1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 43 44 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 45 46 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 47 /* 48 * Debugging: various feature bits 49 * 50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 51 * sysctl_sched_features, defined in sched.h, to allow constants propagation 52 * at compile time and compiler optimization based on features default. 53 */ 54 #define SCHED_FEAT(name, enabled) \ 55 (1UL << __SCHED_FEAT_##name) * enabled | 56 const_debug unsigned int sysctl_sched_features = 57 #include "features.h" 58 0; 59 #undef SCHED_FEAT 60 #endif 61 62 /* 63 * Number of tasks to iterate in a single balance run. 64 * Limited because this is done with IRQs disabled. 65 */ 66 const_debug unsigned int sysctl_sched_nr_migrate = 32; 67 68 /* 69 * period over which we measure -rt task CPU usage in us. 70 * default: 1s 71 */ 72 unsigned int sysctl_sched_rt_period = 1000000; 73 74 __read_mostly int scheduler_running; 75 76 /* 77 * part of the period that we allow rt tasks to run in us. 78 * default: 0.95s 79 */ 80 int sysctl_sched_rt_runtime = 950000; 81 82 83 /* 84 * Serialization rules: 85 * 86 * Lock order: 87 * 88 * p->pi_lock 89 * rq->lock 90 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 91 * 92 * rq1->lock 93 * rq2->lock where: rq1 < rq2 94 * 95 * Regular state: 96 * 97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 98 * local CPU's rq->lock, it optionally removes the task from the runqueue and 99 * always looks at the local rq data structures to find the most elegible task 100 * to run next. 101 * 102 * Task enqueue is also under rq->lock, possibly taken from another CPU. 103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 104 * the local CPU to avoid bouncing the runqueue state around [ see 105 * ttwu_queue_wakelist() ] 106 * 107 * Task wakeup, specifically wakeups that involve migration, are horribly 108 * complicated to avoid having to take two rq->locks. 109 * 110 * Special state: 111 * 112 * System-calls and anything external will use task_rq_lock() which acquires 113 * both p->pi_lock and rq->lock. As a consequence the state they change is 114 * stable while holding either lock: 115 * 116 * - sched_setaffinity()/ 117 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 118 * - set_user_nice(): p->se.load, p->*prio 119 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 120 * p->se.load, p->rt_priority, 121 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 122 * - sched_setnuma(): p->numa_preferred_nid 123 * - sched_move_task()/ 124 * cpu_cgroup_fork(): p->sched_task_group 125 * - uclamp_update_active() p->uclamp* 126 * 127 * p->state <- TASK_*: 128 * 129 * is changed locklessly using set_current_state(), __set_current_state() or 130 * set_special_state(), see their respective comments, or by 131 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 132 * concurrent self. 133 * 134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 135 * 136 * is set by activate_task() and cleared by deactivate_task(), under 137 * rq->lock. Non-zero indicates the task is runnable, the special 138 * ON_RQ_MIGRATING state is used for migration without holding both 139 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 140 * 141 * p->on_cpu <- { 0, 1 }: 142 * 143 * is set by prepare_task() and cleared by finish_task() such that it will be 144 * set before p is scheduled-in and cleared after p is scheduled-out, both 145 * under rq->lock. Non-zero indicates the task is running on its CPU. 146 * 147 * [ The astute reader will observe that it is possible for two tasks on one 148 * CPU to have ->on_cpu = 1 at the same time. ] 149 * 150 * task_cpu(p): is changed by set_task_cpu(), the rules are: 151 * 152 * - Don't call set_task_cpu() on a blocked task: 153 * 154 * We don't care what CPU we're not running on, this simplifies hotplug, 155 * the CPU assignment of blocked tasks isn't required to be valid. 156 * 157 * - for try_to_wake_up(), called under p->pi_lock: 158 * 159 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 160 * 161 * - for migration called under rq->lock: 162 * [ see task_on_rq_migrating() in task_rq_lock() ] 163 * 164 * o move_queued_task() 165 * o detach_task() 166 * 167 * - for migration called under double_rq_lock(): 168 * 169 * o __migrate_swap_task() 170 * o push_rt_task() / pull_rt_task() 171 * o push_dl_task() / pull_dl_task() 172 * o dl_task_offline_migration() 173 * 174 */ 175 176 /* 177 * __task_rq_lock - lock the rq @p resides on. 178 */ 179 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 180 __acquires(rq->lock) 181 { 182 struct rq *rq; 183 184 lockdep_assert_held(&p->pi_lock); 185 186 for (;;) { 187 rq = task_rq(p); 188 raw_spin_lock(&rq->lock); 189 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 190 rq_pin_lock(rq, rf); 191 return rq; 192 } 193 raw_spin_unlock(&rq->lock); 194 195 while (unlikely(task_on_rq_migrating(p))) 196 cpu_relax(); 197 } 198 } 199 200 /* 201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 202 */ 203 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 204 __acquires(p->pi_lock) 205 __acquires(rq->lock) 206 { 207 struct rq *rq; 208 209 for (;;) { 210 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 211 rq = task_rq(p); 212 raw_spin_lock(&rq->lock); 213 /* 214 * move_queued_task() task_rq_lock() 215 * 216 * ACQUIRE (rq->lock) 217 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 218 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 219 * [S] ->cpu = new_cpu [L] task_rq() 220 * [L] ->on_rq 221 * RELEASE (rq->lock) 222 * 223 * If we observe the old CPU in task_rq_lock(), the acquire of 224 * the old rq->lock will fully serialize against the stores. 225 * 226 * If we observe the new CPU in task_rq_lock(), the address 227 * dependency headed by '[L] rq = task_rq()' and the acquire 228 * will pair with the WMB to ensure we then also see migrating. 229 */ 230 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 231 rq_pin_lock(rq, rf); 232 return rq; 233 } 234 raw_spin_unlock(&rq->lock); 235 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 236 237 while (unlikely(task_on_rq_migrating(p))) 238 cpu_relax(); 239 } 240 } 241 242 /* 243 * RQ-clock updating methods: 244 */ 245 246 static void update_rq_clock_task(struct rq *rq, s64 delta) 247 { 248 /* 249 * In theory, the compile should just see 0 here, and optimize out the call 250 * to sched_rt_avg_update. But I don't trust it... 251 */ 252 s64 __maybe_unused steal = 0, irq_delta = 0; 253 254 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 255 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 256 257 /* 258 * Since irq_time is only updated on {soft,}irq_exit, we might run into 259 * this case when a previous update_rq_clock() happened inside a 260 * {soft,}irq region. 261 * 262 * When this happens, we stop ->clock_task and only update the 263 * prev_irq_time stamp to account for the part that fit, so that a next 264 * update will consume the rest. This ensures ->clock_task is 265 * monotonic. 266 * 267 * It does however cause some slight miss-attribution of {soft,}irq 268 * time, a more accurate solution would be to update the irq_time using 269 * the current rq->clock timestamp, except that would require using 270 * atomic ops. 271 */ 272 if (irq_delta > delta) 273 irq_delta = delta; 274 275 rq->prev_irq_time += irq_delta; 276 delta -= irq_delta; 277 #endif 278 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 279 if (static_key_false((¶virt_steal_rq_enabled))) { 280 steal = paravirt_steal_clock(cpu_of(rq)); 281 steal -= rq->prev_steal_time_rq; 282 283 if (unlikely(steal > delta)) 284 steal = delta; 285 286 rq->prev_steal_time_rq += steal; 287 delta -= steal; 288 } 289 #endif 290 291 rq->clock_task += delta; 292 293 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 294 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 295 update_irq_load_avg(rq, irq_delta + steal); 296 #endif 297 update_rq_clock_pelt(rq, delta); 298 } 299 300 void update_rq_clock(struct rq *rq) 301 { 302 s64 delta; 303 304 lockdep_assert_held(&rq->lock); 305 306 if (rq->clock_update_flags & RQCF_ACT_SKIP) 307 return; 308 309 #ifdef CONFIG_SCHED_DEBUG 310 if (sched_feat(WARN_DOUBLE_CLOCK)) 311 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 312 rq->clock_update_flags |= RQCF_UPDATED; 313 #endif 314 315 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 316 if (delta < 0) 317 return; 318 rq->clock += delta; 319 update_rq_clock_task(rq, delta); 320 } 321 322 static inline void 323 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func) 324 { 325 csd->flags = 0; 326 csd->func = func; 327 csd->info = rq; 328 } 329 330 #ifdef CONFIG_SCHED_HRTICK 331 /* 332 * Use HR-timers to deliver accurate preemption points. 333 */ 334 335 static void hrtick_clear(struct rq *rq) 336 { 337 if (hrtimer_active(&rq->hrtick_timer)) 338 hrtimer_cancel(&rq->hrtick_timer); 339 } 340 341 /* 342 * High-resolution timer tick. 343 * Runs from hardirq context with interrupts disabled. 344 */ 345 static enum hrtimer_restart hrtick(struct hrtimer *timer) 346 { 347 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 348 struct rq_flags rf; 349 350 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 351 352 rq_lock(rq, &rf); 353 update_rq_clock(rq); 354 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 355 rq_unlock(rq, &rf); 356 357 return HRTIMER_NORESTART; 358 } 359 360 #ifdef CONFIG_SMP 361 362 static void __hrtick_restart(struct rq *rq) 363 { 364 struct hrtimer *timer = &rq->hrtick_timer; 365 366 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 367 } 368 369 /* 370 * called from hardirq (IPI) context 371 */ 372 static void __hrtick_start(void *arg) 373 { 374 struct rq *rq = arg; 375 struct rq_flags rf; 376 377 rq_lock(rq, &rf); 378 __hrtick_restart(rq); 379 rq_unlock(rq, &rf); 380 } 381 382 /* 383 * Called to set the hrtick timer state. 384 * 385 * called with rq->lock held and irqs disabled 386 */ 387 void hrtick_start(struct rq *rq, u64 delay) 388 { 389 struct hrtimer *timer = &rq->hrtick_timer; 390 ktime_t time; 391 s64 delta; 392 393 /* 394 * Don't schedule slices shorter than 10000ns, that just 395 * doesn't make sense and can cause timer DoS. 396 */ 397 delta = max_t(s64, delay, 10000LL); 398 time = ktime_add_ns(timer->base->get_time(), delta); 399 400 hrtimer_set_expires(timer, time); 401 402 if (rq == this_rq()) 403 __hrtick_restart(rq); 404 else 405 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 406 } 407 408 #else 409 /* 410 * Called to set the hrtick timer state. 411 * 412 * called with rq->lock held and irqs disabled 413 */ 414 void hrtick_start(struct rq *rq, u64 delay) 415 { 416 /* 417 * Don't schedule slices shorter than 10000ns, that just 418 * doesn't make sense. Rely on vruntime for fairness. 419 */ 420 delay = max_t(u64, delay, 10000LL); 421 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 422 HRTIMER_MODE_REL_PINNED_HARD); 423 } 424 425 #endif /* CONFIG_SMP */ 426 427 static void hrtick_rq_init(struct rq *rq) 428 { 429 #ifdef CONFIG_SMP 430 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start); 431 #endif 432 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 433 rq->hrtick_timer.function = hrtick; 434 } 435 #else /* CONFIG_SCHED_HRTICK */ 436 static inline void hrtick_clear(struct rq *rq) 437 { 438 } 439 440 static inline void hrtick_rq_init(struct rq *rq) 441 { 442 } 443 #endif /* CONFIG_SCHED_HRTICK */ 444 445 /* 446 * cmpxchg based fetch_or, macro so it works for different integer types 447 */ 448 #define fetch_or(ptr, mask) \ 449 ({ \ 450 typeof(ptr) _ptr = (ptr); \ 451 typeof(mask) _mask = (mask); \ 452 typeof(*_ptr) _old, _val = *_ptr; \ 453 \ 454 for (;;) { \ 455 _old = cmpxchg(_ptr, _val, _val | _mask); \ 456 if (_old == _val) \ 457 break; \ 458 _val = _old; \ 459 } \ 460 _old; \ 461 }) 462 463 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 464 /* 465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 466 * this avoids any races wrt polling state changes and thereby avoids 467 * spurious IPIs. 468 */ 469 static bool set_nr_and_not_polling(struct task_struct *p) 470 { 471 struct thread_info *ti = task_thread_info(p); 472 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 473 } 474 475 /* 476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 477 * 478 * If this returns true, then the idle task promises to call 479 * sched_ttwu_pending() and reschedule soon. 480 */ 481 static bool set_nr_if_polling(struct task_struct *p) 482 { 483 struct thread_info *ti = task_thread_info(p); 484 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 485 486 for (;;) { 487 if (!(val & _TIF_POLLING_NRFLAG)) 488 return false; 489 if (val & _TIF_NEED_RESCHED) 490 return true; 491 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 492 if (old == val) 493 break; 494 val = old; 495 } 496 return true; 497 } 498 499 #else 500 static bool set_nr_and_not_polling(struct task_struct *p) 501 { 502 set_tsk_need_resched(p); 503 return true; 504 } 505 506 #ifdef CONFIG_SMP 507 static bool set_nr_if_polling(struct task_struct *p) 508 { 509 return false; 510 } 511 #endif 512 #endif 513 514 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 515 { 516 struct wake_q_node *node = &task->wake_q; 517 518 /* 519 * Atomically grab the task, if ->wake_q is !nil already it means 520 * its already queued (either by us or someone else) and will get the 521 * wakeup due to that. 522 * 523 * In order to ensure that a pending wakeup will observe our pending 524 * state, even in the failed case, an explicit smp_mb() must be used. 525 */ 526 smp_mb__before_atomic(); 527 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 528 return false; 529 530 /* 531 * The head is context local, there can be no concurrency. 532 */ 533 *head->lastp = node; 534 head->lastp = &node->next; 535 return true; 536 } 537 538 /** 539 * wake_q_add() - queue a wakeup for 'later' waking. 540 * @head: the wake_q_head to add @task to 541 * @task: the task to queue for 'later' wakeup 542 * 543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 545 * instantly. 546 * 547 * This function must be used as-if it were wake_up_process(); IOW the task 548 * must be ready to be woken at this location. 549 */ 550 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 551 { 552 if (__wake_q_add(head, task)) 553 get_task_struct(task); 554 } 555 556 /** 557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 558 * @head: the wake_q_head to add @task to 559 * @task: the task to queue for 'later' wakeup 560 * 561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 563 * instantly. 564 * 565 * This function must be used as-if it were wake_up_process(); IOW the task 566 * must be ready to be woken at this location. 567 * 568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 569 * that already hold reference to @task can call the 'safe' version and trust 570 * wake_q to do the right thing depending whether or not the @task is already 571 * queued for wakeup. 572 */ 573 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 574 { 575 if (!__wake_q_add(head, task)) 576 put_task_struct(task); 577 } 578 579 void wake_up_q(struct wake_q_head *head) 580 { 581 struct wake_q_node *node = head->first; 582 583 while (node != WAKE_Q_TAIL) { 584 struct task_struct *task; 585 586 task = container_of(node, struct task_struct, wake_q); 587 BUG_ON(!task); 588 /* Task can safely be re-inserted now: */ 589 node = node->next; 590 task->wake_q.next = NULL; 591 592 /* 593 * wake_up_process() executes a full barrier, which pairs with 594 * the queueing in wake_q_add() so as not to miss wakeups. 595 */ 596 wake_up_process(task); 597 put_task_struct(task); 598 } 599 } 600 601 /* 602 * resched_curr - mark rq's current task 'to be rescheduled now'. 603 * 604 * On UP this means the setting of the need_resched flag, on SMP it 605 * might also involve a cross-CPU call to trigger the scheduler on 606 * the target CPU. 607 */ 608 void resched_curr(struct rq *rq) 609 { 610 struct task_struct *curr = rq->curr; 611 int cpu; 612 613 lockdep_assert_held(&rq->lock); 614 615 if (test_tsk_need_resched(curr)) 616 return; 617 618 cpu = cpu_of(rq); 619 620 if (cpu == smp_processor_id()) { 621 set_tsk_need_resched(curr); 622 set_preempt_need_resched(); 623 return; 624 } 625 626 if (set_nr_and_not_polling(curr)) 627 smp_send_reschedule(cpu); 628 else 629 trace_sched_wake_idle_without_ipi(cpu); 630 } 631 632 void resched_cpu(int cpu) 633 { 634 struct rq *rq = cpu_rq(cpu); 635 unsigned long flags; 636 637 raw_spin_lock_irqsave(&rq->lock, flags); 638 if (cpu_online(cpu) || cpu == smp_processor_id()) 639 resched_curr(rq); 640 raw_spin_unlock_irqrestore(&rq->lock, flags); 641 } 642 643 #ifdef CONFIG_SMP 644 #ifdef CONFIG_NO_HZ_COMMON 645 /* 646 * In the semi idle case, use the nearest busy CPU for migrating timers 647 * from an idle CPU. This is good for power-savings. 648 * 649 * We don't do similar optimization for completely idle system, as 650 * selecting an idle CPU will add more delays to the timers than intended 651 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 652 */ 653 int get_nohz_timer_target(void) 654 { 655 int i, cpu = smp_processor_id(), default_cpu = -1; 656 struct sched_domain *sd; 657 658 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 659 if (!idle_cpu(cpu)) 660 return cpu; 661 default_cpu = cpu; 662 } 663 664 rcu_read_lock(); 665 for_each_domain(cpu, sd) { 666 for_each_cpu_and(i, sched_domain_span(sd), 667 housekeeping_cpumask(HK_FLAG_TIMER)) { 668 if (cpu == i) 669 continue; 670 671 if (!idle_cpu(i)) { 672 cpu = i; 673 goto unlock; 674 } 675 } 676 } 677 678 if (default_cpu == -1) 679 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 680 cpu = default_cpu; 681 unlock: 682 rcu_read_unlock(); 683 return cpu; 684 } 685 686 /* 687 * When add_timer_on() enqueues a timer into the timer wheel of an 688 * idle CPU then this timer might expire before the next timer event 689 * which is scheduled to wake up that CPU. In case of a completely 690 * idle system the next event might even be infinite time into the 691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 692 * leaves the inner idle loop so the newly added timer is taken into 693 * account when the CPU goes back to idle and evaluates the timer 694 * wheel for the next timer event. 695 */ 696 static void wake_up_idle_cpu(int cpu) 697 { 698 struct rq *rq = cpu_rq(cpu); 699 700 if (cpu == smp_processor_id()) 701 return; 702 703 if (set_nr_and_not_polling(rq->idle)) 704 smp_send_reschedule(cpu); 705 else 706 trace_sched_wake_idle_without_ipi(cpu); 707 } 708 709 static bool wake_up_full_nohz_cpu(int cpu) 710 { 711 /* 712 * We just need the target to call irq_exit() and re-evaluate 713 * the next tick. The nohz full kick at least implies that. 714 * If needed we can still optimize that later with an 715 * empty IRQ. 716 */ 717 if (cpu_is_offline(cpu)) 718 return true; /* Don't try to wake offline CPUs. */ 719 if (tick_nohz_full_cpu(cpu)) { 720 if (cpu != smp_processor_id() || 721 tick_nohz_tick_stopped()) 722 tick_nohz_full_kick_cpu(cpu); 723 return true; 724 } 725 726 return false; 727 } 728 729 /* 730 * Wake up the specified CPU. If the CPU is going offline, it is the 731 * caller's responsibility to deal with the lost wakeup, for example, 732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 733 */ 734 void wake_up_nohz_cpu(int cpu) 735 { 736 if (!wake_up_full_nohz_cpu(cpu)) 737 wake_up_idle_cpu(cpu); 738 } 739 740 static void nohz_csd_func(void *info) 741 { 742 struct rq *rq = info; 743 int cpu = cpu_of(rq); 744 unsigned int flags; 745 746 /* 747 * Release the rq::nohz_csd. 748 */ 749 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 750 WARN_ON(!(flags & NOHZ_KICK_MASK)); 751 752 rq->idle_balance = idle_cpu(cpu); 753 if (rq->idle_balance && !need_resched()) { 754 rq->nohz_idle_balance = flags; 755 raise_softirq_irqoff(SCHED_SOFTIRQ); 756 } 757 } 758 759 #endif /* CONFIG_NO_HZ_COMMON */ 760 761 #ifdef CONFIG_NO_HZ_FULL 762 bool sched_can_stop_tick(struct rq *rq) 763 { 764 int fifo_nr_running; 765 766 /* Deadline tasks, even if single, need the tick */ 767 if (rq->dl.dl_nr_running) 768 return false; 769 770 /* 771 * If there are more than one RR tasks, we need the tick to effect the 772 * actual RR behaviour. 773 */ 774 if (rq->rt.rr_nr_running) { 775 if (rq->rt.rr_nr_running == 1) 776 return true; 777 else 778 return false; 779 } 780 781 /* 782 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 783 * forced preemption between FIFO tasks. 784 */ 785 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 786 if (fifo_nr_running) 787 return true; 788 789 /* 790 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 791 * if there's more than one we need the tick for involuntary 792 * preemption. 793 */ 794 if (rq->nr_running > 1) 795 return false; 796 797 return true; 798 } 799 #endif /* CONFIG_NO_HZ_FULL */ 800 #endif /* CONFIG_SMP */ 801 802 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 803 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 804 /* 805 * Iterate task_group tree rooted at *from, calling @down when first entering a 806 * node and @up when leaving it for the final time. 807 * 808 * Caller must hold rcu_lock or sufficient equivalent. 809 */ 810 int walk_tg_tree_from(struct task_group *from, 811 tg_visitor down, tg_visitor up, void *data) 812 { 813 struct task_group *parent, *child; 814 int ret; 815 816 parent = from; 817 818 down: 819 ret = (*down)(parent, data); 820 if (ret) 821 goto out; 822 list_for_each_entry_rcu(child, &parent->children, siblings) { 823 parent = child; 824 goto down; 825 826 up: 827 continue; 828 } 829 ret = (*up)(parent, data); 830 if (ret || parent == from) 831 goto out; 832 833 child = parent; 834 parent = parent->parent; 835 if (parent) 836 goto up; 837 out: 838 return ret; 839 } 840 841 int tg_nop(struct task_group *tg, void *data) 842 { 843 return 0; 844 } 845 #endif 846 847 static void set_load_weight(struct task_struct *p, bool update_load) 848 { 849 int prio = p->static_prio - MAX_RT_PRIO; 850 struct load_weight *load = &p->se.load; 851 852 /* 853 * SCHED_IDLE tasks get minimal weight: 854 */ 855 if (task_has_idle_policy(p)) { 856 load->weight = scale_load(WEIGHT_IDLEPRIO); 857 load->inv_weight = WMULT_IDLEPRIO; 858 return; 859 } 860 861 /* 862 * SCHED_OTHER tasks have to update their load when changing their 863 * weight 864 */ 865 if (update_load && p->sched_class == &fair_sched_class) { 866 reweight_task(p, prio); 867 } else { 868 load->weight = scale_load(sched_prio_to_weight[prio]); 869 load->inv_weight = sched_prio_to_wmult[prio]; 870 } 871 } 872 873 #ifdef CONFIG_UCLAMP_TASK 874 /* 875 * Serializes updates of utilization clamp values 876 * 877 * The (slow-path) user-space triggers utilization clamp value updates which 878 * can require updates on (fast-path) scheduler's data structures used to 879 * support enqueue/dequeue operations. 880 * While the per-CPU rq lock protects fast-path update operations, user-space 881 * requests are serialized using a mutex to reduce the risk of conflicting 882 * updates or API abuses. 883 */ 884 static DEFINE_MUTEX(uclamp_mutex); 885 886 /* Max allowed minimum utilization */ 887 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 888 889 /* Max allowed maximum utilization */ 890 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 891 892 /* 893 * By default RT tasks run at the maximum performance point/capacity of the 894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 895 * SCHED_CAPACITY_SCALE. 896 * 897 * This knob allows admins to change the default behavior when uclamp is being 898 * used. In battery powered devices, particularly, running at the maximum 899 * capacity and frequency will increase energy consumption and shorten the 900 * battery life. 901 * 902 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 903 * 904 * This knob will not override the system default sched_util_clamp_min defined 905 * above. 906 */ 907 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 908 909 /* All clamps are required to be less or equal than these values */ 910 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 911 912 /* 913 * This static key is used to reduce the uclamp overhead in the fast path. It 914 * primarily disables the call to uclamp_rq_{inc, dec}() in 915 * enqueue/dequeue_task(). 916 * 917 * This allows users to continue to enable uclamp in their kernel config with 918 * minimum uclamp overhead in the fast path. 919 * 920 * As soon as userspace modifies any of the uclamp knobs, the static key is 921 * enabled, since we have an actual users that make use of uclamp 922 * functionality. 923 * 924 * The knobs that would enable this static key are: 925 * 926 * * A task modifying its uclamp value with sched_setattr(). 927 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 928 * * An admin modifying the cgroup cpu.uclamp.{min, max} 929 */ 930 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 931 932 /* Integer rounded range for each bucket */ 933 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 934 935 #define for_each_clamp_id(clamp_id) \ 936 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 937 938 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 939 { 940 return clamp_value / UCLAMP_BUCKET_DELTA; 941 } 942 943 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 944 { 945 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 946 } 947 948 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 949 { 950 if (clamp_id == UCLAMP_MIN) 951 return 0; 952 return SCHED_CAPACITY_SCALE; 953 } 954 955 static inline void uclamp_se_set(struct uclamp_se *uc_se, 956 unsigned int value, bool user_defined) 957 { 958 uc_se->value = value; 959 uc_se->bucket_id = uclamp_bucket_id(value); 960 uc_se->user_defined = user_defined; 961 } 962 963 static inline unsigned int 964 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 965 unsigned int clamp_value) 966 { 967 /* 968 * Avoid blocked utilization pushing up the frequency when we go 969 * idle (which drops the max-clamp) by retaining the last known 970 * max-clamp. 971 */ 972 if (clamp_id == UCLAMP_MAX) { 973 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 974 return clamp_value; 975 } 976 977 return uclamp_none(UCLAMP_MIN); 978 } 979 980 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 981 unsigned int clamp_value) 982 { 983 /* Reset max-clamp retention only on idle exit */ 984 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 985 return; 986 987 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 988 } 989 990 static inline 991 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 992 unsigned int clamp_value) 993 { 994 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 995 int bucket_id = UCLAMP_BUCKETS - 1; 996 997 /* 998 * Since both min and max clamps are max aggregated, find the 999 * top most bucket with tasks in. 1000 */ 1001 for ( ; bucket_id >= 0; bucket_id--) { 1002 if (!bucket[bucket_id].tasks) 1003 continue; 1004 return bucket[bucket_id].value; 1005 } 1006 1007 /* No tasks -- default clamp values */ 1008 return uclamp_idle_value(rq, clamp_id, clamp_value); 1009 } 1010 1011 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1012 { 1013 unsigned int default_util_min; 1014 struct uclamp_se *uc_se; 1015 1016 lockdep_assert_held(&p->pi_lock); 1017 1018 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1019 1020 /* Only sync if user didn't override the default */ 1021 if (uc_se->user_defined) 1022 return; 1023 1024 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1025 uclamp_se_set(uc_se, default_util_min, false); 1026 } 1027 1028 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1029 { 1030 struct rq_flags rf; 1031 struct rq *rq; 1032 1033 if (!rt_task(p)) 1034 return; 1035 1036 /* Protect updates to p->uclamp_* */ 1037 rq = task_rq_lock(p, &rf); 1038 __uclamp_update_util_min_rt_default(p); 1039 task_rq_unlock(rq, p, &rf); 1040 } 1041 1042 static void uclamp_sync_util_min_rt_default(void) 1043 { 1044 struct task_struct *g, *p; 1045 1046 /* 1047 * copy_process() sysctl_uclamp 1048 * uclamp_min_rt = X; 1049 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1050 * // link thread smp_mb__after_spinlock() 1051 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1052 * sched_post_fork() for_each_process_thread() 1053 * __uclamp_sync_rt() __uclamp_sync_rt() 1054 * 1055 * Ensures that either sched_post_fork() will observe the new 1056 * uclamp_min_rt or for_each_process_thread() will observe the new 1057 * task. 1058 */ 1059 read_lock(&tasklist_lock); 1060 smp_mb__after_spinlock(); 1061 read_unlock(&tasklist_lock); 1062 1063 rcu_read_lock(); 1064 for_each_process_thread(g, p) 1065 uclamp_update_util_min_rt_default(p); 1066 rcu_read_unlock(); 1067 } 1068 1069 static inline struct uclamp_se 1070 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1071 { 1072 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1073 #ifdef CONFIG_UCLAMP_TASK_GROUP 1074 struct uclamp_se uc_max; 1075 1076 /* 1077 * Tasks in autogroups or root task group will be 1078 * restricted by system defaults. 1079 */ 1080 if (task_group_is_autogroup(task_group(p))) 1081 return uc_req; 1082 if (task_group(p) == &root_task_group) 1083 return uc_req; 1084 1085 uc_max = task_group(p)->uclamp[clamp_id]; 1086 if (uc_req.value > uc_max.value || !uc_req.user_defined) 1087 return uc_max; 1088 #endif 1089 1090 return uc_req; 1091 } 1092 1093 /* 1094 * The effective clamp bucket index of a task depends on, by increasing 1095 * priority: 1096 * - the task specific clamp value, when explicitly requested from userspace 1097 * - the task group effective clamp value, for tasks not either in the root 1098 * group or in an autogroup 1099 * - the system default clamp value, defined by the sysadmin 1100 */ 1101 static inline struct uclamp_se 1102 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1103 { 1104 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1105 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1106 1107 /* System default restrictions always apply */ 1108 if (unlikely(uc_req.value > uc_max.value)) 1109 return uc_max; 1110 1111 return uc_req; 1112 } 1113 1114 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1115 { 1116 struct uclamp_se uc_eff; 1117 1118 /* Task currently refcounted: use back-annotated (effective) value */ 1119 if (p->uclamp[clamp_id].active) 1120 return (unsigned long)p->uclamp[clamp_id].value; 1121 1122 uc_eff = uclamp_eff_get(p, clamp_id); 1123 1124 return (unsigned long)uc_eff.value; 1125 } 1126 1127 /* 1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1130 * updates the rq's clamp value if required. 1131 * 1132 * Tasks can have a task-specific value requested from user-space, track 1133 * within each bucket the maximum value for tasks refcounted in it. 1134 * This "local max aggregation" allows to track the exact "requested" value 1135 * for each bucket when all its RUNNABLE tasks require the same clamp. 1136 */ 1137 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1138 enum uclamp_id clamp_id) 1139 { 1140 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1141 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1142 struct uclamp_bucket *bucket; 1143 1144 lockdep_assert_held(&rq->lock); 1145 1146 /* Update task effective clamp */ 1147 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1148 1149 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1150 bucket->tasks++; 1151 uc_se->active = true; 1152 1153 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1154 1155 /* 1156 * Local max aggregation: rq buckets always track the max 1157 * "requested" clamp value of its RUNNABLE tasks. 1158 */ 1159 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1160 bucket->value = uc_se->value; 1161 1162 if (uc_se->value > READ_ONCE(uc_rq->value)) 1163 WRITE_ONCE(uc_rq->value, uc_se->value); 1164 } 1165 1166 /* 1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1168 * is released. If this is the last task reference counting the rq's max 1169 * active clamp value, then the rq's clamp value is updated. 1170 * 1171 * Both refcounted tasks and rq's cached clamp values are expected to be 1172 * always valid. If it's detected they are not, as defensive programming, 1173 * enforce the expected state and warn. 1174 */ 1175 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1176 enum uclamp_id clamp_id) 1177 { 1178 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1179 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1180 struct uclamp_bucket *bucket; 1181 unsigned int bkt_clamp; 1182 unsigned int rq_clamp; 1183 1184 lockdep_assert_held(&rq->lock); 1185 1186 /* 1187 * If sched_uclamp_used was enabled after task @p was enqueued, 1188 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1189 * 1190 * In this case the uc_se->active flag should be false since no uclamp 1191 * accounting was performed at enqueue time and we can just return 1192 * here. 1193 * 1194 * Need to be careful of the following enqeueue/dequeue ordering 1195 * problem too 1196 * 1197 * enqueue(taskA) 1198 * // sched_uclamp_used gets enabled 1199 * enqueue(taskB) 1200 * dequeue(taskA) 1201 * // Must not decrement bukcet->tasks here 1202 * dequeue(taskB) 1203 * 1204 * where we could end up with stale data in uc_se and 1205 * bucket[uc_se->bucket_id]. 1206 * 1207 * The following check here eliminates the possibility of such race. 1208 */ 1209 if (unlikely(!uc_se->active)) 1210 return; 1211 1212 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1213 1214 SCHED_WARN_ON(!bucket->tasks); 1215 if (likely(bucket->tasks)) 1216 bucket->tasks--; 1217 1218 uc_se->active = false; 1219 1220 /* 1221 * Keep "local max aggregation" simple and accept to (possibly) 1222 * overboost some RUNNABLE tasks in the same bucket. 1223 * The rq clamp bucket value is reset to its base value whenever 1224 * there are no more RUNNABLE tasks refcounting it. 1225 */ 1226 if (likely(bucket->tasks)) 1227 return; 1228 1229 rq_clamp = READ_ONCE(uc_rq->value); 1230 /* 1231 * Defensive programming: this should never happen. If it happens, 1232 * e.g. due to future modification, warn and fixup the expected value. 1233 */ 1234 SCHED_WARN_ON(bucket->value > rq_clamp); 1235 if (bucket->value >= rq_clamp) { 1236 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1237 WRITE_ONCE(uc_rq->value, bkt_clamp); 1238 } 1239 } 1240 1241 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1242 { 1243 enum uclamp_id clamp_id; 1244 1245 /* 1246 * Avoid any overhead until uclamp is actually used by the userspace. 1247 * 1248 * The condition is constructed such that a NOP is generated when 1249 * sched_uclamp_used is disabled. 1250 */ 1251 if (!static_branch_unlikely(&sched_uclamp_used)) 1252 return; 1253 1254 if (unlikely(!p->sched_class->uclamp_enabled)) 1255 return; 1256 1257 for_each_clamp_id(clamp_id) 1258 uclamp_rq_inc_id(rq, p, clamp_id); 1259 1260 /* Reset clamp idle holding when there is one RUNNABLE task */ 1261 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1262 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1263 } 1264 1265 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1266 { 1267 enum uclamp_id clamp_id; 1268 1269 /* 1270 * Avoid any overhead until uclamp is actually used by the userspace. 1271 * 1272 * The condition is constructed such that a NOP is generated when 1273 * sched_uclamp_used is disabled. 1274 */ 1275 if (!static_branch_unlikely(&sched_uclamp_used)) 1276 return; 1277 1278 if (unlikely(!p->sched_class->uclamp_enabled)) 1279 return; 1280 1281 for_each_clamp_id(clamp_id) 1282 uclamp_rq_dec_id(rq, p, clamp_id); 1283 } 1284 1285 static inline void 1286 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1287 { 1288 struct rq_flags rf; 1289 struct rq *rq; 1290 1291 /* 1292 * Lock the task and the rq where the task is (or was) queued. 1293 * 1294 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1295 * price to pay to safely serialize util_{min,max} updates with 1296 * enqueues, dequeues and migration operations. 1297 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1298 */ 1299 rq = task_rq_lock(p, &rf); 1300 1301 /* 1302 * Setting the clamp bucket is serialized by task_rq_lock(). 1303 * If the task is not yet RUNNABLE and its task_struct is not 1304 * affecting a valid clamp bucket, the next time it's enqueued, 1305 * it will already see the updated clamp bucket value. 1306 */ 1307 if (p->uclamp[clamp_id].active) { 1308 uclamp_rq_dec_id(rq, p, clamp_id); 1309 uclamp_rq_inc_id(rq, p, clamp_id); 1310 } 1311 1312 task_rq_unlock(rq, p, &rf); 1313 } 1314 1315 #ifdef CONFIG_UCLAMP_TASK_GROUP 1316 static inline void 1317 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1318 unsigned int clamps) 1319 { 1320 enum uclamp_id clamp_id; 1321 struct css_task_iter it; 1322 struct task_struct *p; 1323 1324 css_task_iter_start(css, 0, &it); 1325 while ((p = css_task_iter_next(&it))) { 1326 for_each_clamp_id(clamp_id) { 1327 if ((0x1 << clamp_id) & clamps) 1328 uclamp_update_active(p, clamp_id); 1329 } 1330 } 1331 css_task_iter_end(&it); 1332 } 1333 1334 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1335 static void uclamp_update_root_tg(void) 1336 { 1337 struct task_group *tg = &root_task_group; 1338 1339 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1340 sysctl_sched_uclamp_util_min, false); 1341 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1342 sysctl_sched_uclamp_util_max, false); 1343 1344 rcu_read_lock(); 1345 cpu_util_update_eff(&root_task_group.css); 1346 rcu_read_unlock(); 1347 } 1348 #else 1349 static void uclamp_update_root_tg(void) { } 1350 #endif 1351 1352 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1353 void *buffer, size_t *lenp, loff_t *ppos) 1354 { 1355 bool update_root_tg = false; 1356 int old_min, old_max, old_min_rt; 1357 int result; 1358 1359 mutex_lock(&uclamp_mutex); 1360 old_min = sysctl_sched_uclamp_util_min; 1361 old_max = sysctl_sched_uclamp_util_max; 1362 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1363 1364 result = proc_dointvec(table, write, buffer, lenp, ppos); 1365 if (result) 1366 goto undo; 1367 if (!write) 1368 goto done; 1369 1370 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1371 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1372 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1373 1374 result = -EINVAL; 1375 goto undo; 1376 } 1377 1378 if (old_min != sysctl_sched_uclamp_util_min) { 1379 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1380 sysctl_sched_uclamp_util_min, false); 1381 update_root_tg = true; 1382 } 1383 if (old_max != sysctl_sched_uclamp_util_max) { 1384 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1385 sysctl_sched_uclamp_util_max, false); 1386 update_root_tg = true; 1387 } 1388 1389 if (update_root_tg) { 1390 static_branch_enable(&sched_uclamp_used); 1391 uclamp_update_root_tg(); 1392 } 1393 1394 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1395 static_branch_enable(&sched_uclamp_used); 1396 uclamp_sync_util_min_rt_default(); 1397 } 1398 1399 /* 1400 * We update all RUNNABLE tasks only when task groups are in use. 1401 * Otherwise, keep it simple and do just a lazy update at each next 1402 * task enqueue time. 1403 */ 1404 1405 goto done; 1406 1407 undo: 1408 sysctl_sched_uclamp_util_min = old_min; 1409 sysctl_sched_uclamp_util_max = old_max; 1410 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1411 done: 1412 mutex_unlock(&uclamp_mutex); 1413 1414 return result; 1415 } 1416 1417 static int uclamp_validate(struct task_struct *p, 1418 const struct sched_attr *attr) 1419 { 1420 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1421 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1422 1423 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1424 lower_bound = attr->sched_util_min; 1425 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1426 upper_bound = attr->sched_util_max; 1427 1428 if (lower_bound > upper_bound) 1429 return -EINVAL; 1430 if (upper_bound > SCHED_CAPACITY_SCALE) 1431 return -EINVAL; 1432 1433 /* 1434 * We have valid uclamp attributes; make sure uclamp is enabled. 1435 * 1436 * We need to do that here, because enabling static branches is a 1437 * blocking operation which obviously cannot be done while holding 1438 * scheduler locks. 1439 */ 1440 static_branch_enable(&sched_uclamp_used); 1441 1442 return 0; 1443 } 1444 1445 static void __setscheduler_uclamp(struct task_struct *p, 1446 const struct sched_attr *attr) 1447 { 1448 enum uclamp_id clamp_id; 1449 1450 /* 1451 * On scheduling class change, reset to default clamps for tasks 1452 * without a task-specific value. 1453 */ 1454 for_each_clamp_id(clamp_id) { 1455 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1456 1457 /* Keep using defined clamps across class changes */ 1458 if (uc_se->user_defined) 1459 continue; 1460 1461 /* 1462 * RT by default have a 100% boost value that could be modified 1463 * at runtime. 1464 */ 1465 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1466 __uclamp_update_util_min_rt_default(p); 1467 else 1468 uclamp_se_set(uc_se, uclamp_none(clamp_id), false); 1469 1470 } 1471 1472 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1473 return; 1474 1475 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1476 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1477 attr->sched_util_min, true); 1478 } 1479 1480 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1481 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1482 attr->sched_util_max, true); 1483 } 1484 } 1485 1486 static void uclamp_fork(struct task_struct *p) 1487 { 1488 enum uclamp_id clamp_id; 1489 1490 /* 1491 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1492 * as the task is still at its early fork stages. 1493 */ 1494 for_each_clamp_id(clamp_id) 1495 p->uclamp[clamp_id].active = false; 1496 1497 if (likely(!p->sched_reset_on_fork)) 1498 return; 1499 1500 for_each_clamp_id(clamp_id) { 1501 uclamp_se_set(&p->uclamp_req[clamp_id], 1502 uclamp_none(clamp_id), false); 1503 } 1504 } 1505 1506 static void uclamp_post_fork(struct task_struct *p) 1507 { 1508 uclamp_update_util_min_rt_default(p); 1509 } 1510 1511 static void __init init_uclamp_rq(struct rq *rq) 1512 { 1513 enum uclamp_id clamp_id; 1514 struct uclamp_rq *uc_rq = rq->uclamp; 1515 1516 for_each_clamp_id(clamp_id) { 1517 uc_rq[clamp_id] = (struct uclamp_rq) { 1518 .value = uclamp_none(clamp_id) 1519 }; 1520 } 1521 1522 rq->uclamp_flags = 0; 1523 } 1524 1525 static void __init init_uclamp(void) 1526 { 1527 struct uclamp_se uc_max = {}; 1528 enum uclamp_id clamp_id; 1529 int cpu; 1530 1531 for_each_possible_cpu(cpu) 1532 init_uclamp_rq(cpu_rq(cpu)); 1533 1534 for_each_clamp_id(clamp_id) { 1535 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1536 uclamp_none(clamp_id), false); 1537 } 1538 1539 /* System defaults allow max clamp values for both indexes */ 1540 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1541 for_each_clamp_id(clamp_id) { 1542 uclamp_default[clamp_id] = uc_max; 1543 #ifdef CONFIG_UCLAMP_TASK_GROUP 1544 root_task_group.uclamp_req[clamp_id] = uc_max; 1545 root_task_group.uclamp[clamp_id] = uc_max; 1546 #endif 1547 } 1548 } 1549 1550 #else /* CONFIG_UCLAMP_TASK */ 1551 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1552 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1553 static inline int uclamp_validate(struct task_struct *p, 1554 const struct sched_attr *attr) 1555 { 1556 return -EOPNOTSUPP; 1557 } 1558 static void __setscheduler_uclamp(struct task_struct *p, 1559 const struct sched_attr *attr) { } 1560 static inline void uclamp_fork(struct task_struct *p) { } 1561 static inline void uclamp_post_fork(struct task_struct *p) { } 1562 static inline void init_uclamp(void) { } 1563 #endif /* CONFIG_UCLAMP_TASK */ 1564 1565 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1566 { 1567 if (!(flags & ENQUEUE_NOCLOCK)) 1568 update_rq_clock(rq); 1569 1570 if (!(flags & ENQUEUE_RESTORE)) { 1571 sched_info_queued(rq, p); 1572 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1573 } 1574 1575 uclamp_rq_inc(rq, p); 1576 p->sched_class->enqueue_task(rq, p, flags); 1577 } 1578 1579 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1580 { 1581 if (!(flags & DEQUEUE_NOCLOCK)) 1582 update_rq_clock(rq); 1583 1584 if (!(flags & DEQUEUE_SAVE)) { 1585 sched_info_dequeued(rq, p); 1586 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1587 } 1588 1589 uclamp_rq_dec(rq, p); 1590 p->sched_class->dequeue_task(rq, p, flags); 1591 } 1592 1593 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1594 { 1595 enqueue_task(rq, p, flags); 1596 1597 p->on_rq = TASK_ON_RQ_QUEUED; 1598 } 1599 1600 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1601 { 1602 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1603 1604 dequeue_task(rq, p, flags); 1605 } 1606 1607 /* 1608 * __normal_prio - return the priority that is based on the static prio 1609 */ 1610 static inline int __normal_prio(struct task_struct *p) 1611 { 1612 return p->static_prio; 1613 } 1614 1615 /* 1616 * Calculate the expected normal priority: i.e. priority 1617 * without taking RT-inheritance into account. Might be 1618 * boosted by interactivity modifiers. Changes upon fork, 1619 * setprio syscalls, and whenever the interactivity 1620 * estimator recalculates. 1621 */ 1622 static inline int normal_prio(struct task_struct *p) 1623 { 1624 int prio; 1625 1626 if (task_has_dl_policy(p)) 1627 prio = MAX_DL_PRIO-1; 1628 else if (task_has_rt_policy(p)) 1629 prio = MAX_RT_PRIO-1 - p->rt_priority; 1630 else 1631 prio = __normal_prio(p); 1632 return prio; 1633 } 1634 1635 /* 1636 * Calculate the current priority, i.e. the priority 1637 * taken into account by the scheduler. This value might 1638 * be boosted by RT tasks, or might be boosted by 1639 * interactivity modifiers. Will be RT if the task got 1640 * RT-boosted. If not then it returns p->normal_prio. 1641 */ 1642 static int effective_prio(struct task_struct *p) 1643 { 1644 p->normal_prio = normal_prio(p); 1645 /* 1646 * If we are RT tasks or we were boosted to RT priority, 1647 * keep the priority unchanged. Otherwise, update priority 1648 * to the normal priority: 1649 */ 1650 if (!rt_prio(p->prio)) 1651 return p->normal_prio; 1652 return p->prio; 1653 } 1654 1655 /** 1656 * task_curr - is this task currently executing on a CPU? 1657 * @p: the task in question. 1658 * 1659 * Return: 1 if the task is currently executing. 0 otherwise. 1660 */ 1661 inline int task_curr(const struct task_struct *p) 1662 { 1663 return cpu_curr(task_cpu(p)) == p; 1664 } 1665 1666 /* 1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1668 * use the balance_callback list if you want balancing. 1669 * 1670 * this means any call to check_class_changed() must be followed by a call to 1671 * balance_callback(). 1672 */ 1673 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1674 const struct sched_class *prev_class, 1675 int oldprio) 1676 { 1677 if (prev_class != p->sched_class) { 1678 if (prev_class->switched_from) 1679 prev_class->switched_from(rq, p); 1680 1681 p->sched_class->switched_to(rq, p); 1682 } else if (oldprio != p->prio || dl_task(p)) 1683 p->sched_class->prio_changed(rq, p, oldprio); 1684 } 1685 1686 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1687 { 1688 if (p->sched_class == rq->curr->sched_class) 1689 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1690 else if (p->sched_class > rq->curr->sched_class) 1691 resched_curr(rq); 1692 1693 /* 1694 * A queue event has occurred, and we're going to schedule. In 1695 * this case, we can save a useless back to back clock update. 1696 */ 1697 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1698 rq_clock_skip_update(rq); 1699 } 1700 1701 #ifdef CONFIG_SMP 1702 1703 /* 1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1705 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1706 */ 1707 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1708 { 1709 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1710 return false; 1711 1712 if (is_per_cpu_kthread(p)) 1713 return cpu_online(cpu); 1714 1715 return cpu_active(cpu); 1716 } 1717 1718 /* 1719 * This is how migration works: 1720 * 1721 * 1) we invoke migration_cpu_stop() on the target CPU using 1722 * stop_one_cpu(). 1723 * 2) stopper starts to run (implicitly forcing the migrated thread 1724 * off the CPU) 1725 * 3) it checks whether the migrated task is still in the wrong runqueue. 1726 * 4) if it's in the wrong runqueue then the migration thread removes 1727 * it and puts it into the right queue. 1728 * 5) stopper completes and stop_one_cpu() returns and the migration 1729 * is done. 1730 */ 1731 1732 /* 1733 * move_queued_task - move a queued task to new rq. 1734 * 1735 * Returns (locked) new rq. Old rq's lock is released. 1736 */ 1737 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1738 struct task_struct *p, int new_cpu) 1739 { 1740 lockdep_assert_held(&rq->lock); 1741 1742 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 1743 set_task_cpu(p, new_cpu); 1744 rq_unlock(rq, rf); 1745 1746 rq = cpu_rq(new_cpu); 1747 1748 rq_lock(rq, rf); 1749 BUG_ON(task_cpu(p) != new_cpu); 1750 activate_task(rq, p, 0); 1751 check_preempt_curr(rq, p, 0); 1752 1753 return rq; 1754 } 1755 1756 struct migration_arg { 1757 struct task_struct *task; 1758 int dest_cpu; 1759 }; 1760 1761 /* 1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1763 * this because either it can't run here any more (set_cpus_allowed() 1764 * away from this CPU, or CPU going down), or because we're 1765 * attempting to rebalance this task on exec (sched_exec). 1766 * 1767 * So we race with normal scheduler movements, but that's OK, as long 1768 * as the task is no longer on this CPU. 1769 */ 1770 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1771 struct task_struct *p, int dest_cpu) 1772 { 1773 /* Affinity changed (again). */ 1774 if (!is_cpu_allowed(p, dest_cpu)) 1775 return rq; 1776 1777 update_rq_clock(rq); 1778 rq = move_queued_task(rq, rf, p, dest_cpu); 1779 1780 return rq; 1781 } 1782 1783 /* 1784 * migration_cpu_stop - this will be executed by a highprio stopper thread 1785 * and performs thread migration by bumping thread off CPU then 1786 * 'pushing' onto another runqueue. 1787 */ 1788 static int migration_cpu_stop(void *data) 1789 { 1790 struct migration_arg *arg = data; 1791 struct task_struct *p = arg->task; 1792 struct rq *rq = this_rq(); 1793 struct rq_flags rf; 1794 1795 /* 1796 * The original target CPU might have gone down and we might 1797 * be on another CPU but it doesn't matter. 1798 */ 1799 local_irq_disable(); 1800 /* 1801 * We need to explicitly wake pending tasks before running 1802 * __migrate_task() such that we will not miss enforcing cpus_ptr 1803 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1804 */ 1805 flush_smp_call_function_from_idle(); 1806 1807 raw_spin_lock(&p->pi_lock); 1808 rq_lock(rq, &rf); 1809 /* 1810 * If task_rq(p) != rq, it cannot be migrated here, because we're 1811 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1812 * we're holding p->pi_lock. 1813 */ 1814 if (task_rq(p) == rq) { 1815 if (task_on_rq_queued(p)) 1816 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1817 else 1818 p->wake_cpu = arg->dest_cpu; 1819 } 1820 rq_unlock(rq, &rf); 1821 raw_spin_unlock(&p->pi_lock); 1822 1823 local_irq_enable(); 1824 return 0; 1825 } 1826 1827 /* 1828 * sched_class::set_cpus_allowed must do the below, but is not required to 1829 * actually call this function. 1830 */ 1831 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1832 { 1833 cpumask_copy(&p->cpus_mask, new_mask); 1834 p->nr_cpus_allowed = cpumask_weight(new_mask); 1835 } 1836 1837 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1838 { 1839 struct rq *rq = task_rq(p); 1840 bool queued, running; 1841 1842 lockdep_assert_held(&p->pi_lock); 1843 1844 queued = task_on_rq_queued(p); 1845 running = task_current(rq, p); 1846 1847 if (queued) { 1848 /* 1849 * Because __kthread_bind() calls this on blocked tasks without 1850 * holding rq->lock. 1851 */ 1852 lockdep_assert_held(&rq->lock); 1853 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1854 } 1855 if (running) 1856 put_prev_task(rq, p); 1857 1858 p->sched_class->set_cpus_allowed(p, new_mask); 1859 1860 if (queued) 1861 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1862 if (running) 1863 set_next_task(rq, p); 1864 } 1865 1866 /* 1867 * Change a given task's CPU affinity. Migrate the thread to a 1868 * proper CPU and schedule it away if the CPU it's executing on 1869 * is removed from the allowed bitmask. 1870 * 1871 * NOTE: the caller must have a valid reference to the task, the 1872 * task must not exit() & deallocate itself prematurely. The 1873 * call is not atomic; no spinlocks may be held. 1874 */ 1875 static int __set_cpus_allowed_ptr(struct task_struct *p, 1876 const struct cpumask *new_mask, bool check) 1877 { 1878 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1879 unsigned int dest_cpu; 1880 struct rq_flags rf; 1881 struct rq *rq; 1882 int ret = 0; 1883 1884 rq = task_rq_lock(p, &rf); 1885 update_rq_clock(rq); 1886 1887 if (p->flags & PF_KTHREAD) { 1888 /* 1889 * Kernel threads are allowed on online && !active CPUs 1890 */ 1891 cpu_valid_mask = cpu_online_mask; 1892 } 1893 1894 /* 1895 * Must re-check here, to close a race against __kthread_bind(), 1896 * sched_setaffinity() is not guaranteed to observe the flag. 1897 */ 1898 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1899 ret = -EINVAL; 1900 goto out; 1901 } 1902 1903 if (cpumask_equal(&p->cpus_mask, new_mask)) 1904 goto out; 1905 1906 /* 1907 * Picking a ~random cpu helps in cases where we are changing affinity 1908 * for groups of tasks (ie. cpuset), so that load balancing is not 1909 * immediately required to distribute the tasks within their new mask. 1910 */ 1911 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 1912 if (dest_cpu >= nr_cpu_ids) { 1913 ret = -EINVAL; 1914 goto out; 1915 } 1916 1917 do_set_cpus_allowed(p, new_mask); 1918 1919 if (p->flags & PF_KTHREAD) { 1920 /* 1921 * For kernel threads that do indeed end up on online && 1922 * !active we want to ensure they are strict per-CPU threads. 1923 */ 1924 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1925 !cpumask_intersects(new_mask, cpu_active_mask) && 1926 p->nr_cpus_allowed != 1); 1927 } 1928 1929 /* Can the task run on the task's current CPU? If so, we're done */ 1930 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1931 goto out; 1932 1933 if (task_running(rq, p) || p->state == TASK_WAKING) { 1934 struct migration_arg arg = { p, dest_cpu }; 1935 /* Need help from migration thread: drop lock and wait. */ 1936 task_rq_unlock(rq, p, &rf); 1937 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1938 return 0; 1939 } else if (task_on_rq_queued(p)) { 1940 /* 1941 * OK, since we're going to drop the lock immediately 1942 * afterwards anyway. 1943 */ 1944 rq = move_queued_task(rq, &rf, p, dest_cpu); 1945 } 1946 out: 1947 task_rq_unlock(rq, p, &rf); 1948 1949 return ret; 1950 } 1951 1952 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1953 { 1954 return __set_cpus_allowed_ptr(p, new_mask, false); 1955 } 1956 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1957 1958 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1959 { 1960 #ifdef CONFIG_SCHED_DEBUG 1961 /* 1962 * We should never call set_task_cpu() on a blocked task, 1963 * ttwu() will sort out the placement. 1964 */ 1965 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1966 !p->on_rq); 1967 1968 /* 1969 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1970 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1971 * time relying on p->on_rq. 1972 */ 1973 WARN_ON_ONCE(p->state == TASK_RUNNING && 1974 p->sched_class == &fair_sched_class && 1975 (p->on_rq && !task_on_rq_migrating(p))); 1976 1977 #ifdef CONFIG_LOCKDEP 1978 /* 1979 * The caller should hold either p->pi_lock or rq->lock, when changing 1980 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1981 * 1982 * sched_move_task() holds both and thus holding either pins the cgroup, 1983 * see task_group(). 1984 * 1985 * Furthermore, all task_rq users should acquire both locks, see 1986 * task_rq_lock(). 1987 */ 1988 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1989 lockdep_is_held(&task_rq(p)->lock))); 1990 #endif 1991 /* 1992 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1993 */ 1994 WARN_ON_ONCE(!cpu_online(new_cpu)); 1995 #endif 1996 1997 trace_sched_migrate_task(p, new_cpu); 1998 1999 if (task_cpu(p) != new_cpu) { 2000 if (p->sched_class->migrate_task_rq) 2001 p->sched_class->migrate_task_rq(p, new_cpu); 2002 p->se.nr_migrations++; 2003 rseq_migrate(p); 2004 perf_event_task_migrate(p); 2005 } 2006 2007 __set_task_cpu(p, new_cpu); 2008 } 2009 2010 #ifdef CONFIG_NUMA_BALANCING 2011 static void __migrate_swap_task(struct task_struct *p, int cpu) 2012 { 2013 if (task_on_rq_queued(p)) { 2014 struct rq *src_rq, *dst_rq; 2015 struct rq_flags srf, drf; 2016 2017 src_rq = task_rq(p); 2018 dst_rq = cpu_rq(cpu); 2019 2020 rq_pin_lock(src_rq, &srf); 2021 rq_pin_lock(dst_rq, &drf); 2022 2023 deactivate_task(src_rq, p, 0); 2024 set_task_cpu(p, cpu); 2025 activate_task(dst_rq, p, 0); 2026 check_preempt_curr(dst_rq, p, 0); 2027 2028 rq_unpin_lock(dst_rq, &drf); 2029 rq_unpin_lock(src_rq, &srf); 2030 2031 } else { 2032 /* 2033 * Task isn't running anymore; make it appear like we migrated 2034 * it before it went to sleep. This means on wakeup we make the 2035 * previous CPU our target instead of where it really is. 2036 */ 2037 p->wake_cpu = cpu; 2038 } 2039 } 2040 2041 struct migration_swap_arg { 2042 struct task_struct *src_task, *dst_task; 2043 int src_cpu, dst_cpu; 2044 }; 2045 2046 static int migrate_swap_stop(void *data) 2047 { 2048 struct migration_swap_arg *arg = data; 2049 struct rq *src_rq, *dst_rq; 2050 int ret = -EAGAIN; 2051 2052 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2053 return -EAGAIN; 2054 2055 src_rq = cpu_rq(arg->src_cpu); 2056 dst_rq = cpu_rq(arg->dst_cpu); 2057 2058 double_raw_lock(&arg->src_task->pi_lock, 2059 &arg->dst_task->pi_lock); 2060 double_rq_lock(src_rq, dst_rq); 2061 2062 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2063 goto unlock; 2064 2065 if (task_cpu(arg->src_task) != arg->src_cpu) 2066 goto unlock; 2067 2068 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2069 goto unlock; 2070 2071 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2072 goto unlock; 2073 2074 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2075 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2076 2077 ret = 0; 2078 2079 unlock: 2080 double_rq_unlock(src_rq, dst_rq); 2081 raw_spin_unlock(&arg->dst_task->pi_lock); 2082 raw_spin_unlock(&arg->src_task->pi_lock); 2083 2084 return ret; 2085 } 2086 2087 /* 2088 * Cross migrate two tasks 2089 */ 2090 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2091 int target_cpu, int curr_cpu) 2092 { 2093 struct migration_swap_arg arg; 2094 int ret = -EINVAL; 2095 2096 arg = (struct migration_swap_arg){ 2097 .src_task = cur, 2098 .src_cpu = curr_cpu, 2099 .dst_task = p, 2100 .dst_cpu = target_cpu, 2101 }; 2102 2103 if (arg.src_cpu == arg.dst_cpu) 2104 goto out; 2105 2106 /* 2107 * These three tests are all lockless; this is OK since all of them 2108 * will be re-checked with proper locks held further down the line. 2109 */ 2110 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2111 goto out; 2112 2113 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2114 goto out; 2115 2116 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2117 goto out; 2118 2119 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2120 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2121 2122 out: 2123 return ret; 2124 } 2125 #endif /* CONFIG_NUMA_BALANCING */ 2126 2127 /* 2128 * wait_task_inactive - wait for a thread to unschedule. 2129 * 2130 * If @match_state is nonzero, it's the @p->state value just checked and 2131 * not expected to change. If it changes, i.e. @p might have woken up, 2132 * then return zero. When we succeed in waiting for @p to be off its CPU, 2133 * we return a positive number (its total switch count). If a second call 2134 * a short while later returns the same number, the caller can be sure that 2135 * @p has remained unscheduled the whole time. 2136 * 2137 * The caller must ensure that the task *will* unschedule sometime soon, 2138 * else this function might spin for a *long* time. This function can't 2139 * be called with interrupts off, or it may introduce deadlock with 2140 * smp_call_function() if an IPI is sent by the same process we are 2141 * waiting to become inactive. 2142 */ 2143 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2144 { 2145 int running, queued; 2146 struct rq_flags rf; 2147 unsigned long ncsw; 2148 struct rq *rq; 2149 2150 for (;;) { 2151 /* 2152 * We do the initial early heuristics without holding 2153 * any task-queue locks at all. We'll only try to get 2154 * the runqueue lock when things look like they will 2155 * work out! 2156 */ 2157 rq = task_rq(p); 2158 2159 /* 2160 * If the task is actively running on another CPU 2161 * still, just relax and busy-wait without holding 2162 * any locks. 2163 * 2164 * NOTE! Since we don't hold any locks, it's not 2165 * even sure that "rq" stays as the right runqueue! 2166 * But we don't care, since "task_running()" will 2167 * return false if the runqueue has changed and p 2168 * is actually now running somewhere else! 2169 */ 2170 while (task_running(rq, p)) { 2171 if (match_state && unlikely(p->state != match_state)) 2172 return 0; 2173 cpu_relax(); 2174 } 2175 2176 /* 2177 * Ok, time to look more closely! We need the rq 2178 * lock now, to be *sure*. If we're wrong, we'll 2179 * just go back and repeat. 2180 */ 2181 rq = task_rq_lock(p, &rf); 2182 trace_sched_wait_task(p); 2183 running = task_running(rq, p); 2184 queued = task_on_rq_queued(p); 2185 ncsw = 0; 2186 if (!match_state || p->state == match_state) 2187 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2188 task_rq_unlock(rq, p, &rf); 2189 2190 /* 2191 * If it changed from the expected state, bail out now. 2192 */ 2193 if (unlikely(!ncsw)) 2194 break; 2195 2196 /* 2197 * Was it really running after all now that we 2198 * checked with the proper locks actually held? 2199 * 2200 * Oops. Go back and try again.. 2201 */ 2202 if (unlikely(running)) { 2203 cpu_relax(); 2204 continue; 2205 } 2206 2207 /* 2208 * It's not enough that it's not actively running, 2209 * it must be off the runqueue _entirely_, and not 2210 * preempted! 2211 * 2212 * So if it was still runnable (but just not actively 2213 * running right now), it's preempted, and we should 2214 * yield - it could be a while. 2215 */ 2216 if (unlikely(queued)) { 2217 ktime_t to = NSEC_PER_SEC / HZ; 2218 2219 set_current_state(TASK_UNINTERRUPTIBLE); 2220 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 2221 continue; 2222 } 2223 2224 /* 2225 * Ahh, all good. It wasn't running, and it wasn't 2226 * runnable, which means that it will never become 2227 * running in the future either. We're all done! 2228 */ 2229 break; 2230 } 2231 2232 return ncsw; 2233 } 2234 2235 /*** 2236 * kick_process - kick a running thread to enter/exit the kernel 2237 * @p: the to-be-kicked thread 2238 * 2239 * Cause a process which is running on another CPU to enter 2240 * kernel-mode, without any delay. (to get signals handled.) 2241 * 2242 * NOTE: this function doesn't have to take the runqueue lock, 2243 * because all it wants to ensure is that the remote task enters 2244 * the kernel. If the IPI races and the task has been migrated 2245 * to another CPU then no harm is done and the purpose has been 2246 * achieved as well. 2247 */ 2248 void kick_process(struct task_struct *p) 2249 { 2250 int cpu; 2251 2252 preempt_disable(); 2253 cpu = task_cpu(p); 2254 if ((cpu != smp_processor_id()) && task_curr(p)) 2255 smp_send_reschedule(cpu); 2256 preempt_enable(); 2257 } 2258 EXPORT_SYMBOL_GPL(kick_process); 2259 2260 /* 2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2262 * 2263 * A few notes on cpu_active vs cpu_online: 2264 * 2265 * - cpu_active must be a subset of cpu_online 2266 * 2267 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2268 * see __set_cpus_allowed_ptr(). At this point the newly online 2269 * CPU isn't yet part of the sched domains, and balancing will not 2270 * see it. 2271 * 2272 * - on CPU-down we clear cpu_active() to mask the sched domains and 2273 * avoid the load balancer to place new tasks on the to be removed 2274 * CPU. Existing tasks will remain running there and will be taken 2275 * off. 2276 * 2277 * This means that fallback selection must not select !active CPUs. 2278 * And can assume that any active CPU must be online. Conversely 2279 * select_task_rq() below may allow selection of !active CPUs in order 2280 * to satisfy the above rules. 2281 */ 2282 static int select_fallback_rq(int cpu, struct task_struct *p) 2283 { 2284 int nid = cpu_to_node(cpu); 2285 const struct cpumask *nodemask = NULL; 2286 enum { cpuset, possible, fail } state = cpuset; 2287 int dest_cpu; 2288 2289 /* 2290 * If the node that the CPU is on has been offlined, cpu_to_node() 2291 * will return -1. There is no CPU on the node, and we should 2292 * select the CPU on the other node. 2293 */ 2294 if (nid != -1) { 2295 nodemask = cpumask_of_node(nid); 2296 2297 /* Look for allowed, online CPU in same node. */ 2298 for_each_cpu(dest_cpu, nodemask) { 2299 if (!cpu_active(dest_cpu)) 2300 continue; 2301 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2302 return dest_cpu; 2303 } 2304 } 2305 2306 for (;;) { 2307 /* Any allowed, online CPU? */ 2308 for_each_cpu(dest_cpu, p->cpus_ptr) { 2309 if (!is_cpu_allowed(p, dest_cpu)) 2310 continue; 2311 2312 goto out; 2313 } 2314 2315 /* No more Mr. Nice Guy. */ 2316 switch (state) { 2317 case cpuset: 2318 if (IS_ENABLED(CONFIG_CPUSETS)) { 2319 cpuset_cpus_allowed_fallback(p); 2320 state = possible; 2321 break; 2322 } 2323 /* Fall-through */ 2324 case possible: 2325 do_set_cpus_allowed(p, cpu_possible_mask); 2326 state = fail; 2327 break; 2328 2329 case fail: 2330 BUG(); 2331 break; 2332 } 2333 } 2334 2335 out: 2336 if (state != cpuset) { 2337 /* 2338 * Don't tell them about moving exiting tasks or 2339 * kernel threads (both mm NULL), since they never 2340 * leave kernel. 2341 */ 2342 if (p->mm && printk_ratelimit()) { 2343 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2344 task_pid_nr(p), p->comm, cpu); 2345 } 2346 } 2347 2348 return dest_cpu; 2349 } 2350 2351 /* 2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2353 */ 2354 static inline 2355 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2356 { 2357 lockdep_assert_held(&p->pi_lock); 2358 2359 if (p->nr_cpus_allowed > 1) 2360 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2361 else 2362 cpu = cpumask_any(p->cpus_ptr); 2363 2364 /* 2365 * In order not to call set_task_cpu() on a blocking task we need 2366 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2367 * CPU. 2368 * 2369 * Since this is common to all placement strategies, this lives here. 2370 * 2371 * [ this allows ->select_task() to simply return task_cpu(p) and 2372 * not worry about this generic constraint ] 2373 */ 2374 if (unlikely(!is_cpu_allowed(p, cpu))) 2375 cpu = select_fallback_rq(task_cpu(p), p); 2376 2377 return cpu; 2378 } 2379 2380 void sched_set_stop_task(int cpu, struct task_struct *stop) 2381 { 2382 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2383 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2384 2385 if (stop) { 2386 /* 2387 * Make it appear like a SCHED_FIFO task, its something 2388 * userspace knows about and won't get confused about. 2389 * 2390 * Also, it will make PI more or less work without too 2391 * much confusion -- but then, stop work should not 2392 * rely on PI working anyway. 2393 */ 2394 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2395 2396 stop->sched_class = &stop_sched_class; 2397 } 2398 2399 cpu_rq(cpu)->stop = stop; 2400 2401 if (old_stop) { 2402 /* 2403 * Reset it back to a normal scheduling class so that 2404 * it can die in pieces. 2405 */ 2406 old_stop->sched_class = &rt_sched_class; 2407 } 2408 } 2409 2410 #else 2411 2412 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2413 const struct cpumask *new_mask, bool check) 2414 { 2415 return set_cpus_allowed_ptr(p, new_mask); 2416 } 2417 2418 #endif /* CONFIG_SMP */ 2419 2420 static void 2421 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2422 { 2423 struct rq *rq; 2424 2425 if (!schedstat_enabled()) 2426 return; 2427 2428 rq = this_rq(); 2429 2430 #ifdef CONFIG_SMP 2431 if (cpu == rq->cpu) { 2432 __schedstat_inc(rq->ttwu_local); 2433 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2434 } else { 2435 struct sched_domain *sd; 2436 2437 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2438 rcu_read_lock(); 2439 for_each_domain(rq->cpu, sd) { 2440 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2441 __schedstat_inc(sd->ttwu_wake_remote); 2442 break; 2443 } 2444 } 2445 rcu_read_unlock(); 2446 } 2447 2448 if (wake_flags & WF_MIGRATED) 2449 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2450 #endif /* CONFIG_SMP */ 2451 2452 __schedstat_inc(rq->ttwu_count); 2453 __schedstat_inc(p->se.statistics.nr_wakeups); 2454 2455 if (wake_flags & WF_SYNC) 2456 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2457 } 2458 2459 /* 2460 * Mark the task runnable and perform wakeup-preemption. 2461 */ 2462 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2463 struct rq_flags *rf) 2464 { 2465 check_preempt_curr(rq, p, wake_flags); 2466 p->state = TASK_RUNNING; 2467 trace_sched_wakeup(p); 2468 2469 #ifdef CONFIG_SMP 2470 if (p->sched_class->task_woken) { 2471 /* 2472 * Our task @p is fully woken up and running; so its safe to 2473 * drop the rq->lock, hereafter rq is only used for statistics. 2474 */ 2475 rq_unpin_lock(rq, rf); 2476 p->sched_class->task_woken(rq, p); 2477 rq_repin_lock(rq, rf); 2478 } 2479 2480 if (rq->idle_stamp) { 2481 u64 delta = rq_clock(rq) - rq->idle_stamp; 2482 u64 max = 2*rq->max_idle_balance_cost; 2483 2484 update_avg(&rq->avg_idle, delta); 2485 2486 if (rq->avg_idle > max) 2487 rq->avg_idle = max; 2488 2489 rq->idle_stamp = 0; 2490 } 2491 #endif 2492 } 2493 2494 static void 2495 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2496 struct rq_flags *rf) 2497 { 2498 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2499 2500 lockdep_assert_held(&rq->lock); 2501 2502 if (p->sched_contributes_to_load) 2503 rq->nr_uninterruptible--; 2504 2505 #ifdef CONFIG_SMP 2506 if (wake_flags & WF_MIGRATED) 2507 en_flags |= ENQUEUE_MIGRATED; 2508 #endif 2509 2510 activate_task(rq, p, en_flags); 2511 ttwu_do_wakeup(rq, p, wake_flags, rf); 2512 } 2513 2514 /* 2515 * Consider @p being inside a wait loop: 2516 * 2517 * for (;;) { 2518 * set_current_state(TASK_UNINTERRUPTIBLE); 2519 * 2520 * if (CONDITION) 2521 * break; 2522 * 2523 * schedule(); 2524 * } 2525 * __set_current_state(TASK_RUNNING); 2526 * 2527 * between set_current_state() and schedule(). In this case @p is still 2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 2529 * an atomic manner. 2530 * 2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 2532 * then schedule() must still happen and p->state can be changed to 2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 2534 * need to do a full wakeup with enqueue. 2535 * 2536 * Returns: %true when the wakeup is done, 2537 * %false otherwise. 2538 */ 2539 static int ttwu_runnable(struct task_struct *p, int wake_flags) 2540 { 2541 struct rq_flags rf; 2542 struct rq *rq; 2543 int ret = 0; 2544 2545 rq = __task_rq_lock(p, &rf); 2546 if (task_on_rq_queued(p)) { 2547 /* check_preempt_curr() may use rq clock */ 2548 update_rq_clock(rq); 2549 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2550 ret = 1; 2551 } 2552 __task_rq_unlock(rq, &rf); 2553 2554 return ret; 2555 } 2556 2557 #ifdef CONFIG_SMP 2558 void sched_ttwu_pending(void *arg) 2559 { 2560 struct llist_node *llist = arg; 2561 struct rq *rq = this_rq(); 2562 struct task_struct *p, *t; 2563 struct rq_flags rf; 2564 2565 if (!llist) 2566 return; 2567 2568 /* 2569 * rq::ttwu_pending racy indication of out-standing wakeups. 2570 * Races such that false-negatives are possible, since they 2571 * are shorter lived that false-positives would be. 2572 */ 2573 WRITE_ONCE(rq->ttwu_pending, 0); 2574 2575 rq_lock_irqsave(rq, &rf); 2576 update_rq_clock(rq); 2577 2578 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 2579 if (WARN_ON_ONCE(p->on_cpu)) 2580 smp_cond_load_acquire(&p->on_cpu, !VAL); 2581 2582 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 2583 set_task_cpu(p, cpu_of(rq)); 2584 2585 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2586 } 2587 2588 rq_unlock_irqrestore(rq, &rf); 2589 } 2590 2591 void send_call_function_single_ipi(int cpu) 2592 { 2593 struct rq *rq = cpu_rq(cpu); 2594 2595 if (!set_nr_if_polling(rq->idle)) 2596 arch_send_call_function_single_ipi(cpu); 2597 else 2598 trace_sched_wake_idle_without_ipi(cpu); 2599 } 2600 2601 /* 2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 2603 * necessary. The wakee CPU on receipt of the IPI will queue the task 2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 2605 * of the wakeup instead of the waker. 2606 */ 2607 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2608 { 2609 struct rq *rq = cpu_rq(cpu); 2610 2611 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2612 2613 WRITE_ONCE(rq->ttwu_pending, 1); 2614 __smp_call_single_queue(cpu, &p->wake_entry.llist); 2615 } 2616 2617 void wake_up_if_idle(int cpu) 2618 { 2619 struct rq *rq = cpu_rq(cpu); 2620 struct rq_flags rf; 2621 2622 rcu_read_lock(); 2623 2624 if (!is_idle_task(rcu_dereference(rq->curr))) 2625 goto out; 2626 2627 if (set_nr_if_polling(rq->idle)) { 2628 trace_sched_wake_idle_without_ipi(cpu); 2629 } else { 2630 rq_lock_irqsave(rq, &rf); 2631 if (is_idle_task(rq->curr)) 2632 smp_send_reschedule(cpu); 2633 /* Else CPU is not idle, do nothing here: */ 2634 rq_unlock_irqrestore(rq, &rf); 2635 } 2636 2637 out: 2638 rcu_read_unlock(); 2639 } 2640 2641 bool cpus_share_cache(int this_cpu, int that_cpu) 2642 { 2643 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2644 } 2645 2646 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 2647 { 2648 /* 2649 * If the CPU does not share cache, then queue the task on the 2650 * remote rqs wakelist to avoid accessing remote data. 2651 */ 2652 if (!cpus_share_cache(smp_processor_id(), cpu)) 2653 return true; 2654 2655 /* 2656 * If the task is descheduling and the only running task on the 2657 * CPU then use the wakelist to offload the task activation to 2658 * the soon-to-be-idle CPU as the current CPU is likely busy. 2659 * nr_running is checked to avoid unnecessary task stacking. 2660 */ 2661 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 2662 return true; 2663 2664 return false; 2665 } 2666 2667 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2668 { 2669 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 2670 if (WARN_ON_ONCE(cpu == smp_processor_id())) 2671 return false; 2672 2673 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2674 __ttwu_queue_wakelist(p, cpu, wake_flags); 2675 return true; 2676 } 2677 2678 return false; 2679 } 2680 2681 #else /* !CONFIG_SMP */ 2682 2683 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2684 { 2685 return false; 2686 } 2687 2688 #endif /* CONFIG_SMP */ 2689 2690 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2691 { 2692 struct rq *rq = cpu_rq(cpu); 2693 struct rq_flags rf; 2694 2695 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 2696 return; 2697 2698 rq_lock(rq, &rf); 2699 update_rq_clock(rq); 2700 ttwu_do_activate(rq, p, wake_flags, &rf); 2701 rq_unlock(rq, &rf); 2702 } 2703 2704 /* 2705 * Notes on Program-Order guarantees on SMP systems. 2706 * 2707 * MIGRATION 2708 * 2709 * The basic program-order guarantee on SMP systems is that when a task [t] 2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2711 * execution on its new CPU [c1]. 2712 * 2713 * For migration (of runnable tasks) this is provided by the following means: 2714 * 2715 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2716 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2717 * rq(c1)->lock (if not at the same time, then in that order). 2718 * C) LOCK of the rq(c1)->lock scheduling in task 2719 * 2720 * Release/acquire chaining guarantees that B happens after A and C after B. 2721 * Note: the CPU doing B need not be c0 or c1 2722 * 2723 * Example: 2724 * 2725 * CPU0 CPU1 CPU2 2726 * 2727 * LOCK rq(0)->lock 2728 * sched-out X 2729 * sched-in Y 2730 * UNLOCK rq(0)->lock 2731 * 2732 * LOCK rq(0)->lock // orders against CPU0 2733 * dequeue X 2734 * UNLOCK rq(0)->lock 2735 * 2736 * LOCK rq(1)->lock 2737 * enqueue X 2738 * UNLOCK rq(1)->lock 2739 * 2740 * LOCK rq(1)->lock // orders against CPU2 2741 * sched-out Z 2742 * sched-in X 2743 * UNLOCK rq(1)->lock 2744 * 2745 * 2746 * BLOCKING -- aka. SLEEP + WAKEUP 2747 * 2748 * For blocking we (obviously) need to provide the same guarantee as for 2749 * migration. However the means are completely different as there is no lock 2750 * chain to provide order. Instead we do: 2751 * 2752 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 2753 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 2754 * 2755 * Example: 2756 * 2757 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2758 * 2759 * LOCK rq(0)->lock LOCK X->pi_lock 2760 * dequeue X 2761 * sched-out X 2762 * smp_store_release(X->on_cpu, 0); 2763 * 2764 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2765 * X->state = WAKING 2766 * set_task_cpu(X,2) 2767 * 2768 * LOCK rq(2)->lock 2769 * enqueue X 2770 * X->state = RUNNING 2771 * UNLOCK rq(2)->lock 2772 * 2773 * LOCK rq(2)->lock // orders against CPU1 2774 * sched-out Z 2775 * sched-in X 2776 * UNLOCK rq(2)->lock 2777 * 2778 * UNLOCK X->pi_lock 2779 * UNLOCK rq(0)->lock 2780 * 2781 * 2782 * However, for wakeups there is a second guarantee we must provide, namely we 2783 * must ensure that CONDITION=1 done by the caller can not be reordered with 2784 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2785 */ 2786 2787 /** 2788 * try_to_wake_up - wake up a thread 2789 * @p: the thread to be awakened 2790 * @state: the mask of task states that can be woken 2791 * @wake_flags: wake modifier flags (WF_*) 2792 * 2793 * Conceptually does: 2794 * 2795 * If (@state & @p->state) @p->state = TASK_RUNNING. 2796 * 2797 * If the task was not queued/runnable, also place it back on a runqueue. 2798 * 2799 * This function is atomic against schedule() which would dequeue the task. 2800 * 2801 * It issues a full memory barrier before accessing @p->state, see the comment 2802 * with set_current_state(). 2803 * 2804 * Uses p->pi_lock to serialize against concurrent wake-ups. 2805 * 2806 * Relies on p->pi_lock stabilizing: 2807 * - p->sched_class 2808 * - p->cpus_ptr 2809 * - p->sched_task_group 2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 2811 * 2812 * Tries really hard to only take one task_rq(p)->lock for performance. 2813 * Takes rq->lock in: 2814 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 2815 * - ttwu_queue() -- new rq, for enqueue of the task; 2816 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 2817 * 2818 * As a consequence we race really badly with just about everything. See the 2819 * many memory barriers and their comments for details. 2820 * 2821 * Return: %true if @p->state changes (an actual wakeup was done), 2822 * %false otherwise. 2823 */ 2824 static int 2825 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2826 { 2827 unsigned long flags; 2828 int cpu, success = 0; 2829 2830 preempt_disable(); 2831 if (p == current) { 2832 /* 2833 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2834 * == smp_processor_id()'. Together this means we can special 2835 * case the whole 'p->on_rq && ttwu_runnable()' case below 2836 * without taking any locks. 2837 * 2838 * In particular: 2839 * - we rely on Program-Order guarantees for all the ordering, 2840 * - we're serialized against set_special_state() by virtue of 2841 * it disabling IRQs (this allows not taking ->pi_lock). 2842 */ 2843 if (!(p->state & state)) 2844 goto out; 2845 2846 success = 1; 2847 trace_sched_waking(p); 2848 p->state = TASK_RUNNING; 2849 trace_sched_wakeup(p); 2850 goto out; 2851 } 2852 2853 /* 2854 * If we are going to wake up a thread waiting for CONDITION we 2855 * need to ensure that CONDITION=1 done by the caller can not be 2856 * reordered with p->state check below. This pairs with smp_store_mb() 2857 * in set_current_state() that the waiting thread does. 2858 */ 2859 raw_spin_lock_irqsave(&p->pi_lock, flags); 2860 smp_mb__after_spinlock(); 2861 if (!(p->state & state)) 2862 goto unlock; 2863 2864 trace_sched_waking(p); 2865 2866 /* We're going to change ->state: */ 2867 success = 1; 2868 2869 /* 2870 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2871 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2872 * in smp_cond_load_acquire() below. 2873 * 2874 * sched_ttwu_pending() try_to_wake_up() 2875 * STORE p->on_rq = 1 LOAD p->state 2876 * UNLOCK rq->lock 2877 * 2878 * __schedule() (switch to task 'p') 2879 * LOCK rq->lock smp_rmb(); 2880 * smp_mb__after_spinlock(); 2881 * UNLOCK rq->lock 2882 * 2883 * [task p] 2884 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2885 * 2886 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2887 * __schedule(). See the comment for smp_mb__after_spinlock(). 2888 * 2889 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 2890 */ 2891 smp_rmb(); 2892 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 2893 goto unlock; 2894 2895 if (p->in_iowait) { 2896 delayacct_blkio_end(p); 2897 atomic_dec(&task_rq(p)->nr_iowait); 2898 } 2899 2900 #ifdef CONFIG_SMP 2901 /* 2902 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2903 * possible to, falsely, observe p->on_cpu == 0. 2904 * 2905 * One must be running (->on_cpu == 1) in order to remove oneself 2906 * from the runqueue. 2907 * 2908 * __schedule() (switch to task 'p') try_to_wake_up() 2909 * STORE p->on_cpu = 1 LOAD p->on_rq 2910 * UNLOCK rq->lock 2911 * 2912 * __schedule() (put 'p' to sleep) 2913 * LOCK rq->lock smp_rmb(); 2914 * smp_mb__after_spinlock(); 2915 * STORE p->on_rq = 0 LOAD p->on_cpu 2916 * 2917 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2918 * __schedule(). See the comment for smp_mb__after_spinlock(). 2919 * 2920 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 2921 * schedule()'s deactivate_task() has 'happened' and p will no longer 2922 * care about it's own p->state. See the comment in __schedule(). 2923 */ 2924 smp_acquire__after_ctrl_dep(); 2925 2926 /* 2927 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 2928 * == 0), which means we need to do an enqueue, change p->state to 2929 * TASK_WAKING such that we can unlock p->pi_lock before doing the 2930 * enqueue, such as ttwu_queue_wakelist(). 2931 */ 2932 p->state = TASK_WAKING; 2933 2934 /* 2935 * If the owning (remote) CPU is still in the middle of schedule() with 2936 * this task as prev, considering queueing p on the remote CPUs wake_list 2937 * which potentially sends an IPI instead of spinning on p->on_cpu to 2938 * let the waker make forward progress. This is safe because IRQs are 2939 * disabled and the IPI will deliver after on_cpu is cleared. 2940 * 2941 * Ensure we load task_cpu(p) after p->on_cpu: 2942 * 2943 * set_task_cpu(p, cpu); 2944 * STORE p->cpu = @cpu 2945 * __schedule() (switch to task 'p') 2946 * LOCK rq->lock 2947 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 2948 * STORE p->on_cpu = 1 LOAD p->cpu 2949 * 2950 * to ensure we observe the correct CPU on which the task is currently 2951 * scheduling. 2952 */ 2953 if (smp_load_acquire(&p->on_cpu) && 2954 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 2955 goto unlock; 2956 2957 /* 2958 * If the owning (remote) CPU is still in the middle of schedule() with 2959 * this task as prev, wait until its done referencing the task. 2960 * 2961 * Pairs with the smp_store_release() in finish_task(). 2962 * 2963 * This ensures that tasks getting woken will be fully ordered against 2964 * their previous state and preserve Program Order. 2965 */ 2966 smp_cond_load_acquire(&p->on_cpu, !VAL); 2967 2968 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2969 if (task_cpu(p) != cpu) { 2970 wake_flags |= WF_MIGRATED; 2971 psi_ttwu_dequeue(p); 2972 set_task_cpu(p, cpu); 2973 } 2974 #else 2975 cpu = task_cpu(p); 2976 #endif /* CONFIG_SMP */ 2977 2978 ttwu_queue(p, cpu, wake_flags); 2979 unlock: 2980 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2981 out: 2982 if (success) 2983 ttwu_stat(p, task_cpu(p), wake_flags); 2984 preempt_enable(); 2985 2986 return success; 2987 } 2988 2989 /** 2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 2991 * @p: Process for which the function is to be invoked. 2992 * @func: Function to invoke. 2993 * @arg: Argument to function. 2994 * 2995 * If the specified task can be quickly locked into a definite state 2996 * (either sleeping or on a given runqueue), arrange to keep it in that 2997 * state while invoking @func(@arg). This function can use ->on_rq and 2998 * task_curr() to work out what the state is, if required. Given that 2999 * @func can be invoked with a runqueue lock held, it had better be quite 3000 * lightweight. 3001 * 3002 * Returns: 3003 * @false if the task slipped out from under the locks. 3004 * @true if the task was locked onto a runqueue or is sleeping. 3005 * However, @func can override this by returning @false. 3006 */ 3007 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3008 { 3009 bool ret = false; 3010 struct rq_flags rf; 3011 struct rq *rq; 3012 3013 lockdep_assert_irqs_enabled(); 3014 raw_spin_lock_irq(&p->pi_lock); 3015 if (p->on_rq) { 3016 rq = __task_rq_lock(p, &rf); 3017 if (task_rq(p) == rq) 3018 ret = func(p, arg); 3019 rq_unlock(rq, &rf); 3020 } else { 3021 switch (p->state) { 3022 case TASK_RUNNING: 3023 case TASK_WAKING: 3024 break; 3025 default: 3026 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3027 if (!p->on_rq) 3028 ret = func(p, arg); 3029 } 3030 } 3031 raw_spin_unlock_irq(&p->pi_lock); 3032 return ret; 3033 } 3034 3035 /** 3036 * wake_up_process - Wake up a specific process 3037 * @p: The process to be woken up. 3038 * 3039 * Attempt to wake up the nominated process and move it to the set of runnable 3040 * processes. 3041 * 3042 * Return: 1 if the process was woken up, 0 if it was already running. 3043 * 3044 * This function executes a full memory barrier before accessing the task state. 3045 */ 3046 int wake_up_process(struct task_struct *p) 3047 { 3048 return try_to_wake_up(p, TASK_NORMAL, 0); 3049 } 3050 EXPORT_SYMBOL(wake_up_process); 3051 3052 int wake_up_state(struct task_struct *p, unsigned int state) 3053 { 3054 return try_to_wake_up(p, state, 0); 3055 } 3056 3057 /* 3058 * Perform scheduler related setup for a newly forked process p. 3059 * p is forked by current. 3060 * 3061 * __sched_fork() is basic setup used by init_idle() too: 3062 */ 3063 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3064 { 3065 p->on_rq = 0; 3066 3067 p->se.on_rq = 0; 3068 p->se.exec_start = 0; 3069 p->se.sum_exec_runtime = 0; 3070 p->se.prev_sum_exec_runtime = 0; 3071 p->se.nr_migrations = 0; 3072 p->se.vruntime = 0; 3073 INIT_LIST_HEAD(&p->se.group_node); 3074 3075 #ifdef CONFIG_FAIR_GROUP_SCHED 3076 p->se.cfs_rq = NULL; 3077 #endif 3078 3079 #ifdef CONFIG_SCHEDSTATS 3080 /* Even if schedstat is disabled, there should not be garbage */ 3081 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3082 #endif 3083 3084 RB_CLEAR_NODE(&p->dl.rb_node); 3085 init_dl_task_timer(&p->dl); 3086 init_dl_inactive_task_timer(&p->dl); 3087 __dl_clear_params(p); 3088 3089 INIT_LIST_HEAD(&p->rt.run_list); 3090 p->rt.timeout = 0; 3091 p->rt.time_slice = sched_rr_timeslice; 3092 p->rt.on_rq = 0; 3093 p->rt.on_list = 0; 3094 3095 #ifdef CONFIG_PREEMPT_NOTIFIERS 3096 INIT_HLIST_HEAD(&p->preempt_notifiers); 3097 #endif 3098 3099 #ifdef CONFIG_COMPACTION 3100 p->capture_control = NULL; 3101 #endif 3102 init_numa_balancing(clone_flags, p); 3103 #ifdef CONFIG_SMP 3104 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3105 #endif 3106 } 3107 3108 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3109 3110 #ifdef CONFIG_NUMA_BALANCING 3111 3112 void set_numabalancing_state(bool enabled) 3113 { 3114 if (enabled) 3115 static_branch_enable(&sched_numa_balancing); 3116 else 3117 static_branch_disable(&sched_numa_balancing); 3118 } 3119 3120 #ifdef CONFIG_PROC_SYSCTL 3121 int sysctl_numa_balancing(struct ctl_table *table, int write, 3122 void *buffer, size_t *lenp, loff_t *ppos) 3123 { 3124 struct ctl_table t; 3125 int err; 3126 int state = static_branch_likely(&sched_numa_balancing); 3127 3128 if (write && !capable(CAP_SYS_ADMIN)) 3129 return -EPERM; 3130 3131 t = *table; 3132 t.data = &state; 3133 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3134 if (err < 0) 3135 return err; 3136 if (write) 3137 set_numabalancing_state(state); 3138 return err; 3139 } 3140 #endif 3141 #endif 3142 3143 #ifdef CONFIG_SCHEDSTATS 3144 3145 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 3146 static bool __initdata __sched_schedstats = false; 3147 3148 static void set_schedstats(bool enabled) 3149 { 3150 if (enabled) 3151 static_branch_enable(&sched_schedstats); 3152 else 3153 static_branch_disable(&sched_schedstats); 3154 } 3155 3156 void force_schedstat_enabled(void) 3157 { 3158 if (!schedstat_enabled()) { 3159 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 3160 static_branch_enable(&sched_schedstats); 3161 } 3162 } 3163 3164 static int __init setup_schedstats(char *str) 3165 { 3166 int ret = 0; 3167 if (!str) 3168 goto out; 3169 3170 /* 3171 * This code is called before jump labels have been set up, so we can't 3172 * change the static branch directly just yet. Instead set a temporary 3173 * variable so init_schedstats() can do it later. 3174 */ 3175 if (!strcmp(str, "enable")) { 3176 __sched_schedstats = true; 3177 ret = 1; 3178 } else if (!strcmp(str, "disable")) { 3179 __sched_schedstats = false; 3180 ret = 1; 3181 } 3182 out: 3183 if (!ret) 3184 pr_warn("Unable to parse schedstats=\n"); 3185 3186 return ret; 3187 } 3188 __setup("schedstats=", setup_schedstats); 3189 3190 static void __init init_schedstats(void) 3191 { 3192 set_schedstats(__sched_schedstats); 3193 } 3194 3195 #ifdef CONFIG_PROC_SYSCTL 3196 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 3197 size_t *lenp, loff_t *ppos) 3198 { 3199 struct ctl_table t; 3200 int err; 3201 int state = static_branch_likely(&sched_schedstats); 3202 3203 if (write && !capable(CAP_SYS_ADMIN)) 3204 return -EPERM; 3205 3206 t = *table; 3207 t.data = &state; 3208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3209 if (err < 0) 3210 return err; 3211 if (write) 3212 set_schedstats(state); 3213 return err; 3214 } 3215 #endif /* CONFIG_PROC_SYSCTL */ 3216 #else /* !CONFIG_SCHEDSTATS */ 3217 static inline void init_schedstats(void) {} 3218 #endif /* CONFIG_SCHEDSTATS */ 3219 3220 /* 3221 * fork()/clone()-time setup: 3222 */ 3223 int sched_fork(unsigned long clone_flags, struct task_struct *p) 3224 { 3225 unsigned long flags; 3226 3227 __sched_fork(clone_flags, p); 3228 /* 3229 * We mark the process as NEW here. This guarantees that 3230 * nobody will actually run it, and a signal or other external 3231 * event cannot wake it up and insert it on the runqueue either. 3232 */ 3233 p->state = TASK_NEW; 3234 3235 /* 3236 * Make sure we do not leak PI boosting priority to the child. 3237 */ 3238 p->prio = current->normal_prio; 3239 3240 uclamp_fork(p); 3241 3242 /* 3243 * Revert to default priority/policy on fork if requested. 3244 */ 3245 if (unlikely(p->sched_reset_on_fork)) { 3246 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3247 p->policy = SCHED_NORMAL; 3248 p->static_prio = NICE_TO_PRIO(0); 3249 p->rt_priority = 0; 3250 } else if (PRIO_TO_NICE(p->static_prio) < 0) 3251 p->static_prio = NICE_TO_PRIO(0); 3252 3253 p->prio = p->normal_prio = __normal_prio(p); 3254 set_load_weight(p, false); 3255 3256 /* 3257 * We don't need the reset flag anymore after the fork. It has 3258 * fulfilled its duty: 3259 */ 3260 p->sched_reset_on_fork = 0; 3261 } 3262 3263 if (dl_prio(p->prio)) 3264 return -EAGAIN; 3265 else if (rt_prio(p->prio)) 3266 p->sched_class = &rt_sched_class; 3267 else 3268 p->sched_class = &fair_sched_class; 3269 3270 init_entity_runnable_average(&p->se); 3271 3272 /* 3273 * The child is not yet in the pid-hash so no cgroup attach races, 3274 * and the cgroup is pinned to this child due to cgroup_fork() 3275 * is ran before sched_fork(). 3276 * 3277 * Silence PROVE_RCU. 3278 */ 3279 raw_spin_lock_irqsave(&p->pi_lock, flags); 3280 rseq_migrate(p); 3281 /* 3282 * We're setting the CPU for the first time, we don't migrate, 3283 * so use __set_task_cpu(). 3284 */ 3285 __set_task_cpu(p, smp_processor_id()); 3286 if (p->sched_class->task_fork) 3287 p->sched_class->task_fork(p); 3288 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3289 3290 #ifdef CONFIG_SCHED_INFO 3291 if (likely(sched_info_on())) 3292 memset(&p->sched_info, 0, sizeof(p->sched_info)); 3293 #endif 3294 #if defined(CONFIG_SMP) 3295 p->on_cpu = 0; 3296 #endif 3297 init_task_preempt_count(p); 3298 #ifdef CONFIG_SMP 3299 plist_node_init(&p->pushable_tasks, MAX_PRIO); 3300 RB_CLEAR_NODE(&p->pushable_dl_tasks); 3301 #endif 3302 return 0; 3303 } 3304 3305 void sched_post_fork(struct task_struct *p) 3306 { 3307 uclamp_post_fork(p); 3308 } 3309 3310 unsigned long to_ratio(u64 period, u64 runtime) 3311 { 3312 if (runtime == RUNTIME_INF) 3313 return BW_UNIT; 3314 3315 /* 3316 * Doing this here saves a lot of checks in all 3317 * the calling paths, and returning zero seems 3318 * safe for them anyway. 3319 */ 3320 if (period == 0) 3321 return 0; 3322 3323 return div64_u64(runtime << BW_SHIFT, period); 3324 } 3325 3326 /* 3327 * wake_up_new_task - wake up a newly created task for the first time. 3328 * 3329 * This function will do some initial scheduler statistics housekeeping 3330 * that must be done for every newly created context, then puts the task 3331 * on the runqueue and wakes it. 3332 */ 3333 void wake_up_new_task(struct task_struct *p) 3334 { 3335 struct rq_flags rf; 3336 struct rq *rq; 3337 3338 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3339 p->state = TASK_RUNNING; 3340 #ifdef CONFIG_SMP 3341 /* 3342 * Fork balancing, do it here and not earlier because: 3343 * - cpus_ptr can change in the fork path 3344 * - any previously selected CPU might disappear through hotplug 3345 * 3346 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3347 * as we're not fully set-up yet. 3348 */ 3349 p->recent_used_cpu = task_cpu(p); 3350 rseq_migrate(p); 3351 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 3352 #endif 3353 rq = __task_rq_lock(p, &rf); 3354 update_rq_clock(rq); 3355 post_init_entity_util_avg(p); 3356 3357 activate_task(rq, p, ENQUEUE_NOCLOCK); 3358 trace_sched_wakeup_new(p); 3359 check_preempt_curr(rq, p, WF_FORK); 3360 #ifdef CONFIG_SMP 3361 if (p->sched_class->task_woken) { 3362 /* 3363 * Nothing relies on rq->lock after this, so its fine to 3364 * drop it. 3365 */ 3366 rq_unpin_lock(rq, &rf); 3367 p->sched_class->task_woken(rq, p); 3368 rq_repin_lock(rq, &rf); 3369 } 3370 #endif 3371 task_rq_unlock(rq, p, &rf); 3372 } 3373 3374 #ifdef CONFIG_PREEMPT_NOTIFIERS 3375 3376 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3377 3378 void preempt_notifier_inc(void) 3379 { 3380 static_branch_inc(&preempt_notifier_key); 3381 } 3382 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3383 3384 void preempt_notifier_dec(void) 3385 { 3386 static_branch_dec(&preempt_notifier_key); 3387 } 3388 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3389 3390 /** 3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3392 * @notifier: notifier struct to register 3393 */ 3394 void preempt_notifier_register(struct preempt_notifier *notifier) 3395 { 3396 if (!static_branch_unlikely(&preempt_notifier_key)) 3397 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3398 3399 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3400 } 3401 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3402 3403 /** 3404 * preempt_notifier_unregister - no longer interested in preemption notifications 3405 * @notifier: notifier struct to unregister 3406 * 3407 * This is *not* safe to call from within a preemption notifier. 3408 */ 3409 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3410 { 3411 hlist_del(¬ifier->link); 3412 } 3413 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3414 3415 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3416 { 3417 struct preempt_notifier *notifier; 3418 3419 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3420 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3421 } 3422 3423 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3424 { 3425 if (static_branch_unlikely(&preempt_notifier_key)) 3426 __fire_sched_in_preempt_notifiers(curr); 3427 } 3428 3429 static void 3430 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3431 struct task_struct *next) 3432 { 3433 struct preempt_notifier *notifier; 3434 3435 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3436 notifier->ops->sched_out(notifier, next); 3437 } 3438 3439 static __always_inline void 3440 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3441 struct task_struct *next) 3442 { 3443 if (static_branch_unlikely(&preempt_notifier_key)) 3444 __fire_sched_out_preempt_notifiers(curr, next); 3445 } 3446 3447 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3448 3449 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3450 { 3451 } 3452 3453 static inline void 3454 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3455 struct task_struct *next) 3456 { 3457 } 3458 3459 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3460 3461 static inline void prepare_task(struct task_struct *next) 3462 { 3463 #ifdef CONFIG_SMP 3464 /* 3465 * Claim the task as running, we do this before switching to it 3466 * such that any running task will have this set. 3467 * 3468 * See the ttwu() WF_ON_CPU case and its ordering comment. 3469 */ 3470 WRITE_ONCE(next->on_cpu, 1); 3471 #endif 3472 } 3473 3474 static inline void finish_task(struct task_struct *prev) 3475 { 3476 #ifdef CONFIG_SMP 3477 /* 3478 * This must be the very last reference to @prev from this CPU. After 3479 * p->on_cpu is cleared, the task can be moved to a different CPU. We 3480 * must ensure this doesn't happen until the switch is completely 3481 * finished. 3482 * 3483 * In particular, the load of prev->state in finish_task_switch() must 3484 * happen before this. 3485 * 3486 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3487 */ 3488 smp_store_release(&prev->on_cpu, 0); 3489 #endif 3490 } 3491 3492 static inline void 3493 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3494 { 3495 /* 3496 * Since the runqueue lock will be released by the next 3497 * task (which is an invalid locking op but in the case 3498 * of the scheduler it's an obvious special-case), so we 3499 * do an early lockdep release here: 3500 */ 3501 rq_unpin_lock(rq, rf); 3502 spin_release(&rq->lock.dep_map, _THIS_IP_); 3503 #ifdef CONFIG_DEBUG_SPINLOCK 3504 /* this is a valid case when another task releases the spinlock */ 3505 rq->lock.owner = next; 3506 #endif 3507 } 3508 3509 static inline void finish_lock_switch(struct rq *rq) 3510 { 3511 /* 3512 * If we are tracking spinlock dependencies then we have to 3513 * fix up the runqueue lock - which gets 'carried over' from 3514 * prev into current: 3515 */ 3516 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3517 raw_spin_unlock_irq(&rq->lock); 3518 } 3519 3520 /* 3521 * NOP if the arch has not defined these: 3522 */ 3523 3524 #ifndef prepare_arch_switch 3525 # define prepare_arch_switch(next) do { } while (0) 3526 #endif 3527 3528 #ifndef finish_arch_post_lock_switch 3529 # define finish_arch_post_lock_switch() do { } while (0) 3530 #endif 3531 3532 /** 3533 * prepare_task_switch - prepare to switch tasks 3534 * @rq: the runqueue preparing to switch 3535 * @prev: the current task that is being switched out 3536 * @next: the task we are going to switch to. 3537 * 3538 * This is called with the rq lock held and interrupts off. It must 3539 * be paired with a subsequent finish_task_switch after the context 3540 * switch. 3541 * 3542 * prepare_task_switch sets up locking and calls architecture specific 3543 * hooks. 3544 */ 3545 static inline void 3546 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3547 struct task_struct *next) 3548 { 3549 kcov_prepare_switch(prev); 3550 sched_info_switch(rq, prev, next); 3551 perf_event_task_sched_out(prev, next); 3552 rseq_preempt(prev); 3553 fire_sched_out_preempt_notifiers(prev, next); 3554 prepare_task(next); 3555 prepare_arch_switch(next); 3556 } 3557 3558 /** 3559 * finish_task_switch - clean up after a task-switch 3560 * @prev: the thread we just switched away from. 3561 * 3562 * finish_task_switch must be called after the context switch, paired 3563 * with a prepare_task_switch call before the context switch. 3564 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3565 * and do any other architecture-specific cleanup actions. 3566 * 3567 * Note that we may have delayed dropping an mm in context_switch(). If 3568 * so, we finish that here outside of the runqueue lock. (Doing it 3569 * with the lock held can cause deadlocks; see schedule() for 3570 * details.) 3571 * 3572 * The context switch have flipped the stack from under us and restored the 3573 * local variables which were saved when this task called schedule() in the 3574 * past. prev == current is still correct but we need to recalculate this_rq 3575 * because prev may have moved to another CPU. 3576 */ 3577 static struct rq *finish_task_switch(struct task_struct *prev) 3578 __releases(rq->lock) 3579 { 3580 struct rq *rq = this_rq(); 3581 struct mm_struct *mm = rq->prev_mm; 3582 long prev_state; 3583 3584 /* 3585 * The previous task will have left us with a preempt_count of 2 3586 * because it left us after: 3587 * 3588 * schedule() 3589 * preempt_disable(); // 1 3590 * __schedule() 3591 * raw_spin_lock_irq(&rq->lock) // 2 3592 * 3593 * Also, see FORK_PREEMPT_COUNT. 3594 */ 3595 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3596 "corrupted preempt_count: %s/%d/0x%x\n", 3597 current->comm, current->pid, preempt_count())) 3598 preempt_count_set(FORK_PREEMPT_COUNT); 3599 3600 rq->prev_mm = NULL; 3601 3602 /* 3603 * A task struct has one reference for the use as "current". 3604 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3605 * schedule one last time. The schedule call will never return, and 3606 * the scheduled task must drop that reference. 3607 * 3608 * We must observe prev->state before clearing prev->on_cpu (in 3609 * finish_task), otherwise a concurrent wakeup can get prev 3610 * running on another CPU and we could rave with its RUNNING -> DEAD 3611 * transition, resulting in a double drop. 3612 */ 3613 prev_state = prev->state; 3614 vtime_task_switch(prev); 3615 perf_event_task_sched_in(prev, current); 3616 finish_task(prev); 3617 finish_lock_switch(rq); 3618 finish_arch_post_lock_switch(); 3619 kcov_finish_switch(current); 3620 3621 fire_sched_in_preempt_notifiers(current); 3622 /* 3623 * When switching through a kernel thread, the loop in 3624 * membarrier_{private,global}_expedited() may have observed that 3625 * kernel thread and not issued an IPI. It is therefore possible to 3626 * schedule between user->kernel->user threads without passing though 3627 * switch_mm(). Membarrier requires a barrier after storing to 3628 * rq->curr, before returning to userspace, so provide them here: 3629 * 3630 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3631 * provided by mmdrop(), 3632 * - a sync_core for SYNC_CORE. 3633 */ 3634 if (mm) { 3635 membarrier_mm_sync_core_before_usermode(mm); 3636 mmdrop(mm); 3637 } 3638 if (unlikely(prev_state == TASK_DEAD)) { 3639 if (prev->sched_class->task_dead) 3640 prev->sched_class->task_dead(prev); 3641 3642 /* 3643 * Remove function-return probe instances associated with this 3644 * task and put them back on the free list. 3645 */ 3646 kprobe_flush_task(prev); 3647 3648 /* Task is done with its stack. */ 3649 put_task_stack(prev); 3650 3651 put_task_struct_rcu_user(prev); 3652 } 3653 3654 tick_nohz_task_switch(); 3655 return rq; 3656 } 3657 3658 #ifdef CONFIG_SMP 3659 3660 /* rq->lock is NOT held, but preemption is disabled */ 3661 static void __balance_callback(struct rq *rq) 3662 { 3663 struct callback_head *head, *next; 3664 void (*func)(struct rq *rq); 3665 unsigned long flags; 3666 3667 raw_spin_lock_irqsave(&rq->lock, flags); 3668 head = rq->balance_callback; 3669 rq->balance_callback = NULL; 3670 while (head) { 3671 func = (void (*)(struct rq *))head->func; 3672 next = head->next; 3673 head->next = NULL; 3674 head = next; 3675 3676 func(rq); 3677 } 3678 raw_spin_unlock_irqrestore(&rq->lock, flags); 3679 } 3680 3681 static inline void balance_callback(struct rq *rq) 3682 { 3683 if (unlikely(rq->balance_callback)) 3684 __balance_callback(rq); 3685 } 3686 3687 #else 3688 3689 static inline void balance_callback(struct rq *rq) 3690 { 3691 } 3692 3693 #endif 3694 3695 /** 3696 * schedule_tail - first thing a freshly forked thread must call. 3697 * @prev: the thread we just switched away from. 3698 */ 3699 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3700 __releases(rq->lock) 3701 { 3702 struct rq *rq; 3703 3704 /* 3705 * New tasks start with FORK_PREEMPT_COUNT, see there and 3706 * finish_task_switch() for details. 3707 * 3708 * finish_task_switch() will drop rq->lock() and lower preempt_count 3709 * and the preempt_enable() will end up enabling preemption (on 3710 * PREEMPT_COUNT kernels). 3711 */ 3712 3713 rq = finish_task_switch(prev); 3714 balance_callback(rq); 3715 preempt_enable(); 3716 3717 if (current->set_child_tid) 3718 put_user(task_pid_vnr(current), current->set_child_tid); 3719 3720 calculate_sigpending(); 3721 } 3722 3723 /* 3724 * context_switch - switch to the new MM and the new thread's register state. 3725 */ 3726 static __always_inline struct rq * 3727 context_switch(struct rq *rq, struct task_struct *prev, 3728 struct task_struct *next, struct rq_flags *rf) 3729 { 3730 prepare_task_switch(rq, prev, next); 3731 3732 /* 3733 * For paravirt, this is coupled with an exit in switch_to to 3734 * combine the page table reload and the switch backend into 3735 * one hypercall. 3736 */ 3737 arch_start_context_switch(prev); 3738 3739 /* 3740 * kernel -> kernel lazy + transfer active 3741 * user -> kernel lazy + mmgrab() active 3742 * 3743 * kernel -> user switch + mmdrop() active 3744 * user -> user switch 3745 */ 3746 if (!next->mm) { // to kernel 3747 enter_lazy_tlb(prev->active_mm, next); 3748 3749 next->active_mm = prev->active_mm; 3750 if (prev->mm) // from user 3751 mmgrab(prev->active_mm); 3752 else 3753 prev->active_mm = NULL; 3754 } else { // to user 3755 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3756 /* 3757 * sys_membarrier() requires an smp_mb() between setting 3758 * rq->curr / membarrier_switch_mm() and returning to userspace. 3759 * 3760 * The below provides this either through switch_mm(), or in 3761 * case 'prev->active_mm == next->mm' through 3762 * finish_task_switch()'s mmdrop(). 3763 */ 3764 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3765 3766 if (!prev->mm) { // from kernel 3767 /* will mmdrop() in finish_task_switch(). */ 3768 rq->prev_mm = prev->active_mm; 3769 prev->active_mm = NULL; 3770 } 3771 } 3772 3773 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3774 3775 prepare_lock_switch(rq, next, rf); 3776 3777 /* Here we just switch the register state and the stack. */ 3778 switch_to(prev, next, prev); 3779 barrier(); 3780 3781 return finish_task_switch(prev); 3782 } 3783 3784 /* 3785 * nr_running and nr_context_switches: 3786 * 3787 * externally visible scheduler statistics: current number of runnable 3788 * threads, total number of context switches performed since bootup. 3789 */ 3790 unsigned long nr_running(void) 3791 { 3792 unsigned long i, sum = 0; 3793 3794 for_each_online_cpu(i) 3795 sum += cpu_rq(i)->nr_running; 3796 3797 return sum; 3798 } 3799 3800 /* 3801 * Check if only the current task is running on the CPU. 3802 * 3803 * Caution: this function does not check that the caller has disabled 3804 * preemption, thus the result might have a time-of-check-to-time-of-use 3805 * race. The caller is responsible to use it correctly, for example: 3806 * 3807 * - from a non-preemptible section (of course) 3808 * 3809 * - from a thread that is bound to a single CPU 3810 * 3811 * - in a loop with very short iterations (e.g. a polling loop) 3812 */ 3813 bool single_task_running(void) 3814 { 3815 return raw_rq()->nr_running == 1; 3816 } 3817 EXPORT_SYMBOL(single_task_running); 3818 3819 unsigned long long nr_context_switches(void) 3820 { 3821 int i; 3822 unsigned long long sum = 0; 3823 3824 for_each_possible_cpu(i) 3825 sum += cpu_rq(i)->nr_switches; 3826 3827 return sum; 3828 } 3829 3830 /* 3831 * Consumers of these two interfaces, like for example the cpuidle menu 3832 * governor, are using nonsensical data. Preferring shallow idle state selection 3833 * for a CPU that has IO-wait which might not even end up running the task when 3834 * it does become runnable. 3835 */ 3836 3837 unsigned long nr_iowait_cpu(int cpu) 3838 { 3839 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3840 } 3841 3842 /* 3843 * IO-wait accounting, and how its mostly bollocks (on SMP). 3844 * 3845 * The idea behind IO-wait account is to account the idle time that we could 3846 * have spend running if it were not for IO. That is, if we were to improve the 3847 * storage performance, we'd have a proportional reduction in IO-wait time. 3848 * 3849 * This all works nicely on UP, where, when a task blocks on IO, we account 3850 * idle time as IO-wait, because if the storage were faster, it could've been 3851 * running and we'd not be idle. 3852 * 3853 * This has been extended to SMP, by doing the same for each CPU. This however 3854 * is broken. 3855 * 3856 * Imagine for instance the case where two tasks block on one CPU, only the one 3857 * CPU will have IO-wait accounted, while the other has regular idle. Even 3858 * though, if the storage were faster, both could've ran at the same time, 3859 * utilising both CPUs. 3860 * 3861 * This means, that when looking globally, the current IO-wait accounting on 3862 * SMP is a lower bound, by reason of under accounting. 3863 * 3864 * Worse, since the numbers are provided per CPU, they are sometimes 3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3866 * associated with any one particular CPU, it can wake to another CPU than it 3867 * blocked on. This means the per CPU IO-wait number is meaningless. 3868 * 3869 * Task CPU affinities can make all that even more 'interesting'. 3870 */ 3871 3872 unsigned long nr_iowait(void) 3873 { 3874 unsigned long i, sum = 0; 3875 3876 for_each_possible_cpu(i) 3877 sum += nr_iowait_cpu(i); 3878 3879 return sum; 3880 } 3881 3882 #ifdef CONFIG_SMP 3883 3884 /* 3885 * sched_exec - execve() is a valuable balancing opportunity, because at 3886 * this point the task has the smallest effective memory and cache footprint. 3887 */ 3888 void sched_exec(void) 3889 { 3890 struct task_struct *p = current; 3891 unsigned long flags; 3892 int dest_cpu; 3893 3894 raw_spin_lock_irqsave(&p->pi_lock, flags); 3895 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3896 if (dest_cpu == smp_processor_id()) 3897 goto unlock; 3898 3899 if (likely(cpu_active(dest_cpu))) { 3900 struct migration_arg arg = { p, dest_cpu }; 3901 3902 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3903 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3904 return; 3905 } 3906 unlock: 3907 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3908 } 3909 3910 #endif 3911 3912 DEFINE_PER_CPU(struct kernel_stat, kstat); 3913 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3914 3915 EXPORT_PER_CPU_SYMBOL(kstat); 3916 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3917 3918 /* 3919 * The function fair_sched_class.update_curr accesses the struct curr 3920 * and its field curr->exec_start; when called from task_sched_runtime(), 3921 * we observe a high rate of cache misses in practice. 3922 * Prefetching this data results in improved performance. 3923 */ 3924 static inline void prefetch_curr_exec_start(struct task_struct *p) 3925 { 3926 #ifdef CONFIG_FAIR_GROUP_SCHED 3927 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3928 #else 3929 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3930 #endif 3931 prefetch(curr); 3932 prefetch(&curr->exec_start); 3933 } 3934 3935 /* 3936 * Return accounted runtime for the task. 3937 * In case the task is currently running, return the runtime plus current's 3938 * pending runtime that have not been accounted yet. 3939 */ 3940 unsigned long long task_sched_runtime(struct task_struct *p) 3941 { 3942 struct rq_flags rf; 3943 struct rq *rq; 3944 u64 ns; 3945 3946 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3947 /* 3948 * 64-bit doesn't need locks to atomically read a 64-bit value. 3949 * So we have a optimization chance when the task's delta_exec is 0. 3950 * Reading ->on_cpu is racy, but this is ok. 3951 * 3952 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3953 * If we race with it entering CPU, unaccounted time is 0. This is 3954 * indistinguishable from the read occurring a few cycles earlier. 3955 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3956 * been accounted, so we're correct here as well. 3957 */ 3958 if (!p->on_cpu || !task_on_rq_queued(p)) 3959 return p->se.sum_exec_runtime; 3960 #endif 3961 3962 rq = task_rq_lock(p, &rf); 3963 /* 3964 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3965 * project cycles that may never be accounted to this 3966 * thread, breaking clock_gettime(). 3967 */ 3968 if (task_current(rq, p) && task_on_rq_queued(p)) { 3969 prefetch_curr_exec_start(p); 3970 update_rq_clock(rq); 3971 p->sched_class->update_curr(rq); 3972 } 3973 ns = p->se.sum_exec_runtime; 3974 task_rq_unlock(rq, p, &rf); 3975 3976 return ns; 3977 } 3978 3979 /* 3980 * This function gets called by the timer code, with HZ frequency. 3981 * We call it with interrupts disabled. 3982 */ 3983 void scheduler_tick(void) 3984 { 3985 int cpu = smp_processor_id(); 3986 struct rq *rq = cpu_rq(cpu); 3987 struct task_struct *curr = rq->curr; 3988 struct rq_flags rf; 3989 unsigned long thermal_pressure; 3990 3991 arch_scale_freq_tick(); 3992 sched_clock_tick(); 3993 3994 rq_lock(rq, &rf); 3995 3996 update_rq_clock(rq); 3997 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 3998 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 3999 curr->sched_class->task_tick(rq, curr, 0); 4000 calc_global_load_tick(rq); 4001 psi_task_tick(rq); 4002 4003 rq_unlock(rq, &rf); 4004 4005 perf_event_task_tick(); 4006 4007 #ifdef CONFIG_SMP 4008 rq->idle_balance = idle_cpu(cpu); 4009 trigger_load_balance(rq); 4010 #endif 4011 } 4012 4013 #ifdef CONFIG_NO_HZ_FULL 4014 4015 struct tick_work { 4016 int cpu; 4017 atomic_t state; 4018 struct delayed_work work; 4019 }; 4020 /* Values for ->state, see diagram below. */ 4021 #define TICK_SCHED_REMOTE_OFFLINE 0 4022 #define TICK_SCHED_REMOTE_OFFLINING 1 4023 #define TICK_SCHED_REMOTE_RUNNING 2 4024 4025 /* 4026 * State diagram for ->state: 4027 * 4028 * 4029 * TICK_SCHED_REMOTE_OFFLINE 4030 * | ^ 4031 * | | 4032 * | | sched_tick_remote() 4033 * | | 4034 * | | 4035 * +--TICK_SCHED_REMOTE_OFFLINING 4036 * | ^ 4037 * | | 4038 * sched_tick_start() | | sched_tick_stop() 4039 * | | 4040 * V | 4041 * TICK_SCHED_REMOTE_RUNNING 4042 * 4043 * 4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 4045 * and sched_tick_start() are happy to leave the state in RUNNING. 4046 */ 4047 4048 static struct tick_work __percpu *tick_work_cpu; 4049 4050 static void sched_tick_remote(struct work_struct *work) 4051 { 4052 struct delayed_work *dwork = to_delayed_work(work); 4053 struct tick_work *twork = container_of(dwork, struct tick_work, work); 4054 int cpu = twork->cpu; 4055 struct rq *rq = cpu_rq(cpu); 4056 struct task_struct *curr; 4057 struct rq_flags rf; 4058 u64 delta; 4059 int os; 4060 4061 /* 4062 * Handle the tick only if it appears the remote CPU is running in full 4063 * dynticks mode. The check is racy by nature, but missing a tick or 4064 * having one too much is no big deal because the scheduler tick updates 4065 * statistics and checks timeslices in a time-independent way, regardless 4066 * of when exactly it is running. 4067 */ 4068 if (!tick_nohz_tick_stopped_cpu(cpu)) 4069 goto out_requeue; 4070 4071 rq_lock_irq(rq, &rf); 4072 curr = rq->curr; 4073 if (cpu_is_offline(cpu)) 4074 goto out_unlock; 4075 4076 update_rq_clock(rq); 4077 4078 if (!is_idle_task(curr)) { 4079 /* 4080 * Make sure the next tick runs within a reasonable 4081 * amount of time. 4082 */ 4083 delta = rq_clock_task(rq) - curr->se.exec_start; 4084 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 4085 } 4086 curr->sched_class->task_tick(rq, curr, 0); 4087 4088 calc_load_nohz_remote(rq); 4089 out_unlock: 4090 rq_unlock_irq(rq, &rf); 4091 out_requeue: 4092 4093 /* 4094 * Run the remote tick once per second (1Hz). This arbitrary 4095 * frequency is large enough to avoid overload but short enough 4096 * to keep scheduler internal stats reasonably up to date. But 4097 * first update state to reflect hotplug activity if required. 4098 */ 4099 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 4100 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 4101 if (os == TICK_SCHED_REMOTE_RUNNING) 4102 queue_delayed_work(system_unbound_wq, dwork, HZ); 4103 } 4104 4105 static void sched_tick_start(int cpu) 4106 { 4107 int os; 4108 struct tick_work *twork; 4109 4110 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4111 return; 4112 4113 WARN_ON_ONCE(!tick_work_cpu); 4114 4115 twork = per_cpu_ptr(tick_work_cpu, cpu); 4116 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 4117 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 4118 if (os == TICK_SCHED_REMOTE_OFFLINE) { 4119 twork->cpu = cpu; 4120 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 4121 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 4122 } 4123 } 4124 4125 #ifdef CONFIG_HOTPLUG_CPU 4126 static void sched_tick_stop(int cpu) 4127 { 4128 struct tick_work *twork; 4129 int os; 4130 4131 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4132 return; 4133 4134 WARN_ON_ONCE(!tick_work_cpu); 4135 4136 twork = per_cpu_ptr(tick_work_cpu, cpu); 4137 /* There cannot be competing actions, but don't rely on stop-machine. */ 4138 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 4139 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 4140 /* Don't cancel, as this would mess up the state machine. */ 4141 } 4142 #endif /* CONFIG_HOTPLUG_CPU */ 4143 4144 int __init sched_tick_offload_init(void) 4145 { 4146 tick_work_cpu = alloc_percpu(struct tick_work); 4147 BUG_ON(!tick_work_cpu); 4148 return 0; 4149 } 4150 4151 #else /* !CONFIG_NO_HZ_FULL */ 4152 static inline void sched_tick_start(int cpu) { } 4153 static inline void sched_tick_stop(int cpu) { } 4154 #endif 4155 4156 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 4157 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 4158 /* 4159 * If the value passed in is equal to the current preempt count 4160 * then we just disabled preemption. Start timing the latency. 4161 */ 4162 static inline void preempt_latency_start(int val) 4163 { 4164 if (preempt_count() == val) { 4165 unsigned long ip = get_lock_parent_ip(); 4166 #ifdef CONFIG_DEBUG_PREEMPT 4167 current->preempt_disable_ip = ip; 4168 #endif 4169 trace_preempt_off(CALLER_ADDR0, ip); 4170 } 4171 } 4172 4173 void preempt_count_add(int val) 4174 { 4175 #ifdef CONFIG_DEBUG_PREEMPT 4176 /* 4177 * Underflow? 4178 */ 4179 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 4180 return; 4181 #endif 4182 __preempt_count_add(val); 4183 #ifdef CONFIG_DEBUG_PREEMPT 4184 /* 4185 * Spinlock count overflowing soon? 4186 */ 4187 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 4188 PREEMPT_MASK - 10); 4189 #endif 4190 preempt_latency_start(val); 4191 } 4192 EXPORT_SYMBOL(preempt_count_add); 4193 NOKPROBE_SYMBOL(preempt_count_add); 4194 4195 /* 4196 * If the value passed in equals to the current preempt count 4197 * then we just enabled preemption. Stop timing the latency. 4198 */ 4199 static inline void preempt_latency_stop(int val) 4200 { 4201 if (preempt_count() == val) 4202 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 4203 } 4204 4205 void preempt_count_sub(int val) 4206 { 4207 #ifdef CONFIG_DEBUG_PREEMPT 4208 /* 4209 * Underflow? 4210 */ 4211 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 4212 return; 4213 /* 4214 * Is the spinlock portion underflowing? 4215 */ 4216 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 4217 !(preempt_count() & PREEMPT_MASK))) 4218 return; 4219 #endif 4220 4221 preempt_latency_stop(val); 4222 __preempt_count_sub(val); 4223 } 4224 EXPORT_SYMBOL(preempt_count_sub); 4225 NOKPROBE_SYMBOL(preempt_count_sub); 4226 4227 #else 4228 static inline void preempt_latency_start(int val) { } 4229 static inline void preempt_latency_stop(int val) { } 4230 #endif 4231 4232 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 4233 { 4234 #ifdef CONFIG_DEBUG_PREEMPT 4235 return p->preempt_disable_ip; 4236 #else 4237 return 0; 4238 #endif 4239 } 4240 4241 /* 4242 * Print scheduling while atomic bug: 4243 */ 4244 static noinline void __schedule_bug(struct task_struct *prev) 4245 { 4246 /* Save this before calling printk(), since that will clobber it */ 4247 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 4248 4249 if (oops_in_progress) 4250 return; 4251 4252 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 4253 prev->comm, prev->pid, preempt_count()); 4254 4255 debug_show_held_locks(prev); 4256 print_modules(); 4257 if (irqs_disabled()) 4258 print_irqtrace_events(prev); 4259 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 4260 && in_atomic_preempt_off()) { 4261 pr_err("Preemption disabled at:"); 4262 print_ip_sym(KERN_ERR, preempt_disable_ip); 4263 } 4264 if (panic_on_warn) 4265 panic("scheduling while atomic\n"); 4266 4267 dump_stack(); 4268 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4269 } 4270 4271 /* 4272 * Various schedule()-time debugging checks and statistics: 4273 */ 4274 static inline void schedule_debug(struct task_struct *prev, bool preempt) 4275 { 4276 #ifdef CONFIG_SCHED_STACK_END_CHECK 4277 if (task_stack_end_corrupted(prev)) 4278 panic("corrupted stack end detected inside scheduler\n"); 4279 4280 if (task_scs_end_corrupted(prev)) 4281 panic("corrupted shadow stack detected inside scheduler\n"); 4282 #endif 4283 4284 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 4285 if (!preempt && prev->state && prev->non_block_count) { 4286 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 4287 prev->comm, prev->pid, prev->non_block_count); 4288 dump_stack(); 4289 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4290 } 4291 #endif 4292 4293 if (unlikely(in_atomic_preempt_off())) { 4294 __schedule_bug(prev); 4295 preempt_count_set(PREEMPT_DISABLED); 4296 } 4297 rcu_sleep_check(); 4298 4299 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 4300 4301 schedstat_inc(this_rq()->sched_count); 4302 } 4303 4304 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 4305 struct rq_flags *rf) 4306 { 4307 #ifdef CONFIG_SMP 4308 const struct sched_class *class; 4309 /* 4310 * We must do the balancing pass before put_prev_task(), such 4311 * that when we release the rq->lock the task is in the same 4312 * state as before we took rq->lock. 4313 * 4314 * We can terminate the balance pass as soon as we know there is 4315 * a runnable task of @class priority or higher. 4316 */ 4317 for_class_range(class, prev->sched_class, &idle_sched_class) { 4318 if (class->balance(rq, prev, rf)) 4319 break; 4320 } 4321 #endif 4322 4323 put_prev_task(rq, prev); 4324 } 4325 4326 /* 4327 * Pick up the highest-prio task: 4328 */ 4329 static inline struct task_struct * 4330 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4331 { 4332 const struct sched_class *class; 4333 struct task_struct *p; 4334 4335 /* 4336 * Optimization: we know that if all tasks are in the fair class we can 4337 * call that function directly, but only if the @prev task wasn't of a 4338 * higher scheduling class, because otherwise those loose the 4339 * opportunity to pull in more work from other CPUs. 4340 */ 4341 if (likely(prev->sched_class <= &fair_sched_class && 4342 rq->nr_running == rq->cfs.h_nr_running)) { 4343 4344 p = pick_next_task_fair(rq, prev, rf); 4345 if (unlikely(p == RETRY_TASK)) 4346 goto restart; 4347 4348 /* Assumes fair_sched_class->next == idle_sched_class */ 4349 if (!p) { 4350 put_prev_task(rq, prev); 4351 p = pick_next_task_idle(rq); 4352 } 4353 4354 return p; 4355 } 4356 4357 restart: 4358 put_prev_task_balance(rq, prev, rf); 4359 4360 for_each_class(class) { 4361 p = class->pick_next_task(rq); 4362 if (p) 4363 return p; 4364 } 4365 4366 /* The idle class should always have a runnable task: */ 4367 BUG(); 4368 } 4369 4370 /* 4371 * __schedule() is the main scheduler function. 4372 * 4373 * The main means of driving the scheduler and thus entering this function are: 4374 * 4375 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4376 * 4377 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4378 * paths. For example, see arch/x86/entry_64.S. 4379 * 4380 * To drive preemption between tasks, the scheduler sets the flag in timer 4381 * interrupt handler scheduler_tick(). 4382 * 4383 * 3. Wakeups don't really cause entry into schedule(). They add a 4384 * task to the run-queue and that's it. 4385 * 4386 * Now, if the new task added to the run-queue preempts the current 4387 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4388 * called on the nearest possible occasion: 4389 * 4390 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4391 * 4392 * - in syscall or exception context, at the next outmost 4393 * preempt_enable(). (this might be as soon as the wake_up()'s 4394 * spin_unlock()!) 4395 * 4396 * - in IRQ context, return from interrupt-handler to 4397 * preemptible context 4398 * 4399 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4400 * then at the next: 4401 * 4402 * - cond_resched() call 4403 * - explicit schedule() call 4404 * - return from syscall or exception to user-space 4405 * - return from interrupt-handler to user-space 4406 * 4407 * WARNING: must be called with preemption disabled! 4408 */ 4409 static void __sched notrace __schedule(bool preempt) 4410 { 4411 struct task_struct *prev, *next; 4412 unsigned long *switch_count; 4413 unsigned long prev_state; 4414 struct rq_flags rf; 4415 struct rq *rq; 4416 int cpu; 4417 4418 cpu = smp_processor_id(); 4419 rq = cpu_rq(cpu); 4420 prev = rq->curr; 4421 4422 schedule_debug(prev, preempt); 4423 4424 if (sched_feat(HRTICK)) 4425 hrtick_clear(rq); 4426 4427 local_irq_disable(); 4428 rcu_note_context_switch(preempt); 4429 4430 /* 4431 * Make sure that signal_pending_state()->signal_pending() below 4432 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4433 * done by the caller to avoid the race with signal_wake_up(): 4434 * 4435 * __set_current_state(@state) signal_wake_up() 4436 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 4437 * wake_up_state(p, state) 4438 * LOCK rq->lock LOCK p->pi_state 4439 * smp_mb__after_spinlock() smp_mb__after_spinlock() 4440 * if (signal_pending_state()) if (p->state & @state) 4441 * 4442 * Also, the membarrier system call requires a full memory barrier 4443 * after coming from user-space, before storing to rq->curr. 4444 */ 4445 rq_lock(rq, &rf); 4446 smp_mb__after_spinlock(); 4447 4448 /* Promote REQ to ACT */ 4449 rq->clock_update_flags <<= 1; 4450 update_rq_clock(rq); 4451 4452 switch_count = &prev->nivcsw; 4453 4454 /* 4455 * We must load prev->state once (task_struct::state is volatile), such 4456 * that: 4457 * 4458 * - we form a control dependency vs deactivate_task() below. 4459 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 4460 */ 4461 prev_state = prev->state; 4462 if (!preempt && prev_state) { 4463 if (signal_pending_state(prev_state, prev)) { 4464 prev->state = TASK_RUNNING; 4465 } else { 4466 prev->sched_contributes_to_load = 4467 (prev_state & TASK_UNINTERRUPTIBLE) && 4468 !(prev_state & TASK_NOLOAD) && 4469 !(prev->flags & PF_FROZEN); 4470 4471 if (prev->sched_contributes_to_load) 4472 rq->nr_uninterruptible++; 4473 4474 /* 4475 * __schedule() ttwu() 4476 * prev_state = prev->state; if (p->on_rq && ...) 4477 * if (prev_state) goto out; 4478 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 4479 * p->state = TASK_WAKING 4480 * 4481 * Where __schedule() and ttwu() have matching control dependencies. 4482 * 4483 * After this, schedule() must not care about p->state any more. 4484 */ 4485 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4486 4487 if (prev->in_iowait) { 4488 atomic_inc(&rq->nr_iowait); 4489 delayacct_blkio_start(); 4490 } 4491 } 4492 switch_count = &prev->nvcsw; 4493 } 4494 4495 next = pick_next_task(rq, prev, &rf); 4496 clear_tsk_need_resched(prev); 4497 clear_preempt_need_resched(); 4498 4499 if (likely(prev != next)) { 4500 rq->nr_switches++; 4501 /* 4502 * RCU users of rcu_dereference(rq->curr) may not see 4503 * changes to task_struct made by pick_next_task(). 4504 */ 4505 RCU_INIT_POINTER(rq->curr, next); 4506 /* 4507 * The membarrier system call requires each architecture 4508 * to have a full memory barrier after updating 4509 * rq->curr, before returning to user-space. 4510 * 4511 * Here are the schemes providing that barrier on the 4512 * various architectures: 4513 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4514 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4515 * - finish_lock_switch() for weakly-ordered 4516 * architectures where spin_unlock is a full barrier, 4517 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4518 * is a RELEASE barrier), 4519 */ 4520 ++*switch_count; 4521 4522 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 4523 4524 trace_sched_switch(preempt, prev, next); 4525 4526 /* Also unlocks the rq: */ 4527 rq = context_switch(rq, prev, next, &rf); 4528 } else { 4529 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4530 rq_unlock_irq(rq, &rf); 4531 } 4532 4533 balance_callback(rq); 4534 } 4535 4536 void __noreturn do_task_dead(void) 4537 { 4538 /* Causes final put_task_struct in finish_task_switch(): */ 4539 set_special_state(TASK_DEAD); 4540 4541 /* Tell freezer to ignore us: */ 4542 current->flags |= PF_NOFREEZE; 4543 4544 __schedule(false); 4545 BUG(); 4546 4547 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4548 for (;;) 4549 cpu_relax(); 4550 } 4551 4552 static inline void sched_submit_work(struct task_struct *tsk) 4553 { 4554 if (!tsk->state) 4555 return; 4556 4557 /* 4558 * If a worker went to sleep, notify and ask workqueue whether 4559 * it wants to wake up a task to maintain concurrency. 4560 * As this function is called inside the schedule() context, 4561 * we disable preemption to avoid it calling schedule() again 4562 * in the possible wakeup of a kworker and because wq_worker_sleeping() 4563 * requires it. 4564 */ 4565 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4566 preempt_disable(); 4567 if (tsk->flags & PF_WQ_WORKER) 4568 wq_worker_sleeping(tsk); 4569 else 4570 io_wq_worker_sleeping(tsk); 4571 preempt_enable_no_resched(); 4572 } 4573 4574 if (tsk_is_pi_blocked(tsk)) 4575 return; 4576 4577 /* 4578 * If we are going to sleep and we have plugged IO queued, 4579 * make sure to submit it to avoid deadlocks. 4580 */ 4581 if (blk_needs_flush_plug(tsk)) 4582 blk_schedule_flush_plug(tsk); 4583 } 4584 4585 static void sched_update_worker(struct task_struct *tsk) 4586 { 4587 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4588 if (tsk->flags & PF_WQ_WORKER) 4589 wq_worker_running(tsk); 4590 else 4591 io_wq_worker_running(tsk); 4592 } 4593 } 4594 4595 asmlinkage __visible void __sched schedule(void) 4596 { 4597 struct task_struct *tsk = current; 4598 4599 sched_submit_work(tsk); 4600 do { 4601 preempt_disable(); 4602 __schedule(false); 4603 sched_preempt_enable_no_resched(); 4604 } while (need_resched()); 4605 sched_update_worker(tsk); 4606 } 4607 EXPORT_SYMBOL(schedule); 4608 4609 /* 4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4611 * state (have scheduled out non-voluntarily) by making sure that all 4612 * tasks have either left the run queue or have gone into user space. 4613 * As idle tasks do not do either, they must not ever be preempted 4614 * (schedule out non-voluntarily). 4615 * 4616 * schedule_idle() is similar to schedule_preempt_disable() except that it 4617 * never enables preemption because it does not call sched_submit_work(). 4618 */ 4619 void __sched schedule_idle(void) 4620 { 4621 /* 4622 * As this skips calling sched_submit_work(), which the idle task does 4623 * regardless because that function is a nop when the task is in a 4624 * TASK_RUNNING state, make sure this isn't used someplace that the 4625 * current task can be in any other state. Note, idle is always in the 4626 * TASK_RUNNING state. 4627 */ 4628 WARN_ON_ONCE(current->state); 4629 do { 4630 __schedule(false); 4631 } while (need_resched()); 4632 } 4633 4634 #ifdef CONFIG_CONTEXT_TRACKING 4635 asmlinkage __visible void __sched schedule_user(void) 4636 { 4637 /* 4638 * If we come here after a random call to set_need_resched(), 4639 * or we have been woken up remotely but the IPI has not yet arrived, 4640 * we haven't yet exited the RCU idle mode. Do it here manually until 4641 * we find a better solution. 4642 * 4643 * NB: There are buggy callers of this function. Ideally we 4644 * should warn if prev_state != CONTEXT_USER, but that will trigger 4645 * too frequently to make sense yet. 4646 */ 4647 enum ctx_state prev_state = exception_enter(); 4648 schedule(); 4649 exception_exit(prev_state); 4650 } 4651 #endif 4652 4653 /** 4654 * schedule_preempt_disabled - called with preemption disabled 4655 * 4656 * Returns with preemption disabled. Note: preempt_count must be 1 4657 */ 4658 void __sched schedule_preempt_disabled(void) 4659 { 4660 sched_preempt_enable_no_resched(); 4661 schedule(); 4662 preempt_disable(); 4663 } 4664 4665 static void __sched notrace preempt_schedule_common(void) 4666 { 4667 do { 4668 /* 4669 * Because the function tracer can trace preempt_count_sub() 4670 * and it also uses preempt_enable/disable_notrace(), if 4671 * NEED_RESCHED is set, the preempt_enable_notrace() called 4672 * by the function tracer will call this function again and 4673 * cause infinite recursion. 4674 * 4675 * Preemption must be disabled here before the function 4676 * tracer can trace. Break up preempt_disable() into two 4677 * calls. One to disable preemption without fear of being 4678 * traced. The other to still record the preemption latency, 4679 * which can also be traced by the function tracer. 4680 */ 4681 preempt_disable_notrace(); 4682 preempt_latency_start(1); 4683 __schedule(true); 4684 preempt_latency_stop(1); 4685 preempt_enable_no_resched_notrace(); 4686 4687 /* 4688 * Check again in case we missed a preemption opportunity 4689 * between schedule and now. 4690 */ 4691 } while (need_resched()); 4692 } 4693 4694 #ifdef CONFIG_PREEMPTION 4695 /* 4696 * This is the entry point to schedule() from in-kernel preemption 4697 * off of preempt_enable. 4698 */ 4699 asmlinkage __visible void __sched notrace preempt_schedule(void) 4700 { 4701 /* 4702 * If there is a non-zero preempt_count or interrupts are disabled, 4703 * we do not want to preempt the current task. Just return.. 4704 */ 4705 if (likely(!preemptible())) 4706 return; 4707 4708 preempt_schedule_common(); 4709 } 4710 NOKPROBE_SYMBOL(preempt_schedule); 4711 EXPORT_SYMBOL(preempt_schedule); 4712 4713 /** 4714 * preempt_schedule_notrace - preempt_schedule called by tracing 4715 * 4716 * The tracing infrastructure uses preempt_enable_notrace to prevent 4717 * recursion and tracing preempt enabling caused by the tracing 4718 * infrastructure itself. But as tracing can happen in areas coming 4719 * from userspace or just about to enter userspace, a preempt enable 4720 * can occur before user_exit() is called. This will cause the scheduler 4721 * to be called when the system is still in usermode. 4722 * 4723 * To prevent this, the preempt_enable_notrace will use this function 4724 * instead of preempt_schedule() to exit user context if needed before 4725 * calling the scheduler. 4726 */ 4727 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4728 { 4729 enum ctx_state prev_ctx; 4730 4731 if (likely(!preemptible())) 4732 return; 4733 4734 do { 4735 /* 4736 * Because the function tracer can trace preempt_count_sub() 4737 * and it also uses preempt_enable/disable_notrace(), if 4738 * NEED_RESCHED is set, the preempt_enable_notrace() called 4739 * by the function tracer will call this function again and 4740 * cause infinite recursion. 4741 * 4742 * Preemption must be disabled here before the function 4743 * tracer can trace. Break up preempt_disable() into two 4744 * calls. One to disable preemption without fear of being 4745 * traced. The other to still record the preemption latency, 4746 * which can also be traced by the function tracer. 4747 */ 4748 preempt_disable_notrace(); 4749 preempt_latency_start(1); 4750 /* 4751 * Needs preempt disabled in case user_exit() is traced 4752 * and the tracer calls preempt_enable_notrace() causing 4753 * an infinite recursion. 4754 */ 4755 prev_ctx = exception_enter(); 4756 __schedule(true); 4757 exception_exit(prev_ctx); 4758 4759 preempt_latency_stop(1); 4760 preempt_enable_no_resched_notrace(); 4761 } while (need_resched()); 4762 } 4763 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4764 4765 #endif /* CONFIG_PREEMPTION */ 4766 4767 /* 4768 * This is the entry point to schedule() from kernel preemption 4769 * off of irq context. 4770 * Note, that this is called and return with irqs disabled. This will 4771 * protect us against recursive calling from irq. 4772 */ 4773 asmlinkage __visible void __sched preempt_schedule_irq(void) 4774 { 4775 enum ctx_state prev_state; 4776 4777 /* Catch callers which need to be fixed */ 4778 BUG_ON(preempt_count() || !irqs_disabled()); 4779 4780 prev_state = exception_enter(); 4781 4782 do { 4783 preempt_disable(); 4784 local_irq_enable(); 4785 __schedule(true); 4786 local_irq_disable(); 4787 sched_preempt_enable_no_resched(); 4788 } while (need_resched()); 4789 4790 exception_exit(prev_state); 4791 } 4792 4793 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4794 void *key) 4795 { 4796 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 4797 return try_to_wake_up(curr->private, mode, wake_flags); 4798 } 4799 EXPORT_SYMBOL(default_wake_function); 4800 4801 #ifdef CONFIG_RT_MUTEXES 4802 4803 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4804 { 4805 if (pi_task) 4806 prio = min(prio, pi_task->prio); 4807 4808 return prio; 4809 } 4810 4811 static inline int rt_effective_prio(struct task_struct *p, int prio) 4812 { 4813 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4814 4815 return __rt_effective_prio(pi_task, prio); 4816 } 4817 4818 /* 4819 * rt_mutex_setprio - set the current priority of a task 4820 * @p: task to boost 4821 * @pi_task: donor task 4822 * 4823 * This function changes the 'effective' priority of a task. It does 4824 * not touch ->normal_prio like __setscheduler(). 4825 * 4826 * Used by the rt_mutex code to implement priority inheritance 4827 * logic. Call site only calls if the priority of the task changed. 4828 */ 4829 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4830 { 4831 int prio, oldprio, queued, running, queue_flag = 4832 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4833 const struct sched_class *prev_class; 4834 struct rq_flags rf; 4835 struct rq *rq; 4836 4837 /* XXX used to be waiter->prio, not waiter->task->prio */ 4838 prio = __rt_effective_prio(pi_task, p->normal_prio); 4839 4840 /* 4841 * If nothing changed; bail early. 4842 */ 4843 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4844 return; 4845 4846 rq = __task_rq_lock(p, &rf); 4847 update_rq_clock(rq); 4848 /* 4849 * Set under pi_lock && rq->lock, such that the value can be used under 4850 * either lock. 4851 * 4852 * Note that there is loads of tricky to make this pointer cache work 4853 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4854 * ensure a task is de-boosted (pi_task is set to NULL) before the 4855 * task is allowed to run again (and can exit). This ensures the pointer 4856 * points to a blocked task -- which guaratees the task is present. 4857 */ 4858 p->pi_top_task = pi_task; 4859 4860 /* 4861 * For FIFO/RR we only need to set prio, if that matches we're done. 4862 */ 4863 if (prio == p->prio && !dl_prio(prio)) 4864 goto out_unlock; 4865 4866 /* 4867 * Idle task boosting is a nono in general. There is one 4868 * exception, when PREEMPT_RT and NOHZ is active: 4869 * 4870 * The idle task calls get_next_timer_interrupt() and holds 4871 * the timer wheel base->lock on the CPU and another CPU wants 4872 * to access the timer (probably to cancel it). We can safely 4873 * ignore the boosting request, as the idle CPU runs this code 4874 * with interrupts disabled and will complete the lock 4875 * protected section without being interrupted. So there is no 4876 * real need to boost. 4877 */ 4878 if (unlikely(p == rq->idle)) { 4879 WARN_ON(p != rq->curr); 4880 WARN_ON(p->pi_blocked_on); 4881 goto out_unlock; 4882 } 4883 4884 trace_sched_pi_setprio(p, pi_task); 4885 oldprio = p->prio; 4886 4887 if (oldprio == prio) 4888 queue_flag &= ~DEQUEUE_MOVE; 4889 4890 prev_class = p->sched_class; 4891 queued = task_on_rq_queued(p); 4892 running = task_current(rq, p); 4893 if (queued) 4894 dequeue_task(rq, p, queue_flag); 4895 if (running) 4896 put_prev_task(rq, p); 4897 4898 /* 4899 * Boosting condition are: 4900 * 1. -rt task is running and holds mutex A 4901 * --> -dl task blocks on mutex A 4902 * 4903 * 2. -dl task is running and holds mutex A 4904 * --> -dl task blocks on mutex A and could preempt the 4905 * running task 4906 */ 4907 if (dl_prio(prio)) { 4908 if (!dl_prio(p->normal_prio) || 4909 (pi_task && dl_prio(pi_task->prio) && 4910 dl_entity_preempt(&pi_task->dl, &p->dl))) { 4911 p->dl.dl_boosted = 1; 4912 queue_flag |= ENQUEUE_REPLENISH; 4913 } else 4914 p->dl.dl_boosted = 0; 4915 p->sched_class = &dl_sched_class; 4916 } else if (rt_prio(prio)) { 4917 if (dl_prio(oldprio)) 4918 p->dl.dl_boosted = 0; 4919 if (oldprio < prio) 4920 queue_flag |= ENQUEUE_HEAD; 4921 p->sched_class = &rt_sched_class; 4922 } else { 4923 if (dl_prio(oldprio)) 4924 p->dl.dl_boosted = 0; 4925 if (rt_prio(oldprio)) 4926 p->rt.timeout = 0; 4927 p->sched_class = &fair_sched_class; 4928 } 4929 4930 p->prio = prio; 4931 4932 if (queued) 4933 enqueue_task(rq, p, queue_flag); 4934 if (running) 4935 set_next_task(rq, p); 4936 4937 check_class_changed(rq, p, prev_class, oldprio); 4938 out_unlock: 4939 /* Avoid rq from going away on us: */ 4940 preempt_disable(); 4941 __task_rq_unlock(rq, &rf); 4942 4943 balance_callback(rq); 4944 preempt_enable(); 4945 } 4946 #else 4947 static inline int rt_effective_prio(struct task_struct *p, int prio) 4948 { 4949 return prio; 4950 } 4951 #endif 4952 4953 void set_user_nice(struct task_struct *p, long nice) 4954 { 4955 bool queued, running; 4956 int old_prio; 4957 struct rq_flags rf; 4958 struct rq *rq; 4959 4960 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4961 return; 4962 /* 4963 * We have to be careful, if called from sys_setpriority(), 4964 * the task might be in the middle of scheduling on another CPU. 4965 */ 4966 rq = task_rq_lock(p, &rf); 4967 update_rq_clock(rq); 4968 4969 /* 4970 * The RT priorities are set via sched_setscheduler(), but we still 4971 * allow the 'normal' nice value to be set - but as expected 4972 * it wont have any effect on scheduling until the task is 4973 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4974 */ 4975 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4976 p->static_prio = NICE_TO_PRIO(nice); 4977 goto out_unlock; 4978 } 4979 queued = task_on_rq_queued(p); 4980 running = task_current(rq, p); 4981 if (queued) 4982 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4983 if (running) 4984 put_prev_task(rq, p); 4985 4986 p->static_prio = NICE_TO_PRIO(nice); 4987 set_load_weight(p, true); 4988 old_prio = p->prio; 4989 p->prio = effective_prio(p); 4990 4991 if (queued) 4992 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4993 if (running) 4994 set_next_task(rq, p); 4995 4996 /* 4997 * If the task increased its priority or is running and 4998 * lowered its priority, then reschedule its CPU: 4999 */ 5000 p->sched_class->prio_changed(rq, p, old_prio); 5001 5002 out_unlock: 5003 task_rq_unlock(rq, p, &rf); 5004 } 5005 EXPORT_SYMBOL(set_user_nice); 5006 5007 /* 5008 * can_nice - check if a task can reduce its nice value 5009 * @p: task 5010 * @nice: nice value 5011 */ 5012 int can_nice(const struct task_struct *p, const int nice) 5013 { 5014 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 5015 int nice_rlim = nice_to_rlimit(nice); 5016 5017 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 5018 capable(CAP_SYS_NICE)); 5019 } 5020 5021 #ifdef __ARCH_WANT_SYS_NICE 5022 5023 /* 5024 * sys_nice - change the priority of the current process. 5025 * @increment: priority increment 5026 * 5027 * sys_setpriority is a more generic, but much slower function that 5028 * does similar things. 5029 */ 5030 SYSCALL_DEFINE1(nice, int, increment) 5031 { 5032 long nice, retval; 5033 5034 /* 5035 * Setpriority might change our priority at the same moment. 5036 * We don't have to worry. Conceptually one call occurs first 5037 * and we have a single winner. 5038 */ 5039 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 5040 nice = task_nice(current) + increment; 5041 5042 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 5043 if (increment < 0 && !can_nice(current, nice)) 5044 return -EPERM; 5045 5046 retval = security_task_setnice(current, nice); 5047 if (retval) 5048 return retval; 5049 5050 set_user_nice(current, nice); 5051 return 0; 5052 } 5053 5054 #endif 5055 5056 /** 5057 * task_prio - return the priority value of a given task. 5058 * @p: the task in question. 5059 * 5060 * Return: The priority value as seen by users in /proc. 5061 * RT tasks are offset by -200. Normal tasks are centered 5062 * around 0, value goes from -16 to +15. 5063 */ 5064 int task_prio(const struct task_struct *p) 5065 { 5066 return p->prio - MAX_RT_PRIO; 5067 } 5068 5069 /** 5070 * idle_cpu - is a given CPU idle currently? 5071 * @cpu: the processor in question. 5072 * 5073 * Return: 1 if the CPU is currently idle. 0 otherwise. 5074 */ 5075 int idle_cpu(int cpu) 5076 { 5077 struct rq *rq = cpu_rq(cpu); 5078 5079 if (rq->curr != rq->idle) 5080 return 0; 5081 5082 if (rq->nr_running) 5083 return 0; 5084 5085 #ifdef CONFIG_SMP 5086 if (rq->ttwu_pending) 5087 return 0; 5088 #endif 5089 5090 return 1; 5091 } 5092 5093 /** 5094 * available_idle_cpu - is a given CPU idle for enqueuing work. 5095 * @cpu: the CPU in question. 5096 * 5097 * Return: 1 if the CPU is currently idle. 0 otherwise. 5098 */ 5099 int available_idle_cpu(int cpu) 5100 { 5101 if (!idle_cpu(cpu)) 5102 return 0; 5103 5104 if (vcpu_is_preempted(cpu)) 5105 return 0; 5106 5107 return 1; 5108 } 5109 5110 /** 5111 * idle_task - return the idle task for a given CPU. 5112 * @cpu: the processor in question. 5113 * 5114 * Return: The idle task for the CPU @cpu. 5115 */ 5116 struct task_struct *idle_task(int cpu) 5117 { 5118 return cpu_rq(cpu)->idle; 5119 } 5120 5121 /** 5122 * find_process_by_pid - find a process with a matching PID value. 5123 * @pid: the pid in question. 5124 * 5125 * The task of @pid, if found. %NULL otherwise. 5126 */ 5127 static struct task_struct *find_process_by_pid(pid_t pid) 5128 { 5129 return pid ? find_task_by_vpid(pid) : current; 5130 } 5131 5132 /* 5133 * sched_setparam() passes in -1 for its policy, to let the functions 5134 * it calls know not to change it. 5135 */ 5136 #define SETPARAM_POLICY -1 5137 5138 static void __setscheduler_params(struct task_struct *p, 5139 const struct sched_attr *attr) 5140 { 5141 int policy = attr->sched_policy; 5142 5143 if (policy == SETPARAM_POLICY) 5144 policy = p->policy; 5145 5146 p->policy = policy; 5147 5148 if (dl_policy(policy)) 5149 __setparam_dl(p, attr); 5150 else if (fair_policy(policy)) 5151 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5152 5153 /* 5154 * __sched_setscheduler() ensures attr->sched_priority == 0 when 5155 * !rt_policy. Always setting this ensures that things like 5156 * getparam()/getattr() don't report silly values for !rt tasks. 5157 */ 5158 p->rt_priority = attr->sched_priority; 5159 p->normal_prio = normal_prio(p); 5160 set_load_weight(p, true); 5161 } 5162 5163 /* Actually do priority change: must hold pi & rq lock. */ 5164 static void __setscheduler(struct rq *rq, struct task_struct *p, 5165 const struct sched_attr *attr, bool keep_boost) 5166 { 5167 /* 5168 * If params can't change scheduling class changes aren't allowed 5169 * either. 5170 */ 5171 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 5172 return; 5173 5174 __setscheduler_params(p, attr); 5175 5176 /* 5177 * Keep a potential priority boosting if called from 5178 * sched_setscheduler(). 5179 */ 5180 p->prio = normal_prio(p); 5181 if (keep_boost) 5182 p->prio = rt_effective_prio(p, p->prio); 5183 5184 if (dl_prio(p->prio)) 5185 p->sched_class = &dl_sched_class; 5186 else if (rt_prio(p->prio)) 5187 p->sched_class = &rt_sched_class; 5188 else 5189 p->sched_class = &fair_sched_class; 5190 } 5191 5192 /* 5193 * Check the target process has a UID that matches the current process's: 5194 */ 5195 static bool check_same_owner(struct task_struct *p) 5196 { 5197 const struct cred *cred = current_cred(), *pcred; 5198 bool match; 5199 5200 rcu_read_lock(); 5201 pcred = __task_cred(p); 5202 match = (uid_eq(cred->euid, pcred->euid) || 5203 uid_eq(cred->euid, pcred->uid)); 5204 rcu_read_unlock(); 5205 return match; 5206 } 5207 5208 static int __sched_setscheduler(struct task_struct *p, 5209 const struct sched_attr *attr, 5210 bool user, bool pi) 5211 { 5212 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 5213 MAX_RT_PRIO - 1 - attr->sched_priority; 5214 int retval, oldprio, oldpolicy = -1, queued, running; 5215 int new_effective_prio, policy = attr->sched_policy; 5216 const struct sched_class *prev_class; 5217 struct rq_flags rf; 5218 int reset_on_fork; 5219 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5220 struct rq *rq; 5221 5222 /* The pi code expects interrupts enabled */ 5223 BUG_ON(pi && in_interrupt()); 5224 recheck: 5225 /* Double check policy once rq lock held: */ 5226 if (policy < 0) { 5227 reset_on_fork = p->sched_reset_on_fork; 5228 policy = oldpolicy = p->policy; 5229 } else { 5230 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 5231 5232 if (!valid_policy(policy)) 5233 return -EINVAL; 5234 } 5235 5236 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 5237 return -EINVAL; 5238 5239 /* 5240 * Valid priorities for SCHED_FIFO and SCHED_RR are 5241 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 5242 * SCHED_BATCH and SCHED_IDLE is 0. 5243 */ 5244 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 5245 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 5246 return -EINVAL; 5247 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 5248 (rt_policy(policy) != (attr->sched_priority != 0))) 5249 return -EINVAL; 5250 5251 /* 5252 * Allow unprivileged RT tasks to decrease priority: 5253 */ 5254 if (user && !capable(CAP_SYS_NICE)) { 5255 if (fair_policy(policy)) { 5256 if (attr->sched_nice < task_nice(p) && 5257 !can_nice(p, attr->sched_nice)) 5258 return -EPERM; 5259 } 5260 5261 if (rt_policy(policy)) { 5262 unsigned long rlim_rtprio = 5263 task_rlimit(p, RLIMIT_RTPRIO); 5264 5265 /* Can't set/change the rt policy: */ 5266 if (policy != p->policy && !rlim_rtprio) 5267 return -EPERM; 5268 5269 /* Can't increase priority: */ 5270 if (attr->sched_priority > p->rt_priority && 5271 attr->sched_priority > rlim_rtprio) 5272 return -EPERM; 5273 } 5274 5275 /* 5276 * Can't set/change SCHED_DEADLINE policy at all for now 5277 * (safest behavior); in the future we would like to allow 5278 * unprivileged DL tasks to increase their relative deadline 5279 * or reduce their runtime (both ways reducing utilization) 5280 */ 5281 if (dl_policy(policy)) 5282 return -EPERM; 5283 5284 /* 5285 * Treat SCHED_IDLE as nice 20. Only allow a switch to 5286 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 5287 */ 5288 if (task_has_idle_policy(p) && !idle_policy(policy)) { 5289 if (!can_nice(p, task_nice(p))) 5290 return -EPERM; 5291 } 5292 5293 /* Can't change other user's priorities: */ 5294 if (!check_same_owner(p)) 5295 return -EPERM; 5296 5297 /* Normal users shall not reset the sched_reset_on_fork flag: */ 5298 if (p->sched_reset_on_fork && !reset_on_fork) 5299 return -EPERM; 5300 } 5301 5302 if (user) { 5303 if (attr->sched_flags & SCHED_FLAG_SUGOV) 5304 return -EINVAL; 5305 5306 retval = security_task_setscheduler(p); 5307 if (retval) 5308 return retval; 5309 } 5310 5311 /* Update task specific "requested" clamps */ 5312 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 5313 retval = uclamp_validate(p, attr); 5314 if (retval) 5315 return retval; 5316 } 5317 5318 if (pi) 5319 cpuset_read_lock(); 5320 5321 /* 5322 * Make sure no PI-waiters arrive (or leave) while we are 5323 * changing the priority of the task: 5324 * 5325 * To be able to change p->policy safely, the appropriate 5326 * runqueue lock must be held. 5327 */ 5328 rq = task_rq_lock(p, &rf); 5329 update_rq_clock(rq); 5330 5331 /* 5332 * Changing the policy of the stop threads its a very bad idea: 5333 */ 5334 if (p == rq->stop) { 5335 retval = -EINVAL; 5336 goto unlock; 5337 } 5338 5339 /* 5340 * If not changing anything there's no need to proceed further, 5341 * but store a possible modification of reset_on_fork. 5342 */ 5343 if (unlikely(policy == p->policy)) { 5344 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 5345 goto change; 5346 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 5347 goto change; 5348 if (dl_policy(policy) && dl_param_changed(p, attr)) 5349 goto change; 5350 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 5351 goto change; 5352 5353 p->sched_reset_on_fork = reset_on_fork; 5354 retval = 0; 5355 goto unlock; 5356 } 5357 change: 5358 5359 if (user) { 5360 #ifdef CONFIG_RT_GROUP_SCHED 5361 /* 5362 * Do not allow realtime tasks into groups that have no runtime 5363 * assigned. 5364 */ 5365 if (rt_bandwidth_enabled() && rt_policy(policy) && 5366 task_group(p)->rt_bandwidth.rt_runtime == 0 && 5367 !task_group_is_autogroup(task_group(p))) { 5368 retval = -EPERM; 5369 goto unlock; 5370 } 5371 #endif 5372 #ifdef CONFIG_SMP 5373 if (dl_bandwidth_enabled() && dl_policy(policy) && 5374 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 5375 cpumask_t *span = rq->rd->span; 5376 5377 /* 5378 * Don't allow tasks with an affinity mask smaller than 5379 * the entire root_domain to become SCHED_DEADLINE. We 5380 * will also fail if there's no bandwidth available. 5381 */ 5382 if (!cpumask_subset(span, p->cpus_ptr) || 5383 rq->rd->dl_bw.bw == 0) { 5384 retval = -EPERM; 5385 goto unlock; 5386 } 5387 } 5388 #endif 5389 } 5390 5391 /* Re-check policy now with rq lock held: */ 5392 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 5393 policy = oldpolicy = -1; 5394 task_rq_unlock(rq, p, &rf); 5395 if (pi) 5396 cpuset_read_unlock(); 5397 goto recheck; 5398 } 5399 5400 /* 5401 * If setscheduling to SCHED_DEADLINE (or changing the parameters 5402 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 5403 * is available. 5404 */ 5405 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 5406 retval = -EBUSY; 5407 goto unlock; 5408 } 5409 5410 p->sched_reset_on_fork = reset_on_fork; 5411 oldprio = p->prio; 5412 5413 if (pi) { 5414 /* 5415 * Take priority boosted tasks into account. If the new 5416 * effective priority is unchanged, we just store the new 5417 * normal parameters and do not touch the scheduler class and 5418 * the runqueue. This will be done when the task deboost 5419 * itself. 5420 */ 5421 new_effective_prio = rt_effective_prio(p, newprio); 5422 if (new_effective_prio == oldprio) 5423 queue_flags &= ~DEQUEUE_MOVE; 5424 } 5425 5426 queued = task_on_rq_queued(p); 5427 running = task_current(rq, p); 5428 if (queued) 5429 dequeue_task(rq, p, queue_flags); 5430 if (running) 5431 put_prev_task(rq, p); 5432 5433 prev_class = p->sched_class; 5434 5435 __setscheduler(rq, p, attr, pi); 5436 __setscheduler_uclamp(p, attr); 5437 5438 if (queued) { 5439 /* 5440 * We enqueue to tail when the priority of a task is 5441 * increased (user space view). 5442 */ 5443 if (oldprio < p->prio) 5444 queue_flags |= ENQUEUE_HEAD; 5445 5446 enqueue_task(rq, p, queue_flags); 5447 } 5448 if (running) 5449 set_next_task(rq, p); 5450 5451 check_class_changed(rq, p, prev_class, oldprio); 5452 5453 /* Avoid rq from going away on us: */ 5454 preempt_disable(); 5455 task_rq_unlock(rq, p, &rf); 5456 5457 if (pi) { 5458 cpuset_read_unlock(); 5459 rt_mutex_adjust_pi(p); 5460 } 5461 5462 /* Run balance callbacks after we've adjusted the PI chain: */ 5463 balance_callback(rq); 5464 preempt_enable(); 5465 5466 return 0; 5467 5468 unlock: 5469 task_rq_unlock(rq, p, &rf); 5470 if (pi) 5471 cpuset_read_unlock(); 5472 return retval; 5473 } 5474 5475 static int _sched_setscheduler(struct task_struct *p, int policy, 5476 const struct sched_param *param, bool check) 5477 { 5478 struct sched_attr attr = { 5479 .sched_policy = policy, 5480 .sched_priority = param->sched_priority, 5481 .sched_nice = PRIO_TO_NICE(p->static_prio), 5482 }; 5483 5484 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5485 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5486 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5487 policy &= ~SCHED_RESET_ON_FORK; 5488 attr.sched_policy = policy; 5489 } 5490 5491 return __sched_setscheduler(p, &attr, check, true); 5492 } 5493 /** 5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5495 * @p: the task in question. 5496 * @policy: new policy. 5497 * @param: structure containing the new RT priority. 5498 * 5499 * Return: 0 on success. An error code otherwise. 5500 * 5501 * NOTE that the task may be already dead. 5502 */ 5503 int sched_setscheduler(struct task_struct *p, int policy, 5504 const struct sched_param *param) 5505 { 5506 return _sched_setscheduler(p, policy, param, true); 5507 } 5508 EXPORT_SYMBOL_GPL(sched_setscheduler); 5509 5510 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5511 { 5512 return __sched_setscheduler(p, attr, true, true); 5513 } 5514 EXPORT_SYMBOL_GPL(sched_setattr); 5515 5516 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5517 { 5518 return __sched_setscheduler(p, attr, false, true); 5519 } 5520 5521 /** 5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5523 * @p: the task in question. 5524 * @policy: new policy. 5525 * @param: structure containing the new RT priority. 5526 * 5527 * Just like sched_setscheduler, only don't bother checking if the 5528 * current context has permission. For example, this is needed in 5529 * stop_machine(): we create temporary high priority worker threads, 5530 * but our caller might not have that capability. 5531 * 5532 * Return: 0 on success. An error code otherwise. 5533 */ 5534 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5535 const struct sched_param *param) 5536 { 5537 return _sched_setscheduler(p, policy, param, false); 5538 } 5539 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5540 5541 static int 5542 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5543 { 5544 struct sched_param lparam; 5545 struct task_struct *p; 5546 int retval; 5547 5548 if (!param || pid < 0) 5549 return -EINVAL; 5550 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5551 return -EFAULT; 5552 5553 rcu_read_lock(); 5554 retval = -ESRCH; 5555 p = find_process_by_pid(pid); 5556 if (likely(p)) 5557 get_task_struct(p); 5558 rcu_read_unlock(); 5559 5560 if (likely(p)) { 5561 retval = sched_setscheduler(p, policy, &lparam); 5562 put_task_struct(p); 5563 } 5564 5565 return retval; 5566 } 5567 5568 /* 5569 * Mimics kernel/events/core.c perf_copy_attr(). 5570 */ 5571 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5572 { 5573 u32 size; 5574 int ret; 5575 5576 /* Zero the full structure, so that a short copy will be nice: */ 5577 memset(attr, 0, sizeof(*attr)); 5578 5579 ret = get_user(size, &uattr->size); 5580 if (ret) 5581 return ret; 5582 5583 /* ABI compatibility quirk: */ 5584 if (!size) 5585 size = SCHED_ATTR_SIZE_VER0; 5586 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5587 goto err_size; 5588 5589 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5590 if (ret) { 5591 if (ret == -E2BIG) 5592 goto err_size; 5593 return ret; 5594 } 5595 5596 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5597 size < SCHED_ATTR_SIZE_VER1) 5598 return -EINVAL; 5599 5600 /* 5601 * XXX: Do we want to be lenient like existing syscalls; or do we want 5602 * to be strict and return an error on out-of-bounds values? 5603 */ 5604 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5605 5606 return 0; 5607 5608 err_size: 5609 put_user(sizeof(*attr), &uattr->size); 5610 return -E2BIG; 5611 } 5612 5613 /** 5614 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5615 * @pid: the pid in question. 5616 * @policy: new policy. 5617 * @param: structure containing the new RT priority. 5618 * 5619 * Return: 0 on success. An error code otherwise. 5620 */ 5621 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5622 { 5623 if (policy < 0) 5624 return -EINVAL; 5625 5626 return do_sched_setscheduler(pid, policy, param); 5627 } 5628 5629 /** 5630 * sys_sched_setparam - set/change the RT priority of a thread 5631 * @pid: the pid in question. 5632 * @param: structure containing the new RT priority. 5633 * 5634 * Return: 0 on success. An error code otherwise. 5635 */ 5636 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5637 { 5638 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5639 } 5640 5641 /** 5642 * sys_sched_setattr - same as above, but with extended sched_attr 5643 * @pid: the pid in question. 5644 * @uattr: structure containing the extended parameters. 5645 * @flags: for future extension. 5646 */ 5647 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5648 unsigned int, flags) 5649 { 5650 struct sched_attr attr; 5651 struct task_struct *p; 5652 int retval; 5653 5654 if (!uattr || pid < 0 || flags) 5655 return -EINVAL; 5656 5657 retval = sched_copy_attr(uattr, &attr); 5658 if (retval) 5659 return retval; 5660 5661 if ((int)attr.sched_policy < 0) 5662 return -EINVAL; 5663 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5664 attr.sched_policy = SETPARAM_POLICY; 5665 5666 rcu_read_lock(); 5667 retval = -ESRCH; 5668 p = find_process_by_pid(pid); 5669 if (likely(p)) 5670 get_task_struct(p); 5671 rcu_read_unlock(); 5672 5673 if (likely(p)) { 5674 retval = sched_setattr(p, &attr); 5675 put_task_struct(p); 5676 } 5677 5678 return retval; 5679 } 5680 5681 /** 5682 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5683 * @pid: the pid in question. 5684 * 5685 * Return: On success, the policy of the thread. Otherwise, a negative error 5686 * code. 5687 */ 5688 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5689 { 5690 struct task_struct *p; 5691 int retval; 5692 5693 if (pid < 0) 5694 return -EINVAL; 5695 5696 retval = -ESRCH; 5697 rcu_read_lock(); 5698 p = find_process_by_pid(pid); 5699 if (p) { 5700 retval = security_task_getscheduler(p); 5701 if (!retval) 5702 retval = p->policy 5703 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5704 } 5705 rcu_read_unlock(); 5706 return retval; 5707 } 5708 5709 /** 5710 * sys_sched_getparam - get the RT priority of a thread 5711 * @pid: the pid in question. 5712 * @param: structure containing the RT priority. 5713 * 5714 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5715 * code. 5716 */ 5717 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5718 { 5719 struct sched_param lp = { .sched_priority = 0 }; 5720 struct task_struct *p; 5721 int retval; 5722 5723 if (!param || pid < 0) 5724 return -EINVAL; 5725 5726 rcu_read_lock(); 5727 p = find_process_by_pid(pid); 5728 retval = -ESRCH; 5729 if (!p) 5730 goto out_unlock; 5731 5732 retval = security_task_getscheduler(p); 5733 if (retval) 5734 goto out_unlock; 5735 5736 if (task_has_rt_policy(p)) 5737 lp.sched_priority = p->rt_priority; 5738 rcu_read_unlock(); 5739 5740 /* 5741 * This one might sleep, we cannot do it with a spinlock held ... 5742 */ 5743 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5744 5745 return retval; 5746 5747 out_unlock: 5748 rcu_read_unlock(); 5749 return retval; 5750 } 5751 5752 /* 5753 * Copy the kernel size attribute structure (which might be larger 5754 * than what user-space knows about) to user-space. 5755 * 5756 * Note that all cases are valid: user-space buffer can be larger or 5757 * smaller than the kernel-space buffer. The usual case is that both 5758 * have the same size. 5759 */ 5760 static int 5761 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5762 struct sched_attr *kattr, 5763 unsigned int usize) 5764 { 5765 unsigned int ksize = sizeof(*kattr); 5766 5767 if (!access_ok(uattr, usize)) 5768 return -EFAULT; 5769 5770 /* 5771 * sched_getattr() ABI forwards and backwards compatibility: 5772 * 5773 * If usize == ksize then we just copy everything to user-space and all is good. 5774 * 5775 * If usize < ksize then we only copy as much as user-space has space for, 5776 * this keeps ABI compatibility as well. We skip the rest. 5777 * 5778 * If usize > ksize then user-space is using a newer version of the ABI, 5779 * which part the kernel doesn't know about. Just ignore it - tooling can 5780 * detect the kernel's knowledge of attributes from the attr->size value 5781 * which is set to ksize in this case. 5782 */ 5783 kattr->size = min(usize, ksize); 5784 5785 if (copy_to_user(uattr, kattr, kattr->size)) 5786 return -EFAULT; 5787 5788 return 0; 5789 } 5790 5791 /** 5792 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5793 * @pid: the pid in question. 5794 * @uattr: structure containing the extended parameters. 5795 * @usize: sizeof(attr) for fwd/bwd comp. 5796 * @flags: for future extension. 5797 */ 5798 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5799 unsigned int, usize, unsigned int, flags) 5800 { 5801 struct sched_attr kattr = { }; 5802 struct task_struct *p; 5803 int retval; 5804 5805 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5806 usize < SCHED_ATTR_SIZE_VER0 || flags) 5807 return -EINVAL; 5808 5809 rcu_read_lock(); 5810 p = find_process_by_pid(pid); 5811 retval = -ESRCH; 5812 if (!p) 5813 goto out_unlock; 5814 5815 retval = security_task_getscheduler(p); 5816 if (retval) 5817 goto out_unlock; 5818 5819 kattr.sched_policy = p->policy; 5820 if (p->sched_reset_on_fork) 5821 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5822 if (task_has_dl_policy(p)) 5823 __getparam_dl(p, &kattr); 5824 else if (task_has_rt_policy(p)) 5825 kattr.sched_priority = p->rt_priority; 5826 else 5827 kattr.sched_nice = task_nice(p); 5828 5829 #ifdef CONFIG_UCLAMP_TASK 5830 /* 5831 * This could race with another potential updater, but this is fine 5832 * because it'll correctly read the old or the new value. We don't need 5833 * to guarantee who wins the race as long as it doesn't return garbage. 5834 */ 5835 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5836 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5837 #endif 5838 5839 rcu_read_unlock(); 5840 5841 return sched_attr_copy_to_user(uattr, &kattr, usize); 5842 5843 out_unlock: 5844 rcu_read_unlock(); 5845 return retval; 5846 } 5847 5848 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5849 { 5850 cpumask_var_t cpus_allowed, new_mask; 5851 struct task_struct *p; 5852 int retval; 5853 5854 rcu_read_lock(); 5855 5856 p = find_process_by_pid(pid); 5857 if (!p) { 5858 rcu_read_unlock(); 5859 return -ESRCH; 5860 } 5861 5862 /* Prevent p going away */ 5863 get_task_struct(p); 5864 rcu_read_unlock(); 5865 5866 if (p->flags & PF_NO_SETAFFINITY) { 5867 retval = -EINVAL; 5868 goto out_put_task; 5869 } 5870 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5871 retval = -ENOMEM; 5872 goto out_put_task; 5873 } 5874 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5875 retval = -ENOMEM; 5876 goto out_free_cpus_allowed; 5877 } 5878 retval = -EPERM; 5879 if (!check_same_owner(p)) { 5880 rcu_read_lock(); 5881 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5882 rcu_read_unlock(); 5883 goto out_free_new_mask; 5884 } 5885 rcu_read_unlock(); 5886 } 5887 5888 retval = security_task_setscheduler(p); 5889 if (retval) 5890 goto out_free_new_mask; 5891 5892 5893 cpuset_cpus_allowed(p, cpus_allowed); 5894 cpumask_and(new_mask, in_mask, cpus_allowed); 5895 5896 /* 5897 * Since bandwidth control happens on root_domain basis, 5898 * if admission test is enabled, we only admit -deadline 5899 * tasks allowed to run on all the CPUs in the task's 5900 * root_domain. 5901 */ 5902 #ifdef CONFIG_SMP 5903 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5904 rcu_read_lock(); 5905 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5906 retval = -EBUSY; 5907 rcu_read_unlock(); 5908 goto out_free_new_mask; 5909 } 5910 rcu_read_unlock(); 5911 } 5912 #endif 5913 again: 5914 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5915 5916 if (!retval) { 5917 cpuset_cpus_allowed(p, cpus_allowed); 5918 if (!cpumask_subset(new_mask, cpus_allowed)) { 5919 /* 5920 * We must have raced with a concurrent cpuset 5921 * update. Just reset the cpus_allowed to the 5922 * cpuset's cpus_allowed 5923 */ 5924 cpumask_copy(new_mask, cpus_allowed); 5925 goto again; 5926 } 5927 } 5928 out_free_new_mask: 5929 free_cpumask_var(new_mask); 5930 out_free_cpus_allowed: 5931 free_cpumask_var(cpus_allowed); 5932 out_put_task: 5933 put_task_struct(p); 5934 return retval; 5935 } 5936 5937 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5938 struct cpumask *new_mask) 5939 { 5940 if (len < cpumask_size()) 5941 cpumask_clear(new_mask); 5942 else if (len > cpumask_size()) 5943 len = cpumask_size(); 5944 5945 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5946 } 5947 5948 /** 5949 * sys_sched_setaffinity - set the CPU affinity of a process 5950 * @pid: pid of the process 5951 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5952 * @user_mask_ptr: user-space pointer to the new CPU mask 5953 * 5954 * Return: 0 on success. An error code otherwise. 5955 */ 5956 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5957 unsigned long __user *, user_mask_ptr) 5958 { 5959 cpumask_var_t new_mask; 5960 int retval; 5961 5962 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5963 return -ENOMEM; 5964 5965 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5966 if (retval == 0) 5967 retval = sched_setaffinity(pid, new_mask); 5968 free_cpumask_var(new_mask); 5969 return retval; 5970 } 5971 5972 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5973 { 5974 struct task_struct *p; 5975 unsigned long flags; 5976 int retval; 5977 5978 rcu_read_lock(); 5979 5980 retval = -ESRCH; 5981 p = find_process_by_pid(pid); 5982 if (!p) 5983 goto out_unlock; 5984 5985 retval = security_task_getscheduler(p); 5986 if (retval) 5987 goto out_unlock; 5988 5989 raw_spin_lock_irqsave(&p->pi_lock, flags); 5990 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5991 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5992 5993 out_unlock: 5994 rcu_read_unlock(); 5995 5996 return retval; 5997 } 5998 5999 /** 6000 * sys_sched_getaffinity - get the CPU affinity of a process 6001 * @pid: pid of the process 6002 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6003 * @user_mask_ptr: user-space pointer to hold the current CPU mask 6004 * 6005 * Return: size of CPU mask copied to user_mask_ptr on success. An 6006 * error code otherwise. 6007 */ 6008 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6009 unsigned long __user *, user_mask_ptr) 6010 { 6011 int ret; 6012 cpumask_var_t mask; 6013 6014 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 6015 return -EINVAL; 6016 if (len & (sizeof(unsigned long)-1)) 6017 return -EINVAL; 6018 6019 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6020 return -ENOMEM; 6021 6022 ret = sched_getaffinity(pid, mask); 6023 if (ret == 0) { 6024 unsigned int retlen = min(len, cpumask_size()); 6025 6026 if (copy_to_user(user_mask_ptr, mask, retlen)) 6027 ret = -EFAULT; 6028 else 6029 ret = retlen; 6030 } 6031 free_cpumask_var(mask); 6032 6033 return ret; 6034 } 6035 6036 /** 6037 * sys_sched_yield - yield the current processor to other threads. 6038 * 6039 * This function yields the current CPU to other tasks. If there are no 6040 * other threads running on this CPU then this function will return. 6041 * 6042 * Return: 0. 6043 */ 6044 static void do_sched_yield(void) 6045 { 6046 struct rq_flags rf; 6047 struct rq *rq; 6048 6049 rq = this_rq_lock_irq(&rf); 6050 6051 schedstat_inc(rq->yld_count); 6052 current->sched_class->yield_task(rq); 6053 6054 /* 6055 * Since we are going to call schedule() anyway, there's 6056 * no need to preempt or enable interrupts: 6057 */ 6058 preempt_disable(); 6059 rq_unlock(rq, &rf); 6060 sched_preempt_enable_no_resched(); 6061 6062 schedule(); 6063 } 6064 6065 SYSCALL_DEFINE0(sched_yield) 6066 { 6067 do_sched_yield(); 6068 return 0; 6069 } 6070 6071 #ifndef CONFIG_PREEMPTION 6072 int __sched _cond_resched(void) 6073 { 6074 if (should_resched(0)) { 6075 preempt_schedule_common(); 6076 return 1; 6077 } 6078 rcu_all_qs(); 6079 return 0; 6080 } 6081 EXPORT_SYMBOL(_cond_resched); 6082 #endif 6083 6084 /* 6085 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 6086 * call schedule, and on return reacquire the lock. 6087 * 6088 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 6089 * operations here to prevent schedule() from being called twice (once via 6090 * spin_unlock(), once by hand). 6091 */ 6092 int __cond_resched_lock(spinlock_t *lock) 6093 { 6094 int resched = should_resched(PREEMPT_LOCK_OFFSET); 6095 int ret = 0; 6096 6097 lockdep_assert_held(lock); 6098 6099 if (spin_needbreak(lock) || resched) { 6100 spin_unlock(lock); 6101 if (resched) 6102 preempt_schedule_common(); 6103 else 6104 cpu_relax(); 6105 ret = 1; 6106 spin_lock(lock); 6107 } 6108 return ret; 6109 } 6110 EXPORT_SYMBOL(__cond_resched_lock); 6111 6112 /** 6113 * yield - yield the current processor to other threads. 6114 * 6115 * Do not ever use this function, there's a 99% chance you're doing it wrong. 6116 * 6117 * The scheduler is at all times free to pick the calling task as the most 6118 * eligible task to run, if removing the yield() call from your code breaks 6119 * it, its already broken. 6120 * 6121 * Typical broken usage is: 6122 * 6123 * while (!event) 6124 * yield(); 6125 * 6126 * where one assumes that yield() will let 'the other' process run that will 6127 * make event true. If the current task is a SCHED_FIFO task that will never 6128 * happen. Never use yield() as a progress guarantee!! 6129 * 6130 * If you want to use yield() to wait for something, use wait_event(). 6131 * If you want to use yield() to be 'nice' for others, use cond_resched(). 6132 * If you still want to use yield(), do not! 6133 */ 6134 void __sched yield(void) 6135 { 6136 set_current_state(TASK_RUNNING); 6137 do_sched_yield(); 6138 } 6139 EXPORT_SYMBOL(yield); 6140 6141 /** 6142 * yield_to - yield the current processor to another thread in 6143 * your thread group, or accelerate that thread toward the 6144 * processor it's on. 6145 * @p: target task 6146 * @preempt: whether task preemption is allowed or not 6147 * 6148 * It's the caller's job to ensure that the target task struct 6149 * can't go away on us before we can do any checks. 6150 * 6151 * Return: 6152 * true (>0) if we indeed boosted the target task. 6153 * false (0) if we failed to boost the target. 6154 * -ESRCH if there's no task to yield to. 6155 */ 6156 int __sched yield_to(struct task_struct *p, bool preempt) 6157 { 6158 struct task_struct *curr = current; 6159 struct rq *rq, *p_rq; 6160 unsigned long flags; 6161 int yielded = 0; 6162 6163 local_irq_save(flags); 6164 rq = this_rq(); 6165 6166 again: 6167 p_rq = task_rq(p); 6168 /* 6169 * If we're the only runnable task on the rq and target rq also 6170 * has only one task, there's absolutely no point in yielding. 6171 */ 6172 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 6173 yielded = -ESRCH; 6174 goto out_irq; 6175 } 6176 6177 double_rq_lock(rq, p_rq); 6178 if (task_rq(p) != p_rq) { 6179 double_rq_unlock(rq, p_rq); 6180 goto again; 6181 } 6182 6183 if (!curr->sched_class->yield_to_task) 6184 goto out_unlock; 6185 6186 if (curr->sched_class != p->sched_class) 6187 goto out_unlock; 6188 6189 if (task_running(p_rq, p) || p->state) 6190 goto out_unlock; 6191 6192 yielded = curr->sched_class->yield_to_task(rq, p); 6193 if (yielded) { 6194 schedstat_inc(rq->yld_count); 6195 /* 6196 * Make p's CPU reschedule; pick_next_entity takes care of 6197 * fairness. 6198 */ 6199 if (preempt && rq != p_rq) 6200 resched_curr(p_rq); 6201 } 6202 6203 out_unlock: 6204 double_rq_unlock(rq, p_rq); 6205 out_irq: 6206 local_irq_restore(flags); 6207 6208 if (yielded > 0) 6209 schedule(); 6210 6211 return yielded; 6212 } 6213 EXPORT_SYMBOL_GPL(yield_to); 6214 6215 int io_schedule_prepare(void) 6216 { 6217 int old_iowait = current->in_iowait; 6218 6219 current->in_iowait = 1; 6220 blk_schedule_flush_plug(current); 6221 6222 return old_iowait; 6223 } 6224 6225 void io_schedule_finish(int token) 6226 { 6227 current->in_iowait = token; 6228 } 6229 6230 /* 6231 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 6232 * that process accounting knows that this is a task in IO wait state. 6233 */ 6234 long __sched io_schedule_timeout(long timeout) 6235 { 6236 int token; 6237 long ret; 6238 6239 token = io_schedule_prepare(); 6240 ret = schedule_timeout(timeout); 6241 io_schedule_finish(token); 6242 6243 return ret; 6244 } 6245 EXPORT_SYMBOL(io_schedule_timeout); 6246 6247 void __sched io_schedule(void) 6248 { 6249 int token; 6250 6251 token = io_schedule_prepare(); 6252 schedule(); 6253 io_schedule_finish(token); 6254 } 6255 EXPORT_SYMBOL(io_schedule); 6256 6257 /** 6258 * sys_sched_get_priority_max - return maximum RT priority. 6259 * @policy: scheduling class. 6260 * 6261 * Return: On success, this syscall returns the maximum 6262 * rt_priority that can be used by a given scheduling class. 6263 * On failure, a negative error code is returned. 6264 */ 6265 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 6266 { 6267 int ret = -EINVAL; 6268 6269 switch (policy) { 6270 case SCHED_FIFO: 6271 case SCHED_RR: 6272 ret = MAX_USER_RT_PRIO-1; 6273 break; 6274 case SCHED_DEADLINE: 6275 case SCHED_NORMAL: 6276 case SCHED_BATCH: 6277 case SCHED_IDLE: 6278 ret = 0; 6279 break; 6280 } 6281 return ret; 6282 } 6283 6284 /** 6285 * sys_sched_get_priority_min - return minimum RT priority. 6286 * @policy: scheduling class. 6287 * 6288 * Return: On success, this syscall returns the minimum 6289 * rt_priority that can be used by a given scheduling class. 6290 * On failure, a negative error code is returned. 6291 */ 6292 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 6293 { 6294 int ret = -EINVAL; 6295 6296 switch (policy) { 6297 case SCHED_FIFO: 6298 case SCHED_RR: 6299 ret = 1; 6300 break; 6301 case SCHED_DEADLINE: 6302 case SCHED_NORMAL: 6303 case SCHED_BATCH: 6304 case SCHED_IDLE: 6305 ret = 0; 6306 } 6307 return ret; 6308 } 6309 6310 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 6311 { 6312 struct task_struct *p; 6313 unsigned int time_slice; 6314 struct rq_flags rf; 6315 struct rq *rq; 6316 int retval; 6317 6318 if (pid < 0) 6319 return -EINVAL; 6320 6321 retval = -ESRCH; 6322 rcu_read_lock(); 6323 p = find_process_by_pid(pid); 6324 if (!p) 6325 goto out_unlock; 6326 6327 retval = security_task_getscheduler(p); 6328 if (retval) 6329 goto out_unlock; 6330 6331 rq = task_rq_lock(p, &rf); 6332 time_slice = 0; 6333 if (p->sched_class->get_rr_interval) 6334 time_slice = p->sched_class->get_rr_interval(rq, p); 6335 task_rq_unlock(rq, p, &rf); 6336 6337 rcu_read_unlock(); 6338 jiffies_to_timespec64(time_slice, t); 6339 return 0; 6340 6341 out_unlock: 6342 rcu_read_unlock(); 6343 return retval; 6344 } 6345 6346 /** 6347 * sys_sched_rr_get_interval - return the default timeslice of a process. 6348 * @pid: pid of the process. 6349 * @interval: userspace pointer to the timeslice value. 6350 * 6351 * this syscall writes the default timeslice value of a given process 6352 * into the user-space timespec buffer. A value of '0' means infinity. 6353 * 6354 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 6355 * an error code. 6356 */ 6357 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 6358 struct __kernel_timespec __user *, interval) 6359 { 6360 struct timespec64 t; 6361 int retval = sched_rr_get_interval(pid, &t); 6362 6363 if (retval == 0) 6364 retval = put_timespec64(&t, interval); 6365 6366 return retval; 6367 } 6368 6369 #ifdef CONFIG_COMPAT_32BIT_TIME 6370 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 6371 struct old_timespec32 __user *, interval) 6372 { 6373 struct timespec64 t; 6374 int retval = sched_rr_get_interval(pid, &t); 6375 6376 if (retval == 0) 6377 retval = put_old_timespec32(&t, interval); 6378 return retval; 6379 } 6380 #endif 6381 6382 void sched_show_task(struct task_struct *p) 6383 { 6384 unsigned long free = 0; 6385 int ppid; 6386 6387 if (!try_get_task_stack(p)) 6388 return; 6389 6390 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 6391 6392 if (p->state == TASK_RUNNING) 6393 printk(KERN_CONT " running task "); 6394 #ifdef CONFIG_DEBUG_STACK_USAGE 6395 free = stack_not_used(p); 6396 #endif 6397 ppid = 0; 6398 rcu_read_lock(); 6399 if (pid_alive(p)) 6400 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 6401 rcu_read_unlock(); 6402 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 6403 task_pid_nr(p), ppid, 6404 (unsigned long)task_thread_info(p)->flags); 6405 6406 print_worker_info(KERN_INFO, p); 6407 show_stack(p, NULL, KERN_INFO); 6408 put_task_stack(p); 6409 } 6410 EXPORT_SYMBOL_GPL(sched_show_task); 6411 6412 static inline bool 6413 state_filter_match(unsigned long state_filter, struct task_struct *p) 6414 { 6415 /* no filter, everything matches */ 6416 if (!state_filter) 6417 return true; 6418 6419 /* filter, but doesn't match */ 6420 if (!(p->state & state_filter)) 6421 return false; 6422 6423 /* 6424 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 6425 * TASK_KILLABLE). 6426 */ 6427 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 6428 return false; 6429 6430 return true; 6431 } 6432 6433 6434 void show_state_filter(unsigned long state_filter) 6435 { 6436 struct task_struct *g, *p; 6437 6438 #if BITS_PER_LONG == 32 6439 printk(KERN_INFO 6440 " task PC stack pid father\n"); 6441 #else 6442 printk(KERN_INFO 6443 " task PC stack pid father\n"); 6444 #endif 6445 rcu_read_lock(); 6446 for_each_process_thread(g, p) { 6447 /* 6448 * reset the NMI-timeout, listing all files on a slow 6449 * console might take a lot of time: 6450 * Also, reset softlockup watchdogs on all CPUs, because 6451 * another CPU might be blocked waiting for us to process 6452 * an IPI. 6453 */ 6454 touch_nmi_watchdog(); 6455 touch_all_softlockup_watchdogs(); 6456 if (state_filter_match(state_filter, p)) 6457 sched_show_task(p); 6458 } 6459 6460 #ifdef CONFIG_SCHED_DEBUG 6461 if (!state_filter) 6462 sysrq_sched_debug_show(); 6463 #endif 6464 rcu_read_unlock(); 6465 /* 6466 * Only show locks if all tasks are dumped: 6467 */ 6468 if (!state_filter) 6469 debug_show_all_locks(); 6470 } 6471 6472 /** 6473 * init_idle - set up an idle thread for a given CPU 6474 * @idle: task in question 6475 * @cpu: CPU the idle task belongs to 6476 * 6477 * NOTE: this function does not set the idle thread's NEED_RESCHED 6478 * flag, to make booting more robust. 6479 */ 6480 void init_idle(struct task_struct *idle, int cpu) 6481 { 6482 struct rq *rq = cpu_rq(cpu); 6483 unsigned long flags; 6484 6485 __sched_fork(0, idle); 6486 6487 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6488 raw_spin_lock(&rq->lock); 6489 6490 idle->state = TASK_RUNNING; 6491 idle->se.exec_start = sched_clock(); 6492 idle->flags |= PF_IDLE; 6493 6494 scs_task_reset(idle); 6495 kasan_unpoison_task_stack(idle); 6496 6497 #ifdef CONFIG_SMP 6498 /* 6499 * Its possible that init_idle() gets called multiple times on a task, 6500 * in that case do_set_cpus_allowed() will not do the right thing. 6501 * 6502 * And since this is boot we can forgo the serialization. 6503 */ 6504 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6505 #endif 6506 /* 6507 * We're having a chicken and egg problem, even though we are 6508 * holding rq->lock, the CPU isn't yet set to this CPU so the 6509 * lockdep check in task_group() will fail. 6510 * 6511 * Similar case to sched_fork(). / Alternatively we could 6512 * use task_rq_lock() here and obtain the other rq->lock. 6513 * 6514 * Silence PROVE_RCU 6515 */ 6516 rcu_read_lock(); 6517 __set_task_cpu(idle, cpu); 6518 rcu_read_unlock(); 6519 6520 rq->idle = idle; 6521 rcu_assign_pointer(rq->curr, idle); 6522 idle->on_rq = TASK_ON_RQ_QUEUED; 6523 #ifdef CONFIG_SMP 6524 idle->on_cpu = 1; 6525 #endif 6526 raw_spin_unlock(&rq->lock); 6527 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6528 6529 /* Set the preempt count _outside_ the spinlocks! */ 6530 init_idle_preempt_count(idle, cpu); 6531 6532 /* 6533 * The idle tasks have their own, simple scheduling class: 6534 */ 6535 idle->sched_class = &idle_sched_class; 6536 ftrace_graph_init_idle_task(idle, cpu); 6537 vtime_init_idle(idle, cpu); 6538 #ifdef CONFIG_SMP 6539 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6540 #endif 6541 } 6542 6543 #ifdef CONFIG_SMP 6544 6545 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6546 const struct cpumask *trial) 6547 { 6548 int ret = 1; 6549 6550 if (!cpumask_weight(cur)) 6551 return ret; 6552 6553 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6554 6555 return ret; 6556 } 6557 6558 int task_can_attach(struct task_struct *p, 6559 const struct cpumask *cs_cpus_allowed) 6560 { 6561 int ret = 0; 6562 6563 /* 6564 * Kthreads which disallow setaffinity shouldn't be moved 6565 * to a new cpuset; we don't want to change their CPU 6566 * affinity and isolating such threads by their set of 6567 * allowed nodes is unnecessary. Thus, cpusets are not 6568 * applicable for such threads. This prevents checking for 6569 * success of set_cpus_allowed_ptr() on all attached tasks 6570 * before cpus_mask may be changed. 6571 */ 6572 if (p->flags & PF_NO_SETAFFINITY) { 6573 ret = -EINVAL; 6574 goto out; 6575 } 6576 6577 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6578 cs_cpus_allowed)) 6579 ret = dl_task_can_attach(p, cs_cpus_allowed); 6580 6581 out: 6582 return ret; 6583 } 6584 6585 bool sched_smp_initialized __read_mostly; 6586 6587 #ifdef CONFIG_NUMA_BALANCING 6588 /* Migrate current task p to target_cpu */ 6589 int migrate_task_to(struct task_struct *p, int target_cpu) 6590 { 6591 struct migration_arg arg = { p, target_cpu }; 6592 int curr_cpu = task_cpu(p); 6593 6594 if (curr_cpu == target_cpu) 6595 return 0; 6596 6597 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6598 return -EINVAL; 6599 6600 /* TODO: This is not properly updating schedstats */ 6601 6602 trace_sched_move_numa(p, curr_cpu, target_cpu); 6603 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6604 } 6605 6606 /* 6607 * Requeue a task on a given node and accurately track the number of NUMA 6608 * tasks on the runqueues 6609 */ 6610 void sched_setnuma(struct task_struct *p, int nid) 6611 { 6612 bool queued, running; 6613 struct rq_flags rf; 6614 struct rq *rq; 6615 6616 rq = task_rq_lock(p, &rf); 6617 queued = task_on_rq_queued(p); 6618 running = task_current(rq, p); 6619 6620 if (queued) 6621 dequeue_task(rq, p, DEQUEUE_SAVE); 6622 if (running) 6623 put_prev_task(rq, p); 6624 6625 p->numa_preferred_nid = nid; 6626 6627 if (queued) 6628 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6629 if (running) 6630 set_next_task(rq, p); 6631 task_rq_unlock(rq, p, &rf); 6632 } 6633 #endif /* CONFIG_NUMA_BALANCING */ 6634 6635 #ifdef CONFIG_HOTPLUG_CPU 6636 /* 6637 * Ensure that the idle task is using init_mm right before its CPU goes 6638 * offline. 6639 */ 6640 void idle_task_exit(void) 6641 { 6642 struct mm_struct *mm = current->active_mm; 6643 6644 BUG_ON(cpu_online(smp_processor_id())); 6645 BUG_ON(current != this_rq()->idle); 6646 6647 if (mm != &init_mm) { 6648 switch_mm(mm, &init_mm, current); 6649 finish_arch_post_lock_switch(); 6650 } 6651 6652 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 6653 } 6654 6655 /* 6656 * Since this CPU is going 'away' for a while, fold any nr_active delta 6657 * we might have. Assumes we're called after migrate_tasks() so that the 6658 * nr_active count is stable. We need to take the teardown thread which 6659 * is calling this into account, so we hand in adjust = 1 to the load 6660 * calculation. 6661 * 6662 * Also see the comment "Global load-average calculations". 6663 */ 6664 static void calc_load_migrate(struct rq *rq) 6665 { 6666 long delta = calc_load_fold_active(rq, 1); 6667 if (delta) 6668 atomic_long_add(delta, &calc_load_tasks); 6669 } 6670 6671 static struct task_struct *__pick_migrate_task(struct rq *rq) 6672 { 6673 const struct sched_class *class; 6674 struct task_struct *next; 6675 6676 for_each_class(class) { 6677 next = class->pick_next_task(rq); 6678 if (next) { 6679 next->sched_class->put_prev_task(rq, next); 6680 return next; 6681 } 6682 } 6683 6684 /* The idle class should always have a runnable task */ 6685 BUG(); 6686 } 6687 6688 /* 6689 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6690 * try_to_wake_up()->select_task_rq(). 6691 * 6692 * Called with rq->lock held even though we'er in stop_machine() and 6693 * there's no concurrency possible, we hold the required locks anyway 6694 * because of lock validation efforts. 6695 */ 6696 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6697 { 6698 struct rq *rq = dead_rq; 6699 struct task_struct *next, *stop = rq->stop; 6700 struct rq_flags orf = *rf; 6701 int dest_cpu; 6702 6703 /* 6704 * Fudge the rq selection such that the below task selection loop 6705 * doesn't get stuck on the currently eligible stop task. 6706 * 6707 * We're currently inside stop_machine() and the rq is either stuck 6708 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6709 * either way we should never end up calling schedule() until we're 6710 * done here. 6711 */ 6712 rq->stop = NULL; 6713 6714 /* 6715 * put_prev_task() and pick_next_task() sched 6716 * class method both need to have an up-to-date 6717 * value of rq->clock[_task] 6718 */ 6719 update_rq_clock(rq); 6720 6721 for (;;) { 6722 /* 6723 * There's this thread running, bail when that's the only 6724 * remaining thread: 6725 */ 6726 if (rq->nr_running == 1) 6727 break; 6728 6729 next = __pick_migrate_task(rq); 6730 6731 /* 6732 * Rules for changing task_struct::cpus_mask are holding 6733 * both pi_lock and rq->lock, such that holding either 6734 * stabilizes the mask. 6735 * 6736 * Drop rq->lock is not quite as disastrous as it usually is 6737 * because !cpu_active at this point, which means load-balance 6738 * will not interfere. Also, stop-machine. 6739 */ 6740 rq_unlock(rq, rf); 6741 raw_spin_lock(&next->pi_lock); 6742 rq_relock(rq, rf); 6743 6744 /* 6745 * Since we're inside stop-machine, _nothing_ should have 6746 * changed the task, WARN if weird stuff happened, because in 6747 * that case the above rq->lock drop is a fail too. 6748 */ 6749 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6750 raw_spin_unlock(&next->pi_lock); 6751 continue; 6752 } 6753 6754 /* Find suitable destination for @next, with force if needed. */ 6755 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6756 rq = __migrate_task(rq, rf, next, dest_cpu); 6757 if (rq != dead_rq) { 6758 rq_unlock(rq, rf); 6759 rq = dead_rq; 6760 *rf = orf; 6761 rq_relock(rq, rf); 6762 } 6763 raw_spin_unlock(&next->pi_lock); 6764 } 6765 6766 rq->stop = stop; 6767 } 6768 #endif /* CONFIG_HOTPLUG_CPU */ 6769 6770 void set_rq_online(struct rq *rq) 6771 { 6772 if (!rq->online) { 6773 const struct sched_class *class; 6774 6775 cpumask_set_cpu(rq->cpu, rq->rd->online); 6776 rq->online = 1; 6777 6778 for_each_class(class) { 6779 if (class->rq_online) 6780 class->rq_online(rq); 6781 } 6782 } 6783 } 6784 6785 void set_rq_offline(struct rq *rq) 6786 { 6787 if (rq->online) { 6788 const struct sched_class *class; 6789 6790 for_each_class(class) { 6791 if (class->rq_offline) 6792 class->rq_offline(rq); 6793 } 6794 6795 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6796 rq->online = 0; 6797 } 6798 } 6799 6800 /* 6801 * used to mark begin/end of suspend/resume: 6802 */ 6803 static int num_cpus_frozen; 6804 6805 /* 6806 * Update cpusets according to cpu_active mask. If cpusets are 6807 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6808 * around partition_sched_domains(). 6809 * 6810 * If we come here as part of a suspend/resume, don't touch cpusets because we 6811 * want to restore it back to its original state upon resume anyway. 6812 */ 6813 static void cpuset_cpu_active(void) 6814 { 6815 if (cpuhp_tasks_frozen) { 6816 /* 6817 * num_cpus_frozen tracks how many CPUs are involved in suspend 6818 * resume sequence. As long as this is not the last online 6819 * operation in the resume sequence, just build a single sched 6820 * domain, ignoring cpusets. 6821 */ 6822 partition_sched_domains(1, NULL, NULL); 6823 if (--num_cpus_frozen) 6824 return; 6825 /* 6826 * This is the last CPU online operation. So fall through and 6827 * restore the original sched domains by considering the 6828 * cpuset configurations. 6829 */ 6830 cpuset_force_rebuild(); 6831 } 6832 cpuset_update_active_cpus(); 6833 } 6834 6835 static int cpuset_cpu_inactive(unsigned int cpu) 6836 { 6837 if (!cpuhp_tasks_frozen) { 6838 if (dl_cpu_busy(cpu)) 6839 return -EBUSY; 6840 cpuset_update_active_cpus(); 6841 } else { 6842 num_cpus_frozen++; 6843 partition_sched_domains(1, NULL, NULL); 6844 } 6845 return 0; 6846 } 6847 6848 int sched_cpu_activate(unsigned int cpu) 6849 { 6850 struct rq *rq = cpu_rq(cpu); 6851 struct rq_flags rf; 6852 6853 #ifdef CONFIG_SCHED_SMT 6854 /* 6855 * When going up, increment the number of cores with SMT present. 6856 */ 6857 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6858 static_branch_inc_cpuslocked(&sched_smt_present); 6859 #endif 6860 set_cpu_active(cpu, true); 6861 6862 if (sched_smp_initialized) { 6863 sched_domains_numa_masks_set(cpu); 6864 cpuset_cpu_active(); 6865 } 6866 6867 /* 6868 * Put the rq online, if not already. This happens: 6869 * 6870 * 1) In the early boot process, because we build the real domains 6871 * after all CPUs have been brought up. 6872 * 6873 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6874 * domains. 6875 */ 6876 rq_lock_irqsave(rq, &rf); 6877 if (rq->rd) { 6878 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6879 set_rq_online(rq); 6880 } 6881 rq_unlock_irqrestore(rq, &rf); 6882 6883 return 0; 6884 } 6885 6886 int sched_cpu_deactivate(unsigned int cpu) 6887 { 6888 int ret; 6889 6890 set_cpu_active(cpu, false); 6891 /* 6892 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6893 * users of this state to go away such that all new such users will 6894 * observe it. 6895 * 6896 * Do sync before park smpboot threads to take care the rcu boost case. 6897 */ 6898 synchronize_rcu(); 6899 6900 #ifdef CONFIG_SCHED_SMT 6901 /* 6902 * When going down, decrement the number of cores with SMT present. 6903 */ 6904 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6905 static_branch_dec_cpuslocked(&sched_smt_present); 6906 #endif 6907 6908 if (!sched_smp_initialized) 6909 return 0; 6910 6911 ret = cpuset_cpu_inactive(cpu); 6912 if (ret) { 6913 set_cpu_active(cpu, true); 6914 return ret; 6915 } 6916 sched_domains_numa_masks_clear(cpu); 6917 return 0; 6918 } 6919 6920 static void sched_rq_cpu_starting(unsigned int cpu) 6921 { 6922 struct rq *rq = cpu_rq(cpu); 6923 6924 rq->calc_load_update = calc_load_update; 6925 update_max_interval(); 6926 } 6927 6928 int sched_cpu_starting(unsigned int cpu) 6929 { 6930 sched_rq_cpu_starting(cpu); 6931 sched_tick_start(cpu); 6932 return 0; 6933 } 6934 6935 #ifdef CONFIG_HOTPLUG_CPU 6936 int sched_cpu_dying(unsigned int cpu) 6937 { 6938 struct rq *rq = cpu_rq(cpu); 6939 struct rq_flags rf; 6940 6941 /* Handle pending wakeups and then migrate everything off */ 6942 sched_tick_stop(cpu); 6943 6944 rq_lock_irqsave(rq, &rf); 6945 if (rq->rd) { 6946 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6947 set_rq_offline(rq); 6948 } 6949 migrate_tasks(rq, &rf); 6950 BUG_ON(rq->nr_running != 1); 6951 rq_unlock_irqrestore(rq, &rf); 6952 6953 calc_load_migrate(rq); 6954 update_max_interval(); 6955 nohz_balance_exit_idle(rq); 6956 hrtick_clear(rq); 6957 return 0; 6958 } 6959 #endif 6960 6961 void __init sched_init_smp(void) 6962 { 6963 sched_init_numa(); 6964 6965 /* 6966 * There's no userspace yet to cause hotplug operations; hence all the 6967 * CPU masks are stable and all blatant races in the below code cannot 6968 * happen. 6969 */ 6970 mutex_lock(&sched_domains_mutex); 6971 sched_init_domains(cpu_active_mask); 6972 mutex_unlock(&sched_domains_mutex); 6973 6974 /* Move init over to a non-isolated CPU */ 6975 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6976 BUG(); 6977 sched_init_granularity(); 6978 6979 init_sched_rt_class(); 6980 init_sched_dl_class(); 6981 6982 sched_smp_initialized = true; 6983 } 6984 6985 static int __init migration_init(void) 6986 { 6987 sched_cpu_starting(smp_processor_id()); 6988 return 0; 6989 } 6990 early_initcall(migration_init); 6991 6992 #else 6993 void __init sched_init_smp(void) 6994 { 6995 sched_init_granularity(); 6996 } 6997 #endif /* CONFIG_SMP */ 6998 6999 int in_sched_functions(unsigned long addr) 7000 { 7001 return in_lock_functions(addr) || 7002 (addr >= (unsigned long)__sched_text_start 7003 && addr < (unsigned long)__sched_text_end); 7004 } 7005 7006 #ifdef CONFIG_CGROUP_SCHED 7007 /* 7008 * Default task group. 7009 * Every task in system belongs to this group at bootup. 7010 */ 7011 struct task_group root_task_group; 7012 LIST_HEAD(task_groups); 7013 7014 /* Cacheline aligned slab cache for task_group */ 7015 static struct kmem_cache *task_group_cache __read_mostly; 7016 #endif 7017 7018 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7019 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 7020 7021 void __init sched_init(void) 7022 { 7023 unsigned long ptr = 0; 7024 int i; 7025 7026 /* Make sure the linker didn't screw up */ 7027 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 7028 &fair_sched_class + 1 != &rt_sched_class || 7029 &rt_sched_class + 1 != &dl_sched_class); 7030 #ifdef CONFIG_SMP 7031 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 7032 #endif 7033 7034 wait_bit_init(); 7035 7036 #ifdef CONFIG_FAIR_GROUP_SCHED 7037 ptr += 2 * nr_cpu_ids * sizeof(void **); 7038 #endif 7039 #ifdef CONFIG_RT_GROUP_SCHED 7040 ptr += 2 * nr_cpu_ids * sizeof(void **); 7041 #endif 7042 if (ptr) { 7043 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 7044 7045 #ifdef CONFIG_FAIR_GROUP_SCHED 7046 root_task_group.se = (struct sched_entity **)ptr; 7047 ptr += nr_cpu_ids * sizeof(void **); 7048 7049 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7050 ptr += nr_cpu_ids * sizeof(void **); 7051 7052 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7053 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7054 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7055 #ifdef CONFIG_RT_GROUP_SCHED 7056 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7057 ptr += nr_cpu_ids * sizeof(void **); 7058 7059 root_task_group.rt_rq = (struct rt_rq **)ptr; 7060 ptr += nr_cpu_ids * sizeof(void **); 7061 7062 #endif /* CONFIG_RT_GROUP_SCHED */ 7063 } 7064 #ifdef CONFIG_CPUMASK_OFFSTACK 7065 for_each_possible_cpu(i) { 7066 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7067 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7068 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 7069 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7070 } 7071 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7072 7073 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 7074 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 7075 7076 #ifdef CONFIG_SMP 7077 init_defrootdomain(); 7078 #endif 7079 7080 #ifdef CONFIG_RT_GROUP_SCHED 7081 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7082 global_rt_period(), global_rt_runtime()); 7083 #endif /* CONFIG_RT_GROUP_SCHED */ 7084 7085 #ifdef CONFIG_CGROUP_SCHED 7086 task_group_cache = KMEM_CACHE(task_group, 0); 7087 7088 list_add(&root_task_group.list, &task_groups); 7089 INIT_LIST_HEAD(&root_task_group.children); 7090 INIT_LIST_HEAD(&root_task_group.siblings); 7091 autogroup_init(&init_task); 7092 #endif /* CONFIG_CGROUP_SCHED */ 7093 7094 for_each_possible_cpu(i) { 7095 struct rq *rq; 7096 7097 rq = cpu_rq(i); 7098 raw_spin_lock_init(&rq->lock); 7099 rq->nr_running = 0; 7100 rq->calc_load_active = 0; 7101 rq->calc_load_update = jiffies + LOAD_FREQ; 7102 init_cfs_rq(&rq->cfs); 7103 init_rt_rq(&rq->rt); 7104 init_dl_rq(&rq->dl); 7105 #ifdef CONFIG_FAIR_GROUP_SCHED 7106 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7107 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 7108 /* 7109 * How much CPU bandwidth does root_task_group get? 7110 * 7111 * In case of task-groups formed thr' the cgroup filesystem, it 7112 * gets 100% of the CPU resources in the system. This overall 7113 * system CPU resource is divided among the tasks of 7114 * root_task_group and its child task-groups in a fair manner, 7115 * based on each entity's (task or task-group's) weight 7116 * (se->load.weight). 7117 * 7118 * In other words, if root_task_group has 10 tasks of weight 7119 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7120 * then A0's share of the CPU resource is: 7121 * 7122 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7123 * 7124 * We achieve this by letting root_task_group's tasks sit 7125 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7126 */ 7127 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7128 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7129 7130 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7131 #ifdef CONFIG_RT_GROUP_SCHED 7132 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7133 #endif 7134 #ifdef CONFIG_SMP 7135 rq->sd = NULL; 7136 rq->rd = NULL; 7137 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7138 rq->balance_callback = NULL; 7139 rq->active_balance = 0; 7140 rq->next_balance = jiffies; 7141 rq->push_cpu = 0; 7142 rq->cpu = i; 7143 rq->online = 0; 7144 rq->idle_stamp = 0; 7145 rq->avg_idle = 2*sysctl_sched_migration_cost; 7146 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7147 7148 INIT_LIST_HEAD(&rq->cfs_tasks); 7149 7150 rq_attach_root(rq, &def_root_domain); 7151 #ifdef CONFIG_NO_HZ_COMMON 7152 rq->last_blocked_load_update_tick = jiffies; 7153 atomic_set(&rq->nohz_flags, 0); 7154 7155 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func); 7156 #endif 7157 #endif /* CONFIG_SMP */ 7158 hrtick_rq_init(rq); 7159 atomic_set(&rq->nr_iowait, 0); 7160 } 7161 7162 set_load_weight(&init_task, false); 7163 7164 /* 7165 * The boot idle thread does lazy MMU switching as well: 7166 */ 7167 mmgrab(&init_mm); 7168 enter_lazy_tlb(&init_mm, current); 7169 7170 /* 7171 * Make us the idle thread. Technically, schedule() should not be 7172 * called from this thread, however somewhere below it might be, 7173 * but because we are the idle thread, we just pick up running again 7174 * when this runqueue becomes "idle". 7175 */ 7176 init_idle(current, smp_processor_id()); 7177 7178 calc_load_update = jiffies + LOAD_FREQ; 7179 7180 #ifdef CONFIG_SMP 7181 idle_thread_set_boot_cpu(); 7182 #endif 7183 init_sched_fair_class(); 7184 7185 init_schedstats(); 7186 7187 psi_init(); 7188 7189 init_uclamp(); 7190 7191 scheduler_running = 1; 7192 } 7193 7194 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7195 static inline int preempt_count_equals(int preempt_offset) 7196 { 7197 int nested = preempt_count() + rcu_preempt_depth(); 7198 7199 return (nested == preempt_offset); 7200 } 7201 7202 void __might_sleep(const char *file, int line, int preempt_offset) 7203 { 7204 /* 7205 * Blocking primitives will set (and therefore destroy) current->state, 7206 * since we will exit with TASK_RUNNING make sure we enter with it, 7207 * otherwise we will destroy state. 7208 */ 7209 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7210 "do not call blocking ops when !TASK_RUNNING; " 7211 "state=%lx set at [<%p>] %pS\n", 7212 current->state, 7213 (void *)current->task_state_change, 7214 (void *)current->task_state_change); 7215 7216 ___might_sleep(file, line, preempt_offset); 7217 } 7218 EXPORT_SYMBOL(__might_sleep); 7219 7220 void ___might_sleep(const char *file, int line, int preempt_offset) 7221 { 7222 /* Ratelimiting timestamp: */ 7223 static unsigned long prev_jiffy; 7224 7225 unsigned long preempt_disable_ip; 7226 7227 /* WARN_ON_ONCE() by default, no rate limit required: */ 7228 rcu_sleep_check(); 7229 7230 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7231 !is_idle_task(current) && !current->non_block_count) || 7232 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 7233 oops_in_progress) 7234 return; 7235 7236 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7237 return; 7238 prev_jiffy = jiffies; 7239 7240 /* Save this before calling printk(), since that will clobber it: */ 7241 preempt_disable_ip = get_preempt_disable_ip(current); 7242 7243 printk(KERN_ERR 7244 "BUG: sleeping function called from invalid context at %s:%d\n", 7245 file, line); 7246 printk(KERN_ERR 7247 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 7248 in_atomic(), irqs_disabled(), current->non_block_count, 7249 current->pid, current->comm); 7250 7251 if (task_stack_end_corrupted(current)) 7252 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7253 7254 debug_show_held_locks(current); 7255 if (irqs_disabled()) 7256 print_irqtrace_events(current); 7257 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 7258 && !preempt_count_equals(preempt_offset)) { 7259 pr_err("Preemption disabled at:"); 7260 print_ip_sym(KERN_ERR, preempt_disable_ip); 7261 } 7262 dump_stack(); 7263 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7264 } 7265 EXPORT_SYMBOL(___might_sleep); 7266 7267 void __cant_sleep(const char *file, int line, int preempt_offset) 7268 { 7269 static unsigned long prev_jiffy; 7270 7271 if (irqs_disabled()) 7272 return; 7273 7274 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 7275 return; 7276 7277 if (preempt_count() > preempt_offset) 7278 return; 7279 7280 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7281 return; 7282 prev_jiffy = jiffies; 7283 7284 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 7285 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7286 in_atomic(), irqs_disabled(), 7287 current->pid, current->comm); 7288 7289 debug_show_held_locks(current); 7290 dump_stack(); 7291 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7292 } 7293 EXPORT_SYMBOL_GPL(__cant_sleep); 7294 #endif 7295 7296 #ifdef CONFIG_MAGIC_SYSRQ 7297 void normalize_rt_tasks(void) 7298 { 7299 struct task_struct *g, *p; 7300 struct sched_attr attr = { 7301 .sched_policy = SCHED_NORMAL, 7302 }; 7303 7304 read_lock(&tasklist_lock); 7305 for_each_process_thread(g, p) { 7306 /* 7307 * Only normalize user tasks: 7308 */ 7309 if (p->flags & PF_KTHREAD) 7310 continue; 7311 7312 p->se.exec_start = 0; 7313 schedstat_set(p->se.statistics.wait_start, 0); 7314 schedstat_set(p->se.statistics.sleep_start, 0); 7315 schedstat_set(p->se.statistics.block_start, 0); 7316 7317 if (!dl_task(p) && !rt_task(p)) { 7318 /* 7319 * Renice negative nice level userspace 7320 * tasks back to 0: 7321 */ 7322 if (task_nice(p) < 0) 7323 set_user_nice(p, 0); 7324 continue; 7325 } 7326 7327 __sched_setscheduler(p, &attr, false, false); 7328 } 7329 read_unlock(&tasklist_lock); 7330 } 7331 7332 #endif /* CONFIG_MAGIC_SYSRQ */ 7333 7334 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7335 /* 7336 * These functions are only useful for the IA64 MCA handling, or kdb. 7337 * 7338 * They can only be called when the whole system has been 7339 * stopped - every CPU needs to be quiescent, and no scheduling 7340 * activity can take place. Using them for anything else would 7341 * be a serious bug, and as a result, they aren't even visible 7342 * under any other configuration. 7343 */ 7344 7345 /** 7346 * curr_task - return the current task for a given CPU. 7347 * @cpu: the processor in question. 7348 * 7349 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7350 * 7351 * Return: The current task for @cpu. 7352 */ 7353 struct task_struct *curr_task(int cpu) 7354 { 7355 return cpu_curr(cpu); 7356 } 7357 7358 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7359 7360 #ifdef CONFIG_IA64 7361 /** 7362 * ia64_set_curr_task - set the current task for a given CPU. 7363 * @cpu: the processor in question. 7364 * @p: the task pointer to set. 7365 * 7366 * Description: This function must only be used when non-maskable interrupts 7367 * are serviced on a separate stack. It allows the architecture to switch the 7368 * notion of the current task on a CPU in a non-blocking manner. This function 7369 * must be called with all CPU's synchronized, and interrupts disabled, the 7370 * and caller must save the original value of the current task (see 7371 * curr_task() above) and restore that value before reenabling interrupts and 7372 * re-starting the system. 7373 * 7374 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7375 */ 7376 void ia64_set_curr_task(int cpu, struct task_struct *p) 7377 { 7378 cpu_curr(cpu) = p; 7379 } 7380 7381 #endif 7382 7383 #ifdef CONFIG_CGROUP_SCHED 7384 /* task_group_lock serializes the addition/removal of task groups */ 7385 static DEFINE_SPINLOCK(task_group_lock); 7386 7387 static inline void alloc_uclamp_sched_group(struct task_group *tg, 7388 struct task_group *parent) 7389 { 7390 #ifdef CONFIG_UCLAMP_TASK_GROUP 7391 enum uclamp_id clamp_id; 7392 7393 for_each_clamp_id(clamp_id) { 7394 uclamp_se_set(&tg->uclamp_req[clamp_id], 7395 uclamp_none(clamp_id), false); 7396 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 7397 } 7398 #endif 7399 } 7400 7401 static void sched_free_group(struct task_group *tg) 7402 { 7403 free_fair_sched_group(tg); 7404 free_rt_sched_group(tg); 7405 autogroup_free(tg); 7406 kmem_cache_free(task_group_cache, tg); 7407 } 7408 7409 /* allocate runqueue etc for a new task group */ 7410 struct task_group *sched_create_group(struct task_group *parent) 7411 { 7412 struct task_group *tg; 7413 7414 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7415 if (!tg) 7416 return ERR_PTR(-ENOMEM); 7417 7418 if (!alloc_fair_sched_group(tg, parent)) 7419 goto err; 7420 7421 if (!alloc_rt_sched_group(tg, parent)) 7422 goto err; 7423 7424 alloc_uclamp_sched_group(tg, parent); 7425 7426 return tg; 7427 7428 err: 7429 sched_free_group(tg); 7430 return ERR_PTR(-ENOMEM); 7431 } 7432 7433 void sched_online_group(struct task_group *tg, struct task_group *parent) 7434 { 7435 unsigned long flags; 7436 7437 spin_lock_irqsave(&task_group_lock, flags); 7438 list_add_rcu(&tg->list, &task_groups); 7439 7440 /* Root should already exist: */ 7441 WARN_ON(!parent); 7442 7443 tg->parent = parent; 7444 INIT_LIST_HEAD(&tg->children); 7445 list_add_rcu(&tg->siblings, &parent->children); 7446 spin_unlock_irqrestore(&task_group_lock, flags); 7447 7448 online_fair_sched_group(tg); 7449 } 7450 7451 /* rcu callback to free various structures associated with a task group */ 7452 static void sched_free_group_rcu(struct rcu_head *rhp) 7453 { 7454 /* Now it should be safe to free those cfs_rqs: */ 7455 sched_free_group(container_of(rhp, struct task_group, rcu)); 7456 } 7457 7458 void sched_destroy_group(struct task_group *tg) 7459 { 7460 /* Wait for possible concurrent references to cfs_rqs complete: */ 7461 call_rcu(&tg->rcu, sched_free_group_rcu); 7462 } 7463 7464 void sched_offline_group(struct task_group *tg) 7465 { 7466 unsigned long flags; 7467 7468 /* End participation in shares distribution: */ 7469 unregister_fair_sched_group(tg); 7470 7471 spin_lock_irqsave(&task_group_lock, flags); 7472 list_del_rcu(&tg->list); 7473 list_del_rcu(&tg->siblings); 7474 spin_unlock_irqrestore(&task_group_lock, flags); 7475 } 7476 7477 static void sched_change_group(struct task_struct *tsk, int type) 7478 { 7479 struct task_group *tg; 7480 7481 /* 7482 * All callers are synchronized by task_rq_lock(); we do not use RCU 7483 * which is pointless here. Thus, we pass "true" to task_css_check() 7484 * to prevent lockdep warnings. 7485 */ 7486 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7487 struct task_group, css); 7488 tg = autogroup_task_group(tsk, tg); 7489 tsk->sched_task_group = tg; 7490 7491 #ifdef CONFIG_FAIR_GROUP_SCHED 7492 if (tsk->sched_class->task_change_group) 7493 tsk->sched_class->task_change_group(tsk, type); 7494 else 7495 #endif 7496 set_task_rq(tsk, task_cpu(tsk)); 7497 } 7498 7499 /* 7500 * Change task's runqueue when it moves between groups. 7501 * 7502 * The caller of this function should have put the task in its new group by 7503 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7504 * its new group. 7505 */ 7506 void sched_move_task(struct task_struct *tsk) 7507 { 7508 int queued, running, queue_flags = 7509 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7510 struct rq_flags rf; 7511 struct rq *rq; 7512 7513 rq = task_rq_lock(tsk, &rf); 7514 update_rq_clock(rq); 7515 7516 running = task_current(rq, tsk); 7517 queued = task_on_rq_queued(tsk); 7518 7519 if (queued) 7520 dequeue_task(rq, tsk, queue_flags); 7521 if (running) 7522 put_prev_task(rq, tsk); 7523 7524 sched_change_group(tsk, TASK_MOVE_GROUP); 7525 7526 if (queued) 7527 enqueue_task(rq, tsk, queue_flags); 7528 if (running) { 7529 set_next_task(rq, tsk); 7530 /* 7531 * After changing group, the running task may have joined a 7532 * throttled one but it's still the running task. Trigger a 7533 * resched to make sure that task can still run. 7534 */ 7535 resched_curr(rq); 7536 } 7537 7538 task_rq_unlock(rq, tsk, &rf); 7539 } 7540 7541 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7542 { 7543 return css ? container_of(css, struct task_group, css) : NULL; 7544 } 7545 7546 static struct cgroup_subsys_state * 7547 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7548 { 7549 struct task_group *parent = css_tg(parent_css); 7550 struct task_group *tg; 7551 7552 if (!parent) { 7553 /* This is early initialization for the top cgroup */ 7554 return &root_task_group.css; 7555 } 7556 7557 tg = sched_create_group(parent); 7558 if (IS_ERR(tg)) 7559 return ERR_PTR(-ENOMEM); 7560 7561 return &tg->css; 7562 } 7563 7564 /* Expose task group only after completing cgroup initialization */ 7565 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7566 { 7567 struct task_group *tg = css_tg(css); 7568 struct task_group *parent = css_tg(css->parent); 7569 7570 if (parent) 7571 sched_online_group(tg, parent); 7572 7573 #ifdef CONFIG_UCLAMP_TASK_GROUP 7574 /* Propagate the effective uclamp value for the new group */ 7575 cpu_util_update_eff(css); 7576 #endif 7577 7578 return 0; 7579 } 7580 7581 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7582 { 7583 struct task_group *tg = css_tg(css); 7584 7585 sched_offline_group(tg); 7586 } 7587 7588 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7589 { 7590 struct task_group *tg = css_tg(css); 7591 7592 /* 7593 * Relies on the RCU grace period between css_released() and this. 7594 */ 7595 sched_free_group(tg); 7596 } 7597 7598 /* 7599 * This is called before wake_up_new_task(), therefore we really only 7600 * have to set its group bits, all the other stuff does not apply. 7601 */ 7602 static void cpu_cgroup_fork(struct task_struct *task) 7603 { 7604 struct rq_flags rf; 7605 struct rq *rq; 7606 7607 rq = task_rq_lock(task, &rf); 7608 7609 update_rq_clock(rq); 7610 sched_change_group(task, TASK_SET_GROUP); 7611 7612 task_rq_unlock(rq, task, &rf); 7613 } 7614 7615 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7616 { 7617 struct task_struct *task; 7618 struct cgroup_subsys_state *css; 7619 int ret = 0; 7620 7621 cgroup_taskset_for_each(task, css, tset) { 7622 #ifdef CONFIG_RT_GROUP_SCHED 7623 if (!sched_rt_can_attach(css_tg(css), task)) 7624 return -EINVAL; 7625 #endif 7626 /* 7627 * Serialize against wake_up_new_task() such that if its 7628 * running, we're sure to observe its full state. 7629 */ 7630 raw_spin_lock_irq(&task->pi_lock); 7631 /* 7632 * Avoid calling sched_move_task() before wake_up_new_task() 7633 * has happened. This would lead to problems with PELT, due to 7634 * move wanting to detach+attach while we're not attached yet. 7635 */ 7636 if (task->state == TASK_NEW) 7637 ret = -EINVAL; 7638 raw_spin_unlock_irq(&task->pi_lock); 7639 7640 if (ret) 7641 break; 7642 } 7643 return ret; 7644 } 7645 7646 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7647 { 7648 struct task_struct *task; 7649 struct cgroup_subsys_state *css; 7650 7651 cgroup_taskset_for_each(task, css, tset) 7652 sched_move_task(task); 7653 } 7654 7655 #ifdef CONFIG_UCLAMP_TASK_GROUP 7656 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7657 { 7658 struct cgroup_subsys_state *top_css = css; 7659 struct uclamp_se *uc_parent = NULL; 7660 struct uclamp_se *uc_se = NULL; 7661 unsigned int eff[UCLAMP_CNT]; 7662 enum uclamp_id clamp_id; 7663 unsigned int clamps; 7664 7665 css_for_each_descendant_pre(css, top_css) { 7666 uc_parent = css_tg(css)->parent 7667 ? css_tg(css)->parent->uclamp : NULL; 7668 7669 for_each_clamp_id(clamp_id) { 7670 /* Assume effective clamps matches requested clamps */ 7671 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7672 /* Cap effective clamps with parent's effective clamps */ 7673 if (uc_parent && 7674 eff[clamp_id] > uc_parent[clamp_id].value) { 7675 eff[clamp_id] = uc_parent[clamp_id].value; 7676 } 7677 } 7678 /* Ensure protection is always capped by limit */ 7679 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7680 7681 /* Propagate most restrictive effective clamps */ 7682 clamps = 0x0; 7683 uc_se = css_tg(css)->uclamp; 7684 for_each_clamp_id(clamp_id) { 7685 if (eff[clamp_id] == uc_se[clamp_id].value) 7686 continue; 7687 uc_se[clamp_id].value = eff[clamp_id]; 7688 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7689 clamps |= (0x1 << clamp_id); 7690 } 7691 if (!clamps) { 7692 css = css_rightmost_descendant(css); 7693 continue; 7694 } 7695 7696 /* Immediately update descendants RUNNABLE tasks */ 7697 uclamp_update_active_tasks(css, clamps); 7698 } 7699 } 7700 7701 /* 7702 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7703 * C expression. Since there is no way to convert a macro argument (N) into a 7704 * character constant, use two levels of macros. 7705 */ 7706 #define _POW10(exp) ((unsigned int)1e##exp) 7707 #define POW10(exp) _POW10(exp) 7708 7709 struct uclamp_request { 7710 #define UCLAMP_PERCENT_SHIFT 2 7711 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7712 s64 percent; 7713 u64 util; 7714 int ret; 7715 }; 7716 7717 static inline struct uclamp_request 7718 capacity_from_percent(char *buf) 7719 { 7720 struct uclamp_request req = { 7721 .percent = UCLAMP_PERCENT_SCALE, 7722 .util = SCHED_CAPACITY_SCALE, 7723 .ret = 0, 7724 }; 7725 7726 buf = strim(buf); 7727 if (strcmp(buf, "max")) { 7728 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7729 &req.percent); 7730 if (req.ret) 7731 return req; 7732 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 7733 req.ret = -ERANGE; 7734 return req; 7735 } 7736 7737 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7738 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7739 } 7740 7741 return req; 7742 } 7743 7744 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7745 size_t nbytes, loff_t off, 7746 enum uclamp_id clamp_id) 7747 { 7748 struct uclamp_request req; 7749 struct task_group *tg; 7750 7751 req = capacity_from_percent(buf); 7752 if (req.ret) 7753 return req.ret; 7754 7755 static_branch_enable(&sched_uclamp_used); 7756 7757 mutex_lock(&uclamp_mutex); 7758 rcu_read_lock(); 7759 7760 tg = css_tg(of_css(of)); 7761 if (tg->uclamp_req[clamp_id].value != req.util) 7762 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7763 7764 /* 7765 * Because of not recoverable conversion rounding we keep track of the 7766 * exact requested value 7767 */ 7768 tg->uclamp_pct[clamp_id] = req.percent; 7769 7770 /* Update effective clamps to track the most restrictive value */ 7771 cpu_util_update_eff(of_css(of)); 7772 7773 rcu_read_unlock(); 7774 mutex_unlock(&uclamp_mutex); 7775 7776 return nbytes; 7777 } 7778 7779 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7780 char *buf, size_t nbytes, 7781 loff_t off) 7782 { 7783 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7784 } 7785 7786 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7787 char *buf, size_t nbytes, 7788 loff_t off) 7789 { 7790 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7791 } 7792 7793 static inline void cpu_uclamp_print(struct seq_file *sf, 7794 enum uclamp_id clamp_id) 7795 { 7796 struct task_group *tg; 7797 u64 util_clamp; 7798 u64 percent; 7799 u32 rem; 7800 7801 rcu_read_lock(); 7802 tg = css_tg(seq_css(sf)); 7803 util_clamp = tg->uclamp_req[clamp_id].value; 7804 rcu_read_unlock(); 7805 7806 if (util_clamp == SCHED_CAPACITY_SCALE) { 7807 seq_puts(sf, "max\n"); 7808 return; 7809 } 7810 7811 percent = tg->uclamp_pct[clamp_id]; 7812 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7813 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7814 } 7815 7816 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7817 { 7818 cpu_uclamp_print(sf, UCLAMP_MIN); 7819 return 0; 7820 } 7821 7822 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7823 { 7824 cpu_uclamp_print(sf, UCLAMP_MAX); 7825 return 0; 7826 } 7827 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7828 7829 #ifdef CONFIG_FAIR_GROUP_SCHED 7830 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7831 struct cftype *cftype, u64 shareval) 7832 { 7833 if (shareval > scale_load_down(ULONG_MAX)) 7834 shareval = MAX_SHARES; 7835 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7836 } 7837 7838 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7839 struct cftype *cft) 7840 { 7841 struct task_group *tg = css_tg(css); 7842 7843 return (u64) scale_load_down(tg->shares); 7844 } 7845 7846 #ifdef CONFIG_CFS_BANDWIDTH 7847 static DEFINE_MUTEX(cfs_constraints_mutex); 7848 7849 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7850 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7851 /* More than 203 days if BW_SHIFT equals 20. */ 7852 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 7853 7854 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7855 7856 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7857 { 7858 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7859 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7860 7861 if (tg == &root_task_group) 7862 return -EINVAL; 7863 7864 /* 7865 * Ensure we have at some amount of bandwidth every period. This is 7866 * to prevent reaching a state of large arrears when throttled via 7867 * entity_tick() resulting in prolonged exit starvation. 7868 */ 7869 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7870 return -EINVAL; 7871 7872 /* 7873 * Likewise, bound things on the otherside by preventing insane quota 7874 * periods. This also allows us to normalize in computing quota 7875 * feasibility. 7876 */ 7877 if (period > max_cfs_quota_period) 7878 return -EINVAL; 7879 7880 /* 7881 * Bound quota to defend quota against overflow during bandwidth shift. 7882 */ 7883 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 7884 return -EINVAL; 7885 7886 /* 7887 * Prevent race between setting of cfs_rq->runtime_enabled and 7888 * unthrottle_offline_cfs_rqs(). 7889 */ 7890 get_online_cpus(); 7891 mutex_lock(&cfs_constraints_mutex); 7892 ret = __cfs_schedulable(tg, period, quota); 7893 if (ret) 7894 goto out_unlock; 7895 7896 runtime_enabled = quota != RUNTIME_INF; 7897 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7898 /* 7899 * If we need to toggle cfs_bandwidth_used, off->on must occur 7900 * before making related changes, and on->off must occur afterwards 7901 */ 7902 if (runtime_enabled && !runtime_was_enabled) 7903 cfs_bandwidth_usage_inc(); 7904 raw_spin_lock_irq(&cfs_b->lock); 7905 cfs_b->period = ns_to_ktime(period); 7906 cfs_b->quota = quota; 7907 7908 __refill_cfs_bandwidth_runtime(cfs_b); 7909 7910 /* Restart the period timer (if active) to handle new period expiry: */ 7911 if (runtime_enabled) 7912 start_cfs_bandwidth(cfs_b); 7913 7914 raw_spin_unlock_irq(&cfs_b->lock); 7915 7916 for_each_online_cpu(i) { 7917 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7918 struct rq *rq = cfs_rq->rq; 7919 struct rq_flags rf; 7920 7921 rq_lock_irq(rq, &rf); 7922 cfs_rq->runtime_enabled = runtime_enabled; 7923 cfs_rq->runtime_remaining = 0; 7924 7925 if (cfs_rq->throttled) 7926 unthrottle_cfs_rq(cfs_rq); 7927 rq_unlock_irq(rq, &rf); 7928 } 7929 if (runtime_was_enabled && !runtime_enabled) 7930 cfs_bandwidth_usage_dec(); 7931 out_unlock: 7932 mutex_unlock(&cfs_constraints_mutex); 7933 put_online_cpus(); 7934 7935 return ret; 7936 } 7937 7938 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7939 { 7940 u64 quota, period; 7941 7942 period = ktime_to_ns(tg->cfs_bandwidth.period); 7943 if (cfs_quota_us < 0) 7944 quota = RUNTIME_INF; 7945 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7946 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7947 else 7948 return -EINVAL; 7949 7950 return tg_set_cfs_bandwidth(tg, period, quota); 7951 } 7952 7953 static long tg_get_cfs_quota(struct task_group *tg) 7954 { 7955 u64 quota_us; 7956 7957 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7958 return -1; 7959 7960 quota_us = tg->cfs_bandwidth.quota; 7961 do_div(quota_us, NSEC_PER_USEC); 7962 7963 return quota_us; 7964 } 7965 7966 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7967 { 7968 u64 quota, period; 7969 7970 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7971 return -EINVAL; 7972 7973 period = (u64)cfs_period_us * NSEC_PER_USEC; 7974 quota = tg->cfs_bandwidth.quota; 7975 7976 return tg_set_cfs_bandwidth(tg, period, quota); 7977 } 7978 7979 static long tg_get_cfs_period(struct task_group *tg) 7980 { 7981 u64 cfs_period_us; 7982 7983 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7984 do_div(cfs_period_us, NSEC_PER_USEC); 7985 7986 return cfs_period_us; 7987 } 7988 7989 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7990 struct cftype *cft) 7991 { 7992 return tg_get_cfs_quota(css_tg(css)); 7993 } 7994 7995 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7996 struct cftype *cftype, s64 cfs_quota_us) 7997 { 7998 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7999 } 8000 8001 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8002 struct cftype *cft) 8003 { 8004 return tg_get_cfs_period(css_tg(css)); 8005 } 8006 8007 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8008 struct cftype *cftype, u64 cfs_period_us) 8009 { 8010 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8011 } 8012 8013 struct cfs_schedulable_data { 8014 struct task_group *tg; 8015 u64 period, quota; 8016 }; 8017 8018 /* 8019 * normalize group quota/period to be quota/max_period 8020 * note: units are usecs 8021 */ 8022 static u64 normalize_cfs_quota(struct task_group *tg, 8023 struct cfs_schedulable_data *d) 8024 { 8025 u64 quota, period; 8026 8027 if (tg == d->tg) { 8028 period = d->period; 8029 quota = d->quota; 8030 } else { 8031 period = tg_get_cfs_period(tg); 8032 quota = tg_get_cfs_quota(tg); 8033 } 8034 8035 /* note: these should typically be equivalent */ 8036 if (quota == RUNTIME_INF || quota == -1) 8037 return RUNTIME_INF; 8038 8039 return to_ratio(period, quota); 8040 } 8041 8042 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8043 { 8044 struct cfs_schedulable_data *d = data; 8045 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8046 s64 quota = 0, parent_quota = -1; 8047 8048 if (!tg->parent) { 8049 quota = RUNTIME_INF; 8050 } else { 8051 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8052 8053 quota = normalize_cfs_quota(tg, d); 8054 parent_quota = parent_b->hierarchical_quota; 8055 8056 /* 8057 * Ensure max(child_quota) <= parent_quota. On cgroup2, 8058 * always take the min. On cgroup1, only inherit when no 8059 * limit is set: 8060 */ 8061 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 8062 quota = min(quota, parent_quota); 8063 } else { 8064 if (quota == RUNTIME_INF) 8065 quota = parent_quota; 8066 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8067 return -EINVAL; 8068 } 8069 } 8070 cfs_b->hierarchical_quota = quota; 8071 8072 return 0; 8073 } 8074 8075 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8076 { 8077 int ret; 8078 struct cfs_schedulable_data data = { 8079 .tg = tg, 8080 .period = period, 8081 .quota = quota, 8082 }; 8083 8084 if (quota != RUNTIME_INF) { 8085 do_div(data.period, NSEC_PER_USEC); 8086 do_div(data.quota, NSEC_PER_USEC); 8087 } 8088 8089 rcu_read_lock(); 8090 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8091 rcu_read_unlock(); 8092 8093 return ret; 8094 } 8095 8096 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 8097 { 8098 struct task_group *tg = css_tg(seq_css(sf)); 8099 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8100 8101 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8102 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8103 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8104 8105 if (schedstat_enabled() && tg != &root_task_group) { 8106 u64 ws = 0; 8107 int i; 8108 8109 for_each_possible_cpu(i) 8110 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 8111 8112 seq_printf(sf, "wait_sum %llu\n", ws); 8113 } 8114 8115 return 0; 8116 } 8117 #endif /* CONFIG_CFS_BANDWIDTH */ 8118 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8119 8120 #ifdef CONFIG_RT_GROUP_SCHED 8121 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8122 struct cftype *cft, s64 val) 8123 { 8124 return sched_group_set_rt_runtime(css_tg(css), val); 8125 } 8126 8127 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8128 struct cftype *cft) 8129 { 8130 return sched_group_rt_runtime(css_tg(css)); 8131 } 8132 8133 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8134 struct cftype *cftype, u64 rt_period_us) 8135 { 8136 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8137 } 8138 8139 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8140 struct cftype *cft) 8141 { 8142 return sched_group_rt_period(css_tg(css)); 8143 } 8144 #endif /* CONFIG_RT_GROUP_SCHED */ 8145 8146 static struct cftype cpu_legacy_files[] = { 8147 #ifdef CONFIG_FAIR_GROUP_SCHED 8148 { 8149 .name = "shares", 8150 .read_u64 = cpu_shares_read_u64, 8151 .write_u64 = cpu_shares_write_u64, 8152 }, 8153 #endif 8154 #ifdef CONFIG_CFS_BANDWIDTH 8155 { 8156 .name = "cfs_quota_us", 8157 .read_s64 = cpu_cfs_quota_read_s64, 8158 .write_s64 = cpu_cfs_quota_write_s64, 8159 }, 8160 { 8161 .name = "cfs_period_us", 8162 .read_u64 = cpu_cfs_period_read_u64, 8163 .write_u64 = cpu_cfs_period_write_u64, 8164 }, 8165 { 8166 .name = "stat", 8167 .seq_show = cpu_cfs_stat_show, 8168 }, 8169 #endif 8170 #ifdef CONFIG_RT_GROUP_SCHED 8171 { 8172 .name = "rt_runtime_us", 8173 .read_s64 = cpu_rt_runtime_read, 8174 .write_s64 = cpu_rt_runtime_write, 8175 }, 8176 { 8177 .name = "rt_period_us", 8178 .read_u64 = cpu_rt_period_read_uint, 8179 .write_u64 = cpu_rt_period_write_uint, 8180 }, 8181 #endif 8182 #ifdef CONFIG_UCLAMP_TASK_GROUP 8183 { 8184 .name = "uclamp.min", 8185 .flags = CFTYPE_NOT_ON_ROOT, 8186 .seq_show = cpu_uclamp_min_show, 8187 .write = cpu_uclamp_min_write, 8188 }, 8189 { 8190 .name = "uclamp.max", 8191 .flags = CFTYPE_NOT_ON_ROOT, 8192 .seq_show = cpu_uclamp_max_show, 8193 .write = cpu_uclamp_max_write, 8194 }, 8195 #endif 8196 { } /* Terminate */ 8197 }; 8198 8199 static int cpu_extra_stat_show(struct seq_file *sf, 8200 struct cgroup_subsys_state *css) 8201 { 8202 #ifdef CONFIG_CFS_BANDWIDTH 8203 { 8204 struct task_group *tg = css_tg(css); 8205 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8206 u64 throttled_usec; 8207 8208 throttled_usec = cfs_b->throttled_time; 8209 do_div(throttled_usec, NSEC_PER_USEC); 8210 8211 seq_printf(sf, "nr_periods %d\n" 8212 "nr_throttled %d\n" 8213 "throttled_usec %llu\n", 8214 cfs_b->nr_periods, cfs_b->nr_throttled, 8215 throttled_usec); 8216 } 8217 #endif 8218 return 0; 8219 } 8220 8221 #ifdef CONFIG_FAIR_GROUP_SCHED 8222 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 8223 struct cftype *cft) 8224 { 8225 struct task_group *tg = css_tg(css); 8226 u64 weight = scale_load_down(tg->shares); 8227 8228 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 8229 } 8230 8231 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 8232 struct cftype *cft, u64 weight) 8233 { 8234 /* 8235 * cgroup weight knobs should use the common MIN, DFL and MAX 8236 * values which are 1, 100 and 10000 respectively. While it loses 8237 * a bit of range on both ends, it maps pretty well onto the shares 8238 * value used by scheduler and the round-trip conversions preserve 8239 * the original value over the entire range. 8240 */ 8241 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 8242 return -ERANGE; 8243 8244 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 8245 8246 return sched_group_set_shares(css_tg(css), scale_load(weight)); 8247 } 8248 8249 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 8250 struct cftype *cft) 8251 { 8252 unsigned long weight = scale_load_down(css_tg(css)->shares); 8253 int last_delta = INT_MAX; 8254 int prio, delta; 8255 8256 /* find the closest nice value to the current weight */ 8257 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 8258 delta = abs(sched_prio_to_weight[prio] - weight); 8259 if (delta >= last_delta) 8260 break; 8261 last_delta = delta; 8262 } 8263 8264 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 8265 } 8266 8267 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 8268 struct cftype *cft, s64 nice) 8269 { 8270 unsigned long weight; 8271 int idx; 8272 8273 if (nice < MIN_NICE || nice > MAX_NICE) 8274 return -ERANGE; 8275 8276 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 8277 idx = array_index_nospec(idx, 40); 8278 weight = sched_prio_to_weight[idx]; 8279 8280 return sched_group_set_shares(css_tg(css), scale_load(weight)); 8281 } 8282 #endif 8283 8284 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 8285 long period, long quota) 8286 { 8287 if (quota < 0) 8288 seq_puts(sf, "max"); 8289 else 8290 seq_printf(sf, "%ld", quota); 8291 8292 seq_printf(sf, " %ld\n", period); 8293 } 8294 8295 /* caller should put the current value in *@periodp before calling */ 8296 static int __maybe_unused cpu_period_quota_parse(char *buf, 8297 u64 *periodp, u64 *quotap) 8298 { 8299 char tok[21]; /* U64_MAX */ 8300 8301 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 8302 return -EINVAL; 8303 8304 *periodp *= NSEC_PER_USEC; 8305 8306 if (sscanf(tok, "%llu", quotap)) 8307 *quotap *= NSEC_PER_USEC; 8308 else if (!strcmp(tok, "max")) 8309 *quotap = RUNTIME_INF; 8310 else 8311 return -EINVAL; 8312 8313 return 0; 8314 } 8315 8316 #ifdef CONFIG_CFS_BANDWIDTH 8317 static int cpu_max_show(struct seq_file *sf, void *v) 8318 { 8319 struct task_group *tg = css_tg(seq_css(sf)); 8320 8321 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 8322 return 0; 8323 } 8324 8325 static ssize_t cpu_max_write(struct kernfs_open_file *of, 8326 char *buf, size_t nbytes, loff_t off) 8327 { 8328 struct task_group *tg = css_tg(of_css(of)); 8329 u64 period = tg_get_cfs_period(tg); 8330 u64 quota; 8331 int ret; 8332 8333 ret = cpu_period_quota_parse(buf, &period, "a); 8334 if (!ret) 8335 ret = tg_set_cfs_bandwidth(tg, period, quota); 8336 return ret ?: nbytes; 8337 } 8338 #endif 8339 8340 static struct cftype cpu_files[] = { 8341 #ifdef CONFIG_FAIR_GROUP_SCHED 8342 { 8343 .name = "weight", 8344 .flags = CFTYPE_NOT_ON_ROOT, 8345 .read_u64 = cpu_weight_read_u64, 8346 .write_u64 = cpu_weight_write_u64, 8347 }, 8348 { 8349 .name = "weight.nice", 8350 .flags = CFTYPE_NOT_ON_ROOT, 8351 .read_s64 = cpu_weight_nice_read_s64, 8352 .write_s64 = cpu_weight_nice_write_s64, 8353 }, 8354 #endif 8355 #ifdef CONFIG_CFS_BANDWIDTH 8356 { 8357 .name = "max", 8358 .flags = CFTYPE_NOT_ON_ROOT, 8359 .seq_show = cpu_max_show, 8360 .write = cpu_max_write, 8361 }, 8362 #endif 8363 #ifdef CONFIG_UCLAMP_TASK_GROUP 8364 { 8365 .name = "uclamp.min", 8366 .flags = CFTYPE_NOT_ON_ROOT, 8367 .seq_show = cpu_uclamp_min_show, 8368 .write = cpu_uclamp_min_write, 8369 }, 8370 { 8371 .name = "uclamp.max", 8372 .flags = CFTYPE_NOT_ON_ROOT, 8373 .seq_show = cpu_uclamp_max_show, 8374 .write = cpu_uclamp_max_write, 8375 }, 8376 #endif 8377 { } /* terminate */ 8378 }; 8379 8380 struct cgroup_subsys cpu_cgrp_subsys = { 8381 .css_alloc = cpu_cgroup_css_alloc, 8382 .css_online = cpu_cgroup_css_online, 8383 .css_released = cpu_cgroup_css_released, 8384 .css_free = cpu_cgroup_css_free, 8385 .css_extra_stat_show = cpu_extra_stat_show, 8386 .fork = cpu_cgroup_fork, 8387 .can_attach = cpu_cgroup_can_attach, 8388 .attach = cpu_cgroup_attach, 8389 .legacy_cftypes = cpu_legacy_files, 8390 .dfl_cftypes = cpu_files, 8391 .early_init = true, 8392 .threaded = true, 8393 }; 8394 8395 #endif /* CONFIG_CGROUP_SCHED */ 8396 8397 void dump_cpu_task(int cpu) 8398 { 8399 pr_info("Task dump for CPU %d:\n", cpu); 8400 sched_show_task(cpu_curr(cpu)); 8401 } 8402 8403 /* 8404 * Nice levels are multiplicative, with a gentle 10% change for every 8405 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8406 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8407 * that remained on nice 0. 8408 * 8409 * The "10% effect" is relative and cumulative: from _any_ nice level, 8410 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8411 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8412 * If a task goes up by ~10% and another task goes down by ~10% then 8413 * the relative distance between them is ~25%.) 8414 */ 8415 const int sched_prio_to_weight[40] = { 8416 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8417 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8418 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8419 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8420 /* 0 */ 1024, 820, 655, 526, 423, 8421 /* 5 */ 335, 272, 215, 172, 137, 8422 /* 10 */ 110, 87, 70, 56, 45, 8423 /* 15 */ 36, 29, 23, 18, 15, 8424 }; 8425 8426 /* 8427 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8428 * 8429 * In cases where the weight does not change often, we can use the 8430 * precalculated inverse to speed up arithmetics by turning divisions 8431 * into multiplications: 8432 */ 8433 const u32 sched_prio_to_wmult[40] = { 8434 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8435 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8436 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8437 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8438 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8439 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8440 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8441 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8442 }; 8443 8444 void call_trace_sched_update_nr_running(struct rq *rq, int count) 8445 { 8446 trace_sched_update_nr_running_tp(rq, count); 8447 } 8448