xref: /openbmc/linux/kernel/sched/core.c (revision 35f752be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 
62 /*
63  * Print a warning if need_resched is set for the given duration (if
64  * LATENCY_WARN is enabled).
65  *
66  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67  * per boot.
68  */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72 
73 /*
74  * Number of tasks to iterate in a single balance run.
75  * Limited because this is done with IRQs disabled.
76  */
77 const_debug unsigned int sysctl_sched_nr_migrate = 32;
78 
79 /*
80  * period over which we measure -rt task CPU usage in us.
81  * default: 1s
82  */
83 unsigned int sysctl_sched_rt_period = 1000000;
84 
85 __read_mostly int scheduler_running;
86 
87 /*
88  * part of the period that we allow rt tasks to run in us.
89  * default: 0.95s
90  */
91 int sysctl_sched_rt_runtime = 950000;
92 
93 
94 /*
95  * Serialization rules:
96  *
97  * Lock order:
98  *
99  *   p->pi_lock
100  *     rq->lock
101  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
102  *
103  *  rq1->lock
104  *    rq2->lock  where: rq1 < rq2
105  *
106  * Regular state:
107  *
108  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
109  * local CPU's rq->lock, it optionally removes the task from the runqueue and
110  * always looks at the local rq data structures to find the most eligible task
111  * to run next.
112  *
113  * Task enqueue is also under rq->lock, possibly taken from another CPU.
114  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
115  * the local CPU to avoid bouncing the runqueue state around [ see
116  * ttwu_queue_wakelist() ]
117  *
118  * Task wakeup, specifically wakeups that involve migration, are horribly
119  * complicated to avoid having to take two rq->locks.
120  *
121  * Special state:
122  *
123  * System-calls and anything external will use task_rq_lock() which acquires
124  * both p->pi_lock and rq->lock. As a consequence the state they change is
125  * stable while holding either lock:
126  *
127  *  - sched_setaffinity()/
128  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
129  *  - set_user_nice():		p->se.load, p->*prio
130  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
131  *				p->se.load, p->rt_priority,
132  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
133  *  - sched_setnuma():		p->numa_preferred_nid
134  *  - sched_move_task()/
135  *    cpu_cgroup_fork():	p->sched_task_group
136  *  - uclamp_update_active()	p->uclamp*
137  *
138  * p->state <- TASK_*:
139  *
140  *   is changed locklessly using set_current_state(), __set_current_state() or
141  *   set_special_state(), see their respective comments, or by
142  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
143  *   concurrent self.
144  *
145  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
146  *
147  *   is set by activate_task() and cleared by deactivate_task(), under
148  *   rq->lock. Non-zero indicates the task is runnable, the special
149  *   ON_RQ_MIGRATING state is used for migration without holding both
150  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
151  *
152  * p->on_cpu <- { 0, 1 }:
153  *
154  *   is set by prepare_task() and cleared by finish_task() such that it will be
155  *   set before p is scheduled-in and cleared after p is scheduled-out, both
156  *   under rq->lock. Non-zero indicates the task is running on its CPU.
157  *
158  *   [ The astute reader will observe that it is possible for two tasks on one
159  *     CPU to have ->on_cpu = 1 at the same time. ]
160  *
161  * task_cpu(p): is changed by set_task_cpu(), the rules are:
162  *
163  *  - Don't call set_task_cpu() on a blocked task:
164  *
165  *    We don't care what CPU we're not running on, this simplifies hotplug,
166  *    the CPU assignment of blocked tasks isn't required to be valid.
167  *
168  *  - for try_to_wake_up(), called under p->pi_lock:
169  *
170  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
171  *
172  *  - for migration called under rq->lock:
173  *    [ see task_on_rq_migrating() in task_rq_lock() ]
174  *
175  *    o move_queued_task()
176  *    o detach_task()
177  *
178  *  - for migration called under double_rq_lock():
179  *
180  *    o __migrate_swap_task()
181  *    o push_rt_task() / pull_rt_task()
182  *    o push_dl_task() / pull_dl_task()
183  *    o dl_task_offline_migration()
184  *
185  */
186 
187 /*
188  * __task_rq_lock - lock the rq @p resides on.
189  */
190 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
191 	__acquires(rq->lock)
192 {
193 	struct rq *rq;
194 
195 	lockdep_assert_held(&p->pi_lock);
196 
197 	for (;;) {
198 		rq = task_rq(p);
199 		raw_spin_lock(&rq->lock);
200 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
201 			rq_pin_lock(rq, rf);
202 			return rq;
203 		}
204 		raw_spin_unlock(&rq->lock);
205 
206 		while (unlikely(task_on_rq_migrating(p)))
207 			cpu_relax();
208 	}
209 }
210 
211 /*
212  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
213  */
214 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
215 	__acquires(p->pi_lock)
216 	__acquires(rq->lock)
217 {
218 	struct rq *rq;
219 
220 	for (;;) {
221 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
222 		rq = task_rq(p);
223 		raw_spin_lock(&rq->lock);
224 		/*
225 		 *	move_queued_task()		task_rq_lock()
226 		 *
227 		 *	ACQUIRE (rq->lock)
228 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
229 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
230 		 *	[S] ->cpu = new_cpu		[L] task_rq()
231 		 *					[L] ->on_rq
232 		 *	RELEASE (rq->lock)
233 		 *
234 		 * If we observe the old CPU in task_rq_lock(), the acquire of
235 		 * the old rq->lock will fully serialize against the stores.
236 		 *
237 		 * If we observe the new CPU in task_rq_lock(), the address
238 		 * dependency headed by '[L] rq = task_rq()' and the acquire
239 		 * will pair with the WMB to ensure we then also see migrating.
240 		 */
241 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
242 			rq_pin_lock(rq, rf);
243 			return rq;
244 		}
245 		raw_spin_unlock(&rq->lock);
246 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
247 
248 		while (unlikely(task_on_rq_migrating(p)))
249 			cpu_relax();
250 	}
251 }
252 
253 /*
254  * RQ-clock updating methods:
255  */
256 
257 static void update_rq_clock_task(struct rq *rq, s64 delta)
258 {
259 /*
260  * In theory, the compile should just see 0 here, and optimize out the call
261  * to sched_rt_avg_update. But I don't trust it...
262  */
263 	s64 __maybe_unused steal = 0, irq_delta = 0;
264 
265 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
266 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
267 
268 	/*
269 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
270 	 * this case when a previous update_rq_clock() happened inside a
271 	 * {soft,}irq region.
272 	 *
273 	 * When this happens, we stop ->clock_task and only update the
274 	 * prev_irq_time stamp to account for the part that fit, so that a next
275 	 * update will consume the rest. This ensures ->clock_task is
276 	 * monotonic.
277 	 *
278 	 * It does however cause some slight miss-attribution of {soft,}irq
279 	 * time, a more accurate solution would be to update the irq_time using
280 	 * the current rq->clock timestamp, except that would require using
281 	 * atomic ops.
282 	 */
283 	if (irq_delta > delta)
284 		irq_delta = delta;
285 
286 	rq->prev_irq_time += irq_delta;
287 	delta -= irq_delta;
288 #endif
289 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
290 	if (static_key_false((&paravirt_steal_rq_enabled))) {
291 		steal = paravirt_steal_clock(cpu_of(rq));
292 		steal -= rq->prev_steal_time_rq;
293 
294 		if (unlikely(steal > delta))
295 			steal = delta;
296 
297 		rq->prev_steal_time_rq += steal;
298 		delta -= steal;
299 	}
300 #endif
301 
302 	rq->clock_task += delta;
303 
304 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
305 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
306 		update_irq_load_avg(rq, irq_delta + steal);
307 #endif
308 	update_rq_clock_pelt(rq, delta);
309 }
310 
311 void update_rq_clock(struct rq *rq)
312 {
313 	s64 delta;
314 
315 	lockdep_assert_held(&rq->lock);
316 
317 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
318 		return;
319 
320 #ifdef CONFIG_SCHED_DEBUG
321 	if (sched_feat(WARN_DOUBLE_CLOCK))
322 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
323 	rq->clock_update_flags |= RQCF_UPDATED;
324 #endif
325 
326 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
327 	if (delta < 0)
328 		return;
329 	rq->clock += delta;
330 	update_rq_clock_task(rq, delta);
331 }
332 
333 #ifdef CONFIG_SCHED_HRTICK
334 /*
335  * Use HR-timers to deliver accurate preemption points.
336  */
337 
338 static void hrtick_clear(struct rq *rq)
339 {
340 	if (hrtimer_active(&rq->hrtick_timer))
341 		hrtimer_cancel(&rq->hrtick_timer);
342 }
343 
344 /*
345  * High-resolution timer tick.
346  * Runs from hardirq context with interrupts disabled.
347  */
348 static enum hrtimer_restart hrtick(struct hrtimer *timer)
349 {
350 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
351 	struct rq_flags rf;
352 
353 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
354 
355 	rq_lock(rq, &rf);
356 	update_rq_clock(rq);
357 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
358 	rq_unlock(rq, &rf);
359 
360 	return HRTIMER_NORESTART;
361 }
362 
363 #ifdef CONFIG_SMP
364 
365 static void __hrtick_restart(struct rq *rq)
366 {
367 	struct hrtimer *timer = &rq->hrtick_timer;
368 	ktime_t time = rq->hrtick_time;
369 
370 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
371 }
372 
373 /*
374  * called from hardirq (IPI) context
375  */
376 static void __hrtick_start(void *arg)
377 {
378 	struct rq *rq = arg;
379 	struct rq_flags rf;
380 
381 	rq_lock(rq, &rf);
382 	__hrtick_restart(rq);
383 	rq_unlock(rq, &rf);
384 }
385 
386 /*
387  * Called to set the hrtick timer state.
388  *
389  * called with rq->lock held and irqs disabled
390  */
391 void hrtick_start(struct rq *rq, u64 delay)
392 {
393 	struct hrtimer *timer = &rq->hrtick_timer;
394 	s64 delta;
395 
396 	/*
397 	 * Don't schedule slices shorter than 10000ns, that just
398 	 * doesn't make sense and can cause timer DoS.
399 	 */
400 	delta = max_t(s64, delay, 10000LL);
401 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
402 
403 	if (rq == this_rq())
404 		__hrtick_restart(rq);
405 	else
406 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
407 }
408 
409 #else
410 /*
411  * Called to set the hrtick timer state.
412  *
413  * called with rq->lock held and irqs disabled
414  */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 	/*
418 	 * Don't schedule slices shorter than 10000ns, that just
419 	 * doesn't make sense. Rely on vruntime for fairness.
420 	 */
421 	delay = max_t(u64, delay, 10000LL);
422 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 		      HRTIMER_MODE_REL_PINNED_HARD);
424 }
425 
426 #endif /* CONFIG_SMP */
427 
428 static void hrtick_rq_init(struct rq *rq)
429 {
430 #ifdef CONFIG_SMP
431 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
432 #endif
433 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
434 	rq->hrtick_timer.function = hrtick;
435 }
436 #else	/* CONFIG_SCHED_HRTICK */
437 static inline void hrtick_clear(struct rq *rq)
438 {
439 }
440 
441 static inline void hrtick_rq_init(struct rq *rq)
442 {
443 }
444 #endif	/* CONFIG_SCHED_HRTICK */
445 
446 /*
447  * cmpxchg based fetch_or, macro so it works for different integer types
448  */
449 #define fetch_or(ptr, mask)						\
450 	({								\
451 		typeof(ptr) _ptr = (ptr);				\
452 		typeof(mask) _mask = (mask);				\
453 		typeof(*_ptr) _old, _val = *_ptr;			\
454 									\
455 		for (;;) {						\
456 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
457 			if (_old == _val)				\
458 				break;					\
459 			_val = _old;					\
460 		}							\
461 	_old;								\
462 })
463 
464 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
465 /*
466  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
467  * this avoids any races wrt polling state changes and thereby avoids
468  * spurious IPIs.
469  */
470 static bool set_nr_and_not_polling(struct task_struct *p)
471 {
472 	struct thread_info *ti = task_thread_info(p);
473 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
474 }
475 
476 /*
477  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
478  *
479  * If this returns true, then the idle task promises to call
480  * sched_ttwu_pending() and reschedule soon.
481  */
482 static bool set_nr_if_polling(struct task_struct *p)
483 {
484 	struct thread_info *ti = task_thread_info(p);
485 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
486 
487 	for (;;) {
488 		if (!(val & _TIF_POLLING_NRFLAG))
489 			return false;
490 		if (val & _TIF_NEED_RESCHED)
491 			return true;
492 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
493 		if (old == val)
494 			break;
495 		val = old;
496 	}
497 	return true;
498 }
499 
500 #else
501 static bool set_nr_and_not_polling(struct task_struct *p)
502 {
503 	set_tsk_need_resched(p);
504 	return true;
505 }
506 
507 #ifdef CONFIG_SMP
508 static bool set_nr_if_polling(struct task_struct *p)
509 {
510 	return false;
511 }
512 #endif
513 #endif
514 
515 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
516 {
517 	struct wake_q_node *node = &task->wake_q;
518 
519 	/*
520 	 * Atomically grab the task, if ->wake_q is !nil already it means
521 	 * it's already queued (either by us or someone else) and will get the
522 	 * wakeup due to that.
523 	 *
524 	 * In order to ensure that a pending wakeup will observe our pending
525 	 * state, even in the failed case, an explicit smp_mb() must be used.
526 	 */
527 	smp_mb__before_atomic();
528 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
529 		return false;
530 
531 	/*
532 	 * The head is context local, there can be no concurrency.
533 	 */
534 	*head->lastp = node;
535 	head->lastp = &node->next;
536 	return true;
537 }
538 
539 /**
540  * wake_q_add() - queue a wakeup for 'later' waking.
541  * @head: the wake_q_head to add @task to
542  * @task: the task to queue for 'later' wakeup
543  *
544  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
545  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
546  * instantly.
547  *
548  * This function must be used as-if it were wake_up_process(); IOW the task
549  * must be ready to be woken at this location.
550  */
551 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
552 {
553 	if (__wake_q_add(head, task))
554 		get_task_struct(task);
555 }
556 
557 /**
558  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
559  * @head: the wake_q_head to add @task to
560  * @task: the task to queue for 'later' wakeup
561  *
562  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
563  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
564  * instantly.
565  *
566  * This function must be used as-if it were wake_up_process(); IOW the task
567  * must be ready to be woken at this location.
568  *
569  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
570  * that already hold reference to @task can call the 'safe' version and trust
571  * wake_q to do the right thing depending whether or not the @task is already
572  * queued for wakeup.
573  */
574 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
575 {
576 	if (!__wake_q_add(head, task))
577 		put_task_struct(task);
578 }
579 
580 void wake_up_q(struct wake_q_head *head)
581 {
582 	struct wake_q_node *node = head->first;
583 
584 	while (node != WAKE_Q_TAIL) {
585 		struct task_struct *task;
586 
587 		task = container_of(node, struct task_struct, wake_q);
588 		BUG_ON(!task);
589 		/* Task can safely be re-inserted now: */
590 		node = node->next;
591 		task->wake_q.next = NULL;
592 
593 		/*
594 		 * wake_up_process() executes a full barrier, which pairs with
595 		 * the queueing in wake_q_add() so as not to miss wakeups.
596 		 */
597 		wake_up_process(task);
598 		put_task_struct(task);
599 	}
600 }
601 
602 /*
603  * resched_curr - mark rq's current task 'to be rescheduled now'.
604  *
605  * On UP this means the setting of the need_resched flag, on SMP it
606  * might also involve a cross-CPU call to trigger the scheduler on
607  * the target CPU.
608  */
609 void resched_curr(struct rq *rq)
610 {
611 	struct task_struct *curr = rq->curr;
612 	int cpu;
613 
614 	lockdep_assert_held(&rq->lock);
615 
616 	if (test_tsk_need_resched(curr))
617 		return;
618 
619 	cpu = cpu_of(rq);
620 
621 	if (cpu == smp_processor_id()) {
622 		set_tsk_need_resched(curr);
623 		set_preempt_need_resched();
624 		return;
625 	}
626 
627 	if (set_nr_and_not_polling(curr))
628 		smp_send_reschedule(cpu);
629 	else
630 		trace_sched_wake_idle_without_ipi(cpu);
631 }
632 
633 void resched_cpu(int cpu)
634 {
635 	struct rq *rq = cpu_rq(cpu);
636 	unsigned long flags;
637 
638 	raw_spin_lock_irqsave(&rq->lock, flags);
639 	if (cpu_online(cpu) || cpu == smp_processor_id())
640 		resched_curr(rq);
641 	raw_spin_unlock_irqrestore(&rq->lock, flags);
642 }
643 
644 #ifdef CONFIG_SMP
645 #ifdef CONFIG_NO_HZ_COMMON
646 /*
647  * In the semi idle case, use the nearest busy CPU for migrating timers
648  * from an idle CPU.  This is good for power-savings.
649  *
650  * We don't do similar optimization for completely idle system, as
651  * selecting an idle CPU will add more delays to the timers than intended
652  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
653  */
654 int get_nohz_timer_target(void)
655 {
656 	int i, cpu = smp_processor_id(), default_cpu = -1;
657 	struct sched_domain *sd;
658 
659 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
660 		if (!idle_cpu(cpu))
661 			return cpu;
662 		default_cpu = cpu;
663 	}
664 
665 	rcu_read_lock();
666 	for_each_domain(cpu, sd) {
667 		for_each_cpu_and(i, sched_domain_span(sd),
668 			housekeeping_cpumask(HK_FLAG_TIMER)) {
669 			if (cpu == i)
670 				continue;
671 
672 			if (!idle_cpu(i)) {
673 				cpu = i;
674 				goto unlock;
675 			}
676 		}
677 	}
678 
679 	if (default_cpu == -1)
680 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
681 	cpu = default_cpu;
682 unlock:
683 	rcu_read_unlock();
684 	return cpu;
685 }
686 
687 /*
688  * When add_timer_on() enqueues a timer into the timer wheel of an
689  * idle CPU then this timer might expire before the next timer event
690  * which is scheduled to wake up that CPU. In case of a completely
691  * idle system the next event might even be infinite time into the
692  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
693  * leaves the inner idle loop so the newly added timer is taken into
694  * account when the CPU goes back to idle and evaluates the timer
695  * wheel for the next timer event.
696  */
697 static void wake_up_idle_cpu(int cpu)
698 {
699 	struct rq *rq = cpu_rq(cpu);
700 
701 	if (cpu == smp_processor_id())
702 		return;
703 
704 	if (set_nr_and_not_polling(rq->idle))
705 		smp_send_reschedule(cpu);
706 	else
707 		trace_sched_wake_idle_without_ipi(cpu);
708 }
709 
710 static bool wake_up_full_nohz_cpu(int cpu)
711 {
712 	/*
713 	 * We just need the target to call irq_exit() and re-evaluate
714 	 * the next tick. The nohz full kick at least implies that.
715 	 * If needed we can still optimize that later with an
716 	 * empty IRQ.
717 	 */
718 	if (cpu_is_offline(cpu))
719 		return true;  /* Don't try to wake offline CPUs. */
720 	if (tick_nohz_full_cpu(cpu)) {
721 		if (cpu != smp_processor_id() ||
722 		    tick_nohz_tick_stopped())
723 			tick_nohz_full_kick_cpu(cpu);
724 		return true;
725 	}
726 
727 	return false;
728 }
729 
730 /*
731  * Wake up the specified CPU.  If the CPU is going offline, it is the
732  * caller's responsibility to deal with the lost wakeup, for example,
733  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
734  */
735 void wake_up_nohz_cpu(int cpu)
736 {
737 	if (!wake_up_full_nohz_cpu(cpu))
738 		wake_up_idle_cpu(cpu);
739 }
740 
741 static void nohz_csd_func(void *info)
742 {
743 	struct rq *rq = info;
744 	int cpu = cpu_of(rq);
745 	unsigned int flags;
746 
747 	/*
748 	 * Release the rq::nohz_csd.
749 	 */
750 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
751 	WARN_ON(!(flags & NOHZ_KICK_MASK));
752 
753 	rq->idle_balance = idle_cpu(cpu);
754 	if (rq->idle_balance && !need_resched()) {
755 		rq->nohz_idle_balance = flags;
756 		raise_softirq_irqoff(SCHED_SOFTIRQ);
757 	}
758 }
759 
760 #endif /* CONFIG_NO_HZ_COMMON */
761 
762 #ifdef CONFIG_NO_HZ_FULL
763 bool sched_can_stop_tick(struct rq *rq)
764 {
765 	int fifo_nr_running;
766 
767 	/* Deadline tasks, even if single, need the tick */
768 	if (rq->dl.dl_nr_running)
769 		return false;
770 
771 	/*
772 	 * If there are more than one RR tasks, we need the tick to affect the
773 	 * actual RR behaviour.
774 	 */
775 	if (rq->rt.rr_nr_running) {
776 		if (rq->rt.rr_nr_running == 1)
777 			return true;
778 		else
779 			return false;
780 	}
781 
782 	/*
783 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
784 	 * forced preemption between FIFO tasks.
785 	 */
786 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
787 	if (fifo_nr_running)
788 		return true;
789 
790 	/*
791 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
792 	 * if there's more than one we need the tick for involuntary
793 	 * preemption.
794 	 */
795 	if (rq->nr_running > 1)
796 		return false;
797 
798 	return true;
799 }
800 #endif /* CONFIG_NO_HZ_FULL */
801 #endif /* CONFIG_SMP */
802 
803 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
804 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
805 /*
806  * Iterate task_group tree rooted at *from, calling @down when first entering a
807  * node and @up when leaving it for the final time.
808  *
809  * Caller must hold rcu_lock or sufficient equivalent.
810  */
811 int walk_tg_tree_from(struct task_group *from,
812 			     tg_visitor down, tg_visitor up, void *data)
813 {
814 	struct task_group *parent, *child;
815 	int ret;
816 
817 	parent = from;
818 
819 down:
820 	ret = (*down)(parent, data);
821 	if (ret)
822 		goto out;
823 	list_for_each_entry_rcu(child, &parent->children, siblings) {
824 		parent = child;
825 		goto down;
826 
827 up:
828 		continue;
829 	}
830 	ret = (*up)(parent, data);
831 	if (ret || parent == from)
832 		goto out;
833 
834 	child = parent;
835 	parent = parent->parent;
836 	if (parent)
837 		goto up;
838 out:
839 	return ret;
840 }
841 
842 int tg_nop(struct task_group *tg, void *data)
843 {
844 	return 0;
845 }
846 #endif
847 
848 static void set_load_weight(struct task_struct *p, bool update_load)
849 {
850 	int prio = p->static_prio - MAX_RT_PRIO;
851 	struct load_weight *load = &p->se.load;
852 
853 	/*
854 	 * SCHED_IDLE tasks get minimal weight:
855 	 */
856 	if (task_has_idle_policy(p)) {
857 		load->weight = scale_load(WEIGHT_IDLEPRIO);
858 		load->inv_weight = WMULT_IDLEPRIO;
859 		return;
860 	}
861 
862 	/*
863 	 * SCHED_OTHER tasks have to update their load when changing their
864 	 * weight
865 	 */
866 	if (update_load && p->sched_class == &fair_sched_class) {
867 		reweight_task(p, prio);
868 	} else {
869 		load->weight = scale_load(sched_prio_to_weight[prio]);
870 		load->inv_weight = sched_prio_to_wmult[prio];
871 	}
872 }
873 
874 #ifdef CONFIG_UCLAMP_TASK
875 /*
876  * Serializes updates of utilization clamp values
877  *
878  * The (slow-path) user-space triggers utilization clamp value updates which
879  * can require updates on (fast-path) scheduler's data structures used to
880  * support enqueue/dequeue operations.
881  * While the per-CPU rq lock protects fast-path update operations, user-space
882  * requests are serialized using a mutex to reduce the risk of conflicting
883  * updates or API abuses.
884  */
885 static DEFINE_MUTEX(uclamp_mutex);
886 
887 /* Max allowed minimum utilization */
888 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
889 
890 /* Max allowed maximum utilization */
891 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
892 
893 /*
894  * By default RT tasks run at the maximum performance point/capacity of the
895  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
896  * SCHED_CAPACITY_SCALE.
897  *
898  * This knob allows admins to change the default behavior when uclamp is being
899  * used. In battery powered devices, particularly, running at the maximum
900  * capacity and frequency will increase energy consumption and shorten the
901  * battery life.
902  *
903  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
904  *
905  * This knob will not override the system default sched_util_clamp_min defined
906  * above.
907  */
908 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
909 
910 /* All clamps are required to be less or equal than these values */
911 static struct uclamp_se uclamp_default[UCLAMP_CNT];
912 
913 /*
914  * This static key is used to reduce the uclamp overhead in the fast path. It
915  * primarily disables the call to uclamp_rq_{inc, dec}() in
916  * enqueue/dequeue_task().
917  *
918  * This allows users to continue to enable uclamp in their kernel config with
919  * minimum uclamp overhead in the fast path.
920  *
921  * As soon as userspace modifies any of the uclamp knobs, the static key is
922  * enabled, since we have an actual users that make use of uclamp
923  * functionality.
924  *
925  * The knobs that would enable this static key are:
926  *
927  *   * A task modifying its uclamp value with sched_setattr().
928  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
929  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
930  */
931 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
932 
933 /* Integer rounded range for each bucket */
934 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
935 
936 #define for_each_clamp_id(clamp_id) \
937 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
938 
939 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
940 {
941 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
942 }
943 
944 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
945 {
946 	if (clamp_id == UCLAMP_MIN)
947 		return 0;
948 	return SCHED_CAPACITY_SCALE;
949 }
950 
951 static inline void uclamp_se_set(struct uclamp_se *uc_se,
952 				 unsigned int value, bool user_defined)
953 {
954 	uc_se->value = value;
955 	uc_se->bucket_id = uclamp_bucket_id(value);
956 	uc_se->user_defined = user_defined;
957 }
958 
959 static inline unsigned int
960 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
961 		  unsigned int clamp_value)
962 {
963 	/*
964 	 * Avoid blocked utilization pushing up the frequency when we go
965 	 * idle (which drops the max-clamp) by retaining the last known
966 	 * max-clamp.
967 	 */
968 	if (clamp_id == UCLAMP_MAX) {
969 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
970 		return clamp_value;
971 	}
972 
973 	return uclamp_none(UCLAMP_MIN);
974 }
975 
976 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
977 				     unsigned int clamp_value)
978 {
979 	/* Reset max-clamp retention only on idle exit */
980 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
981 		return;
982 
983 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
984 }
985 
986 static inline
987 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
988 				   unsigned int clamp_value)
989 {
990 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
991 	int bucket_id = UCLAMP_BUCKETS - 1;
992 
993 	/*
994 	 * Since both min and max clamps are max aggregated, find the
995 	 * top most bucket with tasks in.
996 	 */
997 	for ( ; bucket_id >= 0; bucket_id--) {
998 		if (!bucket[bucket_id].tasks)
999 			continue;
1000 		return bucket[bucket_id].value;
1001 	}
1002 
1003 	/* No tasks -- default clamp values */
1004 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1005 }
1006 
1007 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1008 {
1009 	unsigned int default_util_min;
1010 	struct uclamp_se *uc_se;
1011 
1012 	lockdep_assert_held(&p->pi_lock);
1013 
1014 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1015 
1016 	/* Only sync if user didn't override the default */
1017 	if (uc_se->user_defined)
1018 		return;
1019 
1020 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1021 	uclamp_se_set(uc_se, default_util_min, false);
1022 }
1023 
1024 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1025 {
1026 	struct rq_flags rf;
1027 	struct rq *rq;
1028 
1029 	if (!rt_task(p))
1030 		return;
1031 
1032 	/* Protect updates to p->uclamp_* */
1033 	rq = task_rq_lock(p, &rf);
1034 	__uclamp_update_util_min_rt_default(p);
1035 	task_rq_unlock(rq, p, &rf);
1036 }
1037 
1038 static void uclamp_sync_util_min_rt_default(void)
1039 {
1040 	struct task_struct *g, *p;
1041 
1042 	/*
1043 	 * copy_process()			sysctl_uclamp
1044 	 *					  uclamp_min_rt = X;
1045 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1046 	 *   // link thread			  smp_mb__after_spinlock()
1047 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1048 	 *   sched_post_fork()			  for_each_process_thread()
1049 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1050 	 *
1051 	 * Ensures that either sched_post_fork() will observe the new
1052 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1053 	 * task.
1054 	 */
1055 	read_lock(&tasklist_lock);
1056 	smp_mb__after_spinlock();
1057 	read_unlock(&tasklist_lock);
1058 
1059 	rcu_read_lock();
1060 	for_each_process_thread(g, p)
1061 		uclamp_update_util_min_rt_default(p);
1062 	rcu_read_unlock();
1063 }
1064 
1065 static inline struct uclamp_se
1066 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1067 {
1068 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1069 #ifdef CONFIG_UCLAMP_TASK_GROUP
1070 	struct uclamp_se uc_max;
1071 
1072 	/*
1073 	 * Tasks in autogroups or root task group will be
1074 	 * restricted by system defaults.
1075 	 */
1076 	if (task_group_is_autogroup(task_group(p)))
1077 		return uc_req;
1078 	if (task_group(p) == &root_task_group)
1079 		return uc_req;
1080 
1081 	uc_max = task_group(p)->uclamp[clamp_id];
1082 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1083 		return uc_max;
1084 #endif
1085 
1086 	return uc_req;
1087 }
1088 
1089 /*
1090  * The effective clamp bucket index of a task depends on, by increasing
1091  * priority:
1092  * - the task specific clamp value, when explicitly requested from userspace
1093  * - the task group effective clamp value, for tasks not either in the root
1094  *   group or in an autogroup
1095  * - the system default clamp value, defined by the sysadmin
1096  */
1097 static inline struct uclamp_se
1098 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1099 {
1100 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1101 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1102 
1103 	/* System default restrictions always apply */
1104 	if (unlikely(uc_req.value > uc_max.value))
1105 		return uc_max;
1106 
1107 	return uc_req;
1108 }
1109 
1110 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1111 {
1112 	struct uclamp_se uc_eff;
1113 
1114 	/* Task currently refcounted: use back-annotated (effective) value */
1115 	if (p->uclamp[clamp_id].active)
1116 		return (unsigned long)p->uclamp[clamp_id].value;
1117 
1118 	uc_eff = uclamp_eff_get(p, clamp_id);
1119 
1120 	return (unsigned long)uc_eff.value;
1121 }
1122 
1123 /*
1124  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1125  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1126  * updates the rq's clamp value if required.
1127  *
1128  * Tasks can have a task-specific value requested from user-space, track
1129  * within each bucket the maximum value for tasks refcounted in it.
1130  * This "local max aggregation" allows to track the exact "requested" value
1131  * for each bucket when all its RUNNABLE tasks require the same clamp.
1132  */
1133 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1134 				    enum uclamp_id clamp_id)
1135 {
1136 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1137 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1138 	struct uclamp_bucket *bucket;
1139 
1140 	lockdep_assert_held(&rq->lock);
1141 
1142 	/* Update task effective clamp */
1143 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1144 
1145 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1146 	bucket->tasks++;
1147 	uc_se->active = true;
1148 
1149 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1150 
1151 	/*
1152 	 * Local max aggregation: rq buckets always track the max
1153 	 * "requested" clamp value of its RUNNABLE tasks.
1154 	 */
1155 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1156 		bucket->value = uc_se->value;
1157 
1158 	if (uc_se->value > READ_ONCE(uc_rq->value))
1159 		WRITE_ONCE(uc_rq->value, uc_se->value);
1160 }
1161 
1162 /*
1163  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1164  * is released. If this is the last task reference counting the rq's max
1165  * active clamp value, then the rq's clamp value is updated.
1166  *
1167  * Both refcounted tasks and rq's cached clamp values are expected to be
1168  * always valid. If it's detected they are not, as defensive programming,
1169  * enforce the expected state and warn.
1170  */
1171 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1172 				    enum uclamp_id clamp_id)
1173 {
1174 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1175 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1176 	struct uclamp_bucket *bucket;
1177 	unsigned int bkt_clamp;
1178 	unsigned int rq_clamp;
1179 
1180 	lockdep_assert_held(&rq->lock);
1181 
1182 	/*
1183 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1184 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1185 	 *
1186 	 * In this case the uc_se->active flag should be false since no uclamp
1187 	 * accounting was performed at enqueue time and we can just return
1188 	 * here.
1189 	 *
1190 	 * Need to be careful of the following enqueue/dequeue ordering
1191 	 * problem too
1192 	 *
1193 	 *	enqueue(taskA)
1194 	 *	// sched_uclamp_used gets enabled
1195 	 *	enqueue(taskB)
1196 	 *	dequeue(taskA)
1197 	 *	// Must not decrement bucket->tasks here
1198 	 *	dequeue(taskB)
1199 	 *
1200 	 * where we could end up with stale data in uc_se and
1201 	 * bucket[uc_se->bucket_id].
1202 	 *
1203 	 * The following check here eliminates the possibility of such race.
1204 	 */
1205 	if (unlikely(!uc_se->active))
1206 		return;
1207 
1208 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1209 
1210 	SCHED_WARN_ON(!bucket->tasks);
1211 	if (likely(bucket->tasks))
1212 		bucket->tasks--;
1213 
1214 	uc_se->active = false;
1215 
1216 	/*
1217 	 * Keep "local max aggregation" simple and accept to (possibly)
1218 	 * overboost some RUNNABLE tasks in the same bucket.
1219 	 * The rq clamp bucket value is reset to its base value whenever
1220 	 * there are no more RUNNABLE tasks refcounting it.
1221 	 */
1222 	if (likely(bucket->tasks))
1223 		return;
1224 
1225 	rq_clamp = READ_ONCE(uc_rq->value);
1226 	/*
1227 	 * Defensive programming: this should never happen. If it happens,
1228 	 * e.g. due to future modification, warn and fixup the expected value.
1229 	 */
1230 	SCHED_WARN_ON(bucket->value > rq_clamp);
1231 	if (bucket->value >= rq_clamp) {
1232 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1233 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1234 	}
1235 }
1236 
1237 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1238 {
1239 	enum uclamp_id clamp_id;
1240 
1241 	/*
1242 	 * Avoid any overhead until uclamp is actually used by the userspace.
1243 	 *
1244 	 * The condition is constructed such that a NOP is generated when
1245 	 * sched_uclamp_used is disabled.
1246 	 */
1247 	if (!static_branch_unlikely(&sched_uclamp_used))
1248 		return;
1249 
1250 	if (unlikely(!p->sched_class->uclamp_enabled))
1251 		return;
1252 
1253 	for_each_clamp_id(clamp_id)
1254 		uclamp_rq_inc_id(rq, p, clamp_id);
1255 
1256 	/* Reset clamp idle holding when there is one RUNNABLE task */
1257 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1258 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1259 }
1260 
1261 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1262 {
1263 	enum uclamp_id clamp_id;
1264 
1265 	/*
1266 	 * Avoid any overhead until uclamp is actually used by the userspace.
1267 	 *
1268 	 * The condition is constructed such that a NOP is generated when
1269 	 * sched_uclamp_used is disabled.
1270 	 */
1271 	if (!static_branch_unlikely(&sched_uclamp_used))
1272 		return;
1273 
1274 	if (unlikely(!p->sched_class->uclamp_enabled))
1275 		return;
1276 
1277 	for_each_clamp_id(clamp_id)
1278 		uclamp_rq_dec_id(rq, p, clamp_id);
1279 }
1280 
1281 static inline void
1282 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1283 {
1284 	struct rq_flags rf;
1285 	struct rq *rq;
1286 
1287 	/*
1288 	 * Lock the task and the rq where the task is (or was) queued.
1289 	 *
1290 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1291 	 * price to pay to safely serialize util_{min,max} updates with
1292 	 * enqueues, dequeues and migration operations.
1293 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1294 	 */
1295 	rq = task_rq_lock(p, &rf);
1296 
1297 	/*
1298 	 * Setting the clamp bucket is serialized by task_rq_lock().
1299 	 * If the task is not yet RUNNABLE and its task_struct is not
1300 	 * affecting a valid clamp bucket, the next time it's enqueued,
1301 	 * it will already see the updated clamp bucket value.
1302 	 */
1303 	if (p->uclamp[clamp_id].active) {
1304 		uclamp_rq_dec_id(rq, p, clamp_id);
1305 		uclamp_rq_inc_id(rq, p, clamp_id);
1306 	}
1307 
1308 	task_rq_unlock(rq, p, &rf);
1309 }
1310 
1311 #ifdef CONFIG_UCLAMP_TASK_GROUP
1312 static inline void
1313 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1314 			   unsigned int clamps)
1315 {
1316 	enum uclamp_id clamp_id;
1317 	struct css_task_iter it;
1318 	struct task_struct *p;
1319 
1320 	css_task_iter_start(css, 0, &it);
1321 	while ((p = css_task_iter_next(&it))) {
1322 		for_each_clamp_id(clamp_id) {
1323 			if ((0x1 << clamp_id) & clamps)
1324 				uclamp_update_active(p, clamp_id);
1325 		}
1326 	}
1327 	css_task_iter_end(&it);
1328 }
1329 
1330 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1331 static void uclamp_update_root_tg(void)
1332 {
1333 	struct task_group *tg = &root_task_group;
1334 
1335 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1336 		      sysctl_sched_uclamp_util_min, false);
1337 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1338 		      sysctl_sched_uclamp_util_max, false);
1339 
1340 	rcu_read_lock();
1341 	cpu_util_update_eff(&root_task_group.css);
1342 	rcu_read_unlock();
1343 }
1344 #else
1345 static void uclamp_update_root_tg(void) { }
1346 #endif
1347 
1348 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1349 				void *buffer, size_t *lenp, loff_t *ppos)
1350 {
1351 	bool update_root_tg = false;
1352 	int old_min, old_max, old_min_rt;
1353 	int result;
1354 
1355 	mutex_lock(&uclamp_mutex);
1356 	old_min = sysctl_sched_uclamp_util_min;
1357 	old_max = sysctl_sched_uclamp_util_max;
1358 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1359 
1360 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1361 	if (result)
1362 		goto undo;
1363 	if (!write)
1364 		goto done;
1365 
1366 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1367 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1368 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1369 
1370 		result = -EINVAL;
1371 		goto undo;
1372 	}
1373 
1374 	if (old_min != sysctl_sched_uclamp_util_min) {
1375 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1376 			      sysctl_sched_uclamp_util_min, false);
1377 		update_root_tg = true;
1378 	}
1379 	if (old_max != sysctl_sched_uclamp_util_max) {
1380 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1381 			      sysctl_sched_uclamp_util_max, false);
1382 		update_root_tg = true;
1383 	}
1384 
1385 	if (update_root_tg) {
1386 		static_branch_enable(&sched_uclamp_used);
1387 		uclamp_update_root_tg();
1388 	}
1389 
1390 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1391 		static_branch_enable(&sched_uclamp_used);
1392 		uclamp_sync_util_min_rt_default();
1393 	}
1394 
1395 	/*
1396 	 * We update all RUNNABLE tasks only when task groups are in use.
1397 	 * Otherwise, keep it simple and do just a lazy update at each next
1398 	 * task enqueue time.
1399 	 */
1400 
1401 	goto done;
1402 
1403 undo:
1404 	sysctl_sched_uclamp_util_min = old_min;
1405 	sysctl_sched_uclamp_util_max = old_max;
1406 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1407 done:
1408 	mutex_unlock(&uclamp_mutex);
1409 
1410 	return result;
1411 }
1412 
1413 static int uclamp_validate(struct task_struct *p,
1414 			   const struct sched_attr *attr)
1415 {
1416 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1417 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1418 
1419 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1420 		util_min = attr->sched_util_min;
1421 
1422 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1423 			return -EINVAL;
1424 	}
1425 
1426 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1427 		util_max = attr->sched_util_max;
1428 
1429 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1430 			return -EINVAL;
1431 	}
1432 
1433 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1434 		return -EINVAL;
1435 
1436 	/*
1437 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1438 	 *
1439 	 * We need to do that here, because enabling static branches is a
1440 	 * blocking operation which obviously cannot be done while holding
1441 	 * scheduler locks.
1442 	 */
1443 	static_branch_enable(&sched_uclamp_used);
1444 
1445 	return 0;
1446 }
1447 
1448 static bool uclamp_reset(const struct sched_attr *attr,
1449 			 enum uclamp_id clamp_id,
1450 			 struct uclamp_se *uc_se)
1451 {
1452 	/* Reset on sched class change for a non user-defined clamp value. */
1453 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1454 	    !uc_se->user_defined)
1455 		return true;
1456 
1457 	/* Reset on sched_util_{min,max} == -1. */
1458 	if (clamp_id == UCLAMP_MIN &&
1459 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1460 	    attr->sched_util_min == -1) {
1461 		return true;
1462 	}
1463 
1464 	if (clamp_id == UCLAMP_MAX &&
1465 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1466 	    attr->sched_util_max == -1) {
1467 		return true;
1468 	}
1469 
1470 	return false;
1471 }
1472 
1473 static void __setscheduler_uclamp(struct task_struct *p,
1474 				  const struct sched_attr *attr)
1475 {
1476 	enum uclamp_id clamp_id;
1477 
1478 	for_each_clamp_id(clamp_id) {
1479 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1480 		unsigned int value;
1481 
1482 		if (!uclamp_reset(attr, clamp_id, uc_se))
1483 			continue;
1484 
1485 		/*
1486 		 * RT by default have a 100% boost value that could be modified
1487 		 * at runtime.
1488 		 */
1489 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1490 			value = sysctl_sched_uclamp_util_min_rt_default;
1491 		else
1492 			value = uclamp_none(clamp_id);
1493 
1494 		uclamp_se_set(uc_se, value, false);
1495 
1496 	}
1497 
1498 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1499 		return;
1500 
1501 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1502 	    attr->sched_util_min != -1) {
1503 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1504 			      attr->sched_util_min, true);
1505 	}
1506 
1507 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1508 	    attr->sched_util_max != -1) {
1509 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1510 			      attr->sched_util_max, true);
1511 	}
1512 }
1513 
1514 static void uclamp_fork(struct task_struct *p)
1515 {
1516 	enum uclamp_id clamp_id;
1517 
1518 	/*
1519 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1520 	 * as the task is still at its early fork stages.
1521 	 */
1522 	for_each_clamp_id(clamp_id)
1523 		p->uclamp[clamp_id].active = false;
1524 
1525 	if (likely(!p->sched_reset_on_fork))
1526 		return;
1527 
1528 	for_each_clamp_id(clamp_id) {
1529 		uclamp_se_set(&p->uclamp_req[clamp_id],
1530 			      uclamp_none(clamp_id), false);
1531 	}
1532 }
1533 
1534 static void uclamp_post_fork(struct task_struct *p)
1535 {
1536 	uclamp_update_util_min_rt_default(p);
1537 }
1538 
1539 static void __init init_uclamp_rq(struct rq *rq)
1540 {
1541 	enum uclamp_id clamp_id;
1542 	struct uclamp_rq *uc_rq = rq->uclamp;
1543 
1544 	for_each_clamp_id(clamp_id) {
1545 		uc_rq[clamp_id] = (struct uclamp_rq) {
1546 			.value = uclamp_none(clamp_id)
1547 		};
1548 	}
1549 
1550 	rq->uclamp_flags = 0;
1551 }
1552 
1553 static void __init init_uclamp(void)
1554 {
1555 	struct uclamp_se uc_max = {};
1556 	enum uclamp_id clamp_id;
1557 	int cpu;
1558 
1559 	for_each_possible_cpu(cpu)
1560 		init_uclamp_rq(cpu_rq(cpu));
1561 
1562 	for_each_clamp_id(clamp_id) {
1563 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1564 			      uclamp_none(clamp_id), false);
1565 	}
1566 
1567 	/* System defaults allow max clamp values for both indexes */
1568 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1569 	for_each_clamp_id(clamp_id) {
1570 		uclamp_default[clamp_id] = uc_max;
1571 #ifdef CONFIG_UCLAMP_TASK_GROUP
1572 		root_task_group.uclamp_req[clamp_id] = uc_max;
1573 		root_task_group.uclamp[clamp_id] = uc_max;
1574 #endif
1575 	}
1576 }
1577 
1578 #else /* CONFIG_UCLAMP_TASK */
1579 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1580 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1581 static inline int uclamp_validate(struct task_struct *p,
1582 				  const struct sched_attr *attr)
1583 {
1584 	return -EOPNOTSUPP;
1585 }
1586 static void __setscheduler_uclamp(struct task_struct *p,
1587 				  const struct sched_attr *attr) { }
1588 static inline void uclamp_fork(struct task_struct *p) { }
1589 static inline void uclamp_post_fork(struct task_struct *p) { }
1590 static inline void init_uclamp(void) { }
1591 #endif /* CONFIG_UCLAMP_TASK */
1592 
1593 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1594 {
1595 	if (!(flags & ENQUEUE_NOCLOCK))
1596 		update_rq_clock(rq);
1597 
1598 	if (!(flags & ENQUEUE_RESTORE)) {
1599 		sched_info_queued(rq, p);
1600 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1601 	}
1602 
1603 	uclamp_rq_inc(rq, p);
1604 	p->sched_class->enqueue_task(rq, p, flags);
1605 }
1606 
1607 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1608 {
1609 	if (!(flags & DEQUEUE_NOCLOCK))
1610 		update_rq_clock(rq);
1611 
1612 	if (!(flags & DEQUEUE_SAVE)) {
1613 		sched_info_dequeued(rq, p);
1614 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1615 	}
1616 
1617 	uclamp_rq_dec(rq, p);
1618 	p->sched_class->dequeue_task(rq, p, flags);
1619 }
1620 
1621 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1622 {
1623 	enqueue_task(rq, p, flags);
1624 
1625 	p->on_rq = TASK_ON_RQ_QUEUED;
1626 }
1627 
1628 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1629 {
1630 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1631 
1632 	dequeue_task(rq, p, flags);
1633 }
1634 
1635 /*
1636  * __normal_prio - return the priority that is based on the static prio
1637  */
1638 static inline int __normal_prio(struct task_struct *p)
1639 {
1640 	return p->static_prio;
1641 }
1642 
1643 /*
1644  * Calculate the expected normal priority: i.e. priority
1645  * without taking RT-inheritance into account. Might be
1646  * boosted by interactivity modifiers. Changes upon fork,
1647  * setprio syscalls, and whenever the interactivity
1648  * estimator recalculates.
1649  */
1650 static inline int normal_prio(struct task_struct *p)
1651 {
1652 	int prio;
1653 
1654 	if (task_has_dl_policy(p))
1655 		prio = MAX_DL_PRIO-1;
1656 	else if (task_has_rt_policy(p))
1657 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1658 	else
1659 		prio = __normal_prio(p);
1660 	return prio;
1661 }
1662 
1663 /*
1664  * Calculate the current priority, i.e. the priority
1665  * taken into account by the scheduler. This value might
1666  * be boosted by RT tasks, or might be boosted by
1667  * interactivity modifiers. Will be RT if the task got
1668  * RT-boosted. If not then it returns p->normal_prio.
1669  */
1670 static int effective_prio(struct task_struct *p)
1671 {
1672 	p->normal_prio = normal_prio(p);
1673 	/*
1674 	 * If we are RT tasks or we were boosted to RT priority,
1675 	 * keep the priority unchanged. Otherwise, update priority
1676 	 * to the normal priority:
1677 	 */
1678 	if (!rt_prio(p->prio))
1679 		return p->normal_prio;
1680 	return p->prio;
1681 }
1682 
1683 /**
1684  * task_curr - is this task currently executing on a CPU?
1685  * @p: the task in question.
1686  *
1687  * Return: 1 if the task is currently executing. 0 otherwise.
1688  */
1689 inline int task_curr(const struct task_struct *p)
1690 {
1691 	return cpu_curr(task_cpu(p)) == p;
1692 }
1693 
1694 /*
1695  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1696  * use the balance_callback list if you want balancing.
1697  *
1698  * this means any call to check_class_changed() must be followed by a call to
1699  * balance_callback().
1700  */
1701 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1702 				       const struct sched_class *prev_class,
1703 				       int oldprio)
1704 {
1705 	if (prev_class != p->sched_class) {
1706 		if (prev_class->switched_from)
1707 			prev_class->switched_from(rq, p);
1708 
1709 		p->sched_class->switched_to(rq, p);
1710 	} else if (oldprio != p->prio || dl_task(p))
1711 		p->sched_class->prio_changed(rq, p, oldprio);
1712 }
1713 
1714 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1715 {
1716 	if (p->sched_class == rq->curr->sched_class)
1717 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1718 	else if (p->sched_class > rq->curr->sched_class)
1719 		resched_curr(rq);
1720 
1721 	/*
1722 	 * A queue event has occurred, and we're going to schedule.  In
1723 	 * this case, we can save a useless back to back clock update.
1724 	 */
1725 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1726 		rq_clock_skip_update(rq);
1727 }
1728 
1729 #ifdef CONFIG_SMP
1730 
1731 static void
1732 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1733 
1734 static int __set_cpus_allowed_ptr(struct task_struct *p,
1735 				  const struct cpumask *new_mask,
1736 				  u32 flags);
1737 
1738 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1739 {
1740 	if (likely(!p->migration_disabled))
1741 		return;
1742 
1743 	if (p->cpus_ptr != &p->cpus_mask)
1744 		return;
1745 
1746 	/*
1747 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1748 	 */
1749 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1750 }
1751 
1752 void migrate_disable(void)
1753 {
1754 	struct task_struct *p = current;
1755 
1756 	if (p->migration_disabled) {
1757 		p->migration_disabled++;
1758 		return;
1759 	}
1760 
1761 	preempt_disable();
1762 	this_rq()->nr_pinned++;
1763 	p->migration_disabled = 1;
1764 	preempt_enable();
1765 }
1766 EXPORT_SYMBOL_GPL(migrate_disable);
1767 
1768 void migrate_enable(void)
1769 {
1770 	struct task_struct *p = current;
1771 
1772 	if (p->migration_disabled > 1) {
1773 		p->migration_disabled--;
1774 		return;
1775 	}
1776 
1777 	/*
1778 	 * Ensure stop_task runs either before or after this, and that
1779 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1780 	 */
1781 	preempt_disable();
1782 	if (p->cpus_ptr != &p->cpus_mask)
1783 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1784 	/*
1785 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1786 	 * regular cpus_mask, otherwise things that race (eg.
1787 	 * select_fallback_rq) get confused.
1788 	 */
1789 	barrier();
1790 	p->migration_disabled = 0;
1791 	this_rq()->nr_pinned--;
1792 	preempt_enable();
1793 }
1794 EXPORT_SYMBOL_GPL(migrate_enable);
1795 
1796 static inline bool rq_has_pinned_tasks(struct rq *rq)
1797 {
1798 	return rq->nr_pinned;
1799 }
1800 
1801 /*
1802  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1803  * __set_cpus_allowed_ptr() and select_fallback_rq().
1804  */
1805 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1806 {
1807 	/* When not in the task's cpumask, no point in looking further. */
1808 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1809 		return false;
1810 
1811 	/* migrate_disabled() must be allowed to finish. */
1812 	if (is_migration_disabled(p))
1813 		return cpu_online(cpu);
1814 
1815 	/* Non kernel threads are not allowed during either online or offline. */
1816 	if (!(p->flags & PF_KTHREAD))
1817 		return cpu_active(cpu);
1818 
1819 	/* KTHREAD_IS_PER_CPU is always allowed. */
1820 	if (kthread_is_per_cpu(p))
1821 		return cpu_online(cpu);
1822 
1823 	/* Regular kernel threads don't get to stay during offline. */
1824 	if (cpu_dying(cpu))
1825 		return false;
1826 
1827 	/* But are allowed during online. */
1828 	return cpu_online(cpu);
1829 }
1830 
1831 /*
1832  * This is how migration works:
1833  *
1834  * 1) we invoke migration_cpu_stop() on the target CPU using
1835  *    stop_one_cpu().
1836  * 2) stopper starts to run (implicitly forcing the migrated thread
1837  *    off the CPU)
1838  * 3) it checks whether the migrated task is still in the wrong runqueue.
1839  * 4) if it's in the wrong runqueue then the migration thread removes
1840  *    it and puts it into the right queue.
1841  * 5) stopper completes and stop_one_cpu() returns and the migration
1842  *    is done.
1843  */
1844 
1845 /*
1846  * move_queued_task - move a queued task to new rq.
1847  *
1848  * Returns (locked) new rq. Old rq's lock is released.
1849  */
1850 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1851 				   struct task_struct *p, int new_cpu)
1852 {
1853 	lockdep_assert_held(&rq->lock);
1854 
1855 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1856 	set_task_cpu(p, new_cpu);
1857 	rq_unlock(rq, rf);
1858 
1859 	rq = cpu_rq(new_cpu);
1860 
1861 	rq_lock(rq, rf);
1862 	BUG_ON(task_cpu(p) != new_cpu);
1863 	activate_task(rq, p, 0);
1864 	check_preempt_curr(rq, p, 0);
1865 
1866 	return rq;
1867 }
1868 
1869 struct migration_arg {
1870 	struct task_struct		*task;
1871 	int				dest_cpu;
1872 	struct set_affinity_pending	*pending;
1873 };
1874 
1875 /*
1876  * @refs: number of wait_for_completion()
1877  * @stop_pending: is @stop_work in use
1878  */
1879 struct set_affinity_pending {
1880 	refcount_t		refs;
1881 	unsigned int		stop_pending;
1882 	struct completion	done;
1883 	struct cpu_stop_work	stop_work;
1884 	struct migration_arg	arg;
1885 };
1886 
1887 /*
1888  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1889  * this because either it can't run here any more (set_cpus_allowed()
1890  * away from this CPU, or CPU going down), or because we're
1891  * attempting to rebalance this task on exec (sched_exec).
1892  *
1893  * So we race with normal scheduler movements, but that's OK, as long
1894  * as the task is no longer on this CPU.
1895  */
1896 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1897 				 struct task_struct *p, int dest_cpu)
1898 {
1899 	/* Affinity changed (again). */
1900 	if (!is_cpu_allowed(p, dest_cpu))
1901 		return rq;
1902 
1903 	update_rq_clock(rq);
1904 	rq = move_queued_task(rq, rf, p, dest_cpu);
1905 
1906 	return rq;
1907 }
1908 
1909 /*
1910  * migration_cpu_stop - this will be executed by a highprio stopper thread
1911  * and performs thread migration by bumping thread off CPU then
1912  * 'pushing' onto another runqueue.
1913  */
1914 static int migration_cpu_stop(void *data)
1915 {
1916 	struct migration_arg *arg = data;
1917 	struct set_affinity_pending *pending = arg->pending;
1918 	struct task_struct *p = arg->task;
1919 	int dest_cpu = arg->dest_cpu;
1920 	struct rq *rq = this_rq();
1921 	bool complete = false;
1922 	struct rq_flags rf;
1923 
1924 	/*
1925 	 * The original target CPU might have gone down and we might
1926 	 * be on another CPU but it doesn't matter.
1927 	 */
1928 	local_irq_save(rf.flags);
1929 	/*
1930 	 * We need to explicitly wake pending tasks before running
1931 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1932 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1933 	 */
1934 	flush_smp_call_function_from_idle();
1935 
1936 	raw_spin_lock(&p->pi_lock);
1937 	rq_lock(rq, &rf);
1938 
1939 	/*
1940 	 * If we were passed a pending, then ->stop_pending was set, thus
1941 	 * p->migration_pending must have remained stable.
1942 	 */
1943 	WARN_ON_ONCE(pending && pending != p->migration_pending);
1944 
1945 	/*
1946 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1947 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1948 	 * we're holding p->pi_lock.
1949 	 */
1950 	if (task_rq(p) == rq) {
1951 		if (is_migration_disabled(p))
1952 			goto out;
1953 
1954 		if (pending) {
1955 			p->migration_pending = NULL;
1956 			complete = true;
1957 		}
1958 
1959 		if (dest_cpu < 0) {
1960 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
1961 				goto out;
1962 
1963 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1964 		}
1965 
1966 		if (task_on_rq_queued(p))
1967 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1968 		else
1969 			p->wake_cpu = dest_cpu;
1970 
1971 		/*
1972 		 * XXX __migrate_task() can fail, at which point we might end
1973 		 * up running on a dodgy CPU, AFAICT this can only happen
1974 		 * during CPU hotplug, at which point we'll get pushed out
1975 		 * anyway, so it's probably not a big deal.
1976 		 */
1977 
1978 	} else if (pending) {
1979 		/*
1980 		 * This happens when we get migrated between migrate_enable()'s
1981 		 * preempt_enable() and scheduling the stopper task. At that
1982 		 * point we're a regular task again and not current anymore.
1983 		 *
1984 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1985 		 * more likely.
1986 		 */
1987 
1988 		/*
1989 		 * The task moved before the stopper got to run. We're holding
1990 		 * ->pi_lock, so the allowed mask is stable - if it got
1991 		 * somewhere allowed, we're done.
1992 		 */
1993 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1994 			p->migration_pending = NULL;
1995 			complete = true;
1996 			goto out;
1997 		}
1998 
1999 		/*
2000 		 * When migrate_enable() hits a rq mis-match we can't reliably
2001 		 * determine is_migration_disabled() and so have to chase after
2002 		 * it.
2003 		 */
2004 		WARN_ON_ONCE(!pending->stop_pending);
2005 		task_rq_unlock(rq, p, &rf);
2006 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2007 				    &pending->arg, &pending->stop_work);
2008 		return 0;
2009 	}
2010 out:
2011 	if (pending)
2012 		pending->stop_pending = false;
2013 	task_rq_unlock(rq, p, &rf);
2014 
2015 	if (complete)
2016 		complete_all(&pending->done);
2017 
2018 	return 0;
2019 }
2020 
2021 int push_cpu_stop(void *arg)
2022 {
2023 	struct rq *lowest_rq = NULL, *rq = this_rq();
2024 	struct task_struct *p = arg;
2025 
2026 	raw_spin_lock_irq(&p->pi_lock);
2027 	raw_spin_lock(&rq->lock);
2028 
2029 	if (task_rq(p) != rq)
2030 		goto out_unlock;
2031 
2032 	if (is_migration_disabled(p)) {
2033 		p->migration_flags |= MDF_PUSH;
2034 		goto out_unlock;
2035 	}
2036 
2037 	p->migration_flags &= ~MDF_PUSH;
2038 
2039 	if (p->sched_class->find_lock_rq)
2040 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2041 
2042 	if (!lowest_rq)
2043 		goto out_unlock;
2044 
2045 	// XXX validate p is still the highest prio task
2046 	if (task_rq(p) == rq) {
2047 		deactivate_task(rq, p, 0);
2048 		set_task_cpu(p, lowest_rq->cpu);
2049 		activate_task(lowest_rq, p, 0);
2050 		resched_curr(lowest_rq);
2051 	}
2052 
2053 	double_unlock_balance(rq, lowest_rq);
2054 
2055 out_unlock:
2056 	rq->push_busy = false;
2057 	raw_spin_unlock(&rq->lock);
2058 	raw_spin_unlock_irq(&p->pi_lock);
2059 
2060 	put_task_struct(p);
2061 	return 0;
2062 }
2063 
2064 /*
2065  * sched_class::set_cpus_allowed must do the below, but is not required to
2066  * actually call this function.
2067  */
2068 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2069 {
2070 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2071 		p->cpus_ptr = new_mask;
2072 		return;
2073 	}
2074 
2075 	cpumask_copy(&p->cpus_mask, new_mask);
2076 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2077 }
2078 
2079 static void
2080 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2081 {
2082 	struct rq *rq = task_rq(p);
2083 	bool queued, running;
2084 
2085 	/*
2086 	 * This here violates the locking rules for affinity, since we're only
2087 	 * supposed to change these variables while holding both rq->lock and
2088 	 * p->pi_lock.
2089 	 *
2090 	 * HOWEVER, it magically works, because ttwu() is the only code that
2091 	 * accesses these variables under p->pi_lock and only does so after
2092 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2093 	 * before finish_task().
2094 	 *
2095 	 * XXX do further audits, this smells like something putrid.
2096 	 */
2097 	if (flags & SCA_MIGRATE_DISABLE)
2098 		SCHED_WARN_ON(!p->on_cpu);
2099 	else
2100 		lockdep_assert_held(&p->pi_lock);
2101 
2102 	queued = task_on_rq_queued(p);
2103 	running = task_current(rq, p);
2104 
2105 	if (queued) {
2106 		/*
2107 		 * Because __kthread_bind() calls this on blocked tasks without
2108 		 * holding rq->lock.
2109 		 */
2110 		lockdep_assert_held(&rq->lock);
2111 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2112 	}
2113 	if (running)
2114 		put_prev_task(rq, p);
2115 
2116 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2117 
2118 	if (queued)
2119 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2120 	if (running)
2121 		set_next_task(rq, p);
2122 }
2123 
2124 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2125 {
2126 	__do_set_cpus_allowed(p, new_mask, 0);
2127 }
2128 
2129 /*
2130  * This function is wildly self concurrent; here be dragons.
2131  *
2132  *
2133  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2134  * designated task is enqueued on an allowed CPU. If that task is currently
2135  * running, we have to kick it out using the CPU stopper.
2136  *
2137  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2138  * Consider:
2139  *
2140  *     Initial conditions: P0->cpus_mask = [0, 1]
2141  *
2142  *     P0@CPU0                  P1
2143  *
2144  *     migrate_disable();
2145  *     <preempted>
2146  *                              set_cpus_allowed_ptr(P0, [1]);
2147  *
2148  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2149  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2150  * This means we need the following scheme:
2151  *
2152  *     P0@CPU0                  P1
2153  *
2154  *     migrate_disable();
2155  *     <preempted>
2156  *                              set_cpus_allowed_ptr(P0, [1]);
2157  *                                <blocks>
2158  *     <resumes>
2159  *     migrate_enable();
2160  *       __set_cpus_allowed_ptr();
2161  *       <wakes local stopper>
2162  *                         `--> <woken on migration completion>
2163  *
2164  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2165  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2166  * task p are serialized by p->pi_lock, which we can leverage: the one that
2167  * should come into effect at the end of the Migrate-Disable region is the last
2168  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2169  * but we still need to properly signal those waiting tasks at the appropriate
2170  * moment.
2171  *
2172  * This is implemented using struct set_affinity_pending. The first
2173  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2174  * setup an instance of that struct and install it on the targeted task_struct.
2175  * Any and all further callers will reuse that instance. Those then wait for
2176  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2177  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2178  *
2179  *
2180  * (1) In the cases covered above. There is one more where the completion is
2181  * signaled within affine_move_task() itself: when a subsequent affinity request
2182  * occurs after the stopper bailed out due to the targeted task still being
2183  * Migrate-Disable. Consider:
2184  *
2185  *     Initial conditions: P0->cpus_mask = [0, 1]
2186  *
2187  *     CPU0		  P1				P2
2188  *     <P0>
2189  *       migrate_disable();
2190  *       <preempted>
2191  *                        set_cpus_allowed_ptr(P0, [1]);
2192  *                          <blocks>
2193  *     <migration/0>
2194  *       migration_cpu_stop()
2195  *         is_migration_disabled()
2196  *           <bails>
2197  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2198  *                                                         <signal completion>
2199  *                          <awakes>
2200  *
2201  * Note that the above is safe vs a concurrent migrate_enable(), as any
2202  * pending affinity completion is preceded by an uninstallation of
2203  * p->migration_pending done with p->pi_lock held.
2204  */
2205 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2206 			    int dest_cpu, unsigned int flags)
2207 {
2208 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2209 	bool stop_pending, complete = false;
2210 
2211 	/* Can the task run on the task's current CPU? If so, we're done */
2212 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2213 		struct task_struct *push_task = NULL;
2214 
2215 		if ((flags & SCA_MIGRATE_ENABLE) &&
2216 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2217 			rq->push_busy = true;
2218 			push_task = get_task_struct(p);
2219 		}
2220 
2221 		/*
2222 		 * If there are pending waiters, but no pending stop_work,
2223 		 * then complete now.
2224 		 */
2225 		pending = p->migration_pending;
2226 		if (pending && !pending->stop_pending) {
2227 			p->migration_pending = NULL;
2228 			complete = true;
2229 		}
2230 
2231 		task_rq_unlock(rq, p, rf);
2232 
2233 		if (push_task) {
2234 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2235 					    p, &rq->push_work);
2236 		}
2237 
2238 		if (complete)
2239 			complete_all(&pending->done);
2240 
2241 		return 0;
2242 	}
2243 
2244 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2245 		/* serialized by p->pi_lock */
2246 		if (!p->migration_pending) {
2247 			/* Install the request */
2248 			refcount_set(&my_pending.refs, 1);
2249 			init_completion(&my_pending.done);
2250 			my_pending.arg = (struct migration_arg) {
2251 				.task = p,
2252 				.dest_cpu = -1,		/* any */
2253 				.pending = &my_pending,
2254 			};
2255 
2256 			p->migration_pending = &my_pending;
2257 		} else {
2258 			pending = p->migration_pending;
2259 			refcount_inc(&pending->refs);
2260 		}
2261 	}
2262 	pending = p->migration_pending;
2263 	/*
2264 	 * - !MIGRATE_ENABLE:
2265 	 *   we'll have installed a pending if there wasn't one already.
2266 	 *
2267 	 * - MIGRATE_ENABLE:
2268 	 *   we're here because the current CPU isn't matching anymore,
2269 	 *   the only way that can happen is because of a concurrent
2270 	 *   set_cpus_allowed_ptr() call, which should then still be
2271 	 *   pending completion.
2272 	 *
2273 	 * Either way, we really should have a @pending here.
2274 	 */
2275 	if (WARN_ON_ONCE(!pending)) {
2276 		task_rq_unlock(rq, p, rf);
2277 		return -EINVAL;
2278 	}
2279 
2280 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2281 		/*
2282 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2283 		 * anything else we cannot do is_migration_disabled(), punt
2284 		 * and have the stopper function handle it all race-free.
2285 		 */
2286 		stop_pending = pending->stop_pending;
2287 		if (!stop_pending)
2288 			pending->stop_pending = true;
2289 
2290 		if (flags & SCA_MIGRATE_ENABLE)
2291 			p->migration_flags &= ~MDF_PUSH;
2292 
2293 		task_rq_unlock(rq, p, rf);
2294 
2295 		if (!stop_pending) {
2296 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2297 					    &pending->arg, &pending->stop_work);
2298 		}
2299 
2300 		if (flags & SCA_MIGRATE_ENABLE)
2301 			return 0;
2302 	} else {
2303 
2304 		if (!is_migration_disabled(p)) {
2305 			if (task_on_rq_queued(p))
2306 				rq = move_queued_task(rq, rf, p, dest_cpu);
2307 
2308 			if (!pending->stop_pending) {
2309 				p->migration_pending = NULL;
2310 				complete = true;
2311 			}
2312 		}
2313 		task_rq_unlock(rq, p, rf);
2314 
2315 		if (complete)
2316 			complete_all(&pending->done);
2317 	}
2318 
2319 	wait_for_completion(&pending->done);
2320 
2321 	if (refcount_dec_and_test(&pending->refs))
2322 		wake_up_var(&pending->refs); /* No UaF, just an address */
2323 
2324 	/*
2325 	 * Block the original owner of &pending until all subsequent callers
2326 	 * have seen the completion and decremented the refcount
2327 	 */
2328 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2329 
2330 	/* ARGH */
2331 	WARN_ON_ONCE(my_pending.stop_pending);
2332 
2333 	return 0;
2334 }
2335 
2336 /*
2337  * Change a given task's CPU affinity. Migrate the thread to a
2338  * proper CPU and schedule it away if the CPU it's executing on
2339  * is removed from the allowed bitmask.
2340  *
2341  * NOTE: the caller must have a valid reference to the task, the
2342  * task must not exit() & deallocate itself prematurely. The
2343  * call is not atomic; no spinlocks may be held.
2344  */
2345 static int __set_cpus_allowed_ptr(struct task_struct *p,
2346 				  const struct cpumask *new_mask,
2347 				  u32 flags)
2348 {
2349 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2350 	unsigned int dest_cpu;
2351 	struct rq_flags rf;
2352 	struct rq *rq;
2353 	int ret = 0;
2354 
2355 	rq = task_rq_lock(p, &rf);
2356 	update_rq_clock(rq);
2357 
2358 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2359 		/*
2360 		 * Kernel threads are allowed on online && !active CPUs,
2361 		 * however, during cpu-hot-unplug, even these might get pushed
2362 		 * away if not KTHREAD_IS_PER_CPU.
2363 		 *
2364 		 * Specifically, migration_disabled() tasks must not fail the
2365 		 * cpumask_any_and_distribute() pick below, esp. so on
2366 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2367 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2368 		 */
2369 		cpu_valid_mask = cpu_online_mask;
2370 	}
2371 
2372 	/*
2373 	 * Must re-check here, to close a race against __kthread_bind(),
2374 	 * sched_setaffinity() is not guaranteed to observe the flag.
2375 	 */
2376 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2377 		ret = -EINVAL;
2378 		goto out;
2379 	}
2380 
2381 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2382 		if (cpumask_equal(&p->cpus_mask, new_mask))
2383 			goto out;
2384 
2385 		if (WARN_ON_ONCE(p == current &&
2386 				 is_migration_disabled(p) &&
2387 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2388 			ret = -EBUSY;
2389 			goto out;
2390 		}
2391 	}
2392 
2393 	/*
2394 	 * Picking a ~random cpu helps in cases where we are changing affinity
2395 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2396 	 * immediately required to distribute the tasks within their new mask.
2397 	 */
2398 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2399 	if (dest_cpu >= nr_cpu_ids) {
2400 		ret = -EINVAL;
2401 		goto out;
2402 	}
2403 
2404 	__do_set_cpus_allowed(p, new_mask, flags);
2405 
2406 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2407 
2408 out:
2409 	task_rq_unlock(rq, p, &rf);
2410 
2411 	return ret;
2412 }
2413 
2414 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2415 {
2416 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2417 }
2418 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2419 
2420 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2421 {
2422 #ifdef CONFIG_SCHED_DEBUG
2423 	/*
2424 	 * We should never call set_task_cpu() on a blocked task,
2425 	 * ttwu() will sort out the placement.
2426 	 */
2427 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2428 			!p->on_rq);
2429 
2430 	/*
2431 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2432 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2433 	 * time relying on p->on_rq.
2434 	 */
2435 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2436 		     p->sched_class == &fair_sched_class &&
2437 		     (p->on_rq && !task_on_rq_migrating(p)));
2438 
2439 #ifdef CONFIG_LOCKDEP
2440 	/*
2441 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2442 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2443 	 *
2444 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2445 	 * see task_group().
2446 	 *
2447 	 * Furthermore, all task_rq users should acquire both locks, see
2448 	 * task_rq_lock().
2449 	 */
2450 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2451 				      lockdep_is_held(&task_rq(p)->lock)));
2452 #endif
2453 	/*
2454 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2455 	 */
2456 	WARN_ON_ONCE(!cpu_online(new_cpu));
2457 
2458 	WARN_ON_ONCE(is_migration_disabled(p));
2459 #endif
2460 
2461 	trace_sched_migrate_task(p, new_cpu);
2462 
2463 	if (task_cpu(p) != new_cpu) {
2464 		if (p->sched_class->migrate_task_rq)
2465 			p->sched_class->migrate_task_rq(p, new_cpu);
2466 		p->se.nr_migrations++;
2467 		rseq_migrate(p);
2468 		perf_event_task_migrate(p);
2469 	}
2470 
2471 	__set_task_cpu(p, new_cpu);
2472 }
2473 
2474 #ifdef CONFIG_NUMA_BALANCING
2475 static void __migrate_swap_task(struct task_struct *p, int cpu)
2476 {
2477 	if (task_on_rq_queued(p)) {
2478 		struct rq *src_rq, *dst_rq;
2479 		struct rq_flags srf, drf;
2480 
2481 		src_rq = task_rq(p);
2482 		dst_rq = cpu_rq(cpu);
2483 
2484 		rq_pin_lock(src_rq, &srf);
2485 		rq_pin_lock(dst_rq, &drf);
2486 
2487 		deactivate_task(src_rq, p, 0);
2488 		set_task_cpu(p, cpu);
2489 		activate_task(dst_rq, p, 0);
2490 		check_preempt_curr(dst_rq, p, 0);
2491 
2492 		rq_unpin_lock(dst_rq, &drf);
2493 		rq_unpin_lock(src_rq, &srf);
2494 
2495 	} else {
2496 		/*
2497 		 * Task isn't running anymore; make it appear like we migrated
2498 		 * it before it went to sleep. This means on wakeup we make the
2499 		 * previous CPU our target instead of where it really is.
2500 		 */
2501 		p->wake_cpu = cpu;
2502 	}
2503 }
2504 
2505 struct migration_swap_arg {
2506 	struct task_struct *src_task, *dst_task;
2507 	int src_cpu, dst_cpu;
2508 };
2509 
2510 static int migrate_swap_stop(void *data)
2511 {
2512 	struct migration_swap_arg *arg = data;
2513 	struct rq *src_rq, *dst_rq;
2514 	int ret = -EAGAIN;
2515 
2516 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2517 		return -EAGAIN;
2518 
2519 	src_rq = cpu_rq(arg->src_cpu);
2520 	dst_rq = cpu_rq(arg->dst_cpu);
2521 
2522 	double_raw_lock(&arg->src_task->pi_lock,
2523 			&arg->dst_task->pi_lock);
2524 	double_rq_lock(src_rq, dst_rq);
2525 
2526 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2527 		goto unlock;
2528 
2529 	if (task_cpu(arg->src_task) != arg->src_cpu)
2530 		goto unlock;
2531 
2532 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2533 		goto unlock;
2534 
2535 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2536 		goto unlock;
2537 
2538 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2539 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2540 
2541 	ret = 0;
2542 
2543 unlock:
2544 	double_rq_unlock(src_rq, dst_rq);
2545 	raw_spin_unlock(&arg->dst_task->pi_lock);
2546 	raw_spin_unlock(&arg->src_task->pi_lock);
2547 
2548 	return ret;
2549 }
2550 
2551 /*
2552  * Cross migrate two tasks
2553  */
2554 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2555 		int target_cpu, int curr_cpu)
2556 {
2557 	struct migration_swap_arg arg;
2558 	int ret = -EINVAL;
2559 
2560 	arg = (struct migration_swap_arg){
2561 		.src_task = cur,
2562 		.src_cpu = curr_cpu,
2563 		.dst_task = p,
2564 		.dst_cpu = target_cpu,
2565 	};
2566 
2567 	if (arg.src_cpu == arg.dst_cpu)
2568 		goto out;
2569 
2570 	/*
2571 	 * These three tests are all lockless; this is OK since all of them
2572 	 * will be re-checked with proper locks held further down the line.
2573 	 */
2574 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2575 		goto out;
2576 
2577 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2578 		goto out;
2579 
2580 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2581 		goto out;
2582 
2583 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2584 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2585 
2586 out:
2587 	return ret;
2588 }
2589 #endif /* CONFIG_NUMA_BALANCING */
2590 
2591 /*
2592  * wait_task_inactive - wait for a thread to unschedule.
2593  *
2594  * If @match_state is nonzero, it's the @p->state value just checked and
2595  * not expected to change.  If it changes, i.e. @p might have woken up,
2596  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2597  * we return a positive number (its total switch count).  If a second call
2598  * a short while later returns the same number, the caller can be sure that
2599  * @p has remained unscheduled the whole time.
2600  *
2601  * The caller must ensure that the task *will* unschedule sometime soon,
2602  * else this function might spin for a *long* time. This function can't
2603  * be called with interrupts off, or it may introduce deadlock with
2604  * smp_call_function() if an IPI is sent by the same process we are
2605  * waiting to become inactive.
2606  */
2607 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2608 {
2609 	int running, queued;
2610 	struct rq_flags rf;
2611 	unsigned long ncsw;
2612 	struct rq *rq;
2613 
2614 	for (;;) {
2615 		/*
2616 		 * We do the initial early heuristics without holding
2617 		 * any task-queue locks at all. We'll only try to get
2618 		 * the runqueue lock when things look like they will
2619 		 * work out!
2620 		 */
2621 		rq = task_rq(p);
2622 
2623 		/*
2624 		 * If the task is actively running on another CPU
2625 		 * still, just relax and busy-wait without holding
2626 		 * any locks.
2627 		 *
2628 		 * NOTE! Since we don't hold any locks, it's not
2629 		 * even sure that "rq" stays as the right runqueue!
2630 		 * But we don't care, since "task_running()" will
2631 		 * return false if the runqueue has changed and p
2632 		 * is actually now running somewhere else!
2633 		 */
2634 		while (task_running(rq, p)) {
2635 			if (match_state && unlikely(p->state != match_state))
2636 				return 0;
2637 			cpu_relax();
2638 		}
2639 
2640 		/*
2641 		 * Ok, time to look more closely! We need the rq
2642 		 * lock now, to be *sure*. If we're wrong, we'll
2643 		 * just go back and repeat.
2644 		 */
2645 		rq = task_rq_lock(p, &rf);
2646 		trace_sched_wait_task(p);
2647 		running = task_running(rq, p);
2648 		queued = task_on_rq_queued(p);
2649 		ncsw = 0;
2650 		if (!match_state || p->state == match_state)
2651 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2652 		task_rq_unlock(rq, p, &rf);
2653 
2654 		/*
2655 		 * If it changed from the expected state, bail out now.
2656 		 */
2657 		if (unlikely(!ncsw))
2658 			break;
2659 
2660 		/*
2661 		 * Was it really running after all now that we
2662 		 * checked with the proper locks actually held?
2663 		 *
2664 		 * Oops. Go back and try again..
2665 		 */
2666 		if (unlikely(running)) {
2667 			cpu_relax();
2668 			continue;
2669 		}
2670 
2671 		/*
2672 		 * It's not enough that it's not actively running,
2673 		 * it must be off the runqueue _entirely_, and not
2674 		 * preempted!
2675 		 *
2676 		 * So if it was still runnable (but just not actively
2677 		 * running right now), it's preempted, and we should
2678 		 * yield - it could be a while.
2679 		 */
2680 		if (unlikely(queued)) {
2681 			ktime_t to = NSEC_PER_SEC / HZ;
2682 
2683 			set_current_state(TASK_UNINTERRUPTIBLE);
2684 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2685 			continue;
2686 		}
2687 
2688 		/*
2689 		 * Ahh, all good. It wasn't running, and it wasn't
2690 		 * runnable, which means that it will never become
2691 		 * running in the future either. We're all done!
2692 		 */
2693 		break;
2694 	}
2695 
2696 	return ncsw;
2697 }
2698 
2699 /***
2700  * kick_process - kick a running thread to enter/exit the kernel
2701  * @p: the to-be-kicked thread
2702  *
2703  * Cause a process which is running on another CPU to enter
2704  * kernel-mode, without any delay. (to get signals handled.)
2705  *
2706  * NOTE: this function doesn't have to take the runqueue lock,
2707  * because all it wants to ensure is that the remote task enters
2708  * the kernel. If the IPI races and the task has been migrated
2709  * to another CPU then no harm is done and the purpose has been
2710  * achieved as well.
2711  */
2712 void kick_process(struct task_struct *p)
2713 {
2714 	int cpu;
2715 
2716 	preempt_disable();
2717 	cpu = task_cpu(p);
2718 	if ((cpu != smp_processor_id()) && task_curr(p))
2719 		smp_send_reschedule(cpu);
2720 	preempt_enable();
2721 }
2722 EXPORT_SYMBOL_GPL(kick_process);
2723 
2724 /*
2725  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2726  *
2727  * A few notes on cpu_active vs cpu_online:
2728  *
2729  *  - cpu_active must be a subset of cpu_online
2730  *
2731  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2732  *    see __set_cpus_allowed_ptr(). At this point the newly online
2733  *    CPU isn't yet part of the sched domains, and balancing will not
2734  *    see it.
2735  *
2736  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2737  *    avoid the load balancer to place new tasks on the to be removed
2738  *    CPU. Existing tasks will remain running there and will be taken
2739  *    off.
2740  *
2741  * This means that fallback selection must not select !active CPUs.
2742  * And can assume that any active CPU must be online. Conversely
2743  * select_task_rq() below may allow selection of !active CPUs in order
2744  * to satisfy the above rules.
2745  */
2746 static int select_fallback_rq(int cpu, struct task_struct *p)
2747 {
2748 	int nid = cpu_to_node(cpu);
2749 	const struct cpumask *nodemask = NULL;
2750 	enum { cpuset, possible, fail } state = cpuset;
2751 	int dest_cpu;
2752 
2753 	/*
2754 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2755 	 * will return -1. There is no CPU on the node, and we should
2756 	 * select the CPU on the other node.
2757 	 */
2758 	if (nid != -1) {
2759 		nodemask = cpumask_of_node(nid);
2760 
2761 		/* Look for allowed, online CPU in same node. */
2762 		for_each_cpu(dest_cpu, nodemask) {
2763 			if (!cpu_active(dest_cpu))
2764 				continue;
2765 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2766 				return dest_cpu;
2767 		}
2768 	}
2769 
2770 	for (;;) {
2771 		/* Any allowed, online CPU? */
2772 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2773 			if (!is_cpu_allowed(p, dest_cpu))
2774 				continue;
2775 
2776 			goto out;
2777 		}
2778 
2779 		/* No more Mr. Nice Guy. */
2780 		switch (state) {
2781 		case cpuset:
2782 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2783 				cpuset_cpus_allowed_fallback(p);
2784 				state = possible;
2785 				break;
2786 			}
2787 			fallthrough;
2788 		case possible:
2789 			/*
2790 			 * XXX When called from select_task_rq() we only
2791 			 * hold p->pi_lock and again violate locking order.
2792 			 *
2793 			 * More yuck to audit.
2794 			 */
2795 			do_set_cpus_allowed(p, cpu_possible_mask);
2796 			state = fail;
2797 			break;
2798 
2799 		case fail:
2800 			BUG();
2801 			break;
2802 		}
2803 	}
2804 
2805 out:
2806 	if (state != cpuset) {
2807 		/*
2808 		 * Don't tell them about moving exiting tasks or
2809 		 * kernel threads (both mm NULL), since they never
2810 		 * leave kernel.
2811 		 */
2812 		if (p->mm && printk_ratelimit()) {
2813 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2814 					task_pid_nr(p), p->comm, cpu);
2815 		}
2816 	}
2817 
2818 	return dest_cpu;
2819 }
2820 
2821 /*
2822  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2823  */
2824 static inline
2825 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2826 {
2827 	lockdep_assert_held(&p->pi_lock);
2828 
2829 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2830 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2831 	else
2832 		cpu = cpumask_any(p->cpus_ptr);
2833 
2834 	/*
2835 	 * In order not to call set_task_cpu() on a blocking task we need
2836 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2837 	 * CPU.
2838 	 *
2839 	 * Since this is common to all placement strategies, this lives here.
2840 	 *
2841 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2842 	 *   not worry about this generic constraint ]
2843 	 */
2844 	if (unlikely(!is_cpu_allowed(p, cpu)))
2845 		cpu = select_fallback_rq(task_cpu(p), p);
2846 
2847 	return cpu;
2848 }
2849 
2850 void sched_set_stop_task(int cpu, struct task_struct *stop)
2851 {
2852 	static struct lock_class_key stop_pi_lock;
2853 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2854 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2855 
2856 	if (stop) {
2857 		/*
2858 		 * Make it appear like a SCHED_FIFO task, its something
2859 		 * userspace knows about and won't get confused about.
2860 		 *
2861 		 * Also, it will make PI more or less work without too
2862 		 * much confusion -- but then, stop work should not
2863 		 * rely on PI working anyway.
2864 		 */
2865 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2866 
2867 		stop->sched_class = &stop_sched_class;
2868 
2869 		/*
2870 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2871 		 * adjust the effective priority of a task. As a result,
2872 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2873 		 * which can then trigger wakeups of the stop thread to push
2874 		 * around the current task.
2875 		 *
2876 		 * The stop task itself will never be part of the PI-chain, it
2877 		 * never blocks, therefore that ->pi_lock recursion is safe.
2878 		 * Tell lockdep about this by placing the stop->pi_lock in its
2879 		 * own class.
2880 		 */
2881 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2882 	}
2883 
2884 	cpu_rq(cpu)->stop = stop;
2885 
2886 	if (old_stop) {
2887 		/*
2888 		 * Reset it back to a normal scheduling class so that
2889 		 * it can die in pieces.
2890 		 */
2891 		old_stop->sched_class = &rt_sched_class;
2892 	}
2893 }
2894 
2895 #else /* CONFIG_SMP */
2896 
2897 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2898 					 const struct cpumask *new_mask,
2899 					 u32 flags)
2900 {
2901 	return set_cpus_allowed_ptr(p, new_mask);
2902 }
2903 
2904 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2905 
2906 static inline bool rq_has_pinned_tasks(struct rq *rq)
2907 {
2908 	return false;
2909 }
2910 
2911 #endif /* !CONFIG_SMP */
2912 
2913 static void
2914 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2915 {
2916 	struct rq *rq;
2917 
2918 	if (!schedstat_enabled())
2919 		return;
2920 
2921 	rq = this_rq();
2922 
2923 #ifdef CONFIG_SMP
2924 	if (cpu == rq->cpu) {
2925 		__schedstat_inc(rq->ttwu_local);
2926 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2927 	} else {
2928 		struct sched_domain *sd;
2929 
2930 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2931 		rcu_read_lock();
2932 		for_each_domain(rq->cpu, sd) {
2933 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2934 				__schedstat_inc(sd->ttwu_wake_remote);
2935 				break;
2936 			}
2937 		}
2938 		rcu_read_unlock();
2939 	}
2940 
2941 	if (wake_flags & WF_MIGRATED)
2942 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2943 #endif /* CONFIG_SMP */
2944 
2945 	__schedstat_inc(rq->ttwu_count);
2946 	__schedstat_inc(p->se.statistics.nr_wakeups);
2947 
2948 	if (wake_flags & WF_SYNC)
2949 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2950 }
2951 
2952 /*
2953  * Mark the task runnable and perform wakeup-preemption.
2954  */
2955 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2956 			   struct rq_flags *rf)
2957 {
2958 	check_preempt_curr(rq, p, wake_flags);
2959 	p->state = TASK_RUNNING;
2960 	trace_sched_wakeup(p);
2961 
2962 #ifdef CONFIG_SMP
2963 	if (p->sched_class->task_woken) {
2964 		/*
2965 		 * Our task @p is fully woken up and running; so it's safe to
2966 		 * drop the rq->lock, hereafter rq is only used for statistics.
2967 		 */
2968 		rq_unpin_lock(rq, rf);
2969 		p->sched_class->task_woken(rq, p);
2970 		rq_repin_lock(rq, rf);
2971 	}
2972 
2973 	if (rq->idle_stamp) {
2974 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2975 		u64 max = 2*rq->max_idle_balance_cost;
2976 
2977 		update_avg(&rq->avg_idle, delta);
2978 
2979 		if (rq->avg_idle > max)
2980 			rq->avg_idle = max;
2981 
2982 		rq->idle_stamp = 0;
2983 	}
2984 #endif
2985 }
2986 
2987 static void
2988 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2989 		 struct rq_flags *rf)
2990 {
2991 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2992 
2993 	lockdep_assert_held(&rq->lock);
2994 
2995 	if (p->sched_contributes_to_load)
2996 		rq->nr_uninterruptible--;
2997 
2998 #ifdef CONFIG_SMP
2999 	if (wake_flags & WF_MIGRATED)
3000 		en_flags |= ENQUEUE_MIGRATED;
3001 	else
3002 #endif
3003 	if (p->in_iowait) {
3004 		delayacct_blkio_end(p);
3005 		atomic_dec(&task_rq(p)->nr_iowait);
3006 	}
3007 
3008 	activate_task(rq, p, en_flags);
3009 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3010 }
3011 
3012 /*
3013  * Consider @p being inside a wait loop:
3014  *
3015  *   for (;;) {
3016  *      set_current_state(TASK_UNINTERRUPTIBLE);
3017  *
3018  *      if (CONDITION)
3019  *         break;
3020  *
3021  *      schedule();
3022  *   }
3023  *   __set_current_state(TASK_RUNNING);
3024  *
3025  * between set_current_state() and schedule(). In this case @p is still
3026  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3027  * an atomic manner.
3028  *
3029  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3030  * then schedule() must still happen and p->state can be changed to
3031  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3032  * need to do a full wakeup with enqueue.
3033  *
3034  * Returns: %true when the wakeup is done,
3035  *          %false otherwise.
3036  */
3037 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3038 {
3039 	struct rq_flags rf;
3040 	struct rq *rq;
3041 	int ret = 0;
3042 
3043 	rq = __task_rq_lock(p, &rf);
3044 	if (task_on_rq_queued(p)) {
3045 		/* check_preempt_curr() may use rq clock */
3046 		update_rq_clock(rq);
3047 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3048 		ret = 1;
3049 	}
3050 	__task_rq_unlock(rq, &rf);
3051 
3052 	return ret;
3053 }
3054 
3055 #ifdef CONFIG_SMP
3056 void sched_ttwu_pending(void *arg)
3057 {
3058 	struct llist_node *llist = arg;
3059 	struct rq *rq = this_rq();
3060 	struct task_struct *p, *t;
3061 	struct rq_flags rf;
3062 
3063 	if (!llist)
3064 		return;
3065 
3066 	/*
3067 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3068 	 * Races such that false-negatives are possible, since they
3069 	 * are shorter lived that false-positives would be.
3070 	 */
3071 	WRITE_ONCE(rq->ttwu_pending, 0);
3072 
3073 	rq_lock_irqsave(rq, &rf);
3074 	update_rq_clock(rq);
3075 
3076 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3077 		if (WARN_ON_ONCE(p->on_cpu))
3078 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3079 
3080 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3081 			set_task_cpu(p, cpu_of(rq));
3082 
3083 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3084 	}
3085 
3086 	rq_unlock_irqrestore(rq, &rf);
3087 }
3088 
3089 void send_call_function_single_ipi(int cpu)
3090 {
3091 	struct rq *rq = cpu_rq(cpu);
3092 
3093 	if (!set_nr_if_polling(rq->idle))
3094 		arch_send_call_function_single_ipi(cpu);
3095 	else
3096 		trace_sched_wake_idle_without_ipi(cpu);
3097 }
3098 
3099 /*
3100  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3101  * necessary. The wakee CPU on receipt of the IPI will queue the task
3102  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3103  * of the wakeup instead of the waker.
3104  */
3105 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3106 {
3107 	struct rq *rq = cpu_rq(cpu);
3108 
3109 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3110 
3111 	WRITE_ONCE(rq->ttwu_pending, 1);
3112 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3113 }
3114 
3115 void wake_up_if_idle(int cpu)
3116 {
3117 	struct rq *rq = cpu_rq(cpu);
3118 	struct rq_flags rf;
3119 
3120 	rcu_read_lock();
3121 
3122 	if (!is_idle_task(rcu_dereference(rq->curr)))
3123 		goto out;
3124 
3125 	if (set_nr_if_polling(rq->idle)) {
3126 		trace_sched_wake_idle_without_ipi(cpu);
3127 	} else {
3128 		rq_lock_irqsave(rq, &rf);
3129 		if (is_idle_task(rq->curr))
3130 			smp_send_reschedule(cpu);
3131 		/* Else CPU is not idle, do nothing here: */
3132 		rq_unlock_irqrestore(rq, &rf);
3133 	}
3134 
3135 out:
3136 	rcu_read_unlock();
3137 }
3138 
3139 bool cpus_share_cache(int this_cpu, int that_cpu)
3140 {
3141 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3142 }
3143 
3144 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3145 {
3146 	/*
3147 	 * Do not complicate things with the async wake_list while the CPU is
3148 	 * in hotplug state.
3149 	 */
3150 	if (!cpu_active(cpu))
3151 		return false;
3152 
3153 	/*
3154 	 * If the CPU does not share cache, then queue the task on the
3155 	 * remote rqs wakelist to avoid accessing remote data.
3156 	 */
3157 	if (!cpus_share_cache(smp_processor_id(), cpu))
3158 		return true;
3159 
3160 	/*
3161 	 * If the task is descheduling and the only running task on the
3162 	 * CPU then use the wakelist to offload the task activation to
3163 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3164 	 * nr_running is checked to avoid unnecessary task stacking.
3165 	 */
3166 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3167 		return true;
3168 
3169 	return false;
3170 }
3171 
3172 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3173 {
3174 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3175 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3176 			return false;
3177 
3178 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3179 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3180 		return true;
3181 	}
3182 
3183 	return false;
3184 }
3185 
3186 #else /* !CONFIG_SMP */
3187 
3188 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3189 {
3190 	return false;
3191 }
3192 
3193 #endif /* CONFIG_SMP */
3194 
3195 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3196 {
3197 	struct rq *rq = cpu_rq(cpu);
3198 	struct rq_flags rf;
3199 
3200 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3201 		return;
3202 
3203 	rq_lock(rq, &rf);
3204 	update_rq_clock(rq);
3205 	ttwu_do_activate(rq, p, wake_flags, &rf);
3206 	rq_unlock(rq, &rf);
3207 }
3208 
3209 /*
3210  * Notes on Program-Order guarantees on SMP systems.
3211  *
3212  *  MIGRATION
3213  *
3214  * The basic program-order guarantee on SMP systems is that when a task [t]
3215  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3216  * execution on its new CPU [c1].
3217  *
3218  * For migration (of runnable tasks) this is provided by the following means:
3219  *
3220  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3221  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3222  *     rq(c1)->lock (if not at the same time, then in that order).
3223  *  C) LOCK of the rq(c1)->lock scheduling in task
3224  *
3225  * Release/acquire chaining guarantees that B happens after A and C after B.
3226  * Note: the CPU doing B need not be c0 or c1
3227  *
3228  * Example:
3229  *
3230  *   CPU0            CPU1            CPU2
3231  *
3232  *   LOCK rq(0)->lock
3233  *   sched-out X
3234  *   sched-in Y
3235  *   UNLOCK rq(0)->lock
3236  *
3237  *                                   LOCK rq(0)->lock // orders against CPU0
3238  *                                   dequeue X
3239  *                                   UNLOCK rq(0)->lock
3240  *
3241  *                                   LOCK rq(1)->lock
3242  *                                   enqueue X
3243  *                                   UNLOCK rq(1)->lock
3244  *
3245  *                   LOCK rq(1)->lock // orders against CPU2
3246  *                   sched-out Z
3247  *                   sched-in X
3248  *                   UNLOCK rq(1)->lock
3249  *
3250  *
3251  *  BLOCKING -- aka. SLEEP + WAKEUP
3252  *
3253  * For blocking we (obviously) need to provide the same guarantee as for
3254  * migration. However the means are completely different as there is no lock
3255  * chain to provide order. Instead we do:
3256  *
3257  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3258  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3259  *
3260  * Example:
3261  *
3262  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3263  *
3264  *   LOCK rq(0)->lock LOCK X->pi_lock
3265  *   dequeue X
3266  *   sched-out X
3267  *   smp_store_release(X->on_cpu, 0);
3268  *
3269  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3270  *                    X->state = WAKING
3271  *                    set_task_cpu(X,2)
3272  *
3273  *                    LOCK rq(2)->lock
3274  *                    enqueue X
3275  *                    X->state = RUNNING
3276  *                    UNLOCK rq(2)->lock
3277  *
3278  *                                          LOCK rq(2)->lock // orders against CPU1
3279  *                                          sched-out Z
3280  *                                          sched-in X
3281  *                                          UNLOCK rq(2)->lock
3282  *
3283  *                    UNLOCK X->pi_lock
3284  *   UNLOCK rq(0)->lock
3285  *
3286  *
3287  * However, for wakeups there is a second guarantee we must provide, namely we
3288  * must ensure that CONDITION=1 done by the caller can not be reordered with
3289  * accesses to the task state; see try_to_wake_up() and set_current_state().
3290  */
3291 
3292 /**
3293  * try_to_wake_up - wake up a thread
3294  * @p: the thread to be awakened
3295  * @state: the mask of task states that can be woken
3296  * @wake_flags: wake modifier flags (WF_*)
3297  *
3298  * Conceptually does:
3299  *
3300  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3301  *
3302  * If the task was not queued/runnable, also place it back on a runqueue.
3303  *
3304  * This function is atomic against schedule() which would dequeue the task.
3305  *
3306  * It issues a full memory barrier before accessing @p->state, see the comment
3307  * with set_current_state().
3308  *
3309  * Uses p->pi_lock to serialize against concurrent wake-ups.
3310  *
3311  * Relies on p->pi_lock stabilizing:
3312  *  - p->sched_class
3313  *  - p->cpus_ptr
3314  *  - p->sched_task_group
3315  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3316  *
3317  * Tries really hard to only take one task_rq(p)->lock for performance.
3318  * Takes rq->lock in:
3319  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3320  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3321  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3322  *
3323  * As a consequence we race really badly with just about everything. See the
3324  * many memory barriers and their comments for details.
3325  *
3326  * Return: %true if @p->state changes (an actual wakeup was done),
3327  *	   %false otherwise.
3328  */
3329 static int
3330 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3331 {
3332 	unsigned long flags;
3333 	int cpu, success = 0;
3334 
3335 	preempt_disable();
3336 	if (p == current) {
3337 		/*
3338 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3339 		 * == smp_processor_id()'. Together this means we can special
3340 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3341 		 * without taking any locks.
3342 		 *
3343 		 * In particular:
3344 		 *  - we rely on Program-Order guarantees for all the ordering,
3345 		 *  - we're serialized against set_special_state() by virtue of
3346 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3347 		 */
3348 		if (!(p->state & state))
3349 			goto out;
3350 
3351 		success = 1;
3352 		trace_sched_waking(p);
3353 		p->state = TASK_RUNNING;
3354 		trace_sched_wakeup(p);
3355 		goto out;
3356 	}
3357 
3358 	/*
3359 	 * If we are going to wake up a thread waiting for CONDITION we
3360 	 * need to ensure that CONDITION=1 done by the caller can not be
3361 	 * reordered with p->state check below. This pairs with smp_store_mb()
3362 	 * in set_current_state() that the waiting thread does.
3363 	 */
3364 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3365 	smp_mb__after_spinlock();
3366 	if (!(p->state & state))
3367 		goto unlock;
3368 
3369 	trace_sched_waking(p);
3370 
3371 	/* We're going to change ->state: */
3372 	success = 1;
3373 
3374 	/*
3375 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3376 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3377 	 * in smp_cond_load_acquire() below.
3378 	 *
3379 	 * sched_ttwu_pending()			try_to_wake_up()
3380 	 *   STORE p->on_rq = 1			  LOAD p->state
3381 	 *   UNLOCK rq->lock
3382 	 *
3383 	 * __schedule() (switch to task 'p')
3384 	 *   LOCK rq->lock			  smp_rmb();
3385 	 *   smp_mb__after_spinlock();
3386 	 *   UNLOCK rq->lock
3387 	 *
3388 	 * [task p]
3389 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3390 	 *
3391 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3392 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3393 	 *
3394 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3395 	 */
3396 	smp_rmb();
3397 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3398 		goto unlock;
3399 
3400 #ifdef CONFIG_SMP
3401 	/*
3402 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3403 	 * possible to, falsely, observe p->on_cpu == 0.
3404 	 *
3405 	 * One must be running (->on_cpu == 1) in order to remove oneself
3406 	 * from the runqueue.
3407 	 *
3408 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3409 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3410 	 *   UNLOCK rq->lock
3411 	 *
3412 	 * __schedule() (put 'p' to sleep)
3413 	 *   LOCK rq->lock			  smp_rmb();
3414 	 *   smp_mb__after_spinlock();
3415 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3416 	 *
3417 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3418 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3419 	 *
3420 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3421 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3422 	 * care about it's own p->state. See the comment in __schedule().
3423 	 */
3424 	smp_acquire__after_ctrl_dep();
3425 
3426 	/*
3427 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3428 	 * == 0), which means we need to do an enqueue, change p->state to
3429 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3430 	 * enqueue, such as ttwu_queue_wakelist().
3431 	 */
3432 	p->state = TASK_WAKING;
3433 
3434 	/*
3435 	 * If the owning (remote) CPU is still in the middle of schedule() with
3436 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3437 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3438 	 * let the waker make forward progress. This is safe because IRQs are
3439 	 * disabled and the IPI will deliver after on_cpu is cleared.
3440 	 *
3441 	 * Ensure we load task_cpu(p) after p->on_cpu:
3442 	 *
3443 	 * set_task_cpu(p, cpu);
3444 	 *   STORE p->cpu = @cpu
3445 	 * __schedule() (switch to task 'p')
3446 	 *   LOCK rq->lock
3447 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3448 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3449 	 *
3450 	 * to ensure we observe the correct CPU on which the task is currently
3451 	 * scheduling.
3452 	 */
3453 	if (smp_load_acquire(&p->on_cpu) &&
3454 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3455 		goto unlock;
3456 
3457 	/*
3458 	 * If the owning (remote) CPU is still in the middle of schedule() with
3459 	 * this task as prev, wait until it's done referencing the task.
3460 	 *
3461 	 * Pairs with the smp_store_release() in finish_task().
3462 	 *
3463 	 * This ensures that tasks getting woken will be fully ordered against
3464 	 * their previous state and preserve Program Order.
3465 	 */
3466 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3467 
3468 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3469 	if (task_cpu(p) != cpu) {
3470 		if (p->in_iowait) {
3471 			delayacct_blkio_end(p);
3472 			atomic_dec(&task_rq(p)->nr_iowait);
3473 		}
3474 
3475 		wake_flags |= WF_MIGRATED;
3476 		psi_ttwu_dequeue(p);
3477 		set_task_cpu(p, cpu);
3478 	}
3479 #else
3480 	cpu = task_cpu(p);
3481 #endif /* CONFIG_SMP */
3482 
3483 	ttwu_queue(p, cpu, wake_flags);
3484 unlock:
3485 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3486 out:
3487 	if (success)
3488 		ttwu_stat(p, task_cpu(p), wake_flags);
3489 	preempt_enable();
3490 
3491 	return success;
3492 }
3493 
3494 /**
3495  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3496  * @p: Process for which the function is to be invoked, can be @current.
3497  * @func: Function to invoke.
3498  * @arg: Argument to function.
3499  *
3500  * If the specified task can be quickly locked into a definite state
3501  * (either sleeping or on a given runqueue), arrange to keep it in that
3502  * state while invoking @func(@arg).  This function can use ->on_rq and
3503  * task_curr() to work out what the state is, if required.  Given that
3504  * @func can be invoked with a runqueue lock held, it had better be quite
3505  * lightweight.
3506  *
3507  * Returns:
3508  *	@false if the task slipped out from under the locks.
3509  *	@true if the task was locked onto a runqueue or is sleeping.
3510  *		However, @func can override this by returning @false.
3511  */
3512 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3513 {
3514 	struct rq_flags rf;
3515 	bool ret = false;
3516 	struct rq *rq;
3517 
3518 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3519 	if (p->on_rq) {
3520 		rq = __task_rq_lock(p, &rf);
3521 		if (task_rq(p) == rq)
3522 			ret = func(p, arg);
3523 		rq_unlock(rq, &rf);
3524 	} else {
3525 		switch (p->state) {
3526 		case TASK_RUNNING:
3527 		case TASK_WAKING:
3528 			break;
3529 		default:
3530 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3531 			if (!p->on_rq)
3532 				ret = func(p, arg);
3533 		}
3534 	}
3535 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3536 	return ret;
3537 }
3538 
3539 /**
3540  * wake_up_process - Wake up a specific process
3541  * @p: The process to be woken up.
3542  *
3543  * Attempt to wake up the nominated process and move it to the set of runnable
3544  * processes.
3545  *
3546  * Return: 1 if the process was woken up, 0 if it was already running.
3547  *
3548  * This function executes a full memory barrier before accessing the task state.
3549  */
3550 int wake_up_process(struct task_struct *p)
3551 {
3552 	return try_to_wake_up(p, TASK_NORMAL, 0);
3553 }
3554 EXPORT_SYMBOL(wake_up_process);
3555 
3556 int wake_up_state(struct task_struct *p, unsigned int state)
3557 {
3558 	return try_to_wake_up(p, state, 0);
3559 }
3560 
3561 /*
3562  * Perform scheduler related setup for a newly forked process p.
3563  * p is forked by current.
3564  *
3565  * __sched_fork() is basic setup used by init_idle() too:
3566  */
3567 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3568 {
3569 	p->on_rq			= 0;
3570 
3571 	p->se.on_rq			= 0;
3572 	p->se.exec_start		= 0;
3573 	p->se.sum_exec_runtime		= 0;
3574 	p->se.prev_sum_exec_runtime	= 0;
3575 	p->se.nr_migrations		= 0;
3576 	p->se.vruntime			= 0;
3577 	INIT_LIST_HEAD(&p->se.group_node);
3578 
3579 #ifdef CONFIG_FAIR_GROUP_SCHED
3580 	p->se.cfs_rq			= NULL;
3581 #endif
3582 
3583 #ifdef CONFIG_SCHEDSTATS
3584 	/* Even if schedstat is disabled, there should not be garbage */
3585 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3586 #endif
3587 
3588 	RB_CLEAR_NODE(&p->dl.rb_node);
3589 	init_dl_task_timer(&p->dl);
3590 	init_dl_inactive_task_timer(&p->dl);
3591 	__dl_clear_params(p);
3592 
3593 	INIT_LIST_HEAD(&p->rt.run_list);
3594 	p->rt.timeout		= 0;
3595 	p->rt.time_slice	= sched_rr_timeslice;
3596 	p->rt.on_rq		= 0;
3597 	p->rt.on_list		= 0;
3598 
3599 #ifdef CONFIG_PREEMPT_NOTIFIERS
3600 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3601 #endif
3602 
3603 #ifdef CONFIG_COMPACTION
3604 	p->capture_control = NULL;
3605 #endif
3606 	init_numa_balancing(clone_flags, p);
3607 #ifdef CONFIG_SMP
3608 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3609 	p->migration_pending = NULL;
3610 #endif
3611 }
3612 
3613 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3614 
3615 #ifdef CONFIG_NUMA_BALANCING
3616 
3617 void set_numabalancing_state(bool enabled)
3618 {
3619 	if (enabled)
3620 		static_branch_enable(&sched_numa_balancing);
3621 	else
3622 		static_branch_disable(&sched_numa_balancing);
3623 }
3624 
3625 #ifdef CONFIG_PROC_SYSCTL
3626 int sysctl_numa_balancing(struct ctl_table *table, int write,
3627 			  void *buffer, size_t *lenp, loff_t *ppos)
3628 {
3629 	struct ctl_table t;
3630 	int err;
3631 	int state = static_branch_likely(&sched_numa_balancing);
3632 
3633 	if (write && !capable(CAP_SYS_ADMIN))
3634 		return -EPERM;
3635 
3636 	t = *table;
3637 	t.data = &state;
3638 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3639 	if (err < 0)
3640 		return err;
3641 	if (write)
3642 		set_numabalancing_state(state);
3643 	return err;
3644 }
3645 #endif
3646 #endif
3647 
3648 #ifdef CONFIG_SCHEDSTATS
3649 
3650 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3651 static bool __initdata __sched_schedstats = false;
3652 
3653 static void set_schedstats(bool enabled)
3654 {
3655 	if (enabled)
3656 		static_branch_enable(&sched_schedstats);
3657 	else
3658 		static_branch_disable(&sched_schedstats);
3659 }
3660 
3661 void force_schedstat_enabled(void)
3662 {
3663 	if (!schedstat_enabled()) {
3664 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3665 		static_branch_enable(&sched_schedstats);
3666 	}
3667 }
3668 
3669 static int __init setup_schedstats(char *str)
3670 {
3671 	int ret = 0;
3672 	if (!str)
3673 		goto out;
3674 
3675 	/*
3676 	 * This code is called before jump labels have been set up, so we can't
3677 	 * change the static branch directly just yet.  Instead set a temporary
3678 	 * variable so init_schedstats() can do it later.
3679 	 */
3680 	if (!strcmp(str, "enable")) {
3681 		__sched_schedstats = true;
3682 		ret = 1;
3683 	} else if (!strcmp(str, "disable")) {
3684 		__sched_schedstats = false;
3685 		ret = 1;
3686 	}
3687 out:
3688 	if (!ret)
3689 		pr_warn("Unable to parse schedstats=\n");
3690 
3691 	return ret;
3692 }
3693 __setup("schedstats=", setup_schedstats);
3694 
3695 static void __init init_schedstats(void)
3696 {
3697 	set_schedstats(__sched_schedstats);
3698 }
3699 
3700 #ifdef CONFIG_PROC_SYSCTL
3701 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3702 		size_t *lenp, loff_t *ppos)
3703 {
3704 	struct ctl_table t;
3705 	int err;
3706 	int state = static_branch_likely(&sched_schedstats);
3707 
3708 	if (write && !capable(CAP_SYS_ADMIN))
3709 		return -EPERM;
3710 
3711 	t = *table;
3712 	t.data = &state;
3713 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3714 	if (err < 0)
3715 		return err;
3716 	if (write)
3717 		set_schedstats(state);
3718 	return err;
3719 }
3720 #endif /* CONFIG_PROC_SYSCTL */
3721 #else  /* !CONFIG_SCHEDSTATS */
3722 static inline void init_schedstats(void) {}
3723 #endif /* CONFIG_SCHEDSTATS */
3724 
3725 /*
3726  * fork()/clone()-time setup:
3727  */
3728 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3729 {
3730 	unsigned long flags;
3731 
3732 	__sched_fork(clone_flags, p);
3733 	/*
3734 	 * We mark the process as NEW here. This guarantees that
3735 	 * nobody will actually run it, and a signal or other external
3736 	 * event cannot wake it up and insert it on the runqueue either.
3737 	 */
3738 	p->state = TASK_NEW;
3739 
3740 	/*
3741 	 * Make sure we do not leak PI boosting priority to the child.
3742 	 */
3743 	p->prio = current->normal_prio;
3744 
3745 	uclamp_fork(p);
3746 
3747 	/*
3748 	 * Revert to default priority/policy on fork if requested.
3749 	 */
3750 	if (unlikely(p->sched_reset_on_fork)) {
3751 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3752 			p->policy = SCHED_NORMAL;
3753 			p->static_prio = NICE_TO_PRIO(0);
3754 			p->rt_priority = 0;
3755 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3756 			p->static_prio = NICE_TO_PRIO(0);
3757 
3758 		p->prio = p->normal_prio = __normal_prio(p);
3759 		set_load_weight(p, false);
3760 
3761 		/*
3762 		 * We don't need the reset flag anymore after the fork. It has
3763 		 * fulfilled its duty:
3764 		 */
3765 		p->sched_reset_on_fork = 0;
3766 	}
3767 
3768 	if (dl_prio(p->prio))
3769 		return -EAGAIN;
3770 	else if (rt_prio(p->prio))
3771 		p->sched_class = &rt_sched_class;
3772 	else
3773 		p->sched_class = &fair_sched_class;
3774 
3775 	init_entity_runnable_average(&p->se);
3776 
3777 	/*
3778 	 * The child is not yet in the pid-hash so no cgroup attach races,
3779 	 * and the cgroup is pinned to this child due to cgroup_fork()
3780 	 * is ran before sched_fork().
3781 	 *
3782 	 * Silence PROVE_RCU.
3783 	 */
3784 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3785 	rseq_migrate(p);
3786 	/*
3787 	 * We're setting the CPU for the first time, we don't migrate,
3788 	 * so use __set_task_cpu().
3789 	 */
3790 	__set_task_cpu(p, smp_processor_id());
3791 	if (p->sched_class->task_fork)
3792 		p->sched_class->task_fork(p);
3793 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3794 
3795 #ifdef CONFIG_SCHED_INFO
3796 	if (likely(sched_info_on()))
3797 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3798 #endif
3799 #if defined(CONFIG_SMP)
3800 	p->on_cpu = 0;
3801 #endif
3802 	init_task_preempt_count(p);
3803 #ifdef CONFIG_SMP
3804 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3805 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3806 #endif
3807 	return 0;
3808 }
3809 
3810 void sched_post_fork(struct task_struct *p)
3811 {
3812 	uclamp_post_fork(p);
3813 }
3814 
3815 unsigned long to_ratio(u64 period, u64 runtime)
3816 {
3817 	if (runtime == RUNTIME_INF)
3818 		return BW_UNIT;
3819 
3820 	/*
3821 	 * Doing this here saves a lot of checks in all
3822 	 * the calling paths, and returning zero seems
3823 	 * safe for them anyway.
3824 	 */
3825 	if (period == 0)
3826 		return 0;
3827 
3828 	return div64_u64(runtime << BW_SHIFT, period);
3829 }
3830 
3831 /*
3832  * wake_up_new_task - wake up a newly created task for the first time.
3833  *
3834  * This function will do some initial scheduler statistics housekeeping
3835  * that must be done for every newly created context, then puts the task
3836  * on the runqueue and wakes it.
3837  */
3838 void wake_up_new_task(struct task_struct *p)
3839 {
3840 	struct rq_flags rf;
3841 	struct rq *rq;
3842 
3843 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3844 	p->state = TASK_RUNNING;
3845 #ifdef CONFIG_SMP
3846 	/*
3847 	 * Fork balancing, do it here and not earlier because:
3848 	 *  - cpus_ptr can change in the fork path
3849 	 *  - any previously selected CPU might disappear through hotplug
3850 	 *
3851 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3852 	 * as we're not fully set-up yet.
3853 	 */
3854 	p->recent_used_cpu = task_cpu(p);
3855 	rseq_migrate(p);
3856 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3857 #endif
3858 	rq = __task_rq_lock(p, &rf);
3859 	update_rq_clock(rq);
3860 	post_init_entity_util_avg(p);
3861 
3862 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3863 	trace_sched_wakeup_new(p);
3864 	check_preempt_curr(rq, p, WF_FORK);
3865 #ifdef CONFIG_SMP
3866 	if (p->sched_class->task_woken) {
3867 		/*
3868 		 * Nothing relies on rq->lock after this, so it's fine to
3869 		 * drop it.
3870 		 */
3871 		rq_unpin_lock(rq, &rf);
3872 		p->sched_class->task_woken(rq, p);
3873 		rq_repin_lock(rq, &rf);
3874 	}
3875 #endif
3876 	task_rq_unlock(rq, p, &rf);
3877 }
3878 
3879 #ifdef CONFIG_PREEMPT_NOTIFIERS
3880 
3881 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3882 
3883 void preempt_notifier_inc(void)
3884 {
3885 	static_branch_inc(&preempt_notifier_key);
3886 }
3887 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3888 
3889 void preempt_notifier_dec(void)
3890 {
3891 	static_branch_dec(&preempt_notifier_key);
3892 }
3893 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3894 
3895 /**
3896  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3897  * @notifier: notifier struct to register
3898  */
3899 void preempt_notifier_register(struct preempt_notifier *notifier)
3900 {
3901 	if (!static_branch_unlikely(&preempt_notifier_key))
3902 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3903 
3904 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3905 }
3906 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3907 
3908 /**
3909  * preempt_notifier_unregister - no longer interested in preemption notifications
3910  * @notifier: notifier struct to unregister
3911  *
3912  * This is *not* safe to call from within a preemption notifier.
3913  */
3914 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3915 {
3916 	hlist_del(&notifier->link);
3917 }
3918 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3919 
3920 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3921 {
3922 	struct preempt_notifier *notifier;
3923 
3924 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3925 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3926 }
3927 
3928 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3929 {
3930 	if (static_branch_unlikely(&preempt_notifier_key))
3931 		__fire_sched_in_preempt_notifiers(curr);
3932 }
3933 
3934 static void
3935 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3936 				   struct task_struct *next)
3937 {
3938 	struct preempt_notifier *notifier;
3939 
3940 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3941 		notifier->ops->sched_out(notifier, next);
3942 }
3943 
3944 static __always_inline void
3945 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3946 				 struct task_struct *next)
3947 {
3948 	if (static_branch_unlikely(&preempt_notifier_key))
3949 		__fire_sched_out_preempt_notifiers(curr, next);
3950 }
3951 
3952 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3953 
3954 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3955 {
3956 }
3957 
3958 static inline void
3959 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3960 				 struct task_struct *next)
3961 {
3962 }
3963 
3964 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3965 
3966 static inline void prepare_task(struct task_struct *next)
3967 {
3968 #ifdef CONFIG_SMP
3969 	/*
3970 	 * Claim the task as running, we do this before switching to it
3971 	 * such that any running task will have this set.
3972 	 *
3973 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3974 	 */
3975 	WRITE_ONCE(next->on_cpu, 1);
3976 #endif
3977 }
3978 
3979 static inline void finish_task(struct task_struct *prev)
3980 {
3981 #ifdef CONFIG_SMP
3982 	/*
3983 	 * This must be the very last reference to @prev from this CPU. After
3984 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3985 	 * must ensure this doesn't happen until the switch is completely
3986 	 * finished.
3987 	 *
3988 	 * In particular, the load of prev->state in finish_task_switch() must
3989 	 * happen before this.
3990 	 *
3991 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3992 	 */
3993 	smp_store_release(&prev->on_cpu, 0);
3994 #endif
3995 }
3996 
3997 #ifdef CONFIG_SMP
3998 
3999 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4000 {
4001 	void (*func)(struct rq *rq);
4002 	struct callback_head *next;
4003 
4004 	lockdep_assert_held(&rq->lock);
4005 
4006 	while (head) {
4007 		func = (void (*)(struct rq *))head->func;
4008 		next = head->next;
4009 		head->next = NULL;
4010 		head = next;
4011 
4012 		func(rq);
4013 	}
4014 }
4015 
4016 static void balance_push(struct rq *rq);
4017 
4018 struct callback_head balance_push_callback = {
4019 	.next = NULL,
4020 	.func = (void (*)(struct callback_head *))balance_push,
4021 };
4022 
4023 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4024 {
4025 	struct callback_head *head = rq->balance_callback;
4026 
4027 	lockdep_assert_held(&rq->lock);
4028 	if (head)
4029 		rq->balance_callback = NULL;
4030 
4031 	return head;
4032 }
4033 
4034 static void __balance_callbacks(struct rq *rq)
4035 {
4036 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4037 }
4038 
4039 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4040 {
4041 	unsigned long flags;
4042 
4043 	if (unlikely(head)) {
4044 		raw_spin_lock_irqsave(&rq->lock, flags);
4045 		do_balance_callbacks(rq, head);
4046 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4047 	}
4048 }
4049 
4050 #else
4051 
4052 static inline void __balance_callbacks(struct rq *rq)
4053 {
4054 }
4055 
4056 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4057 {
4058 	return NULL;
4059 }
4060 
4061 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4062 {
4063 }
4064 
4065 #endif
4066 
4067 static inline void
4068 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4069 {
4070 	/*
4071 	 * Since the runqueue lock will be released by the next
4072 	 * task (which is an invalid locking op but in the case
4073 	 * of the scheduler it's an obvious special-case), so we
4074 	 * do an early lockdep release here:
4075 	 */
4076 	rq_unpin_lock(rq, rf);
4077 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4078 #ifdef CONFIG_DEBUG_SPINLOCK
4079 	/* this is a valid case when another task releases the spinlock */
4080 	rq->lock.owner = next;
4081 #endif
4082 }
4083 
4084 static inline void finish_lock_switch(struct rq *rq)
4085 {
4086 	/*
4087 	 * If we are tracking spinlock dependencies then we have to
4088 	 * fix up the runqueue lock - which gets 'carried over' from
4089 	 * prev into current:
4090 	 */
4091 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4092 	__balance_callbacks(rq);
4093 	raw_spin_unlock_irq(&rq->lock);
4094 }
4095 
4096 /*
4097  * NOP if the arch has not defined these:
4098  */
4099 
4100 #ifndef prepare_arch_switch
4101 # define prepare_arch_switch(next)	do { } while (0)
4102 #endif
4103 
4104 #ifndef finish_arch_post_lock_switch
4105 # define finish_arch_post_lock_switch()	do { } while (0)
4106 #endif
4107 
4108 static inline void kmap_local_sched_out(void)
4109 {
4110 #ifdef CONFIG_KMAP_LOCAL
4111 	if (unlikely(current->kmap_ctrl.idx))
4112 		__kmap_local_sched_out();
4113 #endif
4114 }
4115 
4116 static inline void kmap_local_sched_in(void)
4117 {
4118 #ifdef CONFIG_KMAP_LOCAL
4119 	if (unlikely(current->kmap_ctrl.idx))
4120 		__kmap_local_sched_in();
4121 #endif
4122 }
4123 
4124 /**
4125  * prepare_task_switch - prepare to switch tasks
4126  * @rq: the runqueue preparing to switch
4127  * @prev: the current task that is being switched out
4128  * @next: the task we are going to switch to.
4129  *
4130  * This is called with the rq lock held and interrupts off. It must
4131  * be paired with a subsequent finish_task_switch after the context
4132  * switch.
4133  *
4134  * prepare_task_switch sets up locking and calls architecture specific
4135  * hooks.
4136  */
4137 static inline void
4138 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4139 		    struct task_struct *next)
4140 {
4141 	kcov_prepare_switch(prev);
4142 	sched_info_switch(rq, prev, next);
4143 	perf_event_task_sched_out(prev, next);
4144 	rseq_preempt(prev);
4145 	fire_sched_out_preempt_notifiers(prev, next);
4146 	kmap_local_sched_out();
4147 	prepare_task(next);
4148 	prepare_arch_switch(next);
4149 }
4150 
4151 /**
4152  * finish_task_switch - clean up after a task-switch
4153  * @prev: the thread we just switched away from.
4154  *
4155  * finish_task_switch must be called after the context switch, paired
4156  * with a prepare_task_switch call before the context switch.
4157  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4158  * and do any other architecture-specific cleanup actions.
4159  *
4160  * Note that we may have delayed dropping an mm in context_switch(). If
4161  * so, we finish that here outside of the runqueue lock. (Doing it
4162  * with the lock held can cause deadlocks; see schedule() for
4163  * details.)
4164  *
4165  * The context switch have flipped the stack from under us and restored the
4166  * local variables which were saved when this task called schedule() in the
4167  * past. prev == current is still correct but we need to recalculate this_rq
4168  * because prev may have moved to another CPU.
4169  */
4170 static struct rq *finish_task_switch(struct task_struct *prev)
4171 	__releases(rq->lock)
4172 {
4173 	struct rq *rq = this_rq();
4174 	struct mm_struct *mm = rq->prev_mm;
4175 	long prev_state;
4176 
4177 	/*
4178 	 * The previous task will have left us with a preempt_count of 2
4179 	 * because it left us after:
4180 	 *
4181 	 *	schedule()
4182 	 *	  preempt_disable();			// 1
4183 	 *	  __schedule()
4184 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4185 	 *
4186 	 * Also, see FORK_PREEMPT_COUNT.
4187 	 */
4188 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4189 		      "corrupted preempt_count: %s/%d/0x%x\n",
4190 		      current->comm, current->pid, preempt_count()))
4191 		preempt_count_set(FORK_PREEMPT_COUNT);
4192 
4193 	rq->prev_mm = NULL;
4194 
4195 	/*
4196 	 * A task struct has one reference for the use as "current".
4197 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4198 	 * schedule one last time. The schedule call will never return, and
4199 	 * the scheduled task must drop that reference.
4200 	 *
4201 	 * We must observe prev->state before clearing prev->on_cpu (in
4202 	 * finish_task), otherwise a concurrent wakeup can get prev
4203 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4204 	 * transition, resulting in a double drop.
4205 	 */
4206 	prev_state = prev->state;
4207 	vtime_task_switch(prev);
4208 	perf_event_task_sched_in(prev, current);
4209 	finish_task(prev);
4210 	finish_lock_switch(rq);
4211 	finish_arch_post_lock_switch();
4212 	kcov_finish_switch(current);
4213 	/*
4214 	 * kmap_local_sched_out() is invoked with rq::lock held and
4215 	 * interrupts disabled. There is no requirement for that, but the
4216 	 * sched out code does not have an interrupt enabled section.
4217 	 * Restoring the maps on sched in does not require interrupts being
4218 	 * disabled either.
4219 	 */
4220 	kmap_local_sched_in();
4221 
4222 	fire_sched_in_preempt_notifiers(current);
4223 	/*
4224 	 * When switching through a kernel thread, the loop in
4225 	 * membarrier_{private,global}_expedited() may have observed that
4226 	 * kernel thread and not issued an IPI. It is therefore possible to
4227 	 * schedule between user->kernel->user threads without passing though
4228 	 * switch_mm(). Membarrier requires a barrier after storing to
4229 	 * rq->curr, before returning to userspace, so provide them here:
4230 	 *
4231 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4232 	 *   provided by mmdrop(),
4233 	 * - a sync_core for SYNC_CORE.
4234 	 */
4235 	if (mm) {
4236 		membarrier_mm_sync_core_before_usermode(mm);
4237 		mmdrop(mm);
4238 	}
4239 	if (unlikely(prev_state == TASK_DEAD)) {
4240 		if (prev->sched_class->task_dead)
4241 			prev->sched_class->task_dead(prev);
4242 
4243 		/*
4244 		 * Remove function-return probe instances associated with this
4245 		 * task and put them back on the free list.
4246 		 */
4247 		kprobe_flush_task(prev);
4248 
4249 		/* Task is done with its stack. */
4250 		put_task_stack(prev);
4251 
4252 		put_task_struct_rcu_user(prev);
4253 	}
4254 
4255 	tick_nohz_task_switch();
4256 	return rq;
4257 }
4258 
4259 /**
4260  * schedule_tail - first thing a freshly forked thread must call.
4261  * @prev: the thread we just switched away from.
4262  */
4263 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4264 	__releases(rq->lock)
4265 {
4266 	/*
4267 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4268 	 * finish_task_switch() for details.
4269 	 *
4270 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4271 	 * and the preempt_enable() will end up enabling preemption (on
4272 	 * PREEMPT_COUNT kernels).
4273 	 */
4274 
4275 	finish_task_switch(prev);
4276 	preempt_enable();
4277 
4278 	if (current->set_child_tid)
4279 		put_user(task_pid_vnr(current), current->set_child_tid);
4280 
4281 	calculate_sigpending();
4282 }
4283 
4284 /*
4285  * context_switch - switch to the new MM and the new thread's register state.
4286  */
4287 static __always_inline struct rq *
4288 context_switch(struct rq *rq, struct task_struct *prev,
4289 	       struct task_struct *next, struct rq_flags *rf)
4290 {
4291 	prepare_task_switch(rq, prev, next);
4292 
4293 	/*
4294 	 * For paravirt, this is coupled with an exit in switch_to to
4295 	 * combine the page table reload and the switch backend into
4296 	 * one hypercall.
4297 	 */
4298 	arch_start_context_switch(prev);
4299 
4300 	/*
4301 	 * kernel -> kernel   lazy + transfer active
4302 	 *   user -> kernel   lazy + mmgrab() active
4303 	 *
4304 	 * kernel ->   user   switch + mmdrop() active
4305 	 *   user ->   user   switch
4306 	 */
4307 	if (!next->mm) {                                // to kernel
4308 		enter_lazy_tlb(prev->active_mm, next);
4309 
4310 		next->active_mm = prev->active_mm;
4311 		if (prev->mm)                           // from user
4312 			mmgrab(prev->active_mm);
4313 		else
4314 			prev->active_mm = NULL;
4315 	} else {                                        // to user
4316 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4317 		/*
4318 		 * sys_membarrier() requires an smp_mb() between setting
4319 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4320 		 *
4321 		 * The below provides this either through switch_mm(), or in
4322 		 * case 'prev->active_mm == next->mm' through
4323 		 * finish_task_switch()'s mmdrop().
4324 		 */
4325 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4326 
4327 		if (!prev->mm) {                        // from kernel
4328 			/* will mmdrop() in finish_task_switch(). */
4329 			rq->prev_mm = prev->active_mm;
4330 			prev->active_mm = NULL;
4331 		}
4332 	}
4333 
4334 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4335 
4336 	prepare_lock_switch(rq, next, rf);
4337 
4338 	/* Here we just switch the register state and the stack. */
4339 	switch_to(prev, next, prev);
4340 	barrier();
4341 
4342 	return finish_task_switch(prev);
4343 }
4344 
4345 /*
4346  * nr_running and nr_context_switches:
4347  *
4348  * externally visible scheduler statistics: current number of runnable
4349  * threads, total number of context switches performed since bootup.
4350  */
4351 unsigned long nr_running(void)
4352 {
4353 	unsigned long i, sum = 0;
4354 
4355 	for_each_online_cpu(i)
4356 		sum += cpu_rq(i)->nr_running;
4357 
4358 	return sum;
4359 }
4360 
4361 /*
4362  * Check if only the current task is running on the CPU.
4363  *
4364  * Caution: this function does not check that the caller has disabled
4365  * preemption, thus the result might have a time-of-check-to-time-of-use
4366  * race.  The caller is responsible to use it correctly, for example:
4367  *
4368  * - from a non-preemptible section (of course)
4369  *
4370  * - from a thread that is bound to a single CPU
4371  *
4372  * - in a loop with very short iterations (e.g. a polling loop)
4373  */
4374 bool single_task_running(void)
4375 {
4376 	return raw_rq()->nr_running == 1;
4377 }
4378 EXPORT_SYMBOL(single_task_running);
4379 
4380 unsigned long long nr_context_switches(void)
4381 {
4382 	int i;
4383 	unsigned long long sum = 0;
4384 
4385 	for_each_possible_cpu(i)
4386 		sum += cpu_rq(i)->nr_switches;
4387 
4388 	return sum;
4389 }
4390 
4391 /*
4392  * Consumers of these two interfaces, like for example the cpuidle menu
4393  * governor, are using nonsensical data. Preferring shallow idle state selection
4394  * for a CPU that has IO-wait which might not even end up running the task when
4395  * it does become runnable.
4396  */
4397 
4398 unsigned long nr_iowait_cpu(int cpu)
4399 {
4400 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4401 }
4402 
4403 /*
4404  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4405  *
4406  * The idea behind IO-wait account is to account the idle time that we could
4407  * have spend running if it were not for IO. That is, if we were to improve the
4408  * storage performance, we'd have a proportional reduction in IO-wait time.
4409  *
4410  * This all works nicely on UP, where, when a task blocks on IO, we account
4411  * idle time as IO-wait, because if the storage were faster, it could've been
4412  * running and we'd not be idle.
4413  *
4414  * This has been extended to SMP, by doing the same for each CPU. This however
4415  * is broken.
4416  *
4417  * Imagine for instance the case where two tasks block on one CPU, only the one
4418  * CPU will have IO-wait accounted, while the other has regular idle. Even
4419  * though, if the storage were faster, both could've ran at the same time,
4420  * utilising both CPUs.
4421  *
4422  * This means, that when looking globally, the current IO-wait accounting on
4423  * SMP is a lower bound, by reason of under accounting.
4424  *
4425  * Worse, since the numbers are provided per CPU, they are sometimes
4426  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4427  * associated with any one particular CPU, it can wake to another CPU than it
4428  * blocked on. This means the per CPU IO-wait number is meaningless.
4429  *
4430  * Task CPU affinities can make all that even more 'interesting'.
4431  */
4432 
4433 unsigned long nr_iowait(void)
4434 {
4435 	unsigned long i, sum = 0;
4436 
4437 	for_each_possible_cpu(i)
4438 		sum += nr_iowait_cpu(i);
4439 
4440 	return sum;
4441 }
4442 
4443 #ifdef CONFIG_SMP
4444 
4445 /*
4446  * sched_exec - execve() is a valuable balancing opportunity, because at
4447  * this point the task has the smallest effective memory and cache footprint.
4448  */
4449 void sched_exec(void)
4450 {
4451 	struct task_struct *p = current;
4452 	unsigned long flags;
4453 	int dest_cpu;
4454 
4455 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4456 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4457 	if (dest_cpu == smp_processor_id())
4458 		goto unlock;
4459 
4460 	if (likely(cpu_active(dest_cpu))) {
4461 		struct migration_arg arg = { p, dest_cpu };
4462 
4463 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4464 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4465 		return;
4466 	}
4467 unlock:
4468 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4469 }
4470 
4471 #endif
4472 
4473 DEFINE_PER_CPU(struct kernel_stat, kstat);
4474 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4475 
4476 EXPORT_PER_CPU_SYMBOL(kstat);
4477 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4478 
4479 /*
4480  * The function fair_sched_class.update_curr accesses the struct curr
4481  * and its field curr->exec_start; when called from task_sched_runtime(),
4482  * we observe a high rate of cache misses in practice.
4483  * Prefetching this data results in improved performance.
4484  */
4485 static inline void prefetch_curr_exec_start(struct task_struct *p)
4486 {
4487 #ifdef CONFIG_FAIR_GROUP_SCHED
4488 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4489 #else
4490 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4491 #endif
4492 	prefetch(curr);
4493 	prefetch(&curr->exec_start);
4494 }
4495 
4496 /*
4497  * Return accounted runtime for the task.
4498  * In case the task is currently running, return the runtime plus current's
4499  * pending runtime that have not been accounted yet.
4500  */
4501 unsigned long long task_sched_runtime(struct task_struct *p)
4502 {
4503 	struct rq_flags rf;
4504 	struct rq *rq;
4505 	u64 ns;
4506 
4507 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4508 	/*
4509 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4510 	 * So we have a optimization chance when the task's delta_exec is 0.
4511 	 * Reading ->on_cpu is racy, but this is ok.
4512 	 *
4513 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4514 	 * If we race with it entering CPU, unaccounted time is 0. This is
4515 	 * indistinguishable from the read occurring a few cycles earlier.
4516 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4517 	 * been accounted, so we're correct here as well.
4518 	 */
4519 	if (!p->on_cpu || !task_on_rq_queued(p))
4520 		return p->se.sum_exec_runtime;
4521 #endif
4522 
4523 	rq = task_rq_lock(p, &rf);
4524 	/*
4525 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4526 	 * project cycles that may never be accounted to this
4527 	 * thread, breaking clock_gettime().
4528 	 */
4529 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4530 		prefetch_curr_exec_start(p);
4531 		update_rq_clock(rq);
4532 		p->sched_class->update_curr(rq);
4533 	}
4534 	ns = p->se.sum_exec_runtime;
4535 	task_rq_unlock(rq, p, &rf);
4536 
4537 	return ns;
4538 }
4539 
4540 #ifdef CONFIG_SCHED_DEBUG
4541 static u64 cpu_resched_latency(struct rq *rq)
4542 {
4543 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4544 	u64 resched_latency, now = rq_clock(rq);
4545 	static bool warned_once;
4546 
4547 	if (sysctl_resched_latency_warn_once && warned_once)
4548 		return 0;
4549 
4550 	if (!need_resched() || !latency_warn_ms)
4551 		return 0;
4552 
4553 	if (system_state == SYSTEM_BOOTING)
4554 		return 0;
4555 
4556 	if (!rq->last_seen_need_resched_ns) {
4557 		rq->last_seen_need_resched_ns = now;
4558 		rq->ticks_without_resched = 0;
4559 		return 0;
4560 	}
4561 
4562 	rq->ticks_without_resched++;
4563 	resched_latency = now - rq->last_seen_need_resched_ns;
4564 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4565 		return 0;
4566 
4567 	warned_once = true;
4568 
4569 	return resched_latency;
4570 }
4571 
4572 static int __init setup_resched_latency_warn_ms(char *str)
4573 {
4574 	long val;
4575 
4576 	if ((kstrtol(str, 0, &val))) {
4577 		pr_warn("Unable to set resched_latency_warn_ms\n");
4578 		return 1;
4579 	}
4580 
4581 	sysctl_resched_latency_warn_ms = val;
4582 	return 1;
4583 }
4584 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4585 #else
4586 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4587 #endif /* CONFIG_SCHED_DEBUG */
4588 
4589 /*
4590  * This function gets called by the timer code, with HZ frequency.
4591  * We call it with interrupts disabled.
4592  */
4593 void scheduler_tick(void)
4594 {
4595 	int cpu = smp_processor_id();
4596 	struct rq *rq = cpu_rq(cpu);
4597 	struct task_struct *curr = rq->curr;
4598 	struct rq_flags rf;
4599 	unsigned long thermal_pressure;
4600 	u64 resched_latency;
4601 
4602 	arch_scale_freq_tick();
4603 	sched_clock_tick();
4604 
4605 	rq_lock(rq, &rf);
4606 
4607 	update_rq_clock(rq);
4608 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4609 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4610 	curr->sched_class->task_tick(rq, curr, 0);
4611 	if (sched_feat(LATENCY_WARN))
4612 		resched_latency = cpu_resched_latency(rq);
4613 	calc_global_load_tick(rq);
4614 
4615 	rq_unlock(rq, &rf);
4616 
4617 	if (sched_feat(LATENCY_WARN) && resched_latency)
4618 		resched_latency_warn(cpu, resched_latency);
4619 
4620 	perf_event_task_tick();
4621 
4622 #ifdef CONFIG_SMP
4623 	rq->idle_balance = idle_cpu(cpu);
4624 	trigger_load_balance(rq);
4625 #endif
4626 }
4627 
4628 #ifdef CONFIG_NO_HZ_FULL
4629 
4630 struct tick_work {
4631 	int			cpu;
4632 	atomic_t		state;
4633 	struct delayed_work	work;
4634 };
4635 /* Values for ->state, see diagram below. */
4636 #define TICK_SCHED_REMOTE_OFFLINE	0
4637 #define TICK_SCHED_REMOTE_OFFLINING	1
4638 #define TICK_SCHED_REMOTE_RUNNING	2
4639 
4640 /*
4641  * State diagram for ->state:
4642  *
4643  *
4644  *          TICK_SCHED_REMOTE_OFFLINE
4645  *                    |   ^
4646  *                    |   |
4647  *                    |   | sched_tick_remote()
4648  *                    |   |
4649  *                    |   |
4650  *                    +--TICK_SCHED_REMOTE_OFFLINING
4651  *                    |   ^
4652  *                    |   |
4653  * sched_tick_start() |   | sched_tick_stop()
4654  *                    |   |
4655  *                    V   |
4656  *          TICK_SCHED_REMOTE_RUNNING
4657  *
4658  *
4659  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4660  * and sched_tick_start() are happy to leave the state in RUNNING.
4661  */
4662 
4663 static struct tick_work __percpu *tick_work_cpu;
4664 
4665 static void sched_tick_remote(struct work_struct *work)
4666 {
4667 	struct delayed_work *dwork = to_delayed_work(work);
4668 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4669 	int cpu = twork->cpu;
4670 	struct rq *rq = cpu_rq(cpu);
4671 	struct task_struct *curr;
4672 	struct rq_flags rf;
4673 	u64 delta;
4674 	int os;
4675 
4676 	/*
4677 	 * Handle the tick only if it appears the remote CPU is running in full
4678 	 * dynticks mode. The check is racy by nature, but missing a tick or
4679 	 * having one too much is no big deal because the scheduler tick updates
4680 	 * statistics and checks timeslices in a time-independent way, regardless
4681 	 * of when exactly it is running.
4682 	 */
4683 	if (!tick_nohz_tick_stopped_cpu(cpu))
4684 		goto out_requeue;
4685 
4686 	rq_lock_irq(rq, &rf);
4687 	curr = rq->curr;
4688 	if (cpu_is_offline(cpu))
4689 		goto out_unlock;
4690 
4691 	update_rq_clock(rq);
4692 
4693 	if (!is_idle_task(curr)) {
4694 		/*
4695 		 * Make sure the next tick runs within a reasonable
4696 		 * amount of time.
4697 		 */
4698 		delta = rq_clock_task(rq) - curr->se.exec_start;
4699 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4700 	}
4701 	curr->sched_class->task_tick(rq, curr, 0);
4702 
4703 	calc_load_nohz_remote(rq);
4704 out_unlock:
4705 	rq_unlock_irq(rq, &rf);
4706 out_requeue:
4707 
4708 	/*
4709 	 * Run the remote tick once per second (1Hz). This arbitrary
4710 	 * frequency is large enough to avoid overload but short enough
4711 	 * to keep scheduler internal stats reasonably up to date.  But
4712 	 * first update state to reflect hotplug activity if required.
4713 	 */
4714 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4715 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4716 	if (os == TICK_SCHED_REMOTE_RUNNING)
4717 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4718 }
4719 
4720 static void sched_tick_start(int cpu)
4721 {
4722 	int os;
4723 	struct tick_work *twork;
4724 
4725 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4726 		return;
4727 
4728 	WARN_ON_ONCE(!tick_work_cpu);
4729 
4730 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4731 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4732 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4733 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4734 		twork->cpu = cpu;
4735 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4736 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4737 	}
4738 }
4739 
4740 #ifdef CONFIG_HOTPLUG_CPU
4741 static void sched_tick_stop(int cpu)
4742 {
4743 	struct tick_work *twork;
4744 	int os;
4745 
4746 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4747 		return;
4748 
4749 	WARN_ON_ONCE(!tick_work_cpu);
4750 
4751 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4752 	/* There cannot be competing actions, but don't rely on stop-machine. */
4753 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4754 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4755 	/* Don't cancel, as this would mess up the state machine. */
4756 }
4757 #endif /* CONFIG_HOTPLUG_CPU */
4758 
4759 int __init sched_tick_offload_init(void)
4760 {
4761 	tick_work_cpu = alloc_percpu(struct tick_work);
4762 	BUG_ON(!tick_work_cpu);
4763 	return 0;
4764 }
4765 
4766 #else /* !CONFIG_NO_HZ_FULL */
4767 static inline void sched_tick_start(int cpu) { }
4768 static inline void sched_tick_stop(int cpu) { }
4769 #endif
4770 
4771 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4772 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4773 /*
4774  * If the value passed in is equal to the current preempt count
4775  * then we just disabled preemption. Start timing the latency.
4776  */
4777 static inline void preempt_latency_start(int val)
4778 {
4779 	if (preempt_count() == val) {
4780 		unsigned long ip = get_lock_parent_ip();
4781 #ifdef CONFIG_DEBUG_PREEMPT
4782 		current->preempt_disable_ip = ip;
4783 #endif
4784 		trace_preempt_off(CALLER_ADDR0, ip);
4785 	}
4786 }
4787 
4788 void preempt_count_add(int val)
4789 {
4790 #ifdef CONFIG_DEBUG_PREEMPT
4791 	/*
4792 	 * Underflow?
4793 	 */
4794 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4795 		return;
4796 #endif
4797 	__preempt_count_add(val);
4798 #ifdef CONFIG_DEBUG_PREEMPT
4799 	/*
4800 	 * Spinlock count overflowing soon?
4801 	 */
4802 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4803 				PREEMPT_MASK - 10);
4804 #endif
4805 	preempt_latency_start(val);
4806 }
4807 EXPORT_SYMBOL(preempt_count_add);
4808 NOKPROBE_SYMBOL(preempt_count_add);
4809 
4810 /*
4811  * If the value passed in equals to the current preempt count
4812  * then we just enabled preemption. Stop timing the latency.
4813  */
4814 static inline void preempt_latency_stop(int val)
4815 {
4816 	if (preempt_count() == val)
4817 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4818 }
4819 
4820 void preempt_count_sub(int val)
4821 {
4822 #ifdef CONFIG_DEBUG_PREEMPT
4823 	/*
4824 	 * Underflow?
4825 	 */
4826 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4827 		return;
4828 	/*
4829 	 * Is the spinlock portion underflowing?
4830 	 */
4831 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4832 			!(preempt_count() & PREEMPT_MASK)))
4833 		return;
4834 #endif
4835 
4836 	preempt_latency_stop(val);
4837 	__preempt_count_sub(val);
4838 }
4839 EXPORT_SYMBOL(preempt_count_sub);
4840 NOKPROBE_SYMBOL(preempt_count_sub);
4841 
4842 #else
4843 static inline void preempt_latency_start(int val) { }
4844 static inline void preempt_latency_stop(int val) { }
4845 #endif
4846 
4847 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4848 {
4849 #ifdef CONFIG_DEBUG_PREEMPT
4850 	return p->preempt_disable_ip;
4851 #else
4852 	return 0;
4853 #endif
4854 }
4855 
4856 /*
4857  * Print scheduling while atomic bug:
4858  */
4859 static noinline void __schedule_bug(struct task_struct *prev)
4860 {
4861 	/* Save this before calling printk(), since that will clobber it */
4862 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4863 
4864 	if (oops_in_progress)
4865 		return;
4866 
4867 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4868 		prev->comm, prev->pid, preempt_count());
4869 
4870 	debug_show_held_locks(prev);
4871 	print_modules();
4872 	if (irqs_disabled())
4873 		print_irqtrace_events(prev);
4874 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4875 	    && in_atomic_preempt_off()) {
4876 		pr_err("Preemption disabled at:");
4877 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4878 	}
4879 	if (panic_on_warn)
4880 		panic("scheduling while atomic\n");
4881 
4882 	dump_stack();
4883 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4884 }
4885 
4886 /*
4887  * Various schedule()-time debugging checks and statistics:
4888  */
4889 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4890 {
4891 #ifdef CONFIG_SCHED_STACK_END_CHECK
4892 	if (task_stack_end_corrupted(prev))
4893 		panic("corrupted stack end detected inside scheduler\n");
4894 
4895 	if (task_scs_end_corrupted(prev))
4896 		panic("corrupted shadow stack detected inside scheduler\n");
4897 #endif
4898 
4899 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4900 	if (!preempt && prev->state && prev->non_block_count) {
4901 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4902 			prev->comm, prev->pid, prev->non_block_count);
4903 		dump_stack();
4904 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4905 	}
4906 #endif
4907 
4908 	if (unlikely(in_atomic_preempt_off())) {
4909 		__schedule_bug(prev);
4910 		preempt_count_set(PREEMPT_DISABLED);
4911 	}
4912 	rcu_sleep_check();
4913 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4914 
4915 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4916 
4917 	schedstat_inc(this_rq()->sched_count);
4918 }
4919 
4920 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4921 				  struct rq_flags *rf)
4922 {
4923 #ifdef CONFIG_SMP
4924 	const struct sched_class *class;
4925 	/*
4926 	 * We must do the balancing pass before put_prev_task(), such
4927 	 * that when we release the rq->lock the task is in the same
4928 	 * state as before we took rq->lock.
4929 	 *
4930 	 * We can terminate the balance pass as soon as we know there is
4931 	 * a runnable task of @class priority or higher.
4932 	 */
4933 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4934 		if (class->balance(rq, prev, rf))
4935 			break;
4936 	}
4937 #endif
4938 
4939 	put_prev_task(rq, prev);
4940 }
4941 
4942 /*
4943  * Pick up the highest-prio task:
4944  */
4945 static inline struct task_struct *
4946 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4947 {
4948 	const struct sched_class *class;
4949 	struct task_struct *p;
4950 
4951 	/*
4952 	 * Optimization: we know that if all tasks are in the fair class we can
4953 	 * call that function directly, but only if the @prev task wasn't of a
4954 	 * higher scheduling class, because otherwise those lose the
4955 	 * opportunity to pull in more work from other CPUs.
4956 	 */
4957 	if (likely(prev->sched_class <= &fair_sched_class &&
4958 		   rq->nr_running == rq->cfs.h_nr_running)) {
4959 
4960 		p = pick_next_task_fair(rq, prev, rf);
4961 		if (unlikely(p == RETRY_TASK))
4962 			goto restart;
4963 
4964 		/* Assumes fair_sched_class->next == idle_sched_class */
4965 		if (!p) {
4966 			put_prev_task(rq, prev);
4967 			p = pick_next_task_idle(rq);
4968 		}
4969 
4970 		return p;
4971 	}
4972 
4973 restart:
4974 	put_prev_task_balance(rq, prev, rf);
4975 
4976 	for_each_class(class) {
4977 		p = class->pick_next_task(rq);
4978 		if (p)
4979 			return p;
4980 	}
4981 
4982 	/* The idle class should always have a runnable task: */
4983 	BUG();
4984 }
4985 
4986 /*
4987  * __schedule() is the main scheduler function.
4988  *
4989  * The main means of driving the scheduler and thus entering this function are:
4990  *
4991  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4992  *
4993  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4994  *      paths. For example, see arch/x86/entry_64.S.
4995  *
4996  *      To drive preemption between tasks, the scheduler sets the flag in timer
4997  *      interrupt handler scheduler_tick().
4998  *
4999  *   3. Wakeups don't really cause entry into schedule(). They add a
5000  *      task to the run-queue and that's it.
5001  *
5002  *      Now, if the new task added to the run-queue preempts the current
5003  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5004  *      called on the nearest possible occasion:
5005  *
5006  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
5007  *
5008  *         - in syscall or exception context, at the next outmost
5009  *           preempt_enable(). (this might be as soon as the wake_up()'s
5010  *           spin_unlock()!)
5011  *
5012  *         - in IRQ context, return from interrupt-handler to
5013  *           preemptible context
5014  *
5015  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
5016  *         then at the next:
5017  *
5018  *          - cond_resched() call
5019  *          - explicit schedule() call
5020  *          - return from syscall or exception to user-space
5021  *          - return from interrupt-handler to user-space
5022  *
5023  * WARNING: must be called with preemption disabled!
5024  */
5025 static void __sched notrace __schedule(bool preempt)
5026 {
5027 	struct task_struct *prev, *next;
5028 	unsigned long *switch_count;
5029 	unsigned long prev_state;
5030 	struct rq_flags rf;
5031 	struct rq *rq;
5032 	int cpu;
5033 
5034 	cpu = smp_processor_id();
5035 	rq = cpu_rq(cpu);
5036 	prev = rq->curr;
5037 
5038 	schedule_debug(prev, preempt);
5039 
5040 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
5041 		hrtick_clear(rq);
5042 
5043 	local_irq_disable();
5044 	rcu_note_context_switch(preempt);
5045 
5046 	/*
5047 	 * Make sure that signal_pending_state()->signal_pending() below
5048 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
5049 	 * done by the caller to avoid the race with signal_wake_up():
5050 	 *
5051 	 * __set_current_state(@state)		signal_wake_up()
5052 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
5053 	 *					  wake_up_state(p, state)
5054 	 *   LOCK rq->lock			    LOCK p->pi_state
5055 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
5056 	 *     if (signal_pending_state())	    if (p->state & @state)
5057 	 *
5058 	 * Also, the membarrier system call requires a full memory barrier
5059 	 * after coming from user-space, before storing to rq->curr.
5060 	 */
5061 	rq_lock(rq, &rf);
5062 	smp_mb__after_spinlock();
5063 
5064 	/* Promote REQ to ACT */
5065 	rq->clock_update_flags <<= 1;
5066 	update_rq_clock(rq);
5067 
5068 	switch_count = &prev->nivcsw;
5069 
5070 	/*
5071 	 * We must load prev->state once (task_struct::state is volatile), such
5072 	 * that:
5073 	 *
5074 	 *  - we form a control dependency vs deactivate_task() below.
5075 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5076 	 */
5077 	prev_state = prev->state;
5078 	if (!preempt && prev_state) {
5079 		if (signal_pending_state(prev_state, prev)) {
5080 			prev->state = TASK_RUNNING;
5081 		} else {
5082 			prev->sched_contributes_to_load =
5083 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5084 				!(prev_state & TASK_NOLOAD) &&
5085 				!(prev->flags & PF_FROZEN);
5086 
5087 			if (prev->sched_contributes_to_load)
5088 				rq->nr_uninterruptible++;
5089 
5090 			/*
5091 			 * __schedule()			ttwu()
5092 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5093 			 *   if (prev_state)		    goto out;
5094 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5095 			 *				  p->state = TASK_WAKING
5096 			 *
5097 			 * Where __schedule() and ttwu() have matching control dependencies.
5098 			 *
5099 			 * After this, schedule() must not care about p->state any more.
5100 			 */
5101 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5102 
5103 			if (prev->in_iowait) {
5104 				atomic_inc(&rq->nr_iowait);
5105 				delayacct_blkio_start();
5106 			}
5107 		}
5108 		switch_count = &prev->nvcsw;
5109 	}
5110 
5111 	next = pick_next_task(rq, prev, &rf);
5112 	clear_tsk_need_resched(prev);
5113 	clear_preempt_need_resched();
5114 #ifdef CONFIG_SCHED_DEBUG
5115 	rq->last_seen_need_resched_ns = 0;
5116 #endif
5117 
5118 	if (likely(prev != next)) {
5119 		rq->nr_switches++;
5120 		/*
5121 		 * RCU users of rcu_dereference(rq->curr) may not see
5122 		 * changes to task_struct made by pick_next_task().
5123 		 */
5124 		RCU_INIT_POINTER(rq->curr, next);
5125 		/*
5126 		 * The membarrier system call requires each architecture
5127 		 * to have a full memory barrier after updating
5128 		 * rq->curr, before returning to user-space.
5129 		 *
5130 		 * Here are the schemes providing that barrier on the
5131 		 * various architectures:
5132 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5133 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5134 		 * - finish_lock_switch() for weakly-ordered
5135 		 *   architectures where spin_unlock is a full barrier,
5136 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5137 		 *   is a RELEASE barrier),
5138 		 */
5139 		++*switch_count;
5140 
5141 		migrate_disable_switch(rq, prev);
5142 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5143 
5144 		trace_sched_switch(preempt, prev, next);
5145 
5146 		/* Also unlocks the rq: */
5147 		rq = context_switch(rq, prev, next, &rf);
5148 	} else {
5149 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5150 
5151 		rq_unpin_lock(rq, &rf);
5152 		__balance_callbacks(rq);
5153 		raw_spin_unlock_irq(&rq->lock);
5154 	}
5155 }
5156 
5157 void __noreturn do_task_dead(void)
5158 {
5159 	/* Causes final put_task_struct in finish_task_switch(): */
5160 	set_special_state(TASK_DEAD);
5161 
5162 	/* Tell freezer to ignore us: */
5163 	current->flags |= PF_NOFREEZE;
5164 
5165 	__schedule(false);
5166 	BUG();
5167 
5168 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5169 	for (;;)
5170 		cpu_relax();
5171 }
5172 
5173 static inline void sched_submit_work(struct task_struct *tsk)
5174 {
5175 	unsigned int task_flags;
5176 
5177 	if (!tsk->state)
5178 		return;
5179 
5180 	task_flags = tsk->flags;
5181 	/*
5182 	 * If a worker went to sleep, notify and ask workqueue whether
5183 	 * it wants to wake up a task to maintain concurrency.
5184 	 * As this function is called inside the schedule() context,
5185 	 * we disable preemption to avoid it calling schedule() again
5186 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5187 	 * requires it.
5188 	 */
5189 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5190 		preempt_disable();
5191 		if (task_flags & PF_WQ_WORKER)
5192 			wq_worker_sleeping(tsk);
5193 		else
5194 			io_wq_worker_sleeping(tsk);
5195 		preempt_enable_no_resched();
5196 	}
5197 
5198 	if (tsk_is_pi_blocked(tsk))
5199 		return;
5200 
5201 	/*
5202 	 * If we are going to sleep and we have plugged IO queued,
5203 	 * make sure to submit it to avoid deadlocks.
5204 	 */
5205 	if (blk_needs_flush_plug(tsk))
5206 		blk_schedule_flush_plug(tsk);
5207 }
5208 
5209 static void sched_update_worker(struct task_struct *tsk)
5210 {
5211 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5212 		if (tsk->flags & PF_WQ_WORKER)
5213 			wq_worker_running(tsk);
5214 		else
5215 			io_wq_worker_running(tsk);
5216 	}
5217 }
5218 
5219 asmlinkage __visible void __sched schedule(void)
5220 {
5221 	struct task_struct *tsk = current;
5222 
5223 	sched_submit_work(tsk);
5224 	do {
5225 		preempt_disable();
5226 		__schedule(false);
5227 		sched_preempt_enable_no_resched();
5228 	} while (need_resched());
5229 	sched_update_worker(tsk);
5230 }
5231 EXPORT_SYMBOL(schedule);
5232 
5233 /*
5234  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5235  * state (have scheduled out non-voluntarily) by making sure that all
5236  * tasks have either left the run queue or have gone into user space.
5237  * As idle tasks do not do either, they must not ever be preempted
5238  * (schedule out non-voluntarily).
5239  *
5240  * schedule_idle() is similar to schedule_preempt_disable() except that it
5241  * never enables preemption because it does not call sched_submit_work().
5242  */
5243 void __sched schedule_idle(void)
5244 {
5245 	/*
5246 	 * As this skips calling sched_submit_work(), which the idle task does
5247 	 * regardless because that function is a nop when the task is in a
5248 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5249 	 * current task can be in any other state. Note, idle is always in the
5250 	 * TASK_RUNNING state.
5251 	 */
5252 	WARN_ON_ONCE(current->state);
5253 	do {
5254 		__schedule(false);
5255 	} while (need_resched());
5256 }
5257 
5258 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5259 asmlinkage __visible void __sched schedule_user(void)
5260 {
5261 	/*
5262 	 * If we come here after a random call to set_need_resched(),
5263 	 * or we have been woken up remotely but the IPI has not yet arrived,
5264 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5265 	 * we find a better solution.
5266 	 *
5267 	 * NB: There are buggy callers of this function.  Ideally we
5268 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5269 	 * too frequently to make sense yet.
5270 	 */
5271 	enum ctx_state prev_state = exception_enter();
5272 	schedule();
5273 	exception_exit(prev_state);
5274 }
5275 #endif
5276 
5277 /**
5278  * schedule_preempt_disabled - called with preemption disabled
5279  *
5280  * Returns with preemption disabled. Note: preempt_count must be 1
5281  */
5282 void __sched schedule_preempt_disabled(void)
5283 {
5284 	sched_preempt_enable_no_resched();
5285 	schedule();
5286 	preempt_disable();
5287 }
5288 
5289 static void __sched notrace preempt_schedule_common(void)
5290 {
5291 	do {
5292 		/*
5293 		 * Because the function tracer can trace preempt_count_sub()
5294 		 * and it also uses preempt_enable/disable_notrace(), if
5295 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5296 		 * by the function tracer will call this function again and
5297 		 * cause infinite recursion.
5298 		 *
5299 		 * Preemption must be disabled here before the function
5300 		 * tracer can trace. Break up preempt_disable() into two
5301 		 * calls. One to disable preemption without fear of being
5302 		 * traced. The other to still record the preemption latency,
5303 		 * which can also be traced by the function tracer.
5304 		 */
5305 		preempt_disable_notrace();
5306 		preempt_latency_start(1);
5307 		__schedule(true);
5308 		preempt_latency_stop(1);
5309 		preempt_enable_no_resched_notrace();
5310 
5311 		/*
5312 		 * Check again in case we missed a preemption opportunity
5313 		 * between schedule and now.
5314 		 */
5315 	} while (need_resched());
5316 }
5317 
5318 #ifdef CONFIG_PREEMPTION
5319 /*
5320  * This is the entry point to schedule() from in-kernel preemption
5321  * off of preempt_enable.
5322  */
5323 asmlinkage __visible void __sched notrace preempt_schedule(void)
5324 {
5325 	/*
5326 	 * If there is a non-zero preempt_count or interrupts are disabled,
5327 	 * we do not want to preempt the current task. Just return..
5328 	 */
5329 	if (likely(!preemptible()))
5330 		return;
5331 
5332 	preempt_schedule_common();
5333 }
5334 NOKPROBE_SYMBOL(preempt_schedule);
5335 EXPORT_SYMBOL(preempt_schedule);
5336 
5337 #ifdef CONFIG_PREEMPT_DYNAMIC
5338 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
5339 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
5340 #endif
5341 
5342 
5343 /**
5344  * preempt_schedule_notrace - preempt_schedule called by tracing
5345  *
5346  * The tracing infrastructure uses preempt_enable_notrace to prevent
5347  * recursion and tracing preempt enabling caused by the tracing
5348  * infrastructure itself. But as tracing can happen in areas coming
5349  * from userspace or just about to enter userspace, a preempt enable
5350  * can occur before user_exit() is called. This will cause the scheduler
5351  * to be called when the system is still in usermode.
5352  *
5353  * To prevent this, the preempt_enable_notrace will use this function
5354  * instead of preempt_schedule() to exit user context if needed before
5355  * calling the scheduler.
5356  */
5357 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5358 {
5359 	enum ctx_state prev_ctx;
5360 
5361 	if (likely(!preemptible()))
5362 		return;
5363 
5364 	do {
5365 		/*
5366 		 * Because the function tracer can trace preempt_count_sub()
5367 		 * and it also uses preempt_enable/disable_notrace(), if
5368 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5369 		 * by the function tracer will call this function again and
5370 		 * cause infinite recursion.
5371 		 *
5372 		 * Preemption must be disabled here before the function
5373 		 * tracer can trace. Break up preempt_disable() into two
5374 		 * calls. One to disable preemption without fear of being
5375 		 * traced. The other to still record the preemption latency,
5376 		 * which can also be traced by the function tracer.
5377 		 */
5378 		preempt_disable_notrace();
5379 		preempt_latency_start(1);
5380 		/*
5381 		 * Needs preempt disabled in case user_exit() is traced
5382 		 * and the tracer calls preempt_enable_notrace() causing
5383 		 * an infinite recursion.
5384 		 */
5385 		prev_ctx = exception_enter();
5386 		__schedule(true);
5387 		exception_exit(prev_ctx);
5388 
5389 		preempt_latency_stop(1);
5390 		preempt_enable_no_resched_notrace();
5391 	} while (need_resched());
5392 }
5393 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5394 
5395 #ifdef CONFIG_PREEMPT_DYNAMIC
5396 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5397 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
5398 #endif
5399 
5400 #endif /* CONFIG_PREEMPTION */
5401 
5402 #ifdef CONFIG_PREEMPT_DYNAMIC
5403 
5404 #include <linux/entry-common.h>
5405 
5406 /*
5407  * SC:cond_resched
5408  * SC:might_resched
5409  * SC:preempt_schedule
5410  * SC:preempt_schedule_notrace
5411  * SC:irqentry_exit_cond_resched
5412  *
5413  *
5414  * NONE:
5415  *   cond_resched               <- __cond_resched
5416  *   might_resched              <- RET0
5417  *   preempt_schedule           <- NOP
5418  *   preempt_schedule_notrace   <- NOP
5419  *   irqentry_exit_cond_resched <- NOP
5420  *
5421  * VOLUNTARY:
5422  *   cond_resched               <- __cond_resched
5423  *   might_resched              <- __cond_resched
5424  *   preempt_schedule           <- NOP
5425  *   preempt_schedule_notrace   <- NOP
5426  *   irqentry_exit_cond_resched <- NOP
5427  *
5428  * FULL:
5429  *   cond_resched               <- RET0
5430  *   might_resched              <- RET0
5431  *   preempt_schedule           <- preempt_schedule
5432  *   preempt_schedule_notrace   <- preempt_schedule_notrace
5433  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5434  */
5435 
5436 enum {
5437 	preempt_dynamic_none = 0,
5438 	preempt_dynamic_voluntary,
5439 	preempt_dynamic_full,
5440 };
5441 
5442 int preempt_dynamic_mode = preempt_dynamic_full;
5443 
5444 int sched_dynamic_mode(const char *str)
5445 {
5446 	if (!strcmp(str, "none"))
5447 		return preempt_dynamic_none;
5448 
5449 	if (!strcmp(str, "voluntary"))
5450 		return preempt_dynamic_voluntary;
5451 
5452 	if (!strcmp(str, "full"))
5453 		return preempt_dynamic_full;
5454 
5455 	return -EINVAL;
5456 }
5457 
5458 void sched_dynamic_update(int mode)
5459 {
5460 	/*
5461 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5462 	 * the ZERO state, which is invalid.
5463 	 */
5464 	static_call_update(cond_resched, __cond_resched);
5465 	static_call_update(might_resched, __cond_resched);
5466 	static_call_update(preempt_schedule, __preempt_schedule_func);
5467 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5468 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5469 
5470 	switch (mode) {
5471 	case preempt_dynamic_none:
5472 		static_call_update(cond_resched, __cond_resched);
5473 		static_call_update(might_resched, (void *)&__static_call_return0);
5474 		static_call_update(preempt_schedule, NULL);
5475 		static_call_update(preempt_schedule_notrace, NULL);
5476 		static_call_update(irqentry_exit_cond_resched, NULL);
5477 		pr_info("Dynamic Preempt: none\n");
5478 		break;
5479 
5480 	case preempt_dynamic_voluntary:
5481 		static_call_update(cond_resched, __cond_resched);
5482 		static_call_update(might_resched, __cond_resched);
5483 		static_call_update(preempt_schedule, NULL);
5484 		static_call_update(preempt_schedule_notrace, NULL);
5485 		static_call_update(irqentry_exit_cond_resched, NULL);
5486 		pr_info("Dynamic Preempt: voluntary\n");
5487 		break;
5488 
5489 	case preempt_dynamic_full:
5490 		static_call_update(cond_resched, (void *)&__static_call_return0);
5491 		static_call_update(might_resched, (void *)&__static_call_return0);
5492 		static_call_update(preempt_schedule, __preempt_schedule_func);
5493 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5494 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5495 		pr_info("Dynamic Preempt: full\n");
5496 		break;
5497 	}
5498 
5499 	preempt_dynamic_mode = mode;
5500 }
5501 
5502 static int __init setup_preempt_mode(char *str)
5503 {
5504 	int mode = sched_dynamic_mode(str);
5505 	if (mode < 0) {
5506 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
5507 		return 1;
5508 	}
5509 
5510 	sched_dynamic_update(mode);
5511 	return 0;
5512 }
5513 __setup("preempt=", setup_preempt_mode);
5514 
5515 #endif /* CONFIG_PREEMPT_DYNAMIC */
5516 
5517 /*
5518  * This is the entry point to schedule() from kernel preemption
5519  * off of irq context.
5520  * Note, that this is called and return with irqs disabled. This will
5521  * protect us against recursive calling from irq.
5522  */
5523 asmlinkage __visible void __sched preempt_schedule_irq(void)
5524 {
5525 	enum ctx_state prev_state;
5526 
5527 	/* Catch callers which need to be fixed */
5528 	BUG_ON(preempt_count() || !irqs_disabled());
5529 
5530 	prev_state = exception_enter();
5531 
5532 	do {
5533 		preempt_disable();
5534 		local_irq_enable();
5535 		__schedule(true);
5536 		local_irq_disable();
5537 		sched_preempt_enable_no_resched();
5538 	} while (need_resched());
5539 
5540 	exception_exit(prev_state);
5541 }
5542 
5543 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5544 			  void *key)
5545 {
5546 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5547 	return try_to_wake_up(curr->private, mode, wake_flags);
5548 }
5549 EXPORT_SYMBOL(default_wake_function);
5550 
5551 #ifdef CONFIG_RT_MUTEXES
5552 
5553 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5554 {
5555 	if (pi_task)
5556 		prio = min(prio, pi_task->prio);
5557 
5558 	return prio;
5559 }
5560 
5561 static inline int rt_effective_prio(struct task_struct *p, int prio)
5562 {
5563 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5564 
5565 	return __rt_effective_prio(pi_task, prio);
5566 }
5567 
5568 /*
5569  * rt_mutex_setprio - set the current priority of a task
5570  * @p: task to boost
5571  * @pi_task: donor task
5572  *
5573  * This function changes the 'effective' priority of a task. It does
5574  * not touch ->normal_prio like __setscheduler().
5575  *
5576  * Used by the rt_mutex code to implement priority inheritance
5577  * logic. Call site only calls if the priority of the task changed.
5578  */
5579 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5580 {
5581 	int prio, oldprio, queued, running, queue_flag =
5582 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5583 	const struct sched_class *prev_class;
5584 	struct rq_flags rf;
5585 	struct rq *rq;
5586 
5587 	/* XXX used to be waiter->prio, not waiter->task->prio */
5588 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5589 
5590 	/*
5591 	 * If nothing changed; bail early.
5592 	 */
5593 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5594 		return;
5595 
5596 	rq = __task_rq_lock(p, &rf);
5597 	update_rq_clock(rq);
5598 	/*
5599 	 * Set under pi_lock && rq->lock, such that the value can be used under
5600 	 * either lock.
5601 	 *
5602 	 * Note that there is loads of tricky to make this pointer cache work
5603 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5604 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5605 	 * task is allowed to run again (and can exit). This ensures the pointer
5606 	 * points to a blocked task -- which guarantees the task is present.
5607 	 */
5608 	p->pi_top_task = pi_task;
5609 
5610 	/*
5611 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5612 	 */
5613 	if (prio == p->prio && !dl_prio(prio))
5614 		goto out_unlock;
5615 
5616 	/*
5617 	 * Idle task boosting is a nono in general. There is one
5618 	 * exception, when PREEMPT_RT and NOHZ is active:
5619 	 *
5620 	 * The idle task calls get_next_timer_interrupt() and holds
5621 	 * the timer wheel base->lock on the CPU and another CPU wants
5622 	 * to access the timer (probably to cancel it). We can safely
5623 	 * ignore the boosting request, as the idle CPU runs this code
5624 	 * with interrupts disabled and will complete the lock
5625 	 * protected section without being interrupted. So there is no
5626 	 * real need to boost.
5627 	 */
5628 	if (unlikely(p == rq->idle)) {
5629 		WARN_ON(p != rq->curr);
5630 		WARN_ON(p->pi_blocked_on);
5631 		goto out_unlock;
5632 	}
5633 
5634 	trace_sched_pi_setprio(p, pi_task);
5635 	oldprio = p->prio;
5636 
5637 	if (oldprio == prio)
5638 		queue_flag &= ~DEQUEUE_MOVE;
5639 
5640 	prev_class = p->sched_class;
5641 	queued = task_on_rq_queued(p);
5642 	running = task_current(rq, p);
5643 	if (queued)
5644 		dequeue_task(rq, p, queue_flag);
5645 	if (running)
5646 		put_prev_task(rq, p);
5647 
5648 	/*
5649 	 * Boosting condition are:
5650 	 * 1. -rt task is running and holds mutex A
5651 	 *      --> -dl task blocks on mutex A
5652 	 *
5653 	 * 2. -dl task is running and holds mutex A
5654 	 *      --> -dl task blocks on mutex A and could preempt the
5655 	 *          running task
5656 	 */
5657 	if (dl_prio(prio)) {
5658 		if (!dl_prio(p->normal_prio) ||
5659 		    (pi_task && dl_prio(pi_task->prio) &&
5660 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5661 			p->dl.pi_se = pi_task->dl.pi_se;
5662 			queue_flag |= ENQUEUE_REPLENISH;
5663 		} else {
5664 			p->dl.pi_se = &p->dl;
5665 		}
5666 		p->sched_class = &dl_sched_class;
5667 	} else if (rt_prio(prio)) {
5668 		if (dl_prio(oldprio))
5669 			p->dl.pi_se = &p->dl;
5670 		if (oldprio < prio)
5671 			queue_flag |= ENQUEUE_HEAD;
5672 		p->sched_class = &rt_sched_class;
5673 	} else {
5674 		if (dl_prio(oldprio))
5675 			p->dl.pi_se = &p->dl;
5676 		if (rt_prio(oldprio))
5677 			p->rt.timeout = 0;
5678 		p->sched_class = &fair_sched_class;
5679 	}
5680 
5681 	p->prio = prio;
5682 
5683 	if (queued)
5684 		enqueue_task(rq, p, queue_flag);
5685 	if (running)
5686 		set_next_task(rq, p);
5687 
5688 	check_class_changed(rq, p, prev_class, oldprio);
5689 out_unlock:
5690 	/* Avoid rq from going away on us: */
5691 	preempt_disable();
5692 
5693 	rq_unpin_lock(rq, &rf);
5694 	__balance_callbacks(rq);
5695 	raw_spin_unlock(&rq->lock);
5696 
5697 	preempt_enable();
5698 }
5699 #else
5700 static inline int rt_effective_prio(struct task_struct *p, int prio)
5701 {
5702 	return prio;
5703 }
5704 #endif
5705 
5706 void set_user_nice(struct task_struct *p, long nice)
5707 {
5708 	bool queued, running;
5709 	int old_prio;
5710 	struct rq_flags rf;
5711 	struct rq *rq;
5712 
5713 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5714 		return;
5715 	/*
5716 	 * We have to be careful, if called from sys_setpriority(),
5717 	 * the task might be in the middle of scheduling on another CPU.
5718 	 */
5719 	rq = task_rq_lock(p, &rf);
5720 	update_rq_clock(rq);
5721 
5722 	/*
5723 	 * The RT priorities are set via sched_setscheduler(), but we still
5724 	 * allow the 'normal' nice value to be set - but as expected
5725 	 * it won't have any effect on scheduling until the task is
5726 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5727 	 */
5728 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5729 		p->static_prio = NICE_TO_PRIO(nice);
5730 		goto out_unlock;
5731 	}
5732 	queued = task_on_rq_queued(p);
5733 	running = task_current(rq, p);
5734 	if (queued)
5735 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5736 	if (running)
5737 		put_prev_task(rq, p);
5738 
5739 	p->static_prio = NICE_TO_PRIO(nice);
5740 	set_load_weight(p, true);
5741 	old_prio = p->prio;
5742 	p->prio = effective_prio(p);
5743 
5744 	if (queued)
5745 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5746 	if (running)
5747 		set_next_task(rq, p);
5748 
5749 	/*
5750 	 * If the task increased its priority or is running and
5751 	 * lowered its priority, then reschedule its CPU:
5752 	 */
5753 	p->sched_class->prio_changed(rq, p, old_prio);
5754 
5755 out_unlock:
5756 	task_rq_unlock(rq, p, &rf);
5757 }
5758 EXPORT_SYMBOL(set_user_nice);
5759 
5760 /*
5761  * can_nice - check if a task can reduce its nice value
5762  * @p: task
5763  * @nice: nice value
5764  */
5765 int can_nice(const struct task_struct *p, const int nice)
5766 {
5767 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5768 	int nice_rlim = nice_to_rlimit(nice);
5769 
5770 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5771 		capable(CAP_SYS_NICE));
5772 }
5773 
5774 #ifdef __ARCH_WANT_SYS_NICE
5775 
5776 /*
5777  * sys_nice - change the priority of the current process.
5778  * @increment: priority increment
5779  *
5780  * sys_setpriority is a more generic, but much slower function that
5781  * does similar things.
5782  */
5783 SYSCALL_DEFINE1(nice, int, increment)
5784 {
5785 	long nice, retval;
5786 
5787 	/*
5788 	 * Setpriority might change our priority at the same moment.
5789 	 * We don't have to worry. Conceptually one call occurs first
5790 	 * and we have a single winner.
5791 	 */
5792 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5793 	nice = task_nice(current) + increment;
5794 
5795 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5796 	if (increment < 0 && !can_nice(current, nice))
5797 		return -EPERM;
5798 
5799 	retval = security_task_setnice(current, nice);
5800 	if (retval)
5801 		return retval;
5802 
5803 	set_user_nice(current, nice);
5804 	return 0;
5805 }
5806 
5807 #endif
5808 
5809 /**
5810  * task_prio - return the priority value of a given task.
5811  * @p: the task in question.
5812  *
5813  * Return: The priority value as seen by users in /proc.
5814  *
5815  * sched policy         return value   kernel prio    user prio/nice
5816  *
5817  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
5818  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
5819  * deadline                     -101             -1           0
5820  */
5821 int task_prio(const struct task_struct *p)
5822 {
5823 	return p->prio - MAX_RT_PRIO;
5824 }
5825 
5826 /**
5827  * idle_cpu - is a given CPU idle currently?
5828  * @cpu: the processor in question.
5829  *
5830  * Return: 1 if the CPU is currently idle. 0 otherwise.
5831  */
5832 int idle_cpu(int cpu)
5833 {
5834 	struct rq *rq = cpu_rq(cpu);
5835 
5836 	if (rq->curr != rq->idle)
5837 		return 0;
5838 
5839 	if (rq->nr_running)
5840 		return 0;
5841 
5842 #ifdef CONFIG_SMP
5843 	if (rq->ttwu_pending)
5844 		return 0;
5845 #endif
5846 
5847 	return 1;
5848 }
5849 
5850 /**
5851  * available_idle_cpu - is a given CPU idle for enqueuing work.
5852  * @cpu: the CPU in question.
5853  *
5854  * Return: 1 if the CPU is currently idle. 0 otherwise.
5855  */
5856 int available_idle_cpu(int cpu)
5857 {
5858 	if (!idle_cpu(cpu))
5859 		return 0;
5860 
5861 	if (vcpu_is_preempted(cpu))
5862 		return 0;
5863 
5864 	return 1;
5865 }
5866 
5867 /**
5868  * idle_task - return the idle task for a given CPU.
5869  * @cpu: the processor in question.
5870  *
5871  * Return: The idle task for the CPU @cpu.
5872  */
5873 struct task_struct *idle_task(int cpu)
5874 {
5875 	return cpu_rq(cpu)->idle;
5876 }
5877 
5878 #ifdef CONFIG_SMP
5879 /*
5880  * This function computes an effective utilization for the given CPU, to be
5881  * used for frequency selection given the linear relation: f = u * f_max.
5882  *
5883  * The scheduler tracks the following metrics:
5884  *
5885  *   cpu_util_{cfs,rt,dl,irq}()
5886  *   cpu_bw_dl()
5887  *
5888  * Where the cfs,rt and dl util numbers are tracked with the same metric and
5889  * synchronized windows and are thus directly comparable.
5890  *
5891  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5892  * which excludes things like IRQ and steal-time. These latter are then accrued
5893  * in the irq utilization.
5894  *
5895  * The DL bandwidth number otoh is not a measured metric but a value computed
5896  * based on the task model parameters and gives the minimal utilization
5897  * required to meet deadlines.
5898  */
5899 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5900 				 unsigned long max, enum cpu_util_type type,
5901 				 struct task_struct *p)
5902 {
5903 	unsigned long dl_util, util, irq;
5904 	struct rq *rq = cpu_rq(cpu);
5905 
5906 	if (!uclamp_is_used() &&
5907 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5908 		return max;
5909 	}
5910 
5911 	/*
5912 	 * Early check to see if IRQ/steal time saturates the CPU, can be
5913 	 * because of inaccuracies in how we track these -- see
5914 	 * update_irq_load_avg().
5915 	 */
5916 	irq = cpu_util_irq(rq);
5917 	if (unlikely(irq >= max))
5918 		return max;
5919 
5920 	/*
5921 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5922 	 * CFS tasks and we use the same metric to track the effective
5923 	 * utilization (PELT windows are synchronized) we can directly add them
5924 	 * to obtain the CPU's actual utilization.
5925 	 *
5926 	 * CFS and RT utilization can be boosted or capped, depending on
5927 	 * utilization clamp constraints requested by currently RUNNABLE
5928 	 * tasks.
5929 	 * When there are no CFS RUNNABLE tasks, clamps are released and
5930 	 * frequency will be gracefully reduced with the utilization decay.
5931 	 */
5932 	util = util_cfs + cpu_util_rt(rq);
5933 	if (type == FREQUENCY_UTIL)
5934 		util = uclamp_rq_util_with(rq, util, p);
5935 
5936 	dl_util = cpu_util_dl(rq);
5937 
5938 	/*
5939 	 * For frequency selection we do not make cpu_util_dl() a permanent part
5940 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
5941 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5942 	 * that we select f_max when there is no idle time.
5943 	 *
5944 	 * NOTE: numerical errors or stop class might cause us to not quite hit
5945 	 * saturation when we should -- something for later.
5946 	 */
5947 	if (util + dl_util >= max)
5948 		return max;
5949 
5950 	/*
5951 	 * OTOH, for energy computation we need the estimated running time, so
5952 	 * include util_dl and ignore dl_bw.
5953 	 */
5954 	if (type == ENERGY_UTIL)
5955 		util += dl_util;
5956 
5957 	/*
5958 	 * There is still idle time; further improve the number by using the
5959 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
5960 	 * need to scale the task numbers:
5961 	 *
5962 	 *              max - irq
5963 	 *   U' = irq + --------- * U
5964 	 *                 max
5965 	 */
5966 	util = scale_irq_capacity(util, irq, max);
5967 	util += irq;
5968 
5969 	/*
5970 	 * Bandwidth required by DEADLINE must always be granted while, for
5971 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5972 	 * to gracefully reduce the frequency when no tasks show up for longer
5973 	 * periods of time.
5974 	 *
5975 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5976 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5977 	 * an interface. So, we only do the latter for now.
5978 	 */
5979 	if (type == FREQUENCY_UTIL)
5980 		util += cpu_bw_dl(rq);
5981 
5982 	return min(max, util);
5983 }
5984 
5985 unsigned long sched_cpu_util(int cpu, unsigned long max)
5986 {
5987 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5988 				  ENERGY_UTIL, NULL);
5989 }
5990 #endif /* CONFIG_SMP */
5991 
5992 /**
5993  * find_process_by_pid - find a process with a matching PID value.
5994  * @pid: the pid in question.
5995  *
5996  * The task of @pid, if found. %NULL otherwise.
5997  */
5998 static struct task_struct *find_process_by_pid(pid_t pid)
5999 {
6000 	return pid ? find_task_by_vpid(pid) : current;
6001 }
6002 
6003 /*
6004  * sched_setparam() passes in -1 for its policy, to let the functions
6005  * it calls know not to change it.
6006  */
6007 #define SETPARAM_POLICY	-1
6008 
6009 static void __setscheduler_params(struct task_struct *p,
6010 		const struct sched_attr *attr)
6011 {
6012 	int policy = attr->sched_policy;
6013 
6014 	if (policy == SETPARAM_POLICY)
6015 		policy = p->policy;
6016 
6017 	p->policy = policy;
6018 
6019 	if (dl_policy(policy))
6020 		__setparam_dl(p, attr);
6021 	else if (fair_policy(policy))
6022 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6023 
6024 	/*
6025 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6026 	 * !rt_policy. Always setting this ensures that things like
6027 	 * getparam()/getattr() don't report silly values for !rt tasks.
6028 	 */
6029 	p->rt_priority = attr->sched_priority;
6030 	p->normal_prio = normal_prio(p);
6031 	set_load_weight(p, true);
6032 }
6033 
6034 /* Actually do priority change: must hold pi & rq lock. */
6035 static void __setscheduler(struct rq *rq, struct task_struct *p,
6036 			   const struct sched_attr *attr, bool keep_boost)
6037 {
6038 	/*
6039 	 * If params can't change scheduling class changes aren't allowed
6040 	 * either.
6041 	 */
6042 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6043 		return;
6044 
6045 	__setscheduler_params(p, attr);
6046 
6047 	/*
6048 	 * Keep a potential priority boosting if called from
6049 	 * sched_setscheduler().
6050 	 */
6051 	p->prio = normal_prio(p);
6052 	if (keep_boost)
6053 		p->prio = rt_effective_prio(p, p->prio);
6054 
6055 	if (dl_prio(p->prio))
6056 		p->sched_class = &dl_sched_class;
6057 	else if (rt_prio(p->prio))
6058 		p->sched_class = &rt_sched_class;
6059 	else
6060 		p->sched_class = &fair_sched_class;
6061 }
6062 
6063 /*
6064  * Check the target process has a UID that matches the current process's:
6065  */
6066 static bool check_same_owner(struct task_struct *p)
6067 {
6068 	const struct cred *cred = current_cred(), *pcred;
6069 	bool match;
6070 
6071 	rcu_read_lock();
6072 	pcred = __task_cred(p);
6073 	match = (uid_eq(cred->euid, pcred->euid) ||
6074 		 uid_eq(cred->euid, pcred->uid));
6075 	rcu_read_unlock();
6076 	return match;
6077 }
6078 
6079 static int __sched_setscheduler(struct task_struct *p,
6080 				const struct sched_attr *attr,
6081 				bool user, bool pi)
6082 {
6083 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6084 		      MAX_RT_PRIO - 1 - attr->sched_priority;
6085 	int retval, oldprio, oldpolicy = -1, queued, running;
6086 	int new_effective_prio, policy = attr->sched_policy;
6087 	const struct sched_class *prev_class;
6088 	struct callback_head *head;
6089 	struct rq_flags rf;
6090 	int reset_on_fork;
6091 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6092 	struct rq *rq;
6093 
6094 	/* The pi code expects interrupts enabled */
6095 	BUG_ON(pi && in_interrupt());
6096 recheck:
6097 	/* Double check policy once rq lock held: */
6098 	if (policy < 0) {
6099 		reset_on_fork = p->sched_reset_on_fork;
6100 		policy = oldpolicy = p->policy;
6101 	} else {
6102 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6103 
6104 		if (!valid_policy(policy))
6105 			return -EINVAL;
6106 	}
6107 
6108 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6109 		return -EINVAL;
6110 
6111 	/*
6112 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
6113 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6114 	 * SCHED_BATCH and SCHED_IDLE is 0.
6115 	 */
6116 	if (attr->sched_priority > MAX_RT_PRIO-1)
6117 		return -EINVAL;
6118 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6119 	    (rt_policy(policy) != (attr->sched_priority != 0)))
6120 		return -EINVAL;
6121 
6122 	/*
6123 	 * Allow unprivileged RT tasks to decrease priority:
6124 	 */
6125 	if (user && !capable(CAP_SYS_NICE)) {
6126 		if (fair_policy(policy)) {
6127 			if (attr->sched_nice < task_nice(p) &&
6128 			    !can_nice(p, attr->sched_nice))
6129 				return -EPERM;
6130 		}
6131 
6132 		if (rt_policy(policy)) {
6133 			unsigned long rlim_rtprio =
6134 					task_rlimit(p, RLIMIT_RTPRIO);
6135 
6136 			/* Can't set/change the rt policy: */
6137 			if (policy != p->policy && !rlim_rtprio)
6138 				return -EPERM;
6139 
6140 			/* Can't increase priority: */
6141 			if (attr->sched_priority > p->rt_priority &&
6142 			    attr->sched_priority > rlim_rtprio)
6143 				return -EPERM;
6144 		}
6145 
6146 		 /*
6147 		  * Can't set/change SCHED_DEADLINE policy at all for now
6148 		  * (safest behavior); in the future we would like to allow
6149 		  * unprivileged DL tasks to increase their relative deadline
6150 		  * or reduce their runtime (both ways reducing utilization)
6151 		  */
6152 		if (dl_policy(policy))
6153 			return -EPERM;
6154 
6155 		/*
6156 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6157 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6158 		 */
6159 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
6160 			if (!can_nice(p, task_nice(p)))
6161 				return -EPERM;
6162 		}
6163 
6164 		/* Can't change other user's priorities: */
6165 		if (!check_same_owner(p))
6166 			return -EPERM;
6167 
6168 		/* Normal users shall not reset the sched_reset_on_fork flag: */
6169 		if (p->sched_reset_on_fork && !reset_on_fork)
6170 			return -EPERM;
6171 	}
6172 
6173 	if (user) {
6174 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
6175 			return -EINVAL;
6176 
6177 		retval = security_task_setscheduler(p);
6178 		if (retval)
6179 			return retval;
6180 	}
6181 
6182 	/* Update task specific "requested" clamps */
6183 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6184 		retval = uclamp_validate(p, attr);
6185 		if (retval)
6186 			return retval;
6187 	}
6188 
6189 	if (pi)
6190 		cpuset_read_lock();
6191 
6192 	/*
6193 	 * Make sure no PI-waiters arrive (or leave) while we are
6194 	 * changing the priority of the task:
6195 	 *
6196 	 * To be able to change p->policy safely, the appropriate
6197 	 * runqueue lock must be held.
6198 	 */
6199 	rq = task_rq_lock(p, &rf);
6200 	update_rq_clock(rq);
6201 
6202 	/*
6203 	 * Changing the policy of the stop threads its a very bad idea:
6204 	 */
6205 	if (p == rq->stop) {
6206 		retval = -EINVAL;
6207 		goto unlock;
6208 	}
6209 
6210 	/*
6211 	 * If not changing anything there's no need to proceed further,
6212 	 * but store a possible modification of reset_on_fork.
6213 	 */
6214 	if (unlikely(policy == p->policy)) {
6215 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
6216 			goto change;
6217 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6218 			goto change;
6219 		if (dl_policy(policy) && dl_param_changed(p, attr))
6220 			goto change;
6221 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6222 			goto change;
6223 
6224 		p->sched_reset_on_fork = reset_on_fork;
6225 		retval = 0;
6226 		goto unlock;
6227 	}
6228 change:
6229 
6230 	if (user) {
6231 #ifdef CONFIG_RT_GROUP_SCHED
6232 		/*
6233 		 * Do not allow realtime tasks into groups that have no runtime
6234 		 * assigned.
6235 		 */
6236 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
6237 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6238 				!task_group_is_autogroup(task_group(p))) {
6239 			retval = -EPERM;
6240 			goto unlock;
6241 		}
6242 #endif
6243 #ifdef CONFIG_SMP
6244 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
6245 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
6246 			cpumask_t *span = rq->rd->span;
6247 
6248 			/*
6249 			 * Don't allow tasks with an affinity mask smaller than
6250 			 * the entire root_domain to become SCHED_DEADLINE. We
6251 			 * will also fail if there's no bandwidth available.
6252 			 */
6253 			if (!cpumask_subset(span, p->cpus_ptr) ||
6254 			    rq->rd->dl_bw.bw == 0) {
6255 				retval = -EPERM;
6256 				goto unlock;
6257 			}
6258 		}
6259 #endif
6260 	}
6261 
6262 	/* Re-check policy now with rq lock held: */
6263 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6264 		policy = oldpolicy = -1;
6265 		task_rq_unlock(rq, p, &rf);
6266 		if (pi)
6267 			cpuset_read_unlock();
6268 		goto recheck;
6269 	}
6270 
6271 	/*
6272 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6273 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6274 	 * is available.
6275 	 */
6276 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
6277 		retval = -EBUSY;
6278 		goto unlock;
6279 	}
6280 
6281 	p->sched_reset_on_fork = reset_on_fork;
6282 	oldprio = p->prio;
6283 
6284 	if (pi) {
6285 		/*
6286 		 * Take priority boosted tasks into account. If the new
6287 		 * effective priority is unchanged, we just store the new
6288 		 * normal parameters and do not touch the scheduler class and
6289 		 * the runqueue. This will be done when the task deboost
6290 		 * itself.
6291 		 */
6292 		new_effective_prio = rt_effective_prio(p, newprio);
6293 		if (new_effective_prio == oldprio)
6294 			queue_flags &= ~DEQUEUE_MOVE;
6295 	}
6296 
6297 	queued = task_on_rq_queued(p);
6298 	running = task_current(rq, p);
6299 	if (queued)
6300 		dequeue_task(rq, p, queue_flags);
6301 	if (running)
6302 		put_prev_task(rq, p);
6303 
6304 	prev_class = p->sched_class;
6305 
6306 	__setscheduler(rq, p, attr, pi);
6307 	__setscheduler_uclamp(p, attr);
6308 
6309 	if (queued) {
6310 		/*
6311 		 * We enqueue to tail when the priority of a task is
6312 		 * increased (user space view).
6313 		 */
6314 		if (oldprio < p->prio)
6315 			queue_flags |= ENQUEUE_HEAD;
6316 
6317 		enqueue_task(rq, p, queue_flags);
6318 	}
6319 	if (running)
6320 		set_next_task(rq, p);
6321 
6322 	check_class_changed(rq, p, prev_class, oldprio);
6323 
6324 	/* Avoid rq from going away on us: */
6325 	preempt_disable();
6326 	head = splice_balance_callbacks(rq);
6327 	task_rq_unlock(rq, p, &rf);
6328 
6329 	if (pi) {
6330 		cpuset_read_unlock();
6331 		rt_mutex_adjust_pi(p);
6332 	}
6333 
6334 	/* Run balance callbacks after we've adjusted the PI chain: */
6335 	balance_callbacks(rq, head);
6336 	preempt_enable();
6337 
6338 	return 0;
6339 
6340 unlock:
6341 	task_rq_unlock(rq, p, &rf);
6342 	if (pi)
6343 		cpuset_read_unlock();
6344 	return retval;
6345 }
6346 
6347 static int _sched_setscheduler(struct task_struct *p, int policy,
6348 			       const struct sched_param *param, bool check)
6349 {
6350 	struct sched_attr attr = {
6351 		.sched_policy   = policy,
6352 		.sched_priority = param->sched_priority,
6353 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6354 	};
6355 
6356 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6357 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6358 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6359 		policy &= ~SCHED_RESET_ON_FORK;
6360 		attr.sched_policy = policy;
6361 	}
6362 
6363 	return __sched_setscheduler(p, &attr, check, true);
6364 }
6365 /**
6366  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6367  * @p: the task in question.
6368  * @policy: new policy.
6369  * @param: structure containing the new RT priority.
6370  *
6371  * Use sched_set_fifo(), read its comment.
6372  *
6373  * Return: 0 on success. An error code otherwise.
6374  *
6375  * NOTE that the task may be already dead.
6376  */
6377 int sched_setscheduler(struct task_struct *p, int policy,
6378 		       const struct sched_param *param)
6379 {
6380 	return _sched_setscheduler(p, policy, param, true);
6381 }
6382 
6383 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6384 {
6385 	return __sched_setscheduler(p, attr, true, true);
6386 }
6387 
6388 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6389 {
6390 	return __sched_setscheduler(p, attr, false, true);
6391 }
6392 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
6393 
6394 /**
6395  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6396  * @p: the task in question.
6397  * @policy: new policy.
6398  * @param: structure containing the new RT priority.
6399  *
6400  * Just like sched_setscheduler, only don't bother checking if the
6401  * current context has permission.  For example, this is needed in
6402  * stop_machine(): we create temporary high priority worker threads,
6403  * but our caller might not have that capability.
6404  *
6405  * Return: 0 on success. An error code otherwise.
6406  */
6407 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6408 			       const struct sched_param *param)
6409 {
6410 	return _sched_setscheduler(p, policy, param, false);
6411 }
6412 
6413 /*
6414  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6415  * incapable of resource management, which is the one thing an OS really should
6416  * be doing.
6417  *
6418  * This is of course the reason it is limited to privileged users only.
6419  *
6420  * Worse still; it is fundamentally impossible to compose static priority
6421  * workloads. You cannot take two correctly working static prio workloads
6422  * and smash them together and still expect them to work.
6423  *
6424  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6425  *
6426  *   MAX_RT_PRIO / 2
6427  *
6428  * The administrator _MUST_ configure the system, the kernel simply doesn't
6429  * know enough information to make a sensible choice.
6430  */
6431 void sched_set_fifo(struct task_struct *p)
6432 {
6433 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6434 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6435 }
6436 EXPORT_SYMBOL_GPL(sched_set_fifo);
6437 
6438 /*
6439  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6440  */
6441 void sched_set_fifo_low(struct task_struct *p)
6442 {
6443 	struct sched_param sp = { .sched_priority = 1 };
6444 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6445 }
6446 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6447 
6448 void sched_set_normal(struct task_struct *p, int nice)
6449 {
6450 	struct sched_attr attr = {
6451 		.sched_policy = SCHED_NORMAL,
6452 		.sched_nice = nice,
6453 	};
6454 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6455 }
6456 EXPORT_SYMBOL_GPL(sched_set_normal);
6457 
6458 static int
6459 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6460 {
6461 	struct sched_param lparam;
6462 	struct task_struct *p;
6463 	int retval;
6464 
6465 	if (!param || pid < 0)
6466 		return -EINVAL;
6467 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6468 		return -EFAULT;
6469 
6470 	rcu_read_lock();
6471 	retval = -ESRCH;
6472 	p = find_process_by_pid(pid);
6473 	if (likely(p))
6474 		get_task_struct(p);
6475 	rcu_read_unlock();
6476 
6477 	if (likely(p)) {
6478 		retval = sched_setscheduler(p, policy, &lparam);
6479 		put_task_struct(p);
6480 	}
6481 
6482 	return retval;
6483 }
6484 
6485 /*
6486  * Mimics kernel/events/core.c perf_copy_attr().
6487  */
6488 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6489 {
6490 	u32 size;
6491 	int ret;
6492 
6493 	/* Zero the full structure, so that a short copy will be nice: */
6494 	memset(attr, 0, sizeof(*attr));
6495 
6496 	ret = get_user(size, &uattr->size);
6497 	if (ret)
6498 		return ret;
6499 
6500 	/* ABI compatibility quirk: */
6501 	if (!size)
6502 		size = SCHED_ATTR_SIZE_VER0;
6503 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6504 		goto err_size;
6505 
6506 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6507 	if (ret) {
6508 		if (ret == -E2BIG)
6509 			goto err_size;
6510 		return ret;
6511 	}
6512 
6513 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6514 	    size < SCHED_ATTR_SIZE_VER1)
6515 		return -EINVAL;
6516 
6517 	/*
6518 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6519 	 * to be strict and return an error on out-of-bounds values?
6520 	 */
6521 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6522 
6523 	return 0;
6524 
6525 err_size:
6526 	put_user(sizeof(*attr), &uattr->size);
6527 	return -E2BIG;
6528 }
6529 
6530 /**
6531  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6532  * @pid: the pid in question.
6533  * @policy: new policy.
6534  * @param: structure containing the new RT priority.
6535  *
6536  * Return: 0 on success. An error code otherwise.
6537  */
6538 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6539 {
6540 	if (policy < 0)
6541 		return -EINVAL;
6542 
6543 	return do_sched_setscheduler(pid, policy, param);
6544 }
6545 
6546 /**
6547  * sys_sched_setparam - set/change the RT priority of a thread
6548  * @pid: the pid in question.
6549  * @param: structure containing the new RT priority.
6550  *
6551  * Return: 0 on success. An error code otherwise.
6552  */
6553 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6554 {
6555 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6556 }
6557 
6558 /**
6559  * sys_sched_setattr - same as above, but with extended sched_attr
6560  * @pid: the pid in question.
6561  * @uattr: structure containing the extended parameters.
6562  * @flags: for future extension.
6563  */
6564 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6565 			       unsigned int, flags)
6566 {
6567 	struct sched_attr attr;
6568 	struct task_struct *p;
6569 	int retval;
6570 
6571 	if (!uattr || pid < 0 || flags)
6572 		return -EINVAL;
6573 
6574 	retval = sched_copy_attr(uattr, &attr);
6575 	if (retval)
6576 		return retval;
6577 
6578 	if ((int)attr.sched_policy < 0)
6579 		return -EINVAL;
6580 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6581 		attr.sched_policy = SETPARAM_POLICY;
6582 
6583 	rcu_read_lock();
6584 	retval = -ESRCH;
6585 	p = find_process_by_pid(pid);
6586 	if (likely(p))
6587 		get_task_struct(p);
6588 	rcu_read_unlock();
6589 
6590 	if (likely(p)) {
6591 		retval = sched_setattr(p, &attr);
6592 		put_task_struct(p);
6593 	}
6594 
6595 	return retval;
6596 }
6597 
6598 /**
6599  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6600  * @pid: the pid in question.
6601  *
6602  * Return: On success, the policy of the thread. Otherwise, a negative error
6603  * code.
6604  */
6605 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6606 {
6607 	struct task_struct *p;
6608 	int retval;
6609 
6610 	if (pid < 0)
6611 		return -EINVAL;
6612 
6613 	retval = -ESRCH;
6614 	rcu_read_lock();
6615 	p = find_process_by_pid(pid);
6616 	if (p) {
6617 		retval = security_task_getscheduler(p);
6618 		if (!retval)
6619 			retval = p->policy
6620 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6621 	}
6622 	rcu_read_unlock();
6623 	return retval;
6624 }
6625 
6626 /**
6627  * sys_sched_getparam - get the RT priority of a thread
6628  * @pid: the pid in question.
6629  * @param: structure containing the RT priority.
6630  *
6631  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6632  * code.
6633  */
6634 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6635 {
6636 	struct sched_param lp = { .sched_priority = 0 };
6637 	struct task_struct *p;
6638 	int retval;
6639 
6640 	if (!param || pid < 0)
6641 		return -EINVAL;
6642 
6643 	rcu_read_lock();
6644 	p = find_process_by_pid(pid);
6645 	retval = -ESRCH;
6646 	if (!p)
6647 		goto out_unlock;
6648 
6649 	retval = security_task_getscheduler(p);
6650 	if (retval)
6651 		goto out_unlock;
6652 
6653 	if (task_has_rt_policy(p))
6654 		lp.sched_priority = p->rt_priority;
6655 	rcu_read_unlock();
6656 
6657 	/*
6658 	 * This one might sleep, we cannot do it with a spinlock held ...
6659 	 */
6660 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6661 
6662 	return retval;
6663 
6664 out_unlock:
6665 	rcu_read_unlock();
6666 	return retval;
6667 }
6668 
6669 /*
6670  * Copy the kernel size attribute structure (which might be larger
6671  * than what user-space knows about) to user-space.
6672  *
6673  * Note that all cases are valid: user-space buffer can be larger or
6674  * smaller than the kernel-space buffer. The usual case is that both
6675  * have the same size.
6676  */
6677 static int
6678 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6679 			struct sched_attr *kattr,
6680 			unsigned int usize)
6681 {
6682 	unsigned int ksize = sizeof(*kattr);
6683 
6684 	if (!access_ok(uattr, usize))
6685 		return -EFAULT;
6686 
6687 	/*
6688 	 * sched_getattr() ABI forwards and backwards compatibility:
6689 	 *
6690 	 * If usize == ksize then we just copy everything to user-space and all is good.
6691 	 *
6692 	 * If usize < ksize then we only copy as much as user-space has space for,
6693 	 * this keeps ABI compatibility as well. We skip the rest.
6694 	 *
6695 	 * If usize > ksize then user-space is using a newer version of the ABI,
6696 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6697 	 * detect the kernel's knowledge of attributes from the attr->size value
6698 	 * which is set to ksize in this case.
6699 	 */
6700 	kattr->size = min(usize, ksize);
6701 
6702 	if (copy_to_user(uattr, kattr, kattr->size))
6703 		return -EFAULT;
6704 
6705 	return 0;
6706 }
6707 
6708 /**
6709  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6710  * @pid: the pid in question.
6711  * @uattr: structure containing the extended parameters.
6712  * @usize: sizeof(attr) for fwd/bwd comp.
6713  * @flags: for future extension.
6714  */
6715 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6716 		unsigned int, usize, unsigned int, flags)
6717 {
6718 	struct sched_attr kattr = { };
6719 	struct task_struct *p;
6720 	int retval;
6721 
6722 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6723 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6724 		return -EINVAL;
6725 
6726 	rcu_read_lock();
6727 	p = find_process_by_pid(pid);
6728 	retval = -ESRCH;
6729 	if (!p)
6730 		goto out_unlock;
6731 
6732 	retval = security_task_getscheduler(p);
6733 	if (retval)
6734 		goto out_unlock;
6735 
6736 	kattr.sched_policy = p->policy;
6737 	if (p->sched_reset_on_fork)
6738 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6739 	if (task_has_dl_policy(p))
6740 		__getparam_dl(p, &kattr);
6741 	else if (task_has_rt_policy(p))
6742 		kattr.sched_priority = p->rt_priority;
6743 	else
6744 		kattr.sched_nice = task_nice(p);
6745 
6746 #ifdef CONFIG_UCLAMP_TASK
6747 	/*
6748 	 * This could race with another potential updater, but this is fine
6749 	 * because it'll correctly read the old or the new value. We don't need
6750 	 * to guarantee who wins the race as long as it doesn't return garbage.
6751 	 */
6752 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6753 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6754 #endif
6755 
6756 	rcu_read_unlock();
6757 
6758 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6759 
6760 out_unlock:
6761 	rcu_read_unlock();
6762 	return retval;
6763 }
6764 
6765 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6766 {
6767 	cpumask_var_t cpus_allowed, new_mask;
6768 	struct task_struct *p;
6769 	int retval;
6770 
6771 	rcu_read_lock();
6772 
6773 	p = find_process_by_pid(pid);
6774 	if (!p) {
6775 		rcu_read_unlock();
6776 		return -ESRCH;
6777 	}
6778 
6779 	/* Prevent p going away */
6780 	get_task_struct(p);
6781 	rcu_read_unlock();
6782 
6783 	if (p->flags & PF_NO_SETAFFINITY) {
6784 		retval = -EINVAL;
6785 		goto out_put_task;
6786 	}
6787 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6788 		retval = -ENOMEM;
6789 		goto out_put_task;
6790 	}
6791 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6792 		retval = -ENOMEM;
6793 		goto out_free_cpus_allowed;
6794 	}
6795 	retval = -EPERM;
6796 	if (!check_same_owner(p)) {
6797 		rcu_read_lock();
6798 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6799 			rcu_read_unlock();
6800 			goto out_free_new_mask;
6801 		}
6802 		rcu_read_unlock();
6803 	}
6804 
6805 	retval = security_task_setscheduler(p);
6806 	if (retval)
6807 		goto out_free_new_mask;
6808 
6809 
6810 	cpuset_cpus_allowed(p, cpus_allowed);
6811 	cpumask_and(new_mask, in_mask, cpus_allowed);
6812 
6813 	/*
6814 	 * Since bandwidth control happens on root_domain basis,
6815 	 * if admission test is enabled, we only admit -deadline
6816 	 * tasks allowed to run on all the CPUs in the task's
6817 	 * root_domain.
6818 	 */
6819 #ifdef CONFIG_SMP
6820 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6821 		rcu_read_lock();
6822 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6823 			retval = -EBUSY;
6824 			rcu_read_unlock();
6825 			goto out_free_new_mask;
6826 		}
6827 		rcu_read_unlock();
6828 	}
6829 #endif
6830 again:
6831 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6832 
6833 	if (!retval) {
6834 		cpuset_cpus_allowed(p, cpus_allowed);
6835 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6836 			/*
6837 			 * We must have raced with a concurrent cpuset
6838 			 * update. Just reset the cpus_allowed to the
6839 			 * cpuset's cpus_allowed
6840 			 */
6841 			cpumask_copy(new_mask, cpus_allowed);
6842 			goto again;
6843 		}
6844 	}
6845 out_free_new_mask:
6846 	free_cpumask_var(new_mask);
6847 out_free_cpus_allowed:
6848 	free_cpumask_var(cpus_allowed);
6849 out_put_task:
6850 	put_task_struct(p);
6851 	return retval;
6852 }
6853 
6854 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6855 			     struct cpumask *new_mask)
6856 {
6857 	if (len < cpumask_size())
6858 		cpumask_clear(new_mask);
6859 	else if (len > cpumask_size())
6860 		len = cpumask_size();
6861 
6862 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6863 }
6864 
6865 /**
6866  * sys_sched_setaffinity - set the CPU affinity of a process
6867  * @pid: pid of the process
6868  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6869  * @user_mask_ptr: user-space pointer to the new CPU mask
6870  *
6871  * Return: 0 on success. An error code otherwise.
6872  */
6873 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6874 		unsigned long __user *, user_mask_ptr)
6875 {
6876 	cpumask_var_t new_mask;
6877 	int retval;
6878 
6879 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6880 		return -ENOMEM;
6881 
6882 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6883 	if (retval == 0)
6884 		retval = sched_setaffinity(pid, new_mask);
6885 	free_cpumask_var(new_mask);
6886 	return retval;
6887 }
6888 
6889 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6890 {
6891 	struct task_struct *p;
6892 	unsigned long flags;
6893 	int retval;
6894 
6895 	rcu_read_lock();
6896 
6897 	retval = -ESRCH;
6898 	p = find_process_by_pid(pid);
6899 	if (!p)
6900 		goto out_unlock;
6901 
6902 	retval = security_task_getscheduler(p);
6903 	if (retval)
6904 		goto out_unlock;
6905 
6906 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6907 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6908 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6909 
6910 out_unlock:
6911 	rcu_read_unlock();
6912 
6913 	return retval;
6914 }
6915 
6916 /**
6917  * sys_sched_getaffinity - get the CPU affinity of a process
6918  * @pid: pid of the process
6919  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6920  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6921  *
6922  * Return: size of CPU mask copied to user_mask_ptr on success. An
6923  * error code otherwise.
6924  */
6925 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6926 		unsigned long __user *, user_mask_ptr)
6927 {
6928 	int ret;
6929 	cpumask_var_t mask;
6930 
6931 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6932 		return -EINVAL;
6933 	if (len & (sizeof(unsigned long)-1))
6934 		return -EINVAL;
6935 
6936 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6937 		return -ENOMEM;
6938 
6939 	ret = sched_getaffinity(pid, mask);
6940 	if (ret == 0) {
6941 		unsigned int retlen = min(len, cpumask_size());
6942 
6943 		if (copy_to_user(user_mask_ptr, mask, retlen))
6944 			ret = -EFAULT;
6945 		else
6946 			ret = retlen;
6947 	}
6948 	free_cpumask_var(mask);
6949 
6950 	return ret;
6951 }
6952 
6953 static void do_sched_yield(void)
6954 {
6955 	struct rq_flags rf;
6956 	struct rq *rq;
6957 
6958 	rq = this_rq_lock_irq(&rf);
6959 
6960 	schedstat_inc(rq->yld_count);
6961 	current->sched_class->yield_task(rq);
6962 
6963 	preempt_disable();
6964 	rq_unlock_irq(rq, &rf);
6965 	sched_preempt_enable_no_resched();
6966 
6967 	schedule();
6968 }
6969 
6970 /**
6971  * sys_sched_yield - yield the current processor to other threads.
6972  *
6973  * This function yields the current CPU to other tasks. If there are no
6974  * other threads running on this CPU then this function will return.
6975  *
6976  * Return: 0.
6977  */
6978 SYSCALL_DEFINE0(sched_yield)
6979 {
6980 	do_sched_yield();
6981 	return 0;
6982 }
6983 
6984 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6985 int __sched __cond_resched(void)
6986 {
6987 	if (should_resched(0)) {
6988 		preempt_schedule_common();
6989 		return 1;
6990 	}
6991 #ifndef CONFIG_PREEMPT_RCU
6992 	rcu_all_qs();
6993 #endif
6994 	return 0;
6995 }
6996 EXPORT_SYMBOL(__cond_resched);
6997 #endif
6998 
6999 #ifdef CONFIG_PREEMPT_DYNAMIC
7000 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7001 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7002 
7003 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7004 EXPORT_STATIC_CALL_TRAMP(might_resched);
7005 #endif
7006 
7007 /*
7008  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7009  * call schedule, and on return reacquire the lock.
7010  *
7011  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7012  * operations here to prevent schedule() from being called twice (once via
7013  * spin_unlock(), once by hand).
7014  */
7015 int __cond_resched_lock(spinlock_t *lock)
7016 {
7017 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7018 	int ret = 0;
7019 
7020 	lockdep_assert_held(lock);
7021 
7022 	if (spin_needbreak(lock) || resched) {
7023 		spin_unlock(lock);
7024 		if (resched)
7025 			preempt_schedule_common();
7026 		else
7027 			cpu_relax();
7028 		ret = 1;
7029 		spin_lock(lock);
7030 	}
7031 	return ret;
7032 }
7033 EXPORT_SYMBOL(__cond_resched_lock);
7034 
7035 int __cond_resched_rwlock_read(rwlock_t *lock)
7036 {
7037 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7038 	int ret = 0;
7039 
7040 	lockdep_assert_held_read(lock);
7041 
7042 	if (rwlock_needbreak(lock) || resched) {
7043 		read_unlock(lock);
7044 		if (resched)
7045 			preempt_schedule_common();
7046 		else
7047 			cpu_relax();
7048 		ret = 1;
7049 		read_lock(lock);
7050 	}
7051 	return ret;
7052 }
7053 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7054 
7055 int __cond_resched_rwlock_write(rwlock_t *lock)
7056 {
7057 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7058 	int ret = 0;
7059 
7060 	lockdep_assert_held_write(lock);
7061 
7062 	if (rwlock_needbreak(lock) || resched) {
7063 		write_unlock(lock);
7064 		if (resched)
7065 			preempt_schedule_common();
7066 		else
7067 			cpu_relax();
7068 		ret = 1;
7069 		write_lock(lock);
7070 	}
7071 	return ret;
7072 }
7073 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7074 
7075 /**
7076  * yield - yield the current processor to other threads.
7077  *
7078  * Do not ever use this function, there's a 99% chance you're doing it wrong.
7079  *
7080  * The scheduler is at all times free to pick the calling task as the most
7081  * eligible task to run, if removing the yield() call from your code breaks
7082  * it, it's already broken.
7083  *
7084  * Typical broken usage is:
7085  *
7086  * while (!event)
7087  *	yield();
7088  *
7089  * where one assumes that yield() will let 'the other' process run that will
7090  * make event true. If the current task is a SCHED_FIFO task that will never
7091  * happen. Never use yield() as a progress guarantee!!
7092  *
7093  * If you want to use yield() to wait for something, use wait_event().
7094  * If you want to use yield() to be 'nice' for others, use cond_resched().
7095  * If you still want to use yield(), do not!
7096  */
7097 void __sched yield(void)
7098 {
7099 	set_current_state(TASK_RUNNING);
7100 	do_sched_yield();
7101 }
7102 EXPORT_SYMBOL(yield);
7103 
7104 /**
7105  * yield_to - yield the current processor to another thread in
7106  * your thread group, or accelerate that thread toward the
7107  * processor it's on.
7108  * @p: target task
7109  * @preempt: whether task preemption is allowed or not
7110  *
7111  * It's the caller's job to ensure that the target task struct
7112  * can't go away on us before we can do any checks.
7113  *
7114  * Return:
7115  *	true (>0) if we indeed boosted the target task.
7116  *	false (0) if we failed to boost the target.
7117  *	-ESRCH if there's no task to yield to.
7118  */
7119 int __sched yield_to(struct task_struct *p, bool preempt)
7120 {
7121 	struct task_struct *curr = current;
7122 	struct rq *rq, *p_rq;
7123 	unsigned long flags;
7124 	int yielded = 0;
7125 
7126 	local_irq_save(flags);
7127 	rq = this_rq();
7128 
7129 again:
7130 	p_rq = task_rq(p);
7131 	/*
7132 	 * If we're the only runnable task on the rq and target rq also
7133 	 * has only one task, there's absolutely no point in yielding.
7134 	 */
7135 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7136 		yielded = -ESRCH;
7137 		goto out_irq;
7138 	}
7139 
7140 	double_rq_lock(rq, p_rq);
7141 	if (task_rq(p) != p_rq) {
7142 		double_rq_unlock(rq, p_rq);
7143 		goto again;
7144 	}
7145 
7146 	if (!curr->sched_class->yield_to_task)
7147 		goto out_unlock;
7148 
7149 	if (curr->sched_class != p->sched_class)
7150 		goto out_unlock;
7151 
7152 	if (task_running(p_rq, p) || p->state)
7153 		goto out_unlock;
7154 
7155 	yielded = curr->sched_class->yield_to_task(rq, p);
7156 	if (yielded) {
7157 		schedstat_inc(rq->yld_count);
7158 		/*
7159 		 * Make p's CPU reschedule; pick_next_entity takes care of
7160 		 * fairness.
7161 		 */
7162 		if (preempt && rq != p_rq)
7163 			resched_curr(p_rq);
7164 	}
7165 
7166 out_unlock:
7167 	double_rq_unlock(rq, p_rq);
7168 out_irq:
7169 	local_irq_restore(flags);
7170 
7171 	if (yielded > 0)
7172 		schedule();
7173 
7174 	return yielded;
7175 }
7176 EXPORT_SYMBOL_GPL(yield_to);
7177 
7178 int io_schedule_prepare(void)
7179 {
7180 	int old_iowait = current->in_iowait;
7181 
7182 	current->in_iowait = 1;
7183 	blk_schedule_flush_plug(current);
7184 
7185 	return old_iowait;
7186 }
7187 
7188 void io_schedule_finish(int token)
7189 {
7190 	current->in_iowait = token;
7191 }
7192 
7193 /*
7194  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7195  * that process accounting knows that this is a task in IO wait state.
7196  */
7197 long __sched io_schedule_timeout(long timeout)
7198 {
7199 	int token;
7200 	long ret;
7201 
7202 	token = io_schedule_prepare();
7203 	ret = schedule_timeout(timeout);
7204 	io_schedule_finish(token);
7205 
7206 	return ret;
7207 }
7208 EXPORT_SYMBOL(io_schedule_timeout);
7209 
7210 void __sched io_schedule(void)
7211 {
7212 	int token;
7213 
7214 	token = io_schedule_prepare();
7215 	schedule();
7216 	io_schedule_finish(token);
7217 }
7218 EXPORT_SYMBOL(io_schedule);
7219 
7220 /**
7221  * sys_sched_get_priority_max - return maximum RT priority.
7222  * @policy: scheduling class.
7223  *
7224  * Return: On success, this syscall returns the maximum
7225  * rt_priority that can be used by a given scheduling class.
7226  * On failure, a negative error code is returned.
7227  */
7228 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
7229 {
7230 	int ret = -EINVAL;
7231 
7232 	switch (policy) {
7233 	case SCHED_FIFO:
7234 	case SCHED_RR:
7235 		ret = MAX_RT_PRIO-1;
7236 		break;
7237 	case SCHED_DEADLINE:
7238 	case SCHED_NORMAL:
7239 	case SCHED_BATCH:
7240 	case SCHED_IDLE:
7241 		ret = 0;
7242 		break;
7243 	}
7244 	return ret;
7245 }
7246 
7247 /**
7248  * sys_sched_get_priority_min - return minimum RT priority.
7249  * @policy: scheduling class.
7250  *
7251  * Return: On success, this syscall returns the minimum
7252  * rt_priority that can be used by a given scheduling class.
7253  * On failure, a negative error code is returned.
7254  */
7255 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
7256 {
7257 	int ret = -EINVAL;
7258 
7259 	switch (policy) {
7260 	case SCHED_FIFO:
7261 	case SCHED_RR:
7262 		ret = 1;
7263 		break;
7264 	case SCHED_DEADLINE:
7265 	case SCHED_NORMAL:
7266 	case SCHED_BATCH:
7267 	case SCHED_IDLE:
7268 		ret = 0;
7269 	}
7270 	return ret;
7271 }
7272 
7273 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
7274 {
7275 	struct task_struct *p;
7276 	unsigned int time_slice;
7277 	struct rq_flags rf;
7278 	struct rq *rq;
7279 	int retval;
7280 
7281 	if (pid < 0)
7282 		return -EINVAL;
7283 
7284 	retval = -ESRCH;
7285 	rcu_read_lock();
7286 	p = find_process_by_pid(pid);
7287 	if (!p)
7288 		goto out_unlock;
7289 
7290 	retval = security_task_getscheduler(p);
7291 	if (retval)
7292 		goto out_unlock;
7293 
7294 	rq = task_rq_lock(p, &rf);
7295 	time_slice = 0;
7296 	if (p->sched_class->get_rr_interval)
7297 		time_slice = p->sched_class->get_rr_interval(rq, p);
7298 	task_rq_unlock(rq, p, &rf);
7299 
7300 	rcu_read_unlock();
7301 	jiffies_to_timespec64(time_slice, t);
7302 	return 0;
7303 
7304 out_unlock:
7305 	rcu_read_unlock();
7306 	return retval;
7307 }
7308 
7309 /**
7310  * sys_sched_rr_get_interval - return the default timeslice of a process.
7311  * @pid: pid of the process.
7312  * @interval: userspace pointer to the timeslice value.
7313  *
7314  * this syscall writes the default timeslice value of a given process
7315  * into the user-space timespec buffer. A value of '0' means infinity.
7316  *
7317  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7318  * an error code.
7319  */
7320 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7321 		struct __kernel_timespec __user *, interval)
7322 {
7323 	struct timespec64 t;
7324 	int retval = sched_rr_get_interval(pid, &t);
7325 
7326 	if (retval == 0)
7327 		retval = put_timespec64(&t, interval);
7328 
7329 	return retval;
7330 }
7331 
7332 #ifdef CONFIG_COMPAT_32BIT_TIME
7333 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7334 		struct old_timespec32 __user *, interval)
7335 {
7336 	struct timespec64 t;
7337 	int retval = sched_rr_get_interval(pid, &t);
7338 
7339 	if (retval == 0)
7340 		retval = put_old_timespec32(&t, interval);
7341 	return retval;
7342 }
7343 #endif
7344 
7345 void sched_show_task(struct task_struct *p)
7346 {
7347 	unsigned long free = 0;
7348 	int ppid;
7349 
7350 	if (!try_get_task_stack(p))
7351 		return;
7352 
7353 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7354 
7355 	if (p->state == TASK_RUNNING)
7356 		pr_cont("  running task    ");
7357 #ifdef CONFIG_DEBUG_STACK_USAGE
7358 	free = stack_not_used(p);
7359 #endif
7360 	ppid = 0;
7361 	rcu_read_lock();
7362 	if (pid_alive(p))
7363 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7364 	rcu_read_unlock();
7365 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7366 		free, task_pid_nr(p), ppid,
7367 		(unsigned long)task_thread_info(p)->flags);
7368 
7369 	print_worker_info(KERN_INFO, p);
7370 	print_stop_info(KERN_INFO, p);
7371 	show_stack(p, NULL, KERN_INFO);
7372 	put_task_stack(p);
7373 }
7374 EXPORT_SYMBOL_GPL(sched_show_task);
7375 
7376 static inline bool
7377 state_filter_match(unsigned long state_filter, struct task_struct *p)
7378 {
7379 	/* no filter, everything matches */
7380 	if (!state_filter)
7381 		return true;
7382 
7383 	/* filter, but doesn't match */
7384 	if (!(p->state & state_filter))
7385 		return false;
7386 
7387 	/*
7388 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7389 	 * TASK_KILLABLE).
7390 	 */
7391 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7392 		return false;
7393 
7394 	return true;
7395 }
7396 
7397 
7398 void show_state_filter(unsigned long state_filter)
7399 {
7400 	struct task_struct *g, *p;
7401 
7402 	rcu_read_lock();
7403 	for_each_process_thread(g, p) {
7404 		/*
7405 		 * reset the NMI-timeout, listing all files on a slow
7406 		 * console might take a lot of time:
7407 		 * Also, reset softlockup watchdogs on all CPUs, because
7408 		 * another CPU might be blocked waiting for us to process
7409 		 * an IPI.
7410 		 */
7411 		touch_nmi_watchdog();
7412 		touch_all_softlockup_watchdogs();
7413 		if (state_filter_match(state_filter, p))
7414 			sched_show_task(p);
7415 	}
7416 
7417 #ifdef CONFIG_SCHED_DEBUG
7418 	if (!state_filter)
7419 		sysrq_sched_debug_show();
7420 #endif
7421 	rcu_read_unlock();
7422 	/*
7423 	 * Only show locks if all tasks are dumped:
7424 	 */
7425 	if (!state_filter)
7426 		debug_show_all_locks();
7427 }
7428 
7429 /**
7430  * init_idle - set up an idle thread for a given CPU
7431  * @idle: task in question
7432  * @cpu: CPU the idle task belongs to
7433  *
7434  * NOTE: this function does not set the idle thread's NEED_RESCHED
7435  * flag, to make booting more robust.
7436  */
7437 void init_idle(struct task_struct *idle, int cpu)
7438 {
7439 	struct rq *rq = cpu_rq(cpu);
7440 	unsigned long flags;
7441 
7442 	__sched_fork(0, idle);
7443 
7444 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7445 	raw_spin_lock(&rq->lock);
7446 
7447 	idle->state = TASK_RUNNING;
7448 	idle->se.exec_start = sched_clock();
7449 	idle->flags |= PF_IDLE;
7450 
7451 	scs_task_reset(idle);
7452 	kasan_unpoison_task_stack(idle);
7453 
7454 #ifdef CONFIG_SMP
7455 	/*
7456 	 * It's possible that init_idle() gets called multiple times on a task,
7457 	 * in that case do_set_cpus_allowed() will not do the right thing.
7458 	 *
7459 	 * And since this is boot we can forgo the serialization.
7460 	 */
7461 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7462 #endif
7463 	/*
7464 	 * We're having a chicken and egg problem, even though we are
7465 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7466 	 * lockdep check in task_group() will fail.
7467 	 *
7468 	 * Similar case to sched_fork(). / Alternatively we could
7469 	 * use task_rq_lock() here and obtain the other rq->lock.
7470 	 *
7471 	 * Silence PROVE_RCU
7472 	 */
7473 	rcu_read_lock();
7474 	__set_task_cpu(idle, cpu);
7475 	rcu_read_unlock();
7476 
7477 	rq->idle = idle;
7478 	rcu_assign_pointer(rq->curr, idle);
7479 	idle->on_rq = TASK_ON_RQ_QUEUED;
7480 #ifdef CONFIG_SMP
7481 	idle->on_cpu = 1;
7482 #endif
7483 	raw_spin_unlock(&rq->lock);
7484 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7485 
7486 	/* Set the preempt count _outside_ the spinlocks! */
7487 	init_idle_preempt_count(idle, cpu);
7488 
7489 	/*
7490 	 * The idle tasks have their own, simple scheduling class:
7491 	 */
7492 	idle->sched_class = &idle_sched_class;
7493 	ftrace_graph_init_idle_task(idle, cpu);
7494 	vtime_init_idle(idle, cpu);
7495 #ifdef CONFIG_SMP
7496 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7497 #endif
7498 }
7499 
7500 #ifdef CONFIG_SMP
7501 
7502 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7503 			      const struct cpumask *trial)
7504 {
7505 	int ret = 1;
7506 
7507 	if (!cpumask_weight(cur))
7508 		return ret;
7509 
7510 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7511 
7512 	return ret;
7513 }
7514 
7515 int task_can_attach(struct task_struct *p,
7516 		    const struct cpumask *cs_cpus_allowed)
7517 {
7518 	int ret = 0;
7519 
7520 	/*
7521 	 * Kthreads which disallow setaffinity shouldn't be moved
7522 	 * to a new cpuset; we don't want to change their CPU
7523 	 * affinity and isolating such threads by their set of
7524 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7525 	 * applicable for such threads.  This prevents checking for
7526 	 * success of set_cpus_allowed_ptr() on all attached tasks
7527 	 * before cpus_mask may be changed.
7528 	 */
7529 	if (p->flags & PF_NO_SETAFFINITY) {
7530 		ret = -EINVAL;
7531 		goto out;
7532 	}
7533 
7534 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7535 					      cs_cpus_allowed))
7536 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7537 
7538 out:
7539 	return ret;
7540 }
7541 
7542 bool sched_smp_initialized __read_mostly;
7543 
7544 #ifdef CONFIG_NUMA_BALANCING
7545 /* Migrate current task p to target_cpu */
7546 int migrate_task_to(struct task_struct *p, int target_cpu)
7547 {
7548 	struct migration_arg arg = { p, target_cpu };
7549 	int curr_cpu = task_cpu(p);
7550 
7551 	if (curr_cpu == target_cpu)
7552 		return 0;
7553 
7554 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7555 		return -EINVAL;
7556 
7557 	/* TODO: This is not properly updating schedstats */
7558 
7559 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7560 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7561 }
7562 
7563 /*
7564  * Requeue a task on a given node and accurately track the number of NUMA
7565  * tasks on the runqueues
7566  */
7567 void sched_setnuma(struct task_struct *p, int nid)
7568 {
7569 	bool queued, running;
7570 	struct rq_flags rf;
7571 	struct rq *rq;
7572 
7573 	rq = task_rq_lock(p, &rf);
7574 	queued = task_on_rq_queued(p);
7575 	running = task_current(rq, p);
7576 
7577 	if (queued)
7578 		dequeue_task(rq, p, DEQUEUE_SAVE);
7579 	if (running)
7580 		put_prev_task(rq, p);
7581 
7582 	p->numa_preferred_nid = nid;
7583 
7584 	if (queued)
7585 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7586 	if (running)
7587 		set_next_task(rq, p);
7588 	task_rq_unlock(rq, p, &rf);
7589 }
7590 #endif /* CONFIG_NUMA_BALANCING */
7591 
7592 #ifdef CONFIG_HOTPLUG_CPU
7593 /*
7594  * Ensure that the idle task is using init_mm right before its CPU goes
7595  * offline.
7596  */
7597 void idle_task_exit(void)
7598 {
7599 	struct mm_struct *mm = current->active_mm;
7600 
7601 	BUG_ON(cpu_online(smp_processor_id()));
7602 	BUG_ON(current != this_rq()->idle);
7603 
7604 	if (mm != &init_mm) {
7605 		switch_mm(mm, &init_mm, current);
7606 		finish_arch_post_lock_switch();
7607 	}
7608 
7609 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7610 }
7611 
7612 static int __balance_push_cpu_stop(void *arg)
7613 {
7614 	struct task_struct *p = arg;
7615 	struct rq *rq = this_rq();
7616 	struct rq_flags rf;
7617 	int cpu;
7618 
7619 	raw_spin_lock_irq(&p->pi_lock);
7620 	rq_lock(rq, &rf);
7621 
7622 	update_rq_clock(rq);
7623 
7624 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7625 		cpu = select_fallback_rq(rq->cpu, p);
7626 		rq = __migrate_task(rq, &rf, p, cpu);
7627 	}
7628 
7629 	rq_unlock(rq, &rf);
7630 	raw_spin_unlock_irq(&p->pi_lock);
7631 
7632 	put_task_struct(p);
7633 
7634 	return 0;
7635 }
7636 
7637 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7638 
7639 /*
7640  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7641  *
7642  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7643  * effective when the hotplug motion is down.
7644  */
7645 static void balance_push(struct rq *rq)
7646 {
7647 	struct task_struct *push_task = rq->curr;
7648 
7649 	lockdep_assert_held(&rq->lock);
7650 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7651 
7652 	/*
7653 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7654 	 */
7655 	rq->balance_callback = &balance_push_callback;
7656 
7657 	/*
7658 	 * Only active while going offline.
7659 	 */
7660 	if (!cpu_dying(rq->cpu))
7661 		return;
7662 
7663 	/*
7664 	 * Both the cpu-hotplug and stop task are in this case and are
7665 	 * required to complete the hotplug process.
7666 	 *
7667 	 * XXX: the idle task does not match kthread_is_per_cpu() due to
7668 	 * histerical raisins.
7669 	 */
7670 	if (rq->idle == push_task ||
7671 	    kthread_is_per_cpu(push_task) ||
7672 	    is_migration_disabled(push_task)) {
7673 
7674 		/*
7675 		 * If this is the idle task on the outgoing CPU try to wake
7676 		 * up the hotplug control thread which might wait for the
7677 		 * last task to vanish. The rcuwait_active() check is
7678 		 * accurate here because the waiter is pinned on this CPU
7679 		 * and can't obviously be running in parallel.
7680 		 *
7681 		 * On RT kernels this also has to check whether there are
7682 		 * pinned and scheduled out tasks on the runqueue. They
7683 		 * need to leave the migrate disabled section first.
7684 		 */
7685 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7686 		    rcuwait_active(&rq->hotplug_wait)) {
7687 			raw_spin_unlock(&rq->lock);
7688 			rcuwait_wake_up(&rq->hotplug_wait);
7689 			raw_spin_lock(&rq->lock);
7690 		}
7691 		return;
7692 	}
7693 
7694 	get_task_struct(push_task);
7695 	/*
7696 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7697 	 * Both preemption and IRQs are still disabled.
7698 	 */
7699 	raw_spin_unlock(&rq->lock);
7700 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7701 			    this_cpu_ptr(&push_work));
7702 	/*
7703 	 * At this point need_resched() is true and we'll take the loop in
7704 	 * schedule(). The next pick is obviously going to be the stop task
7705 	 * which kthread_is_per_cpu() and will push this task away.
7706 	 */
7707 	raw_spin_lock(&rq->lock);
7708 }
7709 
7710 static void balance_push_set(int cpu, bool on)
7711 {
7712 	struct rq *rq = cpu_rq(cpu);
7713 	struct rq_flags rf;
7714 
7715 	rq_lock_irqsave(rq, &rf);
7716 	if (on) {
7717 		WARN_ON_ONCE(rq->balance_callback);
7718 		rq->balance_callback = &balance_push_callback;
7719 	} else if (rq->balance_callback == &balance_push_callback) {
7720 		rq->balance_callback = NULL;
7721 	}
7722 	rq_unlock_irqrestore(rq, &rf);
7723 }
7724 
7725 /*
7726  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7727  * inactive. All tasks which are not per CPU kernel threads are either
7728  * pushed off this CPU now via balance_push() or placed on a different CPU
7729  * during wakeup. Wait until the CPU is quiescent.
7730  */
7731 static void balance_hotplug_wait(void)
7732 {
7733 	struct rq *rq = this_rq();
7734 
7735 	rcuwait_wait_event(&rq->hotplug_wait,
7736 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7737 			   TASK_UNINTERRUPTIBLE);
7738 }
7739 
7740 #else
7741 
7742 static inline void balance_push(struct rq *rq)
7743 {
7744 }
7745 
7746 static inline void balance_push_set(int cpu, bool on)
7747 {
7748 }
7749 
7750 static inline void balance_hotplug_wait(void)
7751 {
7752 }
7753 
7754 #endif /* CONFIG_HOTPLUG_CPU */
7755 
7756 void set_rq_online(struct rq *rq)
7757 {
7758 	if (!rq->online) {
7759 		const struct sched_class *class;
7760 
7761 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7762 		rq->online = 1;
7763 
7764 		for_each_class(class) {
7765 			if (class->rq_online)
7766 				class->rq_online(rq);
7767 		}
7768 	}
7769 }
7770 
7771 void set_rq_offline(struct rq *rq)
7772 {
7773 	if (rq->online) {
7774 		const struct sched_class *class;
7775 
7776 		for_each_class(class) {
7777 			if (class->rq_offline)
7778 				class->rq_offline(rq);
7779 		}
7780 
7781 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7782 		rq->online = 0;
7783 	}
7784 }
7785 
7786 /*
7787  * used to mark begin/end of suspend/resume:
7788  */
7789 static int num_cpus_frozen;
7790 
7791 /*
7792  * Update cpusets according to cpu_active mask.  If cpusets are
7793  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7794  * around partition_sched_domains().
7795  *
7796  * If we come here as part of a suspend/resume, don't touch cpusets because we
7797  * want to restore it back to its original state upon resume anyway.
7798  */
7799 static void cpuset_cpu_active(void)
7800 {
7801 	if (cpuhp_tasks_frozen) {
7802 		/*
7803 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7804 		 * resume sequence. As long as this is not the last online
7805 		 * operation in the resume sequence, just build a single sched
7806 		 * domain, ignoring cpusets.
7807 		 */
7808 		partition_sched_domains(1, NULL, NULL);
7809 		if (--num_cpus_frozen)
7810 			return;
7811 		/*
7812 		 * This is the last CPU online operation. So fall through and
7813 		 * restore the original sched domains by considering the
7814 		 * cpuset configurations.
7815 		 */
7816 		cpuset_force_rebuild();
7817 	}
7818 	cpuset_update_active_cpus();
7819 }
7820 
7821 static int cpuset_cpu_inactive(unsigned int cpu)
7822 {
7823 	if (!cpuhp_tasks_frozen) {
7824 		if (dl_cpu_busy(cpu))
7825 			return -EBUSY;
7826 		cpuset_update_active_cpus();
7827 	} else {
7828 		num_cpus_frozen++;
7829 		partition_sched_domains(1, NULL, NULL);
7830 	}
7831 	return 0;
7832 }
7833 
7834 int sched_cpu_activate(unsigned int cpu)
7835 {
7836 	struct rq *rq = cpu_rq(cpu);
7837 	struct rq_flags rf;
7838 
7839 	/*
7840 	 * Clear the balance_push callback and prepare to schedule
7841 	 * regular tasks.
7842 	 */
7843 	balance_push_set(cpu, false);
7844 
7845 #ifdef CONFIG_SCHED_SMT
7846 	/*
7847 	 * When going up, increment the number of cores with SMT present.
7848 	 */
7849 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7850 		static_branch_inc_cpuslocked(&sched_smt_present);
7851 #endif
7852 	set_cpu_active(cpu, true);
7853 
7854 	if (sched_smp_initialized) {
7855 		sched_domains_numa_masks_set(cpu);
7856 		cpuset_cpu_active();
7857 	}
7858 
7859 	/*
7860 	 * Put the rq online, if not already. This happens:
7861 	 *
7862 	 * 1) In the early boot process, because we build the real domains
7863 	 *    after all CPUs have been brought up.
7864 	 *
7865 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7866 	 *    domains.
7867 	 */
7868 	rq_lock_irqsave(rq, &rf);
7869 	if (rq->rd) {
7870 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7871 		set_rq_online(rq);
7872 	}
7873 	rq_unlock_irqrestore(rq, &rf);
7874 
7875 	return 0;
7876 }
7877 
7878 int sched_cpu_deactivate(unsigned int cpu)
7879 {
7880 	struct rq *rq = cpu_rq(cpu);
7881 	struct rq_flags rf;
7882 	int ret;
7883 
7884 	/*
7885 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7886 	 * load balancing when not active
7887 	 */
7888 	nohz_balance_exit_idle(rq);
7889 
7890 	set_cpu_active(cpu, false);
7891 
7892 	/*
7893 	 * From this point forward, this CPU will refuse to run any task that
7894 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7895 	 * push those tasks away until this gets cleared, see
7896 	 * sched_cpu_dying().
7897 	 */
7898 	balance_push_set(cpu, true);
7899 
7900 	/*
7901 	 * We've cleared cpu_active_mask / set balance_push, wait for all
7902 	 * preempt-disabled and RCU users of this state to go away such that
7903 	 * all new such users will observe it.
7904 	 *
7905 	 * Specifically, we rely on ttwu to no longer target this CPU, see
7906 	 * ttwu_queue_cond() and is_cpu_allowed().
7907 	 *
7908 	 * Do sync before park smpboot threads to take care the rcu boost case.
7909 	 */
7910 	synchronize_rcu();
7911 
7912 	rq_lock_irqsave(rq, &rf);
7913 	if (rq->rd) {
7914 		update_rq_clock(rq);
7915 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7916 		set_rq_offline(rq);
7917 	}
7918 	rq_unlock_irqrestore(rq, &rf);
7919 
7920 #ifdef CONFIG_SCHED_SMT
7921 	/*
7922 	 * When going down, decrement the number of cores with SMT present.
7923 	 */
7924 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7925 		static_branch_dec_cpuslocked(&sched_smt_present);
7926 #endif
7927 
7928 	if (!sched_smp_initialized)
7929 		return 0;
7930 
7931 	ret = cpuset_cpu_inactive(cpu);
7932 	if (ret) {
7933 		balance_push_set(cpu, false);
7934 		set_cpu_active(cpu, true);
7935 		return ret;
7936 	}
7937 	sched_domains_numa_masks_clear(cpu);
7938 	return 0;
7939 }
7940 
7941 static void sched_rq_cpu_starting(unsigned int cpu)
7942 {
7943 	struct rq *rq = cpu_rq(cpu);
7944 
7945 	rq->calc_load_update = calc_load_update;
7946 	update_max_interval();
7947 }
7948 
7949 int sched_cpu_starting(unsigned int cpu)
7950 {
7951 	sched_rq_cpu_starting(cpu);
7952 	sched_tick_start(cpu);
7953 	return 0;
7954 }
7955 
7956 #ifdef CONFIG_HOTPLUG_CPU
7957 
7958 /*
7959  * Invoked immediately before the stopper thread is invoked to bring the
7960  * CPU down completely. At this point all per CPU kthreads except the
7961  * hotplug thread (current) and the stopper thread (inactive) have been
7962  * either parked or have been unbound from the outgoing CPU. Ensure that
7963  * any of those which might be on the way out are gone.
7964  *
7965  * If after this point a bound task is being woken on this CPU then the
7966  * responsible hotplug callback has failed to do it's job.
7967  * sched_cpu_dying() will catch it with the appropriate fireworks.
7968  */
7969 int sched_cpu_wait_empty(unsigned int cpu)
7970 {
7971 	balance_hotplug_wait();
7972 	return 0;
7973 }
7974 
7975 /*
7976  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7977  * might have. Called from the CPU stopper task after ensuring that the
7978  * stopper is the last running task on the CPU, so nr_active count is
7979  * stable. We need to take the teardown thread which is calling this into
7980  * account, so we hand in adjust = 1 to the load calculation.
7981  *
7982  * Also see the comment "Global load-average calculations".
7983  */
7984 static void calc_load_migrate(struct rq *rq)
7985 {
7986 	long delta = calc_load_fold_active(rq, 1);
7987 
7988 	if (delta)
7989 		atomic_long_add(delta, &calc_load_tasks);
7990 }
7991 
7992 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7993 {
7994 	struct task_struct *g, *p;
7995 	int cpu = cpu_of(rq);
7996 
7997 	lockdep_assert_held(&rq->lock);
7998 
7999 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8000 	for_each_process_thread(g, p) {
8001 		if (task_cpu(p) != cpu)
8002 			continue;
8003 
8004 		if (!task_on_rq_queued(p))
8005 			continue;
8006 
8007 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8008 	}
8009 }
8010 
8011 int sched_cpu_dying(unsigned int cpu)
8012 {
8013 	struct rq *rq = cpu_rq(cpu);
8014 	struct rq_flags rf;
8015 
8016 	/* Handle pending wakeups and then migrate everything off */
8017 	sched_tick_stop(cpu);
8018 
8019 	rq_lock_irqsave(rq, &rf);
8020 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8021 		WARN(true, "Dying CPU not properly vacated!");
8022 		dump_rq_tasks(rq, KERN_WARNING);
8023 	}
8024 	rq_unlock_irqrestore(rq, &rf);
8025 
8026 	calc_load_migrate(rq);
8027 	update_max_interval();
8028 	hrtick_clear(rq);
8029 	return 0;
8030 }
8031 #endif
8032 
8033 void __init sched_init_smp(void)
8034 {
8035 	sched_init_numa();
8036 
8037 	/*
8038 	 * There's no userspace yet to cause hotplug operations; hence all the
8039 	 * CPU masks are stable and all blatant races in the below code cannot
8040 	 * happen.
8041 	 */
8042 	mutex_lock(&sched_domains_mutex);
8043 	sched_init_domains(cpu_active_mask);
8044 	mutex_unlock(&sched_domains_mutex);
8045 
8046 	/* Move init over to a non-isolated CPU */
8047 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8048 		BUG();
8049 	sched_init_granularity();
8050 
8051 	init_sched_rt_class();
8052 	init_sched_dl_class();
8053 
8054 	sched_smp_initialized = true;
8055 }
8056 
8057 static int __init migration_init(void)
8058 {
8059 	sched_cpu_starting(smp_processor_id());
8060 	return 0;
8061 }
8062 early_initcall(migration_init);
8063 
8064 #else
8065 void __init sched_init_smp(void)
8066 {
8067 	sched_init_granularity();
8068 }
8069 #endif /* CONFIG_SMP */
8070 
8071 int in_sched_functions(unsigned long addr)
8072 {
8073 	return in_lock_functions(addr) ||
8074 		(addr >= (unsigned long)__sched_text_start
8075 		&& addr < (unsigned long)__sched_text_end);
8076 }
8077 
8078 #ifdef CONFIG_CGROUP_SCHED
8079 /*
8080  * Default task group.
8081  * Every task in system belongs to this group at bootup.
8082  */
8083 struct task_group root_task_group;
8084 LIST_HEAD(task_groups);
8085 
8086 /* Cacheline aligned slab cache for task_group */
8087 static struct kmem_cache *task_group_cache __read_mostly;
8088 #endif
8089 
8090 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8091 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8092 
8093 void __init sched_init(void)
8094 {
8095 	unsigned long ptr = 0;
8096 	int i;
8097 
8098 	/* Make sure the linker didn't screw up */
8099 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8100 	       &fair_sched_class + 1 != &rt_sched_class ||
8101 	       &rt_sched_class + 1   != &dl_sched_class);
8102 #ifdef CONFIG_SMP
8103 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8104 #endif
8105 
8106 	wait_bit_init();
8107 
8108 #ifdef CONFIG_FAIR_GROUP_SCHED
8109 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8110 #endif
8111 #ifdef CONFIG_RT_GROUP_SCHED
8112 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8113 #endif
8114 	if (ptr) {
8115 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8116 
8117 #ifdef CONFIG_FAIR_GROUP_SCHED
8118 		root_task_group.se = (struct sched_entity **)ptr;
8119 		ptr += nr_cpu_ids * sizeof(void **);
8120 
8121 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8122 		ptr += nr_cpu_ids * sizeof(void **);
8123 
8124 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8125 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8126 #endif /* CONFIG_FAIR_GROUP_SCHED */
8127 #ifdef CONFIG_RT_GROUP_SCHED
8128 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8129 		ptr += nr_cpu_ids * sizeof(void **);
8130 
8131 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8132 		ptr += nr_cpu_ids * sizeof(void **);
8133 
8134 #endif /* CONFIG_RT_GROUP_SCHED */
8135 	}
8136 #ifdef CONFIG_CPUMASK_OFFSTACK
8137 	for_each_possible_cpu(i) {
8138 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8139 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8140 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8141 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8142 	}
8143 #endif /* CONFIG_CPUMASK_OFFSTACK */
8144 
8145 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8146 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8147 
8148 #ifdef CONFIG_SMP
8149 	init_defrootdomain();
8150 #endif
8151 
8152 #ifdef CONFIG_RT_GROUP_SCHED
8153 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8154 			global_rt_period(), global_rt_runtime());
8155 #endif /* CONFIG_RT_GROUP_SCHED */
8156 
8157 #ifdef CONFIG_CGROUP_SCHED
8158 	task_group_cache = KMEM_CACHE(task_group, 0);
8159 
8160 	list_add(&root_task_group.list, &task_groups);
8161 	INIT_LIST_HEAD(&root_task_group.children);
8162 	INIT_LIST_HEAD(&root_task_group.siblings);
8163 	autogroup_init(&init_task);
8164 #endif /* CONFIG_CGROUP_SCHED */
8165 
8166 	for_each_possible_cpu(i) {
8167 		struct rq *rq;
8168 
8169 		rq = cpu_rq(i);
8170 		raw_spin_lock_init(&rq->lock);
8171 		rq->nr_running = 0;
8172 		rq->calc_load_active = 0;
8173 		rq->calc_load_update = jiffies + LOAD_FREQ;
8174 		init_cfs_rq(&rq->cfs);
8175 		init_rt_rq(&rq->rt);
8176 		init_dl_rq(&rq->dl);
8177 #ifdef CONFIG_FAIR_GROUP_SCHED
8178 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8179 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8180 		/*
8181 		 * How much CPU bandwidth does root_task_group get?
8182 		 *
8183 		 * In case of task-groups formed thr' the cgroup filesystem, it
8184 		 * gets 100% of the CPU resources in the system. This overall
8185 		 * system CPU resource is divided among the tasks of
8186 		 * root_task_group and its child task-groups in a fair manner,
8187 		 * based on each entity's (task or task-group's) weight
8188 		 * (se->load.weight).
8189 		 *
8190 		 * In other words, if root_task_group has 10 tasks of weight
8191 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8192 		 * then A0's share of the CPU resource is:
8193 		 *
8194 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8195 		 *
8196 		 * We achieve this by letting root_task_group's tasks sit
8197 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8198 		 */
8199 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8200 #endif /* CONFIG_FAIR_GROUP_SCHED */
8201 
8202 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8203 #ifdef CONFIG_RT_GROUP_SCHED
8204 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8205 #endif
8206 #ifdef CONFIG_SMP
8207 		rq->sd = NULL;
8208 		rq->rd = NULL;
8209 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
8210 		rq->balance_callback = &balance_push_callback;
8211 		rq->active_balance = 0;
8212 		rq->next_balance = jiffies;
8213 		rq->push_cpu = 0;
8214 		rq->cpu = i;
8215 		rq->online = 0;
8216 		rq->idle_stamp = 0;
8217 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8218 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8219 
8220 		INIT_LIST_HEAD(&rq->cfs_tasks);
8221 
8222 		rq_attach_root(rq, &def_root_domain);
8223 #ifdef CONFIG_NO_HZ_COMMON
8224 		rq->last_blocked_load_update_tick = jiffies;
8225 		atomic_set(&rq->nohz_flags, 0);
8226 
8227 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8228 #endif
8229 #ifdef CONFIG_HOTPLUG_CPU
8230 		rcuwait_init(&rq->hotplug_wait);
8231 #endif
8232 #endif /* CONFIG_SMP */
8233 		hrtick_rq_init(rq);
8234 		atomic_set(&rq->nr_iowait, 0);
8235 	}
8236 
8237 	set_load_weight(&init_task, false);
8238 
8239 	/*
8240 	 * The boot idle thread does lazy MMU switching as well:
8241 	 */
8242 	mmgrab(&init_mm);
8243 	enter_lazy_tlb(&init_mm, current);
8244 
8245 	/*
8246 	 * Make us the idle thread. Technically, schedule() should not be
8247 	 * called from this thread, however somewhere below it might be,
8248 	 * but because we are the idle thread, we just pick up running again
8249 	 * when this runqueue becomes "idle".
8250 	 */
8251 	init_idle(current, smp_processor_id());
8252 
8253 	calc_load_update = jiffies + LOAD_FREQ;
8254 
8255 #ifdef CONFIG_SMP
8256 	idle_thread_set_boot_cpu();
8257 	balance_push_set(smp_processor_id(), false);
8258 #endif
8259 	init_sched_fair_class();
8260 
8261 	init_schedstats();
8262 
8263 	psi_init();
8264 
8265 	init_uclamp();
8266 
8267 	scheduler_running = 1;
8268 }
8269 
8270 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8271 static inline int preempt_count_equals(int preempt_offset)
8272 {
8273 	int nested = preempt_count() + rcu_preempt_depth();
8274 
8275 	return (nested == preempt_offset);
8276 }
8277 
8278 void __might_sleep(const char *file, int line, int preempt_offset)
8279 {
8280 	/*
8281 	 * Blocking primitives will set (and therefore destroy) current->state,
8282 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8283 	 * otherwise we will destroy state.
8284 	 */
8285 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8286 			"do not call blocking ops when !TASK_RUNNING; "
8287 			"state=%lx set at [<%p>] %pS\n",
8288 			current->state,
8289 			(void *)current->task_state_change,
8290 			(void *)current->task_state_change);
8291 
8292 	___might_sleep(file, line, preempt_offset);
8293 }
8294 EXPORT_SYMBOL(__might_sleep);
8295 
8296 void ___might_sleep(const char *file, int line, int preempt_offset)
8297 {
8298 	/* Ratelimiting timestamp: */
8299 	static unsigned long prev_jiffy;
8300 
8301 	unsigned long preempt_disable_ip;
8302 
8303 	/* WARN_ON_ONCE() by default, no rate limit required: */
8304 	rcu_sleep_check();
8305 
8306 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
8307 	     !is_idle_task(current) && !current->non_block_count) ||
8308 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8309 	    oops_in_progress)
8310 		return;
8311 
8312 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8313 		return;
8314 	prev_jiffy = jiffies;
8315 
8316 	/* Save this before calling printk(), since that will clobber it: */
8317 	preempt_disable_ip = get_preempt_disable_ip(current);
8318 
8319 	printk(KERN_ERR
8320 		"BUG: sleeping function called from invalid context at %s:%d\n",
8321 			file, line);
8322 	printk(KERN_ERR
8323 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8324 			in_atomic(), irqs_disabled(), current->non_block_count,
8325 			current->pid, current->comm);
8326 
8327 	if (task_stack_end_corrupted(current))
8328 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8329 
8330 	debug_show_held_locks(current);
8331 	if (irqs_disabled())
8332 		print_irqtrace_events(current);
8333 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8334 	    && !preempt_count_equals(preempt_offset)) {
8335 		pr_err("Preemption disabled at:");
8336 		print_ip_sym(KERN_ERR, preempt_disable_ip);
8337 	}
8338 	dump_stack();
8339 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8340 }
8341 EXPORT_SYMBOL(___might_sleep);
8342 
8343 void __cant_sleep(const char *file, int line, int preempt_offset)
8344 {
8345 	static unsigned long prev_jiffy;
8346 
8347 	if (irqs_disabled())
8348 		return;
8349 
8350 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8351 		return;
8352 
8353 	if (preempt_count() > preempt_offset)
8354 		return;
8355 
8356 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8357 		return;
8358 	prev_jiffy = jiffies;
8359 
8360 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8361 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8362 			in_atomic(), irqs_disabled(),
8363 			current->pid, current->comm);
8364 
8365 	debug_show_held_locks(current);
8366 	dump_stack();
8367 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8368 }
8369 EXPORT_SYMBOL_GPL(__cant_sleep);
8370 
8371 #ifdef CONFIG_SMP
8372 void __cant_migrate(const char *file, int line)
8373 {
8374 	static unsigned long prev_jiffy;
8375 
8376 	if (irqs_disabled())
8377 		return;
8378 
8379 	if (is_migration_disabled(current))
8380 		return;
8381 
8382 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8383 		return;
8384 
8385 	if (preempt_count() > 0)
8386 		return;
8387 
8388 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8389 		return;
8390 	prev_jiffy = jiffies;
8391 
8392 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8393 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8394 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8395 	       current->pid, current->comm);
8396 
8397 	debug_show_held_locks(current);
8398 	dump_stack();
8399 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8400 }
8401 EXPORT_SYMBOL_GPL(__cant_migrate);
8402 #endif
8403 #endif
8404 
8405 #ifdef CONFIG_MAGIC_SYSRQ
8406 void normalize_rt_tasks(void)
8407 {
8408 	struct task_struct *g, *p;
8409 	struct sched_attr attr = {
8410 		.sched_policy = SCHED_NORMAL,
8411 	};
8412 
8413 	read_lock(&tasklist_lock);
8414 	for_each_process_thread(g, p) {
8415 		/*
8416 		 * Only normalize user tasks:
8417 		 */
8418 		if (p->flags & PF_KTHREAD)
8419 			continue;
8420 
8421 		p->se.exec_start = 0;
8422 		schedstat_set(p->se.statistics.wait_start,  0);
8423 		schedstat_set(p->se.statistics.sleep_start, 0);
8424 		schedstat_set(p->se.statistics.block_start, 0);
8425 
8426 		if (!dl_task(p) && !rt_task(p)) {
8427 			/*
8428 			 * Renice negative nice level userspace
8429 			 * tasks back to 0:
8430 			 */
8431 			if (task_nice(p) < 0)
8432 				set_user_nice(p, 0);
8433 			continue;
8434 		}
8435 
8436 		__sched_setscheduler(p, &attr, false, false);
8437 	}
8438 	read_unlock(&tasklist_lock);
8439 }
8440 
8441 #endif /* CONFIG_MAGIC_SYSRQ */
8442 
8443 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8444 /*
8445  * These functions are only useful for the IA64 MCA handling, or kdb.
8446  *
8447  * They can only be called when the whole system has been
8448  * stopped - every CPU needs to be quiescent, and no scheduling
8449  * activity can take place. Using them for anything else would
8450  * be a serious bug, and as a result, they aren't even visible
8451  * under any other configuration.
8452  */
8453 
8454 /**
8455  * curr_task - return the current task for a given CPU.
8456  * @cpu: the processor in question.
8457  *
8458  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8459  *
8460  * Return: The current task for @cpu.
8461  */
8462 struct task_struct *curr_task(int cpu)
8463 {
8464 	return cpu_curr(cpu);
8465 }
8466 
8467 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8468 
8469 #ifdef CONFIG_IA64
8470 /**
8471  * ia64_set_curr_task - set the current task for a given CPU.
8472  * @cpu: the processor in question.
8473  * @p: the task pointer to set.
8474  *
8475  * Description: This function must only be used when non-maskable interrupts
8476  * are serviced on a separate stack. It allows the architecture to switch the
8477  * notion of the current task on a CPU in a non-blocking manner. This function
8478  * must be called with all CPU's synchronized, and interrupts disabled, the
8479  * and caller must save the original value of the current task (see
8480  * curr_task() above) and restore that value before reenabling interrupts and
8481  * re-starting the system.
8482  *
8483  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8484  */
8485 void ia64_set_curr_task(int cpu, struct task_struct *p)
8486 {
8487 	cpu_curr(cpu) = p;
8488 }
8489 
8490 #endif
8491 
8492 #ifdef CONFIG_CGROUP_SCHED
8493 /* task_group_lock serializes the addition/removal of task groups */
8494 static DEFINE_SPINLOCK(task_group_lock);
8495 
8496 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8497 					    struct task_group *parent)
8498 {
8499 #ifdef CONFIG_UCLAMP_TASK_GROUP
8500 	enum uclamp_id clamp_id;
8501 
8502 	for_each_clamp_id(clamp_id) {
8503 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8504 			      uclamp_none(clamp_id), false);
8505 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8506 	}
8507 #endif
8508 }
8509 
8510 static void sched_free_group(struct task_group *tg)
8511 {
8512 	free_fair_sched_group(tg);
8513 	free_rt_sched_group(tg);
8514 	autogroup_free(tg);
8515 	kmem_cache_free(task_group_cache, tg);
8516 }
8517 
8518 /* allocate runqueue etc for a new task group */
8519 struct task_group *sched_create_group(struct task_group *parent)
8520 {
8521 	struct task_group *tg;
8522 
8523 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8524 	if (!tg)
8525 		return ERR_PTR(-ENOMEM);
8526 
8527 	if (!alloc_fair_sched_group(tg, parent))
8528 		goto err;
8529 
8530 	if (!alloc_rt_sched_group(tg, parent))
8531 		goto err;
8532 
8533 	alloc_uclamp_sched_group(tg, parent);
8534 
8535 	return tg;
8536 
8537 err:
8538 	sched_free_group(tg);
8539 	return ERR_PTR(-ENOMEM);
8540 }
8541 
8542 void sched_online_group(struct task_group *tg, struct task_group *parent)
8543 {
8544 	unsigned long flags;
8545 
8546 	spin_lock_irqsave(&task_group_lock, flags);
8547 	list_add_rcu(&tg->list, &task_groups);
8548 
8549 	/* Root should already exist: */
8550 	WARN_ON(!parent);
8551 
8552 	tg->parent = parent;
8553 	INIT_LIST_HEAD(&tg->children);
8554 	list_add_rcu(&tg->siblings, &parent->children);
8555 	spin_unlock_irqrestore(&task_group_lock, flags);
8556 
8557 	online_fair_sched_group(tg);
8558 }
8559 
8560 /* rcu callback to free various structures associated with a task group */
8561 static void sched_free_group_rcu(struct rcu_head *rhp)
8562 {
8563 	/* Now it should be safe to free those cfs_rqs: */
8564 	sched_free_group(container_of(rhp, struct task_group, rcu));
8565 }
8566 
8567 void sched_destroy_group(struct task_group *tg)
8568 {
8569 	/* Wait for possible concurrent references to cfs_rqs complete: */
8570 	call_rcu(&tg->rcu, sched_free_group_rcu);
8571 }
8572 
8573 void sched_offline_group(struct task_group *tg)
8574 {
8575 	unsigned long flags;
8576 
8577 	/* End participation in shares distribution: */
8578 	unregister_fair_sched_group(tg);
8579 
8580 	spin_lock_irqsave(&task_group_lock, flags);
8581 	list_del_rcu(&tg->list);
8582 	list_del_rcu(&tg->siblings);
8583 	spin_unlock_irqrestore(&task_group_lock, flags);
8584 }
8585 
8586 static void sched_change_group(struct task_struct *tsk, int type)
8587 {
8588 	struct task_group *tg;
8589 
8590 	/*
8591 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8592 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8593 	 * to prevent lockdep warnings.
8594 	 */
8595 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8596 			  struct task_group, css);
8597 	tg = autogroup_task_group(tsk, tg);
8598 	tsk->sched_task_group = tg;
8599 
8600 #ifdef CONFIG_FAIR_GROUP_SCHED
8601 	if (tsk->sched_class->task_change_group)
8602 		tsk->sched_class->task_change_group(tsk, type);
8603 	else
8604 #endif
8605 		set_task_rq(tsk, task_cpu(tsk));
8606 }
8607 
8608 /*
8609  * Change task's runqueue when it moves between groups.
8610  *
8611  * The caller of this function should have put the task in its new group by
8612  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8613  * its new group.
8614  */
8615 void sched_move_task(struct task_struct *tsk)
8616 {
8617 	int queued, running, queue_flags =
8618 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8619 	struct rq_flags rf;
8620 	struct rq *rq;
8621 
8622 	rq = task_rq_lock(tsk, &rf);
8623 	update_rq_clock(rq);
8624 
8625 	running = task_current(rq, tsk);
8626 	queued = task_on_rq_queued(tsk);
8627 
8628 	if (queued)
8629 		dequeue_task(rq, tsk, queue_flags);
8630 	if (running)
8631 		put_prev_task(rq, tsk);
8632 
8633 	sched_change_group(tsk, TASK_MOVE_GROUP);
8634 
8635 	if (queued)
8636 		enqueue_task(rq, tsk, queue_flags);
8637 	if (running) {
8638 		set_next_task(rq, tsk);
8639 		/*
8640 		 * After changing group, the running task may have joined a
8641 		 * throttled one but it's still the running task. Trigger a
8642 		 * resched to make sure that task can still run.
8643 		 */
8644 		resched_curr(rq);
8645 	}
8646 
8647 	task_rq_unlock(rq, tsk, &rf);
8648 }
8649 
8650 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8651 {
8652 	return css ? container_of(css, struct task_group, css) : NULL;
8653 }
8654 
8655 static struct cgroup_subsys_state *
8656 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8657 {
8658 	struct task_group *parent = css_tg(parent_css);
8659 	struct task_group *tg;
8660 
8661 	if (!parent) {
8662 		/* This is early initialization for the top cgroup */
8663 		return &root_task_group.css;
8664 	}
8665 
8666 	tg = sched_create_group(parent);
8667 	if (IS_ERR(tg))
8668 		return ERR_PTR(-ENOMEM);
8669 
8670 	return &tg->css;
8671 }
8672 
8673 /* Expose task group only after completing cgroup initialization */
8674 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8675 {
8676 	struct task_group *tg = css_tg(css);
8677 	struct task_group *parent = css_tg(css->parent);
8678 
8679 	if (parent)
8680 		sched_online_group(tg, parent);
8681 
8682 #ifdef CONFIG_UCLAMP_TASK_GROUP
8683 	/* Propagate the effective uclamp value for the new group */
8684 	cpu_util_update_eff(css);
8685 #endif
8686 
8687 	return 0;
8688 }
8689 
8690 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8691 {
8692 	struct task_group *tg = css_tg(css);
8693 
8694 	sched_offline_group(tg);
8695 }
8696 
8697 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8698 {
8699 	struct task_group *tg = css_tg(css);
8700 
8701 	/*
8702 	 * Relies on the RCU grace period between css_released() and this.
8703 	 */
8704 	sched_free_group(tg);
8705 }
8706 
8707 /*
8708  * This is called before wake_up_new_task(), therefore we really only
8709  * have to set its group bits, all the other stuff does not apply.
8710  */
8711 static void cpu_cgroup_fork(struct task_struct *task)
8712 {
8713 	struct rq_flags rf;
8714 	struct rq *rq;
8715 
8716 	rq = task_rq_lock(task, &rf);
8717 
8718 	update_rq_clock(rq);
8719 	sched_change_group(task, TASK_SET_GROUP);
8720 
8721 	task_rq_unlock(rq, task, &rf);
8722 }
8723 
8724 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8725 {
8726 	struct task_struct *task;
8727 	struct cgroup_subsys_state *css;
8728 	int ret = 0;
8729 
8730 	cgroup_taskset_for_each(task, css, tset) {
8731 #ifdef CONFIG_RT_GROUP_SCHED
8732 		if (!sched_rt_can_attach(css_tg(css), task))
8733 			return -EINVAL;
8734 #endif
8735 		/*
8736 		 * Serialize against wake_up_new_task() such that if it's
8737 		 * running, we're sure to observe its full state.
8738 		 */
8739 		raw_spin_lock_irq(&task->pi_lock);
8740 		/*
8741 		 * Avoid calling sched_move_task() before wake_up_new_task()
8742 		 * has happened. This would lead to problems with PELT, due to
8743 		 * move wanting to detach+attach while we're not attached yet.
8744 		 */
8745 		if (task->state == TASK_NEW)
8746 			ret = -EINVAL;
8747 		raw_spin_unlock_irq(&task->pi_lock);
8748 
8749 		if (ret)
8750 			break;
8751 	}
8752 	return ret;
8753 }
8754 
8755 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8756 {
8757 	struct task_struct *task;
8758 	struct cgroup_subsys_state *css;
8759 
8760 	cgroup_taskset_for_each(task, css, tset)
8761 		sched_move_task(task);
8762 }
8763 
8764 #ifdef CONFIG_UCLAMP_TASK_GROUP
8765 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8766 {
8767 	struct cgroup_subsys_state *top_css = css;
8768 	struct uclamp_se *uc_parent = NULL;
8769 	struct uclamp_se *uc_se = NULL;
8770 	unsigned int eff[UCLAMP_CNT];
8771 	enum uclamp_id clamp_id;
8772 	unsigned int clamps;
8773 
8774 	css_for_each_descendant_pre(css, top_css) {
8775 		uc_parent = css_tg(css)->parent
8776 			? css_tg(css)->parent->uclamp : NULL;
8777 
8778 		for_each_clamp_id(clamp_id) {
8779 			/* Assume effective clamps matches requested clamps */
8780 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8781 			/* Cap effective clamps with parent's effective clamps */
8782 			if (uc_parent &&
8783 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8784 				eff[clamp_id] = uc_parent[clamp_id].value;
8785 			}
8786 		}
8787 		/* Ensure protection is always capped by limit */
8788 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8789 
8790 		/* Propagate most restrictive effective clamps */
8791 		clamps = 0x0;
8792 		uc_se = css_tg(css)->uclamp;
8793 		for_each_clamp_id(clamp_id) {
8794 			if (eff[clamp_id] == uc_se[clamp_id].value)
8795 				continue;
8796 			uc_se[clamp_id].value = eff[clamp_id];
8797 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8798 			clamps |= (0x1 << clamp_id);
8799 		}
8800 		if (!clamps) {
8801 			css = css_rightmost_descendant(css);
8802 			continue;
8803 		}
8804 
8805 		/* Immediately update descendants RUNNABLE tasks */
8806 		uclamp_update_active_tasks(css, clamps);
8807 	}
8808 }
8809 
8810 /*
8811  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8812  * C expression. Since there is no way to convert a macro argument (N) into a
8813  * character constant, use two levels of macros.
8814  */
8815 #define _POW10(exp) ((unsigned int)1e##exp)
8816 #define POW10(exp) _POW10(exp)
8817 
8818 struct uclamp_request {
8819 #define UCLAMP_PERCENT_SHIFT	2
8820 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8821 	s64 percent;
8822 	u64 util;
8823 	int ret;
8824 };
8825 
8826 static inline struct uclamp_request
8827 capacity_from_percent(char *buf)
8828 {
8829 	struct uclamp_request req = {
8830 		.percent = UCLAMP_PERCENT_SCALE,
8831 		.util = SCHED_CAPACITY_SCALE,
8832 		.ret = 0,
8833 	};
8834 
8835 	buf = strim(buf);
8836 	if (strcmp(buf, "max")) {
8837 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8838 					     &req.percent);
8839 		if (req.ret)
8840 			return req;
8841 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8842 			req.ret = -ERANGE;
8843 			return req;
8844 		}
8845 
8846 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8847 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8848 	}
8849 
8850 	return req;
8851 }
8852 
8853 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8854 				size_t nbytes, loff_t off,
8855 				enum uclamp_id clamp_id)
8856 {
8857 	struct uclamp_request req;
8858 	struct task_group *tg;
8859 
8860 	req = capacity_from_percent(buf);
8861 	if (req.ret)
8862 		return req.ret;
8863 
8864 	static_branch_enable(&sched_uclamp_used);
8865 
8866 	mutex_lock(&uclamp_mutex);
8867 	rcu_read_lock();
8868 
8869 	tg = css_tg(of_css(of));
8870 	if (tg->uclamp_req[clamp_id].value != req.util)
8871 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8872 
8873 	/*
8874 	 * Because of not recoverable conversion rounding we keep track of the
8875 	 * exact requested value
8876 	 */
8877 	tg->uclamp_pct[clamp_id] = req.percent;
8878 
8879 	/* Update effective clamps to track the most restrictive value */
8880 	cpu_util_update_eff(of_css(of));
8881 
8882 	rcu_read_unlock();
8883 	mutex_unlock(&uclamp_mutex);
8884 
8885 	return nbytes;
8886 }
8887 
8888 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8889 				    char *buf, size_t nbytes,
8890 				    loff_t off)
8891 {
8892 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8893 }
8894 
8895 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8896 				    char *buf, size_t nbytes,
8897 				    loff_t off)
8898 {
8899 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8900 }
8901 
8902 static inline void cpu_uclamp_print(struct seq_file *sf,
8903 				    enum uclamp_id clamp_id)
8904 {
8905 	struct task_group *tg;
8906 	u64 util_clamp;
8907 	u64 percent;
8908 	u32 rem;
8909 
8910 	rcu_read_lock();
8911 	tg = css_tg(seq_css(sf));
8912 	util_clamp = tg->uclamp_req[clamp_id].value;
8913 	rcu_read_unlock();
8914 
8915 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8916 		seq_puts(sf, "max\n");
8917 		return;
8918 	}
8919 
8920 	percent = tg->uclamp_pct[clamp_id];
8921 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8922 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8923 }
8924 
8925 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8926 {
8927 	cpu_uclamp_print(sf, UCLAMP_MIN);
8928 	return 0;
8929 }
8930 
8931 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8932 {
8933 	cpu_uclamp_print(sf, UCLAMP_MAX);
8934 	return 0;
8935 }
8936 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8937 
8938 #ifdef CONFIG_FAIR_GROUP_SCHED
8939 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8940 				struct cftype *cftype, u64 shareval)
8941 {
8942 	if (shareval > scale_load_down(ULONG_MAX))
8943 		shareval = MAX_SHARES;
8944 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8945 }
8946 
8947 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8948 			       struct cftype *cft)
8949 {
8950 	struct task_group *tg = css_tg(css);
8951 
8952 	return (u64) scale_load_down(tg->shares);
8953 }
8954 
8955 #ifdef CONFIG_CFS_BANDWIDTH
8956 static DEFINE_MUTEX(cfs_constraints_mutex);
8957 
8958 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8959 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8960 /* More than 203 days if BW_SHIFT equals 20. */
8961 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8962 
8963 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8964 
8965 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8966 {
8967 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8968 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8969 
8970 	if (tg == &root_task_group)
8971 		return -EINVAL;
8972 
8973 	/*
8974 	 * Ensure we have at some amount of bandwidth every period.  This is
8975 	 * to prevent reaching a state of large arrears when throttled via
8976 	 * entity_tick() resulting in prolonged exit starvation.
8977 	 */
8978 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8979 		return -EINVAL;
8980 
8981 	/*
8982 	 * Likewise, bound things on the other side by preventing insane quota
8983 	 * periods.  This also allows us to normalize in computing quota
8984 	 * feasibility.
8985 	 */
8986 	if (period > max_cfs_quota_period)
8987 		return -EINVAL;
8988 
8989 	/*
8990 	 * Bound quota to defend quota against overflow during bandwidth shift.
8991 	 */
8992 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8993 		return -EINVAL;
8994 
8995 	/*
8996 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8997 	 * unthrottle_offline_cfs_rqs().
8998 	 */
8999 	get_online_cpus();
9000 	mutex_lock(&cfs_constraints_mutex);
9001 	ret = __cfs_schedulable(tg, period, quota);
9002 	if (ret)
9003 		goto out_unlock;
9004 
9005 	runtime_enabled = quota != RUNTIME_INF;
9006 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9007 	/*
9008 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9009 	 * before making related changes, and on->off must occur afterwards
9010 	 */
9011 	if (runtime_enabled && !runtime_was_enabled)
9012 		cfs_bandwidth_usage_inc();
9013 	raw_spin_lock_irq(&cfs_b->lock);
9014 	cfs_b->period = ns_to_ktime(period);
9015 	cfs_b->quota = quota;
9016 
9017 	__refill_cfs_bandwidth_runtime(cfs_b);
9018 
9019 	/* Restart the period timer (if active) to handle new period expiry: */
9020 	if (runtime_enabled)
9021 		start_cfs_bandwidth(cfs_b);
9022 
9023 	raw_spin_unlock_irq(&cfs_b->lock);
9024 
9025 	for_each_online_cpu(i) {
9026 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9027 		struct rq *rq = cfs_rq->rq;
9028 		struct rq_flags rf;
9029 
9030 		rq_lock_irq(rq, &rf);
9031 		cfs_rq->runtime_enabled = runtime_enabled;
9032 		cfs_rq->runtime_remaining = 0;
9033 
9034 		if (cfs_rq->throttled)
9035 			unthrottle_cfs_rq(cfs_rq);
9036 		rq_unlock_irq(rq, &rf);
9037 	}
9038 	if (runtime_was_enabled && !runtime_enabled)
9039 		cfs_bandwidth_usage_dec();
9040 out_unlock:
9041 	mutex_unlock(&cfs_constraints_mutex);
9042 	put_online_cpus();
9043 
9044 	return ret;
9045 }
9046 
9047 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9048 {
9049 	u64 quota, period;
9050 
9051 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9052 	if (cfs_quota_us < 0)
9053 		quota = RUNTIME_INF;
9054 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9055 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9056 	else
9057 		return -EINVAL;
9058 
9059 	return tg_set_cfs_bandwidth(tg, period, quota);
9060 }
9061 
9062 static long tg_get_cfs_quota(struct task_group *tg)
9063 {
9064 	u64 quota_us;
9065 
9066 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9067 		return -1;
9068 
9069 	quota_us = tg->cfs_bandwidth.quota;
9070 	do_div(quota_us, NSEC_PER_USEC);
9071 
9072 	return quota_us;
9073 }
9074 
9075 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9076 {
9077 	u64 quota, period;
9078 
9079 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9080 		return -EINVAL;
9081 
9082 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9083 	quota = tg->cfs_bandwidth.quota;
9084 
9085 	return tg_set_cfs_bandwidth(tg, period, quota);
9086 }
9087 
9088 static long tg_get_cfs_period(struct task_group *tg)
9089 {
9090 	u64 cfs_period_us;
9091 
9092 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9093 	do_div(cfs_period_us, NSEC_PER_USEC);
9094 
9095 	return cfs_period_us;
9096 }
9097 
9098 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9099 				  struct cftype *cft)
9100 {
9101 	return tg_get_cfs_quota(css_tg(css));
9102 }
9103 
9104 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9105 				   struct cftype *cftype, s64 cfs_quota_us)
9106 {
9107 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9108 }
9109 
9110 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9111 				   struct cftype *cft)
9112 {
9113 	return tg_get_cfs_period(css_tg(css));
9114 }
9115 
9116 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9117 				    struct cftype *cftype, u64 cfs_period_us)
9118 {
9119 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9120 }
9121 
9122 struct cfs_schedulable_data {
9123 	struct task_group *tg;
9124 	u64 period, quota;
9125 };
9126 
9127 /*
9128  * normalize group quota/period to be quota/max_period
9129  * note: units are usecs
9130  */
9131 static u64 normalize_cfs_quota(struct task_group *tg,
9132 			       struct cfs_schedulable_data *d)
9133 {
9134 	u64 quota, period;
9135 
9136 	if (tg == d->tg) {
9137 		period = d->period;
9138 		quota = d->quota;
9139 	} else {
9140 		period = tg_get_cfs_period(tg);
9141 		quota = tg_get_cfs_quota(tg);
9142 	}
9143 
9144 	/* note: these should typically be equivalent */
9145 	if (quota == RUNTIME_INF || quota == -1)
9146 		return RUNTIME_INF;
9147 
9148 	return to_ratio(period, quota);
9149 }
9150 
9151 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9152 {
9153 	struct cfs_schedulable_data *d = data;
9154 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9155 	s64 quota = 0, parent_quota = -1;
9156 
9157 	if (!tg->parent) {
9158 		quota = RUNTIME_INF;
9159 	} else {
9160 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9161 
9162 		quota = normalize_cfs_quota(tg, d);
9163 		parent_quota = parent_b->hierarchical_quota;
9164 
9165 		/*
9166 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9167 		 * always take the min.  On cgroup1, only inherit when no
9168 		 * limit is set:
9169 		 */
9170 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9171 			quota = min(quota, parent_quota);
9172 		} else {
9173 			if (quota == RUNTIME_INF)
9174 				quota = parent_quota;
9175 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9176 				return -EINVAL;
9177 		}
9178 	}
9179 	cfs_b->hierarchical_quota = quota;
9180 
9181 	return 0;
9182 }
9183 
9184 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9185 {
9186 	int ret;
9187 	struct cfs_schedulable_data data = {
9188 		.tg = tg,
9189 		.period = period,
9190 		.quota = quota,
9191 	};
9192 
9193 	if (quota != RUNTIME_INF) {
9194 		do_div(data.period, NSEC_PER_USEC);
9195 		do_div(data.quota, NSEC_PER_USEC);
9196 	}
9197 
9198 	rcu_read_lock();
9199 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9200 	rcu_read_unlock();
9201 
9202 	return ret;
9203 }
9204 
9205 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9206 {
9207 	struct task_group *tg = css_tg(seq_css(sf));
9208 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9209 
9210 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9211 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9212 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9213 
9214 	if (schedstat_enabled() && tg != &root_task_group) {
9215 		u64 ws = 0;
9216 		int i;
9217 
9218 		for_each_possible_cpu(i)
9219 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9220 
9221 		seq_printf(sf, "wait_sum %llu\n", ws);
9222 	}
9223 
9224 	return 0;
9225 }
9226 #endif /* CONFIG_CFS_BANDWIDTH */
9227 #endif /* CONFIG_FAIR_GROUP_SCHED */
9228 
9229 #ifdef CONFIG_RT_GROUP_SCHED
9230 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9231 				struct cftype *cft, s64 val)
9232 {
9233 	return sched_group_set_rt_runtime(css_tg(css), val);
9234 }
9235 
9236 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9237 			       struct cftype *cft)
9238 {
9239 	return sched_group_rt_runtime(css_tg(css));
9240 }
9241 
9242 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9243 				    struct cftype *cftype, u64 rt_period_us)
9244 {
9245 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9246 }
9247 
9248 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9249 				   struct cftype *cft)
9250 {
9251 	return sched_group_rt_period(css_tg(css));
9252 }
9253 #endif /* CONFIG_RT_GROUP_SCHED */
9254 
9255 static struct cftype cpu_legacy_files[] = {
9256 #ifdef CONFIG_FAIR_GROUP_SCHED
9257 	{
9258 		.name = "shares",
9259 		.read_u64 = cpu_shares_read_u64,
9260 		.write_u64 = cpu_shares_write_u64,
9261 	},
9262 #endif
9263 #ifdef CONFIG_CFS_BANDWIDTH
9264 	{
9265 		.name = "cfs_quota_us",
9266 		.read_s64 = cpu_cfs_quota_read_s64,
9267 		.write_s64 = cpu_cfs_quota_write_s64,
9268 	},
9269 	{
9270 		.name = "cfs_period_us",
9271 		.read_u64 = cpu_cfs_period_read_u64,
9272 		.write_u64 = cpu_cfs_period_write_u64,
9273 	},
9274 	{
9275 		.name = "stat",
9276 		.seq_show = cpu_cfs_stat_show,
9277 	},
9278 #endif
9279 #ifdef CONFIG_RT_GROUP_SCHED
9280 	{
9281 		.name = "rt_runtime_us",
9282 		.read_s64 = cpu_rt_runtime_read,
9283 		.write_s64 = cpu_rt_runtime_write,
9284 	},
9285 	{
9286 		.name = "rt_period_us",
9287 		.read_u64 = cpu_rt_period_read_uint,
9288 		.write_u64 = cpu_rt_period_write_uint,
9289 	},
9290 #endif
9291 #ifdef CONFIG_UCLAMP_TASK_GROUP
9292 	{
9293 		.name = "uclamp.min",
9294 		.flags = CFTYPE_NOT_ON_ROOT,
9295 		.seq_show = cpu_uclamp_min_show,
9296 		.write = cpu_uclamp_min_write,
9297 	},
9298 	{
9299 		.name = "uclamp.max",
9300 		.flags = CFTYPE_NOT_ON_ROOT,
9301 		.seq_show = cpu_uclamp_max_show,
9302 		.write = cpu_uclamp_max_write,
9303 	},
9304 #endif
9305 	{ }	/* Terminate */
9306 };
9307 
9308 static int cpu_extra_stat_show(struct seq_file *sf,
9309 			       struct cgroup_subsys_state *css)
9310 {
9311 #ifdef CONFIG_CFS_BANDWIDTH
9312 	{
9313 		struct task_group *tg = css_tg(css);
9314 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9315 		u64 throttled_usec;
9316 
9317 		throttled_usec = cfs_b->throttled_time;
9318 		do_div(throttled_usec, NSEC_PER_USEC);
9319 
9320 		seq_printf(sf, "nr_periods %d\n"
9321 			   "nr_throttled %d\n"
9322 			   "throttled_usec %llu\n",
9323 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9324 			   throttled_usec);
9325 	}
9326 #endif
9327 	return 0;
9328 }
9329 
9330 #ifdef CONFIG_FAIR_GROUP_SCHED
9331 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9332 			       struct cftype *cft)
9333 {
9334 	struct task_group *tg = css_tg(css);
9335 	u64 weight = scale_load_down(tg->shares);
9336 
9337 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9338 }
9339 
9340 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9341 				struct cftype *cft, u64 weight)
9342 {
9343 	/*
9344 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9345 	 * values which are 1, 100 and 10000 respectively.  While it loses
9346 	 * a bit of range on both ends, it maps pretty well onto the shares
9347 	 * value used by scheduler and the round-trip conversions preserve
9348 	 * the original value over the entire range.
9349 	 */
9350 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9351 		return -ERANGE;
9352 
9353 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9354 
9355 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9356 }
9357 
9358 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9359 				    struct cftype *cft)
9360 {
9361 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9362 	int last_delta = INT_MAX;
9363 	int prio, delta;
9364 
9365 	/* find the closest nice value to the current weight */
9366 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9367 		delta = abs(sched_prio_to_weight[prio] - weight);
9368 		if (delta >= last_delta)
9369 			break;
9370 		last_delta = delta;
9371 	}
9372 
9373 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9374 }
9375 
9376 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9377 				     struct cftype *cft, s64 nice)
9378 {
9379 	unsigned long weight;
9380 	int idx;
9381 
9382 	if (nice < MIN_NICE || nice > MAX_NICE)
9383 		return -ERANGE;
9384 
9385 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9386 	idx = array_index_nospec(idx, 40);
9387 	weight = sched_prio_to_weight[idx];
9388 
9389 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9390 }
9391 #endif
9392 
9393 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9394 						  long period, long quota)
9395 {
9396 	if (quota < 0)
9397 		seq_puts(sf, "max");
9398 	else
9399 		seq_printf(sf, "%ld", quota);
9400 
9401 	seq_printf(sf, " %ld\n", period);
9402 }
9403 
9404 /* caller should put the current value in *@periodp before calling */
9405 static int __maybe_unused cpu_period_quota_parse(char *buf,
9406 						 u64 *periodp, u64 *quotap)
9407 {
9408 	char tok[21];	/* U64_MAX */
9409 
9410 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9411 		return -EINVAL;
9412 
9413 	*periodp *= NSEC_PER_USEC;
9414 
9415 	if (sscanf(tok, "%llu", quotap))
9416 		*quotap *= NSEC_PER_USEC;
9417 	else if (!strcmp(tok, "max"))
9418 		*quotap = RUNTIME_INF;
9419 	else
9420 		return -EINVAL;
9421 
9422 	return 0;
9423 }
9424 
9425 #ifdef CONFIG_CFS_BANDWIDTH
9426 static int cpu_max_show(struct seq_file *sf, void *v)
9427 {
9428 	struct task_group *tg = css_tg(seq_css(sf));
9429 
9430 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9431 	return 0;
9432 }
9433 
9434 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9435 			     char *buf, size_t nbytes, loff_t off)
9436 {
9437 	struct task_group *tg = css_tg(of_css(of));
9438 	u64 period = tg_get_cfs_period(tg);
9439 	u64 quota;
9440 	int ret;
9441 
9442 	ret = cpu_period_quota_parse(buf, &period, &quota);
9443 	if (!ret)
9444 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9445 	return ret ?: nbytes;
9446 }
9447 #endif
9448 
9449 static struct cftype cpu_files[] = {
9450 #ifdef CONFIG_FAIR_GROUP_SCHED
9451 	{
9452 		.name = "weight",
9453 		.flags = CFTYPE_NOT_ON_ROOT,
9454 		.read_u64 = cpu_weight_read_u64,
9455 		.write_u64 = cpu_weight_write_u64,
9456 	},
9457 	{
9458 		.name = "weight.nice",
9459 		.flags = CFTYPE_NOT_ON_ROOT,
9460 		.read_s64 = cpu_weight_nice_read_s64,
9461 		.write_s64 = cpu_weight_nice_write_s64,
9462 	},
9463 #endif
9464 #ifdef CONFIG_CFS_BANDWIDTH
9465 	{
9466 		.name = "max",
9467 		.flags = CFTYPE_NOT_ON_ROOT,
9468 		.seq_show = cpu_max_show,
9469 		.write = cpu_max_write,
9470 	},
9471 #endif
9472 #ifdef CONFIG_UCLAMP_TASK_GROUP
9473 	{
9474 		.name = "uclamp.min",
9475 		.flags = CFTYPE_NOT_ON_ROOT,
9476 		.seq_show = cpu_uclamp_min_show,
9477 		.write = cpu_uclamp_min_write,
9478 	},
9479 	{
9480 		.name = "uclamp.max",
9481 		.flags = CFTYPE_NOT_ON_ROOT,
9482 		.seq_show = cpu_uclamp_max_show,
9483 		.write = cpu_uclamp_max_write,
9484 	},
9485 #endif
9486 	{ }	/* terminate */
9487 };
9488 
9489 struct cgroup_subsys cpu_cgrp_subsys = {
9490 	.css_alloc	= cpu_cgroup_css_alloc,
9491 	.css_online	= cpu_cgroup_css_online,
9492 	.css_released	= cpu_cgroup_css_released,
9493 	.css_free	= cpu_cgroup_css_free,
9494 	.css_extra_stat_show = cpu_extra_stat_show,
9495 	.fork		= cpu_cgroup_fork,
9496 	.can_attach	= cpu_cgroup_can_attach,
9497 	.attach		= cpu_cgroup_attach,
9498 	.legacy_cftypes	= cpu_legacy_files,
9499 	.dfl_cftypes	= cpu_files,
9500 	.early_init	= true,
9501 	.threaded	= true,
9502 };
9503 
9504 #endif	/* CONFIG_CGROUP_SCHED */
9505 
9506 void dump_cpu_task(int cpu)
9507 {
9508 	pr_info("Task dump for CPU %d:\n", cpu);
9509 	sched_show_task(cpu_curr(cpu));
9510 }
9511 
9512 /*
9513  * Nice levels are multiplicative, with a gentle 10% change for every
9514  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9515  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9516  * that remained on nice 0.
9517  *
9518  * The "10% effect" is relative and cumulative: from _any_ nice level,
9519  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9520  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9521  * If a task goes up by ~10% and another task goes down by ~10% then
9522  * the relative distance between them is ~25%.)
9523  */
9524 const int sched_prio_to_weight[40] = {
9525  /* -20 */     88761,     71755,     56483,     46273,     36291,
9526  /* -15 */     29154,     23254,     18705,     14949,     11916,
9527  /* -10 */      9548,      7620,      6100,      4904,      3906,
9528  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9529  /*   0 */      1024,       820,       655,       526,       423,
9530  /*   5 */       335,       272,       215,       172,       137,
9531  /*  10 */       110,        87,        70,        56,        45,
9532  /*  15 */        36,        29,        23,        18,        15,
9533 };
9534 
9535 /*
9536  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9537  *
9538  * In cases where the weight does not change often, we can use the
9539  * precalculated inverse to speed up arithmetics by turning divisions
9540  * into multiplications:
9541  */
9542 const u32 sched_prio_to_wmult[40] = {
9543  /* -20 */     48388,     59856,     76040,     92818,    118348,
9544  /* -15 */    147320,    184698,    229616,    287308,    360437,
9545  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9546  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9547  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9548  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9549  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9550  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9551 };
9552 
9553 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9554 {
9555         trace_sched_update_nr_running_tp(rq, count);
9556 }
9557