	 * Note that there is loads of tricky to make this pointer cache work
6901 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6902 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6903 	 * task is allowed to run again (and can exit). This ensures the pointer
6904 	 * points to a blocked task -- which guarantees the task is present.
6905 	 */
6906 	p->pi_top_task = pi_task;
6907 
6908 	/*
6909 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6910 	 */
6911 	if (prio == p->prio && !dl_prio(prio))
6912 		goto out_unlock;
6913 
6914 	/*
6915 	 * Idle task boosting is a nono in general. There is one
6916 	 * exception, when PREEMPT_RT and NOHZ is active:
6917 	 *
6918 	 * The idle task calls get_next_timer_interrupt() and holds
6919 	 * the timer wheel base->lock on the CPU and another CPU wants
6920 	 * to access the timer (probably to cancel it). We can safely
6921 	 * ignore the boosting request, as the idle CPU runs this code
6922 	 * with interrupts disabled and will complete the lock
6923 	 * protected section without being interrupted. So there is no
6924 	 * real need to boost.
6925 	 */
6926 	if (unlikely(p == rq->idle)) {
6927 		WARN_ON(p != rq->curr);
6928 		WARN_ON(p->pi_blocked_on);
6929 		goto out_unlock;
6930 	}
6931 
6932 	trace_sched_pi_setprio(p, pi_task);
6933 	oldprio = p->prio;
6934 
6935 	if (oldprio == prio)
6936 		queue_flag &= ~DEQUEUE_MOVE;
6937 
6938 	prev_class = p->sched_class;
6939 	queued = task_on_rq_queued(p);
6940 	running = task_current(rq, p);
6941 	if (queued)
6942 		dequeue_task(rq, p, queue_flag);
6943 	if (running)
6944 		put_prev_task(rq, p);
6945 
6946 	/*
6947 	 * Boosting condition are:
6948 	 * 1. -rt task is running and holds mutex A
6949 	 *      --> -dl task blocks on mutex A
6950 	 *
6951 	 * 2. -dl task is running and holds mutex A
6952 	 *      --> -dl task blocks on mutex A and could preempt the
6953 	 *          running task
6954 	 */
6955 	if (dl_prio(prio)) {
6956 		if (!dl_prio(p->normal_prio) ||
6957 		    (pi_task && dl_prio(pi_task->prio) &&
6958 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6959 			p->dl.pi_se = pi_task->dl.pi_se;
6960 			queue_flag |= ENQUEUE_REPLENISH;
6961 		} else {
6962 			p->dl.pi_se = &p->dl;
6963 		}
6964 	} else if (rt_prio(prio)) {
6965 		if (dl_prio(oldprio))
6966 			p->dl.pi_se = &p->dl;
6967 		if (oldprio < prio)
6968 			queue_flag |= ENQUEUE_HEAD;
6969 	} else {
6970 		if (dl_prio(oldprio))
6971 			p->dl.pi_se = &p->dl;
6972 		if (rt_prio(oldprio))
6973 			p->rt.timeout = 0;
6974 	}
6975 
6976 	__setscheduler_prio(p, prio);
6977 
6978 	if (queued)
6979 		enqueue_task(rq, p, queue_flag);
6980 	if (running)
6981 		set_next_task(rq, p);
6982 
6983 	check_class_changed(rq, p, prev_class, oldprio);
6984 out_unlock:
6985 	/* Avoid rq from going away on us: */
6986 	preempt_disable();
6987 
6988 	rq_unpin_lock(rq, &rf);
6989 	__balance_callbacks(rq);
6990 	raw_spin_rq_unlock(rq);
6991 
6992 	preempt_enable();
6993 }
6994 #else
6995 static inline int rt_effective_prio(struct task_struct *p, int prio)
6996 {
6997 	return prio;
6998 }
6999 #endif
7000 
7001 void set_user_nice(struct task_struct *p, long nice)
7002 {
7003 	bool queued, running;
7004 	int old_prio;
7005 	struct rq_flags rf;
7006 	struct rq *rq;
7007 
7008 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7009 		return;
7010 	/*
7011 	 * We have to be careful, if called from sys_setpriority(),
7012 	 * the task might be in the middle of scheduling on another CPU.
7013 	 */
7014 	rq = task_rq_lock(p, &rf);
7015 	update_rq_clock(rq);
7016 
7017 	/*
7018 	 * The RT priorities are set via sched_setscheduler(), but we still
7019 	 * allow the 'normal' nice value to be set - but as expected
7020 	 * it won't have any effect on scheduling until the task is
7021 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7022 	 */
7023 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7024 		p->static_prio = NICE_TO_PRIO(nice);
7025 		goto out_unlock;
7026 	}
7027 	queued = task_on_rq_queued(p);
7028 	running = task_current(rq, p);
7029 	if (queued)
7030 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7031 	if (running)
7032 		put_prev_task(rq, p);
7033 
7034 	p->static_prio = NICE_TO_PRIO(nice);
7035 	set_load_weight(p, true);
7036 	old_prio = p->prio;
7037 	p->prio = effective_prio(p);
7038 
7039 	if (queued)
7040 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7041 	if (running)
7042 		set_next_task(rq, p);
7043 
7044 	/*
7045 	 * If the task increased its priority or is running and
7046 	 * lowered its priority, then reschedule its CPU:
7047 	 */
7048 	p->sched_class->prio_changed(rq, p, old_prio);
7049 
7050 out_unlock:
7051 	task_rq_unlock(rq, p, &rf);
7052 }
7053 EXPORT_SYMBOL(set_user_nice);
7054 
7055 /*
7056  * is_nice_reduction - check if nice value is an actual reduction
7057  *
7058  * Similar to can_nice() but does not perform a capability check.
7059  *
7060  * @p: task
7061  * @nice: nice value
7062  */
7063 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7064 {
7065 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7066 	int nice_rlim = nice_to_rlimit(nice);
7067 
7068 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7069 }
7070 
7071 /*
7072  * can_nice - check if a task can reduce its nice value
7073  * @p: task
7074  * @nice: nice value
7075  */
7076 int can_nice(const struct task_struct *p, const int nice)
7077 {
7078 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7079 }
7080 
7081 #ifdef __ARCH_WANT_SYS_NICE
7082 
7083 /*
7084  * sys_nice - change the priority of the current process.
7085  * @increment: priority increment
7086  *
7087  * sys_setpriority is a more generic, but much slower function that
7088  * does similar things.
7089  */
7090 SYSCALL_DEFINE1(nice, int, increment)
7091 {
7092 	long nice, retval;
7093 
7094 	/*
7095 	 * Setpriority might change our priority at the same moment.
7096 	 * We don't have to worry. Conceptually one call occurs first
7097 	 * and we have a single winner.
7098 	 */
7099 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7100 	nice = task_nice(current) + increment;
7101 
7102 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7103 	if (increment < 0 && !can_nice(current, nice))
7104 		return -EPERM;
7105 
7106 	retval = security_task_setnice(current, nice);
7107 	if (retval)
7108 		return retval;
7109 
7110 	set_user_nice(current, nice);
7111 	return 0;
7112 }
7113 
7114 #endif
7115 
7116 /**
7117  * task_prio - return the priority value of a given task.
7118  * @p: the task in question.
7119  *
7120  * Return: The priority value as seen by users in /proc.
7121  *
7122  * sched policy         return value   kernel prio    user prio/nice
7123  *
7124  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7125  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7126  * deadline                     -101             -1           0
7127  */
7128 int task_prio(const struct task_struct *p)
7129 {
7130 	return p->prio - MAX_RT_PRIO;
7131 }
7132 
7133 /**
7134  * idle_cpu - is a given CPU idle currently?
7135  * @cpu: the processor in question.
7136  *
7137  * Return: 1 if the CPU is currently idle. 0 otherwise.
7138  */
7139 int idle_cpu(int cpu)
7140 {
7141 	struct rq *rq = cpu_rq(cpu);
7142 
7143 	if (rq->curr != rq->idle)
7144 		return 0;
7145 
7146 	if (rq->nr_running)
7147 		return 0;
7148 
7149 #ifdef CONFIG_SMP
7150 	if (rq->ttwu_pending)
7151 		return 0;
7152 #endif
7153 
7154 	return 1;
7155 }
7156 
7157 /**
7158  * available_idle_cpu - is a given CPU idle for enqueuing work.
7159  * @cpu: the CPU in question.
7160  *
7161  * Return: 1 if the CPU is currently idle. 0 otherwise.
7162  */
7163 int available_idle_cpu(int cpu)
7164 {
7165 	if (!idle_cpu(cpu))
7166 		return 0;
7167 
7168 	if (vcpu_is_preempted(cpu))
7169 		return 0;
7170 
7171 	return 1;
7172 }
7173 
7174 /**
7175  * idle_task - return the idle task for a given CPU.
7176  * @cpu: the processor in question.
7177  *
7178  * Return: The idle task for the CPU @cpu.
7179  */
7180 struct task_struct *idle_task(int cpu)
7181 {
7182 	return cpu_rq(cpu)->idle;
7183 }
7184 
7185 #ifdef CONFIG_SMP
7186 /*
7187  * This function computes an effective utilization for the given CPU, to be
7188  * used for frequency selection given the linear relation: f = u * f_max.
7189  *
7190  * The scheduler tracks the following metrics:
7191  *
7192  *   cpu_util_{cfs,rt,dl,irq}()
7193  *   cpu_bw_dl()
7194  *
7195  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7196  * synchronized windows and are thus directly comparable.
7197  *
7198  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7199  * which excludes things like IRQ and steal-time. These latter are then accrued
7200  * in the irq utilization.
7201  *
7202  * The DL bandwidth number otoh is not a measured metric but a value computed
7203  * based on the task model parameters and gives the minimal utilization
7204  * required to meet deadlines.
7205  */
7206 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7207 				 enum cpu_util_type type,
7208 				 struct task_struct *p)
7209 {
7210 	unsigned long dl_util, util, irq, max;
7211 	struct rq *rq = cpu_rq(cpu);
7212 
7213 	max = arch_scale_cpu_capacity(cpu);
7214 
7215 	if (!uclamp_is_used() &&
7216 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7217 		return max;
7218 	}
7219 
7220 	/*
7221 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7222 	 * because of inaccuracies in how we track these -- see
7223 	 * update_irq_load_avg().
7224 	 */
7225 	irq = cpu_util_irq(rq);
7226 	if (unlikely(irq >= max))
7227 		return max;
7228 
7229 	/*
7230 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7231 	 * CFS tasks and we use the same metric to track the effective
7232 	 * utilization (PELT windows are synchronized) we can directly add them
7233 	 * to obtain the CPU's actual utilization.
7234 	 *
7235 	 * CFS and RT utilization can be boosted or capped, depending on
7236 	 * utilization clamp constraints requested by currently RUNNABLE
7237 	 * tasks.
7238 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7239 	 * frequency will be gracefully reduced with the utilization decay.
7240 	 */
7241 	util = util_cfs + cpu_util_rt(rq);
7242 	if (type == FREQUENCY_UTIL)
7243 		util = uclamp_rq_util_with(rq, util, p);
7244 
7245 	dl_util = cpu_util_dl(rq);
7246 
7247 	/*
7248 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7249 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7250 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7251 	 * that we select f_max when there is no idle time.
7252 	 *
7253 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7254 	 * saturation when we should -- something for later.
7255 	 */
7256 	if (util + dl_util >= max)
7257 		return max;
7258 
7259 	/*
7260 	 * OTOH, for energy computation we need the estimated running time, so
7261 	 * include util_dl and ignore dl_bw.
7262 	 */
7263 	if (type == ENERGY_UTIL)
7264 		util += dl_util;
7265 
7266 	/*
7267 	 * There is still idle time; further improve the number by using the
7268 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7269 	 * need to scale the task numbers:
7270 	 *
7271 	 *              max - irq
7272 	 *   U' = irq + --------- * U
7273 	 *                 max
7274 	 */
7275 	util = scale_irq_capacity(util, irq, max);
7276 	util += irq;
7277 
7278 	/*
7279 	 * Bandwidth required by DEADLINE must always be granted while, for
7280 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7281 	 * to gracefully reduce the frequency when no tasks show up for longer
7282 	 * periods of time.
7283 	 *
7284 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7285 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7286 	 * an interface. So, we only do the latter for now.
7287 	 */
7288 	if (type == FREQUENCY_UTIL)
7289 		util += cpu_bw_dl(rq);
7290 
7291 	return min(max, util);
7292 }
7293 
7294 unsigned long sched_cpu_util(int cpu)
7295 {
7296 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7297 }
7298 #endif /* CONFIG_SMP */
7299 
7300 /**
7301  * find_process_by_pid - find a process with a matching PID value.
7302  * @pid: the pid in question.
7303  *
7304  * The task of @pid, if found. %NULL otherwise.
7305  */
7306 static struct task_struct *find_process_by_pid(pid_t pid)
7307 {
7308 	return pid ? find_task_by_vpid(pid) : current;
7309 }
7310 
7311 /*
7312  * sched_setparam() passes in -1 for its policy, to let the functions
7313  * it calls know not to change it.
7314  */
7315 #define SETPARAM_POLICY	-1
7316 
7317 static void __setscheduler_params(struct task_struct *p,
7318 		const struct sched_attr *attr)
7319 {
7320 	int policy = attr->sched_policy;
7321 
7322 	if (policy == SETPARAM_POLICY)
7323 		policy = p->policy;
7324 
7325 	p->policy = policy;
7326 
7327 	if (dl_policy(policy))
7328 		__setparam_dl(p, attr);
7329 	else if (fair_policy(policy))
7330 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7331 
7332 	/*
7333 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7334 	 * !rt_policy. Always setting this ensures that things like
7335 	 * getparam()/getattr() don't report silly values for !rt tasks.
7336 	 */
7337 	p->rt_priority = attr->sched_priority;
7338 	p->normal_prio = normal_prio(p);
7339 	set_load_weight(p, true);
7340 }
7341 
7342 /*
7343  * Check the target process has a UID that matches the current process's:
7344  */
7345 static bool check_same_owner(struct task_struct *p)
7346 {
7347 	const struct cred *cred = current_cred(), *pcred;
7348 	bool match;
7349 
7350 	rcu_read_lock();
7351 	pcred = __task_cred(p);
7352 	match = (uid_eq(cred->euid, pcred->euid) ||
7353 		 uid_eq(cred->euid, pcred->uid));
7354 	rcu_read_unlock();
7355 	return match;
7356 }
7357 
7358 /*
7359  * Allow unprivileged RT tasks to decrease priority.
7360  * Only issue a capable test if needed and only once to avoid an audit
7361  * event on permitted non-privileged operations:
7362  */
7363 static int user_check_sched_setscheduler(struct task_struct *p,
7364 					 const struct sched_attr *attr,
7365 					 int policy, int reset_on_fork)
7366 {
7367 	if (fair_policy(policy)) {
7368 		if (attr->sched_nice < task_nice(p) &&
7369 		    !is_nice_reduction(p, attr->sched_nice))
7370 			goto req_priv;
7371 	}
7372 
7373 	if (rt_policy(policy)) {
7374 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7375 
7376 		/* Can't set/change the rt policy: */
7377 		if (policy != p->policy && !rlim_rtprio)
7378 			goto req_priv;
7379 
7380 		/* Can't increase priority: */
7381 		if (attr->sched_priority > p->rt_priority &&
7382 		    attr->sched_priority > rlim_rtprio)
7383 			goto req_priv;
7384 	}
7385 
7386 	/*
7387 	 * Can't set/change SCHED_DEADLINE policy at all for now
7388 	 * (safest behavior); in the future we would like to allow
7389 	 * unprivileged DL tasks to increase their relative deadline
7390 	 * or reduce their runtime (both ways reducing utilization)
7391 	 */
7392 	if (dl_policy(policy))
7393 		goto req_priv;
7394 
7395 	/*
7396 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7397 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7398 	 */
7399 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7400 		if (!is_nice_reduction(p, task_nice(p)))
7401 			goto req_priv;
7402 	}
7403 
7404 	/* Can't change other user's priorities: */
7405 	if (!check_same_owner(p))
7406 		goto req_priv;
7407 
7408 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7409 	if (p->sched_reset_on_fork && !reset_on_fork)
7410 		goto req_priv;
7411 
7412 	return 0;
7413 
7414 req_priv:
7415 	if (!capable(CAP_SYS_NICE))
7416 		return -EPERM;
7417 
7418 	return 0;
7419 }
7420 
7421 static int __sched_setscheduler(struct task_struct *p,
7422 				const struct sched_attr *attr,
7423 				bool user, bool pi)
7424 {
7425 	int oldpolicy = -1, policy = attr->sched_policy;
7426 	int retval, oldprio, newprio, queued, running;
7427 	const struct sched_class *prev_class;
7428 	struct callback_head *head;
7429 	struct rq_flags rf;
7430 	int reset_on_fork;
7431 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7432 	struct rq *rq;
7433 
7434 	/* The pi code expects interrupts enabled */
7435 	BUG_ON(pi && in_interrupt());
7436 recheck:
7437 	/* Double check policy once rq lock held: */
7438 	if (policy < 0) {
7439 		reset_on_fork = p->sched_reset_on_fork;
7440 		policy = oldpolicy = p->policy;
7441 	} else {
7442 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7443 
7444 		if (!valid_policy(policy))
7445 			return -EINVAL;
7446 	}
7447 
7448 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7449 		return -EINVAL;
7450 
7451 	/*
7452 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7453 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7454 	 * SCHED_BATCH and SCHED_IDLE is 0.
7455 	 */
7456 	if (attr->sched_priority > MAX_RT_PRIO-1)
7457 		return -EINVAL;
7458 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7459 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7460 		return -EINVAL;
7461 
7462 	if (user) {
7463 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7464 		if (retval)
7465 			return retval;
7466 
7467 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7468 			return -EINVAL;
7469 
7470 		retval = security_task_setscheduler(p);
7471 		if (retval)
7472 			return retval;
7473 	}
7474 
7475 	/* Update task specific "requested" clamps */
7476 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7477 		retval = uclamp_validate(p, attr);
7478 		if (retval)
7479 			return retval;
7480 	}
7481 
7482 	if (pi)
7483 		cpuset_read_lock();
7484 
7485 	/*
7486 	 * Make sure no PI-waiters arrive (or leave) while we are
7487 	 * changing the priority of the task:
7488 	 *
7489 	 * To be able to change p->policy safely, the appropriate
7490 	 * runqueue lock must be held.
7491 	 */
7492 	rq = task_rq_lock(p, &rf);
7493 	update_rq_clock(rq);
7494 
7495 	/*
7496 	 * Changing the policy of the stop threads its a very bad idea:
7497 	 */
7498 	if (p == rq->stop) {
7499 		retval = -EINVAL;
7500 		goto unlock;
7501 	}
7502 
7503 	/*
7504 	 * If not changing anything there's no need to proceed further,
7505 	 * but store a possible modification of reset_on_fork.
7506 	 */
7507 	if (unlikely(policy == p->policy)) {
7508 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7509 			goto change;
7510 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7511 			goto change;
7512 		if (dl_policy(policy) && dl_param_changed(p, attr))
7513 			goto change;
7514 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7515 			goto change;
7516 
7517 		p->sched_reset_on_fork = reset_on_fork;
7518 		retval = 0;
7519 		goto unlock;
7520 	}
7521 change:
7522 
7523 	if (user) {
7524 #ifdef CONFIG_RT_GROUP_SCHED
7525 		/*
7526 		 * Do not allow realtime tasks into groups that have no runtime
7527 		 * assigned.
7528 		 */
7529 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7530 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7531 				!task_group_is_autogroup(task_group(p))) {
7532 			retval = -EPERM;
7533 			goto unlock;
7534 		}
7535 #endif
7536 #ifdef CONFIG_SMP
7537 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7538 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7539 			cpumask_t *span = rq->rd->span;
7540 
7541 			/*
7542 			 * Don't allow tasks with an affinity mask smaller than
7543 			 * the entire root_domain to become SCHED_DEADLINE. We
7544 			 * will also fail if there's no bandwidth available.
7545 			 */
7546 			if (!cpumask_subset(span, p->cpus_ptr) ||
7547 			    rq->rd->dl_bw.bw == 0) {
7548 				retval = -EPERM;
7549 				goto unlock;
7550 			}
7551 		}
7552 #endif
7553 	}
7554 
7555 	/* Re-check policy now with rq lock held: */
7556 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7557 		policy = oldpolicy = -1;
7558 		task_rq_unlock(rq, p, &rf);
7559 		if (pi)
7560 			cpuset_read_unlock();
7561 		goto recheck;
7562 	}
7563 
7564 	/*
7565 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7566 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7567 	 * is available.
7568 	 */
7569 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7570 		retval = -EBUSY;
7571 		goto unlock;
7572 	}
7573 
7574 	p->sched_reset_on_fork = reset_on_fork;
7575 	oldprio = p->prio;
7576 
7577 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7578 	if (pi) {
7579 		/*
7580 		 * Take priority boosted tasks into account. If the new
7581 		 * effective priority is unchanged, we just store the new
7582 		 * normal parameters and do not touch the scheduler class and
7583 		 * the runqueue. This will be done when the task deboost
7584 		 * itself.
7585 		 */
7586 		newprio = rt_effective_prio(p, newprio);
7587 		if (newprio == oldprio)
7588 			queue_flags &= ~DEQUEUE_MOVE;
7589 	}
7590 
7591 	queued = task_on_rq_queued(p);
7592 	running = task_current(rq, p);
7593 	if (queued)
7594 		dequeue_task(rq, p, queue_flags);
7595 	if (running)
7596 		put_prev_task(rq, p);
7597 
7598 	prev_class = p->sched_class;
7599 
7600 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7601 		__setscheduler_params(p, attr);
7602 		__setscheduler_prio(p, newprio);
7603 	}
7604 	__setscheduler_uclamp(p, attr);
7605 
7606 	if (queued) {
7607 		/*
7608 		 * We enqueue to tail when the priority of a task is
7609 		 * increased (user space view).
7610 		 */
7611 		if (oldprio < p->prio)
7612 			queue_flags |= ENQUEUE_HEAD;
7613 
7614 		enqueue_task(rq, p, queue_flags);
7615 	}
7616 	if (running)
7617 		set_next_task(rq, p);
7618 
7619 	check_class_changed(rq, p, prev_class, oldprio);
7620 
7621 	/* Avoid rq from going away on us: */
7622 	preempt_disable();
7623 	head = splice_balance_callbacks(rq);
7624 	task_rq_unlock(rq, p, &rf);
7625 
7626 	if (pi) {
7627 		cpuset_read_unlock();
7628 		rt_mutex_adjust_pi(p);
7629 	}
7630 
7631 	/* Run balance callbacks after we've adjusted the PI chain: */
7632 	balance_callbacks(rq, head);
7633 	preempt_enable();
7634 
7635 	return 0;
7636 
7637 unlock:
7638 	task_rq_unlock(rq, p, &rf);
7639 	if (pi)
7640 		cpuset_read_unlock();
7641 	return retval;
7642 }
7643 
7644 static int _sched_setscheduler(struct task_struct *p, int policy,
7645 			       const struct sched_param *param, bool check)
7646 {
7647 	struct sched_attr attr = {
7648 		.sched_policy   = policy,
7649 		.sched_priority = param->sched_priority,
7650 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7651 	};
7652 
7653 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7654 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7655 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7656 		policy &= ~SCHED_RESET_ON_FORK;
7657 		attr.sched_policy = policy;
7658 	}
7659 
7660 	return __sched_setscheduler(p, &attr, check, true);
7661 }
7662 /**
7663  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7664  * @p: the task in question.
7665  * @policy: new policy.
7666  * @param: structure containing the new RT priority.
7667  *
7668  * Use sched_set_fifo(), read its comment.
7669  *
7670  * Return: 0 on success. An error code otherwise.
7671  *
7672  * NOTE that the task may be already dead.
7673  */
7674 int sched_setscheduler(struct task_struct *p, int policy,
7675 		       const struct sched_param *param)
7676 {
7677 	return _sched_setscheduler(p, policy, param, true);
7678 }
7679 
7680 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7681 {
7682 	return __sched_setscheduler(p, attr, true, true);
7683 }
7684 
7685 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7686 {
7687 	return __sched_setscheduler(p, attr, false, true);
7688 }
7689 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7690 
7691 /**
7692  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7693  * @p: the task in question.
7694  * @policy: new policy.
7695  * @param: structure containing the new RT priority.
7696  *
7697  * Just like sched_setscheduler, only don't bother checking if the
7698  * current context has permission.  For example, this is needed in
7699  * stop_machine(): we create temporary high priority worker threads,
7700  * but our caller might not have that capability.
7701  *
7702  * Return: 0 on success. An error code otherwise.
7703  */
7704 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7705 			       const struct sched_param *param)
7706 {
7707 	return _sched_setscheduler(p, policy, param, false);
7708 }
7709 
7710 /*
7711  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7712  * incapable of resource management, which is the one thing an OS really should
7713  * be doing.
7714  *
7715  * This is of course the reason it is limited to privileged users only.
7716  *
7717  * Worse still; it is fundamentally impossible to compose static priority
7718  * workloads. You cannot take two correctly working static prio workloads
7719  * and smash them together and still expect them to work.
7720  *
7721  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7722  *
7723  *   MAX_RT_PRIO / 2
7724  *
7725  * The administrator _MUST_ configure the system, the kernel simply doesn't
7726  * know enough information to make a sensible choice.
7727  */
7728 void sched_set_fifo(struct task_struct *p)
7729 {
7730 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7731 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7732 }
7733 EXPORT_SYMBOL_GPL(sched_set_fifo);
7734 
7735 /*
7736  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7737  */
7738 void sched_set_fifo_low(struct task_struct *p)
7739 {
7740 	struct sched_param sp = { .sched_priority = 1 };
7741 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7742 }
7743 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7744 
7745 void sched_set_normal(struct task_struct *p, int nice)
7746 {
7747 	struct sched_attr attr = {
7748 		.sched_policy = SCHED_NORMAL,
7749 		.sched_nice = nice,
7750 	};
7751 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7752 }
7753 EXPORT_SYMBOL_GPL(sched_set_normal);
7754 
7755 static int
7756 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7757 {
7758 	struct sched_param lparam;
7759 	struct task_struct *p;
7760 	int retval;
7761 
7762 	if (!param || pid < 0)
7763 		return -EINVAL;
7764 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7765 		return -EFAULT;
7766 
7767 	rcu_read_lock();
7768 	retval = -ESRCH;
7769 	p = find_process_by_pid(pid);
7770 	if (likely(p))
7771 		get_task_struct(p);
7772 	rcu_read_unlock();
7773 
7774 	if (likely(p)) {
7775 		retval = sched_setscheduler(p, policy, &lparam);
7776 		put_task_struct(p);
7777 	}
7778 
7779 	return retval;
7780 }
7781 
7782 /*
7783  * Mimics kernel/events/core.c perf_copy_attr().
7784  */
7785 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7786 {
7787 	u32 size;
7788 	int ret;
7789 
7790 	/* Zero the full structure, so that a short copy will be nice: */
7791 	memset(attr, 0, sizeof(*attr));
7792 
7793 	ret = get_user(size, &uattr->size);
7794 	if (ret)
7795 		return ret;
7796 
7797 	/* ABI compatibility quirk: */
7798 	if (!size)
7799 		size = SCHED_ATTR_SIZE_VER0;
7800 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7801 		goto err_size;
7802 
7803 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7804 	if (ret) {
7805 		if (ret == -E2BIG)
7806 			goto err_size;
7807 		return ret;
7808 	}
7809 
7810 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7811 	    size < SCHED_ATTR_SIZE_VER1)
7812 		return -EINVAL;
7813 
7814 	/*
7815 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7816 	 * to be strict and return an error on out-of-bounds values?
7817 	 */
7818 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7819 
7820 	return 0;
7821 
7822 err_size:
7823 	put_user(sizeof(*attr), &uattr->size);
7824 	return -E2BIG;
7825 }
7826 
7827 static void get_params(struct task_struct *p, struct sched_attr *attr)
7828 {
7829 	if (task_has_dl_policy(p))
7830 		__getparam_dl(p, attr);
7831 	else if (task_has_rt_policy(p))
7832 		attr->sched_priority = p->rt_priority;
7833 	else
7834 		attr->sched_nice = task_nice(p);
7835 }
7836 
7837 /**
7838  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7839  * @pid: the pid in question.
7840  * @policy: new policy.
7841  * @param: structure containing the new RT priority.
7842  *
7843  * Return: 0 on success. An error code otherwise.
7844  */
7845 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7846 {
7847 	if (policy < 0)
7848 		return -EINVAL;
7849 
7850 	return do_sched_setscheduler(pid, policy, param);
7851 }
7852 
7853 /**
7854  * sys_sched_setparam - set/change the RT priority of a thread
7855  * @pid: the pid in question.
7856  * @param: structure containing the new RT priority.
7857  *
7858  * Return: 0 on success. An error code otherwise.
7859  */
7860 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7861 {
7862 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7863 }
7864 
7865 /**
7866  * sys_sched_setattr - same as above, but with extended sched_attr
7867  * @pid: the pid in question.
7868  * @uattr: structure containing the extended parameters.
7869  * @flags: for future extension.
7870  */
7871 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7872 			       unsigned int, flags)
7873 {
7874 	struct sched_attr attr;
7875 	struct task_struct *p;
7876 	int retval;
7877 
7878 	if (!uattr || pid < 0 || flags)
7879 		return -EINVAL;
7880 
7881 	retval = sched_copy_attr(uattr, &attr);
7882 	if (retval)
7883 		return retval;
7884 
7885 	if ((int)attr.sched_policy < 0)
7886 		return -EINVAL;
7887 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7888 		attr.sched_policy = SETPARAM_POLICY;
7889 
7890 	rcu_read_lock();
7891 	retval = -ESRCH;
7892 	p = find_process_by_pid(pid);
7893 	if (likely(p))
7894 		get_task_struct(p);
7895 	rcu_read_unlock();
7896 
7897 	if (likely(p)) {
7898 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7899 			get_params(p, &attr);
7900 		retval = sched_setattr(p, &attr);
7901 		put_task_struct(p);
7902 	}
7903 
7904 	return retval;
7905 }
7906 
7907 /**
7908  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7909  * @pid: the pid in question.
7910  *
7911  * Return: On success, the policy of the thread. Otherwise, a negative error
7912  * code.
7913  */
7914 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7915 {
7916 	struct task_struct *p;
7917 	int retval;
7918 
7919 	if (pid < 0)
7920 		return -EINVAL;
7921 
7922 	retval = -ESRCH;
7923 	rcu_read_lock();
7924 	p = find_process_by_pid(pid);
7925 	if (p) {
7926 		retval = security_task_getscheduler(p);
7927 		if (!retval)
7928 			retval = p->policy
7929 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7930 	}
7931 	rcu_read_unlock();
7932 	return retval;
7933 }
7934 
7935 /**
7936  * sys_sched_getparam - get the RT priority of a thread
7937  * @pid: the pid in question.
7938  * @param: structure containing the RT priority.
7939  *
7940  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7941  * code.
7942  */
7943 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7944 {
7945 	struct sched_param lp = { .sched_priority = 0 };
7946 	struct task_struct *p;
7947 	int retval;
7948 
7949 	if (!param || pid < 0)
7950 		return -EINVAL;
7951 
7952 	rcu_read_lock();
7953 	p = find_process_by_pid(pid);
7954 	retval = -ESRCH;
7955 	if (!p)
7956 		goto out_unlock;
7957 
7958 	retval = security_task_getscheduler(p);
7959 	if (retval)
7960 		goto out_unlock;
7961 
7962 	if (task_has_rt_policy(p))
7963 		lp.sched_priority = p->rt_priority;
7964 	rcu_read_unlock();
7965 
7966 	/*
7967 	 * This one might sleep, we cannot do it with a spinlock held ...
7968 	 */
7969 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7970 
7971 	return retval;
7972 
7973 out_unlock:
7974 	rcu_read_unlock();
7975 	return retval;
7976 }
7977 
7978 /*
7979  * Copy the kernel size attribute structure (which might be larger
7980  * than what user-space knows about) to user-space.
7981  *
7982  * Note that all cases are valid: user-space buffer can be larger or
7983  * smaller than the kernel-space buffer. The usual case is that both
7984  * have the same size.
7985  */
7986 static int
7987 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7988 			struct sched_attr *kattr,
7989 			unsigned int usize)
7990 {
7991 	unsigned int ksize = sizeof(*kattr);
7992 
7993 	if (!access_ok(uattr, usize))
7994 		return -EFAULT;
7995 
7996 	/*
7997 	 * sched_getattr() ABI forwards and backwards compatibility:
7998 	 *
7999 	 * If usize == ksize then we just copy everything to user-space and all is good.
8000 	 *
8001 	 * If usize < ksize then we only copy as much as user-space has space for,
8002 	 * this keeps ABI compatibility as well. We skip the rest.
8003 	 *
8004 	 * If usize > ksize then user-space is using a newer version of the ABI,
8005 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8006 	 * detect the kernel's knowledge of attributes from the attr->size value
8007 	 * which is set to ksize in this case.
8008 	 */
8009 	kattr->size = min(usize, ksize);
8010 
8011 	if (copy_to_user(uattr, kattr, kattr->size))
8012 		return -EFAULT;
8013 
8014 	return 0;
8015 }
8016 
8017 /**
8018  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8019  * @pid: the pid in question.
8020  * @uattr: structure containing the extended parameters.
8021  * @usize: sizeof(attr) for fwd/bwd comp.
8022  * @flags: for future extension.
8023  */
8024 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8025 		unsigned int, usize, unsigned int, flags)
8026 {
8027 	struct sched_attr kattr = { };
8028 	struct task_struct *p;
8029 	int retval;
8030 
8031 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8032 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8033 		return -EINVAL;
8034 
8035 	rcu_read_lock();
8036 	p = find_process_by_pid(pid);
8037 	retval = -ESRCH;
8038 	if (!p)
8039 		goto out_unlock;
8040 
8041 	retval = security_task_getscheduler(p);
8042 	if (retval)
8043 		goto out_unlock;
8044 
8045 	kattr.sched_policy = p->policy;
8046 	if (p->sched_reset_on_fork)
8047 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8048 	get_params(p, &kattr);
8049 	kattr.sched_flags &= SCHED_FLAG_ALL;
8050 
8051 #ifdef CONFIG_UCLAMP_TASK
8052 	/*
8053 	 * This could race with another potential updater, but this is fine
8054 	 * because it'll correctly read the old or the new value. We don't need
8055 	 * to guarantee who wins the race as long as it doesn't return garbage.
8056 	 */
8057 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8058 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8059 #endif
8060 
8061 	rcu_read_unlock();
8062 
8063 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8064 
8065 out_unlock:
8066 	rcu_read_unlock();
8067 	return retval;
8068 }
8069 
8070 #ifdef CONFIG_SMP
8071 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8072 {
8073 	int ret = 0;
8074 
8075 	/*
8076 	 * If the task isn't a deadline task or admission control is
8077 	 * disabled then we don't care about affinity changes.
8078 	 */
8079 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8080 		return 0;
8081 
8082 	/*
8083 	 * Since bandwidth control happens on root_domain basis,
8084 	 * if admission test is enabled, we only admit -deadline
8085 	 * tasks allowed to run on all the CPUs in the task's
8086 	 * root_domain.
8087 	 */
8088 	rcu_read_lock();
8089 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8090 		ret = -EBUSY;
8091 	rcu_read_unlock();
8092 	return ret;
8093 }
8094 #endif
8095 
8096 static int
8097 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8098 {
8099 	int retval;
8100 	cpumask_var_t cpus_allowed, new_mask;
8101 
8102 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8103 		return -ENOMEM;
8104 
8105 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8106 		retval = -ENOMEM;
8107 		goto out_free_cpus_allowed;
8108 	}
8109 
8110 	cpuset_cpus_allowed(p, cpus_allowed);
8111 	cpumask_and(new_mask, mask, cpus_allowed);
8112 
8113 	retval = dl_task_check_affinity(p, new_mask);
8114 	if (retval)
8115 		goto out_free_new_mask;
8116 again:
8117 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8118 	if (retval)
8119 		goto out_free_new_mask;
8120 
8121 	cpuset_cpus_allowed(p, cpus_allowed);
8122 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8123 		/*
8124 		 * We must have raced with a concurrent cpuset update.
8125 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8126 		 */
8127 		cpumask_copy(new_mask, cpus_allowed);
8128 		goto again;
8129 	}
8130 
8131 out_free_new_mask:
8132 	free_cpumask_var(new_mask);
8133 out_free_cpus_allowed:
8134 	free_cpumask_var(cpus_allowed);
8135 	return retval;
8136 }
8137 
8138 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8139 {
8140 	struct task_struct *p;
8141 	int retval;
8142 
8143 	rcu_read_lock();
8144 
8145 	p = find_process_by_pid(pid);
8146 	if (!p) {
8147 		rcu_read_unlock();
8148 		return -ESRCH;
8149 	}
8150 
8151 	/* Prevent p going away */
8152 	get_task_struct(p);
8153 	rcu_read_unlock();
8154 
8155 	if (p->flags & PF_NO_SETAFFINITY) {
8156 		retval = -EINVAL;
8157 		goto out_put_task;
8158 	}
8159 
8160 	if (!check_same_owner(p)) {
8161 		rcu_read_lock();
8162 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8163 			rcu_read_unlock();
8164 			retval = -EPERM;
8165 			goto out_put_task;
8166 		}
8167 		rcu_read_unlock();
8168 	}
8169 
8170 	retval = security_task_setscheduler(p);
8171 	if (retval)
8172 		goto out_put_task;
8173 
8174 	retval = __sched_setaffinity(p, in_mask);
8175 out_put_task:
8176 	put_task_struct(p);
8177 	return retval;
8178 }
8179 
8180 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8181 			     struct cpumask *new_mask)
8182 {
8183 	if (len < cpumask_size())
8184 		cpumask_clear(new_mask);
8185 	else if (len > cpumask_size())
8186 		len = cpumask_size();
8187 
8188 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8189 }
8190 
8191 /**
8192  * sys_sched_setaffinity - set the CPU affinity of a process
8193  * @pid: pid of the process
8194  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8195  * @user_mask_ptr: user-space pointer to the new CPU mask
8196  *
8197  * Return: 0 on success. An error code otherwise.
8198  */
8199 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8200 		unsigned long __user *, user_mask_ptr)
8201 {
8202 	cpumask_var_t new_mask;
8203 	int retval;
8204 
8205 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8206 		return -ENOMEM;
8207 
8208 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8209 	if (retval == 0)
8210 		retval = sched_setaffinity(pid, new_mask);
8211 	free_cpumask_var(new_mask);
8212 	return retval;
8213 }
8214 
8215 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8216 {
8217 	struct task_struct *p;
8218 	unsigned long flags;
8219 	int retval;
8220 
8221 	rcu_read_lock();
8222 
8223 	retval = -ESRCH;
8224 	p = find_process_by_pid(pid);
8225 	if (!p)
8226 		goto out_unlock;
8227 
8228 	retval = security_task_getscheduler(p);
8229 	if (retval)
8230 		goto out_unlock;
8231 
8232 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8233 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8234 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8235 
8236 out_unlock:
8237 	rcu_read_unlock();
8238 
8239 	return retval;
8240 }
8241 
8242 /**
8243  * sys_sched_getaffinity - get the CPU affinity of a process
8244  * @pid: pid of the process
8245  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8246  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8247  *
8248  * Return: size of CPU mask copied to user_mask_ptr on success. An
8249  * error code otherwise.
8250  */
8251 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8252 		unsigned long __user *, user_mask_ptr)
8253 {
8254 	int ret;
8255 	cpumask_var_t mask;
8256 
8257 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8258 		return -EINVAL;
8259 	if (len & (sizeof(unsigned long)-1))
8260 		return -EINVAL;
8261 
8262 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8263 		return -ENOMEM;
8264 
8265 	ret = sched_getaffinity(pid, mask);
8266 	if (ret == 0) {
8267 		unsigned int retlen = min(len, cpumask_size());
8268 
8269 		if (copy_to_user(user_mask_ptr, mask, retlen))
8270 			ret = -EFAULT;
8271 		else
8272 			ret = retlen;
8273 	}
8274 	free_cpumask_var(mask);
8275 
8276 	return ret;
8277 }
8278 
8279 static void do_sched_yield(void)
8280 {
8281 	struct rq_flags rf;
8282 	struct rq *rq;
8283 
8284 	rq = this_rq_lock_irq(&rf);
8285 
8286 	schedstat_inc(rq->yld_count);
8287 	current->sched_class->yield_task(rq);
8288 
8289 	preempt_disable();
8290 	rq_unlock_irq(rq, &rf);
8291 	sched_preempt_enable_no_resched();
8292 
8293 	schedule();
8294 }
8295 
8296 /**
8297  * sys_sched_yield - yield the current processor to other threads.
8298  *
8299  * This function yields the current CPU to other tasks. If there are no
8300  * other threads running on this CPU then this function will return.
8301  *
8302  * Return: 0.
8303  */
8304 SYSCALL_DEFINE0(sched_yield)
8305 {
8306 	do_sched_yield();
8307 	return 0;
8308 }
8309 
8310 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8311 int __sched __cond_resched(void)
8312 {
8313 	if (should_resched(0)) {
8314 		preempt_schedule_common();
8315 		return 1;
8316 	}
8317 	/*
8318 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8319 	 * whether the current CPU is in an RCU read-side critical section,
8320 	 * so the tick can report quiescent states even for CPUs looping
8321 	 * in kernel context.  In contrast, in non-preemptible kernels,
8322 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8323 	 * processes executing in kernel context might never report an
8324 	 * RCU quiescent state.  Therefore, the following code causes
8325 	 * cond_resched() to report a quiescent state, but only when RCU
8326 	 * is in urgent need of one.
8327 	 */
8328 #ifndef CONFIG_PREEMPT_RCU
8329 	rcu_all_qs();
8330 #endif
8331 	return 0;
8332 }
8333 EXPORT_SYMBOL(__cond_resched);
8334 #endif
8335 
8336 #ifdef CONFIG_PREEMPT_DYNAMIC
8337 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8338 #define cond_resched_dynamic_enabled	__cond_resched
8339 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8340 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8341 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8342 
8343 #define might_resched_dynamic_enabled	__cond_resched
8344 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8345 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8346 EXPORT_STATIC_CALL_TRAMP(might_resched);
8347 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8348 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8349 int __sched dynamic_cond_resched(void)
8350 {
8351 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8352 		return 0;
8353 	return __cond_resched();
8354 }
8355 EXPORT_SYMBOL(dynamic_cond_resched);
8356 
8357 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8358 int __sched dynamic_might_resched(void)
8359 {
8360 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8361 		return 0;
8362 	return __cond_resched();
8363 }
8364 EXPORT_SYMBOL(dynamic_might_resched);
8365 #endif
8366 #endif
8367 
8368 /*
8369  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8370  * call schedule, and on return reacquire the lock.
8371  *
8372  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8373  * operations here to prevent schedule() from being called twice (once via
8374  * spin_unlock(), once by hand).
8375  */
8376 int __cond_resched_lock(spinlock_t *lock)
8377 {
8378 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8379 	int ret = 0;
8380 
8381 	lockdep_assert_held(lock);
8382 
8383 	if (spin_needbreak(lock) || resched) {
8384 		spin_unlock(lock);
8385 		if (!_cond_resched())
8386 			cpu_relax();
8387 		ret = 1;
8388 		spin_lock(lock);
8389 	}
8390 	return ret;
8391 }
8392 EXPORT_SYMBOL(__cond_resched_lock);
8393 
8394 int __cond_resched_rwlock_read(rwlock_t *lock)
8395 {
8396 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8397 	int ret = 0;
8398 
8399 	lockdep_assert_held_read(lock);
8400 
8401 	if (rwlock_needbreak(lock) || resched) {
8402 		read_unlock(lock);
8403 		if (!_cond_resched())
8404 			cpu_relax();
8405 		ret = 1;
8406 		read_lock(lock);
8407 	}
8408 	return ret;
8409 }
8410 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8411 
8412 int __cond_resched_rwlock_write(rwlock_t *lock)
8413 {
8414 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8415 	int ret = 0;
8416 
8417 	lockdep_assert_held_write(lock);
8418 
8419 	if (rwlock_needbreak(lock) || resched) {
8420 		write_unlock(lock);
8421 		if (!_cond_resched())
8422 			cpu_relax();
8423 		ret = 1;
8424 		write_lock(lock);
8425 	}
8426 	return ret;
8427 }
8428 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8429 
8430 #ifdef CONFIG_PREEMPT_DYNAMIC
8431 
8432 #ifdef CONFIG_GENERIC_ENTRY
8433 #include <linux/entry-common.h>
8434 #endif
8435 
8436 /*
8437  * SC:cond_resched
8438  * SC:might_resched
8439  * SC:preempt_schedule
8440  * SC:preempt_schedule_notrace
8441  * SC:irqentry_exit_cond_resched
8442  *
8443  *
8444  * NONE:
8445  *   cond_resched               <- __cond_resched
8446  *   might_resched              <- RET0
8447  *   preempt_schedule           <- NOP
8448  *   preempt_schedule_notrace   <- NOP
8449  *   irqentry_exit_cond_resched <- NOP
8450  *
8451  * VOLUNTARY:
8452  *   cond_resched               <- __cond_resched
8453  *   might_resched              <- __cond_resched
8454  *   preempt_schedule           <- NOP
8455  *   preempt_schedule_notrace   <- NOP
8456  *   irqentry_exit_cond_resched <- NOP
8457  *
8458  * FULL:
8459  *   cond_resched               <- RET0
8460  *   might_resched              <- RET0
8461  *   preempt_schedule           <- preempt_schedule
8462  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8463  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8464  */
8465 
8466 enum {
8467 	preempt_dynamic_undefined = -1,
8468 	preempt_dynamic_none,
8469 	preempt_dynamic_voluntary,
8470 	preempt_dynamic_full,
8471 };
8472 
8473 int preempt_dynamic_mode = preempt_dynamic_undefined;
8474 
8475 int sched_dynamic_mode(const char *str)
8476 {
8477 	if (!strcmp(str, "none"))
8478 		return preempt_dynamic_none;
8479 
8480 	if (!strcmp(str, "voluntary"))
8481 		return preempt_dynamic_voluntary;
8482 
8483 	if (!strcmp(str, "full"))
8484 		return preempt_dynamic_full;
8485 
8486 	return -EINVAL;
8487 }
8488 
8489 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8490 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8491 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8492 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8493 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8494 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8495 #else
8496 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8497 #endif
8498 
8499 void sched_dynamic_update(int mode)
8500 {
8501 	/*
8502 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8503 	 * the ZERO state, which is invalid.
8504 	 */
8505 	preempt_dynamic_enable(cond_resched);
8506 	preempt_dynamic_enable(might_resched);
8507 	preempt_dynamic_enable(preempt_schedule);
8508 	preempt_dynamic_enable(preempt_schedule_notrace);
8509 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8510 
8511 	switch (mode) {
8512 	case preempt_dynamic_none:
8513 		preempt_dynamic_enable(cond_resched);
8514 		preempt_dynamic_disable(might_resched);
8515 		preempt_dynamic_disable(preempt_schedule);
8516 		preempt_dynamic_disable(preempt_schedule_notrace);
8517 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8518 		pr_info("Dynamic Preempt: none\n");
8519 		break;
8520 
8521 	case preempt_dynamic_voluntary:
8522 		preempt_dynamic_enable(cond_resched);
8523 		preempt_dynamic_enable(might_resched);
8524 		preempt_dynamic_disable(preempt_schedule);
8525 		preempt_dynamic_disable(preempt_schedule_notrace);
8526 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8527 		pr_info("Dynamic Preempt: voluntary\n");
8528 		break;
8529 
8530 	case preempt_dynamic_full:
8531 		preempt_dynamic_disable(cond_resched);
8532 		preempt_dynamic_disable(might_resched);
8533 		preempt_dynamic_enable(preempt_schedule);
8534 		preempt_dynamic_enable(preempt_schedule_notrace);
8535 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8536 		pr_info("Dynamic Preempt: full\n");
8537 		break;
8538 	}
8539 
8540 	preempt_dynamic_mode = mode;
8541 }
8542 
8543 static int __init setup_preempt_mode(char *str)
8544 {
8545 	int mode = sched_dynamic_mode(str);
8546 	if (mode < 0) {
8547 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8548 		return 0;
8549 	}
8550 
8551 	sched_dynamic_update(mode);
8552 	return 1;
8553 }
8554 __setup("preempt=", setup_preempt_mode);
8555 
8556 static void __init preempt_dynamic_init(void)
8557 {
8558 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8559 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8560 			sched_dynamic_update(preempt_dynamic_none);
8561 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8562 			sched_dynamic_update(preempt_dynamic_voluntary);
8563 		} else {
8564 			/* Default static call setting, nothing to do */
8565 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8566 			preempt_dynamic_mode = preempt_dynamic_full;
8567 			pr_info("Dynamic Preempt: full\n");
8568 		}
8569 	}
8570 }
8571 
8572 #define PREEMPT_MODEL_ACCESSOR(mode) \
8573 	bool preempt_model_##mode(void)						 \
8574 	{									 \
8575 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8576 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8577 	}									 \
8578 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8579 
8580 PREEMPT_MODEL_ACCESSOR(none);
8581 PREEMPT_MODEL_ACCESSOR(voluntary);
8582 PREEMPT_MODEL_ACCESSOR(full);
8583 
8584 #else /* !CONFIG_PREEMPT_DYNAMIC */
8585 
8586 static inline void preempt_dynamic_init(void) { }
8587 
8588 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8589 
8590 /**
8591  * yield - yield the current processor to other threads.
8592  *
8593  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8594  *
8595  * The scheduler is at all times free to pick the calling task as the most
8596  * eligible task to run, if removing the yield() call from your code breaks
8597  * it, it's already broken.
8598  *
8599  * Typical broken usage is:
8600  *
8601  * while (!event)
8602  *	yield();
8603  *
8604  * where one assumes that yield() will let 'the other' process run that will
8605  * make event true. If the current task is a SCHED_FIFO task that will never
8606  * happen. Never use yield() as a progress guarantee!!
8607  *
8608  * If you want to use yield() to wait for something, use wait_event().
8609  * If you want to use yield() to be 'nice' for others, use cond_resched().
8610  * If you still want to use yield(), do not!
8611  */
8612 void __sched yield(void)
8613 {
8614 	set_current_state(TASK_RUNNING);
8615 	do_sched_yield();
8616 }
8617 EXPORT_SYMBOL(yield);
8618 
8619 /**
8620  * yield_to - yield the current processor to another thread in
8621  * your thread group, or accelerate that thread toward the
8622  * processor it's on.
8623  * @p: target task
8624  * @preempt: whether task preemption is allowed or not
8625  *
8626  * It's the caller's job to ensure that the target task struct
8627  * can't go away on us before we can do any checks.
8628  *
8629  * Return:
8630  *	true (>0) if we indeed boosted the target task.
8631  *	false (0) if we failed to boost the target.
8632  *	-ESRCH if there's no task to yield to.
8633  */
8634 int __sched yield_to(struct task_struct *p, bool preempt)
8635 {
8636 	struct task_struct *curr = current;
8637 	struct rq *rq, *p_rq;
8638 	unsigned long flags;
8639 	int yielded = 0;
8640 
8641 	local_irq_save(flags);
8642 	rq = this_rq();
8643 
8644 again:
8645 	p_rq = task_rq(p);
8646 	/*
8647 	 * If we're the only runnable task on the rq and target rq also
8648 	 * has only one task, there's absolutely no point in yielding.
8649 	 */
8650 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8651 		yielded = -ESRCH;
8652 		goto out_irq;
8653 	}
8654 
8655 	double_rq_lock(rq, p_rq);
8656 	if (task_rq(p) != p_rq) {
8657 		double_rq_unlock(rq, p_rq);
8658 		goto again;
8659 	}
8660 
8661 	if (!curr->sched_class->yield_to_task)
8662 		goto out_unlock;
8663 
8664 	if (curr->sched_class != p->sched_class)
8665 		goto out_unlock;
8666 
8667 	if (task_running(p_rq, p) || !task_is_running(p))
8668 		goto out_unlock;
8669 
8670 	yielded = curr->sched_class->yield_to_task(rq, p);
8671 	if (yielded) {
8672 		schedstat_inc(rq->yld_count);
8673 		/*
8674 		 * Make p's CPU reschedule; pick_next_entity takes care of
8675 		 * fairness.
8676 		 */
8677 		if (preempt && rq != p_rq)
8678 			resched_curr(p_rq);
8679 	}
8680 
8681 out_unlock:
8682 	double_rq_unlock(rq, p_rq);
8683 out_irq:
8684 	local_irq_restore(flags);
8685 
8686 	if (yielded > 0)
8687 		schedule();
8688 
8689 	return yielded;
8690 }
8691 EXPORT_SYMBOL_GPL(yield_to);
8692 
8693 int io_schedule_prepare(void)
8694 {
8695 	int old_iowait = current->in_iowait;
8696 
8697 	current->in_iowait = 1;
8698 	blk_flush_plug(current->plug, true);
8699 	return old_iowait;
8700 }
8701 
8702 void io_schedule_finish(int token)
8703 {
8704 	current->in_iowait = token;
8705 }
8706 
8707 /*
8708  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8709  * that process accounting knows that this is a task in IO wait state.
8710  */
8711 long __sched io_schedule_timeout(long timeout)
8712 {
8713 	int token;
8714 	long ret;
8715 
8716 	token = io_schedule_prepare();
8717 	ret = schedule_timeout(timeout);
8718 	io_schedule_finish(token);
8719 
8720 	return ret;
8721 }
8722 EXPORT_SYMBOL(io_schedule_timeout);
8723 
8724 void __sched io_schedule(void)
8725 {
8726 	int token;
8727 
8728 	token = io_schedule_prepare();
8729 	schedule();
8730 	io_schedule_finish(token);
8731 }
8732 EXPORT_SYMBOL(io_schedule);
8733 
8734 /**
8735  * sys_sched_get_priority_max - return maximum RT priority.
8736  * @policy: scheduling class.
8737  *
8738  * Return: On success, this syscall returns the maximum
8739  * rt_priority that can be used by a given scheduling class.
8740  * On failure, a negative error code is returned.
8741  */
8742 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8743 {
8744 	int ret = -EINVAL;
8745 
8746 	switch (policy) {
8747 	case SCHED_FIFO:
8748 	case SCHED_RR:
8749 		ret = MAX_RT_PRIO-1;
8750 		break;
8751 	case SCHED_DEADLINE:
8752 	case SCHED_NORMAL:
8753 	case SCHED_BATCH:
8754 	case SCHED_IDLE:
8755 		ret = 0;
8756 		break;
8757 	}
8758 	return ret;
8759 }
8760 
8761 /**
8762  * sys_sched_get_priority_min - return minimum RT priority.
8763  * @policy: scheduling class.
8764  *
8765  * Return: On success, this syscall returns the minimum
8766  * rt_priority that can be used by a given scheduling class.
8767  * On failure, a negative error code is returned.
8768  */
8769 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8770 {
8771 	int ret = -EINVAL;
8772 
8773 	switch (policy) {
8774 	case SCHED_FIFO:
8775 	case SCHED_RR:
8776 		ret = 1;
8777 		break;
8778 	case SCHED_DEADLINE:
8779 	case SCHED_NORMAL:
8780 	case SCHED_BATCH:
8781 	case SCHED_IDLE:
8782 		ret = 0;
8783 	}
8784 	return ret;
8785 }
8786 
8787 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8788 {
8789 	struct task_struct *p;
8790 	unsigned int time_slice;
8791 	struct rq_flags rf;
8792 	struct rq *rq;
8793 	int retval;
8794 
8795 	if (pid < 0)
8796 		return -EINVAL;
8797 
8798 	retval = -ESRCH;
8799 	rcu_read_lock();
8800 	p = find_process_by_pid(pid);
8801 	if (!p)
8802 		goto out_unlock;
8803 
8804 	retval = security_task_getscheduler(p);
8805 	if (retval)
8806 		goto out_unlock;
8807 
8808 	rq = task_rq_lock(p, &rf);
8809 	time_slice = 0;
8810 	if (p->sched_class->get_rr_interval)
8811 		time_slice = p->sched_class->get_rr_interval(rq, p);
8812 	task_rq_unlock(rq, p, &rf);
8813 
8814 	rcu_read_unlock();
8815 	jiffies_to_timespec64(time_slice, t);
8816 	return 0;
8817 
8818 out_unlock:
8819 	rcu_read_unlock();
8820 	return retval;
8821 }
8822 
8823 /**
8824  * sys_sched_rr_get_interval - return the default timeslice of a process.
8825  * @pid: pid of the process.
8826  * @interval: userspace pointer to the timeslice value.
8827  *
8828  * this syscall writes the default timeslice value of a given process
8829  * into the user-space timespec buffer. A value of '0' means infinity.
8830  *
8831  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8832  * an error code.
8833  */
8834 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8835 		struct __kernel_timespec __user *, interval)
8836 {
8837 	struct timespec64 t;
8838 	int retval = sched_rr_get_interval(pid, &t);
8839 
8840 	if (retval == 0)
8841 		retval = put_timespec64(&t, interval);
8842 
8843 	return retval;
8844 }
8845 
8846 #ifdef CONFIG_COMPAT_32BIT_TIME
8847 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8848 		struct old_timespec32 __user *, interval)
8849 {
8850 	struct timespec64 t;
8851 	int retval = sched_rr_get_interval(pid, &t);
8852 
8853 	if (retval == 0)
8854 		retval = put_old_timespec32(&t, interval);
8855 	return retval;
8856 }
8857 #endif
8858 
8859 void sched_show_task(struct task_struct *p)
8860 {
8861 	unsigned long free = 0;
8862 	int ppid;
8863 
8864 	if (!try_get_task_stack(p))
8865 		return;
8866 
8867 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8868 
8869 	if (task_is_running(p))
8870 		pr_cont("  running task    ");
8871 #ifdef CONFIG_DEBUG_STACK_USAGE
8872 	free = stack_not_used(p);
8873 #endif
8874 	ppid = 0;
8875 	rcu_read_lock();
8876 	if (pid_alive(p))
8877 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8878 	rcu_read_unlock();
8879 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8880 		free, task_pid_nr(p), ppid,
8881 		read_task_thread_flags(p));
8882 
8883 	print_worker_info(KERN_INFO, p);
8884 	print_stop_info(KERN_INFO, p);
8885 	show_stack(p, NULL, KERN_INFO);
8886 	put_task_stack(p);
8887 }
8888 EXPORT_SYMBOL_GPL(sched_show_task);
8889 
8890 static inline bool
8891 state_filter_match(unsigned long state_filter, struct task_struct *p)
8892 {
8893 	unsigned int state = READ_ONCE(p->__state);
8894 
8895 	/* no filter, everything matches */
8896 	if (!state_filter)
8897 		return true;
8898 
8899 	/* filter, but doesn't match */
8900 	if (!(state & state_filter))
8901 		return false;
8902 
8903 	/*
8904 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8905 	 * TASK_KILLABLE).
8906 	 */
8907 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8908 		return false;
8909 
8910 	return true;
8911 }
8912 
8913 
8914 void show_state_filter(unsigned int state_filter)
8915 {
8916 	struct task_struct *g, *p;
8917 
8918 	rcu_read_lock();
8919 	for_each_process_thread(g, p) {
8920 		/*
8921 		 * reset the NMI-timeout, listing all files on a slow
8922 		 * console might take a lot of time:
8923 		 * Also, reset softlockup watchdogs on all CPUs, because
8924 		 * another CPU might be blocked waiting for us to process
8925 		 * an IPI.
8926 		 */
8927 		touch_nmi_watchdog();
8928 		touch_all_softlockup_watchdogs();
8929 		if (state_filter_match(state_filter, p))
8930 			sched_show_task(p);
8931 	}
8932 
8933 #ifdef CONFIG_SCHED_DEBUG
8934 	if (!state_filter)
8935 		sysrq_sched_debug_show();
8936 #endif
8937 	rcu_read_unlock();
8938 	/*
8939 	 * Only show locks if all tasks are dumped:
8940 	 */
8941 	if (!state_filter)
8942 		debug_show_all_locks();
8943 }
8944 
8945 /**
8946  * init_idle - set up an idle thread for a given CPU
8947  * @idle: task in question
8948  * @cpu: CPU the idle task belongs to
8949  *
8950  * NOTE: this function does not set the idle thread's NEED_RESCHED
8951  * flag, to make booting more robust.
8952  */
8953 void __init init_idle(struct task_struct *idle, int cpu)
8954 {
8955 	struct rq *rq = cpu_rq(cpu);
8956 	unsigned long flags;
8957 
8958 	__sched_fork(0, idle);
8959 
8960 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8961 	raw_spin_rq_lock(rq);
8962 
8963 	idle->__state = TASK_RUNNING;
8964 	idle->se.exec_start = sched_clock();
8965 	/*
8966 	 * PF_KTHREAD should already be set at this point; regardless, make it
8967 	 * look like a proper per-CPU kthread.
8968 	 */
8969 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8970 	kthread_set_per_cpu(idle, cpu);
8971 
8972 #ifdef CONFIG_SMP
8973 	/*
8974 	 * It's possible that init_idle() gets called multiple times on a task,
8975 	 * in that case do_set_cpus_allowed() will not do the right thing.
8976 	 *
8977 	 * And since this is boot we can forgo the serialization.
8978 	 */
8979 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8980 #endif
8981 	/*
8982 	 * We're having a chicken and egg problem, even though we are
8983 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8984 	 * lockdep check in task_group() will fail.
8985 	 *
8986 	 * Similar case to sched_fork(). / Alternatively we could
8987 	 * use task_rq_lock() here and obtain the other rq->lock.
8988 	 *
8989 	 * Silence PROVE_RCU
8990 	 */
8991 	rcu_read_lock();
8992 	__set_task_cpu(idle, cpu);
8993 	rcu_read_unlock();
8994 
8995 	rq->idle = idle;
8996 	rcu_assign_pointer(rq->curr, idle);
8997 	idle->on_rq = TASK_ON_RQ_QUEUED;
8998 #ifdef CONFIG_SMP
8999 	idle->on_cpu = 1;
9000 #endif
9001 	raw_spin_rq_unlock(rq);
9002 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9003 
9004 	/* Set the preempt count _outside_ the spinlocks! */
9005 	init_idle_preempt_count(idle, cpu);
9006 
9007 	/*
9008 	 * The idle tasks have their own, simple scheduling class:
9009 	 */
9010 	idle->sched_class = &idle_sched_class;
9011 	ftrace_graph_init_idle_task(idle, cpu);
9012 	vtime_init_idle(idle, cpu);
9013 #ifdef CONFIG_SMP
9014 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9015 #endif
9016 }
9017 
9018 #ifdef CONFIG_SMP
9019 
9020 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9021 			      const struct cpumask *trial)
9022 {
9023 	int ret = 1;
9024 
9025 	if (cpumask_empty(cur))
9026 		return ret;
9027 
9028 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9029 
9030 	return ret;
9031 }
9032 
9033 int task_can_attach(struct task_struct *p,
9034 		    const struct cpumask *cs_effective_cpus)
9035 {
9036 	int ret = 0;
9037 
9038 	/*
9039 	 * Kthreads which disallow setaffinity shouldn't be moved
9040 	 * to a new cpuset; we don't want to change their CPU
9041 	 * affinity and isolating such threads by their set of
9042 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9043 	 * applicable for such threads.  This prevents checking for
9044 	 * success of set_cpus_allowed_ptr() on all attached tasks
9045 	 * before cpus_mask may be changed.
9046 	 */
9047 	if (p->flags & PF_NO_SETAFFINITY) {
9048 		ret = -EINVAL;
9049 		goto out;
9050 	}
9051 
9052 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9053 					      cs_effective_cpus)) {
9054 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9055 
9056 		if (unlikely(cpu >= nr_cpu_ids))
9057 			return -EINVAL;
9058 		ret = dl_cpu_busy(cpu, p);
9059 	}
9060 
9061 out:
9062 	return ret;
9063 }
9064 
9065 bool sched_smp_initialized __read_mostly;
9066 
9067 #ifdef CONFIG_NUMA_BALANCING
9068 /* Migrate current task p to target_cpu */
9069 int migrate_task_to(struct task_struct *p, int target_cpu)
9070 {
9071 	struct migration_arg arg = { p, target_cpu };
9072 	int curr_cpu = task_cpu(p);
9073 
9074 	if (curr_cpu == target_cpu)
9075 		return 0;
9076 
9077 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9078 		return -EINVAL;
9079 
9080 	/* TODO: This is not properly updating schedstats */
9081 
9082 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9083 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9084 }
9085 
9086 /*
9087  * Requeue a task on a given node and accurately track the number of NUMA
9088  * tasks on the runqueues
9089  */
9090 void sched_setnuma(struct task_struct *p, int nid)
9091 {
9092 	bool queued, running;
9093 	struct rq_flags rf;
9094 	struct rq *rq;
9095 
9096 	rq = task_rq_lock(p, &rf);
9097 	queued = task_on_rq_queued(p);
9098 	running = task_current(rq, p);
9099 
9100 	if (queued)
9101 		dequeue_task(rq, p, DEQUEUE_SAVE);
9102 	if (running)
9103 		put_prev_task(rq, p);
9104 
9105 	p->numa_preferred_nid = nid;
9106 
9107 	if (queued)
9108 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9109 	if (running)
9110 		set_next_task(rq, p);
9111 	task_rq_unlock(rq, p, &rf);
9112 }
9113 #endif /* CONFIG_NUMA_BALANCING */
9114 
9115 #ifdef CONFIG_HOTPLUG_CPU
9116 /*
9117  * Ensure that the idle task is using init_mm right before its CPU goes
9118  * offline.
9119  */
9120 void idle_task_exit(void)
9121 {
9122 	struct mm_struct *mm = current->active_mm;
9123 
9124 	BUG_ON(cpu_online(smp_processor_id()));
9125 	BUG_ON(current != this_rq()->idle);
9126 
9127 	if (mm != &init_mm) {
9128 		switch_mm(mm, &init_mm, current);
9129 		finish_arch_post_lock_switch();
9130 	}
9131 
9132 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9133 }
9134 
9135 static int __balance_push_cpu_stop(void *arg)
9136 {
9137 	struct task_struct *p = arg;
9138 	struct rq *rq = this_rq();
9139 	struct rq_flags rf;
9140 	int cpu;
9141 
9142 	raw_spin_lock_irq(&p->pi_lock);
9143 	rq_lock(rq, &rf);
9144 
9145 	update_rq_clock(rq);
9146 
9147 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9148 		cpu = select_fallback_rq(rq->cpu, p);
9149 		rq = __migrate_task(rq, &rf, p, cpu);
9150 	}
9151 
9152 	rq_unlock(rq, &rf);
9153 	raw_spin_unlock_irq(&p->pi_lock);
9154 
9155 	put_task_struct(p);
9156 
9157 	return 0;
9158 }
9159 
9160 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9161 
9162 /*
9163  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9164  *
9165  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9166  * effective when the hotplug motion is down.
9167  */
9168 static void balance_push(struct rq *rq)
9169 {
9170 	struct task_struct *push_task = rq->curr;
9171 
9172 	lockdep_assert_rq_held(rq);
9173 
9174 	/*
9175 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9176 	 */
9177 	rq->balance_callback = &balance_push_callback;
9178 
9179 	/*
9180 	 * Only active while going offline and when invoked on the outgoing
9181 	 * CPU.
9182 	 */
9183 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9184 		return;
9185 
9186 	/*
9187 	 * Both the cpu-hotplug and stop task are in this case and are
9188 	 * required to complete the hotplug process.
9189 	 */
9190 	if (kthread_is_per_cpu(push_task) ||
9191 	    is_migration_disabled(push_task)) {
9192 
9193 		/*
9194 		 * If this is the idle task on the outgoing CPU try to wake
9195 		 * up the hotplug control thread which might wait for the
9196 		 * last task to vanish. The rcuwait_active() check is
9197 		 * accurate here because the waiter is pinned on this CPU
9198 		 * and can't obviously be running in parallel.
9199 		 *
9200 		 * On RT kernels this also has to check whether there are
9201 		 * pinned and scheduled out tasks on the runqueue. They
9202 		 * need to leave the migrate disabled section first.
9203 		 */
9204 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9205 		    rcuwait_active(&rq->hotplug_wait)) {
9206 			raw_spin_rq_unlock(rq);
9207 			rcuwait_wake_up(&rq->hotplug_wait);
9208 			raw_spin_rq_lock(rq);
9209 		}
9210 		return;
9211 	}
9212 
9213 	get_task_struct(push_task);
9214 	/*
9215 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9216 	 * Both preemption and IRQs are still disabled.
9217 	 */
9218 	raw_spin_rq_unlock(rq);
9219 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9220 			    this_cpu_ptr(&push_work));
9221 	/*
9222 	 * At this point need_resched() is true and we'll take the loop in
9223 	 * schedule(). The next pick is obviously going to be the stop task
9224 	 * which kthread_is_per_cpu() and will push this task away.
9225 	 */
9226 	raw_spin_rq_lock(rq);
9227 }
9228 
9229 static void balance_push_set(int cpu, bool on)
9230 {
9231 	struct rq *rq = cpu_rq(cpu);
9232 	struct rq_flags rf;
9233 
9234 	rq_lock_irqsave(rq, &rf);
9235 	if (on) {
9236 		WARN_ON_ONCE(rq->balance_callback);
9237 		rq->balance_callback = &balance_push_callback;
9238 	} else if (rq->balance_callback == &balance_push_callback) {
9239 		rq->balance_callback = NULL;
9240 	}
9241 	rq_unlock_irqrestore(rq, &rf);
9242 }
9243 
9244 /*
9245  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9246  * inactive. All tasks which are not per CPU kernel threads are either
9247  * pushed off this CPU now via balance_push() or placed on a different CPU
9248  * during wakeup. Wait until the CPU is quiescent.
9249  */
9250 static void balance_hotplug_wait(void)
9251 {
9252 	struct rq *rq = this_rq();
9253 
9254 	rcuwait_wait_event(&rq->hotplug_wait,
9255 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9256 			   TASK_UNINTERRUPTIBLE);
9257 }
9258 
9259 #else
9260 
9261 static inline void balance_push(struct rq *rq)
9262 {
9263 }
9264 
9265 static inline void balance_push_set(int cpu, bool on)
9266 {
9267 }
9268 
9269 static inline void balance_hotplug_wait(void)
9270 {
9271 }
9272 
9273 #endif /* CONFIG_HOTPLUG_CPU */
9274 
9275 void set_rq_online(struct rq *rq)
9276 {
9277 	if (!rq->online) {
9278 		const struct sched_class *class;
9279 
9280 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9281 		rq->online = 1;
9282 
9283 		for_each_class(class) {
9284 			if (class->rq_online)
9285 				class->rq_online(rq);
9286 		}
9287 	}
9288 }
9289 
9290 void set_rq_offline(struct rq *rq)
9291 {
9292 	if (rq->online) {
9293 		const struct sched_class *class;
9294 
9295 		for_each_class(class) {
9296 			if (class->rq_offline)
9297 				class->rq_offline(rq);
9298 		}
9299 
9300 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9301 		rq->online = 0;
9302 	}
9303 }
9304 
9305 /*
9306  * used to mark begin/end of suspend/resume:
9307  */
9308 static int num_cpus_frozen;
9309 
9310 /*
9311  * Update cpusets according to cpu_active mask.  If cpusets are
9312  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9313  * around partition_sched_domains().
9314  *
9315  * If we come here as part of a suspend/resume, don't touch cpusets because we
9316  * want to restore it back to its original state upon resume anyway.
9317  */
9318 static void cpuset_cpu_active(void)
9319 {
9320 	if (cpuhp_tasks_frozen) {
9321 		/*
9322 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9323 		 * resume sequence. As long as this is not the last online
9324 		 * operation in the resume sequence, just build a single sched
9325 		 * domain, ignoring cpusets.
9326 		 */
9327 		partition_sched_domains(1, NULL, NULL);
9328 		if (--num_cpus_frozen)
9329 			return;
9330 		/*
9331 		 * This is the last CPU online operation. So fall through and
9332 		 * restore the original sched domains by considering the
9333 		 * cpuset configurations.
9334 		 */
9335 		cpuset_force_rebuild();
9336 	}
9337 	cpuset_update_active_cpus();
9338 }
9339 
9340 static int cpuset_cpu_inactive(unsigned int cpu)
9341 {
9342 	if (!cpuhp_tasks_frozen) {
9343 		int ret = dl_cpu_busy(cpu, NULL);
9344 
9345 		if (ret)
9346 			return ret;
9347 		cpuset_update_active_cpus();
9348 	} else {
9349 		num_cpus_frozen++;
9350 		partition_sched_domains(1, NULL, NULL);
9351 	}
9352 	return 0;
9353 }
9354 
9355 int sched_cpu_activate(unsigned int cpu)
9356 {
9357 	struct rq *rq = cpu_rq(cpu);
9358 	struct rq_flags rf;
9359 
9360 	/*
9361 	 * Clear the balance_push callback and prepare to schedule
9362 	 * regular tasks.
9363 	 */
9364 	balance_push_set(cpu, false);
9365 
9366 #ifdef CONFIG_SCHED_SMT
9367 	/*
9368 	 * When going up, increment the number of cores with SMT present.
9369 	 */
9370 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9371 		static_branch_inc_cpuslocked(&sched_smt_present);
9372 #endif
9373 	set_cpu_active(cpu, true);
9374 
9375 	if (sched_smp_initialized) {
9376 		sched_update_numa(cpu, true);
9377 		sched_domains_numa_masks_set(cpu);
9378 		cpuset_cpu_active();
9379 	}
9380 
9381 	/*
9382 	 * Put the rq online, if not already. This happens:
9383 	 *
9384 	 * 1) In the early boot process, because we build the real domains
9385 	 *    after all CPUs have been brought up.
9386 	 *
9387 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9388 	 *    domains.
9389 	 */
9390 	rq_lock_irqsave(rq, &rf);
9391 	if (rq->rd) {
9392 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9393 		set_rq_online(rq);
9394 	}
9395 	rq_unlock_irqrestore(rq, &rf);
9396 
9397 	return 0;
9398 }
9399 
9400 int sched_cpu_deactivate(unsigned int cpu)
9401 {
9402 	struct rq *rq = cpu_rq(cpu);
9403 	struct rq_flags rf;
9404 	int ret;
9405 
9406 	/*
9407 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9408 	 * load balancing when not active
9409 	 */
9410 	nohz_balance_exit_idle(rq);
9411 
9412 	set_cpu_active(cpu, false);
9413 
9414 	/*
9415 	 * From this point forward, this CPU will refuse to run any task that
9416 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9417 	 * push those tasks away until this gets cleared, see
9418 	 * sched_cpu_dying().
9419 	 */
9420 	balance_push_set(cpu, true);
9421 
9422 	/*
9423 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9424 	 * preempt-disabled and RCU users of this state to go away such that
9425 	 * all new such users will observe it.
9426 	 *
9427 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9428 	 * ttwu_queue_cond() and is_cpu_allowed().
9429 	 *
9430 	 * Do sync before park smpboot threads to take care the rcu boost case.
9431 	 */
9432 	synchronize_rcu();
9433 
9434 	rq_lock_irqsave(rq, &rf);
9435 	if (rq->rd) {
9436 		update_rq_clock(rq);
9437 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9438 		set_rq_offline(rq);
9439 	}
9440 	rq_unlock_irqrestore(rq, &rf);
9441 
9442 #ifdef CONFIG_SCHED_SMT
9443 	/*
9444 	 * When going down, decrement the number of cores with SMT present.
9445 	 */
9446 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9447 		static_branch_dec_cpuslocked(&sched_smt_present);
9448 
9449 	sched_core_cpu_deactivate(cpu);
9450 #endif
9451 
9452 	if (!sched_smp_initialized)
9453 		return 0;
9454 
9455 	sched_update_numa(cpu, false);
9456 	ret = cpuset_cpu_inactive(cpu);
9457 	if (ret) {
9458 		balance_push_set(cpu, false);
9459 		set_cpu_active(cpu, true);
9460 		sched_update_numa(cpu, true);
9461 		return ret;
9462 	}
9463 	sched_domains_numa_masks_clear(cpu);
9464 	return 0;
9465 }
9466 
9467 static void sched_rq_cpu_starting(unsigned int cpu)
9468 {
9469 	struct rq *rq = cpu_rq(cpu);
9470 
9471 	rq->calc_load_update = calc_load_update;
9472 	update_max_interval();
9473 }
9474 
9475 int sched_cpu_starting(unsigned int cpu)
9476 {
9477 	sched_core_cpu_starting(cpu);
9478 	sched_rq_cpu_starting(cpu);
9479 	sched_tick_start(cpu);
9480 	return 0;
9481 }
9482 
9483 #ifdef CONFIG_HOTPLUG_CPU
9484 
9485 /*
9486  * Invoked immediately before the stopper thread is invoked to bring the
9487  * CPU down completely. At this point all per CPU kthreads except the
9488  * hotplug thread (current) and the stopper thread (inactive) have been
9489  * either parked or have been unbound from the outgoing CPU. Ensure that
9490  * any of those which might be on the way out are gone.
9491  *
9492  * If after this point a bound task is being woken on this CPU then the
9493  * responsible hotplug callback has failed to do it's job.
9494  * sched_cpu_dying() will catch it with the appropriate fireworks.
9495  */
9496 int sched_cpu_wait_empty(unsigned int cpu)
9497 {
9498 	balance_hotplug_wait();
9499 	return 0;
9500 }
9501 
9502 /*
9503  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9504  * might have. Called from the CPU stopper task after ensuring that the
9505  * stopper is the last running task on the CPU, so nr_active count is
9506  * stable. We need to take the teardown thread which is calling this into
9507  * account, so we hand in adjust = 1 to the load calculation.
9508  *
9509  * Also see the comment "Global load-average calculations".
9510  */
9511 static void calc_load_migrate(struct rq *rq)
9512 {
9513 	long delta = calc_load_fold_active(rq, 1);
9514 
9515 	if (delta)
9516 		atomic_long_add(delta, &calc_load_tasks);
9517 }
9518 
9519 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9520 {
9521 	struct task_struct *g, *p;
9522 	int cpu = cpu_of(rq);
9523 
9524 	lockdep_assert_rq_held(rq);
9525 
9526 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9527 	for_each_process_thread(g, p) {
9528 		if (task_cpu(p) != cpu)
9529 			continue;
9530 
9531 		if (!task_on_rq_queued(p))
9532 			continue;
9533 
9534 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9535 	}
9536 }
9537 
9538 int sched_cpu_dying(unsigned int cpu)
9539 {
9540 	struct rq *rq = cpu_rq(cpu);
9541 	struct rq_flags rf;
9542 
9543 	/* Handle pending wakeups and then migrate everything off */
9544 	sched_tick_stop(cpu);
9545 
9546 	rq_lock_irqsave(rq, &rf);
9547 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9548 		WARN(true, "Dying CPU not properly vacated!");
9549 		dump_rq_tasks(rq, KERN_WARNING);
9550 	}
9551 	rq_unlock_irqrestore(rq, &rf);
9552 
9553 	calc_load_migrate(rq);
9554 	update_max_interval();
9555 	hrtick_clear(rq);
9556 	sched_core_cpu_dying(cpu);
9557 	return 0;
9558 }
9559 #endif
9560 
9561 void __init sched_init_smp(void)
9562 {
9563 	sched_init_numa(NUMA_NO_NODE);
9564 
9565 	/*
9566 	 * There's no userspace yet to cause hotplug operations; hence all the
9567 	 * CPU masks are stable and all blatant races in the below code cannot
9568 	 * happen.
9569 	 */
9570 	mutex_lock(&sched_domains_mutex);
9571 	sched_init_domains(cpu_active_mask);
9572 	mutex_unlock(&sched_domains_mutex);
9573 
9574 	/* Move init over to a non-isolated CPU */
9575 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9576 		BUG();
9577 	current->flags &= ~PF_NO_SETAFFINITY;
9578 	sched_init_granularity();
9579 
9580 	init_sched_rt_class();
9581 	init_sched_dl_class();
9582 
9583 	sched_smp_initialized = true;
9584 }
9585 
9586 static int __init migration_init(void)
9587 {
9588 	sched_cpu_starting(smp_processor_id());
9589 	return 0;
9590 }
9591 early_initcall(migration_init);
9592 
9593 #else
9594 void __init sched_init_smp(void)
9595 {
9596 	sched_init_granularity();
9597 }
9598 #endif /* CONFIG_SMP */
9599 
9600 int in_sched_functions(unsigned long addr)
9601 {
9602 	return in_lock_functions(addr) ||
9603 		(addr >= (unsigned long)__sched_text_start
9604 		&& addr < (unsigned long)__sched_text_end);
9605 }
9606 
9607 #ifdef CONFIG_CGROUP_SCHED
9608 /*
9609  * Default task group.
9610  * Every task in system belongs to this group at bootup.
9611  */
9612 struct task_group root_task_group;
9613 LIST_HEAD(task_groups);
9614 
9615 /* Cacheline aligned slab cache for task_group */
9616 static struct kmem_cache *task_group_cache __read_mostly;
9617 #endif
9618 
9619 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9620 DECLARE_PER_CPU(cpumask_var_t, select_rq_mask);
9621 
9622 void __init sched_init(void)
9623 {
9624 	unsigned long ptr = 0;
9625 	int i;
9626 
9627 	/* Make sure the linker didn't screw up */
9628 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9629 	       &fair_sched_class != &rt_sched_class + 1 ||
9630 	       &rt_sched_class   != &dl_sched_class + 1);
9631 #ifdef CONFIG_SMP
9632 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9633 #endif
9634 
9635 	wait_bit_init();
9636 
9637 #ifdef CONFIG_FAIR_GROUP_SCHED
9638 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9639 #endif
9640 #ifdef CONFIG_RT_GROUP_SCHED
9641 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9642 #endif
9643 	if (ptr) {
9644 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9645 
9646 #ifdef CONFIG_FAIR_GROUP_SCHED
9647 		root_task_group.se = (struct sched_entity **)ptr;
9648 		ptr += nr_cpu_ids * sizeof(void **);
9649 
9650 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9651 		ptr += nr_cpu_ids * sizeof(void **);
9652 
9653 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9654 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9655 #endif /* CONFIG_FAIR_GROUP_SCHED */
9656 #ifdef CONFIG_RT_GROUP_SCHED
9657 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9658 		ptr += nr_cpu_ids * sizeof(void **);
9659 
9660 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9661 		ptr += nr_cpu_ids * sizeof(void **);
9662 
9663 #endif /* CONFIG_RT_GROUP_SCHED */
9664 	}
9665 #ifdef CONFIG_CPUMASK_OFFSTACK
9666 	for_each_possible_cpu(i) {
9667 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9668 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9669 		per_cpu(select_rq_mask, i) = (cpumask_var_t)kzalloc_node(
9670 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9671 	}
9672 #endif /* CONFIG_CPUMASK_OFFSTACK */
9673 
9674 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9675 
9676 #ifdef CONFIG_SMP
9677 	init_defrootdomain();
9678 #endif
9679 
9680 #ifdef CONFIG_RT_GROUP_SCHED
9681 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9682 			global_rt_period(), global_rt_runtime());
9683 #endif /* CONFIG_RT_GROUP_SCHED */
9684 
9685 #ifdef CONFIG_CGROUP_SCHED
9686 	task_group_cache = KMEM_CACHE(task_group, 0);
9687 
9688 	list_add(&root_task_group.list, &task_groups);
9689 	INIT_LIST_HEAD(&root_task_group.children);
9690 	INIT_LIST_HEAD(&root_task_group.siblings);
9691 	autogroup_init(&init_task);
9692 #endif /* CONFIG_CGROUP_SCHED */
9693 
9694 	for_each_possible_cpu(i) {
9695 		struct rq *rq;
9696 
9697 		rq = cpu_rq(i);
9698 		raw_spin_lock_init(&rq->__lock);
9699 		rq->nr_running = 0;
9700 		rq->calc_load_active = 0;
9701 		rq->calc_load_update = jiffies + LOAD_FREQ;
9702 		init_cfs_rq(&rq->cfs);
9703 		init_rt_rq(&rq->rt);
9704 		init_dl_rq(&rq->dl);
9705 #ifdef CONFIG_FAIR_GROUP_SCHED
9706 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9707 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9708 		/*
9709 		 * How much CPU bandwidth does root_task_group get?
9710 		 *
9711 		 * In case of task-groups formed thr' the cgroup filesystem, it
9712 		 * gets 100% of the CPU resources in the system. This overall
9713 		 * system CPU resource is divided among the tasks of
9714 		 * root_task_group and its child task-groups in a fair manner,
9715 		 * based on each entity's (task or task-group's) weight
9716 		 * (se->load.weight).
9717 		 *
9718 		 * In other words, if root_task_group has 10 tasks of weight
9719 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9720 		 * then A0's share of the CPU resource is:
9721 		 *
9722 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9723 		 *
9724 		 * We achieve this by letting root_task_group's tasks sit
9725 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9726 		 */
9727 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9728 #endif /* CONFIG_FAIR_GROUP_SCHED */
9729 
9730 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9731 #ifdef CONFIG_RT_GROUP_SCHED
9732 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9733 #endif
9734 #ifdef CONFIG_SMP
9735 		rq->sd = NULL;
9736 		rq->rd = NULL;
9737 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9738 		rq->balance_callback = &balance_push_callback;
9739 		rq->active_balance = 0;
9740 		rq->next_balance = jiffies;
9741 		rq->push_cpu = 0;
9742 		rq->cpu = i;
9743 		rq->online = 0;
9744 		rq->idle_stamp = 0;
9745 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9746 		rq->wake_stamp = jiffies;
9747 		rq->wake_avg_idle = rq->avg_idle;
9748 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9749 
9750 		INIT_LIST_HEAD(&rq->cfs_tasks);
9751 
9752 		rq_attach_root(rq, &def_root_domain);
9753 #ifdef CONFIG_NO_HZ_COMMON
9754 		rq->last_blocked_load_update_tick = jiffies;
9755 		atomic_set(&rq->nohz_flags, 0);
9756 
9757 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9758 #endif
9759 #ifdef CONFIG_HOTPLUG_CPU
9760 		rcuwait_init(&rq->hotplug_wait);
9761 #endif
9762 #endif /* CONFIG_SMP */
9763 		hrtick_rq_init(rq);
9764 		atomic_set(&rq->nr_iowait, 0);
9765 
9766 #ifdef CONFIG_SCHED_CORE
9767 		rq->core = rq;
9768 		rq->core_pick = NULL;
9769 		rq->core_enabled = 0;
9770 		rq->core_tree = RB_ROOT;
9771 		rq->core_forceidle_count = 0;
9772 		rq->core_forceidle_occupation = 0;
9773 		rq->core_forceidle_start = 0;
9774 
9775 		rq->core_cookie = 0UL;
9776 #endif
9777 	}
9778 
9779 	set_load_weight(&init_task, false);
9780 
9781 	/*
9782 	 * The boot idle thread does lazy MMU switching as well:
9783 	 */
9784 	mmgrab(&init_mm);
9785 	enter_lazy_tlb(&init_mm, current);
9786 
9787 	/*
9788 	 * The idle task doesn't need the kthread struct to function, but it
9789 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9790 	 * if we want to avoid special-casing it in code that deals with per-CPU
9791 	 * kthreads.
9792 	 */
9793 	WARN_ON(!set_kthread_struct(current));
9794 
9795 	/*
9796 	 * Make us the idle thread. Technically, schedule() should not be
9797 	 * called from this thread, however somewhere below it might be,
9798 	 * but because we are the idle thread, we just pick up running again
9799 	 * when this runqueue becomes "idle".
9800 	 */
9801 	init_idle(current, smp_processor_id());
9802 
9803 	calc_load_update = jiffies + LOAD_FREQ;
9804 
9805 #ifdef CONFIG_SMP
9806 	idle_thread_set_boot_cpu();
9807 	balance_push_set(smp_processor_id(), false);
9808 #endif
9809 	init_sched_fair_class();
9810 
9811 	psi_init();
9812 
9813 	init_uclamp();
9814 
9815 	preempt_dynamic_init();
9816 
9817 	scheduler_running = 1;
9818 }
9819 
9820 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9821 
9822 void __might_sleep(const char *file, int line)
9823 {
9824 	unsigned int state = get_current_state();
9825 	/*
9826 	 * Blocking primitives will set (and therefore destroy) current->state,
9827 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9828 	 * otherwise we will destroy state.
9829 	 */
9830 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9831 			"do not call blocking ops when !TASK_RUNNING; "
9832 			"state=%x set at [<%p>] %pS\n", state,
9833 			(void *)current->task_state_change,
9834 			(void *)current->task_state_change);
9835 
9836 	__might_resched(file, line, 0);
9837 }
9838 EXPORT_SYMBOL(__might_sleep);
9839 
9840 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9841 {
9842 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9843 		return;
9844 
9845 	if (preempt_count() == preempt_offset)
9846 		return;
9847 
9848 	pr_err("Preemption disabled at:");
9849 	print_ip_sym(KERN_ERR, ip);
9850 }
9851 
9852 static inline bool resched_offsets_ok(unsigned int offsets)
9853 {
9854 	unsigned int nested = preempt_count();
9855 
9856 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9857 
9858 	return nested == offsets;
9859 }
9860 
9861 void __might_resched(const char *file, int line, unsigned int offsets)
9862 {
9863 	/* Ratelimiting timestamp: */
9864 	static unsigned long prev_jiffy;
9865 
9866 	unsigned long preempt_disable_ip;
9867 
9868 	/* WARN_ON_ONCE() by default, no rate limit required: */
9869 	rcu_sleep_check();
9870 
9871 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9872 	     !is_idle_task(current) && !current->non_block_count) ||
9873 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9874 	    oops_in_progress)
9875 		return;
9876 
9877 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9878 		return;
9879 	prev_jiffy = jiffies;
9880 
9881 	/* Save this before calling printk(), since that will clobber it: */
9882 	preempt_disable_ip = get_preempt_disable_ip(current);
9883 
9884 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9885 	       file, line);
9886 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9887 	       in_atomic(), irqs_disabled(), current->non_block_count,
9888 	       current->pid, current->comm);
9889 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9890 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9891 
9892 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9893 		pr_err("RCU nest depth: %d, expected: %u\n",
9894 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9895 	}
9896 
9897 	if (task_stack_end_corrupted(current))
9898 		pr_emerg("Thread overran stack, or stack corrupted\n");
9899 
9900 	debug_show_held_locks(current);
9901 	if (irqs_disabled())
9902 		print_irqtrace_events(current);
9903 
9904 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9905 				 preempt_disable_ip);
9906 
9907 	dump_stack();
9908 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9909 }
9910 EXPORT_SYMBOL(__might_resched);
9911 
9912 void __cant_sleep(const char *file, int line, int preempt_offset)
9913 {
9914 	static unsigned long prev_jiffy;
9915 
9916 	if (irqs_disabled())
9917 		return;
9918 
9919 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9920 		return;
9921 
9922 	if (preempt_count() > preempt_offset)
9923 		return;
9924 
9925 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9926 		return;
9927 	prev_jiffy = jiffies;
9928 
9929 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9930 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9931 			in_atomic(), irqs_disabled(),
9932 			current->pid, current->comm);
9933 
9934 	debug_show_held_locks(current);
9935 	dump_stack();
9936 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9937 }
9938 EXPORT_SYMBOL_GPL(__cant_sleep);
9939 
9940 #ifdef CONFIG_SMP
9941 void __cant_migrate(const char *file, int line)
9942 {
9943 	static unsigned long prev_jiffy;
9944 
9945 	if (irqs_disabled())
9946 		return;
9947 
9948 	if (is_migration_disabled(current))
9949 		return;
9950 
9951 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9952 		return;
9953 
9954 	if (preempt_count() > 0)
9955 		return;
9956 
9957 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9958 		return;
9959 	prev_jiffy = jiffies;
9960 
9961 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9962 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9963 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9964 	       current->pid, current->comm);
9965 
9966 	debug_show_held_locks(current);
9967 	dump_stack();
9968 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9969 }
9970 EXPORT_SYMBOL_GPL(__cant_migrate);
9971 #endif
9972 #endif
9973 
9974 #ifdef CONFIG_MAGIC_SYSRQ
9975 void normalize_rt_tasks(void)
9976 {
9977 	struct task_struct *g, *p;
9978 	struct sched_attr attr = {
9979 		.sched_policy = SCHED_NORMAL,
9980 	};
9981 
9982 	read_lock(&tasklist_lock);
9983 	for_each_process_thread(g, p) {
9984 		/*
9985 		 * Only normalize user tasks:
9986 		 */
9987 		if (p->flags & PF_KTHREAD)
9988 			continue;
9989 
9990 		p->se.exec_start = 0;
9991 		schedstat_set(p->stats.wait_start,  0);
9992 		schedstat_set(p->stats.sleep_start, 0);
9993 		schedstat_set(p->stats.block_start, 0);
9994 
9995 		if (!dl_task(p) && !rt_task(p)) {
9996 			/*
9997 			 * Renice negative nice level userspace
9998 			 * tasks back to 0:
9999 			 */
10000 			if (task_nice(p) < 0)
10001 				set_user_nice(p, 0);
10002 			continue;
10003 		}
10004 
10005 		__sched_setscheduler(p, &attr, false, false);
10006 	}
10007 	read_unlock(&tasklist_lock);
10008 }
10009 
10010 #endif /* CONFIG_MAGIC_SYSRQ */
10011 
10012 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10013 /*
10014  * These functions are only useful for the IA64 MCA handling, or kdb.
10015  *
10016  * They can only be called when the whole system has been
10017  * stopped - every CPU needs to be quiescent, and no scheduling
10018  * activity can take place. Using them for anything else would
10019  * be a serious bug, and as a result, they aren't even visible
10020  * under any other configuration.
10021  */
10022 
10023 /**
10024  * curr_task - return the current task for a given CPU.
10025  * @cpu: the processor in question.
10026  *
10027  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10028  *
10029  * Return: The current task for @cpu.
10030  */
10031 struct task_struct *curr_task(int cpu)
10032 {
10033 	return cpu_curr(cpu);
10034 }
10035 
10036 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10037 
10038 #ifdef CONFIG_IA64
10039 /**
10040  * ia64_set_curr_task - set the current task for a given CPU.
10041  * @cpu: the processor in question.
10042  * @p: the task pointer to set.
10043  *
10044  * Description: This function must only be used when non-maskable interrupts
10045  * are serviced on a separate stack. It allows the architecture to switch the
10046  * notion of the current task on a CPU in a non-blocking manner. This function
10047  * must be called with all CPU's synchronized, and interrupts disabled, the
10048  * and caller must save the original value of the current task (see
10049  * curr_task() above) and restore that value before reenabling interrupts and
10050  * re-starting the system.
10051  *
10052  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10053  */
10054 void ia64_set_curr_task(int cpu, struct task_struct *p)
10055 {
10056 	cpu_curr(cpu) = p;
10057 }
10058 
10059 #endif
10060 
10061 #ifdef CONFIG_CGROUP_SCHED
10062 /* task_group_lock serializes the addition/removal of task groups */
10063 static DEFINE_SPINLOCK(task_group_lock);
10064 
10065 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10066 					    struct task_group *parent)
10067 {
10068 #ifdef CONFIG_UCLAMP_TASK_GROUP
10069 	enum uclamp_id clamp_id;
10070 
10071 	for_each_clamp_id(clamp_id) {
10072 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10073 			      uclamp_none(clamp_id), false);
10074 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10075 	}
10076 #endif
10077 }
10078 
10079 static void sched_free_group(struct task_group *tg)
10080 {
10081 	free_fair_sched_group(tg);
10082 	free_rt_sched_group(tg);
10083 	autogroup_free(tg);
10084 	kmem_cache_free(task_group_cache, tg);
10085 }
10086 
10087 static void sched_free_group_rcu(struct rcu_head *rcu)
10088 {
10089 	sched_free_group(container_of(rcu, struct task_group, rcu));
10090 }
10091 
10092 static void sched_unregister_group(struct task_group *tg)
10093 {
10094 	unregister_fair_sched_group(tg);
10095 	unregister_rt_sched_group(tg);
10096 	/*
10097 	 * We have to wait for yet another RCU grace period to expire, as
10098 	 * print_cfs_stats() might run concurrently.
10099 	 */
10100 	call_rcu(&tg->rcu, sched_free_group_rcu);
10101 }
10102 
10103 /* allocate runqueue etc for a new task group */
10104 struct task_group *sched_create_group(struct task_group *parent)
10105 {
10106 	struct task_group *tg;
10107 
10108 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10109 	if (!tg)
10110 		return ERR_PTR(-ENOMEM);
10111 
10112 	if (!alloc_fair_sched_group(tg, parent))
10113 		goto err;
10114 
10115 	if (!alloc_rt_sched_group(tg, parent))
10116 		goto err;
10117 
10118 	alloc_uclamp_sched_group(tg, parent);
10119 
10120 	return tg;
10121 
10122 err:
10123 	sched_free_group(tg);
10124 	return ERR_PTR(-ENOMEM);
10125 }
10126 
10127 void sched_online_group(struct task_group *tg, struct task_group *parent)
10128 {
10129 	unsigned long flags;
10130 
10131 	spin_lock_irqsave(&task_group_lock, flags);
10132 	list_add_rcu(&tg->list, &task_groups);
10133 
10134 	/* Root should already exist: */
10135 	WARN_ON(!parent);
10136 
10137 	tg->parent = parent;
10138 	INIT_LIST_HEAD(&tg->children);
10139 	list_add_rcu(&tg->siblings, &parent->children);
10140 	spin_unlock_irqrestore(&task_group_lock, flags);
10141 
10142 	online_fair_sched_group(tg);
10143 }
10144 
10145 /* rcu callback to free various structures associated with a task group */
10146 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10147 {
10148 	/* Now it should be safe to free those cfs_rqs: */
10149 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10150 }
10151 
10152 void sched_destroy_group(struct task_group *tg)
10153 {
10154 	/* Wait for possible concurrent references to cfs_rqs complete: */
10155 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10156 }
10157 
10158 void sched_release_group(struct task_group *tg)
10159 {
10160 	unsigned long flags;
10161 
10162 	/*
10163 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10164 	 * sched_cfs_period_timer()).
10165 	 *
10166 	 * For this to be effective, we have to wait for all pending users of
10167 	 * this task group to leave their RCU critical section to ensure no new
10168 	 * user will see our dying task group any more. Specifically ensure
10169 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10170 	 *
10171 	 * We therefore defer calling unregister_fair_sched_group() to
10172 	 * sched_unregister_group() which is guarantied to get called only after the
10173 	 * current RCU grace period has expired.
10174 	 */
10175 	spin_lock_irqsave(&task_group_lock, flags);
10176 	list_del_rcu(&tg->list);
10177 	list_del_rcu(&tg->siblings);
10178 	spin_unlock_irqrestore(&task_group_lock, flags);
10179 }
10180 
10181 static void sched_change_group(struct task_struct *tsk, int type)
10182 {
10183 	struct task_group *tg;
10184 
10185 	/*
10186 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10187 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10188 	 * to prevent lockdep warnings.
10189 	 */
10190 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10191 			  struct task_group, css);
10192 	tg = autogroup_task_group(tsk, tg);
10193 	tsk->sched_task_group = tg;
10194 
10195 #ifdef CONFIG_FAIR_GROUP_SCHED
10196 	if (tsk->sched_class->task_change_group)
10197 		tsk->sched_class->task_change_group(tsk, type);
10198 	else
10199 #endif
10200 		set_task_rq(tsk, task_cpu(tsk));
10201 }
10202 
10203 /*
10204  * Change task's runqueue when it moves between groups.
10205  *
10206  * The caller of this function should have put the task in its new group by
10207  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10208  * its new group.
10209  */
10210 void sched_move_task(struct task_struct *tsk)
10211 {
10212 	int queued, running, queue_flags =
10213 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10214 	struct rq_flags rf;
10215 	struct rq *rq;
10216 
10217 	rq = task_rq_lock(tsk, &rf);
10218 	update_rq_clock(rq);
10219 
10220 	running = task_current(rq, tsk);
10221 	queued = task_on_rq_queued(tsk);
10222 
10223 	if (queued)
10224 		dequeue_task(rq, tsk, queue_flags);
10225 	if (running)
10226 		put_prev_task(rq, tsk);
10227 
10228 	sched_change_group(tsk, TASK_MOVE_GROUP);
10229 
10230 	if (queued)
10231 		enqueue_task(rq, tsk, queue_flags);
10232 	if (running) {
10233 		set_next_task(rq, tsk);
10234 		/*
10235 		 * After changing group, the running task may have joined a
10236 		 * throttled one but it's still the running task. Trigger a
10237 		 * resched to make sure that task can still run.
10238 		 */
10239 		resched_curr(rq);
10240 	}
10241 
10242 	task_rq_unlock(rq, tsk, &rf);
10243 }
10244 
10245 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10246 {
10247 	return css ? container_of(css, struct task_group, css) : NULL;
10248 }
10249 
10250 static struct cgroup_subsys_state *
10251 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10252 {
10253 	struct task_group *parent = css_tg(parent_css);
10254 	struct task_group *tg;
10255 
10256 	if (!parent) {
10257 		/* This is early initialization for the top cgroup */
10258 		return &root_task_group.css;
10259 	}
10260 
10261 	tg = sched_create_group(parent);
10262 	if (IS_ERR(tg))
10263 		return ERR_PTR(-ENOMEM);
10264 
10265 	return &tg->css;
10266 }
10267 
10268 /* Expose task group only after completing cgroup initialization */
10269 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10270 {
10271 	struct task_group *tg = css_tg(css);
10272 	struct task_group *parent = css_tg(css->parent);
10273 
10274 	if (parent)
10275 		sched_online_group(tg, parent);
10276 
10277 #ifdef CONFIG_UCLAMP_TASK_GROUP
10278 	/* Propagate the effective uclamp value for the new group */
10279 	mutex_lock(&uclamp_mutex);
10280 	rcu_read_lock();
10281 	cpu_util_update_eff(css);
10282 	rcu_read_unlock();
10283 	mutex_unlock(&uclamp_mutex);
10284 #endif
10285 
10286 	return 0;
10287 }
10288 
10289 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10290 {
10291 	struct task_group *tg = css_tg(css);
10292 
10293 	sched_release_group(tg);
10294 }
10295 
10296 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10297 {
10298 	struct task_group *tg = css_tg(css);
10299 
10300 	/*
10301 	 * Relies on the RCU grace period between css_released() and this.
10302 	 */
10303 	sched_unregister_group(tg);
10304 }
10305 
10306 /*
10307  * This is called before wake_up_new_task(), therefore we really only
10308  * have to set its group bits, all the other stuff does not apply.
10309  */
10310 static void cpu_cgroup_fork(struct task_struct *task)
10311 {
10312 	struct rq_flags rf;
10313 	struct rq *rq;
10314 
10315 	rq = task_rq_lock(task, &rf);
10316 
10317 	update_rq_clock(rq);
10318 	sched_change_group(task, TASK_SET_GROUP);
10319 
10320 	task_rq_unlock(rq, task, &rf);
10321 }
10322 
10323 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10324 {
10325 	struct task_struct *task;
10326 	struct cgroup_subsys_state *css;
10327 	int ret = 0;
10328 
10329 	cgroup_taskset_for_each(task, css, tset) {
10330 #ifdef CONFIG_RT_GROUP_SCHED
10331 		if (!sched_rt_can_attach(css_tg(css), task))
10332 			return -EINVAL;
10333 #endif
10334 		/*
10335 		 * Serialize against wake_up_new_task() such that if it's
10336 		 * running, we're sure to observe its full state.
10337 		 */
10338 		raw_spin_lock_irq(&task->pi_lock);
10339 		/*
10340 		 * Avoid calling sched_move_task() before wake_up_new_task()
10341 		 * has happened. This would lead to problems with PELT, due to
10342 		 * move wanting to detach+attach while we're not attached yet.
10343 		 */
10344 		if (READ_ONCE(task->__state) == TASK_NEW)
10345 			ret = -EINVAL;
10346 		raw_spin_unlock_irq(&task->pi_lock);
10347 
10348 		if (ret)
10349 			break;
10350 	}
10351 	return ret;
10352 }
10353 
10354 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10355 {
10356 	struct task_struct *task;
10357 	struct cgroup_subsys_state *css;
10358 
10359 	cgroup_taskset_for_each(task, css, tset)
10360 		sched_move_task(task);
10361 }
10362 
10363 #ifdef CONFIG_UCLAMP_TASK_GROUP
10364 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10365 {
10366 	struct cgroup_subsys_state *top_css = css;
10367 	struct uclamp_se *uc_parent = NULL;
10368 	struct uclamp_se *uc_se = NULL;
10369 	unsigned int eff[UCLAMP_CNT];
10370 	enum uclamp_id clamp_id;
10371 	unsigned int clamps;
10372 
10373 	lockdep_assert_held(&uclamp_mutex);
10374 	SCHED_WARN_ON(!rcu_read_lock_held());
10375 
10376 	css_for_each_descendant_pre(css, top_css) {
10377 		uc_parent = css_tg(css)->parent
10378 			? css_tg(css)->parent->uclamp : NULL;
10379 
10380 		for_each_clamp_id(clamp_id) {
10381 			/* Assume effective clamps matches requested clamps */
10382 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10383 			/* Cap effective clamps with parent's effective clamps */
10384 			if (uc_parent &&
10385 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10386 				eff[clamp_id] = uc_parent[clamp_id].value;
10387 			}
10388 		}
10389 		/* Ensure protection is always capped by limit */
10390 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10391 
10392 		/* Propagate most restrictive effective clamps */
10393 		clamps = 0x0;
10394 		uc_se = css_tg(css)->uclamp;
10395 		for_each_clamp_id(clamp_id) {
10396 			if (eff[clamp_id] == uc_se[clamp_id].value)
10397 				continue;
10398 			uc_se[clamp_id].value = eff[clamp_id];
10399 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10400 			clamps |= (0x1 << clamp_id);
10401 		}
10402 		if (!clamps) {
10403 			css = css_rightmost_descendant(css);
10404 			continue;
10405 		}
10406 
10407 		/* Immediately update descendants RUNNABLE tasks */
10408 		uclamp_update_active_tasks(css);
10409 	}
10410 }
10411 
10412 /*
10413  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10414  * C expression. Since there is no way to convert a macro argument (N) into a
10415  * character constant, use two levels of macros.
10416  */
10417 #define _POW10(exp) ((unsigned int)1e##exp)
10418 #define POW10(exp) _POW10(exp)
10419 
10420 struct uclamp_request {
10421 #define UCLAMP_PERCENT_SHIFT	2
10422 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10423 	s64 percent;
10424 	u64 util;
10425 	int ret;
10426 };
10427 
10428 static inline struct uclamp_request
10429 capacity_from_percent(char *buf)
10430 {
10431 	struct uclamp_request req = {
10432 		.percent = UCLAMP_PERCENT_SCALE,
10433 		.util = SCHED_CAPACITY_SCALE,
10434 		.ret = 0,
10435 	};
10436 
10437 	buf = strim(buf);
10438 	if (strcmp(buf, "max")) {
10439 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10440 					     &req.percent);
10441 		if (req.ret)
10442 			return req;
10443 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10444 			req.ret = -ERANGE;
10445 			return req;
10446 		}
10447 
10448 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10449 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10450 	}
10451 
10452 	return req;
10453 }
10454 
10455 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10456 				size_t nbytes, loff_t off,
10457 				enum uclamp_id clamp_id)
10458 {
10459 	struct uclamp_request req;
10460 	struct task_group *tg;
10461 
10462 	req = capacity_from_percent(buf);
10463 	if (req.ret)
10464 		return req.ret;
10465 
10466 	static_branch_enable(&sched_uclamp_used);
10467 
10468 	mutex_lock(&uclamp_mutex);
10469 	rcu_read_lock();
10470 
10471 	tg = css_tg(of_css(of));
10472 	if (tg->uclamp_req[clamp_id].value != req.util)
10473 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10474 
10475 	/*
10476 	 * Because of not recoverable conversion rounding we keep track of the
10477 	 * exact requested value
10478 	 */
10479 	tg->uclamp_pct[clamp_id] = req.percent;
10480 
10481 	/* Update effective clamps to track the most restrictive value */
10482 	cpu_util_update_eff(of_css(of));
10483 
10484 	rcu_read_unlock();
10485 	mutex_unlock(&uclamp_mutex);
10486 
10487 	return nbytes;
10488 }
10489 
10490 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10491 				    char *buf, size_t nbytes,
10492 				    loff_t off)
10493 {
10494 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10495 }
10496 
10497 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10498 				    char *buf, size_t nbytes,
10499 				    loff_t off)
10500 {
10501 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10502 }
10503 
10504 static inline void cpu_uclamp_print(struct seq_file *sf,
10505 				    enum uclamp_id clamp_id)
10506 {
10507 	struct task_group *tg;
10508 	u64 util_clamp;
10509 	u64 percent;
10510 	u32 rem;
10511 
10512 	rcu_read_lock();
10513 	tg = css_tg(seq_css(sf));
10514 	util_clamp = tg->uclamp_req[clamp_id].value;
10515 	rcu_read_unlock();
10516 
10517 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10518 		seq_puts(sf, "max\n");
10519 		return;
10520 	}
10521 
10522 	percent = tg->uclamp_pct[clamp_id];
10523 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10524 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10525 }
10526 
10527 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10528 {
10529 	cpu_uclamp_print(sf, UCLAMP_MIN);
10530 	return 0;
10531 }
10532 
10533 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10534 {
10535 	cpu_uclamp_print(sf, UCLAMP_MAX);
10536 	return 0;
10537 }
10538 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10539 
10540 #ifdef CONFIG_FAIR_GROUP_SCHED
10541 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10542 				struct cftype *cftype, u64 shareval)
10543 {
10544 	if (shareval > scale_load_down(ULONG_MAX))
10545 		shareval = MAX_SHARES;
10546 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10547 }
10548 
10549 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10550 			       struct cftype *cft)
10551 {
10552 	struct task_group *tg = css_tg(css);
10553 
10554 	return (u64) scale_load_down(tg->shares);
10555 }
10556 
10557 #ifdef CONFIG_CFS_BANDWIDTH
10558 static DEFINE_MUTEX(cfs_constraints_mutex);
10559 
10560 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10561 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10562 /* More than 203 days if BW_SHIFT equals 20. */
10563 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10564 
10565 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10566 
10567 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10568 				u64 burst)
10569 {
10570 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10571 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10572 
10573 	if (tg == &root_task_group)
10574 		return -EINVAL;
10575 
10576 	/*
10577 	 * Ensure we have at some amount of bandwidth every period.  This is
10578 	 * to prevent reaching a state of large arrears when throttled via
10579 	 * entity_tick() resulting in prolonged exit starvation.
10580 	 */
10581 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10582 		return -EINVAL;
10583 
10584 	/*
10585 	 * Likewise, bound things on the other side by preventing insane quota
10586 	 * periods.  This also allows us to normalize in computing quota
10587 	 * feasibility.
10588 	 */
10589 	if (period > max_cfs_quota_period)
10590 		return -EINVAL;
10591 
10592 	/*
10593 	 * Bound quota to defend quota against overflow during bandwidth shift.
10594 	 */
10595 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10596 		return -EINVAL;
10597 
10598 	if (quota != RUNTIME_INF && (burst > quota ||
10599 				     burst + quota > max_cfs_runtime))
10600 		return -EINVAL;
10601 
10602 	/*
10603 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10604 	 * unthrottle_offline_cfs_rqs().
10605 	 */
10606 	cpus_read_lock();
10607 	mutex_lock(&cfs_constraints_mutex);
10608 	ret = __cfs_schedulable(tg, period, quota);
10609 	if (ret)
10610 		goto out_unlock;
10611 
10612 	runtime_enabled = quota != RUNTIME_INF;
10613 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10614 	/*
10615 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10616 	 * before making related changes, and on->off must occur afterwards
10617 	 */
10618 	if (runtime_enabled && !runtime_was_enabled)
10619 		cfs_bandwidth_usage_inc();
10620 	raw_spin_lock_irq(&cfs_b->lock);
10621 	cfs_b->period = ns_to_ktime(period);
10622 	cfs_b->quota = quota;
10623 	cfs_b->burst = burst;
10624 
10625 	__refill_cfs_bandwidth_runtime(cfs_b);
10626 
10627 	/* Restart the period timer (if active) to handle new period expiry: */
10628 	if (runtime_enabled)
10629 		start_cfs_bandwidth(cfs_b);
10630 
10631 	raw_spin_unlock_irq(&cfs_b->lock);
10632 
10633 	for_each_online_cpu(i) {
10634 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10635 		struct rq *rq = cfs_rq->rq;
10636 		struct rq_flags rf;
10637 
10638 		rq_lock_irq(rq, &rf);
10639 		cfs_rq->runtime_enabled = runtime_enabled;
10640 		cfs_rq->runtime_remaining = 0;
10641 
10642 		if (cfs_rq->throttled)
10643 			unthrottle_cfs_rq(cfs_rq);
10644 		rq_unlock_irq(rq, &rf);
10645 	}
10646 	if (runtime_was_enabled && !runtime_enabled)
10647 		cfs_bandwidth_usage_dec();
10648 out_unlock:
10649 	mutex_unlock(&cfs_constraints_mutex);
10650 	cpus_read_unlock();
10651 
10652 	return ret;
10653 }
10654 
10655 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10656 {
10657 	u64 quota, period, burst;
10658 
10659 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10660 	burst = tg->cfs_bandwidth.burst;
10661 	if (cfs_quota_us < 0)
10662 		quota = RUNTIME_INF;
10663 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10664 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10665 	else
10666 		return -EINVAL;
10667 
10668 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10669 }
10670 
10671 static long tg_get_cfs_quota(struct task_group *tg)
10672 {
10673 	u64 quota_us;
10674 
10675 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10676 		return -1;
10677 
10678 	quota_us = tg->cfs_bandwidth.quota;
10679 	do_div(quota_us, NSEC_PER_USEC);
10680 
10681 	return quota_us;
10682 }
10683 
10684 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10685 {
10686 	u64 quota, period, burst;
10687 
10688 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10689 		return -EINVAL;
10690 
10691 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10692 	quota = tg->cfs_bandwidth.quota;
10693 	burst = tg->cfs_bandwidth.burst;
10694 
10695 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10696 }
10697 
10698 static long tg_get_cfs_period(struct task_group *tg)
10699 {
10700 	u64 cfs_period_us;
10701 
10702 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10703 	do_div(cfs_period_us, NSEC_PER_USEC);
10704 
10705 	return cfs_period_us;
10706 }
10707 
10708 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10709 {
10710 	u64 quota, period, burst;
10711 
10712 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10713 		return -EINVAL;
10714 
10715 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10716 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10717 	quota = tg->cfs_bandwidth.quota;
10718 
10719 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10720 }
10721 
10722 static long tg_get_cfs_burst(struct task_group *tg)
10723 {
10724 	u64 burst_us;
10725 
10726 	burst_us = tg->cfs_bandwidth.burst;
10727 	do_div(burst_us, NSEC_PER_USEC);
10728 
10729 	return burst_us;
10730 }
10731 
10732 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10733 				  struct cftype *cft)
10734 {
10735 	return tg_get_cfs_quota(css_tg(css));
10736 }
10737 
10738 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10739 				   struct cftype *cftype, s64 cfs_quota_us)
10740 {
10741 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10742 }
10743 
10744 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10745 				   struct cftype *cft)
10746 {
10747 	return tg_get_cfs_period(css_tg(css));
10748 }
10749 
10750 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10751 				    struct cftype *cftype, u64 cfs_period_us)
10752 {
10753 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10754 }
10755 
10756 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10757 				  struct cftype *cft)
10758 {
10759 	return tg_get_cfs_burst(css_tg(css));
10760 }
10761 
10762 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10763 				   struct cftype *cftype, u64 cfs_burst_us)
10764 {
10765 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10766 }
10767 
10768 struct cfs_schedulable_data {
10769 	struct task_group *tg;
10770 	u64 period, quota;
10771 };
10772 
10773 /*
10774  * normalize group quota/period to be quota/max_period
10775  * note: units are usecs
10776  */
10777 static u64 normalize_cfs_quota(struct task_group *tg,
10778 			       struct cfs_schedulable_data *d)
10779 {
10780 	u64 quota, period;
10781 
10782 	if (tg == d->tg) {
10783 		period = d->period;
10784 		quota = d->quota;
10785 	} else {
10786 		period = tg_get_cfs_period(tg);
10787 		quota = tg_get_cfs_quota(tg);
10788 	}
10789 
10790 	/* note: these should typically be equivalent */
10791 	if (quota == RUNTIME_INF || quota == -1)
10792 		return RUNTIME_INF;
10793 
10794 	return to_ratio(period, quota);
10795 }
10796 
10797 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10798 {
10799 	struct cfs_schedulable_data *d = data;
10800 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10801 	s64 quota = 0, parent_quota = -1;
10802 
10803 	if (!tg->parent) {
10804 		quota = RUNTIME_INF;
10805 	} else {
10806 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10807 
10808 		quota = normalize_cfs_quota(tg, d);
10809 		parent_quota = parent_b->hierarchical_quota;
10810 
10811 		/*
10812 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10813 		 * always take the min.  On cgroup1, only inherit when no
10814 		 * limit is set:
10815 		 */
10816 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10817 			quota = min(quota, parent_quota);
10818 		} else {
10819 			if (quota == RUNTIME_INF)
10820 				quota = parent_quota;
10821 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10822 				return -EINVAL;
10823 		}
10824 	}
10825 	cfs_b->hierarchical_quota = quota;
10826 
10827 	return 0;
10828 }
10829 
10830 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10831 {
10832 	int ret;
10833 	struct cfs_schedulable_data data = {
10834 		.tg = tg,
10835 		.period = period,
10836 		.quota = quota,
10837 	};
10838 
10839 	if (quota != RUNTIME_INF) {
10840 		do_div(data.period, NSEC_PER_USEC);
10841 		do_div(data.quota, NSEC_PER_USEC);
10842 	}
10843 
10844 	rcu_read_lock();
10845 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10846 	rcu_read_unlock();
10847 
10848 	return ret;
10849 }
10850 
10851 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10852 {
10853 	struct task_group *tg = css_tg(seq_css(sf));
10854 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10855 
10856 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10857 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10858 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10859 
10860 	if (schedstat_enabled() && tg != &root_task_group) {
10861 		struct sched_statistics *stats;
10862 		u64 ws = 0;
10863 		int i;
10864 
10865 		for_each_possible_cpu(i) {
10866 			stats = __schedstats_from_se(tg->se[i]);
10867 			ws += schedstat_val(stats->wait_sum);
10868 		}
10869 
10870 		seq_printf(sf, "wait_sum %llu\n", ws);
10871 	}
10872 
10873 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10874 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10875 
10876 	return 0;
10877 }
10878 #endif /* CONFIG_CFS_BANDWIDTH */
10879 #endif /* CONFIG_FAIR_GROUP_SCHED */
10880 
10881 #ifdef CONFIG_RT_GROUP_SCHED
10882 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10883 				struct cftype *cft, s64 val)
10884 {
10885 	return sched_group_set_rt_runtime(css_tg(css), val);
10886 }
10887 
10888 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10889 			       struct cftype *cft)
10890 {
10891 	return sched_group_rt_runtime(css_tg(css));
10892 }
10893 
10894 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10895 				    struct cftype *cftype, u64 rt_period_us)
10896 {
10897 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10898 }
10899 
10900 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10901 				   struct cftype *cft)
10902 {
10903 	return sched_group_rt_period(css_tg(css));
10904 }
10905 #endif /* CONFIG_RT_GROUP_SCHED */
10906 
10907 #ifdef CONFIG_FAIR_GROUP_SCHED
10908 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10909 			       struct cftype *cft)
10910 {
10911 	return css_tg(css)->idle;
10912 }
10913 
10914 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10915 				struct cftype *cft, s64 idle)
10916 {
10917 	return sched_group_set_idle(css_tg(css), idle);
10918 }
10919 #endif
10920 
10921 static struct cftype cpu_legacy_files[] = {
10922 #ifdef CONFIG_FAIR_GROUP_SCHED
10923 	{
10924 		.name = "shares",
10925 		.read_u64 = cpu_shares_read_u64,
10926 		.write_u64 = cpu_shares_write_u64,
10927 	},
10928 	{
10929 		.name = "idle",
10930 		.read_s64 = cpu_idle_read_s64,
10931 		.write_s64 = cpu_idle_write_s64,
10932 	},
10933 #endif
10934 #ifdef CONFIG_CFS_BANDWIDTH
10935 	{
10936 		.name = "cfs_quota_us",
10937 		.read_s64 = cpu_cfs_quota_read_s64,
10938 		.write_s64 = cpu_cfs_quota_write_s64,
10939 	},
10940 	{
10941 		.name = "cfs_period_us",
10942 		.read_u64 = cpu_cfs_period_read_u64,
10943 		.write_u64 = cpu_cfs_period_write_u64,
10944 	},
10945 	{
10946 		.name = "cfs_burst_us",
10947 		.read_u64 = cpu_cfs_burst_read_u64,
10948 		.write_u64 = cpu_cfs_burst_write_u64,
10949 	},
10950 	{
10951 		.name = "stat",
10952 		.seq_show = cpu_cfs_stat_show,
10953 	},
10954 #endif
10955 #ifdef CONFIG_RT_GROUP_SCHED
10956 	{
10957 		.name = "rt_runtime_us",
10958 		.read_s64 = cpu_rt_runtime_read,
10959 		.write_s64 = cpu_rt_runtime_write,
10960 	},
10961 	{
10962 		.name = "rt_period_us",
10963 		.read_u64 = cpu_rt_period_read_uint,
10964 		.write_u64 = cpu_rt_period_write_uint,
10965 	},
10966 #endif
10967 #ifdef CONFIG_UCLAMP_TASK_GROUP
10968 	{
10969 		.name = "uclamp.min",
10970 		.flags = CFTYPE_NOT_ON_ROOT,
10971 		.seq_show = cpu_uclamp_min_show,
10972 		.write = cpu_uclamp_min_write,
10973 	},
10974 	{
10975 		.name = "uclamp.max",
10976 		.flags = CFTYPE_NOT_ON_ROOT,
10977 		.seq_show = cpu_uclamp_max_show,
10978 		.write = cpu_uclamp_max_write,
10979 	},
10980 #endif
10981 	{ }	/* Terminate */
10982 };
10983 
10984 static int cpu_extra_stat_show(struct seq_file *sf,
10985 			       struct cgroup_subsys_state *css)
10986 {
10987 #ifdef CONFIG_CFS_BANDWIDTH
10988 	{
10989 		struct task_group *tg = css_tg(css);
10990 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10991 		u64 throttled_usec, burst_usec;
10992 
10993 		throttled_usec = cfs_b->throttled_time;
10994 		do_div(throttled_usec, NSEC_PER_USEC);
10995 		burst_usec = cfs_b->burst_time;
10996 		do_div(burst_usec, NSEC_PER_USEC);
10997 
10998 		seq_printf(sf, "nr_periods %d\n"
10999 			   "nr_throttled %d\n"
11000 			   "throttled_usec %llu\n"
11001 			   "nr_bursts %d\n"
11002 			   "burst_usec %llu\n",
11003 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11004 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11005 	}
11006 #endif
11007 	return 0;
11008 }
11009 
11010 #ifdef CONFIG_FAIR_GROUP_SCHED
11011 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11012 			       struct cftype *cft)
11013 {
11014 	struct task_group *tg = css_tg(css);
11015 	u64 weight = scale_load_down(tg->shares);
11016 
11017 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11018 }
11019 
11020 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11021 				struct cftype *cft, u64 weight)
11022 {
11023 	/*
11024 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11025 	 * values which are 1, 100 and 10000 respectively.  While it loses
11026 	 * a bit of range on both ends, it maps pretty well onto the shares
11027 	 * value used by scheduler and the round-trip conversions preserve
11028 	 * the original value over the entire range.
11029 	 */
11030 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11031 		return -ERANGE;
11032 
11033 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11034 
11035 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11036 }
11037 
11038 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11039 				    struct cftype *cft)
11040 {
11041 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11042 	int last_delta = INT_MAX;
11043 	int prio, delta;
11044 
11045 	/* find the closest nice value to the current weight */
11046 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11047 		delta = abs(sched_prio_to_weight[prio] - weight);
11048 		if (delta >= last_delta)
11049 			break;
11050 		last_delta = delta;
11051 	}
11052 
11053 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11054 }
11055 
11056 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11057 				     struct cftype *cft, s64 nice)
11058 {
11059 	unsigned long weight;
11060 	int idx;
11061 
11062 	if (nice < MIN_NICE || nice > MAX_NICE)
11063 		return -ERANGE;
11064 
11065 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11066 	idx = array_index_nospec(idx, 40);
11067 	weight = sched_prio_to_weight[idx];
11068 
11069 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11070 }
11071 #endif
11072 
11073 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11074 						  long period, long quota)
11075 {
11076 	if (quota < 0)
11077 		seq_puts(sf, "max");
11078 	else
11079 		seq_printf(sf, "%ld", quota);
11080 
11081 	seq_printf(sf, " %ld\n", period);
11082 }
11083 
11084 /* caller should put the current value in *@periodp before calling */
11085 static int __maybe_unused cpu_period_quota_parse(char *buf,
11086 						 u64 *periodp, u64 *quotap)
11087 {
11088 	char tok[21];	/* U64_MAX */
11089 
11090 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11091 		return -EINVAL;
11092 
11093 	*periodp *= NSEC_PER_USEC;
11094 
11095 	if (sscanf(tok, "%llu", quotap))
11096 		*quotap *= NSEC_PER_USEC;
11097 	else if (!strcmp(tok, "max"))
11098 		*quotap = RUNTIME_INF;
11099 	else
11100 		return -EINVAL;
11101 
11102 	return 0;
11103 }
11104 
11105 #ifdef CONFIG_CFS_BANDWIDTH
11106 static int cpu_max_show(struct seq_file *sf, void *v)
11107 {
11108 	struct task_group *tg = css_tg(seq_css(sf));
11109 
11110 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11111 	return 0;
11112 }
11113 
11114 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11115 			     char *buf, size_t nbytes, loff_t off)
11116 {
11117 	struct task_group *tg = css_tg(of_css(of));
11118 	u64 period = tg_get_cfs_period(tg);
11119 	u64 burst = tg_get_cfs_burst(tg);
11120 	u64 quota;
11121 	int ret;
11122 
11123 	ret = cpu_period_quota_parse(buf, &period, &quota);
11124 	if (!ret)
11125 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11126 	return ret ?: nbytes;
11127 }
11128 #endif
11129 
11130 static struct cftype cpu_files[] = {
11131 #ifdef CONFIG_FAIR_GROUP_SCHED
11132 	{
11133 		.name = "weight",
11134 		.flags = CFTYPE_NOT_ON_ROOT,
11135 		.read_u64 = cpu_weight_read_u64,
11136 		.write_u64 = cpu_weight_write_u64,
11137 	},
11138 	{
11139 		.name = "weight.nice",
11140 		.flags = CFTYPE_NOT_ON_ROOT,
11141 		.read_s64 = cpu_weight_nice_read_s64,
11142 		.write_s64 = cpu_weight_nice_write_s64,
11143 	},
11144 	{
11145 		.name = "idle",
11146 		.flags = CFTYPE_NOT_ON_ROOT,
11147 		.read_s64 = cpu_idle_read_s64,
11148 		.write_s64 = cpu_idle_write_s64,
11149 	},
11150 #endif
11151 #ifdef CONFIG_CFS_BANDWIDTH
11152 	{
11153 		.name = "max",
11154 		.flags = CFTYPE_NOT_ON_ROOT,
11155 		.seq_show = cpu_max_show,
11156 		.write = cpu_max_write,
11157 	},
11158 	{
11159 		.name = "max.burst",
11160 		.flags = CFTYPE_NOT_ON_ROOT,
11161 		.read_u64 = cpu_cfs_burst_read_u64,
11162 		.write_u64 = cpu_cfs_burst_write_u64,
11163 	},
11164 #endif
11165 #ifdef CONFIG_UCLAMP_TASK_GROUP
11166 	{
11167 		.name = "uclamp.min",
11168 		.flags = CFTYPE_NOT_ON_ROOT,
11169 		.seq_show = cpu_uclamp_min_show,
11170 		.write = cpu_uclamp_min_write,
11171 	},
11172 	{
11173 		.name = "uclamp.max",
11174 		.flags = CFTYPE_NOT_ON_ROOT,
11175 		.seq_show = cpu_uclamp_max_show,
11176 		.write = cpu_uclamp_max_write,
11177 	},
11178 #endif
11179 	{ }	/* terminate */
11180 };
11181 
11182 struct cgroup_subsys cpu_cgrp_subsys = {
11183 	.css_alloc	= cpu_cgroup_css_alloc,
11184 	.css_online	= cpu_cgroup_css_online,
11185 	.css_released	= cpu_cgroup_css_released,
11186 	.css_free	= cpu_cgroup_css_free,
11187 	.css_extra_stat_show = cpu_extra_stat_show,
11188 	.fork		= cpu_cgroup_fork,
11189 	.can_attach	= cpu_cgroup_can_attach,
11190 	.attach		= cpu_cgroup_attach,
11191 	.legacy_cftypes	= cpu_legacy_files,
11192 	.dfl_cftypes	= cpu_files,
11193 	.early_init	= true,
11194 	.threaded	= true,
11195 };
11196 
11197 #endif	/* CONFIG_CGROUP_SCHED */
11198 
11199 void dump_cpu_task(int cpu)
11200 {
11201 	pr_info("Task dump for CPU %d:\n", cpu);
11202 	sched_show_task(cpu_curr(cpu));
11203 }
11204 
11205 /*
11206  * Nice levels are multiplicative, with a gentle 10% change for every
11207  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11208  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11209  * that remained on nice 0.
11210  *
11211  * The "10% effect" is relative and cumulative: from _any_ nice level,
11212  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11213  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11214  * If a task goes up by ~10% and another task goes down by ~10% then
11215  * the relative distance between them is ~25%.)
11216  */
11217 const int sched_prio_to_weight[40] = {
11218  /* -20 */     88761,     71755,     56483,     46273,     36291,
11219  /* -15 */     29154,     23254,     18705,     14949,     11916,
11220  /* -10 */      9548,      7620,      6100,      4904,      3906,
11221  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11222  /*   0 */      1024,       820,       655,       526,       423,
11223  /*   5 */       335,       272,       215,       172,       137,
11224  /*  10 */       110,        87,        70,        56,        45,
11225  /*  15 */        36,        29,        23,        18,        15,
11226 };
11227 
11228 /*
11229  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11230  *
11231  * In cases where the weight does not change often, we can use the
11232  * precalculated inverse to speed up arithmetics by turning divisions
11233  * into multiplications:
11234  */
11235 const u32 sched_prio_to_wmult[40] = {
11236  /* -20 */     48388,     59856,     76040,     92818,    118348,
11237  /* -15 */    147320,    184698,    229616,    287308,    360437,
11238  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11239  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11240  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11241  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11242  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11243  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11244 };
11245 
11246 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11247 {
11248         trace_sched_update_nr_running_tp(rq, count);
11249 }
11250