1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 62 /* 63 * Print a warning if need_resched is set for the given duration (if 64 * LATENCY_WARN is enabled). 65 * 66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 67 * per boot. 68 */ 69 __read_mostly int sysctl_resched_latency_warn_ms = 100; 70 __read_mostly int sysctl_resched_latency_warn_once = 1; 71 #endif /* CONFIG_SCHED_DEBUG */ 72 73 /* 74 * Number of tasks to iterate in a single balance run. 75 * Limited because this is done with IRQs disabled. 76 */ 77 const_debug unsigned int sysctl_sched_nr_migrate = 32; 78 79 /* 80 * period over which we measure -rt task CPU usage in us. 81 * default: 1s 82 */ 83 unsigned int sysctl_sched_rt_period = 1000000; 84 85 __read_mostly int scheduler_running; 86 87 /* 88 * part of the period that we allow rt tasks to run in us. 89 * default: 0.95s 90 */ 91 int sysctl_sched_rt_runtime = 950000; 92 93 94 /* 95 * Serialization rules: 96 * 97 * Lock order: 98 * 99 * p->pi_lock 100 * rq->lock 101 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 102 * 103 * rq1->lock 104 * rq2->lock where: rq1 < rq2 105 * 106 * Regular state: 107 * 108 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 109 * local CPU's rq->lock, it optionally removes the task from the runqueue and 110 * always looks at the local rq data structures to find the most eligible task 111 * to run next. 112 * 113 * Task enqueue is also under rq->lock, possibly taken from another CPU. 114 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 115 * the local CPU to avoid bouncing the runqueue state around [ see 116 * ttwu_queue_wakelist() ] 117 * 118 * Task wakeup, specifically wakeups that involve migration, are horribly 119 * complicated to avoid having to take two rq->locks. 120 * 121 * Special state: 122 * 123 * System-calls and anything external will use task_rq_lock() which acquires 124 * both p->pi_lock and rq->lock. As a consequence the state they change is 125 * stable while holding either lock: 126 * 127 * - sched_setaffinity()/ 128 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 129 * - set_user_nice(): p->se.load, p->*prio 130 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 131 * p->se.load, p->rt_priority, 132 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 133 * - sched_setnuma(): p->numa_preferred_nid 134 * - sched_move_task()/ 135 * cpu_cgroup_fork(): p->sched_task_group 136 * - uclamp_update_active() p->uclamp* 137 * 138 * p->state <- TASK_*: 139 * 140 * is changed locklessly using set_current_state(), __set_current_state() or 141 * set_special_state(), see their respective comments, or by 142 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 143 * concurrent self. 144 * 145 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 146 * 147 * is set by activate_task() and cleared by deactivate_task(), under 148 * rq->lock. Non-zero indicates the task is runnable, the special 149 * ON_RQ_MIGRATING state is used for migration without holding both 150 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 151 * 152 * p->on_cpu <- { 0, 1 }: 153 * 154 * is set by prepare_task() and cleared by finish_task() such that it will be 155 * set before p is scheduled-in and cleared after p is scheduled-out, both 156 * under rq->lock. Non-zero indicates the task is running on its CPU. 157 * 158 * [ The astute reader will observe that it is possible for two tasks on one 159 * CPU to have ->on_cpu = 1 at the same time. ] 160 * 161 * task_cpu(p): is changed by set_task_cpu(), the rules are: 162 * 163 * - Don't call set_task_cpu() on a blocked task: 164 * 165 * We don't care what CPU we're not running on, this simplifies hotplug, 166 * the CPU assignment of blocked tasks isn't required to be valid. 167 * 168 * - for try_to_wake_up(), called under p->pi_lock: 169 * 170 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 171 * 172 * - for migration called under rq->lock: 173 * [ see task_on_rq_migrating() in task_rq_lock() ] 174 * 175 * o move_queued_task() 176 * o detach_task() 177 * 178 * - for migration called under double_rq_lock(): 179 * 180 * o __migrate_swap_task() 181 * o push_rt_task() / pull_rt_task() 182 * o push_dl_task() / pull_dl_task() 183 * o dl_task_offline_migration() 184 * 185 */ 186 187 /* 188 * __task_rq_lock - lock the rq @p resides on. 189 */ 190 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 191 __acquires(rq->lock) 192 { 193 struct rq *rq; 194 195 lockdep_assert_held(&p->pi_lock); 196 197 for (;;) { 198 rq = task_rq(p); 199 raw_spin_lock(&rq->lock); 200 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 201 rq_pin_lock(rq, rf); 202 return rq; 203 } 204 raw_spin_unlock(&rq->lock); 205 206 while (unlikely(task_on_rq_migrating(p))) 207 cpu_relax(); 208 } 209 } 210 211 /* 212 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 213 */ 214 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 215 __acquires(p->pi_lock) 216 __acquires(rq->lock) 217 { 218 struct rq *rq; 219 220 for (;;) { 221 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 222 rq = task_rq(p); 223 raw_spin_lock(&rq->lock); 224 /* 225 * move_queued_task() task_rq_lock() 226 * 227 * ACQUIRE (rq->lock) 228 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 229 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 230 * [S] ->cpu = new_cpu [L] task_rq() 231 * [L] ->on_rq 232 * RELEASE (rq->lock) 233 * 234 * If we observe the old CPU in task_rq_lock(), the acquire of 235 * the old rq->lock will fully serialize against the stores. 236 * 237 * If we observe the new CPU in task_rq_lock(), the address 238 * dependency headed by '[L] rq = task_rq()' and the acquire 239 * will pair with the WMB to ensure we then also see migrating. 240 */ 241 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 242 rq_pin_lock(rq, rf); 243 return rq; 244 } 245 raw_spin_unlock(&rq->lock); 246 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 247 248 while (unlikely(task_on_rq_migrating(p))) 249 cpu_relax(); 250 } 251 } 252 253 /* 254 * RQ-clock updating methods: 255 */ 256 257 static void update_rq_clock_task(struct rq *rq, s64 delta) 258 { 259 /* 260 * In theory, the compile should just see 0 here, and optimize out the call 261 * to sched_rt_avg_update. But I don't trust it... 262 */ 263 s64 __maybe_unused steal = 0, irq_delta = 0; 264 265 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 266 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 267 268 /* 269 * Since irq_time is only updated on {soft,}irq_exit, we might run into 270 * this case when a previous update_rq_clock() happened inside a 271 * {soft,}irq region. 272 * 273 * When this happens, we stop ->clock_task and only update the 274 * prev_irq_time stamp to account for the part that fit, so that a next 275 * update will consume the rest. This ensures ->clock_task is 276 * monotonic. 277 * 278 * It does however cause some slight miss-attribution of {soft,}irq 279 * time, a more accurate solution would be to update the irq_time using 280 * the current rq->clock timestamp, except that would require using 281 * atomic ops. 282 */ 283 if (irq_delta > delta) 284 irq_delta = delta; 285 286 rq->prev_irq_time += irq_delta; 287 delta -= irq_delta; 288 #endif 289 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 290 if (static_key_false((¶virt_steal_rq_enabled))) { 291 steal = paravirt_steal_clock(cpu_of(rq)); 292 steal -= rq->prev_steal_time_rq; 293 294 if (unlikely(steal > delta)) 295 steal = delta; 296 297 rq->prev_steal_time_rq += steal; 298 delta -= steal; 299 } 300 #endif 301 302 rq->clock_task += delta; 303 304 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 305 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 306 update_irq_load_avg(rq, irq_delta + steal); 307 #endif 308 update_rq_clock_pelt(rq, delta); 309 } 310 311 void update_rq_clock(struct rq *rq) 312 { 313 s64 delta; 314 315 lockdep_assert_held(&rq->lock); 316 317 if (rq->clock_update_flags & RQCF_ACT_SKIP) 318 return; 319 320 #ifdef CONFIG_SCHED_DEBUG 321 if (sched_feat(WARN_DOUBLE_CLOCK)) 322 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 323 rq->clock_update_flags |= RQCF_UPDATED; 324 #endif 325 326 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 327 if (delta < 0) 328 return; 329 rq->clock += delta; 330 update_rq_clock_task(rq, delta); 331 } 332 333 #ifdef CONFIG_SCHED_HRTICK 334 /* 335 * Use HR-timers to deliver accurate preemption points. 336 */ 337 338 static void hrtick_clear(struct rq *rq) 339 { 340 if (hrtimer_active(&rq->hrtick_timer)) 341 hrtimer_cancel(&rq->hrtick_timer); 342 } 343 344 /* 345 * High-resolution timer tick. 346 * Runs from hardirq context with interrupts disabled. 347 */ 348 static enum hrtimer_restart hrtick(struct hrtimer *timer) 349 { 350 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 351 struct rq_flags rf; 352 353 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 354 355 rq_lock(rq, &rf); 356 update_rq_clock(rq); 357 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 358 rq_unlock(rq, &rf); 359 360 return HRTIMER_NORESTART; 361 } 362 363 #ifdef CONFIG_SMP 364 365 static void __hrtick_restart(struct rq *rq) 366 { 367 struct hrtimer *timer = &rq->hrtick_timer; 368 ktime_t time = rq->hrtick_time; 369 370 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 371 } 372 373 /* 374 * called from hardirq (IPI) context 375 */ 376 static void __hrtick_start(void *arg) 377 { 378 struct rq *rq = arg; 379 struct rq_flags rf; 380 381 rq_lock(rq, &rf); 382 __hrtick_restart(rq); 383 rq_unlock(rq, &rf); 384 } 385 386 /* 387 * Called to set the hrtick timer state. 388 * 389 * called with rq->lock held and irqs disabled 390 */ 391 void hrtick_start(struct rq *rq, u64 delay) 392 { 393 struct hrtimer *timer = &rq->hrtick_timer; 394 s64 delta; 395 396 /* 397 * Don't schedule slices shorter than 10000ns, that just 398 * doesn't make sense and can cause timer DoS. 399 */ 400 delta = max_t(s64, delay, 10000LL); 401 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 402 403 if (rq == this_rq()) 404 __hrtick_restart(rq); 405 else 406 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 407 } 408 409 #else 410 /* 411 * Called to set the hrtick timer state. 412 * 413 * called with rq->lock held and irqs disabled 414 */ 415 void hrtick_start(struct rq *rq, u64 delay) 416 { 417 /* 418 * Don't schedule slices shorter than 10000ns, that just 419 * doesn't make sense. Rely on vruntime for fairness. 420 */ 421 delay = max_t(u64, delay, 10000LL); 422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 423 HRTIMER_MODE_REL_PINNED_HARD); 424 } 425 426 #endif /* CONFIG_SMP */ 427 428 static void hrtick_rq_init(struct rq *rq) 429 { 430 #ifdef CONFIG_SMP 431 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 432 #endif 433 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 434 rq->hrtick_timer.function = hrtick; 435 } 436 #else /* CONFIG_SCHED_HRTICK */ 437 static inline void hrtick_clear(struct rq *rq) 438 { 439 } 440 441 static inline void hrtick_rq_init(struct rq *rq) 442 { 443 } 444 #endif /* CONFIG_SCHED_HRTICK */ 445 446 /* 447 * cmpxchg based fetch_or, macro so it works for different integer types 448 */ 449 #define fetch_or(ptr, mask) \ 450 ({ \ 451 typeof(ptr) _ptr = (ptr); \ 452 typeof(mask) _mask = (mask); \ 453 typeof(*_ptr) _old, _val = *_ptr; \ 454 \ 455 for (;;) { \ 456 _old = cmpxchg(_ptr, _val, _val | _mask); \ 457 if (_old == _val) \ 458 break; \ 459 _val = _old; \ 460 } \ 461 _old; \ 462 }) 463 464 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 465 /* 466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 467 * this avoids any races wrt polling state changes and thereby avoids 468 * spurious IPIs. 469 */ 470 static bool set_nr_and_not_polling(struct task_struct *p) 471 { 472 struct thread_info *ti = task_thread_info(p); 473 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 474 } 475 476 /* 477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 478 * 479 * If this returns true, then the idle task promises to call 480 * sched_ttwu_pending() and reschedule soon. 481 */ 482 static bool set_nr_if_polling(struct task_struct *p) 483 { 484 struct thread_info *ti = task_thread_info(p); 485 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 486 487 for (;;) { 488 if (!(val & _TIF_POLLING_NRFLAG)) 489 return false; 490 if (val & _TIF_NEED_RESCHED) 491 return true; 492 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 493 if (old == val) 494 break; 495 val = old; 496 } 497 return true; 498 } 499 500 #else 501 static bool set_nr_and_not_polling(struct task_struct *p) 502 { 503 set_tsk_need_resched(p); 504 return true; 505 } 506 507 #ifdef CONFIG_SMP 508 static bool set_nr_if_polling(struct task_struct *p) 509 { 510 return false; 511 } 512 #endif 513 #endif 514 515 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 516 { 517 struct wake_q_node *node = &task->wake_q; 518 519 /* 520 * Atomically grab the task, if ->wake_q is !nil already it means 521 * it's already queued (either by us or someone else) and will get the 522 * wakeup due to that. 523 * 524 * In order to ensure that a pending wakeup will observe our pending 525 * state, even in the failed case, an explicit smp_mb() must be used. 526 */ 527 smp_mb__before_atomic(); 528 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 529 return false; 530 531 /* 532 * The head is context local, there can be no concurrency. 533 */ 534 *head->lastp = node; 535 head->lastp = &node->next; 536 return true; 537 } 538 539 /** 540 * wake_q_add() - queue a wakeup for 'later' waking. 541 * @head: the wake_q_head to add @task to 542 * @task: the task to queue for 'later' wakeup 543 * 544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 546 * instantly. 547 * 548 * This function must be used as-if it were wake_up_process(); IOW the task 549 * must be ready to be woken at this location. 550 */ 551 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 552 { 553 if (__wake_q_add(head, task)) 554 get_task_struct(task); 555 } 556 557 /** 558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 559 * @head: the wake_q_head to add @task to 560 * @task: the task to queue for 'later' wakeup 561 * 562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 564 * instantly. 565 * 566 * This function must be used as-if it were wake_up_process(); IOW the task 567 * must be ready to be woken at this location. 568 * 569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 570 * that already hold reference to @task can call the 'safe' version and trust 571 * wake_q to do the right thing depending whether or not the @task is already 572 * queued for wakeup. 573 */ 574 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 575 { 576 if (!__wake_q_add(head, task)) 577 put_task_struct(task); 578 } 579 580 void wake_up_q(struct wake_q_head *head) 581 { 582 struct wake_q_node *node = head->first; 583 584 while (node != WAKE_Q_TAIL) { 585 struct task_struct *task; 586 587 task = container_of(node, struct task_struct, wake_q); 588 BUG_ON(!task); 589 /* Task can safely be re-inserted now: */ 590 node = node->next; 591 task->wake_q.next = NULL; 592 593 /* 594 * wake_up_process() executes a full barrier, which pairs with 595 * the queueing in wake_q_add() so as not to miss wakeups. 596 */ 597 wake_up_process(task); 598 put_task_struct(task); 599 } 600 } 601 602 /* 603 * resched_curr - mark rq's current task 'to be rescheduled now'. 604 * 605 * On UP this means the setting of the need_resched flag, on SMP it 606 * might also involve a cross-CPU call to trigger the scheduler on 607 * the target CPU. 608 */ 609 void resched_curr(struct rq *rq) 610 { 611 struct task_struct *curr = rq->curr; 612 int cpu; 613 614 lockdep_assert_held(&rq->lock); 615 616 if (test_tsk_need_resched(curr)) 617 return; 618 619 cpu = cpu_of(rq); 620 621 if (cpu == smp_processor_id()) { 622 set_tsk_need_resched(curr); 623 set_preempt_need_resched(); 624 return; 625 } 626 627 if (set_nr_and_not_polling(curr)) 628 smp_send_reschedule(cpu); 629 else 630 trace_sched_wake_idle_without_ipi(cpu); 631 } 632 633 void resched_cpu(int cpu) 634 { 635 struct rq *rq = cpu_rq(cpu); 636 unsigned long flags; 637 638 raw_spin_lock_irqsave(&rq->lock, flags); 639 if (cpu_online(cpu) || cpu == smp_processor_id()) 640 resched_curr(rq); 641 raw_spin_unlock_irqrestore(&rq->lock, flags); 642 } 643 644 #ifdef CONFIG_SMP 645 #ifdef CONFIG_NO_HZ_COMMON 646 /* 647 * In the semi idle case, use the nearest busy CPU for migrating timers 648 * from an idle CPU. This is good for power-savings. 649 * 650 * We don't do similar optimization for completely idle system, as 651 * selecting an idle CPU will add more delays to the timers than intended 652 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 653 */ 654 int get_nohz_timer_target(void) 655 { 656 int i, cpu = smp_processor_id(), default_cpu = -1; 657 struct sched_domain *sd; 658 659 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 660 if (!idle_cpu(cpu)) 661 return cpu; 662 default_cpu = cpu; 663 } 664 665 rcu_read_lock(); 666 for_each_domain(cpu, sd) { 667 for_each_cpu_and(i, sched_domain_span(sd), 668 housekeeping_cpumask(HK_FLAG_TIMER)) { 669 if (cpu == i) 670 continue; 671 672 if (!idle_cpu(i)) { 673 cpu = i; 674 goto unlock; 675 } 676 } 677 } 678 679 if (default_cpu == -1) 680 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 681 cpu = default_cpu; 682 unlock: 683 rcu_read_unlock(); 684 return cpu; 685 } 686 687 /* 688 * When add_timer_on() enqueues a timer into the timer wheel of an 689 * idle CPU then this timer might expire before the next timer event 690 * which is scheduled to wake up that CPU. In case of a completely 691 * idle system the next event might even be infinite time into the 692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 693 * leaves the inner idle loop so the newly added timer is taken into 694 * account when the CPU goes back to idle and evaluates the timer 695 * wheel for the next timer event. 696 */ 697 static void wake_up_idle_cpu(int cpu) 698 { 699 struct rq *rq = cpu_rq(cpu); 700 701 if (cpu == smp_processor_id()) 702 return; 703 704 if (set_nr_and_not_polling(rq->idle)) 705 smp_send_reschedule(cpu); 706 else 707 trace_sched_wake_idle_without_ipi(cpu); 708 } 709 710 static bool wake_up_full_nohz_cpu(int cpu) 711 { 712 /* 713 * We just need the target to call irq_exit() and re-evaluate 714 * the next tick. The nohz full kick at least implies that. 715 * If needed we can still optimize that later with an 716 * empty IRQ. 717 */ 718 if (cpu_is_offline(cpu)) 719 return true; /* Don't try to wake offline CPUs. */ 720 if (tick_nohz_full_cpu(cpu)) { 721 if (cpu != smp_processor_id() || 722 tick_nohz_tick_stopped()) 723 tick_nohz_full_kick_cpu(cpu); 724 return true; 725 } 726 727 return false; 728 } 729 730 /* 731 * Wake up the specified CPU. If the CPU is going offline, it is the 732 * caller's responsibility to deal with the lost wakeup, for example, 733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 734 */ 735 void wake_up_nohz_cpu(int cpu) 736 { 737 if (!wake_up_full_nohz_cpu(cpu)) 738 wake_up_idle_cpu(cpu); 739 } 740 741 static void nohz_csd_func(void *info) 742 { 743 struct rq *rq = info; 744 int cpu = cpu_of(rq); 745 unsigned int flags; 746 747 /* 748 * Release the rq::nohz_csd. 749 */ 750 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 751 WARN_ON(!(flags & NOHZ_KICK_MASK)); 752 753 rq->idle_balance = idle_cpu(cpu); 754 if (rq->idle_balance && !need_resched()) { 755 rq->nohz_idle_balance = flags; 756 raise_softirq_irqoff(SCHED_SOFTIRQ); 757 } 758 } 759 760 #endif /* CONFIG_NO_HZ_COMMON */ 761 762 #ifdef CONFIG_NO_HZ_FULL 763 bool sched_can_stop_tick(struct rq *rq) 764 { 765 int fifo_nr_running; 766 767 /* Deadline tasks, even if single, need the tick */ 768 if (rq->dl.dl_nr_running) 769 return false; 770 771 /* 772 * If there are more than one RR tasks, we need the tick to affect the 773 * actual RR behaviour. 774 */ 775 if (rq->rt.rr_nr_running) { 776 if (rq->rt.rr_nr_running == 1) 777 return true; 778 else 779 return false; 780 } 781 782 /* 783 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 784 * forced preemption between FIFO tasks. 785 */ 786 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 787 if (fifo_nr_running) 788 return true; 789 790 /* 791 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 792 * if there's more than one we need the tick for involuntary 793 * preemption. 794 */ 795 if (rq->nr_running > 1) 796 return false; 797 798 return true; 799 } 800 #endif /* CONFIG_NO_HZ_FULL */ 801 #endif /* CONFIG_SMP */ 802 803 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 804 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 805 /* 806 * Iterate task_group tree rooted at *from, calling @down when first entering a 807 * node and @up when leaving it for the final time. 808 * 809 * Caller must hold rcu_lock or sufficient equivalent. 810 */ 811 int walk_tg_tree_from(struct task_group *from, 812 tg_visitor down, tg_visitor up, void *data) 813 { 814 struct task_group *parent, *child; 815 int ret; 816 817 parent = from; 818 819 down: 820 ret = (*down)(parent, data); 821 if (ret) 822 goto out; 823 list_for_each_entry_rcu(child, &parent->children, siblings) { 824 parent = child; 825 goto down; 826 827 up: 828 continue; 829 } 830 ret = (*up)(parent, data); 831 if (ret || parent == from) 832 goto out; 833 834 child = parent; 835 parent = parent->parent; 836 if (parent) 837 goto up; 838 out: 839 return ret; 840 } 841 842 int tg_nop(struct task_group *tg, void *data) 843 { 844 return 0; 845 } 846 #endif 847 848 static void set_load_weight(struct task_struct *p, bool update_load) 849 { 850 int prio = p->static_prio - MAX_RT_PRIO; 851 struct load_weight *load = &p->se.load; 852 853 /* 854 * SCHED_IDLE tasks get minimal weight: 855 */ 856 if (task_has_idle_policy(p)) { 857 load->weight = scale_load(WEIGHT_IDLEPRIO); 858 load->inv_weight = WMULT_IDLEPRIO; 859 return; 860 } 861 862 /* 863 * SCHED_OTHER tasks have to update their load when changing their 864 * weight 865 */ 866 if (update_load && p->sched_class == &fair_sched_class) { 867 reweight_task(p, prio); 868 } else { 869 load->weight = scale_load(sched_prio_to_weight[prio]); 870 load->inv_weight = sched_prio_to_wmult[prio]; 871 } 872 } 873 874 #ifdef CONFIG_UCLAMP_TASK 875 /* 876 * Serializes updates of utilization clamp values 877 * 878 * The (slow-path) user-space triggers utilization clamp value updates which 879 * can require updates on (fast-path) scheduler's data structures used to 880 * support enqueue/dequeue operations. 881 * While the per-CPU rq lock protects fast-path update operations, user-space 882 * requests are serialized using a mutex to reduce the risk of conflicting 883 * updates or API abuses. 884 */ 885 static DEFINE_MUTEX(uclamp_mutex); 886 887 /* Max allowed minimum utilization */ 888 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 889 890 /* Max allowed maximum utilization */ 891 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 892 893 /* 894 * By default RT tasks run at the maximum performance point/capacity of the 895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 896 * SCHED_CAPACITY_SCALE. 897 * 898 * This knob allows admins to change the default behavior when uclamp is being 899 * used. In battery powered devices, particularly, running at the maximum 900 * capacity and frequency will increase energy consumption and shorten the 901 * battery life. 902 * 903 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 904 * 905 * This knob will not override the system default sched_util_clamp_min defined 906 * above. 907 */ 908 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 909 910 /* All clamps are required to be less or equal than these values */ 911 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 912 913 /* 914 * This static key is used to reduce the uclamp overhead in the fast path. It 915 * primarily disables the call to uclamp_rq_{inc, dec}() in 916 * enqueue/dequeue_task(). 917 * 918 * This allows users to continue to enable uclamp in their kernel config with 919 * minimum uclamp overhead in the fast path. 920 * 921 * As soon as userspace modifies any of the uclamp knobs, the static key is 922 * enabled, since we have an actual users that make use of uclamp 923 * functionality. 924 * 925 * The knobs that would enable this static key are: 926 * 927 * * A task modifying its uclamp value with sched_setattr(). 928 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 929 * * An admin modifying the cgroup cpu.uclamp.{min, max} 930 */ 931 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 932 933 /* Integer rounded range for each bucket */ 934 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 935 936 #define for_each_clamp_id(clamp_id) \ 937 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 938 939 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 940 { 941 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 942 } 943 944 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 945 { 946 if (clamp_id == UCLAMP_MIN) 947 return 0; 948 return SCHED_CAPACITY_SCALE; 949 } 950 951 static inline void uclamp_se_set(struct uclamp_se *uc_se, 952 unsigned int value, bool user_defined) 953 { 954 uc_se->value = value; 955 uc_se->bucket_id = uclamp_bucket_id(value); 956 uc_se->user_defined = user_defined; 957 } 958 959 static inline unsigned int 960 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 961 unsigned int clamp_value) 962 { 963 /* 964 * Avoid blocked utilization pushing up the frequency when we go 965 * idle (which drops the max-clamp) by retaining the last known 966 * max-clamp. 967 */ 968 if (clamp_id == UCLAMP_MAX) { 969 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 970 return clamp_value; 971 } 972 973 return uclamp_none(UCLAMP_MIN); 974 } 975 976 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 977 unsigned int clamp_value) 978 { 979 /* Reset max-clamp retention only on idle exit */ 980 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 981 return; 982 983 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 984 } 985 986 static inline 987 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 988 unsigned int clamp_value) 989 { 990 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 991 int bucket_id = UCLAMP_BUCKETS - 1; 992 993 /* 994 * Since both min and max clamps are max aggregated, find the 995 * top most bucket with tasks in. 996 */ 997 for ( ; bucket_id >= 0; bucket_id--) { 998 if (!bucket[bucket_id].tasks) 999 continue; 1000 return bucket[bucket_id].value; 1001 } 1002 1003 /* No tasks -- default clamp values */ 1004 return uclamp_idle_value(rq, clamp_id, clamp_value); 1005 } 1006 1007 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1008 { 1009 unsigned int default_util_min; 1010 struct uclamp_se *uc_se; 1011 1012 lockdep_assert_held(&p->pi_lock); 1013 1014 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1015 1016 /* Only sync if user didn't override the default */ 1017 if (uc_se->user_defined) 1018 return; 1019 1020 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1021 uclamp_se_set(uc_se, default_util_min, false); 1022 } 1023 1024 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1025 { 1026 struct rq_flags rf; 1027 struct rq *rq; 1028 1029 if (!rt_task(p)) 1030 return; 1031 1032 /* Protect updates to p->uclamp_* */ 1033 rq = task_rq_lock(p, &rf); 1034 __uclamp_update_util_min_rt_default(p); 1035 task_rq_unlock(rq, p, &rf); 1036 } 1037 1038 static void uclamp_sync_util_min_rt_default(void) 1039 { 1040 struct task_struct *g, *p; 1041 1042 /* 1043 * copy_process() sysctl_uclamp 1044 * uclamp_min_rt = X; 1045 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1046 * // link thread smp_mb__after_spinlock() 1047 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1048 * sched_post_fork() for_each_process_thread() 1049 * __uclamp_sync_rt() __uclamp_sync_rt() 1050 * 1051 * Ensures that either sched_post_fork() will observe the new 1052 * uclamp_min_rt or for_each_process_thread() will observe the new 1053 * task. 1054 */ 1055 read_lock(&tasklist_lock); 1056 smp_mb__after_spinlock(); 1057 read_unlock(&tasklist_lock); 1058 1059 rcu_read_lock(); 1060 for_each_process_thread(g, p) 1061 uclamp_update_util_min_rt_default(p); 1062 rcu_read_unlock(); 1063 } 1064 1065 static inline struct uclamp_se 1066 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1067 { 1068 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1069 #ifdef CONFIG_UCLAMP_TASK_GROUP 1070 struct uclamp_se uc_max; 1071 1072 /* 1073 * Tasks in autogroups or root task group will be 1074 * restricted by system defaults. 1075 */ 1076 if (task_group_is_autogroup(task_group(p))) 1077 return uc_req; 1078 if (task_group(p) == &root_task_group) 1079 return uc_req; 1080 1081 uc_max = task_group(p)->uclamp[clamp_id]; 1082 if (uc_req.value > uc_max.value || !uc_req.user_defined) 1083 return uc_max; 1084 #endif 1085 1086 return uc_req; 1087 } 1088 1089 /* 1090 * The effective clamp bucket index of a task depends on, by increasing 1091 * priority: 1092 * - the task specific clamp value, when explicitly requested from userspace 1093 * - the task group effective clamp value, for tasks not either in the root 1094 * group or in an autogroup 1095 * - the system default clamp value, defined by the sysadmin 1096 */ 1097 static inline struct uclamp_se 1098 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1099 { 1100 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1101 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1102 1103 /* System default restrictions always apply */ 1104 if (unlikely(uc_req.value > uc_max.value)) 1105 return uc_max; 1106 1107 return uc_req; 1108 } 1109 1110 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1111 { 1112 struct uclamp_se uc_eff; 1113 1114 /* Task currently refcounted: use back-annotated (effective) value */ 1115 if (p->uclamp[clamp_id].active) 1116 return (unsigned long)p->uclamp[clamp_id].value; 1117 1118 uc_eff = uclamp_eff_get(p, clamp_id); 1119 1120 return (unsigned long)uc_eff.value; 1121 } 1122 1123 /* 1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1126 * updates the rq's clamp value if required. 1127 * 1128 * Tasks can have a task-specific value requested from user-space, track 1129 * within each bucket the maximum value for tasks refcounted in it. 1130 * This "local max aggregation" allows to track the exact "requested" value 1131 * for each bucket when all its RUNNABLE tasks require the same clamp. 1132 */ 1133 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1134 enum uclamp_id clamp_id) 1135 { 1136 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1137 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1138 struct uclamp_bucket *bucket; 1139 1140 lockdep_assert_held(&rq->lock); 1141 1142 /* Update task effective clamp */ 1143 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1144 1145 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1146 bucket->tasks++; 1147 uc_se->active = true; 1148 1149 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1150 1151 /* 1152 * Local max aggregation: rq buckets always track the max 1153 * "requested" clamp value of its RUNNABLE tasks. 1154 */ 1155 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1156 bucket->value = uc_se->value; 1157 1158 if (uc_se->value > READ_ONCE(uc_rq->value)) 1159 WRITE_ONCE(uc_rq->value, uc_se->value); 1160 } 1161 1162 /* 1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1164 * is released. If this is the last task reference counting the rq's max 1165 * active clamp value, then the rq's clamp value is updated. 1166 * 1167 * Both refcounted tasks and rq's cached clamp values are expected to be 1168 * always valid. If it's detected they are not, as defensive programming, 1169 * enforce the expected state and warn. 1170 */ 1171 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1172 enum uclamp_id clamp_id) 1173 { 1174 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1175 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1176 struct uclamp_bucket *bucket; 1177 unsigned int bkt_clamp; 1178 unsigned int rq_clamp; 1179 1180 lockdep_assert_held(&rq->lock); 1181 1182 /* 1183 * If sched_uclamp_used was enabled after task @p was enqueued, 1184 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1185 * 1186 * In this case the uc_se->active flag should be false since no uclamp 1187 * accounting was performed at enqueue time and we can just return 1188 * here. 1189 * 1190 * Need to be careful of the following enqueue/dequeue ordering 1191 * problem too 1192 * 1193 * enqueue(taskA) 1194 * // sched_uclamp_used gets enabled 1195 * enqueue(taskB) 1196 * dequeue(taskA) 1197 * // Must not decrement bucket->tasks here 1198 * dequeue(taskB) 1199 * 1200 * where we could end up with stale data in uc_se and 1201 * bucket[uc_se->bucket_id]. 1202 * 1203 * The following check here eliminates the possibility of such race. 1204 */ 1205 if (unlikely(!uc_se->active)) 1206 return; 1207 1208 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1209 1210 SCHED_WARN_ON(!bucket->tasks); 1211 if (likely(bucket->tasks)) 1212 bucket->tasks--; 1213 1214 uc_se->active = false; 1215 1216 /* 1217 * Keep "local max aggregation" simple and accept to (possibly) 1218 * overboost some RUNNABLE tasks in the same bucket. 1219 * The rq clamp bucket value is reset to its base value whenever 1220 * there are no more RUNNABLE tasks refcounting it. 1221 */ 1222 if (likely(bucket->tasks)) 1223 return; 1224 1225 rq_clamp = READ_ONCE(uc_rq->value); 1226 /* 1227 * Defensive programming: this should never happen. If it happens, 1228 * e.g. due to future modification, warn and fixup the expected value. 1229 */ 1230 SCHED_WARN_ON(bucket->value > rq_clamp); 1231 if (bucket->value >= rq_clamp) { 1232 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1233 WRITE_ONCE(uc_rq->value, bkt_clamp); 1234 } 1235 } 1236 1237 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1238 { 1239 enum uclamp_id clamp_id; 1240 1241 /* 1242 * Avoid any overhead until uclamp is actually used by the userspace. 1243 * 1244 * The condition is constructed such that a NOP is generated when 1245 * sched_uclamp_used is disabled. 1246 */ 1247 if (!static_branch_unlikely(&sched_uclamp_used)) 1248 return; 1249 1250 if (unlikely(!p->sched_class->uclamp_enabled)) 1251 return; 1252 1253 for_each_clamp_id(clamp_id) 1254 uclamp_rq_inc_id(rq, p, clamp_id); 1255 1256 /* Reset clamp idle holding when there is one RUNNABLE task */ 1257 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1258 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1259 } 1260 1261 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1262 { 1263 enum uclamp_id clamp_id; 1264 1265 /* 1266 * Avoid any overhead until uclamp is actually used by the userspace. 1267 * 1268 * The condition is constructed such that a NOP is generated when 1269 * sched_uclamp_used is disabled. 1270 */ 1271 if (!static_branch_unlikely(&sched_uclamp_used)) 1272 return; 1273 1274 if (unlikely(!p->sched_class->uclamp_enabled)) 1275 return; 1276 1277 for_each_clamp_id(clamp_id) 1278 uclamp_rq_dec_id(rq, p, clamp_id); 1279 } 1280 1281 static inline void 1282 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1283 { 1284 struct rq_flags rf; 1285 struct rq *rq; 1286 1287 /* 1288 * Lock the task and the rq where the task is (or was) queued. 1289 * 1290 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1291 * price to pay to safely serialize util_{min,max} updates with 1292 * enqueues, dequeues and migration operations. 1293 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1294 */ 1295 rq = task_rq_lock(p, &rf); 1296 1297 /* 1298 * Setting the clamp bucket is serialized by task_rq_lock(). 1299 * If the task is not yet RUNNABLE and its task_struct is not 1300 * affecting a valid clamp bucket, the next time it's enqueued, 1301 * it will already see the updated clamp bucket value. 1302 */ 1303 if (p->uclamp[clamp_id].active) { 1304 uclamp_rq_dec_id(rq, p, clamp_id); 1305 uclamp_rq_inc_id(rq, p, clamp_id); 1306 } 1307 1308 task_rq_unlock(rq, p, &rf); 1309 } 1310 1311 #ifdef CONFIG_UCLAMP_TASK_GROUP 1312 static inline void 1313 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1314 unsigned int clamps) 1315 { 1316 enum uclamp_id clamp_id; 1317 struct css_task_iter it; 1318 struct task_struct *p; 1319 1320 css_task_iter_start(css, 0, &it); 1321 while ((p = css_task_iter_next(&it))) { 1322 for_each_clamp_id(clamp_id) { 1323 if ((0x1 << clamp_id) & clamps) 1324 uclamp_update_active(p, clamp_id); 1325 } 1326 } 1327 css_task_iter_end(&it); 1328 } 1329 1330 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1331 static void uclamp_update_root_tg(void) 1332 { 1333 struct task_group *tg = &root_task_group; 1334 1335 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1336 sysctl_sched_uclamp_util_min, false); 1337 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1338 sysctl_sched_uclamp_util_max, false); 1339 1340 rcu_read_lock(); 1341 cpu_util_update_eff(&root_task_group.css); 1342 rcu_read_unlock(); 1343 } 1344 #else 1345 static void uclamp_update_root_tg(void) { } 1346 #endif 1347 1348 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1349 void *buffer, size_t *lenp, loff_t *ppos) 1350 { 1351 bool update_root_tg = false; 1352 int old_min, old_max, old_min_rt; 1353 int result; 1354 1355 mutex_lock(&uclamp_mutex); 1356 old_min = sysctl_sched_uclamp_util_min; 1357 old_max = sysctl_sched_uclamp_util_max; 1358 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1359 1360 result = proc_dointvec(table, write, buffer, lenp, ppos); 1361 if (result) 1362 goto undo; 1363 if (!write) 1364 goto done; 1365 1366 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1367 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1368 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1369 1370 result = -EINVAL; 1371 goto undo; 1372 } 1373 1374 if (old_min != sysctl_sched_uclamp_util_min) { 1375 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1376 sysctl_sched_uclamp_util_min, false); 1377 update_root_tg = true; 1378 } 1379 if (old_max != sysctl_sched_uclamp_util_max) { 1380 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1381 sysctl_sched_uclamp_util_max, false); 1382 update_root_tg = true; 1383 } 1384 1385 if (update_root_tg) { 1386 static_branch_enable(&sched_uclamp_used); 1387 uclamp_update_root_tg(); 1388 } 1389 1390 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1391 static_branch_enable(&sched_uclamp_used); 1392 uclamp_sync_util_min_rt_default(); 1393 } 1394 1395 /* 1396 * We update all RUNNABLE tasks only when task groups are in use. 1397 * Otherwise, keep it simple and do just a lazy update at each next 1398 * task enqueue time. 1399 */ 1400 1401 goto done; 1402 1403 undo: 1404 sysctl_sched_uclamp_util_min = old_min; 1405 sysctl_sched_uclamp_util_max = old_max; 1406 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1407 done: 1408 mutex_unlock(&uclamp_mutex); 1409 1410 return result; 1411 } 1412 1413 static int uclamp_validate(struct task_struct *p, 1414 const struct sched_attr *attr) 1415 { 1416 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1417 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1418 1419 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1420 util_min = attr->sched_util_min; 1421 1422 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1423 return -EINVAL; 1424 } 1425 1426 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1427 util_max = attr->sched_util_max; 1428 1429 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1430 return -EINVAL; 1431 } 1432 1433 if (util_min != -1 && util_max != -1 && util_min > util_max) 1434 return -EINVAL; 1435 1436 /* 1437 * We have valid uclamp attributes; make sure uclamp is enabled. 1438 * 1439 * We need to do that here, because enabling static branches is a 1440 * blocking operation which obviously cannot be done while holding 1441 * scheduler locks. 1442 */ 1443 static_branch_enable(&sched_uclamp_used); 1444 1445 return 0; 1446 } 1447 1448 static bool uclamp_reset(const struct sched_attr *attr, 1449 enum uclamp_id clamp_id, 1450 struct uclamp_se *uc_se) 1451 { 1452 /* Reset on sched class change for a non user-defined clamp value. */ 1453 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1454 !uc_se->user_defined) 1455 return true; 1456 1457 /* Reset on sched_util_{min,max} == -1. */ 1458 if (clamp_id == UCLAMP_MIN && 1459 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1460 attr->sched_util_min == -1) { 1461 return true; 1462 } 1463 1464 if (clamp_id == UCLAMP_MAX && 1465 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1466 attr->sched_util_max == -1) { 1467 return true; 1468 } 1469 1470 return false; 1471 } 1472 1473 static void __setscheduler_uclamp(struct task_struct *p, 1474 const struct sched_attr *attr) 1475 { 1476 enum uclamp_id clamp_id; 1477 1478 for_each_clamp_id(clamp_id) { 1479 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1480 unsigned int value; 1481 1482 if (!uclamp_reset(attr, clamp_id, uc_se)) 1483 continue; 1484 1485 /* 1486 * RT by default have a 100% boost value that could be modified 1487 * at runtime. 1488 */ 1489 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1490 value = sysctl_sched_uclamp_util_min_rt_default; 1491 else 1492 value = uclamp_none(clamp_id); 1493 1494 uclamp_se_set(uc_se, value, false); 1495 1496 } 1497 1498 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1499 return; 1500 1501 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1502 attr->sched_util_min != -1) { 1503 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1504 attr->sched_util_min, true); 1505 } 1506 1507 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1508 attr->sched_util_max != -1) { 1509 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1510 attr->sched_util_max, true); 1511 } 1512 } 1513 1514 static void uclamp_fork(struct task_struct *p) 1515 { 1516 enum uclamp_id clamp_id; 1517 1518 /* 1519 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1520 * as the task is still at its early fork stages. 1521 */ 1522 for_each_clamp_id(clamp_id) 1523 p->uclamp[clamp_id].active = false; 1524 1525 if (likely(!p->sched_reset_on_fork)) 1526 return; 1527 1528 for_each_clamp_id(clamp_id) { 1529 uclamp_se_set(&p->uclamp_req[clamp_id], 1530 uclamp_none(clamp_id), false); 1531 } 1532 } 1533 1534 static void uclamp_post_fork(struct task_struct *p) 1535 { 1536 uclamp_update_util_min_rt_default(p); 1537 } 1538 1539 static void __init init_uclamp_rq(struct rq *rq) 1540 { 1541 enum uclamp_id clamp_id; 1542 struct uclamp_rq *uc_rq = rq->uclamp; 1543 1544 for_each_clamp_id(clamp_id) { 1545 uc_rq[clamp_id] = (struct uclamp_rq) { 1546 .value = uclamp_none(clamp_id) 1547 }; 1548 } 1549 1550 rq->uclamp_flags = 0; 1551 } 1552 1553 static void __init init_uclamp(void) 1554 { 1555 struct uclamp_se uc_max = {}; 1556 enum uclamp_id clamp_id; 1557 int cpu; 1558 1559 for_each_possible_cpu(cpu) 1560 init_uclamp_rq(cpu_rq(cpu)); 1561 1562 for_each_clamp_id(clamp_id) { 1563 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1564 uclamp_none(clamp_id), false); 1565 } 1566 1567 /* System defaults allow max clamp values for both indexes */ 1568 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1569 for_each_clamp_id(clamp_id) { 1570 uclamp_default[clamp_id] = uc_max; 1571 #ifdef CONFIG_UCLAMP_TASK_GROUP 1572 root_task_group.uclamp_req[clamp_id] = uc_max; 1573 root_task_group.uclamp[clamp_id] = uc_max; 1574 #endif 1575 } 1576 } 1577 1578 #else /* CONFIG_UCLAMP_TASK */ 1579 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1580 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1581 static inline int uclamp_validate(struct task_struct *p, 1582 const struct sched_attr *attr) 1583 { 1584 return -EOPNOTSUPP; 1585 } 1586 static void __setscheduler_uclamp(struct task_struct *p, 1587 const struct sched_attr *attr) { } 1588 static inline void uclamp_fork(struct task_struct *p) { } 1589 static inline void uclamp_post_fork(struct task_struct *p) { } 1590 static inline void init_uclamp(void) { } 1591 #endif /* CONFIG_UCLAMP_TASK */ 1592 1593 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1594 { 1595 if (!(flags & ENQUEUE_NOCLOCK)) 1596 update_rq_clock(rq); 1597 1598 if (!(flags & ENQUEUE_RESTORE)) { 1599 sched_info_queued(rq, p); 1600 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1601 } 1602 1603 uclamp_rq_inc(rq, p); 1604 p->sched_class->enqueue_task(rq, p, flags); 1605 } 1606 1607 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1608 { 1609 if (!(flags & DEQUEUE_NOCLOCK)) 1610 update_rq_clock(rq); 1611 1612 if (!(flags & DEQUEUE_SAVE)) { 1613 sched_info_dequeued(rq, p); 1614 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1615 } 1616 1617 uclamp_rq_dec(rq, p); 1618 p->sched_class->dequeue_task(rq, p, flags); 1619 } 1620 1621 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1622 { 1623 enqueue_task(rq, p, flags); 1624 1625 p->on_rq = TASK_ON_RQ_QUEUED; 1626 } 1627 1628 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1629 { 1630 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1631 1632 dequeue_task(rq, p, flags); 1633 } 1634 1635 /* 1636 * __normal_prio - return the priority that is based on the static prio 1637 */ 1638 static inline int __normal_prio(struct task_struct *p) 1639 { 1640 return p->static_prio; 1641 } 1642 1643 /* 1644 * Calculate the expected normal priority: i.e. priority 1645 * without taking RT-inheritance into account. Might be 1646 * boosted by interactivity modifiers. Changes upon fork, 1647 * setprio syscalls, and whenever the interactivity 1648 * estimator recalculates. 1649 */ 1650 static inline int normal_prio(struct task_struct *p) 1651 { 1652 int prio; 1653 1654 if (task_has_dl_policy(p)) 1655 prio = MAX_DL_PRIO-1; 1656 else if (task_has_rt_policy(p)) 1657 prio = MAX_RT_PRIO-1 - p->rt_priority; 1658 else 1659 prio = __normal_prio(p); 1660 return prio; 1661 } 1662 1663 /* 1664 * Calculate the current priority, i.e. the priority 1665 * taken into account by the scheduler. This value might 1666 * be boosted by RT tasks, or might be boosted by 1667 * interactivity modifiers. Will be RT if the task got 1668 * RT-boosted. If not then it returns p->normal_prio. 1669 */ 1670 static int effective_prio(struct task_struct *p) 1671 { 1672 p->normal_prio = normal_prio(p); 1673 /* 1674 * If we are RT tasks or we were boosted to RT priority, 1675 * keep the priority unchanged. Otherwise, update priority 1676 * to the normal priority: 1677 */ 1678 if (!rt_prio(p->prio)) 1679 return p->normal_prio; 1680 return p->prio; 1681 } 1682 1683 /** 1684 * task_curr - is this task currently executing on a CPU? 1685 * @p: the task in question. 1686 * 1687 * Return: 1 if the task is currently executing. 0 otherwise. 1688 */ 1689 inline int task_curr(const struct task_struct *p) 1690 { 1691 return cpu_curr(task_cpu(p)) == p; 1692 } 1693 1694 /* 1695 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1696 * use the balance_callback list if you want balancing. 1697 * 1698 * this means any call to check_class_changed() must be followed by a call to 1699 * balance_callback(). 1700 */ 1701 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1702 const struct sched_class *prev_class, 1703 int oldprio) 1704 { 1705 if (prev_class != p->sched_class) { 1706 if (prev_class->switched_from) 1707 prev_class->switched_from(rq, p); 1708 1709 p->sched_class->switched_to(rq, p); 1710 } else if (oldprio != p->prio || dl_task(p)) 1711 p->sched_class->prio_changed(rq, p, oldprio); 1712 } 1713 1714 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1715 { 1716 if (p->sched_class == rq->curr->sched_class) 1717 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1718 else if (p->sched_class > rq->curr->sched_class) 1719 resched_curr(rq); 1720 1721 /* 1722 * A queue event has occurred, and we're going to schedule. In 1723 * this case, we can save a useless back to back clock update. 1724 */ 1725 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1726 rq_clock_skip_update(rq); 1727 } 1728 1729 #ifdef CONFIG_SMP 1730 1731 static void 1732 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 1733 1734 static int __set_cpus_allowed_ptr(struct task_struct *p, 1735 const struct cpumask *new_mask, 1736 u32 flags); 1737 1738 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 1739 { 1740 if (likely(!p->migration_disabled)) 1741 return; 1742 1743 if (p->cpus_ptr != &p->cpus_mask) 1744 return; 1745 1746 /* 1747 * Violates locking rules! see comment in __do_set_cpus_allowed(). 1748 */ 1749 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 1750 } 1751 1752 void migrate_disable(void) 1753 { 1754 struct task_struct *p = current; 1755 1756 if (p->migration_disabled) { 1757 p->migration_disabled++; 1758 return; 1759 } 1760 1761 preempt_disable(); 1762 this_rq()->nr_pinned++; 1763 p->migration_disabled = 1; 1764 preempt_enable(); 1765 } 1766 EXPORT_SYMBOL_GPL(migrate_disable); 1767 1768 void migrate_enable(void) 1769 { 1770 struct task_struct *p = current; 1771 1772 if (p->migration_disabled > 1) { 1773 p->migration_disabled--; 1774 return; 1775 } 1776 1777 /* 1778 * Ensure stop_task runs either before or after this, and that 1779 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 1780 */ 1781 preempt_disable(); 1782 if (p->cpus_ptr != &p->cpus_mask) 1783 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 1784 /* 1785 * Mustn't clear migration_disabled() until cpus_ptr points back at the 1786 * regular cpus_mask, otherwise things that race (eg. 1787 * select_fallback_rq) get confused. 1788 */ 1789 barrier(); 1790 p->migration_disabled = 0; 1791 this_rq()->nr_pinned--; 1792 preempt_enable(); 1793 } 1794 EXPORT_SYMBOL_GPL(migrate_enable); 1795 1796 static inline bool rq_has_pinned_tasks(struct rq *rq) 1797 { 1798 return rq->nr_pinned; 1799 } 1800 1801 /* 1802 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1803 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1804 */ 1805 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1806 { 1807 /* When not in the task's cpumask, no point in looking further. */ 1808 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1809 return false; 1810 1811 /* migrate_disabled() must be allowed to finish. */ 1812 if (is_migration_disabled(p)) 1813 return cpu_online(cpu); 1814 1815 /* Non kernel threads are not allowed during either online or offline. */ 1816 if (!(p->flags & PF_KTHREAD)) 1817 return cpu_active(cpu); 1818 1819 /* KTHREAD_IS_PER_CPU is always allowed. */ 1820 if (kthread_is_per_cpu(p)) 1821 return cpu_online(cpu); 1822 1823 /* Regular kernel threads don't get to stay during offline. */ 1824 if (cpu_dying(cpu)) 1825 return false; 1826 1827 /* But are allowed during online. */ 1828 return cpu_online(cpu); 1829 } 1830 1831 /* 1832 * This is how migration works: 1833 * 1834 * 1) we invoke migration_cpu_stop() on the target CPU using 1835 * stop_one_cpu(). 1836 * 2) stopper starts to run (implicitly forcing the migrated thread 1837 * off the CPU) 1838 * 3) it checks whether the migrated task is still in the wrong runqueue. 1839 * 4) if it's in the wrong runqueue then the migration thread removes 1840 * it and puts it into the right queue. 1841 * 5) stopper completes and stop_one_cpu() returns and the migration 1842 * is done. 1843 */ 1844 1845 /* 1846 * move_queued_task - move a queued task to new rq. 1847 * 1848 * Returns (locked) new rq. Old rq's lock is released. 1849 */ 1850 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1851 struct task_struct *p, int new_cpu) 1852 { 1853 lockdep_assert_held(&rq->lock); 1854 1855 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 1856 set_task_cpu(p, new_cpu); 1857 rq_unlock(rq, rf); 1858 1859 rq = cpu_rq(new_cpu); 1860 1861 rq_lock(rq, rf); 1862 BUG_ON(task_cpu(p) != new_cpu); 1863 activate_task(rq, p, 0); 1864 check_preempt_curr(rq, p, 0); 1865 1866 return rq; 1867 } 1868 1869 struct migration_arg { 1870 struct task_struct *task; 1871 int dest_cpu; 1872 struct set_affinity_pending *pending; 1873 }; 1874 1875 /* 1876 * @refs: number of wait_for_completion() 1877 * @stop_pending: is @stop_work in use 1878 */ 1879 struct set_affinity_pending { 1880 refcount_t refs; 1881 unsigned int stop_pending; 1882 struct completion done; 1883 struct cpu_stop_work stop_work; 1884 struct migration_arg arg; 1885 }; 1886 1887 /* 1888 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1889 * this because either it can't run here any more (set_cpus_allowed() 1890 * away from this CPU, or CPU going down), or because we're 1891 * attempting to rebalance this task on exec (sched_exec). 1892 * 1893 * So we race with normal scheduler movements, but that's OK, as long 1894 * as the task is no longer on this CPU. 1895 */ 1896 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1897 struct task_struct *p, int dest_cpu) 1898 { 1899 /* Affinity changed (again). */ 1900 if (!is_cpu_allowed(p, dest_cpu)) 1901 return rq; 1902 1903 update_rq_clock(rq); 1904 rq = move_queued_task(rq, rf, p, dest_cpu); 1905 1906 return rq; 1907 } 1908 1909 /* 1910 * migration_cpu_stop - this will be executed by a highprio stopper thread 1911 * and performs thread migration by bumping thread off CPU then 1912 * 'pushing' onto another runqueue. 1913 */ 1914 static int migration_cpu_stop(void *data) 1915 { 1916 struct migration_arg *arg = data; 1917 struct set_affinity_pending *pending = arg->pending; 1918 struct task_struct *p = arg->task; 1919 int dest_cpu = arg->dest_cpu; 1920 struct rq *rq = this_rq(); 1921 bool complete = false; 1922 struct rq_flags rf; 1923 1924 /* 1925 * The original target CPU might have gone down and we might 1926 * be on another CPU but it doesn't matter. 1927 */ 1928 local_irq_save(rf.flags); 1929 /* 1930 * We need to explicitly wake pending tasks before running 1931 * __migrate_task() such that we will not miss enforcing cpus_ptr 1932 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1933 */ 1934 flush_smp_call_function_from_idle(); 1935 1936 raw_spin_lock(&p->pi_lock); 1937 rq_lock(rq, &rf); 1938 1939 /* 1940 * If we were passed a pending, then ->stop_pending was set, thus 1941 * p->migration_pending must have remained stable. 1942 */ 1943 WARN_ON_ONCE(pending && pending != p->migration_pending); 1944 1945 /* 1946 * If task_rq(p) != rq, it cannot be migrated here, because we're 1947 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1948 * we're holding p->pi_lock. 1949 */ 1950 if (task_rq(p) == rq) { 1951 if (is_migration_disabled(p)) 1952 goto out; 1953 1954 if (pending) { 1955 p->migration_pending = NULL; 1956 complete = true; 1957 } 1958 1959 if (dest_cpu < 0) { 1960 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 1961 goto out; 1962 1963 dest_cpu = cpumask_any_distribute(&p->cpus_mask); 1964 } 1965 1966 if (task_on_rq_queued(p)) 1967 rq = __migrate_task(rq, &rf, p, dest_cpu); 1968 else 1969 p->wake_cpu = dest_cpu; 1970 1971 /* 1972 * XXX __migrate_task() can fail, at which point we might end 1973 * up running on a dodgy CPU, AFAICT this can only happen 1974 * during CPU hotplug, at which point we'll get pushed out 1975 * anyway, so it's probably not a big deal. 1976 */ 1977 1978 } else if (pending) { 1979 /* 1980 * This happens when we get migrated between migrate_enable()'s 1981 * preempt_enable() and scheduling the stopper task. At that 1982 * point we're a regular task again and not current anymore. 1983 * 1984 * A !PREEMPT kernel has a giant hole here, which makes it far 1985 * more likely. 1986 */ 1987 1988 /* 1989 * The task moved before the stopper got to run. We're holding 1990 * ->pi_lock, so the allowed mask is stable - if it got 1991 * somewhere allowed, we're done. 1992 */ 1993 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 1994 p->migration_pending = NULL; 1995 complete = true; 1996 goto out; 1997 } 1998 1999 /* 2000 * When migrate_enable() hits a rq mis-match we can't reliably 2001 * determine is_migration_disabled() and so have to chase after 2002 * it. 2003 */ 2004 WARN_ON_ONCE(!pending->stop_pending); 2005 task_rq_unlock(rq, p, &rf); 2006 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2007 &pending->arg, &pending->stop_work); 2008 return 0; 2009 } 2010 out: 2011 if (pending) 2012 pending->stop_pending = false; 2013 task_rq_unlock(rq, p, &rf); 2014 2015 if (complete) 2016 complete_all(&pending->done); 2017 2018 return 0; 2019 } 2020 2021 int push_cpu_stop(void *arg) 2022 { 2023 struct rq *lowest_rq = NULL, *rq = this_rq(); 2024 struct task_struct *p = arg; 2025 2026 raw_spin_lock_irq(&p->pi_lock); 2027 raw_spin_lock(&rq->lock); 2028 2029 if (task_rq(p) != rq) 2030 goto out_unlock; 2031 2032 if (is_migration_disabled(p)) { 2033 p->migration_flags |= MDF_PUSH; 2034 goto out_unlock; 2035 } 2036 2037 p->migration_flags &= ~MDF_PUSH; 2038 2039 if (p->sched_class->find_lock_rq) 2040 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2041 2042 if (!lowest_rq) 2043 goto out_unlock; 2044 2045 // XXX validate p is still the highest prio task 2046 if (task_rq(p) == rq) { 2047 deactivate_task(rq, p, 0); 2048 set_task_cpu(p, lowest_rq->cpu); 2049 activate_task(lowest_rq, p, 0); 2050 resched_curr(lowest_rq); 2051 } 2052 2053 double_unlock_balance(rq, lowest_rq); 2054 2055 out_unlock: 2056 rq->push_busy = false; 2057 raw_spin_unlock(&rq->lock); 2058 raw_spin_unlock_irq(&p->pi_lock); 2059 2060 put_task_struct(p); 2061 return 0; 2062 } 2063 2064 /* 2065 * sched_class::set_cpus_allowed must do the below, but is not required to 2066 * actually call this function. 2067 */ 2068 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2069 { 2070 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2071 p->cpus_ptr = new_mask; 2072 return; 2073 } 2074 2075 cpumask_copy(&p->cpus_mask, new_mask); 2076 p->nr_cpus_allowed = cpumask_weight(new_mask); 2077 } 2078 2079 static void 2080 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2081 { 2082 struct rq *rq = task_rq(p); 2083 bool queued, running; 2084 2085 /* 2086 * This here violates the locking rules for affinity, since we're only 2087 * supposed to change these variables while holding both rq->lock and 2088 * p->pi_lock. 2089 * 2090 * HOWEVER, it magically works, because ttwu() is the only code that 2091 * accesses these variables under p->pi_lock and only does so after 2092 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2093 * before finish_task(). 2094 * 2095 * XXX do further audits, this smells like something putrid. 2096 */ 2097 if (flags & SCA_MIGRATE_DISABLE) 2098 SCHED_WARN_ON(!p->on_cpu); 2099 else 2100 lockdep_assert_held(&p->pi_lock); 2101 2102 queued = task_on_rq_queued(p); 2103 running = task_current(rq, p); 2104 2105 if (queued) { 2106 /* 2107 * Because __kthread_bind() calls this on blocked tasks without 2108 * holding rq->lock. 2109 */ 2110 lockdep_assert_held(&rq->lock); 2111 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2112 } 2113 if (running) 2114 put_prev_task(rq, p); 2115 2116 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2117 2118 if (queued) 2119 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2120 if (running) 2121 set_next_task(rq, p); 2122 } 2123 2124 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2125 { 2126 __do_set_cpus_allowed(p, new_mask, 0); 2127 } 2128 2129 /* 2130 * This function is wildly self concurrent; here be dragons. 2131 * 2132 * 2133 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2134 * designated task is enqueued on an allowed CPU. If that task is currently 2135 * running, we have to kick it out using the CPU stopper. 2136 * 2137 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2138 * Consider: 2139 * 2140 * Initial conditions: P0->cpus_mask = [0, 1] 2141 * 2142 * P0@CPU0 P1 2143 * 2144 * migrate_disable(); 2145 * <preempted> 2146 * set_cpus_allowed_ptr(P0, [1]); 2147 * 2148 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2149 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2150 * This means we need the following scheme: 2151 * 2152 * P0@CPU0 P1 2153 * 2154 * migrate_disable(); 2155 * <preempted> 2156 * set_cpus_allowed_ptr(P0, [1]); 2157 * <blocks> 2158 * <resumes> 2159 * migrate_enable(); 2160 * __set_cpus_allowed_ptr(); 2161 * <wakes local stopper> 2162 * `--> <woken on migration completion> 2163 * 2164 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2165 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2166 * task p are serialized by p->pi_lock, which we can leverage: the one that 2167 * should come into effect at the end of the Migrate-Disable region is the last 2168 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2169 * but we still need to properly signal those waiting tasks at the appropriate 2170 * moment. 2171 * 2172 * This is implemented using struct set_affinity_pending. The first 2173 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2174 * setup an instance of that struct and install it on the targeted task_struct. 2175 * Any and all further callers will reuse that instance. Those then wait for 2176 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2177 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2178 * 2179 * 2180 * (1) In the cases covered above. There is one more where the completion is 2181 * signaled within affine_move_task() itself: when a subsequent affinity request 2182 * occurs after the stopper bailed out due to the targeted task still being 2183 * Migrate-Disable. Consider: 2184 * 2185 * Initial conditions: P0->cpus_mask = [0, 1] 2186 * 2187 * CPU0 P1 P2 2188 * <P0> 2189 * migrate_disable(); 2190 * <preempted> 2191 * set_cpus_allowed_ptr(P0, [1]); 2192 * <blocks> 2193 * <migration/0> 2194 * migration_cpu_stop() 2195 * is_migration_disabled() 2196 * <bails> 2197 * set_cpus_allowed_ptr(P0, [0, 1]); 2198 * <signal completion> 2199 * <awakes> 2200 * 2201 * Note that the above is safe vs a concurrent migrate_enable(), as any 2202 * pending affinity completion is preceded by an uninstallation of 2203 * p->migration_pending done with p->pi_lock held. 2204 */ 2205 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2206 int dest_cpu, unsigned int flags) 2207 { 2208 struct set_affinity_pending my_pending = { }, *pending = NULL; 2209 bool stop_pending, complete = false; 2210 2211 /* Can the task run on the task's current CPU? If so, we're done */ 2212 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2213 struct task_struct *push_task = NULL; 2214 2215 if ((flags & SCA_MIGRATE_ENABLE) && 2216 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2217 rq->push_busy = true; 2218 push_task = get_task_struct(p); 2219 } 2220 2221 /* 2222 * If there are pending waiters, but no pending stop_work, 2223 * then complete now. 2224 */ 2225 pending = p->migration_pending; 2226 if (pending && !pending->stop_pending) { 2227 p->migration_pending = NULL; 2228 complete = true; 2229 } 2230 2231 task_rq_unlock(rq, p, rf); 2232 2233 if (push_task) { 2234 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2235 p, &rq->push_work); 2236 } 2237 2238 if (complete) 2239 complete_all(&pending->done); 2240 2241 return 0; 2242 } 2243 2244 if (!(flags & SCA_MIGRATE_ENABLE)) { 2245 /* serialized by p->pi_lock */ 2246 if (!p->migration_pending) { 2247 /* Install the request */ 2248 refcount_set(&my_pending.refs, 1); 2249 init_completion(&my_pending.done); 2250 my_pending.arg = (struct migration_arg) { 2251 .task = p, 2252 .dest_cpu = -1, /* any */ 2253 .pending = &my_pending, 2254 }; 2255 2256 p->migration_pending = &my_pending; 2257 } else { 2258 pending = p->migration_pending; 2259 refcount_inc(&pending->refs); 2260 } 2261 } 2262 pending = p->migration_pending; 2263 /* 2264 * - !MIGRATE_ENABLE: 2265 * we'll have installed a pending if there wasn't one already. 2266 * 2267 * - MIGRATE_ENABLE: 2268 * we're here because the current CPU isn't matching anymore, 2269 * the only way that can happen is because of a concurrent 2270 * set_cpus_allowed_ptr() call, which should then still be 2271 * pending completion. 2272 * 2273 * Either way, we really should have a @pending here. 2274 */ 2275 if (WARN_ON_ONCE(!pending)) { 2276 task_rq_unlock(rq, p, rf); 2277 return -EINVAL; 2278 } 2279 2280 if (task_running(rq, p) || p->state == TASK_WAKING) { 2281 /* 2282 * MIGRATE_ENABLE gets here because 'p == current', but for 2283 * anything else we cannot do is_migration_disabled(), punt 2284 * and have the stopper function handle it all race-free. 2285 */ 2286 stop_pending = pending->stop_pending; 2287 if (!stop_pending) 2288 pending->stop_pending = true; 2289 2290 if (flags & SCA_MIGRATE_ENABLE) 2291 p->migration_flags &= ~MDF_PUSH; 2292 2293 task_rq_unlock(rq, p, rf); 2294 2295 if (!stop_pending) { 2296 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2297 &pending->arg, &pending->stop_work); 2298 } 2299 2300 if (flags & SCA_MIGRATE_ENABLE) 2301 return 0; 2302 } else { 2303 2304 if (!is_migration_disabled(p)) { 2305 if (task_on_rq_queued(p)) 2306 rq = move_queued_task(rq, rf, p, dest_cpu); 2307 2308 if (!pending->stop_pending) { 2309 p->migration_pending = NULL; 2310 complete = true; 2311 } 2312 } 2313 task_rq_unlock(rq, p, rf); 2314 2315 if (complete) 2316 complete_all(&pending->done); 2317 } 2318 2319 wait_for_completion(&pending->done); 2320 2321 if (refcount_dec_and_test(&pending->refs)) 2322 wake_up_var(&pending->refs); /* No UaF, just an address */ 2323 2324 /* 2325 * Block the original owner of &pending until all subsequent callers 2326 * have seen the completion and decremented the refcount 2327 */ 2328 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2329 2330 /* ARGH */ 2331 WARN_ON_ONCE(my_pending.stop_pending); 2332 2333 return 0; 2334 } 2335 2336 /* 2337 * Change a given task's CPU affinity. Migrate the thread to a 2338 * proper CPU and schedule it away if the CPU it's executing on 2339 * is removed from the allowed bitmask. 2340 * 2341 * NOTE: the caller must have a valid reference to the task, the 2342 * task must not exit() & deallocate itself prematurely. The 2343 * call is not atomic; no spinlocks may be held. 2344 */ 2345 static int __set_cpus_allowed_ptr(struct task_struct *p, 2346 const struct cpumask *new_mask, 2347 u32 flags) 2348 { 2349 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2350 unsigned int dest_cpu; 2351 struct rq_flags rf; 2352 struct rq *rq; 2353 int ret = 0; 2354 2355 rq = task_rq_lock(p, &rf); 2356 update_rq_clock(rq); 2357 2358 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) { 2359 /* 2360 * Kernel threads are allowed on online && !active CPUs, 2361 * however, during cpu-hot-unplug, even these might get pushed 2362 * away if not KTHREAD_IS_PER_CPU. 2363 * 2364 * Specifically, migration_disabled() tasks must not fail the 2365 * cpumask_any_and_distribute() pick below, esp. so on 2366 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2367 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2368 */ 2369 cpu_valid_mask = cpu_online_mask; 2370 } 2371 2372 /* 2373 * Must re-check here, to close a race against __kthread_bind(), 2374 * sched_setaffinity() is not guaranteed to observe the flag. 2375 */ 2376 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2377 ret = -EINVAL; 2378 goto out; 2379 } 2380 2381 if (!(flags & SCA_MIGRATE_ENABLE)) { 2382 if (cpumask_equal(&p->cpus_mask, new_mask)) 2383 goto out; 2384 2385 if (WARN_ON_ONCE(p == current && 2386 is_migration_disabled(p) && 2387 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2388 ret = -EBUSY; 2389 goto out; 2390 } 2391 } 2392 2393 /* 2394 * Picking a ~random cpu helps in cases where we are changing affinity 2395 * for groups of tasks (ie. cpuset), so that load balancing is not 2396 * immediately required to distribute the tasks within their new mask. 2397 */ 2398 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2399 if (dest_cpu >= nr_cpu_ids) { 2400 ret = -EINVAL; 2401 goto out; 2402 } 2403 2404 __do_set_cpus_allowed(p, new_mask, flags); 2405 2406 return affine_move_task(rq, p, &rf, dest_cpu, flags); 2407 2408 out: 2409 task_rq_unlock(rq, p, &rf); 2410 2411 return ret; 2412 } 2413 2414 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2415 { 2416 return __set_cpus_allowed_ptr(p, new_mask, 0); 2417 } 2418 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2419 2420 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2421 { 2422 #ifdef CONFIG_SCHED_DEBUG 2423 /* 2424 * We should never call set_task_cpu() on a blocked task, 2425 * ttwu() will sort out the placement. 2426 */ 2427 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 2428 !p->on_rq); 2429 2430 /* 2431 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 2432 * because schedstat_wait_{start,end} rebase migrating task's wait_start 2433 * time relying on p->on_rq. 2434 */ 2435 WARN_ON_ONCE(p->state == TASK_RUNNING && 2436 p->sched_class == &fair_sched_class && 2437 (p->on_rq && !task_on_rq_migrating(p))); 2438 2439 #ifdef CONFIG_LOCKDEP 2440 /* 2441 * The caller should hold either p->pi_lock or rq->lock, when changing 2442 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 2443 * 2444 * sched_move_task() holds both and thus holding either pins the cgroup, 2445 * see task_group(). 2446 * 2447 * Furthermore, all task_rq users should acquire both locks, see 2448 * task_rq_lock(). 2449 */ 2450 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 2451 lockdep_is_held(&task_rq(p)->lock))); 2452 #endif 2453 /* 2454 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 2455 */ 2456 WARN_ON_ONCE(!cpu_online(new_cpu)); 2457 2458 WARN_ON_ONCE(is_migration_disabled(p)); 2459 #endif 2460 2461 trace_sched_migrate_task(p, new_cpu); 2462 2463 if (task_cpu(p) != new_cpu) { 2464 if (p->sched_class->migrate_task_rq) 2465 p->sched_class->migrate_task_rq(p, new_cpu); 2466 p->se.nr_migrations++; 2467 rseq_migrate(p); 2468 perf_event_task_migrate(p); 2469 } 2470 2471 __set_task_cpu(p, new_cpu); 2472 } 2473 2474 #ifdef CONFIG_NUMA_BALANCING 2475 static void __migrate_swap_task(struct task_struct *p, int cpu) 2476 { 2477 if (task_on_rq_queued(p)) { 2478 struct rq *src_rq, *dst_rq; 2479 struct rq_flags srf, drf; 2480 2481 src_rq = task_rq(p); 2482 dst_rq = cpu_rq(cpu); 2483 2484 rq_pin_lock(src_rq, &srf); 2485 rq_pin_lock(dst_rq, &drf); 2486 2487 deactivate_task(src_rq, p, 0); 2488 set_task_cpu(p, cpu); 2489 activate_task(dst_rq, p, 0); 2490 check_preempt_curr(dst_rq, p, 0); 2491 2492 rq_unpin_lock(dst_rq, &drf); 2493 rq_unpin_lock(src_rq, &srf); 2494 2495 } else { 2496 /* 2497 * Task isn't running anymore; make it appear like we migrated 2498 * it before it went to sleep. This means on wakeup we make the 2499 * previous CPU our target instead of where it really is. 2500 */ 2501 p->wake_cpu = cpu; 2502 } 2503 } 2504 2505 struct migration_swap_arg { 2506 struct task_struct *src_task, *dst_task; 2507 int src_cpu, dst_cpu; 2508 }; 2509 2510 static int migrate_swap_stop(void *data) 2511 { 2512 struct migration_swap_arg *arg = data; 2513 struct rq *src_rq, *dst_rq; 2514 int ret = -EAGAIN; 2515 2516 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2517 return -EAGAIN; 2518 2519 src_rq = cpu_rq(arg->src_cpu); 2520 dst_rq = cpu_rq(arg->dst_cpu); 2521 2522 double_raw_lock(&arg->src_task->pi_lock, 2523 &arg->dst_task->pi_lock); 2524 double_rq_lock(src_rq, dst_rq); 2525 2526 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2527 goto unlock; 2528 2529 if (task_cpu(arg->src_task) != arg->src_cpu) 2530 goto unlock; 2531 2532 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2533 goto unlock; 2534 2535 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2536 goto unlock; 2537 2538 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2539 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2540 2541 ret = 0; 2542 2543 unlock: 2544 double_rq_unlock(src_rq, dst_rq); 2545 raw_spin_unlock(&arg->dst_task->pi_lock); 2546 raw_spin_unlock(&arg->src_task->pi_lock); 2547 2548 return ret; 2549 } 2550 2551 /* 2552 * Cross migrate two tasks 2553 */ 2554 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2555 int target_cpu, int curr_cpu) 2556 { 2557 struct migration_swap_arg arg; 2558 int ret = -EINVAL; 2559 2560 arg = (struct migration_swap_arg){ 2561 .src_task = cur, 2562 .src_cpu = curr_cpu, 2563 .dst_task = p, 2564 .dst_cpu = target_cpu, 2565 }; 2566 2567 if (arg.src_cpu == arg.dst_cpu) 2568 goto out; 2569 2570 /* 2571 * These three tests are all lockless; this is OK since all of them 2572 * will be re-checked with proper locks held further down the line. 2573 */ 2574 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2575 goto out; 2576 2577 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2578 goto out; 2579 2580 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2581 goto out; 2582 2583 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2584 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2585 2586 out: 2587 return ret; 2588 } 2589 #endif /* CONFIG_NUMA_BALANCING */ 2590 2591 /* 2592 * wait_task_inactive - wait for a thread to unschedule. 2593 * 2594 * If @match_state is nonzero, it's the @p->state value just checked and 2595 * not expected to change. If it changes, i.e. @p might have woken up, 2596 * then return zero. When we succeed in waiting for @p to be off its CPU, 2597 * we return a positive number (its total switch count). If a second call 2598 * a short while later returns the same number, the caller can be sure that 2599 * @p has remained unscheduled the whole time. 2600 * 2601 * The caller must ensure that the task *will* unschedule sometime soon, 2602 * else this function might spin for a *long* time. This function can't 2603 * be called with interrupts off, or it may introduce deadlock with 2604 * smp_call_function() if an IPI is sent by the same process we are 2605 * waiting to become inactive. 2606 */ 2607 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2608 { 2609 int running, queued; 2610 struct rq_flags rf; 2611 unsigned long ncsw; 2612 struct rq *rq; 2613 2614 for (;;) { 2615 /* 2616 * We do the initial early heuristics without holding 2617 * any task-queue locks at all. We'll only try to get 2618 * the runqueue lock when things look like they will 2619 * work out! 2620 */ 2621 rq = task_rq(p); 2622 2623 /* 2624 * If the task is actively running on another CPU 2625 * still, just relax and busy-wait without holding 2626 * any locks. 2627 * 2628 * NOTE! Since we don't hold any locks, it's not 2629 * even sure that "rq" stays as the right runqueue! 2630 * But we don't care, since "task_running()" will 2631 * return false if the runqueue has changed and p 2632 * is actually now running somewhere else! 2633 */ 2634 while (task_running(rq, p)) { 2635 if (match_state && unlikely(p->state != match_state)) 2636 return 0; 2637 cpu_relax(); 2638 } 2639 2640 /* 2641 * Ok, time to look more closely! We need the rq 2642 * lock now, to be *sure*. If we're wrong, we'll 2643 * just go back and repeat. 2644 */ 2645 rq = task_rq_lock(p, &rf); 2646 trace_sched_wait_task(p); 2647 running = task_running(rq, p); 2648 queued = task_on_rq_queued(p); 2649 ncsw = 0; 2650 if (!match_state || p->state == match_state) 2651 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2652 task_rq_unlock(rq, p, &rf); 2653 2654 /* 2655 * If it changed from the expected state, bail out now. 2656 */ 2657 if (unlikely(!ncsw)) 2658 break; 2659 2660 /* 2661 * Was it really running after all now that we 2662 * checked with the proper locks actually held? 2663 * 2664 * Oops. Go back and try again.. 2665 */ 2666 if (unlikely(running)) { 2667 cpu_relax(); 2668 continue; 2669 } 2670 2671 /* 2672 * It's not enough that it's not actively running, 2673 * it must be off the runqueue _entirely_, and not 2674 * preempted! 2675 * 2676 * So if it was still runnable (but just not actively 2677 * running right now), it's preempted, and we should 2678 * yield - it could be a while. 2679 */ 2680 if (unlikely(queued)) { 2681 ktime_t to = NSEC_PER_SEC / HZ; 2682 2683 set_current_state(TASK_UNINTERRUPTIBLE); 2684 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 2685 continue; 2686 } 2687 2688 /* 2689 * Ahh, all good. It wasn't running, and it wasn't 2690 * runnable, which means that it will never become 2691 * running in the future either. We're all done! 2692 */ 2693 break; 2694 } 2695 2696 return ncsw; 2697 } 2698 2699 /*** 2700 * kick_process - kick a running thread to enter/exit the kernel 2701 * @p: the to-be-kicked thread 2702 * 2703 * Cause a process which is running on another CPU to enter 2704 * kernel-mode, without any delay. (to get signals handled.) 2705 * 2706 * NOTE: this function doesn't have to take the runqueue lock, 2707 * because all it wants to ensure is that the remote task enters 2708 * the kernel. If the IPI races and the task has been migrated 2709 * to another CPU then no harm is done and the purpose has been 2710 * achieved as well. 2711 */ 2712 void kick_process(struct task_struct *p) 2713 { 2714 int cpu; 2715 2716 preempt_disable(); 2717 cpu = task_cpu(p); 2718 if ((cpu != smp_processor_id()) && task_curr(p)) 2719 smp_send_reschedule(cpu); 2720 preempt_enable(); 2721 } 2722 EXPORT_SYMBOL_GPL(kick_process); 2723 2724 /* 2725 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2726 * 2727 * A few notes on cpu_active vs cpu_online: 2728 * 2729 * - cpu_active must be a subset of cpu_online 2730 * 2731 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2732 * see __set_cpus_allowed_ptr(). At this point the newly online 2733 * CPU isn't yet part of the sched domains, and balancing will not 2734 * see it. 2735 * 2736 * - on CPU-down we clear cpu_active() to mask the sched domains and 2737 * avoid the load balancer to place new tasks on the to be removed 2738 * CPU. Existing tasks will remain running there and will be taken 2739 * off. 2740 * 2741 * This means that fallback selection must not select !active CPUs. 2742 * And can assume that any active CPU must be online. Conversely 2743 * select_task_rq() below may allow selection of !active CPUs in order 2744 * to satisfy the above rules. 2745 */ 2746 static int select_fallback_rq(int cpu, struct task_struct *p) 2747 { 2748 int nid = cpu_to_node(cpu); 2749 const struct cpumask *nodemask = NULL; 2750 enum { cpuset, possible, fail } state = cpuset; 2751 int dest_cpu; 2752 2753 /* 2754 * If the node that the CPU is on has been offlined, cpu_to_node() 2755 * will return -1. There is no CPU on the node, and we should 2756 * select the CPU on the other node. 2757 */ 2758 if (nid != -1) { 2759 nodemask = cpumask_of_node(nid); 2760 2761 /* Look for allowed, online CPU in same node. */ 2762 for_each_cpu(dest_cpu, nodemask) { 2763 if (!cpu_active(dest_cpu)) 2764 continue; 2765 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2766 return dest_cpu; 2767 } 2768 } 2769 2770 for (;;) { 2771 /* Any allowed, online CPU? */ 2772 for_each_cpu(dest_cpu, p->cpus_ptr) { 2773 if (!is_cpu_allowed(p, dest_cpu)) 2774 continue; 2775 2776 goto out; 2777 } 2778 2779 /* No more Mr. Nice Guy. */ 2780 switch (state) { 2781 case cpuset: 2782 if (IS_ENABLED(CONFIG_CPUSETS)) { 2783 cpuset_cpus_allowed_fallback(p); 2784 state = possible; 2785 break; 2786 } 2787 fallthrough; 2788 case possible: 2789 /* 2790 * XXX When called from select_task_rq() we only 2791 * hold p->pi_lock and again violate locking order. 2792 * 2793 * More yuck to audit. 2794 */ 2795 do_set_cpus_allowed(p, cpu_possible_mask); 2796 state = fail; 2797 break; 2798 2799 case fail: 2800 BUG(); 2801 break; 2802 } 2803 } 2804 2805 out: 2806 if (state != cpuset) { 2807 /* 2808 * Don't tell them about moving exiting tasks or 2809 * kernel threads (both mm NULL), since they never 2810 * leave kernel. 2811 */ 2812 if (p->mm && printk_ratelimit()) { 2813 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2814 task_pid_nr(p), p->comm, cpu); 2815 } 2816 } 2817 2818 return dest_cpu; 2819 } 2820 2821 /* 2822 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2823 */ 2824 static inline 2825 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 2826 { 2827 lockdep_assert_held(&p->pi_lock); 2828 2829 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 2830 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 2831 else 2832 cpu = cpumask_any(p->cpus_ptr); 2833 2834 /* 2835 * In order not to call set_task_cpu() on a blocking task we need 2836 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2837 * CPU. 2838 * 2839 * Since this is common to all placement strategies, this lives here. 2840 * 2841 * [ this allows ->select_task() to simply return task_cpu(p) and 2842 * not worry about this generic constraint ] 2843 */ 2844 if (unlikely(!is_cpu_allowed(p, cpu))) 2845 cpu = select_fallback_rq(task_cpu(p), p); 2846 2847 return cpu; 2848 } 2849 2850 void sched_set_stop_task(int cpu, struct task_struct *stop) 2851 { 2852 static struct lock_class_key stop_pi_lock; 2853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2854 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2855 2856 if (stop) { 2857 /* 2858 * Make it appear like a SCHED_FIFO task, its something 2859 * userspace knows about and won't get confused about. 2860 * 2861 * Also, it will make PI more or less work without too 2862 * much confusion -- but then, stop work should not 2863 * rely on PI working anyway. 2864 */ 2865 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2866 2867 stop->sched_class = &stop_sched_class; 2868 2869 /* 2870 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 2871 * adjust the effective priority of a task. As a result, 2872 * rt_mutex_setprio() can trigger (RT) balancing operations, 2873 * which can then trigger wakeups of the stop thread to push 2874 * around the current task. 2875 * 2876 * The stop task itself will never be part of the PI-chain, it 2877 * never blocks, therefore that ->pi_lock recursion is safe. 2878 * Tell lockdep about this by placing the stop->pi_lock in its 2879 * own class. 2880 */ 2881 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 2882 } 2883 2884 cpu_rq(cpu)->stop = stop; 2885 2886 if (old_stop) { 2887 /* 2888 * Reset it back to a normal scheduling class so that 2889 * it can die in pieces. 2890 */ 2891 old_stop->sched_class = &rt_sched_class; 2892 } 2893 } 2894 2895 #else /* CONFIG_SMP */ 2896 2897 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2898 const struct cpumask *new_mask, 2899 u32 flags) 2900 { 2901 return set_cpus_allowed_ptr(p, new_mask); 2902 } 2903 2904 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 2905 2906 static inline bool rq_has_pinned_tasks(struct rq *rq) 2907 { 2908 return false; 2909 } 2910 2911 #endif /* !CONFIG_SMP */ 2912 2913 static void 2914 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2915 { 2916 struct rq *rq; 2917 2918 if (!schedstat_enabled()) 2919 return; 2920 2921 rq = this_rq(); 2922 2923 #ifdef CONFIG_SMP 2924 if (cpu == rq->cpu) { 2925 __schedstat_inc(rq->ttwu_local); 2926 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2927 } else { 2928 struct sched_domain *sd; 2929 2930 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2931 rcu_read_lock(); 2932 for_each_domain(rq->cpu, sd) { 2933 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2934 __schedstat_inc(sd->ttwu_wake_remote); 2935 break; 2936 } 2937 } 2938 rcu_read_unlock(); 2939 } 2940 2941 if (wake_flags & WF_MIGRATED) 2942 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2943 #endif /* CONFIG_SMP */ 2944 2945 __schedstat_inc(rq->ttwu_count); 2946 __schedstat_inc(p->se.statistics.nr_wakeups); 2947 2948 if (wake_flags & WF_SYNC) 2949 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2950 } 2951 2952 /* 2953 * Mark the task runnable and perform wakeup-preemption. 2954 */ 2955 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2956 struct rq_flags *rf) 2957 { 2958 check_preempt_curr(rq, p, wake_flags); 2959 p->state = TASK_RUNNING; 2960 trace_sched_wakeup(p); 2961 2962 #ifdef CONFIG_SMP 2963 if (p->sched_class->task_woken) { 2964 /* 2965 * Our task @p is fully woken up and running; so it's safe to 2966 * drop the rq->lock, hereafter rq is only used for statistics. 2967 */ 2968 rq_unpin_lock(rq, rf); 2969 p->sched_class->task_woken(rq, p); 2970 rq_repin_lock(rq, rf); 2971 } 2972 2973 if (rq->idle_stamp) { 2974 u64 delta = rq_clock(rq) - rq->idle_stamp; 2975 u64 max = 2*rq->max_idle_balance_cost; 2976 2977 update_avg(&rq->avg_idle, delta); 2978 2979 if (rq->avg_idle > max) 2980 rq->avg_idle = max; 2981 2982 rq->idle_stamp = 0; 2983 } 2984 #endif 2985 } 2986 2987 static void 2988 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2989 struct rq_flags *rf) 2990 { 2991 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2992 2993 lockdep_assert_held(&rq->lock); 2994 2995 if (p->sched_contributes_to_load) 2996 rq->nr_uninterruptible--; 2997 2998 #ifdef CONFIG_SMP 2999 if (wake_flags & WF_MIGRATED) 3000 en_flags |= ENQUEUE_MIGRATED; 3001 else 3002 #endif 3003 if (p->in_iowait) { 3004 delayacct_blkio_end(p); 3005 atomic_dec(&task_rq(p)->nr_iowait); 3006 } 3007 3008 activate_task(rq, p, en_flags); 3009 ttwu_do_wakeup(rq, p, wake_flags, rf); 3010 } 3011 3012 /* 3013 * Consider @p being inside a wait loop: 3014 * 3015 * for (;;) { 3016 * set_current_state(TASK_UNINTERRUPTIBLE); 3017 * 3018 * if (CONDITION) 3019 * break; 3020 * 3021 * schedule(); 3022 * } 3023 * __set_current_state(TASK_RUNNING); 3024 * 3025 * between set_current_state() and schedule(). In this case @p is still 3026 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3027 * an atomic manner. 3028 * 3029 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3030 * then schedule() must still happen and p->state can be changed to 3031 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3032 * need to do a full wakeup with enqueue. 3033 * 3034 * Returns: %true when the wakeup is done, 3035 * %false otherwise. 3036 */ 3037 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3038 { 3039 struct rq_flags rf; 3040 struct rq *rq; 3041 int ret = 0; 3042 3043 rq = __task_rq_lock(p, &rf); 3044 if (task_on_rq_queued(p)) { 3045 /* check_preempt_curr() may use rq clock */ 3046 update_rq_clock(rq); 3047 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3048 ret = 1; 3049 } 3050 __task_rq_unlock(rq, &rf); 3051 3052 return ret; 3053 } 3054 3055 #ifdef CONFIG_SMP 3056 void sched_ttwu_pending(void *arg) 3057 { 3058 struct llist_node *llist = arg; 3059 struct rq *rq = this_rq(); 3060 struct task_struct *p, *t; 3061 struct rq_flags rf; 3062 3063 if (!llist) 3064 return; 3065 3066 /* 3067 * rq::ttwu_pending racy indication of out-standing wakeups. 3068 * Races such that false-negatives are possible, since they 3069 * are shorter lived that false-positives would be. 3070 */ 3071 WRITE_ONCE(rq->ttwu_pending, 0); 3072 3073 rq_lock_irqsave(rq, &rf); 3074 update_rq_clock(rq); 3075 3076 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3077 if (WARN_ON_ONCE(p->on_cpu)) 3078 smp_cond_load_acquire(&p->on_cpu, !VAL); 3079 3080 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3081 set_task_cpu(p, cpu_of(rq)); 3082 3083 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3084 } 3085 3086 rq_unlock_irqrestore(rq, &rf); 3087 } 3088 3089 void send_call_function_single_ipi(int cpu) 3090 { 3091 struct rq *rq = cpu_rq(cpu); 3092 3093 if (!set_nr_if_polling(rq->idle)) 3094 arch_send_call_function_single_ipi(cpu); 3095 else 3096 trace_sched_wake_idle_without_ipi(cpu); 3097 } 3098 3099 /* 3100 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3101 * necessary. The wakee CPU on receipt of the IPI will queue the task 3102 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3103 * of the wakeup instead of the waker. 3104 */ 3105 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3106 { 3107 struct rq *rq = cpu_rq(cpu); 3108 3109 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3110 3111 WRITE_ONCE(rq->ttwu_pending, 1); 3112 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3113 } 3114 3115 void wake_up_if_idle(int cpu) 3116 { 3117 struct rq *rq = cpu_rq(cpu); 3118 struct rq_flags rf; 3119 3120 rcu_read_lock(); 3121 3122 if (!is_idle_task(rcu_dereference(rq->curr))) 3123 goto out; 3124 3125 if (set_nr_if_polling(rq->idle)) { 3126 trace_sched_wake_idle_without_ipi(cpu); 3127 } else { 3128 rq_lock_irqsave(rq, &rf); 3129 if (is_idle_task(rq->curr)) 3130 smp_send_reschedule(cpu); 3131 /* Else CPU is not idle, do nothing here: */ 3132 rq_unlock_irqrestore(rq, &rf); 3133 } 3134 3135 out: 3136 rcu_read_unlock(); 3137 } 3138 3139 bool cpus_share_cache(int this_cpu, int that_cpu) 3140 { 3141 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3142 } 3143 3144 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3145 { 3146 /* 3147 * Do not complicate things with the async wake_list while the CPU is 3148 * in hotplug state. 3149 */ 3150 if (!cpu_active(cpu)) 3151 return false; 3152 3153 /* 3154 * If the CPU does not share cache, then queue the task on the 3155 * remote rqs wakelist to avoid accessing remote data. 3156 */ 3157 if (!cpus_share_cache(smp_processor_id(), cpu)) 3158 return true; 3159 3160 /* 3161 * If the task is descheduling and the only running task on the 3162 * CPU then use the wakelist to offload the task activation to 3163 * the soon-to-be-idle CPU as the current CPU is likely busy. 3164 * nr_running is checked to avoid unnecessary task stacking. 3165 */ 3166 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3167 return true; 3168 3169 return false; 3170 } 3171 3172 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3173 { 3174 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3175 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3176 return false; 3177 3178 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3179 __ttwu_queue_wakelist(p, cpu, wake_flags); 3180 return true; 3181 } 3182 3183 return false; 3184 } 3185 3186 #else /* !CONFIG_SMP */ 3187 3188 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3189 { 3190 return false; 3191 } 3192 3193 #endif /* CONFIG_SMP */ 3194 3195 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3196 { 3197 struct rq *rq = cpu_rq(cpu); 3198 struct rq_flags rf; 3199 3200 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3201 return; 3202 3203 rq_lock(rq, &rf); 3204 update_rq_clock(rq); 3205 ttwu_do_activate(rq, p, wake_flags, &rf); 3206 rq_unlock(rq, &rf); 3207 } 3208 3209 /* 3210 * Notes on Program-Order guarantees on SMP systems. 3211 * 3212 * MIGRATION 3213 * 3214 * The basic program-order guarantee on SMP systems is that when a task [t] 3215 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3216 * execution on its new CPU [c1]. 3217 * 3218 * For migration (of runnable tasks) this is provided by the following means: 3219 * 3220 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3221 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3222 * rq(c1)->lock (if not at the same time, then in that order). 3223 * C) LOCK of the rq(c1)->lock scheduling in task 3224 * 3225 * Release/acquire chaining guarantees that B happens after A and C after B. 3226 * Note: the CPU doing B need not be c0 or c1 3227 * 3228 * Example: 3229 * 3230 * CPU0 CPU1 CPU2 3231 * 3232 * LOCK rq(0)->lock 3233 * sched-out X 3234 * sched-in Y 3235 * UNLOCK rq(0)->lock 3236 * 3237 * LOCK rq(0)->lock // orders against CPU0 3238 * dequeue X 3239 * UNLOCK rq(0)->lock 3240 * 3241 * LOCK rq(1)->lock 3242 * enqueue X 3243 * UNLOCK rq(1)->lock 3244 * 3245 * LOCK rq(1)->lock // orders against CPU2 3246 * sched-out Z 3247 * sched-in X 3248 * UNLOCK rq(1)->lock 3249 * 3250 * 3251 * BLOCKING -- aka. SLEEP + WAKEUP 3252 * 3253 * For blocking we (obviously) need to provide the same guarantee as for 3254 * migration. However the means are completely different as there is no lock 3255 * chain to provide order. Instead we do: 3256 * 3257 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3258 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3259 * 3260 * Example: 3261 * 3262 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3263 * 3264 * LOCK rq(0)->lock LOCK X->pi_lock 3265 * dequeue X 3266 * sched-out X 3267 * smp_store_release(X->on_cpu, 0); 3268 * 3269 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3270 * X->state = WAKING 3271 * set_task_cpu(X,2) 3272 * 3273 * LOCK rq(2)->lock 3274 * enqueue X 3275 * X->state = RUNNING 3276 * UNLOCK rq(2)->lock 3277 * 3278 * LOCK rq(2)->lock // orders against CPU1 3279 * sched-out Z 3280 * sched-in X 3281 * UNLOCK rq(2)->lock 3282 * 3283 * UNLOCK X->pi_lock 3284 * UNLOCK rq(0)->lock 3285 * 3286 * 3287 * However, for wakeups there is a second guarantee we must provide, namely we 3288 * must ensure that CONDITION=1 done by the caller can not be reordered with 3289 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3290 */ 3291 3292 /** 3293 * try_to_wake_up - wake up a thread 3294 * @p: the thread to be awakened 3295 * @state: the mask of task states that can be woken 3296 * @wake_flags: wake modifier flags (WF_*) 3297 * 3298 * Conceptually does: 3299 * 3300 * If (@state & @p->state) @p->state = TASK_RUNNING. 3301 * 3302 * If the task was not queued/runnable, also place it back on a runqueue. 3303 * 3304 * This function is atomic against schedule() which would dequeue the task. 3305 * 3306 * It issues a full memory barrier before accessing @p->state, see the comment 3307 * with set_current_state(). 3308 * 3309 * Uses p->pi_lock to serialize against concurrent wake-ups. 3310 * 3311 * Relies on p->pi_lock stabilizing: 3312 * - p->sched_class 3313 * - p->cpus_ptr 3314 * - p->sched_task_group 3315 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3316 * 3317 * Tries really hard to only take one task_rq(p)->lock for performance. 3318 * Takes rq->lock in: 3319 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3320 * - ttwu_queue() -- new rq, for enqueue of the task; 3321 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3322 * 3323 * As a consequence we race really badly with just about everything. See the 3324 * many memory barriers and their comments for details. 3325 * 3326 * Return: %true if @p->state changes (an actual wakeup was done), 3327 * %false otherwise. 3328 */ 3329 static int 3330 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3331 { 3332 unsigned long flags; 3333 int cpu, success = 0; 3334 3335 preempt_disable(); 3336 if (p == current) { 3337 /* 3338 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3339 * == smp_processor_id()'. Together this means we can special 3340 * case the whole 'p->on_rq && ttwu_runnable()' case below 3341 * without taking any locks. 3342 * 3343 * In particular: 3344 * - we rely on Program-Order guarantees for all the ordering, 3345 * - we're serialized against set_special_state() by virtue of 3346 * it disabling IRQs (this allows not taking ->pi_lock). 3347 */ 3348 if (!(p->state & state)) 3349 goto out; 3350 3351 success = 1; 3352 trace_sched_waking(p); 3353 p->state = TASK_RUNNING; 3354 trace_sched_wakeup(p); 3355 goto out; 3356 } 3357 3358 /* 3359 * If we are going to wake up a thread waiting for CONDITION we 3360 * need to ensure that CONDITION=1 done by the caller can not be 3361 * reordered with p->state check below. This pairs with smp_store_mb() 3362 * in set_current_state() that the waiting thread does. 3363 */ 3364 raw_spin_lock_irqsave(&p->pi_lock, flags); 3365 smp_mb__after_spinlock(); 3366 if (!(p->state & state)) 3367 goto unlock; 3368 3369 trace_sched_waking(p); 3370 3371 /* We're going to change ->state: */ 3372 success = 1; 3373 3374 /* 3375 * Ensure we load p->on_rq _after_ p->state, otherwise it would 3376 * be possible to, falsely, observe p->on_rq == 0 and get stuck 3377 * in smp_cond_load_acquire() below. 3378 * 3379 * sched_ttwu_pending() try_to_wake_up() 3380 * STORE p->on_rq = 1 LOAD p->state 3381 * UNLOCK rq->lock 3382 * 3383 * __schedule() (switch to task 'p') 3384 * LOCK rq->lock smp_rmb(); 3385 * smp_mb__after_spinlock(); 3386 * UNLOCK rq->lock 3387 * 3388 * [task p] 3389 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 3390 * 3391 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3392 * __schedule(). See the comment for smp_mb__after_spinlock(). 3393 * 3394 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 3395 */ 3396 smp_rmb(); 3397 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 3398 goto unlock; 3399 3400 #ifdef CONFIG_SMP 3401 /* 3402 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 3403 * possible to, falsely, observe p->on_cpu == 0. 3404 * 3405 * One must be running (->on_cpu == 1) in order to remove oneself 3406 * from the runqueue. 3407 * 3408 * __schedule() (switch to task 'p') try_to_wake_up() 3409 * STORE p->on_cpu = 1 LOAD p->on_rq 3410 * UNLOCK rq->lock 3411 * 3412 * __schedule() (put 'p' to sleep) 3413 * LOCK rq->lock smp_rmb(); 3414 * smp_mb__after_spinlock(); 3415 * STORE p->on_rq = 0 LOAD p->on_cpu 3416 * 3417 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3418 * __schedule(). See the comment for smp_mb__after_spinlock(). 3419 * 3420 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 3421 * schedule()'s deactivate_task() has 'happened' and p will no longer 3422 * care about it's own p->state. See the comment in __schedule(). 3423 */ 3424 smp_acquire__after_ctrl_dep(); 3425 3426 /* 3427 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 3428 * == 0), which means we need to do an enqueue, change p->state to 3429 * TASK_WAKING such that we can unlock p->pi_lock before doing the 3430 * enqueue, such as ttwu_queue_wakelist(). 3431 */ 3432 p->state = TASK_WAKING; 3433 3434 /* 3435 * If the owning (remote) CPU is still in the middle of schedule() with 3436 * this task as prev, considering queueing p on the remote CPUs wake_list 3437 * which potentially sends an IPI instead of spinning on p->on_cpu to 3438 * let the waker make forward progress. This is safe because IRQs are 3439 * disabled and the IPI will deliver after on_cpu is cleared. 3440 * 3441 * Ensure we load task_cpu(p) after p->on_cpu: 3442 * 3443 * set_task_cpu(p, cpu); 3444 * STORE p->cpu = @cpu 3445 * __schedule() (switch to task 'p') 3446 * LOCK rq->lock 3447 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 3448 * STORE p->on_cpu = 1 LOAD p->cpu 3449 * 3450 * to ensure we observe the correct CPU on which the task is currently 3451 * scheduling. 3452 */ 3453 if (smp_load_acquire(&p->on_cpu) && 3454 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 3455 goto unlock; 3456 3457 /* 3458 * If the owning (remote) CPU is still in the middle of schedule() with 3459 * this task as prev, wait until it's done referencing the task. 3460 * 3461 * Pairs with the smp_store_release() in finish_task(). 3462 * 3463 * This ensures that tasks getting woken will be fully ordered against 3464 * their previous state and preserve Program Order. 3465 */ 3466 smp_cond_load_acquire(&p->on_cpu, !VAL); 3467 3468 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 3469 if (task_cpu(p) != cpu) { 3470 if (p->in_iowait) { 3471 delayacct_blkio_end(p); 3472 atomic_dec(&task_rq(p)->nr_iowait); 3473 } 3474 3475 wake_flags |= WF_MIGRATED; 3476 psi_ttwu_dequeue(p); 3477 set_task_cpu(p, cpu); 3478 } 3479 #else 3480 cpu = task_cpu(p); 3481 #endif /* CONFIG_SMP */ 3482 3483 ttwu_queue(p, cpu, wake_flags); 3484 unlock: 3485 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3486 out: 3487 if (success) 3488 ttwu_stat(p, task_cpu(p), wake_flags); 3489 preempt_enable(); 3490 3491 return success; 3492 } 3493 3494 /** 3495 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 3496 * @p: Process for which the function is to be invoked, can be @current. 3497 * @func: Function to invoke. 3498 * @arg: Argument to function. 3499 * 3500 * If the specified task can be quickly locked into a definite state 3501 * (either sleeping or on a given runqueue), arrange to keep it in that 3502 * state while invoking @func(@arg). This function can use ->on_rq and 3503 * task_curr() to work out what the state is, if required. Given that 3504 * @func can be invoked with a runqueue lock held, it had better be quite 3505 * lightweight. 3506 * 3507 * Returns: 3508 * @false if the task slipped out from under the locks. 3509 * @true if the task was locked onto a runqueue or is sleeping. 3510 * However, @func can override this by returning @false. 3511 */ 3512 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3513 { 3514 struct rq_flags rf; 3515 bool ret = false; 3516 struct rq *rq; 3517 3518 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3519 if (p->on_rq) { 3520 rq = __task_rq_lock(p, &rf); 3521 if (task_rq(p) == rq) 3522 ret = func(p, arg); 3523 rq_unlock(rq, &rf); 3524 } else { 3525 switch (p->state) { 3526 case TASK_RUNNING: 3527 case TASK_WAKING: 3528 break; 3529 default: 3530 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3531 if (!p->on_rq) 3532 ret = func(p, arg); 3533 } 3534 } 3535 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3536 return ret; 3537 } 3538 3539 /** 3540 * wake_up_process - Wake up a specific process 3541 * @p: The process to be woken up. 3542 * 3543 * Attempt to wake up the nominated process and move it to the set of runnable 3544 * processes. 3545 * 3546 * Return: 1 if the process was woken up, 0 if it was already running. 3547 * 3548 * This function executes a full memory barrier before accessing the task state. 3549 */ 3550 int wake_up_process(struct task_struct *p) 3551 { 3552 return try_to_wake_up(p, TASK_NORMAL, 0); 3553 } 3554 EXPORT_SYMBOL(wake_up_process); 3555 3556 int wake_up_state(struct task_struct *p, unsigned int state) 3557 { 3558 return try_to_wake_up(p, state, 0); 3559 } 3560 3561 /* 3562 * Perform scheduler related setup for a newly forked process p. 3563 * p is forked by current. 3564 * 3565 * __sched_fork() is basic setup used by init_idle() too: 3566 */ 3567 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3568 { 3569 p->on_rq = 0; 3570 3571 p->se.on_rq = 0; 3572 p->se.exec_start = 0; 3573 p->se.sum_exec_runtime = 0; 3574 p->se.prev_sum_exec_runtime = 0; 3575 p->se.nr_migrations = 0; 3576 p->se.vruntime = 0; 3577 INIT_LIST_HEAD(&p->se.group_node); 3578 3579 #ifdef CONFIG_FAIR_GROUP_SCHED 3580 p->se.cfs_rq = NULL; 3581 #endif 3582 3583 #ifdef CONFIG_SCHEDSTATS 3584 /* Even if schedstat is disabled, there should not be garbage */ 3585 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3586 #endif 3587 3588 RB_CLEAR_NODE(&p->dl.rb_node); 3589 init_dl_task_timer(&p->dl); 3590 init_dl_inactive_task_timer(&p->dl); 3591 __dl_clear_params(p); 3592 3593 INIT_LIST_HEAD(&p->rt.run_list); 3594 p->rt.timeout = 0; 3595 p->rt.time_slice = sched_rr_timeslice; 3596 p->rt.on_rq = 0; 3597 p->rt.on_list = 0; 3598 3599 #ifdef CONFIG_PREEMPT_NOTIFIERS 3600 INIT_HLIST_HEAD(&p->preempt_notifiers); 3601 #endif 3602 3603 #ifdef CONFIG_COMPACTION 3604 p->capture_control = NULL; 3605 #endif 3606 init_numa_balancing(clone_flags, p); 3607 #ifdef CONFIG_SMP 3608 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3609 p->migration_pending = NULL; 3610 #endif 3611 } 3612 3613 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3614 3615 #ifdef CONFIG_NUMA_BALANCING 3616 3617 void set_numabalancing_state(bool enabled) 3618 { 3619 if (enabled) 3620 static_branch_enable(&sched_numa_balancing); 3621 else 3622 static_branch_disable(&sched_numa_balancing); 3623 } 3624 3625 #ifdef CONFIG_PROC_SYSCTL 3626 int sysctl_numa_balancing(struct ctl_table *table, int write, 3627 void *buffer, size_t *lenp, loff_t *ppos) 3628 { 3629 struct ctl_table t; 3630 int err; 3631 int state = static_branch_likely(&sched_numa_balancing); 3632 3633 if (write && !capable(CAP_SYS_ADMIN)) 3634 return -EPERM; 3635 3636 t = *table; 3637 t.data = &state; 3638 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3639 if (err < 0) 3640 return err; 3641 if (write) 3642 set_numabalancing_state(state); 3643 return err; 3644 } 3645 #endif 3646 #endif 3647 3648 #ifdef CONFIG_SCHEDSTATS 3649 3650 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 3651 static bool __initdata __sched_schedstats = false; 3652 3653 static void set_schedstats(bool enabled) 3654 { 3655 if (enabled) 3656 static_branch_enable(&sched_schedstats); 3657 else 3658 static_branch_disable(&sched_schedstats); 3659 } 3660 3661 void force_schedstat_enabled(void) 3662 { 3663 if (!schedstat_enabled()) { 3664 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 3665 static_branch_enable(&sched_schedstats); 3666 } 3667 } 3668 3669 static int __init setup_schedstats(char *str) 3670 { 3671 int ret = 0; 3672 if (!str) 3673 goto out; 3674 3675 /* 3676 * This code is called before jump labels have been set up, so we can't 3677 * change the static branch directly just yet. Instead set a temporary 3678 * variable so init_schedstats() can do it later. 3679 */ 3680 if (!strcmp(str, "enable")) { 3681 __sched_schedstats = true; 3682 ret = 1; 3683 } else if (!strcmp(str, "disable")) { 3684 __sched_schedstats = false; 3685 ret = 1; 3686 } 3687 out: 3688 if (!ret) 3689 pr_warn("Unable to parse schedstats=\n"); 3690 3691 return ret; 3692 } 3693 __setup("schedstats=", setup_schedstats); 3694 3695 static void __init init_schedstats(void) 3696 { 3697 set_schedstats(__sched_schedstats); 3698 } 3699 3700 #ifdef CONFIG_PROC_SYSCTL 3701 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 3702 size_t *lenp, loff_t *ppos) 3703 { 3704 struct ctl_table t; 3705 int err; 3706 int state = static_branch_likely(&sched_schedstats); 3707 3708 if (write && !capable(CAP_SYS_ADMIN)) 3709 return -EPERM; 3710 3711 t = *table; 3712 t.data = &state; 3713 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3714 if (err < 0) 3715 return err; 3716 if (write) 3717 set_schedstats(state); 3718 return err; 3719 } 3720 #endif /* CONFIG_PROC_SYSCTL */ 3721 #else /* !CONFIG_SCHEDSTATS */ 3722 static inline void init_schedstats(void) {} 3723 #endif /* CONFIG_SCHEDSTATS */ 3724 3725 /* 3726 * fork()/clone()-time setup: 3727 */ 3728 int sched_fork(unsigned long clone_flags, struct task_struct *p) 3729 { 3730 unsigned long flags; 3731 3732 __sched_fork(clone_flags, p); 3733 /* 3734 * We mark the process as NEW here. This guarantees that 3735 * nobody will actually run it, and a signal or other external 3736 * event cannot wake it up and insert it on the runqueue either. 3737 */ 3738 p->state = TASK_NEW; 3739 3740 /* 3741 * Make sure we do not leak PI boosting priority to the child. 3742 */ 3743 p->prio = current->normal_prio; 3744 3745 uclamp_fork(p); 3746 3747 /* 3748 * Revert to default priority/policy on fork if requested. 3749 */ 3750 if (unlikely(p->sched_reset_on_fork)) { 3751 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3752 p->policy = SCHED_NORMAL; 3753 p->static_prio = NICE_TO_PRIO(0); 3754 p->rt_priority = 0; 3755 } else if (PRIO_TO_NICE(p->static_prio) < 0) 3756 p->static_prio = NICE_TO_PRIO(0); 3757 3758 p->prio = p->normal_prio = __normal_prio(p); 3759 set_load_weight(p, false); 3760 3761 /* 3762 * We don't need the reset flag anymore after the fork. It has 3763 * fulfilled its duty: 3764 */ 3765 p->sched_reset_on_fork = 0; 3766 } 3767 3768 if (dl_prio(p->prio)) 3769 return -EAGAIN; 3770 else if (rt_prio(p->prio)) 3771 p->sched_class = &rt_sched_class; 3772 else 3773 p->sched_class = &fair_sched_class; 3774 3775 init_entity_runnable_average(&p->se); 3776 3777 /* 3778 * The child is not yet in the pid-hash so no cgroup attach races, 3779 * and the cgroup is pinned to this child due to cgroup_fork() 3780 * is ran before sched_fork(). 3781 * 3782 * Silence PROVE_RCU. 3783 */ 3784 raw_spin_lock_irqsave(&p->pi_lock, flags); 3785 rseq_migrate(p); 3786 /* 3787 * We're setting the CPU for the first time, we don't migrate, 3788 * so use __set_task_cpu(). 3789 */ 3790 __set_task_cpu(p, smp_processor_id()); 3791 if (p->sched_class->task_fork) 3792 p->sched_class->task_fork(p); 3793 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3794 3795 #ifdef CONFIG_SCHED_INFO 3796 if (likely(sched_info_on())) 3797 memset(&p->sched_info, 0, sizeof(p->sched_info)); 3798 #endif 3799 #if defined(CONFIG_SMP) 3800 p->on_cpu = 0; 3801 #endif 3802 init_task_preempt_count(p); 3803 #ifdef CONFIG_SMP 3804 plist_node_init(&p->pushable_tasks, MAX_PRIO); 3805 RB_CLEAR_NODE(&p->pushable_dl_tasks); 3806 #endif 3807 return 0; 3808 } 3809 3810 void sched_post_fork(struct task_struct *p) 3811 { 3812 uclamp_post_fork(p); 3813 } 3814 3815 unsigned long to_ratio(u64 period, u64 runtime) 3816 { 3817 if (runtime == RUNTIME_INF) 3818 return BW_UNIT; 3819 3820 /* 3821 * Doing this here saves a lot of checks in all 3822 * the calling paths, and returning zero seems 3823 * safe for them anyway. 3824 */ 3825 if (period == 0) 3826 return 0; 3827 3828 return div64_u64(runtime << BW_SHIFT, period); 3829 } 3830 3831 /* 3832 * wake_up_new_task - wake up a newly created task for the first time. 3833 * 3834 * This function will do some initial scheduler statistics housekeeping 3835 * that must be done for every newly created context, then puts the task 3836 * on the runqueue and wakes it. 3837 */ 3838 void wake_up_new_task(struct task_struct *p) 3839 { 3840 struct rq_flags rf; 3841 struct rq *rq; 3842 3843 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3844 p->state = TASK_RUNNING; 3845 #ifdef CONFIG_SMP 3846 /* 3847 * Fork balancing, do it here and not earlier because: 3848 * - cpus_ptr can change in the fork path 3849 * - any previously selected CPU might disappear through hotplug 3850 * 3851 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3852 * as we're not fully set-up yet. 3853 */ 3854 p->recent_used_cpu = task_cpu(p); 3855 rseq_migrate(p); 3856 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 3857 #endif 3858 rq = __task_rq_lock(p, &rf); 3859 update_rq_clock(rq); 3860 post_init_entity_util_avg(p); 3861 3862 activate_task(rq, p, ENQUEUE_NOCLOCK); 3863 trace_sched_wakeup_new(p); 3864 check_preempt_curr(rq, p, WF_FORK); 3865 #ifdef CONFIG_SMP 3866 if (p->sched_class->task_woken) { 3867 /* 3868 * Nothing relies on rq->lock after this, so it's fine to 3869 * drop it. 3870 */ 3871 rq_unpin_lock(rq, &rf); 3872 p->sched_class->task_woken(rq, p); 3873 rq_repin_lock(rq, &rf); 3874 } 3875 #endif 3876 task_rq_unlock(rq, p, &rf); 3877 } 3878 3879 #ifdef CONFIG_PREEMPT_NOTIFIERS 3880 3881 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3882 3883 void preempt_notifier_inc(void) 3884 { 3885 static_branch_inc(&preempt_notifier_key); 3886 } 3887 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3888 3889 void preempt_notifier_dec(void) 3890 { 3891 static_branch_dec(&preempt_notifier_key); 3892 } 3893 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3894 3895 /** 3896 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3897 * @notifier: notifier struct to register 3898 */ 3899 void preempt_notifier_register(struct preempt_notifier *notifier) 3900 { 3901 if (!static_branch_unlikely(&preempt_notifier_key)) 3902 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3903 3904 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3905 } 3906 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3907 3908 /** 3909 * preempt_notifier_unregister - no longer interested in preemption notifications 3910 * @notifier: notifier struct to unregister 3911 * 3912 * This is *not* safe to call from within a preemption notifier. 3913 */ 3914 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3915 { 3916 hlist_del(¬ifier->link); 3917 } 3918 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3919 3920 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3921 { 3922 struct preempt_notifier *notifier; 3923 3924 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3925 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3926 } 3927 3928 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3929 { 3930 if (static_branch_unlikely(&preempt_notifier_key)) 3931 __fire_sched_in_preempt_notifiers(curr); 3932 } 3933 3934 static void 3935 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3936 struct task_struct *next) 3937 { 3938 struct preempt_notifier *notifier; 3939 3940 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3941 notifier->ops->sched_out(notifier, next); 3942 } 3943 3944 static __always_inline void 3945 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3946 struct task_struct *next) 3947 { 3948 if (static_branch_unlikely(&preempt_notifier_key)) 3949 __fire_sched_out_preempt_notifiers(curr, next); 3950 } 3951 3952 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3953 3954 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3955 { 3956 } 3957 3958 static inline void 3959 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3960 struct task_struct *next) 3961 { 3962 } 3963 3964 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3965 3966 static inline void prepare_task(struct task_struct *next) 3967 { 3968 #ifdef CONFIG_SMP 3969 /* 3970 * Claim the task as running, we do this before switching to it 3971 * such that any running task will have this set. 3972 * 3973 * See the ttwu() WF_ON_CPU case and its ordering comment. 3974 */ 3975 WRITE_ONCE(next->on_cpu, 1); 3976 #endif 3977 } 3978 3979 static inline void finish_task(struct task_struct *prev) 3980 { 3981 #ifdef CONFIG_SMP 3982 /* 3983 * This must be the very last reference to @prev from this CPU. After 3984 * p->on_cpu is cleared, the task can be moved to a different CPU. We 3985 * must ensure this doesn't happen until the switch is completely 3986 * finished. 3987 * 3988 * In particular, the load of prev->state in finish_task_switch() must 3989 * happen before this. 3990 * 3991 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3992 */ 3993 smp_store_release(&prev->on_cpu, 0); 3994 #endif 3995 } 3996 3997 #ifdef CONFIG_SMP 3998 3999 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4000 { 4001 void (*func)(struct rq *rq); 4002 struct callback_head *next; 4003 4004 lockdep_assert_held(&rq->lock); 4005 4006 while (head) { 4007 func = (void (*)(struct rq *))head->func; 4008 next = head->next; 4009 head->next = NULL; 4010 head = next; 4011 4012 func(rq); 4013 } 4014 } 4015 4016 static void balance_push(struct rq *rq); 4017 4018 struct callback_head balance_push_callback = { 4019 .next = NULL, 4020 .func = (void (*)(struct callback_head *))balance_push, 4021 }; 4022 4023 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4024 { 4025 struct callback_head *head = rq->balance_callback; 4026 4027 lockdep_assert_held(&rq->lock); 4028 if (head) 4029 rq->balance_callback = NULL; 4030 4031 return head; 4032 } 4033 4034 static void __balance_callbacks(struct rq *rq) 4035 { 4036 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4037 } 4038 4039 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4040 { 4041 unsigned long flags; 4042 4043 if (unlikely(head)) { 4044 raw_spin_lock_irqsave(&rq->lock, flags); 4045 do_balance_callbacks(rq, head); 4046 raw_spin_unlock_irqrestore(&rq->lock, flags); 4047 } 4048 } 4049 4050 #else 4051 4052 static inline void __balance_callbacks(struct rq *rq) 4053 { 4054 } 4055 4056 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4057 { 4058 return NULL; 4059 } 4060 4061 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4062 { 4063 } 4064 4065 #endif 4066 4067 static inline void 4068 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4069 { 4070 /* 4071 * Since the runqueue lock will be released by the next 4072 * task (which is an invalid locking op but in the case 4073 * of the scheduler it's an obvious special-case), so we 4074 * do an early lockdep release here: 4075 */ 4076 rq_unpin_lock(rq, rf); 4077 spin_release(&rq->lock.dep_map, _THIS_IP_); 4078 #ifdef CONFIG_DEBUG_SPINLOCK 4079 /* this is a valid case when another task releases the spinlock */ 4080 rq->lock.owner = next; 4081 #endif 4082 } 4083 4084 static inline void finish_lock_switch(struct rq *rq) 4085 { 4086 /* 4087 * If we are tracking spinlock dependencies then we have to 4088 * fix up the runqueue lock - which gets 'carried over' from 4089 * prev into current: 4090 */ 4091 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 4092 __balance_callbacks(rq); 4093 raw_spin_unlock_irq(&rq->lock); 4094 } 4095 4096 /* 4097 * NOP if the arch has not defined these: 4098 */ 4099 4100 #ifndef prepare_arch_switch 4101 # define prepare_arch_switch(next) do { } while (0) 4102 #endif 4103 4104 #ifndef finish_arch_post_lock_switch 4105 # define finish_arch_post_lock_switch() do { } while (0) 4106 #endif 4107 4108 static inline void kmap_local_sched_out(void) 4109 { 4110 #ifdef CONFIG_KMAP_LOCAL 4111 if (unlikely(current->kmap_ctrl.idx)) 4112 __kmap_local_sched_out(); 4113 #endif 4114 } 4115 4116 static inline void kmap_local_sched_in(void) 4117 { 4118 #ifdef CONFIG_KMAP_LOCAL 4119 if (unlikely(current->kmap_ctrl.idx)) 4120 __kmap_local_sched_in(); 4121 #endif 4122 } 4123 4124 /** 4125 * prepare_task_switch - prepare to switch tasks 4126 * @rq: the runqueue preparing to switch 4127 * @prev: the current task that is being switched out 4128 * @next: the task we are going to switch to. 4129 * 4130 * This is called with the rq lock held and interrupts off. It must 4131 * be paired with a subsequent finish_task_switch after the context 4132 * switch. 4133 * 4134 * prepare_task_switch sets up locking and calls architecture specific 4135 * hooks. 4136 */ 4137 static inline void 4138 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4139 struct task_struct *next) 4140 { 4141 kcov_prepare_switch(prev); 4142 sched_info_switch(rq, prev, next); 4143 perf_event_task_sched_out(prev, next); 4144 rseq_preempt(prev); 4145 fire_sched_out_preempt_notifiers(prev, next); 4146 kmap_local_sched_out(); 4147 prepare_task(next); 4148 prepare_arch_switch(next); 4149 } 4150 4151 /** 4152 * finish_task_switch - clean up after a task-switch 4153 * @prev: the thread we just switched away from. 4154 * 4155 * finish_task_switch must be called after the context switch, paired 4156 * with a prepare_task_switch call before the context switch. 4157 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4158 * and do any other architecture-specific cleanup actions. 4159 * 4160 * Note that we may have delayed dropping an mm in context_switch(). If 4161 * so, we finish that here outside of the runqueue lock. (Doing it 4162 * with the lock held can cause deadlocks; see schedule() for 4163 * details.) 4164 * 4165 * The context switch have flipped the stack from under us and restored the 4166 * local variables which were saved when this task called schedule() in the 4167 * past. prev == current is still correct but we need to recalculate this_rq 4168 * because prev may have moved to another CPU. 4169 */ 4170 static struct rq *finish_task_switch(struct task_struct *prev) 4171 __releases(rq->lock) 4172 { 4173 struct rq *rq = this_rq(); 4174 struct mm_struct *mm = rq->prev_mm; 4175 long prev_state; 4176 4177 /* 4178 * The previous task will have left us with a preempt_count of 2 4179 * because it left us after: 4180 * 4181 * schedule() 4182 * preempt_disable(); // 1 4183 * __schedule() 4184 * raw_spin_lock_irq(&rq->lock) // 2 4185 * 4186 * Also, see FORK_PREEMPT_COUNT. 4187 */ 4188 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4189 "corrupted preempt_count: %s/%d/0x%x\n", 4190 current->comm, current->pid, preempt_count())) 4191 preempt_count_set(FORK_PREEMPT_COUNT); 4192 4193 rq->prev_mm = NULL; 4194 4195 /* 4196 * A task struct has one reference for the use as "current". 4197 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4198 * schedule one last time. The schedule call will never return, and 4199 * the scheduled task must drop that reference. 4200 * 4201 * We must observe prev->state before clearing prev->on_cpu (in 4202 * finish_task), otherwise a concurrent wakeup can get prev 4203 * running on another CPU and we could rave with its RUNNING -> DEAD 4204 * transition, resulting in a double drop. 4205 */ 4206 prev_state = prev->state; 4207 vtime_task_switch(prev); 4208 perf_event_task_sched_in(prev, current); 4209 finish_task(prev); 4210 finish_lock_switch(rq); 4211 finish_arch_post_lock_switch(); 4212 kcov_finish_switch(current); 4213 /* 4214 * kmap_local_sched_out() is invoked with rq::lock held and 4215 * interrupts disabled. There is no requirement for that, but the 4216 * sched out code does not have an interrupt enabled section. 4217 * Restoring the maps on sched in does not require interrupts being 4218 * disabled either. 4219 */ 4220 kmap_local_sched_in(); 4221 4222 fire_sched_in_preempt_notifiers(current); 4223 /* 4224 * When switching through a kernel thread, the loop in 4225 * membarrier_{private,global}_expedited() may have observed that 4226 * kernel thread and not issued an IPI. It is therefore possible to 4227 * schedule between user->kernel->user threads without passing though 4228 * switch_mm(). Membarrier requires a barrier after storing to 4229 * rq->curr, before returning to userspace, so provide them here: 4230 * 4231 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4232 * provided by mmdrop(), 4233 * - a sync_core for SYNC_CORE. 4234 */ 4235 if (mm) { 4236 membarrier_mm_sync_core_before_usermode(mm); 4237 mmdrop(mm); 4238 } 4239 if (unlikely(prev_state == TASK_DEAD)) { 4240 if (prev->sched_class->task_dead) 4241 prev->sched_class->task_dead(prev); 4242 4243 /* 4244 * Remove function-return probe instances associated with this 4245 * task and put them back on the free list. 4246 */ 4247 kprobe_flush_task(prev); 4248 4249 /* Task is done with its stack. */ 4250 put_task_stack(prev); 4251 4252 put_task_struct_rcu_user(prev); 4253 } 4254 4255 tick_nohz_task_switch(); 4256 return rq; 4257 } 4258 4259 /** 4260 * schedule_tail - first thing a freshly forked thread must call. 4261 * @prev: the thread we just switched away from. 4262 */ 4263 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4264 __releases(rq->lock) 4265 { 4266 /* 4267 * New tasks start with FORK_PREEMPT_COUNT, see there and 4268 * finish_task_switch() for details. 4269 * 4270 * finish_task_switch() will drop rq->lock() and lower preempt_count 4271 * and the preempt_enable() will end up enabling preemption (on 4272 * PREEMPT_COUNT kernels). 4273 */ 4274 4275 finish_task_switch(prev); 4276 preempt_enable(); 4277 4278 if (current->set_child_tid) 4279 put_user(task_pid_vnr(current), current->set_child_tid); 4280 4281 calculate_sigpending(); 4282 } 4283 4284 /* 4285 * context_switch - switch to the new MM and the new thread's register state. 4286 */ 4287 static __always_inline struct rq * 4288 context_switch(struct rq *rq, struct task_struct *prev, 4289 struct task_struct *next, struct rq_flags *rf) 4290 { 4291 prepare_task_switch(rq, prev, next); 4292 4293 /* 4294 * For paravirt, this is coupled with an exit in switch_to to 4295 * combine the page table reload and the switch backend into 4296 * one hypercall. 4297 */ 4298 arch_start_context_switch(prev); 4299 4300 /* 4301 * kernel -> kernel lazy + transfer active 4302 * user -> kernel lazy + mmgrab() active 4303 * 4304 * kernel -> user switch + mmdrop() active 4305 * user -> user switch 4306 */ 4307 if (!next->mm) { // to kernel 4308 enter_lazy_tlb(prev->active_mm, next); 4309 4310 next->active_mm = prev->active_mm; 4311 if (prev->mm) // from user 4312 mmgrab(prev->active_mm); 4313 else 4314 prev->active_mm = NULL; 4315 } else { // to user 4316 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4317 /* 4318 * sys_membarrier() requires an smp_mb() between setting 4319 * rq->curr / membarrier_switch_mm() and returning to userspace. 4320 * 4321 * The below provides this either through switch_mm(), or in 4322 * case 'prev->active_mm == next->mm' through 4323 * finish_task_switch()'s mmdrop(). 4324 */ 4325 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4326 4327 if (!prev->mm) { // from kernel 4328 /* will mmdrop() in finish_task_switch(). */ 4329 rq->prev_mm = prev->active_mm; 4330 prev->active_mm = NULL; 4331 } 4332 } 4333 4334 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4335 4336 prepare_lock_switch(rq, next, rf); 4337 4338 /* Here we just switch the register state and the stack. */ 4339 switch_to(prev, next, prev); 4340 barrier(); 4341 4342 return finish_task_switch(prev); 4343 } 4344 4345 /* 4346 * nr_running and nr_context_switches: 4347 * 4348 * externally visible scheduler statistics: current number of runnable 4349 * threads, total number of context switches performed since bootup. 4350 */ 4351 unsigned long nr_running(void) 4352 { 4353 unsigned long i, sum = 0; 4354 4355 for_each_online_cpu(i) 4356 sum += cpu_rq(i)->nr_running; 4357 4358 return sum; 4359 } 4360 4361 /* 4362 * Check if only the current task is running on the CPU. 4363 * 4364 * Caution: this function does not check that the caller has disabled 4365 * preemption, thus the result might have a time-of-check-to-time-of-use 4366 * race. The caller is responsible to use it correctly, for example: 4367 * 4368 * - from a non-preemptible section (of course) 4369 * 4370 * - from a thread that is bound to a single CPU 4371 * 4372 * - in a loop with very short iterations (e.g. a polling loop) 4373 */ 4374 bool single_task_running(void) 4375 { 4376 return raw_rq()->nr_running == 1; 4377 } 4378 EXPORT_SYMBOL(single_task_running); 4379 4380 unsigned long long nr_context_switches(void) 4381 { 4382 int i; 4383 unsigned long long sum = 0; 4384 4385 for_each_possible_cpu(i) 4386 sum += cpu_rq(i)->nr_switches; 4387 4388 return sum; 4389 } 4390 4391 /* 4392 * Consumers of these two interfaces, like for example the cpuidle menu 4393 * governor, are using nonsensical data. Preferring shallow idle state selection 4394 * for a CPU that has IO-wait which might not even end up running the task when 4395 * it does become runnable. 4396 */ 4397 4398 unsigned long nr_iowait_cpu(int cpu) 4399 { 4400 return atomic_read(&cpu_rq(cpu)->nr_iowait); 4401 } 4402 4403 /* 4404 * IO-wait accounting, and how it's mostly bollocks (on SMP). 4405 * 4406 * The idea behind IO-wait account is to account the idle time that we could 4407 * have spend running if it were not for IO. That is, if we were to improve the 4408 * storage performance, we'd have a proportional reduction in IO-wait time. 4409 * 4410 * This all works nicely on UP, where, when a task blocks on IO, we account 4411 * idle time as IO-wait, because if the storage were faster, it could've been 4412 * running and we'd not be idle. 4413 * 4414 * This has been extended to SMP, by doing the same for each CPU. This however 4415 * is broken. 4416 * 4417 * Imagine for instance the case where two tasks block on one CPU, only the one 4418 * CPU will have IO-wait accounted, while the other has regular idle. Even 4419 * though, if the storage were faster, both could've ran at the same time, 4420 * utilising both CPUs. 4421 * 4422 * This means, that when looking globally, the current IO-wait accounting on 4423 * SMP is a lower bound, by reason of under accounting. 4424 * 4425 * Worse, since the numbers are provided per CPU, they are sometimes 4426 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 4427 * associated with any one particular CPU, it can wake to another CPU than it 4428 * blocked on. This means the per CPU IO-wait number is meaningless. 4429 * 4430 * Task CPU affinities can make all that even more 'interesting'. 4431 */ 4432 4433 unsigned long nr_iowait(void) 4434 { 4435 unsigned long i, sum = 0; 4436 4437 for_each_possible_cpu(i) 4438 sum += nr_iowait_cpu(i); 4439 4440 return sum; 4441 } 4442 4443 #ifdef CONFIG_SMP 4444 4445 /* 4446 * sched_exec - execve() is a valuable balancing opportunity, because at 4447 * this point the task has the smallest effective memory and cache footprint. 4448 */ 4449 void sched_exec(void) 4450 { 4451 struct task_struct *p = current; 4452 unsigned long flags; 4453 int dest_cpu; 4454 4455 raw_spin_lock_irqsave(&p->pi_lock, flags); 4456 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 4457 if (dest_cpu == smp_processor_id()) 4458 goto unlock; 4459 4460 if (likely(cpu_active(dest_cpu))) { 4461 struct migration_arg arg = { p, dest_cpu }; 4462 4463 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4464 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 4465 return; 4466 } 4467 unlock: 4468 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4469 } 4470 4471 #endif 4472 4473 DEFINE_PER_CPU(struct kernel_stat, kstat); 4474 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 4475 4476 EXPORT_PER_CPU_SYMBOL(kstat); 4477 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 4478 4479 /* 4480 * The function fair_sched_class.update_curr accesses the struct curr 4481 * and its field curr->exec_start; when called from task_sched_runtime(), 4482 * we observe a high rate of cache misses in practice. 4483 * Prefetching this data results in improved performance. 4484 */ 4485 static inline void prefetch_curr_exec_start(struct task_struct *p) 4486 { 4487 #ifdef CONFIG_FAIR_GROUP_SCHED 4488 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 4489 #else 4490 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 4491 #endif 4492 prefetch(curr); 4493 prefetch(&curr->exec_start); 4494 } 4495 4496 /* 4497 * Return accounted runtime for the task. 4498 * In case the task is currently running, return the runtime plus current's 4499 * pending runtime that have not been accounted yet. 4500 */ 4501 unsigned long long task_sched_runtime(struct task_struct *p) 4502 { 4503 struct rq_flags rf; 4504 struct rq *rq; 4505 u64 ns; 4506 4507 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 4508 /* 4509 * 64-bit doesn't need locks to atomically read a 64-bit value. 4510 * So we have a optimization chance when the task's delta_exec is 0. 4511 * Reading ->on_cpu is racy, but this is ok. 4512 * 4513 * If we race with it leaving CPU, we'll take a lock. So we're correct. 4514 * If we race with it entering CPU, unaccounted time is 0. This is 4515 * indistinguishable from the read occurring a few cycles earlier. 4516 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 4517 * been accounted, so we're correct here as well. 4518 */ 4519 if (!p->on_cpu || !task_on_rq_queued(p)) 4520 return p->se.sum_exec_runtime; 4521 #endif 4522 4523 rq = task_rq_lock(p, &rf); 4524 /* 4525 * Must be ->curr _and_ ->on_rq. If dequeued, we would 4526 * project cycles that may never be accounted to this 4527 * thread, breaking clock_gettime(). 4528 */ 4529 if (task_current(rq, p) && task_on_rq_queued(p)) { 4530 prefetch_curr_exec_start(p); 4531 update_rq_clock(rq); 4532 p->sched_class->update_curr(rq); 4533 } 4534 ns = p->se.sum_exec_runtime; 4535 task_rq_unlock(rq, p, &rf); 4536 4537 return ns; 4538 } 4539 4540 #ifdef CONFIG_SCHED_DEBUG 4541 static u64 cpu_resched_latency(struct rq *rq) 4542 { 4543 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 4544 u64 resched_latency, now = rq_clock(rq); 4545 static bool warned_once; 4546 4547 if (sysctl_resched_latency_warn_once && warned_once) 4548 return 0; 4549 4550 if (!need_resched() || !latency_warn_ms) 4551 return 0; 4552 4553 if (system_state == SYSTEM_BOOTING) 4554 return 0; 4555 4556 if (!rq->last_seen_need_resched_ns) { 4557 rq->last_seen_need_resched_ns = now; 4558 rq->ticks_without_resched = 0; 4559 return 0; 4560 } 4561 4562 rq->ticks_without_resched++; 4563 resched_latency = now - rq->last_seen_need_resched_ns; 4564 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 4565 return 0; 4566 4567 warned_once = true; 4568 4569 return resched_latency; 4570 } 4571 4572 static int __init setup_resched_latency_warn_ms(char *str) 4573 { 4574 long val; 4575 4576 if ((kstrtol(str, 0, &val))) { 4577 pr_warn("Unable to set resched_latency_warn_ms\n"); 4578 return 1; 4579 } 4580 4581 sysctl_resched_latency_warn_ms = val; 4582 return 1; 4583 } 4584 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 4585 #else 4586 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 4587 #endif /* CONFIG_SCHED_DEBUG */ 4588 4589 /* 4590 * This function gets called by the timer code, with HZ frequency. 4591 * We call it with interrupts disabled. 4592 */ 4593 void scheduler_tick(void) 4594 { 4595 int cpu = smp_processor_id(); 4596 struct rq *rq = cpu_rq(cpu); 4597 struct task_struct *curr = rq->curr; 4598 struct rq_flags rf; 4599 unsigned long thermal_pressure; 4600 u64 resched_latency; 4601 4602 arch_scale_freq_tick(); 4603 sched_clock_tick(); 4604 4605 rq_lock(rq, &rf); 4606 4607 update_rq_clock(rq); 4608 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 4609 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 4610 curr->sched_class->task_tick(rq, curr, 0); 4611 if (sched_feat(LATENCY_WARN)) 4612 resched_latency = cpu_resched_latency(rq); 4613 calc_global_load_tick(rq); 4614 4615 rq_unlock(rq, &rf); 4616 4617 if (sched_feat(LATENCY_WARN) && resched_latency) 4618 resched_latency_warn(cpu, resched_latency); 4619 4620 perf_event_task_tick(); 4621 4622 #ifdef CONFIG_SMP 4623 rq->idle_balance = idle_cpu(cpu); 4624 trigger_load_balance(rq); 4625 #endif 4626 } 4627 4628 #ifdef CONFIG_NO_HZ_FULL 4629 4630 struct tick_work { 4631 int cpu; 4632 atomic_t state; 4633 struct delayed_work work; 4634 }; 4635 /* Values for ->state, see diagram below. */ 4636 #define TICK_SCHED_REMOTE_OFFLINE 0 4637 #define TICK_SCHED_REMOTE_OFFLINING 1 4638 #define TICK_SCHED_REMOTE_RUNNING 2 4639 4640 /* 4641 * State diagram for ->state: 4642 * 4643 * 4644 * TICK_SCHED_REMOTE_OFFLINE 4645 * | ^ 4646 * | | 4647 * | | sched_tick_remote() 4648 * | | 4649 * | | 4650 * +--TICK_SCHED_REMOTE_OFFLINING 4651 * | ^ 4652 * | | 4653 * sched_tick_start() | | sched_tick_stop() 4654 * | | 4655 * V | 4656 * TICK_SCHED_REMOTE_RUNNING 4657 * 4658 * 4659 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 4660 * and sched_tick_start() are happy to leave the state in RUNNING. 4661 */ 4662 4663 static struct tick_work __percpu *tick_work_cpu; 4664 4665 static void sched_tick_remote(struct work_struct *work) 4666 { 4667 struct delayed_work *dwork = to_delayed_work(work); 4668 struct tick_work *twork = container_of(dwork, struct tick_work, work); 4669 int cpu = twork->cpu; 4670 struct rq *rq = cpu_rq(cpu); 4671 struct task_struct *curr; 4672 struct rq_flags rf; 4673 u64 delta; 4674 int os; 4675 4676 /* 4677 * Handle the tick only if it appears the remote CPU is running in full 4678 * dynticks mode. The check is racy by nature, but missing a tick or 4679 * having one too much is no big deal because the scheduler tick updates 4680 * statistics and checks timeslices in a time-independent way, regardless 4681 * of when exactly it is running. 4682 */ 4683 if (!tick_nohz_tick_stopped_cpu(cpu)) 4684 goto out_requeue; 4685 4686 rq_lock_irq(rq, &rf); 4687 curr = rq->curr; 4688 if (cpu_is_offline(cpu)) 4689 goto out_unlock; 4690 4691 update_rq_clock(rq); 4692 4693 if (!is_idle_task(curr)) { 4694 /* 4695 * Make sure the next tick runs within a reasonable 4696 * amount of time. 4697 */ 4698 delta = rq_clock_task(rq) - curr->se.exec_start; 4699 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 4700 } 4701 curr->sched_class->task_tick(rq, curr, 0); 4702 4703 calc_load_nohz_remote(rq); 4704 out_unlock: 4705 rq_unlock_irq(rq, &rf); 4706 out_requeue: 4707 4708 /* 4709 * Run the remote tick once per second (1Hz). This arbitrary 4710 * frequency is large enough to avoid overload but short enough 4711 * to keep scheduler internal stats reasonably up to date. But 4712 * first update state to reflect hotplug activity if required. 4713 */ 4714 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 4715 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 4716 if (os == TICK_SCHED_REMOTE_RUNNING) 4717 queue_delayed_work(system_unbound_wq, dwork, HZ); 4718 } 4719 4720 static void sched_tick_start(int cpu) 4721 { 4722 int os; 4723 struct tick_work *twork; 4724 4725 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4726 return; 4727 4728 WARN_ON_ONCE(!tick_work_cpu); 4729 4730 twork = per_cpu_ptr(tick_work_cpu, cpu); 4731 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 4732 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 4733 if (os == TICK_SCHED_REMOTE_OFFLINE) { 4734 twork->cpu = cpu; 4735 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 4736 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 4737 } 4738 } 4739 4740 #ifdef CONFIG_HOTPLUG_CPU 4741 static void sched_tick_stop(int cpu) 4742 { 4743 struct tick_work *twork; 4744 int os; 4745 4746 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4747 return; 4748 4749 WARN_ON_ONCE(!tick_work_cpu); 4750 4751 twork = per_cpu_ptr(tick_work_cpu, cpu); 4752 /* There cannot be competing actions, but don't rely on stop-machine. */ 4753 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 4754 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 4755 /* Don't cancel, as this would mess up the state machine. */ 4756 } 4757 #endif /* CONFIG_HOTPLUG_CPU */ 4758 4759 int __init sched_tick_offload_init(void) 4760 { 4761 tick_work_cpu = alloc_percpu(struct tick_work); 4762 BUG_ON(!tick_work_cpu); 4763 return 0; 4764 } 4765 4766 #else /* !CONFIG_NO_HZ_FULL */ 4767 static inline void sched_tick_start(int cpu) { } 4768 static inline void sched_tick_stop(int cpu) { } 4769 #endif 4770 4771 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 4772 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 4773 /* 4774 * If the value passed in is equal to the current preempt count 4775 * then we just disabled preemption. Start timing the latency. 4776 */ 4777 static inline void preempt_latency_start(int val) 4778 { 4779 if (preempt_count() == val) { 4780 unsigned long ip = get_lock_parent_ip(); 4781 #ifdef CONFIG_DEBUG_PREEMPT 4782 current->preempt_disable_ip = ip; 4783 #endif 4784 trace_preempt_off(CALLER_ADDR0, ip); 4785 } 4786 } 4787 4788 void preempt_count_add(int val) 4789 { 4790 #ifdef CONFIG_DEBUG_PREEMPT 4791 /* 4792 * Underflow? 4793 */ 4794 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 4795 return; 4796 #endif 4797 __preempt_count_add(val); 4798 #ifdef CONFIG_DEBUG_PREEMPT 4799 /* 4800 * Spinlock count overflowing soon? 4801 */ 4802 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 4803 PREEMPT_MASK - 10); 4804 #endif 4805 preempt_latency_start(val); 4806 } 4807 EXPORT_SYMBOL(preempt_count_add); 4808 NOKPROBE_SYMBOL(preempt_count_add); 4809 4810 /* 4811 * If the value passed in equals to the current preempt count 4812 * then we just enabled preemption. Stop timing the latency. 4813 */ 4814 static inline void preempt_latency_stop(int val) 4815 { 4816 if (preempt_count() == val) 4817 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 4818 } 4819 4820 void preempt_count_sub(int val) 4821 { 4822 #ifdef CONFIG_DEBUG_PREEMPT 4823 /* 4824 * Underflow? 4825 */ 4826 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 4827 return; 4828 /* 4829 * Is the spinlock portion underflowing? 4830 */ 4831 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 4832 !(preempt_count() & PREEMPT_MASK))) 4833 return; 4834 #endif 4835 4836 preempt_latency_stop(val); 4837 __preempt_count_sub(val); 4838 } 4839 EXPORT_SYMBOL(preempt_count_sub); 4840 NOKPROBE_SYMBOL(preempt_count_sub); 4841 4842 #else 4843 static inline void preempt_latency_start(int val) { } 4844 static inline void preempt_latency_stop(int val) { } 4845 #endif 4846 4847 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 4848 { 4849 #ifdef CONFIG_DEBUG_PREEMPT 4850 return p->preempt_disable_ip; 4851 #else 4852 return 0; 4853 #endif 4854 } 4855 4856 /* 4857 * Print scheduling while atomic bug: 4858 */ 4859 static noinline void __schedule_bug(struct task_struct *prev) 4860 { 4861 /* Save this before calling printk(), since that will clobber it */ 4862 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 4863 4864 if (oops_in_progress) 4865 return; 4866 4867 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 4868 prev->comm, prev->pid, preempt_count()); 4869 4870 debug_show_held_locks(prev); 4871 print_modules(); 4872 if (irqs_disabled()) 4873 print_irqtrace_events(prev); 4874 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 4875 && in_atomic_preempt_off()) { 4876 pr_err("Preemption disabled at:"); 4877 print_ip_sym(KERN_ERR, preempt_disable_ip); 4878 } 4879 if (panic_on_warn) 4880 panic("scheduling while atomic\n"); 4881 4882 dump_stack(); 4883 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4884 } 4885 4886 /* 4887 * Various schedule()-time debugging checks and statistics: 4888 */ 4889 static inline void schedule_debug(struct task_struct *prev, bool preempt) 4890 { 4891 #ifdef CONFIG_SCHED_STACK_END_CHECK 4892 if (task_stack_end_corrupted(prev)) 4893 panic("corrupted stack end detected inside scheduler\n"); 4894 4895 if (task_scs_end_corrupted(prev)) 4896 panic("corrupted shadow stack detected inside scheduler\n"); 4897 #endif 4898 4899 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 4900 if (!preempt && prev->state && prev->non_block_count) { 4901 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 4902 prev->comm, prev->pid, prev->non_block_count); 4903 dump_stack(); 4904 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4905 } 4906 #endif 4907 4908 if (unlikely(in_atomic_preempt_off())) { 4909 __schedule_bug(prev); 4910 preempt_count_set(PREEMPT_DISABLED); 4911 } 4912 rcu_sleep_check(); 4913 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 4914 4915 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 4916 4917 schedstat_inc(this_rq()->sched_count); 4918 } 4919 4920 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 4921 struct rq_flags *rf) 4922 { 4923 #ifdef CONFIG_SMP 4924 const struct sched_class *class; 4925 /* 4926 * We must do the balancing pass before put_prev_task(), such 4927 * that when we release the rq->lock the task is in the same 4928 * state as before we took rq->lock. 4929 * 4930 * We can terminate the balance pass as soon as we know there is 4931 * a runnable task of @class priority or higher. 4932 */ 4933 for_class_range(class, prev->sched_class, &idle_sched_class) { 4934 if (class->balance(rq, prev, rf)) 4935 break; 4936 } 4937 #endif 4938 4939 put_prev_task(rq, prev); 4940 } 4941 4942 /* 4943 * Pick up the highest-prio task: 4944 */ 4945 static inline struct task_struct * 4946 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4947 { 4948 const struct sched_class *class; 4949 struct task_struct *p; 4950 4951 /* 4952 * Optimization: we know that if all tasks are in the fair class we can 4953 * call that function directly, but only if the @prev task wasn't of a 4954 * higher scheduling class, because otherwise those lose the 4955 * opportunity to pull in more work from other CPUs. 4956 */ 4957 if (likely(prev->sched_class <= &fair_sched_class && 4958 rq->nr_running == rq->cfs.h_nr_running)) { 4959 4960 p = pick_next_task_fair(rq, prev, rf); 4961 if (unlikely(p == RETRY_TASK)) 4962 goto restart; 4963 4964 /* Assumes fair_sched_class->next == idle_sched_class */ 4965 if (!p) { 4966 put_prev_task(rq, prev); 4967 p = pick_next_task_idle(rq); 4968 } 4969 4970 return p; 4971 } 4972 4973 restart: 4974 put_prev_task_balance(rq, prev, rf); 4975 4976 for_each_class(class) { 4977 p = class->pick_next_task(rq); 4978 if (p) 4979 return p; 4980 } 4981 4982 /* The idle class should always have a runnable task: */ 4983 BUG(); 4984 } 4985 4986 /* 4987 * __schedule() is the main scheduler function. 4988 * 4989 * The main means of driving the scheduler and thus entering this function are: 4990 * 4991 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4992 * 4993 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4994 * paths. For example, see arch/x86/entry_64.S. 4995 * 4996 * To drive preemption between tasks, the scheduler sets the flag in timer 4997 * interrupt handler scheduler_tick(). 4998 * 4999 * 3. Wakeups don't really cause entry into schedule(). They add a 5000 * task to the run-queue and that's it. 5001 * 5002 * Now, if the new task added to the run-queue preempts the current 5003 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 5004 * called on the nearest possible occasion: 5005 * 5006 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 5007 * 5008 * - in syscall or exception context, at the next outmost 5009 * preempt_enable(). (this might be as soon as the wake_up()'s 5010 * spin_unlock()!) 5011 * 5012 * - in IRQ context, return from interrupt-handler to 5013 * preemptible context 5014 * 5015 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 5016 * then at the next: 5017 * 5018 * - cond_resched() call 5019 * - explicit schedule() call 5020 * - return from syscall or exception to user-space 5021 * - return from interrupt-handler to user-space 5022 * 5023 * WARNING: must be called with preemption disabled! 5024 */ 5025 static void __sched notrace __schedule(bool preempt) 5026 { 5027 struct task_struct *prev, *next; 5028 unsigned long *switch_count; 5029 unsigned long prev_state; 5030 struct rq_flags rf; 5031 struct rq *rq; 5032 int cpu; 5033 5034 cpu = smp_processor_id(); 5035 rq = cpu_rq(cpu); 5036 prev = rq->curr; 5037 5038 schedule_debug(prev, preempt); 5039 5040 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 5041 hrtick_clear(rq); 5042 5043 local_irq_disable(); 5044 rcu_note_context_switch(preempt); 5045 5046 /* 5047 * Make sure that signal_pending_state()->signal_pending() below 5048 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 5049 * done by the caller to avoid the race with signal_wake_up(): 5050 * 5051 * __set_current_state(@state) signal_wake_up() 5052 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 5053 * wake_up_state(p, state) 5054 * LOCK rq->lock LOCK p->pi_state 5055 * smp_mb__after_spinlock() smp_mb__after_spinlock() 5056 * if (signal_pending_state()) if (p->state & @state) 5057 * 5058 * Also, the membarrier system call requires a full memory barrier 5059 * after coming from user-space, before storing to rq->curr. 5060 */ 5061 rq_lock(rq, &rf); 5062 smp_mb__after_spinlock(); 5063 5064 /* Promote REQ to ACT */ 5065 rq->clock_update_flags <<= 1; 5066 update_rq_clock(rq); 5067 5068 switch_count = &prev->nivcsw; 5069 5070 /* 5071 * We must load prev->state once (task_struct::state is volatile), such 5072 * that: 5073 * 5074 * - we form a control dependency vs deactivate_task() below. 5075 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 5076 */ 5077 prev_state = prev->state; 5078 if (!preempt && prev_state) { 5079 if (signal_pending_state(prev_state, prev)) { 5080 prev->state = TASK_RUNNING; 5081 } else { 5082 prev->sched_contributes_to_load = 5083 (prev_state & TASK_UNINTERRUPTIBLE) && 5084 !(prev_state & TASK_NOLOAD) && 5085 !(prev->flags & PF_FROZEN); 5086 5087 if (prev->sched_contributes_to_load) 5088 rq->nr_uninterruptible++; 5089 5090 /* 5091 * __schedule() ttwu() 5092 * prev_state = prev->state; if (p->on_rq && ...) 5093 * if (prev_state) goto out; 5094 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 5095 * p->state = TASK_WAKING 5096 * 5097 * Where __schedule() and ttwu() have matching control dependencies. 5098 * 5099 * After this, schedule() must not care about p->state any more. 5100 */ 5101 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 5102 5103 if (prev->in_iowait) { 5104 atomic_inc(&rq->nr_iowait); 5105 delayacct_blkio_start(); 5106 } 5107 } 5108 switch_count = &prev->nvcsw; 5109 } 5110 5111 next = pick_next_task(rq, prev, &rf); 5112 clear_tsk_need_resched(prev); 5113 clear_preempt_need_resched(); 5114 #ifdef CONFIG_SCHED_DEBUG 5115 rq->last_seen_need_resched_ns = 0; 5116 #endif 5117 5118 if (likely(prev != next)) { 5119 rq->nr_switches++; 5120 /* 5121 * RCU users of rcu_dereference(rq->curr) may not see 5122 * changes to task_struct made by pick_next_task(). 5123 */ 5124 RCU_INIT_POINTER(rq->curr, next); 5125 /* 5126 * The membarrier system call requires each architecture 5127 * to have a full memory barrier after updating 5128 * rq->curr, before returning to user-space. 5129 * 5130 * Here are the schemes providing that barrier on the 5131 * various architectures: 5132 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 5133 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 5134 * - finish_lock_switch() for weakly-ordered 5135 * architectures where spin_unlock is a full barrier, 5136 * - switch_to() for arm64 (weakly-ordered, spin_unlock 5137 * is a RELEASE barrier), 5138 */ 5139 ++*switch_count; 5140 5141 migrate_disable_switch(rq, prev); 5142 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 5143 5144 trace_sched_switch(preempt, prev, next); 5145 5146 /* Also unlocks the rq: */ 5147 rq = context_switch(rq, prev, next, &rf); 5148 } else { 5149 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5150 5151 rq_unpin_lock(rq, &rf); 5152 __balance_callbacks(rq); 5153 raw_spin_unlock_irq(&rq->lock); 5154 } 5155 } 5156 5157 void __noreturn do_task_dead(void) 5158 { 5159 /* Causes final put_task_struct in finish_task_switch(): */ 5160 set_special_state(TASK_DEAD); 5161 5162 /* Tell freezer to ignore us: */ 5163 current->flags |= PF_NOFREEZE; 5164 5165 __schedule(false); 5166 BUG(); 5167 5168 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 5169 for (;;) 5170 cpu_relax(); 5171 } 5172 5173 static inline void sched_submit_work(struct task_struct *tsk) 5174 { 5175 unsigned int task_flags; 5176 5177 if (!tsk->state) 5178 return; 5179 5180 task_flags = tsk->flags; 5181 /* 5182 * If a worker went to sleep, notify and ask workqueue whether 5183 * it wants to wake up a task to maintain concurrency. 5184 * As this function is called inside the schedule() context, 5185 * we disable preemption to avoid it calling schedule() again 5186 * in the possible wakeup of a kworker and because wq_worker_sleeping() 5187 * requires it. 5188 */ 5189 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5190 preempt_disable(); 5191 if (task_flags & PF_WQ_WORKER) 5192 wq_worker_sleeping(tsk); 5193 else 5194 io_wq_worker_sleeping(tsk); 5195 preempt_enable_no_resched(); 5196 } 5197 5198 if (tsk_is_pi_blocked(tsk)) 5199 return; 5200 5201 /* 5202 * If we are going to sleep and we have plugged IO queued, 5203 * make sure to submit it to avoid deadlocks. 5204 */ 5205 if (blk_needs_flush_plug(tsk)) 5206 blk_schedule_flush_plug(tsk); 5207 } 5208 5209 static void sched_update_worker(struct task_struct *tsk) 5210 { 5211 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5212 if (tsk->flags & PF_WQ_WORKER) 5213 wq_worker_running(tsk); 5214 else 5215 io_wq_worker_running(tsk); 5216 } 5217 } 5218 5219 asmlinkage __visible void __sched schedule(void) 5220 { 5221 struct task_struct *tsk = current; 5222 5223 sched_submit_work(tsk); 5224 do { 5225 preempt_disable(); 5226 __schedule(false); 5227 sched_preempt_enable_no_resched(); 5228 } while (need_resched()); 5229 sched_update_worker(tsk); 5230 } 5231 EXPORT_SYMBOL(schedule); 5232 5233 /* 5234 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 5235 * state (have scheduled out non-voluntarily) by making sure that all 5236 * tasks have either left the run queue or have gone into user space. 5237 * As idle tasks do not do either, they must not ever be preempted 5238 * (schedule out non-voluntarily). 5239 * 5240 * schedule_idle() is similar to schedule_preempt_disable() except that it 5241 * never enables preemption because it does not call sched_submit_work(). 5242 */ 5243 void __sched schedule_idle(void) 5244 { 5245 /* 5246 * As this skips calling sched_submit_work(), which the idle task does 5247 * regardless because that function is a nop when the task is in a 5248 * TASK_RUNNING state, make sure this isn't used someplace that the 5249 * current task can be in any other state. Note, idle is always in the 5250 * TASK_RUNNING state. 5251 */ 5252 WARN_ON_ONCE(current->state); 5253 do { 5254 __schedule(false); 5255 } while (need_resched()); 5256 } 5257 5258 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 5259 asmlinkage __visible void __sched schedule_user(void) 5260 { 5261 /* 5262 * If we come here after a random call to set_need_resched(), 5263 * or we have been woken up remotely but the IPI has not yet arrived, 5264 * we haven't yet exited the RCU idle mode. Do it here manually until 5265 * we find a better solution. 5266 * 5267 * NB: There are buggy callers of this function. Ideally we 5268 * should warn if prev_state != CONTEXT_USER, but that will trigger 5269 * too frequently to make sense yet. 5270 */ 5271 enum ctx_state prev_state = exception_enter(); 5272 schedule(); 5273 exception_exit(prev_state); 5274 } 5275 #endif 5276 5277 /** 5278 * schedule_preempt_disabled - called with preemption disabled 5279 * 5280 * Returns with preemption disabled. Note: preempt_count must be 1 5281 */ 5282 void __sched schedule_preempt_disabled(void) 5283 { 5284 sched_preempt_enable_no_resched(); 5285 schedule(); 5286 preempt_disable(); 5287 } 5288 5289 static void __sched notrace preempt_schedule_common(void) 5290 { 5291 do { 5292 /* 5293 * Because the function tracer can trace preempt_count_sub() 5294 * and it also uses preempt_enable/disable_notrace(), if 5295 * NEED_RESCHED is set, the preempt_enable_notrace() called 5296 * by the function tracer will call this function again and 5297 * cause infinite recursion. 5298 * 5299 * Preemption must be disabled here before the function 5300 * tracer can trace. Break up preempt_disable() into two 5301 * calls. One to disable preemption without fear of being 5302 * traced. The other to still record the preemption latency, 5303 * which can also be traced by the function tracer. 5304 */ 5305 preempt_disable_notrace(); 5306 preempt_latency_start(1); 5307 __schedule(true); 5308 preempt_latency_stop(1); 5309 preempt_enable_no_resched_notrace(); 5310 5311 /* 5312 * Check again in case we missed a preemption opportunity 5313 * between schedule and now. 5314 */ 5315 } while (need_resched()); 5316 } 5317 5318 #ifdef CONFIG_PREEMPTION 5319 /* 5320 * This is the entry point to schedule() from in-kernel preemption 5321 * off of preempt_enable. 5322 */ 5323 asmlinkage __visible void __sched notrace preempt_schedule(void) 5324 { 5325 /* 5326 * If there is a non-zero preempt_count or interrupts are disabled, 5327 * we do not want to preempt the current task. Just return.. 5328 */ 5329 if (likely(!preemptible())) 5330 return; 5331 5332 preempt_schedule_common(); 5333 } 5334 NOKPROBE_SYMBOL(preempt_schedule); 5335 EXPORT_SYMBOL(preempt_schedule); 5336 5337 #ifdef CONFIG_PREEMPT_DYNAMIC 5338 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 5339 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 5340 #endif 5341 5342 5343 /** 5344 * preempt_schedule_notrace - preempt_schedule called by tracing 5345 * 5346 * The tracing infrastructure uses preempt_enable_notrace to prevent 5347 * recursion and tracing preempt enabling caused by the tracing 5348 * infrastructure itself. But as tracing can happen in areas coming 5349 * from userspace or just about to enter userspace, a preempt enable 5350 * can occur before user_exit() is called. This will cause the scheduler 5351 * to be called when the system is still in usermode. 5352 * 5353 * To prevent this, the preempt_enable_notrace will use this function 5354 * instead of preempt_schedule() to exit user context if needed before 5355 * calling the scheduler. 5356 */ 5357 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 5358 { 5359 enum ctx_state prev_ctx; 5360 5361 if (likely(!preemptible())) 5362 return; 5363 5364 do { 5365 /* 5366 * Because the function tracer can trace preempt_count_sub() 5367 * and it also uses preempt_enable/disable_notrace(), if 5368 * NEED_RESCHED is set, the preempt_enable_notrace() called 5369 * by the function tracer will call this function again and 5370 * cause infinite recursion. 5371 * 5372 * Preemption must be disabled here before the function 5373 * tracer can trace. Break up preempt_disable() into two 5374 * calls. One to disable preemption without fear of being 5375 * traced. The other to still record the preemption latency, 5376 * which can also be traced by the function tracer. 5377 */ 5378 preempt_disable_notrace(); 5379 preempt_latency_start(1); 5380 /* 5381 * Needs preempt disabled in case user_exit() is traced 5382 * and the tracer calls preempt_enable_notrace() causing 5383 * an infinite recursion. 5384 */ 5385 prev_ctx = exception_enter(); 5386 __schedule(true); 5387 exception_exit(prev_ctx); 5388 5389 preempt_latency_stop(1); 5390 preempt_enable_no_resched_notrace(); 5391 } while (need_resched()); 5392 } 5393 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 5394 5395 #ifdef CONFIG_PREEMPT_DYNAMIC 5396 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5397 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 5398 #endif 5399 5400 #endif /* CONFIG_PREEMPTION */ 5401 5402 #ifdef CONFIG_PREEMPT_DYNAMIC 5403 5404 #include <linux/entry-common.h> 5405 5406 /* 5407 * SC:cond_resched 5408 * SC:might_resched 5409 * SC:preempt_schedule 5410 * SC:preempt_schedule_notrace 5411 * SC:irqentry_exit_cond_resched 5412 * 5413 * 5414 * NONE: 5415 * cond_resched <- __cond_resched 5416 * might_resched <- RET0 5417 * preempt_schedule <- NOP 5418 * preempt_schedule_notrace <- NOP 5419 * irqentry_exit_cond_resched <- NOP 5420 * 5421 * VOLUNTARY: 5422 * cond_resched <- __cond_resched 5423 * might_resched <- __cond_resched 5424 * preempt_schedule <- NOP 5425 * preempt_schedule_notrace <- NOP 5426 * irqentry_exit_cond_resched <- NOP 5427 * 5428 * FULL: 5429 * cond_resched <- RET0 5430 * might_resched <- RET0 5431 * preempt_schedule <- preempt_schedule 5432 * preempt_schedule_notrace <- preempt_schedule_notrace 5433 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 5434 */ 5435 5436 enum { 5437 preempt_dynamic_none = 0, 5438 preempt_dynamic_voluntary, 5439 preempt_dynamic_full, 5440 }; 5441 5442 int preempt_dynamic_mode = preempt_dynamic_full; 5443 5444 int sched_dynamic_mode(const char *str) 5445 { 5446 if (!strcmp(str, "none")) 5447 return preempt_dynamic_none; 5448 5449 if (!strcmp(str, "voluntary")) 5450 return preempt_dynamic_voluntary; 5451 5452 if (!strcmp(str, "full")) 5453 return preempt_dynamic_full; 5454 5455 return -EINVAL; 5456 } 5457 5458 void sched_dynamic_update(int mode) 5459 { 5460 /* 5461 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 5462 * the ZERO state, which is invalid. 5463 */ 5464 static_call_update(cond_resched, __cond_resched); 5465 static_call_update(might_resched, __cond_resched); 5466 static_call_update(preempt_schedule, __preempt_schedule_func); 5467 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5468 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5469 5470 switch (mode) { 5471 case preempt_dynamic_none: 5472 static_call_update(cond_resched, __cond_resched); 5473 static_call_update(might_resched, (void *)&__static_call_return0); 5474 static_call_update(preempt_schedule, NULL); 5475 static_call_update(preempt_schedule_notrace, NULL); 5476 static_call_update(irqentry_exit_cond_resched, NULL); 5477 pr_info("Dynamic Preempt: none\n"); 5478 break; 5479 5480 case preempt_dynamic_voluntary: 5481 static_call_update(cond_resched, __cond_resched); 5482 static_call_update(might_resched, __cond_resched); 5483 static_call_update(preempt_schedule, NULL); 5484 static_call_update(preempt_schedule_notrace, NULL); 5485 static_call_update(irqentry_exit_cond_resched, NULL); 5486 pr_info("Dynamic Preempt: voluntary\n"); 5487 break; 5488 5489 case preempt_dynamic_full: 5490 static_call_update(cond_resched, (void *)&__static_call_return0); 5491 static_call_update(might_resched, (void *)&__static_call_return0); 5492 static_call_update(preempt_schedule, __preempt_schedule_func); 5493 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5494 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5495 pr_info("Dynamic Preempt: full\n"); 5496 break; 5497 } 5498 5499 preempt_dynamic_mode = mode; 5500 } 5501 5502 static int __init setup_preempt_mode(char *str) 5503 { 5504 int mode = sched_dynamic_mode(str); 5505 if (mode < 0) { 5506 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 5507 return 1; 5508 } 5509 5510 sched_dynamic_update(mode); 5511 return 0; 5512 } 5513 __setup("preempt=", setup_preempt_mode); 5514 5515 #endif /* CONFIG_PREEMPT_DYNAMIC */ 5516 5517 /* 5518 * This is the entry point to schedule() from kernel preemption 5519 * off of irq context. 5520 * Note, that this is called and return with irqs disabled. This will 5521 * protect us against recursive calling from irq. 5522 */ 5523 asmlinkage __visible void __sched preempt_schedule_irq(void) 5524 { 5525 enum ctx_state prev_state; 5526 5527 /* Catch callers which need to be fixed */ 5528 BUG_ON(preempt_count() || !irqs_disabled()); 5529 5530 prev_state = exception_enter(); 5531 5532 do { 5533 preempt_disable(); 5534 local_irq_enable(); 5535 __schedule(true); 5536 local_irq_disable(); 5537 sched_preempt_enable_no_resched(); 5538 } while (need_resched()); 5539 5540 exception_exit(prev_state); 5541 } 5542 5543 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 5544 void *key) 5545 { 5546 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 5547 return try_to_wake_up(curr->private, mode, wake_flags); 5548 } 5549 EXPORT_SYMBOL(default_wake_function); 5550 5551 #ifdef CONFIG_RT_MUTEXES 5552 5553 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 5554 { 5555 if (pi_task) 5556 prio = min(prio, pi_task->prio); 5557 5558 return prio; 5559 } 5560 5561 static inline int rt_effective_prio(struct task_struct *p, int prio) 5562 { 5563 struct task_struct *pi_task = rt_mutex_get_top_task(p); 5564 5565 return __rt_effective_prio(pi_task, prio); 5566 } 5567 5568 /* 5569 * rt_mutex_setprio - set the current priority of a task 5570 * @p: task to boost 5571 * @pi_task: donor task 5572 * 5573 * This function changes the 'effective' priority of a task. It does 5574 * not touch ->normal_prio like __setscheduler(). 5575 * 5576 * Used by the rt_mutex code to implement priority inheritance 5577 * logic. Call site only calls if the priority of the task changed. 5578 */ 5579 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 5580 { 5581 int prio, oldprio, queued, running, queue_flag = 5582 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5583 const struct sched_class *prev_class; 5584 struct rq_flags rf; 5585 struct rq *rq; 5586 5587 /* XXX used to be waiter->prio, not waiter->task->prio */ 5588 prio = __rt_effective_prio(pi_task, p->normal_prio); 5589 5590 /* 5591 * If nothing changed; bail early. 5592 */ 5593 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 5594 return; 5595 5596 rq = __task_rq_lock(p, &rf); 5597 update_rq_clock(rq); 5598 /* 5599 * Set under pi_lock && rq->lock, such that the value can be used under 5600 * either lock. 5601 * 5602 * Note that there is loads of tricky to make this pointer cache work 5603 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 5604 * ensure a task is de-boosted (pi_task is set to NULL) before the 5605 * task is allowed to run again (and can exit). This ensures the pointer 5606 * points to a blocked task -- which guarantees the task is present. 5607 */ 5608 p->pi_top_task = pi_task; 5609 5610 /* 5611 * For FIFO/RR we only need to set prio, if that matches we're done. 5612 */ 5613 if (prio == p->prio && !dl_prio(prio)) 5614 goto out_unlock; 5615 5616 /* 5617 * Idle task boosting is a nono in general. There is one 5618 * exception, when PREEMPT_RT and NOHZ is active: 5619 * 5620 * The idle task calls get_next_timer_interrupt() and holds 5621 * the timer wheel base->lock on the CPU and another CPU wants 5622 * to access the timer (probably to cancel it). We can safely 5623 * ignore the boosting request, as the idle CPU runs this code 5624 * with interrupts disabled and will complete the lock 5625 * protected section without being interrupted. So there is no 5626 * real need to boost. 5627 */ 5628 if (unlikely(p == rq->idle)) { 5629 WARN_ON(p != rq->curr); 5630 WARN_ON(p->pi_blocked_on); 5631 goto out_unlock; 5632 } 5633 5634 trace_sched_pi_setprio(p, pi_task); 5635 oldprio = p->prio; 5636 5637 if (oldprio == prio) 5638 queue_flag &= ~DEQUEUE_MOVE; 5639 5640 prev_class = p->sched_class; 5641 queued = task_on_rq_queued(p); 5642 running = task_current(rq, p); 5643 if (queued) 5644 dequeue_task(rq, p, queue_flag); 5645 if (running) 5646 put_prev_task(rq, p); 5647 5648 /* 5649 * Boosting condition are: 5650 * 1. -rt task is running and holds mutex A 5651 * --> -dl task blocks on mutex A 5652 * 5653 * 2. -dl task is running and holds mutex A 5654 * --> -dl task blocks on mutex A and could preempt the 5655 * running task 5656 */ 5657 if (dl_prio(prio)) { 5658 if (!dl_prio(p->normal_prio) || 5659 (pi_task && dl_prio(pi_task->prio) && 5660 dl_entity_preempt(&pi_task->dl, &p->dl))) { 5661 p->dl.pi_se = pi_task->dl.pi_se; 5662 queue_flag |= ENQUEUE_REPLENISH; 5663 } else { 5664 p->dl.pi_se = &p->dl; 5665 } 5666 p->sched_class = &dl_sched_class; 5667 } else if (rt_prio(prio)) { 5668 if (dl_prio(oldprio)) 5669 p->dl.pi_se = &p->dl; 5670 if (oldprio < prio) 5671 queue_flag |= ENQUEUE_HEAD; 5672 p->sched_class = &rt_sched_class; 5673 } else { 5674 if (dl_prio(oldprio)) 5675 p->dl.pi_se = &p->dl; 5676 if (rt_prio(oldprio)) 5677 p->rt.timeout = 0; 5678 p->sched_class = &fair_sched_class; 5679 } 5680 5681 p->prio = prio; 5682 5683 if (queued) 5684 enqueue_task(rq, p, queue_flag); 5685 if (running) 5686 set_next_task(rq, p); 5687 5688 check_class_changed(rq, p, prev_class, oldprio); 5689 out_unlock: 5690 /* Avoid rq from going away on us: */ 5691 preempt_disable(); 5692 5693 rq_unpin_lock(rq, &rf); 5694 __balance_callbacks(rq); 5695 raw_spin_unlock(&rq->lock); 5696 5697 preempt_enable(); 5698 } 5699 #else 5700 static inline int rt_effective_prio(struct task_struct *p, int prio) 5701 { 5702 return prio; 5703 } 5704 #endif 5705 5706 void set_user_nice(struct task_struct *p, long nice) 5707 { 5708 bool queued, running; 5709 int old_prio; 5710 struct rq_flags rf; 5711 struct rq *rq; 5712 5713 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 5714 return; 5715 /* 5716 * We have to be careful, if called from sys_setpriority(), 5717 * the task might be in the middle of scheduling on another CPU. 5718 */ 5719 rq = task_rq_lock(p, &rf); 5720 update_rq_clock(rq); 5721 5722 /* 5723 * The RT priorities are set via sched_setscheduler(), but we still 5724 * allow the 'normal' nice value to be set - but as expected 5725 * it won't have any effect on scheduling until the task is 5726 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 5727 */ 5728 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 5729 p->static_prio = NICE_TO_PRIO(nice); 5730 goto out_unlock; 5731 } 5732 queued = task_on_rq_queued(p); 5733 running = task_current(rq, p); 5734 if (queued) 5735 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 5736 if (running) 5737 put_prev_task(rq, p); 5738 5739 p->static_prio = NICE_TO_PRIO(nice); 5740 set_load_weight(p, true); 5741 old_prio = p->prio; 5742 p->prio = effective_prio(p); 5743 5744 if (queued) 5745 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5746 if (running) 5747 set_next_task(rq, p); 5748 5749 /* 5750 * If the task increased its priority or is running and 5751 * lowered its priority, then reschedule its CPU: 5752 */ 5753 p->sched_class->prio_changed(rq, p, old_prio); 5754 5755 out_unlock: 5756 task_rq_unlock(rq, p, &rf); 5757 } 5758 EXPORT_SYMBOL(set_user_nice); 5759 5760 /* 5761 * can_nice - check if a task can reduce its nice value 5762 * @p: task 5763 * @nice: nice value 5764 */ 5765 int can_nice(const struct task_struct *p, const int nice) 5766 { 5767 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 5768 int nice_rlim = nice_to_rlimit(nice); 5769 5770 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 5771 capable(CAP_SYS_NICE)); 5772 } 5773 5774 #ifdef __ARCH_WANT_SYS_NICE 5775 5776 /* 5777 * sys_nice - change the priority of the current process. 5778 * @increment: priority increment 5779 * 5780 * sys_setpriority is a more generic, but much slower function that 5781 * does similar things. 5782 */ 5783 SYSCALL_DEFINE1(nice, int, increment) 5784 { 5785 long nice, retval; 5786 5787 /* 5788 * Setpriority might change our priority at the same moment. 5789 * We don't have to worry. Conceptually one call occurs first 5790 * and we have a single winner. 5791 */ 5792 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 5793 nice = task_nice(current) + increment; 5794 5795 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 5796 if (increment < 0 && !can_nice(current, nice)) 5797 return -EPERM; 5798 5799 retval = security_task_setnice(current, nice); 5800 if (retval) 5801 return retval; 5802 5803 set_user_nice(current, nice); 5804 return 0; 5805 } 5806 5807 #endif 5808 5809 /** 5810 * task_prio - return the priority value of a given task. 5811 * @p: the task in question. 5812 * 5813 * Return: The priority value as seen by users in /proc. 5814 * 5815 * sched policy return value kernel prio user prio/nice 5816 * 5817 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 5818 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 5819 * deadline -101 -1 0 5820 */ 5821 int task_prio(const struct task_struct *p) 5822 { 5823 return p->prio - MAX_RT_PRIO; 5824 } 5825 5826 /** 5827 * idle_cpu - is a given CPU idle currently? 5828 * @cpu: the processor in question. 5829 * 5830 * Return: 1 if the CPU is currently idle. 0 otherwise. 5831 */ 5832 int idle_cpu(int cpu) 5833 { 5834 struct rq *rq = cpu_rq(cpu); 5835 5836 if (rq->curr != rq->idle) 5837 return 0; 5838 5839 if (rq->nr_running) 5840 return 0; 5841 5842 #ifdef CONFIG_SMP 5843 if (rq->ttwu_pending) 5844 return 0; 5845 #endif 5846 5847 return 1; 5848 } 5849 5850 /** 5851 * available_idle_cpu - is a given CPU idle for enqueuing work. 5852 * @cpu: the CPU in question. 5853 * 5854 * Return: 1 if the CPU is currently idle. 0 otherwise. 5855 */ 5856 int available_idle_cpu(int cpu) 5857 { 5858 if (!idle_cpu(cpu)) 5859 return 0; 5860 5861 if (vcpu_is_preempted(cpu)) 5862 return 0; 5863 5864 return 1; 5865 } 5866 5867 /** 5868 * idle_task - return the idle task for a given CPU. 5869 * @cpu: the processor in question. 5870 * 5871 * Return: The idle task for the CPU @cpu. 5872 */ 5873 struct task_struct *idle_task(int cpu) 5874 { 5875 return cpu_rq(cpu)->idle; 5876 } 5877 5878 #ifdef CONFIG_SMP 5879 /* 5880 * This function computes an effective utilization for the given CPU, to be 5881 * used for frequency selection given the linear relation: f = u * f_max. 5882 * 5883 * The scheduler tracks the following metrics: 5884 * 5885 * cpu_util_{cfs,rt,dl,irq}() 5886 * cpu_bw_dl() 5887 * 5888 * Where the cfs,rt and dl util numbers are tracked with the same metric and 5889 * synchronized windows and are thus directly comparable. 5890 * 5891 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 5892 * which excludes things like IRQ and steal-time. These latter are then accrued 5893 * in the irq utilization. 5894 * 5895 * The DL bandwidth number otoh is not a measured metric but a value computed 5896 * based on the task model parameters and gives the minimal utilization 5897 * required to meet deadlines. 5898 */ 5899 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 5900 unsigned long max, enum cpu_util_type type, 5901 struct task_struct *p) 5902 { 5903 unsigned long dl_util, util, irq; 5904 struct rq *rq = cpu_rq(cpu); 5905 5906 if (!uclamp_is_used() && 5907 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 5908 return max; 5909 } 5910 5911 /* 5912 * Early check to see if IRQ/steal time saturates the CPU, can be 5913 * because of inaccuracies in how we track these -- see 5914 * update_irq_load_avg(). 5915 */ 5916 irq = cpu_util_irq(rq); 5917 if (unlikely(irq >= max)) 5918 return max; 5919 5920 /* 5921 * Because the time spend on RT/DL tasks is visible as 'lost' time to 5922 * CFS tasks and we use the same metric to track the effective 5923 * utilization (PELT windows are synchronized) we can directly add them 5924 * to obtain the CPU's actual utilization. 5925 * 5926 * CFS and RT utilization can be boosted or capped, depending on 5927 * utilization clamp constraints requested by currently RUNNABLE 5928 * tasks. 5929 * When there are no CFS RUNNABLE tasks, clamps are released and 5930 * frequency will be gracefully reduced with the utilization decay. 5931 */ 5932 util = util_cfs + cpu_util_rt(rq); 5933 if (type == FREQUENCY_UTIL) 5934 util = uclamp_rq_util_with(rq, util, p); 5935 5936 dl_util = cpu_util_dl(rq); 5937 5938 /* 5939 * For frequency selection we do not make cpu_util_dl() a permanent part 5940 * of this sum because we want to use cpu_bw_dl() later on, but we need 5941 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 5942 * that we select f_max when there is no idle time. 5943 * 5944 * NOTE: numerical errors or stop class might cause us to not quite hit 5945 * saturation when we should -- something for later. 5946 */ 5947 if (util + dl_util >= max) 5948 return max; 5949 5950 /* 5951 * OTOH, for energy computation we need the estimated running time, so 5952 * include util_dl and ignore dl_bw. 5953 */ 5954 if (type == ENERGY_UTIL) 5955 util += dl_util; 5956 5957 /* 5958 * There is still idle time; further improve the number by using the 5959 * irq metric. Because IRQ/steal time is hidden from the task clock we 5960 * need to scale the task numbers: 5961 * 5962 * max - irq 5963 * U' = irq + --------- * U 5964 * max 5965 */ 5966 util = scale_irq_capacity(util, irq, max); 5967 util += irq; 5968 5969 /* 5970 * Bandwidth required by DEADLINE must always be granted while, for 5971 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 5972 * to gracefully reduce the frequency when no tasks show up for longer 5973 * periods of time. 5974 * 5975 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 5976 * bw_dl as requested freq. However, cpufreq is not yet ready for such 5977 * an interface. So, we only do the latter for now. 5978 */ 5979 if (type == FREQUENCY_UTIL) 5980 util += cpu_bw_dl(rq); 5981 5982 return min(max, util); 5983 } 5984 5985 unsigned long sched_cpu_util(int cpu, unsigned long max) 5986 { 5987 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 5988 ENERGY_UTIL, NULL); 5989 } 5990 #endif /* CONFIG_SMP */ 5991 5992 /** 5993 * find_process_by_pid - find a process with a matching PID value. 5994 * @pid: the pid in question. 5995 * 5996 * The task of @pid, if found. %NULL otherwise. 5997 */ 5998 static struct task_struct *find_process_by_pid(pid_t pid) 5999 { 6000 return pid ? find_task_by_vpid(pid) : current; 6001 } 6002 6003 /* 6004 * sched_setparam() passes in -1 for its policy, to let the functions 6005 * it calls know not to change it. 6006 */ 6007 #define SETPARAM_POLICY -1 6008 6009 static void __setscheduler_params(struct task_struct *p, 6010 const struct sched_attr *attr) 6011 { 6012 int policy = attr->sched_policy; 6013 6014 if (policy == SETPARAM_POLICY) 6015 policy = p->policy; 6016 6017 p->policy = policy; 6018 6019 if (dl_policy(policy)) 6020 __setparam_dl(p, attr); 6021 else if (fair_policy(policy)) 6022 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 6023 6024 /* 6025 * __sched_setscheduler() ensures attr->sched_priority == 0 when 6026 * !rt_policy. Always setting this ensures that things like 6027 * getparam()/getattr() don't report silly values for !rt tasks. 6028 */ 6029 p->rt_priority = attr->sched_priority; 6030 p->normal_prio = normal_prio(p); 6031 set_load_weight(p, true); 6032 } 6033 6034 /* Actually do priority change: must hold pi & rq lock. */ 6035 static void __setscheduler(struct rq *rq, struct task_struct *p, 6036 const struct sched_attr *attr, bool keep_boost) 6037 { 6038 /* 6039 * If params can't change scheduling class changes aren't allowed 6040 * either. 6041 */ 6042 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 6043 return; 6044 6045 __setscheduler_params(p, attr); 6046 6047 /* 6048 * Keep a potential priority boosting if called from 6049 * sched_setscheduler(). 6050 */ 6051 p->prio = normal_prio(p); 6052 if (keep_boost) 6053 p->prio = rt_effective_prio(p, p->prio); 6054 6055 if (dl_prio(p->prio)) 6056 p->sched_class = &dl_sched_class; 6057 else if (rt_prio(p->prio)) 6058 p->sched_class = &rt_sched_class; 6059 else 6060 p->sched_class = &fair_sched_class; 6061 } 6062 6063 /* 6064 * Check the target process has a UID that matches the current process's: 6065 */ 6066 static bool check_same_owner(struct task_struct *p) 6067 { 6068 const struct cred *cred = current_cred(), *pcred; 6069 bool match; 6070 6071 rcu_read_lock(); 6072 pcred = __task_cred(p); 6073 match = (uid_eq(cred->euid, pcred->euid) || 6074 uid_eq(cred->euid, pcred->uid)); 6075 rcu_read_unlock(); 6076 return match; 6077 } 6078 6079 static int __sched_setscheduler(struct task_struct *p, 6080 const struct sched_attr *attr, 6081 bool user, bool pi) 6082 { 6083 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 6084 MAX_RT_PRIO - 1 - attr->sched_priority; 6085 int retval, oldprio, oldpolicy = -1, queued, running; 6086 int new_effective_prio, policy = attr->sched_policy; 6087 const struct sched_class *prev_class; 6088 struct callback_head *head; 6089 struct rq_flags rf; 6090 int reset_on_fork; 6091 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6092 struct rq *rq; 6093 6094 /* The pi code expects interrupts enabled */ 6095 BUG_ON(pi && in_interrupt()); 6096 recheck: 6097 /* Double check policy once rq lock held: */ 6098 if (policy < 0) { 6099 reset_on_fork = p->sched_reset_on_fork; 6100 policy = oldpolicy = p->policy; 6101 } else { 6102 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 6103 6104 if (!valid_policy(policy)) 6105 return -EINVAL; 6106 } 6107 6108 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 6109 return -EINVAL; 6110 6111 /* 6112 * Valid priorities for SCHED_FIFO and SCHED_RR are 6113 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 6114 * SCHED_BATCH and SCHED_IDLE is 0. 6115 */ 6116 if (attr->sched_priority > MAX_RT_PRIO-1) 6117 return -EINVAL; 6118 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 6119 (rt_policy(policy) != (attr->sched_priority != 0))) 6120 return -EINVAL; 6121 6122 /* 6123 * Allow unprivileged RT tasks to decrease priority: 6124 */ 6125 if (user && !capable(CAP_SYS_NICE)) { 6126 if (fair_policy(policy)) { 6127 if (attr->sched_nice < task_nice(p) && 6128 !can_nice(p, attr->sched_nice)) 6129 return -EPERM; 6130 } 6131 6132 if (rt_policy(policy)) { 6133 unsigned long rlim_rtprio = 6134 task_rlimit(p, RLIMIT_RTPRIO); 6135 6136 /* Can't set/change the rt policy: */ 6137 if (policy != p->policy && !rlim_rtprio) 6138 return -EPERM; 6139 6140 /* Can't increase priority: */ 6141 if (attr->sched_priority > p->rt_priority && 6142 attr->sched_priority > rlim_rtprio) 6143 return -EPERM; 6144 } 6145 6146 /* 6147 * Can't set/change SCHED_DEADLINE policy at all for now 6148 * (safest behavior); in the future we would like to allow 6149 * unprivileged DL tasks to increase their relative deadline 6150 * or reduce their runtime (both ways reducing utilization) 6151 */ 6152 if (dl_policy(policy)) 6153 return -EPERM; 6154 6155 /* 6156 * Treat SCHED_IDLE as nice 20. Only allow a switch to 6157 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 6158 */ 6159 if (task_has_idle_policy(p) && !idle_policy(policy)) { 6160 if (!can_nice(p, task_nice(p))) 6161 return -EPERM; 6162 } 6163 6164 /* Can't change other user's priorities: */ 6165 if (!check_same_owner(p)) 6166 return -EPERM; 6167 6168 /* Normal users shall not reset the sched_reset_on_fork flag: */ 6169 if (p->sched_reset_on_fork && !reset_on_fork) 6170 return -EPERM; 6171 } 6172 6173 if (user) { 6174 if (attr->sched_flags & SCHED_FLAG_SUGOV) 6175 return -EINVAL; 6176 6177 retval = security_task_setscheduler(p); 6178 if (retval) 6179 return retval; 6180 } 6181 6182 /* Update task specific "requested" clamps */ 6183 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 6184 retval = uclamp_validate(p, attr); 6185 if (retval) 6186 return retval; 6187 } 6188 6189 if (pi) 6190 cpuset_read_lock(); 6191 6192 /* 6193 * Make sure no PI-waiters arrive (or leave) while we are 6194 * changing the priority of the task: 6195 * 6196 * To be able to change p->policy safely, the appropriate 6197 * runqueue lock must be held. 6198 */ 6199 rq = task_rq_lock(p, &rf); 6200 update_rq_clock(rq); 6201 6202 /* 6203 * Changing the policy of the stop threads its a very bad idea: 6204 */ 6205 if (p == rq->stop) { 6206 retval = -EINVAL; 6207 goto unlock; 6208 } 6209 6210 /* 6211 * If not changing anything there's no need to proceed further, 6212 * but store a possible modification of reset_on_fork. 6213 */ 6214 if (unlikely(policy == p->policy)) { 6215 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 6216 goto change; 6217 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 6218 goto change; 6219 if (dl_policy(policy) && dl_param_changed(p, attr)) 6220 goto change; 6221 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 6222 goto change; 6223 6224 p->sched_reset_on_fork = reset_on_fork; 6225 retval = 0; 6226 goto unlock; 6227 } 6228 change: 6229 6230 if (user) { 6231 #ifdef CONFIG_RT_GROUP_SCHED 6232 /* 6233 * Do not allow realtime tasks into groups that have no runtime 6234 * assigned. 6235 */ 6236 if (rt_bandwidth_enabled() && rt_policy(policy) && 6237 task_group(p)->rt_bandwidth.rt_runtime == 0 && 6238 !task_group_is_autogroup(task_group(p))) { 6239 retval = -EPERM; 6240 goto unlock; 6241 } 6242 #endif 6243 #ifdef CONFIG_SMP 6244 if (dl_bandwidth_enabled() && dl_policy(policy) && 6245 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 6246 cpumask_t *span = rq->rd->span; 6247 6248 /* 6249 * Don't allow tasks with an affinity mask smaller than 6250 * the entire root_domain to become SCHED_DEADLINE. We 6251 * will also fail if there's no bandwidth available. 6252 */ 6253 if (!cpumask_subset(span, p->cpus_ptr) || 6254 rq->rd->dl_bw.bw == 0) { 6255 retval = -EPERM; 6256 goto unlock; 6257 } 6258 } 6259 #endif 6260 } 6261 6262 /* Re-check policy now with rq lock held: */ 6263 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6264 policy = oldpolicy = -1; 6265 task_rq_unlock(rq, p, &rf); 6266 if (pi) 6267 cpuset_read_unlock(); 6268 goto recheck; 6269 } 6270 6271 /* 6272 * If setscheduling to SCHED_DEADLINE (or changing the parameters 6273 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 6274 * is available. 6275 */ 6276 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 6277 retval = -EBUSY; 6278 goto unlock; 6279 } 6280 6281 p->sched_reset_on_fork = reset_on_fork; 6282 oldprio = p->prio; 6283 6284 if (pi) { 6285 /* 6286 * Take priority boosted tasks into account. If the new 6287 * effective priority is unchanged, we just store the new 6288 * normal parameters and do not touch the scheduler class and 6289 * the runqueue. This will be done when the task deboost 6290 * itself. 6291 */ 6292 new_effective_prio = rt_effective_prio(p, newprio); 6293 if (new_effective_prio == oldprio) 6294 queue_flags &= ~DEQUEUE_MOVE; 6295 } 6296 6297 queued = task_on_rq_queued(p); 6298 running = task_current(rq, p); 6299 if (queued) 6300 dequeue_task(rq, p, queue_flags); 6301 if (running) 6302 put_prev_task(rq, p); 6303 6304 prev_class = p->sched_class; 6305 6306 __setscheduler(rq, p, attr, pi); 6307 __setscheduler_uclamp(p, attr); 6308 6309 if (queued) { 6310 /* 6311 * We enqueue to tail when the priority of a task is 6312 * increased (user space view). 6313 */ 6314 if (oldprio < p->prio) 6315 queue_flags |= ENQUEUE_HEAD; 6316 6317 enqueue_task(rq, p, queue_flags); 6318 } 6319 if (running) 6320 set_next_task(rq, p); 6321 6322 check_class_changed(rq, p, prev_class, oldprio); 6323 6324 /* Avoid rq from going away on us: */ 6325 preempt_disable(); 6326 head = splice_balance_callbacks(rq); 6327 task_rq_unlock(rq, p, &rf); 6328 6329 if (pi) { 6330 cpuset_read_unlock(); 6331 rt_mutex_adjust_pi(p); 6332 } 6333 6334 /* Run balance callbacks after we've adjusted the PI chain: */ 6335 balance_callbacks(rq, head); 6336 preempt_enable(); 6337 6338 return 0; 6339 6340 unlock: 6341 task_rq_unlock(rq, p, &rf); 6342 if (pi) 6343 cpuset_read_unlock(); 6344 return retval; 6345 } 6346 6347 static int _sched_setscheduler(struct task_struct *p, int policy, 6348 const struct sched_param *param, bool check) 6349 { 6350 struct sched_attr attr = { 6351 .sched_policy = policy, 6352 .sched_priority = param->sched_priority, 6353 .sched_nice = PRIO_TO_NICE(p->static_prio), 6354 }; 6355 6356 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 6357 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 6358 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6359 policy &= ~SCHED_RESET_ON_FORK; 6360 attr.sched_policy = policy; 6361 } 6362 6363 return __sched_setscheduler(p, &attr, check, true); 6364 } 6365 /** 6366 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 6367 * @p: the task in question. 6368 * @policy: new policy. 6369 * @param: structure containing the new RT priority. 6370 * 6371 * Use sched_set_fifo(), read its comment. 6372 * 6373 * Return: 0 on success. An error code otherwise. 6374 * 6375 * NOTE that the task may be already dead. 6376 */ 6377 int sched_setscheduler(struct task_struct *p, int policy, 6378 const struct sched_param *param) 6379 { 6380 return _sched_setscheduler(p, policy, param, true); 6381 } 6382 6383 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 6384 { 6385 return __sched_setscheduler(p, attr, true, true); 6386 } 6387 6388 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 6389 { 6390 return __sched_setscheduler(p, attr, false, true); 6391 } 6392 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 6393 6394 /** 6395 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 6396 * @p: the task in question. 6397 * @policy: new policy. 6398 * @param: structure containing the new RT priority. 6399 * 6400 * Just like sched_setscheduler, only don't bother checking if the 6401 * current context has permission. For example, this is needed in 6402 * stop_machine(): we create temporary high priority worker threads, 6403 * but our caller might not have that capability. 6404 * 6405 * Return: 0 on success. An error code otherwise. 6406 */ 6407 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 6408 const struct sched_param *param) 6409 { 6410 return _sched_setscheduler(p, policy, param, false); 6411 } 6412 6413 /* 6414 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 6415 * incapable of resource management, which is the one thing an OS really should 6416 * be doing. 6417 * 6418 * This is of course the reason it is limited to privileged users only. 6419 * 6420 * Worse still; it is fundamentally impossible to compose static priority 6421 * workloads. You cannot take two correctly working static prio workloads 6422 * and smash them together and still expect them to work. 6423 * 6424 * For this reason 'all' FIFO tasks the kernel creates are basically at: 6425 * 6426 * MAX_RT_PRIO / 2 6427 * 6428 * The administrator _MUST_ configure the system, the kernel simply doesn't 6429 * know enough information to make a sensible choice. 6430 */ 6431 void sched_set_fifo(struct task_struct *p) 6432 { 6433 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 6434 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6435 } 6436 EXPORT_SYMBOL_GPL(sched_set_fifo); 6437 6438 /* 6439 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 6440 */ 6441 void sched_set_fifo_low(struct task_struct *p) 6442 { 6443 struct sched_param sp = { .sched_priority = 1 }; 6444 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6445 } 6446 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 6447 6448 void sched_set_normal(struct task_struct *p, int nice) 6449 { 6450 struct sched_attr attr = { 6451 .sched_policy = SCHED_NORMAL, 6452 .sched_nice = nice, 6453 }; 6454 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 6455 } 6456 EXPORT_SYMBOL_GPL(sched_set_normal); 6457 6458 static int 6459 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 6460 { 6461 struct sched_param lparam; 6462 struct task_struct *p; 6463 int retval; 6464 6465 if (!param || pid < 0) 6466 return -EINVAL; 6467 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 6468 return -EFAULT; 6469 6470 rcu_read_lock(); 6471 retval = -ESRCH; 6472 p = find_process_by_pid(pid); 6473 if (likely(p)) 6474 get_task_struct(p); 6475 rcu_read_unlock(); 6476 6477 if (likely(p)) { 6478 retval = sched_setscheduler(p, policy, &lparam); 6479 put_task_struct(p); 6480 } 6481 6482 return retval; 6483 } 6484 6485 /* 6486 * Mimics kernel/events/core.c perf_copy_attr(). 6487 */ 6488 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 6489 { 6490 u32 size; 6491 int ret; 6492 6493 /* Zero the full structure, so that a short copy will be nice: */ 6494 memset(attr, 0, sizeof(*attr)); 6495 6496 ret = get_user(size, &uattr->size); 6497 if (ret) 6498 return ret; 6499 6500 /* ABI compatibility quirk: */ 6501 if (!size) 6502 size = SCHED_ATTR_SIZE_VER0; 6503 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 6504 goto err_size; 6505 6506 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 6507 if (ret) { 6508 if (ret == -E2BIG) 6509 goto err_size; 6510 return ret; 6511 } 6512 6513 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 6514 size < SCHED_ATTR_SIZE_VER1) 6515 return -EINVAL; 6516 6517 /* 6518 * XXX: Do we want to be lenient like existing syscalls; or do we want 6519 * to be strict and return an error on out-of-bounds values? 6520 */ 6521 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 6522 6523 return 0; 6524 6525 err_size: 6526 put_user(sizeof(*attr), &uattr->size); 6527 return -E2BIG; 6528 } 6529 6530 /** 6531 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 6532 * @pid: the pid in question. 6533 * @policy: new policy. 6534 * @param: structure containing the new RT priority. 6535 * 6536 * Return: 0 on success. An error code otherwise. 6537 */ 6538 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 6539 { 6540 if (policy < 0) 6541 return -EINVAL; 6542 6543 return do_sched_setscheduler(pid, policy, param); 6544 } 6545 6546 /** 6547 * sys_sched_setparam - set/change the RT priority of a thread 6548 * @pid: the pid in question. 6549 * @param: structure containing the new RT priority. 6550 * 6551 * Return: 0 on success. An error code otherwise. 6552 */ 6553 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 6554 { 6555 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 6556 } 6557 6558 /** 6559 * sys_sched_setattr - same as above, but with extended sched_attr 6560 * @pid: the pid in question. 6561 * @uattr: structure containing the extended parameters. 6562 * @flags: for future extension. 6563 */ 6564 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 6565 unsigned int, flags) 6566 { 6567 struct sched_attr attr; 6568 struct task_struct *p; 6569 int retval; 6570 6571 if (!uattr || pid < 0 || flags) 6572 return -EINVAL; 6573 6574 retval = sched_copy_attr(uattr, &attr); 6575 if (retval) 6576 return retval; 6577 6578 if ((int)attr.sched_policy < 0) 6579 return -EINVAL; 6580 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 6581 attr.sched_policy = SETPARAM_POLICY; 6582 6583 rcu_read_lock(); 6584 retval = -ESRCH; 6585 p = find_process_by_pid(pid); 6586 if (likely(p)) 6587 get_task_struct(p); 6588 rcu_read_unlock(); 6589 6590 if (likely(p)) { 6591 retval = sched_setattr(p, &attr); 6592 put_task_struct(p); 6593 } 6594 6595 return retval; 6596 } 6597 6598 /** 6599 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 6600 * @pid: the pid in question. 6601 * 6602 * Return: On success, the policy of the thread. Otherwise, a negative error 6603 * code. 6604 */ 6605 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 6606 { 6607 struct task_struct *p; 6608 int retval; 6609 6610 if (pid < 0) 6611 return -EINVAL; 6612 6613 retval = -ESRCH; 6614 rcu_read_lock(); 6615 p = find_process_by_pid(pid); 6616 if (p) { 6617 retval = security_task_getscheduler(p); 6618 if (!retval) 6619 retval = p->policy 6620 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 6621 } 6622 rcu_read_unlock(); 6623 return retval; 6624 } 6625 6626 /** 6627 * sys_sched_getparam - get the RT priority of a thread 6628 * @pid: the pid in question. 6629 * @param: structure containing the RT priority. 6630 * 6631 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 6632 * code. 6633 */ 6634 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 6635 { 6636 struct sched_param lp = { .sched_priority = 0 }; 6637 struct task_struct *p; 6638 int retval; 6639 6640 if (!param || pid < 0) 6641 return -EINVAL; 6642 6643 rcu_read_lock(); 6644 p = find_process_by_pid(pid); 6645 retval = -ESRCH; 6646 if (!p) 6647 goto out_unlock; 6648 6649 retval = security_task_getscheduler(p); 6650 if (retval) 6651 goto out_unlock; 6652 6653 if (task_has_rt_policy(p)) 6654 lp.sched_priority = p->rt_priority; 6655 rcu_read_unlock(); 6656 6657 /* 6658 * This one might sleep, we cannot do it with a spinlock held ... 6659 */ 6660 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 6661 6662 return retval; 6663 6664 out_unlock: 6665 rcu_read_unlock(); 6666 return retval; 6667 } 6668 6669 /* 6670 * Copy the kernel size attribute structure (which might be larger 6671 * than what user-space knows about) to user-space. 6672 * 6673 * Note that all cases are valid: user-space buffer can be larger or 6674 * smaller than the kernel-space buffer. The usual case is that both 6675 * have the same size. 6676 */ 6677 static int 6678 sched_attr_copy_to_user(struct sched_attr __user *uattr, 6679 struct sched_attr *kattr, 6680 unsigned int usize) 6681 { 6682 unsigned int ksize = sizeof(*kattr); 6683 6684 if (!access_ok(uattr, usize)) 6685 return -EFAULT; 6686 6687 /* 6688 * sched_getattr() ABI forwards and backwards compatibility: 6689 * 6690 * If usize == ksize then we just copy everything to user-space and all is good. 6691 * 6692 * If usize < ksize then we only copy as much as user-space has space for, 6693 * this keeps ABI compatibility as well. We skip the rest. 6694 * 6695 * If usize > ksize then user-space is using a newer version of the ABI, 6696 * which part the kernel doesn't know about. Just ignore it - tooling can 6697 * detect the kernel's knowledge of attributes from the attr->size value 6698 * which is set to ksize in this case. 6699 */ 6700 kattr->size = min(usize, ksize); 6701 6702 if (copy_to_user(uattr, kattr, kattr->size)) 6703 return -EFAULT; 6704 6705 return 0; 6706 } 6707 6708 /** 6709 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 6710 * @pid: the pid in question. 6711 * @uattr: structure containing the extended parameters. 6712 * @usize: sizeof(attr) for fwd/bwd comp. 6713 * @flags: for future extension. 6714 */ 6715 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 6716 unsigned int, usize, unsigned int, flags) 6717 { 6718 struct sched_attr kattr = { }; 6719 struct task_struct *p; 6720 int retval; 6721 6722 if (!uattr || pid < 0 || usize > PAGE_SIZE || 6723 usize < SCHED_ATTR_SIZE_VER0 || flags) 6724 return -EINVAL; 6725 6726 rcu_read_lock(); 6727 p = find_process_by_pid(pid); 6728 retval = -ESRCH; 6729 if (!p) 6730 goto out_unlock; 6731 6732 retval = security_task_getscheduler(p); 6733 if (retval) 6734 goto out_unlock; 6735 6736 kattr.sched_policy = p->policy; 6737 if (p->sched_reset_on_fork) 6738 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6739 if (task_has_dl_policy(p)) 6740 __getparam_dl(p, &kattr); 6741 else if (task_has_rt_policy(p)) 6742 kattr.sched_priority = p->rt_priority; 6743 else 6744 kattr.sched_nice = task_nice(p); 6745 6746 #ifdef CONFIG_UCLAMP_TASK 6747 /* 6748 * This could race with another potential updater, but this is fine 6749 * because it'll correctly read the old or the new value. We don't need 6750 * to guarantee who wins the race as long as it doesn't return garbage. 6751 */ 6752 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 6753 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 6754 #endif 6755 6756 rcu_read_unlock(); 6757 6758 return sched_attr_copy_to_user(uattr, &kattr, usize); 6759 6760 out_unlock: 6761 rcu_read_unlock(); 6762 return retval; 6763 } 6764 6765 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 6766 { 6767 cpumask_var_t cpus_allowed, new_mask; 6768 struct task_struct *p; 6769 int retval; 6770 6771 rcu_read_lock(); 6772 6773 p = find_process_by_pid(pid); 6774 if (!p) { 6775 rcu_read_unlock(); 6776 return -ESRCH; 6777 } 6778 6779 /* Prevent p going away */ 6780 get_task_struct(p); 6781 rcu_read_unlock(); 6782 6783 if (p->flags & PF_NO_SETAFFINITY) { 6784 retval = -EINVAL; 6785 goto out_put_task; 6786 } 6787 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 6788 retval = -ENOMEM; 6789 goto out_put_task; 6790 } 6791 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 6792 retval = -ENOMEM; 6793 goto out_free_cpus_allowed; 6794 } 6795 retval = -EPERM; 6796 if (!check_same_owner(p)) { 6797 rcu_read_lock(); 6798 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 6799 rcu_read_unlock(); 6800 goto out_free_new_mask; 6801 } 6802 rcu_read_unlock(); 6803 } 6804 6805 retval = security_task_setscheduler(p); 6806 if (retval) 6807 goto out_free_new_mask; 6808 6809 6810 cpuset_cpus_allowed(p, cpus_allowed); 6811 cpumask_and(new_mask, in_mask, cpus_allowed); 6812 6813 /* 6814 * Since bandwidth control happens on root_domain basis, 6815 * if admission test is enabled, we only admit -deadline 6816 * tasks allowed to run on all the CPUs in the task's 6817 * root_domain. 6818 */ 6819 #ifdef CONFIG_SMP 6820 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 6821 rcu_read_lock(); 6822 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 6823 retval = -EBUSY; 6824 rcu_read_unlock(); 6825 goto out_free_new_mask; 6826 } 6827 rcu_read_unlock(); 6828 } 6829 #endif 6830 again: 6831 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK); 6832 6833 if (!retval) { 6834 cpuset_cpus_allowed(p, cpus_allowed); 6835 if (!cpumask_subset(new_mask, cpus_allowed)) { 6836 /* 6837 * We must have raced with a concurrent cpuset 6838 * update. Just reset the cpus_allowed to the 6839 * cpuset's cpus_allowed 6840 */ 6841 cpumask_copy(new_mask, cpus_allowed); 6842 goto again; 6843 } 6844 } 6845 out_free_new_mask: 6846 free_cpumask_var(new_mask); 6847 out_free_cpus_allowed: 6848 free_cpumask_var(cpus_allowed); 6849 out_put_task: 6850 put_task_struct(p); 6851 return retval; 6852 } 6853 6854 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 6855 struct cpumask *new_mask) 6856 { 6857 if (len < cpumask_size()) 6858 cpumask_clear(new_mask); 6859 else if (len > cpumask_size()) 6860 len = cpumask_size(); 6861 6862 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 6863 } 6864 6865 /** 6866 * sys_sched_setaffinity - set the CPU affinity of a process 6867 * @pid: pid of the process 6868 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6869 * @user_mask_ptr: user-space pointer to the new CPU mask 6870 * 6871 * Return: 0 on success. An error code otherwise. 6872 */ 6873 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 6874 unsigned long __user *, user_mask_ptr) 6875 { 6876 cpumask_var_t new_mask; 6877 int retval; 6878 6879 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 6880 return -ENOMEM; 6881 6882 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 6883 if (retval == 0) 6884 retval = sched_setaffinity(pid, new_mask); 6885 free_cpumask_var(new_mask); 6886 return retval; 6887 } 6888 6889 long sched_getaffinity(pid_t pid, struct cpumask *mask) 6890 { 6891 struct task_struct *p; 6892 unsigned long flags; 6893 int retval; 6894 6895 rcu_read_lock(); 6896 6897 retval = -ESRCH; 6898 p = find_process_by_pid(pid); 6899 if (!p) 6900 goto out_unlock; 6901 6902 retval = security_task_getscheduler(p); 6903 if (retval) 6904 goto out_unlock; 6905 6906 raw_spin_lock_irqsave(&p->pi_lock, flags); 6907 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 6908 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 6909 6910 out_unlock: 6911 rcu_read_unlock(); 6912 6913 return retval; 6914 } 6915 6916 /** 6917 * sys_sched_getaffinity - get the CPU affinity of a process 6918 * @pid: pid of the process 6919 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6920 * @user_mask_ptr: user-space pointer to hold the current CPU mask 6921 * 6922 * Return: size of CPU mask copied to user_mask_ptr on success. An 6923 * error code otherwise. 6924 */ 6925 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6926 unsigned long __user *, user_mask_ptr) 6927 { 6928 int ret; 6929 cpumask_var_t mask; 6930 6931 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 6932 return -EINVAL; 6933 if (len & (sizeof(unsigned long)-1)) 6934 return -EINVAL; 6935 6936 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6937 return -ENOMEM; 6938 6939 ret = sched_getaffinity(pid, mask); 6940 if (ret == 0) { 6941 unsigned int retlen = min(len, cpumask_size()); 6942 6943 if (copy_to_user(user_mask_ptr, mask, retlen)) 6944 ret = -EFAULT; 6945 else 6946 ret = retlen; 6947 } 6948 free_cpumask_var(mask); 6949 6950 return ret; 6951 } 6952 6953 static void do_sched_yield(void) 6954 { 6955 struct rq_flags rf; 6956 struct rq *rq; 6957 6958 rq = this_rq_lock_irq(&rf); 6959 6960 schedstat_inc(rq->yld_count); 6961 current->sched_class->yield_task(rq); 6962 6963 preempt_disable(); 6964 rq_unlock_irq(rq, &rf); 6965 sched_preempt_enable_no_resched(); 6966 6967 schedule(); 6968 } 6969 6970 /** 6971 * sys_sched_yield - yield the current processor to other threads. 6972 * 6973 * This function yields the current CPU to other tasks. If there are no 6974 * other threads running on this CPU then this function will return. 6975 * 6976 * Return: 0. 6977 */ 6978 SYSCALL_DEFINE0(sched_yield) 6979 { 6980 do_sched_yield(); 6981 return 0; 6982 } 6983 6984 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 6985 int __sched __cond_resched(void) 6986 { 6987 if (should_resched(0)) { 6988 preempt_schedule_common(); 6989 return 1; 6990 } 6991 #ifndef CONFIG_PREEMPT_RCU 6992 rcu_all_qs(); 6993 #endif 6994 return 0; 6995 } 6996 EXPORT_SYMBOL(__cond_resched); 6997 #endif 6998 6999 #ifdef CONFIG_PREEMPT_DYNAMIC 7000 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7001 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7002 7003 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7004 EXPORT_STATIC_CALL_TRAMP(might_resched); 7005 #endif 7006 7007 /* 7008 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7009 * call schedule, and on return reacquire the lock. 7010 * 7011 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7012 * operations here to prevent schedule() from being called twice (once via 7013 * spin_unlock(), once by hand). 7014 */ 7015 int __cond_resched_lock(spinlock_t *lock) 7016 { 7017 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7018 int ret = 0; 7019 7020 lockdep_assert_held(lock); 7021 7022 if (spin_needbreak(lock) || resched) { 7023 spin_unlock(lock); 7024 if (resched) 7025 preempt_schedule_common(); 7026 else 7027 cpu_relax(); 7028 ret = 1; 7029 spin_lock(lock); 7030 } 7031 return ret; 7032 } 7033 EXPORT_SYMBOL(__cond_resched_lock); 7034 7035 int __cond_resched_rwlock_read(rwlock_t *lock) 7036 { 7037 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7038 int ret = 0; 7039 7040 lockdep_assert_held_read(lock); 7041 7042 if (rwlock_needbreak(lock) || resched) { 7043 read_unlock(lock); 7044 if (resched) 7045 preempt_schedule_common(); 7046 else 7047 cpu_relax(); 7048 ret = 1; 7049 read_lock(lock); 7050 } 7051 return ret; 7052 } 7053 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7054 7055 int __cond_resched_rwlock_write(rwlock_t *lock) 7056 { 7057 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7058 int ret = 0; 7059 7060 lockdep_assert_held_write(lock); 7061 7062 if (rwlock_needbreak(lock) || resched) { 7063 write_unlock(lock); 7064 if (resched) 7065 preempt_schedule_common(); 7066 else 7067 cpu_relax(); 7068 ret = 1; 7069 write_lock(lock); 7070 } 7071 return ret; 7072 } 7073 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7074 7075 /** 7076 * yield - yield the current processor to other threads. 7077 * 7078 * Do not ever use this function, there's a 99% chance you're doing it wrong. 7079 * 7080 * The scheduler is at all times free to pick the calling task as the most 7081 * eligible task to run, if removing the yield() call from your code breaks 7082 * it, it's already broken. 7083 * 7084 * Typical broken usage is: 7085 * 7086 * while (!event) 7087 * yield(); 7088 * 7089 * where one assumes that yield() will let 'the other' process run that will 7090 * make event true. If the current task is a SCHED_FIFO task that will never 7091 * happen. Never use yield() as a progress guarantee!! 7092 * 7093 * If you want to use yield() to wait for something, use wait_event(). 7094 * If you want to use yield() to be 'nice' for others, use cond_resched(). 7095 * If you still want to use yield(), do not! 7096 */ 7097 void __sched yield(void) 7098 { 7099 set_current_state(TASK_RUNNING); 7100 do_sched_yield(); 7101 } 7102 EXPORT_SYMBOL(yield); 7103 7104 /** 7105 * yield_to - yield the current processor to another thread in 7106 * your thread group, or accelerate that thread toward the 7107 * processor it's on. 7108 * @p: target task 7109 * @preempt: whether task preemption is allowed or not 7110 * 7111 * It's the caller's job to ensure that the target task struct 7112 * can't go away on us before we can do any checks. 7113 * 7114 * Return: 7115 * true (>0) if we indeed boosted the target task. 7116 * false (0) if we failed to boost the target. 7117 * -ESRCH if there's no task to yield to. 7118 */ 7119 int __sched yield_to(struct task_struct *p, bool preempt) 7120 { 7121 struct task_struct *curr = current; 7122 struct rq *rq, *p_rq; 7123 unsigned long flags; 7124 int yielded = 0; 7125 7126 local_irq_save(flags); 7127 rq = this_rq(); 7128 7129 again: 7130 p_rq = task_rq(p); 7131 /* 7132 * If we're the only runnable task on the rq and target rq also 7133 * has only one task, there's absolutely no point in yielding. 7134 */ 7135 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 7136 yielded = -ESRCH; 7137 goto out_irq; 7138 } 7139 7140 double_rq_lock(rq, p_rq); 7141 if (task_rq(p) != p_rq) { 7142 double_rq_unlock(rq, p_rq); 7143 goto again; 7144 } 7145 7146 if (!curr->sched_class->yield_to_task) 7147 goto out_unlock; 7148 7149 if (curr->sched_class != p->sched_class) 7150 goto out_unlock; 7151 7152 if (task_running(p_rq, p) || p->state) 7153 goto out_unlock; 7154 7155 yielded = curr->sched_class->yield_to_task(rq, p); 7156 if (yielded) { 7157 schedstat_inc(rq->yld_count); 7158 /* 7159 * Make p's CPU reschedule; pick_next_entity takes care of 7160 * fairness. 7161 */ 7162 if (preempt && rq != p_rq) 7163 resched_curr(p_rq); 7164 } 7165 7166 out_unlock: 7167 double_rq_unlock(rq, p_rq); 7168 out_irq: 7169 local_irq_restore(flags); 7170 7171 if (yielded > 0) 7172 schedule(); 7173 7174 return yielded; 7175 } 7176 EXPORT_SYMBOL_GPL(yield_to); 7177 7178 int io_schedule_prepare(void) 7179 { 7180 int old_iowait = current->in_iowait; 7181 7182 current->in_iowait = 1; 7183 blk_schedule_flush_plug(current); 7184 7185 return old_iowait; 7186 } 7187 7188 void io_schedule_finish(int token) 7189 { 7190 current->in_iowait = token; 7191 } 7192 7193 /* 7194 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7195 * that process accounting knows that this is a task in IO wait state. 7196 */ 7197 long __sched io_schedule_timeout(long timeout) 7198 { 7199 int token; 7200 long ret; 7201 7202 token = io_schedule_prepare(); 7203 ret = schedule_timeout(timeout); 7204 io_schedule_finish(token); 7205 7206 return ret; 7207 } 7208 EXPORT_SYMBOL(io_schedule_timeout); 7209 7210 void __sched io_schedule(void) 7211 { 7212 int token; 7213 7214 token = io_schedule_prepare(); 7215 schedule(); 7216 io_schedule_finish(token); 7217 } 7218 EXPORT_SYMBOL(io_schedule); 7219 7220 /** 7221 * sys_sched_get_priority_max - return maximum RT priority. 7222 * @policy: scheduling class. 7223 * 7224 * Return: On success, this syscall returns the maximum 7225 * rt_priority that can be used by a given scheduling class. 7226 * On failure, a negative error code is returned. 7227 */ 7228 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 7229 { 7230 int ret = -EINVAL; 7231 7232 switch (policy) { 7233 case SCHED_FIFO: 7234 case SCHED_RR: 7235 ret = MAX_RT_PRIO-1; 7236 break; 7237 case SCHED_DEADLINE: 7238 case SCHED_NORMAL: 7239 case SCHED_BATCH: 7240 case SCHED_IDLE: 7241 ret = 0; 7242 break; 7243 } 7244 return ret; 7245 } 7246 7247 /** 7248 * sys_sched_get_priority_min - return minimum RT priority. 7249 * @policy: scheduling class. 7250 * 7251 * Return: On success, this syscall returns the minimum 7252 * rt_priority that can be used by a given scheduling class. 7253 * On failure, a negative error code is returned. 7254 */ 7255 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 7256 { 7257 int ret = -EINVAL; 7258 7259 switch (policy) { 7260 case SCHED_FIFO: 7261 case SCHED_RR: 7262 ret = 1; 7263 break; 7264 case SCHED_DEADLINE: 7265 case SCHED_NORMAL: 7266 case SCHED_BATCH: 7267 case SCHED_IDLE: 7268 ret = 0; 7269 } 7270 return ret; 7271 } 7272 7273 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 7274 { 7275 struct task_struct *p; 7276 unsigned int time_slice; 7277 struct rq_flags rf; 7278 struct rq *rq; 7279 int retval; 7280 7281 if (pid < 0) 7282 return -EINVAL; 7283 7284 retval = -ESRCH; 7285 rcu_read_lock(); 7286 p = find_process_by_pid(pid); 7287 if (!p) 7288 goto out_unlock; 7289 7290 retval = security_task_getscheduler(p); 7291 if (retval) 7292 goto out_unlock; 7293 7294 rq = task_rq_lock(p, &rf); 7295 time_slice = 0; 7296 if (p->sched_class->get_rr_interval) 7297 time_slice = p->sched_class->get_rr_interval(rq, p); 7298 task_rq_unlock(rq, p, &rf); 7299 7300 rcu_read_unlock(); 7301 jiffies_to_timespec64(time_slice, t); 7302 return 0; 7303 7304 out_unlock: 7305 rcu_read_unlock(); 7306 return retval; 7307 } 7308 7309 /** 7310 * sys_sched_rr_get_interval - return the default timeslice of a process. 7311 * @pid: pid of the process. 7312 * @interval: userspace pointer to the timeslice value. 7313 * 7314 * this syscall writes the default timeslice value of a given process 7315 * into the user-space timespec buffer. A value of '0' means infinity. 7316 * 7317 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 7318 * an error code. 7319 */ 7320 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 7321 struct __kernel_timespec __user *, interval) 7322 { 7323 struct timespec64 t; 7324 int retval = sched_rr_get_interval(pid, &t); 7325 7326 if (retval == 0) 7327 retval = put_timespec64(&t, interval); 7328 7329 return retval; 7330 } 7331 7332 #ifdef CONFIG_COMPAT_32BIT_TIME 7333 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 7334 struct old_timespec32 __user *, interval) 7335 { 7336 struct timespec64 t; 7337 int retval = sched_rr_get_interval(pid, &t); 7338 7339 if (retval == 0) 7340 retval = put_old_timespec32(&t, interval); 7341 return retval; 7342 } 7343 #endif 7344 7345 void sched_show_task(struct task_struct *p) 7346 { 7347 unsigned long free = 0; 7348 int ppid; 7349 7350 if (!try_get_task_stack(p)) 7351 return; 7352 7353 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7354 7355 if (p->state == TASK_RUNNING) 7356 pr_cont(" running task "); 7357 #ifdef CONFIG_DEBUG_STACK_USAGE 7358 free = stack_not_used(p); 7359 #endif 7360 ppid = 0; 7361 rcu_read_lock(); 7362 if (pid_alive(p)) 7363 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7364 rcu_read_unlock(); 7365 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 7366 free, task_pid_nr(p), ppid, 7367 (unsigned long)task_thread_info(p)->flags); 7368 7369 print_worker_info(KERN_INFO, p); 7370 print_stop_info(KERN_INFO, p); 7371 show_stack(p, NULL, KERN_INFO); 7372 put_task_stack(p); 7373 } 7374 EXPORT_SYMBOL_GPL(sched_show_task); 7375 7376 static inline bool 7377 state_filter_match(unsigned long state_filter, struct task_struct *p) 7378 { 7379 /* no filter, everything matches */ 7380 if (!state_filter) 7381 return true; 7382 7383 /* filter, but doesn't match */ 7384 if (!(p->state & state_filter)) 7385 return false; 7386 7387 /* 7388 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7389 * TASK_KILLABLE). 7390 */ 7391 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 7392 return false; 7393 7394 return true; 7395 } 7396 7397 7398 void show_state_filter(unsigned long state_filter) 7399 { 7400 struct task_struct *g, *p; 7401 7402 rcu_read_lock(); 7403 for_each_process_thread(g, p) { 7404 /* 7405 * reset the NMI-timeout, listing all files on a slow 7406 * console might take a lot of time: 7407 * Also, reset softlockup watchdogs on all CPUs, because 7408 * another CPU might be blocked waiting for us to process 7409 * an IPI. 7410 */ 7411 touch_nmi_watchdog(); 7412 touch_all_softlockup_watchdogs(); 7413 if (state_filter_match(state_filter, p)) 7414 sched_show_task(p); 7415 } 7416 7417 #ifdef CONFIG_SCHED_DEBUG 7418 if (!state_filter) 7419 sysrq_sched_debug_show(); 7420 #endif 7421 rcu_read_unlock(); 7422 /* 7423 * Only show locks if all tasks are dumped: 7424 */ 7425 if (!state_filter) 7426 debug_show_all_locks(); 7427 } 7428 7429 /** 7430 * init_idle - set up an idle thread for a given CPU 7431 * @idle: task in question 7432 * @cpu: CPU the idle task belongs to 7433 * 7434 * NOTE: this function does not set the idle thread's NEED_RESCHED 7435 * flag, to make booting more robust. 7436 */ 7437 void init_idle(struct task_struct *idle, int cpu) 7438 { 7439 struct rq *rq = cpu_rq(cpu); 7440 unsigned long flags; 7441 7442 __sched_fork(0, idle); 7443 7444 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7445 raw_spin_lock(&rq->lock); 7446 7447 idle->state = TASK_RUNNING; 7448 idle->se.exec_start = sched_clock(); 7449 idle->flags |= PF_IDLE; 7450 7451 scs_task_reset(idle); 7452 kasan_unpoison_task_stack(idle); 7453 7454 #ifdef CONFIG_SMP 7455 /* 7456 * It's possible that init_idle() gets called multiple times on a task, 7457 * in that case do_set_cpus_allowed() will not do the right thing. 7458 * 7459 * And since this is boot we can forgo the serialization. 7460 */ 7461 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 7462 #endif 7463 /* 7464 * We're having a chicken and egg problem, even though we are 7465 * holding rq->lock, the CPU isn't yet set to this CPU so the 7466 * lockdep check in task_group() will fail. 7467 * 7468 * Similar case to sched_fork(). / Alternatively we could 7469 * use task_rq_lock() here and obtain the other rq->lock. 7470 * 7471 * Silence PROVE_RCU 7472 */ 7473 rcu_read_lock(); 7474 __set_task_cpu(idle, cpu); 7475 rcu_read_unlock(); 7476 7477 rq->idle = idle; 7478 rcu_assign_pointer(rq->curr, idle); 7479 idle->on_rq = TASK_ON_RQ_QUEUED; 7480 #ifdef CONFIG_SMP 7481 idle->on_cpu = 1; 7482 #endif 7483 raw_spin_unlock(&rq->lock); 7484 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7485 7486 /* Set the preempt count _outside_ the spinlocks! */ 7487 init_idle_preempt_count(idle, cpu); 7488 7489 /* 7490 * The idle tasks have their own, simple scheduling class: 7491 */ 7492 idle->sched_class = &idle_sched_class; 7493 ftrace_graph_init_idle_task(idle, cpu); 7494 vtime_init_idle(idle, cpu); 7495 #ifdef CONFIG_SMP 7496 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7497 #endif 7498 } 7499 7500 #ifdef CONFIG_SMP 7501 7502 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7503 const struct cpumask *trial) 7504 { 7505 int ret = 1; 7506 7507 if (!cpumask_weight(cur)) 7508 return ret; 7509 7510 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7511 7512 return ret; 7513 } 7514 7515 int task_can_attach(struct task_struct *p, 7516 const struct cpumask *cs_cpus_allowed) 7517 { 7518 int ret = 0; 7519 7520 /* 7521 * Kthreads which disallow setaffinity shouldn't be moved 7522 * to a new cpuset; we don't want to change their CPU 7523 * affinity and isolating such threads by their set of 7524 * allowed nodes is unnecessary. Thus, cpusets are not 7525 * applicable for such threads. This prevents checking for 7526 * success of set_cpus_allowed_ptr() on all attached tasks 7527 * before cpus_mask may be changed. 7528 */ 7529 if (p->flags & PF_NO_SETAFFINITY) { 7530 ret = -EINVAL; 7531 goto out; 7532 } 7533 7534 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 7535 cs_cpus_allowed)) 7536 ret = dl_task_can_attach(p, cs_cpus_allowed); 7537 7538 out: 7539 return ret; 7540 } 7541 7542 bool sched_smp_initialized __read_mostly; 7543 7544 #ifdef CONFIG_NUMA_BALANCING 7545 /* Migrate current task p to target_cpu */ 7546 int migrate_task_to(struct task_struct *p, int target_cpu) 7547 { 7548 struct migration_arg arg = { p, target_cpu }; 7549 int curr_cpu = task_cpu(p); 7550 7551 if (curr_cpu == target_cpu) 7552 return 0; 7553 7554 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7555 return -EINVAL; 7556 7557 /* TODO: This is not properly updating schedstats */ 7558 7559 trace_sched_move_numa(p, curr_cpu, target_cpu); 7560 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7561 } 7562 7563 /* 7564 * Requeue a task on a given node and accurately track the number of NUMA 7565 * tasks on the runqueues 7566 */ 7567 void sched_setnuma(struct task_struct *p, int nid) 7568 { 7569 bool queued, running; 7570 struct rq_flags rf; 7571 struct rq *rq; 7572 7573 rq = task_rq_lock(p, &rf); 7574 queued = task_on_rq_queued(p); 7575 running = task_current(rq, p); 7576 7577 if (queued) 7578 dequeue_task(rq, p, DEQUEUE_SAVE); 7579 if (running) 7580 put_prev_task(rq, p); 7581 7582 p->numa_preferred_nid = nid; 7583 7584 if (queued) 7585 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7586 if (running) 7587 set_next_task(rq, p); 7588 task_rq_unlock(rq, p, &rf); 7589 } 7590 #endif /* CONFIG_NUMA_BALANCING */ 7591 7592 #ifdef CONFIG_HOTPLUG_CPU 7593 /* 7594 * Ensure that the idle task is using init_mm right before its CPU goes 7595 * offline. 7596 */ 7597 void idle_task_exit(void) 7598 { 7599 struct mm_struct *mm = current->active_mm; 7600 7601 BUG_ON(cpu_online(smp_processor_id())); 7602 BUG_ON(current != this_rq()->idle); 7603 7604 if (mm != &init_mm) { 7605 switch_mm(mm, &init_mm, current); 7606 finish_arch_post_lock_switch(); 7607 } 7608 7609 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7610 } 7611 7612 static int __balance_push_cpu_stop(void *arg) 7613 { 7614 struct task_struct *p = arg; 7615 struct rq *rq = this_rq(); 7616 struct rq_flags rf; 7617 int cpu; 7618 7619 raw_spin_lock_irq(&p->pi_lock); 7620 rq_lock(rq, &rf); 7621 7622 update_rq_clock(rq); 7623 7624 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7625 cpu = select_fallback_rq(rq->cpu, p); 7626 rq = __migrate_task(rq, &rf, p, cpu); 7627 } 7628 7629 rq_unlock(rq, &rf); 7630 raw_spin_unlock_irq(&p->pi_lock); 7631 7632 put_task_struct(p); 7633 7634 return 0; 7635 } 7636 7637 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7638 7639 /* 7640 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7641 * 7642 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7643 * effective when the hotplug motion is down. 7644 */ 7645 static void balance_push(struct rq *rq) 7646 { 7647 struct task_struct *push_task = rq->curr; 7648 7649 lockdep_assert_held(&rq->lock); 7650 SCHED_WARN_ON(rq->cpu != smp_processor_id()); 7651 7652 /* 7653 * Ensure the thing is persistent until balance_push_set(.on = false); 7654 */ 7655 rq->balance_callback = &balance_push_callback; 7656 7657 /* 7658 * Only active while going offline. 7659 */ 7660 if (!cpu_dying(rq->cpu)) 7661 return; 7662 7663 /* 7664 * Both the cpu-hotplug and stop task are in this case and are 7665 * required to complete the hotplug process. 7666 * 7667 * XXX: the idle task does not match kthread_is_per_cpu() due to 7668 * histerical raisins. 7669 */ 7670 if (rq->idle == push_task || 7671 kthread_is_per_cpu(push_task) || 7672 is_migration_disabled(push_task)) { 7673 7674 /* 7675 * If this is the idle task on the outgoing CPU try to wake 7676 * up the hotplug control thread which might wait for the 7677 * last task to vanish. The rcuwait_active() check is 7678 * accurate here because the waiter is pinned on this CPU 7679 * and can't obviously be running in parallel. 7680 * 7681 * On RT kernels this also has to check whether there are 7682 * pinned and scheduled out tasks on the runqueue. They 7683 * need to leave the migrate disabled section first. 7684 */ 7685 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7686 rcuwait_active(&rq->hotplug_wait)) { 7687 raw_spin_unlock(&rq->lock); 7688 rcuwait_wake_up(&rq->hotplug_wait); 7689 raw_spin_lock(&rq->lock); 7690 } 7691 return; 7692 } 7693 7694 get_task_struct(push_task); 7695 /* 7696 * Temporarily drop rq->lock such that we can wake-up the stop task. 7697 * Both preemption and IRQs are still disabled. 7698 */ 7699 raw_spin_unlock(&rq->lock); 7700 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7701 this_cpu_ptr(&push_work)); 7702 /* 7703 * At this point need_resched() is true and we'll take the loop in 7704 * schedule(). The next pick is obviously going to be the stop task 7705 * which kthread_is_per_cpu() and will push this task away. 7706 */ 7707 raw_spin_lock(&rq->lock); 7708 } 7709 7710 static void balance_push_set(int cpu, bool on) 7711 { 7712 struct rq *rq = cpu_rq(cpu); 7713 struct rq_flags rf; 7714 7715 rq_lock_irqsave(rq, &rf); 7716 if (on) { 7717 WARN_ON_ONCE(rq->balance_callback); 7718 rq->balance_callback = &balance_push_callback; 7719 } else if (rq->balance_callback == &balance_push_callback) { 7720 rq->balance_callback = NULL; 7721 } 7722 rq_unlock_irqrestore(rq, &rf); 7723 } 7724 7725 /* 7726 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7727 * inactive. All tasks which are not per CPU kernel threads are either 7728 * pushed off this CPU now via balance_push() or placed on a different CPU 7729 * during wakeup. Wait until the CPU is quiescent. 7730 */ 7731 static void balance_hotplug_wait(void) 7732 { 7733 struct rq *rq = this_rq(); 7734 7735 rcuwait_wait_event(&rq->hotplug_wait, 7736 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7737 TASK_UNINTERRUPTIBLE); 7738 } 7739 7740 #else 7741 7742 static inline void balance_push(struct rq *rq) 7743 { 7744 } 7745 7746 static inline void balance_push_set(int cpu, bool on) 7747 { 7748 } 7749 7750 static inline void balance_hotplug_wait(void) 7751 { 7752 } 7753 7754 #endif /* CONFIG_HOTPLUG_CPU */ 7755 7756 void set_rq_online(struct rq *rq) 7757 { 7758 if (!rq->online) { 7759 const struct sched_class *class; 7760 7761 cpumask_set_cpu(rq->cpu, rq->rd->online); 7762 rq->online = 1; 7763 7764 for_each_class(class) { 7765 if (class->rq_online) 7766 class->rq_online(rq); 7767 } 7768 } 7769 } 7770 7771 void set_rq_offline(struct rq *rq) 7772 { 7773 if (rq->online) { 7774 const struct sched_class *class; 7775 7776 for_each_class(class) { 7777 if (class->rq_offline) 7778 class->rq_offline(rq); 7779 } 7780 7781 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7782 rq->online = 0; 7783 } 7784 } 7785 7786 /* 7787 * used to mark begin/end of suspend/resume: 7788 */ 7789 static int num_cpus_frozen; 7790 7791 /* 7792 * Update cpusets according to cpu_active mask. If cpusets are 7793 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7794 * around partition_sched_domains(). 7795 * 7796 * If we come here as part of a suspend/resume, don't touch cpusets because we 7797 * want to restore it back to its original state upon resume anyway. 7798 */ 7799 static void cpuset_cpu_active(void) 7800 { 7801 if (cpuhp_tasks_frozen) { 7802 /* 7803 * num_cpus_frozen tracks how many CPUs are involved in suspend 7804 * resume sequence. As long as this is not the last online 7805 * operation in the resume sequence, just build a single sched 7806 * domain, ignoring cpusets. 7807 */ 7808 partition_sched_domains(1, NULL, NULL); 7809 if (--num_cpus_frozen) 7810 return; 7811 /* 7812 * This is the last CPU online operation. So fall through and 7813 * restore the original sched domains by considering the 7814 * cpuset configurations. 7815 */ 7816 cpuset_force_rebuild(); 7817 } 7818 cpuset_update_active_cpus(); 7819 } 7820 7821 static int cpuset_cpu_inactive(unsigned int cpu) 7822 { 7823 if (!cpuhp_tasks_frozen) { 7824 if (dl_cpu_busy(cpu)) 7825 return -EBUSY; 7826 cpuset_update_active_cpus(); 7827 } else { 7828 num_cpus_frozen++; 7829 partition_sched_domains(1, NULL, NULL); 7830 } 7831 return 0; 7832 } 7833 7834 int sched_cpu_activate(unsigned int cpu) 7835 { 7836 struct rq *rq = cpu_rq(cpu); 7837 struct rq_flags rf; 7838 7839 /* 7840 * Clear the balance_push callback and prepare to schedule 7841 * regular tasks. 7842 */ 7843 balance_push_set(cpu, false); 7844 7845 #ifdef CONFIG_SCHED_SMT 7846 /* 7847 * When going up, increment the number of cores with SMT present. 7848 */ 7849 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7850 static_branch_inc_cpuslocked(&sched_smt_present); 7851 #endif 7852 set_cpu_active(cpu, true); 7853 7854 if (sched_smp_initialized) { 7855 sched_domains_numa_masks_set(cpu); 7856 cpuset_cpu_active(); 7857 } 7858 7859 /* 7860 * Put the rq online, if not already. This happens: 7861 * 7862 * 1) In the early boot process, because we build the real domains 7863 * after all CPUs have been brought up. 7864 * 7865 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7866 * domains. 7867 */ 7868 rq_lock_irqsave(rq, &rf); 7869 if (rq->rd) { 7870 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7871 set_rq_online(rq); 7872 } 7873 rq_unlock_irqrestore(rq, &rf); 7874 7875 return 0; 7876 } 7877 7878 int sched_cpu_deactivate(unsigned int cpu) 7879 { 7880 struct rq *rq = cpu_rq(cpu); 7881 struct rq_flags rf; 7882 int ret; 7883 7884 /* 7885 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 7886 * load balancing when not active 7887 */ 7888 nohz_balance_exit_idle(rq); 7889 7890 set_cpu_active(cpu, false); 7891 7892 /* 7893 * From this point forward, this CPU will refuse to run any task that 7894 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 7895 * push those tasks away until this gets cleared, see 7896 * sched_cpu_dying(). 7897 */ 7898 balance_push_set(cpu, true); 7899 7900 /* 7901 * We've cleared cpu_active_mask / set balance_push, wait for all 7902 * preempt-disabled and RCU users of this state to go away such that 7903 * all new such users will observe it. 7904 * 7905 * Specifically, we rely on ttwu to no longer target this CPU, see 7906 * ttwu_queue_cond() and is_cpu_allowed(). 7907 * 7908 * Do sync before park smpboot threads to take care the rcu boost case. 7909 */ 7910 synchronize_rcu(); 7911 7912 rq_lock_irqsave(rq, &rf); 7913 if (rq->rd) { 7914 update_rq_clock(rq); 7915 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7916 set_rq_offline(rq); 7917 } 7918 rq_unlock_irqrestore(rq, &rf); 7919 7920 #ifdef CONFIG_SCHED_SMT 7921 /* 7922 * When going down, decrement the number of cores with SMT present. 7923 */ 7924 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7925 static_branch_dec_cpuslocked(&sched_smt_present); 7926 #endif 7927 7928 if (!sched_smp_initialized) 7929 return 0; 7930 7931 ret = cpuset_cpu_inactive(cpu); 7932 if (ret) { 7933 balance_push_set(cpu, false); 7934 set_cpu_active(cpu, true); 7935 return ret; 7936 } 7937 sched_domains_numa_masks_clear(cpu); 7938 return 0; 7939 } 7940 7941 static void sched_rq_cpu_starting(unsigned int cpu) 7942 { 7943 struct rq *rq = cpu_rq(cpu); 7944 7945 rq->calc_load_update = calc_load_update; 7946 update_max_interval(); 7947 } 7948 7949 int sched_cpu_starting(unsigned int cpu) 7950 { 7951 sched_rq_cpu_starting(cpu); 7952 sched_tick_start(cpu); 7953 return 0; 7954 } 7955 7956 #ifdef CONFIG_HOTPLUG_CPU 7957 7958 /* 7959 * Invoked immediately before the stopper thread is invoked to bring the 7960 * CPU down completely. At this point all per CPU kthreads except the 7961 * hotplug thread (current) and the stopper thread (inactive) have been 7962 * either parked or have been unbound from the outgoing CPU. Ensure that 7963 * any of those which might be on the way out are gone. 7964 * 7965 * If after this point a bound task is being woken on this CPU then the 7966 * responsible hotplug callback has failed to do it's job. 7967 * sched_cpu_dying() will catch it with the appropriate fireworks. 7968 */ 7969 int sched_cpu_wait_empty(unsigned int cpu) 7970 { 7971 balance_hotplug_wait(); 7972 return 0; 7973 } 7974 7975 /* 7976 * Since this CPU is going 'away' for a while, fold any nr_active delta we 7977 * might have. Called from the CPU stopper task after ensuring that the 7978 * stopper is the last running task on the CPU, so nr_active count is 7979 * stable. We need to take the teardown thread which is calling this into 7980 * account, so we hand in adjust = 1 to the load calculation. 7981 * 7982 * Also see the comment "Global load-average calculations". 7983 */ 7984 static void calc_load_migrate(struct rq *rq) 7985 { 7986 long delta = calc_load_fold_active(rq, 1); 7987 7988 if (delta) 7989 atomic_long_add(delta, &calc_load_tasks); 7990 } 7991 7992 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 7993 { 7994 struct task_struct *g, *p; 7995 int cpu = cpu_of(rq); 7996 7997 lockdep_assert_held(&rq->lock); 7998 7999 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8000 for_each_process_thread(g, p) { 8001 if (task_cpu(p) != cpu) 8002 continue; 8003 8004 if (!task_on_rq_queued(p)) 8005 continue; 8006 8007 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8008 } 8009 } 8010 8011 int sched_cpu_dying(unsigned int cpu) 8012 { 8013 struct rq *rq = cpu_rq(cpu); 8014 struct rq_flags rf; 8015 8016 /* Handle pending wakeups and then migrate everything off */ 8017 sched_tick_stop(cpu); 8018 8019 rq_lock_irqsave(rq, &rf); 8020 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8021 WARN(true, "Dying CPU not properly vacated!"); 8022 dump_rq_tasks(rq, KERN_WARNING); 8023 } 8024 rq_unlock_irqrestore(rq, &rf); 8025 8026 calc_load_migrate(rq); 8027 update_max_interval(); 8028 hrtick_clear(rq); 8029 return 0; 8030 } 8031 #endif 8032 8033 void __init sched_init_smp(void) 8034 { 8035 sched_init_numa(); 8036 8037 /* 8038 * There's no userspace yet to cause hotplug operations; hence all the 8039 * CPU masks are stable and all blatant races in the below code cannot 8040 * happen. 8041 */ 8042 mutex_lock(&sched_domains_mutex); 8043 sched_init_domains(cpu_active_mask); 8044 mutex_unlock(&sched_domains_mutex); 8045 8046 /* Move init over to a non-isolated CPU */ 8047 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 8048 BUG(); 8049 sched_init_granularity(); 8050 8051 init_sched_rt_class(); 8052 init_sched_dl_class(); 8053 8054 sched_smp_initialized = true; 8055 } 8056 8057 static int __init migration_init(void) 8058 { 8059 sched_cpu_starting(smp_processor_id()); 8060 return 0; 8061 } 8062 early_initcall(migration_init); 8063 8064 #else 8065 void __init sched_init_smp(void) 8066 { 8067 sched_init_granularity(); 8068 } 8069 #endif /* CONFIG_SMP */ 8070 8071 int in_sched_functions(unsigned long addr) 8072 { 8073 return in_lock_functions(addr) || 8074 (addr >= (unsigned long)__sched_text_start 8075 && addr < (unsigned long)__sched_text_end); 8076 } 8077 8078 #ifdef CONFIG_CGROUP_SCHED 8079 /* 8080 * Default task group. 8081 * Every task in system belongs to this group at bootup. 8082 */ 8083 struct task_group root_task_group; 8084 LIST_HEAD(task_groups); 8085 8086 /* Cacheline aligned slab cache for task_group */ 8087 static struct kmem_cache *task_group_cache __read_mostly; 8088 #endif 8089 8090 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 8091 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 8092 8093 void __init sched_init(void) 8094 { 8095 unsigned long ptr = 0; 8096 int i; 8097 8098 /* Make sure the linker didn't screw up */ 8099 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 8100 &fair_sched_class + 1 != &rt_sched_class || 8101 &rt_sched_class + 1 != &dl_sched_class); 8102 #ifdef CONFIG_SMP 8103 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 8104 #endif 8105 8106 wait_bit_init(); 8107 8108 #ifdef CONFIG_FAIR_GROUP_SCHED 8109 ptr += 2 * nr_cpu_ids * sizeof(void **); 8110 #endif 8111 #ifdef CONFIG_RT_GROUP_SCHED 8112 ptr += 2 * nr_cpu_ids * sizeof(void **); 8113 #endif 8114 if (ptr) { 8115 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8116 8117 #ifdef CONFIG_FAIR_GROUP_SCHED 8118 root_task_group.se = (struct sched_entity **)ptr; 8119 ptr += nr_cpu_ids * sizeof(void **); 8120 8121 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8122 ptr += nr_cpu_ids * sizeof(void **); 8123 8124 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8125 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 8126 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8127 #ifdef CONFIG_RT_GROUP_SCHED 8128 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8129 ptr += nr_cpu_ids * sizeof(void **); 8130 8131 root_task_group.rt_rq = (struct rt_rq **)ptr; 8132 ptr += nr_cpu_ids * sizeof(void **); 8133 8134 #endif /* CONFIG_RT_GROUP_SCHED */ 8135 } 8136 #ifdef CONFIG_CPUMASK_OFFSTACK 8137 for_each_possible_cpu(i) { 8138 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 8139 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8140 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 8141 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8142 } 8143 #endif /* CONFIG_CPUMASK_OFFSTACK */ 8144 8145 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8146 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 8147 8148 #ifdef CONFIG_SMP 8149 init_defrootdomain(); 8150 #endif 8151 8152 #ifdef CONFIG_RT_GROUP_SCHED 8153 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8154 global_rt_period(), global_rt_runtime()); 8155 #endif /* CONFIG_RT_GROUP_SCHED */ 8156 8157 #ifdef CONFIG_CGROUP_SCHED 8158 task_group_cache = KMEM_CACHE(task_group, 0); 8159 8160 list_add(&root_task_group.list, &task_groups); 8161 INIT_LIST_HEAD(&root_task_group.children); 8162 INIT_LIST_HEAD(&root_task_group.siblings); 8163 autogroup_init(&init_task); 8164 #endif /* CONFIG_CGROUP_SCHED */ 8165 8166 for_each_possible_cpu(i) { 8167 struct rq *rq; 8168 8169 rq = cpu_rq(i); 8170 raw_spin_lock_init(&rq->lock); 8171 rq->nr_running = 0; 8172 rq->calc_load_active = 0; 8173 rq->calc_load_update = jiffies + LOAD_FREQ; 8174 init_cfs_rq(&rq->cfs); 8175 init_rt_rq(&rq->rt); 8176 init_dl_rq(&rq->dl); 8177 #ifdef CONFIG_FAIR_GROUP_SCHED 8178 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8179 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8180 /* 8181 * How much CPU bandwidth does root_task_group get? 8182 * 8183 * In case of task-groups formed thr' the cgroup filesystem, it 8184 * gets 100% of the CPU resources in the system. This overall 8185 * system CPU resource is divided among the tasks of 8186 * root_task_group and its child task-groups in a fair manner, 8187 * based on each entity's (task or task-group's) weight 8188 * (se->load.weight). 8189 * 8190 * In other words, if root_task_group has 10 tasks of weight 8191 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8192 * then A0's share of the CPU resource is: 8193 * 8194 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8195 * 8196 * We achieve this by letting root_task_group's tasks sit 8197 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8198 */ 8199 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8200 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8201 8202 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8203 #ifdef CONFIG_RT_GROUP_SCHED 8204 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8205 #endif 8206 #ifdef CONFIG_SMP 8207 rq->sd = NULL; 8208 rq->rd = NULL; 8209 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 8210 rq->balance_callback = &balance_push_callback; 8211 rq->active_balance = 0; 8212 rq->next_balance = jiffies; 8213 rq->push_cpu = 0; 8214 rq->cpu = i; 8215 rq->online = 0; 8216 rq->idle_stamp = 0; 8217 rq->avg_idle = 2*sysctl_sched_migration_cost; 8218 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8219 8220 INIT_LIST_HEAD(&rq->cfs_tasks); 8221 8222 rq_attach_root(rq, &def_root_domain); 8223 #ifdef CONFIG_NO_HZ_COMMON 8224 rq->last_blocked_load_update_tick = jiffies; 8225 atomic_set(&rq->nohz_flags, 0); 8226 8227 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8228 #endif 8229 #ifdef CONFIG_HOTPLUG_CPU 8230 rcuwait_init(&rq->hotplug_wait); 8231 #endif 8232 #endif /* CONFIG_SMP */ 8233 hrtick_rq_init(rq); 8234 atomic_set(&rq->nr_iowait, 0); 8235 } 8236 8237 set_load_weight(&init_task, false); 8238 8239 /* 8240 * The boot idle thread does lazy MMU switching as well: 8241 */ 8242 mmgrab(&init_mm); 8243 enter_lazy_tlb(&init_mm, current); 8244 8245 /* 8246 * Make us the idle thread. Technically, schedule() should not be 8247 * called from this thread, however somewhere below it might be, 8248 * but because we are the idle thread, we just pick up running again 8249 * when this runqueue becomes "idle". 8250 */ 8251 init_idle(current, smp_processor_id()); 8252 8253 calc_load_update = jiffies + LOAD_FREQ; 8254 8255 #ifdef CONFIG_SMP 8256 idle_thread_set_boot_cpu(); 8257 balance_push_set(smp_processor_id(), false); 8258 #endif 8259 init_sched_fair_class(); 8260 8261 init_schedstats(); 8262 8263 psi_init(); 8264 8265 init_uclamp(); 8266 8267 scheduler_running = 1; 8268 } 8269 8270 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8271 static inline int preempt_count_equals(int preempt_offset) 8272 { 8273 int nested = preempt_count() + rcu_preempt_depth(); 8274 8275 return (nested == preempt_offset); 8276 } 8277 8278 void __might_sleep(const char *file, int line, int preempt_offset) 8279 { 8280 /* 8281 * Blocking primitives will set (and therefore destroy) current->state, 8282 * since we will exit with TASK_RUNNING make sure we enter with it, 8283 * otherwise we will destroy state. 8284 */ 8285 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 8286 "do not call blocking ops when !TASK_RUNNING; " 8287 "state=%lx set at [<%p>] %pS\n", 8288 current->state, 8289 (void *)current->task_state_change, 8290 (void *)current->task_state_change); 8291 8292 ___might_sleep(file, line, preempt_offset); 8293 } 8294 EXPORT_SYMBOL(__might_sleep); 8295 8296 void ___might_sleep(const char *file, int line, int preempt_offset) 8297 { 8298 /* Ratelimiting timestamp: */ 8299 static unsigned long prev_jiffy; 8300 8301 unsigned long preempt_disable_ip; 8302 8303 /* WARN_ON_ONCE() by default, no rate limit required: */ 8304 rcu_sleep_check(); 8305 8306 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 8307 !is_idle_task(current) && !current->non_block_count) || 8308 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8309 oops_in_progress) 8310 return; 8311 8312 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8313 return; 8314 prev_jiffy = jiffies; 8315 8316 /* Save this before calling printk(), since that will clobber it: */ 8317 preempt_disable_ip = get_preempt_disable_ip(current); 8318 8319 printk(KERN_ERR 8320 "BUG: sleeping function called from invalid context at %s:%d\n", 8321 file, line); 8322 printk(KERN_ERR 8323 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8324 in_atomic(), irqs_disabled(), current->non_block_count, 8325 current->pid, current->comm); 8326 8327 if (task_stack_end_corrupted(current)) 8328 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 8329 8330 debug_show_held_locks(current); 8331 if (irqs_disabled()) 8332 print_irqtrace_events(current); 8333 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 8334 && !preempt_count_equals(preempt_offset)) { 8335 pr_err("Preemption disabled at:"); 8336 print_ip_sym(KERN_ERR, preempt_disable_ip); 8337 } 8338 dump_stack(); 8339 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8340 } 8341 EXPORT_SYMBOL(___might_sleep); 8342 8343 void __cant_sleep(const char *file, int line, int preempt_offset) 8344 { 8345 static unsigned long prev_jiffy; 8346 8347 if (irqs_disabled()) 8348 return; 8349 8350 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8351 return; 8352 8353 if (preempt_count() > preempt_offset) 8354 return; 8355 8356 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8357 return; 8358 prev_jiffy = jiffies; 8359 8360 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8361 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8362 in_atomic(), irqs_disabled(), 8363 current->pid, current->comm); 8364 8365 debug_show_held_locks(current); 8366 dump_stack(); 8367 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8368 } 8369 EXPORT_SYMBOL_GPL(__cant_sleep); 8370 8371 #ifdef CONFIG_SMP 8372 void __cant_migrate(const char *file, int line) 8373 { 8374 static unsigned long prev_jiffy; 8375 8376 if (irqs_disabled()) 8377 return; 8378 8379 if (is_migration_disabled(current)) 8380 return; 8381 8382 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8383 return; 8384 8385 if (preempt_count() > 0) 8386 return; 8387 8388 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8389 return; 8390 prev_jiffy = jiffies; 8391 8392 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8393 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8394 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8395 current->pid, current->comm); 8396 8397 debug_show_held_locks(current); 8398 dump_stack(); 8399 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8400 } 8401 EXPORT_SYMBOL_GPL(__cant_migrate); 8402 #endif 8403 #endif 8404 8405 #ifdef CONFIG_MAGIC_SYSRQ 8406 void normalize_rt_tasks(void) 8407 { 8408 struct task_struct *g, *p; 8409 struct sched_attr attr = { 8410 .sched_policy = SCHED_NORMAL, 8411 }; 8412 8413 read_lock(&tasklist_lock); 8414 for_each_process_thread(g, p) { 8415 /* 8416 * Only normalize user tasks: 8417 */ 8418 if (p->flags & PF_KTHREAD) 8419 continue; 8420 8421 p->se.exec_start = 0; 8422 schedstat_set(p->se.statistics.wait_start, 0); 8423 schedstat_set(p->se.statistics.sleep_start, 0); 8424 schedstat_set(p->se.statistics.block_start, 0); 8425 8426 if (!dl_task(p) && !rt_task(p)) { 8427 /* 8428 * Renice negative nice level userspace 8429 * tasks back to 0: 8430 */ 8431 if (task_nice(p) < 0) 8432 set_user_nice(p, 0); 8433 continue; 8434 } 8435 8436 __sched_setscheduler(p, &attr, false, false); 8437 } 8438 read_unlock(&tasklist_lock); 8439 } 8440 8441 #endif /* CONFIG_MAGIC_SYSRQ */ 8442 8443 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 8444 /* 8445 * These functions are only useful for the IA64 MCA handling, or kdb. 8446 * 8447 * They can only be called when the whole system has been 8448 * stopped - every CPU needs to be quiescent, and no scheduling 8449 * activity can take place. Using them for anything else would 8450 * be a serious bug, and as a result, they aren't even visible 8451 * under any other configuration. 8452 */ 8453 8454 /** 8455 * curr_task - return the current task for a given CPU. 8456 * @cpu: the processor in question. 8457 * 8458 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8459 * 8460 * Return: The current task for @cpu. 8461 */ 8462 struct task_struct *curr_task(int cpu) 8463 { 8464 return cpu_curr(cpu); 8465 } 8466 8467 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 8468 8469 #ifdef CONFIG_IA64 8470 /** 8471 * ia64_set_curr_task - set the current task for a given CPU. 8472 * @cpu: the processor in question. 8473 * @p: the task pointer to set. 8474 * 8475 * Description: This function must only be used when non-maskable interrupts 8476 * are serviced on a separate stack. It allows the architecture to switch the 8477 * notion of the current task on a CPU in a non-blocking manner. This function 8478 * must be called with all CPU's synchronized, and interrupts disabled, the 8479 * and caller must save the original value of the current task (see 8480 * curr_task() above) and restore that value before reenabling interrupts and 8481 * re-starting the system. 8482 * 8483 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8484 */ 8485 void ia64_set_curr_task(int cpu, struct task_struct *p) 8486 { 8487 cpu_curr(cpu) = p; 8488 } 8489 8490 #endif 8491 8492 #ifdef CONFIG_CGROUP_SCHED 8493 /* task_group_lock serializes the addition/removal of task groups */ 8494 static DEFINE_SPINLOCK(task_group_lock); 8495 8496 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8497 struct task_group *parent) 8498 { 8499 #ifdef CONFIG_UCLAMP_TASK_GROUP 8500 enum uclamp_id clamp_id; 8501 8502 for_each_clamp_id(clamp_id) { 8503 uclamp_se_set(&tg->uclamp_req[clamp_id], 8504 uclamp_none(clamp_id), false); 8505 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8506 } 8507 #endif 8508 } 8509 8510 static void sched_free_group(struct task_group *tg) 8511 { 8512 free_fair_sched_group(tg); 8513 free_rt_sched_group(tg); 8514 autogroup_free(tg); 8515 kmem_cache_free(task_group_cache, tg); 8516 } 8517 8518 /* allocate runqueue etc for a new task group */ 8519 struct task_group *sched_create_group(struct task_group *parent) 8520 { 8521 struct task_group *tg; 8522 8523 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8524 if (!tg) 8525 return ERR_PTR(-ENOMEM); 8526 8527 if (!alloc_fair_sched_group(tg, parent)) 8528 goto err; 8529 8530 if (!alloc_rt_sched_group(tg, parent)) 8531 goto err; 8532 8533 alloc_uclamp_sched_group(tg, parent); 8534 8535 return tg; 8536 8537 err: 8538 sched_free_group(tg); 8539 return ERR_PTR(-ENOMEM); 8540 } 8541 8542 void sched_online_group(struct task_group *tg, struct task_group *parent) 8543 { 8544 unsigned long flags; 8545 8546 spin_lock_irqsave(&task_group_lock, flags); 8547 list_add_rcu(&tg->list, &task_groups); 8548 8549 /* Root should already exist: */ 8550 WARN_ON(!parent); 8551 8552 tg->parent = parent; 8553 INIT_LIST_HEAD(&tg->children); 8554 list_add_rcu(&tg->siblings, &parent->children); 8555 spin_unlock_irqrestore(&task_group_lock, flags); 8556 8557 online_fair_sched_group(tg); 8558 } 8559 8560 /* rcu callback to free various structures associated with a task group */ 8561 static void sched_free_group_rcu(struct rcu_head *rhp) 8562 { 8563 /* Now it should be safe to free those cfs_rqs: */ 8564 sched_free_group(container_of(rhp, struct task_group, rcu)); 8565 } 8566 8567 void sched_destroy_group(struct task_group *tg) 8568 { 8569 /* Wait for possible concurrent references to cfs_rqs complete: */ 8570 call_rcu(&tg->rcu, sched_free_group_rcu); 8571 } 8572 8573 void sched_offline_group(struct task_group *tg) 8574 { 8575 unsigned long flags; 8576 8577 /* End participation in shares distribution: */ 8578 unregister_fair_sched_group(tg); 8579 8580 spin_lock_irqsave(&task_group_lock, flags); 8581 list_del_rcu(&tg->list); 8582 list_del_rcu(&tg->siblings); 8583 spin_unlock_irqrestore(&task_group_lock, flags); 8584 } 8585 8586 static void sched_change_group(struct task_struct *tsk, int type) 8587 { 8588 struct task_group *tg; 8589 8590 /* 8591 * All callers are synchronized by task_rq_lock(); we do not use RCU 8592 * which is pointless here. Thus, we pass "true" to task_css_check() 8593 * to prevent lockdep warnings. 8594 */ 8595 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8596 struct task_group, css); 8597 tg = autogroup_task_group(tsk, tg); 8598 tsk->sched_task_group = tg; 8599 8600 #ifdef CONFIG_FAIR_GROUP_SCHED 8601 if (tsk->sched_class->task_change_group) 8602 tsk->sched_class->task_change_group(tsk, type); 8603 else 8604 #endif 8605 set_task_rq(tsk, task_cpu(tsk)); 8606 } 8607 8608 /* 8609 * Change task's runqueue when it moves between groups. 8610 * 8611 * The caller of this function should have put the task in its new group by 8612 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8613 * its new group. 8614 */ 8615 void sched_move_task(struct task_struct *tsk) 8616 { 8617 int queued, running, queue_flags = 8618 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8619 struct rq_flags rf; 8620 struct rq *rq; 8621 8622 rq = task_rq_lock(tsk, &rf); 8623 update_rq_clock(rq); 8624 8625 running = task_current(rq, tsk); 8626 queued = task_on_rq_queued(tsk); 8627 8628 if (queued) 8629 dequeue_task(rq, tsk, queue_flags); 8630 if (running) 8631 put_prev_task(rq, tsk); 8632 8633 sched_change_group(tsk, TASK_MOVE_GROUP); 8634 8635 if (queued) 8636 enqueue_task(rq, tsk, queue_flags); 8637 if (running) { 8638 set_next_task(rq, tsk); 8639 /* 8640 * After changing group, the running task may have joined a 8641 * throttled one but it's still the running task. Trigger a 8642 * resched to make sure that task can still run. 8643 */ 8644 resched_curr(rq); 8645 } 8646 8647 task_rq_unlock(rq, tsk, &rf); 8648 } 8649 8650 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8651 { 8652 return css ? container_of(css, struct task_group, css) : NULL; 8653 } 8654 8655 static struct cgroup_subsys_state * 8656 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8657 { 8658 struct task_group *parent = css_tg(parent_css); 8659 struct task_group *tg; 8660 8661 if (!parent) { 8662 /* This is early initialization for the top cgroup */ 8663 return &root_task_group.css; 8664 } 8665 8666 tg = sched_create_group(parent); 8667 if (IS_ERR(tg)) 8668 return ERR_PTR(-ENOMEM); 8669 8670 return &tg->css; 8671 } 8672 8673 /* Expose task group only after completing cgroup initialization */ 8674 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8675 { 8676 struct task_group *tg = css_tg(css); 8677 struct task_group *parent = css_tg(css->parent); 8678 8679 if (parent) 8680 sched_online_group(tg, parent); 8681 8682 #ifdef CONFIG_UCLAMP_TASK_GROUP 8683 /* Propagate the effective uclamp value for the new group */ 8684 cpu_util_update_eff(css); 8685 #endif 8686 8687 return 0; 8688 } 8689 8690 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8691 { 8692 struct task_group *tg = css_tg(css); 8693 8694 sched_offline_group(tg); 8695 } 8696 8697 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8698 { 8699 struct task_group *tg = css_tg(css); 8700 8701 /* 8702 * Relies on the RCU grace period between css_released() and this. 8703 */ 8704 sched_free_group(tg); 8705 } 8706 8707 /* 8708 * This is called before wake_up_new_task(), therefore we really only 8709 * have to set its group bits, all the other stuff does not apply. 8710 */ 8711 static void cpu_cgroup_fork(struct task_struct *task) 8712 { 8713 struct rq_flags rf; 8714 struct rq *rq; 8715 8716 rq = task_rq_lock(task, &rf); 8717 8718 update_rq_clock(rq); 8719 sched_change_group(task, TASK_SET_GROUP); 8720 8721 task_rq_unlock(rq, task, &rf); 8722 } 8723 8724 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8725 { 8726 struct task_struct *task; 8727 struct cgroup_subsys_state *css; 8728 int ret = 0; 8729 8730 cgroup_taskset_for_each(task, css, tset) { 8731 #ifdef CONFIG_RT_GROUP_SCHED 8732 if (!sched_rt_can_attach(css_tg(css), task)) 8733 return -EINVAL; 8734 #endif 8735 /* 8736 * Serialize against wake_up_new_task() such that if it's 8737 * running, we're sure to observe its full state. 8738 */ 8739 raw_spin_lock_irq(&task->pi_lock); 8740 /* 8741 * Avoid calling sched_move_task() before wake_up_new_task() 8742 * has happened. This would lead to problems with PELT, due to 8743 * move wanting to detach+attach while we're not attached yet. 8744 */ 8745 if (task->state == TASK_NEW) 8746 ret = -EINVAL; 8747 raw_spin_unlock_irq(&task->pi_lock); 8748 8749 if (ret) 8750 break; 8751 } 8752 return ret; 8753 } 8754 8755 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8756 { 8757 struct task_struct *task; 8758 struct cgroup_subsys_state *css; 8759 8760 cgroup_taskset_for_each(task, css, tset) 8761 sched_move_task(task); 8762 } 8763 8764 #ifdef CONFIG_UCLAMP_TASK_GROUP 8765 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8766 { 8767 struct cgroup_subsys_state *top_css = css; 8768 struct uclamp_se *uc_parent = NULL; 8769 struct uclamp_se *uc_se = NULL; 8770 unsigned int eff[UCLAMP_CNT]; 8771 enum uclamp_id clamp_id; 8772 unsigned int clamps; 8773 8774 css_for_each_descendant_pre(css, top_css) { 8775 uc_parent = css_tg(css)->parent 8776 ? css_tg(css)->parent->uclamp : NULL; 8777 8778 for_each_clamp_id(clamp_id) { 8779 /* Assume effective clamps matches requested clamps */ 8780 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8781 /* Cap effective clamps with parent's effective clamps */ 8782 if (uc_parent && 8783 eff[clamp_id] > uc_parent[clamp_id].value) { 8784 eff[clamp_id] = uc_parent[clamp_id].value; 8785 } 8786 } 8787 /* Ensure protection is always capped by limit */ 8788 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8789 8790 /* Propagate most restrictive effective clamps */ 8791 clamps = 0x0; 8792 uc_se = css_tg(css)->uclamp; 8793 for_each_clamp_id(clamp_id) { 8794 if (eff[clamp_id] == uc_se[clamp_id].value) 8795 continue; 8796 uc_se[clamp_id].value = eff[clamp_id]; 8797 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8798 clamps |= (0x1 << clamp_id); 8799 } 8800 if (!clamps) { 8801 css = css_rightmost_descendant(css); 8802 continue; 8803 } 8804 8805 /* Immediately update descendants RUNNABLE tasks */ 8806 uclamp_update_active_tasks(css, clamps); 8807 } 8808 } 8809 8810 /* 8811 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8812 * C expression. Since there is no way to convert a macro argument (N) into a 8813 * character constant, use two levels of macros. 8814 */ 8815 #define _POW10(exp) ((unsigned int)1e##exp) 8816 #define POW10(exp) _POW10(exp) 8817 8818 struct uclamp_request { 8819 #define UCLAMP_PERCENT_SHIFT 2 8820 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8821 s64 percent; 8822 u64 util; 8823 int ret; 8824 }; 8825 8826 static inline struct uclamp_request 8827 capacity_from_percent(char *buf) 8828 { 8829 struct uclamp_request req = { 8830 .percent = UCLAMP_PERCENT_SCALE, 8831 .util = SCHED_CAPACITY_SCALE, 8832 .ret = 0, 8833 }; 8834 8835 buf = strim(buf); 8836 if (strcmp(buf, "max")) { 8837 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8838 &req.percent); 8839 if (req.ret) 8840 return req; 8841 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8842 req.ret = -ERANGE; 8843 return req; 8844 } 8845 8846 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8847 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8848 } 8849 8850 return req; 8851 } 8852 8853 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 8854 size_t nbytes, loff_t off, 8855 enum uclamp_id clamp_id) 8856 { 8857 struct uclamp_request req; 8858 struct task_group *tg; 8859 8860 req = capacity_from_percent(buf); 8861 if (req.ret) 8862 return req.ret; 8863 8864 static_branch_enable(&sched_uclamp_used); 8865 8866 mutex_lock(&uclamp_mutex); 8867 rcu_read_lock(); 8868 8869 tg = css_tg(of_css(of)); 8870 if (tg->uclamp_req[clamp_id].value != req.util) 8871 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 8872 8873 /* 8874 * Because of not recoverable conversion rounding we keep track of the 8875 * exact requested value 8876 */ 8877 tg->uclamp_pct[clamp_id] = req.percent; 8878 8879 /* Update effective clamps to track the most restrictive value */ 8880 cpu_util_update_eff(of_css(of)); 8881 8882 rcu_read_unlock(); 8883 mutex_unlock(&uclamp_mutex); 8884 8885 return nbytes; 8886 } 8887 8888 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 8889 char *buf, size_t nbytes, 8890 loff_t off) 8891 { 8892 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 8893 } 8894 8895 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 8896 char *buf, size_t nbytes, 8897 loff_t off) 8898 { 8899 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 8900 } 8901 8902 static inline void cpu_uclamp_print(struct seq_file *sf, 8903 enum uclamp_id clamp_id) 8904 { 8905 struct task_group *tg; 8906 u64 util_clamp; 8907 u64 percent; 8908 u32 rem; 8909 8910 rcu_read_lock(); 8911 tg = css_tg(seq_css(sf)); 8912 util_clamp = tg->uclamp_req[clamp_id].value; 8913 rcu_read_unlock(); 8914 8915 if (util_clamp == SCHED_CAPACITY_SCALE) { 8916 seq_puts(sf, "max\n"); 8917 return; 8918 } 8919 8920 percent = tg->uclamp_pct[clamp_id]; 8921 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 8922 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 8923 } 8924 8925 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 8926 { 8927 cpu_uclamp_print(sf, UCLAMP_MIN); 8928 return 0; 8929 } 8930 8931 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 8932 { 8933 cpu_uclamp_print(sf, UCLAMP_MAX); 8934 return 0; 8935 } 8936 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 8937 8938 #ifdef CONFIG_FAIR_GROUP_SCHED 8939 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8940 struct cftype *cftype, u64 shareval) 8941 { 8942 if (shareval > scale_load_down(ULONG_MAX)) 8943 shareval = MAX_SHARES; 8944 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8945 } 8946 8947 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8948 struct cftype *cft) 8949 { 8950 struct task_group *tg = css_tg(css); 8951 8952 return (u64) scale_load_down(tg->shares); 8953 } 8954 8955 #ifdef CONFIG_CFS_BANDWIDTH 8956 static DEFINE_MUTEX(cfs_constraints_mutex); 8957 8958 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8959 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8960 /* More than 203 days if BW_SHIFT equals 20. */ 8961 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 8962 8963 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8964 8965 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8966 { 8967 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8968 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8969 8970 if (tg == &root_task_group) 8971 return -EINVAL; 8972 8973 /* 8974 * Ensure we have at some amount of bandwidth every period. This is 8975 * to prevent reaching a state of large arrears when throttled via 8976 * entity_tick() resulting in prolonged exit starvation. 8977 */ 8978 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8979 return -EINVAL; 8980 8981 /* 8982 * Likewise, bound things on the other side by preventing insane quota 8983 * periods. This also allows us to normalize in computing quota 8984 * feasibility. 8985 */ 8986 if (period > max_cfs_quota_period) 8987 return -EINVAL; 8988 8989 /* 8990 * Bound quota to defend quota against overflow during bandwidth shift. 8991 */ 8992 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 8993 return -EINVAL; 8994 8995 /* 8996 * Prevent race between setting of cfs_rq->runtime_enabled and 8997 * unthrottle_offline_cfs_rqs(). 8998 */ 8999 get_online_cpus(); 9000 mutex_lock(&cfs_constraints_mutex); 9001 ret = __cfs_schedulable(tg, period, quota); 9002 if (ret) 9003 goto out_unlock; 9004 9005 runtime_enabled = quota != RUNTIME_INF; 9006 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9007 /* 9008 * If we need to toggle cfs_bandwidth_used, off->on must occur 9009 * before making related changes, and on->off must occur afterwards 9010 */ 9011 if (runtime_enabled && !runtime_was_enabled) 9012 cfs_bandwidth_usage_inc(); 9013 raw_spin_lock_irq(&cfs_b->lock); 9014 cfs_b->period = ns_to_ktime(period); 9015 cfs_b->quota = quota; 9016 9017 __refill_cfs_bandwidth_runtime(cfs_b); 9018 9019 /* Restart the period timer (if active) to handle new period expiry: */ 9020 if (runtime_enabled) 9021 start_cfs_bandwidth(cfs_b); 9022 9023 raw_spin_unlock_irq(&cfs_b->lock); 9024 9025 for_each_online_cpu(i) { 9026 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9027 struct rq *rq = cfs_rq->rq; 9028 struct rq_flags rf; 9029 9030 rq_lock_irq(rq, &rf); 9031 cfs_rq->runtime_enabled = runtime_enabled; 9032 cfs_rq->runtime_remaining = 0; 9033 9034 if (cfs_rq->throttled) 9035 unthrottle_cfs_rq(cfs_rq); 9036 rq_unlock_irq(rq, &rf); 9037 } 9038 if (runtime_was_enabled && !runtime_enabled) 9039 cfs_bandwidth_usage_dec(); 9040 out_unlock: 9041 mutex_unlock(&cfs_constraints_mutex); 9042 put_online_cpus(); 9043 9044 return ret; 9045 } 9046 9047 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9048 { 9049 u64 quota, period; 9050 9051 period = ktime_to_ns(tg->cfs_bandwidth.period); 9052 if (cfs_quota_us < 0) 9053 quota = RUNTIME_INF; 9054 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9055 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9056 else 9057 return -EINVAL; 9058 9059 return tg_set_cfs_bandwidth(tg, period, quota); 9060 } 9061 9062 static long tg_get_cfs_quota(struct task_group *tg) 9063 { 9064 u64 quota_us; 9065 9066 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9067 return -1; 9068 9069 quota_us = tg->cfs_bandwidth.quota; 9070 do_div(quota_us, NSEC_PER_USEC); 9071 9072 return quota_us; 9073 } 9074 9075 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9076 { 9077 u64 quota, period; 9078 9079 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9080 return -EINVAL; 9081 9082 period = (u64)cfs_period_us * NSEC_PER_USEC; 9083 quota = tg->cfs_bandwidth.quota; 9084 9085 return tg_set_cfs_bandwidth(tg, period, quota); 9086 } 9087 9088 static long tg_get_cfs_period(struct task_group *tg) 9089 { 9090 u64 cfs_period_us; 9091 9092 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9093 do_div(cfs_period_us, NSEC_PER_USEC); 9094 9095 return cfs_period_us; 9096 } 9097 9098 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9099 struct cftype *cft) 9100 { 9101 return tg_get_cfs_quota(css_tg(css)); 9102 } 9103 9104 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9105 struct cftype *cftype, s64 cfs_quota_us) 9106 { 9107 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9108 } 9109 9110 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9111 struct cftype *cft) 9112 { 9113 return tg_get_cfs_period(css_tg(css)); 9114 } 9115 9116 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9117 struct cftype *cftype, u64 cfs_period_us) 9118 { 9119 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9120 } 9121 9122 struct cfs_schedulable_data { 9123 struct task_group *tg; 9124 u64 period, quota; 9125 }; 9126 9127 /* 9128 * normalize group quota/period to be quota/max_period 9129 * note: units are usecs 9130 */ 9131 static u64 normalize_cfs_quota(struct task_group *tg, 9132 struct cfs_schedulable_data *d) 9133 { 9134 u64 quota, period; 9135 9136 if (tg == d->tg) { 9137 period = d->period; 9138 quota = d->quota; 9139 } else { 9140 period = tg_get_cfs_period(tg); 9141 quota = tg_get_cfs_quota(tg); 9142 } 9143 9144 /* note: these should typically be equivalent */ 9145 if (quota == RUNTIME_INF || quota == -1) 9146 return RUNTIME_INF; 9147 9148 return to_ratio(period, quota); 9149 } 9150 9151 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9152 { 9153 struct cfs_schedulable_data *d = data; 9154 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9155 s64 quota = 0, parent_quota = -1; 9156 9157 if (!tg->parent) { 9158 quota = RUNTIME_INF; 9159 } else { 9160 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9161 9162 quota = normalize_cfs_quota(tg, d); 9163 parent_quota = parent_b->hierarchical_quota; 9164 9165 /* 9166 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9167 * always take the min. On cgroup1, only inherit when no 9168 * limit is set: 9169 */ 9170 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9171 quota = min(quota, parent_quota); 9172 } else { 9173 if (quota == RUNTIME_INF) 9174 quota = parent_quota; 9175 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9176 return -EINVAL; 9177 } 9178 } 9179 cfs_b->hierarchical_quota = quota; 9180 9181 return 0; 9182 } 9183 9184 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9185 { 9186 int ret; 9187 struct cfs_schedulable_data data = { 9188 .tg = tg, 9189 .period = period, 9190 .quota = quota, 9191 }; 9192 9193 if (quota != RUNTIME_INF) { 9194 do_div(data.period, NSEC_PER_USEC); 9195 do_div(data.quota, NSEC_PER_USEC); 9196 } 9197 9198 rcu_read_lock(); 9199 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9200 rcu_read_unlock(); 9201 9202 return ret; 9203 } 9204 9205 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9206 { 9207 struct task_group *tg = css_tg(seq_css(sf)); 9208 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9209 9210 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9211 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9212 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9213 9214 if (schedstat_enabled() && tg != &root_task_group) { 9215 u64 ws = 0; 9216 int i; 9217 9218 for_each_possible_cpu(i) 9219 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 9220 9221 seq_printf(sf, "wait_sum %llu\n", ws); 9222 } 9223 9224 return 0; 9225 } 9226 #endif /* CONFIG_CFS_BANDWIDTH */ 9227 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9228 9229 #ifdef CONFIG_RT_GROUP_SCHED 9230 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9231 struct cftype *cft, s64 val) 9232 { 9233 return sched_group_set_rt_runtime(css_tg(css), val); 9234 } 9235 9236 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9237 struct cftype *cft) 9238 { 9239 return sched_group_rt_runtime(css_tg(css)); 9240 } 9241 9242 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9243 struct cftype *cftype, u64 rt_period_us) 9244 { 9245 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9246 } 9247 9248 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9249 struct cftype *cft) 9250 { 9251 return sched_group_rt_period(css_tg(css)); 9252 } 9253 #endif /* CONFIG_RT_GROUP_SCHED */ 9254 9255 static struct cftype cpu_legacy_files[] = { 9256 #ifdef CONFIG_FAIR_GROUP_SCHED 9257 { 9258 .name = "shares", 9259 .read_u64 = cpu_shares_read_u64, 9260 .write_u64 = cpu_shares_write_u64, 9261 }, 9262 #endif 9263 #ifdef CONFIG_CFS_BANDWIDTH 9264 { 9265 .name = "cfs_quota_us", 9266 .read_s64 = cpu_cfs_quota_read_s64, 9267 .write_s64 = cpu_cfs_quota_write_s64, 9268 }, 9269 { 9270 .name = "cfs_period_us", 9271 .read_u64 = cpu_cfs_period_read_u64, 9272 .write_u64 = cpu_cfs_period_write_u64, 9273 }, 9274 { 9275 .name = "stat", 9276 .seq_show = cpu_cfs_stat_show, 9277 }, 9278 #endif 9279 #ifdef CONFIG_RT_GROUP_SCHED 9280 { 9281 .name = "rt_runtime_us", 9282 .read_s64 = cpu_rt_runtime_read, 9283 .write_s64 = cpu_rt_runtime_write, 9284 }, 9285 { 9286 .name = "rt_period_us", 9287 .read_u64 = cpu_rt_period_read_uint, 9288 .write_u64 = cpu_rt_period_write_uint, 9289 }, 9290 #endif 9291 #ifdef CONFIG_UCLAMP_TASK_GROUP 9292 { 9293 .name = "uclamp.min", 9294 .flags = CFTYPE_NOT_ON_ROOT, 9295 .seq_show = cpu_uclamp_min_show, 9296 .write = cpu_uclamp_min_write, 9297 }, 9298 { 9299 .name = "uclamp.max", 9300 .flags = CFTYPE_NOT_ON_ROOT, 9301 .seq_show = cpu_uclamp_max_show, 9302 .write = cpu_uclamp_max_write, 9303 }, 9304 #endif 9305 { } /* Terminate */ 9306 }; 9307 9308 static int cpu_extra_stat_show(struct seq_file *sf, 9309 struct cgroup_subsys_state *css) 9310 { 9311 #ifdef CONFIG_CFS_BANDWIDTH 9312 { 9313 struct task_group *tg = css_tg(css); 9314 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9315 u64 throttled_usec; 9316 9317 throttled_usec = cfs_b->throttled_time; 9318 do_div(throttled_usec, NSEC_PER_USEC); 9319 9320 seq_printf(sf, "nr_periods %d\n" 9321 "nr_throttled %d\n" 9322 "throttled_usec %llu\n", 9323 cfs_b->nr_periods, cfs_b->nr_throttled, 9324 throttled_usec); 9325 } 9326 #endif 9327 return 0; 9328 } 9329 9330 #ifdef CONFIG_FAIR_GROUP_SCHED 9331 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9332 struct cftype *cft) 9333 { 9334 struct task_group *tg = css_tg(css); 9335 u64 weight = scale_load_down(tg->shares); 9336 9337 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 9338 } 9339 9340 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9341 struct cftype *cft, u64 weight) 9342 { 9343 /* 9344 * cgroup weight knobs should use the common MIN, DFL and MAX 9345 * values which are 1, 100 and 10000 respectively. While it loses 9346 * a bit of range on both ends, it maps pretty well onto the shares 9347 * value used by scheduler and the round-trip conversions preserve 9348 * the original value over the entire range. 9349 */ 9350 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 9351 return -ERANGE; 9352 9353 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 9354 9355 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9356 } 9357 9358 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9359 struct cftype *cft) 9360 { 9361 unsigned long weight = scale_load_down(css_tg(css)->shares); 9362 int last_delta = INT_MAX; 9363 int prio, delta; 9364 9365 /* find the closest nice value to the current weight */ 9366 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9367 delta = abs(sched_prio_to_weight[prio] - weight); 9368 if (delta >= last_delta) 9369 break; 9370 last_delta = delta; 9371 } 9372 9373 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9374 } 9375 9376 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9377 struct cftype *cft, s64 nice) 9378 { 9379 unsigned long weight; 9380 int idx; 9381 9382 if (nice < MIN_NICE || nice > MAX_NICE) 9383 return -ERANGE; 9384 9385 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9386 idx = array_index_nospec(idx, 40); 9387 weight = sched_prio_to_weight[idx]; 9388 9389 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9390 } 9391 #endif 9392 9393 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9394 long period, long quota) 9395 { 9396 if (quota < 0) 9397 seq_puts(sf, "max"); 9398 else 9399 seq_printf(sf, "%ld", quota); 9400 9401 seq_printf(sf, " %ld\n", period); 9402 } 9403 9404 /* caller should put the current value in *@periodp before calling */ 9405 static int __maybe_unused cpu_period_quota_parse(char *buf, 9406 u64 *periodp, u64 *quotap) 9407 { 9408 char tok[21]; /* U64_MAX */ 9409 9410 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9411 return -EINVAL; 9412 9413 *periodp *= NSEC_PER_USEC; 9414 9415 if (sscanf(tok, "%llu", quotap)) 9416 *quotap *= NSEC_PER_USEC; 9417 else if (!strcmp(tok, "max")) 9418 *quotap = RUNTIME_INF; 9419 else 9420 return -EINVAL; 9421 9422 return 0; 9423 } 9424 9425 #ifdef CONFIG_CFS_BANDWIDTH 9426 static int cpu_max_show(struct seq_file *sf, void *v) 9427 { 9428 struct task_group *tg = css_tg(seq_css(sf)); 9429 9430 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9431 return 0; 9432 } 9433 9434 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9435 char *buf, size_t nbytes, loff_t off) 9436 { 9437 struct task_group *tg = css_tg(of_css(of)); 9438 u64 period = tg_get_cfs_period(tg); 9439 u64 quota; 9440 int ret; 9441 9442 ret = cpu_period_quota_parse(buf, &period, "a); 9443 if (!ret) 9444 ret = tg_set_cfs_bandwidth(tg, period, quota); 9445 return ret ?: nbytes; 9446 } 9447 #endif 9448 9449 static struct cftype cpu_files[] = { 9450 #ifdef CONFIG_FAIR_GROUP_SCHED 9451 { 9452 .name = "weight", 9453 .flags = CFTYPE_NOT_ON_ROOT, 9454 .read_u64 = cpu_weight_read_u64, 9455 .write_u64 = cpu_weight_write_u64, 9456 }, 9457 { 9458 .name = "weight.nice", 9459 .flags = CFTYPE_NOT_ON_ROOT, 9460 .read_s64 = cpu_weight_nice_read_s64, 9461 .write_s64 = cpu_weight_nice_write_s64, 9462 }, 9463 #endif 9464 #ifdef CONFIG_CFS_BANDWIDTH 9465 { 9466 .name = "max", 9467 .flags = CFTYPE_NOT_ON_ROOT, 9468 .seq_show = cpu_max_show, 9469 .write = cpu_max_write, 9470 }, 9471 #endif 9472 #ifdef CONFIG_UCLAMP_TASK_GROUP 9473 { 9474 .name = "uclamp.min", 9475 .flags = CFTYPE_NOT_ON_ROOT, 9476 .seq_show = cpu_uclamp_min_show, 9477 .write = cpu_uclamp_min_write, 9478 }, 9479 { 9480 .name = "uclamp.max", 9481 .flags = CFTYPE_NOT_ON_ROOT, 9482 .seq_show = cpu_uclamp_max_show, 9483 .write = cpu_uclamp_max_write, 9484 }, 9485 #endif 9486 { } /* terminate */ 9487 }; 9488 9489 struct cgroup_subsys cpu_cgrp_subsys = { 9490 .css_alloc = cpu_cgroup_css_alloc, 9491 .css_online = cpu_cgroup_css_online, 9492 .css_released = cpu_cgroup_css_released, 9493 .css_free = cpu_cgroup_css_free, 9494 .css_extra_stat_show = cpu_extra_stat_show, 9495 .fork = cpu_cgroup_fork, 9496 .can_attach = cpu_cgroup_can_attach, 9497 .attach = cpu_cgroup_attach, 9498 .legacy_cftypes = cpu_legacy_files, 9499 .dfl_cftypes = cpu_files, 9500 .early_init = true, 9501 .threaded = true, 9502 }; 9503 9504 #endif /* CONFIG_CGROUP_SCHED */ 9505 9506 void dump_cpu_task(int cpu) 9507 { 9508 pr_info("Task dump for CPU %d:\n", cpu); 9509 sched_show_task(cpu_curr(cpu)); 9510 } 9511 9512 /* 9513 * Nice levels are multiplicative, with a gentle 10% change for every 9514 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9515 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9516 * that remained on nice 0. 9517 * 9518 * The "10% effect" is relative and cumulative: from _any_ nice level, 9519 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9520 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9521 * If a task goes up by ~10% and another task goes down by ~10% then 9522 * the relative distance between them is ~25%.) 9523 */ 9524 const int sched_prio_to_weight[40] = { 9525 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9526 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9527 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9528 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9529 /* 0 */ 1024, 820, 655, 526, 423, 9530 /* 5 */ 335, 272, 215, 172, 137, 9531 /* 10 */ 110, 87, 70, 56, 45, 9532 /* 15 */ 36, 29, 23, 18, 15, 9533 }; 9534 9535 /* 9536 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 9537 * 9538 * In cases where the weight does not change often, we can use the 9539 * precalculated inverse to speed up arithmetics by turning divisions 9540 * into multiplications: 9541 */ 9542 const u32 sched_prio_to_wmult[40] = { 9543 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9544 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9545 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9546 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9547 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9548 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9549 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9550 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9551 }; 9552 9553 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9554 { 9555 trace_sched_update_nr_running_tp(rq, count); 9556 } 9557