1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/kthread.h> 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 15 #include <asm/switch_to.h> 16 #include <asm/tlb.h> 17 18 #include "../workqueue_internal.h" 19 #include "../smpboot.h" 20 21 #define CREATE_TRACE_POINTS 22 #include <trace/events/sched.h> 23 24 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 25 26 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 27 /* 28 * Debugging: various feature bits 29 * 30 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 31 * sysctl_sched_features, defined in sched.h, to allow constants propagation 32 * at compile time and compiler optimization based on features default. 33 */ 34 #define SCHED_FEAT(name, enabled) \ 35 (1UL << __SCHED_FEAT_##name) * enabled | 36 const_debug unsigned int sysctl_sched_features = 37 #include "features.h" 38 0; 39 #undef SCHED_FEAT 40 #endif 41 42 /* 43 * Number of tasks to iterate in a single balance run. 44 * Limited because this is done with IRQs disabled. 45 */ 46 const_debug unsigned int sysctl_sched_nr_migrate = 32; 47 48 /* 49 * period over which we average the RT time consumption, measured 50 * in ms. 51 * 52 * default: 1s 53 */ 54 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 55 56 /* 57 * period over which we measure -rt task CPU usage in us. 58 * default: 1s 59 */ 60 unsigned int sysctl_sched_rt_period = 1000000; 61 62 __read_mostly int scheduler_running; 63 64 /* 65 * part of the period that we allow rt tasks to run in us. 66 * default: 0.95s 67 */ 68 int sysctl_sched_rt_runtime = 950000; 69 70 /* 71 * __task_rq_lock - lock the rq @p resides on. 72 */ 73 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 74 __acquires(rq->lock) 75 { 76 struct rq *rq; 77 78 lockdep_assert_held(&p->pi_lock); 79 80 for (;;) { 81 rq = task_rq(p); 82 raw_spin_lock(&rq->lock); 83 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 84 rq_pin_lock(rq, rf); 85 return rq; 86 } 87 raw_spin_unlock(&rq->lock); 88 89 while (unlikely(task_on_rq_migrating(p))) 90 cpu_relax(); 91 } 92 } 93 94 /* 95 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 96 */ 97 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 98 __acquires(p->pi_lock) 99 __acquires(rq->lock) 100 { 101 struct rq *rq; 102 103 for (;;) { 104 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 105 rq = task_rq(p); 106 raw_spin_lock(&rq->lock); 107 /* 108 * move_queued_task() task_rq_lock() 109 * 110 * ACQUIRE (rq->lock) 111 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 112 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 113 * [S] ->cpu = new_cpu [L] task_rq() 114 * [L] ->on_rq 115 * RELEASE (rq->lock) 116 * 117 * If we observe the old CPU in task_rq_lock, the acquire of 118 * the old rq->lock will fully serialize against the stores. 119 * 120 * If we observe the new CPU in task_rq_lock, the acquire will 121 * pair with the WMB to ensure we must then also see migrating. 122 */ 123 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 124 rq_pin_lock(rq, rf); 125 return rq; 126 } 127 raw_spin_unlock(&rq->lock); 128 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 129 130 while (unlikely(task_on_rq_migrating(p))) 131 cpu_relax(); 132 } 133 } 134 135 /* 136 * RQ-clock updating methods: 137 */ 138 139 static void update_rq_clock_task(struct rq *rq, s64 delta) 140 { 141 /* 142 * In theory, the compile should just see 0 here, and optimize out the call 143 * to sched_rt_avg_update. But I don't trust it... 144 */ 145 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 146 s64 steal = 0, irq_delta = 0; 147 #endif 148 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 149 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 150 151 /* 152 * Since irq_time is only updated on {soft,}irq_exit, we might run into 153 * this case when a previous update_rq_clock() happened inside a 154 * {soft,}irq region. 155 * 156 * When this happens, we stop ->clock_task and only update the 157 * prev_irq_time stamp to account for the part that fit, so that a next 158 * update will consume the rest. This ensures ->clock_task is 159 * monotonic. 160 * 161 * It does however cause some slight miss-attribution of {soft,}irq 162 * time, a more accurate solution would be to update the irq_time using 163 * the current rq->clock timestamp, except that would require using 164 * atomic ops. 165 */ 166 if (irq_delta > delta) 167 irq_delta = delta; 168 169 rq->prev_irq_time += irq_delta; 170 delta -= irq_delta; 171 #endif 172 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 173 if (static_key_false((¶virt_steal_rq_enabled))) { 174 steal = paravirt_steal_clock(cpu_of(rq)); 175 steal -= rq->prev_steal_time_rq; 176 177 if (unlikely(steal > delta)) 178 steal = delta; 179 180 rq->prev_steal_time_rq += steal; 181 delta -= steal; 182 } 183 #endif 184 185 rq->clock_task += delta; 186 187 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 188 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 189 sched_rt_avg_update(rq, irq_delta + steal); 190 #endif 191 } 192 193 void update_rq_clock(struct rq *rq) 194 { 195 s64 delta; 196 197 lockdep_assert_held(&rq->lock); 198 199 if (rq->clock_update_flags & RQCF_ACT_SKIP) 200 return; 201 202 #ifdef CONFIG_SCHED_DEBUG 203 if (sched_feat(WARN_DOUBLE_CLOCK)) 204 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 205 rq->clock_update_flags |= RQCF_UPDATED; 206 #endif 207 208 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 209 if (delta < 0) 210 return; 211 rq->clock += delta; 212 update_rq_clock_task(rq, delta); 213 } 214 215 216 #ifdef CONFIG_SCHED_HRTICK 217 /* 218 * Use HR-timers to deliver accurate preemption points. 219 */ 220 221 static void hrtick_clear(struct rq *rq) 222 { 223 if (hrtimer_active(&rq->hrtick_timer)) 224 hrtimer_cancel(&rq->hrtick_timer); 225 } 226 227 /* 228 * High-resolution timer tick. 229 * Runs from hardirq context with interrupts disabled. 230 */ 231 static enum hrtimer_restart hrtick(struct hrtimer *timer) 232 { 233 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 234 struct rq_flags rf; 235 236 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 237 238 rq_lock(rq, &rf); 239 update_rq_clock(rq); 240 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 241 rq_unlock(rq, &rf); 242 243 return HRTIMER_NORESTART; 244 } 245 246 #ifdef CONFIG_SMP 247 248 static void __hrtick_restart(struct rq *rq) 249 { 250 struct hrtimer *timer = &rq->hrtick_timer; 251 252 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 253 } 254 255 /* 256 * called from hardirq (IPI) context 257 */ 258 static void __hrtick_start(void *arg) 259 { 260 struct rq *rq = arg; 261 struct rq_flags rf; 262 263 rq_lock(rq, &rf); 264 __hrtick_restart(rq); 265 rq->hrtick_csd_pending = 0; 266 rq_unlock(rq, &rf); 267 } 268 269 /* 270 * Called to set the hrtick timer state. 271 * 272 * called with rq->lock held and irqs disabled 273 */ 274 void hrtick_start(struct rq *rq, u64 delay) 275 { 276 struct hrtimer *timer = &rq->hrtick_timer; 277 ktime_t time; 278 s64 delta; 279 280 /* 281 * Don't schedule slices shorter than 10000ns, that just 282 * doesn't make sense and can cause timer DoS. 283 */ 284 delta = max_t(s64, delay, 10000LL); 285 time = ktime_add_ns(timer->base->get_time(), delta); 286 287 hrtimer_set_expires(timer, time); 288 289 if (rq == this_rq()) { 290 __hrtick_restart(rq); 291 } else if (!rq->hrtick_csd_pending) { 292 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 293 rq->hrtick_csd_pending = 1; 294 } 295 } 296 297 #else 298 /* 299 * Called to set the hrtick timer state. 300 * 301 * called with rq->lock held and irqs disabled 302 */ 303 void hrtick_start(struct rq *rq, u64 delay) 304 { 305 /* 306 * Don't schedule slices shorter than 10000ns, that just 307 * doesn't make sense. Rely on vruntime for fairness. 308 */ 309 delay = max_t(u64, delay, 10000LL); 310 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 311 HRTIMER_MODE_REL_PINNED); 312 } 313 #endif /* CONFIG_SMP */ 314 315 static void hrtick_rq_init(struct rq *rq) 316 { 317 #ifdef CONFIG_SMP 318 rq->hrtick_csd_pending = 0; 319 320 rq->hrtick_csd.flags = 0; 321 rq->hrtick_csd.func = __hrtick_start; 322 rq->hrtick_csd.info = rq; 323 #endif 324 325 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 326 rq->hrtick_timer.function = hrtick; 327 } 328 #else /* CONFIG_SCHED_HRTICK */ 329 static inline void hrtick_clear(struct rq *rq) 330 { 331 } 332 333 static inline void hrtick_rq_init(struct rq *rq) 334 { 335 } 336 #endif /* CONFIG_SCHED_HRTICK */ 337 338 /* 339 * cmpxchg based fetch_or, macro so it works for different integer types 340 */ 341 #define fetch_or(ptr, mask) \ 342 ({ \ 343 typeof(ptr) _ptr = (ptr); \ 344 typeof(mask) _mask = (mask); \ 345 typeof(*_ptr) _old, _val = *_ptr; \ 346 \ 347 for (;;) { \ 348 _old = cmpxchg(_ptr, _val, _val | _mask); \ 349 if (_old == _val) \ 350 break; \ 351 _val = _old; \ 352 } \ 353 _old; \ 354 }) 355 356 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 357 /* 358 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 359 * this avoids any races wrt polling state changes and thereby avoids 360 * spurious IPIs. 361 */ 362 static bool set_nr_and_not_polling(struct task_struct *p) 363 { 364 struct thread_info *ti = task_thread_info(p); 365 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 366 } 367 368 /* 369 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 370 * 371 * If this returns true, then the idle task promises to call 372 * sched_ttwu_pending() and reschedule soon. 373 */ 374 static bool set_nr_if_polling(struct task_struct *p) 375 { 376 struct thread_info *ti = task_thread_info(p); 377 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 378 379 for (;;) { 380 if (!(val & _TIF_POLLING_NRFLAG)) 381 return false; 382 if (val & _TIF_NEED_RESCHED) 383 return true; 384 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 385 if (old == val) 386 break; 387 val = old; 388 } 389 return true; 390 } 391 392 #else 393 static bool set_nr_and_not_polling(struct task_struct *p) 394 { 395 set_tsk_need_resched(p); 396 return true; 397 } 398 399 #ifdef CONFIG_SMP 400 static bool set_nr_if_polling(struct task_struct *p) 401 { 402 return false; 403 } 404 #endif 405 #endif 406 407 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 408 { 409 struct wake_q_node *node = &task->wake_q; 410 411 /* 412 * Atomically grab the task, if ->wake_q is !nil already it means 413 * its already queued (either by us or someone else) and will get the 414 * wakeup due to that. 415 * 416 * This cmpxchg() implies a full barrier, which pairs with the write 417 * barrier implied by the wakeup in wake_up_q(). 418 */ 419 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 420 return; 421 422 get_task_struct(task); 423 424 /* 425 * The head is context local, there can be no concurrency. 426 */ 427 *head->lastp = node; 428 head->lastp = &node->next; 429 } 430 431 void wake_up_q(struct wake_q_head *head) 432 { 433 struct wake_q_node *node = head->first; 434 435 while (node != WAKE_Q_TAIL) { 436 struct task_struct *task; 437 438 task = container_of(node, struct task_struct, wake_q); 439 BUG_ON(!task); 440 /* Task can safely be re-inserted now: */ 441 node = node->next; 442 task->wake_q.next = NULL; 443 444 /* 445 * wake_up_process() implies a wmb() to pair with the queueing 446 * in wake_q_add() so as not to miss wakeups. 447 */ 448 wake_up_process(task); 449 put_task_struct(task); 450 } 451 } 452 453 /* 454 * resched_curr - mark rq's current task 'to be rescheduled now'. 455 * 456 * On UP this means the setting of the need_resched flag, on SMP it 457 * might also involve a cross-CPU call to trigger the scheduler on 458 * the target CPU. 459 */ 460 void resched_curr(struct rq *rq) 461 { 462 struct task_struct *curr = rq->curr; 463 int cpu; 464 465 lockdep_assert_held(&rq->lock); 466 467 if (test_tsk_need_resched(curr)) 468 return; 469 470 cpu = cpu_of(rq); 471 472 if (cpu == smp_processor_id()) { 473 set_tsk_need_resched(curr); 474 set_preempt_need_resched(); 475 return; 476 } 477 478 if (set_nr_and_not_polling(curr)) 479 smp_send_reschedule(cpu); 480 else 481 trace_sched_wake_idle_without_ipi(cpu); 482 } 483 484 void resched_cpu(int cpu) 485 { 486 struct rq *rq = cpu_rq(cpu); 487 unsigned long flags; 488 489 raw_spin_lock_irqsave(&rq->lock, flags); 490 if (cpu_online(cpu) || cpu == smp_processor_id()) 491 resched_curr(rq); 492 raw_spin_unlock_irqrestore(&rq->lock, flags); 493 } 494 495 #ifdef CONFIG_SMP 496 #ifdef CONFIG_NO_HZ_COMMON 497 /* 498 * In the semi idle case, use the nearest busy CPU for migrating timers 499 * from an idle CPU. This is good for power-savings. 500 * 501 * We don't do similar optimization for completely idle system, as 502 * selecting an idle CPU will add more delays to the timers than intended 503 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 504 */ 505 int get_nohz_timer_target(void) 506 { 507 int i, cpu = smp_processor_id(); 508 struct sched_domain *sd; 509 510 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 511 return cpu; 512 513 rcu_read_lock(); 514 for_each_domain(cpu, sd) { 515 for_each_cpu(i, sched_domain_span(sd)) { 516 if (cpu == i) 517 continue; 518 519 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 520 cpu = i; 521 goto unlock; 522 } 523 } 524 } 525 526 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 527 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 528 unlock: 529 rcu_read_unlock(); 530 return cpu; 531 } 532 533 /* 534 * When add_timer_on() enqueues a timer into the timer wheel of an 535 * idle CPU then this timer might expire before the next timer event 536 * which is scheduled to wake up that CPU. In case of a completely 537 * idle system the next event might even be infinite time into the 538 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 539 * leaves the inner idle loop so the newly added timer is taken into 540 * account when the CPU goes back to idle and evaluates the timer 541 * wheel for the next timer event. 542 */ 543 static void wake_up_idle_cpu(int cpu) 544 { 545 struct rq *rq = cpu_rq(cpu); 546 547 if (cpu == smp_processor_id()) 548 return; 549 550 if (set_nr_and_not_polling(rq->idle)) 551 smp_send_reschedule(cpu); 552 else 553 trace_sched_wake_idle_without_ipi(cpu); 554 } 555 556 static bool wake_up_full_nohz_cpu(int cpu) 557 { 558 /* 559 * We just need the target to call irq_exit() and re-evaluate 560 * the next tick. The nohz full kick at least implies that. 561 * If needed we can still optimize that later with an 562 * empty IRQ. 563 */ 564 if (cpu_is_offline(cpu)) 565 return true; /* Don't try to wake offline CPUs. */ 566 if (tick_nohz_full_cpu(cpu)) { 567 if (cpu != smp_processor_id() || 568 tick_nohz_tick_stopped()) 569 tick_nohz_full_kick_cpu(cpu); 570 return true; 571 } 572 573 return false; 574 } 575 576 /* 577 * Wake up the specified CPU. If the CPU is going offline, it is the 578 * caller's responsibility to deal with the lost wakeup, for example, 579 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 580 */ 581 void wake_up_nohz_cpu(int cpu) 582 { 583 if (!wake_up_full_nohz_cpu(cpu)) 584 wake_up_idle_cpu(cpu); 585 } 586 587 static inline bool got_nohz_idle_kick(void) 588 { 589 int cpu = smp_processor_id(); 590 591 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 592 return false; 593 594 if (idle_cpu(cpu) && !need_resched()) 595 return true; 596 597 /* 598 * We can't run Idle Load Balance on this CPU for this time so we 599 * cancel it and clear NOHZ_BALANCE_KICK 600 */ 601 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 602 return false; 603 } 604 605 #else /* CONFIG_NO_HZ_COMMON */ 606 607 static inline bool got_nohz_idle_kick(void) 608 { 609 return false; 610 } 611 612 #endif /* CONFIG_NO_HZ_COMMON */ 613 614 #ifdef CONFIG_NO_HZ_FULL 615 bool sched_can_stop_tick(struct rq *rq) 616 { 617 int fifo_nr_running; 618 619 /* Deadline tasks, even if single, need the tick */ 620 if (rq->dl.dl_nr_running) 621 return false; 622 623 /* 624 * If there are more than one RR tasks, we need the tick to effect the 625 * actual RR behaviour. 626 */ 627 if (rq->rt.rr_nr_running) { 628 if (rq->rt.rr_nr_running == 1) 629 return true; 630 else 631 return false; 632 } 633 634 /* 635 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 636 * forced preemption between FIFO tasks. 637 */ 638 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 639 if (fifo_nr_running) 640 return true; 641 642 /* 643 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 644 * if there's more than one we need the tick for involuntary 645 * preemption. 646 */ 647 if (rq->nr_running > 1) 648 return false; 649 650 return true; 651 } 652 #endif /* CONFIG_NO_HZ_FULL */ 653 654 void sched_avg_update(struct rq *rq) 655 { 656 s64 period = sched_avg_period(); 657 658 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 659 /* 660 * Inline assembly required to prevent the compiler 661 * optimising this loop into a divmod call. 662 * See __iter_div_u64_rem() for another example of this. 663 */ 664 asm("" : "+rm" (rq->age_stamp)); 665 rq->age_stamp += period; 666 rq->rt_avg /= 2; 667 } 668 } 669 670 #endif /* CONFIG_SMP */ 671 672 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 673 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 674 /* 675 * Iterate task_group tree rooted at *from, calling @down when first entering a 676 * node and @up when leaving it for the final time. 677 * 678 * Caller must hold rcu_lock or sufficient equivalent. 679 */ 680 int walk_tg_tree_from(struct task_group *from, 681 tg_visitor down, tg_visitor up, void *data) 682 { 683 struct task_group *parent, *child; 684 int ret; 685 686 parent = from; 687 688 down: 689 ret = (*down)(parent, data); 690 if (ret) 691 goto out; 692 list_for_each_entry_rcu(child, &parent->children, siblings) { 693 parent = child; 694 goto down; 695 696 up: 697 continue; 698 } 699 ret = (*up)(parent, data); 700 if (ret || parent == from) 701 goto out; 702 703 child = parent; 704 parent = parent->parent; 705 if (parent) 706 goto up; 707 out: 708 return ret; 709 } 710 711 int tg_nop(struct task_group *tg, void *data) 712 { 713 return 0; 714 } 715 #endif 716 717 static void set_load_weight(struct task_struct *p, bool update_load) 718 { 719 int prio = p->static_prio - MAX_RT_PRIO; 720 struct load_weight *load = &p->se.load; 721 722 /* 723 * SCHED_IDLE tasks get minimal weight: 724 */ 725 if (idle_policy(p->policy)) { 726 load->weight = scale_load(WEIGHT_IDLEPRIO); 727 load->inv_weight = WMULT_IDLEPRIO; 728 return; 729 } 730 731 /* 732 * SCHED_OTHER tasks have to update their load when changing their 733 * weight 734 */ 735 if (update_load && p->sched_class == &fair_sched_class) { 736 reweight_task(p, prio); 737 } else { 738 load->weight = scale_load(sched_prio_to_weight[prio]); 739 load->inv_weight = sched_prio_to_wmult[prio]; 740 } 741 } 742 743 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 744 { 745 if (!(flags & ENQUEUE_NOCLOCK)) 746 update_rq_clock(rq); 747 748 if (!(flags & ENQUEUE_RESTORE)) 749 sched_info_queued(rq, p); 750 751 p->sched_class->enqueue_task(rq, p, flags); 752 } 753 754 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 755 { 756 if (!(flags & DEQUEUE_NOCLOCK)) 757 update_rq_clock(rq); 758 759 if (!(flags & DEQUEUE_SAVE)) 760 sched_info_dequeued(rq, p); 761 762 p->sched_class->dequeue_task(rq, p, flags); 763 } 764 765 void activate_task(struct rq *rq, struct task_struct *p, int flags) 766 { 767 if (task_contributes_to_load(p)) 768 rq->nr_uninterruptible--; 769 770 enqueue_task(rq, p, flags); 771 } 772 773 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 774 { 775 if (task_contributes_to_load(p)) 776 rq->nr_uninterruptible++; 777 778 dequeue_task(rq, p, flags); 779 } 780 781 /* 782 * __normal_prio - return the priority that is based on the static prio 783 */ 784 static inline int __normal_prio(struct task_struct *p) 785 { 786 return p->static_prio; 787 } 788 789 /* 790 * Calculate the expected normal priority: i.e. priority 791 * without taking RT-inheritance into account. Might be 792 * boosted by interactivity modifiers. Changes upon fork, 793 * setprio syscalls, and whenever the interactivity 794 * estimator recalculates. 795 */ 796 static inline int normal_prio(struct task_struct *p) 797 { 798 int prio; 799 800 if (task_has_dl_policy(p)) 801 prio = MAX_DL_PRIO-1; 802 else if (task_has_rt_policy(p)) 803 prio = MAX_RT_PRIO-1 - p->rt_priority; 804 else 805 prio = __normal_prio(p); 806 return prio; 807 } 808 809 /* 810 * Calculate the current priority, i.e. the priority 811 * taken into account by the scheduler. This value might 812 * be boosted by RT tasks, or might be boosted by 813 * interactivity modifiers. Will be RT if the task got 814 * RT-boosted. If not then it returns p->normal_prio. 815 */ 816 static int effective_prio(struct task_struct *p) 817 { 818 p->normal_prio = normal_prio(p); 819 /* 820 * If we are RT tasks or we were boosted to RT priority, 821 * keep the priority unchanged. Otherwise, update priority 822 * to the normal priority: 823 */ 824 if (!rt_prio(p->prio)) 825 return p->normal_prio; 826 return p->prio; 827 } 828 829 /** 830 * task_curr - is this task currently executing on a CPU? 831 * @p: the task in question. 832 * 833 * Return: 1 if the task is currently executing. 0 otherwise. 834 */ 835 inline int task_curr(const struct task_struct *p) 836 { 837 return cpu_curr(task_cpu(p)) == p; 838 } 839 840 /* 841 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 842 * use the balance_callback list if you want balancing. 843 * 844 * this means any call to check_class_changed() must be followed by a call to 845 * balance_callback(). 846 */ 847 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 848 const struct sched_class *prev_class, 849 int oldprio) 850 { 851 if (prev_class != p->sched_class) { 852 if (prev_class->switched_from) 853 prev_class->switched_from(rq, p); 854 855 p->sched_class->switched_to(rq, p); 856 } else if (oldprio != p->prio || dl_task(p)) 857 p->sched_class->prio_changed(rq, p, oldprio); 858 } 859 860 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 861 { 862 const struct sched_class *class; 863 864 if (p->sched_class == rq->curr->sched_class) { 865 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 866 } else { 867 for_each_class(class) { 868 if (class == rq->curr->sched_class) 869 break; 870 if (class == p->sched_class) { 871 resched_curr(rq); 872 break; 873 } 874 } 875 } 876 877 /* 878 * A queue event has occurred, and we're going to schedule. In 879 * this case, we can save a useless back to back clock update. 880 */ 881 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 882 rq_clock_skip_update(rq); 883 } 884 885 #ifdef CONFIG_SMP 886 887 static inline bool is_per_cpu_kthread(struct task_struct *p) 888 { 889 if (!(p->flags & PF_KTHREAD)) 890 return false; 891 892 if (p->nr_cpus_allowed != 1) 893 return false; 894 895 return true; 896 } 897 898 /* 899 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 900 * __set_cpus_allowed_ptr() and select_fallback_rq(). 901 */ 902 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 903 { 904 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 905 return false; 906 907 if (is_per_cpu_kthread(p)) 908 return cpu_online(cpu); 909 910 return cpu_active(cpu); 911 } 912 913 /* 914 * This is how migration works: 915 * 916 * 1) we invoke migration_cpu_stop() on the target CPU using 917 * stop_one_cpu(). 918 * 2) stopper starts to run (implicitly forcing the migrated thread 919 * off the CPU) 920 * 3) it checks whether the migrated task is still in the wrong runqueue. 921 * 4) if it's in the wrong runqueue then the migration thread removes 922 * it and puts it into the right queue. 923 * 5) stopper completes and stop_one_cpu() returns and the migration 924 * is done. 925 */ 926 927 /* 928 * move_queued_task - move a queued task to new rq. 929 * 930 * Returns (locked) new rq. Old rq's lock is released. 931 */ 932 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 933 struct task_struct *p, int new_cpu) 934 { 935 lockdep_assert_held(&rq->lock); 936 937 p->on_rq = TASK_ON_RQ_MIGRATING; 938 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 939 set_task_cpu(p, new_cpu); 940 rq_unlock(rq, rf); 941 942 rq = cpu_rq(new_cpu); 943 944 rq_lock(rq, rf); 945 BUG_ON(task_cpu(p) != new_cpu); 946 enqueue_task(rq, p, 0); 947 p->on_rq = TASK_ON_RQ_QUEUED; 948 check_preempt_curr(rq, p, 0); 949 950 return rq; 951 } 952 953 struct migration_arg { 954 struct task_struct *task; 955 int dest_cpu; 956 }; 957 958 /* 959 * Move (not current) task off this CPU, onto the destination CPU. We're doing 960 * this because either it can't run here any more (set_cpus_allowed() 961 * away from this CPU, or CPU going down), or because we're 962 * attempting to rebalance this task on exec (sched_exec). 963 * 964 * So we race with normal scheduler movements, but that's OK, as long 965 * as the task is no longer on this CPU. 966 */ 967 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 968 struct task_struct *p, int dest_cpu) 969 { 970 /* Affinity changed (again). */ 971 if (!is_cpu_allowed(p, dest_cpu)) 972 return rq; 973 974 update_rq_clock(rq); 975 rq = move_queued_task(rq, rf, p, dest_cpu); 976 977 return rq; 978 } 979 980 /* 981 * migration_cpu_stop - this will be executed by a highprio stopper thread 982 * and performs thread migration by bumping thread off CPU then 983 * 'pushing' onto another runqueue. 984 */ 985 static int migration_cpu_stop(void *data) 986 { 987 struct migration_arg *arg = data; 988 struct task_struct *p = arg->task; 989 struct rq *rq = this_rq(); 990 struct rq_flags rf; 991 992 /* 993 * The original target CPU might have gone down and we might 994 * be on another CPU but it doesn't matter. 995 */ 996 local_irq_disable(); 997 /* 998 * We need to explicitly wake pending tasks before running 999 * __migrate_task() such that we will not miss enforcing cpus_allowed 1000 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1001 */ 1002 sched_ttwu_pending(); 1003 1004 raw_spin_lock(&p->pi_lock); 1005 rq_lock(rq, &rf); 1006 /* 1007 * If task_rq(p) != rq, it cannot be migrated here, because we're 1008 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1009 * we're holding p->pi_lock. 1010 */ 1011 if (task_rq(p) == rq) { 1012 if (task_on_rq_queued(p)) 1013 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1014 else 1015 p->wake_cpu = arg->dest_cpu; 1016 } 1017 rq_unlock(rq, &rf); 1018 raw_spin_unlock(&p->pi_lock); 1019 1020 local_irq_enable(); 1021 return 0; 1022 } 1023 1024 /* 1025 * sched_class::set_cpus_allowed must do the below, but is not required to 1026 * actually call this function. 1027 */ 1028 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1029 { 1030 cpumask_copy(&p->cpus_allowed, new_mask); 1031 p->nr_cpus_allowed = cpumask_weight(new_mask); 1032 } 1033 1034 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1035 { 1036 struct rq *rq = task_rq(p); 1037 bool queued, running; 1038 1039 lockdep_assert_held(&p->pi_lock); 1040 1041 queued = task_on_rq_queued(p); 1042 running = task_current(rq, p); 1043 1044 if (queued) { 1045 /* 1046 * Because __kthread_bind() calls this on blocked tasks without 1047 * holding rq->lock. 1048 */ 1049 lockdep_assert_held(&rq->lock); 1050 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1051 } 1052 if (running) 1053 put_prev_task(rq, p); 1054 1055 p->sched_class->set_cpus_allowed(p, new_mask); 1056 1057 if (queued) 1058 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1059 if (running) 1060 set_curr_task(rq, p); 1061 } 1062 1063 /* 1064 * Change a given task's CPU affinity. Migrate the thread to a 1065 * proper CPU and schedule it away if the CPU it's executing on 1066 * is removed from the allowed bitmask. 1067 * 1068 * NOTE: the caller must have a valid reference to the task, the 1069 * task must not exit() & deallocate itself prematurely. The 1070 * call is not atomic; no spinlocks may be held. 1071 */ 1072 static int __set_cpus_allowed_ptr(struct task_struct *p, 1073 const struct cpumask *new_mask, bool check) 1074 { 1075 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1076 unsigned int dest_cpu; 1077 struct rq_flags rf; 1078 struct rq *rq; 1079 int ret = 0; 1080 1081 rq = task_rq_lock(p, &rf); 1082 update_rq_clock(rq); 1083 1084 if (p->flags & PF_KTHREAD) { 1085 /* 1086 * Kernel threads are allowed on online && !active CPUs 1087 */ 1088 cpu_valid_mask = cpu_online_mask; 1089 } 1090 1091 /* 1092 * Must re-check here, to close a race against __kthread_bind(), 1093 * sched_setaffinity() is not guaranteed to observe the flag. 1094 */ 1095 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1096 ret = -EINVAL; 1097 goto out; 1098 } 1099 1100 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1101 goto out; 1102 1103 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1104 ret = -EINVAL; 1105 goto out; 1106 } 1107 1108 do_set_cpus_allowed(p, new_mask); 1109 1110 if (p->flags & PF_KTHREAD) { 1111 /* 1112 * For kernel threads that do indeed end up on online && 1113 * !active we want to ensure they are strict per-CPU threads. 1114 */ 1115 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1116 !cpumask_intersects(new_mask, cpu_active_mask) && 1117 p->nr_cpus_allowed != 1); 1118 } 1119 1120 /* Can the task run on the task's current CPU? If so, we're done */ 1121 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1122 goto out; 1123 1124 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1125 if (task_running(rq, p) || p->state == TASK_WAKING) { 1126 struct migration_arg arg = { p, dest_cpu }; 1127 /* Need help from migration thread: drop lock and wait. */ 1128 task_rq_unlock(rq, p, &rf); 1129 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1130 tlb_migrate_finish(p->mm); 1131 return 0; 1132 } else if (task_on_rq_queued(p)) { 1133 /* 1134 * OK, since we're going to drop the lock immediately 1135 * afterwards anyway. 1136 */ 1137 rq = move_queued_task(rq, &rf, p, dest_cpu); 1138 } 1139 out: 1140 task_rq_unlock(rq, p, &rf); 1141 1142 return ret; 1143 } 1144 1145 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1146 { 1147 return __set_cpus_allowed_ptr(p, new_mask, false); 1148 } 1149 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1150 1151 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1152 { 1153 #ifdef CONFIG_SCHED_DEBUG 1154 /* 1155 * We should never call set_task_cpu() on a blocked task, 1156 * ttwu() will sort out the placement. 1157 */ 1158 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1159 !p->on_rq); 1160 1161 /* 1162 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1163 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1164 * time relying on p->on_rq. 1165 */ 1166 WARN_ON_ONCE(p->state == TASK_RUNNING && 1167 p->sched_class == &fair_sched_class && 1168 (p->on_rq && !task_on_rq_migrating(p))); 1169 1170 #ifdef CONFIG_LOCKDEP 1171 /* 1172 * The caller should hold either p->pi_lock or rq->lock, when changing 1173 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1174 * 1175 * sched_move_task() holds both and thus holding either pins the cgroup, 1176 * see task_group(). 1177 * 1178 * Furthermore, all task_rq users should acquire both locks, see 1179 * task_rq_lock(). 1180 */ 1181 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1182 lockdep_is_held(&task_rq(p)->lock))); 1183 #endif 1184 /* 1185 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1186 */ 1187 WARN_ON_ONCE(!cpu_online(new_cpu)); 1188 #endif 1189 1190 trace_sched_migrate_task(p, new_cpu); 1191 1192 if (task_cpu(p) != new_cpu) { 1193 if (p->sched_class->migrate_task_rq) 1194 p->sched_class->migrate_task_rq(p); 1195 p->se.nr_migrations++; 1196 rseq_migrate(p); 1197 perf_event_task_migrate(p); 1198 } 1199 1200 __set_task_cpu(p, new_cpu); 1201 } 1202 1203 static void __migrate_swap_task(struct task_struct *p, int cpu) 1204 { 1205 if (task_on_rq_queued(p)) { 1206 struct rq *src_rq, *dst_rq; 1207 struct rq_flags srf, drf; 1208 1209 src_rq = task_rq(p); 1210 dst_rq = cpu_rq(cpu); 1211 1212 rq_pin_lock(src_rq, &srf); 1213 rq_pin_lock(dst_rq, &drf); 1214 1215 p->on_rq = TASK_ON_RQ_MIGRATING; 1216 deactivate_task(src_rq, p, 0); 1217 set_task_cpu(p, cpu); 1218 activate_task(dst_rq, p, 0); 1219 p->on_rq = TASK_ON_RQ_QUEUED; 1220 check_preempt_curr(dst_rq, p, 0); 1221 1222 rq_unpin_lock(dst_rq, &drf); 1223 rq_unpin_lock(src_rq, &srf); 1224 1225 } else { 1226 /* 1227 * Task isn't running anymore; make it appear like we migrated 1228 * it before it went to sleep. This means on wakeup we make the 1229 * previous CPU our target instead of where it really is. 1230 */ 1231 p->wake_cpu = cpu; 1232 } 1233 } 1234 1235 struct migration_swap_arg { 1236 struct task_struct *src_task, *dst_task; 1237 int src_cpu, dst_cpu; 1238 }; 1239 1240 static int migrate_swap_stop(void *data) 1241 { 1242 struct migration_swap_arg *arg = data; 1243 struct rq *src_rq, *dst_rq; 1244 int ret = -EAGAIN; 1245 1246 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1247 return -EAGAIN; 1248 1249 src_rq = cpu_rq(arg->src_cpu); 1250 dst_rq = cpu_rq(arg->dst_cpu); 1251 1252 double_raw_lock(&arg->src_task->pi_lock, 1253 &arg->dst_task->pi_lock); 1254 double_rq_lock(src_rq, dst_rq); 1255 1256 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1257 goto unlock; 1258 1259 if (task_cpu(arg->src_task) != arg->src_cpu) 1260 goto unlock; 1261 1262 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1263 goto unlock; 1264 1265 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1266 goto unlock; 1267 1268 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1269 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1270 1271 ret = 0; 1272 1273 unlock: 1274 double_rq_unlock(src_rq, dst_rq); 1275 raw_spin_unlock(&arg->dst_task->pi_lock); 1276 raw_spin_unlock(&arg->src_task->pi_lock); 1277 1278 return ret; 1279 } 1280 1281 /* 1282 * Cross migrate two tasks 1283 */ 1284 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1285 { 1286 struct migration_swap_arg arg; 1287 int ret = -EINVAL; 1288 1289 arg = (struct migration_swap_arg){ 1290 .src_task = cur, 1291 .src_cpu = task_cpu(cur), 1292 .dst_task = p, 1293 .dst_cpu = task_cpu(p), 1294 }; 1295 1296 if (arg.src_cpu == arg.dst_cpu) 1297 goto out; 1298 1299 /* 1300 * These three tests are all lockless; this is OK since all of them 1301 * will be re-checked with proper locks held further down the line. 1302 */ 1303 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1304 goto out; 1305 1306 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1307 goto out; 1308 1309 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1310 goto out; 1311 1312 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1313 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1314 1315 out: 1316 return ret; 1317 } 1318 1319 /* 1320 * wait_task_inactive - wait for a thread to unschedule. 1321 * 1322 * If @match_state is nonzero, it's the @p->state value just checked and 1323 * not expected to change. If it changes, i.e. @p might have woken up, 1324 * then return zero. When we succeed in waiting for @p to be off its CPU, 1325 * we return a positive number (its total switch count). If a second call 1326 * a short while later returns the same number, the caller can be sure that 1327 * @p has remained unscheduled the whole time. 1328 * 1329 * The caller must ensure that the task *will* unschedule sometime soon, 1330 * else this function might spin for a *long* time. This function can't 1331 * be called with interrupts off, or it may introduce deadlock with 1332 * smp_call_function() if an IPI is sent by the same process we are 1333 * waiting to become inactive. 1334 */ 1335 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1336 { 1337 int running, queued; 1338 struct rq_flags rf; 1339 unsigned long ncsw; 1340 struct rq *rq; 1341 1342 for (;;) { 1343 /* 1344 * We do the initial early heuristics without holding 1345 * any task-queue locks at all. We'll only try to get 1346 * the runqueue lock when things look like they will 1347 * work out! 1348 */ 1349 rq = task_rq(p); 1350 1351 /* 1352 * If the task is actively running on another CPU 1353 * still, just relax and busy-wait without holding 1354 * any locks. 1355 * 1356 * NOTE! Since we don't hold any locks, it's not 1357 * even sure that "rq" stays as the right runqueue! 1358 * But we don't care, since "task_running()" will 1359 * return false if the runqueue has changed and p 1360 * is actually now running somewhere else! 1361 */ 1362 while (task_running(rq, p)) { 1363 if (match_state && unlikely(p->state != match_state)) 1364 return 0; 1365 cpu_relax(); 1366 } 1367 1368 /* 1369 * Ok, time to look more closely! We need the rq 1370 * lock now, to be *sure*. If we're wrong, we'll 1371 * just go back and repeat. 1372 */ 1373 rq = task_rq_lock(p, &rf); 1374 trace_sched_wait_task(p); 1375 running = task_running(rq, p); 1376 queued = task_on_rq_queued(p); 1377 ncsw = 0; 1378 if (!match_state || p->state == match_state) 1379 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1380 task_rq_unlock(rq, p, &rf); 1381 1382 /* 1383 * If it changed from the expected state, bail out now. 1384 */ 1385 if (unlikely(!ncsw)) 1386 break; 1387 1388 /* 1389 * Was it really running after all now that we 1390 * checked with the proper locks actually held? 1391 * 1392 * Oops. Go back and try again.. 1393 */ 1394 if (unlikely(running)) { 1395 cpu_relax(); 1396 continue; 1397 } 1398 1399 /* 1400 * It's not enough that it's not actively running, 1401 * it must be off the runqueue _entirely_, and not 1402 * preempted! 1403 * 1404 * So if it was still runnable (but just not actively 1405 * running right now), it's preempted, and we should 1406 * yield - it could be a while. 1407 */ 1408 if (unlikely(queued)) { 1409 ktime_t to = NSEC_PER_SEC / HZ; 1410 1411 set_current_state(TASK_UNINTERRUPTIBLE); 1412 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1413 continue; 1414 } 1415 1416 /* 1417 * Ahh, all good. It wasn't running, and it wasn't 1418 * runnable, which means that it will never become 1419 * running in the future either. We're all done! 1420 */ 1421 break; 1422 } 1423 1424 return ncsw; 1425 } 1426 1427 /*** 1428 * kick_process - kick a running thread to enter/exit the kernel 1429 * @p: the to-be-kicked thread 1430 * 1431 * Cause a process which is running on another CPU to enter 1432 * kernel-mode, without any delay. (to get signals handled.) 1433 * 1434 * NOTE: this function doesn't have to take the runqueue lock, 1435 * because all it wants to ensure is that the remote task enters 1436 * the kernel. If the IPI races and the task has been migrated 1437 * to another CPU then no harm is done and the purpose has been 1438 * achieved as well. 1439 */ 1440 void kick_process(struct task_struct *p) 1441 { 1442 int cpu; 1443 1444 preempt_disable(); 1445 cpu = task_cpu(p); 1446 if ((cpu != smp_processor_id()) && task_curr(p)) 1447 smp_send_reschedule(cpu); 1448 preempt_enable(); 1449 } 1450 EXPORT_SYMBOL_GPL(kick_process); 1451 1452 /* 1453 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1454 * 1455 * A few notes on cpu_active vs cpu_online: 1456 * 1457 * - cpu_active must be a subset of cpu_online 1458 * 1459 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1460 * see __set_cpus_allowed_ptr(). At this point the newly online 1461 * CPU isn't yet part of the sched domains, and balancing will not 1462 * see it. 1463 * 1464 * - on CPU-down we clear cpu_active() to mask the sched domains and 1465 * avoid the load balancer to place new tasks on the to be removed 1466 * CPU. Existing tasks will remain running there and will be taken 1467 * off. 1468 * 1469 * This means that fallback selection must not select !active CPUs. 1470 * And can assume that any active CPU must be online. Conversely 1471 * select_task_rq() below may allow selection of !active CPUs in order 1472 * to satisfy the above rules. 1473 */ 1474 static int select_fallback_rq(int cpu, struct task_struct *p) 1475 { 1476 int nid = cpu_to_node(cpu); 1477 const struct cpumask *nodemask = NULL; 1478 enum { cpuset, possible, fail } state = cpuset; 1479 int dest_cpu; 1480 1481 /* 1482 * If the node that the CPU is on has been offlined, cpu_to_node() 1483 * will return -1. There is no CPU on the node, and we should 1484 * select the CPU on the other node. 1485 */ 1486 if (nid != -1) { 1487 nodemask = cpumask_of_node(nid); 1488 1489 /* Look for allowed, online CPU in same node. */ 1490 for_each_cpu(dest_cpu, nodemask) { 1491 if (!cpu_active(dest_cpu)) 1492 continue; 1493 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1494 return dest_cpu; 1495 } 1496 } 1497 1498 for (;;) { 1499 /* Any allowed, online CPU? */ 1500 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1501 if (!is_cpu_allowed(p, dest_cpu)) 1502 continue; 1503 1504 goto out; 1505 } 1506 1507 /* No more Mr. Nice Guy. */ 1508 switch (state) { 1509 case cpuset: 1510 if (IS_ENABLED(CONFIG_CPUSETS)) { 1511 cpuset_cpus_allowed_fallback(p); 1512 state = possible; 1513 break; 1514 } 1515 /* Fall-through */ 1516 case possible: 1517 do_set_cpus_allowed(p, cpu_possible_mask); 1518 state = fail; 1519 break; 1520 1521 case fail: 1522 BUG(); 1523 break; 1524 } 1525 } 1526 1527 out: 1528 if (state != cpuset) { 1529 /* 1530 * Don't tell them about moving exiting tasks or 1531 * kernel threads (both mm NULL), since they never 1532 * leave kernel. 1533 */ 1534 if (p->mm && printk_ratelimit()) { 1535 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1536 task_pid_nr(p), p->comm, cpu); 1537 } 1538 } 1539 1540 return dest_cpu; 1541 } 1542 1543 /* 1544 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1545 */ 1546 static inline 1547 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1548 { 1549 lockdep_assert_held(&p->pi_lock); 1550 1551 if (p->nr_cpus_allowed > 1) 1552 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1553 else 1554 cpu = cpumask_any(&p->cpus_allowed); 1555 1556 /* 1557 * In order not to call set_task_cpu() on a blocking task we need 1558 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1559 * CPU. 1560 * 1561 * Since this is common to all placement strategies, this lives here. 1562 * 1563 * [ this allows ->select_task() to simply return task_cpu(p) and 1564 * not worry about this generic constraint ] 1565 */ 1566 if (unlikely(!is_cpu_allowed(p, cpu))) 1567 cpu = select_fallback_rq(task_cpu(p), p); 1568 1569 return cpu; 1570 } 1571 1572 static void update_avg(u64 *avg, u64 sample) 1573 { 1574 s64 diff = sample - *avg; 1575 *avg += diff >> 3; 1576 } 1577 1578 void sched_set_stop_task(int cpu, struct task_struct *stop) 1579 { 1580 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1581 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1582 1583 if (stop) { 1584 /* 1585 * Make it appear like a SCHED_FIFO task, its something 1586 * userspace knows about and won't get confused about. 1587 * 1588 * Also, it will make PI more or less work without too 1589 * much confusion -- but then, stop work should not 1590 * rely on PI working anyway. 1591 */ 1592 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1593 1594 stop->sched_class = &stop_sched_class; 1595 } 1596 1597 cpu_rq(cpu)->stop = stop; 1598 1599 if (old_stop) { 1600 /* 1601 * Reset it back to a normal scheduling class so that 1602 * it can die in pieces. 1603 */ 1604 old_stop->sched_class = &rt_sched_class; 1605 } 1606 } 1607 1608 #else 1609 1610 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1611 const struct cpumask *new_mask, bool check) 1612 { 1613 return set_cpus_allowed_ptr(p, new_mask); 1614 } 1615 1616 #endif /* CONFIG_SMP */ 1617 1618 static void 1619 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1620 { 1621 struct rq *rq; 1622 1623 if (!schedstat_enabled()) 1624 return; 1625 1626 rq = this_rq(); 1627 1628 #ifdef CONFIG_SMP 1629 if (cpu == rq->cpu) { 1630 __schedstat_inc(rq->ttwu_local); 1631 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1632 } else { 1633 struct sched_domain *sd; 1634 1635 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1636 rcu_read_lock(); 1637 for_each_domain(rq->cpu, sd) { 1638 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1639 __schedstat_inc(sd->ttwu_wake_remote); 1640 break; 1641 } 1642 } 1643 rcu_read_unlock(); 1644 } 1645 1646 if (wake_flags & WF_MIGRATED) 1647 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1648 #endif /* CONFIG_SMP */ 1649 1650 __schedstat_inc(rq->ttwu_count); 1651 __schedstat_inc(p->se.statistics.nr_wakeups); 1652 1653 if (wake_flags & WF_SYNC) 1654 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1655 } 1656 1657 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1658 { 1659 activate_task(rq, p, en_flags); 1660 p->on_rq = TASK_ON_RQ_QUEUED; 1661 1662 /* If a worker is waking up, notify the workqueue: */ 1663 if (p->flags & PF_WQ_WORKER) 1664 wq_worker_waking_up(p, cpu_of(rq)); 1665 } 1666 1667 /* 1668 * Mark the task runnable and perform wakeup-preemption. 1669 */ 1670 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1671 struct rq_flags *rf) 1672 { 1673 check_preempt_curr(rq, p, wake_flags); 1674 p->state = TASK_RUNNING; 1675 trace_sched_wakeup(p); 1676 1677 #ifdef CONFIG_SMP 1678 if (p->sched_class->task_woken) { 1679 /* 1680 * Our task @p is fully woken up and running; so its safe to 1681 * drop the rq->lock, hereafter rq is only used for statistics. 1682 */ 1683 rq_unpin_lock(rq, rf); 1684 p->sched_class->task_woken(rq, p); 1685 rq_repin_lock(rq, rf); 1686 } 1687 1688 if (rq->idle_stamp) { 1689 u64 delta = rq_clock(rq) - rq->idle_stamp; 1690 u64 max = 2*rq->max_idle_balance_cost; 1691 1692 update_avg(&rq->avg_idle, delta); 1693 1694 if (rq->avg_idle > max) 1695 rq->avg_idle = max; 1696 1697 rq->idle_stamp = 0; 1698 } 1699 #endif 1700 } 1701 1702 static void 1703 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1704 struct rq_flags *rf) 1705 { 1706 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1707 1708 lockdep_assert_held(&rq->lock); 1709 1710 #ifdef CONFIG_SMP 1711 if (p->sched_contributes_to_load) 1712 rq->nr_uninterruptible--; 1713 1714 if (wake_flags & WF_MIGRATED) 1715 en_flags |= ENQUEUE_MIGRATED; 1716 #endif 1717 1718 ttwu_activate(rq, p, en_flags); 1719 ttwu_do_wakeup(rq, p, wake_flags, rf); 1720 } 1721 1722 /* 1723 * Called in case the task @p isn't fully descheduled from its runqueue, 1724 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1725 * since all we need to do is flip p->state to TASK_RUNNING, since 1726 * the task is still ->on_rq. 1727 */ 1728 static int ttwu_remote(struct task_struct *p, int wake_flags) 1729 { 1730 struct rq_flags rf; 1731 struct rq *rq; 1732 int ret = 0; 1733 1734 rq = __task_rq_lock(p, &rf); 1735 if (task_on_rq_queued(p)) { 1736 /* check_preempt_curr() may use rq clock */ 1737 update_rq_clock(rq); 1738 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1739 ret = 1; 1740 } 1741 __task_rq_unlock(rq, &rf); 1742 1743 return ret; 1744 } 1745 1746 #ifdef CONFIG_SMP 1747 void sched_ttwu_pending(void) 1748 { 1749 struct rq *rq = this_rq(); 1750 struct llist_node *llist = llist_del_all(&rq->wake_list); 1751 struct task_struct *p, *t; 1752 struct rq_flags rf; 1753 1754 if (!llist) 1755 return; 1756 1757 rq_lock_irqsave(rq, &rf); 1758 update_rq_clock(rq); 1759 1760 llist_for_each_entry_safe(p, t, llist, wake_entry) 1761 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1762 1763 rq_unlock_irqrestore(rq, &rf); 1764 } 1765 1766 void scheduler_ipi(void) 1767 { 1768 /* 1769 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1770 * TIF_NEED_RESCHED remotely (for the first time) will also send 1771 * this IPI. 1772 */ 1773 preempt_fold_need_resched(); 1774 1775 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1776 return; 1777 1778 /* 1779 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1780 * traditionally all their work was done from the interrupt return 1781 * path. Now that we actually do some work, we need to make sure 1782 * we do call them. 1783 * 1784 * Some archs already do call them, luckily irq_enter/exit nest 1785 * properly. 1786 * 1787 * Arguably we should visit all archs and update all handlers, 1788 * however a fair share of IPIs are still resched only so this would 1789 * somewhat pessimize the simple resched case. 1790 */ 1791 irq_enter(); 1792 sched_ttwu_pending(); 1793 1794 /* 1795 * Check if someone kicked us for doing the nohz idle load balance. 1796 */ 1797 if (unlikely(got_nohz_idle_kick())) { 1798 this_rq()->idle_balance = 1; 1799 raise_softirq_irqoff(SCHED_SOFTIRQ); 1800 } 1801 irq_exit(); 1802 } 1803 1804 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1805 { 1806 struct rq *rq = cpu_rq(cpu); 1807 1808 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1809 1810 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1811 if (!set_nr_if_polling(rq->idle)) 1812 smp_send_reschedule(cpu); 1813 else 1814 trace_sched_wake_idle_without_ipi(cpu); 1815 } 1816 } 1817 1818 void wake_up_if_idle(int cpu) 1819 { 1820 struct rq *rq = cpu_rq(cpu); 1821 struct rq_flags rf; 1822 1823 rcu_read_lock(); 1824 1825 if (!is_idle_task(rcu_dereference(rq->curr))) 1826 goto out; 1827 1828 if (set_nr_if_polling(rq->idle)) { 1829 trace_sched_wake_idle_without_ipi(cpu); 1830 } else { 1831 rq_lock_irqsave(rq, &rf); 1832 if (is_idle_task(rq->curr)) 1833 smp_send_reschedule(cpu); 1834 /* Else CPU is not idle, do nothing here: */ 1835 rq_unlock_irqrestore(rq, &rf); 1836 } 1837 1838 out: 1839 rcu_read_unlock(); 1840 } 1841 1842 bool cpus_share_cache(int this_cpu, int that_cpu) 1843 { 1844 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1845 } 1846 #endif /* CONFIG_SMP */ 1847 1848 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1849 { 1850 struct rq *rq = cpu_rq(cpu); 1851 struct rq_flags rf; 1852 1853 #if defined(CONFIG_SMP) 1854 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1855 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1856 ttwu_queue_remote(p, cpu, wake_flags); 1857 return; 1858 } 1859 #endif 1860 1861 rq_lock(rq, &rf); 1862 update_rq_clock(rq); 1863 ttwu_do_activate(rq, p, wake_flags, &rf); 1864 rq_unlock(rq, &rf); 1865 } 1866 1867 /* 1868 * Notes on Program-Order guarantees on SMP systems. 1869 * 1870 * MIGRATION 1871 * 1872 * The basic program-order guarantee on SMP systems is that when a task [t] 1873 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1874 * execution on its new CPU [c1]. 1875 * 1876 * For migration (of runnable tasks) this is provided by the following means: 1877 * 1878 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1879 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1880 * rq(c1)->lock (if not at the same time, then in that order). 1881 * C) LOCK of the rq(c1)->lock scheduling in task 1882 * 1883 * Transitivity guarantees that B happens after A and C after B. 1884 * Note: we only require RCpc transitivity. 1885 * Note: the CPU doing B need not be c0 or c1 1886 * 1887 * Example: 1888 * 1889 * CPU0 CPU1 CPU2 1890 * 1891 * LOCK rq(0)->lock 1892 * sched-out X 1893 * sched-in Y 1894 * UNLOCK rq(0)->lock 1895 * 1896 * LOCK rq(0)->lock // orders against CPU0 1897 * dequeue X 1898 * UNLOCK rq(0)->lock 1899 * 1900 * LOCK rq(1)->lock 1901 * enqueue X 1902 * UNLOCK rq(1)->lock 1903 * 1904 * LOCK rq(1)->lock // orders against CPU2 1905 * sched-out Z 1906 * sched-in X 1907 * UNLOCK rq(1)->lock 1908 * 1909 * 1910 * BLOCKING -- aka. SLEEP + WAKEUP 1911 * 1912 * For blocking we (obviously) need to provide the same guarantee as for 1913 * migration. However the means are completely different as there is no lock 1914 * chain to provide order. Instead we do: 1915 * 1916 * 1) smp_store_release(X->on_cpu, 0) 1917 * 2) smp_cond_load_acquire(!X->on_cpu) 1918 * 1919 * Example: 1920 * 1921 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1922 * 1923 * LOCK rq(0)->lock LOCK X->pi_lock 1924 * dequeue X 1925 * sched-out X 1926 * smp_store_release(X->on_cpu, 0); 1927 * 1928 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1929 * X->state = WAKING 1930 * set_task_cpu(X,2) 1931 * 1932 * LOCK rq(2)->lock 1933 * enqueue X 1934 * X->state = RUNNING 1935 * UNLOCK rq(2)->lock 1936 * 1937 * LOCK rq(2)->lock // orders against CPU1 1938 * sched-out Z 1939 * sched-in X 1940 * UNLOCK rq(2)->lock 1941 * 1942 * UNLOCK X->pi_lock 1943 * UNLOCK rq(0)->lock 1944 * 1945 * 1946 * However; for wakeups there is a second guarantee we must provide, namely we 1947 * must observe the state that lead to our wakeup. That is, not only must our 1948 * task observe its own prior state, it must also observe the stores prior to 1949 * its wakeup. 1950 * 1951 * This means that any means of doing remote wakeups must order the CPU doing 1952 * the wakeup against the CPU the task is going to end up running on. This, 1953 * however, is already required for the regular Program-Order guarantee above, 1954 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1955 * 1956 */ 1957 1958 /** 1959 * try_to_wake_up - wake up a thread 1960 * @p: the thread to be awakened 1961 * @state: the mask of task states that can be woken 1962 * @wake_flags: wake modifier flags (WF_*) 1963 * 1964 * If (@state & @p->state) @p->state = TASK_RUNNING. 1965 * 1966 * If the task was not queued/runnable, also place it back on a runqueue. 1967 * 1968 * Atomic against schedule() which would dequeue a task, also see 1969 * set_current_state(). 1970 * 1971 * Return: %true if @p->state changes (an actual wakeup was done), 1972 * %false otherwise. 1973 */ 1974 static int 1975 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1976 { 1977 unsigned long flags; 1978 int cpu, success = 0; 1979 1980 /* 1981 * If we are going to wake up a thread waiting for CONDITION we 1982 * need to ensure that CONDITION=1 done by the caller can not be 1983 * reordered with p->state check below. This pairs with mb() in 1984 * set_current_state() the waiting thread does. 1985 */ 1986 raw_spin_lock_irqsave(&p->pi_lock, flags); 1987 smp_mb__after_spinlock(); 1988 if (!(p->state & state)) 1989 goto out; 1990 1991 trace_sched_waking(p); 1992 1993 /* We're going to change ->state: */ 1994 success = 1; 1995 cpu = task_cpu(p); 1996 1997 /* 1998 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1999 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2000 * in smp_cond_load_acquire() below. 2001 * 2002 * sched_ttwu_pending() try_to_wake_up() 2003 * [S] p->on_rq = 1; [L] P->state 2004 * UNLOCK rq->lock -----. 2005 * \ 2006 * +--- RMB 2007 * schedule() / 2008 * LOCK rq->lock -----' 2009 * UNLOCK rq->lock 2010 * 2011 * [task p] 2012 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2013 * 2014 * Pairs with the UNLOCK+LOCK on rq->lock from the 2015 * last wakeup of our task and the schedule that got our task 2016 * current. 2017 */ 2018 smp_rmb(); 2019 if (p->on_rq && ttwu_remote(p, wake_flags)) 2020 goto stat; 2021 2022 #ifdef CONFIG_SMP 2023 /* 2024 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2025 * possible to, falsely, observe p->on_cpu == 0. 2026 * 2027 * One must be running (->on_cpu == 1) in order to remove oneself 2028 * from the runqueue. 2029 * 2030 * [S] ->on_cpu = 1; [L] ->on_rq 2031 * UNLOCK rq->lock 2032 * RMB 2033 * LOCK rq->lock 2034 * [S] ->on_rq = 0; [L] ->on_cpu 2035 * 2036 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2037 * from the consecutive calls to schedule(); the first switching to our 2038 * task, the second putting it to sleep. 2039 */ 2040 smp_rmb(); 2041 2042 /* 2043 * If the owning (remote) CPU is still in the middle of schedule() with 2044 * this task as prev, wait until its done referencing the task. 2045 * 2046 * Pairs with the smp_store_release() in finish_task(). 2047 * 2048 * This ensures that tasks getting woken will be fully ordered against 2049 * their previous state and preserve Program Order. 2050 */ 2051 smp_cond_load_acquire(&p->on_cpu, !VAL); 2052 2053 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2054 p->state = TASK_WAKING; 2055 2056 if (p->in_iowait) { 2057 delayacct_blkio_end(p); 2058 atomic_dec(&task_rq(p)->nr_iowait); 2059 } 2060 2061 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2062 if (task_cpu(p) != cpu) { 2063 wake_flags |= WF_MIGRATED; 2064 set_task_cpu(p, cpu); 2065 } 2066 2067 #else /* CONFIG_SMP */ 2068 2069 if (p->in_iowait) { 2070 delayacct_blkio_end(p); 2071 atomic_dec(&task_rq(p)->nr_iowait); 2072 } 2073 2074 #endif /* CONFIG_SMP */ 2075 2076 ttwu_queue(p, cpu, wake_flags); 2077 stat: 2078 ttwu_stat(p, cpu, wake_flags); 2079 out: 2080 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2081 2082 return success; 2083 } 2084 2085 /** 2086 * try_to_wake_up_local - try to wake up a local task with rq lock held 2087 * @p: the thread to be awakened 2088 * @rf: request-queue flags for pinning 2089 * 2090 * Put @p on the run-queue if it's not already there. The caller must 2091 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2092 * the current task. 2093 */ 2094 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2095 { 2096 struct rq *rq = task_rq(p); 2097 2098 if (WARN_ON_ONCE(rq != this_rq()) || 2099 WARN_ON_ONCE(p == current)) 2100 return; 2101 2102 lockdep_assert_held(&rq->lock); 2103 2104 if (!raw_spin_trylock(&p->pi_lock)) { 2105 /* 2106 * This is OK, because current is on_cpu, which avoids it being 2107 * picked for load-balance and preemption/IRQs are still 2108 * disabled avoiding further scheduler activity on it and we've 2109 * not yet picked a replacement task. 2110 */ 2111 rq_unlock(rq, rf); 2112 raw_spin_lock(&p->pi_lock); 2113 rq_relock(rq, rf); 2114 } 2115 2116 if (!(p->state & TASK_NORMAL)) 2117 goto out; 2118 2119 trace_sched_waking(p); 2120 2121 if (!task_on_rq_queued(p)) { 2122 if (p->in_iowait) { 2123 delayacct_blkio_end(p); 2124 atomic_dec(&rq->nr_iowait); 2125 } 2126 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2127 } 2128 2129 ttwu_do_wakeup(rq, p, 0, rf); 2130 ttwu_stat(p, smp_processor_id(), 0); 2131 out: 2132 raw_spin_unlock(&p->pi_lock); 2133 } 2134 2135 /** 2136 * wake_up_process - Wake up a specific process 2137 * @p: The process to be woken up. 2138 * 2139 * Attempt to wake up the nominated process and move it to the set of runnable 2140 * processes. 2141 * 2142 * Return: 1 if the process was woken up, 0 if it was already running. 2143 * 2144 * It may be assumed that this function implies a write memory barrier before 2145 * changing the task state if and only if any tasks are woken up. 2146 */ 2147 int wake_up_process(struct task_struct *p) 2148 { 2149 return try_to_wake_up(p, TASK_NORMAL, 0); 2150 } 2151 EXPORT_SYMBOL(wake_up_process); 2152 2153 int wake_up_state(struct task_struct *p, unsigned int state) 2154 { 2155 return try_to_wake_up(p, state, 0); 2156 } 2157 2158 /* 2159 * Perform scheduler related setup for a newly forked process p. 2160 * p is forked by current. 2161 * 2162 * __sched_fork() is basic setup used by init_idle() too: 2163 */ 2164 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2165 { 2166 p->on_rq = 0; 2167 2168 p->se.on_rq = 0; 2169 p->se.exec_start = 0; 2170 p->se.sum_exec_runtime = 0; 2171 p->se.prev_sum_exec_runtime = 0; 2172 p->se.nr_migrations = 0; 2173 p->se.vruntime = 0; 2174 INIT_LIST_HEAD(&p->se.group_node); 2175 2176 #ifdef CONFIG_FAIR_GROUP_SCHED 2177 p->se.cfs_rq = NULL; 2178 #endif 2179 2180 #ifdef CONFIG_SCHEDSTATS 2181 /* Even if schedstat is disabled, there should not be garbage */ 2182 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2183 #endif 2184 2185 RB_CLEAR_NODE(&p->dl.rb_node); 2186 init_dl_task_timer(&p->dl); 2187 init_dl_inactive_task_timer(&p->dl); 2188 __dl_clear_params(p); 2189 2190 INIT_LIST_HEAD(&p->rt.run_list); 2191 p->rt.timeout = 0; 2192 p->rt.time_slice = sched_rr_timeslice; 2193 p->rt.on_rq = 0; 2194 p->rt.on_list = 0; 2195 2196 #ifdef CONFIG_PREEMPT_NOTIFIERS 2197 INIT_HLIST_HEAD(&p->preempt_notifiers); 2198 #endif 2199 2200 init_numa_balancing(clone_flags, p); 2201 } 2202 2203 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2204 2205 #ifdef CONFIG_NUMA_BALANCING 2206 2207 void set_numabalancing_state(bool enabled) 2208 { 2209 if (enabled) 2210 static_branch_enable(&sched_numa_balancing); 2211 else 2212 static_branch_disable(&sched_numa_balancing); 2213 } 2214 2215 #ifdef CONFIG_PROC_SYSCTL 2216 int sysctl_numa_balancing(struct ctl_table *table, int write, 2217 void __user *buffer, size_t *lenp, loff_t *ppos) 2218 { 2219 struct ctl_table t; 2220 int err; 2221 int state = static_branch_likely(&sched_numa_balancing); 2222 2223 if (write && !capable(CAP_SYS_ADMIN)) 2224 return -EPERM; 2225 2226 t = *table; 2227 t.data = &state; 2228 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2229 if (err < 0) 2230 return err; 2231 if (write) 2232 set_numabalancing_state(state); 2233 return err; 2234 } 2235 #endif 2236 #endif 2237 2238 #ifdef CONFIG_SCHEDSTATS 2239 2240 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2241 static bool __initdata __sched_schedstats = false; 2242 2243 static void set_schedstats(bool enabled) 2244 { 2245 if (enabled) 2246 static_branch_enable(&sched_schedstats); 2247 else 2248 static_branch_disable(&sched_schedstats); 2249 } 2250 2251 void force_schedstat_enabled(void) 2252 { 2253 if (!schedstat_enabled()) { 2254 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2255 static_branch_enable(&sched_schedstats); 2256 } 2257 } 2258 2259 static int __init setup_schedstats(char *str) 2260 { 2261 int ret = 0; 2262 if (!str) 2263 goto out; 2264 2265 /* 2266 * This code is called before jump labels have been set up, so we can't 2267 * change the static branch directly just yet. Instead set a temporary 2268 * variable so init_schedstats() can do it later. 2269 */ 2270 if (!strcmp(str, "enable")) { 2271 __sched_schedstats = true; 2272 ret = 1; 2273 } else if (!strcmp(str, "disable")) { 2274 __sched_schedstats = false; 2275 ret = 1; 2276 } 2277 out: 2278 if (!ret) 2279 pr_warn("Unable to parse schedstats=\n"); 2280 2281 return ret; 2282 } 2283 __setup("schedstats=", setup_schedstats); 2284 2285 static void __init init_schedstats(void) 2286 { 2287 set_schedstats(__sched_schedstats); 2288 } 2289 2290 #ifdef CONFIG_PROC_SYSCTL 2291 int sysctl_schedstats(struct ctl_table *table, int write, 2292 void __user *buffer, size_t *lenp, loff_t *ppos) 2293 { 2294 struct ctl_table t; 2295 int err; 2296 int state = static_branch_likely(&sched_schedstats); 2297 2298 if (write && !capable(CAP_SYS_ADMIN)) 2299 return -EPERM; 2300 2301 t = *table; 2302 t.data = &state; 2303 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2304 if (err < 0) 2305 return err; 2306 if (write) 2307 set_schedstats(state); 2308 return err; 2309 } 2310 #endif /* CONFIG_PROC_SYSCTL */ 2311 #else /* !CONFIG_SCHEDSTATS */ 2312 static inline void init_schedstats(void) {} 2313 #endif /* CONFIG_SCHEDSTATS */ 2314 2315 /* 2316 * fork()/clone()-time setup: 2317 */ 2318 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2319 { 2320 unsigned long flags; 2321 int cpu = get_cpu(); 2322 2323 __sched_fork(clone_flags, p); 2324 /* 2325 * We mark the process as NEW here. This guarantees that 2326 * nobody will actually run it, and a signal or other external 2327 * event cannot wake it up and insert it on the runqueue either. 2328 */ 2329 p->state = TASK_NEW; 2330 2331 /* 2332 * Make sure we do not leak PI boosting priority to the child. 2333 */ 2334 p->prio = current->normal_prio; 2335 2336 /* 2337 * Revert to default priority/policy on fork if requested. 2338 */ 2339 if (unlikely(p->sched_reset_on_fork)) { 2340 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2341 p->policy = SCHED_NORMAL; 2342 p->static_prio = NICE_TO_PRIO(0); 2343 p->rt_priority = 0; 2344 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2345 p->static_prio = NICE_TO_PRIO(0); 2346 2347 p->prio = p->normal_prio = __normal_prio(p); 2348 set_load_weight(p, false); 2349 2350 /* 2351 * We don't need the reset flag anymore after the fork. It has 2352 * fulfilled its duty: 2353 */ 2354 p->sched_reset_on_fork = 0; 2355 } 2356 2357 if (dl_prio(p->prio)) { 2358 put_cpu(); 2359 return -EAGAIN; 2360 } else if (rt_prio(p->prio)) { 2361 p->sched_class = &rt_sched_class; 2362 } else { 2363 p->sched_class = &fair_sched_class; 2364 } 2365 2366 init_entity_runnable_average(&p->se); 2367 2368 /* 2369 * The child is not yet in the pid-hash so no cgroup attach races, 2370 * and the cgroup is pinned to this child due to cgroup_fork() 2371 * is ran before sched_fork(). 2372 * 2373 * Silence PROVE_RCU. 2374 */ 2375 raw_spin_lock_irqsave(&p->pi_lock, flags); 2376 /* 2377 * We're setting the CPU for the first time, we don't migrate, 2378 * so use __set_task_cpu(). 2379 */ 2380 __set_task_cpu(p, cpu); 2381 if (p->sched_class->task_fork) 2382 p->sched_class->task_fork(p); 2383 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2384 2385 #ifdef CONFIG_SCHED_INFO 2386 if (likely(sched_info_on())) 2387 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2388 #endif 2389 #if defined(CONFIG_SMP) 2390 p->on_cpu = 0; 2391 #endif 2392 init_task_preempt_count(p); 2393 #ifdef CONFIG_SMP 2394 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2395 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2396 #endif 2397 2398 put_cpu(); 2399 return 0; 2400 } 2401 2402 unsigned long to_ratio(u64 period, u64 runtime) 2403 { 2404 if (runtime == RUNTIME_INF) 2405 return BW_UNIT; 2406 2407 /* 2408 * Doing this here saves a lot of checks in all 2409 * the calling paths, and returning zero seems 2410 * safe for them anyway. 2411 */ 2412 if (period == 0) 2413 return 0; 2414 2415 return div64_u64(runtime << BW_SHIFT, period); 2416 } 2417 2418 /* 2419 * wake_up_new_task - wake up a newly created task for the first time. 2420 * 2421 * This function will do some initial scheduler statistics housekeeping 2422 * that must be done for every newly created context, then puts the task 2423 * on the runqueue and wakes it. 2424 */ 2425 void wake_up_new_task(struct task_struct *p) 2426 { 2427 struct rq_flags rf; 2428 struct rq *rq; 2429 2430 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2431 p->state = TASK_RUNNING; 2432 #ifdef CONFIG_SMP 2433 /* 2434 * Fork balancing, do it here and not earlier because: 2435 * - cpus_allowed can change in the fork path 2436 * - any previously selected CPU might disappear through hotplug 2437 * 2438 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2439 * as we're not fully set-up yet. 2440 */ 2441 p->recent_used_cpu = task_cpu(p); 2442 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2443 #endif 2444 rq = __task_rq_lock(p, &rf); 2445 update_rq_clock(rq); 2446 post_init_entity_util_avg(&p->se); 2447 2448 activate_task(rq, p, ENQUEUE_NOCLOCK); 2449 p->on_rq = TASK_ON_RQ_QUEUED; 2450 trace_sched_wakeup_new(p); 2451 check_preempt_curr(rq, p, WF_FORK); 2452 #ifdef CONFIG_SMP 2453 if (p->sched_class->task_woken) { 2454 /* 2455 * Nothing relies on rq->lock after this, so its fine to 2456 * drop it. 2457 */ 2458 rq_unpin_lock(rq, &rf); 2459 p->sched_class->task_woken(rq, p); 2460 rq_repin_lock(rq, &rf); 2461 } 2462 #endif 2463 task_rq_unlock(rq, p, &rf); 2464 } 2465 2466 #ifdef CONFIG_PREEMPT_NOTIFIERS 2467 2468 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2469 2470 void preempt_notifier_inc(void) 2471 { 2472 static_branch_inc(&preempt_notifier_key); 2473 } 2474 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2475 2476 void preempt_notifier_dec(void) 2477 { 2478 static_branch_dec(&preempt_notifier_key); 2479 } 2480 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2481 2482 /** 2483 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2484 * @notifier: notifier struct to register 2485 */ 2486 void preempt_notifier_register(struct preempt_notifier *notifier) 2487 { 2488 if (!static_branch_unlikely(&preempt_notifier_key)) 2489 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2490 2491 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2492 } 2493 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2494 2495 /** 2496 * preempt_notifier_unregister - no longer interested in preemption notifications 2497 * @notifier: notifier struct to unregister 2498 * 2499 * This is *not* safe to call from within a preemption notifier. 2500 */ 2501 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2502 { 2503 hlist_del(¬ifier->link); 2504 } 2505 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2506 2507 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2508 { 2509 struct preempt_notifier *notifier; 2510 2511 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2512 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2513 } 2514 2515 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2516 { 2517 if (static_branch_unlikely(&preempt_notifier_key)) 2518 __fire_sched_in_preempt_notifiers(curr); 2519 } 2520 2521 static void 2522 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2523 struct task_struct *next) 2524 { 2525 struct preempt_notifier *notifier; 2526 2527 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2528 notifier->ops->sched_out(notifier, next); 2529 } 2530 2531 static __always_inline void 2532 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2533 struct task_struct *next) 2534 { 2535 if (static_branch_unlikely(&preempt_notifier_key)) 2536 __fire_sched_out_preempt_notifiers(curr, next); 2537 } 2538 2539 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2540 2541 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2542 { 2543 } 2544 2545 static inline void 2546 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2547 struct task_struct *next) 2548 { 2549 } 2550 2551 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2552 2553 static inline void prepare_task(struct task_struct *next) 2554 { 2555 #ifdef CONFIG_SMP 2556 /* 2557 * Claim the task as running, we do this before switching to it 2558 * such that any running task will have this set. 2559 */ 2560 next->on_cpu = 1; 2561 #endif 2562 } 2563 2564 static inline void finish_task(struct task_struct *prev) 2565 { 2566 #ifdef CONFIG_SMP 2567 /* 2568 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2569 * We must ensure this doesn't happen until the switch is completely 2570 * finished. 2571 * 2572 * In particular, the load of prev->state in finish_task_switch() must 2573 * happen before this. 2574 * 2575 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2576 */ 2577 smp_store_release(&prev->on_cpu, 0); 2578 #endif 2579 } 2580 2581 static inline void 2582 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2583 { 2584 /* 2585 * Since the runqueue lock will be released by the next 2586 * task (which is an invalid locking op but in the case 2587 * of the scheduler it's an obvious special-case), so we 2588 * do an early lockdep release here: 2589 */ 2590 rq_unpin_lock(rq, rf); 2591 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2592 #ifdef CONFIG_DEBUG_SPINLOCK 2593 /* this is a valid case when another task releases the spinlock */ 2594 rq->lock.owner = next; 2595 #endif 2596 } 2597 2598 static inline void finish_lock_switch(struct rq *rq) 2599 { 2600 /* 2601 * If we are tracking spinlock dependencies then we have to 2602 * fix up the runqueue lock - which gets 'carried over' from 2603 * prev into current: 2604 */ 2605 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2606 raw_spin_unlock_irq(&rq->lock); 2607 } 2608 2609 /* 2610 * NOP if the arch has not defined these: 2611 */ 2612 2613 #ifndef prepare_arch_switch 2614 # define prepare_arch_switch(next) do { } while (0) 2615 #endif 2616 2617 #ifndef finish_arch_post_lock_switch 2618 # define finish_arch_post_lock_switch() do { } while (0) 2619 #endif 2620 2621 /** 2622 * prepare_task_switch - prepare to switch tasks 2623 * @rq: the runqueue preparing to switch 2624 * @prev: the current task that is being switched out 2625 * @next: the task we are going to switch to. 2626 * 2627 * This is called with the rq lock held and interrupts off. It must 2628 * be paired with a subsequent finish_task_switch after the context 2629 * switch. 2630 * 2631 * prepare_task_switch sets up locking and calls architecture specific 2632 * hooks. 2633 */ 2634 static inline void 2635 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2636 struct task_struct *next) 2637 { 2638 kcov_prepare_switch(prev); 2639 sched_info_switch(rq, prev, next); 2640 perf_event_task_sched_out(prev, next); 2641 rseq_preempt(prev); 2642 fire_sched_out_preempt_notifiers(prev, next); 2643 prepare_task(next); 2644 prepare_arch_switch(next); 2645 } 2646 2647 /** 2648 * finish_task_switch - clean up after a task-switch 2649 * @prev: the thread we just switched away from. 2650 * 2651 * finish_task_switch must be called after the context switch, paired 2652 * with a prepare_task_switch call before the context switch. 2653 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2654 * and do any other architecture-specific cleanup actions. 2655 * 2656 * Note that we may have delayed dropping an mm in context_switch(). If 2657 * so, we finish that here outside of the runqueue lock. (Doing it 2658 * with the lock held can cause deadlocks; see schedule() for 2659 * details.) 2660 * 2661 * The context switch have flipped the stack from under us and restored the 2662 * local variables which were saved when this task called schedule() in the 2663 * past. prev == current is still correct but we need to recalculate this_rq 2664 * because prev may have moved to another CPU. 2665 */ 2666 static struct rq *finish_task_switch(struct task_struct *prev) 2667 __releases(rq->lock) 2668 { 2669 struct rq *rq = this_rq(); 2670 struct mm_struct *mm = rq->prev_mm; 2671 long prev_state; 2672 2673 /* 2674 * The previous task will have left us with a preempt_count of 2 2675 * because it left us after: 2676 * 2677 * schedule() 2678 * preempt_disable(); // 1 2679 * __schedule() 2680 * raw_spin_lock_irq(&rq->lock) // 2 2681 * 2682 * Also, see FORK_PREEMPT_COUNT. 2683 */ 2684 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2685 "corrupted preempt_count: %s/%d/0x%x\n", 2686 current->comm, current->pid, preempt_count())) 2687 preempt_count_set(FORK_PREEMPT_COUNT); 2688 2689 rq->prev_mm = NULL; 2690 2691 /* 2692 * A task struct has one reference for the use as "current". 2693 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2694 * schedule one last time. The schedule call will never return, and 2695 * the scheduled task must drop that reference. 2696 * 2697 * We must observe prev->state before clearing prev->on_cpu (in 2698 * finish_task), otherwise a concurrent wakeup can get prev 2699 * running on another CPU and we could rave with its RUNNING -> DEAD 2700 * transition, resulting in a double drop. 2701 */ 2702 prev_state = prev->state; 2703 vtime_task_switch(prev); 2704 perf_event_task_sched_in(prev, current); 2705 finish_task(prev); 2706 finish_lock_switch(rq); 2707 finish_arch_post_lock_switch(); 2708 kcov_finish_switch(current); 2709 2710 fire_sched_in_preempt_notifiers(current); 2711 /* 2712 * When switching through a kernel thread, the loop in 2713 * membarrier_{private,global}_expedited() may have observed that 2714 * kernel thread and not issued an IPI. It is therefore possible to 2715 * schedule between user->kernel->user threads without passing though 2716 * switch_mm(). Membarrier requires a barrier after storing to 2717 * rq->curr, before returning to userspace, so provide them here: 2718 * 2719 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2720 * provided by mmdrop(), 2721 * - a sync_core for SYNC_CORE. 2722 */ 2723 if (mm) { 2724 membarrier_mm_sync_core_before_usermode(mm); 2725 mmdrop(mm); 2726 } 2727 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) { 2728 switch (prev_state) { 2729 case TASK_DEAD: 2730 if (prev->sched_class->task_dead) 2731 prev->sched_class->task_dead(prev); 2732 2733 /* 2734 * Remove function-return probe instances associated with this 2735 * task and put them back on the free list. 2736 */ 2737 kprobe_flush_task(prev); 2738 2739 /* Task is done with its stack. */ 2740 put_task_stack(prev); 2741 2742 put_task_struct(prev); 2743 break; 2744 2745 case TASK_PARKED: 2746 kthread_park_complete(prev); 2747 break; 2748 } 2749 } 2750 2751 tick_nohz_task_switch(); 2752 return rq; 2753 } 2754 2755 #ifdef CONFIG_SMP 2756 2757 /* rq->lock is NOT held, but preemption is disabled */ 2758 static void __balance_callback(struct rq *rq) 2759 { 2760 struct callback_head *head, *next; 2761 void (*func)(struct rq *rq); 2762 unsigned long flags; 2763 2764 raw_spin_lock_irqsave(&rq->lock, flags); 2765 head = rq->balance_callback; 2766 rq->balance_callback = NULL; 2767 while (head) { 2768 func = (void (*)(struct rq *))head->func; 2769 next = head->next; 2770 head->next = NULL; 2771 head = next; 2772 2773 func(rq); 2774 } 2775 raw_spin_unlock_irqrestore(&rq->lock, flags); 2776 } 2777 2778 static inline void balance_callback(struct rq *rq) 2779 { 2780 if (unlikely(rq->balance_callback)) 2781 __balance_callback(rq); 2782 } 2783 2784 #else 2785 2786 static inline void balance_callback(struct rq *rq) 2787 { 2788 } 2789 2790 #endif 2791 2792 /** 2793 * schedule_tail - first thing a freshly forked thread must call. 2794 * @prev: the thread we just switched away from. 2795 */ 2796 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2797 __releases(rq->lock) 2798 { 2799 struct rq *rq; 2800 2801 /* 2802 * New tasks start with FORK_PREEMPT_COUNT, see there and 2803 * finish_task_switch() for details. 2804 * 2805 * finish_task_switch() will drop rq->lock() and lower preempt_count 2806 * and the preempt_enable() will end up enabling preemption (on 2807 * PREEMPT_COUNT kernels). 2808 */ 2809 2810 rq = finish_task_switch(prev); 2811 balance_callback(rq); 2812 preempt_enable(); 2813 2814 if (current->set_child_tid) 2815 put_user(task_pid_vnr(current), current->set_child_tid); 2816 } 2817 2818 /* 2819 * context_switch - switch to the new MM and the new thread's register state. 2820 */ 2821 static __always_inline struct rq * 2822 context_switch(struct rq *rq, struct task_struct *prev, 2823 struct task_struct *next, struct rq_flags *rf) 2824 { 2825 struct mm_struct *mm, *oldmm; 2826 2827 prepare_task_switch(rq, prev, next); 2828 2829 mm = next->mm; 2830 oldmm = prev->active_mm; 2831 /* 2832 * For paravirt, this is coupled with an exit in switch_to to 2833 * combine the page table reload and the switch backend into 2834 * one hypercall. 2835 */ 2836 arch_start_context_switch(prev); 2837 2838 /* 2839 * If mm is non-NULL, we pass through switch_mm(). If mm is 2840 * NULL, we will pass through mmdrop() in finish_task_switch(). 2841 * Both of these contain the full memory barrier required by 2842 * membarrier after storing to rq->curr, before returning to 2843 * user-space. 2844 */ 2845 if (!mm) { 2846 next->active_mm = oldmm; 2847 mmgrab(oldmm); 2848 enter_lazy_tlb(oldmm, next); 2849 } else 2850 switch_mm_irqs_off(oldmm, mm, next); 2851 2852 if (!prev->mm) { 2853 prev->active_mm = NULL; 2854 rq->prev_mm = oldmm; 2855 } 2856 2857 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2858 2859 prepare_lock_switch(rq, next, rf); 2860 2861 /* Here we just switch the register state and the stack. */ 2862 switch_to(prev, next, prev); 2863 barrier(); 2864 2865 return finish_task_switch(prev); 2866 } 2867 2868 /* 2869 * nr_running and nr_context_switches: 2870 * 2871 * externally visible scheduler statistics: current number of runnable 2872 * threads, total number of context switches performed since bootup. 2873 */ 2874 unsigned long nr_running(void) 2875 { 2876 unsigned long i, sum = 0; 2877 2878 for_each_online_cpu(i) 2879 sum += cpu_rq(i)->nr_running; 2880 2881 return sum; 2882 } 2883 2884 /* 2885 * Check if only the current task is running on the CPU. 2886 * 2887 * Caution: this function does not check that the caller has disabled 2888 * preemption, thus the result might have a time-of-check-to-time-of-use 2889 * race. The caller is responsible to use it correctly, for example: 2890 * 2891 * - from a non-preemptable section (of course) 2892 * 2893 * - from a thread that is bound to a single CPU 2894 * 2895 * - in a loop with very short iterations (e.g. a polling loop) 2896 */ 2897 bool single_task_running(void) 2898 { 2899 return raw_rq()->nr_running == 1; 2900 } 2901 EXPORT_SYMBOL(single_task_running); 2902 2903 unsigned long long nr_context_switches(void) 2904 { 2905 int i; 2906 unsigned long long sum = 0; 2907 2908 for_each_possible_cpu(i) 2909 sum += cpu_rq(i)->nr_switches; 2910 2911 return sum; 2912 } 2913 2914 /* 2915 * IO-wait accounting, and how its mostly bollocks (on SMP). 2916 * 2917 * The idea behind IO-wait account is to account the idle time that we could 2918 * have spend running if it were not for IO. That is, if we were to improve the 2919 * storage performance, we'd have a proportional reduction in IO-wait time. 2920 * 2921 * This all works nicely on UP, where, when a task blocks on IO, we account 2922 * idle time as IO-wait, because if the storage were faster, it could've been 2923 * running and we'd not be idle. 2924 * 2925 * This has been extended to SMP, by doing the same for each CPU. This however 2926 * is broken. 2927 * 2928 * Imagine for instance the case where two tasks block on one CPU, only the one 2929 * CPU will have IO-wait accounted, while the other has regular idle. Even 2930 * though, if the storage were faster, both could've ran at the same time, 2931 * utilising both CPUs. 2932 * 2933 * This means, that when looking globally, the current IO-wait accounting on 2934 * SMP is a lower bound, by reason of under accounting. 2935 * 2936 * Worse, since the numbers are provided per CPU, they are sometimes 2937 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2938 * associated with any one particular CPU, it can wake to another CPU than it 2939 * blocked on. This means the per CPU IO-wait number is meaningless. 2940 * 2941 * Task CPU affinities can make all that even more 'interesting'. 2942 */ 2943 2944 unsigned long nr_iowait(void) 2945 { 2946 unsigned long i, sum = 0; 2947 2948 for_each_possible_cpu(i) 2949 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2950 2951 return sum; 2952 } 2953 2954 /* 2955 * Consumers of these two interfaces, like for example the cpufreq menu 2956 * governor are using nonsensical data. Boosting frequency for a CPU that has 2957 * IO-wait which might not even end up running the task when it does become 2958 * runnable. 2959 */ 2960 2961 unsigned long nr_iowait_cpu(int cpu) 2962 { 2963 struct rq *this = cpu_rq(cpu); 2964 return atomic_read(&this->nr_iowait); 2965 } 2966 2967 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2968 { 2969 struct rq *rq = this_rq(); 2970 *nr_waiters = atomic_read(&rq->nr_iowait); 2971 *load = rq->load.weight; 2972 } 2973 2974 #ifdef CONFIG_SMP 2975 2976 /* 2977 * sched_exec - execve() is a valuable balancing opportunity, because at 2978 * this point the task has the smallest effective memory and cache footprint. 2979 */ 2980 void sched_exec(void) 2981 { 2982 struct task_struct *p = current; 2983 unsigned long flags; 2984 int dest_cpu; 2985 2986 raw_spin_lock_irqsave(&p->pi_lock, flags); 2987 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2988 if (dest_cpu == smp_processor_id()) 2989 goto unlock; 2990 2991 if (likely(cpu_active(dest_cpu))) { 2992 struct migration_arg arg = { p, dest_cpu }; 2993 2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2995 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2996 return; 2997 } 2998 unlock: 2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3000 } 3001 3002 #endif 3003 3004 DEFINE_PER_CPU(struct kernel_stat, kstat); 3005 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3006 3007 EXPORT_PER_CPU_SYMBOL(kstat); 3008 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3009 3010 /* 3011 * The function fair_sched_class.update_curr accesses the struct curr 3012 * and its field curr->exec_start; when called from task_sched_runtime(), 3013 * we observe a high rate of cache misses in practice. 3014 * Prefetching this data results in improved performance. 3015 */ 3016 static inline void prefetch_curr_exec_start(struct task_struct *p) 3017 { 3018 #ifdef CONFIG_FAIR_GROUP_SCHED 3019 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3020 #else 3021 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3022 #endif 3023 prefetch(curr); 3024 prefetch(&curr->exec_start); 3025 } 3026 3027 /* 3028 * Return accounted runtime for the task. 3029 * In case the task is currently running, return the runtime plus current's 3030 * pending runtime that have not been accounted yet. 3031 */ 3032 unsigned long long task_sched_runtime(struct task_struct *p) 3033 { 3034 struct rq_flags rf; 3035 struct rq *rq; 3036 u64 ns; 3037 3038 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3039 /* 3040 * 64-bit doesn't need locks to atomically read a 64-bit value. 3041 * So we have a optimization chance when the task's delta_exec is 0. 3042 * Reading ->on_cpu is racy, but this is ok. 3043 * 3044 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3045 * If we race with it entering CPU, unaccounted time is 0. This is 3046 * indistinguishable from the read occurring a few cycles earlier. 3047 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3048 * been accounted, so we're correct here as well. 3049 */ 3050 if (!p->on_cpu || !task_on_rq_queued(p)) 3051 return p->se.sum_exec_runtime; 3052 #endif 3053 3054 rq = task_rq_lock(p, &rf); 3055 /* 3056 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3057 * project cycles that may never be accounted to this 3058 * thread, breaking clock_gettime(). 3059 */ 3060 if (task_current(rq, p) && task_on_rq_queued(p)) { 3061 prefetch_curr_exec_start(p); 3062 update_rq_clock(rq); 3063 p->sched_class->update_curr(rq); 3064 } 3065 ns = p->se.sum_exec_runtime; 3066 task_rq_unlock(rq, p, &rf); 3067 3068 return ns; 3069 } 3070 3071 /* 3072 * This function gets called by the timer code, with HZ frequency. 3073 * We call it with interrupts disabled. 3074 */ 3075 void scheduler_tick(void) 3076 { 3077 int cpu = smp_processor_id(); 3078 struct rq *rq = cpu_rq(cpu); 3079 struct task_struct *curr = rq->curr; 3080 struct rq_flags rf; 3081 3082 sched_clock_tick(); 3083 3084 rq_lock(rq, &rf); 3085 3086 update_rq_clock(rq); 3087 curr->sched_class->task_tick(rq, curr, 0); 3088 cpu_load_update_active(rq); 3089 calc_global_load_tick(rq); 3090 3091 rq_unlock(rq, &rf); 3092 3093 perf_event_task_tick(); 3094 3095 #ifdef CONFIG_SMP 3096 rq->idle_balance = idle_cpu(cpu); 3097 trigger_load_balance(rq); 3098 #endif 3099 } 3100 3101 #ifdef CONFIG_NO_HZ_FULL 3102 3103 struct tick_work { 3104 int cpu; 3105 struct delayed_work work; 3106 }; 3107 3108 static struct tick_work __percpu *tick_work_cpu; 3109 3110 static void sched_tick_remote(struct work_struct *work) 3111 { 3112 struct delayed_work *dwork = to_delayed_work(work); 3113 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3114 int cpu = twork->cpu; 3115 struct rq *rq = cpu_rq(cpu); 3116 struct rq_flags rf; 3117 3118 /* 3119 * Handle the tick only if it appears the remote CPU is running in full 3120 * dynticks mode. The check is racy by nature, but missing a tick or 3121 * having one too much is no big deal because the scheduler tick updates 3122 * statistics and checks timeslices in a time-independent way, regardless 3123 * of when exactly it is running. 3124 */ 3125 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) { 3126 struct task_struct *curr; 3127 u64 delta; 3128 3129 rq_lock_irq(rq, &rf); 3130 update_rq_clock(rq); 3131 curr = rq->curr; 3132 delta = rq_clock_task(rq) - curr->se.exec_start; 3133 3134 /* 3135 * Make sure the next tick runs within a reasonable 3136 * amount of time. 3137 */ 3138 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3139 curr->sched_class->task_tick(rq, curr, 0); 3140 rq_unlock_irq(rq, &rf); 3141 } 3142 3143 /* 3144 * Run the remote tick once per second (1Hz). This arbitrary 3145 * frequency is large enough to avoid overload but short enough 3146 * to keep scheduler internal stats reasonably up to date. 3147 */ 3148 queue_delayed_work(system_unbound_wq, dwork, HZ); 3149 } 3150 3151 static void sched_tick_start(int cpu) 3152 { 3153 struct tick_work *twork; 3154 3155 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3156 return; 3157 3158 WARN_ON_ONCE(!tick_work_cpu); 3159 3160 twork = per_cpu_ptr(tick_work_cpu, cpu); 3161 twork->cpu = cpu; 3162 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3163 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3164 } 3165 3166 #ifdef CONFIG_HOTPLUG_CPU 3167 static void sched_tick_stop(int cpu) 3168 { 3169 struct tick_work *twork; 3170 3171 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3172 return; 3173 3174 WARN_ON_ONCE(!tick_work_cpu); 3175 3176 twork = per_cpu_ptr(tick_work_cpu, cpu); 3177 cancel_delayed_work_sync(&twork->work); 3178 } 3179 #endif /* CONFIG_HOTPLUG_CPU */ 3180 3181 int __init sched_tick_offload_init(void) 3182 { 3183 tick_work_cpu = alloc_percpu(struct tick_work); 3184 BUG_ON(!tick_work_cpu); 3185 3186 return 0; 3187 } 3188 3189 #else /* !CONFIG_NO_HZ_FULL */ 3190 static inline void sched_tick_start(int cpu) { } 3191 static inline void sched_tick_stop(int cpu) { } 3192 #endif 3193 3194 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3195 defined(CONFIG_PREEMPT_TRACER)) 3196 /* 3197 * If the value passed in is equal to the current preempt count 3198 * then we just disabled preemption. Start timing the latency. 3199 */ 3200 static inline void preempt_latency_start(int val) 3201 { 3202 if (preempt_count() == val) { 3203 unsigned long ip = get_lock_parent_ip(); 3204 #ifdef CONFIG_DEBUG_PREEMPT 3205 current->preempt_disable_ip = ip; 3206 #endif 3207 trace_preempt_off(CALLER_ADDR0, ip); 3208 } 3209 } 3210 3211 void preempt_count_add(int val) 3212 { 3213 #ifdef CONFIG_DEBUG_PREEMPT 3214 /* 3215 * Underflow? 3216 */ 3217 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3218 return; 3219 #endif 3220 __preempt_count_add(val); 3221 #ifdef CONFIG_DEBUG_PREEMPT 3222 /* 3223 * Spinlock count overflowing soon? 3224 */ 3225 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3226 PREEMPT_MASK - 10); 3227 #endif 3228 preempt_latency_start(val); 3229 } 3230 EXPORT_SYMBOL(preempt_count_add); 3231 NOKPROBE_SYMBOL(preempt_count_add); 3232 3233 /* 3234 * If the value passed in equals to the current preempt count 3235 * then we just enabled preemption. Stop timing the latency. 3236 */ 3237 static inline void preempt_latency_stop(int val) 3238 { 3239 if (preempt_count() == val) 3240 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3241 } 3242 3243 void preempt_count_sub(int val) 3244 { 3245 #ifdef CONFIG_DEBUG_PREEMPT 3246 /* 3247 * Underflow? 3248 */ 3249 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3250 return; 3251 /* 3252 * Is the spinlock portion underflowing? 3253 */ 3254 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3255 !(preempt_count() & PREEMPT_MASK))) 3256 return; 3257 #endif 3258 3259 preempt_latency_stop(val); 3260 __preempt_count_sub(val); 3261 } 3262 EXPORT_SYMBOL(preempt_count_sub); 3263 NOKPROBE_SYMBOL(preempt_count_sub); 3264 3265 #else 3266 static inline void preempt_latency_start(int val) { } 3267 static inline void preempt_latency_stop(int val) { } 3268 #endif 3269 3270 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3271 { 3272 #ifdef CONFIG_DEBUG_PREEMPT 3273 return p->preempt_disable_ip; 3274 #else 3275 return 0; 3276 #endif 3277 } 3278 3279 /* 3280 * Print scheduling while atomic bug: 3281 */ 3282 static noinline void __schedule_bug(struct task_struct *prev) 3283 { 3284 /* Save this before calling printk(), since that will clobber it */ 3285 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3286 3287 if (oops_in_progress) 3288 return; 3289 3290 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3291 prev->comm, prev->pid, preempt_count()); 3292 3293 debug_show_held_locks(prev); 3294 print_modules(); 3295 if (irqs_disabled()) 3296 print_irqtrace_events(prev); 3297 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3298 && in_atomic_preempt_off()) { 3299 pr_err("Preemption disabled at:"); 3300 print_ip_sym(preempt_disable_ip); 3301 pr_cont("\n"); 3302 } 3303 if (panic_on_warn) 3304 panic("scheduling while atomic\n"); 3305 3306 dump_stack(); 3307 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3308 } 3309 3310 /* 3311 * Various schedule()-time debugging checks and statistics: 3312 */ 3313 static inline void schedule_debug(struct task_struct *prev) 3314 { 3315 #ifdef CONFIG_SCHED_STACK_END_CHECK 3316 if (task_stack_end_corrupted(prev)) 3317 panic("corrupted stack end detected inside scheduler\n"); 3318 #endif 3319 3320 if (unlikely(in_atomic_preempt_off())) { 3321 __schedule_bug(prev); 3322 preempt_count_set(PREEMPT_DISABLED); 3323 } 3324 rcu_sleep_check(); 3325 3326 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3327 3328 schedstat_inc(this_rq()->sched_count); 3329 } 3330 3331 /* 3332 * Pick up the highest-prio task: 3333 */ 3334 static inline struct task_struct * 3335 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3336 { 3337 const struct sched_class *class; 3338 struct task_struct *p; 3339 3340 /* 3341 * Optimization: we know that if all tasks are in the fair class we can 3342 * call that function directly, but only if the @prev task wasn't of a 3343 * higher scheduling class, because otherwise those loose the 3344 * opportunity to pull in more work from other CPUs. 3345 */ 3346 if (likely((prev->sched_class == &idle_sched_class || 3347 prev->sched_class == &fair_sched_class) && 3348 rq->nr_running == rq->cfs.h_nr_running)) { 3349 3350 p = fair_sched_class.pick_next_task(rq, prev, rf); 3351 if (unlikely(p == RETRY_TASK)) 3352 goto again; 3353 3354 /* Assumes fair_sched_class->next == idle_sched_class */ 3355 if (unlikely(!p)) 3356 p = idle_sched_class.pick_next_task(rq, prev, rf); 3357 3358 return p; 3359 } 3360 3361 again: 3362 for_each_class(class) { 3363 p = class->pick_next_task(rq, prev, rf); 3364 if (p) { 3365 if (unlikely(p == RETRY_TASK)) 3366 goto again; 3367 return p; 3368 } 3369 } 3370 3371 /* The idle class should always have a runnable task: */ 3372 BUG(); 3373 } 3374 3375 /* 3376 * __schedule() is the main scheduler function. 3377 * 3378 * The main means of driving the scheduler and thus entering this function are: 3379 * 3380 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3381 * 3382 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3383 * paths. For example, see arch/x86/entry_64.S. 3384 * 3385 * To drive preemption between tasks, the scheduler sets the flag in timer 3386 * interrupt handler scheduler_tick(). 3387 * 3388 * 3. Wakeups don't really cause entry into schedule(). They add a 3389 * task to the run-queue and that's it. 3390 * 3391 * Now, if the new task added to the run-queue preempts the current 3392 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3393 * called on the nearest possible occasion: 3394 * 3395 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3396 * 3397 * - in syscall or exception context, at the next outmost 3398 * preempt_enable(). (this might be as soon as the wake_up()'s 3399 * spin_unlock()!) 3400 * 3401 * - in IRQ context, return from interrupt-handler to 3402 * preemptible context 3403 * 3404 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3405 * then at the next: 3406 * 3407 * - cond_resched() call 3408 * - explicit schedule() call 3409 * - return from syscall or exception to user-space 3410 * - return from interrupt-handler to user-space 3411 * 3412 * WARNING: must be called with preemption disabled! 3413 */ 3414 static void __sched notrace __schedule(bool preempt) 3415 { 3416 struct task_struct *prev, *next; 3417 unsigned long *switch_count; 3418 struct rq_flags rf; 3419 struct rq *rq; 3420 int cpu; 3421 3422 cpu = smp_processor_id(); 3423 rq = cpu_rq(cpu); 3424 prev = rq->curr; 3425 3426 schedule_debug(prev); 3427 3428 if (sched_feat(HRTICK)) 3429 hrtick_clear(rq); 3430 3431 local_irq_disable(); 3432 rcu_note_context_switch(preempt); 3433 3434 /* 3435 * Make sure that signal_pending_state()->signal_pending() below 3436 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3437 * done by the caller to avoid the race with signal_wake_up(). 3438 * 3439 * The membarrier system call requires a full memory barrier 3440 * after coming from user-space, before storing to rq->curr. 3441 */ 3442 rq_lock(rq, &rf); 3443 smp_mb__after_spinlock(); 3444 3445 /* Promote REQ to ACT */ 3446 rq->clock_update_flags <<= 1; 3447 update_rq_clock(rq); 3448 3449 switch_count = &prev->nivcsw; 3450 if (!preempt && prev->state) { 3451 if (unlikely(signal_pending_state(prev->state, prev))) { 3452 prev->state = TASK_RUNNING; 3453 } else { 3454 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3455 prev->on_rq = 0; 3456 3457 if (prev->in_iowait) { 3458 atomic_inc(&rq->nr_iowait); 3459 delayacct_blkio_start(); 3460 } 3461 3462 /* 3463 * If a worker went to sleep, notify and ask workqueue 3464 * whether it wants to wake up a task to maintain 3465 * concurrency. 3466 */ 3467 if (prev->flags & PF_WQ_WORKER) { 3468 struct task_struct *to_wakeup; 3469 3470 to_wakeup = wq_worker_sleeping(prev); 3471 if (to_wakeup) 3472 try_to_wake_up_local(to_wakeup, &rf); 3473 } 3474 } 3475 switch_count = &prev->nvcsw; 3476 } 3477 3478 next = pick_next_task(rq, prev, &rf); 3479 clear_tsk_need_resched(prev); 3480 clear_preempt_need_resched(); 3481 3482 if (likely(prev != next)) { 3483 rq->nr_switches++; 3484 rq->curr = next; 3485 /* 3486 * The membarrier system call requires each architecture 3487 * to have a full memory barrier after updating 3488 * rq->curr, before returning to user-space. 3489 * 3490 * Here are the schemes providing that barrier on the 3491 * various architectures: 3492 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3493 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3494 * - finish_lock_switch() for weakly-ordered 3495 * architectures where spin_unlock is a full barrier, 3496 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3497 * is a RELEASE barrier), 3498 */ 3499 ++*switch_count; 3500 3501 trace_sched_switch(preempt, prev, next); 3502 3503 /* Also unlocks the rq: */ 3504 rq = context_switch(rq, prev, next, &rf); 3505 } else { 3506 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3507 rq_unlock_irq(rq, &rf); 3508 } 3509 3510 balance_callback(rq); 3511 } 3512 3513 void __noreturn do_task_dead(void) 3514 { 3515 /* Causes final put_task_struct in finish_task_switch(): */ 3516 set_special_state(TASK_DEAD); 3517 3518 /* Tell freezer to ignore us: */ 3519 current->flags |= PF_NOFREEZE; 3520 3521 __schedule(false); 3522 BUG(); 3523 3524 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3525 for (;;) 3526 cpu_relax(); 3527 } 3528 3529 static inline void sched_submit_work(struct task_struct *tsk) 3530 { 3531 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3532 return; 3533 /* 3534 * If we are going to sleep and we have plugged IO queued, 3535 * make sure to submit it to avoid deadlocks. 3536 */ 3537 if (blk_needs_flush_plug(tsk)) 3538 blk_schedule_flush_plug(tsk); 3539 } 3540 3541 asmlinkage __visible void __sched schedule(void) 3542 { 3543 struct task_struct *tsk = current; 3544 3545 sched_submit_work(tsk); 3546 do { 3547 preempt_disable(); 3548 __schedule(false); 3549 sched_preempt_enable_no_resched(); 3550 } while (need_resched()); 3551 } 3552 EXPORT_SYMBOL(schedule); 3553 3554 /* 3555 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3556 * state (have scheduled out non-voluntarily) by making sure that all 3557 * tasks have either left the run queue or have gone into user space. 3558 * As idle tasks do not do either, they must not ever be preempted 3559 * (schedule out non-voluntarily). 3560 * 3561 * schedule_idle() is similar to schedule_preempt_disable() except that it 3562 * never enables preemption because it does not call sched_submit_work(). 3563 */ 3564 void __sched schedule_idle(void) 3565 { 3566 /* 3567 * As this skips calling sched_submit_work(), which the idle task does 3568 * regardless because that function is a nop when the task is in a 3569 * TASK_RUNNING state, make sure this isn't used someplace that the 3570 * current task can be in any other state. Note, idle is always in the 3571 * TASK_RUNNING state. 3572 */ 3573 WARN_ON_ONCE(current->state); 3574 do { 3575 __schedule(false); 3576 } while (need_resched()); 3577 } 3578 3579 #ifdef CONFIG_CONTEXT_TRACKING 3580 asmlinkage __visible void __sched schedule_user(void) 3581 { 3582 /* 3583 * If we come here after a random call to set_need_resched(), 3584 * or we have been woken up remotely but the IPI has not yet arrived, 3585 * we haven't yet exited the RCU idle mode. Do it here manually until 3586 * we find a better solution. 3587 * 3588 * NB: There are buggy callers of this function. Ideally we 3589 * should warn if prev_state != CONTEXT_USER, but that will trigger 3590 * too frequently to make sense yet. 3591 */ 3592 enum ctx_state prev_state = exception_enter(); 3593 schedule(); 3594 exception_exit(prev_state); 3595 } 3596 #endif 3597 3598 /** 3599 * schedule_preempt_disabled - called with preemption disabled 3600 * 3601 * Returns with preemption disabled. Note: preempt_count must be 1 3602 */ 3603 void __sched schedule_preempt_disabled(void) 3604 { 3605 sched_preempt_enable_no_resched(); 3606 schedule(); 3607 preempt_disable(); 3608 } 3609 3610 static void __sched notrace preempt_schedule_common(void) 3611 { 3612 do { 3613 /* 3614 * Because the function tracer can trace preempt_count_sub() 3615 * and it also uses preempt_enable/disable_notrace(), if 3616 * NEED_RESCHED is set, the preempt_enable_notrace() called 3617 * by the function tracer will call this function again and 3618 * cause infinite recursion. 3619 * 3620 * Preemption must be disabled here before the function 3621 * tracer can trace. Break up preempt_disable() into two 3622 * calls. One to disable preemption without fear of being 3623 * traced. The other to still record the preemption latency, 3624 * which can also be traced by the function tracer. 3625 */ 3626 preempt_disable_notrace(); 3627 preempt_latency_start(1); 3628 __schedule(true); 3629 preempt_latency_stop(1); 3630 preempt_enable_no_resched_notrace(); 3631 3632 /* 3633 * Check again in case we missed a preemption opportunity 3634 * between schedule and now. 3635 */ 3636 } while (need_resched()); 3637 } 3638 3639 #ifdef CONFIG_PREEMPT 3640 /* 3641 * this is the entry point to schedule() from in-kernel preemption 3642 * off of preempt_enable. Kernel preemptions off return from interrupt 3643 * occur there and call schedule directly. 3644 */ 3645 asmlinkage __visible void __sched notrace preempt_schedule(void) 3646 { 3647 /* 3648 * If there is a non-zero preempt_count or interrupts are disabled, 3649 * we do not want to preempt the current task. Just return.. 3650 */ 3651 if (likely(!preemptible())) 3652 return; 3653 3654 preempt_schedule_common(); 3655 } 3656 NOKPROBE_SYMBOL(preempt_schedule); 3657 EXPORT_SYMBOL(preempt_schedule); 3658 3659 /** 3660 * preempt_schedule_notrace - preempt_schedule called by tracing 3661 * 3662 * The tracing infrastructure uses preempt_enable_notrace to prevent 3663 * recursion and tracing preempt enabling caused by the tracing 3664 * infrastructure itself. But as tracing can happen in areas coming 3665 * from userspace or just about to enter userspace, a preempt enable 3666 * can occur before user_exit() is called. This will cause the scheduler 3667 * to be called when the system is still in usermode. 3668 * 3669 * To prevent this, the preempt_enable_notrace will use this function 3670 * instead of preempt_schedule() to exit user context if needed before 3671 * calling the scheduler. 3672 */ 3673 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3674 { 3675 enum ctx_state prev_ctx; 3676 3677 if (likely(!preemptible())) 3678 return; 3679 3680 do { 3681 /* 3682 * Because the function tracer can trace preempt_count_sub() 3683 * and it also uses preempt_enable/disable_notrace(), if 3684 * NEED_RESCHED is set, the preempt_enable_notrace() called 3685 * by the function tracer will call this function again and 3686 * cause infinite recursion. 3687 * 3688 * Preemption must be disabled here before the function 3689 * tracer can trace. Break up preempt_disable() into two 3690 * calls. One to disable preemption without fear of being 3691 * traced. The other to still record the preemption latency, 3692 * which can also be traced by the function tracer. 3693 */ 3694 preempt_disable_notrace(); 3695 preempt_latency_start(1); 3696 /* 3697 * Needs preempt disabled in case user_exit() is traced 3698 * and the tracer calls preempt_enable_notrace() causing 3699 * an infinite recursion. 3700 */ 3701 prev_ctx = exception_enter(); 3702 __schedule(true); 3703 exception_exit(prev_ctx); 3704 3705 preempt_latency_stop(1); 3706 preempt_enable_no_resched_notrace(); 3707 } while (need_resched()); 3708 } 3709 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3710 3711 #endif /* CONFIG_PREEMPT */ 3712 3713 /* 3714 * this is the entry point to schedule() from kernel preemption 3715 * off of irq context. 3716 * Note, that this is called and return with irqs disabled. This will 3717 * protect us against recursive calling from irq. 3718 */ 3719 asmlinkage __visible void __sched preempt_schedule_irq(void) 3720 { 3721 enum ctx_state prev_state; 3722 3723 /* Catch callers which need to be fixed */ 3724 BUG_ON(preempt_count() || !irqs_disabled()); 3725 3726 prev_state = exception_enter(); 3727 3728 do { 3729 preempt_disable(); 3730 local_irq_enable(); 3731 __schedule(true); 3732 local_irq_disable(); 3733 sched_preempt_enable_no_resched(); 3734 } while (need_resched()); 3735 3736 exception_exit(prev_state); 3737 } 3738 3739 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3740 void *key) 3741 { 3742 return try_to_wake_up(curr->private, mode, wake_flags); 3743 } 3744 EXPORT_SYMBOL(default_wake_function); 3745 3746 #ifdef CONFIG_RT_MUTEXES 3747 3748 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3749 { 3750 if (pi_task) 3751 prio = min(prio, pi_task->prio); 3752 3753 return prio; 3754 } 3755 3756 static inline int rt_effective_prio(struct task_struct *p, int prio) 3757 { 3758 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3759 3760 return __rt_effective_prio(pi_task, prio); 3761 } 3762 3763 /* 3764 * rt_mutex_setprio - set the current priority of a task 3765 * @p: task to boost 3766 * @pi_task: donor task 3767 * 3768 * This function changes the 'effective' priority of a task. It does 3769 * not touch ->normal_prio like __setscheduler(). 3770 * 3771 * Used by the rt_mutex code to implement priority inheritance 3772 * logic. Call site only calls if the priority of the task changed. 3773 */ 3774 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3775 { 3776 int prio, oldprio, queued, running, queue_flag = 3777 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3778 const struct sched_class *prev_class; 3779 struct rq_flags rf; 3780 struct rq *rq; 3781 3782 /* XXX used to be waiter->prio, not waiter->task->prio */ 3783 prio = __rt_effective_prio(pi_task, p->normal_prio); 3784 3785 /* 3786 * If nothing changed; bail early. 3787 */ 3788 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3789 return; 3790 3791 rq = __task_rq_lock(p, &rf); 3792 update_rq_clock(rq); 3793 /* 3794 * Set under pi_lock && rq->lock, such that the value can be used under 3795 * either lock. 3796 * 3797 * Note that there is loads of tricky to make this pointer cache work 3798 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3799 * ensure a task is de-boosted (pi_task is set to NULL) before the 3800 * task is allowed to run again (and can exit). This ensures the pointer 3801 * points to a blocked task -- which guaratees the task is present. 3802 */ 3803 p->pi_top_task = pi_task; 3804 3805 /* 3806 * For FIFO/RR we only need to set prio, if that matches we're done. 3807 */ 3808 if (prio == p->prio && !dl_prio(prio)) 3809 goto out_unlock; 3810 3811 /* 3812 * Idle task boosting is a nono in general. There is one 3813 * exception, when PREEMPT_RT and NOHZ is active: 3814 * 3815 * The idle task calls get_next_timer_interrupt() and holds 3816 * the timer wheel base->lock on the CPU and another CPU wants 3817 * to access the timer (probably to cancel it). We can safely 3818 * ignore the boosting request, as the idle CPU runs this code 3819 * with interrupts disabled and will complete the lock 3820 * protected section without being interrupted. So there is no 3821 * real need to boost. 3822 */ 3823 if (unlikely(p == rq->idle)) { 3824 WARN_ON(p != rq->curr); 3825 WARN_ON(p->pi_blocked_on); 3826 goto out_unlock; 3827 } 3828 3829 trace_sched_pi_setprio(p, pi_task); 3830 oldprio = p->prio; 3831 3832 if (oldprio == prio) 3833 queue_flag &= ~DEQUEUE_MOVE; 3834 3835 prev_class = p->sched_class; 3836 queued = task_on_rq_queued(p); 3837 running = task_current(rq, p); 3838 if (queued) 3839 dequeue_task(rq, p, queue_flag); 3840 if (running) 3841 put_prev_task(rq, p); 3842 3843 /* 3844 * Boosting condition are: 3845 * 1. -rt task is running and holds mutex A 3846 * --> -dl task blocks on mutex A 3847 * 3848 * 2. -dl task is running and holds mutex A 3849 * --> -dl task blocks on mutex A and could preempt the 3850 * running task 3851 */ 3852 if (dl_prio(prio)) { 3853 if (!dl_prio(p->normal_prio) || 3854 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3855 p->dl.dl_boosted = 1; 3856 queue_flag |= ENQUEUE_REPLENISH; 3857 } else 3858 p->dl.dl_boosted = 0; 3859 p->sched_class = &dl_sched_class; 3860 } else if (rt_prio(prio)) { 3861 if (dl_prio(oldprio)) 3862 p->dl.dl_boosted = 0; 3863 if (oldprio < prio) 3864 queue_flag |= ENQUEUE_HEAD; 3865 p->sched_class = &rt_sched_class; 3866 } else { 3867 if (dl_prio(oldprio)) 3868 p->dl.dl_boosted = 0; 3869 if (rt_prio(oldprio)) 3870 p->rt.timeout = 0; 3871 p->sched_class = &fair_sched_class; 3872 } 3873 3874 p->prio = prio; 3875 3876 if (queued) 3877 enqueue_task(rq, p, queue_flag); 3878 if (running) 3879 set_curr_task(rq, p); 3880 3881 check_class_changed(rq, p, prev_class, oldprio); 3882 out_unlock: 3883 /* Avoid rq from going away on us: */ 3884 preempt_disable(); 3885 __task_rq_unlock(rq, &rf); 3886 3887 balance_callback(rq); 3888 preempt_enable(); 3889 } 3890 #else 3891 static inline int rt_effective_prio(struct task_struct *p, int prio) 3892 { 3893 return prio; 3894 } 3895 #endif 3896 3897 void set_user_nice(struct task_struct *p, long nice) 3898 { 3899 bool queued, running; 3900 int old_prio, delta; 3901 struct rq_flags rf; 3902 struct rq *rq; 3903 3904 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3905 return; 3906 /* 3907 * We have to be careful, if called from sys_setpriority(), 3908 * the task might be in the middle of scheduling on another CPU. 3909 */ 3910 rq = task_rq_lock(p, &rf); 3911 update_rq_clock(rq); 3912 3913 /* 3914 * The RT priorities are set via sched_setscheduler(), but we still 3915 * allow the 'normal' nice value to be set - but as expected 3916 * it wont have any effect on scheduling until the task is 3917 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3918 */ 3919 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3920 p->static_prio = NICE_TO_PRIO(nice); 3921 goto out_unlock; 3922 } 3923 queued = task_on_rq_queued(p); 3924 running = task_current(rq, p); 3925 if (queued) 3926 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3927 if (running) 3928 put_prev_task(rq, p); 3929 3930 p->static_prio = NICE_TO_PRIO(nice); 3931 set_load_weight(p, true); 3932 old_prio = p->prio; 3933 p->prio = effective_prio(p); 3934 delta = p->prio - old_prio; 3935 3936 if (queued) { 3937 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3938 /* 3939 * If the task increased its priority or is running and 3940 * lowered its priority, then reschedule its CPU: 3941 */ 3942 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3943 resched_curr(rq); 3944 } 3945 if (running) 3946 set_curr_task(rq, p); 3947 out_unlock: 3948 task_rq_unlock(rq, p, &rf); 3949 } 3950 EXPORT_SYMBOL(set_user_nice); 3951 3952 /* 3953 * can_nice - check if a task can reduce its nice value 3954 * @p: task 3955 * @nice: nice value 3956 */ 3957 int can_nice(const struct task_struct *p, const int nice) 3958 { 3959 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3960 int nice_rlim = nice_to_rlimit(nice); 3961 3962 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3963 capable(CAP_SYS_NICE)); 3964 } 3965 3966 #ifdef __ARCH_WANT_SYS_NICE 3967 3968 /* 3969 * sys_nice - change the priority of the current process. 3970 * @increment: priority increment 3971 * 3972 * sys_setpriority is a more generic, but much slower function that 3973 * does similar things. 3974 */ 3975 SYSCALL_DEFINE1(nice, int, increment) 3976 { 3977 long nice, retval; 3978 3979 /* 3980 * Setpriority might change our priority at the same moment. 3981 * We don't have to worry. Conceptually one call occurs first 3982 * and we have a single winner. 3983 */ 3984 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3985 nice = task_nice(current) + increment; 3986 3987 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3988 if (increment < 0 && !can_nice(current, nice)) 3989 return -EPERM; 3990 3991 retval = security_task_setnice(current, nice); 3992 if (retval) 3993 return retval; 3994 3995 set_user_nice(current, nice); 3996 return 0; 3997 } 3998 3999 #endif 4000 4001 /** 4002 * task_prio - return the priority value of a given task. 4003 * @p: the task in question. 4004 * 4005 * Return: The priority value as seen by users in /proc. 4006 * RT tasks are offset by -200. Normal tasks are centered 4007 * around 0, value goes from -16 to +15. 4008 */ 4009 int task_prio(const struct task_struct *p) 4010 { 4011 return p->prio - MAX_RT_PRIO; 4012 } 4013 4014 /** 4015 * idle_cpu - is a given CPU idle currently? 4016 * @cpu: the processor in question. 4017 * 4018 * Return: 1 if the CPU is currently idle. 0 otherwise. 4019 */ 4020 int idle_cpu(int cpu) 4021 { 4022 struct rq *rq = cpu_rq(cpu); 4023 4024 if (rq->curr != rq->idle) 4025 return 0; 4026 4027 if (rq->nr_running) 4028 return 0; 4029 4030 #ifdef CONFIG_SMP 4031 if (!llist_empty(&rq->wake_list)) 4032 return 0; 4033 #endif 4034 4035 return 1; 4036 } 4037 4038 /** 4039 * available_idle_cpu - is a given CPU idle for enqueuing work. 4040 * @cpu: the CPU in question. 4041 * 4042 * Return: 1 if the CPU is currently idle. 0 otherwise. 4043 */ 4044 int available_idle_cpu(int cpu) 4045 { 4046 if (!idle_cpu(cpu)) 4047 return 0; 4048 4049 if (vcpu_is_preempted(cpu)) 4050 return 0; 4051 4052 return 1; 4053 } 4054 4055 /** 4056 * idle_task - return the idle task for a given CPU. 4057 * @cpu: the processor in question. 4058 * 4059 * Return: The idle task for the CPU @cpu. 4060 */ 4061 struct task_struct *idle_task(int cpu) 4062 { 4063 return cpu_rq(cpu)->idle; 4064 } 4065 4066 /** 4067 * find_process_by_pid - find a process with a matching PID value. 4068 * @pid: the pid in question. 4069 * 4070 * The task of @pid, if found. %NULL otherwise. 4071 */ 4072 static struct task_struct *find_process_by_pid(pid_t pid) 4073 { 4074 return pid ? find_task_by_vpid(pid) : current; 4075 } 4076 4077 /* 4078 * sched_setparam() passes in -1 for its policy, to let the functions 4079 * it calls know not to change it. 4080 */ 4081 #define SETPARAM_POLICY -1 4082 4083 static void __setscheduler_params(struct task_struct *p, 4084 const struct sched_attr *attr) 4085 { 4086 int policy = attr->sched_policy; 4087 4088 if (policy == SETPARAM_POLICY) 4089 policy = p->policy; 4090 4091 p->policy = policy; 4092 4093 if (dl_policy(policy)) 4094 __setparam_dl(p, attr); 4095 else if (fair_policy(policy)) 4096 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4097 4098 /* 4099 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4100 * !rt_policy. Always setting this ensures that things like 4101 * getparam()/getattr() don't report silly values for !rt tasks. 4102 */ 4103 p->rt_priority = attr->sched_priority; 4104 p->normal_prio = normal_prio(p); 4105 set_load_weight(p, true); 4106 } 4107 4108 /* Actually do priority change: must hold pi & rq lock. */ 4109 static void __setscheduler(struct rq *rq, struct task_struct *p, 4110 const struct sched_attr *attr, bool keep_boost) 4111 { 4112 __setscheduler_params(p, attr); 4113 4114 /* 4115 * Keep a potential priority boosting if called from 4116 * sched_setscheduler(). 4117 */ 4118 p->prio = normal_prio(p); 4119 if (keep_boost) 4120 p->prio = rt_effective_prio(p, p->prio); 4121 4122 if (dl_prio(p->prio)) 4123 p->sched_class = &dl_sched_class; 4124 else if (rt_prio(p->prio)) 4125 p->sched_class = &rt_sched_class; 4126 else 4127 p->sched_class = &fair_sched_class; 4128 } 4129 4130 /* 4131 * Check the target process has a UID that matches the current process's: 4132 */ 4133 static bool check_same_owner(struct task_struct *p) 4134 { 4135 const struct cred *cred = current_cred(), *pcred; 4136 bool match; 4137 4138 rcu_read_lock(); 4139 pcred = __task_cred(p); 4140 match = (uid_eq(cred->euid, pcred->euid) || 4141 uid_eq(cred->euid, pcred->uid)); 4142 rcu_read_unlock(); 4143 return match; 4144 } 4145 4146 static int __sched_setscheduler(struct task_struct *p, 4147 const struct sched_attr *attr, 4148 bool user, bool pi) 4149 { 4150 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4151 MAX_RT_PRIO - 1 - attr->sched_priority; 4152 int retval, oldprio, oldpolicy = -1, queued, running; 4153 int new_effective_prio, policy = attr->sched_policy; 4154 const struct sched_class *prev_class; 4155 struct rq_flags rf; 4156 int reset_on_fork; 4157 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4158 struct rq *rq; 4159 4160 /* The pi code expects interrupts enabled */ 4161 BUG_ON(pi && in_interrupt()); 4162 recheck: 4163 /* Double check policy once rq lock held: */ 4164 if (policy < 0) { 4165 reset_on_fork = p->sched_reset_on_fork; 4166 policy = oldpolicy = p->policy; 4167 } else { 4168 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4169 4170 if (!valid_policy(policy)) 4171 return -EINVAL; 4172 } 4173 4174 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4175 return -EINVAL; 4176 4177 /* 4178 * Valid priorities for SCHED_FIFO and SCHED_RR are 4179 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4180 * SCHED_BATCH and SCHED_IDLE is 0. 4181 */ 4182 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4183 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4184 return -EINVAL; 4185 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4186 (rt_policy(policy) != (attr->sched_priority != 0))) 4187 return -EINVAL; 4188 4189 /* 4190 * Allow unprivileged RT tasks to decrease priority: 4191 */ 4192 if (user && !capable(CAP_SYS_NICE)) { 4193 if (fair_policy(policy)) { 4194 if (attr->sched_nice < task_nice(p) && 4195 !can_nice(p, attr->sched_nice)) 4196 return -EPERM; 4197 } 4198 4199 if (rt_policy(policy)) { 4200 unsigned long rlim_rtprio = 4201 task_rlimit(p, RLIMIT_RTPRIO); 4202 4203 /* Can't set/change the rt policy: */ 4204 if (policy != p->policy && !rlim_rtprio) 4205 return -EPERM; 4206 4207 /* Can't increase priority: */ 4208 if (attr->sched_priority > p->rt_priority && 4209 attr->sched_priority > rlim_rtprio) 4210 return -EPERM; 4211 } 4212 4213 /* 4214 * Can't set/change SCHED_DEADLINE policy at all for now 4215 * (safest behavior); in the future we would like to allow 4216 * unprivileged DL tasks to increase their relative deadline 4217 * or reduce their runtime (both ways reducing utilization) 4218 */ 4219 if (dl_policy(policy)) 4220 return -EPERM; 4221 4222 /* 4223 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4224 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4225 */ 4226 if (idle_policy(p->policy) && !idle_policy(policy)) { 4227 if (!can_nice(p, task_nice(p))) 4228 return -EPERM; 4229 } 4230 4231 /* Can't change other user's priorities: */ 4232 if (!check_same_owner(p)) 4233 return -EPERM; 4234 4235 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4236 if (p->sched_reset_on_fork && !reset_on_fork) 4237 return -EPERM; 4238 } 4239 4240 if (user) { 4241 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4242 return -EINVAL; 4243 4244 retval = security_task_setscheduler(p); 4245 if (retval) 4246 return retval; 4247 } 4248 4249 /* 4250 * Make sure no PI-waiters arrive (or leave) while we are 4251 * changing the priority of the task: 4252 * 4253 * To be able to change p->policy safely, the appropriate 4254 * runqueue lock must be held. 4255 */ 4256 rq = task_rq_lock(p, &rf); 4257 update_rq_clock(rq); 4258 4259 /* 4260 * Changing the policy of the stop threads its a very bad idea: 4261 */ 4262 if (p == rq->stop) { 4263 task_rq_unlock(rq, p, &rf); 4264 return -EINVAL; 4265 } 4266 4267 /* 4268 * If not changing anything there's no need to proceed further, 4269 * but store a possible modification of reset_on_fork. 4270 */ 4271 if (unlikely(policy == p->policy)) { 4272 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4273 goto change; 4274 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4275 goto change; 4276 if (dl_policy(policy) && dl_param_changed(p, attr)) 4277 goto change; 4278 4279 p->sched_reset_on_fork = reset_on_fork; 4280 task_rq_unlock(rq, p, &rf); 4281 return 0; 4282 } 4283 change: 4284 4285 if (user) { 4286 #ifdef CONFIG_RT_GROUP_SCHED 4287 /* 4288 * Do not allow realtime tasks into groups that have no runtime 4289 * assigned. 4290 */ 4291 if (rt_bandwidth_enabled() && rt_policy(policy) && 4292 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4293 !task_group_is_autogroup(task_group(p))) { 4294 task_rq_unlock(rq, p, &rf); 4295 return -EPERM; 4296 } 4297 #endif 4298 #ifdef CONFIG_SMP 4299 if (dl_bandwidth_enabled() && dl_policy(policy) && 4300 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4301 cpumask_t *span = rq->rd->span; 4302 4303 /* 4304 * Don't allow tasks with an affinity mask smaller than 4305 * the entire root_domain to become SCHED_DEADLINE. We 4306 * will also fail if there's no bandwidth available. 4307 */ 4308 if (!cpumask_subset(span, &p->cpus_allowed) || 4309 rq->rd->dl_bw.bw == 0) { 4310 task_rq_unlock(rq, p, &rf); 4311 return -EPERM; 4312 } 4313 } 4314 #endif 4315 } 4316 4317 /* Re-check policy now with rq lock held: */ 4318 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4319 policy = oldpolicy = -1; 4320 task_rq_unlock(rq, p, &rf); 4321 goto recheck; 4322 } 4323 4324 /* 4325 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4326 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4327 * is available. 4328 */ 4329 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4330 task_rq_unlock(rq, p, &rf); 4331 return -EBUSY; 4332 } 4333 4334 p->sched_reset_on_fork = reset_on_fork; 4335 oldprio = p->prio; 4336 4337 if (pi) { 4338 /* 4339 * Take priority boosted tasks into account. If the new 4340 * effective priority is unchanged, we just store the new 4341 * normal parameters and do not touch the scheduler class and 4342 * the runqueue. This will be done when the task deboost 4343 * itself. 4344 */ 4345 new_effective_prio = rt_effective_prio(p, newprio); 4346 if (new_effective_prio == oldprio) 4347 queue_flags &= ~DEQUEUE_MOVE; 4348 } 4349 4350 queued = task_on_rq_queued(p); 4351 running = task_current(rq, p); 4352 if (queued) 4353 dequeue_task(rq, p, queue_flags); 4354 if (running) 4355 put_prev_task(rq, p); 4356 4357 prev_class = p->sched_class; 4358 __setscheduler(rq, p, attr, pi); 4359 4360 if (queued) { 4361 /* 4362 * We enqueue to tail when the priority of a task is 4363 * increased (user space view). 4364 */ 4365 if (oldprio < p->prio) 4366 queue_flags |= ENQUEUE_HEAD; 4367 4368 enqueue_task(rq, p, queue_flags); 4369 } 4370 if (running) 4371 set_curr_task(rq, p); 4372 4373 check_class_changed(rq, p, prev_class, oldprio); 4374 4375 /* Avoid rq from going away on us: */ 4376 preempt_disable(); 4377 task_rq_unlock(rq, p, &rf); 4378 4379 if (pi) 4380 rt_mutex_adjust_pi(p); 4381 4382 /* Run balance callbacks after we've adjusted the PI chain: */ 4383 balance_callback(rq); 4384 preempt_enable(); 4385 4386 return 0; 4387 } 4388 4389 static int _sched_setscheduler(struct task_struct *p, int policy, 4390 const struct sched_param *param, bool check) 4391 { 4392 struct sched_attr attr = { 4393 .sched_policy = policy, 4394 .sched_priority = param->sched_priority, 4395 .sched_nice = PRIO_TO_NICE(p->static_prio), 4396 }; 4397 4398 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4399 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4400 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4401 policy &= ~SCHED_RESET_ON_FORK; 4402 attr.sched_policy = policy; 4403 } 4404 4405 return __sched_setscheduler(p, &attr, check, true); 4406 } 4407 /** 4408 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4409 * @p: the task in question. 4410 * @policy: new policy. 4411 * @param: structure containing the new RT priority. 4412 * 4413 * Return: 0 on success. An error code otherwise. 4414 * 4415 * NOTE that the task may be already dead. 4416 */ 4417 int sched_setscheduler(struct task_struct *p, int policy, 4418 const struct sched_param *param) 4419 { 4420 return _sched_setscheduler(p, policy, param, true); 4421 } 4422 EXPORT_SYMBOL_GPL(sched_setscheduler); 4423 4424 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4425 { 4426 return __sched_setscheduler(p, attr, true, true); 4427 } 4428 EXPORT_SYMBOL_GPL(sched_setattr); 4429 4430 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4431 { 4432 return __sched_setscheduler(p, attr, false, true); 4433 } 4434 4435 /** 4436 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4437 * @p: the task in question. 4438 * @policy: new policy. 4439 * @param: structure containing the new RT priority. 4440 * 4441 * Just like sched_setscheduler, only don't bother checking if the 4442 * current context has permission. For example, this is needed in 4443 * stop_machine(): we create temporary high priority worker threads, 4444 * but our caller might not have that capability. 4445 * 4446 * Return: 0 on success. An error code otherwise. 4447 */ 4448 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4449 const struct sched_param *param) 4450 { 4451 return _sched_setscheduler(p, policy, param, false); 4452 } 4453 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4454 4455 static int 4456 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4457 { 4458 struct sched_param lparam; 4459 struct task_struct *p; 4460 int retval; 4461 4462 if (!param || pid < 0) 4463 return -EINVAL; 4464 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4465 return -EFAULT; 4466 4467 rcu_read_lock(); 4468 retval = -ESRCH; 4469 p = find_process_by_pid(pid); 4470 if (p != NULL) 4471 retval = sched_setscheduler(p, policy, &lparam); 4472 rcu_read_unlock(); 4473 4474 return retval; 4475 } 4476 4477 /* 4478 * Mimics kernel/events/core.c perf_copy_attr(). 4479 */ 4480 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4481 { 4482 u32 size; 4483 int ret; 4484 4485 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4486 return -EFAULT; 4487 4488 /* Zero the full structure, so that a short copy will be nice: */ 4489 memset(attr, 0, sizeof(*attr)); 4490 4491 ret = get_user(size, &uattr->size); 4492 if (ret) 4493 return ret; 4494 4495 /* Bail out on silly large: */ 4496 if (size > PAGE_SIZE) 4497 goto err_size; 4498 4499 /* ABI compatibility quirk: */ 4500 if (!size) 4501 size = SCHED_ATTR_SIZE_VER0; 4502 4503 if (size < SCHED_ATTR_SIZE_VER0) 4504 goto err_size; 4505 4506 /* 4507 * If we're handed a bigger struct than we know of, 4508 * ensure all the unknown bits are 0 - i.e. new 4509 * user-space does not rely on any kernel feature 4510 * extensions we dont know about yet. 4511 */ 4512 if (size > sizeof(*attr)) { 4513 unsigned char __user *addr; 4514 unsigned char __user *end; 4515 unsigned char val; 4516 4517 addr = (void __user *)uattr + sizeof(*attr); 4518 end = (void __user *)uattr + size; 4519 4520 for (; addr < end; addr++) { 4521 ret = get_user(val, addr); 4522 if (ret) 4523 return ret; 4524 if (val) 4525 goto err_size; 4526 } 4527 size = sizeof(*attr); 4528 } 4529 4530 ret = copy_from_user(attr, uattr, size); 4531 if (ret) 4532 return -EFAULT; 4533 4534 /* 4535 * XXX: Do we want to be lenient like existing syscalls; or do we want 4536 * to be strict and return an error on out-of-bounds values? 4537 */ 4538 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4539 4540 return 0; 4541 4542 err_size: 4543 put_user(sizeof(*attr), &uattr->size); 4544 return -E2BIG; 4545 } 4546 4547 /** 4548 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4549 * @pid: the pid in question. 4550 * @policy: new policy. 4551 * @param: structure containing the new RT priority. 4552 * 4553 * Return: 0 on success. An error code otherwise. 4554 */ 4555 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4556 { 4557 if (policy < 0) 4558 return -EINVAL; 4559 4560 return do_sched_setscheduler(pid, policy, param); 4561 } 4562 4563 /** 4564 * sys_sched_setparam - set/change the RT priority of a thread 4565 * @pid: the pid in question. 4566 * @param: structure containing the new RT priority. 4567 * 4568 * Return: 0 on success. An error code otherwise. 4569 */ 4570 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4571 { 4572 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4573 } 4574 4575 /** 4576 * sys_sched_setattr - same as above, but with extended sched_attr 4577 * @pid: the pid in question. 4578 * @uattr: structure containing the extended parameters. 4579 * @flags: for future extension. 4580 */ 4581 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4582 unsigned int, flags) 4583 { 4584 struct sched_attr attr; 4585 struct task_struct *p; 4586 int retval; 4587 4588 if (!uattr || pid < 0 || flags) 4589 return -EINVAL; 4590 4591 retval = sched_copy_attr(uattr, &attr); 4592 if (retval) 4593 return retval; 4594 4595 if ((int)attr.sched_policy < 0) 4596 return -EINVAL; 4597 4598 rcu_read_lock(); 4599 retval = -ESRCH; 4600 p = find_process_by_pid(pid); 4601 if (p != NULL) 4602 retval = sched_setattr(p, &attr); 4603 rcu_read_unlock(); 4604 4605 return retval; 4606 } 4607 4608 /** 4609 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4610 * @pid: the pid in question. 4611 * 4612 * Return: On success, the policy of the thread. Otherwise, a negative error 4613 * code. 4614 */ 4615 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4616 { 4617 struct task_struct *p; 4618 int retval; 4619 4620 if (pid < 0) 4621 return -EINVAL; 4622 4623 retval = -ESRCH; 4624 rcu_read_lock(); 4625 p = find_process_by_pid(pid); 4626 if (p) { 4627 retval = security_task_getscheduler(p); 4628 if (!retval) 4629 retval = p->policy 4630 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4631 } 4632 rcu_read_unlock(); 4633 return retval; 4634 } 4635 4636 /** 4637 * sys_sched_getparam - get the RT priority of a thread 4638 * @pid: the pid in question. 4639 * @param: structure containing the RT priority. 4640 * 4641 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4642 * code. 4643 */ 4644 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4645 { 4646 struct sched_param lp = { .sched_priority = 0 }; 4647 struct task_struct *p; 4648 int retval; 4649 4650 if (!param || pid < 0) 4651 return -EINVAL; 4652 4653 rcu_read_lock(); 4654 p = find_process_by_pid(pid); 4655 retval = -ESRCH; 4656 if (!p) 4657 goto out_unlock; 4658 4659 retval = security_task_getscheduler(p); 4660 if (retval) 4661 goto out_unlock; 4662 4663 if (task_has_rt_policy(p)) 4664 lp.sched_priority = p->rt_priority; 4665 rcu_read_unlock(); 4666 4667 /* 4668 * This one might sleep, we cannot do it with a spinlock held ... 4669 */ 4670 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4671 4672 return retval; 4673 4674 out_unlock: 4675 rcu_read_unlock(); 4676 return retval; 4677 } 4678 4679 static int sched_read_attr(struct sched_attr __user *uattr, 4680 struct sched_attr *attr, 4681 unsigned int usize) 4682 { 4683 int ret; 4684 4685 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4686 return -EFAULT; 4687 4688 /* 4689 * If we're handed a smaller struct than we know of, 4690 * ensure all the unknown bits are 0 - i.e. old 4691 * user-space does not get uncomplete information. 4692 */ 4693 if (usize < sizeof(*attr)) { 4694 unsigned char *addr; 4695 unsigned char *end; 4696 4697 addr = (void *)attr + usize; 4698 end = (void *)attr + sizeof(*attr); 4699 4700 for (; addr < end; addr++) { 4701 if (*addr) 4702 return -EFBIG; 4703 } 4704 4705 attr->size = usize; 4706 } 4707 4708 ret = copy_to_user(uattr, attr, attr->size); 4709 if (ret) 4710 return -EFAULT; 4711 4712 return 0; 4713 } 4714 4715 /** 4716 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4717 * @pid: the pid in question. 4718 * @uattr: structure containing the extended parameters. 4719 * @size: sizeof(attr) for fwd/bwd comp. 4720 * @flags: for future extension. 4721 */ 4722 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4723 unsigned int, size, unsigned int, flags) 4724 { 4725 struct sched_attr attr = { 4726 .size = sizeof(struct sched_attr), 4727 }; 4728 struct task_struct *p; 4729 int retval; 4730 4731 if (!uattr || pid < 0 || size > PAGE_SIZE || 4732 size < SCHED_ATTR_SIZE_VER0 || flags) 4733 return -EINVAL; 4734 4735 rcu_read_lock(); 4736 p = find_process_by_pid(pid); 4737 retval = -ESRCH; 4738 if (!p) 4739 goto out_unlock; 4740 4741 retval = security_task_getscheduler(p); 4742 if (retval) 4743 goto out_unlock; 4744 4745 attr.sched_policy = p->policy; 4746 if (p->sched_reset_on_fork) 4747 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4748 if (task_has_dl_policy(p)) 4749 __getparam_dl(p, &attr); 4750 else if (task_has_rt_policy(p)) 4751 attr.sched_priority = p->rt_priority; 4752 else 4753 attr.sched_nice = task_nice(p); 4754 4755 rcu_read_unlock(); 4756 4757 retval = sched_read_attr(uattr, &attr, size); 4758 return retval; 4759 4760 out_unlock: 4761 rcu_read_unlock(); 4762 return retval; 4763 } 4764 4765 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4766 { 4767 cpumask_var_t cpus_allowed, new_mask; 4768 struct task_struct *p; 4769 int retval; 4770 4771 rcu_read_lock(); 4772 4773 p = find_process_by_pid(pid); 4774 if (!p) { 4775 rcu_read_unlock(); 4776 return -ESRCH; 4777 } 4778 4779 /* Prevent p going away */ 4780 get_task_struct(p); 4781 rcu_read_unlock(); 4782 4783 if (p->flags & PF_NO_SETAFFINITY) { 4784 retval = -EINVAL; 4785 goto out_put_task; 4786 } 4787 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4788 retval = -ENOMEM; 4789 goto out_put_task; 4790 } 4791 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4792 retval = -ENOMEM; 4793 goto out_free_cpus_allowed; 4794 } 4795 retval = -EPERM; 4796 if (!check_same_owner(p)) { 4797 rcu_read_lock(); 4798 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4799 rcu_read_unlock(); 4800 goto out_free_new_mask; 4801 } 4802 rcu_read_unlock(); 4803 } 4804 4805 retval = security_task_setscheduler(p); 4806 if (retval) 4807 goto out_free_new_mask; 4808 4809 4810 cpuset_cpus_allowed(p, cpus_allowed); 4811 cpumask_and(new_mask, in_mask, cpus_allowed); 4812 4813 /* 4814 * Since bandwidth control happens on root_domain basis, 4815 * if admission test is enabled, we only admit -deadline 4816 * tasks allowed to run on all the CPUs in the task's 4817 * root_domain. 4818 */ 4819 #ifdef CONFIG_SMP 4820 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4821 rcu_read_lock(); 4822 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4823 retval = -EBUSY; 4824 rcu_read_unlock(); 4825 goto out_free_new_mask; 4826 } 4827 rcu_read_unlock(); 4828 } 4829 #endif 4830 again: 4831 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4832 4833 if (!retval) { 4834 cpuset_cpus_allowed(p, cpus_allowed); 4835 if (!cpumask_subset(new_mask, cpus_allowed)) { 4836 /* 4837 * We must have raced with a concurrent cpuset 4838 * update. Just reset the cpus_allowed to the 4839 * cpuset's cpus_allowed 4840 */ 4841 cpumask_copy(new_mask, cpus_allowed); 4842 goto again; 4843 } 4844 } 4845 out_free_new_mask: 4846 free_cpumask_var(new_mask); 4847 out_free_cpus_allowed: 4848 free_cpumask_var(cpus_allowed); 4849 out_put_task: 4850 put_task_struct(p); 4851 return retval; 4852 } 4853 4854 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4855 struct cpumask *new_mask) 4856 { 4857 if (len < cpumask_size()) 4858 cpumask_clear(new_mask); 4859 else if (len > cpumask_size()) 4860 len = cpumask_size(); 4861 4862 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4863 } 4864 4865 /** 4866 * sys_sched_setaffinity - set the CPU affinity of a process 4867 * @pid: pid of the process 4868 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4869 * @user_mask_ptr: user-space pointer to the new CPU mask 4870 * 4871 * Return: 0 on success. An error code otherwise. 4872 */ 4873 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4874 unsigned long __user *, user_mask_ptr) 4875 { 4876 cpumask_var_t new_mask; 4877 int retval; 4878 4879 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4880 return -ENOMEM; 4881 4882 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4883 if (retval == 0) 4884 retval = sched_setaffinity(pid, new_mask); 4885 free_cpumask_var(new_mask); 4886 return retval; 4887 } 4888 4889 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4890 { 4891 struct task_struct *p; 4892 unsigned long flags; 4893 int retval; 4894 4895 rcu_read_lock(); 4896 4897 retval = -ESRCH; 4898 p = find_process_by_pid(pid); 4899 if (!p) 4900 goto out_unlock; 4901 4902 retval = security_task_getscheduler(p); 4903 if (retval) 4904 goto out_unlock; 4905 4906 raw_spin_lock_irqsave(&p->pi_lock, flags); 4907 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4908 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4909 4910 out_unlock: 4911 rcu_read_unlock(); 4912 4913 return retval; 4914 } 4915 4916 /** 4917 * sys_sched_getaffinity - get the CPU affinity of a process 4918 * @pid: pid of the process 4919 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4920 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4921 * 4922 * Return: size of CPU mask copied to user_mask_ptr on success. An 4923 * error code otherwise. 4924 */ 4925 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4926 unsigned long __user *, user_mask_ptr) 4927 { 4928 int ret; 4929 cpumask_var_t mask; 4930 4931 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4932 return -EINVAL; 4933 if (len & (sizeof(unsigned long)-1)) 4934 return -EINVAL; 4935 4936 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4937 return -ENOMEM; 4938 4939 ret = sched_getaffinity(pid, mask); 4940 if (ret == 0) { 4941 unsigned int retlen = min(len, cpumask_size()); 4942 4943 if (copy_to_user(user_mask_ptr, mask, retlen)) 4944 ret = -EFAULT; 4945 else 4946 ret = retlen; 4947 } 4948 free_cpumask_var(mask); 4949 4950 return ret; 4951 } 4952 4953 /** 4954 * sys_sched_yield - yield the current processor to other threads. 4955 * 4956 * This function yields the current CPU to other tasks. If there are no 4957 * other threads running on this CPU then this function will return. 4958 * 4959 * Return: 0. 4960 */ 4961 static void do_sched_yield(void) 4962 { 4963 struct rq_flags rf; 4964 struct rq *rq; 4965 4966 local_irq_disable(); 4967 rq = this_rq(); 4968 rq_lock(rq, &rf); 4969 4970 schedstat_inc(rq->yld_count); 4971 current->sched_class->yield_task(rq); 4972 4973 /* 4974 * Since we are going to call schedule() anyway, there's 4975 * no need to preempt or enable interrupts: 4976 */ 4977 preempt_disable(); 4978 rq_unlock(rq, &rf); 4979 sched_preempt_enable_no_resched(); 4980 4981 schedule(); 4982 } 4983 4984 SYSCALL_DEFINE0(sched_yield) 4985 { 4986 do_sched_yield(); 4987 return 0; 4988 } 4989 4990 #ifndef CONFIG_PREEMPT 4991 int __sched _cond_resched(void) 4992 { 4993 if (should_resched(0)) { 4994 preempt_schedule_common(); 4995 return 1; 4996 } 4997 rcu_all_qs(); 4998 return 0; 4999 } 5000 EXPORT_SYMBOL(_cond_resched); 5001 #endif 5002 5003 /* 5004 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5005 * call schedule, and on return reacquire the lock. 5006 * 5007 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5008 * operations here to prevent schedule() from being called twice (once via 5009 * spin_unlock(), once by hand). 5010 */ 5011 int __cond_resched_lock(spinlock_t *lock) 5012 { 5013 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5014 int ret = 0; 5015 5016 lockdep_assert_held(lock); 5017 5018 if (spin_needbreak(lock) || resched) { 5019 spin_unlock(lock); 5020 if (resched) 5021 preempt_schedule_common(); 5022 else 5023 cpu_relax(); 5024 ret = 1; 5025 spin_lock(lock); 5026 } 5027 return ret; 5028 } 5029 EXPORT_SYMBOL(__cond_resched_lock); 5030 5031 /** 5032 * yield - yield the current processor to other threads. 5033 * 5034 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5035 * 5036 * The scheduler is at all times free to pick the calling task as the most 5037 * eligible task to run, if removing the yield() call from your code breaks 5038 * it, its already broken. 5039 * 5040 * Typical broken usage is: 5041 * 5042 * while (!event) 5043 * yield(); 5044 * 5045 * where one assumes that yield() will let 'the other' process run that will 5046 * make event true. If the current task is a SCHED_FIFO task that will never 5047 * happen. Never use yield() as a progress guarantee!! 5048 * 5049 * If you want to use yield() to wait for something, use wait_event(). 5050 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5051 * If you still want to use yield(), do not! 5052 */ 5053 void __sched yield(void) 5054 { 5055 set_current_state(TASK_RUNNING); 5056 do_sched_yield(); 5057 } 5058 EXPORT_SYMBOL(yield); 5059 5060 /** 5061 * yield_to - yield the current processor to another thread in 5062 * your thread group, or accelerate that thread toward the 5063 * processor it's on. 5064 * @p: target task 5065 * @preempt: whether task preemption is allowed or not 5066 * 5067 * It's the caller's job to ensure that the target task struct 5068 * can't go away on us before we can do any checks. 5069 * 5070 * Return: 5071 * true (>0) if we indeed boosted the target task. 5072 * false (0) if we failed to boost the target. 5073 * -ESRCH if there's no task to yield to. 5074 */ 5075 int __sched yield_to(struct task_struct *p, bool preempt) 5076 { 5077 struct task_struct *curr = current; 5078 struct rq *rq, *p_rq; 5079 unsigned long flags; 5080 int yielded = 0; 5081 5082 local_irq_save(flags); 5083 rq = this_rq(); 5084 5085 again: 5086 p_rq = task_rq(p); 5087 /* 5088 * If we're the only runnable task on the rq and target rq also 5089 * has only one task, there's absolutely no point in yielding. 5090 */ 5091 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5092 yielded = -ESRCH; 5093 goto out_irq; 5094 } 5095 5096 double_rq_lock(rq, p_rq); 5097 if (task_rq(p) != p_rq) { 5098 double_rq_unlock(rq, p_rq); 5099 goto again; 5100 } 5101 5102 if (!curr->sched_class->yield_to_task) 5103 goto out_unlock; 5104 5105 if (curr->sched_class != p->sched_class) 5106 goto out_unlock; 5107 5108 if (task_running(p_rq, p) || p->state) 5109 goto out_unlock; 5110 5111 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5112 if (yielded) { 5113 schedstat_inc(rq->yld_count); 5114 /* 5115 * Make p's CPU reschedule; pick_next_entity takes care of 5116 * fairness. 5117 */ 5118 if (preempt && rq != p_rq) 5119 resched_curr(p_rq); 5120 } 5121 5122 out_unlock: 5123 double_rq_unlock(rq, p_rq); 5124 out_irq: 5125 local_irq_restore(flags); 5126 5127 if (yielded > 0) 5128 schedule(); 5129 5130 return yielded; 5131 } 5132 EXPORT_SYMBOL_GPL(yield_to); 5133 5134 int io_schedule_prepare(void) 5135 { 5136 int old_iowait = current->in_iowait; 5137 5138 current->in_iowait = 1; 5139 blk_schedule_flush_plug(current); 5140 5141 return old_iowait; 5142 } 5143 5144 void io_schedule_finish(int token) 5145 { 5146 current->in_iowait = token; 5147 } 5148 5149 /* 5150 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5151 * that process accounting knows that this is a task in IO wait state. 5152 */ 5153 long __sched io_schedule_timeout(long timeout) 5154 { 5155 int token; 5156 long ret; 5157 5158 token = io_schedule_prepare(); 5159 ret = schedule_timeout(timeout); 5160 io_schedule_finish(token); 5161 5162 return ret; 5163 } 5164 EXPORT_SYMBOL(io_schedule_timeout); 5165 5166 void io_schedule(void) 5167 { 5168 int token; 5169 5170 token = io_schedule_prepare(); 5171 schedule(); 5172 io_schedule_finish(token); 5173 } 5174 EXPORT_SYMBOL(io_schedule); 5175 5176 /** 5177 * sys_sched_get_priority_max - return maximum RT priority. 5178 * @policy: scheduling class. 5179 * 5180 * Return: On success, this syscall returns the maximum 5181 * rt_priority that can be used by a given scheduling class. 5182 * On failure, a negative error code is returned. 5183 */ 5184 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5185 { 5186 int ret = -EINVAL; 5187 5188 switch (policy) { 5189 case SCHED_FIFO: 5190 case SCHED_RR: 5191 ret = MAX_USER_RT_PRIO-1; 5192 break; 5193 case SCHED_DEADLINE: 5194 case SCHED_NORMAL: 5195 case SCHED_BATCH: 5196 case SCHED_IDLE: 5197 ret = 0; 5198 break; 5199 } 5200 return ret; 5201 } 5202 5203 /** 5204 * sys_sched_get_priority_min - return minimum RT priority. 5205 * @policy: scheduling class. 5206 * 5207 * Return: On success, this syscall returns the minimum 5208 * rt_priority that can be used by a given scheduling class. 5209 * On failure, a negative error code is returned. 5210 */ 5211 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5212 { 5213 int ret = -EINVAL; 5214 5215 switch (policy) { 5216 case SCHED_FIFO: 5217 case SCHED_RR: 5218 ret = 1; 5219 break; 5220 case SCHED_DEADLINE: 5221 case SCHED_NORMAL: 5222 case SCHED_BATCH: 5223 case SCHED_IDLE: 5224 ret = 0; 5225 } 5226 return ret; 5227 } 5228 5229 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5230 { 5231 struct task_struct *p; 5232 unsigned int time_slice; 5233 struct rq_flags rf; 5234 struct rq *rq; 5235 int retval; 5236 5237 if (pid < 0) 5238 return -EINVAL; 5239 5240 retval = -ESRCH; 5241 rcu_read_lock(); 5242 p = find_process_by_pid(pid); 5243 if (!p) 5244 goto out_unlock; 5245 5246 retval = security_task_getscheduler(p); 5247 if (retval) 5248 goto out_unlock; 5249 5250 rq = task_rq_lock(p, &rf); 5251 time_slice = 0; 5252 if (p->sched_class->get_rr_interval) 5253 time_slice = p->sched_class->get_rr_interval(rq, p); 5254 task_rq_unlock(rq, p, &rf); 5255 5256 rcu_read_unlock(); 5257 jiffies_to_timespec64(time_slice, t); 5258 return 0; 5259 5260 out_unlock: 5261 rcu_read_unlock(); 5262 return retval; 5263 } 5264 5265 /** 5266 * sys_sched_rr_get_interval - return the default timeslice of a process. 5267 * @pid: pid of the process. 5268 * @interval: userspace pointer to the timeslice value. 5269 * 5270 * this syscall writes the default timeslice value of a given process 5271 * into the user-space timespec buffer. A value of '0' means infinity. 5272 * 5273 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5274 * an error code. 5275 */ 5276 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5277 struct timespec __user *, interval) 5278 { 5279 struct timespec64 t; 5280 int retval = sched_rr_get_interval(pid, &t); 5281 5282 if (retval == 0) 5283 retval = put_timespec64(&t, interval); 5284 5285 return retval; 5286 } 5287 5288 #ifdef CONFIG_COMPAT 5289 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5290 compat_pid_t, pid, 5291 struct compat_timespec __user *, interval) 5292 { 5293 struct timespec64 t; 5294 int retval = sched_rr_get_interval(pid, &t); 5295 5296 if (retval == 0) 5297 retval = compat_put_timespec64(&t, interval); 5298 return retval; 5299 } 5300 #endif 5301 5302 void sched_show_task(struct task_struct *p) 5303 { 5304 unsigned long free = 0; 5305 int ppid; 5306 5307 if (!try_get_task_stack(p)) 5308 return; 5309 5310 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5311 5312 if (p->state == TASK_RUNNING) 5313 printk(KERN_CONT " running task "); 5314 #ifdef CONFIG_DEBUG_STACK_USAGE 5315 free = stack_not_used(p); 5316 #endif 5317 ppid = 0; 5318 rcu_read_lock(); 5319 if (pid_alive(p)) 5320 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5321 rcu_read_unlock(); 5322 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5323 task_pid_nr(p), ppid, 5324 (unsigned long)task_thread_info(p)->flags); 5325 5326 print_worker_info(KERN_INFO, p); 5327 show_stack(p, NULL); 5328 put_task_stack(p); 5329 } 5330 EXPORT_SYMBOL_GPL(sched_show_task); 5331 5332 static inline bool 5333 state_filter_match(unsigned long state_filter, struct task_struct *p) 5334 { 5335 /* no filter, everything matches */ 5336 if (!state_filter) 5337 return true; 5338 5339 /* filter, but doesn't match */ 5340 if (!(p->state & state_filter)) 5341 return false; 5342 5343 /* 5344 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5345 * TASK_KILLABLE). 5346 */ 5347 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5348 return false; 5349 5350 return true; 5351 } 5352 5353 5354 void show_state_filter(unsigned long state_filter) 5355 { 5356 struct task_struct *g, *p; 5357 5358 #if BITS_PER_LONG == 32 5359 printk(KERN_INFO 5360 " task PC stack pid father\n"); 5361 #else 5362 printk(KERN_INFO 5363 " task PC stack pid father\n"); 5364 #endif 5365 rcu_read_lock(); 5366 for_each_process_thread(g, p) { 5367 /* 5368 * reset the NMI-timeout, listing all files on a slow 5369 * console might take a lot of time: 5370 * Also, reset softlockup watchdogs on all CPUs, because 5371 * another CPU might be blocked waiting for us to process 5372 * an IPI. 5373 */ 5374 touch_nmi_watchdog(); 5375 touch_all_softlockup_watchdogs(); 5376 if (state_filter_match(state_filter, p)) 5377 sched_show_task(p); 5378 } 5379 5380 #ifdef CONFIG_SCHED_DEBUG 5381 if (!state_filter) 5382 sysrq_sched_debug_show(); 5383 #endif 5384 rcu_read_unlock(); 5385 /* 5386 * Only show locks if all tasks are dumped: 5387 */ 5388 if (!state_filter) 5389 debug_show_all_locks(); 5390 } 5391 5392 /** 5393 * init_idle - set up an idle thread for a given CPU 5394 * @idle: task in question 5395 * @cpu: CPU the idle task belongs to 5396 * 5397 * NOTE: this function does not set the idle thread's NEED_RESCHED 5398 * flag, to make booting more robust. 5399 */ 5400 void init_idle(struct task_struct *idle, int cpu) 5401 { 5402 struct rq *rq = cpu_rq(cpu); 5403 unsigned long flags; 5404 5405 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5406 raw_spin_lock(&rq->lock); 5407 5408 __sched_fork(0, idle); 5409 idle->state = TASK_RUNNING; 5410 idle->se.exec_start = sched_clock(); 5411 idle->flags |= PF_IDLE; 5412 5413 kasan_unpoison_task_stack(idle); 5414 5415 #ifdef CONFIG_SMP 5416 /* 5417 * Its possible that init_idle() gets called multiple times on a task, 5418 * in that case do_set_cpus_allowed() will not do the right thing. 5419 * 5420 * And since this is boot we can forgo the serialization. 5421 */ 5422 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5423 #endif 5424 /* 5425 * We're having a chicken and egg problem, even though we are 5426 * holding rq->lock, the CPU isn't yet set to this CPU so the 5427 * lockdep check in task_group() will fail. 5428 * 5429 * Similar case to sched_fork(). / Alternatively we could 5430 * use task_rq_lock() here and obtain the other rq->lock. 5431 * 5432 * Silence PROVE_RCU 5433 */ 5434 rcu_read_lock(); 5435 __set_task_cpu(idle, cpu); 5436 rcu_read_unlock(); 5437 5438 rq->curr = rq->idle = idle; 5439 idle->on_rq = TASK_ON_RQ_QUEUED; 5440 #ifdef CONFIG_SMP 5441 idle->on_cpu = 1; 5442 #endif 5443 raw_spin_unlock(&rq->lock); 5444 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5445 5446 /* Set the preempt count _outside_ the spinlocks! */ 5447 init_idle_preempt_count(idle, cpu); 5448 5449 /* 5450 * The idle tasks have their own, simple scheduling class: 5451 */ 5452 idle->sched_class = &idle_sched_class; 5453 ftrace_graph_init_idle_task(idle, cpu); 5454 vtime_init_idle(idle, cpu); 5455 #ifdef CONFIG_SMP 5456 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5457 #endif 5458 } 5459 5460 #ifdef CONFIG_SMP 5461 5462 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5463 const struct cpumask *trial) 5464 { 5465 int ret = 1; 5466 5467 if (!cpumask_weight(cur)) 5468 return ret; 5469 5470 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5471 5472 return ret; 5473 } 5474 5475 int task_can_attach(struct task_struct *p, 5476 const struct cpumask *cs_cpus_allowed) 5477 { 5478 int ret = 0; 5479 5480 /* 5481 * Kthreads which disallow setaffinity shouldn't be moved 5482 * to a new cpuset; we don't want to change their CPU 5483 * affinity and isolating such threads by their set of 5484 * allowed nodes is unnecessary. Thus, cpusets are not 5485 * applicable for such threads. This prevents checking for 5486 * success of set_cpus_allowed_ptr() on all attached tasks 5487 * before cpus_allowed may be changed. 5488 */ 5489 if (p->flags & PF_NO_SETAFFINITY) { 5490 ret = -EINVAL; 5491 goto out; 5492 } 5493 5494 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5495 cs_cpus_allowed)) 5496 ret = dl_task_can_attach(p, cs_cpus_allowed); 5497 5498 out: 5499 return ret; 5500 } 5501 5502 bool sched_smp_initialized __read_mostly; 5503 5504 #ifdef CONFIG_NUMA_BALANCING 5505 /* Migrate current task p to target_cpu */ 5506 int migrate_task_to(struct task_struct *p, int target_cpu) 5507 { 5508 struct migration_arg arg = { p, target_cpu }; 5509 int curr_cpu = task_cpu(p); 5510 5511 if (curr_cpu == target_cpu) 5512 return 0; 5513 5514 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5515 return -EINVAL; 5516 5517 /* TODO: This is not properly updating schedstats */ 5518 5519 trace_sched_move_numa(p, curr_cpu, target_cpu); 5520 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5521 } 5522 5523 /* 5524 * Requeue a task on a given node and accurately track the number of NUMA 5525 * tasks on the runqueues 5526 */ 5527 void sched_setnuma(struct task_struct *p, int nid) 5528 { 5529 bool queued, running; 5530 struct rq_flags rf; 5531 struct rq *rq; 5532 5533 rq = task_rq_lock(p, &rf); 5534 queued = task_on_rq_queued(p); 5535 running = task_current(rq, p); 5536 5537 if (queued) 5538 dequeue_task(rq, p, DEQUEUE_SAVE); 5539 if (running) 5540 put_prev_task(rq, p); 5541 5542 p->numa_preferred_nid = nid; 5543 5544 if (queued) 5545 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5546 if (running) 5547 set_curr_task(rq, p); 5548 task_rq_unlock(rq, p, &rf); 5549 } 5550 #endif /* CONFIG_NUMA_BALANCING */ 5551 5552 #ifdef CONFIG_HOTPLUG_CPU 5553 /* 5554 * Ensure that the idle task is using init_mm right before its CPU goes 5555 * offline. 5556 */ 5557 void idle_task_exit(void) 5558 { 5559 struct mm_struct *mm = current->active_mm; 5560 5561 BUG_ON(cpu_online(smp_processor_id())); 5562 5563 if (mm != &init_mm) { 5564 switch_mm(mm, &init_mm, current); 5565 current->active_mm = &init_mm; 5566 finish_arch_post_lock_switch(); 5567 } 5568 mmdrop(mm); 5569 } 5570 5571 /* 5572 * Since this CPU is going 'away' for a while, fold any nr_active delta 5573 * we might have. Assumes we're called after migrate_tasks() so that the 5574 * nr_active count is stable. We need to take the teardown thread which 5575 * is calling this into account, so we hand in adjust = 1 to the load 5576 * calculation. 5577 * 5578 * Also see the comment "Global load-average calculations". 5579 */ 5580 static void calc_load_migrate(struct rq *rq) 5581 { 5582 long delta = calc_load_fold_active(rq, 1); 5583 if (delta) 5584 atomic_long_add(delta, &calc_load_tasks); 5585 } 5586 5587 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5588 { 5589 } 5590 5591 static const struct sched_class fake_sched_class = { 5592 .put_prev_task = put_prev_task_fake, 5593 }; 5594 5595 static struct task_struct fake_task = { 5596 /* 5597 * Avoid pull_{rt,dl}_task() 5598 */ 5599 .prio = MAX_PRIO + 1, 5600 .sched_class = &fake_sched_class, 5601 }; 5602 5603 /* 5604 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5605 * try_to_wake_up()->select_task_rq(). 5606 * 5607 * Called with rq->lock held even though we'er in stop_machine() and 5608 * there's no concurrency possible, we hold the required locks anyway 5609 * because of lock validation efforts. 5610 */ 5611 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5612 { 5613 struct rq *rq = dead_rq; 5614 struct task_struct *next, *stop = rq->stop; 5615 struct rq_flags orf = *rf; 5616 int dest_cpu; 5617 5618 /* 5619 * Fudge the rq selection such that the below task selection loop 5620 * doesn't get stuck on the currently eligible stop task. 5621 * 5622 * We're currently inside stop_machine() and the rq is either stuck 5623 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5624 * either way we should never end up calling schedule() until we're 5625 * done here. 5626 */ 5627 rq->stop = NULL; 5628 5629 /* 5630 * put_prev_task() and pick_next_task() sched 5631 * class method both need to have an up-to-date 5632 * value of rq->clock[_task] 5633 */ 5634 update_rq_clock(rq); 5635 5636 for (;;) { 5637 /* 5638 * There's this thread running, bail when that's the only 5639 * remaining thread: 5640 */ 5641 if (rq->nr_running == 1) 5642 break; 5643 5644 /* 5645 * pick_next_task() assumes pinned rq->lock: 5646 */ 5647 next = pick_next_task(rq, &fake_task, rf); 5648 BUG_ON(!next); 5649 put_prev_task(rq, next); 5650 5651 /* 5652 * Rules for changing task_struct::cpus_allowed are holding 5653 * both pi_lock and rq->lock, such that holding either 5654 * stabilizes the mask. 5655 * 5656 * Drop rq->lock is not quite as disastrous as it usually is 5657 * because !cpu_active at this point, which means load-balance 5658 * will not interfere. Also, stop-machine. 5659 */ 5660 rq_unlock(rq, rf); 5661 raw_spin_lock(&next->pi_lock); 5662 rq_relock(rq, rf); 5663 5664 /* 5665 * Since we're inside stop-machine, _nothing_ should have 5666 * changed the task, WARN if weird stuff happened, because in 5667 * that case the above rq->lock drop is a fail too. 5668 */ 5669 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5670 raw_spin_unlock(&next->pi_lock); 5671 continue; 5672 } 5673 5674 /* Find suitable destination for @next, with force if needed. */ 5675 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5676 rq = __migrate_task(rq, rf, next, dest_cpu); 5677 if (rq != dead_rq) { 5678 rq_unlock(rq, rf); 5679 rq = dead_rq; 5680 *rf = orf; 5681 rq_relock(rq, rf); 5682 } 5683 raw_spin_unlock(&next->pi_lock); 5684 } 5685 5686 rq->stop = stop; 5687 } 5688 #endif /* CONFIG_HOTPLUG_CPU */ 5689 5690 void set_rq_online(struct rq *rq) 5691 { 5692 if (!rq->online) { 5693 const struct sched_class *class; 5694 5695 cpumask_set_cpu(rq->cpu, rq->rd->online); 5696 rq->online = 1; 5697 5698 for_each_class(class) { 5699 if (class->rq_online) 5700 class->rq_online(rq); 5701 } 5702 } 5703 } 5704 5705 void set_rq_offline(struct rq *rq) 5706 { 5707 if (rq->online) { 5708 const struct sched_class *class; 5709 5710 for_each_class(class) { 5711 if (class->rq_offline) 5712 class->rq_offline(rq); 5713 } 5714 5715 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5716 rq->online = 0; 5717 } 5718 } 5719 5720 static void set_cpu_rq_start_time(unsigned int cpu) 5721 { 5722 struct rq *rq = cpu_rq(cpu); 5723 5724 rq->age_stamp = sched_clock_cpu(cpu); 5725 } 5726 5727 /* 5728 * used to mark begin/end of suspend/resume: 5729 */ 5730 static int num_cpus_frozen; 5731 5732 /* 5733 * Update cpusets according to cpu_active mask. If cpusets are 5734 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5735 * around partition_sched_domains(). 5736 * 5737 * If we come here as part of a suspend/resume, don't touch cpusets because we 5738 * want to restore it back to its original state upon resume anyway. 5739 */ 5740 static void cpuset_cpu_active(void) 5741 { 5742 if (cpuhp_tasks_frozen) { 5743 /* 5744 * num_cpus_frozen tracks how many CPUs are involved in suspend 5745 * resume sequence. As long as this is not the last online 5746 * operation in the resume sequence, just build a single sched 5747 * domain, ignoring cpusets. 5748 */ 5749 partition_sched_domains(1, NULL, NULL); 5750 if (--num_cpus_frozen) 5751 return; 5752 /* 5753 * This is the last CPU online operation. So fall through and 5754 * restore the original sched domains by considering the 5755 * cpuset configurations. 5756 */ 5757 cpuset_force_rebuild(); 5758 } 5759 cpuset_update_active_cpus(); 5760 } 5761 5762 static int cpuset_cpu_inactive(unsigned int cpu) 5763 { 5764 if (!cpuhp_tasks_frozen) { 5765 if (dl_cpu_busy(cpu)) 5766 return -EBUSY; 5767 cpuset_update_active_cpus(); 5768 } else { 5769 num_cpus_frozen++; 5770 partition_sched_domains(1, NULL, NULL); 5771 } 5772 return 0; 5773 } 5774 5775 int sched_cpu_activate(unsigned int cpu) 5776 { 5777 struct rq *rq = cpu_rq(cpu); 5778 struct rq_flags rf; 5779 5780 set_cpu_active(cpu, true); 5781 5782 if (sched_smp_initialized) { 5783 sched_domains_numa_masks_set(cpu); 5784 cpuset_cpu_active(); 5785 } 5786 5787 /* 5788 * Put the rq online, if not already. This happens: 5789 * 5790 * 1) In the early boot process, because we build the real domains 5791 * after all CPUs have been brought up. 5792 * 5793 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5794 * domains. 5795 */ 5796 rq_lock_irqsave(rq, &rf); 5797 if (rq->rd) { 5798 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5799 set_rq_online(rq); 5800 } 5801 rq_unlock_irqrestore(rq, &rf); 5802 5803 update_max_interval(); 5804 5805 return 0; 5806 } 5807 5808 int sched_cpu_deactivate(unsigned int cpu) 5809 { 5810 int ret; 5811 5812 set_cpu_active(cpu, false); 5813 /* 5814 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5815 * users of this state to go away such that all new such users will 5816 * observe it. 5817 * 5818 * Do sync before park smpboot threads to take care the rcu boost case. 5819 */ 5820 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5821 5822 if (!sched_smp_initialized) 5823 return 0; 5824 5825 ret = cpuset_cpu_inactive(cpu); 5826 if (ret) { 5827 set_cpu_active(cpu, true); 5828 return ret; 5829 } 5830 sched_domains_numa_masks_clear(cpu); 5831 return 0; 5832 } 5833 5834 static void sched_rq_cpu_starting(unsigned int cpu) 5835 { 5836 struct rq *rq = cpu_rq(cpu); 5837 5838 rq->calc_load_update = calc_load_update; 5839 update_max_interval(); 5840 } 5841 5842 int sched_cpu_starting(unsigned int cpu) 5843 { 5844 set_cpu_rq_start_time(cpu); 5845 sched_rq_cpu_starting(cpu); 5846 sched_tick_start(cpu); 5847 return 0; 5848 } 5849 5850 #ifdef CONFIG_HOTPLUG_CPU 5851 int sched_cpu_dying(unsigned int cpu) 5852 { 5853 struct rq *rq = cpu_rq(cpu); 5854 struct rq_flags rf; 5855 5856 /* Handle pending wakeups and then migrate everything off */ 5857 sched_ttwu_pending(); 5858 sched_tick_stop(cpu); 5859 5860 rq_lock_irqsave(rq, &rf); 5861 if (rq->rd) { 5862 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5863 set_rq_offline(rq); 5864 } 5865 migrate_tasks(rq, &rf); 5866 BUG_ON(rq->nr_running != 1); 5867 rq_unlock_irqrestore(rq, &rf); 5868 5869 calc_load_migrate(rq); 5870 update_max_interval(); 5871 nohz_balance_exit_idle(rq); 5872 hrtick_clear(rq); 5873 return 0; 5874 } 5875 #endif 5876 5877 #ifdef CONFIG_SCHED_SMT 5878 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5879 5880 static void sched_init_smt(void) 5881 { 5882 /* 5883 * We've enumerated all CPUs and will assume that if any CPU 5884 * has SMT siblings, CPU0 will too. 5885 */ 5886 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5887 static_branch_enable(&sched_smt_present); 5888 } 5889 #else 5890 static inline void sched_init_smt(void) { } 5891 #endif 5892 5893 void __init sched_init_smp(void) 5894 { 5895 sched_init_numa(); 5896 5897 /* 5898 * There's no userspace yet to cause hotplug operations; hence all the 5899 * CPU masks are stable and all blatant races in the below code cannot 5900 * happen. 5901 */ 5902 mutex_lock(&sched_domains_mutex); 5903 sched_init_domains(cpu_active_mask); 5904 mutex_unlock(&sched_domains_mutex); 5905 5906 /* Move init over to a non-isolated CPU */ 5907 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5908 BUG(); 5909 sched_init_granularity(); 5910 5911 init_sched_rt_class(); 5912 init_sched_dl_class(); 5913 5914 sched_init_smt(); 5915 5916 sched_smp_initialized = true; 5917 } 5918 5919 static int __init migration_init(void) 5920 { 5921 sched_rq_cpu_starting(smp_processor_id()); 5922 return 0; 5923 } 5924 early_initcall(migration_init); 5925 5926 #else 5927 void __init sched_init_smp(void) 5928 { 5929 sched_init_granularity(); 5930 } 5931 #endif /* CONFIG_SMP */ 5932 5933 int in_sched_functions(unsigned long addr) 5934 { 5935 return in_lock_functions(addr) || 5936 (addr >= (unsigned long)__sched_text_start 5937 && addr < (unsigned long)__sched_text_end); 5938 } 5939 5940 #ifdef CONFIG_CGROUP_SCHED 5941 /* 5942 * Default task group. 5943 * Every task in system belongs to this group at bootup. 5944 */ 5945 struct task_group root_task_group; 5946 LIST_HEAD(task_groups); 5947 5948 /* Cacheline aligned slab cache for task_group */ 5949 static struct kmem_cache *task_group_cache __read_mostly; 5950 #endif 5951 5952 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5953 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5954 5955 void __init sched_init(void) 5956 { 5957 int i, j; 5958 unsigned long alloc_size = 0, ptr; 5959 5960 sched_clock_init(); 5961 wait_bit_init(); 5962 5963 #ifdef CONFIG_FAIR_GROUP_SCHED 5964 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5965 #endif 5966 #ifdef CONFIG_RT_GROUP_SCHED 5967 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5968 #endif 5969 if (alloc_size) { 5970 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5971 5972 #ifdef CONFIG_FAIR_GROUP_SCHED 5973 root_task_group.se = (struct sched_entity **)ptr; 5974 ptr += nr_cpu_ids * sizeof(void **); 5975 5976 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5977 ptr += nr_cpu_ids * sizeof(void **); 5978 5979 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5980 #ifdef CONFIG_RT_GROUP_SCHED 5981 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5982 ptr += nr_cpu_ids * sizeof(void **); 5983 5984 root_task_group.rt_rq = (struct rt_rq **)ptr; 5985 ptr += nr_cpu_ids * sizeof(void **); 5986 5987 #endif /* CONFIG_RT_GROUP_SCHED */ 5988 } 5989 #ifdef CONFIG_CPUMASK_OFFSTACK 5990 for_each_possible_cpu(i) { 5991 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5992 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5993 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5994 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5995 } 5996 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5997 5998 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5999 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6000 6001 #ifdef CONFIG_SMP 6002 init_defrootdomain(); 6003 #endif 6004 6005 #ifdef CONFIG_RT_GROUP_SCHED 6006 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6007 global_rt_period(), global_rt_runtime()); 6008 #endif /* CONFIG_RT_GROUP_SCHED */ 6009 6010 #ifdef CONFIG_CGROUP_SCHED 6011 task_group_cache = KMEM_CACHE(task_group, 0); 6012 6013 list_add(&root_task_group.list, &task_groups); 6014 INIT_LIST_HEAD(&root_task_group.children); 6015 INIT_LIST_HEAD(&root_task_group.siblings); 6016 autogroup_init(&init_task); 6017 #endif /* CONFIG_CGROUP_SCHED */ 6018 6019 for_each_possible_cpu(i) { 6020 struct rq *rq; 6021 6022 rq = cpu_rq(i); 6023 raw_spin_lock_init(&rq->lock); 6024 rq->nr_running = 0; 6025 rq->calc_load_active = 0; 6026 rq->calc_load_update = jiffies + LOAD_FREQ; 6027 init_cfs_rq(&rq->cfs); 6028 init_rt_rq(&rq->rt); 6029 init_dl_rq(&rq->dl); 6030 #ifdef CONFIG_FAIR_GROUP_SCHED 6031 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6032 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6033 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6034 /* 6035 * How much CPU bandwidth does root_task_group get? 6036 * 6037 * In case of task-groups formed thr' the cgroup filesystem, it 6038 * gets 100% of the CPU resources in the system. This overall 6039 * system CPU resource is divided among the tasks of 6040 * root_task_group and its child task-groups in a fair manner, 6041 * based on each entity's (task or task-group's) weight 6042 * (se->load.weight). 6043 * 6044 * In other words, if root_task_group has 10 tasks of weight 6045 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6046 * then A0's share of the CPU resource is: 6047 * 6048 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6049 * 6050 * We achieve this by letting root_task_group's tasks sit 6051 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6052 */ 6053 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6054 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6055 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6056 6057 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6058 #ifdef CONFIG_RT_GROUP_SCHED 6059 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6060 #endif 6061 6062 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6063 rq->cpu_load[j] = 0; 6064 6065 #ifdef CONFIG_SMP 6066 rq->sd = NULL; 6067 rq->rd = NULL; 6068 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6069 rq->balance_callback = NULL; 6070 rq->active_balance = 0; 6071 rq->next_balance = jiffies; 6072 rq->push_cpu = 0; 6073 rq->cpu = i; 6074 rq->online = 0; 6075 rq->idle_stamp = 0; 6076 rq->avg_idle = 2*sysctl_sched_migration_cost; 6077 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6078 6079 INIT_LIST_HEAD(&rq->cfs_tasks); 6080 6081 rq_attach_root(rq, &def_root_domain); 6082 #ifdef CONFIG_NO_HZ_COMMON 6083 rq->last_load_update_tick = jiffies; 6084 rq->last_blocked_load_update_tick = jiffies; 6085 atomic_set(&rq->nohz_flags, 0); 6086 #endif 6087 #endif /* CONFIG_SMP */ 6088 hrtick_rq_init(rq); 6089 atomic_set(&rq->nr_iowait, 0); 6090 } 6091 6092 set_load_weight(&init_task, false); 6093 6094 /* 6095 * The boot idle thread does lazy MMU switching as well: 6096 */ 6097 mmgrab(&init_mm); 6098 enter_lazy_tlb(&init_mm, current); 6099 6100 /* 6101 * Make us the idle thread. Technically, schedule() should not be 6102 * called from this thread, however somewhere below it might be, 6103 * but because we are the idle thread, we just pick up running again 6104 * when this runqueue becomes "idle". 6105 */ 6106 init_idle(current, smp_processor_id()); 6107 6108 calc_load_update = jiffies + LOAD_FREQ; 6109 6110 #ifdef CONFIG_SMP 6111 idle_thread_set_boot_cpu(); 6112 set_cpu_rq_start_time(smp_processor_id()); 6113 #endif 6114 init_sched_fair_class(); 6115 6116 init_schedstats(); 6117 6118 scheduler_running = 1; 6119 } 6120 6121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6122 static inline int preempt_count_equals(int preempt_offset) 6123 { 6124 int nested = preempt_count() + rcu_preempt_depth(); 6125 6126 return (nested == preempt_offset); 6127 } 6128 6129 void __might_sleep(const char *file, int line, int preempt_offset) 6130 { 6131 /* 6132 * Blocking primitives will set (and therefore destroy) current->state, 6133 * since we will exit with TASK_RUNNING make sure we enter with it, 6134 * otherwise we will destroy state. 6135 */ 6136 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6137 "do not call blocking ops when !TASK_RUNNING; " 6138 "state=%lx set at [<%p>] %pS\n", 6139 current->state, 6140 (void *)current->task_state_change, 6141 (void *)current->task_state_change); 6142 6143 ___might_sleep(file, line, preempt_offset); 6144 } 6145 EXPORT_SYMBOL(__might_sleep); 6146 6147 void ___might_sleep(const char *file, int line, int preempt_offset) 6148 { 6149 /* Ratelimiting timestamp: */ 6150 static unsigned long prev_jiffy; 6151 6152 unsigned long preempt_disable_ip; 6153 6154 /* WARN_ON_ONCE() by default, no rate limit required: */ 6155 rcu_sleep_check(); 6156 6157 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6158 !is_idle_task(current)) || 6159 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6160 oops_in_progress) 6161 return; 6162 6163 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6164 return; 6165 prev_jiffy = jiffies; 6166 6167 /* Save this before calling printk(), since that will clobber it: */ 6168 preempt_disable_ip = get_preempt_disable_ip(current); 6169 6170 printk(KERN_ERR 6171 "BUG: sleeping function called from invalid context at %s:%d\n", 6172 file, line); 6173 printk(KERN_ERR 6174 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6175 in_atomic(), irqs_disabled(), 6176 current->pid, current->comm); 6177 6178 if (task_stack_end_corrupted(current)) 6179 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6180 6181 debug_show_held_locks(current); 6182 if (irqs_disabled()) 6183 print_irqtrace_events(current); 6184 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6185 && !preempt_count_equals(preempt_offset)) { 6186 pr_err("Preemption disabled at:"); 6187 print_ip_sym(preempt_disable_ip); 6188 pr_cont("\n"); 6189 } 6190 dump_stack(); 6191 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6192 } 6193 EXPORT_SYMBOL(___might_sleep); 6194 #endif 6195 6196 #ifdef CONFIG_MAGIC_SYSRQ 6197 void normalize_rt_tasks(void) 6198 { 6199 struct task_struct *g, *p; 6200 struct sched_attr attr = { 6201 .sched_policy = SCHED_NORMAL, 6202 }; 6203 6204 read_lock(&tasklist_lock); 6205 for_each_process_thread(g, p) { 6206 /* 6207 * Only normalize user tasks: 6208 */ 6209 if (p->flags & PF_KTHREAD) 6210 continue; 6211 6212 p->se.exec_start = 0; 6213 schedstat_set(p->se.statistics.wait_start, 0); 6214 schedstat_set(p->se.statistics.sleep_start, 0); 6215 schedstat_set(p->se.statistics.block_start, 0); 6216 6217 if (!dl_task(p) && !rt_task(p)) { 6218 /* 6219 * Renice negative nice level userspace 6220 * tasks back to 0: 6221 */ 6222 if (task_nice(p) < 0) 6223 set_user_nice(p, 0); 6224 continue; 6225 } 6226 6227 __sched_setscheduler(p, &attr, false, false); 6228 } 6229 read_unlock(&tasklist_lock); 6230 } 6231 6232 #endif /* CONFIG_MAGIC_SYSRQ */ 6233 6234 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6235 /* 6236 * These functions are only useful for the IA64 MCA handling, or kdb. 6237 * 6238 * They can only be called when the whole system has been 6239 * stopped - every CPU needs to be quiescent, and no scheduling 6240 * activity can take place. Using them for anything else would 6241 * be a serious bug, and as a result, they aren't even visible 6242 * under any other configuration. 6243 */ 6244 6245 /** 6246 * curr_task - return the current task for a given CPU. 6247 * @cpu: the processor in question. 6248 * 6249 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6250 * 6251 * Return: The current task for @cpu. 6252 */ 6253 struct task_struct *curr_task(int cpu) 6254 { 6255 return cpu_curr(cpu); 6256 } 6257 6258 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6259 6260 #ifdef CONFIG_IA64 6261 /** 6262 * set_curr_task - set the current task for a given CPU. 6263 * @cpu: the processor in question. 6264 * @p: the task pointer to set. 6265 * 6266 * Description: This function must only be used when non-maskable interrupts 6267 * are serviced on a separate stack. It allows the architecture to switch the 6268 * notion of the current task on a CPU in a non-blocking manner. This function 6269 * must be called with all CPU's synchronized, and interrupts disabled, the 6270 * and caller must save the original value of the current task (see 6271 * curr_task() above) and restore that value before reenabling interrupts and 6272 * re-starting the system. 6273 * 6274 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6275 */ 6276 void ia64_set_curr_task(int cpu, struct task_struct *p) 6277 { 6278 cpu_curr(cpu) = p; 6279 } 6280 6281 #endif 6282 6283 #ifdef CONFIG_CGROUP_SCHED 6284 /* task_group_lock serializes the addition/removal of task groups */ 6285 static DEFINE_SPINLOCK(task_group_lock); 6286 6287 static void sched_free_group(struct task_group *tg) 6288 { 6289 free_fair_sched_group(tg); 6290 free_rt_sched_group(tg); 6291 autogroup_free(tg); 6292 kmem_cache_free(task_group_cache, tg); 6293 } 6294 6295 /* allocate runqueue etc for a new task group */ 6296 struct task_group *sched_create_group(struct task_group *parent) 6297 { 6298 struct task_group *tg; 6299 6300 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6301 if (!tg) 6302 return ERR_PTR(-ENOMEM); 6303 6304 if (!alloc_fair_sched_group(tg, parent)) 6305 goto err; 6306 6307 if (!alloc_rt_sched_group(tg, parent)) 6308 goto err; 6309 6310 return tg; 6311 6312 err: 6313 sched_free_group(tg); 6314 return ERR_PTR(-ENOMEM); 6315 } 6316 6317 void sched_online_group(struct task_group *tg, struct task_group *parent) 6318 { 6319 unsigned long flags; 6320 6321 spin_lock_irqsave(&task_group_lock, flags); 6322 list_add_rcu(&tg->list, &task_groups); 6323 6324 /* Root should already exist: */ 6325 WARN_ON(!parent); 6326 6327 tg->parent = parent; 6328 INIT_LIST_HEAD(&tg->children); 6329 list_add_rcu(&tg->siblings, &parent->children); 6330 spin_unlock_irqrestore(&task_group_lock, flags); 6331 6332 online_fair_sched_group(tg); 6333 } 6334 6335 /* rcu callback to free various structures associated with a task group */ 6336 static void sched_free_group_rcu(struct rcu_head *rhp) 6337 { 6338 /* Now it should be safe to free those cfs_rqs: */ 6339 sched_free_group(container_of(rhp, struct task_group, rcu)); 6340 } 6341 6342 void sched_destroy_group(struct task_group *tg) 6343 { 6344 /* Wait for possible concurrent references to cfs_rqs complete: */ 6345 call_rcu(&tg->rcu, sched_free_group_rcu); 6346 } 6347 6348 void sched_offline_group(struct task_group *tg) 6349 { 6350 unsigned long flags; 6351 6352 /* End participation in shares distribution: */ 6353 unregister_fair_sched_group(tg); 6354 6355 spin_lock_irqsave(&task_group_lock, flags); 6356 list_del_rcu(&tg->list); 6357 list_del_rcu(&tg->siblings); 6358 spin_unlock_irqrestore(&task_group_lock, flags); 6359 } 6360 6361 static void sched_change_group(struct task_struct *tsk, int type) 6362 { 6363 struct task_group *tg; 6364 6365 /* 6366 * All callers are synchronized by task_rq_lock(); we do not use RCU 6367 * which is pointless here. Thus, we pass "true" to task_css_check() 6368 * to prevent lockdep warnings. 6369 */ 6370 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6371 struct task_group, css); 6372 tg = autogroup_task_group(tsk, tg); 6373 tsk->sched_task_group = tg; 6374 6375 #ifdef CONFIG_FAIR_GROUP_SCHED 6376 if (tsk->sched_class->task_change_group) 6377 tsk->sched_class->task_change_group(tsk, type); 6378 else 6379 #endif 6380 set_task_rq(tsk, task_cpu(tsk)); 6381 } 6382 6383 /* 6384 * Change task's runqueue when it moves between groups. 6385 * 6386 * The caller of this function should have put the task in its new group by 6387 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6388 * its new group. 6389 */ 6390 void sched_move_task(struct task_struct *tsk) 6391 { 6392 int queued, running, queue_flags = 6393 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6394 struct rq_flags rf; 6395 struct rq *rq; 6396 6397 rq = task_rq_lock(tsk, &rf); 6398 update_rq_clock(rq); 6399 6400 running = task_current(rq, tsk); 6401 queued = task_on_rq_queued(tsk); 6402 6403 if (queued) 6404 dequeue_task(rq, tsk, queue_flags); 6405 if (running) 6406 put_prev_task(rq, tsk); 6407 6408 sched_change_group(tsk, TASK_MOVE_GROUP); 6409 6410 if (queued) 6411 enqueue_task(rq, tsk, queue_flags); 6412 if (running) 6413 set_curr_task(rq, tsk); 6414 6415 task_rq_unlock(rq, tsk, &rf); 6416 } 6417 6418 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6419 { 6420 return css ? container_of(css, struct task_group, css) : NULL; 6421 } 6422 6423 static struct cgroup_subsys_state * 6424 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6425 { 6426 struct task_group *parent = css_tg(parent_css); 6427 struct task_group *tg; 6428 6429 if (!parent) { 6430 /* This is early initialization for the top cgroup */ 6431 return &root_task_group.css; 6432 } 6433 6434 tg = sched_create_group(parent); 6435 if (IS_ERR(tg)) 6436 return ERR_PTR(-ENOMEM); 6437 6438 return &tg->css; 6439 } 6440 6441 /* Expose task group only after completing cgroup initialization */ 6442 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6443 { 6444 struct task_group *tg = css_tg(css); 6445 struct task_group *parent = css_tg(css->parent); 6446 6447 if (parent) 6448 sched_online_group(tg, parent); 6449 return 0; 6450 } 6451 6452 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6453 { 6454 struct task_group *tg = css_tg(css); 6455 6456 sched_offline_group(tg); 6457 } 6458 6459 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6460 { 6461 struct task_group *tg = css_tg(css); 6462 6463 /* 6464 * Relies on the RCU grace period between css_released() and this. 6465 */ 6466 sched_free_group(tg); 6467 } 6468 6469 /* 6470 * This is called before wake_up_new_task(), therefore we really only 6471 * have to set its group bits, all the other stuff does not apply. 6472 */ 6473 static void cpu_cgroup_fork(struct task_struct *task) 6474 { 6475 struct rq_flags rf; 6476 struct rq *rq; 6477 6478 rq = task_rq_lock(task, &rf); 6479 6480 update_rq_clock(rq); 6481 sched_change_group(task, TASK_SET_GROUP); 6482 6483 task_rq_unlock(rq, task, &rf); 6484 } 6485 6486 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6487 { 6488 struct task_struct *task; 6489 struct cgroup_subsys_state *css; 6490 int ret = 0; 6491 6492 cgroup_taskset_for_each(task, css, tset) { 6493 #ifdef CONFIG_RT_GROUP_SCHED 6494 if (!sched_rt_can_attach(css_tg(css), task)) 6495 return -EINVAL; 6496 #else 6497 /* We don't support RT-tasks being in separate groups */ 6498 if (task->sched_class != &fair_sched_class) 6499 return -EINVAL; 6500 #endif 6501 /* 6502 * Serialize against wake_up_new_task() such that if its 6503 * running, we're sure to observe its full state. 6504 */ 6505 raw_spin_lock_irq(&task->pi_lock); 6506 /* 6507 * Avoid calling sched_move_task() before wake_up_new_task() 6508 * has happened. This would lead to problems with PELT, due to 6509 * move wanting to detach+attach while we're not attached yet. 6510 */ 6511 if (task->state == TASK_NEW) 6512 ret = -EINVAL; 6513 raw_spin_unlock_irq(&task->pi_lock); 6514 6515 if (ret) 6516 break; 6517 } 6518 return ret; 6519 } 6520 6521 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6522 { 6523 struct task_struct *task; 6524 struct cgroup_subsys_state *css; 6525 6526 cgroup_taskset_for_each(task, css, tset) 6527 sched_move_task(task); 6528 } 6529 6530 #ifdef CONFIG_FAIR_GROUP_SCHED 6531 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6532 struct cftype *cftype, u64 shareval) 6533 { 6534 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6535 } 6536 6537 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6538 struct cftype *cft) 6539 { 6540 struct task_group *tg = css_tg(css); 6541 6542 return (u64) scale_load_down(tg->shares); 6543 } 6544 6545 #ifdef CONFIG_CFS_BANDWIDTH 6546 static DEFINE_MUTEX(cfs_constraints_mutex); 6547 6548 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6549 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6550 6551 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6552 6553 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6554 { 6555 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6556 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6557 6558 if (tg == &root_task_group) 6559 return -EINVAL; 6560 6561 /* 6562 * Ensure we have at some amount of bandwidth every period. This is 6563 * to prevent reaching a state of large arrears when throttled via 6564 * entity_tick() resulting in prolonged exit starvation. 6565 */ 6566 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6567 return -EINVAL; 6568 6569 /* 6570 * Likewise, bound things on the otherside by preventing insane quota 6571 * periods. This also allows us to normalize in computing quota 6572 * feasibility. 6573 */ 6574 if (period > max_cfs_quota_period) 6575 return -EINVAL; 6576 6577 /* 6578 * Prevent race between setting of cfs_rq->runtime_enabled and 6579 * unthrottle_offline_cfs_rqs(). 6580 */ 6581 get_online_cpus(); 6582 mutex_lock(&cfs_constraints_mutex); 6583 ret = __cfs_schedulable(tg, period, quota); 6584 if (ret) 6585 goto out_unlock; 6586 6587 runtime_enabled = quota != RUNTIME_INF; 6588 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6589 /* 6590 * If we need to toggle cfs_bandwidth_used, off->on must occur 6591 * before making related changes, and on->off must occur afterwards 6592 */ 6593 if (runtime_enabled && !runtime_was_enabled) 6594 cfs_bandwidth_usage_inc(); 6595 raw_spin_lock_irq(&cfs_b->lock); 6596 cfs_b->period = ns_to_ktime(period); 6597 cfs_b->quota = quota; 6598 6599 __refill_cfs_bandwidth_runtime(cfs_b); 6600 6601 /* Restart the period timer (if active) to handle new period expiry: */ 6602 if (runtime_enabled) 6603 start_cfs_bandwidth(cfs_b); 6604 6605 raw_spin_unlock_irq(&cfs_b->lock); 6606 6607 for_each_online_cpu(i) { 6608 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6609 struct rq *rq = cfs_rq->rq; 6610 struct rq_flags rf; 6611 6612 rq_lock_irq(rq, &rf); 6613 cfs_rq->runtime_enabled = runtime_enabled; 6614 cfs_rq->runtime_remaining = 0; 6615 6616 if (cfs_rq->throttled) 6617 unthrottle_cfs_rq(cfs_rq); 6618 rq_unlock_irq(rq, &rf); 6619 } 6620 if (runtime_was_enabled && !runtime_enabled) 6621 cfs_bandwidth_usage_dec(); 6622 out_unlock: 6623 mutex_unlock(&cfs_constraints_mutex); 6624 put_online_cpus(); 6625 6626 return ret; 6627 } 6628 6629 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6630 { 6631 u64 quota, period; 6632 6633 period = ktime_to_ns(tg->cfs_bandwidth.period); 6634 if (cfs_quota_us < 0) 6635 quota = RUNTIME_INF; 6636 else 6637 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6638 6639 return tg_set_cfs_bandwidth(tg, period, quota); 6640 } 6641 6642 long tg_get_cfs_quota(struct task_group *tg) 6643 { 6644 u64 quota_us; 6645 6646 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6647 return -1; 6648 6649 quota_us = tg->cfs_bandwidth.quota; 6650 do_div(quota_us, NSEC_PER_USEC); 6651 6652 return quota_us; 6653 } 6654 6655 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6656 { 6657 u64 quota, period; 6658 6659 period = (u64)cfs_period_us * NSEC_PER_USEC; 6660 quota = tg->cfs_bandwidth.quota; 6661 6662 return tg_set_cfs_bandwidth(tg, period, quota); 6663 } 6664 6665 long tg_get_cfs_period(struct task_group *tg) 6666 { 6667 u64 cfs_period_us; 6668 6669 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6670 do_div(cfs_period_us, NSEC_PER_USEC); 6671 6672 return cfs_period_us; 6673 } 6674 6675 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6676 struct cftype *cft) 6677 { 6678 return tg_get_cfs_quota(css_tg(css)); 6679 } 6680 6681 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6682 struct cftype *cftype, s64 cfs_quota_us) 6683 { 6684 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6685 } 6686 6687 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6688 struct cftype *cft) 6689 { 6690 return tg_get_cfs_period(css_tg(css)); 6691 } 6692 6693 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6694 struct cftype *cftype, u64 cfs_period_us) 6695 { 6696 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6697 } 6698 6699 struct cfs_schedulable_data { 6700 struct task_group *tg; 6701 u64 period, quota; 6702 }; 6703 6704 /* 6705 * normalize group quota/period to be quota/max_period 6706 * note: units are usecs 6707 */ 6708 static u64 normalize_cfs_quota(struct task_group *tg, 6709 struct cfs_schedulable_data *d) 6710 { 6711 u64 quota, period; 6712 6713 if (tg == d->tg) { 6714 period = d->period; 6715 quota = d->quota; 6716 } else { 6717 period = tg_get_cfs_period(tg); 6718 quota = tg_get_cfs_quota(tg); 6719 } 6720 6721 /* note: these should typically be equivalent */ 6722 if (quota == RUNTIME_INF || quota == -1) 6723 return RUNTIME_INF; 6724 6725 return to_ratio(period, quota); 6726 } 6727 6728 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6729 { 6730 struct cfs_schedulable_data *d = data; 6731 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6732 s64 quota = 0, parent_quota = -1; 6733 6734 if (!tg->parent) { 6735 quota = RUNTIME_INF; 6736 } else { 6737 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6738 6739 quota = normalize_cfs_quota(tg, d); 6740 parent_quota = parent_b->hierarchical_quota; 6741 6742 /* 6743 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6744 * always take the min. On cgroup1, only inherit when no 6745 * limit is set: 6746 */ 6747 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6748 quota = min(quota, parent_quota); 6749 } else { 6750 if (quota == RUNTIME_INF) 6751 quota = parent_quota; 6752 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6753 return -EINVAL; 6754 } 6755 } 6756 cfs_b->hierarchical_quota = quota; 6757 6758 return 0; 6759 } 6760 6761 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6762 { 6763 int ret; 6764 struct cfs_schedulable_data data = { 6765 .tg = tg, 6766 .period = period, 6767 .quota = quota, 6768 }; 6769 6770 if (quota != RUNTIME_INF) { 6771 do_div(data.period, NSEC_PER_USEC); 6772 do_div(data.quota, NSEC_PER_USEC); 6773 } 6774 6775 rcu_read_lock(); 6776 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6777 rcu_read_unlock(); 6778 6779 return ret; 6780 } 6781 6782 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6783 { 6784 struct task_group *tg = css_tg(seq_css(sf)); 6785 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6786 6787 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6788 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6789 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6790 6791 return 0; 6792 } 6793 #endif /* CONFIG_CFS_BANDWIDTH */ 6794 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6795 6796 #ifdef CONFIG_RT_GROUP_SCHED 6797 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6798 struct cftype *cft, s64 val) 6799 { 6800 return sched_group_set_rt_runtime(css_tg(css), val); 6801 } 6802 6803 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6804 struct cftype *cft) 6805 { 6806 return sched_group_rt_runtime(css_tg(css)); 6807 } 6808 6809 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6810 struct cftype *cftype, u64 rt_period_us) 6811 { 6812 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6813 } 6814 6815 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6816 struct cftype *cft) 6817 { 6818 return sched_group_rt_period(css_tg(css)); 6819 } 6820 #endif /* CONFIG_RT_GROUP_SCHED */ 6821 6822 static struct cftype cpu_legacy_files[] = { 6823 #ifdef CONFIG_FAIR_GROUP_SCHED 6824 { 6825 .name = "shares", 6826 .read_u64 = cpu_shares_read_u64, 6827 .write_u64 = cpu_shares_write_u64, 6828 }, 6829 #endif 6830 #ifdef CONFIG_CFS_BANDWIDTH 6831 { 6832 .name = "cfs_quota_us", 6833 .read_s64 = cpu_cfs_quota_read_s64, 6834 .write_s64 = cpu_cfs_quota_write_s64, 6835 }, 6836 { 6837 .name = "cfs_period_us", 6838 .read_u64 = cpu_cfs_period_read_u64, 6839 .write_u64 = cpu_cfs_period_write_u64, 6840 }, 6841 { 6842 .name = "stat", 6843 .seq_show = cpu_cfs_stat_show, 6844 }, 6845 #endif 6846 #ifdef CONFIG_RT_GROUP_SCHED 6847 { 6848 .name = "rt_runtime_us", 6849 .read_s64 = cpu_rt_runtime_read, 6850 .write_s64 = cpu_rt_runtime_write, 6851 }, 6852 { 6853 .name = "rt_period_us", 6854 .read_u64 = cpu_rt_period_read_uint, 6855 .write_u64 = cpu_rt_period_write_uint, 6856 }, 6857 #endif 6858 { } /* Terminate */ 6859 }; 6860 6861 static int cpu_extra_stat_show(struct seq_file *sf, 6862 struct cgroup_subsys_state *css) 6863 { 6864 #ifdef CONFIG_CFS_BANDWIDTH 6865 { 6866 struct task_group *tg = css_tg(css); 6867 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6868 u64 throttled_usec; 6869 6870 throttled_usec = cfs_b->throttled_time; 6871 do_div(throttled_usec, NSEC_PER_USEC); 6872 6873 seq_printf(sf, "nr_periods %d\n" 6874 "nr_throttled %d\n" 6875 "throttled_usec %llu\n", 6876 cfs_b->nr_periods, cfs_b->nr_throttled, 6877 throttled_usec); 6878 } 6879 #endif 6880 return 0; 6881 } 6882 6883 #ifdef CONFIG_FAIR_GROUP_SCHED 6884 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6885 struct cftype *cft) 6886 { 6887 struct task_group *tg = css_tg(css); 6888 u64 weight = scale_load_down(tg->shares); 6889 6890 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6891 } 6892 6893 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6894 struct cftype *cft, u64 weight) 6895 { 6896 /* 6897 * cgroup weight knobs should use the common MIN, DFL and MAX 6898 * values which are 1, 100 and 10000 respectively. While it loses 6899 * a bit of range on both ends, it maps pretty well onto the shares 6900 * value used by scheduler and the round-trip conversions preserve 6901 * the original value over the entire range. 6902 */ 6903 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6904 return -ERANGE; 6905 6906 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6907 6908 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6909 } 6910 6911 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6912 struct cftype *cft) 6913 { 6914 unsigned long weight = scale_load_down(css_tg(css)->shares); 6915 int last_delta = INT_MAX; 6916 int prio, delta; 6917 6918 /* find the closest nice value to the current weight */ 6919 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6920 delta = abs(sched_prio_to_weight[prio] - weight); 6921 if (delta >= last_delta) 6922 break; 6923 last_delta = delta; 6924 } 6925 6926 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6927 } 6928 6929 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6930 struct cftype *cft, s64 nice) 6931 { 6932 unsigned long weight; 6933 int idx; 6934 6935 if (nice < MIN_NICE || nice > MAX_NICE) 6936 return -ERANGE; 6937 6938 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6939 idx = array_index_nospec(idx, 40); 6940 weight = sched_prio_to_weight[idx]; 6941 6942 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6943 } 6944 #endif 6945 6946 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6947 long period, long quota) 6948 { 6949 if (quota < 0) 6950 seq_puts(sf, "max"); 6951 else 6952 seq_printf(sf, "%ld", quota); 6953 6954 seq_printf(sf, " %ld\n", period); 6955 } 6956 6957 /* caller should put the current value in *@periodp before calling */ 6958 static int __maybe_unused cpu_period_quota_parse(char *buf, 6959 u64 *periodp, u64 *quotap) 6960 { 6961 char tok[21]; /* U64_MAX */ 6962 6963 if (!sscanf(buf, "%s %llu", tok, periodp)) 6964 return -EINVAL; 6965 6966 *periodp *= NSEC_PER_USEC; 6967 6968 if (sscanf(tok, "%llu", quotap)) 6969 *quotap *= NSEC_PER_USEC; 6970 else if (!strcmp(tok, "max")) 6971 *quotap = RUNTIME_INF; 6972 else 6973 return -EINVAL; 6974 6975 return 0; 6976 } 6977 6978 #ifdef CONFIG_CFS_BANDWIDTH 6979 static int cpu_max_show(struct seq_file *sf, void *v) 6980 { 6981 struct task_group *tg = css_tg(seq_css(sf)); 6982 6983 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6984 return 0; 6985 } 6986 6987 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6988 char *buf, size_t nbytes, loff_t off) 6989 { 6990 struct task_group *tg = css_tg(of_css(of)); 6991 u64 period = tg_get_cfs_period(tg); 6992 u64 quota; 6993 int ret; 6994 6995 ret = cpu_period_quota_parse(buf, &period, "a); 6996 if (!ret) 6997 ret = tg_set_cfs_bandwidth(tg, period, quota); 6998 return ret ?: nbytes; 6999 } 7000 #endif 7001 7002 static struct cftype cpu_files[] = { 7003 #ifdef CONFIG_FAIR_GROUP_SCHED 7004 { 7005 .name = "weight", 7006 .flags = CFTYPE_NOT_ON_ROOT, 7007 .read_u64 = cpu_weight_read_u64, 7008 .write_u64 = cpu_weight_write_u64, 7009 }, 7010 { 7011 .name = "weight.nice", 7012 .flags = CFTYPE_NOT_ON_ROOT, 7013 .read_s64 = cpu_weight_nice_read_s64, 7014 .write_s64 = cpu_weight_nice_write_s64, 7015 }, 7016 #endif 7017 #ifdef CONFIG_CFS_BANDWIDTH 7018 { 7019 .name = "max", 7020 .flags = CFTYPE_NOT_ON_ROOT, 7021 .seq_show = cpu_max_show, 7022 .write = cpu_max_write, 7023 }, 7024 #endif 7025 { } /* terminate */ 7026 }; 7027 7028 struct cgroup_subsys cpu_cgrp_subsys = { 7029 .css_alloc = cpu_cgroup_css_alloc, 7030 .css_online = cpu_cgroup_css_online, 7031 .css_released = cpu_cgroup_css_released, 7032 .css_free = cpu_cgroup_css_free, 7033 .css_extra_stat_show = cpu_extra_stat_show, 7034 .fork = cpu_cgroup_fork, 7035 .can_attach = cpu_cgroup_can_attach, 7036 .attach = cpu_cgroup_attach, 7037 .legacy_cftypes = cpu_legacy_files, 7038 .dfl_cftypes = cpu_files, 7039 .early_init = true, 7040 .threaded = true, 7041 }; 7042 7043 #endif /* CONFIG_CGROUP_SCHED */ 7044 7045 void dump_cpu_task(int cpu) 7046 { 7047 pr_info("Task dump for CPU %d:\n", cpu); 7048 sched_show_task(cpu_curr(cpu)); 7049 } 7050 7051 /* 7052 * Nice levels are multiplicative, with a gentle 10% change for every 7053 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7054 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7055 * that remained on nice 0. 7056 * 7057 * The "10% effect" is relative and cumulative: from _any_ nice level, 7058 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7059 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7060 * If a task goes up by ~10% and another task goes down by ~10% then 7061 * the relative distance between them is ~25%.) 7062 */ 7063 const int sched_prio_to_weight[40] = { 7064 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7065 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7066 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7067 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7068 /* 0 */ 1024, 820, 655, 526, 423, 7069 /* 5 */ 335, 272, 215, 172, 137, 7070 /* 10 */ 110, 87, 70, 56, 45, 7071 /* 15 */ 36, 29, 23, 18, 15, 7072 }; 7073 7074 /* 7075 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7076 * 7077 * In cases where the weight does not change often, we can use the 7078 * precalculated inverse to speed up arithmetics by turning divisions 7079 * into multiplications: 7080 */ 7081 const u32 sched_prio_to_wmult[40] = { 7082 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7083 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7084 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7085 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7086 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7087 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7088 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7089 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7090 }; 7091 7092 #undef CREATE_TRACE_POINTS 7093