xref: /openbmc/linux/kernel/sched/core.c (revision 47894e0f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147 
148 __read_mostly int scheduler_running;
149 
150 #ifdef CONFIG_SCHED_CORE
151 
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153 
154 /* kernel prio, less is more */
155 static inline int __task_prio(struct task_struct *p)
156 {
157 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 		return -2;
159 
160 	if (rt_prio(p->prio)) /* includes deadline */
161 		return p->prio; /* [-1, 99] */
162 
163 	if (p->sched_class == &idle_sched_class)
164 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165 
166 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168 
169 /*
170  * l(a,b)
171  * le(a,b) := !l(b,a)
172  * g(a,b)  := l(b,a)
173  * ge(a,b) := !l(a,b)
174  */
175 
176 /* real prio, less is less */
177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
178 {
179 
180 	int pa = __task_prio(a), pb = __task_prio(b);
181 
182 	if (-pa < -pb)
183 		return true;
184 
185 	if (-pb < -pa)
186 		return false;
187 
188 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
190 
191 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
192 		return cfs_prio_less(a, b, in_fi);
193 
194 	return false;
195 }
196 
197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198 {
199 	if (a->core_cookie < b->core_cookie)
200 		return true;
201 
202 	if (a->core_cookie > b->core_cookie)
203 		return false;
204 
205 	/* flip prio, so high prio is leftmost */
206 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
207 		return true;
208 
209 	return false;
210 }
211 
212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213 
214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215 {
216 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217 }
218 
219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220 {
221 	const struct task_struct *p = __node_2_sc(node);
222 	unsigned long cookie = (unsigned long)key;
223 
224 	if (cookie < p->core_cookie)
225 		return -1;
226 
227 	if (cookie > p->core_cookie)
228 		return 1;
229 
230 	return 0;
231 }
232 
233 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
234 {
235 	rq->core->core_task_seq++;
236 
237 	if (!p->core_cookie)
238 		return;
239 
240 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241 }
242 
243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
244 {
245 	rq->core->core_task_seq++;
246 
247 	if (sched_core_enqueued(p)) {
248 		rb_erase(&p->core_node, &rq->core_tree);
249 		RB_CLEAR_NODE(&p->core_node);
250 	}
251 
252 	/*
253 	 * Migrating the last task off the cpu, with the cpu in forced idle
254 	 * state. Reschedule to create an accounting edge for forced idle,
255 	 * and re-examine whether the core is still in forced idle state.
256 	 */
257 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
259 		resched_curr(rq);
260 }
261 
262 /*
263  * Find left-most (aka, highest priority) task matching @cookie.
264  */
265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266 {
267 	struct rb_node *node;
268 
269 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 	/*
271 	 * The idle task always matches any cookie!
272 	 */
273 	if (!node)
274 		return idle_sched_class.pick_task(rq);
275 
276 	return __node_2_sc(node);
277 }
278 
279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280 {
281 	struct rb_node *node = &p->core_node;
282 
283 	node = rb_next(node);
284 	if (!node)
285 		return NULL;
286 
287 	p = container_of(node, struct task_struct, core_node);
288 	if (p->core_cookie != cookie)
289 		return NULL;
290 
291 	return p;
292 }
293 
294 /*
295  * Magic required such that:
296  *
297  *	raw_spin_rq_lock(rq);
298  *	...
299  *	raw_spin_rq_unlock(rq);
300  *
301  * ends up locking and unlocking the _same_ lock, and all CPUs
302  * always agree on what rq has what lock.
303  *
304  * XXX entirely possible to selectively enable cores, don't bother for now.
305  */
306 
307 static DEFINE_MUTEX(sched_core_mutex);
308 static atomic_t sched_core_count;
309 static struct cpumask sched_core_mask;
310 
311 static void sched_core_lock(int cpu, unsigned long *flags)
312 {
313 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 	int t, i = 0;
315 
316 	local_irq_save(*flags);
317 	for_each_cpu(t, smt_mask)
318 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319 }
320 
321 static void sched_core_unlock(int cpu, unsigned long *flags)
322 {
323 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 	int t;
325 
326 	for_each_cpu(t, smt_mask)
327 		raw_spin_unlock(&cpu_rq(t)->__lock);
328 	local_irq_restore(*flags);
329 }
330 
331 static void __sched_core_flip(bool enabled)
332 {
333 	unsigned long flags;
334 	int cpu, t;
335 
336 	cpus_read_lock();
337 
338 	/*
339 	 * Toggle the online cores, one by one.
340 	 */
341 	cpumask_copy(&sched_core_mask, cpu_online_mask);
342 	for_each_cpu(cpu, &sched_core_mask) {
343 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344 
345 		sched_core_lock(cpu, &flags);
346 
347 		for_each_cpu(t, smt_mask)
348 			cpu_rq(t)->core_enabled = enabled;
349 
350 		cpu_rq(cpu)->core->core_forceidle_start = 0;
351 
352 		sched_core_unlock(cpu, &flags);
353 
354 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 	}
356 
357 	/*
358 	 * Toggle the offline CPUs.
359 	 */
360 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
361 		cpu_rq(cpu)->core_enabled = enabled;
362 
363 	cpus_read_unlock();
364 }
365 
366 static void sched_core_assert_empty(void)
367 {
368 	int cpu;
369 
370 	for_each_possible_cpu(cpu)
371 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372 }
373 
374 static void __sched_core_enable(void)
375 {
376 	static_branch_enable(&__sched_core_enabled);
377 	/*
378 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 	 * and future ones will observe !sched_core_disabled().
380 	 */
381 	synchronize_rcu();
382 	__sched_core_flip(true);
383 	sched_core_assert_empty();
384 }
385 
386 static void __sched_core_disable(void)
387 {
388 	sched_core_assert_empty();
389 	__sched_core_flip(false);
390 	static_branch_disable(&__sched_core_enabled);
391 }
392 
393 void sched_core_get(void)
394 {
395 	if (atomic_inc_not_zero(&sched_core_count))
396 		return;
397 
398 	mutex_lock(&sched_core_mutex);
399 	if (!atomic_read(&sched_core_count))
400 		__sched_core_enable();
401 
402 	smp_mb__before_atomic();
403 	atomic_inc(&sched_core_count);
404 	mutex_unlock(&sched_core_mutex);
405 }
406 
407 static void __sched_core_put(struct work_struct *work)
408 {
409 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
410 		__sched_core_disable();
411 		mutex_unlock(&sched_core_mutex);
412 	}
413 }
414 
415 void sched_core_put(void)
416 {
417 	static DECLARE_WORK(_work, __sched_core_put);
418 
419 	/*
420 	 * "There can be only one"
421 	 *
422 	 * Either this is the last one, or we don't actually need to do any
423 	 * 'work'. If it is the last *again*, we rely on
424 	 * WORK_STRUCT_PENDING_BIT.
425 	 */
426 	if (!atomic_add_unless(&sched_core_count, -1, 1))
427 		schedule_work(&_work);
428 }
429 
430 #else /* !CONFIG_SCHED_CORE */
431 
432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
433 static inline void
434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
435 
436 #endif /* CONFIG_SCHED_CORE */
437 
438 /*
439  * Serialization rules:
440  *
441  * Lock order:
442  *
443  *   p->pi_lock
444  *     rq->lock
445  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446  *
447  *  rq1->lock
448  *    rq2->lock  where: rq1 < rq2
449  *
450  * Regular state:
451  *
452  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453  * local CPU's rq->lock, it optionally removes the task from the runqueue and
454  * always looks at the local rq data structures to find the most eligible task
455  * to run next.
456  *
457  * Task enqueue is also under rq->lock, possibly taken from another CPU.
458  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459  * the local CPU to avoid bouncing the runqueue state around [ see
460  * ttwu_queue_wakelist() ]
461  *
462  * Task wakeup, specifically wakeups that involve migration, are horribly
463  * complicated to avoid having to take two rq->locks.
464  *
465  * Special state:
466  *
467  * System-calls and anything external will use task_rq_lock() which acquires
468  * both p->pi_lock and rq->lock. As a consequence the state they change is
469  * stable while holding either lock:
470  *
471  *  - sched_setaffinity()/
472  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
473  *  - set_user_nice():		p->se.load, p->*prio
474  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
475  *				p->se.load, p->rt_priority,
476  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
477  *  - sched_setnuma():		p->numa_preferred_nid
478  *  - sched_move_task():	p->sched_task_group
479  *  - uclamp_update_active()	p->uclamp*
480  *
481  * p->state <- TASK_*:
482  *
483  *   is changed locklessly using set_current_state(), __set_current_state() or
484  *   set_special_state(), see their respective comments, or by
485  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
486  *   concurrent self.
487  *
488  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489  *
490  *   is set by activate_task() and cleared by deactivate_task(), under
491  *   rq->lock. Non-zero indicates the task is runnable, the special
492  *   ON_RQ_MIGRATING state is used for migration without holding both
493  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494  *
495  * p->on_cpu <- { 0, 1 }:
496  *
497  *   is set by prepare_task() and cleared by finish_task() such that it will be
498  *   set before p is scheduled-in and cleared after p is scheduled-out, both
499  *   under rq->lock. Non-zero indicates the task is running on its CPU.
500  *
501  *   [ The astute reader will observe that it is possible for two tasks on one
502  *     CPU to have ->on_cpu = 1 at the same time. ]
503  *
504  * task_cpu(p): is changed by set_task_cpu(), the rules are:
505  *
506  *  - Don't call set_task_cpu() on a blocked task:
507  *
508  *    We don't care what CPU we're not running on, this simplifies hotplug,
509  *    the CPU assignment of blocked tasks isn't required to be valid.
510  *
511  *  - for try_to_wake_up(), called under p->pi_lock:
512  *
513  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
514  *
515  *  - for migration called under rq->lock:
516  *    [ see task_on_rq_migrating() in task_rq_lock() ]
517  *
518  *    o move_queued_task()
519  *    o detach_task()
520  *
521  *  - for migration called under double_rq_lock():
522  *
523  *    o __migrate_swap_task()
524  *    o push_rt_task() / pull_rt_task()
525  *    o push_dl_task() / pull_dl_task()
526  *    o dl_task_offline_migration()
527  *
528  */
529 
530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531 {
532 	raw_spinlock_t *lock;
533 
534 	/* Matches synchronize_rcu() in __sched_core_enable() */
535 	preempt_disable();
536 	if (sched_core_disabled()) {
537 		raw_spin_lock_nested(&rq->__lock, subclass);
538 		/* preempt_count *MUST* be > 1 */
539 		preempt_enable_no_resched();
540 		return;
541 	}
542 
543 	for (;;) {
544 		lock = __rq_lockp(rq);
545 		raw_spin_lock_nested(lock, subclass);
546 		if (likely(lock == __rq_lockp(rq))) {
547 			/* preempt_count *MUST* be > 1 */
548 			preempt_enable_no_resched();
549 			return;
550 		}
551 		raw_spin_unlock(lock);
552 	}
553 }
554 
555 bool raw_spin_rq_trylock(struct rq *rq)
556 {
557 	raw_spinlock_t *lock;
558 	bool ret;
559 
560 	/* Matches synchronize_rcu() in __sched_core_enable() */
561 	preempt_disable();
562 	if (sched_core_disabled()) {
563 		ret = raw_spin_trylock(&rq->__lock);
564 		preempt_enable();
565 		return ret;
566 	}
567 
568 	for (;;) {
569 		lock = __rq_lockp(rq);
570 		ret = raw_spin_trylock(lock);
571 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
572 			preempt_enable();
573 			return ret;
574 		}
575 		raw_spin_unlock(lock);
576 	}
577 }
578 
579 void raw_spin_rq_unlock(struct rq *rq)
580 {
581 	raw_spin_unlock(rq_lockp(rq));
582 }
583 
584 #ifdef CONFIG_SMP
585 /*
586  * double_rq_lock - safely lock two runqueues
587  */
588 void double_rq_lock(struct rq *rq1, struct rq *rq2)
589 {
590 	lockdep_assert_irqs_disabled();
591 
592 	if (rq_order_less(rq2, rq1))
593 		swap(rq1, rq2);
594 
595 	raw_spin_rq_lock(rq1);
596 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
598 
599 	double_rq_clock_clear_update(rq1, rq2);
600 }
601 #endif
602 
603 /*
604  * __task_rq_lock - lock the rq @p resides on.
605  */
606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
607 	__acquires(rq->lock)
608 {
609 	struct rq *rq;
610 
611 	lockdep_assert_held(&p->pi_lock);
612 
613 	for (;;) {
614 		rq = task_rq(p);
615 		raw_spin_rq_lock(rq);
616 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
617 			rq_pin_lock(rq, rf);
618 			return rq;
619 		}
620 		raw_spin_rq_unlock(rq);
621 
622 		while (unlikely(task_on_rq_migrating(p)))
623 			cpu_relax();
624 	}
625 }
626 
627 /*
628  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629  */
630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
631 	__acquires(p->pi_lock)
632 	__acquires(rq->lock)
633 {
634 	struct rq *rq;
635 
636 	for (;;) {
637 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
638 		rq = task_rq(p);
639 		raw_spin_rq_lock(rq);
640 		/*
641 		 *	move_queued_task()		task_rq_lock()
642 		 *
643 		 *	ACQUIRE (rq->lock)
644 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
645 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
646 		 *	[S] ->cpu = new_cpu		[L] task_rq()
647 		 *					[L] ->on_rq
648 		 *	RELEASE (rq->lock)
649 		 *
650 		 * If we observe the old CPU in task_rq_lock(), the acquire of
651 		 * the old rq->lock will fully serialize against the stores.
652 		 *
653 		 * If we observe the new CPU in task_rq_lock(), the address
654 		 * dependency headed by '[L] rq = task_rq()' and the acquire
655 		 * will pair with the WMB to ensure we then also see migrating.
656 		 */
657 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
658 			rq_pin_lock(rq, rf);
659 			return rq;
660 		}
661 		raw_spin_rq_unlock(rq);
662 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
663 
664 		while (unlikely(task_on_rq_migrating(p)))
665 			cpu_relax();
666 	}
667 }
668 
669 /*
670  * RQ-clock updating methods:
671  */
672 
673 static void update_rq_clock_task(struct rq *rq, s64 delta)
674 {
675 /*
676  * In theory, the compile should just see 0 here, and optimize out the call
677  * to sched_rt_avg_update. But I don't trust it...
678  */
679 	s64 __maybe_unused steal = 0, irq_delta = 0;
680 
681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683 
684 	/*
685 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 	 * this case when a previous update_rq_clock() happened inside a
687 	 * {soft,}irq region.
688 	 *
689 	 * When this happens, we stop ->clock_task and only update the
690 	 * prev_irq_time stamp to account for the part that fit, so that a next
691 	 * update will consume the rest. This ensures ->clock_task is
692 	 * monotonic.
693 	 *
694 	 * It does however cause some slight miss-attribution of {soft,}irq
695 	 * time, a more accurate solution would be to update the irq_time using
696 	 * the current rq->clock timestamp, except that would require using
697 	 * atomic ops.
698 	 */
699 	if (irq_delta > delta)
700 		irq_delta = delta;
701 
702 	rq->prev_irq_time += irq_delta;
703 	delta -= irq_delta;
704 	psi_account_irqtime(rq->curr, irq_delta);
705 #endif
706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
707 	if (static_key_false((&paravirt_steal_rq_enabled))) {
708 		steal = paravirt_steal_clock(cpu_of(rq));
709 		steal -= rq->prev_steal_time_rq;
710 
711 		if (unlikely(steal > delta))
712 			steal = delta;
713 
714 		rq->prev_steal_time_rq += steal;
715 		delta -= steal;
716 	}
717 #endif
718 
719 	rq->clock_task += delta;
720 
721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
722 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
723 		update_irq_load_avg(rq, irq_delta + steal);
724 #endif
725 	update_rq_clock_pelt(rq, delta);
726 }
727 
728 void update_rq_clock(struct rq *rq)
729 {
730 	s64 delta;
731 
732 	lockdep_assert_rq_held(rq);
733 
734 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
735 		return;
736 
737 #ifdef CONFIG_SCHED_DEBUG
738 	if (sched_feat(WARN_DOUBLE_CLOCK))
739 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
740 	rq->clock_update_flags |= RQCF_UPDATED;
741 #endif
742 
743 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
744 	if (delta < 0)
745 		return;
746 	rq->clock += delta;
747 	update_rq_clock_task(rq, delta);
748 }
749 
750 #ifdef CONFIG_SCHED_HRTICK
751 /*
752  * Use HR-timers to deliver accurate preemption points.
753  */
754 
755 static void hrtick_clear(struct rq *rq)
756 {
757 	if (hrtimer_active(&rq->hrtick_timer))
758 		hrtimer_cancel(&rq->hrtick_timer);
759 }
760 
761 /*
762  * High-resolution timer tick.
763  * Runs from hardirq context with interrupts disabled.
764  */
765 static enum hrtimer_restart hrtick(struct hrtimer *timer)
766 {
767 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
768 	struct rq_flags rf;
769 
770 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
771 
772 	rq_lock(rq, &rf);
773 	update_rq_clock(rq);
774 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
775 	rq_unlock(rq, &rf);
776 
777 	return HRTIMER_NORESTART;
778 }
779 
780 #ifdef CONFIG_SMP
781 
782 static void __hrtick_restart(struct rq *rq)
783 {
784 	struct hrtimer *timer = &rq->hrtick_timer;
785 	ktime_t time = rq->hrtick_time;
786 
787 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
788 }
789 
790 /*
791  * called from hardirq (IPI) context
792  */
793 static void __hrtick_start(void *arg)
794 {
795 	struct rq *rq = arg;
796 	struct rq_flags rf;
797 
798 	rq_lock(rq, &rf);
799 	__hrtick_restart(rq);
800 	rq_unlock(rq, &rf);
801 }
802 
803 /*
804  * Called to set the hrtick timer state.
805  *
806  * called with rq->lock held and irqs disabled
807  */
808 void hrtick_start(struct rq *rq, u64 delay)
809 {
810 	struct hrtimer *timer = &rq->hrtick_timer;
811 	s64 delta;
812 
813 	/*
814 	 * Don't schedule slices shorter than 10000ns, that just
815 	 * doesn't make sense and can cause timer DoS.
816 	 */
817 	delta = max_t(s64, delay, 10000LL);
818 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
819 
820 	if (rq == this_rq())
821 		__hrtick_restart(rq);
822 	else
823 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
824 }
825 
826 #else
827 /*
828  * Called to set the hrtick timer state.
829  *
830  * called with rq->lock held and irqs disabled
831  */
832 void hrtick_start(struct rq *rq, u64 delay)
833 {
834 	/*
835 	 * Don't schedule slices shorter than 10000ns, that just
836 	 * doesn't make sense. Rely on vruntime for fairness.
837 	 */
838 	delay = max_t(u64, delay, 10000LL);
839 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
840 		      HRTIMER_MODE_REL_PINNED_HARD);
841 }
842 
843 #endif /* CONFIG_SMP */
844 
845 static void hrtick_rq_init(struct rq *rq)
846 {
847 #ifdef CONFIG_SMP
848 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
849 #endif
850 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
851 	rq->hrtick_timer.function = hrtick;
852 }
853 #else	/* CONFIG_SCHED_HRTICK */
854 static inline void hrtick_clear(struct rq *rq)
855 {
856 }
857 
858 static inline void hrtick_rq_init(struct rq *rq)
859 {
860 }
861 #endif	/* CONFIG_SCHED_HRTICK */
862 
863 /*
864  * cmpxchg based fetch_or, macro so it works for different integer types
865  */
866 #define fetch_or(ptr, mask)						\
867 	({								\
868 		typeof(ptr) _ptr = (ptr);				\
869 		typeof(mask) _mask = (mask);				\
870 		typeof(*_ptr) _val = *_ptr;				\
871 									\
872 		do {							\
873 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
874 	_val;								\
875 })
876 
877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
878 /*
879  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
880  * this avoids any races wrt polling state changes and thereby avoids
881  * spurious IPIs.
882  */
883 static inline bool set_nr_and_not_polling(struct task_struct *p)
884 {
885 	struct thread_info *ti = task_thread_info(p);
886 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
887 }
888 
889 /*
890  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
891  *
892  * If this returns true, then the idle task promises to call
893  * sched_ttwu_pending() and reschedule soon.
894  */
895 static bool set_nr_if_polling(struct task_struct *p)
896 {
897 	struct thread_info *ti = task_thread_info(p);
898 	typeof(ti->flags) val = READ_ONCE(ti->flags);
899 
900 	for (;;) {
901 		if (!(val & _TIF_POLLING_NRFLAG))
902 			return false;
903 		if (val & _TIF_NEED_RESCHED)
904 			return true;
905 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
906 			break;
907 	}
908 	return true;
909 }
910 
911 #else
912 static inline bool set_nr_and_not_polling(struct task_struct *p)
913 {
914 	set_tsk_need_resched(p);
915 	return true;
916 }
917 
918 #ifdef CONFIG_SMP
919 static inline bool set_nr_if_polling(struct task_struct *p)
920 {
921 	return false;
922 }
923 #endif
924 #endif
925 
926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
927 {
928 	struct wake_q_node *node = &task->wake_q;
929 
930 	/*
931 	 * Atomically grab the task, if ->wake_q is !nil already it means
932 	 * it's already queued (either by us or someone else) and will get the
933 	 * wakeup due to that.
934 	 *
935 	 * In order to ensure that a pending wakeup will observe our pending
936 	 * state, even in the failed case, an explicit smp_mb() must be used.
937 	 */
938 	smp_mb__before_atomic();
939 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
940 		return false;
941 
942 	/*
943 	 * The head is context local, there can be no concurrency.
944 	 */
945 	*head->lastp = node;
946 	head->lastp = &node->next;
947 	return true;
948 }
949 
950 /**
951  * wake_q_add() - queue a wakeup for 'later' waking.
952  * @head: the wake_q_head to add @task to
953  * @task: the task to queue for 'later' wakeup
954  *
955  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
956  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
957  * instantly.
958  *
959  * This function must be used as-if it were wake_up_process(); IOW the task
960  * must be ready to be woken at this location.
961  */
962 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
963 {
964 	if (__wake_q_add(head, task))
965 		get_task_struct(task);
966 }
967 
968 /**
969  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
970  * @head: the wake_q_head to add @task to
971  * @task: the task to queue for 'later' wakeup
972  *
973  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
974  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
975  * instantly.
976  *
977  * This function must be used as-if it were wake_up_process(); IOW the task
978  * must be ready to be woken at this location.
979  *
980  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
981  * that already hold reference to @task can call the 'safe' version and trust
982  * wake_q to do the right thing depending whether or not the @task is already
983  * queued for wakeup.
984  */
985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
986 {
987 	if (!__wake_q_add(head, task))
988 		put_task_struct(task);
989 }
990 
991 void wake_up_q(struct wake_q_head *head)
992 {
993 	struct wake_q_node *node = head->first;
994 
995 	while (node != WAKE_Q_TAIL) {
996 		struct task_struct *task;
997 
998 		task = container_of(node, struct task_struct, wake_q);
999 		/* Task can safely be re-inserted now: */
1000 		node = node->next;
1001 		task->wake_q.next = NULL;
1002 
1003 		/*
1004 		 * wake_up_process() executes a full barrier, which pairs with
1005 		 * the queueing in wake_q_add() so as not to miss wakeups.
1006 		 */
1007 		wake_up_process(task);
1008 		put_task_struct(task);
1009 	}
1010 }
1011 
1012 /*
1013  * resched_curr - mark rq's current task 'to be rescheduled now'.
1014  *
1015  * On UP this means the setting of the need_resched flag, on SMP it
1016  * might also involve a cross-CPU call to trigger the scheduler on
1017  * the target CPU.
1018  */
1019 void resched_curr(struct rq *rq)
1020 {
1021 	struct task_struct *curr = rq->curr;
1022 	int cpu;
1023 
1024 	lockdep_assert_rq_held(rq);
1025 
1026 	if (test_tsk_need_resched(curr))
1027 		return;
1028 
1029 	cpu = cpu_of(rq);
1030 
1031 	if (cpu == smp_processor_id()) {
1032 		set_tsk_need_resched(curr);
1033 		set_preempt_need_resched();
1034 		return;
1035 	}
1036 
1037 	if (set_nr_and_not_polling(curr))
1038 		smp_send_reschedule(cpu);
1039 	else
1040 		trace_sched_wake_idle_without_ipi(cpu);
1041 }
1042 
1043 void resched_cpu(int cpu)
1044 {
1045 	struct rq *rq = cpu_rq(cpu);
1046 	unsigned long flags;
1047 
1048 	raw_spin_rq_lock_irqsave(rq, flags);
1049 	if (cpu_online(cpu) || cpu == smp_processor_id())
1050 		resched_curr(rq);
1051 	raw_spin_rq_unlock_irqrestore(rq, flags);
1052 }
1053 
1054 #ifdef CONFIG_SMP
1055 #ifdef CONFIG_NO_HZ_COMMON
1056 /*
1057  * In the semi idle case, use the nearest busy CPU for migrating timers
1058  * from an idle CPU.  This is good for power-savings.
1059  *
1060  * We don't do similar optimization for completely idle system, as
1061  * selecting an idle CPU will add more delays to the timers than intended
1062  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1063  */
1064 int get_nohz_timer_target(void)
1065 {
1066 	int i, cpu = smp_processor_id(), default_cpu = -1;
1067 	struct sched_domain *sd;
1068 	const struct cpumask *hk_mask;
1069 
1070 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1071 		if (!idle_cpu(cpu))
1072 			return cpu;
1073 		default_cpu = cpu;
1074 	}
1075 
1076 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1077 
1078 	rcu_read_lock();
1079 	for_each_domain(cpu, sd) {
1080 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1081 			if (cpu == i)
1082 				continue;
1083 
1084 			if (!idle_cpu(i)) {
1085 				cpu = i;
1086 				goto unlock;
1087 			}
1088 		}
1089 	}
1090 
1091 	if (default_cpu == -1)
1092 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1093 	cpu = default_cpu;
1094 unlock:
1095 	rcu_read_unlock();
1096 	return cpu;
1097 }
1098 
1099 /*
1100  * When add_timer_on() enqueues a timer into the timer wheel of an
1101  * idle CPU then this timer might expire before the next timer event
1102  * which is scheduled to wake up that CPU. In case of a completely
1103  * idle system the next event might even be infinite time into the
1104  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1105  * leaves the inner idle loop so the newly added timer is taken into
1106  * account when the CPU goes back to idle and evaluates the timer
1107  * wheel for the next timer event.
1108  */
1109 static void wake_up_idle_cpu(int cpu)
1110 {
1111 	struct rq *rq = cpu_rq(cpu);
1112 
1113 	if (cpu == smp_processor_id())
1114 		return;
1115 
1116 	if (set_nr_and_not_polling(rq->idle))
1117 		smp_send_reschedule(cpu);
1118 	else
1119 		trace_sched_wake_idle_without_ipi(cpu);
1120 }
1121 
1122 static bool wake_up_full_nohz_cpu(int cpu)
1123 {
1124 	/*
1125 	 * We just need the target to call irq_exit() and re-evaluate
1126 	 * the next tick. The nohz full kick at least implies that.
1127 	 * If needed we can still optimize that later with an
1128 	 * empty IRQ.
1129 	 */
1130 	if (cpu_is_offline(cpu))
1131 		return true;  /* Don't try to wake offline CPUs. */
1132 	if (tick_nohz_full_cpu(cpu)) {
1133 		if (cpu != smp_processor_id() ||
1134 		    tick_nohz_tick_stopped())
1135 			tick_nohz_full_kick_cpu(cpu);
1136 		return true;
1137 	}
1138 
1139 	return false;
1140 }
1141 
1142 /*
1143  * Wake up the specified CPU.  If the CPU is going offline, it is the
1144  * caller's responsibility to deal with the lost wakeup, for example,
1145  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1146  */
1147 void wake_up_nohz_cpu(int cpu)
1148 {
1149 	if (!wake_up_full_nohz_cpu(cpu))
1150 		wake_up_idle_cpu(cpu);
1151 }
1152 
1153 static void nohz_csd_func(void *info)
1154 {
1155 	struct rq *rq = info;
1156 	int cpu = cpu_of(rq);
1157 	unsigned int flags;
1158 
1159 	/*
1160 	 * Release the rq::nohz_csd.
1161 	 */
1162 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1163 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1164 
1165 	rq->idle_balance = idle_cpu(cpu);
1166 	if (rq->idle_balance && !need_resched()) {
1167 		rq->nohz_idle_balance = flags;
1168 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1169 	}
1170 }
1171 
1172 #endif /* CONFIG_NO_HZ_COMMON */
1173 
1174 #ifdef CONFIG_NO_HZ_FULL
1175 bool sched_can_stop_tick(struct rq *rq)
1176 {
1177 	int fifo_nr_running;
1178 
1179 	/* Deadline tasks, even if single, need the tick */
1180 	if (rq->dl.dl_nr_running)
1181 		return false;
1182 
1183 	/*
1184 	 * If there are more than one RR tasks, we need the tick to affect the
1185 	 * actual RR behaviour.
1186 	 */
1187 	if (rq->rt.rr_nr_running) {
1188 		if (rq->rt.rr_nr_running == 1)
1189 			return true;
1190 		else
1191 			return false;
1192 	}
1193 
1194 	/*
1195 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1196 	 * forced preemption between FIFO tasks.
1197 	 */
1198 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1199 	if (fifo_nr_running)
1200 		return true;
1201 
1202 	/*
1203 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1204 	 * if there's more than one we need the tick for involuntary
1205 	 * preemption.
1206 	 */
1207 	if (rq->nr_running > 1)
1208 		return false;
1209 
1210 	return true;
1211 }
1212 #endif /* CONFIG_NO_HZ_FULL */
1213 #endif /* CONFIG_SMP */
1214 
1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1216 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1217 /*
1218  * Iterate task_group tree rooted at *from, calling @down when first entering a
1219  * node and @up when leaving it for the final time.
1220  *
1221  * Caller must hold rcu_lock or sufficient equivalent.
1222  */
1223 int walk_tg_tree_from(struct task_group *from,
1224 			     tg_visitor down, tg_visitor up, void *data)
1225 {
1226 	struct task_group *parent, *child;
1227 	int ret;
1228 
1229 	parent = from;
1230 
1231 down:
1232 	ret = (*down)(parent, data);
1233 	if (ret)
1234 		goto out;
1235 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1236 		parent = child;
1237 		goto down;
1238 
1239 up:
1240 		continue;
1241 	}
1242 	ret = (*up)(parent, data);
1243 	if (ret || parent == from)
1244 		goto out;
1245 
1246 	child = parent;
1247 	parent = parent->parent;
1248 	if (parent)
1249 		goto up;
1250 out:
1251 	return ret;
1252 }
1253 
1254 int tg_nop(struct task_group *tg, void *data)
1255 {
1256 	return 0;
1257 }
1258 #endif
1259 
1260 static void set_load_weight(struct task_struct *p, bool update_load)
1261 {
1262 	int prio = p->static_prio - MAX_RT_PRIO;
1263 	struct load_weight *load = &p->se.load;
1264 
1265 	/*
1266 	 * SCHED_IDLE tasks get minimal weight:
1267 	 */
1268 	if (task_has_idle_policy(p)) {
1269 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1270 		load->inv_weight = WMULT_IDLEPRIO;
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * SCHED_OTHER tasks have to update their load when changing their
1276 	 * weight
1277 	 */
1278 	if (update_load && p->sched_class == &fair_sched_class) {
1279 		reweight_task(p, prio);
1280 	} else {
1281 		load->weight = scale_load(sched_prio_to_weight[prio]);
1282 		load->inv_weight = sched_prio_to_wmult[prio];
1283 	}
1284 }
1285 
1286 #ifdef CONFIG_UCLAMP_TASK
1287 /*
1288  * Serializes updates of utilization clamp values
1289  *
1290  * The (slow-path) user-space triggers utilization clamp value updates which
1291  * can require updates on (fast-path) scheduler's data structures used to
1292  * support enqueue/dequeue operations.
1293  * While the per-CPU rq lock protects fast-path update operations, user-space
1294  * requests are serialized using a mutex to reduce the risk of conflicting
1295  * updates or API abuses.
1296  */
1297 static DEFINE_MUTEX(uclamp_mutex);
1298 
1299 /* Max allowed minimum utilization */
1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1301 
1302 /* Max allowed maximum utilization */
1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1304 
1305 /*
1306  * By default RT tasks run at the maximum performance point/capacity of the
1307  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1308  * SCHED_CAPACITY_SCALE.
1309  *
1310  * This knob allows admins to change the default behavior when uclamp is being
1311  * used. In battery powered devices, particularly, running at the maximum
1312  * capacity and frequency will increase energy consumption and shorten the
1313  * battery life.
1314  *
1315  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1316  *
1317  * This knob will not override the system default sched_util_clamp_min defined
1318  * above.
1319  */
1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1321 
1322 /* All clamps are required to be less or equal than these values */
1323 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1324 
1325 /*
1326  * This static key is used to reduce the uclamp overhead in the fast path. It
1327  * primarily disables the call to uclamp_rq_{inc, dec}() in
1328  * enqueue/dequeue_task().
1329  *
1330  * This allows users to continue to enable uclamp in their kernel config with
1331  * minimum uclamp overhead in the fast path.
1332  *
1333  * As soon as userspace modifies any of the uclamp knobs, the static key is
1334  * enabled, since we have an actual users that make use of uclamp
1335  * functionality.
1336  *
1337  * The knobs that would enable this static key are:
1338  *
1339  *   * A task modifying its uclamp value with sched_setattr().
1340  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1341  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1342  */
1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1344 
1345 /* Integer rounded range for each bucket */
1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1347 
1348 #define for_each_clamp_id(clamp_id) \
1349 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1350 
1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1352 {
1353 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1354 }
1355 
1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1357 {
1358 	if (clamp_id == UCLAMP_MIN)
1359 		return 0;
1360 	return SCHED_CAPACITY_SCALE;
1361 }
1362 
1363 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1364 				 unsigned int value, bool user_defined)
1365 {
1366 	uc_se->value = value;
1367 	uc_se->bucket_id = uclamp_bucket_id(value);
1368 	uc_se->user_defined = user_defined;
1369 }
1370 
1371 static inline unsigned int
1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1373 		  unsigned int clamp_value)
1374 {
1375 	/*
1376 	 * Avoid blocked utilization pushing up the frequency when we go
1377 	 * idle (which drops the max-clamp) by retaining the last known
1378 	 * max-clamp.
1379 	 */
1380 	if (clamp_id == UCLAMP_MAX) {
1381 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1382 		return clamp_value;
1383 	}
1384 
1385 	return uclamp_none(UCLAMP_MIN);
1386 }
1387 
1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1389 				     unsigned int clamp_value)
1390 {
1391 	/* Reset max-clamp retention only on idle exit */
1392 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1393 		return;
1394 
1395 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1396 }
1397 
1398 static inline
1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1400 				   unsigned int clamp_value)
1401 {
1402 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1403 	int bucket_id = UCLAMP_BUCKETS - 1;
1404 
1405 	/*
1406 	 * Since both min and max clamps are max aggregated, find the
1407 	 * top most bucket with tasks in.
1408 	 */
1409 	for ( ; bucket_id >= 0; bucket_id--) {
1410 		if (!bucket[bucket_id].tasks)
1411 			continue;
1412 		return bucket[bucket_id].value;
1413 	}
1414 
1415 	/* No tasks -- default clamp values */
1416 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1417 }
1418 
1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1420 {
1421 	unsigned int default_util_min;
1422 	struct uclamp_se *uc_se;
1423 
1424 	lockdep_assert_held(&p->pi_lock);
1425 
1426 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1427 
1428 	/* Only sync if user didn't override the default */
1429 	if (uc_se->user_defined)
1430 		return;
1431 
1432 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1433 	uclamp_se_set(uc_se, default_util_min, false);
1434 }
1435 
1436 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1437 {
1438 	struct rq_flags rf;
1439 	struct rq *rq;
1440 
1441 	if (!rt_task(p))
1442 		return;
1443 
1444 	/* Protect updates to p->uclamp_* */
1445 	rq = task_rq_lock(p, &rf);
1446 	__uclamp_update_util_min_rt_default(p);
1447 	task_rq_unlock(rq, p, &rf);
1448 }
1449 
1450 static inline struct uclamp_se
1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1452 {
1453 	/* Copy by value as we could modify it */
1454 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1455 #ifdef CONFIG_UCLAMP_TASK_GROUP
1456 	unsigned int tg_min, tg_max, value;
1457 
1458 	/*
1459 	 * Tasks in autogroups or root task group will be
1460 	 * restricted by system defaults.
1461 	 */
1462 	if (task_group_is_autogroup(task_group(p)))
1463 		return uc_req;
1464 	if (task_group(p) == &root_task_group)
1465 		return uc_req;
1466 
1467 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1468 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1469 	value = uc_req.value;
1470 	value = clamp(value, tg_min, tg_max);
1471 	uclamp_se_set(&uc_req, value, false);
1472 #endif
1473 
1474 	return uc_req;
1475 }
1476 
1477 /*
1478  * The effective clamp bucket index of a task depends on, by increasing
1479  * priority:
1480  * - the task specific clamp value, when explicitly requested from userspace
1481  * - the task group effective clamp value, for tasks not either in the root
1482  *   group or in an autogroup
1483  * - the system default clamp value, defined by the sysadmin
1484  */
1485 static inline struct uclamp_se
1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1487 {
1488 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1489 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1490 
1491 	/* System default restrictions always apply */
1492 	if (unlikely(uc_req.value > uc_max.value))
1493 		return uc_max;
1494 
1495 	return uc_req;
1496 }
1497 
1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1499 {
1500 	struct uclamp_se uc_eff;
1501 
1502 	/* Task currently refcounted: use back-annotated (effective) value */
1503 	if (p->uclamp[clamp_id].active)
1504 		return (unsigned long)p->uclamp[clamp_id].value;
1505 
1506 	uc_eff = uclamp_eff_get(p, clamp_id);
1507 
1508 	return (unsigned long)uc_eff.value;
1509 }
1510 
1511 /*
1512  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1513  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1514  * updates the rq's clamp value if required.
1515  *
1516  * Tasks can have a task-specific value requested from user-space, track
1517  * within each bucket the maximum value for tasks refcounted in it.
1518  * This "local max aggregation" allows to track the exact "requested" value
1519  * for each bucket when all its RUNNABLE tasks require the same clamp.
1520  */
1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1522 				    enum uclamp_id clamp_id)
1523 {
1524 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1525 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1526 	struct uclamp_bucket *bucket;
1527 
1528 	lockdep_assert_rq_held(rq);
1529 
1530 	/* Update task effective clamp */
1531 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1532 
1533 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1534 	bucket->tasks++;
1535 	uc_se->active = true;
1536 
1537 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1538 
1539 	/*
1540 	 * Local max aggregation: rq buckets always track the max
1541 	 * "requested" clamp value of its RUNNABLE tasks.
1542 	 */
1543 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1544 		bucket->value = uc_se->value;
1545 
1546 	if (uc_se->value > READ_ONCE(uc_rq->value))
1547 		WRITE_ONCE(uc_rq->value, uc_se->value);
1548 }
1549 
1550 /*
1551  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1552  * is released. If this is the last task reference counting the rq's max
1553  * active clamp value, then the rq's clamp value is updated.
1554  *
1555  * Both refcounted tasks and rq's cached clamp values are expected to be
1556  * always valid. If it's detected they are not, as defensive programming,
1557  * enforce the expected state and warn.
1558  */
1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1560 				    enum uclamp_id clamp_id)
1561 {
1562 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 	struct uclamp_bucket *bucket;
1565 	unsigned int bkt_clamp;
1566 	unsigned int rq_clamp;
1567 
1568 	lockdep_assert_rq_held(rq);
1569 
1570 	/*
1571 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1572 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1573 	 *
1574 	 * In this case the uc_se->active flag should be false since no uclamp
1575 	 * accounting was performed at enqueue time and we can just return
1576 	 * here.
1577 	 *
1578 	 * Need to be careful of the following enqueue/dequeue ordering
1579 	 * problem too
1580 	 *
1581 	 *	enqueue(taskA)
1582 	 *	// sched_uclamp_used gets enabled
1583 	 *	enqueue(taskB)
1584 	 *	dequeue(taskA)
1585 	 *	// Must not decrement bucket->tasks here
1586 	 *	dequeue(taskB)
1587 	 *
1588 	 * where we could end up with stale data in uc_se and
1589 	 * bucket[uc_se->bucket_id].
1590 	 *
1591 	 * The following check here eliminates the possibility of such race.
1592 	 */
1593 	if (unlikely(!uc_se->active))
1594 		return;
1595 
1596 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1597 
1598 	SCHED_WARN_ON(!bucket->tasks);
1599 	if (likely(bucket->tasks))
1600 		bucket->tasks--;
1601 
1602 	uc_se->active = false;
1603 
1604 	/*
1605 	 * Keep "local max aggregation" simple and accept to (possibly)
1606 	 * overboost some RUNNABLE tasks in the same bucket.
1607 	 * The rq clamp bucket value is reset to its base value whenever
1608 	 * there are no more RUNNABLE tasks refcounting it.
1609 	 */
1610 	if (likely(bucket->tasks))
1611 		return;
1612 
1613 	rq_clamp = READ_ONCE(uc_rq->value);
1614 	/*
1615 	 * Defensive programming: this should never happen. If it happens,
1616 	 * e.g. due to future modification, warn and fixup the expected value.
1617 	 */
1618 	SCHED_WARN_ON(bucket->value > rq_clamp);
1619 	if (bucket->value >= rq_clamp) {
1620 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1621 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1622 	}
1623 }
1624 
1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1626 {
1627 	enum uclamp_id clamp_id;
1628 
1629 	/*
1630 	 * Avoid any overhead until uclamp is actually used by the userspace.
1631 	 *
1632 	 * The condition is constructed such that a NOP is generated when
1633 	 * sched_uclamp_used is disabled.
1634 	 */
1635 	if (!static_branch_unlikely(&sched_uclamp_used))
1636 		return;
1637 
1638 	if (unlikely(!p->sched_class->uclamp_enabled))
1639 		return;
1640 
1641 	for_each_clamp_id(clamp_id)
1642 		uclamp_rq_inc_id(rq, p, clamp_id);
1643 
1644 	/* Reset clamp idle holding when there is one RUNNABLE task */
1645 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1646 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1647 }
1648 
1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1650 {
1651 	enum uclamp_id clamp_id;
1652 
1653 	/*
1654 	 * Avoid any overhead until uclamp is actually used by the userspace.
1655 	 *
1656 	 * The condition is constructed such that a NOP is generated when
1657 	 * sched_uclamp_used is disabled.
1658 	 */
1659 	if (!static_branch_unlikely(&sched_uclamp_used))
1660 		return;
1661 
1662 	if (unlikely(!p->sched_class->uclamp_enabled))
1663 		return;
1664 
1665 	for_each_clamp_id(clamp_id)
1666 		uclamp_rq_dec_id(rq, p, clamp_id);
1667 }
1668 
1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1670 				      enum uclamp_id clamp_id)
1671 {
1672 	if (!p->uclamp[clamp_id].active)
1673 		return;
1674 
1675 	uclamp_rq_dec_id(rq, p, clamp_id);
1676 	uclamp_rq_inc_id(rq, p, clamp_id);
1677 
1678 	/*
1679 	 * Make sure to clear the idle flag if we've transiently reached 0
1680 	 * active tasks on rq.
1681 	 */
1682 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1683 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1684 }
1685 
1686 static inline void
1687 uclamp_update_active(struct task_struct *p)
1688 {
1689 	enum uclamp_id clamp_id;
1690 	struct rq_flags rf;
1691 	struct rq *rq;
1692 
1693 	/*
1694 	 * Lock the task and the rq where the task is (or was) queued.
1695 	 *
1696 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1697 	 * price to pay to safely serialize util_{min,max} updates with
1698 	 * enqueues, dequeues and migration operations.
1699 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1700 	 */
1701 	rq = task_rq_lock(p, &rf);
1702 
1703 	/*
1704 	 * Setting the clamp bucket is serialized by task_rq_lock().
1705 	 * If the task is not yet RUNNABLE and its task_struct is not
1706 	 * affecting a valid clamp bucket, the next time it's enqueued,
1707 	 * it will already see the updated clamp bucket value.
1708 	 */
1709 	for_each_clamp_id(clamp_id)
1710 		uclamp_rq_reinc_id(rq, p, clamp_id);
1711 
1712 	task_rq_unlock(rq, p, &rf);
1713 }
1714 
1715 #ifdef CONFIG_UCLAMP_TASK_GROUP
1716 static inline void
1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1718 {
1719 	struct css_task_iter it;
1720 	struct task_struct *p;
1721 
1722 	css_task_iter_start(css, 0, &it);
1723 	while ((p = css_task_iter_next(&it)))
1724 		uclamp_update_active(p);
1725 	css_task_iter_end(&it);
1726 }
1727 
1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1729 #endif
1730 
1731 #ifdef CONFIG_SYSCTL
1732 #ifdef CONFIG_UCLAMP_TASK
1733 #ifdef CONFIG_UCLAMP_TASK_GROUP
1734 static void uclamp_update_root_tg(void)
1735 {
1736 	struct task_group *tg = &root_task_group;
1737 
1738 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1739 		      sysctl_sched_uclamp_util_min, false);
1740 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1741 		      sysctl_sched_uclamp_util_max, false);
1742 
1743 	rcu_read_lock();
1744 	cpu_util_update_eff(&root_task_group.css);
1745 	rcu_read_unlock();
1746 }
1747 #else
1748 static void uclamp_update_root_tg(void) { }
1749 #endif
1750 
1751 static void uclamp_sync_util_min_rt_default(void)
1752 {
1753 	struct task_struct *g, *p;
1754 
1755 	/*
1756 	 * copy_process()			sysctl_uclamp
1757 	 *					  uclamp_min_rt = X;
1758 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1759 	 *   // link thread			  smp_mb__after_spinlock()
1760 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1761 	 *   sched_post_fork()			  for_each_process_thread()
1762 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1763 	 *
1764 	 * Ensures that either sched_post_fork() will observe the new
1765 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1766 	 * task.
1767 	 */
1768 	read_lock(&tasklist_lock);
1769 	smp_mb__after_spinlock();
1770 	read_unlock(&tasklist_lock);
1771 
1772 	rcu_read_lock();
1773 	for_each_process_thread(g, p)
1774 		uclamp_update_util_min_rt_default(p);
1775 	rcu_read_unlock();
1776 }
1777 
1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1779 				void *buffer, size_t *lenp, loff_t *ppos)
1780 {
1781 	bool update_root_tg = false;
1782 	int old_min, old_max, old_min_rt;
1783 	int result;
1784 
1785 	mutex_lock(&uclamp_mutex);
1786 	old_min = sysctl_sched_uclamp_util_min;
1787 	old_max = sysctl_sched_uclamp_util_max;
1788 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1789 
1790 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1791 	if (result)
1792 		goto undo;
1793 	if (!write)
1794 		goto done;
1795 
1796 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1797 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1798 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1799 
1800 		result = -EINVAL;
1801 		goto undo;
1802 	}
1803 
1804 	if (old_min != sysctl_sched_uclamp_util_min) {
1805 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1806 			      sysctl_sched_uclamp_util_min, false);
1807 		update_root_tg = true;
1808 	}
1809 	if (old_max != sysctl_sched_uclamp_util_max) {
1810 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1811 			      sysctl_sched_uclamp_util_max, false);
1812 		update_root_tg = true;
1813 	}
1814 
1815 	if (update_root_tg) {
1816 		static_branch_enable(&sched_uclamp_used);
1817 		uclamp_update_root_tg();
1818 	}
1819 
1820 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1821 		static_branch_enable(&sched_uclamp_used);
1822 		uclamp_sync_util_min_rt_default();
1823 	}
1824 
1825 	/*
1826 	 * We update all RUNNABLE tasks only when task groups are in use.
1827 	 * Otherwise, keep it simple and do just a lazy update at each next
1828 	 * task enqueue time.
1829 	 */
1830 
1831 	goto done;
1832 
1833 undo:
1834 	sysctl_sched_uclamp_util_min = old_min;
1835 	sysctl_sched_uclamp_util_max = old_max;
1836 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1837 done:
1838 	mutex_unlock(&uclamp_mutex);
1839 
1840 	return result;
1841 }
1842 #endif
1843 #endif
1844 
1845 static int uclamp_validate(struct task_struct *p,
1846 			   const struct sched_attr *attr)
1847 {
1848 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1849 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1850 
1851 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1852 		util_min = attr->sched_util_min;
1853 
1854 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1855 			return -EINVAL;
1856 	}
1857 
1858 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1859 		util_max = attr->sched_util_max;
1860 
1861 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1862 			return -EINVAL;
1863 	}
1864 
1865 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1866 		return -EINVAL;
1867 
1868 	/*
1869 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1870 	 *
1871 	 * We need to do that here, because enabling static branches is a
1872 	 * blocking operation which obviously cannot be done while holding
1873 	 * scheduler locks.
1874 	 */
1875 	static_branch_enable(&sched_uclamp_used);
1876 
1877 	return 0;
1878 }
1879 
1880 static bool uclamp_reset(const struct sched_attr *attr,
1881 			 enum uclamp_id clamp_id,
1882 			 struct uclamp_se *uc_se)
1883 {
1884 	/* Reset on sched class change for a non user-defined clamp value. */
1885 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1886 	    !uc_se->user_defined)
1887 		return true;
1888 
1889 	/* Reset on sched_util_{min,max} == -1. */
1890 	if (clamp_id == UCLAMP_MIN &&
1891 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1892 	    attr->sched_util_min == -1) {
1893 		return true;
1894 	}
1895 
1896 	if (clamp_id == UCLAMP_MAX &&
1897 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1898 	    attr->sched_util_max == -1) {
1899 		return true;
1900 	}
1901 
1902 	return false;
1903 }
1904 
1905 static void __setscheduler_uclamp(struct task_struct *p,
1906 				  const struct sched_attr *attr)
1907 {
1908 	enum uclamp_id clamp_id;
1909 
1910 	for_each_clamp_id(clamp_id) {
1911 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1912 		unsigned int value;
1913 
1914 		if (!uclamp_reset(attr, clamp_id, uc_se))
1915 			continue;
1916 
1917 		/*
1918 		 * RT by default have a 100% boost value that could be modified
1919 		 * at runtime.
1920 		 */
1921 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1922 			value = sysctl_sched_uclamp_util_min_rt_default;
1923 		else
1924 			value = uclamp_none(clamp_id);
1925 
1926 		uclamp_se_set(uc_se, value, false);
1927 
1928 	}
1929 
1930 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1931 		return;
1932 
1933 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 	    attr->sched_util_min != -1) {
1935 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1936 			      attr->sched_util_min, true);
1937 	}
1938 
1939 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 	    attr->sched_util_max != -1) {
1941 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1942 			      attr->sched_util_max, true);
1943 	}
1944 }
1945 
1946 static void uclamp_fork(struct task_struct *p)
1947 {
1948 	enum uclamp_id clamp_id;
1949 
1950 	/*
1951 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 	 * as the task is still at its early fork stages.
1953 	 */
1954 	for_each_clamp_id(clamp_id)
1955 		p->uclamp[clamp_id].active = false;
1956 
1957 	if (likely(!p->sched_reset_on_fork))
1958 		return;
1959 
1960 	for_each_clamp_id(clamp_id) {
1961 		uclamp_se_set(&p->uclamp_req[clamp_id],
1962 			      uclamp_none(clamp_id), false);
1963 	}
1964 }
1965 
1966 static void uclamp_post_fork(struct task_struct *p)
1967 {
1968 	uclamp_update_util_min_rt_default(p);
1969 }
1970 
1971 static void __init init_uclamp_rq(struct rq *rq)
1972 {
1973 	enum uclamp_id clamp_id;
1974 	struct uclamp_rq *uc_rq = rq->uclamp;
1975 
1976 	for_each_clamp_id(clamp_id) {
1977 		uc_rq[clamp_id] = (struct uclamp_rq) {
1978 			.value = uclamp_none(clamp_id)
1979 		};
1980 	}
1981 
1982 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1983 }
1984 
1985 static void __init init_uclamp(void)
1986 {
1987 	struct uclamp_se uc_max = {};
1988 	enum uclamp_id clamp_id;
1989 	int cpu;
1990 
1991 	for_each_possible_cpu(cpu)
1992 		init_uclamp_rq(cpu_rq(cpu));
1993 
1994 	for_each_clamp_id(clamp_id) {
1995 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1996 			      uclamp_none(clamp_id), false);
1997 	}
1998 
1999 	/* System defaults allow max clamp values for both indexes */
2000 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2001 	for_each_clamp_id(clamp_id) {
2002 		uclamp_default[clamp_id] = uc_max;
2003 #ifdef CONFIG_UCLAMP_TASK_GROUP
2004 		root_task_group.uclamp_req[clamp_id] = uc_max;
2005 		root_task_group.uclamp[clamp_id] = uc_max;
2006 #endif
2007 	}
2008 }
2009 
2010 #else /* CONFIG_UCLAMP_TASK */
2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2013 static inline int uclamp_validate(struct task_struct *p,
2014 				  const struct sched_attr *attr)
2015 {
2016 	return -EOPNOTSUPP;
2017 }
2018 static void __setscheduler_uclamp(struct task_struct *p,
2019 				  const struct sched_attr *attr) { }
2020 static inline void uclamp_fork(struct task_struct *p) { }
2021 static inline void uclamp_post_fork(struct task_struct *p) { }
2022 static inline void init_uclamp(void) { }
2023 #endif /* CONFIG_UCLAMP_TASK */
2024 
2025 bool sched_task_on_rq(struct task_struct *p)
2026 {
2027 	return task_on_rq_queued(p);
2028 }
2029 
2030 unsigned long get_wchan(struct task_struct *p)
2031 {
2032 	unsigned long ip = 0;
2033 	unsigned int state;
2034 
2035 	if (!p || p == current)
2036 		return 0;
2037 
2038 	/* Only get wchan if task is blocked and we can keep it that way. */
2039 	raw_spin_lock_irq(&p->pi_lock);
2040 	state = READ_ONCE(p->__state);
2041 	smp_rmb(); /* see try_to_wake_up() */
2042 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2043 		ip = __get_wchan(p);
2044 	raw_spin_unlock_irq(&p->pi_lock);
2045 
2046 	return ip;
2047 }
2048 
2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2050 {
2051 	if (!(flags & ENQUEUE_NOCLOCK))
2052 		update_rq_clock(rq);
2053 
2054 	if (!(flags & ENQUEUE_RESTORE)) {
2055 		sched_info_enqueue(rq, p);
2056 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2057 	}
2058 
2059 	uclamp_rq_inc(rq, p);
2060 	p->sched_class->enqueue_task(rq, p, flags);
2061 
2062 	if (sched_core_enabled(rq))
2063 		sched_core_enqueue(rq, p);
2064 }
2065 
2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2067 {
2068 	if (sched_core_enabled(rq))
2069 		sched_core_dequeue(rq, p, flags);
2070 
2071 	if (!(flags & DEQUEUE_NOCLOCK))
2072 		update_rq_clock(rq);
2073 
2074 	if (!(flags & DEQUEUE_SAVE)) {
2075 		sched_info_dequeue(rq, p);
2076 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2077 	}
2078 
2079 	uclamp_rq_dec(rq, p);
2080 	p->sched_class->dequeue_task(rq, p, flags);
2081 }
2082 
2083 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2084 {
2085 	enqueue_task(rq, p, flags);
2086 
2087 	p->on_rq = TASK_ON_RQ_QUEUED;
2088 }
2089 
2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2093 
2094 	dequeue_task(rq, p, flags);
2095 }
2096 
2097 static inline int __normal_prio(int policy, int rt_prio, int nice)
2098 {
2099 	int prio;
2100 
2101 	if (dl_policy(policy))
2102 		prio = MAX_DL_PRIO - 1;
2103 	else if (rt_policy(policy))
2104 		prio = MAX_RT_PRIO - 1 - rt_prio;
2105 	else
2106 		prio = NICE_TO_PRIO(nice);
2107 
2108 	return prio;
2109 }
2110 
2111 /*
2112  * Calculate the expected normal priority: i.e. priority
2113  * without taking RT-inheritance into account. Might be
2114  * boosted by interactivity modifiers. Changes upon fork,
2115  * setprio syscalls, and whenever the interactivity
2116  * estimator recalculates.
2117  */
2118 static inline int normal_prio(struct task_struct *p)
2119 {
2120 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2121 }
2122 
2123 /*
2124  * Calculate the current priority, i.e. the priority
2125  * taken into account by the scheduler. This value might
2126  * be boosted by RT tasks, or might be boosted by
2127  * interactivity modifiers. Will be RT if the task got
2128  * RT-boosted. If not then it returns p->normal_prio.
2129  */
2130 static int effective_prio(struct task_struct *p)
2131 {
2132 	p->normal_prio = normal_prio(p);
2133 	/*
2134 	 * If we are RT tasks or we were boosted to RT priority,
2135 	 * keep the priority unchanged. Otherwise, update priority
2136 	 * to the normal priority:
2137 	 */
2138 	if (!rt_prio(p->prio))
2139 		return p->normal_prio;
2140 	return p->prio;
2141 }
2142 
2143 /**
2144  * task_curr - is this task currently executing on a CPU?
2145  * @p: the task in question.
2146  *
2147  * Return: 1 if the task is currently executing. 0 otherwise.
2148  */
2149 inline int task_curr(const struct task_struct *p)
2150 {
2151 	return cpu_curr(task_cpu(p)) == p;
2152 }
2153 
2154 /*
2155  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2156  * use the balance_callback list if you want balancing.
2157  *
2158  * this means any call to check_class_changed() must be followed by a call to
2159  * balance_callback().
2160  */
2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2162 				       const struct sched_class *prev_class,
2163 				       int oldprio)
2164 {
2165 	if (prev_class != p->sched_class) {
2166 		if (prev_class->switched_from)
2167 			prev_class->switched_from(rq, p);
2168 
2169 		p->sched_class->switched_to(rq, p);
2170 	} else if (oldprio != p->prio || dl_task(p))
2171 		p->sched_class->prio_changed(rq, p, oldprio);
2172 }
2173 
2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2175 {
2176 	if (p->sched_class == rq->curr->sched_class)
2177 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2178 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2179 		resched_curr(rq);
2180 
2181 	/*
2182 	 * A queue event has occurred, and we're going to schedule.  In
2183 	 * this case, we can save a useless back to back clock update.
2184 	 */
2185 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2186 		rq_clock_skip_update(rq);
2187 }
2188 
2189 #ifdef CONFIG_SMP
2190 
2191 static void
2192 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2193 
2194 static int __set_cpus_allowed_ptr(struct task_struct *p,
2195 				  const struct cpumask *new_mask,
2196 				  u32 flags);
2197 
2198 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2199 {
2200 	if (likely(!p->migration_disabled))
2201 		return;
2202 
2203 	if (p->cpus_ptr != &p->cpus_mask)
2204 		return;
2205 
2206 	/*
2207 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2208 	 */
2209 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2210 }
2211 
2212 void migrate_disable(void)
2213 {
2214 	struct task_struct *p = current;
2215 
2216 	if (p->migration_disabled) {
2217 		p->migration_disabled++;
2218 		return;
2219 	}
2220 
2221 	preempt_disable();
2222 	this_rq()->nr_pinned++;
2223 	p->migration_disabled = 1;
2224 	preempt_enable();
2225 }
2226 EXPORT_SYMBOL_GPL(migrate_disable);
2227 
2228 void migrate_enable(void)
2229 {
2230 	struct task_struct *p = current;
2231 
2232 	if (p->migration_disabled > 1) {
2233 		p->migration_disabled--;
2234 		return;
2235 	}
2236 
2237 	if (WARN_ON_ONCE(!p->migration_disabled))
2238 		return;
2239 
2240 	/*
2241 	 * Ensure stop_task runs either before or after this, and that
2242 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2243 	 */
2244 	preempt_disable();
2245 	if (p->cpus_ptr != &p->cpus_mask)
2246 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2247 	/*
2248 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2249 	 * regular cpus_mask, otherwise things that race (eg.
2250 	 * select_fallback_rq) get confused.
2251 	 */
2252 	barrier();
2253 	p->migration_disabled = 0;
2254 	this_rq()->nr_pinned--;
2255 	preempt_enable();
2256 }
2257 EXPORT_SYMBOL_GPL(migrate_enable);
2258 
2259 static inline bool rq_has_pinned_tasks(struct rq *rq)
2260 {
2261 	return rq->nr_pinned;
2262 }
2263 
2264 /*
2265  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2266  * __set_cpus_allowed_ptr() and select_fallback_rq().
2267  */
2268 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2269 {
2270 	/* When not in the task's cpumask, no point in looking further. */
2271 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2272 		return false;
2273 
2274 	/* migrate_disabled() must be allowed to finish. */
2275 	if (is_migration_disabled(p))
2276 		return cpu_online(cpu);
2277 
2278 	/* Non kernel threads are not allowed during either online or offline. */
2279 	if (!(p->flags & PF_KTHREAD))
2280 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2281 
2282 	/* KTHREAD_IS_PER_CPU is always allowed. */
2283 	if (kthread_is_per_cpu(p))
2284 		return cpu_online(cpu);
2285 
2286 	/* Regular kernel threads don't get to stay during offline. */
2287 	if (cpu_dying(cpu))
2288 		return false;
2289 
2290 	/* But are allowed during online. */
2291 	return cpu_online(cpu);
2292 }
2293 
2294 /*
2295  * This is how migration works:
2296  *
2297  * 1) we invoke migration_cpu_stop() on the target CPU using
2298  *    stop_one_cpu().
2299  * 2) stopper starts to run (implicitly forcing the migrated thread
2300  *    off the CPU)
2301  * 3) it checks whether the migrated task is still in the wrong runqueue.
2302  * 4) if it's in the wrong runqueue then the migration thread removes
2303  *    it and puts it into the right queue.
2304  * 5) stopper completes and stop_one_cpu() returns and the migration
2305  *    is done.
2306  */
2307 
2308 /*
2309  * move_queued_task - move a queued task to new rq.
2310  *
2311  * Returns (locked) new rq. Old rq's lock is released.
2312  */
2313 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2314 				   struct task_struct *p, int new_cpu)
2315 {
2316 	lockdep_assert_rq_held(rq);
2317 
2318 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2319 	set_task_cpu(p, new_cpu);
2320 	rq_unlock(rq, rf);
2321 
2322 	rq = cpu_rq(new_cpu);
2323 
2324 	rq_lock(rq, rf);
2325 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2326 	activate_task(rq, p, 0);
2327 	check_preempt_curr(rq, p, 0);
2328 
2329 	return rq;
2330 }
2331 
2332 struct migration_arg {
2333 	struct task_struct		*task;
2334 	int				dest_cpu;
2335 	struct set_affinity_pending	*pending;
2336 };
2337 
2338 /*
2339  * @refs: number of wait_for_completion()
2340  * @stop_pending: is @stop_work in use
2341  */
2342 struct set_affinity_pending {
2343 	refcount_t		refs;
2344 	unsigned int		stop_pending;
2345 	struct completion	done;
2346 	struct cpu_stop_work	stop_work;
2347 	struct migration_arg	arg;
2348 };
2349 
2350 /*
2351  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2352  * this because either it can't run here any more (set_cpus_allowed()
2353  * away from this CPU, or CPU going down), or because we're
2354  * attempting to rebalance this task on exec (sched_exec).
2355  *
2356  * So we race with normal scheduler movements, but that's OK, as long
2357  * as the task is no longer on this CPU.
2358  */
2359 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2360 				 struct task_struct *p, int dest_cpu)
2361 {
2362 	/* Affinity changed (again). */
2363 	if (!is_cpu_allowed(p, dest_cpu))
2364 		return rq;
2365 
2366 	update_rq_clock(rq);
2367 	rq = move_queued_task(rq, rf, p, dest_cpu);
2368 
2369 	return rq;
2370 }
2371 
2372 /*
2373  * migration_cpu_stop - this will be executed by a highprio stopper thread
2374  * and performs thread migration by bumping thread off CPU then
2375  * 'pushing' onto another runqueue.
2376  */
2377 static int migration_cpu_stop(void *data)
2378 {
2379 	struct migration_arg *arg = data;
2380 	struct set_affinity_pending *pending = arg->pending;
2381 	struct task_struct *p = arg->task;
2382 	struct rq *rq = this_rq();
2383 	bool complete = false;
2384 	struct rq_flags rf;
2385 
2386 	/*
2387 	 * The original target CPU might have gone down and we might
2388 	 * be on another CPU but it doesn't matter.
2389 	 */
2390 	local_irq_save(rf.flags);
2391 	/*
2392 	 * We need to explicitly wake pending tasks before running
2393 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2394 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2395 	 */
2396 	flush_smp_call_function_queue();
2397 
2398 	raw_spin_lock(&p->pi_lock);
2399 	rq_lock(rq, &rf);
2400 
2401 	/*
2402 	 * If we were passed a pending, then ->stop_pending was set, thus
2403 	 * p->migration_pending must have remained stable.
2404 	 */
2405 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2406 
2407 	/*
2408 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2409 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2410 	 * we're holding p->pi_lock.
2411 	 */
2412 	if (task_rq(p) == rq) {
2413 		if (is_migration_disabled(p))
2414 			goto out;
2415 
2416 		if (pending) {
2417 			p->migration_pending = NULL;
2418 			complete = true;
2419 
2420 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2421 				goto out;
2422 		}
2423 
2424 		if (task_on_rq_queued(p))
2425 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2426 		else
2427 			p->wake_cpu = arg->dest_cpu;
2428 
2429 		/*
2430 		 * XXX __migrate_task() can fail, at which point we might end
2431 		 * up running on a dodgy CPU, AFAICT this can only happen
2432 		 * during CPU hotplug, at which point we'll get pushed out
2433 		 * anyway, so it's probably not a big deal.
2434 		 */
2435 
2436 	} else if (pending) {
2437 		/*
2438 		 * This happens when we get migrated between migrate_enable()'s
2439 		 * preempt_enable() and scheduling the stopper task. At that
2440 		 * point we're a regular task again and not current anymore.
2441 		 *
2442 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2443 		 * more likely.
2444 		 */
2445 
2446 		/*
2447 		 * The task moved before the stopper got to run. We're holding
2448 		 * ->pi_lock, so the allowed mask is stable - if it got
2449 		 * somewhere allowed, we're done.
2450 		 */
2451 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2452 			p->migration_pending = NULL;
2453 			complete = true;
2454 			goto out;
2455 		}
2456 
2457 		/*
2458 		 * When migrate_enable() hits a rq mis-match we can't reliably
2459 		 * determine is_migration_disabled() and so have to chase after
2460 		 * it.
2461 		 */
2462 		WARN_ON_ONCE(!pending->stop_pending);
2463 		task_rq_unlock(rq, p, &rf);
2464 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2465 				    &pending->arg, &pending->stop_work);
2466 		return 0;
2467 	}
2468 out:
2469 	if (pending)
2470 		pending->stop_pending = false;
2471 	task_rq_unlock(rq, p, &rf);
2472 
2473 	if (complete)
2474 		complete_all(&pending->done);
2475 
2476 	return 0;
2477 }
2478 
2479 int push_cpu_stop(void *arg)
2480 {
2481 	struct rq *lowest_rq = NULL, *rq = this_rq();
2482 	struct task_struct *p = arg;
2483 
2484 	raw_spin_lock_irq(&p->pi_lock);
2485 	raw_spin_rq_lock(rq);
2486 
2487 	if (task_rq(p) != rq)
2488 		goto out_unlock;
2489 
2490 	if (is_migration_disabled(p)) {
2491 		p->migration_flags |= MDF_PUSH;
2492 		goto out_unlock;
2493 	}
2494 
2495 	p->migration_flags &= ~MDF_PUSH;
2496 
2497 	if (p->sched_class->find_lock_rq)
2498 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2499 
2500 	if (!lowest_rq)
2501 		goto out_unlock;
2502 
2503 	// XXX validate p is still the highest prio task
2504 	if (task_rq(p) == rq) {
2505 		deactivate_task(rq, p, 0);
2506 		set_task_cpu(p, lowest_rq->cpu);
2507 		activate_task(lowest_rq, p, 0);
2508 		resched_curr(lowest_rq);
2509 	}
2510 
2511 	double_unlock_balance(rq, lowest_rq);
2512 
2513 out_unlock:
2514 	rq->push_busy = false;
2515 	raw_spin_rq_unlock(rq);
2516 	raw_spin_unlock_irq(&p->pi_lock);
2517 
2518 	put_task_struct(p);
2519 	return 0;
2520 }
2521 
2522 /*
2523  * sched_class::set_cpus_allowed must do the below, but is not required to
2524  * actually call this function.
2525  */
2526 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2527 {
2528 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2529 		p->cpus_ptr = new_mask;
2530 		return;
2531 	}
2532 
2533 	cpumask_copy(&p->cpus_mask, new_mask);
2534 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2535 }
2536 
2537 static void
2538 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2539 {
2540 	struct rq *rq = task_rq(p);
2541 	bool queued, running;
2542 
2543 	/*
2544 	 * This here violates the locking rules for affinity, since we're only
2545 	 * supposed to change these variables while holding both rq->lock and
2546 	 * p->pi_lock.
2547 	 *
2548 	 * HOWEVER, it magically works, because ttwu() is the only code that
2549 	 * accesses these variables under p->pi_lock and only does so after
2550 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2551 	 * before finish_task().
2552 	 *
2553 	 * XXX do further audits, this smells like something putrid.
2554 	 */
2555 	if (flags & SCA_MIGRATE_DISABLE)
2556 		SCHED_WARN_ON(!p->on_cpu);
2557 	else
2558 		lockdep_assert_held(&p->pi_lock);
2559 
2560 	queued = task_on_rq_queued(p);
2561 	running = task_current(rq, p);
2562 
2563 	if (queued) {
2564 		/*
2565 		 * Because __kthread_bind() calls this on blocked tasks without
2566 		 * holding rq->lock.
2567 		 */
2568 		lockdep_assert_rq_held(rq);
2569 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2570 	}
2571 	if (running)
2572 		put_prev_task(rq, p);
2573 
2574 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2575 
2576 	if (queued)
2577 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2578 	if (running)
2579 		set_next_task(rq, p);
2580 }
2581 
2582 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2583 {
2584 	__do_set_cpus_allowed(p, new_mask, 0);
2585 }
2586 
2587 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2588 		      int node)
2589 {
2590 	if (!src->user_cpus_ptr)
2591 		return 0;
2592 
2593 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2594 	if (!dst->user_cpus_ptr)
2595 		return -ENOMEM;
2596 
2597 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2598 	return 0;
2599 }
2600 
2601 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2602 {
2603 	struct cpumask *user_mask = NULL;
2604 
2605 	swap(p->user_cpus_ptr, user_mask);
2606 
2607 	return user_mask;
2608 }
2609 
2610 void release_user_cpus_ptr(struct task_struct *p)
2611 {
2612 	kfree(clear_user_cpus_ptr(p));
2613 }
2614 
2615 /*
2616  * This function is wildly self concurrent; here be dragons.
2617  *
2618  *
2619  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2620  * designated task is enqueued on an allowed CPU. If that task is currently
2621  * running, we have to kick it out using the CPU stopper.
2622  *
2623  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2624  * Consider:
2625  *
2626  *     Initial conditions: P0->cpus_mask = [0, 1]
2627  *
2628  *     P0@CPU0                  P1
2629  *
2630  *     migrate_disable();
2631  *     <preempted>
2632  *                              set_cpus_allowed_ptr(P0, [1]);
2633  *
2634  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2635  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2636  * This means we need the following scheme:
2637  *
2638  *     P0@CPU0                  P1
2639  *
2640  *     migrate_disable();
2641  *     <preempted>
2642  *                              set_cpus_allowed_ptr(P0, [1]);
2643  *                                <blocks>
2644  *     <resumes>
2645  *     migrate_enable();
2646  *       __set_cpus_allowed_ptr();
2647  *       <wakes local stopper>
2648  *                         `--> <woken on migration completion>
2649  *
2650  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2651  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2652  * task p are serialized by p->pi_lock, which we can leverage: the one that
2653  * should come into effect at the end of the Migrate-Disable region is the last
2654  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2655  * but we still need to properly signal those waiting tasks at the appropriate
2656  * moment.
2657  *
2658  * This is implemented using struct set_affinity_pending. The first
2659  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2660  * setup an instance of that struct and install it on the targeted task_struct.
2661  * Any and all further callers will reuse that instance. Those then wait for
2662  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2663  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2664  *
2665  *
2666  * (1) In the cases covered above. There is one more where the completion is
2667  * signaled within affine_move_task() itself: when a subsequent affinity request
2668  * occurs after the stopper bailed out due to the targeted task still being
2669  * Migrate-Disable. Consider:
2670  *
2671  *     Initial conditions: P0->cpus_mask = [0, 1]
2672  *
2673  *     CPU0		  P1				P2
2674  *     <P0>
2675  *       migrate_disable();
2676  *       <preempted>
2677  *                        set_cpus_allowed_ptr(P0, [1]);
2678  *                          <blocks>
2679  *     <migration/0>
2680  *       migration_cpu_stop()
2681  *         is_migration_disabled()
2682  *           <bails>
2683  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2684  *                                                         <signal completion>
2685  *                          <awakes>
2686  *
2687  * Note that the above is safe vs a concurrent migrate_enable(), as any
2688  * pending affinity completion is preceded by an uninstallation of
2689  * p->migration_pending done with p->pi_lock held.
2690  */
2691 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2692 			    int dest_cpu, unsigned int flags)
2693 {
2694 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2695 	bool stop_pending, complete = false;
2696 
2697 	/* Can the task run on the task's current CPU? If so, we're done */
2698 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2699 		struct task_struct *push_task = NULL;
2700 
2701 		if ((flags & SCA_MIGRATE_ENABLE) &&
2702 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2703 			rq->push_busy = true;
2704 			push_task = get_task_struct(p);
2705 		}
2706 
2707 		/*
2708 		 * If there are pending waiters, but no pending stop_work,
2709 		 * then complete now.
2710 		 */
2711 		pending = p->migration_pending;
2712 		if (pending && !pending->stop_pending) {
2713 			p->migration_pending = NULL;
2714 			complete = true;
2715 		}
2716 
2717 		task_rq_unlock(rq, p, rf);
2718 
2719 		if (push_task) {
2720 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2721 					    p, &rq->push_work);
2722 		}
2723 
2724 		if (complete)
2725 			complete_all(&pending->done);
2726 
2727 		return 0;
2728 	}
2729 
2730 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2731 		/* serialized by p->pi_lock */
2732 		if (!p->migration_pending) {
2733 			/* Install the request */
2734 			refcount_set(&my_pending.refs, 1);
2735 			init_completion(&my_pending.done);
2736 			my_pending.arg = (struct migration_arg) {
2737 				.task = p,
2738 				.dest_cpu = dest_cpu,
2739 				.pending = &my_pending,
2740 			};
2741 
2742 			p->migration_pending = &my_pending;
2743 		} else {
2744 			pending = p->migration_pending;
2745 			refcount_inc(&pending->refs);
2746 			/*
2747 			 * Affinity has changed, but we've already installed a
2748 			 * pending. migration_cpu_stop() *must* see this, else
2749 			 * we risk a completion of the pending despite having a
2750 			 * task on a disallowed CPU.
2751 			 *
2752 			 * Serialized by p->pi_lock, so this is safe.
2753 			 */
2754 			pending->arg.dest_cpu = dest_cpu;
2755 		}
2756 	}
2757 	pending = p->migration_pending;
2758 	/*
2759 	 * - !MIGRATE_ENABLE:
2760 	 *   we'll have installed a pending if there wasn't one already.
2761 	 *
2762 	 * - MIGRATE_ENABLE:
2763 	 *   we're here because the current CPU isn't matching anymore,
2764 	 *   the only way that can happen is because of a concurrent
2765 	 *   set_cpus_allowed_ptr() call, which should then still be
2766 	 *   pending completion.
2767 	 *
2768 	 * Either way, we really should have a @pending here.
2769 	 */
2770 	if (WARN_ON_ONCE(!pending)) {
2771 		task_rq_unlock(rq, p, rf);
2772 		return -EINVAL;
2773 	}
2774 
2775 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2776 		/*
2777 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2778 		 * anything else we cannot do is_migration_disabled(), punt
2779 		 * and have the stopper function handle it all race-free.
2780 		 */
2781 		stop_pending = pending->stop_pending;
2782 		if (!stop_pending)
2783 			pending->stop_pending = true;
2784 
2785 		if (flags & SCA_MIGRATE_ENABLE)
2786 			p->migration_flags &= ~MDF_PUSH;
2787 
2788 		task_rq_unlock(rq, p, rf);
2789 
2790 		if (!stop_pending) {
2791 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2792 					    &pending->arg, &pending->stop_work);
2793 		}
2794 
2795 		if (flags & SCA_MIGRATE_ENABLE)
2796 			return 0;
2797 	} else {
2798 
2799 		if (!is_migration_disabled(p)) {
2800 			if (task_on_rq_queued(p))
2801 				rq = move_queued_task(rq, rf, p, dest_cpu);
2802 
2803 			if (!pending->stop_pending) {
2804 				p->migration_pending = NULL;
2805 				complete = true;
2806 			}
2807 		}
2808 		task_rq_unlock(rq, p, rf);
2809 
2810 		if (complete)
2811 			complete_all(&pending->done);
2812 	}
2813 
2814 	wait_for_completion(&pending->done);
2815 
2816 	if (refcount_dec_and_test(&pending->refs))
2817 		wake_up_var(&pending->refs); /* No UaF, just an address */
2818 
2819 	/*
2820 	 * Block the original owner of &pending until all subsequent callers
2821 	 * have seen the completion and decremented the refcount
2822 	 */
2823 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2824 
2825 	/* ARGH */
2826 	WARN_ON_ONCE(my_pending.stop_pending);
2827 
2828 	return 0;
2829 }
2830 
2831 /*
2832  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2833  */
2834 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2835 					 const struct cpumask *new_mask,
2836 					 u32 flags,
2837 					 struct rq *rq,
2838 					 struct rq_flags *rf)
2839 	__releases(rq->lock)
2840 	__releases(p->pi_lock)
2841 {
2842 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2843 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2844 	bool kthread = p->flags & PF_KTHREAD;
2845 	struct cpumask *user_mask = NULL;
2846 	unsigned int dest_cpu;
2847 	int ret = 0;
2848 
2849 	update_rq_clock(rq);
2850 
2851 	if (kthread || is_migration_disabled(p)) {
2852 		/*
2853 		 * Kernel threads are allowed on online && !active CPUs,
2854 		 * however, during cpu-hot-unplug, even these might get pushed
2855 		 * away if not KTHREAD_IS_PER_CPU.
2856 		 *
2857 		 * Specifically, migration_disabled() tasks must not fail the
2858 		 * cpumask_any_and_distribute() pick below, esp. so on
2859 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2860 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2861 		 */
2862 		cpu_valid_mask = cpu_online_mask;
2863 	}
2864 
2865 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2866 		ret = -EINVAL;
2867 		goto out;
2868 	}
2869 
2870 	/*
2871 	 * Must re-check here, to close a race against __kthread_bind(),
2872 	 * sched_setaffinity() is not guaranteed to observe the flag.
2873 	 */
2874 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2875 		ret = -EINVAL;
2876 		goto out;
2877 	}
2878 
2879 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2880 		if (cpumask_equal(&p->cpus_mask, new_mask))
2881 			goto out;
2882 
2883 		if (WARN_ON_ONCE(p == current &&
2884 				 is_migration_disabled(p) &&
2885 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2886 			ret = -EBUSY;
2887 			goto out;
2888 		}
2889 	}
2890 
2891 	/*
2892 	 * Picking a ~random cpu helps in cases where we are changing affinity
2893 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2894 	 * immediately required to distribute the tasks within their new mask.
2895 	 */
2896 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2897 	if (dest_cpu >= nr_cpu_ids) {
2898 		ret = -EINVAL;
2899 		goto out;
2900 	}
2901 
2902 	__do_set_cpus_allowed(p, new_mask, flags);
2903 
2904 	if (flags & SCA_USER)
2905 		user_mask = clear_user_cpus_ptr(p);
2906 
2907 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2908 
2909 	kfree(user_mask);
2910 
2911 	return ret;
2912 
2913 out:
2914 	task_rq_unlock(rq, p, rf);
2915 
2916 	return ret;
2917 }
2918 
2919 /*
2920  * Change a given task's CPU affinity. Migrate the thread to a
2921  * proper CPU and schedule it away if the CPU it's executing on
2922  * is removed from the allowed bitmask.
2923  *
2924  * NOTE: the caller must have a valid reference to the task, the
2925  * task must not exit() & deallocate itself prematurely. The
2926  * call is not atomic; no spinlocks may be held.
2927  */
2928 static int __set_cpus_allowed_ptr(struct task_struct *p,
2929 				  const struct cpumask *new_mask, u32 flags)
2930 {
2931 	struct rq_flags rf;
2932 	struct rq *rq;
2933 
2934 	rq = task_rq_lock(p, &rf);
2935 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2936 }
2937 
2938 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2939 {
2940 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2941 }
2942 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2943 
2944 /*
2945  * Change a given task's CPU affinity to the intersection of its current
2946  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2947  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2948  * If the resulting mask is empty, leave the affinity unchanged and return
2949  * -EINVAL.
2950  */
2951 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2952 				     struct cpumask *new_mask,
2953 				     const struct cpumask *subset_mask)
2954 {
2955 	struct cpumask *user_mask = NULL;
2956 	struct rq_flags rf;
2957 	struct rq *rq;
2958 	int err;
2959 
2960 	if (!p->user_cpus_ptr) {
2961 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2962 		if (!user_mask)
2963 			return -ENOMEM;
2964 	}
2965 
2966 	rq = task_rq_lock(p, &rf);
2967 
2968 	/*
2969 	 * Forcefully restricting the affinity of a deadline task is
2970 	 * likely to cause problems, so fail and noisily override the
2971 	 * mask entirely.
2972 	 */
2973 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2974 		err = -EPERM;
2975 		goto err_unlock;
2976 	}
2977 
2978 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2979 		err = -EINVAL;
2980 		goto err_unlock;
2981 	}
2982 
2983 	/*
2984 	 * We're about to butcher the task affinity, so keep track of what
2985 	 * the user asked for in case we're able to restore it later on.
2986 	 */
2987 	if (user_mask) {
2988 		cpumask_copy(user_mask, p->cpus_ptr);
2989 		p->user_cpus_ptr = user_mask;
2990 	}
2991 
2992 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2993 
2994 err_unlock:
2995 	task_rq_unlock(rq, p, &rf);
2996 	kfree(user_mask);
2997 	return err;
2998 }
2999 
3000 /*
3001  * Restrict the CPU affinity of task @p so that it is a subset of
3002  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3003  * old affinity mask. If the resulting mask is empty, we warn and walk
3004  * up the cpuset hierarchy until we find a suitable mask.
3005  */
3006 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3007 {
3008 	cpumask_var_t new_mask;
3009 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3010 
3011 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3012 
3013 	/*
3014 	 * __migrate_task() can fail silently in the face of concurrent
3015 	 * offlining of the chosen destination CPU, so take the hotplug
3016 	 * lock to ensure that the migration succeeds.
3017 	 */
3018 	cpus_read_lock();
3019 	if (!cpumask_available(new_mask))
3020 		goto out_set_mask;
3021 
3022 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3023 		goto out_free_mask;
3024 
3025 	/*
3026 	 * We failed to find a valid subset of the affinity mask for the
3027 	 * task, so override it based on its cpuset hierarchy.
3028 	 */
3029 	cpuset_cpus_allowed(p, new_mask);
3030 	override_mask = new_mask;
3031 
3032 out_set_mask:
3033 	if (printk_ratelimit()) {
3034 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3035 				task_pid_nr(p), p->comm,
3036 				cpumask_pr_args(override_mask));
3037 	}
3038 
3039 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3040 out_free_mask:
3041 	cpus_read_unlock();
3042 	free_cpumask_var(new_mask);
3043 }
3044 
3045 static int
3046 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3047 
3048 /*
3049  * Restore the affinity of a task @p which was previously restricted by a
3050  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3051  * @p->user_cpus_ptr.
3052  *
3053  * It is the caller's responsibility to serialise this with any calls to
3054  * force_compatible_cpus_allowed_ptr(@p).
3055  */
3056 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3057 {
3058 	struct cpumask *user_mask = p->user_cpus_ptr;
3059 	unsigned long flags;
3060 
3061 	/*
3062 	 * Try to restore the old affinity mask. If this fails, then
3063 	 * we free the mask explicitly to avoid it being inherited across
3064 	 * a subsequent fork().
3065 	 */
3066 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3067 		return;
3068 
3069 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3070 	user_mask = clear_user_cpus_ptr(p);
3071 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3072 
3073 	kfree(user_mask);
3074 }
3075 
3076 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3077 {
3078 #ifdef CONFIG_SCHED_DEBUG
3079 	unsigned int state = READ_ONCE(p->__state);
3080 
3081 	/*
3082 	 * We should never call set_task_cpu() on a blocked task,
3083 	 * ttwu() will sort out the placement.
3084 	 */
3085 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3086 
3087 	/*
3088 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3089 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3090 	 * time relying on p->on_rq.
3091 	 */
3092 	WARN_ON_ONCE(state == TASK_RUNNING &&
3093 		     p->sched_class == &fair_sched_class &&
3094 		     (p->on_rq && !task_on_rq_migrating(p)));
3095 
3096 #ifdef CONFIG_LOCKDEP
3097 	/*
3098 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3099 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3100 	 *
3101 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3102 	 * see task_group().
3103 	 *
3104 	 * Furthermore, all task_rq users should acquire both locks, see
3105 	 * task_rq_lock().
3106 	 */
3107 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3108 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3109 #endif
3110 	/*
3111 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3112 	 */
3113 	WARN_ON_ONCE(!cpu_online(new_cpu));
3114 
3115 	WARN_ON_ONCE(is_migration_disabled(p));
3116 #endif
3117 
3118 	trace_sched_migrate_task(p, new_cpu);
3119 
3120 	if (task_cpu(p) != new_cpu) {
3121 		if (p->sched_class->migrate_task_rq)
3122 			p->sched_class->migrate_task_rq(p, new_cpu);
3123 		p->se.nr_migrations++;
3124 		rseq_migrate(p);
3125 		perf_event_task_migrate(p);
3126 	}
3127 
3128 	__set_task_cpu(p, new_cpu);
3129 }
3130 
3131 #ifdef CONFIG_NUMA_BALANCING
3132 static void __migrate_swap_task(struct task_struct *p, int cpu)
3133 {
3134 	if (task_on_rq_queued(p)) {
3135 		struct rq *src_rq, *dst_rq;
3136 		struct rq_flags srf, drf;
3137 
3138 		src_rq = task_rq(p);
3139 		dst_rq = cpu_rq(cpu);
3140 
3141 		rq_pin_lock(src_rq, &srf);
3142 		rq_pin_lock(dst_rq, &drf);
3143 
3144 		deactivate_task(src_rq, p, 0);
3145 		set_task_cpu(p, cpu);
3146 		activate_task(dst_rq, p, 0);
3147 		check_preempt_curr(dst_rq, p, 0);
3148 
3149 		rq_unpin_lock(dst_rq, &drf);
3150 		rq_unpin_lock(src_rq, &srf);
3151 
3152 	} else {
3153 		/*
3154 		 * Task isn't running anymore; make it appear like we migrated
3155 		 * it before it went to sleep. This means on wakeup we make the
3156 		 * previous CPU our target instead of where it really is.
3157 		 */
3158 		p->wake_cpu = cpu;
3159 	}
3160 }
3161 
3162 struct migration_swap_arg {
3163 	struct task_struct *src_task, *dst_task;
3164 	int src_cpu, dst_cpu;
3165 };
3166 
3167 static int migrate_swap_stop(void *data)
3168 {
3169 	struct migration_swap_arg *arg = data;
3170 	struct rq *src_rq, *dst_rq;
3171 	int ret = -EAGAIN;
3172 
3173 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3174 		return -EAGAIN;
3175 
3176 	src_rq = cpu_rq(arg->src_cpu);
3177 	dst_rq = cpu_rq(arg->dst_cpu);
3178 
3179 	double_raw_lock(&arg->src_task->pi_lock,
3180 			&arg->dst_task->pi_lock);
3181 	double_rq_lock(src_rq, dst_rq);
3182 
3183 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3184 		goto unlock;
3185 
3186 	if (task_cpu(arg->src_task) != arg->src_cpu)
3187 		goto unlock;
3188 
3189 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3190 		goto unlock;
3191 
3192 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3193 		goto unlock;
3194 
3195 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3196 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3197 
3198 	ret = 0;
3199 
3200 unlock:
3201 	double_rq_unlock(src_rq, dst_rq);
3202 	raw_spin_unlock(&arg->dst_task->pi_lock);
3203 	raw_spin_unlock(&arg->src_task->pi_lock);
3204 
3205 	return ret;
3206 }
3207 
3208 /*
3209  * Cross migrate two tasks
3210  */
3211 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3212 		int target_cpu, int curr_cpu)
3213 {
3214 	struct migration_swap_arg arg;
3215 	int ret = -EINVAL;
3216 
3217 	arg = (struct migration_swap_arg){
3218 		.src_task = cur,
3219 		.src_cpu = curr_cpu,
3220 		.dst_task = p,
3221 		.dst_cpu = target_cpu,
3222 	};
3223 
3224 	if (arg.src_cpu == arg.dst_cpu)
3225 		goto out;
3226 
3227 	/*
3228 	 * These three tests are all lockless; this is OK since all of them
3229 	 * will be re-checked with proper locks held further down the line.
3230 	 */
3231 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3232 		goto out;
3233 
3234 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3235 		goto out;
3236 
3237 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3238 		goto out;
3239 
3240 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3241 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3242 
3243 out:
3244 	return ret;
3245 }
3246 #endif /* CONFIG_NUMA_BALANCING */
3247 
3248 /*
3249  * wait_task_inactive - wait for a thread to unschedule.
3250  *
3251  * Wait for the thread to block in any of the states set in @match_state.
3252  * If it changes, i.e. @p might have woken up, then return zero.  When we
3253  * succeed in waiting for @p to be off its CPU, we return a positive number
3254  * (its total switch count).  If a second call a short while later returns the
3255  * same number, the caller can be sure that @p has remained unscheduled the
3256  * whole time.
3257  *
3258  * The caller must ensure that the task *will* unschedule sometime soon,
3259  * else this function might spin for a *long* time. This function can't
3260  * be called with interrupts off, or it may introduce deadlock with
3261  * smp_call_function() if an IPI is sent by the same process we are
3262  * waiting to become inactive.
3263  */
3264 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3265 {
3266 	int running, queued;
3267 	struct rq_flags rf;
3268 	unsigned long ncsw;
3269 	struct rq *rq;
3270 
3271 	for (;;) {
3272 		/*
3273 		 * We do the initial early heuristics without holding
3274 		 * any task-queue locks at all. We'll only try to get
3275 		 * the runqueue lock when things look like they will
3276 		 * work out!
3277 		 */
3278 		rq = task_rq(p);
3279 
3280 		/*
3281 		 * If the task is actively running on another CPU
3282 		 * still, just relax and busy-wait without holding
3283 		 * any locks.
3284 		 *
3285 		 * NOTE! Since we don't hold any locks, it's not
3286 		 * even sure that "rq" stays as the right runqueue!
3287 		 * But we don't care, since "task_on_cpu()" will
3288 		 * return false if the runqueue has changed and p
3289 		 * is actually now running somewhere else!
3290 		 */
3291 		while (task_on_cpu(rq, p)) {
3292 			if (!(READ_ONCE(p->__state) & match_state))
3293 				return 0;
3294 			cpu_relax();
3295 		}
3296 
3297 		/*
3298 		 * Ok, time to look more closely! We need the rq
3299 		 * lock now, to be *sure*. If we're wrong, we'll
3300 		 * just go back and repeat.
3301 		 */
3302 		rq = task_rq_lock(p, &rf);
3303 		trace_sched_wait_task(p);
3304 		running = task_on_cpu(rq, p);
3305 		queued = task_on_rq_queued(p);
3306 		ncsw = 0;
3307 		if (READ_ONCE(p->__state) & match_state)
3308 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3309 		task_rq_unlock(rq, p, &rf);
3310 
3311 		/*
3312 		 * If it changed from the expected state, bail out now.
3313 		 */
3314 		if (unlikely(!ncsw))
3315 			break;
3316 
3317 		/*
3318 		 * Was it really running after all now that we
3319 		 * checked with the proper locks actually held?
3320 		 *
3321 		 * Oops. Go back and try again..
3322 		 */
3323 		if (unlikely(running)) {
3324 			cpu_relax();
3325 			continue;
3326 		}
3327 
3328 		/*
3329 		 * It's not enough that it's not actively running,
3330 		 * it must be off the runqueue _entirely_, and not
3331 		 * preempted!
3332 		 *
3333 		 * So if it was still runnable (but just not actively
3334 		 * running right now), it's preempted, and we should
3335 		 * yield - it could be a while.
3336 		 */
3337 		if (unlikely(queued)) {
3338 			ktime_t to = NSEC_PER_SEC / HZ;
3339 
3340 			set_current_state(TASK_UNINTERRUPTIBLE);
3341 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3342 			continue;
3343 		}
3344 
3345 		/*
3346 		 * Ahh, all good. It wasn't running, and it wasn't
3347 		 * runnable, which means that it will never become
3348 		 * running in the future either. We're all done!
3349 		 */
3350 		break;
3351 	}
3352 
3353 	return ncsw;
3354 }
3355 
3356 /***
3357  * kick_process - kick a running thread to enter/exit the kernel
3358  * @p: the to-be-kicked thread
3359  *
3360  * Cause a process which is running on another CPU to enter
3361  * kernel-mode, without any delay. (to get signals handled.)
3362  *
3363  * NOTE: this function doesn't have to take the runqueue lock,
3364  * because all it wants to ensure is that the remote task enters
3365  * the kernel. If the IPI races and the task has been migrated
3366  * to another CPU then no harm is done and the purpose has been
3367  * achieved as well.
3368  */
3369 void kick_process(struct task_struct *p)
3370 {
3371 	int cpu;
3372 
3373 	preempt_disable();
3374 	cpu = task_cpu(p);
3375 	if ((cpu != smp_processor_id()) && task_curr(p))
3376 		smp_send_reschedule(cpu);
3377 	preempt_enable();
3378 }
3379 EXPORT_SYMBOL_GPL(kick_process);
3380 
3381 /*
3382  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3383  *
3384  * A few notes on cpu_active vs cpu_online:
3385  *
3386  *  - cpu_active must be a subset of cpu_online
3387  *
3388  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3389  *    see __set_cpus_allowed_ptr(). At this point the newly online
3390  *    CPU isn't yet part of the sched domains, and balancing will not
3391  *    see it.
3392  *
3393  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3394  *    avoid the load balancer to place new tasks on the to be removed
3395  *    CPU. Existing tasks will remain running there and will be taken
3396  *    off.
3397  *
3398  * This means that fallback selection must not select !active CPUs.
3399  * And can assume that any active CPU must be online. Conversely
3400  * select_task_rq() below may allow selection of !active CPUs in order
3401  * to satisfy the above rules.
3402  */
3403 static int select_fallback_rq(int cpu, struct task_struct *p)
3404 {
3405 	int nid = cpu_to_node(cpu);
3406 	const struct cpumask *nodemask = NULL;
3407 	enum { cpuset, possible, fail } state = cpuset;
3408 	int dest_cpu;
3409 
3410 	/*
3411 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3412 	 * will return -1. There is no CPU on the node, and we should
3413 	 * select the CPU on the other node.
3414 	 */
3415 	if (nid != -1) {
3416 		nodemask = cpumask_of_node(nid);
3417 
3418 		/* Look for allowed, online CPU in same node. */
3419 		for_each_cpu(dest_cpu, nodemask) {
3420 			if (is_cpu_allowed(p, dest_cpu))
3421 				return dest_cpu;
3422 		}
3423 	}
3424 
3425 	for (;;) {
3426 		/* Any allowed, online CPU? */
3427 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3428 			if (!is_cpu_allowed(p, dest_cpu))
3429 				continue;
3430 
3431 			goto out;
3432 		}
3433 
3434 		/* No more Mr. Nice Guy. */
3435 		switch (state) {
3436 		case cpuset:
3437 			if (cpuset_cpus_allowed_fallback(p)) {
3438 				state = possible;
3439 				break;
3440 			}
3441 			fallthrough;
3442 		case possible:
3443 			/*
3444 			 * XXX When called from select_task_rq() we only
3445 			 * hold p->pi_lock and again violate locking order.
3446 			 *
3447 			 * More yuck to audit.
3448 			 */
3449 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3450 			state = fail;
3451 			break;
3452 		case fail:
3453 			BUG();
3454 			break;
3455 		}
3456 	}
3457 
3458 out:
3459 	if (state != cpuset) {
3460 		/*
3461 		 * Don't tell them about moving exiting tasks or
3462 		 * kernel threads (both mm NULL), since they never
3463 		 * leave kernel.
3464 		 */
3465 		if (p->mm && printk_ratelimit()) {
3466 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3467 					task_pid_nr(p), p->comm, cpu);
3468 		}
3469 	}
3470 
3471 	return dest_cpu;
3472 }
3473 
3474 /*
3475  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3476  */
3477 static inline
3478 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3479 {
3480 	lockdep_assert_held(&p->pi_lock);
3481 
3482 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3483 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3484 	else
3485 		cpu = cpumask_any(p->cpus_ptr);
3486 
3487 	/*
3488 	 * In order not to call set_task_cpu() on a blocking task we need
3489 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3490 	 * CPU.
3491 	 *
3492 	 * Since this is common to all placement strategies, this lives here.
3493 	 *
3494 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3495 	 *   not worry about this generic constraint ]
3496 	 */
3497 	if (unlikely(!is_cpu_allowed(p, cpu)))
3498 		cpu = select_fallback_rq(task_cpu(p), p);
3499 
3500 	return cpu;
3501 }
3502 
3503 void sched_set_stop_task(int cpu, struct task_struct *stop)
3504 {
3505 	static struct lock_class_key stop_pi_lock;
3506 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3507 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3508 
3509 	if (stop) {
3510 		/*
3511 		 * Make it appear like a SCHED_FIFO task, its something
3512 		 * userspace knows about and won't get confused about.
3513 		 *
3514 		 * Also, it will make PI more or less work without too
3515 		 * much confusion -- but then, stop work should not
3516 		 * rely on PI working anyway.
3517 		 */
3518 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3519 
3520 		stop->sched_class = &stop_sched_class;
3521 
3522 		/*
3523 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3524 		 * adjust the effective priority of a task. As a result,
3525 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3526 		 * which can then trigger wakeups of the stop thread to push
3527 		 * around the current task.
3528 		 *
3529 		 * The stop task itself will never be part of the PI-chain, it
3530 		 * never blocks, therefore that ->pi_lock recursion is safe.
3531 		 * Tell lockdep about this by placing the stop->pi_lock in its
3532 		 * own class.
3533 		 */
3534 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3535 	}
3536 
3537 	cpu_rq(cpu)->stop = stop;
3538 
3539 	if (old_stop) {
3540 		/*
3541 		 * Reset it back to a normal scheduling class so that
3542 		 * it can die in pieces.
3543 		 */
3544 		old_stop->sched_class = &rt_sched_class;
3545 	}
3546 }
3547 
3548 #else /* CONFIG_SMP */
3549 
3550 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3551 					 const struct cpumask *new_mask,
3552 					 u32 flags)
3553 {
3554 	return set_cpus_allowed_ptr(p, new_mask);
3555 }
3556 
3557 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3558 
3559 static inline bool rq_has_pinned_tasks(struct rq *rq)
3560 {
3561 	return false;
3562 }
3563 
3564 #endif /* !CONFIG_SMP */
3565 
3566 static void
3567 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3568 {
3569 	struct rq *rq;
3570 
3571 	if (!schedstat_enabled())
3572 		return;
3573 
3574 	rq = this_rq();
3575 
3576 #ifdef CONFIG_SMP
3577 	if (cpu == rq->cpu) {
3578 		__schedstat_inc(rq->ttwu_local);
3579 		__schedstat_inc(p->stats.nr_wakeups_local);
3580 	} else {
3581 		struct sched_domain *sd;
3582 
3583 		__schedstat_inc(p->stats.nr_wakeups_remote);
3584 		rcu_read_lock();
3585 		for_each_domain(rq->cpu, sd) {
3586 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3587 				__schedstat_inc(sd->ttwu_wake_remote);
3588 				break;
3589 			}
3590 		}
3591 		rcu_read_unlock();
3592 	}
3593 
3594 	if (wake_flags & WF_MIGRATED)
3595 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3596 #endif /* CONFIG_SMP */
3597 
3598 	__schedstat_inc(rq->ttwu_count);
3599 	__schedstat_inc(p->stats.nr_wakeups);
3600 
3601 	if (wake_flags & WF_SYNC)
3602 		__schedstat_inc(p->stats.nr_wakeups_sync);
3603 }
3604 
3605 /*
3606  * Mark the task runnable and perform wakeup-preemption.
3607  */
3608 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3609 			   struct rq_flags *rf)
3610 {
3611 	check_preempt_curr(rq, p, wake_flags);
3612 	WRITE_ONCE(p->__state, TASK_RUNNING);
3613 	trace_sched_wakeup(p);
3614 
3615 #ifdef CONFIG_SMP
3616 	if (p->sched_class->task_woken) {
3617 		/*
3618 		 * Our task @p is fully woken up and running; so it's safe to
3619 		 * drop the rq->lock, hereafter rq is only used for statistics.
3620 		 */
3621 		rq_unpin_lock(rq, rf);
3622 		p->sched_class->task_woken(rq, p);
3623 		rq_repin_lock(rq, rf);
3624 	}
3625 
3626 	if (rq->idle_stamp) {
3627 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3628 		u64 max = 2*rq->max_idle_balance_cost;
3629 
3630 		update_avg(&rq->avg_idle, delta);
3631 
3632 		if (rq->avg_idle > max)
3633 			rq->avg_idle = max;
3634 
3635 		rq->wake_stamp = jiffies;
3636 		rq->wake_avg_idle = rq->avg_idle / 2;
3637 
3638 		rq->idle_stamp = 0;
3639 	}
3640 #endif
3641 }
3642 
3643 static void
3644 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3645 		 struct rq_flags *rf)
3646 {
3647 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3648 
3649 	lockdep_assert_rq_held(rq);
3650 
3651 	if (p->sched_contributes_to_load)
3652 		rq->nr_uninterruptible--;
3653 
3654 #ifdef CONFIG_SMP
3655 	if (wake_flags & WF_MIGRATED)
3656 		en_flags |= ENQUEUE_MIGRATED;
3657 	else
3658 #endif
3659 	if (p->in_iowait) {
3660 		delayacct_blkio_end(p);
3661 		atomic_dec(&task_rq(p)->nr_iowait);
3662 	}
3663 
3664 	activate_task(rq, p, en_flags);
3665 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3666 }
3667 
3668 /*
3669  * Consider @p being inside a wait loop:
3670  *
3671  *   for (;;) {
3672  *      set_current_state(TASK_UNINTERRUPTIBLE);
3673  *
3674  *      if (CONDITION)
3675  *         break;
3676  *
3677  *      schedule();
3678  *   }
3679  *   __set_current_state(TASK_RUNNING);
3680  *
3681  * between set_current_state() and schedule(). In this case @p is still
3682  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3683  * an atomic manner.
3684  *
3685  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3686  * then schedule() must still happen and p->state can be changed to
3687  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3688  * need to do a full wakeup with enqueue.
3689  *
3690  * Returns: %true when the wakeup is done,
3691  *          %false otherwise.
3692  */
3693 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3694 {
3695 	struct rq_flags rf;
3696 	struct rq *rq;
3697 	int ret = 0;
3698 
3699 	rq = __task_rq_lock(p, &rf);
3700 	if (task_on_rq_queued(p)) {
3701 		/* check_preempt_curr() may use rq clock */
3702 		update_rq_clock(rq);
3703 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3704 		ret = 1;
3705 	}
3706 	__task_rq_unlock(rq, &rf);
3707 
3708 	return ret;
3709 }
3710 
3711 #ifdef CONFIG_SMP
3712 void sched_ttwu_pending(void *arg)
3713 {
3714 	struct llist_node *llist = arg;
3715 	struct rq *rq = this_rq();
3716 	struct task_struct *p, *t;
3717 	struct rq_flags rf;
3718 
3719 	if (!llist)
3720 		return;
3721 
3722 	/*
3723 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3724 	 * Races such that false-negatives are possible, since they
3725 	 * are shorter lived that false-positives would be.
3726 	 */
3727 	WRITE_ONCE(rq->ttwu_pending, 0);
3728 
3729 	rq_lock_irqsave(rq, &rf);
3730 	update_rq_clock(rq);
3731 
3732 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3733 		if (WARN_ON_ONCE(p->on_cpu))
3734 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3735 
3736 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3737 			set_task_cpu(p, cpu_of(rq));
3738 
3739 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3740 	}
3741 
3742 	rq_unlock_irqrestore(rq, &rf);
3743 }
3744 
3745 void send_call_function_single_ipi(int cpu)
3746 {
3747 	struct rq *rq = cpu_rq(cpu);
3748 
3749 	if (!set_nr_if_polling(rq->idle))
3750 		arch_send_call_function_single_ipi(cpu);
3751 	else
3752 		trace_sched_wake_idle_without_ipi(cpu);
3753 }
3754 
3755 /*
3756  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3757  * necessary. The wakee CPU on receipt of the IPI will queue the task
3758  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3759  * of the wakeup instead of the waker.
3760  */
3761 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3762 {
3763 	struct rq *rq = cpu_rq(cpu);
3764 
3765 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3766 
3767 	WRITE_ONCE(rq->ttwu_pending, 1);
3768 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3769 }
3770 
3771 void wake_up_if_idle(int cpu)
3772 {
3773 	struct rq *rq = cpu_rq(cpu);
3774 	struct rq_flags rf;
3775 
3776 	rcu_read_lock();
3777 
3778 	if (!is_idle_task(rcu_dereference(rq->curr)))
3779 		goto out;
3780 
3781 	rq_lock_irqsave(rq, &rf);
3782 	if (is_idle_task(rq->curr))
3783 		resched_curr(rq);
3784 	/* Else CPU is not idle, do nothing here: */
3785 	rq_unlock_irqrestore(rq, &rf);
3786 
3787 out:
3788 	rcu_read_unlock();
3789 }
3790 
3791 bool cpus_share_cache(int this_cpu, int that_cpu)
3792 {
3793 	if (this_cpu == that_cpu)
3794 		return true;
3795 
3796 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3797 }
3798 
3799 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3800 {
3801 	/*
3802 	 * Do not complicate things with the async wake_list while the CPU is
3803 	 * in hotplug state.
3804 	 */
3805 	if (!cpu_active(cpu))
3806 		return false;
3807 
3808 	/* Ensure the task will still be allowed to run on the CPU. */
3809 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3810 		return false;
3811 
3812 	/*
3813 	 * If the CPU does not share cache, then queue the task on the
3814 	 * remote rqs wakelist to avoid accessing remote data.
3815 	 */
3816 	if (!cpus_share_cache(smp_processor_id(), cpu))
3817 		return true;
3818 
3819 	if (cpu == smp_processor_id())
3820 		return false;
3821 
3822 	/*
3823 	 * If the wakee cpu is idle, or the task is descheduling and the
3824 	 * only running task on the CPU, then use the wakelist to offload
3825 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3826 	 * the current CPU is likely busy. nr_running is checked to
3827 	 * avoid unnecessary task stacking.
3828 	 *
3829 	 * Note that we can only get here with (wakee) p->on_rq=0,
3830 	 * p->on_cpu can be whatever, we've done the dequeue, so
3831 	 * the wakee has been accounted out of ->nr_running.
3832 	 */
3833 	if (!cpu_rq(cpu)->nr_running)
3834 		return true;
3835 
3836 	return false;
3837 }
3838 
3839 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3840 {
3841 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3842 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3843 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3844 		return true;
3845 	}
3846 
3847 	return false;
3848 }
3849 
3850 #else /* !CONFIG_SMP */
3851 
3852 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3853 {
3854 	return false;
3855 }
3856 
3857 #endif /* CONFIG_SMP */
3858 
3859 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3860 {
3861 	struct rq *rq = cpu_rq(cpu);
3862 	struct rq_flags rf;
3863 
3864 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3865 		return;
3866 
3867 	rq_lock(rq, &rf);
3868 	update_rq_clock(rq);
3869 	ttwu_do_activate(rq, p, wake_flags, &rf);
3870 	rq_unlock(rq, &rf);
3871 }
3872 
3873 /*
3874  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3875  *
3876  * The caller holds p::pi_lock if p != current or has preemption
3877  * disabled when p == current.
3878  *
3879  * The rules of PREEMPT_RT saved_state:
3880  *
3881  *   The related locking code always holds p::pi_lock when updating
3882  *   p::saved_state, which means the code is fully serialized in both cases.
3883  *
3884  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3885  *   bits set. This allows to distinguish all wakeup scenarios.
3886  */
3887 static __always_inline
3888 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3889 {
3890 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3891 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3892 			     state != TASK_RTLOCK_WAIT);
3893 	}
3894 
3895 	if (READ_ONCE(p->__state) & state) {
3896 		*success = 1;
3897 		return true;
3898 	}
3899 
3900 #ifdef CONFIG_PREEMPT_RT
3901 	/*
3902 	 * Saved state preserves the task state across blocking on
3903 	 * an RT lock.  If the state matches, set p::saved_state to
3904 	 * TASK_RUNNING, but do not wake the task because it waits
3905 	 * for a lock wakeup. Also indicate success because from
3906 	 * the regular waker's point of view this has succeeded.
3907 	 *
3908 	 * After acquiring the lock the task will restore p::__state
3909 	 * from p::saved_state which ensures that the regular
3910 	 * wakeup is not lost. The restore will also set
3911 	 * p::saved_state to TASK_RUNNING so any further tests will
3912 	 * not result in false positives vs. @success
3913 	 */
3914 	if (p->saved_state & state) {
3915 		p->saved_state = TASK_RUNNING;
3916 		*success = 1;
3917 	}
3918 #endif
3919 	return false;
3920 }
3921 
3922 /*
3923  * Notes on Program-Order guarantees on SMP systems.
3924  *
3925  *  MIGRATION
3926  *
3927  * The basic program-order guarantee on SMP systems is that when a task [t]
3928  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3929  * execution on its new CPU [c1].
3930  *
3931  * For migration (of runnable tasks) this is provided by the following means:
3932  *
3933  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3934  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3935  *     rq(c1)->lock (if not at the same time, then in that order).
3936  *  C) LOCK of the rq(c1)->lock scheduling in task
3937  *
3938  * Release/acquire chaining guarantees that B happens after A and C after B.
3939  * Note: the CPU doing B need not be c0 or c1
3940  *
3941  * Example:
3942  *
3943  *   CPU0            CPU1            CPU2
3944  *
3945  *   LOCK rq(0)->lock
3946  *   sched-out X
3947  *   sched-in Y
3948  *   UNLOCK rq(0)->lock
3949  *
3950  *                                   LOCK rq(0)->lock // orders against CPU0
3951  *                                   dequeue X
3952  *                                   UNLOCK rq(0)->lock
3953  *
3954  *                                   LOCK rq(1)->lock
3955  *                                   enqueue X
3956  *                                   UNLOCK rq(1)->lock
3957  *
3958  *                   LOCK rq(1)->lock // orders against CPU2
3959  *                   sched-out Z
3960  *                   sched-in X
3961  *                   UNLOCK rq(1)->lock
3962  *
3963  *
3964  *  BLOCKING -- aka. SLEEP + WAKEUP
3965  *
3966  * For blocking we (obviously) need to provide the same guarantee as for
3967  * migration. However the means are completely different as there is no lock
3968  * chain to provide order. Instead we do:
3969  *
3970  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3971  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3972  *
3973  * Example:
3974  *
3975  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3976  *
3977  *   LOCK rq(0)->lock LOCK X->pi_lock
3978  *   dequeue X
3979  *   sched-out X
3980  *   smp_store_release(X->on_cpu, 0);
3981  *
3982  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3983  *                    X->state = WAKING
3984  *                    set_task_cpu(X,2)
3985  *
3986  *                    LOCK rq(2)->lock
3987  *                    enqueue X
3988  *                    X->state = RUNNING
3989  *                    UNLOCK rq(2)->lock
3990  *
3991  *                                          LOCK rq(2)->lock // orders against CPU1
3992  *                                          sched-out Z
3993  *                                          sched-in X
3994  *                                          UNLOCK rq(2)->lock
3995  *
3996  *                    UNLOCK X->pi_lock
3997  *   UNLOCK rq(0)->lock
3998  *
3999  *
4000  * However, for wakeups there is a second guarantee we must provide, namely we
4001  * must ensure that CONDITION=1 done by the caller can not be reordered with
4002  * accesses to the task state; see try_to_wake_up() and set_current_state().
4003  */
4004 
4005 /**
4006  * try_to_wake_up - wake up a thread
4007  * @p: the thread to be awakened
4008  * @state: the mask of task states that can be woken
4009  * @wake_flags: wake modifier flags (WF_*)
4010  *
4011  * Conceptually does:
4012  *
4013  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4014  *
4015  * If the task was not queued/runnable, also place it back on a runqueue.
4016  *
4017  * This function is atomic against schedule() which would dequeue the task.
4018  *
4019  * It issues a full memory barrier before accessing @p->state, see the comment
4020  * with set_current_state().
4021  *
4022  * Uses p->pi_lock to serialize against concurrent wake-ups.
4023  *
4024  * Relies on p->pi_lock stabilizing:
4025  *  - p->sched_class
4026  *  - p->cpus_ptr
4027  *  - p->sched_task_group
4028  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4029  *
4030  * Tries really hard to only take one task_rq(p)->lock for performance.
4031  * Takes rq->lock in:
4032  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4033  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4034  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4035  *
4036  * As a consequence we race really badly with just about everything. See the
4037  * many memory barriers and their comments for details.
4038  *
4039  * Return: %true if @p->state changes (an actual wakeup was done),
4040  *	   %false otherwise.
4041  */
4042 static int
4043 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4044 {
4045 	unsigned long flags;
4046 	int cpu, success = 0;
4047 
4048 	preempt_disable();
4049 	if (p == current) {
4050 		/*
4051 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4052 		 * == smp_processor_id()'. Together this means we can special
4053 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4054 		 * without taking any locks.
4055 		 *
4056 		 * In particular:
4057 		 *  - we rely on Program-Order guarantees for all the ordering,
4058 		 *  - we're serialized against set_special_state() by virtue of
4059 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4060 		 */
4061 		if (!ttwu_state_match(p, state, &success))
4062 			goto out;
4063 
4064 		trace_sched_waking(p);
4065 		WRITE_ONCE(p->__state, TASK_RUNNING);
4066 		trace_sched_wakeup(p);
4067 		goto out;
4068 	}
4069 
4070 	/*
4071 	 * If we are going to wake up a thread waiting for CONDITION we
4072 	 * need to ensure that CONDITION=1 done by the caller can not be
4073 	 * reordered with p->state check below. This pairs with smp_store_mb()
4074 	 * in set_current_state() that the waiting thread does.
4075 	 */
4076 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4077 	smp_mb__after_spinlock();
4078 	if (!ttwu_state_match(p, state, &success))
4079 		goto unlock;
4080 
4081 	trace_sched_waking(p);
4082 
4083 	/*
4084 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4085 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4086 	 * in smp_cond_load_acquire() below.
4087 	 *
4088 	 * sched_ttwu_pending()			try_to_wake_up()
4089 	 *   STORE p->on_rq = 1			  LOAD p->state
4090 	 *   UNLOCK rq->lock
4091 	 *
4092 	 * __schedule() (switch to task 'p')
4093 	 *   LOCK rq->lock			  smp_rmb();
4094 	 *   smp_mb__after_spinlock();
4095 	 *   UNLOCK rq->lock
4096 	 *
4097 	 * [task p]
4098 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4099 	 *
4100 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4101 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4102 	 *
4103 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4104 	 */
4105 	smp_rmb();
4106 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4107 		goto unlock;
4108 
4109 #ifdef CONFIG_SMP
4110 	/*
4111 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4112 	 * possible to, falsely, observe p->on_cpu == 0.
4113 	 *
4114 	 * One must be running (->on_cpu == 1) in order to remove oneself
4115 	 * from the runqueue.
4116 	 *
4117 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4118 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4119 	 *   UNLOCK rq->lock
4120 	 *
4121 	 * __schedule() (put 'p' to sleep)
4122 	 *   LOCK rq->lock			  smp_rmb();
4123 	 *   smp_mb__after_spinlock();
4124 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4125 	 *
4126 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4127 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4128 	 *
4129 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4130 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4131 	 * care about it's own p->state. See the comment in __schedule().
4132 	 */
4133 	smp_acquire__after_ctrl_dep();
4134 
4135 	/*
4136 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4137 	 * == 0), which means we need to do an enqueue, change p->state to
4138 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4139 	 * enqueue, such as ttwu_queue_wakelist().
4140 	 */
4141 	WRITE_ONCE(p->__state, TASK_WAKING);
4142 
4143 	/*
4144 	 * If the owning (remote) CPU is still in the middle of schedule() with
4145 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4146 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4147 	 * let the waker make forward progress. This is safe because IRQs are
4148 	 * disabled and the IPI will deliver after on_cpu is cleared.
4149 	 *
4150 	 * Ensure we load task_cpu(p) after p->on_cpu:
4151 	 *
4152 	 * set_task_cpu(p, cpu);
4153 	 *   STORE p->cpu = @cpu
4154 	 * __schedule() (switch to task 'p')
4155 	 *   LOCK rq->lock
4156 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4157 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4158 	 *
4159 	 * to ensure we observe the correct CPU on which the task is currently
4160 	 * scheduling.
4161 	 */
4162 	if (smp_load_acquire(&p->on_cpu) &&
4163 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4164 		goto unlock;
4165 
4166 	/*
4167 	 * If the owning (remote) CPU is still in the middle of schedule() with
4168 	 * this task as prev, wait until it's done referencing the task.
4169 	 *
4170 	 * Pairs with the smp_store_release() in finish_task().
4171 	 *
4172 	 * This ensures that tasks getting woken will be fully ordered against
4173 	 * their previous state and preserve Program Order.
4174 	 */
4175 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4176 
4177 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4178 	if (task_cpu(p) != cpu) {
4179 		if (p->in_iowait) {
4180 			delayacct_blkio_end(p);
4181 			atomic_dec(&task_rq(p)->nr_iowait);
4182 		}
4183 
4184 		wake_flags |= WF_MIGRATED;
4185 		psi_ttwu_dequeue(p);
4186 		set_task_cpu(p, cpu);
4187 	}
4188 #else
4189 	cpu = task_cpu(p);
4190 #endif /* CONFIG_SMP */
4191 
4192 	ttwu_queue(p, cpu, wake_flags);
4193 unlock:
4194 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4195 out:
4196 	if (success)
4197 		ttwu_stat(p, task_cpu(p), wake_flags);
4198 	preempt_enable();
4199 
4200 	return success;
4201 }
4202 
4203 static bool __task_needs_rq_lock(struct task_struct *p)
4204 {
4205 	unsigned int state = READ_ONCE(p->__state);
4206 
4207 	/*
4208 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4209 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4210 	 * locks at the end, see ttwu_queue_wakelist().
4211 	 */
4212 	if (state == TASK_RUNNING || state == TASK_WAKING)
4213 		return true;
4214 
4215 	/*
4216 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4217 	 * possible to, falsely, observe p->on_rq == 0.
4218 	 *
4219 	 * See try_to_wake_up() for a longer comment.
4220 	 */
4221 	smp_rmb();
4222 	if (p->on_rq)
4223 		return true;
4224 
4225 #ifdef CONFIG_SMP
4226 	/*
4227 	 * Ensure the task has finished __schedule() and will not be referenced
4228 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4229 	 */
4230 	smp_rmb();
4231 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4232 #endif
4233 
4234 	return false;
4235 }
4236 
4237 /**
4238  * task_call_func - Invoke a function on task in fixed state
4239  * @p: Process for which the function is to be invoked, can be @current.
4240  * @func: Function to invoke.
4241  * @arg: Argument to function.
4242  *
4243  * Fix the task in it's current state by avoiding wakeups and or rq operations
4244  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4245  * to work out what the state is, if required.  Given that @func can be invoked
4246  * with a runqueue lock held, it had better be quite lightweight.
4247  *
4248  * Returns:
4249  *   Whatever @func returns
4250  */
4251 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4252 {
4253 	struct rq *rq = NULL;
4254 	struct rq_flags rf;
4255 	int ret;
4256 
4257 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4258 
4259 	if (__task_needs_rq_lock(p))
4260 		rq = __task_rq_lock(p, &rf);
4261 
4262 	/*
4263 	 * At this point the task is pinned; either:
4264 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4265 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4266 	 *  - queued, and we're holding off schedule	 (rq->lock)
4267 	 *  - running, and we're holding off de-schedule (rq->lock)
4268 	 *
4269 	 * The called function (@func) can use: task_curr(), p->on_rq and
4270 	 * p->__state to differentiate between these states.
4271 	 */
4272 	ret = func(p, arg);
4273 
4274 	if (rq)
4275 		rq_unlock(rq, &rf);
4276 
4277 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4278 	return ret;
4279 }
4280 
4281 /**
4282  * cpu_curr_snapshot - Return a snapshot of the currently running task
4283  * @cpu: The CPU on which to snapshot the task.
4284  *
4285  * Returns the task_struct pointer of the task "currently" running on
4286  * the specified CPU.  If the same task is running on that CPU throughout,
4287  * the return value will be a pointer to that task's task_struct structure.
4288  * If the CPU did any context switches even vaguely concurrently with the
4289  * execution of this function, the return value will be a pointer to the
4290  * task_struct structure of a randomly chosen task that was running on
4291  * that CPU somewhere around the time that this function was executing.
4292  *
4293  * If the specified CPU was offline, the return value is whatever it
4294  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4295  * task, but there is no guarantee.  Callers wishing a useful return
4296  * value must take some action to ensure that the specified CPU remains
4297  * online throughout.
4298  *
4299  * This function executes full memory barriers before and after fetching
4300  * the pointer, which permits the caller to confine this function's fetch
4301  * with respect to the caller's accesses to other shared variables.
4302  */
4303 struct task_struct *cpu_curr_snapshot(int cpu)
4304 {
4305 	struct task_struct *t;
4306 
4307 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4308 	t = rcu_dereference(cpu_curr(cpu));
4309 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4310 	return t;
4311 }
4312 
4313 /**
4314  * wake_up_process - Wake up a specific process
4315  * @p: The process to be woken up.
4316  *
4317  * Attempt to wake up the nominated process and move it to the set of runnable
4318  * processes.
4319  *
4320  * Return: 1 if the process was woken up, 0 if it was already running.
4321  *
4322  * This function executes a full memory barrier before accessing the task state.
4323  */
4324 int wake_up_process(struct task_struct *p)
4325 {
4326 	return try_to_wake_up(p, TASK_NORMAL, 0);
4327 }
4328 EXPORT_SYMBOL(wake_up_process);
4329 
4330 int wake_up_state(struct task_struct *p, unsigned int state)
4331 {
4332 	return try_to_wake_up(p, state, 0);
4333 }
4334 
4335 /*
4336  * Perform scheduler related setup for a newly forked process p.
4337  * p is forked by current.
4338  *
4339  * __sched_fork() is basic setup used by init_idle() too:
4340  */
4341 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4342 {
4343 	p->on_rq			= 0;
4344 
4345 	p->se.on_rq			= 0;
4346 	p->se.exec_start		= 0;
4347 	p->se.sum_exec_runtime		= 0;
4348 	p->se.prev_sum_exec_runtime	= 0;
4349 	p->se.nr_migrations		= 0;
4350 	p->se.vruntime			= 0;
4351 	INIT_LIST_HEAD(&p->se.group_node);
4352 
4353 #ifdef CONFIG_FAIR_GROUP_SCHED
4354 	p->se.cfs_rq			= NULL;
4355 #endif
4356 
4357 #ifdef CONFIG_SCHEDSTATS
4358 	/* Even if schedstat is disabled, there should not be garbage */
4359 	memset(&p->stats, 0, sizeof(p->stats));
4360 #endif
4361 
4362 	RB_CLEAR_NODE(&p->dl.rb_node);
4363 	init_dl_task_timer(&p->dl);
4364 	init_dl_inactive_task_timer(&p->dl);
4365 	__dl_clear_params(p);
4366 
4367 	INIT_LIST_HEAD(&p->rt.run_list);
4368 	p->rt.timeout		= 0;
4369 	p->rt.time_slice	= sched_rr_timeslice;
4370 	p->rt.on_rq		= 0;
4371 	p->rt.on_list		= 0;
4372 
4373 #ifdef CONFIG_PREEMPT_NOTIFIERS
4374 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4375 #endif
4376 
4377 #ifdef CONFIG_COMPACTION
4378 	p->capture_control = NULL;
4379 #endif
4380 	init_numa_balancing(clone_flags, p);
4381 #ifdef CONFIG_SMP
4382 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4383 	p->migration_pending = NULL;
4384 #endif
4385 }
4386 
4387 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4388 
4389 #ifdef CONFIG_NUMA_BALANCING
4390 
4391 int sysctl_numa_balancing_mode;
4392 
4393 static void __set_numabalancing_state(bool enabled)
4394 {
4395 	if (enabled)
4396 		static_branch_enable(&sched_numa_balancing);
4397 	else
4398 		static_branch_disable(&sched_numa_balancing);
4399 }
4400 
4401 void set_numabalancing_state(bool enabled)
4402 {
4403 	if (enabled)
4404 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4405 	else
4406 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4407 	__set_numabalancing_state(enabled);
4408 }
4409 
4410 #ifdef CONFIG_PROC_SYSCTL
4411 static void reset_memory_tiering(void)
4412 {
4413 	struct pglist_data *pgdat;
4414 
4415 	for_each_online_pgdat(pgdat) {
4416 		pgdat->nbp_threshold = 0;
4417 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4418 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4419 	}
4420 }
4421 
4422 int sysctl_numa_balancing(struct ctl_table *table, int write,
4423 			  void *buffer, size_t *lenp, loff_t *ppos)
4424 {
4425 	struct ctl_table t;
4426 	int err;
4427 	int state = sysctl_numa_balancing_mode;
4428 
4429 	if (write && !capable(CAP_SYS_ADMIN))
4430 		return -EPERM;
4431 
4432 	t = *table;
4433 	t.data = &state;
4434 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4435 	if (err < 0)
4436 		return err;
4437 	if (write) {
4438 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4439 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4440 			reset_memory_tiering();
4441 		sysctl_numa_balancing_mode = state;
4442 		__set_numabalancing_state(state);
4443 	}
4444 	return err;
4445 }
4446 #endif
4447 #endif
4448 
4449 #ifdef CONFIG_SCHEDSTATS
4450 
4451 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4452 
4453 static void set_schedstats(bool enabled)
4454 {
4455 	if (enabled)
4456 		static_branch_enable(&sched_schedstats);
4457 	else
4458 		static_branch_disable(&sched_schedstats);
4459 }
4460 
4461 void force_schedstat_enabled(void)
4462 {
4463 	if (!schedstat_enabled()) {
4464 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4465 		static_branch_enable(&sched_schedstats);
4466 	}
4467 }
4468 
4469 static int __init setup_schedstats(char *str)
4470 {
4471 	int ret = 0;
4472 	if (!str)
4473 		goto out;
4474 
4475 	if (!strcmp(str, "enable")) {
4476 		set_schedstats(true);
4477 		ret = 1;
4478 	} else if (!strcmp(str, "disable")) {
4479 		set_schedstats(false);
4480 		ret = 1;
4481 	}
4482 out:
4483 	if (!ret)
4484 		pr_warn("Unable to parse schedstats=\n");
4485 
4486 	return ret;
4487 }
4488 __setup("schedstats=", setup_schedstats);
4489 
4490 #ifdef CONFIG_PROC_SYSCTL
4491 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4492 		size_t *lenp, loff_t *ppos)
4493 {
4494 	struct ctl_table t;
4495 	int err;
4496 	int state = static_branch_likely(&sched_schedstats);
4497 
4498 	if (write && !capable(CAP_SYS_ADMIN))
4499 		return -EPERM;
4500 
4501 	t = *table;
4502 	t.data = &state;
4503 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4504 	if (err < 0)
4505 		return err;
4506 	if (write)
4507 		set_schedstats(state);
4508 	return err;
4509 }
4510 #endif /* CONFIG_PROC_SYSCTL */
4511 #endif /* CONFIG_SCHEDSTATS */
4512 
4513 #ifdef CONFIG_SYSCTL
4514 static struct ctl_table sched_core_sysctls[] = {
4515 #ifdef CONFIG_SCHEDSTATS
4516 	{
4517 		.procname       = "sched_schedstats",
4518 		.data           = NULL,
4519 		.maxlen         = sizeof(unsigned int),
4520 		.mode           = 0644,
4521 		.proc_handler   = sysctl_schedstats,
4522 		.extra1         = SYSCTL_ZERO,
4523 		.extra2         = SYSCTL_ONE,
4524 	},
4525 #endif /* CONFIG_SCHEDSTATS */
4526 #ifdef CONFIG_UCLAMP_TASK
4527 	{
4528 		.procname       = "sched_util_clamp_min",
4529 		.data           = &sysctl_sched_uclamp_util_min,
4530 		.maxlen         = sizeof(unsigned int),
4531 		.mode           = 0644,
4532 		.proc_handler   = sysctl_sched_uclamp_handler,
4533 	},
4534 	{
4535 		.procname       = "sched_util_clamp_max",
4536 		.data           = &sysctl_sched_uclamp_util_max,
4537 		.maxlen         = sizeof(unsigned int),
4538 		.mode           = 0644,
4539 		.proc_handler   = sysctl_sched_uclamp_handler,
4540 	},
4541 	{
4542 		.procname       = "sched_util_clamp_min_rt_default",
4543 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4544 		.maxlen         = sizeof(unsigned int),
4545 		.mode           = 0644,
4546 		.proc_handler   = sysctl_sched_uclamp_handler,
4547 	},
4548 #endif /* CONFIG_UCLAMP_TASK */
4549 	{}
4550 };
4551 static int __init sched_core_sysctl_init(void)
4552 {
4553 	register_sysctl_init("kernel", sched_core_sysctls);
4554 	return 0;
4555 }
4556 late_initcall(sched_core_sysctl_init);
4557 #endif /* CONFIG_SYSCTL */
4558 
4559 /*
4560  * fork()/clone()-time setup:
4561  */
4562 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4563 {
4564 	__sched_fork(clone_flags, p);
4565 	/*
4566 	 * We mark the process as NEW here. This guarantees that
4567 	 * nobody will actually run it, and a signal or other external
4568 	 * event cannot wake it up and insert it on the runqueue either.
4569 	 */
4570 	p->__state = TASK_NEW;
4571 
4572 	/*
4573 	 * Make sure we do not leak PI boosting priority to the child.
4574 	 */
4575 	p->prio = current->normal_prio;
4576 
4577 	uclamp_fork(p);
4578 
4579 	/*
4580 	 * Revert to default priority/policy on fork if requested.
4581 	 */
4582 	if (unlikely(p->sched_reset_on_fork)) {
4583 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4584 			p->policy = SCHED_NORMAL;
4585 			p->static_prio = NICE_TO_PRIO(0);
4586 			p->rt_priority = 0;
4587 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4588 			p->static_prio = NICE_TO_PRIO(0);
4589 
4590 		p->prio = p->normal_prio = p->static_prio;
4591 		set_load_weight(p, false);
4592 
4593 		/*
4594 		 * We don't need the reset flag anymore after the fork. It has
4595 		 * fulfilled its duty:
4596 		 */
4597 		p->sched_reset_on_fork = 0;
4598 	}
4599 
4600 	if (dl_prio(p->prio))
4601 		return -EAGAIN;
4602 	else if (rt_prio(p->prio))
4603 		p->sched_class = &rt_sched_class;
4604 	else
4605 		p->sched_class = &fair_sched_class;
4606 
4607 	init_entity_runnable_average(&p->se);
4608 
4609 
4610 #ifdef CONFIG_SCHED_INFO
4611 	if (likely(sched_info_on()))
4612 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4613 #endif
4614 #if defined(CONFIG_SMP)
4615 	p->on_cpu = 0;
4616 #endif
4617 	init_task_preempt_count(p);
4618 #ifdef CONFIG_SMP
4619 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4620 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4621 #endif
4622 	return 0;
4623 }
4624 
4625 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4626 {
4627 	unsigned long flags;
4628 
4629 	/*
4630 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4631 	 * required yet, but lockdep gets upset if rules are violated.
4632 	 */
4633 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4634 #ifdef CONFIG_CGROUP_SCHED
4635 	if (1) {
4636 		struct task_group *tg;
4637 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4638 				  struct task_group, css);
4639 		tg = autogroup_task_group(p, tg);
4640 		p->sched_task_group = tg;
4641 	}
4642 #endif
4643 	rseq_migrate(p);
4644 	/*
4645 	 * We're setting the CPU for the first time, we don't migrate,
4646 	 * so use __set_task_cpu().
4647 	 */
4648 	__set_task_cpu(p, smp_processor_id());
4649 	if (p->sched_class->task_fork)
4650 		p->sched_class->task_fork(p);
4651 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4652 }
4653 
4654 void sched_post_fork(struct task_struct *p)
4655 {
4656 	uclamp_post_fork(p);
4657 }
4658 
4659 unsigned long to_ratio(u64 period, u64 runtime)
4660 {
4661 	if (runtime == RUNTIME_INF)
4662 		return BW_UNIT;
4663 
4664 	/*
4665 	 * Doing this here saves a lot of checks in all
4666 	 * the calling paths, and returning zero seems
4667 	 * safe for them anyway.
4668 	 */
4669 	if (period == 0)
4670 		return 0;
4671 
4672 	return div64_u64(runtime << BW_SHIFT, period);
4673 }
4674 
4675 /*
4676  * wake_up_new_task - wake up a newly created task for the first time.
4677  *
4678  * This function will do some initial scheduler statistics housekeeping
4679  * that must be done for every newly created context, then puts the task
4680  * on the runqueue and wakes it.
4681  */
4682 void wake_up_new_task(struct task_struct *p)
4683 {
4684 	struct rq_flags rf;
4685 	struct rq *rq;
4686 
4687 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4688 	WRITE_ONCE(p->__state, TASK_RUNNING);
4689 #ifdef CONFIG_SMP
4690 	/*
4691 	 * Fork balancing, do it here and not earlier because:
4692 	 *  - cpus_ptr can change in the fork path
4693 	 *  - any previously selected CPU might disappear through hotplug
4694 	 *
4695 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4696 	 * as we're not fully set-up yet.
4697 	 */
4698 	p->recent_used_cpu = task_cpu(p);
4699 	rseq_migrate(p);
4700 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4701 #endif
4702 	rq = __task_rq_lock(p, &rf);
4703 	update_rq_clock(rq);
4704 	post_init_entity_util_avg(p);
4705 
4706 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4707 	trace_sched_wakeup_new(p);
4708 	check_preempt_curr(rq, p, WF_FORK);
4709 #ifdef CONFIG_SMP
4710 	if (p->sched_class->task_woken) {
4711 		/*
4712 		 * Nothing relies on rq->lock after this, so it's fine to
4713 		 * drop it.
4714 		 */
4715 		rq_unpin_lock(rq, &rf);
4716 		p->sched_class->task_woken(rq, p);
4717 		rq_repin_lock(rq, &rf);
4718 	}
4719 #endif
4720 	task_rq_unlock(rq, p, &rf);
4721 }
4722 
4723 #ifdef CONFIG_PREEMPT_NOTIFIERS
4724 
4725 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4726 
4727 void preempt_notifier_inc(void)
4728 {
4729 	static_branch_inc(&preempt_notifier_key);
4730 }
4731 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4732 
4733 void preempt_notifier_dec(void)
4734 {
4735 	static_branch_dec(&preempt_notifier_key);
4736 }
4737 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4738 
4739 /**
4740  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4741  * @notifier: notifier struct to register
4742  */
4743 void preempt_notifier_register(struct preempt_notifier *notifier)
4744 {
4745 	if (!static_branch_unlikely(&preempt_notifier_key))
4746 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4747 
4748 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4749 }
4750 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4751 
4752 /**
4753  * preempt_notifier_unregister - no longer interested in preemption notifications
4754  * @notifier: notifier struct to unregister
4755  *
4756  * This is *not* safe to call from within a preemption notifier.
4757  */
4758 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4759 {
4760 	hlist_del(&notifier->link);
4761 }
4762 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4763 
4764 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4765 {
4766 	struct preempt_notifier *notifier;
4767 
4768 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4769 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4770 }
4771 
4772 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4773 {
4774 	if (static_branch_unlikely(&preempt_notifier_key))
4775 		__fire_sched_in_preempt_notifiers(curr);
4776 }
4777 
4778 static void
4779 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4780 				   struct task_struct *next)
4781 {
4782 	struct preempt_notifier *notifier;
4783 
4784 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4785 		notifier->ops->sched_out(notifier, next);
4786 }
4787 
4788 static __always_inline void
4789 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4790 				 struct task_struct *next)
4791 {
4792 	if (static_branch_unlikely(&preempt_notifier_key))
4793 		__fire_sched_out_preempt_notifiers(curr, next);
4794 }
4795 
4796 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4797 
4798 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4799 {
4800 }
4801 
4802 static inline void
4803 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4804 				 struct task_struct *next)
4805 {
4806 }
4807 
4808 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4809 
4810 static inline void prepare_task(struct task_struct *next)
4811 {
4812 #ifdef CONFIG_SMP
4813 	/*
4814 	 * Claim the task as running, we do this before switching to it
4815 	 * such that any running task will have this set.
4816 	 *
4817 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4818 	 * its ordering comment.
4819 	 */
4820 	WRITE_ONCE(next->on_cpu, 1);
4821 #endif
4822 }
4823 
4824 static inline void finish_task(struct task_struct *prev)
4825 {
4826 #ifdef CONFIG_SMP
4827 	/*
4828 	 * This must be the very last reference to @prev from this CPU. After
4829 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4830 	 * must ensure this doesn't happen until the switch is completely
4831 	 * finished.
4832 	 *
4833 	 * In particular, the load of prev->state in finish_task_switch() must
4834 	 * happen before this.
4835 	 *
4836 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4837 	 */
4838 	smp_store_release(&prev->on_cpu, 0);
4839 #endif
4840 }
4841 
4842 #ifdef CONFIG_SMP
4843 
4844 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4845 {
4846 	void (*func)(struct rq *rq);
4847 	struct balance_callback *next;
4848 
4849 	lockdep_assert_rq_held(rq);
4850 
4851 	while (head) {
4852 		func = (void (*)(struct rq *))head->func;
4853 		next = head->next;
4854 		head->next = NULL;
4855 		head = next;
4856 
4857 		func(rq);
4858 	}
4859 }
4860 
4861 static void balance_push(struct rq *rq);
4862 
4863 /*
4864  * balance_push_callback is a right abuse of the callback interface and plays
4865  * by significantly different rules.
4866  *
4867  * Where the normal balance_callback's purpose is to be ran in the same context
4868  * that queued it (only later, when it's safe to drop rq->lock again),
4869  * balance_push_callback is specifically targeted at __schedule().
4870  *
4871  * This abuse is tolerated because it places all the unlikely/odd cases behind
4872  * a single test, namely: rq->balance_callback == NULL.
4873  */
4874 struct balance_callback balance_push_callback = {
4875 	.next = NULL,
4876 	.func = balance_push,
4877 };
4878 
4879 static inline struct balance_callback *
4880 __splice_balance_callbacks(struct rq *rq, bool split)
4881 {
4882 	struct balance_callback *head = rq->balance_callback;
4883 
4884 	if (likely(!head))
4885 		return NULL;
4886 
4887 	lockdep_assert_rq_held(rq);
4888 	/*
4889 	 * Must not take balance_push_callback off the list when
4890 	 * splice_balance_callbacks() and balance_callbacks() are not
4891 	 * in the same rq->lock section.
4892 	 *
4893 	 * In that case it would be possible for __schedule() to interleave
4894 	 * and observe the list empty.
4895 	 */
4896 	if (split && head == &balance_push_callback)
4897 		head = NULL;
4898 	else
4899 		rq->balance_callback = NULL;
4900 
4901 	return head;
4902 }
4903 
4904 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4905 {
4906 	return __splice_balance_callbacks(rq, true);
4907 }
4908 
4909 static void __balance_callbacks(struct rq *rq)
4910 {
4911 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4912 }
4913 
4914 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4915 {
4916 	unsigned long flags;
4917 
4918 	if (unlikely(head)) {
4919 		raw_spin_rq_lock_irqsave(rq, flags);
4920 		do_balance_callbacks(rq, head);
4921 		raw_spin_rq_unlock_irqrestore(rq, flags);
4922 	}
4923 }
4924 
4925 #else
4926 
4927 static inline void __balance_callbacks(struct rq *rq)
4928 {
4929 }
4930 
4931 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4932 {
4933 	return NULL;
4934 }
4935 
4936 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4937 {
4938 }
4939 
4940 #endif
4941 
4942 static inline void
4943 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4944 {
4945 	/*
4946 	 * Since the runqueue lock will be released by the next
4947 	 * task (which is an invalid locking op but in the case
4948 	 * of the scheduler it's an obvious special-case), so we
4949 	 * do an early lockdep release here:
4950 	 */
4951 	rq_unpin_lock(rq, rf);
4952 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4953 #ifdef CONFIG_DEBUG_SPINLOCK
4954 	/* this is a valid case when another task releases the spinlock */
4955 	rq_lockp(rq)->owner = next;
4956 #endif
4957 }
4958 
4959 static inline void finish_lock_switch(struct rq *rq)
4960 {
4961 	/*
4962 	 * If we are tracking spinlock dependencies then we have to
4963 	 * fix up the runqueue lock - which gets 'carried over' from
4964 	 * prev into current:
4965 	 */
4966 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4967 	__balance_callbacks(rq);
4968 	raw_spin_rq_unlock_irq(rq);
4969 }
4970 
4971 /*
4972  * NOP if the arch has not defined these:
4973  */
4974 
4975 #ifndef prepare_arch_switch
4976 # define prepare_arch_switch(next)	do { } while (0)
4977 #endif
4978 
4979 #ifndef finish_arch_post_lock_switch
4980 # define finish_arch_post_lock_switch()	do { } while (0)
4981 #endif
4982 
4983 static inline void kmap_local_sched_out(void)
4984 {
4985 #ifdef CONFIG_KMAP_LOCAL
4986 	if (unlikely(current->kmap_ctrl.idx))
4987 		__kmap_local_sched_out();
4988 #endif
4989 }
4990 
4991 static inline void kmap_local_sched_in(void)
4992 {
4993 #ifdef CONFIG_KMAP_LOCAL
4994 	if (unlikely(current->kmap_ctrl.idx))
4995 		__kmap_local_sched_in();
4996 #endif
4997 }
4998 
4999 /**
5000  * prepare_task_switch - prepare to switch tasks
5001  * @rq: the runqueue preparing to switch
5002  * @prev: the current task that is being switched out
5003  * @next: the task we are going to switch to.
5004  *
5005  * This is called with the rq lock held and interrupts off. It must
5006  * be paired with a subsequent finish_task_switch after the context
5007  * switch.
5008  *
5009  * prepare_task_switch sets up locking and calls architecture specific
5010  * hooks.
5011  */
5012 static inline void
5013 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5014 		    struct task_struct *next)
5015 {
5016 	kcov_prepare_switch(prev);
5017 	sched_info_switch(rq, prev, next);
5018 	perf_event_task_sched_out(prev, next);
5019 	rseq_preempt(prev);
5020 	fire_sched_out_preempt_notifiers(prev, next);
5021 	kmap_local_sched_out();
5022 	prepare_task(next);
5023 	prepare_arch_switch(next);
5024 }
5025 
5026 /**
5027  * finish_task_switch - clean up after a task-switch
5028  * @prev: the thread we just switched away from.
5029  *
5030  * finish_task_switch must be called after the context switch, paired
5031  * with a prepare_task_switch call before the context switch.
5032  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5033  * and do any other architecture-specific cleanup actions.
5034  *
5035  * Note that we may have delayed dropping an mm in context_switch(). If
5036  * so, we finish that here outside of the runqueue lock. (Doing it
5037  * with the lock held can cause deadlocks; see schedule() for
5038  * details.)
5039  *
5040  * The context switch have flipped the stack from under us and restored the
5041  * local variables which were saved when this task called schedule() in the
5042  * past. prev == current is still correct but we need to recalculate this_rq
5043  * because prev may have moved to another CPU.
5044  */
5045 static struct rq *finish_task_switch(struct task_struct *prev)
5046 	__releases(rq->lock)
5047 {
5048 	struct rq *rq = this_rq();
5049 	struct mm_struct *mm = rq->prev_mm;
5050 	unsigned int prev_state;
5051 
5052 	/*
5053 	 * The previous task will have left us with a preempt_count of 2
5054 	 * because it left us after:
5055 	 *
5056 	 *	schedule()
5057 	 *	  preempt_disable();			// 1
5058 	 *	  __schedule()
5059 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5060 	 *
5061 	 * Also, see FORK_PREEMPT_COUNT.
5062 	 */
5063 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5064 		      "corrupted preempt_count: %s/%d/0x%x\n",
5065 		      current->comm, current->pid, preempt_count()))
5066 		preempt_count_set(FORK_PREEMPT_COUNT);
5067 
5068 	rq->prev_mm = NULL;
5069 
5070 	/*
5071 	 * A task struct has one reference for the use as "current".
5072 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5073 	 * schedule one last time. The schedule call will never return, and
5074 	 * the scheduled task must drop that reference.
5075 	 *
5076 	 * We must observe prev->state before clearing prev->on_cpu (in
5077 	 * finish_task), otherwise a concurrent wakeup can get prev
5078 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5079 	 * transition, resulting in a double drop.
5080 	 */
5081 	prev_state = READ_ONCE(prev->__state);
5082 	vtime_task_switch(prev);
5083 	perf_event_task_sched_in(prev, current);
5084 	finish_task(prev);
5085 	tick_nohz_task_switch();
5086 	finish_lock_switch(rq);
5087 	finish_arch_post_lock_switch();
5088 	kcov_finish_switch(current);
5089 	/*
5090 	 * kmap_local_sched_out() is invoked with rq::lock held and
5091 	 * interrupts disabled. There is no requirement for that, but the
5092 	 * sched out code does not have an interrupt enabled section.
5093 	 * Restoring the maps on sched in does not require interrupts being
5094 	 * disabled either.
5095 	 */
5096 	kmap_local_sched_in();
5097 
5098 	fire_sched_in_preempt_notifiers(current);
5099 	/*
5100 	 * When switching through a kernel thread, the loop in
5101 	 * membarrier_{private,global}_expedited() may have observed that
5102 	 * kernel thread and not issued an IPI. It is therefore possible to
5103 	 * schedule between user->kernel->user threads without passing though
5104 	 * switch_mm(). Membarrier requires a barrier after storing to
5105 	 * rq->curr, before returning to userspace, so provide them here:
5106 	 *
5107 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5108 	 *   provided by mmdrop(),
5109 	 * - a sync_core for SYNC_CORE.
5110 	 */
5111 	if (mm) {
5112 		membarrier_mm_sync_core_before_usermode(mm);
5113 		mmdrop_sched(mm);
5114 	}
5115 	if (unlikely(prev_state == TASK_DEAD)) {
5116 		if (prev->sched_class->task_dead)
5117 			prev->sched_class->task_dead(prev);
5118 
5119 		/* Task is done with its stack. */
5120 		put_task_stack(prev);
5121 
5122 		put_task_struct_rcu_user(prev);
5123 	}
5124 
5125 	return rq;
5126 }
5127 
5128 /**
5129  * schedule_tail - first thing a freshly forked thread must call.
5130  * @prev: the thread we just switched away from.
5131  */
5132 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5133 	__releases(rq->lock)
5134 {
5135 	/*
5136 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5137 	 * finish_task_switch() for details.
5138 	 *
5139 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5140 	 * and the preempt_enable() will end up enabling preemption (on
5141 	 * PREEMPT_COUNT kernels).
5142 	 */
5143 
5144 	finish_task_switch(prev);
5145 	preempt_enable();
5146 
5147 	if (current->set_child_tid)
5148 		put_user(task_pid_vnr(current), current->set_child_tid);
5149 
5150 	calculate_sigpending();
5151 }
5152 
5153 /*
5154  * context_switch - switch to the new MM and the new thread's register state.
5155  */
5156 static __always_inline struct rq *
5157 context_switch(struct rq *rq, struct task_struct *prev,
5158 	       struct task_struct *next, struct rq_flags *rf)
5159 {
5160 	prepare_task_switch(rq, prev, next);
5161 
5162 	/*
5163 	 * For paravirt, this is coupled with an exit in switch_to to
5164 	 * combine the page table reload and the switch backend into
5165 	 * one hypercall.
5166 	 */
5167 	arch_start_context_switch(prev);
5168 
5169 	/*
5170 	 * kernel -> kernel   lazy + transfer active
5171 	 *   user -> kernel   lazy + mmgrab() active
5172 	 *
5173 	 * kernel ->   user   switch + mmdrop() active
5174 	 *   user ->   user   switch
5175 	 */
5176 	if (!next->mm) {                                // to kernel
5177 		enter_lazy_tlb(prev->active_mm, next);
5178 
5179 		next->active_mm = prev->active_mm;
5180 		if (prev->mm)                           // from user
5181 			mmgrab(prev->active_mm);
5182 		else
5183 			prev->active_mm = NULL;
5184 	} else {                                        // to user
5185 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5186 		/*
5187 		 * sys_membarrier() requires an smp_mb() between setting
5188 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5189 		 *
5190 		 * The below provides this either through switch_mm(), or in
5191 		 * case 'prev->active_mm == next->mm' through
5192 		 * finish_task_switch()'s mmdrop().
5193 		 */
5194 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5195 		lru_gen_use_mm(next->mm);
5196 
5197 		if (!prev->mm) {                        // from kernel
5198 			/* will mmdrop() in finish_task_switch(). */
5199 			rq->prev_mm = prev->active_mm;
5200 			prev->active_mm = NULL;
5201 		}
5202 	}
5203 
5204 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5205 
5206 	prepare_lock_switch(rq, next, rf);
5207 
5208 	/* Here we just switch the register state and the stack. */
5209 	switch_to(prev, next, prev);
5210 	barrier();
5211 
5212 	return finish_task_switch(prev);
5213 }
5214 
5215 /*
5216  * nr_running and nr_context_switches:
5217  *
5218  * externally visible scheduler statistics: current number of runnable
5219  * threads, total number of context switches performed since bootup.
5220  */
5221 unsigned int nr_running(void)
5222 {
5223 	unsigned int i, sum = 0;
5224 
5225 	for_each_online_cpu(i)
5226 		sum += cpu_rq(i)->nr_running;
5227 
5228 	return sum;
5229 }
5230 
5231 /*
5232  * Check if only the current task is running on the CPU.
5233  *
5234  * Caution: this function does not check that the caller has disabled
5235  * preemption, thus the result might have a time-of-check-to-time-of-use
5236  * race.  The caller is responsible to use it correctly, for example:
5237  *
5238  * - from a non-preemptible section (of course)
5239  *
5240  * - from a thread that is bound to a single CPU
5241  *
5242  * - in a loop with very short iterations (e.g. a polling loop)
5243  */
5244 bool single_task_running(void)
5245 {
5246 	return raw_rq()->nr_running == 1;
5247 }
5248 EXPORT_SYMBOL(single_task_running);
5249 
5250 unsigned long long nr_context_switches(void)
5251 {
5252 	int i;
5253 	unsigned long long sum = 0;
5254 
5255 	for_each_possible_cpu(i)
5256 		sum += cpu_rq(i)->nr_switches;
5257 
5258 	return sum;
5259 }
5260 
5261 /*
5262  * Consumers of these two interfaces, like for example the cpuidle menu
5263  * governor, are using nonsensical data. Preferring shallow idle state selection
5264  * for a CPU that has IO-wait which might not even end up running the task when
5265  * it does become runnable.
5266  */
5267 
5268 unsigned int nr_iowait_cpu(int cpu)
5269 {
5270 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5271 }
5272 
5273 /*
5274  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5275  *
5276  * The idea behind IO-wait account is to account the idle time that we could
5277  * have spend running if it were not for IO. That is, if we were to improve the
5278  * storage performance, we'd have a proportional reduction in IO-wait time.
5279  *
5280  * This all works nicely on UP, where, when a task blocks on IO, we account
5281  * idle time as IO-wait, because if the storage were faster, it could've been
5282  * running and we'd not be idle.
5283  *
5284  * This has been extended to SMP, by doing the same for each CPU. This however
5285  * is broken.
5286  *
5287  * Imagine for instance the case where two tasks block on one CPU, only the one
5288  * CPU will have IO-wait accounted, while the other has regular idle. Even
5289  * though, if the storage were faster, both could've ran at the same time,
5290  * utilising both CPUs.
5291  *
5292  * This means, that when looking globally, the current IO-wait accounting on
5293  * SMP is a lower bound, by reason of under accounting.
5294  *
5295  * Worse, since the numbers are provided per CPU, they are sometimes
5296  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5297  * associated with any one particular CPU, it can wake to another CPU than it
5298  * blocked on. This means the per CPU IO-wait number is meaningless.
5299  *
5300  * Task CPU affinities can make all that even more 'interesting'.
5301  */
5302 
5303 unsigned int nr_iowait(void)
5304 {
5305 	unsigned int i, sum = 0;
5306 
5307 	for_each_possible_cpu(i)
5308 		sum += nr_iowait_cpu(i);
5309 
5310 	return sum;
5311 }
5312 
5313 #ifdef CONFIG_SMP
5314 
5315 /*
5316  * sched_exec - execve() is a valuable balancing opportunity, because at
5317  * this point the task has the smallest effective memory and cache footprint.
5318  */
5319 void sched_exec(void)
5320 {
5321 	struct task_struct *p = current;
5322 	unsigned long flags;
5323 	int dest_cpu;
5324 
5325 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5326 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5327 	if (dest_cpu == smp_processor_id())
5328 		goto unlock;
5329 
5330 	if (likely(cpu_active(dest_cpu))) {
5331 		struct migration_arg arg = { p, dest_cpu };
5332 
5333 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5334 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5335 		return;
5336 	}
5337 unlock:
5338 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5339 }
5340 
5341 #endif
5342 
5343 DEFINE_PER_CPU(struct kernel_stat, kstat);
5344 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5345 
5346 EXPORT_PER_CPU_SYMBOL(kstat);
5347 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5348 
5349 /*
5350  * The function fair_sched_class.update_curr accesses the struct curr
5351  * and its field curr->exec_start; when called from task_sched_runtime(),
5352  * we observe a high rate of cache misses in practice.
5353  * Prefetching this data results in improved performance.
5354  */
5355 static inline void prefetch_curr_exec_start(struct task_struct *p)
5356 {
5357 #ifdef CONFIG_FAIR_GROUP_SCHED
5358 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5359 #else
5360 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5361 #endif
5362 	prefetch(curr);
5363 	prefetch(&curr->exec_start);
5364 }
5365 
5366 /*
5367  * Return accounted runtime for the task.
5368  * In case the task is currently running, return the runtime plus current's
5369  * pending runtime that have not been accounted yet.
5370  */
5371 unsigned long long task_sched_runtime(struct task_struct *p)
5372 {
5373 	struct rq_flags rf;
5374 	struct rq *rq;
5375 	u64 ns;
5376 
5377 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5378 	/*
5379 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5380 	 * So we have a optimization chance when the task's delta_exec is 0.
5381 	 * Reading ->on_cpu is racy, but this is ok.
5382 	 *
5383 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5384 	 * If we race with it entering CPU, unaccounted time is 0. This is
5385 	 * indistinguishable from the read occurring a few cycles earlier.
5386 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5387 	 * been accounted, so we're correct here as well.
5388 	 */
5389 	if (!p->on_cpu || !task_on_rq_queued(p))
5390 		return p->se.sum_exec_runtime;
5391 #endif
5392 
5393 	rq = task_rq_lock(p, &rf);
5394 	/*
5395 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5396 	 * project cycles that may never be accounted to this
5397 	 * thread, breaking clock_gettime().
5398 	 */
5399 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5400 		prefetch_curr_exec_start(p);
5401 		update_rq_clock(rq);
5402 		p->sched_class->update_curr(rq);
5403 	}
5404 	ns = p->se.sum_exec_runtime;
5405 	task_rq_unlock(rq, p, &rf);
5406 
5407 	return ns;
5408 }
5409 
5410 #ifdef CONFIG_SCHED_DEBUG
5411 static u64 cpu_resched_latency(struct rq *rq)
5412 {
5413 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5414 	u64 resched_latency, now = rq_clock(rq);
5415 	static bool warned_once;
5416 
5417 	if (sysctl_resched_latency_warn_once && warned_once)
5418 		return 0;
5419 
5420 	if (!need_resched() || !latency_warn_ms)
5421 		return 0;
5422 
5423 	if (system_state == SYSTEM_BOOTING)
5424 		return 0;
5425 
5426 	if (!rq->last_seen_need_resched_ns) {
5427 		rq->last_seen_need_resched_ns = now;
5428 		rq->ticks_without_resched = 0;
5429 		return 0;
5430 	}
5431 
5432 	rq->ticks_without_resched++;
5433 	resched_latency = now - rq->last_seen_need_resched_ns;
5434 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5435 		return 0;
5436 
5437 	warned_once = true;
5438 
5439 	return resched_latency;
5440 }
5441 
5442 static int __init setup_resched_latency_warn_ms(char *str)
5443 {
5444 	long val;
5445 
5446 	if ((kstrtol(str, 0, &val))) {
5447 		pr_warn("Unable to set resched_latency_warn_ms\n");
5448 		return 1;
5449 	}
5450 
5451 	sysctl_resched_latency_warn_ms = val;
5452 	return 1;
5453 }
5454 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5455 #else
5456 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5457 #endif /* CONFIG_SCHED_DEBUG */
5458 
5459 /*
5460  * This function gets called by the timer code, with HZ frequency.
5461  * We call it with interrupts disabled.
5462  */
5463 void scheduler_tick(void)
5464 {
5465 	int cpu = smp_processor_id();
5466 	struct rq *rq = cpu_rq(cpu);
5467 	struct task_struct *curr = rq->curr;
5468 	struct rq_flags rf;
5469 	unsigned long thermal_pressure;
5470 	u64 resched_latency;
5471 
5472 	arch_scale_freq_tick();
5473 	sched_clock_tick();
5474 
5475 	rq_lock(rq, &rf);
5476 
5477 	update_rq_clock(rq);
5478 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5479 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5480 	curr->sched_class->task_tick(rq, curr, 0);
5481 	if (sched_feat(LATENCY_WARN))
5482 		resched_latency = cpu_resched_latency(rq);
5483 	calc_global_load_tick(rq);
5484 	sched_core_tick(rq);
5485 
5486 	rq_unlock(rq, &rf);
5487 
5488 	if (sched_feat(LATENCY_WARN) && resched_latency)
5489 		resched_latency_warn(cpu, resched_latency);
5490 
5491 	perf_event_task_tick();
5492 
5493 #ifdef CONFIG_SMP
5494 	rq->idle_balance = idle_cpu(cpu);
5495 	trigger_load_balance(rq);
5496 #endif
5497 }
5498 
5499 #ifdef CONFIG_NO_HZ_FULL
5500 
5501 struct tick_work {
5502 	int			cpu;
5503 	atomic_t		state;
5504 	struct delayed_work	work;
5505 };
5506 /* Values for ->state, see diagram below. */
5507 #define TICK_SCHED_REMOTE_OFFLINE	0
5508 #define TICK_SCHED_REMOTE_OFFLINING	1
5509 #define TICK_SCHED_REMOTE_RUNNING	2
5510 
5511 /*
5512  * State diagram for ->state:
5513  *
5514  *
5515  *          TICK_SCHED_REMOTE_OFFLINE
5516  *                    |   ^
5517  *                    |   |
5518  *                    |   | sched_tick_remote()
5519  *                    |   |
5520  *                    |   |
5521  *                    +--TICK_SCHED_REMOTE_OFFLINING
5522  *                    |   ^
5523  *                    |   |
5524  * sched_tick_start() |   | sched_tick_stop()
5525  *                    |   |
5526  *                    V   |
5527  *          TICK_SCHED_REMOTE_RUNNING
5528  *
5529  *
5530  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5531  * and sched_tick_start() are happy to leave the state in RUNNING.
5532  */
5533 
5534 static struct tick_work __percpu *tick_work_cpu;
5535 
5536 static void sched_tick_remote(struct work_struct *work)
5537 {
5538 	struct delayed_work *dwork = to_delayed_work(work);
5539 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5540 	int cpu = twork->cpu;
5541 	struct rq *rq = cpu_rq(cpu);
5542 	struct task_struct *curr;
5543 	struct rq_flags rf;
5544 	u64 delta;
5545 	int os;
5546 
5547 	/*
5548 	 * Handle the tick only if it appears the remote CPU is running in full
5549 	 * dynticks mode. The check is racy by nature, but missing a tick or
5550 	 * having one too much is no big deal because the scheduler tick updates
5551 	 * statistics and checks timeslices in a time-independent way, regardless
5552 	 * of when exactly it is running.
5553 	 */
5554 	if (!tick_nohz_tick_stopped_cpu(cpu))
5555 		goto out_requeue;
5556 
5557 	rq_lock_irq(rq, &rf);
5558 	curr = rq->curr;
5559 	if (cpu_is_offline(cpu))
5560 		goto out_unlock;
5561 
5562 	update_rq_clock(rq);
5563 
5564 	if (!is_idle_task(curr)) {
5565 		/*
5566 		 * Make sure the next tick runs within a reasonable
5567 		 * amount of time.
5568 		 */
5569 		delta = rq_clock_task(rq) - curr->se.exec_start;
5570 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5571 	}
5572 	curr->sched_class->task_tick(rq, curr, 0);
5573 
5574 	calc_load_nohz_remote(rq);
5575 out_unlock:
5576 	rq_unlock_irq(rq, &rf);
5577 out_requeue:
5578 
5579 	/*
5580 	 * Run the remote tick once per second (1Hz). This arbitrary
5581 	 * frequency is large enough to avoid overload but short enough
5582 	 * to keep scheduler internal stats reasonably up to date.  But
5583 	 * first update state to reflect hotplug activity if required.
5584 	 */
5585 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5586 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5587 	if (os == TICK_SCHED_REMOTE_RUNNING)
5588 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5589 }
5590 
5591 static void sched_tick_start(int cpu)
5592 {
5593 	int os;
5594 	struct tick_work *twork;
5595 
5596 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5597 		return;
5598 
5599 	WARN_ON_ONCE(!tick_work_cpu);
5600 
5601 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5602 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5603 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5604 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5605 		twork->cpu = cpu;
5606 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5607 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5608 	}
5609 }
5610 
5611 #ifdef CONFIG_HOTPLUG_CPU
5612 static void sched_tick_stop(int cpu)
5613 {
5614 	struct tick_work *twork;
5615 	int os;
5616 
5617 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5618 		return;
5619 
5620 	WARN_ON_ONCE(!tick_work_cpu);
5621 
5622 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5623 	/* There cannot be competing actions, but don't rely on stop-machine. */
5624 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5625 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5626 	/* Don't cancel, as this would mess up the state machine. */
5627 }
5628 #endif /* CONFIG_HOTPLUG_CPU */
5629 
5630 int __init sched_tick_offload_init(void)
5631 {
5632 	tick_work_cpu = alloc_percpu(struct tick_work);
5633 	BUG_ON(!tick_work_cpu);
5634 	return 0;
5635 }
5636 
5637 #else /* !CONFIG_NO_HZ_FULL */
5638 static inline void sched_tick_start(int cpu) { }
5639 static inline void sched_tick_stop(int cpu) { }
5640 #endif
5641 
5642 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5643 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5644 /*
5645  * If the value passed in is equal to the current preempt count
5646  * then we just disabled preemption. Start timing the latency.
5647  */
5648 static inline void preempt_latency_start(int val)
5649 {
5650 	if (preempt_count() == val) {
5651 		unsigned long ip = get_lock_parent_ip();
5652 #ifdef CONFIG_DEBUG_PREEMPT
5653 		current->preempt_disable_ip = ip;
5654 #endif
5655 		trace_preempt_off(CALLER_ADDR0, ip);
5656 	}
5657 }
5658 
5659 void preempt_count_add(int val)
5660 {
5661 #ifdef CONFIG_DEBUG_PREEMPT
5662 	/*
5663 	 * Underflow?
5664 	 */
5665 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5666 		return;
5667 #endif
5668 	__preempt_count_add(val);
5669 #ifdef CONFIG_DEBUG_PREEMPT
5670 	/*
5671 	 * Spinlock count overflowing soon?
5672 	 */
5673 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5674 				PREEMPT_MASK - 10);
5675 #endif
5676 	preempt_latency_start(val);
5677 }
5678 EXPORT_SYMBOL(preempt_count_add);
5679 NOKPROBE_SYMBOL(preempt_count_add);
5680 
5681 /*
5682  * If the value passed in equals to the current preempt count
5683  * then we just enabled preemption. Stop timing the latency.
5684  */
5685 static inline void preempt_latency_stop(int val)
5686 {
5687 	if (preempt_count() == val)
5688 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5689 }
5690 
5691 void preempt_count_sub(int val)
5692 {
5693 #ifdef CONFIG_DEBUG_PREEMPT
5694 	/*
5695 	 * Underflow?
5696 	 */
5697 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5698 		return;
5699 	/*
5700 	 * Is the spinlock portion underflowing?
5701 	 */
5702 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5703 			!(preempt_count() & PREEMPT_MASK)))
5704 		return;
5705 #endif
5706 
5707 	preempt_latency_stop(val);
5708 	__preempt_count_sub(val);
5709 }
5710 EXPORT_SYMBOL(preempt_count_sub);
5711 NOKPROBE_SYMBOL(preempt_count_sub);
5712 
5713 #else
5714 static inline void preempt_latency_start(int val) { }
5715 static inline void preempt_latency_stop(int val) { }
5716 #endif
5717 
5718 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5719 {
5720 #ifdef CONFIG_DEBUG_PREEMPT
5721 	return p->preempt_disable_ip;
5722 #else
5723 	return 0;
5724 #endif
5725 }
5726 
5727 /*
5728  * Print scheduling while atomic bug:
5729  */
5730 static noinline void __schedule_bug(struct task_struct *prev)
5731 {
5732 	/* Save this before calling printk(), since that will clobber it */
5733 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5734 
5735 	if (oops_in_progress)
5736 		return;
5737 
5738 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5739 		prev->comm, prev->pid, preempt_count());
5740 
5741 	debug_show_held_locks(prev);
5742 	print_modules();
5743 	if (irqs_disabled())
5744 		print_irqtrace_events(prev);
5745 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5746 	    && in_atomic_preempt_off()) {
5747 		pr_err("Preemption disabled at:");
5748 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5749 	}
5750 	if (panic_on_warn)
5751 		panic("scheduling while atomic\n");
5752 
5753 	dump_stack();
5754 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5755 }
5756 
5757 /*
5758  * Various schedule()-time debugging checks and statistics:
5759  */
5760 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5761 {
5762 #ifdef CONFIG_SCHED_STACK_END_CHECK
5763 	if (task_stack_end_corrupted(prev))
5764 		panic("corrupted stack end detected inside scheduler\n");
5765 
5766 	if (task_scs_end_corrupted(prev))
5767 		panic("corrupted shadow stack detected inside scheduler\n");
5768 #endif
5769 
5770 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5771 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5772 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5773 			prev->comm, prev->pid, prev->non_block_count);
5774 		dump_stack();
5775 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5776 	}
5777 #endif
5778 
5779 	if (unlikely(in_atomic_preempt_off())) {
5780 		__schedule_bug(prev);
5781 		preempt_count_set(PREEMPT_DISABLED);
5782 	}
5783 	rcu_sleep_check();
5784 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5785 
5786 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5787 
5788 	schedstat_inc(this_rq()->sched_count);
5789 }
5790 
5791 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5792 				  struct rq_flags *rf)
5793 {
5794 #ifdef CONFIG_SMP
5795 	const struct sched_class *class;
5796 	/*
5797 	 * We must do the balancing pass before put_prev_task(), such
5798 	 * that when we release the rq->lock the task is in the same
5799 	 * state as before we took rq->lock.
5800 	 *
5801 	 * We can terminate the balance pass as soon as we know there is
5802 	 * a runnable task of @class priority or higher.
5803 	 */
5804 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5805 		if (class->balance(rq, prev, rf))
5806 			break;
5807 	}
5808 #endif
5809 
5810 	put_prev_task(rq, prev);
5811 }
5812 
5813 /*
5814  * Pick up the highest-prio task:
5815  */
5816 static inline struct task_struct *
5817 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5818 {
5819 	const struct sched_class *class;
5820 	struct task_struct *p;
5821 
5822 	/*
5823 	 * Optimization: we know that if all tasks are in the fair class we can
5824 	 * call that function directly, but only if the @prev task wasn't of a
5825 	 * higher scheduling class, because otherwise those lose the
5826 	 * opportunity to pull in more work from other CPUs.
5827 	 */
5828 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5829 		   rq->nr_running == rq->cfs.h_nr_running)) {
5830 
5831 		p = pick_next_task_fair(rq, prev, rf);
5832 		if (unlikely(p == RETRY_TASK))
5833 			goto restart;
5834 
5835 		/* Assume the next prioritized class is idle_sched_class */
5836 		if (!p) {
5837 			put_prev_task(rq, prev);
5838 			p = pick_next_task_idle(rq);
5839 		}
5840 
5841 		return p;
5842 	}
5843 
5844 restart:
5845 	put_prev_task_balance(rq, prev, rf);
5846 
5847 	for_each_class(class) {
5848 		p = class->pick_next_task(rq);
5849 		if (p)
5850 			return p;
5851 	}
5852 
5853 	BUG(); /* The idle class should always have a runnable task. */
5854 }
5855 
5856 #ifdef CONFIG_SCHED_CORE
5857 static inline bool is_task_rq_idle(struct task_struct *t)
5858 {
5859 	return (task_rq(t)->idle == t);
5860 }
5861 
5862 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5863 {
5864 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5865 }
5866 
5867 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5868 {
5869 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5870 		return true;
5871 
5872 	return a->core_cookie == b->core_cookie;
5873 }
5874 
5875 static inline struct task_struct *pick_task(struct rq *rq)
5876 {
5877 	const struct sched_class *class;
5878 	struct task_struct *p;
5879 
5880 	for_each_class(class) {
5881 		p = class->pick_task(rq);
5882 		if (p)
5883 			return p;
5884 	}
5885 
5886 	BUG(); /* The idle class should always have a runnable task. */
5887 }
5888 
5889 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5890 
5891 static void queue_core_balance(struct rq *rq);
5892 
5893 static struct task_struct *
5894 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5895 {
5896 	struct task_struct *next, *p, *max = NULL;
5897 	const struct cpumask *smt_mask;
5898 	bool fi_before = false;
5899 	bool core_clock_updated = (rq == rq->core);
5900 	unsigned long cookie;
5901 	int i, cpu, occ = 0;
5902 	struct rq *rq_i;
5903 	bool need_sync;
5904 
5905 	if (!sched_core_enabled(rq))
5906 		return __pick_next_task(rq, prev, rf);
5907 
5908 	cpu = cpu_of(rq);
5909 
5910 	/* Stopper task is switching into idle, no need core-wide selection. */
5911 	if (cpu_is_offline(cpu)) {
5912 		/*
5913 		 * Reset core_pick so that we don't enter the fastpath when
5914 		 * coming online. core_pick would already be migrated to
5915 		 * another cpu during offline.
5916 		 */
5917 		rq->core_pick = NULL;
5918 		return __pick_next_task(rq, prev, rf);
5919 	}
5920 
5921 	/*
5922 	 * If there were no {en,de}queues since we picked (IOW, the task
5923 	 * pointers are all still valid), and we haven't scheduled the last
5924 	 * pick yet, do so now.
5925 	 *
5926 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5927 	 * it was either offline or went offline during a sibling's core-wide
5928 	 * selection. In this case, do a core-wide selection.
5929 	 */
5930 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5931 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5932 	    rq->core_pick) {
5933 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5934 
5935 		next = rq->core_pick;
5936 		if (next != prev) {
5937 			put_prev_task(rq, prev);
5938 			set_next_task(rq, next);
5939 		}
5940 
5941 		rq->core_pick = NULL;
5942 		goto out;
5943 	}
5944 
5945 	put_prev_task_balance(rq, prev, rf);
5946 
5947 	smt_mask = cpu_smt_mask(cpu);
5948 	need_sync = !!rq->core->core_cookie;
5949 
5950 	/* reset state */
5951 	rq->core->core_cookie = 0UL;
5952 	if (rq->core->core_forceidle_count) {
5953 		if (!core_clock_updated) {
5954 			update_rq_clock(rq->core);
5955 			core_clock_updated = true;
5956 		}
5957 		sched_core_account_forceidle(rq);
5958 		/* reset after accounting force idle */
5959 		rq->core->core_forceidle_start = 0;
5960 		rq->core->core_forceidle_count = 0;
5961 		rq->core->core_forceidle_occupation = 0;
5962 		need_sync = true;
5963 		fi_before = true;
5964 	}
5965 
5966 	/*
5967 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5968 	 *
5969 	 * @task_seq guards the task state ({en,de}queues)
5970 	 * @pick_seq is the @task_seq we did a selection on
5971 	 * @sched_seq is the @pick_seq we scheduled
5972 	 *
5973 	 * However, preemptions can cause multiple picks on the same task set.
5974 	 * 'Fix' this by also increasing @task_seq for every pick.
5975 	 */
5976 	rq->core->core_task_seq++;
5977 
5978 	/*
5979 	 * Optimize for common case where this CPU has no cookies
5980 	 * and there are no cookied tasks running on siblings.
5981 	 */
5982 	if (!need_sync) {
5983 		next = pick_task(rq);
5984 		if (!next->core_cookie) {
5985 			rq->core_pick = NULL;
5986 			/*
5987 			 * For robustness, update the min_vruntime_fi for
5988 			 * unconstrained picks as well.
5989 			 */
5990 			WARN_ON_ONCE(fi_before);
5991 			task_vruntime_update(rq, next, false);
5992 			goto out_set_next;
5993 		}
5994 	}
5995 
5996 	/*
5997 	 * For each thread: do the regular task pick and find the max prio task
5998 	 * amongst them.
5999 	 *
6000 	 * Tie-break prio towards the current CPU
6001 	 */
6002 	for_each_cpu_wrap(i, smt_mask, cpu) {
6003 		rq_i = cpu_rq(i);
6004 
6005 		/*
6006 		 * Current cpu always has its clock updated on entrance to
6007 		 * pick_next_task(). If the current cpu is not the core,
6008 		 * the core may also have been updated above.
6009 		 */
6010 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6011 			update_rq_clock(rq_i);
6012 
6013 		p = rq_i->core_pick = pick_task(rq_i);
6014 		if (!max || prio_less(max, p, fi_before))
6015 			max = p;
6016 	}
6017 
6018 	cookie = rq->core->core_cookie = max->core_cookie;
6019 
6020 	/*
6021 	 * For each thread: try and find a runnable task that matches @max or
6022 	 * force idle.
6023 	 */
6024 	for_each_cpu(i, smt_mask) {
6025 		rq_i = cpu_rq(i);
6026 		p = rq_i->core_pick;
6027 
6028 		if (!cookie_equals(p, cookie)) {
6029 			p = NULL;
6030 			if (cookie)
6031 				p = sched_core_find(rq_i, cookie);
6032 			if (!p)
6033 				p = idle_sched_class.pick_task(rq_i);
6034 		}
6035 
6036 		rq_i->core_pick = p;
6037 
6038 		if (p == rq_i->idle) {
6039 			if (rq_i->nr_running) {
6040 				rq->core->core_forceidle_count++;
6041 				if (!fi_before)
6042 					rq->core->core_forceidle_seq++;
6043 			}
6044 		} else {
6045 			occ++;
6046 		}
6047 	}
6048 
6049 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6050 		rq->core->core_forceidle_start = rq_clock(rq->core);
6051 		rq->core->core_forceidle_occupation = occ;
6052 	}
6053 
6054 	rq->core->core_pick_seq = rq->core->core_task_seq;
6055 	next = rq->core_pick;
6056 	rq->core_sched_seq = rq->core->core_pick_seq;
6057 
6058 	/* Something should have been selected for current CPU */
6059 	WARN_ON_ONCE(!next);
6060 
6061 	/*
6062 	 * Reschedule siblings
6063 	 *
6064 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6065 	 * sending an IPI (below) ensures the sibling will no longer be running
6066 	 * their task. This ensures there is no inter-sibling overlap between
6067 	 * non-matching user state.
6068 	 */
6069 	for_each_cpu(i, smt_mask) {
6070 		rq_i = cpu_rq(i);
6071 
6072 		/*
6073 		 * An online sibling might have gone offline before a task
6074 		 * could be picked for it, or it might be offline but later
6075 		 * happen to come online, but its too late and nothing was
6076 		 * picked for it.  That's Ok - it will pick tasks for itself,
6077 		 * so ignore it.
6078 		 */
6079 		if (!rq_i->core_pick)
6080 			continue;
6081 
6082 		/*
6083 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6084 		 * fi_before     fi      update?
6085 		 *  0            0       1
6086 		 *  0            1       1
6087 		 *  1            0       1
6088 		 *  1            1       0
6089 		 */
6090 		if (!(fi_before && rq->core->core_forceidle_count))
6091 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6092 
6093 		rq_i->core_pick->core_occupation = occ;
6094 
6095 		if (i == cpu) {
6096 			rq_i->core_pick = NULL;
6097 			continue;
6098 		}
6099 
6100 		/* Did we break L1TF mitigation requirements? */
6101 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6102 
6103 		if (rq_i->curr == rq_i->core_pick) {
6104 			rq_i->core_pick = NULL;
6105 			continue;
6106 		}
6107 
6108 		resched_curr(rq_i);
6109 	}
6110 
6111 out_set_next:
6112 	set_next_task(rq, next);
6113 out:
6114 	if (rq->core->core_forceidle_count && next == rq->idle)
6115 		queue_core_balance(rq);
6116 
6117 	return next;
6118 }
6119 
6120 static bool try_steal_cookie(int this, int that)
6121 {
6122 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6123 	struct task_struct *p;
6124 	unsigned long cookie;
6125 	bool success = false;
6126 
6127 	local_irq_disable();
6128 	double_rq_lock(dst, src);
6129 
6130 	cookie = dst->core->core_cookie;
6131 	if (!cookie)
6132 		goto unlock;
6133 
6134 	if (dst->curr != dst->idle)
6135 		goto unlock;
6136 
6137 	p = sched_core_find(src, cookie);
6138 	if (p == src->idle)
6139 		goto unlock;
6140 
6141 	do {
6142 		if (p == src->core_pick || p == src->curr)
6143 			goto next;
6144 
6145 		if (!is_cpu_allowed(p, this))
6146 			goto next;
6147 
6148 		if (p->core_occupation > dst->idle->core_occupation)
6149 			goto next;
6150 
6151 		deactivate_task(src, p, 0);
6152 		set_task_cpu(p, this);
6153 		activate_task(dst, p, 0);
6154 
6155 		resched_curr(dst);
6156 
6157 		success = true;
6158 		break;
6159 
6160 next:
6161 		p = sched_core_next(p, cookie);
6162 	} while (p);
6163 
6164 unlock:
6165 	double_rq_unlock(dst, src);
6166 	local_irq_enable();
6167 
6168 	return success;
6169 }
6170 
6171 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6172 {
6173 	int i;
6174 
6175 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6176 		if (i == cpu)
6177 			continue;
6178 
6179 		if (need_resched())
6180 			break;
6181 
6182 		if (try_steal_cookie(cpu, i))
6183 			return true;
6184 	}
6185 
6186 	return false;
6187 }
6188 
6189 static void sched_core_balance(struct rq *rq)
6190 {
6191 	struct sched_domain *sd;
6192 	int cpu = cpu_of(rq);
6193 
6194 	preempt_disable();
6195 	rcu_read_lock();
6196 	raw_spin_rq_unlock_irq(rq);
6197 	for_each_domain(cpu, sd) {
6198 		if (need_resched())
6199 			break;
6200 
6201 		if (steal_cookie_task(cpu, sd))
6202 			break;
6203 	}
6204 	raw_spin_rq_lock_irq(rq);
6205 	rcu_read_unlock();
6206 	preempt_enable();
6207 }
6208 
6209 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6210 
6211 static void queue_core_balance(struct rq *rq)
6212 {
6213 	if (!sched_core_enabled(rq))
6214 		return;
6215 
6216 	if (!rq->core->core_cookie)
6217 		return;
6218 
6219 	if (!rq->nr_running) /* not forced idle */
6220 		return;
6221 
6222 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6223 }
6224 
6225 static void sched_core_cpu_starting(unsigned int cpu)
6226 {
6227 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6228 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6229 	unsigned long flags;
6230 	int t;
6231 
6232 	sched_core_lock(cpu, &flags);
6233 
6234 	WARN_ON_ONCE(rq->core != rq);
6235 
6236 	/* if we're the first, we'll be our own leader */
6237 	if (cpumask_weight(smt_mask) == 1)
6238 		goto unlock;
6239 
6240 	/* find the leader */
6241 	for_each_cpu(t, smt_mask) {
6242 		if (t == cpu)
6243 			continue;
6244 		rq = cpu_rq(t);
6245 		if (rq->core == rq) {
6246 			core_rq = rq;
6247 			break;
6248 		}
6249 	}
6250 
6251 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6252 		goto unlock;
6253 
6254 	/* install and validate core_rq */
6255 	for_each_cpu(t, smt_mask) {
6256 		rq = cpu_rq(t);
6257 
6258 		if (t == cpu)
6259 			rq->core = core_rq;
6260 
6261 		WARN_ON_ONCE(rq->core != core_rq);
6262 	}
6263 
6264 unlock:
6265 	sched_core_unlock(cpu, &flags);
6266 }
6267 
6268 static void sched_core_cpu_deactivate(unsigned int cpu)
6269 {
6270 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6271 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6272 	unsigned long flags;
6273 	int t;
6274 
6275 	sched_core_lock(cpu, &flags);
6276 
6277 	/* if we're the last man standing, nothing to do */
6278 	if (cpumask_weight(smt_mask) == 1) {
6279 		WARN_ON_ONCE(rq->core != rq);
6280 		goto unlock;
6281 	}
6282 
6283 	/* if we're not the leader, nothing to do */
6284 	if (rq->core != rq)
6285 		goto unlock;
6286 
6287 	/* find a new leader */
6288 	for_each_cpu(t, smt_mask) {
6289 		if (t == cpu)
6290 			continue;
6291 		core_rq = cpu_rq(t);
6292 		break;
6293 	}
6294 
6295 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6296 		goto unlock;
6297 
6298 	/* copy the shared state to the new leader */
6299 	core_rq->core_task_seq             = rq->core_task_seq;
6300 	core_rq->core_pick_seq             = rq->core_pick_seq;
6301 	core_rq->core_cookie               = rq->core_cookie;
6302 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6303 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6304 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6305 
6306 	/*
6307 	 * Accounting edge for forced idle is handled in pick_next_task().
6308 	 * Don't need another one here, since the hotplug thread shouldn't
6309 	 * have a cookie.
6310 	 */
6311 	core_rq->core_forceidle_start = 0;
6312 
6313 	/* install new leader */
6314 	for_each_cpu(t, smt_mask) {
6315 		rq = cpu_rq(t);
6316 		rq->core = core_rq;
6317 	}
6318 
6319 unlock:
6320 	sched_core_unlock(cpu, &flags);
6321 }
6322 
6323 static inline void sched_core_cpu_dying(unsigned int cpu)
6324 {
6325 	struct rq *rq = cpu_rq(cpu);
6326 
6327 	if (rq->core != rq)
6328 		rq->core = rq;
6329 }
6330 
6331 #else /* !CONFIG_SCHED_CORE */
6332 
6333 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6334 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6335 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6336 
6337 static struct task_struct *
6338 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6339 {
6340 	return __pick_next_task(rq, prev, rf);
6341 }
6342 
6343 #endif /* CONFIG_SCHED_CORE */
6344 
6345 /*
6346  * Constants for the sched_mode argument of __schedule().
6347  *
6348  * The mode argument allows RT enabled kernels to differentiate a
6349  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6350  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6351  * optimize the AND operation out and just check for zero.
6352  */
6353 #define SM_NONE			0x0
6354 #define SM_PREEMPT		0x1
6355 #define SM_RTLOCK_WAIT		0x2
6356 
6357 #ifndef CONFIG_PREEMPT_RT
6358 # define SM_MASK_PREEMPT	(~0U)
6359 #else
6360 # define SM_MASK_PREEMPT	SM_PREEMPT
6361 #endif
6362 
6363 /*
6364  * __schedule() is the main scheduler function.
6365  *
6366  * The main means of driving the scheduler and thus entering this function are:
6367  *
6368  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6369  *
6370  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6371  *      paths. For example, see arch/x86/entry_64.S.
6372  *
6373  *      To drive preemption between tasks, the scheduler sets the flag in timer
6374  *      interrupt handler scheduler_tick().
6375  *
6376  *   3. Wakeups don't really cause entry into schedule(). They add a
6377  *      task to the run-queue and that's it.
6378  *
6379  *      Now, if the new task added to the run-queue preempts the current
6380  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6381  *      called on the nearest possible occasion:
6382  *
6383  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6384  *
6385  *         - in syscall or exception context, at the next outmost
6386  *           preempt_enable(). (this might be as soon as the wake_up()'s
6387  *           spin_unlock()!)
6388  *
6389  *         - in IRQ context, return from interrupt-handler to
6390  *           preemptible context
6391  *
6392  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6393  *         then at the next:
6394  *
6395  *          - cond_resched() call
6396  *          - explicit schedule() call
6397  *          - return from syscall or exception to user-space
6398  *          - return from interrupt-handler to user-space
6399  *
6400  * WARNING: must be called with preemption disabled!
6401  */
6402 static void __sched notrace __schedule(unsigned int sched_mode)
6403 {
6404 	struct task_struct *prev, *next;
6405 	unsigned long *switch_count;
6406 	unsigned long prev_state;
6407 	struct rq_flags rf;
6408 	struct rq *rq;
6409 	int cpu;
6410 
6411 	cpu = smp_processor_id();
6412 	rq = cpu_rq(cpu);
6413 	prev = rq->curr;
6414 
6415 	schedule_debug(prev, !!sched_mode);
6416 
6417 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6418 		hrtick_clear(rq);
6419 
6420 	local_irq_disable();
6421 	rcu_note_context_switch(!!sched_mode);
6422 
6423 	/*
6424 	 * Make sure that signal_pending_state()->signal_pending() below
6425 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6426 	 * done by the caller to avoid the race with signal_wake_up():
6427 	 *
6428 	 * __set_current_state(@state)		signal_wake_up()
6429 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6430 	 *					  wake_up_state(p, state)
6431 	 *   LOCK rq->lock			    LOCK p->pi_state
6432 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6433 	 *     if (signal_pending_state())	    if (p->state & @state)
6434 	 *
6435 	 * Also, the membarrier system call requires a full memory barrier
6436 	 * after coming from user-space, before storing to rq->curr.
6437 	 */
6438 	rq_lock(rq, &rf);
6439 	smp_mb__after_spinlock();
6440 
6441 	/* Promote REQ to ACT */
6442 	rq->clock_update_flags <<= 1;
6443 	update_rq_clock(rq);
6444 
6445 	switch_count = &prev->nivcsw;
6446 
6447 	/*
6448 	 * We must load prev->state once (task_struct::state is volatile), such
6449 	 * that we form a control dependency vs deactivate_task() below.
6450 	 */
6451 	prev_state = READ_ONCE(prev->__state);
6452 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6453 		if (signal_pending_state(prev_state, prev)) {
6454 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6455 		} else {
6456 			prev->sched_contributes_to_load =
6457 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6458 				!(prev_state & TASK_NOLOAD) &&
6459 				!(prev_state & TASK_FROZEN);
6460 
6461 			if (prev->sched_contributes_to_load)
6462 				rq->nr_uninterruptible++;
6463 
6464 			/*
6465 			 * __schedule()			ttwu()
6466 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6467 			 *   if (prev_state)		    goto out;
6468 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6469 			 *				  p->state = TASK_WAKING
6470 			 *
6471 			 * Where __schedule() and ttwu() have matching control dependencies.
6472 			 *
6473 			 * After this, schedule() must not care about p->state any more.
6474 			 */
6475 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6476 
6477 			if (prev->in_iowait) {
6478 				atomic_inc(&rq->nr_iowait);
6479 				delayacct_blkio_start();
6480 			}
6481 		}
6482 		switch_count = &prev->nvcsw;
6483 	}
6484 
6485 	next = pick_next_task(rq, prev, &rf);
6486 	clear_tsk_need_resched(prev);
6487 	clear_preempt_need_resched();
6488 #ifdef CONFIG_SCHED_DEBUG
6489 	rq->last_seen_need_resched_ns = 0;
6490 #endif
6491 
6492 	if (likely(prev != next)) {
6493 		rq->nr_switches++;
6494 		/*
6495 		 * RCU users of rcu_dereference(rq->curr) may not see
6496 		 * changes to task_struct made by pick_next_task().
6497 		 */
6498 		RCU_INIT_POINTER(rq->curr, next);
6499 		/*
6500 		 * The membarrier system call requires each architecture
6501 		 * to have a full memory barrier after updating
6502 		 * rq->curr, before returning to user-space.
6503 		 *
6504 		 * Here are the schemes providing that barrier on the
6505 		 * various architectures:
6506 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6507 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6508 		 * - finish_lock_switch() for weakly-ordered
6509 		 *   architectures where spin_unlock is a full barrier,
6510 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6511 		 *   is a RELEASE barrier),
6512 		 */
6513 		++*switch_count;
6514 
6515 		migrate_disable_switch(rq, prev);
6516 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6517 
6518 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6519 
6520 		/* Also unlocks the rq: */
6521 		rq = context_switch(rq, prev, next, &rf);
6522 	} else {
6523 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6524 
6525 		rq_unpin_lock(rq, &rf);
6526 		__balance_callbacks(rq);
6527 		raw_spin_rq_unlock_irq(rq);
6528 	}
6529 }
6530 
6531 void __noreturn do_task_dead(void)
6532 {
6533 	/* Causes final put_task_struct in finish_task_switch(): */
6534 	set_special_state(TASK_DEAD);
6535 
6536 	/* Tell freezer to ignore us: */
6537 	current->flags |= PF_NOFREEZE;
6538 
6539 	__schedule(SM_NONE);
6540 	BUG();
6541 
6542 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6543 	for (;;)
6544 		cpu_relax();
6545 }
6546 
6547 static inline void sched_submit_work(struct task_struct *tsk)
6548 {
6549 	unsigned int task_flags;
6550 
6551 	if (task_is_running(tsk))
6552 		return;
6553 
6554 	task_flags = tsk->flags;
6555 	/*
6556 	 * If a worker goes to sleep, notify and ask workqueue whether it
6557 	 * wants to wake up a task to maintain concurrency.
6558 	 */
6559 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6560 		if (task_flags & PF_WQ_WORKER)
6561 			wq_worker_sleeping(tsk);
6562 		else
6563 			io_wq_worker_sleeping(tsk);
6564 	}
6565 
6566 	/*
6567 	 * spinlock and rwlock must not flush block requests.  This will
6568 	 * deadlock if the callback attempts to acquire a lock which is
6569 	 * already acquired.
6570 	 */
6571 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6572 
6573 	/*
6574 	 * If we are going to sleep and we have plugged IO queued,
6575 	 * make sure to submit it to avoid deadlocks.
6576 	 */
6577 	blk_flush_plug(tsk->plug, true);
6578 }
6579 
6580 static void sched_update_worker(struct task_struct *tsk)
6581 {
6582 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6583 		if (tsk->flags & PF_WQ_WORKER)
6584 			wq_worker_running(tsk);
6585 		else
6586 			io_wq_worker_running(tsk);
6587 	}
6588 }
6589 
6590 asmlinkage __visible void __sched schedule(void)
6591 {
6592 	struct task_struct *tsk = current;
6593 
6594 	sched_submit_work(tsk);
6595 	do {
6596 		preempt_disable();
6597 		__schedule(SM_NONE);
6598 		sched_preempt_enable_no_resched();
6599 	} while (need_resched());
6600 	sched_update_worker(tsk);
6601 }
6602 EXPORT_SYMBOL(schedule);
6603 
6604 /*
6605  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6606  * state (have scheduled out non-voluntarily) by making sure that all
6607  * tasks have either left the run queue or have gone into user space.
6608  * As idle tasks do not do either, they must not ever be preempted
6609  * (schedule out non-voluntarily).
6610  *
6611  * schedule_idle() is similar to schedule_preempt_disable() except that it
6612  * never enables preemption because it does not call sched_submit_work().
6613  */
6614 void __sched schedule_idle(void)
6615 {
6616 	/*
6617 	 * As this skips calling sched_submit_work(), which the idle task does
6618 	 * regardless because that function is a nop when the task is in a
6619 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6620 	 * current task can be in any other state. Note, idle is always in the
6621 	 * TASK_RUNNING state.
6622 	 */
6623 	WARN_ON_ONCE(current->__state);
6624 	do {
6625 		__schedule(SM_NONE);
6626 	} while (need_resched());
6627 }
6628 
6629 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6630 asmlinkage __visible void __sched schedule_user(void)
6631 {
6632 	/*
6633 	 * If we come here after a random call to set_need_resched(),
6634 	 * or we have been woken up remotely but the IPI has not yet arrived,
6635 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6636 	 * we find a better solution.
6637 	 *
6638 	 * NB: There are buggy callers of this function.  Ideally we
6639 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6640 	 * too frequently to make sense yet.
6641 	 */
6642 	enum ctx_state prev_state = exception_enter();
6643 	schedule();
6644 	exception_exit(prev_state);
6645 }
6646 #endif
6647 
6648 /**
6649  * schedule_preempt_disabled - called with preemption disabled
6650  *
6651  * Returns with preemption disabled. Note: preempt_count must be 1
6652  */
6653 void __sched schedule_preempt_disabled(void)
6654 {
6655 	sched_preempt_enable_no_resched();
6656 	schedule();
6657 	preempt_disable();
6658 }
6659 
6660 #ifdef CONFIG_PREEMPT_RT
6661 void __sched notrace schedule_rtlock(void)
6662 {
6663 	do {
6664 		preempt_disable();
6665 		__schedule(SM_RTLOCK_WAIT);
6666 		sched_preempt_enable_no_resched();
6667 	} while (need_resched());
6668 }
6669 NOKPROBE_SYMBOL(schedule_rtlock);
6670 #endif
6671 
6672 static void __sched notrace preempt_schedule_common(void)
6673 {
6674 	do {
6675 		/*
6676 		 * Because the function tracer can trace preempt_count_sub()
6677 		 * and it also uses preempt_enable/disable_notrace(), if
6678 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6679 		 * by the function tracer will call this function again and
6680 		 * cause infinite recursion.
6681 		 *
6682 		 * Preemption must be disabled here before the function
6683 		 * tracer can trace. Break up preempt_disable() into two
6684 		 * calls. One to disable preemption without fear of being
6685 		 * traced. The other to still record the preemption latency,
6686 		 * which can also be traced by the function tracer.
6687 		 */
6688 		preempt_disable_notrace();
6689 		preempt_latency_start(1);
6690 		__schedule(SM_PREEMPT);
6691 		preempt_latency_stop(1);
6692 		preempt_enable_no_resched_notrace();
6693 
6694 		/*
6695 		 * Check again in case we missed a preemption opportunity
6696 		 * between schedule and now.
6697 		 */
6698 	} while (need_resched());
6699 }
6700 
6701 #ifdef CONFIG_PREEMPTION
6702 /*
6703  * This is the entry point to schedule() from in-kernel preemption
6704  * off of preempt_enable.
6705  */
6706 asmlinkage __visible void __sched notrace preempt_schedule(void)
6707 {
6708 	/*
6709 	 * If there is a non-zero preempt_count or interrupts are disabled,
6710 	 * we do not want to preempt the current task. Just return..
6711 	 */
6712 	if (likely(!preemptible()))
6713 		return;
6714 	preempt_schedule_common();
6715 }
6716 NOKPROBE_SYMBOL(preempt_schedule);
6717 EXPORT_SYMBOL(preempt_schedule);
6718 
6719 #ifdef CONFIG_PREEMPT_DYNAMIC
6720 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6721 #ifndef preempt_schedule_dynamic_enabled
6722 #define preempt_schedule_dynamic_enabled	preempt_schedule
6723 #define preempt_schedule_dynamic_disabled	NULL
6724 #endif
6725 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6726 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6727 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6728 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6729 void __sched notrace dynamic_preempt_schedule(void)
6730 {
6731 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6732 		return;
6733 	preempt_schedule();
6734 }
6735 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6736 EXPORT_SYMBOL(dynamic_preempt_schedule);
6737 #endif
6738 #endif
6739 
6740 /**
6741  * preempt_schedule_notrace - preempt_schedule called by tracing
6742  *
6743  * The tracing infrastructure uses preempt_enable_notrace to prevent
6744  * recursion and tracing preempt enabling caused by the tracing
6745  * infrastructure itself. But as tracing can happen in areas coming
6746  * from userspace or just about to enter userspace, a preempt enable
6747  * can occur before user_exit() is called. This will cause the scheduler
6748  * to be called when the system is still in usermode.
6749  *
6750  * To prevent this, the preempt_enable_notrace will use this function
6751  * instead of preempt_schedule() to exit user context if needed before
6752  * calling the scheduler.
6753  */
6754 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6755 {
6756 	enum ctx_state prev_ctx;
6757 
6758 	if (likely(!preemptible()))
6759 		return;
6760 
6761 	do {
6762 		/*
6763 		 * Because the function tracer can trace preempt_count_sub()
6764 		 * and it also uses preempt_enable/disable_notrace(), if
6765 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6766 		 * by the function tracer will call this function again and
6767 		 * cause infinite recursion.
6768 		 *
6769 		 * Preemption must be disabled here before the function
6770 		 * tracer can trace. Break up preempt_disable() into two
6771 		 * calls. One to disable preemption without fear of being
6772 		 * traced. The other to still record the preemption latency,
6773 		 * which can also be traced by the function tracer.
6774 		 */
6775 		preempt_disable_notrace();
6776 		preempt_latency_start(1);
6777 		/*
6778 		 * Needs preempt disabled in case user_exit() is traced
6779 		 * and the tracer calls preempt_enable_notrace() causing
6780 		 * an infinite recursion.
6781 		 */
6782 		prev_ctx = exception_enter();
6783 		__schedule(SM_PREEMPT);
6784 		exception_exit(prev_ctx);
6785 
6786 		preempt_latency_stop(1);
6787 		preempt_enable_no_resched_notrace();
6788 	} while (need_resched());
6789 }
6790 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6791 
6792 #ifdef CONFIG_PREEMPT_DYNAMIC
6793 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6794 #ifndef preempt_schedule_notrace_dynamic_enabled
6795 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6796 #define preempt_schedule_notrace_dynamic_disabled	NULL
6797 #endif
6798 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6799 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6800 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6801 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6802 void __sched notrace dynamic_preempt_schedule_notrace(void)
6803 {
6804 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6805 		return;
6806 	preempt_schedule_notrace();
6807 }
6808 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6809 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6810 #endif
6811 #endif
6812 
6813 #endif /* CONFIG_PREEMPTION */
6814 
6815 /*
6816  * This is the entry point to schedule() from kernel preemption
6817  * off of irq context.
6818  * Note, that this is called and return with irqs disabled. This will
6819  * protect us against recursive calling from irq.
6820  */
6821 asmlinkage __visible void __sched preempt_schedule_irq(void)
6822 {
6823 	enum ctx_state prev_state;
6824 
6825 	/* Catch callers which need to be fixed */
6826 	BUG_ON(preempt_count() || !irqs_disabled());
6827 
6828 	prev_state = exception_enter();
6829 
6830 	do {
6831 		preempt_disable();
6832 		local_irq_enable();
6833 		__schedule(SM_PREEMPT);
6834 		local_irq_disable();
6835 		sched_preempt_enable_no_resched();
6836 	} while (need_resched());
6837 
6838 	exception_exit(prev_state);
6839 }
6840 
6841 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6842 			  void *key)
6843 {
6844 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6845 	return try_to_wake_up(curr->private, mode, wake_flags);
6846 }
6847 EXPORT_SYMBOL(default_wake_function);
6848 
6849 static void __setscheduler_prio(struct task_struct *p, int prio)
6850 {
6851 	if (dl_prio(prio))
6852 		p->sched_class = &dl_sched_class;
6853 	else if (rt_prio(prio))
6854 		p->sched_class = &rt_sched_class;
6855 	else
6856 		p->sched_class = &fair_sched_class;
6857 
6858 	p->prio = prio;
6859 }
6860 
6861 #ifdef CONFIG_RT_MUTEXES
6862 
6863 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6864 {
6865 	if (pi_task)
6866 		prio = min(prio, pi_task->prio);
6867 
6868 	return prio;
6869 }
6870 
6871 static inline int rt_effective_prio(struct task_struct *p, int prio)
6872 {
6873 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6874 
6875 	return __rt_effective_prio(pi_task, prio);
6876 }
6877 
6878 /*
6879  * rt_mutex_setprio - set the current priority of a task
6880  * @p: task to boost
6881  * @pi_task: donor task
6882  *
6883  * This function changes the 'effective' priority of a task. It does
6884  * not touch ->normal_prio like __setscheduler().
6885  *
6886  * Used by the rt_mutex code to implement priority inheritance
6887  * logic. Call site only calls if the priority of the task changed.
6888  */
6889 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6890 {
6891 	int prio, oldprio, queued, running, queue_flag =
6892 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6893 	const struct sched_class *prev_class;
6894 	struct rq_flags rf;
6895 	struct rq *rq;
6896 
6897 	/* XXX used to be waiter->prio, not waiter->task->prio */
6898 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6899 
6900 	/*
6901 	 * If nothing changed; bail early.
6902 	 */
6903 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6904 		return;
6905 
6906 	rq = __task_rq_lock(p, &rf);
6907 	update_rq_clock(rq);
6908 	/*
6909 	 * Set under pi_lock && rq->lock, such that the value can be used under
6910 	 * either lock.
6911 	 *
6912 	 * Note that there is loads of tricky to make this pointer cache work
6913 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6914 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6915 	 * task is allowed to run again (and can exit). This ensures the pointer
6916 	 * points to a blocked task -- which guarantees the task is present.
6917 	 */
6918 	p->pi_top_task = pi_task;
6919 
6920 	/*
6921 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6922 	 */
6923 	if (prio == p->prio && !dl_prio(prio))
6924 		goto out_unlock;
6925 
6926 	/*
6927 	 * Idle task boosting is a nono in general. There is one
6928 	 * exception, when PREEMPT_RT and NOHZ is active:
6929 	 *
6930 	 * The idle task calls get_next_timer_interrupt() and holds
6931 	 * the timer wheel base->lock on the CPU and another CPU wants
6932 	 * to access the timer (probably to cancel it). We can safely
6933 	 * ignore the boosting request, as the idle CPU runs this code
6934 	 * with interrupts disabled and will complete the lock
6935 	 * protected section without being interrupted. So there is no
6936 	 * real need to boost.
6937 	 */
6938 	if (unlikely(p == rq->idle)) {
6939 		WARN_ON(p != rq->curr);
6940 		WARN_ON(p->pi_blocked_on);
6941 		goto out_unlock;
6942 	}
6943 
6944 	trace_sched_pi_setprio(p, pi_task);
6945 	oldprio = p->prio;
6946 
6947 	if (oldprio == prio)
6948 		queue_flag &= ~DEQUEUE_MOVE;
6949 
6950 	prev_class = p->sched_class;
6951 	queued = task_on_rq_queued(p);
6952 	running = task_current(rq, p);
6953 	if (queued)
6954 		dequeue_task(rq, p, queue_flag);
6955 	if (running)
6956 		put_prev_task(rq, p);
6957 
6958 	/*
6959 	 * Boosting condition are:
6960 	 * 1. -rt task is running and holds mutex A
6961 	 *      --> -dl task blocks on mutex A
6962 	 *
6963 	 * 2. -dl task is running and holds mutex A
6964 	 *      --> -dl task blocks on mutex A and could preempt the
6965 	 *          running task
6966 	 */
6967 	if (dl_prio(prio)) {
6968 		if (!dl_prio(p->normal_prio) ||
6969 		    (pi_task && dl_prio(pi_task->prio) &&
6970 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6971 			p->dl.pi_se = pi_task->dl.pi_se;
6972 			queue_flag |= ENQUEUE_REPLENISH;
6973 		} else {
6974 			p->dl.pi_se = &p->dl;
6975 		}
6976 	} else if (rt_prio(prio)) {
6977 		if (dl_prio(oldprio))
6978 			p->dl.pi_se = &p->dl;
6979 		if (oldprio < prio)
6980 			queue_flag |= ENQUEUE_HEAD;
6981 	} else {
6982 		if (dl_prio(oldprio))
6983 			p->dl.pi_se = &p->dl;
6984 		if (rt_prio(oldprio))
6985 			p->rt.timeout = 0;
6986 	}
6987 
6988 	__setscheduler_prio(p, prio);
6989 
6990 	if (queued)
6991 		enqueue_task(rq, p, queue_flag);
6992 	if (running)
6993 		set_next_task(rq, p);
6994 
6995 	check_class_changed(rq, p, prev_class, oldprio);
6996 out_unlock:
6997 	/* Avoid rq from going away on us: */
6998 	preempt_disable();
6999 
7000 	rq_unpin_lock(rq, &rf);
7001 	__balance_callbacks(rq);
7002 	raw_spin_rq_unlock(rq);
7003 
7004 	preempt_enable();
7005 }
7006 #else
7007 static inline int rt_effective_prio(struct task_struct *p, int prio)
7008 {
7009 	return prio;
7010 }
7011 #endif
7012 
7013 void set_user_nice(struct task_struct *p, long nice)
7014 {
7015 	bool queued, running;
7016 	int old_prio;
7017 	struct rq_flags rf;
7018 	struct rq *rq;
7019 
7020 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7021 		return;
7022 	/*
7023 	 * We have to be careful, if called from sys_setpriority(),
7024 	 * the task might be in the middle of scheduling on another CPU.
7025 	 */
7026 	rq = task_rq_lock(p, &rf);
7027 	update_rq_clock(rq);
7028 
7029 	/*
7030 	 * The RT priorities are set via sched_setscheduler(), but we still
7031 	 * allow the 'normal' nice value to be set - but as expected
7032 	 * it won't have any effect on scheduling until the task is
7033 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7034 	 */
7035 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7036 		p->static_prio = NICE_TO_PRIO(nice);
7037 		goto out_unlock;
7038 	}
7039 	queued = task_on_rq_queued(p);
7040 	running = task_current(rq, p);
7041 	if (queued)
7042 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7043 	if (running)
7044 		put_prev_task(rq, p);
7045 
7046 	p->static_prio = NICE_TO_PRIO(nice);
7047 	set_load_weight(p, true);
7048 	old_prio = p->prio;
7049 	p->prio = effective_prio(p);
7050 
7051 	if (queued)
7052 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7053 	if (running)
7054 		set_next_task(rq, p);
7055 
7056 	/*
7057 	 * If the task increased its priority or is running and
7058 	 * lowered its priority, then reschedule its CPU:
7059 	 */
7060 	p->sched_class->prio_changed(rq, p, old_prio);
7061 
7062 out_unlock:
7063 	task_rq_unlock(rq, p, &rf);
7064 }
7065 EXPORT_SYMBOL(set_user_nice);
7066 
7067 /*
7068  * is_nice_reduction - check if nice value is an actual reduction
7069  *
7070  * Similar to can_nice() but does not perform a capability check.
7071  *
7072  * @p: task
7073  * @nice: nice value
7074  */
7075 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7076 {
7077 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7078 	int nice_rlim = nice_to_rlimit(nice);
7079 
7080 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7081 }
7082 
7083 /*
7084  * can_nice - check if a task can reduce its nice value
7085  * @p: task
7086  * @nice: nice value
7087  */
7088 int can_nice(const struct task_struct *p, const int nice)
7089 {
7090 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7091 }
7092 
7093 #ifdef __ARCH_WANT_SYS_NICE
7094 
7095 /*
7096  * sys_nice - change the priority of the current process.
7097  * @increment: priority increment
7098  *
7099  * sys_setpriority is a more generic, but much slower function that
7100  * does similar things.
7101  */
7102 SYSCALL_DEFINE1(nice, int, increment)
7103 {
7104 	long nice, retval;
7105 
7106 	/*
7107 	 * Setpriority might change our priority at the same moment.
7108 	 * We don't have to worry. Conceptually one call occurs first
7109 	 * and we have a single winner.
7110 	 */
7111 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7112 	nice = task_nice(current) + increment;
7113 
7114 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7115 	if (increment < 0 && !can_nice(current, nice))
7116 		return -EPERM;
7117 
7118 	retval = security_task_setnice(current, nice);
7119 	if (retval)
7120 		return retval;
7121 
7122 	set_user_nice(current, nice);
7123 	return 0;
7124 }
7125 
7126 #endif
7127 
7128 /**
7129  * task_prio - return the priority value of a given task.
7130  * @p: the task in question.
7131  *
7132  * Return: The priority value as seen by users in /proc.
7133  *
7134  * sched policy         return value   kernel prio    user prio/nice
7135  *
7136  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7137  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7138  * deadline                     -101             -1           0
7139  */
7140 int task_prio(const struct task_struct *p)
7141 {
7142 	return p->prio - MAX_RT_PRIO;
7143 }
7144 
7145 /**
7146  * idle_cpu - is a given CPU idle currently?
7147  * @cpu: the processor in question.
7148  *
7149  * Return: 1 if the CPU is currently idle. 0 otherwise.
7150  */
7151 int idle_cpu(int cpu)
7152 {
7153 	struct rq *rq = cpu_rq(cpu);
7154 
7155 	if (rq->curr != rq->idle)
7156 		return 0;
7157 
7158 	if (rq->nr_running)
7159 		return 0;
7160 
7161 #ifdef CONFIG_SMP
7162 	if (rq->ttwu_pending)
7163 		return 0;
7164 #endif
7165 
7166 	return 1;
7167 }
7168 
7169 /**
7170  * available_idle_cpu - is a given CPU idle for enqueuing work.
7171  * @cpu: the CPU in question.
7172  *
7173  * Return: 1 if the CPU is currently idle. 0 otherwise.
7174  */
7175 int available_idle_cpu(int cpu)
7176 {
7177 	if (!idle_cpu(cpu))
7178 		return 0;
7179 
7180 	if (vcpu_is_preempted(cpu))
7181 		return 0;
7182 
7183 	return 1;
7184 }
7185 
7186 /**
7187  * idle_task - return the idle task for a given CPU.
7188  * @cpu: the processor in question.
7189  *
7190  * Return: The idle task for the CPU @cpu.
7191  */
7192 struct task_struct *idle_task(int cpu)
7193 {
7194 	return cpu_rq(cpu)->idle;
7195 }
7196 
7197 #ifdef CONFIG_SMP
7198 /*
7199  * This function computes an effective utilization for the given CPU, to be
7200  * used for frequency selection given the linear relation: f = u * f_max.
7201  *
7202  * The scheduler tracks the following metrics:
7203  *
7204  *   cpu_util_{cfs,rt,dl,irq}()
7205  *   cpu_bw_dl()
7206  *
7207  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7208  * synchronized windows and are thus directly comparable.
7209  *
7210  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7211  * which excludes things like IRQ and steal-time. These latter are then accrued
7212  * in the irq utilization.
7213  *
7214  * The DL bandwidth number otoh is not a measured metric but a value computed
7215  * based on the task model parameters and gives the minimal utilization
7216  * required to meet deadlines.
7217  */
7218 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7219 				 enum cpu_util_type type,
7220 				 struct task_struct *p)
7221 {
7222 	unsigned long dl_util, util, irq, max;
7223 	struct rq *rq = cpu_rq(cpu);
7224 
7225 	max = arch_scale_cpu_capacity(cpu);
7226 
7227 	if (!uclamp_is_used() &&
7228 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7229 		return max;
7230 	}
7231 
7232 	/*
7233 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7234 	 * because of inaccuracies in how we track these -- see
7235 	 * update_irq_load_avg().
7236 	 */
7237 	irq = cpu_util_irq(rq);
7238 	if (unlikely(irq >= max))
7239 		return max;
7240 
7241 	/*
7242 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7243 	 * CFS tasks and we use the same metric to track the effective
7244 	 * utilization (PELT windows are synchronized) we can directly add them
7245 	 * to obtain the CPU's actual utilization.
7246 	 *
7247 	 * CFS and RT utilization can be boosted or capped, depending on
7248 	 * utilization clamp constraints requested by currently RUNNABLE
7249 	 * tasks.
7250 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7251 	 * frequency will be gracefully reduced with the utilization decay.
7252 	 */
7253 	util = util_cfs + cpu_util_rt(rq);
7254 	if (type == FREQUENCY_UTIL)
7255 		util = uclamp_rq_util_with(rq, util, p);
7256 
7257 	dl_util = cpu_util_dl(rq);
7258 
7259 	/*
7260 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7261 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7262 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7263 	 * that we select f_max when there is no idle time.
7264 	 *
7265 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7266 	 * saturation when we should -- something for later.
7267 	 */
7268 	if (util + dl_util >= max)
7269 		return max;
7270 
7271 	/*
7272 	 * OTOH, for energy computation we need the estimated running time, so
7273 	 * include util_dl and ignore dl_bw.
7274 	 */
7275 	if (type == ENERGY_UTIL)
7276 		util += dl_util;
7277 
7278 	/*
7279 	 * There is still idle time; further improve the number by using the
7280 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7281 	 * need to scale the task numbers:
7282 	 *
7283 	 *              max - irq
7284 	 *   U' = irq + --------- * U
7285 	 *                 max
7286 	 */
7287 	util = scale_irq_capacity(util, irq, max);
7288 	util += irq;
7289 
7290 	/*
7291 	 * Bandwidth required by DEADLINE must always be granted while, for
7292 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7293 	 * to gracefully reduce the frequency when no tasks show up for longer
7294 	 * periods of time.
7295 	 *
7296 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7297 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7298 	 * an interface. So, we only do the latter for now.
7299 	 */
7300 	if (type == FREQUENCY_UTIL)
7301 		util += cpu_bw_dl(rq);
7302 
7303 	return min(max, util);
7304 }
7305 
7306 unsigned long sched_cpu_util(int cpu)
7307 {
7308 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7309 }
7310 #endif /* CONFIG_SMP */
7311 
7312 /**
7313  * find_process_by_pid - find a process with a matching PID value.
7314  * @pid: the pid in question.
7315  *
7316  * The task of @pid, if found. %NULL otherwise.
7317  */
7318 static struct task_struct *find_process_by_pid(pid_t pid)
7319 {
7320 	return pid ? find_task_by_vpid(pid) : current;
7321 }
7322 
7323 /*
7324  * sched_setparam() passes in -1 for its policy, to let the functions
7325  * it calls know not to change it.
7326  */
7327 #define SETPARAM_POLICY	-1
7328 
7329 static void __setscheduler_params(struct task_struct *p,
7330 		const struct sched_attr *attr)
7331 {
7332 	int policy = attr->sched_policy;
7333 
7334 	if (policy == SETPARAM_POLICY)
7335 		policy = p->policy;
7336 
7337 	p->policy = policy;
7338 
7339 	if (dl_policy(policy))
7340 		__setparam_dl(p, attr);
7341 	else if (fair_policy(policy))
7342 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7343 
7344 	/*
7345 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7346 	 * !rt_policy. Always setting this ensures that things like
7347 	 * getparam()/getattr() don't report silly values for !rt tasks.
7348 	 */
7349 	p->rt_priority = attr->sched_priority;
7350 	p->normal_prio = normal_prio(p);
7351 	set_load_weight(p, true);
7352 }
7353 
7354 /*
7355  * Check the target process has a UID that matches the current process's:
7356  */
7357 static bool check_same_owner(struct task_struct *p)
7358 {
7359 	const struct cred *cred = current_cred(), *pcred;
7360 	bool match;
7361 
7362 	rcu_read_lock();
7363 	pcred = __task_cred(p);
7364 	match = (uid_eq(cred->euid, pcred->euid) ||
7365 		 uid_eq(cred->euid, pcred->uid));
7366 	rcu_read_unlock();
7367 	return match;
7368 }
7369 
7370 /*
7371  * Allow unprivileged RT tasks to decrease priority.
7372  * Only issue a capable test if needed and only once to avoid an audit
7373  * event on permitted non-privileged operations:
7374  */
7375 static int user_check_sched_setscheduler(struct task_struct *p,
7376 					 const struct sched_attr *attr,
7377 					 int policy, int reset_on_fork)
7378 {
7379 	if (fair_policy(policy)) {
7380 		if (attr->sched_nice < task_nice(p) &&
7381 		    !is_nice_reduction(p, attr->sched_nice))
7382 			goto req_priv;
7383 	}
7384 
7385 	if (rt_policy(policy)) {
7386 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7387 
7388 		/* Can't set/change the rt policy: */
7389 		if (policy != p->policy && !rlim_rtprio)
7390 			goto req_priv;
7391 
7392 		/* Can't increase priority: */
7393 		if (attr->sched_priority > p->rt_priority &&
7394 		    attr->sched_priority > rlim_rtprio)
7395 			goto req_priv;
7396 	}
7397 
7398 	/*
7399 	 * Can't set/change SCHED_DEADLINE policy at all for now
7400 	 * (safest behavior); in the future we would like to allow
7401 	 * unprivileged DL tasks to increase their relative deadline
7402 	 * or reduce their runtime (both ways reducing utilization)
7403 	 */
7404 	if (dl_policy(policy))
7405 		goto req_priv;
7406 
7407 	/*
7408 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7409 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7410 	 */
7411 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7412 		if (!is_nice_reduction(p, task_nice(p)))
7413 			goto req_priv;
7414 	}
7415 
7416 	/* Can't change other user's priorities: */
7417 	if (!check_same_owner(p))
7418 		goto req_priv;
7419 
7420 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7421 	if (p->sched_reset_on_fork && !reset_on_fork)
7422 		goto req_priv;
7423 
7424 	return 0;
7425 
7426 req_priv:
7427 	if (!capable(CAP_SYS_NICE))
7428 		return -EPERM;
7429 
7430 	return 0;
7431 }
7432 
7433 static int __sched_setscheduler(struct task_struct *p,
7434 				const struct sched_attr *attr,
7435 				bool user, bool pi)
7436 {
7437 	int oldpolicy = -1, policy = attr->sched_policy;
7438 	int retval, oldprio, newprio, queued, running;
7439 	const struct sched_class *prev_class;
7440 	struct balance_callback *head;
7441 	struct rq_flags rf;
7442 	int reset_on_fork;
7443 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7444 	struct rq *rq;
7445 
7446 	/* The pi code expects interrupts enabled */
7447 	BUG_ON(pi && in_interrupt());
7448 recheck:
7449 	/* Double check policy once rq lock held: */
7450 	if (policy < 0) {
7451 		reset_on_fork = p->sched_reset_on_fork;
7452 		policy = oldpolicy = p->policy;
7453 	} else {
7454 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7455 
7456 		if (!valid_policy(policy))
7457 			return -EINVAL;
7458 	}
7459 
7460 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7461 		return -EINVAL;
7462 
7463 	/*
7464 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7465 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7466 	 * SCHED_BATCH and SCHED_IDLE is 0.
7467 	 */
7468 	if (attr->sched_priority > MAX_RT_PRIO-1)
7469 		return -EINVAL;
7470 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7471 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7472 		return -EINVAL;
7473 
7474 	if (user) {
7475 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7476 		if (retval)
7477 			return retval;
7478 
7479 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7480 			return -EINVAL;
7481 
7482 		retval = security_task_setscheduler(p);
7483 		if (retval)
7484 			return retval;
7485 	}
7486 
7487 	/* Update task specific "requested" clamps */
7488 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7489 		retval = uclamp_validate(p, attr);
7490 		if (retval)
7491 			return retval;
7492 	}
7493 
7494 	if (pi)
7495 		cpuset_read_lock();
7496 
7497 	/*
7498 	 * Make sure no PI-waiters arrive (or leave) while we are
7499 	 * changing the priority of the task:
7500 	 *
7501 	 * To be able to change p->policy safely, the appropriate
7502 	 * runqueue lock must be held.
7503 	 */
7504 	rq = task_rq_lock(p, &rf);
7505 	update_rq_clock(rq);
7506 
7507 	/*
7508 	 * Changing the policy of the stop threads its a very bad idea:
7509 	 */
7510 	if (p == rq->stop) {
7511 		retval = -EINVAL;
7512 		goto unlock;
7513 	}
7514 
7515 	/*
7516 	 * If not changing anything there's no need to proceed further,
7517 	 * but store a possible modification of reset_on_fork.
7518 	 */
7519 	if (unlikely(policy == p->policy)) {
7520 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7521 			goto change;
7522 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7523 			goto change;
7524 		if (dl_policy(policy) && dl_param_changed(p, attr))
7525 			goto change;
7526 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7527 			goto change;
7528 
7529 		p->sched_reset_on_fork = reset_on_fork;
7530 		retval = 0;
7531 		goto unlock;
7532 	}
7533 change:
7534 
7535 	if (user) {
7536 #ifdef CONFIG_RT_GROUP_SCHED
7537 		/*
7538 		 * Do not allow realtime tasks into groups that have no runtime
7539 		 * assigned.
7540 		 */
7541 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7542 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7543 				!task_group_is_autogroup(task_group(p))) {
7544 			retval = -EPERM;
7545 			goto unlock;
7546 		}
7547 #endif
7548 #ifdef CONFIG_SMP
7549 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7550 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7551 			cpumask_t *span = rq->rd->span;
7552 
7553 			/*
7554 			 * Don't allow tasks with an affinity mask smaller than
7555 			 * the entire root_domain to become SCHED_DEADLINE. We
7556 			 * will also fail if there's no bandwidth available.
7557 			 */
7558 			if (!cpumask_subset(span, p->cpus_ptr) ||
7559 			    rq->rd->dl_bw.bw == 0) {
7560 				retval = -EPERM;
7561 				goto unlock;
7562 			}
7563 		}
7564 #endif
7565 	}
7566 
7567 	/* Re-check policy now with rq lock held: */
7568 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7569 		policy = oldpolicy = -1;
7570 		task_rq_unlock(rq, p, &rf);
7571 		if (pi)
7572 			cpuset_read_unlock();
7573 		goto recheck;
7574 	}
7575 
7576 	/*
7577 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7578 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7579 	 * is available.
7580 	 */
7581 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7582 		retval = -EBUSY;
7583 		goto unlock;
7584 	}
7585 
7586 	p->sched_reset_on_fork = reset_on_fork;
7587 	oldprio = p->prio;
7588 
7589 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7590 	if (pi) {
7591 		/*
7592 		 * Take priority boosted tasks into account. If the new
7593 		 * effective priority is unchanged, we just store the new
7594 		 * normal parameters and do not touch the scheduler class and
7595 		 * the runqueue. This will be done when the task deboost
7596 		 * itself.
7597 		 */
7598 		newprio = rt_effective_prio(p, newprio);
7599 		if (newprio == oldprio)
7600 			queue_flags &= ~DEQUEUE_MOVE;
7601 	}
7602 
7603 	queued = task_on_rq_queued(p);
7604 	running = task_current(rq, p);
7605 	if (queued)
7606 		dequeue_task(rq, p, queue_flags);
7607 	if (running)
7608 		put_prev_task(rq, p);
7609 
7610 	prev_class = p->sched_class;
7611 
7612 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7613 		__setscheduler_params(p, attr);
7614 		__setscheduler_prio(p, newprio);
7615 	}
7616 	__setscheduler_uclamp(p, attr);
7617 
7618 	if (queued) {
7619 		/*
7620 		 * We enqueue to tail when the priority of a task is
7621 		 * increased (user space view).
7622 		 */
7623 		if (oldprio < p->prio)
7624 			queue_flags |= ENQUEUE_HEAD;
7625 
7626 		enqueue_task(rq, p, queue_flags);
7627 	}
7628 	if (running)
7629 		set_next_task(rq, p);
7630 
7631 	check_class_changed(rq, p, prev_class, oldprio);
7632 
7633 	/* Avoid rq from going away on us: */
7634 	preempt_disable();
7635 	head = splice_balance_callbacks(rq);
7636 	task_rq_unlock(rq, p, &rf);
7637 
7638 	if (pi) {
7639 		cpuset_read_unlock();
7640 		rt_mutex_adjust_pi(p);
7641 	}
7642 
7643 	/* Run balance callbacks after we've adjusted the PI chain: */
7644 	balance_callbacks(rq, head);
7645 	preempt_enable();
7646 
7647 	return 0;
7648 
7649 unlock:
7650 	task_rq_unlock(rq, p, &rf);
7651 	if (pi)
7652 		cpuset_read_unlock();
7653 	return retval;
7654 }
7655 
7656 static int _sched_setscheduler(struct task_struct *p, int policy,
7657 			       const struct sched_param *param, bool check)
7658 {
7659 	struct sched_attr attr = {
7660 		.sched_policy   = policy,
7661 		.sched_priority = param->sched_priority,
7662 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7663 	};
7664 
7665 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7666 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7667 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7668 		policy &= ~SCHED_RESET_ON_FORK;
7669 		attr.sched_policy = policy;
7670 	}
7671 
7672 	return __sched_setscheduler(p, &attr, check, true);
7673 }
7674 /**
7675  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7676  * @p: the task in question.
7677  * @policy: new policy.
7678  * @param: structure containing the new RT priority.
7679  *
7680  * Use sched_set_fifo(), read its comment.
7681  *
7682  * Return: 0 on success. An error code otherwise.
7683  *
7684  * NOTE that the task may be already dead.
7685  */
7686 int sched_setscheduler(struct task_struct *p, int policy,
7687 		       const struct sched_param *param)
7688 {
7689 	return _sched_setscheduler(p, policy, param, true);
7690 }
7691 
7692 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7693 {
7694 	return __sched_setscheduler(p, attr, true, true);
7695 }
7696 
7697 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7698 {
7699 	return __sched_setscheduler(p, attr, false, true);
7700 }
7701 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7702 
7703 /**
7704  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7705  * @p: the task in question.
7706  * @policy: new policy.
7707  * @param: structure containing the new RT priority.
7708  *
7709  * Just like sched_setscheduler, only don't bother checking if the
7710  * current context has permission.  For example, this is needed in
7711  * stop_machine(): we create temporary high priority worker threads,
7712  * but our caller might not have that capability.
7713  *
7714  * Return: 0 on success. An error code otherwise.
7715  */
7716 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7717 			       const struct sched_param *param)
7718 {
7719 	return _sched_setscheduler(p, policy, param, false);
7720 }
7721 
7722 /*
7723  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7724  * incapable of resource management, which is the one thing an OS really should
7725  * be doing.
7726  *
7727  * This is of course the reason it is limited to privileged users only.
7728  *
7729  * Worse still; it is fundamentally impossible to compose static priority
7730  * workloads. You cannot take two correctly working static prio workloads
7731  * and smash them together and still expect them to work.
7732  *
7733  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7734  *
7735  *   MAX_RT_PRIO / 2
7736  *
7737  * The administrator _MUST_ configure the system, the kernel simply doesn't
7738  * know enough information to make a sensible choice.
7739  */
7740 void sched_set_fifo(struct task_struct *p)
7741 {
7742 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7743 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7744 }
7745 EXPORT_SYMBOL_GPL(sched_set_fifo);
7746 
7747 /*
7748  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7749  */
7750 void sched_set_fifo_low(struct task_struct *p)
7751 {
7752 	struct sched_param sp = { .sched_priority = 1 };
7753 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7754 }
7755 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7756 
7757 void sched_set_normal(struct task_struct *p, int nice)
7758 {
7759 	struct sched_attr attr = {
7760 		.sched_policy = SCHED_NORMAL,
7761 		.sched_nice = nice,
7762 	};
7763 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7764 }
7765 EXPORT_SYMBOL_GPL(sched_set_normal);
7766 
7767 static int
7768 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7769 {
7770 	struct sched_param lparam;
7771 	struct task_struct *p;
7772 	int retval;
7773 
7774 	if (!param || pid < 0)
7775 		return -EINVAL;
7776 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7777 		return -EFAULT;
7778 
7779 	rcu_read_lock();
7780 	retval = -ESRCH;
7781 	p = find_process_by_pid(pid);
7782 	if (likely(p))
7783 		get_task_struct(p);
7784 	rcu_read_unlock();
7785 
7786 	if (likely(p)) {
7787 		retval = sched_setscheduler(p, policy, &lparam);
7788 		put_task_struct(p);
7789 	}
7790 
7791 	return retval;
7792 }
7793 
7794 /*
7795  * Mimics kernel/events/core.c perf_copy_attr().
7796  */
7797 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7798 {
7799 	u32 size;
7800 	int ret;
7801 
7802 	/* Zero the full structure, so that a short copy will be nice: */
7803 	memset(attr, 0, sizeof(*attr));
7804 
7805 	ret = get_user(size, &uattr->size);
7806 	if (ret)
7807 		return ret;
7808 
7809 	/* ABI compatibility quirk: */
7810 	if (!size)
7811 		size = SCHED_ATTR_SIZE_VER0;
7812 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7813 		goto err_size;
7814 
7815 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7816 	if (ret) {
7817 		if (ret == -E2BIG)
7818 			goto err_size;
7819 		return ret;
7820 	}
7821 
7822 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7823 	    size < SCHED_ATTR_SIZE_VER1)
7824 		return -EINVAL;
7825 
7826 	/*
7827 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7828 	 * to be strict and return an error on out-of-bounds values?
7829 	 */
7830 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7831 
7832 	return 0;
7833 
7834 err_size:
7835 	put_user(sizeof(*attr), &uattr->size);
7836 	return -E2BIG;
7837 }
7838 
7839 static void get_params(struct task_struct *p, struct sched_attr *attr)
7840 {
7841 	if (task_has_dl_policy(p))
7842 		__getparam_dl(p, attr);
7843 	else if (task_has_rt_policy(p))
7844 		attr->sched_priority = p->rt_priority;
7845 	else
7846 		attr->sched_nice = task_nice(p);
7847 }
7848 
7849 /**
7850  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7851  * @pid: the pid in question.
7852  * @policy: new policy.
7853  * @param: structure containing the new RT priority.
7854  *
7855  * Return: 0 on success. An error code otherwise.
7856  */
7857 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7858 {
7859 	if (policy < 0)
7860 		return -EINVAL;
7861 
7862 	return do_sched_setscheduler(pid, policy, param);
7863 }
7864 
7865 /**
7866  * sys_sched_setparam - set/change the RT priority of a thread
7867  * @pid: the pid in question.
7868  * @param: structure containing the new RT priority.
7869  *
7870  * Return: 0 on success. An error code otherwise.
7871  */
7872 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7873 {
7874 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7875 }
7876 
7877 /**
7878  * sys_sched_setattr - same as above, but with extended sched_attr
7879  * @pid: the pid in question.
7880  * @uattr: structure containing the extended parameters.
7881  * @flags: for future extension.
7882  */
7883 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7884 			       unsigned int, flags)
7885 {
7886 	struct sched_attr attr;
7887 	struct task_struct *p;
7888 	int retval;
7889 
7890 	if (!uattr || pid < 0 || flags)
7891 		return -EINVAL;
7892 
7893 	retval = sched_copy_attr(uattr, &attr);
7894 	if (retval)
7895 		return retval;
7896 
7897 	if ((int)attr.sched_policy < 0)
7898 		return -EINVAL;
7899 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7900 		attr.sched_policy = SETPARAM_POLICY;
7901 
7902 	rcu_read_lock();
7903 	retval = -ESRCH;
7904 	p = find_process_by_pid(pid);
7905 	if (likely(p))
7906 		get_task_struct(p);
7907 	rcu_read_unlock();
7908 
7909 	if (likely(p)) {
7910 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7911 			get_params(p, &attr);
7912 		retval = sched_setattr(p, &attr);
7913 		put_task_struct(p);
7914 	}
7915 
7916 	return retval;
7917 }
7918 
7919 /**
7920  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7921  * @pid: the pid in question.
7922  *
7923  * Return: On success, the policy of the thread. Otherwise, a negative error
7924  * code.
7925  */
7926 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7927 {
7928 	struct task_struct *p;
7929 	int retval;
7930 
7931 	if (pid < 0)
7932 		return -EINVAL;
7933 
7934 	retval = -ESRCH;
7935 	rcu_read_lock();
7936 	p = find_process_by_pid(pid);
7937 	if (p) {
7938 		retval = security_task_getscheduler(p);
7939 		if (!retval)
7940 			retval = p->policy
7941 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7942 	}
7943 	rcu_read_unlock();
7944 	return retval;
7945 }
7946 
7947 /**
7948  * sys_sched_getparam - get the RT priority of a thread
7949  * @pid: the pid in question.
7950  * @param: structure containing the RT priority.
7951  *
7952  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7953  * code.
7954  */
7955 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7956 {
7957 	struct sched_param lp = { .sched_priority = 0 };
7958 	struct task_struct *p;
7959 	int retval;
7960 
7961 	if (!param || pid < 0)
7962 		return -EINVAL;
7963 
7964 	rcu_read_lock();
7965 	p = find_process_by_pid(pid);
7966 	retval = -ESRCH;
7967 	if (!p)
7968 		goto out_unlock;
7969 
7970 	retval = security_task_getscheduler(p);
7971 	if (retval)
7972 		goto out_unlock;
7973 
7974 	if (task_has_rt_policy(p))
7975 		lp.sched_priority = p->rt_priority;
7976 	rcu_read_unlock();
7977 
7978 	/*
7979 	 * This one might sleep, we cannot do it with a spinlock held ...
7980 	 */
7981 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7982 
7983 	return retval;
7984 
7985 out_unlock:
7986 	rcu_read_unlock();
7987 	return retval;
7988 }
7989 
7990 /*
7991  * Copy the kernel size attribute structure (which might be larger
7992  * than what user-space knows about) to user-space.
7993  *
7994  * Note that all cases are valid: user-space buffer can be larger or
7995  * smaller than the kernel-space buffer. The usual case is that both
7996  * have the same size.
7997  */
7998 static int
7999 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8000 			struct sched_attr *kattr,
8001 			unsigned int usize)
8002 {
8003 	unsigned int ksize = sizeof(*kattr);
8004 
8005 	if (!access_ok(uattr, usize))
8006 		return -EFAULT;
8007 
8008 	/*
8009 	 * sched_getattr() ABI forwards and backwards compatibility:
8010 	 *
8011 	 * If usize == ksize then we just copy everything to user-space and all is good.
8012 	 *
8013 	 * If usize < ksize then we only copy as much as user-space has space for,
8014 	 * this keeps ABI compatibility as well. We skip the rest.
8015 	 *
8016 	 * If usize > ksize then user-space is using a newer version of the ABI,
8017 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8018 	 * detect the kernel's knowledge of attributes from the attr->size value
8019 	 * which is set to ksize in this case.
8020 	 */
8021 	kattr->size = min(usize, ksize);
8022 
8023 	if (copy_to_user(uattr, kattr, kattr->size))
8024 		return -EFAULT;
8025 
8026 	return 0;
8027 }
8028 
8029 /**
8030  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8031  * @pid: the pid in question.
8032  * @uattr: structure containing the extended parameters.
8033  * @usize: sizeof(attr) for fwd/bwd comp.
8034  * @flags: for future extension.
8035  */
8036 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8037 		unsigned int, usize, unsigned int, flags)
8038 {
8039 	struct sched_attr kattr = { };
8040 	struct task_struct *p;
8041 	int retval;
8042 
8043 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8044 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8045 		return -EINVAL;
8046 
8047 	rcu_read_lock();
8048 	p = find_process_by_pid(pid);
8049 	retval = -ESRCH;
8050 	if (!p)
8051 		goto out_unlock;
8052 
8053 	retval = security_task_getscheduler(p);
8054 	if (retval)
8055 		goto out_unlock;
8056 
8057 	kattr.sched_policy = p->policy;
8058 	if (p->sched_reset_on_fork)
8059 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8060 	get_params(p, &kattr);
8061 	kattr.sched_flags &= SCHED_FLAG_ALL;
8062 
8063 #ifdef CONFIG_UCLAMP_TASK
8064 	/*
8065 	 * This could race with another potential updater, but this is fine
8066 	 * because it'll correctly read the old or the new value. We don't need
8067 	 * to guarantee who wins the race as long as it doesn't return garbage.
8068 	 */
8069 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8070 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8071 #endif
8072 
8073 	rcu_read_unlock();
8074 
8075 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8076 
8077 out_unlock:
8078 	rcu_read_unlock();
8079 	return retval;
8080 }
8081 
8082 #ifdef CONFIG_SMP
8083 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8084 {
8085 	int ret = 0;
8086 
8087 	/*
8088 	 * If the task isn't a deadline task or admission control is
8089 	 * disabled then we don't care about affinity changes.
8090 	 */
8091 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8092 		return 0;
8093 
8094 	/*
8095 	 * Since bandwidth control happens on root_domain basis,
8096 	 * if admission test is enabled, we only admit -deadline
8097 	 * tasks allowed to run on all the CPUs in the task's
8098 	 * root_domain.
8099 	 */
8100 	rcu_read_lock();
8101 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8102 		ret = -EBUSY;
8103 	rcu_read_unlock();
8104 	return ret;
8105 }
8106 #endif
8107 
8108 static int
8109 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8110 {
8111 	int retval;
8112 	cpumask_var_t cpus_allowed, new_mask;
8113 
8114 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8115 		return -ENOMEM;
8116 
8117 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8118 		retval = -ENOMEM;
8119 		goto out_free_cpus_allowed;
8120 	}
8121 
8122 	cpuset_cpus_allowed(p, cpus_allowed);
8123 	cpumask_and(new_mask, mask, cpus_allowed);
8124 
8125 	retval = dl_task_check_affinity(p, new_mask);
8126 	if (retval)
8127 		goto out_free_new_mask;
8128 again:
8129 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8130 	if (retval)
8131 		goto out_free_new_mask;
8132 
8133 	cpuset_cpus_allowed(p, cpus_allowed);
8134 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8135 		/*
8136 		 * We must have raced with a concurrent cpuset update.
8137 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8138 		 */
8139 		cpumask_copy(new_mask, cpus_allowed);
8140 		goto again;
8141 	}
8142 
8143 out_free_new_mask:
8144 	free_cpumask_var(new_mask);
8145 out_free_cpus_allowed:
8146 	free_cpumask_var(cpus_allowed);
8147 	return retval;
8148 }
8149 
8150 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8151 {
8152 	struct task_struct *p;
8153 	int retval;
8154 
8155 	rcu_read_lock();
8156 
8157 	p = find_process_by_pid(pid);
8158 	if (!p) {
8159 		rcu_read_unlock();
8160 		return -ESRCH;
8161 	}
8162 
8163 	/* Prevent p going away */
8164 	get_task_struct(p);
8165 	rcu_read_unlock();
8166 
8167 	if (p->flags & PF_NO_SETAFFINITY) {
8168 		retval = -EINVAL;
8169 		goto out_put_task;
8170 	}
8171 
8172 	if (!check_same_owner(p)) {
8173 		rcu_read_lock();
8174 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8175 			rcu_read_unlock();
8176 			retval = -EPERM;
8177 			goto out_put_task;
8178 		}
8179 		rcu_read_unlock();
8180 	}
8181 
8182 	retval = security_task_setscheduler(p);
8183 	if (retval)
8184 		goto out_put_task;
8185 
8186 	retval = __sched_setaffinity(p, in_mask);
8187 out_put_task:
8188 	put_task_struct(p);
8189 	return retval;
8190 }
8191 
8192 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8193 			     struct cpumask *new_mask)
8194 {
8195 	if (len < cpumask_size())
8196 		cpumask_clear(new_mask);
8197 	else if (len > cpumask_size())
8198 		len = cpumask_size();
8199 
8200 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8201 }
8202 
8203 /**
8204  * sys_sched_setaffinity - set the CPU affinity of a process
8205  * @pid: pid of the process
8206  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8207  * @user_mask_ptr: user-space pointer to the new CPU mask
8208  *
8209  * Return: 0 on success. An error code otherwise.
8210  */
8211 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8212 		unsigned long __user *, user_mask_ptr)
8213 {
8214 	cpumask_var_t new_mask;
8215 	int retval;
8216 
8217 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8218 		return -ENOMEM;
8219 
8220 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8221 	if (retval == 0)
8222 		retval = sched_setaffinity(pid, new_mask);
8223 	free_cpumask_var(new_mask);
8224 	return retval;
8225 }
8226 
8227 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8228 {
8229 	struct task_struct *p;
8230 	unsigned long flags;
8231 	int retval;
8232 
8233 	rcu_read_lock();
8234 
8235 	retval = -ESRCH;
8236 	p = find_process_by_pid(pid);
8237 	if (!p)
8238 		goto out_unlock;
8239 
8240 	retval = security_task_getscheduler(p);
8241 	if (retval)
8242 		goto out_unlock;
8243 
8244 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8245 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8246 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8247 
8248 out_unlock:
8249 	rcu_read_unlock();
8250 
8251 	return retval;
8252 }
8253 
8254 /**
8255  * sys_sched_getaffinity - get the CPU affinity of a process
8256  * @pid: pid of the process
8257  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8258  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8259  *
8260  * Return: size of CPU mask copied to user_mask_ptr on success. An
8261  * error code otherwise.
8262  */
8263 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8264 		unsigned long __user *, user_mask_ptr)
8265 {
8266 	int ret;
8267 	cpumask_var_t mask;
8268 
8269 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8270 		return -EINVAL;
8271 	if (len & (sizeof(unsigned long)-1))
8272 		return -EINVAL;
8273 
8274 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8275 		return -ENOMEM;
8276 
8277 	ret = sched_getaffinity(pid, mask);
8278 	if (ret == 0) {
8279 		unsigned int retlen = min(len, cpumask_size());
8280 
8281 		if (copy_to_user(user_mask_ptr, mask, retlen))
8282 			ret = -EFAULT;
8283 		else
8284 			ret = retlen;
8285 	}
8286 	free_cpumask_var(mask);
8287 
8288 	return ret;
8289 }
8290 
8291 static void do_sched_yield(void)
8292 {
8293 	struct rq_flags rf;
8294 	struct rq *rq;
8295 
8296 	rq = this_rq_lock_irq(&rf);
8297 
8298 	schedstat_inc(rq->yld_count);
8299 	current->sched_class->yield_task(rq);
8300 
8301 	preempt_disable();
8302 	rq_unlock_irq(rq, &rf);
8303 	sched_preempt_enable_no_resched();
8304 
8305 	schedule();
8306 }
8307 
8308 /**
8309  * sys_sched_yield - yield the current processor to other threads.
8310  *
8311  * This function yields the current CPU to other tasks. If there are no
8312  * other threads running on this CPU then this function will return.
8313  *
8314  * Return: 0.
8315  */
8316 SYSCALL_DEFINE0(sched_yield)
8317 {
8318 	do_sched_yield();
8319 	return 0;
8320 }
8321 
8322 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8323 int __sched __cond_resched(void)
8324 {
8325 	if (should_resched(0)) {
8326 		preempt_schedule_common();
8327 		return 1;
8328 	}
8329 	/*
8330 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8331 	 * whether the current CPU is in an RCU read-side critical section,
8332 	 * so the tick can report quiescent states even for CPUs looping
8333 	 * in kernel context.  In contrast, in non-preemptible kernels,
8334 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8335 	 * processes executing in kernel context might never report an
8336 	 * RCU quiescent state.  Therefore, the following code causes
8337 	 * cond_resched() to report a quiescent state, but only when RCU
8338 	 * is in urgent need of one.
8339 	 */
8340 #ifndef CONFIG_PREEMPT_RCU
8341 	rcu_all_qs();
8342 #endif
8343 	return 0;
8344 }
8345 EXPORT_SYMBOL(__cond_resched);
8346 #endif
8347 
8348 #ifdef CONFIG_PREEMPT_DYNAMIC
8349 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8350 #define cond_resched_dynamic_enabled	__cond_resched
8351 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8352 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8353 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8354 
8355 #define might_resched_dynamic_enabled	__cond_resched
8356 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8357 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8358 EXPORT_STATIC_CALL_TRAMP(might_resched);
8359 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8360 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8361 int __sched dynamic_cond_resched(void)
8362 {
8363 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8364 		return 0;
8365 	return __cond_resched();
8366 }
8367 EXPORT_SYMBOL(dynamic_cond_resched);
8368 
8369 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8370 int __sched dynamic_might_resched(void)
8371 {
8372 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8373 		return 0;
8374 	return __cond_resched();
8375 }
8376 EXPORT_SYMBOL(dynamic_might_resched);
8377 #endif
8378 #endif
8379 
8380 /*
8381  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8382  * call schedule, and on return reacquire the lock.
8383  *
8384  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8385  * operations here to prevent schedule() from being called twice (once via
8386  * spin_unlock(), once by hand).
8387  */
8388 int __cond_resched_lock(spinlock_t *lock)
8389 {
8390 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8391 	int ret = 0;
8392 
8393 	lockdep_assert_held(lock);
8394 
8395 	if (spin_needbreak(lock) || resched) {
8396 		spin_unlock(lock);
8397 		if (!_cond_resched())
8398 			cpu_relax();
8399 		ret = 1;
8400 		spin_lock(lock);
8401 	}
8402 	return ret;
8403 }
8404 EXPORT_SYMBOL(__cond_resched_lock);
8405 
8406 int __cond_resched_rwlock_read(rwlock_t *lock)
8407 {
8408 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8409 	int ret = 0;
8410 
8411 	lockdep_assert_held_read(lock);
8412 
8413 	if (rwlock_needbreak(lock) || resched) {
8414 		read_unlock(lock);
8415 		if (!_cond_resched())
8416 			cpu_relax();
8417 		ret = 1;
8418 		read_lock(lock);
8419 	}
8420 	return ret;
8421 }
8422 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8423 
8424 int __cond_resched_rwlock_write(rwlock_t *lock)
8425 {
8426 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8427 	int ret = 0;
8428 
8429 	lockdep_assert_held_write(lock);
8430 
8431 	if (rwlock_needbreak(lock) || resched) {
8432 		write_unlock(lock);
8433 		if (!_cond_resched())
8434 			cpu_relax();
8435 		ret = 1;
8436 		write_lock(lock);
8437 	}
8438 	return ret;
8439 }
8440 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8441 
8442 #ifdef CONFIG_PREEMPT_DYNAMIC
8443 
8444 #ifdef CONFIG_GENERIC_ENTRY
8445 #include <linux/entry-common.h>
8446 #endif
8447 
8448 /*
8449  * SC:cond_resched
8450  * SC:might_resched
8451  * SC:preempt_schedule
8452  * SC:preempt_schedule_notrace
8453  * SC:irqentry_exit_cond_resched
8454  *
8455  *
8456  * NONE:
8457  *   cond_resched               <- __cond_resched
8458  *   might_resched              <- RET0
8459  *   preempt_schedule           <- NOP
8460  *   preempt_schedule_notrace   <- NOP
8461  *   irqentry_exit_cond_resched <- NOP
8462  *
8463  * VOLUNTARY:
8464  *   cond_resched               <- __cond_resched
8465  *   might_resched              <- __cond_resched
8466  *   preempt_schedule           <- NOP
8467  *   preempt_schedule_notrace   <- NOP
8468  *   irqentry_exit_cond_resched <- NOP
8469  *
8470  * FULL:
8471  *   cond_resched               <- RET0
8472  *   might_resched              <- RET0
8473  *   preempt_schedule           <- preempt_schedule
8474  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8475  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8476  */
8477 
8478 enum {
8479 	preempt_dynamic_undefined = -1,
8480 	preempt_dynamic_none,
8481 	preempt_dynamic_voluntary,
8482 	preempt_dynamic_full,
8483 };
8484 
8485 int preempt_dynamic_mode = preempt_dynamic_undefined;
8486 
8487 int sched_dynamic_mode(const char *str)
8488 {
8489 	if (!strcmp(str, "none"))
8490 		return preempt_dynamic_none;
8491 
8492 	if (!strcmp(str, "voluntary"))
8493 		return preempt_dynamic_voluntary;
8494 
8495 	if (!strcmp(str, "full"))
8496 		return preempt_dynamic_full;
8497 
8498 	return -EINVAL;
8499 }
8500 
8501 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8502 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8503 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8504 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8505 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8506 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8507 #else
8508 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8509 #endif
8510 
8511 void sched_dynamic_update(int mode)
8512 {
8513 	/*
8514 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8515 	 * the ZERO state, which is invalid.
8516 	 */
8517 	preempt_dynamic_enable(cond_resched);
8518 	preempt_dynamic_enable(might_resched);
8519 	preempt_dynamic_enable(preempt_schedule);
8520 	preempt_dynamic_enable(preempt_schedule_notrace);
8521 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8522 
8523 	switch (mode) {
8524 	case preempt_dynamic_none:
8525 		preempt_dynamic_enable(cond_resched);
8526 		preempt_dynamic_disable(might_resched);
8527 		preempt_dynamic_disable(preempt_schedule);
8528 		preempt_dynamic_disable(preempt_schedule_notrace);
8529 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8530 		pr_info("Dynamic Preempt: none\n");
8531 		break;
8532 
8533 	case preempt_dynamic_voluntary:
8534 		preempt_dynamic_enable(cond_resched);
8535 		preempt_dynamic_enable(might_resched);
8536 		preempt_dynamic_disable(preempt_schedule);
8537 		preempt_dynamic_disable(preempt_schedule_notrace);
8538 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8539 		pr_info("Dynamic Preempt: voluntary\n");
8540 		break;
8541 
8542 	case preempt_dynamic_full:
8543 		preempt_dynamic_disable(cond_resched);
8544 		preempt_dynamic_disable(might_resched);
8545 		preempt_dynamic_enable(preempt_schedule);
8546 		preempt_dynamic_enable(preempt_schedule_notrace);
8547 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8548 		pr_info("Dynamic Preempt: full\n");
8549 		break;
8550 	}
8551 
8552 	preempt_dynamic_mode = mode;
8553 }
8554 
8555 static int __init setup_preempt_mode(char *str)
8556 {
8557 	int mode = sched_dynamic_mode(str);
8558 	if (mode < 0) {
8559 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8560 		return 0;
8561 	}
8562 
8563 	sched_dynamic_update(mode);
8564 	return 1;
8565 }
8566 __setup("preempt=", setup_preempt_mode);
8567 
8568 static void __init preempt_dynamic_init(void)
8569 {
8570 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8571 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8572 			sched_dynamic_update(preempt_dynamic_none);
8573 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8574 			sched_dynamic_update(preempt_dynamic_voluntary);
8575 		} else {
8576 			/* Default static call setting, nothing to do */
8577 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8578 			preempt_dynamic_mode = preempt_dynamic_full;
8579 			pr_info("Dynamic Preempt: full\n");
8580 		}
8581 	}
8582 }
8583 
8584 #define PREEMPT_MODEL_ACCESSOR(mode) \
8585 	bool preempt_model_##mode(void)						 \
8586 	{									 \
8587 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8588 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8589 	}									 \
8590 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8591 
8592 PREEMPT_MODEL_ACCESSOR(none);
8593 PREEMPT_MODEL_ACCESSOR(voluntary);
8594 PREEMPT_MODEL_ACCESSOR(full);
8595 
8596 #else /* !CONFIG_PREEMPT_DYNAMIC */
8597 
8598 static inline void preempt_dynamic_init(void) { }
8599 
8600 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8601 
8602 /**
8603  * yield - yield the current processor to other threads.
8604  *
8605  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8606  *
8607  * The scheduler is at all times free to pick the calling task as the most
8608  * eligible task to run, if removing the yield() call from your code breaks
8609  * it, it's already broken.
8610  *
8611  * Typical broken usage is:
8612  *
8613  * while (!event)
8614  *	yield();
8615  *
8616  * where one assumes that yield() will let 'the other' process run that will
8617  * make event true. If the current task is a SCHED_FIFO task that will never
8618  * happen. Never use yield() as a progress guarantee!!
8619  *
8620  * If you want to use yield() to wait for something, use wait_event().
8621  * If you want to use yield() to be 'nice' for others, use cond_resched().
8622  * If you still want to use yield(), do not!
8623  */
8624 void __sched yield(void)
8625 {
8626 	set_current_state(TASK_RUNNING);
8627 	do_sched_yield();
8628 }
8629 EXPORT_SYMBOL(yield);
8630 
8631 /**
8632  * yield_to - yield the current processor to another thread in
8633  * your thread group, or accelerate that thread toward the
8634  * processor it's on.
8635  * @p: target task
8636  * @preempt: whether task preemption is allowed or not
8637  *
8638  * It's the caller's job to ensure that the target task struct
8639  * can't go away on us before we can do any checks.
8640  *
8641  * Return:
8642  *	true (>0) if we indeed boosted the target task.
8643  *	false (0) if we failed to boost the target.
8644  *	-ESRCH if there's no task to yield to.
8645  */
8646 int __sched yield_to(struct task_struct *p, bool preempt)
8647 {
8648 	struct task_struct *curr = current;
8649 	struct rq *rq, *p_rq;
8650 	unsigned long flags;
8651 	int yielded = 0;
8652 
8653 	local_irq_save(flags);
8654 	rq = this_rq();
8655 
8656 again:
8657 	p_rq = task_rq(p);
8658 	/*
8659 	 * If we're the only runnable task on the rq and target rq also
8660 	 * has only one task, there's absolutely no point in yielding.
8661 	 */
8662 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8663 		yielded = -ESRCH;
8664 		goto out_irq;
8665 	}
8666 
8667 	double_rq_lock(rq, p_rq);
8668 	if (task_rq(p) != p_rq) {
8669 		double_rq_unlock(rq, p_rq);
8670 		goto again;
8671 	}
8672 
8673 	if (!curr->sched_class->yield_to_task)
8674 		goto out_unlock;
8675 
8676 	if (curr->sched_class != p->sched_class)
8677 		goto out_unlock;
8678 
8679 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8680 		goto out_unlock;
8681 
8682 	yielded = curr->sched_class->yield_to_task(rq, p);
8683 	if (yielded) {
8684 		schedstat_inc(rq->yld_count);
8685 		/*
8686 		 * Make p's CPU reschedule; pick_next_entity takes care of
8687 		 * fairness.
8688 		 */
8689 		if (preempt && rq != p_rq)
8690 			resched_curr(p_rq);
8691 	}
8692 
8693 out_unlock:
8694 	double_rq_unlock(rq, p_rq);
8695 out_irq:
8696 	local_irq_restore(flags);
8697 
8698 	if (yielded > 0)
8699 		schedule();
8700 
8701 	return yielded;
8702 }
8703 EXPORT_SYMBOL_GPL(yield_to);
8704 
8705 int io_schedule_prepare(void)
8706 {
8707 	int old_iowait = current->in_iowait;
8708 
8709 	current->in_iowait = 1;
8710 	blk_flush_plug(current->plug, true);
8711 	return old_iowait;
8712 }
8713 
8714 void io_schedule_finish(int token)
8715 {
8716 	current->in_iowait = token;
8717 }
8718 
8719 /*
8720  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8721  * that process accounting knows that this is a task in IO wait state.
8722  */
8723 long __sched io_schedule_timeout(long timeout)
8724 {
8725 	int token;
8726 	long ret;
8727 
8728 	token = io_schedule_prepare();
8729 	ret = schedule_timeout(timeout);
8730 	io_schedule_finish(token);
8731 
8732 	return ret;
8733 }
8734 EXPORT_SYMBOL(io_schedule_timeout);
8735 
8736 void __sched io_schedule(void)
8737 {
8738 	int token;
8739 
8740 	token = io_schedule_prepare();
8741 	schedule();
8742 	io_schedule_finish(token);
8743 }
8744 EXPORT_SYMBOL(io_schedule);
8745 
8746 /**
8747  * sys_sched_get_priority_max - return maximum RT priority.
8748  * @policy: scheduling class.
8749  *
8750  * Return: On success, this syscall returns the maximum
8751  * rt_priority that can be used by a given scheduling class.
8752  * On failure, a negative error code is returned.
8753  */
8754 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8755 {
8756 	int ret = -EINVAL;
8757 
8758 	switch (policy) {
8759 	case SCHED_FIFO:
8760 	case SCHED_RR:
8761 		ret = MAX_RT_PRIO-1;
8762 		break;
8763 	case SCHED_DEADLINE:
8764 	case SCHED_NORMAL:
8765 	case SCHED_BATCH:
8766 	case SCHED_IDLE:
8767 		ret = 0;
8768 		break;
8769 	}
8770 	return ret;
8771 }
8772 
8773 /**
8774  * sys_sched_get_priority_min - return minimum RT priority.
8775  * @policy: scheduling class.
8776  *
8777  * Return: On success, this syscall returns the minimum
8778  * rt_priority that can be used by a given scheduling class.
8779  * On failure, a negative error code is returned.
8780  */
8781 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8782 {
8783 	int ret = -EINVAL;
8784 
8785 	switch (policy) {
8786 	case SCHED_FIFO:
8787 	case SCHED_RR:
8788 		ret = 1;
8789 		break;
8790 	case SCHED_DEADLINE:
8791 	case SCHED_NORMAL:
8792 	case SCHED_BATCH:
8793 	case SCHED_IDLE:
8794 		ret = 0;
8795 	}
8796 	return ret;
8797 }
8798 
8799 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8800 {
8801 	struct task_struct *p;
8802 	unsigned int time_slice;
8803 	struct rq_flags rf;
8804 	struct rq *rq;
8805 	int retval;
8806 
8807 	if (pid < 0)
8808 		return -EINVAL;
8809 
8810 	retval = -ESRCH;
8811 	rcu_read_lock();
8812 	p = find_process_by_pid(pid);
8813 	if (!p)
8814 		goto out_unlock;
8815 
8816 	retval = security_task_getscheduler(p);
8817 	if (retval)
8818 		goto out_unlock;
8819 
8820 	rq = task_rq_lock(p, &rf);
8821 	time_slice = 0;
8822 	if (p->sched_class->get_rr_interval)
8823 		time_slice = p->sched_class->get_rr_interval(rq, p);
8824 	task_rq_unlock(rq, p, &rf);
8825 
8826 	rcu_read_unlock();
8827 	jiffies_to_timespec64(time_slice, t);
8828 	return 0;
8829 
8830 out_unlock:
8831 	rcu_read_unlock();
8832 	return retval;
8833 }
8834 
8835 /**
8836  * sys_sched_rr_get_interval - return the default timeslice of a process.
8837  * @pid: pid of the process.
8838  * @interval: userspace pointer to the timeslice value.
8839  *
8840  * this syscall writes the default timeslice value of a given process
8841  * into the user-space timespec buffer. A value of '0' means infinity.
8842  *
8843  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8844  * an error code.
8845  */
8846 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8847 		struct __kernel_timespec __user *, interval)
8848 {
8849 	struct timespec64 t;
8850 	int retval = sched_rr_get_interval(pid, &t);
8851 
8852 	if (retval == 0)
8853 		retval = put_timespec64(&t, interval);
8854 
8855 	return retval;
8856 }
8857 
8858 #ifdef CONFIG_COMPAT_32BIT_TIME
8859 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8860 		struct old_timespec32 __user *, interval)
8861 {
8862 	struct timespec64 t;
8863 	int retval = sched_rr_get_interval(pid, &t);
8864 
8865 	if (retval == 0)
8866 		retval = put_old_timespec32(&t, interval);
8867 	return retval;
8868 }
8869 #endif
8870 
8871 void sched_show_task(struct task_struct *p)
8872 {
8873 	unsigned long free = 0;
8874 	int ppid;
8875 
8876 	if (!try_get_task_stack(p))
8877 		return;
8878 
8879 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8880 
8881 	if (task_is_running(p))
8882 		pr_cont("  running task    ");
8883 #ifdef CONFIG_DEBUG_STACK_USAGE
8884 	free = stack_not_used(p);
8885 #endif
8886 	ppid = 0;
8887 	rcu_read_lock();
8888 	if (pid_alive(p))
8889 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8890 	rcu_read_unlock();
8891 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
8892 		free, task_pid_nr(p), ppid,
8893 		read_task_thread_flags(p));
8894 
8895 	print_worker_info(KERN_INFO, p);
8896 	print_stop_info(KERN_INFO, p);
8897 	show_stack(p, NULL, KERN_INFO);
8898 	put_task_stack(p);
8899 }
8900 EXPORT_SYMBOL_GPL(sched_show_task);
8901 
8902 static inline bool
8903 state_filter_match(unsigned long state_filter, struct task_struct *p)
8904 {
8905 	unsigned int state = READ_ONCE(p->__state);
8906 
8907 	/* no filter, everything matches */
8908 	if (!state_filter)
8909 		return true;
8910 
8911 	/* filter, but doesn't match */
8912 	if (!(state & state_filter))
8913 		return false;
8914 
8915 	/*
8916 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8917 	 * TASK_KILLABLE).
8918 	 */
8919 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
8920 		return false;
8921 
8922 	return true;
8923 }
8924 
8925 
8926 void show_state_filter(unsigned int state_filter)
8927 {
8928 	struct task_struct *g, *p;
8929 
8930 	rcu_read_lock();
8931 	for_each_process_thread(g, p) {
8932 		/*
8933 		 * reset the NMI-timeout, listing all files on a slow
8934 		 * console might take a lot of time:
8935 		 * Also, reset softlockup watchdogs on all CPUs, because
8936 		 * another CPU might be blocked waiting for us to process
8937 		 * an IPI.
8938 		 */
8939 		touch_nmi_watchdog();
8940 		touch_all_softlockup_watchdogs();
8941 		if (state_filter_match(state_filter, p))
8942 			sched_show_task(p);
8943 	}
8944 
8945 #ifdef CONFIG_SCHED_DEBUG
8946 	if (!state_filter)
8947 		sysrq_sched_debug_show();
8948 #endif
8949 	rcu_read_unlock();
8950 	/*
8951 	 * Only show locks if all tasks are dumped:
8952 	 */
8953 	if (!state_filter)
8954 		debug_show_all_locks();
8955 }
8956 
8957 /**
8958  * init_idle - set up an idle thread for a given CPU
8959  * @idle: task in question
8960  * @cpu: CPU the idle task belongs to
8961  *
8962  * NOTE: this function does not set the idle thread's NEED_RESCHED
8963  * flag, to make booting more robust.
8964  */
8965 void __init init_idle(struct task_struct *idle, int cpu)
8966 {
8967 	struct rq *rq = cpu_rq(cpu);
8968 	unsigned long flags;
8969 
8970 	__sched_fork(0, idle);
8971 
8972 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8973 	raw_spin_rq_lock(rq);
8974 
8975 	idle->__state = TASK_RUNNING;
8976 	idle->se.exec_start = sched_clock();
8977 	/*
8978 	 * PF_KTHREAD should already be set at this point; regardless, make it
8979 	 * look like a proper per-CPU kthread.
8980 	 */
8981 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8982 	kthread_set_per_cpu(idle, cpu);
8983 
8984 #ifdef CONFIG_SMP
8985 	/*
8986 	 * It's possible that init_idle() gets called multiple times on a task,
8987 	 * in that case do_set_cpus_allowed() will not do the right thing.
8988 	 *
8989 	 * And since this is boot we can forgo the serialization.
8990 	 */
8991 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8992 #endif
8993 	/*
8994 	 * We're having a chicken and egg problem, even though we are
8995 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8996 	 * lockdep check in task_group() will fail.
8997 	 *
8998 	 * Similar case to sched_fork(). / Alternatively we could
8999 	 * use task_rq_lock() here and obtain the other rq->lock.
9000 	 *
9001 	 * Silence PROVE_RCU
9002 	 */
9003 	rcu_read_lock();
9004 	__set_task_cpu(idle, cpu);
9005 	rcu_read_unlock();
9006 
9007 	rq->idle = idle;
9008 	rcu_assign_pointer(rq->curr, idle);
9009 	idle->on_rq = TASK_ON_RQ_QUEUED;
9010 #ifdef CONFIG_SMP
9011 	idle->on_cpu = 1;
9012 #endif
9013 	raw_spin_rq_unlock(rq);
9014 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9015 
9016 	/* Set the preempt count _outside_ the spinlocks! */
9017 	init_idle_preempt_count(idle, cpu);
9018 
9019 	/*
9020 	 * The idle tasks have their own, simple scheduling class:
9021 	 */
9022 	idle->sched_class = &idle_sched_class;
9023 	ftrace_graph_init_idle_task(idle, cpu);
9024 	vtime_init_idle(idle, cpu);
9025 #ifdef CONFIG_SMP
9026 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9027 #endif
9028 }
9029 
9030 #ifdef CONFIG_SMP
9031 
9032 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9033 			      const struct cpumask *trial)
9034 {
9035 	int ret = 1;
9036 
9037 	if (cpumask_empty(cur))
9038 		return ret;
9039 
9040 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9041 
9042 	return ret;
9043 }
9044 
9045 int task_can_attach(struct task_struct *p,
9046 		    const struct cpumask *cs_effective_cpus)
9047 {
9048 	int ret = 0;
9049 
9050 	/*
9051 	 * Kthreads which disallow setaffinity shouldn't be moved
9052 	 * to a new cpuset; we don't want to change their CPU
9053 	 * affinity and isolating such threads by their set of
9054 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9055 	 * applicable for such threads.  This prevents checking for
9056 	 * success of set_cpus_allowed_ptr() on all attached tasks
9057 	 * before cpus_mask may be changed.
9058 	 */
9059 	if (p->flags & PF_NO_SETAFFINITY) {
9060 		ret = -EINVAL;
9061 		goto out;
9062 	}
9063 
9064 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9065 					      cs_effective_cpus)) {
9066 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9067 
9068 		if (unlikely(cpu >= nr_cpu_ids))
9069 			return -EINVAL;
9070 		ret = dl_cpu_busy(cpu, p);
9071 	}
9072 
9073 out:
9074 	return ret;
9075 }
9076 
9077 bool sched_smp_initialized __read_mostly;
9078 
9079 #ifdef CONFIG_NUMA_BALANCING
9080 /* Migrate current task p to target_cpu */
9081 int migrate_task_to(struct task_struct *p, int target_cpu)
9082 {
9083 	struct migration_arg arg = { p, target_cpu };
9084 	int curr_cpu = task_cpu(p);
9085 
9086 	if (curr_cpu == target_cpu)
9087 		return 0;
9088 
9089 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9090 		return -EINVAL;
9091 
9092 	/* TODO: This is not properly updating schedstats */
9093 
9094 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9095 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9096 }
9097 
9098 /*
9099  * Requeue a task on a given node and accurately track the number of NUMA
9100  * tasks on the runqueues
9101  */
9102 void sched_setnuma(struct task_struct *p, int nid)
9103 {
9104 	bool queued, running;
9105 	struct rq_flags rf;
9106 	struct rq *rq;
9107 
9108 	rq = task_rq_lock(p, &rf);
9109 	queued = task_on_rq_queued(p);
9110 	running = task_current(rq, p);
9111 
9112 	if (queued)
9113 		dequeue_task(rq, p, DEQUEUE_SAVE);
9114 	if (running)
9115 		put_prev_task(rq, p);
9116 
9117 	p->numa_preferred_nid = nid;
9118 
9119 	if (queued)
9120 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9121 	if (running)
9122 		set_next_task(rq, p);
9123 	task_rq_unlock(rq, p, &rf);
9124 }
9125 #endif /* CONFIG_NUMA_BALANCING */
9126 
9127 #ifdef CONFIG_HOTPLUG_CPU
9128 /*
9129  * Ensure that the idle task is using init_mm right before its CPU goes
9130  * offline.
9131  */
9132 void idle_task_exit(void)
9133 {
9134 	struct mm_struct *mm = current->active_mm;
9135 
9136 	BUG_ON(cpu_online(smp_processor_id()));
9137 	BUG_ON(current != this_rq()->idle);
9138 
9139 	if (mm != &init_mm) {
9140 		switch_mm(mm, &init_mm, current);
9141 		finish_arch_post_lock_switch();
9142 	}
9143 
9144 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9145 }
9146 
9147 static int __balance_push_cpu_stop(void *arg)
9148 {
9149 	struct task_struct *p = arg;
9150 	struct rq *rq = this_rq();
9151 	struct rq_flags rf;
9152 	int cpu;
9153 
9154 	raw_spin_lock_irq(&p->pi_lock);
9155 	rq_lock(rq, &rf);
9156 
9157 	update_rq_clock(rq);
9158 
9159 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9160 		cpu = select_fallback_rq(rq->cpu, p);
9161 		rq = __migrate_task(rq, &rf, p, cpu);
9162 	}
9163 
9164 	rq_unlock(rq, &rf);
9165 	raw_spin_unlock_irq(&p->pi_lock);
9166 
9167 	put_task_struct(p);
9168 
9169 	return 0;
9170 }
9171 
9172 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9173 
9174 /*
9175  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9176  *
9177  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9178  * effective when the hotplug motion is down.
9179  */
9180 static void balance_push(struct rq *rq)
9181 {
9182 	struct task_struct *push_task = rq->curr;
9183 
9184 	lockdep_assert_rq_held(rq);
9185 
9186 	/*
9187 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9188 	 */
9189 	rq->balance_callback = &balance_push_callback;
9190 
9191 	/*
9192 	 * Only active while going offline and when invoked on the outgoing
9193 	 * CPU.
9194 	 */
9195 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9196 		return;
9197 
9198 	/*
9199 	 * Both the cpu-hotplug and stop task are in this case and are
9200 	 * required to complete the hotplug process.
9201 	 */
9202 	if (kthread_is_per_cpu(push_task) ||
9203 	    is_migration_disabled(push_task)) {
9204 
9205 		/*
9206 		 * If this is the idle task on the outgoing CPU try to wake
9207 		 * up the hotplug control thread which might wait for the
9208 		 * last task to vanish. The rcuwait_active() check is
9209 		 * accurate here because the waiter is pinned on this CPU
9210 		 * and can't obviously be running in parallel.
9211 		 *
9212 		 * On RT kernels this also has to check whether there are
9213 		 * pinned and scheduled out tasks on the runqueue. They
9214 		 * need to leave the migrate disabled section first.
9215 		 */
9216 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9217 		    rcuwait_active(&rq->hotplug_wait)) {
9218 			raw_spin_rq_unlock(rq);
9219 			rcuwait_wake_up(&rq->hotplug_wait);
9220 			raw_spin_rq_lock(rq);
9221 		}
9222 		return;
9223 	}
9224 
9225 	get_task_struct(push_task);
9226 	/*
9227 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9228 	 * Both preemption and IRQs are still disabled.
9229 	 */
9230 	raw_spin_rq_unlock(rq);
9231 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9232 			    this_cpu_ptr(&push_work));
9233 	/*
9234 	 * At this point need_resched() is true and we'll take the loop in
9235 	 * schedule(). The next pick is obviously going to be the stop task
9236 	 * which kthread_is_per_cpu() and will push this task away.
9237 	 */
9238 	raw_spin_rq_lock(rq);
9239 }
9240 
9241 static void balance_push_set(int cpu, bool on)
9242 {
9243 	struct rq *rq = cpu_rq(cpu);
9244 	struct rq_flags rf;
9245 
9246 	rq_lock_irqsave(rq, &rf);
9247 	if (on) {
9248 		WARN_ON_ONCE(rq->balance_callback);
9249 		rq->balance_callback = &balance_push_callback;
9250 	} else if (rq->balance_callback == &balance_push_callback) {
9251 		rq->balance_callback = NULL;
9252 	}
9253 	rq_unlock_irqrestore(rq, &rf);
9254 }
9255 
9256 /*
9257  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9258  * inactive. All tasks which are not per CPU kernel threads are either
9259  * pushed off this CPU now via balance_push() or placed on a different CPU
9260  * during wakeup. Wait until the CPU is quiescent.
9261  */
9262 static void balance_hotplug_wait(void)
9263 {
9264 	struct rq *rq = this_rq();
9265 
9266 	rcuwait_wait_event(&rq->hotplug_wait,
9267 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9268 			   TASK_UNINTERRUPTIBLE);
9269 }
9270 
9271 #else
9272 
9273 static inline void balance_push(struct rq *rq)
9274 {
9275 }
9276 
9277 static inline void balance_push_set(int cpu, bool on)
9278 {
9279 }
9280 
9281 static inline void balance_hotplug_wait(void)
9282 {
9283 }
9284 
9285 #endif /* CONFIG_HOTPLUG_CPU */
9286 
9287 void set_rq_online(struct rq *rq)
9288 {
9289 	if (!rq->online) {
9290 		const struct sched_class *class;
9291 
9292 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9293 		rq->online = 1;
9294 
9295 		for_each_class(class) {
9296 			if (class->rq_online)
9297 				class->rq_online(rq);
9298 		}
9299 	}
9300 }
9301 
9302 void set_rq_offline(struct rq *rq)
9303 {
9304 	if (rq->online) {
9305 		const struct sched_class *class;
9306 
9307 		for_each_class(class) {
9308 			if (class->rq_offline)
9309 				class->rq_offline(rq);
9310 		}
9311 
9312 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9313 		rq->online = 0;
9314 	}
9315 }
9316 
9317 /*
9318  * used to mark begin/end of suspend/resume:
9319  */
9320 static int num_cpus_frozen;
9321 
9322 /*
9323  * Update cpusets according to cpu_active mask.  If cpusets are
9324  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9325  * around partition_sched_domains().
9326  *
9327  * If we come here as part of a suspend/resume, don't touch cpusets because we
9328  * want to restore it back to its original state upon resume anyway.
9329  */
9330 static void cpuset_cpu_active(void)
9331 {
9332 	if (cpuhp_tasks_frozen) {
9333 		/*
9334 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9335 		 * resume sequence. As long as this is not the last online
9336 		 * operation in the resume sequence, just build a single sched
9337 		 * domain, ignoring cpusets.
9338 		 */
9339 		partition_sched_domains(1, NULL, NULL);
9340 		if (--num_cpus_frozen)
9341 			return;
9342 		/*
9343 		 * This is the last CPU online operation. So fall through and
9344 		 * restore the original sched domains by considering the
9345 		 * cpuset configurations.
9346 		 */
9347 		cpuset_force_rebuild();
9348 	}
9349 	cpuset_update_active_cpus();
9350 }
9351 
9352 static int cpuset_cpu_inactive(unsigned int cpu)
9353 {
9354 	if (!cpuhp_tasks_frozen) {
9355 		int ret = dl_cpu_busy(cpu, NULL);
9356 
9357 		if (ret)
9358 			return ret;
9359 		cpuset_update_active_cpus();
9360 	} else {
9361 		num_cpus_frozen++;
9362 		partition_sched_domains(1, NULL, NULL);
9363 	}
9364 	return 0;
9365 }
9366 
9367 int sched_cpu_activate(unsigned int cpu)
9368 {
9369 	struct rq *rq = cpu_rq(cpu);
9370 	struct rq_flags rf;
9371 
9372 	/*
9373 	 * Clear the balance_push callback and prepare to schedule
9374 	 * regular tasks.
9375 	 */
9376 	balance_push_set(cpu, false);
9377 
9378 #ifdef CONFIG_SCHED_SMT
9379 	/*
9380 	 * When going up, increment the number of cores with SMT present.
9381 	 */
9382 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9383 		static_branch_inc_cpuslocked(&sched_smt_present);
9384 #endif
9385 	set_cpu_active(cpu, true);
9386 
9387 	if (sched_smp_initialized) {
9388 		sched_update_numa(cpu, true);
9389 		sched_domains_numa_masks_set(cpu);
9390 		cpuset_cpu_active();
9391 	}
9392 
9393 	/*
9394 	 * Put the rq online, if not already. This happens:
9395 	 *
9396 	 * 1) In the early boot process, because we build the real domains
9397 	 *    after all CPUs have been brought up.
9398 	 *
9399 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9400 	 *    domains.
9401 	 */
9402 	rq_lock_irqsave(rq, &rf);
9403 	if (rq->rd) {
9404 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9405 		set_rq_online(rq);
9406 	}
9407 	rq_unlock_irqrestore(rq, &rf);
9408 
9409 	return 0;
9410 }
9411 
9412 int sched_cpu_deactivate(unsigned int cpu)
9413 {
9414 	struct rq *rq = cpu_rq(cpu);
9415 	struct rq_flags rf;
9416 	int ret;
9417 
9418 	/*
9419 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9420 	 * load balancing when not active
9421 	 */
9422 	nohz_balance_exit_idle(rq);
9423 
9424 	set_cpu_active(cpu, false);
9425 
9426 	/*
9427 	 * From this point forward, this CPU will refuse to run any task that
9428 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9429 	 * push those tasks away until this gets cleared, see
9430 	 * sched_cpu_dying().
9431 	 */
9432 	balance_push_set(cpu, true);
9433 
9434 	/*
9435 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9436 	 * preempt-disabled and RCU users of this state to go away such that
9437 	 * all new such users will observe it.
9438 	 *
9439 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9440 	 * ttwu_queue_cond() and is_cpu_allowed().
9441 	 *
9442 	 * Do sync before park smpboot threads to take care the rcu boost case.
9443 	 */
9444 	synchronize_rcu();
9445 
9446 	rq_lock_irqsave(rq, &rf);
9447 	if (rq->rd) {
9448 		update_rq_clock(rq);
9449 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9450 		set_rq_offline(rq);
9451 	}
9452 	rq_unlock_irqrestore(rq, &rf);
9453 
9454 #ifdef CONFIG_SCHED_SMT
9455 	/*
9456 	 * When going down, decrement the number of cores with SMT present.
9457 	 */
9458 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9459 		static_branch_dec_cpuslocked(&sched_smt_present);
9460 
9461 	sched_core_cpu_deactivate(cpu);
9462 #endif
9463 
9464 	if (!sched_smp_initialized)
9465 		return 0;
9466 
9467 	sched_update_numa(cpu, false);
9468 	ret = cpuset_cpu_inactive(cpu);
9469 	if (ret) {
9470 		balance_push_set(cpu, false);
9471 		set_cpu_active(cpu, true);
9472 		sched_update_numa(cpu, true);
9473 		return ret;
9474 	}
9475 	sched_domains_numa_masks_clear(cpu);
9476 	return 0;
9477 }
9478 
9479 static void sched_rq_cpu_starting(unsigned int cpu)
9480 {
9481 	struct rq *rq = cpu_rq(cpu);
9482 
9483 	rq->calc_load_update = calc_load_update;
9484 	update_max_interval();
9485 }
9486 
9487 int sched_cpu_starting(unsigned int cpu)
9488 {
9489 	sched_core_cpu_starting(cpu);
9490 	sched_rq_cpu_starting(cpu);
9491 	sched_tick_start(cpu);
9492 	return 0;
9493 }
9494 
9495 #ifdef CONFIG_HOTPLUG_CPU
9496 
9497 /*
9498  * Invoked immediately before the stopper thread is invoked to bring the
9499  * CPU down completely. At this point all per CPU kthreads except the
9500  * hotplug thread (current) and the stopper thread (inactive) have been
9501  * either parked or have been unbound from the outgoing CPU. Ensure that
9502  * any of those which might be on the way out are gone.
9503  *
9504  * If after this point a bound task is being woken on this CPU then the
9505  * responsible hotplug callback has failed to do it's job.
9506  * sched_cpu_dying() will catch it with the appropriate fireworks.
9507  */
9508 int sched_cpu_wait_empty(unsigned int cpu)
9509 {
9510 	balance_hotplug_wait();
9511 	return 0;
9512 }
9513 
9514 /*
9515  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9516  * might have. Called from the CPU stopper task after ensuring that the
9517  * stopper is the last running task on the CPU, so nr_active count is
9518  * stable. We need to take the teardown thread which is calling this into
9519  * account, so we hand in adjust = 1 to the load calculation.
9520  *
9521  * Also see the comment "Global load-average calculations".
9522  */
9523 static void calc_load_migrate(struct rq *rq)
9524 {
9525 	long delta = calc_load_fold_active(rq, 1);
9526 
9527 	if (delta)
9528 		atomic_long_add(delta, &calc_load_tasks);
9529 }
9530 
9531 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9532 {
9533 	struct task_struct *g, *p;
9534 	int cpu = cpu_of(rq);
9535 
9536 	lockdep_assert_rq_held(rq);
9537 
9538 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9539 	for_each_process_thread(g, p) {
9540 		if (task_cpu(p) != cpu)
9541 			continue;
9542 
9543 		if (!task_on_rq_queued(p))
9544 			continue;
9545 
9546 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9547 	}
9548 }
9549 
9550 int sched_cpu_dying(unsigned int cpu)
9551 {
9552 	struct rq *rq = cpu_rq(cpu);
9553 	struct rq_flags rf;
9554 
9555 	/* Handle pending wakeups and then migrate everything off */
9556 	sched_tick_stop(cpu);
9557 
9558 	rq_lock_irqsave(rq, &rf);
9559 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9560 		WARN(true, "Dying CPU not properly vacated!");
9561 		dump_rq_tasks(rq, KERN_WARNING);
9562 	}
9563 	rq_unlock_irqrestore(rq, &rf);
9564 
9565 	calc_load_migrate(rq);
9566 	update_max_interval();
9567 	hrtick_clear(rq);
9568 	sched_core_cpu_dying(cpu);
9569 	return 0;
9570 }
9571 #endif
9572 
9573 void __init sched_init_smp(void)
9574 {
9575 	sched_init_numa(NUMA_NO_NODE);
9576 
9577 	/*
9578 	 * There's no userspace yet to cause hotplug operations; hence all the
9579 	 * CPU masks are stable and all blatant races in the below code cannot
9580 	 * happen.
9581 	 */
9582 	mutex_lock(&sched_domains_mutex);
9583 	sched_init_domains(cpu_active_mask);
9584 	mutex_unlock(&sched_domains_mutex);
9585 
9586 	/* Move init over to a non-isolated CPU */
9587 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9588 		BUG();
9589 	current->flags &= ~PF_NO_SETAFFINITY;
9590 	sched_init_granularity();
9591 
9592 	init_sched_rt_class();
9593 	init_sched_dl_class();
9594 
9595 	sched_smp_initialized = true;
9596 }
9597 
9598 static int __init migration_init(void)
9599 {
9600 	sched_cpu_starting(smp_processor_id());
9601 	return 0;
9602 }
9603 early_initcall(migration_init);
9604 
9605 #else
9606 void __init sched_init_smp(void)
9607 {
9608 	sched_init_granularity();
9609 }
9610 #endif /* CONFIG_SMP */
9611 
9612 int in_sched_functions(unsigned long addr)
9613 {
9614 	return in_lock_functions(addr) ||
9615 		(addr >= (unsigned long)__sched_text_start
9616 		&& addr < (unsigned long)__sched_text_end);
9617 }
9618 
9619 #ifdef CONFIG_CGROUP_SCHED
9620 /*
9621  * Default task group.
9622  * Every task in system belongs to this group at bootup.
9623  */
9624 struct task_group root_task_group;
9625 LIST_HEAD(task_groups);
9626 
9627 /* Cacheline aligned slab cache for task_group */
9628 static struct kmem_cache *task_group_cache __read_mostly;
9629 #endif
9630 
9631 void __init sched_init(void)
9632 {
9633 	unsigned long ptr = 0;
9634 	int i;
9635 
9636 	/* Make sure the linker didn't screw up */
9637 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9638 	       &fair_sched_class != &rt_sched_class + 1 ||
9639 	       &rt_sched_class   != &dl_sched_class + 1);
9640 #ifdef CONFIG_SMP
9641 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9642 #endif
9643 
9644 	wait_bit_init();
9645 
9646 #ifdef CONFIG_FAIR_GROUP_SCHED
9647 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9648 #endif
9649 #ifdef CONFIG_RT_GROUP_SCHED
9650 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9651 #endif
9652 	if (ptr) {
9653 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9654 
9655 #ifdef CONFIG_FAIR_GROUP_SCHED
9656 		root_task_group.se = (struct sched_entity **)ptr;
9657 		ptr += nr_cpu_ids * sizeof(void **);
9658 
9659 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9660 		ptr += nr_cpu_ids * sizeof(void **);
9661 
9662 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9663 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9664 #endif /* CONFIG_FAIR_GROUP_SCHED */
9665 #ifdef CONFIG_RT_GROUP_SCHED
9666 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9667 		ptr += nr_cpu_ids * sizeof(void **);
9668 
9669 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9670 		ptr += nr_cpu_ids * sizeof(void **);
9671 
9672 #endif /* CONFIG_RT_GROUP_SCHED */
9673 	}
9674 
9675 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9676 
9677 #ifdef CONFIG_SMP
9678 	init_defrootdomain();
9679 #endif
9680 
9681 #ifdef CONFIG_RT_GROUP_SCHED
9682 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9683 			global_rt_period(), global_rt_runtime());
9684 #endif /* CONFIG_RT_GROUP_SCHED */
9685 
9686 #ifdef CONFIG_CGROUP_SCHED
9687 	task_group_cache = KMEM_CACHE(task_group, 0);
9688 
9689 	list_add(&root_task_group.list, &task_groups);
9690 	INIT_LIST_HEAD(&root_task_group.children);
9691 	INIT_LIST_HEAD(&root_task_group.siblings);
9692 	autogroup_init(&init_task);
9693 #endif /* CONFIG_CGROUP_SCHED */
9694 
9695 	for_each_possible_cpu(i) {
9696 		struct rq *rq;
9697 
9698 		rq = cpu_rq(i);
9699 		raw_spin_lock_init(&rq->__lock);
9700 		rq->nr_running = 0;
9701 		rq->calc_load_active = 0;
9702 		rq->calc_load_update = jiffies + LOAD_FREQ;
9703 		init_cfs_rq(&rq->cfs);
9704 		init_rt_rq(&rq->rt);
9705 		init_dl_rq(&rq->dl);
9706 #ifdef CONFIG_FAIR_GROUP_SCHED
9707 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9708 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9709 		/*
9710 		 * How much CPU bandwidth does root_task_group get?
9711 		 *
9712 		 * In case of task-groups formed thr' the cgroup filesystem, it
9713 		 * gets 100% of the CPU resources in the system. This overall
9714 		 * system CPU resource is divided among the tasks of
9715 		 * root_task_group and its child task-groups in a fair manner,
9716 		 * based on each entity's (task or task-group's) weight
9717 		 * (se->load.weight).
9718 		 *
9719 		 * In other words, if root_task_group has 10 tasks of weight
9720 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9721 		 * then A0's share of the CPU resource is:
9722 		 *
9723 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9724 		 *
9725 		 * We achieve this by letting root_task_group's tasks sit
9726 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9727 		 */
9728 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9729 #endif /* CONFIG_FAIR_GROUP_SCHED */
9730 
9731 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9732 #ifdef CONFIG_RT_GROUP_SCHED
9733 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9734 #endif
9735 #ifdef CONFIG_SMP
9736 		rq->sd = NULL;
9737 		rq->rd = NULL;
9738 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9739 		rq->balance_callback = &balance_push_callback;
9740 		rq->active_balance = 0;
9741 		rq->next_balance = jiffies;
9742 		rq->push_cpu = 0;
9743 		rq->cpu = i;
9744 		rq->online = 0;
9745 		rq->idle_stamp = 0;
9746 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9747 		rq->wake_stamp = jiffies;
9748 		rq->wake_avg_idle = rq->avg_idle;
9749 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9750 
9751 		INIT_LIST_HEAD(&rq->cfs_tasks);
9752 
9753 		rq_attach_root(rq, &def_root_domain);
9754 #ifdef CONFIG_NO_HZ_COMMON
9755 		rq->last_blocked_load_update_tick = jiffies;
9756 		atomic_set(&rq->nohz_flags, 0);
9757 
9758 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9759 #endif
9760 #ifdef CONFIG_HOTPLUG_CPU
9761 		rcuwait_init(&rq->hotplug_wait);
9762 #endif
9763 #endif /* CONFIG_SMP */
9764 		hrtick_rq_init(rq);
9765 		atomic_set(&rq->nr_iowait, 0);
9766 
9767 #ifdef CONFIG_SCHED_CORE
9768 		rq->core = rq;
9769 		rq->core_pick = NULL;
9770 		rq->core_enabled = 0;
9771 		rq->core_tree = RB_ROOT;
9772 		rq->core_forceidle_count = 0;
9773 		rq->core_forceidle_occupation = 0;
9774 		rq->core_forceidle_start = 0;
9775 
9776 		rq->core_cookie = 0UL;
9777 #endif
9778 	}
9779 
9780 	set_load_weight(&init_task, false);
9781 
9782 	/*
9783 	 * The boot idle thread does lazy MMU switching as well:
9784 	 */
9785 	mmgrab(&init_mm);
9786 	enter_lazy_tlb(&init_mm, current);
9787 
9788 	/*
9789 	 * The idle task doesn't need the kthread struct to function, but it
9790 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9791 	 * if we want to avoid special-casing it in code that deals with per-CPU
9792 	 * kthreads.
9793 	 */
9794 	WARN_ON(!set_kthread_struct(current));
9795 
9796 	/*
9797 	 * Make us the idle thread. Technically, schedule() should not be
9798 	 * called from this thread, however somewhere below it might be,
9799 	 * but because we are the idle thread, we just pick up running again
9800 	 * when this runqueue becomes "idle".
9801 	 */
9802 	init_idle(current, smp_processor_id());
9803 
9804 	calc_load_update = jiffies + LOAD_FREQ;
9805 
9806 #ifdef CONFIG_SMP
9807 	idle_thread_set_boot_cpu();
9808 	balance_push_set(smp_processor_id(), false);
9809 #endif
9810 	init_sched_fair_class();
9811 
9812 	psi_init();
9813 
9814 	init_uclamp();
9815 
9816 	preempt_dynamic_init();
9817 
9818 	scheduler_running = 1;
9819 }
9820 
9821 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9822 
9823 void __might_sleep(const char *file, int line)
9824 {
9825 	unsigned int state = get_current_state();
9826 	/*
9827 	 * Blocking primitives will set (and therefore destroy) current->state,
9828 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9829 	 * otherwise we will destroy state.
9830 	 */
9831 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9832 			"do not call blocking ops when !TASK_RUNNING; "
9833 			"state=%x set at [<%p>] %pS\n", state,
9834 			(void *)current->task_state_change,
9835 			(void *)current->task_state_change);
9836 
9837 	__might_resched(file, line, 0);
9838 }
9839 EXPORT_SYMBOL(__might_sleep);
9840 
9841 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9842 {
9843 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9844 		return;
9845 
9846 	if (preempt_count() == preempt_offset)
9847 		return;
9848 
9849 	pr_err("Preemption disabled at:");
9850 	print_ip_sym(KERN_ERR, ip);
9851 }
9852 
9853 static inline bool resched_offsets_ok(unsigned int offsets)
9854 {
9855 	unsigned int nested = preempt_count();
9856 
9857 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9858 
9859 	return nested == offsets;
9860 }
9861 
9862 void __might_resched(const char *file, int line, unsigned int offsets)
9863 {
9864 	/* Ratelimiting timestamp: */
9865 	static unsigned long prev_jiffy;
9866 
9867 	unsigned long preempt_disable_ip;
9868 
9869 	/* WARN_ON_ONCE() by default, no rate limit required: */
9870 	rcu_sleep_check();
9871 
9872 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9873 	     !is_idle_task(current) && !current->non_block_count) ||
9874 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9875 	    oops_in_progress)
9876 		return;
9877 
9878 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9879 		return;
9880 	prev_jiffy = jiffies;
9881 
9882 	/* Save this before calling printk(), since that will clobber it: */
9883 	preempt_disable_ip = get_preempt_disable_ip(current);
9884 
9885 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9886 	       file, line);
9887 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9888 	       in_atomic(), irqs_disabled(), current->non_block_count,
9889 	       current->pid, current->comm);
9890 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9891 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9892 
9893 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9894 		pr_err("RCU nest depth: %d, expected: %u\n",
9895 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9896 	}
9897 
9898 	if (task_stack_end_corrupted(current))
9899 		pr_emerg("Thread overran stack, or stack corrupted\n");
9900 
9901 	debug_show_held_locks(current);
9902 	if (irqs_disabled())
9903 		print_irqtrace_events(current);
9904 
9905 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9906 				 preempt_disable_ip);
9907 
9908 	dump_stack();
9909 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9910 }
9911 EXPORT_SYMBOL(__might_resched);
9912 
9913 void __cant_sleep(const char *file, int line, int preempt_offset)
9914 {
9915 	static unsigned long prev_jiffy;
9916 
9917 	if (irqs_disabled())
9918 		return;
9919 
9920 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9921 		return;
9922 
9923 	if (preempt_count() > preempt_offset)
9924 		return;
9925 
9926 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9927 		return;
9928 	prev_jiffy = jiffies;
9929 
9930 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9931 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9932 			in_atomic(), irqs_disabled(),
9933 			current->pid, current->comm);
9934 
9935 	debug_show_held_locks(current);
9936 	dump_stack();
9937 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9938 }
9939 EXPORT_SYMBOL_GPL(__cant_sleep);
9940 
9941 #ifdef CONFIG_SMP
9942 void __cant_migrate(const char *file, int line)
9943 {
9944 	static unsigned long prev_jiffy;
9945 
9946 	if (irqs_disabled())
9947 		return;
9948 
9949 	if (is_migration_disabled(current))
9950 		return;
9951 
9952 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9953 		return;
9954 
9955 	if (preempt_count() > 0)
9956 		return;
9957 
9958 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9959 		return;
9960 	prev_jiffy = jiffies;
9961 
9962 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9963 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9964 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9965 	       current->pid, current->comm);
9966 
9967 	debug_show_held_locks(current);
9968 	dump_stack();
9969 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9970 }
9971 EXPORT_SYMBOL_GPL(__cant_migrate);
9972 #endif
9973 #endif
9974 
9975 #ifdef CONFIG_MAGIC_SYSRQ
9976 void normalize_rt_tasks(void)
9977 {
9978 	struct task_struct *g, *p;
9979 	struct sched_attr attr = {
9980 		.sched_policy = SCHED_NORMAL,
9981 	};
9982 
9983 	read_lock(&tasklist_lock);
9984 	for_each_process_thread(g, p) {
9985 		/*
9986 		 * Only normalize user tasks:
9987 		 */
9988 		if (p->flags & PF_KTHREAD)
9989 			continue;
9990 
9991 		p->se.exec_start = 0;
9992 		schedstat_set(p->stats.wait_start,  0);
9993 		schedstat_set(p->stats.sleep_start, 0);
9994 		schedstat_set(p->stats.block_start, 0);
9995 
9996 		if (!dl_task(p) && !rt_task(p)) {
9997 			/*
9998 			 * Renice negative nice level userspace
9999 			 * tasks back to 0:
10000 			 */
10001 			if (task_nice(p) < 0)
10002 				set_user_nice(p, 0);
10003 			continue;
10004 		}
10005 
10006 		__sched_setscheduler(p, &attr, false, false);
10007 	}
10008 	read_unlock(&tasklist_lock);
10009 }
10010 
10011 #endif /* CONFIG_MAGIC_SYSRQ */
10012 
10013 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10014 /*
10015  * These functions are only useful for the IA64 MCA handling, or kdb.
10016  *
10017  * They can only be called when the whole system has been
10018  * stopped - every CPU needs to be quiescent, and no scheduling
10019  * activity can take place. Using them for anything else would
10020  * be a serious bug, and as a result, they aren't even visible
10021  * under any other configuration.
10022  */
10023 
10024 /**
10025  * curr_task - return the current task for a given CPU.
10026  * @cpu: the processor in question.
10027  *
10028  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10029  *
10030  * Return: The current task for @cpu.
10031  */
10032 struct task_struct *curr_task(int cpu)
10033 {
10034 	return cpu_curr(cpu);
10035 }
10036 
10037 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10038 
10039 #ifdef CONFIG_IA64
10040 /**
10041  * ia64_set_curr_task - set the current task for a given CPU.
10042  * @cpu: the processor in question.
10043  * @p: the task pointer to set.
10044  *
10045  * Description: This function must only be used when non-maskable interrupts
10046  * are serviced on a separate stack. It allows the architecture to switch the
10047  * notion of the current task on a CPU in a non-blocking manner. This function
10048  * must be called with all CPU's synchronized, and interrupts disabled, the
10049  * and caller must save the original value of the current task (see
10050  * curr_task() above) and restore that value before reenabling interrupts and
10051  * re-starting the system.
10052  *
10053  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10054  */
10055 void ia64_set_curr_task(int cpu, struct task_struct *p)
10056 {
10057 	cpu_curr(cpu) = p;
10058 }
10059 
10060 #endif
10061 
10062 #ifdef CONFIG_CGROUP_SCHED
10063 /* task_group_lock serializes the addition/removal of task groups */
10064 static DEFINE_SPINLOCK(task_group_lock);
10065 
10066 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10067 					    struct task_group *parent)
10068 {
10069 #ifdef CONFIG_UCLAMP_TASK_GROUP
10070 	enum uclamp_id clamp_id;
10071 
10072 	for_each_clamp_id(clamp_id) {
10073 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10074 			      uclamp_none(clamp_id), false);
10075 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10076 	}
10077 #endif
10078 }
10079 
10080 static void sched_free_group(struct task_group *tg)
10081 {
10082 	free_fair_sched_group(tg);
10083 	free_rt_sched_group(tg);
10084 	autogroup_free(tg);
10085 	kmem_cache_free(task_group_cache, tg);
10086 }
10087 
10088 static void sched_free_group_rcu(struct rcu_head *rcu)
10089 {
10090 	sched_free_group(container_of(rcu, struct task_group, rcu));
10091 }
10092 
10093 static void sched_unregister_group(struct task_group *tg)
10094 {
10095 	unregister_fair_sched_group(tg);
10096 	unregister_rt_sched_group(tg);
10097 	/*
10098 	 * We have to wait for yet another RCU grace period to expire, as
10099 	 * print_cfs_stats() might run concurrently.
10100 	 */
10101 	call_rcu(&tg->rcu, sched_free_group_rcu);
10102 }
10103 
10104 /* allocate runqueue etc for a new task group */
10105 struct task_group *sched_create_group(struct task_group *parent)
10106 {
10107 	struct task_group *tg;
10108 
10109 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10110 	if (!tg)
10111 		return ERR_PTR(-ENOMEM);
10112 
10113 	if (!alloc_fair_sched_group(tg, parent))
10114 		goto err;
10115 
10116 	if (!alloc_rt_sched_group(tg, parent))
10117 		goto err;
10118 
10119 	alloc_uclamp_sched_group(tg, parent);
10120 
10121 	return tg;
10122 
10123 err:
10124 	sched_free_group(tg);
10125 	return ERR_PTR(-ENOMEM);
10126 }
10127 
10128 void sched_online_group(struct task_group *tg, struct task_group *parent)
10129 {
10130 	unsigned long flags;
10131 
10132 	spin_lock_irqsave(&task_group_lock, flags);
10133 	list_add_rcu(&tg->list, &task_groups);
10134 
10135 	/* Root should already exist: */
10136 	WARN_ON(!parent);
10137 
10138 	tg->parent = parent;
10139 	INIT_LIST_HEAD(&tg->children);
10140 	list_add_rcu(&tg->siblings, &parent->children);
10141 	spin_unlock_irqrestore(&task_group_lock, flags);
10142 
10143 	online_fair_sched_group(tg);
10144 }
10145 
10146 /* rcu callback to free various structures associated with a task group */
10147 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10148 {
10149 	/* Now it should be safe to free those cfs_rqs: */
10150 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10151 }
10152 
10153 void sched_destroy_group(struct task_group *tg)
10154 {
10155 	/* Wait for possible concurrent references to cfs_rqs complete: */
10156 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10157 }
10158 
10159 void sched_release_group(struct task_group *tg)
10160 {
10161 	unsigned long flags;
10162 
10163 	/*
10164 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10165 	 * sched_cfs_period_timer()).
10166 	 *
10167 	 * For this to be effective, we have to wait for all pending users of
10168 	 * this task group to leave their RCU critical section to ensure no new
10169 	 * user will see our dying task group any more. Specifically ensure
10170 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10171 	 *
10172 	 * We therefore defer calling unregister_fair_sched_group() to
10173 	 * sched_unregister_group() which is guarantied to get called only after the
10174 	 * current RCU grace period has expired.
10175 	 */
10176 	spin_lock_irqsave(&task_group_lock, flags);
10177 	list_del_rcu(&tg->list);
10178 	list_del_rcu(&tg->siblings);
10179 	spin_unlock_irqrestore(&task_group_lock, flags);
10180 }
10181 
10182 static void sched_change_group(struct task_struct *tsk)
10183 {
10184 	struct task_group *tg;
10185 
10186 	/*
10187 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10188 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10189 	 * to prevent lockdep warnings.
10190 	 */
10191 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10192 			  struct task_group, css);
10193 	tg = autogroup_task_group(tsk, tg);
10194 	tsk->sched_task_group = tg;
10195 
10196 #ifdef CONFIG_FAIR_GROUP_SCHED
10197 	if (tsk->sched_class->task_change_group)
10198 		tsk->sched_class->task_change_group(tsk);
10199 	else
10200 #endif
10201 		set_task_rq(tsk, task_cpu(tsk));
10202 }
10203 
10204 /*
10205  * Change task's runqueue when it moves between groups.
10206  *
10207  * The caller of this function should have put the task in its new group by
10208  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10209  * its new group.
10210  */
10211 void sched_move_task(struct task_struct *tsk)
10212 {
10213 	int queued, running, queue_flags =
10214 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10215 	struct rq_flags rf;
10216 	struct rq *rq;
10217 
10218 	rq = task_rq_lock(tsk, &rf);
10219 	update_rq_clock(rq);
10220 
10221 	running = task_current(rq, tsk);
10222 	queued = task_on_rq_queued(tsk);
10223 
10224 	if (queued)
10225 		dequeue_task(rq, tsk, queue_flags);
10226 	if (running)
10227 		put_prev_task(rq, tsk);
10228 
10229 	sched_change_group(tsk);
10230 
10231 	if (queued)
10232 		enqueue_task(rq, tsk, queue_flags);
10233 	if (running) {
10234 		set_next_task(rq, tsk);
10235 		/*
10236 		 * After changing group, the running task may have joined a
10237 		 * throttled one but it's still the running task. Trigger a
10238 		 * resched to make sure that task can still run.
10239 		 */
10240 		resched_curr(rq);
10241 	}
10242 
10243 	task_rq_unlock(rq, tsk, &rf);
10244 }
10245 
10246 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10247 {
10248 	return css ? container_of(css, struct task_group, css) : NULL;
10249 }
10250 
10251 static struct cgroup_subsys_state *
10252 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10253 {
10254 	struct task_group *parent = css_tg(parent_css);
10255 	struct task_group *tg;
10256 
10257 	if (!parent) {
10258 		/* This is early initialization for the top cgroup */
10259 		return &root_task_group.css;
10260 	}
10261 
10262 	tg = sched_create_group(parent);
10263 	if (IS_ERR(tg))
10264 		return ERR_PTR(-ENOMEM);
10265 
10266 	return &tg->css;
10267 }
10268 
10269 /* Expose task group only after completing cgroup initialization */
10270 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10271 {
10272 	struct task_group *tg = css_tg(css);
10273 	struct task_group *parent = css_tg(css->parent);
10274 
10275 	if (parent)
10276 		sched_online_group(tg, parent);
10277 
10278 #ifdef CONFIG_UCLAMP_TASK_GROUP
10279 	/* Propagate the effective uclamp value for the new group */
10280 	mutex_lock(&uclamp_mutex);
10281 	rcu_read_lock();
10282 	cpu_util_update_eff(css);
10283 	rcu_read_unlock();
10284 	mutex_unlock(&uclamp_mutex);
10285 #endif
10286 
10287 	return 0;
10288 }
10289 
10290 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10291 {
10292 	struct task_group *tg = css_tg(css);
10293 
10294 	sched_release_group(tg);
10295 }
10296 
10297 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10298 {
10299 	struct task_group *tg = css_tg(css);
10300 
10301 	/*
10302 	 * Relies on the RCU grace period between css_released() and this.
10303 	 */
10304 	sched_unregister_group(tg);
10305 }
10306 
10307 #ifdef CONFIG_RT_GROUP_SCHED
10308 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10309 {
10310 	struct task_struct *task;
10311 	struct cgroup_subsys_state *css;
10312 
10313 	cgroup_taskset_for_each(task, css, tset) {
10314 		if (!sched_rt_can_attach(css_tg(css), task))
10315 			return -EINVAL;
10316 	}
10317 	return 0;
10318 }
10319 #endif
10320 
10321 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10322 {
10323 	struct task_struct *task;
10324 	struct cgroup_subsys_state *css;
10325 
10326 	cgroup_taskset_for_each(task, css, tset)
10327 		sched_move_task(task);
10328 }
10329 
10330 #ifdef CONFIG_UCLAMP_TASK_GROUP
10331 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10332 {
10333 	struct cgroup_subsys_state *top_css = css;
10334 	struct uclamp_se *uc_parent = NULL;
10335 	struct uclamp_se *uc_se = NULL;
10336 	unsigned int eff[UCLAMP_CNT];
10337 	enum uclamp_id clamp_id;
10338 	unsigned int clamps;
10339 
10340 	lockdep_assert_held(&uclamp_mutex);
10341 	SCHED_WARN_ON(!rcu_read_lock_held());
10342 
10343 	css_for_each_descendant_pre(css, top_css) {
10344 		uc_parent = css_tg(css)->parent
10345 			? css_tg(css)->parent->uclamp : NULL;
10346 
10347 		for_each_clamp_id(clamp_id) {
10348 			/* Assume effective clamps matches requested clamps */
10349 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10350 			/* Cap effective clamps with parent's effective clamps */
10351 			if (uc_parent &&
10352 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10353 				eff[clamp_id] = uc_parent[clamp_id].value;
10354 			}
10355 		}
10356 		/* Ensure protection is always capped by limit */
10357 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10358 
10359 		/* Propagate most restrictive effective clamps */
10360 		clamps = 0x0;
10361 		uc_se = css_tg(css)->uclamp;
10362 		for_each_clamp_id(clamp_id) {
10363 			if (eff[clamp_id] == uc_se[clamp_id].value)
10364 				continue;
10365 			uc_se[clamp_id].value = eff[clamp_id];
10366 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10367 			clamps |= (0x1 << clamp_id);
10368 		}
10369 		if (!clamps) {
10370 			css = css_rightmost_descendant(css);
10371 			continue;
10372 		}
10373 
10374 		/* Immediately update descendants RUNNABLE tasks */
10375 		uclamp_update_active_tasks(css);
10376 	}
10377 }
10378 
10379 /*
10380  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10381  * C expression. Since there is no way to convert a macro argument (N) into a
10382  * character constant, use two levels of macros.
10383  */
10384 #define _POW10(exp) ((unsigned int)1e##exp)
10385 #define POW10(exp) _POW10(exp)
10386 
10387 struct uclamp_request {
10388 #define UCLAMP_PERCENT_SHIFT	2
10389 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10390 	s64 percent;
10391 	u64 util;
10392 	int ret;
10393 };
10394 
10395 static inline struct uclamp_request
10396 capacity_from_percent(char *buf)
10397 {
10398 	struct uclamp_request req = {
10399 		.percent = UCLAMP_PERCENT_SCALE,
10400 		.util = SCHED_CAPACITY_SCALE,
10401 		.ret = 0,
10402 	};
10403 
10404 	buf = strim(buf);
10405 	if (strcmp(buf, "max")) {
10406 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10407 					     &req.percent);
10408 		if (req.ret)
10409 			return req;
10410 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10411 			req.ret = -ERANGE;
10412 			return req;
10413 		}
10414 
10415 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10416 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10417 	}
10418 
10419 	return req;
10420 }
10421 
10422 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10423 				size_t nbytes, loff_t off,
10424 				enum uclamp_id clamp_id)
10425 {
10426 	struct uclamp_request req;
10427 	struct task_group *tg;
10428 
10429 	req = capacity_from_percent(buf);
10430 	if (req.ret)
10431 		return req.ret;
10432 
10433 	static_branch_enable(&sched_uclamp_used);
10434 
10435 	mutex_lock(&uclamp_mutex);
10436 	rcu_read_lock();
10437 
10438 	tg = css_tg(of_css(of));
10439 	if (tg->uclamp_req[clamp_id].value != req.util)
10440 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10441 
10442 	/*
10443 	 * Because of not recoverable conversion rounding we keep track of the
10444 	 * exact requested value
10445 	 */
10446 	tg->uclamp_pct[clamp_id] = req.percent;
10447 
10448 	/* Update effective clamps to track the most restrictive value */
10449 	cpu_util_update_eff(of_css(of));
10450 
10451 	rcu_read_unlock();
10452 	mutex_unlock(&uclamp_mutex);
10453 
10454 	return nbytes;
10455 }
10456 
10457 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10458 				    char *buf, size_t nbytes,
10459 				    loff_t off)
10460 {
10461 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10462 }
10463 
10464 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10465 				    char *buf, size_t nbytes,
10466 				    loff_t off)
10467 {
10468 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10469 }
10470 
10471 static inline void cpu_uclamp_print(struct seq_file *sf,
10472 				    enum uclamp_id clamp_id)
10473 {
10474 	struct task_group *tg;
10475 	u64 util_clamp;
10476 	u64 percent;
10477 	u32 rem;
10478 
10479 	rcu_read_lock();
10480 	tg = css_tg(seq_css(sf));
10481 	util_clamp = tg->uclamp_req[clamp_id].value;
10482 	rcu_read_unlock();
10483 
10484 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10485 		seq_puts(sf, "max\n");
10486 		return;
10487 	}
10488 
10489 	percent = tg->uclamp_pct[clamp_id];
10490 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10491 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10492 }
10493 
10494 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10495 {
10496 	cpu_uclamp_print(sf, UCLAMP_MIN);
10497 	return 0;
10498 }
10499 
10500 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10501 {
10502 	cpu_uclamp_print(sf, UCLAMP_MAX);
10503 	return 0;
10504 }
10505 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10506 
10507 #ifdef CONFIG_FAIR_GROUP_SCHED
10508 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10509 				struct cftype *cftype, u64 shareval)
10510 {
10511 	if (shareval > scale_load_down(ULONG_MAX))
10512 		shareval = MAX_SHARES;
10513 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10514 }
10515 
10516 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10517 			       struct cftype *cft)
10518 {
10519 	struct task_group *tg = css_tg(css);
10520 
10521 	return (u64) scale_load_down(tg->shares);
10522 }
10523 
10524 #ifdef CONFIG_CFS_BANDWIDTH
10525 static DEFINE_MUTEX(cfs_constraints_mutex);
10526 
10527 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10528 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10529 /* More than 203 days if BW_SHIFT equals 20. */
10530 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10531 
10532 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10533 
10534 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10535 				u64 burst)
10536 {
10537 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10538 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10539 
10540 	if (tg == &root_task_group)
10541 		return -EINVAL;
10542 
10543 	/*
10544 	 * Ensure we have at some amount of bandwidth every period.  This is
10545 	 * to prevent reaching a state of large arrears when throttled via
10546 	 * entity_tick() resulting in prolonged exit starvation.
10547 	 */
10548 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10549 		return -EINVAL;
10550 
10551 	/*
10552 	 * Likewise, bound things on the other side by preventing insane quota
10553 	 * periods.  This also allows us to normalize in computing quota
10554 	 * feasibility.
10555 	 */
10556 	if (period > max_cfs_quota_period)
10557 		return -EINVAL;
10558 
10559 	/*
10560 	 * Bound quota to defend quota against overflow during bandwidth shift.
10561 	 */
10562 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10563 		return -EINVAL;
10564 
10565 	if (quota != RUNTIME_INF && (burst > quota ||
10566 				     burst + quota > max_cfs_runtime))
10567 		return -EINVAL;
10568 
10569 	/*
10570 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10571 	 * unthrottle_offline_cfs_rqs().
10572 	 */
10573 	cpus_read_lock();
10574 	mutex_lock(&cfs_constraints_mutex);
10575 	ret = __cfs_schedulable(tg, period, quota);
10576 	if (ret)
10577 		goto out_unlock;
10578 
10579 	runtime_enabled = quota != RUNTIME_INF;
10580 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10581 	/*
10582 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10583 	 * before making related changes, and on->off must occur afterwards
10584 	 */
10585 	if (runtime_enabled && !runtime_was_enabled)
10586 		cfs_bandwidth_usage_inc();
10587 	raw_spin_lock_irq(&cfs_b->lock);
10588 	cfs_b->period = ns_to_ktime(period);
10589 	cfs_b->quota = quota;
10590 	cfs_b->burst = burst;
10591 
10592 	__refill_cfs_bandwidth_runtime(cfs_b);
10593 
10594 	/* Restart the period timer (if active) to handle new period expiry: */
10595 	if (runtime_enabled)
10596 		start_cfs_bandwidth(cfs_b);
10597 
10598 	raw_spin_unlock_irq(&cfs_b->lock);
10599 
10600 	for_each_online_cpu(i) {
10601 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10602 		struct rq *rq = cfs_rq->rq;
10603 		struct rq_flags rf;
10604 
10605 		rq_lock_irq(rq, &rf);
10606 		cfs_rq->runtime_enabled = runtime_enabled;
10607 		cfs_rq->runtime_remaining = 0;
10608 
10609 		if (cfs_rq->throttled)
10610 			unthrottle_cfs_rq(cfs_rq);
10611 		rq_unlock_irq(rq, &rf);
10612 	}
10613 	if (runtime_was_enabled && !runtime_enabled)
10614 		cfs_bandwidth_usage_dec();
10615 out_unlock:
10616 	mutex_unlock(&cfs_constraints_mutex);
10617 	cpus_read_unlock();
10618 
10619 	return ret;
10620 }
10621 
10622 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10623 {
10624 	u64 quota, period, burst;
10625 
10626 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10627 	burst = tg->cfs_bandwidth.burst;
10628 	if (cfs_quota_us < 0)
10629 		quota = RUNTIME_INF;
10630 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10631 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10632 	else
10633 		return -EINVAL;
10634 
10635 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10636 }
10637 
10638 static long tg_get_cfs_quota(struct task_group *tg)
10639 {
10640 	u64 quota_us;
10641 
10642 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10643 		return -1;
10644 
10645 	quota_us = tg->cfs_bandwidth.quota;
10646 	do_div(quota_us, NSEC_PER_USEC);
10647 
10648 	return quota_us;
10649 }
10650 
10651 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10652 {
10653 	u64 quota, period, burst;
10654 
10655 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10656 		return -EINVAL;
10657 
10658 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10659 	quota = tg->cfs_bandwidth.quota;
10660 	burst = tg->cfs_bandwidth.burst;
10661 
10662 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10663 }
10664 
10665 static long tg_get_cfs_period(struct task_group *tg)
10666 {
10667 	u64 cfs_period_us;
10668 
10669 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10670 	do_div(cfs_period_us, NSEC_PER_USEC);
10671 
10672 	return cfs_period_us;
10673 }
10674 
10675 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10676 {
10677 	u64 quota, period, burst;
10678 
10679 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10680 		return -EINVAL;
10681 
10682 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10683 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10684 	quota = tg->cfs_bandwidth.quota;
10685 
10686 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10687 }
10688 
10689 static long tg_get_cfs_burst(struct task_group *tg)
10690 {
10691 	u64 burst_us;
10692 
10693 	burst_us = tg->cfs_bandwidth.burst;
10694 	do_div(burst_us, NSEC_PER_USEC);
10695 
10696 	return burst_us;
10697 }
10698 
10699 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10700 				  struct cftype *cft)
10701 {
10702 	return tg_get_cfs_quota(css_tg(css));
10703 }
10704 
10705 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10706 				   struct cftype *cftype, s64 cfs_quota_us)
10707 {
10708 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10709 }
10710 
10711 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10712 				   struct cftype *cft)
10713 {
10714 	return tg_get_cfs_period(css_tg(css));
10715 }
10716 
10717 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10718 				    struct cftype *cftype, u64 cfs_period_us)
10719 {
10720 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10721 }
10722 
10723 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10724 				  struct cftype *cft)
10725 {
10726 	return tg_get_cfs_burst(css_tg(css));
10727 }
10728 
10729 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10730 				   struct cftype *cftype, u64 cfs_burst_us)
10731 {
10732 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10733 }
10734 
10735 struct cfs_schedulable_data {
10736 	struct task_group *tg;
10737 	u64 period, quota;
10738 };
10739 
10740 /*
10741  * normalize group quota/period to be quota/max_period
10742  * note: units are usecs
10743  */
10744 static u64 normalize_cfs_quota(struct task_group *tg,
10745 			       struct cfs_schedulable_data *d)
10746 {
10747 	u64 quota, period;
10748 
10749 	if (tg == d->tg) {
10750 		period = d->period;
10751 		quota = d->quota;
10752 	} else {
10753 		period = tg_get_cfs_period(tg);
10754 		quota = tg_get_cfs_quota(tg);
10755 	}
10756 
10757 	/* note: these should typically be equivalent */
10758 	if (quota == RUNTIME_INF || quota == -1)
10759 		return RUNTIME_INF;
10760 
10761 	return to_ratio(period, quota);
10762 }
10763 
10764 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10765 {
10766 	struct cfs_schedulable_data *d = data;
10767 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10768 	s64 quota = 0, parent_quota = -1;
10769 
10770 	if (!tg->parent) {
10771 		quota = RUNTIME_INF;
10772 	} else {
10773 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10774 
10775 		quota = normalize_cfs_quota(tg, d);
10776 		parent_quota = parent_b->hierarchical_quota;
10777 
10778 		/*
10779 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10780 		 * always take the min.  On cgroup1, only inherit when no
10781 		 * limit is set:
10782 		 */
10783 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10784 			quota = min(quota, parent_quota);
10785 		} else {
10786 			if (quota == RUNTIME_INF)
10787 				quota = parent_quota;
10788 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10789 				return -EINVAL;
10790 		}
10791 	}
10792 	cfs_b->hierarchical_quota = quota;
10793 
10794 	return 0;
10795 }
10796 
10797 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10798 {
10799 	int ret;
10800 	struct cfs_schedulable_data data = {
10801 		.tg = tg,
10802 		.period = period,
10803 		.quota = quota,
10804 	};
10805 
10806 	if (quota != RUNTIME_INF) {
10807 		do_div(data.period, NSEC_PER_USEC);
10808 		do_div(data.quota, NSEC_PER_USEC);
10809 	}
10810 
10811 	rcu_read_lock();
10812 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10813 	rcu_read_unlock();
10814 
10815 	return ret;
10816 }
10817 
10818 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10819 {
10820 	struct task_group *tg = css_tg(seq_css(sf));
10821 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10822 
10823 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10824 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10825 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10826 
10827 	if (schedstat_enabled() && tg != &root_task_group) {
10828 		struct sched_statistics *stats;
10829 		u64 ws = 0;
10830 		int i;
10831 
10832 		for_each_possible_cpu(i) {
10833 			stats = __schedstats_from_se(tg->se[i]);
10834 			ws += schedstat_val(stats->wait_sum);
10835 		}
10836 
10837 		seq_printf(sf, "wait_sum %llu\n", ws);
10838 	}
10839 
10840 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10841 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10842 
10843 	return 0;
10844 }
10845 #endif /* CONFIG_CFS_BANDWIDTH */
10846 #endif /* CONFIG_FAIR_GROUP_SCHED */
10847 
10848 #ifdef CONFIG_RT_GROUP_SCHED
10849 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10850 				struct cftype *cft, s64 val)
10851 {
10852 	return sched_group_set_rt_runtime(css_tg(css), val);
10853 }
10854 
10855 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10856 			       struct cftype *cft)
10857 {
10858 	return sched_group_rt_runtime(css_tg(css));
10859 }
10860 
10861 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10862 				    struct cftype *cftype, u64 rt_period_us)
10863 {
10864 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10865 }
10866 
10867 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10868 				   struct cftype *cft)
10869 {
10870 	return sched_group_rt_period(css_tg(css));
10871 }
10872 #endif /* CONFIG_RT_GROUP_SCHED */
10873 
10874 #ifdef CONFIG_FAIR_GROUP_SCHED
10875 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10876 			       struct cftype *cft)
10877 {
10878 	return css_tg(css)->idle;
10879 }
10880 
10881 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10882 				struct cftype *cft, s64 idle)
10883 {
10884 	return sched_group_set_idle(css_tg(css), idle);
10885 }
10886 #endif
10887 
10888 static struct cftype cpu_legacy_files[] = {
10889 #ifdef CONFIG_FAIR_GROUP_SCHED
10890 	{
10891 		.name = "shares",
10892 		.read_u64 = cpu_shares_read_u64,
10893 		.write_u64 = cpu_shares_write_u64,
10894 	},
10895 	{
10896 		.name = "idle",
10897 		.read_s64 = cpu_idle_read_s64,
10898 		.write_s64 = cpu_idle_write_s64,
10899 	},
10900 #endif
10901 #ifdef CONFIG_CFS_BANDWIDTH
10902 	{
10903 		.name = "cfs_quota_us",
10904 		.read_s64 = cpu_cfs_quota_read_s64,
10905 		.write_s64 = cpu_cfs_quota_write_s64,
10906 	},
10907 	{
10908 		.name = "cfs_period_us",
10909 		.read_u64 = cpu_cfs_period_read_u64,
10910 		.write_u64 = cpu_cfs_period_write_u64,
10911 	},
10912 	{
10913 		.name = "cfs_burst_us",
10914 		.read_u64 = cpu_cfs_burst_read_u64,
10915 		.write_u64 = cpu_cfs_burst_write_u64,
10916 	},
10917 	{
10918 		.name = "stat",
10919 		.seq_show = cpu_cfs_stat_show,
10920 	},
10921 #endif
10922 #ifdef CONFIG_RT_GROUP_SCHED
10923 	{
10924 		.name = "rt_runtime_us",
10925 		.read_s64 = cpu_rt_runtime_read,
10926 		.write_s64 = cpu_rt_runtime_write,
10927 	},
10928 	{
10929 		.name = "rt_period_us",
10930 		.read_u64 = cpu_rt_period_read_uint,
10931 		.write_u64 = cpu_rt_period_write_uint,
10932 	},
10933 #endif
10934 #ifdef CONFIG_UCLAMP_TASK_GROUP
10935 	{
10936 		.name = "uclamp.min",
10937 		.flags = CFTYPE_NOT_ON_ROOT,
10938 		.seq_show = cpu_uclamp_min_show,
10939 		.write = cpu_uclamp_min_write,
10940 	},
10941 	{
10942 		.name = "uclamp.max",
10943 		.flags = CFTYPE_NOT_ON_ROOT,
10944 		.seq_show = cpu_uclamp_max_show,
10945 		.write = cpu_uclamp_max_write,
10946 	},
10947 #endif
10948 	{ }	/* Terminate */
10949 };
10950 
10951 static int cpu_extra_stat_show(struct seq_file *sf,
10952 			       struct cgroup_subsys_state *css)
10953 {
10954 #ifdef CONFIG_CFS_BANDWIDTH
10955 	{
10956 		struct task_group *tg = css_tg(css);
10957 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10958 		u64 throttled_usec, burst_usec;
10959 
10960 		throttled_usec = cfs_b->throttled_time;
10961 		do_div(throttled_usec, NSEC_PER_USEC);
10962 		burst_usec = cfs_b->burst_time;
10963 		do_div(burst_usec, NSEC_PER_USEC);
10964 
10965 		seq_printf(sf, "nr_periods %d\n"
10966 			   "nr_throttled %d\n"
10967 			   "throttled_usec %llu\n"
10968 			   "nr_bursts %d\n"
10969 			   "burst_usec %llu\n",
10970 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10971 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10972 	}
10973 #endif
10974 	return 0;
10975 }
10976 
10977 #ifdef CONFIG_FAIR_GROUP_SCHED
10978 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10979 			       struct cftype *cft)
10980 {
10981 	struct task_group *tg = css_tg(css);
10982 	u64 weight = scale_load_down(tg->shares);
10983 
10984 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10985 }
10986 
10987 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10988 				struct cftype *cft, u64 weight)
10989 {
10990 	/*
10991 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10992 	 * values which are 1, 100 and 10000 respectively.  While it loses
10993 	 * a bit of range on both ends, it maps pretty well onto the shares
10994 	 * value used by scheduler and the round-trip conversions preserve
10995 	 * the original value over the entire range.
10996 	 */
10997 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10998 		return -ERANGE;
10999 
11000 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11001 
11002 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11003 }
11004 
11005 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11006 				    struct cftype *cft)
11007 {
11008 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11009 	int last_delta = INT_MAX;
11010 	int prio, delta;
11011 
11012 	/* find the closest nice value to the current weight */
11013 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11014 		delta = abs(sched_prio_to_weight[prio] - weight);
11015 		if (delta >= last_delta)
11016 			break;
11017 		last_delta = delta;
11018 	}
11019 
11020 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11021 }
11022 
11023 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11024 				     struct cftype *cft, s64 nice)
11025 {
11026 	unsigned long weight;
11027 	int idx;
11028 
11029 	if (nice < MIN_NICE || nice > MAX_NICE)
11030 		return -ERANGE;
11031 
11032 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11033 	idx = array_index_nospec(idx, 40);
11034 	weight = sched_prio_to_weight[idx];
11035 
11036 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11037 }
11038 #endif
11039 
11040 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11041 						  long period, long quota)
11042 {
11043 	if (quota < 0)
11044 		seq_puts(sf, "max");
11045 	else
11046 		seq_printf(sf, "%ld", quota);
11047 
11048 	seq_printf(sf, " %ld\n", period);
11049 }
11050 
11051 /* caller should put the current value in *@periodp before calling */
11052 static int __maybe_unused cpu_period_quota_parse(char *buf,
11053 						 u64 *periodp, u64 *quotap)
11054 {
11055 	char tok[21];	/* U64_MAX */
11056 
11057 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11058 		return -EINVAL;
11059 
11060 	*periodp *= NSEC_PER_USEC;
11061 
11062 	if (sscanf(tok, "%llu", quotap))
11063 		*quotap *= NSEC_PER_USEC;
11064 	else if (!strcmp(tok, "max"))
11065 		*quotap = RUNTIME_INF;
11066 	else
11067 		return -EINVAL;
11068 
11069 	return 0;
11070 }
11071 
11072 #ifdef CONFIG_CFS_BANDWIDTH
11073 static int cpu_max_show(struct seq_file *sf, void *v)
11074 {
11075 	struct task_group *tg = css_tg(seq_css(sf));
11076 
11077 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11078 	return 0;
11079 }
11080 
11081 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11082 			     char *buf, size_t nbytes, loff_t off)
11083 {
11084 	struct task_group *tg = css_tg(of_css(of));
11085 	u64 period = tg_get_cfs_period(tg);
11086 	u64 burst = tg_get_cfs_burst(tg);
11087 	u64 quota;
11088 	int ret;
11089 
11090 	ret = cpu_period_quota_parse(buf, &period, &quota);
11091 	if (!ret)
11092 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11093 	return ret ?: nbytes;
11094 }
11095 #endif
11096 
11097 static struct cftype cpu_files[] = {
11098 #ifdef CONFIG_FAIR_GROUP_SCHED
11099 	{
11100 		.name = "weight",
11101 		.flags = CFTYPE_NOT_ON_ROOT,
11102 		.read_u64 = cpu_weight_read_u64,
11103 		.write_u64 = cpu_weight_write_u64,
11104 	},
11105 	{
11106 		.name = "weight.nice",
11107 		.flags = CFTYPE_NOT_ON_ROOT,
11108 		.read_s64 = cpu_weight_nice_read_s64,
11109 		.write_s64 = cpu_weight_nice_write_s64,
11110 	},
11111 	{
11112 		.name = "idle",
11113 		.flags = CFTYPE_NOT_ON_ROOT,
11114 		.read_s64 = cpu_idle_read_s64,
11115 		.write_s64 = cpu_idle_write_s64,
11116 	},
11117 #endif
11118 #ifdef CONFIG_CFS_BANDWIDTH
11119 	{
11120 		.name = "max",
11121 		.flags = CFTYPE_NOT_ON_ROOT,
11122 		.seq_show = cpu_max_show,
11123 		.write = cpu_max_write,
11124 	},
11125 	{
11126 		.name = "max.burst",
11127 		.flags = CFTYPE_NOT_ON_ROOT,
11128 		.read_u64 = cpu_cfs_burst_read_u64,
11129 		.write_u64 = cpu_cfs_burst_write_u64,
11130 	},
11131 #endif
11132 #ifdef CONFIG_UCLAMP_TASK_GROUP
11133 	{
11134 		.name = "uclamp.min",
11135 		.flags = CFTYPE_NOT_ON_ROOT,
11136 		.seq_show = cpu_uclamp_min_show,
11137 		.write = cpu_uclamp_min_write,
11138 	},
11139 	{
11140 		.name = "uclamp.max",
11141 		.flags = CFTYPE_NOT_ON_ROOT,
11142 		.seq_show = cpu_uclamp_max_show,
11143 		.write = cpu_uclamp_max_write,
11144 	},
11145 #endif
11146 	{ }	/* terminate */
11147 };
11148 
11149 struct cgroup_subsys cpu_cgrp_subsys = {
11150 	.css_alloc	= cpu_cgroup_css_alloc,
11151 	.css_online	= cpu_cgroup_css_online,
11152 	.css_released	= cpu_cgroup_css_released,
11153 	.css_free	= cpu_cgroup_css_free,
11154 	.css_extra_stat_show = cpu_extra_stat_show,
11155 #ifdef CONFIG_RT_GROUP_SCHED
11156 	.can_attach	= cpu_cgroup_can_attach,
11157 #endif
11158 	.attach		= cpu_cgroup_attach,
11159 	.legacy_cftypes	= cpu_legacy_files,
11160 	.dfl_cftypes	= cpu_files,
11161 	.early_init	= true,
11162 	.threaded	= true,
11163 };
11164 
11165 #endif	/* CONFIG_CGROUP_SCHED */
11166 
11167 void dump_cpu_task(int cpu)
11168 {
11169 	if (cpu == smp_processor_id() && in_hardirq()) {
11170 		struct pt_regs *regs;
11171 
11172 		regs = get_irq_regs();
11173 		if (regs) {
11174 			show_regs(regs);
11175 			return;
11176 		}
11177 	}
11178 
11179 	if (trigger_single_cpu_backtrace(cpu))
11180 		return;
11181 
11182 	pr_info("Task dump for CPU %d:\n", cpu);
11183 	sched_show_task(cpu_curr(cpu));
11184 }
11185 
11186 /*
11187  * Nice levels are multiplicative, with a gentle 10% change for every
11188  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11189  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11190  * that remained on nice 0.
11191  *
11192  * The "10% effect" is relative and cumulative: from _any_ nice level,
11193  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11194  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11195  * If a task goes up by ~10% and another task goes down by ~10% then
11196  * the relative distance between them is ~25%.)
11197  */
11198 const int sched_prio_to_weight[40] = {
11199  /* -20 */     88761,     71755,     56483,     46273,     36291,
11200  /* -15 */     29154,     23254,     18705,     14949,     11916,
11201  /* -10 */      9548,      7620,      6100,      4904,      3906,
11202  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11203  /*   0 */      1024,       820,       655,       526,       423,
11204  /*   5 */       335,       272,       215,       172,       137,
11205  /*  10 */       110,        87,        70,        56,        45,
11206  /*  15 */        36,        29,        23,        18,        15,
11207 };
11208 
11209 /*
11210  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11211  *
11212  * In cases where the weight does not change often, we can use the
11213  * precalculated inverse to speed up arithmetics by turning divisions
11214  * into multiplications:
11215  */
11216 const u32 sched_prio_to_wmult[40] = {
11217  /* -20 */     48388,     59856,     76040,     92818,    118348,
11218  /* -15 */    147320,    184698,    229616,    287308,    360437,
11219  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11220  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11221  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11222  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11223  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11224  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11225 };
11226 
11227 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11228 {
11229         trace_sched_update_nr_running_tp(rq, count);
11230 }
11231