xref: /openbmc/linux/kernel/sched/core.c (revision 4f6cce39)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/cpuset.h>
14 #include <linux/delayacct.h>
15 #include <linux/init_task.h>
16 #include <linux/context_tracking.h>
17 #include <linux/rcupdate_wait.h>
18 
19 #include <linux/blkdev.h>
20 #include <linux/kprobes.h>
21 #include <linux/mmu_context.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/prefetch.h>
25 #include <linux/profile.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 
29 #include <asm/switch_to.h>
30 #include <asm/tlb.h>
31 #ifdef CONFIG_PARAVIRT
32 #include <asm/paravirt.h>
33 #endif
34 
35 #include "sched.h"
36 #include "../workqueue_internal.h"
37 #include "../smpboot.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/sched.h>
41 
42 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
43 
44 /*
45  * Debugging: various feature bits
46  */
47 
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 
51 const_debug unsigned int sysctl_sched_features =
52 #include "features.h"
53 	0;
54 
55 #undef SCHED_FEAT
56 
57 /*
58  * Number of tasks to iterate in a single balance run.
59  * Limited because this is done with IRQs disabled.
60  */
61 const_debug unsigned int sysctl_sched_nr_migrate = 32;
62 
63 /*
64  * period over which we average the RT time consumption, measured
65  * in ms.
66  *
67  * default: 1s
68  */
69 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70 
71 /*
72  * period over which we measure -rt task CPU usage in us.
73  * default: 1s
74  */
75 unsigned int sysctl_sched_rt_period = 1000000;
76 
77 __read_mostly int scheduler_running;
78 
79 /*
80  * part of the period that we allow rt tasks to run in us.
81  * default: 0.95s
82  */
83 int sysctl_sched_rt_runtime = 950000;
84 
85 /* CPUs with isolated domains */
86 cpumask_var_t cpu_isolated_map;
87 
88 /*
89  * this_rq_lock - lock this runqueue and disable interrupts.
90  */
91 static struct rq *this_rq_lock(void)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	local_irq_disable();
97 	rq = this_rq();
98 	raw_spin_lock(&rq->lock);
99 
100 	return rq;
101 }
102 
103 /*
104  * __task_rq_lock - lock the rq @p resides on.
105  */
106 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
107 	__acquires(rq->lock)
108 {
109 	struct rq *rq;
110 
111 	lockdep_assert_held(&p->pi_lock);
112 
113 	for (;;) {
114 		rq = task_rq(p);
115 		raw_spin_lock(&rq->lock);
116 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
117 			rq_pin_lock(rq, rf);
118 			return rq;
119 		}
120 		raw_spin_unlock(&rq->lock);
121 
122 		while (unlikely(task_on_rq_migrating(p)))
123 			cpu_relax();
124 	}
125 }
126 
127 /*
128  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
129  */
130 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
131 	__acquires(p->pi_lock)
132 	__acquires(rq->lock)
133 {
134 	struct rq *rq;
135 
136 	for (;;) {
137 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
138 		rq = task_rq(p);
139 		raw_spin_lock(&rq->lock);
140 		/*
141 		 *	move_queued_task()		task_rq_lock()
142 		 *
143 		 *	ACQUIRE (rq->lock)
144 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
145 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
146 		 *	[S] ->cpu = new_cpu		[L] task_rq()
147 		 *					[L] ->on_rq
148 		 *	RELEASE (rq->lock)
149 		 *
150 		 * If we observe the old cpu in task_rq_lock, the acquire of
151 		 * the old rq->lock will fully serialize against the stores.
152 		 *
153 		 * If we observe the new CPU in task_rq_lock, the acquire will
154 		 * pair with the WMB to ensure we must then also see migrating.
155 		 */
156 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
157 			rq_pin_lock(rq, rf);
158 			return rq;
159 		}
160 		raw_spin_unlock(&rq->lock);
161 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
162 
163 		while (unlikely(task_on_rq_migrating(p)))
164 			cpu_relax();
165 	}
166 }
167 
168 /*
169  * RQ-clock updating methods:
170  */
171 
172 static void update_rq_clock_task(struct rq *rq, s64 delta)
173 {
174 /*
175  * In theory, the compile should just see 0 here, and optimize out the call
176  * to sched_rt_avg_update. But I don't trust it...
177  */
178 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
179 	s64 steal = 0, irq_delta = 0;
180 #endif
181 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
182 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
183 
184 	/*
185 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
186 	 * this case when a previous update_rq_clock() happened inside a
187 	 * {soft,}irq region.
188 	 *
189 	 * When this happens, we stop ->clock_task and only update the
190 	 * prev_irq_time stamp to account for the part that fit, so that a next
191 	 * update will consume the rest. This ensures ->clock_task is
192 	 * monotonic.
193 	 *
194 	 * It does however cause some slight miss-attribution of {soft,}irq
195 	 * time, a more accurate solution would be to update the irq_time using
196 	 * the current rq->clock timestamp, except that would require using
197 	 * atomic ops.
198 	 */
199 	if (irq_delta > delta)
200 		irq_delta = delta;
201 
202 	rq->prev_irq_time += irq_delta;
203 	delta -= irq_delta;
204 #endif
205 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
206 	if (static_key_false((&paravirt_steal_rq_enabled))) {
207 		steal = paravirt_steal_clock(cpu_of(rq));
208 		steal -= rq->prev_steal_time_rq;
209 
210 		if (unlikely(steal > delta))
211 			steal = delta;
212 
213 		rq->prev_steal_time_rq += steal;
214 		delta -= steal;
215 	}
216 #endif
217 
218 	rq->clock_task += delta;
219 
220 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
221 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
222 		sched_rt_avg_update(rq, irq_delta + steal);
223 #endif
224 }
225 
226 void update_rq_clock(struct rq *rq)
227 {
228 	s64 delta;
229 
230 	lockdep_assert_held(&rq->lock);
231 
232 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
233 		return;
234 
235 #ifdef CONFIG_SCHED_DEBUG
236 	rq->clock_update_flags |= RQCF_UPDATED;
237 #endif
238 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
239 	if (delta < 0)
240 		return;
241 	rq->clock += delta;
242 	update_rq_clock_task(rq, delta);
243 }
244 
245 
246 #ifdef CONFIG_SCHED_HRTICK
247 /*
248  * Use HR-timers to deliver accurate preemption points.
249  */
250 
251 static void hrtick_clear(struct rq *rq)
252 {
253 	if (hrtimer_active(&rq->hrtick_timer))
254 		hrtimer_cancel(&rq->hrtick_timer);
255 }
256 
257 /*
258  * High-resolution timer tick.
259  * Runs from hardirq context with interrupts disabled.
260  */
261 static enum hrtimer_restart hrtick(struct hrtimer *timer)
262 {
263 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
264 
265 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
266 
267 	raw_spin_lock(&rq->lock);
268 	update_rq_clock(rq);
269 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
270 	raw_spin_unlock(&rq->lock);
271 
272 	return HRTIMER_NORESTART;
273 }
274 
275 #ifdef CONFIG_SMP
276 
277 static void __hrtick_restart(struct rq *rq)
278 {
279 	struct hrtimer *timer = &rq->hrtick_timer;
280 
281 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
282 }
283 
284 /*
285  * called from hardirq (IPI) context
286  */
287 static void __hrtick_start(void *arg)
288 {
289 	struct rq *rq = arg;
290 
291 	raw_spin_lock(&rq->lock);
292 	__hrtick_restart(rq);
293 	rq->hrtick_csd_pending = 0;
294 	raw_spin_unlock(&rq->lock);
295 }
296 
297 /*
298  * Called to set the hrtick timer state.
299  *
300  * called with rq->lock held and irqs disabled
301  */
302 void hrtick_start(struct rq *rq, u64 delay)
303 {
304 	struct hrtimer *timer = &rq->hrtick_timer;
305 	ktime_t time;
306 	s64 delta;
307 
308 	/*
309 	 * Don't schedule slices shorter than 10000ns, that just
310 	 * doesn't make sense and can cause timer DoS.
311 	 */
312 	delta = max_t(s64, delay, 10000LL);
313 	time = ktime_add_ns(timer->base->get_time(), delta);
314 
315 	hrtimer_set_expires(timer, time);
316 
317 	if (rq == this_rq()) {
318 		__hrtick_restart(rq);
319 	} else if (!rq->hrtick_csd_pending) {
320 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
321 		rq->hrtick_csd_pending = 1;
322 	}
323 }
324 
325 #else
326 /*
327  * Called to set the hrtick timer state.
328  *
329  * called with rq->lock held and irqs disabled
330  */
331 void hrtick_start(struct rq *rq, u64 delay)
332 {
333 	/*
334 	 * Don't schedule slices shorter than 10000ns, that just
335 	 * doesn't make sense. Rely on vruntime for fairness.
336 	 */
337 	delay = max_t(u64, delay, 10000LL);
338 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
339 		      HRTIMER_MODE_REL_PINNED);
340 }
341 #endif /* CONFIG_SMP */
342 
343 static void init_rq_hrtick(struct rq *rq)
344 {
345 #ifdef CONFIG_SMP
346 	rq->hrtick_csd_pending = 0;
347 
348 	rq->hrtick_csd.flags = 0;
349 	rq->hrtick_csd.func = __hrtick_start;
350 	rq->hrtick_csd.info = rq;
351 #endif
352 
353 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
354 	rq->hrtick_timer.function = hrtick;
355 }
356 #else	/* CONFIG_SCHED_HRTICK */
357 static inline void hrtick_clear(struct rq *rq)
358 {
359 }
360 
361 static inline void init_rq_hrtick(struct rq *rq)
362 {
363 }
364 #endif	/* CONFIG_SCHED_HRTICK */
365 
366 /*
367  * cmpxchg based fetch_or, macro so it works for different integer types
368  */
369 #define fetch_or(ptr, mask)						\
370 	({								\
371 		typeof(ptr) _ptr = (ptr);				\
372 		typeof(mask) _mask = (mask);				\
373 		typeof(*_ptr) _old, _val = *_ptr;			\
374 									\
375 		for (;;) {						\
376 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
377 			if (_old == _val)				\
378 				break;					\
379 			_val = _old;					\
380 		}							\
381 	_old;								\
382 })
383 
384 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
385 /*
386  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
387  * this avoids any races wrt polling state changes and thereby avoids
388  * spurious IPIs.
389  */
390 static bool set_nr_and_not_polling(struct task_struct *p)
391 {
392 	struct thread_info *ti = task_thread_info(p);
393 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
394 }
395 
396 /*
397  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
398  *
399  * If this returns true, then the idle task promises to call
400  * sched_ttwu_pending() and reschedule soon.
401  */
402 static bool set_nr_if_polling(struct task_struct *p)
403 {
404 	struct thread_info *ti = task_thread_info(p);
405 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
406 
407 	for (;;) {
408 		if (!(val & _TIF_POLLING_NRFLAG))
409 			return false;
410 		if (val & _TIF_NEED_RESCHED)
411 			return true;
412 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
413 		if (old == val)
414 			break;
415 		val = old;
416 	}
417 	return true;
418 }
419 
420 #else
421 static bool set_nr_and_not_polling(struct task_struct *p)
422 {
423 	set_tsk_need_resched(p);
424 	return true;
425 }
426 
427 #ifdef CONFIG_SMP
428 static bool set_nr_if_polling(struct task_struct *p)
429 {
430 	return false;
431 }
432 #endif
433 #endif
434 
435 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
436 {
437 	struct wake_q_node *node = &task->wake_q;
438 
439 	/*
440 	 * Atomically grab the task, if ->wake_q is !nil already it means
441 	 * its already queued (either by us or someone else) and will get the
442 	 * wakeup due to that.
443 	 *
444 	 * This cmpxchg() implies a full barrier, which pairs with the write
445 	 * barrier implied by the wakeup in wake_up_q().
446 	 */
447 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
448 		return;
449 
450 	get_task_struct(task);
451 
452 	/*
453 	 * The head is context local, there can be no concurrency.
454 	 */
455 	*head->lastp = node;
456 	head->lastp = &node->next;
457 }
458 
459 void wake_up_q(struct wake_q_head *head)
460 {
461 	struct wake_q_node *node = head->first;
462 
463 	while (node != WAKE_Q_TAIL) {
464 		struct task_struct *task;
465 
466 		task = container_of(node, struct task_struct, wake_q);
467 		BUG_ON(!task);
468 		/* Task can safely be re-inserted now: */
469 		node = node->next;
470 		task->wake_q.next = NULL;
471 
472 		/*
473 		 * wake_up_process() implies a wmb() to pair with the queueing
474 		 * in wake_q_add() so as not to miss wakeups.
475 		 */
476 		wake_up_process(task);
477 		put_task_struct(task);
478 	}
479 }
480 
481 /*
482  * resched_curr - mark rq's current task 'to be rescheduled now'.
483  *
484  * On UP this means the setting of the need_resched flag, on SMP it
485  * might also involve a cross-CPU call to trigger the scheduler on
486  * the target CPU.
487  */
488 void resched_curr(struct rq *rq)
489 {
490 	struct task_struct *curr = rq->curr;
491 	int cpu;
492 
493 	lockdep_assert_held(&rq->lock);
494 
495 	if (test_tsk_need_resched(curr))
496 		return;
497 
498 	cpu = cpu_of(rq);
499 
500 	if (cpu == smp_processor_id()) {
501 		set_tsk_need_resched(curr);
502 		set_preempt_need_resched();
503 		return;
504 	}
505 
506 	if (set_nr_and_not_polling(curr))
507 		smp_send_reschedule(cpu);
508 	else
509 		trace_sched_wake_idle_without_ipi(cpu);
510 }
511 
512 void resched_cpu(int cpu)
513 {
514 	struct rq *rq = cpu_rq(cpu);
515 	unsigned long flags;
516 
517 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
518 		return;
519 	resched_curr(rq);
520 	raw_spin_unlock_irqrestore(&rq->lock, flags);
521 }
522 
523 #ifdef CONFIG_SMP
524 #ifdef CONFIG_NO_HZ_COMMON
525 /*
526  * In the semi idle case, use the nearest busy CPU for migrating timers
527  * from an idle CPU.  This is good for power-savings.
528  *
529  * We don't do similar optimization for completely idle system, as
530  * selecting an idle CPU will add more delays to the timers than intended
531  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
532  */
533 int get_nohz_timer_target(void)
534 {
535 	int i, cpu = smp_processor_id();
536 	struct sched_domain *sd;
537 
538 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
539 		return cpu;
540 
541 	rcu_read_lock();
542 	for_each_domain(cpu, sd) {
543 		for_each_cpu(i, sched_domain_span(sd)) {
544 			if (cpu == i)
545 				continue;
546 
547 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
548 				cpu = i;
549 				goto unlock;
550 			}
551 		}
552 	}
553 
554 	if (!is_housekeeping_cpu(cpu))
555 		cpu = housekeeping_any_cpu();
556 unlock:
557 	rcu_read_unlock();
558 	return cpu;
559 }
560 
561 /*
562  * When add_timer_on() enqueues a timer into the timer wheel of an
563  * idle CPU then this timer might expire before the next timer event
564  * which is scheduled to wake up that CPU. In case of a completely
565  * idle system the next event might even be infinite time into the
566  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
567  * leaves the inner idle loop so the newly added timer is taken into
568  * account when the CPU goes back to idle and evaluates the timer
569  * wheel for the next timer event.
570  */
571 static void wake_up_idle_cpu(int cpu)
572 {
573 	struct rq *rq = cpu_rq(cpu);
574 
575 	if (cpu == smp_processor_id())
576 		return;
577 
578 	if (set_nr_and_not_polling(rq->idle))
579 		smp_send_reschedule(cpu);
580 	else
581 		trace_sched_wake_idle_without_ipi(cpu);
582 }
583 
584 static bool wake_up_full_nohz_cpu(int cpu)
585 {
586 	/*
587 	 * We just need the target to call irq_exit() and re-evaluate
588 	 * the next tick. The nohz full kick at least implies that.
589 	 * If needed we can still optimize that later with an
590 	 * empty IRQ.
591 	 */
592 	if (cpu_is_offline(cpu))
593 		return true;  /* Don't try to wake offline CPUs. */
594 	if (tick_nohz_full_cpu(cpu)) {
595 		if (cpu != smp_processor_id() ||
596 		    tick_nohz_tick_stopped())
597 			tick_nohz_full_kick_cpu(cpu);
598 		return true;
599 	}
600 
601 	return false;
602 }
603 
604 /*
605  * Wake up the specified CPU.  If the CPU is going offline, it is the
606  * caller's responsibility to deal with the lost wakeup, for example,
607  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
608  */
609 void wake_up_nohz_cpu(int cpu)
610 {
611 	if (!wake_up_full_nohz_cpu(cpu))
612 		wake_up_idle_cpu(cpu);
613 }
614 
615 static inline bool got_nohz_idle_kick(void)
616 {
617 	int cpu = smp_processor_id();
618 
619 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
620 		return false;
621 
622 	if (idle_cpu(cpu) && !need_resched())
623 		return true;
624 
625 	/*
626 	 * We can't run Idle Load Balance on this CPU for this time so we
627 	 * cancel it and clear NOHZ_BALANCE_KICK
628 	 */
629 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
630 	return false;
631 }
632 
633 #else /* CONFIG_NO_HZ_COMMON */
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	return false;
638 }
639 
640 #endif /* CONFIG_NO_HZ_COMMON */
641 
642 #ifdef CONFIG_NO_HZ_FULL
643 bool sched_can_stop_tick(struct rq *rq)
644 {
645 	int fifo_nr_running;
646 
647 	/* Deadline tasks, even if single, need the tick */
648 	if (rq->dl.dl_nr_running)
649 		return false;
650 
651 	/*
652 	 * If there are more than one RR tasks, we need the tick to effect the
653 	 * actual RR behaviour.
654 	 */
655 	if (rq->rt.rr_nr_running) {
656 		if (rq->rt.rr_nr_running == 1)
657 			return true;
658 		else
659 			return false;
660 	}
661 
662 	/*
663 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
664 	 * forced preemption between FIFO tasks.
665 	 */
666 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
667 	if (fifo_nr_running)
668 		return true;
669 
670 	/*
671 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
672 	 * if there's more than one we need the tick for involuntary
673 	 * preemption.
674 	 */
675 	if (rq->nr_running > 1)
676 		return false;
677 
678 	return true;
679 }
680 #endif /* CONFIG_NO_HZ_FULL */
681 
682 void sched_avg_update(struct rq *rq)
683 {
684 	s64 period = sched_avg_period();
685 
686 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687 		/*
688 		 * Inline assembly required to prevent the compiler
689 		 * optimising this loop into a divmod call.
690 		 * See __iter_div_u64_rem() for another example of this.
691 		 */
692 		asm("" : "+rm" (rq->age_stamp));
693 		rq->age_stamp += period;
694 		rq->rt_avg /= 2;
695 	}
696 }
697 
698 #endif /* CONFIG_SMP */
699 
700 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702 /*
703  * Iterate task_group tree rooted at *from, calling @down when first entering a
704  * node and @up when leaving it for the final time.
705  *
706  * Caller must hold rcu_lock or sufficient equivalent.
707  */
708 int walk_tg_tree_from(struct task_group *from,
709 			     tg_visitor down, tg_visitor up, void *data)
710 {
711 	struct task_group *parent, *child;
712 	int ret;
713 
714 	parent = from;
715 
716 down:
717 	ret = (*down)(parent, data);
718 	if (ret)
719 		goto out;
720 	list_for_each_entry_rcu(child, &parent->children, siblings) {
721 		parent = child;
722 		goto down;
723 
724 up:
725 		continue;
726 	}
727 	ret = (*up)(parent, data);
728 	if (ret || parent == from)
729 		goto out;
730 
731 	child = parent;
732 	parent = parent->parent;
733 	if (parent)
734 		goto up;
735 out:
736 	return ret;
737 }
738 
739 int tg_nop(struct task_group *tg, void *data)
740 {
741 	return 0;
742 }
743 #endif
744 
745 static void set_load_weight(struct task_struct *p)
746 {
747 	int prio = p->static_prio - MAX_RT_PRIO;
748 	struct load_weight *load = &p->se.load;
749 
750 	/*
751 	 * SCHED_IDLE tasks get minimal weight:
752 	 */
753 	if (idle_policy(p->policy)) {
754 		load->weight = scale_load(WEIGHT_IDLEPRIO);
755 		load->inv_weight = WMULT_IDLEPRIO;
756 		return;
757 	}
758 
759 	load->weight = scale_load(sched_prio_to_weight[prio]);
760 	load->inv_weight = sched_prio_to_wmult[prio];
761 }
762 
763 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	update_rq_clock(rq);
766 	if (!(flags & ENQUEUE_RESTORE))
767 		sched_info_queued(rq, p);
768 	p->sched_class->enqueue_task(rq, p, flags);
769 }
770 
771 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	update_rq_clock(rq);
774 	if (!(flags & DEQUEUE_SAVE))
775 		sched_info_dequeued(rq, p);
776 	p->sched_class->dequeue_task(rq, p, flags);
777 }
778 
779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 	if (task_contributes_to_load(p))
782 		rq->nr_uninterruptible--;
783 
784 	enqueue_task(rq, p, flags);
785 }
786 
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 {
789 	if (task_contributes_to_load(p))
790 		rq->nr_uninterruptible++;
791 
792 	dequeue_task(rq, p, flags);
793 }
794 
795 void sched_set_stop_task(int cpu, struct task_struct *stop)
796 {
797 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
798 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
799 
800 	if (stop) {
801 		/*
802 		 * Make it appear like a SCHED_FIFO task, its something
803 		 * userspace knows about and won't get confused about.
804 		 *
805 		 * Also, it will make PI more or less work without too
806 		 * much confusion -- but then, stop work should not
807 		 * rely on PI working anyway.
808 		 */
809 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
810 
811 		stop->sched_class = &stop_sched_class;
812 	}
813 
814 	cpu_rq(cpu)->stop = stop;
815 
816 	if (old_stop) {
817 		/*
818 		 * Reset it back to a normal scheduling class so that
819 		 * it can die in pieces.
820 		 */
821 		old_stop->sched_class = &rt_sched_class;
822 	}
823 }
824 
825 /*
826  * __normal_prio - return the priority that is based on the static prio
827  */
828 static inline int __normal_prio(struct task_struct *p)
829 {
830 	return p->static_prio;
831 }
832 
833 /*
834  * Calculate the expected normal priority: i.e. priority
835  * without taking RT-inheritance into account. Might be
836  * boosted by interactivity modifiers. Changes upon fork,
837  * setprio syscalls, and whenever the interactivity
838  * estimator recalculates.
839  */
840 static inline int normal_prio(struct task_struct *p)
841 {
842 	int prio;
843 
844 	if (task_has_dl_policy(p))
845 		prio = MAX_DL_PRIO-1;
846 	else if (task_has_rt_policy(p))
847 		prio = MAX_RT_PRIO-1 - p->rt_priority;
848 	else
849 		prio = __normal_prio(p);
850 	return prio;
851 }
852 
853 /*
854  * Calculate the current priority, i.e. the priority
855  * taken into account by the scheduler. This value might
856  * be boosted by RT tasks, or might be boosted by
857  * interactivity modifiers. Will be RT if the task got
858  * RT-boosted. If not then it returns p->normal_prio.
859  */
860 static int effective_prio(struct task_struct *p)
861 {
862 	p->normal_prio = normal_prio(p);
863 	/*
864 	 * If we are RT tasks or we were boosted to RT priority,
865 	 * keep the priority unchanged. Otherwise, update priority
866 	 * to the normal priority:
867 	 */
868 	if (!rt_prio(p->prio))
869 		return p->normal_prio;
870 	return p->prio;
871 }
872 
873 /**
874  * task_curr - is this task currently executing on a CPU?
875  * @p: the task in question.
876  *
877  * Return: 1 if the task is currently executing. 0 otherwise.
878  */
879 inline int task_curr(const struct task_struct *p)
880 {
881 	return cpu_curr(task_cpu(p)) == p;
882 }
883 
884 /*
885  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
886  * use the balance_callback list if you want balancing.
887  *
888  * this means any call to check_class_changed() must be followed by a call to
889  * balance_callback().
890  */
891 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
892 				       const struct sched_class *prev_class,
893 				       int oldprio)
894 {
895 	if (prev_class != p->sched_class) {
896 		if (prev_class->switched_from)
897 			prev_class->switched_from(rq, p);
898 
899 		p->sched_class->switched_to(rq, p);
900 	} else if (oldprio != p->prio || dl_task(p))
901 		p->sched_class->prio_changed(rq, p, oldprio);
902 }
903 
904 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
905 {
906 	const struct sched_class *class;
907 
908 	if (p->sched_class == rq->curr->sched_class) {
909 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
910 	} else {
911 		for_each_class(class) {
912 			if (class == rq->curr->sched_class)
913 				break;
914 			if (class == p->sched_class) {
915 				resched_curr(rq);
916 				break;
917 			}
918 		}
919 	}
920 
921 	/*
922 	 * A queue event has occurred, and we're going to schedule.  In
923 	 * this case, we can save a useless back to back clock update.
924 	 */
925 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
926 		rq_clock_skip_update(rq, true);
927 }
928 
929 #ifdef CONFIG_SMP
930 /*
931  * This is how migration works:
932  *
933  * 1) we invoke migration_cpu_stop() on the target CPU using
934  *    stop_one_cpu().
935  * 2) stopper starts to run (implicitly forcing the migrated thread
936  *    off the CPU)
937  * 3) it checks whether the migrated task is still in the wrong runqueue.
938  * 4) if it's in the wrong runqueue then the migration thread removes
939  *    it and puts it into the right queue.
940  * 5) stopper completes and stop_one_cpu() returns and the migration
941  *    is done.
942  */
943 
944 /*
945  * move_queued_task - move a queued task to new rq.
946  *
947  * Returns (locked) new rq. Old rq's lock is released.
948  */
949 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
950 {
951 	lockdep_assert_held(&rq->lock);
952 
953 	p->on_rq = TASK_ON_RQ_MIGRATING;
954 	dequeue_task(rq, p, 0);
955 	set_task_cpu(p, new_cpu);
956 	raw_spin_unlock(&rq->lock);
957 
958 	rq = cpu_rq(new_cpu);
959 
960 	raw_spin_lock(&rq->lock);
961 	BUG_ON(task_cpu(p) != new_cpu);
962 	enqueue_task(rq, p, 0);
963 	p->on_rq = TASK_ON_RQ_QUEUED;
964 	check_preempt_curr(rq, p, 0);
965 
966 	return rq;
967 }
968 
969 struct migration_arg {
970 	struct task_struct *task;
971 	int dest_cpu;
972 };
973 
974 /*
975  * Move (not current) task off this CPU, onto the destination CPU. We're doing
976  * this because either it can't run here any more (set_cpus_allowed()
977  * away from this CPU, or CPU going down), or because we're
978  * attempting to rebalance this task on exec (sched_exec).
979  *
980  * So we race with normal scheduler movements, but that's OK, as long
981  * as the task is no longer on this CPU.
982  */
983 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
984 {
985 	if (unlikely(!cpu_active(dest_cpu)))
986 		return rq;
987 
988 	/* Affinity changed (again). */
989 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
990 		return rq;
991 
992 	rq = move_queued_task(rq, p, dest_cpu);
993 
994 	return rq;
995 }
996 
997 /*
998  * migration_cpu_stop - this will be executed by a highprio stopper thread
999  * and performs thread migration by bumping thread off CPU then
1000  * 'pushing' onto another runqueue.
1001  */
1002 static int migration_cpu_stop(void *data)
1003 {
1004 	struct migration_arg *arg = data;
1005 	struct task_struct *p = arg->task;
1006 	struct rq *rq = this_rq();
1007 
1008 	/*
1009 	 * The original target CPU might have gone down and we might
1010 	 * be on another CPU but it doesn't matter.
1011 	 */
1012 	local_irq_disable();
1013 	/*
1014 	 * We need to explicitly wake pending tasks before running
1015 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1016 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1017 	 */
1018 	sched_ttwu_pending();
1019 
1020 	raw_spin_lock(&p->pi_lock);
1021 	raw_spin_lock(&rq->lock);
1022 	/*
1023 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1024 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1025 	 * we're holding p->pi_lock.
1026 	 */
1027 	if (task_rq(p) == rq) {
1028 		if (task_on_rq_queued(p))
1029 			rq = __migrate_task(rq, p, arg->dest_cpu);
1030 		else
1031 			p->wake_cpu = arg->dest_cpu;
1032 	}
1033 	raw_spin_unlock(&rq->lock);
1034 	raw_spin_unlock(&p->pi_lock);
1035 
1036 	local_irq_enable();
1037 	return 0;
1038 }
1039 
1040 /*
1041  * sched_class::set_cpus_allowed must do the below, but is not required to
1042  * actually call this function.
1043  */
1044 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1045 {
1046 	cpumask_copy(&p->cpus_allowed, new_mask);
1047 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1048 }
1049 
1050 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1051 {
1052 	struct rq *rq = task_rq(p);
1053 	bool queued, running;
1054 
1055 	lockdep_assert_held(&p->pi_lock);
1056 
1057 	queued = task_on_rq_queued(p);
1058 	running = task_current(rq, p);
1059 
1060 	if (queued) {
1061 		/*
1062 		 * Because __kthread_bind() calls this on blocked tasks without
1063 		 * holding rq->lock.
1064 		 */
1065 		lockdep_assert_held(&rq->lock);
1066 		dequeue_task(rq, p, DEQUEUE_SAVE);
1067 	}
1068 	if (running)
1069 		put_prev_task(rq, p);
1070 
1071 	p->sched_class->set_cpus_allowed(p, new_mask);
1072 
1073 	if (queued)
1074 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1075 	if (running)
1076 		set_curr_task(rq, p);
1077 }
1078 
1079 /*
1080  * Change a given task's CPU affinity. Migrate the thread to a
1081  * proper CPU and schedule it away if the CPU it's executing on
1082  * is removed from the allowed bitmask.
1083  *
1084  * NOTE: the caller must have a valid reference to the task, the
1085  * task must not exit() & deallocate itself prematurely. The
1086  * call is not atomic; no spinlocks may be held.
1087  */
1088 static int __set_cpus_allowed_ptr(struct task_struct *p,
1089 				  const struct cpumask *new_mask, bool check)
1090 {
1091 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1092 	unsigned int dest_cpu;
1093 	struct rq_flags rf;
1094 	struct rq *rq;
1095 	int ret = 0;
1096 
1097 	rq = task_rq_lock(p, &rf);
1098 	update_rq_clock(rq);
1099 
1100 	if (p->flags & PF_KTHREAD) {
1101 		/*
1102 		 * Kernel threads are allowed on online && !active CPUs
1103 		 */
1104 		cpu_valid_mask = cpu_online_mask;
1105 	}
1106 
1107 	/*
1108 	 * Must re-check here, to close a race against __kthread_bind(),
1109 	 * sched_setaffinity() is not guaranteed to observe the flag.
1110 	 */
1111 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1112 		ret = -EINVAL;
1113 		goto out;
1114 	}
1115 
1116 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1117 		goto out;
1118 
1119 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1120 		ret = -EINVAL;
1121 		goto out;
1122 	}
1123 
1124 	do_set_cpus_allowed(p, new_mask);
1125 
1126 	if (p->flags & PF_KTHREAD) {
1127 		/*
1128 		 * For kernel threads that do indeed end up on online &&
1129 		 * !active we want to ensure they are strict per-CPU threads.
1130 		 */
1131 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1132 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1133 			p->nr_cpus_allowed != 1);
1134 	}
1135 
1136 	/* Can the task run on the task's current CPU? If so, we're done */
1137 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1138 		goto out;
1139 
1140 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1141 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1142 		struct migration_arg arg = { p, dest_cpu };
1143 		/* Need help from migration thread: drop lock and wait. */
1144 		task_rq_unlock(rq, p, &rf);
1145 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1146 		tlb_migrate_finish(p->mm);
1147 		return 0;
1148 	} else if (task_on_rq_queued(p)) {
1149 		/*
1150 		 * OK, since we're going to drop the lock immediately
1151 		 * afterwards anyway.
1152 		 */
1153 		rq_unpin_lock(rq, &rf);
1154 		rq = move_queued_task(rq, p, dest_cpu);
1155 		rq_repin_lock(rq, &rf);
1156 	}
1157 out:
1158 	task_rq_unlock(rq, p, &rf);
1159 
1160 	return ret;
1161 }
1162 
1163 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1164 {
1165 	return __set_cpus_allowed_ptr(p, new_mask, false);
1166 }
1167 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1168 
1169 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1170 {
1171 #ifdef CONFIG_SCHED_DEBUG
1172 	/*
1173 	 * We should never call set_task_cpu() on a blocked task,
1174 	 * ttwu() will sort out the placement.
1175 	 */
1176 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1177 			!p->on_rq);
1178 
1179 	/*
1180 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1181 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1182 	 * time relying on p->on_rq.
1183 	 */
1184 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1185 		     p->sched_class == &fair_sched_class &&
1186 		     (p->on_rq && !task_on_rq_migrating(p)));
1187 
1188 #ifdef CONFIG_LOCKDEP
1189 	/*
1190 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1191 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1192 	 *
1193 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1194 	 * see task_group().
1195 	 *
1196 	 * Furthermore, all task_rq users should acquire both locks, see
1197 	 * task_rq_lock().
1198 	 */
1199 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1200 				      lockdep_is_held(&task_rq(p)->lock)));
1201 #endif
1202 #endif
1203 
1204 	trace_sched_migrate_task(p, new_cpu);
1205 
1206 	if (task_cpu(p) != new_cpu) {
1207 		if (p->sched_class->migrate_task_rq)
1208 			p->sched_class->migrate_task_rq(p);
1209 		p->se.nr_migrations++;
1210 		perf_event_task_migrate(p);
1211 	}
1212 
1213 	__set_task_cpu(p, new_cpu);
1214 }
1215 
1216 static void __migrate_swap_task(struct task_struct *p, int cpu)
1217 {
1218 	if (task_on_rq_queued(p)) {
1219 		struct rq *src_rq, *dst_rq;
1220 
1221 		src_rq = task_rq(p);
1222 		dst_rq = cpu_rq(cpu);
1223 
1224 		p->on_rq = TASK_ON_RQ_MIGRATING;
1225 		deactivate_task(src_rq, p, 0);
1226 		set_task_cpu(p, cpu);
1227 		activate_task(dst_rq, p, 0);
1228 		p->on_rq = TASK_ON_RQ_QUEUED;
1229 		check_preempt_curr(dst_rq, p, 0);
1230 	} else {
1231 		/*
1232 		 * Task isn't running anymore; make it appear like we migrated
1233 		 * it before it went to sleep. This means on wakeup we make the
1234 		 * previous CPU our target instead of where it really is.
1235 		 */
1236 		p->wake_cpu = cpu;
1237 	}
1238 }
1239 
1240 struct migration_swap_arg {
1241 	struct task_struct *src_task, *dst_task;
1242 	int src_cpu, dst_cpu;
1243 };
1244 
1245 static int migrate_swap_stop(void *data)
1246 {
1247 	struct migration_swap_arg *arg = data;
1248 	struct rq *src_rq, *dst_rq;
1249 	int ret = -EAGAIN;
1250 
1251 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1252 		return -EAGAIN;
1253 
1254 	src_rq = cpu_rq(arg->src_cpu);
1255 	dst_rq = cpu_rq(arg->dst_cpu);
1256 
1257 	double_raw_lock(&arg->src_task->pi_lock,
1258 			&arg->dst_task->pi_lock);
1259 	double_rq_lock(src_rq, dst_rq);
1260 
1261 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1262 		goto unlock;
1263 
1264 	if (task_cpu(arg->src_task) != arg->src_cpu)
1265 		goto unlock;
1266 
1267 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1268 		goto unlock;
1269 
1270 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1271 		goto unlock;
1272 
1273 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1274 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1275 
1276 	ret = 0;
1277 
1278 unlock:
1279 	double_rq_unlock(src_rq, dst_rq);
1280 	raw_spin_unlock(&arg->dst_task->pi_lock);
1281 	raw_spin_unlock(&arg->src_task->pi_lock);
1282 
1283 	return ret;
1284 }
1285 
1286 /*
1287  * Cross migrate two tasks
1288  */
1289 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1290 {
1291 	struct migration_swap_arg arg;
1292 	int ret = -EINVAL;
1293 
1294 	arg = (struct migration_swap_arg){
1295 		.src_task = cur,
1296 		.src_cpu = task_cpu(cur),
1297 		.dst_task = p,
1298 		.dst_cpu = task_cpu(p),
1299 	};
1300 
1301 	if (arg.src_cpu == arg.dst_cpu)
1302 		goto out;
1303 
1304 	/*
1305 	 * These three tests are all lockless; this is OK since all of them
1306 	 * will be re-checked with proper locks held further down the line.
1307 	 */
1308 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1309 		goto out;
1310 
1311 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1312 		goto out;
1313 
1314 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1315 		goto out;
1316 
1317 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1318 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1319 
1320 out:
1321 	return ret;
1322 }
1323 
1324 /*
1325  * wait_task_inactive - wait for a thread to unschedule.
1326  *
1327  * If @match_state is nonzero, it's the @p->state value just checked and
1328  * not expected to change.  If it changes, i.e. @p might have woken up,
1329  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1330  * we return a positive number (its total switch count).  If a second call
1331  * a short while later returns the same number, the caller can be sure that
1332  * @p has remained unscheduled the whole time.
1333  *
1334  * The caller must ensure that the task *will* unschedule sometime soon,
1335  * else this function might spin for a *long* time. This function can't
1336  * be called with interrupts off, or it may introduce deadlock with
1337  * smp_call_function() if an IPI is sent by the same process we are
1338  * waiting to become inactive.
1339  */
1340 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1341 {
1342 	int running, queued;
1343 	struct rq_flags rf;
1344 	unsigned long ncsw;
1345 	struct rq *rq;
1346 
1347 	for (;;) {
1348 		/*
1349 		 * We do the initial early heuristics without holding
1350 		 * any task-queue locks at all. We'll only try to get
1351 		 * the runqueue lock when things look like they will
1352 		 * work out!
1353 		 */
1354 		rq = task_rq(p);
1355 
1356 		/*
1357 		 * If the task is actively running on another CPU
1358 		 * still, just relax and busy-wait without holding
1359 		 * any locks.
1360 		 *
1361 		 * NOTE! Since we don't hold any locks, it's not
1362 		 * even sure that "rq" stays as the right runqueue!
1363 		 * But we don't care, since "task_running()" will
1364 		 * return false if the runqueue has changed and p
1365 		 * is actually now running somewhere else!
1366 		 */
1367 		while (task_running(rq, p)) {
1368 			if (match_state && unlikely(p->state != match_state))
1369 				return 0;
1370 			cpu_relax();
1371 		}
1372 
1373 		/*
1374 		 * Ok, time to look more closely! We need the rq
1375 		 * lock now, to be *sure*. If we're wrong, we'll
1376 		 * just go back and repeat.
1377 		 */
1378 		rq = task_rq_lock(p, &rf);
1379 		trace_sched_wait_task(p);
1380 		running = task_running(rq, p);
1381 		queued = task_on_rq_queued(p);
1382 		ncsw = 0;
1383 		if (!match_state || p->state == match_state)
1384 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1385 		task_rq_unlock(rq, p, &rf);
1386 
1387 		/*
1388 		 * If it changed from the expected state, bail out now.
1389 		 */
1390 		if (unlikely(!ncsw))
1391 			break;
1392 
1393 		/*
1394 		 * Was it really running after all now that we
1395 		 * checked with the proper locks actually held?
1396 		 *
1397 		 * Oops. Go back and try again..
1398 		 */
1399 		if (unlikely(running)) {
1400 			cpu_relax();
1401 			continue;
1402 		}
1403 
1404 		/*
1405 		 * It's not enough that it's not actively running,
1406 		 * it must be off the runqueue _entirely_, and not
1407 		 * preempted!
1408 		 *
1409 		 * So if it was still runnable (but just not actively
1410 		 * running right now), it's preempted, and we should
1411 		 * yield - it could be a while.
1412 		 */
1413 		if (unlikely(queued)) {
1414 			ktime_t to = NSEC_PER_SEC / HZ;
1415 
1416 			set_current_state(TASK_UNINTERRUPTIBLE);
1417 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1418 			continue;
1419 		}
1420 
1421 		/*
1422 		 * Ahh, all good. It wasn't running, and it wasn't
1423 		 * runnable, which means that it will never become
1424 		 * running in the future either. We're all done!
1425 		 */
1426 		break;
1427 	}
1428 
1429 	return ncsw;
1430 }
1431 
1432 /***
1433  * kick_process - kick a running thread to enter/exit the kernel
1434  * @p: the to-be-kicked thread
1435  *
1436  * Cause a process which is running on another CPU to enter
1437  * kernel-mode, without any delay. (to get signals handled.)
1438  *
1439  * NOTE: this function doesn't have to take the runqueue lock,
1440  * because all it wants to ensure is that the remote task enters
1441  * the kernel. If the IPI races and the task has been migrated
1442  * to another CPU then no harm is done and the purpose has been
1443  * achieved as well.
1444  */
1445 void kick_process(struct task_struct *p)
1446 {
1447 	int cpu;
1448 
1449 	preempt_disable();
1450 	cpu = task_cpu(p);
1451 	if ((cpu != smp_processor_id()) && task_curr(p))
1452 		smp_send_reschedule(cpu);
1453 	preempt_enable();
1454 }
1455 EXPORT_SYMBOL_GPL(kick_process);
1456 
1457 /*
1458  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1459  *
1460  * A few notes on cpu_active vs cpu_online:
1461  *
1462  *  - cpu_active must be a subset of cpu_online
1463  *
1464  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1465  *    see __set_cpus_allowed_ptr(). At this point the newly online
1466  *    CPU isn't yet part of the sched domains, and balancing will not
1467  *    see it.
1468  *
1469  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1470  *    avoid the load balancer to place new tasks on the to be removed
1471  *    CPU. Existing tasks will remain running there and will be taken
1472  *    off.
1473  *
1474  * This means that fallback selection must not select !active CPUs.
1475  * And can assume that any active CPU must be online. Conversely
1476  * select_task_rq() below may allow selection of !active CPUs in order
1477  * to satisfy the above rules.
1478  */
1479 static int select_fallback_rq(int cpu, struct task_struct *p)
1480 {
1481 	int nid = cpu_to_node(cpu);
1482 	const struct cpumask *nodemask = NULL;
1483 	enum { cpuset, possible, fail } state = cpuset;
1484 	int dest_cpu;
1485 
1486 	/*
1487 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1488 	 * will return -1. There is no CPU on the node, and we should
1489 	 * select the CPU on the other node.
1490 	 */
1491 	if (nid != -1) {
1492 		nodemask = cpumask_of_node(nid);
1493 
1494 		/* Look for allowed, online CPU in same node. */
1495 		for_each_cpu(dest_cpu, nodemask) {
1496 			if (!cpu_active(dest_cpu))
1497 				continue;
1498 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1499 				return dest_cpu;
1500 		}
1501 	}
1502 
1503 	for (;;) {
1504 		/* Any allowed, online CPU? */
1505 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1506 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1507 				continue;
1508 			if (!cpu_online(dest_cpu))
1509 				continue;
1510 			goto out;
1511 		}
1512 
1513 		/* No more Mr. Nice Guy. */
1514 		switch (state) {
1515 		case cpuset:
1516 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1517 				cpuset_cpus_allowed_fallback(p);
1518 				state = possible;
1519 				break;
1520 			}
1521 			/* Fall-through */
1522 		case possible:
1523 			do_set_cpus_allowed(p, cpu_possible_mask);
1524 			state = fail;
1525 			break;
1526 
1527 		case fail:
1528 			BUG();
1529 			break;
1530 		}
1531 	}
1532 
1533 out:
1534 	if (state != cpuset) {
1535 		/*
1536 		 * Don't tell them about moving exiting tasks or
1537 		 * kernel threads (both mm NULL), since they never
1538 		 * leave kernel.
1539 		 */
1540 		if (p->mm && printk_ratelimit()) {
1541 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1542 					task_pid_nr(p), p->comm, cpu);
1543 		}
1544 	}
1545 
1546 	return dest_cpu;
1547 }
1548 
1549 /*
1550  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1551  */
1552 static inline
1553 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1554 {
1555 	lockdep_assert_held(&p->pi_lock);
1556 
1557 	if (p->nr_cpus_allowed > 1)
1558 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1559 	else
1560 		cpu = cpumask_any(&p->cpus_allowed);
1561 
1562 	/*
1563 	 * In order not to call set_task_cpu() on a blocking task we need
1564 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1565 	 * CPU.
1566 	 *
1567 	 * Since this is common to all placement strategies, this lives here.
1568 	 *
1569 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1570 	 *   not worry about this generic constraint ]
1571 	 */
1572 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1573 		     !cpu_online(cpu)))
1574 		cpu = select_fallback_rq(task_cpu(p), p);
1575 
1576 	return cpu;
1577 }
1578 
1579 static void update_avg(u64 *avg, u64 sample)
1580 {
1581 	s64 diff = sample - *avg;
1582 	*avg += diff >> 3;
1583 }
1584 
1585 #else
1586 
1587 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1588 					 const struct cpumask *new_mask, bool check)
1589 {
1590 	return set_cpus_allowed_ptr(p, new_mask);
1591 }
1592 
1593 #endif /* CONFIG_SMP */
1594 
1595 static void
1596 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1597 {
1598 	struct rq *rq;
1599 
1600 	if (!schedstat_enabled())
1601 		return;
1602 
1603 	rq = this_rq();
1604 
1605 #ifdef CONFIG_SMP
1606 	if (cpu == rq->cpu) {
1607 		schedstat_inc(rq->ttwu_local);
1608 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1609 	} else {
1610 		struct sched_domain *sd;
1611 
1612 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1613 		rcu_read_lock();
1614 		for_each_domain(rq->cpu, sd) {
1615 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1616 				schedstat_inc(sd->ttwu_wake_remote);
1617 				break;
1618 			}
1619 		}
1620 		rcu_read_unlock();
1621 	}
1622 
1623 	if (wake_flags & WF_MIGRATED)
1624 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1625 #endif /* CONFIG_SMP */
1626 
1627 	schedstat_inc(rq->ttwu_count);
1628 	schedstat_inc(p->se.statistics.nr_wakeups);
1629 
1630 	if (wake_flags & WF_SYNC)
1631 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1632 }
1633 
1634 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1635 {
1636 	activate_task(rq, p, en_flags);
1637 	p->on_rq = TASK_ON_RQ_QUEUED;
1638 
1639 	/* If a worker is waking up, notify the workqueue: */
1640 	if (p->flags & PF_WQ_WORKER)
1641 		wq_worker_waking_up(p, cpu_of(rq));
1642 }
1643 
1644 /*
1645  * Mark the task runnable and perform wakeup-preemption.
1646  */
1647 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1648 			   struct rq_flags *rf)
1649 {
1650 	check_preempt_curr(rq, p, wake_flags);
1651 	p->state = TASK_RUNNING;
1652 	trace_sched_wakeup(p);
1653 
1654 #ifdef CONFIG_SMP
1655 	if (p->sched_class->task_woken) {
1656 		/*
1657 		 * Our task @p is fully woken up and running; so its safe to
1658 		 * drop the rq->lock, hereafter rq is only used for statistics.
1659 		 */
1660 		rq_unpin_lock(rq, rf);
1661 		p->sched_class->task_woken(rq, p);
1662 		rq_repin_lock(rq, rf);
1663 	}
1664 
1665 	if (rq->idle_stamp) {
1666 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1667 		u64 max = 2*rq->max_idle_balance_cost;
1668 
1669 		update_avg(&rq->avg_idle, delta);
1670 
1671 		if (rq->avg_idle > max)
1672 			rq->avg_idle = max;
1673 
1674 		rq->idle_stamp = 0;
1675 	}
1676 #endif
1677 }
1678 
1679 static void
1680 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1681 		 struct rq_flags *rf)
1682 {
1683 	int en_flags = ENQUEUE_WAKEUP;
1684 
1685 	lockdep_assert_held(&rq->lock);
1686 
1687 #ifdef CONFIG_SMP
1688 	if (p->sched_contributes_to_load)
1689 		rq->nr_uninterruptible--;
1690 
1691 	if (wake_flags & WF_MIGRATED)
1692 		en_flags |= ENQUEUE_MIGRATED;
1693 #endif
1694 
1695 	ttwu_activate(rq, p, en_flags);
1696 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1697 }
1698 
1699 /*
1700  * Called in case the task @p isn't fully descheduled from its runqueue,
1701  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702  * since all we need to do is flip p->state to TASK_RUNNING, since
1703  * the task is still ->on_rq.
1704  */
1705 static int ttwu_remote(struct task_struct *p, int wake_flags)
1706 {
1707 	struct rq_flags rf;
1708 	struct rq *rq;
1709 	int ret = 0;
1710 
1711 	rq = __task_rq_lock(p, &rf);
1712 	if (task_on_rq_queued(p)) {
1713 		/* check_preempt_curr() may use rq clock */
1714 		update_rq_clock(rq);
1715 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1716 		ret = 1;
1717 	}
1718 	__task_rq_unlock(rq, &rf);
1719 
1720 	return ret;
1721 }
1722 
1723 #ifdef CONFIG_SMP
1724 void sched_ttwu_pending(void)
1725 {
1726 	struct rq *rq = this_rq();
1727 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1728 	struct task_struct *p;
1729 	unsigned long flags;
1730 	struct rq_flags rf;
1731 
1732 	if (!llist)
1733 		return;
1734 
1735 	raw_spin_lock_irqsave(&rq->lock, flags);
1736 	rq_pin_lock(rq, &rf);
1737 
1738 	while (llist) {
1739 		int wake_flags = 0;
1740 
1741 		p = llist_entry(llist, struct task_struct, wake_entry);
1742 		llist = llist_next(llist);
1743 
1744 		if (p->sched_remote_wakeup)
1745 			wake_flags = WF_MIGRATED;
1746 
1747 		ttwu_do_activate(rq, p, wake_flags, &rf);
1748 	}
1749 
1750 	rq_unpin_lock(rq, &rf);
1751 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1752 }
1753 
1754 void scheduler_ipi(void)
1755 {
1756 	/*
1757 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1758 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1759 	 * this IPI.
1760 	 */
1761 	preempt_fold_need_resched();
1762 
1763 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1764 		return;
1765 
1766 	/*
1767 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1768 	 * traditionally all their work was done from the interrupt return
1769 	 * path. Now that we actually do some work, we need to make sure
1770 	 * we do call them.
1771 	 *
1772 	 * Some archs already do call them, luckily irq_enter/exit nest
1773 	 * properly.
1774 	 *
1775 	 * Arguably we should visit all archs and update all handlers,
1776 	 * however a fair share of IPIs are still resched only so this would
1777 	 * somewhat pessimize the simple resched case.
1778 	 */
1779 	irq_enter();
1780 	sched_ttwu_pending();
1781 
1782 	/*
1783 	 * Check if someone kicked us for doing the nohz idle load balance.
1784 	 */
1785 	if (unlikely(got_nohz_idle_kick())) {
1786 		this_rq()->idle_balance = 1;
1787 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1788 	}
1789 	irq_exit();
1790 }
1791 
1792 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1793 {
1794 	struct rq *rq = cpu_rq(cpu);
1795 
1796 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1797 
1798 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1799 		if (!set_nr_if_polling(rq->idle))
1800 			smp_send_reschedule(cpu);
1801 		else
1802 			trace_sched_wake_idle_without_ipi(cpu);
1803 	}
1804 }
1805 
1806 void wake_up_if_idle(int cpu)
1807 {
1808 	struct rq *rq = cpu_rq(cpu);
1809 	unsigned long flags;
1810 
1811 	rcu_read_lock();
1812 
1813 	if (!is_idle_task(rcu_dereference(rq->curr)))
1814 		goto out;
1815 
1816 	if (set_nr_if_polling(rq->idle)) {
1817 		trace_sched_wake_idle_without_ipi(cpu);
1818 	} else {
1819 		raw_spin_lock_irqsave(&rq->lock, flags);
1820 		if (is_idle_task(rq->curr))
1821 			smp_send_reschedule(cpu);
1822 		/* Else CPU is not idle, do nothing here: */
1823 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1824 	}
1825 
1826 out:
1827 	rcu_read_unlock();
1828 }
1829 
1830 bool cpus_share_cache(int this_cpu, int that_cpu)
1831 {
1832 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1833 }
1834 #endif /* CONFIG_SMP */
1835 
1836 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1837 {
1838 	struct rq *rq = cpu_rq(cpu);
1839 	struct rq_flags rf;
1840 
1841 #if defined(CONFIG_SMP)
1842 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1843 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1844 		ttwu_queue_remote(p, cpu, wake_flags);
1845 		return;
1846 	}
1847 #endif
1848 
1849 	raw_spin_lock(&rq->lock);
1850 	rq_pin_lock(rq, &rf);
1851 	ttwu_do_activate(rq, p, wake_flags, &rf);
1852 	rq_unpin_lock(rq, &rf);
1853 	raw_spin_unlock(&rq->lock);
1854 }
1855 
1856 /*
1857  * Notes on Program-Order guarantees on SMP systems.
1858  *
1859  *  MIGRATION
1860  *
1861  * The basic program-order guarantee on SMP systems is that when a task [t]
1862  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1863  * execution on its new CPU [c1].
1864  *
1865  * For migration (of runnable tasks) this is provided by the following means:
1866  *
1867  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1868  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1869  *     rq(c1)->lock (if not at the same time, then in that order).
1870  *  C) LOCK of the rq(c1)->lock scheduling in task
1871  *
1872  * Transitivity guarantees that B happens after A and C after B.
1873  * Note: we only require RCpc transitivity.
1874  * Note: the CPU doing B need not be c0 or c1
1875  *
1876  * Example:
1877  *
1878  *   CPU0            CPU1            CPU2
1879  *
1880  *   LOCK rq(0)->lock
1881  *   sched-out X
1882  *   sched-in Y
1883  *   UNLOCK rq(0)->lock
1884  *
1885  *                                   LOCK rq(0)->lock // orders against CPU0
1886  *                                   dequeue X
1887  *                                   UNLOCK rq(0)->lock
1888  *
1889  *                                   LOCK rq(1)->lock
1890  *                                   enqueue X
1891  *                                   UNLOCK rq(1)->lock
1892  *
1893  *                   LOCK rq(1)->lock // orders against CPU2
1894  *                   sched-out Z
1895  *                   sched-in X
1896  *                   UNLOCK rq(1)->lock
1897  *
1898  *
1899  *  BLOCKING -- aka. SLEEP + WAKEUP
1900  *
1901  * For blocking we (obviously) need to provide the same guarantee as for
1902  * migration. However the means are completely different as there is no lock
1903  * chain to provide order. Instead we do:
1904  *
1905  *   1) smp_store_release(X->on_cpu, 0)
1906  *   2) smp_cond_load_acquire(!X->on_cpu)
1907  *
1908  * Example:
1909  *
1910  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1911  *
1912  *   LOCK rq(0)->lock LOCK X->pi_lock
1913  *   dequeue X
1914  *   sched-out X
1915  *   smp_store_release(X->on_cpu, 0);
1916  *
1917  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1918  *                    X->state = WAKING
1919  *                    set_task_cpu(X,2)
1920  *
1921  *                    LOCK rq(2)->lock
1922  *                    enqueue X
1923  *                    X->state = RUNNING
1924  *                    UNLOCK rq(2)->lock
1925  *
1926  *                                          LOCK rq(2)->lock // orders against CPU1
1927  *                                          sched-out Z
1928  *                                          sched-in X
1929  *                                          UNLOCK rq(2)->lock
1930  *
1931  *                    UNLOCK X->pi_lock
1932  *   UNLOCK rq(0)->lock
1933  *
1934  *
1935  * However; for wakeups there is a second guarantee we must provide, namely we
1936  * must observe the state that lead to our wakeup. That is, not only must our
1937  * task observe its own prior state, it must also observe the stores prior to
1938  * its wakeup.
1939  *
1940  * This means that any means of doing remote wakeups must order the CPU doing
1941  * the wakeup against the CPU the task is going to end up running on. This,
1942  * however, is already required for the regular Program-Order guarantee above,
1943  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1944  *
1945  */
1946 
1947 /**
1948  * try_to_wake_up - wake up a thread
1949  * @p: the thread to be awakened
1950  * @state: the mask of task states that can be woken
1951  * @wake_flags: wake modifier flags (WF_*)
1952  *
1953  * If (@state & @p->state) @p->state = TASK_RUNNING.
1954  *
1955  * If the task was not queued/runnable, also place it back on a runqueue.
1956  *
1957  * Atomic against schedule() which would dequeue a task, also see
1958  * set_current_state().
1959  *
1960  * Return: %true if @p->state changes (an actual wakeup was done),
1961  *	   %false otherwise.
1962  */
1963 static int
1964 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1965 {
1966 	unsigned long flags;
1967 	int cpu, success = 0;
1968 
1969 	/*
1970 	 * If we are going to wake up a thread waiting for CONDITION we
1971 	 * need to ensure that CONDITION=1 done by the caller can not be
1972 	 * reordered with p->state check below. This pairs with mb() in
1973 	 * set_current_state() the waiting thread does.
1974 	 */
1975 	smp_mb__before_spinlock();
1976 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1977 	if (!(p->state & state))
1978 		goto out;
1979 
1980 	trace_sched_waking(p);
1981 
1982 	/* We're going to change ->state: */
1983 	success = 1;
1984 	cpu = task_cpu(p);
1985 
1986 	/*
1987 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1988 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1989 	 * in smp_cond_load_acquire() below.
1990 	 *
1991 	 * sched_ttwu_pending()                 try_to_wake_up()
1992 	 *   [S] p->on_rq = 1;                  [L] P->state
1993 	 *       UNLOCK rq->lock  -----.
1994 	 *                              \
1995 	 *				 +---   RMB
1996 	 * schedule()                   /
1997 	 *       LOCK rq->lock    -----'
1998 	 *       UNLOCK rq->lock
1999 	 *
2000 	 * [task p]
2001 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2002 	 *
2003 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2004 	 * last wakeup of our task and the schedule that got our task
2005 	 * current.
2006 	 */
2007 	smp_rmb();
2008 	if (p->on_rq && ttwu_remote(p, wake_flags))
2009 		goto stat;
2010 
2011 #ifdef CONFIG_SMP
2012 	/*
2013 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2014 	 * possible to, falsely, observe p->on_cpu == 0.
2015 	 *
2016 	 * One must be running (->on_cpu == 1) in order to remove oneself
2017 	 * from the runqueue.
2018 	 *
2019 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2020 	 *      UNLOCK rq->lock
2021 	 *			RMB
2022 	 *      LOCK   rq->lock
2023 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2024 	 *
2025 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2026 	 * from the consecutive calls to schedule(); the first switching to our
2027 	 * task, the second putting it to sleep.
2028 	 */
2029 	smp_rmb();
2030 
2031 	/*
2032 	 * If the owning (remote) CPU is still in the middle of schedule() with
2033 	 * this task as prev, wait until its done referencing the task.
2034 	 *
2035 	 * Pairs with the smp_store_release() in finish_lock_switch().
2036 	 *
2037 	 * This ensures that tasks getting woken will be fully ordered against
2038 	 * their previous state and preserve Program Order.
2039 	 */
2040 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2041 
2042 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2043 	p->state = TASK_WAKING;
2044 
2045 	if (p->in_iowait) {
2046 		delayacct_blkio_end();
2047 		atomic_dec(&task_rq(p)->nr_iowait);
2048 	}
2049 
2050 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2051 	if (task_cpu(p) != cpu) {
2052 		wake_flags |= WF_MIGRATED;
2053 		set_task_cpu(p, cpu);
2054 	}
2055 
2056 #else /* CONFIG_SMP */
2057 
2058 	if (p->in_iowait) {
2059 		delayacct_blkio_end();
2060 		atomic_dec(&task_rq(p)->nr_iowait);
2061 	}
2062 
2063 #endif /* CONFIG_SMP */
2064 
2065 	ttwu_queue(p, cpu, wake_flags);
2066 stat:
2067 	ttwu_stat(p, cpu, wake_flags);
2068 out:
2069 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2070 
2071 	return success;
2072 }
2073 
2074 /**
2075  * try_to_wake_up_local - try to wake up a local task with rq lock held
2076  * @p: the thread to be awakened
2077  * @cookie: context's cookie for pinning
2078  *
2079  * Put @p on the run-queue if it's not already there. The caller must
2080  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2081  * the current task.
2082  */
2083 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2084 {
2085 	struct rq *rq = task_rq(p);
2086 
2087 	if (WARN_ON_ONCE(rq != this_rq()) ||
2088 	    WARN_ON_ONCE(p == current))
2089 		return;
2090 
2091 	lockdep_assert_held(&rq->lock);
2092 
2093 	if (!raw_spin_trylock(&p->pi_lock)) {
2094 		/*
2095 		 * This is OK, because current is on_cpu, which avoids it being
2096 		 * picked for load-balance and preemption/IRQs are still
2097 		 * disabled avoiding further scheduler activity on it and we've
2098 		 * not yet picked a replacement task.
2099 		 */
2100 		rq_unpin_lock(rq, rf);
2101 		raw_spin_unlock(&rq->lock);
2102 		raw_spin_lock(&p->pi_lock);
2103 		raw_spin_lock(&rq->lock);
2104 		rq_repin_lock(rq, rf);
2105 	}
2106 
2107 	if (!(p->state & TASK_NORMAL))
2108 		goto out;
2109 
2110 	trace_sched_waking(p);
2111 
2112 	if (!task_on_rq_queued(p)) {
2113 		if (p->in_iowait) {
2114 			delayacct_blkio_end();
2115 			atomic_dec(&rq->nr_iowait);
2116 		}
2117 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2118 	}
2119 
2120 	ttwu_do_wakeup(rq, p, 0, rf);
2121 	ttwu_stat(p, smp_processor_id(), 0);
2122 out:
2123 	raw_spin_unlock(&p->pi_lock);
2124 }
2125 
2126 /**
2127  * wake_up_process - Wake up a specific process
2128  * @p: The process to be woken up.
2129  *
2130  * Attempt to wake up the nominated process and move it to the set of runnable
2131  * processes.
2132  *
2133  * Return: 1 if the process was woken up, 0 if it was already running.
2134  *
2135  * It may be assumed that this function implies a write memory barrier before
2136  * changing the task state if and only if any tasks are woken up.
2137  */
2138 int wake_up_process(struct task_struct *p)
2139 {
2140 	return try_to_wake_up(p, TASK_NORMAL, 0);
2141 }
2142 EXPORT_SYMBOL(wake_up_process);
2143 
2144 int wake_up_state(struct task_struct *p, unsigned int state)
2145 {
2146 	return try_to_wake_up(p, state, 0);
2147 }
2148 
2149 /*
2150  * This function clears the sched_dl_entity static params.
2151  */
2152 void __dl_clear_params(struct task_struct *p)
2153 {
2154 	struct sched_dl_entity *dl_se = &p->dl;
2155 
2156 	dl_se->dl_runtime = 0;
2157 	dl_se->dl_deadline = 0;
2158 	dl_se->dl_period = 0;
2159 	dl_se->flags = 0;
2160 	dl_se->dl_bw = 0;
2161 
2162 	dl_se->dl_throttled = 0;
2163 	dl_se->dl_yielded = 0;
2164 }
2165 
2166 /*
2167  * Perform scheduler related setup for a newly forked process p.
2168  * p is forked by current.
2169  *
2170  * __sched_fork() is basic setup used by init_idle() too:
2171  */
2172 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2173 {
2174 	p->on_rq			= 0;
2175 
2176 	p->se.on_rq			= 0;
2177 	p->se.exec_start		= 0;
2178 	p->se.sum_exec_runtime		= 0;
2179 	p->se.prev_sum_exec_runtime	= 0;
2180 	p->se.nr_migrations		= 0;
2181 	p->se.vruntime			= 0;
2182 	INIT_LIST_HEAD(&p->se.group_node);
2183 
2184 #ifdef CONFIG_FAIR_GROUP_SCHED
2185 	p->se.cfs_rq			= NULL;
2186 #endif
2187 
2188 #ifdef CONFIG_SCHEDSTATS
2189 	/* Even if schedstat is disabled, there should not be garbage */
2190 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2191 #endif
2192 
2193 	RB_CLEAR_NODE(&p->dl.rb_node);
2194 	init_dl_task_timer(&p->dl);
2195 	__dl_clear_params(p);
2196 
2197 	INIT_LIST_HEAD(&p->rt.run_list);
2198 	p->rt.timeout		= 0;
2199 	p->rt.time_slice	= sched_rr_timeslice;
2200 	p->rt.on_rq		= 0;
2201 	p->rt.on_list		= 0;
2202 
2203 #ifdef CONFIG_PREEMPT_NOTIFIERS
2204 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2205 #endif
2206 
2207 #ifdef CONFIG_NUMA_BALANCING
2208 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2209 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2210 		p->mm->numa_scan_seq = 0;
2211 	}
2212 
2213 	if (clone_flags & CLONE_VM)
2214 		p->numa_preferred_nid = current->numa_preferred_nid;
2215 	else
2216 		p->numa_preferred_nid = -1;
2217 
2218 	p->node_stamp = 0ULL;
2219 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2220 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2221 	p->numa_work.next = &p->numa_work;
2222 	p->numa_faults = NULL;
2223 	p->last_task_numa_placement = 0;
2224 	p->last_sum_exec_runtime = 0;
2225 
2226 	p->numa_group = NULL;
2227 #endif /* CONFIG_NUMA_BALANCING */
2228 }
2229 
2230 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2231 
2232 #ifdef CONFIG_NUMA_BALANCING
2233 
2234 void set_numabalancing_state(bool enabled)
2235 {
2236 	if (enabled)
2237 		static_branch_enable(&sched_numa_balancing);
2238 	else
2239 		static_branch_disable(&sched_numa_balancing);
2240 }
2241 
2242 #ifdef CONFIG_PROC_SYSCTL
2243 int sysctl_numa_balancing(struct ctl_table *table, int write,
2244 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2245 {
2246 	struct ctl_table t;
2247 	int err;
2248 	int state = static_branch_likely(&sched_numa_balancing);
2249 
2250 	if (write && !capable(CAP_SYS_ADMIN))
2251 		return -EPERM;
2252 
2253 	t = *table;
2254 	t.data = &state;
2255 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2256 	if (err < 0)
2257 		return err;
2258 	if (write)
2259 		set_numabalancing_state(state);
2260 	return err;
2261 }
2262 #endif
2263 #endif
2264 
2265 #ifdef CONFIG_SCHEDSTATS
2266 
2267 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2268 static bool __initdata __sched_schedstats = false;
2269 
2270 static void set_schedstats(bool enabled)
2271 {
2272 	if (enabled)
2273 		static_branch_enable(&sched_schedstats);
2274 	else
2275 		static_branch_disable(&sched_schedstats);
2276 }
2277 
2278 void force_schedstat_enabled(void)
2279 {
2280 	if (!schedstat_enabled()) {
2281 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2282 		static_branch_enable(&sched_schedstats);
2283 	}
2284 }
2285 
2286 static int __init setup_schedstats(char *str)
2287 {
2288 	int ret = 0;
2289 	if (!str)
2290 		goto out;
2291 
2292 	/*
2293 	 * This code is called before jump labels have been set up, so we can't
2294 	 * change the static branch directly just yet.  Instead set a temporary
2295 	 * variable so init_schedstats() can do it later.
2296 	 */
2297 	if (!strcmp(str, "enable")) {
2298 		__sched_schedstats = true;
2299 		ret = 1;
2300 	} else if (!strcmp(str, "disable")) {
2301 		__sched_schedstats = false;
2302 		ret = 1;
2303 	}
2304 out:
2305 	if (!ret)
2306 		pr_warn("Unable to parse schedstats=\n");
2307 
2308 	return ret;
2309 }
2310 __setup("schedstats=", setup_schedstats);
2311 
2312 static void __init init_schedstats(void)
2313 {
2314 	set_schedstats(__sched_schedstats);
2315 }
2316 
2317 #ifdef CONFIG_PROC_SYSCTL
2318 int sysctl_schedstats(struct ctl_table *table, int write,
2319 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2320 {
2321 	struct ctl_table t;
2322 	int err;
2323 	int state = static_branch_likely(&sched_schedstats);
2324 
2325 	if (write && !capable(CAP_SYS_ADMIN))
2326 		return -EPERM;
2327 
2328 	t = *table;
2329 	t.data = &state;
2330 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2331 	if (err < 0)
2332 		return err;
2333 	if (write)
2334 		set_schedstats(state);
2335 	return err;
2336 }
2337 #endif /* CONFIG_PROC_SYSCTL */
2338 #else  /* !CONFIG_SCHEDSTATS */
2339 static inline void init_schedstats(void) {}
2340 #endif /* CONFIG_SCHEDSTATS */
2341 
2342 /*
2343  * fork()/clone()-time setup:
2344  */
2345 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2346 {
2347 	unsigned long flags;
2348 	int cpu = get_cpu();
2349 
2350 	__sched_fork(clone_flags, p);
2351 	/*
2352 	 * We mark the process as NEW here. This guarantees that
2353 	 * nobody will actually run it, and a signal or other external
2354 	 * event cannot wake it up and insert it on the runqueue either.
2355 	 */
2356 	p->state = TASK_NEW;
2357 
2358 	/*
2359 	 * Make sure we do not leak PI boosting priority to the child.
2360 	 */
2361 	p->prio = current->normal_prio;
2362 
2363 	/*
2364 	 * Revert to default priority/policy on fork if requested.
2365 	 */
2366 	if (unlikely(p->sched_reset_on_fork)) {
2367 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2368 			p->policy = SCHED_NORMAL;
2369 			p->static_prio = NICE_TO_PRIO(0);
2370 			p->rt_priority = 0;
2371 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2372 			p->static_prio = NICE_TO_PRIO(0);
2373 
2374 		p->prio = p->normal_prio = __normal_prio(p);
2375 		set_load_weight(p);
2376 
2377 		/*
2378 		 * We don't need the reset flag anymore after the fork. It has
2379 		 * fulfilled its duty:
2380 		 */
2381 		p->sched_reset_on_fork = 0;
2382 	}
2383 
2384 	if (dl_prio(p->prio)) {
2385 		put_cpu();
2386 		return -EAGAIN;
2387 	} else if (rt_prio(p->prio)) {
2388 		p->sched_class = &rt_sched_class;
2389 	} else {
2390 		p->sched_class = &fair_sched_class;
2391 	}
2392 
2393 	init_entity_runnable_average(&p->se);
2394 
2395 	/*
2396 	 * The child is not yet in the pid-hash so no cgroup attach races,
2397 	 * and the cgroup is pinned to this child due to cgroup_fork()
2398 	 * is ran before sched_fork().
2399 	 *
2400 	 * Silence PROVE_RCU.
2401 	 */
2402 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2403 	/*
2404 	 * We're setting the CPU for the first time, we don't migrate,
2405 	 * so use __set_task_cpu().
2406 	 */
2407 	__set_task_cpu(p, cpu);
2408 	if (p->sched_class->task_fork)
2409 		p->sched_class->task_fork(p);
2410 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2411 
2412 #ifdef CONFIG_SCHED_INFO
2413 	if (likely(sched_info_on()))
2414 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2415 #endif
2416 #if defined(CONFIG_SMP)
2417 	p->on_cpu = 0;
2418 #endif
2419 	init_task_preempt_count(p);
2420 #ifdef CONFIG_SMP
2421 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2422 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2423 #endif
2424 
2425 	put_cpu();
2426 	return 0;
2427 }
2428 
2429 unsigned long to_ratio(u64 period, u64 runtime)
2430 {
2431 	if (runtime == RUNTIME_INF)
2432 		return 1ULL << 20;
2433 
2434 	/*
2435 	 * Doing this here saves a lot of checks in all
2436 	 * the calling paths, and returning zero seems
2437 	 * safe for them anyway.
2438 	 */
2439 	if (period == 0)
2440 		return 0;
2441 
2442 	return div64_u64(runtime << 20, period);
2443 }
2444 
2445 #ifdef CONFIG_SMP
2446 inline struct dl_bw *dl_bw_of(int i)
2447 {
2448 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2449 			 "sched RCU must be held");
2450 	return &cpu_rq(i)->rd->dl_bw;
2451 }
2452 
2453 static inline int dl_bw_cpus(int i)
2454 {
2455 	struct root_domain *rd = cpu_rq(i)->rd;
2456 	int cpus = 0;
2457 
2458 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2459 			 "sched RCU must be held");
2460 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2461 		cpus++;
2462 
2463 	return cpus;
2464 }
2465 #else
2466 inline struct dl_bw *dl_bw_of(int i)
2467 {
2468 	return &cpu_rq(i)->dl.dl_bw;
2469 }
2470 
2471 static inline int dl_bw_cpus(int i)
2472 {
2473 	return 1;
2474 }
2475 #endif
2476 
2477 /*
2478  * We must be sure that accepting a new task (or allowing changing the
2479  * parameters of an existing one) is consistent with the bandwidth
2480  * constraints. If yes, this function also accordingly updates the currently
2481  * allocated bandwidth to reflect the new situation.
2482  *
2483  * This function is called while holding p's rq->lock.
2484  *
2485  * XXX we should delay bw change until the task's 0-lag point, see
2486  * __setparam_dl().
2487  */
2488 static int dl_overflow(struct task_struct *p, int policy,
2489 		       const struct sched_attr *attr)
2490 {
2491 
2492 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2493 	u64 period = attr->sched_period ?: attr->sched_deadline;
2494 	u64 runtime = attr->sched_runtime;
2495 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2496 	int cpus, err = -1;
2497 
2498 	/* !deadline task may carry old deadline bandwidth */
2499 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2500 		return 0;
2501 
2502 	/*
2503 	 * Either if a task, enters, leave, or stays -deadline but changes
2504 	 * its parameters, we may need to update accordingly the total
2505 	 * allocated bandwidth of the container.
2506 	 */
2507 	raw_spin_lock(&dl_b->lock);
2508 	cpus = dl_bw_cpus(task_cpu(p));
2509 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2510 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2511 		__dl_add(dl_b, new_bw);
2512 		err = 0;
2513 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2514 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2515 		__dl_clear(dl_b, p->dl.dl_bw);
2516 		__dl_add(dl_b, new_bw);
2517 		err = 0;
2518 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2519 		__dl_clear(dl_b, p->dl.dl_bw);
2520 		err = 0;
2521 	}
2522 	raw_spin_unlock(&dl_b->lock);
2523 
2524 	return err;
2525 }
2526 
2527 extern void init_dl_bw(struct dl_bw *dl_b);
2528 
2529 /*
2530  * wake_up_new_task - wake up a newly created task for the first time.
2531  *
2532  * This function will do some initial scheduler statistics housekeeping
2533  * that must be done for every newly created context, then puts the task
2534  * on the runqueue and wakes it.
2535  */
2536 void wake_up_new_task(struct task_struct *p)
2537 {
2538 	struct rq_flags rf;
2539 	struct rq *rq;
2540 
2541 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2542 	p->state = TASK_RUNNING;
2543 #ifdef CONFIG_SMP
2544 	/*
2545 	 * Fork balancing, do it here and not earlier because:
2546 	 *  - cpus_allowed can change in the fork path
2547 	 *  - any previously selected CPU might disappear through hotplug
2548 	 *
2549 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2550 	 * as we're not fully set-up yet.
2551 	 */
2552 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2553 #endif
2554 	rq = __task_rq_lock(p, &rf);
2555 	update_rq_clock(rq);
2556 	post_init_entity_util_avg(&p->se);
2557 
2558 	activate_task(rq, p, 0);
2559 	p->on_rq = TASK_ON_RQ_QUEUED;
2560 	trace_sched_wakeup_new(p);
2561 	check_preempt_curr(rq, p, WF_FORK);
2562 #ifdef CONFIG_SMP
2563 	if (p->sched_class->task_woken) {
2564 		/*
2565 		 * Nothing relies on rq->lock after this, so its fine to
2566 		 * drop it.
2567 		 */
2568 		rq_unpin_lock(rq, &rf);
2569 		p->sched_class->task_woken(rq, p);
2570 		rq_repin_lock(rq, &rf);
2571 	}
2572 #endif
2573 	task_rq_unlock(rq, p, &rf);
2574 }
2575 
2576 #ifdef CONFIG_PREEMPT_NOTIFIERS
2577 
2578 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2579 
2580 void preempt_notifier_inc(void)
2581 {
2582 	static_key_slow_inc(&preempt_notifier_key);
2583 }
2584 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2585 
2586 void preempt_notifier_dec(void)
2587 {
2588 	static_key_slow_dec(&preempt_notifier_key);
2589 }
2590 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2591 
2592 /**
2593  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2594  * @notifier: notifier struct to register
2595  */
2596 void preempt_notifier_register(struct preempt_notifier *notifier)
2597 {
2598 	if (!static_key_false(&preempt_notifier_key))
2599 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2600 
2601 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2602 }
2603 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2604 
2605 /**
2606  * preempt_notifier_unregister - no longer interested in preemption notifications
2607  * @notifier: notifier struct to unregister
2608  *
2609  * This is *not* safe to call from within a preemption notifier.
2610  */
2611 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2612 {
2613 	hlist_del(&notifier->link);
2614 }
2615 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2616 
2617 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618 {
2619 	struct preempt_notifier *notifier;
2620 
2621 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2622 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2623 }
2624 
2625 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2626 {
2627 	if (static_key_false(&preempt_notifier_key))
2628 		__fire_sched_in_preempt_notifiers(curr);
2629 }
2630 
2631 static void
2632 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2633 				   struct task_struct *next)
2634 {
2635 	struct preempt_notifier *notifier;
2636 
2637 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2638 		notifier->ops->sched_out(notifier, next);
2639 }
2640 
2641 static __always_inline void
2642 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 				 struct task_struct *next)
2644 {
2645 	if (static_key_false(&preempt_notifier_key))
2646 		__fire_sched_out_preempt_notifiers(curr, next);
2647 }
2648 
2649 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2650 
2651 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2652 {
2653 }
2654 
2655 static inline void
2656 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 				 struct task_struct *next)
2658 {
2659 }
2660 
2661 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2662 
2663 /**
2664  * prepare_task_switch - prepare to switch tasks
2665  * @rq: the runqueue preparing to switch
2666  * @prev: the current task that is being switched out
2667  * @next: the task we are going to switch to.
2668  *
2669  * This is called with the rq lock held and interrupts off. It must
2670  * be paired with a subsequent finish_task_switch after the context
2671  * switch.
2672  *
2673  * prepare_task_switch sets up locking and calls architecture specific
2674  * hooks.
2675  */
2676 static inline void
2677 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2678 		    struct task_struct *next)
2679 {
2680 	sched_info_switch(rq, prev, next);
2681 	perf_event_task_sched_out(prev, next);
2682 	fire_sched_out_preempt_notifiers(prev, next);
2683 	prepare_lock_switch(rq, next);
2684 	prepare_arch_switch(next);
2685 }
2686 
2687 /**
2688  * finish_task_switch - clean up after a task-switch
2689  * @prev: the thread we just switched away from.
2690  *
2691  * finish_task_switch must be called after the context switch, paired
2692  * with a prepare_task_switch call before the context switch.
2693  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2694  * and do any other architecture-specific cleanup actions.
2695  *
2696  * Note that we may have delayed dropping an mm in context_switch(). If
2697  * so, we finish that here outside of the runqueue lock. (Doing it
2698  * with the lock held can cause deadlocks; see schedule() for
2699  * details.)
2700  *
2701  * The context switch have flipped the stack from under us and restored the
2702  * local variables which were saved when this task called schedule() in the
2703  * past. prev == current is still correct but we need to recalculate this_rq
2704  * because prev may have moved to another CPU.
2705  */
2706 static struct rq *finish_task_switch(struct task_struct *prev)
2707 	__releases(rq->lock)
2708 {
2709 	struct rq *rq = this_rq();
2710 	struct mm_struct *mm = rq->prev_mm;
2711 	long prev_state;
2712 
2713 	/*
2714 	 * The previous task will have left us with a preempt_count of 2
2715 	 * because it left us after:
2716 	 *
2717 	 *	schedule()
2718 	 *	  preempt_disable();			// 1
2719 	 *	  __schedule()
2720 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2721 	 *
2722 	 * Also, see FORK_PREEMPT_COUNT.
2723 	 */
2724 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2725 		      "corrupted preempt_count: %s/%d/0x%x\n",
2726 		      current->comm, current->pid, preempt_count()))
2727 		preempt_count_set(FORK_PREEMPT_COUNT);
2728 
2729 	rq->prev_mm = NULL;
2730 
2731 	/*
2732 	 * A task struct has one reference for the use as "current".
2733 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2734 	 * schedule one last time. The schedule call will never return, and
2735 	 * the scheduled task must drop that reference.
2736 	 *
2737 	 * We must observe prev->state before clearing prev->on_cpu (in
2738 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2739 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2740 	 * transition, resulting in a double drop.
2741 	 */
2742 	prev_state = prev->state;
2743 	vtime_task_switch(prev);
2744 	perf_event_task_sched_in(prev, current);
2745 	finish_lock_switch(rq, prev);
2746 	finish_arch_post_lock_switch();
2747 
2748 	fire_sched_in_preempt_notifiers(current);
2749 	if (mm)
2750 		mmdrop(mm);
2751 	if (unlikely(prev_state == TASK_DEAD)) {
2752 		if (prev->sched_class->task_dead)
2753 			prev->sched_class->task_dead(prev);
2754 
2755 		/*
2756 		 * Remove function-return probe instances associated with this
2757 		 * task and put them back on the free list.
2758 		 */
2759 		kprobe_flush_task(prev);
2760 
2761 		/* Task is done with its stack. */
2762 		put_task_stack(prev);
2763 
2764 		put_task_struct(prev);
2765 	}
2766 
2767 	tick_nohz_task_switch();
2768 	return rq;
2769 }
2770 
2771 #ifdef CONFIG_SMP
2772 
2773 /* rq->lock is NOT held, but preemption is disabled */
2774 static void __balance_callback(struct rq *rq)
2775 {
2776 	struct callback_head *head, *next;
2777 	void (*func)(struct rq *rq);
2778 	unsigned long flags;
2779 
2780 	raw_spin_lock_irqsave(&rq->lock, flags);
2781 	head = rq->balance_callback;
2782 	rq->balance_callback = NULL;
2783 	while (head) {
2784 		func = (void (*)(struct rq *))head->func;
2785 		next = head->next;
2786 		head->next = NULL;
2787 		head = next;
2788 
2789 		func(rq);
2790 	}
2791 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2792 }
2793 
2794 static inline void balance_callback(struct rq *rq)
2795 {
2796 	if (unlikely(rq->balance_callback))
2797 		__balance_callback(rq);
2798 }
2799 
2800 #else
2801 
2802 static inline void balance_callback(struct rq *rq)
2803 {
2804 }
2805 
2806 #endif
2807 
2808 /**
2809  * schedule_tail - first thing a freshly forked thread must call.
2810  * @prev: the thread we just switched away from.
2811  */
2812 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2813 	__releases(rq->lock)
2814 {
2815 	struct rq *rq;
2816 
2817 	/*
2818 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2819 	 * finish_task_switch() for details.
2820 	 *
2821 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2822 	 * and the preempt_enable() will end up enabling preemption (on
2823 	 * PREEMPT_COUNT kernels).
2824 	 */
2825 
2826 	rq = finish_task_switch(prev);
2827 	balance_callback(rq);
2828 	preempt_enable();
2829 
2830 	if (current->set_child_tid)
2831 		put_user(task_pid_vnr(current), current->set_child_tid);
2832 }
2833 
2834 /*
2835  * context_switch - switch to the new MM and the new thread's register state.
2836  */
2837 static __always_inline struct rq *
2838 context_switch(struct rq *rq, struct task_struct *prev,
2839 	       struct task_struct *next, struct rq_flags *rf)
2840 {
2841 	struct mm_struct *mm, *oldmm;
2842 
2843 	prepare_task_switch(rq, prev, next);
2844 
2845 	mm = next->mm;
2846 	oldmm = prev->active_mm;
2847 	/*
2848 	 * For paravirt, this is coupled with an exit in switch_to to
2849 	 * combine the page table reload and the switch backend into
2850 	 * one hypercall.
2851 	 */
2852 	arch_start_context_switch(prev);
2853 
2854 	if (!mm) {
2855 		next->active_mm = oldmm;
2856 		mmgrab(oldmm);
2857 		enter_lazy_tlb(oldmm, next);
2858 	} else
2859 		switch_mm_irqs_off(oldmm, mm, next);
2860 
2861 	if (!prev->mm) {
2862 		prev->active_mm = NULL;
2863 		rq->prev_mm = oldmm;
2864 	}
2865 
2866 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2867 
2868 	/*
2869 	 * Since the runqueue lock will be released by the next
2870 	 * task (which is an invalid locking op but in the case
2871 	 * of the scheduler it's an obvious special-case), so we
2872 	 * do an early lockdep release here:
2873 	 */
2874 	rq_unpin_lock(rq, rf);
2875 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2876 
2877 	/* Here we just switch the register state and the stack. */
2878 	switch_to(prev, next, prev);
2879 	barrier();
2880 
2881 	return finish_task_switch(prev);
2882 }
2883 
2884 /*
2885  * nr_running and nr_context_switches:
2886  *
2887  * externally visible scheduler statistics: current number of runnable
2888  * threads, total number of context switches performed since bootup.
2889  */
2890 unsigned long nr_running(void)
2891 {
2892 	unsigned long i, sum = 0;
2893 
2894 	for_each_online_cpu(i)
2895 		sum += cpu_rq(i)->nr_running;
2896 
2897 	return sum;
2898 }
2899 
2900 /*
2901  * Check if only the current task is running on the CPU.
2902  *
2903  * Caution: this function does not check that the caller has disabled
2904  * preemption, thus the result might have a time-of-check-to-time-of-use
2905  * race.  The caller is responsible to use it correctly, for example:
2906  *
2907  * - from a non-preemptable section (of course)
2908  *
2909  * - from a thread that is bound to a single CPU
2910  *
2911  * - in a loop with very short iterations (e.g. a polling loop)
2912  */
2913 bool single_task_running(void)
2914 {
2915 	return raw_rq()->nr_running == 1;
2916 }
2917 EXPORT_SYMBOL(single_task_running);
2918 
2919 unsigned long long nr_context_switches(void)
2920 {
2921 	int i;
2922 	unsigned long long sum = 0;
2923 
2924 	for_each_possible_cpu(i)
2925 		sum += cpu_rq(i)->nr_switches;
2926 
2927 	return sum;
2928 }
2929 
2930 /*
2931  * IO-wait accounting, and how its mostly bollocks (on SMP).
2932  *
2933  * The idea behind IO-wait account is to account the idle time that we could
2934  * have spend running if it were not for IO. That is, if we were to improve the
2935  * storage performance, we'd have a proportional reduction in IO-wait time.
2936  *
2937  * This all works nicely on UP, where, when a task blocks on IO, we account
2938  * idle time as IO-wait, because if the storage were faster, it could've been
2939  * running and we'd not be idle.
2940  *
2941  * This has been extended to SMP, by doing the same for each CPU. This however
2942  * is broken.
2943  *
2944  * Imagine for instance the case where two tasks block on one CPU, only the one
2945  * CPU will have IO-wait accounted, while the other has regular idle. Even
2946  * though, if the storage were faster, both could've ran at the same time,
2947  * utilising both CPUs.
2948  *
2949  * This means, that when looking globally, the current IO-wait accounting on
2950  * SMP is a lower bound, by reason of under accounting.
2951  *
2952  * Worse, since the numbers are provided per CPU, they are sometimes
2953  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2954  * associated with any one particular CPU, it can wake to another CPU than it
2955  * blocked on. This means the per CPU IO-wait number is meaningless.
2956  *
2957  * Task CPU affinities can make all that even more 'interesting'.
2958  */
2959 
2960 unsigned long nr_iowait(void)
2961 {
2962 	unsigned long i, sum = 0;
2963 
2964 	for_each_possible_cpu(i)
2965 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2966 
2967 	return sum;
2968 }
2969 
2970 /*
2971  * Consumers of these two interfaces, like for example the cpufreq menu
2972  * governor are using nonsensical data. Boosting frequency for a CPU that has
2973  * IO-wait which might not even end up running the task when it does become
2974  * runnable.
2975  */
2976 
2977 unsigned long nr_iowait_cpu(int cpu)
2978 {
2979 	struct rq *this = cpu_rq(cpu);
2980 	return atomic_read(&this->nr_iowait);
2981 }
2982 
2983 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2984 {
2985 	struct rq *rq = this_rq();
2986 	*nr_waiters = atomic_read(&rq->nr_iowait);
2987 	*load = rq->load.weight;
2988 }
2989 
2990 #ifdef CONFIG_SMP
2991 
2992 /*
2993  * sched_exec - execve() is a valuable balancing opportunity, because at
2994  * this point the task has the smallest effective memory and cache footprint.
2995  */
2996 void sched_exec(void)
2997 {
2998 	struct task_struct *p = current;
2999 	unsigned long flags;
3000 	int dest_cpu;
3001 
3002 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3003 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3004 	if (dest_cpu == smp_processor_id())
3005 		goto unlock;
3006 
3007 	if (likely(cpu_active(dest_cpu))) {
3008 		struct migration_arg arg = { p, dest_cpu };
3009 
3010 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3011 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3012 		return;
3013 	}
3014 unlock:
3015 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3016 }
3017 
3018 #endif
3019 
3020 DEFINE_PER_CPU(struct kernel_stat, kstat);
3021 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3022 
3023 EXPORT_PER_CPU_SYMBOL(kstat);
3024 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3025 
3026 /*
3027  * The function fair_sched_class.update_curr accesses the struct curr
3028  * and its field curr->exec_start; when called from task_sched_runtime(),
3029  * we observe a high rate of cache misses in practice.
3030  * Prefetching this data results in improved performance.
3031  */
3032 static inline void prefetch_curr_exec_start(struct task_struct *p)
3033 {
3034 #ifdef CONFIG_FAIR_GROUP_SCHED
3035 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3036 #else
3037 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3038 #endif
3039 	prefetch(curr);
3040 	prefetch(&curr->exec_start);
3041 }
3042 
3043 /*
3044  * Return accounted runtime for the task.
3045  * In case the task is currently running, return the runtime plus current's
3046  * pending runtime that have not been accounted yet.
3047  */
3048 unsigned long long task_sched_runtime(struct task_struct *p)
3049 {
3050 	struct rq_flags rf;
3051 	struct rq *rq;
3052 	u64 ns;
3053 
3054 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3055 	/*
3056 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3057 	 * So we have a optimization chance when the task's delta_exec is 0.
3058 	 * Reading ->on_cpu is racy, but this is ok.
3059 	 *
3060 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3061 	 * If we race with it entering CPU, unaccounted time is 0. This is
3062 	 * indistinguishable from the read occurring a few cycles earlier.
3063 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3064 	 * been accounted, so we're correct here as well.
3065 	 */
3066 	if (!p->on_cpu || !task_on_rq_queued(p))
3067 		return p->se.sum_exec_runtime;
3068 #endif
3069 
3070 	rq = task_rq_lock(p, &rf);
3071 	/*
3072 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3073 	 * project cycles that may never be accounted to this
3074 	 * thread, breaking clock_gettime().
3075 	 */
3076 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3077 		prefetch_curr_exec_start(p);
3078 		update_rq_clock(rq);
3079 		p->sched_class->update_curr(rq);
3080 	}
3081 	ns = p->se.sum_exec_runtime;
3082 	task_rq_unlock(rq, p, &rf);
3083 
3084 	return ns;
3085 }
3086 
3087 /*
3088  * This function gets called by the timer code, with HZ frequency.
3089  * We call it with interrupts disabled.
3090  */
3091 void scheduler_tick(void)
3092 {
3093 	int cpu = smp_processor_id();
3094 	struct rq *rq = cpu_rq(cpu);
3095 	struct task_struct *curr = rq->curr;
3096 
3097 	sched_clock_tick();
3098 
3099 	raw_spin_lock(&rq->lock);
3100 	update_rq_clock(rq);
3101 	curr->sched_class->task_tick(rq, curr, 0);
3102 	cpu_load_update_active(rq);
3103 	calc_global_load_tick(rq);
3104 	raw_spin_unlock(&rq->lock);
3105 
3106 	perf_event_task_tick();
3107 
3108 #ifdef CONFIG_SMP
3109 	rq->idle_balance = idle_cpu(cpu);
3110 	trigger_load_balance(rq);
3111 #endif
3112 	rq_last_tick_reset(rq);
3113 }
3114 
3115 #ifdef CONFIG_NO_HZ_FULL
3116 /**
3117  * scheduler_tick_max_deferment
3118  *
3119  * Keep at least one tick per second when a single
3120  * active task is running because the scheduler doesn't
3121  * yet completely support full dynticks environment.
3122  *
3123  * This makes sure that uptime, CFS vruntime, load
3124  * balancing, etc... continue to move forward, even
3125  * with a very low granularity.
3126  *
3127  * Return: Maximum deferment in nanoseconds.
3128  */
3129 u64 scheduler_tick_max_deferment(void)
3130 {
3131 	struct rq *rq = this_rq();
3132 	unsigned long next, now = READ_ONCE(jiffies);
3133 
3134 	next = rq->last_sched_tick + HZ;
3135 
3136 	if (time_before_eq(next, now))
3137 		return 0;
3138 
3139 	return jiffies_to_nsecs(next - now);
3140 }
3141 #endif
3142 
3143 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3144 				defined(CONFIG_PREEMPT_TRACER))
3145 /*
3146  * If the value passed in is equal to the current preempt count
3147  * then we just disabled preemption. Start timing the latency.
3148  */
3149 static inline void preempt_latency_start(int val)
3150 {
3151 	if (preempt_count() == val) {
3152 		unsigned long ip = get_lock_parent_ip();
3153 #ifdef CONFIG_DEBUG_PREEMPT
3154 		current->preempt_disable_ip = ip;
3155 #endif
3156 		trace_preempt_off(CALLER_ADDR0, ip);
3157 	}
3158 }
3159 
3160 void preempt_count_add(int val)
3161 {
3162 #ifdef CONFIG_DEBUG_PREEMPT
3163 	/*
3164 	 * Underflow?
3165 	 */
3166 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3167 		return;
3168 #endif
3169 	__preempt_count_add(val);
3170 #ifdef CONFIG_DEBUG_PREEMPT
3171 	/*
3172 	 * Spinlock count overflowing soon?
3173 	 */
3174 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3175 				PREEMPT_MASK - 10);
3176 #endif
3177 	preempt_latency_start(val);
3178 }
3179 EXPORT_SYMBOL(preempt_count_add);
3180 NOKPROBE_SYMBOL(preempt_count_add);
3181 
3182 /*
3183  * If the value passed in equals to the current preempt count
3184  * then we just enabled preemption. Stop timing the latency.
3185  */
3186 static inline void preempt_latency_stop(int val)
3187 {
3188 	if (preempt_count() == val)
3189 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3190 }
3191 
3192 void preempt_count_sub(int val)
3193 {
3194 #ifdef CONFIG_DEBUG_PREEMPT
3195 	/*
3196 	 * Underflow?
3197 	 */
3198 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3199 		return;
3200 	/*
3201 	 * Is the spinlock portion underflowing?
3202 	 */
3203 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3204 			!(preempt_count() & PREEMPT_MASK)))
3205 		return;
3206 #endif
3207 
3208 	preempt_latency_stop(val);
3209 	__preempt_count_sub(val);
3210 }
3211 EXPORT_SYMBOL(preempt_count_sub);
3212 NOKPROBE_SYMBOL(preempt_count_sub);
3213 
3214 #else
3215 static inline void preempt_latency_start(int val) { }
3216 static inline void preempt_latency_stop(int val) { }
3217 #endif
3218 
3219 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3220 {
3221 #ifdef CONFIG_DEBUG_PREEMPT
3222 	return p->preempt_disable_ip;
3223 #else
3224 	return 0;
3225 #endif
3226 }
3227 
3228 /*
3229  * Print scheduling while atomic bug:
3230  */
3231 static noinline void __schedule_bug(struct task_struct *prev)
3232 {
3233 	/* Save this before calling printk(), since that will clobber it */
3234 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3235 
3236 	if (oops_in_progress)
3237 		return;
3238 
3239 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3240 		prev->comm, prev->pid, preempt_count());
3241 
3242 	debug_show_held_locks(prev);
3243 	print_modules();
3244 	if (irqs_disabled())
3245 		print_irqtrace_events(prev);
3246 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3247 	    && in_atomic_preempt_off()) {
3248 		pr_err("Preemption disabled at:");
3249 		print_ip_sym(preempt_disable_ip);
3250 		pr_cont("\n");
3251 	}
3252 	if (panic_on_warn)
3253 		panic("scheduling while atomic\n");
3254 
3255 	dump_stack();
3256 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3257 }
3258 
3259 /*
3260  * Various schedule()-time debugging checks and statistics:
3261  */
3262 static inline void schedule_debug(struct task_struct *prev)
3263 {
3264 #ifdef CONFIG_SCHED_STACK_END_CHECK
3265 	if (task_stack_end_corrupted(prev))
3266 		panic("corrupted stack end detected inside scheduler\n");
3267 #endif
3268 
3269 	if (unlikely(in_atomic_preempt_off())) {
3270 		__schedule_bug(prev);
3271 		preempt_count_set(PREEMPT_DISABLED);
3272 	}
3273 	rcu_sleep_check();
3274 
3275 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3276 
3277 	schedstat_inc(this_rq()->sched_count);
3278 }
3279 
3280 /*
3281  * Pick up the highest-prio task:
3282  */
3283 static inline struct task_struct *
3284 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3285 {
3286 	const struct sched_class *class;
3287 	struct task_struct *p;
3288 
3289 	/*
3290 	 * Optimization: we know that if all tasks are in the fair class we can
3291 	 * call that function directly, but only if the @prev task wasn't of a
3292 	 * higher scheduling class, because otherwise those loose the
3293 	 * opportunity to pull in more work from other CPUs.
3294 	 */
3295 	if (likely((prev->sched_class == &idle_sched_class ||
3296 		    prev->sched_class == &fair_sched_class) &&
3297 		   rq->nr_running == rq->cfs.h_nr_running)) {
3298 
3299 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3300 		if (unlikely(p == RETRY_TASK))
3301 			goto again;
3302 
3303 		/* Assumes fair_sched_class->next == idle_sched_class */
3304 		if (unlikely(!p))
3305 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3306 
3307 		return p;
3308 	}
3309 
3310 again:
3311 	for_each_class(class) {
3312 		p = class->pick_next_task(rq, prev, rf);
3313 		if (p) {
3314 			if (unlikely(p == RETRY_TASK))
3315 				goto again;
3316 			return p;
3317 		}
3318 	}
3319 
3320 	/* The idle class should always have a runnable task: */
3321 	BUG();
3322 }
3323 
3324 /*
3325  * __schedule() is the main scheduler function.
3326  *
3327  * The main means of driving the scheduler and thus entering this function are:
3328  *
3329  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3330  *
3331  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3332  *      paths. For example, see arch/x86/entry_64.S.
3333  *
3334  *      To drive preemption between tasks, the scheduler sets the flag in timer
3335  *      interrupt handler scheduler_tick().
3336  *
3337  *   3. Wakeups don't really cause entry into schedule(). They add a
3338  *      task to the run-queue and that's it.
3339  *
3340  *      Now, if the new task added to the run-queue preempts the current
3341  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3342  *      called on the nearest possible occasion:
3343  *
3344  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3345  *
3346  *         - in syscall or exception context, at the next outmost
3347  *           preempt_enable(). (this might be as soon as the wake_up()'s
3348  *           spin_unlock()!)
3349  *
3350  *         - in IRQ context, return from interrupt-handler to
3351  *           preemptible context
3352  *
3353  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3354  *         then at the next:
3355  *
3356  *          - cond_resched() call
3357  *          - explicit schedule() call
3358  *          - return from syscall or exception to user-space
3359  *          - return from interrupt-handler to user-space
3360  *
3361  * WARNING: must be called with preemption disabled!
3362  */
3363 static void __sched notrace __schedule(bool preempt)
3364 {
3365 	struct task_struct *prev, *next;
3366 	unsigned long *switch_count;
3367 	struct rq_flags rf;
3368 	struct rq *rq;
3369 	int cpu;
3370 
3371 	cpu = smp_processor_id();
3372 	rq = cpu_rq(cpu);
3373 	prev = rq->curr;
3374 
3375 	schedule_debug(prev);
3376 
3377 	if (sched_feat(HRTICK))
3378 		hrtick_clear(rq);
3379 
3380 	local_irq_disable();
3381 	rcu_note_context_switch();
3382 
3383 	/*
3384 	 * Make sure that signal_pending_state()->signal_pending() below
3385 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3386 	 * done by the caller to avoid the race with signal_wake_up().
3387 	 */
3388 	smp_mb__before_spinlock();
3389 	raw_spin_lock(&rq->lock);
3390 	rq_pin_lock(rq, &rf);
3391 
3392 	/* Promote REQ to ACT */
3393 	rq->clock_update_flags <<= 1;
3394 
3395 	switch_count = &prev->nivcsw;
3396 	if (!preempt && prev->state) {
3397 		if (unlikely(signal_pending_state(prev->state, prev))) {
3398 			prev->state = TASK_RUNNING;
3399 		} else {
3400 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3401 			prev->on_rq = 0;
3402 
3403 			if (prev->in_iowait) {
3404 				atomic_inc(&rq->nr_iowait);
3405 				delayacct_blkio_start();
3406 			}
3407 
3408 			/*
3409 			 * If a worker went to sleep, notify and ask workqueue
3410 			 * whether it wants to wake up a task to maintain
3411 			 * concurrency.
3412 			 */
3413 			if (prev->flags & PF_WQ_WORKER) {
3414 				struct task_struct *to_wakeup;
3415 
3416 				to_wakeup = wq_worker_sleeping(prev);
3417 				if (to_wakeup)
3418 					try_to_wake_up_local(to_wakeup, &rf);
3419 			}
3420 		}
3421 		switch_count = &prev->nvcsw;
3422 	}
3423 
3424 	if (task_on_rq_queued(prev))
3425 		update_rq_clock(rq);
3426 
3427 	next = pick_next_task(rq, prev, &rf);
3428 	clear_tsk_need_resched(prev);
3429 	clear_preempt_need_resched();
3430 
3431 	if (likely(prev != next)) {
3432 		rq->nr_switches++;
3433 		rq->curr = next;
3434 		++*switch_count;
3435 
3436 		trace_sched_switch(preempt, prev, next);
3437 
3438 		/* Also unlocks the rq: */
3439 		rq = context_switch(rq, prev, next, &rf);
3440 	} else {
3441 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3442 		rq_unpin_lock(rq, &rf);
3443 		raw_spin_unlock_irq(&rq->lock);
3444 	}
3445 
3446 	balance_callback(rq);
3447 }
3448 
3449 void __noreturn do_task_dead(void)
3450 {
3451 	/*
3452 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3453 	 * when the following two conditions become true.
3454 	 *   - There is race condition of mmap_sem (It is acquired by
3455 	 *     exit_mm()), and
3456 	 *   - SMI occurs before setting TASK_RUNINNG.
3457 	 *     (or hypervisor of virtual machine switches to other guest)
3458 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3459 	 *
3460 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3461 	 * is held by try_to_wake_up()
3462 	 */
3463 	smp_mb();
3464 	raw_spin_unlock_wait(&current->pi_lock);
3465 
3466 	/* Causes final put_task_struct in finish_task_switch(): */
3467 	__set_current_state(TASK_DEAD);
3468 
3469 	/* Tell freezer to ignore us: */
3470 	current->flags |= PF_NOFREEZE;
3471 
3472 	__schedule(false);
3473 	BUG();
3474 
3475 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3476 	for (;;)
3477 		cpu_relax();
3478 }
3479 
3480 static inline void sched_submit_work(struct task_struct *tsk)
3481 {
3482 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3483 		return;
3484 	/*
3485 	 * If we are going to sleep and we have plugged IO queued,
3486 	 * make sure to submit it to avoid deadlocks.
3487 	 */
3488 	if (blk_needs_flush_plug(tsk))
3489 		blk_schedule_flush_plug(tsk);
3490 }
3491 
3492 asmlinkage __visible void __sched schedule(void)
3493 {
3494 	struct task_struct *tsk = current;
3495 
3496 	sched_submit_work(tsk);
3497 	do {
3498 		preempt_disable();
3499 		__schedule(false);
3500 		sched_preempt_enable_no_resched();
3501 	} while (need_resched());
3502 }
3503 EXPORT_SYMBOL(schedule);
3504 
3505 #ifdef CONFIG_CONTEXT_TRACKING
3506 asmlinkage __visible void __sched schedule_user(void)
3507 {
3508 	/*
3509 	 * If we come here after a random call to set_need_resched(),
3510 	 * or we have been woken up remotely but the IPI has not yet arrived,
3511 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3512 	 * we find a better solution.
3513 	 *
3514 	 * NB: There are buggy callers of this function.  Ideally we
3515 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3516 	 * too frequently to make sense yet.
3517 	 */
3518 	enum ctx_state prev_state = exception_enter();
3519 	schedule();
3520 	exception_exit(prev_state);
3521 }
3522 #endif
3523 
3524 /**
3525  * schedule_preempt_disabled - called with preemption disabled
3526  *
3527  * Returns with preemption disabled. Note: preempt_count must be 1
3528  */
3529 void __sched schedule_preempt_disabled(void)
3530 {
3531 	sched_preempt_enable_no_resched();
3532 	schedule();
3533 	preempt_disable();
3534 }
3535 
3536 static void __sched notrace preempt_schedule_common(void)
3537 {
3538 	do {
3539 		/*
3540 		 * Because the function tracer can trace preempt_count_sub()
3541 		 * and it also uses preempt_enable/disable_notrace(), if
3542 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3543 		 * by the function tracer will call this function again and
3544 		 * cause infinite recursion.
3545 		 *
3546 		 * Preemption must be disabled here before the function
3547 		 * tracer can trace. Break up preempt_disable() into two
3548 		 * calls. One to disable preemption without fear of being
3549 		 * traced. The other to still record the preemption latency,
3550 		 * which can also be traced by the function tracer.
3551 		 */
3552 		preempt_disable_notrace();
3553 		preempt_latency_start(1);
3554 		__schedule(true);
3555 		preempt_latency_stop(1);
3556 		preempt_enable_no_resched_notrace();
3557 
3558 		/*
3559 		 * Check again in case we missed a preemption opportunity
3560 		 * between schedule and now.
3561 		 */
3562 	} while (need_resched());
3563 }
3564 
3565 #ifdef CONFIG_PREEMPT
3566 /*
3567  * this is the entry point to schedule() from in-kernel preemption
3568  * off of preempt_enable. Kernel preemptions off return from interrupt
3569  * occur there and call schedule directly.
3570  */
3571 asmlinkage __visible void __sched notrace preempt_schedule(void)
3572 {
3573 	/*
3574 	 * If there is a non-zero preempt_count or interrupts are disabled,
3575 	 * we do not want to preempt the current task. Just return..
3576 	 */
3577 	if (likely(!preemptible()))
3578 		return;
3579 
3580 	preempt_schedule_common();
3581 }
3582 NOKPROBE_SYMBOL(preempt_schedule);
3583 EXPORT_SYMBOL(preempt_schedule);
3584 
3585 /**
3586  * preempt_schedule_notrace - preempt_schedule called by tracing
3587  *
3588  * The tracing infrastructure uses preempt_enable_notrace to prevent
3589  * recursion and tracing preempt enabling caused by the tracing
3590  * infrastructure itself. But as tracing can happen in areas coming
3591  * from userspace or just about to enter userspace, a preempt enable
3592  * can occur before user_exit() is called. This will cause the scheduler
3593  * to be called when the system is still in usermode.
3594  *
3595  * To prevent this, the preempt_enable_notrace will use this function
3596  * instead of preempt_schedule() to exit user context if needed before
3597  * calling the scheduler.
3598  */
3599 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3600 {
3601 	enum ctx_state prev_ctx;
3602 
3603 	if (likely(!preemptible()))
3604 		return;
3605 
3606 	do {
3607 		/*
3608 		 * Because the function tracer can trace preempt_count_sub()
3609 		 * and it also uses preempt_enable/disable_notrace(), if
3610 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3611 		 * by the function tracer will call this function again and
3612 		 * cause infinite recursion.
3613 		 *
3614 		 * Preemption must be disabled here before the function
3615 		 * tracer can trace. Break up preempt_disable() into two
3616 		 * calls. One to disable preemption without fear of being
3617 		 * traced. The other to still record the preemption latency,
3618 		 * which can also be traced by the function tracer.
3619 		 */
3620 		preempt_disable_notrace();
3621 		preempt_latency_start(1);
3622 		/*
3623 		 * Needs preempt disabled in case user_exit() is traced
3624 		 * and the tracer calls preempt_enable_notrace() causing
3625 		 * an infinite recursion.
3626 		 */
3627 		prev_ctx = exception_enter();
3628 		__schedule(true);
3629 		exception_exit(prev_ctx);
3630 
3631 		preempt_latency_stop(1);
3632 		preempt_enable_no_resched_notrace();
3633 	} while (need_resched());
3634 }
3635 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3636 
3637 #endif /* CONFIG_PREEMPT */
3638 
3639 /*
3640  * this is the entry point to schedule() from kernel preemption
3641  * off of irq context.
3642  * Note, that this is called and return with irqs disabled. This will
3643  * protect us against recursive calling from irq.
3644  */
3645 asmlinkage __visible void __sched preempt_schedule_irq(void)
3646 {
3647 	enum ctx_state prev_state;
3648 
3649 	/* Catch callers which need to be fixed */
3650 	BUG_ON(preempt_count() || !irqs_disabled());
3651 
3652 	prev_state = exception_enter();
3653 
3654 	do {
3655 		preempt_disable();
3656 		local_irq_enable();
3657 		__schedule(true);
3658 		local_irq_disable();
3659 		sched_preempt_enable_no_resched();
3660 	} while (need_resched());
3661 
3662 	exception_exit(prev_state);
3663 }
3664 
3665 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3666 			  void *key)
3667 {
3668 	return try_to_wake_up(curr->private, mode, wake_flags);
3669 }
3670 EXPORT_SYMBOL(default_wake_function);
3671 
3672 #ifdef CONFIG_RT_MUTEXES
3673 
3674 /*
3675  * rt_mutex_setprio - set the current priority of a task
3676  * @p: task
3677  * @prio: prio value (kernel-internal form)
3678  *
3679  * This function changes the 'effective' priority of a task. It does
3680  * not touch ->normal_prio like __setscheduler().
3681  *
3682  * Used by the rt_mutex code to implement priority inheritance
3683  * logic. Call site only calls if the priority of the task changed.
3684  */
3685 void rt_mutex_setprio(struct task_struct *p, int prio)
3686 {
3687 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3688 	const struct sched_class *prev_class;
3689 	struct rq_flags rf;
3690 	struct rq *rq;
3691 
3692 	BUG_ON(prio > MAX_PRIO);
3693 
3694 	rq = __task_rq_lock(p, &rf);
3695 	update_rq_clock(rq);
3696 
3697 	/*
3698 	 * Idle task boosting is a nono in general. There is one
3699 	 * exception, when PREEMPT_RT and NOHZ is active:
3700 	 *
3701 	 * The idle task calls get_next_timer_interrupt() and holds
3702 	 * the timer wheel base->lock on the CPU and another CPU wants
3703 	 * to access the timer (probably to cancel it). We can safely
3704 	 * ignore the boosting request, as the idle CPU runs this code
3705 	 * with interrupts disabled and will complete the lock
3706 	 * protected section without being interrupted. So there is no
3707 	 * real need to boost.
3708 	 */
3709 	if (unlikely(p == rq->idle)) {
3710 		WARN_ON(p != rq->curr);
3711 		WARN_ON(p->pi_blocked_on);
3712 		goto out_unlock;
3713 	}
3714 
3715 	trace_sched_pi_setprio(p, prio);
3716 	oldprio = p->prio;
3717 
3718 	if (oldprio == prio)
3719 		queue_flag &= ~DEQUEUE_MOVE;
3720 
3721 	prev_class = p->sched_class;
3722 	queued = task_on_rq_queued(p);
3723 	running = task_current(rq, p);
3724 	if (queued)
3725 		dequeue_task(rq, p, queue_flag);
3726 	if (running)
3727 		put_prev_task(rq, p);
3728 
3729 	/*
3730 	 * Boosting condition are:
3731 	 * 1. -rt task is running and holds mutex A
3732 	 *      --> -dl task blocks on mutex A
3733 	 *
3734 	 * 2. -dl task is running and holds mutex A
3735 	 *      --> -dl task blocks on mutex A and could preempt the
3736 	 *          running task
3737 	 */
3738 	if (dl_prio(prio)) {
3739 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3740 		if (!dl_prio(p->normal_prio) ||
3741 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3742 			p->dl.dl_boosted = 1;
3743 			queue_flag |= ENQUEUE_REPLENISH;
3744 		} else
3745 			p->dl.dl_boosted = 0;
3746 		p->sched_class = &dl_sched_class;
3747 	} else if (rt_prio(prio)) {
3748 		if (dl_prio(oldprio))
3749 			p->dl.dl_boosted = 0;
3750 		if (oldprio < prio)
3751 			queue_flag |= ENQUEUE_HEAD;
3752 		p->sched_class = &rt_sched_class;
3753 	} else {
3754 		if (dl_prio(oldprio))
3755 			p->dl.dl_boosted = 0;
3756 		if (rt_prio(oldprio))
3757 			p->rt.timeout = 0;
3758 		p->sched_class = &fair_sched_class;
3759 	}
3760 
3761 	p->prio = prio;
3762 
3763 	if (queued)
3764 		enqueue_task(rq, p, queue_flag);
3765 	if (running)
3766 		set_curr_task(rq, p);
3767 
3768 	check_class_changed(rq, p, prev_class, oldprio);
3769 out_unlock:
3770 	/* Avoid rq from going away on us: */
3771 	preempt_disable();
3772 	__task_rq_unlock(rq, &rf);
3773 
3774 	balance_callback(rq);
3775 	preempt_enable();
3776 }
3777 #endif
3778 
3779 void set_user_nice(struct task_struct *p, long nice)
3780 {
3781 	bool queued, running;
3782 	int old_prio, delta;
3783 	struct rq_flags rf;
3784 	struct rq *rq;
3785 
3786 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3787 		return;
3788 	/*
3789 	 * We have to be careful, if called from sys_setpriority(),
3790 	 * the task might be in the middle of scheduling on another CPU.
3791 	 */
3792 	rq = task_rq_lock(p, &rf);
3793 	update_rq_clock(rq);
3794 
3795 	/*
3796 	 * The RT priorities are set via sched_setscheduler(), but we still
3797 	 * allow the 'normal' nice value to be set - but as expected
3798 	 * it wont have any effect on scheduling until the task is
3799 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3800 	 */
3801 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3802 		p->static_prio = NICE_TO_PRIO(nice);
3803 		goto out_unlock;
3804 	}
3805 	queued = task_on_rq_queued(p);
3806 	running = task_current(rq, p);
3807 	if (queued)
3808 		dequeue_task(rq, p, DEQUEUE_SAVE);
3809 	if (running)
3810 		put_prev_task(rq, p);
3811 
3812 	p->static_prio = NICE_TO_PRIO(nice);
3813 	set_load_weight(p);
3814 	old_prio = p->prio;
3815 	p->prio = effective_prio(p);
3816 	delta = p->prio - old_prio;
3817 
3818 	if (queued) {
3819 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3820 		/*
3821 		 * If the task increased its priority or is running and
3822 		 * lowered its priority, then reschedule its CPU:
3823 		 */
3824 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3825 			resched_curr(rq);
3826 	}
3827 	if (running)
3828 		set_curr_task(rq, p);
3829 out_unlock:
3830 	task_rq_unlock(rq, p, &rf);
3831 }
3832 EXPORT_SYMBOL(set_user_nice);
3833 
3834 /*
3835  * can_nice - check if a task can reduce its nice value
3836  * @p: task
3837  * @nice: nice value
3838  */
3839 int can_nice(const struct task_struct *p, const int nice)
3840 {
3841 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3842 	int nice_rlim = nice_to_rlimit(nice);
3843 
3844 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3845 		capable(CAP_SYS_NICE));
3846 }
3847 
3848 #ifdef __ARCH_WANT_SYS_NICE
3849 
3850 /*
3851  * sys_nice - change the priority of the current process.
3852  * @increment: priority increment
3853  *
3854  * sys_setpriority is a more generic, but much slower function that
3855  * does similar things.
3856  */
3857 SYSCALL_DEFINE1(nice, int, increment)
3858 {
3859 	long nice, retval;
3860 
3861 	/*
3862 	 * Setpriority might change our priority at the same moment.
3863 	 * We don't have to worry. Conceptually one call occurs first
3864 	 * and we have a single winner.
3865 	 */
3866 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3867 	nice = task_nice(current) + increment;
3868 
3869 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3870 	if (increment < 0 && !can_nice(current, nice))
3871 		return -EPERM;
3872 
3873 	retval = security_task_setnice(current, nice);
3874 	if (retval)
3875 		return retval;
3876 
3877 	set_user_nice(current, nice);
3878 	return 0;
3879 }
3880 
3881 #endif
3882 
3883 /**
3884  * task_prio - return the priority value of a given task.
3885  * @p: the task in question.
3886  *
3887  * Return: The priority value as seen by users in /proc.
3888  * RT tasks are offset by -200. Normal tasks are centered
3889  * around 0, value goes from -16 to +15.
3890  */
3891 int task_prio(const struct task_struct *p)
3892 {
3893 	return p->prio - MAX_RT_PRIO;
3894 }
3895 
3896 /**
3897  * idle_cpu - is a given CPU idle currently?
3898  * @cpu: the processor in question.
3899  *
3900  * Return: 1 if the CPU is currently idle. 0 otherwise.
3901  */
3902 int idle_cpu(int cpu)
3903 {
3904 	struct rq *rq = cpu_rq(cpu);
3905 
3906 	if (rq->curr != rq->idle)
3907 		return 0;
3908 
3909 	if (rq->nr_running)
3910 		return 0;
3911 
3912 #ifdef CONFIG_SMP
3913 	if (!llist_empty(&rq->wake_list))
3914 		return 0;
3915 #endif
3916 
3917 	return 1;
3918 }
3919 
3920 /**
3921  * idle_task - return the idle task for a given CPU.
3922  * @cpu: the processor in question.
3923  *
3924  * Return: The idle task for the CPU @cpu.
3925  */
3926 struct task_struct *idle_task(int cpu)
3927 {
3928 	return cpu_rq(cpu)->idle;
3929 }
3930 
3931 /**
3932  * find_process_by_pid - find a process with a matching PID value.
3933  * @pid: the pid in question.
3934  *
3935  * The task of @pid, if found. %NULL otherwise.
3936  */
3937 static struct task_struct *find_process_by_pid(pid_t pid)
3938 {
3939 	return pid ? find_task_by_vpid(pid) : current;
3940 }
3941 
3942 /*
3943  * This function initializes the sched_dl_entity of a newly becoming
3944  * SCHED_DEADLINE task.
3945  *
3946  * Only the static values are considered here, the actual runtime and the
3947  * absolute deadline will be properly calculated when the task is enqueued
3948  * for the first time with its new policy.
3949  */
3950 static void
3951 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3952 {
3953 	struct sched_dl_entity *dl_se = &p->dl;
3954 
3955 	dl_se->dl_runtime = attr->sched_runtime;
3956 	dl_se->dl_deadline = attr->sched_deadline;
3957 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3958 	dl_se->flags = attr->sched_flags;
3959 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3960 
3961 	/*
3962 	 * Changing the parameters of a task is 'tricky' and we're not doing
3963 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3964 	 *
3965 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3966 	 * point. This would include retaining the task_struct until that time
3967 	 * and change dl_overflow() to not immediately decrement the current
3968 	 * amount.
3969 	 *
3970 	 * Instead we retain the current runtime/deadline and let the new
3971 	 * parameters take effect after the current reservation period lapses.
3972 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3973 	 * before the current scheduling deadline.
3974 	 *
3975 	 * We can still have temporary overloads because we do not delay the
3976 	 * change in bandwidth until that time; so admission control is
3977 	 * not on the safe side. It does however guarantee tasks will never
3978 	 * consume more than promised.
3979 	 */
3980 }
3981 
3982 /*
3983  * sched_setparam() passes in -1 for its policy, to let the functions
3984  * it calls know not to change it.
3985  */
3986 #define SETPARAM_POLICY	-1
3987 
3988 static void __setscheduler_params(struct task_struct *p,
3989 		const struct sched_attr *attr)
3990 {
3991 	int policy = attr->sched_policy;
3992 
3993 	if (policy == SETPARAM_POLICY)
3994 		policy = p->policy;
3995 
3996 	p->policy = policy;
3997 
3998 	if (dl_policy(policy))
3999 		__setparam_dl(p, attr);
4000 	else if (fair_policy(policy))
4001 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4002 
4003 	/*
4004 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4005 	 * !rt_policy. Always setting this ensures that things like
4006 	 * getparam()/getattr() don't report silly values for !rt tasks.
4007 	 */
4008 	p->rt_priority = attr->sched_priority;
4009 	p->normal_prio = normal_prio(p);
4010 	set_load_weight(p);
4011 }
4012 
4013 /* Actually do priority change: must hold pi & rq lock. */
4014 static void __setscheduler(struct rq *rq, struct task_struct *p,
4015 			   const struct sched_attr *attr, bool keep_boost)
4016 {
4017 	__setscheduler_params(p, attr);
4018 
4019 	/*
4020 	 * Keep a potential priority boosting if called from
4021 	 * sched_setscheduler().
4022 	 */
4023 	if (keep_boost)
4024 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4025 	else
4026 		p->prio = normal_prio(p);
4027 
4028 	if (dl_prio(p->prio))
4029 		p->sched_class = &dl_sched_class;
4030 	else if (rt_prio(p->prio))
4031 		p->sched_class = &rt_sched_class;
4032 	else
4033 		p->sched_class = &fair_sched_class;
4034 }
4035 
4036 static void
4037 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4038 {
4039 	struct sched_dl_entity *dl_se = &p->dl;
4040 
4041 	attr->sched_priority = p->rt_priority;
4042 	attr->sched_runtime = dl_se->dl_runtime;
4043 	attr->sched_deadline = dl_se->dl_deadline;
4044 	attr->sched_period = dl_se->dl_period;
4045 	attr->sched_flags = dl_se->flags;
4046 }
4047 
4048 /*
4049  * This function validates the new parameters of a -deadline task.
4050  * We ask for the deadline not being zero, and greater or equal
4051  * than the runtime, as well as the period of being zero or
4052  * greater than deadline. Furthermore, we have to be sure that
4053  * user parameters are above the internal resolution of 1us (we
4054  * check sched_runtime only since it is always the smaller one) and
4055  * below 2^63 ns (we have to check both sched_deadline and
4056  * sched_period, as the latter can be zero).
4057  */
4058 static bool
4059 __checkparam_dl(const struct sched_attr *attr)
4060 {
4061 	/* deadline != 0 */
4062 	if (attr->sched_deadline == 0)
4063 		return false;
4064 
4065 	/*
4066 	 * Since we truncate DL_SCALE bits, make sure we're at least
4067 	 * that big.
4068 	 */
4069 	if (attr->sched_runtime < (1ULL << DL_SCALE))
4070 		return false;
4071 
4072 	/*
4073 	 * Since we use the MSB for wrap-around and sign issues, make
4074 	 * sure it's not set (mind that period can be equal to zero).
4075 	 */
4076 	if (attr->sched_deadline & (1ULL << 63) ||
4077 	    attr->sched_period & (1ULL << 63))
4078 		return false;
4079 
4080 	/* runtime <= deadline <= period (if period != 0) */
4081 	if ((attr->sched_period != 0 &&
4082 	     attr->sched_period < attr->sched_deadline) ||
4083 	    attr->sched_deadline < attr->sched_runtime)
4084 		return false;
4085 
4086 	return true;
4087 }
4088 
4089 /*
4090  * Check the target process has a UID that matches the current process's:
4091  */
4092 static bool check_same_owner(struct task_struct *p)
4093 {
4094 	const struct cred *cred = current_cred(), *pcred;
4095 	bool match;
4096 
4097 	rcu_read_lock();
4098 	pcred = __task_cred(p);
4099 	match = (uid_eq(cred->euid, pcred->euid) ||
4100 		 uid_eq(cred->euid, pcred->uid));
4101 	rcu_read_unlock();
4102 	return match;
4103 }
4104 
4105 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4106 {
4107 	struct sched_dl_entity *dl_se = &p->dl;
4108 
4109 	if (dl_se->dl_runtime != attr->sched_runtime ||
4110 		dl_se->dl_deadline != attr->sched_deadline ||
4111 		dl_se->dl_period != attr->sched_period ||
4112 		dl_se->flags != attr->sched_flags)
4113 		return true;
4114 
4115 	return false;
4116 }
4117 
4118 static int __sched_setscheduler(struct task_struct *p,
4119 				const struct sched_attr *attr,
4120 				bool user, bool pi)
4121 {
4122 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4123 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4124 	int retval, oldprio, oldpolicy = -1, queued, running;
4125 	int new_effective_prio, policy = attr->sched_policy;
4126 	const struct sched_class *prev_class;
4127 	struct rq_flags rf;
4128 	int reset_on_fork;
4129 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4130 	struct rq *rq;
4131 
4132 	/* May grab non-irq protected spin_locks: */
4133 	BUG_ON(in_interrupt());
4134 recheck:
4135 	/* Double check policy once rq lock held: */
4136 	if (policy < 0) {
4137 		reset_on_fork = p->sched_reset_on_fork;
4138 		policy = oldpolicy = p->policy;
4139 	} else {
4140 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4141 
4142 		if (!valid_policy(policy))
4143 			return -EINVAL;
4144 	}
4145 
4146 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4147 		return -EINVAL;
4148 
4149 	/*
4150 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4151 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4152 	 * SCHED_BATCH and SCHED_IDLE is 0.
4153 	 */
4154 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4155 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4156 		return -EINVAL;
4157 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4158 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4159 		return -EINVAL;
4160 
4161 	/*
4162 	 * Allow unprivileged RT tasks to decrease priority:
4163 	 */
4164 	if (user && !capable(CAP_SYS_NICE)) {
4165 		if (fair_policy(policy)) {
4166 			if (attr->sched_nice < task_nice(p) &&
4167 			    !can_nice(p, attr->sched_nice))
4168 				return -EPERM;
4169 		}
4170 
4171 		if (rt_policy(policy)) {
4172 			unsigned long rlim_rtprio =
4173 					task_rlimit(p, RLIMIT_RTPRIO);
4174 
4175 			/* Can't set/change the rt policy: */
4176 			if (policy != p->policy && !rlim_rtprio)
4177 				return -EPERM;
4178 
4179 			/* Can't increase priority: */
4180 			if (attr->sched_priority > p->rt_priority &&
4181 			    attr->sched_priority > rlim_rtprio)
4182 				return -EPERM;
4183 		}
4184 
4185 		 /*
4186 		  * Can't set/change SCHED_DEADLINE policy at all for now
4187 		  * (safest behavior); in the future we would like to allow
4188 		  * unprivileged DL tasks to increase their relative deadline
4189 		  * or reduce their runtime (both ways reducing utilization)
4190 		  */
4191 		if (dl_policy(policy))
4192 			return -EPERM;
4193 
4194 		/*
4195 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4196 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4197 		 */
4198 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4199 			if (!can_nice(p, task_nice(p)))
4200 				return -EPERM;
4201 		}
4202 
4203 		/* Can't change other user's priorities: */
4204 		if (!check_same_owner(p))
4205 			return -EPERM;
4206 
4207 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4208 		if (p->sched_reset_on_fork && !reset_on_fork)
4209 			return -EPERM;
4210 	}
4211 
4212 	if (user) {
4213 		retval = security_task_setscheduler(p);
4214 		if (retval)
4215 			return retval;
4216 	}
4217 
4218 	/*
4219 	 * Make sure no PI-waiters arrive (or leave) while we are
4220 	 * changing the priority of the task:
4221 	 *
4222 	 * To be able to change p->policy safely, the appropriate
4223 	 * runqueue lock must be held.
4224 	 */
4225 	rq = task_rq_lock(p, &rf);
4226 	update_rq_clock(rq);
4227 
4228 	/*
4229 	 * Changing the policy of the stop threads its a very bad idea:
4230 	 */
4231 	if (p == rq->stop) {
4232 		task_rq_unlock(rq, p, &rf);
4233 		return -EINVAL;
4234 	}
4235 
4236 	/*
4237 	 * If not changing anything there's no need to proceed further,
4238 	 * but store a possible modification of reset_on_fork.
4239 	 */
4240 	if (unlikely(policy == p->policy)) {
4241 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4242 			goto change;
4243 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4244 			goto change;
4245 		if (dl_policy(policy) && dl_param_changed(p, attr))
4246 			goto change;
4247 
4248 		p->sched_reset_on_fork = reset_on_fork;
4249 		task_rq_unlock(rq, p, &rf);
4250 		return 0;
4251 	}
4252 change:
4253 
4254 	if (user) {
4255 #ifdef CONFIG_RT_GROUP_SCHED
4256 		/*
4257 		 * Do not allow realtime tasks into groups that have no runtime
4258 		 * assigned.
4259 		 */
4260 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4261 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4262 				!task_group_is_autogroup(task_group(p))) {
4263 			task_rq_unlock(rq, p, &rf);
4264 			return -EPERM;
4265 		}
4266 #endif
4267 #ifdef CONFIG_SMP
4268 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4269 			cpumask_t *span = rq->rd->span;
4270 
4271 			/*
4272 			 * Don't allow tasks with an affinity mask smaller than
4273 			 * the entire root_domain to become SCHED_DEADLINE. We
4274 			 * will also fail if there's no bandwidth available.
4275 			 */
4276 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4277 			    rq->rd->dl_bw.bw == 0) {
4278 				task_rq_unlock(rq, p, &rf);
4279 				return -EPERM;
4280 			}
4281 		}
4282 #endif
4283 	}
4284 
4285 	/* Re-check policy now with rq lock held: */
4286 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4287 		policy = oldpolicy = -1;
4288 		task_rq_unlock(rq, p, &rf);
4289 		goto recheck;
4290 	}
4291 
4292 	/*
4293 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4294 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4295 	 * is available.
4296 	 */
4297 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4298 		task_rq_unlock(rq, p, &rf);
4299 		return -EBUSY;
4300 	}
4301 
4302 	p->sched_reset_on_fork = reset_on_fork;
4303 	oldprio = p->prio;
4304 
4305 	if (pi) {
4306 		/*
4307 		 * Take priority boosted tasks into account. If the new
4308 		 * effective priority is unchanged, we just store the new
4309 		 * normal parameters and do not touch the scheduler class and
4310 		 * the runqueue. This will be done when the task deboost
4311 		 * itself.
4312 		 */
4313 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4314 		if (new_effective_prio == oldprio)
4315 			queue_flags &= ~DEQUEUE_MOVE;
4316 	}
4317 
4318 	queued = task_on_rq_queued(p);
4319 	running = task_current(rq, p);
4320 	if (queued)
4321 		dequeue_task(rq, p, queue_flags);
4322 	if (running)
4323 		put_prev_task(rq, p);
4324 
4325 	prev_class = p->sched_class;
4326 	__setscheduler(rq, p, attr, pi);
4327 
4328 	if (queued) {
4329 		/*
4330 		 * We enqueue to tail when the priority of a task is
4331 		 * increased (user space view).
4332 		 */
4333 		if (oldprio < p->prio)
4334 			queue_flags |= ENQUEUE_HEAD;
4335 
4336 		enqueue_task(rq, p, queue_flags);
4337 	}
4338 	if (running)
4339 		set_curr_task(rq, p);
4340 
4341 	check_class_changed(rq, p, prev_class, oldprio);
4342 
4343 	/* Avoid rq from going away on us: */
4344 	preempt_disable();
4345 	task_rq_unlock(rq, p, &rf);
4346 
4347 	if (pi)
4348 		rt_mutex_adjust_pi(p);
4349 
4350 	/* Run balance callbacks after we've adjusted the PI chain: */
4351 	balance_callback(rq);
4352 	preempt_enable();
4353 
4354 	return 0;
4355 }
4356 
4357 static int _sched_setscheduler(struct task_struct *p, int policy,
4358 			       const struct sched_param *param, bool check)
4359 {
4360 	struct sched_attr attr = {
4361 		.sched_policy   = policy,
4362 		.sched_priority = param->sched_priority,
4363 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4364 	};
4365 
4366 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4367 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4368 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4369 		policy &= ~SCHED_RESET_ON_FORK;
4370 		attr.sched_policy = policy;
4371 	}
4372 
4373 	return __sched_setscheduler(p, &attr, check, true);
4374 }
4375 /**
4376  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4377  * @p: the task in question.
4378  * @policy: new policy.
4379  * @param: structure containing the new RT priority.
4380  *
4381  * Return: 0 on success. An error code otherwise.
4382  *
4383  * NOTE that the task may be already dead.
4384  */
4385 int sched_setscheduler(struct task_struct *p, int policy,
4386 		       const struct sched_param *param)
4387 {
4388 	return _sched_setscheduler(p, policy, param, true);
4389 }
4390 EXPORT_SYMBOL_GPL(sched_setscheduler);
4391 
4392 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4393 {
4394 	return __sched_setscheduler(p, attr, true, true);
4395 }
4396 EXPORT_SYMBOL_GPL(sched_setattr);
4397 
4398 /**
4399  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4400  * @p: the task in question.
4401  * @policy: new policy.
4402  * @param: structure containing the new RT priority.
4403  *
4404  * Just like sched_setscheduler, only don't bother checking if the
4405  * current context has permission.  For example, this is needed in
4406  * stop_machine(): we create temporary high priority worker threads,
4407  * but our caller might not have that capability.
4408  *
4409  * Return: 0 on success. An error code otherwise.
4410  */
4411 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4412 			       const struct sched_param *param)
4413 {
4414 	return _sched_setscheduler(p, policy, param, false);
4415 }
4416 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4417 
4418 static int
4419 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4420 {
4421 	struct sched_param lparam;
4422 	struct task_struct *p;
4423 	int retval;
4424 
4425 	if (!param || pid < 0)
4426 		return -EINVAL;
4427 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4428 		return -EFAULT;
4429 
4430 	rcu_read_lock();
4431 	retval = -ESRCH;
4432 	p = find_process_by_pid(pid);
4433 	if (p != NULL)
4434 		retval = sched_setscheduler(p, policy, &lparam);
4435 	rcu_read_unlock();
4436 
4437 	return retval;
4438 }
4439 
4440 /*
4441  * Mimics kernel/events/core.c perf_copy_attr().
4442  */
4443 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4444 {
4445 	u32 size;
4446 	int ret;
4447 
4448 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4449 		return -EFAULT;
4450 
4451 	/* Zero the full structure, so that a short copy will be nice: */
4452 	memset(attr, 0, sizeof(*attr));
4453 
4454 	ret = get_user(size, &uattr->size);
4455 	if (ret)
4456 		return ret;
4457 
4458 	/* Bail out on silly large: */
4459 	if (size > PAGE_SIZE)
4460 		goto err_size;
4461 
4462 	/* ABI compatibility quirk: */
4463 	if (!size)
4464 		size = SCHED_ATTR_SIZE_VER0;
4465 
4466 	if (size < SCHED_ATTR_SIZE_VER0)
4467 		goto err_size;
4468 
4469 	/*
4470 	 * If we're handed a bigger struct than we know of,
4471 	 * ensure all the unknown bits are 0 - i.e. new
4472 	 * user-space does not rely on any kernel feature
4473 	 * extensions we dont know about yet.
4474 	 */
4475 	if (size > sizeof(*attr)) {
4476 		unsigned char __user *addr;
4477 		unsigned char __user *end;
4478 		unsigned char val;
4479 
4480 		addr = (void __user *)uattr + sizeof(*attr);
4481 		end  = (void __user *)uattr + size;
4482 
4483 		for (; addr < end; addr++) {
4484 			ret = get_user(val, addr);
4485 			if (ret)
4486 				return ret;
4487 			if (val)
4488 				goto err_size;
4489 		}
4490 		size = sizeof(*attr);
4491 	}
4492 
4493 	ret = copy_from_user(attr, uattr, size);
4494 	if (ret)
4495 		return -EFAULT;
4496 
4497 	/*
4498 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4499 	 * to be strict and return an error on out-of-bounds values?
4500 	 */
4501 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4502 
4503 	return 0;
4504 
4505 err_size:
4506 	put_user(sizeof(*attr), &uattr->size);
4507 	return -E2BIG;
4508 }
4509 
4510 /**
4511  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4512  * @pid: the pid in question.
4513  * @policy: new policy.
4514  * @param: structure containing the new RT priority.
4515  *
4516  * Return: 0 on success. An error code otherwise.
4517  */
4518 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4519 {
4520 	if (policy < 0)
4521 		return -EINVAL;
4522 
4523 	return do_sched_setscheduler(pid, policy, param);
4524 }
4525 
4526 /**
4527  * sys_sched_setparam - set/change the RT priority of a thread
4528  * @pid: the pid in question.
4529  * @param: structure containing the new RT priority.
4530  *
4531  * Return: 0 on success. An error code otherwise.
4532  */
4533 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4534 {
4535 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4536 }
4537 
4538 /**
4539  * sys_sched_setattr - same as above, but with extended sched_attr
4540  * @pid: the pid in question.
4541  * @uattr: structure containing the extended parameters.
4542  * @flags: for future extension.
4543  */
4544 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4545 			       unsigned int, flags)
4546 {
4547 	struct sched_attr attr;
4548 	struct task_struct *p;
4549 	int retval;
4550 
4551 	if (!uattr || pid < 0 || flags)
4552 		return -EINVAL;
4553 
4554 	retval = sched_copy_attr(uattr, &attr);
4555 	if (retval)
4556 		return retval;
4557 
4558 	if ((int)attr.sched_policy < 0)
4559 		return -EINVAL;
4560 
4561 	rcu_read_lock();
4562 	retval = -ESRCH;
4563 	p = find_process_by_pid(pid);
4564 	if (p != NULL)
4565 		retval = sched_setattr(p, &attr);
4566 	rcu_read_unlock();
4567 
4568 	return retval;
4569 }
4570 
4571 /**
4572  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4573  * @pid: the pid in question.
4574  *
4575  * Return: On success, the policy of the thread. Otherwise, a negative error
4576  * code.
4577  */
4578 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4579 {
4580 	struct task_struct *p;
4581 	int retval;
4582 
4583 	if (pid < 0)
4584 		return -EINVAL;
4585 
4586 	retval = -ESRCH;
4587 	rcu_read_lock();
4588 	p = find_process_by_pid(pid);
4589 	if (p) {
4590 		retval = security_task_getscheduler(p);
4591 		if (!retval)
4592 			retval = p->policy
4593 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4594 	}
4595 	rcu_read_unlock();
4596 	return retval;
4597 }
4598 
4599 /**
4600  * sys_sched_getparam - get the RT priority of a thread
4601  * @pid: the pid in question.
4602  * @param: structure containing the RT priority.
4603  *
4604  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4605  * code.
4606  */
4607 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4608 {
4609 	struct sched_param lp = { .sched_priority = 0 };
4610 	struct task_struct *p;
4611 	int retval;
4612 
4613 	if (!param || pid < 0)
4614 		return -EINVAL;
4615 
4616 	rcu_read_lock();
4617 	p = find_process_by_pid(pid);
4618 	retval = -ESRCH;
4619 	if (!p)
4620 		goto out_unlock;
4621 
4622 	retval = security_task_getscheduler(p);
4623 	if (retval)
4624 		goto out_unlock;
4625 
4626 	if (task_has_rt_policy(p))
4627 		lp.sched_priority = p->rt_priority;
4628 	rcu_read_unlock();
4629 
4630 	/*
4631 	 * This one might sleep, we cannot do it with a spinlock held ...
4632 	 */
4633 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4634 
4635 	return retval;
4636 
4637 out_unlock:
4638 	rcu_read_unlock();
4639 	return retval;
4640 }
4641 
4642 static int sched_read_attr(struct sched_attr __user *uattr,
4643 			   struct sched_attr *attr,
4644 			   unsigned int usize)
4645 {
4646 	int ret;
4647 
4648 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4649 		return -EFAULT;
4650 
4651 	/*
4652 	 * If we're handed a smaller struct than we know of,
4653 	 * ensure all the unknown bits are 0 - i.e. old
4654 	 * user-space does not get uncomplete information.
4655 	 */
4656 	if (usize < sizeof(*attr)) {
4657 		unsigned char *addr;
4658 		unsigned char *end;
4659 
4660 		addr = (void *)attr + usize;
4661 		end  = (void *)attr + sizeof(*attr);
4662 
4663 		for (; addr < end; addr++) {
4664 			if (*addr)
4665 				return -EFBIG;
4666 		}
4667 
4668 		attr->size = usize;
4669 	}
4670 
4671 	ret = copy_to_user(uattr, attr, attr->size);
4672 	if (ret)
4673 		return -EFAULT;
4674 
4675 	return 0;
4676 }
4677 
4678 /**
4679  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4680  * @pid: the pid in question.
4681  * @uattr: structure containing the extended parameters.
4682  * @size: sizeof(attr) for fwd/bwd comp.
4683  * @flags: for future extension.
4684  */
4685 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4686 		unsigned int, size, unsigned int, flags)
4687 {
4688 	struct sched_attr attr = {
4689 		.size = sizeof(struct sched_attr),
4690 	};
4691 	struct task_struct *p;
4692 	int retval;
4693 
4694 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4695 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4696 		return -EINVAL;
4697 
4698 	rcu_read_lock();
4699 	p = find_process_by_pid(pid);
4700 	retval = -ESRCH;
4701 	if (!p)
4702 		goto out_unlock;
4703 
4704 	retval = security_task_getscheduler(p);
4705 	if (retval)
4706 		goto out_unlock;
4707 
4708 	attr.sched_policy = p->policy;
4709 	if (p->sched_reset_on_fork)
4710 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4711 	if (task_has_dl_policy(p))
4712 		__getparam_dl(p, &attr);
4713 	else if (task_has_rt_policy(p))
4714 		attr.sched_priority = p->rt_priority;
4715 	else
4716 		attr.sched_nice = task_nice(p);
4717 
4718 	rcu_read_unlock();
4719 
4720 	retval = sched_read_attr(uattr, &attr, size);
4721 	return retval;
4722 
4723 out_unlock:
4724 	rcu_read_unlock();
4725 	return retval;
4726 }
4727 
4728 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4729 {
4730 	cpumask_var_t cpus_allowed, new_mask;
4731 	struct task_struct *p;
4732 	int retval;
4733 
4734 	rcu_read_lock();
4735 
4736 	p = find_process_by_pid(pid);
4737 	if (!p) {
4738 		rcu_read_unlock();
4739 		return -ESRCH;
4740 	}
4741 
4742 	/* Prevent p going away */
4743 	get_task_struct(p);
4744 	rcu_read_unlock();
4745 
4746 	if (p->flags & PF_NO_SETAFFINITY) {
4747 		retval = -EINVAL;
4748 		goto out_put_task;
4749 	}
4750 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4751 		retval = -ENOMEM;
4752 		goto out_put_task;
4753 	}
4754 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4755 		retval = -ENOMEM;
4756 		goto out_free_cpus_allowed;
4757 	}
4758 	retval = -EPERM;
4759 	if (!check_same_owner(p)) {
4760 		rcu_read_lock();
4761 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4762 			rcu_read_unlock();
4763 			goto out_free_new_mask;
4764 		}
4765 		rcu_read_unlock();
4766 	}
4767 
4768 	retval = security_task_setscheduler(p);
4769 	if (retval)
4770 		goto out_free_new_mask;
4771 
4772 
4773 	cpuset_cpus_allowed(p, cpus_allowed);
4774 	cpumask_and(new_mask, in_mask, cpus_allowed);
4775 
4776 	/*
4777 	 * Since bandwidth control happens on root_domain basis,
4778 	 * if admission test is enabled, we only admit -deadline
4779 	 * tasks allowed to run on all the CPUs in the task's
4780 	 * root_domain.
4781 	 */
4782 #ifdef CONFIG_SMP
4783 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4784 		rcu_read_lock();
4785 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4786 			retval = -EBUSY;
4787 			rcu_read_unlock();
4788 			goto out_free_new_mask;
4789 		}
4790 		rcu_read_unlock();
4791 	}
4792 #endif
4793 again:
4794 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4795 
4796 	if (!retval) {
4797 		cpuset_cpus_allowed(p, cpus_allowed);
4798 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4799 			/*
4800 			 * We must have raced with a concurrent cpuset
4801 			 * update. Just reset the cpus_allowed to the
4802 			 * cpuset's cpus_allowed
4803 			 */
4804 			cpumask_copy(new_mask, cpus_allowed);
4805 			goto again;
4806 		}
4807 	}
4808 out_free_new_mask:
4809 	free_cpumask_var(new_mask);
4810 out_free_cpus_allowed:
4811 	free_cpumask_var(cpus_allowed);
4812 out_put_task:
4813 	put_task_struct(p);
4814 	return retval;
4815 }
4816 
4817 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4818 			     struct cpumask *new_mask)
4819 {
4820 	if (len < cpumask_size())
4821 		cpumask_clear(new_mask);
4822 	else if (len > cpumask_size())
4823 		len = cpumask_size();
4824 
4825 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4826 }
4827 
4828 /**
4829  * sys_sched_setaffinity - set the CPU affinity of a process
4830  * @pid: pid of the process
4831  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4832  * @user_mask_ptr: user-space pointer to the new CPU mask
4833  *
4834  * Return: 0 on success. An error code otherwise.
4835  */
4836 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4837 		unsigned long __user *, user_mask_ptr)
4838 {
4839 	cpumask_var_t new_mask;
4840 	int retval;
4841 
4842 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4843 		return -ENOMEM;
4844 
4845 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4846 	if (retval == 0)
4847 		retval = sched_setaffinity(pid, new_mask);
4848 	free_cpumask_var(new_mask);
4849 	return retval;
4850 }
4851 
4852 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4853 {
4854 	struct task_struct *p;
4855 	unsigned long flags;
4856 	int retval;
4857 
4858 	rcu_read_lock();
4859 
4860 	retval = -ESRCH;
4861 	p = find_process_by_pid(pid);
4862 	if (!p)
4863 		goto out_unlock;
4864 
4865 	retval = security_task_getscheduler(p);
4866 	if (retval)
4867 		goto out_unlock;
4868 
4869 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4870 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4871 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4872 
4873 out_unlock:
4874 	rcu_read_unlock();
4875 
4876 	return retval;
4877 }
4878 
4879 /**
4880  * sys_sched_getaffinity - get the CPU affinity of a process
4881  * @pid: pid of the process
4882  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4883  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4884  *
4885  * Return: size of CPU mask copied to user_mask_ptr on success. An
4886  * error code otherwise.
4887  */
4888 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4889 		unsigned long __user *, user_mask_ptr)
4890 {
4891 	int ret;
4892 	cpumask_var_t mask;
4893 
4894 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4895 		return -EINVAL;
4896 	if (len & (sizeof(unsigned long)-1))
4897 		return -EINVAL;
4898 
4899 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4900 		return -ENOMEM;
4901 
4902 	ret = sched_getaffinity(pid, mask);
4903 	if (ret == 0) {
4904 		size_t retlen = min_t(size_t, len, cpumask_size());
4905 
4906 		if (copy_to_user(user_mask_ptr, mask, retlen))
4907 			ret = -EFAULT;
4908 		else
4909 			ret = retlen;
4910 	}
4911 	free_cpumask_var(mask);
4912 
4913 	return ret;
4914 }
4915 
4916 /**
4917  * sys_sched_yield - yield the current processor to other threads.
4918  *
4919  * This function yields the current CPU to other tasks. If there are no
4920  * other threads running on this CPU then this function will return.
4921  *
4922  * Return: 0.
4923  */
4924 SYSCALL_DEFINE0(sched_yield)
4925 {
4926 	struct rq *rq = this_rq_lock();
4927 
4928 	schedstat_inc(rq->yld_count);
4929 	current->sched_class->yield_task(rq);
4930 
4931 	/*
4932 	 * Since we are going to call schedule() anyway, there's
4933 	 * no need to preempt or enable interrupts:
4934 	 */
4935 	__release(rq->lock);
4936 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4937 	do_raw_spin_unlock(&rq->lock);
4938 	sched_preempt_enable_no_resched();
4939 
4940 	schedule();
4941 
4942 	return 0;
4943 }
4944 
4945 #ifndef CONFIG_PREEMPT
4946 int __sched _cond_resched(void)
4947 {
4948 	if (should_resched(0)) {
4949 		preempt_schedule_common();
4950 		return 1;
4951 	}
4952 	return 0;
4953 }
4954 EXPORT_SYMBOL(_cond_resched);
4955 #endif
4956 
4957 /*
4958  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4959  * call schedule, and on return reacquire the lock.
4960  *
4961  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4962  * operations here to prevent schedule() from being called twice (once via
4963  * spin_unlock(), once by hand).
4964  */
4965 int __cond_resched_lock(spinlock_t *lock)
4966 {
4967 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4968 	int ret = 0;
4969 
4970 	lockdep_assert_held(lock);
4971 
4972 	if (spin_needbreak(lock) || resched) {
4973 		spin_unlock(lock);
4974 		if (resched)
4975 			preempt_schedule_common();
4976 		else
4977 			cpu_relax();
4978 		ret = 1;
4979 		spin_lock(lock);
4980 	}
4981 	return ret;
4982 }
4983 EXPORT_SYMBOL(__cond_resched_lock);
4984 
4985 int __sched __cond_resched_softirq(void)
4986 {
4987 	BUG_ON(!in_softirq());
4988 
4989 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4990 		local_bh_enable();
4991 		preempt_schedule_common();
4992 		local_bh_disable();
4993 		return 1;
4994 	}
4995 	return 0;
4996 }
4997 EXPORT_SYMBOL(__cond_resched_softirq);
4998 
4999 /**
5000  * yield - yield the current processor to other threads.
5001  *
5002  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5003  *
5004  * The scheduler is at all times free to pick the calling task as the most
5005  * eligible task to run, if removing the yield() call from your code breaks
5006  * it, its already broken.
5007  *
5008  * Typical broken usage is:
5009  *
5010  * while (!event)
5011  *	yield();
5012  *
5013  * where one assumes that yield() will let 'the other' process run that will
5014  * make event true. If the current task is a SCHED_FIFO task that will never
5015  * happen. Never use yield() as a progress guarantee!!
5016  *
5017  * If you want to use yield() to wait for something, use wait_event().
5018  * If you want to use yield() to be 'nice' for others, use cond_resched().
5019  * If you still want to use yield(), do not!
5020  */
5021 void __sched yield(void)
5022 {
5023 	set_current_state(TASK_RUNNING);
5024 	sys_sched_yield();
5025 }
5026 EXPORT_SYMBOL(yield);
5027 
5028 /**
5029  * yield_to - yield the current processor to another thread in
5030  * your thread group, or accelerate that thread toward the
5031  * processor it's on.
5032  * @p: target task
5033  * @preempt: whether task preemption is allowed or not
5034  *
5035  * It's the caller's job to ensure that the target task struct
5036  * can't go away on us before we can do any checks.
5037  *
5038  * Return:
5039  *	true (>0) if we indeed boosted the target task.
5040  *	false (0) if we failed to boost the target.
5041  *	-ESRCH if there's no task to yield to.
5042  */
5043 int __sched yield_to(struct task_struct *p, bool preempt)
5044 {
5045 	struct task_struct *curr = current;
5046 	struct rq *rq, *p_rq;
5047 	unsigned long flags;
5048 	int yielded = 0;
5049 
5050 	local_irq_save(flags);
5051 	rq = this_rq();
5052 
5053 again:
5054 	p_rq = task_rq(p);
5055 	/*
5056 	 * If we're the only runnable task on the rq and target rq also
5057 	 * has only one task, there's absolutely no point in yielding.
5058 	 */
5059 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5060 		yielded = -ESRCH;
5061 		goto out_irq;
5062 	}
5063 
5064 	double_rq_lock(rq, p_rq);
5065 	if (task_rq(p) != p_rq) {
5066 		double_rq_unlock(rq, p_rq);
5067 		goto again;
5068 	}
5069 
5070 	if (!curr->sched_class->yield_to_task)
5071 		goto out_unlock;
5072 
5073 	if (curr->sched_class != p->sched_class)
5074 		goto out_unlock;
5075 
5076 	if (task_running(p_rq, p) || p->state)
5077 		goto out_unlock;
5078 
5079 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5080 	if (yielded) {
5081 		schedstat_inc(rq->yld_count);
5082 		/*
5083 		 * Make p's CPU reschedule; pick_next_entity takes care of
5084 		 * fairness.
5085 		 */
5086 		if (preempt && rq != p_rq)
5087 			resched_curr(p_rq);
5088 	}
5089 
5090 out_unlock:
5091 	double_rq_unlock(rq, p_rq);
5092 out_irq:
5093 	local_irq_restore(flags);
5094 
5095 	if (yielded > 0)
5096 		schedule();
5097 
5098 	return yielded;
5099 }
5100 EXPORT_SYMBOL_GPL(yield_to);
5101 
5102 int io_schedule_prepare(void)
5103 {
5104 	int old_iowait = current->in_iowait;
5105 
5106 	current->in_iowait = 1;
5107 	blk_schedule_flush_plug(current);
5108 
5109 	return old_iowait;
5110 }
5111 
5112 void io_schedule_finish(int token)
5113 {
5114 	current->in_iowait = token;
5115 }
5116 
5117 /*
5118  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5119  * that process accounting knows that this is a task in IO wait state.
5120  */
5121 long __sched io_schedule_timeout(long timeout)
5122 {
5123 	int token;
5124 	long ret;
5125 
5126 	token = io_schedule_prepare();
5127 	ret = schedule_timeout(timeout);
5128 	io_schedule_finish(token);
5129 
5130 	return ret;
5131 }
5132 EXPORT_SYMBOL(io_schedule_timeout);
5133 
5134 void io_schedule(void)
5135 {
5136 	int token;
5137 
5138 	token = io_schedule_prepare();
5139 	schedule();
5140 	io_schedule_finish(token);
5141 }
5142 EXPORT_SYMBOL(io_schedule);
5143 
5144 /**
5145  * sys_sched_get_priority_max - return maximum RT priority.
5146  * @policy: scheduling class.
5147  *
5148  * Return: On success, this syscall returns the maximum
5149  * rt_priority that can be used by a given scheduling class.
5150  * On failure, a negative error code is returned.
5151  */
5152 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5153 {
5154 	int ret = -EINVAL;
5155 
5156 	switch (policy) {
5157 	case SCHED_FIFO:
5158 	case SCHED_RR:
5159 		ret = MAX_USER_RT_PRIO-1;
5160 		break;
5161 	case SCHED_DEADLINE:
5162 	case SCHED_NORMAL:
5163 	case SCHED_BATCH:
5164 	case SCHED_IDLE:
5165 		ret = 0;
5166 		break;
5167 	}
5168 	return ret;
5169 }
5170 
5171 /**
5172  * sys_sched_get_priority_min - return minimum RT priority.
5173  * @policy: scheduling class.
5174  *
5175  * Return: On success, this syscall returns the minimum
5176  * rt_priority that can be used by a given scheduling class.
5177  * On failure, a negative error code is returned.
5178  */
5179 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5180 {
5181 	int ret = -EINVAL;
5182 
5183 	switch (policy) {
5184 	case SCHED_FIFO:
5185 	case SCHED_RR:
5186 		ret = 1;
5187 		break;
5188 	case SCHED_DEADLINE:
5189 	case SCHED_NORMAL:
5190 	case SCHED_BATCH:
5191 	case SCHED_IDLE:
5192 		ret = 0;
5193 	}
5194 	return ret;
5195 }
5196 
5197 /**
5198  * sys_sched_rr_get_interval - return the default timeslice of a process.
5199  * @pid: pid of the process.
5200  * @interval: userspace pointer to the timeslice value.
5201  *
5202  * this syscall writes the default timeslice value of a given process
5203  * into the user-space timespec buffer. A value of '0' means infinity.
5204  *
5205  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5206  * an error code.
5207  */
5208 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5209 		struct timespec __user *, interval)
5210 {
5211 	struct task_struct *p;
5212 	unsigned int time_slice;
5213 	struct rq_flags rf;
5214 	struct timespec t;
5215 	struct rq *rq;
5216 	int retval;
5217 
5218 	if (pid < 0)
5219 		return -EINVAL;
5220 
5221 	retval = -ESRCH;
5222 	rcu_read_lock();
5223 	p = find_process_by_pid(pid);
5224 	if (!p)
5225 		goto out_unlock;
5226 
5227 	retval = security_task_getscheduler(p);
5228 	if (retval)
5229 		goto out_unlock;
5230 
5231 	rq = task_rq_lock(p, &rf);
5232 	time_slice = 0;
5233 	if (p->sched_class->get_rr_interval)
5234 		time_slice = p->sched_class->get_rr_interval(rq, p);
5235 	task_rq_unlock(rq, p, &rf);
5236 
5237 	rcu_read_unlock();
5238 	jiffies_to_timespec(time_slice, &t);
5239 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5240 	return retval;
5241 
5242 out_unlock:
5243 	rcu_read_unlock();
5244 	return retval;
5245 }
5246 
5247 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5248 
5249 void sched_show_task(struct task_struct *p)
5250 {
5251 	unsigned long free = 0;
5252 	int ppid;
5253 	unsigned long state = p->state;
5254 
5255 	/* Make sure the string lines up properly with the number of task states: */
5256 	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5257 
5258 	if (!try_get_task_stack(p))
5259 		return;
5260 	if (state)
5261 		state = __ffs(state) + 1;
5262 	printk(KERN_INFO "%-15.15s %c", p->comm,
5263 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5264 	if (state == TASK_RUNNING)
5265 		printk(KERN_CONT "  running task    ");
5266 #ifdef CONFIG_DEBUG_STACK_USAGE
5267 	free = stack_not_used(p);
5268 #endif
5269 	ppid = 0;
5270 	rcu_read_lock();
5271 	if (pid_alive(p))
5272 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5273 	rcu_read_unlock();
5274 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5275 		task_pid_nr(p), ppid,
5276 		(unsigned long)task_thread_info(p)->flags);
5277 
5278 	print_worker_info(KERN_INFO, p);
5279 	show_stack(p, NULL);
5280 	put_task_stack(p);
5281 }
5282 
5283 void show_state_filter(unsigned long state_filter)
5284 {
5285 	struct task_struct *g, *p;
5286 
5287 #if BITS_PER_LONG == 32
5288 	printk(KERN_INFO
5289 		"  task                PC stack   pid father\n");
5290 #else
5291 	printk(KERN_INFO
5292 		"  task                        PC stack   pid father\n");
5293 #endif
5294 	rcu_read_lock();
5295 	for_each_process_thread(g, p) {
5296 		/*
5297 		 * reset the NMI-timeout, listing all files on a slow
5298 		 * console might take a lot of time:
5299 		 * Also, reset softlockup watchdogs on all CPUs, because
5300 		 * another CPU might be blocked waiting for us to process
5301 		 * an IPI.
5302 		 */
5303 		touch_nmi_watchdog();
5304 		touch_all_softlockup_watchdogs();
5305 		if (!state_filter || (p->state & state_filter))
5306 			sched_show_task(p);
5307 	}
5308 
5309 #ifdef CONFIG_SCHED_DEBUG
5310 	if (!state_filter)
5311 		sysrq_sched_debug_show();
5312 #endif
5313 	rcu_read_unlock();
5314 	/*
5315 	 * Only show locks if all tasks are dumped:
5316 	 */
5317 	if (!state_filter)
5318 		debug_show_all_locks();
5319 }
5320 
5321 void init_idle_bootup_task(struct task_struct *idle)
5322 {
5323 	idle->sched_class = &idle_sched_class;
5324 }
5325 
5326 /**
5327  * init_idle - set up an idle thread for a given CPU
5328  * @idle: task in question
5329  * @cpu: CPU the idle task belongs to
5330  *
5331  * NOTE: this function does not set the idle thread's NEED_RESCHED
5332  * flag, to make booting more robust.
5333  */
5334 void init_idle(struct task_struct *idle, int cpu)
5335 {
5336 	struct rq *rq = cpu_rq(cpu);
5337 	unsigned long flags;
5338 
5339 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5340 	raw_spin_lock(&rq->lock);
5341 
5342 	__sched_fork(0, idle);
5343 	idle->state = TASK_RUNNING;
5344 	idle->se.exec_start = sched_clock();
5345 	idle->flags |= PF_IDLE;
5346 
5347 	kasan_unpoison_task_stack(idle);
5348 
5349 #ifdef CONFIG_SMP
5350 	/*
5351 	 * Its possible that init_idle() gets called multiple times on a task,
5352 	 * in that case do_set_cpus_allowed() will not do the right thing.
5353 	 *
5354 	 * And since this is boot we can forgo the serialization.
5355 	 */
5356 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5357 #endif
5358 	/*
5359 	 * We're having a chicken and egg problem, even though we are
5360 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5361 	 * lockdep check in task_group() will fail.
5362 	 *
5363 	 * Similar case to sched_fork(). / Alternatively we could
5364 	 * use task_rq_lock() here and obtain the other rq->lock.
5365 	 *
5366 	 * Silence PROVE_RCU
5367 	 */
5368 	rcu_read_lock();
5369 	__set_task_cpu(idle, cpu);
5370 	rcu_read_unlock();
5371 
5372 	rq->curr = rq->idle = idle;
5373 	idle->on_rq = TASK_ON_RQ_QUEUED;
5374 #ifdef CONFIG_SMP
5375 	idle->on_cpu = 1;
5376 #endif
5377 	raw_spin_unlock(&rq->lock);
5378 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5379 
5380 	/* Set the preempt count _outside_ the spinlocks! */
5381 	init_idle_preempt_count(idle, cpu);
5382 
5383 	/*
5384 	 * The idle tasks have their own, simple scheduling class:
5385 	 */
5386 	idle->sched_class = &idle_sched_class;
5387 	ftrace_graph_init_idle_task(idle, cpu);
5388 	vtime_init_idle(idle, cpu);
5389 #ifdef CONFIG_SMP
5390 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5391 #endif
5392 }
5393 
5394 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5395 			      const struct cpumask *trial)
5396 {
5397 	int ret = 1, trial_cpus;
5398 	struct dl_bw *cur_dl_b;
5399 	unsigned long flags;
5400 
5401 	if (!cpumask_weight(cur))
5402 		return ret;
5403 
5404 	rcu_read_lock_sched();
5405 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5406 	trial_cpus = cpumask_weight(trial);
5407 
5408 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5409 	if (cur_dl_b->bw != -1 &&
5410 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5411 		ret = 0;
5412 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5413 	rcu_read_unlock_sched();
5414 
5415 	return ret;
5416 }
5417 
5418 int task_can_attach(struct task_struct *p,
5419 		    const struct cpumask *cs_cpus_allowed)
5420 {
5421 	int ret = 0;
5422 
5423 	/*
5424 	 * Kthreads which disallow setaffinity shouldn't be moved
5425 	 * to a new cpuset; we don't want to change their CPU
5426 	 * affinity and isolating such threads by their set of
5427 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5428 	 * applicable for such threads.  This prevents checking for
5429 	 * success of set_cpus_allowed_ptr() on all attached tasks
5430 	 * before cpus_allowed may be changed.
5431 	 */
5432 	if (p->flags & PF_NO_SETAFFINITY) {
5433 		ret = -EINVAL;
5434 		goto out;
5435 	}
5436 
5437 #ifdef CONFIG_SMP
5438 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5439 					      cs_cpus_allowed)) {
5440 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5441 							cs_cpus_allowed);
5442 		struct dl_bw *dl_b;
5443 		bool overflow;
5444 		int cpus;
5445 		unsigned long flags;
5446 
5447 		rcu_read_lock_sched();
5448 		dl_b = dl_bw_of(dest_cpu);
5449 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5450 		cpus = dl_bw_cpus(dest_cpu);
5451 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5452 		if (overflow)
5453 			ret = -EBUSY;
5454 		else {
5455 			/*
5456 			 * We reserve space for this task in the destination
5457 			 * root_domain, as we can't fail after this point.
5458 			 * We will free resources in the source root_domain
5459 			 * later on (see set_cpus_allowed_dl()).
5460 			 */
5461 			__dl_add(dl_b, p->dl.dl_bw);
5462 		}
5463 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5464 		rcu_read_unlock_sched();
5465 
5466 	}
5467 #endif
5468 out:
5469 	return ret;
5470 }
5471 
5472 #ifdef CONFIG_SMP
5473 
5474 bool sched_smp_initialized __read_mostly;
5475 
5476 #ifdef CONFIG_NUMA_BALANCING
5477 /* Migrate current task p to target_cpu */
5478 int migrate_task_to(struct task_struct *p, int target_cpu)
5479 {
5480 	struct migration_arg arg = { p, target_cpu };
5481 	int curr_cpu = task_cpu(p);
5482 
5483 	if (curr_cpu == target_cpu)
5484 		return 0;
5485 
5486 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5487 		return -EINVAL;
5488 
5489 	/* TODO: This is not properly updating schedstats */
5490 
5491 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5492 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5493 }
5494 
5495 /*
5496  * Requeue a task on a given node and accurately track the number of NUMA
5497  * tasks on the runqueues
5498  */
5499 void sched_setnuma(struct task_struct *p, int nid)
5500 {
5501 	bool queued, running;
5502 	struct rq_flags rf;
5503 	struct rq *rq;
5504 
5505 	rq = task_rq_lock(p, &rf);
5506 	queued = task_on_rq_queued(p);
5507 	running = task_current(rq, p);
5508 
5509 	if (queued)
5510 		dequeue_task(rq, p, DEQUEUE_SAVE);
5511 	if (running)
5512 		put_prev_task(rq, p);
5513 
5514 	p->numa_preferred_nid = nid;
5515 
5516 	if (queued)
5517 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5518 	if (running)
5519 		set_curr_task(rq, p);
5520 	task_rq_unlock(rq, p, &rf);
5521 }
5522 #endif /* CONFIG_NUMA_BALANCING */
5523 
5524 #ifdef CONFIG_HOTPLUG_CPU
5525 /*
5526  * Ensure that the idle task is using init_mm right before its CPU goes
5527  * offline.
5528  */
5529 void idle_task_exit(void)
5530 {
5531 	struct mm_struct *mm = current->active_mm;
5532 
5533 	BUG_ON(cpu_online(smp_processor_id()));
5534 
5535 	if (mm != &init_mm) {
5536 		switch_mm_irqs_off(mm, &init_mm, current);
5537 		finish_arch_post_lock_switch();
5538 	}
5539 	mmdrop(mm);
5540 }
5541 
5542 /*
5543  * Since this CPU is going 'away' for a while, fold any nr_active delta
5544  * we might have. Assumes we're called after migrate_tasks() so that the
5545  * nr_active count is stable. We need to take the teardown thread which
5546  * is calling this into account, so we hand in adjust = 1 to the load
5547  * calculation.
5548  *
5549  * Also see the comment "Global load-average calculations".
5550  */
5551 static void calc_load_migrate(struct rq *rq)
5552 {
5553 	long delta = calc_load_fold_active(rq, 1);
5554 	if (delta)
5555 		atomic_long_add(delta, &calc_load_tasks);
5556 }
5557 
5558 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5559 {
5560 }
5561 
5562 static const struct sched_class fake_sched_class = {
5563 	.put_prev_task = put_prev_task_fake,
5564 };
5565 
5566 static struct task_struct fake_task = {
5567 	/*
5568 	 * Avoid pull_{rt,dl}_task()
5569 	 */
5570 	.prio = MAX_PRIO + 1,
5571 	.sched_class = &fake_sched_class,
5572 };
5573 
5574 /*
5575  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5576  * try_to_wake_up()->select_task_rq().
5577  *
5578  * Called with rq->lock held even though we'er in stop_machine() and
5579  * there's no concurrency possible, we hold the required locks anyway
5580  * because of lock validation efforts.
5581  */
5582 static void migrate_tasks(struct rq *dead_rq)
5583 {
5584 	struct rq *rq = dead_rq;
5585 	struct task_struct *next, *stop = rq->stop;
5586 	struct rq_flags rf;
5587 	int dest_cpu;
5588 
5589 	/*
5590 	 * Fudge the rq selection such that the below task selection loop
5591 	 * doesn't get stuck on the currently eligible stop task.
5592 	 *
5593 	 * We're currently inside stop_machine() and the rq is either stuck
5594 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5595 	 * either way we should never end up calling schedule() until we're
5596 	 * done here.
5597 	 */
5598 	rq->stop = NULL;
5599 
5600 	/*
5601 	 * put_prev_task() and pick_next_task() sched
5602 	 * class method both need to have an up-to-date
5603 	 * value of rq->clock[_task]
5604 	 */
5605 	rq_pin_lock(rq, &rf);
5606 	update_rq_clock(rq);
5607 	rq_unpin_lock(rq, &rf);
5608 
5609 	for (;;) {
5610 		/*
5611 		 * There's this thread running, bail when that's the only
5612 		 * remaining thread:
5613 		 */
5614 		if (rq->nr_running == 1)
5615 			break;
5616 
5617 		/*
5618 		 * pick_next_task() assumes pinned rq->lock:
5619 		 */
5620 		rq_repin_lock(rq, &rf);
5621 		next = pick_next_task(rq, &fake_task, &rf);
5622 		BUG_ON(!next);
5623 		next->sched_class->put_prev_task(rq, next);
5624 
5625 		/*
5626 		 * Rules for changing task_struct::cpus_allowed are holding
5627 		 * both pi_lock and rq->lock, such that holding either
5628 		 * stabilizes the mask.
5629 		 *
5630 		 * Drop rq->lock is not quite as disastrous as it usually is
5631 		 * because !cpu_active at this point, which means load-balance
5632 		 * will not interfere. Also, stop-machine.
5633 		 */
5634 		rq_unpin_lock(rq, &rf);
5635 		raw_spin_unlock(&rq->lock);
5636 		raw_spin_lock(&next->pi_lock);
5637 		raw_spin_lock(&rq->lock);
5638 
5639 		/*
5640 		 * Since we're inside stop-machine, _nothing_ should have
5641 		 * changed the task, WARN if weird stuff happened, because in
5642 		 * that case the above rq->lock drop is a fail too.
5643 		 */
5644 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5645 			raw_spin_unlock(&next->pi_lock);
5646 			continue;
5647 		}
5648 
5649 		/* Find suitable destination for @next, with force if needed. */
5650 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5651 
5652 		rq = __migrate_task(rq, next, dest_cpu);
5653 		if (rq != dead_rq) {
5654 			raw_spin_unlock(&rq->lock);
5655 			rq = dead_rq;
5656 			raw_spin_lock(&rq->lock);
5657 		}
5658 		raw_spin_unlock(&next->pi_lock);
5659 	}
5660 
5661 	rq->stop = stop;
5662 }
5663 #endif /* CONFIG_HOTPLUG_CPU */
5664 
5665 void set_rq_online(struct rq *rq)
5666 {
5667 	if (!rq->online) {
5668 		const struct sched_class *class;
5669 
5670 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5671 		rq->online = 1;
5672 
5673 		for_each_class(class) {
5674 			if (class->rq_online)
5675 				class->rq_online(rq);
5676 		}
5677 	}
5678 }
5679 
5680 void set_rq_offline(struct rq *rq)
5681 {
5682 	if (rq->online) {
5683 		const struct sched_class *class;
5684 
5685 		for_each_class(class) {
5686 			if (class->rq_offline)
5687 				class->rq_offline(rq);
5688 		}
5689 
5690 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5691 		rq->online = 0;
5692 	}
5693 }
5694 
5695 static void set_cpu_rq_start_time(unsigned int cpu)
5696 {
5697 	struct rq *rq = cpu_rq(cpu);
5698 
5699 	rq->age_stamp = sched_clock_cpu(cpu);
5700 }
5701 
5702 /*
5703  * used to mark begin/end of suspend/resume:
5704  */
5705 static int num_cpus_frozen;
5706 
5707 /*
5708  * Update cpusets according to cpu_active mask.  If cpusets are
5709  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5710  * around partition_sched_domains().
5711  *
5712  * If we come here as part of a suspend/resume, don't touch cpusets because we
5713  * want to restore it back to its original state upon resume anyway.
5714  */
5715 static void cpuset_cpu_active(void)
5716 {
5717 	if (cpuhp_tasks_frozen) {
5718 		/*
5719 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5720 		 * resume sequence. As long as this is not the last online
5721 		 * operation in the resume sequence, just build a single sched
5722 		 * domain, ignoring cpusets.
5723 		 */
5724 		num_cpus_frozen--;
5725 		if (likely(num_cpus_frozen)) {
5726 			partition_sched_domains(1, NULL, NULL);
5727 			return;
5728 		}
5729 		/*
5730 		 * This is the last CPU online operation. So fall through and
5731 		 * restore the original sched domains by considering the
5732 		 * cpuset configurations.
5733 		 */
5734 	}
5735 	cpuset_update_active_cpus(true);
5736 }
5737 
5738 static int cpuset_cpu_inactive(unsigned int cpu)
5739 {
5740 	unsigned long flags;
5741 	struct dl_bw *dl_b;
5742 	bool overflow;
5743 	int cpus;
5744 
5745 	if (!cpuhp_tasks_frozen) {
5746 		rcu_read_lock_sched();
5747 		dl_b = dl_bw_of(cpu);
5748 
5749 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5750 		cpus = dl_bw_cpus(cpu);
5751 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
5752 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5753 
5754 		rcu_read_unlock_sched();
5755 
5756 		if (overflow)
5757 			return -EBUSY;
5758 		cpuset_update_active_cpus(false);
5759 	} else {
5760 		num_cpus_frozen++;
5761 		partition_sched_domains(1, NULL, NULL);
5762 	}
5763 	return 0;
5764 }
5765 
5766 int sched_cpu_activate(unsigned int cpu)
5767 {
5768 	struct rq *rq = cpu_rq(cpu);
5769 	unsigned long flags;
5770 
5771 	set_cpu_active(cpu, true);
5772 
5773 	if (sched_smp_initialized) {
5774 		sched_domains_numa_masks_set(cpu);
5775 		cpuset_cpu_active();
5776 	}
5777 
5778 	/*
5779 	 * Put the rq online, if not already. This happens:
5780 	 *
5781 	 * 1) In the early boot process, because we build the real domains
5782 	 *    after all CPUs have been brought up.
5783 	 *
5784 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5785 	 *    domains.
5786 	 */
5787 	raw_spin_lock_irqsave(&rq->lock, flags);
5788 	if (rq->rd) {
5789 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5790 		set_rq_online(rq);
5791 	}
5792 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5793 
5794 	update_max_interval();
5795 
5796 	return 0;
5797 }
5798 
5799 int sched_cpu_deactivate(unsigned int cpu)
5800 {
5801 	int ret;
5802 
5803 	set_cpu_active(cpu, false);
5804 	/*
5805 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5806 	 * users of this state to go away such that all new such users will
5807 	 * observe it.
5808 	 *
5809 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5810 	 * not imply sync_sched(), so wait for both.
5811 	 *
5812 	 * Do sync before park smpboot threads to take care the rcu boost case.
5813 	 */
5814 	if (IS_ENABLED(CONFIG_PREEMPT))
5815 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
5816 	else
5817 		synchronize_rcu();
5818 
5819 	if (!sched_smp_initialized)
5820 		return 0;
5821 
5822 	ret = cpuset_cpu_inactive(cpu);
5823 	if (ret) {
5824 		set_cpu_active(cpu, true);
5825 		return ret;
5826 	}
5827 	sched_domains_numa_masks_clear(cpu);
5828 	return 0;
5829 }
5830 
5831 static void sched_rq_cpu_starting(unsigned int cpu)
5832 {
5833 	struct rq *rq = cpu_rq(cpu);
5834 
5835 	rq->calc_load_update = calc_load_update;
5836 	update_max_interval();
5837 }
5838 
5839 int sched_cpu_starting(unsigned int cpu)
5840 {
5841 	set_cpu_rq_start_time(cpu);
5842 	sched_rq_cpu_starting(cpu);
5843 	return 0;
5844 }
5845 
5846 #ifdef CONFIG_HOTPLUG_CPU
5847 int sched_cpu_dying(unsigned int cpu)
5848 {
5849 	struct rq *rq = cpu_rq(cpu);
5850 	unsigned long flags;
5851 
5852 	/* Handle pending wakeups and then migrate everything off */
5853 	sched_ttwu_pending();
5854 	raw_spin_lock_irqsave(&rq->lock, flags);
5855 	if (rq->rd) {
5856 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5857 		set_rq_offline(rq);
5858 	}
5859 	migrate_tasks(rq);
5860 	BUG_ON(rq->nr_running != 1);
5861 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5862 	calc_load_migrate(rq);
5863 	update_max_interval();
5864 	nohz_balance_exit_idle(cpu);
5865 	hrtick_clear(rq);
5866 	return 0;
5867 }
5868 #endif
5869 
5870 #ifdef CONFIG_SCHED_SMT
5871 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5872 
5873 static void sched_init_smt(void)
5874 {
5875 	/*
5876 	 * We've enumerated all CPUs and will assume that if any CPU
5877 	 * has SMT siblings, CPU0 will too.
5878 	 */
5879 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5880 		static_branch_enable(&sched_smt_present);
5881 }
5882 #else
5883 static inline void sched_init_smt(void) { }
5884 #endif
5885 
5886 void __init sched_init_smp(void)
5887 {
5888 	cpumask_var_t non_isolated_cpus;
5889 
5890 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5891 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5892 
5893 	sched_init_numa();
5894 
5895 	/*
5896 	 * There's no userspace yet to cause hotplug operations; hence all the
5897 	 * CPU masks are stable and all blatant races in the below code cannot
5898 	 * happen.
5899 	 */
5900 	mutex_lock(&sched_domains_mutex);
5901 	init_sched_domains(cpu_active_mask);
5902 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5903 	if (cpumask_empty(non_isolated_cpus))
5904 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5905 	mutex_unlock(&sched_domains_mutex);
5906 
5907 	/* Move init over to a non-isolated CPU */
5908 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5909 		BUG();
5910 	sched_init_granularity();
5911 	free_cpumask_var(non_isolated_cpus);
5912 
5913 	init_sched_rt_class();
5914 	init_sched_dl_class();
5915 
5916 	sched_init_smt();
5917 	sched_clock_init_late();
5918 
5919 	sched_smp_initialized = true;
5920 }
5921 
5922 static int __init migration_init(void)
5923 {
5924 	sched_rq_cpu_starting(smp_processor_id());
5925 	return 0;
5926 }
5927 early_initcall(migration_init);
5928 
5929 #else
5930 void __init sched_init_smp(void)
5931 {
5932 	sched_init_granularity();
5933 	sched_clock_init_late();
5934 }
5935 #endif /* CONFIG_SMP */
5936 
5937 int in_sched_functions(unsigned long addr)
5938 {
5939 	return in_lock_functions(addr) ||
5940 		(addr >= (unsigned long)__sched_text_start
5941 		&& addr < (unsigned long)__sched_text_end);
5942 }
5943 
5944 #ifdef CONFIG_CGROUP_SCHED
5945 /*
5946  * Default task group.
5947  * Every task in system belongs to this group at bootup.
5948  */
5949 struct task_group root_task_group;
5950 LIST_HEAD(task_groups);
5951 
5952 /* Cacheline aligned slab cache for task_group */
5953 static struct kmem_cache *task_group_cache __read_mostly;
5954 #endif
5955 
5956 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5957 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5958 
5959 #define WAIT_TABLE_BITS 8
5960 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5961 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5962 
5963 wait_queue_head_t *bit_waitqueue(void *word, int bit)
5964 {
5965 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5966 	unsigned long val = (unsigned long)word << shift | bit;
5967 
5968 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5969 }
5970 EXPORT_SYMBOL(bit_waitqueue);
5971 
5972 void __init sched_init(void)
5973 {
5974 	int i, j;
5975 	unsigned long alloc_size = 0, ptr;
5976 
5977 	sched_clock_init();
5978 
5979 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
5980 		init_waitqueue_head(bit_wait_table + i);
5981 
5982 #ifdef CONFIG_FAIR_GROUP_SCHED
5983 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5984 #endif
5985 #ifdef CONFIG_RT_GROUP_SCHED
5986 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5987 #endif
5988 	if (alloc_size) {
5989 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5990 
5991 #ifdef CONFIG_FAIR_GROUP_SCHED
5992 		root_task_group.se = (struct sched_entity **)ptr;
5993 		ptr += nr_cpu_ids * sizeof(void **);
5994 
5995 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5996 		ptr += nr_cpu_ids * sizeof(void **);
5997 
5998 #endif /* CONFIG_FAIR_GROUP_SCHED */
5999 #ifdef CONFIG_RT_GROUP_SCHED
6000 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6001 		ptr += nr_cpu_ids * sizeof(void **);
6002 
6003 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6004 		ptr += nr_cpu_ids * sizeof(void **);
6005 
6006 #endif /* CONFIG_RT_GROUP_SCHED */
6007 	}
6008 #ifdef CONFIG_CPUMASK_OFFSTACK
6009 	for_each_possible_cpu(i) {
6010 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6011 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6012 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6013 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6014 	}
6015 #endif /* CONFIG_CPUMASK_OFFSTACK */
6016 
6017 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6018 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6019 
6020 #ifdef CONFIG_SMP
6021 	init_defrootdomain();
6022 #endif
6023 
6024 #ifdef CONFIG_RT_GROUP_SCHED
6025 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6026 			global_rt_period(), global_rt_runtime());
6027 #endif /* CONFIG_RT_GROUP_SCHED */
6028 
6029 #ifdef CONFIG_CGROUP_SCHED
6030 	task_group_cache = KMEM_CACHE(task_group, 0);
6031 
6032 	list_add(&root_task_group.list, &task_groups);
6033 	INIT_LIST_HEAD(&root_task_group.children);
6034 	INIT_LIST_HEAD(&root_task_group.siblings);
6035 	autogroup_init(&init_task);
6036 #endif /* CONFIG_CGROUP_SCHED */
6037 
6038 	for_each_possible_cpu(i) {
6039 		struct rq *rq;
6040 
6041 		rq = cpu_rq(i);
6042 		raw_spin_lock_init(&rq->lock);
6043 		rq->nr_running = 0;
6044 		rq->calc_load_active = 0;
6045 		rq->calc_load_update = jiffies + LOAD_FREQ;
6046 		init_cfs_rq(&rq->cfs);
6047 		init_rt_rq(&rq->rt);
6048 		init_dl_rq(&rq->dl);
6049 #ifdef CONFIG_FAIR_GROUP_SCHED
6050 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6051 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6052 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6053 		/*
6054 		 * How much CPU bandwidth does root_task_group get?
6055 		 *
6056 		 * In case of task-groups formed thr' the cgroup filesystem, it
6057 		 * gets 100% of the CPU resources in the system. This overall
6058 		 * system CPU resource is divided among the tasks of
6059 		 * root_task_group and its child task-groups in a fair manner,
6060 		 * based on each entity's (task or task-group's) weight
6061 		 * (se->load.weight).
6062 		 *
6063 		 * In other words, if root_task_group has 10 tasks of weight
6064 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6065 		 * then A0's share of the CPU resource is:
6066 		 *
6067 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6068 		 *
6069 		 * We achieve this by letting root_task_group's tasks sit
6070 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6071 		 */
6072 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6073 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6074 #endif /* CONFIG_FAIR_GROUP_SCHED */
6075 
6076 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6077 #ifdef CONFIG_RT_GROUP_SCHED
6078 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6079 #endif
6080 
6081 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6082 			rq->cpu_load[j] = 0;
6083 
6084 #ifdef CONFIG_SMP
6085 		rq->sd = NULL;
6086 		rq->rd = NULL;
6087 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6088 		rq->balance_callback = NULL;
6089 		rq->active_balance = 0;
6090 		rq->next_balance = jiffies;
6091 		rq->push_cpu = 0;
6092 		rq->cpu = i;
6093 		rq->online = 0;
6094 		rq->idle_stamp = 0;
6095 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6096 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6097 
6098 		INIT_LIST_HEAD(&rq->cfs_tasks);
6099 
6100 		rq_attach_root(rq, &def_root_domain);
6101 #ifdef CONFIG_NO_HZ_COMMON
6102 		rq->last_load_update_tick = jiffies;
6103 		rq->nohz_flags = 0;
6104 #endif
6105 #ifdef CONFIG_NO_HZ_FULL
6106 		rq->last_sched_tick = 0;
6107 #endif
6108 #endif /* CONFIG_SMP */
6109 		init_rq_hrtick(rq);
6110 		atomic_set(&rq->nr_iowait, 0);
6111 	}
6112 
6113 	set_load_weight(&init_task);
6114 
6115 	/*
6116 	 * The boot idle thread does lazy MMU switching as well:
6117 	 */
6118 	mmgrab(&init_mm);
6119 	enter_lazy_tlb(&init_mm, current);
6120 
6121 	/*
6122 	 * Make us the idle thread. Technically, schedule() should not be
6123 	 * called from this thread, however somewhere below it might be,
6124 	 * but because we are the idle thread, we just pick up running again
6125 	 * when this runqueue becomes "idle".
6126 	 */
6127 	init_idle(current, smp_processor_id());
6128 
6129 	calc_load_update = jiffies + LOAD_FREQ;
6130 
6131 #ifdef CONFIG_SMP
6132 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6133 	/* May be allocated at isolcpus cmdline parse time */
6134 	if (cpu_isolated_map == NULL)
6135 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6136 	idle_thread_set_boot_cpu();
6137 	set_cpu_rq_start_time(smp_processor_id());
6138 #endif
6139 	init_sched_fair_class();
6140 
6141 	init_schedstats();
6142 
6143 	scheduler_running = 1;
6144 }
6145 
6146 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6147 static inline int preempt_count_equals(int preempt_offset)
6148 {
6149 	int nested = preempt_count() + rcu_preempt_depth();
6150 
6151 	return (nested == preempt_offset);
6152 }
6153 
6154 void __might_sleep(const char *file, int line, int preempt_offset)
6155 {
6156 	/*
6157 	 * Blocking primitives will set (and therefore destroy) current->state,
6158 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6159 	 * otherwise we will destroy state.
6160 	 */
6161 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6162 			"do not call blocking ops when !TASK_RUNNING; "
6163 			"state=%lx set at [<%p>] %pS\n",
6164 			current->state,
6165 			(void *)current->task_state_change,
6166 			(void *)current->task_state_change);
6167 
6168 	___might_sleep(file, line, preempt_offset);
6169 }
6170 EXPORT_SYMBOL(__might_sleep);
6171 
6172 void ___might_sleep(const char *file, int line, int preempt_offset)
6173 {
6174 	/* Ratelimiting timestamp: */
6175 	static unsigned long prev_jiffy;
6176 
6177 	unsigned long preempt_disable_ip;
6178 
6179 	/* WARN_ON_ONCE() by default, no rate limit required: */
6180 	rcu_sleep_check();
6181 
6182 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6183 	     !is_idle_task(current)) ||
6184 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6185 		return;
6186 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6187 		return;
6188 	prev_jiffy = jiffies;
6189 
6190 	/* Save this before calling printk(), since that will clobber it: */
6191 	preempt_disable_ip = get_preempt_disable_ip(current);
6192 
6193 	printk(KERN_ERR
6194 		"BUG: sleeping function called from invalid context at %s:%d\n",
6195 			file, line);
6196 	printk(KERN_ERR
6197 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6198 			in_atomic(), irqs_disabled(),
6199 			current->pid, current->comm);
6200 
6201 	if (task_stack_end_corrupted(current))
6202 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6203 
6204 	debug_show_held_locks(current);
6205 	if (irqs_disabled())
6206 		print_irqtrace_events(current);
6207 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6208 	    && !preempt_count_equals(preempt_offset)) {
6209 		pr_err("Preemption disabled at:");
6210 		print_ip_sym(preempt_disable_ip);
6211 		pr_cont("\n");
6212 	}
6213 	dump_stack();
6214 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6215 }
6216 EXPORT_SYMBOL(___might_sleep);
6217 #endif
6218 
6219 #ifdef CONFIG_MAGIC_SYSRQ
6220 void normalize_rt_tasks(void)
6221 {
6222 	struct task_struct *g, *p;
6223 	struct sched_attr attr = {
6224 		.sched_policy = SCHED_NORMAL,
6225 	};
6226 
6227 	read_lock(&tasklist_lock);
6228 	for_each_process_thread(g, p) {
6229 		/*
6230 		 * Only normalize user tasks:
6231 		 */
6232 		if (p->flags & PF_KTHREAD)
6233 			continue;
6234 
6235 		p->se.exec_start = 0;
6236 		schedstat_set(p->se.statistics.wait_start,  0);
6237 		schedstat_set(p->se.statistics.sleep_start, 0);
6238 		schedstat_set(p->se.statistics.block_start, 0);
6239 
6240 		if (!dl_task(p) && !rt_task(p)) {
6241 			/*
6242 			 * Renice negative nice level userspace
6243 			 * tasks back to 0:
6244 			 */
6245 			if (task_nice(p) < 0)
6246 				set_user_nice(p, 0);
6247 			continue;
6248 		}
6249 
6250 		__sched_setscheduler(p, &attr, false, false);
6251 	}
6252 	read_unlock(&tasklist_lock);
6253 }
6254 
6255 #endif /* CONFIG_MAGIC_SYSRQ */
6256 
6257 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6258 /*
6259  * These functions are only useful for the IA64 MCA handling, or kdb.
6260  *
6261  * They can only be called when the whole system has been
6262  * stopped - every CPU needs to be quiescent, and no scheduling
6263  * activity can take place. Using them for anything else would
6264  * be a serious bug, and as a result, they aren't even visible
6265  * under any other configuration.
6266  */
6267 
6268 /**
6269  * curr_task - return the current task for a given CPU.
6270  * @cpu: the processor in question.
6271  *
6272  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6273  *
6274  * Return: The current task for @cpu.
6275  */
6276 struct task_struct *curr_task(int cpu)
6277 {
6278 	return cpu_curr(cpu);
6279 }
6280 
6281 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6282 
6283 #ifdef CONFIG_IA64
6284 /**
6285  * set_curr_task - set the current task for a given CPU.
6286  * @cpu: the processor in question.
6287  * @p: the task pointer to set.
6288  *
6289  * Description: This function must only be used when non-maskable interrupts
6290  * are serviced on a separate stack. It allows the architecture to switch the
6291  * notion of the current task on a CPU in a non-blocking manner. This function
6292  * must be called with all CPU's synchronized, and interrupts disabled, the
6293  * and caller must save the original value of the current task (see
6294  * curr_task() above) and restore that value before reenabling interrupts and
6295  * re-starting the system.
6296  *
6297  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6298  */
6299 void ia64_set_curr_task(int cpu, struct task_struct *p)
6300 {
6301 	cpu_curr(cpu) = p;
6302 }
6303 
6304 #endif
6305 
6306 #ifdef CONFIG_CGROUP_SCHED
6307 /* task_group_lock serializes the addition/removal of task groups */
6308 static DEFINE_SPINLOCK(task_group_lock);
6309 
6310 static void sched_free_group(struct task_group *tg)
6311 {
6312 	free_fair_sched_group(tg);
6313 	free_rt_sched_group(tg);
6314 	autogroup_free(tg);
6315 	kmem_cache_free(task_group_cache, tg);
6316 }
6317 
6318 /* allocate runqueue etc for a new task group */
6319 struct task_group *sched_create_group(struct task_group *parent)
6320 {
6321 	struct task_group *tg;
6322 
6323 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6324 	if (!tg)
6325 		return ERR_PTR(-ENOMEM);
6326 
6327 	if (!alloc_fair_sched_group(tg, parent))
6328 		goto err;
6329 
6330 	if (!alloc_rt_sched_group(tg, parent))
6331 		goto err;
6332 
6333 	return tg;
6334 
6335 err:
6336 	sched_free_group(tg);
6337 	return ERR_PTR(-ENOMEM);
6338 }
6339 
6340 void sched_online_group(struct task_group *tg, struct task_group *parent)
6341 {
6342 	unsigned long flags;
6343 
6344 	spin_lock_irqsave(&task_group_lock, flags);
6345 	list_add_rcu(&tg->list, &task_groups);
6346 
6347 	/* Root should already exist: */
6348 	WARN_ON(!parent);
6349 
6350 	tg->parent = parent;
6351 	INIT_LIST_HEAD(&tg->children);
6352 	list_add_rcu(&tg->siblings, &parent->children);
6353 	spin_unlock_irqrestore(&task_group_lock, flags);
6354 
6355 	online_fair_sched_group(tg);
6356 }
6357 
6358 /* rcu callback to free various structures associated with a task group */
6359 static void sched_free_group_rcu(struct rcu_head *rhp)
6360 {
6361 	/* Now it should be safe to free those cfs_rqs: */
6362 	sched_free_group(container_of(rhp, struct task_group, rcu));
6363 }
6364 
6365 void sched_destroy_group(struct task_group *tg)
6366 {
6367 	/* Wait for possible concurrent references to cfs_rqs complete: */
6368 	call_rcu(&tg->rcu, sched_free_group_rcu);
6369 }
6370 
6371 void sched_offline_group(struct task_group *tg)
6372 {
6373 	unsigned long flags;
6374 
6375 	/* End participation in shares distribution: */
6376 	unregister_fair_sched_group(tg);
6377 
6378 	spin_lock_irqsave(&task_group_lock, flags);
6379 	list_del_rcu(&tg->list);
6380 	list_del_rcu(&tg->siblings);
6381 	spin_unlock_irqrestore(&task_group_lock, flags);
6382 }
6383 
6384 static void sched_change_group(struct task_struct *tsk, int type)
6385 {
6386 	struct task_group *tg;
6387 
6388 	/*
6389 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6390 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6391 	 * to prevent lockdep warnings.
6392 	 */
6393 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6394 			  struct task_group, css);
6395 	tg = autogroup_task_group(tsk, tg);
6396 	tsk->sched_task_group = tg;
6397 
6398 #ifdef CONFIG_FAIR_GROUP_SCHED
6399 	if (tsk->sched_class->task_change_group)
6400 		tsk->sched_class->task_change_group(tsk, type);
6401 	else
6402 #endif
6403 		set_task_rq(tsk, task_cpu(tsk));
6404 }
6405 
6406 /*
6407  * Change task's runqueue when it moves between groups.
6408  *
6409  * The caller of this function should have put the task in its new group by
6410  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6411  * its new group.
6412  */
6413 void sched_move_task(struct task_struct *tsk)
6414 {
6415 	int queued, running;
6416 	struct rq_flags rf;
6417 	struct rq *rq;
6418 
6419 	rq = task_rq_lock(tsk, &rf);
6420 	update_rq_clock(rq);
6421 
6422 	running = task_current(rq, tsk);
6423 	queued = task_on_rq_queued(tsk);
6424 
6425 	if (queued)
6426 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
6427 	if (running)
6428 		put_prev_task(rq, tsk);
6429 
6430 	sched_change_group(tsk, TASK_MOVE_GROUP);
6431 
6432 	if (queued)
6433 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
6434 	if (running)
6435 		set_curr_task(rq, tsk);
6436 
6437 	task_rq_unlock(rq, tsk, &rf);
6438 }
6439 #endif /* CONFIG_CGROUP_SCHED */
6440 
6441 #ifdef CONFIG_RT_GROUP_SCHED
6442 /*
6443  * Ensure that the real time constraints are schedulable.
6444  */
6445 static DEFINE_MUTEX(rt_constraints_mutex);
6446 
6447 /* Must be called with tasklist_lock held */
6448 static inline int tg_has_rt_tasks(struct task_group *tg)
6449 {
6450 	struct task_struct *g, *p;
6451 
6452 	/*
6453 	 * Autogroups do not have RT tasks; see autogroup_create().
6454 	 */
6455 	if (task_group_is_autogroup(tg))
6456 		return 0;
6457 
6458 	for_each_process_thread(g, p) {
6459 		if (rt_task(p) && task_group(p) == tg)
6460 			return 1;
6461 	}
6462 
6463 	return 0;
6464 }
6465 
6466 struct rt_schedulable_data {
6467 	struct task_group *tg;
6468 	u64 rt_period;
6469 	u64 rt_runtime;
6470 };
6471 
6472 static int tg_rt_schedulable(struct task_group *tg, void *data)
6473 {
6474 	struct rt_schedulable_data *d = data;
6475 	struct task_group *child;
6476 	unsigned long total, sum = 0;
6477 	u64 period, runtime;
6478 
6479 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6480 	runtime = tg->rt_bandwidth.rt_runtime;
6481 
6482 	if (tg == d->tg) {
6483 		period = d->rt_period;
6484 		runtime = d->rt_runtime;
6485 	}
6486 
6487 	/*
6488 	 * Cannot have more runtime than the period.
6489 	 */
6490 	if (runtime > period && runtime != RUNTIME_INF)
6491 		return -EINVAL;
6492 
6493 	/*
6494 	 * Ensure we don't starve existing RT tasks.
6495 	 */
6496 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6497 		return -EBUSY;
6498 
6499 	total = to_ratio(period, runtime);
6500 
6501 	/*
6502 	 * Nobody can have more than the global setting allows.
6503 	 */
6504 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6505 		return -EINVAL;
6506 
6507 	/*
6508 	 * The sum of our children's runtime should not exceed our own.
6509 	 */
6510 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6511 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6512 		runtime = child->rt_bandwidth.rt_runtime;
6513 
6514 		if (child == d->tg) {
6515 			period = d->rt_period;
6516 			runtime = d->rt_runtime;
6517 		}
6518 
6519 		sum += to_ratio(period, runtime);
6520 	}
6521 
6522 	if (sum > total)
6523 		return -EINVAL;
6524 
6525 	return 0;
6526 }
6527 
6528 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6529 {
6530 	int ret;
6531 
6532 	struct rt_schedulable_data data = {
6533 		.tg = tg,
6534 		.rt_period = period,
6535 		.rt_runtime = runtime,
6536 	};
6537 
6538 	rcu_read_lock();
6539 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6540 	rcu_read_unlock();
6541 
6542 	return ret;
6543 }
6544 
6545 static int tg_set_rt_bandwidth(struct task_group *tg,
6546 		u64 rt_period, u64 rt_runtime)
6547 {
6548 	int i, err = 0;
6549 
6550 	/*
6551 	 * Disallowing the root group RT runtime is BAD, it would disallow the
6552 	 * kernel creating (and or operating) RT threads.
6553 	 */
6554 	if (tg == &root_task_group && rt_runtime == 0)
6555 		return -EINVAL;
6556 
6557 	/* No period doesn't make any sense. */
6558 	if (rt_period == 0)
6559 		return -EINVAL;
6560 
6561 	mutex_lock(&rt_constraints_mutex);
6562 	read_lock(&tasklist_lock);
6563 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6564 	if (err)
6565 		goto unlock;
6566 
6567 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6568 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6569 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6570 
6571 	for_each_possible_cpu(i) {
6572 		struct rt_rq *rt_rq = tg->rt_rq[i];
6573 
6574 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6575 		rt_rq->rt_runtime = rt_runtime;
6576 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6577 	}
6578 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6579 unlock:
6580 	read_unlock(&tasklist_lock);
6581 	mutex_unlock(&rt_constraints_mutex);
6582 
6583 	return err;
6584 }
6585 
6586 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6587 {
6588 	u64 rt_runtime, rt_period;
6589 
6590 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6591 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6592 	if (rt_runtime_us < 0)
6593 		rt_runtime = RUNTIME_INF;
6594 
6595 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6596 }
6597 
6598 static long sched_group_rt_runtime(struct task_group *tg)
6599 {
6600 	u64 rt_runtime_us;
6601 
6602 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6603 		return -1;
6604 
6605 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6606 	do_div(rt_runtime_us, NSEC_PER_USEC);
6607 	return rt_runtime_us;
6608 }
6609 
6610 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6611 {
6612 	u64 rt_runtime, rt_period;
6613 
6614 	rt_period = rt_period_us * NSEC_PER_USEC;
6615 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6616 
6617 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6618 }
6619 
6620 static long sched_group_rt_period(struct task_group *tg)
6621 {
6622 	u64 rt_period_us;
6623 
6624 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6625 	do_div(rt_period_us, NSEC_PER_USEC);
6626 	return rt_period_us;
6627 }
6628 #endif /* CONFIG_RT_GROUP_SCHED */
6629 
6630 #ifdef CONFIG_RT_GROUP_SCHED
6631 static int sched_rt_global_constraints(void)
6632 {
6633 	int ret = 0;
6634 
6635 	mutex_lock(&rt_constraints_mutex);
6636 	read_lock(&tasklist_lock);
6637 	ret = __rt_schedulable(NULL, 0, 0);
6638 	read_unlock(&tasklist_lock);
6639 	mutex_unlock(&rt_constraints_mutex);
6640 
6641 	return ret;
6642 }
6643 
6644 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6645 {
6646 	/* Don't accept realtime tasks when there is no way for them to run */
6647 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6648 		return 0;
6649 
6650 	return 1;
6651 }
6652 
6653 #else /* !CONFIG_RT_GROUP_SCHED */
6654 static int sched_rt_global_constraints(void)
6655 {
6656 	unsigned long flags;
6657 	int i;
6658 
6659 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6660 	for_each_possible_cpu(i) {
6661 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6662 
6663 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6664 		rt_rq->rt_runtime = global_rt_runtime();
6665 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6666 	}
6667 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6668 
6669 	return 0;
6670 }
6671 #endif /* CONFIG_RT_GROUP_SCHED */
6672 
6673 static int sched_dl_global_validate(void)
6674 {
6675 	u64 runtime = global_rt_runtime();
6676 	u64 period = global_rt_period();
6677 	u64 new_bw = to_ratio(period, runtime);
6678 	struct dl_bw *dl_b;
6679 	int cpu, ret = 0;
6680 	unsigned long flags;
6681 
6682 	/*
6683 	 * Here we want to check the bandwidth not being set to some
6684 	 * value smaller than the currently allocated bandwidth in
6685 	 * any of the root_domains.
6686 	 *
6687 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6688 	 * cycling on root_domains... Discussion on different/better
6689 	 * solutions is welcome!
6690 	 */
6691 	for_each_possible_cpu(cpu) {
6692 		rcu_read_lock_sched();
6693 		dl_b = dl_bw_of(cpu);
6694 
6695 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6696 		if (new_bw < dl_b->total_bw)
6697 			ret = -EBUSY;
6698 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6699 
6700 		rcu_read_unlock_sched();
6701 
6702 		if (ret)
6703 			break;
6704 	}
6705 
6706 	return ret;
6707 }
6708 
6709 static void sched_dl_do_global(void)
6710 {
6711 	u64 new_bw = -1;
6712 	struct dl_bw *dl_b;
6713 	int cpu;
6714 	unsigned long flags;
6715 
6716 	def_dl_bandwidth.dl_period = global_rt_period();
6717 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
6718 
6719 	if (global_rt_runtime() != RUNTIME_INF)
6720 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6721 
6722 	/*
6723 	 * FIXME: As above...
6724 	 */
6725 	for_each_possible_cpu(cpu) {
6726 		rcu_read_lock_sched();
6727 		dl_b = dl_bw_of(cpu);
6728 
6729 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6730 		dl_b->bw = new_bw;
6731 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6732 
6733 		rcu_read_unlock_sched();
6734 	}
6735 }
6736 
6737 static int sched_rt_global_validate(void)
6738 {
6739 	if (sysctl_sched_rt_period <= 0)
6740 		return -EINVAL;
6741 
6742 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6743 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6744 		return -EINVAL;
6745 
6746 	return 0;
6747 }
6748 
6749 static void sched_rt_do_global(void)
6750 {
6751 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
6752 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6753 }
6754 
6755 int sched_rt_handler(struct ctl_table *table, int write,
6756 		void __user *buffer, size_t *lenp,
6757 		loff_t *ppos)
6758 {
6759 	int old_period, old_runtime;
6760 	static DEFINE_MUTEX(mutex);
6761 	int ret;
6762 
6763 	mutex_lock(&mutex);
6764 	old_period = sysctl_sched_rt_period;
6765 	old_runtime = sysctl_sched_rt_runtime;
6766 
6767 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6768 
6769 	if (!ret && write) {
6770 		ret = sched_rt_global_validate();
6771 		if (ret)
6772 			goto undo;
6773 
6774 		ret = sched_dl_global_validate();
6775 		if (ret)
6776 			goto undo;
6777 
6778 		ret = sched_rt_global_constraints();
6779 		if (ret)
6780 			goto undo;
6781 
6782 		sched_rt_do_global();
6783 		sched_dl_do_global();
6784 	}
6785 	if (0) {
6786 undo:
6787 		sysctl_sched_rt_period = old_period;
6788 		sysctl_sched_rt_runtime = old_runtime;
6789 	}
6790 	mutex_unlock(&mutex);
6791 
6792 	return ret;
6793 }
6794 
6795 int sched_rr_handler(struct ctl_table *table, int write,
6796 		void __user *buffer, size_t *lenp,
6797 		loff_t *ppos)
6798 {
6799 	int ret;
6800 	static DEFINE_MUTEX(mutex);
6801 
6802 	mutex_lock(&mutex);
6803 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6804 	/*
6805 	 * Make sure that internally we keep jiffies.
6806 	 * Also, writing zero resets the timeslice to default:
6807 	 */
6808 	if (!ret && write) {
6809 		sched_rr_timeslice =
6810 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6811 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6812 	}
6813 	mutex_unlock(&mutex);
6814 	return ret;
6815 }
6816 
6817 #ifdef CONFIG_CGROUP_SCHED
6818 
6819 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6820 {
6821 	return css ? container_of(css, struct task_group, css) : NULL;
6822 }
6823 
6824 static struct cgroup_subsys_state *
6825 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6826 {
6827 	struct task_group *parent = css_tg(parent_css);
6828 	struct task_group *tg;
6829 
6830 	if (!parent) {
6831 		/* This is early initialization for the top cgroup */
6832 		return &root_task_group.css;
6833 	}
6834 
6835 	tg = sched_create_group(parent);
6836 	if (IS_ERR(tg))
6837 		return ERR_PTR(-ENOMEM);
6838 
6839 	return &tg->css;
6840 }
6841 
6842 /* Expose task group only after completing cgroup initialization */
6843 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6844 {
6845 	struct task_group *tg = css_tg(css);
6846 	struct task_group *parent = css_tg(css->parent);
6847 
6848 	if (parent)
6849 		sched_online_group(tg, parent);
6850 	return 0;
6851 }
6852 
6853 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6854 {
6855 	struct task_group *tg = css_tg(css);
6856 
6857 	sched_offline_group(tg);
6858 }
6859 
6860 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6861 {
6862 	struct task_group *tg = css_tg(css);
6863 
6864 	/*
6865 	 * Relies on the RCU grace period between css_released() and this.
6866 	 */
6867 	sched_free_group(tg);
6868 }
6869 
6870 /*
6871  * This is called before wake_up_new_task(), therefore we really only
6872  * have to set its group bits, all the other stuff does not apply.
6873  */
6874 static void cpu_cgroup_fork(struct task_struct *task)
6875 {
6876 	struct rq_flags rf;
6877 	struct rq *rq;
6878 
6879 	rq = task_rq_lock(task, &rf);
6880 
6881 	update_rq_clock(rq);
6882 	sched_change_group(task, TASK_SET_GROUP);
6883 
6884 	task_rq_unlock(rq, task, &rf);
6885 }
6886 
6887 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6888 {
6889 	struct task_struct *task;
6890 	struct cgroup_subsys_state *css;
6891 	int ret = 0;
6892 
6893 	cgroup_taskset_for_each(task, css, tset) {
6894 #ifdef CONFIG_RT_GROUP_SCHED
6895 		if (!sched_rt_can_attach(css_tg(css), task))
6896 			return -EINVAL;
6897 #else
6898 		/* We don't support RT-tasks being in separate groups */
6899 		if (task->sched_class != &fair_sched_class)
6900 			return -EINVAL;
6901 #endif
6902 		/*
6903 		 * Serialize against wake_up_new_task() such that if its
6904 		 * running, we're sure to observe its full state.
6905 		 */
6906 		raw_spin_lock_irq(&task->pi_lock);
6907 		/*
6908 		 * Avoid calling sched_move_task() before wake_up_new_task()
6909 		 * has happened. This would lead to problems with PELT, due to
6910 		 * move wanting to detach+attach while we're not attached yet.
6911 		 */
6912 		if (task->state == TASK_NEW)
6913 			ret = -EINVAL;
6914 		raw_spin_unlock_irq(&task->pi_lock);
6915 
6916 		if (ret)
6917 			break;
6918 	}
6919 	return ret;
6920 }
6921 
6922 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6923 {
6924 	struct task_struct *task;
6925 	struct cgroup_subsys_state *css;
6926 
6927 	cgroup_taskset_for_each(task, css, tset)
6928 		sched_move_task(task);
6929 }
6930 
6931 #ifdef CONFIG_FAIR_GROUP_SCHED
6932 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6933 				struct cftype *cftype, u64 shareval)
6934 {
6935 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6936 }
6937 
6938 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6939 			       struct cftype *cft)
6940 {
6941 	struct task_group *tg = css_tg(css);
6942 
6943 	return (u64) scale_load_down(tg->shares);
6944 }
6945 
6946 #ifdef CONFIG_CFS_BANDWIDTH
6947 static DEFINE_MUTEX(cfs_constraints_mutex);
6948 
6949 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6950 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6951 
6952 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6953 
6954 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6955 {
6956 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6957 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6958 
6959 	if (tg == &root_task_group)
6960 		return -EINVAL;
6961 
6962 	/*
6963 	 * Ensure we have at some amount of bandwidth every period.  This is
6964 	 * to prevent reaching a state of large arrears when throttled via
6965 	 * entity_tick() resulting in prolonged exit starvation.
6966 	 */
6967 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6968 		return -EINVAL;
6969 
6970 	/*
6971 	 * Likewise, bound things on the otherside by preventing insane quota
6972 	 * periods.  This also allows us to normalize in computing quota
6973 	 * feasibility.
6974 	 */
6975 	if (period > max_cfs_quota_period)
6976 		return -EINVAL;
6977 
6978 	/*
6979 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6980 	 * unthrottle_offline_cfs_rqs().
6981 	 */
6982 	get_online_cpus();
6983 	mutex_lock(&cfs_constraints_mutex);
6984 	ret = __cfs_schedulable(tg, period, quota);
6985 	if (ret)
6986 		goto out_unlock;
6987 
6988 	runtime_enabled = quota != RUNTIME_INF;
6989 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6990 	/*
6991 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6992 	 * before making related changes, and on->off must occur afterwards
6993 	 */
6994 	if (runtime_enabled && !runtime_was_enabled)
6995 		cfs_bandwidth_usage_inc();
6996 	raw_spin_lock_irq(&cfs_b->lock);
6997 	cfs_b->period = ns_to_ktime(period);
6998 	cfs_b->quota = quota;
6999 
7000 	__refill_cfs_bandwidth_runtime(cfs_b);
7001 
7002 	/* Restart the period timer (if active) to handle new period expiry: */
7003 	if (runtime_enabled)
7004 		start_cfs_bandwidth(cfs_b);
7005 
7006 	raw_spin_unlock_irq(&cfs_b->lock);
7007 
7008 	for_each_online_cpu(i) {
7009 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7010 		struct rq *rq = cfs_rq->rq;
7011 
7012 		raw_spin_lock_irq(&rq->lock);
7013 		cfs_rq->runtime_enabled = runtime_enabled;
7014 		cfs_rq->runtime_remaining = 0;
7015 
7016 		if (cfs_rq->throttled)
7017 			unthrottle_cfs_rq(cfs_rq);
7018 		raw_spin_unlock_irq(&rq->lock);
7019 	}
7020 	if (runtime_was_enabled && !runtime_enabled)
7021 		cfs_bandwidth_usage_dec();
7022 out_unlock:
7023 	mutex_unlock(&cfs_constraints_mutex);
7024 	put_online_cpus();
7025 
7026 	return ret;
7027 }
7028 
7029 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7030 {
7031 	u64 quota, period;
7032 
7033 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7034 	if (cfs_quota_us < 0)
7035 		quota = RUNTIME_INF;
7036 	else
7037 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7038 
7039 	return tg_set_cfs_bandwidth(tg, period, quota);
7040 }
7041 
7042 long tg_get_cfs_quota(struct task_group *tg)
7043 {
7044 	u64 quota_us;
7045 
7046 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7047 		return -1;
7048 
7049 	quota_us = tg->cfs_bandwidth.quota;
7050 	do_div(quota_us, NSEC_PER_USEC);
7051 
7052 	return quota_us;
7053 }
7054 
7055 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7056 {
7057 	u64 quota, period;
7058 
7059 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7060 	quota = tg->cfs_bandwidth.quota;
7061 
7062 	return tg_set_cfs_bandwidth(tg, period, quota);
7063 }
7064 
7065 long tg_get_cfs_period(struct task_group *tg)
7066 {
7067 	u64 cfs_period_us;
7068 
7069 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7070 	do_div(cfs_period_us, NSEC_PER_USEC);
7071 
7072 	return cfs_period_us;
7073 }
7074 
7075 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7076 				  struct cftype *cft)
7077 {
7078 	return tg_get_cfs_quota(css_tg(css));
7079 }
7080 
7081 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7082 				   struct cftype *cftype, s64 cfs_quota_us)
7083 {
7084 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7085 }
7086 
7087 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7088 				   struct cftype *cft)
7089 {
7090 	return tg_get_cfs_period(css_tg(css));
7091 }
7092 
7093 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7094 				    struct cftype *cftype, u64 cfs_period_us)
7095 {
7096 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7097 }
7098 
7099 struct cfs_schedulable_data {
7100 	struct task_group *tg;
7101 	u64 period, quota;
7102 };
7103 
7104 /*
7105  * normalize group quota/period to be quota/max_period
7106  * note: units are usecs
7107  */
7108 static u64 normalize_cfs_quota(struct task_group *tg,
7109 			       struct cfs_schedulable_data *d)
7110 {
7111 	u64 quota, period;
7112 
7113 	if (tg == d->tg) {
7114 		period = d->period;
7115 		quota = d->quota;
7116 	} else {
7117 		period = tg_get_cfs_period(tg);
7118 		quota = tg_get_cfs_quota(tg);
7119 	}
7120 
7121 	/* note: these should typically be equivalent */
7122 	if (quota == RUNTIME_INF || quota == -1)
7123 		return RUNTIME_INF;
7124 
7125 	return to_ratio(period, quota);
7126 }
7127 
7128 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7129 {
7130 	struct cfs_schedulable_data *d = data;
7131 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7132 	s64 quota = 0, parent_quota = -1;
7133 
7134 	if (!tg->parent) {
7135 		quota = RUNTIME_INF;
7136 	} else {
7137 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7138 
7139 		quota = normalize_cfs_quota(tg, d);
7140 		parent_quota = parent_b->hierarchical_quota;
7141 
7142 		/*
7143 		 * Ensure max(child_quota) <= parent_quota, inherit when no
7144 		 * limit is set:
7145 		 */
7146 		if (quota == RUNTIME_INF)
7147 			quota = parent_quota;
7148 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7149 			return -EINVAL;
7150 	}
7151 	cfs_b->hierarchical_quota = quota;
7152 
7153 	return 0;
7154 }
7155 
7156 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7157 {
7158 	int ret;
7159 	struct cfs_schedulable_data data = {
7160 		.tg = tg,
7161 		.period = period,
7162 		.quota = quota,
7163 	};
7164 
7165 	if (quota != RUNTIME_INF) {
7166 		do_div(data.period, NSEC_PER_USEC);
7167 		do_div(data.quota, NSEC_PER_USEC);
7168 	}
7169 
7170 	rcu_read_lock();
7171 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7172 	rcu_read_unlock();
7173 
7174 	return ret;
7175 }
7176 
7177 static int cpu_stats_show(struct seq_file *sf, void *v)
7178 {
7179 	struct task_group *tg = css_tg(seq_css(sf));
7180 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7181 
7182 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7183 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7184 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7185 
7186 	return 0;
7187 }
7188 #endif /* CONFIG_CFS_BANDWIDTH */
7189 #endif /* CONFIG_FAIR_GROUP_SCHED */
7190 
7191 #ifdef CONFIG_RT_GROUP_SCHED
7192 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7193 				struct cftype *cft, s64 val)
7194 {
7195 	return sched_group_set_rt_runtime(css_tg(css), val);
7196 }
7197 
7198 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7199 			       struct cftype *cft)
7200 {
7201 	return sched_group_rt_runtime(css_tg(css));
7202 }
7203 
7204 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7205 				    struct cftype *cftype, u64 rt_period_us)
7206 {
7207 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7208 }
7209 
7210 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7211 				   struct cftype *cft)
7212 {
7213 	return sched_group_rt_period(css_tg(css));
7214 }
7215 #endif /* CONFIG_RT_GROUP_SCHED */
7216 
7217 static struct cftype cpu_files[] = {
7218 #ifdef CONFIG_FAIR_GROUP_SCHED
7219 	{
7220 		.name = "shares",
7221 		.read_u64 = cpu_shares_read_u64,
7222 		.write_u64 = cpu_shares_write_u64,
7223 	},
7224 #endif
7225 #ifdef CONFIG_CFS_BANDWIDTH
7226 	{
7227 		.name = "cfs_quota_us",
7228 		.read_s64 = cpu_cfs_quota_read_s64,
7229 		.write_s64 = cpu_cfs_quota_write_s64,
7230 	},
7231 	{
7232 		.name = "cfs_period_us",
7233 		.read_u64 = cpu_cfs_period_read_u64,
7234 		.write_u64 = cpu_cfs_period_write_u64,
7235 	},
7236 	{
7237 		.name = "stat",
7238 		.seq_show = cpu_stats_show,
7239 	},
7240 #endif
7241 #ifdef CONFIG_RT_GROUP_SCHED
7242 	{
7243 		.name = "rt_runtime_us",
7244 		.read_s64 = cpu_rt_runtime_read,
7245 		.write_s64 = cpu_rt_runtime_write,
7246 	},
7247 	{
7248 		.name = "rt_period_us",
7249 		.read_u64 = cpu_rt_period_read_uint,
7250 		.write_u64 = cpu_rt_period_write_uint,
7251 	},
7252 #endif
7253 	{ }	/* Terminate */
7254 };
7255 
7256 struct cgroup_subsys cpu_cgrp_subsys = {
7257 	.css_alloc	= cpu_cgroup_css_alloc,
7258 	.css_online	= cpu_cgroup_css_online,
7259 	.css_released	= cpu_cgroup_css_released,
7260 	.css_free	= cpu_cgroup_css_free,
7261 	.fork		= cpu_cgroup_fork,
7262 	.can_attach	= cpu_cgroup_can_attach,
7263 	.attach		= cpu_cgroup_attach,
7264 	.legacy_cftypes	= cpu_files,
7265 	.early_init	= true,
7266 };
7267 
7268 #endif	/* CONFIG_CGROUP_SCHED */
7269 
7270 void dump_cpu_task(int cpu)
7271 {
7272 	pr_info("Task dump for CPU %d:\n", cpu);
7273 	sched_show_task(cpu_curr(cpu));
7274 }
7275 
7276 /*
7277  * Nice levels are multiplicative, with a gentle 10% change for every
7278  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7279  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7280  * that remained on nice 0.
7281  *
7282  * The "10% effect" is relative and cumulative: from _any_ nice level,
7283  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7284  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7285  * If a task goes up by ~10% and another task goes down by ~10% then
7286  * the relative distance between them is ~25%.)
7287  */
7288 const int sched_prio_to_weight[40] = {
7289  /* -20 */     88761,     71755,     56483,     46273,     36291,
7290  /* -15 */     29154,     23254,     18705,     14949,     11916,
7291  /* -10 */      9548,      7620,      6100,      4904,      3906,
7292  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7293  /*   0 */      1024,       820,       655,       526,       423,
7294  /*   5 */       335,       272,       215,       172,       137,
7295  /*  10 */       110,        87,        70,        56,        45,
7296  /*  15 */        36,        29,        23,        18,        15,
7297 };
7298 
7299 /*
7300  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7301  *
7302  * In cases where the weight does not change often, we can use the
7303  * precalculated inverse to speed up arithmetics by turning divisions
7304  * into multiplications:
7305  */
7306 const u32 sched_prio_to_wmult[40] = {
7307  /* -20 */     48388,     59856,     76040,     92818,    118348,
7308  /* -15 */    147320,    184698,    229616,    287308,    360437,
7309  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7310  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7311  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7312  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7313  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7314  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7315 };
7316