1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 94 { 95 unsigned long delta; 96 ktime_t soft, hard, now; 97 98 for (;;) { 99 if (hrtimer_active(period_timer)) 100 break; 101 102 now = hrtimer_cb_get_time(period_timer); 103 hrtimer_forward(period_timer, now, period); 104 105 soft = hrtimer_get_softexpires(period_timer); 106 hard = hrtimer_get_expires(period_timer); 107 delta = ktime_to_ns(ktime_sub(hard, soft)); 108 __hrtimer_start_range_ns(period_timer, soft, delta, 109 HRTIMER_MODE_ABS_PINNED, 0); 110 } 111 } 112 113 DEFINE_MUTEX(sched_domains_mutex); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 static void update_rq_clock_task(struct rq *rq, s64 delta); 117 118 void update_rq_clock(struct rq *rq) 119 { 120 s64 delta; 121 122 lockdep_assert_held(&rq->lock); 123 124 if (rq->clock_skip_update & RQCF_ACT_SKIP) 125 return; 126 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 128 if (delta < 0) 129 return; 130 rq->clock += delta; 131 update_rq_clock_task(rq, delta); 132 } 133 134 /* 135 * Debugging: various feature bits 136 */ 137 138 #define SCHED_FEAT(name, enabled) \ 139 (1UL << __SCHED_FEAT_##name) * enabled | 140 141 const_debug unsigned int sysctl_sched_features = 142 #include "features.h" 143 0; 144 145 #undef SCHED_FEAT 146 147 #ifdef CONFIG_SCHED_DEBUG 148 #define SCHED_FEAT(name, enabled) \ 149 #name , 150 151 static const char * const sched_feat_names[] = { 152 #include "features.h" 153 }; 154 155 #undef SCHED_FEAT 156 157 static int sched_feat_show(struct seq_file *m, void *v) 158 { 159 int i; 160 161 for (i = 0; i < __SCHED_FEAT_NR; i++) { 162 if (!(sysctl_sched_features & (1UL << i))) 163 seq_puts(m, "NO_"); 164 seq_printf(m, "%s ", sched_feat_names[i]); 165 } 166 seq_puts(m, "\n"); 167 168 return 0; 169 } 170 171 #ifdef HAVE_JUMP_LABEL 172 173 #define jump_label_key__true STATIC_KEY_INIT_TRUE 174 #define jump_label_key__false STATIC_KEY_INIT_FALSE 175 176 #define SCHED_FEAT(name, enabled) \ 177 jump_label_key__##enabled , 178 179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 180 #include "features.h" 181 }; 182 183 #undef SCHED_FEAT 184 185 static void sched_feat_disable(int i) 186 { 187 if (static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_dec(&sched_feat_keys[i]); 189 } 190 191 static void sched_feat_enable(int i) 192 { 193 if (!static_key_enabled(&sched_feat_keys[i])) 194 static_key_slow_inc(&sched_feat_keys[i]); 195 } 196 #else 197 static void sched_feat_disable(int i) { }; 198 static void sched_feat_enable(int i) { }; 199 #endif /* HAVE_JUMP_LABEL */ 200 201 static int sched_feat_set(char *cmp) 202 { 203 int i; 204 int neg = 0; 205 206 if (strncmp(cmp, "NO_", 3) == 0) { 207 neg = 1; 208 cmp += 3; 209 } 210 211 for (i = 0; i < __SCHED_FEAT_NR; i++) { 212 if (strcmp(cmp, sched_feat_names[i]) == 0) { 213 if (neg) { 214 sysctl_sched_features &= ~(1UL << i); 215 sched_feat_disable(i); 216 } else { 217 sysctl_sched_features |= (1UL << i); 218 sched_feat_enable(i); 219 } 220 break; 221 } 222 } 223 224 return i; 225 } 226 227 static ssize_t 228 sched_feat_write(struct file *filp, const char __user *ubuf, 229 size_t cnt, loff_t *ppos) 230 { 231 char buf[64]; 232 char *cmp; 233 int i; 234 struct inode *inode; 235 236 if (cnt > 63) 237 cnt = 63; 238 239 if (copy_from_user(&buf, ubuf, cnt)) 240 return -EFAULT; 241 242 buf[cnt] = 0; 243 cmp = strstrip(buf); 244 245 /* Ensure the static_key remains in a consistent state */ 246 inode = file_inode(filp); 247 mutex_lock(&inode->i_mutex); 248 i = sched_feat_set(cmp); 249 mutex_unlock(&inode->i_mutex); 250 if (i == __SCHED_FEAT_NR) 251 return -EINVAL; 252 253 *ppos += cnt; 254 255 return cnt; 256 } 257 258 static int sched_feat_open(struct inode *inode, struct file *filp) 259 { 260 return single_open(filp, sched_feat_show, NULL); 261 } 262 263 static const struct file_operations sched_feat_fops = { 264 .open = sched_feat_open, 265 .write = sched_feat_write, 266 .read = seq_read, 267 .llseek = seq_lseek, 268 .release = single_release, 269 }; 270 271 static __init int sched_init_debug(void) 272 { 273 debugfs_create_file("sched_features", 0644, NULL, NULL, 274 &sched_feat_fops); 275 276 return 0; 277 } 278 late_initcall(sched_init_debug); 279 #endif /* CONFIG_SCHED_DEBUG */ 280 281 /* 282 * Number of tasks to iterate in a single balance run. 283 * Limited because this is done with IRQs disabled. 284 */ 285 const_debug unsigned int sysctl_sched_nr_migrate = 32; 286 287 /* 288 * period over which we average the RT time consumption, measured 289 * in ms. 290 * 291 * default: 1s 292 */ 293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 294 295 /* 296 * period over which we measure -rt task cpu usage in us. 297 * default: 1s 298 */ 299 unsigned int sysctl_sched_rt_period = 1000000; 300 301 __read_mostly int scheduler_running; 302 303 /* 304 * part of the period that we allow rt tasks to run in us. 305 * default: 0.95s 306 */ 307 int sysctl_sched_rt_runtime = 950000; 308 309 /* cpus with isolated domains */ 310 cpumask_var_t cpu_isolated_map; 311 312 /* 313 * this_rq_lock - lock this runqueue and disable interrupts. 314 */ 315 static struct rq *this_rq_lock(void) 316 __acquires(rq->lock) 317 { 318 struct rq *rq; 319 320 local_irq_disable(); 321 rq = this_rq(); 322 raw_spin_lock(&rq->lock); 323 324 return rq; 325 } 326 327 #ifdef CONFIG_SCHED_HRTICK 328 /* 329 * Use HR-timers to deliver accurate preemption points. 330 */ 331 332 static void hrtick_clear(struct rq *rq) 333 { 334 if (hrtimer_active(&rq->hrtick_timer)) 335 hrtimer_cancel(&rq->hrtick_timer); 336 } 337 338 /* 339 * High-resolution timer tick. 340 * Runs from hardirq context with interrupts disabled. 341 */ 342 static enum hrtimer_restart hrtick(struct hrtimer *timer) 343 { 344 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 345 346 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 347 348 raw_spin_lock(&rq->lock); 349 update_rq_clock(rq); 350 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 351 raw_spin_unlock(&rq->lock); 352 353 return HRTIMER_NORESTART; 354 } 355 356 #ifdef CONFIG_SMP 357 358 static int __hrtick_restart(struct rq *rq) 359 { 360 struct hrtimer *timer = &rq->hrtick_timer; 361 ktime_t time = hrtimer_get_softexpires(timer); 362 363 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 364 } 365 366 /* 367 * called from hardirq (IPI) context 368 */ 369 static void __hrtick_start(void *arg) 370 { 371 struct rq *rq = arg; 372 373 raw_spin_lock(&rq->lock); 374 __hrtick_restart(rq); 375 rq->hrtick_csd_pending = 0; 376 raw_spin_unlock(&rq->lock); 377 } 378 379 /* 380 * Called to set the hrtick timer state. 381 * 382 * called with rq->lock held and irqs disabled 383 */ 384 void hrtick_start(struct rq *rq, u64 delay) 385 { 386 struct hrtimer *timer = &rq->hrtick_timer; 387 ktime_t time; 388 s64 delta; 389 390 /* 391 * Don't schedule slices shorter than 10000ns, that just 392 * doesn't make sense and can cause timer DoS. 393 */ 394 delta = max_t(s64, delay, 10000LL); 395 time = ktime_add_ns(timer->base->get_time(), delta); 396 397 hrtimer_set_expires(timer, time); 398 399 if (rq == this_rq()) { 400 __hrtick_restart(rq); 401 } else if (!rq->hrtick_csd_pending) { 402 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 403 rq->hrtick_csd_pending = 1; 404 } 405 } 406 407 static int 408 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 409 { 410 int cpu = (int)(long)hcpu; 411 412 switch (action) { 413 case CPU_UP_CANCELED: 414 case CPU_UP_CANCELED_FROZEN: 415 case CPU_DOWN_PREPARE: 416 case CPU_DOWN_PREPARE_FROZEN: 417 case CPU_DEAD: 418 case CPU_DEAD_FROZEN: 419 hrtick_clear(cpu_rq(cpu)); 420 return NOTIFY_OK; 421 } 422 423 return NOTIFY_DONE; 424 } 425 426 static __init void init_hrtick(void) 427 { 428 hotcpu_notifier(hotplug_hrtick, 0); 429 } 430 #else 431 /* 432 * Called to set the hrtick timer state. 433 * 434 * called with rq->lock held and irqs disabled 435 */ 436 void hrtick_start(struct rq *rq, u64 delay) 437 { 438 /* 439 * Don't schedule slices shorter than 10000ns, that just 440 * doesn't make sense. Rely on vruntime for fairness. 441 */ 442 delay = max_t(u64, delay, 10000LL); 443 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 444 HRTIMER_MODE_REL_PINNED, 0); 445 } 446 447 static inline void init_hrtick(void) 448 { 449 } 450 #endif /* CONFIG_SMP */ 451 452 static void init_rq_hrtick(struct rq *rq) 453 { 454 #ifdef CONFIG_SMP 455 rq->hrtick_csd_pending = 0; 456 457 rq->hrtick_csd.flags = 0; 458 rq->hrtick_csd.func = __hrtick_start; 459 rq->hrtick_csd.info = rq; 460 #endif 461 462 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 463 rq->hrtick_timer.function = hrtick; 464 } 465 #else /* CONFIG_SCHED_HRTICK */ 466 static inline void hrtick_clear(struct rq *rq) 467 { 468 } 469 470 static inline void init_rq_hrtick(struct rq *rq) 471 { 472 } 473 474 static inline void init_hrtick(void) 475 { 476 } 477 #endif /* CONFIG_SCHED_HRTICK */ 478 479 /* 480 * cmpxchg based fetch_or, macro so it works for different integer types 481 */ 482 #define fetch_or(ptr, val) \ 483 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 484 for (;;) { \ 485 __old = cmpxchg((ptr), __val, __val | (val)); \ 486 if (__old == __val) \ 487 break; \ 488 __val = __old; \ 489 } \ 490 __old; \ 491 }) 492 493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 494 /* 495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 496 * this avoids any races wrt polling state changes and thereby avoids 497 * spurious IPIs. 498 */ 499 static bool set_nr_and_not_polling(struct task_struct *p) 500 { 501 struct thread_info *ti = task_thread_info(p); 502 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 503 } 504 505 /* 506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 507 * 508 * If this returns true, then the idle task promises to call 509 * sched_ttwu_pending() and reschedule soon. 510 */ 511 static bool set_nr_if_polling(struct task_struct *p) 512 { 513 struct thread_info *ti = task_thread_info(p); 514 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 515 516 for (;;) { 517 if (!(val & _TIF_POLLING_NRFLAG)) 518 return false; 519 if (val & _TIF_NEED_RESCHED) 520 return true; 521 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 522 if (old == val) 523 break; 524 val = old; 525 } 526 return true; 527 } 528 529 #else 530 static bool set_nr_and_not_polling(struct task_struct *p) 531 { 532 set_tsk_need_resched(p); 533 return true; 534 } 535 536 #ifdef CONFIG_SMP 537 static bool set_nr_if_polling(struct task_struct *p) 538 { 539 return false; 540 } 541 #endif 542 #endif 543 544 /* 545 * resched_curr - mark rq's current task 'to be rescheduled now'. 546 * 547 * On UP this means the setting of the need_resched flag, on SMP it 548 * might also involve a cross-CPU call to trigger the scheduler on 549 * the target CPU. 550 */ 551 void resched_curr(struct rq *rq) 552 { 553 struct task_struct *curr = rq->curr; 554 int cpu; 555 556 lockdep_assert_held(&rq->lock); 557 558 if (test_tsk_need_resched(curr)) 559 return; 560 561 cpu = cpu_of(rq); 562 563 if (cpu == smp_processor_id()) { 564 set_tsk_need_resched(curr); 565 set_preempt_need_resched(); 566 return; 567 } 568 569 if (set_nr_and_not_polling(curr)) 570 smp_send_reschedule(cpu); 571 else 572 trace_sched_wake_idle_without_ipi(cpu); 573 } 574 575 void resched_cpu(int cpu) 576 { 577 struct rq *rq = cpu_rq(cpu); 578 unsigned long flags; 579 580 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 581 return; 582 resched_curr(rq); 583 raw_spin_unlock_irqrestore(&rq->lock, flags); 584 } 585 586 #ifdef CONFIG_SMP 587 #ifdef CONFIG_NO_HZ_COMMON 588 /* 589 * In the semi idle case, use the nearest busy cpu for migrating timers 590 * from an idle cpu. This is good for power-savings. 591 * 592 * We don't do similar optimization for completely idle system, as 593 * selecting an idle cpu will add more delays to the timers than intended 594 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 595 */ 596 int get_nohz_timer_target(int pinned) 597 { 598 int cpu = smp_processor_id(); 599 int i; 600 struct sched_domain *sd; 601 602 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 603 return cpu; 604 605 rcu_read_lock(); 606 for_each_domain(cpu, sd) { 607 for_each_cpu(i, sched_domain_span(sd)) { 608 if (!idle_cpu(i)) { 609 cpu = i; 610 goto unlock; 611 } 612 } 613 } 614 unlock: 615 rcu_read_unlock(); 616 return cpu; 617 } 618 /* 619 * When add_timer_on() enqueues a timer into the timer wheel of an 620 * idle CPU then this timer might expire before the next timer event 621 * which is scheduled to wake up that CPU. In case of a completely 622 * idle system the next event might even be infinite time into the 623 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 624 * leaves the inner idle loop so the newly added timer is taken into 625 * account when the CPU goes back to idle and evaluates the timer 626 * wheel for the next timer event. 627 */ 628 static void wake_up_idle_cpu(int cpu) 629 { 630 struct rq *rq = cpu_rq(cpu); 631 632 if (cpu == smp_processor_id()) 633 return; 634 635 if (set_nr_and_not_polling(rq->idle)) 636 smp_send_reschedule(cpu); 637 else 638 trace_sched_wake_idle_without_ipi(cpu); 639 } 640 641 static bool wake_up_full_nohz_cpu(int cpu) 642 { 643 /* 644 * We just need the target to call irq_exit() and re-evaluate 645 * the next tick. The nohz full kick at least implies that. 646 * If needed we can still optimize that later with an 647 * empty IRQ. 648 */ 649 if (tick_nohz_full_cpu(cpu)) { 650 if (cpu != smp_processor_id() || 651 tick_nohz_tick_stopped()) 652 tick_nohz_full_kick_cpu(cpu); 653 return true; 654 } 655 656 return false; 657 } 658 659 void wake_up_nohz_cpu(int cpu) 660 { 661 if (!wake_up_full_nohz_cpu(cpu)) 662 wake_up_idle_cpu(cpu); 663 } 664 665 static inline bool got_nohz_idle_kick(void) 666 { 667 int cpu = smp_processor_id(); 668 669 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 670 return false; 671 672 if (idle_cpu(cpu) && !need_resched()) 673 return true; 674 675 /* 676 * We can't run Idle Load Balance on this CPU for this time so we 677 * cancel it and clear NOHZ_BALANCE_KICK 678 */ 679 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 680 return false; 681 } 682 683 #else /* CONFIG_NO_HZ_COMMON */ 684 685 static inline bool got_nohz_idle_kick(void) 686 { 687 return false; 688 } 689 690 #endif /* CONFIG_NO_HZ_COMMON */ 691 692 #ifdef CONFIG_NO_HZ_FULL 693 bool sched_can_stop_tick(void) 694 { 695 /* 696 * FIFO realtime policy runs the highest priority task. Other runnable 697 * tasks are of a lower priority. The scheduler tick does nothing. 698 */ 699 if (current->policy == SCHED_FIFO) 700 return true; 701 702 /* 703 * Round-robin realtime tasks time slice with other tasks at the same 704 * realtime priority. Is this task the only one at this priority? 705 */ 706 if (current->policy == SCHED_RR) { 707 struct sched_rt_entity *rt_se = ¤t->rt; 708 709 return rt_se->run_list.prev == rt_se->run_list.next; 710 } 711 712 /* 713 * More than one running task need preemption. 714 * nr_running update is assumed to be visible 715 * after IPI is sent from wakers. 716 */ 717 if (this_rq()->nr_running > 1) 718 return false; 719 720 return true; 721 } 722 #endif /* CONFIG_NO_HZ_FULL */ 723 724 void sched_avg_update(struct rq *rq) 725 { 726 s64 period = sched_avg_period(); 727 728 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 729 /* 730 * Inline assembly required to prevent the compiler 731 * optimising this loop into a divmod call. 732 * See __iter_div_u64_rem() for another example of this. 733 */ 734 asm("" : "+rm" (rq->age_stamp)); 735 rq->age_stamp += period; 736 rq->rt_avg /= 2; 737 } 738 } 739 740 #endif /* CONFIG_SMP */ 741 742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 743 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 744 /* 745 * Iterate task_group tree rooted at *from, calling @down when first entering a 746 * node and @up when leaving it for the final time. 747 * 748 * Caller must hold rcu_lock or sufficient equivalent. 749 */ 750 int walk_tg_tree_from(struct task_group *from, 751 tg_visitor down, tg_visitor up, void *data) 752 { 753 struct task_group *parent, *child; 754 int ret; 755 756 parent = from; 757 758 down: 759 ret = (*down)(parent, data); 760 if (ret) 761 goto out; 762 list_for_each_entry_rcu(child, &parent->children, siblings) { 763 parent = child; 764 goto down; 765 766 up: 767 continue; 768 } 769 ret = (*up)(parent, data); 770 if (ret || parent == from) 771 goto out; 772 773 child = parent; 774 parent = parent->parent; 775 if (parent) 776 goto up; 777 out: 778 return ret; 779 } 780 781 int tg_nop(struct task_group *tg, void *data) 782 { 783 return 0; 784 } 785 #endif 786 787 static void set_load_weight(struct task_struct *p) 788 { 789 int prio = p->static_prio - MAX_RT_PRIO; 790 struct load_weight *load = &p->se.load; 791 792 /* 793 * SCHED_IDLE tasks get minimal weight: 794 */ 795 if (p->policy == SCHED_IDLE) { 796 load->weight = scale_load(WEIGHT_IDLEPRIO); 797 load->inv_weight = WMULT_IDLEPRIO; 798 return; 799 } 800 801 load->weight = scale_load(prio_to_weight[prio]); 802 load->inv_weight = prio_to_wmult[prio]; 803 } 804 805 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 806 { 807 update_rq_clock(rq); 808 sched_info_queued(rq, p); 809 p->sched_class->enqueue_task(rq, p, flags); 810 } 811 812 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 813 { 814 update_rq_clock(rq); 815 sched_info_dequeued(rq, p); 816 p->sched_class->dequeue_task(rq, p, flags); 817 } 818 819 void activate_task(struct rq *rq, struct task_struct *p, int flags) 820 { 821 if (task_contributes_to_load(p)) 822 rq->nr_uninterruptible--; 823 824 enqueue_task(rq, p, flags); 825 } 826 827 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 828 { 829 if (task_contributes_to_load(p)) 830 rq->nr_uninterruptible++; 831 832 dequeue_task(rq, p, flags); 833 } 834 835 static void update_rq_clock_task(struct rq *rq, s64 delta) 836 { 837 /* 838 * In theory, the compile should just see 0 here, and optimize out the call 839 * to sched_rt_avg_update. But I don't trust it... 840 */ 841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 842 s64 steal = 0, irq_delta = 0; 843 #endif 844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 845 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 846 847 /* 848 * Since irq_time is only updated on {soft,}irq_exit, we might run into 849 * this case when a previous update_rq_clock() happened inside a 850 * {soft,}irq region. 851 * 852 * When this happens, we stop ->clock_task and only update the 853 * prev_irq_time stamp to account for the part that fit, so that a next 854 * update will consume the rest. This ensures ->clock_task is 855 * monotonic. 856 * 857 * It does however cause some slight miss-attribution of {soft,}irq 858 * time, a more accurate solution would be to update the irq_time using 859 * the current rq->clock timestamp, except that would require using 860 * atomic ops. 861 */ 862 if (irq_delta > delta) 863 irq_delta = delta; 864 865 rq->prev_irq_time += irq_delta; 866 delta -= irq_delta; 867 #endif 868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 869 if (static_key_false((¶virt_steal_rq_enabled))) { 870 steal = paravirt_steal_clock(cpu_of(rq)); 871 steal -= rq->prev_steal_time_rq; 872 873 if (unlikely(steal > delta)) 874 steal = delta; 875 876 rq->prev_steal_time_rq += steal; 877 delta -= steal; 878 } 879 #endif 880 881 rq->clock_task += delta; 882 883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 884 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 885 sched_rt_avg_update(rq, irq_delta + steal); 886 #endif 887 } 888 889 void sched_set_stop_task(int cpu, struct task_struct *stop) 890 { 891 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 892 struct task_struct *old_stop = cpu_rq(cpu)->stop; 893 894 if (stop) { 895 /* 896 * Make it appear like a SCHED_FIFO task, its something 897 * userspace knows about and won't get confused about. 898 * 899 * Also, it will make PI more or less work without too 900 * much confusion -- but then, stop work should not 901 * rely on PI working anyway. 902 */ 903 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 904 905 stop->sched_class = &stop_sched_class; 906 } 907 908 cpu_rq(cpu)->stop = stop; 909 910 if (old_stop) { 911 /* 912 * Reset it back to a normal scheduling class so that 913 * it can die in pieces. 914 */ 915 old_stop->sched_class = &rt_sched_class; 916 } 917 } 918 919 /* 920 * __normal_prio - return the priority that is based on the static prio 921 */ 922 static inline int __normal_prio(struct task_struct *p) 923 { 924 return p->static_prio; 925 } 926 927 /* 928 * Calculate the expected normal priority: i.e. priority 929 * without taking RT-inheritance into account. Might be 930 * boosted by interactivity modifiers. Changes upon fork, 931 * setprio syscalls, and whenever the interactivity 932 * estimator recalculates. 933 */ 934 static inline int normal_prio(struct task_struct *p) 935 { 936 int prio; 937 938 if (task_has_dl_policy(p)) 939 prio = MAX_DL_PRIO-1; 940 else if (task_has_rt_policy(p)) 941 prio = MAX_RT_PRIO-1 - p->rt_priority; 942 else 943 prio = __normal_prio(p); 944 return prio; 945 } 946 947 /* 948 * Calculate the current priority, i.e. the priority 949 * taken into account by the scheduler. This value might 950 * be boosted by RT tasks, or might be boosted by 951 * interactivity modifiers. Will be RT if the task got 952 * RT-boosted. If not then it returns p->normal_prio. 953 */ 954 static int effective_prio(struct task_struct *p) 955 { 956 p->normal_prio = normal_prio(p); 957 /* 958 * If we are RT tasks or we were boosted to RT priority, 959 * keep the priority unchanged. Otherwise, update priority 960 * to the normal priority: 961 */ 962 if (!rt_prio(p->prio)) 963 return p->normal_prio; 964 return p->prio; 965 } 966 967 /** 968 * task_curr - is this task currently executing on a CPU? 969 * @p: the task in question. 970 * 971 * Return: 1 if the task is currently executing. 0 otherwise. 972 */ 973 inline int task_curr(const struct task_struct *p) 974 { 975 return cpu_curr(task_cpu(p)) == p; 976 } 977 978 /* 979 * Can drop rq->lock because from sched_class::switched_from() methods drop it. 980 */ 981 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 982 const struct sched_class *prev_class, 983 int oldprio) 984 { 985 if (prev_class != p->sched_class) { 986 if (prev_class->switched_from) 987 prev_class->switched_from(rq, p); 988 /* Possble rq->lock 'hole'. */ 989 p->sched_class->switched_to(rq, p); 990 } else if (oldprio != p->prio || dl_task(p)) 991 p->sched_class->prio_changed(rq, p, oldprio); 992 } 993 994 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 995 { 996 const struct sched_class *class; 997 998 if (p->sched_class == rq->curr->sched_class) { 999 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1000 } else { 1001 for_each_class(class) { 1002 if (class == rq->curr->sched_class) 1003 break; 1004 if (class == p->sched_class) { 1005 resched_curr(rq); 1006 break; 1007 } 1008 } 1009 } 1010 1011 /* 1012 * A queue event has occurred, and we're going to schedule. In 1013 * this case, we can save a useless back to back clock update. 1014 */ 1015 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1016 rq_clock_skip_update(rq, true); 1017 } 1018 1019 #ifdef CONFIG_SMP 1020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1021 { 1022 #ifdef CONFIG_SCHED_DEBUG 1023 /* 1024 * We should never call set_task_cpu() on a blocked task, 1025 * ttwu() will sort out the placement. 1026 */ 1027 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1028 !p->on_rq); 1029 1030 #ifdef CONFIG_LOCKDEP 1031 /* 1032 * The caller should hold either p->pi_lock or rq->lock, when changing 1033 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1034 * 1035 * sched_move_task() holds both and thus holding either pins the cgroup, 1036 * see task_group(). 1037 * 1038 * Furthermore, all task_rq users should acquire both locks, see 1039 * task_rq_lock(). 1040 */ 1041 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1042 lockdep_is_held(&task_rq(p)->lock))); 1043 #endif 1044 #endif 1045 1046 trace_sched_migrate_task(p, new_cpu); 1047 1048 if (task_cpu(p) != new_cpu) { 1049 if (p->sched_class->migrate_task_rq) 1050 p->sched_class->migrate_task_rq(p, new_cpu); 1051 p->se.nr_migrations++; 1052 perf_event_task_migrate(p); 1053 } 1054 1055 __set_task_cpu(p, new_cpu); 1056 } 1057 1058 static void __migrate_swap_task(struct task_struct *p, int cpu) 1059 { 1060 if (task_on_rq_queued(p)) { 1061 struct rq *src_rq, *dst_rq; 1062 1063 src_rq = task_rq(p); 1064 dst_rq = cpu_rq(cpu); 1065 1066 deactivate_task(src_rq, p, 0); 1067 set_task_cpu(p, cpu); 1068 activate_task(dst_rq, p, 0); 1069 check_preempt_curr(dst_rq, p, 0); 1070 } else { 1071 /* 1072 * Task isn't running anymore; make it appear like we migrated 1073 * it before it went to sleep. This means on wakeup we make the 1074 * previous cpu our targer instead of where it really is. 1075 */ 1076 p->wake_cpu = cpu; 1077 } 1078 } 1079 1080 struct migration_swap_arg { 1081 struct task_struct *src_task, *dst_task; 1082 int src_cpu, dst_cpu; 1083 }; 1084 1085 static int migrate_swap_stop(void *data) 1086 { 1087 struct migration_swap_arg *arg = data; 1088 struct rq *src_rq, *dst_rq; 1089 int ret = -EAGAIN; 1090 1091 src_rq = cpu_rq(arg->src_cpu); 1092 dst_rq = cpu_rq(arg->dst_cpu); 1093 1094 double_raw_lock(&arg->src_task->pi_lock, 1095 &arg->dst_task->pi_lock); 1096 double_rq_lock(src_rq, dst_rq); 1097 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1098 goto unlock; 1099 1100 if (task_cpu(arg->src_task) != arg->src_cpu) 1101 goto unlock; 1102 1103 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1104 goto unlock; 1105 1106 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1107 goto unlock; 1108 1109 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1110 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1111 1112 ret = 0; 1113 1114 unlock: 1115 double_rq_unlock(src_rq, dst_rq); 1116 raw_spin_unlock(&arg->dst_task->pi_lock); 1117 raw_spin_unlock(&arg->src_task->pi_lock); 1118 1119 return ret; 1120 } 1121 1122 /* 1123 * Cross migrate two tasks 1124 */ 1125 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1126 { 1127 struct migration_swap_arg arg; 1128 int ret = -EINVAL; 1129 1130 arg = (struct migration_swap_arg){ 1131 .src_task = cur, 1132 .src_cpu = task_cpu(cur), 1133 .dst_task = p, 1134 .dst_cpu = task_cpu(p), 1135 }; 1136 1137 if (arg.src_cpu == arg.dst_cpu) 1138 goto out; 1139 1140 /* 1141 * These three tests are all lockless; this is OK since all of them 1142 * will be re-checked with proper locks held further down the line. 1143 */ 1144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1145 goto out; 1146 1147 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1148 goto out; 1149 1150 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1151 goto out; 1152 1153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1155 1156 out: 1157 return ret; 1158 } 1159 1160 struct migration_arg { 1161 struct task_struct *task; 1162 int dest_cpu; 1163 }; 1164 1165 static int migration_cpu_stop(void *data); 1166 1167 /* 1168 * wait_task_inactive - wait for a thread to unschedule. 1169 * 1170 * If @match_state is nonzero, it's the @p->state value just checked and 1171 * not expected to change. If it changes, i.e. @p might have woken up, 1172 * then return zero. When we succeed in waiting for @p to be off its CPU, 1173 * we return a positive number (its total switch count). If a second call 1174 * a short while later returns the same number, the caller can be sure that 1175 * @p has remained unscheduled the whole time. 1176 * 1177 * The caller must ensure that the task *will* unschedule sometime soon, 1178 * else this function might spin for a *long* time. This function can't 1179 * be called with interrupts off, or it may introduce deadlock with 1180 * smp_call_function() if an IPI is sent by the same process we are 1181 * waiting to become inactive. 1182 */ 1183 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1184 { 1185 unsigned long flags; 1186 int running, queued; 1187 unsigned long ncsw; 1188 struct rq *rq; 1189 1190 for (;;) { 1191 /* 1192 * We do the initial early heuristics without holding 1193 * any task-queue locks at all. We'll only try to get 1194 * the runqueue lock when things look like they will 1195 * work out! 1196 */ 1197 rq = task_rq(p); 1198 1199 /* 1200 * If the task is actively running on another CPU 1201 * still, just relax and busy-wait without holding 1202 * any locks. 1203 * 1204 * NOTE! Since we don't hold any locks, it's not 1205 * even sure that "rq" stays as the right runqueue! 1206 * But we don't care, since "task_running()" will 1207 * return false if the runqueue has changed and p 1208 * is actually now running somewhere else! 1209 */ 1210 while (task_running(rq, p)) { 1211 if (match_state && unlikely(p->state != match_state)) 1212 return 0; 1213 cpu_relax(); 1214 } 1215 1216 /* 1217 * Ok, time to look more closely! We need the rq 1218 * lock now, to be *sure*. If we're wrong, we'll 1219 * just go back and repeat. 1220 */ 1221 rq = task_rq_lock(p, &flags); 1222 trace_sched_wait_task(p); 1223 running = task_running(rq, p); 1224 queued = task_on_rq_queued(p); 1225 ncsw = 0; 1226 if (!match_state || p->state == match_state) 1227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1228 task_rq_unlock(rq, p, &flags); 1229 1230 /* 1231 * If it changed from the expected state, bail out now. 1232 */ 1233 if (unlikely(!ncsw)) 1234 break; 1235 1236 /* 1237 * Was it really running after all now that we 1238 * checked with the proper locks actually held? 1239 * 1240 * Oops. Go back and try again.. 1241 */ 1242 if (unlikely(running)) { 1243 cpu_relax(); 1244 continue; 1245 } 1246 1247 /* 1248 * It's not enough that it's not actively running, 1249 * it must be off the runqueue _entirely_, and not 1250 * preempted! 1251 * 1252 * So if it was still runnable (but just not actively 1253 * running right now), it's preempted, and we should 1254 * yield - it could be a while. 1255 */ 1256 if (unlikely(queued)) { 1257 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1258 1259 set_current_state(TASK_UNINTERRUPTIBLE); 1260 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1261 continue; 1262 } 1263 1264 /* 1265 * Ahh, all good. It wasn't running, and it wasn't 1266 * runnable, which means that it will never become 1267 * running in the future either. We're all done! 1268 */ 1269 break; 1270 } 1271 1272 return ncsw; 1273 } 1274 1275 /*** 1276 * kick_process - kick a running thread to enter/exit the kernel 1277 * @p: the to-be-kicked thread 1278 * 1279 * Cause a process which is running on another CPU to enter 1280 * kernel-mode, without any delay. (to get signals handled.) 1281 * 1282 * NOTE: this function doesn't have to take the runqueue lock, 1283 * because all it wants to ensure is that the remote task enters 1284 * the kernel. If the IPI races and the task has been migrated 1285 * to another CPU then no harm is done and the purpose has been 1286 * achieved as well. 1287 */ 1288 void kick_process(struct task_struct *p) 1289 { 1290 int cpu; 1291 1292 preempt_disable(); 1293 cpu = task_cpu(p); 1294 if ((cpu != smp_processor_id()) && task_curr(p)) 1295 smp_send_reschedule(cpu); 1296 preempt_enable(); 1297 } 1298 EXPORT_SYMBOL_GPL(kick_process); 1299 #endif /* CONFIG_SMP */ 1300 1301 #ifdef CONFIG_SMP 1302 /* 1303 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1304 */ 1305 static int select_fallback_rq(int cpu, struct task_struct *p) 1306 { 1307 int nid = cpu_to_node(cpu); 1308 const struct cpumask *nodemask = NULL; 1309 enum { cpuset, possible, fail } state = cpuset; 1310 int dest_cpu; 1311 1312 /* 1313 * If the node that the cpu is on has been offlined, cpu_to_node() 1314 * will return -1. There is no cpu on the node, and we should 1315 * select the cpu on the other node. 1316 */ 1317 if (nid != -1) { 1318 nodemask = cpumask_of_node(nid); 1319 1320 /* Look for allowed, online CPU in same node. */ 1321 for_each_cpu(dest_cpu, nodemask) { 1322 if (!cpu_online(dest_cpu)) 1323 continue; 1324 if (!cpu_active(dest_cpu)) 1325 continue; 1326 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1327 return dest_cpu; 1328 } 1329 } 1330 1331 for (;;) { 1332 /* Any allowed, online CPU? */ 1333 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1334 if (!cpu_online(dest_cpu)) 1335 continue; 1336 if (!cpu_active(dest_cpu)) 1337 continue; 1338 goto out; 1339 } 1340 1341 switch (state) { 1342 case cpuset: 1343 /* No more Mr. Nice Guy. */ 1344 cpuset_cpus_allowed_fallback(p); 1345 state = possible; 1346 break; 1347 1348 case possible: 1349 do_set_cpus_allowed(p, cpu_possible_mask); 1350 state = fail; 1351 break; 1352 1353 case fail: 1354 BUG(); 1355 break; 1356 } 1357 } 1358 1359 out: 1360 if (state != cpuset) { 1361 /* 1362 * Don't tell them about moving exiting tasks or 1363 * kernel threads (both mm NULL), since they never 1364 * leave kernel. 1365 */ 1366 if (p->mm && printk_ratelimit()) { 1367 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1368 task_pid_nr(p), p->comm, cpu); 1369 } 1370 } 1371 1372 return dest_cpu; 1373 } 1374 1375 /* 1376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1377 */ 1378 static inline 1379 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1380 { 1381 if (p->nr_cpus_allowed > 1) 1382 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1383 1384 /* 1385 * In order not to call set_task_cpu() on a blocking task we need 1386 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1387 * cpu. 1388 * 1389 * Since this is common to all placement strategies, this lives here. 1390 * 1391 * [ this allows ->select_task() to simply return task_cpu(p) and 1392 * not worry about this generic constraint ] 1393 */ 1394 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1395 !cpu_online(cpu))) 1396 cpu = select_fallback_rq(task_cpu(p), p); 1397 1398 return cpu; 1399 } 1400 1401 static void update_avg(u64 *avg, u64 sample) 1402 { 1403 s64 diff = sample - *avg; 1404 *avg += diff >> 3; 1405 } 1406 #endif 1407 1408 static void 1409 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1410 { 1411 #ifdef CONFIG_SCHEDSTATS 1412 struct rq *rq = this_rq(); 1413 1414 #ifdef CONFIG_SMP 1415 int this_cpu = smp_processor_id(); 1416 1417 if (cpu == this_cpu) { 1418 schedstat_inc(rq, ttwu_local); 1419 schedstat_inc(p, se.statistics.nr_wakeups_local); 1420 } else { 1421 struct sched_domain *sd; 1422 1423 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1424 rcu_read_lock(); 1425 for_each_domain(this_cpu, sd) { 1426 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1427 schedstat_inc(sd, ttwu_wake_remote); 1428 break; 1429 } 1430 } 1431 rcu_read_unlock(); 1432 } 1433 1434 if (wake_flags & WF_MIGRATED) 1435 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1436 1437 #endif /* CONFIG_SMP */ 1438 1439 schedstat_inc(rq, ttwu_count); 1440 schedstat_inc(p, se.statistics.nr_wakeups); 1441 1442 if (wake_flags & WF_SYNC) 1443 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1444 1445 #endif /* CONFIG_SCHEDSTATS */ 1446 } 1447 1448 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1449 { 1450 activate_task(rq, p, en_flags); 1451 p->on_rq = TASK_ON_RQ_QUEUED; 1452 1453 /* if a worker is waking up, notify workqueue */ 1454 if (p->flags & PF_WQ_WORKER) 1455 wq_worker_waking_up(p, cpu_of(rq)); 1456 } 1457 1458 /* 1459 * Mark the task runnable and perform wakeup-preemption. 1460 */ 1461 static void 1462 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1463 { 1464 check_preempt_curr(rq, p, wake_flags); 1465 trace_sched_wakeup(p, true); 1466 1467 p->state = TASK_RUNNING; 1468 #ifdef CONFIG_SMP 1469 if (p->sched_class->task_woken) 1470 p->sched_class->task_woken(rq, p); 1471 1472 if (rq->idle_stamp) { 1473 u64 delta = rq_clock(rq) - rq->idle_stamp; 1474 u64 max = 2*rq->max_idle_balance_cost; 1475 1476 update_avg(&rq->avg_idle, delta); 1477 1478 if (rq->avg_idle > max) 1479 rq->avg_idle = max; 1480 1481 rq->idle_stamp = 0; 1482 } 1483 #endif 1484 } 1485 1486 static void 1487 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1488 { 1489 #ifdef CONFIG_SMP 1490 if (p->sched_contributes_to_load) 1491 rq->nr_uninterruptible--; 1492 #endif 1493 1494 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1495 ttwu_do_wakeup(rq, p, wake_flags); 1496 } 1497 1498 /* 1499 * Called in case the task @p isn't fully descheduled from its runqueue, 1500 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1501 * since all we need to do is flip p->state to TASK_RUNNING, since 1502 * the task is still ->on_rq. 1503 */ 1504 static int ttwu_remote(struct task_struct *p, int wake_flags) 1505 { 1506 struct rq *rq; 1507 int ret = 0; 1508 1509 rq = __task_rq_lock(p); 1510 if (task_on_rq_queued(p)) { 1511 /* check_preempt_curr() may use rq clock */ 1512 update_rq_clock(rq); 1513 ttwu_do_wakeup(rq, p, wake_flags); 1514 ret = 1; 1515 } 1516 __task_rq_unlock(rq); 1517 1518 return ret; 1519 } 1520 1521 #ifdef CONFIG_SMP 1522 void sched_ttwu_pending(void) 1523 { 1524 struct rq *rq = this_rq(); 1525 struct llist_node *llist = llist_del_all(&rq->wake_list); 1526 struct task_struct *p; 1527 unsigned long flags; 1528 1529 if (!llist) 1530 return; 1531 1532 raw_spin_lock_irqsave(&rq->lock, flags); 1533 1534 while (llist) { 1535 p = llist_entry(llist, struct task_struct, wake_entry); 1536 llist = llist_next(llist); 1537 ttwu_do_activate(rq, p, 0); 1538 } 1539 1540 raw_spin_unlock_irqrestore(&rq->lock, flags); 1541 } 1542 1543 void scheduler_ipi(void) 1544 { 1545 /* 1546 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1547 * TIF_NEED_RESCHED remotely (for the first time) will also send 1548 * this IPI. 1549 */ 1550 preempt_fold_need_resched(); 1551 1552 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1553 return; 1554 1555 /* 1556 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1557 * traditionally all their work was done from the interrupt return 1558 * path. Now that we actually do some work, we need to make sure 1559 * we do call them. 1560 * 1561 * Some archs already do call them, luckily irq_enter/exit nest 1562 * properly. 1563 * 1564 * Arguably we should visit all archs and update all handlers, 1565 * however a fair share of IPIs are still resched only so this would 1566 * somewhat pessimize the simple resched case. 1567 */ 1568 irq_enter(); 1569 sched_ttwu_pending(); 1570 1571 /* 1572 * Check if someone kicked us for doing the nohz idle load balance. 1573 */ 1574 if (unlikely(got_nohz_idle_kick())) { 1575 this_rq()->idle_balance = 1; 1576 raise_softirq_irqoff(SCHED_SOFTIRQ); 1577 } 1578 irq_exit(); 1579 } 1580 1581 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1582 { 1583 struct rq *rq = cpu_rq(cpu); 1584 1585 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1586 if (!set_nr_if_polling(rq->idle)) 1587 smp_send_reschedule(cpu); 1588 else 1589 trace_sched_wake_idle_without_ipi(cpu); 1590 } 1591 } 1592 1593 void wake_up_if_idle(int cpu) 1594 { 1595 struct rq *rq = cpu_rq(cpu); 1596 unsigned long flags; 1597 1598 rcu_read_lock(); 1599 1600 if (!is_idle_task(rcu_dereference(rq->curr))) 1601 goto out; 1602 1603 if (set_nr_if_polling(rq->idle)) { 1604 trace_sched_wake_idle_without_ipi(cpu); 1605 } else { 1606 raw_spin_lock_irqsave(&rq->lock, flags); 1607 if (is_idle_task(rq->curr)) 1608 smp_send_reschedule(cpu); 1609 /* Else cpu is not in idle, do nothing here */ 1610 raw_spin_unlock_irqrestore(&rq->lock, flags); 1611 } 1612 1613 out: 1614 rcu_read_unlock(); 1615 } 1616 1617 bool cpus_share_cache(int this_cpu, int that_cpu) 1618 { 1619 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1620 } 1621 #endif /* CONFIG_SMP */ 1622 1623 static void ttwu_queue(struct task_struct *p, int cpu) 1624 { 1625 struct rq *rq = cpu_rq(cpu); 1626 1627 #if defined(CONFIG_SMP) 1628 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1629 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1630 ttwu_queue_remote(p, cpu); 1631 return; 1632 } 1633 #endif 1634 1635 raw_spin_lock(&rq->lock); 1636 ttwu_do_activate(rq, p, 0); 1637 raw_spin_unlock(&rq->lock); 1638 } 1639 1640 /** 1641 * try_to_wake_up - wake up a thread 1642 * @p: the thread to be awakened 1643 * @state: the mask of task states that can be woken 1644 * @wake_flags: wake modifier flags (WF_*) 1645 * 1646 * Put it on the run-queue if it's not already there. The "current" 1647 * thread is always on the run-queue (except when the actual 1648 * re-schedule is in progress), and as such you're allowed to do 1649 * the simpler "current->state = TASK_RUNNING" to mark yourself 1650 * runnable without the overhead of this. 1651 * 1652 * Return: %true if @p was woken up, %false if it was already running. 1653 * or @state didn't match @p's state. 1654 */ 1655 static int 1656 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1657 { 1658 unsigned long flags; 1659 int cpu, success = 0; 1660 1661 /* 1662 * If we are going to wake up a thread waiting for CONDITION we 1663 * need to ensure that CONDITION=1 done by the caller can not be 1664 * reordered with p->state check below. This pairs with mb() in 1665 * set_current_state() the waiting thread does. 1666 */ 1667 smp_mb__before_spinlock(); 1668 raw_spin_lock_irqsave(&p->pi_lock, flags); 1669 if (!(p->state & state)) 1670 goto out; 1671 1672 success = 1; /* we're going to change ->state */ 1673 cpu = task_cpu(p); 1674 1675 if (p->on_rq && ttwu_remote(p, wake_flags)) 1676 goto stat; 1677 1678 #ifdef CONFIG_SMP 1679 /* 1680 * If the owning (remote) cpu is still in the middle of schedule() with 1681 * this task as prev, wait until its done referencing the task. 1682 */ 1683 while (p->on_cpu) 1684 cpu_relax(); 1685 /* 1686 * Pairs with the smp_wmb() in finish_lock_switch(). 1687 */ 1688 smp_rmb(); 1689 1690 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1691 p->state = TASK_WAKING; 1692 1693 if (p->sched_class->task_waking) 1694 p->sched_class->task_waking(p); 1695 1696 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1697 if (task_cpu(p) != cpu) { 1698 wake_flags |= WF_MIGRATED; 1699 set_task_cpu(p, cpu); 1700 } 1701 #endif /* CONFIG_SMP */ 1702 1703 ttwu_queue(p, cpu); 1704 stat: 1705 ttwu_stat(p, cpu, wake_flags); 1706 out: 1707 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1708 1709 return success; 1710 } 1711 1712 /** 1713 * try_to_wake_up_local - try to wake up a local task with rq lock held 1714 * @p: the thread to be awakened 1715 * 1716 * Put @p on the run-queue if it's not already there. The caller must 1717 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1718 * the current task. 1719 */ 1720 static void try_to_wake_up_local(struct task_struct *p) 1721 { 1722 struct rq *rq = task_rq(p); 1723 1724 if (WARN_ON_ONCE(rq != this_rq()) || 1725 WARN_ON_ONCE(p == current)) 1726 return; 1727 1728 lockdep_assert_held(&rq->lock); 1729 1730 if (!raw_spin_trylock(&p->pi_lock)) { 1731 raw_spin_unlock(&rq->lock); 1732 raw_spin_lock(&p->pi_lock); 1733 raw_spin_lock(&rq->lock); 1734 } 1735 1736 if (!(p->state & TASK_NORMAL)) 1737 goto out; 1738 1739 if (!task_on_rq_queued(p)) 1740 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1741 1742 ttwu_do_wakeup(rq, p, 0); 1743 ttwu_stat(p, smp_processor_id(), 0); 1744 out: 1745 raw_spin_unlock(&p->pi_lock); 1746 } 1747 1748 /** 1749 * wake_up_process - Wake up a specific process 1750 * @p: The process to be woken up. 1751 * 1752 * Attempt to wake up the nominated process and move it to the set of runnable 1753 * processes. 1754 * 1755 * Return: 1 if the process was woken up, 0 if it was already running. 1756 * 1757 * It may be assumed that this function implies a write memory barrier before 1758 * changing the task state if and only if any tasks are woken up. 1759 */ 1760 int wake_up_process(struct task_struct *p) 1761 { 1762 WARN_ON(task_is_stopped_or_traced(p)); 1763 return try_to_wake_up(p, TASK_NORMAL, 0); 1764 } 1765 EXPORT_SYMBOL(wake_up_process); 1766 1767 int wake_up_state(struct task_struct *p, unsigned int state) 1768 { 1769 return try_to_wake_up(p, state, 0); 1770 } 1771 1772 /* 1773 * This function clears the sched_dl_entity static params. 1774 */ 1775 void __dl_clear_params(struct task_struct *p) 1776 { 1777 struct sched_dl_entity *dl_se = &p->dl; 1778 1779 dl_se->dl_runtime = 0; 1780 dl_se->dl_deadline = 0; 1781 dl_se->dl_period = 0; 1782 dl_se->flags = 0; 1783 dl_se->dl_bw = 0; 1784 1785 dl_se->dl_throttled = 0; 1786 dl_se->dl_new = 1; 1787 dl_se->dl_yielded = 0; 1788 } 1789 1790 /* 1791 * Perform scheduler related setup for a newly forked process p. 1792 * p is forked by current. 1793 * 1794 * __sched_fork() is basic setup used by init_idle() too: 1795 */ 1796 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1797 { 1798 p->on_rq = 0; 1799 1800 p->se.on_rq = 0; 1801 p->se.exec_start = 0; 1802 p->se.sum_exec_runtime = 0; 1803 p->se.prev_sum_exec_runtime = 0; 1804 p->se.nr_migrations = 0; 1805 p->se.vruntime = 0; 1806 #ifdef CONFIG_SMP 1807 p->se.avg.decay_count = 0; 1808 #endif 1809 INIT_LIST_HEAD(&p->se.group_node); 1810 1811 #ifdef CONFIG_SCHEDSTATS 1812 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1813 #endif 1814 1815 RB_CLEAR_NODE(&p->dl.rb_node); 1816 init_dl_task_timer(&p->dl); 1817 __dl_clear_params(p); 1818 1819 INIT_LIST_HEAD(&p->rt.run_list); 1820 1821 #ifdef CONFIG_PREEMPT_NOTIFIERS 1822 INIT_HLIST_HEAD(&p->preempt_notifiers); 1823 #endif 1824 1825 #ifdef CONFIG_NUMA_BALANCING 1826 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1827 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1828 p->mm->numa_scan_seq = 0; 1829 } 1830 1831 if (clone_flags & CLONE_VM) 1832 p->numa_preferred_nid = current->numa_preferred_nid; 1833 else 1834 p->numa_preferred_nid = -1; 1835 1836 p->node_stamp = 0ULL; 1837 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1838 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1839 p->numa_work.next = &p->numa_work; 1840 p->numa_faults = NULL; 1841 p->last_task_numa_placement = 0; 1842 p->last_sum_exec_runtime = 0; 1843 1844 p->numa_group = NULL; 1845 #endif /* CONFIG_NUMA_BALANCING */ 1846 } 1847 1848 #ifdef CONFIG_NUMA_BALANCING 1849 #ifdef CONFIG_SCHED_DEBUG 1850 void set_numabalancing_state(bool enabled) 1851 { 1852 if (enabled) 1853 sched_feat_set("NUMA"); 1854 else 1855 sched_feat_set("NO_NUMA"); 1856 } 1857 #else 1858 __read_mostly bool numabalancing_enabled; 1859 1860 void set_numabalancing_state(bool enabled) 1861 { 1862 numabalancing_enabled = enabled; 1863 } 1864 #endif /* CONFIG_SCHED_DEBUG */ 1865 1866 #ifdef CONFIG_PROC_SYSCTL 1867 int sysctl_numa_balancing(struct ctl_table *table, int write, 1868 void __user *buffer, size_t *lenp, loff_t *ppos) 1869 { 1870 struct ctl_table t; 1871 int err; 1872 int state = numabalancing_enabled; 1873 1874 if (write && !capable(CAP_SYS_ADMIN)) 1875 return -EPERM; 1876 1877 t = *table; 1878 t.data = &state; 1879 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1880 if (err < 0) 1881 return err; 1882 if (write) 1883 set_numabalancing_state(state); 1884 return err; 1885 } 1886 #endif 1887 #endif 1888 1889 /* 1890 * fork()/clone()-time setup: 1891 */ 1892 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1893 { 1894 unsigned long flags; 1895 int cpu = get_cpu(); 1896 1897 __sched_fork(clone_flags, p); 1898 /* 1899 * We mark the process as running here. This guarantees that 1900 * nobody will actually run it, and a signal or other external 1901 * event cannot wake it up and insert it on the runqueue either. 1902 */ 1903 p->state = TASK_RUNNING; 1904 1905 /* 1906 * Make sure we do not leak PI boosting priority to the child. 1907 */ 1908 p->prio = current->normal_prio; 1909 1910 /* 1911 * Revert to default priority/policy on fork if requested. 1912 */ 1913 if (unlikely(p->sched_reset_on_fork)) { 1914 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1915 p->policy = SCHED_NORMAL; 1916 p->static_prio = NICE_TO_PRIO(0); 1917 p->rt_priority = 0; 1918 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1919 p->static_prio = NICE_TO_PRIO(0); 1920 1921 p->prio = p->normal_prio = __normal_prio(p); 1922 set_load_weight(p); 1923 1924 /* 1925 * We don't need the reset flag anymore after the fork. It has 1926 * fulfilled its duty: 1927 */ 1928 p->sched_reset_on_fork = 0; 1929 } 1930 1931 if (dl_prio(p->prio)) { 1932 put_cpu(); 1933 return -EAGAIN; 1934 } else if (rt_prio(p->prio)) { 1935 p->sched_class = &rt_sched_class; 1936 } else { 1937 p->sched_class = &fair_sched_class; 1938 } 1939 1940 if (p->sched_class->task_fork) 1941 p->sched_class->task_fork(p); 1942 1943 /* 1944 * The child is not yet in the pid-hash so no cgroup attach races, 1945 * and the cgroup is pinned to this child due to cgroup_fork() 1946 * is ran before sched_fork(). 1947 * 1948 * Silence PROVE_RCU. 1949 */ 1950 raw_spin_lock_irqsave(&p->pi_lock, flags); 1951 set_task_cpu(p, cpu); 1952 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1953 1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1955 if (likely(sched_info_on())) 1956 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1957 #endif 1958 #if defined(CONFIG_SMP) 1959 p->on_cpu = 0; 1960 #endif 1961 init_task_preempt_count(p); 1962 #ifdef CONFIG_SMP 1963 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1964 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1965 #endif 1966 1967 put_cpu(); 1968 return 0; 1969 } 1970 1971 unsigned long to_ratio(u64 period, u64 runtime) 1972 { 1973 if (runtime == RUNTIME_INF) 1974 return 1ULL << 20; 1975 1976 /* 1977 * Doing this here saves a lot of checks in all 1978 * the calling paths, and returning zero seems 1979 * safe for them anyway. 1980 */ 1981 if (period == 0) 1982 return 0; 1983 1984 return div64_u64(runtime << 20, period); 1985 } 1986 1987 #ifdef CONFIG_SMP 1988 inline struct dl_bw *dl_bw_of(int i) 1989 { 1990 rcu_lockdep_assert(rcu_read_lock_sched_held(), 1991 "sched RCU must be held"); 1992 return &cpu_rq(i)->rd->dl_bw; 1993 } 1994 1995 static inline int dl_bw_cpus(int i) 1996 { 1997 struct root_domain *rd = cpu_rq(i)->rd; 1998 int cpus = 0; 1999 2000 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2001 "sched RCU must be held"); 2002 for_each_cpu_and(i, rd->span, cpu_active_mask) 2003 cpus++; 2004 2005 return cpus; 2006 } 2007 #else 2008 inline struct dl_bw *dl_bw_of(int i) 2009 { 2010 return &cpu_rq(i)->dl.dl_bw; 2011 } 2012 2013 static inline int dl_bw_cpus(int i) 2014 { 2015 return 1; 2016 } 2017 #endif 2018 2019 /* 2020 * We must be sure that accepting a new task (or allowing changing the 2021 * parameters of an existing one) is consistent with the bandwidth 2022 * constraints. If yes, this function also accordingly updates the currently 2023 * allocated bandwidth to reflect the new situation. 2024 * 2025 * This function is called while holding p's rq->lock. 2026 * 2027 * XXX we should delay bw change until the task's 0-lag point, see 2028 * __setparam_dl(). 2029 */ 2030 static int dl_overflow(struct task_struct *p, int policy, 2031 const struct sched_attr *attr) 2032 { 2033 2034 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2035 u64 period = attr->sched_period ?: attr->sched_deadline; 2036 u64 runtime = attr->sched_runtime; 2037 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2038 int cpus, err = -1; 2039 2040 if (new_bw == p->dl.dl_bw) 2041 return 0; 2042 2043 /* 2044 * Either if a task, enters, leave, or stays -deadline but changes 2045 * its parameters, we may need to update accordingly the total 2046 * allocated bandwidth of the container. 2047 */ 2048 raw_spin_lock(&dl_b->lock); 2049 cpus = dl_bw_cpus(task_cpu(p)); 2050 if (dl_policy(policy) && !task_has_dl_policy(p) && 2051 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2052 __dl_add(dl_b, new_bw); 2053 err = 0; 2054 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2055 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2056 __dl_clear(dl_b, p->dl.dl_bw); 2057 __dl_add(dl_b, new_bw); 2058 err = 0; 2059 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2060 __dl_clear(dl_b, p->dl.dl_bw); 2061 err = 0; 2062 } 2063 raw_spin_unlock(&dl_b->lock); 2064 2065 return err; 2066 } 2067 2068 extern void init_dl_bw(struct dl_bw *dl_b); 2069 2070 /* 2071 * wake_up_new_task - wake up a newly created task for the first time. 2072 * 2073 * This function will do some initial scheduler statistics housekeeping 2074 * that must be done for every newly created context, then puts the task 2075 * on the runqueue and wakes it. 2076 */ 2077 void wake_up_new_task(struct task_struct *p) 2078 { 2079 unsigned long flags; 2080 struct rq *rq; 2081 2082 raw_spin_lock_irqsave(&p->pi_lock, flags); 2083 #ifdef CONFIG_SMP 2084 /* 2085 * Fork balancing, do it here and not earlier because: 2086 * - cpus_allowed can change in the fork path 2087 * - any previously selected cpu might disappear through hotplug 2088 */ 2089 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2090 #endif 2091 2092 /* Initialize new task's runnable average */ 2093 init_task_runnable_average(p); 2094 rq = __task_rq_lock(p); 2095 activate_task(rq, p, 0); 2096 p->on_rq = TASK_ON_RQ_QUEUED; 2097 trace_sched_wakeup_new(p, true); 2098 check_preempt_curr(rq, p, WF_FORK); 2099 #ifdef CONFIG_SMP 2100 if (p->sched_class->task_woken) 2101 p->sched_class->task_woken(rq, p); 2102 #endif 2103 task_rq_unlock(rq, p, &flags); 2104 } 2105 2106 #ifdef CONFIG_PREEMPT_NOTIFIERS 2107 2108 /** 2109 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2110 * @notifier: notifier struct to register 2111 */ 2112 void preempt_notifier_register(struct preempt_notifier *notifier) 2113 { 2114 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2115 } 2116 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2117 2118 /** 2119 * preempt_notifier_unregister - no longer interested in preemption notifications 2120 * @notifier: notifier struct to unregister 2121 * 2122 * This is safe to call from within a preemption notifier. 2123 */ 2124 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2125 { 2126 hlist_del(¬ifier->link); 2127 } 2128 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2129 2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2131 { 2132 struct preempt_notifier *notifier; 2133 2134 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2135 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2136 } 2137 2138 static void 2139 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2140 struct task_struct *next) 2141 { 2142 struct preempt_notifier *notifier; 2143 2144 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2145 notifier->ops->sched_out(notifier, next); 2146 } 2147 2148 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2149 2150 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2151 { 2152 } 2153 2154 static void 2155 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2156 struct task_struct *next) 2157 { 2158 } 2159 2160 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2161 2162 /** 2163 * prepare_task_switch - prepare to switch tasks 2164 * @rq: the runqueue preparing to switch 2165 * @prev: the current task that is being switched out 2166 * @next: the task we are going to switch to. 2167 * 2168 * This is called with the rq lock held and interrupts off. It must 2169 * be paired with a subsequent finish_task_switch after the context 2170 * switch. 2171 * 2172 * prepare_task_switch sets up locking and calls architecture specific 2173 * hooks. 2174 */ 2175 static inline void 2176 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2177 struct task_struct *next) 2178 { 2179 trace_sched_switch(prev, next); 2180 sched_info_switch(rq, prev, next); 2181 perf_event_task_sched_out(prev, next); 2182 fire_sched_out_preempt_notifiers(prev, next); 2183 prepare_lock_switch(rq, next); 2184 prepare_arch_switch(next); 2185 } 2186 2187 /** 2188 * finish_task_switch - clean up after a task-switch 2189 * @prev: the thread we just switched away from. 2190 * 2191 * finish_task_switch must be called after the context switch, paired 2192 * with a prepare_task_switch call before the context switch. 2193 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2194 * and do any other architecture-specific cleanup actions. 2195 * 2196 * Note that we may have delayed dropping an mm in context_switch(). If 2197 * so, we finish that here outside of the runqueue lock. (Doing it 2198 * with the lock held can cause deadlocks; see schedule() for 2199 * details.) 2200 * 2201 * The context switch have flipped the stack from under us and restored the 2202 * local variables which were saved when this task called schedule() in the 2203 * past. prev == current is still correct but we need to recalculate this_rq 2204 * because prev may have moved to another CPU. 2205 */ 2206 static struct rq *finish_task_switch(struct task_struct *prev) 2207 __releases(rq->lock) 2208 { 2209 struct rq *rq = this_rq(); 2210 struct mm_struct *mm = rq->prev_mm; 2211 long prev_state; 2212 2213 rq->prev_mm = NULL; 2214 2215 /* 2216 * A task struct has one reference for the use as "current". 2217 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2218 * schedule one last time. The schedule call will never return, and 2219 * the scheduled task must drop that reference. 2220 * The test for TASK_DEAD must occur while the runqueue locks are 2221 * still held, otherwise prev could be scheduled on another cpu, die 2222 * there before we look at prev->state, and then the reference would 2223 * be dropped twice. 2224 * Manfred Spraul <manfred@colorfullife.com> 2225 */ 2226 prev_state = prev->state; 2227 vtime_task_switch(prev); 2228 finish_arch_switch(prev); 2229 perf_event_task_sched_in(prev, current); 2230 finish_lock_switch(rq, prev); 2231 finish_arch_post_lock_switch(); 2232 2233 fire_sched_in_preempt_notifiers(current); 2234 if (mm) 2235 mmdrop(mm); 2236 if (unlikely(prev_state == TASK_DEAD)) { 2237 if (prev->sched_class->task_dead) 2238 prev->sched_class->task_dead(prev); 2239 2240 /* 2241 * Remove function-return probe instances associated with this 2242 * task and put them back on the free list. 2243 */ 2244 kprobe_flush_task(prev); 2245 put_task_struct(prev); 2246 } 2247 2248 tick_nohz_task_switch(current); 2249 return rq; 2250 } 2251 2252 #ifdef CONFIG_SMP 2253 2254 /* rq->lock is NOT held, but preemption is disabled */ 2255 static inline void post_schedule(struct rq *rq) 2256 { 2257 if (rq->post_schedule) { 2258 unsigned long flags; 2259 2260 raw_spin_lock_irqsave(&rq->lock, flags); 2261 if (rq->curr->sched_class->post_schedule) 2262 rq->curr->sched_class->post_schedule(rq); 2263 raw_spin_unlock_irqrestore(&rq->lock, flags); 2264 2265 rq->post_schedule = 0; 2266 } 2267 } 2268 2269 #else 2270 2271 static inline void post_schedule(struct rq *rq) 2272 { 2273 } 2274 2275 #endif 2276 2277 /** 2278 * schedule_tail - first thing a freshly forked thread must call. 2279 * @prev: the thread we just switched away from. 2280 */ 2281 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2282 __releases(rq->lock) 2283 { 2284 struct rq *rq; 2285 2286 /* finish_task_switch() drops rq->lock and enables preemtion */ 2287 preempt_disable(); 2288 rq = finish_task_switch(prev); 2289 post_schedule(rq); 2290 preempt_enable(); 2291 2292 if (current->set_child_tid) 2293 put_user(task_pid_vnr(current), current->set_child_tid); 2294 } 2295 2296 /* 2297 * context_switch - switch to the new MM and the new thread's register state. 2298 */ 2299 static inline struct rq * 2300 context_switch(struct rq *rq, struct task_struct *prev, 2301 struct task_struct *next) 2302 { 2303 struct mm_struct *mm, *oldmm; 2304 2305 prepare_task_switch(rq, prev, next); 2306 2307 mm = next->mm; 2308 oldmm = prev->active_mm; 2309 /* 2310 * For paravirt, this is coupled with an exit in switch_to to 2311 * combine the page table reload and the switch backend into 2312 * one hypercall. 2313 */ 2314 arch_start_context_switch(prev); 2315 2316 if (!mm) { 2317 next->active_mm = oldmm; 2318 atomic_inc(&oldmm->mm_count); 2319 enter_lazy_tlb(oldmm, next); 2320 } else 2321 switch_mm(oldmm, mm, next); 2322 2323 if (!prev->mm) { 2324 prev->active_mm = NULL; 2325 rq->prev_mm = oldmm; 2326 } 2327 /* 2328 * Since the runqueue lock will be released by the next 2329 * task (which is an invalid locking op but in the case 2330 * of the scheduler it's an obvious special-case), so we 2331 * do an early lockdep release here: 2332 */ 2333 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2334 2335 context_tracking_task_switch(prev, next); 2336 /* Here we just switch the register state and the stack. */ 2337 switch_to(prev, next, prev); 2338 barrier(); 2339 2340 return finish_task_switch(prev); 2341 } 2342 2343 /* 2344 * nr_running and nr_context_switches: 2345 * 2346 * externally visible scheduler statistics: current number of runnable 2347 * threads, total number of context switches performed since bootup. 2348 */ 2349 unsigned long nr_running(void) 2350 { 2351 unsigned long i, sum = 0; 2352 2353 for_each_online_cpu(i) 2354 sum += cpu_rq(i)->nr_running; 2355 2356 return sum; 2357 } 2358 2359 /* 2360 * Check if only the current task is running on the cpu. 2361 */ 2362 bool single_task_running(void) 2363 { 2364 if (cpu_rq(smp_processor_id())->nr_running == 1) 2365 return true; 2366 else 2367 return false; 2368 } 2369 EXPORT_SYMBOL(single_task_running); 2370 2371 unsigned long long nr_context_switches(void) 2372 { 2373 int i; 2374 unsigned long long sum = 0; 2375 2376 for_each_possible_cpu(i) 2377 sum += cpu_rq(i)->nr_switches; 2378 2379 return sum; 2380 } 2381 2382 unsigned long nr_iowait(void) 2383 { 2384 unsigned long i, sum = 0; 2385 2386 for_each_possible_cpu(i) 2387 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2388 2389 return sum; 2390 } 2391 2392 unsigned long nr_iowait_cpu(int cpu) 2393 { 2394 struct rq *this = cpu_rq(cpu); 2395 return atomic_read(&this->nr_iowait); 2396 } 2397 2398 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2399 { 2400 struct rq *this = this_rq(); 2401 *nr_waiters = atomic_read(&this->nr_iowait); 2402 *load = this->cpu_load[0]; 2403 } 2404 2405 #ifdef CONFIG_SMP 2406 2407 /* 2408 * sched_exec - execve() is a valuable balancing opportunity, because at 2409 * this point the task has the smallest effective memory and cache footprint. 2410 */ 2411 void sched_exec(void) 2412 { 2413 struct task_struct *p = current; 2414 unsigned long flags; 2415 int dest_cpu; 2416 2417 raw_spin_lock_irqsave(&p->pi_lock, flags); 2418 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2419 if (dest_cpu == smp_processor_id()) 2420 goto unlock; 2421 2422 if (likely(cpu_active(dest_cpu))) { 2423 struct migration_arg arg = { p, dest_cpu }; 2424 2425 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2426 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2427 return; 2428 } 2429 unlock: 2430 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2431 } 2432 2433 #endif 2434 2435 DEFINE_PER_CPU(struct kernel_stat, kstat); 2436 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2437 2438 EXPORT_PER_CPU_SYMBOL(kstat); 2439 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2440 2441 /* 2442 * Return accounted runtime for the task. 2443 * In case the task is currently running, return the runtime plus current's 2444 * pending runtime that have not been accounted yet. 2445 */ 2446 unsigned long long task_sched_runtime(struct task_struct *p) 2447 { 2448 unsigned long flags; 2449 struct rq *rq; 2450 u64 ns; 2451 2452 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2453 /* 2454 * 64-bit doesn't need locks to atomically read a 64bit value. 2455 * So we have a optimization chance when the task's delta_exec is 0. 2456 * Reading ->on_cpu is racy, but this is ok. 2457 * 2458 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2459 * If we race with it entering cpu, unaccounted time is 0. This is 2460 * indistinguishable from the read occurring a few cycles earlier. 2461 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2462 * been accounted, so we're correct here as well. 2463 */ 2464 if (!p->on_cpu || !task_on_rq_queued(p)) 2465 return p->se.sum_exec_runtime; 2466 #endif 2467 2468 rq = task_rq_lock(p, &flags); 2469 /* 2470 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2471 * project cycles that may never be accounted to this 2472 * thread, breaking clock_gettime(). 2473 */ 2474 if (task_current(rq, p) && task_on_rq_queued(p)) { 2475 update_rq_clock(rq); 2476 p->sched_class->update_curr(rq); 2477 } 2478 ns = p->se.sum_exec_runtime; 2479 task_rq_unlock(rq, p, &flags); 2480 2481 return ns; 2482 } 2483 2484 /* 2485 * This function gets called by the timer code, with HZ frequency. 2486 * We call it with interrupts disabled. 2487 */ 2488 void scheduler_tick(void) 2489 { 2490 int cpu = smp_processor_id(); 2491 struct rq *rq = cpu_rq(cpu); 2492 struct task_struct *curr = rq->curr; 2493 2494 sched_clock_tick(); 2495 2496 raw_spin_lock(&rq->lock); 2497 update_rq_clock(rq); 2498 curr->sched_class->task_tick(rq, curr, 0); 2499 update_cpu_load_active(rq); 2500 raw_spin_unlock(&rq->lock); 2501 2502 perf_event_task_tick(); 2503 2504 #ifdef CONFIG_SMP 2505 rq->idle_balance = idle_cpu(cpu); 2506 trigger_load_balance(rq); 2507 #endif 2508 rq_last_tick_reset(rq); 2509 } 2510 2511 #ifdef CONFIG_NO_HZ_FULL 2512 /** 2513 * scheduler_tick_max_deferment 2514 * 2515 * Keep at least one tick per second when a single 2516 * active task is running because the scheduler doesn't 2517 * yet completely support full dynticks environment. 2518 * 2519 * This makes sure that uptime, CFS vruntime, load 2520 * balancing, etc... continue to move forward, even 2521 * with a very low granularity. 2522 * 2523 * Return: Maximum deferment in nanoseconds. 2524 */ 2525 u64 scheduler_tick_max_deferment(void) 2526 { 2527 struct rq *rq = this_rq(); 2528 unsigned long next, now = ACCESS_ONCE(jiffies); 2529 2530 next = rq->last_sched_tick + HZ; 2531 2532 if (time_before_eq(next, now)) 2533 return 0; 2534 2535 return jiffies_to_nsecs(next - now); 2536 } 2537 #endif 2538 2539 notrace unsigned long get_parent_ip(unsigned long addr) 2540 { 2541 if (in_lock_functions(addr)) { 2542 addr = CALLER_ADDR2; 2543 if (in_lock_functions(addr)) 2544 addr = CALLER_ADDR3; 2545 } 2546 return addr; 2547 } 2548 2549 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2550 defined(CONFIG_PREEMPT_TRACER)) 2551 2552 void preempt_count_add(int val) 2553 { 2554 #ifdef CONFIG_DEBUG_PREEMPT 2555 /* 2556 * Underflow? 2557 */ 2558 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2559 return; 2560 #endif 2561 __preempt_count_add(val); 2562 #ifdef CONFIG_DEBUG_PREEMPT 2563 /* 2564 * Spinlock count overflowing soon? 2565 */ 2566 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2567 PREEMPT_MASK - 10); 2568 #endif 2569 if (preempt_count() == val) { 2570 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2571 #ifdef CONFIG_DEBUG_PREEMPT 2572 current->preempt_disable_ip = ip; 2573 #endif 2574 trace_preempt_off(CALLER_ADDR0, ip); 2575 } 2576 } 2577 EXPORT_SYMBOL(preempt_count_add); 2578 NOKPROBE_SYMBOL(preempt_count_add); 2579 2580 void preempt_count_sub(int val) 2581 { 2582 #ifdef CONFIG_DEBUG_PREEMPT 2583 /* 2584 * Underflow? 2585 */ 2586 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2587 return; 2588 /* 2589 * Is the spinlock portion underflowing? 2590 */ 2591 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2592 !(preempt_count() & PREEMPT_MASK))) 2593 return; 2594 #endif 2595 2596 if (preempt_count() == val) 2597 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2598 __preempt_count_sub(val); 2599 } 2600 EXPORT_SYMBOL(preempt_count_sub); 2601 NOKPROBE_SYMBOL(preempt_count_sub); 2602 2603 #endif 2604 2605 /* 2606 * Print scheduling while atomic bug: 2607 */ 2608 static noinline void __schedule_bug(struct task_struct *prev) 2609 { 2610 if (oops_in_progress) 2611 return; 2612 2613 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2614 prev->comm, prev->pid, preempt_count()); 2615 2616 debug_show_held_locks(prev); 2617 print_modules(); 2618 if (irqs_disabled()) 2619 print_irqtrace_events(prev); 2620 #ifdef CONFIG_DEBUG_PREEMPT 2621 if (in_atomic_preempt_off()) { 2622 pr_err("Preemption disabled at:"); 2623 print_ip_sym(current->preempt_disable_ip); 2624 pr_cont("\n"); 2625 } 2626 #endif 2627 dump_stack(); 2628 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2629 } 2630 2631 /* 2632 * Various schedule()-time debugging checks and statistics: 2633 */ 2634 static inline void schedule_debug(struct task_struct *prev) 2635 { 2636 #ifdef CONFIG_SCHED_STACK_END_CHECK 2637 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2638 #endif 2639 /* 2640 * Test if we are atomic. Since do_exit() needs to call into 2641 * schedule() atomically, we ignore that path. Otherwise whine 2642 * if we are scheduling when we should not. 2643 */ 2644 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2645 __schedule_bug(prev); 2646 rcu_sleep_check(); 2647 2648 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2649 2650 schedstat_inc(this_rq(), sched_count); 2651 } 2652 2653 /* 2654 * Pick up the highest-prio task: 2655 */ 2656 static inline struct task_struct * 2657 pick_next_task(struct rq *rq, struct task_struct *prev) 2658 { 2659 const struct sched_class *class = &fair_sched_class; 2660 struct task_struct *p; 2661 2662 /* 2663 * Optimization: we know that if all tasks are in 2664 * the fair class we can call that function directly: 2665 */ 2666 if (likely(prev->sched_class == class && 2667 rq->nr_running == rq->cfs.h_nr_running)) { 2668 p = fair_sched_class.pick_next_task(rq, prev); 2669 if (unlikely(p == RETRY_TASK)) 2670 goto again; 2671 2672 /* assumes fair_sched_class->next == idle_sched_class */ 2673 if (unlikely(!p)) 2674 p = idle_sched_class.pick_next_task(rq, prev); 2675 2676 return p; 2677 } 2678 2679 again: 2680 for_each_class(class) { 2681 p = class->pick_next_task(rq, prev); 2682 if (p) { 2683 if (unlikely(p == RETRY_TASK)) 2684 goto again; 2685 return p; 2686 } 2687 } 2688 2689 BUG(); /* the idle class will always have a runnable task */ 2690 } 2691 2692 /* 2693 * __schedule() is the main scheduler function. 2694 * 2695 * The main means of driving the scheduler and thus entering this function are: 2696 * 2697 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2698 * 2699 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2700 * paths. For example, see arch/x86/entry_64.S. 2701 * 2702 * To drive preemption between tasks, the scheduler sets the flag in timer 2703 * interrupt handler scheduler_tick(). 2704 * 2705 * 3. Wakeups don't really cause entry into schedule(). They add a 2706 * task to the run-queue and that's it. 2707 * 2708 * Now, if the new task added to the run-queue preempts the current 2709 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2710 * called on the nearest possible occasion: 2711 * 2712 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2713 * 2714 * - in syscall or exception context, at the next outmost 2715 * preempt_enable(). (this might be as soon as the wake_up()'s 2716 * spin_unlock()!) 2717 * 2718 * - in IRQ context, return from interrupt-handler to 2719 * preemptible context 2720 * 2721 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2722 * then at the next: 2723 * 2724 * - cond_resched() call 2725 * - explicit schedule() call 2726 * - return from syscall or exception to user-space 2727 * - return from interrupt-handler to user-space 2728 * 2729 * WARNING: all callers must re-check need_resched() afterward and reschedule 2730 * accordingly in case an event triggered the need for rescheduling (such as 2731 * an interrupt waking up a task) while preemption was disabled in __schedule(). 2732 */ 2733 static void __sched __schedule(void) 2734 { 2735 struct task_struct *prev, *next; 2736 unsigned long *switch_count; 2737 struct rq *rq; 2738 int cpu; 2739 2740 preempt_disable(); 2741 cpu = smp_processor_id(); 2742 rq = cpu_rq(cpu); 2743 rcu_note_context_switch(); 2744 prev = rq->curr; 2745 2746 schedule_debug(prev); 2747 2748 if (sched_feat(HRTICK)) 2749 hrtick_clear(rq); 2750 2751 /* 2752 * Make sure that signal_pending_state()->signal_pending() below 2753 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2754 * done by the caller to avoid the race with signal_wake_up(). 2755 */ 2756 smp_mb__before_spinlock(); 2757 raw_spin_lock_irq(&rq->lock); 2758 2759 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 2760 2761 switch_count = &prev->nivcsw; 2762 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2763 if (unlikely(signal_pending_state(prev->state, prev))) { 2764 prev->state = TASK_RUNNING; 2765 } else { 2766 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2767 prev->on_rq = 0; 2768 2769 /* 2770 * If a worker went to sleep, notify and ask workqueue 2771 * whether it wants to wake up a task to maintain 2772 * concurrency. 2773 */ 2774 if (prev->flags & PF_WQ_WORKER) { 2775 struct task_struct *to_wakeup; 2776 2777 to_wakeup = wq_worker_sleeping(prev, cpu); 2778 if (to_wakeup) 2779 try_to_wake_up_local(to_wakeup); 2780 } 2781 } 2782 switch_count = &prev->nvcsw; 2783 } 2784 2785 if (task_on_rq_queued(prev)) 2786 update_rq_clock(rq); 2787 2788 next = pick_next_task(rq, prev); 2789 clear_tsk_need_resched(prev); 2790 clear_preempt_need_resched(); 2791 rq->clock_skip_update = 0; 2792 2793 if (likely(prev != next)) { 2794 rq->nr_switches++; 2795 rq->curr = next; 2796 ++*switch_count; 2797 2798 rq = context_switch(rq, prev, next); /* unlocks the rq */ 2799 cpu = cpu_of(rq); 2800 } else 2801 raw_spin_unlock_irq(&rq->lock); 2802 2803 post_schedule(rq); 2804 2805 sched_preempt_enable_no_resched(); 2806 } 2807 2808 static inline void sched_submit_work(struct task_struct *tsk) 2809 { 2810 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2811 return; 2812 /* 2813 * If we are going to sleep and we have plugged IO queued, 2814 * make sure to submit it to avoid deadlocks. 2815 */ 2816 if (blk_needs_flush_plug(tsk)) 2817 blk_schedule_flush_plug(tsk); 2818 } 2819 2820 asmlinkage __visible void __sched schedule(void) 2821 { 2822 struct task_struct *tsk = current; 2823 2824 sched_submit_work(tsk); 2825 do { 2826 __schedule(); 2827 } while (need_resched()); 2828 } 2829 EXPORT_SYMBOL(schedule); 2830 2831 #ifdef CONFIG_CONTEXT_TRACKING 2832 asmlinkage __visible void __sched schedule_user(void) 2833 { 2834 /* 2835 * If we come here after a random call to set_need_resched(), 2836 * or we have been woken up remotely but the IPI has not yet arrived, 2837 * we haven't yet exited the RCU idle mode. Do it here manually until 2838 * we find a better solution. 2839 * 2840 * NB: There are buggy callers of this function. Ideally we 2841 * should warn if prev_state != CONTEXT_USER, but that will trigger 2842 * too frequently to make sense yet. 2843 */ 2844 enum ctx_state prev_state = exception_enter(); 2845 schedule(); 2846 exception_exit(prev_state); 2847 } 2848 #endif 2849 2850 /** 2851 * schedule_preempt_disabled - called with preemption disabled 2852 * 2853 * Returns with preemption disabled. Note: preempt_count must be 1 2854 */ 2855 void __sched schedule_preempt_disabled(void) 2856 { 2857 sched_preempt_enable_no_resched(); 2858 schedule(); 2859 preempt_disable(); 2860 } 2861 2862 static void __sched notrace preempt_schedule_common(void) 2863 { 2864 do { 2865 __preempt_count_add(PREEMPT_ACTIVE); 2866 __schedule(); 2867 __preempt_count_sub(PREEMPT_ACTIVE); 2868 2869 /* 2870 * Check again in case we missed a preemption opportunity 2871 * between schedule and now. 2872 */ 2873 barrier(); 2874 } while (need_resched()); 2875 } 2876 2877 #ifdef CONFIG_PREEMPT 2878 /* 2879 * this is the entry point to schedule() from in-kernel preemption 2880 * off of preempt_enable. Kernel preemptions off return from interrupt 2881 * occur there and call schedule directly. 2882 */ 2883 asmlinkage __visible void __sched notrace preempt_schedule(void) 2884 { 2885 /* 2886 * If there is a non-zero preempt_count or interrupts are disabled, 2887 * we do not want to preempt the current task. Just return.. 2888 */ 2889 if (likely(!preemptible())) 2890 return; 2891 2892 preempt_schedule_common(); 2893 } 2894 NOKPROBE_SYMBOL(preempt_schedule); 2895 EXPORT_SYMBOL(preempt_schedule); 2896 2897 #ifdef CONFIG_CONTEXT_TRACKING 2898 /** 2899 * preempt_schedule_context - preempt_schedule called by tracing 2900 * 2901 * The tracing infrastructure uses preempt_enable_notrace to prevent 2902 * recursion and tracing preempt enabling caused by the tracing 2903 * infrastructure itself. But as tracing can happen in areas coming 2904 * from userspace or just about to enter userspace, a preempt enable 2905 * can occur before user_exit() is called. This will cause the scheduler 2906 * to be called when the system is still in usermode. 2907 * 2908 * To prevent this, the preempt_enable_notrace will use this function 2909 * instead of preempt_schedule() to exit user context if needed before 2910 * calling the scheduler. 2911 */ 2912 asmlinkage __visible void __sched notrace preempt_schedule_context(void) 2913 { 2914 enum ctx_state prev_ctx; 2915 2916 if (likely(!preemptible())) 2917 return; 2918 2919 do { 2920 __preempt_count_add(PREEMPT_ACTIVE); 2921 /* 2922 * Needs preempt disabled in case user_exit() is traced 2923 * and the tracer calls preempt_enable_notrace() causing 2924 * an infinite recursion. 2925 */ 2926 prev_ctx = exception_enter(); 2927 __schedule(); 2928 exception_exit(prev_ctx); 2929 2930 __preempt_count_sub(PREEMPT_ACTIVE); 2931 barrier(); 2932 } while (need_resched()); 2933 } 2934 EXPORT_SYMBOL_GPL(preempt_schedule_context); 2935 #endif /* CONFIG_CONTEXT_TRACKING */ 2936 2937 #endif /* CONFIG_PREEMPT */ 2938 2939 /* 2940 * this is the entry point to schedule() from kernel preemption 2941 * off of irq context. 2942 * Note, that this is called and return with irqs disabled. This will 2943 * protect us against recursive calling from irq. 2944 */ 2945 asmlinkage __visible void __sched preempt_schedule_irq(void) 2946 { 2947 enum ctx_state prev_state; 2948 2949 /* Catch callers which need to be fixed */ 2950 BUG_ON(preempt_count() || !irqs_disabled()); 2951 2952 prev_state = exception_enter(); 2953 2954 do { 2955 __preempt_count_add(PREEMPT_ACTIVE); 2956 local_irq_enable(); 2957 __schedule(); 2958 local_irq_disable(); 2959 __preempt_count_sub(PREEMPT_ACTIVE); 2960 2961 /* 2962 * Check again in case we missed a preemption opportunity 2963 * between schedule and now. 2964 */ 2965 barrier(); 2966 } while (need_resched()); 2967 2968 exception_exit(prev_state); 2969 } 2970 2971 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2972 void *key) 2973 { 2974 return try_to_wake_up(curr->private, mode, wake_flags); 2975 } 2976 EXPORT_SYMBOL(default_wake_function); 2977 2978 #ifdef CONFIG_RT_MUTEXES 2979 2980 /* 2981 * rt_mutex_setprio - set the current priority of a task 2982 * @p: task 2983 * @prio: prio value (kernel-internal form) 2984 * 2985 * This function changes the 'effective' priority of a task. It does 2986 * not touch ->normal_prio like __setscheduler(). 2987 * 2988 * Used by the rt_mutex code to implement priority inheritance 2989 * logic. Call site only calls if the priority of the task changed. 2990 */ 2991 void rt_mutex_setprio(struct task_struct *p, int prio) 2992 { 2993 int oldprio, queued, running, enqueue_flag = 0; 2994 struct rq *rq; 2995 const struct sched_class *prev_class; 2996 2997 BUG_ON(prio > MAX_PRIO); 2998 2999 rq = __task_rq_lock(p); 3000 3001 /* 3002 * Idle task boosting is a nono in general. There is one 3003 * exception, when PREEMPT_RT and NOHZ is active: 3004 * 3005 * The idle task calls get_next_timer_interrupt() and holds 3006 * the timer wheel base->lock on the CPU and another CPU wants 3007 * to access the timer (probably to cancel it). We can safely 3008 * ignore the boosting request, as the idle CPU runs this code 3009 * with interrupts disabled and will complete the lock 3010 * protected section without being interrupted. So there is no 3011 * real need to boost. 3012 */ 3013 if (unlikely(p == rq->idle)) { 3014 WARN_ON(p != rq->curr); 3015 WARN_ON(p->pi_blocked_on); 3016 goto out_unlock; 3017 } 3018 3019 trace_sched_pi_setprio(p, prio); 3020 oldprio = p->prio; 3021 prev_class = p->sched_class; 3022 queued = task_on_rq_queued(p); 3023 running = task_current(rq, p); 3024 if (queued) 3025 dequeue_task(rq, p, 0); 3026 if (running) 3027 put_prev_task(rq, p); 3028 3029 /* 3030 * Boosting condition are: 3031 * 1. -rt task is running and holds mutex A 3032 * --> -dl task blocks on mutex A 3033 * 3034 * 2. -dl task is running and holds mutex A 3035 * --> -dl task blocks on mutex A and could preempt the 3036 * running task 3037 */ 3038 if (dl_prio(prio)) { 3039 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3040 if (!dl_prio(p->normal_prio) || 3041 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3042 p->dl.dl_boosted = 1; 3043 p->dl.dl_throttled = 0; 3044 enqueue_flag = ENQUEUE_REPLENISH; 3045 } else 3046 p->dl.dl_boosted = 0; 3047 p->sched_class = &dl_sched_class; 3048 } else if (rt_prio(prio)) { 3049 if (dl_prio(oldprio)) 3050 p->dl.dl_boosted = 0; 3051 if (oldprio < prio) 3052 enqueue_flag = ENQUEUE_HEAD; 3053 p->sched_class = &rt_sched_class; 3054 } else { 3055 if (dl_prio(oldprio)) 3056 p->dl.dl_boosted = 0; 3057 if (rt_prio(oldprio)) 3058 p->rt.timeout = 0; 3059 p->sched_class = &fair_sched_class; 3060 } 3061 3062 p->prio = prio; 3063 3064 if (running) 3065 p->sched_class->set_curr_task(rq); 3066 if (queued) 3067 enqueue_task(rq, p, enqueue_flag); 3068 3069 check_class_changed(rq, p, prev_class, oldprio); 3070 out_unlock: 3071 __task_rq_unlock(rq); 3072 } 3073 #endif 3074 3075 void set_user_nice(struct task_struct *p, long nice) 3076 { 3077 int old_prio, delta, queued; 3078 unsigned long flags; 3079 struct rq *rq; 3080 3081 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3082 return; 3083 /* 3084 * We have to be careful, if called from sys_setpriority(), 3085 * the task might be in the middle of scheduling on another CPU. 3086 */ 3087 rq = task_rq_lock(p, &flags); 3088 /* 3089 * The RT priorities are set via sched_setscheduler(), but we still 3090 * allow the 'normal' nice value to be set - but as expected 3091 * it wont have any effect on scheduling until the task is 3092 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3093 */ 3094 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3095 p->static_prio = NICE_TO_PRIO(nice); 3096 goto out_unlock; 3097 } 3098 queued = task_on_rq_queued(p); 3099 if (queued) 3100 dequeue_task(rq, p, 0); 3101 3102 p->static_prio = NICE_TO_PRIO(nice); 3103 set_load_weight(p); 3104 old_prio = p->prio; 3105 p->prio = effective_prio(p); 3106 delta = p->prio - old_prio; 3107 3108 if (queued) { 3109 enqueue_task(rq, p, 0); 3110 /* 3111 * If the task increased its priority or is running and 3112 * lowered its priority, then reschedule its CPU: 3113 */ 3114 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3115 resched_curr(rq); 3116 } 3117 out_unlock: 3118 task_rq_unlock(rq, p, &flags); 3119 } 3120 EXPORT_SYMBOL(set_user_nice); 3121 3122 /* 3123 * can_nice - check if a task can reduce its nice value 3124 * @p: task 3125 * @nice: nice value 3126 */ 3127 int can_nice(const struct task_struct *p, const int nice) 3128 { 3129 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3130 int nice_rlim = nice_to_rlimit(nice); 3131 3132 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3133 capable(CAP_SYS_NICE)); 3134 } 3135 3136 #ifdef __ARCH_WANT_SYS_NICE 3137 3138 /* 3139 * sys_nice - change the priority of the current process. 3140 * @increment: priority increment 3141 * 3142 * sys_setpriority is a more generic, but much slower function that 3143 * does similar things. 3144 */ 3145 SYSCALL_DEFINE1(nice, int, increment) 3146 { 3147 long nice, retval; 3148 3149 /* 3150 * Setpriority might change our priority at the same moment. 3151 * We don't have to worry. Conceptually one call occurs first 3152 * and we have a single winner. 3153 */ 3154 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3155 nice = task_nice(current) + increment; 3156 3157 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3158 if (increment < 0 && !can_nice(current, nice)) 3159 return -EPERM; 3160 3161 retval = security_task_setnice(current, nice); 3162 if (retval) 3163 return retval; 3164 3165 set_user_nice(current, nice); 3166 return 0; 3167 } 3168 3169 #endif 3170 3171 /** 3172 * task_prio - return the priority value of a given task. 3173 * @p: the task in question. 3174 * 3175 * Return: The priority value as seen by users in /proc. 3176 * RT tasks are offset by -200. Normal tasks are centered 3177 * around 0, value goes from -16 to +15. 3178 */ 3179 int task_prio(const struct task_struct *p) 3180 { 3181 return p->prio - MAX_RT_PRIO; 3182 } 3183 3184 /** 3185 * idle_cpu - is a given cpu idle currently? 3186 * @cpu: the processor in question. 3187 * 3188 * Return: 1 if the CPU is currently idle. 0 otherwise. 3189 */ 3190 int idle_cpu(int cpu) 3191 { 3192 struct rq *rq = cpu_rq(cpu); 3193 3194 if (rq->curr != rq->idle) 3195 return 0; 3196 3197 if (rq->nr_running) 3198 return 0; 3199 3200 #ifdef CONFIG_SMP 3201 if (!llist_empty(&rq->wake_list)) 3202 return 0; 3203 #endif 3204 3205 return 1; 3206 } 3207 3208 /** 3209 * idle_task - return the idle task for a given cpu. 3210 * @cpu: the processor in question. 3211 * 3212 * Return: The idle task for the cpu @cpu. 3213 */ 3214 struct task_struct *idle_task(int cpu) 3215 { 3216 return cpu_rq(cpu)->idle; 3217 } 3218 3219 /** 3220 * find_process_by_pid - find a process with a matching PID value. 3221 * @pid: the pid in question. 3222 * 3223 * The task of @pid, if found. %NULL otherwise. 3224 */ 3225 static struct task_struct *find_process_by_pid(pid_t pid) 3226 { 3227 return pid ? find_task_by_vpid(pid) : current; 3228 } 3229 3230 /* 3231 * This function initializes the sched_dl_entity of a newly becoming 3232 * SCHED_DEADLINE task. 3233 * 3234 * Only the static values are considered here, the actual runtime and the 3235 * absolute deadline will be properly calculated when the task is enqueued 3236 * for the first time with its new policy. 3237 */ 3238 static void 3239 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3240 { 3241 struct sched_dl_entity *dl_se = &p->dl; 3242 3243 dl_se->dl_runtime = attr->sched_runtime; 3244 dl_se->dl_deadline = attr->sched_deadline; 3245 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3246 dl_se->flags = attr->sched_flags; 3247 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3248 3249 /* 3250 * Changing the parameters of a task is 'tricky' and we're not doing 3251 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3252 * 3253 * What we SHOULD do is delay the bandwidth release until the 0-lag 3254 * point. This would include retaining the task_struct until that time 3255 * and change dl_overflow() to not immediately decrement the current 3256 * amount. 3257 * 3258 * Instead we retain the current runtime/deadline and let the new 3259 * parameters take effect after the current reservation period lapses. 3260 * This is safe (albeit pessimistic) because the 0-lag point is always 3261 * before the current scheduling deadline. 3262 * 3263 * We can still have temporary overloads because we do not delay the 3264 * change in bandwidth until that time; so admission control is 3265 * not on the safe side. It does however guarantee tasks will never 3266 * consume more than promised. 3267 */ 3268 } 3269 3270 /* 3271 * sched_setparam() passes in -1 for its policy, to let the functions 3272 * it calls know not to change it. 3273 */ 3274 #define SETPARAM_POLICY -1 3275 3276 static void __setscheduler_params(struct task_struct *p, 3277 const struct sched_attr *attr) 3278 { 3279 int policy = attr->sched_policy; 3280 3281 if (policy == SETPARAM_POLICY) 3282 policy = p->policy; 3283 3284 p->policy = policy; 3285 3286 if (dl_policy(policy)) 3287 __setparam_dl(p, attr); 3288 else if (fair_policy(policy)) 3289 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3290 3291 /* 3292 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3293 * !rt_policy. Always setting this ensures that things like 3294 * getparam()/getattr() don't report silly values for !rt tasks. 3295 */ 3296 p->rt_priority = attr->sched_priority; 3297 p->normal_prio = normal_prio(p); 3298 set_load_weight(p); 3299 } 3300 3301 /* Actually do priority change: must hold pi & rq lock. */ 3302 static void __setscheduler(struct rq *rq, struct task_struct *p, 3303 const struct sched_attr *attr) 3304 { 3305 __setscheduler_params(p, attr); 3306 3307 /* 3308 * If we get here, there was no pi waiters boosting the 3309 * task. It is safe to use the normal prio. 3310 */ 3311 p->prio = normal_prio(p); 3312 3313 if (dl_prio(p->prio)) 3314 p->sched_class = &dl_sched_class; 3315 else if (rt_prio(p->prio)) 3316 p->sched_class = &rt_sched_class; 3317 else 3318 p->sched_class = &fair_sched_class; 3319 } 3320 3321 static void 3322 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3323 { 3324 struct sched_dl_entity *dl_se = &p->dl; 3325 3326 attr->sched_priority = p->rt_priority; 3327 attr->sched_runtime = dl_se->dl_runtime; 3328 attr->sched_deadline = dl_se->dl_deadline; 3329 attr->sched_period = dl_se->dl_period; 3330 attr->sched_flags = dl_se->flags; 3331 } 3332 3333 /* 3334 * This function validates the new parameters of a -deadline task. 3335 * We ask for the deadline not being zero, and greater or equal 3336 * than the runtime, as well as the period of being zero or 3337 * greater than deadline. Furthermore, we have to be sure that 3338 * user parameters are above the internal resolution of 1us (we 3339 * check sched_runtime only since it is always the smaller one) and 3340 * below 2^63 ns (we have to check both sched_deadline and 3341 * sched_period, as the latter can be zero). 3342 */ 3343 static bool 3344 __checkparam_dl(const struct sched_attr *attr) 3345 { 3346 /* deadline != 0 */ 3347 if (attr->sched_deadline == 0) 3348 return false; 3349 3350 /* 3351 * Since we truncate DL_SCALE bits, make sure we're at least 3352 * that big. 3353 */ 3354 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3355 return false; 3356 3357 /* 3358 * Since we use the MSB for wrap-around and sign issues, make 3359 * sure it's not set (mind that period can be equal to zero). 3360 */ 3361 if (attr->sched_deadline & (1ULL << 63) || 3362 attr->sched_period & (1ULL << 63)) 3363 return false; 3364 3365 /* runtime <= deadline <= period (if period != 0) */ 3366 if ((attr->sched_period != 0 && 3367 attr->sched_period < attr->sched_deadline) || 3368 attr->sched_deadline < attr->sched_runtime) 3369 return false; 3370 3371 return true; 3372 } 3373 3374 /* 3375 * check the target process has a UID that matches the current process's 3376 */ 3377 static bool check_same_owner(struct task_struct *p) 3378 { 3379 const struct cred *cred = current_cred(), *pcred; 3380 bool match; 3381 3382 rcu_read_lock(); 3383 pcred = __task_cred(p); 3384 match = (uid_eq(cred->euid, pcred->euid) || 3385 uid_eq(cred->euid, pcred->uid)); 3386 rcu_read_unlock(); 3387 return match; 3388 } 3389 3390 static bool dl_param_changed(struct task_struct *p, 3391 const struct sched_attr *attr) 3392 { 3393 struct sched_dl_entity *dl_se = &p->dl; 3394 3395 if (dl_se->dl_runtime != attr->sched_runtime || 3396 dl_se->dl_deadline != attr->sched_deadline || 3397 dl_se->dl_period != attr->sched_period || 3398 dl_se->flags != attr->sched_flags) 3399 return true; 3400 3401 return false; 3402 } 3403 3404 static int __sched_setscheduler(struct task_struct *p, 3405 const struct sched_attr *attr, 3406 bool user) 3407 { 3408 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3409 MAX_RT_PRIO - 1 - attr->sched_priority; 3410 int retval, oldprio, oldpolicy = -1, queued, running; 3411 int policy = attr->sched_policy; 3412 unsigned long flags; 3413 const struct sched_class *prev_class; 3414 struct rq *rq; 3415 int reset_on_fork; 3416 3417 /* may grab non-irq protected spin_locks */ 3418 BUG_ON(in_interrupt()); 3419 recheck: 3420 /* double check policy once rq lock held */ 3421 if (policy < 0) { 3422 reset_on_fork = p->sched_reset_on_fork; 3423 policy = oldpolicy = p->policy; 3424 } else { 3425 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3426 3427 if (policy != SCHED_DEADLINE && 3428 policy != SCHED_FIFO && policy != SCHED_RR && 3429 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3430 policy != SCHED_IDLE) 3431 return -EINVAL; 3432 } 3433 3434 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3435 return -EINVAL; 3436 3437 /* 3438 * Valid priorities for SCHED_FIFO and SCHED_RR are 3439 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3440 * SCHED_BATCH and SCHED_IDLE is 0. 3441 */ 3442 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3443 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3444 return -EINVAL; 3445 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3446 (rt_policy(policy) != (attr->sched_priority != 0))) 3447 return -EINVAL; 3448 3449 /* 3450 * Allow unprivileged RT tasks to decrease priority: 3451 */ 3452 if (user && !capable(CAP_SYS_NICE)) { 3453 if (fair_policy(policy)) { 3454 if (attr->sched_nice < task_nice(p) && 3455 !can_nice(p, attr->sched_nice)) 3456 return -EPERM; 3457 } 3458 3459 if (rt_policy(policy)) { 3460 unsigned long rlim_rtprio = 3461 task_rlimit(p, RLIMIT_RTPRIO); 3462 3463 /* can't set/change the rt policy */ 3464 if (policy != p->policy && !rlim_rtprio) 3465 return -EPERM; 3466 3467 /* can't increase priority */ 3468 if (attr->sched_priority > p->rt_priority && 3469 attr->sched_priority > rlim_rtprio) 3470 return -EPERM; 3471 } 3472 3473 /* 3474 * Can't set/change SCHED_DEADLINE policy at all for now 3475 * (safest behavior); in the future we would like to allow 3476 * unprivileged DL tasks to increase their relative deadline 3477 * or reduce their runtime (both ways reducing utilization) 3478 */ 3479 if (dl_policy(policy)) 3480 return -EPERM; 3481 3482 /* 3483 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3484 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3485 */ 3486 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3487 if (!can_nice(p, task_nice(p))) 3488 return -EPERM; 3489 } 3490 3491 /* can't change other user's priorities */ 3492 if (!check_same_owner(p)) 3493 return -EPERM; 3494 3495 /* Normal users shall not reset the sched_reset_on_fork flag */ 3496 if (p->sched_reset_on_fork && !reset_on_fork) 3497 return -EPERM; 3498 } 3499 3500 if (user) { 3501 retval = security_task_setscheduler(p); 3502 if (retval) 3503 return retval; 3504 } 3505 3506 /* 3507 * make sure no PI-waiters arrive (or leave) while we are 3508 * changing the priority of the task: 3509 * 3510 * To be able to change p->policy safely, the appropriate 3511 * runqueue lock must be held. 3512 */ 3513 rq = task_rq_lock(p, &flags); 3514 3515 /* 3516 * Changing the policy of the stop threads its a very bad idea 3517 */ 3518 if (p == rq->stop) { 3519 task_rq_unlock(rq, p, &flags); 3520 return -EINVAL; 3521 } 3522 3523 /* 3524 * If not changing anything there's no need to proceed further, 3525 * but store a possible modification of reset_on_fork. 3526 */ 3527 if (unlikely(policy == p->policy)) { 3528 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3529 goto change; 3530 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3531 goto change; 3532 if (dl_policy(policy) && dl_param_changed(p, attr)) 3533 goto change; 3534 3535 p->sched_reset_on_fork = reset_on_fork; 3536 task_rq_unlock(rq, p, &flags); 3537 return 0; 3538 } 3539 change: 3540 3541 if (user) { 3542 #ifdef CONFIG_RT_GROUP_SCHED 3543 /* 3544 * Do not allow realtime tasks into groups that have no runtime 3545 * assigned. 3546 */ 3547 if (rt_bandwidth_enabled() && rt_policy(policy) && 3548 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3549 !task_group_is_autogroup(task_group(p))) { 3550 task_rq_unlock(rq, p, &flags); 3551 return -EPERM; 3552 } 3553 #endif 3554 #ifdef CONFIG_SMP 3555 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3556 cpumask_t *span = rq->rd->span; 3557 3558 /* 3559 * Don't allow tasks with an affinity mask smaller than 3560 * the entire root_domain to become SCHED_DEADLINE. We 3561 * will also fail if there's no bandwidth available. 3562 */ 3563 if (!cpumask_subset(span, &p->cpus_allowed) || 3564 rq->rd->dl_bw.bw == 0) { 3565 task_rq_unlock(rq, p, &flags); 3566 return -EPERM; 3567 } 3568 } 3569 #endif 3570 } 3571 3572 /* recheck policy now with rq lock held */ 3573 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3574 policy = oldpolicy = -1; 3575 task_rq_unlock(rq, p, &flags); 3576 goto recheck; 3577 } 3578 3579 /* 3580 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3581 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3582 * is available. 3583 */ 3584 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3585 task_rq_unlock(rq, p, &flags); 3586 return -EBUSY; 3587 } 3588 3589 p->sched_reset_on_fork = reset_on_fork; 3590 oldprio = p->prio; 3591 3592 /* 3593 * Special case for priority boosted tasks. 3594 * 3595 * If the new priority is lower or equal (user space view) 3596 * than the current (boosted) priority, we just store the new 3597 * normal parameters and do not touch the scheduler class and 3598 * the runqueue. This will be done when the task deboost 3599 * itself. 3600 */ 3601 if (rt_mutex_check_prio(p, newprio)) { 3602 __setscheduler_params(p, attr); 3603 task_rq_unlock(rq, p, &flags); 3604 return 0; 3605 } 3606 3607 queued = task_on_rq_queued(p); 3608 running = task_current(rq, p); 3609 if (queued) 3610 dequeue_task(rq, p, 0); 3611 if (running) 3612 put_prev_task(rq, p); 3613 3614 prev_class = p->sched_class; 3615 __setscheduler(rq, p, attr); 3616 3617 if (running) 3618 p->sched_class->set_curr_task(rq); 3619 if (queued) { 3620 /* 3621 * We enqueue to tail when the priority of a task is 3622 * increased (user space view). 3623 */ 3624 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3625 } 3626 3627 check_class_changed(rq, p, prev_class, oldprio); 3628 task_rq_unlock(rq, p, &flags); 3629 3630 rt_mutex_adjust_pi(p); 3631 3632 return 0; 3633 } 3634 3635 static int _sched_setscheduler(struct task_struct *p, int policy, 3636 const struct sched_param *param, bool check) 3637 { 3638 struct sched_attr attr = { 3639 .sched_policy = policy, 3640 .sched_priority = param->sched_priority, 3641 .sched_nice = PRIO_TO_NICE(p->static_prio), 3642 }; 3643 3644 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3645 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3646 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3647 policy &= ~SCHED_RESET_ON_FORK; 3648 attr.sched_policy = policy; 3649 } 3650 3651 return __sched_setscheduler(p, &attr, check); 3652 } 3653 /** 3654 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3655 * @p: the task in question. 3656 * @policy: new policy. 3657 * @param: structure containing the new RT priority. 3658 * 3659 * Return: 0 on success. An error code otherwise. 3660 * 3661 * NOTE that the task may be already dead. 3662 */ 3663 int sched_setscheduler(struct task_struct *p, int policy, 3664 const struct sched_param *param) 3665 { 3666 return _sched_setscheduler(p, policy, param, true); 3667 } 3668 EXPORT_SYMBOL_GPL(sched_setscheduler); 3669 3670 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3671 { 3672 return __sched_setscheduler(p, attr, true); 3673 } 3674 EXPORT_SYMBOL_GPL(sched_setattr); 3675 3676 /** 3677 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3678 * @p: the task in question. 3679 * @policy: new policy. 3680 * @param: structure containing the new RT priority. 3681 * 3682 * Just like sched_setscheduler, only don't bother checking if the 3683 * current context has permission. For example, this is needed in 3684 * stop_machine(): we create temporary high priority worker threads, 3685 * but our caller might not have that capability. 3686 * 3687 * Return: 0 on success. An error code otherwise. 3688 */ 3689 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3690 const struct sched_param *param) 3691 { 3692 return _sched_setscheduler(p, policy, param, false); 3693 } 3694 3695 static int 3696 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3697 { 3698 struct sched_param lparam; 3699 struct task_struct *p; 3700 int retval; 3701 3702 if (!param || pid < 0) 3703 return -EINVAL; 3704 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3705 return -EFAULT; 3706 3707 rcu_read_lock(); 3708 retval = -ESRCH; 3709 p = find_process_by_pid(pid); 3710 if (p != NULL) 3711 retval = sched_setscheduler(p, policy, &lparam); 3712 rcu_read_unlock(); 3713 3714 return retval; 3715 } 3716 3717 /* 3718 * Mimics kernel/events/core.c perf_copy_attr(). 3719 */ 3720 static int sched_copy_attr(struct sched_attr __user *uattr, 3721 struct sched_attr *attr) 3722 { 3723 u32 size; 3724 int ret; 3725 3726 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3727 return -EFAULT; 3728 3729 /* 3730 * zero the full structure, so that a short copy will be nice. 3731 */ 3732 memset(attr, 0, sizeof(*attr)); 3733 3734 ret = get_user(size, &uattr->size); 3735 if (ret) 3736 return ret; 3737 3738 if (size > PAGE_SIZE) /* silly large */ 3739 goto err_size; 3740 3741 if (!size) /* abi compat */ 3742 size = SCHED_ATTR_SIZE_VER0; 3743 3744 if (size < SCHED_ATTR_SIZE_VER0) 3745 goto err_size; 3746 3747 /* 3748 * If we're handed a bigger struct than we know of, 3749 * ensure all the unknown bits are 0 - i.e. new 3750 * user-space does not rely on any kernel feature 3751 * extensions we dont know about yet. 3752 */ 3753 if (size > sizeof(*attr)) { 3754 unsigned char __user *addr; 3755 unsigned char __user *end; 3756 unsigned char val; 3757 3758 addr = (void __user *)uattr + sizeof(*attr); 3759 end = (void __user *)uattr + size; 3760 3761 for (; addr < end; addr++) { 3762 ret = get_user(val, addr); 3763 if (ret) 3764 return ret; 3765 if (val) 3766 goto err_size; 3767 } 3768 size = sizeof(*attr); 3769 } 3770 3771 ret = copy_from_user(attr, uattr, size); 3772 if (ret) 3773 return -EFAULT; 3774 3775 /* 3776 * XXX: do we want to be lenient like existing syscalls; or do we want 3777 * to be strict and return an error on out-of-bounds values? 3778 */ 3779 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3780 3781 return 0; 3782 3783 err_size: 3784 put_user(sizeof(*attr), &uattr->size); 3785 return -E2BIG; 3786 } 3787 3788 /** 3789 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3790 * @pid: the pid in question. 3791 * @policy: new policy. 3792 * @param: structure containing the new RT priority. 3793 * 3794 * Return: 0 on success. An error code otherwise. 3795 */ 3796 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3797 struct sched_param __user *, param) 3798 { 3799 /* negative values for policy are not valid */ 3800 if (policy < 0) 3801 return -EINVAL; 3802 3803 return do_sched_setscheduler(pid, policy, param); 3804 } 3805 3806 /** 3807 * sys_sched_setparam - set/change the RT priority of a thread 3808 * @pid: the pid in question. 3809 * @param: structure containing the new RT priority. 3810 * 3811 * Return: 0 on success. An error code otherwise. 3812 */ 3813 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3814 { 3815 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3816 } 3817 3818 /** 3819 * sys_sched_setattr - same as above, but with extended sched_attr 3820 * @pid: the pid in question. 3821 * @uattr: structure containing the extended parameters. 3822 * @flags: for future extension. 3823 */ 3824 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3825 unsigned int, flags) 3826 { 3827 struct sched_attr attr; 3828 struct task_struct *p; 3829 int retval; 3830 3831 if (!uattr || pid < 0 || flags) 3832 return -EINVAL; 3833 3834 retval = sched_copy_attr(uattr, &attr); 3835 if (retval) 3836 return retval; 3837 3838 if ((int)attr.sched_policy < 0) 3839 return -EINVAL; 3840 3841 rcu_read_lock(); 3842 retval = -ESRCH; 3843 p = find_process_by_pid(pid); 3844 if (p != NULL) 3845 retval = sched_setattr(p, &attr); 3846 rcu_read_unlock(); 3847 3848 return retval; 3849 } 3850 3851 /** 3852 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3853 * @pid: the pid in question. 3854 * 3855 * Return: On success, the policy of the thread. Otherwise, a negative error 3856 * code. 3857 */ 3858 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3859 { 3860 struct task_struct *p; 3861 int retval; 3862 3863 if (pid < 0) 3864 return -EINVAL; 3865 3866 retval = -ESRCH; 3867 rcu_read_lock(); 3868 p = find_process_by_pid(pid); 3869 if (p) { 3870 retval = security_task_getscheduler(p); 3871 if (!retval) 3872 retval = p->policy 3873 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3874 } 3875 rcu_read_unlock(); 3876 return retval; 3877 } 3878 3879 /** 3880 * sys_sched_getparam - get the RT priority of a thread 3881 * @pid: the pid in question. 3882 * @param: structure containing the RT priority. 3883 * 3884 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3885 * code. 3886 */ 3887 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3888 { 3889 struct sched_param lp = { .sched_priority = 0 }; 3890 struct task_struct *p; 3891 int retval; 3892 3893 if (!param || pid < 0) 3894 return -EINVAL; 3895 3896 rcu_read_lock(); 3897 p = find_process_by_pid(pid); 3898 retval = -ESRCH; 3899 if (!p) 3900 goto out_unlock; 3901 3902 retval = security_task_getscheduler(p); 3903 if (retval) 3904 goto out_unlock; 3905 3906 if (task_has_rt_policy(p)) 3907 lp.sched_priority = p->rt_priority; 3908 rcu_read_unlock(); 3909 3910 /* 3911 * This one might sleep, we cannot do it with a spinlock held ... 3912 */ 3913 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3914 3915 return retval; 3916 3917 out_unlock: 3918 rcu_read_unlock(); 3919 return retval; 3920 } 3921 3922 static int sched_read_attr(struct sched_attr __user *uattr, 3923 struct sched_attr *attr, 3924 unsigned int usize) 3925 { 3926 int ret; 3927 3928 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3929 return -EFAULT; 3930 3931 /* 3932 * If we're handed a smaller struct than we know of, 3933 * ensure all the unknown bits are 0 - i.e. old 3934 * user-space does not get uncomplete information. 3935 */ 3936 if (usize < sizeof(*attr)) { 3937 unsigned char *addr; 3938 unsigned char *end; 3939 3940 addr = (void *)attr + usize; 3941 end = (void *)attr + sizeof(*attr); 3942 3943 for (; addr < end; addr++) { 3944 if (*addr) 3945 return -EFBIG; 3946 } 3947 3948 attr->size = usize; 3949 } 3950 3951 ret = copy_to_user(uattr, attr, attr->size); 3952 if (ret) 3953 return -EFAULT; 3954 3955 return 0; 3956 } 3957 3958 /** 3959 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3960 * @pid: the pid in question. 3961 * @uattr: structure containing the extended parameters. 3962 * @size: sizeof(attr) for fwd/bwd comp. 3963 * @flags: for future extension. 3964 */ 3965 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3966 unsigned int, size, unsigned int, flags) 3967 { 3968 struct sched_attr attr = { 3969 .size = sizeof(struct sched_attr), 3970 }; 3971 struct task_struct *p; 3972 int retval; 3973 3974 if (!uattr || pid < 0 || size > PAGE_SIZE || 3975 size < SCHED_ATTR_SIZE_VER0 || flags) 3976 return -EINVAL; 3977 3978 rcu_read_lock(); 3979 p = find_process_by_pid(pid); 3980 retval = -ESRCH; 3981 if (!p) 3982 goto out_unlock; 3983 3984 retval = security_task_getscheduler(p); 3985 if (retval) 3986 goto out_unlock; 3987 3988 attr.sched_policy = p->policy; 3989 if (p->sched_reset_on_fork) 3990 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3991 if (task_has_dl_policy(p)) 3992 __getparam_dl(p, &attr); 3993 else if (task_has_rt_policy(p)) 3994 attr.sched_priority = p->rt_priority; 3995 else 3996 attr.sched_nice = task_nice(p); 3997 3998 rcu_read_unlock(); 3999 4000 retval = sched_read_attr(uattr, &attr, size); 4001 return retval; 4002 4003 out_unlock: 4004 rcu_read_unlock(); 4005 return retval; 4006 } 4007 4008 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4009 { 4010 cpumask_var_t cpus_allowed, new_mask; 4011 struct task_struct *p; 4012 int retval; 4013 4014 rcu_read_lock(); 4015 4016 p = find_process_by_pid(pid); 4017 if (!p) { 4018 rcu_read_unlock(); 4019 return -ESRCH; 4020 } 4021 4022 /* Prevent p going away */ 4023 get_task_struct(p); 4024 rcu_read_unlock(); 4025 4026 if (p->flags & PF_NO_SETAFFINITY) { 4027 retval = -EINVAL; 4028 goto out_put_task; 4029 } 4030 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4031 retval = -ENOMEM; 4032 goto out_put_task; 4033 } 4034 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4035 retval = -ENOMEM; 4036 goto out_free_cpus_allowed; 4037 } 4038 retval = -EPERM; 4039 if (!check_same_owner(p)) { 4040 rcu_read_lock(); 4041 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4042 rcu_read_unlock(); 4043 goto out_free_new_mask; 4044 } 4045 rcu_read_unlock(); 4046 } 4047 4048 retval = security_task_setscheduler(p); 4049 if (retval) 4050 goto out_free_new_mask; 4051 4052 4053 cpuset_cpus_allowed(p, cpus_allowed); 4054 cpumask_and(new_mask, in_mask, cpus_allowed); 4055 4056 /* 4057 * Since bandwidth control happens on root_domain basis, 4058 * if admission test is enabled, we only admit -deadline 4059 * tasks allowed to run on all the CPUs in the task's 4060 * root_domain. 4061 */ 4062 #ifdef CONFIG_SMP 4063 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4064 rcu_read_lock(); 4065 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4066 retval = -EBUSY; 4067 rcu_read_unlock(); 4068 goto out_free_new_mask; 4069 } 4070 rcu_read_unlock(); 4071 } 4072 #endif 4073 again: 4074 retval = set_cpus_allowed_ptr(p, new_mask); 4075 4076 if (!retval) { 4077 cpuset_cpus_allowed(p, cpus_allowed); 4078 if (!cpumask_subset(new_mask, cpus_allowed)) { 4079 /* 4080 * We must have raced with a concurrent cpuset 4081 * update. Just reset the cpus_allowed to the 4082 * cpuset's cpus_allowed 4083 */ 4084 cpumask_copy(new_mask, cpus_allowed); 4085 goto again; 4086 } 4087 } 4088 out_free_new_mask: 4089 free_cpumask_var(new_mask); 4090 out_free_cpus_allowed: 4091 free_cpumask_var(cpus_allowed); 4092 out_put_task: 4093 put_task_struct(p); 4094 return retval; 4095 } 4096 4097 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4098 struct cpumask *new_mask) 4099 { 4100 if (len < cpumask_size()) 4101 cpumask_clear(new_mask); 4102 else if (len > cpumask_size()) 4103 len = cpumask_size(); 4104 4105 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4106 } 4107 4108 /** 4109 * sys_sched_setaffinity - set the cpu affinity of a process 4110 * @pid: pid of the process 4111 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4112 * @user_mask_ptr: user-space pointer to the new cpu mask 4113 * 4114 * Return: 0 on success. An error code otherwise. 4115 */ 4116 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4117 unsigned long __user *, user_mask_ptr) 4118 { 4119 cpumask_var_t new_mask; 4120 int retval; 4121 4122 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4123 return -ENOMEM; 4124 4125 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4126 if (retval == 0) 4127 retval = sched_setaffinity(pid, new_mask); 4128 free_cpumask_var(new_mask); 4129 return retval; 4130 } 4131 4132 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4133 { 4134 struct task_struct *p; 4135 unsigned long flags; 4136 int retval; 4137 4138 rcu_read_lock(); 4139 4140 retval = -ESRCH; 4141 p = find_process_by_pid(pid); 4142 if (!p) 4143 goto out_unlock; 4144 4145 retval = security_task_getscheduler(p); 4146 if (retval) 4147 goto out_unlock; 4148 4149 raw_spin_lock_irqsave(&p->pi_lock, flags); 4150 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4151 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4152 4153 out_unlock: 4154 rcu_read_unlock(); 4155 4156 return retval; 4157 } 4158 4159 /** 4160 * sys_sched_getaffinity - get the cpu affinity of a process 4161 * @pid: pid of the process 4162 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4163 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4164 * 4165 * Return: 0 on success. An error code otherwise. 4166 */ 4167 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4168 unsigned long __user *, user_mask_ptr) 4169 { 4170 int ret; 4171 cpumask_var_t mask; 4172 4173 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4174 return -EINVAL; 4175 if (len & (sizeof(unsigned long)-1)) 4176 return -EINVAL; 4177 4178 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4179 return -ENOMEM; 4180 4181 ret = sched_getaffinity(pid, mask); 4182 if (ret == 0) { 4183 size_t retlen = min_t(size_t, len, cpumask_size()); 4184 4185 if (copy_to_user(user_mask_ptr, mask, retlen)) 4186 ret = -EFAULT; 4187 else 4188 ret = retlen; 4189 } 4190 free_cpumask_var(mask); 4191 4192 return ret; 4193 } 4194 4195 /** 4196 * sys_sched_yield - yield the current processor to other threads. 4197 * 4198 * This function yields the current CPU to other tasks. If there are no 4199 * other threads running on this CPU then this function will return. 4200 * 4201 * Return: 0. 4202 */ 4203 SYSCALL_DEFINE0(sched_yield) 4204 { 4205 struct rq *rq = this_rq_lock(); 4206 4207 schedstat_inc(rq, yld_count); 4208 current->sched_class->yield_task(rq); 4209 4210 /* 4211 * Since we are going to call schedule() anyway, there's 4212 * no need to preempt or enable interrupts: 4213 */ 4214 __release(rq->lock); 4215 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4216 do_raw_spin_unlock(&rq->lock); 4217 sched_preempt_enable_no_resched(); 4218 4219 schedule(); 4220 4221 return 0; 4222 } 4223 4224 int __sched _cond_resched(void) 4225 { 4226 if (should_resched()) { 4227 preempt_schedule_common(); 4228 return 1; 4229 } 4230 return 0; 4231 } 4232 EXPORT_SYMBOL(_cond_resched); 4233 4234 /* 4235 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4236 * call schedule, and on return reacquire the lock. 4237 * 4238 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4239 * operations here to prevent schedule() from being called twice (once via 4240 * spin_unlock(), once by hand). 4241 */ 4242 int __cond_resched_lock(spinlock_t *lock) 4243 { 4244 int resched = should_resched(); 4245 int ret = 0; 4246 4247 lockdep_assert_held(lock); 4248 4249 if (spin_needbreak(lock) || resched) { 4250 spin_unlock(lock); 4251 if (resched) 4252 preempt_schedule_common(); 4253 else 4254 cpu_relax(); 4255 ret = 1; 4256 spin_lock(lock); 4257 } 4258 return ret; 4259 } 4260 EXPORT_SYMBOL(__cond_resched_lock); 4261 4262 int __sched __cond_resched_softirq(void) 4263 { 4264 BUG_ON(!in_softirq()); 4265 4266 if (should_resched()) { 4267 local_bh_enable(); 4268 preempt_schedule_common(); 4269 local_bh_disable(); 4270 return 1; 4271 } 4272 return 0; 4273 } 4274 EXPORT_SYMBOL(__cond_resched_softirq); 4275 4276 /** 4277 * yield - yield the current processor to other threads. 4278 * 4279 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4280 * 4281 * The scheduler is at all times free to pick the calling task as the most 4282 * eligible task to run, if removing the yield() call from your code breaks 4283 * it, its already broken. 4284 * 4285 * Typical broken usage is: 4286 * 4287 * while (!event) 4288 * yield(); 4289 * 4290 * where one assumes that yield() will let 'the other' process run that will 4291 * make event true. If the current task is a SCHED_FIFO task that will never 4292 * happen. Never use yield() as a progress guarantee!! 4293 * 4294 * If you want to use yield() to wait for something, use wait_event(). 4295 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4296 * If you still want to use yield(), do not! 4297 */ 4298 void __sched yield(void) 4299 { 4300 set_current_state(TASK_RUNNING); 4301 sys_sched_yield(); 4302 } 4303 EXPORT_SYMBOL(yield); 4304 4305 /** 4306 * yield_to - yield the current processor to another thread in 4307 * your thread group, or accelerate that thread toward the 4308 * processor it's on. 4309 * @p: target task 4310 * @preempt: whether task preemption is allowed or not 4311 * 4312 * It's the caller's job to ensure that the target task struct 4313 * can't go away on us before we can do any checks. 4314 * 4315 * Return: 4316 * true (>0) if we indeed boosted the target task. 4317 * false (0) if we failed to boost the target. 4318 * -ESRCH if there's no task to yield to. 4319 */ 4320 int __sched yield_to(struct task_struct *p, bool preempt) 4321 { 4322 struct task_struct *curr = current; 4323 struct rq *rq, *p_rq; 4324 unsigned long flags; 4325 int yielded = 0; 4326 4327 local_irq_save(flags); 4328 rq = this_rq(); 4329 4330 again: 4331 p_rq = task_rq(p); 4332 /* 4333 * If we're the only runnable task on the rq and target rq also 4334 * has only one task, there's absolutely no point in yielding. 4335 */ 4336 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4337 yielded = -ESRCH; 4338 goto out_irq; 4339 } 4340 4341 double_rq_lock(rq, p_rq); 4342 if (task_rq(p) != p_rq) { 4343 double_rq_unlock(rq, p_rq); 4344 goto again; 4345 } 4346 4347 if (!curr->sched_class->yield_to_task) 4348 goto out_unlock; 4349 4350 if (curr->sched_class != p->sched_class) 4351 goto out_unlock; 4352 4353 if (task_running(p_rq, p) || p->state) 4354 goto out_unlock; 4355 4356 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4357 if (yielded) { 4358 schedstat_inc(rq, yld_count); 4359 /* 4360 * Make p's CPU reschedule; pick_next_entity takes care of 4361 * fairness. 4362 */ 4363 if (preempt && rq != p_rq) 4364 resched_curr(p_rq); 4365 } 4366 4367 out_unlock: 4368 double_rq_unlock(rq, p_rq); 4369 out_irq: 4370 local_irq_restore(flags); 4371 4372 if (yielded > 0) 4373 schedule(); 4374 4375 return yielded; 4376 } 4377 EXPORT_SYMBOL_GPL(yield_to); 4378 4379 /* 4380 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4381 * that process accounting knows that this is a task in IO wait state. 4382 */ 4383 long __sched io_schedule_timeout(long timeout) 4384 { 4385 int old_iowait = current->in_iowait; 4386 struct rq *rq; 4387 long ret; 4388 4389 current->in_iowait = 1; 4390 if (old_iowait) 4391 blk_schedule_flush_plug(current); 4392 else 4393 blk_flush_plug(current); 4394 4395 delayacct_blkio_start(); 4396 rq = raw_rq(); 4397 atomic_inc(&rq->nr_iowait); 4398 ret = schedule_timeout(timeout); 4399 current->in_iowait = old_iowait; 4400 atomic_dec(&rq->nr_iowait); 4401 delayacct_blkio_end(); 4402 4403 return ret; 4404 } 4405 EXPORT_SYMBOL(io_schedule_timeout); 4406 4407 /** 4408 * sys_sched_get_priority_max - return maximum RT priority. 4409 * @policy: scheduling class. 4410 * 4411 * Return: On success, this syscall returns the maximum 4412 * rt_priority that can be used by a given scheduling class. 4413 * On failure, a negative error code is returned. 4414 */ 4415 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4416 { 4417 int ret = -EINVAL; 4418 4419 switch (policy) { 4420 case SCHED_FIFO: 4421 case SCHED_RR: 4422 ret = MAX_USER_RT_PRIO-1; 4423 break; 4424 case SCHED_DEADLINE: 4425 case SCHED_NORMAL: 4426 case SCHED_BATCH: 4427 case SCHED_IDLE: 4428 ret = 0; 4429 break; 4430 } 4431 return ret; 4432 } 4433 4434 /** 4435 * sys_sched_get_priority_min - return minimum RT priority. 4436 * @policy: scheduling class. 4437 * 4438 * Return: On success, this syscall returns the minimum 4439 * rt_priority that can be used by a given scheduling class. 4440 * On failure, a negative error code is returned. 4441 */ 4442 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4443 { 4444 int ret = -EINVAL; 4445 4446 switch (policy) { 4447 case SCHED_FIFO: 4448 case SCHED_RR: 4449 ret = 1; 4450 break; 4451 case SCHED_DEADLINE: 4452 case SCHED_NORMAL: 4453 case SCHED_BATCH: 4454 case SCHED_IDLE: 4455 ret = 0; 4456 } 4457 return ret; 4458 } 4459 4460 /** 4461 * sys_sched_rr_get_interval - return the default timeslice of a process. 4462 * @pid: pid of the process. 4463 * @interval: userspace pointer to the timeslice value. 4464 * 4465 * this syscall writes the default timeslice value of a given process 4466 * into the user-space timespec buffer. A value of '0' means infinity. 4467 * 4468 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4469 * an error code. 4470 */ 4471 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4472 struct timespec __user *, interval) 4473 { 4474 struct task_struct *p; 4475 unsigned int time_slice; 4476 unsigned long flags; 4477 struct rq *rq; 4478 int retval; 4479 struct timespec t; 4480 4481 if (pid < 0) 4482 return -EINVAL; 4483 4484 retval = -ESRCH; 4485 rcu_read_lock(); 4486 p = find_process_by_pid(pid); 4487 if (!p) 4488 goto out_unlock; 4489 4490 retval = security_task_getscheduler(p); 4491 if (retval) 4492 goto out_unlock; 4493 4494 rq = task_rq_lock(p, &flags); 4495 time_slice = 0; 4496 if (p->sched_class->get_rr_interval) 4497 time_slice = p->sched_class->get_rr_interval(rq, p); 4498 task_rq_unlock(rq, p, &flags); 4499 4500 rcu_read_unlock(); 4501 jiffies_to_timespec(time_slice, &t); 4502 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4503 return retval; 4504 4505 out_unlock: 4506 rcu_read_unlock(); 4507 return retval; 4508 } 4509 4510 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4511 4512 void sched_show_task(struct task_struct *p) 4513 { 4514 unsigned long free = 0; 4515 int ppid; 4516 unsigned long state = p->state; 4517 4518 if (state) 4519 state = __ffs(state) + 1; 4520 printk(KERN_INFO "%-15.15s %c", p->comm, 4521 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4522 #if BITS_PER_LONG == 32 4523 if (state == TASK_RUNNING) 4524 printk(KERN_CONT " running "); 4525 else 4526 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4527 #else 4528 if (state == TASK_RUNNING) 4529 printk(KERN_CONT " running task "); 4530 else 4531 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4532 #endif 4533 #ifdef CONFIG_DEBUG_STACK_USAGE 4534 free = stack_not_used(p); 4535 #endif 4536 ppid = 0; 4537 rcu_read_lock(); 4538 if (pid_alive(p)) 4539 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4540 rcu_read_unlock(); 4541 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4542 task_pid_nr(p), ppid, 4543 (unsigned long)task_thread_info(p)->flags); 4544 4545 print_worker_info(KERN_INFO, p); 4546 show_stack(p, NULL); 4547 } 4548 4549 void show_state_filter(unsigned long state_filter) 4550 { 4551 struct task_struct *g, *p; 4552 4553 #if BITS_PER_LONG == 32 4554 printk(KERN_INFO 4555 " task PC stack pid father\n"); 4556 #else 4557 printk(KERN_INFO 4558 " task PC stack pid father\n"); 4559 #endif 4560 rcu_read_lock(); 4561 for_each_process_thread(g, p) { 4562 /* 4563 * reset the NMI-timeout, listing all files on a slow 4564 * console might take a lot of time: 4565 */ 4566 touch_nmi_watchdog(); 4567 if (!state_filter || (p->state & state_filter)) 4568 sched_show_task(p); 4569 } 4570 4571 touch_all_softlockup_watchdogs(); 4572 4573 #ifdef CONFIG_SCHED_DEBUG 4574 sysrq_sched_debug_show(); 4575 #endif 4576 rcu_read_unlock(); 4577 /* 4578 * Only show locks if all tasks are dumped: 4579 */ 4580 if (!state_filter) 4581 debug_show_all_locks(); 4582 } 4583 4584 void init_idle_bootup_task(struct task_struct *idle) 4585 { 4586 idle->sched_class = &idle_sched_class; 4587 } 4588 4589 /** 4590 * init_idle - set up an idle thread for a given CPU 4591 * @idle: task in question 4592 * @cpu: cpu the idle task belongs to 4593 * 4594 * NOTE: this function does not set the idle thread's NEED_RESCHED 4595 * flag, to make booting more robust. 4596 */ 4597 void init_idle(struct task_struct *idle, int cpu) 4598 { 4599 struct rq *rq = cpu_rq(cpu); 4600 unsigned long flags; 4601 4602 raw_spin_lock_irqsave(&rq->lock, flags); 4603 4604 __sched_fork(0, idle); 4605 idle->state = TASK_RUNNING; 4606 idle->se.exec_start = sched_clock(); 4607 4608 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4609 /* 4610 * We're having a chicken and egg problem, even though we are 4611 * holding rq->lock, the cpu isn't yet set to this cpu so the 4612 * lockdep check in task_group() will fail. 4613 * 4614 * Similar case to sched_fork(). / Alternatively we could 4615 * use task_rq_lock() here and obtain the other rq->lock. 4616 * 4617 * Silence PROVE_RCU 4618 */ 4619 rcu_read_lock(); 4620 __set_task_cpu(idle, cpu); 4621 rcu_read_unlock(); 4622 4623 rq->curr = rq->idle = idle; 4624 idle->on_rq = TASK_ON_RQ_QUEUED; 4625 #if defined(CONFIG_SMP) 4626 idle->on_cpu = 1; 4627 #endif 4628 raw_spin_unlock_irqrestore(&rq->lock, flags); 4629 4630 /* Set the preempt count _outside_ the spinlocks! */ 4631 init_idle_preempt_count(idle, cpu); 4632 4633 /* 4634 * The idle tasks have their own, simple scheduling class: 4635 */ 4636 idle->sched_class = &idle_sched_class; 4637 ftrace_graph_init_idle_task(idle, cpu); 4638 vtime_init_idle(idle, cpu); 4639 #if defined(CONFIG_SMP) 4640 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4641 #endif 4642 } 4643 4644 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4645 const struct cpumask *trial) 4646 { 4647 int ret = 1, trial_cpus; 4648 struct dl_bw *cur_dl_b; 4649 unsigned long flags; 4650 4651 if (!cpumask_weight(cur)) 4652 return ret; 4653 4654 rcu_read_lock_sched(); 4655 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4656 trial_cpus = cpumask_weight(trial); 4657 4658 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4659 if (cur_dl_b->bw != -1 && 4660 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4661 ret = 0; 4662 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4663 rcu_read_unlock_sched(); 4664 4665 return ret; 4666 } 4667 4668 int task_can_attach(struct task_struct *p, 4669 const struct cpumask *cs_cpus_allowed) 4670 { 4671 int ret = 0; 4672 4673 /* 4674 * Kthreads which disallow setaffinity shouldn't be moved 4675 * to a new cpuset; we don't want to change their cpu 4676 * affinity and isolating such threads by their set of 4677 * allowed nodes is unnecessary. Thus, cpusets are not 4678 * applicable for such threads. This prevents checking for 4679 * success of set_cpus_allowed_ptr() on all attached tasks 4680 * before cpus_allowed may be changed. 4681 */ 4682 if (p->flags & PF_NO_SETAFFINITY) { 4683 ret = -EINVAL; 4684 goto out; 4685 } 4686 4687 #ifdef CONFIG_SMP 4688 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 4689 cs_cpus_allowed)) { 4690 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 4691 cs_cpus_allowed); 4692 struct dl_bw *dl_b; 4693 bool overflow; 4694 int cpus; 4695 unsigned long flags; 4696 4697 rcu_read_lock_sched(); 4698 dl_b = dl_bw_of(dest_cpu); 4699 raw_spin_lock_irqsave(&dl_b->lock, flags); 4700 cpus = dl_bw_cpus(dest_cpu); 4701 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 4702 if (overflow) 4703 ret = -EBUSY; 4704 else { 4705 /* 4706 * We reserve space for this task in the destination 4707 * root_domain, as we can't fail after this point. 4708 * We will free resources in the source root_domain 4709 * later on (see set_cpus_allowed_dl()). 4710 */ 4711 __dl_add(dl_b, p->dl.dl_bw); 4712 } 4713 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 4714 rcu_read_unlock_sched(); 4715 4716 } 4717 #endif 4718 out: 4719 return ret; 4720 } 4721 4722 #ifdef CONFIG_SMP 4723 /* 4724 * move_queued_task - move a queued task to new rq. 4725 * 4726 * Returns (locked) new rq. Old rq's lock is released. 4727 */ 4728 static struct rq *move_queued_task(struct task_struct *p, int new_cpu) 4729 { 4730 struct rq *rq = task_rq(p); 4731 4732 lockdep_assert_held(&rq->lock); 4733 4734 dequeue_task(rq, p, 0); 4735 p->on_rq = TASK_ON_RQ_MIGRATING; 4736 set_task_cpu(p, new_cpu); 4737 raw_spin_unlock(&rq->lock); 4738 4739 rq = cpu_rq(new_cpu); 4740 4741 raw_spin_lock(&rq->lock); 4742 BUG_ON(task_cpu(p) != new_cpu); 4743 p->on_rq = TASK_ON_RQ_QUEUED; 4744 enqueue_task(rq, p, 0); 4745 check_preempt_curr(rq, p, 0); 4746 4747 return rq; 4748 } 4749 4750 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4751 { 4752 if (p->sched_class->set_cpus_allowed) 4753 p->sched_class->set_cpus_allowed(p, new_mask); 4754 4755 cpumask_copy(&p->cpus_allowed, new_mask); 4756 p->nr_cpus_allowed = cpumask_weight(new_mask); 4757 } 4758 4759 /* 4760 * This is how migration works: 4761 * 4762 * 1) we invoke migration_cpu_stop() on the target CPU using 4763 * stop_one_cpu(). 4764 * 2) stopper starts to run (implicitly forcing the migrated thread 4765 * off the CPU) 4766 * 3) it checks whether the migrated task is still in the wrong runqueue. 4767 * 4) if it's in the wrong runqueue then the migration thread removes 4768 * it and puts it into the right queue. 4769 * 5) stopper completes and stop_one_cpu() returns and the migration 4770 * is done. 4771 */ 4772 4773 /* 4774 * Change a given task's CPU affinity. Migrate the thread to a 4775 * proper CPU and schedule it away if the CPU it's executing on 4776 * is removed from the allowed bitmask. 4777 * 4778 * NOTE: the caller must have a valid reference to the task, the 4779 * task must not exit() & deallocate itself prematurely. The 4780 * call is not atomic; no spinlocks may be held. 4781 */ 4782 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4783 { 4784 unsigned long flags; 4785 struct rq *rq; 4786 unsigned int dest_cpu; 4787 int ret = 0; 4788 4789 rq = task_rq_lock(p, &flags); 4790 4791 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4792 goto out; 4793 4794 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4795 ret = -EINVAL; 4796 goto out; 4797 } 4798 4799 do_set_cpus_allowed(p, new_mask); 4800 4801 /* Can the task run on the task's current CPU? If so, we're done */ 4802 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4803 goto out; 4804 4805 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4806 if (task_running(rq, p) || p->state == TASK_WAKING) { 4807 struct migration_arg arg = { p, dest_cpu }; 4808 /* Need help from migration thread: drop lock and wait. */ 4809 task_rq_unlock(rq, p, &flags); 4810 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4811 tlb_migrate_finish(p->mm); 4812 return 0; 4813 } else if (task_on_rq_queued(p)) 4814 rq = move_queued_task(p, dest_cpu); 4815 out: 4816 task_rq_unlock(rq, p, &flags); 4817 4818 return ret; 4819 } 4820 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4821 4822 /* 4823 * Move (not current) task off this cpu, onto dest cpu. We're doing 4824 * this because either it can't run here any more (set_cpus_allowed() 4825 * away from this CPU, or CPU going down), or because we're 4826 * attempting to rebalance this task on exec (sched_exec). 4827 * 4828 * So we race with normal scheduler movements, but that's OK, as long 4829 * as the task is no longer on this CPU. 4830 * 4831 * Returns non-zero if task was successfully migrated. 4832 */ 4833 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4834 { 4835 struct rq *rq; 4836 int ret = 0; 4837 4838 if (unlikely(!cpu_active(dest_cpu))) 4839 return ret; 4840 4841 rq = cpu_rq(src_cpu); 4842 4843 raw_spin_lock(&p->pi_lock); 4844 raw_spin_lock(&rq->lock); 4845 /* Already moved. */ 4846 if (task_cpu(p) != src_cpu) 4847 goto done; 4848 4849 /* Affinity changed (again). */ 4850 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4851 goto fail; 4852 4853 /* 4854 * If we're not on a rq, the next wake-up will ensure we're 4855 * placed properly. 4856 */ 4857 if (task_on_rq_queued(p)) 4858 rq = move_queued_task(p, dest_cpu); 4859 done: 4860 ret = 1; 4861 fail: 4862 raw_spin_unlock(&rq->lock); 4863 raw_spin_unlock(&p->pi_lock); 4864 return ret; 4865 } 4866 4867 #ifdef CONFIG_NUMA_BALANCING 4868 /* Migrate current task p to target_cpu */ 4869 int migrate_task_to(struct task_struct *p, int target_cpu) 4870 { 4871 struct migration_arg arg = { p, target_cpu }; 4872 int curr_cpu = task_cpu(p); 4873 4874 if (curr_cpu == target_cpu) 4875 return 0; 4876 4877 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4878 return -EINVAL; 4879 4880 /* TODO: This is not properly updating schedstats */ 4881 4882 trace_sched_move_numa(p, curr_cpu, target_cpu); 4883 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4884 } 4885 4886 /* 4887 * Requeue a task on a given node and accurately track the number of NUMA 4888 * tasks on the runqueues 4889 */ 4890 void sched_setnuma(struct task_struct *p, int nid) 4891 { 4892 struct rq *rq; 4893 unsigned long flags; 4894 bool queued, running; 4895 4896 rq = task_rq_lock(p, &flags); 4897 queued = task_on_rq_queued(p); 4898 running = task_current(rq, p); 4899 4900 if (queued) 4901 dequeue_task(rq, p, 0); 4902 if (running) 4903 put_prev_task(rq, p); 4904 4905 p->numa_preferred_nid = nid; 4906 4907 if (running) 4908 p->sched_class->set_curr_task(rq); 4909 if (queued) 4910 enqueue_task(rq, p, 0); 4911 task_rq_unlock(rq, p, &flags); 4912 } 4913 #endif 4914 4915 /* 4916 * migration_cpu_stop - this will be executed by a highprio stopper thread 4917 * and performs thread migration by bumping thread off CPU then 4918 * 'pushing' onto another runqueue. 4919 */ 4920 static int migration_cpu_stop(void *data) 4921 { 4922 struct migration_arg *arg = data; 4923 4924 /* 4925 * The original target cpu might have gone down and we might 4926 * be on another cpu but it doesn't matter. 4927 */ 4928 local_irq_disable(); 4929 /* 4930 * We need to explicitly wake pending tasks before running 4931 * __migrate_task() such that we will not miss enforcing cpus_allowed 4932 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 4933 */ 4934 sched_ttwu_pending(); 4935 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4936 local_irq_enable(); 4937 return 0; 4938 } 4939 4940 #ifdef CONFIG_HOTPLUG_CPU 4941 4942 /* 4943 * Ensures that the idle task is using init_mm right before its cpu goes 4944 * offline. 4945 */ 4946 void idle_task_exit(void) 4947 { 4948 struct mm_struct *mm = current->active_mm; 4949 4950 BUG_ON(cpu_online(smp_processor_id())); 4951 4952 if (mm != &init_mm) { 4953 switch_mm(mm, &init_mm, current); 4954 finish_arch_post_lock_switch(); 4955 } 4956 mmdrop(mm); 4957 } 4958 4959 /* 4960 * Since this CPU is going 'away' for a while, fold any nr_active delta 4961 * we might have. Assumes we're called after migrate_tasks() so that the 4962 * nr_active count is stable. 4963 * 4964 * Also see the comment "Global load-average calculations". 4965 */ 4966 static void calc_load_migrate(struct rq *rq) 4967 { 4968 long delta = calc_load_fold_active(rq); 4969 if (delta) 4970 atomic_long_add(delta, &calc_load_tasks); 4971 } 4972 4973 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4974 { 4975 } 4976 4977 static const struct sched_class fake_sched_class = { 4978 .put_prev_task = put_prev_task_fake, 4979 }; 4980 4981 static struct task_struct fake_task = { 4982 /* 4983 * Avoid pull_{rt,dl}_task() 4984 */ 4985 .prio = MAX_PRIO + 1, 4986 .sched_class = &fake_sched_class, 4987 }; 4988 4989 /* 4990 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4991 * try_to_wake_up()->select_task_rq(). 4992 * 4993 * Called with rq->lock held even though we'er in stop_machine() and 4994 * there's no concurrency possible, we hold the required locks anyway 4995 * because of lock validation efforts. 4996 */ 4997 static void migrate_tasks(unsigned int dead_cpu) 4998 { 4999 struct rq *rq = cpu_rq(dead_cpu); 5000 struct task_struct *next, *stop = rq->stop; 5001 int dest_cpu; 5002 5003 /* 5004 * Fudge the rq selection such that the below task selection loop 5005 * doesn't get stuck on the currently eligible stop task. 5006 * 5007 * We're currently inside stop_machine() and the rq is either stuck 5008 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5009 * either way we should never end up calling schedule() until we're 5010 * done here. 5011 */ 5012 rq->stop = NULL; 5013 5014 /* 5015 * put_prev_task() and pick_next_task() sched 5016 * class method both need to have an up-to-date 5017 * value of rq->clock[_task] 5018 */ 5019 update_rq_clock(rq); 5020 5021 for ( ; ; ) { 5022 /* 5023 * There's this thread running, bail when that's the only 5024 * remaining thread. 5025 */ 5026 if (rq->nr_running == 1) 5027 break; 5028 5029 next = pick_next_task(rq, &fake_task); 5030 BUG_ON(!next); 5031 next->sched_class->put_prev_task(rq, next); 5032 5033 /* Find suitable destination for @next, with force if needed. */ 5034 dest_cpu = select_fallback_rq(dead_cpu, next); 5035 raw_spin_unlock(&rq->lock); 5036 5037 __migrate_task(next, dead_cpu, dest_cpu); 5038 5039 raw_spin_lock(&rq->lock); 5040 } 5041 5042 rq->stop = stop; 5043 } 5044 5045 #endif /* CONFIG_HOTPLUG_CPU */ 5046 5047 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5048 5049 static struct ctl_table sd_ctl_dir[] = { 5050 { 5051 .procname = "sched_domain", 5052 .mode = 0555, 5053 }, 5054 {} 5055 }; 5056 5057 static struct ctl_table sd_ctl_root[] = { 5058 { 5059 .procname = "kernel", 5060 .mode = 0555, 5061 .child = sd_ctl_dir, 5062 }, 5063 {} 5064 }; 5065 5066 static struct ctl_table *sd_alloc_ctl_entry(int n) 5067 { 5068 struct ctl_table *entry = 5069 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5070 5071 return entry; 5072 } 5073 5074 static void sd_free_ctl_entry(struct ctl_table **tablep) 5075 { 5076 struct ctl_table *entry; 5077 5078 /* 5079 * In the intermediate directories, both the child directory and 5080 * procname are dynamically allocated and could fail but the mode 5081 * will always be set. In the lowest directory the names are 5082 * static strings and all have proc handlers. 5083 */ 5084 for (entry = *tablep; entry->mode; entry++) { 5085 if (entry->child) 5086 sd_free_ctl_entry(&entry->child); 5087 if (entry->proc_handler == NULL) 5088 kfree(entry->procname); 5089 } 5090 5091 kfree(*tablep); 5092 *tablep = NULL; 5093 } 5094 5095 static int min_load_idx = 0; 5096 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5097 5098 static void 5099 set_table_entry(struct ctl_table *entry, 5100 const char *procname, void *data, int maxlen, 5101 umode_t mode, proc_handler *proc_handler, 5102 bool load_idx) 5103 { 5104 entry->procname = procname; 5105 entry->data = data; 5106 entry->maxlen = maxlen; 5107 entry->mode = mode; 5108 entry->proc_handler = proc_handler; 5109 5110 if (load_idx) { 5111 entry->extra1 = &min_load_idx; 5112 entry->extra2 = &max_load_idx; 5113 } 5114 } 5115 5116 static struct ctl_table * 5117 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5118 { 5119 struct ctl_table *table = sd_alloc_ctl_entry(14); 5120 5121 if (table == NULL) 5122 return NULL; 5123 5124 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5125 sizeof(long), 0644, proc_doulongvec_minmax, false); 5126 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5127 sizeof(long), 0644, proc_doulongvec_minmax, false); 5128 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5129 sizeof(int), 0644, proc_dointvec_minmax, true); 5130 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5131 sizeof(int), 0644, proc_dointvec_minmax, true); 5132 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5133 sizeof(int), 0644, proc_dointvec_minmax, true); 5134 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5135 sizeof(int), 0644, proc_dointvec_minmax, true); 5136 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5137 sizeof(int), 0644, proc_dointvec_minmax, true); 5138 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5139 sizeof(int), 0644, proc_dointvec_minmax, false); 5140 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5141 sizeof(int), 0644, proc_dointvec_minmax, false); 5142 set_table_entry(&table[9], "cache_nice_tries", 5143 &sd->cache_nice_tries, 5144 sizeof(int), 0644, proc_dointvec_minmax, false); 5145 set_table_entry(&table[10], "flags", &sd->flags, 5146 sizeof(int), 0644, proc_dointvec_minmax, false); 5147 set_table_entry(&table[11], "max_newidle_lb_cost", 5148 &sd->max_newidle_lb_cost, 5149 sizeof(long), 0644, proc_doulongvec_minmax, false); 5150 set_table_entry(&table[12], "name", sd->name, 5151 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5152 /* &table[13] is terminator */ 5153 5154 return table; 5155 } 5156 5157 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5158 { 5159 struct ctl_table *entry, *table; 5160 struct sched_domain *sd; 5161 int domain_num = 0, i; 5162 char buf[32]; 5163 5164 for_each_domain(cpu, sd) 5165 domain_num++; 5166 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5167 if (table == NULL) 5168 return NULL; 5169 5170 i = 0; 5171 for_each_domain(cpu, sd) { 5172 snprintf(buf, 32, "domain%d", i); 5173 entry->procname = kstrdup(buf, GFP_KERNEL); 5174 entry->mode = 0555; 5175 entry->child = sd_alloc_ctl_domain_table(sd); 5176 entry++; 5177 i++; 5178 } 5179 return table; 5180 } 5181 5182 static struct ctl_table_header *sd_sysctl_header; 5183 static void register_sched_domain_sysctl(void) 5184 { 5185 int i, cpu_num = num_possible_cpus(); 5186 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5187 char buf[32]; 5188 5189 WARN_ON(sd_ctl_dir[0].child); 5190 sd_ctl_dir[0].child = entry; 5191 5192 if (entry == NULL) 5193 return; 5194 5195 for_each_possible_cpu(i) { 5196 snprintf(buf, 32, "cpu%d", i); 5197 entry->procname = kstrdup(buf, GFP_KERNEL); 5198 entry->mode = 0555; 5199 entry->child = sd_alloc_ctl_cpu_table(i); 5200 entry++; 5201 } 5202 5203 WARN_ON(sd_sysctl_header); 5204 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5205 } 5206 5207 /* may be called multiple times per register */ 5208 static void unregister_sched_domain_sysctl(void) 5209 { 5210 if (sd_sysctl_header) 5211 unregister_sysctl_table(sd_sysctl_header); 5212 sd_sysctl_header = NULL; 5213 if (sd_ctl_dir[0].child) 5214 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5215 } 5216 #else 5217 static void register_sched_domain_sysctl(void) 5218 { 5219 } 5220 static void unregister_sched_domain_sysctl(void) 5221 { 5222 } 5223 #endif 5224 5225 static void set_rq_online(struct rq *rq) 5226 { 5227 if (!rq->online) { 5228 const struct sched_class *class; 5229 5230 cpumask_set_cpu(rq->cpu, rq->rd->online); 5231 rq->online = 1; 5232 5233 for_each_class(class) { 5234 if (class->rq_online) 5235 class->rq_online(rq); 5236 } 5237 } 5238 } 5239 5240 static void set_rq_offline(struct rq *rq) 5241 { 5242 if (rq->online) { 5243 const struct sched_class *class; 5244 5245 for_each_class(class) { 5246 if (class->rq_offline) 5247 class->rq_offline(rq); 5248 } 5249 5250 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5251 rq->online = 0; 5252 } 5253 } 5254 5255 /* 5256 * migration_call - callback that gets triggered when a CPU is added. 5257 * Here we can start up the necessary migration thread for the new CPU. 5258 */ 5259 static int 5260 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5261 { 5262 int cpu = (long)hcpu; 5263 unsigned long flags; 5264 struct rq *rq = cpu_rq(cpu); 5265 5266 switch (action & ~CPU_TASKS_FROZEN) { 5267 5268 case CPU_UP_PREPARE: 5269 rq->calc_load_update = calc_load_update; 5270 break; 5271 5272 case CPU_ONLINE: 5273 /* Update our root-domain */ 5274 raw_spin_lock_irqsave(&rq->lock, flags); 5275 if (rq->rd) { 5276 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5277 5278 set_rq_online(rq); 5279 } 5280 raw_spin_unlock_irqrestore(&rq->lock, flags); 5281 break; 5282 5283 #ifdef CONFIG_HOTPLUG_CPU 5284 case CPU_DYING: 5285 sched_ttwu_pending(); 5286 /* Update our root-domain */ 5287 raw_spin_lock_irqsave(&rq->lock, flags); 5288 if (rq->rd) { 5289 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5290 set_rq_offline(rq); 5291 } 5292 migrate_tasks(cpu); 5293 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5294 raw_spin_unlock_irqrestore(&rq->lock, flags); 5295 break; 5296 5297 case CPU_DEAD: 5298 calc_load_migrate(rq); 5299 break; 5300 #endif 5301 } 5302 5303 update_max_interval(); 5304 5305 return NOTIFY_OK; 5306 } 5307 5308 /* 5309 * Register at high priority so that task migration (migrate_all_tasks) 5310 * happens before everything else. This has to be lower priority than 5311 * the notifier in the perf_event subsystem, though. 5312 */ 5313 static struct notifier_block migration_notifier = { 5314 .notifier_call = migration_call, 5315 .priority = CPU_PRI_MIGRATION, 5316 }; 5317 5318 static void __cpuinit set_cpu_rq_start_time(void) 5319 { 5320 int cpu = smp_processor_id(); 5321 struct rq *rq = cpu_rq(cpu); 5322 rq->age_stamp = sched_clock_cpu(cpu); 5323 } 5324 5325 static int sched_cpu_active(struct notifier_block *nfb, 5326 unsigned long action, void *hcpu) 5327 { 5328 switch (action & ~CPU_TASKS_FROZEN) { 5329 case CPU_STARTING: 5330 set_cpu_rq_start_time(); 5331 return NOTIFY_OK; 5332 case CPU_DOWN_FAILED: 5333 set_cpu_active((long)hcpu, true); 5334 return NOTIFY_OK; 5335 default: 5336 return NOTIFY_DONE; 5337 } 5338 } 5339 5340 static int sched_cpu_inactive(struct notifier_block *nfb, 5341 unsigned long action, void *hcpu) 5342 { 5343 switch (action & ~CPU_TASKS_FROZEN) { 5344 case CPU_DOWN_PREPARE: 5345 set_cpu_active((long)hcpu, false); 5346 return NOTIFY_OK; 5347 default: 5348 return NOTIFY_DONE; 5349 } 5350 } 5351 5352 static int __init migration_init(void) 5353 { 5354 void *cpu = (void *)(long)smp_processor_id(); 5355 int err; 5356 5357 /* Initialize migration for the boot CPU */ 5358 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5359 BUG_ON(err == NOTIFY_BAD); 5360 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5361 register_cpu_notifier(&migration_notifier); 5362 5363 /* Register cpu active notifiers */ 5364 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5365 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5366 5367 return 0; 5368 } 5369 early_initcall(migration_init); 5370 #endif 5371 5372 #ifdef CONFIG_SMP 5373 5374 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5375 5376 #ifdef CONFIG_SCHED_DEBUG 5377 5378 static __read_mostly int sched_debug_enabled; 5379 5380 static int __init sched_debug_setup(char *str) 5381 { 5382 sched_debug_enabled = 1; 5383 5384 return 0; 5385 } 5386 early_param("sched_debug", sched_debug_setup); 5387 5388 static inline bool sched_debug(void) 5389 { 5390 return sched_debug_enabled; 5391 } 5392 5393 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5394 struct cpumask *groupmask) 5395 { 5396 struct sched_group *group = sd->groups; 5397 5398 cpumask_clear(groupmask); 5399 5400 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5401 5402 if (!(sd->flags & SD_LOAD_BALANCE)) { 5403 printk("does not load-balance\n"); 5404 if (sd->parent) 5405 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5406 " has parent"); 5407 return -1; 5408 } 5409 5410 printk(KERN_CONT "span %*pbl level %s\n", 5411 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5412 5413 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5414 printk(KERN_ERR "ERROR: domain->span does not contain " 5415 "CPU%d\n", cpu); 5416 } 5417 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5418 printk(KERN_ERR "ERROR: domain->groups does not contain" 5419 " CPU%d\n", cpu); 5420 } 5421 5422 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5423 do { 5424 if (!group) { 5425 printk("\n"); 5426 printk(KERN_ERR "ERROR: group is NULL\n"); 5427 break; 5428 } 5429 5430 if (!cpumask_weight(sched_group_cpus(group))) { 5431 printk(KERN_CONT "\n"); 5432 printk(KERN_ERR "ERROR: empty group\n"); 5433 break; 5434 } 5435 5436 if (!(sd->flags & SD_OVERLAP) && 5437 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5438 printk(KERN_CONT "\n"); 5439 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5440 break; 5441 } 5442 5443 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5444 5445 printk(KERN_CONT " %*pbl", 5446 cpumask_pr_args(sched_group_cpus(group))); 5447 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5448 printk(KERN_CONT " (cpu_capacity = %d)", 5449 group->sgc->capacity); 5450 } 5451 5452 group = group->next; 5453 } while (group != sd->groups); 5454 printk(KERN_CONT "\n"); 5455 5456 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5457 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5458 5459 if (sd->parent && 5460 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5461 printk(KERN_ERR "ERROR: parent span is not a superset " 5462 "of domain->span\n"); 5463 return 0; 5464 } 5465 5466 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5467 { 5468 int level = 0; 5469 5470 if (!sched_debug_enabled) 5471 return; 5472 5473 if (!sd) { 5474 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5475 return; 5476 } 5477 5478 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5479 5480 for (;;) { 5481 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5482 break; 5483 level++; 5484 sd = sd->parent; 5485 if (!sd) 5486 break; 5487 } 5488 } 5489 #else /* !CONFIG_SCHED_DEBUG */ 5490 # define sched_domain_debug(sd, cpu) do { } while (0) 5491 static inline bool sched_debug(void) 5492 { 5493 return false; 5494 } 5495 #endif /* CONFIG_SCHED_DEBUG */ 5496 5497 static int sd_degenerate(struct sched_domain *sd) 5498 { 5499 if (cpumask_weight(sched_domain_span(sd)) == 1) 5500 return 1; 5501 5502 /* Following flags need at least 2 groups */ 5503 if (sd->flags & (SD_LOAD_BALANCE | 5504 SD_BALANCE_NEWIDLE | 5505 SD_BALANCE_FORK | 5506 SD_BALANCE_EXEC | 5507 SD_SHARE_CPUCAPACITY | 5508 SD_SHARE_PKG_RESOURCES | 5509 SD_SHARE_POWERDOMAIN)) { 5510 if (sd->groups != sd->groups->next) 5511 return 0; 5512 } 5513 5514 /* Following flags don't use groups */ 5515 if (sd->flags & (SD_WAKE_AFFINE)) 5516 return 0; 5517 5518 return 1; 5519 } 5520 5521 static int 5522 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5523 { 5524 unsigned long cflags = sd->flags, pflags = parent->flags; 5525 5526 if (sd_degenerate(parent)) 5527 return 1; 5528 5529 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5530 return 0; 5531 5532 /* Flags needing groups don't count if only 1 group in parent */ 5533 if (parent->groups == parent->groups->next) { 5534 pflags &= ~(SD_LOAD_BALANCE | 5535 SD_BALANCE_NEWIDLE | 5536 SD_BALANCE_FORK | 5537 SD_BALANCE_EXEC | 5538 SD_SHARE_CPUCAPACITY | 5539 SD_SHARE_PKG_RESOURCES | 5540 SD_PREFER_SIBLING | 5541 SD_SHARE_POWERDOMAIN); 5542 if (nr_node_ids == 1) 5543 pflags &= ~SD_SERIALIZE; 5544 } 5545 if (~cflags & pflags) 5546 return 0; 5547 5548 return 1; 5549 } 5550 5551 static void free_rootdomain(struct rcu_head *rcu) 5552 { 5553 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5554 5555 cpupri_cleanup(&rd->cpupri); 5556 cpudl_cleanup(&rd->cpudl); 5557 free_cpumask_var(rd->dlo_mask); 5558 free_cpumask_var(rd->rto_mask); 5559 free_cpumask_var(rd->online); 5560 free_cpumask_var(rd->span); 5561 kfree(rd); 5562 } 5563 5564 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5565 { 5566 struct root_domain *old_rd = NULL; 5567 unsigned long flags; 5568 5569 raw_spin_lock_irqsave(&rq->lock, flags); 5570 5571 if (rq->rd) { 5572 old_rd = rq->rd; 5573 5574 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5575 set_rq_offline(rq); 5576 5577 cpumask_clear_cpu(rq->cpu, old_rd->span); 5578 5579 /* 5580 * If we dont want to free the old_rd yet then 5581 * set old_rd to NULL to skip the freeing later 5582 * in this function: 5583 */ 5584 if (!atomic_dec_and_test(&old_rd->refcount)) 5585 old_rd = NULL; 5586 } 5587 5588 atomic_inc(&rd->refcount); 5589 rq->rd = rd; 5590 5591 cpumask_set_cpu(rq->cpu, rd->span); 5592 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5593 set_rq_online(rq); 5594 5595 raw_spin_unlock_irqrestore(&rq->lock, flags); 5596 5597 if (old_rd) 5598 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5599 } 5600 5601 static int init_rootdomain(struct root_domain *rd) 5602 { 5603 memset(rd, 0, sizeof(*rd)); 5604 5605 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5606 goto out; 5607 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5608 goto free_span; 5609 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5610 goto free_online; 5611 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5612 goto free_dlo_mask; 5613 5614 init_dl_bw(&rd->dl_bw); 5615 if (cpudl_init(&rd->cpudl) != 0) 5616 goto free_dlo_mask; 5617 5618 if (cpupri_init(&rd->cpupri) != 0) 5619 goto free_rto_mask; 5620 return 0; 5621 5622 free_rto_mask: 5623 free_cpumask_var(rd->rto_mask); 5624 free_dlo_mask: 5625 free_cpumask_var(rd->dlo_mask); 5626 free_online: 5627 free_cpumask_var(rd->online); 5628 free_span: 5629 free_cpumask_var(rd->span); 5630 out: 5631 return -ENOMEM; 5632 } 5633 5634 /* 5635 * By default the system creates a single root-domain with all cpus as 5636 * members (mimicking the global state we have today). 5637 */ 5638 struct root_domain def_root_domain; 5639 5640 static void init_defrootdomain(void) 5641 { 5642 init_rootdomain(&def_root_domain); 5643 5644 atomic_set(&def_root_domain.refcount, 1); 5645 } 5646 5647 static struct root_domain *alloc_rootdomain(void) 5648 { 5649 struct root_domain *rd; 5650 5651 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5652 if (!rd) 5653 return NULL; 5654 5655 if (init_rootdomain(rd) != 0) { 5656 kfree(rd); 5657 return NULL; 5658 } 5659 5660 return rd; 5661 } 5662 5663 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5664 { 5665 struct sched_group *tmp, *first; 5666 5667 if (!sg) 5668 return; 5669 5670 first = sg; 5671 do { 5672 tmp = sg->next; 5673 5674 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5675 kfree(sg->sgc); 5676 5677 kfree(sg); 5678 sg = tmp; 5679 } while (sg != first); 5680 } 5681 5682 static void free_sched_domain(struct rcu_head *rcu) 5683 { 5684 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5685 5686 /* 5687 * If its an overlapping domain it has private groups, iterate and 5688 * nuke them all. 5689 */ 5690 if (sd->flags & SD_OVERLAP) { 5691 free_sched_groups(sd->groups, 1); 5692 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5693 kfree(sd->groups->sgc); 5694 kfree(sd->groups); 5695 } 5696 kfree(sd); 5697 } 5698 5699 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5700 { 5701 call_rcu(&sd->rcu, free_sched_domain); 5702 } 5703 5704 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5705 { 5706 for (; sd; sd = sd->parent) 5707 destroy_sched_domain(sd, cpu); 5708 } 5709 5710 /* 5711 * Keep a special pointer to the highest sched_domain that has 5712 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5713 * allows us to avoid some pointer chasing select_idle_sibling(). 5714 * 5715 * Also keep a unique ID per domain (we use the first cpu number in 5716 * the cpumask of the domain), this allows us to quickly tell if 5717 * two cpus are in the same cache domain, see cpus_share_cache(). 5718 */ 5719 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5720 DEFINE_PER_CPU(int, sd_llc_size); 5721 DEFINE_PER_CPU(int, sd_llc_id); 5722 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5723 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5724 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5725 5726 static void update_top_cache_domain(int cpu) 5727 { 5728 struct sched_domain *sd; 5729 struct sched_domain *busy_sd = NULL; 5730 int id = cpu; 5731 int size = 1; 5732 5733 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5734 if (sd) { 5735 id = cpumask_first(sched_domain_span(sd)); 5736 size = cpumask_weight(sched_domain_span(sd)); 5737 busy_sd = sd->parent; /* sd_busy */ 5738 } 5739 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5740 5741 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5742 per_cpu(sd_llc_size, cpu) = size; 5743 per_cpu(sd_llc_id, cpu) = id; 5744 5745 sd = lowest_flag_domain(cpu, SD_NUMA); 5746 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5747 5748 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5749 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5750 } 5751 5752 /* 5753 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5754 * hold the hotplug lock. 5755 */ 5756 static void 5757 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5758 { 5759 struct rq *rq = cpu_rq(cpu); 5760 struct sched_domain *tmp; 5761 5762 /* Remove the sched domains which do not contribute to scheduling. */ 5763 for (tmp = sd; tmp; ) { 5764 struct sched_domain *parent = tmp->parent; 5765 if (!parent) 5766 break; 5767 5768 if (sd_parent_degenerate(tmp, parent)) { 5769 tmp->parent = parent->parent; 5770 if (parent->parent) 5771 parent->parent->child = tmp; 5772 /* 5773 * Transfer SD_PREFER_SIBLING down in case of a 5774 * degenerate parent; the spans match for this 5775 * so the property transfers. 5776 */ 5777 if (parent->flags & SD_PREFER_SIBLING) 5778 tmp->flags |= SD_PREFER_SIBLING; 5779 destroy_sched_domain(parent, cpu); 5780 } else 5781 tmp = tmp->parent; 5782 } 5783 5784 if (sd && sd_degenerate(sd)) { 5785 tmp = sd; 5786 sd = sd->parent; 5787 destroy_sched_domain(tmp, cpu); 5788 if (sd) 5789 sd->child = NULL; 5790 } 5791 5792 sched_domain_debug(sd, cpu); 5793 5794 rq_attach_root(rq, rd); 5795 tmp = rq->sd; 5796 rcu_assign_pointer(rq->sd, sd); 5797 destroy_sched_domains(tmp, cpu); 5798 5799 update_top_cache_domain(cpu); 5800 } 5801 5802 /* Setup the mask of cpus configured for isolated domains */ 5803 static int __init isolated_cpu_setup(char *str) 5804 { 5805 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5806 cpulist_parse(str, cpu_isolated_map); 5807 return 1; 5808 } 5809 5810 __setup("isolcpus=", isolated_cpu_setup); 5811 5812 struct s_data { 5813 struct sched_domain ** __percpu sd; 5814 struct root_domain *rd; 5815 }; 5816 5817 enum s_alloc { 5818 sa_rootdomain, 5819 sa_sd, 5820 sa_sd_storage, 5821 sa_none, 5822 }; 5823 5824 /* 5825 * Build an iteration mask that can exclude certain CPUs from the upwards 5826 * domain traversal. 5827 * 5828 * Asymmetric node setups can result in situations where the domain tree is of 5829 * unequal depth, make sure to skip domains that already cover the entire 5830 * range. 5831 * 5832 * In that case build_sched_domains() will have terminated the iteration early 5833 * and our sibling sd spans will be empty. Domains should always include the 5834 * cpu they're built on, so check that. 5835 * 5836 */ 5837 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5838 { 5839 const struct cpumask *span = sched_domain_span(sd); 5840 struct sd_data *sdd = sd->private; 5841 struct sched_domain *sibling; 5842 int i; 5843 5844 for_each_cpu(i, span) { 5845 sibling = *per_cpu_ptr(sdd->sd, i); 5846 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5847 continue; 5848 5849 cpumask_set_cpu(i, sched_group_mask(sg)); 5850 } 5851 } 5852 5853 /* 5854 * Return the canonical balance cpu for this group, this is the first cpu 5855 * of this group that's also in the iteration mask. 5856 */ 5857 int group_balance_cpu(struct sched_group *sg) 5858 { 5859 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5860 } 5861 5862 static int 5863 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5864 { 5865 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5866 const struct cpumask *span = sched_domain_span(sd); 5867 struct cpumask *covered = sched_domains_tmpmask; 5868 struct sd_data *sdd = sd->private; 5869 struct sched_domain *sibling; 5870 int i; 5871 5872 cpumask_clear(covered); 5873 5874 for_each_cpu(i, span) { 5875 struct cpumask *sg_span; 5876 5877 if (cpumask_test_cpu(i, covered)) 5878 continue; 5879 5880 sibling = *per_cpu_ptr(sdd->sd, i); 5881 5882 /* See the comment near build_group_mask(). */ 5883 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5884 continue; 5885 5886 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5887 GFP_KERNEL, cpu_to_node(cpu)); 5888 5889 if (!sg) 5890 goto fail; 5891 5892 sg_span = sched_group_cpus(sg); 5893 if (sibling->child) 5894 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5895 else 5896 cpumask_set_cpu(i, sg_span); 5897 5898 cpumask_or(covered, covered, sg_span); 5899 5900 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5901 if (atomic_inc_return(&sg->sgc->ref) == 1) 5902 build_group_mask(sd, sg); 5903 5904 /* 5905 * Initialize sgc->capacity such that even if we mess up the 5906 * domains and no possible iteration will get us here, we won't 5907 * die on a /0 trap. 5908 */ 5909 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5910 5911 /* 5912 * Make sure the first group of this domain contains the 5913 * canonical balance cpu. Otherwise the sched_domain iteration 5914 * breaks. See update_sg_lb_stats(). 5915 */ 5916 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5917 group_balance_cpu(sg) == cpu) 5918 groups = sg; 5919 5920 if (!first) 5921 first = sg; 5922 if (last) 5923 last->next = sg; 5924 last = sg; 5925 last->next = first; 5926 } 5927 sd->groups = groups; 5928 5929 return 0; 5930 5931 fail: 5932 free_sched_groups(first, 0); 5933 5934 return -ENOMEM; 5935 } 5936 5937 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5938 { 5939 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5940 struct sched_domain *child = sd->child; 5941 5942 if (child) 5943 cpu = cpumask_first(sched_domain_span(child)); 5944 5945 if (sg) { 5946 *sg = *per_cpu_ptr(sdd->sg, cpu); 5947 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5948 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5949 } 5950 5951 return cpu; 5952 } 5953 5954 /* 5955 * build_sched_groups will build a circular linked list of the groups 5956 * covered by the given span, and will set each group's ->cpumask correctly, 5957 * and ->cpu_capacity to 0. 5958 * 5959 * Assumes the sched_domain tree is fully constructed 5960 */ 5961 static int 5962 build_sched_groups(struct sched_domain *sd, int cpu) 5963 { 5964 struct sched_group *first = NULL, *last = NULL; 5965 struct sd_data *sdd = sd->private; 5966 const struct cpumask *span = sched_domain_span(sd); 5967 struct cpumask *covered; 5968 int i; 5969 5970 get_group(cpu, sdd, &sd->groups); 5971 atomic_inc(&sd->groups->ref); 5972 5973 if (cpu != cpumask_first(span)) 5974 return 0; 5975 5976 lockdep_assert_held(&sched_domains_mutex); 5977 covered = sched_domains_tmpmask; 5978 5979 cpumask_clear(covered); 5980 5981 for_each_cpu(i, span) { 5982 struct sched_group *sg; 5983 int group, j; 5984 5985 if (cpumask_test_cpu(i, covered)) 5986 continue; 5987 5988 group = get_group(i, sdd, &sg); 5989 cpumask_setall(sched_group_mask(sg)); 5990 5991 for_each_cpu(j, span) { 5992 if (get_group(j, sdd, NULL) != group) 5993 continue; 5994 5995 cpumask_set_cpu(j, covered); 5996 cpumask_set_cpu(j, sched_group_cpus(sg)); 5997 } 5998 5999 if (!first) 6000 first = sg; 6001 if (last) 6002 last->next = sg; 6003 last = sg; 6004 } 6005 last->next = first; 6006 6007 return 0; 6008 } 6009 6010 /* 6011 * Initialize sched groups cpu_capacity. 6012 * 6013 * cpu_capacity indicates the capacity of sched group, which is used while 6014 * distributing the load between different sched groups in a sched domain. 6015 * Typically cpu_capacity for all the groups in a sched domain will be same 6016 * unless there are asymmetries in the topology. If there are asymmetries, 6017 * group having more cpu_capacity will pickup more load compared to the 6018 * group having less cpu_capacity. 6019 */ 6020 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6021 { 6022 struct sched_group *sg = sd->groups; 6023 6024 WARN_ON(!sg); 6025 6026 do { 6027 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6028 sg = sg->next; 6029 } while (sg != sd->groups); 6030 6031 if (cpu != group_balance_cpu(sg)) 6032 return; 6033 6034 update_group_capacity(sd, cpu); 6035 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6036 } 6037 6038 /* 6039 * Initializers for schedule domains 6040 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6041 */ 6042 6043 static int default_relax_domain_level = -1; 6044 int sched_domain_level_max; 6045 6046 static int __init setup_relax_domain_level(char *str) 6047 { 6048 if (kstrtoint(str, 0, &default_relax_domain_level)) 6049 pr_warn("Unable to set relax_domain_level\n"); 6050 6051 return 1; 6052 } 6053 __setup("relax_domain_level=", setup_relax_domain_level); 6054 6055 static void set_domain_attribute(struct sched_domain *sd, 6056 struct sched_domain_attr *attr) 6057 { 6058 int request; 6059 6060 if (!attr || attr->relax_domain_level < 0) { 6061 if (default_relax_domain_level < 0) 6062 return; 6063 else 6064 request = default_relax_domain_level; 6065 } else 6066 request = attr->relax_domain_level; 6067 if (request < sd->level) { 6068 /* turn off idle balance on this domain */ 6069 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6070 } else { 6071 /* turn on idle balance on this domain */ 6072 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6073 } 6074 } 6075 6076 static void __sdt_free(const struct cpumask *cpu_map); 6077 static int __sdt_alloc(const struct cpumask *cpu_map); 6078 6079 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6080 const struct cpumask *cpu_map) 6081 { 6082 switch (what) { 6083 case sa_rootdomain: 6084 if (!atomic_read(&d->rd->refcount)) 6085 free_rootdomain(&d->rd->rcu); /* fall through */ 6086 case sa_sd: 6087 free_percpu(d->sd); /* fall through */ 6088 case sa_sd_storage: 6089 __sdt_free(cpu_map); /* fall through */ 6090 case sa_none: 6091 break; 6092 } 6093 } 6094 6095 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6096 const struct cpumask *cpu_map) 6097 { 6098 memset(d, 0, sizeof(*d)); 6099 6100 if (__sdt_alloc(cpu_map)) 6101 return sa_sd_storage; 6102 d->sd = alloc_percpu(struct sched_domain *); 6103 if (!d->sd) 6104 return sa_sd_storage; 6105 d->rd = alloc_rootdomain(); 6106 if (!d->rd) 6107 return sa_sd; 6108 return sa_rootdomain; 6109 } 6110 6111 /* 6112 * NULL the sd_data elements we've used to build the sched_domain and 6113 * sched_group structure so that the subsequent __free_domain_allocs() 6114 * will not free the data we're using. 6115 */ 6116 static void claim_allocations(int cpu, struct sched_domain *sd) 6117 { 6118 struct sd_data *sdd = sd->private; 6119 6120 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6121 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6122 6123 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6124 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6125 6126 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6127 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6128 } 6129 6130 #ifdef CONFIG_NUMA 6131 static int sched_domains_numa_levels; 6132 enum numa_topology_type sched_numa_topology_type; 6133 static int *sched_domains_numa_distance; 6134 int sched_max_numa_distance; 6135 static struct cpumask ***sched_domains_numa_masks; 6136 static int sched_domains_curr_level; 6137 #endif 6138 6139 /* 6140 * SD_flags allowed in topology descriptions. 6141 * 6142 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6143 * SD_SHARE_PKG_RESOURCES - describes shared caches 6144 * SD_NUMA - describes NUMA topologies 6145 * SD_SHARE_POWERDOMAIN - describes shared power domain 6146 * 6147 * Odd one out: 6148 * SD_ASYM_PACKING - describes SMT quirks 6149 */ 6150 #define TOPOLOGY_SD_FLAGS \ 6151 (SD_SHARE_CPUCAPACITY | \ 6152 SD_SHARE_PKG_RESOURCES | \ 6153 SD_NUMA | \ 6154 SD_ASYM_PACKING | \ 6155 SD_SHARE_POWERDOMAIN) 6156 6157 static struct sched_domain * 6158 sd_init(struct sched_domain_topology_level *tl, int cpu) 6159 { 6160 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6161 int sd_weight, sd_flags = 0; 6162 6163 #ifdef CONFIG_NUMA 6164 /* 6165 * Ugly hack to pass state to sd_numa_mask()... 6166 */ 6167 sched_domains_curr_level = tl->numa_level; 6168 #endif 6169 6170 sd_weight = cpumask_weight(tl->mask(cpu)); 6171 6172 if (tl->sd_flags) 6173 sd_flags = (*tl->sd_flags)(); 6174 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6175 "wrong sd_flags in topology description\n")) 6176 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6177 6178 *sd = (struct sched_domain){ 6179 .min_interval = sd_weight, 6180 .max_interval = 2*sd_weight, 6181 .busy_factor = 32, 6182 .imbalance_pct = 125, 6183 6184 .cache_nice_tries = 0, 6185 .busy_idx = 0, 6186 .idle_idx = 0, 6187 .newidle_idx = 0, 6188 .wake_idx = 0, 6189 .forkexec_idx = 0, 6190 6191 .flags = 1*SD_LOAD_BALANCE 6192 | 1*SD_BALANCE_NEWIDLE 6193 | 1*SD_BALANCE_EXEC 6194 | 1*SD_BALANCE_FORK 6195 | 0*SD_BALANCE_WAKE 6196 | 1*SD_WAKE_AFFINE 6197 | 0*SD_SHARE_CPUCAPACITY 6198 | 0*SD_SHARE_PKG_RESOURCES 6199 | 0*SD_SERIALIZE 6200 | 0*SD_PREFER_SIBLING 6201 | 0*SD_NUMA 6202 | sd_flags 6203 , 6204 6205 .last_balance = jiffies, 6206 .balance_interval = sd_weight, 6207 .smt_gain = 0, 6208 .max_newidle_lb_cost = 0, 6209 .next_decay_max_lb_cost = jiffies, 6210 #ifdef CONFIG_SCHED_DEBUG 6211 .name = tl->name, 6212 #endif 6213 }; 6214 6215 /* 6216 * Convert topological properties into behaviour. 6217 */ 6218 6219 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6220 sd->flags |= SD_PREFER_SIBLING; 6221 sd->imbalance_pct = 110; 6222 sd->smt_gain = 1178; /* ~15% */ 6223 6224 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6225 sd->imbalance_pct = 117; 6226 sd->cache_nice_tries = 1; 6227 sd->busy_idx = 2; 6228 6229 #ifdef CONFIG_NUMA 6230 } else if (sd->flags & SD_NUMA) { 6231 sd->cache_nice_tries = 2; 6232 sd->busy_idx = 3; 6233 sd->idle_idx = 2; 6234 6235 sd->flags |= SD_SERIALIZE; 6236 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6237 sd->flags &= ~(SD_BALANCE_EXEC | 6238 SD_BALANCE_FORK | 6239 SD_WAKE_AFFINE); 6240 } 6241 6242 #endif 6243 } else { 6244 sd->flags |= SD_PREFER_SIBLING; 6245 sd->cache_nice_tries = 1; 6246 sd->busy_idx = 2; 6247 sd->idle_idx = 1; 6248 } 6249 6250 sd->private = &tl->data; 6251 6252 return sd; 6253 } 6254 6255 /* 6256 * Topology list, bottom-up. 6257 */ 6258 static struct sched_domain_topology_level default_topology[] = { 6259 #ifdef CONFIG_SCHED_SMT 6260 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6261 #endif 6262 #ifdef CONFIG_SCHED_MC 6263 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6264 #endif 6265 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6266 { NULL, }, 6267 }; 6268 6269 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6270 6271 #define for_each_sd_topology(tl) \ 6272 for (tl = sched_domain_topology; tl->mask; tl++) 6273 6274 void set_sched_topology(struct sched_domain_topology_level *tl) 6275 { 6276 sched_domain_topology = tl; 6277 } 6278 6279 #ifdef CONFIG_NUMA 6280 6281 static const struct cpumask *sd_numa_mask(int cpu) 6282 { 6283 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6284 } 6285 6286 static void sched_numa_warn(const char *str) 6287 { 6288 static int done = false; 6289 int i,j; 6290 6291 if (done) 6292 return; 6293 6294 done = true; 6295 6296 printk(KERN_WARNING "ERROR: %s\n\n", str); 6297 6298 for (i = 0; i < nr_node_ids; i++) { 6299 printk(KERN_WARNING " "); 6300 for (j = 0; j < nr_node_ids; j++) 6301 printk(KERN_CONT "%02d ", node_distance(i,j)); 6302 printk(KERN_CONT "\n"); 6303 } 6304 printk(KERN_WARNING "\n"); 6305 } 6306 6307 bool find_numa_distance(int distance) 6308 { 6309 int i; 6310 6311 if (distance == node_distance(0, 0)) 6312 return true; 6313 6314 for (i = 0; i < sched_domains_numa_levels; i++) { 6315 if (sched_domains_numa_distance[i] == distance) 6316 return true; 6317 } 6318 6319 return false; 6320 } 6321 6322 /* 6323 * A system can have three types of NUMA topology: 6324 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6325 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6326 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6327 * 6328 * The difference between a glueless mesh topology and a backplane 6329 * topology lies in whether communication between not directly 6330 * connected nodes goes through intermediary nodes (where programs 6331 * could run), or through backplane controllers. This affects 6332 * placement of programs. 6333 * 6334 * The type of topology can be discerned with the following tests: 6335 * - If the maximum distance between any nodes is 1 hop, the system 6336 * is directly connected. 6337 * - If for two nodes A and B, located N > 1 hops away from each other, 6338 * there is an intermediary node C, which is < N hops away from both 6339 * nodes A and B, the system is a glueless mesh. 6340 */ 6341 static void init_numa_topology_type(void) 6342 { 6343 int a, b, c, n; 6344 6345 n = sched_max_numa_distance; 6346 6347 if (n <= 1) 6348 sched_numa_topology_type = NUMA_DIRECT; 6349 6350 for_each_online_node(a) { 6351 for_each_online_node(b) { 6352 /* Find two nodes furthest removed from each other. */ 6353 if (node_distance(a, b) < n) 6354 continue; 6355 6356 /* Is there an intermediary node between a and b? */ 6357 for_each_online_node(c) { 6358 if (node_distance(a, c) < n && 6359 node_distance(b, c) < n) { 6360 sched_numa_topology_type = 6361 NUMA_GLUELESS_MESH; 6362 return; 6363 } 6364 } 6365 6366 sched_numa_topology_type = NUMA_BACKPLANE; 6367 return; 6368 } 6369 } 6370 } 6371 6372 static void sched_init_numa(void) 6373 { 6374 int next_distance, curr_distance = node_distance(0, 0); 6375 struct sched_domain_topology_level *tl; 6376 int level = 0; 6377 int i, j, k; 6378 6379 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6380 if (!sched_domains_numa_distance) 6381 return; 6382 6383 /* 6384 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6385 * unique distances in the node_distance() table. 6386 * 6387 * Assumes node_distance(0,j) includes all distances in 6388 * node_distance(i,j) in order to avoid cubic time. 6389 */ 6390 next_distance = curr_distance; 6391 for (i = 0; i < nr_node_ids; i++) { 6392 for (j = 0; j < nr_node_ids; j++) { 6393 for (k = 0; k < nr_node_ids; k++) { 6394 int distance = node_distance(i, k); 6395 6396 if (distance > curr_distance && 6397 (distance < next_distance || 6398 next_distance == curr_distance)) 6399 next_distance = distance; 6400 6401 /* 6402 * While not a strong assumption it would be nice to know 6403 * about cases where if node A is connected to B, B is not 6404 * equally connected to A. 6405 */ 6406 if (sched_debug() && node_distance(k, i) != distance) 6407 sched_numa_warn("Node-distance not symmetric"); 6408 6409 if (sched_debug() && i && !find_numa_distance(distance)) 6410 sched_numa_warn("Node-0 not representative"); 6411 } 6412 if (next_distance != curr_distance) { 6413 sched_domains_numa_distance[level++] = next_distance; 6414 sched_domains_numa_levels = level; 6415 curr_distance = next_distance; 6416 } else break; 6417 } 6418 6419 /* 6420 * In case of sched_debug() we verify the above assumption. 6421 */ 6422 if (!sched_debug()) 6423 break; 6424 } 6425 6426 if (!level) 6427 return; 6428 6429 /* 6430 * 'level' contains the number of unique distances, excluding the 6431 * identity distance node_distance(i,i). 6432 * 6433 * The sched_domains_numa_distance[] array includes the actual distance 6434 * numbers. 6435 */ 6436 6437 /* 6438 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6439 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6440 * the array will contain less then 'level' members. This could be 6441 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6442 * in other functions. 6443 * 6444 * We reset it to 'level' at the end of this function. 6445 */ 6446 sched_domains_numa_levels = 0; 6447 6448 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6449 if (!sched_domains_numa_masks) 6450 return; 6451 6452 /* 6453 * Now for each level, construct a mask per node which contains all 6454 * cpus of nodes that are that many hops away from us. 6455 */ 6456 for (i = 0; i < level; i++) { 6457 sched_domains_numa_masks[i] = 6458 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6459 if (!sched_domains_numa_masks[i]) 6460 return; 6461 6462 for (j = 0; j < nr_node_ids; j++) { 6463 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6464 if (!mask) 6465 return; 6466 6467 sched_domains_numa_masks[i][j] = mask; 6468 6469 for (k = 0; k < nr_node_ids; k++) { 6470 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6471 continue; 6472 6473 cpumask_or(mask, mask, cpumask_of_node(k)); 6474 } 6475 } 6476 } 6477 6478 /* Compute default topology size */ 6479 for (i = 0; sched_domain_topology[i].mask; i++); 6480 6481 tl = kzalloc((i + level + 1) * 6482 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6483 if (!tl) 6484 return; 6485 6486 /* 6487 * Copy the default topology bits.. 6488 */ 6489 for (i = 0; sched_domain_topology[i].mask; i++) 6490 tl[i] = sched_domain_topology[i]; 6491 6492 /* 6493 * .. and append 'j' levels of NUMA goodness. 6494 */ 6495 for (j = 0; j < level; i++, j++) { 6496 tl[i] = (struct sched_domain_topology_level){ 6497 .mask = sd_numa_mask, 6498 .sd_flags = cpu_numa_flags, 6499 .flags = SDTL_OVERLAP, 6500 .numa_level = j, 6501 SD_INIT_NAME(NUMA) 6502 }; 6503 } 6504 6505 sched_domain_topology = tl; 6506 6507 sched_domains_numa_levels = level; 6508 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6509 6510 init_numa_topology_type(); 6511 } 6512 6513 static void sched_domains_numa_masks_set(int cpu) 6514 { 6515 int i, j; 6516 int node = cpu_to_node(cpu); 6517 6518 for (i = 0; i < sched_domains_numa_levels; i++) { 6519 for (j = 0; j < nr_node_ids; j++) { 6520 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6521 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6522 } 6523 } 6524 } 6525 6526 static void sched_domains_numa_masks_clear(int cpu) 6527 { 6528 int i, j; 6529 for (i = 0; i < sched_domains_numa_levels; i++) { 6530 for (j = 0; j < nr_node_ids; j++) 6531 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6532 } 6533 } 6534 6535 /* 6536 * Update sched_domains_numa_masks[level][node] array when new cpus 6537 * are onlined. 6538 */ 6539 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6540 unsigned long action, 6541 void *hcpu) 6542 { 6543 int cpu = (long)hcpu; 6544 6545 switch (action & ~CPU_TASKS_FROZEN) { 6546 case CPU_ONLINE: 6547 sched_domains_numa_masks_set(cpu); 6548 break; 6549 6550 case CPU_DEAD: 6551 sched_domains_numa_masks_clear(cpu); 6552 break; 6553 6554 default: 6555 return NOTIFY_DONE; 6556 } 6557 6558 return NOTIFY_OK; 6559 } 6560 #else 6561 static inline void sched_init_numa(void) 6562 { 6563 } 6564 6565 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6566 unsigned long action, 6567 void *hcpu) 6568 { 6569 return 0; 6570 } 6571 #endif /* CONFIG_NUMA */ 6572 6573 static int __sdt_alloc(const struct cpumask *cpu_map) 6574 { 6575 struct sched_domain_topology_level *tl; 6576 int j; 6577 6578 for_each_sd_topology(tl) { 6579 struct sd_data *sdd = &tl->data; 6580 6581 sdd->sd = alloc_percpu(struct sched_domain *); 6582 if (!sdd->sd) 6583 return -ENOMEM; 6584 6585 sdd->sg = alloc_percpu(struct sched_group *); 6586 if (!sdd->sg) 6587 return -ENOMEM; 6588 6589 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6590 if (!sdd->sgc) 6591 return -ENOMEM; 6592 6593 for_each_cpu(j, cpu_map) { 6594 struct sched_domain *sd; 6595 struct sched_group *sg; 6596 struct sched_group_capacity *sgc; 6597 6598 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6599 GFP_KERNEL, cpu_to_node(j)); 6600 if (!sd) 6601 return -ENOMEM; 6602 6603 *per_cpu_ptr(sdd->sd, j) = sd; 6604 6605 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6606 GFP_KERNEL, cpu_to_node(j)); 6607 if (!sg) 6608 return -ENOMEM; 6609 6610 sg->next = sg; 6611 6612 *per_cpu_ptr(sdd->sg, j) = sg; 6613 6614 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6615 GFP_KERNEL, cpu_to_node(j)); 6616 if (!sgc) 6617 return -ENOMEM; 6618 6619 *per_cpu_ptr(sdd->sgc, j) = sgc; 6620 } 6621 } 6622 6623 return 0; 6624 } 6625 6626 static void __sdt_free(const struct cpumask *cpu_map) 6627 { 6628 struct sched_domain_topology_level *tl; 6629 int j; 6630 6631 for_each_sd_topology(tl) { 6632 struct sd_data *sdd = &tl->data; 6633 6634 for_each_cpu(j, cpu_map) { 6635 struct sched_domain *sd; 6636 6637 if (sdd->sd) { 6638 sd = *per_cpu_ptr(sdd->sd, j); 6639 if (sd && (sd->flags & SD_OVERLAP)) 6640 free_sched_groups(sd->groups, 0); 6641 kfree(*per_cpu_ptr(sdd->sd, j)); 6642 } 6643 6644 if (sdd->sg) 6645 kfree(*per_cpu_ptr(sdd->sg, j)); 6646 if (sdd->sgc) 6647 kfree(*per_cpu_ptr(sdd->sgc, j)); 6648 } 6649 free_percpu(sdd->sd); 6650 sdd->sd = NULL; 6651 free_percpu(sdd->sg); 6652 sdd->sg = NULL; 6653 free_percpu(sdd->sgc); 6654 sdd->sgc = NULL; 6655 } 6656 } 6657 6658 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6659 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6660 struct sched_domain *child, int cpu) 6661 { 6662 struct sched_domain *sd = sd_init(tl, cpu); 6663 if (!sd) 6664 return child; 6665 6666 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6667 if (child) { 6668 sd->level = child->level + 1; 6669 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6670 child->parent = sd; 6671 sd->child = child; 6672 6673 if (!cpumask_subset(sched_domain_span(child), 6674 sched_domain_span(sd))) { 6675 pr_err("BUG: arch topology borken\n"); 6676 #ifdef CONFIG_SCHED_DEBUG 6677 pr_err(" the %s domain not a subset of the %s domain\n", 6678 child->name, sd->name); 6679 #endif 6680 /* Fixup, ensure @sd has at least @child cpus. */ 6681 cpumask_or(sched_domain_span(sd), 6682 sched_domain_span(sd), 6683 sched_domain_span(child)); 6684 } 6685 6686 } 6687 set_domain_attribute(sd, attr); 6688 6689 return sd; 6690 } 6691 6692 /* 6693 * Build sched domains for a given set of cpus and attach the sched domains 6694 * to the individual cpus 6695 */ 6696 static int build_sched_domains(const struct cpumask *cpu_map, 6697 struct sched_domain_attr *attr) 6698 { 6699 enum s_alloc alloc_state; 6700 struct sched_domain *sd; 6701 struct s_data d; 6702 int i, ret = -ENOMEM; 6703 6704 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6705 if (alloc_state != sa_rootdomain) 6706 goto error; 6707 6708 /* Set up domains for cpus specified by the cpu_map. */ 6709 for_each_cpu(i, cpu_map) { 6710 struct sched_domain_topology_level *tl; 6711 6712 sd = NULL; 6713 for_each_sd_topology(tl) { 6714 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6715 if (tl == sched_domain_topology) 6716 *per_cpu_ptr(d.sd, i) = sd; 6717 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6718 sd->flags |= SD_OVERLAP; 6719 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6720 break; 6721 } 6722 } 6723 6724 /* Build the groups for the domains */ 6725 for_each_cpu(i, cpu_map) { 6726 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6727 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6728 if (sd->flags & SD_OVERLAP) { 6729 if (build_overlap_sched_groups(sd, i)) 6730 goto error; 6731 } else { 6732 if (build_sched_groups(sd, i)) 6733 goto error; 6734 } 6735 } 6736 } 6737 6738 /* Calculate CPU capacity for physical packages and nodes */ 6739 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6740 if (!cpumask_test_cpu(i, cpu_map)) 6741 continue; 6742 6743 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6744 claim_allocations(i, sd); 6745 init_sched_groups_capacity(i, sd); 6746 } 6747 } 6748 6749 /* Attach the domains */ 6750 rcu_read_lock(); 6751 for_each_cpu(i, cpu_map) { 6752 sd = *per_cpu_ptr(d.sd, i); 6753 cpu_attach_domain(sd, d.rd, i); 6754 } 6755 rcu_read_unlock(); 6756 6757 ret = 0; 6758 error: 6759 __free_domain_allocs(&d, alloc_state, cpu_map); 6760 return ret; 6761 } 6762 6763 static cpumask_var_t *doms_cur; /* current sched domains */ 6764 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6765 static struct sched_domain_attr *dattr_cur; 6766 /* attribues of custom domains in 'doms_cur' */ 6767 6768 /* 6769 * Special case: If a kmalloc of a doms_cur partition (array of 6770 * cpumask) fails, then fallback to a single sched domain, 6771 * as determined by the single cpumask fallback_doms. 6772 */ 6773 static cpumask_var_t fallback_doms; 6774 6775 /* 6776 * arch_update_cpu_topology lets virtualized architectures update the 6777 * cpu core maps. It is supposed to return 1 if the topology changed 6778 * or 0 if it stayed the same. 6779 */ 6780 int __weak arch_update_cpu_topology(void) 6781 { 6782 return 0; 6783 } 6784 6785 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6786 { 6787 int i; 6788 cpumask_var_t *doms; 6789 6790 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6791 if (!doms) 6792 return NULL; 6793 for (i = 0; i < ndoms; i++) { 6794 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6795 free_sched_domains(doms, i); 6796 return NULL; 6797 } 6798 } 6799 return doms; 6800 } 6801 6802 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6803 { 6804 unsigned int i; 6805 for (i = 0; i < ndoms; i++) 6806 free_cpumask_var(doms[i]); 6807 kfree(doms); 6808 } 6809 6810 /* 6811 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6812 * For now this just excludes isolated cpus, but could be used to 6813 * exclude other special cases in the future. 6814 */ 6815 static int init_sched_domains(const struct cpumask *cpu_map) 6816 { 6817 int err; 6818 6819 arch_update_cpu_topology(); 6820 ndoms_cur = 1; 6821 doms_cur = alloc_sched_domains(ndoms_cur); 6822 if (!doms_cur) 6823 doms_cur = &fallback_doms; 6824 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6825 err = build_sched_domains(doms_cur[0], NULL); 6826 register_sched_domain_sysctl(); 6827 6828 return err; 6829 } 6830 6831 /* 6832 * Detach sched domains from a group of cpus specified in cpu_map 6833 * These cpus will now be attached to the NULL domain 6834 */ 6835 static void detach_destroy_domains(const struct cpumask *cpu_map) 6836 { 6837 int i; 6838 6839 rcu_read_lock(); 6840 for_each_cpu(i, cpu_map) 6841 cpu_attach_domain(NULL, &def_root_domain, i); 6842 rcu_read_unlock(); 6843 } 6844 6845 /* handle null as "default" */ 6846 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6847 struct sched_domain_attr *new, int idx_new) 6848 { 6849 struct sched_domain_attr tmp; 6850 6851 /* fast path */ 6852 if (!new && !cur) 6853 return 1; 6854 6855 tmp = SD_ATTR_INIT; 6856 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6857 new ? (new + idx_new) : &tmp, 6858 sizeof(struct sched_domain_attr)); 6859 } 6860 6861 /* 6862 * Partition sched domains as specified by the 'ndoms_new' 6863 * cpumasks in the array doms_new[] of cpumasks. This compares 6864 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6865 * It destroys each deleted domain and builds each new domain. 6866 * 6867 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6868 * The masks don't intersect (don't overlap.) We should setup one 6869 * sched domain for each mask. CPUs not in any of the cpumasks will 6870 * not be load balanced. If the same cpumask appears both in the 6871 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6872 * it as it is. 6873 * 6874 * The passed in 'doms_new' should be allocated using 6875 * alloc_sched_domains. This routine takes ownership of it and will 6876 * free_sched_domains it when done with it. If the caller failed the 6877 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6878 * and partition_sched_domains() will fallback to the single partition 6879 * 'fallback_doms', it also forces the domains to be rebuilt. 6880 * 6881 * If doms_new == NULL it will be replaced with cpu_online_mask. 6882 * ndoms_new == 0 is a special case for destroying existing domains, 6883 * and it will not create the default domain. 6884 * 6885 * Call with hotplug lock held 6886 */ 6887 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6888 struct sched_domain_attr *dattr_new) 6889 { 6890 int i, j, n; 6891 int new_topology; 6892 6893 mutex_lock(&sched_domains_mutex); 6894 6895 /* always unregister in case we don't destroy any domains */ 6896 unregister_sched_domain_sysctl(); 6897 6898 /* Let architecture update cpu core mappings. */ 6899 new_topology = arch_update_cpu_topology(); 6900 6901 n = doms_new ? ndoms_new : 0; 6902 6903 /* Destroy deleted domains */ 6904 for (i = 0; i < ndoms_cur; i++) { 6905 for (j = 0; j < n && !new_topology; j++) { 6906 if (cpumask_equal(doms_cur[i], doms_new[j]) 6907 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6908 goto match1; 6909 } 6910 /* no match - a current sched domain not in new doms_new[] */ 6911 detach_destroy_domains(doms_cur[i]); 6912 match1: 6913 ; 6914 } 6915 6916 n = ndoms_cur; 6917 if (doms_new == NULL) { 6918 n = 0; 6919 doms_new = &fallback_doms; 6920 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6921 WARN_ON_ONCE(dattr_new); 6922 } 6923 6924 /* Build new domains */ 6925 for (i = 0; i < ndoms_new; i++) { 6926 for (j = 0; j < n && !new_topology; j++) { 6927 if (cpumask_equal(doms_new[i], doms_cur[j]) 6928 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6929 goto match2; 6930 } 6931 /* no match - add a new doms_new */ 6932 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6933 match2: 6934 ; 6935 } 6936 6937 /* Remember the new sched domains */ 6938 if (doms_cur != &fallback_doms) 6939 free_sched_domains(doms_cur, ndoms_cur); 6940 kfree(dattr_cur); /* kfree(NULL) is safe */ 6941 doms_cur = doms_new; 6942 dattr_cur = dattr_new; 6943 ndoms_cur = ndoms_new; 6944 6945 register_sched_domain_sysctl(); 6946 6947 mutex_unlock(&sched_domains_mutex); 6948 } 6949 6950 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6951 6952 /* 6953 * Update cpusets according to cpu_active mask. If cpusets are 6954 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6955 * around partition_sched_domains(). 6956 * 6957 * If we come here as part of a suspend/resume, don't touch cpusets because we 6958 * want to restore it back to its original state upon resume anyway. 6959 */ 6960 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6961 void *hcpu) 6962 { 6963 switch (action) { 6964 case CPU_ONLINE_FROZEN: 6965 case CPU_DOWN_FAILED_FROZEN: 6966 6967 /* 6968 * num_cpus_frozen tracks how many CPUs are involved in suspend 6969 * resume sequence. As long as this is not the last online 6970 * operation in the resume sequence, just build a single sched 6971 * domain, ignoring cpusets. 6972 */ 6973 num_cpus_frozen--; 6974 if (likely(num_cpus_frozen)) { 6975 partition_sched_domains(1, NULL, NULL); 6976 break; 6977 } 6978 6979 /* 6980 * This is the last CPU online operation. So fall through and 6981 * restore the original sched domains by considering the 6982 * cpuset configurations. 6983 */ 6984 6985 case CPU_ONLINE: 6986 cpuset_update_active_cpus(true); 6987 break; 6988 default: 6989 return NOTIFY_DONE; 6990 } 6991 return NOTIFY_OK; 6992 } 6993 6994 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6995 void *hcpu) 6996 { 6997 unsigned long flags; 6998 long cpu = (long)hcpu; 6999 struct dl_bw *dl_b; 7000 7001 switch (action & ~CPU_TASKS_FROZEN) { 7002 case CPU_DOWN_PREPARE: 7003 /* explicitly allow suspend */ 7004 if (!(action & CPU_TASKS_FROZEN)) { 7005 bool overflow; 7006 int cpus; 7007 7008 rcu_read_lock_sched(); 7009 dl_b = dl_bw_of(cpu); 7010 7011 raw_spin_lock_irqsave(&dl_b->lock, flags); 7012 cpus = dl_bw_cpus(cpu); 7013 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7014 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7015 7016 rcu_read_unlock_sched(); 7017 7018 if (overflow) 7019 return notifier_from_errno(-EBUSY); 7020 } 7021 cpuset_update_active_cpus(false); 7022 break; 7023 case CPU_DOWN_PREPARE_FROZEN: 7024 num_cpus_frozen++; 7025 partition_sched_domains(1, NULL, NULL); 7026 break; 7027 default: 7028 return NOTIFY_DONE; 7029 } 7030 return NOTIFY_OK; 7031 } 7032 7033 void __init sched_init_smp(void) 7034 { 7035 cpumask_var_t non_isolated_cpus; 7036 7037 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7038 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7039 7040 sched_init_numa(); 7041 7042 /* 7043 * There's no userspace yet to cause hotplug operations; hence all the 7044 * cpu masks are stable and all blatant races in the below code cannot 7045 * happen. 7046 */ 7047 mutex_lock(&sched_domains_mutex); 7048 init_sched_domains(cpu_active_mask); 7049 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7050 if (cpumask_empty(non_isolated_cpus)) 7051 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7052 mutex_unlock(&sched_domains_mutex); 7053 7054 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7055 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7056 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7057 7058 init_hrtick(); 7059 7060 /* Move init over to a non-isolated CPU */ 7061 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7062 BUG(); 7063 sched_init_granularity(); 7064 free_cpumask_var(non_isolated_cpus); 7065 7066 init_sched_rt_class(); 7067 init_sched_dl_class(); 7068 } 7069 #else 7070 void __init sched_init_smp(void) 7071 { 7072 sched_init_granularity(); 7073 } 7074 #endif /* CONFIG_SMP */ 7075 7076 const_debug unsigned int sysctl_timer_migration = 1; 7077 7078 int in_sched_functions(unsigned long addr) 7079 { 7080 return in_lock_functions(addr) || 7081 (addr >= (unsigned long)__sched_text_start 7082 && addr < (unsigned long)__sched_text_end); 7083 } 7084 7085 #ifdef CONFIG_CGROUP_SCHED 7086 /* 7087 * Default task group. 7088 * Every task in system belongs to this group at bootup. 7089 */ 7090 struct task_group root_task_group; 7091 LIST_HEAD(task_groups); 7092 #endif 7093 7094 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7095 7096 void __init sched_init(void) 7097 { 7098 int i, j; 7099 unsigned long alloc_size = 0, ptr; 7100 7101 #ifdef CONFIG_FAIR_GROUP_SCHED 7102 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7103 #endif 7104 #ifdef CONFIG_RT_GROUP_SCHED 7105 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7106 #endif 7107 if (alloc_size) { 7108 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7109 7110 #ifdef CONFIG_FAIR_GROUP_SCHED 7111 root_task_group.se = (struct sched_entity **)ptr; 7112 ptr += nr_cpu_ids * sizeof(void **); 7113 7114 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7115 ptr += nr_cpu_ids * sizeof(void **); 7116 7117 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7118 #ifdef CONFIG_RT_GROUP_SCHED 7119 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7120 ptr += nr_cpu_ids * sizeof(void **); 7121 7122 root_task_group.rt_rq = (struct rt_rq **)ptr; 7123 ptr += nr_cpu_ids * sizeof(void **); 7124 7125 #endif /* CONFIG_RT_GROUP_SCHED */ 7126 } 7127 #ifdef CONFIG_CPUMASK_OFFSTACK 7128 for_each_possible_cpu(i) { 7129 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7130 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7131 } 7132 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7133 7134 init_rt_bandwidth(&def_rt_bandwidth, 7135 global_rt_period(), global_rt_runtime()); 7136 init_dl_bandwidth(&def_dl_bandwidth, 7137 global_rt_period(), global_rt_runtime()); 7138 7139 #ifdef CONFIG_SMP 7140 init_defrootdomain(); 7141 #endif 7142 7143 #ifdef CONFIG_RT_GROUP_SCHED 7144 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7145 global_rt_period(), global_rt_runtime()); 7146 #endif /* CONFIG_RT_GROUP_SCHED */ 7147 7148 #ifdef CONFIG_CGROUP_SCHED 7149 list_add(&root_task_group.list, &task_groups); 7150 INIT_LIST_HEAD(&root_task_group.children); 7151 INIT_LIST_HEAD(&root_task_group.siblings); 7152 autogroup_init(&init_task); 7153 7154 #endif /* CONFIG_CGROUP_SCHED */ 7155 7156 for_each_possible_cpu(i) { 7157 struct rq *rq; 7158 7159 rq = cpu_rq(i); 7160 raw_spin_lock_init(&rq->lock); 7161 rq->nr_running = 0; 7162 rq->calc_load_active = 0; 7163 rq->calc_load_update = jiffies + LOAD_FREQ; 7164 init_cfs_rq(&rq->cfs); 7165 init_rt_rq(&rq->rt); 7166 init_dl_rq(&rq->dl); 7167 #ifdef CONFIG_FAIR_GROUP_SCHED 7168 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7169 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7170 /* 7171 * How much cpu bandwidth does root_task_group get? 7172 * 7173 * In case of task-groups formed thr' the cgroup filesystem, it 7174 * gets 100% of the cpu resources in the system. This overall 7175 * system cpu resource is divided among the tasks of 7176 * root_task_group and its child task-groups in a fair manner, 7177 * based on each entity's (task or task-group's) weight 7178 * (se->load.weight). 7179 * 7180 * In other words, if root_task_group has 10 tasks of weight 7181 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7182 * then A0's share of the cpu resource is: 7183 * 7184 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7185 * 7186 * We achieve this by letting root_task_group's tasks sit 7187 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7188 */ 7189 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7190 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7191 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7192 7193 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7194 #ifdef CONFIG_RT_GROUP_SCHED 7195 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7196 #endif 7197 7198 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7199 rq->cpu_load[j] = 0; 7200 7201 rq->last_load_update_tick = jiffies; 7202 7203 #ifdef CONFIG_SMP 7204 rq->sd = NULL; 7205 rq->rd = NULL; 7206 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7207 rq->post_schedule = 0; 7208 rq->active_balance = 0; 7209 rq->next_balance = jiffies; 7210 rq->push_cpu = 0; 7211 rq->cpu = i; 7212 rq->online = 0; 7213 rq->idle_stamp = 0; 7214 rq->avg_idle = 2*sysctl_sched_migration_cost; 7215 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7216 7217 INIT_LIST_HEAD(&rq->cfs_tasks); 7218 7219 rq_attach_root(rq, &def_root_domain); 7220 #ifdef CONFIG_NO_HZ_COMMON 7221 rq->nohz_flags = 0; 7222 #endif 7223 #ifdef CONFIG_NO_HZ_FULL 7224 rq->last_sched_tick = 0; 7225 #endif 7226 #endif 7227 init_rq_hrtick(rq); 7228 atomic_set(&rq->nr_iowait, 0); 7229 } 7230 7231 set_load_weight(&init_task); 7232 7233 #ifdef CONFIG_PREEMPT_NOTIFIERS 7234 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7235 #endif 7236 7237 /* 7238 * The boot idle thread does lazy MMU switching as well: 7239 */ 7240 atomic_inc(&init_mm.mm_count); 7241 enter_lazy_tlb(&init_mm, current); 7242 7243 /* 7244 * During early bootup we pretend to be a normal task: 7245 */ 7246 current->sched_class = &fair_sched_class; 7247 7248 /* 7249 * Make us the idle thread. Technically, schedule() should not be 7250 * called from this thread, however somewhere below it might be, 7251 * but because we are the idle thread, we just pick up running again 7252 * when this runqueue becomes "idle". 7253 */ 7254 init_idle(current, smp_processor_id()); 7255 7256 calc_load_update = jiffies + LOAD_FREQ; 7257 7258 #ifdef CONFIG_SMP 7259 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7260 /* May be allocated at isolcpus cmdline parse time */ 7261 if (cpu_isolated_map == NULL) 7262 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7263 idle_thread_set_boot_cpu(); 7264 set_cpu_rq_start_time(); 7265 #endif 7266 init_sched_fair_class(); 7267 7268 scheduler_running = 1; 7269 } 7270 7271 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7272 static inline int preempt_count_equals(int preempt_offset) 7273 { 7274 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7275 7276 return (nested == preempt_offset); 7277 } 7278 7279 void __might_sleep(const char *file, int line, int preempt_offset) 7280 { 7281 /* 7282 * Blocking primitives will set (and therefore destroy) current->state, 7283 * since we will exit with TASK_RUNNING make sure we enter with it, 7284 * otherwise we will destroy state. 7285 */ 7286 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7287 "do not call blocking ops when !TASK_RUNNING; " 7288 "state=%lx set at [<%p>] %pS\n", 7289 current->state, 7290 (void *)current->task_state_change, 7291 (void *)current->task_state_change); 7292 7293 ___might_sleep(file, line, preempt_offset); 7294 } 7295 EXPORT_SYMBOL(__might_sleep); 7296 7297 void ___might_sleep(const char *file, int line, int preempt_offset) 7298 { 7299 static unsigned long prev_jiffy; /* ratelimiting */ 7300 7301 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7302 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7303 !is_idle_task(current)) || 7304 system_state != SYSTEM_RUNNING || oops_in_progress) 7305 return; 7306 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7307 return; 7308 prev_jiffy = jiffies; 7309 7310 printk(KERN_ERR 7311 "BUG: sleeping function called from invalid context at %s:%d\n", 7312 file, line); 7313 printk(KERN_ERR 7314 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7315 in_atomic(), irqs_disabled(), 7316 current->pid, current->comm); 7317 7318 if (task_stack_end_corrupted(current)) 7319 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7320 7321 debug_show_held_locks(current); 7322 if (irqs_disabled()) 7323 print_irqtrace_events(current); 7324 #ifdef CONFIG_DEBUG_PREEMPT 7325 if (!preempt_count_equals(preempt_offset)) { 7326 pr_err("Preemption disabled at:"); 7327 print_ip_sym(current->preempt_disable_ip); 7328 pr_cont("\n"); 7329 } 7330 #endif 7331 dump_stack(); 7332 } 7333 EXPORT_SYMBOL(___might_sleep); 7334 #endif 7335 7336 #ifdef CONFIG_MAGIC_SYSRQ 7337 static void normalize_task(struct rq *rq, struct task_struct *p) 7338 { 7339 const struct sched_class *prev_class = p->sched_class; 7340 struct sched_attr attr = { 7341 .sched_policy = SCHED_NORMAL, 7342 }; 7343 int old_prio = p->prio; 7344 int queued; 7345 7346 queued = task_on_rq_queued(p); 7347 if (queued) 7348 dequeue_task(rq, p, 0); 7349 __setscheduler(rq, p, &attr); 7350 if (queued) { 7351 enqueue_task(rq, p, 0); 7352 resched_curr(rq); 7353 } 7354 7355 check_class_changed(rq, p, prev_class, old_prio); 7356 } 7357 7358 void normalize_rt_tasks(void) 7359 { 7360 struct task_struct *g, *p; 7361 unsigned long flags; 7362 struct rq *rq; 7363 7364 read_lock(&tasklist_lock); 7365 for_each_process_thread(g, p) { 7366 /* 7367 * Only normalize user tasks: 7368 */ 7369 if (p->flags & PF_KTHREAD) 7370 continue; 7371 7372 p->se.exec_start = 0; 7373 #ifdef CONFIG_SCHEDSTATS 7374 p->se.statistics.wait_start = 0; 7375 p->se.statistics.sleep_start = 0; 7376 p->se.statistics.block_start = 0; 7377 #endif 7378 7379 if (!dl_task(p) && !rt_task(p)) { 7380 /* 7381 * Renice negative nice level userspace 7382 * tasks back to 0: 7383 */ 7384 if (task_nice(p) < 0) 7385 set_user_nice(p, 0); 7386 continue; 7387 } 7388 7389 rq = task_rq_lock(p, &flags); 7390 normalize_task(rq, p); 7391 task_rq_unlock(rq, p, &flags); 7392 } 7393 read_unlock(&tasklist_lock); 7394 } 7395 7396 #endif /* CONFIG_MAGIC_SYSRQ */ 7397 7398 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7399 /* 7400 * These functions are only useful for the IA64 MCA handling, or kdb. 7401 * 7402 * They can only be called when the whole system has been 7403 * stopped - every CPU needs to be quiescent, and no scheduling 7404 * activity can take place. Using them for anything else would 7405 * be a serious bug, and as a result, they aren't even visible 7406 * under any other configuration. 7407 */ 7408 7409 /** 7410 * curr_task - return the current task for a given cpu. 7411 * @cpu: the processor in question. 7412 * 7413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7414 * 7415 * Return: The current task for @cpu. 7416 */ 7417 struct task_struct *curr_task(int cpu) 7418 { 7419 return cpu_curr(cpu); 7420 } 7421 7422 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7423 7424 #ifdef CONFIG_IA64 7425 /** 7426 * set_curr_task - set the current task for a given cpu. 7427 * @cpu: the processor in question. 7428 * @p: the task pointer to set. 7429 * 7430 * Description: This function must only be used when non-maskable interrupts 7431 * are serviced on a separate stack. It allows the architecture to switch the 7432 * notion of the current task on a cpu in a non-blocking manner. This function 7433 * must be called with all CPU's synchronized, and interrupts disabled, the 7434 * and caller must save the original value of the current task (see 7435 * curr_task() above) and restore that value before reenabling interrupts and 7436 * re-starting the system. 7437 * 7438 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7439 */ 7440 void set_curr_task(int cpu, struct task_struct *p) 7441 { 7442 cpu_curr(cpu) = p; 7443 } 7444 7445 #endif 7446 7447 #ifdef CONFIG_CGROUP_SCHED 7448 /* task_group_lock serializes the addition/removal of task groups */ 7449 static DEFINE_SPINLOCK(task_group_lock); 7450 7451 static void free_sched_group(struct task_group *tg) 7452 { 7453 free_fair_sched_group(tg); 7454 free_rt_sched_group(tg); 7455 autogroup_free(tg); 7456 kfree(tg); 7457 } 7458 7459 /* allocate runqueue etc for a new task group */ 7460 struct task_group *sched_create_group(struct task_group *parent) 7461 { 7462 struct task_group *tg; 7463 7464 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7465 if (!tg) 7466 return ERR_PTR(-ENOMEM); 7467 7468 if (!alloc_fair_sched_group(tg, parent)) 7469 goto err; 7470 7471 if (!alloc_rt_sched_group(tg, parent)) 7472 goto err; 7473 7474 return tg; 7475 7476 err: 7477 free_sched_group(tg); 7478 return ERR_PTR(-ENOMEM); 7479 } 7480 7481 void sched_online_group(struct task_group *tg, struct task_group *parent) 7482 { 7483 unsigned long flags; 7484 7485 spin_lock_irqsave(&task_group_lock, flags); 7486 list_add_rcu(&tg->list, &task_groups); 7487 7488 WARN_ON(!parent); /* root should already exist */ 7489 7490 tg->parent = parent; 7491 INIT_LIST_HEAD(&tg->children); 7492 list_add_rcu(&tg->siblings, &parent->children); 7493 spin_unlock_irqrestore(&task_group_lock, flags); 7494 } 7495 7496 /* rcu callback to free various structures associated with a task group */ 7497 static void free_sched_group_rcu(struct rcu_head *rhp) 7498 { 7499 /* now it should be safe to free those cfs_rqs */ 7500 free_sched_group(container_of(rhp, struct task_group, rcu)); 7501 } 7502 7503 /* Destroy runqueue etc associated with a task group */ 7504 void sched_destroy_group(struct task_group *tg) 7505 { 7506 /* wait for possible concurrent references to cfs_rqs complete */ 7507 call_rcu(&tg->rcu, free_sched_group_rcu); 7508 } 7509 7510 void sched_offline_group(struct task_group *tg) 7511 { 7512 unsigned long flags; 7513 int i; 7514 7515 /* end participation in shares distribution */ 7516 for_each_possible_cpu(i) 7517 unregister_fair_sched_group(tg, i); 7518 7519 spin_lock_irqsave(&task_group_lock, flags); 7520 list_del_rcu(&tg->list); 7521 list_del_rcu(&tg->siblings); 7522 spin_unlock_irqrestore(&task_group_lock, flags); 7523 } 7524 7525 /* change task's runqueue when it moves between groups. 7526 * The caller of this function should have put the task in its new group 7527 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7528 * reflect its new group. 7529 */ 7530 void sched_move_task(struct task_struct *tsk) 7531 { 7532 struct task_group *tg; 7533 int queued, running; 7534 unsigned long flags; 7535 struct rq *rq; 7536 7537 rq = task_rq_lock(tsk, &flags); 7538 7539 running = task_current(rq, tsk); 7540 queued = task_on_rq_queued(tsk); 7541 7542 if (queued) 7543 dequeue_task(rq, tsk, 0); 7544 if (unlikely(running)) 7545 put_prev_task(rq, tsk); 7546 7547 /* 7548 * All callers are synchronized by task_rq_lock(); we do not use RCU 7549 * which is pointless here. Thus, we pass "true" to task_css_check() 7550 * to prevent lockdep warnings. 7551 */ 7552 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7553 struct task_group, css); 7554 tg = autogroup_task_group(tsk, tg); 7555 tsk->sched_task_group = tg; 7556 7557 #ifdef CONFIG_FAIR_GROUP_SCHED 7558 if (tsk->sched_class->task_move_group) 7559 tsk->sched_class->task_move_group(tsk, queued); 7560 else 7561 #endif 7562 set_task_rq(tsk, task_cpu(tsk)); 7563 7564 if (unlikely(running)) 7565 tsk->sched_class->set_curr_task(rq); 7566 if (queued) 7567 enqueue_task(rq, tsk, 0); 7568 7569 task_rq_unlock(rq, tsk, &flags); 7570 } 7571 #endif /* CONFIG_CGROUP_SCHED */ 7572 7573 #ifdef CONFIG_RT_GROUP_SCHED 7574 /* 7575 * Ensure that the real time constraints are schedulable. 7576 */ 7577 static DEFINE_MUTEX(rt_constraints_mutex); 7578 7579 /* Must be called with tasklist_lock held */ 7580 static inline int tg_has_rt_tasks(struct task_group *tg) 7581 { 7582 struct task_struct *g, *p; 7583 7584 /* 7585 * Autogroups do not have RT tasks; see autogroup_create(). 7586 */ 7587 if (task_group_is_autogroup(tg)) 7588 return 0; 7589 7590 for_each_process_thread(g, p) { 7591 if (rt_task(p) && task_group(p) == tg) 7592 return 1; 7593 } 7594 7595 return 0; 7596 } 7597 7598 struct rt_schedulable_data { 7599 struct task_group *tg; 7600 u64 rt_period; 7601 u64 rt_runtime; 7602 }; 7603 7604 static int tg_rt_schedulable(struct task_group *tg, void *data) 7605 { 7606 struct rt_schedulable_data *d = data; 7607 struct task_group *child; 7608 unsigned long total, sum = 0; 7609 u64 period, runtime; 7610 7611 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7612 runtime = tg->rt_bandwidth.rt_runtime; 7613 7614 if (tg == d->tg) { 7615 period = d->rt_period; 7616 runtime = d->rt_runtime; 7617 } 7618 7619 /* 7620 * Cannot have more runtime than the period. 7621 */ 7622 if (runtime > period && runtime != RUNTIME_INF) 7623 return -EINVAL; 7624 7625 /* 7626 * Ensure we don't starve existing RT tasks. 7627 */ 7628 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7629 return -EBUSY; 7630 7631 total = to_ratio(period, runtime); 7632 7633 /* 7634 * Nobody can have more than the global setting allows. 7635 */ 7636 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7637 return -EINVAL; 7638 7639 /* 7640 * The sum of our children's runtime should not exceed our own. 7641 */ 7642 list_for_each_entry_rcu(child, &tg->children, siblings) { 7643 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7644 runtime = child->rt_bandwidth.rt_runtime; 7645 7646 if (child == d->tg) { 7647 period = d->rt_period; 7648 runtime = d->rt_runtime; 7649 } 7650 7651 sum += to_ratio(period, runtime); 7652 } 7653 7654 if (sum > total) 7655 return -EINVAL; 7656 7657 return 0; 7658 } 7659 7660 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7661 { 7662 int ret; 7663 7664 struct rt_schedulable_data data = { 7665 .tg = tg, 7666 .rt_period = period, 7667 .rt_runtime = runtime, 7668 }; 7669 7670 rcu_read_lock(); 7671 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7672 rcu_read_unlock(); 7673 7674 return ret; 7675 } 7676 7677 static int tg_set_rt_bandwidth(struct task_group *tg, 7678 u64 rt_period, u64 rt_runtime) 7679 { 7680 int i, err = 0; 7681 7682 /* 7683 * Disallowing the root group RT runtime is BAD, it would disallow the 7684 * kernel creating (and or operating) RT threads. 7685 */ 7686 if (tg == &root_task_group && rt_runtime == 0) 7687 return -EINVAL; 7688 7689 /* No period doesn't make any sense. */ 7690 if (rt_period == 0) 7691 return -EINVAL; 7692 7693 mutex_lock(&rt_constraints_mutex); 7694 read_lock(&tasklist_lock); 7695 err = __rt_schedulable(tg, rt_period, rt_runtime); 7696 if (err) 7697 goto unlock; 7698 7699 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7700 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7701 tg->rt_bandwidth.rt_runtime = rt_runtime; 7702 7703 for_each_possible_cpu(i) { 7704 struct rt_rq *rt_rq = tg->rt_rq[i]; 7705 7706 raw_spin_lock(&rt_rq->rt_runtime_lock); 7707 rt_rq->rt_runtime = rt_runtime; 7708 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7709 } 7710 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7711 unlock: 7712 read_unlock(&tasklist_lock); 7713 mutex_unlock(&rt_constraints_mutex); 7714 7715 return err; 7716 } 7717 7718 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7719 { 7720 u64 rt_runtime, rt_period; 7721 7722 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7723 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7724 if (rt_runtime_us < 0) 7725 rt_runtime = RUNTIME_INF; 7726 7727 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7728 } 7729 7730 static long sched_group_rt_runtime(struct task_group *tg) 7731 { 7732 u64 rt_runtime_us; 7733 7734 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7735 return -1; 7736 7737 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7738 do_div(rt_runtime_us, NSEC_PER_USEC); 7739 return rt_runtime_us; 7740 } 7741 7742 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7743 { 7744 u64 rt_runtime, rt_period; 7745 7746 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7747 rt_runtime = tg->rt_bandwidth.rt_runtime; 7748 7749 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7750 } 7751 7752 static long sched_group_rt_period(struct task_group *tg) 7753 { 7754 u64 rt_period_us; 7755 7756 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7757 do_div(rt_period_us, NSEC_PER_USEC); 7758 return rt_period_us; 7759 } 7760 #endif /* CONFIG_RT_GROUP_SCHED */ 7761 7762 #ifdef CONFIG_RT_GROUP_SCHED 7763 static int sched_rt_global_constraints(void) 7764 { 7765 int ret = 0; 7766 7767 mutex_lock(&rt_constraints_mutex); 7768 read_lock(&tasklist_lock); 7769 ret = __rt_schedulable(NULL, 0, 0); 7770 read_unlock(&tasklist_lock); 7771 mutex_unlock(&rt_constraints_mutex); 7772 7773 return ret; 7774 } 7775 7776 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7777 { 7778 /* Don't accept realtime tasks when there is no way for them to run */ 7779 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7780 return 0; 7781 7782 return 1; 7783 } 7784 7785 #else /* !CONFIG_RT_GROUP_SCHED */ 7786 static int sched_rt_global_constraints(void) 7787 { 7788 unsigned long flags; 7789 int i, ret = 0; 7790 7791 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7792 for_each_possible_cpu(i) { 7793 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7794 7795 raw_spin_lock(&rt_rq->rt_runtime_lock); 7796 rt_rq->rt_runtime = global_rt_runtime(); 7797 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7798 } 7799 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7800 7801 return ret; 7802 } 7803 #endif /* CONFIG_RT_GROUP_SCHED */ 7804 7805 static int sched_dl_global_validate(void) 7806 { 7807 u64 runtime = global_rt_runtime(); 7808 u64 period = global_rt_period(); 7809 u64 new_bw = to_ratio(period, runtime); 7810 struct dl_bw *dl_b; 7811 int cpu, ret = 0; 7812 unsigned long flags; 7813 7814 /* 7815 * Here we want to check the bandwidth not being set to some 7816 * value smaller than the currently allocated bandwidth in 7817 * any of the root_domains. 7818 * 7819 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7820 * cycling on root_domains... Discussion on different/better 7821 * solutions is welcome! 7822 */ 7823 for_each_possible_cpu(cpu) { 7824 rcu_read_lock_sched(); 7825 dl_b = dl_bw_of(cpu); 7826 7827 raw_spin_lock_irqsave(&dl_b->lock, flags); 7828 if (new_bw < dl_b->total_bw) 7829 ret = -EBUSY; 7830 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7831 7832 rcu_read_unlock_sched(); 7833 7834 if (ret) 7835 break; 7836 } 7837 7838 return ret; 7839 } 7840 7841 static void sched_dl_do_global(void) 7842 { 7843 u64 new_bw = -1; 7844 struct dl_bw *dl_b; 7845 int cpu; 7846 unsigned long flags; 7847 7848 def_dl_bandwidth.dl_period = global_rt_period(); 7849 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7850 7851 if (global_rt_runtime() != RUNTIME_INF) 7852 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7853 7854 /* 7855 * FIXME: As above... 7856 */ 7857 for_each_possible_cpu(cpu) { 7858 rcu_read_lock_sched(); 7859 dl_b = dl_bw_of(cpu); 7860 7861 raw_spin_lock_irqsave(&dl_b->lock, flags); 7862 dl_b->bw = new_bw; 7863 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7864 7865 rcu_read_unlock_sched(); 7866 } 7867 } 7868 7869 static int sched_rt_global_validate(void) 7870 { 7871 if (sysctl_sched_rt_period <= 0) 7872 return -EINVAL; 7873 7874 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7875 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7876 return -EINVAL; 7877 7878 return 0; 7879 } 7880 7881 static void sched_rt_do_global(void) 7882 { 7883 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7884 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7885 } 7886 7887 int sched_rt_handler(struct ctl_table *table, int write, 7888 void __user *buffer, size_t *lenp, 7889 loff_t *ppos) 7890 { 7891 int old_period, old_runtime; 7892 static DEFINE_MUTEX(mutex); 7893 int ret; 7894 7895 mutex_lock(&mutex); 7896 old_period = sysctl_sched_rt_period; 7897 old_runtime = sysctl_sched_rt_runtime; 7898 7899 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7900 7901 if (!ret && write) { 7902 ret = sched_rt_global_validate(); 7903 if (ret) 7904 goto undo; 7905 7906 ret = sched_dl_global_validate(); 7907 if (ret) 7908 goto undo; 7909 7910 ret = sched_rt_global_constraints(); 7911 if (ret) 7912 goto undo; 7913 7914 sched_rt_do_global(); 7915 sched_dl_do_global(); 7916 } 7917 if (0) { 7918 undo: 7919 sysctl_sched_rt_period = old_period; 7920 sysctl_sched_rt_runtime = old_runtime; 7921 } 7922 mutex_unlock(&mutex); 7923 7924 return ret; 7925 } 7926 7927 int sched_rr_handler(struct ctl_table *table, int write, 7928 void __user *buffer, size_t *lenp, 7929 loff_t *ppos) 7930 { 7931 int ret; 7932 static DEFINE_MUTEX(mutex); 7933 7934 mutex_lock(&mutex); 7935 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7936 /* make sure that internally we keep jiffies */ 7937 /* also, writing zero resets timeslice to default */ 7938 if (!ret && write) { 7939 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7940 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7941 } 7942 mutex_unlock(&mutex); 7943 return ret; 7944 } 7945 7946 #ifdef CONFIG_CGROUP_SCHED 7947 7948 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7949 { 7950 return css ? container_of(css, struct task_group, css) : NULL; 7951 } 7952 7953 static struct cgroup_subsys_state * 7954 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7955 { 7956 struct task_group *parent = css_tg(parent_css); 7957 struct task_group *tg; 7958 7959 if (!parent) { 7960 /* This is early initialization for the top cgroup */ 7961 return &root_task_group.css; 7962 } 7963 7964 tg = sched_create_group(parent); 7965 if (IS_ERR(tg)) 7966 return ERR_PTR(-ENOMEM); 7967 7968 return &tg->css; 7969 } 7970 7971 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7972 { 7973 struct task_group *tg = css_tg(css); 7974 struct task_group *parent = css_tg(css->parent); 7975 7976 if (parent) 7977 sched_online_group(tg, parent); 7978 return 0; 7979 } 7980 7981 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7982 { 7983 struct task_group *tg = css_tg(css); 7984 7985 sched_destroy_group(tg); 7986 } 7987 7988 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7989 { 7990 struct task_group *tg = css_tg(css); 7991 7992 sched_offline_group(tg); 7993 } 7994 7995 static void cpu_cgroup_fork(struct task_struct *task) 7996 { 7997 sched_move_task(task); 7998 } 7999 8000 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 8001 struct cgroup_taskset *tset) 8002 { 8003 struct task_struct *task; 8004 8005 cgroup_taskset_for_each(task, tset) { 8006 #ifdef CONFIG_RT_GROUP_SCHED 8007 if (!sched_rt_can_attach(css_tg(css), task)) 8008 return -EINVAL; 8009 #else 8010 /* We don't support RT-tasks being in separate groups */ 8011 if (task->sched_class != &fair_sched_class) 8012 return -EINVAL; 8013 #endif 8014 } 8015 return 0; 8016 } 8017 8018 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8019 struct cgroup_taskset *tset) 8020 { 8021 struct task_struct *task; 8022 8023 cgroup_taskset_for_each(task, tset) 8024 sched_move_task(task); 8025 } 8026 8027 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8028 struct cgroup_subsys_state *old_css, 8029 struct task_struct *task) 8030 { 8031 /* 8032 * cgroup_exit() is called in the copy_process() failure path. 8033 * Ignore this case since the task hasn't ran yet, this avoids 8034 * trying to poke a half freed task state from generic code. 8035 */ 8036 if (!(task->flags & PF_EXITING)) 8037 return; 8038 8039 sched_move_task(task); 8040 } 8041 8042 #ifdef CONFIG_FAIR_GROUP_SCHED 8043 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8044 struct cftype *cftype, u64 shareval) 8045 { 8046 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8047 } 8048 8049 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8050 struct cftype *cft) 8051 { 8052 struct task_group *tg = css_tg(css); 8053 8054 return (u64) scale_load_down(tg->shares); 8055 } 8056 8057 #ifdef CONFIG_CFS_BANDWIDTH 8058 static DEFINE_MUTEX(cfs_constraints_mutex); 8059 8060 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8061 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8062 8063 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8064 8065 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8066 { 8067 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8068 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8069 8070 if (tg == &root_task_group) 8071 return -EINVAL; 8072 8073 /* 8074 * Ensure we have at some amount of bandwidth every period. This is 8075 * to prevent reaching a state of large arrears when throttled via 8076 * entity_tick() resulting in prolonged exit starvation. 8077 */ 8078 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8079 return -EINVAL; 8080 8081 /* 8082 * Likewise, bound things on the otherside by preventing insane quota 8083 * periods. This also allows us to normalize in computing quota 8084 * feasibility. 8085 */ 8086 if (period > max_cfs_quota_period) 8087 return -EINVAL; 8088 8089 /* 8090 * Prevent race between setting of cfs_rq->runtime_enabled and 8091 * unthrottle_offline_cfs_rqs(). 8092 */ 8093 get_online_cpus(); 8094 mutex_lock(&cfs_constraints_mutex); 8095 ret = __cfs_schedulable(tg, period, quota); 8096 if (ret) 8097 goto out_unlock; 8098 8099 runtime_enabled = quota != RUNTIME_INF; 8100 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8101 /* 8102 * If we need to toggle cfs_bandwidth_used, off->on must occur 8103 * before making related changes, and on->off must occur afterwards 8104 */ 8105 if (runtime_enabled && !runtime_was_enabled) 8106 cfs_bandwidth_usage_inc(); 8107 raw_spin_lock_irq(&cfs_b->lock); 8108 cfs_b->period = ns_to_ktime(period); 8109 cfs_b->quota = quota; 8110 8111 __refill_cfs_bandwidth_runtime(cfs_b); 8112 /* restart the period timer (if active) to handle new period expiry */ 8113 if (runtime_enabled && cfs_b->timer_active) { 8114 /* force a reprogram */ 8115 __start_cfs_bandwidth(cfs_b, true); 8116 } 8117 raw_spin_unlock_irq(&cfs_b->lock); 8118 8119 for_each_online_cpu(i) { 8120 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8121 struct rq *rq = cfs_rq->rq; 8122 8123 raw_spin_lock_irq(&rq->lock); 8124 cfs_rq->runtime_enabled = runtime_enabled; 8125 cfs_rq->runtime_remaining = 0; 8126 8127 if (cfs_rq->throttled) 8128 unthrottle_cfs_rq(cfs_rq); 8129 raw_spin_unlock_irq(&rq->lock); 8130 } 8131 if (runtime_was_enabled && !runtime_enabled) 8132 cfs_bandwidth_usage_dec(); 8133 out_unlock: 8134 mutex_unlock(&cfs_constraints_mutex); 8135 put_online_cpus(); 8136 8137 return ret; 8138 } 8139 8140 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8141 { 8142 u64 quota, period; 8143 8144 period = ktime_to_ns(tg->cfs_bandwidth.period); 8145 if (cfs_quota_us < 0) 8146 quota = RUNTIME_INF; 8147 else 8148 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8149 8150 return tg_set_cfs_bandwidth(tg, period, quota); 8151 } 8152 8153 long tg_get_cfs_quota(struct task_group *tg) 8154 { 8155 u64 quota_us; 8156 8157 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8158 return -1; 8159 8160 quota_us = tg->cfs_bandwidth.quota; 8161 do_div(quota_us, NSEC_PER_USEC); 8162 8163 return quota_us; 8164 } 8165 8166 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8167 { 8168 u64 quota, period; 8169 8170 period = (u64)cfs_period_us * NSEC_PER_USEC; 8171 quota = tg->cfs_bandwidth.quota; 8172 8173 return tg_set_cfs_bandwidth(tg, period, quota); 8174 } 8175 8176 long tg_get_cfs_period(struct task_group *tg) 8177 { 8178 u64 cfs_period_us; 8179 8180 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8181 do_div(cfs_period_us, NSEC_PER_USEC); 8182 8183 return cfs_period_us; 8184 } 8185 8186 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8187 struct cftype *cft) 8188 { 8189 return tg_get_cfs_quota(css_tg(css)); 8190 } 8191 8192 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8193 struct cftype *cftype, s64 cfs_quota_us) 8194 { 8195 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8196 } 8197 8198 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8199 struct cftype *cft) 8200 { 8201 return tg_get_cfs_period(css_tg(css)); 8202 } 8203 8204 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8205 struct cftype *cftype, u64 cfs_period_us) 8206 { 8207 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8208 } 8209 8210 struct cfs_schedulable_data { 8211 struct task_group *tg; 8212 u64 period, quota; 8213 }; 8214 8215 /* 8216 * normalize group quota/period to be quota/max_period 8217 * note: units are usecs 8218 */ 8219 static u64 normalize_cfs_quota(struct task_group *tg, 8220 struct cfs_schedulable_data *d) 8221 { 8222 u64 quota, period; 8223 8224 if (tg == d->tg) { 8225 period = d->period; 8226 quota = d->quota; 8227 } else { 8228 period = tg_get_cfs_period(tg); 8229 quota = tg_get_cfs_quota(tg); 8230 } 8231 8232 /* note: these should typically be equivalent */ 8233 if (quota == RUNTIME_INF || quota == -1) 8234 return RUNTIME_INF; 8235 8236 return to_ratio(period, quota); 8237 } 8238 8239 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8240 { 8241 struct cfs_schedulable_data *d = data; 8242 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8243 s64 quota = 0, parent_quota = -1; 8244 8245 if (!tg->parent) { 8246 quota = RUNTIME_INF; 8247 } else { 8248 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8249 8250 quota = normalize_cfs_quota(tg, d); 8251 parent_quota = parent_b->hierarchical_quota; 8252 8253 /* 8254 * ensure max(child_quota) <= parent_quota, inherit when no 8255 * limit is set 8256 */ 8257 if (quota == RUNTIME_INF) 8258 quota = parent_quota; 8259 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8260 return -EINVAL; 8261 } 8262 cfs_b->hierarchical_quota = quota; 8263 8264 return 0; 8265 } 8266 8267 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8268 { 8269 int ret; 8270 struct cfs_schedulable_data data = { 8271 .tg = tg, 8272 .period = period, 8273 .quota = quota, 8274 }; 8275 8276 if (quota != RUNTIME_INF) { 8277 do_div(data.period, NSEC_PER_USEC); 8278 do_div(data.quota, NSEC_PER_USEC); 8279 } 8280 8281 rcu_read_lock(); 8282 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8283 rcu_read_unlock(); 8284 8285 return ret; 8286 } 8287 8288 static int cpu_stats_show(struct seq_file *sf, void *v) 8289 { 8290 struct task_group *tg = css_tg(seq_css(sf)); 8291 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8292 8293 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8294 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8295 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8296 8297 return 0; 8298 } 8299 #endif /* CONFIG_CFS_BANDWIDTH */ 8300 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8301 8302 #ifdef CONFIG_RT_GROUP_SCHED 8303 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8304 struct cftype *cft, s64 val) 8305 { 8306 return sched_group_set_rt_runtime(css_tg(css), val); 8307 } 8308 8309 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8310 struct cftype *cft) 8311 { 8312 return sched_group_rt_runtime(css_tg(css)); 8313 } 8314 8315 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8316 struct cftype *cftype, u64 rt_period_us) 8317 { 8318 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8319 } 8320 8321 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8322 struct cftype *cft) 8323 { 8324 return sched_group_rt_period(css_tg(css)); 8325 } 8326 #endif /* CONFIG_RT_GROUP_SCHED */ 8327 8328 static struct cftype cpu_files[] = { 8329 #ifdef CONFIG_FAIR_GROUP_SCHED 8330 { 8331 .name = "shares", 8332 .read_u64 = cpu_shares_read_u64, 8333 .write_u64 = cpu_shares_write_u64, 8334 }, 8335 #endif 8336 #ifdef CONFIG_CFS_BANDWIDTH 8337 { 8338 .name = "cfs_quota_us", 8339 .read_s64 = cpu_cfs_quota_read_s64, 8340 .write_s64 = cpu_cfs_quota_write_s64, 8341 }, 8342 { 8343 .name = "cfs_period_us", 8344 .read_u64 = cpu_cfs_period_read_u64, 8345 .write_u64 = cpu_cfs_period_write_u64, 8346 }, 8347 { 8348 .name = "stat", 8349 .seq_show = cpu_stats_show, 8350 }, 8351 #endif 8352 #ifdef CONFIG_RT_GROUP_SCHED 8353 { 8354 .name = "rt_runtime_us", 8355 .read_s64 = cpu_rt_runtime_read, 8356 .write_s64 = cpu_rt_runtime_write, 8357 }, 8358 { 8359 .name = "rt_period_us", 8360 .read_u64 = cpu_rt_period_read_uint, 8361 .write_u64 = cpu_rt_period_write_uint, 8362 }, 8363 #endif 8364 { } /* terminate */ 8365 }; 8366 8367 struct cgroup_subsys cpu_cgrp_subsys = { 8368 .css_alloc = cpu_cgroup_css_alloc, 8369 .css_free = cpu_cgroup_css_free, 8370 .css_online = cpu_cgroup_css_online, 8371 .css_offline = cpu_cgroup_css_offline, 8372 .fork = cpu_cgroup_fork, 8373 .can_attach = cpu_cgroup_can_attach, 8374 .attach = cpu_cgroup_attach, 8375 .exit = cpu_cgroup_exit, 8376 .legacy_cftypes = cpu_files, 8377 .early_init = 1, 8378 }; 8379 8380 #endif /* CONFIG_CGROUP_SCHED */ 8381 8382 void dump_cpu_task(int cpu) 8383 { 8384 pr_info("Task dump for CPU %d:\n", cpu); 8385 sched_show_task(cpu_curr(cpu)); 8386 } 8387