1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 #include <linux/blkdev.h> 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 62 /* 63 * Print a warning if need_resched is set for the given duration (if 64 * LATENCY_WARN is enabled). 65 * 66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 67 * per boot. 68 */ 69 __read_mostly int sysctl_resched_latency_warn_ms = 100; 70 __read_mostly int sysctl_resched_latency_warn_once = 1; 71 #endif /* CONFIG_SCHED_DEBUG */ 72 73 /* 74 * Number of tasks to iterate in a single balance run. 75 * Limited because this is done with IRQs disabled. 76 */ 77 #ifdef CONFIG_PREEMPT_RT 78 const_debug unsigned int sysctl_sched_nr_migrate = 8; 79 #else 80 const_debug unsigned int sysctl_sched_nr_migrate = 32; 81 #endif 82 83 /* 84 * period over which we measure -rt task CPU usage in us. 85 * default: 1s 86 */ 87 unsigned int sysctl_sched_rt_period = 1000000; 88 89 __read_mostly int scheduler_running; 90 91 #ifdef CONFIG_SCHED_CORE 92 93 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 94 95 /* kernel prio, less is more */ 96 static inline int __task_prio(struct task_struct *p) 97 { 98 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 99 return -2; 100 101 if (rt_prio(p->prio)) /* includes deadline */ 102 return p->prio; /* [-1, 99] */ 103 104 if (p->sched_class == &idle_sched_class) 105 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 106 107 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 108 } 109 110 /* 111 * l(a,b) 112 * le(a,b) := !l(b,a) 113 * g(a,b) := l(b,a) 114 * ge(a,b) := !l(a,b) 115 */ 116 117 /* real prio, less is less */ 118 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 119 { 120 121 int pa = __task_prio(a), pb = __task_prio(b); 122 123 if (-pa < -pb) 124 return true; 125 126 if (-pb < -pa) 127 return false; 128 129 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 130 return !dl_time_before(a->dl.deadline, b->dl.deadline); 131 132 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 133 return cfs_prio_less(a, b, in_fi); 134 135 return false; 136 } 137 138 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 139 { 140 if (a->core_cookie < b->core_cookie) 141 return true; 142 143 if (a->core_cookie > b->core_cookie) 144 return false; 145 146 /* flip prio, so high prio is leftmost */ 147 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 148 return true; 149 150 return false; 151 } 152 153 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 154 155 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 156 { 157 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 158 } 159 160 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 161 { 162 const struct task_struct *p = __node_2_sc(node); 163 unsigned long cookie = (unsigned long)key; 164 165 if (cookie < p->core_cookie) 166 return -1; 167 168 if (cookie > p->core_cookie) 169 return 1; 170 171 return 0; 172 } 173 174 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 175 { 176 rq->core->core_task_seq++; 177 178 if (!p->core_cookie) 179 return; 180 181 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 182 } 183 184 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 185 { 186 rq->core->core_task_seq++; 187 188 if (sched_core_enqueued(p)) { 189 rb_erase(&p->core_node, &rq->core_tree); 190 RB_CLEAR_NODE(&p->core_node); 191 } 192 193 /* 194 * Migrating the last task off the cpu, with the cpu in forced idle 195 * state. Reschedule to create an accounting edge for forced idle, 196 * and re-examine whether the core is still in forced idle state. 197 */ 198 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 199 rq->core->core_forceidle_count && rq->curr == rq->idle) 200 resched_curr(rq); 201 } 202 203 /* 204 * Find left-most (aka, highest priority) task matching @cookie. 205 */ 206 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 207 { 208 struct rb_node *node; 209 210 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 211 /* 212 * The idle task always matches any cookie! 213 */ 214 if (!node) 215 return idle_sched_class.pick_task(rq); 216 217 return __node_2_sc(node); 218 } 219 220 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 221 { 222 struct rb_node *node = &p->core_node; 223 224 node = rb_next(node); 225 if (!node) 226 return NULL; 227 228 p = container_of(node, struct task_struct, core_node); 229 if (p->core_cookie != cookie) 230 return NULL; 231 232 return p; 233 } 234 235 /* 236 * Magic required such that: 237 * 238 * raw_spin_rq_lock(rq); 239 * ... 240 * raw_spin_rq_unlock(rq); 241 * 242 * ends up locking and unlocking the _same_ lock, and all CPUs 243 * always agree on what rq has what lock. 244 * 245 * XXX entirely possible to selectively enable cores, don't bother for now. 246 */ 247 248 static DEFINE_MUTEX(sched_core_mutex); 249 static atomic_t sched_core_count; 250 static struct cpumask sched_core_mask; 251 252 static void sched_core_lock(int cpu, unsigned long *flags) 253 { 254 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 255 int t, i = 0; 256 257 local_irq_save(*flags); 258 for_each_cpu(t, smt_mask) 259 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 260 } 261 262 static void sched_core_unlock(int cpu, unsigned long *flags) 263 { 264 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 265 int t; 266 267 for_each_cpu(t, smt_mask) 268 raw_spin_unlock(&cpu_rq(t)->__lock); 269 local_irq_restore(*flags); 270 } 271 272 static void __sched_core_flip(bool enabled) 273 { 274 unsigned long flags; 275 int cpu, t; 276 277 cpus_read_lock(); 278 279 /* 280 * Toggle the online cores, one by one. 281 */ 282 cpumask_copy(&sched_core_mask, cpu_online_mask); 283 for_each_cpu(cpu, &sched_core_mask) { 284 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 285 286 sched_core_lock(cpu, &flags); 287 288 for_each_cpu(t, smt_mask) 289 cpu_rq(t)->core_enabled = enabled; 290 291 cpu_rq(cpu)->core->core_forceidle_start = 0; 292 293 sched_core_unlock(cpu, &flags); 294 295 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 296 } 297 298 /* 299 * Toggle the offline CPUs. 300 */ 301 cpumask_copy(&sched_core_mask, cpu_possible_mask); 302 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask); 303 304 for_each_cpu(cpu, &sched_core_mask) 305 cpu_rq(cpu)->core_enabled = enabled; 306 307 cpus_read_unlock(); 308 } 309 310 static void sched_core_assert_empty(void) 311 { 312 int cpu; 313 314 for_each_possible_cpu(cpu) 315 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 316 } 317 318 static void __sched_core_enable(void) 319 { 320 static_branch_enable(&__sched_core_enabled); 321 /* 322 * Ensure all previous instances of raw_spin_rq_*lock() have finished 323 * and future ones will observe !sched_core_disabled(). 324 */ 325 synchronize_rcu(); 326 __sched_core_flip(true); 327 sched_core_assert_empty(); 328 } 329 330 static void __sched_core_disable(void) 331 { 332 sched_core_assert_empty(); 333 __sched_core_flip(false); 334 static_branch_disable(&__sched_core_enabled); 335 } 336 337 void sched_core_get(void) 338 { 339 if (atomic_inc_not_zero(&sched_core_count)) 340 return; 341 342 mutex_lock(&sched_core_mutex); 343 if (!atomic_read(&sched_core_count)) 344 __sched_core_enable(); 345 346 smp_mb__before_atomic(); 347 atomic_inc(&sched_core_count); 348 mutex_unlock(&sched_core_mutex); 349 } 350 351 static void __sched_core_put(struct work_struct *work) 352 { 353 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 354 __sched_core_disable(); 355 mutex_unlock(&sched_core_mutex); 356 } 357 } 358 359 void sched_core_put(void) 360 { 361 static DECLARE_WORK(_work, __sched_core_put); 362 363 /* 364 * "There can be only one" 365 * 366 * Either this is the last one, or we don't actually need to do any 367 * 'work'. If it is the last *again*, we rely on 368 * WORK_STRUCT_PENDING_BIT. 369 */ 370 if (!atomic_add_unless(&sched_core_count, -1, 1)) 371 schedule_work(&_work); 372 } 373 374 #else /* !CONFIG_SCHED_CORE */ 375 376 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 377 static inline void 378 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 379 380 #endif /* CONFIG_SCHED_CORE */ 381 382 /* 383 * part of the period that we allow rt tasks to run in us. 384 * default: 0.95s 385 */ 386 int sysctl_sched_rt_runtime = 950000; 387 388 389 /* 390 * Serialization rules: 391 * 392 * Lock order: 393 * 394 * p->pi_lock 395 * rq->lock 396 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 397 * 398 * rq1->lock 399 * rq2->lock where: rq1 < rq2 400 * 401 * Regular state: 402 * 403 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 404 * local CPU's rq->lock, it optionally removes the task from the runqueue and 405 * always looks at the local rq data structures to find the most eligible task 406 * to run next. 407 * 408 * Task enqueue is also under rq->lock, possibly taken from another CPU. 409 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 410 * the local CPU to avoid bouncing the runqueue state around [ see 411 * ttwu_queue_wakelist() ] 412 * 413 * Task wakeup, specifically wakeups that involve migration, are horribly 414 * complicated to avoid having to take two rq->locks. 415 * 416 * Special state: 417 * 418 * System-calls and anything external will use task_rq_lock() which acquires 419 * both p->pi_lock and rq->lock. As a consequence the state they change is 420 * stable while holding either lock: 421 * 422 * - sched_setaffinity()/ 423 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 424 * - set_user_nice(): p->se.load, p->*prio 425 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 426 * p->se.load, p->rt_priority, 427 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 428 * - sched_setnuma(): p->numa_preferred_nid 429 * - sched_move_task()/ 430 * cpu_cgroup_fork(): p->sched_task_group 431 * - uclamp_update_active() p->uclamp* 432 * 433 * p->state <- TASK_*: 434 * 435 * is changed locklessly using set_current_state(), __set_current_state() or 436 * set_special_state(), see their respective comments, or by 437 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 438 * concurrent self. 439 * 440 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 441 * 442 * is set by activate_task() and cleared by deactivate_task(), under 443 * rq->lock. Non-zero indicates the task is runnable, the special 444 * ON_RQ_MIGRATING state is used for migration without holding both 445 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 446 * 447 * p->on_cpu <- { 0, 1 }: 448 * 449 * is set by prepare_task() and cleared by finish_task() such that it will be 450 * set before p is scheduled-in and cleared after p is scheduled-out, both 451 * under rq->lock. Non-zero indicates the task is running on its CPU. 452 * 453 * [ The astute reader will observe that it is possible for two tasks on one 454 * CPU to have ->on_cpu = 1 at the same time. ] 455 * 456 * task_cpu(p): is changed by set_task_cpu(), the rules are: 457 * 458 * - Don't call set_task_cpu() on a blocked task: 459 * 460 * We don't care what CPU we're not running on, this simplifies hotplug, 461 * the CPU assignment of blocked tasks isn't required to be valid. 462 * 463 * - for try_to_wake_up(), called under p->pi_lock: 464 * 465 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 466 * 467 * - for migration called under rq->lock: 468 * [ see task_on_rq_migrating() in task_rq_lock() ] 469 * 470 * o move_queued_task() 471 * o detach_task() 472 * 473 * - for migration called under double_rq_lock(): 474 * 475 * o __migrate_swap_task() 476 * o push_rt_task() / pull_rt_task() 477 * o push_dl_task() / pull_dl_task() 478 * o dl_task_offline_migration() 479 * 480 */ 481 482 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 483 { 484 raw_spinlock_t *lock; 485 486 /* Matches synchronize_rcu() in __sched_core_enable() */ 487 preempt_disable(); 488 if (sched_core_disabled()) { 489 raw_spin_lock_nested(&rq->__lock, subclass); 490 /* preempt_count *MUST* be > 1 */ 491 preempt_enable_no_resched(); 492 return; 493 } 494 495 for (;;) { 496 lock = __rq_lockp(rq); 497 raw_spin_lock_nested(lock, subclass); 498 if (likely(lock == __rq_lockp(rq))) { 499 /* preempt_count *MUST* be > 1 */ 500 preempt_enable_no_resched(); 501 return; 502 } 503 raw_spin_unlock(lock); 504 } 505 } 506 507 bool raw_spin_rq_trylock(struct rq *rq) 508 { 509 raw_spinlock_t *lock; 510 bool ret; 511 512 /* Matches synchronize_rcu() in __sched_core_enable() */ 513 preempt_disable(); 514 if (sched_core_disabled()) { 515 ret = raw_spin_trylock(&rq->__lock); 516 preempt_enable(); 517 return ret; 518 } 519 520 for (;;) { 521 lock = __rq_lockp(rq); 522 ret = raw_spin_trylock(lock); 523 if (!ret || (likely(lock == __rq_lockp(rq)))) { 524 preempt_enable(); 525 return ret; 526 } 527 raw_spin_unlock(lock); 528 } 529 } 530 531 void raw_spin_rq_unlock(struct rq *rq) 532 { 533 raw_spin_unlock(rq_lockp(rq)); 534 } 535 536 #ifdef CONFIG_SMP 537 /* 538 * double_rq_lock - safely lock two runqueues 539 */ 540 void double_rq_lock(struct rq *rq1, struct rq *rq2) 541 { 542 lockdep_assert_irqs_disabled(); 543 544 if (rq_order_less(rq2, rq1)) 545 swap(rq1, rq2); 546 547 raw_spin_rq_lock(rq1); 548 if (__rq_lockp(rq1) == __rq_lockp(rq2)) 549 return; 550 551 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 552 } 553 #endif 554 555 /* 556 * __task_rq_lock - lock the rq @p resides on. 557 */ 558 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 559 __acquires(rq->lock) 560 { 561 struct rq *rq; 562 563 lockdep_assert_held(&p->pi_lock); 564 565 for (;;) { 566 rq = task_rq(p); 567 raw_spin_rq_lock(rq); 568 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 569 rq_pin_lock(rq, rf); 570 return rq; 571 } 572 raw_spin_rq_unlock(rq); 573 574 while (unlikely(task_on_rq_migrating(p))) 575 cpu_relax(); 576 } 577 } 578 579 /* 580 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 581 */ 582 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 583 __acquires(p->pi_lock) 584 __acquires(rq->lock) 585 { 586 struct rq *rq; 587 588 for (;;) { 589 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 590 rq = task_rq(p); 591 raw_spin_rq_lock(rq); 592 /* 593 * move_queued_task() task_rq_lock() 594 * 595 * ACQUIRE (rq->lock) 596 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 597 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 598 * [S] ->cpu = new_cpu [L] task_rq() 599 * [L] ->on_rq 600 * RELEASE (rq->lock) 601 * 602 * If we observe the old CPU in task_rq_lock(), the acquire of 603 * the old rq->lock will fully serialize against the stores. 604 * 605 * If we observe the new CPU in task_rq_lock(), the address 606 * dependency headed by '[L] rq = task_rq()' and the acquire 607 * will pair with the WMB to ensure we then also see migrating. 608 */ 609 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 610 rq_pin_lock(rq, rf); 611 return rq; 612 } 613 raw_spin_rq_unlock(rq); 614 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 615 616 while (unlikely(task_on_rq_migrating(p))) 617 cpu_relax(); 618 } 619 } 620 621 /* 622 * RQ-clock updating methods: 623 */ 624 625 static void update_rq_clock_task(struct rq *rq, s64 delta) 626 { 627 /* 628 * In theory, the compile should just see 0 here, and optimize out the call 629 * to sched_rt_avg_update. But I don't trust it... 630 */ 631 s64 __maybe_unused steal = 0, irq_delta = 0; 632 633 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 634 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 635 636 /* 637 * Since irq_time is only updated on {soft,}irq_exit, we might run into 638 * this case when a previous update_rq_clock() happened inside a 639 * {soft,}irq region. 640 * 641 * When this happens, we stop ->clock_task and only update the 642 * prev_irq_time stamp to account for the part that fit, so that a next 643 * update will consume the rest. This ensures ->clock_task is 644 * monotonic. 645 * 646 * It does however cause some slight miss-attribution of {soft,}irq 647 * time, a more accurate solution would be to update the irq_time using 648 * the current rq->clock timestamp, except that would require using 649 * atomic ops. 650 */ 651 if (irq_delta > delta) 652 irq_delta = delta; 653 654 rq->prev_irq_time += irq_delta; 655 delta -= irq_delta; 656 #endif 657 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 658 if (static_key_false((¶virt_steal_rq_enabled))) { 659 steal = paravirt_steal_clock(cpu_of(rq)); 660 steal -= rq->prev_steal_time_rq; 661 662 if (unlikely(steal > delta)) 663 steal = delta; 664 665 rq->prev_steal_time_rq += steal; 666 delta -= steal; 667 } 668 #endif 669 670 rq->clock_task += delta; 671 672 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 673 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 674 update_irq_load_avg(rq, irq_delta + steal); 675 #endif 676 update_rq_clock_pelt(rq, delta); 677 } 678 679 void update_rq_clock(struct rq *rq) 680 { 681 s64 delta; 682 683 lockdep_assert_rq_held(rq); 684 685 if (rq->clock_update_flags & RQCF_ACT_SKIP) 686 return; 687 688 #ifdef CONFIG_SCHED_DEBUG 689 if (sched_feat(WARN_DOUBLE_CLOCK)) 690 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 691 rq->clock_update_flags |= RQCF_UPDATED; 692 #endif 693 694 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 695 if (delta < 0) 696 return; 697 rq->clock += delta; 698 update_rq_clock_task(rq, delta); 699 } 700 701 #ifdef CONFIG_SCHED_HRTICK 702 /* 703 * Use HR-timers to deliver accurate preemption points. 704 */ 705 706 static void hrtick_clear(struct rq *rq) 707 { 708 if (hrtimer_active(&rq->hrtick_timer)) 709 hrtimer_cancel(&rq->hrtick_timer); 710 } 711 712 /* 713 * High-resolution timer tick. 714 * Runs from hardirq context with interrupts disabled. 715 */ 716 static enum hrtimer_restart hrtick(struct hrtimer *timer) 717 { 718 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 719 struct rq_flags rf; 720 721 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 722 723 rq_lock(rq, &rf); 724 update_rq_clock(rq); 725 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 726 rq_unlock(rq, &rf); 727 728 return HRTIMER_NORESTART; 729 } 730 731 #ifdef CONFIG_SMP 732 733 static void __hrtick_restart(struct rq *rq) 734 { 735 struct hrtimer *timer = &rq->hrtick_timer; 736 ktime_t time = rq->hrtick_time; 737 738 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 739 } 740 741 /* 742 * called from hardirq (IPI) context 743 */ 744 static void __hrtick_start(void *arg) 745 { 746 struct rq *rq = arg; 747 struct rq_flags rf; 748 749 rq_lock(rq, &rf); 750 __hrtick_restart(rq); 751 rq_unlock(rq, &rf); 752 } 753 754 /* 755 * Called to set the hrtick timer state. 756 * 757 * called with rq->lock held and irqs disabled 758 */ 759 void hrtick_start(struct rq *rq, u64 delay) 760 { 761 struct hrtimer *timer = &rq->hrtick_timer; 762 s64 delta; 763 764 /* 765 * Don't schedule slices shorter than 10000ns, that just 766 * doesn't make sense and can cause timer DoS. 767 */ 768 delta = max_t(s64, delay, 10000LL); 769 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 770 771 if (rq == this_rq()) 772 __hrtick_restart(rq); 773 else 774 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 775 } 776 777 #else 778 /* 779 * Called to set the hrtick timer state. 780 * 781 * called with rq->lock held and irqs disabled 782 */ 783 void hrtick_start(struct rq *rq, u64 delay) 784 { 785 /* 786 * Don't schedule slices shorter than 10000ns, that just 787 * doesn't make sense. Rely on vruntime for fairness. 788 */ 789 delay = max_t(u64, delay, 10000LL); 790 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 791 HRTIMER_MODE_REL_PINNED_HARD); 792 } 793 794 #endif /* CONFIG_SMP */ 795 796 static void hrtick_rq_init(struct rq *rq) 797 { 798 #ifdef CONFIG_SMP 799 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 800 #endif 801 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 802 rq->hrtick_timer.function = hrtick; 803 } 804 #else /* CONFIG_SCHED_HRTICK */ 805 static inline void hrtick_clear(struct rq *rq) 806 { 807 } 808 809 static inline void hrtick_rq_init(struct rq *rq) 810 { 811 } 812 #endif /* CONFIG_SCHED_HRTICK */ 813 814 /* 815 * cmpxchg based fetch_or, macro so it works for different integer types 816 */ 817 #define fetch_or(ptr, mask) \ 818 ({ \ 819 typeof(ptr) _ptr = (ptr); \ 820 typeof(mask) _mask = (mask); \ 821 typeof(*_ptr) _old, _val = *_ptr; \ 822 \ 823 for (;;) { \ 824 _old = cmpxchg(_ptr, _val, _val | _mask); \ 825 if (_old == _val) \ 826 break; \ 827 _val = _old; \ 828 } \ 829 _old; \ 830 }) 831 832 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 833 /* 834 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 835 * this avoids any races wrt polling state changes and thereby avoids 836 * spurious IPIs. 837 */ 838 static bool set_nr_and_not_polling(struct task_struct *p) 839 { 840 struct thread_info *ti = task_thread_info(p); 841 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 842 } 843 844 /* 845 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 846 * 847 * If this returns true, then the idle task promises to call 848 * sched_ttwu_pending() and reschedule soon. 849 */ 850 static bool set_nr_if_polling(struct task_struct *p) 851 { 852 struct thread_info *ti = task_thread_info(p); 853 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 854 855 for (;;) { 856 if (!(val & _TIF_POLLING_NRFLAG)) 857 return false; 858 if (val & _TIF_NEED_RESCHED) 859 return true; 860 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 861 if (old == val) 862 break; 863 val = old; 864 } 865 return true; 866 } 867 868 #else 869 static bool set_nr_and_not_polling(struct task_struct *p) 870 { 871 set_tsk_need_resched(p); 872 return true; 873 } 874 875 #ifdef CONFIG_SMP 876 static bool set_nr_if_polling(struct task_struct *p) 877 { 878 return false; 879 } 880 #endif 881 #endif 882 883 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 884 { 885 struct wake_q_node *node = &task->wake_q; 886 887 /* 888 * Atomically grab the task, if ->wake_q is !nil already it means 889 * it's already queued (either by us or someone else) and will get the 890 * wakeup due to that. 891 * 892 * In order to ensure that a pending wakeup will observe our pending 893 * state, even in the failed case, an explicit smp_mb() must be used. 894 */ 895 smp_mb__before_atomic(); 896 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 897 return false; 898 899 /* 900 * The head is context local, there can be no concurrency. 901 */ 902 *head->lastp = node; 903 head->lastp = &node->next; 904 return true; 905 } 906 907 /** 908 * wake_q_add() - queue a wakeup for 'later' waking. 909 * @head: the wake_q_head to add @task to 910 * @task: the task to queue for 'later' wakeup 911 * 912 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 913 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 914 * instantly. 915 * 916 * This function must be used as-if it were wake_up_process(); IOW the task 917 * must be ready to be woken at this location. 918 */ 919 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 920 { 921 if (__wake_q_add(head, task)) 922 get_task_struct(task); 923 } 924 925 /** 926 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 927 * @head: the wake_q_head to add @task to 928 * @task: the task to queue for 'later' wakeup 929 * 930 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 931 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 932 * instantly. 933 * 934 * This function must be used as-if it were wake_up_process(); IOW the task 935 * must be ready to be woken at this location. 936 * 937 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 938 * that already hold reference to @task can call the 'safe' version and trust 939 * wake_q to do the right thing depending whether or not the @task is already 940 * queued for wakeup. 941 */ 942 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 943 { 944 if (!__wake_q_add(head, task)) 945 put_task_struct(task); 946 } 947 948 void wake_up_q(struct wake_q_head *head) 949 { 950 struct wake_q_node *node = head->first; 951 952 while (node != WAKE_Q_TAIL) { 953 struct task_struct *task; 954 955 task = container_of(node, struct task_struct, wake_q); 956 /* Task can safely be re-inserted now: */ 957 node = node->next; 958 task->wake_q.next = NULL; 959 960 /* 961 * wake_up_process() executes a full barrier, which pairs with 962 * the queueing in wake_q_add() so as not to miss wakeups. 963 */ 964 wake_up_process(task); 965 put_task_struct(task); 966 } 967 } 968 969 /* 970 * resched_curr - mark rq's current task 'to be rescheduled now'. 971 * 972 * On UP this means the setting of the need_resched flag, on SMP it 973 * might also involve a cross-CPU call to trigger the scheduler on 974 * the target CPU. 975 */ 976 void resched_curr(struct rq *rq) 977 { 978 struct task_struct *curr = rq->curr; 979 int cpu; 980 981 lockdep_assert_rq_held(rq); 982 983 if (test_tsk_need_resched(curr)) 984 return; 985 986 cpu = cpu_of(rq); 987 988 if (cpu == smp_processor_id()) { 989 set_tsk_need_resched(curr); 990 set_preempt_need_resched(); 991 return; 992 } 993 994 if (set_nr_and_not_polling(curr)) 995 smp_send_reschedule(cpu); 996 else 997 trace_sched_wake_idle_without_ipi(cpu); 998 } 999 1000 void resched_cpu(int cpu) 1001 { 1002 struct rq *rq = cpu_rq(cpu); 1003 unsigned long flags; 1004 1005 raw_spin_rq_lock_irqsave(rq, flags); 1006 if (cpu_online(cpu) || cpu == smp_processor_id()) 1007 resched_curr(rq); 1008 raw_spin_rq_unlock_irqrestore(rq, flags); 1009 } 1010 1011 #ifdef CONFIG_SMP 1012 #ifdef CONFIG_NO_HZ_COMMON 1013 /* 1014 * In the semi idle case, use the nearest busy CPU for migrating timers 1015 * from an idle CPU. This is good for power-savings. 1016 * 1017 * We don't do similar optimization for completely idle system, as 1018 * selecting an idle CPU will add more delays to the timers than intended 1019 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1020 */ 1021 int get_nohz_timer_target(void) 1022 { 1023 int i, cpu = smp_processor_id(), default_cpu = -1; 1024 struct sched_domain *sd; 1025 const struct cpumask *hk_mask; 1026 1027 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 1028 if (!idle_cpu(cpu)) 1029 return cpu; 1030 default_cpu = cpu; 1031 } 1032 1033 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER); 1034 1035 rcu_read_lock(); 1036 for_each_domain(cpu, sd) { 1037 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1038 if (cpu == i) 1039 continue; 1040 1041 if (!idle_cpu(i)) { 1042 cpu = i; 1043 goto unlock; 1044 } 1045 } 1046 } 1047 1048 if (default_cpu == -1) 1049 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 1050 cpu = default_cpu; 1051 unlock: 1052 rcu_read_unlock(); 1053 return cpu; 1054 } 1055 1056 /* 1057 * When add_timer_on() enqueues a timer into the timer wheel of an 1058 * idle CPU then this timer might expire before the next timer event 1059 * which is scheduled to wake up that CPU. In case of a completely 1060 * idle system the next event might even be infinite time into the 1061 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1062 * leaves the inner idle loop so the newly added timer is taken into 1063 * account when the CPU goes back to idle and evaluates the timer 1064 * wheel for the next timer event. 1065 */ 1066 static void wake_up_idle_cpu(int cpu) 1067 { 1068 struct rq *rq = cpu_rq(cpu); 1069 1070 if (cpu == smp_processor_id()) 1071 return; 1072 1073 if (set_nr_and_not_polling(rq->idle)) 1074 smp_send_reschedule(cpu); 1075 else 1076 trace_sched_wake_idle_without_ipi(cpu); 1077 } 1078 1079 static bool wake_up_full_nohz_cpu(int cpu) 1080 { 1081 /* 1082 * We just need the target to call irq_exit() and re-evaluate 1083 * the next tick. The nohz full kick at least implies that. 1084 * If needed we can still optimize that later with an 1085 * empty IRQ. 1086 */ 1087 if (cpu_is_offline(cpu)) 1088 return true; /* Don't try to wake offline CPUs. */ 1089 if (tick_nohz_full_cpu(cpu)) { 1090 if (cpu != smp_processor_id() || 1091 tick_nohz_tick_stopped()) 1092 tick_nohz_full_kick_cpu(cpu); 1093 return true; 1094 } 1095 1096 return false; 1097 } 1098 1099 /* 1100 * Wake up the specified CPU. If the CPU is going offline, it is the 1101 * caller's responsibility to deal with the lost wakeup, for example, 1102 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1103 */ 1104 void wake_up_nohz_cpu(int cpu) 1105 { 1106 if (!wake_up_full_nohz_cpu(cpu)) 1107 wake_up_idle_cpu(cpu); 1108 } 1109 1110 static void nohz_csd_func(void *info) 1111 { 1112 struct rq *rq = info; 1113 int cpu = cpu_of(rq); 1114 unsigned int flags; 1115 1116 /* 1117 * Release the rq::nohz_csd. 1118 */ 1119 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1120 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1121 1122 rq->idle_balance = idle_cpu(cpu); 1123 if (rq->idle_balance && !need_resched()) { 1124 rq->nohz_idle_balance = flags; 1125 raise_softirq_irqoff(SCHED_SOFTIRQ); 1126 } 1127 } 1128 1129 #endif /* CONFIG_NO_HZ_COMMON */ 1130 1131 #ifdef CONFIG_NO_HZ_FULL 1132 bool sched_can_stop_tick(struct rq *rq) 1133 { 1134 int fifo_nr_running; 1135 1136 /* Deadline tasks, even if single, need the tick */ 1137 if (rq->dl.dl_nr_running) 1138 return false; 1139 1140 /* 1141 * If there are more than one RR tasks, we need the tick to affect the 1142 * actual RR behaviour. 1143 */ 1144 if (rq->rt.rr_nr_running) { 1145 if (rq->rt.rr_nr_running == 1) 1146 return true; 1147 else 1148 return false; 1149 } 1150 1151 /* 1152 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1153 * forced preemption between FIFO tasks. 1154 */ 1155 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1156 if (fifo_nr_running) 1157 return true; 1158 1159 /* 1160 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1161 * if there's more than one we need the tick for involuntary 1162 * preemption. 1163 */ 1164 if (rq->nr_running > 1) 1165 return false; 1166 1167 return true; 1168 } 1169 #endif /* CONFIG_NO_HZ_FULL */ 1170 #endif /* CONFIG_SMP */ 1171 1172 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1173 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1174 /* 1175 * Iterate task_group tree rooted at *from, calling @down when first entering a 1176 * node and @up when leaving it for the final time. 1177 * 1178 * Caller must hold rcu_lock or sufficient equivalent. 1179 */ 1180 int walk_tg_tree_from(struct task_group *from, 1181 tg_visitor down, tg_visitor up, void *data) 1182 { 1183 struct task_group *parent, *child; 1184 int ret; 1185 1186 parent = from; 1187 1188 down: 1189 ret = (*down)(parent, data); 1190 if (ret) 1191 goto out; 1192 list_for_each_entry_rcu(child, &parent->children, siblings) { 1193 parent = child; 1194 goto down; 1195 1196 up: 1197 continue; 1198 } 1199 ret = (*up)(parent, data); 1200 if (ret || parent == from) 1201 goto out; 1202 1203 child = parent; 1204 parent = parent->parent; 1205 if (parent) 1206 goto up; 1207 out: 1208 return ret; 1209 } 1210 1211 int tg_nop(struct task_group *tg, void *data) 1212 { 1213 return 0; 1214 } 1215 #endif 1216 1217 static void set_load_weight(struct task_struct *p, bool update_load) 1218 { 1219 int prio = p->static_prio - MAX_RT_PRIO; 1220 struct load_weight *load = &p->se.load; 1221 1222 /* 1223 * SCHED_IDLE tasks get minimal weight: 1224 */ 1225 if (task_has_idle_policy(p)) { 1226 load->weight = scale_load(WEIGHT_IDLEPRIO); 1227 load->inv_weight = WMULT_IDLEPRIO; 1228 return; 1229 } 1230 1231 /* 1232 * SCHED_OTHER tasks have to update their load when changing their 1233 * weight 1234 */ 1235 if (update_load && p->sched_class == &fair_sched_class) { 1236 reweight_task(p, prio); 1237 } else { 1238 load->weight = scale_load(sched_prio_to_weight[prio]); 1239 load->inv_weight = sched_prio_to_wmult[prio]; 1240 } 1241 } 1242 1243 #ifdef CONFIG_UCLAMP_TASK 1244 /* 1245 * Serializes updates of utilization clamp values 1246 * 1247 * The (slow-path) user-space triggers utilization clamp value updates which 1248 * can require updates on (fast-path) scheduler's data structures used to 1249 * support enqueue/dequeue operations. 1250 * While the per-CPU rq lock protects fast-path update operations, user-space 1251 * requests are serialized using a mutex to reduce the risk of conflicting 1252 * updates or API abuses. 1253 */ 1254 static DEFINE_MUTEX(uclamp_mutex); 1255 1256 /* Max allowed minimum utilization */ 1257 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1258 1259 /* Max allowed maximum utilization */ 1260 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1261 1262 /* 1263 * By default RT tasks run at the maximum performance point/capacity of the 1264 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1265 * SCHED_CAPACITY_SCALE. 1266 * 1267 * This knob allows admins to change the default behavior when uclamp is being 1268 * used. In battery powered devices, particularly, running at the maximum 1269 * capacity and frequency will increase energy consumption and shorten the 1270 * battery life. 1271 * 1272 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1273 * 1274 * This knob will not override the system default sched_util_clamp_min defined 1275 * above. 1276 */ 1277 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1278 1279 /* All clamps are required to be less or equal than these values */ 1280 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1281 1282 /* 1283 * This static key is used to reduce the uclamp overhead in the fast path. It 1284 * primarily disables the call to uclamp_rq_{inc, dec}() in 1285 * enqueue/dequeue_task(). 1286 * 1287 * This allows users to continue to enable uclamp in their kernel config with 1288 * minimum uclamp overhead in the fast path. 1289 * 1290 * As soon as userspace modifies any of the uclamp knobs, the static key is 1291 * enabled, since we have an actual users that make use of uclamp 1292 * functionality. 1293 * 1294 * The knobs that would enable this static key are: 1295 * 1296 * * A task modifying its uclamp value with sched_setattr(). 1297 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1298 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1299 */ 1300 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1301 1302 /* Integer rounded range for each bucket */ 1303 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1304 1305 #define for_each_clamp_id(clamp_id) \ 1306 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1307 1308 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1309 { 1310 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1311 } 1312 1313 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1314 { 1315 if (clamp_id == UCLAMP_MIN) 1316 return 0; 1317 return SCHED_CAPACITY_SCALE; 1318 } 1319 1320 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1321 unsigned int value, bool user_defined) 1322 { 1323 uc_se->value = value; 1324 uc_se->bucket_id = uclamp_bucket_id(value); 1325 uc_se->user_defined = user_defined; 1326 } 1327 1328 static inline unsigned int 1329 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1330 unsigned int clamp_value) 1331 { 1332 /* 1333 * Avoid blocked utilization pushing up the frequency when we go 1334 * idle (which drops the max-clamp) by retaining the last known 1335 * max-clamp. 1336 */ 1337 if (clamp_id == UCLAMP_MAX) { 1338 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1339 return clamp_value; 1340 } 1341 1342 return uclamp_none(UCLAMP_MIN); 1343 } 1344 1345 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1346 unsigned int clamp_value) 1347 { 1348 /* Reset max-clamp retention only on idle exit */ 1349 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1350 return; 1351 1352 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1353 } 1354 1355 static inline 1356 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1357 unsigned int clamp_value) 1358 { 1359 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1360 int bucket_id = UCLAMP_BUCKETS - 1; 1361 1362 /* 1363 * Since both min and max clamps are max aggregated, find the 1364 * top most bucket with tasks in. 1365 */ 1366 for ( ; bucket_id >= 0; bucket_id--) { 1367 if (!bucket[bucket_id].tasks) 1368 continue; 1369 return bucket[bucket_id].value; 1370 } 1371 1372 /* No tasks -- default clamp values */ 1373 return uclamp_idle_value(rq, clamp_id, clamp_value); 1374 } 1375 1376 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1377 { 1378 unsigned int default_util_min; 1379 struct uclamp_se *uc_se; 1380 1381 lockdep_assert_held(&p->pi_lock); 1382 1383 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1384 1385 /* Only sync if user didn't override the default */ 1386 if (uc_se->user_defined) 1387 return; 1388 1389 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1390 uclamp_se_set(uc_se, default_util_min, false); 1391 } 1392 1393 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1394 { 1395 struct rq_flags rf; 1396 struct rq *rq; 1397 1398 if (!rt_task(p)) 1399 return; 1400 1401 /* Protect updates to p->uclamp_* */ 1402 rq = task_rq_lock(p, &rf); 1403 __uclamp_update_util_min_rt_default(p); 1404 task_rq_unlock(rq, p, &rf); 1405 } 1406 1407 static void uclamp_sync_util_min_rt_default(void) 1408 { 1409 struct task_struct *g, *p; 1410 1411 /* 1412 * copy_process() sysctl_uclamp 1413 * uclamp_min_rt = X; 1414 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1415 * // link thread smp_mb__after_spinlock() 1416 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1417 * sched_post_fork() for_each_process_thread() 1418 * __uclamp_sync_rt() __uclamp_sync_rt() 1419 * 1420 * Ensures that either sched_post_fork() will observe the new 1421 * uclamp_min_rt or for_each_process_thread() will observe the new 1422 * task. 1423 */ 1424 read_lock(&tasklist_lock); 1425 smp_mb__after_spinlock(); 1426 read_unlock(&tasklist_lock); 1427 1428 rcu_read_lock(); 1429 for_each_process_thread(g, p) 1430 uclamp_update_util_min_rt_default(p); 1431 rcu_read_unlock(); 1432 } 1433 1434 static inline struct uclamp_se 1435 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1436 { 1437 /* Copy by value as we could modify it */ 1438 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1439 #ifdef CONFIG_UCLAMP_TASK_GROUP 1440 unsigned int tg_min, tg_max, value; 1441 1442 /* 1443 * Tasks in autogroups or root task group will be 1444 * restricted by system defaults. 1445 */ 1446 if (task_group_is_autogroup(task_group(p))) 1447 return uc_req; 1448 if (task_group(p) == &root_task_group) 1449 return uc_req; 1450 1451 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1452 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1453 value = uc_req.value; 1454 value = clamp(value, tg_min, tg_max); 1455 uclamp_se_set(&uc_req, value, false); 1456 #endif 1457 1458 return uc_req; 1459 } 1460 1461 /* 1462 * The effective clamp bucket index of a task depends on, by increasing 1463 * priority: 1464 * - the task specific clamp value, when explicitly requested from userspace 1465 * - the task group effective clamp value, for tasks not either in the root 1466 * group or in an autogroup 1467 * - the system default clamp value, defined by the sysadmin 1468 */ 1469 static inline struct uclamp_se 1470 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1471 { 1472 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1473 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1474 1475 /* System default restrictions always apply */ 1476 if (unlikely(uc_req.value > uc_max.value)) 1477 return uc_max; 1478 1479 return uc_req; 1480 } 1481 1482 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1483 { 1484 struct uclamp_se uc_eff; 1485 1486 /* Task currently refcounted: use back-annotated (effective) value */ 1487 if (p->uclamp[clamp_id].active) 1488 return (unsigned long)p->uclamp[clamp_id].value; 1489 1490 uc_eff = uclamp_eff_get(p, clamp_id); 1491 1492 return (unsigned long)uc_eff.value; 1493 } 1494 1495 /* 1496 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1497 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1498 * updates the rq's clamp value if required. 1499 * 1500 * Tasks can have a task-specific value requested from user-space, track 1501 * within each bucket the maximum value for tasks refcounted in it. 1502 * This "local max aggregation" allows to track the exact "requested" value 1503 * for each bucket when all its RUNNABLE tasks require the same clamp. 1504 */ 1505 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1506 enum uclamp_id clamp_id) 1507 { 1508 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1509 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1510 struct uclamp_bucket *bucket; 1511 1512 lockdep_assert_rq_held(rq); 1513 1514 /* Update task effective clamp */ 1515 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1516 1517 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1518 bucket->tasks++; 1519 uc_se->active = true; 1520 1521 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1522 1523 /* 1524 * Local max aggregation: rq buckets always track the max 1525 * "requested" clamp value of its RUNNABLE tasks. 1526 */ 1527 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1528 bucket->value = uc_se->value; 1529 1530 if (uc_se->value > READ_ONCE(uc_rq->value)) 1531 WRITE_ONCE(uc_rq->value, uc_se->value); 1532 } 1533 1534 /* 1535 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1536 * is released. If this is the last task reference counting the rq's max 1537 * active clamp value, then the rq's clamp value is updated. 1538 * 1539 * Both refcounted tasks and rq's cached clamp values are expected to be 1540 * always valid. If it's detected they are not, as defensive programming, 1541 * enforce the expected state and warn. 1542 */ 1543 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1544 enum uclamp_id clamp_id) 1545 { 1546 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1547 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1548 struct uclamp_bucket *bucket; 1549 unsigned int bkt_clamp; 1550 unsigned int rq_clamp; 1551 1552 lockdep_assert_rq_held(rq); 1553 1554 /* 1555 * If sched_uclamp_used was enabled after task @p was enqueued, 1556 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1557 * 1558 * In this case the uc_se->active flag should be false since no uclamp 1559 * accounting was performed at enqueue time and we can just return 1560 * here. 1561 * 1562 * Need to be careful of the following enqueue/dequeue ordering 1563 * problem too 1564 * 1565 * enqueue(taskA) 1566 * // sched_uclamp_used gets enabled 1567 * enqueue(taskB) 1568 * dequeue(taskA) 1569 * // Must not decrement bucket->tasks here 1570 * dequeue(taskB) 1571 * 1572 * where we could end up with stale data in uc_se and 1573 * bucket[uc_se->bucket_id]. 1574 * 1575 * The following check here eliminates the possibility of such race. 1576 */ 1577 if (unlikely(!uc_se->active)) 1578 return; 1579 1580 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1581 1582 SCHED_WARN_ON(!bucket->tasks); 1583 if (likely(bucket->tasks)) 1584 bucket->tasks--; 1585 1586 uc_se->active = false; 1587 1588 /* 1589 * Keep "local max aggregation" simple and accept to (possibly) 1590 * overboost some RUNNABLE tasks in the same bucket. 1591 * The rq clamp bucket value is reset to its base value whenever 1592 * there are no more RUNNABLE tasks refcounting it. 1593 */ 1594 if (likely(bucket->tasks)) 1595 return; 1596 1597 rq_clamp = READ_ONCE(uc_rq->value); 1598 /* 1599 * Defensive programming: this should never happen. If it happens, 1600 * e.g. due to future modification, warn and fixup the expected value. 1601 */ 1602 SCHED_WARN_ON(bucket->value > rq_clamp); 1603 if (bucket->value >= rq_clamp) { 1604 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1605 WRITE_ONCE(uc_rq->value, bkt_clamp); 1606 } 1607 } 1608 1609 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1610 { 1611 enum uclamp_id clamp_id; 1612 1613 /* 1614 * Avoid any overhead until uclamp is actually used by the userspace. 1615 * 1616 * The condition is constructed such that a NOP is generated when 1617 * sched_uclamp_used is disabled. 1618 */ 1619 if (!static_branch_unlikely(&sched_uclamp_used)) 1620 return; 1621 1622 if (unlikely(!p->sched_class->uclamp_enabled)) 1623 return; 1624 1625 for_each_clamp_id(clamp_id) 1626 uclamp_rq_inc_id(rq, p, clamp_id); 1627 1628 /* Reset clamp idle holding when there is one RUNNABLE task */ 1629 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1630 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1631 } 1632 1633 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1634 { 1635 enum uclamp_id clamp_id; 1636 1637 /* 1638 * Avoid any overhead until uclamp is actually used by the userspace. 1639 * 1640 * The condition is constructed such that a NOP is generated when 1641 * sched_uclamp_used is disabled. 1642 */ 1643 if (!static_branch_unlikely(&sched_uclamp_used)) 1644 return; 1645 1646 if (unlikely(!p->sched_class->uclamp_enabled)) 1647 return; 1648 1649 for_each_clamp_id(clamp_id) 1650 uclamp_rq_dec_id(rq, p, clamp_id); 1651 } 1652 1653 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1654 enum uclamp_id clamp_id) 1655 { 1656 if (!p->uclamp[clamp_id].active) 1657 return; 1658 1659 uclamp_rq_dec_id(rq, p, clamp_id); 1660 uclamp_rq_inc_id(rq, p, clamp_id); 1661 1662 /* 1663 * Make sure to clear the idle flag if we've transiently reached 0 1664 * active tasks on rq. 1665 */ 1666 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1667 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1668 } 1669 1670 static inline void 1671 uclamp_update_active(struct task_struct *p) 1672 { 1673 enum uclamp_id clamp_id; 1674 struct rq_flags rf; 1675 struct rq *rq; 1676 1677 /* 1678 * Lock the task and the rq where the task is (or was) queued. 1679 * 1680 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1681 * price to pay to safely serialize util_{min,max} updates with 1682 * enqueues, dequeues and migration operations. 1683 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1684 */ 1685 rq = task_rq_lock(p, &rf); 1686 1687 /* 1688 * Setting the clamp bucket is serialized by task_rq_lock(). 1689 * If the task is not yet RUNNABLE and its task_struct is not 1690 * affecting a valid clamp bucket, the next time it's enqueued, 1691 * it will already see the updated clamp bucket value. 1692 */ 1693 for_each_clamp_id(clamp_id) 1694 uclamp_rq_reinc_id(rq, p, clamp_id); 1695 1696 task_rq_unlock(rq, p, &rf); 1697 } 1698 1699 #ifdef CONFIG_UCLAMP_TASK_GROUP 1700 static inline void 1701 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1702 { 1703 struct css_task_iter it; 1704 struct task_struct *p; 1705 1706 css_task_iter_start(css, 0, &it); 1707 while ((p = css_task_iter_next(&it))) 1708 uclamp_update_active(p); 1709 css_task_iter_end(&it); 1710 } 1711 1712 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1713 static void uclamp_update_root_tg(void) 1714 { 1715 struct task_group *tg = &root_task_group; 1716 1717 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1718 sysctl_sched_uclamp_util_min, false); 1719 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1720 sysctl_sched_uclamp_util_max, false); 1721 1722 rcu_read_lock(); 1723 cpu_util_update_eff(&root_task_group.css); 1724 rcu_read_unlock(); 1725 } 1726 #else 1727 static void uclamp_update_root_tg(void) { } 1728 #endif 1729 1730 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1731 void *buffer, size_t *lenp, loff_t *ppos) 1732 { 1733 bool update_root_tg = false; 1734 int old_min, old_max, old_min_rt; 1735 int result; 1736 1737 mutex_lock(&uclamp_mutex); 1738 old_min = sysctl_sched_uclamp_util_min; 1739 old_max = sysctl_sched_uclamp_util_max; 1740 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1741 1742 result = proc_dointvec(table, write, buffer, lenp, ppos); 1743 if (result) 1744 goto undo; 1745 if (!write) 1746 goto done; 1747 1748 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1749 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1750 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1751 1752 result = -EINVAL; 1753 goto undo; 1754 } 1755 1756 if (old_min != sysctl_sched_uclamp_util_min) { 1757 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1758 sysctl_sched_uclamp_util_min, false); 1759 update_root_tg = true; 1760 } 1761 if (old_max != sysctl_sched_uclamp_util_max) { 1762 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1763 sysctl_sched_uclamp_util_max, false); 1764 update_root_tg = true; 1765 } 1766 1767 if (update_root_tg) { 1768 static_branch_enable(&sched_uclamp_used); 1769 uclamp_update_root_tg(); 1770 } 1771 1772 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1773 static_branch_enable(&sched_uclamp_used); 1774 uclamp_sync_util_min_rt_default(); 1775 } 1776 1777 /* 1778 * We update all RUNNABLE tasks only when task groups are in use. 1779 * Otherwise, keep it simple and do just a lazy update at each next 1780 * task enqueue time. 1781 */ 1782 1783 goto done; 1784 1785 undo: 1786 sysctl_sched_uclamp_util_min = old_min; 1787 sysctl_sched_uclamp_util_max = old_max; 1788 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1789 done: 1790 mutex_unlock(&uclamp_mutex); 1791 1792 return result; 1793 } 1794 1795 static int uclamp_validate(struct task_struct *p, 1796 const struct sched_attr *attr) 1797 { 1798 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1799 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1800 1801 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1802 util_min = attr->sched_util_min; 1803 1804 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1805 return -EINVAL; 1806 } 1807 1808 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1809 util_max = attr->sched_util_max; 1810 1811 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1812 return -EINVAL; 1813 } 1814 1815 if (util_min != -1 && util_max != -1 && util_min > util_max) 1816 return -EINVAL; 1817 1818 /* 1819 * We have valid uclamp attributes; make sure uclamp is enabled. 1820 * 1821 * We need to do that here, because enabling static branches is a 1822 * blocking operation which obviously cannot be done while holding 1823 * scheduler locks. 1824 */ 1825 static_branch_enable(&sched_uclamp_used); 1826 1827 return 0; 1828 } 1829 1830 static bool uclamp_reset(const struct sched_attr *attr, 1831 enum uclamp_id clamp_id, 1832 struct uclamp_se *uc_se) 1833 { 1834 /* Reset on sched class change for a non user-defined clamp value. */ 1835 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1836 !uc_se->user_defined) 1837 return true; 1838 1839 /* Reset on sched_util_{min,max} == -1. */ 1840 if (clamp_id == UCLAMP_MIN && 1841 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1842 attr->sched_util_min == -1) { 1843 return true; 1844 } 1845 1846 if (clamp_id == UCLAMP_MAX && 1847 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1848 attr->sched_util_max == -1) { 1849 return true; 1850 } 1851 1852 return false; 1853 } 1854 1855 static void __setscheduler_uclamp(struct task_struct *p, 1856 const struct sched_attr *attr) 1857 { 1858 enum uclamp_id clamp_id; 1859 1860 for_each_clamp_id(clamp_id) { 1861 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1862 unsigned int value; 1863 1864 if (!uclamp_reset(attr, clamp_id, uc_se)) 1865 continue; 1866 1867 /* 1868 * RT by default have a 100% boost value that could be modified 1869 * at runtime. 1870 */ 1871 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1872 value = sysctl_sched_uclamp_util_min_rt_default; 1873 else 1874 value = uclamp_none(clamp_id); 1875 1876 uclamp_se_set(uc_se, value, false); 1877 1878 } 1879 1880 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1881 return; 1882 1883 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1884 attr->sched_util_min != -1) { 1885 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1886 attr->sched_util_min, true); 1887 } 1888 1889 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1890 attr->sched_util_max != -1) { 1891 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1892 attr->sched_util_max, true); 1893 } 1894 } 1895 1896 static void uclamp_fork(struct task_struct *p) 1897 { 1898 enum uclamp_id clamp_id; 1899 1900 /* 1901 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1902 * as the task is still at its early fork stages. 1903 */ 1904 for_each_clamp_id(clamp_id) 1905 p->uclamp[clamp_id].active = false; 1906 1907 if (likely(!p->sched_reset_on_fork)) 1908 return; 1909 1910 for_each_clamp_id(clamp_id) { 1911 uclamp_se_set(&p->uclamp_req[clamp_id], 1912 uclamp_none(clamp_id), false); 1913 } 1914 } 1915 1916 static void uclamp_post_fork(struct task_struct *p) 1917 { 1918 uclamp_update_util_min_rt_default(p); 1919 } 1920 1921 static void __init init_uclamp_rq(struct rq *rq) 1922 { 1923 enum uclamp_id clamp_id; 1924 struct uclamp_rq *uc_rq = rq->uclamp; 1925 1926 for_each_clamp_id(clamp_id) { 1927 uc_rq[clamp_id] = (struct uclamp_rq) { 1928 .value = uclamp_none(clamp_id) 1929 }; 1930 } 1931 1932 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1933 } 1934 1935 static void __init init_uclamp(void) 1936 { 1937 struct uclamp_se uc_max = {}; 1938 enum uclamp_id clamp_id; 1939 int cpu; 1940 1941 for_each_possible_cpu(cpu) 1942 init_uclamp_rq(cpu_rq(cpu)); 1943 1944 for_each_clamp_id(clamp_id) { 1945 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1946 uclamp_none(clamp_id), false); 1947 } 1948 1949 /* System defaults allow max clamp values for both indexes */ 1950 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1951 for_each_clamp_id(clamp_id) { 1952 uclamp_default[clamp_id] = uc_max; 1953 #ifdef CONFIG_UCLAMP_TASK_GROUP 1954 root_task_group.uclamp_req[clamp_id] = uc_max; 1955 root_task_group.uclamp[clamp_id] = uc_max; 1956 #endif 1957 } 1958 } 1959 1960 #else /* CONFIG_UCLAMP_TASK */ 1961 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1962 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1963 static inline int uclamp_validate(struct task_struct *p, 1964 const struct sched_attr *attr) 1965 { 1966 return -EOPNOTSUPP; 1967 } 1968 static void __setscheduler_uclamp(struct task_struct *p, 1969 const struct sched_attr *attr) { } 1970 static inline void uclamp_fork(struct task_struct *p) { } 1971 static inline void uclamp_post_fork(struct task_struct *p) { } 1972 static inline void init_uclamp(void) { } 1973 #endif /* CONFIG_UCLAMP_TASK */ 1974 1975 bool sched_task_on_rq(struct task_struct *p) 1976 { 1977 return task_on_rq_queued(p); 1978 } 1979 1980 unsigned long get_wchan(struct task_struct *p) 1981 { 1982 unsigned long ip = 0; 1983 unsigned int state; 1984 1985 if (!p || p == current) 1986 return 0; 1987 1988 /* Only get wchan if task is blocked and we can keep it that way. */ 1989 raw_spin_lock_irq(&p->pi_lock); 1990 state = READ_ONCE(p->__state); 1991 smp_rmb(); /* see try_to_wake_up() */ 1992 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1993 ip = __get_wchan(p); 1994 raw_spin_unlock_irq(&p->pi_lock); 1995 1996 return ip; 1997 } 1998 1999 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2000 { 2001 if (!(flags & ENQUEUE_NOCLOCK)) 2002 update_rq_clock(rq); 2003 2004 if (!(flags & ENQUEUE_RESTORE)) { 2005 sched_info_enqueue(rq, p); 2006 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 2007 } 2008 2009 uclamp_rq_inc(rq, p); 2010 p->sched_class->enqueue_task(rq, p, flags); 2011 2012 if (sched_core_enabled(rq)) 2013 sched_core_enqueue(rq, p); 2014 } 2015 2016 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2017 { 2018 if (sched_core_enabled(rq)) 2019 sched_core_dequeue(rq, p, flags); 2020 2021 if (!(flags & DEQUEUE_NOCLOCK)) 2022 update_rq_clock(rq); 2023 2024 if (!(flags & DEQUEUE_SAVE)) { 2025 sched_info_dequeue(rq, p); 2026 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2027 } 2028 2029 uclamp_rq_dec(rq, p); 2030 p->sched_class->dequeue_task(rq, p, flags); 2031 } 2032 2033 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2034 { 2035 enqueue_task(rq, p, flags); 2036 2037 p->on_rq = TASK_ON_RQ_QUEUED; 2038 } 2039 2040 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2041 { 2042 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2043 2044 dequeue_task(rq, p, flags); 2045 } 2046 2047 static inline int __normal_prio(int policy, int rt_prio, int nice) 2048 { 2049 int prio; 2050 2051 if (dl_policy(policy)) 2052 prio = MAX_DL_PRIO - 1; 2053 else if (rt_policy(policy)) 2054 prio = MAX_RT_PRIO - 1 - rt_prio; 2055 else 2056 prio = NICE_TO_PRIO(nice); 2057 2058 return prio; 2059 } 2060 2061 /* 2062 * Calculate the expected normal priority: i.e. priority 2063 * without taking RT-inheritance into account. Might be 2064 * boosted by interactivity modifiers. Changes upon fork, 2065 * setprio syscalls, and whenever the interactivity 2066 * estimator recalculates. 2067 */ 2068 static inline int normal_prio(struct task_struct *p) 2069 { 2070 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2071 } 2072 2073 /* 2074 * Calculate the current priority, i.e. the priority 2075 * taken into account by the scheduler. This value might 2076 * be boosted by RT tasks, or might be boosted by 2077 * interactivity modifiers. Will be RT if the task got 2078 * RT-boosted. If not then it returns p->normal_prio. 2079 */ 2080 static int effective_prio(struct task_struct *p) 2081 { 2082 p->normal_prio = normal_prio(p); 2083 /* 2084 * If we are RT tasks or we were boosted to RT priority, 2085 * keep the priority unchanged. Otherwise, update priority 2086 * to the normal priority: 2087 */ 2088 if (!rt_prio(p->prio)) 2089 return p->normal_prio; 2090 return p->prio; 2091 } 2092 2093 /** 2094 * task_curr - is this task currently executing on a CPU? 2095 * @p: the task in question. 2096 * 2097 * Return: 1 if the task is currently executing. 0 otherwise. 2098 */ 2099 inline int task_curr(const struct task_struct *p) 2100 { 2101 return cpu_curr(task_cpu(p)) == p; 2102 } 2103 2104 /* 2105 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2106 * use the balance_callback list if you want balancing. 2107 * 2108 * this means any call to check_class_changed() must be followed by a call to 2109 * balance_callback(). 2110 */ 2111 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2112 const struct sched_class *prev_class, 2113 int oldprio) 2114 { 2115 if (prev_class != p->sched_class) { 2116 if (prev_class->switched_from) 2117 prev_class->switched_from(rq, p); 2118 2119 p->sched_class->switched_to(rq, p); 2120 } else if (oldprio != p->prio || dl_task(p)) 2121 p->sched_class->prio_changed(rq, p, oldprio); 2122 } 2123 2124 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2125 { 2126 if (p->sched_class == rq->curr->sched_class) 2127 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2128 else if (p->sched_class > rq->curr->sched_class) 2129 resched_curr(rq); 2130 2131 /* 2132 * A queue event has occurred, and we're going to schedule. In 2133 * this case, we can save a useless back to back clock update. 2134 */ 2135 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2136 rq_clock_skip_update(rq); 2137 } 2138 2139 #ifdef CONFIG_SMP 2140 2141 static void 2142 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2143 2144 static int __set_cpus_allowed_ptr(struct task_struct *p, 2145 const struct cpumask *new_mask, 2146 u32 flags); 2147 2148 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2149 { 2150 if (likely(!p->migration_disabled)) 2151 return; 2152 2153 if (p->cpus_ptr != &p->cpus_mask) 2154 return; 2155 2156 /* 2157 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2158 */ 2159 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2160 } 2161 2162 void migrate_disable(void) 2163 { 2164 struct task_struct *p = current; 2165 2166 if (p->migration_disabled) { 2167 p->migration_disabled++; 2168 return; 2169 } 2170 2171 preempt_disable(); 2172 this_rq()->nr_pinned++; 2173 p->migration_disabled = 1; 2174 preempt_enable(); 2175 } 2176 EXPORT_SYMBOL_GPL(migrate_disable); 2177 2178 void migrate_enable(void) 2179 { 2180 struct task_struct *p = current; 2181 2182 if (p->migration_disabled > 1) { 2183 p->migration_disabled--; 2184 return; 2185 } 2186 2187 if (WARN_ON_ONCE(!p->migration_disabled)) 2188 return; 2189 2190 /* 2191 * Ensure stop_task runs either before or after this, and that 2192 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2193 */ 2194 preempt_disable(); 2195 if (p->cpus_ptr != &p->cpus_mask) 2196 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2197 /* 2198 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2199 * regular cpus_mask, otherwise things that race (eg. 2200 * select_fallback_rq) get confused. 2201 */ 2202 barrier(); 2203 p->migration_disabled = 0; 2204 this_rq()->nr_pinned--; 2205 preempt_enable(); 2206 } 2207 EXPORT_SYMBOL_GPL(migrate_enable); 2208 2209 static inline bool rq_has_pinned_tasks(struct rq *rq) 2210 { 2211 return rq->nr_pinned; 2212 } 2213 2214 /* 2215 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2216 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2217 */ 2218 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2219 { 2220 /* When not in the task's cpumask, no point in looking further. */ 2221 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2222 return false; 2223 2224 /* migrate_disabled() must be allowed to finish. */ 2225 if (is_migration_disabled(p)) 2226 return cpu_online(cpu); 2227 2228 /* Non kernel threads are not allowed during either online or offline. */ 2229 if (!(p->flags & PF_KTHREAD)) 2230 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2231 2232 /* KTHREAD_IS_PER_CPU is always allowed. */ 2233 if (kthread_is_per_cpu(p)) 2234 return cpu_online(cpu); 2235 2236 /* Regular kernel threads don't get to stay during offline. */ 2237 if (cpu_dying(cpu)) 2238 return false; 2239 2240 /* But are allowed during online. */ 2241 return cpu_online(cpu); 2242 } 2243 2244 /* 2245 * This is how migration works: 2246 * 2247 * 1) we invoke migration_cpu_stop() on the target CPU using 2248 * stop_one_cpu(). 2249 * 2) stopper starts to run (implicitly forcing the migrated thread 2250 * off the CPU) 2251 * 3) it checks whether the migrated task is still in the wrong runqueue. 2252 * 4) if it's in the wrong runqueue then the migration thread removes 2253 * it and puts it into the right queue. 2254 * 5) stopper completes and stop_one_cpu() returns and the migration 2255 * is done. 2256 */ 2257 2258 /* 2259 * move_queued_task - move a queued task to new rq. 2260 * 2261 * Returns (locked) new rq. Old rq's lock is released. 2262 */ 2263 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2264 struct task_struct *p, int new_cpu) 2265 { 2266 lockdep_assert_rq_held(rq); 2267 2268 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2269 set_task_cpu(p, new_cpu); 2270 rq_unlock(rq, rf); 2271 2272 rq = cpu_rq(new_cpu); 2273 2274 rq_lock(rq, rf); 2275 BUG_ON(task_cpu(p) != new_cpu); 2276 activate_task(rq, p, 0); 2277 check_preempt_curr(rq, p, 0); 2278 2279 return rq; 2280 } 2281 2282 struct migration_arg { 2283 struct task_struct *task; 2284 int dest_cpu; 2285 struct set_affinity_pending *pending; 2286 }; 2287 2288 /* 2289 * @refs: number of wait_for_completion() 2290 * @stop_pending: is @stop_work in use 2291 */ 2292 struct set_affinity_pending { 2293 refcount_t refs; 2294 unsigned int stop_pending; 2295 struct completion done; 2296 struct cpu_stop_work stop_work; 2297 struct migration_arg arg; 2298 }; 2299 2300 /* 2301 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2302 * this because either it can't run here any more (set_cpus_allowed() 2303 * away from this CPU, or CPU going down), or because we're 2304 * attempting to rebalance this task on exec (sched_exec). 2305 * 2306 * So we race with normal scheduler movements, but that's OK, as long 2307 * as the task is no longer on this CPU. 2308 */ 2309 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2310 struct task_struct *p, int dest_cpu) 2311 { 2312 /* Affinity changed (again). */ 2313 if (!is_cpu_allowed(p, dest_cpu)) 2314 return rq; 2315 2316 update_rq_clock(rq); 2317 rq = move_queued_task(rq, rf, p, dest_cpu); 2318 2319 return rq; 2320 } 2321 2322 /* 2323 * migration_cpu_stop - this will be executed by a highprio stopper thread 2324 * and performs thread migration by bumping thread off CPU then 2325 * 'pushing' onto another runqueue. 2326 */ 2327 static int migration_cpu_stop(void *data) 2328 { 2329 struct migration_arg *arg = data; 2330 struct set_affinity_pending *pending = arg->pending; 2331 struct task_struct *p = arg->task; 2332 struct rq *rq = this_rq(); 2333 bool complete = false; 2334 struct rq_flags rf; 2335 2336 /* 2337 * The original target CPU might have gone down and we might 2338 * be on another CPU but it doesn't matter. 2339 */ 2340 local_irq_save(rf.flags); 2341 /* 2342 * We need to explicitly wake pending tasks before running 2343 * __migrate_task() such that we will not miss enforcing cpus_ptr 2344 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2345 */ 2346 flush_smp_call_function_from_idle(); 2347 2348 raw_spin_lock(&p->pi_lock); 2349 rq_lock(rq, &rf); 2350 2351 /* 2352 * If we were passed a pending, then ->stop_pending was set, thus 2353 * p->migration_pending must have remained stable. 2354 */ 2355 WARN_ON_ONCE(pending && pending != p->migration_pending); 2356 2357 /* 2358 * If task_rq(p) != rq, it cannot be migrated here, because we're 2359 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2360 * we're holding p->pi_lock. 2361 */ 2362 if (task_rq(p) == rq) { 2363 if (is_migration_disabled(p)) 2364 goto out; 2365 2366 if (pending) { 2367 p->migration_pending = NULL; 2368 complete = true; 2369 2370 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2371 goto out; 2372 } 2373 2374 if (task_on_rq_queued(p)) 2375 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2376 else 2377 p->wake_cpu = arg->dest_cpu; 2378 2379 /* 2380 * XXX __migrate_task() can fail, at which point we might end 2381 * up running on a dodgy CPU, AFAICT this can only happen 2382 * during CPU hotplug, at which point we'll get pushed out 2383 * anyway, so it's probably not a big deal. 2384 */ 2385 2386 } else if (pending) { 2387 /* 2388 * This happens when we get migrated between migrate_enable()'s 2389 * preempt_enable() and scheduling the stopper task. At that 2390 * point we're a regular task again and not current anymore. 2391 * 2392 * A !PREEMPT kernel has a giant hole here, which makes it far 2393 * more likely. 2394 */ 2395 2396 /* 2397 * The task moved before the stopper got to run. We're holding 2398 * ->pi_lock, so the allowed mask is stable - if it got 2399 * somewhere allowed, we're done. 2400 */ 2401 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2402 p->migration_pending = NULL; 2403 complete = true; 2404 goto out; 2405 } 2406 2407 /* 2408 * When migrate_enable() hits a rq mis-match we can't reliably 2409 * determine is_migration_disabled() and so have to chase after 2410 * it. 2411 */ 2412 WARN_ON_ONCE(!pending->stop_pending); 2413 task_rq_unlock(rq, p, &rf); 2414 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2415 &pending->arg, &pending->stop_work); 2416 return 0; 2417 } 2418 out: 2419 if (pending) 2420 pending->stop_pending = false; 2421 task_rq_unlock(rq, p, &rf); 2422 2423 if (complete) 2424 complete_all(&pending->done); 2425 2426 return 0; 2427 } 2428 2429 int push_cpu_stop(void *arg) 2430 { 2431 struct rq *lowest_rq = NULL, *rq = this_rq(); 2432 struct task_struct *p = arg; 2433 2434 raw_spin_lock_irq(&p->pi_lock); 2435 raw_spin_rq_lock(rq); 2436 2437 if (task_rq(p) != rq) 2438 goto out_unlock; 2439 2440 if (is_migration_disabled(p)) { 2441 p->migration_flags |= MDF_PUSH; 2442 goto out_unlock; 2443 } 2444 2445 p->migration_flags &= ~MDF_PUSH; 2446 2447 if (p->sched_class->find_lock_rq) 2448 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2449 2450 if (!lowest_rq) 2451 goto out_unlock; 2452 2453 // XXX validate p is still the highest prio task 2454 if (task_rq(p) == rq) { 2455 deactivate_task(rq, p, 0); 2456 set_task_cpu(p, lowest_rq->cpu); 2457 activate_task(lowest_rq, p, 0); 2458 resched_curr(lowest_rq); 2459 } 2460 2461 double_unlock_balance(rq, lowest_rq); 2462 2463 out_unlock: 2464 rq->push_busy = false; 2465 raw_spin_rq_unlock(rq); 2466 raw_spin_unlock_irq(&p->pi_lock); 2467 2468 put_task_struct(p); 2469 return 0; 2470 } 2471 2472 /* 2473 * sched_class::set_cpus_allowed must do the below, but is not required to 2474 * actually call this function. 2475 */ 2476 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2477 { 2478 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2479 p->cpus_ptr = new_mask; 2480 return; 2481 } 2482 2483 cpumask_copy(&p->cpus_mask, new_mask); 2484 p->nr_cpus_allowed = cpumask_weight(new_mask); 2485 } 2486 2487 static void 2488 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2489 { 2490 struct rq *rq = task_rq(p); 2491 bool queued, running; 2492 2493 /* 2494 * This here violates the locking rules for affinity, since we're only 2495 * supposed to change these variables while holding both rq->lock and 2496 * p->pi_lock. 2497 * 2498 * HOWEVER, it magically works, because ttwu() is the only code that 2499 * accesses these variables under p->pi_lock and only does so after 2500 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2501 * before finish_task(). 2502 * 2503 * XXX do further audits, this smells like something putrid. 2504 */ 2505 if (flags & SCA_MIGRATE_DISABLE) 2506 SCHED_WARN_ON(!p->on_cpu); 2507 else 2508 lockdep_assert_held(&p->pi_lock); 2509 2510 queued = task_on_rq_queued(p); 2511 running = task_current(rq, p); 2512 2513 if (queued) { 2514 /* 2515 * Because __kthread_bind() calls this on blocked tasks without 2516 * holding rq->lock. 2517 */ 2518 lockdep_assert_rq_held(rq); 2519 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2520 } 2521 if (running) 2522 put_prev_task(rq, p); 2523 2524 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2525 2526 if (queued) 2527 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2528 if (running) 2529 set_next_task(rq, p); 2530 } 2531 2532 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2533 { 2534 __do_set_cpus_allowed(p, new_mask, 0); 2535 } 2536 2537 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2538 int node) 2539 { 2540 if (!src->user_cpus_ptr) 2541 return 0; 2542 2543 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2544 if (!dst->user_cpus_ptr) 2545 return -ENOMEM; 2546 2547 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2548 return 0; 2549 } 2550 2551 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2552 { 2553 struct cpumask *user_mask = NULL; 2554 2555 swap(p->user_cpus_ptr, user_mask); 2556 2557 return user_mask; 2558 } 2559 2560 void release_user_cpus_ptr(struct task_struct *p) 2561 { 2562 kfree(clear_user_cpus_ptr(p)); 2563 } 2564 2565 /* 2566 * This function is wildly self concurrent; here be dragons. 2567 * 2568 * 2569 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2570 * designated task is enqueued on an allowed CPU. If that task is currently 2571 * running, we have to kick it out using the CPU stopper. 2572 * 2573 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2574 * Consider: 2575 * 2576 * Initial conditions: P0->cpus_mask = [0, 1] 2577 * 2578 * P0@CPU0 P1 2579 * 2580 * migrate_disable(); 2581 * <preempted> 2582 * set_cpus_allowed_ptr(P0, [1]); 2583 * 2584 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2585 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2586 * This means we need the following scheme: 2587 * 2588 * P0@CPU0 P1 2589 * 2590 * migrate_disable(); 2591 * <preempted> 2592 * set_cpus_allowed_ptr(P0, [1]); 2593 * <blocks> 2594 * <resumes> 2595 * migrate_enable(); 2596 * __set_cpus_allowed_ptr(); 2597 * <wakes local stopper> 2598 * `--> <woken on migration completion> 2599 * 2600 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2601 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2602 * task p are serialized by p->pi_lock, which we can leverage: the one that 2603 * should come into effect at the end of the Migrate-Disable region is the last 2604 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2605 * but we still need to properly signal those waiting tasks at the appropriate 2606 * moment. 2607 * 2608 * This is implemented using struct set_affinity_pending. The first 2609 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2610 * setup an instance of that struct and install it on the targeted task_struct. 2611 * Any and all further callers will reuse that instance. Those then wait for 2612 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2613 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2614 * 2615 * 2616 * (1) In the cases covered above. There is one more where the completion is 2617 * signaled within affine_move_task() itself: when a subsequent affinity request 2618 * occurs after the stopper bailed out due to the targeted task still being 2619 * Migrate-Disable. Consider: 2620 * 2621 * Initial conditions: P0->cpus_mask = [0, 1] 2622 * 2623 * CPU0 P1 P2 2624 * <P0> 2625 * migrate_disable(); 2626 * <preempted> 2627 * set_cpus_allowed_ptr(P0, [1]); 2628 * <blocks> 2629 * <migration/0> 2630 * migration_cpu_stop() 2631 * is_migration_disabled() 2632 * <bails> 2633 * set_cpus_allowed_ptr(P0, [0, 1]); 2634 * <signal completion> 2635 * <awakes> 2636 * 2637 * Note that the above is safe vs a concurrent migrate_enable(), as any 2638 * pending affinity completion is preceded by an uninstallation of 2639 * p->migration_pending done with p->pi_lock held. 2640 */ 2641 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2642 int dest_cpu, unsigned int flags) 2643 { 2644 struct set_affinity_pending my_pending = { }, *pending = NULL; 2645 bool stop_pending, complete = false; 2646 2647 /* Can the task run on the task's current CPU? If so, we're done */ 2648 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2649 struct task_struct *push_task = NULL; 2650 2651 if ((flags & SCA_MIGRATE_ENABLE) && 2652 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2653 rq->push_busy = true; 2654 push_task = get_task_struct(p); 2655 } 2656 2657 /* 2658 * If there are pending waiters, but no pending stop_work, 2659 * then complete now. 2660 */ 2661 pending = p->migration_pending; 2662 if (pending && !pending->stop_pending) { 2663 p->migration_pending = NULL; 2664 complete = true; 2665 } 2666 2667 task_rq_unlock(rq, p, rf); 2668 2669 if (push_task) { 2670 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2671 p, &rq->push_work); 2672 } 2673 2674 if (complete) 2675 complete_all(&pending->done); 2676 2677 return 0; 2678 } 2679 2680 if (!(flags & SCA_MIGRATE_ENABLE)) { 2681 /* serialized by p->pi_lock */ 2682 if (!p->migration_pending) { 2683 /* Install the request */ 2684 refcount_set(&my_pending.refs, 1); 2685 init_completion(&my_pending.done); 2686 my_pending.arg = (struct migration_arg) { 2687 .task = p, 2688 .dest_cpu = dest_cpu, 2689 .pending = &my_pending, 2690 }; 2691 2692 p->migration_pending = &my_pending; 2693 } else { 2694 pending = p->migration_pending; 2695 refcount_inc(&pending->refs); 2696 /* 2697 * Affinity has changed, but we've already installed a 2698 * pending. migration_cpu_stop() *must* see this, else 2699 * we risk a completion of the pending despite having a 2700 * task on a disallowed CPU. 2701 * 2702 * Serialized by p->pi_lock, so this is safe. 2703 */ 2704 pending->arg.dest_cpu = dest_cpu; 2705 } 2706 } 2707 pending = p->migration_pending; 2708 /* 2709 * - !MIGRATE_ENABLE: 2710 * we'll have installed a pending if there wasn't one already. 2711 * 2712 * - MIGRATE_ENABLE: 2713 * we're here because the current CPU isn't matching anymore, 2714 * the only way that can happen is because of a concurrent 2715 * set_cpus_allowed_ptr() call, which should then still be 2716 * pending completion. 2717 * 2718 * Either way, we really should have a @pending here. 2719 */ 2720 if (WARN_ON_ONCE(!pending)) { 2721 task_rq_unlock(rq, p, rf); 2722 return -EINVAL; 2723 } 2724 2725 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2726 /* 2727 * MIGRATE_ENABLE gets here because 'p == current', but for 2728 * anything else we cannot do is_migration_disabled(), punt 2729 * and have the stopper function handle it all race-free. 2730 */ 2731 stop_pending = pending->stop_pending; 2732 if (!stop_pending) 2733 pending->stop_pending = true; 2734 2735 if (flags & SCA_MIGRATE_ENABLE) 2736 p->migration_flags &= ~MDF_PUSH; 2737 2738 task_rq_unlock(rq, p, rf); 2739 2740 if (!stop_pending) { 2741 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2742 &pending->arg, &pending->stop_work); 2743 } 2744 2745 if (flags & SCA_MIGRATE_ENABLE) 2746 return 0; 2747 } else { 2748 2749 if (!is_migration_disabled(p)) { 2750 if (task_on_rq_queued(p)) 2751 rq = move_queued_task(rq, rf, p, dest_cpu); 2752 2753 if (!pending->stop_pending) { 2754 p->migration_pending = NULL; 2755 complete = true; 2756 } 2757 } 2758 task_rq_unlock(rq, p, rf); 2759 2760 if (complete) 2761 complete_all(&pending->done); 2762 } 2763 2764 wait_for_completion(&pending->done); 2765 2766 if (refcount_dec_and_test(&pending->refs)) 2767 wake_up_var(&pending->refs); /* No UaF, just an address */ 2768 2769 /* 2770 * Block the original owner of &pending until all subsequent callers 2771 * have seen the completion and decremented the refcount 2772 */ 2773 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2774 2775 /* ARGH */ 2776 WARN_ON_ONCE(my_pending.stop_pending); 2777 2778 return 0; 2779 } 2780 2781 /* 2782 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2783 */ 2784 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2785 const struct cpumask *new_mask, 2786 u32 flags, 2787 struct rq *rq, 2788 struct rq_flags *rf) 2789 __releases(rq->lock) 2790 __releases(p->pi_lock) 2791 { 2792 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2793 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2794 bool kthread = p->flags & PF_KTHREAD; 2795 struct cpumask *user_mask = NULL; 2796 unsigned int dest_cpu; 2797 int ret = 0; 2798 2799 update_rq_clock(rq); 2800 2801 if (kthread || is_migration_disabled(p)) { 2802 /* 2803 * Kernel threads are allowed on online && !active CPUs, 2804 * however, during cpu-hot-unplug, even these might get pushed 2805 * away if not KTHREAD_IS_PER_CPU. 2806 * 2807 * Specifically, migration_disabled() tasks must not fail the 2808 * cpumask_any_and_distribute() pick below, esp. so on 2809 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2810 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2811 */ 2812 cpu_valid_mask = cpu_online_mask; 2813 } 2814 2815 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2816 ret = -EINVAL; 2817 goto out; 2818 } 2819 2820 /* 2821 * Must re-check here, to close a race against __kthread_bind(), 2822 * sched_setaffinity() is not guaranteed to observe the flag. 2823 */ 2824 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2825 ret = -EINVAL; 2826 goto out; 2827 } 2828 2829 if (!(flags & SCA_MIGRATE_ENABLE)) { 2830 if (cpumask_equal(&p->cpus_mask, new_mask)) 2831 goto out; 2832 2833 if (WARN_ON_ONCE(p == current && 2834 is_migration_disabled(p) && 2835 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2836 ret = -EBUSY; 2837 goto out; 2838 } 2839 } 2840 2841 /* 2842 * Picking a ~random cpu helps in cases where we are changing affinity 2843 * for groups of tasks (ie. cpuset), so that load balancing is not 2844 * immediately required to distribute the tasks within their new mask. 2845 */ 2846 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2847 if (dest_cpu >= nr_cpu_ids) { 2848 ret = -EINVAL; 2849 goto out; 2850 } 2851 2852 __do_set_cpus_allowed(p, new_mask, flags); 2853 2854 if (flags & SCA_USER) 2855 user_mask = clear_user_cpus_ptr(p); 2856 2857 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2858 2859 kfree(user_mask); 2860 2861 return ret; 2862 2863 out: 2864 task_rq_unlock(rq, p, rf); 2865 2866 return ret; 2867 } 2868 2869 /* 2870 * Change a given task's CPU affinity. Migrate the thread to a 2871 * proper CPU and schedule it away if the CPU it's executing on 2872 * is removed from the allowed bitmask. 2873 * 2874 * NOTE: the caller must have a valid reference to the task, the 2875 * task must not exit() & deallocate itself prematurely. The 2876 * call is not atomic; no spinlocks may be held. 2877 */ 2878 static int __set_cpus_allowed_ptr(struct task_struct *p, 2879 const struct cpumask *new_mask, u32 flags) 2880 { 2881 struct rq_flags rf; 2882 struct rq *rq; 2883 2884 rq = task_rq_lock(p, &rf); 2885 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2886 } 2887 2888 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2889 { 2890 return __set_cpus_allowed_ptr(p, new_mask, 0); 2891 } 2892 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2893 2894 /* 2895 * Change a given task's CPU affinity to the intersection of its current 2896 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2897 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2898 * If the resulting mask is empty, leave the affinity unchanged and return 2899 * -EINVAL. 2900 */ 2901 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2902 struct cpumask *new_mask, 2903 const struct cpumask *subset_mask) 2904 { 2905 struct cpumask *user_mask = NULL; 2906 struct rq_flags rf; 2907 struct rq *rq; 2908 int err; 2909 2910 if (!p->user_cpus_ptr) { 2911 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2912 if (!user_mask) 2913 return -ENOMEM; 2914 } 2915 2916 rq = task_rq_lock(p, &rf); 2917 2918 /* 2919 * Forcefully restricting the affinity of a deadline task is 2920 * likely to cause problems, so fail and noisily override the 2921 * mask entirely. 2922 */ 2923 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2924 err = -EPERM; 2925 goto err_unlock; 2926 } 2927 2928 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2929 err = -EINVAL; 2930 goto err_unlock; 2931 } 2932 2933 /* 2934 * We're about to butcher the task affinity, so keep track of what 2935 * the user asked for in case we're able to restore it later on. 2936 */ 2937 if (user_mask) { 2938 cpumask_copy(user_mask, p->cpus_ptr); 2939 p->user_cpus_ptr = user_mask; 2940 } 2941 2942 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2943 2944 err_unlock: 2945 task_rq_unlock(rq, p, &rf); 2946 kfree(user_mask); 2947 return err; 2948 } 2949 2950 /* 2951 * Restrict the CPU affinity of task @p so that it is a subset of 2952 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 2953 * old affinity mask. If the resulting mask is empty, we warn and walk 2954 * up the cpuset hierarchy until we find a suitable mask. 2955 */ 2956 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 2957 { 2958 cpumask_var_t new_mask; 2959 const struct cpumask *override_mask = task_cpu_possible_mask(p); 2960 2961 alloc_cpumask_var(&new_mask, GFP_KERNEL); 2962 2963 /* 2964 * __migrate_task() can fail silently in the face of concurrent 2965 * offlining of the chosen destination CPU, so take the hotplug 2966 * lock to ensure that the migration succeeds. 2967 */ 2968 cpus_read_lock(); 2969 if (!cpumask_available(new_mask)) 2970 goto out_set_mask; 2971 2972 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 2973 goto out_free_mask; 2974 2975 /* 2976 * We failed to find a valid subset of the affinity mask for the 2977 * task, so override it based on its cpuset hierarchy. 2978 */ 2979 cpuset_cpus_allowed(p, new_mask); 2980 override_mask = new_mask; 2981 2982 out_set_mask: 2983 if (printk_ratelimit()) { 2984 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 2985 task_pid_nr(p), p->comm, 2986 cpumask_pr_args(override_mask)); 2987 } 2988 2989 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 2990 out_free_mask: 2991 cpus_read_unlock(); 2992 free_cpumask_var(new_mask); 2993 } 2994 2995 static int 2996 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 2997 2998 /* 2999 * Restore the affinity of a task @p which was previously restricted by a 3000 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 3001 * @p->user_cpus_ptr. 3002 * 3003 * It is the caller's responsibility to serialise this with any calls to 3004 * force_compatible_cpus_allowed_ptr(@p). 3005 */ 3006 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3007 { 3008 struct cpumask *user_mask = p->user_cpus_ptr; 3009 unsigned long flags; 3010 3011 /* 3012 * Try to restore the old affinity mask. If this fails, then 3013 * we free the mask explicitly to avoid it being inherited across 3014 * a subsequent fork(). 3015 */ 3016 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3017 return; 3018 3019 raw_spin_lock_irqsave(&p->pi_lock, flags); 3020 user_mask = clear_user_cpus_ptr(p); 3021 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3022 3023 kfree(user_mask); 3024 } 3025 3026 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3027 { 3028 #ifdef CONFIG_SCHED_DEBUG 3029 unsigned int state = READ_ONCE(p->__state); 3030 3031 /* 3032 * We should never call set_task_cpu() on a blocked task, 3033 * ttwu() will sort out the placement. 3034 */ 3035 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3036 3037 /* 3038 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3039 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3040 * time relying on p->on_rq. 3041 */ 3042 WARN_ON_ONCE(state == TASK_RUNNING && 3043 p->sched_class == &fair_sched_class && 3044 (p->on_rq && !task_on_rq_migrating(p))); 3045 3046 #ifdef CONFIG_LOCKDEP 3047 /* 3048 * The caller should hold either p->pi_lock or rq->lock, when changing 3049 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3050 * 3051 * sched_move_task() holds both and thus holding either pins the cgroup, 3052 * see task_group(). 3053 * 3054 * Furthermore, all task_rq users should acquire both locks, see 3055 * task_rq_lock(). 3056 */ 3057 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3058 lockdep_is_held(__rq_lockp(task_rq(p))))); 3059 #endif 3060 /* 3061 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3062 */ 3063 WARN_ON_ONCE(!cpu_online(new_cpu)); 3064 3065 WARN_ON_ONCE(is_migration_disabled(p)); 3066 #endif 3067 3068 trace_sched_migrate_task(p, new_cpu); 3069 3070 if (task_cpu(p) != new_cpu) { 3071 if (p->sched_class->migrate_task_rq) 3072 p->sched_class->migrate_task_rq(p, new_cpu); 3073 p->se.nr_migrations++; 3074 rseq_migrate(p); 3075 perf_event_task_migrate(p); 3076 } 3077 3078 __set_task_cpu(p, new_cpu); 3079 } 3080 3081 #ifdef CONFIG_NUMA_BALANCING 3082 static void __migrate_swap_task(struct task_struct *p, int cpu) 3083 { 3084 if (task_on_rq_queued(p)) { 3085 struct rq *src_rq, *dst_rq; 3086 struct rq_flags srf, drf; 3087 3088 src_rq = task_rq(p); 3089 dst_rq = cpu_rq(cpu); 3090 3091 rq_pin_lock(src_rq, &srf); 3092 rq_pin_lock(dst_rq, &drf); 3093 3094 deactivate_task(src_rq, p, 0); 3095 set_task_cpu(p, cpu); 3096 activate_task(dst_rq, p, 0); 3097 check_preempt_curr(dst_rq, p, 0); 3098 3099 rq_unpin_lock(dst_rq, &drf); 3100 rq_unpin_lock(src_rq, &srf); 3101 3102 } else { 3103 /* 3104 * Task isn't running anymore; make it appear like we migrated 3105 * it before it went to sleep. This means on wakeup we make the 3106 * previous CPU our target instead of where it really is. 3107 */ 3108 p->wake_cpu = cpu; 3109 } 3110 } 3111 3112 struct migration_swap_arg { 3113 struct task_struct *src_task, *dst_task; 3114 int src_cpu, dst_cpu; 3115 }; 3116 3117 static int migrate_swap_stop(void *data) 3118 { 3119 struct migration_swap_arg *arg = data; 3120 struct rq *src_rq, *dst_rq; 3121 int ret = -EAGAIN; 3122 3123 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3124 return -EAGAIN; 3125 3126 src_rq = cpu_rq(arg->src_cpu); 3127 dst_rq = cpu_rq(arg->dst_cpu); 3128 3129 double_raw_lock(&arg->src_task->pi_lock, 3130 &arg->dst_task->pi_lock); 3131 double_rq_lock(src_rq, dst_rq); 3132 3133 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3134 goto unlock; 3135 3136 if (task_cpu(arg->src_task) != arg->src_cpu) 3137 goto unlock; 3138 3139 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3140 goto unlock; 3141 3142 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3143 goto unlock; 3144 3145 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3146 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3147 3148 ret = 0; 3149 3150 unlock: 3151 double_rq_unlock(src_rq, dst_rq); 3152 raw_spin_unlock(&arg->dst_task->pi_lock); 3153 raw_spin_unlock(&arg->src_task->pi_lock); 3154 3155 return ret; 3156 } 3157 3158 /* 3159 * Cross migrate two tasks 3160 */ 3161 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3162 int target_cpu, int curr_cpu) 3163 { 3164 struct migration_swap_arg arg; 3165 int ret = -EINVAL; 3166 3167 arg = (struct migration_swap_arg){ 3168 .src_task = cur, 3169 .src_cpu = curr_cpu, 3170 .dst_task = p, 3171 .dst_cpu = target_cpu, 3172 }; 3173 3174 if (arg.src_cpu == arg.dst_cpu) 3175 goto out; 3176 3177 /* 3178 * These three tests are all lockless; this is OK since all of them 3179 * will be re-checked with proper locks held further down the line. 3180 */ 3181 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3182 goto out; 3183 3184 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3185 goto out; 3186 3187 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3188 goto out; 3189 3190 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3191 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3192 3193 out: 3194 return ret; 3195 } 3196 #endif /* CONFIG_NUMA_BALANCING */ 3197 3198 /* 3199 * wait_task_inactive - wait for a thread to unschedule. 3200 * 3201 * If @match_state is nonzero, it's the @p->state value just checked and 3202 * not expected to change. If it changes, i.e. @p might have woken up, 3203 * then return zero. When we succeed in waiting for @p to be off its CPU, 3204 * we return a positive number (its total switch count). If a second call 3205 * a short while later returns the same number, the caller can be sure that 3206 * @p has remained unscheduled the whole time. 3207 * 3208 * The caller must ensure that the task *will* unschedule sometime soon, 3209 * else this function might spin for a *long* time. This function can't 3210 * be called with interrupts off, or it may introduce deadlock with 3211 * smp_call_function() if an IPI is sent by the same process we are 3212 * waiting to become inactive. 3213 */ 3214 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3215 { 3216 int running, queued; 3217 struct rq_flags rf; 3218 unsigned long ncsw; 3219 struct rq *rq; 3220 3221 for (;;) { 3222 /* 3223 * We do the initial early heuristics without holding 3224 * any task-queue locks at all. We'll only try to get 3225 * the runqueue lock when things look like they will 3226 * work out! 3227 */ 3228 rq = task_rq(p); 3229 3230 /* 3231 * If the task is actively running on another CPU 3232 * still, just relax and busy-wait without holding 3233 * any locks. 3234 * 3235 * NOTE! Since we don't hold any locks, it's not 3236 * even sure that "rq" stays as the right runqueue! 3237 * But we don't care, since "task_running()" will 3238 * return false if the runqueue has changed and p 3239 * is actually now running somewhere else! 3240 */ 3241 while (task_running(rq, p)) { 3242 if (match_state && unlikely(READ_ONCE(p->__state) != match_state)) 3243 return 0; 3244 cpu_relax(); 3245 } 3246 3247 /* 3248 * Ok, time to look more closely! We need the rq 3249 * lock now, to be *sure*. If we're wrong, we'll 3250 * just go back and repeat. 3251 */ 3252 rq = task_rq_lock(p, &rf); 3253 trace_sched_wait_task(p); 3254 running = task_running(rq, p); 3255 queued = task_on_rq_queued(p); 3256 ncsw = 0; 3257 if (!match_state || READ_ONCE(p->__state) == match_state) 3258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3259 task_rq_unlock(rq, p, &rf); 3260 3261 /* 3262 * If it changed from the expected state, bail out now. 3263 */ 3264 if (unlikely(!ncsw)) 3265 break; 3266 3267 /* 3268 * Was it really running after all now that we 3269 * checked with the proper locks actually held? 3270 * 3271 * Oops. Go back and try again.. 3272 */ 3273 if (unlikely(running)) { 3274 cpu_relax(); 3275 continue; 3276 } 3277 3278 /* 3279 * It's not enough that it's not actively running, 3280 * it must be off the runqueue _entirely_, and not 3281 * preempted! 3282 * 3283 * So if it was still runnable (but just not actively 3284 * running right now), it's preempted, and we should 3285 * yield - it could be a while. 3286 */ 3287 if (unlikely(queued)) { 3288 ktime_t to = NSEC_PER_SEC / HZ; 3289 3290 set_current_state(TASK_UNINTERRUPTIBLE); 3291 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3292 continue; 3293 } 3294 3295 /* 3296 * Ahh, all good. It wasn't running, and it wasn't 3297 * runnable, which means that it will never become 3298 * running in the future either. We're all done! 3299 */ 3300 break; 3301 } 3302 3303 return ncsw; 3304 } 3305 3306 /*** 3307 * kick_process - kick a running thread to enter/exit the kernel 3308 * @p: the to-be-kicked thread 3309 * 3310 * Cause a process which is running on another CPU to enter 3311 * kernel-mode, without any delay. (to get signals handled.) 3312 * 3313 * NOTE: this function doesn't have to take the runqueue lock, 3314 * because all it wants to ensure is that the remote task enters 3315 * the kernel. If the IPI races and the task has been migrated 3316 * to another CPU then no harm is done and the purpose has been 3317 * achieved as well. 3318 */ 3319 void kick_process(struct task_struct *p) 3320 { 3321 int cpu; 3322 3323 preempt_disable(); 3324 cpu = task_cpu(p); 3325 if ((cpu != smp_processor_id()) && task_curr(p)) 3326 smp_send_reschedule(cpu); 3327 preempt_enable(); 3328 } 3329 EXPORT_SYMBOL_GPL(kick_process); 3330 3331 /* 3332 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3333 * 3334 * A few notes on cpu_active vs cpu_online: 3335 * 3336 * - cpu_active must be a subset of cpu_online 3337 * 3338 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3339 * see __set_cpus_allowed_ptr(). At this point the newly online 3340 * CPU isn't yet part of the sched domains, and balancing will not 3341 * see it. 3342 * 3343 * - on CPU-down we clear cpu_active() to mask the sched domains and 3344 * avoid the load balancer to place new tasks on the to be removed 3345 * CPU. Existing tasks will remain running there and will be taken 3346 * off. 3347 * 3348 * This means that fallback selection must not select !active CPUs. 3349 * And can assume that any active CPU must be online. Conversely 3350 * select_task_rq() below may allow selection of !active CPUs in order 3351 * to satisfy the above rules. 3352 */ 3353 static int select_fallback_rq(int cpu, struct task_struct *p) 3354 { 3355 int nid = cpu_to_node(cpu); 3356 const struct cpumask *nodemask = NULL; 3357 enum { cpuset, possible, fail } state = cpuset; 3358 int dest_cpu; 3359 3360 /* 3361 * If the node that the CPU is on has been offlined, cpu_to_node() 3362 * will return -1. There is no CPU on the node, and we should 3363 * select the CPU on the other node. 3364 */ 3365 if (nid != -1) { 3366 nodemask = cpumask_of_node(nid); 3367 3368 /* Look for allowed, online CPU in same node. */ 3369 for_each_cpu(dest_cpu, nodemask) { 3370 if (is_cpu_allowed(p, dest_cpu)) 3371 return dest_cpu; 3372 } 3373 } 3374 3375 for (;;) { 3376 /* Any allowed, online CPU? */ 3377 for_each_cpu(dest_cpu, p->cpus_ptr) { 3378 if (!is_cpu_allowed(p, dest_cpu)) 3379 continue; 3380 3381 goto out; 3382 } 3383 3384 /* No more Mr. Nice Guy. */ 3385 switch (state) { 3386 case cpuset: 3387 if (cpuset_cpus_allowed_fallback(p)) { 3388 state = possible; 3389 break; 3390 } 3391 fallthrough; 3392 case possible: 3393 /* 3394 * XXX When called from select_task_rq() we only 3395 * hold p->pi_lock and again violate locking order. 3396 * 3397 * More yuck to audit. 3398 */ 3399 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3400 state = fail; 3401 break; 3402 case fail: 3403 BUG(); 3404 break; 3405 } 3406 } 3407 3408 out: 3409 if (state != cpuset) { 3410 /* 3411 * Don't tell them about moving exiting tasks or 3412 * kernel threads (both mm NULL), since they never 3413 * leave kernel. 3414 */ 3415 if (p->mm && printk_ratelimit()) { 3416 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3417 task_pid_nr(p), p->comm, cpu); 3418 } 3419 } 3420 3421 return dest_cpu; 3422 } 3423 3424 /* 3425 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3426 */ 3427 static inline 3428 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3429 { 3430 lockdep_assert_held(&p->pi_lock); 3431 3432 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3433 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3434 else 3435 cpu = cpumask_any(p->cpus_ptr); 3436 3437 /* 3438 * In order not to call set_task_cpu() on a blocking task we need 3439 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3440 * CPU. 3441 * 3442 * Since this is common to all placement strategies, this lives here. 3443 * 3444 * [ this allows ->select_task() to simply return task_cpu(p) and 3445 * not worry about this generic constraint ] 3446 */ 3447 if (unlikely(!is_cpu_allowed(p, cpu))) 3448 cpu = select_fallback_rq(task_cpu(p), p); 3449 3450 return cpu; 3451 } 3452 3453 void sched_set_stop_task(int cpu, struct task_struct *stop) 3454 { 3455 static struct lock_class_key stop_pi_lock; 3456 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3457 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3458 3459 if (stop) { 3460 /* 3461 * Make it appear like a SCHED_FIFO task, its something 3462 * userspace knows about and won't get confused about. 3463 * 3464 * Also, it will make PI more or less work without too 3465 * much confusion -- but then, stop work should not 3466 * rely on PI working anyway. 3467 */ 3468 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3469 3470 stop->sched_class = &stop_sched_class; 3471 3472 /* 3473 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3474 * adjust the effective priority of a task. As a result, 3475 * rt_mutex_setprio() can trigger (RT) balancing operations, 3476 * which can then trigger wakeups of the stop thread to push 3477 * around the current task. 3478 * 3479 * The stop task itself will never be part of the PI-chain, it 3480 * never blocks, therefore that ->pi_lock recursion is safe. 3481 * Tell lockdep about this by placing the stop->pi_lock in its 3482 * own class. 3483 */ 3484 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3485 } 3486 3487 cpu_rq(cpu)->stop = stop; 3488 3489 if (old_stop) { 3490 /* 3491 * Reset it back to a normal scheduling class so that 3492 * it can die in pieces. 3493 */ 3494 old_stop->sched_class = &rt_sched_class; 3495 } 3496 } 3497 3498 #else /* CONFIG_SMP */ 3499 3500 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3501 const struct cpumask *new_mask, 3502 u32 flags) 3503 { 3504 return set_cpus_allowed_ptr(p, new_mask); 3505 } 3506 3507 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3508 3509 static inline bool rq_has_pinned_tasks(struct rq *rq) 3510 { 3511 return false; 3512 } 3513 3514 #endif /* !CONFIG_SMP */ 3515 3516 static void 3517 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3518 { 3519 struct rq *rq; 3520 3521 if (!schedstat_enabled()) 3522 return; 3523 3524 rq = this_rq(); 3525 3526 #ifdef CONFIG_SMP 3527 if (cpu == rq->cpu) { 3528 __schedstat_inc(rq->ttwu_local); 3529 __schedstat_inc(p->stats.nr_wakeups_local); 3530 } else { 3531 struct sched_domain *sd; 3532 3533 __schedstat_inc(p->stats.nr_wakeups_remote); 3534 rcu_read_lock(); 3535 for_each_domain(rq->cpu, sd) { 3536 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3537 __schedstat_inc(sd->ttwu_wake_remote); 3538 break; 3539 } 3540 } 3541 rcu_read_unlock(); 3542 } 3543 3544 if (wake_flags & WF_MIGRATED) 3545 __schedstat_inc(p->stats.nr_wakeups_migrate); 3546 #endif /* CONFIG_SMP */ 3547 3548 __schedstat_inc(rq->ttwu_count); 3549 __schedstat_inc(p->stats.nr_wakeups); 3550 3551 if (wake_flags & WF_SYNC) 3552 __schedstat_inc(p->stats.nr_wakeups_sync); 3553 } 3554 3555 /* 3556 * Mark the task runnable and perform wakeup-preemption. 3557 */ 3558 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3559 struct rq_flags *rf) 3560 { 3561 check_preempt_curr(rq, p, wake_flags); 3562 WRITE_ONCE(p->__state, TASK_RUNNING); 3563 trace_sched_wakeup(p); 3564 3565 #ifdef CONFIG_SMP 3566 if (p->sched_class->task_woken) { 3567 /* 3568 * Our task @p is fully woken up and running; so it's safe to 3569 * drop the rq->lock, hereafter rq is only used for statistics. 3570 */ 3571 rq_unpin_lock(rq, rf); 3572 p->sched_class->task_woken(rq, p); 3573 rq_repin_lock(rq, rf); 3574 } 3575 3576 if (rq->idle_stamp) { 3577 u64 delta = rq_clock(rq) - rq->idle_stamp; 3578 u64 max = 2*rq->max_idle_balance_cost; 3579 3580 update_avg(&rq->avg_idle, delta); 3581 3582 if (rq->avg_idle > max) 3583 rq->avg_idle = max; 3584 3585 rq->wake_stamp = jiffies; 3586 rq->wake_avg_idle = rq->avg_idle / 2; 3587 3588 rq->idle_stamp = 0; 3589 } 3590 #endif 3591 } 3592 3593 static void 3594 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3595 struct rq_flags *rf) 3596 { 3597 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3598 3599 lockdep_assert_rq_held(rq); 3600 3601 if (p->sched_contributes_to_load) 3602 rq->nr_uninterruptible--; 3603 3604 #ifdef CONFIG_SMP 3605 if (wake_flags & WF_MIGRATED) 3606 en_flags |= ENQUEUE_MIGRATED; 3607 else 3608 #endif 3609 if (p->in_iowait) { 3610 delayacct_blkio_end(p); 3611 atomic_dec(&task_rq(p)->nr_iowait); 3612 } 3613 3614 activate_task(rq, p, en_flags); 3615 ttwu_do_wakeup(rq, p, wake_flags, rf); 3616 } 3617 3618 /* 3619 * Consider @p being inside a wait loop: 3620 * 3621 * for (;;) { 3622 * set_current_state(TASK_UNINTERRUPTIBLE); 3623 * 3624 * if (CONDITION) 3625 * break; 3626 * 3627 * schedule(); 3628 * } 3629 * __set_current_state(TASK_RUNNING); 3630 * 3631 * between set_current_state() and schedule(). In this case @p is still 3632 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3633 * an atomic manner. 3634 * 3635 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3636 * then schedule() must still happen and p->state can be changed to 3637 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3638 * need to do a full wakeup with enqueue. 3639 * 3640 * Returns: %true when the wakeup is done, 3641 * %false otherwise. 3642 */ 3643 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3644 { 3645 struct rq_flags rf; 3646 struct rq *rq; 3647 int ret = 0; 3648 3649 rq = __task_rq_lock(p, &rf); 3650 if (task_on_rq_queued(p)) { 3651 /* check_preempt_curr() may use rq clock */ 3652 update_rq_clock(rq); 3653 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3654 ret = 1; 3655 } 3656 __task_rq_unlock(rq, &rf); 3657 3658 return ret; 3659 } 3660 3661 #ifdef CONFIG_SMP 3662 void sched_ttwu_pending(void *arg) 3663 { 3664 struct llist_node *llist = arg; 3665 struct rq *rq = this_rq(); 3666 struct task_struct *p, *t; 3667 struct rq_flags rf; 3668 3669 if (!llist) 3670 return; 3671 3672 /* 3673 * rq::ttwu_pending racy indication of out-standing wakeups. 3674 * Races such that false-negatives are possible, since they 3675 * are shorter lived that false-positives would be. 3676 */ 3677 WRITE_ONCE(rq->ttwu_pending, 0); 3678 3679 rq_lock_irqsave(rq, &rf); 3680 update_rq_clock(rq); 3681 3682 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3683 if (WARN_ON_ONCE(p->on_cpu)) 3684 smp_cond_load_acquire(&p->on_cpu, !VAL); 3685 3686 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3687 set_task_cpu(p, cpu_of(rq)); 3688 3689 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3690 } 3691 3692 rq_unlock_irqrestore(rq, &rf); 3693 } 3694 3695 void send_call_function_single_ipi(int cpu) 3696 { 3697 struct rq *rq = cpu_rq(cpu); 3698 3699 if (!set_nr_if_polling(rq->idle)) 3700 arch_send_call_function_single_ipi(cpu); 3701 else 3702 trace_sched_wake_idle_without_ipi(cpu); 3703 } 3704 3705 /* 3706 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3707 * necessary. The wakee CPU on receipt of the IPI will queue the task 3708 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3709 * of the wakeup instead of the waker. 3710 */ 3711 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3712 { 3713 struct rq *rq = cpu_rq(cpu); 3714 3715 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3716 3717 WRITE_ONCE(rq->ttwu_pending, 1); 3718 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3719 } 3720 3721 void wake_up_if_idle(int cpu) 3722 { 3723 struct rq *rq = cpu_rq(cpu); 3724 struct rq_flags rf; 3725 3726 rcu_read_lock(); 3727 3728 if (!is_idle_task(rcu_dereference(rq->curr))) 3729 goto out; 3730 3731 rq_lock_irqsave(rq, &rf); 3732 if (is_idle_task(rq->curr)) 3733 resched_curr(rq); 3734 /* Else CPU is not idle, do nothing here: */ 3735 rq_unlock_irqrestore(rq, &rf); 3736 3737 out: 3738 rcu_read_unlock(); 3739 } 3740 3741 bool cpus_share_cache(int this_cpu, int that_cpu) 3742 { 3743 if (this_cpu == that_cpu) 3744 return true; 3745 3746 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3747 } 3748 3749 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3750 { 3751 /* 3752 * Do not complicate things with the async wake_list while the CPU is 3753 * in hotplug state. 3754 */ 3755 if (!cpu_active(cpu)) 3756 return false; 3757 3758 /* 3759 * If the CPU does not share cache, then queue the task on the 3760 * remote rqs wakelist to avoid accessing remote data. 3761 */ 3762 if (!cpus_share_cache(smp_processor_id(), cpu)) 3763 return true; 3764 3765 /* 3766 * If the task is descheduling and the only running task on the 3767 * CPU then use the wakelist to offload the task activation to 3768 * the soon-to-be-idle CPU as the current CPU is likely busy. 3769 * nr_running is checked to avoid unnecessary task stacking. 3770 */ 3771 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3772 return true; 3773 3774 return false; 3775 } 3776 3777 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3778 { 3779 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3780 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3781 return false; 3782 3783 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3784 __ttwu_queue_wakelist(p, cpu, wake_flags); 3785 return true; 3786 } 3787 3788 return false; 3789 } 3790 3791 #else /* !CONFIG_SMP */ 3792 3793 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3794 { 3795 return false; 3796 } 3797 3798 #endif /* CONFIG_SMP */ 3799 3800 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3801 { 3802 struct rq *rq = cpu_rq(cpu); 3803 struct rq_flags rf; 3804 3805 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3806 return; 3807 3808 rq_lock(rq, &rf); 3809 update_rq_clock(rq); 3810 ttwu_do_activate(rq, p, wake_flags, &rf); 3811 rq_unlock(rq, &rf); 3812 } 3813 3814 /* 3815 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3816 * 3817 * The caller holds p::pi_lock if p != current or has preemption 3818 * disabled when p == current. 3819 * 3820 * The rules of PREEMPT_RT saved_state: 3821 * 3822 * The related locking code always holds p::pi_lock when updating 3823 * p::saved_state, which means the code is fully serialized in both cases. 3824 * 3825 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3826 * bits set. This allows to distinguish all wakeup scenarios. 3827 */ 3828 static __always_inline 3829 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3830 { 3831 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3832 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3833 state != TASK_RTLOCK_WAIT); 3834 } 3835 3836 if (READ_ONCE(p->__state) & state) { 3837 *success = 1; 3838 return true; 3839 } 3840 3841 #ifdef CONFIG_PREEMPT_RT 3842 /* 3843 * Saved state preserves the task state across blocking on 3844 * an RT lock. If the state matches, set p::saved_state to 3845 * TASK_RUNNING, but do not wake the task because it waits 3846 * for a lock wakeup. Also indicate success because from 3847 * the regular waker's point of view this has succeeded. 3848 * 3849 * After acquiring the lock the task will restore p::__state 3850 * from p::saved_state which ensures that the regular 3851 * wakeup is not lost. The restore will also set 3852 * p::saved_state to TASK_RUNNING so any further tests will 3853 * not result in false positives vs. @success 3854 */ 3855 if (p->saved_state & state) { 3856 p->saved_state = TASK_RUNNING; 3857 *success = 1; 3858 } 3859 #endif 3860 return false; 3861 } 3862 3863 /* 3864 * Notes on Program-Order guarantees on SMP systems. 3865 * 3866 * MIGRATION 3867 * 3868 * The basic program-order guarantee on SMP systems is that when a task [t] 3869 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3870 * execution on its new CPU [c1]. 3871 * 3872 * For migration (of runnable tasks) this is provided by the following means: 3873 * 3874 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3875 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3876 * rq(c1)->lock (if not at the same time, then in that order). 3877 * C) LOCK of the rq(c1)->lock scheduling in task 3878 * 3879 * Release/acquire chaining guarantees that B happens after A and C after B. 3880 * Note: the CPU doing B need not be c0 or c1 3881 * 3882 * Example: 3883 * 3884 * CPU0 CPU1 CPU2 3885 * 3886 * LOCK rq(0)->lock 3887 * sched-out X 3888 * sched-in Y 3889 * UNLOCK rq(0)->lock 3890 * 3891 * LOCK rq(0)->lock // orders against CPU0 3892 * dequeue X 3893 * UNLOCK rq(0)->lock 3894 * 3895 * LOCK rq(1)->lock 3896 * enqueue X 3897 * UNLOCK rq(1)->lock 3898 * 3899 * LOCK rq(1)->lock // orders against CPU2 3900 * sched-out Z 3901 * sched-in X 3902 * UNLOCK rq(1)->lock 3903 * 3904 * 3905 * BLOCKING -- aka. SLEEP + WAKEUP 3906 * 3907 * For blocking we (obviously) need to provide the same guarantee as for 3908 * migration. However the means are completely different as there is no lock 3909 * chain to provide order. Instead we do: 3910 * 3911 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3912 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3913 * 3914 * Example: 3915 * 3916 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3917 * 3918 * LOCK rq(0)->lock LOCK X->pi_lock 3919 * dequeue X 3920 * sched-out X 3921 * smp_store_release(X->on_cpu, 0); 3922 * 3923 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3924 * X->state = WAKING 3925 * set_task_cpu(X,2) 3926 * 3927 * LOCK rq(2)->lock 3928 * enqueue X 3929 * X->state = RUNNING 3930 * UNLOCK rq(2)->lock 3931 * 3932 * LOCK rq(2)->lock // orders against CPU1 3933 * sched-out Z 3934 * sched-in X 3935 * UNLOCK rq(2)->lock 3936 * 3937 * UNLOCK X->pi_lock 3938 * UNLOCK rq(0)->lock 3939 * 3940 * 3941 * However, for wakeups there is a second guarantee we must provide, namely we 3942 * must ensure that CONDITION=1 done by the caller can not be reordered with 3943 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3944 */ 3945 3946 /** 3947 * try_to_wake_up - wake up a thread 3948 * @p: the thread to be awakened 3949 * @state: the mask of task states that can be woken 3950 * @wake_flags: wake modifier flags (WF_*) 3951 * 3952 * Conceptually does: 3953 * 3954 * If (@state & @p->state) @p->state = TASK_RUNNING. 3955 * 3956 * If the task was not queued/runnable, also place it back on a runqueue. 3957 * 3958 * This function is atomic against schedule() which would dequeue the task. 3959 * 3960 * It issues a full memory barrier before accessing @p->state, see the comment 3961 * with set_current_state(). 3962 * 3963 * Uses p->pi_lock to serialize against concurrent wake-ups. 3964 * 3965 * Relies on p->pi_lock stabilizing: 3966 * - p->sched_class 3967 * - p->cpus_ptr 3968 * - p->sched_task_group 3969 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3970 * 3971 * Tries really hard to only take one task_rq(p)->lock for performance. 3972 * Takes rq->lock in: 3973 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3974 * - ttwu_queue() -- new rq, for enqueue of the task; 3975 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3976 * 3977 * As a consequence we race really badly with just about everything. See the 3978 * many memory barriers and their comments for details. 3979 * 3980 * Return: %true if @p->state changes (an actual wakeup was done), 3981 * %false otherwise. 3982 */ 3983 static int 3984 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3985 { 3986 unsigned long flags; 3987 int cpu, success = 0; 3988 3989 preempt_disable(); 3990 if (p == current) { 3991 /* 3992 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3993 * == smp_processor_id()'. Together this means we can special 3994 * case the whole 'p->on_rq && ttwu_runnable()' case below 3995 * without taking any locks. 3996 * 3997 * In particular: 3998 * - we rely on Program-Order guarantees for all the ordering, 3999 * - we're serialized against set_special_state() by virtue of 4000 * it disabling IRQs (this allows not taking ->pi_lock). 4001 */ 4002 if (!ttwu_state_match(p, state, &success)) 4003 goto out; 4004 4005 trace_sched_waking(p); 4006 WRITE_ONCE(p->__state, TASK_RUNNING); 4007 trace_sched_wakeup(p); 4008 goto out; 4009 } 4010 4011 /* 4012 * If we are going to wake up a thread waiting for CONDITION we 4013 * need to ensure that CONDITION=1 done by the caller can not be 4014 * reordered with p->state check below. This pairs with smp_store_mb() 4015 * in set_current_state() that the waiting thread does. 4016 */ 4017 raw_spin_lock_irqsave(&p->pi_lock, flags); 4018 smp_mb__after_spinlock(); 4019 if (!ttwu_state_match(p, state, &success)) 4020 goto unlock; 4021 4022 trace_sched_waking(p); 4023 4024 /* 4025 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4026 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4027 * in smp_cond_load_acquire() below. 4028 * 4029 * sched_ttwu_pending() try_to_wake_up() 4030 * STORE p->on_rq = 1 LOAD p->state 4031 * UNLOCK rq->lock 4032 * 4033 * __schedule() (switch to task 'p') 4034 * LOCK rq->lock smp_rmb(); 4035 * smp_mb__after_spinlock(); 4036 * UNLOCK rq->lock 4037 * 4038 * [task p] 4039 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4040 * 4041 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4042 * __schedule(). See the comment for smp_mb__after_spinlock(). 4043 * 4044 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4045 */ 4046 smp_rmb(); 4047 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4048 goto unlock; 4049 4050 #ifdef CONFIG_SMP 4051 /* 4052 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4053 * possible to, falsely, observe p->on_cpu == 0. 4054 * 4055 * One must be running (->on_cpu == 1) in order to remove oneself 4056 * from the runqueue. 4057 * 4058 * __schedule() (switch to task 'p') try_to_wake_up() 4059 * STORE p->on_cpu = 1 LOAD p->on_rq 4060 * UNLOCK rq->lock 4061 * 4062 * __schedule() (put 'p' to sleep) 4063 * LOCK rq->lock smp_rmb(); 4064 * smp_mb__after_spinlock(); 4065 * STORE p->on_rq = 0 LOAD p->on_cpu 4066 * 4067 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4068 * __schedule(). See the comment for smp_mb__after_spinlock(). 4069 * 4070 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4071 * schedule()'s deactivate_task() has 'happened' and p will no longer 4072 * care about it's own p->state. See the comment in __schedule(). 4073 */ 4074 smp_acquire__after_ctrl_dep(); 4075 4076 /* 4077 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4078 * == 0), which means we need to do an enqueue, change p->state to 4079 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4080 * enqueue, such as ttwu_queue_wakelist(). 4081 */ 4082 WRITE_ONCE(p->__state, TASK_WAKING); 4083 4084 /* 4085 * If the owning (remote) CPU is still in the middle of schedule() with 4086 * this task as prev, considering queueing p on the remote CPUs wake_list 4087 * which potentially sends an IPI instead of spinning on p->on_cpu to 4088 * let the waker make forward progress. This is safe because IRQs are 4089 * disabled and the IPI will deliver after on_cpu is cleared. 4090 * 4091 * Ensure we load task_cpu(p) after p->on_cpu: 4092 * 4093 * set_task_cpu(p, cpu); 4094 * STORE p->cpu = @cpu 4095 * __schedule() (switch to task 'p') 4096 * LOCK rq->lock 4097 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4098 * STORE p->on_cpu = 1 LOAD p->cpu 4099 * 4100 * to ensure we observe the correct CPU on which the task is currently 4101 * scheduling. 4102 */ 4103 if (smp_load_acquire(&p->on_cpu) && 4104 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 4105 goto unlock; 4106 4107 /* 4108 * If the owning (remote) CPU is still in the middle of schedule() with 4109 * this task as prev, wait until it's done referencing the task. 4110 * 4111 * Pairs with the smp_store_release() in finish_task(). 4112 * 4113 * This ensures that tasks getting woken will be fully ordered against 4114 * their previous state and preserve Program Order. 4115 */ 4116 smp_cond_load_acquire(&p->on_cpu, !VAL); 4117 4118 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4119 if (task_cpu(p) != cpu) { 4120 if (p->in_iowait) { 4121 delayacct_blkio_end(p); 4122 atomic_dec(&task_rq(p)->nr_iowait); 4123 } 4124 4125 wake_flags |= WF_MIGRATED; 4126 psi_ttwu_dequeue(p); 4127 set_task_cpu(p, cpu); 4128 } 4129 #else 4130 cpu = task_cpu(p); 4131 #endif /* CONFIG_SMP */ 4132 4133 ttwu_queue(p, cpu, wake_flags); 4134 unlock: 4135 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4136 out: 4137 if (success) 4138 ttwu_stat(p, task_cpu(p), wake_flags); 4139 preempt_enable(); 4140 4141 return success; 4142 } 4143 4144 /** 4145 * task_call_func - Invoke a function on task in fixed state 4146 * @p: Process for which the function is to be invoked, can be @current. 4147 * @func: Function to invoke. 4148 * @arg: Argument to function. 4149 * 4150 * Fix the task in it's current state by avoiding wakeups and or rq operations 4151 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4152 * to work out what the state is, if required. Given that @func can be invoked 4153 * with a runqueue lock held, it had better be quite lightweight. 4154 * 4155 * Returns: 4156 * Whatever @func returns 4157 */ 4158 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4159 { 4160 struct rq *rq = NULL; 4161 unsigned int state; 4162 struct rq_flags rf; 4163 int ret; 4164 4165 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4166 4167 state = READ_ONCE(p->__state); 4168 4169 /* 4170 * Ensure we load p->on_rq after p->__state, otherwise it would be 4171 * possible to, falsely, observe p->on_rq == 0. 4172 * 4173 * See try_to_wake_up() for a longer comment. 4174 */ 4175 smp_rmb(); 4176 4177 /* 4178 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4179 * the task is blocked. Make sure to check @state since ttwu() can drop 4180 * locks at the end, see ttwu_queue_wakelist(). 4181 */ 4182 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4183 rq = __task_rq_lock(p, &rf); 4184 4185 /* 4186 * At this point the task is pinned; either: 4187 * - blocked and we're holding off wakeups (pi->lock) 4188 * - woken, and we're holding off enqueue (rq->lock) 4189 * - queued, and we're holding off schedule (rq->lock) 4190 * - running, and we're holding off de-schedule (rq->lock) 4191 * 4192 * The called function (@func) can use: task_curr(), p->on_rq and 4193 * p->__state to differentiate between these states. 4194 */ 4195 ret = func(p, arg); 4196 4197 if (rq) 4198 rq_unlock(rq, &rf); 4199 4200 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4201 return ret; 4202 } 4203 4204 /** 4205 * wake_up_process - Wake up a specific process 4206 * @p: The process to be woken up. 4207 * 4208 * Attempt to wake up the nominated process and move it to the set of runnable 4209 * processes. 4210 * 4211 * Return: 1 if the process was woken up, 0 if it was already running. 4212 * 4213 * This function executes a full memory barrier before accessing the task state. 4214 */ 4215 int wake_up_process(struct task_struct *p) 4216 { 4217 return try_to_wake_up(p, TASK_NORMAL, 0); 4218 } 4219 EXPORT_SYMBOL(wake_up_process); 4220 4221 int wake_up_state(struct task_struct *p, unsigned int state) 4222 { 4223 return try_to_wake_up(p, state, 0); 4224 } 4225 4226 /* 4227 * Perform scheduler related setup for a newly forked process p. 4228 * p is forked by current. 4229 * 4230 * __sched_fork() is basic setup used by init_idle() too: 4231 */ 4232 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4233 { 4234 p->on_rq = 0; 4235 4236 p->se.on_rq = 0; 4237 p->se.exec_start = 0; 4238 p->se.sum_exec_runtime = 0; 4239 p->se.prev_sum_exec_runtime = 0; 4240 p->se.nr_migrations = 0; 4241 p->se.vruntime = 0; 4242 INIT_LIST_HEAD(&p->se.group_node); 4243 4244 #ifdef CONFIG_FAIR_GROUP_SCHED 4245 p->se.cfs_rq = NULL; 4246 #endif 4247 4248 #ifdef CONFIG_SCHEDSTATS 4249 /* Even if schedstat is disabled, there should not be garbage */ 4250 memset(&p->stats, 0, sizeof(p->stats)); 4251 #endif 4252 4253 RB_CLEAR_NODE(&p->dl.rb_node); 4254 init_dl_task_timer(&p->dl); 4255 init_dl_inactive_task_timer(&p->dl); 4256 __dl_clear_params(p); 4257 4258 INIT_LIST_HEAD(&p->rt.run_list); 4259 p->rt.timeout = 0; 4260 p->rt.time_slice = sched_rr_timeslice; 4261 p->rt.on_rq = 0; 4262 p->rt.on_list = 0; 4263 4264 #ifdef CONFIG_PREEMPT_NOTIFIERS 4265 INIT_HLIST_HEAD(&p->preempt_notifiers); 4266 #endif 4267 4268 #ifdef CONFIG_COMPACTION 4269 p->capture_control = NULL; 4270 #endif 4271 init_numa_balancing(clone_flags, p); 4272 #ifdef CONFIG_SMP 4273 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4274 p->migration_pending = NULL; 4275 #endif 4276 } 4277 4278 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4279 4280 #ifdef CONFIG_NUMA_BALANCING 4281 4282 void set_numabalancing_state(bool enabled) 4283 { 4284 if (enabled) 4285 static_branch_enable(&sched_numa_balancing); 4286 else 4287 static_branch_disable(&sched_numa_balancing); 4288 } 4289 4290 #ifdef CONFIG_PROC_SYSCTL 4291 int sysctl_numa_balancing(struct ctl_table *table, int write, 4292 void *buffer, size_t *lenp, loff_t *ppos) 4293 { 4294 struct ctl_table t; 4295 int err; 4296 int state = static_branch_likely(&sched_numa_balancing); 4297 4298 if (write && !capable(CAP_SYS_ADMIN)) 4299 return -EPERM; 4300 4301 t = *table; 4302 t.data = &state; 4303 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4304 if (err < 0) 4305 return err; 4306 if (write) 4307 set_numabalancing_state(state); 4308 return err; 4309 } 4310 #endif 4311 #endif 4312 4313 #ifdef CONFIG_SCHEDSTATS 4314 4315 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4316 4317 static void set_schedstats(bool enabled) 4318 { 4319 if (enabled) 4320 static_branch_enable(&sched_schedstats); 4321 else 4322 static_branch_disable(&sched_schedstats); 4323 } 4324 4325 void force_schedstat_enabled(void) 4326 { 4327 if (!schedstat_enabled()) { 4328 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4329 static_branch_enable(&sched_schedstats); 4330 } 4331 } 4332 4333 static int __init setup_schedstats(char *str) 4334 { 4335 int ret = 0; 4336 if (!str) 4337 goto out; 4338 4339 if (!strcmp(str, "enable")) { 4340 set_schedstats(true); 4341 ret = 1; 4342 } else if (!strcmp(str, "disable")) { 4343 set_schedstats(false); 4344 ret = 1; 4345 } 4346 out: 4347 if (!ret) 4348 pr_warn("Unable to parse schedstats=\n"); 4349 4350 return ret; 4351 } 4352 __setup("schedstats=", setup_schedstats); 4353 4354 #ifdef CONFIG_PROC_SYSCTL 4355 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4356 size_t *lenp, loff_t *ppos) 4357 { 4358 struct ctl_table t; 4359 int err; 4360 int state = static_branch_likely(&sched_schedstats); 4361 4362 if (write && !capable(CAP_SYS_ADMIN)) 4363 return -EPERM; 4364 4365 t = *table; 4366 t.data = &state; 4367 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4368 if (err < 0) 4369 return err; 4370 if (write) 4371 set_schedstats(state); 4372 return err; 4373 } 4374 #endif /* CONFIG_PROC_SYSCTL */ 4375 #endif /* CONFIG_SCHEDSTATS */ 4376 4377 /* 4378 * fork()/clone()-time setup: 4379 */ 4380 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4381 { 4382 __sched_fork(clone_flags, p); 4383 /* 4384 * We mark the process as NEW here. This guarantees that 4385 * nobody will actually run it, and a signal or other external 4386 * event cannot wake it up and insert it on the runqueue either. 4387 */ 4388 p->__state = TASK_NEW; 4389 4390 /* 4391 * Make sure we do not leak PI boosting priority to the child. 4392 */ 4393 p->prio = current->normal_prio; 4394 4395 uclamp_fork(p); 4396 4397 /* 4398 * Revert to default priority/policy on fork if requested. 4399 */ 4400 if (unlikely(p->sched_reset_on_fork)) { 4401 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4402 p->policy = SCHED_NORMAL; 4403 p->static_prio = NICE_TO_PRIO(0); 4404 p->rt_priority = 0; 4405 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4406 p->static_prio = NICE_TO_PRIO(0); 4407 4408 p->prio = p->normal_prio = p->static_prio; 4409 set_load_weight(p, false); 4410 4411 /* 4412 * We don't need the reset flag anymore after the fork. It has 4413 * fulfilled its duty: 4414 */ 4415 p->sched_reset_on_fork = 0; 4416 } 4417 4418 if (dl_prio(p->prio)) 4419 return -EAGAIN; 4420 else if (rt_prio(p->prio)) 4421 p->sched_class = &rt_sched_class; 4422 else 4423 p->sched_class = &fair_sched_class; 4424 4425 init_entity_runnable_average(&p->se); 4426 4427 4428 #ifdef CONFIG_SCHED_INFO 4429 if (likely(sched_info_on())) 4430 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4431 #endif 4432 #if defined(CONFIG_SMP) 4433 p->on_cpu = 0; 4434 #endif 4435 init_task_preempt_count(p); 4436 #ifdef CONFIG_SMP 4437 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4438 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4439 #endif 4440 return 0; 4441 } 4442 4443 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4444 { 4445 unsigned long flags; 4446 4447 /* 4448 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4449 * required yet, but lockdep gets upset if rules are violated. 4450 */ 4451 raw_spin_lock_irqsave(&p->pi_lock, flags); 4452 #ifdef CONFIG_CGROUP_SCHED 4453 if (1) { 4454 struct task_group *tg; 4455 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4456 struct task_group, css); 4457 tg = autogroup_task_group(p, tg); 4458 p->sched_task_group = tg; 4459 } 4460 #endif 4461 rseq_migrate(p); 4462 /* 4463 * We're setting the CPU for the first time, we don't migrate, 4464 * so use __set_task_cpu(). 4465 */ 4466 __set_task_cpu(p, smp_processor_id()); 4467 if (p->sched_class->task_fork) 4468 p->sched_class->task_fork(p); 4469 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4470 } 4471 4472 void sched_post_fork(struct task_struct *p) 4473 { 4474 uclamp_post_fork(p); 4475 } 4476 4477 unsigned long to_ratio(u64 period, u64 runtime) 4478 { 4479 if (runtime == RUNTIME_INF) 4480 return BW_UNIT; 4481 4482 /* 4483 * Doing this here saves a lot of checks in all 4484 * the calling paths, and returning zero seems 4485 * safe for them anyway. 4486 */ 4487 if (period == 0) 4488 return 0; 4489 4490 return div64_u64(runtime << BW_SHIFT, period); 4491 } 4492 4493 /* 4494 * wake_up_new_task - wake up a newly created task for the first time. 4495 * 4496 * This function will do some initial scheduler statistics housekeeping 4497 * that must be done for every newly created context, then puts the task 4498 * on the runqueue and wakes it. 4499 */ 4500 void wake_up_new_task(struct task_struct *p) 4501 { 4502 struct rq_flags rf; 4503 struct rq *rq; 4504 4505 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4506 WRITE_ONCE(p->__state, TASK_RUNNING); 4507 #ifdef CONFIG_SMP 4508 /* 4509 * Fork balancing, do it here and not earlier because: 4510 * - cpus_ptr can change in the fork path 4511 * - any previously selected CPU might disappear through hotplug 4512 * 4513 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4514 * as we're not fully set-up yet. 4515 */ 4516 p->recent_used_cpu = task_cpu(p); 4517 rseq_migrate(p); 4518 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4519 #endif 4520 rq = __task_rq_lock(p, &rf); 4521 update_rq_clock(rq); 4522 post_init_entity_util_avg(p); 4523 4524 activate_task(rq, p, ENQUEUE_NOCLOCK); 4525 trace_sched_wakeup_new(p); 4526 check_preempt_curr(rq, p, WF_FORK); 4527 #ifdef CONFIG_SMP 4528 if (p->sched_class->task_woken) { 4529 /* 4530 * Nothing relies on rq->lock after this, so it's fine to 4531 * drop it. 4532 */ 4533 rq_unpin_lock(rq, &rf); 4534 p->sched_class->task_woken(rq, p); 4535 rq_repin_lock(rq, &rf); 4536 } 4537 #endif 4538 task_rq_unlock(rq, p, &rf); 4539 } 4540 4541 #ifdef CONFIG_PREEMPT_NOTIFIERS 4542 4543 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4544 4545 void preempt_notifier_inc(void) 4546 { 4547 static_branch_inc(&preempt_notifier_key); 4548 } 4549 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4550 4551 void preempt_notifier_dec(void) 4552 { 4553 static_branch_dec(&preempt_notifier_key); 4554 } 4555 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4556 4557 /** 4558 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4559 * @notifier: notifier struct to register 4560 */ 4561 void preempt_notifier_register(struct preempt_notifier *notifier) 4562 { 4563 if (!static_branch_unlikely(&preempt_notifier_key)) 4564 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4565 4566 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4567 } 4568 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4569 4570 /** 4571 * preempt_notifier_unregister - no longer interested in preemption notifications 4572 * @notifier: notifier struct to unregister 4573 * 4574 * This is *not* safe to call from within a preemption notifier. 4575 */ 4576 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4577 { 4578 hlist_del(¬ifier->link); 4579 } 4580 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4581 4582 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4583 { 4584 struct preempt_notifier *notifier; 4585 4586 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4587 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4588 } 4589 4590 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4591 { 4592 if (static_branch_unlikely(&preempt_notifier_key)) 4593 __fire_sched_in_preempt_notifiers(curr); 4594 } 4595 4596 static void 4597 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4598 struct task_struct *next) 4599 { 4600 struct preempt_notifier *notifier; 4601 4602 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4603 notifier->ops->sched_out(notifier, next); 4604 } 4605 4606 static __always_inline void 4607 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4608 struct task_struct *next) 4609 { 4610 if (static_branch_unlikely(&preempt_notifier_key)) 4611 __fire_sched_out_preempt_notifiers(curr, next); 4612 } 4613 4614 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4615 4616 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4617 { 4618 } 4619 4620 static inline void 4621 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4622 struct task_struct *next) 4623 { 4624 } 4625 4626 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4627 4628 static inline void prepare_task(struct task_struct *next) 4629 { 4630 #ifdef CONFIG_SMP 4631 /* 4632 * Claim the task as running, we do this before switching to it 4633 * such that any running task will have this set. 4634 * 4635 * See the ttwu() WF_ON_CPU case and its ordering comment. 4636 */ 4637 WRITE_ONCE(next->on_cpu, 1); 4638 #endif 4639 } 4640 4641 static inline void finish_task(struct task_struct *prev) 4642 { 4643 #ifdef CONFIG_SMP 4644 /* 4645 * This must be the very last reference to @prev from this CPU. After 4646 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4647 * must ensure this doesn't happen until the switch is completely 4648 * finished. 4649 * 4650 * In particular, the load of prev->state in finish_task_switch() must 4651 * happen before this. 4652 * 4653 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4654 */ 4655 smp_store_release(&prev->on_cpu, 0); 4656 #endif 4657 } 4658 4659 #ifdef CONFIG_SMP 4660 4661 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4662 { 4663 void (*func)(struct rq *rq); 4664 struct callback_head *next; 4665 4666 lockdep_assert_rq_held(rq); 4667 4668 while (head) { 4669 func = (void (*)(struct rq *))head->func; 4670 next = head->next; 4671 head->next = NULL; 4672 head = next; 4673 4674 func(rq); 4675 } 4676 } 4677 4678 static void balance_push(struct rq *rq); 4679 4680 struct callback_head balance_push_callback = { 4681 .next = NULL, 4682 .func = (void (*)(struct callback_head *))balance_push, 4683 }; 4684 4685 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4686 { 4687 struct callback_head *head = rq->balance_callback; 4688 4689 lockdep_assert_rq_held(rq); 4690 if (head) 4691 rq->balance_callback = NULL; 4692 4693 return head; 4694 } 4695 4696 static void __balance_callbacks(struct rq *rq) 4697 { 4698 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4699 } 4700 4701 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4702 { 4703 unsigned long flags; 4704 4705 if (unlikely(head)) { 4706 raw_spin_rq_lock_irqsave(rq, flags); 4707 do_balance_callbacks(rq, head); 4708 raw_spin_rq_unlock_irqrestore(rq, flags); 4709 } 4710 } 4711 4712 #else 4713 4714 static inline void __balance_callbacks(struct rq *rq) 4715 { 4716 } 4717 4718 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4719 { 4720 return NULL; 4721 } 4722 4723 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4724 { 4725 } 4726 4727 #endif 4728 4729 static inline void 4730 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4731 { 4732 /* 4733 * Since the runqueue lock will be released by the next 4734 * task (which is an invalid locking op but in the case 4735 * of the scheduler it's an obvious special-case), so we 4736 * do an early lockdep release here: 4737 */ 4738 rq_unpin_lock(rq, rf); 4739 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4740 #ifdef CONFIG_DEBUG_SPINLOCK 4741 /* this is a valid case when another task releases the spinlock */ 4742 rq_lockp(rq)->owner = next; 4743 #endif 4744 } 4745 4746 static inline void finish_lock_switch(struct rq *rq) 4747 { 4748 /* 4749 * If we are tracking spinlock dependencies then we have to 4750 * fix up the runqueue lock - which gets 'carried over' from 4751 * prev into current: 4752 */ 4753 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4754 __balance_callbacks(rq); 4755 raw_spin_rq_unlock_irq(rq); 4756 } 4757 4758 /* 4759 * NOP if the arch has not defined these: 4760 */ 4761 4762 #ifndef prepare_arch_switch 4763 # define prepare_arch_switch(next) do { } while (0) 4764 #endif 4765 4766 #ifndef finish_arch_post_lock_switch 4767 # define finish_arch_post_lock_switch() do { } while (0) 4768 #endif 4769 4770 static inline void kmap_local_sched_out(void) 4771 { 4772 #ifdef CONFIG_KMAP_LOCAL 4773 if (unlikely(current->kmap_ctrl.idx)) 4774 __kmap_local_sched_out(); 4775 #endif 4776 } 4777 4778 static inline void kmap_local_sched_in(void) 4779 { 4780 #ifdef CONFIG_KMAP_LOCAL 4781 if (unlikely(current->kmap_ctrl.idx)) 4782 __kmap_local_sched_in(); 4783 #endif 4784 } 4785 4786 /** 4787 * prepare_task_switch - prepare to switch tasks 4788 * @rq: the runqueue preparing to switch 4789 * @prev: the current task that is being switched out 4790 * @next: the task we are going to switch to. 4791 * 4792 * This is called with the rq lock held and interrupts off. It must 4793 * be paired with a subsequent finish_task_switch after the context 4794 * switch. 4795 * 4796 * prepare_task_switch sets up locking and calls architecture specific 4797 * hooks. 4798 */ 4799 static inline void 4800 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4801 struct task_struct *next) 4802 { 4803 kcov_prepare_switch(prev); 4804 sched_info_switch(rq, prev, next); 4805 perf_event_task_sched_out(prev, next); 4806 rseq_preempt(prev); 4807 fire_sched_out_preempt_notifiers(prev, next); 4808 kmap_local_sched_out(); 4809 prepare_task(next); 4810 prepare_arch_switch(next); 4811 } 4812 4813 /** 4814 * finish_task_switch - clean up after a task-switch 4815 * @prev: the thread we just switched away from. 4816 * 4817 * finish_task_switch must be called after the context switch, paired 4818 * with a prepare_task_switch call before the context switch. 4819 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4820 * and do any other architecture-specific cleanup actions. 4821 * 4822 * Note that we may have delayed dropping an mm in context_switch(). If 4823 * so, we finish that here outside of the runqueue lock. (Doing it 4824 * with the lock held can cause deadlocks; see schedule() for 4825 * details.) 4826 * 4827 * The context switch have flipped the stack from under us and restored the 4828 * local variables which were saved when this task called schedule() in the 4829 * past. prev == current is still correct but we need to recalculate this_rq 4830 * because prev may have moved to another CPU. 4831 */ 4832 static struct rq *finish_task_switch(struct task_struct *prev) 4833 __releases(rq->lock) 4834 { 4835 struct rq *rq = this_rq(); 4836 struct mm_struct *mm = rq->prev_mm; 4837 long prev_state; 4838 4839 /* 4840 * The previous task will have left us with a preempt_count of 2 4841 * because it left us after: 4842 * 4843 * schedule() 4844 * preempt_disable(); // 1 4845 * __schedule() 4846 * raw_spin_lock_irq(&rq->lock) // 2 4847 * 4848 * Also, see FORK_PREEMPT_COUNT. 4849 */ 4850 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4851 "corrupted preempt_count: %s/%d/0x%x\n", 4852 current->comm, current->pid, preempt_count())) 4853 preempt_count_set(FORK_PREEMPT_COUNT); 4854 4855 rq->prev_mm = NULL; 4856 4857 /* 4858 * A task struct has one reference for the use as "current". 4859 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4860 * schedule one last time. The schedule call will never return, and 4861 * the scheduled task must drop that reference. 4862 * 4863 * We must observe prev->state before clearing prev->on_cpu (in 4864 * finish_task), otherwise a concurrent wakeup can get prev 4865 * running on another CPU and we could rave with its RUNNING -> DEAD 4866 * transition, resulting in a double drop. 4867 */ 4868 prev_state = READ_ONCE(prev->__state); 4869 vtime_task_switch(prev); 4870 perf_event_task_sched_in(prev, current); 4871 finish_task(prev); 4872 tick_nohz_task_switch(); 4873 finish_lock_switch(rq); 4874 finish_arch_post_lock_switch(); 4875 kcov_finish_switch(current); 4876 /* 4877 * kmap_local_sched_out() is invoked with rq::lock held and 4878 * interrupts disabled. There is no requirement for that, but the 4879 * sched out code does not have an interrupt enabled section. 4880 * Restoring the maps on sched in does not require interrupts being 4881 * disabled either. 4882 */ 4883 kmap_local_sched_in(); 4884 4885 fire_sched_in_preempt_notifiers(current); 4886 /* 4887 * When switching through a kernel thread, the loop in 4888 * membarrier_{private,global}_expedited() may have observed that 4889 * kernel thread and not issued an IPI. It is therefore possible to 4890 * schedule between user->kernel->user threads without passing though 4891 * switch_mm(). Membarrier requires a barrier after storing to 4892 * rq->curr, before returning to userspace, so provide them here: 4893 * 4894 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4895 * provided by mmdrop(), 4896 * - a sync_core for SYNC_CORE. 4897 */ 4898 if (mm) { 4899 membarrier_mm_sync_core_before_usermode(mm); 4900 mmdrop_sched(mm); 4901 } 4902 if (unlikely(prev_state == TASK_DEAD)) { 4903 if (prev->sched_class->task_dead) 4904 prev->sched_class->task_dead(prev); 4905 4906 /* Task is done with its stack. */ 4907 put_task_stack(prev); 4908 4909 put_task_struct_rcu_user(prev); 4910 } 4911 4912 return rq; 4913 } 4914 4915 /** 4916 * schedule_tail - first thing a freshly forked thread must call. 4917 * @prev: the thread we just switched away from. 4918 */ 4919 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4920 __releases(rq->lock) 4921 { 4922 /* 4923 * New tasks start with FORK_PREEMPT_COUNT, see there and 4924 * finish_task_switch() for details. 4925 * 4926 * finish_task_switch() will drop rq->lock() and lower preempt_count 4927 * and the preempt_enable() will end up enabling preemption (on 4928 * PREEMPT_COUNT kernels). 4929 */ 4930 4931 finish_task_switch(prev); 4932 preempt_enable(); 4933 4934 if (current->set_child_tid) 4935 put_user(task_pid_vnr(current), current->set_child_tid); 4936 4937 calculate_sigpending(); 4938 } 4939 4940 /* 4941 * context_switch - switch to the new MM and the new thread's register state. 4942 */ 4943 static __always_inline struct rq * 4944 context_switch(struct rq *rq, struct task_struct *prev, 4945 struct task_struct *next, struct rq_flags *rf) 4946 { 4947 prepare_task_switch(rq, prev, next); 4948 4949 /* 4950 * For paravirt, this is coupled with an exit in switch_to to 4951 * combine the page table reload and the switch backend into 4952 * one hypercall. 4953 */ 4954 arch_start_context_switch(prev); 4955 4956 /* 4957 * kernel -> kernel lazy + transfer active 4958 * user -> kernel lazy + mmgrab() active 4959 * 4960 * kernel -> user switch + mmdrop() active 4961 * user -> user switch 4962 */ 4963 if (!next->mm) { // to kernel 4964 enter_lazy_tlb(prev->active_mm, next); 4965 4966 next->active_mm = prev->active_mm; 4967 if (prev->mm) // from user 4968 mmgrab(prev->active_mm); 4969 else 4970 prev->active_mm = NULL; 4971 } else { // to user 4972 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4973 /* 4974 * sys_membarrier() requires an smp_mb() between setting 4975 * rq->curr / membarrier_switch_mm() and returning to userspace. 4976 * 4977 * The below provides this either through switch_mm(), or in 4978 * case 'prev->active_mm == next->mm' through 4979 * finish_task_switch()'s mmdrop(). 4980 */ 4981 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4982 4983 if (!prev->mm) { // from kernel 4984 /* will mmdrop() in finish_task_switch(). */ 4985 rq->prev_mm = prev->active_mm; 4986 prev->active_mm = NULL; 4987 } 4988 } 4989 4990 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4991 4992 prepare_lock_switch(rq, next, rf); 4993 4994 /* Here we just switch the register state and the stack. */ 4995 switch_to(prev, next, prev); 4996 barrier(); 4997 4998 return finish_task_switch(prev); 4999 } 5000 5001 /* 5002 * nr_running and nr_context_switches: 5003 * 5004 * externally visible scheduler statistics: current number of runnable 5005 * threads, total number of context switches performed since bootup. 5006 */ 5007 unsigned int nr_running(void) 5008 { 5009 unsigned int i, sum = 0; 5010 5011 for_each_online_cpu(i) 5012 sum += cpu_rq(i)->nr_running; 5013 5014 return sum; 5015 } 5016 5017 /* 5018 * Check if only the current task is running on the CPU. 5019 * 5020 * Caution: this function does not check that the caller has disabled 5021 * preemption, thus the result might have a time-of-check-to-time-of-use 5022 * race. The caller is responsible to use it correctly, for example: 5023 * 5024 * - from a non-preemptible section (of course) 5025 * 5026 * - from a thread that is bound to a single CPU 5027 * 5028 * - in a loop with very short iterations (e.g. a polling loop) 5029 */ 5030 bool single_task_running(void) 5031 { 5032 return raw_rq()->nr_running == 1; 5033 } 5034 EXPORT_SYMBOL(single_task_running); 5035 5036 unsigned long long nr_context_switches(void) 5037 { 5038 int i; 5039 unsigned long long sum = 0; 5040 5041 for_each_possible_cpu(i) 5042 sum += cpu_rq(i)->nr_switches; 5043 5044 return sum; 5045 } 5046 5047 /* 5048 * Consumers of these two interfaces, like for example the cpuidle menu 5049 * governor, are using nonsensical data. Preferring shallow idle state selection 5050 * for a CPU that has IO-wait which might not even end up running the task when 5051 * it does become runnable. 5052 */ 5053 5054 unsigned int nr_iowait_cpu(int cpu) 5055 { 5056 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5057 } 5058 5059 /* 5060 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5061 * 5062 * The idea behind IO-wait account is to account the idle time that we could 5063 * have spend running if it were not for IO. That is, if we were to improve the 5064 * storage performance, we'd have a proportional reduction in IO-wait time. 5065 * 5066 * This all works nicely on UP, where, when a task blocks on IO, we account 5067 * idle time as IO-wait, because if the storage were faster, it could've been 5068 * running and we'd not be idle. 5069 * 5070 * This has been extended to SMP, by doing the same for each CPU. This however 5071 * is broken. 5072 * 5073 * Imagine for instance the case where two tasks block on one CPU, only the one 5074 * CPU will have IO-wait accounted, while the other has regular idle. Even 5075 * though, if the storage were faster, both could've ran at the same time, 5076 * utilising both CPUs. 5077 * 5078 * This means, that when looking globally, the current IO-wait accounting on 5079 * SMP is a lower bound, by reason of under accounting. 5080 * 5081 * Worse, since the numbers are provided per CPU, they are sometimes 5082 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5083 * associated with any one particular CPU, it can wake to another CPU than it 5084 * blocked on. This means the per CPU IO-wait number is meaningless. 5085 * 5086 * Task CPU affinities can make all that even more 'interesting'. 5087 */ 5088 5089 unsigned int nr_iowait(void) 5090 { 5091 unsigned int i, sum = 0; 5092 5093 for_each_possible_cpu(i) 5094 sum += nr_iowait_cpu(i); 5095 5096 return sum; 5097 } 5098 5099 #ifdef CONFIG_SMP 5100 5101 /* 5102 * sched_exec - execve() is a valuable balancing opportunity, because at 5103 * this point the task has the smallest effective memory and cache footprint. 5104 */ 5105 void sched_exec(void) 5106 { 5107 struct task_struct *p = current; 5108 unsigned long flags; 5109 int dest_cpu; 5110 5111 raw_spin_lock_irqsave(&p->pi_lock, flags); 5112 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5113 if (dest_cpu == smp_processor_id()) 5114 goto unlock; 5115 5116 if (likely(cpu_active(dest_cpu))) { 5117 struct migration_arg arg = { p, dest_cpu }; 5118 5119 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5120 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5121 return; 5122 } 5123 unlock: 5124 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5125 } 5126 5127 #endif 5128 5129 DEFINE_PER_CPU(struct kernel_stat, kstat); 5130 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5131 5132 EXPORT_PER_CPU_SYMBOL(kstat); 5133 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5134 5135 /* 5136 * The function fair_sched_class.update_curr accesses the struct curr 5137 * and its field curr->exec_start; when called from task_sched_runtime(), 5138 * we observe a high rate of cache misses in practice. 5139 * Prefetching this data results in improved performance. 5140 */ 5141 static inline void prefetch_curr_exec_start(struct task_struct *p) 5142 { 5143 #ifdef CONFIG_FAIR_GROUP_SCHED 5144 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5145 #else 5146 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5147 #endif 5148 prefetch(curr); 5149 prefetch(&curr->exec_start); 5150 } 5151 5152 /* 5153 * Return accounted runtime for the task. 5154 * In case the task is currently running, return the runtime plus current's 5155 * pending runtime that have not been accounted yet. 5156 */ 5157 unsigned long long task_sched_runtime(struct task_struct *p) 5158 { 5159 struct rq_flags rf; 5160 struct rq *rq; 5161 u64 ns; 5162 5163 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5164 /* 5165 * 64-bit doesn't need locks to atomically read a 64-bit value. 5166 * So we have a optimization chance when the task's delta_exec is 0. 5167 * Reading ->on_cpu is racy, but this is ok. 5168 * 5169 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5170 * If we race with it entering CPU, unaccounted time is 0. This is 5171 * indistinguishable from the read occurring a few cycles earlier. 5172 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5173 * been accounted, so we're correct here as well. 5174 */ 5175 if (!p->on_cpu || !task_on_rq_queued(p)) 5176 return p->se.sum_exec_runtime; 5177 #endif 5178 5179 rq = task_rq_lock(p, &rf); 5180 /* 5181 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5182 * project cycles that may never be accounted to this 5183 * thread, breaking clock_gettime(). 5184 */ 5185 if (task_current(rq, p) && task_on_rq_queued(p)) { 5186 prefetch_curr_exec_start(p); 5187 update_rq_clock(rq); 5188 p->sched_class->update_curr(rq); 5189 } 5190 ns = p->se.sum_exec_runtime; 5191 task_rq_unlock(rq, p, &rf); 5192 5193 return ns; 5194 } 5195 5196 #ifdef CONFIG_SCHED_DEBUG 5197 static u64 cpu_resched_latency(struct rq *rq) 5198 { 5199 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5200 u64 resched_latency, now = rq_clock(rq); 5201 static bool warned_once; 5202 5203 if (sysctl_resched_latency_warn_once && warned_once) 5204 return 0; 5205 5206 if (!need_resched() || !latency_warn_ms) 5207 return 0; 5208 5209 if (system_state == SYSTEM_BOOTING) 5210 return 0; 5211 5212 if (!rq->last_seen_need_resched_ns) { 5213 rq->last_seen_need_resched_ns = now; 5214 rq->ticks_without_resched = 0; 5215 return 0; 5216 } 5217 5218 rq->ticks_without_resched++; 5219 resched_latency = now - rq->last_seen_need_resched_ns; 5220 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5221 return 0; 5222 5223 warned_once = true; 5224 5225 return resched_latency; 5226 } 5227 5228 static int __init setup_resched_latency_warn_ms(char *str) 5229 { 5230 long val; 5231 5232 if ((kstrtol(str, 0, &val))) { 5233 pr_warn("Unable to set resched_latency_warn_ms\n"); 5234 return 1; 5235 } 5236 5237 sysctl_resched_latency_warn_ms = val; 5238 return 1; 5239 } 5240 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5241 #else 5242 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5243 #endif /* CONFIG_SCHED_DEBUG */ 5244 5245 /* 5246 * This function gets called by the timer code, with HZ frequency. 5247 * We call it with interrupts disabled. 5248 */ 5249 void scheduler_tick(void) 5250 { 5251 int cpu = smp_processor_id(); 5252 struct rq *rq = cpu_rq(cpu); 5253 struct task_struct *curr = rq->curr; 5254 struct rq_flags rf; 5255 unsigned long thermal_pressure; 5256 u64 resched_latency; 5257 5258 arch_scale_freq_tick(); 5259 sched_clock_tick(); 5260 5261 rq_lock(rq, &rf); 5262 5263 update_rq_clock(rq); 5264 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5265 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5266 curr->sched_class->task_tick(rq, curr, 0); 5267 if (sched_feat(LATENCY_WARN)) 5268 resched_latency = cpu_resched_latency(rq); 5269 calc_global_load_tick(rq); 5270 sched_core_tick(rq); 5271 5272 rq_unlock(rq, &rf); 5273 5274 if (sched_feat(LATENCY_WARN) && resched_latency) 5275 resched_latency_warn(cpu, resched_latency); 5276 5277 perf_event_task_tick(); 5278 5279 #ifdef CONFIG_SMP 5280 rq->idle_balance = idle_cpu(cpu); 5281 trigger_load_balance(rq); 5282 #endif 5283 } 5284 5285 #ifdef CONFIG_NO_HZ_FULL 5286 5287 struct tick_work { 5288 int cpu; 5289 atomic_t state; 5290 struct delayed_work work; 5291 }; 5292 /* Values for ->state, see diagram below. */ 5293 #define TICK_SCHED_REMOTE_OFFLINE 0 5294 #define TICK_SCHED_REMOTE_OFFLINING 1 5295 #define TICK_SCHED_REMOTE_RUNNING 2 5296 5297 /* 5298 * State diagram for ->state: 5299 * 5300 * 5301 * TICK_SCHED_REMOTE_OFFLINE 5302 * | ^ 5303 * | | 5304 * | | sched_tick_remote() 5305 * | | 5306 * | | 5307 * +--TICK_SCHED_REMOTE_OFFLINING 5308 * | ^ 5309 * | | 5310 * sched_tick_start() | | sched_tick_stop() 5311 * | | 5312 * V | 5313 * TICK_SCHED_REMOTE_RUNNING 5314 * 5315 * 5316 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5317 * and sched_tick_start() are happy to leave the state in RUNNING. 5318 */ 5319 5320 static struct tick_work __percpu *tick_work_cpu; 5321 5322 static void sched_tick_remote(struct work_struct *work) 5323 { 5324 struct delayed_work *dwork = to_delayed_work(work); 5325 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5326 int cpu = twork->cpu; 5327 struct rq *rq = cpu_rq(cpu); 5328 struct task_struct *curr; 5329 struct rq_flags rf; 5330 u64 delta; 5331 int os; 5332 5333 /* 5334 * Handle the tick only if it appears the remote CPU is running in full 5335 * dynticks mode. The check is racy by nature, but missing a tick or 5336 * having one too much is no big deal because the scheduler tick updates 5337 * statistics and checks timeslices in a time-independent way, regardless 5338 * of when exactly it is running. 5339 */ 5340 if (!tick_nohz_tick_stopped_cpu(cpu)) 5341 goto out_requeue; 5342 5343 rq_lock_irq(rq, &rf); 5344 curr = rq->curr; 5345 if (cpu_is_offline(cpu)) 5346 goto out_unlock; 5347 5348 update_rq_clock(rq); 5349 5350 if (!is_idle_task(curr)) { 5351 /* 5352 * Make sure the next tick runs within a reasonable 5353 * amount of time. 5354 */ 5355 delta = rq_clock_task(rq) - curr->se.exec_start; 5356 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5357 } 5358 curr->sched_class->task_tick(rq, curr, 0); 5359 5360 calc_load_nohz_remote(rq); 5361 out_unlock: 5362 rq_unlock_irq(rq, &rf); 5363 out_requeue: 5364 5365 /* 5366 * Run the remote tick once per second (1Hz). This arbitrary 5367 * frequency is large enough to avoid overload but short enough 5368 * to keep scheduler internal stats reasonably up to date. But 5369 * first update state to reflect hotplug activity if required. 5370 */ 5371 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5372 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5373 if (os == TICK_SCHED_REMOTE_RUNNING) 5374 queue_delayed_work(system_unbound_wq, dwork, HZ); 5375 } 5376 5377 static void sched_tick_start(int cpu) 5378 { 5379 int os; 5380 struct tick_work *twork; 5381 5382 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5383 return; 5384 5385 WARN_ON_ONCE(!tick_work_cpu); 5386 5387 twork = per_cpu_ptr(tick_work_cpu, cpu); 5388 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5389 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5390 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5391 twork->cpu = cpu; 5392 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5393 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5394 } 5395 } 5396 5397 #ifdef CONFIG_HOTPLUG_CPU 5398 static void sched_tick_stop(int cpu) 5399 { 5400 struct tick_work *twork; 5401 int os; 5402 5403 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5404 return; 5405 5406 WARN_ON_ONCE(!tick_work_cpu); 5407 5408 twork = per_cpu_ptr(tick_work_cpu, cpu); 5409 /* There cannot be competing actions, but don't rely on stop-machine. */ 5410 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5411 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5412 /* Don't cancel, as this would mess up the state machine. */ 5413 } 5414 #endif /* CONFIG_HOTPLUG_CPU */ 5415 5416 int __init sched_tick_offload_init(void) 5417 { 5418 tick_work_cpu = alloc_percpu(struct tick_work); 5419 BUG_ON(!tick_work_cpu); 5420 return 0; 5421 } 5422 5423 #else /* !CONFIG_NO_HZ_FULL */ 5424 static inline void sched_tick_start(int cpu) { } 5425 static inline void sched_tick_stop(int cpu) { } 5426 #endif 5427 5428 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5429 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5430 /* 5431 * If the value passed in is equal to the current preempt count 5432 * then we just disabled preemption. Start timing the latency. 5433 */ 5434 static inline void preempt_latency_start(int val) 5435 { 5436 if (preempt_count() == val) { 5437 unsigned long ip = get_lock_parent_ip(); 5438 #ifdef CONFIG_DEBUG_PREEMPT 5439 current->preempt_disable_ip = ip; 5440 #endif 5441 trace_preempt_off(CALLER_ADDR0, ip); 5442 } 5443 } 5444 5445 void preempt_count_add(int val) 5446 { 5447 #ifdef CONFIG_DEBUG_PREEMPT 5448 /* 5449 * Underflow? 5450 */ 5451 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5452 return; 5453 #endif 5454 __preempt_count_add(val); 5455 #ifdef CONFIG_DEBUG_PREEMPT 5456 /* 5457 * Spinlock count overflowing soon? 5458 */ 5459 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5460 PREEMPT_MASK - 10); 5461 #endif 5462 preempt_latency_start(val); 5463 } 5464 EXPORT_SYMBOL(preempt_count_add); 5465 NOKPROBE_SYMBOL(preempt_count_add); 5466 5467 /* 5468 * If the value passed in equals to the current preempt count 5469 * then we just enabled preemption. Stop timing the latency. 5470 */ 5471 static inline void preempt_latency_stop(int val) 5472 { 5473 if (preempt_count() == val) 5474 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5475 } 5476 5477 void preempt_count_sub(int val) 5478 { 5479 #ifdef CONFIG_DEBUG_PREEMPT 5480 /* 5481 * Underflow? 5482 */ 5483 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5484 return; 5485 /* 5486 * Is the spinlock portion underflowing? 5487 */ 5488 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5489 !(preempt_count() & PREEMPT_MASK))) 5490 return; 5491 #endif 5492 5493 preempt_latency_stop(val); 5494 __preempt_count_sub(val); 5495 } 5496 EXPORT_SYMBOL(preempt_count_sub); 5497 NOKPROBE_SYMBOL(preempt_count_sub); 5498 5499 #else 5500 static inline void preempt_latency_start(int val) { } 5501 static inline void preempt_latency_stop(int val) { } 5502 #endif 5503 5504 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5505 { 5506 #ifdef CONFIG_DEBUG_PREEMPT 5507 return p->preempt_disable_ip; 5508 #else 5509 return 0; 5510 #endif 5511 } 5512 5513 /* 5514 * Print scheduling while atomic bug: 5515 */ 5516 static noinline void __schedule_bug(struct task_struct *prev) 5517 { 5518 /* Save this before calling printk(), since that will clobber it */ 5519 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5520 5521 if (oops_in_progress) 5522 return; 5523 5524 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5525 prev->comm, prev->pid, preempt_count()); 5526 5527 debug_show_held_locks(prev); 5528 print_modules(); 5529 if (irqs_disabled()) 5530 print_irqtrace_events(prev); 5531 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5532 && in_atomic_preempt_off()) { 5533 pr_err("Preemption disabled at:"); 5534 print_ip_sym(KERN_ERR, preempt_disable_ip); 5535 } 5536 if (panic_on_warn) 5537 panic("scheduling while atomic\n"); 5538 5539 dump_stack(); 5540 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5541 } 5542 5543 /* 5544 * Various schedule()-time debugging checks and statistics: 5545 */ 5546 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5547 { 5548 #ifdef CONFIG_SCHED_STACK_END_CHECK 5549 if (task_stack_end_corrupted(prev)) 5550 panic("corrupted stack end detected inside scheduler\n"); 5551 5552 if (task_scs_end_corrupted(prev)) 5553 panic("corrupted shadow stack detected inside scheduler\n"); 5554 #endif 5555 5556 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5557 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5558 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5559 prev->comm, prev->pid, prev->non_block_count); 5560 dump_stack(); 5561 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5562 } 5563 #endif 5564 5565 if (unlikely(in_atomic_preempt_off())) { 5566 __schedule_bug(prev); 5567 preempt_count_set(PREEMPT_DISABLED); 5568 } 5569 rcu_sleep_check(); 5570 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5571 5572 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5573 5574 schedstat_inc(this_rq()->sched_count); 5575 } 5576 5577 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5578 struct rq_flags *rf) 5579 { 5580 #ifdef CONFIG_SMP 5581 const struct sched_class *class; 5582 /* 5583 * We must do the balancing pass before put_prev_task(), such 5584 * that when we release the rq->lock the task is in the same 5585 * state as before we took rq->lock. 5586 * 5587 * We can terminate the balance pass as soon as we know there is 5588 * a runnable task of @class priority or higher. 5589 */ 5590 for_class_range(class, prev->sched_class, &idle_sched_class) { 5591 if (class->balance(rq, prev, rf)) 5592 break; 5593 } 5594 #endif 5595 5596 put_prev_task(rq, prev); 5597 } 5598 5599 /* 5600 * Pick up the highest-prio task: 5601 */ 5602 static inline struct task_struct * 5603 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5604 { 5605 const struct sched_class *class; 5606 struct task_struct *p; 5607 5608 /* 5609 * Optimization: we know that if all tasks are in the fair class we can 5610 * call that function directly, but only if the @prev task wasn't of a 5611 * higher scheduling class, because otherwise those lose the 5612 * opportunity to pull in more work from other CPUs. 5613 */ 5614 if (likely(prev->sched_class <= &fair_sched_class && 5615 rq->nr_running == rq->cfs.h_nr_running)) { 5616 5617 p = pick_next_task_fair(rq, prev, rf); 5618 if (unlikely(p == RETRY_TASK)) 5619 goto restart; 5620 5621 /* Assume the next prioritized class is idle_sched_class */ 5622 if (!p) { 5623 put_prev_task(rq, prev); 5624 p = pick_next_task_idle(rq); 5625 } 5626 5627 return p; 5628 } 5629 5630 restart: 5631 put_prev_task_balance(rq, prev, rf); 5632 5633 for_each_class(class) { 5634 p = class->pick_next_task(rq); 5635 if (p) 5636 return p; 5637 } 5638 5639 BUG(); /* The idle class should always have a runnable task. */ 5640 } 5641 5642 #ifdef CONFIG_SCHED_CORE 5643 static inline bool is_task_rq_idle(struct task_struct *t) 5644 { 5645 return (task_rq(t)->idle == t); 5646 } 5647 5648 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5649 { 5650 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5651 } 5652 5653 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5654 { 5655 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5656 return true; 5657 5658 return a->core_cookie == b->core_cookie; 5659 } 5660 5661 static inline struct task_struct *pick_task(struct rq *rq) 5662 { 5663 const struct sched_class *class; 5664 struct task_struct *p; 5665 5666 for_each_class(class) { 5667 p = class->pick_task(rq); 5668 if (p) 5669 return p; 5670 } 5671 5672 BUG(); /* The idle class should always have a runnable task. */ 5673 } 5674 5675 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5676 5677 static struct task_struct * 5678 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5679 { 5680 struct task_struct *next, *p, *max = NULL; 5681 const struct cpumask *smt_mask; 5682 bool fi_before = false; 5683 bool core_clock_updated = (rq == rq->core); 5684 unsigned long cookie; 5685 int i, cpu, occ = 0; 5686 struct rq *rq_i; 5687 bool need_sync; 5688 5689 if (!sched_core_enabled(rq)) 5690 return __pick_next_task(rq, prev, rf); 5691 5692 cpu = cpu_of(rq); 5693 5694 /* Stopper task is switching into idle, no need core-wide selection. */ 5695 if (cpu_is_offline(cpu)) { 5696 /* 5697 * Reset core_pick so that we don't enter the fastpath when 5698 * coming online. core_pick would already be migrated to 5699 * another cpu during offline. 5700 */ 5701 rq->core_pick = NULL; 5702 return __pick_next_task(rq, prev, rf); 5703 } 5704 5705 /* 5706 * If there were no {en,de}queues since we picked (IOW, the task 5707 * pointers are all still valid), and we haven't scheduled the last 5708 * pick yet, do so now. 5709 * 5710 * rq->core_pick can be NULL if no selection was made for a CPU because 5711 * it was either offline or went offline during a sibling's core-wide 5712 * selection. In this case, do a core-wide selection. 5713 */ 5714 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5715 rq->core->core_pick_seq != rq->core_sched_seq && 5716 rq->core_pick) { 5717 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5718 5719 next = rq->core_pick; 5720 if (next != prev) { 5721 put_prev_task(rq, prev); 5722 set_next_task(rq, next); 5723 } 5724 5725 rq->core_pick = NULL; 5726 return next; 5727 } 5728 5729 put_prev_task_balance(rq, prev, rf); 5730 5731 smt_mask = cpu_smt_mask(cpu); 5732 need_sync = !!rq->core->core_cookie; 5733 5734 /* reset state */ 5735 rq->core->core_cookie = 0UL; 5736 if (rq->core->core_forceidle_count) { 5737 if (!core_clock_updated) { 5738 update_rq_clock(rq->core); 5739 core_clock_updated = true; 5740 } 5741 sched_core_account_forceidle(rq); 5742 /* reset after accounting force idle */ 5743 rq->core->core_forceidle_start = 0; 5744 rq->core->core_forceidle_count = 0; 5745 rq->core->core_forceidle_occupation = 0; 5746 need_sync = true; 5747 fi_before = true; 5748 } 5749 5750 /* 5751 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5752 * 5753 * @task_seq guards the task state ({en,de}queues) 5754 * @pick_seq is the @task_seq we did a selection on 5755 * @sched_seq is the @pick_seq we scheduled 5756 * 5757 * However, preemptions can cause multiple picks on the same task set. 5758 * 'Fix' this by also increasing @task_seq for every pick. 5759 */ 5760 rq->core->core_task_seq++; 5761 5762 /* 5763 * Optimize for common case where this CPU has no cookies 5764 * and there are no cookied tasks running on siblings. 5765 */ 5766 if (!need_sync) { 5767 next = pick_task(rq); 5768 if (!next->core_cookie) { 5769 rq->core_pick = NULL; 5770 /* 5771 * For robustness, update the min_vruntime_fi for 5772 * unconstrained picks as well. 5773 */ 5774 WARN_ON_ONCE(fi_before); 5775 task_vruntime_update(rq, next, false); 5776 goto done; 5777 } 5778 } 5779 5780 /* 5781 * For each thread: do the regular task pick and find the max prio task 5782 * amongst them. 5783 * 5784 * Tie-break prio towards the current CPU 5785 */ 5786 for_each_cpu_wrap(i, smt_mask, cpu) { 5787 rq_i = cpu_rq(i); 5788 5789 /* 5790 * Current cpu always has its clock updated on entrance to 5791 * pick_next_task(). If the current cpu is not the core, 5792 * the core may also have been updated above. 5793 */ 5794 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 5795 update_rq_clock(rq_i); 5796 5797 p = rq_i->core_pick = pick_task(rq_i); 5798 if (!max || prio_less(max, p, fi_before)) 5799 max = p; 5800 } 5801 5802 cookie = rq->core->core_cookie = max->core_cookie; 5803 5804 /* 5805 * For each thread: try and find a runnable task that matches @max or 5806 * force idle. 5807 */ 5808 for_each_cpu(i, smt_mask) { 5809 rq_i = cpu_rq(i); 5810 p = rq_i->core_pick; 5811 5812 if (!cookie_equals(p, cookie)) { 5813 p = NULL; 5814 if (cookie) 5815 p = sched_core_find(rq_i, cookie); 5816 if (!p) 5817 p = idle_sched_class.pick_task(rq_i); 5818 } 5819 5820 rq_i->core_pick = p; 5821 5822 if (p == rq_i->idle) { 5823 if (rq_i->nr_running) { 5824 rq->core->core_forceidle_count++; 5825 if (!fi_before) 5826 rq->core->core_forceidle_seq++; 5827 } 5828 } else { 5829 occ++; 5830 } 5831 } 5832 5833 if (schedstat_enabled() && rq->core->core_forceidle_count) { 5834 rq->core->core_forceidle_start = rq_clock(rq->core); 5835 rq->core->core_forceidle_occupation = occ; 5836 } 5837 5838 rq->core->core_pick_seq = rq->core->core_task_seq; 5839 next = rq->core_pick; 5840 rq->core_sched_seq = rq->core->core_pick_seq; 5841 5842 /* Something should have been selected for current CPU */ 5843 WARN_ON_ONCE(!next); 5844 5845 /* 5846 * Reschedule siblings 5847 * 5848 * NOTE: L1TF -- at this point we're no longer running the old task and 5849 * sending an IPI (below) ensures the sibling will no longer be running 5850 * their task. This ensures there is no inter-sibling overlap between 5851 * non-matching user state. 5852 */ 5853 for_each_cpu(i, smt_mask) { 5854 rq_i = cpu_rq(i); 5855 5856 /* 5857 * An online sibling might have gone offline before a task 5858 * could be picked for it, or it might be offline but later 5859 * happen to come online, but its too late and nothing was 5860 * picked for it. That's Ok - it will pick tasks for itself, 5861 * so ignore it. 5862 */ 5863 if (!rq_i->core_pick) 5864 continue; 5865 5866 /* 5867 * Update for new !FI->FI transitions, or if continuing to be in !FI: 5868 * fi_before fi update? 5869 * 0 0 1 5870 * 0 1 1 5871 * 1 0 1 5872 * 1 1 0 5873 */ 5874 if (!(fi_before && rq->core->core_forceidle_count)) 5875 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 5876 5877 rq_i->core_pick->core_occupation = occ; 5878 5879 if (i == cpu) { 5880 rq_i->core_pick = NULL; 5881 continue; 5882 } 5883 5884 /* Did we break L1TF mitigation requirements? */ 5885 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 5886 5887 if (rq_i->curr == rq_i->core_pick) { 5888 rq_i->core_pick = NULL; 5889 continue; 5890 } 5891 5892 resched_curr(rq_i); 5893 } 5894 5895 done: 5896 set_next_task(rq, next); 5897 return next; 5898 } 5899 5900 static bool try_steal_cookie(int this, int that) 5901 { 5902 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 5903 struct task_struct *p; 5904 unsigned long cookie; 5905 bool success = false; 5906 5907 local_irq_disable(); 5908 double_rq_lock(dst, src); 5909 5910 cookie = dst->core->core_cookie; 5911 if (!cookie) 5912 goto unlock; 5913 5914 if (dst->curr != dst->idle) 5915 goto unlock; 5916 5917 p = sched_core_find(src, cookie); 5918 if (p == src->idle) 5919 goto unlock; 5920 5921 do { 5922 if (p == src->core_pick || p == src->curr) 5923 goto next; 5924 5925 if (!cpumask_test_cpu(this, &p->cpus_mask)) 5926 goto next; 5927 5928 if (p->core_occupation > dst->idle->core_occupation) 5929 goto next; 5930 5931 deactivate_task(src, p, 0); 5932 set_task_cpu(p, this); 5933 activate_task(dst, p, 0); 5934 5935 resched_curr(dst); 5936 5937 success = true; 5938 break; 5939 5940 next: 5941 p = sched_core_next(p, cookie); 5942 } while (p); 5943 5944 unlock: 5945 double_rq_unlock(dst, src); 5946 local_irq_enable(); 5947 5948 return success; 5949 } 5950 5951 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 5952 { 5953 int i; 5954 5955 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 5956 if (i == cpu) 5957 continue; 5958 5959 if (need_resched()) 5960 break; 5961 5962 if (try_steal_cookie(cpu, i)) 5963 return true; 5964 } 5965 5966 return false; 5967 } 5968 5969 static void sched_core_balance(struct rq *rq) 5970 { 5971 struct sched_domain *sd; 5972 int cpu = cpu_of(rq); 5973 5974 preempt_disable(); 5975 rcu_read_lock(); 5976 raw_spin_rq_unlock_irq(rq); 5977 for_each_domain(cpu, sd) { 5978 if (need_resched()) 5979 break; 5980 5981 if (steal_cookie_task(cpu, sd)) 5982 break; 5983 } 5984 raw_spin_rq_lock_irq(rq); 5985 rcu_read_unlock(); 5986 preempt_enable(); 5987 } 5988 5989 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 5990 5991 void queue_core_balance(struct rq *rq) 5992 { 5993 if (!sched_core_enabled(rq)) 5994 return; 5995 5996 if (!rq->core->core_cookie) 5997 return; 5998 5999 if (!rq->nr_running) /* not forced idle */ 6000 return; 6001 6002 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6003 } 6004 6005 static void sched_core_cpu_starting(unsigned int cpu) 6006 { 6007 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6008 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6009 unsigned long flags; 6010 int t; 6011 6012 sched_core_lock(cpu, &flags); 6013 6014 WARN_ON_ONCE(rq->core != rq); 6015 6016 /* if we're the first, we'll be our own leader */ 6017 if (cpumask_weight(smt_mask) == 1) 6018 goto unlock; 6019 6020 /* find the leader */ 6021 for_each_cpu(t, smt_mask) { 6022 if (t == cpu) 6023 continue; 6024 rq = cpu_rq(t); 6025 if (rq->core == rq) { 6026 core_rq = rq; 6027 break; 6028 } 6029 } 6030 6031 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6032 goto unlock; 6033 6034 /* install and validate core_rq */ 6035 for_each_cpu(t, smt_mask) { 6036 rq = cpu_rq(t); 6037 6038 if (t == cpu) 6039 rq->core = core_rq; 6040 6041 WARN_ON_ONCE(rq->core != core_rq); 6042 } 6043 6044 unlock: 6045 sched_core_unlock(cpu, &flags); 6046 } 6047 6048 static void sched_core_cpu_deactivate(unsigned int cpu) 6049 { 6050 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6051 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6052 unsigned long flags; 6053 int t; 6054 6055 sched_core_lock(cpu, &flags); 6056 6057 /* if we're the last man standing, nothing to do */ 6058 if (cpumask_weight(smt_mask) == 1) { 6059 WARN_ON_ONCE(rq->core != rq); 6060 goto unlock; 6061 } 6062 6063 /* if we're not the leader, nothing to do */ 6064 if (rq->core != rq) 6065 goto unlock; 6066 6067 /* find a new leader */ 6068 for_each_cpu(t, smt_mask) { 6069 if (t == cpu) 6070 continue; 6071 core_rq = cpu_rq(t); 6072 break; 6073 } 6074 6075 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6076 goto unlock; 6077 6078 /* copy the shared state to the new leader */ 6079 core_rq->core_task_seq = rq->core_task_seq; 6080 core_rq->core_pick_seq = rq->core_pick_seq; 6081 core_rq->core_cookie = rq->core_cookie; 6082 core_rq->core_forceidle_count = rq->core_forceidle_count; 6083 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6084 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6085 6086 /* 6087 * Accounting edge for forced idle is handled in pick_next_task(). 6088 * Don't need another one here, since the hotplug thread shouldn't 6089 * have a cookie. 6090 */ 6091 core_rq->core_forceidle_start = 0; 6092 6093 /* install new leader */ 6094 for_each_cpu(t, smt_mask) { 6095 rq = cpu_rq(t); 6096 rq->core = core_rq; 6097 } 6098 6099 unlock: 6100 sched_core_unlock(cpu, &flags); 6101 } 6102 6103 static inline void sched_core_cpu_dying(unsigned int cpu) 6104 { 6105 struct rq *rq = cpu_rq(cpu); 6106 6107 if (rq->core != rq) 6108 rq->core = rq; 6109 } 6110 6111 #else /* !CONFIG_SCHED_CORE */ 6112 6113 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6114 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6115 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6116 6117 static struct task_struct * 6118 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6119 { 6120 return __pick_next_task(rq, prev, rf); 6121 } 6122 6123 #endif /* CONFIG_SCHED_CORE */ 6124 6125 /* 6126 * Constants for the sched_mode argument of __schedule(). 6127 * 6128 * The mode argument allows RT enabled kernels to differentiate a 6129 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6130 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6131 * optimize the AND operation out and just check for zero. 6132 */ 6133 #define SM_NONE 0x0 6134 #define SM_PREEMPT 0x1 6135 #define SM_RTLOCK_WAIT 0x2 6136 6137 #ifndef CONFIG_PREEMPT_RT 6138 # define SM_MASK_PREEMPT (~0U) 6139 #else 6140 # define SM_MASK_PREEMPT SM_PREEMPT 6141 #endif 6142 6143 /* 6144 * __schedule() is the main scheduler function. 6145 * 6146 * The main means of driving the scheduler and thus entering this function are: 6147 * 6148 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6149 * 6150 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6151 * paths. For example, see arch/x86/entry_64.S. 6152 * 6153 * To drive preemption between tasks, the scheduler sets the flag in timer 6154 * interrupt handler scheduler_tick(). 6155 * 6156 * 3. Wakeups don't really cause entry into schedule(). They add a 6157 * task to the run-queue and that's it. 6158 * 6159 * Now, if the new task added to the run-queue preempts the current 6160 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6161 * called on the nearest possible occasion: 6162 * 6163 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6164 * 6165 * - in syscall or exception context, at the next outmost 6166 * preempt_enable(). (this might be as soon as the wake_up()'s 6167 * spin_unlock()!) 6168 * 6169 * - in IRQ context, return from interrupt-handler to 6170 * preemptible context 6171 * 6172 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6173 * then at the next: 6174 * 6175 * - cond_resched() call 6176 * - explicit schedule() call 6177 * - return from syscall or exception to user-space 6178 * - return from interrupt-handler to user-space 6179 * 6180 * WARNING: must be called with preemption disabled! 6181 */ 6182 static void __sched notrace __schedule(unsigned int sched_mode) 6183 { 6184 struct task_struct *prev, *next; 6185 unsigned long *switch_count; 6186 unsigned long prev_state; 6187 struct rq_flags rf; 6188 struct rq *rq; 6189 int cpu; 6190 6191 cpu = smp_processor_id(); 6192 rq = cpu_rq(cpu); 6193 prev = rq->curr; 6194 6195 schedule_debug(prev, !!sched_mode); 6196 6197 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6198 hrtick_clear(rq); 6199 6200 local_irq_disable(); 6201 rcu_note_context_switch(!!sched_mode); 6202 6203 /* 6204 * Make sure that signal_pending_state()->signal_pending() below 6205 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6206 * done by the caller to avoid the race with signal_wake_up(): 6207 * 6208 * __set_current_state(@state) signal_wake_up() 6209 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6210 * wake_up_state(p, state) 6211 * LOCK rq->lock LOCK p->pi_state 6212 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6213 * if (signal_pending_state()) if (p->state & @state) 6214 * 6215 * Also, the membarrier system call requires a full memory barrier 6216 * after coming from user-space, before storing to rq->curr. 6217 */ 6218 rq_lock(rq, &rf); 6219 smp_mb__after_spinlock(); 6220 6221 /* Promote REQ to ACT */ 6222 rq->clock_update_flags <<= 1; 6223 update_rq_clock(rq); 6224 6225 switch_count = &prev->nivcsw; 6226 6227 /* 6228 * We must load prev->state once (task_struct::state is volatile), such 6229 * that: 6230 * 6231 * - we form a control dependency vs deactivate_task() below. 6232 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 6233 */ 6234 prev_state = READ_ONCE(prev->__state); 6235 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6236 if (signal_pending_state(prev_state, prev)) { 6237 WRITE_ONCE(prev->__state, TASK_RUNNING); 6238 } else { 6239 prev->sched_contributes_to_load = 6240 (prev_state & TASK_UNINTERRUPTIBLE) && 6241 !(prev_state & TASK_NOLOAD) && 6242 !(prev->flags & PF_FROZEN); 6243 6244 if (prev->sched_contributes_to_load) 6245 rq->nr_uninterruptible++; 6246 6247 /* 6248 * __schedule() ttwu() 6249 * prev_state = prev->state; if (p->on_rq && ...) 6250 * if (prev_state) goto out; 6251 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6252 * p->state = TASK_WAKING 6253 * 6254 * Where __schedule() and ttwu() have matching control dependencies. 6255 * 6256 * After this, schedule() must not care about p->state any more. 6257 */ 6258 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6259 6260 if (prev->in_iowait) { 6261 atomic_inc(&rq->nr_iowait); 6262 delayacct_blkio_start(); 6263 } 6264 } 6265 switch_count = &prev->nvcsw; 6266 } 6267 6268 next = pick_next_task(rq, prev, &rf); 6269 clear_tsk_need_resched(prev); 6270 clear_preempt_need_resched(); 6271 #ifdef CONFIG_SCHED_DEBUG 6272 rq->last_seen_need_resched_ns = 0; 6273 #endif 6274 6275 if (likely(prev != next)) { 6276 rq->nr_switches++; 6277 /* 6278 * RCU users of rcu_dereference(rq->curr) may not see 6279 * changes to task_struct made by pick_next_task(). 6280 */ 6281 RCU_INIT_POINTER(rq->curr, next); 6282 /* 6283 * The membarrier system call requires each architecture 6284 * to have a full memory barrier after updating 6285 * rq->curr, before returning to user-space. 6286 * 6287 * Here are the schemes providing that barrier on the 6288 * various architectures: 6289 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6290 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6291 * - finish_lock_switch() for weakly-ordered 6292 * architectures where spin_unlock is a full barrier, 6293 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6294 * is a RELEASE barrier), 6295 */ 6296 ++*switch_count; 6297 6298 migrate_disable_switch(rq, prev); 6299 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6300 6301 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next); 6302 6303 /* Also unlocks the rq: */ 6304 rq = context_switch(rq, prev, next, &rf); 6305 } else { 6306 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6307 6308 rq_unpin_lock(rq, &rf); 6309 __balance_callbacks(rq); 6310 raw_spin_rq_unlock_irq(rq); 6311 } 6312 } 6313 6314 void __noreturn do_task_dead(void) 6315 { 6316 /* Causes final put_task_struct in finish_task_switch(): */ 6317 set_special_state(TASK_DEAD); 6318 6319 /* Tell freezer to ignore us: */ 6320 current->flags |= PF_NOFREEZE; 6321 6322 __schedule(SM_NONE); 6323 BUG(); 6324 6325 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6326 for (;;) 6327 cpu_relax(); 6328 } 6329 6330 static inline void sched_submit_work(struct task_struct *tsk) 6331 { 6332 unsigned int task_flags; 6333 6334 if (task_is_running(tsk)) 6335 return; 6336 6337 task_flags = tsk->flags; 6338 /* 6339 * If a worker goes to sleep, notify and ask workqueue whether it 6340 * wants to wake up a task to maintain concurrency. 6341 */ 6342 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6343 if (task_flags & PF_WQ_WORKER) 6344 wq_worker_sleeping(tsk); 6345 else 6346 io_wq_worker_sleeping(tsk); 6347 } 6348 6349 if (tsk_is_pi_blocked(tsk)) 6350 return; 6351 6352 /* 6353 * If we are going to sleep and we have plugged IO queued, 6354 * make sure to submit it to avoid deadlocks. 6355 */ 6356 if (blk_needs_flush_plug(tsk)) 6357 blk_flush_plug(tsk->plug, true); 6358 } 6359 6360 static void sched_update_worker(struct task_struct *tsk) 6361 { 6362 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6363 if (tsk->flags & PF_WQ_WORKER) 6364 wq_worker_running(tsk); 6365 else 6366 io_wq_worker_running(tsk); 6367 } 6368 } 6369 6370 asmlinkage __visible void __sched schedule(void) 6371 { 6372 struct task_struct *tsk = current; 6373 6374 sched_submit_work(tsk); 6375 do { 6376 preempt_disable(); 6377 __schedule(SM_NONE); 6378 sched_preempt_enable_no_resched(); 6379 } while (need_resched()); 6380 sched_update_worker(tsk); 6381 } 6382 EXPORT_SYMBOL(schedule); 6383 6384 /* 6385 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6386 * state (have scheduled out non-voluntarily) by making sure that all 6387 * tasks have either left the run queue or have gone into user space. 6388 * As idle tasks do not do either, they must not ever be preempted 6389 * (schedule out non-voluntarily). 6390 * 6391 * schedule_idle() is similar to schedule_preempt_disable() except that it 6392 * never enables preemption because it does not call sched_submit_work(). 6393 */ 6394 void __sched schedule_idle(void) 6395 { 6396 /* 6397 * As this skips calling sched_submit_work(), which the idle task does 6398 * regardless because that function is a nop when the task is in a 6399 * TASK_RUNNING state, make sure this isn't used someplace that the 6400 * current task can be in any other state. Note, idle is always in the 6401 * TASK_RUNNING state. 6402 */ 6403 WARN_ON_ONCE(current->__state); 6404 do { 6405 __schedule(SM_NONE); 6406 } while (need_resched()); 6407 } 6408 6409 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 6410 asmlinkage __visible void __sched schedule_user(void) 6411 { 6412 /* 6413 * If we come here after a random call to set_need_resched(), 6414 * or we have been woken up remotely but the IPI has not yet arrived, 6415 * we haven't yet exited the RCU idle mode. Do it here manually until 6416 * we find a better solution. 6417 * 6418 * NB: There are buggy callers of this function. Ideally we 6419 * should warn if prev_state != CONTEXT_USER, but that will trigger 6420 * too frequently to make sense yet. 6421 */ 6422 enum ctx_state prev_state = exception_enter(); 6423 schedule(); 6424 exception_exit(prev_state); 6425 } 6426 #endif 6427 6428 /** 6429 * schedule_preempt_disabled - called with preemption disabled 6430 * 6431 * Returns with preemption disabled. Note: preempt_count must be 1 6432 */ 6433 void __sched schedule_preempt_disabled(void) 6434 { 6435 sched_preempt_enable_no_resched(); 6436 schedule(); 6437 preempt_disable(); 6438 } 6439 6440 #ifdef CONFIG_PREEMPT_RT 6441 void __sched notrace schedule_rtlock(void) 6442 { 6443 do { 6444 preempt_disable(); 6445 __schedule(SM_RTLOCK_WAIT); 6446 sched_preempt_enable_no_resched(); 6447 } while (need_resched()); 6448 } 6449 NOKPROBE_SYMBOL(schedule_rtlock); 6450 #endif 6451 6452 static void __sched notrace preempt_schedule_common(void) 6453 { 6454 do { 6455 /* 6456 * Because the function tracer can trace preempt_count_sub() 6457 * and it also uses preempt_enable/disable_notrace(), if 6458 * NEED_RESCHED is set, the preempt_enable_notrace() called 6459 * by the function tracer will call this function again and 6460 * cause infinite recursion. 6461 * 6462 * Preemption must be disabled here before the function 6463 * tracer can trace. Break up preempt_disable() into two 6464 * calls. One to disable preemption without fear of being 6465 * traced. The other to still record the preemption latency, 6466 * which can also be traced by the function tracer. 6467 */ 6468 preempt_disable_notrace(); 6469 preempt_latency_start(1); 6470 __schedule(SM_PREEMPT); 6471 preempt_latency_stop(1); 6472 preempt_enable_no_resched_notrace(); 6473 6474 /* 6475 * Check again in case we missed a preemption opportunity 6476 * between schedule and now. 6477 */ 6478 } while (need_resched()); 6479 } 6480 6481 #ifdef CONFIG_PREEMPTION 6482 /* 6483 * This is the entry point to schedule() from in-kernel preemption 6484 * off of preempt_enable. 6485 */ 6486 asmlinkage __visible void __sched notrace preempt_schedule(void) 6487 { 6488 /* 6489 * If there is a non-zero preempt_count or interrupts are disabled, 6490 * we do not want to preempt the current task. Just return.. 6491 */ 6492 if (likely(!preemptible())) 6493 return; 6494 6495 preempt_schedule_common(); 6496 } 6497 NOKPROBE_SYMBOL(preempt_schedule); 6498 EXPORT_SYMBOL(preempt_schedule); 6499 6500 #ifdef CONFIG_PREEMPT_DYNAMIC 6501 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 6502 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6503 #endif 6504 6505 6506 /** 6507 * preempt_schedule_notrace - preempt_schedule called by tracing 6508 * 6509 * The tracing infrastructure uses preempt_enable_notrace to prevent 6510 * recursion and tracing preempt enabling caused by the tracing 6511 * infrastructure itself. But as tracing can happen in areas coming 6512 * from userspace or just about to enter userspace, a preempt enable 6513 * can occur before user_exit() is called. This will cause the scheduler 6514 * to be called when the system is still in usermode. 6515 * 6516 * To prevent this, the preempt_enable_notrace will use this function 6517 * instead of preempt_schedule() to exit user context if needed before 6518 * calling the scheduler. 6519 */ 6520 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6521 { 6522 enum ctx_state prev_ctx; 6523 6524 if (likely(!preemptible())) 6525 return; 6526 6527 do { 6528 /* 6529 * Because the function tracer can trace preempt_count_sub() 6530 * and it also uses preempt_enable/disable_notrace(), if 6531 * NEED_RESCHED is set, the preempt_enable_notrace() called 6532 * by the function tracer will call this function again and 6533 * cause infinite recursion. 6534 * 6535 * Preemption must be disabled here before the function 6536 * tracer can trace. Break up preempt_disable() into two 6537 * calls. One to disable preemption without fear of being 6538 * traced. The other to still record the preemption latency, 6539 * which can also be traced by the function tracer. 6540 */ 6541 preempt_disable_notrace(); 6542 preempt_latency_start(1); 6543 /* 6544 * Needs preempt disabled in case user_exit() is traced 6545 * and the tracer calls preempt_enable_notrace() causing 6546 * an infinite recursion. 6547 */ 6548 prev_ctx = exception_enter(); 6549 __schedule(SM_PREEMPT); 6550 exception_exit(prev_ctx); 6551 6552 preempt_latency_stop(1); 6553 preempt_enable_no_resched_notrace(); 6554 } while (need_resched()); 6555 } 6556 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6557 6558 #ifdef CONFIG_PREEMPT_DYNAMIC 6559 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6560 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6561 #endif 6562 6563 #endif /* CONFIG_PREEMPTION */ 6564 6565 #ifdef CONFIG_PREEMPT_DYNAMIC 6566 6567 #include <linux/entry-common.h> 6568 6569 /* 6570 * SC:cond_resched 6571 * SC:might_resched 6572 * SC:preempt_schedule 6573 * SC:preempt_schedule_notrace 6574 * SC:irqentry_exit_cond_resched 6575 * 6576 * 6577 * NONE: 6578 * cond_resched <- __cond_resched 6579 * might_resched <- RET0 6580 * preempt_schedule <- NOP 6581 * preempt_schedule_notrace <- NOP 6582 * irqentry_exit_cond_resched <- NOP 6583 * 6584 * VOLUNTARY: 6585 * cond_resched <- __cond_resched 6586 * might_resched <- __cond_resched 6587 * preempt_schedule <- NOP 6588 * preempt_schedule_notrace <- NOP 6589 * irqentry_exit_cond_resched <- NOP 6590 * 6591 * FULL: 6592 * cond_resched <- RET0 6593 * might_resched <- RET0 6594 * preempt_schedule <- preempt_schedule 6595 * preempt_schedule_notrace <- preempt_schedule_notrace 6596 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 6597 */ 6598 6599 enum { 6600 preempt_dynamic_undefined = -1, 6601 preempt_dynamic_none, 6602 preempt_dynamic_voluntary, 6603 preempt_dynamic_full, 6604 }; 6605 6606 int preempt_dynamic_mode = preempt_dynamic_undefined; 6607 6608 int sched_dynamic_mode(const char *str) 6609 { 6610 if (!strcmp(str, "none")) 6611 return preempt_dynamic_none; 6612 6613 if (!strcmp(str, "voluntary")) 6614 return preempt_dynamic_voluntary; 6615 6616 if (!strcmp(str, "full")) 6617 return preempt_dynamic_full; 6618 6619 return -EINVAL; 6620 } 6621 6622 void sched_dynamic_update(int mode) 6623 { 6624 /* 6625 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 6626 * the ZERO state, which is invalid. 6627 */ 6628 static_call_update(cond_resched, __cond_resched); 6629 static_call_update(might_resched, __cond_resched); 6630 static_call_update(preempt_schedule, __preempt_schedule_func); 6631 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6632 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6633 6634 switch (mode) { 6635 case preempt_dynamic_none: 6636 static_call_update(cond_resched, __cond_resched); 6637 static_call_update(might_resched, (void *)&__static_call_return0); 6638 static_call_update(preempt_schedule, NULL); 6639 static_call_update(preempt_schedule_notrace, NULL); 6640 static_call_update(irqentry_exit_cond_resched, NULL); 6641 pr_info("Dynamic Preempt: none\n"); 6642 break; 6643 6644 case preempt_dynamic_voluntary: 6645 static_call_update(cond_resched, __cond_resched); 6646 static_call_update(might_resched, __cond_resched); 6647 static_call_update(preempt_schedule, NULL); 6648 static_call_update(preempt_schedule_notrace, NULL); 6649 static_call_update(irqentry_exit_cond_resched, NULL); 6650 pr_info("Dynamic Preempt: voluntary\n"); 6651 break; 6652 6653 case preempt_dynamic_full: 6654 static_call_update(cond_resched, (void *)&__static_call_return0); 6655 static_call_update(might_resched, (void *)&__static_call_return0); 6656 static_call_update(preempt_schedule, __preempt_schedule_func); 6657 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6658 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6659 pr_info("Dynamic Preempt: full\n"); 6660 break; 6661 } 6662 6663 preempt_dynamic_mode = mode; 6664 } 6665 6666 static int __init setup_preempt_mode(char *str) 6667 { 6668 int mode = sched_dynamic_mode(str); 6669 if (mode < 0) { 6670 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 6671 return 0; 6672 } 6673 6674 sched_dynamic_update(mode); 6675 return 1; 6676 } 6677 __setup("preempt=", setup_preempt_mode); 6678 6679 static void __init preempt_dynamic_init(void) 6680 { 6681 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 6682 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 6683 sched_dynamic_update(preempt_dynamic_none); 6684 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 6685 sched_dynamic_update(preempt_dynamic_voluntary); 6686 } else { 6687 /* Default static call setting, nothing to do */ 6688 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 6689 preempt_dynamic_mode = preempt_dynamic_full; 6690 pr_info("Dynamic Preempt: full\n"); 6691 } 6692 } 6693 } 6694 6695 #else /* !CONFIG_PREEMPT_DYNAMIC */ 6696 6697 static inline void preempt_dynamic_init(void) { } 6698 6699 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 6700 6701 /* 6702 * This is the entry point to schedule() from kernel preemption 6703 * off of irq context. 6704 * Note, that this is called and return with irqs disabled. This will 6705 * protect us against recursive calling from irq. 6706 */ 6707 asmlinkage __visible void __sched preempt_schedule_irq(void) 6708 { 6709 enum ctx_state prev_state; 6710 6711 /* Catch callers which need to be fixed */ 6712 BUG_ON(preempt_count() || !irqs_disabled()); 6713 6714 prev_state = exception_enter(); 6715 6716 do { 6717 preempt_disable(); 6718 local_irq_enable(); 6719 __schedule(SM_PREEMPT); 6720 local_irq_disable(); 6721 sched_preempt_enable_no_resched(); 6722 } while (need_resched()); 6723 6724 exception_exit(prev_state); 6725 } 6726 6727 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6728 void *key) 6729 { 6730 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6731 return try_to_wake_up(curr->private, mode, wake_flags); 6732 } 6733 EXPORT_SYMBOL(default_wake_function); 6734 6735 static void __setscheduler_prio(struct task_struct *p, int prio) 6736 { 6737 if (dl_prio(prio)) 6738 p->sched_class = &dl_sched_class; 6739 else if (rt_prio(prio)) 6740 p->sched_class = &rt_sched_class; 6741 else 6742 p->sched_class = &fair_sched_class; 6743 6744 p->prio = prio; 6745 } 6746 6747 #ifdef CONFIG_RT_MUTEXES 6748 6749 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6750 { 6751 if (pi_task) 6752 prio = min(prio, pi_task->prio); 6753 6754 return prio; 6755 } 6756 6757 static inline int rt_effective_prio(struct task_struct *p, int prio) 6758 { 6759 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6760 6761 return __rt_effective_prio(pi_task, prio); 6762 } 6763 6764 /* 6765 * rt_mutex_setprio - set the current priority of a task 6766 * @p: task to boost 6767 * @pi_task: donor task 6768 * 6769 * This function changes the 'effective' priority of a task. It does 6770 * not touch ->normal_prio like __setscheduler(). 6771 * 6772 * Used by the rt_mutex code to implement priority inheritance 6773 * logic. Call site only calls if the priority of the task changed. 6774 */ 6775 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6776 { 6777 int prio, oldprio, queued, running, queue_flag = 6778 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6779 const struct sched_class *prev_class; 6780 struct rq_flags rf; 6781 struct rq *rq; 6782 6783 /* XXX used to be waiter->prio, not waiter->task->prio */ 6784 prio = __rt_effective_prio(pi_task, p->normal_prio); 6785 6786 /* 6787 * If nothing changed; bail early. 6788 */ 6789 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6790 return; 6791 6792 rq = __task_rq_lock(p, &rf); 6793 update_rq_clock(rq); 6794 /* 6795 * Set under pi_lock && rq->lock, such that the value can be used under 6796 * either lock. 6797 * 6798 * Note that there is loads of tricky to make this pointer cache work 6799 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6800 * ensure a task is de-boosted (pi_task is set to NULL) before the 6801 * task is allowed to run again (and can exit). This ensures the pointer 6802 * points to a blocked task -- which guarantees the task is present. 6803 */ 6804 p->pi_top_task = pi_task; 6805 6806 /* 6807 * For FIFO/RR we only need to set prio, if that matches we're done. 6808 */ 6809 if (prio == p->prio && !dl_prio(prio)) 6810 goto out_unlock; 6811 6812 /* 6813 * Idle task boosting is a nono in general. There is one 6814 * exception, when PREEMPT_RT and NOHZ is active: 6815 * 6816 * The idle task calls get_next_timer_interrupt() and holds 6817 * the timer wheel base->lock on the CPU and another CPU wants 6818 * to access the timer (probably to cancel it). We can safely 6819 * ignore the boosting request, as the idle CPU runs this code 6820 * with interrupts disabled and will complete the lock 6821 * protected section without being interrupted. So there is no 6822 * real need to boost. 6823 */ 6824 if (unlikely(p == rq->idle)) { 6825 WARN_ON(p != rq->curr); 6826 WARN_ON(p->pi_blocked_on); 6827 goto out_unlock; 6828 } 6829 6830 trace_sched_pi_setprio(p, pi_task); 6831 oldprio = p->prio; 6832 6833 if (oldprio == prio) 6834 queue_flag &= ~DEQUEUE_MOVE; 6835 6836 prev_class = p->sched_class; 6837 queued = task_on_rq_queued(p); 6838 running = task_current(rq, p); 6839 if (queued) 6840 dequeue_task(rq, p, queue_flag); 6841 if (running) 6842 put_prev_task(rq, p); 6843 6844 /* 6845 * Boosting condition are: 6846 * 1. -rt task is running and holds mutex A 6847 * --> -dl task blocks on mutex A 6848 * 6849 * 2. -dl task is running and holds mutex A 6850 * --> -dl task blocks on mutex A and could preempt the 6851 * running task 6852 */ 6853 if (dl_prio(prio)) { 6854 if (!dl_prio(p->normal_prio) || 6855 (pi_task && dl_prio(pi_task->prio) && 6856 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6857 p->dl.pi_se = pi_task->dl.pi_se; 6858 queue_flag |= ENQUEUE_REPLENISH; 6859 } else { 6860 p->dl.pi_se = &p->dl; 6861 } 6862 } else if (rt_prio(prio)) { 6863 if (dl_prio(oldprio)) 6864 p->dl.pi_se = &p->dl; 6865 if (oldprio < prio) 6866 queue_flag |= ENQUEUE_HEAD; 6867 } else { 6868 if (dl_prio(oldprio)) 6869 p->dl.pi_se = &p->dl; 6870 if (rt_prio(oldprio)) 6871 p->rt.timeout = 0; 6872 } 6873 6874 __setscheduler_prio(p, prio); 6875 6876 if (queued) 6877 enqueue_task(rq, p, queue_flag); 6878 if (running) 6879 set_next_task(rq, p); 6880 6881 check_class_changed(rq, p, prev_class, oldprio); 6882 out_unlock: 6883 /* Avoid rq from going away on us: */ 6884 preempt_disable(); 6885 6886 rq_unpin_lock(rq, &rf); 6887 __balance_callbacks(rq); 6888 raw_spin_rq_unlock(rq); 6889 6890 preempt_enable(); 6891 } 6892 #else 6893 static inline int rt_effective_prio(struct task_struct *p, int prio) 6894 { 6895 return prio; 6896 } 6897 #endif 6898 6899 void set_user_nice(struct task_struct *p, long nice) 6900 { 6901 bool queued, running; 6902 int old_prio; 6903 struct rq_flags rf; 6904 struct rq *rq; 6905 6906 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6907 return; 6908 /* 6909 * We have to be careful, if called from sys_setpriority(), 6910 * the task might be in the middle of scheduling on another CPU. 6911 */ 6912 rq = task_rq_lock(p, &rf); 6913 update_rq_clock(rq); 6914 6915 /* 6916 * The RT priorities are set via sched_setscheduler(), but we still 6917 * allow the 'normal' nice value to be set - but as expected 6918 * it won't have any effect on scheduling until the task is 6919 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 6920 */ 6921 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 6922 p->static_prio = NICE_TO_PRIO(nice); 6923 goto out_unlock; 6924 } 6925 queued = task_on_rq_queued(p); 6926 running = task_current(rq, p); 6927 if (queued) 6928 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 6929 if (running) 6930 put_prev_task(rq, p); 6931 6932 p->static_prio = NICE_TO_PRIO(nice); 6933 set_load_weight(p, true); 6934 old_prio = p->prio; 6935 p->prio = effective_prio(p); 6936 6937 if (queued) 6938 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6939 if (running) 6940 set_next_task(rq, p); 6941 6942 /* 6943 * If the task increased its priority or is running and 6944 * lowered its priority, then reschedule its CPU: 6945 */ 6946 p->sched_class->prio_changed(rq, p, old_prio); 6947 6948 out_unlock: 6949 task_rq_unlock(rq, p, &rf); 6950 } 6951 EXPORT_SYMBOL(set_user_nice); 6952 6953 /* 6954 * can_nice - check if a task can reduce its nice value 6955 * @p: task 6956 * @nice: nice value 6957 */ 6958 int can_nice(const struct task_struct *p, const int nice) 6959 { 6960 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 6961 int nice_rlim = nice_to_rlimit(nice); 6962 6963 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 6964 capable(CAP_SYS_NICE)); 6965 } 6966 6967 #ifdef __ARCH_WANT_SYS_NICE 6968 6969 /* 6970 * sys_nice - change the priority of the current process. 6971 * @increment: priority increment 6972 * 6973 * sys_setpriority is a more generic, but much slower function that 6974 * does similar things. 6975 */ 6976 SYSCALL_DEFINE1(nice, int, increment) 6977 { 6978 long nice, retval; 6979 6980 /* 6981 * Setpriority might change our priority at the same moment. 6982 * We don't have to worry. Conceptually one call occurs first 6983 * and we have a single winner. 6984 */ 6985 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 6986 nice = task_nice(current) + increment; 6987 6988 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 6989 if (increment < 0 && !can_nice(current, nice)) 6990 return -EPERM; 6991 6992 retval = security_task_setnice(current, nice); 6993 if (retval) 6994 return retval; 6995 6996 set_user_nice(current, nice); 6997 return 0; 6998 } 6999 7000 #endif 7001 7002 /** 7003 * task_prio - return the priority value of a given task. 7004 * @p: the task in question. 7005 * 7006 * Return: The priority value as seen by users in /proc. 7007 * 7008 * sched policy return value kernel prio user prio/nice 7009 * 7010 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7011 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7012 * deadline -101 -1 0 7013 */ 7014 int task_prio(const struct task_struct *p) 7015 { 7016 return p->prio - MAX_RT_PRIO; 7017 } 7018 7019 /** 7020 * idle_cpu - is a given CPU idle currently? 7021 * @cpu: the processor in question. 7022 * 7023 * Return: 1 if the CPU is currently idle. 0 otherwise. 7024 */ 7025 int idle_cpu(int cpu) 7026 { 7027 struct rq *rq = cpu_rq(cpu); 7028 7029 if (rq->curr != rq->idle) 7030 return 0; 7031 7032 if (rq->nr_running) 7033 return 0; 7034 7035 #ifdef CONFIG_SMP 7036 if (rq->ttwu_pending) 7037 return 0; 7038 #endif 7039 7040 return 1; 7041 } 7042 7043 /** 7044 * available_idle_cpu - is a given CPU idle for enqueuing work. 7045 * @cpu: the CPU in question. 7046 * 7047 * Return: 1 if the CPU is currently idle. 0 otherwise. 7048 */ 7049 int available_idle_cpu(int cpu) 7050 { 7051 if (!idle_cpu(cpu)) 7052 return 0; 7053 7054 if (vcpu_is_preempted(cpu)) 7055 return 0; 7056 7057 return 1; 7058 } 7059 7060 /** 7061 * idle_task - return the idle task for a given CPU. 7062 * @cpu: the processor in question. 7063 * 7064 * Return: The idle task for the CPU @cpu. 7065 */ 7066 struct task_struct *idle_task(int cpu) 7067 { 7068 return cpu_rq(cpu)->idle; 7069 } 7070 7071 #ifdef CONFIG_SMP 7072 /* 7073 * This function computes an effective utilization for the given CPU, to be 7074 * used for frequency selection given the linear relation: f = u * f_max. 7075 * 7076 * The scheduler tracks the following metrics: 7077 * 7078 * cpu_util_{cfs,rt,dl,irq}() 7079 * cpu_bw_dl() 7080 * 7081 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7082 * synchronized windows and are thus directly comparable. 7083 * 7084 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7085 * which excludes things like IRQ and steal-time. These latter are then accrued 7086 * in the irq utilization. 7087 * 7088 * The DL bandwidth number otoh is not a measured metric but a value computed 7089 * based on the task model parameters and gives the minimal utilization 7090 * required to meet deadlines. 7091 */ 7092 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7093 unsigned long max, enum cpu_util_type type, 7094 struct task_struct *p) 7095 { 7096 unsigned long dl_util, util, irq; 7097 struct rq *rq = cpu_rq(cpu); 7098 7099 if (!uclamp_is_used() && 7100 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7101 return max; 7102 } 7103 7104 /* 7105 * Early check to see if IRQ/steal time saturates the CPU, can be 7106 * because of inaccuracies in how we track these -- see 7107 * update_irq_load_avg(). 7108 */ 7109 irq = cpu_util_irq(rq); 7110 if (unlikely(irq >= max)) 7111 return max; 7112 7113 /* 7114 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7115 * CFS tasks and we use the same metric to track the effective 7116 * utilization (PELT windows are synchronized) we can directly add them 7117 * to obtain the CPU's actual utilization. 7118 * 7119 * CFS and RT utilization can be boosted or capped, depending on 7120 * utilization clamp constraints requested by currently RUNNABLE 7121 * tasks. 7122 * When there are no CFS RUNNABLE tasks, clamps are released and 7123 * frequency will be gracefully reduced with the utilization decay. 7124 */ 7125 util = util_cfs + cpu_util_rt(rq); 7126 if (type == FREQUENCY_UTIL) 7127 util = uclamp_rq_util_with(rq, util, p); 7128 7129 dl_util = cpu_util_dl(rq); 7130 7131 /* 7132 * For frequency selection we do not make cpu_util_dl() a permanent part 7133 * of this sum because we want to use cpu_bw_dl() later on, but we need 7134 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7135 * that we select f_max when there is no idle time. 7136 * 7137 * NOTE: numerical errors or stop class might cause us to not quite hit 7138 * saturation when we should -- something for later. 7139 */ 7140 if (util + dl_util >= max) 7141 return max; 7142 7143 /* 7144 * OTOH, for energy computation we need the estimated running time, so 7145 * include util_dl and ignore dl_bw. 7146 */ 7147 if (type == ENERGY_UTIL) 7148 util += dl_util; 7149 7150 /* 7151 * There is still idle time; further improve the number by using the 7152 * irq metric. Because IRQ/steal time is hidden from the task clock we 7153 * need to scale the task numbers: 7154 * 7155 * max - irq 7156 * U' = irq + --------- * U 7157 * max 7158 */ 7159 util = scale_irq_capacity(util, irq, max); 7160 util += irq; 7161 7162 /* 7163 * Bandwidth required by DEADLINE must always be granted while, for 7164 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7165 * to gracefully reduce the frequency when no tasks show up for longer 7166 * periods of time. 7167 * 7168 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7169 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7170 * an interface. So, we only do the latter for now. 7171 */ 7172 if (type == FREQUENCY_UTIL) 7173 util += cpu_bw_dl(rq); 7174 7175 return min(max, util); 7176 } 7177 7178 unsigned long sched_cpu_util(int cpu, unsigned long max) 7179 { 7180 return effective_cpu_util(cpu, cpu_util_cfs(cpu), max, 7181 ENERGY_UTIL, NULL); 7182 } 7183 #endif /* CONFIG_SMP */ 7184 7185 /** 7186 * find_process_by_pid - find a process with a matching PID value. 7187 * @pid: the pid in question. 7188 * 7189 * The task of @pid, if found. %NULL otherwise. 7190 */ 7191 static struct task_struct *find_process_by_pid(pid_t pid) 7192 { 7193 return pid ? find_task_by_vpid(pid) : current; 7194 } 7195 7196 /* 7197 * sched_setparam() passes in -1 for its policy, to let the functions 7198 * it calls know not to change it. 7199 */ 7200 #define SETPARAM_POLICY -1 7201 7202 static void __setscheduler_params(struct task_struct *p, 7203 const struct sched_attr *attr) 7204 { 7205 int policy = attr->sched_policy; 7206 7207 if (policy == SETPARAM_POLICY) 7208 policy = p->policy; 7209 7210 p->policy = policy; 7211 7212 if (dl_policy(policy)) 7213 __setparam_dl(p, attr); 7214 else if (fair_policy(policy)) 7215 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7216 7217 /* 7218 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7219 * !rt_policy. Always setting this ensures that things like 7220 * getparam()/getattr() don't report silly values for !rt tasks. 7221 */ 7222 p->rt_priority = attr->sched_priority; 7223 p->normal_prio = normal_prio(p); 7224 set_load_weight(p, true); 7225 } 7226 7227 /* 7228 * Check the target process has a UID that matches the current process's: 7229 */ 7230 static bool check_same_owner(struct task_struct *p) 7231 { 7232 const struct cred *cred = current_cred(), *pcred; 7233 bool match; 7234 7235 rcu_read_lock(); 7236 pcred = __task_cred(p); 7237 match = (uid_eq(cred->euid, pcred->euid) || 7238 uid_eq(cred->euid, pcred->uid)); 7239 rcu_read_unlock(); 7240 return match; 7241 } 7242 7243 static int __sched_setscheduler(struct task_struct *p, 7244 const struct sched_attr *attr, 7245 bool user, bool pi) 7246 { 7247 int oldpolicy = -1, policy = attr->sched_policy; 7248 int retval, oldprio, newprio, queued, running; 7249 const struct sched_class *prev_class; 7250 struct callback_head *head; 7251 struct rq_flags rf; 7252 int reset_on_fork; 7253 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7254 struct rq *rq; 7255 7256 /* The pi code expects interrupts enabled */ 7257 BUG_ON(pi && in_interrupt()); 7258 recheck: 7259 /* Double check policy once rq lock held: */ 7260 if (policy < 0) { 7261 reset_on_fork = p->sched_reset_on_fork; 7262 policy = oldpolicy = p->policy; 7263 } else { 7264 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7265 7266 if (!valid_policy(policy)) 7267 return -EINVAL; 7268 } 7269 7270 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7271 return -EINVAL; 7272 7273 /* 7274 * Valid priorities for SCHED_FIFO and SCHED_RR are 7275 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7276 * SCHED_BATCH and SCHED_IDLE is 0. 7277 */ 7278 if (attr->sched_priority > MAX_RT_PRIO-1) 7279 return -EINVAL; 7280 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7281 (rt_policy(policy) != (attr->sched_priority != 0))) 7282 return -EINVAL; 7283 7284 /* 7285 * Allow unprivileged RT tasks to decrease priority: 7286 */ 7287 if (user && !capable(CAP_SYS_NICE)) { 7288 if (fair_policy(policy)) { 7289 if (attr->sched_nice < task_nice(p) && 7290 !can_nice(p, attr->sched_nice)) 7291 return -EPERM; 7292 } 7293 7294 if (rt_policy(policy)) { 7295 unsigned long rlim_rtprio = 7296 task_rlimit(p, RLIMIT_RTPRIO); 7297 7298 /* Can't set/change the rt policy: */ 7299 if (policy != p->policy && !rlim_rtprio) 7300 return -EPERM; 7301 7302 /* Can't increase priority: */ 7303 if (attr->sched_priority > p->rt_priority && 7304 attr->sched_priority > rlim_rtprio) 7305 return -EPERM; 7306 } 7307 7308 /* 7309 * Can't set/change SCHED_DEADLINE policy at all for now 7310 * (safest behavior); in the future we would like to allow 7311 * unprivileged DL tasks to increase their relative deadline 7312 * or reduce their runtime (both ways reducing utilization) 7313 */ 7314 if (dl_policy(policy)) 7315 return -EPERM; 7316 7317 /* 7318 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7319 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7320 */ 7321 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7322 if (!can_nice(p, task_nice(p))) 7323 return -EPERM; 7324 } 7325 7326 /* Can't change other user's priorities: */ 7327 if (!check_same_owner(p)) 7328 return -EPERM; 7329 7330 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7331 if (p->sched_reset_on_fork && !reset_on_fork) 7332 return -EPERM; 7333 } 7334 7335 if (user) { 7336 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7337 return -EINVAL; 7338 7339 retval = security_task_setscheduler(p); 7340 if (retval) 7341 return retval; 7342 } 7343 7344 /* Update task specific "requested" clamps */ 7345 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7346 retval = uclamp_validate(p, attr); 7347 if (retval) 7348 return retval; 7349 } 7350 7351 if (pi) 7352 cpuset_read_lock(); 7353 7354 /* 7355 * Make sure no PI-waiters arrive (or leave) while we are 7356 * changing the priority of the task: 7357 * 7358 * To be able to change p->policy safely, the appropriate 7359 * runqueue lock must be held. 7360 */ 7361 rq = task_rq_lock(p, &rf); 7362 update_rq_clock(rq); 7363 7364 /* 7365 * Changing the policy of the stop threads its a very bad idea: 7366 */ 7367 if (p == rq->stop) { 7368 retval = -EINVAL; 7369 goto unlock; 7370 } 7371 7372 /* 7373 * If not changing anything there's no need to proceed further, 7374 * but store a possible modification of reset_on_fork. 7375 */ 7376 if (unlikely(policy == p->policy)) { 7377 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7378 goto change; 7379 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7380 goto change; 7381 if (dl_policy(policy) && dl_param_changed(p, attr)) 7382 goto change; 7383 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7384 goto change; 7385 7386 p->sched_reset_on_fork = reset_on_fork; 7387 retval = 0; 7388 goto unlock; 7389 } 7390 change: 7391 7392 if (user) { 7393 #ifdef CONFIG_RT_GROUP_SCHED 7394 /* 7395 * Do not allow realtime tasks into groups that have no runtime 7396 * assigned. 7397 */ 7398 if (rt_bandwidth_enabled() && rt_policy(policy) && 7399 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7400 !task_group_is_autogroup(task_group(p))) { 7401 retval = -EPERM; 7402 goto unlock; 7403 } 7404 #endif 7405 #ifdef CONFIG_SMP 7406 if (dl_bandwidth_enabled() && dl_policy(policy) && 7407 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7408 cpumask_t *span = rq->rd->span; 7409 7410 /* 7411 * Don't allow tasks with an affinity mask smaller than 7412 * the entire root_domain to become SCHED_DEADLINE. We 7413 * will also fail if there's no bandwidth available. 7414 */ 7415 if (!cpumask_subset(span, p->cpus_ptr) || 7416 rq->rd->dl_bw.bw == 0) { 7417 retval = -EPERM; 7418 goto unlock; 7419 } 7420 } 7421 #endif 7422 } 7423 7424 /* Re-check policy now with rq lock held: */ 7425 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7426 policy = oldpolicy = -1; 7427 task_rq_unlock(rq, p, &rf); 7428 if (pi) 7429 cpuset_read_unlock(); 7430 goto recheck; 7431 } 7432 7433 /* 7434 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7435 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7436 * is available. 7437 */ 7438 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7439 retval = -EBUSY; 7440 goto unlock; 7441 } 7442 7443 p->sched_reset_on_fork = reset_on_fork; 7444 oldprio = p->prio; 7445 7446 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7447 if (pi) { 7448 /* 7449 * Take priority boosted tasks into account. If the new 7450 * effective priority is unchanged, we just store the new 7451 * normal parameters and do not touch the scheduler class and 7452 * the runqueue. This will be done when the task deboost 7453 * itself. 7454 */ 7455 newprio = rt_effective_prio(p, newprio); 7456 if (newprio == oldprio) 7457 queue_flags &= ~DEQUEUE_MOVE; 7458 } 7459 7460 queued = task_on_rq_queued(p); 7461 running = task_current(rq, p); 7462 if (queued) 7463 dequeue_task(rq, p, queue_flags); 7464 if (running) 7465 put_prev_task(rq, p); 7466 7467 prev_class = p->sched_class; 7468 7469 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7470 __setscheduler_params(p, attr); 7471 __setscheduler_prio(p, newprio); 7472 } 7473 __setscheduler_uclamp(p, attr); 7474 7475 if (queued) { 7476 /* 7477 * We enqueue to tail when the priority of a task is 7478 * increased (user space view). 7479 */ 7480 if (oldprio < p->prio) 7481 queue_flags |= ENQUEUE_HEAD; 7482 7483 enqueue_task(rq, p, queue_flags); 7484 } 7485 if (running) 7486 set_next_task(rq, p); 7487 7488 check_class_changed(rq, p, prev_class, oldprio); 7489 7490 /* Avoid rq from going away on us: */ 7491 preempt_disable(); 7492 head = splice_balance_callbacks(rq); 7493 task_rq_unlock(rq, p, &rf); 7494 7495 if (pi) { 7496 cpuset_read_unlock(); 7497 rt_mutex_adjust_pi(p); 7498 } 7499 7500 /* Run balance callbacks after we've adjusted the PI chain: */ 7501 balance_callbacks(rq, head); 7502 preempt_enable(); 7503 7504 return 0; 7505 7506 unlock: 7507 task_rq_unlock(rq, p, &rf); 7508 if (pi) 7509 cpuset_read_unlock(); 7510 return retval; 7511 } 7512 7513 static int _sched_setscheduler(struct task_struct *p, int policy, 7514 const struct sched_param *param, bool check) 7515 { 7516 struct sched_attr attr = { 7517 .sched_policy = policy, 7518 .sched_priority = param->sched_priority, 7519 .sched_nice = PRIO_TO_NICE(p->static_prio), 7520 }; 7521 7522 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7523 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7524 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7525 policy &= ~SCHED_RESET_ON_FORK; 7526 attr.sched_policy = policy; 7527 } 7528 7529 return __sched_setscheduler(p, &attr, check, true); 7530 } 7531 /** 7532 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7533 * @p: the task in question. 7534 * @policy: new policy. 7535 * @param: structure containing the new RT priority. 7536 * 7537 * Use sched_set_fifo(), read its comment. 7538 * 7539 * Return: 0 on success. An error code otherwise. 7540 * 7541 * NOTE that the task may be already dead. 7542 */ 7543 int sched_setscheduler(struct task_struct *p, int policy, 7544 const struct sched_param *param) 7545 { 7546 return _sched_setscheduler(p, policy, param, true); 7547 } 7548 7549 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7550 { 7551 return __sched_setscheduler(p, attr, true, true); 7552 } 7553 7554 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7555 { 7556 return __sched_setscheduler(p, attr, false, true); 7557 } 7558 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7559 7560 /** 7561 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7562 * @p: the task in question. 7563 * @policy: new policy. 7564 * @param: structure containing the new RT priority. 7565 * 7566 * Just like sched_setscheduler, only don't bother checking if the 7567 * current context has permission. For example, this is needed in 7568 * stop_machine(): we create temporary high priority worker threads, 7569 * but our caller might not have that capability. 7570 * 7571 * Return: 0 on success. An error code otherwise. 7572 */ 7573 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7574 const struct sched_param *param) 7575 { 7576 return _sched_setscheduler(p, policy, param, false); 7577 } 7578 7579 /* 7580 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7581 * incapable of resource management, which is the one thing an OS really should 7582 * be doing. 7583 * 7584 * This is of course the reason it is limited to privileged users only. 7585 * 7586 * Worse still; it is fundamentally impossible to compose static priority 7587 * workloads. You cannot take two correctly working static prio workloads 7588 * and smash them together and still expect them to work. 7589 * 7590 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7591 * 7592 * MAX_RT_PRIO / 2 7593 * 7594 * The administrator _MUST_ configure the system, the kernel simply doesn't 7595 * know enough information to make a sensible choice. 7596 */ 7597 void sched_set_fifo(struct task_struct *p) 7598 { 7599 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7600 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7601 } 7602 EXPORT_SYMBOL_GPL(sched_set_fifo); 7603 7604 /* 7605 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7606 */ 7607 void sched_set_fifo_low(struct task_struct *p) 7608 { 7609 struct sched_param sp = { .sched_priority = 1 }; 7610 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7611 } 7612 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7613 7614 void sched_set_normal(struct task_struct *p, int nice) 7615 { 7616 struct sched_attr attr = { 7617 .sched_policy = SCHED_NORMAL, 7618 .sched_nice = nice, 7619 }; 7620 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7621 } 7622 EXPORT_SYMBOL_GPL(sched_set_normal); 7623 7624 static int 7625 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7626 { 7627 struct sched_param lparam; 7628 struct task_struct *p; 7629 int retval; 7630 7631 if (!param || pid < 0) 7632 return -EINVAL; 7633 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7634 return -EFAULT; 7635 7636 rcu_read_lock(); 7637 retval = -ESRCH; 7638 p = find_process_by_pid(pid); 7639 if (likely(p)) 7640 get_task_struct(p); 7641 rcu_read_unlock(); 7642 7643 if (likely(p)) { 7644 retval = sched_setscheduler(p, policy, &lparam); 7645 put_task_struct(p); 7646 } 7647 7648 return retval; 7649 } 7650 7651 /* 7652 * Mimics kernel/events/core.c perf_copy_attr(). 7653 */ 7654 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7655 { 7656 u32 size; 7657 int ret; 7658 7659 /* Zero the full structure, so that a short copy will be nice: */ 7660 memset(attr, 0, sizeof(*attr)); 7661 7662 ret = get_user(size, &uattr->size); 7663 if (ret) 7664 return ret; 7665 7666 /* ABI compatibility quirk: */ 7667 if (!size) 7668 size = SCHED_ATTR_SIZE_VER0; 7669 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7670 goto err_size; 7671 7672 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7673 if (ret) { 7674 if (ret == -E2BIG) 7675 goto err_size; 7676 return ret; 7677 } 7678 7679 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7680 size < SCHED_ATTR_SIZE_VER1) 7681 return -EINVAL; 7682 7683 /* 7684 * XXX: Do we want to be lenient like existing syscalls; or do we want 7685 * to be strict and return an error on out-of-bounds values? 7686 */ 7687 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7688 7689 return 0; 7690 7691 err_size: 7692 put_user(sizeof(*attr), &uattr->size); 7693 return -E2BIG; 7694 } 7695 7696 static void get_params(struct task_struct *p, struct sched_attr *attr) 7697 { 7698 if (task_has_dl_policy(p)) 7699 __getparam_dl(p, attr); 7700 else if (task_has_rt_policy(p)) 7701 attr->sched_priority = p->rt_priority; 7702 else 7703 attr->sched_nice = task_nice(p); 7704 } 7705 7706 /** 7707 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7708 * @pid: the pid in question. 7709 * @policy: new policy. 7710 * @param: structure containing the new RT priority. 7711 * 7712 * Return: 0 on success. An error code otherwise. 7713 */ 7714 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7715 { 7716 if (policy < 0) 7717 return -EINVAL; 7718 7719 return do_sched_setscheduler(pid, policy, param); 7720 } 7721 7722 /** 7723 * sys_sched_setparam - set/change the RT priority of a thread 7724 * @pid: the pid in question. 7725 * @param: structure containing the new RT priority. 7726 * 7727 * Return: 0 on success. An error code otherwise. 7728 */ 7729 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7730 { 7731 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7732 } 7733 7734 /** 7735 * sys_sched_setattr - same as above, but with extended sched_attr 7736 * @pid: the pid in question. 7737 * @uattr: structure containing the extended parameters. 7738 * @flags: for future extension. 7739 */ 7740 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7741 unsigned int, flags) 7742 { 7743 struct sched_attr attr; 7744 struct task_struct *p; 7745 int retval; 7746 7747 if (!uattr || pid < 0 || flags) 7748 return -EINVAL; 7749 7750 retval = sched_copy_attr(uattr, &attr); 7751 if (retval) 7752 return retval; 7753 7754 if ((int)attr.sched_policy < 0) 7755 return -EINVAL; 7756 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7757 attr.sched_policy = SETPARAM_POLICY; 7758 7759 rcu_read_lock(); 7760 retval = -ESRCH; 7761 p = find_process_by_pid(pid); 7762 if (likely(p)) 7763 get_task_struct(p); 7764 rcu_read_unlock(); 7765 7766 if (likely(p)) { 7767 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7768 get_params(p, &attr); 7769 retval = sched_setattr(p, &attr); 7770 put_task_struct(p); 7771 } 7772 7773 return retval; 7774 } 7775 7776 /** 7777 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7778 * @pid: the pid in question. 7779 * 7780 * Return: On success, the policy of the thread. Otherwise, a negative error 7781 * code. 7782 */ 7783 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7784 { 7785 struct task_struct *p; 7786 int retval; 7787 7788 if (pid < 0) 7789 return -EINVAL; 7790 7791 retval = -ESRCH; 7792 rcu_read_lock(); 7793 p = find_process_by_pid(pid); 7794 if (p) { 7795 retval = security_task_getscheduler(p); 7796 if (!retval) 7797 retval = p->policy 7798 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7799 } 7800 rcu_read_unlock(); 7801 return retval; 7802 } 7803 7804 /** 7805 * sys_sched_getparam - get the RT priority of a thread 7806 * @pid: the pid in question. 7807 * @param: structure containing the RT priority. 7808 * 7809 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7810 * code. 7811 */ 7812 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7813 { 7814 struct sched_param lp = { .sched_priority = 0 }; 7815 struct task_struct *p; 7816 int retval; 7817 7818 if (!param || pid < 0) 7819 return -EINVAL; 7820 7821 rcu_read_lock(); 7822 p = find_process_by_pid(pid); 7823 retval = -ESRCH; 7824 if (!p) 7825 goto out_unlock; 7826 7827 retval = security_task_getscheduler(p); 7828 if (retval) 7829 goto out_unlock; 7830 7831 if (task_has_rt_policy(p)) 7832 lp.sched_priority = p->rt_priority; 7833 rcu_read_unlock(); 7834 7835 /* 7836 * This one might sleep, we cannot do it with a spinlock held ... 7837 */ 7838 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7839 7840 return retval; 7841 7842 out_unlock: 7843 rcu_read_unlock(); 7844 return retval; 7845 } 7846 7847 /* 7848 * Copy the kernel size attribute structure (which might be larger 7849 * than what user-space knows about) to user-space. 7850 * 7851 * Note that all cases are valid: user-space buffer can be larger or 7852 * smaller than the kernel-space buffer. The usual case is that both 7853 * have the same size. 7854 */ 7855 static int 7856 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7857 struct sched_attr *kattr, 7858 unsigned int usize) 7859 { 7860 unsigned int ksize = sizeof(*kattr); 7861 7862 if (!access_ok(uattr, usize)) 7863 return -EFAULT; 7864 7865 /* 7866 * sched_getattr() ABI forwards and backwards compatibility: 7867 * 7868 * If usize == ksize then we just copy everything to user-space and all is good. 7869 * 7870 * If usize < ksize then we only copy as much as user-space has space for, 7871 * this keeps ABI compatibility as well. We skip the rest. 7872 * 7873 * If usize > ksize then user-space is using a newer version of the ABI, 7874 * which part the kernel doesn't know about. Just ignore it - tooling can 7875 * detect the kernel's knowledge of attributes from the attr->size value 7876 * which is set to ksize in this case. 7877 */ 7878 kattr->size = min(usize, ksize); 7879 7880 if (copy_to_user(uattr, kattr, kattr->size)) 7881 return -EFAULT; 7882 7883 return 0; 7884 } 7885 7886 /** 7887 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 7888 * @pid: the pid in question. 7889 * @uattr: structure containing the extended parameters. 7890 * @usize: sizeof(attr) for fwd/bwd comp. 7891 * @flags: for future extension. 7892 */ 7893 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 7894 unsigned int, usize, unsigned int, flags) 7895 { 7896 struct sched_attr kattr = { }; 7897 struct task_struct *p; 7898 int retval; 7899 7900 if (!uattr || pid < 0 || usize > PAGE_SIZE || 7901 usize < SCHED_ATTR_SIZE_VER0 || flags) 7902 return -EINVAL; 7903 7904 rcu_read_lock(); 7905 p = find_process_by_pid(pid); 7906 retval = -ESRCH; 7907 if (!p) 7908 goto out_unlock; 7909 7910 retval = security_task_getscheduler(p); 7911 if (retval) 7912 goto out_unlock; 7913 7914 kattr.sched_policy = p->policy; 7915 if (p->sched_reset_on_fork) 7916 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7917 get_params(p, &kattr); 7918 kattr.sched_flags &= SCHED_FLAG_ALL; 7919 7920 #ifdef CONFIG_UCLAMP_TASK 7921 /* 7922 * This could race with another potential updater, but this is fine 7923 * because it'll correctly read the old or the new value. We don't need 7924 * to guarantee who wins the race as long as it doesn't return garbage. 7925 */ 7926 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 7927 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 7928 #endif 7929 7930 rcu_read_unlock(); 7931 7932 return sched_attr_copy_to_user(uattr, &kattr, usize); 7933 7934 out_unlock: 7935 rcu_read_unlock(); 7936 return retval; 7937 } 7938 7939 #ifdef CONFIG_SMP 7940 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 7941 { 7942 int ret = 0; 7943 7944 /* 7945 * If the task isn't a deadline task or admission control is 7946 * disabled then we don't care about affinity changes. 7947 */ 7948 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 7949 return 0; 7950 7951 /* 7952 * Since bandwidth control happens on root_domain basis, 7953 * if admission test is enabled, we only admit -deadline 7954 * tasks allowed to run on all the CPUs in the task's 7955 * root_domain. 7956 */ 7957 rcu_read_lock(); 7958 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 7959 ret = -EBUSY; 7960 rcu_read_unlock(); 7961 return ret; 7962 } 7963 #endif 7964 7965 static int 7966 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 7967 { 7968 int retval; 7969 cpumask_var_t cpus_allowed, new_mask; 7970 7971 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 7972 return -ENOMEM; 7973 7974 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 7975 retval = -ENOMEM; 7976 goto out_free_cpus_allowed; 7977 } 7978 7979 cpuset_cpus_allowed(p, cpus_allowed); 7980 cpumask_and(new_mask, mask, cpus_allowed); 7981 7982 retval = dl_task_check_affinity(p, new_mask); 7983 if (retval) 7984 goto out_free_new_mask; 7985 again: 7986 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 7987 if (retval) 7988 goto out_free_new_mask; 7989 7990 cpuset_cpus_allowed(p, cpus_allowed); 7991 if (!cpumask_subset(new_mask, cpus_allowed)) { 7992 /* 7993 * We must have raced with a concurrent cpuset update. 7994 * Just reset the cpumask to the cpuset's cpus_allowed. 7995 */ 7996 cpumask_copy(new_mask, cpus_allowed); 7997 goto again; 7998 } 7999 8000 out_free_new_mask: 8001 free_cpumask_var(new_mask); 8002 out_free_cpus_allowed: 8003 free_cpumask_var(cpus_allowed); 8004 return retval; 8005 } 8006 8007 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8008 { 8009 struct task_struct *p; 8010 int retval; 8011 8012 rcu_read_lock(); 8013 8014 p = find_process_by_pid(pid); 8015 if (!p) { 8016 rcu_read_unlock(); 8017 return -ESRCH; 8018 } 8019 8020 /* Prevent p going away */ 8021 get_task_struct(p); 8022 rcu_read_unlock(); 8023 8024 if (p->flags & PF_NO_SETAFFINITY) { 8025 retval = -EINVAL; 8026 goto out_put_task; 8027 } 8028 8029 if (!check_same_owner(p)) { 8030 rcu_read_lock(); 8031 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8032 rcu_read_unlock(); 8033 retval = -EPERM; 8034 goto out_put_task; 8035 } 8036 rcu_read_unlock(); 8037 } 8038 8039 retval = security_task_setscheduler(p); 8040 if (retval) 8041 goto out_put_task; 8042 8043 retval = __sched_setaffinity(p, in_mask); 8044 out_put_task: 8045 put_task_struct(p); 8046 return retval; 8047 } 8048 8049 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8050 struct cpumask *new_mask) 8051 { 8052 if (len < cpumask_size()) 8053 cpumask_clear(new_mask); 8054 else if (len > cpumask_size()) 8055 len = cpumask_size(); 8056 8057 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8058 } 8059 8060 /** 8061 * sys_sched_setaffinity - set the CPU affinity of a process 8062 * @pid: pid of the process 8063 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8064 * @user_mask_ptr: user-space pointer to the new CPU mask 8065 * 8066 * Return: 0 on success. An error code otherwise. 8067 */ 8068 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8069 unsigned long __user *, user_mask_ptr) 8070 { 8071 cpumask_var_t new_mask; 8072 int retval; 8073 8074 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8075 return -ENOMEM; 8076 8077 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8078 if (retval == 0) 8079 retval = sched_setaffinity(pid, new_mask); 8080 free_cpumask_var(new_mask); 8081 return retval; 8082 } 8083 8084 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8085 { 8086 struct task_struct *p; 8087 unsigned long flags; 8088 int retval; 8089 8090 rcu_read_lock(); 8091 8092 retval = -ESRCH; 8093 p = find_process_by_pid(pid); 8094 if (!p) 8095 goto out_unlock; 8096 8097 retval = security_task_getscheduler(p); 8098 if (retval) 8099 goto out_unlock; 8100 8101 raw_spin_lock_irqsave(&p->pi_lock, flags); 8102 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8103 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8104 8105 out_unlock: 8106 rcu_read_unlock(); 8107 8108 return retval; 8109 } 8110 8111 /** 8112 * sys_sched_getaffinity - get the CPU affinity of a process 8113 * @pid: pid of the process 8114 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8115 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8116 * 8117 * Return: size of CPU mask copied to user_mask_ptr on success. An 8118 * error code otherwise. 8119 */ 8120 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8121 unsigned long __user *, user_mask_ptr) 8122 { 8123 int ret; 8124 cpumask_var_t mask; 8125 8126 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8127 return -EINVAL; 8128 if (len & (sizeof(unsigned long)-1)) 8129 return -EINVAL; 8130 8131 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8132 return -ENOMEM; 8133 8134 ret = sched_getaffinity(pid, mask); 8135 if (ret == 0) { 8136 unsigned int retlen = min(len, cpumask_size()); 8137 8138 if (copy_to_user(user_mask_ptr, mask, retlen)) 8139 ret = -EFAULT; 8140 else 8141 ret = retlen; 8142 } 8143 free_cpumask_var(mask); 8144 8145 return ret; 8146 } 8147 8148 static void do_sched_yield(void) 8149 { 8150 struct rq_flags rf; 8151 struct rq *rq; 8152 8153 rq = this_rq_lock_irq(&rf); 8154 8155 schedstat_inc(rq->yld_count); 8156 current->sched_class->yield_task(rq); 8157 8158 preempt_disable(); 8159 rq_unlock_irq(rq, &rf); 8160 sched_preempt_enable_no_resched(); 8161 8162 schedule(); 8163 } 8164 8165 /** 8166 * sys_sched_yield - yield the current processor to other threads. 8167 * 8168 * This function yields the current CPU to other tasks. If there are no 8169 * other threads running on this CPU then this function will return. 8170 * 8171 * Return: 0. 8172 */ 8173 SYSCALL_DEFINE0(sched_yield) 8174 { 8175 do_sched_yield(); 8176 return 0; 8177 } 8178 8179 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8180 int __sched __cond_resched(void) 8181 { 8182 if (should_resched(0)) { 8183 preempt_schedule_common(); 8184 return 1; 8185 } 8186 /* 8187 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8188 * whether the current CPU is in an RCU read-side critical section, 8189 * so the tick can report quiescent states even for CPUs looping 8190 * in kernel context. In contrast, in non-preemptible kernels, 8191 * RCU readers leave no in-memory hints, which means that CPU-bound 8192 * processes executing in kernel context might never report an 8193 * RCU quiescent state. Therefore, the following code causes 8194 * cond_resched() to report a quiescent state, but only when RCU 8195 * is in urgent need of one. 8196 */ 8197 #ifndef CONFIG_PREEMPT_RCU 8198 rcu_all_qs(); 8199 #endif 8200 return 0; 8201 } 8202 EXPORT_SYMBOL(__cond_resched); 8203 #endif 8204 8205 #ifdef CONFIG_PREEMPT_DYNAMIC 8206 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8207 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8208 8209 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8210 EXPORT_STATIC_CALL_TRAMP(might_resched); 8211 #endif 8212 8213 /* 8214 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8215 * call schedule, and on return reacquire the lock. 8216 * 8217 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8218 * operations here to prevent schedule() from being called twice (once via 8219 * spin_unlock(), once by hand). 8220 */ 8221 int __cond_resched_lock(spinlock_t *lock) 8222 { 8223 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8224 int ret = 0; 8225 8226 lockdep_assert_held(lock); 8227 8228 if (spin_needbreak(lock) || resched) { 8229 spin_unlock(lock); 8230 if (!_cond_resched()) 8231 cpu_relax(); 8232 ret = 1; 8233 spin_lock(lock); 8234 } 8235 return ret; 8236 } 8237 EXPORT_SYMBOL(__cond_resched_lock); 8238 8239 int __cond_resched_rwlock_read(rwlock_t *lock) 8240 { 8241 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8242 int ret = 0; 8243 8244 lockdep_assert_held_read(lock); 8245 8246 if (rwlock_needbreak(lock) || resched) { 8247 read_unlock(lock); 8248 if (!_cond_resched()) 8249 cpu_relax(); 8250 ret = 1; 8251 read_lock(lock); 8252 } 8253 return ret; 8254 } 8255 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8256 8257 int __cond_resched_rwlock_write(rwlock_t *lock) 8258 { 8259 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8260 int ret = 0; 8261 8262 lockdep_assert_held_write(lock); 8263 8264 if (rwlock_needbreak(lock) || resched) { 8265 write_unlock(lock); 8266 if (!_cond_resched()) 8267 cpu_relax(); 8268 ret = 1; 8269 write_lock(lock); 8270 } 8271 return ret; 8272 } 8273 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8274 8275 /** 8276 * yield - yield the current processor to other threads. 8277 * 8278 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8279 * 8280 * The scheduler is at all times free to pick the calling task as the most 8281 * eligible task to run, if removing the yield() call from your code breaks 8282 * it, it's already broken. 8283 * 8284 * Typical broken usage is: 8285 * 8286 * while (!event) 8287 * yield(); 8288 * 8289 * where one assumes that yield() will let 'the other' process run that will 8290 * make event true. If the current task is a SCHED_FIFO task that will never 8291 * happen. Never use yield() as a progress guarantee!! 8292 * 8293 * If you want to use yield() to wait for something, use wait_event(). 8294 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8295 * If you still want to use yield(), do not! 8296 */ 8297 void __sched yield(void) 8298 { 8299 set_current_state(TASK_RUNNING); 8300 do_sched_yield(); 8301 } 8302 EXPORT_SYMBOL(yield); 8303 8304 /** 8305 * yield_to - yield the current processor to another thread in 8306 * your thread group, or accelerate that thread toward the 8307 * processor it's on. 8308 * @p: target task 8309 * @preempt: whether task preemption is allowed or not 8310 * 8311 * It's the caller's job to ensure that the target task struct 8312 * can't go away on us before we can do any checks. 8313 * 8314 * Return: 8315 * true (>0) if we indeed boosted the target task. 8316 * false (0) if we failed to boost the target. 8317 * -ESRCH if there's no task to yield to. 8318 */ 8319 int __sched yield_to(struct task_struct *p, bool preempt) 8320 { 8321 struct task_struct *curr = current; 8322 struct rq *rq, *p_rq; 8323 unsigned long flags; 8324 int yielded = 0; 8325 8326 local_irq_save(flags); 8327 rq = this_rq(); 8328 8329 again: 8330 p_rq = task_rq(p); 8331 /* 8332 * If we're the only runnable task on the rq and target rq also 8333 * has only one task, there's absolutely no point in yielding. 8334 */ 8335 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8336 yielded = -ESRCH; 8337 goto out_irq; 8338 } 8339 8340 double_rq_lock(rq, p_rq); 8341 if (task_rq(p) != p_rq) { 8342 double_rq_unlock(rq, p_rq); 8343 goto again; 8344 } 8345 8346 if (!curr->sched_class->yield_to_task) 8347 goto out_unlock; 8348 8349 if (curr->sched_class != p->sched_class) 8350 goto out_unlock; 8351 8352 if (task_running(p_rq, p) || !task_is_running(p)) 8353 goto out_unlock; 8354 8355 yielded = curr->sched_class->yield_to_task(rq, p); 8356 if (yielded) { 8357 schedstat_inc(rq->yld_count); 8358 /* 8359 * Make p's CPU reschedule; pick_next_entity takes care of 8360 * fairness. 8361 */ 8362 if (preempt && rq != p_rq) 8363 resched_curr(p_rq); 8364 } 8365 8366 out_unlock: 8367 double_rq_unlock(rq, p_rq); 8368 out_irq: 8369 local_irq_restore(flags); 8370 8371 if (yielded > 0) 8372 schedule(); 8373 8374 return yielded; 8375 } 8376 EXPORT_SYMBOL_GPL(yield_to); 8377 8378 int io_schedule_prepare(void) 8379 { 8380 int old_iowait = current->in_iowait; 8381 8382 current->in_iowait = 1; 8383 if (current->plug) 8384 blk_flush_plug(current->plug, true); 8385 8386 return old_iowait; 8387 } 8388 8389 void io_schedule_finish(int token) 8390 { 8391 current->in_iowait = token; 8392 } 8393 8394 /* 8395 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8396 * that process accounting knows that this is a task in IO wait state. 8397 */ 8398 long __sched io_schedule_timeout(long timeout) 8399 { 8400 int token; 8401 long ret; 8402 8403 token = io_schedule_prepare(); 8404 ret = schedule_timeout(timeout); 8405 io_schedule_finish(token); 8406 8407 return ret; 8408 } 8409 EXPORT_SYMBOL(io_schedule_timeout); 8410 8411 void __sched io_schedule(void) 8412 { 8413 int token; 8414 8415 token = io_schedule_prepare(); 8416 schedule(); 8417 io_schedule_finish(token); 8418 } 8419 EXPORT_SYMBOL(io_schedule); 8420 8421 /** 8422 * sys_sched_get_priority_max - return maximum RT priority. 8423 * @policy: scheduling class. 8424 * 8425 * Return: On success, this syscall returns the maximum 8426 * rt_priority that can be used by a given scheduling class. 8427 * On failure, a negative error code is returned. 8428 */ 8429 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8430 { 8431 int ret = -EINVAL; 8432 8433 switch (policy) { 8434 case SCHED_FIFO: 8435 case SCHED_RR: 8436 ret = MAX_RT_PRIO-1; 8437 break; 8438 case SCHED_DEADLINE: 8439 case SCHED_NORMAL: 8440 case SCHED_BATCH: 8441 case SCHED_IDLE: 8442 ret = 0; 8443 break; 8444 } 8445 return ret; 8446 } 8447 8448 /** 8449 * sys_sched_get_priority_min - return minimum RT priority. 8450 * @policy: scheduling class. 8451 * 8452 * Return: On success, this syscall returns the minimum 8453 * rt_priority that can be used by a given scheduling class. 8454 * On failure, a negative error code is returned. 8455 */ 8456 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8457 { 8458 int ret = -EINVAL; 8459 8460 switch (policy) { 8461 case SCHED_FIFO: 8462 case SCHED_RR: 8463 ret = 1; 8464 break; 8465 case SCHED_DEADLINE: 8466 case SCHED_NORMAL: 8467 case SCHED_BATCH: 8468 case SCHED_IDLE: 8469 ret = 0; 8470 } 8471 return ret; 8472 } 8473 8474 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8475 { 8476 struct task_struct *p; 8477 unsigned int time_slice; 8478 struct rq_flags rf; 8479 struct rq *rq; 8480 int retval; 8481 8482 if (pid < 0) 8483 return -EINVAL; 8484 8485 retval = -ESRCH; 8486 rcu_read_lock(); 8487 p = find_process_by_pid(pid); 8488 if (!p) 8489 goto out_unlock; 8490 8491 retval = security_task_getscheduler(p); 8492 if (retval) 8493 goto out_unlock; 8494 8495 rq = task_rq_lock(p, &rf); 8496 time_slice = 0; 8497 if (p->sched_class->get_rr_interval) 8498 time_slice = p->sched_class->get_rr_interval(rq, p); 8499 task_rq_unlock(rq, p, &rf); 8500 8501 rcu_read_unlock(); 8502 jiffies_to_timespec64(time_slice, t); 8503 return 0; 8504 8505 out_unlock: 8506 rcu_read_unlock(); 8507 return retval; 8508 } 8509 8510 /** 8511 * sys_sched_rr_get_interval - return the default timeslice of a process. 8512 * @pid: pid of the process. 8513 * @interval: userspace pointer to the timeslice value. 8514 * 8515 * this syscall writes the default timeslice value of a given process 8516 * into the user-space timespec buffer. A value of '0' means infinity. 8517 * 8518 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8519 * an error code. 8520 */ 8521 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8522 struct __kernel_timespec __user *, interval) 8523 { 8524 struct timespec64 t; 8525 int retval = sched_rr_get_interval(pid, &t); 8526 8527 if (retval == 0) 8528 retval = put_timespec64(&t, interval); 8529 8530 return retval; 8531 } 8532 8533 #ifdef CONFIG_COMPAT_32BIT_TIME 8534 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8535 struct old_timespec32 __user *, interval) 8536 { 8537 struct timespec64 t; 8538 int retval = sched_rr_get_interval(pid, &t); 8539 8540 if (retval == 0) 8541 retval = put_old_timespec32(&t, interval); 8542 return retval; 8543 } 8544 #endif 8545 8546 void sched_show_task(struct task_struct *p) 8547 { 8548 unsigned long free = 0; 8549 int ppid; 8550 8551 if (!try_get_task_stack(p)) 8552 return; 8553 8554 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8555 8556 if (task_is_running(p)) 8557 pr_cont(" running task "); 8558 #ifdef CONFIG_DEBUG_STACK_USAGE 8559 free = stack_not_used(p); 8560 #endif 8561 ppid = 0; 8562 rcu_read_lock(); 8563 if (pid_alive(p)) 8564 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8565 rcu_read_unlock(); 8566 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 8567 free, task_pid_nr(p), ppid, 8568 read_task_thread_flags(p)); 8569 8570 print_worker_info(KERN_INFO, p); 8571 print_stop_info(KERN_INFO, p); 8572 show_stack(p, NULL, KERN_INFO); 8573 put_task_stack(p); 8574 } 8575 EXPORT_SYMBOL_GPL(sched_show_task); 8576 8577 static inline bool 8578 state_filter_match(unsigned long state_filter, struct task_struct *p) 8579 { 8580 unsigned int state = READ_ONCE(p->__state); 8581 8582 /* no filter, everything matches */ 8583 if (!state_filter) 8584 return true; 8585 8586 /* filter, but doesn't match */ 8587 if (!(state & state_filter)) 8588 return false; 8589 8590 /* 8591 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8592 * TASK_KILLABLE). 8593 */ 8594 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE) 8595 return false; 8596 8597 return true; 8598 } 8599 8600 8601 void show_state_filter(unsigned int state_filter) 8602 { 8603 struct task_struct *g, *p; 8604 8605 rcu_read_lock(); 8606 for_each_process_thread(g, p) { 8607 /* 8608 * reset the NMI-timeout, listing all files on a slow 8609 * console might take a lot of time: 8610 * Also, reset softlockup watchdogs on all CPUs, because 8611 * another CPU might be blocked waiting for us to process 8612 * an IPI. 8613 */ 8614 touch_nmi_watchdog(); 8615 touch_all_softlockup_watchdogs(); 8616 if (state_filter_match(state_filter, p)) 8617 sched_show_task(p); 8618 } 8619 8620 #ifdef CONFIG_SCHED_DEBUG 8621 if (!state_filter) 8622 sysrq_sched_debug_show(); 8623 #endif 8624 rcu_read_unlock(); 8625 /* 8626 * Only show locks if all tasks are dumped: 8627 */ 8628 if (!state_filter) 8629 debug_show_all_locks(); 8630 } 8631 8632 /** 8633 * init_idle - set up an idle thread for a given CPU 8634 * @idle: task in question 8635 * @cpu: CPU the idle task belongs to 8636 * 8637 * NOTE: this function does not set the idle thread's NEED_RESCHED 8638 * flag, to make booting more robust. 8639 */ 8640 void __init init_idle(struct task_struct *idle, int cpu) 8641 { 8642 struct rq *rq = cpu_rq(cpu); 8643 unsigned long flags; 8644 8645 __sched_fork(0, idle); 8646 8647 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8648 raw_spin_rq_lock(rq); 8649 8650 idle->__state = TASK_RUNNING; 8651 idle->se.exec_start = sched_clock(); 8652 /* 8653 * PF_KTHREAD should already be set at this point; regardless, make it 8654 * look like a proper per-CPU kthread. 8655 */ 8656 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8657 kthread_set_per_cpu(idle, cpu); 8658 8659 #ifdef CONFIG_SMP 8660 /* 8661 * It's possible that init_idle() gets called multiple times on a task, 8662 * in that case do_set_cpus_allowed() will not do the right thing. 8663 * 8664 * And since this is boot we can forgo the serialization. 8665 */ 8666 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8667 #endif 8668 /* 8669 * We're having a chicken and egg problem, even though we are 8670 * holding rq->lock, the CPU isn't yet set to this CPU so the 8671 * lockdep check in task_group() will fail. 8672 * 8673 * Similar case to sched_fork(). / Alternatively we could 8674 * use task_rq_lock() here and obtain the other rq->lock. 8675 * 8676 * Silence PROVE_RCU 8677 */ 8678 rcu_read_lock(); 8679 __set_task_cpu(idle, cpu); 8680 rcu_read_unlock(); 8681 8682 rq->idle = idle; 8683 rcu_assign_pointer(rq->curr, idle); 8684 idle->on_rq = TASK_ON_RQ_QUEUED; 8685 #ifdef CONFIG_SMP 8686 idle->on_cpu = 1; 8687 #endif 8688 raw_spin_rq_unlock(rq); 8689 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8690 8691 /* Set the preempt count _outside_ the spinlocks! */ 8692 init_idle_preempt_count(idle, cpu); 8693 8694 /* 8695 * The idle tasks have their own, simple scheduling class: 8696 */ 8697 idle->sched_class = &idle_sched_class; 8698 ftrace_graph_init_idle_task(idle, cpu); 8699 vtime_init_idle(idle, cpu); 8700 #ifdef CONFIG_SMP 8701 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8702 #endif 8703 } 8704 8705 #ifdef CONFIG_SMP 8706 8707 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8708 const struct cpumask *trial) 8709 { 8710 int ret = 1; 8711 8712 if (!cpumask_weight(cur)) 8713 return ret; 8714 8715 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8716 8717 return ret; 8718 } 8719 8720 int task_can_attach(struct task_struct *p, 8721 const struct cpumask *cs_cpus_allowed) 8722 { 8723 int ret = 0; 8724 8725 /* 8726 * Kthreads which disallow setaffinity shouldn't be moved 8727 * to a new cpuset; we don't want to change their CPU 8728 * affinity and isolating such threads by their set of 8729 * allowed nodes is unnecessary. Thus, cpusets are not 8730 * applicable for such threads. This prevents checking for 8731 * success of set_cpus_allowed_ptr() on all attached tasks 8732 * before cpus_mask may be changed. 8733 */ 8734 if (p->flags & PF_NO_SETAFFINITY) { 8735 ret = -EINVAL; 8736 goto out; 8737 } 8738 8739 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 8740 cs_cpus_allowed)) 8741 ret = dl_task_can_attach(p, cs_cpus_allowed); 8742 8743 out: 8744 return ret; 8745 } 8746 8747 bool sched_smp_initialized __read_mostly; 8748 8749 #ifdef CONFIG_NUMA_BALANCING 8750 /* Migrate current task p to target_cpu */ 8751 int migrate_task_to(struct task_struct *p, int target_cpu) 8752 { 8753 struct migration_arg arg = { p, target_cpu }; 8754 int curr_cpu = task_cpu(p); 8755 8756 if (curr_cpu == target_cpu) 8757 return 0; 8758 8759 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8760 return -EINVAL; 8761 8762 /* TODO: This is not properly updating schedstats */ 8763 8764 trace_sched_move_numa(p, curr_cpu, target_cpu); 8765 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8766 } 8767 8768 /* 8769 * Requeue a task on a given node and accurately track the number of NUMA 8770 * tasks on the runqueues 8771 */ 8772 void sched_setnuma(struct task_struct *p, int nid) 8773 { 8774 bool queued, running; 8775 struct rq_flags rf; 8776 struct rq *rq; 8777 8778 rq = task_rq_lock(p, &rf); 8779 queued = task_on_rq_queued(p); 8780 running = task_current(rq, p); 8781 8782 if (queued) 8783 dequeue_task(rq, p, DEQUEUE_SAVE); 8784 if (running) 8785 put_prev_task(rq, p); 8786 8787 p->numa_preferred_nid = nid; 8788 8789 if (queued) 8790 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8791 if (running) 8792 set_next_task(rq, p); 8793 task_rq_unlock(rq, p, &rf); 8794 } 8795 #endif /* CONFIG_NUMA_BALANCING */ 8796 8797 #ifdef CONFIG_HOTPLUG_CPU 8798 /* 8799 * Ensure that the idle task is using init_mm right before its CPU goes 8800 * offline. 8801 */ 8802 void idle_task_exit(void) 8803 { 8804 struct mm_struct *mm = current->active_mm; 8805 8806 BUG_ON(cpu_online(smp_processor_id())); 8807 BUG_ON(current != this_rq()->idle); 8808 8809 if (mm != &init_mm) { 8810 switch_mm(mm, &init_mm, current); 8811 finish_arch_post_lock_switch(); 8812 } 8813 8814 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8815 } 8816 8817 static int __balance_push_cpu_stop(void *arg) 8818 { 8819 struct task_struct *p = arg; 8820 struct rq *rq = this_rq(); 8821 struct rq_flags rf; 8822 int cpu; 8823 8824 raw_spin_lock_irq(&p->pi_lock); 8825 rq_lock(rq, &rf); 8826 8827 update_rq_clock(rq); 8828 8829 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8830 cpu = select_fallback_rq(rq->cpu, p); 8831 rq = __migrate_task(rq, &rf, p, cpu); 8832 } 8833 8834 rq_unlock(rq, &rf); 8835 raw_spin_unlock_irq(&p->pi_lock); 8836 8837 put_task_struct(p); 8838 8839 return 0; 8840 } 8841 8842 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8843 8844 /* 8845 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8846 * 8847 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8848 * effective when the hotplug motion is down. 8849 */ 8850 static void balance_push(struct rq *rq) 8851 { 8852 struct task_struct *push_task = rq->curr; 8853 8854 lockdep_assert_rq_held(rq); 8855 8856 /* 8857 * Ensure the thing is persistent until balance_push_set(.on = false); 8858 */ 8859 rq->balance_callback = &balance_push_callback; 8860 8861 /* 8862 * Only active while going offline and when invoked on the outgoing 8863 * CPU. 8864 */ 8865 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8866 return; 8867 8868 /* 8869 * Both the cpu-hotplug and stop task are in this case and are 8870 * required to complete the hotplug process. 8871 */ 8872 if (kthread_is_per_cpu(push_task) || 8873 is_migration_disabled(push_task)) { 8874 8875 /* 8876 * If this is the idle task on the outgoing CPU try to wake 8877 * up the hotplug control thread which might wait for the 8878 * last task to vanish. The rcuwait_active() check is 8879 * accurate here because the waiter is pinned on this CPU 8880 * and can't obviously be running in parallel. 8881 * 8882 * On RT kernels this also has to check whether there are 8883 * pinned and scheduled out tasks on the runqueue. They 8884 * need to leave the migrate disabled section first. 8885 */ 8886 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8887 rcuwait_active(&rq->hotplug_wait)) { 8888 raw_spin_rq_unlock(rq); 8889 rcuwait_wake_up(&rq->hotplug_wait); 8890 raw_spin_rq_lock(rq); 8891 } 8892 return; 8893 } 8894 8895 get_task_struct(push_task); 8896 /* 8897 * Temporarily drop rq->lock such that we can wake-up the stop task. 8898 * Both preemption and IRQs are still disabled. 8899 */ 8900 raw_spin_rq_unlock(rq); 8901 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8902 this_cpu_ptr(&push_work)); 8903 /* 8904 * At this point need_resched() is true and we'll take the loop in 8905 * schedule(). The next pick is obviously going to be the stop task 8906 * which kthread_is_per_cpu() and will push this task away. 8907 */ 8908 raw_spin_rq_lock(rq); 8909 } 8910 8911 static void balance_push_set(int cpu, bool on) 8912 { 8913 struct rq *rq = cpu_rq(cpu); 8914 struct rq_flags rf; 8915 8916 rq_lock_irqsave(rq, &rf); 8917 if (on) { 8918 WARN_ON_ONCE(rq->balance_callback); 8919 rq->balance_callback = &balance_push_callback; 8920 } else if (rq->balance_callback == &balance_push_callback) { 8921 rq->balance_callback = NULL; 8922 } 8923 rq_unlock_irqrestore(rq, &rf); 8924 } 8925 8926 /* 8927 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8928 * inactive. All tasks which are not per CPU kernel threads are either 8929 * pushed off this CPU now via balance_push() or placed on a different CPU 8930 * during wakeup. Wait until the CPU is quiescent. 8931 */ 8932 static void balance_hotplug_wait(void) 8933 { 8934 struct rq *rq = this_rq(); 8935 8936 rcuwait_wait_event(&rq->hotplug_wait, 8937 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8938 TASK_UNINTERRUPTIBLE); 8939 } 8940 8941 #else 8942 8943 static inline void balance_push(struct rq *rq) 8944 { 8945 } 8946 8947 static inline void balance_push_set(int cpu, bool on) 8948 { 8949 } 8950 8951 static inline void balance_hotplug_wait(void) 8952 { 8953 } 8954 8955 #endif /* CONFIG_HOTPLUG_CPU */ 8956 8957 void set_rq_online(struct rq *rq) 8958 { 8959 if (!rq->online) { 8960 const struct sched_class *class; 8961 8962 cpumask_set_cpu(rq->cpu, rq->rd->online); 8963 rq->online = 1; 8964 8965 for_each_class(class) { 8966 if (class->rq_online) 8967 class->rq_online(rq); 8968 } 8969 } 8970 } 8971 8972 void set_rq_offline(struct rq *rq) 8973 { 8974 if (rq->online) { 8975 const struct sched_class *class; 8976 8977 for_each_class(class) { 8978 if (class->rq_offline) 8979 class->rq_offline(rq); 8980 } 8981 8982 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8983 rq->online = 0; 8984 } 8985 } 8986 8987 /* 8988 * used to mark begin/end of suspend/resume: 8989 */ 8990 static int num_cpus_frozen; 8991 8992 /* 8993 * Update cpusets according to cpu_active mask. If cpusets are 8994 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8995 * around partition_sched_domains(). 8996 * 8997 * If we come here as part of a suspend/resume, don't touch cpusets because we 8998 * want to restore it back to its original state upon resume anyway. 8999 */ 9000 static void cpuset_cpu_active(void) 9001 { 9002 if (cpuhp_tasks_frozen) { 9003 /* 9004 * num_cpus_frozen tracks how many CPUs are involved in suspend 9005 * resume sequence. As long as this is not the last online 9006 * operation in the resume sequence, just build a single sched 9007 * domain, ignoring cpusets. 9008 */ 9009 partition_sched_domains(1, NULL, NULL); 9010 if (--num_cpus_frozen) 9011 return; 9012 /* 9013 * This is the last CPU online operation. So fall through and 9014 * restore the original sched domains by considering the 9015 * cpuset configurations. 9016 */ 9017 cpuset_force_rebuild(); 9018 } 9019 cpuset_update_active_cpus(); 9020 } 9021 9022 static int cpuset_cpu_inactive(unsigned int cpu) 9023 { 9024 if (!cpuhp_tasks_frozen) { 9025 if (dl_cpu_busy(cpu)) 9026 return -EBUSY; 9027 cpuset_update_active_cpus(); 9028 } else { 9029 num_cpus_frozen++; 9030 partition_sched_domains(1, NULL, NULL); 9031 } 9032 return 0; 9033 } 9034 9035 int sched_cpu_activate(unsigned int cpu) 9036 { 9037 struct rq *rq = cpu_rq(cpu); 9038 struct rq_flags rf; 9039 9040 /* 9041 * Clear the balance_push callback and prepare to schedule 9042 * regular tasks. 9043 */ 9044 balance_push_set(cpu, false); 9045 9046 #ifdef CONFIG_SCHED_SMT 9047 /* 9048 * When going up, increment the number of cores with SMT present. 9049 */ 9050 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9051 static_branch_inc_cpuslocked(&sched_smt_present); 9052 #endif 9053 set_cpu_active(cpu, true); 9054 9055 if (sched_smp_initialized) { 9056 sched_domains_numa_masks_set(cpu); 9057 cpuset_cpu_active(); 9058 } 9059 9060 /* 9061 * Put the rq online, if not already. This happens: 9062 * 9063 * 1) In the early boot process, because we build the real domains 9064 * after all CPUs have been brought up. 9065 * 9066 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9067 * domains. 9068 */ 9069 rq_lock_irqsave(rq, &rf); 9070 if (rq->rd) { 9071 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9072 set_rq_online(rq); 9073 } 9074 rq_unlock_irqrestore(rq, &rf); 9075 9076 return 0; 9077 } 9078 9079 int sched_cpu_deactivate(unsigned int cpu) 9080 { 9081 struct rq *rq = cpu_rq(cpu); 9082 struct rq_flags rf; 9083 int ret; 9084 9085 /* 9086 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9087 * load balancing when not active 9088 */ 9089 nohz_balance_exit_idle(rq); 9090 9091 set_cpu_active(cpu, false); 9092 9093 /* 9094 * From this point forward, this CPU will refuse to run any task that 9095 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9096 * push those tasks away until this gets cleared, see 9097 * sched_cpu_dying(). 9098 */ 9099 balance_push_set(cpu, true); 9100 9101 /* 9102 * We've cleared cpu_active_mask / set balance_push, wait for all 9103 * preempt-disabled and RCU users of this state to go away such that 9104 * all new such users will observe it. 9105 * 9106 * Specifically, we rely on ttwu to no longer target this CPU, see 9107 * ttwu_queue_cond() and is_cpu_allowed(). 9108 * 9109 * Do sync before park smpboot threads to take care the rcu boost case. 9110 */ 9111 synchronize_rcu(); 9112 9113 rq_lock_irqsave(rq, &rf); 9114 if (rq->rd) { 9115 update_rq_clock(rq); 9116 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9117 set_rq_offline(rq); 9118 } 9119 rq_unlock_irqrestore(rq, &rf); 9120 9121 #ifdef CONFIG_SCHED_SMT 9122 /* 9123 * When going down, decrement the number of cores with SMT present. 9124 */ 9125 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9126 static_branch_dec_cpuslocked(&sched_smt_present); 9127 9128 sched_core_cpu_deactivate(cpu); 9129 #endif 9130 9131 if (!sched_smp_initialized) 9132 return 0; 9133 9134 ret = cpuset_cpu_inactive(cpu); 9135 if (ret) { 9136 balance_push_set(cpu, false); 9137 set_cpu_active(cpu, true); 9138 return ret; 9139 } 9140 sched_domains_numa_masks_clear(cpu); 9141 return 0; 9142 } 9143 9144 static void sched_rq_cpu_starting(unsigned int cpu) 9145 { 9146 struct rq *rq = cpu_rq(cpu); 9147 9148 rq->calc_load_update = calc_load_update; 9149 update_max_interval(); 9150 } 9151 9152 int sched_cpu_starting(unsigned int cpu) 9153 { 9154 sched_core_cpu_starting(cpu); 9155 sched_rq_cpu_starting(cpu); 9156 sched_tick_start(cpu); 9157 return 0; 9158 } 9159 9160 #ifdef CONFIG_HOTPLUG_CPU 9161 9162 /* 9163 * Invoked immediately before the stopper thread is invoked to bring the 9164 * CPU down completely. At this point all per CPU kthreads except the 9165 * hotplug thread (current) and the stopper thread (inactive) have been 9166 * either parked or have been unbound from the outgoing CPU. Ensure that 9167 * any of those which might be on the way out are gone. 9168 * 9169 * If after this point a bound task is being woken on this CPU then the 9170 * responsible hotplug callback has failed to do it's job. 9171 * sched_cpu_dying() will catch it with the appropriate fireworks. 9172 */ 9173 int sched_cpu_wait_empty(unsigned int cpu) 9174 { 9175 balance_hotplug_wait(); 9176 return 0; 9177 } 9178 9179 /* 9180 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9181 * might have. Called from the CPU stopper task after ensuring that the 9182 * stopper is the last running task on the CPU, so nr_active count is 9183 * stable. We need to take the teardown thread which is calling this into 9184 * account, so we hand in adjust = 1 to the load calculation. 9185 * 9186 * Also see the comment "Global load-average calculations". 9187 */ 9188 static void calc_load_migrate(struct rq *rq) 9189 { 9190 long delta = calc_load_fold_active(rq, 1); 9191 9192 if (delta) 9193 atomic_long_add(delta, &calc_load_tasks); 9194 } 9195 9196 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9197 { 9198 struct task_struct *g, *p; 9199 int cpu = cpu_of(rq); 9200 9201 lockdep_assert_rq_held(rq); 9202 9203 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9204 for_each_process_thread(g, p) { 9205 if (task_cpu(p) != cpu) 9206 continue; 9207 9208 if (!task_on_rq_queued(p)) 9209 continue; 9210 9211 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9212 } 9213 } 9214 9215 int sched_cpu_dying(unsigned int cpu) 9216 { 9217 struct rq *rq = cpu_rq(cpu); 9218 struct rq_flags rf; 9219 9220 /* Handle pending wakeups and then migrate everything off */ 9221 sched_tick_stop(cpu); 9222 9223 rq_lock_irqsave(rq, &rf); 9224 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9225 WARN(true, "Dying CPU not properly vacated!"); 9226 dump_rq_tasks(rq, KERN_WARNING); 9227 } 9228 rq_unlock_irqrestore(rq, &rf); 9229 9230 calc_load_migrate(rq); 9231 update_max_interval(); 9232 hrtick_clear(rq); 9233 sched_core_cpu_dying(cpu); 9234 return 0; 9235 } 9236 #endif 9237 9238 void __init sched_init_smp(void) 9239 { 9240 sched_init_numa(); 9241 9242 /* 9243 * There's no userspace yet to cause hotplug operations; hence all the 9244 * CPU masks are stable and all blatant races in the below code cannot 9245 * happen. 9246 */ 9247 mutex_lock(&sched_domains_mutex); 9248 sched_init_domains(cpu_active_mask); 9249 mutex_unlock(&sched_domains_mutex); 9250 9251 /* Move init over to a non-isolated CPU */ 9252 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 9253 BUG(); 9254 current->flags &= ~PF_NO_SETAFFINITY; 9255 sched_init_granularity(); 9256 9257 init_sched_rt_class(); 9258 init_sched_dl_class(); 9259 9260 sched_smp_initialized = true; 9261 } 9262 9263 static int __init migration_init(void) 9264 { 9265 sched_cpu_starting(smp_processor_id()); 9266 return 0; 9267 } 9268 early_initcall(migration_init); 9269 9270 #else 9271 void __init sched_init_smp(void) 9272 { 9273 sched_init_granularity(); 9274 } 9275 #endif /* CONFIG_SMP */ 9276 9277 int in_sched_functions(unsigned long addr) 9278 { 9279 return in_lock_functions(addr) || 9280 (addr >= (unsigned long)__sched_text_start 9281 && addr < (unsigned long)__sched_text_end); 9282 } 9283 9284 #ifdef CONFIG_CGROUP_SCHED 9285 /* 9286 * Default task group. 9287 * Every task in system belongs to this group at bootup. 9288 */ 9289 struct task_group root_task_group; 9290 LIST_HEAD(task_groups); 9291 9292 /* Cacheline aligned slab cache for task_group */ 9293 static struct kmem_cache *task_group_cache __read_mostly; 9294 #endif 9295 9296 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 9297 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 9298 9299 void __init sched_init(void) 9300 { 9301 unsigned long ptr = 0; 9302 int i; 9303 9304 /* Make sure the linker didn't screw up */ 9305 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 9306 &fair_sched_class + 1 != &rt_sched_class || 9307 &rt_sched_class + 1 != &dl_sched_class); 9308 #ifdef CONFIG_SMP 9309 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 9310 #endif 9311 9312 wait_bit_init(); 9313 9314 #ifdef CONFIG_FAIR_GROUP_SCHED 9315 ptr += 2 * nr_cpu_ids * sizeof(void **); 9316 #endif 9317 #ifdef CONFIG_RT_GROUP_SCHED 9318 ptr += 2 * nr_cpu_ids * sizeof(void **); 9319 #endif 9320 if (ptr) { 9321 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9322 9323 #ifdef CONFIG_FAIR_GROUP_SCHED 9324 root_task_group.se = (struct sched_entity **)ptr; 9325 ptr += nr_cpu_ids * sizeof(void **); 9326 9327 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9328 ptr += nr_cpu_ids * sizeof(void **); 9329 9330 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9331 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9332 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9333 #ifdef CONFIG_RT_GROUP_SCHED 9334 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9335 ptr += nr_cpu_ids * sizeof(void **); 9336 9337 root_task_group.rt_rq = (struct rt_rq **)ptr; 9338 ptr += nr_cpu_ids * sizeof(void **); 9339 9340 #endif /* CONFIG_RT_GROUP_SCHED */ 9341 } 9342 #ifdef CONFIG_CPUMASK_OFFSTACK 9343 for_each_possible_cpu(i) { 9344 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 9345 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9346 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 9347 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9348 } 9349 #endif /* CONFIG_CPUMASK_OFFSTACK */ 9350 9351 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9352 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 9353 9354 #ifdef CONFIG_SMP 9355 init_defrootdomain(); 9356 #endif 9357 9358 #ifdef CONFIG_RT_GROUP_SCHED 9359 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9360 global_rt_period(), global_rt_runtime()); 9361 #endif /* CONFIG_RT_GROUP_SCHED */ 9362 9363 #ifdef CONFIG_CGROUP_SCHED 9364 task_group_cache = KMEM_CACHE(task_group, 0); 9365 9366 list_add(&root_task_group.list, &task_groups); 9367 INIT_LIST_HEAD(&root_task_group.children); 9368 INIT_LIST_HEAD(&root_task_group.siblings); 9369 autogroup_init(&init_task); 9370 #endif /* CONFIG_CGROUP_SCHED */ 9371 9372 for_each_possible_cpu(i) { 9373 struct rq *rq; 9374 9375 rq = cpu_rq(i); 9376 raw_spin_lock_init(&rq->__lock); 9377 rq->nr_running = 0; 9378 rq->calc_load_active = 0; 9379 rq->calc_load_update = jiffies + LOAD_FREQ; 9380 init_cfs_rq(&rq->cfs); 9381 init_rt_rq(&rq->rt); 9382 init_dl_rq(&rq->dl); 9383 #ifdef CONFIG_FAIR_GROUP_SCHED 9384 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9385 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9386 /* 9387 * How much CPU bandwidth does root_task_group get? 9388 * 9389 * In case of task-groups formed thr' the cgroup filesystem, it 9390 * gets 100% of the CPU resources in the system. This overall 9391 * system CPU resource is divided among the tasks of 9392 * root_task_group and its child task-groups in a fair manner, 9393 * based on each entity's (task or task-group's) weight 9394 * (se->load.weight). 9395 * 9396 * In other words, if root_task_group has 10 tasks of weight 9397 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9398 * then A0's share of the CPU resource is: 9399 * 9400 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9401 * 9402 * We achieve this by letting root_task_group's tasks sit 9403 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9404 */ 9405 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9406 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9407 9408 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9409 #ifdef CONFIG_RT_GROUP_SCHED 9410 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9411 #endif 9412 #ifdef CONFIG_SMP 9413 rq->sd = NULL; 9414 rq->rd = NULL; 9415 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9416 rq->balance_callback = &balance_push_callback; 9417 rq->active_balance = 0; 9418 rq->next_balance = jiffies; 9419 rq->push_cpu = 0; 9420 rq->cpu = i; 9421 rq->online = 0; 9422 rq->idle_stamp = 0; 9423 rq->avg_idle = 2*sysctl_sched_migration_cost; 9424 rq->wake_stamp = jiffies; 9425 rq->wake_avg_idle = rq->avg_idle; 9426 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9427 9428 INIT_LIST_HEAD(&rq->cfs_tasks); 9429 9430 rq_attach_root(rq, &def_root_domain); 9431 #ifdef CONFIG_NO_HZ_COMMON 9432 rq->last_blocked_load_update_tick = jiffies; 9433 atomic_set(&rq->nohz_flags, 0); 9434 9435 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9436 #endif 9437 #ifdef CONFIG_HOTPLUG_CPU 9438 rcuwait_init(&rq->hotplug_wait); 9439 #endif 9440 #endif /* CONFIG_SMP */ 9441 hrtick_rq_init(rq); 9442 atomic_set(&rq->nr_iowait, 0); 9443 9444 #ifdef CONFIG_SCHED_CORE 9445 rq->core = rq; 9446 rq->core_pick = NULL; 9447 rq->core_enabled = 0; 9448 rq->core_tree = RB_ROOT; 9449 rq->core_forceidle_count = 0; 9450 rq->core_forceidle_occupation = 0; 9451 rq->core_forceidle_start = 0; 9452 9453 rq->core_cookie = 0UL; 9454 #endif 9455 } 9456 9457 set_load_weight(&init_task, false); 9458 9459 /* 9460 * The boot idle thread does lazy MMU switching as well: 9461 */ 9462 mmgrab(&init_mm); 9463 enter_lazy_tlb(&init_mm, current); 9464 9465 /* 9466 * The idle task doesn't need the kthread struct to function, but it 9467 * is dressed up as a per-CPU kthread and thus needs to play the part 9468 * if we want to avoid special-casing it in code that deals with per-CPU 9469 * kthreads. 9470 */ 9471 WARN_ON(!set_kthread_struct(current)); 9472 9473 /* 9474 * Make us the idle thread. Technically, schedule() should not be 9475 * called from this thread, however somewhere below it might be, 9476 * but because we are the idle thread, we just pick up running again 9477 * when this runqueue becomes "idle". 9478 */ 9479 init_idle(current, smp_processor_id()); 9480 9481 calc_load_update = jiffies + LOAD_FREQ; 9482 9483 #ifdef CONFIG_SMP 9484 idle_thread_set_boot_cpu(); 9485 balance_push_set(smp_processor_id(), false); 9486 #endif 9487 init_sched_fair_class(); 9488 9489 psi_init(); 9490 9491 init_uclamp(); 9492 9493 preempt_dynamic_init(); 9494 9495 scheduler_running = 1; 9496 } 9497 9498 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9499 9500 void __might_sleep(const char *file, int line) 9501 { 9502 unsigned int state = get_current_state(); 9503 /* 9504 * Blocking primitives will set (and therefore destroy) current->state, 9505 * since we will exit with TASK_RUNNING make sure we enter with it, 9506 * otherwise we will destroy state. 9507 */ 9508 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9509 "do not call blocking ops when !TASK_RUNNING; " 9510 "state=%x set at [<%p>] %pS\n", state, 9511 (void *)current->task_state_change, 9512 (void *)current->task_state_change); 9513 9514 __might_resched(file, line, 0); 9515 } 9516 EXPORT_SYMBOL(__might_sleep); 9517 9518 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9519 { 9520 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9521 return; 9522 9523 if (preempt_count() == preempt_offset) 9524 return; 9525 9526 pr_err("Preemption disabled at:"); 9527 print_ip_sym(KERN_ERR, ip); 9528 } 9529 9530 static inline bool resched_offsets_ok(unsigned int offsets) 9531 { 9532 unsigned int nested = preempt_count(); 9533 9534 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9535 9536 return nested == offsets; 9537 } 9538 9539 void __might_resched(const char *file, int line, unsigned int offsets) 9540 { 9541 /* Ratelimiting timestamp: */ 9542 static unsigned long prev_jiffy; 9543 9544 unsigned long preempt_disable_ip; 9545 9546 /* WARN_ON_ONCE() by default, no rate limit required: */ 9547 rcu_sleep_check(); 9548 9549 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9550 !is_idle_task(current) && !current->non_block_count) || 9551 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9552 oops_in_progress) 9553 return; 9554 9555 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9556 return; 9557 prev_jiffy = jiffies; 9558 9559 /* Save this before calling printk(), since that will clobber it: */ 9560 preempt_disable_ip = get_preempt_disable_ip(current); 9561 9562 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9563 file, line); 9564 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9565 in_atomic(), irqs_disabled(), current->non_block_count, 9566 current->pid, current->comm); 9567 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9568 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9569 9570 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9571 pr_err("RCU nest depth: %d, expected: %u\n", 9572 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9573 } 9574 9575 if (task_stack_end_corrupted(current)) 9576 pr_emerg("Thread overran stack, or stack corrupted\n"); 9577 9578 debug_show_held_locks(current); 9579 if (irqs_disabled()) 9580 print_irqtrace_events(current); 9581 9582 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9583 preempt_disable_ip); 9584 9585 dump_stack(); 9586 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9587 } 9588 EXPORT_SYMBOL(__might_resched); 9589 9590 void __cant_sleep(const char *file, int line, int preempt_offset) 9591 { 9592 static unsigned long prev_jiffy; 9593 9594 if (irqs_disabled()) 9595 return; 9596 9597 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9598 return; 9599 9600 if (preempt_count() > preempt_offset) 9601 return; 9602 9603 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9604 return; 9605 prev_jiffy = jiffies; 9606 9607 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9608 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9609 in_atomic(), irqs_disabled(), 9610 current->pid, current->comm); 9611 9612 debug_show_held_locks(current); 9613 dump_stack(); 9614 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9615 } 9616 EXPORT_SYMBOL_GPL(__cant_sleep); 9617 9618 #ifdef CONFIG_SMP 9619 void __cant_migrate(const char *file, int line) 9620 { 9621 static unsigned long prev_jiffy; 9622 9623 if (irqs_disabled()) 9624 return; 9625 9626 if (is_migration_disabled(current)) 9627 return; 9628 9629 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9630 return; 9631 9632 if (preempt_count() > 0) 9633 return; 9634 9635 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9636 return; 9637 prev_jiffy = jiffies; 9638 9639 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9640 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9641 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9642 current->pid, current->comm); 9643 9644 debug_show_held_locks(current); 9645 dump_stack(); 9646 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9647 } 9648 EXPORT_SYMBOL_GPL(__cant_migrate); 9649 #endif 9650 #endif 9651 9652 #ifdef CONFIG_MAGIC_SYSRQ 9653 void normalize_rt_tasks(void) 9654 { 9655 struct task_struct *g, *p; 9656 struct sched_attr attr = { 9657 .sched_policy = SCHED_NORMAL, 9658 }; 9659 9660 read_lock(&tasklist_lock); 9661 for_each_process_thread(g, p) { 9662 /* 9663 * Only normalize user tasks: 9664 */ 9665 if (p->flags & PF_KTHREAD) 9666 continue; 9667 9668 p->se.exec_start = 0; 9669 schedstat_set(p->stats.wait_start, 0); 9670 schedstat_set(p->stats.sleep_start, 0); 9671 schedstat_set(p->stats.block_start, 0); 9672 9673 if (!dl_task(p) && !rt_task(p)) { 9674 /* 9675 * Renice negative nice level userspace 9676 * tasks back to 0: 9677 */ 9678 if (task_nice(p) < 0) 9679 set_user_nice(p, 0); 9680 continue; 9681 } 9682 9683 __sched_setscheduler(p, &attr, false, false); 9684 } 9685 read_unlock(&tasklist_lock); 9686 } 9687 9688 #endif /* CONFIG_MAGIC_SYSRQ */ 9689 9690 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9691 /* 9692 * These functions are only useful for the IA64 MCA handling, or kdb. 9693 * 9694 * They can only be called when the whole system has been 9695 * stopped - every CPU needs to be quiescent, and no scheduling 9696 * activity can take place. Using them for anything else would 9697 * be a serious bug, and as a result, they aren't even visible 9698 * under any other configuration. 9699 */ 9700 9701 /** 9702 * curr_task - return the current task for a given CPU. 9703 * @cpu: the processor in question. 9704 * 9705 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9706 * 9707 * Return: The current task for @cpu. 9708 */ 9709 struct task_struct *curr_task(int cpu) 9710 { 9711 return cpu_curr(cpu); 9712 } 9713 9714 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 9715 9716 #ifdef CONFIG_IA64 9717 /** 9718 * ia64_set_curr_task - set the current task for a given CPU. 9719 * @cpu: the processor in question. 9720 * @p: the task pointer to set. 9721 * 9722 * Description: This function must only be used when non-maskable interrupts 9723 * are serviced on a separate stack. It allows the architecture to switch the 9724 * notion of the current task on a CPU in a non-blocking manner. This function 9725 * must be called with all CPU's synchronized, and interrupts disabled, the 9726 * and caller must save the original value of the current task (see 9727 * curr_task() above) and restore that value before reenabling interrupts and 9728 * re-starting the system. 9729 * 9730 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9731 */ 9732 void ia64_set_curr_task(int cpu, struct task_struct *p) 9733 { 9734 cpu_curr(cpu) = p; 9735 } 9736 9737 #endif 9738 9739 #ifdef CONFIG_CGROUP_SCHED 9740 /* task_group_lock serializes the addition/removal of task groups */ 9741 static DEFINE_SPINLOCK(task_group_lock); 9742 9743 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9744 struct task_group *parent) 9745 { 9746 #ifdef CONFIG_UCLAMP_TASK_GROUP 9747 enum uclamp_id clamp_id; 9748 9749 for_each_clamp_id(clamp_id) { 9750 uclamp_se_set(&tg->uclamp_req[clamp_id], 9751 uclamp_none(clamp_id), false); 9752 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9753 } 9754 #endif 9755 } 9756 9757 static void sched_free_group(struct task_group *tg) 9758 { 9759 free_fair_sched_group(tg); 9760 free_rt_sched_group(tg); 9761 autogroup_free(tg); 9762 kmem_cache_free(task_group_cache, tg); 9763 } 9764 9765 static void sched_free_group_rcu(struct rcu_head *rcu) 9766 { 9767 sched_free_group(container_of(rcu, struct task_group, rcu)); 9768 } 9769 9770 static void sched_unregister_group(struct task_group *tg) 9771 { 9772 unregister_fair_sched_group(tg); 9773 unregister_rt_sched_group(tg); 9774 /* 9775 * We have to wait for yet another RCU grace period to expire, as 9776 * print_cfs_stats() might run concurrently. 9777 */ 9778 call_rcu(&tg->rcu, sched_free_group_rcu); 9779 } 9780 9781 /* allocate runqueue etc for a new task group */ 9782 struct task_group *sched_create_group(struct task_group *parent) 9783 { 9784 struct task_group *tg; 9785 9786 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9787 if (!tg) 9788 return ERR_PTR(-ENOMEM); 9789 9790 if (!alloc_fair_sched_group(tg, parent)) 9791 goto err; 9792 9793 if (!alloc_rt_sched_group(tg, parent)) 9794 goto err; 9795 9796 alloc_uclamp_sched_group(tg, parent); 9797 9798 return tg; 9799 9800 err: 9801 sched_free_group(tg); 9802 return ERR_PTR(-ENOMEM); 9803 } 9804 9805 void sched_online_group(struct task_group *tg, struct task_group *parent) 9806 { 9807 unsigned long flags; 9808 9809 spin_lock_irqsave(&task_group_lock, flags); 9810 list_add_rcu(&tg->list, &task_groups); 9811 9812 /* Root should already exist: */ 9813 WARN_ON(!parent); 9814 9815 tg->parent = parent; 9816 INIT_LIST_HEAD(&tg->children); 9817 list_add_rcu(&tg->siblings, &parent->children); 9818 spin_unlock_irqrestore(&task_group_lock, flags); 9819 9820 online_fair_sched_group(tg); 9821 } 9822 9823 /* rcu callback to free various structures associated with a task group */ 9824 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9825 { 9826 /* Now it should be safe to free those cfs_rqs: */ 9827 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9828 } 9829 9830 void sched_destroy_group(struct task_group *tg) 9831 { 9832 /* Wait for possible concurrent references to cfs_rqs complete: */ 9833 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9834 } 9835 9836 void sched_release_group(struct task_group *tg) 9837 { 9838 unsigned long flags; 9839 9840 /* 9841 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9842 * sched_cfs_period_timer()). 9843 * 9844 * For this to be effective, we have to wait for all pending users of 9845 * this task group to leave their RCU critical section to ensure no new 9846 * user will see our dying task group any more. Specifically ensure 9847 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9848 * 9849 * We therefore defer calling unregister_fair_sched_group() to 9850 * sched_unregister_group() which is guarantied to get called only after the 9851 * current RCU grace period has expired. 9852 */ 9853 spin_lock_irqsave(&task_group_lock, flags); 9854 list_del_rcu(&tg->list); 9855 list_del_rcu(&tg->siblings); 9856 spin_unlock_irqrestore(&task_group_lock, flags); 9857 } 9858 9859 static void sched_change_group(struct task_struct *tsk, int type) 9860 { 9861 struct task_group *tg; 9862 9863 /* 9864 * All callers are synchronized by task_rq_lock(); we do not use RCU 9865 * which is pointless here. Thus, we pass "true" to task_css_check() 9866 * to prevent lockdep warnings. 9867 */ 9868 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9869 struct task_group, css); 9870 tg = autogroup_task_group(tsk, tg); 9871 tsk->sched_task_group = tg; 9872 9873 #ifdef CONFIG_FAIR_GROUP_SCHED 9874 if (tsk->sched_class->task_change_group) 9875 tsk->sched_class->task_change_group(tsk, type); 9876 else 9877 #endif 9878 set_task_rq(tsk, task_cpu(tsk)); 9879 } 9880 9881 /* 9882 * Change task's runqueue when it moves between groups. 9883 * 9884 * The caller of this function should have put the task in its new group by 9885 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9886 * its new group. 9887 */ 9888 void sched_move_task(struct task_struct *tsk) 9889 { 9890 int queued, running, queue_flags = 9891 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9892 struct rq_flags rf; 9893 struct rq *rq; 9894 9895 rq = task_rq_lock(tsk, &rf); 9896 update_rq_clock(rq); 9897 9898 running = task_current(rq, tsk); 9899 queued = task_on_rq_queued(tsk); 9900 9901 if (queued) 9902 dequeue_task(rq, tsk, queue_flags); 9903 if (running) 9904 put_prev_task(rq, tsk); 9905 9906 sched_change_group(tsk, TASK_MOVE_GROUP); 9907 9908 if (queued) 9909 enqueue_task(rq, tsk, queue_flags); 9910 if (running) { 9911 set_next_task(rq, tsk); 9912 /* 9913 * After changing group, the running task may have joined a 9914 * throttled one but it's still the running task. Trigger a 9915 * resched to make sure that task can still run. 9916 */ 9917 resched_curr(rq); 9918 } 9919 9920 task_rq_unlock(rq, tsk, &rf); 9921 } 9922 9923 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 9924 { 9925 return css ? container_of(css, struct task_group, css) : NULL; 9926 } 9927 9928 static struct cgroup_subsys_state * 9929 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9930 { 9931 struct task_group *parent = css_tg(parent_css); 9932 struct task_group *tg; 9933 9934 if (!parent) { 9935 /* This is early initialization for the top cgroup */ 9936 return &root_task_group.css; 9937 } 9938 9939 tg = sched_create_group(parent); 9940 if (IS_ERR(tg)) 9941 return ERR_PTR(-ENOMEM); 9942 9943 return &tg->css; 9944 } 9945 9946 /* Expose task group only after completing cgroup initialization */ 9947 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9948 { 9949 struct task_group *tg = css_tg(css); 9950 struct task_group *parent = css_tg(css->parent); 9951 9952 if (parent) 9953 sched_online_group(tg, parent); 9954 9955 #ifdef CONFIG_UCLAMP_TASK_GROUP 9956 /* Propagate the effective uclamp value for the new group */ 9957 mutex_lock(&uclamp_mutex); 9958 rcu_read_lock(); 9959 cpu_util_update_eff(css); 9960 rcu_read_unlock(); 9961 mutex_unlock(&uclamp_mutex); 9962 #endif 9963 9964 return 0; 9965 } 9966 9967 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9968 { 9969 struct task_group *tg = css_tg(css); 9970 9971 sched_release_group(tg); 9972 } 9973 9974 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9975 { 9976 struct task_group *tg = css_tg(css); 9977 9978 /* 9979 * Relies on the RCU grace period between css_released() and this. 9980 */ 9981 sched_unregister_group(tg); 9982 } 9983 9984 /* 9985 * This is called before wake_up_new_task(), therefore we really only 9986 * have to set its group bits, all the other stuff does not apply. 9987 */ 9988 static void cpu_cgroup_fork(struct task_struct *task) 9989 { 9990 struct rq_flags rf; 9991 struct rq *rq; 9992 9993 rq = task_rq_lock(task, &rf); 9994 9995 update_rq_clock(rq); 9996 sched_change_group(task, TASK_SET_GROUP); 9997 9998 task_rq_unlock(rq, task, &rf); 9999 } 10000 10001 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10002 { 10003 struct task_struct *task; 10004 struct cgroup_subsys_state *css; 10005 int ret = 0; 10006 10007 cgroup_taskset_for_each(task, css, tset) { 10008 #ifdef CONFIG_RT_GROUP_SCHED 10009 if (!sched_rt_can_attach(css_tg(css), task)) 10010 return -EINVAL; 10011 #endif 10012 /* 10013 * Serialize against wake_up_new_task() such that if it's 10014 * running, we're sure to observe its full state. 10015 */ 10016 raw_spin_lock_irq(&task->pi_lock); 10017 /* 10018 * Avoid calling sched_move_task() before wake_up_new_task() 10019 * has happened. This would lead to problems with PELT, due to 10020 * move wanting to detach+attach while we're not attached yet. 10021 */ 10022 if (READ_ONCE(task->__state) == TASK_NEW) 10023 ret = -EINVAL; 10024 raw_spin_unlock_irq(&task->pi_lock); 10025 10026 if (ret) 10027 break; 10028 } 10029 return ret; 10030 } 10031 10032 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10033 { 10034 struct task_struct *task; 10035 struct cgroup_subsys_state *css; 10036 10037 cgroup_taskset_for_each(task, css, tset) 10038 sched_move_task(task); 10039 } 10040 10041 #ifdef CONFIG_UCLAMP_TASK_GROUP 10042 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10043 { 10044 struct cgroup_subsys_state *top_css = css; 10045 struct uclamp_se *uc_parent = NULL; 10046 struct uclamp_se *uc_se = NULL; 10047 unsigned int eff[UCLAMP_CNT]; 10048 enum uclamp_id clamp_id; 10049 unsigned int clamps; 10050 10051 lockdep_assert_held(&uclamp_mutex); 10052 SCHED_WARN_ON(!rcu_read_lock_held()); 10053 10054 css_for_each_descendant_pre(css, top_css) { 10055 uc_parent = css_tg(css)->parent 10056 ? css_tg(css)->parent->uclamp : NULL; 10057 10058 for_each_clamp_id(clamp_id) { 10059 /* Assume effective clamps matches requested clamps */ 10060 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10061 /* Cap effective clamps with parent's effective clamps */ 10062 if (uc_parent && 10063 eff[clamp_id] > uc_parent[clamp_id].value) { 10064 eff[clamp_id] = uc_parent[clamp_id].value; 10065 } 10066 } 10067 /* Ensure protection is always capped by limit */ 10068 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10069 10070 /* Propagate most restrictive effective clamps */ 10071 clamps = 0x0; 10072 uc_se = css_tg(css)->uclamp; 10073 for_each_clamp_id(clamp_id) { 10074 if (eff[clamp_id] == uc_se[clamp_id].value) 10075 continue; 10076 uc_se[clamp_id].value = eff[clamp_id]; 10077 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10078 clamps |= (0x1 << clamp_id); 10079 } 10080 if (!clamps) { 10081 css = css_rightmost_descendant(css); 10082 continue; 10083 } 10084 10085 /* Immediately update descendants RUNNABLE tasks */ 10086 uclamp_update_active_tasks(css); 10087 } 10088 } 10089 10090 /* 10091 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10092 * C expression. Since there is no way to convert a macro argument (N) into a 10093 * character constant, use two levels of macros. 10094 */ 10095 #define _POW10(exp) ((unsigned int)1e##exp) 10096 #define POW10(exp) _POW10(exp) 10097 10098 struct uclamp_request { 10099 #define UCLAMP_PERCENT_SHIFT 2 10100 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10101 s64 percent; 10102 u64 util; 10103 int ret; 10104 }; 10105 10106 static inline struct uclamp_request 10107 capacity_from_percent(char *buf) 10108 { 10109 struct uclamp_request req = { 10110 .percent = UCLAMP_PERCENT_SCALE, 10111 .util = SCHED_CAPACITY_SCALE, 10112 .ret = 0, 10113 }; 10114 10115 buf = strim(buf); 10116 if (strcmp(buf, "max")) { 10117 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10118 &req.percent); 10119 if (req.ret) 10120 return req; 10121 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10122 req.ret = -ERANGE; 10123 return req; 10124 } 10125 10126 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10127 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10128 } 10129 10130 return req; 10131 } 10132 10133 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10134 size_t nbytes, loff_t off, 10135 enum uclamp_id clamp_id) 10136 { 10137 struct uclamp_request req; 10138 struct task_group *tg; 10139 10140 req = capacity_from_percent(buf); 10141 if (req.ret) 10142 return req.ret; 10143 10144 static_branch_enable(&sched_uclamp_used); 10145 10146 mutex_lock(&uclamp_mutex); 10147 rcu_read_lock(); 10148 10149 tg = css_tg(of_css(of)); 10150 if (tg->uclamp_req[clamp_id].value != req.util) 10151 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10152 10153 /* 10154 * Because of not recoverable conversion rounding we keep track of the 10155 * exact requested value 10156 */ 10157 tg->uclamp_pct[clamp_id] = req.percent; 10158 10159 /* Update effective clamps to track the most restrictive value */ 10160 cpu_util_update_eff(of_css(of)); 10161 10162 rcu_read_unlock(); 10163 mutex_unlock(&uclamp_mutex); 10164 10165 return nbytes; 10166 } 10167 10168 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10169 char *buf, size_t nbytes, 10170 loff_t off) 10171 { 10172 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10173 } 10174 10175 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10176 char *buf, size_t nbytes, 10177 loff_t off) 10178 { 10179 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10180 } 10181 10182 static inline void cpu_uclamp_print(struct seq_file *sf, 10183 enum uclamp_id clamp_id) 10184 { 10185 struct task_group *tg; 10186 u64 util_clamp; 10187 u64 percent; 10188 u32 rem; 10189 10190 rcu_read_lock(); 10191 tg = css_tg(seq_css(sf)); 10192 util_clamp = tg->uclamp_req[clamp_id].value; 10193 rcu_read_unlock(); 10194 10195 if (util_clamp == SCHED_CAPACITY_SCALE) { 10196 seq_puts(sf, "max\n"); 10197 return; 10198 } 10199 10200 percent = tg->uclamp_pct[clamp_id]; 10201 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10202 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10203 } 10204 10205 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10206 { 10207 cpu_uclamp_print(sf, UCLAMP_MIN); 10208 return 0; 10209 } 10210 10211 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10212 { 10213 cpu_uclamp_print(sf, UCLAMP_MAX); 10214 return 0; 10215 } 10216 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10217 10218 #ifdef CONFIG_FAIR_GROUP_SCHED 10219 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10220 struct cftype *cftype, u64 shareval) 10221 { 10222 if (shareval > scale_load_down(ULONG_MAX)) 10223 shareval = MAX_SHARES; 10224 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10225 } 10226 10227 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10228 struct cftype *cft) 10229 { 10230 struct task_group *tg = css_tg(css); 10231 10232 return (u64) scale_load_down(tg->shares); 10233 } 10234 10235 #ifdef CONFIG_CFS_BANDWIDTH 10236 static DEFINE_MUTEX(cfs_constraints_mutex); 10237 10238 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10239 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10240 /* More than 203 days if BW_SHIFT equals 20. */ 10241 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10242 10243 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10244 10245 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10246 u64 burst) 10247 { 10248 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10249 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10250 10251 if (tg == &root_task_group) 10252 return -EINVAL; 10253 10254 /* 10255 * Ensure we have at some amount of bandwidth every period. This is 10256 * to prevent reaching a state of large arrears when throttled via 10257 * entity_tick() resulting in prolonged exit starvation. 10258 */ 10259 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10260 return -EINVAL; 10261 10262 /* 10263 * Likewise, bound things on the other side by preventing insane quota 10264 * periods. This also allows us to normalize in computing quota 10265 * feasibility. 10266 */ 10267 if (period > max_cfs_quota_period) 10268 return -EINVAL; 10269 10270 /* 10271 * Bound quota to defend quota against overflow during bandwidth shift. 10272 */ 10273 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10274 return -EINVAL; 10275 10276 if (quota != RUNTIME_INF && (burst > quota || 10277 burst + quota > max_cfs_runtime)) 10278 return -EINVAL; 10279 10280 /* 10281 * Prevent race between setting of cfs_rq->runtime_enabled and 10282 * unthrottle_offline_cfs_rqs(). 10283 */ 10284 cpus_read_lock(); 10285 mutex_lock(&cfs_constraints_mutex); 10286 ret = __cfs_schedulable(tg, period, quota); 10287 if (ret) 10288 goto out_unlock; 10289 10290 runtime_enabled = quota != RUNTIME_INF; 10291 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10292 /* 10293 * If we need to toggle cfs_bandwidth_used, off->on must occur 10294 * before making related changes, and on->off must occur afterwards 10295 */ 10296 if (runtime_enabled && !runtime_was_enabled) 10297 cfs_bandwidth_usage_inc(); 10298 raw_spin_lock_irq(&cfs_b->lock); 10299 cfs_b->period = ns_to_ktime(period); 10300 cfs_b->quota = quota; 10301 cfs_b->burst = burst; 10302 10303 __refill_cfs_bandwidth_runtime(cfs_b); 10304 10305 /* Restart the period timer (if active) to handle new period expiry: */ 10306 if (runtime_enabled) 10307 start_cfs_bandwidth(cfs_b); 10308 10309 raw_spin_unlock_irq(&cfs_b->lock); 10310 10311 for_each_online_cpu(i) { 10312 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10313 struct rq *rq = cfs_rq->rq; 10314 struct rq_flags rf; 10315 10316 rq_lock_irq(rq, &rf); 10317 cfs_rq->runtime_enabled = runtime_enabled; 10318 cfs_rq->runtime_remaining = 0; 10319 10320 if (cfs_rq->throttled) 10321 unthrottle_cfs_rq(cfs_rq); 10322 rq_unlock_irq(rq, &rf); 10323 } 10324 if (runtime_was_enabled && !runtime_enabled) 10325 cfs_bandwidth_usage_dec(); 10326 out_unlock: 10327 mutex_unlock(&cfs_constraints_mutex); 10328 cpus_read_unlock(); 10329 10330 return ret; 10331 } 10332 10333 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10334 { 10335 u64 quota, period, burst; 10336 10337 period = ktime_to_ns(tg->cfs_bandwidth.period); 10338 burst = tg->cfs_bandwidth.burst; 10339 if (cfs_quota_us < 0) 10340 quota = RUNTIME_INF; 10341 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10342 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10343 else 10344 return -EINVAL; 10345 10346 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10347 } 10348 10349 static long tg_get_cfs_quota(struct task_group *tg) 10350 { 10351 u64 quota_us; 10352 10353 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10354 return -1; 10355 10356 quota_us = tg->cfs_bandwidth.quota; 10357 do_div(quota_us, NSEC_PER_USEC); 10358 10359 return quota_us; 10360 } 10361 10362 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10363 { 10364 u64 quota, period, burst; 10365 10366 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10367 return -EINVAL; 10368 10369 period = (u64)cfs_period_us * NSEC_PER_USEC; 10370 quota = tg->cfs_bandwidth.quota; 10371 burst = tg->cfs_bandwidth.burst; 10372 10373 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10374 } 10375 10376 static long tg_get_cfs_period(struct task_group *tg) 10377 { 10378 u64 cfs_period_us; 10379 10380 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10381 do_div(cfs_period_us, NSEC_PER_USEC); 10382 10383 return cfs_period_us; 10384 } 10385 10386 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10387 { 10388 u64 quota, period, burst; 10389 10390 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10391 return -EINVAL; 10392 10393 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10394 period = ktime_to_ns(tg->cfs_bandwidth.period); 10395 quota = tg->cfs_bandwidth.quota; 10396 10397 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10398 } 10399 10400 static long tg_get_cfs_burst(struct task_group *tg) 10401 { 10402 u64 burst_us; 10403 10404 burst_us = tg->cfs_bandwidth.burst; 10405 do_div(burst_us, NSEC_PER_USEC); 10406 10407 return burst_us; 10408 } 10409 10410 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10411 struct cftype *cft) 10412 { 10413 return tg_get_cfs_quota(css_tg(css)); 10414 } 10415 10416 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10417 struct cftype *cftype, s64 cfs_quota_us) 10418 { 10419 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10420 } 10421 10422 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10423 struct cftype *cft) 10424 { 10425 return tg_get_cfs_period(css_tg(css)); 10426 } 10427 10428 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10429 struct cftype *cftype, u64 cfs_period_us) 10430 { 10431 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10432 } 10433 10434 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10435 struct cftype *cft) 10436 { 10437 return tg_get_cfs_burst(css_tg(css)); 10438 } 10439 10440 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10441 struct cftype *cftype, u64 cfs_burst_us) 10442 { 10443 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10444 } 10445 10446 struct cfs_schedulable_data { 10447 struct task_group *tg; 10448 u64 period, quota; 10449 }; 10450 10451 /* 10452 * normalize group quota/period to be quota/max_period 10453 * note: units are usecs 10454 */ 10455 static u64 normalize_cfs_quota(struct task_group *tg, 10456 struct cfs_schedulable_data *d) 10457 { 10458 u64 quota, period; 10459 10460 if (tg == d->tg) { 10461 period = d->period; 10462 quota = d->quota; 10463 } else { 10464 period = tg_get_cfs_period(tg); 10465 quota = tg_get_cfs_quota(tg); 10466 } 10467 10468 /* note: these should typically be equivalent */ 10469 if (quota == RUNTIME_INF || quota == -1) 10470 return RUNTIME_INF; 10471 10472 return to_ratio(period, quota); 10473 } 10474 10475 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10476 { 10477 struct cfs_schedulable_data *d = data; 10478 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10479 s64 quota = 0, parent_quota = -1; 10480 10481 if (!tg->parent) { 10482 quota = RUNTIME_INF; 10483 } else { 10484 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10485 10486 quota = normalize_cfs_quota(tg, d); 10487 parent_quota = parent_b->hierarchical_quota; 10488 10489 /* 10490 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10491 * always take the min. On cgroup1, only inherit when no 10492 * limit is set: 10493 */ 10494 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10495 quota = min(quota, parent_quota); 10496 } else { 10497 if (quota == RUNTIME_INF) 10498 quota = parent_quota; 10499 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10500 return -EINVAL; 10501 } 10502 } 10503 cfs_b->hierarchical_quota = quota; 10504 10505 return 0; 10506 } 10507 10508 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10509 { 10510 int ret; 10511 struct cfs_schedulable_data data = { 10512 .tg = tg, 10513 .period = period, 10514 .quota = quota, 10515 }; 10516 10517 if (quota != RUNTIME_INF) { 10518 do_div(data.period, NSEC_PER_USEC); 10519 do_div(data.quota, NSEC_PER_USEC); 10520 } 10521 10522 rcu_read_lock(); 10523 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10524 rcu_read_unlock(); 10525 10526 return ret; 10527 } 10528 10529 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10530 { 10531 struct task_group *tg = css_tg(seq_css(sf)); 10532 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10533 10534 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10535 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10536 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10537 10538 if (schedstat_enabled() && tg != &root_task_group) { 10539 struct sched_statistics *stats; 10540 u64 ws = 0; 10541 int i; 10542 10543 for_each_possible_cpu(i) { 10544 stats = __schedstats_from_se(tg->se[i]); 10545 ws += schedstat_val(stats->wait_sum); 10546 } 10547 10548 seq_printf(sf, "wait_sum %llu\n", ws); 10549 } 10550 10551 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10552 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10553 10554 return 0; 10555 } 10556 #endif /* CONFIG_CFS_BANDWIDTH */ 10557 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10558 10559 #ifdef CONFIG_RT_GROUP_SCHED 10560 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10561 struct cftype *cft, s64 val) 10562 { 10563 return sched_group_set_rt_runtime(css_tg(css), val); 10564 } 10565 10566 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10567 struct cftype *cft) 10568 { 10569 return sched_group_rt_runtime(css_tg(css)); 10570 } 10571 10572 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10573 struct cftype *cftype, u64 rt_period_us) 10574 { 10575 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10576 } 10577 10578 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10579 struct cftype *cft) 10580 { 10581 return sched_group_rt_period(css_tg(css)); 10582 } 10583 #endif /* CONFIG_RT_GROUP_SCHED */ 10584 10585 #ifdef CONFIG_FAIR_GROUP_SCHED 10586 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10587 struct cftype *cft) 10588 { 10589 return css_tg(css)->idle; 10590 } 10591 10592 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10593 struct cftype *cft, s64 idle) 10594 { 10595 return sched_group_set_idle(css_tg(css), idle); 10596 } 10597 #endif 10598 10599 static struct cftype cpu_legacy_files[] = { 10600 #ifdef CONFIG_FAIR_GROUP_SCHED 10601 { 10602 .name = "shares", 10603 .read_u64 = cpu_shares_read_u64, 10604 .write_u64 = cpu_shares_write_u64, 10605 }, 10606 { 10607 .name = "idle", 10608 .read_s64 = cpu_idle_read_s64, 10609 .write_s64 = cpu_idle_write_s64, 10610 }, 10611 #endif 10612 #ifdef CONFIG_CFS_BANDWIDTH 10613 { 10614 .name = "cfs_quota_us", 10615 .read_s64 = cpu_cfs_quota_read_s64, 10616 .write_s64 = cpu_cfs_quota_write_s64, 10617 }, 10618 { 10619 .name = "cfs_period_us", 10620 .read_u64 = cpu_cfs_period_read_u64, 10621 .write_u64 = cpu_cfs_period_write_u64, 10622 }, 10623 { 10624 .name = "cfs_burst_us", 10625 .read_u64 = cpu_cfs_burst_read_u64, 10626 .write_u64 = cpu_cfs_burst_write_u64, 10627 }, 10628 { 10629 .name = "stat", 10630 .seq_show = cpu_cfs_stat_show, 10631 }, 10632 #endif 10633 #ifdef CONFIG_RT_GROUP_SCHED 10634 { 10635 .name = "rt_runtime_us", 10636 .read_s64 = cpu_rt_runtime_read, 10637 .write_s64 = cpu_rt_runtime_write, 10638 }, 10639 { 10640 .name = "rt_period_us", 10641 .read_u64 = cpu_rt_period_read_uint, 10642 .write_u64 = cpu_rt_period_write_uint, 10643 }, 10644 #endif 10645 #ifdef CONFIG_UCLAMP_TASK_GROUP 10646 { 10647 .name = "uclamp.min", 10648 .flags = CFTYPE_NOT_ON_ROOT, 10649 .seq_show = cpu_uclamp_min_show, 10650 .write = cpu_uclamp_min_write, 10651 }, 10652 { 10653 .name = "uclamp.max", 10654 .flags = CFTYPE_NOT_ON_ROOT, 10655 .seq_show = cpu_uclamp_max_show, 10656 .write = cpu_uclamp_max_write, 10657 }, 10658 #endif 10659 { } /* Terminate */ 10660 }; 10661 10662 static int cpu_extra_stat_show(struct seq_file *sf, 10663 struct cgroup_subsys_state *css) 10664 { 10665 #ifdef CONFIG_CFS_BANDWIDTH 10666 { 10667 struct task_group *tg = css_tg(css); 10668 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10669 u64 throttled_usec, burst_usec; 10670 10671 throttled_usec = cfs_b->throttled_time; 10672 do_div(throttled_usec, NSEC_PER_USEC); 10673 burst_usec = cfs_b->burst_time; 10674 do_div(burst_usec, NSEC_PER_USEC); 10675 10676 seq_printf(sf, "nr_periods %d\n" 10677 "nr_throttled %d\n" 10678 "throttled_usec %llu\n" 10679 "nr_bursts %d\n" 10680 "burst_usec %llu\n", 10681 cfs_b->nr_periods, cfs_b->nr_throttled, 10682 throttled_usec, cfs_b->nr_burst, burst_usec); 10683 } 10684 #endif 10685 return 0; 10686 } 10687 10688 #ifdef CONFIG_FAIR_GROUP_SCHED 10689 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10690 struct cftype *cft) 10691 { 10692 struct task_group *tg = css_tg(css); 10693 u64 weight = scale_load_down(tg->shares); 10694 10695 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10696 } 10697 10698 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10699 struct cftype *cft, u64 weight) 10700 { 10701 /* 10702 * cgroup weight knobs should use the common MIN, DFL and MAX 10703 * values which are 1, 100 and 10000 respectively. While it loses 10704 * a bit of range on both ends, it maps pretty well onto the shares 10705 * value used by scheduler and the round-trip conversions preserve 10706 * the original value over the entire range. 10707 */ 10708 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10709 return -ERANGE; 10710 10711 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10712 10713 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10714 } 10715 10716 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10717 struct cftype *cft) 10718 { 10719 unsigned long weight = scale_load_down(css_tg(css)->shares); 10720 int last_delta = INT_MAX; 10721 int prio, delta; 10722 10723 /* find the closest nice value to the current weight */ 10724 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10725 delta = abs(sched_prio_to_weight[prio] - weight); 10726 if (delta >= last_delta) 10727 break; 10728 last_delta = delta; 10729 } 10730 10731 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10732 } 10733 10734 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10735 struct cftype *cft, s64 nice) 10736 { 10737 unsigned long weight; 10738 int idx; 10739 10740 if (nice < MIN_NICE || nice > MAX_NICE) 10741 return -ERANGE; 10742 10743 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10744 idx = array_index_nospec(idx, 40); 10745 weight = sched_prio_to_weight[idx]; 10746 10747 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10748 } 10749 #endif 10750 10751 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10752 long period, long quota) 10753 { 10754 if (quota < 0) 10755 seq_puts(sf, "max"); 10756 else 10757 seq_printf(sf, "%ld", quota); 10758 10759 seq_printf(sf, " %ld\n", period); 10760 } 10761 10762 /* caller should put the current value in *@periodp before calling */ 10763 static int __maybe_unused cpu_period_quota_parse(char *buf, 10764 u64 *periodp, u64 *quotap) 10765 { 10766 char tok[21]; /* U64_MAX */ 10767 10768 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10769 return -EINVAL; 10770 10771 *periodp *= NSEC_PER_USEC; 10772 10773 if (sscanf(tok, "%llu", quotap)) 10774 *quotap *= NSEC_PER_USEC; 10775 else if (!strcmp(tok, "max")) 10776 *quotap = RUNTIME_INF; 10777 else 10778 return -EINVAL; 10779 10780 return 0; 10781 } 10782 10783 #ifdef CONFIG_CFS_BANDWIDTH 10784 static int cpu_max_show(struct seq_file *sf, void *v) 10785 { 10786 struct task_group *tg = css_tg(seq_css(sf)); 10787 10788 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10789 return 0; 10790 } 10791 10792 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10793 char *buf, size_t nbytes, loff_t off) 10794 { 10795 struct task_group *tg = css_tg(of_css(of)); 10796 u64 period = tg_get_cfs_period(tg); 10797 u64 burst = tg_get_cfs_burst(tg); 10798 u64 quota; 10799 int ret; 10800 10801 ret = cpu_period_quota_parse(buf, &period, "a); 10802 if (!ret) 10803 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10804 return ret ?: nbytes; 10805 } 10806 #endif 10807 10808 static struct cftype cpu_files[] = { 10809 #ifdef CONFIG_FAIR_GROUP_SCHED 10810 { 10811 .name = "weight", 10812 .flags = CFTYPE_NOT_ON_ROOT, 10813 .read_u64 = cpu_weight_read_u64, 10814 .write_u64 = cpu_weight_write_u64, 10815 }, 10816 { 10817 .name = "weight.nice", 10818 .flags = CFTYPE_NOT_ON_ROOT, 10819 .read_s64 = cpu_weight_nice_read_s64, 10820 .write_s64 = cpu_weight_nice_write_s64, 10821 }, 10822 { 10823 .name = "idle", 10824 .flags = CFTYPE_NOT_ON_ROOT, 10825 .read_s64 = cpu_idle_read_s64, 10826 .write_s64 = cpu_idle_write_s64, 10827 }, 10828 #endif 10829 #ifdef CONFIG_CFS_BANDWIDTH 10830 { 10831 .name = "max", 10832 .flags = CFTYPE_NOT_ON_ROOT, 10833 .seq_show = cpu_max_show, 10834 .write = cpu_max_write, 10835 }, 10836 { 10837 .name = "max.burst", 10838 .flags = CFTYPE_NOT_ON_ROOT, 10839 .read_u64 = cpu_cfs_burst_read_u64, 10840 .write_u64 = cpu_cfs_burst_write_u64, 10841 }, 10842 #endif 10843 #ifdef CONFIG_UCLAMP_TASK_GROUP 10844 { 10845 .name = "uclamp.min", 10846 .flags = CFTYPE_NOT_ON_ROOT, 10847 .seq_show = cpu_uclamp_min_show, 10848 .write = cpu_uclamp_min_write, 10849 }, 10850 { 10851 .name = "uclamp.max", 10852 .flags = CFTYPE_NOT_ON_ROOT, 10853 .seq_show = cpu_uclamp_max_show, 10854 .write = cpu_uclamp_max_write, 10855 }, 10856 #endif 10857 { } /* terminate */ 10858 }; 10859 10860 struct cgroup_subsys cpu_cgrp_subsys = { 10861 .css_alloc = cpu_cgroup_css_alloc, 10862 .css_online = cpu_cgroup_css_online, 10863 .css_released = cpu_cgroup_css_released, 10864 .css_free = cpu_cgroup_css_free, 10865 .css_extra_stat_show = cpu_extra_stat_show, 10866 .fork = cpu_cgroup_fork, 10867 .can_attach = cpu_cgroup_can_attach, 10868 .attach = cpu_cgroup_attach, 10869 .legacy_cftypes = cpu_legacy_files, 10870 .dfl_cftypes = cpu_files, 10871 .early_init = true, 10872 .threaded = true, 10873 }; 10874 10875 #endif /* CONFIG_CGROUP_SCHED */ 10876 10877 void dump_cpu_task(int cpu) 10878 { 10879 pr_info("Task dump for CPU %d:\n", cpu); 10880 sched_show_task(cpu_curr(cpu)); 10881 } 10882 10883 /* 10884 * Nice levels are multiplicative, with a gentle 10% change for every 10885 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10886 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10887 * that remained on nice 0. 10888 * 10889 * The "10% effect" is relative and cumulative: from _any_ nice level, 10890 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10891 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10892 * If a task goes up by ~10% and another task goes down by ~10% then 10893 * the relative distance between them is ~25%.) 10894 */ 10895 const int sched_prio_to_weight[40] = { 10896 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10897 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10898 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10899 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10900 /* 0 */ 1024, 820, 655, 526, 423, 10901 /* 5 */ 335, 272, 215, 172, 137, 10902 /* 10 */ 110, 87, 70, 56, 45, 10903 /* 15 */ 36, 29, 23, 18, 15, 10904 }; 10905 10906 /* 10907 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 10908 * 10909 * In cases where the weight does not change often, we can use the 10910 * precalculated inverse to speed up arithmetics by turning divisions 10911 * into multiplications: 10912 */ 10913 const u32 sched_prio_to_wmult[40] = { 10914 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10915 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10916 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10917 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10918 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10919 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10920 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10921 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10922 }; 10923 10924 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10925 { 10926 trace_sched_update_nr_running_tp(rq, count); 10927 } 10928