1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 15 #include <asm/switch_to.h> 16 #include <asm/tlb.h> 17 18 #include "../workqueue_internal.h" 19 #include "../smpboot.h" 20 21 #include "pelt.h" 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/sched.h> 25 26 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 27 28 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 29 /* 30 * Debugging: various feature bits 31 * 32 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 33 * sysctl_sched_features, defined in sched.h, to allow constants propagation 34 * at compile time and compiler optimization based on features default. 35 */ 36 #define SCHED_FEAT(name, enabled) \ 37 (1UL << __SCHED_FEAT_##name) * enabled | 38 const_debug unsigned int sysctl_sched_features = 39 #include "features.h" 40 0; 41 #undef SCHED_FEAT 42 #endif 43 44 /* 45 * Number of tasks to iterate in a single balance run. 46 * Limited because this is done with IRQs disabled. 47 */ 48 const_debug unsigned int sysctl_sched_nr_migrate = 32; 49 50 /* 51 * period over which we measure -rt task CPU usage in us. 52 * default: 1s 53 */ 54 unsigned int sysctl_sched_rt_period = 1000000; 55 56 __read_mostly int scheduler_running; 57 58 /* 59 * part of the period that we allow rt tasks to run in us. 60 * default: 0.95s 61 */ 62 int sysctl_sched_rt_runtime = 950000; 63 64 /* 65 * __task_rq_lock - lock the rq @p resides on. 66 */ 67 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 68 __acquires(rq->lock) 69 { 70 struct rq *rq; 71 72 lockdep_assert_held(&p->pi_lock); 73 74 for (;;) { 75 rq = task_rq(p); 76 raw_spin_lock(&rq->lock); 77 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 78 rq_pin_lock(rq, rf); 79 return rq; 80 } 81 raw_spin_unlock(&rq->lock); 82 83 while (unlikely(task_on_rq_migrating(p))) 84 cpu_relax(); 85 } 86 } 87 88 /* 89 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 90 */ 91 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 92 __acquires(p->pi_lock) 93 __acquires(rq->lock) 94 { 95 struct rq *rq; 96 97 for (;;) { 98 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 99 rq = task_rq(p); 100 raw_spin_lock(&rq->lock); 101 /* 102 * move_queued_task() task_rq_lock() 103 * 104 * ACQUIRE (rq->lock) 105 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 106 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 107 * [S] ->cpu = new_cpu [L] task_rq() 108 * [L] ->on_rq 109 * RELEASE (rq->lock) 110 * 111 * If we observe the old CPU in task_rq_lock(), the acquire of 112 * the old rq->lock will fully serialize against the stores. 113 * 114 * If we observe the new CPU in task_rq_lock(), the address 115 * dependency headed by '[L] rq = task_rq()' and the acquire 116 * will pair with the WMB to ensure we then also see migrating. 117 */ 118 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 119 rq_pin_lock(rq, rf); 120 return rq; 121 } 122 raw_spin_unlock(&rq->lock); 123 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 124 125 while (unlikely(task_on_rq_migrating(p))) 126 cpu_relax(); 127 } 128 } 129 130 /* 131 * RQ-clock updating methods: 132 */ 133 134 static void update_rq_clock_task(struct rq *rq, s64 delta) 135 { 136 /* 137 * In theory, the compile should just see 0 here, and optimize out the call 138 * to sched_rt_avg_update. But I don't trust it... 139 */ 140 s64 __maybe_unused steal = 0, irq_delta = 0; 141 142 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 143 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 144 145 /* 146 * Since irq_time is only updated on {soft,}irq_exit, we might run into 147 * this case when a previous update_rq_clock() happened inside a 148 * {soft,}irq region. 149 * 150 * When this happens, we stop ->clock_task and only update the 151 * prev_irq_time stamp to account for the part that fit, so that a next 152 * update will consume the rest. This ensures ->clock_task is 153 * monotonic. 154 * 155 * It does however cause some slight miss-attribution of {soft,}irq 156 * time, a more accurate solution would be to update the irq_time using 157 * the current rq->clock timestamp, except that would require using 158 * atomic ops. 159 */ 160 if (irq_delta > delta) 161 irq_delta = delta; 162 163 rq->prev_irq_time += irq_delta; 164 delta -= irq_delta; 165 #endif 166 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 167 if (static_key_false((¶virt_steal_rq_enabled))) { 168 steal = paravirt_steal_clock(cpu_of(rq)); 169 steal -= rq->prev_steal_time_rq; 170 171 if (unlikely(steal > delta)) 172 steal = delta; 173 174 rq->prev_steal_time_rq += steal; 175 delta -= steal; 176 } 177 #endif 178 179 rq->clock_task += delta; 180 181 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 182 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 183 update_irq_load_avg(rq, irq_delta + steal); 184 #endif 185 update_rq_clock_pelt(rq, delta); 186 } 187 188 void update_rq_clock(struct rq *rq) 189 { 190 s64 delta; 191 192 lockdep_assert_held(&rq->lock); 193 194 if (rq->clock_update_flags & RQCF_ACT_SKIP) 195 return; 196 197 #ifdef CONFIG_SCHED_DEBUG 198 if (sched_feat(WARN_DOUBLE_CLOCK)) 199 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 200 rq->clock_update_flags |= RQCF_UPDATED; 201 #endif 202 203 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 204 if (delta < 0) 205 return; 206 rq->clock += delta; 207 update_rq_clock_task(rq, delta); 208 } 209 210 211 #ifdef CONFIG_SCHED_HRTICK 212 /* 213 * Use HR-timers to deliver accurate preemption points. 214 */ 215 216 static void hrtick_clear(struct rq *rq) 217 { 218 if (hrtimer_active(&rq->hrtick_timer)) 219 hrtimer_cancel(&rq->hrtick_timer); 220 } 221 222 /* 223 * High-resolution timer tick. 224 * Runs from hardirq context with interrupts disabled. 225 */ 226 static enum hrtimer_restart hrtick(struct hrtimer *timer) 227 { 228 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 229 struct rq_flags rf; 230 231 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 232 233 rq_lock(rq, &rf); 234 update_rq_clock(rq); 235 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 236 rq_unlock(rq, &rf); 237 238 return HRTIMER_NORESTART; 239 } 240 241 #ifdef CONFIG_SMP 242 243 static void __hrtick_restart(struct rq *rq) 244 { 245 struct hrtimer *timer = &rq->hrtick_timer; 246 247 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 248 } 249 250 /* 251 * called from hardirq (IPI) context 252 */ 253 static void __hrtick_start(void *arg) 254 { 255 struct rq *rq = arg; 256 struct rq_flags rf; 257 258 rq_lock(rq, &rf); 259 __hrtick_restart(rq); 260 rq->hrtick_csd_pending = 0; 261 rq_unlock(rq, &rf); 262 } 263 264 /* 265 * Called to set the hrtick timer state. 266 * 267 * called with rq->lock held and irqs disabled 268 */ 269 void hrtick_start(struct rq *rq, u64 delay) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 ktime_t time; 273 s64 delta; 274 275 /* 276 * Don't schedule slices shorter than 10000ns, that just 277 * doesn't make sense and can cause timer DoS. 278 */ 279 delta = max_t(s64, delay, 10000LL); 280 time = ktime_add_ns(timer->base->get_time(), delta); 281 282 hrtimer_set_expires(timer, time); 283 284 if (rq == this_rq()) { 285 __hrtick_restart(rq); 286 } else if (!rq->hrtick_csd_pending) { 287 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 288 rq->hrtick_csd_pending = 1; 289 } 290 } 291 292 #else 293 /* 294 * Called to set the hrtick timer state. 295 * 296 * called with rq->lock held and irqs disabled 297 */ 298 void hrtick_start(struct rq *rq, u64 delay) 299 { 300 /* 301 * Don't schedule slices shorter than 10000ns, that just 302 * doesn't make sense. Rely on vruntime for fairness. 303 */ 304 delay = max_t(u64, delay, 10000LL); 305 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 306 HRTIMER_MODE_REL_PINNED); 307 } 308 #endif /* CONFIG_SMP */ 309 310 static void hrtick_rq_init(struct rq *rq) 311 { 312 #ifdef CONFIG_SMP 313 rq->hrtick_csd_pending = 0; 314 315 rq->hrtick_csd.flags = 0; 316 rq->hrtick_csd.func = __hrtick_start; 317 rq->hrtick_csd.info = rq; 318 #endif 319 320 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 321 rq->hrtick_timer.function = hrtick; 322 } 323 #else /* CONFIG_SCHED_HRTICK */ 324 static inline void hrtick_clear(struct rq *rq) 325 { 326 } 327 328 static inline void hrtick_rq_init(struct rq *rq) 329 { 330 } 331 #endif /* CONFIG_SCHED_HRTICK */ 332 333 /* 334 * cmpxchg based fetch_or, macro so it works for different integer types 335 */ 336 #define fetch_or(ptr, mask) \ 337 ({ \ 338 typeof(ptr) _ptr = (ptr); \ 339 typeof(mask) _mask = (mask); \ 340 typeof(*_ptr) _old, _val = *_ptr; \ 341 \ 342 for (;;) { \ 343 _old = cmpxchg(_ptr, _val, _val | _mask); \ 344 if (_old == _val) \ 345 break; \ 346 _val = _old; \ 347 } \ 348 _old; \ 349 }) 350 351 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 352 /* 353 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 354 * this avoids any races wrt polling state changes and thereby avoids 355 * spurious IPIs. 356 */ 357 static bool set_nr_and_not_polling(struct task_struct *p) 358 { 359 struct thread_info *ti = task_thread_info(p); 360 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 361 } 362 363 /* 364 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 365 * 366 * If this returns true, then the idle task promises to call 367 * sched_ttwu_pending() and reschedule soon. 368 */ 369 static bool set_nr_if_polling(struct task_struct *p) 370 { 371 struct thread_info *ti = task_thread_info(p); 372 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 373 374 for (;;) { 375 if (!(val & _TIF_POLLING_NRFLAG)) 376 return false; 377 if (val & _TIF_NEED_RESCHED) 378 return true; 379 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 380 if (old == val) 381 break; 382 val = old; 383 } 384 return true; 385 } 386 387 #else 388 static bool set_nr_and_not_polling(struct task_struct *p) 389 { 390 set_tsk_need_resched(p); 391 return true; 392 } 393 394 #ifdef CONFIG_SMP 395 static bool set_nr_if_polling(struct task_struct *p) 396 { 397 return false; 398 } 399 #endif 400 #endif 401 402 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 403 { 404 struct wake_q_node *node = &task->wake_q; 405 406 /* 407 * Atomically grab the task, if ->wake_q is !nil already it means 408 * its already queued (either by us or someone else) and will get the 409 * wakeup due to that. 410 * 411 * In order to ensure that a pending wakeup will observe our pending 412 * state, even in the failed case, an explicit smp_mb() must be used. 413 */ 414 smp_mb__before_atomic(); 415 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 416 return false; 417 418 /* 419 * The head is context local, there can be no concurrency. 420 */ 421 *head->lastp = node; 422 head->lastp = &node->next; 423 return true; 424 } 425 426 /** 427 * wake_q_add() - queue a wakeup for 'later' waking. 428 * @head: the wake_q_head to add @task to 429 * @task: the task to queue for 'later' wakeup 430 * 431 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 432 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 433 * instantly. 434 * 435 * This function must be used as-if it were wake_up_process(); IOW the task 436 * must be ready to be woken at this location. 437 */ 438 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 439 { 440 if (__wake_q_add(head, task)) 441 get_task_struct(task); 442 } 443 444 /** 445 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 446 * @head: the wake_q_head to add @task to 447 * @task: the task to queue for 'later' wakeup 448 * 449 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 450 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 451 * instantly. 452 * 453 * This function must be used as-if it were wake_up_process(); IOW the task 454 * must be ready to be woken at this location. 455 * 456 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 457 * that already hold reference to @task can call the 'safe' version and trust 458 * wake_q to do the right thing depending whether or not the @task is already 459 * queued for wakeup. 460 */ 461 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 462 { 463 if (!__wake_q_add(head, task)) 464 put_task_struct(task); 465 } 466 467 void wake_up_q(struct wake_q_head *head) 468 { 469 struct wake_q_node *node = head->first; 470 471 while (node != WAKE_Q_TAIL) { 472 struct task_struct *task; 473 474 task = container_of(node, struct task_struct, wake_q); 475 BUG_ON(!task); 476 /* Task can safely be re-inserted now: */ 477 node = node->next; 478 task->wake_q.next = NULL; 479 480 /* 481 * wake_up_process() executes a full barrier, which pairs with 482 * the queueing in wake_q_add() so as not to miss wakeups. 483 */ 484 wake_up_process(task); 485 put_task_struct(task); 486 } 487 } 488 489 /* 490 * resched_curr - mark rq's current task 'to be rescheduled now'. 491 * 492 * On UP this means the setting of the need_resched flag, on SMP it 493 * might also involve a cross-CPU call to trigger the scheduler on 494 * the target CPU. 495 */ 496 void resched_curr(struct rq *rq) 497 { 498 struct task_struct *curr = rq->curr; 499 int cpu; 500 501 lockdep_assert_held(&rq->lock); 502 503 if (test_tsk_need_resched(curr)) 504 return; 505 506 cpu = cpu_of(rq); 507 508 if (cpu == smp_processor_id()) { 509 set_tsk_need_resched(curr); 510 set_preempt_need_resched(); 511 return; 512 } 513 514 if (set_nr_and_not_polling(curr)) 515 smp_send_reschedule(cpu); 516 else 517 trace_sched_wake_idle_without_ipi(cpu); 518 } 519 520 void resched_cpu(int cpu) 521 { 522 struct rq *rq = cpu_rq(cpu); 523 unsigned long flags; 524 525 raw_spin_lock_irqsave(&rq->lock, flags); 526 if (cpu_online(cpu) || cpu == smp_processor_id()) 527 resched_curr(rq); 528 raw_spin_unlock_irqrestore(&rq->lock, flags); 529 } 530 531 #ifdef CONFIG_SMP 532 #ifdef CONFIG_NO_HZ_COMMON 533 /* 534 * In the semi idle case, use the nearest busy CPU for migrating timers 535 * from an idle CPU. This is good for power-savings. 536 * 537 * We don't do similar optimization for completely idle system, as 538 * selecting an idle CPU will add more delays to the timers than intended 539 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 540 */ 541 int get_nohz_timer_target(void) 542 { 543 int i, cpu = smp_processor_id(); 544 struct sched_domain *sd; 545 546 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 547 return cpu; 548 549 rcu_read_lock(); 550 for_each_domain(cpu, sd) { 551 for_each_cpu(i, sched_domain_span(sd)) { 552 if (cpu == i) 553 continue; 554 555 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 556 cpu = i; 557 goto unlock; 558 } 559 } 560 } 561 562 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 563 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 564 unlock: 565 rcu_read_unlock(); 566 return cpu; 567 } 568 569 /* 570 * When add_timer_on() enqueues a timer into the timer wheel of an 571 * idle CPU then this timer might expire before the next timer event 572 * which is scheduled to wake up that CPU. In case of a completely 573 * idle system the next event might even be infinite time into the 574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 575 * leaves the inner idle loop so the newly added timer is taken into 576 * account when the CPU goes back to idle and evaluates the timer 577 * wheel for the next timer event. 578 */ 579 static void wake_up_idle_cpu(int cpu) 580 { 581 struct rq *rq = cpu_rq(cpu); 582 583 if (cpu == smp_processor_id()) 584 return; 585 586 if (set_nr_and_not_polling(rq->idle)) 587 smp_send_reschedule(cpu); 588 else 589 trace_sched_wake_idle_without_ipi(cpu); 590 } 591 592 static bool wake_up_full_nohz_cpu(int cpu) 593 { 594 /* 595 * We just need the target to call irq_exit() and re-evaluate 596 * the next tick. The nohz full kick at least implies that. 597 * If needed we can still optimize that later with an 598 * empty IRQ. 599 */ 600 if (cpu_is_offline(cpu)) 601 return true; /* Don't try to wake offline CPUs. */ 602 if (tick_nohz_full_cpu(cpu)) { 603 if (cpu != smp_processor_id() || 604 tick_nohz_tick_stopped()) 605 tick_nohz_full_kick_cpu(cpu); 606 return true; 607 } 608 609 return false; 610 } 611 612 /* 613 * Wake up the specified CPU. If the CPU is going offline, it is the 614 * caller's responsibility to deal with the lost wakeup, for example, 615 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 616 */ 617 void wake_up_nohz_cpu(int cpu) 618 { 619 if (!wake_up_full_nohz_cpu(cpu)) 620 wake_up_idle_cpu(cpu); 621 } 622 623 static inline bool got_nohz_idle_kick(void) 624 { 625 int cpu = smp_processor_id(); 626 627 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 628 return false; 629 630 if (idle_cpu(cpu) && !need_resched()) 631 return true; 632 633 /* 634 * We can't run Idle Load Balance on this CPU for this time so we 635 * cancel it and clear NOHZ_BALANCE_KICK 636 */ 637 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 638 return false; 639 } 640 641 #else /* CONFIG_NO_HZ_COMMON */ 642 643 static inline bool got_nohz_idle_kick(void) 644 { 645 return false; 646 } 647 648 #endif /* CONFIG_NO_HZ_COMMON */ 649 650 #ifdef CONFIG_NO_HZ_FULL 651 bool sched_can_stop_tick(struct rq *rq) 652 { 653 int fifo_nr_running; 654 655 /* Deadline tasks, even if single, need the tick */ 656 if (rq->dl.dl_nr_running) 657 return false; 658 659 /* 660 * If there are more than one RR tasks, we need the tick to effect the 661 * actual RR behaviour. 662 */ 663 if (rq->rt.rr_nr_running) { 664 if (rq->rt.rr_nr_running == 1) 665 return true; 666 else 667 return false; 668 } 669 670 /* 671 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 672 * forced preemption between FIFO tasks. 673 */ 674 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 675 if (fifo_nr_running) 676 return true; 677 678 /* 679 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 680 * if there's more than one we need the tick for involuntary 681 * preemption. 682 */ 683 if (rq->nr_running > 1) 684 return false; 685 686 return true; 687 } 688 #endif /* CONFIG_NO_HZ_FULL */ 689 #endif /* CONFIG_SMP */ 690 691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 692 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 693 /* 694 * Iterate task_group tree rooted at *from, calling @down when first entering a 695 * node and @up when leaving it for the final time. 696 * 697 * Caller must hold rcu_lock or sufficient equivalent. 698 */ 699 int walk_tg_tree_from(struct task_group *from, 700 tg_visitor down, tg_visitor up, void *data) 701 { 702 struct task_group *parent, *child; 703 int ret; 704 705 parent = from; 706 707 down: 708 ret = (*down)(parent, data); 709 if (ret) 710 goto out; 711 list_for_each_entry_rcu(child, &parent->children, siblings) { 712 parent = child; 713 goto down; 714 715 up: 716 continue; 717 } 718 ret = (*up)(parent, data); 719 if (ret || parent == from) 720 goto out; 721 722 child = parent; 723 parent = parent->parent; 724 if (parent) 725 goto up; 726 out: 727 return ret; 728 } 729 730 int tg_nop(struct task_group *tg, void *data) 731 { 732 return 0; 733 } 734 #endif 735 736 static void set_load_weight(struct task_struct *p, bool update_load) 737 { 738 int prio = p->static_prio - MAX_RT_PRIO; 739 struct load_weight *load = &p->se.load; 740 741 /* 742 * SCHED_IDLE tasks get minimal weight: 743 */ 744 if (task_has_idle_policy(p)) { 745 load->weight = scale_load(WEIGHT_IDLEPRIO); 746 load->inv_weight = WMULT_IDLEPRIO; 747 p->se.runnable_weight = load->weight; 748 return; 749 } 750 751 /* 752 * SCHED_OTHER tasks have to update their load when changing their 753 * weight 754 */ 755 if (update_load && p->sched_class == &fair_sched_class) { 756 reweight_task(p, prio); 757 } else { 758 load->weight = scale_load(sched_prio_to_weight[prio]); 759 load->inv_weight = sched_prio_to_wmult[prio]; 760 p->se.runnable_weight = load->weight; 761 } 762 } 763 764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 765 { 766 if (!(flags & ENQUEUE_NOCLOCK)) 767 update_rq_clock(rq); 768 769 if (!(flags & ENQUEUE_RESTORE)) { 770 sched_info_queued(rq, p); 771 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 772 } 773 774 p->sched_class->enqueue_task(rq, p, flags); 775 } 776 777 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 778 { 779 if (!(flags & DEQUEUE_NOCLOCK)) 780 update_rq_clock(rq); 781 782 if (!(flags & DEQUEUE_SAVE)) { 783 sched_info_dequeued(rq, p); 784 psi_dequeue(p, flags & DEQUEUE_SLEEP); 785 } 786 787 p->sched_class->dequeue_task(rq, p, flags); 788 } 789 790 void activate_task(struct rq *rq, struct task_struct *p, int flags) 791 { 792 if (task_contributes_to_load(p)) 793 rq->nr_uninterruptible--; 794 795 enqueue_task(rq, p, flags); 796 797 p->on_rq = TASK_ON_RQ_QUEUED; 798 } 799 800 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 801 { 802 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 803 804 if (task_contributes_to_load(p)) 805 rq->nr_uninterruptible++; 806 807 dequeue_task(rq, p, flags); 808 } 809 810 /* 811 * __normal_prio - return the priority that is based on the static prio 812 */ 813 static inline int __normal_prio(struct task_struct *p) 814 { 815 return p->static_prio; 816 } 817 818 /* 819 * Calculate the expected normal priority: i.e. priority 820 * without taking RT-inheritance into account. Might be 821 * boosted by interactivity modifiers. Changes upon fork, 822 * setprio syscalls, and whenever the interactivity 823 * estimator recalculates. 824 */ 825 static inline int normal_prio(struct task_struct *p) 826 { 827 int prio; 828 829 if (task_has_dl_policy(p)) 830 prio = MAX_DL_PRIO-1; 831 else if (task_has_rt_policy(p)) 832 prio = MAX_RT_PRIO-1 - p->rt_priority; 833 else 834 prio = __normal_prio(p); 835 return prio; 836 } 837 838 /* 839 * Calculate the current priority, i.e. the priority 840 * taken into account by the scheduler. This value might 841 * be boosted by RT tasks, or might be boosted by 842 * interactivity modifiers. Will be RT if the task got 843 * RT-boosted. If not then it returns p->normal_prio. 844 */ 845 static int effective_prio(struct task_struct *p) 846 { 847 p->normal_prio = normal_prio(p); 848 /* 849 * If we are RT tasks or we were boosted to RT priority, 850 * keep the priority unchanged. Otherwise, update priority 851 * to the normal priority: 852 */ 853 if (!rt_prio(p->prio)) 854 return p->normal_prio; 855 return p->prio; 856 } 857 858 /** 859 * task_curr - is this task currently executing on a CPU? 860 * @p: the task in question. 861 * 862 * Return: 1 if the task is currently executing. 0 otherwise. 863 */ 864 inline int task_curr(const struct task_struct *p) 865 { 866 return cpu_curr(task_cpu(p)) == p; 867 } 868 869 /* 870 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 871 * use the balance_callback list if you want balancing. 872 * 873 * this means any call to check_class_changed() must be followed by a call to 874 * balance_callback(). 875 */ 876 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 877 const struct sched_class *prev_class, 878 int oldprio) 879 { 880 if (prev_class != p->sched_class) { 881 if (prev_class->switched_from) 882 prev_class->switched_from(rq, p); 883 884 p->sched_class->switched_to(rq, p); 885 } else if (oldprio != p->prio || dl_task(p)) 886 p->sched_class->prio_changed(rq, p, oldprio); 887 } 888 889 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 890 { 891 const struct sched_class *class; 892 893 if (p->sched_class == rq->curr->sched_class) { 894 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 895 } else { 896 for_each_class(class) { 897 if (class == rq->curr->sched_class) 898 break; 899 if (class == p->sched_class) { 900 resched_curr(rq); 901 break; 902 } 903 } 904 } 905 906 /* 907 * A queue event has occurred, and we're going to schedule. In 908 * this case, we can save a useless back to back clock update. 909 */ 910 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 911 rq_clock_skip_update(rq); 912 } 913 914 #ifdef CONFIG_SMP 915 916 static inline bool is_per_cpu_kthread(struct task_struct *p) 917 { 918 if (!(p->flags & PF_KTHREAD)) 919 return false; 920 921 if (p->nr_cpus_allowed != 1) 922 return false; 923 924 return true; 925 } 926 927 /* 928 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 929 * __set_cpus_allowed_ptr() and select_fallback_rq(). 930 */ 931 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 932 { 933 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 934 return false; 935 936 if (is_per_cpu_kthread(p)) 937 return cpu_online(cpu); 938 939 return cpu_active(cpu); 940 } 941 942 /* 943 * This is how migration works: 944 * 945 * 1) we invoke migration_cpu_stop() on the target CPU using 946 * stop_one_cpu(). 947 * 2) stopper starts to run (implicitly forcing the migrated thread 948 * off the CPU) 949 * 3) it checks whether the migrated task is still in the wrong runqueue. 950 * 4) if it's in the wrong runqueue then the migration thread removes 951 * it and puts it into the right queue. 952 * 5) stopper completes and stop_one_cpu() returns and the migration 953 * is done. 954 */ 955 956 /* 957 * move_queued_task - move a queued task to new rq. 958 * 959 * Returns (locked) new rq. Old rq's lock is released. 960 */ 961 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 962 struct task_struct *p, int new_cpu) 963 { 964 lockdep_assert_held(&rq->lock); 965 966 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 967 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 968 set_task_cpu(p, new_cpu); 969 rq_unlock(rq, rf); 970 971 rq = cpu_rq(new_cpu); 972 973 rq_lock(rq, rf); 974 BUG_ON(task_cpu(p) != new_cpu); 975 enqueue_task(rq, p, 0); 976 p->on_rq = TASK_ON_RQ_QUEUED; 977 check_preempt_curr(rq, p, 0); 978 979 return rq; 980 } 981 982 struct migration_arg { 983 struct task_struct *task; 984 int dest_cpu; 985 }; 986 987 /* 988 * Move (not current) task off this CPU, onto the destination CPU. We're doing 989 * this because either it can't run here any more (set_cpus_allowed() 990 * away from this CPU, or CPU going down), or because we're 991 * attempting to rebalance this task on exec (sched_exec). 992 * 993 * So we race with normal scheduler movements, but that's OK, as long 994 * as the task is no longer on this CPU. 995 */ 996 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 997 struct task_struct *p, int dest_cpu) 998 { 999 /* Affinity changed (again). */ 1000 if (!is_cpu_allowed(p, dest_cpu)) 1001 return rq; 1002 1003 update_rq_clock(rq); 1004 rq = move_queued_task(rq, rf, p, dest_cpu); 1005 1006 return rq; 1007 } 1008 1009 /* 1010 * migration_cpu_stop - this will be executed by a highprio stopper thread 1011 * and performs thread migration by bumping thread off CPU then 1012 * 'pushing' onto another runqueue. 1013 */ 1014 static int migration_cpu_stop(void *data) 1015 { 1016 struct migration_arg *arg = data; 1017 struct task_struct *p = arg->task; 1018 struct rq *rq = this_rq(); 1019 struct rq_flags rf; 1020 1021 /* 1022 * The original target CPU might have gone down and we might 1023 * be on another CPU but it doesn't matter. 1024 */ 1025 local_irq_disable(); 1026 /* 1027 * We need to explicitly wake pending tasks before running 1028 * __migrate_task() such that we will not miss enforcing cpus_allowed 1029 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1030 */ 1031 sched_ttwu_pending(); 1032 1033 raw_spin_lock(&p->pi_lock); 1034 rq_lock(rq, &rf); 1035 /* 1036 * If task_rq(p) != rq, it cannot be migrated here, because we're 1037 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1038 * we're holding p->pi_lock. 1039 */ 1040 if (task_rq(p) == rq) { 1041 if (task_on_rq_queued(p)) 1042 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1043 else 1044 p->wake_cpu = arg->dest_cpu; 1045 } 1046 rq_unlock(rq, &rf); 1047 raw_spin_unlock(&p->pi_lock); 1048 1049 local_irq_enable(); 1050 return 0; 1051 } 1052 1053 /* 1054 * sched_class::set_cpus_allowed must do the below, but is not required to 1055 * actually call this function. 1056 */ 1057 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1058 { 1059 cpumask_copy(&p->cpus_allowed, new_mask); 1060 p->nr_cpus_allowed = cpumask_weight(new_mask); 1061 } 1062 1063 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1064 { 1065 struct rq *rq = task_rq(p); 1066 bool queued, running; 1067 1068 lockdep_assert_held(&p->pi_lock); 1069 1070 queued = task_on_rq_queued(p); 1071 running = task_current(rq, p); 1072 1073 if (queued) { 1074 /* 1075 * Because __kthread_bind() calls this on blocked tasks without 1076 * holding rq->lock. 1077 */ 1078 lockdep_assert_held(&rq->lock); 1079 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1080 } 1081 if (running) 1082 put_prev_task(rq, p); 1083 1084 p->sched_class->set_cpus_allowed(p, new_mask); 1085 1086 if (queued) 1087 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1088 if (running) 1089 set_curr_task(rq, p); 1090 } 1091 1092 /* 1093 * Change a given task's CPU affinity. Migrate the thread to a 1094 * proper CPU and schedule it away if the CPU it's executing on 1095 * is removed from the allowed bitmask. 1096 * 1097 * NOTE: the caller must have a valid reference to the task, the 1098 * task must not exit() & deallocate itself prematurely. The 1099 * call is not atomic; no spinlocks may be held. 1100 */ 1101 static int __set_cpus_allowed_ptr(struct task_struct *p, 1102 const struct cpumask *new_mask, bool check) 1103 { 1104 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1105 unsigned int dest_cpu; 1106 struct rq_flags rf; 1107 struct rq *rq; 1108 int ret = 0; 1109 1110 rq = task_rq_lock(p, &rf); 1111 update_rq_clock(rq); 1112 1113 if (p->flags & PF_KTHREAD) { 1114 /* 1115 * Kernel threads are allowed on online && !active CPUs 1116 */ 1117 cpu_valid_mask = cpu_online_mask; 1118 } 1119 1120 /* 1121 * Must re-check here, to close a race against __kthread_bind(), 1122 * sched_setaffinity() is not guaranteed to observe the flag. 1123 */ 1124 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1125 ret = -EINVAL; 1126 goto out; 1127 } 1128 1129 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1130 goto out; 1131 1132 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1133 ret = -EINVAL; 1134 goto out; 1135 } 1136 1137 do_set_cpus_allowed(p, new_mask); 1138 1139 if (p->flags & PF_KTHREAD) { 1140 /* 1141 * For kernel threads that do indeed end up on online && 1142 * !active we want to ensure they are strict per-CPU threads. 1143 */ 1144 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1145 !cpumask_intersects(new_mask, cpu_active_mask) && 1146 p->nr_cpus_allowed != 1); 1147 } 1148 1149 /* Can the task run on the task's current CPU? If so, we're done */ 1150 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1151 goto out; 1152 1153 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1154 if (task_running(rq, p) || p->state == TASK_WAKING) { 1155 struct migration_arg arg = { p, dest_cpu }; 1156 /* Need help from migration thread: drop lock and wait. */ 1157 task_rq_unlock(rq, p, &rf); 1158 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1159 return 0; 1160 } else if (task_on_rq_queued(p)) { 1161 /* 1162 * OK, since we're going to drop the lock immediately 1163 * afterwards anyway. 1164 */ 1165 rq = move_queued_task(rq, &rf, p, dest_cpu); 1166 } 1167 out: 1168 task_rq_unlock(rq, p, &rf); 1169 1170 return ret; 1171 } 1172 1173 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1174 { 1175 return __set_cpus_allowed_ptr(p, new_mask, false); 1176 } 1177 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1178 1179 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1180 { 1181 #ifdef CONFIG_SCHED_DEBUG 1182 /* 1183 * We should never call set_task_cpu() on a blocked task, 1184 * ttwu() will sort out the placement. 1185 */ 1186 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1187 !p->on_rq); 1188 1189 /* 1190 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1191 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1192 * time relying on p->on_rq. 1193 */ 1194 WARN_ON_ONCE(p->state == TASK_RUNNING && 1195 p->sched_class == &fair_sched_class && 1196 (p->on_rq && !task_on_rq_migrating(p))); 1197 1198 #ifdef CONFIG_LOCKDEP 1199 /* 1200 * The caller should hold either p->pi_lock or rq->lock, when changing 1201 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1202 * 1203 * sched_move_task() holds both and thus holding either pins the cgroup, 1204 * see task_group(). 1205 * 1206 * Furthermore, all task_rq users should acquire both locks, see 1207 * task_rq_lock(). 1208 */ 1209 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1210 lockdep_is_held(&task_rq(p)->lock))); 1211 #endif 1212 /* 1213 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1214 */ 1215 WARN_ON_ONCE(!cpu_online(new_cpu)); 1216 #endif 1217 1218 trace_sched_migrate_task(p, new_cpu); 1219 1220 if (task_cpu(p) != new_cpu) { 1221 if (p->sched_class->migrate_task_rq) 1222 p->sched_class->migrate_task_rq(p, new_cpu); 1223 p->se.nr_migrations++; 1224 rseq_migrate(p); 1225 perf_event_task_migrate(p); 1226 } 1227 1228 __set_task_cpu(p, new_cpu); 1229 } 1230 1231 #ifdef CONFIG_NUMA_BALANCING 1232 static void __migrate_swap_task(struct task_struct *p, int cpu) 1233 { 1234 if (task_on_rq_queued(p)) { 1235 struct rq *src_rq, *dst_rq; 1236 struct rq_flags srf, drf; 1237 1238 src_rq = task_rq(p); 1239 dst_rq = cpu_rq(cpu); 1240 1241 rq_pin_lock(src_rq, &srf); 1242 rq_pin_lock(dst_rq, &drf); 1243 1244 deactivate_task(src_rq, p, 0); 1245 set_task_cpu(p, cpu); 1246 activate_task(dst_rq, p, 0); 1247 check_preempt_curr(dst_rq, p, 0); 1248 1249 rq_unpin_lock(dst_rq, &drf); 1250 rq_unpin_lock(src_rq, &srf); 1251 1252 } else { 1253 /* 1254 * Task isn't running anymore; make it appear like we migrated 1255 * it before it went to sleep. This means on wakeup we make the 1256 * previous CPU our target instead of where it really is. 1257 */ 1258 p->wake_cpu = cpu; 1259 } 1260 } 1261 1262 struct migration_swap_arg { 1263 struct task_struct *src_task, *dst_task; 1264 int src_cpu, dst_cpu; 1265 }; 1266 1267 static int migrate_swap_stop(void *data) 1268 { 1269 struct migration_swap_arg *arg = data; 1270 struct rq *src_rq, *dst_rq; 1271 int ret = -EAGAIN; 1272 1273 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1274 return -EAGAIN; 1275 1276 src_rq = cpu_rq(arg->src_cpu); 1277 dst_rq = cpu_rq(arg->dst_cpu); 1278 1279 double_raw_lock(&arg->src_task->pi_lock, 1280 &arg->dst_task->pi_lock); 1281 double_rq_lock(src_rq, dst_rq); 1282 1283 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1284 goto unlock; 1285 1286 if (task_cpu(arg->src_task) != arg->src_cpu) 1287 goto unlock; 1288 1289 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1290 goto unlock; 1291 1292 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1293 goto unlock; 1294 1295 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1296 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1297 1298 ret = 0; 1299 1300 unlock: 1301 double_rq_unlock(src_rq, dst_rq); 1302 raw_spin_unlock(&arg->dst_task->pi_lock); 1303 raw_spin_unlock(&arg->src_task->pi_lock); 1304 1305 return ret; 1306 } 1307 1308 /* 1309 * Cross migrate two tasks 1310 */ 1311 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1312 int target_cpu, int curr_cpu) 1313 { 1314 struct migration_swap_arg arg; 1315 int ret = -EINVAL; 1316 1317 arg = (struct migration_swap_arg){ 1318 .src_task = cur, 1319 .src_cpu = curr_cpu, 1320 .dst_task = p, 1321 .dst_cpu = target_cpu, 1322 }; 1323 1324 if (arg.src_cpu == arg.dst_cpu) 1325 goto out; 1326 1327 /* 1328 * These three tests are all lockless; this is OK since all of them 1329 * will be re-checked with proper locks held further down the line. 1330 */ 1331 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1332 goto out; 1333 1334 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1335 goto out; 1336 1337 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1338 goto out; 1339 1340 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1341 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1342 1343 out: 1344 return ret; 1345 } 1346 #endif /* CONFIG_NUMA_BALANCING */ 1347 1348 /* 1349 * wait_task_inactive - wait for a thread to unschedule. 1350 * 1351 * If @match_state is nonzero, it's the @p->state value just checked and 1352 * not expected to change. If it changes, i.e. @p might have woken up, 1353 * then return zero. When we succeed in waiting for @p to be off its CPU, 1354 * we return a positive number (its total switch count). If a second call 1355 * a short while later returns the same number, the caller can be sure that 1356 * @p has remained unscheduled the whole time. 1357 * 1358 * The caller must ensure that the task *will* unschedule sometime soon, 1359 * else this function might spin for a *long* time. This function can't 1360 * be called with interrupts off, or it may introduce deadlock with 1361 * smp_call_function() if an IPI is sent by the same process we are 1362 * waiting to become inactive. 1363 */ 1364 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1365 { 1366 int running, queued; 1367 struct rq_flags rf; 1368 unsigned long ncsw; 1369 struct rq *rq; 1370 1371 for (;;) { 1372 /* 1373 * We do the initial early heuristics without holding 1374 * any task-queue locks at all. We'll only try to get 1375 * the runqueue lock when things look like they will 1376 * work out! 1377 */ 1378 rq = task_rq(p); 1379 1380 /* 1381 * If the task is actively running on another CPU 1382 * still, just relax and busy-wait without holding 1383 * any locks. 1384 * 1385 * NOTE! Since we don't hold any locks, it's not 1386 * even sure that "rq" stays as the right runqueue! 1387 * But we don't care, since "task_running()" will 1388 * return false if the runqueue has changed and p 1389 * is actually now running somewhere else! 1390 */ 1391 while (task_running(rq, p)) { 1392 if (match_state && unlikely(p->state != match_state)) 1393 return 0; 1394 cpu_relax(); 1395 } 1396 1397 /* 1398 * Ok, time to look more closely! We need the rq 1399 * lock now, to be *sure*. If we're wrong, we'll 1400 * just go back and repeat. 1401 */ 1402 rq = task_rq_lock(p, &rf); 1403 trace_sched_wait_task(p); 1404 running = task_running(rq, p); 1405 queued = task_on_rq_queued(p); 1406 ncsw = 0; 1407 if (!match_state || p->state == match_state) 1408 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1409 task_rq_unlock(rq, p, &rf); 1410 1411 /* 1412 * If it changed from the expected state, bail out now. 1413 */ 1414 if (unlikely(!ncsw)) 1415 break; 1416 1417 /* 1418 * Was it really running after all now that we 1419 * checked with the proper locks actually held? 1420 * 1421 * Oops. Go back and try again.. 1422 */ 1423 if (unlikely(running)) { 1424 cpu_relax(); 1425 continue; 1426 } 1427 1428 /* 1429 * It's not enough that it's not actively running, 1430 * it must be off the runqueue _entirely_, and not 1431 * preempted! 1432 * 1433 * So if it was still runnable (but just not actively 1434 * running right now), it's preempted, and we should 1435 * yield - it could be a while. 1436 */ 1437 if (unlikely(queued)) { 1438 ktime_t to = NSEC_PER_SEC / HZ; 1439 1440 set_current_state(TASK_UNINTERRUPTIBLE); 1441 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1442 continue; 1443 } 1444 1445 /* 1446 * Ahh, all good. It wasn't running, and it wasn't 1447 * runnable, which means that it will never become 1448 * running in the future either. We're all done! 1449 */ 1450 break; 1451 } 1452 1453 return ncsw; 1454 } 1455 1456 /*** 1457 * kick_process - kick a running thread to enter/exit the kernel 1458 * @p: the to-be-kicked thread 1459 * 1460 * Cause a process which is running on another CPU to enter 1461 * kernel-mode, without any delay. (to get signals handled.) 1462 * 1463 * NOTE: this function doesn't have to take the runqueue lock, 1464 * because all it wants to ensure is that the remote task enters 1465 * the kernel. If the IPI races and the task has been migrated 1466 * to another CPU then no harm is done and the purpose has been 1467 * achieved as well. 1468 */ 1469 void kick_process(struct task_struct *p) 1470 { 1471 int cpu; 1472 1473 preempt_disable(); 1474 cpu = task_cpu(p); 1475 if ((cpu != smp_processor_id()) && task_curr(p)) 1476 smp_send_reschedule(cpu); 1477 preempt_enable(); 1478 } 1479 EXPORT_SYMBOL_GPL(kick_process); 1480 1481 /* 1482 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1483 * 1484 * A few notes on cpu_active vs cpu_online: 1485 * 1486 * - cpu_active must be a subset of cpu_online 1487 * 1488 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1489 * see __set_cpus_allowed_ptr(). At this point the newly online 1490 * CPU isn't yet part of the sched domains, and balancing will not 1491 * see it. 1492 * 1493 * - on CPU-down we clear cpu_active() to mask the sched domains and 1494 * avoid the load balancer to place new tasks on the to be removed 1495 * CPU. Existing tasks will remain running there and will be taken 1496 * off. 1497 * 1498 * This means that fallback selection must not select !active CPUs. 1499 * And can assume that any active CPU must be online. Conversely 1500 * select_task_rq() below may allow selection of !active CPUs in order 1501 * to satisfy the above rules. 1502 */ 1503 static int select_fallback_rq(int cpu, struct task_struct *p) 1504 { 1505 int nid = cpu_to_node(cpu); 1506 const struct cpumask *nodemask = NULL; 1507 enum { cpuset, possible, fail } state = cpuset; 1508 int dest_cpu; 1509 1510 /* 1511 * If the node that the CPU is on has been offlined, cpu_to_node() 1512 * will return -1. There is no CPU on the node, and we should 1513 * select the CPU on the other node. 1514 */ 1515 if (nid != -1) { 1516 nodemask = cpumask_of_node(nid); 1517 1518 /* Look for allowed, online CPU in same node. */ 1519 for_each_cpu(dest_cpu, nodemask) { 1520 if (!cpu_active(dest_cpu)) 1521 continue; 1522 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1523 return dest_cpu; 1524 } 1525 } 1526 1527 for (;;) { 1528 /* Any allowed, online CPU? */ 1529 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1530 if (!is_cpu_allowed(p, dest_cpu)) 1531 continue; 1532 1533 goto out; 1534 } 1535 1536 /* No more Mr. Nice Guy. */ 1537 switch (state) { 1538 case cpuset: 1539 if (IS_ENABLED(CONFIG_CPUSETS)) { 1540 cpuset_cpus_allowed_fallback(p); 1541 state = possible; 1542 break; 1543 } 1544 /* Fall-through */ 1545 case possible: 1546 do_set_cpus_allowed(p, cpu_possible_mask); 1547 state = fail; 1548 break; 1549 1550 case fail: 1551 BUG(); 1552 break; 1553 } 1554 } 1555 1556 out: 1557 if (state != cpuset) { 1558 /* 1559 * Don't tell them about moving exiting tasks or 1560 * kernel threads (both mm NULL), since they never 1561 * leave kernel. 1562 */ 1563 if (p->mm && printk_ratelimit()) { 1564 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1565 task_pid_nr(p), p->comm, cpu); 1566 } 1567 } 1568 1569 return dest_cpu; 1570 } 1571 1572 /* 1573 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1574 */ 1575 static inline 1576 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1577 { 1578 lockdep_assert_held(&p->pi_lock); 1579 1580 if (p->nr_cpus_allowed > 1) 1581 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1582 else 1583 cpu = cpumask_any(&p->cpus_allowed); 1584 1585 /* 1586 * In order not to call set_task_cpu() on a blocking task we need 1587 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1588 * CPU. 1589 * 1590 * Since this is common to all placement strategies, this lives here. 1591 * 1592 * [ this allows ->select_task() to simply return task_cpu(p) and 1593 * not worry about this generic constraint ] 1594 */ 1595 if (unlikely(!is_cpu_allowed(p, cpu))) 1596 cpu = select_fallback_rq(task_cpu(p), p); 1597 1598 return cpu; 1599 } 1600 1601 static void update_avg(u64 *avg, u64 sample) 1602 { 1603 s64 diff = sample - *avg; 1604 *avg += diff >> 3; 1605 } 1606 1607 void sched_set_stop_task(int cpu, struct task_struct *stop) 1608 { 1609 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1610 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1611 1612 if (stop) { 1613 /* 1614 * Make it appear like a SCHED_FIFO task, its something 1615 * userspace knows about and won't get confused about. 1616 * 1617 * Also, it will make PI more or less work without too 1618 * much confusion -- but then, stop work should not 1619 * rely on PI working anyway. 1620 */ 1621 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1622 1623 stop->sched_class = &stop_sched_class; 1624 } 1625 1626 cpu_rq(cpu)->stop = stop; 1627 1628 if (old_stop) { 1629 /* 1630 * Reset it back to a normal scheduling class so that 1631 * it can die in pieces. 1632 */ 1633 old_stop->sched_class = &rt_sched_class; 1634 } 1635 } 1636 1637 #else 1638 1639 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1640 const struct cpumask *new_mask, bool check) 1641 { 1642 return set_cpus_allowed_ptr(p, new_mask); 1643 } 1644 1645 #endif /* CONFIG_SMP */ 1646 1647 static void 1648 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1649 { 1650 struct rq *rq; 1651 1652 if (!schedstat_enabled()) 1653 return; 1654 1655 rq = this_rq(); 1656 1657 #ifdef CONFIG_SMP 1658 if (cpu == rq->cpu) { 1659 __schedstat_inc(rq->ttwu_local); 1660 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1661 } else { 1662 struct sched_domain *sd; 1663 1664 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1665 rcu_read_lock(); 1666 for_each_domain(rq->cpu, sd) { 1667 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1668 __schedstat_inc(sd->ttwu_wake_remote); 1669 break; 1670 } 1671 } 1672 rcu_read_unlock(); 1673 } 1674 1675 if (wake_flags & WF_MIGRATED) 1676 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1677 #endif /* CONFIG_SMP */ 1678 1679 __schedstat_inc(rq->ttwu_count); 1680 __schedstat_inc(p->se.statistics.nr_wakeups); 1681 1682 if (wake_flags & WF_SYNC) 1683 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1684 } 1685 1686 /* 1687 * Mark the task runnable and perform wakeup-preemption. 1688 */ 1689 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1690 struct rq_flags *rf) 1691 { 1692 check_preempt_curr(rq, p, wake_flags); 1693 p->state = TASK_RUNNING; 1694 trace_sched_wakeup(p); 1695 1696 #ifdef CONFIG_SMP 1697 if (p->sched_class->task_woken) { 1698 /* 1699 * Our task @p is fully woken up and running; so its safe to 1700 * drop the rq->lock, hereafter rq is only used for statistics. 1701 */ 1702 rq_unpin_lock(rq, rf); 1703 p->sched_class->task_woken(rq, p); 1704 rq_repin_lock(rq, rf); 1705 } 1706 1707 if (rq->idle_stamp) { 1708 u64 delta = rq_clock(rq) - rq->idle_stamp; 1709 u64 max = 2*rq->max_idle_balance_cost; 1710 1711 update_avg(&rq->avg_idle, delta); 1712 1713 if (rq->avg_idle > max) 1714 rq->avg_idle = max; 1715 1716 rq->idle_stamp = 0; 1717 } 1718 #endif 1719 } 1720 1721 static void 1722 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1723 struct rq_flags *rf) 1724 { 1725 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1726 1727 lockdep_assert_held(&rq->lock); 1728 1729 #ifdef CONFIG_SMP 1730 if (p->sched_contributes_to_load) 1731 rq->nr_uninterruptible--; 1732 1733 if (wake_flags & WF_MIGRATED) 1734 en_flags |= ENQUEUE_MIGRATED; 1735 #endif 1736 1737 activate_task(rq, p, en_flags); 1738 ttwu_do_wakeup(rq, p, wake_flags, rf); 1739 } 1740 1741 /* 1742 * Called in case the task @p isn't fully descheduled from its runqueue, 1743 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1744 * since all we need to do is flip p->state to TASK_RUNNING, since 1745 * the task is still ->on_rq. 1746 */ 1747 static int ttwu_remote(struct task_struct *p, int wake_flags) 1748 { 1749 struct rq_flags rf; 1750 struct rq *rq; 1751 int ret = 0; 1752 1753 rq = __task_rq_lock(p, &rf); 1754 if (task_on_rq_queued(p)) { 1755 /* check_preempt_curr() may use rq clock */ 1756 update_rq_clock(rq); 1757 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1758 ret = 1; 1759 } 1760 __task_rq_unlock(rq, &rf); 1761 1762 return ret; 1763 } 1764 1765 #ifdef CONFIG_SMP 1766 void sched_ttwu_pending(void) 1767 { 1768 struct rq *rq = this_rq(); 1769 struct llist_node *llist = llist_del_all(&rq->wake_list); 1770 struct task_struct *p, *t; 1771 struct rq_flags rf; 1772 1773 if (!llist) 1774 return; 1775 1776 rq_lock_irqsave(rq, &rf); 1777 update_rq_clock(rq); 1778 1779 llist_for_each_entry_safe(p, t, llist, wake_entry) 1780 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1781 1782 rq_unlock_irqrestore(rq, &rf); 1783 } 1784 1785 void scheduler_ipi(void) 1786 { 1787 /* 1788 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1789 * TIF_NEED_RESCHED remotely (for the first time) will also send 1790 * this IPI. 1791 */ 1792 preempt_fold_need_resched(); 1793 1794 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1795 return; 1796 1797 /* 1798 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1799 * traditionally all their work was done from the interrupt return 1800 * path. Now that we actually do some work, we need to make sure 1801 * we do call them. 1802 * 1803 * Some archs already do call them, luckily irq_enter/exit nest 1804 * properly. 1805 * 1806 * Arguably we should visit all archs and update all handlers, 1807 * however a fair share of IPIs are still resched only so this would 1808 * somewhat pessimize the simple resched case. 1809 */ 1810 irq_enter(); 1811 sched_ttwu_pending(); 1812 1813 /* 1814 * Check if someone kicked us for doing the nohz idle load balance. 1815 */ 1816 if (unlikely(got_nohz_idle_kick())) { 1817 this_rq()->idle_balance = 1; 1818 raise_softirq_irqoff(SCHED_SOFTIRQ); 1819 } 1820 irq_exit(); 1821 } 1822 1823 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1824 { 1825 struct rq *rq = cpu_rq(cpu); 1826 1827 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1828 1829 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1830 if (!set_nr_if_polling(rq->idle)) 1831 smp_send_reschedule(cpu); 1832 else 1833 trace_sched_wake_idle_without_ipi(cpu); 1834 } 1835 } 1836 1837 void wake_up_if_idle(int cpu) 1838 { 1839 struct rq *rq = cpu_rq(cpu); 1840 struct rq_flags rf; 1841 1842 rcu_read_lock(); 1843 1844 if (!is_idle_task(rcu_dereference(rq->curr))) 1845 goto out; 1846 1847 if (set_nr_if_polling(rq->idle)) { 1848 trace_sched_wake_idle_without_ipi(cpu); 1849 } else { 1850 rq_lock_irqsave(rq, &rf); 1851 if (is_idle_task(rq->curr)) 1852 smp_send_reschedule(cpu); 1853 /* Else CPU is not idle, do nothing here: */ 1854 rq_unlock_irqrestore(rq, &rf); 1855 } 1856 1857 out: 1858 rcu_read_unlock(); 1859 } 1860 1861 bool cpus_share_cache(int this_cpu, int that_cpu) 1862 { 1863 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1864 } 1865 #endif /* CONFIG_SMP */ 1866 1867 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1868 { 1869 struct rq *rq = cpu_rq(cpu); 1870 struct rq_flags rf; 1871 1872 #if defined(CONFIG_SMP) 1873 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1874 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1875 ttwu_queue_remote(p, cpu, wake_flags); 1876 return; 1877 } 1878 #endif 1879 1880 rq_lock(rq, &rf); 1881 update_rq_clock(rq); 1882 ttwu_do_activate(rq, p, wake_flags, &rf); 1883 rq_unlock(rq, &rf); 1884 } 1885 1886 /* 1887 * Notes on Program-Order guarantees on SMP systems. 1888 * 1889 * MIGRATION 1890 * 1891 * The basic program-order guarantee on SMP systems is that when a task [t] 1892 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1893 * execution on its new CPU [c1]. 1894 * 1895 * For migration (of runnable tasks) this is provided by the following means: 1896 * 1897 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1898 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1899 * rq(c1)->lock (if not at the same time, then in that order). 1900 * C) LOCK of the rq(c1)->lock scheduling in task 1901 * 1902 * Release/acquire chaining guarantees that B happens after A and C after B. 1903 * Note: the CPU doing B need not be c0 or c1 1904 * 1905 * Example: 1906 * 1907 * CPU0 CPU1 CPU2 1908 * 1909 * LOCK rq(0)->lock 1910 * sched-out X 1911 * sched-in Y 1912 * UNLOCK rq(0)->lock 1913 * 1914 * LOCK rq(0)->lock // orders against CPU0 1915 * dequeue X 1916 * UNLOCK rq(0)->lock 1917 * 1918 * LOCK rq(1)->lock 1919 * enqueue X 1920 * UNLOCK rq(1)->lock 1921 * 1922 * LOCK rq(1)->lock // orders against CPU2 1923 * sched-out Z 1924 * sched-in X 1925 * UNLOCK rq(1)->lock 1926 * 1927 * 1928 * BLOCKING -- aka. SLEEP + WAKEUP 1929 * 1930 * For blocking we (obviously) need to provide the same guarantee as for 1931 * migration. However the means are completely different as there is no lock 1932 * chain to provide order. Instead we do: 1933 * 1934 * 1) smp_store_release(X->on_cpu, 0) 1935 * 2) smp_cond_load_acquire(!X->on_cpu) 1936 * 1937 * Example: 1938 * 1939 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1940 * 1941 * LOCK rq(0)->lock LOCK X->pi_lock 1942 * dequeue X 1943 * sched-out X 1944 * smp_store_release(X->on_cpu, 0); 1945 * 1946 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1947 * X->state = WAKING 1948 * set_task_cpu(X,2) 1949 * 1950 * LOCK rq(2)->lock 1951 * enqueue X 1952 * X->state = RUNNING 1953 * UNLOCK rq(2)->lock 1954 * 1955 * LOCK rq(2)->lock // orders against CPU1 1956 * sched-out Z 1957 * sched-in X 1958 * UNLOCK rq(2)->lock 1959 * 1960 * UNLOCK X->pi_lock 1961 * UNLOCK rq(0)->lock 1962 * 1963 * 1964 * However, for wakeups there is a second guarantee we must provide, namely we 1965 * must ensure that CONDITION=1 done by the caller can not be reordered with 1966 * accesses to the task state; see try_to_wake_up() and set_current_state(). 1967 */ 1968 1969 /** 1970 * try_to_wake_up - wake up a thread 1971 * @p: the thread to be awakened 1972 * @state: the mask of task states that can be woken 1973 * @wake_flags: wake modifier flags (WF_*) 1974 * 1975 * If (@state & @p->state) @p->state = TASK_RUNNING. 1976 * 1977 * If the task was not queued/runnable, also place it back on a runqueue. 1978 * 1979 * Atomic against schedule() which would dequeue a task, also see 1980 * set_current_state(). 1981 * 1982 * This function executes a full memory barrier before accessing the task 1983 * state; see set_current_state(). 1984 * 1985 * Return: %true if @p->state changes (an actual wakeup was done), 1986 * %false otherwise. 1987 */ 1988 static int 1989 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1990 { 1991 unsigned long flags; 1992 int cpu, success = 0; 1993 1994 /* 1995 * If we are going to wake up a thread waiting for CONDITION we 1996 * need to ensure that CONDITION=1 done by the caller can not be 1997 * reordered with p->state check below. This pairs with mb() in 1998 * set_current_state() the waiting thread does. 1999 */ 2000 raw_spin_lock_irqsave(&p->pi_lock, flags); 2001 smp_mb__after_spinlock(); 2002 if (!(p->state & state)) 2003 goto out; 2004 2005 trace_sched_waking(p); 2006 2007 /* We're going to change ->state: */ 2008 success = 1; 2009 cpu = task_cpu(p); 2010 2011 /* 2012 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2013 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2014 * in smp_cond_load_acquire() below. 2015 * 2016 * sched_ttwu_pending() try_to_wake_up() 2017 * STORE p->on_rq = 1 LOAD p->state 2018 * UNLOCK rq->lock 2019 * 2020 * __schedule() (switch to task 'p') 2021 * LOCK rq->lock smp_rmb(); 2022 * smp_mb__after_spinlock(); 2023 * UNLOCK rq->lock 2024 * 2025 * [task p] 2026 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2027 * 2028 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2029 * __schedule(). See the comment for smp_mb__after_spinlock(). 2030 */ 2031 smp_rmb(); 2032 if (p->on_rq && ttwu_remote(p, wake_flags)) 2033 goto stat; 2034 2035 #ifdef CONFIG_SMP 2036 /* 2037 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2038 * possible to, falsely, observe p->on_cpu == 0. 2039 * 2040 * One must be running (->on_cpu == 1) in order to remove oneself 2041 * from the runqueue. 2042 * 2043 * __schedule() (switch to task 'p') try_to_wake_up() 2044 * STORE p->on_cpu = 1 LOAD p->on_rq 2045 * UNLOCK rq->lock 2046 * 2047 * __schedule() (put 'p' to sleep) 2048 * LOCK rq->lock smp_rmb(); 2049 * smp_mb__after_spinlock(); 2050 * STORE p->on_rq = 0 LOAD p->on_cpu 2051 * 2052 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2053 * __schedule(). See the comment for smp_mb__after_spinlock(). 2054 */ 2055 smp_rmb(); 2056 2057 /* 2058 * If the owning (remote) CPU is still in the middle of schedule() with 2059 * this task as prev, wait until its done referencing the task. 2060 * 2061 * Pairs with the smp_store_release() in finish_task(). 2062 * 2063 * This ensures that tasks getting woken will be fully ordered against 2064 * their previous state and preserve Program Order. 2065 */ 2066 smp_cond_load_acquire(&p->on_cpu, !VAL); 2067 2068 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2069 p->state = TASK_WAKING; 2070 2071 if (p->in_iowait) { 2072 delayacct_blkio_end(p); 2073 atomic_dec(&task_rq(p)->nr_iowait); 2074 } 2075 2076 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2077 if (task_cpu(p) != cpu) { 2078 wake_flags |= WF_MIGRATED; 2079 psi_ttwu_dequeue(p); 2080 set_task_cpu(p, cpu); 2081 } 2082 2083 #else /* CONFIG_SMP */ 2084 2085 if (p->in_iowait) { 2086 delayacct_blkio_end(p); 2087 atomic_dec(&task_rq(p)->nr_iowait); 2088 } 2089 2090 #endif /* CONFIG_SMP */ 2091 2092 ttwu_queue(p, cpu, wake_flags); 2093 stat: 2094 ttwu_stat(p, cpu, wake_flags); 2095 out: 2096 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2097 2098 return success; 2099 } 2100 2101 /** 2102 * wake_up_process - Wake up a specific process 2103 * @p: The process to be woken up. 2104 * 2105 * Attempt to wake up the nominated process and move it to the set of runnable 2106 * processes. 2107 * 2108 * Return: 1 if the process was woken up, 0 if it was already running. 2109 * 2110 * This function executes a full memory barrier before accessing the task state. 2111 */ 2112 int wake_up_process(struct task_struct *p) 2113 { 2114 return try_to_wake_up(p, TASK_NORMAL, 0); 2115 } 2116 EXPORT_SYMBOL(wake_up_process); 2117 2118 int wake_up_state(struct task_struct *p, unsigned int state) 2119 { 2120 return try_to_wake_up(p, state, 0); 2121 } 2122 2123 /* 2124 * Perform scheduler related setup for a newly forked process p. 2125 * p is forked by current. 2126 * 2127 * __sched_fork() is basic setup used by init_idle() too: 2128 */ 2129 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2130 { 2131 p->on_rq = 0; 2132 2133 p->se.on_rq = 0; 2134 p->se.exec_start = 0; 2135 p->se.sum_exec_runtime = 0; 2136 p->se.prev_sum_exec_runtime = 0; 2137 p->se.nr_migrations = 0; 2138 p->se.vruntime = 0; 2139 INIT_LIST_HEAD(&p->se.group_node); 2140 2141 #ifdef CONFIG_FAIR_GROUP_SCHED 2142 p->se.cfs_rq = NULL; 2143 #endif 2144 2145 #ifdef CONFIG_SCHEDSTATS 2146 /* Even if schedstat is disabled, there should not be garbage */ 2147 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2148 #endif 2149 2150 RB_CLEAR_NODE(&p->dl.rb_node); 2151 init_dl_task_timer(&p->dl); 2152 init_dl_inactive_task_timer(&p->dl); 2153 __dl_clear_params(p); 2154 2155 INIT_LIST_HEAD(&p->rt.run_list); 2156 p->rt.timeout = 0; 2157 p->rt.time_slice = sched_rr_timeslice; 2158 p->rt.on_rq = 0; 2159 p->rt.on_list = 0; 2160 2161 #ifdef CONFIG_PREEMPT_NOTIFIERS 2162 INIT_HLIST_HEAD(&p->preempt_notifiers); 2163 #endif 2164 2165 #ifdef CONFIG_COMPACTION 2166 p->capture_control = NULL; 2167 #endif 2168 init_numa_balancing(clone_flags, p); 2169 } 2170 2171 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2172 2173 #ifdef CONFIG_NUMA_BALANCING 2174 2175 void set_numabalancing_state(bool enabled) 2176 { 2177 if (enabled) 2178 static_branch_enable(&sched_numa_balancing); 2179 else 2180 static_branch_disable(&sched_numa_balancing); 2181 } 2182 2183 #ifdef CONFIG_PROC_SYSCTL 2184 int sysctl_numa_balancing(struct ctl_table *table, int write, 2185 void __user *buffer, size_t *lenp, loff_t *ppos) 2186 { 2187 struct ctl_table t; 2188 int err; 2189 int state = static_branch_likely(&sched_numa_balancing); 2190 2191 if (write && !capable(CAP_SYS_ADMIN)) 2192 return -EPERM; 2193 2194 t = *table; 2195 t.data = &state; 2196 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2197 if (err < 0) 2198 return err; 2199 if (write) 2200 set_numabalancing_state(state); 2201 return err; 2202 } 2203 #endif 2204 #endif 2205 2206 #ifdef CONFIG_SCHEDSTATS 2207 2208 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2209 static bool __initdata __sched_schedstats = false; 2210 2211 static void set_schedstats(bool enabled) 2212 { 2213 if (enabled) 2214 static_branch_enable(&sched_schedstats); 2215 else 2216 static_branch_disable(&sched_schedstats); 2217 } 2218 2219 void force_schedstat_enabled(void) 2220 { 2221 if (!schedstat_enabled()) { 2222 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2223 static_branch_enable(&sched_schedstats); 2224 } 2225 } 2226 2227 static int __init setup_schedstats(char *str) 2228 { 2229 int ret = 0; 2230 if (!str) 2231 goto out; 2232 2233 /* 2234 * This code is called before jump labels have been set up, so we can't 2235 * change the static branch directly just yet. Instead set a temporary 2236 * variable so init_schedstats() can do it later. 2237 */ 2238 if (!strcmp(str, "enable")) { 2239 __sched_schedstats = true; 2240 ret = 1; 2241 } else if (!strcmp(str, "disable")) { 2242 __sched_schedstats = false; 2243 ret = 1; 2244 } 2245 out: 2246 if (!ret) 2247 pr_warn("Unable to parse schedstats=\n"); 2248 2249 return ret; 2250 } 2251 __setup("schedstats=", setup_schedstats); 2252 2253 static void __init init_schedstats(void) 2254 { 2255 set_schedstats(__sched_schedstats); 2256 } 2257 2258 #ifdef CONFIG_PROC_SYSCTL 2259 int sysctl_schedstats(struct ctl_table *table, int write, 2260 void __user *buffer, size_t *lenp, loff_t *ppos) 2261 { 2262 struct ctl_table t; 2263 int err; 2264 int state = static_branch_likely(&sched_schedstats); 2265 2266 if (write && !capable(CAP_SYS_ADMIN)) 2267 return -EPERM; 2268 2269 t = *table; 2270 t.data = &state; 2271 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2272 if (err < 0) 2273 return err; 2274 if (write) 2275 set_schedstats(state); 2276 return err; 2277 } 2278 #endif /* CONFIG_PROC_SYSCTL */ 2279 #else /* !CONFIG_SCHEDSTATS */ 2280 static inline void init_schedstats(void) {} 2281 #endif /* CONFIG_SCHEDSTATS */ 2282 2283 /* 2284 * fork()/clone()-time setup: 2285 */ 2286 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2287 { 2288 unsigned long flags; 2289 2290 __sched_fork(clone_flags, p); 2291 /* 2292 * We mark the process as NEW here. This guarantees that 2293 * nobody will actually run it, and a signal or other external 2294 * event cannot wake it up and insert it on the runqueue either. 2295 */ 2296 p->state = TASK_NEW; 2297 2298 /* 2299 * Make sure we do not leak PI boosting priority to the child. 2300 */ 2301 p->prio = current->normal_prio; 2302 2303 /* 2304 * Revert to default priority/policy on fork if requested. 2305 */ 2306 if (unlikely(p->sched_reset_on_fork)) { 2307 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2308 p->policy = SCHED_NORMAL; 2309 p->static_prio = NICE_TO_PRIO(0); 2310 p->rt_priority = 0; 2311 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2312 p->static_prio = NICE_TO_PRIO(0); 2313 2314 p->prio = p->normal_prio = __normal_prio(p); 2315 set_load_weight(p, false); 2316 2317 /* 2318 * We don't need the reset flag anymore after the fork. It has 2319 * fulfilled its duty: 2320 */ 2321 p->sched_reset_on_fork = 0; 2322 } 2323 2324 if (dl_prio(p->prio)) 2325 return -EAGAIN; 2326 else if (rt_prio(p->prio)) 2327 p->sched_class = &rt_sched_class; 2328 else 2329 p->sched_class = &fair_sched_class; 2330 2331 init_entity_runnable_average(&p->se); 2332 2333 /* 2334 * The child is not yet in the pid-hash so no cgroup attach races, 2335 * and the cgroup is pinned to this child due to cgroup_fork() 2336 * is ran before sched_fork(). 2337 * 2338 * Silence PROVE_RCU. 2339 */ 2340 raw_spin_lock_irqsave(&p->pi_lock, flags); 2341 /* 2342 * We're setting the CPU for the first time, we don't migrate, 2343 * so use __set_task_cpu(). 2344 */ 2345 __set_task_cpu(p, smp_processor_id()); 2346 if (p->sched_class->task_fork) 2347 p->sched_class->task_fork(p); 2348 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2349 2350 #ifdef CONFIG_SCHED_INFO 2351 if (likely(sched_info_on())) 2352 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2353 #endif 2354 #if defined(CONFIG_SMP) 2355 p->on_cpu = 0; 2356 #endif 2357 init_task_preempt_count(p); 2358 #ifdef CONFIG_SMP 2359 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2360 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2361 #endif 2362 return 0; 2363 } 2364 2365 unsigned long to_ratio(u64 period, u64 runtime) 2366 { 2367 if (runtime == RUNTIME_INF) 2368 return BW_UNIT; 2369 2370 /* 2371 * Doing this here saves a lot of checks in all 2372 * the calling paths, and returning zero seems 2373 * safe for them anyway. 2374 */ 2375 if (period == 0) 2376 return 0; 2377 2378 return div64_u64(runtime << BW_SHIFT, period); 2379 } 2380 2381 /* 2382 * wake_up_new_task - wake up a newly created task for the first time. 2383 * 2384 * This function will do some initial scheduler statistics housekeeping 2385 * that must be done for every newly created context, then puts the task 2386 * on the runqueue and wakes it. 2387 */ 2388 void wake_up_new_task(struct task_struct *p) 2389 { 2390 struct rq_flags rf; 2391 struct rq *rq; 2392 2393 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2394 p->state = TASK_RUNNING; 2395 #ifdef CONFIG_SMP 2396 /* 2397 * Fork balancing, do it here and not earlier because: 2398 * - cpus_allowed can change in the fork path 2399 * - any previously selected CPU might disappear through hotplug 2400 * 2401 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2402 * as we're not fully set-up yet. 2403 */ 2404 p->recent_used_cpu = task_cpu(p); 2405 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2406 #endif 2407 rq = __task_rq_lock(p, &rf); 2408 update_rq_clock(rq); 2409 post_init_entity_util_avg(p); 2410 2411 activate_task(rq, p, ENQUEUE_NOCLOCK); 2412 trace_sched_wakeup_new(p); 2413 check_preempt_curr(rq, p, WF_FORK); 2414 #ifdef CONFIG_SMP 2415 if (p->sched_class->task_woken) { 2416 /* 2417 * Nothing relies on rq->lock after this, so its fine to 2418 * drop it. 2419 */ 2420 rq_unpin_lock(rq, &rf); 2421 p->sched_class->task_woken(rq, p); 2422 rq_repin_lock(rq, &rf); 2423 } 2424 #endif 2425 task_rq_unlock(rq, p, &rf); 2426 } 2427 2428 #ifdef CONFIG_PREEMPT_NOTIFIERS 2429 2430 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2431 2432 void preempt_notifier_inc(void) 2433 { 2434 static_branch_inc(&preempt_notifier_key); 2435 } 2436 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2437 2438 void preempt_notifier_dec(void) 2439 { 2440 static_branch_dec(&preempt_notifier_key); 2441 } 2442 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2443 2444 /** 2445 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2446 * @notifier: notifier struct to register 2447 */ 2448 void preempt_notifier_register(struct preempt_notifier *notifier) 2449 { 2450 if (!static_branch_unlikely(&preempt_notifier_key)) 2451 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2452 2453 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2454 } 2455 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2456 2457 /** 2458 * preempt_notifier_unregister - no longer interested in preemption notifications 2459 * @notifier: notifier struct to unregister 2460 * 2461 * This is *not* safe to call from within a preemption notifier. 2462 */ 2463 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2464 { 2465 hlist_del(¬ifier->link); 2466 } 2467 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2468 2469 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2470 { 2471 struct preempt_notifier *notifier; 2472 2473 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2474 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2475 } 2476 2477 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2478 { 2479 if (static_branch_unlikely(&preempt_notifier_key)) 2480 __fire_sched_in_preempt_notifiers(curr); 2481 } 2482 2483 static void 2484 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2485 struct task_struct *next) 2486 { 2487 struct preempt_notifier *notifier; 2488 2489 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2490 notifier->ops->sched_out(notifier, next); 2491 } 2492 2493 static __always_inline void 2494 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2495 struct task_struct *next) 2496 { 2497 if (static_branch_unlikely(&preempt_notifier_key)) 2498 __fire_sched_out_preempt_notifiers(curr, next); 2499 } 2500 2501 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2502 2503 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2504 { 2505 } 2506 2507 static inline void 2508 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2509 struct task_struct *next) 2510 { 2511 } 2512 2513 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2514 2515 static inline void prepare_task(struct task_struct *next) 2516 { 2517 #ifdef CONFIG_SMP 2518 /* 2519 * Claim the task as running, we do this before switching to it 2520 * such that any running task will have this set. 2521 */ 2522 next->on_cpu = 1; 2523 #endif 2524 } 2525 2526 static inline void finish_task(struct task_struct *prev) 2527 { 2528 #ifdef CONFIG_SMP 2529 /* 2530 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2531 * We must ensure this doesn't happen until the switch is completely 2532 * finished. 2533 * 2534 * In particular, the load of prev->state in finish_task_switch() must 2535 * happen before this. 2536 * 2537 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2538 */ 2539 smp_store_release(&prev->on_cpu, 0); 2540 #endif 2541 } 2542 2543 static inline void 2544 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2545 { 2546 /* 2547 * Since the runqueue lock will be released by the next 2548 * task (which is an invalid locking op but in the case 2549 * of the scheduler it's an obvious special-case), so we 2550 * do an early lockdep release here: 2551 */ 2552 rq_unpin_lock(rq, rf); 2553 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2554 #ifdef CONFIG_DEBUG_SPINLOCK 2555 /* this is a valid case when another task releases the spinlock */ 2556 rq->lock.owner = next; 2557 #endif 2558 } 2559 2560 static inline void finish_lock_switch(struct rq *rq) 2561 { 2562 /* 2563 * If we are tracking spinlock dependencies then we have to 2564 * fix up the runqueue lock - which gets 'carried over' from 2565 * prev into current: 2566 */ 2567 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2568 raw_spin_unlock_irq(&rq->lock); 2569 } 2570 2571 /* 2572 * NOP if the arch has not defined these: 2573 */ 2574 2575 #ifndef prepare_arch_switch 2576 # define prepare_arch_switch(next) do { } while (0) 2577 #endif 2578 2579 #ifndef finish_arch_post_lock_switch 2580 # define finish_arch_post_lock_switch() do { } while (0) 2581 #endif 2582 2583 /** 2584 * prepare_task_switch - prepare to switch tasks 2585 * @rq: the runqueue preparing to switch 2586 * @prev: the current task that is being switched out 2587 * @next: the task we are going to switch to. 2588 * 2589 * This is called with the rq lock held and interrupts off. It must 2590 * be paired with a subsequent finish_task_switch after the context 2591 * switch. 2592 * 2593 * prepare_task_switch sets up locking and calls architecture specific 2594 * hooks. 2595 */ 2596 static inline void 2597 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2598 struct task_struct *next) 2599 { 2600 kcov_prepare_switch(prev); 2601 sched_info_switch(rq, prev, next); 2602 perf_event_task_sched_out(prev, next); 2603 rseq_preempt(prev); 2604 fire_sched_out_preempt_notifiers(prev, next); 2605 prepare_task(next); 2606 prepare_arch_switch(next); 2607 } 2608 2609 /** 2610 * finish_task_switch - clean up after a task-switch 2611 * @prev: the thread we just switched away from. 2612 * 2613 * finish_task_switch must be called after the context switch, paired 2614 * with a prepare_task_switch call before the context switch. 2615 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2616 * and do any other architecture-specific cleanup actions. 2617 * 2618 * Note that we may have delayed dropping an mm in context_switch(). If 2619 * so, we finish that here outside of the runqueue lock. (Doing it 2620 * with the lock held can cause deadlocks; see schedule() for 2621 * details.) 2622 * 2623 * The context switch have flipped the stack from under us and restored the 2624 * local variables which were saved when this task called schedule() in the 2625 * past. prev == current is still correct but we need to recalculate this_rq 2626 * because prev may have moved to another CPU. 2627 */ 2628 static struct rq *finish_task_switch(struct task_struct *prev) 2629 __releases(rq->lock) 2630 { 2631 struct rq *rq = this_rq(); 2632 struct mm_struct *mm = rq->prev_mm; 2633 long prev_state; 2634 2635 /* 2636 * The previous task will have left us with a preempt_count of 2 2637 * because it left us after: 2638 * 2639 * schedule() 2640 * preempt_disable(); // 1 2641 * __schedule() 2642 * raw_spin_lock_irq(&rq->lock) // 2 2643 * 2644 * Also, see FORK_PREEMPT_COUNT. 2645 */ 2646 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2647 "corrupted preempt_count: %s/%d/0x%x\n", 2648 current->comm, current->pid, preempt_count())) 2649 preempt_count_set(FORK_PREEMPT_COUNT); 2650 2651 rq->prev_mm = NULL; 2652 2653 /* 2654 * A task struct has one reference for the use as "current". 2655 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2656 * schedule one last time. The schedule call will never return, and 2657 * the scheduled task must drop that reference. 2658 * 2659 * We must observe prev->state before clearing prev->on_cpu (in 2660 * finish_task), otherwise a concurrent wakeup can get prev 2661 * running on another CPU and we could rave with its RUNNING -> DEAD 2662 * transition, resulting in a double drop. 2663 */ 2664 prev_state = prev->state; 2665 vtime_task_switch(prev); 2666 perf_event_task_sched_in(prev, current); 2667 finish_task(prev); 2668 finish_lock_switch(rq); 2669 finish_arch_post_lock_switch(); 2670 kcov_finish_switch(current); 2671 2672 fire_sched_in_preempt_notifiers(current); 2673 /* 2674 * When switching through a kernel thread, the loop in 2675 * membarrier_{private,global}_expedited() may have observed that 2676 * kernel thread and not issued an IPI. It is therefore possible to 2677 * schedule between user->kernel->user threads without passing though 2678 * switch_mm(). Membarrier requires a barrier after storing to 2679 * rq->curr, before returning to userspace, so provide them here: 2680 * 2681 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2682 * provided by mmdrop(), 2683 * - a sync_core for SYNC_CORE. 2684 */ 2685 if (mm) { 2686 membarrier_mm_sync_core_before_usermode(mm); 2687 mmdrop(mm); 2688 } 2689 if (unlikely(prev_state == TASK_DEAD)) { 2690 if (prev->sched_class->task_dead) 2691 prev->sched_class->task_dead(prev); 2692 2693 /* 2694 * Remove function-return probe instances associated with this 2695 * task and put them back on the free list. 2696 */ 2697 kprobe_flush_task(prev); 2698 2699 /* Task is done with its stack. */ 2700 put_task_stack(prev); 2701 2702 put_task_struct(prev); 2703 } 2704 2705 tick_nohz_task_switch(); 2706 return rq; 2707 } 2708 2709 #ifdef CONFIG_SMP 2710 2711 /* rq->lock is NOT held, but preemption is disabled */ 2712 static void __balance_callback(struct rq *rq) 2713 { 2714 struct callback_head *head, *next; 2715 void (*func)(struct rq *rq); 2716 unsigned long flags; 2717 2718 raw_spin_lock_irqsave(&rq->lock, flags); 2719 head = rq->balance_callback; 2720 rq->balance_callback = NULL; 2721 while (head) { 2722 func = (void (*)(struct rq *))head->func; 2723 next = head->next; 2724 head->next = NULL; 2725 head = next; 2726 2727 func(rq); 2728 } 2729 raw_spin_unlock_irqrestore(&rq->lock, flags); 2730 } 2731 2732 static inline void balance_callback(struct rq *rq) 2733 { 2734 if (unlikely(rq->balance_callback)) 2735 __balance_callback(rq); 2736 } 2737 2738 #else 2739 2740 static inline void balance_callback(struct rq *rq) 2741 { 2742 } 2743 2744 #endif 2745 2746 /** 2747 * schedule_tail - first thing a freshly forked thread must call. 2748 * @prev: the thread we just switched away from. 2749 */ 2750 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2751 __releases(rq->lock) 2752 { 2753 struct rq *rq; 2754 2755 /* 2756 * New tasks start with FORK_PREEMPT_COUNT, see there and 2757 * finish_task_switch() for details. 2758 * 2759 * finish_task_switch() will drop rq->lock() and lower preempt_count 2760 * and the preempt_enable() will end up enabling preemption (on 2761 * PREEMPT_COUNT kernels). 2762 */ 2763 2764 rq = finish_task_switch(prev); 2765 balance_callback(rq); 2766 preempt_enable(); 2767 2768 if (current->set_child_tid) 2769 put_user(task_pid_vnr(current), current->set_child_tid); 2770 2771 calculate_sigpending(); 2772 } 2773 2774 /* 2775 * context_switch - switch to the new MM and the new thread's register state. 2776 */ 2777 static __always_inline struct rq * 2778 context_switch(struct rq *rq, struct task_struct *prev, 2779 struct task_struct *next, struct rq_flags *rf) 2780 { 2781 struct mm_struct *mm, *oldmm; 2782 2783 prepare_task_switch(rq, prev, next); 2784 2785 mm = next->mm; 2786 oldmm = prev->active_mm; 2787 /* 2788 * For paravirt, this is coupled with an exit in switch_to to 2789 * combine the page table reload and the switch backend into 2790 * one hypercall. 2791 */ 2792 arch_start_context_switch(prev); 2793 2794 /* 2795 * If mm is non-NULL, we pass through switch_mm(). If mm is 2796 * NULL, we will pass through mmdrop() in finish_task_switch(). 2797 * Both of these contain the full memory barrier required by 2798 * membarrier after storing to rq->curr, before returning to 2799 * user-space. 2800 */ 2801 if (!mm) { 2802 next->active_mm = oldmm; 2803 mmgrab(oldmm); 2804 enter_lazy_tlb(oldmm, next); 2805 } else 2806 switch_mm_irqs_off(oldmm, mm, next); 2807 2808 if (!prev->mm) { 2809 prev->active_mm = NULL; 2810 rq->prev_mm = oldmm; 2811 } 2812 2813 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2814 2815 prepare_lock_switch(rq, next, rf); 2816 2817 /* Here we just switch the register state and the stack. */ 2818 switch_to(prev, next, prev); 2819 barrier(); 2820 2821 return finish_task_switch(prev); 2822 } 2823 2824 /* 2825 * nr_running and nr_context_switches: 2826 * 2827 * externally visible scheduler statistics: current number of runnable 2828 * threads, total number of context switches performed since bootup. 2829 */ 2830 unsigned long nr_running(void) 2831 { 2832 unsigned long i, sum = 0; 2833 2834 for_each_online_cpu(i) 2835 sum += cpu_rq(i)->nr_running; 2836 2837 return sum; 2838 } 2839 2840 /* 2841 * Check if only the current task is running on the CPU. 2842 * 2843 * Caution: this function does not check that the caller has disabled 2844 * preemption, thus the result might have a time-of-check-to-time-of-use 2845 * race. The caller is responsible to use it correctly, for example: 2846 * 2847 * - from a non-preemptible section (of course) 2848 * 2849 * - from a thread that is bound to a single CPU 2850 * 2851 * - in a loop with very short iterations (e.g. a polling loop) 2852 */ 2853 bool single_task_running(void) 2854 { 2855 return raw_rq()->nr_running == 1; 2856 } 2857 EXPORT_SYMBOL(single_task_running); 2858 2859 unsigned long long nr_context_switches(void) 2860 { 2861 int i; 2862 unsigned long long sum = 0; 2863 2864 for_each_possible_cpu(i) 2865 sum += cpu_rq(i)->nr_switches; 2866 2867 return sum; 2868 } 2869 2870 /* 2871 * Consumers of these two interfaces, like for example the cpuidle menu 2872 * governor, are using nonsensical data. Preferring shallow idle state selection 2873 * for a CPU that has IO-wait which might not even end up running the task when 2874 * it does become runnable. 2875 */ 2876 2877 unsigned long nr_iowait_cpu(int cpu) 2878 { 2879 return atomic_read(&cpu_rq(cpu)->nr_iowait); 2880 } 2881 2882 /* 2883 * IO-wait accounting, and how its mostly bollocks (on SMP). 2884 * 2885 * The idea behind IO-wait account is to account the idle time that we could 2886 * have spend running if it were not for IO. That is, if we were to improve the 2887 * storage performance, we'd have a proportional reduction in IO-wait time. 2888 * 2889 * This all works nicely on UP, where, when a task blocks on IO, we account 2890 * idle time as IO-wait, because if the storage were faster, it could've been 2891 * running and we'd not be idle. 2892 * 2893 * This has been extended to SMP, by doing the same for each CPU. This however 2894 * is broken. 2895 * 2896 * Imagine for instance the case where two tasks block on one CPU, only the one 2897 * CPU will have IO-wait accounted, while the other has regular idle. Even 2898 * though, if the storage were faster, both could've ran at the same time, 2899 * utilising both CPUs. 2900 * 2901 * This means, that when looking globally, the current IO-wait accounting on 2902 * SMP is a lower bound, by reason of under accounting. 2903 * 2904 * Worse, since the numbers are provided per CPU, they are sometimes 2905 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2906 * associated with any one particular CPU, it can wake to another CPU than it 2907 * blocked on. This means the per CPU IO-wait number is meaningless. 2908 * 2909 * Task CPU affinities can make all that even more 'interesting'. 2910 */ 2911 2912 unsigned long nr_iowait(void) 2913 { 2914 unsigned long i, sum = 0; 2915 2916 for_each_possible_cpu(i) 2917 sum += nr_iowait_cpu(i); 2918 2919 return sum; 2920 } 2921 2922 #ifdef CONFIG_SMP 2923 2924 /* 2925 * sched_exec - execve() is a valuable balancing opportunity, because at 2926 * this point the task has the smallest effective memory and cache footprint. 2927 */ 2928 void sched_exec(void) 2929 { 2930 struct task_struct *p = current; 2931 unsigned long flags; 2932 int dest_cpu; 2933 2934 raw_spin_lock_irqsave(&p->pi_lock, flags); 2935 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2936 if (dest_cpu == smp_processor_id()) 2937 goto unlock; 2938 2939 if (likely(cpu_active(dest_cpu))) { 2940 struct migration_arg arg = { p, dest_cpu }; 2941 2942 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2943 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2944 return; 2945 } 2946 unlock: 2947 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2948 } 2949 2950 #endif 2951 2952 DEFINE_PER_CPU(struct kernel_stat, kstat); 2953 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2954 2955 EXPORT_PER_CPU_SYMBOL(kstat); 2956 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2957 2958 /* 2959 * The function fair_sched_class.update_curr accesses the struct curr 2960 * and its field curr->exec_start; when called from task_sched_runtime(), 2961 * we observe a high rate of cache misses in practice. 2962 * Prefetching this data results in improved performance. 2963 */ 2964 static inline void prefetch_curr_exec_start(struct task_struct *p) 2965 { 2966 #ifdef CONFIG_FAIR_GROUP_SCHED 2967 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 2968 #else 2969 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 2970 #endif 2971 prefetch(curr); 2972 prefetch(&curr->exec_start); 2973 } 2974 2975 /* 2976 * Return accounted runtime for the task. 2977 * In case the task is currently running, return the runtime plus current's 2978 * pending runtime that have not been accounted yet. 2979 */ 2980 unsigned long long task_sched_runtime(struct task_struct *p) 2981 { 2982 struct rq_flags rf; 2983 struct rq *rq; 2984 u64 ns; 2985 2986 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2987 /* 2988 * 64-bit doesn't need locks to atomically read a 64-bit value. 2989 * So we have a optimization chance when the task's delta_exec is 0. 2990 * Reading ->on_cpu is racy, but this is ok. 2991 * 2992 * If we race with it leaving CPU, we'll take a lock. So we're correct. 2993 * If we race with it entering CPU, unaccounted time is 0. This is 2994 * indistinguishable from the read occurring a few cycles earlier. 2995 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2996 * been accounted, so we're correct here as well. 2997 */ 2998 if (!p->on_cpu || !task_on_rq_queued(p)) 2999 return p->se.sum_exec_runtime; 3000 #endif 3001 3002 rq = task_rq_lock(p, &rf); 3003 /* 3004 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3005 * project cycles that may never be accounted to this 3006 * thread, breaking clock_gettime(). 3007 */ 3008 if (task_current(rq, p) && task_on_rq_queued(p)) { 3009 prefetch_curr_exec_start(p); 3010 update_rq_clock(rq); 3011 p->sched_class->update_curr(rq); 3012 } 3013 ns = p->se.sum_exec_runtime; 3014 task_rq_unlock(rq, p, &rf); 3015 3016 return ns; 3017 } 3018 3019 /* 3020 * This function gets called by the timer code, with HZ frequency. 3021 * We call it with interrupts disabled. 3022 */ 3023 void scheduler_tick(void) 3024 { 3025 int cpu = smp_processor_id(); 3026 struct rq *rq = cpu_rq(cpu); 3027 struct task_struct *curr = rq->curr; 3028 struct rq_flags rf; 3029 3030 sched_clock_tick(); 3031 3032 rq_lock(rq, &rf); 3033 3034 update_rq_clock(rq); 3035 curr->sched_class->task_tick(rq, curr, 0); 3036 cpu_load_update_active(rq); 3037 calc_global_load_tick(rq); 3038 psi_task_tick(rq); 3039 3040 rq_unlock(rq, &rf); 3041 3042 perf_event_task_tick(); 3043 3044 #ifdef CONFIG_SMP 3045 rq->idle_balance = idle_cpu(cpu); 3046 trigger_load_balance(rq); 3047 #endif 3048 } 3049 3050 #ifdef CONFIG_NO_HZ_FULL 3051 3052 struct tick_work { 3053 int cpu; 3054 struct delayed_work work; 3055 }; 3056 3057 static struct tick_work __percpu *tick_work_cpu; 3058 3059 static void sched_tick_remote(struct work_struct *work) 3060 { 3061 struct delayed_work *dwork = to_delayed_work(work); 3062 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3063 int cpu = twork->cpu; 3064 struct rq *rq = cpu_rq(cpu); 3065 struct task_struct *curr; 3066 struct rq_flags rf; 3067 u64 delta; 3068 3069 /* 3070 * Handle the tick only if it appears the remote CPU is running in full 3071 * dynticks mode. The check is racy by nature, but missing a tick or 3072 * having one too much is no big deal because the scheduler tick updates 3073 * statistics and checks timeslices in a time-independent way, regardless 3074 * of when exactly it is running. 3075 */ 3076 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3077 goto out_requeue; 3078 3079 rq_lock_irq(rq, &rf); 3080 curr = rq->curr; 3081 if (is_idle_task(curr)) 3082 goto out_unlock; 3083 3084 update_rq_clock(rq); 3085 delta = rq_clock_task(rq) - curr->se.exec_start; 3086 3087 /* 3088 * Make sure the next tick runs within a reasonable 3089 * amount of time. 3090 */ 3091 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3092 curr->sched_class->task_tick(rq, curr, 0); 3093 3094 out_unlock: 3095 rq_unlock_irq(rq, &rf); 3096 3097 out_requeue: 3098 /* 3099 * Run the remote tick once per second (1Hz). This arbitrary 3100 * frequency is large enough to avoid overload but short enough 3101 * to keep scheduler internal stats reasonably up to date. 3102 */ 3103 queue_delayed_work(system_unbound_wq, dwork, HZ); 3104 } 3105 3106 static void sched_tick_start(int cpu) 3107 { 3108 struct tick_work *twork; 3109 3110 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3111 return; 3112 3113 WARN_ON_ONCE(!tick_work_cpu); 3114 3115 twork = per_cpu_ptr(tick_work_cpu, cpu); 3116 twork->cpu = cpu; 3117 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3118 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3119 } 3120 3121 #ifdef CONFIG_HOTPLUG_CPU 3122 static void sched_tick_stop(int cpu) 3123 { 3124 struct tick_work *twork; 3125 3126 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3127 return; 3128 3129 WARN_ON_ONCE(!tick_work_cpu); 3130 3131 twork = per_cpu_ptr(tick_work_cpu, cpu); 3132 cancel_delayed_work_sync(&twork->work); 3133 } 3134 #endif /* CONFIG_HOTPLUG_CPU */ 3135 3136 int __init sched_tick_offload_init(void) 3137 { 3138 tick_work_cpu = alloc_percpu(struct tick_work); 3139 BUG_ON(!tick_work_cpu); 3140 3141 return 0; 3142 } 3143 3144 #else /* !CONFIG_NO_HZ_FULL */ 3145 static inline void sched_tick_start(int cpu) { } 3146 static inline void sched_tick_stop(int cpu) { } 3147 #endif 3148 3149 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3150 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3151 /* 3152 * If the value passed in is equal to the current preempt count 3153 * then we just disabled preemption. Start timing the latency. 3154 */ 3155 static inline void preempt_latency_start(int val) 3156 { 3157 if (preempt_count() == val) { 3158 unsigned long ip = get_lock_parent_ip(); 3159 #ifdef CONFIG_DEBUG_PREEMPT 3160 current->preempt_disable_ip = ip; 3161 #endif 3162 trace_preempt_off(CALLER_ADDR0, ip); 3163 } 3164 } 3165 3166 void preempt_count_add(int val) 3167 { 3168 #ifdef CONFIG_DEBUG_PREEMPT 3169 /* 3170 * Underflow? 3171 */ 3172 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3173 return; 3174 #endif 3175 __preempt_count_add(val); 3176 #ifdef CONFIG_DEBUG_PREEMPT 3177 /* 3178 * Spinlock count overflowing soon? 3179 */ 3180 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3181 PREEMPT_MASK - 10); 3182 #endif 3183 preempt_latency_start(val); 3184 } 3185 EXPORT_SYMBOL(preempt_count_add); 3186 NOKPROBE_SYMBOL(preempt_count_add); 3187 3188 /* 3189 * If the value passed in equals to the current preempt count 3190 * then we just enabled preemption. Stop timing the latency. 3191 */ 3192 static inline void preempt_latency_stop(int val) 3193 { 3194 if (preempt_count() == val) 3195 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3196 } 3197 3198 void preempt_count_sub(int val) 3199 { 3200 #ifdef CONFIG_DEBUG_PREEMPT 3201 /* 3202 * Underflow? 3203 */ 3204 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3205 return; 3206 /* 3207 * Is the spinlock portion underflowing? 3208 */ 3209 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3210 !(preempt_count() & PREEMPT_MASK))) 3211 return; 3212 #endif 3213 3214 preempt_latency_stop(val); 3215 __preempt_count_sub(val); 3216 } 3217 EXPORT_SYMBOL(preempt_count_sub); 3218 NOKPROBE_SYMBOL(preempt_count_sub); 3219 3220 #else 3221 static inline void preempt_latency_start(int val) { } 3222 static inline void preempt_latency_stop(int val) { } 3223 #endif 3224 3225 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3226 { 3227 #ifdef CONFIG_DEBUG_PREEMPT 3228 return p->preempt_disable_ip; 3229 #else 3230 return 0; 3231 #endif 3232 } 3233 3234 /* 3235 * Print scheduling while atomic bug: 3236 */ 3237 static noinline void __schedule_bug(struct task_struct *prev) 3238 { 3239 /* Save this before calling printk(), since that will clobber it */ 3240 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3241 3242 if (oops_in_progress) 3243 return; 3244 3245 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3246 prev->comm, prev->pid, preempt_count()); 3247 3248 debug_show_held_locks(prev); 3249 print_modules(); 3250 if (irqs_disabled()) 3251 print_irqtrace_events(prev); 3252 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3253 && in_atomic_preempt_off()) { 3254 pr_err("Preemption disabled at:"); 3255 print_ip_sym(preempt_disable_ip); 3256 pr_cont("\n"); 3257 } 3258 if (panic_on_warn) 3259 panic("scheduling while atomic\n"); 3260 3261 dump_stack(); 3262 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3263 } 3264 3265 /* 3266 * Various schedule()-time debugging checks and statistics: 3267 */ 3268 static inline void schedule_debug(struct task_struct *prev) 3269 { 3270 #ifdef CONFIG_SCHED_STACK_END_CHECK 3271 if (task_stack_end_corrupted(prev)) 3272 panic("corrupted stack end detected inside scheduler\n"); 3273 #endif 3274 3275 if (unlikely(in_atomic_preempt_off())) { 3276 __schedule_bug(prev); 3277 preempt_count_set(PREEMPT_DISABLED); 3278 } 3279 rcu_sleep_check(); 3280 3281 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3282 3283 schedstat_inc(this_rq()->sched_count); 3284 } 3285 3286 /* 3287 * Pick up the highest-prio task: 3288 */ 3289 static inline struct task_struct * 3290 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3291 { 3292 const struct sched_class *class; 3293 struct task_struct *p; 3294 3295 /* 3296 * Optimization: we know that if all tasks are in the fair class we can 3297 * call that function directly, but only if the @prev task wasn't of a 3298 * higher scheduling class, because otherwise those loose the 3299 * opportunity to pull in more work from other CPUs. 3300 */ 3301 if (likely((prev->sched_class == &idle_sched_class || 3302 prev->sched_class == &fair_sched_class) && 3303 rq->nr_running == rq->cfs.h_nr_running)) { 3304 3305 p = fair_sched_class.pick_next_task(rq, prev, rf); 3306 if (unlikely(p == RETRY_TASK)) 3307 goto again; 3308 3309 /* Assumes fair_sched_class->next == idle_sched_class */ 3310 if (unlikely(!p)) 3311 p = idle_sched_class.pick_next_task(rq, prev, rf); 3312 3313 return p; 3314 } 3315 3316 again: 3317 for_each_class(class) { 3318 p = class->pick_next_task(rq, prev, rf); 3319 if (p) { 3320 if (unlikely(p == RETRY_TASK)) 3321 goto again; 3322 return p; 3323 } 3324 } 3325 3326 /* The idle class should always have a runnable task: */ 3327 BUG(); 3328 } 3329 3330 /* 3331 * __schedule() is the main scheduler function. 3332 * 3333 * The main means of driving the scheduler and thus entering this function are: 3334 * 3335 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3336 * 3337 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3338 * paths. For example, see arch/x86/entry_64.S. 3339 * 3340 * To drive preemption between tasks, the scheduler sets the flag in timer 3341 * interrupt handler scheduler_tick(). 3342 * 3343 * 3. Wakeups don't really cause entry into schedule(). They add a 3344 * task to the run-queue and that's it. 3345 * 3346 * Now, if the new task added to the run-queue preempts the current 3347 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3348 * called on the nearest possible occasion: 3349 * 3350 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3351 * 3352 * - in syscall or exception context, at the next outmost 3353 * preempt_enable(). (this might be as soon as the wake_up()'s 3354 * spin_unlock()!) 3355 * 3356 * - in IRQ context, return from interrupt-handler to 3357 * preemptible context 3358 * 3359 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3360 * then at the next: 3361 * 3362 * - cond_resched() call 3363 * - explicit schedule() call 3364 * - return from syscall or exception to user-space 3365 * - return from interrupt-handler to user-space 3366 * 3367 * WARNING: must be called with preemption disabled! 3368 */ 3369 static void __sched notrace __schedule(bool preempt) 3370 { 3371 struct task_struct *prev, *next; 3372 unsigned long *switch_count; 3373 struct rq_flags rf; 3374 struct rq *rq; 3375 int cpu; 3376 3377 cpu = smp_processor_id(); 3378 rq = cpu_rq(cpu); 3379 prev = rq->curr; 3380 3381 schedule_debug(prev); 3382 3383 if (sched_feat(HRTICK)) 3384 hrtick_clear(rq); 3385 3386 local_irq_disable(); 3387 rcu_note_context_switch(preempt); 3388 3389 /* 3390 * Make sure that signal_pending_state()->signal_pending() below 3391 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3392 * done by the caller to avoid the race with signal_wake_up(). 3393 * 3394 * The membarrier system call requires a full memory barrier 3395 * after coming from user-space, before storing to rq->curr. 3396 */ 3397 rq_lock(rq, &rf); 3398 smp_mb__after_spinlock(); 3399 3400 /* Promote REQ to ACT */ 3401 rq->clock_update_flags <<= 1; 3402 update_rq_clock(rq); 3403 3404 switch_count = &prev->nivcsw; 3405 if (!preempt && prev->state) { 3406 if (signal_pending_state(prev->state, prev)) { 3407 prev->state = TASK_RUNNING; 3408 } else { 3409 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3410 3411 if (prev->in_iowait) { 3412 atomic_inc(&rq->nr_iowait); 3413 delayacct_blkio_start(); 3414 } 3415 } 3416 switch_count = &prev->nvcsw; 3417 } 3418 3419 next = pick_next_task(rq, prev, &rf); 3420 clear_tsk_need_resched(prev); 3421 clear_preempt_need_resched(); 3422 3423 if (likely(prev != next)) { 3424 rq->nr_switches++; 3425 rq->curr = next; 3426 /* 3427 * The membarrier system call requires each architecture 3428 * to have a full memory barrier after updating 3429 * rq->curr, before returning to user-space. 3430 * 3431 * Here are the schemes providing that barrier on the 3432 * various architectures: 3433 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3434 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3435 * - finish_lock_switch() for weakly-ordered 3436 * architectures where spin_unlock is a full barrier, 3437 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3438 * is a RELEASE barrier), 3439 */ 3440 ++*switch_count; 3441 3442 trace_sched_switch(preempt, prev, next); 3443 3444 /* Also unlocks the rq: */ 3445 rq = context_switch(rq, prev, next, &rf); 3446 } else { 3447 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3448 rq_unlock_irq(rq, &rf); 3449 } 3450 3451 balance_callback(rq); 3452 } 3453 3454 void __noreturn do_task_dead(void) 3455 { 3456 /* Causes final put_task_struct in finish_task_switch(): */ 3457 set_special_state(TASK_DEAD); 3458 3459 /* Tell freezer to ignore us: */ 3460 current->flags |= PF_NOFREEZE; 3461 3462 __schedule(false); 3463 BUG(); 3464 3465 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3466 for (;;) 3467 cpu_relax(); 3468 } 3469 3470 static inline void sched_submit_work(struct task_struct *tsk) 3471 { 3472 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3473 return; 3474 3475 /* 3476 * If a worker went to sleep, notify and ask workqueue whether 3477 * it wants to wake up a task to maintain concurrency. 3478 * As this function is called inside the schedule() context, 3479 * we disable preemption to avoid it calling schedule() again 3480 * in the possible wakeup of a kworker. 3481 */ 3482 if (tsk->flags & PF_WQ_WORKER) { 3483 preempt_disable(); 3484 wq_worker_sleeping(tsk); 3485 preempt_enable_no_resched(); 3486 } 3487 3488 /* 3489 * If we are going to sleep and we have plugged IO queued, 3490 * make sure to submit it to avoid deadlocks. 3491 */ 3492 if (blk_needs_flush_plug(tsk)) 3493 blk_schedule_flush_plug(tsk); 3494 } 3495 3496 static void sched_update_worker(struct task_struct *tsk) 3497 { 3498 if (tsk->flags & PF_WQ_WORKER) 3499 wq_worker_running(tsk); 3500 } 3501 3502 asmlinkage __visible void __sched schedule(void) 3503 { 3504 struct task_struct *tsk = current; 3505 3506 sched_submit_work(tsk); 3507 do { 3508 preempt_disable(); 3509 __schedule(false); 3510 sched_preempt_enable_no_resched(); 3511 } while (need_resched()); 3512 sched_update_worker(tsk); 3513 } 3514 EXPORT_SYMBOL(schedule); 3515 3516 /* 3517 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3518 * state (have scheduled out non-voluntarily) by making sure that all 3519 * tasks have either left the run queue or have gone into user space. 3520 * As idle tasks do not do either, they must not ever be preempted 3521 * (schedule out non-voluntarily). 3522 * 3523 * schedule_idle() is similar to schedule_preempt_disable() except that it 3524 * never enables preemption because it does not call sched_submit_work(). 3525 */ 3526 void __sched schedule_idle(void) 3527 { 3528 /* 3529 * As this skips calling sched_submit_work(), which the idle task does 3530 * regardless because that function is a nop when the task is in a 3531 * TASK_RUNNING state, make sure this isn't used someplace that the 3532 * current task can be in any other state. Note, idle is always in the 3533 * TASK_RUNNING state. 3534 */ 3535 WARN_ON_ONCE(current->state); 3536 do { 3537 __schedule(false); 3538 } while (need_resched()); 3539 } 3540 3541 #ifdef CONFIG_CONTEXT_TRACKING 3542 asmlinkage __visible void __sched schedule_user(void) 3543 { 3544 /* 3545 * If we come here after a random call to set_need_resched(), 3546 * or we have been woken up remotely but the IPI has not yet arrived, 3547 * we haven't yet exited the RCU idle mode. Do it here manually until 3548 * we find a better solution. 3549 * 3550 * NB: There are buggy callers of this function. Ideally we 3551 * should warn if prev_state != CONTEXT_USER, but that will trigger 3552 * too frequently to make sense yet. 3553 */ 3554 enum ctx_state prev_state = exception_enter(); 3555 schedule(); 3556 exception_exit(prev_state); 3557 } 3558 #endif 3559 3560 /** 3561 * schedule_preempt_disabled - called with preemption disabled 3562 * 3563 * Returns with preemption disabled. Note: preempt_count must be 1 3564 */ 3565 void __sched schedule_preempt_disabled(void) 3566 { 3567 sched_preempt_enable_no_resched(); 3568 schedule(); 3569 preempt_disable(); 3570 } 3571 3572 static void __sched notrace preempt_schedule_common(void) 3573 { 3574 do { 3575 /* 3576 * Because the function tracer can trace preempt_count_sub() 3577 * and it also uses preempt_enable/disable_notrace(), if 3578 * NEED_RESCHED is set, the preempt_enable_notrace() called 3579 * by the function tracer will call this function again and 3580 * cause infinite recursion. 3581 * 3582 * Preemption must be disabled here before the function 3583 * tracer can trace. Break up preempt_disable() into two 3584 * calls. One to disable preemption without fear of being 3585 * traced. The other to still record the preemption latency, 3586 * which can also be traced by the function tracer. 3587 */ 3588 preempt_disable_notrace(); 3589 preempt_latency_start(1); 3590 __schedule(true); 3591 preempt_latency_stop(1); 3592 preempt_enable_no_resched_notrace(); 3593 3594 /* 3595 * Check again in case we missed a preemption opportunity 3596 * between schedule and now. 3597 */ 3598 } while (need_resched()); 3599 } 3600 3601 #ifdef CONFIG_PREEMPT 3602 /* 3603 * this is the entry point to schedule() from in-kernel preemption 3604 * off of preempt_enable. Kernel preemptions off return from interrupt 3605 * occur there and call schedule directly. 3606 */ 3607 asmlinkage __visible void __sched notrace preempt_schedule(void) 3608 { 3609 /* 3610 * If there is a non-zero preempt_count or interrupts are disabled, 3611 * we do not want to preempt the current task. Just return.. 3612 */ 3613 if (likely(!preemptible())) 3614 return; 3615 3616 preempt_schedule_common(); 3617 } 3618 NOKPROBE_SYMBOL(preempt_schedule); 3619 EXPORT_SYMBOL(preempt_schedule); 3620 3621 /** 3622 * preempt_schedule_notrace - preempt_schedule called by tracing 3623 * 3624 * The tracing infrastructure uses preempt_enable_notrace to prevent 3625 * recursion and tracing preempt enabling caused by the tracing 3626 * infrastructure itself. But as tracing can happen in areas coming 3627 * from userspace or just about to enter userspace, a preempt enable 3628 * can occur before user_exit() is called. This will cause the scheduler 3629 * to be called when the system is still in usermode. 3630 * 3631 * To prevent this, the preempt_enable_notrace will use this function 3632 * instead of preempt_schedule() to exit user context if needed before 3633 * calling the scheduler. 3634 */ 3635 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3636 { 3637 enum ctx_state prev_ctx; 3638 3639 if (likely(!preemptible())) 3640 return; 3641 3642 do { 3643 /* 3644 * Because the function tracer can trace preempt_count_sub() 3645 * and it also uses preempt_enable/disable_notrace(), if 3646 * NEED_RESCHED is set, the preempt_enable_notrace() called 3647 * by the function tracer will call this function again and 3648 * cause infinite recursion. 3649 * 3650 * Preemption must be disabled here before the function 3651 * tracer can trace. Break up preempt_disable() into two 3652 * calls. One to disable preemption without fear of being 3653 * traced. The other to still record the preemption latency, 3654 * which can also be traced by the function tracer. 3655 */ 3656 preempt_disable_notrace(); 3657 preempt_latency_start(1); 3658 /* 3659 * Needs preempt disabled in case user_exit() is traced 3660 * and the tracer calls preempt_enable_notrace() causing 3661 * an infinite recursion. 3662 */ 3663 prev_ctx = exception_enter(); 3664 __schedule(true); 3665 exception_exit(prev_ctx); 3666 3667 preempt_latency_stop(1); 3668 preempt_enable_no_resched_notrace(); 3669 } while (need_resched()); 3670 } 3671 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3672 3673 #endif /* CONFIG_PREEMPT */ 3674 3675 /* 3676 * this is the entry point to schedule() from kernel preemption 3677 * off of irq context. 3678 * Note, that this is called and return with irqs disabled. This will 3679 * protect us against recursive calling from irq. 3680 */ 3681 asmlinkage __visible void __sched preempt_schedule_irq(void) 3682 { 3683 enum ctx_state prev_state; 3684 3685 /* Catch callers which need to be fixed */ 3686 BUG_ON(preempt_count() || !irqs_disabled()); 3687 3688 prev_state = exception_enter(); 3689 3690 do { 3691 preempt_disable(); 3692 local_irq_enable(); 3693 __schedule(true); 3694 local_irq_disable(); 3695 sched_preempt_enable_no_resched(); 3696 } while (need_resched()); 3697 3698 exception_exit(prev_state); 3699 } 3700 3701 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3702 void *key) 3703 { 3704 return try_to_wake_up(curr->private, mode, wake_flags); 3705 } 3706 EXPORT_SYMBOL(default_wake_function); 3707 3708 #ifdef CONFIG_RT_MUTEXES 3709 3710 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3711 { 3712 if (pi_task) 3713 prio = min(prio, pi_task->prio); 3714 3715 return prio; 3716 } 3717 3718 static inline int rt_effective_prio(struct task_struct *p, int prio) 3719 { 3720 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3721 3722 return __rt_effective_prio(pi_task, prio); 3723 } 3724 3725 /* 3726 * rt_mutex_setprio - set the current priority of a task 3727 * @p: task to boost 3728 * @pi_task: donor task 3729 * 3730 * This function changes the 'effective' priority of a task. It does 3731 * not touch ->normal_prio like __setscheduler(). 3732 * 3733 * Used by the rt_mutex code to implement priority inheritance 3734 * logic. Call site only calls if the priority of the task changed. 3735 */ 3736 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3737 { 3738 int prio, oldprio, queued, running, queue_flag = 3739 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3740 const struct sched_class *prev_class; 3741 struct rq_flags rf; 3742 struct rq *rq; 3743 3744 /* XXX used to be waiter->prio, not waiter->task->prio */ 3745 prio = __rt_effective_prio(pi_task, p->normal_prio); 3746 3747 /* 3748 * If nothing changed; bail early. 3749 */ 3750 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3751 return; 3752 3753 rq = __task_rq_lock(p, &rf); 3754 update_rq_clock(rq); 3755 /* 3756 * Set under pi_lock && rq->lock, such that the value can be used under 3757 * either lock. 3758 * 3759 * Note that there is loads of tricky to make this pointer cache work 3760 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3761 * ensure a task is de-boosted (pi_task is set to NULL) before the 3762 * task is allowed to run again (and can exit). This ensures the pointer 3763 * points to a blocked task -- which guaratees the task is present. 3764 */ 3765 p->pi_top_task = pi_task; 3766 3767 /* 3768 * For FIFO/RR we only need to set prio, if that matches we're done. 3769 */ 3770 if (prio == p->prio && !dl_prio(prio)) 3771 goto out_unlock; 3772 3773 /* 3774 * Idle task boosting is a nono in general. There is one 3775 * exception, when PREEMPT_RT and NOHZ is active: 3776 * 3777 * The idle task calls get_next_timer_interrupt() and holds 3778 * the timer wheel base->lock on the CPU and another CPU wants 3779 * to access the timer (probably to cancel it). We can safely 3780 * ignore the boosting request, as the idle CPU runs this code 3781 * with interrupts disabled and will complete the lock 3782 * protected section without being interrupted. So there is no 3783 * real need to boost. 3784 */ 3785 if (unlikely(p == rq->idle)) { 3786 WARN_ON(p != rq->curr); 3787 WARN_ON(p->pi_blocked_on); 3788 goto out_unlock; 3789 } 3790 3791 trace_sched_pi_setprio(p, pi_task); 3792 oldprio = p->prio; 3793 3794 if (oldprio == prio) 3795 queue_flag &= ~DEQUEUE_MOVE; 3796 3797 prev_class = p->sched_class; 3798 queued = task_on_rq_queued(p); 3799 running = task_current(rq, p); 3800 if (queued) 3801 dequeue_task(rq, p, queue_flag); 3802 if (running) 3803 put_prev_task(rq, p); 3804 3805 /* 3806 * Boosting condition are: 3807 * 1. -rt task is running and holds mutex A 3808 * --> -dl task blocks on mutex A 3809 * 3810 * 2. -dl task is running and holds mutex A 3811 * --> -dl task blocks on mutex A and could preempt the 3812 * running task 3813 */ 3814 if (dl_prio(prio)) { 3815 if (!dl_prio(p->normal_prio) || 3816 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3817 p->dl.dl_boosted = 1; 3818 queue_flag |= ENQUEUE_REPLENISH; 3819 } else 3820 p->dl.dl_boosted = 0; 3821 p->sched_class = &dl_sched_class; 3822 } else if (rt_prio(prio)) { 3823 if (dl_prio(oldprio)) 3824 p->dl.dl_boosted = 0; 3825 if (oldprio < prio) 3826 queue_flag |= ENQUEUE_HEAD; 3827 p->sched_class = &rt_sched_class; 3828 } else { 3829 if (dl_prio(oldprio)) 3830 p->dl.dl_boosted = 0; 3831 if (rt_prio(oldprio)) 3832 p->rt.timeout = 0; 3833 p->sched_class = &fair_sched_class; 3834 } 3835 3836 p->prio = prio; 3837 3838 if (queued) 3839 enqueue_task(rq, p, queue_flag); 3840 if (running) 3841 set_curr_task(rq, p); 3842 3843 check_class_changed(rq, p, prev_class, oldprio); 3844 out_unlock: 3845 /* Avoid rq from going away on us: */ 3846 preempt_disable(); 3847 __task_rq_unlock(rq, &rf); 3848 3849 balance_callback(rq); 3850 preempt_enable(); 3851 } 3852 #else 3853 static inline int rt_effective_prio(struct task_struct *p, int prio) 3854 { 3855 return prio; 3856 } 3857 #endif 3858 3859 void set_user_nice(struct task_struct *p, long nice) 3860 { 3861 bool queued, running; 3862 int old_prio, delta; 3863 struct rq_flags rf; 3864 struct rq *rq; 3865 3866 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3867 return; 3868 /* 3869 * We have to be careful, if called from sys_setpriority(), 3870 * the task might be in the middle of scheduling on another CPU. 3871 */ 3872 rq = task_rq_lock(p, &rf); 3873 update_rq_clock(rq); 3874 3875 /* 3876 * The RT priorities are set via sched_setscheduler(), but we still 3877 * allow the 'normal' nice value to be set - but as expected 3878 * it wont have any effect on scheduling until the task is 3879 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3880 */ 3881 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3882 p->static_prio = NICE_TO_PRIO(nice); 3883 goto out_unlock; 3884 } 3885 queued = task_on_rq_queued(p); 3886 running = task_current(rq, p); 3887 if (queued) 3888 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3889 if (running) 3890 put_prev_task(rq, p); 3891 3892 p->static_prio = NICE_TO_PRIO(nice); 3893 set_load_weight(p, true); 3894 old_prio = p->prio; 3895 p->prio = effective_prio(p); 3896 delta = p->prio - old_prio; 3897 3898 if (queued) { 3899 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3900 /* 3901 * If the task increased its priority or is running and 3902 * lowered its priority, then reschedule its CPU: 3903 */ 3904 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3905 resched_curr(rq); 3906 } 3907 if (running) 3908 set_curr_task(rq, p); 3909 out_unlock: 3910 task_rq_unlock(rq, p, &rf); 3911 } 3912 EXPORT_SYMBOL(set_user_nice); 3913 3914 /* 3915 * can_nice - check if a task can reduce its nice value 3916 * @p: task 3917 * @nice: nice value 3918 */ 3919 int can_nice(const struct task_struct *p, const int nice) 3920 { 3921 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3922 int nice_rlim = nice_to_rlimit(nice); 3923 3924 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3925 capable(CAP_SYS_NICE)); 3926 } 3927 3928 #ifdef __ARCH_WANT_SYS_NICE 3929 3930 /* 3931 * sys_nice - change the priority of the current process. 3932 * @increment: priority increment 3933 * 3934 * sys_setpriority is a more generic, but much slower function that 3935 * does similar things. 3936 */ 3937 SYSCALL_DEFINE1(nice, int, increment) 3938 { 3939 long nice, retval; 3940 3941 /* 3942 * Setpriority might change our priority at the same moment. 3943 * We don't have to worry. Conceptually one call occurs first 3944 * and we have a single winner. 3945 */ 3946 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3947 nice = task_nice(current) + increment; 3948 3949 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3950 if (increment < 0 && !can_nice(current, nice)) 3951 return -EPERM; 3952 3953 retval = security_task_setnice(current, nice); 3954 if (retval) 3955 return retval; 3956 3957 set_user_nice(current, nice); 3958 return 0; 3959 } 3960 3961 #endif 3962 3963 /** 3964 * task_prio - return the priority value of a given task. 3965 * @p: the task in question. 3966 * 3967 * Return: The priority value as seen by users in /proc. 3968 * RT tasks are offset by -200. Normal tasks are centered 3969 * around 0, value goes from -16 to +15. 3970 */ 3971 int task_prio(const struct task_struct *p) 3972 { 3973 return p->prio - MAX_RT_PRIO; 3974 } 3975 3976 /** 3977 * idle_cpu - is a given CPU idle currently? 3978 * @cpu: the processor in question. 3979 * 3980 * Return: 1 if the CPU is currently idle. 0 otherwise. 3981 */ 3982 int idle_cpu(int cpu) 3983 { 3984 struct rq *rq = cpu_rq(cpu); 3985 3986 if (rq->curr != rq->idle) 3987 return 0; 3988 3989 if (rq->nr_running) 3990 return 0; 3991 3992 #ifdef CONFIG_SMP 3993 if (!llist_empty(&rq->wake_list)) 3994 return 0; 3995 #endif 3996 3997 return 1; 3998 } 3999 4000 /** 4001 * available_idle_cpu - is a given CPU idle for enqueuing work. 4002 * @cpu: the CPU in question. 4003 * 4004 * Return: 1 if the CPU is currently idle. 0 otherwise. 4005 */ 4006 int available_idle_cpu(int cpu) 4007 { 4008 if (!idle_cpu(cpu)) 4009 return 0; 4010 4011 if (vcpu_is_preempted(cpu)) 4012 return 0; 4013 4014 return 1; 4015 } 4016 4017 /** 4018 * idle_task - return the idle task for a given CPU. 4019 * @cpu: the processor in question. 4020 * 4021 * Return: The idle task for the CPU @cpu. 4022 */ 4023 struct task_struct *idle_task(int cpu) 4024 { 4025 return cpu_rq(cpu)->idle; 4026 } 4027 4028 /** 4029 * find_process_by_pid - find a process with a matching PID value. 4030 * @pid: the pid in question. 4031 * 4032 * The task of @pid, if found. %NULL otherwise. 4033 */ 4034 static struct task_struct *find_process_by_pid(pid_t pid) 4035 { 4036 return pid ? find_task_by_vpid(pid) : current; 4037 } 4038 4039 /* 4040 * sched_setparam() passes in -1 for its policy, to let the functions 4041 * it calls know not to change it. 4042 */ 4043 #define SETPARAM_POLICY -1 4044 4045 static void __setscheduler_params(struct task_struct *p, 4046 const struct sched_attr *attr) 4047 { 4048 int policy = attr->sched_policy; 4049 4050 if (policy == SETPARAM_POLICY) 4051 policy = p->policy; 4052 4053 p->policy = policy; 4054 4055 if (dl_policy(policy)) 4056 __setparam_dl(p, attr); 4057 else if (fair_policy(policy)) 4058 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4059 4060 /* 4061 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4062 * !rt_policy. Always setting this ensures that things like 4063 * getparam()/getattr() don't report silly values for !rt tasks. 4064 */ 4065 p->rt_priority = attr->sched_priority; 4066 p->normal_prio = normal_prio(p); 4067 set_load_weight(p, true); 4068 } 4069 4070 /* Actually do priority change: must hold pi & rq lock. */ 4071 static void __setscheduler(struct rq *rq, struct task_struct *p, 4072 const struct sched_attr *attr, bool keep_boost) 4073 { 4074 __setscheduler_params(p, attr); 4075 4076 /* 4077 * Keep a potential priority boosting if called from 4078 * sched_setscheduler(). 4079 */ 4080 p->prio = normal_prio(p); 4081 if (keep_boost) 4082 p->prio = rt_effective_prio(p, p->prio); 4083 4084 if (dl_prio(p->prio)) 4085 p->sched_class = &dl_sched_class; 4086 else if (rt_prio(p->prio)) 4087 p->sched_class = &rt_sched_class; 4088 else 4089 p->sched_class = &fair_sched_class; 4090 } 4091 4092 /* 4093 * Check the target process has a UID that matches the current process's: 4094 */ 4095 static bool check_same_owner(struct task_struct *p) 4096 { 4097 const struct cred *cred = current_cred(), *pcred; 4098 bool match; 4099 4100 rcu_read_lock(); 4101 pcred = __task_cred(p); 4102 match = (uid_eq(cred->euid, pcred->euid) || 4103 uid_eq(cred->euid, pcred->uid)); 4104 rcu_read_unlock(); 4105 return match; 4106 } 4107 4108 static int __sched_setscheduler(struct task_struct *p, 4109 const struct sched_attr *attr, 4110 bool user, bool pi) 4111 { 4112 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4113 MAX_RT_PRIO - 1 - attr->sched_priority; 4114 int retval, oldprio, oldpolicy = -1, queued, running; 4115 int new_effective_prio, policy = attr->sched_policy; 4116 const struct sched_class *prev_class; 4117 struct rq_flags rf; 4118 int reset_on_fork; 4119 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4120 struct rq *rq; 4121 4122 /* The pi code expects interrupts enabled */ 4123 BUG_ON(pi && in_interrupt()); 4124 recheck: 4125 /* Double check policy once rq lock held: */ 4126 if (policy < 0) { 4127 reset_on_fork = p->sched_reset_on_fork; 4128 policy = oldpolicy = p->policy; 4129 } else { 4130 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4131 4132 if (!valid_policy(policy)) 4133 return -EINVAL; 4134 } 4135 4136 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4137 return -EINVAL; 4138 4139 /* 4140 * Valid priorities for SCHED_FIFO and SCHED_RR are 4141 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4142 * SCHED_BATCH and SCHED_IDLE is 0. 4143 */ 4144 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4145 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4146 return -EINVAL; 4147 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4148 (rt_policy(policy) != (attr->sched_priority != 0))) 4149 return -EINVAL; 4150 4151 /* 4152 * Allow unprivileged RT tasks to decrease priority: 4153 */ 4154 if (user && !capable(CAP_SYS_NICE)) { 4155 if (fair_policy(policy)) { 4156 if (attr->sched_nice < task_nice(p) && 4157 !can_nice(p, attr->sched_nice)) 4158 return -EPERM; 4159 } 4160 4161 if (rt_policy(policy)) { 4162 unsigned long rlim_rtprio = 4163 task_rlimit(p, RLIMIT_RTPRIO); 4164 4165 /* Can't set/change the rt policy: */ 4166 if (policy != p->policy && !rlim_rtprio) 4167 return -EPERM; 4168 4169 /* Can't increase priority: */ 4170 if (attr->sched_priority > p->rt_priority && 4171 attr->sched_priority > rlim_rtprio) 4172 return -EPERM; 4173 } 4174 4175 /* 4176 * Can't set/change SCHED_DEADLINE policy at all for now 4177 * (safest behavior); in the future we would like to allow 4178 * unprivileged DL tasks to increase their relative deadline 4179 * or reduce their runtime (both ways reducing utilization) 4180 */ 4181 if (dl_policy(policy)) 4182 return -EPERM; 4183 4184 /* 4185 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4186 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4187 */ 4188 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4189 if (!can_nice(p, task_nice(p))) 4190 return -EPERM; 4191 } 4192 4193 /* Can't change other user's priorities: */ 4194 if (!check_same_owner(p)) 4195 return -EPERM; 4196 4197 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4198 if (p->sched_reset_on_fork && !reset_on_fork) 4199 return -EPERM; 4200 } 4201 4202 if (user) { 4203 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4204 return -EINVAL; 4205 4206 retval = security_task_setscheduler(p); 4207 if (retval) 4208 return retval; 4209 } 4210 4211 /* 4212 * Make sure no PI-waiters arrive (or leave) while we are 4213 * changing the priority of the task: 4214 * 4215 * To be able to change p->policy safely, the appropriate 4216 * runqueue lock must be held. 4217 */ 4218 rq = task_rq_lock(p, &rf); 4219 update_rq_clock(rq); 4220 4221 /* 4222 * Changing the policy of the stop threads its a very bad idea: 4223 */ 4224 if (p == rq->stop) { 4225 task_rq_unlock(rq, p, &rf); 4226 return -EINVAL; 4227 } 4228 4229 /* 4230 * If not changing anything there's no need to proceed further, 4231 * but store a possible modification of reset_on_fork. 4232 */ 4233 if (unlikely(policy == p->policy)) { 4234 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4235 goto change; 4236 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4237 goto change; 4238 if (dl_policy(policy) && dl_param_changed(p, attr)) 4239 goto change; 4240 4241 p->sched_reset_on_fork = reset_on_fork; 4242 task_rq_unlock(rq, p, &rf); 4243 return 0; 4244 } 4245 change: 4246 4247 if (user) { 4248 #ifdef CONFIG_RT_GROUP_SCHED 4249 /* 4250 * Do not allow realtime tasks into groups that have no runtime 4251 * assigned. 4252 */ 4253 if (rt_bandwidth_enabled() && rt_policy(policy) && 4254 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4255 !task_group_is_autogroup(task_group(p))) { 4256 task_rq_unlock(rq, p, &rf); 4257 return -EPERM; 4258 } 4259 #endif 4260 #ifdef CONFIG_SMP 4261 if (dl_bandwidth_enabled() && dl_policy(policy) && 4262 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4263 cpumask_t *span = rq->rd->span; 4264 4265 /* 4266 * Don't allow tasks with an affinity mask smaller than 4267 * the entire root_domain to become SCHED_DEADLINE. We 4268 * will also fail if there's no bandwidth available. 4269 */ 4270 if (!cpumask_subset(span, &p->cpus_allowed) || 4271 rq->rd->dl_bw.bw == 0) { 4272 task_rq_unlock(rq, p, &rf); 4273 return -EPERM; 4274 } 4275 } 4276 #endif 4277 } 4278 4279 /* Re-check policy now with rq lock held: */ 4280 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4281 policy = oldpolicy = -1; 4282 task_rq_unlock(rq, p, &rf); 4283 goto recheck; 4284 } 4285 4286 /* 4287 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4288 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4289 * is available. 4290 */ 4291 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4292 task_rq_unlock(rq, p, &rf); 4293 return -EBUSY; 4294 } 4295 4296 p->sched_reset_on_fork = reset_on_fork; 4297 oldprio = p->prio; 4298 4299 if (pi) { 4300 /* 4301 * Take priority boosted tasks into account. If the new 4302 * effective priority is unchanged, we just store the new 4303 * normal parameters and do not touch the scheduler class and 4304 * the runqueue. This will be done when the task deboost 4305 * itself. 4306 */ 4307 new_effective_prio = rt_effective_prio(p, newprio); 4308 if (new_effective_prio == oldprio) 4309 queue_flags &= ~DEQUEUE_MOVE; 4310 } 4311 4312 queued = task_on_rq_queued(p); 4313 running = task_current(rq, p); 4314 if (queued) 4315 dequeue_task(rq, p, queue_flags); 4316 if (running) 4317 put_prev_task(rq, p); 4318 4319 prev_class = p->sched_class; 4320 __setscheduler(rq, p, attr, pi); 4321 4322 if (queued) { 4323 /* 4324 * We enqueue to tail when the priority of a task is 4325 * increased (user space view). 4326 */ 4327 if (oldprio < p->prio) 4328 queue_flags |= ENQUEUE_HEAD; 4329 4330 enqueue_task(rq, p, queue_flags); 4331 } 4332 if (running) 4333 set_curr_task(rq, p); 4334 4335 check_class_changed(rq, p, prev_class, oldprio); 4336 4337 /* Avoid rq from going away on us: */ 4338 preempt_disable(); 4339 task_rq_unlock(rq, p, &rf); 4340 4341 if (pi) 4342 rt_mutex_adjust_pi(p); 4343 4344 /* Run balance callbacks after we've adjusted the PI chain: */ 4345 balance_callback(rq); 4346 preempt_enable(); 4347 4348 return 0; 4349 } 4350 4351 static int _sched_setscheduler(struct task_struct *p, int policy, 4352 const struct sched_param *param, bool check) 4353 { 4354 struct sched_attr attr = { 4355 .sched_policy = policy, 4356 .sched_priority = param->sched_priority, 4357 .sched_nice = PRIO_TO_NICE(p->static_prio), 4358 }; 4359 4360 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4361 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4362 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4363 policy &= ~SCHED_RESET_ON_FORK; 4364 attr.sched_policy = policy; 4365 } 4366 4367 return __sched_setscheduler(p, &attr, check, true); 4368 } 4369 /** 4370 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4371 * @p: the task in question. 4372 * @policy: new policy. 4373 * @param: structure containing the new RT priority. 4374 * 4375 * Return: 0 on success. An error code otherwise. 4376 * 4377 * NOTE that the task may be already dead. 4378 */ 4379 int sched_setscheduler(struct task_struct *p, int policy, 4380 const struct sched_param *param) 4381 { 4382 return _sched_setscheduler(p, policy, param, true); 4383 } 4384 EXPORT_SYMBOL_GPL(sched_setscheduler); 4385 4386 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4387 { 4388 return __sched_setscheduler(p, attr, true, true); 4389 } 4390 EXPORT_SYMBOL_GPL(sched_setattr); 4391 4392 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4393 { 4394 return __sched_setscheduler(p, attr, false, true); 4395 } 4396 4397 /** 4398 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4399 * @p: the task in question. 4400 * @policy: new policy. 4401 * @param: structure containing the new RT priority. 4402 * 4403 * Just like sched_setscheduler, only don't bother checking if the 4404 * current context has permission. For example, this is needed in 4405 * stop_machine(): we create temporary high priority worker threads, 4406 * but our caller might not have that capability. 4407 * 4408 * Return: 0 on success. An error code otherwise. 4409 */ 4410 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4411 const struct sched_param *param) 4412 { 4413 return _sched_setscheduler(p, policy, param, false); 4414 } 4415 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4416 4417 static int 4418 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4419 { 4420 struct sched_param lparam; 4421 struct task_struct *p; 4422 int retval; 4423 4424 if (!param || pid < 0) 4425 return -EINVAL; 4426 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4427 return -EFAULT; 4428 4429 rcu_read_lock(); 4430 retval = -ESRCH; 4431 p = find_process_by_pid(pid); 4432 if (p != NULL) 4433 retval = sched_setscheduler(p, policy, &lparam); 4434 rcu_read_unlock(); 4435 4436 return retval; 4437 } 4438 4439 /* 4440 * Mimics kernel/events/core.c perf_copy_attr(). 4441 */ 4442 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4443 { 4444 u32 size; 4445 int ret; 4446 4447 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0)) 4448 return -EFAULT; 4449 4450 /* Zero the full structure, so that a short copy will be nice: */ 4451 memset(attr, 0, sizeof(*attr)); 4452 4453 ret = get_user(size, &uattr->size); 4454 if (ret) 4455 return ret; 4456 4457 /* Bail out on silly large: */ 4458 if (size > PAGE_SIZE) 4459 goto err_size; 4460 4461 /* ABI compatibility quirk: */ 4462 if (!size) 4463 size = SCHED_ATTR_SIZE_VER0; 4464 4465 if (size < SCHED_ATTR_SIZE_VER0) 4466 goto err_size; 4467 4468 /* 4469 * If we're handed a bigger struct than we know of, 4470 * ensure all the unknown bits are 0 - i.e. new 4471 * user-space does not rely on any kernel feature 4472 * extensions we dont know about yet. 4473 */ 4474 if (size > sizeof(*attr)) { 4475 unsigned char __user *addr; 4476 unsigned char __user *end; 4477 unsigned char val; 4478 4479 addr = (void __user *)uattr + sizeof(*attr); 4480 end = (void __user *)uattr + size; 4481 4482 for (; addr < end; addr++) { 4483 ret = get_user(val, addr); 4484 if (ret) 4485 return ret; 4486 if (val) 4487 goto err_size; 4488 } 4489 size = sizeof(*attr); 4490 } 4491 4492 ret = copy_from_user(attr, uattr, size); 4493 if (ret) 4494 return -EFAULT; 4495 4496 /* 4497 * XXX: Do we want to be lenient like existing syscalls; or do we want 4498 * to be strict and return an error on out-of-bounds values? 4499 */ 4500 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4501 4502 return 0; 4503 4504 err_size: 4505 put_user(sizeof(*attr), &uattr->size); 4506 return -E2BIG; 4507 } 4508 4509 /** 4510 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4511 * @pid: the pid in question. 4512 * @policy: new policy. 4513 * @param: structure containing the new RT priority. 4514 * 4515 * Return: 0 on success. An error code otherwise. 4516 */ 4517 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4518 { 4519 if (policy < 0) 4520 return -EINVAL; 4521 4522 return do_sched_setscheduler(pid, policy, param); 4523 } 4524 4525 /** 4526 * sys_sched_setparam - set/change the RT priority of a thread 4527 * @pid: the pid in question. 4528 * @param: structure containing the new RT priority. 4529 * 4530 * Return: 0 on success. An error code otherwise. 4531 */ 4532 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4533 { 4534 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4535 } 4536 4537 /** 4538 * sys_sched_setattr - same as above, but with extended sched_attr 4539 * @pid: the pid in question. 4540 * @uattr: structure containing the extended parameters. 4541 * @flags: for future extension. 4542 */ 4543 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4544 unsigned int, flags) 4545 { 4546 struct sched_attr attr; 4547 struct task_struct *p; 4548 int retval; 4549 4550 if (!uattr || pid < 0 || flags) 4551 return -EINVAL; 4552 4553 retval = sched_copy_attr(uattr, &attr); 4554 if (retval) 4555 return retval; 4556 4557 if ((int)attr.sched_policy < 0) 4558 return -EINVAL; 4559 4560 rcu_read_lock(); 4561 retval = -ESRCH; 4562 p = find_process_by_pid(pid); 4563 if (p != NULL) 4564 retval = sched_setattr(p, &attr); 4565 rcu_read_unlock(); 4566 4567 return retval; 4568 } 4569 4570 /** 4571 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4572 * @pid: the pid in question. 4573 * 4574 * Return: On success, the policy of the thread. Otherwise, a negative error 4575 * code. 4576 */ 4577 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4578 { 4579 struct task_struct *p; 4580 int retval; 4581 4582 if (pid < 0) 4583 return -EINVAL; 4584 4585 retval = -ESRCH; 4586 rcu_read_lock(); 4587 p = find_process_by_pid(pid); 4588 if (p) { 4589 retval = security_task_getscheduler(p); 4590 if (!retval) 4591 retval = p->policy 4592 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4593 } 4594 rcu_read_unlock(); 4595 return retval; 4596 } 4597 4598 /** 4599 * sys_sched_getparam - get the RT priority of a thread 4600 * @pid: the pid in question. 4601 * @param: structure containing the RT priority. 4602 * 4603 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4604 * code. 4605 */ 4606 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4607 { 4608 struct sched_param lp = { .sched_priority = 0 }; 4609 struct task_struct *p; 4610 int retval; 4611 4612 if (!param || pid < 0) 4613 return -EINVAL; 4614 4615 rcu_read_lock(); 4616 p = find_process_by_pid(pid); 4617 retval = -ESRCH; 4618 if (!p) 4619 goto out_unlock; 4620 4621 retval = security_task_getscheduler(p); 4622 if (retval) 4623 goto out_unlock; 4624 4625 if (task_has_rt_policy(p)) 4626 lp.sched_priority = p->rt_priority; 4627 rcu_read_unlock(); 4628 4629 /* 4630 * This one might sleep, we cannot do it with a spinlock held ... 4631 */ 4632 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4633 4634 return retval; 4635 4636 out_unlock: 4637 rcu_read_unlock(); 4638 return retval; 4639 } 4640 4641 static int sched_read_attr(struct sched_attr __user *uattr, 4642 struct sched_attr *attr, 4643 unsigned int usize) 4644 { 4645 int ret; 4646 4647 if (!access_ok(uattr, usize)) 4648 return -EFAULT; 4649 4650 /* 4651 * If we're handed a smaller struct than we know of, 4652 * ensure all the unknown bits are 0 - i.e. old 4653 * user-space does not get uncomplete information. 4654 */ 4655 if (usize < sizeof(*attr)) { 4656 unsigned char *addr; 4657 unsigned char *end; 4658 4659 addr = (void *)attr + usize; 4660 end = (void *)attr + sizeof(*attr); 4661 4662 for (; addr < end; addr++) { 4663 if (*addr) 4664 return -EFBIG; 4665 } 4666 4667 attr->size = usize; 4668 } 4669 4670 ret = copy_to_user(uattr, attr, attr->size); 4671 if (ret) 4672 return -EFAULT; 4673 4674 return 0; 4675 } 4676 4677 /** 4678 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4679 * @pid: the pid in question. 4680 * @uattr: structure containing the extended parameters. 4681 * @size: sizeof(attr) for fwd/bwd comp. 4682 * @flags: for future extension. 4683 */ 4684 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4685 unsigned int, size, unsigned int, flags) 4686 { 4687 struct sched_attr attr = { 4688 .size = sizeof(struct sched_attr), 4689 }; 4690 struct task_struct *p; 4691 int retval; 4692 4693 if (!uattr || pid < 0 || size > PAGE_SIZE || 4694 size < SCHED_ATTR_SIZE_VER0 || flags) 4695 return -EINVAL; 4696 4697 rcu_read_lock(); 4698 p = find_process_by_pid(pid); 4699 retval = -ESRCH; 4700 if (!p) 4701 goto out_unlock; 4702 4703 retval = security_task_getscheduler(p); 4704 if (retval) 4705 goto out_unlock; 4706 4707 attr.sched_policy = p->policy; 4708 if (p->sched_reset_on_fork) 4709 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4710 if (task_has_dl_policy(p)) 4711 __getparam_dl(p, &attr); 4712 else if (task_has_rt_policy(p)) 4713 attr.sched_priority = p->rt_priority; 4714 else 4715 attr.sched_nice = task_nice(p); 4716 4717 rcu_read_unlock(); 4718 4719 retval = sched_read_attr(uattr, &attr, size); 4720 return retval; 4721 4722 out_unlock: 4723 rcu_read_unlock(); 4724 return retval; 4725 } 4726 4727 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4728 { 4729 cpumask_var_t cpus_allowed, new_mask; 4730 struct task_struct *p; 4731 int retval; 4732 4733 rcu_read_lock(); 4734 4735 p = find_process_by_pid(pid); 4736 if (!p) { 4737 rcu_read_unlock(); 4738 return -ESRCH; 4739 } 4740 4741 /* Prevent p going away */ 4742 get_task_struct(p); 4743 rcu_read_unlock(); 4744 4745 if (p->flags & PF_NO_SETAFFINITY) { 4746 retval = -EINVAL; 4747 goto out_put_task; 4748 } 4749 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4750 retval = -ENOMEM; 4751 goto out_put_task; 4752 } 4753 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4754 retval = -ENOMEM; 4755 goto out_free_cpus_allowed; 4756 } 4757 retval = -EPERM; 4758 if (!check_same_owner(p)) { 4759 rcu_read_lock(); 4760 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4761 rcu_read_unlock(); 4762 goto out_free_new_mask; 4763 } 4764 rcu_read_unlock(); 4765 } 4766 4767 retval = security_task_setscheduler(p); 4768 if (retval) 4769 goto out_free_new_mask; 4770 4771 4772 cpuset_cpus_allowed(p, cpus_allowed); 4773 cpumask_and(new_mask, in_mask, cpus_allowed); 4774 4775 /* 4776 * Since bandwidth control happens on root_domain basis, 4777 * if admission test is enabled, we only admit -deadline 4778 * tasks allowed to run on all the CPUs in the task's 4779 * root_domain. 4780 */ 4781 #ifdef CONFIG_SMP 4782 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4783 rcu_read_lock(); 4784 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4785 retval = -EBUSY; 4786 rcu_read_unlock(); 4787 goto out_free_new_mask; 4788 } 4789 rcu_read_unlock(); 4790 } 4791 #endif 4792 again: 4793 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4794 4795 if (!retval) { 4796 cpuset_cpus_allowed(p, cpus_allowed); 4797 if (!cpumask_subset(new_mask, cpus_allowed)) { 4798 /* 4799 * We must have raced with a concurrent cpuset 4800 * update. Just reset the cpus_allowed to the 4801 * cpuset's cpus_allowed 4802 */ 4803 cpumask_copy(new_mask, cpus_allowed); 4804 goto again; 4805 } 4806 } 4807 out_free_new_mask: 4808 free_cpumask_var(new_mask); 4809 out_free_cpus_allowed: 4810 free_cpumask_var(cpus_allowed); 4811 out_put_task: 4812 put_task_struct(p); 4813 return retval; 4814 } 4815 4816 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4817 struct cpumask *new_mask) 4818 { 4819 if (len < cpumask_size()) 4820 cpumask_clear(new_mask); 4821 else if (len > cpumask_size()) 4822 len = cpumask_size(); 4823 4824 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4825 } 4826 4827 /** 4828 * sys_sched_setaffinity - set the CPU affinity of a process 4829 * @pid: pid of the process 4830 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4831 * @user_mask_ptr: user-space pointer to the new CPU mask 4832 * 4833 * Return: 0 on success. An error code otherwise. 4834 */ 4835 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4836 unsigned long __user *, user_mask_ptr) 4837 { 4838 cpumask_var_t new_mask; 4839 int retval; 4840 4841 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4842 return -ENOMEM; 4843 4844 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4845 if (retval == 0) 4846 retval = sched_setaffinity(pid, new_mask); 4847 free_cpumask_var(new_mask); 4848 return retval; 4849 } 4850 4851 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4852 { 4853 struct task_struct *p; 4854 unsigned long flags; 4855 int retval; 4856 4857 rcu_read_lock(); 4858 4859 retval = -ESRCH; 4860 p = find_process_by_pid(pid); 4861 if (!p) 4862 goto out_unlock; 4863 4864 retval = security_task_getscheduler(p); 4865 if (retval) 4866 goto out_unlock; 4867 4868 raw_spin_lock_irqsave(&p->pi_lock, flags); 4869 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4870 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4871 4872 out_unlock: 4873 rcu_read_unlock(); 4874 4875 return retval; 4876 } 4877 4878 /** 4879 * sys_sched_getaffinity - get the CPU affinity of a process 4880 * @pid: pid of the process 4881 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4882 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4883 * 4884 * Return: size of CPU mask copied to user_mask_ptr on success. An 4885 * error code otherwise. 4886 */ 4887 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4888 unsigned long __user *, user_mask_ptr) 4889 { 4890 int ret; 4891 cpumask_var_t mask; 4892 4893 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4894 return -EINVAL; 4895 if (len & (sizeof(unsigned long)-1)) 4896 return -EINVAL; 4897 4898 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4899 return -ENOMEM; 4900 4901 ret = sched_getaffinity(pid, mask); 4902 if (ret == 0) { 4903 unsigned int retlen = min(len, cpumask_size()); 4904 4905 if (copy_to_user(user_mask_ptr, mask, retlen)) 4906 ret = -EFAULT; 4907 else 4908 ret = retlen; 4909 } 4910 free_cpumask_var(mask); 4911 4912 return ret; 4913 } 4914 4915 /** 4916 * sys_sched_yield - yield the current processor to other threads. 4917 * 4918 * This function yields the current CPU to other tasks. If there are no 4919 * other threads running on this CPU then this function will return. 4920 * 4921 * Return: 0. 4922 */ 4923 static void do_sched_yield(void) 4924 { 4925 struct rq_flags rf; 4926 struct rq *rq; 4927 4928 rq = this_rq_lock_irq(&rf); 4929 4930 schedstat_inc(rq->yld_count); 4931 current->sched_class->yield_task(rq); 4932 4933 /* 4934 * Since we are going to call schedule() anyway, there's 4935 * no need to preempt or enable interrupts: 4936 */ 4937 preempt_disable(); 4938 rq_unlock(rq, &rf); 4939 sched_preempt_enable_no_resched(); 4940 4941 schedule(); 4942 } 4943 4944 SYSCALL_DEFINE0(sched_yield) 4945 { 4946 do_sched_yield(); 4947 return 0; 4948 } 4949 4950 #ifndef CONFIG_PREEMPT 4951 int __sched _cond_resched(void) 4952 { 4953 if (should_resched(0)) { 4954 preempt_schedule_common(); 4955 return 1; 4956 } 4957 rcu_all_qs(); 4958 return 0; 4959 } 4960 EXPORT_SYMBOL(_cond_resched); 4961 #endif 4962 4963 /* 4964 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4965 * call schedule, and on return reacquire the lock. 4966 * 4967 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4968 * operations here to prevent schedule() from being called twice (once via 4969 * spin_unlock(), once by hand). 4970 */ 4971 int __cond_resched_lock(spinlock_t *lock) 4972 { 4973 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4974 int ret = 0; 4975 4976 lockdep_assert_held(lock); 4977 4978 if (spin_needbreak(lock) || resched) { 4979 spin_unlock(lock); 4980 if (resched) 4981 preempt_schedule_common(); 4982 else 4983 cpu_relax(); 4984 ret = 1; 4985 spin_lock(lock); 4986 } 4987 return ret; 4988 } 4989 EXPORT_SYMBOL(__cond_resched_lock); 4990 4991 /** 4992 * yield - yield the current processor to other threads. 4993 * 4994 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4995 * 4996 * The scheduler is at all times free to pick the calling task as the most 4997 * eligible task to run, if removing the yield() call from your code breaks 4998 * it, its already broken. 4999 * 5000 * Typical broken usage is: 5001 * 5002 * while (!event) 5003 * yield(); 5004 * 5005 * where one assumes that yield() will let 'the other' process run that will 5006 * make event true. If the current task is a SCHED_FIFO task that will never 5007 * happen. Never use yield() as a progress guarantee!! 5008 * 5009 * If you want to use yield() to wait for something, use wait_event(). 5010 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5011 * If you still want to use yield(), do not! 5012 */ 5013 void __sched yield(void) 5014 { 5015 set_current_state(TASK_RUNNING); 5016 do_sched_yield(); 5017 } 5018 EXPORT_SYMBOL(yield); 5019 5020 /** 5021 * yield_to - yield the current processor to another thread in 5022 * your thread group, or accelerate that thread toward the 5023 * processor it's on. 5024 * @p: target task 5025 * @preempt: whether task preemption is allowed or not 5026 * 5027 * It's the caller's job to ensure that the target task struct 5028 * can't go away on us before we can do any checks. 5029 * 5030 * Return: 5031 * true (>0) if we indeed boosted the target task. 5032 * false (0) if we failed to boost the target. 5033 * -ESRCH if there's no task to yield to. 5034 */ 5035 int __sched yield_to(struct task_struct *p, bool preempt) 5036 { 5037 struct task_struct *curr = current; 5038 struct rq *rq, *p_rq; 5039 unsigned long flags; 5040 int yielded = 0; 5041 5042 local_irq_save(flags); 5043 rq = this_rq(); 5044 5045 again: 5046 p_rq = task_rq(p); 5047 /* 5048 * If we're the only runnable task on the rq and target rq also 5049 * has only one task, there's absolutely no point in yielding. 5050 */ 5051 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5052 yielded = -ESRCH; 5053 goto out_irq; 5054 } 5055 5056 double_rq_lock(rq, p_rq); 5057 if (task_rq(p) != p_rq) { 5058 double_rq_unlock(rq, p_rq); 5059 goto again; 5060 } 5061 5062 if (!curr->sched_class->yield_to_task) 5063 goto out_unlock; 5064 5065 if (curr->sched_class != p->sched_class) 5066 goto out_unlock; 5067 5068 if (task_running(p_rq, p) || p->state) 5069 goto out_unlock; 5070 5071 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5072 if (yielded) { 5073 schedstat_inc(rq->yld_count); 5074 /* 5075 * Make p's CPU reschedule; pick_next_entity takes care of 5076 * fairness. 5077 */ 5078 if (preempt && rq != p_rq) 5079 resched_curr(p_rq); 5080 } 5081 5082 out_unlock: 5083 double_rq_unlock(rq, p_rq); 5084 out_irq: 5085 local_irq_restore(flags); 5086 5087 if (yielded > 0) 5088 schedule(); 5089 5090 return yielded; 5091 } 5092 EXPORT_SYMBOL_GPL(yield_to); 5093 5094 int io_schedule_prepare(void) 5095 { 5096 int old_iowait = current->in_iowait; 5097 5098 current->in_iowait = 1; 5099 blk_schedule_flush_plug(current); 5100 5101 return old_iowait; 5102 } 5103 5104 void io_schedule_finish(int token) 5105 { 5106 current->in_iowait = token; 5107 } 5108 5109 /* 5110 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5111 * that process accounting knows that this is a task in IO wait state. 5112 */ 5113 long __sched io_schedule_timeout(long timeout) 5114 { 5115 int token; 5116 long ret; 5117 5118 token = io_schedule_prepare(); 5119 ret = schedule_timeout(timeout); 5120 io_schedule_finish(token); 5121 5122 return ret; 5123 } 5124 EXPORT_SYMBOL(io_schedule_timeout); 5125 5126 void io_schedule(void) 5127 { 5128 int token; 5129 5130 token = io_schedule_prepare(); 5131 schedule(); 5132 io_schedule_finish(token); 5133 } 5134 EXPORT_SYMBOL(io_schedule); 5135 5136 /** 5137 * sys_sched_get_priority_max - return maximum RT priority. 5138 * @policy: scheduling class. 5139 * 5140 * Return: On success, this syscall returns the maximum 5141 * rt_priority that can be used by a given scheduling class. 5142 * On failure, a negative error code is returned. 5143 */ 5144 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5145 { 5146 int ret = -EINVAL; 5147 5148 switch (policy) { 5149 case SCHED_FIFO: 5150 case SCHED_RR: 5151 ret = MAX_USER_RT_PRIO-1; 5152 break; 5153 case SCHED_DEADLINE: 5154 case SCHED_NORMAL: 5155 case SCHED_BATCH: 5156 case SCHED_IDLE: 5157 ret = 0; 5158 break; 5159 } 5160 return ret; 5161 } 5162 5163 /** 5164 * sys_sched_get_priority_min - return minimum RT priority. 5165 * @policy: scheduling class. 5166 * 5167 * Return: On success, this syscall returns the minimum 5168 * rt_priority that can be used by a given scheduling class. 5169 * On failure, a negative error code is returned. 5170 */ 5171 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5172 { 5173 int ret = -EINVAL; 5174 5175 switch (policy) { 5176 case SCHED_FIFO: 5177 case SCHED_RR: 5178 ret = 1; 5179 break; 5180 case SCHED_DEADLINE: 5181 case SCHED_NORMAL: 5182 case SCHED_BATCH: 5183 case SCHED_IDLE: 5184 ret = 0; 5185 } 5186 return ret; 5187 } 5188 5189 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5190 { 5191 struct task_struct *p; 5192 unsigned int time_slice; 5193 struct rq_flags rf; 5194 struct rq *rq; 5195 int retval; 5196 5197 if (pid < 0) 5198 return -EINVAL; 5199 5200 retval = -ESRCH; 5201 rcu_read_lock(); 5202 p = find_process_by_pid(pid); 5203 if (!p) 5204 goto out_unlock; 5205 5206 retval = security_task_getscheduler(p); 5207 if (retval) 5208 goto out_unlock; 5209 5210 rq = task_rq_lock(p, &rf); 5211 time_slice = 0; 5212 if (p->sched_class->get_rr_interval) 5213 time_slice = p->sched_class->get_rr_interval(rq, p); 5214 task_rq_unlock(rq, p, &rf); 5215 5216 rcu_read_unlock(); 5217 jiffies_to_timespec64(time_slice, t); 5218 return 0; 5219 5220 out_unlock: 5221 rcu_read_unlock(); 5222 return retval; 5223 } 5224 5225 /** 5226 * sys_sched_rr_get_interval - return the default timeslice of a process. 5227 * @pid: pid of the process. 5228 * @interval: userspace pointer to the timeslice value. 5229 * 5230 * this syscall writes the default timeslice value of a given process 5231 * into the user-space timespec buffer. A value of '0' means infinity. 5232 * 5233 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5234 * an error code. 5235 */ 5236 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5237 struct __kernel_timespec __user *, interval) 5238 { 5239 struct timespec64 t; 5240 int retval = sched_rr_get_interval(pid, &t); 5241 5242 if (retval == 0) 5243 retval = put_timespec64(&t, interval); 5244 5245 return retval; 5246 } 5247 5248 #ifdef CONFIG_COMPAT_32BIT_TIME 5249 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5250 struct old_timespec32 __user *, interval) 5251 { 5252 struct timespec64 t; 5253 int retval = sched_rr_get_interval(pid, &t); 5254 5255 if (retval == 0) 5256 retval = put_old_timespec32(&t, interval); 5257 return retval; 5258 } 5259 #endif 5260 5261 void sched_show_task(struct task_struct *p) 5262 { 5263 unsigned long free = 0; 5264 int ppid; 5265 5266 if (!try_get_task_stack(p)) 5267 return; 5268 5269 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5270 5271 if (p->state == TASK_RUNNING) 5272 printk(KERN_CONT " running task "); 5273 #ifdef CONFIG_DEBUG_STACK_USAGE 5274 free = stack_not_used(p); 5275 #endif 5276 ppid = 0; 5277 rcu_read_lock(); 5278 if (pid_alive(p)) 5279 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5280 rcu_read_unlock(); 5281 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5282 task_pid_nr(p), ppid, 5283 (unsigned long)task_thread_info(p)->flags); 5284 5285 print_worker_info(KERN_INFO, p); 5286 show_stack(p, NULL); 5287 put_task_stack(p); 5288 } 5289 EXPORT_SYMBOL_GPL(sched_show_task); 5290 5291 static inline bool 5292 state_filter_match(unsigned long state_filter, struct task_struct *p) 5293 { 5294 /* no filter, everything matches */ 5295 if (!state_filter) 5296 return true; 5297 5298 /* filter, but doesn't match */ 5299 if (!(p->state & state_filter)) 5300 return false; 5301 5302 /* 5303 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5304 * TASK_KILLABLE). 5305 */ 5306 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5307 return false; 5308 5309 return true; 5310 } 5311 5312 5313 void show_state_filter(unsigned long state_filter) 5314 { 5315 struct task_struct *g, *p; 5316 5317 #if BITS_PER_LONG == 32 5318 printk(KERN_INFO 5319 " task PC stack pid father\n"); 5320 #else 5321 printk(KERN_INFO 5322 " task PC stack pid father\n"); 5323 #endif 5324 rcu_read_lock(); 5325 for_each_process_thread(g, p) { 5326 /* 5327 * reset the NMI-timeout, listing all files on a slow 5328 * console might take a lot of time: 5329 * Also, reset softlockup watchdogs on all CPUs, because 5330 * another CPU might be blocked waiting for us to process 5331 * an IPI. 5332 */ 5333 touch_nmi_watchdog(); 5334 touch_all_softlockup_watchdogs(); 5335 if (state_filter_match(state_filter, p)) 5336 sched_show_task(p); 5337 } 5338 5339 #ifdef CONFIG_SCHED_DEBUG 5340 if (!state_filter) 5341 sysrq_sched_debug_show(); 5342 #endif 5343 rcu_read_unlock(); 5344 /* 5345 * Only show locks if all tasks are dumped: 5346 */ 5347 if (!state_filter) 5348 debug_show_all_locks(); 5349 } 5350 5351 /** 5352 * init_idle - set up an idle thread for a given CPU 5353 * @idle: task in question 5354 * @cpu: CPU the idle task belongs to 5355 * 5356 * NOTE: this function does not set the idle thread's NEED_RESCHED 5357 * flag, to make booting more robust. 5358 */ 5359 void init_idle(struct task_struct *idle, int cpu) 5360 { 5361 struct rq *rq = cpu_rq(cpu); 5362 unsigned long flags; 5363 5364 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5365 raw_spin_lock(&rq->lock); 5366 5367 __sched_fork(0, idle); 5368 idle->state = TASK_RUNNING; 5369 idle->se.exec_start = sched_clock(); 5370 idle->flags |= PF_IDLE; 5371 5372 kasan_unpoison_task_stack(idle); 5373 5374 #ifdef CONFIG_SMP 5375 /* 5376 * Its possible that init_idle() gets called multiple times on a task, 5377 * in that case do_set_cpus_allowed() will not do the right thing. 5378 * 5379 * And since this is boot we can forgo the serialization. 5380 */ 5381 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5382 #endif 5383 /* 5384 * We're having a chicken and egg problem, even though we are 5385 * holding rq->lock, the CPU isn't yet set to this CPU so the 5386 * lockdep check in task_group() will fail. 5387 * 5388 * Similar case to sched_fork(). / Alternatively we could 5389 * use task_rq_lock() here and obtain the other rq->lock. 5390 * 5391 * Silence PROVE_RCU 5392 */ 5393 rcu_read_lock(); 5394 __set_task_cpu(idle, cpu); 5395 rcu_read_unlock(); 5396 5397 rq->curr = rq->idle = idle; 5398 idle->on_rq = TASK_ON_RQ_QUEUED; 5399 #ifdef CONFIG_SMP 5400 idle->on_cpu = 1; 5401 #endif 5402 raw_spin_unlock(&rq->lock); 5403 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5404 5405 /* Set the preempt count _outside_ the spinlocks! */ 5406 init_idle_preempt_count(idle, cpu); 5407 5408 /* 5409 * The idle tasks have their own, simple scheduling class: 5410 */ 5411 idle->sched_class = &idle_sched_class; 5412 ftrace_graph_init_idle_task(idle, cpu); 5413 vtime_init_idle(idle, cpu); 5414 #ifdef CONFIG_SMP 5415 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5416 #endif 5417 } 5418 5419 #ifdef CONFIG_SMP 5420 5421 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5422 const struct cpumask *trial) 5423 { 5424 int ret = 1; 5425 5426 if (!cpumask_weight(cur)) 5427 return ret; 5428 5429 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5430 5431 return ret; 5432 } 5433 5434 int task_can_attach(struct task_struct *p, 5435 const struct cpumask *cs_cpus_allowed) 5436 { 5437 int ret = 0; 5438 5439 /* 5440 * Kthreads which disallow setaffinity shouldn't be moved 5441 * to a new cpuset; we don't want to change their CPU 5442 * affinity and isolating such threads by their set of 5443 * allowed nodes is unnecessary. Thus, cpusets are not 5444 * applicable for such threads. This prevents checking for 5445 * success of set_cpus_allowed_ptr() on all attached tasks 5446 * before cpus_allowed may be changed. 5447 */ 5448 if (p->flags & PF_NO_SETAFFINITY) { 5449 ret = -EINVAL; 5450 goto out; 5451 } 5452 5453 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5454 cs_cpus_allowed)) 5455 ret = dl_task_can_attach(p, cs_cpus_allowed); 5456 5457 out: 5458 return ret; 5459 } 5460 5461 bool sched_smp_initialized __read_mostly; 5462 5463 #ifdef CONFIG_NUMA_BALANCING 5464 /* Migrate current task p to target_cpu */ 5465 int migrate_task_to(struct task_struct *p, int target_cpu) 5466 { 5467 struct migration_arg arg = { p, target_cpu }; 5468 int curr_cpu = task_cpu(p); 5469 5470 if (curr_cpu == target_cpu) 5471 return 0; 5472 5473 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5474 return -EINVAL; 5475 5476 /* TODO: This is not properly updating schedstats */ 5477 5478 trace_sched_move_numa(p, curr_cpu, target_cpu); 5479 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5480 } 5481 5482 /* 5483 * Requeue a task on a given node and accurately track the number of NUMA 5484 * tasks on the runqueues 5485 */ 5486 void sched_setnuma(struct task_struct *p, int nid) 5487 { 5488 bool queued, running; 5489 struct rq_flags rf; 5490 struct rq *rq; 5491 5492 rq = task_rq_lock(p, &rf); 5493 queued = task_on_rq_queued(p); 5494 running = task_current(rq, p); 5495 5496 if (queued) 5497 dequeue_task(rq, p, DEQUEUE_SAVE); 5498 if (running) 5499 put_prev_task(rq, p); 5500 5501 p->numa_preferred_nid = nid; 5502 5503 if (queued) 5504 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5505 if (running) 5506 set_curr_task(rq, p); 5507 task_rq_unlock(rq, p, &rf); 5508 } 5509 #endif /* CONFIG_NUMA_BALANCING */ 5510 5511 #ifdef CONFIG_HOTPLUG_CPU 5512 /* 5513 * Ensure that the idle task is using init_mm right before its CPU goes 5514 * offline. 5515 */ 5516 void idle_task_exit(void) 5517 { 5518 struct mm_struct *mm = current->active_mm; 5519 5520 BUG_ON(cpu_online(smp_processor_id())); 5521 5522 if (mm != &init_mm) { 5523 switch_mm(mm, &init_mm, current); 5524 current->active_mm = &init_mm; 5525 finish_arch_post_lock_switch(); 5526 } 5527 mmdrop(mm); 5528 } 5529 5530 /* 5531 * Since this CPU is going 'away' for a while, fold any nr_active delta 5532 * we might have. Assumes we're called after migrate_tasks() so that the 5533 * nr_active count is stable. We need to take the teardown thread which 5534 * is calling this into account, so we hand in adjust = 1 to the load 5535 * calculation. 5536 * 5537 * Also see the comment "Global load-average calculations". 5538 */ 5539 static void calc_load_migrate(struct rq *rq) 5540 { 5541 long delta = calc_load_fold_active(rq, 1); 5542 if (delta) 5543 atomic_long_add(delta, &calc_load_tasks); 5544 } 5545 5546 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5547 { 5548 } 5549 5550 static const struct sched_class fake_sched_class = { 5551 .put_prev_task = put_prev_task_fake, 5552 }; 5553 5554 static struct task_struct fake_task = { 5555 /* 5556 * Avoid pull_{rt,dl}_task() 5557 */ 5558 .prio = MAX_PRIO + 1, 5559 .sched_class = &fake_sched_class, 5560 }; 5561 5562 /* 5563 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5564 * try_to_wake_up()->select_task_rq(). 5565 * 5566 * Called with rq->lock held even though we'er in stop_machine() and 5567 * there's no concurrency possible, we hold the required locks anyway 5568 * because of lock validation efforts. 5569 */ 5570 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5571 { 5572 struct rq *rq = dead_rq; 5573 struct task_struct *next, *stop = rq->stop; 5574 struct rq_flags orf = *rf; 5575 int dest_cpu; 5576 5577 /* 5578 * Fudge the rq selection such that the below task selection loop 5579 * doesn't get stuck on the currently eligible stop task. 5580 * 5581 * We're currently inside stop_machine() and the rq is either stuck 5582 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5583 * either way we should never end up calling schedule() until we're 5584 * done here. 5585 */ 5586 rq->stop = NULL; 5587 5588 /* 5589 * put_prev_task() and pick_next_task() sched 5590 * class method both need to have an up-to-date 5591 * value of rq->clock[_task] 5592 */ 5593 update_rq_clock(rq); 5594 5595 for (;;) { 5596 /* 5597 * There's this thread running, bail when that's the only 5598 * remaining thread: 5599 */ 5600 if (rq->nr_running == 1) 5601 break; 5602 5603 /* 5604 * pick_next_task() assumes pinned rq->lock: 5605 */ 5606 next = pick_next_task(rq, &fake_task, rf); 5607 BUG_ON(!next); 5608 put_prev_task(rq, next); 5609 5610 /* 5611 * Rules for changing task_struct::cpus_allowed are holding 5612 * both pi_lock and rq->lock, such that holding either 5613 * stabilizes the mask. 5614 * 5615 * Drop rq->lock is not quite as disastrous as it usually is 5616 * because !cpu_active at this point, which means load-balance 5617 * will not interfere. Also, stop-machine. 5618 */ 5619 rq_unlock(rq, rf); 5620 raw_spin_lock(&next->pi_lock); 5621 rq_relock(rq, rf); 5622 5623 /* 5624 * Since we're inside stop-machine, _nothing_ should have 5625 * changed the task, WARN if weird stuff happened, because in 5626 * that case the above rq->lock drop is a fail too. 5627 */ 5628 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5629 raw_spin_unlock(&next->pi_lock); 5630 continue; 5631 } 5632 5633 /* Find suitable destination for @next, with force if needed. */ 5634 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5635 rq = __migrate_task(rq, rf, next, dest_cpu); 5636 if (rq != dead_rq) { 5637 rq_unlock(rq, rf); 5638 rq = dead_rq; 5639 *rf = orf; 5640 rq_relock(rq, rf); 5641 } 5642 raw_spin_unlock(&next->pi_lock); 5643 } 5644 5645 rq->stop = stop; 5646 } 5647 #endif /* CONFIG_HOTPLUG_CPU */ 5648 5649 void set_rq_online(struct rq *rq) 5650 { 5651 if (!rq->online) { 5652 const struct sched_class *class; 5653 5654 cpumask_set_cpu(rq->cpu, rq->rd->online); 5655 rq->online = 1; 5656 5657 for_each_class(class) { 5658 if (class->rq_online) 5659 class->rq_online(rq); 5660 } 5661 } 5662 } 5663 5664 void set_rq_offline(struct rq *rq) 5665 { 5666 if (rq->online) { 5667 const struct sched_class *class; 5668 5669 for_each_class(class) { 5670 if (class->rq_offline) 5671 class->rq_offline(rq); 5672 } 5673 5674 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5675 rq->online = 0; 5676 } 5677 } 5678 5679 /* 5680 * used to mark begin/end of suspend/resume: 5681 */ 5682 static int num_cpus_frozen; 5683 5684 /* 5685 * Update cpusets according to cpu_active mask. If cpusets are 5686 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5687 * around partition_sched_domains(). 5688 * 5689 * If we come here as part of a suspend/resume, don't touch cpusets because we 5690 * want to restore it back to its original state upon resume anyway. 5691 */ 5692 static void cpuset_cpu_active(void) 5693 { 5694 if (cpuhp_tasks_frozen) { 5695 /* 5696 * num_cpus_frozen tracks how many CPUs are involved in suspend 5697 * resume sequence. As long as this is not the last online 5698 * operation in the resume sequence, just build a single sched 5699 * domain, ignoring cpusets. 5700 */ 5701 partition_sched_domains(1, NULL, NULL); 5702 if (--num_cpus_frozen) 5703 return; 5704 /* 5705 * This is the last CPU online operation. So fall through and 5706 * restore the original sched domains by considering the 5707 * cpuset configurations. 5708 */ 5709 cpuset_force_rebuild(); 5710 } 5711 cpuset_update_active_cpus(); 5712 } 5713 5714 static int cpuset_cpu_inactive(unsigned int cpu) 5715 { 5716 if (!cpuhp_tasks_frozen) { 5717 if (dl_cpu_busy(cpu)) 5718 return -EBUSY; 5719 cpuset_update_active_cpus(); 5720 } else { 5721 num_cpus_frozen++; 5722 partition_sched_domains(1, NULL, NULL); 5723 } 5724 return 0; 5725 } 5726 5727 int sched_cpu_activate(unsigned int cpu) 5728 { 5729 struct rq *rq = cpu_rq(cpu); 5730 struct rq_flags rf; 5731 5732 #ifdef CONFIG_SCHED_SMT 5733 /* 5734 * When going up, increment the number of cores with SMT present. 5735 */ 5736 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5737 static_branch_inc_cpuslocked(&sched_smt_present); 5738 #endif 5739 set_cpu_active(cpu, true); 5740 5741 if (sched_smp_initialized) { 5742 sched_domains_numa_masks_set(cpu); 5743 cpuset_cpu_active(); 5744 } 5745 5746 /* 5747 * Put the rq online, if not already. This happens: 5748 * 5749 * 1) In the early boot process, because we build the real domains 5750 * after all CPUs have been brought up. 5751 * 5752 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5753 * domains. 5754 */ 5755 rq_lock_irqsave(rq, &rf); 5756 if (rq->rd) { 5757 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5758 set_rq_online(rq); 5759 } 5760 rq_unlock_irqrestore(rq, &rf); 5761 5762 update_max_interval(); 5763 5764 return 0; 5765 } 5766 5767 int sched_cpu_deactivate(unsigned int cpu) 5768 { 5769 int ret; 5770 5771 set_cpu_active(cpu, false); 5772 /* 5773 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5774 * users of this state to go away such that all new such users will 5775 * observe it. 5776 * 5777 * Do sync before park smpboot threads to take care the rcu boost case. 5778 */ 5779 synchronize_rcu(); 5780 5781 #ifdef CONFIG_SCHED_SMT 5782 /* 5783 * When going down, decrement the number of cores with SMT present. 5784 */ 5785 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5786 static_branch_dec_cpuslocked(&sched_smt_present); 5787 #endif 5788 5789 if (!sched_smp_initialized) 5790 return 0; 5791 5792 ret = cpuset_cpu_inactive(cpu); 5793 if (ret) { 5794 set_cpu_active(cpu, true); 5795 return ret; 5796 } 5797 sched_domains_numa_masks_clear(cpu); 5798 return 0; 5799 } 5800 5801 static void sched_rq_cpu_starting(unsigned int cpu) 5802 { 5803 struct rq *rq = cpu_rq(cpu); 5804 5805 rq->calc_load_update = calc_load_update; 5806 update_max_interval(); 5807 } 5808 5809 int sched_cpu_starting(unsigned int cpu) 5810 { 5811 sched_rq_cpu_starting(cpu); 5812 sched_tick_start(cpu); 5813 return 0; 5814 } 5815 5816 #ifdef CONFIG_HOTPLUG_CPU 5817 int sched_cpu_dying(unsigned int cpu) 5818 { 5819 struct rq *rq = cpu_rq(cpu); 5820 struct rq_flags rf; 5821 5822 /* Handle pending wakeups and then migrate everything off */ 5823 sched_ttwu_pending(); 5824 sched_tick_stop(cpu); 5825 5826 rq_lock_irqsave(rq, &rf); 5827 if (rq->rd) { 5828 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5829 set_rq_offline(rq); 5830 } 5831 migrate_tasks(rq, &rf); 5832 BUG_ON(rq->nr_running != 1); 5833 rq_unlock_irqrestore(rq, &rf); 5834 5835 calc_load_migrate(rq); 5836 update_max_interval(); 5837 nohz_balance_exit_idle(rq); 5838 hrtick_clear(rq); 5839 return 0; 5840 } 5841 #endif 5842 5843 void __init sched_init_smp(void) 5844 { 5845 sched_init_numa(); 5846 5847 /* 5848 * There's no userspace yet to cause hotplug operations; hence all the 5849 * CPU masks are stable and all blatant races in the below code cannot 5850 * happen. 5851 */ 5852 mutex_lock(&sched_domains_mutex); 5853 sched_init_domains(cpu_active_mask); 5854 mutex_unlock(&sched_domains_mutex); 5855 5856 /* Move init over to a non-isolated CPU */ 5857 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5858 BUG(); 5859 sched_init_granularity(); 5860 5861 init_sched_rt_class(); 5862 init_sched_dl_class(); 5863 5864 sched_smp_initialized = true; 5865 } 5866 5867 static int __init migration_init(void) 5868 { 5869 sched_cpu_starting(smp_processor_id()); 5870 return 0; 5871 } 5872 early_initcall(migration_init); 5873 5874 #else 5875 void __init sched_init_smp(void) 5876 { 5877 sched_init_granularity(); 5878 } 5879 #endif /* CONFIG_SMP */ 5880 5881 int in_sched_functions(unsigned long addr) 5882 { 5883 return in_lock_functions(addr) || 5884 (addr >= (unsigned long)__sched_text_start 5885 && addr < (unsigned long)__sched_text_end); 5886 } 5887 5888 #ifdef CONFIG_CGROUP_SCHED 5889 /* 5890 * Default task group. 5891 * Every task in system belongs to this group at bootup. 5892 */ 5893 struct task_group root_task_group; 5894 LIST_HEAD(task_groups); 5895 5896 /* Cacheline aligned slab cache for task_group */ 5897 static struct kmem_cache *task_group_cache __read_mostly; 5898 #endif 5899 5900 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5901 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5902 5903 void __init sched_init(void) 5904 { 5905 int i, j; 5906 unsigned long alloc_size = 0, ptr; 5907 5908 wait_bit_init(); 5909 5910 #ifdef CONFIG_FAIR_GROUP_SCHED 5911 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5912 #endif 5913 #ifdef CONFIG_RT_GROUP_SCHED 5914 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5915 #endif 5916 if (alloc_size) { 5917 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5918 5919 #ifdef CONFIG_FAIR_GROUP_SCHED 5920 root_task_group.se = (struct sched_entity **)ptr; 5921 ptr += nr_cpu_ids * sizeof(void **); 5922 5923 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5924 ptr += nr_cpu_ids * sizeof(void **); 5925 5926 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5927 #ifdef CONFIG_RT_GROUP_SCHED 5928 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5929 ptr += nr_cpu_ids * sizeof(void **); 5930 5931 root_task_group.rt_rq = (struct rt_rq **)ptr; 5932 ptr += nr_cpu_ids * sizeof(void **); 5933 5934 #endif /* CONFIG_RT_GROUP_SCHED */ 5935 } 5936 #ifdef CONFIG_CPUMASK_OFFSTACK 5937 for_each_possible_cpu(i) { 5938 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5939 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5940 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5941 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5942 } 5943 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5944 5945 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5946 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5947 5948 #ifdef CONFIG_SMP 5949 init_defrootdomain(); 5950 #endif 5951 5952 #ifdef CONFIG_RT_GROUP_SCHED 5953 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5954 global_rt_period(), global_rt_runtime()); 5955 #endif /* CONFIG_RT_GROUP_SCHED */ 5956 5957 #ifdef CONFIG_CGROUP_SCHED 5958 task_group_cache = KMEM_CACHE(task_group, 0); 5959 5960 list_add(&root_task_group.list, &task_groups); 5961 INIT_LIST_HEAD(&root_task_group.children); 5962 INIT_LIST_HEAD(&root_task_group.siblings); 5963 autogroup_init(&init_task); 5964 #endif /* CONFIG_CGROUP_SCHED */ 5965 5966 for_each_possible_cpu(i) { 5967 struct rq *rq; 5968 5969 rq = cpu_rq(i); 5970 raw_spin_lock_init(&rq->lock); 5971 rq->nr_running = 0; 5972 rq->calc_load_active = 0; 5973 rq->calc_load_update = jiffies + LOAD_FREQ; 5974 init_cfs_rq(&rq->cfs); 5975 init_rt_rq(&rq->rt); 5976 init_dl_rq(&rq->dl); 5977 #ifdef CONFIG_FAIR_GROUP_SCHED 5978 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5979 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5980 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5981 /* 5982 * How much CPU bandwidth does root_task_group get? 5983 * 5984 * In case of task-groups formed thr' the cgroup filesystem, it 5985 * gets 100% of the CPU resources in the system. This overall 5986 * system CPU resource is divided among the tasks of 5987 * root_task_group and its child task-groups in a fair manner, 5988 * based on each entity's (task or task-group's) weight 5989 * (se->load.weight). 5990 * 5991 * In other words, if root_task_group has 10 tasks of weight 5992 * 1024) and two child groups A0 and A1 (of weight 1024 each), 5993 * then A0's share of the CPU resource is: 5994 * 5995 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 5996 * 5997 * We achieve this by letting root_task_group's tasks sit 5998 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 5999 */ 6000 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6001 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6002 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6003 6004 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6005 #ifdef CONFIG_RT_GROUP_SCHED 6006 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6007 #endif 6008 6009 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6010 rq->cpu_load[j] = 0; 6011 6012 #ifdef CONFIG_SMP 6013 rq->sd = NULL; 6014 rq->rd = NULL; 6015 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6016 rq->balance_callback = NULL; 6017 rq->active_balance = 0; 6018 rq->next_balance = jiffies; 6019 rq->push_cpu = 0; 6020 rq->cpu = i; 6021 rq->online = 0; 6022 rq->idle_stamp = 0; 6023 rq->avg_idle = 2*sysctl_sched_migration_cost; 6024 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6025 6026 INIT_LIST_HEAD(&rq->cfs_tasks); 6027 6028 rq_attach_root(rq, &def_root_domain); 6029 #ifdef CONFIG_NO_HZ_COMMON 6030 rq->last_load_update_tick = jiffies; 6031 rq->last_blocked_load_update_tick = jiffies; 6032 atomic_set(&rq->nohz_flags, 0); 6033 #endif 6034 #endif /* CONFIG_SMP */ 6035 hrtick_rq_init(rq); 6036 atomic_set(&rq->nr_iowait, 0); 6037 } 6038 6039 set_load_weight(&init_task, false); 6040 6041 /* 6042 * The boot idle thread does lazy MMU switching as well: 6043 */ 6044 mmgrab(&init_mm); 6045 enter_lazy_tlb(&init_mm, current); 6046 6047 /* 6048 * Make us the idle thread. Technically, schedule() should not be 6049 * called from this thread, however somewhere below it might be, 6050 * but because we are the idle thread, we just pick up running again 6051 * when this runqueue becomes "idle". 6052 */ 6053 init_idle(current, smp_processor_id()); 6054 6055 calc_load_update = jiffies + LOAD_FREQ; 6056 6057 #ifdef CONFIG_SMP 6058 idle_thread_set_boot_cpu(); 6059 #endif 6060 init_sched_fair_class(); 6061 6062 init_schedstats(); 6063 6064 psi_init(); 6065 6066 scheduler_running = 1; 6067 } 6068 6069 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6070 static inline int preempt_count_equals(int preempt_offset) 6071 { 6072 int nested = preempt_count() + rcu_preempt_depth(); 6073 6074 return (nested == preempt_offset); 6075 } 6076 6077 void __might_sleep(const char *file, int line, int preempt_offset) 6078 { 6079 /* 6080 * Blocking primitives will set (and therefore destroy) current->state, 6081 * since we will exit with TASK_RUNNING make sure we enter with it, 6082 * otherwise we will destroy state. 6083 */ 6084 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6085 "do not call blocking ops when !TASK_RUNNING; " 6086 "state=%lx set at [<%p>] %pS\n", 6087 current->state, 6088 (void *)current->task_state_change, 6089 (void *)current->task_state_change); 6090 6091 ___might_sleep(file, line, preempt_offset); 6092 } 6093 EXPORT_SYMBOL(__might_sleep); 6094 6095 void ___might_sleep(const char *file, int line, int preempt_offset) 6096 { 6097 /* Ratelimiting timestamp: */ 6098 static unsigned long prev_jiffy; 6099 6100 unsigned long preempt_disable_ip; 6101 6102 /* WARN_ON_ONCE() by default, no rate limit required: */ 6103 rcu_sleep_check(); 6104 6105 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6106 !is_idle_task(current)) || 6107 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6108 oops_in_progress) 6109 return; 6110 6111 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6112 return; 6113 prev_jiffy = jiffies; 6114 6115 /* Save this before calling printk(), since that will clobber it: */ 6116 preempt_disable_ip = get_preempt_disable_ip(current); 6117 6118 printk(KERN_ERR 6119 "BUG: sleeping function called from invalid context at %s:%d\n", 6120 file, line); 6121 printk(KERN_ERR 6122 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6123 in_atomic(), irqs_disabled(), 6124 current->pid, current->comm); 6125 6126 if (task_stack_end_corrupted(current)) 6127 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6128 6129 debug_show_held_locks(current); 6130 if (irqs_disabled()) 6131 print_irqtrace_events(current); 6132 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6133 && !preempt_count_equals(preempt_offset)) { 6134 pr_err("Preemption disabled at:"); 6135 print_ip_sym(preempt_disable_ip); 6136 pr_cont("\n"); 6137 } 6138 dump_stack(); 6139 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6140 } 6141 EXPORT_SYMBOL(___might_sleep); 6142 6143 void __cant_sleep(const char *file, int line, int preempt_offset) 6144 { 6145 static unsigned long prev_jiffy; 6146 6147 if (irqs_disabled()) 6148 return; 6149 6150 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6151 return; 6152 6153 if (preempt_count() > preempt_offset) 6154 return; 6155 6156 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6157 return; 6158 prev_jiffy = jiffies; 6159 6160 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6161 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6162 in_atomic(), irqs_disabled(), 6163 current->pid, current->comm); 6164 6165 debug_show_held_locks(current); 6166 dump_stack(); 6167 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6168 } 6169 EXPORT_SYMBOL_GPL(__cant_sleep); 6170 #endif 6171 6172 #ifdef CONFIG_MAGIC_SYSRQ 6173 void normalize_rt_tasks(void) 6174 { 6175 struct task_struct *g, *p; 6176 struct sched_attr attr = { 6177 .sched_policy = SCHED_NORMAL, 6178 }; 6179 6180 read_lock(&tasklist_lock); 6181 for_each_process_thread(g, p) { 6182 /* 6183 * Only normalize user tasks: 6184 */ 6185 if (p->flags & PF_KTHREAD) 6186 continue; 6187 6188 p->se.exec_start = 0; 6189 schedstat_set(p->se.statistics.wait_start, 0); 6190 schedstat_set(p->se.statistics.sleep_start, 0); 6191 schedstat_set(p->se.statistics.block_start, 0); 6192 6193 if (!dl_task(p) && !rt_task(p)) { 6194 /* 6195 * Renice negative nice level userspace 6196 * tasks back to 0: 6197 */ 6198 if (task_nice(p) < 0) 6199 set_user_nice(p, 0); 6200 continue; 6201 } 6202 6203 __sched_setscheduler(p, &attr, false, false); 6204 } 6205 read_unlock(&tasklist_lock); 6206 } 6207 6208 #endif /* CONFIG_MAGIC_SYSRQ */ 6209 6210 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6211 /* 6212 * These functions are only useful for the IA64 MCA handling, or kdb. 6213 * 6214 * They can only be called when the whole system has been 6215 * stopped - every CPU needs to be quiescent, and no scheduling 6216 * activity can take place. Using them for anything else would 6217 * be a serious bug, and as a result, they aren't even visible 6218 * under any other configuration. 6219 */ 6220 6221 /** 6222 * curr_task - return the current task for a given CPU. 6223 * @cpu: the processor in question. 6224 * 6225 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6226 * 6227 * Return: The current task for @cpu. 6228 */ 6229 struct task_struct *curr_task(int cpu) 6230 { 6231 return cpu_curr(cpu); 6232 } 6233 6234 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6235 6236 #ifdef CONFIG_IA64 6237 /** 6238 * set_curr_task - set the current task for a given CPU. 6239 * @cpu: the processor in question. 6240 * @p: the task pointer to set. 6241 * 6242 * Description: This function must only be used when non-maskable interrupts 6243 * are serviced on a separate stack. It allows the architecture to switch the 6244 * notion of the current task on a CPU in a non-blocking manner. This function 6245 * must be called with all CPU's synchronized, and interrupts disabled, the 6246 * and caller must save the original value of the current task (see 6247 * curr_task() above) and restore that value before reenabling interrupts and 6248 * re-starting the system. 6249 * 6250 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6251 */ 6252 void ia64_set_curr_task(int cpu, struct task_struct *p) 6253 { 6254 cpu_curr(cpu) = p; 6255 } 6256 6257 #endif 6258 6259 #ifdef CONFIG_CGROUP_SCHED 6260 /* task_group_lock serializes the addition/removal of task groups */ 6261 static DEFINE_SPINLOCK(task_group_lock); 6262 6263 static void sched_free_group(struct task_group *tg) 6264 { 6265 free_fair_sched_group(tg); 6266 free_rt_sched_group(tg); 6267 autogroup_free(tg); 6268 kmem_cache_free(task_group_cache, tg); 6269 } 6270 6271 /* allocate runqueue etc for a new task group */ 6272 struct task_group *sched_create_group(struct task_group *parent) 6273 { 6274 struct task_group *tg; 6275 6276 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6277 if (!tg) 6278 return ERR_PTR(-ENOMEM); 6279 6280 if (!alloc_fair_sched_group(tg, parent)) 6281 goto err; 6282 6283 if (!alloc_rt_sched_group(tg, parent)) 6284 goto err; 6285 6286 return tg; 6287 6288 err: 6289 sched_free_group(tg); 6290 return ERR_PTR(-ENOMEM); 6291 } 6292 6293 void sched_online_group(struct task_group *tg, struct task_group *parent) 6294 { 6295 unsigned long flags; 6296 6297 spin_lock_irqsave(&task_group_lock, flags); 6298 list_add_rcu(&tg->list, &task_groups); 6299 6300 /* Root should already exist: */ 6301 WARN_ON(!parent); 6302 6303 tg->parent = parent; 6304 INIT_LIST_HEAD(&tg->children); 6305 list_add_rcu(&tg->siblings, &parent->children); 6306 spin_unlock_irqrestore(&task_group_lock, flags); 6307 6308 online_fair_sched_group(tg); 6309 } 6310 6311 /* rcu callback to free various structures associated with a task group */ 6312 static void sched_free_group_rcu(struct rcu_head *rhp) 6313 { 6314 /* Now it should be safe to free those cfs_rqs: */ 6315 sched_free_group(container_of(rhp, struct task_group, rcu)); 6316 } 6317 6318 void sched_destroy_group(struct task_group *tg) 6319 { 6320 /* Wait for possible concurrent references to cfs_rqs complete: */ 6321 call_rcu(&tg->rcu, sched_free_group_rcu); 6322 } 6323 6324 void sched_offline_group(struct task_group *tg) 6325 { 6326 unsigned long flags; 6327 6328 /* End participation in shares distribution: */ 6329 unregister_fair_sched_group(tg); 6330 6331 spin_lock_irqsave(&task_group_lock, flags); 6332 list_del_rcu(&tg->list); 6333 list_del_rcu(&tg->siblings); 6334 spin_unlock_irqrestore(&task_group_lock, flags); 6335 } 6336 6337 static void sched_change_group(struct task_struct *tsk, int type) 6338 { 6339 struct task_group *tg; 6340 6341 /* 6342 * All callers are synchronized by task_rq_lock(); we do not use RCU 6343 * which is pointless here. Thus, we pass "true" to task_css_check() 6344 * to prevent lockdep warnings. 6345 */ 6346 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6347 struct task_group, css); 6348 tg = autogroup_task_group(tsk, tg); 6349 tsk->sched_task_group = tg; 6350 6351 #ifdef CONFIG_FAIR_GROUP_SCHED 6352 if (tsk->sched_class->task_change_group) 6353 tsk->sched_class->task_change_group(tsk, type); 6354 else 6355 #endif 6356 set_task_rq(tsk, task_cpu(tsk)); 6357 } 6358 6359 /* 6360 * Change task's runqueue when it moves between groups. 6361 * 6362 * The caller of this function should have put the task in its new group by 6363 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6364 * its new group. 6365 */ 6366 void sched_move_task(struct task_struct *tsk) 6367 { 6368 int queued, running, queue_flags = 6369 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6370 struct rq_flags rf; 6371 struct rq *rq; 6372 6373 rq = task_rq_lock(tsk, &rf); 6374 update_rq_clock(rq); 6375 6376 running = task_current(rq, tsk); 6377 queued = task_on_rq_queued(tsk); 6378 6379 if (queued) 6380 dequeue_task(rq, tsk, queue_flags); 6381 if (running) 6382 put_prev_task(rq, tsk); 6383 6384 sched_change_group(tsk, TASK_MOVE_GROUP); 6385 6386 if (queued) 6387 enqueue_task(rq, tsk, queue_flags); 6388 if (running) 6389 set_curr_task(rq, tsk); 6390 6391 task_rq_unlock(rq, tsk, &rf); 6392 } 6393 6394 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6395 { 6396 return css ? container_of(css, struct task_group, css) : NULL; 6397 } 6398 6399 static struct cgroup_subsys_state * 6400 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6401 { 6402 struct task_group *parent = css_tg(parent_css); 6403 struct task_group *tg; 6404 6405 if (!parent) { 6406 /* This is early initialization for the top cgroup */ 6407 return &root_task_group.css; 6408 } 6409 6410 tg = sched_create_group(parent); 6411 if (IS_ERR(tg)) 6412 return ERR_PTR(-ENOMEM); 6413 6414 return &tg->css; 6415 } 6416 6417 /* Expose task group only after completing cgroup initialization */ 6418 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6419 { 6420 struct task_group *tg = css_tg(css); 6421 struct task_group *parent = css_tg(css->parent); 6422 6423 if (parent) 6424 sched_online_group(tg, parent); 6425 return 0; 6426 } 6427 6428 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6429 { 6430 struct task_group *tg = css_tg(css); 6431 6432 sched_offline_group(tg); 6433 } 6434 6435 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6436 { 6437 struct task_group *tg = css_tg(css); 6438 6439 /* 6440 * Relies on the RCU grace period between css_released() and this. 6441 */ 6442 sched_free_group(tg); 6443 } 6444 6445 /* 6446 * This is called before wake_up_new_task(), therefore we really only 6447 * have to set its group bits, all the other stuff does not apply. 6448 */ 6449 static void cpu_cgroup_fork(struct task_struct *task) 6450 { 6451 struct rq_flags rf; 6452 struct rq *rq; 6453 6454 rq = task_rq_lock(task, &rf); 6455 6456 update_rq_clock(rq); 6457 sched_change_group(task, TASK_SET_GROUP); 6458 6459 task_rq_unlock(rq, task, &rf); 6460 } 6461 6462 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6463 { 6464 struct task_struct *task; 6465 struct cgroup_subsys_state *css; 6466 int ret = 0; 6467 6468 cgroup_taskset_for_each(task, css, tset) { 6469 #ifdef CONFIG_RT_GROUP_SCHED 6470 if (!sched_rt_can_attach(css_tg(css), task)) 6471 return -EINVAL; 6472 #else 6473 /* We don't support RT-tasks being in separate groups */ 6474 if (task->sched_class != &fair_sched_class) 6475 return -EINVAL; 6476 #endif 6477 /* 6478 * Serialize against wake_up_new_task() such that if its 6479 * running, we're sure to observe its full state. 6480 */ 6481 raw_spin_lock_irq(&task->pi_lock); 6482 /* 6483 * Avoid calling sched_move_task() before wake_up_new_task() 6484 * has happened. This would lead to problems with PELT, due to 6485 * move wanting to detach+attach while we're not attached yet. 6486 */ 6487 if (task->state == TASK_NEW) 6488 ret = -EINVAL; 6489 raw_spin_unlock_irq(&task->pi_lock); 6490 6491 if (ret) 6492 break; 6493 } 6494 return ret; 6495 } 6496 6497 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6498 { 6499 struct task_struct *task; 6500 struct cgroup_subsys_state *css; 6501 6502 cgroup_taskset_for_each(task, css, tset) 6503 sched_move_task(task); 6504 } 6505 6506 #ifdef CONFIG_FAIR_GROUP_SCHED 6507 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6508 struct cftype *cftype, u64 shareval) 6509 { 6510 if (shareval > scale_load_down(ULONG_MAX)) 6511 shareval = MAX_SHARES; 6512 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6513 } 6514 6515 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6516 struct cftype *cft) 6517 { 6518 struct task_group *tg = css_tg(css); 6519 6520 return (u64) scale_load_down(tg->shares); 6521 } 6522 6523 #ifdef CONFIG_CFS_BANDWIDTH 6524 static DEFINE_MUTEX(cfs_constraints_mutex); 6525 6526 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6527 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6528 6529 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6530 6531 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6532 { 6533 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6534 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6535 6536 if (tg == &root_task_group) 6537 return -EINVAL; 6538 6539 /* 6540 * Ensure we have at some amount of bandwidth every period. This is 6541 * to prevent reaching a state of large arrears when throttled via 6542 * entity_tick() resulting in prolonged exit starvation. 6543 */ 6544 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6545 return -EINVAL; 6546 6547 /* 6548 * Likewise, bound things on the otherside by preventing insane quota 6549 * periods. This also allows us to normalize in computing quota 6550 * feasibility. 6551 */ 6552 if (period > max_cfs_quota_period) 6553 return -EINVAL; 6554 6555 /* 6556 * Prevent race between setting of cfs_rq->runtime_enabled and 6557 * unthrottle_offline_cfs_rqs(). 6558 */ 6559 get_online_cpus(); 6560 mutex_lock(&cfs_constraints_mutex); 6561 ret = __cfs_schedulable(tg, period, quota); 6562 if (ret) 6563 goto out_unlock; 6564 6565 runtime_enabled = quota != RUNTIME_INF; 6566 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6567 /* 6568 * If we need to toggle cfs_bandwidth_used, off->on must occur 6569 * before making related changes, and on->off must occur afterwards 6570 */ 6571 if (runtime_enabled && !runtime_was_enabled) 6572 cfs_bandwidth_usage_inc(); 6573 raw_spin_lock_irq(&cfs_b->lock); 6574 cfs_b->period = ns_to_ktime(period); 6575 cfs_b->quota = quota; 6576 6577 __refill_cfs_bandwidth_runtime(cfs_b); 6578 6579 /* Restart the period timer (if active) to handle new period expiry: */ 6580 if (runtime_enabled) 6581 start_cfs_bandwidth(cfs_b); 6582 6583 raw_spin_unlock_irq(&cfs_b->lock); 6584 6585 for_each_online_cpu(i) { 6586 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6587 struct rq *rq = cfs_rq->rq; 6588 struct rq_flags rf; 6589 6590 rq_lock_irq(rq, &rf); 6591 cfs_rq->runtime_enabled = runtime_enabled; 6592 cfs_rq->runtime_remaining = 0; 6593 6594 if (cfs_rq->throttled) 6595 unthrottle_cfs_rq(cfs_rq); 6596 rq_unlock_irq(rq, &rf); 6597 } 6598 if (runtime_was_enabled && !runtime_enabled) 6599 cfs_bandwidth_usage_dec(); 6600 out_unlock: 6601 mutex_unlock(&cfs_constraints_mutex); 6602 put_online_cpus(); 6603 6604 return ret; 6605 } 6606 6607 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6608 { 6609 u64 quota, period; 6610 6611 period = ktime_to_ns(tg->cfs_bandwidth.period); 6612 if (cfs_quota_us < 0) 6613 quota = RUNTIME_INF; 6614 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 6615 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6616 else 6617 return -EINVAL; 6618 6619 return tg_set_cfs_bandwidth(tg, period, quota); 6620 } 6621 6622 static long tg_get_cfs_quota(struct task_group *tg) 6623 { 6624 u64 quota_us; 6625 6626 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6627 return -1; 6628 6629 quota_us = tg->cfs_bandwidth.quota; 6630 do_div(quota_us, NSEC_PER_USEC); 6631 6632 return quota_us; 6633 } 6634 6635 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6636 { 6637 u64 quota, period; 6638 6639 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 6640 return -EINVAL; 6641 6642 period = (u64)cfs_period_us * NSEC_PER_USEC; 6643 quota = tg->cfs_bandwidth.quota; 6644 6645 return tg_set_cfs_bandwidth(tg, period, quota); 6646 } 6647 6648 static long tg_get_cfs_period(struct task_group *tg) 6649 { 6650 u64 cfs_period_us; 6651 6652 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6653 do_div(cfs_period_us, NSEC_PER_USEC); 6654 6655 return cfs_period_us; 6656 } 6657 6658 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6659 struct cftype *cft) 6660 { 6661 return tg_get_cfs_quota(css_tg(css)); 6662 } 6663 6664 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6665 struct cftype *cftype, s64 cfs_quota_us) 6666 { 6667 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6668 } 6669 6670 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6671 struct cftype *cft) 6672 { 6673 return tg_get_cfs_period(css_tg(css)); 6674 } 6675 6676 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6677 struct cftype *cftype, u64 cfs_period_us) 6678 { 6679 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6680 } 6681 6682 struct cfs_schedulable_data { 6683 struct task_group *tg; 6684 u64 period, quota; 6685 }; 6686 6687 /* 6688 * normalize group quota/period to be quota/max_period 6689 * note: units are usecs 6690 */ 6691 static u64 normalize_cfs_quota(struct task_group *tg, 6692 struct cfs_schedulable_data *d) 6693 { 6694 u64 quota, period; 6695 6696 if (tg == d->tg) { 6697 period = d->period; 6698 quota = d->quota; 6699 } else { 6700 period = tg_get_cfs_period(tg); 6701 quota = tg_get_cfs_quota(tg); 6702 } 6703 6704 /* note: these should typically be equivalent */ 6705 if (quota == RUNTIME_INF || quota == -1) 6706 return RUNTIME_INF; 6707 6708 return to_ratio(period, quota); 6709 } 6710 6711 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6712 { 6713 struct cfs_schedulable_data *d = data; 6714 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6715 s64 quota = 0, parent_quota = -1; 6716 6717 if (!tg->parent) { 6718 quota = RUNTIME_INF; 6719 } else { 6720 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6721 6722 quota = normalize_cfs_quota(tg, d); 6723 parent_quota = parent_b->hierarchical_quota; 6724 6725 /* 6726 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6727 * always take the min. On cgroup1, only inherit when no 6728 * limit is set: 6729 */ 6730 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6731 quota = min(quota, parent_quota); 6732 } else { 6733 if (quota == RUNTIME_INF) 6734 quota = parent_quota; 6735 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6736 return -EINVAL; 6737 } 6738 } 6739 cfs_b->hierarchical_quota = quota; 6740 6741 return 0; 6742 } 6743 6744 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6745 { 6746 int ret; 6747 struct cfs_schedulable_data data = { 6748 .tg = tg, 6749 .period = period, 6750 .quota = quota, 6751 }; 6752 6753 if (quota != RUNTIME_INF) { 6754 do_div(data.period, NSEC_PER_USEC); 6755 do_div(data.quota, NSEC_PER_USEC); 6756 } 6757 6758 rcu_read_lock(); 6759 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6760 rcu_read_unlock(); 6761 6762 return ret; 6763 } 6764 6765 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6766 { 6767 struct task_group *tg = css_tg(seq_css(sf)); 6768 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6769 6770 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6771 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6772 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6773 6774 if (schedstat_enabled() && tg != &root_task_group) { 6775 u64 ws = 0; 6776 int i; 6777 6778 for_each_possible_cpu(i) 6779 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 6780 6781 seq_printf(sf, "wait_sum %llu\n", ws); 6782 } 6783 6784 return 0; 6785 } 6786 #endif /* CONFIG_CFS_BANDWIDTH */ 6787 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6788 6789 #ifdef CONFIG_RT_GROUP_SCHED 6790 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6791 struct cftype *cft, s64 val) 6792 { 6793 return sched_group_set_rt_runtime(css_tg(css), val); 6794 } 6795 6796 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6797 struct cftype *cft) 6798 { 6799 return sched_group_rt_runtime(css_tg(css)); 6800 } 6801 6802 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6803 struct cftype *cftype, u64 rt_period_us) 6804 { 6805 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6806 } 6807 6808 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6809 struct cftype *cft) 6810 { 6811 return sched_group_rt_period(css_tg(css)); 6812 } 6813 #endif /* CONFIG_RT_GROUP_SCHED */ 6814 6815 static struct cftype cpu_legacy_files[] = { 6816 #ifdef CONFIG_FAIR_GROUP_SCHED 6817 { 6818 .name = "shares", 6819 .read_u64 = cpu_shares_read_u64, 6820 .write_u64 = cpu_shares_write_u64, 6821 }, 6822 #endif 6823 #ifdef CONFIG_CFS_BANDWIDTH 6824 { 6825 .name = "cfs_quota_us", 6826 .read_s64 = cpu_cfs_quota_read_s64, 6827 .write_s64 = cpu_cfs_quota_write_s64, 6828 }, 6829 { 6830 .name = "cfs_period_us", 6831 .read_u64 = cpu_cfs_period_read_u64, 6832 .write_u64 = cpu_cfs_period_write_u64, 6833 }, 6834 { 6835 .name = "stat", 6836 .seq_show = cpu_cfs_stat_show, 6837 }, 6838 #endif 6839 #ifdef CONFIG_RT_GROUP_SCHED 6840 { 6841 .name = "rt_runtime_us", 6842 .read_s64 = cpu_rt_runtime_read, 6843 .write_s64 = cpu_rt_runtime_write, 6844 }, 6845 { 6846 .name = "rt_period_us", 6847 .read_u64 = cpu_rt_period_read_uint, 6848 .write_u64 = cpu_rt_period_write_uint, 6849 }, 6850 #endif 6851 { } /* Terminate */ 6852 }; 6853 6854 static int cpu_extra_stat_show(struct seq_file *sf, 6855 struct cgroup_subsys_state *css) 6856 { 6857 #ifdef CONFIG_CFS_BANDWIDTH 6858 { 6859 struct task_group *tg = css_tg(css); 6860 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6861 u64 throttled_usec; 6862 6863 throttled_usec = cfs_b->throttled_time; 6864 do_div(throttled_usec, NSEC_PER_USEC); 6865 6866 seq_printf(sf, "nr_periods %d\n" 6867 "nr_throttled %d\n" 6868 "throttled_usec %llu\n", 6869 cfs_b->nr_periods, cfs_b->nr_throttled, 6870 throttled_usec); 6871 } 6872 #endif 6873 return 0; 6874 } 6875 6876 #ifdef CONFIG_FAIR_GROUP_SCHED 6877 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6878 struct cftype *cft) 6879 { 6880 struct task_group *tg = css_tg(css); 6881 u64 weight = scale_load_down(tg->shares); 6882 6883 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6884 } 6885 6886 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6887 struct cftype *cft, u64 weight) 6888 { 6889 /* 6890 * cgroup weight knobs should use the common MIN, DFL and MAX 6891 * values which are 1, 100 and 10000 respectively. While it loses 6892 * a bit of range on both ends, it maps pretty well onto the shares 6893 * value used by scheduler and the round-trip conversions preserve 6894 * the original value over the entire range. 6895 */ 6896 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6897 return -ERANGE; 6898 6899 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6900 6901 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6902 } 6903 6904 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6905 struct cftype *cft) 6906 { 6907 unsigned long weight = scale_load_down(css_tg(css)->shares); 6908 int last_delta = INT_MAX; 6909 int prio, delta; 6910 6911 /* find the closest nice value to the current weight */ 6912 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6913 delta = abs(sched_prio_to_weight[prio] - weight); 6914 if (delta >= last_delta) 6915 break; 6916 last_delta = delta; 6917 } 6918 6919 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6920 } 6921 6922 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6923 struct cftype *cft, s64 nice) 6924 { 6925 unsigned long weight; 6926 int idx; 6927 6928 if (nice < MIN_NICE || nice > MAX_NICE) 6929 return -ERANGE; 6930 6931 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6932 idx = array_index_nospec(idx, 40); 6933 weight = sched_prio_to_weight[idx]; 6934 6935 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6936 } 6937 #endif 6938 6939 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6940 long period, long quota) 6941 { 6942 if (quota < 0) 6943 seq_puts(sf, "max"); 6944 else 6945 seq_printf(sf, "%ld", quota); 6946 6947 seq_printf(sf, " %ld\n", period); 6948 } 6949 6950 /* caller should put the current value in *@periodp before calling */ 6951 static int __maybe_unused cpu_period_quota_parse(char *buf, 6952 u64 *periodp, u64 *quotap) 6953 { 6954 char tok[21]; /* U64_MAX */ 6955 6956 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 6957 return -EINVAL; 6958 6959 *periodp *= NSEC_PER_USEC; 6960 6961 if (sscanf(tok, "%llu", quotap)) 6962 *quotap *= NSEC_PER_USEC; 6963 else if (!strcmp(tok, "max")) 6964 *quotap = RUNTIME_INF; 6965 else 6966 return -EINVAL; 6967 6968 return 0; 6969 } 6970 6971 #ifdef CONFIG_CFS_BANDWIDTH 6972 static int cpu_max_show(struct seq_file *sf, void *v) 6973 { 6974 struct task_group *tg = css_tg(seq_css(sf)); 6975 6976 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6977 return 0; 6978 } 6979 6980 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6981 char *buf, size_t nbytes, loff_t off) 6982 { 6983 struct task_group *tg = css_tg(of_css(of)); 6984 u64 period = tg_get_cfs_period(tg); 6985 u64 quota; 6986 int ret; 6987 6988 ret = cpu_period_quota_parse(buf, &period, "a); 6989 if (!ret) 6990 ret = tg_set_cfs_bandwidth(tg, period, quota); 6991 return ret ?: nbytes; 6992 } 6993 #endif 6994 6995 static struct cftype cpu_files[] = { 6996 #ifdef CONFIG_FAIR_GROUP_SCHED 6997 { 6998 .name = "weight", 6999 .flags = CFTYPE_NOT_ON_ROOT, 7000 .read_u64 = cpu_weight_read_u64, 7001 .write_u64 = cpu_weight_write_u64, 7002 }, 7003 { 7004 .name = "weight.nice", 7005 .flags = CFTYPE_NOT_ON_ROOT, 7006 .read_s64 = cpu_weight_nice_read_s64, 7007 .write_s64 = cpu_weight_nice_write_s64, 7008 }, 7009 #endif 7010 #ifdef CONFIG_CFS_BANDWIDTH 7011 { 7012 .name = "max", 7013 .flags = CFTYPE_NOT_ON_ROOT, 7014 .seq_show = cpu_max_show, 7015 .write = cpu_max_write, 7016 }, 7017 #endif 7018 { } /* terminate */ 7019 }; 7020 7021 struct cgroup_subsys cpu_cgrp_subsys = { 7022 .css_alloc = cpu_cgroup_css_alloc, 7023 .css_online = cpu_cgroup_css_online, 7024 .css_released = cpu_cgroup_css_released, 7025 .css_free = cpu_cgroup_css_free, 7026 .css_extra_stat_show = cpu_extra_stat_show, 7027 .fork = cpu_cgroup_fork, 7028 .can_attach = cpu_cgroup_can_attach, 7029 .attach = cpu_cgroup_attach, 7030 .legacy_cftypes = cpu_legacy_files, 7031 .dfl_cftypes = cpu_files, 7032 .early_init = true, 7033 .threaded = true, 7034 }; 7035 7036 #endif /* CONFIG_CGROUP_SCHED */ 7037 7038 void dump_cpu_task(int cpu) 7039 { 7040 pr_info("Task dump for CPU %d:\n", cpu); 7041 sched_show_task(cpu_curr(cpu)); 7042 } 7043 7044 /* 7045 * Nice levels are multiplicative, with a gentle 10% change for every 7046 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7047 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7048 * that remained on nice 0. 7049 * 7050 * The "10% effect" is relative and cumulative: from _any_ nice level, 7051 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7052 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7053 * If a task goes up by ~10% and another task goes down by ~10% then 7054 * the relative distance between them is ~25%.) 7055 */ 7056 const int sched_prio_to_weight[40] = { 7057 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7058 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7059 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7060 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7061 /* 0 */ 1024, 820, 655, 526, 423, 7062 /* 5 */ 335, 272, 215, 172, 137, 7063 /* 10 */ 110, 87, 70, 56, 45, 7064 /* 15 */ 36, 29, 23, 18, 15, 7065 }; 7066 7067 /* 7068 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7069 * 7070 * In cases where the weight does not change often, we can use the 7071 * precalculated inverse to speed up arithmetics by turning divisions 7072 * into multiplications: 7073 */ 7074 const u32 sched_prio_to_wmult[40] = { 7075 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7076 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7077 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7078 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7079 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7080 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7081 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7082 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7083 }; 7084 7085 #undef CREATE_TRACE_POINTS 7086