xref: /openbmc/linux/kernel/sched/core.c (revision 4f3db074)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	lockdep_assert_held(&rq->lock);
123 
124 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 		return;
126 
127 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 	if (delta < 0)
129 		return;
130 	rq->clock += delta;
131 	update_rq_clock_task(rq, delta);
132 }
133 
134 /*
135  * Debugging: various feature bits
136  */
137 
138 #define SCHED_FEAT(name, enabled)	\
139 	(1UL << __SCHED_FEAT_##name) * enabled |
140 
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 	0;
144 
145 #undef SCHED_FEAT
146 
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled)	\
149 	#name ,
150 
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154 
155 #undef SCHED_FEAT
156 
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 	int i;
160 
161 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 		if (!(sysctl_sched_features & (1UL << i)))
163 			seq_puts(m, "NO_");
164 		seq_printf(m, "%s ", sched_feat_names[i]);
165 	}
166 	seq_puts(m, "\n");
167 
168 	return 0;
169 }
170 
171 #ifdef HAVE_JUMP_LABEL
172 
173 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175 
176 #define SCHED_FEAT(name, enabled)	\
177 	jump_label_key__##enabled ,
178 
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182 
183 #undef SCHED_FEAT
184 
185 static void sched_feat_disable(int i)
186 {
187 	if (static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_dec(&sched_feat_keys[i]);
189 }
190 
191 static void sched_feat_enable(int i)
192 {
193 	if (!static_key_enabled(&sched_feat_keys[i]))
194 		static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200 
201 static int sched_feat_set(char *cmp)
202 {
203 	int i;
204 	int neg = 0;
205 
206 	if (strncmp(cmp, "NO_", 3) == 0) {
207 		neg = 1;
208 		cmp += 3;
209 	}
210 
211 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 			if (neg) {
214 				sysctl_sched_features &= ~(1UL << i);
215 				sched_feat_disable(i);
216 			} else {
217 				sysctl_sched_features |= (1UL << i);
218 				sched_feat_enable(i);
219 			}
220 			break;
221 		}
222 	}
223 
224 	return i;
225 }
226 
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 		size_t cnt, loff_t *ppos)
230 {
231 	char buf[64];
232 	char *cmp;
233 	int i;
234 	struct inode *inode;
235 
236 	if (cnt > 63)
237 		cnt = 63;
238 
239 	if (copy_from_user(&buf, ubuf, cnt))
240 		return -EFAULT;
241 
242 	buf[cnt] = 0;
243 	cmp = strstrip(buf);
244 
245 	/* Ensure the static_key remains in a consistent state */
246 	inode = file_inode(filp);
247 	mutex_lock(&inode->i_mutex);
248 	i = sched_feat_set(cmp);
249 	mutex_unlock(&inode->i_mutex);
250 	if (i == __SCHED_FEAT_NR)
251 		return -EINVAL;
252 
253 	*ppos += cnt;
254 
255 	return cnt;
256 }
257 
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 	return single_open(filp, sched_feat_show, NULL);
261 }
262 
263 static const struct file_operations sched_feat_fops = {
264 	.open		= sched_feat_open,
265 	.write		= sched_feat_write,
266 	.read		= seq_read,
267 	.llseek		= seq_lseek,
268 	.release	= single_release,
269 };
270 
271 static __init int sched_init_debug(void)
272 {
273 	debugfs_create_file("sched_features", 0644, NULL, NULL,
274 			&sched_feat_fops);
275 
276 	return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280 
281 /*
282  * Number of tasks to iterate in a single balance run.
283  * Limited because this is done with IRQs disabled.
284  */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286 
287 /*
288  * period over which we average the RT time consumption, measured
289  * in ms.
290  *
291  * default: 1s
292  */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294 
295 /*
296  * period over which we measure -rt task cpu usage in us.
297  * default: 1s
298  */
299 unsigned int sysctl_sched_rt_period = 1000000;
300 
301 __read_mostly int scheduler_running;
302 
303 /*
304  * part of the period that we allow rt tasks to run in us.
305  * default: 0.95s
306  */
307 int sysctl_sched_rt_runtime = 950000;
308 
309 /* cpus with isolated domains */
310 cpumask_var_t cpu_isolated_map;
311 
312 /*
313  * this_rq_lock - lock this runqueue and disable interrupts.
314  */
315 static struct rq *this_rq_lock(void)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	local_irq_disable();
321 	rq = this_rq();
322 	raw_spin_lock(&rq->lock);
323 
324 	return rq;
325 }
326 
327 #ifdef CONFIG_SCHED_HRTICK
328 /*
329  * Use HR-timers to deliver accurate preemption points.
330  */
331 
332 static void hrtick_clear(struct rq *rq)
333 {
334 	if (hrtimer_active(&rq->hrtick_timer))
335 		hrtimer_cancel(&rq->hrtick_timer);
336 }
337 
338 /*
339  * High-resolution timer tick.
340  * Runs from hardirq context with interrupts disabled.
341  */
342 static enum hrtimer_restart hrtick(struct hrtimer *timer)
343 {
344 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345 
346 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347 
348 	raw_spin_lock(&rq->lock);
349 	update_rq_clock(rq);
350 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351 	raw_spin_unlock(&rq->lock);
352 
353 	return HRTIMER_NORESTART;
354 }
355 
356 #ifdef CONFIG_SMP
357 
358 static int __hrtick_restart(struct rq *rq)
359 {
360 	struct hrtimer *timer = &rq->hrtick_timer;
361 	ktime_t time = hrtimer_get_softexpires(timer);
362 
363 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364 }
365 
366 /*
367  * called from hardirq (IPI) context
368  */
369 static void __hrtick_start(void *arg)
370 {
371 	struct rq *rq = arg;
372 
373 	raw_spin_lock(&rq->lock);
374 	__hrtick_restart(rq);
375 	rq->hrtick_csd_pending = 0;
376 	raw_spin_unlock(&rq->lock);
377 }
378 
379 /*
380  * Called to set the hrtick timer state.
381  *
382  * called with rq->lock held and irqs disabled
383  */
384 void hrtick_start(struct rq *rq, u64 delay)
385 {
386 	struct hrtimer *timer = &rq->hrtick_timer;
387 	ktime_t time;
388 	s64 delta;
389 
390 	/*
391 	 * Don't schedule slices shorter than 10000ns, that just
392 	 * doesn't make sense and can cause timer DoS.
393 	 */
394 	delta = max_t(s64, delay, 10000LL);
395 	time = ktime_add_ns(timer->base->get_time(), delta);
396 
397 	hrtimer_set_expires(timer, time);
398 
399 	if (rq == this_rq()) {
400 		__hrtick_restart(rq);
401 	} else if (!rq->hrtick_csd_pending) {
402 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403 		rq->hrtick_csd_pending = 1;
404 	}
405 }
406 
407 static int
408 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409 {
410 	int cpu = (int)(long)hcpu;
411 
412 	switch (action) {
413 	case CPU_UP_CANCELED:
414 	case CPU_UP_CANCELED_FROZEN:
415 	case CPU_DOWN_PREPARE:
416 	case CPU_DOWN_PREPARE_FROZEN:
417 	case CPU_DEAD:
418 	case CPU_DEAD_FROZEN:
419 		hrtick_clear(cpu_rq(cpu));
420 		return NOTIFY_OK;
421 	}
422 
423 	return NOTIFY_DONE;
424 }
425 
426 static __init void init_hrtick(void)
427 {
428 	hotcpu_notifier(hotplug_hrtick, 0);
429 }
430 #else
431 /*
432  * Called to set the hrtick timer state.
433  *
434  * called with rq->lock held and irqs disabled
435  */
436 void hrtick_start(struct rq *rq, u64 delay)
437 {
438 	/*
439 	 * Don't schedule slices shorter than 10000ns, that just
440 	 * doesn't make sense. Rely on vruntime for fairness.
441 	 */
442 	delay = max_t(u64, delay, 10000LL);
443 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444 			HRTIMER_MODE_REL_PINNED, 0);
445 }
446 
447 static inline void init_hrtick(void)
448 {
449 }
450 #endif /* CONFIG_SMP */
451 
452 static void init_rq_hrtick(struct rq *rq)
453 {
454 #ifdef CONFIG_SMP
455 	rq->hrtick_csd_pending = 0;
456 
457 	rq->hrtick_csd.flags = 0;
458 	rq->hrtick_csd.func = __hrtick_start;
459 	rq->hrtick_csd.info = rq;
460 #endif
461 
462 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463 	rq->hrtick_timer.function = hrtick;
464 }
465 #else	/* CONFIG_SCHED_HRTICK */
466 static inline void hrtick_clear(struct rq *rq)
467 {
468 }
469 
470 static inline void init_rq_hrtick(struct rq *rq)
471 {
472 }
473 
474 static inline void init_hrtick(void)
475 {
476 }
477 #endif	/* CONFIG_SCHED_HRTICK */
478 
479 /*
480  * cmpxchg based fetch_or, macro so it works for different integer types
481  */
482 #define fetch_or(ptr, val)						\
483 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
484  	for (;;) {							\
485  		__old = cmpxchg((ptr), __val, __val | (val));		\
486  		if (__old == __val)					\
487  			break;						\
488  		__val = __old;						\
489  	}								\
490  	__old;								\
491 })
492 
493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494 /*
495  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496  * this avoids any races wrt polling state changes and thereby avoids
497  * spurious IPIs.
498  */
499 static bool set_nr_and_not_polling(struct task_struct *p)
500 {
501 	struct thread_info *ti = task_thread_info(p);
502 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503 }
504 
505 /*
506  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507  *
508  * If this returns true, then the idle task promises to call
509  * sched_ttwu_pending() and reschedule soon.
510  */
511 static bool set_nr_if_polling(struct task_struct *p)
512 {
513 	struct thread_info *ti = task_thread_info(p);
514 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515 
516 	for (;;) {
517 		if (!(val & _TIF_POLLING_NRFLAG))
518 			return false;
519 		if (val & _TIF_NEED_RESCHED)
520 			return true;
521 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522 		if (old == val)
523 			break;
524 		val = old;
525 	}
526 	return true;
527 }
528 
529 #else
530 static bool set_nr_and_not_polling(struct task_struct *p)
531 {
532 	set_tsk_need_resched(p);
533 	return true;
534 }
535 
536 #ifdef CONFIG_SMP
537 static bool set_nr_if_polling(struct task_struct *p)
538 {
539 	return false;
540 }
541 #endif
542 #endif
543 
544 /*
545  * resched_curr - mark rq's current task 'to be rescheduled now'.
546  *
547  * On UP this means the setting of the need_resched flag, on SMP it
548  * might also involve a cross-CPU call to trigger the scheduler on
549  * the target CPU.
550  */
551 void resched_curr(struct rq *rq)
552 {
553 	struct task_struct *curr = rq->curr;
554 	int cpu;
555 
556 	lockdep_assert_held(&rq->lock);
557 
558 	if (test_tsk_need_resched(curr))
559 		return;
560 
561 	cpu = cpu_of(rq);
562 
563 	if (cpu == smp_processor_id()) {
564 		set_tsk_need_resched(curr);
565 		set_preempt_need_resched();
566 		return;
567 	}
568 
569 	if (set_nr_and_not_polling(curr))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 void resched_cpu(int cpu)
576 {
577 	struct rq *rq = cpu_rq(cpu);
578 	unsigned long flags;
579 
580 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
581 		return;
582 	resched_curr(rq);
583 	raw_spin_unlock_irqrestore(&rq->lock, flags);
584 }
585 
586 #ifdef CONFIG_SMP
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589  * In the semi idle case, use the nearest busy cpu for migrating timers
590  * from an idle cpu.  This is good for power-savings.
591  *
592  * We don't do similar optimization for completely idle system, as
593  * selecting an idle cpu will add more delays to the timers than intended
594  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595  */
596 int get_nohz_timer_target(int pinned)
597 {
598 	int cpu = smp_processor_id();
599 	int i;
600 	struct sched_domain *sd;
601 
602 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603 		return cpu;
604 
605 	rcu_read_lock();
606 	for_each_domain(cpu, sd) {
607 		for_each_cpu(i, sched_domain_span(sd)) {
608 			if (!idle_cpu(i)) {
609 				cpu = i;
610 				goto unlock;
611 			}
612 		}
613 	}
614 unlock:
615 	rcu_read_unlock();
616 	return cpu;
617 }
618 /*
619  * When add_timer_on() enqueues a timer into the timer wheel of an
620  * idle CPU then this timer might expire before the next timer event
621  * which is scheduled to wake up that CPU. In case of a completely
622  * idle system the next event might even be infinite time into the
623  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624  * leaves the inner idle loop so the newly added timer is taken into
625  * account when the CPU goes back to idle and evaluates the timer
626  * wheel for the next timer event.
627  */
628 static void wake_up_idle_cpu(int cpu)
629 {
630 	struct rq *rq = cpu_rq(cpu);
631 
632 	if (cpu == smp_processor_id())
633 		return;
634 
635 	if (set_nr_and_not_polling(rq->idle))
636 		smp_send_reschedule(cpu);
637 	else
638 		trace_sched_wake_idle_without_ipi(cpu);
639 }
640 
641 static bool wake_up_full_nohz_cpu(int cpu)
642 {
643 	/*
644 	 * We just need the target to call irq_exit() and re-evaluate
645 	 * the next tick. The nohz full kick at least implies that.
646 	 * If needed we can still optimize that later with an
647 	 * empty IRQ.
648 	 */
649 	if (tick_nohz_full_cpu(cpu)) {
650 		if (cpu != smp_processor_id() ||
651 		    tick_nohz_tick_stopped())
652 			tick_nohz_full_kick_cpu(cpu);
653 		return true;
654 	}
655 
656 	return false;
657 }
658 
659 void wake_up_nohz_cpu(int cpu)
660 {
661 	if (!wake_up_full_nohz_cpu(cpu))
662 		wake_up_idle_cpu(cpu);
663 }
664 
665 static inline bool got_nohz_idle_kick(void)
666 {
667 	int cpu = smp_processor_id();
668 
669 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670 		return false;
671 
672 	if (idle_cpu(cpu) && !need_resched())
673 		return true;
674 
675 	/*
676 	 * We can't run Idle Load Balance on this CPU for this time so we
677 	 * cancel it and clear NOHZ_BALANCE_KICK
678 	 */
679 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680 	return false;
681 }
682 
683 #else /* CONFIG_NO_HZ_COMMON */
684 
685 static inline bool got_nohz_idle_kick(void)
686 {
687 	return false;
688 }
689 
690 #endif /* CONFIG_NO_HZ_COMMON */
691 
692 #ifdef CONFIG_NO_HZ_FULL
693 bool sched_can_stop_tick(void)
694 {
695 	/*
696 	 * FIFO realtime policy runs the highest priority task. Other runnable
697 	 * tasks are of a lower priority. The scheduler tick does nothing.
698 	 */
699 	if (current->policy == SCHED_FIFO)
700 		return true;
701 
702 	/*
703 	 * Round-robin realtime tasks time slice with other tasks at the same
704 	 * realtime priority. Is this task the only one at this priority?
705 	 */
706 	if (current->policy == SCHED_RR) {
707 		struct sched_rt_entity *rt_se = &current->rt;
708 
709 		return rt_se->run_list.prev == rt_se->run_list.next;
710 	}
711 
712 	/*
713 	 * More than one running task need preemption.
714 	 * nr_running update is assumed to be visible
715 	 * after IPI is sent from wakers.
716 	 */
717 	if (this_rq()->nr_running > 1)
718 		return false;
719 
720 	return true;
721 }
722 #endif /* CONFIG_NO_HZ_FULL */
723 
724 void sched_avg_update(struct rq *rq)
725 {
726 	s64 period = sched_avg_period();
727 
728 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729 		/*
730 		 * Inline assembly required to prevent the compiler
731 		 * optimising this loop into a divmod call.
732 		 * See __iter_div_u64_rem() for another example of this.
733 		 */
734 		asm("" : "+rm" (rq->age_stamp));
735 		rq->age_stamp += period;
736 		rq->rt_avg /= 2;
737 	}
738 }
739 
740 #endif /* CONFIG_SMP */
741 
742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744 /*
745  * Iterate task_group tree rooted at *from, calling @down when first entering a
746  * node and @up when leaving it for the final time.
747  *
748  * Caller must hold rcu_lock or sufficient equivalent.
749  */
750 int walk_tg_tree_from(struct task_group *from,
751 			     tg_visitor down, tg_visitor up, void *data)
752 {
753 	struct task_group *parent, *child;
754 	int ret;
755 
756 	parent = from;
757 
758 down:
759 	ret = (*down)(parent, data);
760 	if (ret)
761 		goto out;
762 	list_for_each_entry_rcu(child, &parent->children, siblings) {
763 		parent = child;
764 		goto down;
765 
766 up:
767 		continue;
768 	}
769 	ret = (*up)(parent, data);
770 	if (ret || parent == from)
771 		goto out;
772 
773 	child = parent;
774 	parent = parent->parent;
775 	if (parent)
776 		goto up;
777 out:
778 	return ret;
779 }
780 
781 int tg_nop(struct task_group *tg, void *data)
782 {
783 	return 0;
784 }
785 #endif
786 
787 static void set_load_weight(struct task_struct *p)
788 {
789 	int prio = p->static_prio - MAX_RT_PRIO;
790 	struct load_weight *load = &p->se.load;
791 
792 	/*
793 	 * SCHED_IDLE tasks get minimal weight:
794 	 */
795 	if (p->policy == SCHED_IDLE) {
796 		load->weight = scale_load(WEIGHT_IDLEPRIO);
797 		load->inv_weight = WMULT_IDLEPRIO;
798 		return;
799 	}
800 
801 	load->weight = scale_load(prio_to_weight[prio]);
802 	load->inv_weight = prio_to_wmult[prio];
803 }
804 
805 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806 {
807 	update_rq_clock(rq);
808 	sched_info_queued(rq, p);
809 	p->sched_class->enqueue_task(rq, p, flags);
810 }
811 
812 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813 {
814 	update_rq_clock(rq);
815 	sched_info_dequeued(rq, p);
816 	p->sched_class->dequeue_task(rq, p, flags);
817 }
818 
819 void activate_task(struct rq *rq, struct task_struct *p, int flags)
820 {
821 	if (task_contributes_to_load(p))
822 		rq->nr_uninterruptible--;
823 
824 	enqueue_task(rq, p, flags);
825 }
826 
827 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828 {
829 	if (task_contributes_to_load(p))
830 		rq->nr_uninterruptible++;
831 
832 	dequeue_task(rq, p, flags);
833 }
834 
835 static void update_rq_clock_task(struct rq *rq, s64 delta)
836 {
837 /*
838  * In theory, the compile should just see 0 here, and optimize out the call
839  * to sched_rt_avg_update. But I don't trust it...
840  */
841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 	s64 steal = 0, irq_delta = 0;
843 #endif
844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
845 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846 
847 	/*
848 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 	 * this case when a previous update_rq_clock() happened inside a
850 	 * {soft,}irq region.
851 	 *
852 	 * When this happens, we stop ->clock_task and only update the
853 	 * prev_irq_time stamp to account for the part that fit, so that a next
854 	 * update will consume the rest. This ensures ->clock_task is
855 	 * monotonic.
856 	 *
857 	 * It does however cause some slight miss-attribution of {soft,}irq
858 	 * time, a more accurate solution would be to update the irq_time using
859 	 * the current rq->clock timestamp, except that would require using
860 	 * atomic ops.
861 	 */
862 	if (irq_delta > delta)
863 		irq_delta = delta;
864 
865 	rq->prev_irq_time += irq_delta;
866 	delta -= irq_delta;
867 #endif
868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869 	if (static_key_false((&paravirt_steal_rq_enabled))) {
870 		steal = paravirt_steal_clock(cpu_of(rq));
871 		steal -= rq->prev_steal_time_rq;
872 
873 		if (unlikely(steal > delta))
874 			steal = delta;
875 
876 		rq->prev_steal_time_rq += steal;
877 		delta -= steal;
878 	}
879 #endif
880 
881 	rq->clock_task += delta;
882 
883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885 		sched_rt_avg_update(rq, irq_delta + steal);
886 #endif
887 }
888 
889 void sched_set_stop_task(int cpu, struct task_struct *stop)
890 {
891 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
893 
894 	if (stop) {
895 		/*
896 		 * Make it appear like a SCHED_FIFO task, its something
897 		 * userspace knows about and won't get confused about.
898 		 *
899 		 * Also, it will make PI more or less work without too
900 		 * much confusion -- but then, stop work should not
901 		 * rely on PI working anyway.
902 		 */
903 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904 
905 		stop->sched_class = &stop_sched_class;
906 	}
907 
908 	cpu_rq(cpu)->stop = stop;
909 
910 	if (old_stop) {
911 		/*
912 		 * Reset it back to a normal scheduling class so that
913 		 * it can die in pieces.
914 		 */
915 		old_stop->sched_class = &rt_sched_class;
916 	}
917 }
918 
919 /*
920  * __normal_prio - return the priority that is based on the static prio
921  */
922 static inline int __normal_prio(struct task_struct *p)
923 {
924 	return p->static_prio;
925 }
926 
927 /*
928  * Calculate the expected normal priority: i.e. priority
929  * without taking RT-inheritance into account. Might be
930  * boosted by interactivity modifiers. Changes upon fork,
931  * setprio syscalls, and whenever the interactivity
932  * estimator recalculates.
933  */
934 static inline int normal_prio(struct task_struct *p)
935 {
936 	int prio;
937 
938 	if (task_has_dl_policy(p))
939 		prio = MAX_DL_PRIO-1;
940 	else if (task_has_rt_policy(p))
941 		prio = MAX_RT_PRIO-1 - p->rt_priority;
942 	else
943 		prio = __normal_prio(p);
944 	return prio;
945 }
946 
947 /*
948  * Calculate the current priority, i.e. the priority
949  * taken into account by the scheduler. This value might
950  * be boosted by RT tasks, or might be boosted by
951  * interactivity modifiers. Will be RT if the task got
952  * RT-boosted. If not then it returns p->normal_prio.
953  */
954 static int effective_prio(struct task_struct *p)
955 {
956 	p->normal_prio = normal_prio(p);
957 	/*
958 	 * If we are RT tasks or we were boosted to RT priority,
959 	 * keep the priority unchanged. Otherwise, update priority
960 	 * to the normal priority:
961 	 */
962 	if (!rt_prio(p->prio))
963 		return p->normal_prio;
964 	return p->prio;
965 }
966 
967 /**
968  * task_curr - is this task currently executing on a CPU?
969  * @p: the task in question.
970  *
971  * Return: 1 if the task is currently executing. 0 otherwise.
972  */
973 inline int task_curr(const struct task_struct *p)
974 {
975 	return cpu_curr(task_cpu(p)) == p;
976 }
977 
978 /*
979  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980  */
981 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982 				       const struct sched_class *prev_class,
983 				       int oldprio)
984 {
985 	if (prev_class != p->sched_class) {
986 		if (prev_class->switched_from)
987 			prev_class->switched_from(rq, p);
988 		/* Possble rq->lock 'hole'.  */
989 		p->sched_class->switched_to(rq, p);
990 	} else if (oldprio != p->prio || dl_task(p))
991 		p->sched_class->prio_changed(rq, p, oldprio);
992 }
993 
994 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995 {
996 	const struct sched_class *class;
997 
998 	if (p->sched_class == rq->curr->sched_class) {
999 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000 	} else {
1001 		for_each_class(class) {
1002 			if (class == rq->curr->sched_class)
1003 				break;
1004 			if (class == p->sched_class) {
1005 				resched_curr(rq);
1006 				break;
1007 			}
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * A queue event has occurred, and we're going to schedule.  In
1013 	 * this case, we can save a useless back to back clock update.
1014 	 */
1015 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016 		rq_clock_skip_update(rq, true);
1017 }
1018 
1019 #ifdef CONFIG_SMP
1020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1021 {
1022 #ifdef CONFIG_SCHED_DEBUG
1023 	/*
1024 	 * We should never call set_task_cpu() on a blocked task,
1025 	 * ttwu() will sort out the placement.
1026 	 */
1027 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1028 			!p->on_rq);
1029 
1030 #ifdef CONFIG_LOCKDEP
1031 	/*
1032 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1033 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034 	 *
1035 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1036 	 * see task_group().
1037 	 *
1038 	 * Furthermore, all task_rq users should acquire both locks, see
1039 	 * task_rq_lock().
1040 	 */
1041 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042 				      lockdep_is_held(&task_rq(p)->lock)));
1043 #endif
1044 #endif
1045 
1046 	trace_sched_migrate_task(p, new_cpu);
1047 
1048 	if (task_cpu(p) != new_cpu) {
1049 		if (p->sched_class->migrate_task_rq)
1050 			p->sched_class->migrate_task_rq(p, new_cpu);
1051 		p->se.nr_migrations++;
1052 		perf_event_task_migrate(p);
1053 	}
1054 
1055 	__set_task_cpu(p, new_cpu);
1056 }
1057 
1058 static void __migrate_swap_task(struct task_struct *p, int cpu)
1059 {
1060 	if (task_on_rq_queued(p)) {
1061 		struct rq *src_rq, *dst_rq;
1062 
1063 		src_rq = task_rq(p);
1064 		dst_rq = cpu_rq(cpu);
1065 
1066 		deactivate_task(src_rq, p, 0);
1067 		set_task_cpu(p, cpu);
1068 		activate_task(dst_rq, p, 0);
1069 		check_preempt_curr(dst_rq, p, 0);
1070 	} else {
1071 		/*
1072 		 * Task isn't running anymore; make it appear like we migrated
1073 		 * it before it went to sleep. This means on wakeup we make the
1074 		 * previous cpu our targer instead of where it really is.
1075 		 */
1076 		p->wake_cpu = cpu;
1077 	}
1078 }
1079 
1080 struct migration_swap_arg {
1081 	struct task_struct *src_task, *dst_task;
1082 	int src_cpu, dst_cpu;
1083 };
1084 
1085 static int migrate_swap_stop(void *data)
1086 {
1087 	struct migration_swap_arg *arg = data;
1088 	struct rq *src_rq, *dst_rq;
1089 	int ret = -EAGAIN;
1090 
1091 	src_rq = cpu_rq(arg->src_cpu);
1092 	dst_rq = cpu_rq(arg->dst_cpu);
1093 
1094 	double_raw_lock(&arg->src_task->pi_lock,
1095 			&arg->dst_task->pi_lock);
1096 	double_rq_lock(src_rq, dst_rq);
1097 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098 		goto unlock;
1099 
1100 	if (task_cpu(arg->src_task) != arg->src_cpu)
1101 		goto unlock;
1102 
1103 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104 		goto unlock;
1105 
1106 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107 		goto unlock;
1108 
1109 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1110 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1111 
1112 	ret = 0;
1113 
1114 unlock:
1115 	double_rq_unlock(src_rq, dst_rq);
1116 	raw_spin_unlock(&arg->dst_task->pi_lock);
1117 	raw_spin_unlock(&arg->src_task->pi_lock);
1118 
1119 	return ret;
1120 }
1121 
1122 /*
1123  * Cross migrate two tasks
1124  */
1125 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126 {
1127 	struct migration_swap_arg arg;
1128 	int ret = -EINVAL;
1129 
1130 	arg = (struct migration_swap_arg){
1131 		.src_task = cur,
1132 		.src_cpu = task_cpu(cur),
1133 		.dst_task = p,
1134 		.dst_cpu = task_cpu(p),
1135 	};
1136 
1137 	if (arg.src_cpu == arg.dst_cpu)
1138 		goto out;
1139 
1140 	/*
1141 	 * These three tests are all lockless; this is OK since all of them
1142 	 * will be re-checked with proper locks held further down the line.
1143 	 */
1144 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145 		goto out;
1146 
1147 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148 		goto out;
1149 
1150 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151 		goto out;
1152 
1153 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1154 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155 
1156 out:
1157 	return ret;
1158 }
1159 
1160 struct migration_arg {
1161 	struct task_struct *task;
1162 	int dest_cpu;
1163 };
1164 
1165 static int migration_cpu_stop(void *data);
1166 
1167 /*
1168  * wait_task_inactive - wait for a thread to unschedule.
1169  *
1170  * If @match_state is nonzero, it's the @p->state value just checked and
1171  * not expected to change.  If it changes, i.e. @p might have woken up,
1172  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1173  * we return a positive number (its total switch count).  If a second call
1174  * a short while later returns the same number, the caller can be sure that
1175  * @p has remained unscheduled the whole time.
1176  *
1177  * The caller must ensure that the task *will* unschedule sometime soon,
1178  * else this function might spin for a *long* time. This function can't
1179  * be called with interrupts off, or it may introduce deadlock with
1180  * smp_call_function() if an IPI is sent by the same process we are
1181  * waiting to become inactive.
1182  */
1183 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1184 {
1185 	unsigned long flags;
1186 	int running, queued;
1187 	unsigned long ncsw;
1188 	struct rq *rq;
1189 
1190 	for (;;) {
1191 		/*
1192 		 * We do the initial early heuristics without holding
1193 		 * any task-queue locks at all. We'll only try to get
1194 		 * the runqueue lock when things look like they will
1195 		 * work out!
1196 		 */
1197 		rq = task_rq(p);
1198 
1199 		/*
1200 		 * If the task is actively running on another CPU
1201 		 * still, just relax and busy-wait without holding
1202 		 * any locks.
1203 		 *
1204 		 * NOTE! Since we don't hold any locks, it's not
1205 		 * even sure that "rq" stays as the right runqueue!
1206 		 * But we don't care, since "task_running()" will
1207 		 * return false if the runqueue has changed and p
1208 		 * is actually now running somewhere else!
1209 		 */
1210 		while (task_running(rq, p)) {
1211 			if (match_state && unlikely(p->state != match_state))
1212 				return 0;
1213 			cpu_relax();
1214 		}
1215 
1216 		/*
1217 		 * Ok, time to look more closely! We need the rq
1218 		 * lock now, to be *sure*. If we're wrong, we'll
1219 		 * just go back and repeat.
1220 		 */
1221 		rq = task_rq_lock(p, &flags);
1222 		trace_sched_wait_task(p);
1223 		running = task_running(rq, p);
1224 		queued = task_on_rq_queued(p);
1225 		ncsw = 0;
1226 		if (!match_state || p->state == match_state)
1227 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1228 		task_rq_unlock(rq, p, &flags);
1229 
1230 		/*
1231 		 * If it changed from the expected state, bail out now.
1232 		 */
1233 		if (unlikely(!ncsw))
1234 			break;
1235 
1236 		/*
1237 		 * Was it really running after all now that we
1238 		 * checked with the proper locks actually held?
1239 		 *
1240 		 * Oops. Go back and try again..
1241 		 */
1242 		if (unlikely(running)) {
1243 			cpu_relax();
1244 			continue;
1245 		}
1246 
1247 		/*
1248 		 * It's not enough that it's not actively running,
1249 		 * it must be off the runqueue _entirely_, and not
1250 		 * preempted!
1251 		 *
1252 		 * So if it was still runnable (but just not actively
1253 		 * running right now), it's preempted, and we should
1254 		 * yield - it could be a while.
1255 		 */
1256 		if (unlikely(queued)) {
1257 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258 
1259 			set_current_state(TASK_UNINTERRUPTIBLE);
1260 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1261 			continue;
1262 		}
1263 
1264 		/*
1265 		 * Ahh, all good. It wasn't running, and it wasn't
1266 		 * runnable, which means that it will never become
1267 		 * running in the future either. We're all done!
1268 		 */
1269 		break;
1270 	}
1271 
1272 	return ncsw;
1273 }
1274 
1275 /***
1276  * kick_process - kick a running thread to enter/exit the kernel
1277  * @p: the to-be-kicked thread
1278  *
1279  * Cause a process which is running on another CPU to enter
1280  * kernel-mode, without any delay. (to get signals handled.)
1281  *
1282  * NOTE: this function doesn't have to take the runqueue lock,
1283  * because all it wants to ensure is that the remote task enters
1284  * the kernel. If the IPI races and the task has been migrated
1285  * to another CPU then no harm is done and the purpose has been
1286  * achieved as well.
1287  */
1288 void kick_process(struct task_struct *p)
1289 {
1290 	int cpu;
1291 
1292 	preempt_disable();
1293 	cpu = task_cpu(p);
1294 	if ((cpu != smp_processor_id()) && task_curr(p))
1295 		smp_send_reschedule(cpu);
1296 	preempt_enable();
1297 }
1298 EXPORT_SYMBOL_GPL(kick_process);
1299 #endif /* CONFIG_SMP */
1300 
1301 #ifdef CONFIG_SMP
1302 /*
1303  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1304  */
1305 static int select_fallback_rq(int cpu, struct task_struct *p)
1306 {
1307 	int nid = cpu_to_node(cpu);
1308 	const struct cpumask *nodemask = NULL;
1309 	enum { cpuset, possible, fail } state = cpuset;
1310 	int dest_cpu;
1311 
1312 	/*
1313 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1314 	 * will return -1. There is no cpu on the node, and we should
1315 	 * select the cpu on the other node.
1316 	 */
1317 	if (nid != -1) {
1318 		nodemask = cpumask_of_node(nid);
1319 
1320 		/* Look for allowed, online CPU in same node. */
1321 		for_each_cpu(dest_cpu, nodemask) {
1322 			if (!cpu_online(dest_cpu))
1323 				continue;
1324 			if (!cpu_active(dest_cpu))
1325 				continue;
1326 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327 				return dest_cpu;
1328 		}
1329 	}
1330 
1331 	for (;;) {
1332 		/* Any allowed, online CPU? */
1333 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1334 			if (!cpu_online(dest_cpu))
1335 				continue;
1336 			if (!cpu_active(dest_cpu))
1337 				continue;
1338 			goto out;
1339 		}
1340 
1341 		switch (state) {
1342 		case cpuset:
1343 			/* No more Mr. Nice Guy. */
1344 			cpuset_cpus_allowed_fallback(p);
1345 			state = possible;
1346 			break;
1347 
1348 		case possible:
1349 			do_set_cpus_allowed(p, cpu_possible_mask);
1350 			state = fail;
1351 			break;
1352 
1353 		case fail:
1354 			BUG();
1355 			break;
1356 		}
1357 	}
1358 
1359 out:
1360 	if (state != cpuset) {
1361 		/*
1362 		 * Don't tell them about moving exiting tasks or
1363 		 * kernel threads (both mm NULL), since they never
1364 		 * leave kernel.
1365 		 */
1366 		if (p->mm && printk_ratelimit()) {
1367 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368 					task_pid_nr(p), p->comm, cpu);
1369 		}
1370 	}
1371 
1372 	return dest_cpu;
1373 }
1374 
1375 /*
1376  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1377  */
1378 static inline
1379 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1380 {
1381 	if (p->nr_cpus_allowed > 1)
1382 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1383 
1384 	/*
1385 	 * In order not to call set_task_cpu() on a blocking task we need
1386 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387 	 * cpu.
1388 	 *
1389 	 * Since this is common to all placement strategies, this lives here.
1390 	 *
1391 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1392 	 *   not worry about this generic constraint ]
1393 	 */
1394 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1395 		     !cpu_online(cpu)))
1396 		cpu = select_fallback_rq(task_cpu(p), p);
1397 
1398 	return cpu;
1399 }
1400 
1401 static void update_avg(u64 *avg, u64 sample)
1402 {
1403 	s64 diff = sample - *avg;
1404 	*avg += diff >> 3;
1405 }
1406 #endif
1407 
1408 static void
1409 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1410 {
1411 #ifdef CONFIG_SCHEDSTATS
1412 	struct rq *rq = this_rq();
1413 
1414 #ifdef CONFIG_SMP
1415 	int this_cpu = smp_processor_id();
1416 
1417 	if (cpu == this_cpu) {
1418 		schedstat_inc(rq, ttwu_local);
1419 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1420 	} else {
1421 		struct sched_domain *sd;
1422 
1423 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1424 		rcu_read_lock();
1425 		for_each_domain(this_cpu, sd) {
1426 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427 				schedstat_inc(sd, ttwu_wake_remote);
1428 				break;
1429 			}
1430 		}
1431 		rcu_read_unlock();
1432 	}
1433 
1434 	if (wake_flags & WF_MIGRATED)
1435 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436 
1437 #endif /* CONFIG_SMP */
1438 
1439 	schedstat_inc(rq, ttwu_count);
1440 	schedstat_inc(p, se.statistics.nr_wakeups);
1441 
1442 	if (wake_flags & WF_SYNC)
1443 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1444 
1445 #endif /* CONFIG_SCHEDSTATS */
1446 }
1447 
1448 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449 {
1450 	activate_task(rq, p, en_flags);
1451 	p->on_rq = TASK_ON_RQ_QUEUED;
1452 
1453 	/* if a worker is waking up, notify workqueue */
1454 	if (p->flags & PF_WQ_WORKER)
1455 		wq_worker_waking_up(p, cpu_of(rq));
1456 }
1457 
1458 /*
1459  * Mark the task runnable and perform wakeup-preemption.
1460  */
1461 static void
1462 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1463 {
1464 	check_preempt_curr(rq, p, wake_flags);
1465 	trace_sched_wakeup(p, true);
1466 
1467 	p->state = TASK_RUNNING;
1468 #ifdef CONFIG_SMP
1469 	if (p->sched_class->task_woken)
1470 		p->sched_class->task_woken(rq, p);
1471 
1472 	if (rq->idle_stamp) {
1473 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1474 		u64 max = 2*rq->max_idle_balance_cost;
1475 
1476 		update_avg(&rq->avg_idle, delta);
1477 
1478 		if (rq->avg_idle > max)
1479 			rq->avg_idle = max;
1480 
1481 		rq->idle_stamp = 0;
1482 	}
1483 #endif
1484 }
1485 
1486 static void
1487 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488 {
1489 #ifdef CONFIG_SMP
1490 	if (p->sched_contributes_to_load)
1491 		rq->nr_uninterruptible--;
1492 #endif
1493 
1494 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495 	ttwu_do_wakeup(rq, p, wake_flags);
1496 }
1497 
1498 /*
1499  * Called in case the task @p isn't fully descheduled from its runqueue,
1500  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501  * since all we need to do is flip p->state to TASK_RUNNING, since
1502  * the task is still ->on_rq.
1503  */
1504 static int ttwu_remote(struct task_struct *p, int wake_flags)
1505 {
1506 	struct rq *rq;
1507 	int ret = 0;
1508 
1509 	rq = __task_rq_lock(p);
1510 	if (task_on_rq_queued(p)) {
1511 		/* check_preempt_curr() may use rq clock */
1512 		update_rq_clock(rq);
1513 		ttwu_do_wakeup(rq, p, wake_flags);
1514 		ret = 1;
1515 	}
1516 	__task_rq_unlock(rq);
1517 
1518 	return ret;
1519 }
1520 
1521 #ifdef CONFIG_SMP
1522 void sched_ttwu_pending(void)
1523 {
1524 	struct rq *rq = this_rq();
1525 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1526 	struct task_struct *p;
1527 	unsigned long flags;
1528 
1529 	if (!llist)
1530 		return;
1531 
1532 	raw_spin_lock_irqsave(&rq->lock, flags);
1533 
1534 	while (llist) {
1535 		p = llist_entry(llist, struct task_struct, wake_entry);
1536 		llist = llist_next(llist);
1537 		ttwu_do_activate(rq, p, 0);
1538 	}
1539 
1540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1541 }
1542 
1543 void scheduler_ipi(void)
1544 {
1545 	/*
1546 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1548 	 * this IPI.
1549 	 */
1550 	preempt_fold_need_resched();
1551 
1552 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1553 		return;
1554 
1555 	/*
1556 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557 	 * traditionally all their work was done from the interrupt return
1558 	 * path. Now that we actually do some work, we need to make sure
1559 	 * we do call them.
1560 	 *
1561 	 * Some archs already do call them, luckily irq_enter/exit nest
1562 	 * properly.
1563 	 *
1564 	 * Arguably we should visit all archs and update all handlers,
1565 	 * however a fair share of IPIs are still resched only so this would
1566 	 * somewhat pessimize the simple resched case.
1567 	 */
1568 	irq_enter();
1569 	sched_ttwu_pending();
1570 
1571 	/*
1572 	 * Check if someone kicked us for doing the nohz idle load balance.
1573 	 */
1574 	if (unlikely(got_nohz_idle_kick())) {
1575 		this_rq()->idle_balance = 1;
1576 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1577 	}
1578 	irq_exit();
1579 }
1580 
1581 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582 {
1583 	struct rq *rq = cpu_rq(cpu);
1584 
1585 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586 		if (!set_nr_if_polling(rq->idle))
1587 			smp_send_reschedule(cpu);
1588 		else
1589 			trace_sched_wake_idle_without_ipi(cpu);
1590 	}
1591 }
1592 
1593 void wake_up_if_idle(int cpu)
1594 {
1595 	struct rq *rq = cpu_rq(cpu);
1596 	unsigned long flags;
1597 
1598 	rcu_read_lock();
1599 
1600 	if (!is_idle_task(rcu_dereference(rq->curr)))
1601 		goto out;
1602 
1603 	if (set_nr_if_polling(rq->idle)) {
1604 		trace_sched_wake_idle_without_ipi(cpu);
1605 	} else {
1606 		raw_spin_lock_irqsave(&rq->lock, flags);
1607 		if (is_idle_task(rq->curr))
1608 			smp_send_reschedule(cpu);
1609 		/* Else cpu is not in idle, do nothing here */
1610 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1611 	}
1612 
1613 out:
1614 	rcu_read_unlock();
1615 }
1616 
1617 bool cpus_share_cache(int this_cpu, int that_cpu)
1618 {
1619 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620 }
1621 #endif /* CONFIG_SMP */
1622 
1623 static void ttwu_queue(struct task_struct *p, int cpu)
1624 {
1625 	struct rq *rq = cpu_rq(cpu);
1626 
1627 #if defined(CONFIG_SMP)
1628 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1629 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1630 		ttwu_queue_remote(p, cpu);
1631 		return;
1632 	}
1633 #endif
1634 
1635 	raw_spin_lock(&rq->lock);
1636 	ttwu_do_activate(rq, p, 0);
1637 	raw_spin_unlock(&rq->lock);
1638 }
1639 
1640 /**
1641  * try_to_wake_up - wake up a thread
1642  * @p: the thread to be awakened
1643  * @state: the mask of task states that can be woken
1644  * @wake_flags: wake modifier flags (WF_*)
1645  *
1646  * Put it on the run-queue if it's not already there. The "current"
1647  * thread is always on the run-queue (except when the actual
1648  * re-schedule is in progress), and as such you're allowed to do
1649  * the simpler "current->state = TASK_RUNNING" to mark yourself
1650  * runnable without the overhead of this.
1651  *
1652  * Return: %true if @p was woken up, %false if it was already running.
1653  * or @state didn't match @p's state.
1654  */
1655 static int
1656 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1657 {
1658 	unsigned long flags;
1659 	int cpu, success = 0;
1660 
1661 	/*
1662 	 * If we are going to wake up a thread waiting for CONDITION we
1663 	 * need to ensure that CONDITION=1 done by the caller can not be
1664 	 * reordered with p->state check below. This pairs with mb() in
1665 	 * set_current_state() the waiting thread does.
1666 	 */
1667 	smp_mb__before_spinlock();
1668 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1669 	if (!(p->state & state))
1670 		goto out;
1671 
1672 	success = 1; /* we're going to change ->state */
1673 	cpu = task_cpu(p);
1674 
1675 	if (p->on_rq && ttwu_remote(p, wake_flags))
1676 		goto stat;
1677 
1678 #ifdef CONFIG_SMP
1679 	/*
1680 	 * If the owning (remote) cpu is still in the middle of schedule() with
1681 	 * this task as prev, wait until its done referencing the task.
1682 	 */
1683 	while (p->on_cpu)
1684 		cpu_relax();
1685 	/*
1686 	 * Pairs with the smp_wmb() in finish_lock_switch().
1687 	 */
1688 	smp_rmb();
1689 
1690 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1691 	p->state = TASK_WAKING;
1692 
1693 	if (p->sched_class->task_waking)
1694 		p->sched_class->task_waking(p);
1695 
1696 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1697 	if (task_cpu(p) != cpu) {
1698 		wake_flags |= WF_MIGRATED;
1699 		set_task_cpu(p, cpu);
1700 	}
1701 #endif /* CONFIG_SMP */
1702 
1703 	ttwu_queue(p, cpu);
1704 stat:
1705 	ttwu_stat(p, cpu, wake_flags);
1706 out:
1707 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1708 
1709 	return success;
1710 }
1711 
1712 /**
1713  * try_to_wake_up_local - try to wake up a local task with rq lock held
1714  * @p: the thread to be awakened
1715  *
1716  * Put @p on the run-queue if it's not already there. The caller must
1717  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718  * the current task.
1719  */
1720 static void try_to_wake_up_local(struct task_struct *p)
1721 {
1722 	struct rq *rq = task_rq(p);
1723 
1724 	if (WARN_ON_ONCE(rq != this_rq()) ||
1725 	    WARN_ON_ONCE(p == current))
1726 		return;
1727 
1728 	lockdep_assert_held(&rq->lock);
1729 
1730 	if (!raw_spin_trylock(&p->pi_lock)) {
1731 		raw_spin_unlock(&rq->lock);
1732 		raw_spin_lock(&p->pi_lock);
1733 		raw_spin_lock(&rq->lock);
1734 	}
1735 
1736 	if (!(p->state & TASK_NORMAL))
1737 		goto out;
1738 
1739 	if (!task_on_rq_queued(p))
1740 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741 
1742 	ttwu_do_wakeup(rq, p, 0);
1743 	ttwu_stat(p, smp_processor_id(), 0);
1744 out:
1745 	raw_spin_unlock(&p->pi_lock);
1746 }
1747 
1748 /**
1749  * wake_up_process - Wake up a specific process
1750  * @p: The process to be woken up.
1751  *
1752  * Attempt to wake up the nominated process and move it to the set of runnable
1753  * processes.
1754  *
1755  * Return: 1 if the process was woken up, 0 if it was already running.
1756  *
1757  * It may be assumed that this function implies a write memory barrier before
1758  * changing the task state if and only if any tasks are woken up.
1759  */
1760 int wake_up_process(struct task_struct *p)
1761 {
1762 	WARN_ON(task_is_stopped_or_traced(p));
1763 	return try_to_wake_up(p, TASK_NORMAL, 0);
1764 }
1765 EXPORT_SYMBOL(wake_up_process);
1766 
1767 int wake_up_state(struct task_struct *p, unsigned int state)
1768 {
1769 	return try_to_wake_up(p, state, 0);
1770 }
1771 
1772 /*
1773  * This function clears the sched_dl_entity static params.
1774  */
1775 void __dl_clear_params(struct task_struct *p)
1776 {
1777 	struct sched_dl_entity *dl_se = &p->dl;
1778 
1779 	dl_se->dl_runtime = 0;
1780 	dl_se->dl_deadline = 0;
1781 	dl_se->dl_period = 0;
1782 	dl_se->flags = 0;
1783 	dl_se->dl_bw = 0;
1784 
1785 	dl_se->dl_throttled = 0;
1786 	dl_se->dl_new = 1;
1787 	dl_se->dl_yielded = 0;
1788 }
1789 
1790 /*
1791  * Perform scheduler related setup for a newly forked process p.
1792  * p is forked by current.
1793  *
1794  * __sched_fork() is basic setup used by init_idle() too:
1795  */
1796 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1797 {
1798 	p->on_rq			= 0;
1799 
1800 	p->se.on_rq			= 0;
1801 	p->se.exec_start		= 0;
1802 	p->se.sum_exec_runtime		= 0;
1803 	p->se.prev_sum_exec_runtime	= 0;
1804 	p->se.nr_migrations		= 0;
1805 	p->se.vruntime			= 0;
1806 #ifdef CONFIG_SMP
1807 	p->se.avg.decay_count		= 0;
1808 #endif
1809 	INIT_LIST_HEAD(&p->se.group_node);
1810 
1811 #ifdef CONFIG_SCHEDSTATS
1812 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1813 #endif
1814 
1815 	RB_CLEAR_NODE(&p->dl.rb_node);
1816 	init_dl_task_timer(&p->dl);
1817 	__dl_clear_params(p);
1818 
1819 	INIT_LIST_HEAD(&p->rt.run_list);
1820 
1821 #ifdef CONFIG_PREEMPT_NOTIFIERS
1822 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1823 #endif
1824 
1825 #ifdef CONFIG_NUMA_BALANCING
1826 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1827 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1828 		p->mm->numa_scan_seq = 0;
1829 	}
1830 
1831 	if (clone_flags & CLONE_VM)
1832 		p->numa_preferred_nid = current->numa_preferred_nid;
1833 	else
1834 		p->numa_preferred_nid = -1;
1835 
1836 	p->node_stamp = 0ULL;
1837 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1838 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1839 	p->numa_work.next = &p->numa_work;
1840 	p->numa_faults = NULL;
1841 	p->last_task_numa_placement = 0;
1842 	p->last_sum_exec_runtime = 0;
1843 
1844 	p->numa_group = NULL;
1845 #endif /* CONFIG_NUMA_BALANCING */
1846 }
1847 
1848 #ifdef CONFIG_NUMA_BALANCING
1849 #ifdef CONFIG_SCHED_DEBUG
1850 void set_numabalancing_state(bool enabled)
1851 {
1852 	if (enabled)
1853 		sched_feat_set("NUMA");
1854 	else
1855 		sched_feat_set("NO_NUMA");
1856 }
1857 #else
1858 __read_mostly bool numabalancing_enabled;
1859 
1860 void set_numabalancing_state(bool enabled)
1861 {
1862 	numabalancing_enabled = enabled;
1863 }
1864 #endif /* CONFIG_SCHED_DEBUG */
1865 
1866 #ifdef CONFIG_PROC_SYSCTL
1867 int sysctl_numa_balancing(struct ctl_table *table, int write,
1868 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1869 {
1870 	struct ctl_table t;
1871 	int err;
1872 	int state = numabalancing_enabled;
1873 
1874 	if (write && !capable(CAP_SYS_ADMIN))
1875 		return -EPERM;
1876 
1877 	t = *table;
1878 	t.data = &state;
1879 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880 	if (err < 0)
1881 		return err;
1882 	if (write)
1883 		set_numabalancing_state(state);
1884 	return err;
1885 }
1886 #endif
1887 #endif
1888 
1889 /*
1890  * fork()/clone()-time setup:
1891  */
1892 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1893 {
1894 	unsigned long flags;
1895 	int cpu = get_cpu();
1896 
1897 	__sched_fork(clone_flags, p);
1898 	/*
1899 	 * We mark the process as running here. This guarantees that
1900 	 * nobody will actually run it, and a signal or other external
1901 	 * event cannot wake it up and insert it on the runqueue either.
1902 	 */
1903 	p->state = TASK_RUNNING;
1904 
1905 	/*
1906 	 * Make sure we do not leak PI boosting priority to the child.
1907 	 */
1908 	p->prio = current->normal_prio;
1909 
1910 	/*
1911 	 * Revert to default priority/policy on fork if requested.
1912 	 */
1913 	if (unlikely(p->sched_reset_on_fork)) {
1914 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1915 			p->policy = SCHED_NORMAL;
1916 			p->static_prio = NICE_TO_PRIO(0);
1917 			p->rt_priority = 0;
1918 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1919 			p->static_prio = NICE_TO_PRIO(0);
1920 
1921 		p->prio = p->normal_prio = __normal_prio(p);
1922 		set_load_weight(p);
1923 
1924 		/*
1925 		 * We don't need the reset flag anymore after the fork. It has
1926 		 * fulfilled its duty:
1927 		 */
1928 		p->sched_reset_on_fork = 0;
1929 	}
1930 
1931 	if (dl_prio(p->prio)) {
1932 		put_cpu();
1933 		return -EAGAIN;
1934 	} else if (rt_prio(p->prio)) {
1935 		p->sched_class = &rt_sched_class;
1936 	} else {
1937 		p->sched_class = &fair_sched_class;
1938 	}
1939 
1940 	if (p->sched_class->task_fork)
1941 		p->sched_class->task_fork(p);
1942 
1943 	/*
1944 	 * The child is not yet in the pid-hash so no cgroup attach races,
1945 	 * and the cgroup is pinned to this child due to cgroup_fork()
1946 	 * is ran before sched_fork().
1947 	 *
1948 	 * Silence PROVE_RCU.
1949 	 */
1950 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1951 	set_task_cpu(p, cpu);
1952 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1953 
1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955 	if (likely(sched_info_on()))
1956 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1957 #endif
1958 #if defined(CONFIG_SMP)
1959 	p->on_cpu = 0;
1960 #endif
1961 	init_task_preempt_count(p);
1962 #ifdef CONFIG_SMP
1963 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1964 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1965 #endif
1966 
1967 	put_cpu();
1968 	return 0;
1969 }
1970 
1971 unsigned long to_ratio(u64 period, u64 runtime)
1972 {
1973 	if (runtime == RUNTIME_INF)
1974 		return 1ULL << 20;
1975 
1976 	/*
1977 	 * Doing this here saves a lot of checks in all
1978 	 * the calling paths, and returning zero seems
1979 	 * safe for them anyway.
1980 	 */
1981 	if (period == 0)
1982 		return 0;
1983 
1984 	return div64_u64(runtime << 20, period);
1985 }
1986 
1987 #ifdef CONFIG_SMP
1988 inline struct dl_bw *dl_bw_of(int i)
1989 {
1990 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991 			   "sched RCU must be held");
1992 	return &cpu_rq(i)->rd->dl_bw;
1993 }
1994 
1995 static inline int dl_bw_cpus(int i)
1996 {
1997 	struct root_domain *rd = cpu_rq(i)->rd;
1998 	int cpus = 0;
1999 
2000 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001 			   "sched RCU must be held");
2002 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2003 		cpus++;
2004 
2005 	return cpus;
2006 }
2007 #else
2008 inline struct dl_bw *dl_bw_of(int i)
2009 {
2010 	return &cpu_rq(i)->dl.dl_bw;
2011 }
2012 
2013 static inline int dl_bw_cpus(int i)
2014 {
2015 	return 1;
2016 }
2017 #endif
2018 
2019 /*
2020  * We must be sure that accepting a new task (or allowing changing the
2021  * parameters of an existing one) is consistent with the bandwidth
2022  * constraints. If yes, this function also accordingly updates the currently
2023  * allocated bandwidth to reflect the new situation.
2024  *
2025  * This function is called while holding p's rq->lock.
2026  *
2027  * XXX we should delay bw change until the task's 0-lag point, see
2028  * __setparam_dl().
2029  */
2030 static int dl_overflow(struct task_struct *p, int policy,
2031 		       const struct sched_attr *attr)
2032 {
2033 
2034 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2035 	u64 period = attr->sched_period ?: attr->sched_deadline;
2036 	u64 runtime = attr->sched_runtime;
2037 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2038 	int cpus, err = -1;
2039 
2040 	if (new_bw == p->dl.dl_bw)
2041 		return 0;
2042 
2043 	/*
2044 	 * Either if a task, enters, leave, or stays -deadline but changes
2045 	 * its parameters, we may need to update accordingly the total
2046 	 * allocated bandwidth of the container.
2047 	 */
2048 	raw_spin_lock(&dl_b->lock);
2049 	cpus = dl_bw_cpus(task_cpu(p));
2050 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052 		__dl_add(dl_b, new_bw);
2053 		err = 0;
2054 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056 		__dl_clear(dl_b, p->dl.dl_bw);
2057 		__dl_add(dl_b, new_bw);
2058 		err = 0;
2059 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060 		__dl_clear(dl_b, p->dl.dl_bw);
2061 		err = 0;
2062 	}
2063 	raw_spin_unlock(&dl_b->lock);
2064 
2065 	return err;
2066 }
2067 
2068 extern void init_dl_bw(struct dl_bw *dl_b);
2069 
2070 /*
2071  * wake_up_new_task - wake up a newly created task for the first time.
2072  *
2073  * This function will do some initial scheduler statistics housekeeping
2074  * that must be done for every newly created context, then puts the task
2075  * on the runqueue and wakes it.
2076  */
2077 void wake_up_new_task(struct task_struct *p)
2078 {
2079 	unsigned long flags;
2080 	struct rq *rq;
2081 
2082 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2083 #ifdef CONFIG_SMP
2084 	/*
2085 	 * Fork balancing, do it here and not earlier because:
2086 	 *  - cpus_allowed can change in the fork path
2087 	 *  - any previously selected cpu might disappear through hotplug
2088 	 */
2089 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2090 #endif
2091 
2092 	/* Initialize new task's runnable average */
2093 	init_task_runnable_average(p);
2094 	rq = __task_rq_lock(p);
2095 	activate_task(rq, p, 0);
2096 	p->on_rq = TASK_ON_RQ_QUEUED;
2097 	trace_sched_wakeup_new(p, true);
2098 	check_preempt_curr(rq, p, WF_FORK);
2099 #ifdef CONFIG_SMP
2100 	if (p->sched_class->task_woken)
2101 		p->sched_class->task_woken(rq, p);
2102 #endif
2103 	task_rq_unlock(rq, p, &flags);
2104 }
2105 
2106 #ifdef CONFIG_PREEMPT_NOTIFIERS
2107 
2108 /**
2109  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2110  * @notifier: notifier struct to register
2111  */
2112 void preempt_notifier_register(struct preempt_notifier *notifier)
2113 {
2114 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2115 }
2116 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117 
2118 /**
2119  * preempt_notifier_unregister - no longer interested in preemption notifications
2120  * @notifier: notifier struct to unregister
2121  *
2122  * This is safe to call from within a preemption notifier.
2123  */
2124 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125 {
2126 	hlist_del(&notifier->link);
2127 }
2128 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129 
2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131 {
2132 	struct preempt_notifier *notifier;
2133 
2134 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2135 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136 }
2137 
2138 static void
2139 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140 				 struct task_struct *next)
2141 {
2142 	struct preempt_notifier *notifier;
2143 
2144 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2145 		notifier->ops->sched_out(notifier, next);
2146 }
2147 
2148 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2149 
2150 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151 {
2152 }
2153 
2154 static void
2155 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156 				 struct task_struct *next)
2157 {
2158 }
2159 
2160 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2161 
2162 /**
2163  * prepare_task_switch - prepare to switch tasks
2164  * @rq: the runqueue preparing to switch
2165  * @prev: the current task that is being switched out
2166  * @next: the task we are going to switch to.
2167  *
2168  * This is called with the rq lock held and interrupts off. It must
2169  * be paired with a subsequent finish_task_switch after the context
2170  * switch.
2171  *
2172  * prepare_task_switch sets up locking and calls architecture specific
2173  * hooks.
2174  */
2175 static inline void
2176 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177 		    struct task_struct *next)
2178 {
2179 	trace_sched_switch(prev, next);
2180 	sched_info_switch(rq, prev, next);
2181 	perf_event_task_sched_out(prev, next);
2182 	fire_sched_out_preempt_notifiers(prev, next);
2183 	prepare_lock_switch(rq, next);
2184 	prepare_arch_switch(next);
2185 }
2186 
2187 /**
2188  * finish_task_switch - clean up after a task-switch
2189  * @prev: the thread we just switched away from.
2190  *
2191  * finish_task_switch must be called after the context switch, paired
2192  * with a prepare_task_switch call before the context switch.
2193  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194  * and do any other architecture-specific cleanup actions.
2195  *
2196  * Note that we may have delayed dropping an mm in context_switch(). If
2197  * so, we finish that here outside of the runqueue lock. (Doing it
2198  * with the lock held can cause deadlocks; see schedule() for
2199  * details.)
2200  *
2201  * The context switch have flipped the stack from under us and restored the
2202  * local variables which were saved when this task called schedule() in the
2203  * past. prev == current is still correct but we need to recalculate this_rq
2204  * because prev may have moved to another CPU.
2205  */
2206 static struct rq *finish_task_switch(struct task_struct *prev)
2207 	__releases(rq->lock)
2208 {
2209 	struct rq *rq = this_rq();
2210 	struct mm_struct *mm = rq->prev_mm;
2211 	long prev_state;
2212 
2213 	rq->prev_mm = NULL;
2214 
2215 	/*
2216 	 * A task struct has one reference for the use as "current".
2217 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2218 	 * schedule one last time. The schedule call will never return, and
2219 	 * the scheduled task must drop that reference.
2220 	 * The test for TASK_DEAD must occur while the runqueue locks are
2221 	 * still held, otherwise prev could be scheduled on another cpu, die
2222 	 * there before we look at prev->state, and then the reference would
2223 	 * be dropped twice.
2224 	 *		Manfred Spraul <manfred@colorfullife.com>
2225 	 */
2226 	prev_state = prev->state;
2227 	vtime_task_switch(prev);
2228 	finish_arch_switch(prev);
2229 	perf_event_task_sched_in(prev, current);
2230 	finish_lock_switch(rq, prev);
2231 	finish_arch_post_lock_switch();
2232 
2233 	fire_sched_in_preempt_notifiers(current);
2234 	if (mm)
2235 		mmdrop(mm);
2236 	if (unlikely(prev_state == TASK_DEAD)) {
2237 		if (prev->sched_class->task_dead)
2238 			prev->sched_class->task_dead(prev);
2239 
2240 		/*
2241 		 * Remove function-return probe instances associated with this
2242 		 * task and put them back on the free list.
2243 		 */
2244 		kprobe_flush_task(prev);
2245 		put_task_struct(prev);
2246 	}
2247 
2248 	tick_nohz_task_switch(current);
2249 	return rq;
2250 }
2251 
2252 #ifdef CONFIG_SMP
2253 
2254 /* rq->lock is NOT held, but preemption is disabled */
2255 static inline void post_schedule(struct rq *rq)
2256 {
2257 	if (rq->post_schedule) {
2258 		unsigned long flags;
2259 
2260 		raw_spin_lock_irqsave(&rq->lock, flags);
2261 		if (rq->curr->sched_class->post_schedule)
2262 			rq->curr->sched_class->post_schedule(rq);
2263 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2264 
2265 		rq->post_schedule = 0;
2266 	}
2267 }
2268 
2269 #else
2270 
2271 static inline void post_schedule(struct rq *rq)
2272 {
2273 }
2274 
2275 #endif
2276 
2277 /**
2278  * schedule_tail - first thing a freshly forked thread must call.
2279  * @prev: the thread we just switched away from.
2280  */
2281 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2282 	__releases(rq->lock)
2283 {
2284 	struct rq *rq;
2285 
2286 	/* finish_task_switch() drops rq->lock and enables preemtion */
2287 	preempt_disable();
2288 	rq = finish_task_switch(prev);
2289 	post_schedule(rq);
2290 	preempt_enable();
2291 
2292 	if (current->set_child_tid)
2293 		put_user(task_pid_vnr(current), current->set_child_tid);
2294 }
2295 
2296 /*
2297  * context_switch - switch to the new MM and the new thread's register state.
2298  */
2299 static inline struct rq *
2300 context_switch(struct rq *rq, struct task_struct *prev,
2301 	       struct task_struct *next)
2302 {
2303 	struct mm_struct *mm, *oldmm;
2304 
2305 	prepare_task_switch(rq, prev, next);
2306 
2307 	mm = next->mm;
2308 	oldmm = prev->active_mm;
2309 	/*
2310 	 * For paravirt, this is coupled with an exit in switch_to to
2311 	 * combine the page table reload and the switch backend into
2312 	 * one hypercall.
2313 	 */
2314 	arch_start_context_switch(prev);
2315 
2316 	if (!mm) {
2317 		next->active_mm = oldmm;
2318 		atomic_inc(&oldmm->mm_count);
2319 		enter_lazy_tlb(oldmm, next);
2320 	} else
2321 		switch_mm(oldmm, mm, next);
2322 
2323 	if (!prev->mm) {
2324 		prev->active_mm = NULL;
2325 		rq->prev_mm = oldmm;
2326 	}
2327 	/*
2328 	 * Since the runqueue lock will be released by the next
2329 	 * task (which is an invalid locking op but in the case
2330 	 * of the scheduler it's an obvious special-case), so we
2331 	 * do an early lockdep release here:
2332 	 */
2333 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2334 
2335 	context_tracking_task_switch(prev, next);
2336 	/* Here we just switch the register state and the stack. */
2337 	switch_to(prev, next, prev);
2338 	barrier();
2339 
2340 	return finish_task_switch(prev);
2341 }
2342 
2343 /*
2344  * nr_running and nr_context_switches:
2345  *
2346  * externally visible scheduler statistics: current number of runnable
2347  * threads, total number of context switches performed since bootup.
2348  */
2349 unsigned long nr_running(void)
2350 {
2351 	unsigned long i, sum = 0;
2352 
2353 	for_each_online_cpu(i)
2354 		sum += cpu_rq(i)->nr_running;
2355 
2356 	return sum;
2357 }
2358 
2359 /*
2360  * Check if only the current task is running on the cpu.
2361  */
2362 bool single_task_running(void)
2363 {
2364 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2365 		return true;
2366 	else
2367 		return false;
2368 }
2369 EXPORT_SYMBOL(single_task_running);
2370 
2371 unsigned long long nr_context_switches(void)
2372 {
2373 	int i;
2374 	unsigned long long sum = 0;
2375 
2376 	for_each_possible_cpu(i)
2377 		sum += cpu_rq(i)->nr_switches;
2378 
2379 	return sum;
2380 }
2381 
2382 unsigned long nr_iowait(void)
2383 {
2384 	unsigned long i, sum = 0;
2385 
2386 	for_each_possible_cpu(i)
2387 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2388 
2389 	return sum;
2390 }
2391 
2392 unsigned long nr_iowait_cpu(int cpu)
2393 {
2394 	struct rq *this = cpu_rq(cpu);
2395 	return atomic_read(&this->nr_iowait);
2396 }
2397 
2398 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2399 {
2400 	struct rq *this = this_rq();
2401 	*nr_waiters = atomic_read(&this->nr_iowait);
2402 	*load = this->cpu_load[0];
2403 }
2404 
2405 #ifdef CONFIG_SMP
2406 
2407 /*
2408  * sched_exec - execve() is a valuable balancing opportunity, because at
2409  * this point the task has the smallest effective memory and cache footprint.
2410  */
2411 void sched_exec(void)
2412 {
2413 	struct task_struct *p = current;
2414 	unsigned long flags;
2415 	int dest_cpu;
2416 
2417 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2418 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2419 	if (dest_cpu == smp_processor_id())
2420 		goto unlock;
2421 
2422 	if (likely(cpu_active(dest_cpu))) {
2423 		struct migration_arg arg = { p, dest_cpu };
2424 
2425 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2426 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2427 		return;
2428 	}
2429 unlock:
2430 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2431 }
2432 
2433 #endif
2434 
2435 DEFINE_PER_CPU(struct kernel_stat, kstat);
2436 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2437 
2438 EXPORT_PER_CPU_SYMBOL(kstat);
2439 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2440 
2441 /*
2442  * Return accounted runtime for the task.
2443  * In case the task is currently running, return the runtime plus current's
2444  * pending runtime that have not been accounted yet.
2445  */
2446 unsigned long long task_sched_runtime(struct task_struct *p)
2447 {
2448 	unsigned long flags;
2449 	struct rq *rq;
2450 	u64 ns;
2451 
2452 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2453 	/*
2454 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2455 	 * So we have a optimization chance when the task's delta_exec is 0.
2456 	 * Reading ->on_cpu is racy, but this is ok.
2457 	 *
2458 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2459 	 * If we race with it entering cpu, unaccounted time is 0. This is
2460 	 * indistinguishable from the read occurring a few cycles earlier.
2461 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2462 	 * been accounted, so we're correct here as well.
2463 	 */
2464 	if (!p->on_cpu || !task_on_rq_queued(p))
2465 		return p->se.sum_exec_runtime;
2466 #endif
2467 
2468 	rq = task_rq_lock(p, &flags);
2469 	/*
2470 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2471 	 * project cycles that may never be accounted to this
2472 	 * thread, breaking clock_gettime().
2473 	 */
2474 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2475 		update_rq_clock(rq);
2476 		p->sched_class->update_curr(rq);
2477 	}
2478 	ns = p->se.sum_exec_runtime;
2479 	task_rq_unlock(rq, p, &flags);
2480 
2481 	return ns;
2482 }
2483 
2484 /*
2485  * This function gets called by the timer code, with HZ frequency.
2486  * We call it with interrupts disabled.
2487  */
2488 void scheduler_tick(void)
2489 {
2490 	int cpu = smp_processor_id();
2491 	struct rq *rq = cpu_rq(cpu);
2492 	struct task_struct *curr = rq->curr;
2493 
2494 	sched_clock_tick();
2495 
2496 	raw_spin_lock(&rq->lock);
2497 	update_rq_clock(rq);
2498 	curr->sched_class->task_tick(rq, curr, 0);
2499 	update_cpu_load_active(rq);
2500 	raw_spin_unlock(&rq->lock);
2501 
2502 	perf_event_task_tick();
2503 
2504 #ifdef CONFIG_SMP
2505 	rq->idle_balance = idle_cpu(cpu);
2506 	trigger_load_balance(rq);
2507 #endif
2508 	rq_last_tick_reset(rq);
2509 }
2510 
2511 #ifdef CONFIG_NO_HZ_FULL
2512 /**
2513  * scheduler_tick_max_deferment
2514  *
2515  * Keep at least one tick per second when a single
2516  * active task is running because the scheduler doesn't
2517  * yet completely support full dynticks environment.
2518  *
2519  * This makes sure that uptime, CFS vruntime, load
2520  * balancing, etc... continue to move forward, even
2521  * with a very low granularity.
2522  *
2523  * Return: Maximum deferment in nanoseconds.
2524  */
2525 u64 scheduler_tick_max_deferment(void)
2526 {
2527 	struct rq *rq = this_rq();
2528 	unsigned long next, now = ACCESS_ONCE(jiffies);
2529 
2530 	next = rq->last_sched_tick + HZ;
2531 
2532 	if (time_before_eq(next, now))
2533 		return 0;
2534 
2535 	return jiffies_to_nsecs(next - now);
2536 }
2537 #endif
2538 
2539 notrace unsigned long get_parent_ip(unsigned long addr)
2540 {
2541 	if (in_lock_functions(addr)) {
2542 		addr = CALLER_ADDR2;
2543 		if (in_lock_functions(addr))
2544 			addr = CALLER_ADDR3;
2545 	}
2546 	return addr;
2547 }
2548 
2549 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2550 				defined(CONFIG_PREEMPT_TRACER))
2551 
2552 void preempt_count_add(int val)
2553 {
2554 #ifdef CONFIG_DEBUG_PREEMPT
2555 	/*
2556 	 * Underflow?
2557 	 */
2558 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2559 		return;
2560 #endif
2561 	__preempt_count_add(val);
2562 #ifdef CONFIG_DEBUG_PREEMPT
2563 	/*
2564 	 * Spinlock count overflowing soon?
2565 	 */
2566 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2567 				PREEMPT_MASK - 10);
2568 #endif
2569 	if (preempt_count() == val) {
2570 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2571 #ifdef CONFIG_DEBUG_PREEMPT
2572 		current->preempt_disable_ip = ip;
2573 #endif
2574 		trace_preempt_off(CALLER_ADDR0, ip);
2575 	}
2576 }
2577 EXPORT_SYMBOL(preempt_count_add);
2578 NOKPROBE_SYMBOL(preempt_count_add);
2579 
2580 void preempt_count_sub(int val)
2581 {
2582 #ifdef CONFIG_DEBUG_PREEMPT
2583 	/*
2584 	 * Underflow?
2585 	 */
2586 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2587 		return;
2588 	/*
2589 	 * Is the spinlock portion underflowing?
2590 	 */
2591 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2592 			!(preempt_count() & PREEMPT_MASK)))
2593 		return;
2594 #endif
2595 
2596 	if (preempt_count() == val)
2597 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2598 	__preempt_count_sub(val);
2599 }
2600 EXPORT_SYMBOL(preempt_count_sub);
2601 NOKPROBE_SYMBOL(preempt_count_sub);
2602 
2603 #endif
2604 
2605 /*
2606  * Print scheduling while atomic bug:
2607  */
2608 static noinline void __schedule_bug(struct task_struct *prev)
2609 {
2610 	if (oops_in_progress)
2611 		return;
2612 
2613 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2614 		prev->comm, prev->pid, preempt_count());
2615 
2616 	debug_show_held_locks(prev);
2617 	print_modules();
2618 	if (irqs_disabled())
2619 		print_irqtrace_events(prev);
2620 #ifdef CONFIG_DEBUG_PREEMPT
2621 	if (in_atomic_preempt_off()) {
2622 		pr_err("Preemption disabled at:");
2623 		print_ip_sym(current->preempt_disable_ip);
2624 		pr_cont("\n");
2625 	}
2626 #endif
2627 	dump_stack();
2628 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2629 }
2630 
2631 /*
2632  * Various schedule()-time debugging checks and statistics:
2633  */
2634 static inline void schedule_debug(struct task_struct *prev)
2635 {
2636 #ifdef CONFIG_SCHED_STACK_END_CHECK
2637 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2638 #endif
2639 	/*
2640 	 * Test if we are atomic. Since do_exit() needs to call into
2641 	 * schedule() atomically, we ignore that path. Otherwise whine
2642 	 * if we are scheduling when we should not.
2643 	 */
2644 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2645 		__schedule_bug(prev);
2646 	rcu_sleep_check();
2647 
2648 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2649 
2650 	schedstat_inc(this_rq(), sched_count);
2651 }
2652 
2653 /*
2654  * Pick up the highest-prio task:
2655  */
2656 static inline struct task_struct *
2657 pick_next_task(struct rq *rq, struct task_struct *prev)
2658 {
2659 	const struct sched_class *class = &fair_sched_class;
2660 	struct task_struct *p;
2661 
2662 	/*
2663 	 * Optimization: we know that if all tasks are in
2664 	 * the fair class we can call that function directly:
2665 	 */
2666 	if (likely(prev->sched_class == class &&
2667 		   rq->nr_running == rq->cfs.h_nr_running)) {
2668 		p = fair_sched_class.pick_next_task(rq, prev);
2669 		if (unlikely(p == RETRY_TASK))
2670 			goto again;
2671 
2672 		/* assumes fair_sched_class->next == idle_sched_class */
2673 		if (unlikely(!p))
2674 			p = idle_sched_class.pick_next_task(rq, prev);
2675 
2676 		return p;
2677 	}
2678 
2679 again:
2680 	for_each_class(class) {
2681 		p = class->pick_next_task(rq, prev);
2682 		if (p) {
2683 			if (unlikely(p == RETRY_TASK))
2684 				goto again;
2685 			return p;
2686 		}
2687 	}
2688 
2689 	BUG(); /* the idle class will always have a runnable task */
2690 }
2691 
2692 /*
2693  * __schedule() is the main scheduler function.
2694  *
2695  * The main means of driving the scheduler and thus entering this function are:
2696  *
2697  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2698  *
2699  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2700  *      paths. For example, see arch/x86/entry_64.S.
2701  *
2702  *      To drive preemption between tasks, the scheduler sets the flag in timer
2703  *      interrupt handler scheduler_tick().
2704  *
2705  *   3. Wakeups don't really cause entry into schedule(). They add a
2706  *      task to the run-queue and that's it.
2707  *
2708  *      Now, if the new task added to the run-queue preempts the current
2709  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2710  *      called on the nearest possible occasion:
2711  *
2712  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2713  *
2714  *         - in syscall or exception context, at the next outmost
2715  *           preempt_enable(). (this might be as soon as the wake_up()'s
2716  *           spin_unlock()!)
2717  *
2718  *         - in IRQ context, return from interrupt-handler to
2719  *           preemptible context
2720  *
2721  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2722  *         then at the next:
2723  *
2724  *          - cond_resched() call
2725  *          - explicit schedule() call
2726  *          - return from syscall or exception to user-space
2727  *          - return from interrupt-handler to user-space
2728  *
2729  * WARNING: all callers must re-check need_resched() afterward and reschedule
2730  * accordingly in case an event triggered the need for rescheduling (such as
2731  * an interrupt waking up a task) while preemption was disabled in __schedule().
2732  */
2733 static void __sched __schedule(void)
2734 {
2735 	struct task_struct *prev, *next;
2736 	unsigned long *switch_count;
2737 	struct rq *rq;
2738 	int cpu;
2739 
2740 	preempt_disable();
2741 	cpu = smp_processor_id();
2742 	rq = cpu_rq(cpu);
2743 	rcu_note_context_switch();
2744 	prev = rq->curr;
2745 
2746 	schedule_debug(prev);
2747 
2748 	if (sched_feat(HRTICK))
2749 		hrtick_clear(rq);
2750 
2751 	/*
2752 	 * Make sure that signal_pending_state()->signal_pending() below
2753 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2754 	 * done by the caller to avoid the race with signal_wake_up().
2755 	 */
2756 	smp_mb__before_spinlock();
2757 	raw_spin_lock_irq(&rq->lock);
2758 
2759 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2760 
2761 	switch_count = &prev->nivcsw;
2762 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2763 		if (unlikely(signal_pending_state(prev->state, prev))) {
2764 			prev->state = TASK_RUNNING;
2765 		} else {
2766 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2767 			prev->on_rq = 0;
2768 
2769 			/*
2770 			 * If a worker went to sleep, notify and ask workqueue
2771 			 * whether it wants to wake up a task to maintain
2772 			 * concurrency.
2773 			 */
2774 			if (prev->flags & PF_WQ_WORKER) {
2775 				struct task_struct *to_wakeup;
2776 
2777 				to_wakeup = wq_worker_sleeping(prev, cpu);
2778 				if (to_wakeup)
2779 					try_to_wake_up_local(to_wakeup);
2780 			}
2781 		}
2782 		switch_count = &prev->nvcsw;
2783 	}
2784 
2785 	if (task_on_rq_queued(prev))
2786 		update_rq_clock(rq);
2787 
2788 	next = pick_next_task(rq, prev);
2789 	clear_tsk_need_resched(prev);
2790 	clear_preempt_need_resched();
2791 	rq->clock_skip_update = 0;
2792 
2793 	if (likely(prev != next)) {
2794 		rq->nr_switches++;
2795 		rq->curr = next;
2796 		++*switch_count;
2797 
2798 		rq = context_switch(rq, prev, next); /* unlocks the rq */
2799 		cpu = cpu_of(rq);
2800 	} else
2801 		raw_spin_unlock_irq(&rq->lock);
2802 
2803 	post_schedule(rq);
2804 
2805 	sched_preempt_enable_no_resched();
2806 }
2807 
2808 static inline void sched_submit_work(struct task_struct *tsk)
2809 {
2810 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2811 		return;
2812 	/*
2813 	 * If we are going to sleep and we have plugged IO queued,
2814 	 * make sure to submit it to avoid deadlocks.
2815 	 */
2816 	if (blk_needs_flush_plug(tsk))
2817 		blk_schedule_flush_plug(tsk);
2818 }
2819 
2820 asmlinkage __visible void __sched schedule(void)
2821 {
2822 	struct task_struct *tsk = current;
2823 
2824 	sched_submit_work(tsk);
2825 	do {
2826 		__schedule();
2827 	} while (need_resched());
2828 }
2829 EXPORT_SYMBOL(schedule);
2830 
2831 #ifdef CONFIG_CONTEXT_TRACKING
2832 asmlinkage __visible void __sched schedule_user(void)
2833 {
2834 	/*
2835 	 * If we come here after a random call to set_need_resched(),
2836 	 * or we have been woken up remotely but the IPI has not yet arrived,
2837 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2838 	 * we find a better solution.
2839 	 *
2840 	 * NB: There are buggy callers of this function.  Ideally we
2841 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
2842 	 * too frequently to make sense yet.
2843 	 */
2844 	enum ctx_state prev_state = exception_enter();
2845 	schedule();
2846 	exception_exit(prev_state);
2847 }
2848 #endif
2849 
2850 /**
2851  * schedule_preempt_disabled - called with preemption disabled
2852  *
2853  * Returns with preemption disabled. Note: preempt_count must be 1
2854  */
2855 void __sched schedule_preempt_disabled(void)
2856 {
2857 	sched_preempt_enable_no_resched();
2858 	schedule();
2859 	preempt_disable();
2860 }
2861 
2862 static void __sched notrace preempt_schedule_common(void)
2863 {
2864 	do {
2865 		__preempt_count_add(PREEMPT_ACTIVE);
2866 		__schedule();
2867 		__preempt_count_sub(PREEMPT_ACTIVE);
2868 
2869 		/*
2870 		 * Check again in case we missed a preemption opportunity
2871 		 * between schedule and now.
2872 		 */
2873 		barrier();
2874 	} while (need_resched());
2875 }
2876 
2877 #ifdef CONFIG_PREEMPT
2878 /*
2879  * this is the entry point to schedule() from in-kernel preemption
2880  * off of preempt_enable. Kernel preemptions off return from interrupt
2881  * occur there and call schedule directly.
2882  */
2883 asmlinkage __visible void __sched notrace preempt_schedule(void)
2884 {
2885 	/*
2886 	 * If there is a non-zero preempt_count or interrupts are disabled,
2887 	 * we do not want to preempt the current task. Just return..
2888 	 */
2889 	if (likely(!preemptible()))
2890 		return;
2891 
2892 	preempt_schedule_common();
2893 }
2894 NOKPROBE_SYMBOL(preempt_schedule);
2895 EXPORT_SYMBOL(preempt_schedule);
2896 
2897 #ifdef CONFIG_CONTEXT_TRACKING
2898 /**
2899  * preempt_schedule_context - preempt_schedule called by tracing
2900  *
2901  * The tracing infrastructure uses preempt_enable_notrace to prevent
2902  * recursion and tracing preempt enabling caused by the tracing
2903  * infrastructure itself. But as tracing can happen in areas coming
2904  * from userspace or just about to enter userspace, a preempt enable
2905  * can occur before user_exit() is called. This will cause the scheduler
2906  * to be called when the system is still in usermode.
2907  *
2908  * To prevent this, the preempt_enable_notrace will use this function
2909  * instead of preempt_schedule() to exit user context if needed before
2910  * calling the scheduler.
2911  */
2912 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2913 {
2914 	enum ctx_state prev_ctx;
2915 
2916 	if (likely(!preemptible()))
2917 		return;
2918 
2919 	do {
2920 		__preempt_count_add(PREEMPT_ACTIVE);
2921 		/*
2922 		 * Needs preempt disabled in case user_exit() is traced
2923 		 * and the tracer calls preempt_enable_notrace() causing
2924 		 * an infinite recursion.
2925 		 */
2926 		prev_ctx = exception_enter();
2927 		__schedule();
2928 		exception_exit(prev_ctx);
2929 
2930 		__preempt_count_sub(PREEMPT_ACTIVE);
2931 		barrier();
2932 	} while (need_resched());
2933 }
2934 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2935 #endif /* CONFIG_CONTEXT_TRACKING */
2936 
2937 #endif /* CONFIG_PREEMPT */
2938 
2939 /*
2940  * this is the entry point to schedule() from kernel preemption
2941  * off of irq context.
2942  * Note, that this is called and return with irqs disabled. This will
2943  * protect us against recursive calling from irq.
2944  */
2945 asmlinkage __visible void __sched preempt_schedule_irq(void)
2946 {
2947 	enum ctx_state prev_state;
2948 
2949 	/* Catch callers which need to be fixed */
2950 	BUG_ON(preempt_count() || !irqs_disabled());
2951 
2952 	prev_state = exception_enter();
2953 
2954 	do {
2955 		__preempt_count_add(PREEMPT_ACTIVE);
2956 		local_irq_enable();
2957 		__schedule();
2958 		local_irq_disable();
2959 		__preempt_count_sub(PREEMPT_ACTIVE);
2960 
2961 		/*
2962 		 * Check again in case we missed a preemption opportunity
2963 		 * between schedule and now.
2964 		 */
2965 		barrier();
2966 	} while (need_resched());
2967 
2968 	exception_exit(prev_state);
2969 }
2970 
2971 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2972 			  void *key)
2973 {
2974 	return try_to_wake_up(curr->private, mode, wake_flags);
2975 }
2976 EXPORT_SYMBOL(default_wake_function);
2977 
2978 #ifdef CONFIG_RT_MUTEXES
2979 
2980 /*
2981  * rt_mutex_setprio - set the current priority of a task
2982  * @p: task
2983  * @prio: prio value (kernel-internal form)
2984  *
2985  * This function changes the 'effective' priority of a task. It does
2986  * not touch ->normal_prio like __setscheduler().
2987  *
2988  * Used by the rt_mutex code to implement priority inheritance
2989  * logic. Call site only calls if the priority of the task changed.
2990  */
2991 void rt_mutex_setprio(struct task_struct *p, int prio)
2992 {
2993 	int oldprio, queued, running, enqueue_flag = 0;
2994 	struct rq *rq;
2995 	const struct sched_class *prev_class;
2996 
2997 	BUG_ON(prio > MAX_PRIO);
2998 
2999 	rq = __task_rq_lock(p);
3000 
3001 	/*
3002 	 * Idle task boosting is a nono in general. There is one
3003 	 * exception, when PREEMPT_RT and NOHZ is active:
3004 	 *
3005 	 * The idle task calls get_next_timer_interrupt() and holds
3006 	 * the timer wheel base->lock on the CPU and another CPU wants
3007 	 * to access the timer (probably to cancel it). We can safely
3008 	 * ignore the boosting request, as the idle CPU runs this code
3009 	 * with interrupts disabled and will complete the lock
3010 	 * protected section without being interrupted. So there is no
3011 	 * real need to boost.
3012 	 */
3013 	if (unlikely(p == rq->idle)) {
3014 		WARN_ON(p != rq->curr);
3015 		WARN_ON(p->pi_blocked_on);
3016 		goto out_unlock;
3017 	}
3018 
3019 	trace_sched_pi_setprio(p, prio);
3020 	oldprio = p->prio;
3021 	prev_class = p->sched_class;
3022 	queued = task_on_rq_queued(p);
3023 	running = task_current(rq, p);
3024 	if (queued)
3025 		dequeue_task(rq, p, 0);
3026 	if (running)
3027 		put_prev_task(rq, p);
3028 
3029 	/*
3030 	 * Boosting condition are:
3031 	 * 1. -rt task is running and holds mutex A
3032 	 *      --> -dl task blocks on mutex A
3033 	 *
3034 	 * 2. -dl task is running and holds mutex A
3035 	 *      --> -dl task blocks on mutex A and could preempt the
3036 	 *          running task
3037 	 */
3038 	if (dl_prio(prio)) {
3039 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3040 		if (!dl_prio(p->normal_prio) ||
3041 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3042 			p->dl.dl_boosted = 1;
3043 			p->dl.dl_throttled = 0;
3044 			enqueue_flag = ENQUEUE_REPLENISH;
3045 		} else
3046 			p->dl.dl_boosted = 0;
3047 		p->sched_class = &dl_sched_class;
3048 	} else if (rt_prio(prio)) {
3049 		if (dl_prio(oldprio))
3050 			p->dl.dl_boosted = 0;
3051 		if (oldprio < prio)
3052 			enqueue_flag = ENQUEUE_HEAD;
3053 		p->sched_class = &rt_sched_class;
3054 	} else {
3055 		if (dl_prio(oldprio))
3056 			p->dl.dl_boosted = 0;
3057 		if (rt_prio(oldprio))
3058 			p->rt.timeout = 0;
3059 		p->sched_class = &fair_sched_class;
3060 	}
3061 
3062 	p->prio = prio;
3063 
3064 	if (running)
3065 		p->sched_class->set_curr_task(rq);
3066 	if (queued)
3067 		enqueue_task(rq, p, enqueue_flag);
3068 
3069 	check_class_changed(rq, p, prev_class, oldprio);
3070 out_unlock:
3071 	__task_rq_unlock(rq);
3072 }
3073 #endif
3074 
3075 void set_user_nice(struct task_struct *p, long nice)
3076 {
3077 	int old_prio, delta, queued;
3078 	unsigned long flags;
3079 	struct rq *rq;
3080 
3081 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3082 		return;
3083 	/*
3084 	 * We have to be careful, if called from sys_setpriority(),
3085 	 * the task might be in the middle of scheduling on another CPU.
3086 	 */
3087 	rq = task_rq_lock(p, &flags);
3088 	/*
3089 	 * The RT priorities are set via sched_setscheduler(), but we still
3090 	 * allow the 'normal' nice value to be set - but as expected
3091 	 * it wont have any effect on scheduling until the task is
3092 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3093 	 */
3094 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3095 		p->static_prio = NICE_TO_PRIO(nice);
3096 		goto out_unlock;
3097 	}
3098 	queued = task_on_rq_queued(p);
3099 	if (queued)
3100 		dequeue_task(rq, p, 0);
3101 
3102 	p->static_prio = NICE_TO_PRIO(nice);
3103 	set_load_weight(p);
3104 	old_prio = p->prio;
3105 	p->prio = effective_prio(p);
3106 	delta = p->prio - old_prio;
3107 
3108 	if (queued) {
3109 		enqueue_task(rq, p, 0);
3110 		/*
3111 		 * If the task increased its priority or is running and
3112 		 * lowered its priority, then reschedule its CPU:
3113 		 */
3114 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3115 			resched_curr(rq);
3116 	}
3117 out_unlock:
3118 	task_rq_unlock(rq, p, &flags);
3119 }
3120 EXPORT_SYMBOL(set_user_nice);
3121 
3122 /*
3123  * can_nice - check if a task can reduce its nice value
3124  * @p: task
3125  * @nice: nice value
3126  */
3127 int can_nice(const struct task_struct *p, const int nice)
3128 {
3129 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3130 	int nice_rlim = nice_to_rlimit(nice);
3131 
3132 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3133 		capable(CAP_SYS_NICE));
3134 }
3135 
3136 #ifdef __ARCH_WANT_SYS_NICE
3137 
3138 /*
3139  * sys_nice - change the priority of the current process.
3140  * @increment: priority increment
3141  *
3142  * sys_setpriority is a more generic, but much slower function that
3143  * does similar things.
3144  */
3145 SYSCALL_DEFINE1(nice, int, increment)
3146 {
3147 	long nice, retval;
3148 
3149 	/*
3150 	 * Setpriority might change our priority at the same moment.
3151 	 * We don't have to worry. Conceptually one call occurs first
3152 	 * and we have a single winner.
3153 	 */
3154 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3155 	nice = task_nice(current) + increment;
3156 
3157 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3158 	if (increment < 0 && !can_nice(current, nice))
3159 		return -EPERM;
3160 
3161 	retval = security_task_setnice(current, nice);
3162 	if (retval)
3163 		return retval;
3164 
3165 	set_user_nice(current, nice);
3166 	return 0;
3167 }
3168 
3169 #endif
3170 
3171 /**
3172  * task_prio - return the priority value of a given task.
3173  * @p: the task in question.
3174  *
3175  * Return: The priority value as seen by users in /proc.
3176  * RT tasks are offset by -200. Normal tasks are centered
3177  * around 0, value goes from -16 to +15.
3178  */
3179 int task_prio(const struct task_struct *p)
3180 {
3181 	return p->prio - MAX_RT_PRIO;
3182 }
3183 
3184 /**
3185  * idle_cpu - is a given cpu idle currently?
3186  * @cpu: the processor in question.
3187  *
3188  * Return: 1 if the CPU is currently idle. 0 otherwise.
3189  */
3190 int idle_cpu(int cpu)
3191 {
3192 	struct rq *rq = cpu_rq(cpu);
3193 
3194 	if (rq->curr != rq->idle)
3195 		return 0;
3196 
3197 	if (rq->nr_running)
3198 		return 0;
3199 
3200 #ifdef CONFIG_SMP
3201 	if (!llist_empty(&rq->wake_list))
3202 		return 0;
3203 #endif
3204 
3205 	return 1;
3206 }
3207 
3208 /**
3209  * idle_task - return the idle task for a given cpu.
3210  * @cpu: the processor in question.
3211  *
3212  * Return: The idle task for the cpu @cpu.
3213  */
3214 struct task_struct *idle_task(int cpu)
3215 {
3216 	return cpu_rq(cpu)->idle;
3217 }
3218 
3219 /**
3220  * find_process_by_pid - find a process with a matching PID value.
3221  * @pid: the pid in question.
3222  *
3223  * The task of @pid, if found. %NULL otherwise.
3224  */
3225 static struct task_struct *find_process_by_pid(pid_t pid)
3226 {
3227 	return pid ? find_task_by_vpid(pid) : current;
3228 }
3229 
3230 /*
3231  * This function initializes the sched_dl_entity of a newly becoming
3232  * SCHED_DEADLINE task.
3233  *
3234  * Only the static values are considered here, the actual runtime and the
3235  * absolute deadline will be properly calculated when the task is enqueued
3236  * for the first time with its new policy.
3237  */
3238 static void
3239 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3240 {
3241 	struct sched_dl_entity *dl_se = &p->dl;
3242 
3243 	dl_se->dl_runtime = attr->sched_runtime;
3244 	dl_se->dl_deadline = attr->sched_deadline;
3245 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3246 	dl_se->flags = attr->sched_flags;
3247 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3248 
3249 	/*
3250 	 * Changing the parameters of a task is 'tricky' and we're not doing
3251 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3252 	 *
3253 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3254 	 * point. This would include retaining the task_struct until that time
3255 	 * and change dl_overflow() to not immediately decrement the current
3256 	 * amount.
3257 	 *
3258 	 * Instead we retain the current runtime/deadline and let the new
3259 	 * parameters take effect after the current reservation period lapses.
3260 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3261 	 * before the current scheduling deadline.
3262 	 *
3263 	 * We can still have temporary overloads because we do not delay the
3264 	 * change in bandwidth until that time; so admission control is
3265 	 * not on the safe side. It does however guarantee tasks will never
3266 	 * consume more than promised.
3267 	 */
3268 }
3269 
3270 /*
3271  * sched_setparam() passes in -1 for its policy, to let the functions
3272  * it calls know not to change it.
3273  */
3274 #define SETPARAM_POLICY	-1
3275 
3276 static void __setscheduler_params(struct task_struct *p,
3277 		const struct sched_attr *attr)
3278 {
3279 	int policy = attr->sched_policy;
3280 
3281 	if (policy == SETPARAM_POLICY)
3282 		policy = p->policy;
3283 
3284 	p->policy = policy;
3285 
3286 	if (dl_policy(policy))
3287 		__setparam_dl(p, attr);
3288 	else if (fair_policy(policy))
3289 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3290 
3291 	/*
3292 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3293 	 * !rt_policy. Always setting this ensures that things like
3294 	 * getparam()/getattr() don't report silly values for !rt tasks.
3295 	 */
3296 	p->rt_priority = attr->sched_priority;
3297 	p->normal_prio = normal_prio(p);
3298 	set_load_weight(p);
3299 }
3300 
3301 /* Actually do priority change: must hold pi & rq lock. */
3302 static void __setscheduler(struct rq *rq, struct task_struct *p,
3303 			   const struct sched_attr *attr)
3304 {
3305 	__setscheduler_params(p, attr);
3306 
3307 	/*
3308 	 * If we get here, there was no pi waiters boosting the
3309 	 * task. It is safe to use the normal prio.
3310 	 */
3311 	p->prio = normal_prio(p);
3312 
3313 	if (dl_prio(p->prio))
3314 		p->sched_class = &dl_sched_class;
3315 	else if (rt_prio(p->prio))
3316 		p->sched_class = &rt_sched_class;
3317 	else
3318 		p->sched_class = &fair_sched_class;
3319 }
3320 
3321 static void
3322 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3323 {
3324 	struct sched_dl_entity *dl_se = &p->dl;
3325 
3326 	attr->sched_priority = p->rt_priority;
3327 	attr->sched_runtime = dl_se->dl_runtime;
3328 	attr->sched_deadline = dl_se->dl_deadline;
3329 	attr->sched_period = dl_se->dl_period;
3330 	attr->sched_flags = dl_se->flags;
3331 }
3332 
3333 /*
3334  * This function validates the new parameters of a -deadline task.
3335  * We ask for the deadline not being zero, and greater or equal
3336  * than the runtime, as well as the period of being zero or
3337  * greater than deadline. Furthermore, we have to be sure that
3338  * user parameters are above the internal resolution of 1us (we
3339  * check sched_runtime only since it is always the smaller one) and
3340  * below 2^63 ns (we have to check both sched_deadline and
3341  * sched_period, as the latter can be zero).
3342  */
3343 static bool
3344 __checkparam_dl(const struct sched_attr *attr)
3345 {
3346 	/* deadline != 0 */
3347 	if (attr->sched_deadline == 0)
3348 		return false;
3349 
3350 	/*
3351 	 * Since we truncate DL_SCALE bits, make sure we're at least
3352 	 * that big.
3353 	 */
3354 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3355 		return false;
3356 
3357 	/*
3358 	 * Since we use the MSB for wrap-around and sign issues, make
3359 	 * sure it's not set (mind that period can be equal to zero).
3360 	 */
3361 	if (attr->sched_deadline & (1ULL << 63) ||
3362 	    attr->sched_period & (1ULL << 63))
3363 		return false;
3364 
3365 	/* runtime <= deadline <= period (if period != 0) */
3366 	if ((attr->sched_period != 0 &&
3367 	     attr->sched_period < attr->sched_deadline) ||
3368 	    attr->sched_deadline < attr->sched_runtime)
3369 		return false;
3370 
3371 	return true;
3372 }
3373 
3374 /*
3375  * check the target process has a UID that matches the current process's
3376  */
3377 static bool check_same_owner(struct task_struct *p)
3378 {
3379 	const struct cred *cred = current_cred(), *pcred;
3380 	bool match;
3381 
3382 	rcu_read_lock();
3383 	pcred = __task_cred(p);
3384 	match = (uid_eq(cred->euid, pcred->euid) ||
3385 		 uid_eq(cred->euid, pcred->uid));
3386 	rcu_read_unlock();
3387 	return match;
3388 }
3389 
3390 static bool dl_param_changed(struct task_struct *p,
3391 		const struct sched_attr *attr)
3392 {
3393 	struct sched_dl_entity *dl_se = &p->dl;
3394 
3395 	if (dl_se->dl_runtime != attr->sched_runtime ||
3396 		dl_se->dl_deadline != attr->sched_deadline ||
3397 		dl_se->dl_period != attr->sched_period ||
3398 		dl_se->flags != attr->sched_flags)
3399 		return true;
3400 
3401 	return false;
3402 }
3403 
3404 static int __sched_setscheduler(struct task_struct *p,
3405 				const struct sched_attr *attr,
3406 				bool user)
3407 {
3408 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3409 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3410 	int retval, oldprio, oldpolicy = -1, queued, running;
3411 	int policy = attr->sched_policy;
3412 	unsigned long flags;
3413 	const struct sched_class *prev_class;
3414 	struct rq *rq;
3415 	int reset_on_fork;
3416 
3417 	/* may grab non-irq protected spin_locks */
3418 	BUG_ON(in_interrupt());
3419 recheck:
3420 	/* double check policy once rq lock held */
3421 	if (policy < 0) {
3422 		reset_on_fork = p->sched_reset_on_fork;
3423 		policy = oldpolicy = p->policy;
3424 	} else {
3425 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3426 
3427 		if (policy != SCHED_DEADLINE &&
3428 				policy != SCHED_FIFO && policy != SCHED_RR &&
3429 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3430 				policy != SCHED_IDLE)
3431 			return -EINVAL;
3432 	}
3433 
3434 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3435 		return -EINVAL;
3436 
3437 	/*
3438 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3439 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3440 	 * SCHED_BATCH and SCHED_IDLE is 0.
3441 	 */
3442 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3443 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3444 		return -EINVAL;
3445 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3446 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3447 		return -EINVAL;
3448 
3449 	/*
3450 	 * Allow unprivileged RT tasks to decrease priority:
3451 	 */
3452 	if (user && !capable(CAP_SYS_NICE)) {
3453 		if (fair_policy(policy)) {
3454 			if (attr->sched_nice < task_nice(p) &&
3455 			    !can_nice(p, attr->sched_nice))
3456 				return -EPERM;
3457 		}
3458 
3459 		if (rt_policy(policy)) {
3460 			unsigned long rlim_rtprio =
3461 					task_rlimit(p, RLIMIT_RTPRIO);
3462 
3463 			/* can't set/change the rt policy */
3464 			if (policy != p->policy && !rlim_rtprio)
3465 				return -EPERM;
3466 
3467 			/* can't increase priority */
3468 			if (attr->sched_priority > p->rt_priority &&
3469 			    attr->sched_priority > rlim_rtprio)
3470 				return -EPERM;
3471 		}
3472 
3473 		 /*
3474 		  * Can't set/change SCHED_DEADLINE policy at all for now
3475 		  * (safest behavior); in the future we would like to allow
3476 		  * unprivileged DL tasks to increase their relative deadline
3477 		  * or reduce their runtime (both ways reducing utilization)
3478 		  */
3479 		if (dl_policy(policy))
3480 			return -EPERM;
3481 
3482 		/*
3483 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3484 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3485 		 */
3486 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3487 			if (!can_nice(p, task_nice(p)))
3488 				return -EPERM;
3489 		}
3490 
3491 		/* can't change other user's priorities */
3492 		if (!check_same_owner(p))
3493 			return -EPERM;
3494 
3495 		/* Normal users shall not reset the sched_reset_on_fork flag */
3496 		if (p->sched_reset_on_fork && !reset_on_fork)
3497 			return -EPERM;
3498 	}
3499 
3500 	if (user) {
3501 		retval = security_task_setscheduler(p);
3502 		if (retval)
3503 			return retval;
3504 	}
3505 
3506 	/*
3507 	 * make sure no PI-waiters arrive (or leave) while we are
3508 	 * changing the priority of the task:
3509 	 *
3510 	 * To be able to change p->policy safely, the appropriate
3511 	 * runqueue lock must be held.
3512 	 */
3513 	rq = task_rq_lock(p, &flags);
3514 
3515 	/*
3516 	 * Changing the policy of the stop threads its a very bad idea
3517 	 */
3518 	if (p == rq->stop) {
3519 		task_rq_unlock(rq, p, &flags);
3520 		return -EINVAL;
3521 	}
3522 
3523 	/*
3524 	 * If not changing anything there's no need to proceed further,
3525 	 * but store a possible modification of reset_on_fork.
3526 	 */
3527 	if (unlikely(policy == p->policy)) {
3528 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3529 			goto change;
3530 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3531 			goto change;
3532 		if (dl_policy(policy) && dl_param_changed(p, attr))
3533 			goto change;
3534 
3535 		p->sched_reset_on_fork = reset_on_fork;
3536 		task_rq_unlock(rq, p, &flags);
3537 		return 0;
3538 	}
3539 change:
3540 
3541 	if (user) {
3542 #ifdef CONFIG_RT_GROUP_SCHED
3543 		/*
3544 		 * Do not allow realtime tasks into groups that have no runtime
3545 		 * assigned.
3546 		 */
3547 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3548 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3549 				!task_group_is_autogroup(task_group(p))) {
3550 			task_rq_unlock(rq, p, &flags);
3551 			return -EPERM;
3552 		}
3553 #endif
3554 #ifdef CONFIG_SMP
3555 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3556 			cpumask_t *span = rq->rd->span;
3557 
3558 			/*
3559 			 * Don't allow tasks with an affinity mask smaller than
3560 			 * the entire root_domain to become SCHED_DEADLINE. We
3561 			 * will also fail if there's no bandwidth available.
3562 			 */
3563 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3564 			    rq->rd->dl_bw.bw == 0) {
3565 				task_rq_unlock(rq, p, &flags);
3566 				return -EPERM;
3567 			}
3568 		}
3569 #endif
3570 	}
3571 
3572 	/* recheck policy now with rq lock held */
3573 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3574 		policy = oldpolicy = -1;
3575 		task_rq_unlock(rq, p, &flags);
3576 		goto recheck;
3577 	}
3578 
3579 	/*
3580 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3581 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3582 	 * is available.
3583 	 */
3584 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3585 		task_rq_unlock(rq, p, &flags);
3586 		return -EBUSY;
3587 	}
3588 
3589 	p->sched_reset_on_fork = reset_on_fork;
3590 	oldprio = p->prio;
3591 
3592 	/*
3593 	 * Special case for priority boosted tasks.
3594 	 *
3595 	 * If the new priority is lower or equal (user space view)
3596 	 * than the current (boosted) priority, we just store the new
3597 	 * normal parameters and do not touch the scheduler class and
3598 	 * the runqueue. This will be done when the task deboost
3599 	 * itself.
3600 	 */
3601 	if (rt_mutex_check_prio(p, newprio)) {
3602 		__setscheduler_params(p, attr);
3603 		task_rq_unlock(rq, p, &flags);
3604 		return 0;
3605 	}
3606 
3607 	queued = task_on_rq_queued(p);
3608 	running = task_current(rq, p);
3609 	if (queued)
3610 		dequeue_task(rq, p, 0);
3611 	if (running)
3612 		put_prev_task(rq, p);
3613 
3614 	prev_class = p->sched_class;
3615 	__setscheduler(rq, p, attr);
3616 
3617 	if (running)
3618 		p->sched_class->set_curr_task(rq);
3619 	if (queued) {
3620 		/*
3621 		 * We enqueue to tail when the priority of a task is
3622 		 * increased (user space view).
3623 		 */
3624 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3625 	}
3626 
3627 	check_class_changed(rq, p, prev_class, oldprio);
3628 	task_rq_unlock(rq, p, &flags);
3629 
3630 	rt_mutex_adjust_pi(p);
3631 
3632 	return 0;
3633 }
3634 
3635 static int _sched_setscheduler(struct task_struct *p, int policy,
3636 			       const struct sched_param *param, bool check)
3637 {
3638 	struct sched_attr attr = {
3639 		.sched_policy   = policy,
3640 		.sched_priority = param->sched_priority,
3641 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3642 	};
3643 
3644 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3645 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3646 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3647 		policy &= ~SCHED_RESET_ON_FORK;
3648 		attr.sched_policy = policy;
3649 	}
3650 
3651 	return __sched_setscheduler(p, &attr, check);
3652 }
3653 /**
3654  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3655  * @p: the task in question.
3656  * @policy: new policy.
3657  * @param: structure containing the new RT priority.
3658  *
3659  * Return: 0 on success. An error code otherwise.
3660  *
3661  * NOTE that the task may be already dead.
3662  */
3663 int sched_setscheduler(struct task_struct *p, int policy,
3664 		       const struct sched_param *param)
3665 {
3666 	return _sched_setscheduler(p, policy, param, true);
3667 }
3668 EXPORT_SYMBOL_GPL(sched_setscheduler);
3669 
3670 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3671 {
3672 	return __sched_setscheduler(p, attr, true);
3673 }
3674 EXPORT_SYMBOL_GPL(sched_setattr);
3675 
3676 /**
3677  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3678  * @p: the task in question.
3679  * @policy: new policy.
3680  * @param: structure containing the new RT priority.
3681  *
3682  * Just like sched_setscheduler, only don't bother checking if the
3683  * current context has permission.  For example, this is needed in
3684  * stop_machine(): we create temporary high priority worker threads,
3685  * but our caller might not have that capability.
3686  *
3687  * Return: 0 on success. An error code otherwise.
3688  */
3689 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3690 			       const struct sched_param *param)
3691 {
3692 	return _sched_setscheduler(p, policy, param, false);
3693 }
3694 
3695 static int
3696 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3697 {
3698 	struct sched_param lparam;
3699 	struct task_struct *p;
3700 	int retval;
3701 
3702 	if (!param || pid < 0)
3703 		return -EINVAL;
3704 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3705 		return -EFAULT;
3706 
3707 	rcu_read_lock();
3708 	retval = -ESRCH;
3709 	p = find_process_by_pid(pid);
3710 	if (p != NULL)
3711 		retval = sched_setscheduler(p, policy, &lparam);
3712 	rcu_read_unlock();
3713 
3714 	return retval;
3715 }
3716 
3717 /*
3718  * Mimics kernel/events/core.c perf_copy_attr().
3719  */
3720 static int sched_copy_attr(struct sched_attr __user *uattr,
3721 			   struct sched_attr *attr)
3722 {
3723 	u32 size;
3724 	int ret;
3725 
3726 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3727 		return -EFAULT;
3728 
3729 	/*
3730 	 * zero the full structure, so that a short copy will be nice.
3731 	 */
3732 	memset(attr, 0, sizeof(*attr));
3733 
3734 	ret = get_user(size, &uattr->size);
3735 	if (ret)
3736 		return ret;
3737 
3738 	if (size > PAGE_SIZE)	/* silly large */
3739 		goto err_size;
3740 
3741 	if (!size)		/* abi compat */
3742 		size = SCHED_ATTR_SIZE_VER0;
3743 
3744 	if (size < SCHED_ATTR_SIZE_VER0)
3745 		goto err_size;
3746 
3747 	/*
3748 	 * If we're handed a bigger struct than we know of,
3749 	 * ensure all the unknown bits are 0 - i.e. new
3750 	 * user-space does not rely on any kernel feature
3751 	 * extensions we dont know about yet.
3752 	 */
3753 	if (size > sizeof(*attr)) {
3754 		unsigned char __user *addr;
3755 		unsigned char __user *end;
3756 		unsigned char val;
3757 
3758 		addr = (void __user *)uattr + sizeof(*attr);
3759 		end  = (void __user *)uattr + size;
3760 
3761 		for (; addr < end; addr++) {
3762 			ret = get_user(val, addr);
3763 			if (ret)
3764 				return ret;
3765 			if (val)
3766 				goto err_size;
3767 		}
3768 		size = sizeof(*attr);
3769 	}
3770 
3771 	ret = copy_from_user(attr, uattr, size);
3772 	if (ret)
3773 		return -EFAULT;
3774 
3775 	/*
3776 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3777 	 * to be strict and return an error on out-of-bounds values?
3778 	 */
3779 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3780 
3781 	return 0;
3782 
3783 err_size:
3784 	put_user(sizeof(*attr), &uattr->size);
3785 	return -E2BIG;
3786 }
3787 
3788 /**
3789  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3790  * @pid: the pid in question.
3791  * @policy: new policy.
3792  * @param: structure containing the new RT priority.
3793  *
3794  * Return: 0 on success. An error code otherwise.
3795  */
3796 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3797 		struct sched_param __user *, param)
3798 {
3799 	/* negative values for policy are not valid */
3800 	if (policy < 0)
3801 		return -EINVAL;
3802 
3803 	return do_sched_setscheduler(pid, policy, param);
3804 }
3805 
3806 /**
3807  * sys_sched_setparam - set/change the RT priority of a thread
3808  * @pid: the pid in question.
3809  * @param: structure containing the new RT priority.
3810  *
3811  * Return: 0 on success. An error code otherwise.
3812  */
3813 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3814 {
3815 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3816 }
3817 
3818 /**
3819  * sys_sched_setattr - same as above, but with extended sched_attr
3820  * @pid: the pid in question.
3821  * @uattr: structure containing the extended parameters.
3822  * @flags: for future extension.
3823  */
3824 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3825 			       unsigned int, flags)
3826 {
3827 	struct sched_attr attr;
3828 	struct task_struct *p;
3829 	int retval;
3830 
3831 	if (!uattr || pid < 0 || flags)
3832 		return -EINVAL;
3833 
3834 	retval = sched_copy_attr(uattr, &attr);
3835 	if (retval)
3836 		return retval;
3837 
3838 	if ((int)attr.sched_policy < 0)
3839 		return -EINVAL;
3840 
3841 	rcu_read_lock();
3842 	retval = -ESRCH;
3843 	p = find_process_by_pid(pid);
3844 	if (p != NULL)
3845 		retval = sched_setattr(p, &attr);
3846 	rcu_read_unlock();
3847 
3848 	return retval;
3849 }
3850 
3851 /**
3852  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3853  * @pid: the pid in question.
3854  *
3855  * Return: On success, the policy of the thread. Otherwise, a negative error
3856  * code.
3857  */
3858 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3859 {
3860 	struct task_struct *p;
3861 	int retval;
3862 
3863 	if (pid < 0)
3864 		return -EINVAL;
3865 
3866 	retval = -ESRCH;
3867 	rcu_read_lock();
3868 	p = find_process_by_pid(pid);
3869 	if (p) {
3870 		retval = security_task_getscheduler(p);
3871 		if (!retval)
3872 			retval = p->policy
3873 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3874 	}
3875 	rcu_read_unlock();
3876 	return retval;
3877 }
3878 
3879 /**
3880  * sys_sched_getparam - get the RT priority of a thread
3881  * @pid: the pid in question.
3882  * @param: structure containing the RT priority.
3883  *
3884  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3885  * code.
3886  */
3887 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3888 {
3889 	struct sched_param lp = { .sched_priority = 0 };
3890 	struct task_struct *p;
3891 	int retval;
3892 
3893 	if (!param || pid < 0)
3894 		return -EINVAL;
3895 
3896 	rcu_read_lock();
3897 	p = find_process_by_pid(pid);
3898 	retval = -ESRCH;
3899 	if (!p)
3900 		goto out_unlock;
3901 
3902 	retval = security_task_getscheduler(p);
3903 	if (retval)
3904 		goto out_unlock;
3905 
3906 	if (task_has_rt_policy(p))
3907 		lp.sched_priority = p->rt_priority;
3908 	rcu_read_unlock();
3909 
3910 	/*
3911 	 * This one might sleep, we cannot do it with a spinlock held ...
3912 	 */
3913 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3914 
3915 	return retval;
3916 
3917 out_unlock:
3918 	rcu_read_unlock();
3919 	return retval;
3920 }
3921 
3922 static int sched_read_attr(struct sched_attr __user *uattr,
3923 			   struct sched_attr *attr,
3924 			   unsigned int usize)
3925 {
3926 	int ret;
3927 
3928 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3929 		return -EFAULT;
3930 
3931 	/*
3932 	 * If we're handed a smaller struct than we know of,
3933 	 * ensure all the unknown bits are 0 - i.e. old
3934 	 * user-space does not get uncomplete information.
3935 	 */
3936 	if (usize < sizeof(*attr)) {
3937 		unsigned char *addr;
3938 		unsigned char *end;
3939 
3940 		addr = (void *)attr + usize;
3941 		end  = (void *)attr + sizeof(*attr);
3942 
3943 		for (; addr < end; addr++) {
3944 			if (*addr)
3945 				return -EFBIG;
3946 		}
3947 
3948 		attr->size = usize;
3949 	}
3950 
3951 	ret = copy_to_user(uattr, attr, attr->size);
3952 	if (ret)
3953 		return -EFAULT;
3954 
3955 	return 0;
3956 }
3957 
3958 /**
3959  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3960  * @pid: the pid in question.
3961  * @uattr: structure containing the extended parameters.
3962  * @size: sizeof(attr) for fwd/bwd comp.
3963  * @flags: for future extension.
3964  */
3965 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3966 		unsigned int, size, unsigned int, flags)
3967 {
3968 	struct sched_attr attr = {
3969 		.size = sizeof(struct sched_attr),
3970 	};
3971 	struct task_struct *p;
3972 	int retval;
3973 
3974 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3975 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3976 		return -EINVAL;
3977 
3978 	rcu_read_lock();
3979 	p = find_process_by_pid(pid);
3980 	retval = -ESRCH;
3981 	if (!p)
3982 		goto out_unlock;
3983 
3984 	retval = security_task_getscheduler(p);
3985 	if (retval)
3986 		goto out_unlock;
3987 
3988 	attr.sched_policy = p->policy;
3989 	if (p->sched_reset_on_fork)
3990 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3991 	if (task_has_dl_policy(p))
3992 		__getparam_dl(p, &attr);
3993 	else if (task_has_rt_policy(p))
3994 		attr.sched_priority = p->rt_priority;
3995 	else
3996 		attr.sched_nice = task_nice(p);
3997 
3998 	rcu_read_unlock();
3999 
4000 	retval = sched_read_attr(uattr, &attr, size);
4001 	return retval;
4002 
4003 out_unlock:
4004 	rcu_read_unlock();
4005 	return retval;
4006 }
4007 
4008 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4009 {
4010 	cpumask_var_t cpus_allowed, new_mask;
4011 	struct task_struct *p;
4012 	int retval;
4013 
4014 	rcu_read_lock();
4015 
4016 	p = find_process_by_pid(pid);
4017 	if (!p) {
4018 		rcu_read_unlock();
4019 		return -ESRCH;
4020 	}
4021 
4022 	/* Prevent p going away */
4023 	get_task_struct(p);
4024 	rcu_read_unlock();
4025 
4026 	if (p->flags & PF_NO_SETAFFINITY) {
4027 		retval = -EINVAL;
4028 		goto out_put_task;
4029 	}
4030 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4031 		retval = -ENOMEM;
4032 		goto out_put_task;
4033 	}
4034 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4035 		retval = -ENOMEM;
4036 		goto out_free_cpus_allowed;
4037 	}
4038 	retval = -EPERM;
4039 	if (!check_same_owner(p)) {
4040 		rcu_read_lock();
4041 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4042 			rcu_read_unlock();
4043 			goto out_free_new_mask;
4044 		}
4045 		rcu_read_unlock();
4046 	}
4047 
4048 	retval = security_task_setscheduler(p);
4049 	if (retval)
4050 		goto out_free_new_mask;
4051 
4052 
4053 	cpuset_cpus_allowed(p, cpus_allowed);
4054 	cpumask_and(new_mask, in_mask, cpus_allowed);
4055 
4056 	/*
4057 	 * Since bandwidth control happens on root_domain basis,
4058 	 * if admission test is enabled, we only admit -deadline
4059 	 * tasks allowed to run on all the CPUs in the task's
4060 	 * root_domain.
4061 	 */
4062 #ifdef CONFIG_SMP
4063 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4064 		rcu_read_lock();
4065 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4066 			retval = -EBUSY;
4067 			rcu_read_unlock();
4068 			goto out_free_new_mask;
4069 		}
4070 		rcu_read_unlock();
4071 	}
4072 #endif
4073 again:
4074 	retval = set_cpus_allowed_ptr(p, new_mask);
4075 
4076 	if (!retval) {
4077 		cpuset_cpus_allowed(p, cpus_allowed);
4078 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4079 			/*
4080 			 * We must have raced with a concurrent cpuset
4081 			 * update. Just reset the cpus_allowed to the
4082 			 * cpuset's cpus_allowed
4083 			 */
4084 			cpumask_copy(new_mask, cpus_allowed);
4085 			goto again;
4086 		}
4087 	}
4088 out_free_new_mask:
4089 	free_cpumask_var(new_mask);
4090 out_free_cpus_allowed:
4091 	free_cpumask_var(cpus_allowed);
4092 out_put_task:
4093 	put_task_struct(p);
4094 	return retval;
4095 }
4096 
4097 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4098 			     struct cpumask *new_mask)
4099 {
4100 	if (len < cpumask_size())
4101 		cpumask_clear(new_mask);
4102 	else if (len > cpumask_size())
4103 		len = cpumask_size();
4104 
4105 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4106 }
4107 
4108 /**
4109  * sys_sched_setaffinity - set the cpu affinity of a process
4110  * @pid: pid of the process
4111  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4112  * @user_mask_ptr: user-space pointer to the new cpu mask
4113  *
4114  * Return: 0 on success. An error code otherwise.
4115  */
4116 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4117 		unsigned long __user *, user_mask_ptr)
4118 {
4119 	cpumask_var_t new_mask;
4120 	int retval;
4121 
4122 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4123 		return -ENOMEM;
4124 
4125 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4126 	if (retval == 0)
4127 		retval = sched_setaffinity(pid, new_mask);
4128 	free_cpumask_var(new_mask);
4129 	return retval;
4130 }
4131 
4132 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4133 {
4134 	struct task_struct *p;
4135 	unsigned long flags;
4136 	int retval;
4137 
4138 	rcu_read_lock();
4139 
4140 	retval = -ESRCH;
4141 	p = find_process_by_pid(pid);
4142 	if (!p)
4143 		goto out_unlock;
4144 
4145 	retval = security_task_getscheduler(p);
4146 	if (retval)
4147 		goto out_unlock;
4148 
4149 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4150 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4151 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4152 
4153 out_unlock:
4154 	rcu_read_unlock();
4155 
4156 	return retval;
4157 }
4158 
4159 /**
4160  * sys_sched_getaffinity - get the cpu affinity of a process
4161  * @pid: pid of the process
4162  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4163  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4164  *
4165  * Return: 0 on success. An error code otherwise.
4166  */
4167 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4168 		unsigned long __user *, user_mask_ptr)
4169 {
4170 	int ret;
4171 	cpumask_var_t mask;
4172 
4173 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4174 		return -EINVAL;
4175 	if (len & (sizeof(unsigned long)-1))
4176 		return -EINVAL;
4177 
4178 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4179 		return -ENOMEM;
4180 
4181 	ret = sched_getaffinity(pid, mask);
4182 	if (ret == 0) {
4183 		size_t retlen = min_t(size_t, len, cpumask_size());
4184 
4185 		if (copy_to_user(user_mask_ptr, mask, retlen))
4186 			ret = -EFAULT;
4187 		else
4188 			ret = retlen;
4189 	}
4190 	free_cpumask_var(mask);
4191 
4192 	return ret;
4193 }
4194 
4195 /**
4196  * sys_sched_yield - yield the current processor to other threads.
4197  *
4198  * This function yields the current CPU to other tasks. If there are no
4199  * other threads running on this CPU then this function will return.
4200  *
4201  * Return: 0.
4202  */
4203 SYSCALL_DEFINE0(sched_yield)
4204 {
4205 	struct rq *rq = this_rq_lock();
4206 
4207 	schedstat_inc(rq, yld_count);
4208 	current->sched_class->yield_task(rq);
4209 
4210 	/*
4211 	 * Since we are going to call schedule() anyway, there's
4212 	 * no need to preempt or enable interrupts:
4213 	 */
4214 	__release(rq->lock);
4215 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4216 	do_raw_spin_unlock(&rq->lock);
4217 	sched_preempt_enable_no_resched();
4218 
4219 	schedule();
4220 
4221 	return 0;
4222 }
4223 
4224 int __sched _cond_resched(void)
4225 {
4226 	if (should_resched()) {
4227 		preempt_schedule_common();
4228 		return 1;
4229 	}
4230 	return 0;
4231 }
4232 EXPORT_SYMBOL(_cond_resched);
4233 
4234 /*
4235  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4236  * call schedule, and on return reacquire the lock.
4237  *
4238  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4239  * operations here to prevent schedule() from being called twice (once via
4240  * spin_unlock(), once by hand).
4241  */
4242 int __cond_resched_lock(spinlock_t *lock)
4243 {
4244 	int resched = should_resched();
4245 	int ret = 0;
4246 
4247 	lockdep_assert_held(lock);
4248 
4249 	if (spin_needbreak(lock) || resched) {
4250 		spin_unlock(lock);
4251 		if (resched)
4252 			preempt_schedule_common();
4253 		else
4254 			cpu_relax();
4255 		ret = 1;
4256 		spin_lock(lock);
4257 	}
4258 	return ret;
4259 }
4260 EXPORT_SYMBOL(__cond_resched_lock);
4261 
4262 int __sched __cond_resched_softirq(void)
4263 {
4264 	BUG_ON(!in_softirq());
4265 
4266 	if (should_resched()) {
4267 		local_bh_enable();
4268 		preempt_schedule_common();
4269 		local_bh_disable();
4270 		return 1;
4271 	}
4272 	return 0;
4273 }
4274 EXPORT_SYMBOL(__cond_resched_softirq);
4275 
4276 /**
4277  * yield - yield the current processor to other threads.
4278  *
4279  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4280  *
4281  * The scheduler is at all times free to pick the calling task as the most
4282  * eligible task to run, if removing the yield() call from your code breaks
4283  * it, its already broken.
4284  *
4285  * Typical broken usage is:
4286  *
4287  * while (!event)
4288  * 	yield();
4289  *
4290  * where one assumes that yield() will let 'the other' process run that will
4291  * make event true. If the current task is a SCHED_FIFO task that will never
4292  * happen. Never use yield() as a progress guarantee!!
4293  *
4294  * If you want to use yield() to wait for something, use wait_event().
4295  * If you want to use yield() to be 'nice' for others, use cond_resched().
4296  * If you still want to use yield(), do not!
4297  */
4298 void __sched yield(void)
4299 {
4300 	set_current_state(TASK_RUNNING);
4301 	sys_sched_yield();
4302 }
4303 EXPORT_SYMBOL(yield);
4304 
4305 /**
4306  * yield_to - yield the current processor to another thread in
4307  * your thread group, or accelerate that thread toward the
4308  * processor it's on.
4309  * @p: target task
4310  * @preempt: whether task preemption is allowed or not
4311  *
4312  * It's the caller's job to ensure that the target task struct
4313  * can't go away on us before we can do any checks.
4314  *
4315  * Return:
4316  *	true (>0) if we indeed boosted the target task.
4317  *	false (0) if we failed to boost the target.
4318  *	-ESRCH if there's no task to yield to.
4319  */
4320 int __sched yield_to(struct task_struct *p, bool preempt)
4321 {
4322 	struct task_struct *curr = current;
4323 	struct rq *rq, *p_rq;
4324 	unsigned long flags;
4325 	int yielded = 0;
4326 
4327 	local_irq_save(flags);
4328 	rq = this_rq();
4329 
4330 again:
4331 	p_rq = task_rq(p);
4332 	/*
4333 	 * If we're the only runnable task on the rq and target rq also
4334 	 * has only one task, there's absolutely no point in yielding.
4335 	 */
4336 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4337 		yielded = -ESRCH;
4338 		goto out_irq;
4339 	}
4340 
4341 	double_rq_lock(rq, p_rq);
4342 	if (task_rq(p) != p_rq) {
4343 		double_rq_unlock(rq, p_rq);
4344 		goto again;
4345 	}
4346 
4347 	if (!curr->sched_class->yield_to_task)
4348 		goto out_unlock;
4349 
4350 	if (curr->sched_class != p->sched_class)
4351 		goto out_unlock;
4352 
4353 	if (task_running(p_rq, p) || p->state)
4354 		goto out_unlock;
4355 
4356 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4357 	if (yielded) {
4358 		schedstat_inc(rq, yld_count);
4359 		/*
4360 		 * Make p's CPU reschedule; pick_next_entity takes care of
4361 		 * fairness.
4362 		 */
4363 		if (preempt && rq != p_rq)
4364 			resched_curr(p_rq);
4365 	}
4366 
4367 out_unlock:
4368 	double_rq_unlock(rq, p_rq);
4369 out_irq:
4370 	local_irq_restore(flags);
4371 
4372 	if (yielded > 0)
4373 		schedule();
4374 
4375 	return yielded;
4376 }
4377 EXPORT_SYMBOL_GPL(yield_to);
4378 
4379 /*
4380  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4381  * that process accounting knows that this is a task in IO wait state.
4382  */
4383 long __sched io_schedule_timeout(long timeout)
4384 {
4385 	int old_iowait = current->in_iowait;
4386 	struct rq *rq;
4387 	long ret;
4388 
4389 	current->in_iowait = 1;
4390 	if (old_iowait)
4391 		blk_schedule_flush_plug(current);
4392 	else
4393 		blk_flush_plug(current);
4394 
4395 	delayacct_blkio_start();
4396 	rq = raw_rq();
4397 	atomic_inc(&rq->nr_iowait);
4398 	ret = schedule_timeout(timeout);
4399 	current->in_iowait = old_iowait;
4400 	atomic_dec(&rq->nr_iowait);
4401 	delayacct_blkio_end();
4402 
4403 	return ret;
4404 }
4405 EXPORT_SYMBOL(io_schedule_timeout);
4406 
4407 /**
4408  * sys_sched_get_priority_max - return maximum RT priority.
4409  * @policy: scheduling class.
4410  *
4411  * Return: On success, this syscall returns the maximum
4412  * rt_priority that can be used by a given scheduling class.
4413  * On failure, a negative error code is returned.
4414  */
4415 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4416 {
4417 	int ret = -EINVAL;
4418 
4419 	switch (policy) {
4420 	case SCHED_FIFO:
4421 	case SCHED_RR:
4422 		ret = MAX_USER_RT_PRIO-1;
4423 		break;
4424 	case SCHED_DEADLINE:
4425 	case SCHED_NORMAL:
4426 	case SCHED_BATCH:
4427 	case SCHED_IDLE:
4428 		ret = 0;
4429 		break;
4430 	}
4431 	return ret;
4432 }
4433 
4434 /**
4435  * sys_sched_get_priority_min - return minimum RT priority.
4436  * @policy: scheduling class.
4437  *
4438  * Return: On success, this syscall returns the minimum
4439  * rt_priority that can be used by a given scheduling class.
4440  * On failure, a negative error code is returned.
4441  */
4442 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4443 {
4444 	int ret = -EINVAL;
4445 
4446 	switch (policy) {
4447 	case SCHED_FIFO:
4448 	case SCHED_RR:
4449 		ret = 1;
4450 		break;
4451 	case SCHED_DEADLINE:
4452 	case SCHED_NORMAL:
4453 	case SCHED_BATCH:
4454 	case SCHED_IDLE:
4455 		ret = 0;
4456 	}
4457 	return ret;
4458 }
4459 
4460 /**
4461  * sys_sched_rr_get_interval - return the default timeslice of a process.
4462  * @pid: pid of the process.
4463  * @interval: userspace pointer to the timeslice value.
4464  *
4465  * this syscall writes the default timeslice value of a given process
4466  * into the user-space timespec buffer. A value of '0' means infinity.
4467  *
4468  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4469  * an error code.
4470  */
4471 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4472 		struct timespec __user *, interval)
4473 {
4474 	struct task_struct *p;
4475 	unsigned int time_slice;
4476 	unsigned long flags;
4477 	struct rq *rq;
4478 	int retval;
4479 	struct timespec t;
4480 
4481 	if (pid < 0)
4482 		return -EINVAL;
4483 
4484 	retval = -ESRCH;
4485 	rcu_read_lock();
4486 	p = find_process_by_pid(pid);
4487 	if (!p)
4488 		goto out_unlock;
4489 
4490 	retval = security_task_getscheduler(p);
4491 	if (retval)
4492 		goto out_unlock;
4493 
4494 	rq = task_rq_lock(p, &flags);
4495 	time_slice = 0;
4496 	if (p->sched_class->get_rr_interval)
4497 		time_slice = p->sched_class->get_rr_interval(rq, p);
4498 	task_rq_unlock(rq, p, &flags);
4499 
4500 	rcu_read_unlock();
4501 	jiffies_to_timespec(time_slice, &t);
4502 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4503 	return retval;
4504 
4505 out_unlock:
4506 	rcu_read_unlock();
4507 	return retval;
4508 }
4509 
4510 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4511 
4512 void sched_show_task(struct task_struct *p)
4513 {
4514 	unsigned long free = 0;
4515 	int ppid;
4516 	unsigned long state = p->state;
4517 
4518 	if (state)
4519 		state = __ffs(state) + 1;
4520 	printk(KERN_INFO "%-15.15s %c", p->comm,
4521 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4522 #if BITS_PER_LONG == 32
4523 	if (state == TASK_RUNNING)
4524 		printk(KERN_CONT " running  ");
4525 	else
4526 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4527 #else
4528 	if (state == TASK_RUNNING)
4529 		printk(KERN_CONT "  running task    ");
4530 	else
4531 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4532 #endif
4533 #ifdef CONFIG_DEBUG_STACK_USAGE
4534 	free = stack_not_used(p);
4535 #endif
4536 	ppid = 0;
4537 	rcu_read_lock();
4538 	if (pid_alive(p))
4539 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4540 	rcu_read_unlock();
4541 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4542 		task_pid_nr(p), ppid,
4543 		(unsigned long)task_thread_info(p)->flags);
4544 
4545 	print_worker_info(KERN_INFO, p);
4546 	show_stack(p, NULL);
4547 }
4548 
4549 void show_state_filter(unsigned long state_filter)
4550 {
4551 	struct task_struct *g, *p;
4552 
4553 #if BITS_PER_LONG == 32
4554 	printk(KERN_INFO
4555 		"  task                PC stack   pid father\n");
4556 #else
4557 	printk(KERN_INFO
4558 		"  task                        PC stack   pid father\n");
4559 #endif
4560 	rcu_read_lock();
4561 	for_each_process_thread(g, p) {
4562 		/*
4563 		 * reset the NMI-timeout, listing all files on a slow
4564 		 * console might take a lot of time:
4565 		 */
4566 		touch_nmi_watchdog();
4567 		if (!state_filter || (p->state & state_filter))
4568 			sched_show_task(p);
4569 	}
4570 
4571 	touch_all_softlockup_watchdogs();
4572 
4573 #ifdef CONFIG_SCHED_DEBUG
4574 	sysrq_sched_debug_show();
4575 #endif
4576 	rcu_read_unlock();
4577 	/*
4578 	 * Only show locks if all tasks are dumped:
4579 	 */
4580 	if (!state_filter)
4581 		debug_show_all_locks();
4582 }
4583 
4584 void init_idle_bootup_task(struct task_struct *idle)
4585 {
4586 	idle->sched_class = &idle_sched_class;
4587 }
4588 
4589 /**
4590  * init_idle - set up an idle thread for a given CPU
4591  * @idle: task in question
4592  * @cpu: cpu the idle task belongs to
4593  *
4594  * NOTE: this function does not set the idle thread's NEED_RESCHED
4595  * flag, to make booting more robust.
4596  */
4597 void init_idle(struct task_struct *idle, int cpu)
4598 {
4599 	struct rq *rq = cpu_rq(cpu);
4600 	unsigned long flags;
4601 
4602 	raw_spin_lock_irqsave(&rq->lock, flags);
4603 
4604 	__sched_fork(0, idle);
4605 	idle->state = TASK_RUNNING;
4606 	idle->se.exec_start = sched_clock();
4607 
4608 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4609 	/*
4610 	 * We're having a chicken and egg problem, even though we are
4611 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4612 	 * lockdep check in task_group() will fail.
4613 	 *
4614 	 * Similar case to sched_fork(). / Alternatively we could
4615 	 * use task_rq_lock() here and obtain the other rq->lock.
4616 	 *
4617 	 * Silence PROVE_RCU
4618 	 */
4619 	rcu_read_lock();
4620 	__set_task_cpu(idle, cpu);
4621 	rcu_read_unlock();
4622 
4623 	rq->curr = rq->idle = idle;
4624 	idle->on_rq = TASK_ON_RQ_QUEUED;
4625 #if defined(CONFIG_SMP)
4626 	idle->on_cpu = 1;
4627 #endif
4628 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4629 
4630 	/* Set the preempt count _outside_ the spinlocks! */
4631 	init_idle_preempt_count(idle, cpu);
4632 
4633 	/*
4634 	 * The idle tasks have their own, simple scheduling class:
4635 	 */
4636 	idle->sched_class = &idle_sched_class;
4637 	ftrace_graph_init_idle_task(idle, cpu);
4638 	vtime_init_idle(idle, cpu);
4639 #if defined(CONFIG_SMP)
4640 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4641 #endif
4642 }
4643 
4644 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4645 			      const struct cpumask *trial)
4646 {
4647 	int ret = 1, trial_cpus;
4648 	struct dl_bw *cur_dl_b;
4649 	unsigned long flags;
4650 
4651 	if (!cpumask_weight(cur))
4652 		return ret;
4653 
4654 	rcu_read_lock_sched();
4655 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4656 	trial_cpus = cpumask_weight(trial);
4657 
4658 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4659 	if (cur_dl_b->bw != -1 &&
4660 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4661 		ret = 0;
4662 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4663 	rcu_read_unlock_sched();
4664 
4665 	return ret;
4666 }
4667 
4668 int task_can_attach(struct task_struct *p,
4669 		    const struct cpumask *cs_cpus_allowed)
4670 {
4671 	int ret = 0;
4672 
4673 	/*
4674 	 * Kthreads which disallow setaffinity shouldn't be moved
4675 	 * to a new cpuset; we don't want to change their cpu
4676 	 * affinity and isolating such threads by their set of
4677 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4678 	 * applicable for such threads.  This prevents checking for
4679 	 * success of set_cpus_allowed_ptr() on all attached tasks
4680 	 * before cpus_allowed may be changed.
4681 	 */
4682 	if (p->flags & PF_NO_SETAFFINITY) {
4683 		ret = -EINVAL;
4684 		goto out;
4685 	}
4686 
4687 #ifdef CONFIG_SMP
4688 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4689 					      cs_cpus_allowed)) {
4690 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4691 							cs_cpus_allowed);
4692 		struct dl_bw *dl_b;
4693 		bool overflow;
4694 		int cpus;
4695 		unsigned long flags;
4696 
4697 		rcu_read_lock_sched();
4698 		dl_b = dl_bw_of(dest_cpu);
4699 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4700 		cpus = dl_bw_cpus(dest_cpu);
4701 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4702 		if (overflow)
4703 			ret = -EBUSY;
4704 		else {
4705 			/*
4706 			 * We reserve space for this task in the destination
4707 			 * root_domain, as we can't fail after this point.
4708 			 * We will free resources in the source root_domain
4709 			 * later on (see set_cpus_allowed_dl()).
4710 			 */
4711 			__dl_add(dl_b, p->dl.dl_bw);
4712 		}
4713 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4714 		rcu_read_unlock_sched();
4715 
4716 	}
4717 #endif
4718 out:
4719 	return ret;
4720 }
4721 
4722 #ifdef CONFIG_SMP
4723 /*
4724  * move_queued_task - move a queued task to new rq.
4725  *
4726  * Returns (locked) new rq. Old rq's lock is released.
4727  */
4728 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4729 {
4730 	struct rq *rq = task_rq(p);
4731 
4732 	lockdep_assert_held(&rq->lock);
4733 
4734 	dequeue_task(rq, p, 0);
4735 	p->on_rq = TASK_ON_RQ_MIGRATING;
4736 	set_task_cpu(p, new_cpu);
4737 	raw_spin_unlock(&rq->lock);
4738 
4739 	rq = cpu_rq(new_cpu);
4740 
4741 	raw_spin_lock(&rq->lock);
4742 	BUG_ON(task_cpu(p) != new_cpu);
4743 	p->on_rq = TASK_ON_RQ_QUEUED;
4744 	enqueue_task(rq, p, 0);
4745 	check_preempt_curr(rq, p, 0);
4746 
4747 	return rq;
4748 }
4749 
4750 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4751 {
4752 	if (p->sched_class->set_cpus_allowed)
4753 		p->sched_class->set_cpus_allowed(p, new_mask);
4754 
4755 	cpumask_copy(&p->cpus_allowed, new_mask);
4756 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4757 }
4758 
4759 /*
4760  * This is how migration works:
4761  *
4762  * 1) we invoke migration_cpu_stop() on the target CPU using
4763  *    stop_one_cpu().
4764  * 2) stopper starts to run (implicitly forcing the migrated thread
4765  *    off the CPU)
4766  * 3) it checks whether the migrated task is still in the wrong runqueue.
4767  * 4) if it's in the wrong runqueue then the migration thread removes
4768  *    it and puts it into the right queue.
4769  * 5) stopper completes and stop_one_cpu() returns and the migration
4770  *    is done.
4771  */
4772 
4773 /*
4774  * Change a given task's CPU affinity. Migrate the thread to a
4775  * proper CPU and schedule it away if the CPU it's executing on
4776  * is removed from the allowed bitmask.
4777  *
4778  * NOTE: the caller must have a valid reference to the task, the
4779  * task must not exit() & deallocate itself prematurely. The
4780  * call is not atomic; no spinlocks may be held.
4781  */
4782 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4783 {
4784 	unsigned long flags;
4785 	struct rq *rq;
4786 	unsigned int dest_cpu;
4787 	int ret = 0;
4788 
4789 	rq = task_rq_lock(p, &flags);
4790 
4791 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4792 		goto out;
4793 
4794 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4795 		ret = -EINVAL;
4796 		goto out;
4797 	}
4798 
4799 	do_set_cpus_allowed(p, new_mask);
4800 
4801 	/* Can the task run on the task's current CPU? If so, we're done */
4802 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4803 		goto out;
4804 
4805 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4806 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4807 		struct migration_arg arg = { p, dest_cpu };
4808 		/* Need help from migration thread: drop lock and wait. */
4809 		task_rq_unlock(rq, p, &flags);
4810 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4811 		tlb_migrate_finish(p->mm);
4812 		return 0;
4813 	} else if (task_on_rq_queued(p))
4814 		rq = move_queued_task(p, dest_cpu);
4815 out:
4816 	task_rq_unlock(rq, p, &flags);
4817 
4818 	return ret;
4819 }
4820 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4821 
4822 /*
4823  * Move (not current) task off this cpu, onto dest cpu. We're doing
4824  * this because either it can't run here any more (set_cpus_allowed()
4825  * away from this CPU, or CPU going down), or because we're
4826  * attempting to rebalance this task on exec (sched_exec).
4827  *
4828  * So we race with normal scheduler movements, but that's OK, as long
4829  * as the task is no longer on this CPU.
4830  *
4831  * Returns non-zero if task was successfully migrated.
4832  */
4833 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4834 {
4835 	struct rq *rq;
4836 	int ret = 0;
4837 
4838 	if (unlikely(!cpu_active(dest_cpu)))
4839 		return ret;
4840 
4841 	rq = cpu_rq(src_cpu);
4842 
4843 	raw_spin_lock(&p->pi_lock);
4844 	raw_spin_lock(&rq->lock);
4845 	/* Already moved. */
4846 	if (task_cpu(p) != src_cpu)
4847 		goto done;
4848 
4849 	/* Affinity changed (again). */
4850 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4851 		goto fail;
4852 
4853 	/*
4854 	 * If we're not on a rq, the next wake-up will ensure we're
4855 	 * placed properly.
4856 	 */
4857 	if (task_on_rq_queued(p))
4858 		rq = move_queued_task(p, dest_cpu);
4859 done:
4860 	ret = 1;
4861 fail:
4862 	raw_spin_unlock(&rq->lock);
4863 	raw_spin_unlock(&p->pi_lock);
4864 	return ret;
4865 }
4866 
4867 #ifdef CONFIG_NUMA_BALANCING
4868 /* Migrate current task p to target_cpu */
4869 int migrate_task_to(struct task_struct *p, int target_cpu)
4870 {
4871 	struct migration_arg arg = { p, target_cpu };
4872 	int curr_cpu = task_cpu(p);
4873 
4874 	if (curr_cpu == target_cpu)
4875 		return 0;
4876 
4877 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4878 		return -EINVAL;
4879 
4880 	/* TODO: This is not properly updating schedstats */
4881 
4882 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4883 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4884 }
4885 
4886 /*
4887  * Requeue a task on a given node and accurately track the number of NUMA
4888  * tasks on the runqueues
4889  */
4890 void sched_setnuma(struct task_struct *p, int nid)
4891 {
4892 	struct rq *rq;
4893 	unsigned long flags;
4894 	bool queued, running;
4895 
4896 	rq = task_rq_lock(p, &flags);
4897 	queued = task_on_rq_queued(p);
4898 	running = task_current(rq, p);
4899 
4900 	if (queued)
4901 		dequeue_task(rq, p, 0);
4902 	if (running)
4903 		put_prev_task(rq, p);
4904 
4905 	p->numa_preferred_nid = nid;
4906 
4907 	if (running)
4908 		p->sched_class->set_curr_task(rq);
4909 	if (queued)
4910 		enqueue_task(rq, p, 0);
4911 	task_rq_unlock(rq, p, &flags);
4912 }
4913 #endif
4914 
4915 /*
4916  * migration_cpu_stop - this will be executed by a highprio stopper thread
4917  * and performs thread migration by bumping thread off CPU then
4918  * 'pushing' onto another runqueue.
4919  */
4920 static int migration_cpu_stop(void *data)
4921 {
4922 	struct migration_arg *arg = data;
4923 
4924 	/*
4925 	 * The original target cpu might have gone down and we might
4926 	 * be on another cpu but it doesn't matter.
4927 	 */
4928 	local_irq_disable();
4929 	/*
4930 	 * We need to explicitly wake pending tasks before running
4931 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4932 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4933 	 */
4934 	sched_ttwu_pending();
4935 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4936 	local_irq_enable();
4937 	return 0;
4938 }
4939 
4940 #ifdef CONFIG_HOTPLUG_CPU
4941 
4942 /*
4943  * Ensures that the idle task is using init_mm right before its cpu goes
4944  * offline.
4945  */
4946 void idle_task_exit(void)
4947 {
4948 	struct mm_struct *mm = current->active_mm;
4949 
4950 	BUG_ON(cpu_online(smp_processor_id()));
4951 
4952 	if (mm != &init_mm) {
4953 		switch_mm(mm, &init_mm, current);
4954 		finish_arch_post_lock_switch();
4955 	}
4956 	mmdrop(mm);
4957 }
4958 
4959 /*
4960  * Since this CPU is going 'away' for a while, fold any nr_active delta
4961  * we might have. Assumes we're called after migrate_tasks() so that the
4962  * nr_active count is stable.
4963  *
4964  * Also see the comment "Global load-average calculations".
4965  */
4966 static void calc_load_migrate(struct rq *rq)
4967 {
4968 	long delta = calc_load_fold_active(rq);
4969 	if (delta)
4970 		atomic_long_add(delta, &calc_load_tasks);
4971 }
4972 
4973 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4974 {
4975 }
4976 
4977 static const struct sched_class fake_sched_class = {
4978 	.put_prev_task = put_prev_task_fake,
4979 };
4980 
4981 static struct task_struct fake_task = {
4982 	/*
4983 	 * Avoid pull_{rt,dl}_task()
4984 	 */
4985 	.prio = MAX_PRIO + 1,
4986 	.sched_class = &fake_sched_class,
4987 };
4988 
4989 /*
4990  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4991  * try_to_wake_up()->select_task_rq().
4992  *
4993  * Called with rq->lock held even though we'er in stop_machine() and
4994  * there's no concurrency possible, we hold the required locks anyway
4995  * because of lock validation efforts.
4996  */
4997 static void migrate_tasks(unsigned int dead_cpu)
4998 {
4999 	struct rq *rq = cpu_rq(dead_cpu);
5000 	struct task_struct *next, *stop = rq->stop;
5001 	int dest_cpu;
5002 
5003 	/*
5004 	 * Fudge the rq selection such that the below task selection loop
5005 	 * doesn't get stuck on the currently eligible stop task.
5006 	 *
5007 	 * We're currently inside stop_machine() and the rq is either stuck
5008 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5009 	 * either way we should never end up calling schedule() until we're
5010 	 * done here.
5011 	 */
5012 	rq->stop = NULL;
5013 
5014 	/*
5015 	 * put_prev_task() and pick_next_task() sched
5016 	 * class method both need to have an up-to-date
5017 	 * value of rq->clock[_task]
5018 	 */
5019 	update_rq_clock(rq);
5020 
5021 	for ( ; ; ) {
5022 		/*
5023 		 * There's this thread running, bail when that's the only
5024 		 * remaining thread.
5025 		 */
5026 		if (rq->nr_running == 1)
5027 			break;
5028 
5029 		next = pick_next_task(rq, &fake_task);
5030 		BUG_ON(!next);
5031 		next->sched_class->put_prev_task(rq, next);
5032 
5033 		/* Find suitable destination for @next, with force if needed. */
5034 		dest_cpu = select_fallback_rq(dead_cpu, next);
5035 		raw_spin_unlock(&rq->lock);
5036 
5037 		__migrate_task(next, dead_cpu, dest_cpu);
5038 
5039 		raw_spin_lock(&rq->lock);
5040 	}
5041 
5042 	rq->stop = stop;
5043 }
5044 
5045 #endif /* CONFIG_HOTPLUG_CPU */
5046 
5047 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5048 
5049 static struct ctl_table sd_ctl_dir[] = {
5050 	{
5051 		.procname	= "sched_domain",
5052 		.mode		= 0555,
5053 	},
5054 	{}
5055 };
5056 
5057 static struct ctl_table sd_ctl_root[] = {
5058 	{
5059 		.procname	= "kernel",
5060 		.mode		= 0555,
5061 		.child		= sd_ctl_dir,
5062 	},
5063 	{}
5064 };
5065 
5066 static struct ctl_table *sd_alloc_ctl_entry(int n)
5067 {
5068 	struct ctl_table *entry =
5069 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5070 
5071 	return entry;
5072 }
5073 
5074 static void sd_free_ctl_entry(struct ctl_table **tablep)
5075 {
5076 	struct ctl_table *entry;
5077 
5078 	/*
5079 	 * In the intermediate directories, both the child directory and
5080 	 * procname are dynamically allocated and could fail but the mode
5081 	 * will always be set. In the lowest directory the names are
5082 	 * static strings and all have proc handlers.
5083 	 */
5084 	for (entry = *tablep; entry->mode; entry++) {
5085 		if (entry->child)
5086 			sd_free_ctl_entry(&entry->child);
5087 		if (entry->proc_handler == NULL)
5088 			kfree(entry->procname);
5089 	}
5090 
5091 	kfree(*tablep);
5092 	*tablep = NULL;
5093 }
5094 
5095 static int min_load_idx = 0;
5096 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5097 
5098 static void
5099 set_table_entry(struct ctl_table *entry,
5100 		const char *procname, void *data, int maxlen,
5101 		umode_t mode, proc_handler *proc_handler,
5102 		bool load_idx)
5103 {
5104 	entry->procname = procname;
5105 	entry->data = data;
5106 	entry->maxlen = maxlen;
5107 	entry->mode = mode;
5108 	entry->proc_handler = proc_handler;
5109 
5110 	if (load_idx) {
5111 		entry->extra1 = &min_load_idx;
5112 		entry->extra2 = &max_load_idx;
5113 	}
5114 }
5115 
5116 static struct ctl_table *
5117 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5118 {
5119 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5120 
5121 	if (table == NULL)
5122 		return NULL;
5123 
5124 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5125 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5126 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5127 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5128 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5129 		sizeof(int), 0644, proc_dointvec_minmax, true);
5130 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5131 		sizeof(int), 0644, proc_dointvec_minmax, true);
5132 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5133 		sizeof(int), 0644, proc_dointvec_minmax, true);
5134 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5135 		sizeof(int), 0644, proc_dointvec_minmax, true);
5136 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5137 		sizeof(int), 0644, proc_dointvec_minmax, true);
5138 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5139 		sizeof(int), 0644, proc_dointvec_minmax, false);
5140 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5141 		sizeof(int), 0644, proc_dointvec_minmax, false);
5142 	set_table_entry(&table[9], "cache_nice_tries",
5143 		&sd->cache_nice_tries,
5144 		sizeof(int), 0644, proc_dointvec_minmax, false);
5145 	set_table_entry(&table[10], "flags", &sd->flags,
5146 		sizeof(int), 0644, proc_dointvec_minmax, false);
5147 	set_table_entry(&table[11], "max_newidle_lb_cost",
5148 		&sd->max_newidle_lb_cost,
5149 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5150 	set_table_entry(&table[12], "name", sd->name,
5151 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5152 	/* &table[13] is terminator */
5153 
5154 	return table;
5155 }
5156 
5157 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5158 {
5159 	struct ctl_table *entry, *table;
5160 	struct sched_domain *sd;
5161 	int domain_num = 0, i;
5162 	char buf[32];
5163 
5164 	for_each_domain(cpu, sd)
5165 		domain_num++;
5166 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5167 	if (table == NULL)
5168 		return NULL;
5169 
5170 	i = 0;
5171 	for_each_domain(cpu, sd) {
5172 		snprintf(buf, 32, "domain%d", i);
5173 		entry->procname = kstrdup(buf, GFP_KERNEL);
5174 		entry->mode = 0555;
5175 		entry->child = sd_alloc_ctl_domain_table(sd);
5176 		entry++;
5177 		i++;
5178 	}
5179 	return table;
5180 }
5181 
5182 static struct ctl_table_header *sd_sysctl_header;
5183 static void register_sched_domain_sysctl(void)
5184 {
5185 	int i, cpu_num = num_possible_cpus();
5186 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5187 	char buf[32];
5188 
5189 	WARN_ON(sd_ctl_dir[0].child);
5190 	sd_ctl_dir[0].child = entry;
5191 
5192 	if (entry == NULL)
5193 		return;
5194 
5195 	for_each_possible_cpu(i) {
5196 		snprintf(buf, 32, "cpu%d", i);
5197 		entry->procname = kstrdup(buf, GFP_KERNEL);
5198 		entry->mode = 0555;
5199 		entry->child = sd_alloc_ctl_cpu_table(i);
5200 		entry++;
5201 	}
5202 
5203 	WARN_ON(sd_sysctl_header);
5204 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5205 }
5206 
5207 /* may be called multiple times per register */
5208 static void unregister_sched_domain_sysctl(void)
5209 {
5210 	if (sd_sysctl_header)
5211 		unregister_sysctl_table(sd_sysctl_header);
5212 	sd_sysctl_header = NULL;
5213 	if (sd_ctl_dir[0].child)
5214 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5215 }
5216 #else
5217 static void register_sched_domain_sysctl(void)
5218 {
5219 }
5220 static void unregister_sched_domain_sysctl(void)
5221 {
5222 }
5223 #endif
5224 
5225 static void set_rq_online(struct rq *rq)
5226 {
5227 	if (!rq->online) {
5228 		const struct sched_class *class;
5229 
5230 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5231 		rq->online = 1;
5232 
5233 		for_each_class(class) {
5234 			if (class->rq_online)
5235 				class->rq_online(rq);
5236 		}
5237 	}
5238 }
5239 
5240 static void set_rq_offline(struct rq *rq)
5241 {
5242 	if (rq->online) {
5243 		const struct sched_class *class;
5244 
5245 		for_each_class(class) {
5246 			if (class->rq_offline)
5247 				class->rq_offline(rq);
5248 		}
5249 
5250 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5251 		rq->online = 0;
5252 	}
5253 }
5254 
5255 /*
5256  * migration_call - callback that gets triggered when a CPU is added.
5257  * Here we can start up the necessary migration thread for the new CPU.
5258  */
5259 static int
5260 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5261 {
5262 	int cpu = (long)hcpu;
5263 	unsigned long flags;
5264 	struct rq *rq = cpu_rq(cpu);
5265 
5266 	switch (action & ~CPU_TASKS_FROZEN) {
5267 
5268 	case CPU_UP_PREPARE:
5269 		rq->calc_load_update = calc_load_update;
5270 		break;
5271 
5272 	case CPU_ONLINE:
5273 		/* Update our root-domain */
5274 		raw_spin_lock_irqsave(&rq->lock, flags);
5275 		if (rq->rd) {
5276 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5277 
5278 			set_rq_online(rq);
5279 		}
5280 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5281 		break;
5282 
5283 #ifdef CONFIG_HOTPLUG_CPU
5284 	case CPU_DYING:
5285 		sched_ttwu_pending();
5286 		/* Update our root-domain */
5287 		raw_spin_lock_irqsave(&rq->lock, flags);
5288 		if (rq->rd) {
5289 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5290 			set_rq_offline(rq);
5291 		}
5292 		migrate_tasks(cpu);
5293 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5294 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5295 		break;
5296 
5297 	case CPU_DEAD:
5298 		calc_load_migrate(rq);
5299 		break;
5300 #endif
5301 	}
5302 
5303 	update_max_interval();
5304 
5305 	return NOTIFY_OK;
5306 }
5307 
5308 /*
5309  * Register at high priority so that task migration (migrate_all_tasks)
5310  * happens before everything else.  This has to be lower priority than
5311  * the notifier in the perf_event subsystem, though.
5312  */
5313 static struct notifier_block migration_notifier = {
5314 	.notifier_call = migration_call,
5315 	.priority = CPU_PRI_MIGRATION,
5316 };
5317 
5318 static void __cpuinit set_cpu_rq_start_time(void)
5319 {
5320 	int cpu = smp_processor_id();
5321 	struct rq *rq = cpu_rq(cpu);
5322 	rq->age_stamp = sched_clock_cpu(cpu);
5323 }
5324 
5325 static int sched_cpu_active(struct notifier_block *nfb,
5326 				      unsigned long action, void *hcpu)
5327 {
5328 	switch (action & ~CPU_TASKS_FROZEN) {
5329 	case CPU_STARTING:
5330 		set_cpu_rq_start_time();
5331 		return NOTIFY_OK;
5332 	case CPU_DOWN_FAILED:
5333 		set_cpu_active((long)hcpu, true);
5334 		return NOTIFY_OK;
5335 	default:
5336 		return NOTIFY_DONE;
5337 	}
5338 }
5339 
5340 static int sched_cpu_inactive(struct notifier_block *nfb,
5341 					unsigned long action, void *hcpu)
5342 {
5343 	switch (action & ~CPU_TASKS_FROZEN) {
5344 	case CPU_DOWN_PREPARE:
5345 		set_cpu_active((long)hcpu, false);
5346 		return NOTIFY_OK;
5347 	default:
5348 		return NOTIFY_DONE;
5349 	}
5350 }
5351 
5352 static int __init migration_init(void)
5353 {
5354 	void *cpu = (void *)(long)smp_processor_id();
5355 	int err;
5356 
5357 	/* Initialize migration for the boot CPU */
5358 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5359 	BUG_ON(err == NOTIFY_BAD);
5360 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5361 	register_cpu_notifier(&migration_notifier);
5362 
5363 	/* Register cpu active notifiers */
5364 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5365 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5366 
5367 	return 0;
5368 }
5369 early_initcall(migration_init);
5370 #endif
5371 
5372 #ifdef CONFIG_SMP
5373 
5374 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5375 
5376 #ifdef CONFIG_SCHED_DEBUG
5377 
5378 static __read_mostly int sched_debug_enabled;
5379 
5380 static int __init sched_debug_setup(char *str)
5381 {
5382 	sched_debug_enabled = 1;
5383 
5384 	return 0;
5385 }
5386 early_param("sched_debug", sched_debug_setup);
5387 
5388 static inline bool sched_debug(void)
5389 {
5390 	return sched_debug_enabled;
5391 }
5392 
5393 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5394 				  struct cpumask *groupmask)
5395 {
5396 	struct sched_group *group = sd->groups;
5397 
5398 	cpumask_clear(groupmask);
5399 
5400 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5401 
5402 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5403 		printk("does not load-balance\n");
5404 		if (sd->parent)
5405 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5406 					" has parent");
5407 		return -1;
5408 	}
5409 
5410 	printk(KERN_CONT "span %*pbl level %s\n",
5411 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5412 
5413 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5414 		printk(KERN_ERR "ERROR: domain->span does not contain "
5415 				"CPU%d\n", cpu);
5416 	}
5417 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5418 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5419 				" CPU%d\n", cpu);
5420 	}
5421 
5422 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5423 	do {
5424 		if (!group) {
5425 			printk("\n");
5426 			printk(KERN_ERR "ERROR: group is NULL\n");
5427 			break;
5428 		}
5429 
5430 		if (!cpumask_weight(sched_group_cpus(group))) {
5431 			printk(KERN_CONT "\n");
5432 			printk(KERN_ERR "ERROR: empty group\n");
5433 			break;
5434 		}
5435 
5436 		if (!(sd->flags & SD_OVERLAP) &&
5437 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5438 			printk(KERN_CONT "\n");
5439 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5440 			break;
5441 		}
5442 
5443 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5444 
5445 		printk(KERN_CONT " %*pbl",
5446 		       cpumask_pr_args(sched_group_cpus(group)));
5447 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5448 			printk(KERN_CONT " (cpu_capacity = %d)",
5449 				group->sgc->capacity);
5450 		}
5451 
5452 		group = group->next;
5453 	} while (group != sd->groups);
5454 	printk(KERN_CONT "\n");
5455 
5456 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5457 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5458 
5459 	if (sd->parent &&
5460 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5461 		printk(KERN_ERR "ERROR: parent span is not a superset "
5462 			"of domain->span\n");
5463 	return 0;
5464 }
5465 
5466 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5467 {
5468 	int level = 0;
5469 
5470 	if (!sched_debug_enabled)
5471 		return;
5472 
5473 	if (!sd) {
5474 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5475 		return;
5476 	}
5477 
5478 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5479 
5480 	for (;;) {
5481 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5482 			break;
5483 		level++;
5484 		sd = sd->parent;
5485 		if (!sd)
5486 			break;
5487 	}
5488 }
5489 #else /* !CONFIG_SCHED_DEBUG */
5490 # define sched_domain_debug(sd, cpu) do { } while (0)
5491 static inline bool sched_debug(void)
5492 {
5493 	return false;
5494 }
5495 #endif /* CONFIG_SCHED_DEBUG */
5496 
5497 static int sd_degenerate(struct sched_domain *sd)
5498 {
5499 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5500 		return 1;
5501 
5502 	/* Following flags need at least 2 groups */
5503 	if (sd->flags & (SD_LOAD_BALANCE |
5504 			 SD_BALANCE_NEWIDLE |
5505 			 SD_BALANCE_FORK |
5506 			 SD_BALANCE_EXEC |
5507 			 SD_SHARE_CPUCAPACITY |
5508 			 SD_SHARE_PKG_RESOURCES |
5509 			 SD_SHARE_POWERDOMAIN)) {
5510 		if (sd->groups != sd->groups->next)
5511 			return 0;
5512 	}
5513 
5514 	/* Following flags don't use groups */
5515 	if (sd->flags & (SD_WAKE_AFFINE))
5516 		return 0;
5517 
5518 	return 1;
5519 }
5520 
5521 static int
5522 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5523 {
5524 	unsigned long cflags = sd->flags, pflags = parent->flags;
5525 
5526 	if (sd_degenerate(parent))
5527 		return 1;
5528 
5529 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5530 		return 0;
5531 
5532 	/* Flags needing groups don't count if only 1 group in parent */
5533 	if (parent->groups == parent->groups->next) {
5534 		pflags &= ~(SD_LOAD_BALANCE |
5535 				SD_BALANCE_NEWIDLE |
5536 				SD_BALANCE_FORK |
5537 				SD_BALANCE_EXEC |
5538 				SD_SHARE_CPUCAPACITY |
5539 				SD_SHARE_PKG_RESOURCES |
5540 				SD_PREFER_SIBLING |
5541 				SD_SHARE_POWERDOMAIN);
5542 		if (nr_node_ids == 1)
5543 			pflags &= ~SD_SERIALIZE;
5544 	}
5545 	if (~cflags & pflags)
5546 		return 0;
5547 
5548 	return 1;
5549 }
5550 
5551 static void free_rootdomain(struct rcu_head *rcu)
5552 {
5553 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5554 
5555 	cpupri_cleanup(&rd->cpupri);
5556 	cpudl_cleanup(&rd->cpudl);
5557 	free_cpumask_var(rd->dlo_mask);
5558 	free_cpumask_var(rd->rto_mask);
5559 	free_cpumask_var(rd->online);
5560 	free_cpumask_var(rd->span);
5561 	kfree(rd);
5562 }
5563 
5564 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5565 {
5566 	struct root_domain *old_rd = NULL;
5567 	unsigned long flags;
5568 
5569 	raw_spin_lock_irqsave(&rq->lock, flags);
5570 
5571 	if (rq->rd) {
5572 		old_rd = rq->rd;
5573 
5574 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5575 			set_rq_offline(rq);
5576 
5577 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5578 
5579 		/*
5580 		 * If we dont want to free the old_rd yet then
5581 		 * set old_rd to NULL to skip the freeing later
5582 		 * in this function:
5583 		 */
5584 		if (!atomic_dec_and_test(&old_rd->refcount))
5585 			old_rd = NULL;
5586 	}
5587 
5588 	atomic_inc(&rd->refcount);
5589 	rq->rd = rd;
5590 
5591 	cpumask_set_cpu(rq->cpu, rd->span);
5592 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5593 		set_rq_online(rq);
5594 
5595 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5596 
5597 	if (old_rd)
5598 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5599 }
5600 
5601 static int init_rootdomain(struct root_domain *rd)
5602 {
5603 	memset(rd, 0, sizeof(*rd));
5604 
5605 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5606 		goto out;
5607 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5608 		goto free_span;
5609 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5610 		goto free_online;
5611 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5612 		goto free_dlo_mask;
5613 
5614 	init_dl_bw(&rd->dl_bw);
5615 	if (cpudl_init(&rd->cpudl) != 0)
5616 		goto free_dlo_mask;
5617 
5618 	if (cpupri_init(&rd->cpupri) != 0)
5619 		goto free_rto_mask;
5620 	return 0;
5621 
5622 free_rto_mask:
5623 	free_cpumask_var(rd->rto_mask);
5624 free_dlo_mask:
5625 	free_cpumask_var(rd->dlo_mask);
5626 free_online:
5627 	free_cpumask_var(rd->online);
5628 free_span:
5629 	free_cpumask_var(rd->span);
5630 out:
5631 	return -ENOMEM;
5632 }
5633 
5634 /*
5635  * By default the system creates a single root-domain with all cpus as
5636  * members (mimicking the global state we have today).
5637  */
5638 struct root_domain def_root_domain;
5639 
5640 static void init_defrootdomain(void)
5641 {
5642 	init_rootdomain(&def_root_domain);
5643 
5644 	atomic_set(&def_root_domain.refcount, 1);
5645 }
5646 
5647 static struct root_domain *alloc_rootdomain(void)
5648 {
5649 	struct root_domain *rd;
5650 
5651 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5652 	if (!rd)
5653 		return NULL;
5654 
5655 	if (init_rootdomain(rd) != 0) {
5656 		kfree(rd);
5657 		return NULL;
5658 	}
5659 
5660 	return rd;
5661 }
5662 
5663 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5664 {
5665 	struct sched_group *tmp, *first;
5666 
5667 	if (!sg)
5668 		return;
5669 
5670 	first = sg;
5671 	do {
5672 		tmp = sg->next;
5673 
5674 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5675 			kfree(sg->sgc);
5676 
5677 		kfree(sg);
5678 		sg = tmp;
5679 	} while (sg != first);
5680 }
5681 
5682 static void free_sched_domain(struct rcu_head *rcu)
5683 {
5684 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5685 
5686 	/*
5687 	 * If its an overlapping domain it has private groups, iterate and
5688 	 * nuke them all.
5689 	 */
5690 	if (sd->flags & SD_OVERLAP) {
5691 		free_sched_groups(sd->groups, 1);
5692 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5693 		kfree(sd->groups->sgc);
5694 		kfree(sd->groups);
5695 	}
5696 	kfree(sd);
5697 }
5698 
5699 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5700 {
5701 	call_rcu(&sd->rcu, free_sched_domain);
5702 }
5703 
5704 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5705 {
5706 	for (; sd; sd = sd->parent)
5707 		destroy_sched_domain(sd, cpu);
5708 }
5709 
5710 /*
5711  * Keep a special pointer to the highest sched_domain that has
5712  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5713  * allows us to avoid some pointer chasing select_idle_sibling().
5714  *
5715  * Also keep a unique ID per domain (we use the first cpu number in
5716  * the cpumask of the domain), this allows us to quickly tell if
5717  * two cpus are in the same cache domain, see cpus_share_cache().
5718  */
5719 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5720 DEFINE_PER_CPU(int, sd_llc_size);
5721 DEFINE_PER_CPU(int, sd_llc_id);
5722 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5723 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5724 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5725 
5726 static void update_top_cache_domain(int cpu)
5727 {
5728 	struct sched_domain *sd;
5729 	struct sched_domain *busy_sd = NULL;
5730 	int id = cpu;
5731 	int size = 1;
5732 
5733 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5734 	if (sd) {
5735 		id = cpumask_first(sched_domain_span(sd));
5736 		size = cpumask_weight(sched_domain_span(sd));
5737 		busy_sd = sd->parent; /* sd_busy */
5738 	}
5739 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5740 
5741 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5742 	per_cpu(sd_llc_size, cpu) = size;
5743 	per_cpu(sd_llc_id, cpu) = id;
5744 
5745 	sd = lowest_flag_domain(cpu, SD_NUMA);
5746 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5747 
5748 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5749 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5750 }
5751 
5752 /*
5753  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5754  * hold the hotplug lock.
5755  */
5756 static void
5757 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5758 {
5759 	struct rq *rq = cpu_rq(cpu);
5760 	struct sched_domain *tmp;
5761 
5762 	/* Remove the sched domains which do not contribute to scheduling. */
5763 	for (tmp = sd; tmp; ) {
5764 		struct sched_domain *parent = tmp->parent;
5765 		if (!parent)
5766 			break;
5767 
5768 		if (sd_parent_degenerate(tmp, parent)) {
5769 			tmp->parent = parent->parent;
5770 			if (parent->parent)
5771 				parent->parent->child = tmp;
5772 			/*
5773 			 * Transfer SD_PREFER_SIBLING down in case of a
5774 			 * degenerate parent; the spans match for this
5775 			 * so the property transfers.
5776 			 */
5777 			if (parent->flags & SD_PREFER_SIBLING)
5778 				tmp->flags |= SD_PREFER_SIBLING;
5779 			destroy_sched_domain(parent, cpu);
5780 		} else
5781 			tmp = tmp->parent;
5782 	}
5783 
5784 	if (sd && sd_degenerate(sd)) {
5785 		tmp = sd;
5786 		sd = sd->parent;
5787 		destroy_sched_domain(tmp, cpu);
5788 		if (sd)
5789 			sd->child = NULL;
5790 	}
5791 
5792 	sched_domain_debug(sd, cpu);
5793 
5794 	rq_attach_root(rq, rd);
5795 	tmp = rq->sd;
5796 	rcu_assign_pointer(rq->sd, sd);
5797 	destroy_sched_domains(tmp, cpu);
5798 
5799 	update_top_cache_domain(cpu);
5800 }
5801 
5802 /* Setup the mask of cpus configured for isolated domains */
5803 static int __init isolated_cpu_setup(char *str)
5804 {
5805 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5806 	cpulist_parse(str, cpu_isolated_map);
5807 	return 1;
5808 }
5809 
5810 __setup("isolcpus=", isolated_cpu_setup);
5811 
5812 struct s_data {
5813 	struct sched_domain ** __percpu sd;
5814 	struct root_domain	*rd;
5815 };
5816 
5817 enum s_alloc {
5818 	sa_rootdomain,
5819 	sa_sd,
5820 	sa_sd_storage,
5821 	sa_none,
5822 };
5823 
5824 /*
5825  * Build an iteration mask that can exclude certain CPUs from the upwards
5826  * domain traversal.
5827  *
5828  * Asymmetric node setups can result in situations where the domain tree is of
5829  * unequal depth, make sure to skip domains that already cover the entire
5830  * range.
5831  *
5832  * In that case build_sched_domains() will have terminated the iteration early
5833  * and our sibling sd spans will be empty. Domains should always include the
5834  * cpu they're built on, so check that.
5835  *
5836  */
5837 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5838 {
5839 	const struct cpumask *span = sched_domain_span(sd);
5840 	struct sd_data *sdd = sd->private;
5841 	struct sched_domain *sibling;
5842 	int i;
5843 
5844 	for_each_cpu(i, span) {
5845 		sibling = *per_cpu_ptr(sdd->sd, i);
5846 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5847 			continue;
5848 
5849 		cpumask_set_cpu(i, sched_group_mask(sg));
5850 	}
5851 }
5852 
5853 /*
5854  * Return the canonical balance cpu for this group, this is the first cpu
5855  * of this group that's also in the iteration mask.
5856  */
5857 int group_balance_cpu(struct sched_group *sg)
5858 {
5859 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5860 }
5861 
5862 static int
5863 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5864 {
5865 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5866 	const struct cpumask *span = sched_domain_span(sd);
5867 	struct cpumask *covered = sched_domains_tmpmask;
5868 	struct sd_data *sdd = sd->private;
5869 	struct sched_domain *sibling;
5870 	int i;
5871 
5872 	cpumask_clear(covered);
5873 
5874 	for_each_cpu(i, span) {
5875 		struct cpumask *sg_span;
5876 
5877 		if (cpumask_test_cpu(i, covered))
5878 			continue;
5879 
5880 		sibling = *per_cpu_ptr(sdd->sd, i);
5881 
5882 		/* See the comment near build_group_mask(). */
5883 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5884 			continue;
5885 
5886 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5887 				GFP_KERNEL, cpu_to_node(cpu));
5888 
5889 		if (!sg)
5890 			goto fail;
5891 
5892 		sg_span = sched_group_cpus(sg);
5893 		if (sibling->child)
5894 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5895 		else
5896 			cpumask_set_cpu(i, sg_span);
5897 
5898 		cpumask_or(covered, covered, sg_span);
5899 
5900 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5901 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5902 			build_group_mask(sd, sg);
5903 
5904 		/*
5905 		 * Initialize sgc->capacity such that even if we mess up the
5906 		 * domains and no possible iteration will get us here, we won't
5907 		 * die on a /0 trap.
5908 		 */
5909 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5910 
5911 		/*
5912 		 * Make sure the first group of this domain contains the
5913 		 * canonical balance cpu. Otherwise the sched_domain iteration
5914 		 * breaks. See update_sg_lb_stats().
5915 		 */
5916 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5917 		    group_balance_cpu(sg) == cpu)
5918 			groups = sg;
5919 
5920 		if (!first)
5921 			first = sg;
5922 		if (last)
5923 			last->next = sg;
5924 		last = sg;
5925 		last->next = first;
5926 	}
5927 	sd->groups = groups;
5928 
5929 	return 0;
5930 
5931 fail:
5932 	free_sched_groups(first, 0);
5933 
5934 	return -ENOMEM;
5935 }
5936 
5937 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5938 {
5939 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5940 	struct sched_domain *child = sd->child;
5941 
5942 	if (child)
5943 		cpu = cpumask_first(sched_domain_span(child));
5944 
5945 	if (sg) {
5946 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5947 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5948 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5949 	}
5950 
5951 	return cpu;
5952 }
5953 
5954 /*
5955  * build_sched_groups will build a circular linked list of the groups
5956  * covered by the given span, and will set each group's ->cpumask correctly,
5957  * and ->cpu_capacity to 0.
5958  *
5959  * Assumes the sched_domain tree is fully constructed
5960  */
5961 static int
5962 build_sched_groups(struct sched_domain *sd, int cpu)
5963 {
5964 	struct sched_group *first = NULL, *last = NULL;
5965 	struct sd_data *sdd = sd->private;
5966 	const struct cpumask *span = sched_domain_span(sd);
5967 	struct cpumask *covered;
5968 	int i;
5969 
5970 	get_group(cpu, sdd, &sd->groups);
5971 	atomic_inc(&sd->groups->ref);
5972 
5973 	if (cpu != cpumask_first(span))
5974 		return 0;
5975 
5976 	lockdep_assert_held(&sched_domains_mutex);
5977 	covered = sched_domains_tmpmask;
5978 
5979 	cpumask_clear(covered);
5980 
5981 	for_each_cpu(i, span) {
5982 		struct sched_group *sg;
5983 		int group, j;
5984 
5985 		if (cpumask_test_cpu(i, covered))
5986 			continue;
5987 
5988 		group = get_group(i, sdd, &sg);
5989 		cpumask_setall(sched_group_mask(sg));
5990 
5991 		for_each_cpu(j, span) {
5992 			if (get_group(j, sdd, NULL) != group)
5993 				continue;
5994 
5995 			cpumask_set_cpu(j, covered);
5996 			cpumask_set_cpu(j, sched_group_cpus(sg));
5997 		}
5998 
5999 		if (!first)
6000 			first = sg;
6001 		if (last)
6002 			last->next = sg;
6003 		last = sg;
6004 	}
6005 	last->next = first;
6006 
6007 	return 0;
6008 }
6009 
6010 /*
6011  * Initialize sched groups cpu_capacity.
6012  *
6013  * cpu_capacity indicates the capacity of sched group, which is used while
6014  * distributing the load between different sched groups in a sched domain.
6015  * Typically cpu_capacity for all the groups in a sched domain will be same
6016  * unless there are asymmetries in the topology. If there are asymmetries,
6017  * group having more cpu_capacity will pickup more load compared to the
6018  * group having less cpu_capacity.
6019  */
6020 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6021 {
6022 	struct sched_group *sg = sd->groups;
6023 
6024 	WARN_ON(!sg);
6025 
6026 	do {
6027 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6028 		sg = sg->next;
6029 	} while (sg != sd->groups);
6030 
6031 	if (cpu != group_balance_cpu(sg))
6032 		return;
6033 
6034 	update_group_capacity(sd, cpu);
6035 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6036 }
6037 
6038 /*
6039  * Initializers for schedule domains
6040  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6041  */
6042 
6043 static int default_relax_domain_level = -1;
6044 int sched_domain_level_max;
6045 
6046 static int __init setup_relax_domain_level(char *str)
6047 {
6048 	if (kstrtoint(str, 0, &default_relax_domain_level))
6049 		pr_warn("Unable to set relax_domain_level\n");
6050 
6051 	return 1;
6052 }
6053 __setup("relax_domain_level=", setup_relax_domain_level);
6054 
6055 static void set_domain_attribute(struct sched_domain *sd,
6056 				 struct sched_domain_attr *attr)
6057 {
6058 	int request;
6059 
6060 	if (!attr || attr->relax_domain_level < 0) {
6061 		if (default_relax_domain_level < 0)
6062 			return;
6063 		else
6064 			request = default_relax_domain_level;
6065 	} else
6066 		request = attr->relax_domain_level;
6067 	if (request < sd->level) {
6068 		/* turn off idle balance on this domain */
6069 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6070 	} else {
6071 		/* turn on idle balance on this domain */
6072 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6073 	}
6074 }
6075 
6076 static void __sdt_free(const struct cpumask *cpu_map);
6077 static int __sdt_alloc(const struct cpumask *cpu_map);
6078 
6079 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6080 				 const struct cpumask *cpu_map)
6081 {
6082 	switch (what) {
6083 	case sa_rootdomain:
6084 		if (!atomic_read(&d->rd->refcount))
6085 			free_rootdomain(&d->rd->rcu); /* fall through */
6086 	case sa_sd:
6087 		free_percpu(d->sd); /* fall through */
6088 	case sa_sd_storage:
6089 		__sdt_free(cpu_map); /* fall through */
6090 	case sa_none:
6091 		break;
6092 	}
6093 }
6094 
6095 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6096 						   const struct cpumask *cpu_map)
6097 {
6098 	memset(d, 0, sizeof(*d));
6099 
6100 	if (__sdt_alloc(cpu_map))
6101 		return sa_sd_storage;
6102 	d->sd = alloc_percpu(struct sched_domain *);
6103 	if (!d->sd)
6104 		return sa_sd_storage;
6105 	d->rd = alloc_rootdomain();
6106 	if (!d->rd)
6107 		return sa_sd;
6108 	return sa_rootdomain;
6109 }
6110 
6111 /*
6112  * NULL the sd_data elements we've used to build the sched_domain and
6113  * sched_group structure so that the subsequent __free_domain_allocs()
6114  * will not free the data we're using.
6115  */
6116 static void claim_allocations(int cpu, struct sched_domain *sd)
6117 {
6118 	struct sd_data *sdd = sd->private;
6119 
6120 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6121 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6122 
6123 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6124 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6125 
6126 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6127 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6128 }
6129 
6130 #ifdef CONFIG_NUMA
6131 static int sched_domains_numa_levels;
6132 enum numa_topology_type sched_numa_topology_type;
6133 static int *sched_domains_numa_distance;
6134 int sched_max_numa_distance;
6135 static struct cpumask ***sched_domains_numa_masks;
6136 static int sched_domains_curr_level;
6137 #endif
6138 
6139 /*
6140  * SD_flags allowed in topology descriptions.
6141  *
6142  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6143  * SD_SHARE_PKG_RESOURCES - describes shared caches
6144  * SD_NUMA                - describes NUMA topologies
6145  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6146  *
6147  * Odd one out:
6148  * SD_ASYM_PACKING        - describes SMT quirks
6149  */
6150 #define TOPOLOGY_SD_FLAGS		\
6151 	(SD_SHARE_CPUCAPACITY |		\
6152 	 SD_SHARE_PKG_RESOURCES |	\
6153 	 SD_NUMA |			\
6154 	 SD_ASYM_PACKING |		\
6155 	 SD_SHARE_POWERDOMAIN)
6156 
6157 static struct sched_domain *
6158 sd_init(struct sched_domain_topology_level *tl, int cpu)
6159 {
6160 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6161 	int sd_weight, sd_flags = 0;
6162 
6163 #ifdef CONFIG_NUMA
6164 	/*
6165 	 * Ugly hack to pass state to sd_numa_mask()...
6166 	 */
6167 	sched_domains_curr_level = tl->numa_level;
6168 #endif
6169 
6170 	sd_weight = cpumask_weight(tl->mask(cpu));
6171 
6172 	if (tl->sd_flags)
6173 		sd_flags = (*tl->sd_flags)();
6174 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6175 			"wrong sd_flags in topology description\n"))
6176 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6177 
6178 	*sd = (struct sched_domain){
6179 		.min_interval		= sd_weight,
6180 		.max_interval		= 2*sd_weight,
6181 		.busy_factor		= 32,
6182 		.imbalance_pct		= 125,
6183 
6184 		.cache_nice_tries	= 0,
6185 		.busy_idx		= 0,
6186 		.idle_idx		= 0,
6187 		.newidle_idx		= 0,
6188 		.wake_idx		= 0,
6189 		.forkexec_idx		= 0,
6190 
6191 		.flags			= 1*SD_LOAD_BALANCE
6192 					| 1*SD_BALANCE_NEWIDLE
6193 					| 1*SD_BALANCE_EXEC
6194 					| 1*SD_BALANCE_FORK
6195 					| 0*SD_BALANCE_WAKE
6196 					| 1*SD_WAKE_AFFINE
6197 					| 0*SD_SHARE_CPUCAPACITY
6198 					| 0*SD_SHARE_PKG_RESOURCES
6199 					| 0*SD_SERIALIZE
6200 					| 0*SD_PREFER_SIBLING
6201 					| 0*SD_NUMA
6202 					| sd_flags
6203 					,
6204 
6205 		.last_balance		= jiffies,
6206 		.balance_interval	= sd_weight,
6207 		.smt_gain		= 0,
6208 		.max_newidle_lb_cost	= 0,
6209 		.next_decay_max_lb_cost	= jiffies,
6210 #ifdef CONFIG_SCHED_DEBUG
6211 		.name			= tl->name,
6212 #endif
6213 	};
6214 
6215 	/*
6216 	 * Convert topological properties into behaviour.
6217 	 */
6218 
6219 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6220 		sd->flags |= SD_PREFER_SIBLING;
6221 		sd->imbalance_pct = 110;
6222 		sd->smt_gain = 1178; /* ~15% */
6223 
6224 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6225 		sd->imbalance_pct = 117;
6226 		sd->cache_nice_tries = 1;
6227 		sd->busy_idx = 2;
6228 
6229 #ifdef CONFIG_NUMA
6230 	} else if (sd->flags & SD_NUMA) {
6231 		sd->cache_nice_tries = 2;
6232 		sd->busy_idx = 3;
6233 		sd->idle_idx = 2;
6234 
6235 		sd->flags |= SD_SERIALIZE;
6236 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6237 			sd->flags &= ~(SD_BALANCE_EXEC |
6238 				       SD_BALANCE_FORK |
6239 				       SD_WAKE_AFFINE);
6240 		}
6241 
6242 #endif
6243 	} else {
6244 		sd->flags |= SD_PREFER_SIBLING;
6245 		sd->cache_nice_tries = 1;
6246 		sd->busy_idx = 2;
6247 		sd->idle_idx = 1;
6248 	}
6249 
6250 	sd->private = &tl->data;
6251 
6252 	return sd;
6253 }
6254 
6255 /*
6256  * Topology list, bottom-up.
6257  */
6258 static struct sched_domain_topology_level default_topology[] = {
6259 #ifdef CONFIG_SCHED_SMT
6260 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6261 #endif
6262 #ifdef CONFIG_SCHED_MC
6263 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6264 #endif
6265 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6266 	{ NULL, },
6267 };
6268 
6269 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6270 
6271 #define for_each_sd_topology(tl)			\
6272 	for (tl = sched_domain_topology; tl->mask; tl++)
6273 
6274 void set_sched_topology(struct sched_domain_topology_level *tl)
6275 {
6276 	sched_domain_topology = tl;
6277 }
6278 
6279 #ifdef CONFIG_NUMA
6280 
6281 static const struct cpumask *sd_numa_mask(int cpu)
6282 {
6283 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6284 }
6285 
6286 static void sched_numa_warn(const char *str)
6287 {
6288 	static int done = false;
6289 	int i,j;
6290 
6291 	if (done)
6292 		return;
6293 
6294 	done = true;
6295 
6296 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6297 
6298 	for (i = 0; i < nr_node_ids; i++) {
6299 		printk(KERN_WARNING "  ");
6300 		for (j = 0; j < nr_node_ids; j++)
6301 			printk(KERN_CONT "%02d ", node_distance(i,j));
6302 		printk(KERN_CONT "\n");
6303 	}
6304 	printk(KERN_WARNING "\n");
6305 }
6306 
6307 bool find_numa_distance(int distance)
6308 {
6309 	int i;
6310 
6311 	if (distance == node_distance(0, 0))
6312 		return true;
6313 
6314 	for (i = 0; i < sched_domains_numa_levels; i++) {
6315 		if (sched_domains_numa_distance[i] == distance)
6316 			return true;
6317 	}
6318 
6319 	return false;
6320 }
6321 
6322 /*
6323  * A system can have three types of NUMA topology:
6324  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6325  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6326  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6327  *
6328  * The difference between a glueless mesh topology and a backplane
6329  * topology lies in whether communication between not directly
6330  * connected nodes goes through intermediary nodes (where programs
6331  * could run), or through backplane controllers. This affects
6332  * placement of programs.
6333  *
6334  * The type of topology can be discerned with the following tests:
6335  * - If the maximum distance between any nodes is 1 hop, the system
6336  *   is directly connected.
6337  * - If for two nodes A and B, located N > 1 hops away from each other,
6338  *   there is an intermediary node C, which is < N hops away from both
6339  *   nodes A and B, the system is a glueless mesh.
6340  */
6341 static void init_numa_topology_type(void)
6342 {
6343 	int a, b, c, n;
6344 
6345 	n = sched_max_numa_distance;
6346 
6347 	if (n <= 1)
6348 		sched_numa_topology_type = NUMA_DIRECT;
6349 
6350 	for_each_online_node(a) {
6351 		for_each_online_node(b) {
6352 			/* Find two nodes furthest removed from each other. */
6353 			if (node_distance(a, b) < n)
6354 				continue;
6355 
6356 			/* Is there an intermediary node between a and b? */
6357 			for_each_online_node(c) {
6358 				if (node_distance(a, c) < n &&
6359 				    node_distance(b, c) < n) {
6360 					sched_numa_topology_type =
6361 							NUMA_GLUELESS_MESH;
6362 					return;
6363 				}
6364 			}
6365 
6366 			sched_numa_topology_type = NUMA_BACKPLANE;
6367 			return;
6368 		}
6369 	}
6370 }
6371 
6372 static void sched_init_numa(void)
6373 {
6374 	int next_distance, curr_distance = node_distance(0, 0);
6375 	struct sched_domain_topology_level *tl;
6376 	int level = 0;
6377 	int i, j, k;
6378 
6379 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6380 	if (!sched_domains_numa_distance)
6381 		return;
6382 
6383 	/*
6384 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6385 	 * unique distances in the node_distance() table.
6386 	 *
6387 	 * Assumes node_distance(0,j) includes all distances in
6388 	 * node_distance(i,j) in order to avoid cubic time.
6389 	 */
6390 	next_distance = curr_distance;
6391 	for (i = 0; i < nr_node_ids; i++) {
6392 		for (j = 0; j < nr_node_ids; j++) {
6393 			for (k = 0; k < nr_node_ids; k++) {
6394 				int distance = node_distance(i, k);
6395 
6396 				if (distance > curr_distance &&
6397 				    (distance < next_distance ||
6398 				     next_distance == curr_distance))
6399 					next_distance = distance;
6400 
6401 				/*
6402 				 * While not a strong assumption it would be nice to know
6403 				 * about cases where if node A is connected to B, B is not
6404 				 * equally connected to A.
6405 				 */
6406 				if (sched_debug() && node_distance(k, i) != distance)
6407 					sched_numa_warn("Node-distance not symmetric");
6408 
6409 				if (sched_debug() && i && !find_numa_distance(distance))
6410 					sched_numa_warn("Node-0 not representative");
6411 			}
6412 			if (next_distance != curr_distance) {
6413 				sched_domains_numa_distance[level++] = next_distance;
6414 				sched_domains_numa_levels = level;
6415 				curr_distance = next_distance;
6416 			} else break;
6417 		}
6418 
6419 		/*
6420 		 * In case of sched_debug() we verify the above assumption.
6421 		 */
6422 		if (!sched_debug())
6423 			break;
6424 	}
6425 
6426 	if (!level)
6427 		return;
6428 
6429 	/*
6430 	 * 'level' contains the number of unique distances, excluding the
6431 	 * identity distance node_distance(i,i).
6432 	 *
6433 	 * The sched_domains_numa_distance[] array includes the actual distance
6434 	 * numbers.
6435 	 */
6436 
6437 	/*
6438 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6439 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6440 	 * the array will contain less then 'level' members. This could be
6441 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6442 	 * in other functions.
6443 	 *
6444 	 * We reset it to 'level' at the end of this function.
6445 	 */
6446 	sched_domains_numa_levels = 0;
6447 
6448 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6449 	if (!sched_domains_numa_masks)
6450 		return;
6451 
6452 	/*
6453 	 * Now for each level, construct a mask per node which contains all
6454 	 * cpus of nodes that are that many hops away from us.
6455 	 */
6456 	for (i = 0; i < level; i++) {
6457 		sched_domains_numa_masks[i] =
6458 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6459 		if (!sched_domains_numa_masks[i])
6460 			return;
6461 
6462 		for (j = 0; j < nr_node_ids; j++) {
6463 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6464 			if (!mask)
6465 				return;
6466 
6467 			sched_domains_numa_masks[i][j] = mask;
6468 
6469 			for (k = 0; k < nr_node_ids; k++) {
6470 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6471 					continue;
6472 
6473 				cpumask_or(mask, mask, cpumask_of_node(k));
6474 			}
6475 		}
6476 	}
6477 
6478 	/* Compute default topology size */
6479 	for (i = 0; sched_domain_topology[i].mask; i++);
6480 
6481 	tl = kzalloc((i + level + 1) *
6482 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6483 	if (!tl)
6484 		return;
6485 
6486 	/*
6487 	 * Copy the default topology bits..
6488 	 */
6489 	for (i = 0; sched_domain_topology[i].mask; i++)
6490 		tl[i] = sched_domain_topology[i];
6491 
6492 	/*
6493 	 * .. and append 'j' levels of NUMA goodness.
6494 	 */
6495 	for (j = 0; j < level; i++, j++) {
6496 		tl[i] = (struct sched_domain_topology_level){
6497 			.mask = sd_numa_mask,
6498 			.sd_flags = cpu_numa_flags,
6499 			.flags = SDTL_OVERLAP,
6500 			.numa_level = j,
6501 			SD_INIT_NAME(NUMA)
6502 		};
6503 	}
6504 
6505 	sched_domain_topology = tl;
6506 
6507 	sched_domains_numa_levels = level;
6508 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6509 
6510 	init_numa_topology_type();
6511 }
6512 
6513 static void sched_domains_numa_masks_set(int cpu)
6514 {
6515 	int i, j;
6516 	int node = cpu_to_node(cpu);
6517 
6518 	for (i = 0; i < sched_domains_numa_levels; i++) {
6519 		for (j = 0; j < nr_node_ids; j++) {
6520 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6521 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6522 		}
6523 	}
6524 }
6525 
6526 static void sched_domains_numa_masks_clear(int cpu)
6527 {
6528 	int i, j;
6529 	for (i = 0; i < sched_domains_numa_levels; i++) {
6530 		for (j = 0; j < nr_node_ids; j++)
6531 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6532 	}
6533 }
6534 
6535 /*
6536  * Update sched_domains_numa_masks[level][node] array when new cpus
6537  * are onlined.
6538  */
6539 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6540 					   unsigned long action,
6541 					   void *hcpu)
6542 {
6543 	int cpu = (long)hcpu;
6544 
6545 	switch (action & ~CPU_TASKS_FROZEN) {
6546 	case CPU_ONLINE:
6547 		sched_domains_numa_masks_set(cpu);
6548 		break;
6549 
6550 	case CPU_DEAD:
6551 		sched_domains_numa_masks_clear(cpu);
6552 		break;
6553 
6554 	default:
6555 		return NOTIFY_DONE;
6556 	}
6557 
6558 	return NOTIFY_OK;
6559 }
6560 #else
6561 static inline void sched_init_numa(void)
6562 {
6563 }
6564 
6565 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6566 					   unsigned long action,
6567 					   void *hcpu)
6568 {
6569 	return 0;
6570 }
6571 #endif /* CONFIG_NUMA */
6572 
6573 static int __sdt_alloc(const struct cpumask *cpu_map)
6574 {
6575 	struct sched_domain_topology_level *tl;
6576 	int j;
6577 
6578 	for_each_sd_topology(tl) {
6579 		struct sd_data *sdd = &tl->data;
6580 
6581 		sdd->sd = alloc_percpu(struct sched_domain *);
6582 		if (!sdd->sd)
6583 			return -ENOMEM;
6584 
6585 		sdd->sg = alloc_percpu(struct sched_group *);
6586 		if (!sdd->sg)
6587 			return -ENOMEM;
6588 
6589 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6590 		if (!sdd->sgc)
6591 			return -ENOMEM;
6592 
6593 		for_each_cpu(j, cpu_map) {
6594 			struct sched_domain *sd;
6595 			struct sched_group *sg;
6596 			struct sched_group_capacity *sgc;
6597 
6598 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6599 					GFP_KERNEL, cpu_to_node(j));
6600 			if (!sd)
6601 				return -ENOMEM;
6602 
6603 			*per_cpu_ptr(sdd->sd, j) = sd;
6604 
6605 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6606 					GFP_KERNEL, cpu_to_node(j));
6607 			if (!sg)
6608 				return -ENOMEM;
6609 
6610 			sg->next = sg;
6611 
6612 			*per_cpu_ptr(sdd->sg, j) = sg;
6613 
6614 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6615 					GFP_KERNEL, cpu_to_node(j));
6616 			if (!sgc)
6617 				return -ENOMEM;
6618 
6619 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6620 		}
6621 	}
6622 
6623 	return 0;
6624 }
6625 
6626 static void __sdt_free(const struct cpumask *cpu_map)
6627 {
6628 	struct sched_domain_topology_level *tl;
6629 	int j;
6630 
6631 	for_each_sd_topology(tl) {
6632 		struct sd_data *sdd = &tl->data;
6633 
6634 		for_each_cpu(j, cpu_map) {
6635 			struct sched_domain *sd;
6636 
6637 			if (sdd->sd) {
6638 				sd = *per_cpu_ptr(sdd->sd, j);
6639 				if (sd && (sd->flags & SD_OVERLAP))
6640 					free_sched_groups(sd->groups, 0);
6641 				kfree(*per_cpu_ptr(sdd->sd, j));
6642 			}
6643 
6644 			if (sdd->sg)
6645 				kfree(*per_cpu_ptr(sdd->sg, j));
6646 			if (sdd->sgc)
6647 				kfree(*per_cpu_ptr(sdd->sgc, j));
6648 		}
6649 		free_percpu(sdd->sd);
6650 		sdd->sd = NULL;
6651 		free_percpu(sdd->sg);
6652 		sdd->sg = NULL;
6653 		free_percpu(sdd->sgc);
6654 		sdd->sgc = NULL;
6655 	}
6656 }
6657 
6658 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6659 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6660 		struct sched_domain *child, int cpu)
6661 {
6662 	struct sched_domain *sd = sd_init(tl, cpu);
6663 	if (!sd)
6664 		return child;
6665 
6666 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6667 	if (child) {
6668 		sd->level = child->level + 1;
6669 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6670 		child->parent = sd;
6671 		sd->child = child;
6672 
6673 		if (!cpumask_subset(sched_domain_span(child),
6674 				    sched_domain_span(sd))) {
6675 			pr_err("BUG: arch topology borken\n");
6676 #ifdef CONFIG_SCHED_DEBUG
6677 			pr_err("     the %s domain not a subset of the %s domain\n",
6678 					child->name, sd->name);
6679 #endif
6680 			/* Fixup, ensure @sd has at least @child cpus. */
6681 			cpumask_or(sched_domain_span(sd),
6682 				   sched_domain_span(sd),
6683 				   sched_domain_span(child));
6684 		}
6685 
6686 	}
6687 	set_domain_attribute(sd, attr);
6688 
6689 	return sd;
6690 }
6691 
6692 /*
6693  * Build sched domains for a given set of cpus and attach the sched domains
6694  * to the individual cpus
6695  */
6696 static int build_sched_domains(const struct cpumask *cpu_map,
6697 			       struct sched_domain_attr *attr)
6698 {
6699 	enum s_alloc alloc_state;
6700 	struct sched_domain *sd;
6701 	struct s_data d;
6702 	int i, ret = -ENOMEM;
6703 
6704 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6705 	if (alloc_state != sa_rootdomain)
6706 		goto error;
6707 
6708 	/* Set up domains for cpus specified by the cpu_map. */
6709 	for_each_cpu(i, cpu_map) {
6710 		struct sched_domain_topology_level *tl;
6711 
6712 		sd = NULL;
6713 		for_each_sd_topology(tl) {
6714 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6715 			if (tl == sched_domain_topology)
6716 				*per_cpu_ptr(d.sd, i) = sd;
6717 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6718 				sd->flags |= SD_OVERLAP;
6719 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6720 				break;
6721 		}
6722 	}
6723 
6724 	/* Build the groups for the domains */
6725 	for_each_cpu(i, cpu_map) {
6726 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6727 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6728 			if (sd->flags & SD_OVERLAP) {
6729 				if (build_overlap_sched_groups(sd, i))
6730 					goto error;
6731 			} else {
6732 				if (build_sched_groups(sd, i))
6733 					goto error;
6734 			}
6735 		}
6736 	}
6737 
6738 	/* Calculate CPU capacity for physical packages and nodes */
6739 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6740 		if (!cpumask_test_cpu(i, cpu_map))
6741 			continue;
6742 
6743 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6744 			claim_allocations(i, sd);
6745 			init_sched_groups_capacity(i, sd);
6746 		}
6747 	}
6748 
6749 	/* Attach the domains */
6750 	rcu_read_lock();
6751 	for_each_cpu(i, cpu_map) {
6752 		sd = *per_cpu_ptr(d.sd, i);
6753 		cpu_attach_domain(sd, d.rd, i);
6754 	}
6755 	rcu_read_unlock();
6756 
6757 	ret = 0;
6758 error:
6759 	__free_domain_allocs(&d, alloc_state, cpu_map);
6760 	return ret;
6761 }
6762 
6763 static cpumask_var_t *doms_cur;	/* current sched domains */
6764 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6765 static struct sched_domain_attr *dattr_cur;
6766 				/* attribues of custom domains in 'doms_cur' */
6767 
6768 /*
6769  * Special case: If a kmalloc of a doms_cur partition (array of
6770  * cpumask) fails, then fallback to a single sched domain,
6771  * as determined by the single cpumask fallback_doms.
6772  */
6773 static cpumask_var_t fallback_doms;
6774 
6775 /*
6776  * arch_update_cpu_topology lets virtualized architectures update the
6777  * cpu core maps. It is supposed to return 1 if the topology changed
6778  * or 0 if it stayed the same.
6779  */
6780 int __weak arch_update_cpu_topology(void)
6781 {
6782 	return 0;
6783 }
6784 
6785 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6786 {
6787 	int i;
6788 	cpumask_var_t *doms;
6789 
6790 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6791 	if (!doms)
6792 		return NULL;
6793 	for (i = 0; i < ndoms; i++) {
6794 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6795 			free_sched_domains(doms, i);
6796 			return NULL;
6797 		}
6798 	}
6799 	return doms;
6800 }
6801 
6802 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6803 {
6804 	unsigned int i;
6805 	for (i = 0; i < ndoms; i++)
6806 		free_cpumask_var(doms[i]);
6807 	kfree(doms);
6808 }
6809 
6810 /*
6811  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6812  * For now this just excludes isolated cpus, but could be used to
6813  * exclude other special cases in the future.
6814  */
6815 static int init_sched_domains(const struct cpumask *cpu_map)
6816 {
6817 	int err;
6818 
6819 	arch_update_cpu_topology();
6820 	ndoms_cur = 1;
6821 	doms_cur = alloc_sched_domains(ndoms_cur);
6822 	if (!doms_cur)
6823 		doms_cur = &fallback_doms;
6824 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6825 	err = build_sched_domains(doms_cur[0], NULL);
6826 	register_sched_domain_sysctl();
6827 
6828 	return err;
6829 }
6830 
6831 /*
6832  * Detach sched domains from a group of cpus specified in cpu_map
6833  * These cpus will now be attached to the NULL domain
6834  */
6835 static void detach_destroy_domains(const struct cpumask *cpu_map)
6836 {
6837 	int i;
6838 
6839 	rcu_read_lock();
6840 	for_each_cpu(i, cpu_map)
6841 		cpu_attach_domain(NULL, &def_root_domain, i);
6842 	rcu_read_unlock();
6843 }
6844 
6845 /* handle null as "default" */
6846 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6847 			struct sched_domain_attr *new, int idx_new)
6848 {
6849 	struct sched_domain_attr tmp;
6850 
6851 	/* fast path */
6852 	if (!new && !cur)
6853 		return 1;
6854 
6855 	tmp = SD_ATTR_INIT;
6856 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6857 			new ? (new + idx_new) : &tmp,
6858 			sizeof(struct sched_domain_attr));
6859 }
6860 
6861 /*
6862  * Partition sched domains as specified by the 'ndoms_new'
6863  * cpumasks in the array doms_new[] of cpumasks. This compares
6864  * doms_new[] to the current sched domain partitioning, doms_cur[].
6865  * It destroys each deleted domain and builds each new domain.
6866  *
6867  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6868  * The masks don't intersect (don't overlap.) We should setup one
6869  * sched domain for each mask. CPUs not in any of the cpumasks will
6870  * not be load balanced. If the same cpumask appears both in the
6871  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6872  * it as it is.
6873  *
6874  * The passed in 'doms_new' should be allocated using
6875  * alloc_sched_domains.  This routine takes ownership of it and will
6876  * free_sched_domains it when done with it. If the caller failed the
6877  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6878  * and partition_sched_domains() will fallback to the single partition
6879  * 'fallback_doms', it also forces the domains to be rebuilt.
6880  *
6881  * If doms_new == NULL it will be replaced with cpu_online_mask.
6882  * ndoms_new == 0 is a special case for destroying existing domains,
6883  * and it will not create the default domain.
6884  *
6885  * Call with hotplug lock held
6886  */
6887 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6888 			     struct sched_domain_attr *dattr_new)
6889 {
6890 	int i, j, n;
6891 	int new_topology;
6892 
6893 	mutex_lock(&sched_domains_mutex);
6894 
6895 	/* always unregister in case we don't destroy any domains */
6896 	unregister_sched_domain_sysctl();
6897 
6898 	/* Let architecture update cpu core mappings. */
6899 	new_topology = arch_update_cpu_topology();
6900 
6901 	n = doms_new ? ndoms_new : 0;
6902 
6903 	/* Destroy deleted domains */
6904 	for (i = 0; i < ndoms_cur; i++) {
6905 		for (j = 0; j < n && !new_topology; j++) {
6906 			if (cpumask_equal(doms_cur[i], doms_new[j])
6907 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6908 				goto match1;
6909 		}
6910 		/* no match - a current sched domain not in new doms_new[] */
6911 		detach_destroy_domains(doms_cur[i]);
6912 match1:
6913 		;
6914 	}
6915 
6916 	n = ndoms_cur;
6917 	if (doms_new == NULL) {
6918 		n = 0;
6919 		doms_new = &fallback_doms;
6920 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6921 		WARN_ON_ONCE(dattr_new);
6922 	}
6923 
6924 	/* Build new domains */
6925 	for (i = 0; i < ndoms_new; i++) {
6926 		for (j = 0; j < n && !new_topology; j++) {
6927 			if (cpumask_equal(doms_new[i], doms_cur[j])
6928 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6929 				goto match2;
6930 		}
6931 		/* no match - add a new doms_new */
6932 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6933 match2:
6934 		;
6935 	}
6936 
6937 	/* Remember the new sched domains */
6938 	if (doms_cur != &fallback_doms)
6939 		free_sched_domains(doms_cur, ndoms_cur);
6940 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6941 	doms_cur = doms_new;
6942 	dattr_cur = dattr_new;
6943 	ndoms_cur = ndoms_new;
6944 
6945 	register_sched_domain_sysctl();
6946 
6947 	mutex_unlock(&sched_domains_mutex);
6948 }
6949 
6950 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6951 
6952 /*
6953  * Update cpusets according to cpu_active mask.  If cpusets are
6954  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6955  * around partition_sched_domains().
6956  *
6957  * If we come here as part of a suspend/resume, don't touch cpusets because we
6958  * want to restore it back to its original state upon resume anyway.
6959  */
6960 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6961 			     void *hcpu)
6962 {
6963 	switch (action) {
6964 	case CPU_ONLINE_FROZEN:
6965 	case CPU_DOWN_FAILED_FROZEN:
6966 
6967 		/*
6968 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6969 		 * resume sequence. As long as this is not the last online
6970 		 * operation in the resume sequence, just build a single sched
6971 		 * domain, ignoring cpusets.
6972 		 */
6973 		num_cpus_frozen--;
6974 		if (likely(num_cpus_frozen)) {
6975 			partition_sched_domains(1, NULL, NULL);
6976 			break;
6977 		}
6978 
6979 		/*
6980 		 * This is the last CPU online operation. So fall through and
6981 		 * restore the original sched domains by considering the
6982 		 * cpuset configurations.
6983 		 */
6984 
6985 	case CPU_ONLINE:
6986 		cpuset_update_active_cpus(true);
6987 		break;
6988 	default:
6989 		return NOTIFY_DONE;
6990 	}
6991 	return NOTIFY_OK;
6992 }
6993 
6994 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6995 			       void *hcpu)
6996 {
6997 	unsigned long flags;
6998 	long cpu = (long)hcpu;
6999 	struct dl_bw *dl_b;
7000 
7001 	switch (action & ~CPU_TASKS_FROZEN) {
7002 	case CPU_DOWN_PREPARE:
7003 		/* explicitly allow suspend */
7004 		if (!(action & CPU_TASKS_FROZEN)) {
7005 			bool overflow;
7006 			int cpus;
7007 
7008 			rcu_read_lock_sched();
7009 			dl_b = dl_bw_of(cpu);
7010 
7011 			raw_spin_lock_irqsave(&dl_b->lock, flags);
7012 			cpus = dl_bw_cpus(cpu);
7013 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
7014 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7015 
7016 			rcu_read_unlock_sched();
7017 
7018 			if (overflow)
7019 				return notifier_from_errno(-EBUSY);
7020 		}
7021 		cpuset_update_active_cpus(false);
7022 		break;
7023 	case CPU_DOWN_PREPARE_FROZEN:
7024 		num_cpus_frozen++;
7025 		partition_sched_domains(1, NULL, NULL);
7026 		break;
7027 	default:
7028 		return NOTIFY_DONE;
7029 	}
7030 	return NOTIFY_OK;
7031 }
7032 
7033 void __init sched_init_smp(void)
7034 {
7035 	cpumask_var_t non_isolated_cpus;
7036 
7037 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7038 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7039 
7040 	sched_init_numa();
7041 
7042 	/*
7043 	 * There's no userspace yet to cause hotplug operations; hence all the
7044 	 * cpu masks are stable and all blatant races in the below code cannot
7045 	 * happen.
7046 	 */
7047 	mutex_lock(&sched_domains_mutex);
7048 	init_sched_domains(cpu_active_mask);
7049 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7050 	if (cpumask_empty(non_isolated_cpus))
7051 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7052 	mutex_unlock(&sched_domains_mutex);
7053 
7054 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7055 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7056 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7057 
7058 	init_hrtick();
7059 
7060 	/* Move init over to a non-isolated CPU */
7061 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7062 		BUG();
7063 	sched_init_granularity();
7064 	free_cpumask_var(non_isolated_cpus);
7065 
7066 	init_sched_rt_class();
7067 	init_sched_dl_class();
7068 }
7069 #else
7070 void __init sched_init_smp(void)
7071 {
7072 	sched_init_granularity();
7073 }
7074 #endif /* CONFIG_SMP */
7075 
7076 const_debug unsigned int sysctl_timer_migration = 1;
7077 
7078 int in_sched_functions(unsigned long addr)
7079 {
7080 	return in_lock_functions(addr) ||
7081 		(addr >= (unsigned long)__sched_text_start
7082 		&& addr < (unsigned long)__sched_text_end);
7083 }
7084 
7085 #ifdef CONFIG_CGROUP_SCHED
7086 /*
7087  * Default task group.
7088  * Every task in system belongs to this group at bootup.
7089  */
7090 struct task_group root_task_group;
7091 LIST_HEAD(task_groups);
7092 #endif
7093 
7094 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7095 
7096 void __init sched_init(void)
7097 {
7098 	int i, j;
7099 	unsigned long alloc_size = 0, ptr;
7100 
7101 #ifdef CONFIG_FAIR_GROUP_SCHED
7102 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7103 #endif
7104 #ifdef CONFIG_RT_GROUP_SCHED
7105 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7106 #endif
7107 	if (alloc_size) {
7108 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7109 
7110 #ifdef CONFIG_FAIR_GROUP_SCHED
7111 		root_task_group.se = (struct sched_entity **)ptr;
7112 		ptr += nr_cpu_ids * sizeof(void **);
7113 
7114 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7115 		ptr += nr_cpu_ids * sizeof(void **);
7116 
7117 #endif /* CONFIG_FAIR_GROUP_SCHED */
7118 #ifdef CONFIG_RT_GROUP_SCHED
7119 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7120 		ptr += nr_cpu_ids * sizeof(void **);
7121 
7122 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7123 		ptr += nr_cpu_ids * sizeof(void **);
7124 
7125 #endif /* CONFIG_RT_GROUP_SCHED */
7126 	}
7127 #ifdef CONFIG_CPUMASK_OFFSTACK
7128 	for_each_possible_cpu(i) {
7129 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7130 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7131 	}
7132 #endif /* CONFIG_CPUMASK_OFFSTACK */
7133 
7134 	init_rt_bandwidth(&def_rt_bandwidth,
7135 			global_rt_period(), global_rt_runtime());
7136 	init_dl_bandwidth(&def_dl_bandwidth,
7137 			global_rt_period(), global_rt_runtime());
7138 
7139 #ifdef CONFIG_SMP
7140 	init_defrootdomain();
7141 #endif
7142 
7143 #ifdef CONFIG_RT_GROUP_SCHED
7144 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7145 			global_rt_period(), global_rt_runtime());
7146 #endif /* CONFIG_RT_GROUP_SCHED */
7147 
7148 #ifdef CONFIG_CGROUP_SCHED
7149 	list_add(&root_task_group.list, &task_groups);
7150 	INIT_LIST_HEAD(&root_task_group.children);
7151 	INIT_LIST_HEAD(&root_task_group.siblings);
7152 	autogroup_init(&init_task);
7153 
7154 #endif /* CONFIG_CGROUP_SCHED */
7155 
7156 	for_each_possible_cpu(i) {
7157 		struct rq *rq;
7158 
7159 		rq = cpu_rq(i);
7160 		raw_spin_lock_init(&rq->lock);
7161 		rq->nr_running = 0;
7162 		rq->calc_load_active = 0;
7163 		rq->calc_load_update = jiffies + LOAD_FREQ;
7164 		init_cfs_rq(&rq->cfs);
7165 		init_rt_rq(&rq->rt);
7166 		init_dl_rq(&rq->dl);
7167 #ifdef CONFIG_FAIR_GROUP_SCHED
7168 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7169 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7170 		/*
7171 		 * How much cpu bandwidth does root_task_group get?
7172 		 *
7173 		 * In case of task-groups formed thr' the cgroup filesystem, it
7174 		 * gets 100% of the cpu resources in the system. This overall
7175 		 * system cpu resource is divided among the tasks of
7176 		 * root_task_group and its child task-groups in a fair manner,
7177 		 * based on each entity's (task or task-group's) weight
7178 		 * (se->load.weight).
7179 		 *
7180 		 * In other words, if root_task_group has 10 tasks of weight
7181 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7182 		 * then A0's share of the cpu resource is:
7183 		 *
7184 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7185 		 *
7186 		 * We achieve this by letting root_task_group's tasks sit
7187 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7188 		 */
7189 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7190 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7191 #endif /* CONFIG_FAIR_GROUP_SCHED */
7192 
7193 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7194 #ifdef CONFIG_RT_GROUP_SCHED
7195 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7196 #endif
7197 
7198 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7199 			rq->cpu_load[j] = 0;
7200 
7201 		rq->last_load_update_tick = jiffies;
7202 
7203 #ifdef CONFIG_SMP
7204 		rq->sd = NULL;
7205 		rq->rd = NULL;
7206 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7207 		rq->post_schedule = 0;
7208 		rq->active_balance = 0;
7209 		rq->next_balance = jiffies;
7210 		rq->push_cpu = 0;
7211 		rq->cpu = i;
7212 		rq->online = 0;
7213 		rq->idle_stamp = 0;
7214 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7215 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7216 
7217 		INIT_LIST_HEAD(&rq->cfs_tasks);
7218 
7219 		rq_attach_root(rq, &def_root_domain);
7220 #ifdef CONFIG_NO_HZ_COMMON
7221 		rq->nohz_flags = 0;
7222 #endif
7223 #ifdef CONFIG_NO_HZ_FULL
7224 		rq->last_sched_tick = 0;
7225 #endif
7226 #endif
7227 		init_rq_hrtick(rq);
7228 		atomic_set(&rq->nr_iowait, 0);
7229 	}
7230 
7231 	set_load_weight(&init_task);
7232 
7233 #ifdef CONFIG_PREEMPT_NOTIFIERS
7234 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7235 #endif
7236 
7237 	/*
7238 	 * The boot idle thread does lazy MMU switching as well:
7239 	 */
7240 	atomic_inc(&init_mm.mm_count);
7241 	enter_lazy_tlb(&init_mm, current);
7242 
7243 	/*
7244 	 * During early bootup we pretend to be a normal task:
7245 	 */
7246 	current->sched_class = &fair_sched_class;
7247 
7248 	/*
7249 	 * Make us the idle thread. Technically, schedule() should not be
7250 	 * called from this thread, however somewhere below it might be,
7251 	 * but because we are the idle thread, we just pick up running again
7252 	 * when this runqueue becomes "idle".
7253 	 */
7254 	init_idle(current, smp_processor_id());
7255 
7256 	calc_load_update = jiffies + LOAD_FREQ;
7257 
7258 #ifdef CONFIG_SMP
7259 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7260 	/* May be allocated at isolcpus cmdline parse time */
7261 	if (cpu_isolated_map == NULL)
7262 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7263 	idle_thread_set_boot_cpu();
7264 	set_cpu_rq_start_time();
7265 #endif
7266 	init_sched_fair_class();
7267 
7268 	scheduler_running = 1;
7269 }
7270 
7271 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7272 static inline int preempt_count_equals(int preempt_offset)
7273 {
7274 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7275 
7276 	return (nested == preempt_offset);
7277 }
7278 
7279 void __might_sleep(const char *file, int line, int preempt_offset)
7280 {
7281 	/*
7282 	 * Blocking primitives will set (and therefore destroy) current->state,
7283 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7284 	 * otherwise we will destroy state.
7285 	 */
7286 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7287 			"do not call blocking ops when !TASK_RUNNING; "
7288 			"state=%lx set at [<%p>] %pS\n",
7289 			current->state,
7290 			(void *)current->task_state_change,
7291 			(void *)current->task_state_change);
7292 
7293 	___might_sleep(file, line, preempt_offset);
7294 }
7295 EXPORT_SYMBOL(__might_sleep);
7296 
7297 void ___might_sleep(const char *file, int line, int preempt_offset)
7298 {
7299 	static unsigned long prev_jiffy;	/* ratelimiting */
7300 
7301 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7302 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7303 	     !is_idle_task(current)) ||
7304 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7305 		return;
7306 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7307 		return;
7308 	prev_jiffy = jiffies;
7309 
7310 	printk(KERN_ERR
7311 		"BUG: sleeping function called from invalid context at %s:%d\n",
7312 			file, line);
7313 	printk(KERN_ERR
7314 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7315 			in_atomic(), irqs_disabled(),
7316 			current->pid, current->comm);
7317 
7318 	if (task_stack_end_corrupted(current))
7319 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7320 
7321 	debug_show_held_locks(current);
7322 	if (irqs_disabled())
7323 		print_irqtrace_events(current);
7324 #ifdef CONFIG_DEBUG_PREEMPT
7325 	if (!preempt_count_equals(preempt_offset)) {
7326 		pr_err("Preemption disabled at:");
7327 		print_ip_sym(current->preempt_disable_ip);
7328 		pr_cont("\n");
7329 	}
7330 #endif
7331 	dump_stack();
7332 }
7333 EXPORT_SYMBOL(___might_sleep);
7334 #endif
7335 
7336 #ifdef CONFIG_MAGIC_SYSRQ
7337 static void normalize_task(struct rq *rq, struct task_struct *p)
7338 {
7339 	const struct sched_class *prev_class = p->sched_class;
7340 	struct sched_attr attr = {
7341 		.sched_policy = SCHED_NORMAL,
7342 	};
7343 	int old_prio = p->prio;
7344 	int queued;
7345 
7346 	queued = task_on_rq_queued(p);
7347 	if (queued)
7348 		dequeue_task(rq, p, 0);
7349 	__setscheduler(rq, p, &attr);
7350 	if (queued) {
7351 		enqueue_task(rq, p, 0);
7352 		resched_curr(rq);
7353 	}
7354 
7355 	check_class_changed(rq, p, prev_class, old_prio);
7356 }
7357 
7358 void normalize_rt_tasks(void)
7359 {
7360 	struct task_struct *g, *p;
7361 	unsigned long flags;
7362 	struct rq *rq;
7363 
7364 	read_lock(&tasklist_lock);
7365 	for_each_process_thread(g, p) {
7366 		/*
7367 		 * Only normalize user tasks:
7368 		 */
7369 		if (p->flags & PF_KTHREAD)
7370 			continue;
7371 
7372 		p->se.exec_start		= 0;
7373 #ifdef CONFIG_SCHEDSTATS
7374 		p->se.statistics.wait_start	= 0;
7375 		p->se.statistics.sleep_start	= 0;
7376 		p->se.statistics.block_start	= 0;
7377 #endif
7378 
7379 		if (!dl_task(p) && !rt_task(p)) {
7380 			/*
7381 			 * Renice negative nice level userspace
7382 			 * tasks back to 0:
7383 			 */
7384 			if (task_nice(p) < 0)
7385 				set_user_nice(p, 0);
7386 			continue;
7387 		}
7388 
7389 		rq = task_rq_lock(p, &flags);
7390 		normalize_task(rq, p);
7391 		task_rq_unlock(rq, p, &flags);
7392 	}
7393 	read_unlock(&tasklist_lock);
7394 }
7395 
7396 #endif /* CONFIG_MAGIC_SYSRQ */
7397 
7398 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7399 /*
7400  * These functions are only useful for the IA64 MCA handling, or kdb.
7401  *
7402  * They can only be called when the whole system has been
7403  * stopped - every CPU needs to be quiescent, and no scheduling
7404  * activity can take place. Using them for anything else would
7405  * be a serious bug, and as a result, they aren't even visible
7406  * under any other configuration.
7407  */
7408 
7409 /**
7410  * curr_task - return the current task for a given cpu.
7411  * @cpu: the processor in question.
7412  *
7413  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7414  *
7415  * Return: The current task for @cpu.
7416  */
7417 struct task_struct *curr_task(int cpu)
7418 {
7419 	return cpu_curr(cpu);
7420 }
7421 
7422 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7423 
7424 #ifdef CONFIG_IA64
7425 /**
7426  * set_curr_task - set the current task for a given cpu.
7427  * @cpu: the processor in question.
7428  * @p: the task pointer to set.
7429  *
7430  * Description: This function must only be used when non-maskable interrupts
7431  * are serviced on a separate stack. It allows the architecture to switch the
7432  * notion of the current task on a cpu in a non-blocking manner. This function
7433  * must be called with all CPU's synchronized, and interrupts disabled, the
7434  * and caller must save the original value of the current task (see
7435  * curr_task() above) and restore that value before reenabling interrupts and
7436  * re-starting the system.
7437  *
7438  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7439  */
7440 void set_curr_task(int cpu, struct task_struct *p)
7441 {
7442 	cpu_curr(cpu) = p;
7443 }
7444 
7445 #endif
7446 
7447 #ifdef CONFIG_CGROUP_SCHED
7448 /* task_group_lock serializes the addition/removal of task groups */
7449 static DEFINE_SPINLOCK(task_group_lock);
7450 
7451 static void free_sched_group(struct task_group *tg)
7452 {
7453 	free_fair_sched_group(tg);
7454 	free_rt_sched_group(tg);
7455 	autogroup_free(tg);
7456 	kfree(tg);
7457 }
7458 
7459 /* allocate runqueue etc for a new task group */
7460 struct task_group *sched_create_group(struct task_group *parent)
7461 {
7462 	struct task_group *tg;
7463 
7464 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7465 	if (!tg)
7466 		return ERR_PTR(-ENOMEM);
7467 
7468 	if (!alloc_fair_sched_group(tg, parent))
7469 		goto err;
7470 
7471 	if (!alloc_rt_sched_group(tg, parent))
7472 		goto err;
7473 
7474 	return tg;
7475 
7476 err:
7477 	free_sched_group(tg);
7478 	return ERR_PTR(-ENOMEM);
7479 }
7480 
7481 void sched_online_group(struct task_group *tg, struct task_group *parent)
7482 {
7483 	unsigned long flags;
7484 
7485 	spin_lock_irqsave(&task_group_lock, flags);
7486 	list_add_rcu(&tg->list, &task_groups);
7487 
7488 	WARN_ON(!parent); /* root should already exist */
7489 
7490 	tg->parent = parent;
7491 	INIT_LIST_HEAD(&tg->children);
7492 	list_add_rcu(&tg->siblings, &parent->children);
7493 	spin_unlock_irqrestore(&task_group_lock, flags);
7494 }
7495 
7496 /* rcu callback to free various structures associated with a task group */
7497 static void free_sched_group_rcu(struct rcu_head *rhp)
7498 {
7499 	/* now it should be safe to free those cfs_rqs */
7500 	free_sched_group(container_of(rhp, struct task_group, rcu));
7501 }
7502 
7503 /* Destroy runqueue etc associated with a task group */
7504 void sched_destroy_group(struct task_group *tg)
7505 {
7506 	/* wait for possible concurrent references to cfs_rqs complete */
7507 	call_rcu(&tg->rcu, free_sched_group_rcu);
7508 }
7509 
7510 void sched_offline_group(struct task_group *tg)
7511 {
7512 	unsigned long flags;
7513 	int i;
7514 
7515 	/* end participation in shares distribution */
7516 	for_each_possible_cpu(i)
7517 		unregister_fair_sched_group(tg, i);
7518 
7519 	spin_lock_irqsave(&task_group_lock, flags);
7520 	list_del_rcu(&tg->list);
7521 	list_del_rcu(&tg->siblings);
7522 	spin_unlock_irqrestore(&task_group_lock, flags);
7523 }
7524 
7525 /* change task's runqueue when it moves between groups.
7526  *	The caller of this function should have put the task in its new group
7527  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7528  *	reflect its new group.
7529  */
7530 void sched_move_task(struct task_struct *tsk)
7531 {
7532 	struct task_group *tg;
7533 	int queued, running;
7534 	unsigned long flags;
7535 	struct rq *rq;
7536 
7537 	rq = task_rq_lock(tsk, &flags);
7538 
7539 	running = task_current(rq, tsk);
7540 	queued = task_on_rq_queued(tsk);
7541 
7542 	if (queued)
7543 		dequeue_task(rq, tsk, 0);
7544 	if (unlikely(running))
7545 		put_prev_task(rq, tsk);
7546 
7547 	/*
7548 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7549 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7550 	 * to prevent lockdep warnings.
7551 	 */
7552 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7553 			  struct task_group, css);
7554 	tg = autogroup_task_group(tsk, tg);
7555 	tsk->sched_task_group = tg;
7556 
7557 #ifdef CONFIG_FAIR_GROUP_SCHED
7558 	if (tsk->sched_class->task_move_group)
7559 		tsk->sched_class->task_move_group(tsk, queued);
7560 	else
7561 #endif
7562 		set_task_rq(tsk, task_cpu(tsk));
7563 
7564 	if (unlikely(running))
7565 		tsk->sched_class->set_curr_task(rq);
7566 	if (queued)
7567 		enqueue_task(rq, tsk, 0);
7568 
7569 	task_rq_unlock(rq, tsk, &flags);
7570 }
7571 #endif /* CONFIG_CGROUP_SCHED */
7572 
7573 #ifdef CONFIG_RT_GROUP_SCHED
7574 /*
7575  * Ensure that the real time constraints are schedulable.
7576  */
7577 static DEFINE_MUTEX(rt_constraints_mutex);
7578 
7579 /* Must be called with tasklist_lock held */
7580 static inline int tg_has_rt_tasks(struct task_group *tg)
7581 {
7582 	struct task_struct *g, *p;
7583 
7584 	/*
7585 	 * Autogroups do not have RT tasks; see autogroup_create().
7586 	 */
7587 	if (task_group_is_autogroup(tg))
7588 		return 0;
7589 
7590 	for_each_process_thread(g, p) {
7591 		if (rt_task(p) && task_group(p) == tg)
7592 			return 1;
7593 	}
7594 
7595 	return 0;
7596 }
7597 
7598 struct rt_schedulable_data {
7599 	struct task_group *tg;
7600 	u64 rt_period;
7601 	u64 rt_runtime;
7602 };
7603 
7604 static int tg_rt_schedulable(struct task_group *tg, void *data)
7605 {
7606 	struct rt_schedulable_data *d = data;
7607 	struct task_group *child;
7608 	unsigned long total, sum = 0;
7609 	u64 period, runtime;
7610 
7611 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7612 	runtime = tg->rt_bandwidth.rt_runtime;
7613 
7614 	if (tg == d->tg) {
7615 		period = d->rt_period;
7616 		runtime = d->rt_runtime;
7617 	}
7618 
7619 	/*
7620 	 * Cannot have more runtime than the period.
7621 	 */
7622 	if (runtime > period && runtime != RUNTIME_INF)
7623 		return -EINVAL;
7624 
7625 	/*
7626 	 * Ensure we don't starve existing RT tasks.
7627 	 */
7628 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7629 		return -EBUSY;
7630 
7631 	total = to_ratio(period, runtime);
7632 
7633 	/*
7634 	 * Nobody can have more than the global setting allows.
7635 	 */
7636 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7637 		return -EINVAL;
7638 
7639 	/*
7640 	 * The sum of our children's runtime should not exceed our own.
7641 	 */
7642 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7643 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7644 		runtime = child->rt_bandwidth.rt_runtime;
7645 
7646 		if (child == d->tg) {
7647 			period = d->rt_period;
7648 			runtime = d->rt_runtime;
7649 		}
7650 
7651 		sum += to_ratio(period, runtime);
7652 	}
7653 
7654 	if (sum > total)
7655 		return -EINVAL;
7656 
7657 	return 0;
7658 }
7659 
7660 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7661 {
7662 	int ret;
7663 
7664 	struct rt_schedulable_data data = {
7665 		.tg = tg,
7666 		.rt_period = period,
7667 		.rt_runtime = runtime,
7668 	};
7669 
7670 	rcu_read_lock();
7671 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7672 	rcu_read_unlock();
7673 
7674 	return ret;
7675 }
7676 
7677 static int tg_set_rt_bandwidth(struct task_group *tg,
7678 		u64 rt_period, u64 rt_runtime)
7679 {
7680 	int i, err = 0;
7681 
7682 	/*
7683 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7684 	 * kernel creating (and or operating) RT threads.
7685 	 */
7686 	if (tg == &root_task_group && rt_runtime == 0)
7687 		return -EINVAL;
7688 
7689 	/* No period doesn't make any sense. */
7690 	if (rt_period == 0)
7691 		return -EINVAL;
7692 
7693 	mutex_lock(&rt_constraints_mutex);
7694 	read_lock(&tasklist_lock);
7695 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7696 	if (err)
7697 		goto unlock;
7698 
7699 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7700 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7701 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7702 
7703 	for_each_possible_cpu(i) {
7704 		struct rt_rq *rt_rq = tg->rt_rq[i];
7705 
7706 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7707 		rt_rq->rt_runtime = rt_runtime;
7708 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7709 	}
7710 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7711 unlock:
7712 	read_unlock(&tasklist_lock);
7713 	mutex_unlock(&rt_constraints_mutex);
7714 
7715 	return err;
7716 }
7717 
7718 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7719 {
7720 	u64 rt_runtime, rt_period;
7721 
7722 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7723 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7724 	if (rt_runtime_us < 0)
7725 		rt_runtime = RUNTIME_INF;
7726 
7727 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7728 }
7729 
7730 static long sched_group_rt_runtime(struct task_group *tg)
7731 {
7732 	u64 rt_runtime_us;
7733 
7734 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7735 		return -1;
7736 
7737 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7738 	do_div(rt_runtime_us, NSEC_PER_USEC);
7739 	return rt_runtime_us;
7740 }
7741 
7742 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7743 {
7744 	u64 rt_runtime, rt_period;
7745 
7746 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7747 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7748 
7749 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7750 }
7751 
7752 static long sched_group_rt_period(struct task_group *tg)
7753 {
7754 	u64 rt_period_us;
7755 
7756 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7757 	do_div(rt_period_us, NSEC_PER_USEC);
7758 	return rt_period_us;
7759 }
7760 #endif /* CONFIG_RT_GROUP_SCHED */
7761 
7762 #ifdef CONFIG_RT_GROUP_SCHED
7763 static int sched_rt_global_constraints(void)
7764 {
7765 	int ret = 0;
7766 
7767 	mutex_lock(&rt_constraints_mutex);
7768 	read_lock(&tasklist_lock);
7769 	ret = __rt_schedulable(NULL, 0, 0);
7770 	read_unlock(&tasklist_lock);
7771 	mutex_unlock(&rt_constraints_mutex);
7772 
7773 	return ret;
7774 }
7775 
7776 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7777 {
7778 	/* Don't accept realtime tasks when there is no way for them to run */
7779 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7780 		return 0;
7781 
7782 	return 1;
7783 }
7784 
7785 #else /* !CONFIG_RT_GROUP_SCHED */
7786 static int sched_rt_global_constraints(void)
7787 {
7788 	unsigned long flags;
7789 	int i, ret = 0;
7790 
7791 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7792 	for_each_possible_cpu(i) {
7793 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7794 
7795 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7796 		rt_rq->rt_runtime = global_rt_runtime();
7797 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7798 	}
7799 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7800 
7801 	return ret;
7802 }
7803 #endif /* CONFIG_RT_GROUP_SCHED */
7804 
7805 static int sched_dl_global_validate(void)
7806 {
7807 	u64 runtime = global_rt_runtime();
7808 	u64 period = global_rt_period();
7809 	u64 new_bw = to_ratio(period, runtime);
7810 	struct dl_bw *dl_b;
7811 	int cpu, ret = 0;
7812 	unsigned long flags;
7813 
7814 	/*
7815 	 * Here we want to check the bandwidth not being set to some
7816 	 * value smaller than the currently allocated bandwidth in
7817 	 * any of the root_domains.
7818 	 *
7819 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7820 	 * cycling on root_domains... Discussion on different/better
7821 	 * solutions is welcome!
7822 	 */
7823 	for_each_possible_cpu(cpu) {
7824 		rcu_read_lock_sched();
7825 		dl_b = dl_bw_of(cpu);
7826 
7827 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7828 		if (new_bw < dl_b->total_bw)
7829 			ret = -EBUSY;
7830 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7831 
7832 		rcu_read_unlock_sched();
7833 
7834 		if (ret)
7835 			break;
7836 	}
7837 
7838 	return ret;
7839 }
7840 
7841 static void sched_dl_do_global(void)
7842 {
7843 	u64 new_bw = -1;
7844 	struct dl_bw *dl_b;
7845 	int cpu;
7846 	unsigned long flags;
7847 
7848 	def_dl_bandwidth.dl_period = global_rt_period();
7849 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7850 
7851 	if (global_rt_runtime() != RUNTIME_INF)
7852 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7853 
7854 	/*
7855 	 * FIXME: As above...
7856 	 */
7857 	for_each_possible_cpu(cpu) {
7858 		rcu_read_lock_sched();
7859 		dl_b = dl_bw_of(cpu);
7860 
7861 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7862 		dl_b->bw = new_bw;
7863 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7864 
7865 		rcu_read_unlock_sched();
7866 	}
7867 }
7868 
7869 static int sched_rt_global_validate(void)
7870 {
7871 	if (sysctl_sched_rt_period <= 0)
7872 		return -EINVAL;
7873 
7874 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7875 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7876 		return -EINVAL;
7877 
7878 	return 0;
7879 }
7880 
7881 static void sched_rt_do_global(void)
7882 {
7883 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7884 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7885 }
7886 
7887 int sched_rt_handler(struct ctl_table *table, int write,
7888 		void __user *buffer, size_t *lenp,
7889 		loff_t *ppos)
7890 {
7891 	int old_period, old_runtime;
7892 	static DEFINE_MUTEX(mutex);
7893 	int ret;
7894 
7895 	mutex_lock(&mutex);
7896 	old_period = sysctl_sched_rt_period;
7897 	old_runtime = sysctl_sched_rt_runtime;
7898 
7899 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7900 
7901 	if (!ret && write) {
7902 		ret = sched_rt_global_validate();
7903 		if (ret)
7904 			goto undo;
7905 
7906 		ret = sched_dl_global_validate();
7907 		if (ret)
7908 			goto undo;
7909 
7910 		ret = sched_rt_global_constraints();
7911 		if (ret)
7912 			goto undo;
7913 
7914 		sched_rt_do_global();
7915 		sched_dl_do_global();
7916 	}
7917 	if (0) {
7918 undo:
7919 		sysctl_sched_rt_period = old_period;
7920 		sysctl_sched_rt_runtime = old_runtime;
7921 	}
7922 	mutex_unlock(&mutex);
7923 
7924 	return ret;
7925 }
7926 
7927 int sched_rr_handler(struct ctl_table *table, int write,
7928 		void __user *buffer, size_t *lenp,
7929 		loff_t *ppos)
7930 {
7931 	int ret;
7932 	static DEFINE_MUTEX(mutex);
7933 
7934 	mutex_lock(&mutex);
7935 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7936 	/* make sure that internally we keep jiffies */
7937 	/* also, writing zero resets timeslice to default */
7938 	if (!ret && write) {
7939 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7940 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7941 	}
7942 	mutex_unlock(&mutex);
7943 	return ret;
7944 }
7945 
7946 #ifdef CONFIG_CGROUP_SCHED
7947 
7948 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7949 {
7950 	return css ? container_of(css, struct task_group, css) : NULL;
7951 }
7952 
7953 static struct cgroup_subsys_state *
7954 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7955 {
7956 	struct task_group *parent = css_tg(parent_css);
7957 	struct task_group *tg;
7958 
7959 	if (!parent) {
7960 		/* This is early initialization for the top cgroup */
7961 		return &root_task_group.css;
7962 	}
7963 
7964 	tg = sched_create_group(parent);
7965 	if (IS_ERR(tg))
7966 		return ERR_PTR(-ENOMEM);
7967 
7968 	return &tg->css;
7969 }
7970 
7971 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7972 {
7973 	struct task_group *tg = css_tg(css);
7974 	struct task_group *parent = css_tg(css->parent);
7975 
7976 	if (parent)
7977 		sched_online_group(tg, parent);
7978 	return 0;
7979 }
7980 
7981 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7982 {
7983 	struct task_group *tg = css_tg(css);
7984 
7985 	sched_destroy_group(tg);
7986 }
7987 
7988 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7989 {
7990 	struct task_group *tg = css_tg(css);
7991 
7992 	sched_offline_group(tg);
7993 }
7994 
7995 static void cpu_cgroup_fork(struct task_struct *task)
7996 {
7997 	sched_move_task(task);
7998 }
7999 
8000 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8001 				 struct cgroup_taskset *tset)
8002 {
8003 	struct task_struct *task;
8004 
8005 	cgroup_taskset_for_each(task, tset) {
8006 #ifdef CONFIG_RT_GROUP_SCHED
8007 		if (!sched_rt_can_attach(css_tg(css), task))
8008 			return -EINVAL;
8009 #else
8010 		/* We don't support RT-tasks being in separate groups */
8011 		if (task->sched_class != &fair_sched_class)
8012 			return -EINVAL;
8013 #endif
8014 	}
8015 	return 0;
8016 }
8017 
8018 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8019 			      struct cgroup_taskset *tset)
8020 {
8021 	struct task_struct *task;
8022 
8023 	cgroup_taskset_for_each(task, tset)
8024 		sched_move_task(task);
8025 }
8026 
8027 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8028 			    struct cgroup_subsys_state *old_css,
8029 			    struct task_struct *task)
8030 {
8031 	/*
8032 	 * cgroup_exit() is called in the copy_process() failure path.
8033 	 * Ignore this case since the task hasn't ran yet, this avoids
8034 	 * trying to poke a half freed task state from generic code.
8035 	 */
8036 	if (!(task->flags & PF_EXITING))
8037 		return;
8038 
8039 	sched_move_task(task);
8040 }
8041 
8042 #ifdef CONFIG_FAIR_GROUP_SCHED
8043 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8044 				struct cftype *cftype, u64 shareval)
8045 {
8046 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8047 }
8048 
8049 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8050 			       struct cftype *cft)
8051 {
8052 	struct task_group *tg = css_tg(css);
8053 
8054 	return (u64) scale_load_down(tg->shares);
8055 }
8056 
8057 #ifdef CONFIG_CFS_BANDWIDTH
8058 static DEFINE_MUTEX(cfs_constraints_mutex);
8059 
8060 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8061 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8062 
8063 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8064 
8065 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8066 {
8067 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8068 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8069 
8070 	if (tg == &root_task_group)
8071 		return -EINVAL;
8072 
8073 	/*
8074 	 * Ensure we have at some amount of bandwidth every period.  This is
8075 	 * to prevent reaching a state of large arrears when throttled via
8076 	 * entity_tick() resulting in prolonged exit starvation.
8077 	 */
8078 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8079 		return -EINVAL;
8080 
8081 	/*
8082 	 * Likewise, bound things on the otherside by preventing insane quota
8083 	 * periods.  This also allows us to normalize in computing quota
8084 	 * feasibility.
8085 	 */
8086 	if (period > max_cfs_quota_period)
8087 		return -EINVAL;
8088 
8089 	/*
8090 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8091 	 * unthrottle_offline_cfs_rqs().
8092 	 */
8093 	get_online_cpus();
8094 	mutex_lock(&cfs_constraints_mutex);
8095 	ret = __cfs_schedulable(tg, period, quota);
8096 	if (ret)
8097 		goto out_unlock;
8098 
8099 	runtime_enabled = quota != RUNTIME_INF;
8100 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8101 	/*
8102 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8103 	 * before making related changes, and on->off must occur afterwards
8104 	 */
8105 	if (runtime_enabled && !runtime_was_enabled)
8106 		cfs_bandwidth_usage_inc();
8107 	raw_spin_lock_irq(&cfs_b->lock);
8108 	cfs_b->period = ns_to_ktime(period);
8109 	cfs_b->quota = quota;
8110 
8111 	__refill_cfs_bandwidth_runtime(cfs_b);
8112 	/* restart the period timer (if active) to handle new period expiry */
8113 	if (runtime_enabled && cfs_b->timer_active) {
8114 		/* force a reprogram */
8115 		__start_cfs_bandwidth(cfs_b, true);
8116 	}
8117 	raw_spin_unlock_irq(&cfs_b->lock);
8118 
8119 	for_each_online_cpu(i) {
8120 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8121 		struct rq *rq = cfs_rq->rq;
8122 
8123 		raw_spin_lock_irq(&rq->lock);
8124 		cfs_rq->runtime_enabled = runtime_enabled;
8125 		cfs_rq->runtime_remaining = 0;
8126 
8127 		if (cfs_rq->throttled)
8128 			unthrottle_cfs_rq(cfs_rq);
8129 		raw_spin_unlock_irq(&rq->lock);
8130 	}
8131 	if (runtime_was_enabled && !runtime_enabled)
8132 		cfs_bandwidth_usage_dec();
8133 out_unlock:
8134 	mutex_unlock(&cfs_constraints_mutex);
8135 	put_online_cpus();
8136 
8137 	return ret;
8138 }
8139 
8140 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8141 {
8142 	u64 quota, period;
8143 
8144 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8145 	if (cfs_quota_us < 0)
8146 		quota = RUNTIME_INF;
8147 	else
8148 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8149 
8150 	return tg_set_cfs_bandwidth(tg, period, quota);
8151 }
8152 
8153 long tg_get_cfs_quota(struct task_group *tg)
8154 {
8155 	u64 quota_us;
8156 
8157 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8158 		return -1;
8159 
8160 	quota_us = tg->cfs_bandwidth.quota;
8161 	do_div(quota_us, NSEC_PER_USEC);
8162 
8163 	return quota_us;
8164 }
8165 
8166 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8167 {
8168 	u64 quota, period;
8169 
8170 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8171 	quota = tg->cfs_bandwidth.quota;
8172 
8173 	return tg_set_cfs_bandwidth(tg, period, quota);
8174 }
8175 
8176 long tg_get_cfs_period(struct task_group *tg)
8177 {
8178 	u64 cfs_period_us;
8179 
8180 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8181 	do_div(cfs_period_us, NSEC_PER_USEC);
8182 
8183 	return cfs_period_us;
8184 }
8185 
8186 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8187 				  struct cftype *cft)
8188 {
8189 	return tg_get_cfs_quota(css_tg(css));
8190 }
8191 
8192 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8193 				   struct cftype *cftype, s64 cfs_quota_us)
8194 {
8195 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8196 }
8197 
8198 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8199 				   struct cftype *cft)
8200 {
8201 	return tg_get_cfs_period(css_tg(css));
8202 }
8203 
8204 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8205 				    struct cftype *cftype, u64 cfs_period_us)
8206 {
8207 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8208 }
8209 
8210 struct cfs_schedulable_data {
8211 	struct task_group *tg;
8212 	u64 period, quota;
8213 };
8214 
8215 /*
8216  * normalize group quota/period to be quota/max_period
8217  * note: units are usecs
8218  */
8219 static u64 normalize_cfs_quota(struct task_group *tg,
8220 			       struct cfs_schedulable_data *d)
8221 {
8222 	u64 quota, period;
8223 
8224 	if (tg == d->tg) {
8225 		period = d->period;
8226 		quota = d->quota;
8227 	} else {
8228 		period = tg_get_cfs_period(tg);
8229 		quota = tg_get_cfs_quota(tg);
8230 	}
8231 
8232 	/* note: these should typically be equivalent */
8233 	if (quota == RUNTIME_INF || quota == -1)
8234 		return RUNTIME_INF;
8235 
8236 	return to_ratio(period, quota);
8237 }
8238 
8239 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8240 {
8241 	struct cfs_schedulable_data *d = data;
8242 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243 	s64 quota = 0, parent_quota = -1;
8244 
8245 	if (!tg->parent) {
8246 		quota = RUNTIME_INF;
8247 	} else {
8248 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8249 
8250 		quota = normalize_cfs_quota(tg, d);
8251 		parent_quota = parent_b->hierarchical_quota;
8252 
8253 		/*
8254 		 * ensure max(child_quota) <= parent_quota, inherit when no
8255 		 * limit is set
8256 		 */
8257 		if (quota == RUNTIME_INF)
8258 			quota = parent_quota;
8259 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8260 			return -EINVAL;
8261 	}
8262 	cfs_b->hierarchical_quota = quota;
8263 
8264 	return 0;
8265 }
8266 
8267 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8268 {
8269 	int ret;
8270 	struct cfs_schedulable_data data = {
8271 		.tg = tg,
8272 		.period = period,
8273 		.quota = quota,
8274 	};
8275 
8276 	if (quota != RUNTIME_INF) {
8277 		do_div(data.period, NSEC_PER_USEC);
8278 		do_div(data.quota, NSEC_PER_USEC);
8279 	}
8280 
8281 	rcu_read_lock();
8282 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8283 	rcu_read_unlock();
8284 
8285 	return ret;
8286 }
8287 
8288 static int cpu_stats_show(struct seq_file *sf, void *v)
8289 {
8290 	struct task_group *tg = css_tg(seq_css(sf));
8291 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8292 
8293 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8294 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8295 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8296 
8297 	return 0;
8298 }
8299 #endif /* CONFIG_CFS_BANDWIDTH */
8300 #endif /* CONFIG_FAIR_GROUP_SCHED */
8301 
8302 #ifdef CONFIG_RT_GROUP_SCHED
8303 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8304 				struct cftype *cft, s64 val)
8305 {
8306 	return sched_group_set_rt_runtime(css_tg(css), val);
8307 }
8308 
8309 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8310 			       struct cftype *cft)
8311 {
8312 	return sched_group_rt_runtime(css_tg(css));
8313 }
8314 
8315 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8316 				    struct cftype *cftype, u64 rt_period_us)
8317 {
8318 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8319 }
8320 
8321 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8322 				   struct cftype *cft)
8323 {
8324 	return sched_group_rt_period(css_tg(css));
8325 }
8326 #endif /* CONFIG_RT_GROUP_SCHED */
8327 
8328 static struct cftype cpu_files[] = {
8329 #ifdef CONFIG_FAIR_GROUP_SCHED
8330 	{
8331 		.name = "shares",
8332 		.read_u64 = cpu_shares_read_u64,
8333 		.write_u64 = cpu_shares_write_u64,
8334 	},
8335 #endif
8336 #ifdef CONFIG_CFS_BANDWIDTH
8337 	{
8338 		.name = "cfs_quota_us",
8339 		.read_s64 = cpu_cfs_quota_read_s64,
8340 		.write_s64 = cpu_cfs_quota_write_s64,
8341 	},
8342 	{
8343 		.name = "cfs_period_us",
8344 		.read_u64 = cpu_cfs_period_read_u64,
8345 		.write_u64 = cpu_cfs_period_write_u64,
8346 	},
8347 	{
8348 		.name = "stat",
8349 		.seq_show = cpu_stats_show,
8350 	},
8351 #endif
8352 #ifdef CONFIG_RT_GROUP_SCHED
8353 	{
8354 		.name = "rt_runtime_us",
8355 		.read_s64 = cpu_rt_runtime_read,
8356 		.write_s64 = cpu_rt_runtime_write,
8357 	},
8358 	{
8359 		.name = "rt_period_us",
8360 		.read_u64 = cpu_rt_period_read_uint,
8361 		.write_u64 = cpu_rt_period_write_uint,
8362 	},
8363 #endif
8364 	{ }	/* terminate */
8365 };
8366 
8367 struct cgroup_subsys cpu_cgrp_subsys = {
8368 	.css_alloc	= cpu_cgroup_css_alloc,
8369 	.css_free	= cpu_cgroup_css_free,
8370 	.css_online	= cpu_cgroup_css_online,
8371 	.css_offline	= cpu_cgroup_css_offline,
8372 	.fork		= cpu_cgroup_fork,
8373 	.can_attach	= cpu_cgroup_can_attach,
8374 	.attach		= cpu_cgroup_attach,
8375 	.exit		= cpu_cgroup_exit,
8376 	.legacy_cftypes	= cpu_files,
8377 	.early_init	= 1,
8378 };
8379 
8380 #endif	/* CONFIG_CGROUP_SCHED */
8381 
8382 void dump_cpu_task(int cpu)
8383 {
8384 	pr_info("Task dump for CPU %d:\n", cpu);
8385 	sched_show_task(cpu_curr(cpu));
8386 }
8387