xref: /openbmc/linux/kernel/sched/core.c (revision 3b64b188)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90 
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 	unsigned long delta;
94 	ktime_t soft, hard, now;
95 
96 	for (;;) {
97 		if (hrtimer_active(period_timer))
98 			break;
99 
100 		now = hrtimer_cb_get_time(period_timer);
101 		hrtimer_forward(period_timer, now, period);
102 
103 		soft = hrtimer_get_softexpires(period_timer);
104 		hard = hrtimer_get_expires(period_timer);
105 		delta = ktime_to_ns(ktime_sub(hard, soft));
106 		__hrtimer_start_range_ns(period_timer, soft, delta,
107 					 HRTIMER_MODE_ABS_PINNED, 0);
108 	}
109 }
110 
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113 
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115 
116 void update_rq_clock(struct rq *rq)
117 {
118 	s64 delta;
119 
120 	if (rq->skip_clock_update > 0)
121 		return;
122 
123 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 	rq->clock += delta;
125 	update_rq_clock_task(rq, delta);
126 }
127 
128 /*
129  * Debugging: various feature bits
130  */
131 
132 #define SCHED_FEAT(name, enabled)	\
133 	(1UL << __SCHED_FEAT_##name) * enabled |
134 
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 	0;
138 
139 #undef SCHED_FEAT
140 
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled)	\
143 	#name ,
144 
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148 
149 #undef SCHED_FEAT
150 
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 	int i;
154 
155 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 		if (!(sysctl_sched_features & (1UL << i)))
157 			seq_puts(m, "NO_");
158 		seq_printf(m, "%s ", sched_feat_names[i]);
159 	}
160 	seq_puts(m, "\n");
161 
162 	return 0;
163 }
164 
165 #ifdef HAVE_JUMP_LABEL
166 
167 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169 
170 #define SCHED_FEAT(name, enabled)	\
171 	jump_label_key__##enabled ,
172 
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176 
177 #undef SCHED_FEAT
178 
179 static void sched_feat_disable(int i)
180 {
181 	if (static_key_enabled(&sched_feat_keys[i]))
182 		static_key_slow_dec(&sched_feat_keys[i]);
183 }
184 
185 static void sched_feat_enable(int i)
186 {
187 	if (!static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194 
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 		size_t cnt, loff_t *ppos)
198 {
199 	char buf[64];
200 	char *cmp;
201 	int neg = 0;
202 	int i;
203 
204 	if (cnt > 63)
205 		cnt = 63;
206 
207 	if (copy_from_user(&buf, ubuf, cnt))
208 		return -EFAULT;
209 
210 	buf[cnt] = 0;
211 	cmp = strstrip(buf);
212 
213 	if (strncmp(cmp, "NO_", 3) == 0) {
214 		neg = 1;
215 		cmp += 3;
216 	}
217 
218 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 			if (neg) {
221 				sysctl_sched_features &= ~(1UL << i);
222 				sched_feat_disable(i);
223 			} else {
224 				sysctl_sched_features |= (1UL << i);
225 				sched_feat_enable(i);
226 			}
227 			break;
228 		}
229 	}
230 
231 	if (i == __SCHED_FEAT_NR)
232 		return -EINVAL;
233 
234 	*ppos += cnt;
235 
236 	return cnt;
237 }
238 
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 	return single_open(filp, sched_feat_show, NULL);
242 }
243 
244 static const struct file_operations sched_feat_fops = {
245 	.open		= sched_feat_open,
246 	.write		= sched_feat_write,
247 	.read		= seq_read,
248 	.llseek		= seq_lseek,
249 	.release	= single_release,
250 };
251 
252 static __init int sched_init_debug(void)
253 {
254 	debugfs_create_file("sched_features", 0644, NULL, NULL,
255 			&sched_feat_fops);
256 
257 	return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261 
262 /*
263  * Number of tasks to iterate in a single balance run.
264  * Limited because this is done with IRQs disabled.
265  */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267 
268 /*
269  * period over which we average the RT time consumption, measured
270  * in ms.
271  *
272  * default: 1s
273  */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275 
276 /*
277  * period over which we measure -rt task cpu usage in us.
278  * default: 1s
279  */
280 unsigned int sysctl_sched_rt_period = 1000000;
281 
282 __read_mostly int scheduler_running;
283 
284 /*
285  * part of the period that we allow rt tasks to run in us.
286  * default: 0.95s
287  */
288 int sysctl_sched_rt_runtime = 950000;
289 
290 
291 
292 /*
293  * __task_rq_lock - lock the rq @p resides on.
294  */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	lockdep_assert_held(&p->pi_lock);
301 
302 	for (;;) {
303 		rq = task_rq(p);
304 		raw_spin_lock(&rq->lock);
305 		if (likely(rq == task_rq(p)))
306 			return rq;
307 		raw_spin_unlock(&rq->lock);
308 	}
309 }
310 
311 /*
312  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313  */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 	__acquires(p->pi_lock)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	for (;;) {
321 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 		rq = task_rq(p);
323 		raw_spin_lock(&rq->lock);
324 		if (likely(rq == task_rq(p)))
325 			return rq;
326 		raw_spin_unlock(&rq->lock);
327 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 	}
329 }
330 
331 static void __task_rq_unlock(struct rq *rq)
332 	__releases(rq->lock)
333 {
334 	raw_spin_unlock(&rq->lock);
335 }
336 
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 	__releases(rq->lock)
340 	__releases(p->pi_lock)
341 {
342 	raw_spin_unlock(&rq->lock);
343 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345 
346 /*
347  * this_rq_lock - lock this runqueue and disable interrupts.
348  */
349 static struct rq *this_rq_lock(void)
350 	__acquires(rq->lock)
351 {
352 	struct rq *rq;
353 
354 	local_irq_disable();
355 	rq = this_rq();
356 	raw_spin_lock(&rq->lock);
357 
358 	return rq;
359 }
360 
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363  * Use HR-timers to deliver accurate preemption points.
364  *
365  * Its all a bit involved since we cannot program an hrt while holding the
366  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367  * reschedule event.
368  *
369  * When we get rescheduled we reprogram the hrtick_timer outside of the
370  * rq->lock.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 /*
399  * called from hardirq (IPI) context
400  */
401 static void __hrtick_start(void *arg)
402 {
403 	struct rq *rq = arg;
404 
405 	raw_spin_lock(&rq->lock);
406 	hrtimer_restart(&rq->hrtick_timer);
407 	rq->hrtick_csd_pending = 0;
408 	raw_spin_unlock(&rq->lock);
409 }
410 
411 /*
412  * Called to set the hrtick timer state.
413  *
414  * called with rq->lock held and irqs disabled
415  */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420 
421 	hrtimer_set_expires(timer, time);
422 
423 	if (rq == this_rq()) {
424 		hrtimer_restart(timer);
425 	} else if (!rq->hrtick_csd_pending) {
426 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 		rq->hrtick_csd_pending = 1;
428 	}
429 }
430 
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 	int cpu = (int)(long)hcpu;
435 
436 	switch (action) {
437 	case CPU_UP_CANCELED:
438 	case CPU_UP_CANCELED_FROZEN:
439 	case CPU_DOWN_PREPARE:
440 	case CPU_DOWN_PREPARE_FROZEN:
441 	case CPU_DEAD:
442 	case CPU_DEAD_FROZEN:
443 		hrtick_clear(cpu_rq(cpu));
444 		return NOTIFY_OK;
445 	}
446 
447 	return NOTIFY_DONE;
448 }
449 
450 static __init void init_hrtick(void)
451 {
452 	hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456  * Called to set the hrtick timer state.
457  *
458  * called with rq->lock held and irqs disabled
459  */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 			HRTIMER_MODE_REL_PINNED, 0);
464 }
465 
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470 
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 	rq->hrtick_csd_pending = 0;
475 
476 	rq->hrtick_csd.flags = 0;
477 	rq->hrtick_csd.func = __hrtick_start;
478 	rq->hrtick_csd.info = rq;
479 #endif
480 
481 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 	rq->hrtick_timer.function = hrtick;
483 }
484 #else	/* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488 
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492 
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif	/* CONFIG_SCHED_HRTICK */
497 
498 /*
499  * resched_task - mark a task 'to be rescheduled now'.
500  *
501  * On UP this means the setting of the need_resched flag, on SMP it
502  * might also involve a cross-CPU call to trigger the scheduler on
503  * the target CPU.
504  */
505 #ifdef CONFIG_SMP
506 
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510 
511 void resched_task(struct task_struct *p)
512 {
513 	int cpu;
514 
515 	assert_raw_spin_locked(&task_rq(p)->lock);
516 
517 	if (test_tsk_need_resched(p))
518 		return;
519 
520 	set_tsk_need_resched(p);
521 
522 	cpu = task_cpu(p);
523 	if (cpu == smp_processor_id())
524 		return;
525 
526 	/* NEED_RESCHED must be visible before we test polling */
527 	smp_mb();
528 	if (!tsk_is_polling(p))
529 		smp_send_reschedule(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 		return;
539 	resched_task(cpu_curr(cpu));
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_NO_HZ
544 /*
545  * In the semi idle case, use the nearest busy cpu for migrating timers
546  * from an idle cpu.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle cpu will add more delays to the timers than intended
550  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int cpu = smp_processor_id();
555 	int i;
556 	struct sched_domain *sd;
557 
558 	rcu_read_lock();
559 	for_each_domain(cpu, sd) {
560 		for_each_cpu(i, sched_domain_span(sd)) {
561 			if (!idle_cpu(i)) {
562 				cpu = i;
563 				goto unlock;
564 			}
565 		}
566 	}
567 unlock:
568 	rcu_read_unlock();
569 	return cpu;
570 }
571 /*
572  * When add_timer_on() enqueues a timer into the timer wheel of an
573  * idle CPU then this timer might expire before the next timer event
574  * which is scheduled to wake up that CPU. In case of a completely
575  * idle system the next event might even be infinite time into the
576  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577  * leaves the inner idle loop so the newly added timer is taken into
578  * account when the CPU goes back to idle and evaluates the timer
579  * wheel for the next timer event.
580  */
581 void wake_up_idle_cpu(int cpu)
582 {
583 	struct rq *rq = cpu_rq(cpu);
584 
585 	if (cpu == smp_processor_id())
586 		return;
587 
588 	/*
589 	 * This is safe, as this function is called with the timer
590 	 * wheel base lock of (cpu) held. When the CPU is on the way
591 	 * to idle and has not yet set rq->curr to idle then it will
592 	 * be serialized on the timer wheel base lock and take the new
593 	 * timer into account automatically.
594 	 */
595 	if (rq->curr != rq->idle)
596 		return;
597 
598 	/*
599 	 * We can set TIF_RESCHED on the idle task of the other CPU
600 	 * lockless. The worst case is that the other CPU runs the
601 	 * idle task through an additional NOOP schedule()
602 	 */
603 	set_tsk_need_resched(rq->idle);
604 
605 	/* NEED_RESCHED must be visible before we test polling */
606 	smp_mb();
607 	if (!tsk_is_polling(rq->idle))
608 		smp_send_reschedule(cpu);
609 }
610 
611 static inline bool got_nohz_idle_kick(void)
612 {
613 	int cpu = smp_processor_id();
614 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616 
617 #else /* CONFIG_NO_HZ */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ */
625 
626 void sched_avg_update(struct rq *rq)
627 {
628 	s64 period = sched_avg_period();
629 
630 	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 		/*
632 		 * Inline assembly required to prevent the compiler
633 		 * optimising this loop into a divmod call.
634 		 * See __iter_div_u64_rem() for another example of this.
635 		 */
636 		asm("" : "+rm" (rq->age_stamp));
637 		rq->age_stamp += period;
638 		rq->rt_avg /= 2;
639 	}
640 }
641 
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 	assert_raw_spin_locked(&task_rq(p)->lock);
646 	set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649 
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653  * Iterate task_group tree rooted at *from, calling @down when first entering a
654  * node and @up when leaving it for the final time.
655  *
656  * Caller must hold rcu_lock or sufficient equivalent.
657  */
658 int walk_tg_tree_from(struct task_group *from,
659 			     tg_visitor down, tg_visitor up, void *data)
660 {
661 	struct task_group *parent, *child;
662 	int ret;
663 
664 	parent = from;
665 
666 down:
667 	ret = (*down)(parent, data);
668 	if (ret)
669 		goto out;
670 	list_for_each_entry_rcu(child, &parent->children, siblings) {
671 		parent = child;
672 		goto down;
673 
674 up:
675 		continue;
676 	}
677 	ret = (*up)(parent, data);
678 	if (ret || parent == from)
679 		goto out;
680 
681 	child = parent;
682 	parent = parent->parent;
683 	if (parent)
684 		goto up;
685 out:
686 	return ret;
687 }
688 
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 	return 0;
692 }
693 #endif
694 
695 static void set_load_weight(struct task_struct *p)
696 {
697 	int prio = p->static_prio - MAX_RT_PRIO;
698 	struct load_weight *load = &p->se.load;
699 
700 	/*
701 	 * SCHED_IDLE tasks get minimal weight:
702 	 */
703 	if (p->policy == SCHED_IDLE) {
704 		load->weight = scale_load(WEIGHT_IDLEPRIO);
705 		load->inv_weight = WMULT_IDLEPRIO;
706 		return;
707 	}
708 
709 	load->weight = scale_load(prio_to_weight[prio]);
710 	load->inv_weight = prio_to_wmult[prio];
711 }
712 
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 	update_rq_clock(rq);
716 	sched_info_queued(p);
717 	p->sched_class->enqueue_task(rq, p, flags);
718 }
719 
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 	update_rq_clock(rq);
723 	sched_info_dequeued(p);
724 	p->sched_class->dequeue_task(rq, p, flags);
725 }
726 
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 	if (task_contributes_to_load(p))
730 		rq->nr_uninterruptible--;
731 
732 	enqueue_task(rq, p, flags);
733 }
734 
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 	if (task_contributes_to_load(p))
738 		rq->nr_uninterruptible++;
739 
740 	dequeue_task(rq, p, flags);
741 }
742 
743 static void update_rq_clock_task(struct rq *rq, s64 delta)
744 {
745 /*
746  * In theory, the compile should just see 0 here, and optimize out the call
747  * to sched_rt_avg_update. But I don't trust it...
748  */
749 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750 	s64 steal = 0, irq_delta = 0;
751 #endif
752 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
753 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754 
755 	/*
756 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757 	 * this case when a previous update_rq_clock() happened inside a
758 	 * {soft,}irq region.
759 	 *
760 	 * When this happens, we stop ->clock_task and only update the
761 	 * prev_irq_time stamp to account for the part that fit, so that a next
762 	 * update will consume the rest. This ensures ->clock_task is
763 	 * monotonic.
764 	 *
765 	 * It does however cause some slight miss-attribution of {soft,}irq
766 	 * time, a more accurate solution would be to update the irq_time using
767 	 * the current rq->clock timestamp, except that would require using
768 	 * atomic ops.
769 	 */
770 	if (irq_delta > delta)
771 		irq_delta = delta;
772 
773 	rq->prev_irq_time += irq_delta;
774 	delta -= irq_delta;
775 #endif
776 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777 	if (static_key_false((&paravirt_steal_rq_enabled))) {
778 		u64 st;
779 
780 		steal = paravirt_steal_clock(cpu_of(rq));
781 		steal -= rq->prev_steal_time_rq;
782 
783 		if (unlikely(steal > delta))
784 			steal = delta;
785 
786 		st = steal_ticks(steal);
787 		steal = st * TICK_NSEC;
788 
789 		rq->prev_steal_time_rq += steal;
790 
791 		delta -= steal;
792 	}
793 #endif
794 
795 	rq->clock_task += delta;
796 
797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799 		sched_rt_avg_update(rq, irq_delta + steal);
800 #endif
801 }
802 
803 void sched_set_stop_task(int cpu, struct task_struct *stop)
804 {
805 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
807 
808 	if (stop) {
809 		/*
810 		 * Make it appear like a SCHED_FIFO task, its something
811 		 * userspace knows about and won't get confused about.
812 		 *
813 		 * Also, it will make PI more or less work without too
814 		 * much confusion -- but then, stop work should not
815 		 * rely on PI working anyway.
816 		 */
817 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818 
819 		stop->sched_class = &stop_sched_class;
820 	}
821 
822 	cpu_rq(cpu)->stop = stop;
823 
824 	if (old_stop) {
825 		/*
826 		 * Reset it back to a normal scheduling class so that
827 		 * it can die in pieces.
828 		 */
829 		old_stop->sched_class = &rt_sched_class;
830 	}
831 }
832 
833 /*
834  * __normal_prio - return the priority that is based on the static prio
835  */
836 static inline int __normal_prio(struct task_struct *p)
837 {
838 	return p->static_prio;
839 }
840 
841 /*
842  * Calculate the expected normal priority: i.e. priority
843  * without taking RT-inheritance into account. Might be
844  * boosted by interactivity modifiers. Changes upon fork,
845  * setprio syscalls, and whenever the interactivity
846  * estimator recalculates.
847  */
848 static inline int normal_prio(struct task_struct *p)
849 {
850 	int prio;
851 
852 	if (task_has_rt_policy(p))
853 		prio = MAX_RT_PRIO-1 - p->rt_priority;
854 	else
855 		prio = __normal_prio(p);
856 	return prio;
857 }
858 
859 /*
860  * Calculate the current priority, i.e. the priority
861  * taken into account by the scheduler. This value might
862  * be boosted by RT tasks, or might be boosted by
863  * interactivity modifiers. Will be RT if the task got
864  * RT-boosted. If not then it returns p->normal_prio.
865  */
866 static int effective_prio(struct task_struct *p)
867 {
868 	p->normal_prio = normal_prio(p);
869 	/*
870 	 * If we are RT tasks or we were boosted to RT priority,
871 	 * keep the priority unchanged. Otherwise, update priority
872 	 * to the normal priority:
873 	 */
874 	if (!rt_prio(p->prio))
875 		return p->normal_prio;
876 	return p->prio;
877 }
878 
879 /**
880  * task_curr - is this task currently executing on a CPU?
881  * @p: the task in question.
882  */
883 inline int task_curr(const struct task_struct *p)
884 {
885 	return cpu_curr(task_cpu(p)) == p;
886 }
887 
888 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889 				       const struct sched_class *prev_class,
890 				       int oldprio)
891 {
892 	if (prev_class != p->sched_class) {
893 		if (prev_class->switched_from)
894 			prev_class->switched_from(rq, p);
895 		p->sched_class->switched_to(rq, p);
896 	} else if (oldprio != p->prio)
897 		p->sched_class->prio_changed(rq, p, oldprio);
898 }
899 
900 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 {
902 	const struct sched_class *class;
903 
904 	if (p->sched_class == rq->curr->sched_class) {
905 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 	} else {
907 		for_each_class(class) {
908 			if (class == rq->curr->sched_class)
909 				break;
910 			if (class == p->sched_class) {
911 				resched_task(rq->curr);
912 				break;
913 			}
914 		}
915 	}
916 
917 	/*
918 	 * A queue event has occurred, and we're going to schedule.  In
919 	 * this case, we can save a useless back to back clock update.
920 	 */
921 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 		rq->skip_clock_update = 1;
923 }
924 
925 #ifdef CONFIG_SMP
926 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
927 {
928 #ifdef CONFIG_SCHED_DEBUG
929 	/*
930 	 * We should never call set_task_cpu() on a blocked task,
931 	 * ttwu() will sort out the placement.
932 	 */
933 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935 
936 #ifdef CONFIG_LOCKDEP
937 	/*
938 	 * The caller should hold either p->pi_lock or rq->lock, when changing
939 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940 	 *
941 	 * sched_move_task() holds both and thus holding either pins the cgroup,
942 	 * see task_group().
943 	 *
944 	 * Furthermore, all task_rq users should acquire both locks, see
945 	 * task_rq_lock().
946 	 */
947 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948 				      lockdep_is_held(&task_rq(p)->lock)));
949 #endif
950 #endif
951 
952 	trace_sched_migrate_task(p, new_cpu);
953 
954 	if (task_cpu(p) != new_cpu) {
955 		p->se.nr_migrations++;
956 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957 	}
958 
959 	__set_task_cpu(p, new_cpu);
960 }
961 
962 struct migration_arg {
963 	struct task_struct *task;
964 	int dest_cpu;
965 };
966 
967 static int migration_cpu_stop(void *data);
968 
969 /*
970  * wait_task_inactive - wait for a thread to unschedule.
971  *
972  * If @match_state is nonzero, it's the @p->state value just checked and
973  * not expected to change.  If it changes, i.e. @p might have woken up,
974  * then return zero.  When we succeed in waiting for @p to be off its CPU,
975  * we return a positive number (its total switch count).  If a second call
976  * a short while later returns the same number, the caller can be sure that
977  * @p has remained unscheduled the whole time.
978  *
979  * The caller must ensure that the task *will* unschedule sometime soon,
980  * else this function might spin for a *long* time. This function can't
981  * be called with interrupts off, or it may introduce deadlock with
982  * smp_call_function() if an IPI is sent by the same process we are
983  * waiting to become inactive.
984  */
985 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
986 {
987 	unsigned long flags;
988 	int running, on_rq;
989 	unsigned long ncsw;
990 	struct rq *rq;
991 
992 	for (;;) {
993 		/*
994 		 * We do the initial early heuristics without holding
995 		 * any task-queue locks at all. We'll only try to get
996 		 * the runqueue lock when things look like they will
997 		 * work out!
998 		 */
999 		rq = task_rq(p);
1000 
1001 		/*
1002 		 * If the task is actively running on another CPU
1003 		 * still, just relax and busy-wait without holding
1004 		 * any locks.
1005 		 *
1006 		 * NOTE! Since we don't hold any locks, it's not
1007 		 * even sure that "rq" stays as the right runqueue!
1008 		 * But we don't care, since "task_running()" will
1009 		 * return false if the runqueue has changed and p
1010 		 * is actually now running somewhere else!
1011 		 */
1012 		while (task_running(rq, p)) {
1013 			if (match_state && unlikely(p->state != match_state))
1014 				return 0;
1015 			cpu_relax();
1016 		}
1017 
1018 		/*
1019 		 * Ok, time to look more closely! We need the rq
1020 		 * lock now, to be *sure*. If we're wrong, we'll
1021 		 * just go back and repeat.
1022 		 */
1023 		rq = task_rq_lock(p, &flags);
1024 		trace_sched_wait_task(p);
1025 		running = task_running(rq, p);
1026 		on_rq = p->on_rq;
1027 		ncsw = 0;
1028 		if (!match_state || p->state == match_state)
1029 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030 		task_rq_unlock(rq, p, &flags);
1031 
1032 		/*
1033 		 * If it changed from the expected state, bail out now.
1034 		 */
1035 		if (unlikely(!ncsw))
1036 			break;
1037 
1038 		/*
1039 		 * Was it really running after all now that we
1040 		 * checked with the proper locks actually held?
1041 		 *
1042 		 * Oops. Go back and try again..
1043 		 */
1044 		if (unlikely(running)) {
1045 			cpu_relax();
1046 			continue;
1047 		}
1048 
1049 		/*
1050 		 * It's not enough that it's not actively running,
1051 		 * it must be off the runqueue _entirely_, and not
1052 		 * preempted!
1053 		 *
1054 		 * So if it was still runnable (but just not actively
1055 		 * running right now), it's preempted, and we should
1056 		 * yield - it could be a while.
1057 		 */
1058 		if (unlikely(on_rq)) {
1059 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060 
1061 			set_current_state(TASK_UNINTERRUPTIBLE);
1062 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 			continue;
1064 		}
1065 
1066 		/*
1067 		 * Ahh, all good. It wasn't running, and it wasn't
1068 		 * runnable, which means that it will never become
1069 		 * running in the future either. We're all done!
1070 		 */
1071 		break;
1072 	}
1073 
1074 	return ncsw;
1075 }
1076 
1077 /***
1078  * kick_process - kick a running thread to enter/exit the kernel
1079  * @p: the to-be-kicked thread
1080  *
1081  * Cause a process which is running on another CPU to enter
1082  * kernel-mode, without any delay. (to get signals handled.)
1083  *
1084  * NOTE: this function doesn't have to take the runqueue lock,
1085  * because all it wants to ensure is that the remote task enters
1086  * the kernel. If the IPI races and the task has been migrated
1087  * to another CPU then no harm is done and the purpose has been
1088  * achieved as well.
1089  */
1090 void kick_process(struct task_struct *p)
1091 {
1092 	int cpu;
1093 
1094 	preempt_disable();
1095 	cpu = task_cpu(p);
1096 	if ((cpu != smp_processor_id()) && task_curr(p))
1097 		smp_send_reschedule(cpu);
1098 	preempt_enable();
1099 }
1100 EXPORT_SYMBOL_GPL(kick_process);
1101 #endif /* CONFIG_SMP */
1102 
1103 #ifdef CONFIG_SMP
1104 /*
1105  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106  */
1107 static int select_fallback_rq(int cpu, struct task_struct *p)
1108 {
1109 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 	enum { cpuset, possible, fail } state = cpuset;
1111 	int dest_cpu;
1112 
1113 	/* Look for allowed, online CPU in same node. */
1114 	for_each_cpu(dest_cpu, nodemask) {
1115 		if (!cpu_online(dest_cpu))
1116 			continue;
1117 		if (!cpu_active(dest_cpu))
1118 			continue;
1119 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120 			return dest_cpu;
1121 	}
1122 
1123 	for (;;) {
1124 		/* Any allowed, online CPU? */
1125 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 			if (!cpu_online(dest_cpu))
1127 				continue;
1128 			if (!cpu_active(dest_cpu))
1129 				continue;
1130 			goto out;
1131 		}
1132 
1133 		switch (state) {
1134 		case cpuset:
1135 			/* No more Mr. Nice Guy. */
1136 			cpuset_cpus_allowed_fallback(p);
1137 			state = possible;
1138 			break;
1139 
1140 		case possible:
1141 			do_set_cpus_allowed(p, cpu_possible_mask);
1142 			state = fail;
1143 			break;
1144 
1145 		case fail:
1146 			BUG();
1147 			break;
1148 		}
1149 	}
1150 
1151 out:
1152 	if (state != cpuset) {
1153 		/*
1154 		 * Don't tell them about moving exiting tasks or
1155 		 * kernel threads (both mm NULL), since they never
1156 		 * leave kernel.
1157 		 */
1158 		if (p->mm && printk_ratelimit()) {
1159 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160 					task_pid_nr(p), p->comm, cpu);
1161 		}
1162 	}
1163 
1164 	return dest_cpu;
1165 }
1166 
1167 /*
1168  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169  */
1170 static inline
1171 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172 {
1173 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174 
1175 	/*
1176 	 * In order not to call set_task_cpu() on a blocking task we need
1177 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178 	 * cpu.
1179 	 *
1180 	 * Since this is common to all placement strategies, this lives here.
1181 	 *
1182 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1183 	 *   not worry about this generic constraint ]
1184 	 */
1185 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1186 		     !cpu_online(cpu)))
1187 		cpu = select_fallback_rq(task_cpu(p), p);
1188 
1189 	return cpu;
1190 }
1191 
1192 static void update_avg(u64 *avg, u64 sample)
1193 {
1194 	s64 diff = sample - *avg;
1195 	*avg += diff >> 3;
1196 }
1197 #endif
1198 
1199 static void
1200 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1201 {
1202 #ifdef CONFIG_SCHEDSTATS
1203 	struct rq *rq = this_rq();
1204 
1205 #ifdef CONFIG_SMP
1206 	int this_cpu = smp_processor_id();
1207 
1208 	if (cpu == this_cpu) {
1209 		schedstat_inc(rq, ttwu_local);
1210 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1211 	} else {
1212 		struct sched_domain *sd;
1213 
1214 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215 		rcu_read_lock();
1216 		for_each_domain(this_cpu, sd) {
1217 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218 				schedstat_inc(sd, ttwu_wake_remote);
1219 				break;
1220 			}
1221 		}
1222 		rcu_read_unlock();
1223 	}
1224 
1225 	if (wake_flags & WF_MIGRATED)
1226 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227 
1228 #endif /* CONFIG_SMP */
1229 
1230 	schedstat_inc(rq, ttwu_count);
1231 	schedstat_inc(p, se.statistics.nr_wakeups);
1232 
1233 	if (wake_flags & WF_SYNC)
1234 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1235 
1236 #endif /* CONFIG_SCHEDSTATS */
1237 }
1238 
1239 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240 {
1241 	activate_task(rq, p, en_flags);
1242 	p->on_rq = 1;
1243 
1244 	/* if a worker is waking up, notify workqueue */
1245 	if (p->flags & PF_WQ_WORKER)
1246 		wq_worker_waking_up(p, cpu_of(rq));
1247 }
1248 
1249 /*
1250  * Mark the task runnable and perform wakeup-preemption.
1251  */
1252 static void
1253 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1254 {
1255 	trace_sched_wakeup(p, true);
1256 	check_preempt_curr(rq, p, wake_flags);
1257 
1258 	p->state = TASK_RUNNING;
1259 #ifdef CONFIG_SMP
1260 	if (p->sched_class->task_woken)
1261 		p->sched_class->task_woken(rq, p);
1262 
1263 	if (rq->idle_stamp) {
1264 		u64 delta = rq->clock - rq->idle_stamp;
1265 		u64 max = 2*sysctl_sched_migration_cost;
1266 
1267 		if (delta > max)
1268 			rq->avg_idle = max;
1269 		else
1270 			update_avg(&rq->avg_idle, delta);
1271 		rq->idle_stamp = 0;
1272 	}
1273 #endif
1274 }
1275 
1276 static void
1277 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278 {
1279 #ifdef CONFIG_SMP
1280 	if (p->sched_contributes_to_load)
1281 		rq->nr_uninterruptible--;
1282 #endif
1283 
1284 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285 	ttwu_do_wakeup(rq, p, wake_flags);
1286 }
1287 
1288 /*
1289  * Called in case the task @p isn't fully descheduled from its runqueue,
1290  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291  * since all we need to do is flip p->state to TASK_RUNNING, since
1292  * the task is still ->on_rq.
1293  */
1294 static int ttwu_remote(struct task_struct *p, int wake_flags)
1295 {
1296 	struct rq *rq;
1297 	int ret = 0;
1298 
1299 	rq = __task_rq_lock(p);
1300 	if (p->on_rq) {
1301 		ttwu_do_wakeup(rq, p, wake_flags);
1302 		ret = 1;
1303 	}
1304 	__task_rq_unlock(rq);
1305 
1306 	return ret;
1307 }
1308 
1309 #ifdef CONFIG_SMP
1310 static void sched_ttwu_pending(void)
1311 {
1312 	struct rq *rq = this_rq();
1313 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1314 	struct task_struct *p;
1315 
1316 	raw_spin_lock(&rq->lock);
1317 
1318 	while (llist) {
1319 		p = llist_entry(llist, struct task_struct, wake_entry);
1320 		llist = llist_next(llist);
1321 		ttwu_do_activate(rq, p, 0);
1322 	}
1323 
1324 	raw_spin_unlock(&rq->lock);
1325 }
1326 
1327 void scheduler_ipi(void)
1328 {
1329 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 		return;
1331 
1332 	/*
1333 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334 	 * traditionally all their work was done from the interrupt return
1335 	 * path. Now that we actually do some work, we need to make sure
1336 	 * we do call them.
1337 	 *
1338 	 * Some archs already do call them, luckily irq_enter/exit nest
1339 	 * properly.
1340 	 *
1341 	 * Arguably we should visit all archs and update all handlers,
1342 	 * however a fair share of IPIs are still resched only so this would
1343 	 * somewhat pessimize the simple resched case.
1344 	 */
1345 	irq_enter();
1346 	sched_ttwu_pending();
1347 
1348 	/*
1349 	 * Check if someone kicked us for doing the nohz idle load balance.
1350 	 */
1351 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352 		this_rq()->idle_balance = 1;
1353 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354 	}
1355 	irq_exit();
1356 }
1357 
1358 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359 {
1360 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 		smp_send_reschedule(cpu);
1362 }
1363 
1364 bool cpus_share_cache(int this_cpu, int that_cpu)
1365 {
1366 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1367 }
1368 #endif /* CONFIG_SMP */
1369 
1370 static void ttwu_queue(struct task_struct *p, int cpu)
1371 {
1372 	struct rq *rq = cpu_rq(cpu);
1373 
1374 #if defined(CONFIG_SMP)
1375 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377 		ttwu_queue_remote(p, cpu);
1378 		return;
1379 	}
1380 #endif
1381 
1382 	raw_spin_lock(&rq->lock);
1383 	ttwu_do_activate(rq, p, 0);
1384 	raw_spin_unlock(&rq->lock);
1385 }
1386 
1387 /**
1388  * try_to_wake_up - wake up a thread
1389  * @p: the thread to be awakened
1390  * @state: the mask of task states that can be woken
1391  * @wake_flags: wake modifier flags (WF_*)
1392  *
1393  * Put it on the run-queue if it's not already there. The "current"
1394  * thread is always on the run-queue (except when the actual
1395  * re-schedule is in progress), and as such you're allowed to do
1396  * the simpler "current->state = TASK_RUNNING" to mark yourself
1397  * runnable without the overhead of this.
1398  *
1399  * Returns %true if @p was woken up, %false if it was already running
1400  * or @state didn't match @p's state.
1401  */
1402 static int
1403 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1404 {
1405 	unsigned long flags;
1406 	int cpu, success = 0;
1407 
1408 	smp_wmb();
1409 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1410 	if (!(p->state & state))
1411 		goto out;
1412 
1413 	success = 1; /* we're going to change ->state */
1414 	cpu = task_cpu(p);
1415 
1416 	if (p->on_rq && ttwu_remote(p, wake_flags))
1417 		goto stat;
1418 
1419 #ifdef CONFIG_SMP
1420 	/*
1421 	 * If the owning (remote) cpu is still in the middle of schedule() with
1422 	 * this task as prev, wait until its done referencing the task.
1423 	 */
1424 	while (p->on_cpu)
1425 		cpu_relax();
1426 	/*
1427 	 * Pairs with the smp_wmb() in finish_lock_switch().
1428 	 */
1429 	smp_rmb();
1430 
1431 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1432 	p->state = TASK_WAKING;
1433 
1434 	if (p->sched_class->task_waking)
1435 		p->sched_class->task_waking(p);
1436 
1437 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438 	if (task_cpu(p) != cpu) {
1439 		wake_flags |= WF_MIGRATED;
1440 		set_task_cpu(p, cpu);
1441 	}
1442 #endif /* CONFIG_SMP */
1443 
1444 	ttwu_queue(p, cpu);
1445 stat:
1446 	ttwu_stat(p, cpu, wake_flags);
1447 out:
1448 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1449 
1450 	return success;
1451 }
1452 
1453 /**
1454  * try_to_wake_up_local - try to wake up a local task with rq lock held
1455  * @p: the thread to be awakened
1456  *
1457  * Put @p on the run-queue if it's not already there. The caller must
1458  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459  * the current task.
1460  */
1461 static void try_to_wake_up_local(struct task_struct *p)
1462 {
1463 	struct rq *rq = task_rq(p);
1464 
1465 	BUG_ON(rq != this_rq());
1466 	BUG_ON(p == current);
1467 	lockdep_assert_held(&rq->lock);
1468 
1469 	if (!raw_spin_trylock(&p->pi_lock)) {
1470 		raw_spin_unlock(&rq->lock);
1471 		raw_spin_lock(&p->pi_lock);
1472 		raw_spin_lock(&rq->lock);
1473 	}
1474 
1475 	if (!(p->state & TASK_NORMAL))
1476 		goto out;
1477 
1478 	if (!p->on_rq)
1479 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1480 
1481 	ttwu_do_wakeup(rq, p, 0);
1482 	ttwu_stat(p, smp_processor_id(), 0);
1483 out:
1484 	raw_spin_unlock(&p->pi_lock);
1485 }
1486 
1487 /**
1488  * wake_up_process - Wake up a specific process
1489  * @p: The process to be woken up.
1490  *
1491  * Attempt to wake up the nominated process and move it to the set of runnable
1492  * processes.  Returns 1 if the process was woken up, 0 if it was already
1493  * running.
1494  *
1495  * It may be assumed that this function implies a write memory barrier before
1496  * changing the task state if and only if any tasks are woken up.
1497  */
1498 int wake_up_process(struct task_struct *p)
1499 {
1500 	return try_to_wake_up(p, TASK_ALL, 0);
1501 }
1502 EXPORT_SYMBOL(wake_up_process);
1503 
1504 int wake_up_state(struct task_struct *p, unsigned int state)
1505 {
1506 	return try_to_wake_up(p, state, 0);
1507 }
1508 
1509 /*
1510  * Perform scheduler related setup for a newly forked process p.
1511  * p is forked by current.
1512  *
1513  * __sched_fork() is basic setup used by init_idle() too:
1514  */
1515 static void __sched_fork(struct task_struct *p)
1516 {
1517 	p->on_rq			= 0;
1518 
1519 	p->se.on_rq			= 0;
1520 	p->se.exec_start		= 0;
1521 	p->se.sum_exec_runtime		= 0;
1522 	p->se.prev_sum_exec_runtime	= 0;
1523 	p->se.nr_migrations		= 0;
1524 	p->se.vruntime			= 0;
1525 	INIT_LIST_HEAD(&p->se.group_node);
1526 
1527 #ifdef CONFIG_SCHEDSTATS
1528 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1529 #endif
1530 
1531 	INIT_LIST_HEAD(&p->rt.run_list);
1532 
1533 #ifdef CONFIG_PREEMPT_NOTIFIERS
1534 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1535 #endif
1536 }
1537 
1538 /*
1539  * fork()/clone()-time setup:
1540  */
1541 void sched_fork(struct task_struct *p)
1542 {
1543 	unsigned long flags;
1544 	int cpu = get_cpu();
1545 
1546 	__sched_fork(p);
1547 	/*
1548 	 * We mark the process as running here. This guarantees that
1549 	 * nobody will actually run it, and a signal or other external
1550 	 * event cannot wake it up and insert it on the runqueue either.
1551 	 */
1552 	p->state = TASK_RUNNING;
1553 
1554 	/*
1555 	 * Make sure we do not leak PI boosting priority to the child.
1556 	 */
1557 	p->prio = current->normal_prio;
1558 
1559 	/*
1560 	 * Revert to default priority/policy on fork if requested.
1561 	 */
1562 	if (unlikely(p->sched_reset_on_fork)) {
1563 		if (task_has_rt_policy(p)) {
1564 			p->policy = SCHED_NORMAL;
1565 			p->static_prio = NICE_TO_PRIO(0);
1566 			p->rt_priority = 0;
1567 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1568 			p->static_prio = NICE_TO_PRIO(0);
1569 
1570 		p->prio = p->normal_prio = __normal_prio(p);
1571 		set_load_weight(p);
1572 
1573 		/*
1574 		 * We don't need the reset flag anymore after the fork. It has
1575 		 * fulfilled its duty:
1576 		 */
1577 		p->sched_reset_on_fork = 0;
1578 	}
1579 
1580 	if (!rt_prio(p->prio))
1581 		p->sched_class = &fair_sched_class;
1582 
1583 	if (p->sched_class->task_fork)
1584 		p->sched_class->task_fork(p);
1585 
1586 	/*
1587 	 * The child is not yet in the pid-hash so no cgroup attach races,
1588 	 * and the cgroup is pinned to this child due to cgroup_fork()
1589 	 * is ran before sched_fork().
1590 	 *
1591 	 * Silence PROVE_RCU.
1592 	 */
1593 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1594 	set_task_cpu(p, cpu);
1595 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1596 
1597 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1598 	if (likely(sched_info_on()))
1599 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1600 #endif
1601 #if defined(CONFIG_SMP)
1602 	p->on_cpu = 0;
1603 #endif
1604 #ifdef CONFIG_PREEMPT_COUNT
1605 	/* Want to start with kernel preemption disabled. */
1606 	task_thread_info(p)->preempt_count = 1;
1607 #endif
1608 #ifdef CONFIG_SMP
1609 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1610 #endif
1611 
1612 	put_cpu();
1613 }
1614 
1615 /*
1616  * wake_up_new_task - wake up a newly created task for the first time.
1617  *
1618  * This function will do some initial scheduler statistics housekeeping
1619  * that must be done for every newly created context, then puts the task
1620  * on the runqueue and wakes it.
1621  */
1622 void wake_up_new_task(struct task_struct *p)
1623 {
1624 	unsigned long flags;
1625 	struct rq *rq;
1626 
1627 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1628 #ifdef CONFIG_SMP
1629 	/*
1630 	 * Fork balancing, do it here and not earlier because:
1631 	 *  - cpus_allowed can change in the fork path
1632 	 *  - any previously selected cpu might disappear through hotplug
1633 	 */
1634 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1635 #endif
1636 
1637 	rq = __task_rq_lock(p);
1638 	activate_task(rq, p, 0);
1639 	p->on_rq = 1;
1640 	trace_sched_wakeup_new(p, true);
1641 	check_preempt_curr(rq, p, WF_FORK);
1642 #ifdef CONFIG_SMP
1643 	if (p->sched_class->task_woken)
1644 		p->sched_class->task_woken(rq, p);
1645 #endif
1646 	task_rq_unlock(rq, p, &flags);
1647 }
1648 
1649 #ifdef CONFIG_PREEMPT_NOTIFIERS
1650 
1651 /**
1652  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1653  * @notifier: notifier struct to register
1654  */
1655 void preempt_notifier_register(struct preempt_notifier *notifier)
1656 {
1657 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1658 }
1659 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1660 
1661 /**
1662  * preempt_notifier_unregister - no longer interested in preemption notifications
1663  * @notifier: notifier struct to unregister
1664  *
1665  * This is safe to call from within a preemption notifier.
1666  */
1667 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1668 {
1669 	hlist_del(&notifier->link);
1670 }
1671 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1672 
1673 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1674 {
1675 	struct preempt_notifier *notifier;
1676 	struct hlist_node *node;
1677 
1678 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1679 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1680 }
1681 
1682 static void
1683 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1684 				 struct task_struct *next)
1685 {
1686 	struct preempt_notifier *notifier;
1687 	struct hlist_node *node;
1688 
1689 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1690 		notifier->ops->sched_out(notifier, next);
1691 }
1692 
1693 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1694 
1695 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1696 {
1697 }
1698 
1699 static void
1700 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1701 				 struct task_struct *next)
1702 {
1703 }
1704 
1705 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1706 
1707 /**
1708  * prepare_task_switch - prepare to switch tasks
1709  * @rq: the runqueue preparing to switch
1710  * @prev: the current task that is being switched out
1711  * @next: the task we are going to switch to.
1712  *
1713  * This is called with the rq lock held and interrupts off. It must
1714  * be paired with a subsequent finish_task_switch after the context
1715  * switch.
1716  *
1717  * prepare_task_switch sets up locking and calls architecture specific
1718  * hooks.
1719  */
1720 static inline void
1721 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1722 		    struct task_struct *next)
1723 {
1724 	trace_sched_switch(prev, next);
1725 	sched_info_switch(prev, next);
1726 	perf_event_task_sched_out(prev, next);
1727 	fire_sched_out_preempt_notifiers(prev, next);
1728 	prepare_lock_switch(rq, next);
1729 	prepare_arch_switch(next);
1730 }
1731 
1732 /**
1733  * finish_task_switch - clean up after a task-switch
1734  * @rq: runqueue associated with task-switch
1735  * @prev: the thread we just switched away from.
1736  *
1737  * finish_task_switch must be called after the context switch, paired
1738  * with a prepare_task_switch call before the context switch.
1739  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1740  * and do any other architecture-specific cleanup actions.
1741  *
1742  * Note that we may have delayed dropping an mm in context_switch(). If
1743  * so, we finish that here outside of the runqueue lock. (Doing it
1744  * with the lock held can cause deadlocks; see schedule() for
1745  * details.)
1746  */
1747 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1748 	__releases(rq->lock)
1749 {
1750 	struct mm_struct *mm = rq->prev_mm;
1751 	long prev_state;
1752 
1753 	rq->prev_mm = NULL;
1754 
1755 	/*
1756 	 * A task struct has one reference for the use as "current".
1757 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1758 	 * schedule one last time. The schedule call will never return, and
1759 	 * the scheduled task must drop that reference.
1760 	 * The test for TASK_DEAD must occur while the runqueue locks are
1761 	 * still held, otherwise prev could be scheduled on another cpu, die
1762 	 * there before we look at prev->state, and then the reference would
1763 	 * be dropped twice.
1764 	 *		Manfred Spraul <manfred@colorfullife.com>
1765 	 */
1766 	prev_state = prev->state;
1767 	vtime_task_switch(prev);
1768 	finish_arch_switch(prev);
1769 	perf_event_task_sched_in(prev, current);
1770 	finish_lock_switch(rq, prev);
1771 	finish_arch_post_lock_switch();
1772 
1773 	fire_sched_in_preempt_notifiers(current);
1774 	if (mm)
1775 		mmdrop(mm);
1776 	if (unlikely(prev_state == TASK_DEAD)) {
1777 		/*
1778 		 * Remove function-return probe instances associated with this
1779 		 * task and put them back on the free list.
1780 		 */
1781 		kprobe_flush_task(prev);
1782 		put_task_struct(prev);
1783 	}
1784 }
1785 
1786 #ifdef CONFIG_SMP
1787 
1788 /* assumes rq->lock is held */
1789 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1790 {
1791 	if (prev->sched_class->pre_schedule)
1792 		prev->sched_class->pre_schedule(rq, prev);
1793 }
1794 
1795 /* rq->lock is NOT held, but preemption is disabled */
1796 static inline void post_schedule(struct rq *rq)
1797 {
1798 	if (rq->post_schedule) {
1799 		unsigned long flags;
1800 
1801 		raw_spin_lock_irqsave(&rq->lock, flags);
1802 		if (rq->curr->sched_class->post_schedule)
1803 			rq->curr->sched_class->post_schedule(rq);
1804 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1805 
1806 		rq->post_schedule = 0;
1807 	}
1808 }
1809 
1810 #else
1811 
1812 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1813 {
1814 }
1815 
1816 static inline void post_schedule(struct rq *rq)
1817 {
1818 }
1819 
1820 #endif
1821 
1822 /**
1823  * schedule_tail - first thing a freshly forked thread must call.
1824  * @prev: the thread we just switched away from.
1825  */
1826 asmlinkage void schedule_tail(struct task_struct *prev)
1827 	__releases(rq->lock)
1828 {
1829 	struct rq *rq = this_rq();
1830 
1831 	finish_task_switch(rq, prev);
1832 
1833 	/*
1834 	 * FIXME: do we need to worry about rq being invalidated by the
1835 	 * task_switch?
1836 	 */
1837 	post_schedule(rq);
1838 
1839 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1840 	/* In this case, finish_task_switch does not reenable preemption */
1841 	preempt_enable();
1842 #endif
1843 	if (current->set_child_tid)
1844 		put_user(task_pid_vnr(current), current->set_child_tid);
1845 }
1846 
1847 /*
1848  * context_switch - switch to the new MM and the new
1849  * thread's register state.
1850  */
1851 static inline void
1852 context_switch(struct rq *rq, struct task_struct *prev,
1853 	       struct task_struct *next)
1854 {
1855 	struct mm_struct *mm, *oldmm;
1856 
1857 	prepare_task_switch(rq, prev, next);
1858 
1859 	mm = next->mm;
1860 	oldmm = prev->active_mm;
1861 	/*
1862 	 * For paravirt, this is coupled with an exit in switch_to to
1863 	 * combine the page table reload and the switch backend into
1864 	 * one hypercall.
1865 	 */
1866 	arch_start_context_switch(prev);
1867 
1868 	if (!mm) {
1869 		next->active_mm = oldmm;
1870 		atomic_inc(&oldmm->mm_count);
1871 		enter_lazy_tlb(oldmm, next);
1872 	} else
1873 		switch_mm(oldmm, mm, next);
1874 
1875 	if (!prev->mm) {
1876 		prev->active_mm = NULL;
1877 		rq->prev_mm = oldmm;
1878 	}
1879 	/*
1880 	 * Since the runqueue lock will be released by the next
1881 	 * task (which is an invalid locking op but in the case
1882 	 * of the scheduler it's an obvious special-case), so we
1883 	 * do an early lockdep release here:
1884 	 */
1885 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1886 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1887 #endif
1888 
1889 	/* Here we just switch the register state and the stack. */
1890 	rcu_switch(prev, next);
1891 	switch_to(prev, next, prev);
1892 
1893 	barrier();
1894 	/*
1895 	 * this_rq must be evaluated again because prev may have moved
1896 	 * CPUs since it called schedule(), thus the 'rq' on its stack
1897 	 * frame will be invalid.
1898 	 */
1899 	finish_task_switch(this_rq(), prev);
1900 }
1901 
1902 /*
1903  * nr_running, nr_uninterruptible and nr_context_switches:
1904  *
1905  * externally visible scheduler statistics: current number of runnable
1906  * threads, current number of uninterruptible-sleeping threads, total
1907  * number of context switches performed since bootup.
1908  */
1909 unsigned long nr_running(void)
1910 {
1911 	unsigned long i, sum = 0;
1912 
1913 	for_each_online_cpu(i)
1914 		sum += cpu_rq(i)->nr_running;
1915 
1916 	return sum;
1917 }
1918 
1919 unsigned long nr_uninterruptible(void)
1920 {
1921 	unsigned long i, sum = 0;
1922 
1923 	for_each_possible_cpu(i)
1924 		sum += cpu_rq(i)->nr_uninterruptible;
1925 
1926 	/*
1927 	 * Since we read the counters lockless, it might be slightly
1928 	 * inaccurate. Do not allow it to go below zero though:
1929 	 */
1930 	if (unlikely((long)sum < 0))
1931 		sum = 0;
1932 
1933 	return sum;
1934 }
1935 
1936 unsigned long long nr_context_switches(void)
1937 {
1938 	int i;
1939 	unsigned long long sum = 0;
1940 
1941 	for_each_possible_cpu(i)
1942 		sum += cpu_rq(i)->nr_switches;
1943 
1944 	return sum;
1945 }
1946 
1947 unsigned long nr_iowait(void)
1948 {
1949 	unsigned long i, sum = 0;
1950 
1951 	for_each_possible_cpu(i)
1952 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1953 
1954 	return sum;
1955 }
1956 
1957 unsigned long nr_iowait_cpu(int cpu)
1958 {
1959 	struct rq *this = cpu_rq(cpu);
1960 	return atomic_read(&this->nr_iowait);
1961 }
1962 
1963 unsigned long this_cpu_load(void)
1964 {
1965 	struct rq *this = this_rq();
1966 	return this->cpu_load[0];
1967 }
1968 
1969 
1970 /*
1971  * Global load-average calculations
1972  *
1973  * We take a distributed and async approach to calculating the global load-avg
1974  * in order to minimize overhead.
1975  *
1976  * The global load average is an exponentially decaying average of nr_running +
1977  * nr_uninterruptible.
1978  *
1979  * Once every LOAD_FREQ:
1980  *
1981  *   nr_active = 0;
1982  *   for_each_possible_cpu(cpu)
1983  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1984  *
1985  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
1986  *
1987  * Due to a number of reasons the above turns in the mess below:
1988  *
1989  *  - for_each_possible_cpu() is prohibitively expensive on machines with
1990  *    serious number of cpus, therefore we need to take a distributed approach
1991  *    to calculating nr_active.
1992  *
1993  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
1994  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
1995  *
1996  *    So assuming nr_active := 0 when we start out -- true per definition, we
1997  *    can simply take per-cpu deltas and fold those into a global accumulate
1998  *    to obtain the same result. See calc_load_fold_active().
1999  *
2000  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2001  *    across the machine, we assume 10 ticks is sufficient time for every
2002  *    cpu to have completed this task.
2003  *
2004  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2005  *    again, being late doesn't loose the delta, just wrecks the sample.
2006  *
2007  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2008  *    this would add another cross-cpu cacheline miss and atomic operation
2009  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2010  *    when it went into uninterruptible state and decrement on whatever cpu
2011  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2012  *    all cpus yields the correct result.
2013  *
2014  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2015  */
2016 
2017 /* Variables and functions for calc_load */
2018 static atomic_long_t calc_load_tasks;
2019 static unsigned long calc_load_update;
2020 unsigned long avenrun[3];
2021 EXPORT_SYMBOL(avenrun); /* should be removed */
2022 
2023 /**
2024  * get_avenrun - get the load average array
2025  * @loads:	pointer to dest load array
2026  * @offset:	offset to add
2027  * @shift:	shift count to shift the result left
2028  *
2029  * These values are estimates at best, so no need for locking.
2030  */
2031 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2032 {
2033 	loads[0] = (avenrun[0] + offset) << shift;
2034 	loads[1] = (avenrun[1] + offset) << shift;
2035 	loads[2] = (avenrun[2] + offset) << shift;
2036 }
2037 
2038 static long calc_load_fold_active(struct rq *this_rq)
2039 {
2040 	long nr_active, delta = 0;
2041 
2042 	nr_active = this_rq->nr_running;
2043 	nr_active += (long) this_rq->nr_uninterruptible;
2044 
2045 	if (nr_active != this_rq->calc_load_active) {
2046 		delta = nr_active - this_rq->calc_load_active;
2047 		this_rq->calc_load_active = nr_active;
2048 	}
2049 
2050 	return delta;
2051 }
2052 
2053 /*
2054  * a1 = a0 * e + a * (1 - e)
2055  */
2056 static unsigned long
2057 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2058 {
2059 	load *= exp;
2060 	load += active * (FIXED_1 - exp);
2061 	load += 1UL << (FSHIFT - 1);
2062 	return load >> FSHIFT;
2063 }
2064 
2065 #ifdef CONFIG_NO_HZ
2066 /*
2067  * Handle NO_HZ for the global load-average.
2068  *
2069  * Since the above described distributed algorithm to compute the global
2070  * load-average relies on per-cpu sampling from the tick, it is affected by
2071  * NO_HZ.
2072  *
2073  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2074  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2075  * when we read the global state.
2076  *
2077  * Obviously reality has to ruin such a delightfully simple scheme:
2078  *
2079  *  - When we go NO_HZ idle during the window, we can negate our sample
2080  *    contribution, causing under-accounting.
2081  *
2082  *    We avoid this by keeping two idle-delta counters and flipping them
2083  *    when the window starts, thus separating old and new NO_HZ load.
2084  *
2085  *    The only trick is the slight shift in index flip for read vs write.
2086  *
2087  *        0s            5s            10s           15s
2088  *          +10           +10           +10           +10
2089  *        |-|-----------|-|-----------|-|-----------|-|
2090  *    r:0 0 1           1 0           0 1           1 0
2091  *    w:0 1 1           0 0           1 1           0 0
2092  *
2093  *    This ensures we'll fold the old idle contribution in this window while
2094  *    accumlating the new one.
2095  *
2096  *  - When we wake up from NO_HZ idle during the window, we push up our
2097  *    contribution, since we effectively move our sample point to a known
2098  *    busy state.
2099  *
2100  *    This is solved by pushing the window forward, and thus skipping the
2101  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2102  *    was in effect at the time the window opened). This also solves the issue
2103  *    of having to deal with a cpu having been in NOHZ idle for multiple
2104  *    LOAD_FREQ intervals.
2105  *
2106  * When making the ILB scale, we should try to pull this in as well.
2107  */
2108 static atomic_long_t calc_load_idle[2];
2109 static int calc_load_idx;
2110 
2111 static inline int calc_load_write_idx(void)
2112 {
2113 	int idx = calc_load_idx;
2114 
2115 	/*
2116 	 * See calc_global_nohz(), if we observe the new index, we also
2117 	 * need to observe the new update time.
2118 	 */
2119 	smp_rmb();
2120 
2121 	/*
2122 	 * If the folding window started, make sure we start writing in the
2123 	 * next idle-delta.
2124 	 */
2125 	if (!time_before(jiffies, calc_load_update))
2126 		idx++;
2127 
2128 	return idx & 1;
2129 }
2130 
2131 static inline int calc_load_read_idx(void)
2132 {
2133 	return calc_load_idx & 1;
2134 }
2135 
2136 void calc_load_enter_idle(void)
2137 {
2138 	struct rq *this_rq = this_rq();
2139 	long delta;
2140 
2141 	/*
2142 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2143 	 * into the pending idle delta.
2144 	 */
2145 	delta = calc_load_fold_active(this_rq);
2146 	if (delta) {
2147 		int idx = calc_load_write_idx();
2148 		atomic_long_add(delta, &calc_load_idle[idx]);
2149 	}
2150 }
2151 
2152 void calc_load_exit_idle(void)
2153 {
2154 	struct rq *this_rq = this_rq();
2155 
2156 	/*
2157 	 * If we're still before the sample window, we're done.
2158 	 */
2159 	if (time_before(jiffies, this_rq->calc_load_update))
2160 		return;
2161 
2162 	/*
2163 	 * We woke inside or after the sample window, this means we're already
2164 	 * accounted through the nohz accounting, so skip the entire deal and
2165 	 * sync up for the next window.
2166 	 */
2167 	this_rq->calc_load_update = calc_load_update;
2168 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2169 		this_rq->calc_load_update += LOAD_FREQ;
2170 }
2171 
2172 static long calc_load_fold_idle(void)
2173 {
2174 	int idx = calc_load_read_idx();
2175 	long delta = 0;
2176 
2177 	if (atomic_long_read(&calc_load_idle[idx]))
2178 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2179 
2180 	return delta;
2181 }
2182 
2183 /**
2184  * fixed_power_int - compute: x^n, in O(log n) time
2185  *
2186  * @x:         base of the power
2187  * @frac_bits: fractional bits of @x
2188  * @n:         power to raise @x to.
2189  *
2190  * By exploiting the relation between the definition of the natural power
2191  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2192  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2193  * (where: n_i \elem {0, 1}, the binary vector representing n),
2194  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2195  * of course trivially computable in O(log_2 n), the length of our binary
2196  * vector.
2197  */
2198 static unsigned long
2199 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2200 {
2201 	unsigned long result = 1UL << frac_bits;
2202 
2203 	if (n) for (;;) {
2204 		if (n & 1) {
2205 			result *= x;
2206 			result += 1UL << (frac_bits - 1);
2207 			result >>= frac_bits;
2208 		}
2209 		n >>= 1;
2210 		if (!n)
2211 			break;
2212 		x *= x;
2213 		x += 1UL << (frac_bits - 1);
2214 		x >>= frac_bits;
2215 	}
2216 
2217 	return result;
2218 }
2219 
2220 /*
2221  * a1 = a0 * e + a * (1 - e)
2222  *
2223  * a2 = a1 * e + a * (1 - e)
2224  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2225  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2226  *
2227  * a3 = a2 * e + a * (1 - e)
2228  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2229  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2230  *
2231  *  ...
2232  *
2233  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2234  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2235  *    = a0 * e^n + a * (1 - e^n)
2236  *
2237  * [1] application of the geometric series:
2238  *
2239  *              n         1 - x^(n+1)
2240  *     S_n := \Sum x^i = -------------
2241  *             i=0          1 - x
2242  */
2243 static unsigned long
2244 calc_load_n(unsigned long load, unsigned long exp,
2245 	    unsigned long active, unsigned int n)
2246 {
2247 
2248 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2249 }
2250 
2251 /*
2252  * NO_HZ can leave us missing all per-cpu ticks calling
2253  * calc_load_account_active(), but since an idle CPU folds its delta into
2254  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2255  * in the pending idle delta if our idle period crossed a load cycle boundary.
2256  *
2257  * Once we've updated the global active value, we need to apply the exponential
2258  * weights adjusted to the number of cycles missed.
2259  */
2260 static void calc_global_nohz(void)
2261 {
2262 	long delta, active, n;
2263 
2264 	if (!time_before(jiffies, calc_load_update + 10)) {
2265 		/*
2266 		 * Catch-up, fold however many we are behind still
2267 		 */
2268 		delta = jiffies - calc_load_update - 10;
2269 		n = 1 + (delta / LOAD_FREQ);
2270 
2271 		active = atomic_long_read(&calc_load_tasks);
2272 		active = active > 0 ? active * FIXED_1 : 0;
2273 
2274 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2275 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2276 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2277 
2278 		calc_load_update += n * LOAD_FREQ;
2279 	}
2280 
2281 	/*
2282 	 * Flip the idle index...
2283 	 *
2284 	 * Make sure we first write the new time then flip the index, so that
2285 	 * calc_load_write_idx() will see the new time when it reads the new
2286 	 * index, this avoids a double flip messing things up.
2287 	 */
2288 	smp_wmb();
2289 	calc_load_idx++;
2290 }
2291 #else /* !CONFIG_NO_HZ */
2292 
2293 static inline long calc_load_fold_idle(void) { return 0; }
2294 static inline void calc_global_nohz(void) { }
2295 
2296 #endif /* CONFIG_NO_HZ */
2297 
2298 /*
2299  * calc_load - update the avenrun load estimates 10 ticks after the
2300  * CPUs have updated calc_load_tasks.
2301  */
2302 void calc_global_load(unsigned long ticks)
2303 {
2304 	long active, delta;
2305 
2306 	if (time_before(jiffies, calc_load_update + 10))
2307 		return;
2308 
2309 	/*
2310 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2311 	 */
2312 	delta = calc_load_fold_idle();
2313 	if (delta)
2314 		atomic_long_add(delta, &calc_load_tasks);
2315 
2316 	active = atomic_long_read(&calc_load_tasks);
2317 	active = active > 0 ? active * FIXED_1 : 0;
2318 
2319 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2320 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2321 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2322 
2323 	calc_load_update += LOAD_FREQ;
2324 
2325 	/*
2326 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2327 	 */
2328 	calc_global_nohz();
2329 }
2330 
2331 /*
2332  * Called from update_cpu_load() to periodically update this CPU's
2333  * active count.
2334  */
2335 static void calc_load_account_active(struct rq *this_rq)
2336 {
2337 	long delta;
2338 
2339 	if (time_before(jiffies, this_rq->calc_load_update))
2340 		return;
2341 
2342 	delta  = calc_load_fold_active(this_rq);
2343 	if (delta)
2344 		atomic_long_add(delta, &calc_load_tasks);
2345 
2346 	this_rq->calc_load_update += LOAD_FREQ;
2347 }
2348 
2349 /*
2350  * End of global load-average stuff
2351  */
2352 
2353 /*
2354  * The exact cpuload at various idx values, calculated at every tick would be
2355  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2356  *
2357  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2358  * on nth tick when cpu may be busy, then we have:
2359  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2360  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2361  *
2362  * decay_load_missed() below does efficient calculation of
2363  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2364  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2365  *
2366  * The calculation is approximated on a 128 point scale.
2367  * degrade_zero_ticks is the number of ticks after which load at any
2368  * particular idx is approximated to be zero.
2369  * degrade_factor is a precomputed table, a row for each load idx.
2370  * Each column corresponds to degradation factor for a power of two ticks,
2371  * based on 128 point scale.
2372  * Example:
2373  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2374  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2375  *
2376  * With this power of 2 load factors, we can degrade the load n times
2377  * by looking at 1 bits in n and doing as many mult/shift instead of
2378  * n mult/shifts needed by the exact degradation.
2379  */
2380 #define DEGRADE_SHIFT		7
2381 static const unsigned char
2382 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2383 static const unsigned char
2384 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2385 					{0, 0, 0, 0, 0, 0, 0, 0},
2386 					{64, 32, 8, 0, 0, 0, 0, 0},
2387 					{96, 72, 40, 12, 1, 0, 0},
2388 					{112, 98, 75, 43, 15, 1, 0},
2389 					{120, 112, 98, 76, 45, 16, 2} };
2390 
2391 /*
2392  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2393  * would be when CPU is idle and so we just decay the old load without
2394  * adding any new load.
2395  */
2396 static unsigned long
2397 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2398 {
2399 	int j = 0;
2400 
2401 	if (!missed_updates)
2402 		return load;
2403 
2404 	if (missed_updates >= degrade_zero_ticks[idx])
2405 		return 0;
2406 
2407 	if (idx == 1)
2408 		return load >> missed_updates;
2409 
2410 	while (missed_updates) {
2411 		if (missed_updates % 2)
2412 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2413 
2414 		missed_updates >>= 1;
2415 		j++;
2416 	}
2417 	return load;
2418 }
2419 
2420 /*
2421  * Update rq->cpu_load[] statistics. This function is usually called every
2422  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2423  * every tick. We fix it up based on jiffies.
2424  */
2425 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2426 			      unsigned long pending_updates)
2427 {
2428 	int i, scale;
2429 
2430 	this_rq->nr_load_updates++;
2431 
2432 	/* Update our load: */
2433 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2434 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2435 		unsigned long old_load, new_load;
2436 
2437 		/* scale is effectively 1 << i now, and >> i divides by scale */
2438 
2439 		old_load = this_rq->cpu_load[i];
2440 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2441 		new_load = this_load;
2442 		/*
2443 		 * Round up the averaging division if load is increasing. This
2444 		 * prevents us from getting stuck on 9 if the load is 10, for
2445 		 * example.
2446 		 */
2447 		if (new_load > old_load)
2448 			new_load += scale - 1;
2449 
2450 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2451 	}
2452 
2453 	sched_avg_update(this_rq);
2454 }
2455 
2456 #ifdef CONFIG_NO_HZ
2457 /*
2458  * There is no sane way to deal with nohz on smp when using jiffies because the
2459  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2460  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2461  *
2462  * Therefore we cannot use the delta approach from the regular tick since that
2463  * would seriously skew the load calculation. However we'll make do for those
2464  * updates happening while idle (nohz_idle_balance) or coming out of idle
2465  * (tick_nohz_idle_exit).
2466  *
2467  * This means we might still be one tick off for nohz periods.
2468  */
2469 
2470 /*
2471  * Called from nohz_idle_balance() to update the load ratings before doing the
2472  * idle balance.
2473  */
2474 void update_idle_cpu_load(struct rq *this_rq)
2475 {
2476 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2477 	unsigned long load = this_rq->load.weight;
2478 	unsigned long pending_updates;
2479 
2480 	/*
2481 	 * bail if there's load or we're actually up-to-date.
2482 	 */
2483 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2484 		return;
2485 
2486 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2487 	this_rq->last_load_update_tick = curr_jiffies;
2488 
2489 	__update_cpu_load(this_rq, load, pending_updates);
2490 }
2491 
2492 /*
2493  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2494  */
2495 void update_cpu_load_nohz(void)
2496 {
2497 	struct rq *this_rq = this_rq();
2498 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2499 	unsigned long pending_updates;
2500 
2501 	if (curr_jiffies == this_rq->last_load_update_tick)
2502 		return;
2503 
2504 	raw_spin_lock(&this_rq->lock);
2505 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2506 	if (pending_updates) {
2507 		this_rq->last_load_update_tick = curr_jiffies;
2508 		/*
2509 		 * We were idle, this means load 0, the current load might be
2510 		 * !0 due to remote wakeups and the sort.
2511 		 */
2512 		__update_cpu_load(this_rq, 0, pending_updates);
2513 	}
2514 	raw_spin_unlock(&this_rq->lock);
2515 }
2516 #endif /* CONFIG_NO_HZ */
2517 
2518 /*
2519  * Called from scheduler_tick()
2520  */
2521 static void update_cpu_load_active(struct rq *this_rq)
2522 {
2523 	/*
2524 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2525 	 */
2526 	this_rq->last_load_update_tick = jiffies;
2527 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2528 
2529 	calc_load_account_active(this_rq);
2530 }
2531 
2532 #ifdef CONFIG_SMP
2533 
2534 /*
2535  * sched_exec - execve() is a valuable balancing opportunity, because at
2536  * this point the task has the smallest effective memory and cache footprint.
2537  */
2538 void sched_exec(void)
2539 {
2540 	struct task_struct *p = current;
2541 	unsigned long flags;
2542 	int dest_cpu;
2543 
2544 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2545 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2546 	if (dest_cpu == smp_processor_id())
2547 		goto unlock;
2548 
2549 	if (likely(cpu_active(dest_cpu))) {
2550 		struct migration_arg arg = { p, dest_cpu };
2551 
2552 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2553 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2554 		return;
2555 	}
2556 unlock:
2557 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2558 }
2559 
2560 #endif
2561 
2562 DEFINE_PER_CPU(struct kernel_stat, kstat);
2563 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2564 
2565 EXPORT_PER_CPU_SYMBOL(kstat);
2566 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2567 
2568 /*
2569  * Return any ns on the sched_clock that have not yet been accounted in
2570  * @p in case that task is currently running.
2571  *
2572  * Called with task_rq_lock() held on @rq.
2573  */
2574 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2575 {
2576 	u64 ns = 0;
2577 
2578 	if (task_current(rq, p)) {
2579 		update_rq_clock(rq);
2580 		ns = rq->clock_task - p->se.exec_start;
2581 		if ((s64)ns < 0)
2582 			ns = 0;
2583 	}
2584 
2585 	return ns;
2586 }
2587 
2588 unsigned long long task_delta_exec(struct task_struct *p)
2589 {
2590 	unsigned long flags;
2591 	struct rq *rq;
2592 	u64 ns = 0;
2593 
2594 	rq = task_rq_lock(p, &flags);
2595 	ns = do_task_delta_exec(p, rq);
2596 	task_rq_unlock(rq, p, &flags);
2597 
2598 	return ns;
2599 }
2600 
2601 /*
2602  * Return accounted runtime for the task.
2603  * In case the task is currently running, return the runtime plus current's
2604  * pending runtime that have not been accounted yet.
2605  */
2606 unsigned long long task_sched_runtime(struct task_struct *p)
2607 {
2608 	unsigned long flags;
2609 	struct rq *rq;
2610 	u64 ns = 0;
2611 
2612 	rq = task_rq_lock(p, &flags);
2613 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2614 	task_rq_unlock(rq, p, &flags);
2615 
2616 	return ns;
2617 }
2618 
2619 /*
2620  * This function gets called by the timer code, with HZ frequency.
2621  * We call it with interrupts disabled.
2622  */
2623 void scheduler_tick(void)
2624 {
2625 	int cpu = smp_processor_id();
2626 	struct rq *rq = cpu_rq(cpu);
2627 	struct task_struct *curr = rq->curr;
2628 
2629 	sched_clock_tick();
2630 
2631 	raw_spin_lock(&rq->lock);
2632 	update_rq_clock(rq);
2633 	update_cpu_load_active(rq);
2634 	curr->sched_class->task_tick(rq, curr, 0);
2635 	raw_spin_unlock(&rq->lock);
2636 
2637 	perf_event_task_tick();
2638 
2639 #ifdef CONFIG_SMP
2640 	rq->idle_balance = idle_cpu(cpu);
2641 	trigger_load_balance(rq, cpu);
2642 #endif
2643 }
2644 
2645 notrace unsigned long get_parent_ip(unsigned long addr)
2646 {
2647 	if (in_lock_functions(addr)) {
2648 		addr = CALLER_ADDR2;
2649 		if (in_lock_functions(addr))
2650 			addr = CALLER_ADDR3;
2651 	}
2652 	return addr;
2653 }
2654 
2655 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2656 				defined(CONFIG_PREEMPT_TRACER))
2657 
2658 void __kprobes add_preempt_count(int val)
2659 {
2660 #ifdef CONFIG_DEBUG_PREEMPT
2661 	/*
2662 	 * Underflow?
2663 	 */
2664 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2665 		return;
2666 #endif
2667 	preempt_count() += val;
2668 #ifdef CONFIG_DEBUG_PREEMPT
2669 	/*
2670 	 * Spinlock count overflowing soon?
2671 	 */
2672 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2673 				PREEMPT_MASK - 10);
2674 #endif
2675 	if (preempt_count() == val)
2676 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2677 }
2678 EXPORT_SYMBOL(add_preempt_count);
2679 
2680 void __kprobes sub_preempt_count(int val)
2681 {
2682 #ifdef CONFIG_DEBUG_PREEMPT
2683 	/*
2684 	 * Underflow?
2685 	 */
2686 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2687 		return;
2688 	/*
2689 	 * Is the spinlock portion underflowing?
2690 	 */
2691 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2692 			!(preempt_count() & PREEMPT_MASK)))
2693 		return;
2694 #endif
2695 
2696 	if (preempt_count() == val)
2697 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2698 	preempt_count() -= val;
2699 }
2700 EXPORT_SYMBOL(sub_preempt_count);
2701 
2702 #endif
2703 
2704 /*
2705  * Print scheduling while atomic bug:
2706  */
2707 static noinline void __schedule_bug(struct task_struct *prev)
2708 {
2709 	if (oops_in_progress)
2710 		return;
2711 
2712 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2713 		prev->comm, prev->pid, preempt_count());
2714 
2715 	debug_show_held_locks(prev);
2716 	print_modules();
2717 	if (irqs_disabled())
2718 		print_irqtrace_events(prev);
2719 	dump_stack();
2720 	add_taint(TAINT_WARN);
2721 }
2722 
2723 /*
2724  * Various schedule()-time debugging checks and statistics:
2725  */
2726 static inline void schedule_debug(struct task_struct *prev)
2727 {
2728 	/*
2729 	 * Test if we are atomic. Since do_exit() needs to call into
2730 	 * schedule() atomically, we ignore that path for now.
2731 	 * Otherwise, whine if we are scheduling when we should not be.
2732 	 */
2733 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2734 		__schedule_bug(prev);
2735 	rcu_sleep_check();
2736 
2737 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2738 
2739 	schedstat_inc(this_rq(), sched_count);
2740 }
2741 
2742 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2743 {
2744 	if (prev->on_rq || rq->skip_clock_update < 0)
2745 		update_rq_clock(rq);
2746 	prev->sched_class->put_prev_task(rq, prev);
2747 }
2748 
2749 /*
2750  * Pick up the highest-prio task:
2751  */
2752 static inline struct task_struct *
2753 pick_next_task(struct rq *rq)
2754 {
2755 	const struct sched_class *class;
2756 	struct task_struct *p;
2757 
2758 	/*
2759 	 * Optimization: we know that if all tasks are in
2760 	 * the fair class we can call that function directly:
2761 	 */
2762 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2763 		p = fair_sched_class.pick_next_task(rq);
2764 		if (likely(p))
2765 			return p;
2766 	}
2767 
2768 	for_each_class(class) {
2769 		p = class->pick_next_task(rq);
2770 		if (p)
2771 			return p;
2772 	}
2773 
2774 	BUG(); /* the idle class will always have a runnable task */
2775 }
2776 
2777 /*
2778  * __schedule() is the main scheduler function.
2779  *
2780  * The main means of driving the scheduler and thus entering this function are:
2781  *
2782  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2783  *
2784  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2785  *      paths. For example, see arch/x86/entry_64.S.
2786  *
2787  *      To drive preemption between tasks, the scheduler sets the flag in timer
2788  *      interrupt handler scheduler_tick().
2789  *
2790  *   3. Wakeups don't really cause entry into schedule(). They add a
2791  *      task to the run-queue and that's it.
2792  *
2793  *      Now, if the new task added to the run-queue preempts the current
2794  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2795  *      called on the nearest possible occasion:
2796  *
2797  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2798  *
2799  *         - in syscall or exception context, at the next outmost
2800  *           preempt_enable(). (this might be as soon as the wake_up()'s
2801  *           spin_unlock()!)
2802  *
2803  *         - in IRQ context, return from interrupt-handler to
2804  *           preemptible context
2805  *
2806  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2807  *         then at the next:
2808  *
2809  *          - cond_resched() call
2810  *          - explicit schedule() call
2811  *          - return from syscall or exception to user-space
2812  *          - return from interrupt-handler to user-space
2813  */
2814 static void __sched __schedule(void)
2815 {
2816 	struct task_struct *prev, *next;
2817 	unsigned long *switch_count;
2818 	struct rq *rq;
2819 	int cpu;
2820 
2821 need_resched:
2822 	preempt_disable();
2823 	cpu = smp_processor_id();
2824 	rq = cpu_rq(cpu);
2825 	rcu_note_context_switch(cpu);
2826 	prev = rq->curr;
2827 
2828 	schedule_debug(prev);
2829 
2830 	if (sched_feat(HRTICK))
2831 		hrtick_clear(rq);
2832 
2833 	raw_spin_lock_irq(&rq->lock);
2834 
2835 	switch_count = &prev->nivcsw;
2836 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2837 		if (unlikely(signal_pending_state(prev->state, prev))) {
2838 			prev->state = TASK_RUNNING;
2839 		} else {
2840 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2841 			prev->on_rq = 0;
2842 
2843 			/*
2844 			 * If a worker went to sleep, notify and ask workqueue
2845 			 * whether it wants to wake up a task to maintain
2846 			 * concurrency.
2847 			 */
2848 			if (prev->flags & PF_WQ_WORKER) {
2849 				struct task_struct *to_wakeup;
2850 
2851 				to_wakeup = wq_worker_sleeping(prev, cpu);
2852 				if (to_wakeup)
2853 					try_to_wake_up_local(to_wakeup);
2854 			}
2855 		}
2856 		switch_count = &prev->nvcsw;
2857 	}
2858 
2859 	pre_schedule(rq, prev);
2860 
2861 	if (unlikely(!rq->nr_running))
2862 		idle_balance(cpu, rq);
2863 
2864 	put_prev_task(rq, prev);
2865 	next = pick_next_task(rq);
2866 	clear_tsk_need_resched(prev);
2867 	rq->skip_clock_update = 0;
2868 
2869 	if (likely(prev != next)) {
2870 		rq->nr_switches++;
2871 		rq->curr = next;
2872 		++*switch_count;
2873 
2874 		context_switch(rq, prev, next); /* unlocks the rq */
2875 		/*
2876 		 * The context switch have flipped the stack from under us
2877 		 * and restored the local variables which were saved when
2878 		 * this task called schedule() in the past. prev == current
2879 		 * is still correct, but it can be moved to another cpu/rq.
2880 		 */
2881 		cpu = smp_processor_id();
2882 		rq = cpu_rq(cpu);
2883 	} else
2884 		raw_spin_unlock_irq(&rq->lock);
2885 
2886 	post_schedule(rq);
2887 
2888 	sched_preempt_enable_no_resched();
2889 	if (need_resched())
2890 		goto need_resched;
2891 }
2892 
2893 static inline void sched_submit_work(struct task_struct *tsk)
2894 {
2895 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2896 		return;
2897 	/*
2898 	 * If we are going to sleep and we have plugged IO queued,
2899 	 * make sure to submit it to avoid deadlocks.
2900 	 */
2901 	if (blk_needs_flush_plug(tsk))
2902 		blk_schedule_flush_plug(tsk);
2903 }
2904 
2905 asmlinkage void __sched schedule(void)
2906 {
2907 	struct task_struct *tsk = current;
2908 
2909 	sched_submit_work(tsk);
2910 	__schedule();
2911 }
2912 EXPORT_SYMBOL(schedule);
2913 
2914 #ifdef CONFIG_RCU_USER_QS
2915 asmlinkage void __sched schedule_user(void)
2916 {
2917 	/*
2918 	 * If we come here after a random call to set_need_resched(),
2919 	 * or we have been woken up remotely but the IPI has not yet arrived,
2920 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2921 	 * we find a better solution.
2922 	 */
2923 	rcu_user_exit();
2924 	schedule();
2925 	rcu_user_enter();
2926 }
2927 #endif
2928 
2929 /**
2930  * schedule_preempt_disabled - called with preemption disabled
2931  *
2932  * Returns with preemption disabled. Note: preempt_count must be 1
2933  */
2934 void __sched schedule_preempt_disabled(void)
2935 {
2936 	sched_preempt_enable_no_resched();
2937 	schedule();
2938 	preempt_disable();
2939 }
2940 
2941 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2942 
2943 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2944 {
2945 	if (lock->owner != owner)
2946 		return false;
2947 
2948 	/*
2949 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2950 	 * lock->owner still matches owner, if that fails, owner might
2951 	 * point to free()d memory, if it still matches, the rcu_read_lock()
2952 	 * ensures the memory stays valid.
2953 	 */
2954 	barrier();
2955 
2956 	return owner->on_cpu;
2957 }
2958 
2959 /*
2960  * Look out! "owner" is an entirely speculative pointer
2961  * access and not reliable.
2962  */
2963 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2964 {
2965 	if (!sched_feat(OWNER_SPIN))
2966 		return 0;
2967 
2968 	rcu_read_lock();
2969 	while (owner_running(lock, owner)) {
2970 		if (need_resched())
2971 			break;
2972 
2973 		arch_mutex_cpu_relax();
2974 	}
2975 	rcu_read_unlock();
2976 
2977 	/*
2978 	 * We break out the loop above on need_resched() and when the
2979 	 * owner changed, which is a sign for heavy contention. Return
2980 	 * success only when lock->owner is NULL.
2981 	 */
2982 	return lock->owner == NULL;
2983 }
2984 #endif
2985 
2986 #ifdef CONFIG_PREEMPT
2987 /*
2988  * this is the entry point to schedule() from in-kernel preemption
2989  * off of preempt_enable. Kernel preemptions off return from interrupt
2990  * occur there and call schedule directly.
2991  */
2992 asmlinkage void __sched notrace preempt_schedule(void)
2993 {
2994 	struct thread_info *ti = current_thread_info();
2995 
2996 	/*
2997 	 * If there is a non-zero preempt_count or interrupts are disabled,
2998 	 * we do not want to preempt the current task. Just return..
2999 	 */
3000 	if (likely(ti->preempt_count || irqs_disabled()))
3001 		return;
3002 
3003 	do {
3004 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3005 		__schedule();
3006 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3007 
3008 		/*
3009 		 * Check again in case we missed a preemption opportunity
3010 		 * between schedule and now.
3011 		 */
3012 		barrier();
3013 	} while (need_resched());
3014 }
3015 EXPORT_SYMBOL(preempt_schedule);
3016 
3017 /*
3018  * this is the entry point to schedule() from kernel preemption
3019  * off of irq context.
3020  * Note, that this is called and return with irqs disabled. This will
3021  * protect us against recursive calling from irq.
3022  */
3023 asmlinkage void __sched preempt_schedule_irq(void)
3024 {
3025 	struct thread_info *ti = current_thread_info();
3026 
3027 	/* Catch callers which need to be fixed */
3028 	BUG_ON(ti->preempt_count || !irqs_disabled());
3029 
3030 	rcu_user_exit();
3031 	do {
3032 		add_preempt_count(PREEMPT_ACTIVE);
3033 		local_irq_enable();
3034 		__schedule();
3035 		local_irq_disable();
3036 		sub_preempt_count(PREEMPT_ACTIVE);
3037 
3038 		/*
3039 		 * Check again in case we missed a preemption opportunity
3040 		 * between schedule and now.
3041 		 */
3042 		barrier();
3043 	} while (need_resched());
3044 }
3045 
3046 #endif /* CONFIG_PREEMPT */
3047 
3048 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3049 			  void *key)
3050 {
3051 	return try_to_wake_up(curr->private, mode, wake_flags);
3052 }
3053 EXPORT_SYMBOL(default_wake_function);
3054 
3055 /*
3056  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3057  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3058  * number) then we wake all the non-exclusive tasks and one exclusive task.
3059  *
3060  * There are circumstances in which we can try to wake a task which has already
3061  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3062  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3063  */
3064 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3065 			int nr_exclusive, int wake_flags, void *key)
3066 {
3067 	wait_queue_t *curr, *next;
3068 
3069 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3070 		unsigned flags = curr->flags;
3071 
3072 		if (curr->func(curr, mode, wake_flags, key) &&
3073 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3074 			break;
3075 	}
3076 }
3077 
3078 /**
3079  * __wake_up - wake up threads blocked on a waitqueue.
3080  * @q: the waitqueue
3081  * @mode: which threads
3082  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3083  * @key: is directly passed to the wakeup function
3084  *
3085  * It may be assumed that this function implies a write memory barrier before
3086  * changing the task state if and only if any tasks are woken up.
3087  */
3088 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3089 			int nr_exclusive, void *key)
3090 {
3091 	unsigned long flags;
3092 
3093 	spin_lock_irqsave(&q->lock, flags);
3094 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3095 	spin_unlock_irqrestore(&q->lock, flags);
3096 }
3097 EXPORT_SYMBOL(__wake_up);
3098 
3099 /*
3100  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3101  */
3102 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3103 {
3104 	__wake_up_common(q, mode, nr, 0, NULL);
3105 }
3106 EXPORT_SYMBOL_GPL(__wake_up_locked);
3107 
3108 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3109 {
3110 	__wake_up_common(q, mode, 1, 0, key);
3111 }
3112 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3113 
3114 /**
3115  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3116  * @q: the waitqueue
3117  * @mode: which threads
3118  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3119  * @key: opaque value to be passed to wakeup targets
3120  *
3121  * The sync wakeup differs that the waker knows that it will schedule
3122  * away soon, so while the target thread will be woken up, it will not
3123  * be migrated to another CPU - ie. the two threads are 'synchronized'
3124  * with each other. This can prevent needless bouncing between CPUs.
3125  *
3126  * On UP it can prevent extra preemption.
3127  *
3128  * It may be assumed that this function implies a write memory barrier before
3129  * changing the task state if and only if any tasks are woken up.
3130  */
3131 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3132 			int nr_exclusive, void *key)
3133 {
3134 	unsigned long flags;
3135 	int wake_flags = WF_SYNC;
3136 
3137 	if (unlikely(!q))
3138 		return;
3139 
3140 	if (unlikely(!nr_exclusive))
3141 		wake_flags = 0;
3142 
3143 	spin_lock_irqsave(&q->lock, flags);
3144 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3145 	spin_unlock_irqrestore(&q->lock, flags);
3146 }
3147 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3148 
3149 /*
3150  * __wake_up_sync - see __wake_up_sync_key()
3151  */
3152 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3153 {
3154 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3155 }
3156 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3157 
3158 /**
3159  * complete: - signals a single thread waiting on this completion
3160  * @x:  holds the state of this particular completion
3161  *
3162  * This will wake up a single thread waiting on this completion. Threads will be
3163  * awakened in the same order in which they were queued.
3164  *
3165  * See also complete_all(), wait_for_completion() and related routines.
3166  *
3167  * It may be assumed that this function implies a write memory barrier before
3168  * changing the task state if and only if any tasks are woken up.
3169  */
3170 void complete(struct completion *x)
3171 {
3172 	unsigned long flags;
3173 
3174 	spin_lock_irqsave(&x->wait.lock, flags);
3175 	x->done++;
3176 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3177 	spin_unlock_irqrestore(&x->wait.lock, flags);
3178 }
3179 EXPORT_SYMBOL(complete);
3180 
3181 /**
3182  * complete_all: - signals all threads waiting on this completion
3183  * @x:  holds the state of this particular completion
3184  *
3185  * This will wake up all threads waiting on this particular completion event.
3186  *
3187  * It may be assumed that this function implies a write memory barrier before
3188  * changing the task state if and only if any tasks are woken up.
3189  */
3190 void complete_all(struct completion *x)
3191 {
3192 	unsigned long flags;
3193 
3194 	spin_lock_irqsave(&x->wait.lock, flags);
3195 	x->done += UINT_MAX/2;
3196 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3197 	spin_unlock_irqrestore(&x->wait.lock, flags);
3198 }
3199 EXPORT_SYMBOL(complete_all);
3200 
3201 static inline long __sched
3202 do_wait_for_common(struct completion *x, long timeout, int state)
3203 {
3204 	if (!x->done) {
3205 		DECLARE_WAITQUEUE(wait, current);
3206 
3207 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3208 		do {
3209 			if (signal_pending_state(state, current)) {
3210 				timeout = -ERESTARTSYS;
3211 				break;
3212 			}
3213 			__set_current_state(state);
3214 			spin_unlock_irq(&x->wait.lock);
3215 			timeout = schedule_timeout(timeout);
3216 			spin_lock_irq(&x->wait.lock);
3217 		} while (!x->done && timeout);
3218 		__remove_wait_queue(&x->wait, &wait);
3219 		if (!x->done)
3220 			return timeout;
3221 	}
3222 	x->done--;
3223 	return timeout ?: 1;
3224 }
3225 
3226 static long __sched
3227 wait_for_common(struct completion *x, long timeout, int state)
3228 {
3229 	might_sleep();
3230 
3231 	spin_lock_irq(&x->wait.lock);
3232 	timeout = do_wait_for_common(x, timeout, state);
3233 	spin_unlock_irq(&x->wait.lock);
3234 	return timeout;
3235 }
3236 
3237 /**
3238  * wait_for_completion: - waits for completion of a task
3239  * @x:  holds the state of this particular completion
3240  *
3241  * This waits to be signaled for completion of a specific task. It is NOT
3242  * interruptible and there is no timeout.
3243  *
3244  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3245  * and interrupt capability. Also see complete().
3246  */
3247 void __sched wait_for_completion(struct completion *x)
3248 {
3249 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3250 }
3251 EXPORT_SYMBOL(wait_for_completion);
3252 
3253 /**
3254  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3255  * @x:  holds the state of this particular completion
3256  * @timeout:  timeout value in jiffies
3257  *
3258  * This waits for either a completion of a specific task to be signaled or for a
3259  * specified timeout to expire. The timeout is in jiffies. It is not
3260  * interruptible.
3261  *
3262  * The return value is 0 if timed out, and positive (at least 1, or number of
3263  * jiffies left till timeout) if completed.
3264  */
3265 unsigned long __sched
3266 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3267 {
3268 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3269 }
3270 EXPORT_SYMBOL(wait_for_completion_timeout);
3271 
3272 /**
3273  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3274  * @x:  holds the state of this particular completion
3275  *
3276  * This waits for completion of a specific task to be signaled. It is
3277  * interruptible.
3278  *
3279  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3280  */
3281 int __sched wait_for_completion_interruptible(struct completion *x)
3282 {
3283 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3284 	if (t == -ERESTARTSYS)
3285 		return t;
3286 	return 0;
3287 }
3288 EXPORT_SYMBOL(wait_for_completion_interruptible);
3289 
3290 /**
3291  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3292  * @x:  holds the state of this particular completion
3293  * @timeout:  timeout value in jiffies
3294  *
3295  * This waits for either a completion of a specific task to be signaled or for a
3296  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3297  *
3298  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3299  * positive (at least 1, or number of jiffies left till timeout) if completed.
3300  */
3301 long __sched
3302 wait_for_completion_interruptible_timeout(struct completion *x,
3303 					  unsigned long timeout)
3304 {
3305 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3306 }
3307 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3308 
3309 /**
3310  * wait_for_completion_killable: - waits for completion of a task (killable)
3311  * @x:  holds the state of this particular completion
3312  *
3313  * This waits to be signaled for completion of a specific task. It can be
3314  * interrupted by a kill signal.
3315  *
3316  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3317  */
3318 int __sched wait_for_completion_killable(struct completion *x)
3319 {
3320 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3321 	if (t == -ERESTARTSYS)
3322 		return t;
3323 	return 0;
3324 }
3325 EXPORT_SYMBOL(wait_for_completion_killable);
3326 
3327 /**
3328  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3329  * @x:  holds the state of this particular completion
3330  * @timeout:  timeout value in jiffies
3331  *
3332  * This waits for either a completion of a specific task to be
3333  * signaled or for a specified timeout to expire. It can be
3334  * interrupted by a kill signal. The timeout is in jiffies.
3335  *
3336  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3337  * positive (at least 1, or number of jiffies left till timeout) if completed.
3338  */
3339 long __sched
3340 wait_for_completion_killable_timeout(struct completion *x,
3341 				     unsigned long timeout)
3342 {
3343 	return wait_for_common(x, timeout, TASK_KILLABLE);
3344 }
3345 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3346 
3347 /**
3348  *	try_wait_for_completion - try to decrement a completion without blocking
3349  *	@x:	completion structure
3350  *
3351  *	Returns: 0 if a decrement cannot be done without blocking
3352  *		 1 if a decrement succeeded.
3353  *
3354  *	If a completion is being used as a counting completion,
3355  *	attempt to decrement the counter without blocking. This
3356  *	enables us to avoid waiting if the resource the completion
3357  *	is protecting is not available.
3358  */
3359 bool try_wait_for_completion(struct completion *x)
3360 {
3361 	unsigned long flags;
3362 	int ret = 1;
3363 
3364 	spin_lock_irqsave(&x->wait.lock, flags);
3365 	if (!x->done)
3366 		ret = 0;
3367 	else
3368 		x->done--;
3369 	spin_unlock_irqrestore(&x->wait.lock, flags);
3370 	return ret;
3371 }
3372 EXPORT_SYMBOL(try_wait_for_completion);
3373 
3374 /**
3375  *	completion_done - Test to see if a completion has any waiters
3376  *	@x:	completion structure
3377  *
3378  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3379  *		 1 if there are no waiters.
3380  *
3381  */
3382 bool completion_done(struct completion *x)
3383 {
3384 	unsigned long flags;
3385 	int ret = 1;
3386 
3387 	spin_lock_irqsave(&x->wait.lock, flags);
3388 	if (!x->done)
3389 		ret = 0;
3390 	spin_unlock_irqrestore(&x->wait.lock, flags);
3391 	return ret;
3392 }
3393 EXPORT_SYMBOL(completion_done);
3394 
3395 static long __sched
3396 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3397 {
3398 	unsigned long flags;
3399 	wait_queue_t wait;
3400 
3401 	init_waitqueue_entry(&wait, current);
3402 
3403 	__set_current_state(state);
3404 
3405 	spin_lock_irqsave(&q->lock, flags);
3406 	__add_wait_queue(q, &wait);
3407 	spin_unlock(&q->lock);
3408 	timeout = schedule_timeout(timeout);
3409 	spin_lock_irq(&q->lock);
3410 	__remove_wait_queue(q, &wait);
3411 	spin_unlock_irqrestore(&q->lock, flags);
3412 
3413 	return timeout;
3414 }
3415 
3416 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3417 {
3418 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3419 }
3420 EXPORT_SYMBOL(interruptible_sleep_on);
3421 
3422 long __sched
3423 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3424 {
3425 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3426 }
3427 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3428 
3429 void __sched sleep_on(wait_queue_head_t *q)
3430 {
3431 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3432 }
3433 EXPORT_SYMBOL(sleep_on);
3434 
3435 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3436 {
3437 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3438 }
3439 EXPORT_SYMBOL(sleep_on_timeout);
3440 
3441 #ifdef CONFIG_RT_MUTEXES
3442 
3443 /*
3444  * rt_mutex_setprio - set the current priority of a task
3445  * @p: task
3446  * @prio: prio value (kernel-internal form)
3447  *
3448  * This function changes the 'effective' priority of a task. It does
3449  * not touch ->normal_prio like __setscheduler().
3450  *
3451  * Used by the rt_mutex code to implement priority inheritance logic.
3452  */
3453 void rt_mutex_setprio(struct task_struct *p, int prio)
3454 {
3455 	int oldprio, on_rq, running;
3456 	struct rq *rq;
3457 	const struct sched_class *prev_class;
3458 
3459 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3460 
3461 	rq = __task_rq_lock(p);
3462 
3463 	/*
3464 	 * Idle task boosting is a nono in general. There is one
3465 	 * exception, when PREEMPT_RT and NOHZ is active:
3466 	 *
3467 	 * The idle task calls get_next_timer_interrupt() and holds
3468 	 * the timer wheel base->lock on the CPU and another CPU wants
3469 	 * to access the timer (probably to cancel it). We can safely
3470 	 * ignore the boosting request, as the idle CPU runs this code
3471 	 * with interrupts disabled and will complete the lock
3472 	 * protected section without being interrupted. So there is no
3473 	 * real need to boost.
3474 	 */
3475 	if (unlikely(p == rq->idle)) {
3476 		WARN_ON(p != rq->curr);
3477 		WARN_ON(p->pi_blocked_on);
3478 		goto out_unlock;
3479 	}
3480 
3481 	trace_sched_pi_setprio(p, prio);
3482 	oldprio = p->prio;
3483 	prev_class = p->sched_class;
3484 	on_rq = p->on_rq;
3485 	running = task_current(rq, p);
3486 	if (on_rq)
3487 		dequeue_task(rq, p, 0);
3488 	if (running)
3489 		p->sched_class->put_prev_task(rq, p);
3490 
3491 	if (rt_prio(prio))
3492 		p->sched_class = &rt_sched_class;
3493 	else
3494 		p->sched_class = &fair_sched_class;
3495 
3496 	p->prio = prio;
3497 
3498 	if (running)
3499 		p->sched_class->set_curr_task(rq);
3500 	if (on_rq)
3501 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3502 
3503 	check_class_changed(rq, p, prev_class, oldprio);
3504 out_unlock:
3505 	__task_rq_unlock(rq);
3506 }
3507 #endif
3508 void set_user_nice(struct task_struct *p, long nice)
3509 {
3510 	int old_prio, delta, on_rq;
3511 	unsigned long flags;
3512 	struct rq *rq;
3513 
3514 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3515 		return;
3516 	/*
3517 	 * We have to be careful, if called from sys_setpriority(),
3518 	 * the task might be in the middle of scheduling on another CPU.
3519 	 */
3520 	rq = task_rq_lock(p, &flags);
3521 	/*
3522 	 * The RT priorities are set via sched_setscheduler(), but we still
3523 	 * allow the 'normal' nice value to be set - but as expected
3524 	 * it wont have any effect on scheduling until the task is
3525 	 * SCHED_FIFO/SCHED_RR:
3526 	 */
3527 	if (task_has_rt_policy(p)) {
3528 		p->static_prio = NICE_TO_PRIO(nice);
3529 		goto out_unlock;
3530 	}
3531 	on_rq = p->on_rq;
3532 	if (on_rq)
3533 		dequeue_task(rq, p, 0);
3534 
3535 	p->static_prio = NICE_TO_PRIO(nice);
3536 	set_load_weight(p);
3537 	old_prio = p->prio;
3538 	p->prio = effective_prio(p);
3539 	delta = p->prio - old_prio;
3540 
3541 	if (on_rq) {
3542 		enqueue_task(rq, p, 0);
3543 		/*
3544 		 * If the task increased its priority or is running and
3545 		 * lowered its priority, then reschedule its CPU:
3546 		 */
3547 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3548 			resched_task(rq->curr);
3549 	}
3550 out_unlock:
3551 	task_rq_unlock(rq, p, &flags);
3552 }
3553 EXPORT_SYMBOL(set_user_nice);
3554 
3555 /*
3556  * can_nice - check if a task can reduce its nice value
3557  * @p: task
3558  * @nice: nice value
3559  */
3560 int can_nice(const struct task_struct *p, const int nice)
3561 {
3562 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3563 	int nice_rlim = 20 - nice;
3564 
3565 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3566 		capable(CAP_SYS_NICE));
3567 }
3568 
3569 #ifdef __ARCH_WANT_SYS_NICE
3570 
3571 /*
3572  * sys_nice - change the priority of the current process.
3573  * @increment: priority increment
3574  *
3575  * sys_setpriority is a more generic, but much slower function that
3576  * does similar things.
3577  */
3578 SYSCALL_DEFINE1(nice, int, increment)
3579 {
3580 	long nice, retval;
3581 
3582 	/*
3583 	 * Setpriority might change our priority at the same moment.
3584 	 * We don't have to worry. Conceptually one call occurs first
3585 	 * and we have a single winner.
3586 	 */
3587 	if (increment < -40)
3588 		increment = -40;
3589 	if (increment > 40)
3590 		increment = 40;
3591 
3592 	nice = TASK_NICE(current) + increment;
3593 	if (nice < -20)
3594 		nice = -20;
3595 	if (nice > 19)
3596 		nice = 19;
3597 
3598 	if (increment < 0 && !can_nice(current, nice))
3599 		return -EPERM;
3600 
3601 	retval = security_task_setnice(current, nice);
3602 	if (retval)
3603 		return retval;
3604 
3605 	set_user_nice(current, nice);
3606 	return 0;
3607 }
3608 
3609 #endif
3610 
3611 /**
3612  * task_prio - return the priority value of a given task.
3613  * @p: the task in question.
3614  *
3615  * This is the priority value as seen by users in /proc.
3616  * RT tasks are offset by -200. Normal tasks are centered
3617  * around 0, value goes from -16 to +15.
3618  */
3619 int task_prio(const struct task_struct *p)
3620 {
3621 	return p->prio - MAX_RT_PRIO;
3622 }
3623 
3624 /**
3625  * task_nice - return the nice value of a given task.
3626  * @p: the task in question.
3627  */
3628 int task_nice(const struct task_struct *p)
3629 {
3630 	return TASK_NICE(p);
3631 }
3632 EXPORT_SYMBOL(task_nice);
3633 
3634 /**
3635  * idle_cpu - is a given cpu idle currently?
3636  * @cpu: the processor in question.
3637  */
3638 int idle_cpu(int cpu)
3639 {
3640 	struct rq *rq = cpu_rq(cpu);
3641 
3642 	if (rq->curr != rq->idle)
3643 		return 0;
3644 
3645 	if (rq->nr_running)
3646 		return 0;
3647 
3648 #ifdef CONFIG_SMP
3649 	if (!llist_empty(&rq->wake_list))
3650 		return 0;
3651 #endif
3652 
3653 	return 1;
3654 }
3655 
3656 /**
3657  * idle_task - return the idle task for a given cpu.
3658  * @cpu: the processor in question.
3659  */
3660 struct task_struct *idle_task(int cpu)
3661 {
3662 	return cpu_rq(cpu)->idle;
3663 }
3664 
3665 /**
3666  * find_process_by_pid - find a process with a matching PID value.
3667  * @pid: the pid in question.
3668  */
3669 static struct task_struct *find_process_by_pid(pid_t pid)
3670 {
3671 	return pid ? find_task_by_vpid(pid) : current;
3672 }
3673 
3674 /* Actually do priority change: must hold rq lock. */
3675 static void
3676 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3677 {
3678 	p->policy = policy;
3679 	p->rt_priority = prio;
3680 	p->normal_prio = normal_prio(p);
3681 	/* we are holding p->pi_lock already */
3682 	p->prio = rt_mutex_getprio(p);
3683 	if (rt_prio(p->prio))
3684 		p->sched_class = &rt_sched_class;
3685 	else
3686 		p->sched_class = &fair_sched_class;
3687 	set_load_weight(p);
3688 }
3689 
3690 /*
3691  * check the target process has a UID that matches the current process's
3692  */
3693 static bool check_same_owner(struct task_struct *p)
3694 {
3695 	const struct cred *cred = current_cred(), *pcred;
3696 	bool match;
3697 
3698 	rcu_read_lock();
3699 	pcred = __task_cred(p);
3700 	match = (uid_eq(cred->euid, pcred->euid) ||
3701 		 uid_eq(cred->euid, pcred->uid));
3702 	rcu_read_unlock();
3703 	return match;
3704 }
3705 
3706 static int __sched_setscheduler(struct task_struct *p, int policy,
3707 				const struct sched_param *param, bool user)
3708 {
3709 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3710 	unsigned long flags;
3711 	const struct sched_class *prev_class;
3712 	struct rq *rq;
3713 	int reset_on_fork;
3714 
3715 	/* may grab non-irq protected spin_locks */
3716 	BUG_ON(in_interrupt());
3717 recheck:
3718 	/* double check policy once rq lock held */
3719 	if (policy < 0) {
3720 		reset_on_fork = p->sched_reset_on_fork;
3721 		policy = oldpolicy = p->policy;
3722 	} else {
3723 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3724 		policy &= ~SCHED_RESET_ON_FORK;
3725 
3726 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3727 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3728 				policy != SCHED_IDLE)
3729 			return -EINVAL;
3730 	}
3731 
3732 	/*
3733 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3734 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3735 	 * SCHED_BATCH and SCHED_IDLE is 0.
3736 	 */
3737 	if (param->sched_priority < 0 ||
3738 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3739 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3740 		return -EINVAL;
3741 	if (rt_policy(policy) != (param->sched_priority != 0))
3742 		return -EINVAL;
3743 
3744 	/*
3745 	 * Allow unprivileged RT tasks to decrease priority:
3746 	 */
3747 	if (user && !capable(CAP_SYS_NICE)) {
3748 		if (rt_policy(policy)) {
3749 			unsigned long rlim_rtprio =
3750 					task_rlimit(p, RLIMIT_RTPRIO);
3751 
3752 			/* can't set/change the rt policy */
3753 			if (policy != p->policy && !rlim_rtprio)
3754 				return -EPERM;
3755 
3756 			/* can't increase priority */
3757 			if (param->sched_priority > p->rt_priority &&
3758 			    param->sched_priority > rlim_rtprio)
3759 				return -EPERM;
3760 		}
3761 
3762 		/*
3763 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3764 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3765 		 */
3766 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3767 			if (!can_nice(p, TASK_NICE(p)))
3768 				return -EPERM;
3769 		}
3770 
3771 		/* can't change other user's priorities */
3772 		if (!check_same_owner(p))
3773 			return -EPERM;
3774 
3775 		/* Normal users shall not reset the sched_reset_on_fork flag */
3776 		if (p->sched_reset_on_fork && !reset_on_fork)
3777 			return -EPERM;
3778 	}
3779 
3780 	if (user) {
3781 		retval = security_task_setscheduler(p);
3782 		if (retval)
3783 			return retval;
3784 	}
3785 
3786 	/*
3787 	 * make sure no PI-waiters arrive (or leave) while we are
3788 	 * changing the priority of the task:
3789 	 *
3790 	 * To be able to change p->policy safely, the appropriate
3791 	 * runqueue lock must be held.
3792 	 */
3793 	rq = task_rq_lock(p, &flags);
3794 
3795 	/*
3796 	 * Changing the policy of the stop threads its a very bad idea
3797 	 */
3798 	if (p == rq->stop) {
3799 		task_rq_unlock(rq, p, &flags);
3800 		return -EINVAL;
3801 	}
3802 
3803 	/*
3804 	 * If not changing anything there's no need to proceed further:
3805 	 */
3806 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3807 			param->sched_priority == p->rt_priority))) {
3808 		task_rq_unlock(rq, p, &flags);
3809 		return 0;
3810 	}
3811 
3812 #ifdef CONFIG_RT_GROUP_SCHED
3813 	if (user) {
3814 		/*
3815 		 * Do not allow realtime tasks into groups that have no runtime
3816 		 * assigned.
3817 		 */
3818 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3819 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3820 				!task_group_is_autogroup(task_group(p))) {
3821 			task_rq_unlock(rq, p, &flags);
3822 			return -EPERM;
3823 		}
3824 	}
3825 #endif
3826 
3827 	/* recheck policy now with rq lock held */
3828 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3829 		policy = oldpolicy = -1;
3830 		task_rq_unlock(rq, p, &flags);
3831 		goto recheck;
3832 	}
3833 	on_rq = p->on_rq;
3834 	running = task_current(rq, p);
3835 	if (on_rq)
3836 		dequeue_task(rq, p, 0);
3837 	if (running)
3838 		p->sched_class->put_prev_task(rq, p);
3839 
3840 	p->sched_reset_on_fork = reset_on_fork;
3841 
3842 	oldprio = p->prio;
3843 	prev_class = p->sched_class;
3844 	__setscheduler(rq, p, policy, param->sched_priority);
3845 
3846 	if (running)
3847 		p->sched_class->set_curr_task(rq);
3848 	if (on_rq)
3849 		enqueue_task(rq, p, 0);
3850 
3851 	check_class_changed(rq, p, prev_class, oldprio);
3852 	task_rq_unlock(rq, p, &flags);
3853 
3854 	rt_mutex_adjust_pi(p);
3855 
3856 	return 0;
3857 }
3858 
3859 /**
3860  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3861  * @p: the task in question.
3862  * @policy: new policy.
3863  * @param: structure containing the new RT priority.
3864  *
3865  * NOTE that the task may be already dead.
3866  */
3867 int sched_setscheduler(struct task_struct *p, int policy,
3868 		       const struct sched_param *param)
3869 {
3870 	return __sched_setscheduler(p, policy, param, true);
3871 }
3872 EXPORT_SYMBOL_GPL(sched_setscheduler);
3873 
3874 /**
3875  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3876  * @p: the task in question.
3877  * @policy: new policy.
3878  * @param: structure containing the new RT priority.
3879  *
3880  * Just like sched_setscheduler, only don't bother checking if the
3881  * current context has permission.  For example, this is needed in
3882  * stop_machine(): we create temporary high priority worker threads,
3883  * but our caller might not have that capability.
3884  */
3885 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3886 			       const struct sched_param *param)
3887 {
3888 	return __sched_setscheduler(p, policy, param, false);
3889 }
3890 
3891 static int
3892 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3893 {
3894 	struct sched_param lparam;
3895 	struct task_struct *p;
3896 	int retval;
3897 
3898 	if (!param || pid < 0)
3899 		return -EINVAL;
3900 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3901 		return -EFAULT;
3902 
3903 	rcu_read_lock();
3904 	retval = -ESRCH;
3905 	p = find_process_by_pid(pid);
3906 	if (p != NULL)
3907 		retval = sched_setscheduler(p, policy, &lparam);
3908 	rcu_read_unlock();
3909 
3910 	return retval;
3911 }
3912 
3913 /**
3914  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3915  * @pid: the pid in question.
3916  * @policy: new policy.
3917  * @param: structure containing the new RT priority.
3918  */
3919 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3920 		struct sched_param __user *, param)
3921 {
3922 	/* negative values for policy are not valid */
3923 	if (policy < 0)
3924 		return -EINVAL;
3925 
3926 	return do_sched_setscheduler(pid, policy, param);
3927 }
3928 
3929 /**
3930  * sys_sched_setparam - set/change the RT priority of a thread
3931  * @pid: the pid in question.
3932  * @param: structure containing the new RT priority.
3933  */
3934 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3935 {
3936 	return do_sched_setscheduler(pid, -1, param);
3937 }
3938 
3939 /**
3940  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3941  * @pid: the pid in question.
3942  */
3943 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3944 {
3945 	struct task_struct *p;
3946 	int retval;
3947 
3948 	if (pid < 0)
3949 		return -EINVAL;
3950 
3951 	retval = -ESRCH;
3952 	rcu_read_lock();
3953 	p = find_process_by_pid(pid);
3954 	if (p) {
3955 		retval = security_task_getscheduler(p);
3956 		if (!retval)
3957 			retval = p->policy
3958 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3959 	}
3960 	rcu_read_unlock();
3961 	return retval;
3962 }
3963 
3964 /**
3965  * sys_sched_getparam - get the RT priority of a thread
3966  * @pid: the pid in question.
3967  * @param: structure containing the RT priority.
3968  */
3969 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3970 {
3971 	struct sched_param lp;
3972 	struct task_struct *p;
3973 	int retval;
3974 
3975 	if (!param || pid < 0)
3976 		return -EINVAL;
3977 
3978 	rcu_read_lock();
3979 	p = find_process_by_pid(pid);
3980 	retval = -ESRCH;
3981 	if (!p)
3982 		goto out_unlock;
3983 
3984 	retval = security_task_getscheduler(p);
3985 	if (retval)
3986 		goto out_unlock;
3987 
3988 	lp.sched_priority = p->rt_priority;
3989 	rcu_read_unlock();
3990 
3991 	/*
3992 	 * This one might sleep, we cannot do it with a spinlock held ...
3993 	 */
3994 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3995 
3996 	return retval;
3997 
3998 out_unlock:
3999 	rcu_read_unlock();
4000 	return retval;
4001 }
4002 
4003 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4004 {
4005 	cpumask_var_t cpus_allowed, new_mask;
4006 	struct task_struct *p;
4007 	int retval;
4008 
4009 	get_online_cpus();
4010 	rcu_read_lock();
4011 
4012 	p = find_process_by_pid(pid);
4013 	if (!p) {
4014 		rcu_read_unlock();
4015 		put_online_cpus();
4016 		return -ESRCH;
4017 	}
4018 
4019 	/* Prevent p going away */
4020 	get_task_struct(p);
4021 	rcu_read_unlock();
4022 
4023 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4024 		retval = -ENOMEM;
4025 		goto out_put_task;
4026 	}
4027 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4028 		retval = -ENOMEM;
4029 		goto out_free_cpus_allowed;
4030 	}
4031 	retval = -EPERM;
4032 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4033 		goto out_unlock;
4034 
4035 	retval = security_task_setscheduler(p);
4036 	if (retval)
4037 		goto out_unlock;
4038 
4039 	cpuset_cpus_allowed(p, cpus_allowed);
4040 	cpumask_and(new_mask, in_mask, cpus_allowed);
4041 again:
4042 	retval = set_cpus_allowed_ptr(p, new_mask);
4043 
4044 	if (!retval) {
4045 		cpuset_cpus_allowed(p, cpus_allowed);
4046 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4047 			/*
4048 			 * We must have raced with a concurrent cpuset
4049 			 * update. Just reset the cpus_allowed to the
4050 			 * cpuset's cpus_allowed
4051 			 */
4052 			cpumask_copy(new_mask, cpus_allowed);
4053 			goto again;
4054 		}
4055 	}
4056 out_unlock:
4057 	free_cpumask_var(new_mask);
4058 out_free_cpus_allowed:
4059 	free_cpumask_var(cpus_allowed);
4060 out_put_task:
4061 	put_task_struct(p);
4062 	put_online_cpus();
4063 	return retval;
4064 }
4065 
4066 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4067 			     struct cpumask *new_mask)
4068 {
4069 	if (len < cpumask_size())
4070 		cpumask_clear(new_mask);
4071 	else if (len > cpumask_size())
4072 		len = cpumask_size();
4073 
4074 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4075 }
4076 
4077 /**
4078  * sys_sched_setaffinity - set the cpu affinity of a process
4079  * @pid: pid of the process
4080  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4081  * @user_mask_ptr: user-space pointer to the new cpu mask
4082  */
4083 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4084 		unsigned long __user *, user_mask_ptr)
4085 {
4086 	cpumask_var_t new_mask;
4087 	int retval;
4088 
4089 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4090 		return -ENOMEM;
4091 
4092 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4093 	if (retval == 0)
4094 		retval = sched_setaffinity(pid, new_mask);
4095 	free_cpumask_var(new_mask);
4096 	return retval;
4097 }
4098 
4099 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4100 {
4101 	struct task_struct *p;
4102 	unsigned long flags;
4103 	int retval;
4104 
4105 	get_online_cpus();
4106 	rcu_read_lock();
4107 
4108 	retval = -ESRCH;
4109 	p = find_process_by_pid(pid);
4110 	if (!p)
4111 		goto out_unlock;
4112 
4113 	retval = security_task_getscheduler(p);
4114 	if (retval)
4115 		goto out_unlock;
4116 
4117 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4118 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4119 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4120 
4121 out_unlock:
4122 	rcu_read_unlock();
4123 	put_online_cpus();
4124 
4125 	return retval;
4126 }
4127 
4128 /**
4129  * sys_sched_getaffinity - get the cpu affinity of a process
4130  * @pid: pid of the process
4131  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4132  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4133  */
4134 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4135 		unsigned long __user *, user_mask_ptr)
4136 {
4137 	int ret;
4138 	cpumask_var_t mask;
4139 
4140 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4141 		return -EINVAL;
4142 	if (len & (sizeof(unsigned long)-1))
4143 		return -EINVAL;
4144 
4145 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4146 		return -ENOMEM;
4147 
4148 	ret = sched_getaffinity(pid, mask);
4149 	if (ret == 0) {
4150 		size_t retlen = min_t(size_t, len, cpumask_size());
4151 
4152 		if (copy_to_user(user_mask_ptr, mask, retlen))
4153 			ret = -EFAULT;
4154 		else
4155 			ret = retlen;
4156 	}
4157 	free_cpumask_var(mask);
4158 
4159 	return ret;
4160 }
4161 
4162 /**
4163  * sys_sched_yield - yield the current processor to other threads.
4164  *
4165  * This function yields the current CPU to other tasks. If there are no
4166  * other threads running on this CPU then this function will return.
4167  */
4168 SYSCALL_DEFINE0(sched_yield)
4169 {
4170 	struct rq *rq = this_rq_lock();
4171 
4172 	schedstat_inc(rq, yld_count);
4173 	current->sched_class->yield_task(rq);
4174 
4175 	/*
4176 	 * Since we are going to call schedule() anyway, there's
4177 	 * no need to preempt or enable interrupts:
4178 	 */
4179 	__release(rq->lock);
4180 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4181 	do_raw_spin_unlock(&rq->lock);
4182 	sched_preempt_enable_no_resched();
4183 
4184 	schedule();
4185 
4186 	return 0;
4187 }
4188 
4189 static inline int should_resched(void)
4190 {
4191 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4192 }
4193 
4194 static void __cond_resched(void)
4195 {
4196 	add_preempt_count(PREEMPT_ACTIVE);
4197 	__schedule();
4198 	sub_preempt_count(PREEMPT_ACTIVE);
4199 }
4200 
4201 int __sched _cond_resched(void)
4202 {
4203 	if (should_resched()) {
4204 		__cond_resched();
4205 		return 1;
4206 	}
4207 	return 0;
4208 }
4209 EXPORT_SYMBOL(_cond_resched);
4210 
4211 /*
4212  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4213  * call schedule, and on return reacquire the lock.
4214  *
4215  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4216  * operations here to prevent schedule() from being called twice (once via
4217  * spin_unlock(), once by hand).
4218  */
4219 int __cond_resched_lock(spinlock_t *lock)
4220 {
4221 	int resched = should_resched();
4222 	int ret = 0;
4223 
4224 	lockdep_assert_held(lock);
4225 
4226 	if (spin_needbreak(lock) || resched) {
4227 		spin_unlock(lock);
4228 		if (resched)
4229 			__cond_resched();
4230 		else
4231 			cpu_relax();
4232 		ret = 1;
4233 		spin_lock(lock);
4234 	}
4235 	return ret;
4236 }
4237 EXPORT_SYMBOL(__cond_resched_lock);
4238 
4239 int __sched __cond_resched_softirq(void)
4240 {
4241 	BUG_ON(!in_softirq());
4242 
4243 	if (should_resched()) {
4244 		local_bh_enable();
4245 		__cond_resched();
4246 		local_bh_disable();
4247 		return 1;
4248 	}
4249 	return 0;
4250 }
4251 EXPORT_SYMBOL(__cond_resched_softirq);
4252 
4253 /**
4254  * yield - yield the current processor to other threads.
4255  *
4256  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4257  *
4258  * The scheduler is at all times free to pick the calling task as the most
4259  * eligible task to run, if removing the yield() call from your code breaks
4260  * it, its already broken.
4261  *
4262  * Typical broken usage is:
4263  *
4264  * while (!event)
4265  * 	yield();
4266  *
4267  * where one assumes that yield() will let 'the other' process run that will
4268  * make event true. If the current task is a SCHED_FIFO task that will never
4269  * happen. Never use yield() as a progress guarantee!!
4270  *
4271  * If you want to use yield() to wait for something, use wait_event().
4272  * If you want to use yield() to be 'nice' for others, use cond_resched().
4273  * If you still want to use yield(), do not!
4274  */
4275 void __sched yield(void)
4276 {
4277 	set_current_state(TASK_RUNNING);
4278 	sys_sched_yield();
4279 }
4280 EXPORT_SYMBOL(yield);
4281 
4282 /**
4283  * yield_to - yield the current processor to another thread in
4284  * your thread group, or accelerate that thread toward the
4285  * processor it's on.
4286  * @p: target task
4287  * @preempt: whether task preemption is allowed or not
4288  *
4289  * It's the caller's job to ensure that the target task struct
4290  * can't go away on us before we can do any checks.
4291  *
4292  * Returns true if we indeed boosted the target task.
4293  */
4294 bool __sched yield_to(struct task_struct *p, bool preempt)
4295 {
4296 	struct task_struct *curr = current;
4297 	struct rq *rq, *p_rq;
4298 	unsigned long flags;
4299 	bool yielded = 0;
4300 
4301 	local_irq_save(flags);
4302 	rq = this_rq();
4303 
4304 again:
4305 	p_rq = task_rq(p);
4306 	double_rq_lock(rq, p_rq);
4307 	while (task_rq(p) != p_rq) {
4308 		double_rq_unlock(rq, p_rq);
4309 		goto again;
4310 	}
4311 
4312 	if (!curr->sched_class->yield_to_task)
4313 		goto out;
4314 
4315 	if (curr->sched_class != p->sched_class)
4316 		goto out;
4317 
4318 	if (task_running(p_rq, p) || p->state)
4319 		goto out;
4320 
4321 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4322 	if (yielded) {
4323 		schedstat_inc(rq, yld_count);
4324 		/*
4325 		 * Make p's CPU reschedule; pick_next_entity takes care of
4326 		 * fairness.
4327 		 */
4328 		if (preempt && rq != p_rq)
4329 			resched_task(p_rq->curr);
4330 	}
4331 
4332 out:
4333 	double_rq_unlock(rq, p_rq);
4334 	local_irq_restore(flags);
4335 
4336 	if (yielded)
4337 		schedule();
4338 
4339 	return yielded;
4340 }
4341 EXPORT_SYMBOL_GPL(yield_to);
4342 
4343 /*
4344  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4345  * that process accounting knows that this is a task in IO wait state.
4346  */
4347 void __sched io_schedule(void)
4348 {
4349 	struct rq *rq = raw_rq();
4350 
4351 	delayacct_blkio_start();
4352 	atomic_inc(&rq->nr_iowait);
4353 	blk_flush_plug(current);
4354 	current->in_iowait = 1;
4355 	schedule();
4356 	current->in_iowait = 0;
4357 	atomic_dec(&rq->nr_iowait);
4358 	delayacct_blkio_end();
4359 }
4360 EXPORT_SYMBOL(io_schedule);
4361 
4362 long __sched io_schedule_timeout(long timeout)
4363 {
4364 	struct rq *rq = raw_rq();
4365 	long ret;
4366 
4367 	delayacct_blkio_start();
4368 	atomic_inc(&rq->nr_iowait);
4369 	blk_flush_plug(current);
4370 	current->in_iowait = 1;
4371 	ret = schedule_timeout(timeout);
4372 	current->in_iowait = 0;
4373 	atomic_dec(&rq->nr_iowait);
4374 	delayacct_blkio_end();
4375 	return ret;
4376 }
4377 
4378 /**
4379  * sys_sched_get_priority_max - return maximum RT priority.
4380  * @policy: scheduling class.
4381  *
4382  * this syscall returns the maximum rt_priority that can be used
4383  * by a given scheduling class.
4384  */
4385 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4386 {
4387 	int ret = -EINVAL;
4388 
4389 	switch (policy) {
4390 	case SCHED_FIFO:
4391 	case SCHED_RR:
4392 		ret = MAX_USER_RT_PRIO-1;
4393 		break;
4394 	case SCHED_NORMAL:
4395 	case SCHED_BATCH:
4396 	case SCHED_IDLE:
4397 		ret = 0;
4398 		break;
4399 	}
4400 	return ret;
4401 }
4402 
4403 /**
4404  * sys_sched_get_priority_min - return minimum RT priority.
4405  * @policy: scheduling class.
4406  *
4407  * this syscall returns the minimum rt_priority that can be used
4408  * by a given scheduling class.
4409  */
4410 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4411 {
4412 	int ret = -EINVAL;
4413 
4414 	switch (policy) {
4415 	case SCHED_FIFO:
4416 	case SCHED_RR:
4417 		ret = 1;
4418 		break;
4419 	case SCHED_NORMAL:
4420 	case SCHED_BATCH:
4421 	case SCHED_IDLE:
4422 		ret = 0;
4423 	}
4424 	return ret;
4425 }
4426 
4427 /**
4428  * sys_sched_rr_get_interval - return the default timeslice of a process.
4429  * @pid: pid of the process.
4430  * @interval: userspace pointer to the timeslice value.
4431  *
4432  * this syscall writes the default timeslice value of a given process
4433  * into the user-space timespec buffer. A value of '0' means infinity.
4434  */
4435 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4436 		struct timespec __user *, interval)
4437 {
4438 	struct task_struct *p;
4439 	unsigned int time_slice;
4440 	unsigned long flags;
4441 	struct rq *rq;
4442 	int retval;
4443 	struct timespec t;
4444 
4445 	if (pid < 0)
4446 		return -EINVAL;
4447 
4448 	retval = -ESRCH;
4449 	rcu_read_lock();
4450 	p = find_process_by_pid(pid);
4451 	if (!p)
4452 		goto out_unlock;
4453 
4454 	retval = security_task_getscheduler(p);
4455 	if (retval)
4456 		goto out_unlock;
4457 
4458 	rq = task_rq_lock(p, &flags);
4459 	time_slice = p->sched_class->get_rr_interval(rq, p);
4460 	task_rq_unlock(rq, p, &flags);
4461 
4462 	rcu_read_unlock();
4463 	jiffies_to_timespec(time_slice, &t);
4464 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4465 	return retval;
4466 
4467 out_unlock:
4468 	rcu_read_unlock();
4469 	return retval;
4470 }
4471 
4472 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4473 
4474 void sched_show_task(struct task_struct *p)
4475 {
4476 	unsigned long free = 0;
4477 	unsigned state;
4478 
4479 	state = p->state ? __ffs(p->state) + 1 : 0;
4480 	printk(KERN_INFO "%-15.15s %c", p->comm,
4481 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4482 #if BITS_PER_LONG == 32
4483 	if (state == TASK_RUNNING)
4484 		printk(KERN_CONT " running  ");
4485 	else
4486 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4487 #else
4488 	if (state == TASK_RUNNING)
4489 		printk(KERN_CONT "  running task    ");
4490 	else
4491 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4492 #endif
4493 #ifdef CONFIG_DEBUG_STACK_USAGE
4494 	free = stack_not_used(p);
4495 #endif
4496 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4497 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4498 		(unsigned long)task_thread_info(p)->flags);
4499 
4500 	show_stack(p, NULL);
4501 }
4502 
4503 void show_state_filter(unsigned long state_filter)
4504 {
4505 	struct task_struct *g, *p;
4506 
4507 #if BITS_PER_LONG == 32
4508 	printk(KERN_INFO
4509 		"  task                PC stack   pid father\n");
4510 #else
4511 	printk(KERN_INFO
4512 		"  task                        PC stack   pid father\n");
4513 #endif
4514 	rcu_read_lock();
4515 	do_each_thread(g, p) {
4516 		/*
4517 		 * reset the NMI-timeout, listing all files on a slow
4518 		 * console might take a lot of time:
4519 		 */
4520 		touch_nmi_watchdog();
4521 		if (!state_filter || (p->state & state_filter))
4522 			sched_show_task(p);
4523 	} while_each_thread(g, p);
4524 
4525 	touch_all_softlockup_watchdogs();
4526 
4527 #ifdef CONFIG_SCHED_DEBUG
4528 	sysrq_sched_debug_show();
4529 #endif
4530 	rcu_read_unlock();
4531 	/*
4532 	 * Only show locks if all tasks are dumped:
4533 	 */
4534 	if (!state_filter)
4535 		debug_show_all_locks();
4536 }
4537 
4538 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4539 {
4540 	idle->sched_class = &idle_sched_class;
4541 }
4542 
4543 /**
4544  * init_idle - set up an idle thread for a given CPU
4545  * @idle: task in question
4546  * @cpu: cpu the idle task belongs to
4547  *
4548  * NOTE: this function does not set the idle thread's NEED_RESCHED
4549  * flag, to make booting more robust.
4550  */
4551 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4552 {
4553 	struct rq *rq = cpu_rq(cpu);
4554 	unsigned long flags;
4555 
4556 	raw_spin_lock_irqsave(&rq->lock, flags);
4557 
4558 	__sched_fork(idle);
4559 	idle->state = TASK_RUNNING;
4560 	idle->se.exec_start = sched_clock();
4561 
4562 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4563 	/*
4564 	 * We're having a chicken and egg problem, even though we are
4565 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4566 	 * lockdep check in task_group() will fail.
4567 	 *
4568 	 * Similar case to sched_fork(). / Alternatively we could
4569 	 * use task_rq_lock() here and obtain the other rq->lock.
4570 	 *
4571 	 * Silence PROVE_RCU
4572 	 */
4573 	rcu_read_lock();
4574 	__set_task_cpu(idle, cpu);
4575 	rcu_read_unlock();
4576 
4577 	rq->curr = rq->idle = idle;
4578 #if defined(CONFIG_SMP)
4579 	idle->on_cpu = 1;
4580 #endif
4581 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4582 
4583 	/* Set the preempt count _outside_ the spinlocks! */
4584 	task_thread_info(idle)->preempt_count = 0;
4585 
4586 	/*
4587 	 * The idle tasks have their own, simple scheduling class:
4588 	 */
4589 	idle->sched_class = &idle_sched_class;
4590 	ftrace_graph_init_idle_task(idle, cpu);
4591 #if defined(CONFIG_SMP)
4592 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4593 #endif
4594 }
4595 
4596 #ifdef CONFIG_SMP
4597 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4598 {
4599 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4600 		p->sched_class->set_cpus_allowed(p, new_mask);
4601 
4602 	cpumask_copy(&p->cpus_allowed, new_mask);
4603 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4604 }
4605 
4606 /*
4607  * This is how migration works:
4608  *
4609  * 1) we invoke migration_cpu_stop() on the target CPU using
4610  *    stop_one_cpu().
4611  * 2) stopper starts to run (implicitly forcing the migrated thread
4612  *    off the CPU)
4613  * 3) it checks whether the migrated task is still in the wrong runqueue.
4614  * 4) if it's in the wrong runqueue then the migration thread removes
4615  *    it and puts it into the right queue.
4616  * 5) stopper completes and stop_one_cpu() returns and the migration
4617  *    is done.
4618  */
4619 
4620 /*
4621  * Change a given task's CPU affinity. Migrate the thread to a
4622  * proper CPU and schedule it away if the CPU it's executing on
4623  * is removed from the allowed bitmask.
4624  *
4625  * NOTE: the caller must have a valid reference to the task, the
4626  * task must not exit() & deallocate itself prematurely. The
4627  * call is not atomic; no spinlocks may be held.
4628  */
4629 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4630 {
4631 	unsigned long flags;
4632 	struct rq *rq;
4633 	unsigned int dest_cpu;
4634 	int ret = 0;
4635 
4636 	rq = task_rq_lock(p, &flags);
4637 
4638 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4639 		goto out;
4640 
4641 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4642 		ret = -EINVAL;
4643 		goto out;
4644 	}
4645 
4646 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4647 		ret = -EINVAL;
4648 		goto out;
4649 	}
4650 
4651 	do_set_cpus_allowed(p, new_mask);
4652 
4653 	/* Can the task run on the task's current CPU? If so, we're done */
4654 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4655 		goto out;
4656 
4657 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4658 	if (p->on_rq) {
4659 		struct migration_arg arg = { p, dest_cpu };
4660 		/* Need help from migration thread: drop lock and wait. */
4661 		task_rq_unlock(rq, p, &flags);
4662 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4663 		tlb_migrate_finish(p->mm);
4664 		return 0;
4665 	}
4666 out:
4667 	task_rq_unlock(rq, p, &flags);
4668 
4669 	return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4672 
4673 /*
4674  * Move (not current) task off this cpu, onto dest cpu. We're doing
4675  * this because either it can't run here any more (set_cpus_allowed()
4676  * away from this CPU, or CPU going down), or because we're
4677  * attempting to rebalance this task on exec (sched_exec).
4678  *
4679  * So we race with normal scheduler movements, but that's OK, as long
4680  * as the task is no longer on this CPU.
4681  *
4682  * Returns non-zero if task was successfully migrated.
4683  */
4684 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4685 {
4686 	struct rq *rq_dest, *rq_src;
4687 	int ret = 0;
4688 
4689 	if (unlikely(!cpu_active(dest_cpu)))
4690 		return ret;
4691 
4692 	rq_src = cpu_rq(src_cpu);
4693 	rq_dest = cpu_rq(dest_cpu);
4694 
4695 	raw_spin_lock(&p->pi_lock);
4696 	double_rq_lock(rq_src, rq_dest);
4697 	/* Already moved. */
4698 	if (task_cpu(p) != src_cpu)
4699 		goto done;
4700 	/* Affinity changed (again). */
4701 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4702 		goto fail;
4703 
4704 	/*
4705 	 * If we're not on a rq, the next wake-up will ensure we're
4706 	 * placed properly.
4707 	 */
4708 	if (p->on_rq) {
4709 		dequeue_task(rq_src, p, 0);
4710 		set_task_cpu(p, dest_cpu);
4711 		enqueue_task(rq_dest, p, 0);
4712 		check_preempt_curr(rq_dest, p, 0);
4713 	}
4714 done:
4715 	ret = 1;
4716 fail:
4717 	double_rq_unlock(rq_src, rq_dest);
4718 	raw_spin_unlock(&p->pi_lock);
4719 	return ret;
4720 }
4721 
4722 /*
4723  * migration_cpu_stop - this will be executed by a highprio stopper thread
4724  * and performs thread migration by bumping thread off CPU then
4725  * 'pushing' onto another runqueue.
4726  */
4727 static int migration_cpu_stop(void *data)
4728 {
4729 	struct migration_arg *arg = data;
4730 
4731 	/*
4732 	 * The original target cpu might have gone down and we might
4733 	 * be on another cpu but it doesn't matter.
4734 	 */
4735 	local_irq_disable();
4736 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4737 	local_irq_enable();
4738 	return 0;
4739 }
4740 
4741 #ifdef CONFIG_HOTPLUG_CPU
4742 
4743 /*
4744  * Ensures that the idle task is using init_mm right before its cpu goes
4745  * offline.
4746  */
4747 void idle_task_exit(void)
4748 {
4749 	struct mm_struct *mm = current->active_mm;
4750 
4751 	BUG_ON(cpu_online(smp_processor_id()));
4752 
4753 	if (mm != &init_mm)
4754 		switch_mm(mm, &init_mm, current);
4755 	mmdrop(mm);
4756 }
4757 
4758 /*
4759  * Since this CPU is going 'away' for a while, fold any nr_active delta
4760  * we might have. Assumes we're called after migrate_tasks() so that the
4761  * nr_active count is stable.
4762  *
4763  * Also see the comment "Global load-average calculations".
4764  */
4765 static void calc_load_migrate(struct rq *rq)
4766 {
4767 	long delta = calc_load_fold_active(rq);
4768 	if (delta)
4769 		atomic_long_add(delta, &calc_load_tasks);
4770 }
4771 
4772 /*
4773  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4774  * try_to_wake_up()->select_task_rq().
4775  *
4776  * Called with rq->lock held even though we'er in stop_machine() and
4777  * there's no concurrency possible, we hold the required locks anyway
4778  * because of lock validation efforts.
4779  */
4780 static void migrate_tasks(unsigned int dead_cpu)
4781 {
4782 	struct rq *rq = cpu_rq(dead_cpu);
4783 	struct task_struct *next, *stop = rq->stop;
4784 	int dest_cpu;
4785 
4786 	/*
4787 	 * Fudge the rq selection such that the below task selection loop
4788 	 * doesn't get stuck on the currently eligible stop task.
4789 	 *
4790 	 * We're currently inside stop_machine() and the rq is either stuck
4791 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4792 	 * either way we should never end up calling schedule() until we're
4793 	 * done here.
4794 	 */
4795 	rq->stop = NULL;
4796 
4797 	for ( ; ; ) {
4798 		/*
4799 		 * There's this thread running, bail when that's the only
4800 		 * remaining thread.
4801 		 */
4802 		if (rq->nr_running == 1)
4803 			break;
4804 
4805 		next = pick_next_task(rq);
4806 		BUG_ON(!next);
4807 		next->sched_class->put_prev_task(rq, next);
4808 
4809 		/* Find suitable destination for @next, with force if needed. */
4810 		dest_cpu = select_fallback_rq(dead_cpu, next);
4811 		raw_spin_unlock(&rq->lock);
4812 
4813 		__migrate_task(next, dead_cpu, dest_cpu);
4814 
4815 		raw_spin_lock(&rq->lock);
4816 	}
4817 
4818 	rq->stop = stop;
4819 }
4820 
4821 #endif /* CONFIG_HOTPLUG_CPU */
4822 
4823 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4824 
4825 static struct ctl_table sd_ctl_dir[] = {
4826 	{
4827 		.procname	= "sched_domain",
4828 		.mode		= 0555,
4829 	},
4830 	{}
4831 };
4832 
4833 static struct ctl_table sd_ctl_root[] = {
4834 	{
4835 		.procname	= "kernel",
4836 		.mode		= 0555,
4837 		.child		= sd_ctl_dir,
4838 	},
4839 	{}
4840 };
4841 
4842 static struct ctl_table *sd_alloc_ctl_entry(int n)
4843 {
4844 	struct ctl_table *entry =
4845 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4846 
4847 	return entry;
4848 }
4849 
4850 static void sd_free_ctl_entry(struct ctl_table **tablep)
4851 {
4852 	struct ctl_table *entry;
4853 
4854 	/*
4855 	 * In the intermediate directories, both the child directory and
4856 	 * procname are dynamically allocated and could fail but the mode
4857 	 * will always be set. In the lowest directory the names are
4858 	 * static strings and all have proc handlers.
4859 	 */
4860 	for (entry = *tablep; entry->mode; entry++) {
4861 		if (entry->child)
4862 			sd_free_ctl_entry(&entry->child);
4863 		if (entry->proc_handler == NULL)
4864 			kfree(entry->procname);
4865 	}
4866 
4867 	kfree(*tablep);
4868 	*tablep = NULL;
4869 }
4870 
4871 static int min_load_idx = 0;
4872 static int max_load_idx = CPU_LOAD_IDX_MAX;
4873 
4874 static void
4875 set_table_entry(struct ctl_table *entry,
4876 		const char *procname, void *data, int maxlen,
4877 		umode_t mode, proc_handler *proc_handler,
4878 		bool load_idx)
4879 {
4880 	entry->procname = procname;
4881 	entry->data = data;
4882 	entry->maxlen = maxlen;
4883 	entry->mode = mode;
4884 	entry->proc_handler = proc_handler;
4885 
4886 	if (load_idx) {
4887 		entry->extra1 = &min_load_idx;
4888 		entry->extra2 = &max_load_idx;
4889 	}
4890 }
4891 
4892 static struct ctl_table *
4893 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4894 {
4895 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4896 
4897 	if (table == NULL)
4898 		return NULL;
4899 
4900 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4901 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4902 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4903 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4904 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4905 		sizeof(int), 0644, proc_dointvec_minmax, true);
4906 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4907 		sizeof(int), 0644, proc_dointvec_minmax, true);
4908 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4909 		sizeof(int), 0644, proc_dointvec_minmax, true);
4910 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4911 		sizeof(int), 0644, proc_dointvec_minmax, true);
4912 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4913 		sizeof(int), 0644, proc_dointvec_minmax, true);
4914 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4915 		sizeof(int), 0644, proc_dointvec_minmax, false);
4916 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4917 		sizeof(int), 0644, proc_dointvec_minmax, false);
4918 	set_table_entry(&table[9], "cache_nice_tries",
4919 		&sd->cache_nice_tries,
4920 		sizeof(int), 0644, proc_dointvec_minmax, false);
4921 	set_table_entry(&table[10], "flags", &sd->flags,
4922 		sizeof(int), 0644, proc_dointvec_minmax, false);
4923 	set_table_entry(&table[11], "name", sd->name,
4924 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4925 	/* &table[12] is terminator */
4926 
4927 	return table;
4928 }
4929 
4930 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4931 {
4932 	struct ctl_table *entry, *table;
4933 	struct sched_domain *sd;
4934 	int domain_num = 0, i;
4935 	char buf[32];
4936 
4937 	for_each_domain(cpu, sd)
4938 		domain_num++;
4939 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4940 	if (table == NULL)
4941 		return NULL;
4942 
4943 	i = 0;
4944 	for_each_domain(cpu, sd) {
4945 		snprintf(buf, 32, "domain%d", i);
4946 		entry->procname = kstrdup(buf, GFP_KERNEL);
4947 		entry->mode = 0555;
4948 		entry->child = sd_alloc_ctl_domain_table(sd);
4949 		entry++;
4950 		i++;
4951 	}
4952 	return table;
4953 }
4954 
4955 static struct ctl_table_header *sd_sysctl_header;
4956 static void register_sched_domain_sysctl(void)
4957 {
4958 	int i, cpu_num = num_possible_cpus();
4959 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4960 	char buf[32];
4961 
4962 	WARN_ON(sd_ctl_dir[0].child);
4963 	sd_ctl_dir[0].child = entry;
4964 
4965 	if (entry == NULL)
4966 		return;
4967 
4968 	for_each_possible_cpu(i) {
4969 		snprintf(buf, 32, "cpu%d", i);
4970 		entry->procname = kstrdup(buf, GFP_KERNEL);
4971 		entry->mode = 0555;
4972 		entry->child = sd_alloc_ctl_cpu_table(i);
4973 		entry++;
4974 	}
4975 
4976 	WARN_ON(sd_sysctl_header);
4977 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4978 }
4979 
4980 /* may be called multiple times per register */
4981 static void unregister_sched_domain_sysctl(void)
4982 {
4983 	if (sd_sysctl_header)
4984 		unregister_sysctl_table(sd_sysctl_header);
4985 	sd_sysctl_header = NULL;
4986 	if (sd_ctl_dir[0].child)
4987 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4988 }
4989 #else
4990 static void register_sched_domain_sysctl(void)
4991 {
4992 }
4993 static void unregister_sched_domain_sysctl(void)
4994 {
4995 }
4996 #endif
4997 
4998 static void set_rq_online(struct rq *rq)
4999 {
5000 	if (!rq->online) {
5001 		const struct sched_class *class;
5002 
5003 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5004 		rq->online = 1;
5005 
5006 		for_each_class(class) {
5007 			if (class->rq_online)
5008 				class->rq_online(rq);
5009 		}
5010 	}
5011 }
5012 
5013 static void set_rq_offline(struct rq *rq)
5014 {
5015 	if (rq->online) {
5016 		const struct sched_class *class;
5017 
5018 		for_each_class(class) {
5019 			if (class->rq_offline)
5020 				class->rq_offline(rq);
5021 		}
5022 
5023 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5024 		rq->online = 0;
5025 	}
5026 }
5027 
5028 /*
5029  * migration_call - callback that gets triggered when a CPU is added.
5030  * Here we can start up the necessary migration thread for the new CPU.
5031  */
5032 static int __cpuinit
5033 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5034 {
5035 	int cpu = (long)hcpu;
5036 	unsigned long flags;
5037 	struct rq *rq = cpu_rq(cpu);
5038 
5039 	switch (action & ~CPU_TASKS_FROZEN) {
5040 
5041 	case CPU_UP_PREPARE:
5042 		rq->calc_load_update = calc_load_update;
5043 		break;
5044 
5045 	case CPU_ONLINE:
5046 		/* Update our root-domain */
5047 		raw_spin_lock_irqsave(&rq->lock, flags);
5048 		if (rq->rd) {
5049 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5050 
5051 			set_rq_online(rq);
5052 		}
5053 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5054 		break;
5055 
5056 #ifdef CONFIG_HOTPLUG_CPU
5057 	case CPU_DYING:
5058 		sched_ttwu_pending();
5059 		/* Update our root-domain */
5060 		raw_spin_lock_irqsave(&rq->lock, flags);
5061 		if (rq->rd) {
5062 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5063 			set_rq_offline(rq);
5064 		}
5065 		migrate_tasks(cpu);
5066 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5067 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5068 		break;
5069 
5070 	case CPU_DEAD:
5071 		calc_load_migrate(rq);
5072 		break;
5073 #endif
5074 	}
5075 
5076 	update_max_interval();
5077 
5078 	return NOTIFY_OK;
5079 }
5080 
5081 /*
5082  * Register at high priority so that task migration (migrate_all_tasks)
5083  * happens before everything else.  This has to be lower priority than
5084  * the notifier in the perf_event subsystem, though.
5085  */
5086 static struct notifier_block __cpuinitdata migration_notifier = {
5087 	.notifier_call = migration_call,
5088 	.priority = CPU_PRI_MIGRATION,
5089 };
5090 
5091 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5092 				      unsigned long action, void *hcpu)
5093 {
5094 	switch (action & ~CPU_TASKS_FROZEN) {
5095 	case CPU_STARTING:
5096 	case CPU_DOWN_FAILED:
5097 		set_cpu_active((long)hcpu, true);
5098 		return NOTIFY_OK;
5099 	default:
5100 		return NOTIFY_DONE;
5101 	}
5102 }
5103 
5104 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5105 					unsigned long action, void *hcpu)
5106 {
5107 	switch (action & ~CPU_TASKS_FROZEN) {
5108 	case CPU_DOWN_PREPARE:
5109 		set_cpu_active((long)hcpu, false);
5110 		return NOTIFY_OK;
5111 	default:
5112 		return NOTIFY_DONE;
5113 	}
5114 }
5115 
5116 static int __init migration_init(void)
5117 {
5118 	void *cpu = (void *)(long)smp_processor_id();
5119 	int err;
5120 
5121 	/* Initialize migration for the boot CPU */
5122 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5123 	BUG_ON(err == NOTIFY_BAD);
5124 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5125 	register_cpu_notifier(&migration_notifier);
5126 
5127 	/* Register cpu active notifiers */
5128 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5129 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5130 
5131 	return 0;
5132 }
5133 early_initcall(migration_init);
5134 #endif
5135 
5136 #ifdef CONFIG_SMP
5137 
5138 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5139 
5140 #ifdef CONFIG_SCHED_DEBUG
5141 
5142 static __read_mostly int sched_debug_enabled;
5143 
5144 static int __init sched_debug_setup(char *str)
5145 {
5146 	sched_debug_enabled = 1;
5147 
5148 	return 0;
5149 }
5150 early_param("sched_debug", sched_debug_setup);
5151 
5152 static inline bool sched_debug(void)
5153 {
5154 	return sched_debug_enabled;
5155 }
5156 
5157 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5158 				  struct cpumask *groupmask)
5159 {
5160 	struct sched_group *group = sd->groups;
5161 	char str[256];
5162 
5163 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5164 	cpumask_clear(groupmask);
5165 
5166 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5167 
5168 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5169 		printk("does not load-balance\n");
5170 		if (sd->parent)
5171 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5172 					" has parent");
5173 		return -1;
5174 	}
5175 
5176 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5177 
5178 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5179 		printk(KERN_ERR "ERROR: domain->span does not contain "
5180 				"CPU%d\n", cpu);
5181 	}
5182 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5183 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5184 				" CPU%d\n", cpu);
5185 	}
5186 
5187 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5188 	do {
5189 		if (!group) {
5190 			printk("\n");
5191 			printk(KERN_ERR "ERROR: group is NULL\n");
5192 			break;
5193 		}
5194 
5195 		/*
5196 		 * Even though we initialize ->power to something semi-sane,
5197 		 * we leave power_orig unset. This allows us to detect if
5198 		 * domain iteration is still funny without causing /0 traps.
5199 		 */
5200 		if (!group->sgp->power_orig) {
5201 			printk(KERN_CONT "\n");
5202 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5203 					"set\n");
5204 			break;
5205 		}
5206 
5207 		if (!cpumask_weight(sched_group_cpus(group))) {
5208 			printk(KERN_CONT "\n");
5209 			printk(KERN_ERR "ERROR: empty group\n");
5210 			break;
5211 		}
5212 
5213 		if (!(sd->flags & SD_OVERLAP) &&
5214 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5215 			printk(KERN_CONT "\n");
5216 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5217 			break;
5218 		}
5219 
5220 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5221 
5222 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5223 
5224 		printk(KERN_CONT " %s", str);
5225 		if (group->sgp->power != SCHED_POWER_SCALE) {
5226 			printk(KERN_CONT " (cpu_power = %d)",
5227 				group->sgp->power);
5228 		}
5229 
5230 		group = group->next;
5231 	} while (group != sd->groups);
5232 	printk(KERN_CONT "\n");
5233 
5234 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5235 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5236 
5237 	if (sd->parent &&
5238 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5239 		printk(KERN_ERR "ERROR: parent span is not a superset "
5240 			"of domain->span\n");
5241 	return 0;
5242 }
5243 
5244 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5245 {
5246 	int level = 0;
5247 
5248 	if (!sched_debug_enabled)
5249 		return;
5250 
5251 	if (!sd) {
5252 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5253 		return;
5254 	}
5255 
5256 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5257 
5258 	for (;;) {
5259 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5260 			break;
5261 		level++;
5262 		sd = sd->parent;
5263 		if (!sd)
5264 			break;
5265 	}
5266 }
5267 #else /* !CONFIG_SCHED_DEBUG */
5268 # define sched_domain_debug(sd, cpu) do { } while (0)
5269 static inline bool sched_debug(void)
5270 {
5271 	return false;
5272 }
5273 #endif /* CONFIG_SCHED_DEBUG */
5274 
5275 static int sd_degenerate(struct sched_domain *sd)
5276 {
5277 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5278 		return 1;
5279 
5280 	/* Following flags need at least 2 groups */
5281 	if (sd->flags & (SD_LOAD_BALANCE |
5282 			 SD_BALANCE_NEWIDLE |
5283 			 SD_BALANCE_FORK |
5284 			 SD_BALANCE_EXEC |
5285 			 SD_SHARE_CPUPOWER |
5286 			 SD_SHARE_PKG_RESOURCES)) {
5287 		if (sd->groups != sd->groups->next)
5288 			return 0;
5289 	}
5290 
5291 	/* Following flags don't use groups */
5292 	if (sd->flags & (SD_WAKE_AFFINE))
5293 		return 0;
5294 
5295 	return 1;
5296 }
5297 
5298 static int
5299 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5300 {
5301 	unsigned long cflags = sd->flags, pflags = parent->flags;
5302 
5303 	if (sd_degenerate(parent))
5304 		return 1;
5305 
5306 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5307 		return 0;
5308 
5309 	/* Flags needing groups don't count if only 1 group in parent */
5310 	if (parent->groups == parent->groups->next) {
5311 		pflags &= ~(SD_LOAD_BALANCE |
5312 				SD_BALANCE_NEWIDLE |
5313 				SD_BALANCE_FORK |
5314 				SD_BALANCE_EXEC |
5315 				SD_SHARE_CPUPOWER |
5316 				SD_SHARE_PKG_RESOURCES);
5317 		if (nr_node_ids == 1)
5318 			pflags &= ~SD_SERIALIZE;
5319 	}
5320 	if (~cflags & pflags)
5321 		return 0;
5322 
5323 	return 1;
5324 }
5325 
5326 static void free_rootdomain(struct rcu_head *rcu)
5327 {
5328 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5329 
5330 	cpupri_cleanup(&rd->cpupri);
5331 	free_cpumask_var(rd->rto_mask);
5332 	free_cpumask_var(rd->online);
5333 	free_cpumask_var(rd->span);
5334 	kfree(rd);
5335 }
5336 
5337 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5338 {
5339 	struct root_domain *old_rd = NULL;
5340 	unsigned long flags;
5341 
5342 	raw_spin_lock_irqsave(&rq->lock, flags);
5343 
5344 	if (rq->rd) {
5345 		old_rd = rq->rd;
5346 
5347 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5348 			set_rq_offline(rq);
5349 
5350 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5351 
5352 		/*
5353 		 * If we dont want to free the old_rt yet then
5354 		 * set old_rd to NULL to skip the freeing later
5355 		 * in this function:
5356 		 */
5357 		if (!atomic_dec_and_test(&old_rd->refcount))
5358 			old_rd = NULL;
5359 	}
5360 
5361 	atomic_inc(&rd->refcount);
5362 	rq->rd = rd;
5363 
5364 	cpumask_set_cpu(rq->cpu, rd->span);
5365 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5366 		set_rq_online(rq);
5367 
5368 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5369 
5370 	if (old_rd)
5371 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5372 }
5373 
5374 static int init_rootdomain(struct root_domain *rd)
5375 {
5376 	memset(rd, 0, sizeof(*rd));
5377 
5378 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5379 		goto out;
5380 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5381 		goto free_span;
5382 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5383 		goto free_online;
5384 
5385 	if (cpupri_init(&rd->cpupri) != 0)
5386 		goto free_rto_mask;
5387 	return 0;
5388 
5389 free_rto_mask:
5390 	free_cpumask_var(rd->rto_mask);
5391 free_online:
5392 	free_cpumask_var(rd->online);
5393 free_span:
5394 	free_cpumask_var(rd->span);
5395 out:
5396 	return -ENOMEM;
5397 }
5398 
5399 /*
5400  * By default the system creates a single root-domain with all cpus as
5401  * members (mimicking the global state we have today).
5402  */
5403 struct root_domain def_root_domain;
5404 
5405 static void init_defrootdomain(void)
5406 {
5407 	init_rootdomain(&def_root_domain);
5408 
5409 	atomic_set(&def_root_domain.refcount, 1);
5410 }
5411 
5412 static struct root_domain *alloc_rootdomain(void)
5413 {
5414 	struct root_domain *rd;
5415 
5416 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5417 	if (!rd)
5418 		return NULL;
5419 
5420 	if (init_rootdomain(rd) != 0) {
5421 		kfree(rd);
5422 		return NULL;
5423 	}
5424 
5425 	return rd;
5426 }
5427 
5428 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5429 {
5430 	struct sched_group *tmp, *first;
5431 
5432 	if (!sg)
5433 		return;
5434 
5435 	first = sg;
5436 	do {
5437 		tmp = sg->next;
5438 
5439 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5440 			kfree(sg->sgp);
5441 
5442 		kfree(sg);
5443 		sg = tmp;
5444 	} while (sg != first);
5445 }
5446 
5447 static void free_sched_domain(struct rcu_head *rcu)
5448 {
5449 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5450 
5451 	/*
5452 	 * If its an overlapping domain it has private groups, iterate and
5453 	 * nuke them all.
5454 	 */
5455 	if (sd->flags & SD_OVERLAP) {
5456 		free_sched_groups(sd->groups, 1);
5457 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5458 		kfree(sd->groups->sgp);
5459 		kfree(sd->groups);
5460 	}
5461 	kfree(sd);
5462 }
5463 
5464 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5465 {
5466 	call_rcu(&sd->rcu, free_sched_domain);
5467 }
5468 
5469 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5470 {
5471 	for (; sd; sd = sd->parent)
5472 		destroy_sched_domain(sd, cpu);
5473 }
5474 
5475 /*
5476  * Keep a special pointer to the highest sched_domain that has
5477  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5478  * allows us to avoid some pointer chasing select_idle_sibling().
5479  *
5480  * Also keep a unique ID per domain (we use the first cpu number in
5481  * the cpumask of the domain), this allows us to quickly tell if
5482  * two cpus are in the same cache domain, see cpus_share_cache().
5483  */
5484 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5485 DEFINE_PER_CPU(int, sd_llc_id);
5486 
5487 static void update_top_cache_domain(int cpu)
5488 {
5489 	struct sched_domain *sd;
5490 	int id = cpu;
5491 
5492 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5493 	if (sd)
5494 		id = cpumask_first(sched_domain_span(sd));
5495 
5496 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5497 	per_cpu(sd_llc_id, cpu) = id;
5498 }
5499 
5500 /*
5501  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5502  * hold the hotplug lock.
5503  */
5504 static void
5505 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5506 {
5507 	struct rq *rq = cpu_rq(cpu);
5508 	struct sched_domain *tmp;
5509 
5510 	/* Remove the sched domains which do not contribute to scheduling. */
5511 	for (tmp = sd; tmp; ) {
5512 		struct sched_domain *parent = tmp->parent;
5513 		if (!parent)
5514 			break;
5515 
5516 		if (sd_parent_degenerate(tmp, parent)) {
5517 			tmp->parent = parent->parent;
5518 			if (parent->parent)
5519 				parent->parent->child = tmp;
5520 			destroy_sched_domain(parent, cpu);
5521 		} else
5522 			tmp = tmp->parent;
5523 	}
5524 
5525 	if (sd && sd_degenerate(sd)) {
5526 		tmp = sd;
5527 		sd = sd->parent;
5528 		destroy_sched_domain(tmp, cpu);
5529 		if (sd)
5530 			sd->child = NULL;
5531 	}
5532 
5533 	sched_domain_debug(sd, cpu);
5534 
5535 	rq_attach_root(rq, rd);
5536 	tmp = rq->sd;
5537 	rcu_assign_pointer(rq->sd, sd);
5538 	destroy_sched_domains(tmp, cpu);
5539 
5540 	update_top_cache_domain(cpu);
5541 }
5542 
5543 /* cpus with isolated domains */
5544 static cpumask_var_t cpu_isolated_map;
5545 
5546 /* Setup the mask of cpus configured for isolated domains */
5547 static int __init isolated_cpu_setup(char *str)
5548 {
5549 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5550 	cpulist_parse(str, cpu_isolated_map);
5551 	return 1;
5552 }
5553 
5554 __setup("isolcpus=", isolated_cpu_setup);
5555 
5556 static const struct cpumask *cpu_cpu_mask(int cpu)
5557 {
5558 	return cpumask_of_node(cpu_to_node(cpu));
5559 }
5560 
5561 struct sd_data {
5562 	struct sched_domain **__percpu sd;
5563 	struct sched_group **__percpu sg;
5564 	struct sched_group_power **__percpu sgp;
5565 };
5566 
5567 struct s_data {
5568 	struct sched_domain ** __percpu sd;
5569 	struct root_domain	*rd;
5570 };
5571 
5572 enum s_alloc {
5573 	sa_rootdomain,
5574 	sa_sd,
5575 	sa_sd_storage,
5576 	sa_none,
5577 };
5578 
5579 struct sched_domain_topology_level;
5580 
5581 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5582 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5583 
5584 #define SDTL_OVERLAP	0x01
5585 
5586 struct sched_domain_topology_level {
5587 	sched_domain_init_f init;
5588 	sched_domain_mask_f mask;
5589 	int		    flags;
5590 	int		    numa_level;
5591 	struct sd_data      data;
5592 };
5593 
5594 /*
5595  * Build an iteration mask that can exclude certain CPUs from the upwards
5596  * domain traversal.
5597  *
5598  * Asymmetric node setups can result in situations where the domain tree is of
5599  * unequal depth, make sure to skip domains that already cover the entire
5600  * range.
5601  *
5602  * In that case build_sched_domains() will have terminated the iteration early
5603  * and our sibling sd spans will be empty. Domains should always include the
5604  * cpu they're built on, so check that.
5605  *
5606  */
5607 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5608 {
5609 	const struct cpumask *span = sched_domain_span(sd);
5610 	struct sd_data *sdd = sd->private;
5611 	struct sched_domain *sibling;
5612 	int i;
5613 
5614 	for_each_cpu(i, span) {
5615 		sibling = *per_cpu_ptr(sdd->sd, i);
5616 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5617 			continue;
5618 
5619 		cpumask_set_cpu(i, sched_group_mask(sg));
5620 	}
5621 }
5622 
5623 /*
5624  * Return the canonical balance cpu for this group, this is the first cpu
5625  * of this group that's also in the iteration mask.
5626  */
5627 int group_balance_cpu(struct sched_group *sg)
5628 {
5629 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5630 }
5631 
5632 static int
5633 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5634 {
5635 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5636 	const struct cpumask *span = sched_domain_span(sd);
5637 	struct cpumask *covered = sched_domains_tmpmask;
5638 	struct sd_data *sdd = sd->private;
5639 	struct sched_domain *child;
5640 	int i;
5641 
5642 	cpumask_clear(covered);
5643 
5644 	for_each_cpu(i, span) {
5645 		struct cpumask *sg_span;
5646 
5647 		if (cpumask_test_cpu(i, covered))
5648 			continue;
5649 
5650 		child = *per_cpu_ptr(sdd->sd, i);
5651 
5652 		/* See the comment near build_group_mask(). */
5653 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5654 			continue;
5655 
5656 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5657 				GFP_KERNEL, cpu_to_node(cpu));
5658 
5659 		if (!sg)
5660 			goto fail;
5661 
5662 		sg_span = sched_group_cpus(sg);
5663 		if (child->child) {
5664 			child = child->child;
5665 			cpumask_copy(sg_span, sched_domain_span(child));
5666 		} else
5667 			cpumask_set_cpu(i, sg_span);
5668 
5669 		cpumask_or(covered, covered, sg_span);
5670 
5671 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5672 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5673 			build_group_mask(sd, sg);
5674 
5675 		/*
5676 		 * Initialize sgp->power such that even if we mess up the
5677 		 * domains and no possible iteration will get us here, we won't
5678 		 * die on a /0 trap.
5679 		 */
5680 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5681 
5682 		/*
5683 		 * Make sure the first group of this domain contains the
5684 		 * canonical balance cpu. Otherwise the sched_domain iteration
5685 		 * breaks. See update_sg_lb_stats().
5686 		 */
5687 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5688 		    group_balance_cpu(sg) == cpu)
5689 			groups = sg;
5690 
5691 		if (!first)
5692 			first = sg;
5693 		if (last)
5694 			last->next = sg;
5695 		last = sg;
5696 		last->next = first;
5697 	}
5698 	sd->groups = groups;
5699 
5700 	return 0;
5701 
5702 fail:
5703 	free_sched_groups(first, 0);
5704 
5705 	return -ENOMEM;
5706 }
5707 
5708 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5709 {
5710 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5711 	struct sched_domain *child = sd->child;
5712 
5713 	if (child)
5714 		cpu = cpumask_first(sched_domain_span(child));
5715 
5716 	if (sg) {
5717 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5718 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5719 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5720 	}
5721 
5722 	return cpu;
5723 }
5724 
5725 /*
5726  * build_sched_groups will build a circular linked list of the groups
5727  * covered by the given span, and will set each group's ->cpumask correctly,
5728  * and ->cpu_power to 0.
5729  *
5730  * Assumes the sched_domain tree is fully constructed
5731  */
5732 static int
5733 build_sched_groups(struct sched_domain *sd, int cpu)
5734 {
5735 	struct sched_group *first = NULL, *last = NULL;
5736 	struct sd_data *sdd = sd->private;
5737 	const struct cpumask *span = sched_domain_span(sd);
5738 	struct cpumask *covered;
5739 	int i;
5740 
5741 	get_group(cpu, sdd, &sd->groups);
5742 	atomic_inc(&sd->groups->ref);
5743 
5744 	if (cpu != cpumask_first(sched_domain_span(sd)))
5745 		return 0;
5746 
5747 	lockdep_assert_held(&sched_domains_mutex);
5748 	covered = sched_domains_tmpmask;
5749 
5750 	cpumask_clear(covered);
5751 
5752 	for_each_cpu(i, span) {
5753 		struct sched_group *sg;
5754 		int group = get_group(i, sdd, &sg);
5755 		int j;
5756 
5757 		if (cpumask_test_cpu(i, covered))
5758 			continue;
5759 
5760 		cpumask_clear(sched_group_cpus(sg));
5761 		sg->sgp->power = 0;
5762 		cpumask_setall(sched_group_mask(sg));
5763 
5764 		for_each_cpu(j, span) {
5765 			if (get_group(j, sdd, NULL) != group)
5766 				continue;
5767 
5768 			cpumask_set_cpu(j, covered);
5769 			cpumask_set_cpu(j, sched_group_cpus(sg));
5770 		}
5771 
5772 		if (!first)
5773 			first = sg;
5774 		if (last)
5775 			last->next = sg;
5776 		last = sg;
5777 	}
5778 	last->next = first;
5779 
5780 	return 0;
5781 }
5782 
5783 /*
5784  * Initialize sched groups cpu_power.
5785  *
5786  * cpu_power indicates the capacity of sched group, which is used while
5787  * distributing the load between different sched groups in a sched domain.
5788  * Typically cpu_power for all the groups in a sched domain will be same unless
5789  * there are asymmetries in the topology. If there are asymmetries, group
5790  * having more cpu_power will pickup more load compared to the group having
5791  * less cpu_power.
5792  */
5793 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5794 {
5795 	struct sched_group *sg = sd->groups;
5796 
5797 	WARN_ON(!sd || !sg);
5798 
5799 	do {
5800 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5801 		sg = sg->next;
5802 	} while (sg != sd->groups);
5803 
5804 	if (cpu != group_balance_cpu(sg))
5805 		return;
5806 
5807 	update_group_power(sd, cpu);
5808 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5809 }
5810 
5811 int __weak arch_sd_sibling_asym_packing(void)
5812 {
5813        return 0*SD_ASYM_PACKING;
5814 }
5815 
5816 /*
5817  * Initializers for schedule domains
5818  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5819  */
5820 
5821 #ifdef CONFIG_SCHED_DEBUG
5822 # define SD_INIT_NAME(sd, type)		sd->name = #type
5823 #else
5824 # define SD_INIT_NAME(sd, type)		do { } while (0)
5825 #endif
5826 
5827 #define SD_INIT_FUNC(type)						\
5828 static noinline struct sched_domain *					\
5829 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5830 {									\
5831 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5832 	*sd = SD_##type##_INIT;						\
5833 	SD_INIT_NAME(sd, type);						\
5834 	sd->private = &tl->data;					\
5835 	return sd;							\
5836 }
5837 
5838 SD_INIT_FUNC(CPU)
5839 #ifdef CONFIG_SCHED_SMT
5840  SD_INIT_FUNC(SIBLING)
5841 #endif
5842 #ifdef CONFIG_SCHED_MC
5843  SD_INIT_FUNC(MC)
5844 #endif
5845 #ifdef CONFIG_SCHED_BOOK
5846  SD_INIT_FUNC(BOOK)
5847 #endif
5848 
5849 static int default_relax_domain_level = -1;
5850 int sched_domain_level_max;
5851 
5852 static int __init setup_relax_domain_level(char *str)
5853 {
5854 	if (kstrtoint(str, 0, &default_relax_domain_level))
5855 		pr_warn("Unable to set relax_domain_level\n");
5856 
5857 	return 1;
5858 }
5859 __setup("relax_domain_level=", setup_relax_domain_level);
5860 
5861 static void set_domain_attribute(struct sched_domain *sd,
5862 				 struct sched_domain_attr *attr)
5863 {
5864 	int request;
5865 
5866 	if (!attr || attr->relax_domain_level < 0) {
5867 		if (default_relax_domain_level < 0)
5868 			return;
5869 		else
5870 			request = default_relax_domain_level;
5871 	} else
5872 		request = attr->relax_domain_level;
5873 	if (request < sd->level) {
5874 		/* turn off idle balance on this domain */
5875 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5876 	} else {
5877 		/* turn on idle balance on this domain */
5878 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5879 	}
5880 }
5881 
5882 static void __sdt_free(const struct cpumask *cpu_map);
5883 static int __sdt_alloc(const struct cpumask *cpu_map);
5884 
5885 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5886 				 const struct cpumask *cpu_map)
5887 {
5888 	switch (what) {
5889 	case sa_rootdomain:
5890 		if (!atomic_read(&d->rd->refcount))
5891 			free_rootdomain(&d->rd->rcu); /* fall through */
5892 	case sa_sd:
5893 		free_percpu(d->sd); /* fall through */
5894 	case sa_sd_storage:
5895 		__sdt_free(cpu_map); /* fall through */
5896 	case sa_none:
5897 		break;
5898 	}
5899 }
5900 
5901 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5902 						   const struct cpumask *cpu_map)
5903 {
5904 	memset(d, 0, sizeof(*d));
5905 
5906 	if (__sdt_alloc(cpu_map))
5907 		return sa_sd_storage;
5908 	d->sd = alloc_percpu(struct sched_domain *);
5909 	if (!d->sd)
5910 		return sa_sd_storage;
5911 	d->rd = alloc_rootdomain();
5912 	if (!d->rd)
5913 		return sa_sd;
5914 	return sa_rootdomain;
5915 }
5916 
5917 /*
5918  * NULL the sd_data elements we've used to build the sched_domain and
5919  * sched_group structure so that the subsequent __free_domain_allocs()
5920  * will not free the data we're using.
5921  */
5922 static void claim_allocations(int cpu, struct sched_domain *sd)
5923 {
5924 	struct sd_data *sdd = sd->private;
5925 
5926 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5927 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5928 
5929 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5930 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5931 
5932 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5933 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5934 }
5935 
5936 #ifdef CONFIG_SCHED_SMT
5937 static const struct cpumask *cpu_smt_mask(int cpu)
5938 {
5939 	return topology_thread_cpumask(cpu);
5940 }
5941 #endif
5942 
5943 /*
5944  * Topology list, bottom-up.
5945  */
5946 static struct sched_domain_topology_level default_topology[] = {
5947 #ifdef CONFIG_SCHED_SMT
5948 	{ sd_init_SIBLING, cpu_smt_mask, },
5949 #endif
5950 #ifdef CONFIG_SCHED_MC
5951 	{ sd_init_MC, cpu_coregroup_mask, },
5952 #endif
5953 #ifdef CONFIG_SCHED_BOOK
5954 	{ sd_init_BOOK, cpu_book_mask, },
5955 #endif
5956 	{ sd_init_CPU, cpu_cpu_mask, },
5957 	{ NULL, },
5958 };
5959 
5960 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5961 
5962 #ifdef CONFIG_NUMA
5963 
5964 static int sched_domains_numa_levels;
5965 static int *sched_domains_numa_distance;
5966 static struct cpumask ***sched_domains_numa_masks;
5967 static int sched_domains_curr_level;
5968 
5969 static inline int sd_local_flags(int level)
5970 {
5971 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5972 		return 0;
5973 
5974 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5975 }
5976 
5977 static struct sched_domain *
5978 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5979 {
5980 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5981 	int level = tl->numa_level;
5982 	int sd_weight = cpumask_weight(
5983 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5984 
5985 	*sd = (struct sched_domain){
5986 		.min_interval		= sd_weight,
5987 		.max_interval		= 2*sd_weight,
5988 		.busy_factor		= 32,
5989 		.imbalance_pct		= 125,
5990 		.cache_nice_tries	= 2,
5991 		.busy_idx		= 3,
5992 		.idle_idx		= 2,
5993 		.newidle_idx		= 0,
5994 		.wake_idx		= 0,
5995 		.forkexec_idx		= 0,
5996 
5997 		.flags			= 1*SD_LOAD_BALANCE
5998 					| 1*SD_BALANCE_NEWIDLE
5999 					| 0*SD_BALANCE_EXEC
6000 					| 0*SD_BALANCE_FORK
6001 					| 0*SD_BALANCE_WAKE
6002 					| 0*SD_WAKE_AFFINE
6003 					| 0*SD_SHARE_CPUPOWER
6004 					| 0*SD_SHARE_PKG_RESOURCES
6005 					| 1*SD_SERIALIZE
6006 					| 0*SD_PREFER_SIBLING
6007 					| sd_local_flags(level)
6008 					,
6009 		.last_balance		= jiffies,
6010 		.balance_interval	= sd_weight,
6011 	};
6012 	SD_INIT_NAME(sd, NUMA);
6013 	sd->private = &tl->data;
6014 
6015 	/*
6016 	 * Ugly hack to pass state to sd_numa_mask()...
6017 	 */
6018 	sched_domains_curr_level = tl->numa_level;
6019 
6020 	return sd;
6021 }
6022 
6023 static const struct cpumask *sd_numa_mask(int cpu)
6024 {
6025 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6026 }
6027 
6028 static void sched_numa_warn(const char *str)
6029 {
6030 	static int done = false;
6031 	int i,j;
6032 
6033 	if (done)
6034 		return;
6035 
6036 	done = true;
6037 
6038 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6039 
6040 	for (i = 0; i < nr_node_ids; i++) {
6041 		printk(KERN_WARNING "  ");
6042 		for (j = 0; j < nr_node_ids; j++)
6043 			printk(KERN_CONT "%02d ", node_distance(i,j));
6044 		printk(KERN_CONT "\n");
6045 	}
6046 	printk(KERN_WARNING "\n");
6047 }
6048 
6049 static bool find_numa_distance(int distance)
6050 {
6051 	int i;
6052 
6053 	if (distance == node_distance(0, 0))
6054 		return true;
6055 
6056 	for (i = 0; i < sched_domains_numa_levels; i++) {
6057 		if (sched_domains_numa_distance[i] == distance)
6058 			return true;
6059 	}
6060 
6061 	return false;
6062 }
6063 
6064 static void sched_init_numa(void)
6065 {
6066 	int next_distance, curr_distance = node_distance(0, 0);
6067 	struct sched_domain_topology_level *tl;
6068 	int level = 0;
6069 	int i, j, k;
6070 
6071 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6072 	if (!sched_domains_numa_distance)
6073 		return;
6074 
6075 	/*
6076 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6077 	 * unique distances in the node_distance() table.
6078 	 *
6079 	 * Assumes node_distance(0,j) includes all distances in
6080 	 * node_distance(i,j) in order to avoid cubic time.
6081 	 */
6082 	next_distance = curr_distance;
6083 	for (i = 0; i < nr_node_ids; i++) {
6084 		for (j = 0; j < nr_node_ids; j++) {
6085 			for (k = 0; k < nr_node_ids; k++) {
6086 				int distance = node_distance(i, k);
6087 
6088 				if (distance > curr_distance &&
6089 				    (distance < next_distance ||
6090 				     next_distance == curr_distance))
6091 					next_distance = distance;
6092 
6093 				/*
6094 				 * While not a strong assumption it would be nice to know
6095 				 * about cases where if node A is connected to B, B is not
6096 				 * equally connected to A.
6097 				 */
6098 				if (sched_debug() && node_distance(k, i) != distance)
6099 					sched_numa_warn("Node-distance not symmetric");
6100 
6101 				if (sched_debug() && i && !find_numa_distance(distance))
6102 					sched_numa_warn("Node-0 not representative");
6103 			}
6104 			if (next_distance != curr_distance) {
6105 				sched_domains_numa_distance[level++] = next_distance;
6106 				sched_domains_numa_levels = level;
6107 				curr_distance = next_distance;
6108 			} else break;
6109 		}
6110 
6111 		/*
6112 		 * In case of sched_debug() we verify the above assumption.
6113 		 */
6114 		if (!sched_debug())
6115 			break;
6116 	}
6117 	/*
6118 	 * 'level' contains the number of unique distances, excluding the
6119 	 * identity distance node_distance(i,i).
6120 	 *
6121 	 * The sched_domains_nume_distance[] array includes the actual distance
6122 	 * numbers.
6123 	 */
6124 
6125 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6126 	if (!sched_domains_numa_masks)
6127 		return;
6128 
6129 	/*
6130 	 * Now for each level, construct a mask per node which contains all
6131 	 * cpus of nodes that are that many hops away from us.
6132 	 */
6133 	for (i = 0; i < level; i++) {
6134 		sched_domains_numa_masks[i] =
6135 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6136 		if (!sched_domains_numa_masks[i])
6137 			return;
6138 
6139 		for (j = 0; j < nr_node_ids; j++) {
6140 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6141 			if (!mask)
6142 				return;
6143 
6144 			sched_domains_numa_masks[i][j] = mask;
6145 
6146 			for (k = 0; k < nr_node_ids; k++) {
6147 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6148 					continue;
6149 
6150 				cpumask_or(mask, mask, cpumask_of_node(k));
6151 			}
6152 		}
6153 	}
6154 
6155 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6156 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6157 	if (!tl)
6158 		return;
6159 
6160 	/*
6161 	 * Copy the default topology bits..
6162 	 */
6163 	for (i = 0; default_topology[i].init; i++)
6164 		tl[i] = default_topology[i];
6165 
6166 	/*
6167 	 * .. and append 'j' levels of NUMA goodness.
6168 	 */
6169 	for (j = 0; j < level; i++, j++) {
6170 		tl[i] = (struct sched_domain_topology_level){
6171 			.init = sd_numa_init,
6172 			.mask = sd_numa_mask,
6173 			.flags = SDTL_OVERLAP,
6174 			.numa_level = j,
6175 		};
6176 	}
6177 
6178 	sched_domain_topology = tl;
6179 }
6180 #else
6181 static inline void sched_init_numa(void)
6182 {
6183 }
6184 #endif /* CONFIG_NUMA */
6185 
6186 static int __sdt_alloc(const struct cpumask *cpu_map)
6187 {
6188 	struct sched_domain_topology_level *tl;
6189 	int j;
6190 
6191 	for (tl = sched_domain_topology; tl->init; tl++) {
6192 		struct sd_data *sdd = &tl->data;
6193 
6194 		sdd->sd = alloc_percpu(struct sched_domain *);
6195 		if (!sdd->sd)
6196 			return -ENOMEM;
6197 
6198 		sdd->sg = alloc_percpu(struct sched_group *);
6199 		if (!sdd->sg)
6200 			return -ENOMEM;
6201 
6202 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6203 		if (!sdd->sgp)
6204 			return -ENOMEM;
6205 
6206 		for_each_cpu(j, cpu_map) {
6207 			struct sched_domain *sd;
6208 			struct sched_group *sg;
6209 			struct sched_group_power *sgp;
6210 
6211 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6212 					GFP_KERNEL, cpu_to_node(j));
6213 			if (!sd)
6214 				return -ENOMEM;
6215 
6216 			*per_cpu_ptr(sdd->sd, j) = sd;
6217 
6218 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6219 					GFP_KERNEL, cpu_to_node(j));
6220 			if (!sg)
6221 				return -ENOMEM;
6222 
6223 			sg->next = sg;
6224 
6225 			*per_cpu_ptr(sdd->sg, j) = sg;
6226 
6227 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6228 					GFP_KERNEL, cpu_to_node(j));
6229 			if (!sgp)
6230 				return -ENOMEM;
6231 
6232 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6233 		}
6234 	}
6235 
6236 	return 0;
6237 }
6238 
6239 static void __sdt_free(const struct cpumask *cpu_map)
6240 {
6241 	struct sched_domain_topology_level *tl;
6242 	int j;
6243 
6244 	for (tl = sched_domain_topology; tl->init; tl++) {
6245 		struct sd_data *sdd = &tl->data;
6246 
6247 		for_each_cpu(j, cpu_map) {
6248 			struct sched_domain *sd;
6249 
6250 			if (sdd->sd) {
6251 				sd = *per_cpu_ptr(sdd->sd, j);
6252 				if (sd && (sd->flags & SD_OVERLAP))
6253 					free_sched_groups(sd->groups, 0);
6254 				kfree(*per_cpu_ptr(sdd->sd, j));
6255 			}
6256 
6257 			if (sdd->sg)
6258 				kfree(*per_cpu_ptr(sdd->sg, j));
6259 			if (sdd->sgp)
6260 				kfree(*per_cpu_ptr(sdd->sgp, j));
6261 		}
6262 		free_percpu(sdd->sd);
6263 		sdd->sd = NULL;
6264 		free_percpu(sdd->sg);
6265 		sdd->sg = NULL;
6266 		free_percpu(sdd->sgp);
6267 		sdd->sgp = NULL;
6268 	}
6269 }
6270 
6271 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6272 		struct s_data *d, const struct cpumask *cpu_map,
6273 		struct sched_domain_attr *attr, struct sched_domain *child,
6274 		int cpu)
6275 {
6276 	struct sched_domain *sd = tl->init(tl, cpu);
6277 	if (!sd)
6278 		return child;
6279 
6280 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6281 	if (child) {
6282 		sd->level = child->level + 1;
6283 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6284 		child->parent = sd;
6285 	}
6286 	sd->child = child;
6287 	set_domain_attribute(sd, attr);
6288 
6289 	return sd;
6290 }
6291 
6292 /*
6293  * Build sched domains for a given set of cpus and attach the sched domains
6294  * to the individual cpus
6295  */
6296 static int build_sched_domains(const struct cpumask *cpu_map,
6297 			       struct sched_domain_attr *attr)
6298 {
6299 	enum s_alloc alloc_state = sa_none;
6300 	struct sched_domain *sd;
6301 	struct s_data d;
6302 	int i, ret = -ENOMEM;
6303 
6304 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6305 	if (alloc_state != sa_rootdomain)
6306 		goto error;
6307 
6308 	/* Set up domains for cpus specified by the cpu_map. */
6309 	for_each_cpu(i, cpu_map) {
6310 		struct sched_domain_topology_level *tl;
6311 
6312 		sd = NULL;
6313 		for (tl = sched_domain_topology; tl->init; tl++) {
6314 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6315 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6316 				sd->flags |= SD_OVERLAP;
6317 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6318 				break;
6319 		}
6320 
6321 		while (sd->child)
6322 			sd = sd->child;
6323 
6324 		*per_cpu_ptr(d.sd, i) = sd;
6325 	}
6326 
6327 	/* Build the groups for the domains */
6328 	for_each_cpu(i, cpu_map) {
6329 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6330 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6331 			if (sd->flags & SD_OVERLAP) {
6332 				if (build_overlap_sched_groups(sd, i))
6333 					goto error;
6334 			} else {
6335 				if (build_sched_groups(sd, i))
6336 					goto error;
6337 			}
6338 		}
6339 	}
6340 
6341 	/* Calculate CPU power for physical packages and nodes */
6342 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6343 		if (!cpumask_test_cpu(i, cpu_map))
6344 			continue;
6345 
6346 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6347 			claim_allocations(i, sd);
6348 			init_sched_groups_power(i, sd);
6349 		}
6350 	}
6351 
6352 	/* Attach the domains */
6353 	rcu_read_lock();
6354 	for_each_cpu(i, cpu_map) {
6355 		sd = *per_cpu_ptr(d.sd, i);
6356 		cpu_attach_domain(sd, d.rd, i);
6357 	}
6358 	rcu_read_unlock();
6359 
6360 	ret = 0;
6361 error:
6362 	__free_domain_allocs(&d, alloc_state, cpu_map);
6363 	return ret;
6364 }
6365 
6366 static cpumask_var_t *doms_cur;	/* current sched domains */
6367 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6368 static struct sched_domain_attr *dattr_cur;
6369 				/* attribues of custom domains in 'doms_cur' */
6370 
6371 /*
6372  * Special case: If a kmalloc of a doms_cur partition (array of
6373  * cpumask) fails, then fallback to a single sched domain,
6374  * as determined by the single cpumask fallback_doms.
6375  */
6376 static cpumask_var_t fallback_doms;
6377 
6378 /*
6379  * arch_update_cpu_topology lets virtualized architectures update the
6380  * cpu core maps. It is supposed to return 1 if the topology changed
6381  * or 0 if it stayed the same.
6382  */
6383 int __attribute__((weak)) arch_update_cpu_topology(void)
6384 {
6385 	return 0;
6386 }
6387 
6388 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6389 {
6390 	int i;
6391 	cpumask_var_t *doms;
6392 
6393 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6394 	if (!doms)
6395 		return NULL;
6396 	for (i = 0; i < ndoms; i++) {
6397 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6398 			free_sched_domains(doms, i);
6399 			return NULL;
6400 		}
6401 	}
6402 	return doms;
6403 }
6404 
6405 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6406 {
6407 	unsigned int i;
6408 	for (i = 0; i < ndoms; i++)
6409 		free_cpumask_var(doms[i]);
6410 	kfree(doms);
6411 }
6412 
6413 /*
6414  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6415  * For now this just excludes isolated cpus, but could be used to
6416  * exclude other special cases in the future.
6417  */
6418 static int init_sched_domains(const struct cpumask *cpu_map)
6419 {
6420 	int err;
6421 
6422 	arch_update_cpu_topology();
6423 	ndoms_cur = 1;
6424 	doms_cur = alloc_sched_domains(ndoms_cur);
6425 	if (!doms_cur)
6426 		doms_cur = &fallback_doms;
6427 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6428 	err = build_sched_domains(doms_cur[0], NULL);
6429 	register_sched_domain_sysctl();
6430 
6431 	return err;
6432 }
6433 
6434 /*
6435  * Detach sched domains from a group of cpus specified in cpu_map
6436  * These cpus will now be attached to the NULL domain
6437  */
6438 static void detach_destroy_domains(const struct cpumask *cpu_map)
6439 {
6440 	int i;
6441 
6442 	rcu_read_lock();
6443 	for_each_cpu(i, cpu_map)
6444 		cpu_attach_domain(NULL, &def_root_domain, i);
6445 	rcu_read_unlock();
6446 }
6447 
6448 /* handle null as "default" */
6449 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6450 			struct sched_domain_attr *new, int idx_new)
6451 {
6452 	struct sched_domain_attr tmp;
6453 
6454 	/* fast path */
6455 	if (!new && !cur)
6456 		return 1;
6457 
6458 	tmp = SD_ATTR_INIT;
6459 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6460 			new ? (new + idx_new) : &tmp,
6461 			sizeof(struct sched_domain_attr));
6462 }
6463 
6464 /*
6465  * Partition sched domains as specified by the 'ndoms_new'
6466  * cpumasks in the array doms_new[] of cpumasks. This compares
6467  * doms_new[] to the current sched domain partitioning, doms_cur[].
6468  * It destroys each deleted domain and builds each new domain.
6469  *
6470  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6471  * The masks don't intersect (don't overlap.) We should setup one
6472  * sched domain for each mask. CPUs not in any of the cpumasks will
6473  * not be load balanced. If the same cpumask appears both in the
6474  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6475  * it as it is.
6476  *
6477  * The passed in 'doms_new' should be allocated using
6478  * alloc_sched_domains.  This routine takes ownership of it and will
6479  * free_sched_domains it when done with it. If the caller failed the
6480  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6481  * and partition_sched_domains() will fallback to the single partition
6482  * 'fallback_doms', it also forces the domains to be rebuilt.
6483  *
6484  * If doms_new == NULL it will be replaced with cpu_online_mask.
6485  * ndoms_new == 0 is a special case for destroying existing domains,
6486  * and it will not create the default domain.
6487  *
6488  * Call with hotplug lock held
6489  */
6490 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6491 			     struct sched_domain_attr *dattr_new)
6492 {
6493 	int i, j, n;
6494 	int new_topology;
6495 
6496 	mutex_lock(&sched_domains_mutex);
6497 
6498 	/* always unregister in case we don't destroy any domains */
6499 	unregister_sched_domain_sysctl();
6500 
6501 	/* Let architecture update cpu core mappings. */
6502 	new_topology = arch_update_cpu_topology();
6503 
6504 	n = doms_new ? ndoms_new : 0;
6505 
6506 	/* Destroy deleted domains */
6507 	for (i = 0; i < ndoms_cur; i++) {
6508 		for (j = 0; j < n && !new_topology; j++) {
6509 			if (cpumask_equal(doms_cur[i], doms_new[j])
6510 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6511 				goto match1;
6512 		}
6513 		/* no match - a current sched domain not in new doms_new[] */
6514 		detach_destroy_domains(doms_cur[i]);
6515 match1:
6516 		;
6517 	}
6518 
6519 	if (doms_new == NULL) {
6520 		ndoms_cur = 0;
6521 		doms_new = &fallback_doms;
6522 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6523 		WARN_ON_ONCE(dattr_new);
6524 	}
6525 
6526 	/* Build new domains */
6527 	for (i = 0; i < ndoms_new; i++) {
6528 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6529 			if (cpumask_equal(doms_new[i], doms_cur[j])
6530 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6531 				goto match2;
6532 		}
6533 		/* no match - add a new doms_new */
6534 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6535 match2:
6536 		;
6537 	}
6538 
6539 	/* Remember the new sched domains */
6540 	if (doms_cur != &fallback_doms)
6541 		free_sched_domains(doms_cur, ndoms_cur);
6542 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6543 	doms_cur = doms_new;
6544 	dattr_cur = dattr_new;
6545 	ndoms_cur = ndoms_new;
6546 
6547 	register_sched_domain_sysctl();
6548 
6549 	mutex_unlock(&sched_domains_mutex);
6550 }
6551 
6552 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6553 
6554 /*
6555  * Update cpusets according to cpu_active mask.  If cpusets are
6556  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6557  * around partition_sched_domains().
6558  *
6559  * If we come here as part of a suspend/resume, don't touch cpusets because we
6560  * want to restore it back to its original state upon resume anyway.
6561  */
6562 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6563 			     void *hcpu)
6564 {
6565 	switch (action) {
6566 	case CPU_ONLINE_FROZEN:
6567 	case CPU_DOWN_FAILED_FROZEN:
6568 
6569 		/*
6570 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6571 		 * resume sequence. As long as this is not the last online
6572 		 * operation in the resume sequence, just build a single sched
6573 		 * domain, ignoring cpusets.
6574 		 */
6575 		num_cpus_frozen--;
6576 		if (likely(num_cpus_frozen)) {
6577 			partition_sched_domains(1, NULL, NULL);
6578 			break;
6579 		}
6580 
6581 		/*
6582 		 * This is the last CPU online operation. So fall through and
6583 		 * restore the original sched domains by considering the
6584 		 * cpuset configurations.
6585 		 */
6586 
6587 	case CPU_ONLINE:
6588 	case CPU_DOWN_FAILED:
6589 		cpuset_update_active_cpus(true);
6590 		break;
6591 	default:
6592 		return NOTIFY_DONE;
6593 	}
6594 	return NOTIFY_OK;
6595 }
6596 
6597 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6598 			       void *hcpu)
6599 {
6600 	switch (action) {
6601 	case CPU_DOWN_PREPARE:
6602 		cpuset_update_active_cpus(false);
6603 		break;
6604 	case CPU_DOWN_PREPARE_FROZEN:
6605 		num_cpus_frozen++;
6606 		partition_sched_domains(1, NULL, NULL);
6607 		break;
6608 	default:
6609 		return NOTIFY_DONE;
6610 	}
6611 	return NOTIFY_OK;
6612 }
6613 
6614 void __init sched_init_smp(void)
6615 {
6616 	cpumask_var_t non_isolated_cpus;
6617 
6618 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6619 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6620 
6621 	sched_init_numa();
6622 
6623 	get_online_cpus();
6624 	mutex_lock(&sched_domains_mutex);
6625 	init_sched_domains(cpu_active_mask);
6626 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6627 	if (cpumask_empty(non_isolated_cpus))
6628 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6629 	mutex_unlock(&sched_domains_mutex);
6630 	put_online_cpus();
6631 
6632 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6633 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6634 
6635 	/* RT runtime code needs to handle some hotplug events */
6636 	hotcpu_notifier(update_runtime, 0);
6637 
6638 	init_hrtick();
6639 
6640 	/* Move init over to a non-isolated CPU */
6641 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6642 		BUG();
6643 	sched_init_granularity();
6644 	free_cpumask_var(non_isolated_cpus);
6645 
6646 	init_sched_rt_class();
6647 }
6648 #else
6649 void __init sched_init_smp(void)
6650 {
6651 	sched_init_granularity();
6652 }
6653 #endif /* CONFIG_SMP */
6654 
6655 const_debug unsigned int sysctl_timer_migration = 1;
6656 
6657 int in_sched_functions(unsigned long addr)
6658 {
6659 	return in_lock_functions(addr) ||
6660 		(addr >= (unsigned long)__sched_text_start
6661 		&& addr < (unsigned long)__sched_text_end);
6662 }
6663 
6664 #ifdef CONFIG_CGROUP_SCHED
6665 struct task_group root_task_group;
6666 LIST_HEAD(task_groups);
6667 #endif
6668 
6669 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6670 
6671 void __init sched_init(void)
6672 {
6673 	int i, j;
6674 	unsigned long alloc_size = 0, ptr;
6675 
6676 #ifdef CONFIG_FAIR_GROUP_SCHED
6677 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6678 #endif
6679 #ifdef CONFIG_RT_GROUP_SCHED
6680 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6681 #endif
6682 #ifdef CONFIG_CPUMASK_OFFSTACK
6683 	alloc_size += num_possible_cpus() * cpumask_size();
6684 #endif
6685 	if (alloc_size) {
6686 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6687 
6688 #ifdef CONFIG_FAIR_GROUP_SCHED
6689 		root_task_group.se = (struct sched_entity **)ptr;
6690 		ptr += nr_cpu_ids * sizeof(void **);
6691 
6692 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6693 		ptr += nr_cpu_ids * sizeof(void **);
6694 
6695 #endif /* CONFIG_FAIR_GROUP_SCHED */
6696 #ifdef CONFIG_RT_GROUP_SCHED
6697 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6698 		ptr += nr_cpu_ids * sizeof(void **);
6699 
6700 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6701 		ptr += nr_cpu_ids * sizeof(void **);
6702 
6703 #endif /* CONFIG_RT_GROUP_SCHED */
6704 #ifdef CONFIG_CPUMASK_OFFSTACK
6705 		for_each_possible_cpu(i) {
6706 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6707 			ptr += cpumask_size();
6708 		}
6709 #endif /* CONFIG_CPUMASK_OFFSTACK */
6710 	}
6711 
6712 #ifdef CONFIG_SMP
6713 	init_defrootdomain();
6714 #endif
6715 
6716 	init_rt_bandwidth(&def_rt_bandwidth,
6717 			global_rt_period(), global_rt_runtime());
6718 
6719 #ifdef CONFIG_RT_GROUP_SCHED
6720 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6721 			global_rt_period(), global_rt_runtime());
6722 #endif /* CONFIG_RT_GROUP_SCHED */
6723 
6724 #ifdef CONFIG_CGROUP_SCHED
6725 	list_add(&root_task_group.list, &task_groups);
6726 	INIT_LIST_HEAD(&root_task_group.children);
6727 	INIT_LIST_HEAD(&root_task_group.siblings);
6728 	autogroup_init(&init_task);
6729 
6730 #endif /* CONFIG_CGROUP_SCHED */
6731 
6732 #ifdef CONFIG_CGROUP_CPUACCT
6733 	root_cpuacct.cpustat = &kernel_cpustat;
6734 	root_cpuacct.cpuusage = alloc_percpu(u64);
6735 	/* Too early, not expected to fail */
6736 	BUG_ON(!root_cpuacct.cpuusage);
6737 #endif
6738 	for_each_possible_cpu(i) {
6739 		struct rq *rq;
6740 
6741 		rq = cpu_rq(i);
6742 		raw_spin_lock_init(&rq->lock);
6743 		rq->nr_running = 0;
6744 		rq->calc_load_active = 0;
6745 		rq->calc_load_update = jiffies + LOAD_FREQ;
6746 		init_cfs_rq(&rq->cfs);
6747 		init_rt_rq(&rq->rt, rq);
6748 #ifdef CONFIG_FAIR_GROUP_SCHED
6749 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6750 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6751 		/*
6752 		 * How much cpu bandwidth does root_task_group get?
6753 		 *
6754 		 * In case of task-groups formed thr' the cgroup filesystem, it
6755 		 * gets 100% of the cpu resources in the system. This overall
6756 		 * system cpu resource is divided among the tasks of
6757 		 * root_task_group and its child task-groups in a fair manner,
6758 		 * based on each entity's (task or task-group's) weight
6759 		 * (se->load.weight).
6760 		 *
6761 		 * In other words, if root_task_group has 10 tasks of weight
6762 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6763 		 * then A0's share of the cpu resource is:
6764 		 *
6765 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6766 		 *
6767 		 * We achieve this by letting root_task_group's tasks sit
6768 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6769 		 */
6770 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6771 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6772 #endif /* CONFIG_FAIR_GROUP_SCHED */
6773 
6774 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6775 #ifdef CONFIG_RT_GROUP_SCHED
6776 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6777 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6778 #endif
6779 
6780 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6781 			rq->cpu_load[j] = 0;
6782 
6783 		rq->last_load_update_tick = jiffies;
6784 
6785 #ifdef CONFIG_SMP
6786 		rq->sd = NULL;
6787 		rq->rd = NULL;
6788 		rq->cpu_power = SCHED_POWER_SCALE;
6789 		rq->post_schedule = 0;
6790 		rq->active_balance = 0;
6791 		rq->next_balance = jiffies;
6792 		rq->push_cpu = 0;
6793 		rq->cpu = i;
6794 		rq->online = 0;
6795 		rq->idle_stamp = 0;
6796 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6797 
6798 		INIT_LIST_HEAD(&rq->cfs_tasks);
6799 
6800 		rq_attach_root(rq, &def_root_domain);
6801 #ifdef CONFIG_NO_HZ
6802 		rq->nohz_flags = 0;
6803 #endif
6804 #endif
6805 		init_rq_hrtick(rq);
6806 		atomic_set(&rq->nr_iowait, 0);
6807 	}
6808 
6809 	set_load_weight(&init_task);
6810 
6811 #ifdef CONFIG_PREEMPT_NOTIFIERS
6812 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6813 #endif
6814 
6815 #ifdef CONFIG_RT_MUTEXES
6816 	plist_head_init(&init_task.pi_waiters);
6817 #endif
6818 
6819 	/*
6820 	 * The boot idle thread does lazy MMU switching as well:
6821 	 */
6822 	atomic_inc(&init_mm.mm_count);
6823 	enter_lazy_tlb(&init_mm, current);
6824 
6825 	/*
6826 	 * Make us the idle thread. Technically, schedule() should not be
6827 	 * called from this thread, however somewhere below it might be,
6828 	 * but because we are the idle thread, we just pick up running again
6829 	 * when this runqueue becomes "idle".
6830 	 */
6831 	init_idle(current, smp_processor_id());
6832 
6833 	calc_load_update = jiffies + LOAD_FREQ;
6834 
6835 	/*
6836 	 * During early bootup we pretend to be a normal task:
6837 	 */
6838 	current->sched_class = &fair_sched_class;
6839 
6840 #ifdef CONFIG_SMP
6841 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6842 	/* May be allocated at isolcpus cmdline parse time */
6843 	if (cpu_isolated_map == NULL)
6844 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6845 	idle_thread_set_boot_cpu();
6846 #endif
6847 	init_sched_fair_class();
6848 
6849 	scheduler_running = 1;
6850 }
6851 
6852 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6853 static inline int preempt_count_equals(int preempt_offset)
6854 {
6855 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6856 
6857 	return (nested == preempt_offset);
6858 }
6859 
6860 void __might_sleep(const char *file, int line, int preempt_offset)
6861 {
6862 	static unsigned long prev_jiffy;	/* ratelimiting */
6863 
6864 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6865 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6866 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6867 		return;
6868 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6869 		return;
6870 	prev_jiffy = jiffies;
6871 
6872 	printk(KERN_ERR
6873 		"BUG: sleeping function called from invalid context at %s:%d\n",
6874 			file, line);
6875 	printk(KERN_ERR
6876 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6877 			in_atomic(), irqs_disabled(),
6878 			current->pid, current->comm);
6879 
6880 	debug_show_held_locks(current);
6881 	if (irqs_disabled())
6882 		print_irqtrace_events(current);
6883 	dump_stack();
6884 }
6885 EXPORT_SYMBOL(__might_sleep);
6886 #endif
6887 
6888 #ifdef CONFIG_MAGIC_SYSRQ
6889 static void normalize_task(struct rq *rq, struct task_struct *p)
6890 {
6891 	const struct sched_class *prev_class = p->sched_class;
6892 	int old_prio = p->prio;
6893 	int on_rq;
6894 
6895 	on_rq = p->on_rq;
6896 	if (on_rq)
6897 		dequeue_task(rq, p, 0);
6898 	__setscheduler(rq, p, SCHED_NORMAL, 0);
6899 	if (on_rq) {
6900 		enqueue_task(rq, p, 0);
6901 		resched_task(rq->curr);
6902 	}
6903 
6904 	check_class_changed(rq, p, prev_class, old_prio);
6905 }
6906 
6907 void normalize_rt_tasks(void)
6908 {
6909 	struct task_struct *g, *p;
6910 	unsigned long flags;
6911 	struct rq *rq;
6912 
6913 	read_lock_irqsave(&tasklist_lock, flags);
6914 	do_each_thread(g, p) {
6915 		/*
6916 		 * Only normalize user tasks:
6917 		 */
6918 		if (!p->mm)
6919 			continue;
6920 
6921 		p->se.exec_start		= 0;
6922 #ifdef CONFIG_SCHEDSTATS
6923 		p->se.statistics.wait_start	= 0;
6924 		p->se.statistics.sleep_start	= 0;
6925 		p->se.statistics.block_start	= 0;
6926 #endif
6927 
6928 		if (!rt_task(p)) {
6929 			/*
6930 			 * Renice negative nice level userspace
6931 			 * tasks back to 0:
6932 			 */
6933 			if (TASK_NICE(p) < 0 && p->mm)
6934 				set_user_nice(p, 0);
6935 			continue;
6936 		}
6937 
6938 		raw_spin_lock(&p->pi_lock);
6939 		rq = __task_rq_lock(p);
6940 
6941 		normalize_task(rq, p);
6942 
6943 		__task_rq_unlock(rq);
6944 		raw_spin_unlock(&p->pi_lock);
6945 	} while_each_thread(g, p);
6946 
6947 	read_unlock_irqrestore(&tasklist_lock, flags);
6948 }
6949 
6950 #endif /* CONFIG_MAGIC_SYSRQ */
6951 
6952 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6953 /*
6954  * These functions are only useful for the IA64 MCA handling, or kdb.
6955  *
6956  * They can only be called when the whole system has been
6957  * stopped - every CPU needs to be quiescent, and no scheduling
6958  * activity can take place. Using them for anything else would
6959  * be a serious bug, and as a result, they aren't even visible
6960  * under any other configuration.
6961  */
6962 
6963 /**
6964  * curr_task - return the current task for a given cpu.
6965  * @cpu: the processor in question.
6966  *
6967  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6968  */
6969 struct task_struct *curr_task(int cpu)
6970 {
6971 	return cpu_curr(cpu);
6972 }
6973 
6974 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6975 
6976 #ifdef CONFIG_IA64
6977 /**
6978  * set_curr_task - set the current task for a given cpu.
6979  * @cpu: the processor in question.
6980  * @p: the task pointer to set.
6981  *
6982  * Description: This function must only be used when non-maskable interrupts
6983  * are serviced on a separate stack. It allows the architecture to switch the
6984  * notion of the current task on a cpu in a non-blocking manner. This function
6985  * must be called with all CPU's synchronized, and interrupts disabled, the
6986  * and caller must save the original value of the current task (see
6987  * curr_task() above) and restore that value before reenabling interrupts and
6988  * re-starting the system.
6989  *
6990  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6991  */
6992 void set_curr_task(int cpu, struct task_struct *p)
6993 {
6994 	cpu_curr(cpu) = p;
6995 }
6996 
6997 #endif
6998 
6999 #ifdef CONFIG_CGROUP_SCHED
7000 /* task_group_lock serializes the addition/removal of task groups */
7001 static DEFINE_SPINLOCK(task_group_lock);
7002 
7003 static void free_sched_group(struct task_group *tg)
7004 {
7005 	free_fair_sched_group(tg);
7006 	free_rt_sched_group(tg);
7007 	autogroup_free(tg);
7008 	kfree(tg);
7009 }
7010 
7011 /* allocate runqueue etc for a new task group */
7012 struct task_group *sched_create_group(struct task_group *parent)
7013 {
7014 	struct task_group *tg;
7015 	unsigned long flags;
7016 
7017 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7018 	if (!tg)
7019 		return ERR_PTR(-ENOMEM);
7020 
7021 	if (!alloc_fair_sched_group(tg, parent))
7022 		goto err;
7023 
7024 	if (!alloc_rt_sched_group(tg, parent))
7025 		goto err;
7026 
7027 	spin_lock_irqsave(&task_group_lock, flags);
7028 	list_add_rcu(&tg->list, &task_groups);
7029 
7030 	WARN_ON(!parent); /* root should already exist */
7031 
7032 	tg->parent = parent;
7033 	INIT_LIST_HEAD(&tg->children);
7034 	list_add_rcu(&tg->siblings, &parent->children);
7035 	spin_unlock_irqrestore(&task_group_lock, flags);
7036 
7037 	return tg;
7038 
7039 err:
7040 	free_sched_group(tg);
7041 	return ERR_PTR(-ENOMEM);
7042 }
7043 
7044 /* rcu callback to free various structures associated with a task group */
7045 static void free_sched_group_rcu(struct rcu_head *rhp)
7046 {
7047 	/* now it should be safe to free those cfs_rqs */
7048 	free_sched_group(container_of(rhp, struct task_group, rcu));
7049 }
7050 
7051 /* Destroy runqueue etc associated with a task group */
7052 void sched_destroy_group(struct task_group *tg)
7053 {
7054 	unsigned long flags;
7055 	int i;
7056 
7057 	/* end participation in shares distribution */
7058 	for_each_possible_cpu(i)
7059 		unregister_fair_sched_group(tg, i);
7060 
7061 	spin_lock_irqsave(&task_group_lock, flags);
7062 	list_del_rcu(&tg->list);
7063 	list_del_rcu(&tg->siblings);
7064 	spin_unlock_irqrestore(&task_group_lock, flags);
7065 
7066 	/* wait for possible concurrent references to cfs_rqs complete */
7067 	call_rcu(&tg->rcu, free_sched_group_rcu);
7068 }
7069 
7070 /* change task's runqueue when it moves between groups.
7071  *	The caller of this function should have put the task in its new group
7072  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7073  *	reflect its new group.
7074  */
7075 void sched_move_task(struct task_struct *tsk)
7076 {
7077 	struct task_group *tg;
7078 	int on_rq, running;
7079 	unsigned long flags;
7080 	struct rq *rq;
7081 
7082 	rq = task_rq_lock(tsk, &flags);
7083 
7084 	running = task_current(rq, tsk);
7085 	on_rq = tsk->on_rq;
7086 
7087 	if (on_rq)
7088 		dequeue_task(rq, tsk, 0);
7089 	if (unlikely(running))
7090 		tsk->sched_class->put_prev_task(rq, tsk);
7091 
7092 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7093 				lockdep_is_held(&tsk->sighand->siglock)),
7094 			  struct task_group, css);
7095 	tg = autogroup_task_group(tsk, tg);
7096 	tsk->sched_task_group = tg;
7097 
7098 #ifdef CONFIG_FAIR_GROUP_SCHED
7099 	if (tsk->sched_class->task_move_group)
7100 		tsk->sched_class->task_move_group(tsk, on_rq);
7101 	else
7102 #endif
7103 		set_task_rq(tsk, task_cpu(tsk));
7104 
7105 	if (unlikely(running))
7106 		tsk->sched_class->set_curr_task(rq);
7107 	if (on_rq)
7108 		enqueue_task(rq, tsk, 0);
7109 
7110 	task_rq_unlock(rq, tsk, &flags);
7111 }
7112 #endif /* CONFIG_CGROUP_SCHED */
7113 
7114 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7115 static unsigned long to_ratio(u64 period, u64 runtime)
7116 {
7117 	if (runtime == RUNTIME_INF)
7118 		return 1ULL << 20;
7119 
7120 	return div64_u64(runtime << 20, period);
7121 }
7122 #endif
7123 
7124 #ifdef CONFIG_RT_GROUP_SCHED
7125 /*
7126  * Ensure that the real time constraints are schedulable.
7127  */
7128 static DEFINE_MUTEX(rt_constraints_mutex);
7129 
7130 /* Must be called with tasklist_lock held */
7131 static inline int tg_has_rt_tasks(struct task_group *tg)
7132 {
7133 	struct task_struct *g, *p;
7134 
7135 	do_each_thread(g, p) {
7136 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7137 			return 1;
7138 	} while_each_thread(g, p);
7139 
7140 	return 0;
7141 }
7142 
7143 struct rt_schedulable_data {
7144 	struct task_group *tg;
7145 	u64 rt_period;
7146 	u64 rt_runtime;
7147 };
7148 
7149 static int tg_rt_schedulable(struct task_group *tg, void *data)
7150 {
7151 	struct rt_schedulable_data *d = data;
7152 	struct task_group *child;
7153 	unsigned long total, sum = 0;
7154 	u64 period, runtime;
7155 
7156 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7157 	runtime = tg->rt_bandwidth.rt_runtime;
7158 
7159 	if (tg == d->tg) {
7160 		period = d->rt_period;
7161 		runtime = d->rt_runtime;
7162 	}
7163 
7164 	/*
7165 	 * Cannot have more runtime than the period.
7166 	 */
7167 	if (runtime > period && runtime != RUNTIME_INF)
7168 		return -EINVAL;
7169 
7170 	/*
7171 	 * Ensure we don't starve existing RT tasks.
7172 	 */
7173 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7174 		return -EBUSY;
7175 
7176 	total = to_ratio(period, runtime);
7177 
7178 	/*
7179 	 * Nobody can have more than the global setting allows.
7180 	 */
7181 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7182 		return -EINVAL;
7183 
7184 	/*
7185 	 * The sum of our children's runtime should not exceed our own.
7186 	 */
7187 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7188 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7189 		runtime = child->rt_bandwidth.rt_runtime;
7190 
7191 		if (child == d->tg) {
7192 			period = d->rt_period;
7193 			runtime = d->rt_runtime;
7194 		}
7195 
7196 		sum += to_ratio(period, runtime);
7197 	}
7198 
7199 	if (sum > total)
7200 		return -EINVAL;
7201 
7202 	return 0;
7203 }
7204 
7205 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7206 {
7207 	int ret;
7208 
7209 	struct rt_schedulable_data data = {
7210 		.tg = tg,
7211 		.rt_period = period,
7212 		.rt_runtime = runtime,
7213 	};
7214 
7215 	rcu_read_lock();
7216 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7217 	rcu_read_unlock();
7218 
7219 	return ret;
7220 }
7221 
7222 static int tg_set_rt_bandwidth(struct task_group *tg,
7223 		u64 rt_period, u64 rt_runtime)
7224 {
7225 	int i, err = 0;
7226 
7227 	mutex_lock(&rt_constraints_mutex);
7228 	read_lock(&tasklist_lock);
7229 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7230 	if (err)
7231 		goto unlock;
7232 
7233 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7234 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7235 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7236 
7237 	for_each_possible_cpu(i) {
7238 		struct rt_rq *rt_rq = tg->rt_rq[i];
7239 
7240 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7241 		rt_rq->rt_runtime = rt_runtime;
7242 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7243 	}
7244 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7245 unlock:
7246 	read_unlock(&tasklist_lock);
7247 	mutex_unlock(&rt_constraints_mutex);
7248 
7249 	return err;
7250 }
7251 
7252 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7253 {
7254 	u64 rt_runtime, rt_period;
7255 
7256 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7257 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7258 	if (rt_runtime_us < 0)
7259 		rt_runtime = RUNTIME_INF;
7260 
7261 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7262 }
7263 
7264 long sched_group_rt_runtime(struct task_group *tg)
7265 {
7266 	u64 rt_runtime_us;
7267 
7268 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7269 		return -1;
7270 
7271 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7272 	do_div(rt_runtime_us, NSEC_PER_USEC);
7273 	return rt_runtime_us;
7274 }
7275 
7276 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7277 {
7278 	u64 rt_runtime, rt_period;
7279 
7280 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7281 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7282 
7283 	if (rt_period == 0)
7284 		return -EINVAL;
7285 
7286 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7287 }
7288 
7289 long sched_group_rt_period(struct task_group *tg)
7290 {
7291 	u64 rt_period_us;
7292 
7293 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7294 	do_div(rt_period_us, NSEC_PER_USEC);
7295 	return rt_period_us;
7296 }
7297 
7298 static int sched_rt_global_constraints(void)
7299 {
7300 	u64 runtime, period;
7301 	int ret = 0;
7302 
7303 	if (sysctl_sched_rt_period <= 0)
7304 		return -EINVAL;
7305 
7306 	runtime = global_rt_runtime();
7307 	period = global_rt_period();
7308 
7309 	/*
7310 	 * Sanity check on the sysctl variables.
7311 	 */
7312 	if (runtime > period && runtime != RUNTIME_INF)
7313 		return -EINVAL;
7314 
7315 	mutex_lock(&rt_constraints_mutex);
7316 	read_lock(&tasklist_lock);
7317 	ret = __rt_schedulable(NULL, 0, 0);
7318 	read_unlock(&tasklist_lock);
7319 	mutex_unlock(&rt_constraints_mutex);
7320 
7321 	return ret;
7322 }
7323 
7324 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7325 {
7326 	/* Don't accept realtime tasks when there is no way for them to run */
7327 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7328 		return 0;
7329 
7330 	return 1;
7331 }
7332 
7333 #else /* !CONFIG_RT_GROUP_SCHED */
7334 static int sched_rt_global_constraints(void)
7335 {
7336 	unsigned long flags;
7337 	int i;
7338 
7339 	if (sysctl_sched_rt_period <= 0)
7340 		return -EINVAL;
7341 
7342 	/*
7343 	 * There's always some RT tasks in the root group
7344 	 * -- migration, kstopmachine etc..
7345 	 */
7346 	if (sysctl_sched_rt_runtime == 0)
7347 		return -EBUSY;
7348 
7349 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7350 	for_each_possible_cpu(i) {
7351 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7352 
7353 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7354 		rt_rq->rt_runtime = global_rt_runtime();
7355 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7356 	}
7357 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7358 
7359 	return 0;
7360 }
7361 #endif /* CONFIG_RT_GROUP_SCHED */
7362 
7363 int sched_rt_handler(struct ctl_table *table, int write,
7364 		void __user *buffer, size_t *lenp,
7365 		loff_t *ppos)
7366 {
7367 	int ret;
7368 	int old_period, old_runtime;
7369 	static DEFINE_MUTEX(mutex);
7370 
7371 	mutex_lock(&mutex);
7372 	old_period = sysctl_sched_rt_period;
7373 	old_runtime = sysctl_sched_rt_runtime;
7374 
7375 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7376 
7377 	if (!ret && write) {
7378 		ret = sched_rt_global_constraints();
7379 		if (ret) {
7380 			sysctl_sched_rt_period = old_period;
7381 			sysctl_sched_rt_runtime = old_runtime;
7382 		} else {
7383 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7384 			def_rt_bandwidth.rt_period =
7385 				ns_to_ktime(global_rt_period());
7386 		}
7387 	}
7388 	mutex_unlock(&mutex);
7389 
7390 	return ret;
7391 }
7392 
7393 #ifdef CONFIG_CGROUP_SCHED
7394 
7395 /* return corresponding task_group object of a cgroup */
7396 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7397 {
7398 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7399 			    struct task_group, css);
7400 }
7401 
7402 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7403 {
7404 	struct task_group *tg, *parent;
7405 
7406 	if (!cgrp->parent) {
7407 		/* This is early initialization for the top cgroup */
7408 		return &root_task_group.css;
7409 	}
7410 
7411 	parent = cgroup_tg(cgrp->parent);
7412 	tg = sched_create_group(parent);
7413 	if (IS_ERR(tg))
7414 		return ERR_PTR(-ENOMEM);
7415 
7416 	return &tg->css;
7417 }
7418 
7419 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7420 {
7421 	struct task_group *tg = cgroup_tg(cgrp);
7422 
7423 	sched_destroy_group(tg);
7424 }
7425 
7426 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7427 				 struct cgroup_taskset *tset)
7428 {
7429 	struct task_struct *task;
7430 
7431 	cgroup_taskset_for_each(task, cgrp, tset) {
7432 #ifdef CONFIG_RT_GROUP_SCHED
7433 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7434 			return -EINVAL;
7435 #else
7436 		/* We don't support RT-tasks being in separate groups */
7437 		if (task->sched_class != &fair_sched_class)
7438 			return -EINVAL;
7439 #endif
7440 	}
7441 	return 0;
7442 }
7443 
7444 static void cpu_cgroup_attach(struct cgroup *cgrp,
7445 			      struct cgroup_taskset *tset)
7446 {
7447 	struct task_struct *task;
7448 
7449 	cgroup_taskset_for_each(task, cgrp, tset)
7450 		sched_move_task(task);
7451 }
7452 
7453 static void
7454 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7455 		struct task_struct *task)
7456 {
7457 	/*
7458 	 * cgroup_exit() is called in the copy_process() failure path.
7459 	 * Ignore this case since the task hasn't ran yet, this avoids
7460 	 * trying to poke a half freed task state from generic code.
7461 	 */
7462 	if (!(task->flags & PF_EXITING))
7463 		return;
7464 
7465 	sched_move_task(task);
7466 }
7467 
7468 #ifdef CONFIG_FAIR_GROUP_SCHED
7469 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7470 				u64 shareval)
7471 {
7472 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7473 }
7474 
7475 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7476 {
7477 	struct task_group *tg = cgroup_tg(cgrp);
7478 
7479 	return (u64) scale_load_down(tg->shares);
7480 }
7481 
7482 #ifdef CONFIG_CFS_BANDWIDTH
7483 static DEFINE_MUTEX(cfs_constraints_mutex);
7484 
7485 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7486 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7487 
7488 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7489 
7490 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7491 {
7492 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7493 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7494 
7495 	if (tg == &root_task_group)
7496 		return -EINVAL;
7497 
7498 	/*
7499 	 * Ensure we have at some amount of bandwidth every period.  This is
7500 	 * to prevent reaching a state of large arrears when throttled via
7501 	 * entity_tick() resulting in prolonged exit starvation.
7502 	 */
7503 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7504 		return -EINVAL;
7505 
7506 	/*
7507 	 * Likewise, bound things on the otherside by preventing insane quota
7508 	 * periods.  This also allows us to normalize in computing quota
7509 	 * feasibility.
7510 	 */
7511 	if (period > max_cfs_quota_period)
7512 		return -EINVAL;
7513 
7514 	mutex_lock(&cfs_constraints_mutex);
7515 	ret = __cfs_schedulable(tg, period, quota);
7516 	if (ret)
7517 		goto out_unlock;
7518 
7519 	runtime_enabled = quota != RUNTIME_INF;
7520 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7521 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7522 	raw_spin_lock_irq(&cfs_b->lock);
7523 	cfs_b->period = ns_to_ktime(period);
7524 	cfs_b->quota = quota;
7525 
7526 	__refill_cfs_bandwidth_runtime(cfs_b);
7527 	/* restart the period timer (if active) to handle new period expiry */
7528 	if (runtime_enabled && cfs_b->timer_active) {
7529 		/* force a reprogram */
7530 		cfs_b->timer_active = 0;
7531 		__start_cfs_bandwidth(cfs_b);
7532 	}
7533 	raw_spin_unlock_irq(&cfs_b->lock);
7534 
7535 	for_each_possible_cpu(i) {
7536 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7537 		struct rq *rq = cfs_rq->rq;
7538 
7539 		raw_spin_lock_irq(&rq->lock);
7540 		cfs_rq->runtime_enabled = runtime_enabled;
7541 		cfs_rq->runtime_remaining = 0;
7542 
7543 		if (cfs_rq->throttled)
7544 			unthrottle_cfs_rq(cfs_rq);
7545 		raw_spin_unlock_irq(&rq->lock);
7546 	}
7547 out_unlock:
7548 	mutex_unlock(&cfs_constraints_mutex);
7549 
7550 	return ret;
7551 }
7552 
7553 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7554 {
7555 	u64 quota, period;
7556 
7557 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7558 	if (cfs_quota_us < 0)
7559 		quota = RUNTIME_INF;
7560 	else
7561 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7562 
7563 	return tg_set_cfs_bandwidth(tg, period, quota);
7564 }
7565 
7566 long tg_get_cfs_quota(struct task_group *tg)
7567 {
7568 	u64 quota_us;
7569 
7570 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7571 		return -1;
7572 
7573 	quota_us = tg->cfs_bandwidth.quota;
7574 	do_div(quota_us, NSEC_PER_USEC);
7575 
7576 	return quota_us;
7577 }
7578 
7579 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7580 {
7581 	u64 quota, period;
7582 
7583 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7584 	quota = tg->cfs_bandwidth.quota;
7585 
7586 	return tg_set_cfs_bandwidth(tg, period, quota);
7587 }
7588 
7589 long tg_get_cfs_period(struct task_group *tg)
7590 {
7591 	u64 cfs_period_us;
7592 
7593 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7594 	do_div(cfs_period_us, NSEC_PER_USEC);
7595 
7596 	return cfs_period_us;
7597 }
7598 
7599 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7600 {
7601 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7602 }
7603 
7604 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7605 				s64 cfs_quota_us)
7606 {
7607 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7608 }
7609 
7610 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7611 {
7612 	return tg_get_cfs_period(cgroup_tg(cgrp));
7613 }
7614 
7615 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7616 				u64 cfs_period_us)
7617 {
7618 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7619 }
7620 
7621 struct cfs_schedulable_data {
7622 	struct task_group *tg;
7623 	u64 period, quota;
7624 };
7625 
7626 /*
7627  * normalize group quota/period to be quota/max_period
7628  * note: units are usecs
7629  */
7630 static u64 normalize_cfs_quota(struct task_group *tg,
7631 			       struct cfs_schedulable_data *d)
7632 {
7633 	u64 quota, period;
7634 
7635 	if (tg == d->tg) {
7636 		period = d->period;
7637 		quota = d->quota;
7638 	} else {
7639 		period = tg_get_cfs_period(tg);
7640 		quota = tg_get_cfs_quota(tg);
7641 	}
7642 
7643 	/* note: these should typically be equivalent */
7644 	if (quota == RUNTIME_INF || quota == -1)
7645 		return RUNTIME_INF;
7646 
7647 	return to_ratio(period, quota);
7648 }
7649 
7650 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7651 {
7652 	struct cfs_schedulable_data *d = data;
7653 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7654 	s64 quota = 0, parent_quota = -1;
7655 
7656 	if (!tg->parent) {
7657 		quota = RUNTIME_INF;
7658 	} else {
7659 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7660 
7661 		quota = normalize_cfs_quota(tg, d);
7662 		parent_quota = parent_b->hierarchal_quota;
7663 
7664 		/*
7665 		 * ensure max(child_quota) <= parent_quota, inherit when no
7666 		 * limit is set
7667 		 */
7668 		if (quota == RUNTIME_INF)
7669 			quota = parent_quota;
7670 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7671 			return -EINVAL;
7672 	}
7673 	cfs_b->hierarchal_quota = quota;
7674 
7675 	return 0;
7676 }
7677 
7678 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7679 {
7680 	int ret;
7681 	struct cfs_schedulable_data data = {
7682 		.tg = tg,
7683 		.period = period,
7684 		.quota = quota,
7685 	};
7686 
7687 	if (quota != RUNTIME_INF) {
7688 		do_div(data.period, NSEC_PER_USEC);
7689 		do_div(data.quota, NSEC_PER_USEC);
7690 	}
7691 
7692 	rcu_read_lock();
7693 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7694 	rcu_read_unlock();
7695 
7696 	return ret;
7697 }
7698 
7699 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7700 		struct cgroup_map_cb *cb)
7701 {
7702 	struct task_group *tg = cgroup_tg(cgrp);
7703 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7704 
7705 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7706 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7707 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7708 
7709 	return 0;
7710 }
7711 #endif /* CONFIG_CFS_BANDWIDTH */
7712 #endif /* CONFIG_FAIR_GROUP_SCHED */
7713 
7714 #ifdef CONFIG_RT_GROUP_SCHED
7715 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7716 				s64 val)
7717 {
7718 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7719 }
7720 
7721 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7722 {
7723 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7724 }
7725 
7726 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7727 		u64 rt_period_us)
7728 {
7729 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7730 }
7731 
7732 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7733 {
7734 	return sched_group_rt_period(cgroup_tg(cgrp));
7735 }
7736 #endif /* CONFIG_RT_GROUP_SCHED */
7737 
7738 static struct cftype cpu_files[] = {
7739 #ifdef CONFIG_FAIR_GROUP_SCHED
7740 	{
7741 		.name = "shares",
7742 		.read_u64 = cpu_shares_read_u64,
7743 		.write_u64 = cpu_shares_write_u64,
7744 	},
7745 #endif
7746 #ifdef CONFIG_CFS_BANDWIDTH
7747 	{
7748 		.name = "cfs_quota_us",
7749 		.read_s64 = cpu_cfs_quota_read_s64,
7750 		.write_s64 = cpu_cfs_quota_write_s64,
7751 	},
7752 	{
7753 		.name = "cfs_period_us",
7754 		.read_u64 = cpu_cfs_period_read_u64,
7755 		.write_u64 = cpu_cfs_period_write_u64,
7756 	},
7757 	{
7758 		.name = "stat",
7759 		.read_map = cpu_stats_show,
7760 	},
7761 #endif
7762 #ifdef CONFIG_RT_GROUP_SCHED
7763 	{
7764 		.name = "rt_runtime_us",
7765 		.read_s64 = cpu_rt_runtime_read,
7766 		.write_s64 = cpu_rt_runtime_write,
7767 	},
7768 	{
7769 		.name = "rt_period_us",
7770 		.read_u64 = cpu_rt_period_read_uint,
7771 		.write_u64 = cpu_rt_period_write_uint,
7772 	},
7773 #endif
7774 	{ }	/* terminate */
7775 };
7776 
7777 struct cgroup_subsys cpu_cgroup_subsys = {
7778 	.name		= "cpu",
7779 	.create		= cpu_cgroup_create,
7780 	.destroy	= cpu_cgroup_destroy,
7781 	.can_attach	= cpu_cgroup_can_attach,
7782 	.attach		= cpu_cgroup_attach,
7783 	.exit		= cpu_cgroup_exit,
7784 	.subsys_id	= cpu_cgroup_subsys_id,
7785 	.base_cftypes	= cpu_files,
7786 	.early_init	= 1,
7787 };
7788 
7789 #endif	/* CONFIG_CGROUP_SCHED */
7790 
7791 #ifdef CONFIG_CGROUP_CPUACCT
7792 
7793 /*
7794  * CPU accounting code for task groups.
7795  *
7796  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7797  * (balbir@in.ibm.com).
7798  */
7799 
7800 struct cpuacct root_cpuacct;
7801 
7802 /* create a new cpu accounting group */
7803 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7804 {
7805 	struct cpuacct *ca;
7806 
7807 	if (!cgrp->parent)
7808 		return &root_cpuacct.css;
7809 
7810 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7811 	if (!ca)
7812 		goto out;
7813 
7814 	ca->cpuusage = alloc_percpu(u64);
7815 	if (!ca->cpuusage)
7816 		goto out_free_ca;
7817 
7818 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7819 	if (!ca->cpustat)
7820 		goto out_free_cpuusage;
7821 
7822 	return &ca->css;
7823 
7824 out_free_cpuusage:
7825 	free_percpu(ca->cpuusage);
7826 out_free_ca:
7827 	kfree(ca);
7828 out:
7829 	return ERR_PTR(-ENOMEM);
7830 }
7831 
7832 /* destroy an existing cpu accounting group */
7833 static void cpuacct_destroy(struct cgroup *cgrp)
7834 {
7835 	struct cpuacct *ca = cgroup_ca(cgrp);
7836 
7837 	free_percpu(ca->cpustat);
7838 	free_percpu(ca->cpuusage);
7839 	kfree(ca);
7840 }
7841 
7842 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7843 {
7844 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7845 	u64 data;
7846 
7847 #ifndef CONFIG_64BIT
7848 	/*
7849 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7850 	 */
7851 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7852 	data = *cpuusage;
7853 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7854 #else
7855 	data = *cpuusage;
7856 #endif
7857 
7858 	return data;
7859 }
7860 
7861 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7862 {
7863 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7864 
7865 #ifndef CONFIG_64BIT
7866 	/*
7867 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7868 	 */
7869 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7870 	*cpuusage = val;
7871 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7872 #else
7873 	*cpuusage = val;
7874 #endif
7875 }
7876 
7877 /* return total cpu usage (in nanoseconds) of a group */
7878 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7879 {
7880 	struct cpuacct *ca = cgroup_ca(cgrp);
7881 	u64 totalcpuusage = 0;
7882 	int i;
7883 
7884 	for_each_present_cpu(i)
7885 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7886 
7887 	return totalcpuusage;
7888 }
7889 
7890 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7891 								u64 reset)
7892 {
7893 	struct cpuacct *ca = cgroup_ca(cgrp);
7894 	int err = 0;
7895 	int i;
7896 
7897 	if (reset) {
7898 		err = -EINVAL;
7899 		goto out;
7900 	}
7901 
7902 	for_each_present_cpu(i)
7903 		cpuacct_cpuusage_write(ca, i, 0);
7904 
7905 out:
7906 	return err;
7907 }
7908 
7909 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7910 				   struct seq_file *m)
7911 {
7912 	struct cpuacct *ca = cgroup_ca(cgroup);
7913 	u64 percpu;
7914 	int i;
7915 
7916 	for_each_present_cpu(i) {
7917 		percpu = cpuacct_cpuusage_read(ca, i);
7918 		seq_printf(m, "%llu ", (unsigned long long) percpu);
7919 	}
7920 	seq_printf(m, "\n");
7921 	return 0;
7922 }
7923 
7924 static const char *cpuacct_stat_desc[] = {
7925 	[CPUACCT_STAT_USER] = "user",
7926 	[CPUACCT_STAT_SYSTEM] = "system",
7927 };
7928 
7929 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7930 			      struct cgroup_map_cb *cb)
7931 {
7932 	struct cpuacct *ca = cgroup_ca(cgrp);
7933 	int cpu;
7934 	s64 val = 0;
7935 
7936 	for_each_online_cpu(cpu) {
7937 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7938 		val += kcpustat->cpustat[CPUTIME_USER];
7939 		val += kcpustat->cpustat[CPUTIME_NICE];
7940 	}
7941 	val = cputime64_to_clock_t(val);
7942 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
7943 
7944 	val = 0;
7945 	for_each_online_cpu(cpu) {
7946 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7947 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
7948 		val += kcpustat->cpustat[CPUTIME_IRQ];
7949 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
7950 	}
7951 
7952 	val = cputime64_to_clock_t(val);
7953 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
7954 
7955 	return 0;
7956 }
7957 
7958 static struct cftype files[] = {
7959 	{
7960 		.name = "usage",
7961 		.read_u64 = cpuusage_read,
7962 		.write_u64 = cpuusage_write,
7963 	},
7964 	{
7965 		.name = "usage_percpu",
7966 		.read_seq_string = cpuacct_percpu_seq_read,
7967 	},
7968 	{
7969 		.name = "stat",
7970 		.read_map = cpuacct_stats_show,
7971 	},
7972 	{ }	/* terminate */
7973 };
7974 
7975 /*
7976  * charge this task's execution time to its accounting group.
7977  *
7978  * called with rq->lock held.
7979  */
7980 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7981 {
7982 	struct cpuacct *ca;
7983 	int cpu;
7984 
7985 	if (unlikely(!cpuacct_subsys.active))
7986 		return;
7987 
7988 	cpu = task_cpu(tsk);
7989 
7990 	rcu_read_lock();
7991 
7992 	ca = task_ca(tsk);
7993 
7994 	for (; ca; ca = parent_ca(ca)) {
7995 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7996 		*cpuusage += cputime;
7997 	}
7998 
7999 	rcu_read_unlock();
8000 }
8001 
8002 struct cgroup_subsys cpuacct_subsys = {
8003 	.name = "cpuacct",
8004 	.create = cpuacct_create,
8005 	.destroy = cpuacct_destroy,
8006 	.subsys_id = cpuacct_subsys_id,
8007 	.base_cftypes = files,
8008 };
8009 #endif	/* CONFIG_CGROUP_CPUACCT */
8010