xref: /openbmc/linux/kernel/sched/core.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/nospec.h>
11 
12 #include <linux/kcov.h>
13 
14 #include <asm/switch_to.h>
15 #include <asm/tlb.h>
16 
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
19 
20 #include "pelt.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
26 
27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
28 /*
29  * Debugging: various feature bits
30  *
31  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32  * sysctl_sched_features, defined in sched.h, to allow constants propagation
33  * at compile time and compiler optimization based on features default.
34  */
35 #define SCHED_FEAT(name, enabled)	\
36 	(1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
38 #include "features.h"
39 	0;
40 #undef SCHED_FEAT
41 #endif
42 
43 /*
44  * Number of tasks to iterate in a single balance run.
45  * Limited because this is done with IRQs disabled.
46  */
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
48 
49 /*
50  * period over which we measure -rt task CPU usage in us.
51  * default: 1s
52  */
53 unsigned int sysctl_sched_rt_period = 1000000;
54 
55 __read_mostly int scheduler_running;
56 
57 /*
58  * part of the period that we allow rt tasks to run in us.
59  * default: 0.95s
60  */
61 int sysctl_sched_rt_runtime = 950000;
62 
63 /*
64  * __task_rq_lock - lock the rq @p resides on.
65  */
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 	__acquires(rq->lock)
68 {
69 	struct rq *rq;
70 
71 	lockdep_assert_held(&p->pi_lock);
72 
73 	for (;;) {
74 		rq = task_rq(p);
75 		raw_spin_lock(&rq->lock);
76 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77 			rq_pin_lock(rq, rf);
78 			return rq;
79 		}
80 		raw_spin_unlock(&rq->lock);
81 
82 		while (unlikely(task_on_rq_migrating(p)))
83 			cpu_relax();
84 	}
85 }
86 
87 /*
88  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89  */
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 	__acquires(p->pi_lock)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	for (;;) {
97 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 		rq = task_rq(p);
99 		raw_spin_lock(&rq->lock);
100 		/*
101 		 *	move_queued_task()		task_rq_lock()
102 		 *
103 		 *	ACQUIRE (rq->lock)
104 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
105 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
106 		 *	[S] ->cpu = new_cpu		[L] task_rq()
107 		 *					[L] ->on_rq
108 		 *	RELEASE (rq->lock)
109 		 *
110 		 * If we observe the old CPU in task_rq_lock, the acquire of
111 		 * the old rq->lock will fully serialize against the stores.
112 		 *
113 		 * If we observe the new CPU in task_rq_lock, the acquire will
114 		 * pair with the WMB to ensure we must then also see migrating.
115 		 */
116 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
117 			rq_pin_lock(rq, rf);
118 			return rq;
119 		}
120 		raw_spin_unlock(&rq->lock);
121 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
122 
123 		while (unlikely(task_on_rq_migrating(p)))
124 			cpu_relax();
125 	}
126 }
127 
128 /*
129  * RQ-clock updating methods:
130  */
131 
132 static void update_rq_clock_task(struct rq *rq, s64 delta)
133 {
134 /*
135  * In theory, the compile should just see 0 here, and optimize out the call
136  * to sched_rt_avg_update. But I don't trust it...
137  */
138 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
139 	s64 steal = 0, irq_delta = 0;
140 #endif
141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
143 
144 	/*
145 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 	 * this case when a previous update_rq_clock() happened inside a
147 	 * {soft,}irq region.
148 	 *
149 	 * When this happens, we stop ->clock_task and only update the
150 	 * prev_irq_time stamp to account for the part that fit, so that a next
151 	 * update will consume the rest. This ensures ->clock_task is
152 	 * monotonic.
153 	 *
154 	 * It does however cause some slight miss-attribution of {soft,}irq
155 	 * time, a more accurate solution would be to update the irq_time using
156 	 * the current rq->clock timestamp, except that would require using
157 	 * atomic ops.
158 	 */
159 	if (irq_delta > delta)
160 		irq_delta = delta;
161 
162 	rq->prev_irq_time += irq_delta;
163 	delta -= irq_delta;
164 #endif
165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 	if (static_key_false((&paravirt_steal_rq_enabled))) {
167 		steal = paravirt_steal_clock(cpu_of(rq));
168 		steal -= rq->prev_steal_time_rq;
169 
170 		if (unlikely(steal > delta))
171 			steal = delta;
172 
173 		rq->prev_steal_time_rq += steal;
174 		delta -= steal;
175 	}
176 #endif
177 
178 	rq->clock_task += delta;
179 
180 #ifdef HAVE_SCHED_AVG_IRQ
181 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
182 		update_irq_load_avg(rq, irq_delta + steal);
183 #endif
184 }
185 
186 void update_rq_clock(struct rq *rq)
187 {
188 	s64 delta;
189 
190 	lockdep_assert_held(&rq->lock);
191 
192 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
193 		return;
194 
195 #ifdef CONFIG_SCHED_DEBUG
196 	if (sched_feat(WARN_DOUBLE_CLOCK))
197 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
198 	rq->clock_update_flags |= RQCF_UPDATED;
199 #endif
200 
201 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
202 	if (delta < 0)
203 		return;
204 	rq->clock += delta;
205 	update_rq_clock_task(rq, delta);
206 }
207 
208 
209 #ifdef CONFIG_SCHED_HRTICK
210 /*
211  * Use HR-timers to deliver accurate preemption points.
212  */
213 
214 static void hrtick_clear(struct rq *rq)
215 {
216 	if (hrtimer_active(&rq->hrtick_timer))
217 		hrtimer_cancel(&rq->hrtick_timer);
218 }
219 
220 /*
221  * High-resolution timer tick.
222  * Runs from hardirq context with interrupts disabled.
223  */
224 static enum hrtimer_restart hrtick(struct hrtimer *timer)
225 {
226 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
227 	struct rq_flags rf;
228 
229 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
230 
231 	rq_lock(rq, &rf);
232 	update_rq_clock(rq);
233 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
234 	rq_unlock(rq, &rf);
235 
236 	return HRTIMER_NORESTART;
237 }
238 
239 #ifdef CONFIG_SMP
240 
241 static void __hrtick_restart(struct rq *rq)
242 {
243 	struct hrtimer *timer = &rq->hrtick_timer;
244 
245 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
246 }
247 
248 /*
249  * called from hardirq (IPI) context
250  */
251 static void __hrtick_start(void *arg)
252 {
253 	struct rq *rq = arg;
254 	struct rq_flags rf;
255 
256 	rq_lock(rq, &rf);
257 	__hrtick_restart(rq);
258 	rq->hrtick_csd_pending = 0;
259 	rq_unlock(rq, &rf);
260 }
261 
262 /*
263  * Called to set the hrtick timer state.
264  *
265  * called with rq->lock held and irqs disabled
266  */
267 void hrtick_start(struct rq *rq, u64 delay)
268 {
269 	struct hrtimer *timer = &rq->hrtick_timer;
270 	ktime_t time;
271 	s64 delta;
272 
273 	/*
274 	 * Don't schedule slices shorter than 10000ns, that just
275 	 * doesn't make sense and can cause timer DoS.
276 	 */
277 	delta = max_t(s64, delay, 10000LL);
278 	time = ktime_add_ns(timer->base->get_time(), delta);
279 
280 	hrtimer_set_expires(timer, time);
281 
282 	if (rq == this_rq()) {
283 		__hrtick_restart(rq);
284 	} else if (!rq->hrtick_csd_pending) {
285 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
286 		rq->hrtick_csd_pending = 1;
287 	}
288 }
289 
290 #else
291 /*
292  * Called to set the hrtick timer state.
293  *
294  * called with rq->lock held and irqs disabled
295  */
296 void hrtick_start(struct rq *rq, u64 delay)
297 {
298 	/*
299 	 * Don't schedule slices shorter than 10000ns, that just
300 	 * doesn't make sense. Rely on vruntime for fairness.
301 	 */
302 	delay = max_t(u64, delay, 10000LL);
303 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
304 		      HRTIMER_MODE_REL_PINNED);
305 }
306 #endif /* CONFIG_SMP */
307 
308 static void hrtick_rq_init(struct rq *rq)
309 {
310 #ifdef CONFIG_SMP
311 	rq->hrtick_csd_pending = 0;
312 
313 	rq->hrtick_csd.flags = 0;
314 	rq->hrtick_csd.func = __hrtick_start;
315 	rq->hrtick_csd.info = rq;
316 #endif
317 
318 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
319 	rq->hrtick_timer.function = hrtick;
320 }
321 #else	/* CONFIG_SCHED_HRTICK */
322 static inline void hrtick_clear(struct rq *rq)
323 {
324 }
325 
326 static inline void hrtick_rq_init(struct rq *rq)
327 {
328 }
329 #endif	/* CONFIG_SCHED_HRTICK */
330 
331 /*
332  * cmpxchg based fetch_or, macro so it works for different integer types
333  */
334 #define fetch_or(ptr, mask)						\
335 	({								\
336 		typeof(ptr) _ptr = (ptr);				\
337 		typeof(mask) _mask = (mask);				\
338 		typeof(*_ptr) _old, _val = *_ptr;			\
339 									\
340 		for (;;) {						\
341 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
342 			if (_old == _val)				\
343 				break;					\
344 			_val = _old;					\
345 		}							\
346 	_old;								\
347 })
348 
349 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
350 /*
351  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
352  * this avoids any races wrt polling state changes and thereby avoids
353  * spurious IPIs.
354  */
355 static bool set_nr_and_not_polling(struct task_struct *p)
356 {
357 	struct thread_info *ti = task_thread_info(p);
358 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
359 }
360 
361 /*
362  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
363  *
364  * If this returns true, then the idle task promises to call
365  * sched_ttwu_pending() and reschedule soon.
366  */
367 static bool set_nr_if_polling(struct task_struct *p)
368 {
369 	struct thread_info *ti = task_thread_info(p);
370 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
371 
372 	for (;;) {
373 		if (!(val & _TIF_POLLING_NRFLAG))
374 			return false;
375 		if (val & _TIF_NEED_RESCHED)
376 			return true;
377 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
378 		if (old == val)
379 			break;
380 		val = old;
381 	}
382 	return true;
383 }
384 
385 #else
386 static bool set_nr_and_not_polling(struct task_struct *p)
387 {
388 	set_tsk_need_resched(p);
389 	return true;
390 }
391 
392 #ifdef CONFIG_SMP
393 static bool set_nr_if_polling(struct task_struct *p)
394 {
395 	return false;
396 }
397 #endif
398 #endif
399 
400 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
401 {
402 	struct wake_q_node *node = &task->wake_q;
403 
404 	/*
405 	 * Atomically grab the task, if ->wake_q is !nil already it means
406 	 * its already queued (either by us or someone else) and will get the
407 	 * wakeup due to that.
408 	 *
409 	 * This cmpxchg() executes a full barrier, which pairs with the full
410 	 * barrier executed by the wakeup in wake_up_q().
411 	 */
412 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
413 		return;
414 
415 	get_task_struct(task);
416 
417 	/*
418 	 * The head is context local, there can be no concurrency.
419 	 */
420 	*head->lastp = node;
421 	head->lastp = &node->next;
422 }
423 
424 void wake_up_q(struct wake_q_head *head)
425 {
426 	struct wake_q_node *node = head->first;
427 
428 	while (node != WAKE_Q_TAIL) {
429 		struct task_struct *task;
430 
431 		task = container_of(node, struct task_struct, wake_q);
432 		BUG_ON(!task);
433 		/* Task can safely be re-inserted now: */
434 		node = node->next;
435 		task->wake_q.next = NULL;
436 
437 		/*
438 		 * wake_up_process() executes a full barrier, which pairs with
439 		 * the queueing in wake_q_add() so as not to miss wakeups.
440 		 */
441 		wake_up_process(task);
442 		put_task_struct(task);
443 	}
444 }
445 
446 /*
447  * resched_curr - mark rq's current task 'to be rescheduled now'.
448  *
449  * On UP this means the setting of the need_resched flag, on SMP it
450  * might also involve a cross-CPU call to trigger the scheduler on
451  * the target CPU.
452  */
453 void resched_curr(struct rq *rq)
454 {
455 	struct task_struct *curr = rq->curr;
456 	int cpu;
457 
458 	lockdep_assert_held(&rq->lock);
459 
460 	if (test_tsk_need_resched(curr))
461 		return;
462 
463 	cpu = cpu_of(rq);
464 
465 	if (cpu == smp_processor_id()) {
466 		set_tsk_need_resched(curr);
467 		set_preempt_need_resched();
468 		return;
469 	}
470 
471 	if (set_nr_and_not_polling(curr))
472 		smp_send_reschedule(cpu);
473 	else
474 		trace_sched_wake_idle_without_ipi(cpu);
475 }
476 
477 void resched_cpu(int cpu)
478 {
479 	struct rq *rq = cpu_rq(cpu);
480 	unsigned long flags;
481 
482 	raw_spin_lock_irqsave(&rq->lock, flags);
483 	if (cpu_online(cpu) || cpu == smp_processor_id())
484 		resched_curr(rq);
485 	raw_spin_unlock_irqrestore(&rq->lock, flags);
486 }
487 
488 #ifdef CONFIG_SMP
489 #ifdef CONFIG_NO_HZ_COMMON
490 /*
491  * In the semi idle case, use the nearest busy CPU for migrating timers
492  * from an idle CPU.  This is good for power-savings.
493  *
494  * We don't do similar optimization for completely idle system, as
495  * selecting an idle CPU will add more delays to the timers than intended
496  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
497  */
498 int get_nohz_timer_target(void)
499 {
500 	int i, cpu = smp_processor_id();
501 	struct sched_domain *sd;
502 
503 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
504 		return cpu;
505 
506 	rcu_read_lock();
507 	for_each_domain(cpu, sd) {
508 		for_each_cpu(i, sched_domain_span(sd)) {
509 			if (cpu == i)
510 				continue;
511 
512 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
513 				cpu = i;
514 				goto unlock;
515 			}
516 		}
517 	}
518 
519 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
520 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
521 unlock:
522 	rcu_read_unlock();
523 	return cpu;
524 }
525 
526 /*
527  * When add_timer_on() enqueues a timer into the timer wheel of an
528  * idle CPU then this timer might expire before the next timer event
529  * which is scheduled to wake up that CPU. In case of a completely
530  * idle system the next event might even be infinite time into the
531  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
532  * leaves the inner idle loop so the newly added timer is taken into
533  * account when the CPU goes back to idle and evaluates the timer
534  * wheel for the next timer event.
535  */
536 static void wake_up_idle_cpu(int cpu)
537 {
538 	struct rq *rq = cpu_rq(cpu);
539 
540 	if (cpu == smp_processor_id())
541 		return;
542 
543 	if (set_nr_and_not_polling(rq->idle))
544 		smp_send_reschedule(cpu);
545 	else
546 		trace_sched_wake_idle_without_ipi(cpu);
547 }
548 
549 static bool wake_up_full_nohz_cpu(int cpu)
550 {
551 	/*
552 	 * We just need the target to call irq_exit() and re-evaluate
553 	 * the next tick. The nohz full kick at least implies that.
554 	 * If needed we can still optimize that later with an
555 	 * empty IRQ.
556 	 */
557 	if (cpu_is_offline(cpu))
558 		return true;  /* Don't try to wake offline CPUs. */
559 	if (tick_nohz_full_cpu(cpu)) {
560 		if (cpu != smp_processor_id() ||
561 		    tick_nohz_tick_stopped())
562 			tick_nohz_full_kick_cpu(cpu);
563 		return true;
564 	}
565 
566 	return false;
567 }
568 
569 /*
570  * Wake up the specified CPU.  If the CPU is going offline, it is the
571  * caller's responsibility to deal with the lost wakeup, for example,
572  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
573  */
574 void wake_up_nohz_cpu(int cpu)
575 {
576 	if (!wake_up_full_nohz_cpu(cpu))
577 		wake_up_idle_cpu(cpu);
578 }
579 
580 static inline bool got_nohz_idle_kick(void)
581 {
582 	int cpu = smp_processor_id();
583 
584 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
585 		return false;
586 
587 	if (idle_cpu(cpu) && !need_resched())
588 		return true;
589 
590 	/*
591 	 * We can't run Idle Load Balance on this CPU for this time so we
592 	 * cancel it and clear NOHZ_BALANCE_KICK
593 	 */
594 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
595 	return false;
596 }
597 
598 #else /* CONFIG_NO_HZ_COMMON */
599 
600 static inline bool got_nohz_idle_kick(void)
601 {
602 	return false;
603 }
604 
605 #endif /* CONFIG_NO_HZ_COMMON */
606 
607 #ifdef CONFIG_NO_HZ_FULL
608 bool sched_can_stop_tick(struct rq *rq)
609 {
610 	int fifo_nr_running;
611 
612 	/* Deadline tasks, even if single, need the tick */
613 	if (rq->dl.dl_nr_running)
614 		return false;
615 
616 	/*
617 	 * If there are more than one RR tasks, we need the tick to effect the
618 	 * actual RR behaviour.
619 	 */
620 	if (rq->rt.rr_nr_running) {
621 		if (rq->rt.rr_nr_running == 1)
622 			return true;
623 		else
624 			return false;
625 	}
626 
627 	/*
628 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
629 	 * forced preemption between FIFO tasks.
630 	 */
631 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
632 	if (fifo_nr_running)
633 		return true;
634 
635 	/*
636 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
637 	 * if there's more than one we need the tick for involuntary
638 	 * preemption.
639 	 */
640 	if (rq->nr_running > 1)
641 		return false;
642 
643 	return true;
644 }
645 #endif /* CONFIG_NO_HZ_FULL */
646 #endif /* CONFIG_SMP */
647 
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650 /*
651  * Iterate task_group tree rooted at *from, calling @down when first entering a
652  * node and @up when leaving it for the final time.
653  *
654  * Caller must hold rcu_lock or sufficient equivalent.
655  */
656 int walk_tg_tree_from(struct task_group *from,
657 			     tg_visitor down, tg_visitor up, void *data)
658 {
659 	struct task_group *parent, *child;
660 	int ret;
661 
662 	parent = from;
663 
664 down:
665 	ret = (*down)(parent, data);
666 	if (ret)
667 		goto out;
668 	list_for_each_entry_rcu(child, &parent->children, siblings) {
669 		parent = child;
670 		goto down;
671 
672 up:
673 		continue;
674 	}
675 	ret = (*up)(parent, data);
676 	if (ret || parent == from)
677 		goto out;
678 
679 	child = parent;
680 	parent = parent->parent;
681 	if (parent)
682 		goto up;
683 out:
684 	return ret;
685 }
686 
687 int tg_nop(struct task_group *tg, void *data)
688 {
689 	return 0;
690 }
691 #endif
692 
693 static void set_load_weight(struct task_struct *p, bool update_load)
694 {
695 	int prio = p->static_prio - MAX_RT_PRIO;
696 	struct load_weight *load = &p->se.load;
697 
698 	/*
699 	 * SCHED_IDLE tasks get minimal weight:
700 	 */
701 	if (idle_policy(p->policy)) {
702 		load->weight = scale_load(WEIGHT_IDLEPRIO);
703 		load->inv_weight = WMULT_IDLEPRIO;
704 		return;
705 	}
706 
707 	/*
708 	 * SCHED_OTHER tasks have to update their load when changing their
709 	 * weight
710 	 */
711 	if (update_load && p->sched_class == &fair_sched_class) {
712 		reweight_task(p, prio);
713 	} else {
714 		load->weight = scale_load(sched_prio_to_weight[prio]);
715 		load->inv_weight = sched_prio_to_wmult[prio];
716 	}
717 }
718 
719 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
720 {
721 	if (!(flags & ENQUEUE_NOCLOCK))
722 		update_rq_clock(rq);
723 
724 	if (!(flags & ENQUEUE_RESTORE))
725 		sched_info_queued(rq, p);
726 
727 	p->sched_class->enqueue_task(rq, p, flags);
728 }
729 
730 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
731 {
732 	if (!(flags & DEQUEUE_NOCLOCK))
733 		update_rq_clock(rq);
734 
735 	if (!(flags & DEQUEUE_SAVE))
736 		sched_info_dequeued(rq, p);
737 
738 	p->sched_class->dequeue_task(rq, p, flags);
739 }
740 
741 void activate_task(struct rq *rq, struct task_struct *p, int flags)
742 {
743 	if (task_contributes_to_load(p))
744 		rq->nr_uninterruptible--;
745 
746 	enqueue_task(rq, p, flags);
747 }
748 
749 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
750 {
751 	if (task_contributes_to_load(p))
752 		rq->nr_uninterruptible++;
753 
754 	dequeue_task(rq, p, flags);
755 }
756 
757 /*
758  * __normal_prio - return the priority that is based on the static prio
759  */
760 static inline int __normal_prio(struct task_struct *p)
761 {
762 	return p->static_prio;
763 }
764 
765 /*
766  * Calculate the expected normal priority: i.e. priority
767  * without taking RT-inheritance into account. Might be
768  * boosted by interactivity modifiers. Changes upon fork,
769  * setprio syscalls, and whenever the interactivity
770  * estimator recalculates.
771  */
772 static inline int normal_prio(struct task_struct *p)
773 {
774 	int prio;
775 
776 	if (task_has_dl_policy(p))
777 		prio = MAX_DL_PRIO-1;
778 	else if (task_has_rt_policy(p))
779 		prio = MAX_RT_PRIO-1 - p->rt_priority;
780 	else
781 		prio = __normal_prio(p);
782 	return prio;
783 }
784 
785 /*
786  * Calculate the current priority, i.e. the priority
787  * taken into account by the scheduler. This value might
788  * be boosted by RT tasks, or might be boosted by
789  * interactivity modifiers. Will be RT if the task got
790  * RT-boosted. If not then it returns p->normal_prio.
791  */
792 static int effective_prio(struct task_struct *p)
793 {
794 	p->normal_prio = normal_prio(p);
795 	/*
796 	 * If we are RT tasks or we were boosted to RT priority,
797 	 * keep the priority unchanged. Otherwise, update priority
798 	 * to the normal priority:
799 	 */
800 	if (!rt_prio(p->prio))
801 		return p->normal_prio;
802 	return p->prio;
803 }
804 
805 /**
806  * task_curr - is this task currently executing on a CPU?
807  * @p: the task in question.
808  *
809  * Return: 1 if the task is currently executing. 0 otherwise.
810  */
811 inline int task_curr(const struct task_struct *p)
812 {
813 	return cpu_curr(task_cpu(p)) == p;
814 }
815 
816 /*
817  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
818  * use the balance_callback list if you want balancing.
819  *
820  * this means any call to check_class_changed() must be followed by a call to
821  * balance_callback().
822  */
823 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
824 				       const struct sched_class *prev_class,
825 				       int oldprio)
826 {
827 	if (prev_class != p->sched_class) {
828 		if (prev_class->switched_from)
829 			prev_class->switched_from(rq, p);
830 
831 		p->sched_class->switched_to(rq, p);
832 	} else if (oldprio != p->prio || dl_task(p))
833 		p->sched_class->prio_changed(rq, p, oldprio);
834 }
835 
836 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
837 {
838 	const struct sched_class *class;
839 
840 	if (p->sched_class == rq->curr->sched_class) {
841 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
842 	} else {
843 		for_each_class(class) {
844 			if (class == rq->curr->sched_class)
845 				break;
846 			if (class == p->sched_class) {
847 				resched_curr(rq);
848 				break;
849 			}
850 		}
851 	}
852 
853 	/*
854 	 * A queue event has occurred, and we're going to schedule.  In
855 	 * this case, we can save a useless back to back clock update.
856 	 */
857 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
858 		rq_clock_skip_update(rq);
859 }
860 
861 #ifdef CONFIG_SMP
862 
863 static inline bool is_per_cpu_kthread(struct task_struct *p)
864 {
865 	if (!(p->flags & PF_KTHREAD))
866 		return false;
867 
868 	if (p->nr_cpus_allowed != 1)
869 		return false;
870 
871 	return true;
872 }
873 
874 /*
875  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
876  * __set_cpus_allowed_ptr() and select_fallback_rq().
877  */
878 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
879 {
880 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
881 		return false;
882 
883 	if (is_per_cpu_kthread(p))
884 		return cpu_online(cpu);
885 
886 	return cpu_active(cpu);
887 }
888 
889 /*
890  * This is how migration works:
891  *
892  * 1) we invoke migration_cpu_stop() on the target CPU using
893  *    stop_one_cpu().
894  * 2) stopper starts to run (implicitly forcing the migrated thread
895  *    off the CPU)
896  * 3) it checks whether the migrated task is still in the wrong runqueue.
897  * 4) if it's in the wrong runqueue then the migration thread removes
898  *    it and puts it into the right queue.
899  * 5) stopper completes and stop_one_cpu() returns and the migration
900  *    is done.
901  */
902 
903 /*
904  * move_queued_task - move a queued task to new rq.
905  *
906  * Returns (locked) new rq. Old rq's lock is released.
907  */
908 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
909 				   struct task_struct *p, int new_cpu)
910 {
911 	lockdep_assert_held(&rq->lock);
912 
913 	p->on_rq = TASK_ON_RQ_MIGRATING;
914 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
915 	set_task_cpu(p, new_cpu);
916 	rq_unlock(rq, rf);
917 
918 	rq = cpu_rq(new_cpu);
919 
920 	rq_lock(rq, rf);
921 	BUG_ON(task_cpu(p) != new_cpu);
922 	enqueue_task(rq, p, 0);
923 	p->on_rq = TASK_ON_RQ_QUEUED;
924 	check_preempt_curr(rq, p, 0);
925 
926 	return rq;
927 }
928 
929 struct migration_arg {
930 	struct task_struct *task;
931 	int dest_cpu;
932 };
933 
934 /*
935  * Move (not current) task off this CPU, onto the destination CPU. We're doing
936  * this because either it can't run here any more (set_cpus_allowed()
937  * away from this CPU, or CPU going down), or because we're
938  * attempting to rebalance this task on exec (sched_exec).
939  *
940  * So we race with normal scheduler movements, but that's OK, as long
941  * as the task is no longer on this CPU.
942  */
943 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
944 				 struct task_struct *p, int dest_cpu)
945 {
946 	/* Affinity changed (again). */
947 	if (!is_cpu_allowed(p, dest_cpu))
948 		return rq;
949 
950 	update_rq_clock(rq);
951 	rq = move_queued_task(rq, rf, p, dest_cpu);
952 
953 	return rq;
954 }
955 
956 /*
957  * migration_cpu_stop - this will be executed by a highprio stopper thread
958  * and performs thread migration by bumping thread off CPU then
959  * 'pushing' onto another runqueue.
960  */
961 static int migration_cpu_stop(void *data)
962 {
963 	struct migration_arg *arg = data;
964 	struct task_struct *p = arg->task;
965 	struct rq *rq = this_rq();
966 	struct rq_flags rf;
967 
968 	/*
969 	 * The original target CPU might have gone down and we might
970 	 * be on another CPU but it doesn't matter.
971 	 */
972 	local_irq_disable();
973 	/*
974 	 * We need to explicitly wake pending tasks before running
975 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
976 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
977 	 */
978 	sched_ttwu_pending();
979 
980 	raw_spin_lock(&p->pi_lock);
981 	rq_lock(rq, &rf);
982 	/*
983 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
984 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
985 	 * we're holding p->pi_lock.
986 	 */
987 	if (task_rq(p) == rq) {
988 		if (task_on_rq_queued(p))
989 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
990 		else
991 			p->wake_cpu = arg->dest_cpu;
992 	}
993 	rq_unlock(rq, &rf);
994 	raw_spin_unlock(&p->pi_lock);
995 
996 	local_irq_enable();
997 	return 0;
998 }
999 
1000 /*
1001  * sched_class::set_cpus_allowed must do the below, but is not required to
1002  * actually call this function.
1003  */
1004 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1005 {
1006 	cpumask_copy(&p->cpus_allowed, new_mask);
1007 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1008 }
1009 
1010 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1011 {
1012 	struct rq *rq = task_rq(p);
1013 	bool queued, running;
1014 
1015 	lockdep_assert_held(&p->pi_lock);
1016 
1017 	queued = task_on_rq_queued(p);
1018 	running = task_current(rq, p);
1019 
1020 	if (queued) {
1021 		/*
1022 		 * Because __kthread_bind() calls this on blocked tasks without
1023 		 * holding rq->lock.
1024 		 */
1025 		lockdep_assert_held(&rq->lock);
1026 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1027 	}
1028 	if (running)
1029 		put_prev_task(rq, p);
1030 
1031 	p->sched_class->set_cpus_allowed(p, new_mask);
1032 
1033 	if (queued)
1034 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1035 	if (running)
1036 		set_curr_task(rq, p);
1037 }
1038 
1039 /*
1040  * Change a given task's CPU affinity. Migrate the thread to a
1041  * proper CPU and schedule it away if the CPU it's executing on
1042  * is removed from the allowed bitmask.
1043  *
1044  * NOTE: the caller must have a valid reference to the task, the
1045  * task must not exit() & deallocate itself prematurely. The
1046  * call is not atomic; no spinlocks may be held.
1047  */
1048 static int __set_cpus_allowed_ptr(struct task_struct *p,
1049 				  const struct cpumask *new_mask, bool check)
1050 {
1051 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1052 	unsigned int dest_cpu;
1053 	struct rq_flags rf;
1054 	struct rq *rq;
1055 	int ret = 0;
1056 
1057 	rq = task_rq_lock(p, &rf);
1058 	update_rq_clock(rq);
1059 
1060 	if (p->flags & PF_KTHREAD) {
1061 		/*
1062 		 * Kernel threads are allowed on online && !active CPUs
1063 		 */
1064 		cpu_valid_mask = cpu_online_mask;
1065 	}
1066 
1067 	/*
1068 	 * Must re-check here, to close a race against __kthread_bind(),
1069 	 * sched_setaffinity() is not guaranteed to observe the flag.
1070 	 */
1071 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1072 		ret = -EINVAL;
1073 		goto out;
1074 	}
1075 
1076 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1077 		goto out;
1078 
1079 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1080 		ret = -EINVAL;
1081 		goto out;
1082 	}
1083 
1084 	do_set_cpus_allowed(p, new_mask);
1085 
1086 	if (p->flags & PF_KTHREAD) {
1087 		/*
1088 		 * For kernel threads that do indeed end up on online &&
1089 		 * !active we want to ensure they are strict per-CPU threads.
1090 		 */
1091 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1092 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1093 			p->nr_cpus_allowed != 1);
1094 	}
1095 
1096 	/* Can the task run on the task's current CPU? If so, we're done */
1097 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1098 		goto out;
1099 
1100 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1101 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1102 		struct migration_arg arg = { p, dest_cpu };
1103 		/* Need help from migration thread: drop lock and wait. */
1104 		task_rq_unlock(rq, p, &rf);
1105 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1106 		tlb_migrate_finish(p->mm);
1107 		return 0;
1108 	} else if (task_on_rq_queued(p)) {
1109 		/*
1110 		 * OK, since we're going to drop the lock immediately
1111 		 * afterwards anyway.
1112 		 */
1113 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1114 	}
1115 out:
1116 	task_rq_unlock(rq, p, &rf);
1117 
1118 	return ret;
1119 }
1120 
1121 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1122 {
1123 	return __set_cpus_allowed_ptr(p, new_mask, false);
1124 }
1125 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1126 
1127 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1128 {
1129 #ifdef CONFIG_SCHED_DEBUG
1130 	/*
1131 	 * We should never call set_task_cpu() on a blocked task,
1132 	 * ttwu() will sort out the placement.
1133 	 */
1134 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1135 			!p->on_rq);
1136 
1137 	/*
1138 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1139 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1140 	 * time relying on p->on_rq.
1141 	 */
1142 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1143 		     p->sched_class == &fair_sched_class &&
1144 		     (p->on_rq && !task_on_rq_migrating(p)));
1145 
1146 #ifdef CONFIG_LOCKDEP
1147 	/*
1148 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1149 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1150 	 *
1151 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1152 	 * see task_group().
1153 	 *
1154 	 * Furthermore, all task_rq users should acquire both locks, see
1155 	 * task_rq_lock().
1156 	 */
1157 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1158 				      lockdep_is_held(&task_rq(p)->lock)));
1159 #endif
1160 	/*
1161 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1162 	 */
1163 	WARN_ON_ONCE(!cpu_online(new_cpu));
1164 #endif
1165 
1166 	trace_sched_migrate_task(p, new_cpu);
1167 
1168 	if (task_cpu(p) != new_cpu) {
1169 		if (p->sched_class->migrate_task_rq)
1170 			p->sched_class->migrate_task_rq(p, new_cpu);
1171 		p->se.nr_migrations++;
1172 		rseq_migrate(p);
1173 		perf_event_task_migrate(p);
1174 	}
1175 
1176 	__set_task_cpu(p, new_cpu);
1177 }
1178 
1179 #ifdef CONFIG_NUMA_BALANCING
1180 static void __migrate_swap_task(struct task_struct *p, int cpu)
1181 {
1182 	if (task_on_rq_queued(p)) {
1183 		struct rq *src_rq, *dst_rq;
1184 		struct rq_flags srf, drf;
1185 
1186 		src_rq = task_rq(p);
1187 		dst_rq = cpu_rq(cpu);
1188 
1189 		rq_pin_lock(src_rq, &srf);
1190 		rq_pin_lock(dst_rq, &drf);
1191 
1192 		p->on_rq = TASK_ON_RQ_MIGRATING;
1193 		deactivate_task(src_rq, p, 0);
1194 		set_task_cpu(p, cpu);
1195 		activate_task(dst_rq, p, 0);
1196 		p->on_rq = TASK_ON_RQ_QUEUED;
1197 		check_preempt_curr(dst_rq, p, 0);
1198 
1199 		rq_unpin_lock(dst_rq, &drf);
1200 		rq_unpin_lock(src_rq, &srf);
1201 
1202 	} else {
1203 		/*
1204 		 * Task isn't running anymore; make it appear like we migrated
1205 		 * it before it went to sleep. This means on wakeup we make the
1206 		 * previous CPU our target instead of where it really is.
1207 		 */
1208 		p->wake_cpu = cpu;
1209 	}
1210 }
1211 
1212 struct migration_swap_arg {
1213 	struct task_struct *src_task, *dst_task;
1214 	int src_cpu, dst_cpu;
1215 };
1216 
1217 static int migrate_swap_stop(void *data)
1218 {
1219 	struct migration_swap_arg *arg = data;
1220 	struct rq *src_rq, *dst_rq;
1221 	int ret = -EAGAIN;
1222 
1223 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1224 		return -EAGAIN;
1225 
1226 	src_rq = cpu_rq(arg->src_cpu);
1227 	dst_rq = cpu_rq(arg->dst_cpu);
1228 
1229 	double_raw_lock(&arg->src_task->pi_lock,
1230 			&arg->dst_task->pi_lock);
1231 	double_rq_lock(src_rq, dst_rq);
1232 
1233 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1234 		goto unlock;
1235 
1236 	if (task_cpu(arg->src_task) != arg->src_cpu)
1237 		goto unlock;
1238 
1239 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1240 		goto unlock;
1241 
1242 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1243 		goto unlock;
1244 
1245 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1246 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1247 
1248 	ret = 0;
1249 
1250 unlock:
1251 	double_rq_unlock(src_rq, dst_rq);
1252 	raw_spin_unlock(&arg->dst_task->pi_lock);
1253 	raw_spin_unlock(&arg->src_task->pi_lock);
1254 
1255 	return ret;
1256 }
1257 
1258 /*
1259  * Cross migrate two tasks
1260  */
1261 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1262 		int target_cpu, int curr_cpu)
1263 {
1264 	struct migration_swap_arg arg;
1265 	int ret = -EINVAL;
1266 
1267 	arg = (struct migration_swap_arg){
1268 		.src_task = cur,
1269 		.src_cpu = curr_cpu,
1270 		.dst_task = p,
1271 		.dst_cpu = target_cpu,
1272 	};
1273 
1274 	if (arg.src_cpu == arg.dst_cpu)
1275 		goto out;
1276 
1277 	/*
1278 	 * These three tests are all lockless; this is OK since all of them
1279 	 * will be re-checked with proper locks held further down the line.
1280 	 */
1281 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1282 		goto out;
1283 
1284 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1285 		goto out;
1286 
1287 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1288 		goto out;
1289 
1290 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1291 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1292 
1293 out:
1294 	return ret;
1295 }
1296 #endif /* CONFIG_NUMA_BALANCING */
1297 
1298 /*
1299  * wait_task_inactive - wait for a thread to unschedule.
1300  *
1301  * If @match_state is nonzero, it's the @p->state value just checked and
1302  * not expected to change.  If it changes, i.e. @p might have woken up,
1303  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1304  * we return a positive number (its total switch count).  If a second call
1305  * a short while later returns the same number, the caller can be sure that
1306  * @p has remained unscheduled the whole time.
1307  *
1308  * The caller must ensure that the task *will* unschedule sometime soon,
1309  * else this function might spin for a *long* time. This function can't
1310  * be called with interrupts off, or it may introduce deadlock with
1311  * smp_call_function() if an IPI is sent by the same process we are
1312  * waiting to become inactive.
1313  */
1314 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1315 {
1316 	int running, queued;
1317 	struct rq_flags rf;
1318 	unsigned long ncsw;
1319 	struct rq *rq;
1320 
1321 	for (;;) {
1322 		/*
1323 		 * We do the initial early heuristics without holding
1324 		 * any task-queue locks at all. We'll only try to get
1325 		 * the runqueue lock when things look like they will
1326 		 * work out!
1327 		 */
1328 		rq = task_rq(p);
1329 
1330 		/*
1331 		 * If the task is actively running on another CPU
1332 		 * still, just relax and busy-wait without holding
1333 		 * any locks.
1334 		 *
1335 		 * NOTE! Since we don't hold any locks, it's not
1336 		 * even sure that "rq" stays as the right runqueue!
1337 		 * But we don't care, since "task_running()" will
1338 		 * return false if the runqueue has changed and p
1339 		 * is actually now running somewhere else!
1340 		 */
1341 		while (task_running(rq, p)) {
1342 			if (match_state && unlikely(p->state != match_state))
1343 				return 0;
1344 			cpu_relax();
1345 		}
1346 
1347 		/*
1348 		 * Ok, time to look more closely! We need the rq
1349 		 * lock now, to be *sure*. If we're wrong, we'll
1350 		 * just go back and repeat.
1351 		 */
1352 		rq = task_rq_lock(p, &rf);
1353 		trace_sched_wait_task(p);
1354 		running = task_running(rq, p);
1355 		queued = task_on_rq_queued(p);
1356 		ncsw = 0;
1357 		if (!match_state || p->state == match_state)
1358 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1359 		task_rq_unlock(rq, p, &rf);
1360 
1361 		/*
1362 		 * If it changed from the expected state, bail out now.
1363 		 */
1364 		if (unlikely(!ncsw))
1365 			break;
1366 
1367 		/*
1368 		 * Was it really running after all now that we
1369 		 * checked with the proper locks actually held?
1370 		 *
1371 		 * Oops. Go back and try again..
1372 		 */
1373 		if (unlikely(running)) {
1374 			cpu_relax();
1375 			continue;
1376 		}
1377 
1378 		/*
1379 		 * It's not enough that it's not actively running,
1380 		 * it must be off the runqueue _entirely_, and not
1381 		 * preempted!
1382 		 *
1383 		 * So if it was still runnable (but just not actively
1384 		 * running right now), it's preempted, and we should
1385 		 * yield - it could be a while.
1386 		 */
1387 		if (unlikely(queued)) {
1388 			ktime_t to = NSEC_PER_SEC / HZ;
1389 
1390 			set_current_state(TASK_UNINTERRUPTIBLE);
1391 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1392 			continue;
1393 		}
1394 
1395 		/*
1396 		 * Ahh, all good. It wasn't running, and it wasn't
1397 		 * runnable, which means that it will never become
1398 		 * running in the future either. We're all done!
1399 		 */
1400 		break;
1401 	}
1402 
1403 	return ncsw;
1404 }
1405 
1406 /***
1407  * kick_process - kick a running thread to enter/exit the kernel
1408  * @p: the to-be-kicked thread
1409  *
1410  * Cause a process which is running on another CPU to enter
1411  * kernel-mode, without any delay. (to get signals handled.)
1412  *
1413  * NOTE: this function doesn't have to take the runqueue lock,
1414  * because all it wants to ensure is that the remote task enters
1415  * the kernel. If the IPI races and the task has been migrated
1416  * to another CPU then no harm is done and the purpose has been
1417  * achieved as well.
1418  */
1419 void kick_process(struct task_struct *p)
1420 {
1421 	int cpu;
1422 
1423 	preempt_disable();
1424 	cpu = task_cpu(p);
1425 	if ((cpu != smp_processor_id()) && task_curr(p))
1426 		smp_send_reschedule(cpu);
1427 	preempt_enable();
1428 }
1429 EXPORT_SYMBOL_GPL(kick_process);
1430 
1431 /*
1432  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1433  *
1434  * A few notes on cpu_active vs cpu_online:
1435  *
1436  *  - cpu_active must be a subset of cpu_online
1437  *
1438  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1439  *    see __set_cpus_allowed_ptr(). At this point the newly online
1440  *    CPU isn't yet part of the sched domains, and balancing will not
1441  *    see it.
1442  *
1443  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1444  *    avoid the load balancer to place new tasks on the to be removed
1445  *    CPU. Existing tasks will remain running there and will be taken
1446  *    off.
1447  *
1448  * This means that fallback selection must not select !active CPUs.
1449  * And can assume that any active CPU must be online. Conversely
1450  * select_task_rq() below may allow selection of !active CPUs in order
1451  * to satisfy the above rules.
1452  */
1453 static int select_fallback_rq(int cpu, struct task_struct *p)
1454 {
1455 	int nid = cpu_to_node(cpu);
1456 	const struct cpumask *nodemask = NULL;
1457 	enum { cpuset, possible, fail } state = cpuset;
1458 	int dest_cpu;
1459 
1460 	/*
1461 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1462 	 * will return -1. There is no CPU on the node, and we should
1463 	 * select the CPU on the other node.
1464 	 */
1465 	if (nid != -1) {
1466 		nodemask = cpumask_of_node(nid);
1467 
1468 		/* Look for allowed, online CPU in same node. */
1469 		for_each_cpu(dest_cpu, nodemask) {
1470 			if (!cpu_active(dest_cpu))
1471 				continue;
1472 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1473 				return dest_cpu;
1474 		}
1475 	}
1476 
1477 	for (;;) {
1478 		/* Any allowed, online CPU? */
1479 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1480 			if (!is_cpu_allowed(p, dest_cpu))
1481 				continue;
1482 
1483 			goto out;
1484 		}
1485 
1486 		/* No more Mr. Nice Guy. */
1487 		switch (state) {
1488 		case cpuset:
1489 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1490 				cpuset_cpus_allowed_fallback(p);
1491 				state = possible;
1492 				break;
1493 			}
1494 			/* Fall-through */
1495 		case possible:
1496 			do_set_cpus_allowed(p, cpu_possible_mask);
1497 			state = fail;
1498 			break;
1499 
1500 		case fail:
1501 			BUG();
1502 			break;
1503 		}
1504 	}
1505 
1506 out:
1507 	if (state != cpuset) {
1508 		/*
1509 		 * Don't tell them about moving exiting tasks or
1510 		 * kernel threads (both mm NULL), since they never
1511 		 * leave kernel.
1512 		 */
1513 		if (p->mm && printk_ratelimit()) {
1514 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1515 					task_pid_nr(p), p->comm, cpu);
1516 		}
1517 	}
1518 
1519 	return dest_cpu;
1520 }
1521 
1522 /*
1523  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1524  */
1525 static inline
1526 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1527 {
1528 	lockdep_assert_held(&p->pi_lock);
1529 
1530 	if (p->nr_cpus_allowed > 1)
1531 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1532 	else
1533 		cpu = cpumask_any(&p->cpus_allowed);
1534 
1535 	/*
1536 	 * In order not to call set_task_cpu() on a blocking task we need
1537 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1538 	 * CPU.
1539 	 *
1540 	 * Since this is common to all placement strategies, this lives here.
1541 	 *
1542 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1543 	 *   not worry about this generic constraint ]
1544 	 */
1545 	if (unlikely(!is_cpu_allowed(p, cpu)))
1546 		cpu = select_fallback_rq(task_cpu(p), p);
1547 
1548 	return cpu;
1549 }
1550 
1551 static void update_avg(u64 *avg, u64 sample)
1552 {
1553 	s64 diff = sample - *avg;
1554 	*avg += diff >> 3;
1555 }
1556 
1557 void sched_set_stop_task(int cpu, struct task_struct *stop)
1558 {
1559 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1560 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1561 
1562 	if (stop) {
1563 		/*
1564 		 * Make it appear like a SCHED_FIFO task, its something
1565 		 * userspace knows about and won't get confused about.
1566 		 *
1567 		 * Also, it will make PI more or less work without too
1568 		 * much confusion -- but then, stop work should not
1569 		 * rely on PI working anyway.
1570 		 */
1571 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1572 
1573 		stop->sched_class = &stop_sched_class;
1574 	}
1575 
1576 	cpu_rq(cpu)->stop = stop;
1577 
1578 	if (old_stop) {
1579 		/*
1580 		 * Reset it back to a normal scheduling class so that
1581 		 * it can die in pieces.
1582 		 */
1583 		old_stop->sched_class = &rt_sched_class;
1584 	}
1585 }
1586 
1587 #else
1588 
1589 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1590 					 const struct cpumask *new_mask, bool check)
1591 {
1592 	return set_cpus_allowed_ptr(p, new_mask);
1593 }
1594 
1595 #endif /* CONFIG_SMP */
1596 
1597 static void
1598 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1599 {
1600 	struct rq *rq;
1601 
1602 	if (!schedstat_enabled())
1603 		return;
1604 
1605 	rq = this_rq();
1606 
1607 #ifdef CONFIG_SMP
1608 	if (cpu == rq->cpu) {
1609 		__schedstat_inc(rq->ttwu_local);
1610 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1611 	} else {
1612 		struct sched_domain *sd;
1613 
1614 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1615 		rcu_read_lock();
1616 		for_each_domain(rq->cpu, sd) {
1617 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1618 				__schedstat_inc(sd->ttwu_wake_remote);
1619 				break;
1620 			}
1621 		}
1622 		rcu_read_unlock();
1623 	}
1624 
1625 	if (wake_flags & WF_MIGRATED)
1626 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1627 #endif /* CONFIG_SMP */
1628 
1629 	__schedstat_inc(rq->ttwu_count);
1630 	__schedstat_inc(p->se.statistics.nr_wakeups);
1631 
1632 	if (wake_flags & WF_SYNC)
1633 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1634 }
1635 
1636 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1637 {
1638 	activate_task(rq, p, en_flags);
1639 	p->on_rq = TASK_ON_RQ_QUEUED;
1640 
1641 	/* If a worker is waking up, notify the workqueue: */
1642 	if (p->flags & PF_WQ_WORKER)
1643 		wq_worker_waking_up(p, cpu_of(rq));
1644 }
1645 
1646 /*
1647  * Mark the task runnable and perform wakeup-preemption.
1648  */
1649 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1650 			   struct rq_flags *rf)
1651 {
1652 	check_preempt_curr(rq, p, wake_flags);
1653 	p->state = TASK_RUNNING;
1654 	trace_sched_wakeup(p);
1655 
1656 #ifdef CONFIG_SMP
1657 	if (p->sched_class->task_woken) {
1658 		/*
1659 		 * Our task @p is fully woken up and running; so its safe to
1660 		 * drop the rq->lock, hereafter rq is only used for statistics.
1661 		 */
1662 		rq_unpin_lock(rq, rf);
1663 		p->sched_class->task_woken(rq, p);
1664 		rq_repin_lock(rq, rf);
1665 	}
1666 
1667 	if (rq->idle_stamp) {
1668 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1669 		u64 max = 2*rq->max_idle_balance_cost;
1670 
1671 		update_avg(&rq->avg_idle, delta);
1672 
1673 		if (rq->avg_idle > max)
1674 			rq->avg_idle = max;
1675 
1676 		rq->idle_stamp = 0;
1677 	}
1678 #endif
1679 }
1680 
1681 static void
1682 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1683 		 struct rq_flags *rf)
1684 {
1685 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1686 
1687 	lockdep_assert_held(&rq->lock);
1688 
1689 #ifdef CONFIG_SMP
1690 	if (p->sched_contributes_to_load)
1691 		rq->nr_uninterruptible--;
1692 
1693 	if (wake_flags & WF_MIGRATED)
1694 		en_flags |= ENQUEUE_MIGRATED;
1695 #endif
1696 
1697 	ttwu_activate(rq, p, en_flags);
1698 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1699 }
1700 
1701 /*
1702  * Called in case the task @p isn't fully descheduled from its runqueue,
1703  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1704  * since all we need to do is flip p->state to TASK_RUNNING, since
1705  * the task is still ->on_rq.
1706  */
1707 static int ttwu_remote(struct task_struct *p, int wake_flags)
1708 {
1709 	struct rq_flags rf;
1710 	struct rq *rq;
1711 	int ret = 0;
1712 
1713 	rq = __task_rq_lock(p, &rf);
1714 	if (task_on_rq_queued(p)) {
1715 		/* check_preempt_curr() may use rq clock */
1716 		update_rq_clock(rq);
1717 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1718 		ret = 1;
1719 	}
1720 	__task_rq_unlock(rq, &rf);
1721 
1722 	return ret;
1723 }
1724 
1725 #ifdef CONFIG_SMP
1726 void sched_ttwu_pending(void)
1727 {
1728 	struct rq *rq = this_rq();
1729 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1730 	struct task_struct *p, *t;
1731 	struct rq_flags rf;
1732 
1733 	if (!llist)
1734 		return;
1735 
1736 	rq_lock_irqsave(rq, &rf);
1737 	update_rq_clock(rq);
1738 
1739 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1740 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1741 
1742 	rq_unlock_irqrestore(rq, &rf);
1743 }
1744 
1745 void scheduler_ipi(void)
1746 {
1747 	/*
1748 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1749 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1750 	 * this IPI.
1751 	 */
1752 	preempt_fold_need_resched();
1753 
1754 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1755 		return;
1756 
1757 	/*
1758 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1759 	 * traditionally all their work was done from the interrupt return
1760 	 * path. Now that we actually do some work, we need to make sure
1761 	 * we do call them.
1762 	 *
1763 	 * Some archs already do call them, luckily irq_enter/exit nest
1764 	 * properly.
1765 	 *
1766 	 * Arguably we should visit all archs and update all handlers,
1767 	 * however a fair share of IPIs are still resched only so this would
1768 	 * somewhat pessimize the simple resched case.
1769 	 */
1770 	irq_enter();
1771 	sched_ttwu_pending();
1772 
1773 	/*
1774 	 * Check if someone kicked us for doing the nohz idle load balance.
1775 	 */
1776 	if (unlikely(got_nohz_idle_kick())) {
1777 		this_rq()->idle_balance = 1;
1778 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1779 	}
1780 	irq_exit();
1781 }
1782 
1783 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1784 {
1785 	struct rq *rq = cpu_rq(cpu);
1786 
1787 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1788 
1789 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1790 		if (!set_nr_if_polling(rq->idle))
1791 			smp_send_reschedule(cpu);
1792 		else
1793 			trace_sched_wake_idle_without_ipi(cpu);
1794 	}
1795 }
1796 
1797 void wake_up_if_idle(int cpu)
1798 {
1799 	struct rq *rq = cpu_rq(cpu);
1800 	struct rq_flags rf;
1801 
1802 	rcu_read_lock();
1803 
1804 	if (!is_idle_task(rcu_dereference(rq->curr)))
1805 		goto out;
1806 
1807 	if (set_nr_if_polling(rq->idle)) {
1808 		trace_sched_wake_idle_without_ipi(cpu);
1809 	} else {
1810 		rq_lock_irqsave(rq, &rf);
1811 		if (is_idle_task(rq->curr))
1812 			smp_send_reschedule(cpu);
1813 		/* Else CPU is not idle, do nothing here: */
1814 		rq_unlock_irqrestore(rq, &rf);
1815 	}
1816 
1817 out:
1818 	rcu_read_unlock();
1819 }
1820 
1821 bool cpus_share_cache(int this_cpu, int that_cpu)
1822 {
1823 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1824 }
1825 #endif /* CONFIG_SMP */
1826 
1827 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1828 {
1829 	struct rq *rq = cpu_rq(cpu);
1830 	struct rq_flags rf;
1831 
1832 #if defined(CONFIG_SMP)
1833 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1834 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1835 		ttwu_queue_remote(p, cpu, wake_flags);
1836 		return;
1837 	}
1838 #endif
1839 
1840 	rq_lock(rq, &rf);
1841 	update_rq_clock(rq);
1842 	ttwu_do_activate(rq, p, wake_flags, &rf);
1843 	rq_unlock(rq, &rf);
1844 }
1845 
1846 /*
1847  * Notes on Program-Order guarantees on SMP systems.
1848  *
1849  *  MIGRATION
1850  *
1851  * The basic program-order guarantee on SMP systems is that when a task [t]
1852  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1853  * execution on its new CPU [c1].
1854  *
1855  * For migration (of runnable tasks) this is provided by the following means:
1856  *
1857  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1858  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1859  *     rq(c1)->lock (if not at the same time, then in that order).
1860  *  C) LOCK of the rq(c1)->lock scheduling in task
1861  *
1862  * Release/acquire chaining guarantees that B happens after A and C after B.
1863  * Note: the CPU doing B need not be c0 or c1
1864  *
1865  * Example:
1866  *
1867  *   CPU0            CPU1            CPU2
1868  *
1869  *   LOCK rq(0)->lock
1870  *   sched-out X
1871  *   sched-in Y
1872  *   UNLOCK rq(0)->lock
1873  *
1874  *                                   LOCK rq(0)->lock // orders against CPU0
1875  *                                   dequeue X
1876  *                                   UNLOCK rq(0)->lock
1877  *
1878  *                                   LOCK rq(1)->lock
1879  *                                   enqueue X
1880  *                                   UNLOCK rq(1)->lock
1881  *
1882  *                   LOCK rq(1)->lock // orders against CPU2
1883  *                   sched-out Z
1884  *                   sched-in X
1885  *                   UNLOCK rq(1)->lock
1886  *
1887  *
1888  *  BLOCKING -- aka. SLEEP + WAKEUP
1889  *
1890  * For blocking we (obviously) need to provide the same guarantee as for
1891  * migration. However the means are completely different as there is no lock
1892  * chain to provide order. Instead we do:
1893  *
1894  *   1) smp_store_release(X->on_cpu, 0)
1895  *   2) smp_cond_load_acquire(!X->on_cpu)
1896  *
1897  * Example:
1898  *
1899  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1900  *
1901  *   LOCK rq(0)->lock LOCK X->pi_lock
1902  *   dequeue X
1903  *   sched-out X
1904  *   smp_store_release(X->on_cpu, 0);
1905  *
1906  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1907  *                    X->state = WAKING
1908  *                    set_task_cpu(X,2)
1909  *
1910  *                    LOCK rq(2)->lock
1911  *                    enqueue X
1912  *                    X->state = RUNNING
1913  *                    UNLOCK rq(2)->lock
1914  *
1915  *                                          LOCK rq(2)->lock // orders against CPU1
1916  *                                          sched-out Z
1917  *                                          sched-in X
1918  *                                          UNLOCK rq(2)->lock
1919  *
1920  *                    UNLOCK X->pi_lock
1921  *   UNLOCK rq(0)->lock
1922  *
1923  *
1924  * However, for wakeups there is a second guarantee we must provide, namely we
1925  * must ensure that CONDITION=1 done by the caller can not be reordered with
1926  * accesses to the task state; see try_to_wake_up() and set_current_state().
1927  */
1928 
1929 /**
1930  * try_to_wake_up - wake up a thread
1931  * @p: the thread to be awakened
1932  * @state: the mask of task states that can be woken
1933  * @wake_flags: wake modifier flags (WF_*)
1934  *
1935  * If (@state & @p->state) @p->state = TASK_RUNNING.
1936  *
1937  * If the task was not queued/runnable, also place it back on a runqueue.
1938  *
1939  * Atomic against schedule() which would dequeue a task, also see
1940  * set_current_state().
1941  *
1942  * This function executes a full memory barrier before accessing the task
1943  * state; see set_current_state().
1944  *
1945  * Return: %true if @p->state changes (an actual wakeup was done),
1946  *	   %false otherwise.
1947  */
1948 static int
1949 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1950 {
1951 	unsigned long flags;
1952 	int cpu, success = 0;
1953 
1954 	/*
1955 	 * If we are going to wake up a thread waiting for CONDITION we
1956 	 * need to ensure that CONDITION=1 done by the caller can not be
1957 	 * reordered with p->state check below. This pairs with mb() in
1958 	 * set_current_state() the waiting thread does.
1959 	 */
1960 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1961 	smp_mb__after_spinlock();
1962 	if (!(p->state & state))
1963 		goto out;
1964 
1965 	trace_sched_waking(p);
1966 
1967 	/* We're going to change ->state: */
1968 	success = 1;
1969 	cpu = task_cpu(p);
1970 
1971 	/*
1972 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1973 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1974 	 * in smp_cond_load_acquire() below.
1975 	 *
1976 	 * sched_ttwu_pending()			try_to_wake_up()
1977 	 *   STORE p->on_rq = 1			  LOAD p->state
1978 	 *   UNLOCK rq->lock
1979 	 *
1980 	 * __schedule() (switch to task 'p')
1981 	 *   LOCK rq->lock			  smp_rmb();
1982 	 *   smp_mb__after_spinlock();
1983 	 *   UNLOCK rq->lock
1984 	 *
1985 	 * [task p]
1986 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
1987 	 *
1988 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1989 	 * __schedule().  See the comment for smp_mb__after_spinlock().
1990 	 */
1991 	smp_rmb();
1992 	if (p->on_rq && ttwu_remote(p, wake_flags))
1993 		goto stat;
1994 
1995 #ifdef CONFIG_SMP
1996 	/*
1997 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1998 	 * possible to, falsely, observe p->on_cpu == 0.
1999 	 *
2000 	 * One must be running (->on_cpu == 1) in order to remove oneself
2001 	 * from the runqueue.
2002 	 *
2003 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2004 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2005 	 *   UNLOCK rq->lock
2006 	 *
2007 	 * __schedule() (put 'p' to sleep)
2008 	 *   LOCK rq->lock			  smp_rmb();
2009 	 *   smp_mb__after_spinlock();
2010 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2011 	 *
2012 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2013 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2014 	 */
2015 	smp_rmb();
2016 
2017 	/*
2018 	 * If the owning (remote) CPU is still in the middle of schedule() with
2019 	 * this task as prev, wait until its done referencing the task.
2020 	 *
2021 	 * Pairs with the smp_store_release() in finish_task().
2022 	 *
2023 	 * This ensures that tasks getting woken will be fully ordered against
2024 	 * their previous state and preserve Program Order.
2025 	 */
2026 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2027 
2028 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2029 	p->state = TASK_WAKING;
2030 
2031 	if (p->in_iowait) {
2032 		delayacct_blkio_end(p);
2033 		atomic_dec(&task_rq(p)->nr_iowait);
2034 	}
2035 
2036 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2037 	if (task_cpu(p) != cpu) {
2038 		wake_flags |= WF_MIGRATED;
2039 		set_task_cpu(p, cpu);
2040 	}
2041 
2042 #else /* CONFIG_SMP */
2043 
2044 	if (p->in_iowait) {
2045 		delayacct_blkio_end(p);
2046 		atomic_dec(&task_rq(p)->nr_iowait);
2047 	}
2048 
2049 #endif /* CONFIG_SMP */
2050 
2051 	ttwu_queue(p, cpu, wake_flags);
2052 stat:
2053 	ttwu_stat(p, cpu, wake_flags);
2054 out:
2055 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2056 
2057 	return success;
2058 }
2059 
2060 /**
2061  * try_to_wake_up_local - try to wake up a local task with rq lock held
2062  * @p: the thread to be awakened
2063  * @rf: request-queue flags for pinning
2064  *
2065  * Put @p on the run-queue if it's not already there. The caller must
2066  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2067  * the current task.
2068  */
2069 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2070 {
2071 	struct rq *rq = task_rq(p);
2072 
2073 	if (WARN_ON_ONCE(rq != this_rq()) ||
2074 	    WARN_ON_ONCE(p == current))
2075 		return;
2076 
2077 	lockdep_assert_held(&rq->lock);
2078 
2079 	if (!raw_spin_trylock(&p->pi_lock)) {
2080 		/*
2081 		 * This is OK, because current is on_cpu, which avoids it being
2082 		 * picked for load-balance and preemption/IRQs are still
2083 		 * disabled avoiding further scheduler activity on it and we've
2084 		 * not yet picked a replacement task.
2085 		 */
2086 		rq_unlock(rq, rf);
2087 		raw_spin_lock(&p->pi_lock);
2088 		rq_relock(rq, rf);
2089 	}
2090 
2091 	if (!(p->state & TASK_NORMAL))
2092 		goto out;
2093 
2094 	trace_sched_waking(p);
2095 
2096 	if (!task_on_rq_queued(p)) {
2097 		if (p->in_iowait) {
2098 			delayacct_blkio_end(p);
2099 			atomic_dec(&rq->nr_iowait);
2100 		}
2101 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2102 	}
2103 
2104 	ttwu_do_wakeup(rq, p, 0, rf);
2105 	ttwu_stat(p, smp_processor_id(), 0);
2106 out:
2107 	raw_spin_unlock(&p->pi_lock);
2108 }
2109 
2110 /**
2111  * wake_up_process - Wake up a specific process
2112  * @p: The process to be woken up.
2113  *
2114  * Attempt to wake up the nominated process and move it to the set of runnable
2115  * processes.
2116  *
2117  * Return: 1 if the process was woken up, 0 if it was already running.
2118  *
2119  * This function executes a full memory barrier before accessing the task state.
2120  */
2121 int wake_up_process(struct task_struct *p)
2122 {
2123 	return try_to_wake_up(p, TASK_NORMAL, 0);
2124 }
2125 EXPORT_SYMBOL(wake_up_process);
2126 
2127 int wake_up_state(struct task_struct *p, unsigned int state)
2128 {
2129 	return try_to_wake_up(p, state, 0);
2130 }
2131 
2132 /*
2133  * Perform scheduler related setup for a newly forked process p.
2134  * p is forked by current.
2135  *
2136  * __sched_fork() is basic setup used by init_idle() too:
2137  */
2138 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2139 {
2140 	p->on_rq			= 0;
2141 
2142 	p->se.on_rq			= 0;
2143 	p->se.exec_start		= 0;
2144 	p->se.sum_exec_runtime		= 0;
2145 	p->se.prev_sum_exec_runtime	= 0;
2146 	p->se.nr_migrations		= 0;
2147 	p->se.vruntime			= 0;
2148 	INIT_LIST_HEAD(&p->se.group_node);
2149 
2150 #ifdef CONFIG_FAIR_GROUP_SCHED
2151 	p->se.cfs_rq			= NULL;
2152 #endif
2153 
2154 #ifdef CONFIG_SCHEDSTATS
2155 	/* Even if schedstat is disabled, there should not be garbage */
2156 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2157 #endif
2158 
2159 	RB_CLEAR_NODE(&p->dl.rb_node);
2160 	init_dl_task_timer(&p->dl);
2161 	init_dl_inactive_task_timer(&p->dl);
2162 	__dl_clear_params(p);
2163 
2164 	INIT_LIST_HEAD(&p->rt.run_list);
2165 	p->rt.timeout		= 0;
2166 	p->rt.time_slice	= sched_rr_timeslice;
2167 	p->rt.on_rq		= 0;
2168 	p->rt.on_list		= 0;
2169 
2170 #ifdef CONFIG_PREEMPT_NOTIFIERS
2171 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2172 #endif
2173 
2174 	init_numa_balancing(clone_flags, p);
2175 }
2176 
2177 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2178 
2179 #ifdef CONFIG_NUMA_BALANCING
2180 
2181 void set_numabalancing_state(bool enabled)
2182 {
2183 	if (enabled)
2184 		static_branch_enable(&sched_numa_balancing);
2185 	else
2186 		static_branch_disable(&sched_numa_balancing);
2187 }
2188 
2189 #ifdef CONFIG_PROC_SYSCTL
2190 int sysctl_numa_balancing(struct ctl_table *table, int write,
2191 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2192 {
2193 	struct ctl_table t;
2194 	int err;
2195 	int state = static_branch_likely(&sched_numa_balancing);
2196 
2197 	if (write && !capable(CAP_SYS_ADMIN))
2198 		return -EPERM;
2199 
2200 	t = *table;
2201 	t.data = &state;
2202 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2203 	if (err < 0)
2204 		return err;
2205 	if (write)
2206 		set_numabalancing_state(state);
2207 	return err;
2208 }
2209 #endif
2210 #endif
2211 
2212 #ifdef CONFIG_SCHEDSTATS
2213 
2214 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2215 static bool __initdata __sched_schedstats = false;
2216 
2217 static void set_schedstats(bool enabled)
2218 {
2219 	if (enabled)
2220 		static_branch_enable(&sched_schedstats);
2221 	else
2222 		static_branch_disable(&sched_schedstats);
2223 }
2224 
2225 void force_schedstat_enabled(void)
2226 {
2227 	if (!schedstat_enabled()) {
2228 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2229 		static_branch_enable(&sched_schedstats);
2230 	}
2231 }
2232 
2233 static int __init setup_schedstats(char *str)
2234 {
2235 	int ret = 0;
2236 	if (!str)
2237 		goto out;
2238 
2239 	/*
2240 	 * This code is called before jump labels have been set up, so we can't
2241 	 * change the static branch directly just yet.  Instead set a temporary
2242 	 * variable so init_schedstats() can do it later.
2243 	 */
2244 	if (!strcmp(str, "enable")) {
2245 		__sched_schedstats = true;
2246 		ret = 1;
2247 	} else if (!strcmp(str, "disable")) {
2248 		__sched_schedstats = false;
2249 		ret = 1;
2250 	}
2251 out:
2252 	if (!ret)
2253 		pr_warn("Unable to parse schedstats=\n");
2254 
2255 	return ret;
2256 }
2257 __setup("schedstats=", setup_schedstats);
2258 
2259 static void __init init_schedstats(void)
2260 {
2261 	set_schedstats(__sched_schedstats);
2262 }
2263 
2264 #ifdef CONFIG_PROC_SYSCTL
2265 int sysctl_schedstats(struct ctl_table *table, int write,
2266 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2267 {
2268 	struct ctl_table t;
2269 	int err;
2270 	int state = static_branch_likely(&sched_schedstats);
2271 
2272 	if (write && !capable(CAP_SYS_ADMIN))
2273 		return -EPERM;
2274 
2275 	t = *table;
2276 	t.data = &state;
2277 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2278 	if (err < 0)
2279 		return err;
2280 	if (write)
2281 		set_schedstats(state);
2282 	return err;
2283 }
2284 #endif /* CONFIG_PROC_SYSCTL */
2285 #else  /* !CONFIG_SCHEDSTATS */
2286 static inline void init_schedstats(void) {}
2287 #endif /* CONFIG_SCHEDSTATS */
2288 
2289 /*
2290  * fork()/clone()-time setup:
2291  */
2292 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2293 {
2294 	unsigned long flags;
2295 
2296 	__sched_fork(clone_flags, p);
2297 	/*
2298 	 * We mark the process as NEW here. This guarantees that
2299 	 * nobody will actually run it, and a signal or other external
2300 	 * event cannot wake it up and insert it on the runqueue either.
2301 	 */
2302 	p->state = TASK_NEW;
2303 
2304 	/*
2305 	 * Make sure we do not leak PI boosting priority to the child.
2306 	 */
2307 	p->prio = current->normal_prio;
2308 
2309 	/*
2310 	 * Revert to default priority/policy on fork if requested.
2311 	 */
2312 	if (unlikely(p->sched_reset_on_fork)) {
2313 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2314 			p->policy = SCHED_NORMAL;
2315 			p->static_prio = NICE_TO_PRIO(0);
2316 			p->rt_priority = 0;
2317 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2318 			p->static_prio = NICE_TO_PRIO(0);
2319 
2320 		p->prio = p->normal_prio = __normal_prio(p);
2321 		set_load_weight(p, false);
2322 
2323 		/*
2324 		 * We don't need the reset flag anymore after the fork. It has
2325 		 * fulfilled its duty:
2326 		 */
2327 		p->sched_reset_on_fork = 0;
2328 	}
2329 
2330 	if (dl_prio(p->prio))
2331 		return -EAGAIN;
2332 	else if (rt_prio(p->prio))
2333 		p->sched_class = &rt_sched_class;
2334 	else
2335 		p->sched_class = &fair_sched_class;
2336 
2337 	init_entity_runnable_average(&p->se);
2338 
2339 	/*
2340 	 * The child is not yet in the pid-hash so no cgroup attach races,
2341 	 * and the cgroup is pinned to this child due to cgroup_fork()
2342 	 * is ran before sched_fork().
2343 	 *
2344 	 * Silence PROVE_RCU.
2345 	 */
2346 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2347 	/*
2348 	 * We're setting the CPU for the first time, we don't migrate,
2349 	 * so use __set_task_cpu().
2350 	 */
2351 	__set_task_cpu(p, smp_processor_id());
2352 	if (p->sched_class->task_fork)
2353 		p->sched_class->task_fork(p);
2354 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2355 
2356 #ifdef CONFIG_SCHED_INFO
2357 	if (likely(sched_info_on()))
2358 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2359 #endif
2360 #if defined(CONFIG_SMP)
2361 	p->on_cpu = 0;
2362 #endif
2363 	init_task_preempt_count(p);
2364 #ifdef CONFIG_SMP
2365 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2366 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2367 #endif
2368 	return 0;
2369 }
2370 
2371 unsigned long to_ratio(u64 period, u64 runtime)
2372 {
2373 	if (runtime == RUNTIME_INF)
2374 		return BW_UNIT;
2375 
2376 	/*
2377 	 * Doing this here saves a lot of checks in all
2378 	 * the calling paths, and returning zero seems
2379 	 * safe for them anyway.
2380 	 */
2381 	if (period == 0)
2382 		return 0;
2383 
2384 	return div64_u64(runtime << BW_SHIFT, period);
2385 }
2386 
2387 /*
2388  * wake_up_new_task - wake up a newly created task for the first time.
2389  *
2390  * This function will do some initial scheduler statistics housekeeping
2391  * that must be done for every newly created context, then puts the task
2392  * on the runqueue and wakes it.
2393  */
2394 void wake_up_new_task(struct task_struct *p)
2395 {
2396 	struct rq_flags rf;
2397 	struct rq *rq;
2398 
2399 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2400 	p->state = TASK_RUNNING;
2401 #ifdef CONFIG_SMP
2402 	/*
2403 	 * Fork balancing, do it here and not earlier because:
2404 	 *  - cpus_allowed can change in the fork path
2405 	 *  - any previously selected CPU might disappear through hotplug
2406 	 *
2407 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2408 	 * as we're not fully set-up yet.
2409 	 */
2410 	p->recent_used_cpu = task_cpu(p);
2411 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2412 #endif
2413 	rq = __task_rq_lock(p, &rf);
2414 	update_rq_clock(rq);
2415 	post_init_entity_util_avg(&p->se);
2416 
2417 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2418 	p->on_rq = TASK_ON_RQ_QUEUED;
2419 	trace_sched_wakeup_new(p);
2420 	check_preempt_curr(rq, p, WF_FORK);
2421 #ifdef CONFIG_SMP
2422 	if (p->sched_class->task_woken) {
2423 		/*
2424 		 * Nothing relies on rq->lock after this, so its fine to
2425 		 * drop it.
2426 		 */
2427 		rq_unpin_lock(rq, &rf);
2428 		p->sched_class->task_woken(rq, p);
2429 		rq_repin_lock(rq, &rf);
2430 	}
2431 #endif
2432 	task_rq_unlock(rq, p, &rf);
2433 }
2434 
2435 #ifdef CONFIG_PREEMPT_NOTIFIERS
2436 
2437 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2438 
2439 void preempt_notifier_inc(void)
2440 {
2441 	static_branch_inc(&preempt_notifier_key);
2442 }
2443 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2444 
2445 void preempt_notifier_dec(void)
2446 {
2447 	static_branch_dec(&preempt_notifier_key);
2448 }
2449 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2450 
2451 /**
2452  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2453  * @notifier: notifier struct to register
2454  */
2455 void preempt_notifier_register(struct preempt_notifier *notifier)
2456 {
2457 	if (!static_branch_unlikely(&preempt_notifier_key))
2458 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2459 
2460 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2461 }
2462 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2463 
2464 /**
2465  * preempt_notifier_unregister - no longer interested in preemption notifications
2466  * @notifier: notifier struct to unregister
2467  *
2468  * This is *not* safe to call from within a preemption notifier.
2469  */
2470 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2471 {
2472 	hlist_del(&notifier->link);
2473 }
2474 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2475 
2476 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477 {
2478 	struct preempt_notifier *notifier;
2479 
2480 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2482 }
2483 
2484 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485 {
2486 	if (static_branch_unlikely(&preempt_notifier_key))
2487 		__fire_sched_in_preempt_notifiers(curr);
2488 }
2489 
2490 static void
2491 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2492 				   struct task_struct *next)
2493 {
2494 	struct preempt_notifier *notifier;
2495 
2496 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2497 		notifier->ops->sched_out(notifier, next);
2498 }
2499 
2500 static __always_inline void
2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 				 struct task_struct *next)
2503 {
2504 	if (static_branch_unlikely(&preempt_notifier_key))
2505 		__fire_sched_out_preempt_notifiers(curr, next);
2506 }
2507 
2508 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2509 
2510 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 {
2512 }
2513 
2514 static inline void
2515 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2516 				 struct task_struct *next)
2517 {
2518 }
2519 
2520 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2521 
2522 static inline void prepare_task(struct task_struct *next)
2523 {
2524 #ifdef CONFIG_SMP
2525 	/*
2526 	 * Claim the task as running, we do this before switching to it
2527 	 * such that any running task will have this set.
2528 	 */
2529 	next->on_cpu = 1;
2530 #endif
2531 }
2532 
2533 static inline void finish_task(struct task_struct *prev)
2534 {
2535 #ifdef CONFIG_SMP
2536 	/*
2537 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2538 	 * We must ensure this doesn't happen until the switch is completely
2539 	 * finished.
2540 	 *
2541 	 * In particular, the load of prev->state in finish_task_switch() must
2542 	 * happen before this.
2543 	 *
2544 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2545 	 */
2546 	smp_store_release(&prev->on_cpu, 0);
2547 #endif
2548 }
2549 
2550 static inline void
2551 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2552 {
2553 	/*
2554 	 * Since the runqueue lock will be released by the next
2555 	 * task (which is an invalid locking op but in the case
2556 	 * of the scheduler it's an obvious special-case), so we
2557 	 * do an early lockdep release here:
2558 	 */
2559 	rq_unpin_lock(rq, rf);
2560 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2561 #ifdef CONFIG_DEBUG_SPINLOCK
2562 	/* this is a valid case when another task releases the spinlock */
2563 	rq->lock.owner = next;
2564 #endif
2565 }
2566 
2567 static inline void finish_lock_switch(struct rq *rq)
2568 {
2569 	/*
2570 	 * If we are tracking spinlock dependencies then we have to
2571 	 * fix up the runqueue lock - which gets 'carried over' from
2572 	 * prev into current:
2573 	 */
2574 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2575 	raw_spin_unlock_irq(&rq->lock);
2576 }
2577 
2578 /*
2579  * NOP if the arch has not defined these:
2580  */
2581 
2582 #ifndef prepare_arch_switch
2583 # define prepare_arch_switch(next)	do { } while (0)
2584 #endif
2585 
2586 #ifndef finish_arch_post_lock_switch
2587 # define finish_arch_post_lock_switch()	do { } while (0)
2588 #endif
2589 
2590 /**
2591  * prepare_task_switch - prepare to switch tasks
2592  * @rq: the runqueue preparing to switch
2593  * @prev: the current task that is being switched out
2594  * @next: the task we are going to switch to.
2595  *
2596  * This is called with the rq lock held and interrupts off. It must
2597  * be paired with a subsequent finish_task_switch after the context
2598  * switch.
2599  *
2600  * prepare_task_switch sets up locking and calls architecture specific
2601  * hooks.
2602  */
2603 static inline void
2604 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2605 		    struct task_struct *next)
2606 {
2607 	kcov_prepare_switch(prev);
2608 	sched_info_switch(rq, prev, next);
2609 	perf_event_task_sched_out(prev, next);
2610 	rseq_preempt(prev);
2611 	fire_sched_out_preempt_notifiers(prev, next);
2612 	prepare_task(next);
2613 	prepare_arch_switch(next);
2614 }
2615 
2616 /**
2617  * finish_task_switch - clean up after a task-switch
2618  * @prev: the thread we just switched away from.
2619  *
2620  * finish_task_switch must be called after the context switch, paired
2621  * with a prepare_task_switch call before the context switch.
2622  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2623  * and do any other architecture-specific cleanup actions.
2624  *
2625  * Note that we may have delayed dropping an mm in context_switch(). If
2626  * so, we finish that here outside of the runqueue lock. (Doing it
2627  * with the lock held can cause deadlocks; see schedule() for
2628  * details.)
2629  *
2630  * The context switch have flipped the stack from under us and restored the
2631  * local variables which were saved when this task called schedule() in the
2632  * past. prev == current is still correct but we need to recalculate this_rq
2633  * because prev may have moved to another CPU.
2634  */
2635 static struct rq *finish_task_switch(struct task_struct *prev)
2636 	__releases(rq->lock)
2637 {
2638 	struct rq *rq = this_rq();
2639 	struct mm_struct *mm = rq->prev_mm;
2640 	long prev_state;
2641 
2642 	/*
2643 	 * The previous task will have left us with a preempt_count of 2
2644 	 * because it left us after:
2645 	 *
2646 	 *	schedule()
2647 	 *	  preempt_disable();			// 1
2648 	 *	  __schedule()
2649 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2650 	 *
2651 	 * Also, see FORK_PREEMPT_COUNT.
2652 	 */
2653 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2654 		      "corrupted preempt_count: %s/%d/0x%x\n",
2655 		      current->comm, current->pid, preempt_count()))
2656 		preempt_count_set(FORK_PREEMPT_COUNT);
2657 
2658 	rq->prev_mm = NULL;
2659 
2660 	/*
2661 	 * A task struct has one reference for the use as "current".
2662 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2663 	 * schedule one last time. The schedule call will never return, and
2664 	 * the scheduled task must drop that reference.
2665 	 *
2666 	 * We must observe prev->state before clearing prev->on_cpu (in
2667 	 * finish_task), otherwise a concurrent wakeup can get prev
2668 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2669 	 * transition, resulting in a double drop.
2670 	 */
2671 	prev_state = prev->state;
2672 	vtime_task_switch(prev);
2673 	perf_event_task_sched_in(prev, current);
2674 	finish_task(prev);
2675 	finish_lock_switch(rq);
2676 	finish_arch_post_lock_switch();
2677 	kcov_finish_switch(current);
2678 
2679 	fire_sched_in_preempt_notifiers(current);
2680 	/*
2681 	 * When switching through a kernel thread, the loop in
2682 	 * membarrier_{private,global}_expedited() may have observed that
2683 	 * kernel thread and not issued an IPI. It is therefore possible to
2684 	 * schedule between user->kernel->user threads without passing though
2685 	 * switch_mm(). Membarrier requires a barrier after storing to
2686 	 * rq->curr, before returning to userspace, so provide them here:
2687 	 *
2688 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2689 	 *   provided by mmdrop(),
2690 	 * - a sync_core for SYNC_CORE.
2691 	 */
2692 	if (mm) {
2693 		membarrier_mm_sync_core_before_usermode(mm);
2694 		mmdrop(mm);
2695 	}
2696 	if (unlikely(prev_state == TASK_DEAD)) {
2697 		if (prev->sched_class->task_dead)
2698 			prev->sched_class->task_dead(prev);
2699 
2700 		/*
2701 		 * Remove function-return probe instances associated with this
2702 		 * task and put them back on the free list.
2703 		 */
2704 		kprobe_flush_task(prev);
2705 
2706 		/* Task is done with its stack. */
2707 		put_task_stack(prev);
2708 
2709 		put_task_struct(prev);
2710 	}
2711 
2712 	tick_nohz_task_switch();
2713 	return rq;
2714 }
2715 
2716 #ifdef CONFIG_SMP
2717 
2718 /* rq->lock is NOT held, but preemption is disabled */
2719 static void __balance_callback(struct rq *rq)
2720 {
2721 	struct callback_head *head, *next;
2722 	void (*func)(struct rq *rq);
2723 	unsigned long flags;
2724 
2725 	raw_spin_lock_irqsave(&rq->lock, flags);
2726 	head = rq->balance_callback;
2727 	rq->balance_callback = NULL;
2728 	while (head) {
2729 		func = (void (*)(struct rq *))head->func;
2730 		next = head->next;
2731 		head->next = NULL;
2732 		head = next;
2733 
2734 		func(rq);
2735 	}
2736 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2737 }
2738 
2739 static inline void balance_callback(struct rq *rq)
2740 {
2741 	if (unlikely(rq->balance_callback))
2742 		__balance_callback(rq);
2743 }
2744 
2745 #else
2746 
2747 static inline void balance_callback(struct rq *rq)
2748 {
2749 }
2750 
2751 #endif
2752 
2753 /**
2754  * schedule_tail - first thing a freshly forked thread must call.
2755  * @prev: the thread we just switched away from.
2756  */
2757 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2758 	__releases(rq->lock)
2759 {
2760 	struct rq *rq;
2761 
2762 	/*
2763 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2764 	 * finish_task_switch() for details.
2765 	 *
2766 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2767 	 * and the preempt_enable() will end up enabling preemption (on
2768 	 * PREEMPT_COUNT kernels).
2769 	 */
2770 
2771 	rq = finish_task_switch(prev);
2772 	balance_callback(rq);
2773 	preempt_enable();
2774 
2775 	if (current->set_child_tid)
2776 		put_user(task_pid_vnr(current), current->set_child_tid);
2777 
2778 	calculate_sigpending();
2779 }
2780 
2781 /*
2782  * context_switch - switch to the new MM and the new thread's register state.
2783  */
2784 static __always_inline struct rq *
2785 context_switch(struct rq *rq, struct task_struct *prev,
2786 	       struct task_struct *next, struct rq_flags *rf)
2787 {
2788 	struct mm_struct *mm, *oldmm;
2789 
2790 	prepare_task_switch(rq, prev, next);
2791 
2792 	mm = next->mm;
2793 	oldmm = prev->active_mm;
2794 	/*
2795 	 * For paravirt, this is coupled with an exit in switch_to to
2796 	 * combine the page table reload and the switch backend into
2797 	 * one hypercall.
2798 	 */
2799 	arch_start_context_switch(prev);
2800 
2801 	/*
2802 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2803 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2804 	 * Both of these contain the full memory barrier required by
2805 	 * membarrier after storing to rq->curr, before returning to
2806 	 * user-space.
2807 	 */
2808 	if (!mm) {
2809 		next->active_mm = oldmm;
2810 		mmgrab(oldmm);
2811 		enter_lazy_tlb(oldmm, next);
2812 	} else
2813 		switch_mm_irqs_off(oldmm, mm, next);
2814 
2815 	if (!prev->mm) {
2816 		prev->active_mm = NULL;
2817 		rq->prev_mm = oldmm;
2818 	}
2819 
2820 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2821 
2822 	prepare_lock_switch(rq, next, rf);
2823 
2824 	/* Here we just switch the register state and the stack. */
2825 	switch_to(prev, next, prev);
2826 	barrier();
2827 
2828 	return finish_task_switch(prev);
2829 }
2830 
2831 /*
2832  * nr_running and nr_context_switches:
2833  *
2834  * externally visible scheduler statistics: current number of runnable
2835  * threads, total number of context switches performed since bootup.
2836  */
2837 unsigned long nr_running(void)
2838 {
2839 	unsigned long i, sum = 0;
2840 
2841 	for_each_online_cpu(i)
2842 		sum += cpu_rq(i)->nr_running;
2843 
2844 	return sum;
2845 }
2846 
2847 /*
2848  * Check if only the current task is running on the CPU.
2849  *
2850  * Caution: this function does not check that the caller has disabled
2851  * preemption, thus the result might have a time-of-check-to-time-of-use
2852  * race.  The caller is responsible to use it correctly, for example:
2853  *
2854  * - from a non-preemptable section (of course)
2855  *
2856  * - from a thread that is bound to a single CPU
2857  *
2858  * - in a loop with very short iterations (e.g. a polling loop)
2859  */
2860 bool single_task_running(void)
2861 {
2862 	return raw_rq()->nr_running == 1;
2863 }
2864 EXPORT_SYMBOL(single_task_running);
2865 
2866 unsigned long long nr_context_switches(void)
2867 {
2868 	int i;
2869 	unsigned long long sum = 0;
2870 
2871 	for_each_possible_cpu(i)
2872 		sum += cpu_rq(i)->nr_switches;
2873 
2874 	return sum;
2875 }
2876 
2877 /*
2878  * IO-wait accounting, and how its mostly bollocks (on SMP).
2879  *
2880  * The idea behind IO-wait account is to account the idle time that we could
2881  * have spend running if it were not for IO. That is, if we were to improve the
2882  * storage performance, we'd have a proportional reduction in IO-wait time.
2883  *
2884  * This all works nicely on UP, where, when a task blocks on IO, we account
2885  * idle time as IO-wait, because if the storage were faster, it could've been
2886  * running and we'd not be idle.
2887  *
2888  * This has been extended to SMP, by doing the same for each CPU. This however
2889  * is broken.
2890  *
2891  * Imagine for instance the case where two tasks block on one CPU, only the one
2892  * CPU will have IO-wait accounted, while the other has regular idle. Even
2893  * though, if the storage were faster, both could've ran at the same time,
2894  * utilising both CPUs.
2895  *
2896  * This means, that when looking globally, the current IO-wait accounting on
2897  * SMP is a lower bound, by reason of under accounting.
2898  *
2899  * Worse, since the numbers are provided per CPU, they are sometimes
2900  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2901  * associated with any one particular CPU, it can wake to another CPU than it
2902  * blocked on. This means the per CPU IO-wait number is meaningless.
2903  *
2904  * Task CPU affinities can make all that even more 'interesting'.
2905  */
2906 
2907 unsigned long nr_iowait(void)
2908 {
2909 	unsigned long i, sum = 0;
2910 
2911 	for_each_possible_cpu(i)
2912 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2913 
2914 	return sum;
2915 }
2916 
2917 /*
2918  * Consumers of these two interfaces, like for example the cpufreq menu
2919  * governor are using nonsensical data. Boosting frequency for a CPU that has
2920  * IO-wait which might not even end up running the task when it does become
2921  * runnable.
2922  */
2923 
2924 unsigned long nr_iowait_cpu(int cpu)
2925 {
2926 	struct rq *this = cpu_rq(cpu);
2927 	return atomic_read(&this->nr_iowait);
2928 }
2929 
2930 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2931 {
2932 	struct rq *rq = this_rq();
2933 	*nr_waiters = atomic_read(&rq->nr_iowait);
2934 	*load = rq->load.weight;
2935 }
2936 
2937 #ifdef CONFIG_SMP
2938 
2939 /*
2940  * sched_exec - execve() is a valuable balancing opportunity, because at
2941  * this point the task has the smallest effective memory and cache footprint.
2942  */
2943 void sched_exec(void)
2944 {
2945 	struct task_struct *p = current;
2946 	unsigned long flags;
2947 	int dest_cpu;
2948 
2949 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2950 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2951 	if (dest_cpu == smp_processor_id())
2952 		goto unlock;
2953 
2954 	if (likely(cpu_active(dest_cpu))) {
2955 		struct migration_arg arg = { p, dest_cpu };
2956 
2957 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2958 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2959 		return;
2960 	}
2961 unlock:
2962 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2963 }
2964 
2965 #endif
2966 
2967 DEFINE_PER_CPU(struct kernel_stat, kstat);
2968 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2969 
2970 EXPORT_PER_CPU_SYMBOL(kstat);
2971 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2972 
2973 /*
2974  * The function fair_sched_class.update_curr accesses the struct curr
2975  * and its field curr->exec_start; when called from task_sched_runtime(),
2976  * we observe a high rate of cache misses in practice.
2977  * Prefetching this data results in improved performance.
2978  */
2979 static inline void prefetch_curr_exec_start(struct task_struct *p)
2980 {
2981 #ifdef CONFIG_FAIR_GROUP_SCHED
2982 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2983 #else
2984 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2985 #endif
2986 	prefetch(curr);
2987 	prefetch(&curr->exec_start);
2988 }
2989 
2990 /*
2991  * Return accounted runtime for the task.
2992  * In case the task is currently running, return the runtime plus current's
2993  * pending runtime that have not been accounted yet.
2994  */
2995 unsigned long long task_sched_runtime(struct task_struct *p)
2996 {
2997 	struct rq_flags rf;
2998 	struct rq *rq;
2999 	u64 ns;
3000 
3001 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3002 	/*
3003 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3004 	 * So we have a optimization chance when the task's delta_exec is 0.
3005 	 * Reading ->on_cpu is racy, but this is ok.
3006 	 *
3007 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3008 	 * If we race with it entering CPU, unaccounted time is 0. This is
3009 	 * indistinguishable from the read occurring a few cycles earlier.
3010 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3011 	 * been accounted, so we're correct here as well.
3012 	 */
3013 	if (!p->on_cpu || !task_on_rq_queued(p))
3014 		return p->se.sum_exec_runtime;
3015 #endif
3016 
3017 	rq = task_rq_lock(p, &rf);
3018 	/*
3019 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3020 	 * project cycles that may never be accounted to this
3021 	 * thread, breaking clock_gettime().
3022 	 */
3023 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3024 		prefetch_curr_exec_start(p);
3025 		update_rq_clock(rq);
3026 		p->sched_class->update_curr(rq);
3027 	}
3028 	ns = p->se.sum_exec_runtime;
3029 	task_rq_unlock(rq, p, &rf);
3030 
3031 	return ns;
3032 }
3033 
3034 /*
3035  * This function gets called by the timer code, with HZ frequency.
3036  * We call it with interrupts disabled.
3037  */
3038 void scheduler_tick(void)
3039 {
3040 	int cpu = smp_processor_id();
3041 	struct rq *rq = cpu_rq(cpu);
3042 	struct task_struct *curr = rq->curr;
3043 	struct rq_flags rf;
3044 
3045 	sched_clock_tick();
3046 
3047 	rq_lock(rq, &rf);
3048 
3049 	update_rq_clock(rq);
3050 	curr->sched_class->task_tick(rq, curr, 0);
3051 	cpu_load_update_active(rq);
3052 	calc_global_load_tick(rq);
3053 
3054 	rq_unlock(rq, &rf);
3055 
3056 	perf_event_task_tick();
3057 
3058 #ifdef CONFIG_SMP
3059 	rq->idle_balance = idle_cpu(cpu);
3060 	trigger_load_balance(rq);
3061 #endif
3062 }
3063 
3064 #ifdef CONFIG_NO_HZ_FULL
3065 
3066 struct tick_work {
3067 	int			cpu;
3068 	struct delayed_work	work;
3069 };
3070 
3071 static struct tick_work __percpu *tick_work_cpu;
3072 
3073 static void sched_tick_remote(struct work_struct *work)
3074 {
3075 	struct delayed_work *dwork = to_delayed_work(work);
3076 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3077 	int cpu = twork->cpu;
3078 	struct rq *rq = cpu_rq(cpu);
3079 	struct task_struct *curr;
3080 	struct rq_flags rf;
3081 	u64 delta;
3082 
3083 	/*
3084 	 * Handle the tick only if it appears the remote CPU is running in full
3085 	 * dynticks mode. The check is racy by nature, but missing a tick or
3086 	 * having one too much is no big deal because the scheduler tick updates
3087 	 * statistics and checks timeslices in a time-independent way, regardless
3088 	 * of when exactly it is running.
3089 	 */
3090 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3091 		goto out_requeue;
3092 
3093 	rq_lock_irq(rq, &rf);
3094 	curr = rq->curr;
3095 	if (is_idle_task(curr))
3096 		goto out_unlock;
3097 
3098 	update_rq_clock(rq);
3099 	delta = rq_clock_task(rq) - curr->se.exec_start;
3100 
3101 	/*
3102 	 * Make sure the next tick runs within a reasonable
3103 	 * amount of time.
3104 	 */
3105 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3106 	curr->sched_class->task_tick(rq, curr, 0);
3107 
3108 out_unlock:
3109 	rq_unlock_irq(rq, &rf);
3110 
3111 out_requeue:
3112 	/*
3113 	 * Run the remote tick once per second (1Hz). This arbitrary
3114 	 * frequency is large enough to avoid overload but short enough
3115 	 * to keep scheduler internal stats reasonably up to date.
3116 	 */
3117 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3118 }
3119 
3120 static void sched_tick_start(int cpu)
3121 {
3122 	struct tick_work *twork;
3123 
3124 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3125 		return;
3126 
3127 	WARN_ON_ONCE(!tick_work_cpu);
3128 
3129 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3130 	twork->cpu = cpu;
3131 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3132 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3133 }
3134 
3135 #ifdef CONFIG_HOTPLUG_CPU
3136 static void sched_tick_stop(int cpu)
3137 {
3138 	struct tick_work *twork;
3139 
3140 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3141 		return;
3142 
3143 	WARN_ON_ONCE(!tick_work_cpu);
3144 
3145 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3146 	cancel_delayed_work_sync(&twork->work);
3147 }
3148 #endif /* CONFIG_HOTPLUG_CPU */
3149 
3150 int __init sched_tick_offload_init(void)
3151 {
3152 	tick_work_cpu = alloc_percpu(struct tick_work);
3153 	BUG_ON(!tick_work_cpu);
3154 
3155 	return 0;
3156 }
3157 
3158 #else /* !CONFIG_NO_HZ_FULL */
3159 static inline void sched_tick_start(int cpu) { }
3160 static inline void sched_tick_stop(int cpu) { }
3161 #endif
3162 
3163 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3164 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3165 /*
3166  * If the value passed in is equal to the current preempt count
3167  * then we just disabled preemption. Start timing the latency.
3168  */
3169 static inline void preempt_latency_start(int val)
3170 {
3171 	if (preempt_count() == val) {
3172 		unsigned long ip = get_lock_parent_ip();
3173 #ifdef CONFIG_DEBUG_PREEMPT
3174 		current->preempt_disable_ip = ip;
3175 #endif
3176 		trace_preempt_off(CALLER_ADDR0, ip);
3177 	}
3178 }
3179 
3180 void preempt_count_add(int val)
3181 {
3182 #ifdef CONFIG_DEBUG_PREEMPT
3183 	/*
3184 	 * Underflow?
3185 	 */
3186 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3187 		return;
3188 #endif
3189 	__preempt_count_add(val);
3190 #ifdef CONFIG_DEBUG_PREEMPT
3191 	/*
3192 	 * Spinlock count overflowing soon?
3193 	 */
3194 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3195 				PREEMPT_MASK - 10);
3196 #endif
3197 	preempt_latency_start(val);
3198 }
3199 EXPORT_SYMBOL(preempt_count_add);
3200 NOKPROBE_SYMBOL(preempt_count_add);
3201 
3202 /*
3203  * If the value passed in equals to the current preempt count
3204  * then we just enabled preemption. Stop timing the latency.
3205  */
3206 static inline void preempt_latency_stop(int val)
3207 {
3208 	if (preempt_count() == val)
3209 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3210 }
3211 
3212 void preempt_count_sub(int val)
3213 {
3214 #ifdef CONFIG_DEBUG_PREEMPT
3215 	/*
3216 	 * Underflow?
3217 	 */
3218 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3219 		return;
3220 	/*
3221 	 * Is the spinlock portion underflowing?
3222 	 */
3223 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3224 			!(preempt_count() & PREEMPT_MASK)))
3225 		return;
3226 #endif
3227 
3228 	preempt_latency_stop(val);
3229 	__preempt_count_sub(val);
3230 }
3231 EXPORT_SYMBOL(preempt_count_sub);
3232 NOKPROBE_SYMBOL(preempt_count_sub);
3233 
3234 #else
3235 static inline void preempt_latency_start(int val) { }
3236 static inline void preempt_latency_stop(int val) { }
3237 #endif
3238 
3239 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3240 {
3241 #ifdef CONFIG_DEBUG_PREEMPT
3242 	return p->preempt_disable_ip;
3243 #else
3244 	return 0;
3245 #endif
3246 }
3247 
3248 /*
3249  * Print scheduling while atomic bug:
3250  */
3251 static noinline void __schedule_bug(struct task_struct *prev)
3252 {
3253 	/* Save this before calling printk(), since that will clobber it */
3254 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3255 
3256 	if (oops_in_progress)
3257 		return;
3258 
3259 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3260 		prev->comm, prev->pid, preempt_count());
3261 
3262 	debug_show_held_locks(prev);
3263 	print_modules();
3264 	if (irqs_disabled())
3265 		print_irqtrace_events(prev);
3266 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3267 	    && in_atomic_preempt_off()) {
3268 		pr_err("Preemption disabled at:");
3269 		print_ip_sym(preempt_disable_ip);
3270 		pr_cont("\n");
3271 	}
3272 	if (panic_on_warn)
3273 		panic("scheduling while atomic\n");
3274 
3275 	dump_stack();
3276 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3277 }
3278 
3279 /*
3280  * Various schedule()-time debugging checks and statistics:
3281  */
3282 static inline void schedule_debug(struct task_struct *prev)
3283 {
3284 #ifdef CONFIG_SCHED_STACK_END_CHECK
3285 	if (task_stack_end_corrupted(prev))
3286 		panic("corrupted stack end detected inside scheduler\n");
3287 #endif
3288 
3289 	if (unlikely(in_atomic_preempt_off())) {
3290 		__schedule_bug(prev);
3291 		preempt_count_set(PREEMPT_DISABLED);
3292 	}
3293 	rcu_sleep_check();
3294 
3295 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3296 
3297 	schedstat_inc(this_rq()->sched_count);
3298 }
3299 
3300 /*
3301  * Pick up the highest-prio task:
3302  */
3303 static inline struct task_struct *
3304 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3305 {
3306 	const struct sched_class *class;
3307 	struct task_struct *p;
3308 
3309 	/*
3310 	 * Optimization: we know that if all tasks are in the fair class we can
3311 	 * call that function directly, but only if the @prev task wasn't of a
3312 	 * higher scheduling class, because otherwise those loose the
3313 	 * opportunity to pull in more work from other CPUs.
3314 	 */
3315 	if (likely((prev->sched_class == &idle_sched_class ||
3316 		    prev->sched_class == &fair_sched_class) &&
3317 		   rq->nr_running == rq->cfs.h_nr_running)) {
3318 
3319 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3320 		if (unlikely(p == RETRY_TASK))
3321 			goto again;
3322 
3323 		/* Assumes fair_sched_class->next == idle_sched_class */
3324 		if (unlikely(!p))
3325 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3326 
3327 		return p;
3328 	}
3329 
3330 again:
3331 	for_each_class(class) {
3332 		p = class->pick_next_task(rq, prev, rf);
3333 		if (p) {
3334 			if (unlikely(p == RETRY_TASK))
3335 				goto again;
3336 			return p;
3337 		}
3338 	}
3339 
3340 	/* The idle class should always have a runnable task: */
3341 	BUG();
3342 }
3343 
3344 /*
3345  * __schedule() is the main scheduler function.
3346  *
3347  * The main means of driving the scheduler and thus entering this function are:
3348  *
3349  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3350  *
3351  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3352  *      paths. For example, see arch/x86/entry_64.S.
3353  *
3354  *      To drive preemption between tasks, the scheduler sets the flag in timer
3355  *      interrupt handler scheduler_tick().
3356  *
3357  *   3. Wakeups don't really cause entry into schedule(). They add a
3358  *      task to the run-queue and that's it.
3359  *
3360  *      Now, if the new task added to the run-queue preempts the current
3361  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3362  *      called on the nearest possible occasion:
3363  *
3364  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3365  *
3366  *         - in syscall or exception context, at the next outmost
3367  *           preempt_enable(). (this might be as soon as the wake_up()'s
3368  *           spin_unlock()!)
3369  *
3370  *         - in IRQ context, return from interrupt-handler to
3371  *           preemptible context
3372  *
3373  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3374  *         then at the next:
3375  *
3376  *          - cond_resched() call
3377  *          - explicit schedule() call
3378  *          - return from syscall or exception to user-space
3379  *          - return from interrupt-handler to user-space
3380  *
3381  * WARNING: must be called with preemption disabled!
3382  */
3383 static void __sched notrace __schedule(bool preempt)
3384 {
3385 	struct task_struct *prev, *next;
3386 	unsigned long *switch_count;
3387 	struct rq_flags rf;
3388 	struct rq *rq;
3389 	int cpu;
3390 
3391 	cpu = smp_processor_id();
3392 	rq = cpu_rq(cpu);
3393 	prev = rq->curr;
3394 
3395 	schedule_debug(prev);
3396 
3397 	if (sched_feat(HRTICK))
3398 		hrtick_clear(rq);
3399 
3400 	local_irq_disable();
3401 	rcu_note_context_switch(preempt);
3402 
3403 	/*
3404 	 * Make sure that signal_pending_state()->signal_pending() below
3405 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3406 	 * done by the caller to avoid the race with signal_wake_up().
3407 	 *
3408 	 * The membarrier system call requires a full memory barrier
3409 	 * after coming from user-space, before storing to rq->curr.
3410 	 */
3411 	rq_lock(rq, &rf);
3412 	smp_mb__after_spinlock();
3413 
3414 	/* Promote REQ to ACT */
3415 	rq->clock_update_flags <<= 1;
3416 	update_rq_clock(rq);
3417 
3418 	switch_count = &prev->nivcsw;
3419 	if (!preempt && prev->state) {
3420 		if (unlikely(signal_pending_state(prev->state, prev))) {
3421 			prev->state = TASK_RUNNING;
3422 		} else {
3423 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3424 			prev->on_rq = 0;
3425 
3426 			if (prev->in_iowait) {
3427 				atomic_inc(&rq->nr_iowait);
3428 				delayacct_blkio_start();
3429 			}
3430 
3431 			/*
3432 			 * If a worker went to sleep, notify and ask workqueue
3433 			 * whether it wants to wake up a task to maintain
3434 			 * concurrency.
3435 			 */
3436 			if (prev->flags & PF_WQ_WORKER) {
3437 				struct task_struct *to_wakeup;
3438 
3439 				to_wakeup = wq_worker_sleeping(prev);
3440 				if (to_wakeup)
3441 					try_to_wake_up_local(to_wakeup, &rf);
3442 			}
3443 		}
3444 		switch_count = &prev->nvcsw;
3445 	}
3446 
3447 	next = pick_next_task(rq, prev, &rf);
3448 	clear_tsk_need_resched(prev);
3449 	clear_preempt_need_resched();
3450 
3451 	if (likely(prev != next)) {
3452 		rq->nr_switches++;
3453 		rq->curr = next;
3454 		/*
3455 		 * The membarrier system call requires each architecture
3456 		 * to have a full memory barrier after updating
3457 		 * rq->curr, before returning to user-space.
3458 		 *
3459 		 * Here are the schemes providing that barrier on the
3460 		 * various architectures:
3461 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3462 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3463 		 * - finish_lock_switch() for weakly-ordered
3464 		 *   architectures where spin_unlock is a full barrier,
3465 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3466 		 *   is a RELEASE barrier),
3467 		 */
3468 		++*switch_count;
3469 
3470 		trace_sched_switch(preempt, prev, next);
3471 
3472 		/* Also unlocks the rq: */
3473 		rq = context_switch(rq, prev, next, &rf);
3474 	} else {
3475 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3476 		rq_unlock_irq(rq, &rf);
3477 	}
3478 
3479 	balance_callback(rq);
3480 }
3481 
3482 void __noreturn do_task_dead(void)
3483 {
3484 	/* Causes final put_task_struct in finish_task_switch(): */
3485 	set_special_state(TASK_DEAD);
3486 
3487 	/* Tell freezer to ignore us: */
3488 	current->flags |= PF_NOFREEZE;
3489 
3490 	__schedule(false);
3491 	BUG();
3492 
3493 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3494 	for (;;)
3495 		cpu_relax();
3496 }
3497 
3498 static inline void sched_submit_work(struct task_struct *tsk)
3499 {
3500 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3501 		return;
3502 	/*
3503 	 * If we are going to sleep and we have plugged IO queued,
3504 	 * make sure to submit it to avoid deadlocks.
3505 	 */
3506 	if (blk_needs_flush_plug(tsk))
3507 		blk_schedule_flush_plug(tsk);
3508 }
3509 
3510 asmlinkage __visible void __sched schedule(void)
3511 {
3512 	struct task_struct *tsk = current;
3513 
3514 	sched_submit_work(tsk);
3515 	do {
3516 		preempt_disable();
3517 		__schedule(false);
3518 		sched_preempt_enable_no_resched();
3519 	} while (need_resched());
3520 }
3521 EXPORT_SYMBOL(schedule);
3522 
3523 /*
3524  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3525  * state (have scheduled out non-voluntarily) by making sure that all
3526  * tasks have either left the run queue or have gone into user space.
3527  * As idle tasks do not do either, they must not ever be preempted
3528  * (schedule out non-voluntarily).
3529  *
3530  * schedule_idle() is similar to schedule_preempt_disable() except that it
3531  * never enables preemption because it does not call sched_submit_work().
3532  */
3533 void __sched schedule_idle(void)
3534 {
3535 	/*
3536 	 * As this skips calling sched_submit_work(), which the idle task does
3537 	 * regardless because that function is a nop when the task is in a
3538 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3539 	 * current task can be in any other state. Note, idle is always in the
3540 	 * TASK_RUNNING state.
3541 	 */
3542 	WARN_ON_ONCE(current->state);
3543 	do {
3544 		__schedule(false);
3545 	} while (need_resched());
3546 }
3547 
3548 #ifdef CONFIG_CONTEXT_TRACKING
3549 asmlinkage __visible void __sched schedule_user(void)
3550 {
3551 	/*
3552 	 * If we come here after a random call to set_need_resched(),
3553 	 * or we have been woken up remotely but the IPI has not yet arrived,
3554 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3555 	 * we find a better solution.
3556 	 *
3557 	 * NB: There are buggy callers of this function.  Ideally we
3558 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3559 	 * too frequently to make sense yet.
3560 	 */
3561 	enum ctx_state prev_state = exception_enter();
3562 	schedule();
3563 	exception_exit(prev_state);
3564 }
3565 #endif
3566 
3567 /**
3568  * schedule_preempt_disabled - called with preemption disabled
3569  *
3570  * Returns with preemption disabled. Note: preempt_count must be 1
3571  */
3572 void __sched schedule_preempt_disabled(void)
3573 {
3574 	sched_preempt_enable_no_resched();
3575 	schedule();
3576 	preempt_disable();
3577 }
3578 
3579 static void __sched notrace preempt_schedule_common(void)
3580 {
3581 	do {
3582 		/*
3583 		 * Because the function tracer can trace preempt_count_sub()
3584 		 * and it also uses preempt_enable/disable_notrace(), if
3585 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3586 		 * by the function tracer will call this function again and
3587 		 * cause infinite recursion.
3588 		 *
3589 		 * Preemption must be disabled here before the function
3590 		 * tracer can trace. Break up preempt_disable() into two
3591 		 * calls. One to disable preemption without fear of being
3592 		 * traced. The other to still record the preemption latency,
3593 		 * which can also be traced by the function tracer.
3594 		 */
3595 		preempt_disable_notrace();
3596 		preempt_latency_start(1);
3597 		__schedule(true);
3598 		preempt_latency_stop(1);
3599 		preempt_enable_no_resched_notrace();
3600 
3601 		/*
3602 		 * Check again in case we missed a preemption opportunity
3603 		 * between schedule and now.
3604 		 */
3605 	} while (need_resched());
3606 }
3607 
3608 #ifdef CONFIG_PREEMPT
3609 /*
3610  * this is the entry point to schedule() from in-kernel preemption
3611  * off of preempt_enable. Kernel preemptions off return from interrupt
3612  * occur there and call schedule directly.
3613  */
3614 asmlinkage __visible void __sched notrace preempt_schedule(void)
3615 {
3616 	/*
3617 	 * If there is a non-zero preempt_count or interrupts are disabled,
3618 	 * we do not want to preempt the current task. Just return..
3619 	 */
3620 	if (likely(!preemptible()))
3621 		return;
3622 
3623 	preempt_schedule_common();
3624 }
3625 NOKPROBE_SYMBOL(preempt_schedule);
3626 EXPORT_SYMBOL(preempt_schedule);
3627 
3628 /**
3629  * preempt_schedule_notrace - preempt_schedule called by tracing
3630  *
3631  * The tracing infrastructure uses preempt_enable_notrace to prevent
3632  * recursion and tracing preempt enabling caused by the tracing
3633  * infrastructure itself. But as tracing can happen in areas coming
3634  * from userspace or just about to enter userspace, a preempt enable
3635  * can occur before user_exit() is called. This will cause the scheduler
3636  * to be called when the system is still in usermode.
3637  *
3638  * To prevent this, the preempt_enable_notrace will use this function
3639  * instead of preempt_schedule() to exit user context if needed before
3640  * calling the scheduler.
3641  */
3642 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3643 {
3644 	enum ctx_state prev_ctx;
3645 
3646 	if (likely(!preemptible()))
3647 		return;
3648 
3649 	do {
3650 		/*
3651 		 * Because the function tracer can trace preempt_count_sub()
3652 		 * and it also uses preempt_enable/disable_notrace(), if
3653 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3654 		 * by the function tracer will call this function again and
3655 		 * cause infinite recursion.
3656 		 *
3657 		 * Preemption must be disabled here before the function
3658 		 * tracer can trace. Break up preempt_disable() into two
3659 		 * calls. One to disable preemption without fear of being
3660 		 * traced. The other to still record the preemption latency,
3661 		 * which can also be traced by the function tracer.
3662 		 */
3663 		preempt_disable_notrace();
3664 		preempt_latency_start(1);
3665 		/*
3666 		 * Needs preempt disabled in case user_exit() is traced
3667 		 * and the tracer calls preempt_enable_notrace() causing
3668 		 * an infinite recursion.
3669 		 */
3670 		prev_ctx = exception_enter();
3671 		__schedule(true);
3672 		exception_exit(prev_ctx);
3673 
3674 		preempt_latency_stop(1);
3675 		preempt_enable_no_resched_notrace();
3676 	} while (need_resched());
3677 }
3678 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3679 
3680 #endif /* CONFIG_PREEMPT */
3681 
3682 /*
3683  * this is the entry point to schedule() from kernel preemption
3684  * off of irq context.
3685  * Note, that this is called and return with irqs disabled. This will
3686  * protect us against recursive calling from irq.
3687  */
3688 asmlinkage __visible void __sched preempt_schedule_irq(void)
3689 {
3690 	enum ctx_state prev_state;
3691 
3692 	/* Catch callers which need to be fixed */
3693 	BUG_ON(preempt_count() || !irqs_disabled());
3694 
3695 	prev_state = exception_enter();
3696 
3697 	do {
3698 		preempt_disable();
3699 		local_irq_enable();
3700 		__schedule(true);
3701 		local_irq_disable();
3702 		sched_preempt_enable_no_resched();
3703 	} while (need_resched());
3704 
3705 	exception_exit(prev_state);
3706 }
3707 
3708 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3709 			  void *key)
3710 {
3711 	return try_to_wake_up(curr->private, mode, wake_flags);
3712 }
3713 EXPORT_SYMBOL(default_wake_function);
3714 
3715 #ifdef CONFIG_RT_MUTEXES
3716 
3717 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3718 {
3719 	if (pi_task)
3720 		prio = min(prio, pi_task->prio);
3721 
3722 	return prio;
3723 }
3724 
3725 static inline int rt_effective_prio(struct task_struct *p, int prio)
3726 {
3727 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3728 
3729 	return __rt_effective_prio(pi_task, prio);
3730 }
3731 
3732 /*
3733  * rt_mutex_setprio - set the current priority of a task
3734  * @p: task to boost
3735  * @pi_task: donor task
3736  *
3737  * This function changes the 'effective' priority of a task. It does
3738  * not touch ->normal_prio like __setscheduler().
3739  *
3740  * Used by the rt_mutex code to implement priority inheritance
3741  * logic. Call site only calls if the priority of the task changed.
3742  */
3743 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3744 {
3745 	int prio, oldprio, queued, running, queue_flag =
3746 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3747 	const struct sched_class *prev_class;
3748 	struct rq_flags rf;
3749 	struct rq *rq;
3750 
3751 	/* XXX used to be waiter->prio, not waiter->task->prio */
3752 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3753 
3754 	/*
3755 	 * If nothing changed; bail early.
3756 	 */
3757 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3758 		return;
3759 
3760 	rq = __task_rq_lock(p, &rf);
3761 	update_rq_clock(rq);
3762 	/*
3763 	 * Set under pi_lock && rq->lock, such that the value can be used under
3764 	 * either lock.
3765 	 *
3766 	 * Note that there is loads of tricky to make this pointer cache work
3767 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3768 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3769 	 * task is allowed to run again (and can exit). This ensures the pointer
3770 	 * points to a blocked task -- which guaratees the task is present.
3771 	 */
3772 	p->pi_top_task = pi_task;
3773 
3774 	/*
3775 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3776 	 */
3777 	if (prio == p->prio && !dl_prio(prio))
3778 		goto out_unlock;
3779 
3780 	/*
3781 	 * Idle task boosting is a nono in general. There is one
3782 	 * exception, when PREEMPT_RT and NOHZ is active:
3783 	 *
3784 	 * The idle task calls get_next_timer_interrupt() and holds
3785 	 * the timer wheel base->lock on the CPU and another CPU wants
3786 	 * to access the timer (probably to cancel it). We can safely
3787 	 * ignore the boosting request, as the idle CPU runs this code
3788 	 * with interrupts disabled and will complete the lock
3789 	 * protected section without being interrupted. So there is no
3790 	 * real need to boost.
3791 	 */
3792 	if (unlikely(p == rq->idle)) {
3793 		WARN_ON(p != rq->curr);
3794 		WARN_ON(p->pi_blocked_on);
3795 		goto out_unlock;
3796 	}
3797 
3798 	trace_sched_pi_setprio(p, pi_task);
3799 	oldprio = p->prio;
3800 
3801 	if (oldprio == prio)
3802 		queue_flag &= ~DEQUEUE_MOVE;
3803 
3804 	prev_class = p->sched_class;
3805 	queued = task_on_rq_queued(p);
3806 	running = task_current(rq, p);
3807 	if (queued)
3808 		dequeue_task(rq, p, queue_flag);
3809 	if (running)
3810 		put_prev_task(rq, p);
3811 
3812 	/*
3813 	 * Boosting condition are:
3814 	 * 1. -rt task is running and holds mutex A
3815 	 *      --> -dl task blocks on mutex A
3816 	 *
3817 	 * 2. -dl task is running and holds mutex A
3818 	 *      --> -dl task blocks on mutex A and could preempt the
3819 	 *          running task
3820 	 */
3821 	if (dl_prio(prio)) {
3822 		if (!dl_prio(p->normal_prio) ||
3823 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3824 			p->dl.dl_boosted = 1;
3825 			queue_flag |= ENQUEUE_REPLENISH;
3826 		} else
3827 			p->dl.dl_boosted = 0;
3828 		p->sched_class = &dl_sched_class;
3829 	} else if (rt_prio(prio)) {
3830 		if (dl_prio(oldprio))
3831 			p->dl.dl_boosted = 0;
3832 		if (oldprio < prio)
3833 			queue_flag |= ENQUEUE_HEAD;
3834 		p->sched_class = &rt_sched_class;
3835 	} else {
3836 		if (dl_prio(oldprio))
3837 			p->dl.dl_boosted = 0;
3838 		if (rt_prio(oldprio))
3839 			p->rt.timeout = 0;
3840 		p->sched_class = &fair_sched_class;
3841 	}
3842 
3843 	p->prio = prio;
3844 
3845 	if (queued)
3846 		enqueue_task(rq, p, queue_flag);
3847 	if (running)
3848 		set_curr_task(rq, p);
3849 
3850 	check_class_changed(rq, p, prev_class, oldprio);
3851 out_unlock:
3852 	/* Avoid rq from going away on us: */
3853 	preempt_disable();
3854 	__task_rq_unlock(rq, &rf);
3855 
3856 	balance_callback(rq);
3857 	preempt_enable();
3858 }
3859 #else
3860 static inline int rt_effective_prio(struct task_struct *p, int prio)
3861 {
3862 	return prio;
3863 }
3864 #endif
3865 
3866 void set_user_nice(struct task_struct *p, long nice)
3867 {
3868 	bool queued, running;
3869 	int old_prio, delta;
3870 	struct rq_flags rf;
3871 	struct rq *rq;
3872 
3873 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3874 		return;
3875 	/*
3876 	 * We have to be careful, if called from sys_setpriority(),
3877 	 * the task might be in the middle of scheduling on another CPU.
3878 	 */
3879 	rq = task_rq_lock(p, &rf);
3880 	update_rq_clock(rq);
3881 
3882 	/*
3883 	 * The RT priorities are set via sched_setscheduler(), but we still
3884 	 * allow the 'normal' nice value to be set - but as expected
3885 	 * it wont have any effect on scheduling until the task is
3886 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3887 	 */
3888 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3889 		p->static_prio = NICE_TO_PRIO(nice);
3890 		goto out_unlock;
3891 	}
3892 	queued = task_on_rq_queued(p);
3893 	running = task_current(rq, p);
3894 	if (queued)
3895 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3896 	if (running)
3897 		put_prev_task(rq, p);
3898 
3899 	p->static_prio = NICE_TO_PRIO(nice);
3900 	set_load_weight(p, true);
3901 	old_prio = p->prio;
3902 	p->prio = effective_prio(p);
3903 	delta = p->prio - old_prio;
3904 
3905 	if (queued) {
3906 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3907 		/*
3908 		 * If the task increased its priority or is running and
3909 		 * lowered its priority, then reschedule its CPU:
3910 		 */
3911 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3912 			resched_curr(rq);
3913 	}
3914 	if (running)
3915 		set_curr_task(rq, p);
3916 out_unlock:
3917 	task_rq_unlock(rq, p, &rf);
3918 }
3919 EXPORT_SYMBOL(set_user_nice);
3920 
3921 /*
3922  * can_nice - check if a task can reduce its nice value
3923  * @p: task
3924  * @nice: nice value
3925  */
3926 int can_nice(const struct task_struct *p, const int nice)
3927 {
3928 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3929 	int nice_rlim = nice_to_rlimit(nice);
3930 
3931 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3932 		capable(CAP_SYS_NICE));
3933 }
3934 
3935 #ifdef __ARCH_WANT_SYS_NICE
3936 
3937 /*
3938  * sys_nice - change the priority of the current process.
3939  * @increment: priority increment
3940  *
3941  * sys_setpriority is a more generic, but much slower function that
3942  * does similar things.
3943  */
3944 SYSCALL_DEFINE1(nice, int, increment)
3945 {
3946 	long nice, retval;
3947 
3948 	/*
3949 	 * Setpriority might change our priority at the same moment.
3950 	 * We don't have to worry. Conceptually one call occurs first
3951 	 * and we have a single winner.
3952 	 */
3953 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3954 	nice = task_nice(current) + increment;
3955 
3956 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3957 	if (increment < 0 && !can_nice(current, nice))
3958 		return -EPERM;
3959 
3960 	retval = security_task_setnice(current, nice);
3961 	if (retval)
3962 		return retval;
3963 
3964 	set_user_nice(current, nice);
3965 	return 0;
3966 }
3967 
3968 #endif
3969 
3970 /**
3971  * task_prio - return the priority value of a given task.
3972  * @p: the task in question.
3973  *
3974  * Return: The priority value as seen by users in /proc.
3975  * RT tasks are offset by -200. Normal tasks are centered
3976  * around 0, value goes from -16 to +15.
3977  */
3978 int task_prio(const struct task_struct *p)
3979 {
3980 	return p->prio - MAX_RT_PRIO;
3981 }
3982 
3983 /**
3984  * idle_cpu - is a given CPU idle currently?
3985  * @cpu: the processor in question.
3986  *
3987  * Return: 1 if the CPU is currently idle. 0 otherwise.
3988  */
3989 int idle_cpu(int cpu)
3990 {
3991 	struct rq *rq = cpu_rq(cpu);
3992 
3993 	if (rq->curr != rq->idle)
3994 		return 0;
3995 
3996 	if (rq->nr_running)
3997 		return 0;
3998 
3999 #ifdef CONFIG_SMP
4000 	if (!llist_empty(&rq->wake_list))
4001 		return 0;
4002 #endif
4003 
4004 	return 1;
4005 }
4006 
4007 /**
4008  * available_idle_cpu - is a given CPU idle for enqueuing work.
4009  * @cpu: the CPU in question.
4010  *
4011  * Return: 1 if the CPU is currently idle. 0 otherwise.
4012  */
4013 int available_idle_cpu(int cpu)
4014 {
4015 	if (!idle_cpu(cpu))
4016 		return 0;
4017 
4018 	if (vcpu_is_preempted(cpu))
4019 		return 0;
4020 
4021 	return 1;
4022 }
4023 
4024 /**
4025  * idle_task - return the idle task for a given CPU.
4026  * @cpu: the processor in question.
4027  *
4028  * Return: The idle task for the CPU @cpu.
4029  */
4030 struct task_struct *idle_task(int cpu)
4031 {
4032 	return cpu_rq(cpu)->idle;
4033 }
4034 
4035 /**
4036  * find_process_by_pid - find a process with a matching PID value.
4037  * @pid: the pid in question.
4038  *
4039  * The task of @pid, if found. %NULL otherwise.
4040  */
4041 static struct task_struct *find_process_by_pid(pid_t pid)
4042 {
4043 	return pid ? find_task_by_vpid(pid) : current;
4044 }
4045 
4046 /*
4047  * sched_setparam() passes in -1 for its policy, to let the functions
4048  * it calls know not to change it.
4049  */
4050 #define SETPARAM_POLICY	-1
4051 
4052 static void __setscheduler_params(struct task_struct *p,
4053 		const struct sched_attr *attr)
4054 {
4055 	int policy = attr->sched_policy;
4056 
4057 	if (policy == SETPARAM_POLICY)
4058 		policy = p->policy;
4059 
4060 	p->policy = policy;
4061 
4062 	if (dl_policy(policy))
4063 		__setparam_dl(p, attr);
4064 	else if (fair_policy(policy))
4065 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4066 
4067 	/*
4068 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4069 	 * !rt_policy. Always setting this ensures that things like
4070 	 * getparam()/getattr() don't report silly values for !rt tasks.
4071 	 */
4072 	p->rt_priority = attr->sched_priority;
4073 	p->normal_prio = normal_prio(p);
4074 	set_load_weight(p, true);
4075 }
4076 
4077 /* Actually do priority change: must hold pi & rq lock. */
4078 static void __setscheduler(struct rq *rq, struct task_struct *p,
4079 			   const struct sched_attr *attr, bool keep_boost)
4080 {
4081 	__setscheduler_params(p, attr);
4082 
4083 	/*
4084 	 * Keep a potential priority boosting if called from
4085 	 * sched_setscheduler().
4086 	 */
4087 	p->prio = normal_prio(p);
4088 	if (keep_boost)
4089 		p->prio = rt_effective_prio(p, p->prio);
4090 
4091 	if (dl_prio(p->prio))
4092 		p->sched_class = &dl_sched_class;
4093 	else if (rt_prio(p->prio))
4094 		p->sched_class = &rt_sched_class;
4095 	else
4096 		p->sched_class = &fair_sched_class;
4097 }
4098 
4099 /*
4100  * Check the target process has a UID that matches the current process's:
4101  */
4102 static bool check_same_owner(struct task_struct *p)
4103 {
4104 	const struct cred *cred = current_cred(), *pcred;
4105 	bool match;
4106 
4107 	rcu_read_lock();
4108 	pcred = __task_cred(p);
4109 	match = (uid_eq(cred->euid, pcred->euid) ||
4110 		 uid_eq(cred->euid, pcred->uid));
4111 	rcu_read_unlock();
4112 	return match;
4113 }
4114 
4115 static int __sched_setscheduler(struct task_struct *p,
4116 				const struct sched_attr *attr,
4117 				bool user, bool pi)
4118 {
4119 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4120 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4121 	int retval, oldprio, oldpolicy = -1, queued, running;
4122 	int new_effective_prio, policy = attr->sched_policy;
4123 	const struct sched_class *prev_class;
4124 	struct rq_flags rf;
4125 	int reset_on_fork;
4126 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4127 	struct rq *rq;
4128 
4129 	/* The pi code expects interrupts enabled */
4130 	BUG_ON(pi && in_interrupt());
4131 recheck:
4132 	/* Double check policy once rq lock held: */
4133 	if (policy < 0) {
4134 		reset_on_fork = p->sched_reset_on_fork;
4135 		policy = oldpolicy = p->policy;
4136 	} else {
4137 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4138 
4139 		if (!valid_policy(policy))
4140 			return -EINVAL;
4141 	}
4142 
4143 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4144 		return -EINVAL;
4145 
4146 	/*
4147 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4148 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4149 	 * SCHED_BATCH and SCHED_IDLE is 0.
4150 	 */
4151 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4152 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4153 		return -EINVAL;
4154 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4155 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4156 		return -EINVAL;
4157 
4158 	/*
4159 	 * Allow unprivileged RT tasks to decrease priority:
4160 	 */
4161 	if (user && !capable(CAP_SYS_NICE)) {
4162 		if (fair_policy(policy)) {
4163 			if (attr->sched_nice < task_nice(p) &&
4164 			    !can_nice(p, attr->sched_nice))
4165 				return -EPERM;
4166 		}
4167 
4168 		if (rt_policy(policy)) {
4169 			unsigned long rlim_rtprio =
4170 					task_rlimit(p, RLIMIT_RTPRIO);
4171 
4172 			/* Can't set/change the rt policy: */
4173 			if (policy != p->policy && !rlim_rtprio)
4174 				return -EPERM;
4175 
4176 			/* Can't increase priority: */
4177 			if (attr->sched_priority > p->rt_priority &&
4178 			    attr->sched_priority > rlim_rtprio)
4179 				return -EPERM;
4180 		}
4181 
4182 		 /*
4183 		  * Can't set/change SCHED_DEADLINE policy at all for now
4184 		  * (safest behavior); in the future we would like to allow
4185 		  * unprivileged DL tasks to increase their relative deadline
4186 		  * or reduce their runtime (both ways reducing utilization)
4187 		  */
4188 		if (dl_policy(policy))
4189 			return -EPERM;
4190 
4191 		/*
4192 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4193 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4194 		 */
4195 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4196 			if (!can_nice(p, task_nice(p)))
4197 				return -EPERM;
4198 		}
4199 
4200 		/* Can't change other user's priorities: */
4201 		if (!check_same_owner(p))
4202 			return -EPERM;
4203 
4204 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4205 		if (p->sched_reset_on_fork && !reset_on_fork)
4206 			return -EPERM;
4207 	}
4208 
4209 	if (user) {
4210 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4211 			return -EINVAL;
4212 
4213 		retval = security_task_setscheduler(p);
4214 		if (retval)
4215 			return retval;
4216 	}
4217 
4218 	/*
4219 	 * Make sure no PI-waiters arrive (or leave) while we are
4220 	 * changing the priority of the task:
4221 	 *
4222 	 * To be able to change p->policy safely, the appropriate
4223 	 * runqueue lock must be held.
4224 	 */
4225 	rq = task_rq_lock(p, &rf);
4226 	update_rq_clock(rq);
4227 
4228 	/*
4229 	 * Changing the policy of the stop threads its a very bad idea:
4230 	 */
4231 	if (p == rq->stop) {
4232 		task_rq_unlock(rq, p, &rf);
4233 		return -EINVAL;
4234 	}
4235 
4236 	/*
4237 	 * If not changing anything there's no need to proceed further,
4238 	 * but store a possible modification of reset_on_fork.
4239 	 */
4240 	if (unlikely(policy == p->policy)) {
4241 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4242 			goto change;
4243 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4244 			goto change;
4245 		if (dl_policy(policy) && dl_param_changed(p, attr))
4246 			goto change;
4247 
4248 		p->sched_reset_on_fork = reset_on_fork;
4249 		task_rq_unlock(rq, p, &rf);
4250 		return 0;
4251 	}
4252 change:
4253 
4254 	if (user) {
4255 #ifdef CONFIG_RT_GROUP_SCHED
4256 		/*
4257 		 * Do not allow realtime tasks into groups that have no runtime
4258 		 * assigned.
4259 		 */
4260 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4261 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4262 				!task_group_is_autogroup(task_group(p))) {
4263 			task_rq_unlock(rq, p, &rf);
4264 			return -EPERM;
4265 		}
4266 #endif
4267 #ifdef CONFIG_SMP
4268 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4269 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4270 			cpumask_t *span = rq->rd->span;
4271 
4272 			/*
4273 			 * Don't allow tasks with an affinity mask smaller than
4274 			 * the entire root_domain to become SCHED_DEADLINE. We
4275 			 * will also fail if there's no bandwidth available.
4276 			 */
4277 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4278 			    rq->rd->dl_bw.bw == 0) {
4279 				task_rq_unlock(rq, p, &rf);
4280 				return -EPERM;
4281 			}
4282 		}
4283 #endif
4284 	}
4285 
4286 	/* Re-check policy now with rq lock held: */
4287 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4288 		policy = oldpolicy = -1;
4289 		task_rq_unlock(rq, p, &rf);
4290 		goto recheck;
4291 	}
4292 
4293 	/*
4294 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4295 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4296 	 * is available.
4297 	 */
4298 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4299 		task_rq_unlock(rq, p, &rf);
4300 		return -EBUSY;
4301 	}
4302 
4303 	p->sched_reset_on_fork = reset_on_fork;
4304 	oldprio = p->prio;
4305 
4306 	if (pi) {
4307 		/*
4308 		 * Take priority boosted tasks into account. If the new
4309 		 * effective priority is unchanged, we just store the new
4310 		 * normal parameters and do not touch the scheduler class and
4311 		 * the runqueue. This will be done when the task deboost
4312 		 * itself.
4313 		 */
4314 		new_effective_prio = rt_effective_prio(p, newprio);
4315 		if (new_effective_prio == oldprio)
4316 			queue_flags &= ~DEQUEUE_MOVE;
4317 	}
4318 
4319 	queued = task_on_rq_queued(p);
4320 	running = task_current(rq, p);
4321 	if (queued)
4322 		dequeue_task(rq, p, queue_flags);
4323 	if (running)
4324 		put_prev_task(rq, p);
4325 
4326 	prev_class = p->sched_class;
4327 	__setscheduler(rq, p, attr, pi);
4328 
4329 	if (queued) {
4330 		/*
4331 		 * We enqueue to tail when the priority of a task is
4332 		 * increased (user space view).
4333 		 */
4334 		if (oldprio < p->prio)
4335 			queue_flags |= ENQUEUE_HEAD;
4336 
4337 		enqueue_task(rq, p, queue_flags);
4338 	}
4339 	if (running)
4340 		set_curr_task(rq, p);
4341 
4342 	check_class_changed(rq, p, prev_class, oldprio);
4343 
4344 	/* Avoid rq from going away on us: */
4345 	preempt_disable();
4346 	task_rq_unlock(rq, p, &rf);
4347 
4348 	if (pi)
4349 		rt_mutex_adjust_pi(p);
4350 
4351 	/* Run balance callbacks after we've adjusted the PI chain: */
4352 	balance_callback(rq);
4353 	preempt_enable();
4354 
4355 	return 0;
4356 }
4357 
4358 static int _sched_setscheduler(struct task_struct *p, int policy,
4359 			       const struct sched_param *param, bool check)
4360 {
4361 	struct sched_attr attr = {
4362 		.sched_policy   = policy,
4363 		.sched_priority = param->sched_priority,
4364 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4365 	};
4366 
4367 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4368 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4369 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4370 		policy &= ~SCHED_RESET_ON_FORK;
4371 		attr.sched_policy = policy;
4372 	}
4373 
4374 	return __sched_setscheduler(p, &attr, check, true);
4375 }
4376 /**
4377  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4378  * @p: the task in question.
4379  * @policy: new policy.
4380  * @param: structure containing the new RT priority.
4381  *
4382  * Return: 0 on success. An error code otherwise.
4383  *
4384  * NOTE that the task may be already dead.
4385  */
4386 int sched_setscheduler(struct task_struct *p, int policy,
4387 		       const struct sched_param *param)
4388 {
4389 	return _sched_setscheduler(p, policy, param, true);
4390 }
4391 EXPORT_SYMBOL_GPL(sched_setscheduler);
4392 
4393 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4394 {
4395 	return __sched_setscheduler(p, attr, true, true);
4396 }
4397 EXPORT_SYMBOL_GPL(sched_setattr);
4398 
4399 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4400 {
4401 	return __sched_setscheduler(p, attr, false, true);
4402 }
4403 
4404 /**
4405  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4406  * @p: the task in question.
4407  * @policy: new policy.
4408  * @param: structure containing the new RT priority.
4409  *
4410  * Just like sched_setscheduler, only don't bother checking if the
4411  * current context has permission.  For example, this is needed in
4412  * stop_machine(): we create temporary high priority worker threads,
4413  * but our caller might not have that capability.
4414  *
4415  * Return: 0 on success. An error code otherwise.
4416  */
4417 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4418 			       const struct sched_param *param)
4419 {
4420 	return _sched_setscheduler(p, policy, param, false);
4421 }
4422 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4423 
4424 static int
4425 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4426 {
4427 	struct sched_param lparam;
4428 	struct task_struct *p;
4429 	int retval;
4430 
4431 	if (!param || pid < 0)
4432 		return -EINVAL;
4433 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4434 		return -EFAULT;
4435 
4436 	rcu_read_lock();
4437 	retval = -ESRCH;
4438 	p = find_process_by_pid(pid);
4439 	if (p != NULL)
4440 		retval = sched_setscheduler(p, policy, &lparam);
4441 	rcu_read_unlock();
4442 
4443 	return retval;
4444 }
4445 
4446 /*
4447  * Mimics kernel/events/core.c perf_copy_attr().
4448  */
4449 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4450 {
4451 	u32 size;
4452 	int ret;
4453 
4454 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4455 		return -EFAULT;
4456 
4457 	/* Zero the full structure, so that a short copy will be nice: */
4458 	memset(attr, 0, sizeof(*attr));
4459 
4460 	ret = get_user(size, &uattr->size);
4461 	if (ret)
4462 		return ret;
4463 
4464 	/* Bail out on silly large: */
4465 	if (size > PAGE_SIZE)
4466 		goto err_size;
4467 
4468 	/* ABI compatibility quirk: */
4469 	if (!size)
4470 		size = SCHED_ATTR_SIZE_VER0;
4471 
4472 	if (size < SCHED_ATTR_SIZE_VER0)
4473 		goto err_size;
4474 
4475 	/*
4476 	 * If we're handed a bigger struct than we know of,
4477 	 * ensure all the unknown bits are 0 - i.e. new
4478 	 * user-space does not rely on any kernel feature
4479 	 * extensions we dont know about yet.
4480 	 */
4481 	if (size > sizeof(*attr)) {
4482 		unsigned char __user *addr;
4483 		unsigned char __user *end;
4484 		unsigned char val;
4485 
4486 		addr = (void __user *)uattr + sizeof(*attr);
4487 		end  = (void __user *)uattr + size;
4488 
4489 		for (; addr < end; addr++) {
4490 			ret = get_user(val, addr);
4491 			if (ret)
4492 				return ret;
4493 			if (val)
4494 				goto err_size;
4495 		}
4496 		size = sizeof(*attr);
4497 	}
4498 
4499 	ret = copy_from_user(attr, uattr, size);
4500 	if (ret)
4501 		return -EFAULT;
4502 
4503 	/*
4504 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4505 	 * to be strict and return an error on out-of-bounds values?
4506 	 */
4507 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4508 
4509 	return 0;
4510 
4511 err_size:
4512 	put_user(sizeof(*attr), &uattr->size);
4513 	return -E2BIG;
4514 }
4515 
4516 /**
4517  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4518  * @pid: the pid in question.
4519  * @policy: new policy.
4520  * @param: structure containing the new RT priority.
4521  *
4522  * Return: 0 on success. An error code otherwise.
4523  */
4524 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4525 {
4526 	if (policy < 0)
4527 		return -EINVAL;
4528 
4529 	return do_sched_setscheduler(pid, policy, param);
4530 }
4531 
4532 /**
4533  * sys_sched_setparam - set/change the RT priority of a thread
4534  * @pid: the pid in question.
4535  * @param: structure containing the new RT priority.
4536  *
4537  * Return: 0 on success. An error code otherwise.
4538  */
4539 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4540 {
4541 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4542 }
4543 
4544 /**
4545  * sys_sched_setattr - same as above, but with extended sched_attr
4546  * @pid: the pid in question.
4547  * @uattr: structure containing the extended parameters.
4548  * @flags: for future extension.
4549  */
4550 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4551 			       unsigned int, flags)
4552 {
4553 	struct sched_attr attr;
4554 	struct task_struct *p;
4555 	int retval;
4556 
4557 	if (!uattr || pid < 0 || flags)
4558 		return -EINVAL;
4559 
4560 	retval = sched_copy_attr(uattr, &attr);
4561 	if (retval)
4562 		return retval;
4563 
4564 	if ((int)attr.sched_policy < 0)
4565 		return -EINVAL;
4566 
4567 	rcu_read_lock();
4568 	retval = -ESRCH;
4569 	p = find_process_by_pid(pid);
4570 	if (p != NULL)
4571 		retval = sched_setattr(p, &attr);
4572 	rcu_read_unlock();
4573 
4574 	return retval;
4575 }
4576 
4577 /**
4578  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4579  * @pid: the pid in question.
4580  *
4581  * Return: On success, the policy of the thread. Otherwise, a negative error
4582  * code.
4583  */
4584 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4585 {
4586 	struct task_struct *p;
4587 	int retval;
4588 
4589 	if (pid < 0)
4590 		return -EINVAL;
4591 
4592 	retval = -ESRCH;
4593 	rcu_read_lock();
4594 	p = find_process_by_pid(pid);
4595 	if (p) {
4596 		retval = security_task_getscheduler(p);
4597 		if (!retval)
4598 			retval = p->policy
4599 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4600 	}
4601 	rcu_read_unlock();
4602 	return retval;
4603 }
4604 
4605 /**
4606  * sys_sched_getparam - get the RT priority of a thread
4607  * @pid: the pid in question.
4608  * @param: structure containing the RT priority.
4609  *
4610  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4611  * code.
4612  */
4613 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4614 {
4615 	struct sched_param lp = { .sched_priority = 0 };
4616 	struct task_struct *p;
4617 	int retval;
4618 
4619 	if (!param || pid < 0)
4620 		return -EINVAL;
4621 
4622 	rcu_read_lock();
4623 	p = find_process_by_pid(pid);
4624 	retval = -ESRCH;
4625 	if (!p)
4626 		goto out_unlock;
4627 
4628 	retval = security_task_getscheduler(p);
4629 	if (retval)
4630 		goto out_unlock;
4631 
4632 	if (task_has_rt_policy(p))
4633 		lp.sched_priority = p->rt_priority;
4634 	rcu_read_unlock();
4635 
4636 	/*
4637 	 * This one might sleep, we cannot do it with a spinlock held ...
4638 	 */
4639 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4640 
4641 	return retval;
4642 
4643 out_unlock:
4644 	rcu_read_unlock();
4645 	return retval;
4646 }
4647 
4648 static int sched_read_attr(struct sched_attr __user *uattr,
4649 			   struct sched_attr *attr,
4650 			   unsigned int usize)
4651 {
4652 	int ret;
4653 
4654 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4655 		return -EFAULT;
4656 
4657 	/*
4658 	 * If we're handed a smaller struct than we know of,
4659 	 * ensure all the unknown bits are 0 - i.e. old
4660 	 * user-space does not get uncomplete information.
4661 	 */
4662 	if (usize < sizeof(*attr)) {
4663 		unsigned char *addr;
4664 		unsigned char *end;
4665 
4666 		addr = (void *)attr + usize;
4667 		end  = (void *)attr + sizeof(*attr);
4668 
4669 		for (; addr < end; addr++) {
4670 			if (*addr)
4671 				return -EFBIG;
4672 		}
4673 
4674 		attr->size = usize;
4675 	}
4676 
4677 	ret = copy_to_user(uattr, attr, attr->size);
4678 	if (ret)
4679 		return -EFAULT;
4680 
4681 	return 0;
4682 }
4683 
4684 /**
4685  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4686  * @pid: the pid in question.
4687  * @uattr: structure containing the extended parameters.
4688  * @size: sizeof(attr) for fwd/bwd comp.
4689  * @flags: for future extension.
4690  */
4691 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4692 		unsigned int, size, unsigned int, flags)
4693 {
4694 	struct sched_attr attr = {
4695 		.size = sizeof(struct sched_attr),
4696 	};
4697 	struct task_struct *p;
4698 	int retval;
4699 
4700 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4701 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4702 		return -EINVAL;
4703 
4704 	rcu_read_lock();
4705 	p = find_process_by_pid(pid);
4706 	retval = -ESRCH;
4707 	if (!p)
4708 		goto out_unlock;
4709 
4710 	retval = security_task_getscheduler(p);
4711 	if (retval)
4712 		goto out_unlock;
4713 
4714 	attr.sched_policy = p->policy;
4715 	if (p->sched_reset_on_fork)
4716 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4717 	if (task_has_dl_policy(p))
4718 		__getparam_dl(p, &attr);
4719 	else if (task_has_rt_policy(p))
4720 		attr.sched_priority = p->rt_priority;
4721 	else
4722 		attr.sched_nice = task_nice(p);
4723 
4724 	rcu_read_unlock();
4725 
4726 	retval = sched_read_attr(uattr, &attr, size);
4727 	return retval;
4728 
4729 out_unlock:
4730 	rcu_read_unlock();
4731 	return retval;
4732 }
4733 
4734 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4735 {
4736 	cpumask_var_t cpus_allowed, new_mask;
4737 	struct task_struct *p;
4738 	int retval;
4739 
4740 	rcu_read_lock();
4741 
4742 	p = find_process_by_pid(pid);
4743 	if (!p) {
4744 		rcu_read_unlock();
4745 		return -ESRCH;
4746 	}
4747 
4748 	/* Prevent p going away */
4749 	get_task_struct(p);
4750 	rcu_read_unlock();
4751 
4752 	if (p->flags & PF_NO_SETAFFINITY) {
4753 		retval = -EINVAL;
4754 		goto out_put_task;
4755 	}
4756 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4757 		retval = -ENOMEM;
4758 		goto out_put_task;
4759 	}
4760 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4761 		retval = -ENOMEM;
4762 		goto out_free_cpus_allowed;
4763 	}
4764 	retval = -EPERM;
4765 	if (!check_same_owner(p)) {
4766 		rcu_read_lock();
4767 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4768 			rcu_read_unlock();
4769 			goto out_free_new_mask;
4770 		}
4771 		rcu_read_unlock();
4772 	}
4773 
4774 	retval = security_task_setscheduler(p);
4775 	if (retval)
4776 		goto out_free_new_mask;
4777 
4778 
4779 	cpuset_cpus_allowed(p, cpus_allowed);
4780 	cpumask_and(new_mask, in_mask, cpus_allowed);
4781 
4782 	/*
4783 	 * Since bandwidth control happens on root_domain basis,
4784 	 * if admission test is enabled, we only admit -deadline
4785 	 * tasks allowed to run on all the CPUs in the task's
4786 	 * root_domain.
4787 	 */
4788 #ifdef CONFIG_SMP
4789 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4790 		rcu_read_lock();
4791 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4792 			retval = -EBUSY;
4793 			rcu_read_unlock();
4794 			goto out_free_new_mask;
4795 		}
4796 		rcu_read_unlock();
4797 	}
4798 #endif
4799 again:
4800 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4801 
4802 	if (!retval) {
4803 		cpuset_cpus_allowed(p, cpus_allowed);
4804 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4805 			/*
4806 			 * We must have raced with a concurrent cpuset
4807 			 * update. Just reset the cpus_allowed to the
4808 			 * cpuset's cpus_allowed
4809 			 */
4810 			cpumask_copy(new_mask, cpus_allowed);
4811 			goto again;
4812 		}
4813 	}
4814 out_free_new_mask:
4815 	free_cpumask_var(new_mask);
4816 out_free_cpus_allowed:
4817 	free_cpumask_var(cpus_allowed);
4818 out_put_task:
4819 	put_task_struct(p);
4820 	return retval;
4821 }
4822 
4823 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4824 			     struct cpumask *new_mask)
4825 {
4826 	if (len < cpumask_size())
4827 		cpumask_clear(new_mask);
4828 	else if (len > cpumask_size())
4829 		len = cpumask_size();
4830 
4831 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4832 }
4833 
4834 /**
4835  * sys_sched_setaffinity - set the CPU affinity of a process
4836  * @pid: pid of the process
4837  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4838  * @user_mask_ptr: user-space pointer to the new CPU mask
4839  *
4840  * Return: 0 on success. An error code otherwise.
4841  */
4842 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4843 		unsigned long __user *, user_mask_ptr)
4844 {
4845 	cpumask_var_t new_mask;
4846 	int retval;
4847 
4848 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4849 		return -ENOMEM;
4850 
4851 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4852 	if (retval == 0)
4853 		retval = sched_setaffinity(pid, new_mask);
4854 	free_cpumask_var(new_mask);
4855 	return retval;
4856 }
4857 
4858 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4859 {
4860 	struct task_struct *p;
4861 	unsigned long flags;
4862 	int retval;
4863 
4864 	rcu_read_lock();
4865 
4866 	retval = -ESRCH;
4867 	p = find_process_by_pid(pid);
4868 	if (!p)
4869 		goto out_unlock;
4870 
4871 	retval = security_task_getscheduler(p);
4872 	if (retval)
4873 		goto out_unlock;
4874 
4875 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4876 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4877 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4878 
4879 out_unlock:
4880 	rcu_read_unlock();
4881 
4882 	return retval;
4883 }
4884 
4885 /**
4886  * sys_sched_getaffinity - get the CPU affinity of a process
4887  * @pid: pid of the process
4888  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4889  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4890  *
4891  * Return: size of CPU mask copied to user_mask_ptr on success. An
4892  * error code otherwise.
4893  */
4894 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4895 		unsigned long __user *, user_mask_ptr)
4896 {
4897 	int ret;
4898 	cpumask_var_t mask;
4899 
4900 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4901 		return -EINVAL;
4902 	if (len & (sizeof(unsigned long)-1))
4903 		return -EINVAL;
4904 
4905 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4906 		return -ENOMEM;
4907 
4908 	ret = sched_getaffinity(pid, mask);
4909 	if (ret == 0) {
4910 		unsigned int retlen = min(len, cpumask_size());
4911 
4912 		if (copy_to_user(user_mask_ptr, mask, retlen))
4913 			ret = -EFAULT;
4914 		else
4915 			ret = retlen;
4916 	}
4917 	free_cpumask_var(mask);
4918 
4919 	return ret;
4920 }
4921 
4922 /**
4923  * sys_sched_yield - yield the current processor to other threads.
4924  *
4925  * This function yields the current CPU to other tasks. If there are no
4926  * other threads running on this CPU then this function will return.
4927  *
4928  * Return: 0.
4929  */
4930 static void do_sched_yield(void)
4931 {
4932 	struct rq_flags rf;
4933 	struct rq *rq;
4934 
4935 	local_irq_disable();
4936 	rq = this_rq();
4937 	rq_lock(rq, &rf);
4938 
4939 	schedstat_inc(rq->yld_count);
4940 	current->sched_class->yield_task(rq);
4941 
4942 	/*
4943 	 * Since we are going to call schedule() anyway, there's
4944 	 * no need to preempt or enable interrupts:
4945 	 */
4946 	preempt_disable();
4947 	rq_unlock(rq, &rf);
4948 	sched_preempt_enable_no_resched();
4949 
4950 	schedule();
4951 }
4952 
4953 SYSCALL_DEFINE0(sched_yield)
4954 {
4955 	do_sched_yield();
4956 	return 0;
4957 }
4958 
4959 #ifndef CONFIG_PREEMPT
4960 int __sched _cond_resched(void)
4961 {
4962 	if (should_resched(0)) {
4963 		preempt_schedule_common();
4964 		return 1;
4965 	}
4966 	rcu_all_qs();
4967 	return 0;
4968 }
4969 EXPORT_SYMBOL(_cond_resched);
4970 #endif
4971 
4972 /*
4973  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4974  * call schedule, and on return reacquire the lock.
4975  *
4976  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4977  * operations here to prevent schedule() from being called twice (once via
4978  * spin_unlock(), once by hand).
4979  */
4980 int __cond_resched_lock(spinlock_t *lock)
4981 {
4982 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4983 	int ret = 0;
4984 
4985 	lockdep_assert_held(lock);
4986 
4987 	if (spin_needbreak(lock) || resched) {
4988 		spin_unlock(lock);
4989 		if (resched)
4990 			preempt_schedule_common();
4991 		else
4992 			cpu_relax();
4993 		ret = 1;
4994 		spin_lock(lock);
4995 	}
4996 	return ret;
4997 }
4998 EXPORT_SYMBOL(__cond_resched_lock);
4999 
5000 /**
5001  * yield - yield the current processor to other threads.
5002  *
5003  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5004  *
5005  * The scheduler is at all times free to pick the calling task as the most
5006  * eligible task to run, if removing the yield() call from your code breaks
5007  * it, its already broken.
5008  *
5009  * Typical broken usage is:
5010  *
5011  * while (!event)
5012  *	yield();
5013  *
5014  * where one assumes that yield() will let 'the other' process run that will
5015  * make event true. If the current task is a SCHED_FIFO task that will never
5016  * happen. Never use yield() as a progress guarantee!!
5017  *
5018  * If you want to use yield() to wait for something, use wait_event().
5019  * If you want to use yield() to be 'nice' for others, use cond_resched().
5020  * If you still want to use yield(), do not!
5021  */
5022 void __sched yield(void)
5023 {
5024 	set_current_state(TASK_RUNNING);
5025 	do_sched_yield();
5026 }
5027 EXPORT_SYMBOL(yield);
5028 
5029 /**
5030  * yield_to - yield the current processor to another thread in
5031  * your thread group, or accelerate that thread toward the
5032  * processor it's on.
5033  * @p: target task
5034  * @preempt: whether task preemption is allowed or not
5035  *
5036  * It's the caller's job to ensure that the target task struct
5037  * can't go away on us before we can do any checks.
5038  *
5039  * Return:
5040  *	true (>0) if we indeed boosted the target task.
5041  *	false (0) if we failed to boost the target.
5042  *	-ESRCH if there's no task to yield to.
5043  */
5044 int __sched yield_to(struct task_struct *p, bool preempt)
5045 {
5046 	struct task_struct *curr = current;
5047 	struct rq *rq, *p_rq;
5048 	unsigned long flags;
5049 	int yielded = 0;
5050 
5051 	local_irq_save(flags);
5052 	rq = this_rq();
5053 
5054 again:
5055 	p_rq = task_rq(p);
5056 	/*
5057 	 * If we're the only runnable task on the rq and target rq also
5058 	 * has only one task, there's absolutely no point in yielding.
5059 	 */
5060 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5061 		yielded = -ESRCH;
5062 		goto out_irq;
5063 	}
5064 
5065 	double_rq_lock(rq, p_rq);
5066 	if (task_rq(p) != p_rq) {
5067 		double_rq_unlock(rq, p_rq);
5068 		goto again;
5069 	}
5070 
5071 	if (!curr->sched_class->yield_to_task)
5072 		goto out_unlock;
5073 
5074 	if (curr->sched_class != p->sched_class)
5075 		goto out_unlock;
5076 
5077 	if (task_running(p_rq, p) || p->state)
5078 		goto out_unlock;
5079 
5080 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5081 	if (yielded) {
5082 		schedstat_inc(rq->yld_count);
5083 		/*
5084 		 * Make p's CPU reschedule; pick_next_entity takes care of
5085 		 * fairness.
5086 		 */
5087 		if (preempt && rq != p_rq)
5088 			resched_curr(p_rq);
5089 	}
5090 
5091 out_unlock:
5092 	double_rq_unlock(rq, p_rq);
5093 out_irq:
5094 	local_irq_restore(flags);
5095 
5096 	if (yielded > 0)
5097 		schedule();
5098 
5099 	return yielded;
5100 }
5101 EXPORT_SYMBOL_GPL(yield_to);
5102 
5103 int io_schedule_prepare(void)
5104 {
5105 	int old_iowait = current->in_iowait;
5106 
5107 	current->in_iowait = 1;
5108 	blk_schedule_flush_plug(current);
5109 
5110 	return old_iowait;
5111 }
5112 
5113 void io_schedule_finish(int token)
5114 {
5115 	current->in_iowait = token;
5116 }
5117 
5118 /*
5119  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5120  * that process accounting knows that this is a task in IO wait state.
5121  */
5122 long __sched io_schedule_timeout(long timeout)
5123 {
5124 	int token;
5125 	long ret;
5126 
5127 	token = io_schedule_prepare();
5128 	ret = schedule_timeout(timeout);
5129 	io_schedule_finish(token);
5130 
5131 	return ret;
5132 }
5133 EXPORT_SYMBOL(io_schedule_timeout);
5134 
5135 void io_schedule(void)
5136 {
5137 	int token;
5138 
5139 	token = io_schedule_prepare();
5140 	schedule();
5141 	io_schedule_finish(token);
5142 }
5143 EXPORT_SYMBOL(io_schedule);
5144 
5145 /**
5146  * sys_sched_get_priority_max - return maximum RT priority.
5147  * @policy: scheduling class.
5148  *
5149  * Return: On success, this syscall returns the maximum
5150  * rt_priority that can be used by a given scheduling class.
5151  * On failure, a negative error code is returned.
5152  */
5153 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5154 {
5155 	int ret = -EINVAL;
5156 
5157 	switch (policy) {
5158 	case SCHED_FIFO:
5159 	case SCHED_RR:
5160 		ret = MAX_USER_RT_PRIO-1;
5161 		break;
5162 	case SCHED_DEADLINE:
5163 	case SCHED_NORMAL:
5164 	case SCHED_BATCH:
5165 	case SCHED_IDLE:
5166 		ret = 0;
5167 		break;
5168 	}
5169 	return ret;
5170 }
5171 
5172 /**
5173  * sys_sched_get_priority_min - return minimum RT priority.
5174  * @policy: scheduling class.
5175  *
5176  * Return: On success, this syscall returns the minimum
5177  * rt_priority that can be used by a given scheduling class.
5178  * On failure, a negative error code is returned.
5179  */
5180 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5181 {
5182 	int ret = -EINVAL;
5183 
5184 	switch (policy) {
5185 	case SCHED_FIFO:
5186 	case SCHED_RR:
5187 		ret = 1;
5188 		break;
5189 	case SCHED_DEADLINE:
5190 	case SCHED_NORMAL:
5191 	case SCHED_BATCH:
5192 	case SCHED_IDLE:
5193 		ret = 0;
5194 	}
5195 	return ret;
5196 }
5197 
5198 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5199 {
5200 	struct task_struct *p;
5201 	unsigned int time_slice;
5202 	struct rq_flags rf;
5203 	struct rq *rq;
5204 	int retval;
5205 
5206 	if (pid < 0)
5207 		return -EINVAL;
5208 
5209 	retval = -ESRCH;
5210 	rcu_read_lock();
5211 	p = find_process_by_pid(pid);
5212 	if (!p)
5213 		goto out_unlock;
5214 
5215 	retval = security_task_getscheduler(p);
5216 	if (retval)
5217 		goto out_unlock;
5218 
5219 	rq = task_rq_lock(p, &rf);
5220 	time_slice = 0;
5221 	if (p->sched_class->get_rr_interval)
5222 		time_slice = p->sched_class->get_rr_interval(rq, p);
5223 	task_rq_unlock(rq, p, &rf);
5224 
5225 	rcu_read_unlock();
5226 	jiffies_to_timespec64(time_slice, t);
5227 	return 0;
5228 
5229 out_unlock:
5230 	rcu_read_unlock();
5231 	return retval;
5232 }
5233 
5234 /**
5235  * sys_sched_rr_get_interval - return the default timeslice of a process.
5236  * @pid: pid of the process.
5237  * @interval: userspace pointer to the timeslice value.
5238  *
5239  * this syscall writes the default timeslice value of a given process
5240  * into the user-space timespec buffer. A value of '0' means infinity.
5241  *
5242  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5243  * an error code.
5244  */
5245 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5246 		struct timespec __user *, interval)
5247 {
5248 	struct timespec64 t;
5249 	int retval = sched_rr_get_interval(pid, &t);
5250 
5251 	if (retval == 0)
5252 		retval = put_timespec64(&t, interval);
5253 
5254 	return retval;
5255 }
5256 
5257 #ifdef CONFIG_COMPAT
5258 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5259 		       compat_pid_t, pid,
5260 		       struct compat_timespec __user *, interval)
5261 {
5262 	struct timespec64 t;
5263 	int retval = sched_rr_get_interval(pid, &t);
5264 
5265 	if (retval == 0)
5266 		retval = compat_put_timespec64(&t, interval);
5267 	return retval;
5268 }
5269 #endif
5270 
5271 void sched_show_task(struct task_struct *p)
5272 {
5273 	unsigned long free = 0;
5274 	int ppid;
5275 
5276 	if (!try_get_task_stack(p))
5277 		return;
5278 
5279 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5280 
5281 	if (p->state == TASK_RUNNING)
5282 		printk(KERN_CONT "  running task    ");
5283 #ifdef CONFIG_DEBUG_STACK_USAGE
5284 	free = stack_not_used(p);
5285 #endif
5286 	ppid = 0;
5287 	rcu_read_lock();
5288 	if (pid_alive(p))
5289 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5290 	rcu_read_unlock();
5291 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5292 		task_pid_nr(p), ppid,
5293 		(unsigned long)task_thread_info(p)->flags);
5294 
5295 	print_worker_info(KERN_INFO, p);
5296 	show_stack(p, NULL);
5297 	put_task_stack(p);
5298 }
5299 EXPORT_SYMBOL_GPL(sched_show_task);
5300 
5301 static inline bool
5302 state_filter_match(unsigned long state_filter, struct task_struct *p)
5303 {
5304 	/* no filter, everything matches */
5305 	if (!state_filter)
5306 		return true;
5307 
5308 	/* filter, but doesn't match */
5309 	if (!(p->state & state_filter))
5310 		return false;
5311 
5312 	/*
5313 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5314 	 * TASK_KILLABLE).
5315 	 */
5316 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5317 		return false;
5318 
5319 	return true;
5320 }
5321 
5322 
5323 void show_state_filter(unsigned long state_filter)
5324 {
5325 	struct task_struct *g, *p;
5326 
5327 #if BITS_PER_LONG == 32
5328 	printk(KERN_INFO
5329 		"  task                PC stack   pid father\n");
5330 #else
5331 	printk(KERN_INFO
5332 		"  task                        PC stack   pid father\n");
5333 #endif
5334 	rcu_read_lock();
5335 	for_each_process_thread(g, p) {
5336 		/*
5337 		 * reset the NMI-timeout, listing all files on a slow
5338 		 * console might take a lot of time:
5339 		 * Also, reset softlockup watchdogs on all CPUs, because
5340 		 * another CPU might be blocked waiting for us to process
5341 		 * an IPI.
5342 		 */
5343 		touch_nmi_watchdog();
5344 		touch_all_softlockup_watchdogs();
5345 		if (state_filter_match(state_filter, p))
5346 			sched_show_task(p);
5347 	}
5348 
5349 #ifdef CONFIG_SCHED_DEBUG
5350 	if (!state_filter)
5351 		sysrq_sched_debug_show();
5352 #endif
5353 	rcu_read_unlock();
5354 	/*
5355 	 * Only show locks if all tasks are dumped:
5356 	 */
5357 	if (!state_filter)
5358 		debug_show_all_locks();
5359 }
5360 
5361 /**
5362  * init_idle - set up an idle thread for a given CPU
5363  * @idle: task in question
5364  * @cpu: CPU the idle task belongs to
5365  *
5366  * NOTE: this function does not set the idle thread's NEED_RESCHED
5367  * flag, to make booting more robust.
5368  */
5369 void init_idle(struct task_struct *idle, int cpu)
5370 {
5371 	struct rq *rq = cpu_rq(cpu);
5372 	unsigned long flags;
5373 
5374 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5375 	raw_spin_lock(&rq->lock);
5376 
5377 	__sched_fork(0, idle);
5378 	idle->state = TASK_RUNNING;
5379 	idle->se.exec_start = sched_clock();
5380 	idle->flags |= PF_IDLE;
5381 
5382 	kasan_unpoison_task_stack(idle);
5383 
5384 #ifdef CONFIG_SMP
5385 	/*
5386 	 * Its possible that init_idle() gets called multiple times on a task,
5387 	 * in that case do_set_cpus_allowed() will not do the right thing.
5388 	 *
5389 	 * And since this is boot we can forgo the serialization.
5390 	 */
5391 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5392 #endif
5393 	/*
5394 	 * We're having a chicken and egg problem, even though we are
5395 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5396 	 * lockdep check in task_group() will fail.
5397 	 *
5398 	 * Similar case to sched_fork(). / Alternatively we could
5399 	 * use task_rq_lock() here and obtain the other rq->lock.
5400 	 *
5401 	 * Silence PROVE_RCU
5402 	 */
5403 	rcu_read_lock();
5404 	__set_task_cpu(idle, cpu);
5405 	rcu_read_unlock();
5406 
5407 	rq->curr = rq->idle = idle;
5408 	idle->on_rq = TASK_ON_RQ_QUEUED;
5409 #ifdef CONFIG_SMP
5410 	idle->on_cpu = 1;
5411 #endif
5412 	raw_spin_unlock(&rq->lock);
5413 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5414 
5415 	/* Set the preempt count _outside_ the spinlocks! */
5416 	init_idle_preempt_count(idle, cpu);
5417 
5418 	/*
5419 	 * The idle tasks have their own, simple scheduling class:
5420 	 */
5421 	idle->sched_class = &idle_sched_class;
5422 	ftrace_graph_init_idle_task(idle, cpu);
5423 	vtime_init_idle(idle, cpu);
5424 #ifdef CONFIG_SMP
5425 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5426 #endif
5427 }
5428 
5429 #ifdef CONFIG_SMP
5430 
5431 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5432 			      const struct cpumask *trial)
5433 {
5434 	int ret = 1;
5435 
5436 	if (!cpumask_weight(cur))
5437 		return ret;
5438 
5439 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5440 
5441 	return ret;
5442 }
5443 
5444 int task_can_attach(struct task_struct *p,
5445 		    const struct cpumask *cs_cpus_allowed)
5446 {
5447 	int ret = 0;
5448 
5449 	/*
5450 	 * Kthreads which disallow setaffinity shouldn't be moved
5451 	 * to a new cpuset; we don't want to change their CPU
5452 	 * affinity and isolating such threads by their set of
5453 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5454 	 * applicable for such threads.  This prevents checking for
5455 	 * success of set_cpus_allowed_ptr() on all attached tasks
5456 	 * before cpus_allowed may be changed.
5457 	 */
5458 	if (p->flags & PF_NO_SETAFFINITY) {
5459 		ret = -EINVAL;
5460 		goto out;
5461 	}
5462 
5463 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5464 					      cs_cpus_allowed))
5465 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5466 
5467 out:
5468 	return ret;
5469 }
5470 
5471 bool sched_smp_initialized __read_mostly;
5472 
5473 #ifdef CONFIG_NUMA_BALANCING
5474 /* Migrate current task p to target_cpu */
5475 int migrate_task_to(struct task_struct *p, int target_cpu)
5476 {
5477 	struct migration_arg arg = { p, target_cpu };
5478 	int curr_cpu = task_cpu(p);
5479 
5480 	if (curr_cpu == target_cpu)
5481 		return 0;
5482 
5483 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5484 		return -EINVAL;
5485 
5486 	/* TODO: This is not properly updating schedstats */
5487 
5488 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5489 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5490 }
5491 
5492 /*
5493  * Requeue a task on a given node and accurately track the number of NUMA
5494  * tasks on the runqueues
5495  */
5496 void sched_setnuma(struct task_struct *p, int nid)
5497 {
5498 	bool queued, running;
5499 	struct rq_flags rf;
5500 	struct rq *rq;
5501 
5502 	rq = task_rq_lock(p, &rf);
5503 	queued = task_on_rq_queued(p);
5504 	running = task_current(rq, p);
5505 
5506 	if (queued)
5507 		dequeue_task(rq, p, DEQUEUE_SAVE);
5508 	if (running)
5509 		put_prev_task(rq, p);
5510 
5511 	p->numa_preferred_nid = nid;
5512 
5513 	if (queued)
5514 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5515 	if (running)
5516 		set_curr_task(rq, p);
5517 	task_rq_unlock(rq, p, &rf);
5518 }
5519 #endif /* CONFIG_NUMA_BALANCING */
5520 
5521 #ifdef CONFIG_HOTPLUG_CPU
5522 /*
5523  * Ensure that the idle task is using init_mm right before its CPU goes
5524  * offline.
5525  */
5526 void idle_task_exit(void)
5527 {
5528 	struct mm_struct *mm = current->active_mm;
5529 
5530 	BUG_ON(cpu_online(smp_processor_id()));
5531 
5532 	if (mm != &init_mm) {
5533 		switch_mm(mm, &init_mm, current);
5534 		current->active_mm = &init_mm;
5535 		finish_arch_post_lock_switch();
5536 	}
5537 	mmdrop(mm);
5538 }
5539 
5540 /*
5541  * Since this CPU is going 'away' for a while, fold any nr_active delta
5542  * we might have. Assumes we're called after migrate_tasks() so that the
5543  * nr_active count is stable. We need to take the teardown thread which
5544  * is calling this into account, so we hand in adjust = 1 to the load
5545  * calculation.
5546  *
5547  * Also see the comment "Global load-average calculations".
5548  */
5549 static void calc_load_migrate(struct rq *rq)
5550 {
5551 	long delta = calc_load_fold_active(rq, 1);
5552 	if (delta)
5553 		atomic_long_add(delta, &calc_load_tasks);
5554 }
5555 
5556 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5557 {
5558 }
5559 
5560 static const struct sched_class fake_sched_class = {
5561 	.put_prev_task = put_prev_task_fake,
5562 };
5563 
5564 static struct task_struct fake_task = {
5565 	/*
5566 	 * Avoid pull_{rt,dl}_task()
5567 	 */
5568 	.prio = MAX_PRIO + 1,
5569 	.sched_class = &fake_sched_class,
5570 };
5571 
5572 /*
5573  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5574  * try_to_wake_up()->select_task_rq().
5575  *
5576  * Called with rq->lock held even though we'er in stop_machine() and
5577  * there's no concurrency possible, we hold the required locks anyway
5578  * because of lock validation efforts.
5579  */
5580 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5581 {
5582 	struct rq *rq = dead_rq;
5583 	struct task_struct *next, *stop = rq->stop;
5584 	struct rq_flags orf = *rf;
5585 	int dest_cpu;
5586 
5587 	/*
5588 	 * Fudge the rq selection such that the below task selection loop
5589 	 * doesn't get stuck on the currently eligible stop task.
5590 	 *
5591 	 * We're currently inside stop_machine() and the rq is either stuck
5592 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5593 	 * either way we should never end up calling schedule() until we're
5594 	 * done here.
5595 	 */
5596 	rq->stop = NULL;
5597 
5598 	/*
5599 	 * put_prev_task() and pick_next_task() sched
5600 	 * class method both need to have an up-to-date
5601 	 * value of rq->clock[_task]
5602 	 */
5603 	update_rq_clock(rq);
5604 
5605 	for (;;) {
5606 		/*
5607 		 * There's this thread running, bail when that's the only
5608 		 * remaining thread:
5609 		 */
5610 		if (rq->nr_running == 1)
5611 			break;
5612 
5613 		/*
5614 		 * pick_next_task() assumes pinned rq->lock:
5615 		 */
5616 		next = pick_next_task(rq, &fake_task, rf);
5617 		BUG_ON(!next);
5618 		put_prev_task(rq, next);
5619 
5620 		/*
5621 		 * Rules for changing task_struct::cpus_allowed are holding
5622 		 * both pi_lock and rq->lock, such that holding either
5623 		 * stabilizes the mask.
5624 		 *
5625 		 * Drop rq->lock is not quite as disastrous as it usually is
5626 		 * because !cpu_active at this point, which means load-balance
5627 		 * will not interfere. Also, stop-machine.
5628 		 */
5629 		rq_unlock(rq, rf);
5630 		raw_spin_lock(&next->pi_lock);
5631 		rq_relock(rq, rf);
5632 
5633 		/*
5634 		 * Since we're inside stop-machine, _nothing_ should have
5635 		 * changed the task, WARN if weird stuff happened, because in
5636 		 * that case the above rq->lock drop is a fail too.
5637 		 */
5638 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5639 			raw_spin_unlock(&next->pi_lock);
5640 			continue;
5641 		}
5642 
5643 		/* Find suitable destination for @next, with force if needed. */
5644 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5645 		rq = __migrate_task(rq, rf, next, dest_cpu);
5646 		if (rq != dead_rq) {
5647 			rq_unlock(rq, rf);
5648 			rq = dead_rq;
5649 			*rf = orf;
5650 			rq_relock(rq, rf);
5651 		}
5652 		raw_spin_unlock(&next->pi_lock);
5653 	}
5654 
5655 	rq->stop = stop;
5656 }
5657 #endif /* CONFIG_HOTPLUG_CPU */
5658 
5659 void set_rq_online(struct rq *rq)
5660 {
5661 	if (!rq->online) {
5662 		const struct sched_class *class;
5663 
5664 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5665 		rq->online = 1;
5666 
5667 		for_each_class(class) {
5668 			if (class->rq_online)
5669 				class->rq_online(rq);
5670 		}
5671 	}
5672 }
5673 
5674 void set_rq_offline(struct rq *rq)
5675 {
5676 	if (rq->online) {
5677 		const struct sched_class *class;
5678 
5679 		for_each_class(class) {
5680 			if (class->rq_offline)
5681 				class->rq_offline(rq);
5682 		}
5683 
5684 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5685 		rq->online = 0;
5686 	}
5687 }
5688 
5689 /*
5690  * used to mark begin/end of suspend/resume:
5691  */
5692 static int num_cpus_frozen;
5693 
5694 /*
5695  * Update cpusets according to cpu_active mask.  If cpusets are
5696  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5697  * around partition_sched_domains().
5698  *
5699  * If we come here as part of a suspend/resume, don't touch cpusets because we
5700  * want to restore it back to its original state upon resume anyway.
5701  */
5702 static void cpuset_cpu_active(void)
5703 {
5704 	if (cpuhp_tasks_frozen) {
5705 		/*
5706 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5707 		 * resume sequence. As long as this is not the last online
5708 		 * operation in the resume sequence, just build a single sched
5709 		 * domain, ignoring cpusets.
5710 		 */
5711 		partition_sched_domains(1, NULL, NULL);
5712 		if (--num_cpus_frozen)
5713 			return;
5714 		/*
5715 		 * This is the last CPU online operation. So fall through and
5716 		 * restore the original sched domains by considering the
5717 		 * cpuset configurations.
5718 		 */
5719 		cpuset_force_rebuild();
5720 	}
5721 	cpuset_update_active_cpus();
5722 }
5723 
5724 static int cpuset_cpu_inactive(unsigned int cpu)
5725 {
5726 	if (!cpuhp_tasks_frozen) {
5727 		if (dl_cpu_busy(cpu))
5728 			return -EBUSY;
5729 		cpuset_update_active_cpus();
5730 	} else {
5731 		num_cpus_frozen++;
5732 		partition_sched_domains(1, NULL, NULL);
5733 	}
5734 	return 0;
5735 }
5736 
5737 int sched_cpu_activate(unsigned int cpu)
5738 {
5739 	struct rq *rq = cpu_rq(cpu);
5740 	struct rq_flags rf;
5741 
5742 #ifdef CONFIG_SCHED_SMT
5743 	/*
5744 	 * The sched_smt_present static key needs to be evaluated on every
5745 	 * hotplug event because at boot time SMT might be disabled when
5746 	 * the number of booted CPUs is limited.
5747 	 *
5748 	 * If then later a sibling gets hotplugged, then the key would stay
5749 	 * off and SMT scheduling would never be functional.
5750 	 */
5751 	if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5752 		static_branch_enable_cpuslocked(&sched_smt_present);
5753 #endif
5754 	set_cpu_active(cpu, true);
5755 
5756 	if (sched_smp_initialized) {
5757 		sched_domains_numa_masks_set(cpu);
5758 		cpuset_cpu_active();
5759 	}
5760 
5761 	/*
5762 	 * Put the rq online, if not already. This happens:
5763 	 *
5764 	 * 1) In the early boot process, because we build the real domains
5765 	 *    after all CPUs have been brought up.
5766 	 *
5767 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5768 	 *    domains.
5769 	 */
5770 	rq_lock_irqsave(rq, &rf);
5771 	if (rq->rd) {
5772 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5773 		set_rq_online(rq);
5774 	}
5775 	rq_unlock_irqrestore(rq, &rf);
5776 
5777 	update_max_interval();
5778 
5779 	return 0;
5780 }
5781 
5782 int sched_cpu_deactivate(unsigned int cpu)
5783 {
5784 	int ret;
5785 
5786 	set_cpu_active(cpu, false);
5787 	/*
5788 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5789 	 * users of this state to go away such that all new such users will
5790 	 * observe it.
5791 	 *
5792 	 * Do sync before park smpboot threads to take care the rcu boost case.
5793 	 */
5794 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5795 
5796 	if (!sched_smp_initialized)
5797 		return 0;
5798 
5799 	ret = cpuset_cpu_inactive(cpu);
5800 	if (ret) {
5801 		set_cpu_active(cpu, true);
5802 		return ret;
5803 	}
5804 	sched_domains_numa_masks_clear(cpu);
5805 	return 0;
5806 }
5807 
5808 static void sched_rq_cpu_starting(unsigned int cpu)
5809 {
5810 	struct rq *rq = cpu_rq(cpu);
5811 
5812 	rq->calc_load_update = calc_load_update;
5813 	update_max_interval();
5814 }
5815 
5816 int sched_cpu_starting(unsigned int cpu)
5817 {
5818 	sched_rq_cpu_starting(cpu);
5819 	sched_tick_start(cpu);
5820 	return 0;
5821 }
5822 
5823 #ifdef CONFIG_HOTPLUG_CPU
5824 int sched_cpu_dying(unsigned int cpu)
5825 {
5826 	struct rq *rq = cpu_rq(cpu);
5827 	struct rq_flags rf;
5828 
5829 	/* Handle pending wakeups and then migrate everything off */
5830 	sched_ttwu_pending();
5831 	sched_tick_stop(cpu);
5832 
5833 	rq_lock_irqsave(rq, &rf);
5834 	if (rq->rd) {
5835 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5836 		set_rq_offline(rq);
5837 	}
5838 	migrate_tasks(rq, &rf);
5839 	BUG_ON(rq->nr_running != 1);
5840 	rq_unlock_irqrestore(rq, &rf);
5841 
5842 	calc_load_migrate(rq);
5843 	update_max_interval();
5844 	nohz_balance_exit_idle(rq);
5845 	hrtick_clear(rq);
5846 	return 0;
5847 }
5848 #endif
5849 
5850 void __init sched_init_smp(void)
5851 {
5852 	sched_init_numa();
5853 
5854 	/*
5855 	 * There's no userspace yet to cause hotplug operations; hence all the
5856 	 * CPU masks are stable and all blatant races in the below code cannot
5857 	 * happen.
5858 	 */
5859 	mutex_lock(&sched_domains_mutex);
5860 	sched_init_domains(cpu_active_mask);
5861 	mutex_unlock(&sched_domains_mutex);
5862 
5863 	/* Move init over to a non-isolated CPU */
5864 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5865 		BUG();
5866 	sched_init_granularity();
5867 
5868 	init_sched_rt_class();
5869 	init_sched_dl_class();
5870 
5871 	sched_smp_initialized = true;
5872 }
5873 
5874 static int __init migration_init(void)
5875 {
5876 	sched_rq_cpu_starting(smp_processor_id());
5877 	return 0;
5878 }
5879 early_initcall(migration_init);
5880 
5881 #else
5882 void __init sched_init_smp(void)
5883 {
5884 	sched_init_granularity();
5885 }
5886 #endif /* CONFIG_SMP */
5887 
5888 int in_sched_functions(unsigned long addr)
5889 {
5890 	return in_lock_functions(addr) ||
5891 		(addr >= (unsigned long)__sched_text_start
5892 		&& addr < (unsigned long)__sched_text_end);
5893 }
5894 
5895 #ifdef CONFIG_CGROUP_SCHED
5896 /*
5897  * Default task group.
5898  * Every task in system belongs to this group at bootup.
5899  */
5900 struct task_group root_task_group;
5901 LIST_HEAD(task_groups);
5902 
5903 /* Cacheline aligned slab cache for task_group */
5904 static struct kmem_cache *task_group_cache __read_mostly;
5905 #endif
5906 
5907 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5908 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5909 
5910 void __init sched_init(void)
5911 {
5912 	int i, j;
5913 	unsigned long alloc_size = 0, ptr;
5914 
5915 	wait_bit_init();
5916 
5917 #ifdef CONFIG_FAIR_GROUP_SCHED
5918 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5919 #endif
5920 #ifdef CONFIG_RT_GROUP_SCHED
5921 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5922 #endif
5923 	if (alloc_size) {
5924 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5925 
5926 #ifdef CONFIG_FAIR_GROUP_SCHED
5927 		root_task_group.se = (struct sched_entity **)ptr;
5928 		ptr += nr_cpu_ids * sizeof(void **);
5929 
5930 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5931 		ptr += nr_cpu_ids * sizeof(void **);
5932 
5933 #endif /* CONFIG_FAIR_GROUP_SCHED */
5934 #ifdef CONFIG_RT_GROUP_SCHED
5935 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5936 		ptr += nr_cpu_ids * sizeof(void **);
5937 
5938 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5939 		ptr += nr_cpu_ids * sizeof(void **);
5940 
5941 #endif /* CONFIG_RT_GROUP_SCHED */
5942 	}
5943 #ifdef CONFIG_CPUMASK_OFFSTACK
5944 	for_each_possible_cpu(i) {
5945 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5946 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5947 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5948 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5949 	}
5950 #endif /* CONFIG_CPUMASK_OFFSTACK */
5951 
5952 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5953 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5954 
5955 #ifdef CONFIG_SMP
5956 	init_defrootdomain();
5957 #endif
5958 
5959 #ifdef CONFIG_RT_GROUP_SCHED
5960 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5961 			global_rt_period(), global_rt_runtime());
5962 #endif /* CONFIG_RT_GROUP_SCHED */
5963 
5964 #ifdef CONFIG_CGROUP_SCHED
5965 	task_group_cache = KMEM_CACHE(task_group, 0);
5966 
5967 	list_add(&root_task_group.list, &task_groups);
5968 	INIT_LIST_HEAD(&root_task_group.children);
5969 	INIT_LIST_HEAD(&root_task_group.siblings);
5970 	autogroup_init(&init_task);
5971 #endif /* CONFIG_CGROUP_SCHED */
5972 
5973 	for_each_possible_cpu(i) {
5974 		struct rq *rq;
5975 
5976 		rq = cpu_rq(i);
5977 		raw_spin_lock_init(&rq->lock);
5978 		rq->nr_running = 0;
5979 		rq->calc_load_active = 0;
5980 		rq->calc_load_update = jiffies + LOAD_FREQ;
5981 		init_cfs_rq(&rq->cfs);
5982 		init_rt_rq(&rq->rt);
5983 		init_dl_rq(&rq->dl);
5984 #ifdef CONFIG_FAIR_GROUP_SCHED
5985 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5986 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5987 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5988 		/*
5989 		 * How much CPU bandwidth does root_task_group get?
5990 		 *
5991 		 * In case of task-groups formed thr' the cgroup filesystem, it
5992 		 * gets 100% of the CPU resources in the system. This overall
5993 		 * system CPU resource is divided among the tasks of
5994 		 * root_task_group and its child task-groups in a fair manner,
5995 		 * based on each entity's (task or task-group's) weight
5996 		 * (se->load.weight).
5997 		 *
5998 		 * In other words, if root_task_group has 10 tasks of weight
5999 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6000 		 * then A0's share of the CPU resource is:
6001 		 *
6002 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6003 		 *
6004 		 * We achieve this by letting root_task_group's tasks sit
6005 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6006 		 */
6007 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6008 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6009 #endif /* CONFIG_FAIR_GROUP_SCHED */
6010 
6011 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6012 #ifdef CONFIG_RT_GROUP_SCHED
6013 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6014 #endif
6015 
6016 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6017 			rq->cpu_load[j] = 0;
6018 
6019 #ifdef CONFIG_SMP
6020 		rq->sd = NULL;
6021 		rq->rd = NULL;
6022 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6023 		rq->balance_callback = NULL;
6024 		rq->active_balance = 0;
6025 		rq->next_balance = jiffies;
6026 		rq->push_cpu = 0;
6027 		rq->cpu = i;
6028 		rq->online = 0;
6029 		rq->idle_stamp = 0;
6030 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6031 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6032 
6033 		INIT_LIST_HEAD(&rq->cfs_tasks);
6034 
6035 		rq_attach_root(rq, &def_root_domain);
6036 #ifdef CONFIG_NO_HZ_COMMON
6037 		rq->last_load_update_tick = jiffies;
6038 		rq->last_blocked_load_update_tick = jiffies;
6039 		atomic_set(&rq->nohz_flags, 0);
6040 #endif
6041 #endif /* CONFIG_SMP */
6042 		hrtick_rq_init(rq);
6043 		atomic_set(&rq->nr_iowait, 0);
6044 	}
6045 
6046 	set_load_weight(&init_task, false);
6047 
6048 	/*
6049 	 * The boot idle thread does lazy MMU switching as well:
6050 	 */
6051 	mmgrab(&init_mm);
6052 	enter_lazy_tlb(&init_mm, current);
6053 
6054 	/*
6055 	 * Make us the idle thread. Technically, schedule() should not be
6056 	 * called from this thread, however somewhere below it might be,
6057 	 * but because we are the idle thread, we just pick up running again
6058 	 * when this runqueue becomes "idle".
6059 	 */
6060 	init_idle(current, smp_processor_id());
6061 
6062 	calc_load_update = jiffies + LOAD_FREQ;
6063 
6064 #ifdef CONFIG_SMP
6065 	idle_thread_set_boot_cpu();
6066 #endif
6067 	init_sched_fair_class();
6068 
6069 	init_schedstats();
6070 
6071 	scheduler_running = 1;
6072 }
6073 
6074 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6075 static inline int preempt_count_equals(int preempt_offset)
6076 {
6077 	int nested = preempt_count() + rcu_preempt_depth();
6078 
6079 	return (nested == preempt_offset);
6080 }
6081 
6082 void __might_sleep(const char *file, int line, int preempt_offset)
6083 {
6084 	/*
6085 	 * Blocking primitives will set (and therefore destroy) current->state,
6086 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6087 	 * otherwise we will destroy state.
6088 	 */
6089 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6090 			"do not call blocking ops when !TASK_RUNNING; "
6091 			"state=%lx set at [<%p>] %pS\n",
6092 			current->state,
6093 			(void *)current->task_state_change,
6094 			(void *)current->task_state_change);
6095 
6096 	___might_sleep(file, line, preempt_offset);
6097 }
6098 EXPORT_SYMBOL(__might_sleep);
6099 
6100 void ___might_sleep(const char *file, int line, int preempt_offset)
6101 {
6102 	/* Ratelimiting timestamp: */
6103 	static unsigned long prev_jiffy;
6104 
6105 	unsigned long preempt_disable_ip;
6106 
6107 	/* WARN_ON_ONCE() by default, no rate limit required: */
6108 	rcu_sleep_check();
6109 
6110 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6111 	     !is_idle_task(current)) ||
6112 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6113 	    oops_in_progress)
6114 		return;
6115 
6116 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6117 		return;
6118 	prev_jiffy = jiffies;
6119 
6120 	/* Save this before calling printk(), since that will clobber it: */
6121 	preempt_disable_ip = get_preempt_disable_ip(current);
6122 
6123 	printk(KERN_ERR
6124 		"BUG: sleeping function called from invalid context at %s:%d\n",
6125 			file, line);
6126 	printk(KERN_ERR
6127 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6128 			in_atomic(), irqs_disabled(),
6129 			current->pid, current->comm);
6130 
6131 	if (task_stack_end_corrupted(current))
6132 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6133 
6134 	debug_show_held_locks(current);
6135 	if (irqs_disabled())
6136 		print_irqtrace_events(current);
6137 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6138 	    && !preempt_count_equals(preempt_offset)) {
6139 		pr_err("Preemption disabled at:");
6140 		print_ip_sym(preempt_disable_ip);
6141 		pr_cont("\n");
6142 	}
6143 	dump_stack();
6144 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6145 }
6146 EXPORT_SYMBOL(___might_sleep);
6147 #endif
6148 
6149 #ifdef CONFIG_MAGIC_SYSRQ
6150 void normalize_rt_tasks(void)
6151 {
6152 	struct task_struct *g, *p;
6153 	struct sched_attr attr = {
6154 		.sched_policy = SCHED_NORMAL,
6155 	};
6156 
6157 	read_lock(&tasklist_lock);
6158 	for_each_process_thread(g, p) {
6159 		/*
6160 		 * Only normalize user tasks:
6161 		 */
6162 		if (p->flags & PF_KTHREAD)
6163 			continue;
6164 
6165 		p->se.exec_start = 0;
6166 		schedstat_set(p->se.statistics.wait_start,  0);
6167 		schedstat_set(p->se.statistics.sleep_start, 0);
6168 		schedstat_set(p->se.statistics.block_start, 0);
6169 
6170 		if (!dl_task(p) && !rt_task(p)) {
6171 			/*
6172 			 * Renice negative nice level userspace
6173 			 * tasks back to 0:
6174 			 */
6175 			if (task_nice(p) < 0)
6176 				set_user_nice(p, 0);
6177 			continue;
6178 		}
6179 
6180 		__sched_setscheduler(p, &attr, false, false);
6181 	}
6182 	read_unlock(&tasklist_lock);
6183 }
6184 
6185 #endif /* CONFIG_MAGIC_SYSRQ */
6186 
6187 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6188 /*
6189  * These functions are only useful for the IA64 MCA handling, or kdb.
6190  *
6191  * They can only be called when the whole system has been
6192  * stopped - every CPU needs to be quiescent, and no scheduling
6193  * activity can take place. Using them for anything else would
6194  * be a serious bug, and as a result, they aren't even visible
6195  * under any other configuration.
6196  */
6197 
6198 /**
6199  * curr_task - return the current task for a given CPU.
6200  * @cpu: the processor in question.
6201  *
6202  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6203  *
6204  * Return: The current task for @cpu.
6205  */
6206 struct task_struct *curr_task(int cpu)
6207 {
6208 	return cpu_curr(cpu);
6209 }
6210 
6211 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6212 
6213 #ifdef CONFIG_IA64
6214 /**
6215  * set_curr_task - set the current task for a given CPU.
6216  * @cpu: the processor in question.
6217  * @p: the task pointer to set.
6218  *
6219  * Description: This function must only be used when non-maskable interrupts
6220  * are serviced on a separate stack. It allows the architecture to switch the
6221  * notion of the current task on a CPU in a non-blocking manner. This function
6222  * must be called with all CPU's synchronized, and interrupts disabled, the
6223  * and caller must save the original value of the current task (see
6224  * curr_task() above) and restore that value before reenabling interrupts and
6225  * re-starting the system.
6226  *
6227  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6228  */
6229 void ia64_set_curr_task(int cpu, struct task_struct *p)
6230 {
6231 	cpu_curr(cpu) = p;
6232 }
6233 
6234 #endif
6235 
6236 #ifdef CONFIG_CGROUP_SCHED
6237 /* task_group_lock serializes the addition/removal of task groups */
6238 static DEFINE_SPINLOCK(task_group_lock);
6239 
6240 static void sched_free_group(struct task_group *tg)
6241 {
6242 	free_fair_sched_group(tg);
6243 	free_rt_sched_group(tg);
6244 	autogroup_free(tg);
6245 	kmem_cache_free(task_group_cache, tg);
6246 }
6247 
6248 /* allocate runqueue etc for a new task group */
6249 struct task_group *sched_create_group(struct task_group *parent)
6250 {
6251 	struct task_group *tg;
6252 
6253 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6254 	if (!tg)
6255 		return ERR_PTR(-ENOMEM);
6256 
6257 	if (!alloc_fair_sched_group(tg, parent))
6258 		goto err;
6259 
6260 	if (!alloc_rt_sched_group(tg, parent))
6261 		goto err;
6262 
6263 	return tg;
6264 
6265 err:
6266 	sched_free_group(tg);
6267 	return ERR_PTR(-ENOMEM);
6268 }
6269 
6270 void sched_online_group(struct task_group *tg, struct task_group *parent)
6271 {
6272 	unsigned long flags;
6273 
6274 	spin_lock_irqsave(&task_group_lock, flags);
6275 	list_add_rcu(&tg->list, &task_groups);
6276 
6277 	/* Root should already exist: */
6278 	WARN_ON(!parent);
6279 
6280 	tg->parent = parent;
6281 	INIT_LIST_HEAD(&tg->children);
6282 	list_add_rcu(&tg->siblings, &parent->children);
6283 	spin_unlock_irqrestore(&task_group_lock, flags);
6284 
6285 	online_fair_sched_group(tg);
6286 }
6287 
6288 /* rcu callback to free various structures associated with a task group */
6289 static void sched_free_group_rcu(struct rcu_head *rhp)
6290 {
6291 	/* Now it should be safe to free those cfs_rqs: */
6292 	sched_free_group(container_of(rhp, struct task_group, rcu));
6293 }
6294 
6295 void sched_destroy_group(struct task_group *tg)
6296 {
6297 	/* Wait for possible concurrent references to cfs_rqs complete: */
6298 	call_rcu(&tg->rcu, sched_free_group_rcu);
6299 }
6300 
6301 void sched_offline_group(struct task_group *tg)
6302 {
6303 	unsigned long flags;
6304 
6305 	/* End participation in shares distribution: */
6306 	unregister_fair_sched_group(tg);
6307 
6308 	spin_lock_irqsave(&task_group_lock, flags);
6309 	list_del_rcu(&tg->list);
6310 	list_del_rcu(&tg->siblings);
6311 	spin_unlock_irqrestore(&task_group_lock, flags);
6312 }
6313 
6314 static void sched_change_group(struct task_struct *tsk, int type)
6315 {
6316 	struct task_group *tg;
6317 
6318 	/*
6319 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6320 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6321 	 * to prevent lockdep warnings.
6322 	 */
6323 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6324 			  struct task_group, css);
6325 	tg = autogroup_task_group(tsk, tg);
6326 	tsk->sched_task_group = tg;
6327 
6328 #ifdef CONFIG_FAIR_GROUP_SCHED
6329 	if (tsk->sched_class->task_change_group)
6330 		tsk->sched_class->task_change_group(tsk, type);
6331 	else
6332 #endif
6333 		set_task_rq(tsk, task_cpu(tsk));
6334 }
6335 
6336 /*
6337  * Change task's runqueue when it moves between groups.
6338  *
6339  * The caller of this function should have put the task in its new group by
6340  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6341  * its new group.
6342  */
6343 void sched_move_task(struct task_struct *tsk)
6344 {
6345 	int queued, running, queue_flags =
6346 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6347 	struct rq_flags rf;
6348 	struct rq *rq;
6349 
6350 	rq = task_rq_lock(tsk, &rf);
6351 	update_rq_clock(rq);
6352 
6353 	running = task_current(rq, tsk);
6354 	queued = task_on_rq_queued(tsk);
6355 
6356 	if (queued)
6357 		dequeue_task(rq, tsk, queue_flags);
6358 	if (running)
6359 		put_prev_task(rq, tsk);
6360 
6361 	sched_change_group(tsk, TASK_MOVE_GROUP);
6362 
6363 	if (queued)
6364 		enqueue_task(rq, tsk, queue_flags);
6365 	if (running)
6366 		set_curr_task(rq, tsk);
6367 
6368 	task_rq_unlock(rq, tsk, &rf);
6369 }
6370 
6371 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6372 {
6373 	return css ? container_of(css, struct task_group, css) : NULL;
6374 }
6375 
6376 static struct cgroup_subsys_state *
6377 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6378 {
6379 	struct task_group *parent = css_tg(parent_css);
6380 	struct task_group *tg;
6381 
6382 	if (!parent) {
6383 		/* This is early initialization for the top cgroup */
6384 		return &root_task_group.css;
6385 	}
6386 
6387 	tg = sched_create_group(parent);
6388 	if (IS_ERR(tg))
6389 		return ERR_PTR(-ENOMEM);
6390 
6391 	return &tg->css;
6392 }
6393 
6394 /* Expose task group only after completing cgroup initialization */
6395 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6396 {
6397 	struct task_group *tg = css_tg(css);
6398 	struct task_group *parent = css_tg(css->parent);
6399 
6400 	if (parent)
6401 		sched_online_group(tg, parent);
6402 	return 0;
6403 }
6404 
6405 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6406 {
6407 	struct task_group *tg = css_tg(css);
6408 
6409 	sched_offline_group(tg);
6410 }
6411 
6412 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6413 {
6414 	struct task_group *tg = css_tg(css);
6415 
6416 	/*
6417 	 * Relies on the RCU grace period between css_released() and this.
6418 	 */
6419 	sched_free_group(tg);
6420 }
6421 
6422 /*
6423  * This is called before wake_up_new_task(), therefore we really only
6424  * have to set its group bits, all the other stuff does not apply.
6425  */
6426 static void cpu_cgroup_fork(struct task_struct *task)
6427 {
6428 	struct rq_flags rf;
6429 	struct rq *rq;
6430 
6431 	rq = task_rq_lock(task, &rf);
6432 
6433 	update_rq_clock(rq);
6434 	sched_change_group(task, TASK_SET_GROUP);
6435 
6436 	task_rq_unlock(rq, task, &rf);
6437 }
6438 
6439 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6440 {
6441 	struct task_struct *task;
6442 	struct cgroup_subsys_state *css;
6443 	int ret = 0;
6444 
6445 	cgroup_taskset_for_each(task, css, tset) {
6446 #ifdef CONFIG_RT_GROUP_SCHED
6447 		if (!sched_rt_can_attach(css_tg(css), task))
6448 			return -EINVAL;
6449 #else
6450 		/* We don't support RT-tasks being in separate groups */
6451 		if (task->sched_class != &fair_sched_class)
6452 			return -EINVAL;
6453 #endif
6454 		/*
6455 		 * Serialize against wake_up_new_task() such that if its
6456 		 * running, we're sure to observe its full state.
6457 		 */
6458 		raw_spin_lock_irq(&task->pi_lock);
6459 		/*
6460 		 * Avoid calling sched_move_task() before wake_up_new_task()
6461 		 * has happened. This would lead to problems with PELT, due to
6462 		 * move wanting to detach+attach while we're not attached yet.
6463 		 */
6464 		if (task->state == TASK_NEW)
6465 			ret = -EINVAL;
6466 		raw_spin_unlock_irq(&task->pi_lock);
6467 
6468 		if (ret)
6469 			break;
6470 	}
6471 	return ret;
6472 }
6473 
6474 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6475 {
6476 	struct task_struct *task;
6477 	struct cgroup_subsys_state *css;
6478 
6479 	cgroup_taskset_for_each(task, css, tset)
6480 		sched_move_task(task);
6481 }
6482 
6483 #ifdef CONFIG_FAIR_GROUP_SCHED
6484 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6485 				struct cftype *cftype, u64 shareval)
6486 {
6487 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6488 }
6489 
6490 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6491 			       struct cftype *cft)
6492 {
6493 	struct task_group *tg = css_tg(css);
6494 
6495 	return (u64) scale_load_down(tg->shares);
6496 }
6497 
6498 #ifdef CONFIG_CFS_BANDWIDTH
6499 static DEFINE_MUTEX(cfs_constraints_mutex);
6500 
6501 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6502 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6503 
6504 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6505 
6506 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6507 {
6508 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6509 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6510 
6511 	if (tg == &root_task_group)
6512 		return -EINVAL;
6513 
6514 	/*
6515 	 * Ensure we have at some amount of bandwidth every period.  This is
6516 	 * to prevent reaching a state of large arrears when throttled via
6517 	 * entity_tick() resulting in prolonged exit starvation.
6518 	 */
6519 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6520 		return -EINVAL;
6521 
6522 	/*
6523 	 * Likewise, bound things on the otherside by preventing insane quota
6524 	 * periods.  This also allows us to normalize in computing quota
6525 	 * feasibility.
6526 	 */
6527 	if (period > max_cfs_quota_period)
6528 		return -EINVAL;
6529 
6530 	/*
6531 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6532 	 * unthrottle_offline_cfs_rqs().
6533 	 */
6534 	get_online_cpus();
6535 	mutex_lock(&cfs_constraints_mutex);
6536 	ret = __cfs_schedulable(tg, period, quota);
6537 	if (ret)
6538 		goto out_unlock;
6539 
6540 	runtime_enabled = quota != RUNTIME_INF;
6541 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6542 	/*
6543 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6544 	 * before making related changes, and on->off must occur afterwards
6545 	 */
6546 	if (runtime_enabled && !runtime_was_enabled)
6547 		cfs_bandwidth_usage_inc();
6548 	raw_spin_lock_irq(&cfs_b->lock);
6549 	cfs_b->period = ns_to_ktime(period);
6550 	cfs_b->quota = quota;
6551 
6552 	__refill_cfs_bandwidth_runtime(cfs_b);
6553 
6554 	/* Restart the period timer (if active) to handle new period expiry: */
6555 	if (runtime_enabled)
6556 		start_cfs_bandwidth(cfs_b);
6557 
6558 	raw_spin_unlock_irq(&cfs_b->lock);
6559 
6560 	for_each_online_cpu(i) {
6561 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6562 		struct rq *rq = cfs_rq->rq;
6563 		struct rq_flags rf;
6564 
6565 		rq_lock_irq(rq, &rf);
6566 		cfs_rq->runtime_enabled = runtime_enabled;
6567 		cfs_rq->runtime_remaining = 0;
6568 
6569 		if (cfs_rq->throttled)
6570 			unthrottle_cfs_rq(cfs_rq);
6571 		rq_unlock_irq(rq, &rf);
6572 	}
6573 	if (runtime_was_enabled && !runtime_enabled)
6574 		cfs_bandwidth_usage_dec();
6575 out_unlock:
6576 	mutex_unlock(&cfs_constraints_mutex);
6577 	put_online_cpus();
6578 
6579 	return ret;
6580 }
6581 
6582 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6583 {
6584 	u64 quota, period;
6585 
6586 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6587 	if (cfs_quota_us < 0)
6588 		quota = RUNTIME_INF;
6589 	else
6590 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6591 
6592 	return tg_set_cfs_bandwidth(tg, period, quota);
6593 }
6594 
6595 long tg_get_cfs_quota(struct task_group *tg)
6596 {
6597 	u64 quota_us;
6598 
6599 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6600 		return -1;
6601 
6602 	quota_us = tg->cfs_bandwidth.quota;
6603 	do_div(quota_us, NSEC_PER_USEC);
6604 
6605 	return quota_us;
6606 }
6607 
6608 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6609 {
6610 	u64 quota, period;
6611 
6612 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6613 	quota = tg->cfs_bandwidth.quota;
6614 
6615 	return tg_set_cfs_bandwidth(tg, period, quota);
6616 }
6617 
6618 long tg_get_cfs_period(struct task_group *tg)
6619 {
6620 	u64 cfs_period_us;
6621 
6622 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6623 	do_div(cfs_period_us, NSEC_PER_USEC);
6624 
6625 	return cfs_period_us;
6626 }
6627 
6628 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6629 				  struct cftype *cft)
6630 {
6631 	return tg_get_cfs_quota(css_tg(css));
6632 }
6633 
6634 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6635 				   struct cftype *cftype, s64 cfs_quota_us)
6636 {
6637 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6638 }
6639 
6640 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6641 				   struct cftype *cft)
6642 {
6643 	return tg_get_cfs_period(css_tg(css));
6644 }
6645 
6646 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6647 				    struct cftype *cftype, u64 cfs_period_us)
6648 {
6649 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6650 }
6651 
6652 struct cfs_schedulable_data {
6653 	struct task_group *tg;
6654 	u64 period, quota;
6655 };
6656 
6657 /*
6658  * normalize group quota/period to be quota/max_period
6659  * note: units are usecs
6660  */
6661 static u64 normalize_cfs_quota(struct task_group *tg,
6662 			       struct cfs_schedulable_data *d)
6663 {
6664 	u64 quota, period;
6665 
6666 	if (tg == d->tg) {
6667 		period = d->period;
6668 		quota = d->quota;
6669 	} else {
6670 		period = tg_get_cfs_period(tg);
6671 		quota = tg_get_cfs_quota(tg);
6672 	}
6673 
6674 	/* note: these should typically be equivalent */
6675 	if (quota == RUNTIME_INF || quota == -1)
6676 		return RUNTIME_INF;
6677 
6678 	return to_ratio(period, quota);
6679 }
6680 
6681 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6682 {
6683 	struct cfs_schedulable_data *d = data;
6684 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6685 	s64 quota = 0, parent_quota = -1;
6686 
6687 	if (!tg->parent) {
6688 		quota = RUNTIME_INF;
6689 	} else {
6690 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6691 
6692 		quota = normalize_cfs_quota(tg, d);
6693 		parent_quota = parent_b->hierarchical_quota;
6694 
6695 		/*
6696 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6697 		 * always take the min.  On cgroup1, only inherit when no
6698 		 * limit is set:
6699 		 */
6700 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6701 			quota = min(quota, parent_quota);
6702 		} else {
6703 			if (quota == RUNTIME_INF)
6704 				quota = parent_quota;
6705 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6706 				return -EINVAL;
6707 		}
6708 	}
6709 	cfs_b->hierarchical_quota = quota;
6710 
6711 	return 0;
6712 }
6713 
6714 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6715 {
6716 	int ret;
6717 	struct cfs_schedulable_data data = {
6718 		.tg = tg,
6719 		.period = period,
6720 		.quota = quota,
6721 	};
6722 
6723 	if (quota != RUNTIME_INF) {
6724 		do_div(data.period, NSEC_PER_USEC);
6725 		do_div(data.quota, NSEC_PER_USEC);
6726 	}
6727 
6728 	rcu_read_lock();
6729 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6730 	rcu_read_unlock();
6731 
6732 	return ret;
6733 }
6734 
6735 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6736 {
6737 	struct task_group *tg = css_tg(seq_css(sf));
6738 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6739 
6740 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6741 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6742 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6743 
6744 	if (schedstat_enabled() && tg != &root_task_group) {
6745 		u64 ws = 0;
6746 		int i;
6747 
6748 		for_each_possible_cpu(i)
6749 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6750 
6751 		seq_printf(sf, "wait_sum %llu\n", ws);
6752 	}
6753 
6754 	return 0;
6755 }
6756 #endif /* CONFIG_CFS_BANDWIDTH */
6757 #endif /* CONFIG_FAIR_GROUP_SCHED */
6758 
6759 #ifdef CONFIG_RT_GROUP_SCHED
6760 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6761 				struct cftype *cft, s64 val)
6762 {
6763 	return sched_group_set_rt_runtime(css_tg(css), val);
6764 }
6765 
6766 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6767 			       struct cftype *cft)
6768 {
6769 	return sched_group_rt_runtime(css_tg(css));
6770 }
6771 
6772 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6773 				    struct cftype *cftype, u64 rt_period_us)
6774 {
6775 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6776 }
6777 
6778 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6779 				   struct cftype *cft)
6780 {
6781 	return sched_group_rt_period(css_tg(css));
6782 }
6783 #endif /* CONFIG_RT_GROUP_SCHED */
6784 
6785 static struct cftype cpu_legacy_files[] = {
6786 #ifdef CONFIG_FAIR_GROUP_SCHED
6787 	{
6788 		.name = "shares",
6789 		.read_u64 = cpu_shares_read_u64,
6790 		.write_u64 = cpu_shares_write_u64,
6791 	},
6792 #endif
6793 #ifdef CONFIG_CFS_BANDWIDTH
6794 	{
6795 		.name = "cfs_quota_us",
6796 		.read_s64 = cpu_cfs_quota_read_s64,
6797 		.write_s64 = cpu_cfs_quota_write_s64,
6798 	},
6799 	{
6800 		.name = "cfs_period_us",
6801 		.read_u64 = cpu_cfs_period_read_u64,
6802 		.write_u64 = cpu_cfs_period_write_u64,
6803 	},
6804 	{
6805 		.name = "stat",
6806 		.seq_show = cpu_cfs_stat_show,
6807 	},
6808 #endif
6809 #ifdef CONFIG_RT_GROUP_SCHED
6810 	{
6811 		.name = "rt_runtime_us",
6812 		.read_s64 = cpu_rt_runtime_read,
6813 		.write_s64 = cpu_rt_runtime_write,
6814 	},
6815 	{
6816 		.name = "rt_period_us",
6817 		.read_u64 = cpu_rt_period_read_uint,
6818 		.write_u64 = cpu_rt_period_write_uint,
6819 	},
6820 #endif
6821 	{ }	/* Terminate */
6822 };
6823 
6824 static int cpu_extra_stat_show(struct seq_file *sf,
6825 			       struct cgroup_subsys_state *css)
6826 {
6827 #ifdef CONFIG_CFS_BANDWIDTH
6828 	{
6829 		struct task_group *tg = css_tg(css);
6830 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6831 		u64 throttled_usec;
6832 
6833 		throttled_usec = cfs_b->throttled_time;
6834 		do_div(throttled_usec, NSEC_PER_USEC);
6835 
6836 		seq_printf(sf, "nr_periods %d\n"
6837 			   "nr_throttled %d\n"
6838 			   "throttled_usec %llu\n",
6839 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6840 			   throttled_usec);
6841 	}
6842 #endif
6843 	return 0;
6844 }
6845 
6846 #ifdef CONFIG_FAIR_GROUP_SCHED
6847 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6848 			       struct cftype *cft)
6849 {
6850 	struct task_group *tg = css_tg(css);
6851 	u64 weight = scale_load_down(tg->shares);
6852 
6853 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6854 }
6855 
6856 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6857 				struct cftype *cft, u64 weight)
6858 {
6859 	/*
6860 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6861 	 * values which are 1, 100 and 10000 respectively.  While it loses
6862 	 * a bit of range on both ends, it maps pretty well onto the shares
6863 	 * value used by scheduler and the round-trip conversions preserve
6864 	 * the original value over the entire range.
6865 	 */
6866 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6867 		return -ERANGE;
6868 
6869 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6870 
6871 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6872 }
6873 
6874 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6875 				    struct cftype *cft)
6876 {
6877 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6878 	int last_delta = INT_MAX;
6879 	int prio, delta;
6880 
6881 	/* find the closest nice value to the current weight */
6882 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6883 		delta = abs(sched_prio_to_weight[prio] - weight);
6884 		if (delta >= last_delta)
6885 			break;
6886 		last_delta = delta;
6887 	}
6888 
6889 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6890 }
6891 
6892 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6893 				     struct cftype *cft, s64 nice)
6894 {
6895 	unsigned long weight;
6896 	int idx;
6897 
6898 	if (nice < MIN_NICE || nice > MAX_NICE)
6899 		return -ERANGE;
6900 
6901 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6902 	idx = array_index_nospec(idx, 40);
6903 	weight = sched_prio_to_weight[idx];
6904 
6905 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6906 }
6907 #endif
6908 
6909 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6910 						  long period, long quota)
6911 {
6912 	if (quota < 0)
6913 		seq_puts(sf, "max");
6914 	else
6915 		seq_printf(sf, "%ld", quota);
6916 
6917 	seq_printf(sf, " %ld\n", period);
6918 }
6919 
6920 /* caller should put the current value in *@periodp before calling */
6921 static int __maybe_unused cpu_period_quota_parse(char *buf,
6922 						 u64 *periodp, u64 *quotap)
6923 {
6924 	char tok[21];	/* U64_MAX */
6925 
6926 	if (!sscanf(buf, "%s %llu", tok, periodp))
6927 		return -EINVAL;
6928 
6929 	*periodp *= NSEC_PER_USEC;
6930 
6931 	if (sscanf(tok, "%llu", quotap))
6932 		*quotap *= NSEC_PER_USEC;
6933 	else if (!strcmp(tok, "max"))
6934 		*quotap = RUNTIME_INF;
6935 	else
6936 		return -EINVAL;
6937 
6938 	return 0;
6939 }
6940 
6941 #ifdef CONFIG_CFS_BANDWIDTH
6942 static int cpu_max_show(struct seq_file *sf, void *v)
6943 {
6944 	struct task_group *tg = css_tg(seq_css(sf));
6945 
6946 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6947 	return 0;
6948 }
6949 
6950 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6951 			     char *buf, size_t nbytes, loff_t off)
6952 {
6953 	struct task_group *tg = css_tg(of_css(of));
6954 	u64 period = tg_get_cfs_period(tg);
6955 	u64 quota;
6956 	int ret;
6957 
6958 	ret = cpu_period_quota_parse(buf, &period, &quota);
6959 	if (!ret)
6960 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6961 	return ret ?: nbytes;
6962 }
6963 #endif
6964 
6965 static struct cftype cpu_files[] = {
6966 #ifdef CONFIG_FAIR_GROUP_SCHED
6967 	{
6968 		.name = "weight",
6969 		.flags = CFTYPE_NOT_ON_ROOT,
6970 		.read_u64 = cpu_weight_read_u64,
6971 		.write_u64 = cpu_weight_write_u64,
6972 	},
6973 	{
6974 		.name = "weight.nice",
6975 		.flags = CFTYPE_NOT_ON_ROOT,
6976 		.read_s64 = cpu_weight_nice_read_s64,
6977 		.write_s64 = cpu_weight_nice_write_s64,
6978 	},
6979 #endif
6980 #ifdef CONFIG_CFS_BANDWIDTH
6981 	{
6982 		.name = "max",
6983 		.flags = CFTYPE_NOT_ON_ROOT,
6984 		.seq_show = cpu_max_show,
6985 		.write = cpu_max_write,
6986 	},
6987 #endif
6988 	{ }	/* terminate */
6989 };
6990 
6991 struct cgroup_subsys cpu_cgrp_subsys = {
6992 	.css_alloc	= cpu_cgroup_css_alloc,
6993 	.css_online	= cpu_cgroup_css_online,
6994 	.css_released	= cpu_cgroup_css_released,
6995 	.css_free	= cpu_cgroup_css_free,
6996 	.css_extra_stat_show = cpu_extra_stat_show,
6997 	.fork		= cpu_cgroup_fork,
6998 	.can_attach	= cpu_cgroup_can_attach,
6999 	.attach		= cpu_cgroup_attach,
7000 	.legacy_cftypes	= cpu_legacy_files,
7001 	.dfl_cftypes	= cpu_files,
7002 	.early_init	= true,
7003 	.threaded	= true,
7004 };
7005 
7006 #endif	/* CONFIG_CGROUP_SCHED */
7007 
7008 void dump_cpu_task(int cpu)
7009 {
7010 	pr_info("Task dump for CPU %d:\n", cpu);
7011 	sched_show_task(cpu_curr(cpu));
7012 }
7013 
7014 /*
7015  * Nice levels are multiplicative, with a gentle 10% change for every
7016  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7017  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7018  * that remained on nice 0.
7019  *
7020  * The "10% effect" is relative and cumulative: from _any_ nice level,
7021  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7022  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7023  * If a task goes up by ~10% and another task goes down by ~10% then
7024  * the relative distance between them is ~25%.)
7025  */
7026 const int sched_prio_to_weight[40] = {
7027  /* -20 */     88761,     71755,     56483,     46273,     36291,
7028  /* -15 */     29154,     23254,     18705,     14949,     11916,
7029  /* -10 */      9548,      7620,      6100,      4904,      3906,
7030  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7031  /*   0 */      1024,       820,       655,       526,       423,
7032  /*   5 */       335,       272,       215,       172,       137,
7033  /*  10 */       110,        87,        70,        56,        45,
7034  /*  15 */        36,        29,        23,        18,        15,
7035 };
7036 
7037 /*
7038  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7039  *
7040  * In cases where the weight does not change often, we can use the
7041  * precalculated inverse to speed up arithmetics by turning divisions
7042  * into multiplications:
7043  */
7044 const u32 sched_prio_to_wmult[40] = {
7045  /* -20 */     48388,     59856,     76040,     92818,    118348,
7046  /* -15 */    147320,    184698,    229616,    287308,    360437,
7047  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7048  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7049  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7050  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7051  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7052  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7053 };
7054 
7055 #undef CREATE_TRACE_POINTS
7056