1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/nospec.h> 11 12 #include <linux/kcov.h> 13 14 #include <asm/switch_to.h> 15 #include <asm/tlb.h> 16 17 #include "../workqueue_internal.h" 18 #include "../smpboot.h" 19 20 #include "pelt.h" 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/sched.h> 24 25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 26 27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 28 /* 29 * Debugging: various feature bits 30 * 31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 32 * sysctl_sched_features, defined in sched.h, to allow constants propagation 33 * at compile time and compiler optimization based on features default. 34 */ 35 #define SCHED_FEAT(name, enabled) \ 36 (1UL << __SCHED_FEAT_##name) * enabled | 37 const_debug unsigned int sysctl_sched_features = 38 #include "features.h" 39 0; 40 #undef SCHED_FEAT 41 #endif 42 43 /* 44 * Number of tasks to iterate in a single balance run. 45 * Limited because this is done with IRQs disabled. 46 */ 47 const_debug unsigned int sysctl_sched_nr_migrate = 32; 48 49 /* 50 * period over which we measure -rt task CPU usage in us. 51 * default: 1s 52 */ 53 unsigned int sysctl_sched_rt_period = 1000000; 54 55 __read_mostly int scheduler_running; 56 57 /* 58 * part of the period that we allow rt tasks to run in us. 59 * default: 0.95s 60 */ 61 int sysctl_sched_rt_runtime = 950000; 62 63 /* 64 * __task_rq_lock - lock the rq @p resides on. 65 */ 66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 67 __acquires(rq->lock) 68 { 69 struct rq *rq; 70 71 lockdep_assert_held(&p->pi_lock); 72 73 for (;;) { 74 rq = task_rq(p); 75 raw_spin_lock(&rq->lock); 76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 77 rq_pin_lock(rq, rf); 78 return rq; 79 } 80 raw_spin_unlock(&rq->lock); 81 82 while (unlikely(task_on_rq_migrating(p))) 83 cpu_relax(); 84 } 85 } 86 87 /* 88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 89 */ 90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 91 __acquires(p->pi_lock) 92 __acquires(rq->lock) 93 { 94 struct rq *rq; 95 96 for (;;) { 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 98 rq = task_rq(p); 99 raw_spin_lock(&rq->lock); 100 /* 101 * move_queued_task() task_rq_lock() 102 * 103 * ACQUIRE (rq->lock) 104 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 106 * [S] ->cpu = new_cpu [L] task_rq() 107 * [L] ->on_rq 108 * RELEASE (rq->lock) 109 * 110 * If we observe the old CPU in task_rq_lock, the acquire of 111 * the old rq->lock will fully serialize against the stores. 112 * 113 * If we observe the new CPU in task_rq_lock, the acquire will 114 * pair with the WMB to ensure we must then also see migrating. 115 */ 116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 117 rq_pin_lock(rq, rf); 118 return rq; 119 } 120 raw_spin_unlock(&rq->lock); 121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 122 123 while (unlikely(task_on_rq_migrating(p))) 124 cpu_relax(); 125 } 126 } 127 128 /* 129 * RQ-clock updating methods: 130 */ 131 132 static void update_rq_clock_task(struct rq *rq, s64 delta) 133 { 134 /* 135 * In theory, the compile should just see 0 here, and optimize out the call 136 * to sched_rt_avg_update. But I don't trust it... 137 */ 138 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 139 s64 steal = 0, irq_delta = 0; 140 #endif 141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 142 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 143 144 /* 145 * Since irq_time is only updated on {soft,}irq_exit, we might run into 146 * this case when a previous update_rq_clock() happened inside a 147 * {soft,}irq region. 148 * 149 * When this happens, we stop ->clock_task and only update the 150 * prev_irq_time stamp to account for the part that fit, so that a next 151 * update will consume the rest. This ensures ->clock_task is 152 * monotonic. 153 * 154 * It does however cause some slight miss-attribution of {soft,}irq 155 * time, a more accurate solution would be to update the irq_time using 156 * the current rq->clock timestamp, except that would require using 157 * atomic ops. 158 */ 159 if (irq_delta > delta) 160 irq_delta = delta; 161 162 rq->prev_irq_time += irq_delta; 163 delta -= irq_delta; 164 #endif 165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 166 if (static_key_false((¶virt_steal_rq_enabled))) { 167 steal = paravirt_steal_clock(cpu_of(rq)); 168 steal -= rq->prev_steal_time_rq; 169 170 if (unlikely(steal > delta)) 171 steal = delta; 172 173 rq->prev_steal_time_rq += steal; 174 delta -= steal; 175 } 176 #endif 177 178 rq->clock_task += delta; 179 180 #ifdef HAVE_SCHED_AVG_IRQ 181 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 182 update_irq_load_avg(rq, irq_delta + steal); 183 #endif 184 } 185 186 void update_rq_clock(struct rq *rq) 187 { 188 s64 delta; 189 190 lockdep_assert_held(&rq->lock); 191 192 if (rq->clock_update_flags & RQCF_ACT_SKIP) 193 return; 194 195 #ifdef CONFIG_SCHED_DEBUG 196 if (sched_feat(WARN_DOUBLE_CLOCK)) 197 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 198 rq->clock_update_flags |= RQCF_UPDATED; 199 #endif 200 201 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 202 if (delta < 0) 203 return; 204 rq->clock += delta; 205 update_rq_clock_task(rq, delta); 206 } 207 208 209 #ifdef CONFIG_SCHED_HRTICK 210 /* 211 * Use HR-timers to deliver accurate preemption points. 212 */ 213 214 static void hrtick_clear(struct rq *rq) 215 { 216 if (hrtimer_active(&rq->hrtick_timer)) 217 hrtimer_cancel(&rq->hrtick_timer); 218 } 219 220 /* 221 * High-resolution timer tick. 222 * Runs from hardirq context with interrupts disabled. 223 */ 224 static enum hrtimer_restart hrtick(struct hrtimer *timer) 225 { 226 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 227 struct rq_flags rf; 228 229 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 230 231 rq_lock(rq, &rf); 232 update_rq_clock(rq); 233 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 234 rq_unlock(rq, &rf); 235 236 return HRTIMER_NORESTART; 237 } 238 239 #ifdef CONFIG_SMP 240 241 static void __hrtick_restart(struct rq *rq) 242 { 243 struct hrtimer *timer = &rq->hrtick_timer; 244 245 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 246 } 247 248 /* 249 * called from hardirq (IPI) context 250 */ 251 static void __hrtick_start(void *arg) 252 { 253 struct rq *rq = arg; 254 struct rq_flags rf; 255 256 rq_lock(rq, &rf); 257 __hrtick_restart(rq); 258 rq->hrtick_csd_pending = 0; 259 rq_unlock(rq, &rf); 260 } 261 262 /* 263 * Called to set the hrtick timer state. 264 * 265 * called with rq->lock held and irqs disabled 266 */ 267 void hrtick_start(struct rq *rq, u64 delay) 268 { 269 struct hrtimer *timer = &rq->hrtick_timer; 270 ktime_t time; 271 s64 delta; 272 273 /* 274 * Don't schedule slices shorter than 10000ns, that just 275 * doesn't make sense and can cause timer DoS. 276 */ 277 delta = max_t(s64, delay, 10000LL); 278 time = ktime_add_ns(timer->base->get_time(), delta); 279 280 hrtimer_set_expires(timer, time); 281 282 if (rq == this_rq()) { 283 __hrtick_restart(rq); 284 } else if (!rq->hrtick_csd_pending) { 285 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 286 rq->hrtick_csd_pending = 1; 287 } 288 } 289 290 #else 291 /* 292 * Called to set the hrtick timer state. 293 * 294 * called with rq->lock held and irqs disabled 295 */ 296 void hrtick_start(struct rq *rq, u64 delay) 297 { 298 /* 299 * Don't schedule slices shorter than 10000ns, that just 300 * doesn't make sense. Rely on vruntime for fairness. 301 */ 302 delay = max_t(u64, delay, 10000LL); 303 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 304 HRTIMER_MODE_REL_PINNED); 305 } 306 #endif /* CONFIG_SMP */ 307 308 static void hrtick_rq_init(struct rq *rq) 309 { 310 #ifdef CONFIG_SMP 311 rq->hrtick_csd_pending = 0; 312 313 rq->hrtick_csd.flags = 0; 314 rq->hrtick_csd.func = __hrtick_start; 315 rq->hrtick_csd.info = rq; 316 #endif 317 318 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 319 rq->hrtick_timer.function = hrtick; 320 } 321 #else /* CONFIG_SCHED_HRTICK */ 322 static inline void hrtick_clear(struct rq *rq) 323 { 324 } 325 326 static inline void hrtick_rq_init(struct rq *rq) 327 { 328 } 329 #endif /* CONFIG_SCHED_HRTICK */ 330 331 /* 332 * cmpxchg based fetch_or, macro so it works for different integer types 333 */ 334 #define fetch_or(ptr, mask) \ 335 ({ \ 336 typeof(ptr) _ptr = (ptr); \ 337 typeof(mask) _mask = (mask); \ 338 typeof(*_ptr) _old, _val = *_ptr; \ 339 \ 340 for (;;) { \ 341 _old = cmpxchg(_ptr, _val, _val | _mask); \ 342 if (_old == _val) \ 343 break; \ 344 _val = _old; \ 345 } \ 346 _old; \ 347 }) 348 349 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 350 /* 351 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 352 * this avoids any races wrt polling state changes and thereby avoids 353 * spurious IPIs. 354 */ 355 static bool set_nr_and_not_polling(struct task_struct *p) 356 { 357 struct thread_info *ti = task_thread_info(p); 358 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 359 } 360 361 /* 362 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 363 * 364 * If this returns true, then the idle task promises to call 365 * sched_ttwu_pending() and reschedule soon. 366 */ 367 static bool set_nr_if_polling(struct task_struct *p) 368 { 369 struct thread_info *ti = task_thread_info(p); 370 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 371 372 for (;;) { 373 if (!(val & _TIF_POLLING_NRFLAG)) 374 return false; 375 if (val & _TIF_NEED_RESCHED) 376 return true; 377 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 378 if (old == val) 379 break; 380 val = old; 381 } 382 return true; 383 } 384 385 #else 386 static bool set_nr_and_not_polling(struct task_struct *p) 387 { 388 set_tsk_need_resched(p); 389 return true; 390 } 391 392 #ifdef CONFIG_SMP 393 static bool set_nr_if_polling(struct task_struct *p) 394 { 395 return false; 396 } 397 #endif 398 #endif 399 400 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 401 { 402 struct wake_q_node *node = &task->wake_q; 403 404 /* 405 * Atomically grab the task, if ->wake_q is !nil already it means 406 * its already queued (either by us or someone else) and will get the 407 * wakeup due to that. 408 * 409 * This cmpxchg() executes a full barrier, which pairs with the full 410 * barrier executed by the wakeup in wake_up_q(). 411 */ 412 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 413 return; 414 415 get_task_struct(task); 416 417 /* 418 * The head is context local, there can be no concurrency. 419 */ 420 *head->lastp = node; 421 head->lastp = &node->next; 422 } 423 424 void wake_up_q(struct wake_q_head *head) 425 { 426 struct wake_q_node *node = head->first; 427 428 while (node != WAKE_Q_TAIL) { 429 struct task_struct *task; 430 431 task = container_of(node, struct task_struct, wake_q); 432 BUG_ON(!task); 433 /* Task can safely be re-inserted now: */ 434 node = node->next; 435 task->wake_q.next = NULL; 436 437 /* 438 * wake_up_process() executes a full barrier, which pairs with 439 * the queueing in wake_q_add() so as not to miss wakeups. 440 */ 441 wake_up_process(task); 442 put_task_struct(task); 443 } 444 } 445 446 /* 447 * resched_curr - mark rq's current task 'to be rescheduled now'. 448 * 449 * On UP this means the setting of the need_resched flag, on SMP it 450 * might also involve a cross-CPU call to trigger the scheduler on 451 * the target CPU. 452 */ 453 void resched_curr(struct rq *rq) 454 { 455 struct task_struct *curr = rq->curr; 456 int cpu; 457 458 lockdep_assert_held(&rq->lock); 459 460 if (test_tsk_need_resched(curr)) 461 return; 462 463 cpu = cpu_of(rq); 464 465 if (cpu == smp_processor_id()) { 466 set_tsk_need_resched(curr); 467 set_preempt_need_resched(); 468 return; 469 } 470 471 if (set_nr_and_not_polling(curr)) 472 smp_send_reschedule(cpu); 473 else 474 trace_sched_wake_idle_without_ipi(cpu); 475 } 476 477 void resched_cpu(int cpu) 478 { 479 struct rq *rq = cpu_rq(cpu); 480 unsigned long flags; 481 482 raw_spin_lock_irqsave(&rq->lock, flags); 483 if (cpu_online(cpu) || cpu == smp_processor_id()) 484 resched_curr(rq); 485 raw_spin_unlock_irqrestore(&rq->lock, flags); 486 } 487 488 #ifdef CONFIG_SMP 489 #ifdef CONFIG_NO_HZ_COMMON 490 /* 491 * In the semi idle case, use the nearest busy CPU for migrating timers 492 * from an idle CPU. This is good for power-savings. 493 * 494 * We don't do similar optimization for completely idle system, as 495 * selecting an idle CPU will add more delays to the timers than intended 496 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 497 */ 498 int get_nohz_timer_target(void) 499 { 500 int i, cpu = smp_processor_id(); 501 struct sched_domain *sd; 502 503 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 504 return cpu; 505 506 rcu_read_lock(); 507 for_each_domain(cpu, sd) { 508 for_each_cpu(i, sched_domain_span(sd)) { 509 if (cpu == i) 510 continue; 511 512 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 513 cpu = i; 514 goto unlock; 515 } 516 } 517 } 518 519 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 520 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 521 unlock: 522 rcu_read_unlock(); 523 return cpu; 524 } 525 526 /* 527 * When add_timer_on() enqueues a timer into the timer wheel of an 528 * idle CPU then this timer might expire before the next timer event 529 * which is scheduled to wake up that CPU. In case of a completely 530 * idle system the next event might even be infinite time into the 531 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 532 * leaves the inner idle loop so the newly added timer is taken into 533 * account when the CPU goes back to idle and evaluates the timer 534 * wheel for the next timer event. 535 */ 536 static void wake_up_idle_cpu(int cpu) 537 { 538 struct rq *rq = cpu_rq(cpu); 539 540 if (cpu == smp_processor_id()) 541 return; 542 543 if (set_nr_and_not_polling(rq->idle)) 544 smp_send_reschedule(cpu); 545 else 546 trace_sched_wake_idle_without_ipi(cpu); 547 } 548 549 static bool wake_up_full_nohz_cpu(int cpu) 550 { 551 /* 552 * We just need the target to call irq_exit() and re-evaluate 553 * the next tick. The nohz full kick at least implies that. 554 * If needed we can still optimize that later with an 555 * empty IRQ. 556 */ 557 if (cpu_is_offline(cpu)) 558 return true; /* Don't try to wake offline CPUs. */ 559 if (tick_nohz_full_cpu(cpu)) { 560 if (cpu != smp_processor_id() || 561 tick_nohz_tick_stopped()) 562 tick_nohz_full_kick_cpu(cpu); 563 return true; 564 } 565 566 return false; 567 } 568 569 /* 570 * Wake up the specified CPU. If the CPU is going offline, it is the 571 * caller's responsibility to deal with the lost wakeup, for example, 572 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 573 */ 574 void wake_up_nohz_cpu(int cpu) 575 { 576 if (!wake_up_full_nohz_cpu(cpu)) 577 wake_up_idle_cpu(cpu); 578 } 579 580 static inline bool got_nohz_idle_kick(void) 581 { 582 int cpu = smp_processor_id(); 583 584 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 585 return false; 586 587 if (idle_cpu(cpu) && !need_resched()) 588 return true; 589 590 /* 591 * We can't run Idle Load Balance on this CPU for this time so we 592 * cancel it and clear NOHZ_BALANCE_KICK 593 */ 594 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 595 return false; 596 } 597 598 #else /* CONFIG_NO_HZ_COMMON */ 599 600 static inline bool got_nohz_idle_kick(void) 601 { 602 return false; 603 } 604 605 #endif /* CONFIG_NO_HZ_COMMON */ 606 607 #ifdef CONFIG_NO_HZ_FULL 608 bool sched_can_stop_tick(struct rq *rq) 609 { 610 int fifo_nr_running; 611 612 /* Deadline tasks, even if single, need the tick */ 613 if (rq->dl.dl_nr_running) 614 return false; 615 616 /* 617 * If there are more than one RR tasks, we need the tick to effect the 618 * actual RR behaviour. 619 */ 620 if (rq->rt.rr_nr_running) { 621 if (rq->rt.rr_nr_running == 1) 622 return true; 623 else 624 return false; 625 } 626 627 /* 628 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 629 * forced preemption between FIFO tasks. 630 */ 631 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 632 if (fifo_nr_running) 633 return true; 634 635 /* 636 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 637 * if there's more than one we need the tick for involuntary 638 * preemption. 639 */ 640 if (rq->nr_running > 1) 641 return false; 642 643 return true; 644 } 645 #endif /* CONFIG_NO_HZ_FULL */ 646 #endif /* CONFIG_SMP */ 647 648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 650 /* 651 * Iterate task_group tree rooted at *from, calling @down when first entering a 652 * node and @up when leaving it for the final time. 653 * 654 * Caller must hold rcu_lock or sufficient equivalent. 655 */ 656 int walk_tg_tree_from(struct task_group *from, 657 tg_visitor down, tg_visitor up, void *data) 658 { 659 struct task_group *parent, *child; 660 int ret; 661 662 parent = from; 663 664 down: 665 ret = (*down)(parent, data); 666 if (ret) 667 goto out; 668 list_for_each_entry_rcu(child, &parent->children, siblings) { 669 parent = child; 670 goto down; 671 672 up: 673 continue; 674 } 675 ret = (*up)(parent, data); 676 if (ret || parent == from) 677 goto out; 678 679 child = parent; 680 parent = parent->parent; 681 if (parent) 682 goto up; 683 out: 684 return ret; 685 } 686 687 int tg_nop(struct task_group *tg, void *data) 688 { 689 return 0; 690 } 691 #endif 692 693 static void set_load_weight(struct task_struct *p, bool update_load) 694 { 695 int prio = p->static_prio - MAX_RT_PRIO; 696 struct load_weight *load = &p->se.load; 697 698 /* 699 * SCHED_IDLE tasks get minimal weight: 700 */ 701 if (idle_policy(p->policy)) { 702 load->weight = scale_load(WEIGHT_IDLEPRIO); 703 load->inv_weight = WMULT_IDLEPRIO; 704 return; 705 } 706 707 /* 708 * SCHED_OTHER tasks have to update their load when changing their 709 * weight 710 */ 711 if (update_load && p->sched_class == &fair_sched_class) { 712 reweight_task(p, prio); 713 } else { 714 load->weight = scale_load(sched_prio_to_weight[prio]); 715 load->inv_weight = sched_prio_to_wmult[prio]; 716 } 717 } 718 719 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 720 { 721 if (!(flags & ENQUEUE_NOCLOCK)) 722 update_rq_clock(rq); 723 724 if (!(flags & ENQUEUE_RESTORE)) 725 sched_info_queued(rq, p); 726 727 p->sched_class->enqueue_task(rq, p, flags); 728 } 729 730 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 731 { 732 if (!(flags & DEQUEUE_NOCLOCK)) 733 update_rq_clock(rq); 734 735 if (!(flags & DEQUEUE_SAVE)) 736 sched_info_dequeued(rq, p); 737 738 p->sched_class->dequeue_task(rq, p, flags); 739 } 740 741 void activate_task(struct rq *rq, struct task_struct *p, int flags) 742 { 743 if (task_contributes_to_load(p)) 744 rq->nr_uninterruptible--; 745 746 enqueue_task(rq, p, flags); 747 } 748 749 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 750 { 751 if (task_contributes_to_load(p)) 752 rq->nr_uninterruptible++; 753 754 dequeue_task(rq, p, flags); 755 } 756 757 /* 758 * __normal_prio - return the priority that is based on the static prio 759 */ 760 static inline int __normal_prio(struct task_struct *p) 761 { 762 return p->static_prio; 763 } 764 765 /* 766 * Calculate the expected normal priority: i.e. priority 767 * without taking RT-inheritance into account. Might be 768 * boosted by interactivity modifiers. Changes upon fork, 769 * setprio syscalls, and whenever the interactivity 770 * estimator recalculates. 771 */ 772 static inline int normal_prio(struct task_struct *p) 773 { 774 int prio; 775 776 if (task_has_dl_policy(p)) 777 prio = MAX_DL_PRIO-1; 778 else if (task_has_rt_policy(p)) 779 prio = MAX_RT_PRIO-1 - p->rt_priority; 780 else 781 prio = __normal_prio(p); 782 return prio; 783 } 784 785 /* 786 * Calculate the current priority, i.e. the priority 787 * taken into account by the scheduler. This value might 788 * be boosted by RT tasks, or might be boosted by 789 * interactivity modifiers. Will be RT if the task got 790 * RT-boosted. If not then it returns p->normal_prio. 791 */ 792 static int effective_prio(struct task_struct *p) 793 { 794 p->normal_prio = normal_prio(p); 795 /* 796 * If we are RT tasks or we were boosted to RT priority, 797 * keep the priority unchanged. Otherwise, update priority 798 * to the normal priority: 799 */ 800 if (!rt_prio(p->prio)) 801 return p->normal_prio; 802 return p->prio; 803 } 804 805 /** 806 * task_curr - is this task currently executing on a CPU? 807 * @p: the task in question. 808 * 809 * Return: 1 if the task is currently executing. 0 otherwise. 810 */ 811 inline int task_curr(const struct task_struct *p) 812 { 813 return cpu_curr(task_cpu(p)) == p; 814 } 815 816 /* 817 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 818 * use the balance_callback list if you want balancing. 819 * 820 * this means any call to check_class_changed() must be followed by a call to 821 * balance_callback(). 822 */ 823 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 824 const struct sched_class *prev_class, 825 int oldprio) 826 { 827 if (prev_class != p->sched_class) { 828 if (prev_class->switched_from) 829 prev_class->switched_from(rq, p); 830 831 p->sched_class->switched_to(rq, p); 832 } else if (oldprio != p->prio || dl_task(p)) 833 p->sched_class->prio_changed(rq, p, oldprio); 834 } 835 836 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 837 { 838 const struct sched_class *class; 839 840 if (p->sched_class == rq->curr->sched_class) { 841 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 842 } else { 843 for_each_class(class) { 844 if (class == rq->curr->sched_class) 845 break; 846 if (class == p->sched_class) { 847 resched_curr(rq); 848 break; 849 } 850 } 851 } 852 853 /* 854 * A queue event has occurred, and we're going to schedule. In 855 * this case, we can save a useless back to back clock update. 856 */ 857 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 858 rq_clock_skip_update(rq); 859 } 860 861 #ifdef CONFIG_SMP 862 863 static inline bool is_per_cpu_kthread(struct task_struct *p) 864 { 865 if (!(p->flags & PF_KTHREAD)) 866 return false; 867 868 if (p->nr_cpus_allowed != 1) 869 return false; 870 871 return true; 872 } 873 874 /* 875 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 876 * __set_cpus_allowed_ptr() and select_fallback_rq(). 877 */ 878 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 879 { 880 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 881 return false; 882 883 if (is_per_cpu_kthread(p)) 884 return cpu_online(cpu); 885 886 return cpu_active(cpu); 887 } 888 889 /* 890 * This is how migration works: 891 * 892 * 1) we invoke migration_cpu_stop() on the target CPU using 893 * stop_one_cpu(). 894 * 2) stopper starts to run (implicitly forcing the migrated thread 895 * off the CPU) 896 * 3) it checks whether the migrated task is still in the wrong runqueue. 897 * 4) if it's in the wrong runqueue then the migration thread removes 898 * it and puts it into the right queue. 899 * 5) stopper completes and stop_one_cpu() returns and the migration 900 * is done. 901 */ 902 903 /* 904 * move_queued_task - move a queued task to new rq. 905 * 906 * Returns (locked) new rq. Old rq's lock is released. 907 */ 908 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 909 struct task_struct *p, int new_cpu) 910 { 911 lockdep_assert_held(&rq->lock); 912 913 p->on_rq = TASK_ON_RQ_MIGRATING; 914 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 915 set_task_cpu(p, new_cpu); 916 rq_unlock(rq, rf); 917 918 rq = cpu_rq(new_cpu); 919 920 rq_lock(rq, rf); 921 BUG_ON(task_cpu(p) != new_cpu); 922 enqueue_task(rq, p, 0); 923 p->on_rq = TASK_ON_RQ_QUEUED; 924 check_preempt_curr(rq, p, 0); 925 926 return rq; 927 } 928 929 struct migration_arg { 930 struct task_struct *task; 931 int dest_cpu; 932 }; 933 934 /* 935 * Move (not current) task off this CPU, onto the destination CPU. We're doing 936 * this because either it can't run here any more (set_cpus_allowed() 937 * away from this CPU, or CPU going down), or because we're 938 * attempting to rebalance this task on exec (sched_exec). 939 * 940 * So we race with normal scheduler movements, but that's OK, as long 941 * as the task is no longer on this CPU. 942 */ 943 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 944 struct task_struct *p, int dest_cpu) 945 { 946 /* Affinity changed (again). */ 947 if (!is_cpu_allowed(p, dest_cpu)) 948 return rq; 949 950 update_rq_clock(rq); 951 rq = move_queued_task(rq, rf, p, dest_cpu); 952 953 return rq; 954 } 955 956 /* 957 * migration_cpu_stop - this will be executed by a highprio stopper thread 958 * and performs thread migration by bumping thread off CPU then 959 * 'pushing' onto another runqueue. 960 */ 961 static int migration_cpu_stop(void *data) 962 { 963 struct migration_arg *arg = data; 964 struct task_struct *p = arg->task; 965 struct rq *rq = this_rq(); 966 struct rq_flags rf; 967 968 /* 969 * The original target CPU might have gone down and we might 970 * be on another CPU but it doesn't matter. 971 */ 972 local_irq_disable(); 973 /* 974 * We need to explicitly wake pending tasks before running 975 * __migrate_task() such that we will not miss enforcing cpus_allowed 976 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 977 */ 978 sched_ttwu_pending(); 979 980 raw_spin_lock(&p->pi_lock); 981 rq_lock(rq, &rf); 982 /* 983 * If task_rq(p) != rq, it cannot be migrated here, because we're 984 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 985 * we're holding p->pi_lock. 986 */ 987 if (task_rq(p) == rq) { 988 if (task_on_rq_queued(p)) 989 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 990 else 991 p->wake_cpu = arg->dest_cpu; 992 } 993 rq_unlock(rq, &rf); 994 raw_spin_unlock(&p->pi_lock); 995 996 local_irq_enable(); 997 return 0; 998 } 999 1000 /* 1001 * sched_class::set_cpus_allowed must do the below, but is not required to 1002 * actually call this function. 1003 */ 1004 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1005 { 1006 cpumask_copy(&p->cpus_allowed, new_mask); 1007 p->nr_cpus_allowed = cpumask_weight(new_mask); 1008 } 1009 1010 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1011 { 1012 struct rq *rq = task_rq(p); 1013 bool queued, running; 1014 1015 lockdep_assert_held(&p->pi_lock); 1016 1017 queued = task_on_rq_queued(p); 1018 running = task_current(rq, p); 1019 1020 if (queued) { 1021 /* 1022 * Because __kthread_bind() calls this on blocked tasks without 1023 * holding rq->lock. 1024 */ 1025 lockdep_assert_held(&rq->lock); 1026 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1027 } 1028 if (running) 1029 put_prev_task(rq, p); 1030 1031 p->sched_class->set_cpus_allowed(p, new_mask); 1032 1033 if (queued) 1034 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1035 if (running) 1036 set_curr_task(rq, p); 1037 } 1038 1039 /* 1040 * Change a given task's CPU affinity. Migrate the thread to a 1041 * proper CPU and schedule it away if the CPU it's executing on 1042 * is removed from the allowed bitmask. 1043 * 1044 * NOTE: the caller must have a valid reference to the task, the 1045 * task must not exit() & deallocate itself prematurely. The 1046 * call is not atomic; no spinlocks may be held. 1047 */ 1048 static int __set_cpus_allowed_ptr(struct task_struct *p, 1049 const struct cpumask *new_mask, bool check) 1050 { 1051 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1052 unsigned int dest_cpu; 1053 struct rq_flags rf; 1054 struct rq *rq; 1055 int ret = 0; 1056 1057 rq = task_rq_lock(p, &rf); 1058 update_rq_clock(rq); 1059 1060 if (p->flags & PF_KTHREAD) { 1061 /* 1062 * Kernel threads are allowed on online && !active CPUs 1063 */ 1064 cpu_valid_mask = cpu_online_mask; 1065 } 1066 1067 /* 1068 * Must re-check here, to close a race against __kthread_bind(), 1069 * sched_setaffinity() is not guaranteed to observe the flag. 1070 */ 1071 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1072 ret = -EINVAL; 1073 goto out; 1074 } 1075 1076 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1077 goto out; 1078 1079 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1080 ret = -EINVAL; 1081 goto out; 1082 } 1083 1084 do_set_cpus_allowed(p, new_mask); 1085 1086 if (p->flags & PF_KTHREAD) { 1087 /* 1088 * For kernel threads that do indeed end up on online && 1089 * !active we want to ensure they are strict per-CPU threads. 1090 */ 1091 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1092 !cpumask_intersects(new_mask, cpu_active_mask) && 1093 p->nr_cpus_allowed != 1); 1094 } 1095 1096 /* Can the task run on the task's current CPU? If so, we're done */ 1097 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1098 goto out; 1099 1100 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1101 if (task_running(rq, p) || p->state == TASK_WAKING) { 1102 struct migration_arg arg = { p, dest_cpu }; 1103 /* Need help from migration thread: drop lock and wait. */ 1104 task_rq_unlock(rq, p, &rf); 1105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1106 tlb_migrate_finish(p->mm); 1107 return 0; 1108 } else if (task_on_rq_queued(p)) { 1109 /* 1110 * OK, since we're going to drop the lock immediately 1111 * afterwards anyway. 1112 */ 1113 rq = move_queued_task(rq, &rf, p, dest_cpu); 1114 } 1115 out: 1116 task_rq_unlock(rq, p, &rf); 1117 1118 return ret; 1119 } 1120 1121 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1122 { 1123 return __set_cpus_allowed_ptr(p, new_mask, false); 1124 } 1125 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1126 1127 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1128 { 1129 #ifdef CONFIG_SCHED_DEBUG 1130 /* 1131 * We should never call set_task_cpu() on a blocked task, 1132 * ttwu() will sort out the placement. 1133 */ 1134 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1135 !p->on_rq); 1136 1137 /* 1138 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1139 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1140 * time relying on p->on_rq. 1141 */ 1142 WARN_ON_ONCE(p->state == TASK_RUNNING && 1143 p->sched_class == &fair_sched_class && 1144 (p->on_rq && !task_on_rq_migrating(p))); 1145 1146 #ifdef CONFIG_LOCKDEP 1147 /* 1148 * The caller should hold either p->pi_lock or rq->lock, when changing 1149 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1150 * 1151 * sched_move_task() holds both and thus holding either pins the cgroup, 1152 * see task_group(). 1153 * 1154 * Furthermore, all task_rq users should acquire both locks, see 1155 * task_rq_lock(). 1156 */ 1157 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1158 lockdep_is_held(&task_rq(p)->lock))); 1159 #endif 1160 /* 1161 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1162 */ 1163 WARN_ON_ONCE(!cpu_online(new_cpu)); 1164 #endif 1165 1166 trace_sched_migrate_task(p, new_cpu); 1167 1168 if (task_cpu(p) != new_cpu) { 1169 if (p->sched_class->migrate_task_rq) 1170 p->sched_class->migrate_task_rq(p, new_cpu); 1171 p->se.nr_migrations++; 1172 rseq_migrate(p); 1173 perf_event_task_migrate(p); 1174 } 1175 1176 __set_task_cpu(p, new_cpu); 1177 } 1178 1179 #ifdef CONFIG_NUMA_BALANCING 1180 static void __migrate_swap_task(struct task_struct *p, int cpu) 1181 { 1182 if (task_on_rq_queued(p)) { 1183 struct rq *src_rq, *dst_rq; 1184 struct rq_flags srf, drf; 1185 1186 src_rq = task_rq(p); 1187 dst_rq = cpu_rq(cpu); 1188 1189 rq_pin_lock(src_rq, &srf); 1190 rq_pin_lock(dst_rq, &drf); 1191 1192 p->on_rq = TASK_ON_RQ_MIGRATING; 1193 deactivate_task(src_rq, p, 0); 1194 set_task_cpu(p, cpu); 1195 activate_task(dst_rq, p, 0); 1196 p->on_rq = TASK_ON_RQ_QUEUED; 1197 check_preempt_curr(dst_rq, p, 0); 1198 1199 rq_unpin_lock(dst_rq, &drf); 1200 rq_unpin_lock(src_rq, &srf); 1201 1202 } else { 1203 /* 1204 * Task isn't running anymore; make it appear like we migrated 1205 * it before it went to sleep. This means on wakeup we make the 1206 * previous CPU our target instead of where it really is. 1207 */ 1208 p->wake_cpu = cpu; 1209 } 1210 } 1211 1212 struct migration_swap_arg { 1213 struct task_struct *src_task, *dst_task; 1214 int src_cpu, dst_cpu; 1215 }; 1216 1217 static int migrate_swap_stop(void *data) 1218 { 1219 struct migration_swap_arg *arg = data; 1220 struct rq *src_rq, *dst_rq; 1221 int ret = -EAGAIN; 1222 1223 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1224 return -EAGAIN; 1225 1226 src_rq = cpu_rq(arg->src_cpu); 1227 dst_rq = cpu_rq(arg->dst_cpu); 1228 1229 double_raw_lock(&arg->src_task->pi_lock, 1230 &arg->dst_task->pi_lock); 1231 double_rq_lock(src_rq, dst_rq); 1232 1233 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1234 goto unlock; 1235 1236 if (task_cpu(arg->src_task) != arg->src_cpu) 1237 goto unlock; 1238 1239 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1240 goto unlock; 1241 1242 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1243 goto unlock; 1244 1245 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1246 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1247 1248 ret = 0; 1249 1250 unlock: 1251 double_rq_unlock(src_rq, dst_rq); 1252 raw_spin_unlock(&arg->dst_task->pi_lock); 1253 raw_spin_unlock(&arg->src_task->pi_lock); 1254 1255 return ret; 1256 } 1257 1258 /* 1259 * Cross migrate two tasks 1260 */ 1261 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1262 int target_cpu, int curr_cpu) 1263 { 1264 struct migration_swap_arg arg; 1265 int ret = -EINVAL; 1266 1267 arg = (struct migration_swap_arg){ 1268 .src_task = cur, 1269 .src_cpu = curr_cpu, 1270 .dst_task = p, 1271 .dst_cpu = target_cpu, 1272 }; 1273 1274 if (arg.src_cpu == arg.dst_cpu) 1275 goto out; 1276 1277 /* 1278 * These three tests are all lockless; this is OK since all of them 1279 * will be re-checked with proper locks held further down the line. 1280 */ 1281 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1282 goto out; 1283 1284 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1285 goto out; 1286 1287 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1288 goto out; 1289 1290 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1291 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1292 1293 out: 1294 return ret; 1295 } 1296 #endif /* CONFIG_NUMA_BALANCING */ 1297 1298 /* 1299 * wait_task_inactive - wait for a thread to unschedule. 1300 * 1301 * If @match_state is nonzero, it's the @p->state value just checked and 1302 * not expected to change. If it changes, i.e. @p might have woken up, 1303 * then return zero. When we succeed in waiting for @p to be off its CPU, 1304 * we return a positive number (its total switch count). If a second call 1305 * a short while later returns the same number, the caller can be sure that 1306 * @p has remained unscheduled the whole time. 1307 * 1308 * The caller must ensure that the task *will* unschedule sometime soon, 1309 * else this function might spin for a *long* time. This function can't 1310 * be called with interrupts off, or it may introduce deadlock with 1311 * smp_call_function() if an IPI is sent by the same process we are 1312 * waiting to become inactive. 1313 */ 1314 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1315 { 1316 int running, queued; 1317 struct rq_flags rf; 1318 unsigned long ncsw; 1319 struct rq *rq; 1320 1321 for (;;) { 1322 /* 1323 * We do the initial early heuristics without holding 1324 * any task-queue locks at all. We'll only try to get 1325 * the runqueue lock when things look like they will 1326 * work out! 1327 */ 1328 rq = task_rq(p); 1329 1330 /* 1331 * If the task is actively running on another CPU 1332 * still, just relax and busy-wait without holding 1333 * any locks. 1334 * 1335 * NOTE! Since we don't hold any locks, it's not 1336 * even sure that "rq" stays as the right runqueue! 1337 * But we don't care, since "task_running()" will 1338 * return false if the runqueue has changed and p 1339 * is actually now running somewhere else! 1340 */ 1341 while (task_running(rq, p)) { 1342 if (match_state && unlikely(p->state != match_state)) 1343 return 0; 1344 cpu_relax(); 1345 } 1346 1347 /* 1348 * Ok, time to look more closely! We need the rq 1349 * lock now, to be *sure*. If we're wrong, we'll 1350 * just go back and repeat. 1351 */ 1352 rq = task_rq_lock(p, &rf); 1353 trace_sched_wait_task(p); 1354 running = task_running(rq, p); 1355 queued = task_on_rq_queued(p); 1356 ncsw = 0; 1357 if (!match_state || p->state == match_state) 1358 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1359 task_rq_unlock(rq, p, &rf); 1360 1361 /* 1362 * If it changed from the expected state, bail out now. 1363 */ 1364 if (unlikely(!ncsw)) 1365 break; 1366 1367 /* 1368 * Was it really running after all now that we 1369 * checked with the proper locks actually held? 1370 * 1371 * Oops. Go back and try again.. 1372 */ 1373 if (unlikely(running)) { 1374 cpu_relax(); 1375 continue; 1376 } 1377 1378 /* 1379 * It's not enough that it's not actively running, 1380 * it must be off the runqueue _entirely_, and not 1381 * preempted! 1382 * 1383 * So if it was still runnable (but just not actively 1384 * running right now), it's preempted, and we should 1385 * yield - it could be a while. 1386 */ 1387 if (unlikely(queued)) { 1388 ktime_t to = NSEC_PER_SEC / HZ; 1389 1390 set_current_state(TASK_UNINTERRUPTIBLE); 1391 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1392 continue; 1393 } 1394 1395 /* 1396 * Ahh, all good. It wasn't running, and it wasn't 1397 * runnable, which means that it will never become 1398 * running in the future either. We're all done! 1399 */ 1400 break; 1401 } 1402 1403 return ncsw; 1404 } 1405 1406 /*** 1407 * kick_process - kick a running thread to enter/exit the kernel 1408 * @p: the to-be-kicked thread 1409 * 1410 * Cause a process which is running on another CPU to enter 1411 * kernel-mode, without any delay. (to get signals handled.) 1412 * 1413 * NOTE: this function doesn't have to take the runqueue lock, 1414 * because all it wants to ensure is that the remote task enters 1415 * the kernel. If the IPI races and the task has been migrated 1416 * to another CPU then no harm is done and the purpose has been 1417 * achieved as well. 1418 */ 1419 void kick_process(struct task_struct *p) 1420 { 1421 int cpu; 1422 1423 preempt_disable(); 1424 cpu = task_cpu(p); 1425 if ((cpu != smp_processor_id()) && task_curr(p)) 1426 smp_send_reschedule(cpu); 1427 preempt_enable(); 1428 } 1429 EXPORT_SYMBOL_GPL(kick_process); 1430 1431 /* 1432 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1433 * 1434 * A few notes on cpu_active vs cpu_online: 1435 * 1436 * - cpu_active must be a subset of cpu_online 1437 * 1438 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1439 * see __set_cpus_allowed_ptr(). At this point the newly online 1440 * CPU isn't yet part of the sched domains, and balancing will not 1441 * see it. 1442 * 1443 * - on CPU-down we clear cpu_active() to mask the sched domains and 1444 * avoid the load balancer to place new tasks on the to be removed 1445 * CPU. Existing tasks will remain running there and will be taken 1446 * off. 1447 * 1448 * This means that fallback selection must not select !active CPUs. 1449 * And can assume that any active CPU must be online. Conversely 1450 * select_task_rq() below may allow selection of !active CPUs in order 1451 * to satisfy the above rules. 1452 */ 1453 static int select_fallback_rq(int cpu, struct task_struct *p) 1454 { 1455 int nid = cpu_to_node(cpu); 1456 const struct cpumask *nodemask = NULL; 1457 enum { cpuset, possible, fail } state = cpuset; 1458 int dest_cpu; 1459 1460 /* 1461 * If the node that the CPU is on has been offlined, cpu_to_node() 1462 * will return -1. There is no CPU on the node, and we should 1463 * select the CPU on the other node. 1464 */ 1465 if (nid != -1) { 1466 nodemask = cpumask_of_node(nid); 1467 1468 /* Look for allowed, online CPU in same node. */ 1469 for_each_cpu(dest_cpu, nodemask) { 1470 if (!cpu_active(dest_cpu)) 1471 continue; 1472 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1473 return dest_cpu; 1474 } 1475 } 1476 1477 for (;;) { 1478 /* Any allowed, online CPU? */ 1479 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1480 if (!is_cpu_allowed(p, dest_cpu)) 1481 continue; 1482 1483 goto out; 1484 } 1485 1486 /* No more Mr. Nice Guy. */ 1487 switch (state) { 1488 case cpuset: 1489 if (IS_ENABLED(CONFIG_CPUSETS)) { 1490 cpuset_cpus_allowed_fallback(p); 1491 state = possible; 1492 break; 1493 } 1494 /* Fall-through */ 1495 case possible: 1496 do_set_cpus_allowed(p, cpu_possible_mask); 1497 state = fail; 1498 break; 1499 1500 case fail: 1501 BUG(); 1502 break; 1503 } 1504 } 1505 1506 out: 1507 if (state != cpuset) { 1508 /* 1509 * Don't tell them about moving exiting tasks or 1510 * kernel threads (both mm NULL), since they never 1511 * leave kernel. 1512 */ 1513 if (p->mm && printk_ratelimit()) { 1514 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1515 task_pid_nr(p), p->comm, cpu); 1516 } 1517 } 1518 1519 return dest_cpu; 1520 } 1521 1522 /* 1523 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1524 */ 1525 static inline 1526 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1527 { 1528 lockdep_assert_held(&p->pi_lock); 1529 1530 if (p->nr_cpus_allowed > 1) 1531 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1532 else 1533 cpu = cpumask_any(&p->cpus_allowed); 1534 1535 /* 1536 * In order not to call set_task_cpu() on a blocking task we need 1537 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1538 * CPU. 1539 * 1540 * Since this is common to all placement strategies, this lives here. 1541 * 1542 * [ this allows ->select_task() to simply return task_cpu(p) and 1543 * not worry about this generic constraint ] 1544 */ 1545 if (unlikely(!is_cpu_allowed(p, cpu))) 1546 cpu = select_fallback_rq(task_cpu(p), p); 1547 1548 return cpu; 1549 } 1550 1551 static void update_avg(u64 *avg, u64 sample) 1552 { 1553 s64 diff = sample - *avg; 1554 *avg += diff >> 3; 1555 } 1556 1557 void sched_set_stop_task(int cpu, struct task_struct *stop) 1558 { 1559 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1560 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1561 1562 if (stop) { 1563 /* 1564 * Make it appear like a SCHED_FIFO task, its something 1565 * userspace knows about and won't get confused about. 1566 * 1567 * Also, it will make PI more or less work without too 1568 * much confusion -- but then, stop work should not 1569 * rely on PI working anyway. 1570 */ 1571 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1572 1573 stop->sched_class = &stop_sched_class; 1574 } 1575 1576 cpu_rq(cpu)->stop = stop; 1577 1578 if (old_stop) { 1579 /* 1580 * Reset it back to a normal scheduling class so that 1581 * it can die in pieces. 1582 */ 1583 old_stop->sched_class = &rt_sched_class; 1584 } 1585 } 1586 1587 #else 1588 1589 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1590 const struct cpumask *new_mask, bool check) 1591 { 1592 return set_cpus_allowed_ptr(p, new_mask); 1593 } 1594 1595 #endif /* CONFIG_SMP */ 1596 1597 static void 1598 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1599 { 1600 struct rq *rq; 1601 1602 if (!schedstat_enabled()) 1603 return; 1604 1605 rq = this_rq(); 1606 1607 #ifdef CONFIG_SMP 1608 if (cpu == rq->cpu) { 1609 __schedstat_inc(rq->ttwu_local); 1610 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1611 } else { 1612 struct sched_domain *sd; 1613 1614 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1615 rcu_read_lock(); 1616 for_each_domain(rq->cpu, sd) { 1617 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1618 __schedstat_inc(sd->ttwu_wake_remote); 1619 break; 1620 } 1621 } 1622 rcu_read_unlock(); 1623 } 1624 1625 if (wake_flags & WF_MIGRATED) 1626 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1627 #endif /* CONFIG_SMP */ 1628 1629 __schedstat_inc(rq->ttwu_count); 1630 __schedstat_inc(p->se.statistics.nr_wakeups); 1631 1632 if (wake_flags & WF_SYNC) 1633 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1634 } 1635 1636 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1637 { 1638 activate_task(rq, p, en_flags); 1639 p->on_rq = TASK_ON_RQ_QUEUED; 1640 1641 /* If a worker is waking up, notify the workqueue: */ 1642 if (p->flags & PF_WQ_WORKER) 1643 wq_worker_waking_up(p, cpu_of(rq)); 1644 } 1645 1646 /* 1647 * Mark the task runnable and perform wakeup-preemption. 1648 */ 1649 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1650 struct rq_flags *rf) 1651 { 1652 check_preempt_curr(rq, p, wake_flags); 1653 p->state = TASK_RUNNING; 1654 trace_sched_wakeup(p); 1655 1656 #ifdef CONFIG_SMP 1657 if (p->sched_class->task_woken) { 1658 /* 1659 * Our task @p is fully woken up and running; so its safe to 1660 * drop the rq->lock, hereafter rq is only used for statistics. 1661 */ 1662 rq_unpin_lock(rq, rf); 1663 p->sched_class->task_woken(rq, p); 1664 rq_repin_lock(rq, rf); 1665 } 1666 1667 if (rq->idle_stamp) { 1668 u64 delta = rq_clock(rq) - rq->idle_stamp; 1669 u64 max = 2*rq->max_idle_balance_cost; 1670 1671 update_avg(&rq->avg_idle, delta); 1672 1673 if (rq->avg_idle > max) 1674 rq->avg_idle = max; 1675 1676 rq->idle_stamp = 0; 1677 } 1678 #endif 1679 } 1680 1681 static void 1682 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1683 struct rq_flags *rf) 1684 { 1685 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1686 1687 lockdep_assert_held(&rq->lock); 1688 1689 #ifdef CONFIG_SMP 1690 if (p->sched_contributes_to_load) 1691 rq->nr_uninterruptible--; 1692 1693 if (wake_flags & WF_MIGRATED) 1694 en_flags |= ENQUEUE_MIGRATED; 1695 #endif 1696 1697 ttwu_activate(rq, p, en_flags); 1698 ttwu_do_wakeup(rq, p, wake_flags, rf); 1699 } 1700 1701 /* 1702 * Called in case the task @p isn't fully descheduled from its runqueue, 1703 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1704 * since all we need to do is flip p->state to TASK_RUNNING, since 1705 * the task is still ->on_rq. 1706 */ 1707 static int ttwu_remote(struct task_struct *p, int wake_flags) 1708 { 1709 struct rq_flags rf; 1710 struct rq *rq; 1711 int ret = 0; 1712 1713 rq = __task_rq_lock(p, &rf); 1714 if (task_on_rq_queued(p)) { 1715 /* check_preempt_curr() may use rq clock */ 1716 update_rq_clock(rq); 1717 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1718 ret = 1; 1719 } 1720 __task_rq_unlock(rq, &rf); 1721 1722 return ret; 1723 } 1724 1725 #ifdef CONFIG_SMP 1726 void sched_ttwu_pending(void) 1727 { 1728 struct rq *rq = this_rq(); 1729 struct llist_node *llist = llist_del_all(&rq->wake_list); 1730 struct task_struct *p, *t; 1731 struct rq_flags rf; 1732 1733 if (!llist) 1734 return; 1735 1736 rq_lock_irqsave(rq, &rf); 1737 update_rq_clock(rq); 1738 1739 llist_for_each_entry_safe(p, t, llist, wake_entry) 1740 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1741 1742 rq_unlock_irqrestore(rq, &rf); 1743 } 1744 1745 void scheduler_ipi(void) 1746 { 1747 /* 1748 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1749 * TIF_NEED_RESCHED remotely (for the first time) will also send 1750 * this IPI. 1751 */ 1752 preempt_fold_need_resched(); 1753 1754 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1755 return; 1756 1757 /* 1758 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1759 * traditionally all their work was done from the interrupt return 1760 * path. Now that we actually do some work, we need to make sure 1761 * we do call them. 1762 * 1763 * Some archs already do call them, luckily irq_enter/exit nest 1764 * properly. 1765 * 1766 * Arguably we should visit all archs and update all handlers, 1767 * however a fair share of IPIs are still resched only so this would 1768 * somewhat pessimize the simple resched case. 1769 */ 1770 irq_enter(); 1771 sched_ttwu_pending(); 1772 1773 /* 1774 * Check if someone kicked us for doing the nohz idle load balance. 1775 */ 1776 if (unlikely(got_nohz_idle_kick())) { 1777 this_rq()->idle_balance = 1; 1778 raise_softirq_irqoff(SCHED_SOFTIRQ); 1779 } 1780 irq_exit(); 1781 } 1782 1783 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1784 { 1785 struct rq *rq = cpu_rq(cpu); 1786 1787 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1788 1789 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1790 if (!set_nr_if_polling(rq->idle)) 1791 smp_send_reschedule(cpu); 1792 else 1793 trace_sched_wake_idle_without_ipi(cpu); 1794 } 1795 } 1796 1797 void wake_up_if_idle(int cpu) 1798 { 1799 struct rq *rq = cpu_rq(cpu); 1800 struct rq_flags rf; 1801 1802 rcu_read_lock(); 1803 1804 if (!is_idle_task(rcu_dereference(rq->curr))) 1805 goto out; 1806 1807 if (set_nr_if_polling(rq->idle)) { 1808 trace_sched_wake_idle_without_ipi(cpu); 1809 } else { 1810 rq_lock_irqsave(rq, &rf); 1811 if (is_idle_task(rq->curr)) 1812 smp_send_reschedule(cpu); 1813 /* Else CPU is not idle, do nothing here: */ 1814 rq_unlock_irqrestore(rq, &rf); 1815 } 1816 1817 out: 1818 rcu_read_unlock(); 1819 } 1820 1821 bool cpus_share_cache(int this_cpu, int that_cpu) 1822 { 1823 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1824 } 1825 #endif /* CONFIG_SMP */ 1826 1827 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1828 { 1829 struct rq *rq = cpu_rq(cpu); 1830 struct rq_flags rf; 1831 1832 #if defined(CONFIG_SMP) 1833 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1834 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1835 ttwu_queue_remote(p, cpu, wake_flags); 1836 return; 1837 } 1838 #endif 1839 1840 rq_lock(rq, &rf); 1841 update_rq_clock(rq); 1842 ttwu_do_activate(rq, p, wake_flags, &rf); 1843 rq_unlock(rq, &rf); 1844 } 1845 1846 /* 1847 * Notes on Program-Order guarantees on SMP systems. 1848 * 1849 * MIGRATION 1850 * 1851 * The basic program-order guarantee on SMP systems is that when a task [t] 1852 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1853 * execution on its new CPU [c1]. 1854 * 1855 * For migration (of runnable tasks) this is provided by the following means: 1856 * 1857 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1858 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1859 * rq(c1)->lock (if not at the same time, then in that order). 1860 * C) LOCK of the rq(c1)->lock scheduling in task 1861 * 1862 * Release/acquire chaining guarantees that B happens after A and C after B. 1863 * Note: the CPU doing B need not be c0 or c1 1864 * 1865 * Example: 1866 * 1867 * CPU0 CPU1 CPU2 1868 * 1869 * LOCK rq(0)->lock 1870 * sched-out X 1871 * sched-in Y 1872 * UNLOCK rq(0)->lock 1873 * 1874 * LOCK rq(0)->lock // orders against CPU0 1875 * dequeue X 1876 * UNLOCK rq(0)->lock 1877 * 1878 * LOCK rq(1)->lock 1879 * enqueue X 1880 * UNLOCK rq(1)->lock 1881 * 1882 * LOCK rq(1)->lock // orders against CPU2 1883 * sched-out Z 1884 * sched-in X 1885 * UNLOCK rq(1)->lock 1886 * 1887 * 1888 * BLOCKING -- aka. SLEEP + WAKEUP 1889 * 1890 * For blocking we (obviously) need to provide the same guarantee as for 1891 * migration. However the means are completely different as there is no lock 1892 * chain to provide order. Instead we do: 1893 * 1894 * 1) smp_store_release(X->on_cpu, 0) 1895 * 2) smp_cond_load_acquire(!X->on_cpu) 1896 * 1897 * Example: 1898 * 1899 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1900 * 1901 * LOCK rq(0)->lock LOCK X->pi_lock 1902 * dequeue X 1903 * sched-out X 1904 * smp_store_release(X->on_cpu, 0); 1905 * 1906 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1907 * X->state = WAKING 1908 * set_task_cpu(X,2) 1909 * 1910 * LOCK rq(2)->lock 1911 * enqueue X 1912 * X->state = RUNNING 1913 * UNLOCK rq(2)->lock 1914 * 1915 * LOCK rq(2)->lock // orders against CPU1 1916 * sched-out Z 1917 * sched-in X 1918 * UNLOCK rq(2)->lock 1919 * 1920 * UNLOCK X->pi_lock 1921 * UNLOCK rq(0)->lock 1922 * 1923 * 1924 * However, for wakeups there is a second guarantee we must provide, namely we 1925 * must ensure that CONDITION=1 done by the caller can not be reordered with 1926 * accesses to the task state; see try_to_wake_up() and set_current_state(). 1927 */ 1928 1929 /** 1930 * try_to_wake_up - wake up a thread 1931 * @p: the thread to be awakened 1932 * @state: the mask of task states that can be woken 1933 * @wake_flags: wake modifier flags (WF_*) 1934 * 1935 * If (@state & @p->state) @p->state = TASK_RUNNING. 1936 * 1937 * If the task was not queued/runnable, also place it back on a runqueue. 1938 * 1939 * Atomic against schedule() which would dequeue a task, also see 1940 * set_current_state(). 1941 * 1942 * This function executes a full memory barrier before accessing the task 1943 * state; see set_current_state(). 1944 * 1945 * Return: %true if @p->state changes (an actual wakeup was done), 1946 * %false otherwise. 1947 */ 1948 static int 1949 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1950 { 1951 unsigned long flags; 1952 int cpu, success = 0; 1953 1954 /* 1955 * If we are going to wake up a thread waiting for CONDITION we 1956 * need to ensure that CONDITION=1 done by the caller can not be 1957 * reordered with p->state check below. This pairs with mb() in 1958 * set_current_state() the waiting thread does. 1959 */ 1960 raw_spin_lock_irqsave(&p->pi_lock, flags); 1961 smp_mb__after_spinlock(); 1962 if (!(p->state & state)) 1963 goto out; 1964 1965 trace_sched_waking(p); 1966 1967 /* We're going to change ->state: */ 1968 success = 1; 1969 cpu = task_cpu(p); 1970 1971 /* 1972 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1973 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1974 * in smp_cond_load_acquire() below. 1975 * 1976 * sched_ttwu_pending() try_to_wake_up() 1977 * STORE p->on_rq = 1 LOAD p->state 1978 * UNLOCK rq->lock 1979 * 1980 * __schedule() (switch to task 'p') 1981 * LOCK rq->lock smp_rmb(); 1982 * smp_mb__after_spinlock(); 1983 * UNLOCK rq->lock 1984 * 1985 * [task p] 1986 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 1987 * 1988 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 1989 * __schedule(). See the comment for smp_mb__after_spinlock(). 1990 */ 1991 smp_rmb(); 1992 if (p->on_rq && ttwu_remote(p, wake_flags)) 1993 goto stat; 1994 1995 #ifdef CONFIG_SMP 1996 /* 1997 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 1998 * possible to, falsely, observe p->on_cpu == 0. 1999 * 2000 * One must be running (->on_cpu == 1) in order to remove oneself 2001 * from the runqueue. 2002 * 2003 * __schedule() (switch to task 'p') try_to_wake_up() 2004 * STORE p->on_cpu = 1 LOAD p->on_rq 2005 * UNLOCK rq->lock 2006 * 2007 * __schedule() (put 'p' to sleep) 2008 * LOCK rq->lock smp_rmb(); 2009 * smp_mb__after_spinlock(); 2010 * STORE p->on_rq = 0 LOAD p->on_cpu 2011 * 2012 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2013 * __schedule(). See the comment for smp_mb__after_spinlock(). 2014 */ 2015 smp_rmb(); 2016 2017 /* 2018 * If the owning (remote) CPU is still in the middle of schedule() with 2019 * this task as prev, wait until its done referencing the task. 2020 * 2021 * Pairs with the smp_store_release() in finish_task(). 2022 * 2023 * This ensures that tasks getting woken will be fully ordered against 2024 * their previous state and preserve Program Order. 2025 */ 2026 smp_cond_load_acquire(&p->on_cpu, !VAL); 2027 2028 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2029 p->state = TASK_WAKING; 2030 2031 if (p->in_iowait) { 2032 delayacct_blkio_end(p); 2033 atomic_dec(&task_rq(p)->nr_iowait); 2034 } 2035 2036 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2037 if (task_cpu(p) != cpu) { 2038 wake_flags |= WF_MIGRATED; 2039 set_task_cpu(p, cpu); 2040 } 2041 2042 #else /* CONFIG_SMP */ 2043 2044 if (p->in_iowait) { 2045 delayacct_blkio_end(p); 2046 atomic_dec(&task_rq(p)->nr_iowait); 2047 } 2048 2049 #endif /* CONFIG_SMP */ 2050 2051 ttwu_queue(p, cpu, wake_flags); 2052 stat: 2053 ttwu_stat(p, cpu, wake_flags); 2054 out: 2055 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2056 2057 return success; 2058 } 2059 2060 /** 2061 * try_to_wake_up_local - try to wake up a local task with rq lock held 2062 * @p: the thread to be awakened 2063 * @rf: request-queue flags for pinning 2064 * 2065 * Put @p on the run-queue if it's not already there. The caller must 2066 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2067 * the current task. 2068 */ 2069 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2070 { 2071 struct rq *rq = task_rq(p); 2072 2073 if (WARN_ON_ONCE(rq != this_rq()) || 2074 WARN_ON_ONCE(p == current)) 2075 return; 2076 2077 lockdep_assert_held(&rq->lock); 2078 2079 if (!raw_spin_trylock(&p->pi_lock)) { 2080 /* 2081 * This is OK, because current is on_cpu, which avoids it being 2082 * picked for load-balance and preemption/IRQs are still 2083 * disabled avoiding further scheduler activity on it and we've 2084 * not yet picked a replacement task. 2085 */ 2086 rq_unlock(rq, rf); 2087 raw_spin_lock(&p->pi_lock); 2088 rq_relock(rq, rf); 2089 } 2090 2091 if (!(p->state & TASK_NORMAL)) 2092 goto out; 2093 2094 trace_sched_waking(p); 2095 2096 if (!task_on_rq_queued(p)) { 2097 if (p->in_iowait) { 2098 delayacct_blkio_end(p); 2099 atomic_dec(&rq->nr_iowait); 2100 } 2101 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2102 } 2103 2104 ttwu_do_wakeup(rq, p, 0, rf); 2105 ttwu_stat(p, smp_processor_id(), 0); 2106 out: 2107 raw_spin_unlock(&p->pi_lock); 2108 } 2109 2110 /** 2111 * wake_up_process - Wake up a specific process 2112 * @p: The process to be woken up. 2113 * 2114 * Attempt to wake up the nominated process and move it to the set of runnable 2115 * processes. 2116 * 2117 * Return: 1 if the process was woken up, 0 if it was already running. 2118 * 2119 * This function executes a full memory barrier before accessing the task state. 2120 */ 2121 int wake_up_process(struct task_struct *p) 2122 { 2123 return try_to_wake_up(p, TASK_NORMAL, 0); 2124 } 2125 EXPORT_SYMBOL(wake_up_process); 2126 2127 int wake_up_state(struct task_struct *p, unsigned int state) 2128 { 2129 return try_to_wake_up(p, state, 0); 2130 } 2131 2132 /* 2133 * Perform scheduler related setup for a newly forked process p. 2134 * p is forked by current. 2135 * 2136 * __sched_fork() is basic setup used by init_idle() too: 2137 */ 2138 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2139 { 2140 p->on_rq = 0; 2141 2142 p->se.on_rq = 0; 2143 p->se.exec_start = 0; 2144 p->se.sum_exec_runtime = 0; 2145 p->se.prev_sum_exec_runtime = 0; 2146 p->se.nr_migrations = 0; 2147 p->se.vruntime = 0; 2148 INIT_LIST_HEAD(&p->se.group_node); 2149 2150 #ifdef CONFIG_FAIR_GROUP_SCHED 2151 p->se.cfs_rq = NULL; 2152 #endif 2153 2154 #ifdef CONFIG_SCHEDSTATS 2155 /* Even if schedstat is disabled, there should not be garbage */ 2156 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2157 #endif 2158 2159 RB_CLEAR_NODE(&p->dl.rb_node); 2160 init_dl_task_timer(&p->dl); 2161 init_dl_inactive_task_timer(&p->dl); 2162 __dl_clear_params(p); 2163 2164 INIT_LIST_HEAD(&p->rt.run_list); 2165 p->rt.timeout = 0; 2166 p->rt.time_slice = sched_rr_timeslice; 2167 p->rt.on_rq = 0; 2168 p->rt.on_list = 0; 2169 2170 #ifdef CONFIG_PREEMPT_NOTIFIERS 2171 INIT_HLIST_HEAD(&p->preempt_notifiers); 2172 #endif 2173 2174 init_numa_balancing(clone_flags, p); 2175 } 2176 2177 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2178 2179 #ifdef CONFIG_NUMA_BALANCING 2180 2181 void set_numabalancing_state(bool enabled) 2182 { 2183 if (enabled) 2184 static_branch_enable(&sched_numa_balancing); 2185 else 2186 static_branch_disable(&sched_numa_balancing); 2187 } 2188 2189 #ifdef CONFIG_PROC_SYSCTL 2190 int sysctl_numa_balancing(struct ctl_table *table, int write, 2191 void __user *buffer, size_t *lenp, loff_t *ppos) 2192 { 2193 struct ctl_table t; 2194 int err; 2195 int state = static_branch_likely(&sched_numa_balancing); 2196 2197 if (write && !capable(CAP_SYS_ADMIN)) 2198 return -EPERM; 2199 2200 t = *table; 2201 t.data = &state; 2202 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2203 if (err < 0) 2204 return err; 2205 if (write) 2206 set_numabalancing_state(state); 2207 return err; 2208 } 2209 #endif 2210 #endif 2211 2212 #ifdef CONFIG_SCHEDSTATS 2213 2214 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2215 static bool __initdata __sched_schedstats = false; 2216 2217 static void set_schedstats(bool enabled) 2218 { 2219 if (enabled) 2220 static_branch_enable(&sched_schedstats); 2221 else 2222 static_branch_disable(&sched_schedstats); 2223 } 2224 2225 void force_schedstat_enabled(void) 2226 { 2227 if (!schedstat_enabled()) { 2228 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2229 static_branch_enable(&sched_schedstats); 2230 } 2231 } 2232 2233 static int __init setup_schedstats(char *str) 2234 { 2235 int ret = 0; 2236 if (!str) 2237 goto out; 2238 2239 /* 2240 * This code is called before jump labels have been set up, so we can't 2241 * change the static branch directly just yet. Instead set a temporary 2242 * variable so init_schedstats() can do it later. 2243 */ 2244 if (!strcmp(str, "enable")) { 2245 __sched_schedstats = true; 2246 ret = 1; 2247 } else if (!strcmp(str, "disable")) { 2248 __sched_schedstats = false; 2249 ret = 1; 2250 } 2251 out: 2252 if (!ret) 2253 pr_warn("Unable to parse schedstats=\n"); 2254 2255 return ret; 2256 } 2257 __setup("schedstats=", setup_schedstats); 2258 2259 static void __init init_schedstats(void) 2260 { 2261 set_schedstats(__sched_schedstats); 2262 } 2263 2264 #ifdef CONFIG_PROC_SYSCTL 2265 int sysctl_schedstats(struct ctl_table *table, int write, 2266 void __user *buffer, size_t *lenp, loff_t *ppos) 2267 { 2268 struct ctl_table t; 2269 int err; 2270 int state = static_branch_likely(&sched_schedstats); 2271 2272 if (write && !capable(CAP_SYS_ADMIN)) 2273 return -EPERM; 2274 2275 t = *table; 2276 t.data = &state; 2277 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2278 if (err < 0) 2279 return err; 2280 if (write) 2281 set_schedstats(state); 2282 return err; 2283 } 2284 #endif /* CONFIG_PROC_SYSCTL */ 2285 #else /* !CONFIG_SCHEDSTATS */ 2286 static inline void init_schedstats(void) {} 2287 #endif /* CONFIG_SCHEDSTATS */ 2288 2289 /* 2290 * fork()/clone()-time setup: 2291 */ 2292 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2293 { 2294 unsigned long flags; 2295 2296 __sched_fork(clone_flags, p); 2297 /* 2298 * We mark the process as NEW here. This guarantees that 2299 * nobody will actually run it, and a signal or other external 2300 * event cannot wake it up and insert it on the runqueue either. 2301 */ 2302 p->state = TASK_NEW; 2303 2304 /* 2305 * Make sure we do not leak PI boosting priority to the child. 2306 */ 2307 p->prio = current->normal_prio; 2308 2309 /* 2310 * Revert to default priority/policy on fork if requested. 2311 */ 2312 if (unlikely(p->sched_reset_on_fork)) { 2313 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2314 p->policy = SCHED_NORMAL; 2315 p->static_prio = NICE_TO_PRIO(0); 2316 p->rt_priority = 0; 2317 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2318 p->static_prio = NICE_TO_PRIO(0); 2319 2320 p->prio = p->normal_prio = __normal_prio(p); 2321 set_load_weight(p, false); 2322 2323 /* 2324 * We don't need the reset flag anymore after the fork. It has 2325 * fulfilled its duty: 2326 */ 2327 p->sched_reset_on_fork = 0; 2328 } 2329 2330 if (dl_prio(p->prio)) 2331 return -EAGAIN; 2332 else if (rt_prio(p->prio)) 2333 p->sched_class = &rt_sched_class; 2334 else 2335 p->sched_class = &fair_sched_class; 2336 2337 init_entity_runnable_average(&p->se); 2338 2339 /* 2340 * The child is not yet in the pid-hash so no cgroup attach races, 2341 * and the cgroup is pinned to this child due to cgroup_fork() 2342 * is ran before sched_fork(). 2343 * 2344 * Silence PROVE_RCU. 2345 */ 2346 raw_spin_lock_irqsave(&p->pi_lock, flags); 2347 /* 2348 * We're setting the CPU for the first time, we don't migrate, 2349 * so use __set_task_cpu(). 2350 */ 2351 __set_task_cpu(p, smp_processor_id()); 2352 if (p->sched_class->task_fork) 2353 p->sched_class->task_fork(p); 2354 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2355 2356 #ifdef CONFIG_SCHED_INFO 2357 if (likely(sched_info_on())) 2358 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2359 #endif 2360 #if defined(CONFIG_SMP) 2361 p->on_cpu = 0; 2362 #endif 2363 init_task_preempt_count(p); 2364 #ifdef CONFIG_SMP 2365 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2366 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2367 #endif 2368 return 0; 2369 } 2370 2371 unsigned long to_ratio(u64 period, u64 runtime) 2372 { 2373 if (runtime == RUNTIME_INF) 2374 return BW_UNIT; 2375 2376 /* 2377 * Doing this here saves a lot of checks in all 2378 * the calling paths, and returning zero seems 2379 * safe for them anyway. 2380 */ 2381 if (period == 0) 2382 return 0; 2383 2384 return div64_u64(runtime << BW_SHIFT, period); 2385 } 2386 2387 /* 2388 * wake_up_new_task - wake up a newly created task for the first time. 2389 * 2390 * This function will do some initial scheduler statistics housekeeping 2391 * that must be done for every newly created context, then puts the task 2392 * on the runqueue and wakes it. 2393 */ 2394 void wake_up_new_task(struct task_struct *p) 2395 { 2396 struct rq_flags rf; 2397 struct rq *rq; 2398 2399 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2400 p->state = TASK_RUNNING; 2401 #ifdef CONFIG_SMP 2402 /* 2403 * Fork balancing, do it here and not earlier because: 2404 * - cpus_allowed can change in the fork path 2405 * - any previously selected CPU might disappear through hotplug 2406 * 2407 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2408 * as we're not fully set-up yet. 2409 */ 2410 p->recent_used_cpu = task_cpu(p); 2411 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2412 #endif 2413 rq = __task_rq_lock(p, &rf); 2414 update_rq_clock(rq); 2415 post_init_entity_util_avg(&p->se); 2416 2417 activate_task(rq, p, ENQUEUE_NOCLOCK); 2418 p->on_rq = TASK_ON_RQ_QUEUED; 2419 trace_sched_wakeup_new(p); 2420 check_preempt_curr(rq, p, WF_FORK); 2421 #ifdef CONFIG_SMP 2422 if (p->sched_class->task_woken) { 2423 /* 2424 * Nothing relies on rq->lock after this, so its fine to 2425 * drop it. 2426 */ 2427 rq_unpin_lock(rq, &rf); 2428 p->sched_class->task_woken(rq, p); 2429 rq_repin_lock(rq, &rf); 2430 } 2431 #endif 2432 task_rq_unlock(rq, p, &rf); 2433 } 2434 2435 #ifdef CONFIG_PREEMPT_NOTIFIERS 2436 2437 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2438 2439 void preempt_notifier_inc(void) 2440 { 2441 static_branch_inc(&preempt_notifier_key); 2442 } 2443 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2444 2445 void preempt_notifier_dec(void) 2446 { 2447 static_branch_dec(&preempt_notifier_key); 2448 } 2449 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2450 2451 /** 2452 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2453 * @notifier: notifier struct to register 2454 */ 2455 void preempt_notifier_register(struct preempt_notifier *notifier) 2456 { 2457 if (!static_branch_unlikely(&preempt_notifier_key)) 2458 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2459 2460 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2461 } 2462 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2463 2464 /** 2465 * preempt_notifier_unregister - no longer interested in preemption notifications 2466 * @notifier: notifier struct to unregister 2467 * 2468 * This is *not* safe to call from within a preemption notifier. 2469 */ 2470 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2471 { 2472 hlist_del(¬ifier->link); 2473 } 2474 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2475 2476 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2477 { 2478 struct preempt_notifier *notifier; 2479 2480 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2481 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2482 } 2483 2484 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2485 { 2486 if (static_branch_unlikely(&preempt_notifier_key)) 2487 __fire_sched_in_preempt_notifiers(curr); 2488 } 2489 2490 static void 2491 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2492 struct task_struct *next) 2493 { 2494 struct preempt_notifier *notifier; 2495 2496 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2497 notifier->ops->sched_out(notifier, next); 2498 } 2499 2500 static __always_inline void 2501 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2502 struct task_struct *next) 2503 { 2504 if (static_branch_unlikely(&preempt_notifier_key)) 2505 __fire_sched_out_preempt_notifiers(curr, next); 2506 } 2507 2508 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2509 2510 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2511 { 2512 } 2513 2514 static inline void 2515 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2516 struct task_struct *next) 2517 { 2518 } 2519 2520 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2521 2522 static inline void prepare_task(struct task_struct *next) 2523 { 2524 #ifdef CONFIG_SMP 2525 /* 2526 * Claim the task as running, we do this before switching to it 2527 * such that any running task will have this set. 2528 */ 2529 next->on_cpu = 1; 2530 #endif 2531 } 2532 2533 static inline void finish_task(struct task_struct *prev) 2534 { 2535 #ifdef CONFIG_SMP 2536 /* 2537 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2538 * We must ensure this doesn't happen until the switch is completely 2539 * finished. 2540 * 2541 * In particular, the load of prev->state in finish_task_switch() must 2542 * happen before this. 2543 * 2544 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2545 */ 2546 smp_store_release(&prev->on_cpu, 0); 2547 #endif 2548 } 2549 2550 static inline void 2551 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2552 { 2553 /* 2554 * Since the runqueue lock will be released by the next 2555 * task (which is an invalid locking op but in the case 2556 * of the scheduler it's an obvious special-case), so we 2557 * do an early lockdep release here: 2558 */ 2559 rq_unpin_lock(rq, rf); 2560 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2561 #ifdef CONFIG_DEBUG_SPINLOCK 2562 /* this is a valid case when another task releases the spinlock */ 2563 rq->lock.owner = next; 2564 #endif 2565 } 2566 2567 static inline void finish_lock_switch(struct rq *rq) 2568 { 2569 /* 2570 * If we are tracking spinlock dependencies then we have to 2571 * fix up the runqueue lock - which gets 'carried over' from 2572 * prev into current: 2573 */ 2574 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2575 raw_spin_unlock_irq(&rq->lock); 2576 } 2577 2578 /* 2579 * NOP if the arch has not defined these: 2580 */ 2581 2582 #ifndef prepare_arch_switch 2583 # define prepare_arch_switch(next) do { } while (0) 2584 #endif 2585 2586 #ifndef finish_arch_post_lock_switch 2587 # define finish_arch_post_lock_switch() do { } while (0) 2588 #endif 2589 2590 /** 2591 * prepare_task_switch - prepare to switch tasks 2592 * @rq: the runqueue preparing to switch 2593 * @prev: the current task that is being switched out 2594 * @next: the task we are going to switch to. 2595 * 2596 * This is called with the rq lock held and interrupts off. It must 2597 * be paired with a subsequent finish_task_switch after the context 2598 * switch. 2599 * 2600 * prepare_task_switch sets up locking and calls architecture specific 2601 * hooks. 2602 */ 2603 static inline void 2604 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2605 struct task_struct *next) 2606 { 2607 kcov_prepare_switch(prev); 2608 sched_info_switch(rq, prev, next); 2609 perf_event_task_sched_out(prev, next); 2610 rseq_preempt(prev); 2611 fire_sched_out_preempt_notifiers(prev, next); 2612 prepare_task(next); 2613 prepare_arch_switch(next); 2614 } 2615 2616 /** 2617 * finish_task_switch - clean up after a task-switch 2618 * @prev: the thread we just switched away from. 2619 * 2620 * finish_task_switch must be called after the context switch, paired 2621 * with a prepare_task_switch call before the context switch. 2622 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2623 * and do any other architecture-specific cleanup actions. 2624 * 2625 * Note that we may have delayed dropping an mm in context_switch(). If 2626 * so, we finish that here outside of the runqueue lock. (Doing it 2627 * with the lock held can cause deadlocks; see schedule() for 2628 * details.) 2629 * 2630 * The context switch have flipped the stack from under us and restored the 2631 * local variables which were saved when this task called schedule() in the 2632 * past. prev == current is still correct but we need to recalculate this_rq 2633 * because prev may have moved to another CPU. 2634 */ 2635 static struct rq *finish_task_switch(struct task_struct *prev) 2636 __releases(rq->lock) 2637 { 2638 struct rq *rq = this_rq(); 2639 struct mm_struct *mm = rq->prev_mm; 2640 long prev_state; 2641 2642 /* 2643 * The previous task will have left us with a preempt_count of 2 2644 * because it left us after: 2645 * 2646 * schedule() 2647 * preempt_disable(); // 1 2648 * __schedule() 2649 * raw_spin_lock_irq(&rq->lock) // 2 2650 * 2651 * Also, see FORK_PREEMPT_COUNT. 2652 */ 2653 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2654 "corrupted preempt_count: %s/%d/0x%x\n", 2655 current->comm, current->pid, preempt_count())) 2656 preempt_count_set(FORK_PREEMPT_COUNT); 2657 2658 rq->prev_mm = NULL; 2659 2660 /* 2661 * A task struct has one reference for the use as "current". 2662 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2663 * schedule one last time. The schedule call will never return, and 2664 * the scheduled task must drop that reference. 2665 * 2666 * We must observe prev->state before clearing prev->on_cpu (in 2667 * finish_task), otherwise a concurrent wakeup can get prev 2668 * running on another CPU and we could rave with its RUNNING -> DEAD 2669 * transition, resulting in a double drop. 2670 */ 2671 prev_state = prev->state; 2672 vtime_task_switch(prev); 2673 perf_event_task_sched_in(prev, current); 2674 finish_task(prev); 2675 finish_lock_switch(rq); 2676 finish_arch_post_lock_switch(); 2677 kcov_finish_switch(current); 2678 2679 fire_sched_in_preempt_notifiers(current); 2680 /* 2681 * When switching through a kernel thread, the loop in 2682 * membarrier_{private,global}_expedited() may have observed that 2683 * kernel thread and not issued an IPI. It is therefore possible to 2684 * schedule between user->kernel->user threads without passing though 2685 * switch_mm(). Membarrier requires a barrier after storing to 2686 * rq->curr, before returning to userspace, so provide them here: 2687 * 2688 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2689 * provided by mmdrop(), 2690 * - a sync_core for SYNC_CORE. 2691 */ 2692 if (mm) { 2693 membarrier_mm_sync_core_before_usermode(mm); 2694 mmdrop(mm); 2695 } 2696 if (unlikely(prev_state == TASK_DEAD)) { 2697 if (prev->sched_class->task_dead) 2698 prev->sched_class->task_dead(prev); 2699 2700 /* 2701 * Remove function-return probe instances associated with this 2702 * task and put them back on the free list. 2703 */ 2704 kprobe_flush_task(prev); 2705 2706 /* Task is done with its stack. */ 2707 put_task_stack(prev); 2708 2709 put_task_struct(prev); 2710 } 2711 2712 tick_nohz_task_switch(); 2713 return rq; 2714 } 2715 2716 #ifdef CONFIG_SMP 2717 2718 /* rq->lock is NOT held, but preemption is disabled */ 2719 static void __balance_callback(struct rq *rq) 2720 { 2721 struct callback_head *head, *next; 2722 void (*func)(struct rq *rq); 2723 unsigned long flags; 2724 2725 raw_spin_lock_irqsave(&rq->lock, flags); 2726 head = rq->balance_callback; 2727 rq->balance_callback = NULL; 2728 while (head) { 2729 func = (void (*)(struct rq *))head->func; 2730 next = head->next; 2731 head->next = NULL; 2732 head = next; 2733 2734 func(rq); 2735 } 2736 raw_spin_unlock_irqrestore(&rq->lock, flags); 2737 } 2738 2739 static inline void balance_callback(struct rq *rq) 2740 { 2741 if (unlikely(rq->balance_callback)) 2742 __balance_callback(rq); 2743 } 2744 2745 #else 2746 2747 static inline void balance_callback(struct rq *rq) 2748 { 2749 } 2750 2751 #endif 2752 2753 /** 2754 * schedule_tail - first thing a freshly forked thread must call. 2755 * @prev: the thread we just switched away from. 2756 */ 2757 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2758 __releases(rq->lock) 2759 { 2760 struct rq *rq; 2761 2762 /* 2763 * New tasks start with FORK_PREEMPT_COUNT, see there and 2764 * finish_task_switch() for details. 2765 * 2766 * finish_task_switch() will drop rq->lock() and lower preempt_count 2767 * and the preempt_enable() will end up enabling preemption (on 2768 * PREEMPT_COUNT kernels). 2769 */ 2770 2771 rq = finish_task_switch(prev); 2772 balance_callback(rq); 2773 preempt_enable(); 2774 2775 if (current->set_child_tid) 2776 put_user(task_pid_vnr(current), current->set_child_tid); 2777 2778 calculate_sigpending(); 2779 } 2780 2781 /* 2782 * context_switch - switch to the new MM and the new thread's register state. 2783 */ 2784 static __always_inline struct rq * 2785 context_switch(struct rq *rq, struct task_struct *prev, 2786 struct task_struct *next, struct rq_flags *rf) 2787 { 2788 struct mm_struct *mm, *oldmm; 2789 2790 prepare_task_switch(rq, prev, next); 2791 2792 mm = next->mm; 2793 oldmm = prev->active_mm; 2794 /* 2795 * For paravirt, this is coupled with an exit in switch_to to 2796 * combine the page table reload and the switch backend into 2797 * one hypercall. 2798 */ 2799 arch_start_context_switch(prev); 2800 2801 /* 2802 * If mm is non-NULL, we pass through switch_mm(). If mm is 2803 * NULL, we will pass through mmdrop() in finish_task_switch(). 2804 * Both of these contain the full memory barrier required by 2805 * membarrier after storing to rq->curr, before returning to 2806 * user-space. 2807 */ 2808 if (!mm) { 2809 next->active_mm = oldmm; 2810 mmgrab(oldmm); 2811 enter_lazy_tlb(oldmm, next); 2812 } else 2813 switch_mm_irqs_off(oldmm, mm, next); 2814 2815 if (!prev->mm) { 2816 prev->active_mm = NULL; 2817 rq->prev_mm = oldmm; 2818 } 2819 2820 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2821 2822 prepare_lock_switch(rq, next, rf); 2823 2824 /* Here we just switch the register state and the stack. */ 2825 switch_to(prev, next, prev); 2826 barrier(); 2827 2828 return finish_task_switch(prev); 2829 } 2830 2831 /* 2832 * nr_running and nr_context_switches: 2833 * 2834 * externally visible scheduler statistics: current number of runnable 2835 * threads, total number of context switches performed since bootup. 2836 */ 2837 unsigned long nr_running(void) 2838 { 2839 unsigned long i, sum = 0; 2840 2841 for_each_online_cpu(i) 2842 sum += cpu_rq(i)->nr_running; 2843 2844 return sum; 2845 } 2846 2847 /* 2848 * Check if only the current task is running on the CPU. 2849 * 2850 * Caution: this function does not check that the caller has disabled 2851 * preemption, thus the result might have a time-of-check-to-time-of-use 2852 * race. The caller is responsible to use it correctly, for example: 2853 * 2854 * - from a non-preemptable section (of course) 2855 * 2856 * - from a thread that is bound to a single CPU 2857 * 2858 * - in a loop with very short iterations (e.g. a polling loop) 2859 */ 2860 bool single_task_running(void) 2861 { 2862 return raw_rq()->nr_running == 1; 2863 } 2864 EXPORT_SYMBOL(single_task_running); 2865 2866 unsigned long long nr_context_switches(void) 2867 { 2868 int i; 2869 unsigned long long sum = 0; 2870 2871 for_each_possible_cpu(i) 2872 sum += cpu_rq(i)->nr_switches; 2873 2874 return sum; 2875 } 2876 2877 /* 2878 * IO-wait accounting, and how its mostly bollocks (on SMP). 2879 * 2880 * The idea behind IO-wait account is to account the idle time that we could 2881 * have spend running if it were not for IO. That is, if we were to improve the 2882 * storage performance, we'd have a proportional reduction in IO-wait time. 2883 * 2884 * This all works nicely on UP, where, when a task blocks on IO, we account 2885 * idle time as IO-wait, because if the storage were faster, it could've been 2886 * running and we'd not be idle. 2887 * 2888 * This has been extended to SMP, by doing the same for each CPU. This however 2889 * is broken. 2890 * 2891 * Imagine for instance the case where two tasks block on one CPU, only the one 2892 * CPU will have IO-wait accounted, while the other has regular idle. Even 2893 * though, if the storage were faster, both could've ran at the same time, 2894 * utilising both CPUs. 2895 * 2896 * This means, that when looking globally, the current IO-wait accounting on 2897 * SMP is a lower bound, by reason of under accounting. 2898 * 2899 * Worse, since the numbers are provided per CPU, they are sometimes 2900 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2901 * associated with any one particular CPU, it can wake to another CPU than it 2902 * blocked on. This means the per CPU IO-wait number is meaningless. 2903 * 2904 * Task CPU affinities can make all that even more 'interesting'. 2905 */ 2906 2907 unsigned long nr_iowait(void) 2908 { 2909 unsigned long i, sum = 0; 2910 2911 for_each_possible_cpu(i) 2912 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2913 2914 return sum; 2915 } 2916 2917 /* 2918 * Consumers of these two interfaces, like for example the cpufreq menu 2919 * governor are using nonsensical data. Boosting frequency for a CPU that has 2920 * IO-wait which might not even end up running the task when it does become 2921 * runnable. 2922 */ 2923 2924 unsigned long nr_iowait_cpu(int cpu) 2925 { 2926 struct rq *this = cpu_rq(cpu); 2927 return atomic_read(&this->nr_iowait); 2928 } 2929 2930 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2931 { 2932 struct rq *rq = this_rq(); 2933 *nr_waiters = atomic_read(&rq->nr_iowait); 2934 *load = rq->load.weight; 2935 } 2936 2937 #ifdef CONFIG_SMP 2938 2939 /* 2940 * sched_exec - execve() is a valuable balancing opportunity, because at 2941 * this point the task has the smallest effective memory and cache footprint. 2942 */ 2943 void sched_exec(void) 2944 { 2945 struct task_struct *p = current; 2946 unsigned long flags; 2947 int dest_cpu; 2948 2949 raw_spin_lock_irqsave(&p->pi_lock, flags); 2950 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2951 if (dest_cpu == smp_processor_id()) 2952 goto unlock; 2953 2954 if (likely(cpu_active(dest_cpu))) { 2955 struct migration_arg arg = { p, dest_cpu }; 2956 2957 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2958 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2959 return; 2960 } 2961 unlock: 2962 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2963 } 2964 2965 #endif 2966 2967 DEFINE_PER_CPU(struct kernel_stat, kstat); 2968 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2969 2970 EXPORT_PER_CPU_SYMBOL(kstat); 2971 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2972 2973 /* 2974 * The function fair_sched_class.update_curr accesses the struct curr 2975 * and its field curr->exec_start; when called from task_sched_runtime(), 2976 * we observe a high rate of cache misses in practice. 2977 * Prefetching this data results in improved performance. 2978 */ 2979 static inline void prefetch_curr_exec_start(struct task_struct *p) 2980 { 2981 #ifdef CONFIG_FAIR_GROUP_SCHED 2982 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 2983 #else 2984 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 2985 #endif 2986 prefetch(curr); 2987 prefetch(&curr->exec_start); 2988 } 2989 2990 /* 2991 * Return accounted runtime for the task. 2992 * In case the task is currently running, return the runtime plus current's 2993 * pending runtime that have not been accounted yet. 2994 */ 2995 unsigned long long task_sched_runtime(struct task_struct *p) 2996 { 2997 struct rq_flags rf; 2998 struct rq *rq; 2999 u64 ns; 3000 3001 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3002 /* 3003 * 64-bit doesn't need locks to atomically read a 64-bit value. 3004 * So we have a optimization chance when the task's delta_exec is 0. 3005 * Reading ->on_cpu is racy, but this is ok. 3006 * 3007 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3008 * If we race with it entering CPU, unaccounted time is 0. This is 3009 * indistinguishable from the read occurring a few cycles earlier. 3010 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3011 * been accounted, so we're correct here as well. 3012 */ 3013 if (!p->on_cpu || !task_on_rq_queued(p)) 3014 return p->se.sum_exec_runtime; 3015 #endif 3016 3017 rq = task_rq_lock(p, &rf); 3018 /* 3019 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3020 * project cycles that may never be accounted to this 3021 * thread, breaking clock_gettime(). 3022 */ 3023 if (task_current(rq, p) && task_on_rq_queued(p)) { 3024 prefetch_curr_exec_start(p); 3025 update_rq_clock(rq); 3026 p->sched_class->update_curr(rq); 3027 } 3028 ns = p->se.sum_exec_runtime; 3029 task_rq_unlock(rq, p, &rf); 3030 3031 return ns; 3032 } 3033 3034 /* 3035 * This function gets called by the timer code, with HZ frequency. 3036 * We call it with interrupts disabled. 3037 */ 3038 void scheduler_tick(void) 3039 { 3040 int cpu = smp_processor_id(); 3041 struct rq *rq = cpu_rq(cpu); 3042 struct task_struct *curr = rq->curr; 3043 struct rq_flags rf; 3044 3045 sched_clock_tick(); 3046 3047 rq_lock(rq, &rf); 3048 3049 update_rq_clock(rq); 3050 curr->sched_class->task_tick(rq, curr, 0); 3051 cpu_load_update_active(rq); 3052 calc_global_load_tick(rq); 3053 3054 rq_unlock(rq, &rf); 3055 3056 perf_event_task_tick(); 3057 3058 #ifdef CONFIG_SMP 3059 rq->idle_balance = idle_cpu(cpu); 3060 trigger_load_balance(rq); 3061 #endif 3062 } 3063 3064 #ifdef CONFIG_NO_HZ_FULL 3065 3066 struct tick_work { 3067 int cpu; 3068 struct delayed_work work; 3069 }; 3070 3071 static struct tick_work __percpu *tick_work_cpu; 3072 3073 static void sched_tick_remote(struct work_struct *work) 3074 { 3075 struct delayed_work *dwork = to_delayed_work(work); 3076 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3077 int cpu = twork->cpu; 3078 struct rq *rq = cpu_rq(cpu); 3079 struct task_struct *curr; 3080 struct rq_flags rf; 3081 u64 delta; 3082 3083 /* 3084 * Handle the tick only if it appears the remote CPU is running in full 3085 * dynticks mode. The check is racy by nature, but missing a tick or 3086 * having one too much is no big deal because the scheduler tick updates 3087 * statistics and checks timeslices in a time-independent way, regardless 3088 * of when exactly it is running. 3089 */ 3090 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3091 goto out_requeue; 3092 3093 rq_lock_irq(rq, &rf); 3094 curr = rq->curr; 3095 if (is_idle_task(curr)) 3096 goto out_unlock; 3097 3098 update_rq_clock(rq); 3099 delta = rq_clock_task(rq) - curr->se.exec_start; 3100 3101 /* 3102 * Make sure the next tick runs within a reasonable 3103 * amount of time. 3104 */ 3105 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3106 curr->sched_class->task_tick(rq, curr, 0); 3107 3108 out_unlock: 3109 rq_unlock_irq(rq, &rf); 3110 3111 out_requeue: 3112 /* 3113 * Run the remote tick once per second (1Hz). This arbitrary 3114 * frequency is large enough to avoid overload but short enough 3115 * to keep scheduler internal stats reasonably up to date. 3116 */ 3117 queue_delayed_work(system_unbound_wq, dwork, HZ); 3118 } 3119 3120 static void sched_tick_start(int cpu) 3121 { 3122 struct tick_work *twork; 3123 3124 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3125 return; 3126 3127 WARN_ON_ONCE(!tick_work_cpu); 3128 3129 twork = per_cpu_ptr(tick_work_cpu, cpu); 3130 twork->cpu = cpu; 3131 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3132 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3133 } 3134 3135 #ifdef CONFIG_HOTPLUG_CPU 3136 static void sched_tick_stop(int cpu) 3137 { 3138 struct tick_work *twork; 3139 3140 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3141 return; 3142 3143 WARN_ON_ONCE(!tick_work_cpu); 3144 3145 twork = per_cpu_ptr(tick_work_cpu, cpu); 3146 cancel_delayed_work_sync(&twork->work); 3147 } 3148 #endif /* CONFIG_HOTPLUG_CPU */ 3149 3150 int __init sched_tick_offload_init(void) 3151 { 3152 tick_work_cpu = alloc_percpu(struct tick_work); 3153 BUG_ON(!tick_work_cpu); 3154 3155 return 0; 3156 } 3157 3158 #else /* !CONFIG_NO_HZ_FULL */ 3159 static inline void sched_tick_start(int cpu) { } 3160 static inline void sched_tick_stop(int cpu) { } 3161 #endif 3162 3163 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3164 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3165 /* 3166 * If the value passed in is equal to the current preempt count 3167 * then we just disabled preemption. Start timing the latency. 3168 */ 3169 static inline void preempt_latency_start(int val) 3170 { 3171 if (preempt_count() == val) { 3172 unsigned long ip = get_lock_parent_ip(); 3173 #ifdef CONFIG_DEBUG_PREEMPT 3174 current->preempt_disable_ip = ip; 3175 #endif 3176 trace_preempt_off(CALLER_ADDR0, ip); 3177 } 3178 } 3179 3180 void preempt_count_add(int val) 3181 { 3182 #ifdef CONFIG_DEBUG_PREEMPT 3183 /* 3184 * Underflow? 3185 */ 3186 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3187 return; 3188 #endif 3189 __preempt_count_add(val); 3190 #ifdef CONFIG_DEBUG_PREEMPT 3191 /* 3192 * Spinlock count overflowing soon? 3193 */ 3194 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3195 PREEMPT_MASK - 10); 3196 #endif 3197 preempt_latency_start(val); 3198 } 3199 EXPORT_SYMBOL(preempt_count_add); 3200 NOKPROBE_SYMBOL(preempt_count_add); 3201 3202 /* 3203 * If the value passed in equals to the current preempt count 3204 * then we just enabled preemption. Stop timing the latency. 3205 */ 3206 static inline void preempt_latency_stop(int val) 3207 { 3208 if (preempt_count() == val) 3209 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3210 } 3211 3212 void preempt_count_sub(int val) 3213 { 3214 #ifdef CONFIG_DEBUG_PREEMPT 3215 /* 3216 * Underflow? 3217 */ 3218 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3219 return; 3220 /* 3221 * Is the spinlock portion underflowing? 3222 */ 3223 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3224 !(preempt_count() & PREEMPT_MASK))) 3225 return; 3226 #endif 3227 3228 preempt_latency_stop(val); 3229 __preempt_count_sub(val); 3230 } 3231 EXPORT_SYMBOL(preempt_count_sub); 3232 NOKPROBE_SYMBOL(preempt_count_sub); 3233 3234 #else 3235 static inline void preempt_latency_start(int val) { } 3236 static inline void preempt_latency_stop(int val) { } 3237 #endif 3238 3239 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3240 { 3241 #ifdef CONFIG_DEBUG_PREEMPT 3242 return p->preempt_disable_ip; 3243 #else 3244 return 0; 3245 #endif 3246 } 3247 3248 /* 3249 * Print scheduling while atomic bug: 3250 */ 3251 static noinline void __schedule_bug(struct task_struct *prev) 3252 { 3253 /* Save this before calling printk(), since that will clobber it */ 3254 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3255 3256 if (oops_in_progress) 3257 return; 3258 3259 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3260 prev->comm, prev->pid, preempt_count()); 3261 3262 debug_show_held_locks(prev); 3263 print_modules(); 3264 if (irqs_disabled()) 3265 print_irqtrace_events(prev); 3266 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3267 && in_atomic_preempt_off()) { 3268 pr_err("Preemption disabled at:"); 3269 print_ip_sym(preempt_disable_ip); 3270 pr_cont("\n"); 3271 } 3272 if (panic_on_warn) 3273 panic("scheduling while atomic\n"); 3274 3275 dump_stack(); 3276 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3277 } 3278 3279 /* 3280 * Various schedule()-time debugging checks and statistics: 3281 */ 3282 static inline void schedule_debug(struct task_struct *prev) 3283 { 3284 #ifdef CONFIG_SCHED_STACK_END_CHECK 3285 if (task_stack_end_corrupted(prev)) 3286 panic("corrupted stack end detected inside scheduler\n"); 3287 #endif 3288 3289 if (unlikely(in_atomic_preempt_off())) { 3290 __schedule_bug(prev); 3291 preempt_count_set(PREEMPT_DISABLED); 3292 } 3293 rcu_sleep_check(); 3294 3295 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3296 3297 schedstat_inc(this_rq()->sched_count); 3298 } 3299 3300 /* 3301 * Pick up the highest-prio task: 3302 */ 3303 static inline struct task_struct * 3304 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3305 { 3306 const struct sched_class *class; 3307 struct task_struct *p; 3308 3309 /* 3310 * Optimization: we know that if all tasks are in the fair class we can 3311 * call that function directly, but only if the @prev task wasn't of a 3312 * higher scheduling class, because otherwise those loose the 3313 * opportunity to pull in more work from other CPUs. 3314 */ 3315 if (likely((prev->sched_class == &idle_sched_class || 3316 prev->sched_class == &fair_sched_class) && 3317 rq->nr_running == rq->cfs.h_nr_running)) { 3318 3319 p = fair_sched_class.pick_next_task(rq, prev, rf); 3320 if (unlikely(p == RETRY_TASK)) 3321 goto again; 3322 3323 /* Assumes fair_sched_class->next == idle_sched_class */ 3324 if (unlikely(!p)) 3325 p = idle_sched_class.pick_next_task(rq, prev, rf); 3326 3327 return p; 3328 } 3329 3330 again: 3331 for_each_class(class) { 3332 p = class->pick_next_task(rq, prev, rf); 3333 if (p) { 3334 if (unlikely(p == RETRY_TASK)) 3335 goto again; 3336 return p; 3337 } 3338 } 3339 3340 /* The idle class should always have a runnable task: */ 3341 BUG(); 3342 } 3343 3344 /* 3345 * __schedule() is the main scheduler function. 3346 * 3347 * The main means of driving the scheduler and thus entering this function are: 3348 * 3349 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3350 * 3351 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3352 * paths. For example, see arch/x86/entry_64.S. 3353 * 3354 * To drive preemption between tasks, the scheduler sets the flag in timer 3355 * interrupt handler scheduler_tick(). 3356 * 3357 * 3. Wakeups don't really cause entry into schedule(). They add a 3358 * task to the run-queue and that's it. 3359 * 3360 * Now, if the new task added to the run-queue preempts the current 3361 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3362 * called on the nearest possible occasion: 3363 * 3364 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3365 * 3366 * - in syscall or exception context, at the next outmost 3367 * preempt_enable(). (this might be as soon as the wake_up()'s 3368 * spin_unlock()!) 3369 * 3370 * - in IRQ context, return from interrupt-handler to 3371 * preemptible context 3372 * 3373 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3374 * then at the next: 3375 * 3376 * - cond_resched() call 3377 * - explicit schedule() call 3378 * - return from syscall or exception to user-space 3379 * - return from interrupt-handler to user-space 3380 * 3381 * WARNING: must be called with preemption disabled! 3382 */ 3383 static void __sched notrace __schedule(bool preempt) 3384 { 3385 struct task_struct *prev, *next; 3386 unsigned long *switch_count; 3387 struct rq_flags rf; 3388 struct rq *rq; 3389 int cpu; 3390 3391 cpu = smp_processor_id(); 3392 rq = cpu_rq(cpu); 3393 prev = rq->curr; 3394 3395 schedule_debug(prev); 3396 3397 if (sched_feat(HRTICK)) 3398 hrtick_clear(rq); 3399 3400 local_irq_disable(); 3401 rcu_note_context_switch(preempt); 3402 3403 /* 3404 * Make sure that signal_pending_state()->signal_pending() below 3405 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3406 * done by the caller to avoid the race with signal_wake_up(). 3407 * 3408 * The membarrier system call requires a full memory barrier 3409 * after coming from user-space, before storing to rq->curr. 3410 */ 3411 rq_lock(rq, &rf); 3412 smp_mb__after_spinlock(); 3413 3414 /* Promote REQ to ACT */ 3415 rq->clock_update_flags <<= 1; 3416 update_rq_clock(rq); 3417 3418 switch_count = &prev->nivcsw; 3419 if (!preempt && prev->state) { 3420 if (unlikely(signal_pending_state(prev->state, prev))) { 3421 prev->state = TASK_RUNNING; 3422 } else { 3423 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3424 prev->on_rq = 0; 3425 3426 if (prev->in_iowait) { 3427 atomic_inc(&rq->nr_iowait); 3428 delayacct_blkio_start(); 3429 } 3430 3431 /* 3432 * If a worker went to sleep, notify and ask workqueue 3433 * whether it wants to wake up a task to maintain 3434 * concurrency. 3435 */ 3436 if (prev->flags & PF_WQ_WORKER) { 3437 struct task_struct *to_wakeup; 3438 3439 to_wakeup = wq_worker_sleeping(prev); 3440 if (to_wakeup) 3441 try_to_wake_up_local(to_wakeup, &rf); 3442 } 3443 } 3444 switch_count = &prev->nvcsw; 3445 } 3446 3447 next = pick_next_task(rq, prev, &rf); 3448 clear_tsk_need_resched(prev); 3449 clear_preempt_need_resched(); 3450 3451 if (likely(prev != next)) { 3452 rq->nr_switches++; 3453 rq->curr = next; 3454 /* 3455 * The membarrier system call requires each architecture 3456 * to have a full memory barrier after updating 3457 * rq->curr, before returning to user-space. 3458 * 3459 * Here are the schemes providing that barrier on the 3460 * various architectures: 3461 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3462 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3463 * - finish_lock_switch() for weakly-ordered 3464 * architectures where spin_unlock is a full barrier, 3465 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3466 * is a RELEASE barrier), 3467 */ 3468 ++*switch_count; 3469 3470 trace_sched_switch(preempt, prev, next); 3471 3472 /* Also unlocks the rq: */ 3473 rq = context_switch(rq, prev, next, &rf); 3474 } else { 3475 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3476 rq_unlock_irq(rq, &rf); 3477 } 3478 3479 balance_callback(rq); 3480 } 3481 3482 void __noreturn do_task_dead(void) 3483 { 3484 /* Causes final put_task_struct in finish_task_switch(): */ 3485 set_special_state(TASK_DEAD); 3486 3487 /* Tell freezer to ignore us: */ 3488 current->flags |= PF_NOFREEZE; 3489 3490 __schedule(false); 3491 BUG(); 3492 3493 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3494 for (;;) 3495 cpu_relax(); 3496 } 3497 3498 static inline void sched_submit_work(struct task_struct *tsk) 3499 { 3500 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3501 return; 3502 /* 3503 * If we are going to sleep and we have plugged IO queued, 3504 * make sure to submit it to avoid deadlocks. 3505 */ 3506 if (blk_needs_flush_plug(tsk)) 3507 blk_schedule_flush_plug(tsk); 3508 } 3509 3510 asmlinkage __visible void __sched schedule(void) 3511 { 3512 struct task_struct *tsk = current; 3513 3514 sched_submit_work(tsk); 3515 do { 3516 preempt_disable(); 3517 __schedule(false); 3518 sched_preempt_enable_no_resched(); 3519 } while (need_resched()); 3520 } 3521 EXPORT_SYMBOL(schedule); 3522 3523 /* 3524 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3525 * state (have scheduled out non-voluntarily) by making sure that all 3526 * tasks have either left the run queue or have gone into user space. 3527 * As idle tasks do not do either, they must not ever be preempted 3528 * (schedule out non-voluntarily). 3529 * 3530 * schedule_idle() is similar to schedule_preempt_disable() except that it 3531 * never enables preemption because it does not call sched_submit_work(). 3532 */ 3533 void __sched schedule_idle(void) 3534 { 3535 /* 3536 * As this skips calling sched_submit_work(), which the idle task does 3537 * regardless because that function is a nop when the task is in a 3538 * TASK_RUNNING state, make sure this isn't used someplace that the 3539 * current task can be in any other state. Note, idle is always in the 3540 * TASK_RUNNING state. 3541 */ 3542 WARN_ON_ONCE(current->state); 3543 do { 3544 __schedule(false); 3545 } while (need_resched()); 3546 } 3547 3548 #ifdef CONFIG_CONTEXT_TRACKING 3549 asmlinkage __visible void __sched schedule_user(void) 3550 { 3551 /* 3552 * If we come here after a random call to set_need_resched(), 3553 * or we have been woken up remotely but the IPI has not yet arrived, 3554 * we haven't yet exited the RCU idle mode. Do it here manually until 3555 * we find a better solution. 3556 * 3557 * NB: There are buggy callers of this function. Ideally we 3558 * should warn if prev_state != CONTEXT_USER, but that will trigger 3559 * too frequently to make sense yet. 3560 */ 3561 enum ctx_state prev_state = exception_enter(); 3562 schedule(); 3563 exception_exit(prev_state); 3564 } 3565 #endif 3566 3567 /** 3568 * schedule_preempt_disabled - called with preemption disabled 3569 * 3570 * Returns with preemption disabled. Note: preempt_count must be 1 3571 */ 3572 void __sched schedule_preempt_disabled(void) 3573 { 3574 sched_preempt_enable_no_resched(); 3575 schedule(); 3576 preempt_disable(); 3577 } 3578 3579 static void __sched notrace preempt_schedule_common(void) 3580 { 3581 do { 3582 /* 3583 * Because the function tracer can trace preempt_count_sub() 3584 * and it also uses preempt_enable/disable_notrace(), if 3585 * NEED_RESCHED is set, the preempt_enable_notrace() called 3586 * by the function tracer will call this function again and 3587 * cause infinite recursion. 3588 * 3589 * Preemption must be disabled here before the function 3590 * tracer can trace. Break up preempt_disable() into two 3591 * calls. One to disable preemption without fear of being 3592 * traced. The other to still record the preemption latency, 3593 * which can also be traced by the function tracer. 3594 */ 3595 preempt_disable_notrace(); 3596 preempt_latency_start(1); 3597 __schedule(true); 3598 preempt_latency_stop(1); 3599 preempt_enable_no_resched_notrace(); 3600 3601 /* 3602 * Check again in case we missed a preemption opportunity 3603 * between schedule and now. 3604 */ 3605 } while (need_resched()); 3606 } 3607 3608 #ifdef CONFIG_PREEMPT 3609 /* 3610 * this is the entry point to schedule() from in-kernel preemption 3611 * off of preempt_enable. Kernel preemptions off return from interrupt 3612 * occur there and call schedule directly. 3613 */ 3614 asmlinkage __visible void __sched notrace preempt_schedule(void) 3615 { 3616 /* 3617 * If there is a non-zero preempt_count or interrupts are disabled, 3618 * we do not want to preempt the current task. Just return.. 3619 */ 3620 if (likely(!preemptible())) 3621 return; 3622 3623 preempt_schedule_common(); 3624 } 3625 NOKPROBE_SYMBOL(preempt_schedule); 3626 EXPORT_SYMBOL(preempt_schedule); 3627 3628 /** 3629 * preempt_schedule_notrace - preempt_schedule called by tracing 3630 * 3631 * The tracing infrastructure uses preempt_enable_notrace to prevent 3632 * recursion and tracing preempt enabling caused by the tracing 3633 * infrastructure itself. But as tracing can happen in areas coming 3634 * from userspace or just about to enter userspace, a preempt enable 3635 * can occur before user_exit() is called. This will cause the scheduler 3636 * to be called when the system is still in usermode. 3637 * 3638 * To prevent this, the preempt_enable_notrace will use this function 3639 * instead of preempt_schedule() to exit user context if needed before 3640 * calling the scheduler. 3641 */ 3642 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3643 { 3644 enum ctx_state prev_ctx; 3645 3646 if (likely(!preemptible())) 3647 return; 3648 3649 do { 3650 /* 3651 * Because the function tracer can trace preempt_count_sub() 3652 * and it also uses preempt_enable/disable_notrace(), if 3653 * NEED_RESCHED is set, the preempt_enable_notrace() called 3654 * by the function tracer will call this function again and 3655 * cause infinite recursion. 3656 * 3657 * Preemption must be disabled here before the function 3658 * tracer can trace. Break up preempt_disable() into two 3659 * calls. One to disable preemption without fear of being 3660 * traced. The other to still record the preemption latency, 3661 * which can also be traced by the function tracer. 3662 */ 3663 preempt_disable_notrace(); 3664 preempt_latency_start(1); 3665 /* 3666 * Needs preempt disabled in case user_exit() is traced 3667 * and the tracer calls preempt_enable_notrace() causing 3668 * an infinite recursion. 3669 */ 3670 prev_ctx = exception_enter(); 3671 __schedule(true); 3672 exception_exit(prev_ctx); 3673 3674 preempt_latency_stop(1); 3675 preempt_enable_no_resched_notrace(); 3676 } while (need_resched()); 3677 } 3678 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3679 3680 #endif /* CONFIG_PREEMPT */ 3681 3682 /* 3683 * this is the entry point to schedule() from kernel preemption 3684 * off of irq context. 3685 * Note, that this is called and return with irqs disabled. This will 3686 * protect us against recursive calling from irq. 3687 */ 3688 asmlinkage __visible void __sched preempt_schedule_irq(void) 3689 { 3690 enum ctx_state prev_state; 3691 3692 /* Catch callers which need to be fixed */ 3693 BUG_ON(preempt_count() || !irqs_disabled()); 3694 3695 prev_state = exception_enter(); 3696 3697 do { 3698 preempt_disable(); 3699 local_irq_enable(); 3700 __schedule(true); 3701 local_irq_disable(); 3702 sched_preempt_enable_no_resched(); 3703 } while (need_resched()); 3704 3705 exception_exit(prev_state); 3706 } 3707 3708 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3709 void *key) 3710 { 3711 return try_to_wake_up(curr->private, mode, wake_flags); 3712 } 3713 EXPORT_SYMBOL(default_wake_function); 3714 3715 #ifdef CONFIG_RT_MUTEXES 3716 3717 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3718 { 3719 if (pi_task) 3720 prio = min(prio, pi_task->prio); 3721 3722 return prio; 3723 } 3724 3725 static inline int rt_effective_prio(struct task_struct *p, int prio) 3726 { 3727 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3728 3729 return __rt_effective_prio(pi_task, prio); 3730 } 3731 3732 /* 3733 * rt_mutex_setprio - set the current priority of a task 3734 * @p: task to boost 3735 * @pi_task: donor task 3736 * 3737 * This function changes the 'effective' priority of a task. It does 3738 * not touch ->normal_prio like __setscheduler(). 3739 * 3740 * Used by the rt_mutex code to implement priority inheritance 3741 * logic. Call site only calls if the priority of the task changed. 3742 */ 3743 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3744 { 3745 int prio, oldprio, queued, running, queue_flag = 3746 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3747 const struct sched_class *prev_class; 3748 struct rq_flags rf; 3749 struct rq *rq; 3750 3751 /* XXX used to be waiter->prio, not waiter->task->prio */ 3752 prio = __rt_effective_prio(pi_task, p->normal_prio); 3753 3754 /* 3755 * If nothing changed; bail early. 3756 */ 3757 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3758 return; 3759 3760 rq = __task_rq_lock(p, &rf); 3761 update_rq_clock(rq); 3762 /* 3763 * Set under pi_lock && rq->lock, such that the value can be used under 3764 * either lock. 3765 * 3766 * Note that there is loads of tricky to make this pointer cache work 3767 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3768 * ensure a task is de-boosted (pi_task is set to NULL) before the 3769 * task is allowed to run again (and can exit). This ensures the pointer 3770 * points to a blocked task -- which guaratees the task is present. 3771 */ 3772 p->pi_top_task = pi_task; 3773 3774 /* 3775 * For FIFO/RR we only need to set prio, if that matches we're done. 3776 */ 3777 if (prio == p->prio && !dl_prio(prio)) 3778 goto out_unlock; 3779 3780 /* 3781 * Idle task boosting is a nono in general. There is one 3782 * exception, when PREEMPT_RT and NOHZ is active: 3783 * 3784 * The idle task calls get_next_timer_interrupt() and holds 3785 * the timer wheel base->lock on the CPU and another CPU wants 3786 * to access the timer (probably to cancel it). We can safely 3787 * ignore the boosting request, as the idle CPU runs this code 3788 * with interrupts disabled and will complete the lock 3789 * protected section without being interrupted. So there is no 3790 * real need to boost. 3791 */ 3792 if (unlikely(p == rq->idle)) { 3793 WARN_ON(p != rq->curr); 3794 WARN_ON(p->pi_blocked_on); 3795 goto out_unlock; 3796 } 3797 3798 trace_sched_pi_setprio(p, pi_task); 3799 oldprio = p->prio; 3800 3801 if (oldprio == prio) 3802 queue_flag &= ~DEQUEUE_MOVE; 3803 3804 prev_class = p->sched_class; 3805 queued = task_on_rq_queued(p); 3806 running = task_current(rq, p); 3807 if (queued) 3808 dequeue_task(rq, p, queue_flag); 3809 if (running) 3810 put_prev_task(rq, p); 3811 3812 /* 3813 * Boosting condition are: 3814 * 1. -rt task is running and holds mutex A 3815 * --> -dl task blocks on mutex A 3816 * 3817 * 2. -dl task is running and holds mutex A 3818 * --> -dl task blocks on mutex A and could preempt the 3819 * running task 3820 */ 3821 if (dl_prio(prio)) { 3822 if (!dl_prio(p->normal_prio) || 3823 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3824 p->dl.dl_boosted = 1; 3825 queue_flag |= ENQUEUE_REPLENISH; 3826 } else 3827 p->dl.dl_boosted = 0; 3828 p->sched_class = &dl_sched_class; 3829 } else if (rt_prio(prio)) { 3830 if (dl_prio(oldprio)) 3831 p->dl.dl_boosted = 0; 3832 if (oldprio < prio) 3833 queue_flag |= ENQUEUE_HEAD; 3834 p->sched_class = &rt_sched_class; 3835 } else { 3836 if (dl_prio(oldprio)) 3837 p->dl.dl_boosted = 0; 3838 if (rt_prio(oldprio)) 3839 p->rt.timeout = 0; 3840 p->sched_class = &fair_sched_class; 3841 } 3842 3843 p->prio = prio; 3844 3845 if (queued) 3846 enqueue_task(rq, p, queue_flag); 3847 if (running) 3848 set_curr_task(rq, p); 3849 3850 check_class_changed(rq, p, prev_class, oldprio); 3851 out_unlock: 3852 /* Avoid rq from going away on us: */ 3853 preempt_disable(); 3854 __task_rq_unlock(rq, &rf); 3855 3856 balance_callback(rq); 3857 preempt_enable(); 3858 } 3859 #else 3860 static inline int rt_effective_prio(struct task_struct *p, int prio) 3861 { 3862 return prio; 3863 } 3864 #endif 3865 3866 void set_user_nice(struct task_struct *p, long nice) 3867 { 3868 bool queued, running; 3869 int old_prio, delta; 3870 struct rq_flags rf; 3871 struct rq *rq; 3872 3873 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3874 return; 3875 /* 3876 * We have to be careful, if called from sys_setpriority(), 3877 * the task might be in the middle of scheduling on another CPU. 3878 */ 3879 rq = task_rq_lock(p, &rf); 3880 update_rq_clock(rq); 3881 3882 /* 3883 * The RT priorities are set via sched_setscheduler(), but we still 3884 * allow the 'normal' nice value to be set - but as expected 3885 * it wont have any effect on scheduling until the task is 3886 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3887 */ 3888 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3889 p->static_prio = NICE_TO_PRIO(nice); 3890 goto out_unlock; 3891 } 3892 queued = task_on_rq_queued(p); 3893 running = task_current(rq, p); 3894 if (queued) 3895 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3896 if (running) 3897 put_prev_task(rq, p); 3898 3899 p->static_prio = NICE_TO_PRIO(nice); 3900 set_load_weight(p, true); 3901 old_prio = p->prio; 3902 p->prio = effective_prio(p); 3903 delta = p->prio - old_prio; 3904 3905 if (queued) { 3906 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3907 /* 3908 * If the task increased its priority or is running and 3909 * lowered its priority, then reschedule its CPU: 3910 */ 3911 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3912 resched_curr(rq); 3913 } 3914 if (running) 3915 set_curr_task(rq, p); 3916 out_unlock: 3917 task_rq_unlock(rq, p, &rf); 3918 } 3919 EXPORT_SYMBOL(set_user_nice); 3920 3921 /* 3922 * can_nice - check if a task can reduce its nice value 3923 * @p: task 3924 * @nice: nice value 3925 */ 3926 int can_nice(const struct task_struct *p, const int nice) 3927 { 3928 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3929 int nice_rlim = nice_to_rlimit(nice); 3930 3931 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3932 capable(CAP_SYS_NICE)); 3933 } 3934 3935 #ifdef __ARCH_WANT_SYS_NICE 3936 3937 /* 3938 * sys_nice - change the priority of the current process. 3939 * @increment: priority increment 3940 * 3941 * sys_setpriority is a more generic, but much slower function that 3942 * does similar things. 3943 */ 3944 SYSCALL_DEFINE1(nice, int, increment) 3945 { 3946 long nice, retval; 3947 3948 /* 3949 * Setpriority might change our priority at the same moment. 3950 * We don't have to worry. Conceptually one call occurs first 3951 * and we have a single winner. 3952 */ 3953 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3954 nice = task_nice(current) + increment; 3955 3956 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3957 if (increment < 0 && !can_nice(current, nice)) 3958 return -EPERM; 3959 3960 retval = security_task_setnice(current, nice); 3961 if (retval) 3962 return retval; 3963 3964 set_user_nice(current, nice); 3965 return 0; 3966 } 3967 3968 #endif 3969 3970 /** 3971 * task_prio - return the priority value of a given task. 3972 * @p: the task in question. 3973 * 3974 * Return: The priority value as seen by users in /proc. 3975 * RT tasks are offset by -200. Normal tasks are centered 3976 * around 0, value goes from -16 to +15. 3977 */ 3978 int task_prio(const struct task_struct *p) 3979 { 3980 return p->prio - MAX_RT_PRIO; 3981 } 3982 3983 /** 3984 * idle_cpu - is a given CPU idle currently? 3985 * @cpu: the processor in question. 3986 * 3987 * Return: 1 if the CPU is currently idle. 0 otherwise. 3988 */ 3989 int idle_cpu(int cpu) 3990 { 3991 struct rq *rq = cpu_rq(cpu); 3992 3993 if (rq->curr != rq->idle) 3994 return 0; 3995 3996 if (rq->nr_running) 3997 return 0; 3998 3999 #ifdef CONFIG_SMP 4000 if (!llist_empty(&rq->wake_list)) 4001 return 0; 4002 #endif 4003 4004 return 1; 4005 } 4006 4007 /** 4008 * available_idle_cpu - is a given CPU idle for enqueuing work. 4009 * @cpu: the CPU in question. 4010 * 4011 * Return: 1 if the CPU is currently idle. 0 otherwise. 4012 */ 4013 int available_idle_cpu(int cpu) 4014 { 4015 if (!idle_cpu(cpu)) 4016 return 0; 4017 4018 if (vcpu_is_preempted(cpu)) 4019 return 0; 4020 4021 return 1; 4022 } 4023 4024 /** 4025 * idle_task - return the idle task for a given CPU. 4026 * @cpu: the processor in question. 4027 * 4028 * Return: The idle task for the CPU @cpu. 4029 */ 4030 struct task_struct *idle_task(int cpu) 4031 { 4032 return cpu_rq(cpu)->idle; 4033 } 4034 4035 /** 4036 * find_process_by_pid - find a process with a matching PID value. 4037 * @pid: the pid in question. 4038 * 4039 * The task of @pid, if found. %NULL otherwise. 4040 */ 4041 static struct task_struct *find_process_by_pid(pid_t pid) 4042 { 4043 return pid ? find_task_by_vpid(pid) : current; 4044 } 4045 4046 /* 4047 * sched_setparam() passes in -1 for its policy, to let the functions 4048 * it calls know not to change it. 4049 */ 4050 #define SETPARAM_POLICY -1 4051 4052 static void __setscheduler_params(struct task_struct *p, 4053 const struct sched_attr *attr) 4054 { 4055 int policy = attr->sched_policy; 4056 4057 if (policy == SETPARAM_POLICY) 4058 policy = p->policy; 4059 4060 p->policy = policy; 4061 4062 if (dl_policy(policy)) 4063 __setparam_dl(p, attr); 4064 else if (fair_policy(policy)) 4065 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4066 4067 /* 4068 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4069 * !rt_policy. Always setting this ensures that things like 4070 * getparam()/getattr() don't report silly values for !rt tasks. 4071 */ 4072 p->rt_priority = attr->sched_priority; 4073 p->normal_prio = normal_prio(p); 4074 set_load_weight(p, true); 4075 } 4076 4077 /* Actually do priority change: must hold pi & rq lock. */ 4078 static void __setscheduler(struct rq *rq, struct task_struct *p, 4079 const struct sched_attr *attr, bool keep_boost) 4080 { 4081 __setscheduler_params(p, attr); 4082 4083 /* 4084 * Keep a potential priority boosting if called from 4085 * sched_setscheduler(). 4086 */ 4087 p->prio = normal_prio(p); 4088 if (keep_boost) 4089 p->prio = rt_effective_prio(p, p->prio); 4090 4091 if (dl_prio(p->prio)) 4092 p->sched_class = &dl_sched_class; 4093 else if (rt_prio(p->prio)) 4094 p->sched_class = &rt_sched_class; 4095 else 4096 p->sched_class = &fair_sched_class; 4097 } 4098 4099 /* 4100 * Check the target process has a UID that matches the current process's: 4101 */ 4102 static bool check_same_owner(struct task_struct *p) 4103 { 4104 const struct cred *cred = current_cred(), *pcred; 4105 bool match; 4106 4107 rcu_read_lock(); 4108 pcred = __task_cred(p); 4109 match = (uid_eq(cred->euid, pcred->euid) || 4110 uid_eq(cred->euid, pcred->uid)); 4111 rcu_read_unlock(); 4112 return match; 4113 } 4114 4115 static int __sched_setscheduler(struct task_struct *p, 4116 const struct sched_attr *attr, 4117 bool user, bool pi) 4118 { 4119 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4120 MAX_RT_PRIO - 1 - attr->sched_priority; 4121 int retval, oldprio, oldpolicy = -1, queued, running; 4122 int new_effective_prio, policy = attr->sched_policy; 4123 const struct sched_class *prev_class; 4124 struct rq_flags rf; 4125 int reset_on_fork; 4126 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4127 struct rq *rq; 4128 4129 /* The pi code expects interrupts enabled */ 4130 BUG_ON(pi && in_interrupt()); 4131 recheck: 4132 /* Double check policy once rq lock held: */ 4133 if (policy < 0) { 4134 reset_on_fork = p->sched_reset_on_fork; 4135 policy = oldpolicy = p->policy; 4136 } else { 4137 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4138 4139 if (!valid_policy(policy)) 4140 return -EINVAL; 4141 } 4142 4143 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4144 return -EINVAL; 4145 4146 /* 4147 * Valid priorities for SCHED_FIFO and SCHED_RR are 4148 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4149 * SCHED_BATCH and SCHED_IDLE is 0. 4150 */ 4151 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4152 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4153 return -EINVAL; 4154 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4155 (rt_policy(policy) != (attr->sched_priority != 0))) 4156 return -EINVAL; 4157 4158 /* 4159 * Allow unprivileged RT tasks to decrease priority: 4160 */ 4161 if (user && !capable(CAP_SYS_NICE)) { 4162 if (fair_policy(policy)) { 4163 if (attr->sched_nice < task_nice(p) && 4164 !can_nice(p, attr->sched_nice)) 4165 return -EPERM; 4166 } 4167 4168 if (rt_policy(policy)) { 4169 unsigned long rlim_rtprio = 4170 task_rlimit(p, RLIMIT_RTPRIO); 4171 4172 /* Can't set/change the rt policy: */ 4173 if (policy != p->policy && !rlim_rtprio) 4174 return -EPERM; 4175 4176 /* Can't increase priority: */ 4177 if (attr->sched_priority > p->rt_priority && 4178 attr->sched_priority > rlim_rtprio) 4179 return -EPERM; 4180 } 4181 4182 /* 4183 * Can't set/change SCHED_DEADLINE policy at all for now 4184 * (safest behavior); in the future we would like to allow 4185 * unprivileged DL tasks to increase their relative deadline 4186 * or reduce their runtime (both ways reducing utilization) 4187 */ 4188 if (dl_policy(policy)) 4189 return -EPERM; 4190 4191 /* 4192 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4193 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4194 */ 4195 if (idle_policy(p->policy) && !idle_policy(policy)) { 4196 if (!can_nice(p, task_nice(p))) 4197 return -EPERM; 4198 } 4199 4200 /* Can't change other user's priorities: */ 4201 if (!check_same_owner(p)) 4202 return -EPERM; 4203 4204 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4205 if (p->sched_reset_on_fork && !reset_on_fork) 4206 return -EPERM; 4207 } 4208 4209 if (user) { 4210 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4211 return -EINVAL; 4212 4213 retval = security_task_setscheduler(p); 4214 if (retval) 4215 return retval; 4216 } 4217 4218 /* 4219 * Make sure no PI-waiters arrive (or leave) while we are 4220 * changing the priority of the task: 4221 * 4222 * To be able to change p->policy safely, the appropriate 4223 * runqueue lock must be held. 4224 */ 4225 rq = task_rq_lock(p, &rf); 4226 update_rq_clock(rq); 4227 4228 /* 4229 * Changing the policy of the stop threads its a very bad idea: 4230 */ 4231 if (p == rq->stop) { 4232 task_rq_unlock(rq, p, &rf); 4233 return -EINVAL; 4234 } 4235 4236 /* 4237 * If not changing anything there's no need to proceed further, 4238 * but store a possible modification of reset_on_fork. 4239 */ 4240 if (unlikely(policy == p->policy)) { 4241 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4242 goto change; 4243 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4244 goto change; 4245 if (dl_policy(policy) && dl_param_changed(p, attr)) 4246 goto change; 4247 4248 p->sched_reset_on_fork = reset_on_fork; 4249 task_rq_unlock(rq, p, &rf); 4250 return 0; 4251 } 4252 change: 4253 4254 if (user) { 4255 #ifdef CONFIG_RT_GROUP_SCHED 4256 /* 4257 * Do not allow realtime tasks into groups that have no runtime 4258 * assigned. 4259 */ 4260 if (rt_bandwidth_enabled() && rt_policy(policy) && 4261 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4262 !task_group_is_autogroup(task_group(p))) { 4263 task_rq_unlock(rq, p, &rf); 4264 return -EPERM; 4265 } 4266 #endif 4267 #ifdef CONFIG_SMP 4268 if (dl_bandwidth_enabled() && dl_policy(policy) && 4269 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4270 cpumask_t *span = rq->rd->span; 4271 4272 /* 4273 * Don't allow tasks with an affinity mask smaller than 4274 * the entire root_domain to become SCHED_DEADLINE. We 4275 * will also fail if there's no bandwidth available. 4276 */ 4277 if (!cpumask_subset(span, &p->cpus_allowed) || 4278 rq->rd->dl_bw.bw == 0) { 4279 task_rq_unlock(rq, p, &rf); 4280 return -EPERM; 4281 } 4282 } 4283 #endif 4284 } 4285 4286 /* Re-check policy now with rq lock held: */ 4287 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4288 policy = oldpolicy = -1; 4289 task_rq_unlock(rq, p, &rf); 4290 goto recheck; 4291 } 4292 4293 /* 4294 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4295 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4296 * is available. 4297 */ 4298 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4299 task_rq_unlock(rq, p, &rf); 4300 return -EBUSY; 4301 } 4302 4303 p->sched_reset_on_fork = reset_on_fork; 4304 oldprio = p->prio; 4305 4306 if (pi) { 4307 /* 4308 * Take priority boosted tasks into account. If the new 4309 * effective priority is unchanged, we just store the new 4310 * normal parameters and do not touch the scheduler class and 4311 * the runqueue. This will be done when the task deboost 4312 * itself. 4313 */ 4314 new_effective_prio = rt_effective_prio(p, newprio); 4315 if (new_effective_prio == oldprio) 4316 queue_flags &= ~DEQUEUE_MOVE; 4317 } 4318 4319 queued = task_on_rq_queued(p); 4320 running = task_current(rq, p); 4321 if (queued) 4322 dequeue_task(rq, p, queue_flags); 4323 if (running) 4324 put_prev_task(rq, p); 4325 4326 prev_class = p->sched_class; 4327 __setscheduler(rq, p, attr, pi); 4328 4329 if (queued) { 4330 /* 4331 * We enqueue to tail when the priority of a task is 4332 * increased (user space view). 4333 */ 4334 if (oldprio < p->prio) 4335 queue_flags |= ENQUEUE_HEAD; 4336 4337 enqueue_task(rq, p, queue_flags); 4338 } 4339 if (running) 4340 set_curr_task(rq, p); 4341 4342 check_class_changed(rq, p, prev_class, oldprio); 4343 4344 /* Avoid rq from going away on us: */ 4345 preempt_disable(); 4346 task_rq_unlock(rq, p, &rf); 4347 4348 if (pi) 4349 rt_mutex_adjust_pi(p); 4350 4351 /* Run balance callbacks after we've adjusted the PI chain: */ 4352 balance_callback(rq); 4353 preempt_enable(); 4354 4355 return 0; 4356 } 4357 4358 static int _sched_setscheduler(struct task_struct *p, int policy, 4359 const struct sched_param *param, bool check) 4360 { 4361 struct sched_attr attr = { 4362 .sched_policy = policy, 4363 .sched_priority = param->sched_priority, 4364 .sched_nice = PRIO_TO_NICE(p->static_prio), 4365 }; 4366 4367 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4368 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4369 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4370 policy &= ~SCHED_RESET_ON_FORK; 4371 attr.sched_policy = policy; 4372 } 4373 4374 return __sched_setscheduler(p, &attr, check, true); 4375 } 4376 /** 4377 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4378 * @p: the task in question. 4379 * @policy: new policy. 4380 * @param: structure containing the new RT priority. 4381 * 4382 * Return: 0 on success. An error code otherwise. 4383 * 4384 * NOTE that the task may be already dead. 4385 */ 4386 int sched_setscheduler(struct task_struct *p, int policy, 4387 const struct sched_param *param) 4388 { 4389 return _sched_setscheduler(p, policy, param, true); 4390 } 4391 EXPORT_SYMBOL_GPL(sched_setscheduler); 4392 4393 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4394 { 4395 return __sched_setscheduler(p, attr, true, true); 4396 } 4397 EXPORT_SYMBOL_GPL(sched_setattr); 4398 4399 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4400 { 4401 return __sched_setscheduler(p, attr, false, true); 4402 } 4403 4404 /** 4405 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4406 * @p: the task in question. 4407 * @policy: new policy. 4408 * @param: structure containing the new RT priority. 4409 * 4410 * Just like sched_setscheduler, only don't bother checking if the 4411 * current context has permission. For example, this is needed in 4412 * stop_machine(): we create temporary high priority worker threads, 4413 * but our caller might not have that capability. 4414 * 4415 * Return: 0 on success. An error code otherwise. 4416 */ 4417 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4418 const struct sched_param *param) 4419 { 4420 return _sched_setscheduler(p, policy, param, false); 4421 } 4422 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4423 4424 static int 4425 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4426 { 4427 struct sched_param lparam; 4428 struct task_struct *p; 4429 int retval; 4430 4431 if (!param || pid < 0) 4432 return -EINVAL; 4433 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4434 return -EFAULT; 4435 4436 rcu_read_lock(); 4437 retval = -ESRCH; 4438 p = find_process_by_pid(pid); 4439 if (p != NULL) 4440 retval = sched_setscheduler(p, policy, &lparam); 4441 rcu_read_unlock(); 4442 4443 return retval; 4444 } 4445 4446 /* 4447 * Mimics kernel/events/core.c perf_copy_attr(). 4448 */ 4449 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4450 { 4451 u32 size; 4452 int ret; 4453 4454 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4455 return -EFAULT; 4456 4457 /* Zero the full structure, so that a short copy will be nice: */ 4458 memset(attr, 0, sizeof(*attr)); 4459 4460 ret = get_user(size, &uattr->size); 4461 if (ret) 4462 return ret; 4463 4464 /* Bail out on silly large: */ 4465 if (size > PAGE_SIZE) 4466 goto err_size; 4467 4468 /* ABI compatibility quirk: */ 4469 if (!size) 4470 size = SCHED_ATTR_SIZE_VER0; 4471 4472 if (size < SCHED_ATTR_SIZE_VER0) 4473 goto err_size; 4474 4475 /* 4476 * If we're handed a bigger struct than we know of, 4477 * ensure all the unknown bits are 0 - i.e. new 4478 * user-space does not rely on any kernel feature 4479 * extensions we dont know about yet. 4480 */ 4481 if (size > sizeof(*attr)) { 4482 unsigned char __user *addr; 4483 unsigned char __user *end; 4484 unsigned char val; 4485 4486 addr = (void __user *)uattr + sizeof(*attr); 4487 end = (void __user *)uattr + size; 4488 4489 for (; addr < end; addr++) { 4490 ret = get_user(val, addr); 4491 if (ret) 4492 return ret; 4493 if (val) 4494 goto err_size; 4495 } 4496 size = sizeof(*attr); 4497 } 4498 4499 ret = copy_from_user(attr, uattr, size); 4500 if (ret) 4501 return -EFAULT; 4502 4503 /* 4504 * XXX: Do we want to be lenient like existing syscalls; or do we want 4505 * to be strict and return an error on out-of-bounds values? 4506 */ 4507 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4508 4509 return 0; 4510 4511 err_size: 4512 put_user(sizeof(*attr), &uattr->size); 4513 return -E2BIG; 4514 } 4515 4516 /** 4517 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4518 * @pid: the pid in question. 4519 * @policy: new policy. 4520 * @param: structure containing the new RT priority. 4521 * 4522 * Return: 0 on success. An error code otherwise. 4523 */ 4524 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4525 { 4526 if (policy < 0) 4527 return -EINVAL; 4528 4529 return do_sched_setscheduler(pid, policy, param); 4530 } 4531 4532 /** 4533 * sys_sched_setparam - set/change the RT priority of a thread 4534 * @pid: the pid in question. 4535 * @param: structure containing the new RT priority. 4536 * 4537 * Return: 0 on success. An error code otherwise. 4538 */ 4539 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4540 { 4541 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4542 } 4543 4544 /** 4545 * sys_sched_setattr - same as above, but with extended sched_attr 4546 * @pid: the pid in question. 4547 * @uattr: structure containing the extended parameters. 4548 * @flags: for future extension. 4549 */ 4550 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4551 unsigned int, flags) 4552 { 4553 struct sched_attr attr; 4554 struct task_struct *p; 4555 int retval; 4556 4557 if (!uattr || pid < 0 || flags) 4558 return -EINVAL; 4559 4560 retval = sched_copy_attr(uattr, &attr); 4561 if (retval) 4562 return retval; 4563 4564 if ((int)attr.sched_policy < 0) 4565 return -EINVAL; 4566 4567 rcu_read_lock(); 4568 retval = -ESRCH; 4569 p = find_process_by_pid(pid); 4570 if (p != NULL) 4571 retval = sched_setattr(p, &attr); 4572 rcu_read_unlock(); 4573 4574 return retval; 4575 } 4576 4577 /** 4578 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4579 * @pid: the pid in question. 4580 * 4581 * Return: On success, the policy of the thread. Otherwise, a negative error 4582 * code. 4583 */ 4584 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4585 { 4586 struct task_struct *p; 4587 int retval; 4588 4589 if (pid < 0) 4590 return -EINVAL; 4591 4592 retval = -ESRCH; 4593 rcu_read_lock(); 4594 p = find_process_by_pid(pid); 4595 if (p) { 4596 retval = security_task_getscheduler(p); 4597 if (!retval) 4598 retval = p->policy 4599 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4600 } 4601 rcu_read_unlock(); 4602 return retval; 4603 } 4604 4605 /** 4606 * sys_sched_getparam - get the RT priority of a thread 4607 * @pid: the pid in question. 4608 * @param: structure containing the RT priority. 4609 * 4610 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4611 * code. 4612 */ 4613 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4614 { 4615 struct sched_param lp = { .sched_priority = 0 }; 4616 struct task_struct *p; 4617 int retval; 4618 4619 if (!param || pid < 0) 4620 return -EINVAL; 4621 4622 rcu_read_lock(); 4623 p = find_process_by_pid(pid); 4624 retval = -ESRCH; 4625 if (!p) 4626 goto out_unlock; 4627 4628 retval = security_task_getscheduler(p); 4629 if (retval) 4630 goto out_unlock; 4631 4632 if (task_has_rt_policy(p)) 4633 lp.sched_priority = p->rt_priority; 4634 rcu_read_unlock(); 4635 4636 /* 4637 * This one might sleep, we cannot do it with a spinlock held ... 4638 */ 4639 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4640 4641 return retval; 4642 4643 out_unlock: 4644 rcu_read_unlock(); 4645 return retval; 4646 } 4647 4648 static int sched_read_attr(struct sched_attr __user *uattr, 4649 struct sched_attr *attr, 4650 unsigned int usize) 4651 { 4652 int ret; 4653 4654 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4655 return -EFAULT; 4656 4657 /* 4658 * If we're handed a smaller struct than we know of, 4659 * ensure all the unknown bits are 0 - i.e. old 4660 * user-space does not get uncomplete information. 4661 */ 4662 if (usize < sizeof(*attr)) { 4663 unsigned char *addr; 4664 unsigned char *end; 4665 4666 addr = (void *)attr + usize; 4667 end = (void *)attr + sizeof(*attr); 4668 4669 for (; addr < end; addr++) { 4670 if (*addr) 4671 return -EFBIG; 4672 } 4673 4674 attr->size = usize; 4675 } 4676 4677 ret = copy_to_user(uattr, attr, attr->size); 4678 if (ret) 4679 return -EFAULT; 4680 4681 return 0; 4682 } 4683 4684 /** 4685 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4686 * @pid: the pid in question. 4687 * @uattr: structure containing the extended parameters. 4688 * @size: sizeof(attr) for fwd/bwd comp. 4689 * @flags: for future extension. 4690 */ 4691 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4692 unsigned int, size, unsigned int, flags) 4693 { 4694 struct sched_attr attr = { 4695 .size = sizeof(struct sched_attr), 4696 }; 4697 struct task_struct *p; 4698 int retval; 4699 4700 if (!uattr || pid < 0 || size > PAGE_SIZE || 4701 size < SCHED_ATTR_SIZE_VER0 || flags) 4702 return -EINVAL; 4703 4704 rcu_read_lock(); 4705 p = find_process_by_pid(pid); 4706 retval = -ESRCH; 4707 if (!p) 4708 goto out_unlock; 4709 4710 retval = security_task_getscheduler(p); 4711 if (retval) 4712 goto out_unlock; 4713 4714 attr.sched_policy = p->policy; 4715 if (p->sched_reset_on_fork) 4716 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4717 if (task_has_dl_policy(p)) 4718 __getparam_dl(p, &attr); 4719 else if (task_has_rt_policy(p)) 4720 attr.sched_priority = p->rt_priority; 4721 else 4722 attr.sched_nice = task_nice(p); 4723 4724 rcu_read_unlock(); 4725 4726 retval = sched_read_attr(uattr, &attr, size); 4727 return retval; 4728 4729 out_unlock: 4730 rcu_read_unlock(); 4731 return retval; 4732 } 4733 4734 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4735 { 4736 cpumask_var_t cpus_allowed, new_mask; 4737 struct task_struct *p; 4738 int retval; 4739 4740 rcu_read_lock(); 4741 4742 p = find_process_by_pid(pid); 4743 if (!p) { 4744 rcu_read_unlock(); 4745 return -ESRCH; 4746 } 4747 4748 /* Prevent p going away */ 4749 get_task_struct(p); 4750 rcu_read_unlock(); 4751 4752 if (p->flags & PF_NO_SETAFFINITY) { 4753 retval = -EINVAL; 4754 goto out_put_task; 4755 } 4756 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4757 retval = -ENOMEM; 4758 goto out_put_task; 4759 } 4760 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4761 retval = -ENOMEM; 4762 goto out_free_cpus_allowed; 4763 } 4764 retval = -EPERM; 4765 if (!check_same_owner(p)) { 4766 rcu_read_lock(); 4767 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4768 rcu_read_unlock(); 4769 goto out_free_new_mask; 4770 } 4771 rcu_read_unlock(); 4772 } 4773 4774 retval = security_task_setscheduler(p); 4775 if (retval) 4776 goto out_free_new_mask; 4777 4778 4779 cpuset_cpus_allowed(p, cpus_allowed); 4780 cpumask_and(new_mask, in_mask, cpus_allowed); 4781 4782 /* 4783 * Since bandwidth control happens on root_domain basis, 4784 * if admission test is enabled, we only admit -deadline 4785 * tasks allowed to run on all the CPUs in the task's 4786 * root_domain. 4787 */ 4788 #ifdef CONFIG_SMP 4789 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4790 rcu_read_lock(); 4791 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4792 retval = -EBUSY; 4793 rcu_read_unlock(); 4794 goto out_free_new_mask; 4795 } 4796 rcu_read_unlock(); 4797 } 4798 #endif 4799 again: 4800 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4801 4802 if (!retval) { 4803 cpuset_cpus_allowed(p, cpus_allowed); 4804 if (!cpumask_subset(new_mask, cpus_allowed)) { 4805 /* 4806 * We must have raced with a concurrent cpuset 4807 * update. Just reset the cpus_allowed to the 4808 * cpuset's cpus_allowed 4809 */ 4810 cpumask_copy(new_mask, cpus_allowed); 4811 goto again; 4812 } 4813 } 4814 out_free_new_mask: 4815 free_cpumask_var(new_mask); 4816 out_free_cpus_allowed: 4817 free_cpumask_var(cpus_allowed); 4818 out_put_task: 4819 put_task_struct(p); 4820 return retval; 4821 } 4822 4823 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4824 struct cpumask *new_mask) 4825 { 4826 if (len < cpumask_size()) 4827 cpumask_clear(new_mask); 4828 else if (len > cpumask_size()) 4829 len = cpumask_size(); 4830 4831 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4832 } 4833 4834 /** 4835 * sys_sched_setaffinity - set the CPU affinity of a process 4836 * @pid: pid of the process 4837 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4838 * @user_mask_ptr: user-space pointer to the new CPU mask 4839 * 4840 * Return: 0 on success. An error code otherwise. 4841 */ 4842 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4843 unsigned long __user *, user_mask_ptr) 4844 { 4845 cpumask_var_t new_mask; 4846 int retval; 4847 4848 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4849 return -ENOMEM; 4850 4851 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4852 if (retval == 0) 4853 retval = sched_setaffinity(pid, new_mask); 4854 free_cpumask_var(new_mask); 4855 return retval; 4856 } 4857 4858 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4859 { 4860 struct task_struct *p; 4861 unsigned long flags; 4862 int retval; 4863 4864 rcu_read_lock(); 4865 4866 retval = -ESRCH; 4867 p = find_process_by_pid(pid); 4868 if (!p) 4869 goto out_unlock; 4870 4871 retval = security_task_getscheduler(p); 4872 if (retval) 4873 goto out_unlock; 4874 4875 raw_spin_lock_irqsave(&p->pi_lock, flags); 4876 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4877 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4878 4879 out_unlock: 4880 rcu_read_unlock(); 4881 4882 return retval; 4883 } 4884 4885 /** 4886 * sys_sched_getaffinity - get the CPU affinity of a process 4887 * @pid: pid of the process 4888 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4889 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4890 * 4891 * Return: size of CPU mask copied to user_mask_ptr on success. An 4892 * error code otherwise. 4893 */ 4894 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4895 unsigned long __user *, user_mask_ptr) 4896 { 4897 int ret; 4898 cpumask_var_t mask; 4899 4900 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4901 return -EINVAL; 4902 if (len & (sizeof(unsigned long)-1)) 4903 return -EINVAL; 4904 4905 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4906 return -ENOMEM; 4907 4908 ret = sched_getaffinity(pid, mask); 4909 if (ret == 0) { 4910 unsigned int retlen = min(len, cpumask_size()); 4911 4912 if (copy_to_user(user_mask_ptr, mask, retlen)) 4913 ret = -EFAULT; 4914 else 4915 ret = retlen; 4916 } 4917 free_cpumask_var(mask); 4918 4919 return ret; 4920 } 4921 4922 /** 4923 * sys_sched_yield - yield the current processor to other threads. 4924 * 4925 * This function yields the current CPU to other tasks. If there are no 4926 * other threads running on this CPU then this function will return. 4927 * 4928 * Return: 0. 4929 */ 4930 static void do_sched_yield(void) 4931 { 4932 struct rq_flags rf; 4933 struct rq *rq; 4934 4935 local_irq_disable(); 4936 rq = this_rq(); 4937 rq_lock(rq, &rf); 4938 4939 schedstat_inc(rq->yld_count); 4940 current->sched_class->yield_task(rq); 4941 4942 /* 4943 * Since we are going to call schedule() anyway, there's 4944 * no need to preempt or enable interrupts: 4945 */ 4946 preempt_disable(); 4947 rq_unlock(rq, &rf); 4948 sched_preempt_enable_no_resched(); 4949 4950 schedule(); 4951 } 4952 4953 SYSCALL_DEFINE0(sched_yield) 4954 { 4955 do_sched_yield(); 4956 return 0; 4957 } 4958 4959 #ifndef CONFIG_PREEMPT 4960 int __sched _cond_resched(void) 4961 { 4962 if (should_resched(0)) { 4963 preempt_schedule_common(); 4964 return 1; 4965 } 4966 rcu_all_qs(); 4967 return 0; 4968 } 4969 EXPORT_SYMBOL(_cond_resched); 4970 #endif 4971 4972 /* 4973 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4974 * call schedule, and on return reacquire the lock. 4975 * 4976 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4977 * operations here to prevent schedule() from being called twice (once via 4978 * spin_unlock(), once by hand). 4979 */ 4980 int __cond_resched_lock(spinlock_t *lock) 4981 { 4982 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4983 int ret = 0; 4984 4985 lockdep_assert_held(lock); 4986 4987 if (spin_needbreak(lock) || resched) { 4988 spin_unlock(lock); 4989 if (resched) 4990 preempt_schedule_common(); 4991 else 4992 cpu_relax(); 4993 ret = 1; 4994 spin_lock(lock); 4995 } 4996 return ret; 4997 } 4998 EXPORT_SYMBOL(__cond_resched_lock); 4999 5000 /** 5001 * yield - yield the current processor to other threads. 5002 * 5003 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5004 * 5005 * The scheduler is at all times free to pick the calling task as the most 5006 * eligible task to run, if removing the yield() call from your code breaks 5007 * it, its already broken. 5008 * 5009 * Typical broken usage is: 5010 * 5011 * while (!event) 5012 * yield(); 5013 * 5014 * where one assumes that yield() will let 'the other' process run that will 5015 * make event true. If the current task is a SCHED_FIFO task that will never 5016 * happen. Never use yield() as a progress guarantee!! 5017 * 5018 * If you want to use yield() to wait for something, use wait_event(). 5019 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5020 * If you still want to use yield(), do not! 5021 */ 5022 void __sched yield(void) 5023 { 5024 set_current_state(TASK_RUNNING); 5025 do_sched_yield(); 5026 } 5027 EXPORT_SYMBOL(yield); 5028 5029 /** 5030 * yield_to - yield the current processor to another thread in 5031 * your thread group, or accelerate that thread toward the 5032 * processor it's on. 5033 * @p: target task 5034 * @preempt: whether task preemption is allowed or not 5035 * 5036 * It's the caller's job to ensure that the target task struct 5037 * can't go away on us before we can do any checks. 5038 * 5039 * Return: 5040 * true (>0) if we indeed boosted the target task. 5041 * false (0) if we failed to boost the target. 5042 * -ESRCH if there's no task to yield to. 5043 */ 5044 int __sched yield_to(struct task_struct *p, bool preempt) 5045 { 5046 struct task_struct *curr = current; 5047 struct rq *rq, *p_rq; 5048 unsigned long flags; 5049 int yielded = 0; 5050 5051 local_irq_save(flags); 5052 rq = this_rq(); 5053 5054 again: 5055 p_rq = task_rq(p); 5056 /* 5057 * If we're the only runnable task on the rq and target rq also 5058 * has only one task, there's absolutely no point in yielding. 5059 */ 5060 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5061 yielded = -ESRCH; 5062 goto out_irq; 5063 } 5064 5065 double_rq_lock(rq, p_rq); 5066 if (task_rq(p) != p_rq) { 5067 double_rq_unlock(rq, p_rq); 5068 goto again; 5069 } 5070 5071 if (!curr->sched_class->yield_to_task) 5072 goto out_unlock; 5073 5074 if (curr->sched_class != p->sched_class) 5075 goto out_unlock; 5076 5077 if (task_running(p_rq, p) || p->state) 5078 goto out_unlock; 5079 5080 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5081 if (yielded) { 5082 schedstat_inc(rq->yld_count); 5083 /* 5084 * Make p's CPU reschedule; pick_next_entity takes care of 5085 * fairness. 5086 */ 5087 if (preempt && rq != p_rq) 5088 resched_curr(p_rq); 5089 } 5090 5091 out_unlock: 5092 double_rq_unlock(rq, p_rq); 5093 out_irq: 5094 local_irq_restore(flags); 5095 5096 if (yielded > 0) 5097 schedule(); 5098 5099 return yielded; 5100 } 5101 EXPORT_SYMBOL_GPL(yield_to); 5102 5103 int io_schedule_prepare(void) 5104 { 5105 int old_iowait = current->in_iowait; 5106 5107 current->in_iowait = 1; 5108 blk_schedule_flush_plug(current); 5109 5110 return old_iowait; 5111 } 5112 5113 void io_schedule_finish(int token) 5114 { 5115 current->in_iowait = token; 5116 } 5117 5118 /* 5119 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5120 * that process accounting knows that this is a task in IO wait state. 5121 */ 5122 long __sched io_schedule_timeout(long timeout) 5123 { 5124 int token; 5125 long ret; 5126 5127 token = io_schedule_prepare(); 5128 ret = schedule_timeout(timeout); 5129 io_schedule_finish(token); 5130 5131 return ret; 5132 } 5133 EXPORT_SYMBOL(io_schedule_timeout); 5134 5135 void io_schedule(void) 5136 { 5137 int token; 5138 5139 token = io_schedule_prepare(); 5140 schedule(); 5141 io_schedule_finish(token); 5142 } 5143 EXPORT_SYMBOL(io_schedule); 5144 5145 /** 5146 * sys_sched_get_priority_max - return maximum RT priority. 5147 * @policy: scheduling class. 5148 * 5149 * Return: On success, this syscall returns the maximum 5150 * rt_priority that can be used by a given scheduling class. 5151 * On failure, a negative error code is returned. 5152 */ 5153 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5154 { 5155 int ret = -EINVAL; 5156 5157 switch (policy) { 5158 case SCHED_FIFO: 5159 case SCHED_RR: 5160 ret = MAX_USER_RT_PRIO-1; 5161 break; 5162 case SCHED_DEADLINE: 5163 case SCHED_NORMAL: 5164 case SCHED_BATCH: 5165 case SCHED_IDLE: 5166 ret = 0; 5167 break; 5168 } 5169 return ret; 5170 } 5171 5172 /** 5173 * sys_sched_get_priority_min - return minimum RT priority. 5174 * @policy: scheduling class. 5175 * 5176 * Return: On success, this syscall returns the minimum 5177 * rt_priority that can be used by a given scheduling class. 5178 * On failure, a negative error code is returned. 5179 */ 5180 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5181 { 5182 int ret = -EINVAL; 5183 5184 switch (policy) { 5185 case SCHED_FIFO: 5186 case SCHED_RR: 5187 ret = 1; 5188 break; 5189 case SCHED_DEADLINE: 5190 case SCHED_NORMAL: 5191 case SCHED_BATCH: 5192 case SCHED_IDLE: 5193 ret = 0; 5194 } 5195 return ret; 5196 } 5197 5198 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5199 { 5200 struct task_struct *p; 5201 unsigned int time_slice; 5202 struct rq_flags rf; 5203 struct rq *rq; 5204 int retval; 5205 5206 if (pid < 0) 5207 return -EINVAL; 5208 5209 retval = -ESRCH; 5210 rcu_read_lock(); 5211 p = find_process_by_pid(pid); 5212 if (!p) 5213 goto out_unlock; 5214 5215 retval = security_task_getscheduler(p); 5216 if (retval) 5217 goto out_unlock; 5218 5219 rq = task_rq_lock(p, &rf); 5220 time_slice = 0; 5221 if (p->sched_class->get_rr_interval) 5222 time_slice = p->sched_class->get_rr_interval(rq, p); 5223 task_rq_unlock(rq, p, &rf); 5224 5225 rcu_read_unlock(); 5226 jiffies_to_timespec64(time_slice, t); 5227 return 0; 5228 5229 out_unlock: 5230 rcu_read_unlock(); 5231 return retval; 5232 } 5233 5234 /** 5235 * sys_sched_rr_get_interval - return the default timeslice of a process. 5236 * @pid: pid of the process. 5237 * @interval: userspace pointer to the timeslice value. 5238 * 5239 * this syscall writes the default timeslice value of a given process 5240 * into the user-space timespec buffer. A value of '0' means infinity. 5241 * 5242 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5243 * an error code. 5244 */ 5245 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5246 struct timespec __user *, interval) 5247 { 5248 struct timespec64 t; 5249 int retval = sched_rr_get_interval(pid, &t); 5250 5251 if (retval == 0) 5252 retval = put_timespec64(&t, interval); 5253 5254 return retval; 5255 } 5256 5257 #ifdef CONFIG_COMPAT 5258 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5259 compat_pid_t, pid, 5260 struct compat_timespec __user *, interval) 5261 { 5262 struct timespec64 t; 5263 int retval = sched_rr_get_interval(pid, &t); 5264 5265 if (retval == 0) 5266 retval = compat_put_timespec64(&t, interval); 5267 return retval; 5268 } 5269 #endif 5270 5271 void sched_show_task(struct task_struct *p) 5272 { 5273 unsigned long free = 0; 5274 int ppid; 5275 5276 if (!try_get_task_stack(p)) 5277 return; 5278 5279 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5280 5281 if (p->state == TASK_RUNNING) 5282 printk(KERN_CONT " running task "); 5283 #ifdef CONFIG_DEBUG_STACK_USAGE 5284 free = stack_not_used(p); 5285 #endif 5286 ppid = 0; 5287 rcu_read_lock(); 5288 if (pid_alive(p)) 5289 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5290 rcu_read_unlock(); 5291 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5292 task_pid_nr(p), ppid, 5293 (unsigned long)task_thread_info(p)->flags); 5294 5295 print_worker_info(KERN_INFO, p); 5296 show_stack(p, NULL); 5297 put_task_stack(p); 5298 } 5299 EXPORT_SYMBOL_GPL(sched_show_task); 5300 5301 static inline bool 5302 state_filter_match(unsigned long state_filter, struct task_struct *p) 5303 { 5304 /* no filter, everything matches */ 5305 if (!state_filter) 5306 return true; 5307 5308 /* filter, but doesn't match */ 5309 if (!(p->state & state_filter)) 5310 return false; 5311 5312 /* 5313 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5314 * TASK_KILLABLE). 5315 */ 5316 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5317 return false; 5318 5319 return true; 5320 } 5321 5322 5323 void show_state_filter(unsigned long state_filter) 5324 { 5325 struct task_struct *g, *p; 5326 5327 #if BITS_PER_LONG == 32 5328 printk(KERN_INFO 5329 " task PC stack pid father\n"); 5330 #else 5331 printk(KERN_INFO 5332 " task PC stack pid father\n"); 5333 #endif 5334 rcu_read_lock(); 5335 for_each_process_thread(g, p) { 5336 /* 5337 * reset the NMI-timeout, listing all files on a slow 5338 * console might take a lot of time: 5339 * Also, reset softlockup watchdogs on all CPUs, because 5340 * another CPU might be blocked waiting for us to process 5341 * an IPI. 5342 */ 5343 touch_nmi_watchdog(); 5344 touch_all_softlockup_watchdogs(); 5345 if (state_filter_match(state_filter, p)) 5346 sched_show_task(p); 5347 } 5348 5349 #ifdef CONFIG_SCHED_DEBUG 5350 if (!state_filter) 5351 sysrq_sched_debug_show(); 5352 #endif 5353 rcu_read_unlock(); 5354 /* 5355 * Only show locks if all tasks are dumped: 5356 */ 5357 if (!state_filter) 5358 debug_show_all_locks(); 5359 } 5360 5361 /** 5362 * init_idle - set up an idle thread for a given CPU 5363 * @idle: task in question 5364 * @cpu: CPU the idle task belongs to 5365 * 5366 * NOTE: this function does not set the idle thread's NEED_RESCHED 5367 * flag, to make booting more robust. 5368 */ 5369 void init_idle(struct task_struct *idle, int cpu) 5370 { 5371 struct rq *rq = cpu_rq(cpu); 5372 unsigned long flags; 5373 5374 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5375 raw_spin_lock(&rq->lock); 5376 5377 __sched_fork(0, idle); 5378 idle->state = TASK_RUNNING; 5379 idle->se.exec_start = sched_clock(); 5380 idle->flags |= PF_IDLE; 5381 5382 kasan_unpoison_task_stack(idle); 5383 5384 #ifdef CONFIG_SMP 5385 /* 5386 * Its possible that init_idle() gets called multiple times on a task, 5387 * in that case do_set_cpus_allowed() will not do the right thing. 5388 * 5389 * And since this is boot we can forgo the serialization. 5390 */ 5391 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5392 #endif 5393 /* 5394 * We're having a chicken and egg problem, even though we are 5395 * holding rq->lock, the CPU isn't yet set to this CPU so the 5396 * lockdep check in task_group() will fail. 5397 * 5398 * Similar case to sched_fork(). / Alternatively we could 5399 * use task_rq_lock() here and obtain the other rq->lock. 5400 * 5401 * Silence PROVE_RCU 5402 */ 5403 rcu_read_lock(); 5404 __set_task_cpu(idle, cpu); 5405 rcu_read_unlock(); 5406 5407 rq->curr = rq->idle = idle; 5408 idle->on_rq = TASK_ON_RQ_QUEUED; 5409 #ifdef CONFIG_SMP 5410 idle->on_cpu = 1; 5411 #endif 5412 raw_spin_unlock(&rq->lock); 5413 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5414 5415 /* Set the preempt count _outside_ the spinlocks! */ 5416 init_idle_preempt_count(idle, cpu); 5417 5418 /* 5419 * The idle tasks have their own, simple scheduling class: 5420 */ 5421 idle->sched_class = &idle_sched_class; 5422 ftrace_graph_init_idle_task(idle, cpu); 5423 vtime_init_idle(idle, cpu); 5424 #ifdef CONFIG_SMP 5425 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5426 #endif 5427 } 5428 5429 #ifdef CONFIG_SMP 5430 5431 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5432 const struct cpumask *trial) 5433 { 5434 int ret = 1; 5435 5436 if (!cpumask_weight(cur)) 5437 return ret; 5438 5439 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5440 5441 return ret; 5442 } 5443 5444 int task_can_attach(struct task_struct *p, 5445 const struct cpumask *cs_cpus_allowed) 5446 { 5447 int ret = 0; 5448 5449 /* 5450 * Kthreads which disallow setaffinity shouldn't be moved 5451 * to a new cpuset; we don't want to change their CPU 5452 * affinity and isolating such threads by their set of 5453 * allowed nodes is unnecessary. Thus, cpusets are not 5454 * applicable for such threads. This prevents checking for 5455 * success of set_cpus_allowed_ptr() on all attached tasks 5456 * before cpus_allowed may be changed. 5457 */ 5458 if (p->flags & PF_NO_SETAFFINITY) { 5459 ret = -EINVAL; 5460 goto out; 5461 } 5462 5463 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5464 cs_cpus_allowed)) 5465 ret = dl_task_can_attach(p, cs_cpus_allowed); 5466 5467 out: 5468 return ret; 5469 } 5470 5471 bool sched_smp_initialized __read_mostly; 5472 5473 #ifdef CONFIG_NUMA_BALANCING 5474 /* Migrate current task p to target_cpu */ 5475 int migrate_task_to(struct task_struct *p, int target_cpu) 5476 { 5477 struct migration_arg arg = { p, target_cpu }; 5478 int curr_cpu = task_cpu(p); 5479 5480 if (curr_cpu == target_cpu) 5481 return 0; 5482 5483 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5484 return -EINVAL; 5485 5486 /* TODO: This is not properly updating schedstats */ 5487 5488 trace_sched_move_numa(p, curr_cpu, target_cpu); 5489 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5490 } 5491 5492 /* 5493 * Requeue a task on a given node and accurately track the number of NUMA 5494 * tasks on the runqueues 5495 */ 5496 void sched_setnuma(struct task_struct *p, int nid) 5497 { 5498 bool queued, running; 5499 struct rq_flags rf; 5500 struct rq *rq; 5501 5502 rq = task_rq_lock(p, &rf); 5503 queued = task_on_rq_queued(p); 5504 running = task_current(rq, p); 5505 5506 if (queued) 5507 dequeue_task(rq, p, DEQUEUE_SAVE); 5508 if (running) 5509 put_prev_task(rq, p); 5510 5511 p->numa_preferred_nid = nid; 5512 5513 if (queued) 5514 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5515 if (running) 5516 set_curr_task(rq, p); 5517 task_rq_unlock(rq, p, &rf); 5518 } 5519 #endif /* CONFIG_NUMA_BALANCING */ 5520 5521 #ifdef CONFIG_HOTPLUG_CPU 5522 /* 5523 * Ensure that the idle task is using init_mm right before its CPU goes 5524 * offline. 5525 */ 5526 void idle_task_exit(void) 5527 { 5528 struct mm_struct *mm = current->active_mm; 5529 5530 BUG_ON(cpu_online(smp_processor_id())); 5531 5532 if (mm != &init_mm) { 5533 switch_mm(mm, &init_mm, current); 5534 current->active_mm = &init_mm; 5535 finish_arch_post_lock_switch(); 5536 } 5537 mmdrop(mm); 5538 } 5539 5540 /* 5541 * Since this CPU is going 'away' for a while, fold any nr_active delta 5542 * we might have. Assumes we're called after migrate_tasks() so that the 5543 * nr_active count is stable. We need to take the teardown thread which 5544 * is calling this into account, so we hand in adjust = 1 to the load 5545 * calculation. 5546 * 5547 * Also see the comment "Global load-average calculations". 5548 */ 5549 static void calc_load_migrate(struct rq *rq) 5550 { 5551 long delta = calc_load_fold_active(rq, 1); 5552 if (delta) 5553 atomic_long_add(delta, &calc_load_tasks); 5554 } 5555 5556 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5557 { 5558 } 5559 5560 static const struct sched_class fake_sched_class = { 5561 .put_prev_task = put_prev_task_fake, 5562 }; 5563 5564 static struct task_struct fake_task = { 5565 /* 5566 * Avoid pull_{rt,dl}_task() 5567 */ 5568 .prio = MAX_PRIO + 1, 5569 .sched_class = &fake_sched_class, 5570 }; 5571 5572 /* 5573 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5574 * try_to_wake_up()->select_task_rq(). 5575 * 5576 * Called with rq->lock held even though we'er in stop_machine() and 5577 * there's no concurrency possible, we hold the required locks anyway 5578 * because of lock validation efforts. 5579 */ 5580 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5581 { 5582 struct rq *rq = dead_rq; 5583 struct task_struct *next, *stop = rq->stop; 5584 struct rq_flags orf = *rf; 5585 int dest_cpu; 5586 5587 /* 5588 * Fudge the rq selection such that the below task selection loop 5589 * doesn't get stuck on the currently eligible stop task. 5590 * 5591 * We're currently inside stop_machine() and the rq is either stuck 5592 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5593 * either way we should never end up calling schedule() until we're 5594 * done here. 5595 */ 5596 rq->stop = NULL; 5597 5598 /* 5599 * put_prev_task() and pick_next_task() sched 5600 * class method both need to have an up-to-date 5601 * value of rq->clock[_task] 5602 */ 5603 update_rq_clock(rq); 5604 5605 for (;;) { 5606 /* 5607 * There's this thread running, bail when that's the only 5608 * remaining thread: 5609 */ 5610 if (rq->nr_running == 1) 5611 break; 5612 5613 /* 5614 * pick_next_task() assumes pinned rq->lock: 5615 */ 5616 next = pick_next_task(rq, &fake_task, rf); 5617 BUG_ON(!next); 5618 put_prev_task(rq, next); 5619 5620 /* 5621 * Rules for changing task_struct::cpus_allowed are holding 5622 * both pi_lock and rq->lock, such that holding either 5623 * stabilizes the mask. 5624 * 5625 * Drop rq->lock is not quite as disastrous as it usually is 5626 * because !cpu_active at this point, which means load-balance 5627 * will not interfere. Also, stop-machine. 5628 */ 5629 rq_unlock(rq, rf); 5630 raw_spin_lock(&next->pi_lock); 5631 rq_relock(rq, rf); 5632 5633 /* 5634 * Since we're inside stop-machine, _nothing_ should have 5635 * changed the task, WARN if weird stuff happened, because in 5636 * that case the above rq->lock drop is a fail too. 5637 */ 5638 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5639 raw_spin_unlock(&next->pi_lock); 5640 continue; 5641 } 5642 5643 /* Find suitable destination for @next, with force if needed. */ 5644 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5645 rq = __migrate_task(rq, rf, next, dest_cpu); 5646 if (rq != dead_rq) { 5647 rq_unlock(rq, rf); 5648 rq = dead_rq; 5649 *rf = orf; 5650 rq_relock(rq, rf); 5651 } 5652 raw_spin_unlock(&next->pi_lock); 5653 } 5654 5655 rq->stop = stop; 5656 } 5657 #endif /* CONFIG_HOTPLUG_CPU */ 5658 5659 void set_rq_online(struct rq *rq) 5660 { 5661 if (!rq->online) { 5662 const struct sched_class *class; 5663 5664 cpumask_set_cpu(rq->cpu, rq->rd->online); 5665 rq->online = 1; 5666 5667 for_each_class(class) { 5668 if (class->rq_online) 5669 class->rq_online(rq); 5670 } 5671 } 5672 } 5673 5674 void set_rq_offline(struct rq *rq) 5675 { 5676 if (rq->online) { 5677 const struct sched_class *class; 5678 5679 for_each_class(class) { 5680 if (class->rq_offline) 5681 class->rq_offline(rq); 5682 } 5683 5684 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5685 rq->online = 0; 5686 } 5687 } 5688 5689 /* 5690 * used to mark begin/end of suspend/resume: 5691 */ 5692 static int num_cpus_frozen; 5693 5694 /* 5695 * Update cpusets according to cpu_active mask. If cpusets are 5696 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5697 * around partition_sched_domains(). 5698 * 5699 * If we come here as part of a suspend/resume, don't touch cpusets because we 5700 * want to restore it back to its original state upon resume anyway. 5701 */ 5702 static void cpuset_cpu_active(void) 5703 { 5704 if (cpuhp_tasks_frozen) { 5705 /* 5706 * num_cpus_frozen tracks how many CPUs are involved in suspend 5707 * resume sequence. As long as this is not the last online 5708 * operation in the resume sequence, just build a single sched 5709 * domain, ignoring cpusets. 5710 */ 5711 partition_sched_domains(1, NULL, NULL); 5712 if (--num_cpus_frozen) 5713 return; 5714 /* 5715 * This is the last CPU online operation. So fall through and 5716 * restore the original sched domains by considering the 5717 * cpuset configurations. 5718 */ 5719 cpuset_force_rebuild(); 5720 } 5721 cpuset_update_active_cpus(); 5722 } 5723 5724 static int cpuset_cpu_inactive(unsigned int cpu) 5725 { 5726 if (!cpuhp_tasks_frozen) { 5727 if (dl_cpu_busy(cpu)) 5728 return -EBUSY; 5729 cpuset_update_active_cpus(); 5730 } else { 5731 num_cpus_frozen++; 5732 partition_sched_domains(1, NULL, NULL); 5733 } 5734 return 0; 5735 } 5736 5737 int sched_cpu_activate(unsigned int cpu) 5738 { 5739 struct rq *rq = cpu_rq(cpu); 5740 struct rq_flags rf; 5741 5742 #ifdef CONFIG_SCHED_SMT 5743 /* 5744 * The sched_smt_present static key needs to be evaluated on every 5745 * hotplug event because at boot time SMT might be disabled when 5746 * the number of booted CPUs is limited. 5747 * 5748 * If then later a sibling gets hotplugged, then the key would stay 5749 * off and SMT scheduling would never be functional. 5750 */ 5751 if (cpumask_weight(cpu_smt_mask(cpu)) > 1) 5752 static_branch_enable_cpuslocked(&sched_smt_present); 5753 #endif 5754 set_cpu_active(cpu, true); 5755 5756 if (sched_smp_initialized) { 5757 sched_domains_numa_masks_set(cpu); 5758 cpuset_cpu_active(); 5759 } 5760 5761 /* 5762 * Put the rq online, if not already. This happens: 5763 * 5764 * 1) In the early boot process, because we build the real domains 5765 * after all CPUs have been brought up. 5766 * 5767 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5768 * domains. 5769 */ 5770 rq_lock_irqsave(rq, &rf); 5771 if (rq->rd) { 5772 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5773 set_rq_online(rq); 5774 } 5775 rq_unlock_irqrestore(rq, &rf); 5776 5777 update_max_interval(); 5778 5779 return 0; 5780 } 5781 5782 int sched_cpu_deactivate(unsigned int cpu) 5783 { 5784 int ret; 5785 5786 set_cpu_active(cpu, false); 5787 /* 5788 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5789 * users of this state to go away such that all new such users will 5790 * observe it. 5791 * 5792 * Do sync before park smpboot threads to take care the rcu boost case. 5793 */ 5794 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5795 5796 if (!sched_smp_initialized) 5797 return 0; 5798 5799 ret = cpuset_cpu_inactive(cpu); 5800 if (ret) { 5801 set_cpu_active(cpu, true); 5802 return ret; 5803 } 5804 sched_domains_numa_masks_clear(cpu); 5805 return 0; 5806 } 5807 5808 static void sched_rq_cpu_starting(unsigned int cpu) 5809 { 5810 struct rq *rq = cpu_rq(cpu); 5811 5812 rq->calc_load_update = calc_load_update; 5813 update_max_interval(); 5814 } 5815 5816 int sched_cpu_starting(unsigned int cpu) 5817 { 5818 sched_rq_cpu_starting(cpu); 5819 sched_tick_start(cpu); 5820 return 0; 5821 } 5822 5823 #ifdef CONFIG_HOTPLUG_CPU 5824 int sched_cpu_dying(unsigned int cpu) 5825 { 5826 struct rq *rq = cpu_rq(cpu); 5827 struct rq_flags rf; 5828 5829 /* Handle pending wakeups and then migrate everything off */ 5830 sched_ttwu_pending(); 5831 sched_tick_stop(cpu); 5832 5833 rq_lock_irqsave(rq, &rf); 5834 if (rq->rd) { 5835 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5836 set_rq_offline(rq); 5837 } 5838 migrate_tasks(rq, &rf); 5839 BUG_ON(rq->nr_running != 1); 5840 rq_unlock_irqrestore(rq, &rf); 5841 5842 calc_load_migrate(rq); 5843 update_max_interval(); 5844 nohz_balance_exit_idle(rq); 5845 hrtick_clear(rq); 5846 return 0; 5847 } 5848 #endif 5849 5850 void __init sched_init_smp(void) 5851 { 5852 sched_init_numa(); 5853 5854 /* 5855 * There's no userspace yet to cause hotplug operations; hence all the 5856 * CPU masks are stable and all blatant races in the below code cannot 5857 * happen. 5858 */ 5859 mutex_lock(&sched_domains_mutex); 5860 sched_init_domains(cpu_active_mask); 5861 mutex_unlock(&sched_domains_mutex); 5862 5863 /* Move init over to a non-isolated CPU */ 5864 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5865 BUG(); 5866 sched_init_granularity(); 5867 5868 init_sched_rt_class(); 5869 init_sched_dl_class(); 5870 5871 sched_smp_initialized = true; 5872 } 5873 5874 static int __init migration_init(void) 5875 { 5876 sched_rq_cpu_starting(smp_processor_id()); 5877 return 0; 5878 } 5879 early_initcall(migration_init); 5880 5881 #else 5882 void __init sched_init_smp(void) 5883 { 5884 sched_init_granularity(); 5885 } 5886 #endif /* CONFIG_SMP */ 5887 5888 int in_sched_functions(unsigned long addr) 5889 { 5890 return in_lock_functions(addr) || 5891 (addr >= (unsigned long)__sched_text_start 5892 && addr < (unsigned long)__sched_text_end); 5893 } 5894 5895 #ifdef CONFIG_CGROUP_SCHED 5896 /* 5897 * Default task group. 5898 * Every task in system belongs to this group at bootup. 5899 */ 5900 struct task_group root_task_group; 5901 LIST_HEAD(task_groups); 5902 5903 /* Cacheline aligned slab cache for task_group */ 5904 static struct kmem_cache *task_group_cache __read_mostly; 5905 #endif 5906 5907 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5908 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5909 5910 void __init sched_init(void) 5911 { 5912 int i, j; 5913 unsigned long alloc_size = 0, ptr; 5914 5915 wait_bit_init(); 5916 5917 #ifdef CONFIG_FAIR_GROUP_SCHED 5918 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5919 #endif 5920 #ifdef CONFIG_RT_GROUP_SCHED 5921 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5922 #endif 5923 if (alloc_size) { 5924 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5925 5926 #ifdef CONFIG_FAIR_GROUP_SCHED 5927 root_task_group.se = (struct sched_entity **)ptr; 5928 ptr += nr_cpu_ids * sizeof(void **); 5929 5930 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5931 ptr += nr_cpu_ids * sizeof(void **); 5932 5933 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5934 #ifdef CONFIG_RT_GROUP_SCHED 5935 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5936 ptr += nr_cpu_ids * sizeof(void **); 5937 5938 root_task_group.rt_rq = (struct rt_rq **)ptr; 5939 ptr += nr_cpu_ids * sizeof(void **); 5940 5941 #endif /* CONFIG_RT_GROUP_SCHED */ 5942 } 5943 #ifdef CONFIG_CPUMASK_OFFSTACK 5944 for_each_possible_cpu(i) { 5945 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5946 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5947 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5948 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5949 } 5950 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5951 5952 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5953 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5954 5955 #ifdef CONFIG_SMP 5956 init_defrootdomain(); 5957 #endif 5958 5959 #ifdef CONFIG_RT_GROUP_SCHED 5960 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5961 global_rt_period(), global_rt_runtime()); 5962 #endif /* CONFIG_RT_GROUP_SCHED */ 5963 5964 #ifdef CONFIG_CGROUP_SCHED 5965 task_group_cache = KMEM_CACHE(task_group, 0); 5966 5967 list_add(&root_task_group.list, &task_groups); 5968 INIT_LIST_HEAD(&root_task_group.children); 5969 INIT_LIST_HEAD(&root_task_group.siblings); 5970 autogroup_init(&init_task); 5971 #endif /* CONFIG_CGROUP_SCHED */ 5972 5973 for_each_possible_cpu(i) { 5974 struct rq *rq; 5975 5976 rq = cpu_rq(i); 5977 raw_spin_lock_init(&rq->lock); 5978 rq->nr_running = 0; 5979 rq->calc_load_active = 0; 5980 rq->calc_load_update = jiffies + LOAD_FREQ; 5981 init_cfs_rq(&rq->cfs); 5982 init_rt_rq(&rq->rt); 5983 init_dl_rq(&rq->dl); 5984 #ifdef CONFIG_FAIR_GROUP_SCHED 5985 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5986 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5987 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5988 /* 5989 * How much CPU bandwidth does root_task_group get? 5990 * 5991 * In case of task-groups formed thr' the cgroup filesystem, it 5992 * gets 100% of the CPU resources in the system. This overall 5993 * system CPU resource is divided among the tasks of 5994 * root_task_group and its child task-groups in a fair manner, 5995 * based on each entity's (task or task-group's) weight 5996 * (se->load.weight). 5997 * 5998 * In other words, if root_task_group has 10 tasks of weight 5999 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6000 * then A0's share of the CPU resource is: 6001 * 6002 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6003 * 6004 * We achieve this by letting root_task_group's tasks sit 6005 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6006 */ 6007 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6008 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6009 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6010 6011 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6012 #ifdef CONFIG_RT_GROUP_SCHED 6013 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6014 #endif 6015 6016 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6017 rq->cpu_load[j] = 0; 6018 6019 #ifdef CONFIG_SMP 6020 rq->sd = NULL; 6021 rq->rd = NULL; 6022 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6023 rq->balance_callback = NULL; 6024 rq->active_balance = 0; 6025 rq->next_balance = jiffies; 6026 rq->push_cpu = 0; 6027 rq->cpu = i; 6028 rq->online = 0; 6029 rq->idle_stamp = 0; 6030 rq->avg_idle = 2*sysctl_sched_migration_cost; 6031 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6032 6033 INIT_LIST_HEAD(&rq->cfs_tasks); 6034 6035 rq_attach_root(rq, &def_root_domain); 6036 #ifdef CONFIG_NO_HZ_COMMON 6037 rq->last_load_update_tick = jiffies; 6038 rq->last_blocked_load_update_tick = jiffies; 6039 atomic_set(&rq->nohz_flags, 0); 6040 #endif 6041 #endif /* CONFIG_SMP */ 6042 hrtick_rq_init(rq); 6043 atomic_set(&rq->nr_iowait, 0); 6044 } 6045 6046 set_load_weight(&init_task, false); 6047 6048 /* 6049 * The boot idle thread does lazy MMU switching as well: 6050 */ 6051 mmgrab(&init_mm); 6052 enter_lazy_tlb(&init_mm, current); 6053 6054 /* 6055 * Make us the idle thread. Technically, schedule() should not be 6056 * called from this thread, however somewhere below it might be, 6057 * but because we are the idle thread, we just pick up running again 6058 * when this runqueue becomes "idle". 6059 */ 6060 init_idle(current, smp_processor_id()); 6061 6062 calc_load_update = jiffies + LOAD_FREQ; 6063 6064 #ifdef CONFIG_SMP 6065 idle_thread_set_boot_cpu(); 6066 #endif 6067 init_sched_fair_class(); 6068 6069 init_schedstats(); 6070 6071 scheduler_running = 1; 6072 } 6073 6074 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6075 static inline int preempt_count_equals(int preempt_offset) 6076 { 6077 int nested = preempt_count() + rcu_preempt_depth(); 6078 6079 return (nested == preempt_offset); 6080 } 6081 6082 void __might_sleep(const char *file, int line, int preempt_offset) 6083 { 6084 /* 6085 * Blocking primitives will set (and therefore destroy) current->state, 6086 * since we will exit with TASK_RUNNING make sure we enter with it, 6087 * otherwise we will destroy state. 6088 */ 6089 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6090 "do not call blocking ops when !TASK_RUNNING; " 6091 "state=%lx set at [<%p>] %pS\n", 6092 current->state, 6093 (void *)current->task_state_change, 6094 (void *)current->task_state_change); 6095 6096 ___might_sleep(file, line, preempt_offset); 6097 } 6098 EXPORT_SYMBOL(__might_sleep); 6099 6100 void ___might_sleep(const char *file, int line, int preempt_offset) 6101 { 6102 /* Ratelimiting timestamp: */ 6103 static unsigned long prev_jiffy; 6104 6105 unsigned long preempt_disable_ip; 6106 6107 /* WARN_ON_ONCE() by default, no rate limit required: */ 6108 rcu_sleep_check(); 6109 6110 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6111 !is_idle_task(current)) || 6112 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6113 oops_in_progress) 6114 return; 6115 6116 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6117 return; 6118 prev_jiffy = jiffies; 6119 6120 /* Save this before calling printk(), since that will clobber it: */ 6121 preempt_disable_ip = get_preempt_disable_ip(current); 6122 6123 printk(KERN_ERR 6124 "BUG: sleeping function called from invalid context at %s:%d\n", 6125 file, line); 6126 printk(KERN_ERR 6127 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6128 in_atomic(), irqs_disabled(), 6129 current->pid, current->comm); 6130 6131 if (task_stack_end_corrupted(current)) 6132 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6133 6134 debug_show_held_locks(current); 6135 if (irqs_disabled()) 6136 print_irqtrace_events(current); 6137 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6138 && !preempt_count_equals(preempt_offset)) { 6139 pr_err("Preemption disabled at:"); 6140 print_ip_sym(preempt_disable_ip); 6141 pr_cont("\n"); 6142 } 6143 dump_stack(); 6144 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6145 } 6146 EXPORT_SYMBOL(___might_sleep); 6147 #endif 6148 6149 #ifdef CONFIG_MAGIC_SYSRQ 6150 void normalize_rt_tasks(void) 6151 { 6152 struct task_struct *g, *p; 6153 struct sched_attr attr = { 6154 .sched_policy = SCHED_NORMAL, 6155 }; 6156 6157 read_lock(&tasklist_lock); 6158 for_each_process_thread(g, p) { 6159 /* 6160 * Only normalize user tasks: 6161 */ 6162 if (p->flags & PF_KTHREAD) 6163 continue; 6164 6165 p->se.exec_start = 0; 6166 schedstat_set(p->se.statistics.wait_start, 0); 6167 schedstat_set(p->se.statistics.sleep_start, 0); 6168 schedstat_set(p->se.statistics.block_start, 0); 6169 6170 if (!dl_task(p) && !rt_task(p)) { 6171 /* 6172 * Renice negative nice level userspace 6173 * tasks back to 0: 6174 */ 6175 if (task_nice(p) < 0) 6176 set_user_nice(p, 0); 6177 continue; 6178 } 6179 6180 __sched_setscheduler(p, &attr, false, false); 6181 } 6182 read_unlock(&tasklist_lock); 6183 } 6184 6185 #endif /* CONFIG_MAGIC_SYSRQ */ 6186 6187 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6188 /* 6189 * These functions are only useful for the IA64 MCA handling, or kdb. 6190 * 6191 * They can only be called when the whole system has been 6192 * stopped - every CPU needs to be quiescent, and no scheduling 6193 * activity can take place. Using them for anything else would 6194 * be a serious bug, and as a result, they aren't even visible 6195 * under any other configuration. 6196 */ 6197 6198 /** 6199 * curr_task - return the current task for a given CPU. 6200 * @cpu: the processor in question. 6201 * 6202 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6203 * 6204 * Return: The current task for @cpu. 6205 */ 6206 struct task_struct *curr_task(int cpu) 6207 { 6208 return cpu_curr(cpu); 6209 } 6210 6211 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6212 6213 #ifdef CONFIG_IA64 6214 /** 6215 * set_curr_task - set the current task for a given CPU. 6216 * @cpu: the processor in question. 6217 * @p: the task pointer to set. 6218 * 6219 * Description: This function must only be used when non-maskable interrupts 6220 * are serviced on a separate stack. It allows the architecture to switch the 6221 * notion of the current task on a CPU in a non-blocking manner. This function 6222 * must be called with all CPU's synchronized, and interrupts disabled, the 6223 * and caller must save the original value of the current task (see 6224 * curr_task() above) and restore that value before reenabling interrupts and 6225 * re-starting the system. 6226 * 6227 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6228 */ 6229 void ia64_set_curr_task(int cpu, struct task_struct *p) 6230 { 6231 cpu_curr(cpu) = p; 6232 } 6233 6234 #endif 6235 6236 #ifdef CONFIG_CGROUP_SCHED 6237 /* task_group_lock serializes the addition/removal of task groups */ 6238 static DEFINE_SPINLOCK(task_group_lock); 6239 6240 static void sched_free_group(struct task_group *tg) 6241 { 6242 free_fair_sched_group(tg); 6243 free_rt_sched_group(tg); 6244 autogroup_free(tg); 6245 kmem_cache_free(task_group_cache, tg); 6246 } 6247 6248 /* allocate runqueue etc for a new task group */ 6249 struct task_group *sched_create_group(struct task_group *parent) 6250 { 6251 struct task_group *tg; 6252 6253 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6254 if (!tg) 6255 return ERR_PTR(-ENOMEM); 6256 6257 if (!alloc_fair_sched_group(tg, parent)) 6258 goto err; 6259 6260 if (!alloc_rt_sched_group(tg, parent)) 6261 goto err; 6262 6263 return tg; 6264 6265 err: 6266 sched_free_group(tg); 6267 return ERR_PTR(-ENOMEM); 6268 } 6269 6270 void sched_online_group(struct task_group *tg, struct task_group *parent) 6271 { 6272 unsigned long flags; 6273 6274 spin_lock_irqsave(&task_group_lock, flags); 6275 list_add_rcu(&tg->list, &task_groups); 6276 6277 /* Root should already exist: */ 6278 WARN_ON(!parent); 6279 6280 tg->parent = parent; 6281 INIT_LIST_HEAD(&tg->children); 6282 list_add_rcu(&tg->siblings, &parent->children); 6283 spin_unlock_irqrestore(&task_group_lock, flags); 6284 6285 online_fair_sched_group(tg); 6286 } 6287 6288 /* rcu callback to free various structures associated with a task group */ 6289 static void sched_free_group_rcu(struct rcu_head *rhp) 6290 { 6291 /* Now it should be safe to free those cfs_rqs: */ 6292 sched_free_group(container_of(rhp, struct task_group, rcu)); 6293 } 6294 6295 void sched_destroy_group(struct task_group *tg) 6296 { 6297 /* Wait for possible concurrent references to cfs_rqs complete: */ 6298 call_rcu(&tg->rcu, sched_free_group_rcu); 6299 } 6300 6301 void sched_offline_group(struct task_group *tg) 6302 { 6303 unsigned long flags; 6304 6305 /* End participation in shares distribution: */ 6306 unregister_fair_sched_group(tg); 6307 6308 spin_lock_irqsave(&task_group_lock, flags); 6309 list_del_rcu(&tg->list); 6310 list_del_rcu(&tg->siblings); 6311 spin_unlock_irqrestore(&task_group_lock, flags); 6312 } 6313 6314 static void sched_change_group(struct task_struct *tsk, int type) 6315 { 6316 struct task_group *tg; 6317 6318 /* 6319 * All callers are synchronized by task_rq_lock(); we do not use RCU 6320 * which is pointless here. Thus, we pass "true" to task_css_check() 6321 * to prevent lockdep warnings. 6322 */ 6323 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6324 struct task_group, css); 6325 tg = autogroup_task_group(tsk, tg); 6326 tsk->sched_task_group = tg; 6327 6328 #ifdef CONFIG_FAIR_GROUP_SCHED 6329 if (tsk->sched_class->task_change_group) 6330 tsk->sched_class->task_change_group(tsk, type); 6331 else 6332 #endif 6333 set_task_rq(tsk, task_cpu(tsk)); 6334 } 6335 6336 /* 6337 * Change task's runqueue when it moves between groups. 6338 * 6339 * The caller of this function should have put the task in its new group by 6340 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6341 * its new group. 6342 */ 6343 void sched_move_task(struct task_struct *tsk) 6344 { 6345 int queued, running, queue_flags = 6346 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6347 struct rq_flags rf; 6348 struct rq *rq; 6349 6350 rq = task_rq_lock(tsk, &rf); 6351 update_rq_clock(rq); 6352 6353 running = task_current(rq, tsk); 6354 queued = task_on_rq_queued(tsk); 6355 6356 if (queued) 6357 dequeue_task(rq, tsk, queue_flags); 6358 if (running) 6359 put_prev_task(rq, tsk); 6360 6361 sched_change_group(tsk, TASK_MOVE_GROUP); 6362 6363 if (queued) 6364 enqueue_task(rq, tsk, queue_flags); 6365 if (running) 6366 set_curr_task(rq, tsk); 6367 6368 task_rq_unlock(rq, tsk, &rf); 6369 } 6370 6371 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6372 { 6373 return css ? container_of(css, struct task_group, css) : NULL; 6374 } 6375 6376 static struct cgroup_subsys_state * 6377 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6378 { 6379 struct task_group *parent = css_tg(parent_css); 6380 struct task_group *tg; 6381 6382 if (!parent) { 6383 /* This is early initialization for the top cgroup */ 6384 return &root_task_group.css; 6385 } 6386 6387 tg = sched_create_group(parent); 6388 if (IS_ERR(tg)) 6389 return ERR_PTR(-ENOMEM); 6390 6391 return &tg->css; 6392 } 6393 6394 /* Expose task group only after completing cgroup initialization */ 6395 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6396 { 6397 struct task_group *tg = css_tg(css); 6398 struct task_group *parent = css_tg(css->parent); 6399 6400 if (parent) 6401 sched_online_group(tg, parent); 6402 return 0; 6403 } 6404 6405 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6406 { 6407 struct task_group *tg = css_tg(css); 6408 6409 sched_offline_group(tg); 6410 } 6411 6412 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6413 { 6414 struct task_group *tg = css_tg(css); 6415 6416 /* 6417 * Relies on the RCU grace period between css_released() and this. 6418 */ 6419 sched_free_group(tg); 6420 } 6421 6422 /* 6423 * This is called before wake_up_new_task(), therefore we really only 6424 * have to set its group bits, all the other stuff does not apply. 6425 */ 6426 static void cpu_cgroup_fork(struct task_struct *task) 6427 { 6428 struct rq_flags rf; 6429 struct rq *rq; 6430 6431 rq = task_rq_lock(task, &rf); 6432 6433 update_rq_clock(rq); 6434 sched_change_group(task, TASK_SET_GROUP); 6435 6436 task_rq_unlock(rq, task, &rf); 6437 } 6438 6439 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6440 { 6441 struct task_struct *task; 6442 struct cgroup_subsys_state *css; 6443 int ret = 0; 6444 6445 cgroup_taskset_for_each(task, css, tset) { 6446 #ifdef CONFIG_RT_GROUP_SCHED 6447 if (!sched_rt_can_attach(css_tg(css), task)) 6448 return -EINVAL; 6449 #else 6450 /* We don't support RT-tasks being in separate groups */ 6451 if (task->sched_class != &fair_sched_class) 6452 return -EINVAL; 6453 #endif 6454 /* 6455 * Serialize against wake_up_new_task() such that if its 6456 * running, we're sure to observe its full state. 6457 */ 6458 raw_spin_lock_irq(&task->pi_lock); 6459 /* 6460 * Avoid calling sched_move_task() before wake_up_new_task() 6461 * has happened. This would lead to problems with PELT, due to 6462 * move wanting to detach+attach while we're not attached yet. 6463 */ 6464 if (task->state == TASK_NEW) 6465 ret = -EINVAL; 6466 raw_spin_unlock_irq(&task->pi_lock); 6467 6468 if (ret) 6469 break; 6470 } 6471 return ret; 6472 } 6473 6474 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6475 { 6476 struct task_struct *task; 6477 struct cgroup_subsys_state *css; 6478 6479 cgroup_taskset_for_each(task, css, tset) 6480 sched_move_task(task); 6481 } 6482 6483 #ifdef CONFIG_FAIR_GROUP_SCHED 6484 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6485 struct cftype *cftype, u64 shareval) 6486 { 6487 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6488 } 6489 6490 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6491 struct cftype *cft) 6492 { 6493 struct task_group *tg = css_tg(css); 6494 6495 return (u64) scale_load_down(tg->shares); 6496 } 6497 6498 #ifdef CONFIG_CFS_BANDWIDTH 6499 static DEFINE_MUTEX(cfs_constraints_mutex); 6500 6501 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6502 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6503 6504 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6505 6506 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6507 { 6508 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6509 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6510 6511 if (tg == &root_task_group) 6512 return -EINVAL; 6513 6514 /* 6515 * Ensure we have at some amount of bandwidth every period. This is 6516 * to prevent reaching a state of large arrears when throttled via 6517 * entity_tick() resulting in prolonged exit starvation. 6518 */ 6519 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6520 return -EINVAL; 6521 6522 /* 6523 * Likewise, bound things on the otherside by preventing insane quota 6524 * periods. This also allows us to normalize in computing quota 6525 * feasibility. 6526 */ 6527 if (period > max_cfs_quota_period) 6528 return -EINVAL; 6529 6530 /* 6531 * Prevent race between setting of cfs_rq->runtime_enabled and 6532 * unthrottle_offline_cfs_rqs(). 6533 */ 6534 get_online_cpus(); 6535 mutex_lock(&cfs_constraints_mutex); 6536 ret = __cfs_schedulable(tg, period, quota); 6537 if (ret) 6538 goto out_unlock; 6539 6540 runtime_enabled = quota != RUNTIME_INF; 6541 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6542 /* 6543 * If we need to toggle cfs_bandwidth_used, off->on must occur 6544 * before making related changes, and on->off must occur afterwards 6545 */ 6546 if (runtime_enabled && !runtime_was_enabled) 6547 cfs_bandwidth_usage_inc(); 6548 raw_spin_lock_irq(&cfs_b->lock); 6549 cfs_b->period = ns_to_ktime(period); 6550 cfs_b->quota = quota; 6551 6552 __refill_cfs_bandwidth_runtime(cfs_b); 6553 6554 /* Restart the period timer (if active) to handle new period expiry: */ 6555 if (runtime_enabled) 6556 start_cfs_bandwidth(cfs_b); 6557 6558 raw_spin_unlock_irq(&cfs_b->lock); 6559 6560 for_each_online_cpu(i) { 6561 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6562 struct rq *rq = cfs_rq->rq; 6563 struct rq_flags rf; 6564 6565 rq_lock_irq(rq, &rf); 6566 cfs_rq->runtime_enabled = runtime_enabled; 6567 cfs_rq->runtime_remaining = 0; 6568 6569 if (cfs_rq->throttled) 6570 unthrottle_cfs_rq(cfs_rq); 6571 rq_unlock_irq(rq, &rf); 6572 } 6573 if (runtime_was_enabled && !runtime_enabled) 6574 cfs_bandwidth_usage_dec(); 6575 out_unlock: 6576 mutex_unlock(&cfs_constraints_mutex); 6577 put_online_cpus(); 6578 6579 return ret; 6580 } 6581 6582 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6583 { 6584 u64 quota, period; 6585 6586 period = ktime_to_ns(tg->cfs_bandwidth.period); 6587 if (cfs_quota_us < 0) 6588 quota = RUNTIME_INF; 6589 else 6590 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6591 6592 return tg_set_cfs_bandwidth(tg, period, quota); 6593 } 6594 6595 long tg_get_cfs_quota(struct task_group *tg) 6596 { 6597 u64 quota_us; 6598 6599 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6600 return -1; 6601 6602 quota_us = tg->cfs_bandwidth.quota; 6603 do_div(quota_us, NSEC_PER_USEC); 6604 6605 return quota_us; 6606 } 6607 6608 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6609 { 6610 u64 quota, period; 6611 6612 period = (u64)cfs_period_us * NSEC_PER_USEC; 6613 quota = tg->cfs_bandwidth.quota; 6614 6615 return tg_set_cfs_bandwidth(tg, period, quota); 6616 } 6617 6618 long tg_get_cfs_period(struct task_group *tg) 6619 { 6620 u64 cfs_period_us; 6621 6622 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6623 do_div(cfs_period_us, NSEC_PER_USEC); 6624 6625 return cfs_period_us; 6626 } 6627 6628 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6629 struct cftype *cft) 6630 { 6631 return tg_get_cfs_quota(css_tg(css)); 6632 } 6633 6634 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6635 struct cftype *cftype, s64 cfs_quota_us) 6636 { 6637 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6638 } 6639 6640 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6641 struct cftype *cft) 6642 { 6643 return tg_get_cfs_period(css_tg(css)); 6644 } 6645 6646 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6647 struct cftype *cftype, u64 cfs_period_us) 6648 { 6649 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6650 } 6651 6652 struct cfs_schedulable_data { 6653 struct task_group *tg; 6654 u64 period, quota; 6655 }; 6656 6657 /* 6658 * normalize group quota/period to be quota/max_period 6659 * note: units are usecs 6660 */ 6661 static u64 normalize_cfs_quota(struct task_group *tg, 6662 struct cfs_schedulable_data *d) 6663 { 6664 u64 quota, period; 6665 6666 if (tg == d->tg) { 6667 period = d->period; 6668 quota = d->quota; 6669 } else { 6670 period = tg_get_cfs_period(tg); 6671 quota = tg_get_cfs_quota(tg); 6672 } 6673 6674 /* note: these should typically be equivalent */ 6675 if (quota == RUNTIME_INF || quota == -1) 6676 return RUNTIME_INF; 6677 6678 return to_ratio(period, quota); 6679 } 6680 6681 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6682 { 6683 struct cfs_schedulable_data *d = data; 6684 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6685 s64 quota = 0, parent_quota = -1; 6686 6687 if (!tg->parent) { 6688 quota = RUNTIME_INF; 6689 } else { 6690 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6691 6692 quota = normalize_cfs_quota(tg, d); 6693 parent_quota = parent_b->hierarchical_quota; 6694 6695 /* 6696 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6697 * always take the min. On cgroup1, only inherit when no 6698 * limit is set: 6699 */ 6700 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6701 quota = min(quota, parent_quota); 6702 } else { 6703 if (quota == RUNTIME_INF) 6704 quota = parent_quota; 6705 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6706 return -EINVAL; 6707 } 6708 } 6709 cfs_b->hierarchical_quota = quota; 6710 6711 return 0; 6712 } 6713 6714 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6715 { 6716 int ret; 6717 struct cfs_schedulable_data data = { 6718 .tg = tg, 6719 .period = period, 6720 .quota = quota, 6721 }; 6722 6723 if (quota != RUNTIME_INF) { 6724 do_div(data.period, NSEC_PER_USEC); 6725 do_div(data.quota, NSEC_PER_USEC); 6726 } 6727 6728 rcu_read_lock(); 6729 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6730 rcu_read_unlock(); 6731 6732 return ret; 6733 } 6734 6735 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6736 { 6737 struct task_group *tg = css_tg(seq_css(sf)); 6738 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6739 6740 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6741 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6742 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6743 6744 if (schedstat_enabled() && tg != &root_task_group) { 6745 u64 ws = 0; 6746 int i; 6747 6748 for_each_possible_cpu(i) 6749 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 6750 6751 seq_printf(sf, "wait_sum %llu\n", ws); 6752 } 6753 6754 return 0; 6755 } 6756 #endif /* CONFIG_CFS_BANDWIDTH */ 6757 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6758 6759 #ifdef CONFIG_RT_GROUP_SCHED 6760 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6761 struct cftype *cft, s64 val) 6762 { 6763 return sched_group_set_rt_runtime(css_tg(css), val); 6764 } 6765 6766 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6767 struct cftype *cft) 6768 { 6769 return sched_group_rt_runtime(css_tg(css)); 6770 } 6771 6772 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6773 struct cftype *cftype, u64 rt_period_us) 6774 { 6775 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6776 } 6777 6778 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6779 struct cftype *cft) 6780 { 6781 return sched_group_rt_period(css_tg(css)); 6782 } 6783 #endif /* CONFIG_RT_GROUP_SCHED */ 6784 6785 static struct cftype cpu_legacy_files[] = { 6786 #ifdef CONFIG_FAIR_GROUP_SCHED 6787 { 6788 .name = "shares", 6789 .read_u64 = cpu_shares_read_u64, 6790 .write_u64 = cpu_shares_write_u64, 6791 }, 6792 #endif 6793 #ifdef CONFIG_CFS_BANDWIDTH 6794 { 6795 .name = "cfs_quota_us", 6796 .read_s64 = cpu_cfs_quota_read_s64, 6797 .write_s64 = cpu_cfs_quota_write_s64, 6798 }, 6799 { 6800 .name = "cfs_period_us", 6801 .read_u64 = cpu_cfs_period_read_u64, 6802 .write_u64 = cpu_cfs_period_write_u64, 6803 }, 6804 { 6805 .name = "stat", 6806 .seq_show = cpu_cfs_stat_show, 6807 }, 6808 #endif 6809 #ifdef CONFIG_RT_GROUP_SCHED 6810 { 6811 .name = "rt_runtime_us", 6812 .read_s64 = cpu_rt_runtime_read, 6813 .write_s64 = cpu_rt_runtime_write, 6814 }, 6815 { 6816 .name = "rt_period_us", 6817 .read_u64 = cpu_rt_period_read_uint, 6818 .write_u64 = cpu_rt_period_write_uint, 6819 }, 6820 #endif 6821 { } /* Terminate */ 6822 }; 6823 6824 static int cpu_extra_stat_show(struct seq_file *sf, 6825 struct cgroup_subsys_state *css) 6826 { 6827 #ifdef CONFIG_CFS_BANDWIDTH 6828 { 6829 struct task_group *tg = css_tg(css); 6830 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6831 u64 throttled_usec; 6832 6833 throttled_usec = cfs_b->throttled_time; 6834 do_div(throttled_usec, NSEC_PER_USEC); 6835 6836 seq_printf(sf, "nr_periods %d\n" 6837 "nr_throttled %d\n" 6838 "throttled_usec %llu\n", 6839 cfs_b->nr_periods, cfs_b->nr_throttled, 6840 throttled_usec); 6841 } 6842 #endif 6843 return 0; 6844 } 6845 6846 #ifdef CONFIG_FAIR_GROUP_SCHED 6847 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6848 struct cftype *cft) 6849 { 6850 struct task_group *tg = css_tg(css); 6851 u64 weight = scale_load_down(tg->shares); 6852 6853 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6854 } 6855 6856 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6857 struct cftype *cft, u64 weight) 6858 { 6859 /* 6860 * cgroup weight knobs should use the common MIN, DFL and MAX 6861 * values which are 1, 100 and 10000 respectively. While it loses 6862 * a bit of range on both ends, it maps pretty well onto the shares 6863 * value used by scheduler and the round-trip conversions preserve 6864 * the original value over the entire range. 6865 */ 6866 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6867 return -ERANGE; 6868 6869 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6870 6871 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6872 } 6873 6874 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6875 struct cftype *cft) 6876 { 6877 unsigned long weight = scale_load_down(css_tg(css)->shares); 6878 int last_delta = INT_MAX; 6879 int prio, delta; 6880 6881 /* find the closest nice value to the current weight */ 6882 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6883 delta = abs(sched_prio_to_weight[prio] - weight); 6884 if (delta >= last_delta) 6885 break; 6886 last_delta = delta; 6887 } 6888 6889 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6890 } 6891 6892 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6893 struct cftype *cft, s64 nice) 6894 { 6895 unsigned long weight; 6896 int idx; 6897 6898 if (nice < MIN_NICE || nice > MAX_NICE) 6899 return -ERANGE; 6900 6901 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6902 idx = array_index_nospec(idx, 40); 6903 weight = sched_prio_to_weight[idx]; 6904 6905 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6906 } 6907 #endif 6908 6909 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6910 long period, long quota) 6911 { 6912 if (quota < 0) 6913 seq_puts(sf, "max"); 6914 else 6915 seq_printf(sf, "%ld", quota); 6916 6917 seq_printf(sf, " %ld\n", period); 6918 } 6919 6920 /* caller should put the current value in *@periodp before calling */ 6921 static int __maybe_unused cpu_period_quota_parse(char *buf, 6922 u64 *periodp, u64 *quotap) 6923 { 6924 char tok[21]; /* U64_MAX */ 6925 6926 if (!sscanf(buf, "%s %llu", tok, periodp)) 6927 return -EINVAL; 6928 6929 *periodp *= NSEC_PER_USEC; 6930 6931 if (sscanf(tok, "%llu", quotap)) 6932 *quotap *= NSEC_PER_USEC; 6933 else if (!strcmp(tok, "max")) 6934 *quotap = RUNTIME_INF; 6935 else 6936 return -EINVAL; 6937 6938 return 0; 6939 } 6940 6941 #ifdef CONFIG_CFS_BANDWIDTH 6942 static int cpu_max_show(struct seq_file *sf, void *v) 6943 { 6944 struct task_group *tg = css_tg(seq_css(sf)); 6945 6946 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6947 return 0; 6948 } 6949 6950 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6951 char *buf, size_t nbytes, loff_t off) 6952 { 6953 struct task_group *tg = css_tg(of_css(of)); 6954 u64 period = tg_get_cfs_period(tg); 6955 u64 quota; 6956 int ret; 6957 6958 ret = cpu_period_quota_parse(buf, &period, "a); 6959 if (!ret) 6960 ret = tg_set_cfs_bandwidth(tg, period, quota); 6961 return ret ?: nbytes; 6962 } 6963 #endif 6964 6965 static struct cftype cpu_files[] = { 6966 #ifdef CONFIG_FAIR_GROUP_SCHED 6967 { 6968 .name = "weight", 6969 .flags = CFTYPE_NOT_ON_ROOT, 6970 .read_u64 = cpu_weight_read_u64, 6971 .write_u64 = cpu_weight_write_u64, 6972 }, 6973 { 6974 .name = "weight.nice", 6975 .flags = CFTYPE_NOT_ON_ROOT, 6976 .read_s64 = cpu_weight_nice_read_s64, 6977 .write_s64 = cpu_weight_nice_write_s64, 6978 }, 6979 #endif 6980 #ifdef CONFIG_CFS_BANDWIDTH 6981 { 6982 .name = "max", 6983 .flags = CFTYPE_NOT_ON_ROOT, 6984 .seq_show = cpu_max_show, 6985 .write = cpu_max_write, 6986 }, 6987 #endif 6988 { } /* terminate */ 6989 }; 6990 6991 struct cgroup_subsys cpu_cgrp_subsys = { 6992 .css_alloc = cpu_cgroup_css_alloc, 6993 .css_online = cpu_cgroup_css_online, 6994 .css_released = cpu_cgroup_css_released, 6995 .css_free = cpu_cgroup_css_free, 6996 .css_extra_stat_show = cpu_extra_stat_show, 6997 .fork = cpu_cgroup_fork, 6998 .can_attach = cpu_cgroup_can_attach, 6999 .attach = cpu_cgroup_attach, 7000 .legacy_cftypes = cpu_legacy_files, 7001 .dfl_cftypes = cpu_files, 7002 .early_init = true, 7003 .threaded = true, 7004 }; 7005 7006 #endif /* CONFIG_CGROUP_SCHED */ 7007 7008 void dump_cpu_task(int cpu) 7009 { 7010 pr_info("Task dump for CPU %d:\n", cpu); 7011 sched_show_task(cpu_curr(cpu)); 7012 } 7013 7014 /* 7015 * Nice levels are multiplicative, with a gentle 10% change for every 7016 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7017 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7018 * that remained on nice 0. 7019 * 7020 * The "10% effect" is relative and cumulative: from _any_ nice level, 7021 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7022 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7023 * If a task goes up by ~10% and another task goes down by ~10% then 7024 * the relative distance between them is ~25%.) 7025 */ 7026 const int sched_prio_to_weight[40] = { 7027 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7028 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7029 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7030 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7031 /* 0 */ 1024, 820, 655, 526, 423, 7032 /* 5 */ 335, 272, 215, 172, 137, 7033 /* 10 */ 110, 87, 70, 56, 45, 7034 /* 15 */ 36, 29, 23, 18, 15, 7035 }; 7036 7037 /* 7038 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7039 * 7040 * In cases where the weight does not change often, we can use the 7041 * precalculated inverse to speed up arithmetics by turning divisions 7042 * into multiplications: 7043 */ 7044 const u32 sched_prio_to_wmult[40] = { 7045 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7046 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7047 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7048 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7049 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7050 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7051 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7052 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7053 }; 7054 7055 #undef CREATE_TRACE_POINTS 7056