xref: /openbmc/linux/kernel/sched/core.c (revision 33ac9dba)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
95 {
96 	smp_mb__before_atomic();
97 }
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
100 
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
103 {
104 	smp_mb__after_atomic();
105 }
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
108 
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110 {
111 	unsigned long delta;
112 	ktime_t soft, hard, now;
113 
114 	for (;;) {
115 		if (hrtimer_active(period_timer))
116 			break;
117 
118 		now = hrtimer_cb_get_time(period_timer);
119 		hrtimer_forward(period_timer, now, period);
120 
121 		soft = hrtimer_get_softexpires(period_timer);
122 		hard = hrtimer_get_expires(period_timer);
123 		delta = ktime_to_ns(ktime_sub(hard, soft));
124 		__hrtimer_start_range_ns(period_timer, soft, delta,
125 					 HRTIMER_MODE_ABS_PINNED, 0);
126 	}
127 }
128 
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131 
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
133 
134 void update_rq_clock(struct rq *rq)
135 {
136 	s64 delta;
137 
138 	if (rq->skip_clock_update > 0)
139 		return;
140 
141 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 	if (delta < 0)
143 		return;
144 	rq->clock += delta;
145 	update_rq_clock_task(rq, delta);
146 }
147 
148 /*
149  * Debugging: various feature bits
150  */
151 
152 #define SCHED_FEAT(name, enabled)	\
153 	(1UL << __SCHED_FEAT_##name) * enabled |
154 
155 const_debug unsigned int sysctl_sched_features =
156 #include "features.h"
157 	0;
158 
159 #undef SCHED_FEAT
160 
161 #ifdef CONFIG_SCHED_DEBUG
162 #define SCHED_FEAT(name, enabled)	\
163 	#name ,
164 
165 static const char * const sched_feat_names[] = {
166 #include "features.h"
167 };
168 
169 #undef SCHED_FEAT
170 
171 static int sched_feat_show(struct seq_file *m, void *v)
172 {
173 	int i;
174 
175 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
176 		if (!(sysctl_sched_features & (1UL << i)))
177 			seq_puts(m, "NO_");
178 		seq_printf(m, "%s ", sched_feat_names[i]);
179 	}
180 	seq_puts(m, "\n");
181 
182 	return 0;
183 }
184 
185 #ifdef HAVE_JUMP_LABEL
186 
187 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
188 #define jump_label_key__false STATIC_KEY_INIT_FALSE
189 
190 #define SCHED_FEAT(name, enabled)	\
191 	jump_label_key__##enabled ,
192 
193 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194 #include "features.h"
195 };
196 
197 #undef SCHED_FEAT
198 
199 static void sched_feat_disable(int i)
200 {
201 	if (static_key_enabled(&sched_feat_keys[i]))
202 		static_key_slow_dec(&sched_feat_keys[i]);
203 }
204 
205 static void sched_feat_enable(int i)
206 {
207 	if (!static_key_enabled(&sched_feat_keys[i]))
208 		static_key_slow_inc(&sched_feat_keys[i]);
209 }
210 #else
211 static void sched_feat_disable(int i) { };
212 static void sched_feat_enable(int i) { };
213 #endif /* HAVE_JUMP_LABEL */
214 
215 static int sched_feat_set(char *cmp)
216 {
217 	int i;
218 	int neg = 0;
219 
220 	if (strncmp(cmp, "NO_", 3) == 0) {
221 		neg = 1;
222 		cmp += 3;
223 	}
224 
225 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227 			if (neg) {
228 				sysctl_sched_features &= ~(1UL << i);
229 				sched_feat_disable(i);
230 			} else {
231 				sysctl_sched_features |= (1UL << i);
232 				sched_feat_enable(i);
233 			}
234 			break;
235 		}
236 	}
237 
238 	return i;
239 }
240 
241 static ssize_t
242 sched_feat_write(struct file *filp, const char __user *ubuf,
243 		size_t cnt, loff_t *ppos)
244 {
245 	char buf[64];
246 	char *cmp;
247 	int i;
248 	struct inode *inode;
249 
250 	if (cnt > 63)
251 		cnt = 63;
252 
253 	if (copy_from_user(&buf, ubuf, cnt))
254 		return -EFAULT;
255 
256 	buf[cnt] = 0;
257 	cmp = strstrip(buf);
258 
259 	/* Ensure the static_key remains in a consistent state */
260 	inode = file_inode(filp);
261 	mutex_lock(&inode->i_mutex);
262 	i = sched_feat_set(cmp);
263 	mutex_unlock(&inode->i_mutex);
264 	if (i == __SCHED_FEAT_NR)
265 		return -EINVAL;
266 
267 	*ppos += cnt;
268 
269 	return cnt;
270 }
271 
272 static int sched_feat_open(struct inode *inode, struct file *filp)
273 {
274 	return single_open(filp, sched_feat_show, NULL);
275 }
276 
277 static const struct file_operations sched_feat_fops = {
278 	.open		= sched_feat_open,
279 	.write		= sched_feat_write,
280 	.read		= seq_read,
281 	.llseek		= seq_lseek,
282 	.release	= single_release,
283 };
284 
285 static __init int sched_init_debug(void)
286 {
287 	debugfs_create_file("sched_features", 0644, NULL, NULL,
288 			&sched_feat_fops);
289 
290 	return 0;
291 }
292 late_initcall(sched_init_debug);
293 #endif /* CONFIG_SCHED_DEBUG */
294 
295 /*
296  * Number of tasks to iterate in a single balance run.
297  * Limited because this is done with IRQs disabled.
298  */
299 const_debug unsigned int sysctl_sched_nr_migrate = 32;
300 
301 /*
302  * period over which we average the RT time consumption, measured
303  * in ms.
304  *
305  * default: 1s
306  */
307 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308 
309 /*
310  * period over which we measure -rt task cpu usage in us.
311  * default: 1s
312  */
313 unsigned int sysctl_sched_rt_period = 1000000;
314 
315 __read_mostly int scheduler_running;
316 
317 /*
318  * part of the period that we allow rt tasks to run in us.
319  * default: 0.95s
320  */
321 int sysctl_sched_rt_runtime = 950000;
322 
323 /*
324  * __task_rq_lock - lock the rq @p resides on.
325  */
326 static inline struct rq *__task_rq_lock(struct task_struct *p)
327 	__acquires(rq->lock)
328 {
329 	struct rq *rq;
330 
331 	lockdep_assert_held(&p->pi_lock);
332 
333 	for (;;) {
334 		rq = task_rq(p);
335 		raw_spin_lock(&rq->lock);
336 		if (likely(rq == task_rq(p)))
337 			return rq;
338 		raw_spin_unlock(&rq->lock);
339 	}
340 }
341 
342 /*
343  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
344  */
345 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
346 	__acquires(p->pi_lock)
347 	__acquires(rq->lock)
348 {
349 	struct rq *rq;
350 
351 	for (;;) {
352 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
353 		rq = task_rq(p);
354 		raw_spin_lock(&rq->lock);
355 		if (likely(rq == task_rq(p)))
356 			return rq;
357 		raw_spin_unlock(&rq->lock);
358 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
359 	}
360 }
361 
362 static void __task_rq_unlock(struct rq *rq)
363 	__releases(rq->lock)
364 {
365 	raw_spin_unlock(&rq->lock);
366 }
367 
368 static inline void
369 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
370 	__releases(rq->lock)
371 	__releases(p->pi_lock)
372 {
373 	raw_spin_unlock(&rq->lock);
374 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
375 }
376 
377 /*
378  * this_rq_lock - lock this runqueue and disable interrupts.
379  */
380 static struct rq *this_rq_lock(void)
381 	__acquires(rq->lock)
382 {
383 	struct rq *rq;
384 
385 	local_irq_disable();
386 	rq = this_rq();
387 	raw_spin_lock(&rq->lock);
388 
389 	return rq;
390 }
391 
392 #ifdef CONFIG_SCHED_HRTICK
393 /*
394  * Use HR-timers to deliver accurate preemption points.
395  */
396 
397 static void hrtick_clear(struct rq *rq)
398 {
399 	if (hrtimer_active(&rq->hrtick_timer))
400 		hrtimer_cancel(&rq->hrtick_timer);
401 }
402 
403 /*
404  * High-resolution timer tick.
405  * Runs from hardirq context with interrupts disabled.
406  */
407 static enum hrtimer_restart hrtick(struct hrtimer *timer)
408 {
409 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
410 
411 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
412 
413 	raw_spin_lock(&rq->lock);
414 	update_rq_clock(rq);
415 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
416 	raw_spin_unlock(&rq->lock);
417 
418 	return HRTIMER_NORESTART;
419 }
420 
421 #ifdef CONFIG_SMP
422 
423 static int __hrtick_restart(struct rq *rq)
424 {
425 	struct hrtimer *timer = &rq->hrtick_timer;
426 	ktime_t time = hrtimer_get_softexpires(timer);
427 
428 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
429 }
430 
431 /*
432  * called from hardirq (IPI) context
433  */
434 static void __hrtick_start(void *arg)
435 {
436 	struct rq *rq = arg;
437 
438 	raw_spin_lock(&rq->lock);
439 	__hrtick_restart(rq);
440 	rq->hrtick_csd_pending = 0;
441 	raw_spin_unlock(&rq->lock);
442 }
443 
444 /*
445  * Called to set the hrtick timer state.
446  *
447  * called with rq->lock held and irqs disabled
448  */
449 void hrtick_start(struct rq *rq, u64 delay)
450 {
451 	struct hrtimer *timer = &rq->hrtick_timer;
452 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
453 
454 	hrtimer_set_expires(timer, time);
455 
456 	if (rq == this_rq()) {
457 		__hrtick_restart(rq);
458 	} else if (!rq->hrtick_csd_pending) {
459 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 		rq->hrtick_csd_pending = 1;
461 	}
462 }
463 
464 static int
465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466 {
467 	int cpu = (int)(long)hcpu;
468 
469 	switch (action) {
470 	case CPU_UP_CANCELED:
471 	case CPU_UP_CANCELED_FROZEN:
472 	case CPU_DOWN_PREPARE:
473 	case CPU_DOWN_PREPARE_FROZEN:
474 	case CPU_DEAD:
475 	case CPU_DEAD_FROZEN:
476 		hrtick_clear(cpu_rq(cpu));
477 		return NOTIFY_OK;
478 	}
479 
480 	return NOTIFY_DONE;
481 }
482 
483 static __init void init_hrtick(void)
484 {
485 	hotcpu_notifier(hotplug_hrtick, 0);
486 }
487 #else
488 /*
489  * Called to set the hrtick timer state.
490  *
491  * called with rq->lock held and irqs disabled
492  */
493 void hrtick_start(struct rq *rq, u64 delay)
494 {
495 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
496 			HRTIMER_MODE_REL_PINNED, 0);
497 }
498 
499 static inline void init_hrtick(void)
500 {
501 }
502 #endif /* CONFIG_SMP */
503 
504 static void init_rq_hrtick(struct rq *rq)
505 {
506 #ifdef CONFIG_SMP
507 	rq->hrtick_csd_pending = 0;
508 
509 	rq->hrtick_csd.flags = 0;
510 	rq->hrtick_csd.func = __hrtick_start;
511 	rq->hrtick_csd.info = rq;
512 #endif
513 
514 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 	rq->hrtick_timer.function = hrtick;
516 }
517 #else	/* CONFIG_SCHED_HRTICK */
518 static inline void hrtick_clear(struct rq *rq)
519 {
520 }
521 
522 static inline void init_rq_hrtick(struct rq *rq)
523 {
524 }
525 
526 static inline void init_hrtick(void)
527 {
528 }
529 #endif	/* CONFIG_SCHED_HRTICK */
530 
531 /*
532  * cmpxchg based fetch_or, macro so it works for different integer types
533  */
534 #define fetch_or(ptr, val)						\
535 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
536  	for (;;) {							\
537  		__old = cmpxchg((ptr), __val, __val | (val));		\
538  		if (__old == __val)					\
539  			break;						\
540  		__val = __old;						\
541  	}								\
542  	__old;								\
543 })
544 
545 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
546 /*
547  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548  * this avoids any races wrt polling state changes and thereby avoids
549  * spurious IPIs.
550  */
551 static bool set_nr_and_not_polling(struct task_struct *p)
552 {
553 	struct thread_info *ti = task_thread_info(p);
554 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555 }
556 
557 /*
558  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559  *
560  * If this returns true, then the idle task promises to call
561  * sched_ttwu_pending() and reschedule soon.
562  */
563 static bool set_nr_if_polling(struct task_struct *p)
564 {
565 	struct thread_info *ti = task_thread_info(p);
566 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567 
568 	for (;;) {
569 		if (!(val & _TIF_POLLING_NRFLAG))
570 			return false;
571 		if (val & _TIF_NEED_RESCHED)
572 			return true;
573 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 		if (old == val)
575 			break;
576 		val = old;
577 	}
578 	return true;
579 }
580 
581 #else
582 static bool set_nr_and_not_polling(struct task_struct *p)
583 {
584 	set_tsk_need_resched(p);
585 	return true;
586 }
587 
588 #ifdef CONFIG_SMP
589 static bool set_nr_if_polling(struct task_struct *p)
590 {
591 	return false;
592 }
593 #endif
594 #endif
595 
596 /*
597  * resched_curr - mark rq's current task 'to be rescheduled now'.
598  *
599  * On UP this means the setting of the need_resched flag, on SMP it
600  * might also involve a cross-CPU call to trigger the scheduler on
601  * the target CPU.
602  */
603 void resched_curr(struct rq *rq)
604 {
605 	struct task_struct *curr = rq->curr;
606 	int cpu;
607 
608 	lockdep_assert_held(&rq->lock);
609 
610 	if (test_tsk_need_resched(curr))
611 		return;
612 
613 	cpu = cpu_of(rq);
614 
615 	if (cpu == smp_processor_id()) {
616 		set_tsk_need_resched(curr);
617 		set_preempt_need_resched();
618 		return;
619 	}
620 
621 	if (set_nr_and_not_polling(curr))
622 		smp_send_reschedule(cpu);
623 	else
624 		trace_sched_wake_idle_without_ipi(cpu);
625 }
626 
627 void resched_cpu(int cpu)
628 {
629 	struct rq *rq = cpu_rq(cpu);
630 	unsigned long flags;
631 
632 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
633 		return;
634 	resched_curr(rq);
635 	raw_spin_unlock_irqrestore(&rq->lock, flags);
636 }
637 
638 #ifdef CONFIG_SMP
639 #ifdef CONFIG_NO_HZ_COMMON
640 /*
641  * In the semi idle case, use the nearest busy cpu for migrating timers
642  * from an idle cpu.  This is good for power-savings.
643  *
644  * We don't do similar optimization for completely idle system, as
645  * selecting an idle cpu will add more delays to the timers than intended
646  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647  */
648 int get_nohz_timer_target(int pinned)
649 {
650 	int cpu = smp_processor_id();
651 	int i;
652 	struct sched_domain *sd;
653 
654 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 		return cpu;
656 
657 	rcu_read_lock();
658 	for_each_domain(cpu, sd) {
659 		for_each_cpu(i, sched_domain_span(sd)) {
660 			if (!idle_cpu(i)) {
661 				cpu = i;
662 				goto unlock;
663 			}
664 		}
665 	}
666 unlock:
667 	rcu_read_unlock();
668 	return cpu;
669 }
670 /*
671  * When add_timer_on() enqueues a timer into the timer wheel of an
672  * idle CPU then this timer might expire before the next timer event
673  * which is scheduled to wake up that CPU. In case of a completely
674  * idle system the next event might even be infinite time into the
675  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676  * leaves the inner idle loop so the newly added timer is taken into
677  * account when the CPU goes back to idle and evaluates the timer
678  * wheel for the next timer event.
679  */
680 static void wake_up_idle_cpu(int cpu)
681 {
682 	struct rq *rq = cpu_rq(cpu);
683 
684 	if (cpu == smp_processor_id())
685 		return;
686 
687 	if (set_nr_and_not_polling(rq->idle))
688 		smp_send_reschedule(cpu);
689 	else
690 		trace_sched_wake_idle_without_ipi(cpu);
691 }
692 
693 static bool wake_up_full_nohz_cpu(int cpu)
694 {
695 	/*
696 	 * We just need the target to call irq_exit() and re-evaluate
697 	 * the next tick. The nohz full kick at least implies that.
698 	 * If needed we can still optimize that later with an
699 	 * empty IRQ.
700 	 */
701 	if (tick_nohz_full_cpu(cpu)) {
702 		if (cpu != smp_processor_id() ||
703 		    tick_nohz_tick_stopped())
704 			tick_nohz_full_kick_cpu(cpu);
705 		return true;
706 	}
707 
708 	return false;
709 }
710 
711 void wake_up_nohz_cpu(int cpu)
712 {
713 	if (!wake_up_full_nohz_cpu(cpu))
714 		wake_up_idle_cpu(cpu);
715 }
716 
717 static inline bool got_nohz_idle_kick(void)
718 {
719 	int cpu = smp_processor_id();
720 
721 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 		return false;
723 
724 	if (idle_cpu(cpu) && !need_resched())
725 		return true;
726 
727 	/*
728 	 * We can't run Idle Load Balance on this CPU for this time so we
729 	 * cancel it and clear NOHZ_BALANCE_KICK
730 	 */
731 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 	return false;
733 }
734 
735 #else /* CONFIG_NO_HZ_COMMON */
736 
737 static inline bool got_nohz_idle_kick(void)
738 {
739 	return false;
740 }
741 
742 #endif /* CONFIG_NO_HZ_COMMON */
743 
744 #ifdef CONFIG_NO_HZ_FULL
745 bool sched_can_stop_tick(void)
746 {
747 	/*
748 	 * More than one running task need preemption.
749 	 * nr_running update is assumed to be visible
750 	 * after IPI is sent from wakers.
751 	 */
752 	if (this_rq()->nr_running > 1)
753 		return false;
754 
755 	return true;
756 }
757 #endif /* CONFIG_NO_HZ_FULL */
758 
759 void sched_avg_update(struct rq *rq)
760 {
761 	s64 period = sched_avg_period();
762 
763 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
764 		/*
765 		 * Inline assembly required to prevent the compiler
766 		 * optimising this loop into a divmod call.
767 		 * See __iter_div_u64_rem() for another example of this.
768 		 */
769 		asm("" : "+rm" (rq->age_stamp));
770 		rq->age_stamp += period;
771 		rq->rt_avg /= 2;
772 	}
773 }
774 
775 #endif /* CONFIG_SMP */
776 
777 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
779 /*
780  * Iterate task_group tree rooted at *from, calling @down when first entering a
781  * node and @up when leaving it for the final time.
782  *
783  * Caller must hold rcu_lock or sufficient equivalent.
784  */
785 int walk_tg_tree_from(struct task_group *from,
786 			     tg_visitor down, tg_visitor up, void *data)
787 {
788 	struct task_group *parent, *child;
789 	int ret;
790 
791 	parent = from;
792 
793 down:
794 	ret = (*down)(parent, data);
795 	if (ret)
796 		goto out;
797 	list_for_each_entry_rcu(child, &parent->children, siblings) {
798 		parent = child;
799 		goto down;
800 
801 up:
802 		continue;
803 	}
804 	ret = (*up)(parent, data);
805 	if (ret || parent == from)
806 		goto out;
807 
808 	child = parent;
809 	parent = parent->parent;
810 	if (parent)
811 		goto up;
812 out:
813 	return ret;
814 }
815 
816 int tg_nop(struct task_group *tg, void *data)
817 {
818 	return 0;
819 }
820 #endif
821 
822 static void set_load_weight(struct task_struct *p)
823 {
824 	int prio = p->static_prio - MAX_RT_PRIO;
825 	struct load_weight *load = &p->se.load;
826 
827 	/*
828 	 * SCHED_IDLE tasks get minimal weight:
829 	 */
830 	if (p->policy == SCHED_IDLE) {
831 		load->weight = scale_load(WEIGHT_IDLEPRIO);
832 		load->inv_weight = WMULT_IDLEPRIO;
833 		return;
834 	}
835 
836 	load->weight = scale_load(prio_to_weight[prio]);
837 	load->inv_weight = prio_to_wmult[prio];
838 }
839 
840 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
841 {
842 	update_rq_clock(rq);
843 	sched_info_queued(rq, p);
844 	p->sched_class->enqueue_task(rq, p, flags);
845 }
846 
847 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
848 {
849 	update_rq_clock(rq);
850 	sched_info_dequeued(rq, p);
851 	p->sched_class->dequeue_task(rq, p, flags);
852 }
853 
854 void activate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 	if (task_contributes_to_load(p))
857 		rq->nr_uninterruptible--;
858 
859 	enqueue_task(rq, p, flags);
860 }
861 
862 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
863 {
864 	if (task_contributes_to_load(p))
865 		rq->nr_uninterruptible++;
866 
867 	dequeue_task(rq, p, flags);
868 }
869 
870 static void update_rq_clock_task(struct rq *rq, s64 delta)
871 {
872 /*
873  * In theory, the compile should just see 0 here, and optimize out the call
874  * to sched_rt_avg_update. But I don't trust it...
875  */
876 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 	s64 steal = 0, irq_delta = 0;
878 #endif
879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
880 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
881 
882 	/*
883 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 	 * this case when a previous update_rq_clock() happened inside a
885 	 * {soft,}irq region.
886 	 *
887 	 * When this happens, we stop ->clock_task and only update the
888 	 * prev_irq_time stamp to account for the part that fit, so that a next
889 	 * update will consume the rest. This ensures ->clock_task is
890 	 * monotonic.
891 	 *
892 	 * It does however cause some slight miss-attribution of {soft,}irq
893 	 * time, a more accurate solution would be to update the irq_time using
894 	 * the current rq->clock timestamp, except that would require using
895 	 * atomic ops.
896 	 */
897 	if (irq_delta > delta)
898 		irq_delta = delta;
899 
900 	rq->prev_irq_time += irq_delta;
901 	delta -= irq_delta;
902 #endif
903 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
904 	if (static_key_false((&paravirt_steal_rq_enabled))) {
905 		steal = paravirt_steal_clock(cpu_of(rq));
906 		steal -= rq->prev_steal_time_rq;
907 
908 		if (unlikely(steal > delta))
909 			steal = delta;
910 
911 		rq->prev_steal_time_rq += steal;
912 		delta -= steal;
913 	}
914 #endif
915 
916 	rq->clock_task += delta;
917 
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
920 		sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
922 }
923 
924 void sched_set_stop_task(int cpu, struct task_struct *stop)
925 {
926 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
928 
929 	if (stop) {
930 		/*
931 		 * Make it appear like a SCHED_FIFO task, its something
932 		 * userspace knows about and won't get confused about.
933 		 *
934 		 * Also, it will make PI more or less work without too
935 		 * much confusion -- but then, stop work should not
936 		 * rely on PI working anyway.
937 		 */
938 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939 
940 		stop->sched_class = &stop_sched_class;
941 	}
942 
943 	cpu_rq(cpu)->stop = stop;
944 
945 	if (old_stop) {
946 		/*
947 		 * Reset it back to a normal scheduling class so that
948 		 * it can die in pieces.
949 		 */
950 		old_stop->sched_class = &rt_sched_class;
951 	}
952 }
953 
954 /*
955  * __normal_prio - return the priority that is based on the static prio
956  */
957 static inline int __normal_prio(struct task_struct *p)
958 {
959 	return p->static_prio;
960 }
961 
962 /*
963  * Calculate the expected normal priority: i.e. priority
964  * without taking RT-inheritance into account. Might be
965  * boosted by interactivity modifiers. Changes upon fork,
966  * setprio syscalls, and whenever the interactivity
967  * estimator recalculates.
968  */
969 static inline int normal_prio(struct task_struct *p)
970 {
971 	int prio;
972 
973 	if (task_has_dl_policy(p))
974 		prio = MAX_DL_PRIO-1;
975 	else if (task_has_rt_policy(p))
976 		prio = MAX_RT_PRIO-1 - p->rt_priority;
977 	else
978 		prio = __normal_prio(p);
979 	return prio;
980 }
981 
982 /*
983  * Calculate the current priority, i.e. the priority
984  * taken into account by the scheduler. This value might
985  * be boosted by RT tasks, or might be boosted by
986  * interactivity modifiers. Will be RT if the task got
987  * RT-boosted. If not then it returns p->normal_prio.
988  */
989 static int effective_prio(struct task_struct *p)
990 {
991 	p->normal_prio = normal_prio(p);
992 	/*
993 	 * If we are RT tasks or we were boosted to RT priority,
994 	 * keep the priority unchanged. Otherwise, update priority
995 	 * to the normal priority:
996 	 */
997 	if (!rt_prio(p->prio))
998 		return p->normal_prio;
999 	return p->prio;
1000 }
1001 
1002 /**
1003  * task_curr - is this task currently executing on a CPU?
1004  * @p: the task in question.
1005  *
1006  * Return: 1 if the task is currently executing. 0 otherwise.
1007  */
1008 inline int task_curr(const struct task_struct *p)
1009 {
1010 	return cpu_curr(task_cpu(p)) == p;
1011 }
1012 
1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 				       const struct sched_class *prev_class,
1015 				       int oldprio)
1016 {
1017 	if (prev_class != p->sched_class) {
1018 		if (prev_class->switched_from)
1019 			prev_class->switched_from(rq, p);
1020 		p->sched_class->switched_to(rq, p);
1021 	} else if (oldprio != p->prio || dl_task(p))
1022 		p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024 
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 	const struct sched_class *class;
1028 
1029 	if (p->sched_class == rq->curr->sched_class) {
1030 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 	} else {
1032 		for_each_class(class) {
1033 			if (class == rq->curr->sched_class)
1034 				break;
1035 			if (class == p->sched_class) {
1036 				resched_curr(rq);
1037 				break;
1038 			}
1039 		}
1040 	}
1041 
1042 	/*
1043 	 * A queue event has occurred, and we're going to schedule.  In
1044 	 * this case, we can save a useless back to back clock update.
1045 	 */
1046 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1047 		rq->skip_clock_update = 1;
1048 }
1049 
1050 #ifdef CONFIG_SMP
1051 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1052 {
1053 #ifdef CONFIG_SCHED_DEBUG
1054 	/*
1055 	 * We should never call set_task_cpu() on a blocked task,
1056 	 * ttwu() will sort out the placement.
1057 	 */
1058 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1059 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1060 
1061 #ifdef CONFIG_LOCKDEP
1062 	/*
1063 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1064 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1065 	 *
1066 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1067 	 * see task_group().
1068 	 *
1069 	 * Furthermore, all task_rq users should acquire both locks, see
1070 	 * task_rq_lock().
1071 	 */
1072 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073 				      lockdep_is_held(&task_rq(p)->lock)));
1074 #endif
1075 #endif
1076 
1077 	trace_sched_migrate_task(p, new_cpu);
1078 
1079 	if (task_cpu(p) != new_cpu) {
1080 		if (p->sched_class->migrate_task_rq)
1081 			p->sched_class->migrate_task_rq(p, new_cpu);
1082 		p->se.nr_migrations++;
1083 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1084 	}
1085 
1086 	__set_task_cpu(p, new_cpu);
1087 }
1088 
1089 static void __migrate_swap_task(struct task_struct *p, int cpu)
1090 {
1091 	if (p->on_rq) {
1092 		struct rq *src_rq, *dst_rq;
1093 
1094 		src_rq = task_rq(p);
1095 		dst_rq = cpu_rq(cpu);
1096 
1097 		deactivate_task(src_rq, p, 0);
1098 		set_task_cpu(p, cpu);
1099 		activate_task(dst_rq, p, 0);
1100 		check_preempt_curr(dst_rq, p, 0);
1101 	} else {
1102 		/*
1103 		 * Task isn't running anymore; make it appear like we migrated
1104 		 * it before it went to sleep. This means on wakeup we make the
1105 		 * previous cpu our targer instead of where it really is.
1106 		 */
1107 		p->wake_cpu = cpu;
1108 	}
1109 }
1110 
1111 struct migration_swap_arg {
1112 	struct task_struct *src_task, *dst_task;
1113 	int src_cpu, dst_cpu;
1114 };
1115 
1116 static int migrate_swap_stop(void *data)
1117 {
1118 	struct migration_swap_arg *arg = data;
1119 	struct rq *src_rq, *dst_rq;
1120 	int ret = -EAGAIN;
1121 
1122 	src_rq = cpu_rq(arg->src_cpu);
1123 	dst_rq = cpu_rq(arg->dst_cpu);
1124 
1125 	double_raw_lock(&arg->src_task->pi_lock,
1126 			&arg->dst_task->pi_lock);
1127 	double_rq_lock(src_rq, dst_rq);
1128 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129 		goto unlock;
1130 
1131 	if (task_cpu(arg->src_task) != arg->src_cpu)
1132 		goto unlock;
1133 
1134 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135 		goto unlock;
1136 
1137 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138 		goto unlock;
1139 
1140 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1141 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1142 
1143 	ret = 0;
1144 
1145 unlock:
1146 	double_rq_unlock(src_rq, dst_rq);
1147 	raw_spin_unlock(&arg->dst_task->pi_lock);
1148 	raw_spin_unlock(&arg->src_task->pi_lock);
1149 
1150 	return ret;
1151 }
1152 
1153 /*
1154  * Cross migrate two tasks
1155  */
1156 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1157 {
1158 	struct migration_swap_arg arg;
1159 	int ret = -EINVAL;
1160 
1161 	arg = (struct migration_swap_arg){
1162 		.src_task = cur,
1163 		.src_cpu = task_cpu(cur),
1164 		.dst_task = p,
1165 		.dst_cpu = task_cpu(p),
1166 	};
1167 
1168 	if (arg.src_cpu == arg.dst_cpu)
1169 		goto out;
1170 
1171 	/*
1172 	 * These three tests are all lockless; this is OK since all of them
1173 	 * will be re-checked with proper locks held further down the line.
1174 	 */
1175 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176 		goto out;
1177 
1178 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179 		goto out;
1180 
1181 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182 		goto out;
1183 
1184 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1185 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1186 
1187 out:
1188 	return ret;
1189 }
1190 
1191 struct migration_arg {
1192 	struct task_struct *task;
1193 	int dest_cpu;
1194 };
1195 
1196 static int migration_cpu_stop(void *data);
1197 
1198 /*
1199  * wait_task_inactive - wait for a thread to unschedule.
1200  *
1201  * If @match_state is nonzero, it's the @p->state value just checked and
1202  * not expected to change.  If it changes, i.e. @p might have woken up,
1203  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1204  * we return a positive number (its total switch count).  If a second call
1205  * a short while later returns the same number, the caller can be sure that
1206  * @p has remained unscheduled the whole time.
1207  *
1208  * The caller must ensure that the task *will* unschedule sometime soon,
1209  * else this function might spin for a *long* time. This function can't
1210  * be called with interrupts off, or it may introduce deadlock with
1211  * smp_call_function() if an IPI is sent by the same process we are
1212  * waiting to become inactive.
1213  */
1214 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1215 {
1216 	unsigned long flags;
1217 	int running, on_rq;
1218 	unsigned long ncsw;
1219 	struct rq *rq;
1220 
1221 	for (;;) {
1222 		/*
1223 		 * We do the initial early heuristics without holding
1224 		 * any task-queue locks at all. We'll only try to get
1225 		 * the runqueue lock when things look like they will
1226 		 * work out!
1227 		 */
1228 		rq = task_rq(p);
1229 
1230 		/*
1231 		 * If the task is actively running on another CPU
1232 		 * still, just relax and busy-wait without holding
1233 		 * any locks.
1234 		 *
1235 		 * NOTE! Since we don't hold any locks, it's not
1236 		 * even sure that "rq" stays as the right runqueue!
1237 		 * But we don't care, since "task_running()" will
1238 		 * return false if the runqueue has changed and p
1239 		 * is actually now running somewhere else!
1240 		 */
1241 		while (task_running(rq, p)) {
1242 			if (match_state && unlikely(p->state != match_state))
1243 				return 0;
1244 			cpu_relax();
1245 		}
1246 
1247 		/*
1248 		 * Ok, time to look more closely! We need the rq
1249 		 * lock now, to be *sure*. If we're wrong, we'll
1250 		 * just go back and repeat.
1251 		 */
1252 		rq = task_rq_lock(p, &flags);
1253 		trace_sched_wait_task(p);
1254 		running = task_running(rq, p);
1255 		on_rq = p->on_rq;
1256 		ncsw = 0;
1257 		if (!match_state || p->state == match_state)
1258 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1259 		task_rq_unlock(rq, p, &flags);
1260 
1261 		/*
1262 		 * If it changed from the expected state, bail out now.
1263 		 */
1264 		if (unlikely(!ncsw))
1265 			break;
1266 
1267 		/*
1268 		 * Was it really running after all now that we
1269 		 * checked with the proper locks actually held?
1270 		 *
1271 		 * Oops. Go back and try again..
1272 		 */
1273 		if (unlikely(running)) {
1274 			cpu_relax();
1275 			continue;
1276 		}
1277 
1278 		/*
1279 		 * It's not enough that it's not actively running,
1280 		 * it must be off the runqueue _entirely_, and not
1281 		 * preempted!
1282 		 *
1283 		 * So if it was still runnable (but just not actively
1284 		 * running right now), it's preempted, and we should
1285 		 * yield - it could be a while.
1286 		 */
1287 		if (unlikely(on_rq)) {
1288 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1289 
1290 			set_current_state(TASK_UNINTERRUPTIBLE);
1291 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1292 			continue;
1293 		}
1294 
1295 		/*
1296 		 * Ahh, all good. It wasn't running, and it wasn't
1297 		 * runnable, which means that it will never become
1298 		 * running in the future either. We're all done!
1299 		 */
1300 		break;
1301 	}
1302 
1303 	return ncsw;
1304 }
1305 
1306 /***
1307  * kick_process - kick a running thread to enter/exit the kernel
1308  * @p: the to-be-kicked thread
1309  *
1310  * Cause a process which is running on another CPU to enter
1311  * kernel-mode, without any delay. (to get signals handled.)
1312  *
1313  * NOTE: this function doesn't have to take the runqueue lock,
1314  * because all it wants to ensure is that the remote task enters
1315  * the kernel. If the IPI races and the task has been migrated
1316  * to another CPU then no harm is done and the purpose has been
1317  * achieved as well.
1318  */
1319 void kick_process(struct task_struct *p)
1320 {
1321 	int cpu;
1322 
1323 	preempt_disable();
1324 	cpu = task_cpu(p);
1325 	if ((cpu != smp_processor_id()) && task_curr(p))
1326 		smp_send_reschedule(cpu);
1327 	preempt_enable();
1328 }
1329 EXPORT_SYMBOL_GPL(kick_process);
1330 #endif /* CONFIG_SMP */
1331 
1332 #ifdef CONFIG_SMP
1333 /*
1334  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1335  */
1336 static int select_fallback_rq(int cpu, struct task_struct *p)
1337 {
1338 	int nid = cpu_to_node(cpu);
1339 	const struct cpumask *nodemask = NULL;
1340 	enum { cpuset, possible, fail } state = cpuset;
1341 	int dest_cpu;
1342 
1343 	/*
1344 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1345 	 * will return -1. There is no cpu on the node, and we should
1346 	 * select the cpu on the other node.
1347 	 */
1348 	if (nid != -1) {
1349 		nodemask = cpumask_of_node(nid);
1350 
1351 		/* Look for allowed, online CPU in same node. */
1352 		for_each_cpu(dest_cpu, nodemask) {
1353 			if (!cpu_online(dest_cpu))
1354 				continue;
1355 			if (!cpu_active(dest_cpu))
1356 				continue;
1357 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358 				return dest_cpu;
1359 		}
1360 	}
1361 
1362 	for (;;) {
1363 		/* Any allowed, online CPU? */
1364 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1365 			if (!cpu_online(dest_cpu))
1366 				continue;
1367 			if (!cpu_active(dest_cpu))
1368 				continue;
1369 			goto out;
1370 		}
1371 
1372 		switch (state) {
1373 		case cpuset:
1374 			/* No more Mr. Nice Guy. */
1375 			cpuset_cpus_allowed_fallback(p);
1376 			state = possible;
1377 			break;
1378 
1379 		case possible:
1380 			do_set_cpus_allowed(p, cpu_possible_mask);
1381 			state = fail;
1382 			break;
1383 
1384 		case fail:
1385 			BUG();
1386 			break;
1387 		}
1388 	}
1389 
1390 out:
1391 	if (state != cpuset) {
1392 		/*
1393 		 * Don't tell them about moving exiting tasks or
1394 		 * kernel threads (both mm NULL), since they never
1395 		 * leave kernel.
1396 		 */
1397 		if (p->mm && printk_ratelimit()) {
1398 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1399 					task_pid_nr(p), p->comm, cpu);
1400 		}
1401 	}
1402 
1403 	return dest_cpu;
1404 }
1405 
1406 /*
1407  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1408  */
1409 static inline
1410 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1411 {
1412 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1413 
1414 	/*
1415 	 * In order not to call set_task_cpu() on a blocking task we need
1416 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 	 * cpu.
1418 	 *
1419 	 * Since this is common to all placement strategies, this lives here.
1420 	 *
1421 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1422 	 *   not worry about this generic constraint ]
1423 	 */
1424 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1425 		     !cpu_online(cpu)))
1426 		cpu = select_fallback_rq(task_cpu(p), p);
1427 
1428 	return cpu;
1429 }
1430 
1431 static void update_avg(u64 *avg, u64 sample)
1432 {
1433 	s64 diff = sample - *avg;
1434 	*avg += diff >> 3;
1435 }
1436 #endif
1437 
1438 static void
1439 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1440 {
1441 #ifdef CONFIG_SCHEDSTATS
1442 	struct rq *rq = this_rq();
1443 
1444 #ifdef CONFIG_SMP
1445 	int this_cpu = smp_processor_id();
1446 
1447 	if (cpu == this_cpu) {
1448 		schedstat_inc(rq, ttwu_local);
1449 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1450 	} else {
1451 		struct sched_domain *sd;
1452 
1453 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1454 		rcu_read_lock();
1455 		for_each_domain(this_cpu, sd) {
1456 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457 				schedstat_inc(sd, ttwu_wake_remote);
1458 				break;
1459 			}
1460 		}
1461 		rcu_read_unlock();
1462 	}
1463 
1464 	if (wake_flags & WF_MIGRATED)
1465 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1466 
1467 #endif /* CONFIG_SMP */
1468 
1469 	schedstat_inc(rq, ttwu_count);
1470 	schedstat_inc(p, se.statistics.nr_wakeups);
1471 
1472 	if (wake_flags & WF_SYNC)
1473 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1474 
1475 #endif /* CONFIG_SCHEDSTATS */
1476 }
1477 
1478 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1479 {
1480 	activate_task(rq, p, en_flags);
1481 	p->on_rq = 1;
1482 
1483 	/* if a worker is waking up, notify workqueue */
1484 	if (p->flags & PF_WQ_WORKER)
1485 		wq_worker_waking_up(p, cpu_of(rq));
1486 }
1487 
1488 /*
1489  * Mark the task runnable and perform wakeup-preemption.
1490  */
1491 static void
1492 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1493 {
1494 	check_preempt_curr(rq, p, wake_flags);
1495 	trace_sched_wakeup(p, true);
1496 
1497 	p->state = TASK_RUNNING;
1498 #ifdef CONFIG_SMP
1499 	if (p->sched_class->task_woken)
1500 		p->sched_class->task_woken(rq, p);
1501 
1502 	if (rq->idle_stamp) {
1503 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1504 		u64 max = 2*rq->max_idle_balance_cost;
1505 
1506 		update_avg(&rq->avg_idle, delta);
1507 
1508 		if (rq->avg_idle > max)
1509 			rq->avg_idle = max;
1510 
1511 		rq->idle_stamp = 0;
1512 	}
1513 #endif
1514 }
1515 
1516 static void
1517 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1518 {
1519 #ifdef CONFIG_SMP
1520 	if (p->sched_contributes_to_load)
1521 		rq->nr_uninterruptible--;
1522 #endif
1523 
1524 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525 	ttwu_do_wakeup(rq, p, wake_flags);
1526 }
1527 
1528 /*
1529  * Called in case the task @p isn't fully descheduled from its runqueue,
1530  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531  * since all we need to do is flip p->state to TASK_RUNNING, since
1532  * the task is still ->on_rq.
1533  */
1534 static int ttwu_remote(struct task_struct *p, int wake_flags)
1535 {
1536 	struct rq *rq;
1537 	int ret = 0;
1538 
1539 	rq = __task_rq_lock(p);
1540 	if (p->on_rq) {
1541 		/* check_preempt_curr() may use rq clock */
1542 		update_rq_clock(rq);
1543 		ttwu_do_wakeup(rq, p, wake_flags);
1544 		ret = 1;
1545 	}
1546 	__task_rq_unlock(rq);
1547 
1548 	return ret;
1549 }
1550 
1551 #ifdef CONFIG_SMP
1552 void sched_ttwu_pending(void)
1553 {
1554 	struct rq *rq = this_rq();
1555 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1556 	struct task_struct *p;
1557 	unsigned long flags;
1558 
1559 	if (!llist)
1560 		return;
1561 
1562 	raw_spin_lock_irqsave(&rq->lock, flags);
1563 
1564 	while (llist) {
1565 		p = llist_entry(llist, struct task_struct, wake_entry);
1566 		llist = llist_next(llist);
1567 		ttwu_do_activate(rq, p, 0);
1568 	}
1569 
1570 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1571 }
1572 
1573 void scheduler_ipi(void)
1574 {
1575 	/*
1576 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 	 * this IPI.
1579 	 */
1580 	preempt_fold_need_resched();
1581 
1582 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1583 		return;
1584 
1585 	/*
1586 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587 	 * traditionally all their work was done from the interrupt return
1588 	 * path. Now that we actually do some work, we need to make sure
1589 	 * we do call them.
1590 	 *
1591 	 * Some archs already do call them, luckily irq_enter/exit nest
1592 	 * properly.
1593 	 *
1594 	 * Arguably we should visit all archs and update all handlers,
1595 	 * however a fair share of IPIs are still resched only so this would
1596 	 * somewhat pessimize the simple resched case.
1597 	 */
1598 	irq_enter();
1599 	sched_ttwu_pending();
1600 
1601 	/*
1602 	 * Check if someone kicked us for doing the nohz idle load balance.
1603 	 */
1604 	if (unlikely(got_nohz_idle_kick())) {
1605 		this_rq()->idle_balance = 1;
1606 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1607 	}
1608 	irq_exit();
1609 }
1610 
1611 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1612 {
1613 	struct rq *rq = cpu_rq(cpu);
1614 
1615 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616 		if (!set_nr_if_polling(rq->idle))
1617 			smp_send_reschedule(cpu);
1618 		else
1619 			trace_sched_wake_idle_without_ipi(cpu);
1620 	}
1621 }
1622 
1623 bool cpus_share_cache(int this_cpu, int that_cpu)
1624 {
1625 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1626 }
1627 #endif /* CONFIG_SMP */
1628 
1629 static void ttwu_queue(struct task_struct *p, int cpu)
1630 {
1631 	struct rq *rq = cpu_rq(cpu);
1632 
1633 #if defined(CONFIG_SMP)
1634 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1635 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1636 		ttwu_queue_remote(p, cpu);
1637 		return;
1638 	}
1639 #endif
1640 
1641 	raw_spin_lock(&rq->lock);
1642 	ttwu_do_activate(rq, p, 0);
1643 	raw_spin_unlock(&rq->lock);
1644 }
1645 
1646 /**
1647  * try_to_wake_up - wake up a thread
1648  * @p: the thread to be awakened
1649  * @state: the mask of task states that can be woken
1650  * @wake_flags: wake modifier flags (WF_*)
1651  *
1652  * Put it on the run-queue if it's not already there. The "current"
1653  * thread is always on the run-queue (except when the actual
1654  * re-schedule is in progress), and as such you're allowed to do
1655  * the simpler "current->state = TASK_RUNNING" to mark yourself
1656  * runnable without the overhead of this.
1657  *
1658  * Return: %true if @p was woken up, %false if it was already running.
1659  * or @state didn't match @p's state.
1660  */
1661 static int
1662 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1663 {
1664 	unsigned long flags;
1665 	int cpu, success = 0;
1666 
1667 	/*
1668 	 * If we are going to wake up a thread waiting for CONDITION we
1669 	 * need to ensure that CONDITION=1 done by the caller can not be
1670 	 * reordered with p->state check below. This pairs with mb() in
1671 	 * set_current_state() the waiting thread does.
1672 	 */
1673 	smp_mb__before_spinlock();
1674 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1675 	if (!(p->state & state))
1676 		goto out;
1677 
1678 	success = 1; /* we're going to change ->state */
1679 	cpu = task_cpu(p);
1680 
1681 	if (p->on_rq && ttwu_remote(p, wake_flags))
1682 		goto stat;
1683 
1684 #ifdef CONFIG_SMP
1685 	/*
1686 	 * If the owning (remote) cpu is still in the middle of schedule() with
1687 	 * this task as prev, wait until its done referencing the task.
1688 	 */
1689 	while (p->on_cpu)
1690 		cpu_relax();
1691 	/*
1692 	 * Pairs with the smp_wmb() in finish_lock_switch().
1693 	 */
1694 	smp_rmb();
1695 
1696 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1697 	p->state = TASK_WAKING;
1698 
1699 	if (p->sched_class->task_waking)
1700 		p->sched_class->task_waking(p);
1701 
1702 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1703 	if (task_cpu(p) != cpu) {
1704 		wake_flags |= WF_MIGRATED;
1705 		set_task_cpu(p, cpu);
1706 	}
1707 #endif /* CONFIG_SMP */
1708 
1709 	ttwu_queue(p, cpu);
1710 stat:
1711 	ttwu_stat(p, cpu, wake_flags);
1712 out:
1713 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1714 
1715 	return success;
1716 }
1717 
1718 /**
1719  * try_to_wake_up_local - try to wake up a local task with rq lock held
1720  * @p: the thread to be awakened
1721  *
1722  * Put @p on the run-queue if it's not already there. The caller must
1723  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1724  * the current task.
1725  */
1726 static void try_to_wake_up_local(struct task_struct *p)
1727 {
1728 	struct rq *rq = task_rq(p);
1729 
1730 	if (WARN_ON_ONCE(rq != this_rq()) ||
1731 	    WARN_ON_ONCE(p == current))
1732 		return;
1733 
1734 	lockdep_assert_held(&rq->lock);
1735 
1736 	if (!raw_spin_trylock(&p->pi_lock)) {
1737 		raw_spin_unlock(&rq->lock);
1738 		raw_spin_lock(&p->pi_lock);
1739 		raw_spin_lock(&rq->lock);
1740 	}
1741 
1742 	if (!(p->state & TASK_NORMAL))
1743 		goto out;
1744 
1745 	if (!p->on_rq)
1746 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1747 
1748 	ttwu_do_wakeup(rq, p, 0);
1749 	ttwu_stat(p, smp_processor_id(), 0);
1750 out:
1751 	raw_spin_unlock(&p->pi_lock);
1752 }
1753 
1754 /**
1755  * wake_up_process - Wake up a specific process
1756  * @p: The process to be woken up.
1757  *
1758  * Attempt to wake up the nominated process and move it to the set of runnable
1759  * processes.
1760  *
1761  * Return: 1 if the process was woken up, 0 if it was already running.
1762  *
1763  * It may be assumed that this function implies a write memory barrier before
1764  * changing the task state if and only if any tasks are woken up.
1765  */
1766 int wake_up_process(struct task_struct *p)
1767 {
1768 	WARN_ON(task_is_stopped_or_traced(p));
1769 	return try_to_wake_up(p, TASK_NORMAL, 0);
1770 }
1771 EXPORT_SYMBOL(wake_up_process);
1772 
1773 int wake_up_state(struct task_struct *p, unsigned int state)
1774 {
1775 	return try_to_wake_up(p, state, 0);
1776 }
1777 
1778 /*
1779  * Perform scheduler related setup for a newly forked process p.
1780  * p is forked by current.
1781  *
1782  * __sched_fork() is basic setup used by init_idle() too:
1783  */
1784 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1785 {
1786 	p->on_rq			= 0;
1787 
1788 	p->se.on_rq			= 0;
1789 	p->se.exec_start		= 0;
1790 	p->se.sum_exec_runtime		= 0;
1791 	p->se.prev_sum_exec_runtime	= 0;
1792 	p->se.nr_migrations		= 0;
1793 	p->se.vruntime			= 0;
1794 	INIT_LIST_HEAD(&p->se.group_node);
1795 
1796 #ifdef CONFIG_SCHEDSTATS
1797 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1798 #endif
1799 
1800 	RB_CLEAR_NODE(&p->dl.rb_node);
1801 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802 	p->dl.dl_runtime = p->dl.runtime = 0;
1803 	p->dl.dl_deadline = p->dl.deadline = 0;
1804 	p->dl.dl_period = 0;
1805 	p->dl.flags = 0;
1806 
1807 	INIT_LIST_HEAD(&p->rt.run_list);
1808 
1809 #ifdef CONFIG_PREEMPT_NOTIFIERS
1810 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1811 #endif
1812 
1813 #ifdef CONFIG_NUMA_BALANCING
1814 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1815 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1816 		p->mm->numa_scan_seq = 0;
1817 	}
1818 
1819 	if (clone_flags & CLONE_VM)
1820 		p->numa_preferred_nid = current->numa_preferred_nid;
1821 	else
1822 		p->numa_preferred_nid = -1;
1823 
1824 	p->node_stamp = 0ULL;
1825 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1826 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1827 	p->numa_work.next = &p->numa_work;
1828 	p->numa_faults_memory = NULL;
1829 	p->numa_faults_buffer_memory = NULL;
1830 	p->last_task_numa_placement = 0;
1831 	p->last_sum_exec_runtime = 0;
1832 
1833 	INIT_LIST_HEAD(&p->numa_entry);
1834 	p->numa_group = NULL;
1835 #endif /* CONFIG_NUMA_BALANCING */
1836 }
1837 
1838 #ifdef CONFIG_NUMA_BALANCING
1839 #ifdef CONFIG_SCHED_DEBUG
1840 void set_numabalancing_state(bool enabled)
1841 {
1842 	if (enabled)
1843 		sched_feat_set("NUMA");
1844 	else
1845 		sched_feat_set("NO_NUMA");
1846 }
1847 #else
1848 __read_mostly bool numabalancing_enabled;
1849 
1850 void set_numabalancing_state(bool enabled)
1851 {
1852 	numabalancing_enabled = enabled;
1853 }
1854 #endif /* CONFIG_SCHED_DEBUG */
1855 
1856 #ifdef CONFIG_PROC_SYSCTL
1857 int sysctl_numa_balancing(struct ctl_table *table, int write,
1858 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1859 {
1860 	struct ctl_table t;
1861 	int err;
1862 	int state = numabalancing_enabled;
1863 
1864 	if (write && !capable(CAP_SYS_ADMIN))
1865 		return -EPERM;
1866 
1867 	t = *table;
1868 	t.data = &state;
1869 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870 	if (err < 0)
1871 		return err;
1872 	if (write)
1873 		set_numabalancing_state(state);
1874 	return err;
1875 }
1876 #endif
1877 #endif
1878 
1879 /*
1880  * fork()/clone()-time setup:
1881  */
1882 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1883 {
1884 	unsigned long flags;
1885 	int cpu = get_cpu();
1886 
1887 	__sched_fork(clone_flags, p);
1888 	/*
1889 	 * We mark the process as running here. This guarantees that
1890 	 * nobody will actually run it, and a signal or other external
1891 	 * event cannot wake it up and insert it on the runqueue either.
1892 	 */
1893 	p->state = TASK_RUNNING;
1894 
1895 	/*
1896 	 * Make sure we do not leak PI boosting priority to the child.
1897 	 */
1898 	p->prio = current->normal_prio;
1899 
1900 	/*
1901 	 * Revert to default priority/policy on fork if requested.
1902 	 */
1903 	if (unlikely(p->sched_reset_on_fork)) {
1904 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1905 			p->policy = SCHED_NORMAL;
1906 			p->static_prio = NICE_TO_PRIO(0);
1907 			p->rt_priority = 0;
1908 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1909 			p->static_prio = NICE_TO_PRIO(0);
1910 
1911 		p->prio = p->normal_prio = __normal_prio(p);
1912 		set_load_weight(p);
1913 
1914 		/*
1915 		 * We don't need the reset flag anymore after the fork. It has
1916 		 * fulfilled its duty:
1917 		 */
1918 		p->sched_reset_on_fork = 0;
1919 	}
1920 
1921 	if (dl_prio(p->prio)) {
1922 		put_cpu();
1923 		return -EAGAIN;
1924 	} else if (rt_prio(p->prio)) {
1925 		p->sched_class = &rt_sched_class;
1926 	} else {
1927 		p->sched_class = &fair_sched_class;
1928 	}
1929 
1930 	if (p->sched_class->task_fork)
1931 		p->sched_class->task_fork(p);
1932 
1933 	/*
1934 	 * The child is not yet in the pid-hash so no cgroup attach races,
1935 	 * and the cgroup is pinned to this child due to cgroup_fork()
1936 	 * is ran before sched_fork().
1937 	 *
1938 	 * Silence PROVE_RCU.
1939 	 */
1940 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1941 	set_task_cpu(p, cpu);
1942 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1943 
1944 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1945 	if (likely(sched_info_on()))
1946 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1947 #endif
1948 #if defined(CONFIG_SMP)
1949 	p->on_cpu = 0;
1950 #endif
1951 	init_task_preempt_count(p);
1952 #ifdef CONFIG_SMP
1953 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1954 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1955 #endif
1956 
1957 	put_cpu();
1958 	return 0;
1959 }
1960 
1961 unsigned long to_ratio(u64 period, u64 runtime)
1962 {
1963 	if (runtime == RUNTIME_INF)
1964 		return 1ULL << 20;
1965 
1966 	/*
1967 	 * Doing this here saves a lot of checks in all
1968 	 * the calling paths, and returning zero seems
1969 	 * safe for them anyway.
1970 	 */
1971 	if (period == 0)
1972 		return 0;
1973 
1974 	return div64_u64(runtime << 20, period);
1975 }
1976 
1977 #ifdef CONFIG_SMP
1978 inline struct dl_bw *dl_bw_of(int i)
1979 {
1980 	return &cpu_rq(i)->rd->dl_bw;
1981 }
1982 
1983 static inline int dl_bw_cpus(int i)
1984 {
1985 	struct root_domain *rd = cpu_rq(i)->rd;
1986 	int cpus = 0;
1987 
1988 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1989 		cpus++;
1990 
1991 	return cpus;
1992 }
1993 #else
1994 inline struct dl_bw *dl_bw_of(int i)
1995 {
1996 	return &cpu_rq(i)->dl.dl_bw;
1997 }
1998 
1999 static inline int dl_bw_cpus(int i)
2000 {
2001 	return 1;
2002 }
2003 #endif
2004 
2005 static inline
2006 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2007 {
2008 	dl_b->total_bw -= tsk_bw;
2009 }
2010 
2011 static inline
2012 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2013 {
2014 	dl_b->total_bw += tsk_bw;
2015 }
2016 
2017 static inline
2018 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2019 {
2020 	return dl_b->bw != -1 &&
2021 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2022 }
2023 
2024 /*
2025  * We must be sure that accepting a new task (or allowing changing the
2026  * parameters of an existing one) is consistent with the bandwidth
2027  * constraints. If yes, this function also accordingly updates the currently
2028  * allocated bandwidth to reflect the new situation.
2029  *
2030  * This function is called while holding p's rq->lock.
2031  */
2032 static int dl_overflow(struct task_struct *p, int policy,
2033 		       const struct sched_attr *attr)
2034 {
2035 
2036 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2037 	u64 period = attr->sched_period ?: attr->sched_deadline;
2038 	u64 runtime = attr->sched_runtime;
2039 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2040 	int cpus, err = -1;
2041 
2042 	if (new_bw == p->dl.dl_bw)
2043 		return 0;
2044 
2045 	/*
2046 	 * Either if a task, enters, leave, or stays -deadline but changes
2047 	 * its parameters, we may need to update accordingly the total
2048 	 * allocated bandwidth of the container.
2049 	 */
2050 	raw_spin_lock(&dl_b->lock);
2051 	cpus = dl_bw_cpus(task_cpu(p));
2052 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054 		__dl_add(dl_b, new_bw);
2055 		err = 0;
2056 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058 		__dl_clear(dl_b, p->dl.dl_bw);
2059 		__dl_add(dl_b, new_bw);
2060 		err = 0;
2061 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062 		__dl_clear(dl_b, p->dl.dl_bw);
2063 		err = 0;
2064 	}
2065 	raw_spin_unlock(&dl_b->lock);
2066 
2067 	return err;
2068 }
2069 
2070 extern void init_dl_bw(struct dl_bw *dl_b);
2071 
2072 /*
2073  * wake_up_new_task - wake up a newly created task for the first time.
2074  *
2075  * This function will do some initial scheduler statistics housekeeping
2076  * that must be done for every newly created context, then puts the task
2077  * on the runqueue and wakes it.
2078  */
2079 void wake_up_new_task(struct task_struct *p)
2080 {
2081 	unsigned long flags;
2082 	struct rq *rq;
2083 
2084 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2085 #ifdef CONFIG_SMP
2086 	/*
2087 	 * Fork balancing, do it here and not earlier because:
2088 	 *  - cpus_allowed can change in the fork path
2089 	 *  - any previously selected cpu might disappear through hotplug
2090 	 */
2091 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2092 #endif
2093 
2094 	/* Initialize new task's runnable average */
2095 	init_task_runnable_average(p);
2096 	rq = __task_rq_lock(p);
2097 	activate_task(rq, p, 0);
2098 	p->on_rq = 1;
2099 	trace_sched_wakeup_new(p, true);
2100 	check_preempt_curr(rq, p, WF_FORK);
2101 #ifdef CONFIG_SMP
2102 	if (p->sched_class->task_woken)
2103 		p->sched_class->task_woken(rq, p);
2104 #endif
2105 	task_rq_unlock(rq, p, &flags);
2106 }
2107 
2108 #ifdef CONFIG_PREEMPT_NOTIFIERS
2109 
2110 /**
2111  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2112  * @notifier: notifier struct to register
2113  */
2114 void preempt_notifier_register(struct preempt_notifier *notifier)
2115 {
2116 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2117 }
2118 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2119 
2120 /**
2121  * preempt_notifier_unregister - no longer interested in preemption notifications
2122  * @notifier: notifier struct to unregister
2123  *
2124  * This is safe to call from within a preemption notifier.
2125  */
2126 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2127 {
2128 	hlist_del(&notifier->link);
2129 }
2130 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2131 
2132 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2133 {
2134 	struct preempt_notifier *notifier;
2135 
2136 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2137 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2138 }
2139 
2140 static void
2141 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 				 struct task_struct *next)
2143 {
2144 	struct preempt_notifier *notifier;
2145 
2146 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2147 		notifier->ops->sched_out(notifier, next);
2148 }
2149 
2150 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2151 
2152 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2153 {
2154 }
2155 
2156 static void
2157 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 				 struct task_struct *next)
2159 {
2160 }
2161 
2162 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2163 
2164 /**
2165  * prepare_task_switch - prepare to switch tasks
2166  * @rq: the runqueue preparing to switch
2167  * @prev: the current task that is being switched out
2168  * @next: the task we are going to switch to.
2169  *
2170  * This is called with the rq lock held and interrupts off. It must
2171  * be paired with a subsequent finish_task_switch after the context
2172  * switch.
2173  *
2174  * prepare_task_switch sets up locking and calls architecture specific
2175  * hooks.
2176  */
2177 static inline void
2178 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179 		    struct task_struct *next)
2180 {
2181 	trace_sched_switch(prev, next);
2182 	sched_info_switch(rq, prev, next);
2183 	perf_event_task_sched_out(prev, next);
2184 	fire_sched_out_preempt_notifiers(prev, next);
2185 	prepare_lock_switch(rq, next);
2186 	prepare_arch_switch(next);
2187 }
2188 
2189 /**
2190  * finish_task_switch - clean up after a task-switch
2191  * @rq: runqueue associated with task-switch
2192  * @prev: the thread we just switched away from.
2193  *
2194  * finish_task_switch must be called after the context switch, paired
2195  * with a prepare_task_switch call before the context switch.
2196  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197  * and do any other architecture-specific cleanup actions.
2198  *
2199  * Note that we may have delayed dropping an mm in context_switch(). If
2200  * so, we finish that here outside of the runqueue lock. (Doing it
2201  * with the lock held can cause deadlocks; see schedule() for
2202  * details.)
2203  */
2204 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2205 	__releases(rq->lock)
2206 {
2207 	struct mm_struct *mm = rq->prev_mm;
2208 	long prev_state;
2209 
2210 	rq->prev_mm = NULL;
2211 
2212 	/*
2213 	 * A task struct has one reference for the use as "current".
2214 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2215 	 * schedule one last time. The schedule call will never return, and
2216 	 * the scheduled task must drop that reference.
2217 	 * The test for TASK_DEAD must occur while the runqueue locks are
2218 	 * still held, otherwise prev could be scheduled on another cpu, die
2219 	 * there before we look at prev->state, and then the reference would
2220 	 * be dropped twice.
2221 	 *		Manfred Spraul <manfred@colorfullife.com>
2222 	 */
2223 	prev_state = prev->state;
2224 	vtime_task_switch(prev);
2225 	finish_arch_switch(prev);
2226 	perf_event_task_sched_in(prev, current);
2227 	finish_lock_switch(rq, prev);
2228 	finish_arch_post_lock_switch();
2229 
2230 	fire_sched_in_preempt_notifiers(current);
2231 	if (mm)
2232 		mmdrop(mm);
2233 	if (unlikely(prev_state == TASK_DEAD)) {
2234 		if (prev->sched_class->task_dead)
2235 			prev->sched_class->task_dead(prev);
2236 
2237 		/*
2238 		 * Remove function-return probe instances associated with this
2239 		 * task and put them back on the free list.
2240 		 */
2241 		kprobe_flush_task(prev);
2242 		put_task_struct(prev);
2243 	}
2244 
2245 	tick_nohz_task_switch(current);
2246 }
2247 
2248 #ifdef CONFIG_SMP
2249 
2250 /* rq->lock is NOT held, but preemption is disabled */
2251 static inline void post_schedule(struct rq *rq)
2252 {
2253 	if (rq->post_schedule) {
2254 		unsigned long flags;
2255 
2256 		raw_spin_lock_irqsave(&rq->lock, flags);
2257 		if (rq->curr->sched_class->post_schedule)
2258 			rq->curr->sched_class->post_schedule(rq);
2259 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2260 
2261 		rq->post_schedule = 0;
2262 	}
2263 }
2264 
2265 #else
2266 
2267 static inline void post_schedule(struct rq *rq)
2268 {
2269 }
2270 
2271 #endif
2272 
2273 /**
2274  * schedule_tail - first thing a freshly forked thread must call.
2275  * @prev: the thread we just switched away from.
2276  */
2277 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2278 	__releases(rq->lock)
2279 {
2280 	struct rq *rq = this_rq();
2281 
2282 	finish_task_switch(rq, prev);
2283 
2284 	/*
2285 	 * FIXME: do we need to worry about rq being invalidated by the
2286 	 * task_switch?
2287 	 */
2288 	post_schedule(rq);
2289 
2290 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291 	/* In this case, finish_task_switch does not reenable preemption */
2292 	preempt_enable();
2293 #endif
2294 	if (current->set_child_tid)
2295 		put_user(task_pid_vnr(current), current->set_child_tid);
2296 }
2297 
2298 /*
2299  * context_switch - switch to the new MM and the new
2300  * thread's register state.
2301  */
2302 static inline void
2303 context_switch(struct rq *rq, struct task_struct *prev,
2304 	       struct task_struct *next)
2305 {
2306 	struct mm_struct *mm, *oldmm;
2307 
2308 	prepare_task_switch(rq, prev, next);
2309 
2310 	mm = next->mm;
2311 	oldmm = prev->active_mm;
2312 	/*
2313 	 * For paravirt, this is coupled with an exit in switch_to to
2314 	 * combine the page table reload and the switch backend into
2315 	 * one hypercall.
2316 	 */
2317 	arch_start_context_switch(prev);
2318 
2319 	if (!mm) {
2320 		next->active_mm = oldmm;
2321 		atomic_inc(&oldmm->mm_count);
2322 		enter_lazy_tlb(oldmm, next);
2323 	} else
2324 		switch_mm(oldmm, mm, next);
2325 
2326 	if (!prev->mm) {
2327 		prev->active_mm = NULL;
2328 		rq->prev_mm = oldmm;
2329 	}
2330 	/*
2331 	 * Since the runqueue lock will be released by the next
2332 	 * task (which is an invalid locking op but in the case
2333 	 * of the scheduler it's an obvious special-case), so we
2334 	 * do an early lockdep release here:
2335 	 */
2336 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2337 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2338 #endif
2339 
2340 	context_tracking_task_switch(prev, next);
2341 	/* Here we just switch the register state and the stack. */
2342 	switch_to(prev, next, prev);
2343 
2344 	barrier();
2345 	/*
2346 	 * this_rq must be evaluated again because prev may have moved
2347 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2348 	 * frame will be invalid.
2349 	 */
2350 	finish_task_switch(this_rq(), prev);
2351 }
2352 
2353 /*
2354  * nr_running and nr_context_switches:
2355  *
2356  * externally visible scheduler statistics: current number of runnable
2357  * threads, total number of context switches performed since bootup.
2358  */
2359 unsigned long nr_running(void)
2360 {
2361 	unsigned long i, sum = 0;
2362 
2363 	for_each_online_cpu(i)
2364 		sum += cpu_rq(i)->nr_running;
2365 
2366 	return sum;
2367 }
2368 
2369 unsigned long long nr_context_switches(void)
2370 {
2371 	int i;
2372 	unsigned long long sum = 0;
2373 
2374 	for_each_possible_cpu(i)
2375 		sum += cpu_rq(i)->nr_switches;
2376 
2377 	return sum;
2378 }
2379 
2380 unsigned long nr_iowait(void)
2381 {
2382 	unsigned long i, sum = 0;
2383 
2384 	for_each_possible_cpu(i)
2385 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2386 
2387 	return sum;
2388 }
2389 
2390 unsigned long nr_iowait_cpu(int cpu)
2391 {
2392 	struct rq *this = cpu_rq(cpu);
2393 	return atomic_read(&this->nr_iowait);
2394 }
2395 
2396 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2397 {
2398 	struct rq *this = this_rq();
2399 	*nr_waiters = atomic_read(&this->nr_iowait);
2400 	*load = this->cpu_load[0];
2401 }
2402 
2403 #ifdef CONFIG_SMP
2404 
2405 /*
2406  * sched_exec - execve() is a valuable balancing opportunity, because at
2407  * this point the task has the smallest effective memory and cache footprint.
2408  */
2409 void sched_exec(void)
2410 {
2411 	struct task_struct *p = current;
2412 	unsigned long flags;
2413 	int dest_cpu;
2414 
2415 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2416 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2417 	if (dest_cpu == smp_processor_id())
2418 		goto unlock;
2419 
2420 	if (likely(cpu_active(dest_cpu))) {
2421 		struct migration_arg arg = { p, dest_cpu };
2422 
2423 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2424 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2425 		return;
2426 	}
2427 unlock:
2428 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2429 }
2430 
2431 #endif
2432 
2433 DEFINE_PER_CPU(struct kernel_stat, kstat);
2434 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2435 
2436 EXPORT_PER_CPU_SYMBOL(kstat);
2437 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2438 
2439 /*
2440  * Return any ns on the sched_clock that have not yet been accounted in
2441  * @p in case that task is currently running.
2442  *
2443  * Called with task_rq_lock() held on @rq.
2444  */
2445 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2446 {
2447 	u64 ns = 0;
2448 
2449 	/*
2450 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2451 	 * project cycles that may never be accounted to this
2452 	 * thread, breaking clock_gettime().
2453 	 */
2454 	if (task_current(rq, p) && p->on_rq) {
2455 		update_rq_clock(rq);
2456 		ns = rq_clock_task(rq) - p->se.exec_start;
2457 		if ((s64)ns < 0)
2458 			ns = 0;
2459 	}
2460 
2461 	return ns;
2462 }
2463 
2464 unsigned long long task_delta_exec(struct task_struct *p)
2465 {
2466 	unsigned long flags;
2467 	struct rq *rq;
2468 	u64 ns = 0;
2469 
2470 	rq = task_rq_lock(p, &flags);
2471 	ns = do_task_delta_exec(p, rq);
2472 	task_rq_unlock(rq, p, &flags);
2473 
2474 	return ns;
2475 }
2476 
2477 /*
2478  * Return accounted runtime for the task.
2479  * In case the task is currently running, return the runtime plus current's
2480  * pending runtime that have not been accounted yet.
2481  */
2482 unsigned long long task_sched_runtime(struct task_struct *p)
2483 {
2484 	unsigned long flags;
2485 	struct rq *rq;
2486 	u64 ns = 0;
2487 
2488 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2489 	/*
2490 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2491 	 * So we have a optimization chance when the task's delta_exec is 0.
2492 	 * Reading ->on_cpu is racy, but this is ok.
2493 	 *
2494 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2495 	 * If we race with it entering cpu, unaccounted time is 0. This is
2496 	 * indistinguishable from the read occurring a few cycles earlier.
2497 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2498 	 * been accounted, so we're correct here as well.
2499 	 */
2500 	if (!p->on_cpu || !p->on_rq)
2501 		return p->se.sum_exec_runtime;
2502 #endif
2503 
2504 	rq = task_rq_lock(p, &flags);
2505 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2506 	task_rq_unlock(rq, p, &flags);
2507 
2508 	return ns;
2509 }
2510 
2511 /*
2512  * This function gets called by the timer code, with HZ frequency.
2513  * We call it with interrupts disabled.
2514  */
2515 void scheduler_tick(void)
2516 {
2517 	int cpu = smp_processor_id();
2518 	struct rq *rq = cpu_rq(cpu);
2519 	struct task_struct *curr = rq->curr;
2520 
2521 	sched_clock_tick();
2522 
2523 	raw_spin_lock(&rq->lock);
2524 	update_rq_clock(rq);
2525 	curr->sched_class->task_tick(rq, curr, 0);
2526 	update_cpu_load_active(rq);
2527 	raw_spin_unlock(&rq->lock);
2528 
2529 	perf_event_task_tick();
2530 
2531 #ifdef CONFIG_SMP
2532 	rq->idle_balance = idle_cpu(cpu);
2533 	trigger_load_balance(rq);
2534 #endif
2535 	rq_last_tick_reset(rq);
2536 }
2537 
2538 #ifdef CONFIG_NO_HZ_FULL
2539 /**
2540  * scheduler_tick_max_deferment
2541  *
2542  * Keep at least one tick per second when a single
2543  * active task is running because the scheduler doesn't
2544  * yet completely support full dynticks environment.
2545  *
2546  * This makes sure that uptime, CFS vruntime, load
2547  * balancing, etc... continue to move forward, even
2548  * with a very low granularity.
2549  *
2550  * Return: Maximum deferment in nanoseconds.
2551  */
2552 u64 scheduler_tick_max_deferment(void)
2553 {
2554 	struct rq *rq = this_rq();
2555 	unsigned long next, now = ACCESS_ONCE(jiffies);
2556 
2557 	next = rq->last_sched_tick + HZ;
2558 
2559 	if (time_before_eq(next, now))
2560 		return 0;
2561 
2562 	return jiffies_to_nsecs(next - now);
2563 }
2564 #endif
2565 
2566 notrace unsigned long get_parent_ip(unsigned long addr)
2567 {
2568 	if (in_lock_functions(addr)) {
2569 		addr = CALLER_ADDR2;
2570 		if (in_lock_functions(addr))
2571 			addr = CALLER_ADDR3;
2572 	}
2573 	return addr;
2574 }
2575 
2576 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2577 				defined(CONFIG_PREEMPT_TRACER))
2578 
2579 void preempt_count_add(int val)
2580 {
2581 #ifdef CONFIG_DEBUG_PREEMPT
2582 	/*
2583 	 * Underflow?
2584 	 */
2585 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2586 		return;
2587 #endif
2588 	__preempt_count_add(val);
2589 #ifdef CONFIG_DEBUG_PREEMPT
2590 	/*
2591 	 * Spinlock count overflowing soon?
2592 	 */
2593 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2594 				PREEMPT_MASK - 10);
2595 #endif
2596 	if (preempt_count() == val) {
2597 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2598 #ifdef CONFIG_DEBUG_PREEMPT
2599 		current->preempt_disable_ip = ip;
2600 #endif
2601 		trace_preempt_off(CALLER_ADDR0, ip);
2602 	}
2603 }
2604 EXPORT_SYMBOL(preempt_count_add);
2605 NOKPROBE_SYMBOL(preempt_count_add);
2606 
2607 void preempt_count_sub(int val)
2608 {
2609 #ifdef CONFIG_DEBUG_PREEMPT
2610 	/*
2611 	 * Underflow?
2612 	 */
2613 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2614 		return;
2615 	/*
2616 	 * Is the spinlock portion underflowing?
2617 	 */
2618 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2619 			!(preempt_count() & PREEMPT_MASK)))
2620 		return;
2621 #endif
2622 
2623 	if (preempt_count() == val)
2624 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2625 	__preempt_count_sub(val);
2626 }
2627 EXPORT_SYMBOL(preempt_count_sub);
2628 NOKPROBE_SYMBOL(preempt_count_sub);
2629 
2630 #endif
2631 
2632 /*
2633  * Print scheduling while atomic bug:
2634  */
2635 static noinline void __schedule_bug(struct task_struct *prev)
2636 {
2637 	if (oops_in_progress)
2638 		return;
2639 
2640 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2641 		prev->comm, prev->pid, preempt_count());
2642 
2643 	debug_show_held_locks(prev);
2644 	print_modules();
2645 	if (irqs_disabled())
2646 		print_irqtrace_events(prev);
2647 #ifdef CONFIG_DEBUG_PREEMPT
2648 	if (in_atomic_preempt_off()) {
2649 		pr_err("Preemption disabled at:");
2650 		print_ip_sym(current->preempt_disable_ip);
2651 		pr_cont("\n");
2652 	}
2653 #endif
2654 	dump_stack();
2655 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2656 }
2657 
2658 /*
2659  * Various schedule()-time debugging checks and statistics:
2660  */
2661 static inline void schedule_debug(struct task_struct *prev)
2662 {
2663 	/*
2664 	 * Test if we are atomic. Since do_exit() needs to call into
2665 	 * schedule() atomically, we ignore that path. Otherwise whine
2666 	 * if we are scheduling when we should not.
2667 	 */
2668 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2669 		__schedule_bug(prev);
2670 	rcu_sleep_check();
2671 
2672 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2673 
2674 	schedstat_inc(this_rq(), sched_count);
2675 }
2676 
2677 /*
2678  * Pick up the highest-prio task:
2679  */
2680 static inline struct task_struct *
2681 pick_next_task(struct rq *rq, struct task_struct *prev)
2682 {
2683 	const struct sched_class *class = &fair_sched_class;
2684 	struct task_struct *p;
2685 
2686 	/*
2687 	 * Optimization: we know that if all tasks are in
2688 	 * the fair class we can call that function directly:
2689 	 */
2690 	if (likely(prev->sched_class == class &&
2691 		   rq->nr_running == rq->cfs.h_nr_running)) {
2692 		p = fair_sched_class.pick_next_task(rq, prev);
2693 		if (unlikely(p == RETRY_TASK))
2694 			goto again;
2695 
2696 		/* assumes fair_sched_class->next == idle_sched_class */
2697 		if (unlikely(!p))
2698 			p = idle_sched_class.pick_next_task(rq, prev);
2699 
2700 		return p;
2701 	}
2702 
2703 again:
2704 	for_each_class(class) {
2705 		p = class->pick_next_task(rq, prev);
2706 		if (p) {
2707 			if (unlikely(p == RETRY_TASK))
2708 				goto again;
2709 			return p;
2710 		}
2711 	}
2712 
2713 	BUG(); /* the idle class will always have a runnable task */
2714 }
2715 
2716 /*
2717  * __schedule() is the main scheduler function.
2718  *
2719  * The main means of driving the scheduler and thus entering this function are:
2720  *
2721  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2722  *
2723  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2724  *      paths. For example, see arch/x86/entry_64.S.
2725  *
2726  *      To drive preemption between tasks, the scheduler sets the flag in timer
2727  *      interrupt handler scheduler_tick().
2728  *
2729  *   3. Wakeups don't really cause entry into schedule(). They add a
2730  *      task to the run-queue and that's it.
2731  *
2732  *      Now, if the new task added to the run-queue preempts the current
2733  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2734  *      called on the nearest possible occasion:
2735  *
2736  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2737  *
2738  *         - in syscall or exception context, at the next outmost
2739  *           preempt_enable(). (this might be as soon as the wake_up()'s
2740  *           spin_unlock()!)
2741  *
2742  *         - in IRQ context, return from interrupt-handler to
2743  *           preemptible context
2744  *
2745  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2746  *         then at the next:
2747  *
2748  *          - cond_resched() call
2749  *          - explicit schedule() call
2750  *          - return from syscall or exception to user-space
2751  *          - return from interrupt-handler to user-space
2752  */
2753 static void __sched __schedule(void)
2754 {
2755 	struct task_struct *prev, *next;
2756 	unsigned long *switch_count;
2757 	struct rq *rq;
2758 	int cpu;
2759 
2760 need_resched:
2761 	preempt_disable();
2762 	cpu = smp_processor_id();
2763 	rq = cpu_rq(cpu);
2764 	rcu_note_context_switch(cpu);
2765 	prev = rq->curr;
2766 
2767 	schedule_debug(prev);
2768 
2769 	if (sched_feat(HRTICK))
2770 		hrtick_clear(rq);
2771 
2772 	/*
2773 	 * Make sure that signal_pending_state()->signal_pending() below
2774 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2775 	 * done by the caller to avoid the race with signal_wake_up().
2776 	 */
2777 	smp_mb__before_spinlock();
2778 	raw_spin_lock_irq(&rq->lock);
2779 
2780 	switch_count = &prev->nivcsw;
2781 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2782 		if (unlikely(signal_pending_state(prev->state, prev))) {
2783 			prev->state = TASK_RUNNING;
2784 		} else {
2785 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2786 			prev->on_rq = 0;
2787 
2788 			/*
2789 			 * If a worker went to sleep, notify and ask workqueue
2790 			 * whether it wants to wake up a task to maintain
2791 			 * concurrency.
2792 			 */
2793 			if (prev->flags & PF_WQ_WORKER) {
2794 				struct task_struct *to_wakeup;
2795 
2796 				to_wakeup = wq_worker_sleeping(prev, cpu);
2797 				if (to_wakeup)
2798 					try_to_wake_up_local(to_wakeup);
2799 			}
2800 		}
2801 		switch_count = &prev->nvcsw;
2802 	}
2803 
2804 	if (prev->on_rq || rq->skip_clock_update < 0)
2805 		update_rq_clock(rq);
2806 
2807 	next = pick_next_task(rq, prev);
2808 	clear_tsk_need_resched(prev);
2809 	clear_preempt_need_resched();
2810 	rq->skip_clock_update = 0;
2811 
2812 	if (likely(prev != next)) {
2813 		rq->nr_switches++;
2814 		rq->curr = next;
2815 		++*switch_count;
2816 
2817 		context_switch(rq, prev, next); /* unlocks the rq */
2818 		/*
2819 		 * The context switch have flipped the stack from under us
2820 		 * and restored the local variables which were saved when
2821 		 * this task called schedule() in the past. prev == current
2822 		 * is still correct, but it can be moved to another cpu/rq.
2823 		 */
2824 		cpu = smp_processor_id();
2825 		rq = cpu_rq(cpu);
2826 	} else
2827 		raw_spin_unlock_irq(&rq->lock);
2828 
2829 	post_schedule(rq);
2830 
2831 	sched_preempt_enable_no_resched();
2832 	if (need_resched())
2833 		goto need_resched;
2834 }
2835 
2836 static inline void sched_submit_work(struct task_struct *tsk)
2837 {
2838 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2839 		return;
2840 	/*
2841 	 * If we are going to sleep and we have plugged IO queued,
2842 	 * make sure to submit it to avoid deadlocks.
2843 	 */
2844 	if (blk_needs_flush_plug(tsk))
2845 		blk_schedule_flush_plug(tsk);
2846 }
2847 
2848 asmlinkage __visible void __sched schedule(void)
2849 {
2850 	struct task_struct *tsk = current;
2851 
2852 	sched_submit_work(tsk);
2853 	__schedule();
2854 }
2855 EXPORT_SYMBOL(schedule);
2856 
2857 #ifdef CONFIG_CONTEXT_TRACKING
2858 asmlinkage __visible void __sched schedule_user(void)
2859 {
2860 	/*
2861 	 * If we come here after a random call to set_need_resched(),
2862 	 * or we have been woken up remotely but the IPI has not yet arrived,
2863 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2864 	 * we find a better solution.
2865 	 */
2866 	user_exit();
2867 	schedule();
2868 	user_enter();
2869 }
2870 #endif
2871 
2872 /**
2873  * schedule_preempt_disabled - called with preemption disabled
2874  *
2875  * Returns with preemption disabled. Note: preempt_count must be 1
2876  */
2877 void __sched schedule_preempt_disabled(void)
2878 {
2879 	sched_preempt_enable_no_resched();
2880 	schedule();
2881 	preempt_disable();
2882 }
2883 
2884 #ifdef CONFIG_PREEMPT
2885 /*
2886  * this is the entry point to schedule() from in-kernel preemption
2887  * off of preempt_enable. Kernel preemptions off return from interrupt
2888  * occur there and call schedule directly.
2889  */
2890 asmlinkage __visible void __sched notrace preempt_schedule(void)
2891 {
2892 	/*
2893 	 * If there is a non-zero preempt_count or interrupts are disabled,
2894 	 * we do not want to preempt the current task. Just return..
2895 	 */
2896 	if (likely(!preemptible()))
2897 		return;
2898 
2899 	do {
2900 		__preempt_count_add(PREEMPT_ACTIVE);
2901 		__schedule();
2902 		__preempt_count_sub(PREEMPT_ACTIVE);
2903 
2904 		/*
2905 		 * Check again in case we missed a preemption opportunity
2906 		 * between schedule and now.
2907 		 */
2908 		barrier();
2909 	} while (need_resched());
2910 }
2911 NOKPROBE_SYMBOL(preempt_schedule);
2912 EXPORT_SYMBOL(preempt_schedule);
2913 #endif /* CONFIG_PREEMPT */
2914 
2915 /*
2916  * this is the entry point to schedule() from kernel preemption
2917  * off of irq context.
2918  * Note, that this is called and return with irqs disabled. This will
2919  * protect us against recursive calling from irq.
2920  */
2921 asmlinkage __visible void __sched preempt_schedule_irq(void)
2922 {
2923 	enum ctx_state prev_state;
2924 
2925 	/* Catch callers which need to be fixed */
2926 	BUG_ON(preempt_count() || !irqs_disabled());
2927 
2928 	prev_state = exception_enter();
2929 
2930 	do {
2931 		__preempt_count_add(PREEMPT_ACTIVE);
2932 		local_irq_enable();
2933 		__schedule();
2934 		local_irq_disable();
2935 		__preempt_count_sub(PREEMPT_ACTIVE);
2936 
2937 		/*
2938 		 * Check again in case we missed a preemption opportunity
2939 		 * between schedule and now.
2940 		 */
2941 		barrier();
2942 	} while (need_resched());
2943 
2944 	exception_exit(prev_state);
2945 }
2946 
2947 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2948 			  void *key)
2949 {
2950 	return try_to_wake_up(curr->private, mode, wake_flags);
2951 }
2952 EXPORT_SYMBOL(default_wake_function);
2953 
2954 #ifdef CONFIG_RT_MUTEXES
2955 
2956 /*
2957  * rt_mutex_setprio - set the current priority of a task
2958  * @p: task
2959  * @prio: prio value (kernel-internal form)
2960  *
2961  * This function changes the 'effective' priority of a task. It does
2962  * not touch ->normal_prio like __setscheduler().
2963  *
2964  * Used by the rt_mutex code to implement priority inheritance
2965  * logic. Call site only calls if the priority of the task changed.
2966  */
2967 void rt_mutex_setprio(struct task_struct *p, int prio)
2968 {
2969 	int oldprio, on_rq, running, enqueue_flag = 0;
2970 	struct rq *rq;
2971 	const struct sched_class *prev_class;
2972 
2973 	BUG_ON(prio > MAX_PRIO);
2974 
2975 	rq = __task_rq_lock(p);
2976 
2977 	/*
2978 	 * Idle task boosting is a nono in general. There is one
2979 	 * exception, when PREEMPT_RT and NOHZ is active:
2980 	 *
2981 	 * The idle task calls get_next_timer_interrupt() and holds
2982 	 * the timer wheel base->lock on the CPU and another CPU wants
2983 	 * to access the timer (probably to cancel it). We can safely
2984 	 * ignore the boosting request, as the idle CPU runs this code
2985 	 * with interrupts disabled and will complete the lock
2986 	 * protected section without being interrupted. So there is no
2987 	 * real need to boost.
2988 	 */
2989 	if (unlikely(p == rq->idle)) {
2990 		WARN_ON(p != rq->curr);
2991 		WARN_ON(p->pi_blocked_on);
2992 		goto out_unlock;
2993 	}
2994 
2995 	trace_sched_pi_setprio(p, prio);
2996 	oldprio = p->prio;
2997 	prev_class = p->sched_class;
2998 	on_rq = p->on_rq;
2999 	running = task_current(rq, p);
3000 	if (on_rq)
3001 		dequeue_task(rq, p, 0);
3002 	if (running)
3003 		p->sched_class->put_prev_task(rq, p);
3004 
3005 	/*
3006 	 * Boosting condition are:
3007 	 * 1. -rt task is running and holds mutex A
3008 	 *      --> -dl task blocks on mutex A
3009 	 *
3010 	 * 2. -dl task is running and holds mutex A
3011 	 *      --> -dl task blocks on mutex A and could preempt the
3012 	 *          running task
3013 	 */
3014 	if (dl_prio(prio)) {
3015 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3016 		if (!dl_prio(p->normal_prio) ||
3017 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3018 			p->dl.dl_boosted = 1;
3019 			p->dl.dl_throttled = 0;
3020 			enqueue_flag = ENQUEUE_REPLENISH;
3021 		} else
3022 			p->dl.dl_boosted = 0;
3023 		p->sched_class = &dl_sched_class;
3024 	} else if (rt_prio(prio)) {
3025 		if (dl_prio(oldprio))
3026 			p->dl.dl_boosted = 0;
3027 		if (oldprio < prio)
3028 			enqueue_flag = ENQUEUE_HEAD;
3029 		p->sched_class = &rt_sched_class;
3030 	} else {
3031 		if (dl_prio(oldprio))
3032 			p->dl.dl_boosted = 0;
3033 		p->sched_class = &fair_sched_class;
3034 	}
3035 
3036 	p->prio = prio;
3037 
3038 	if (running)
3039 		p->sched_class->set_curr_task(rq);
3040 	if (on_rq)
3041 		enqueue_task(rq, p, enqueue_flag);
3042 
3043 	check_class_changed(rq, p, prev_class, oldprio);
3044 out_unlock:
3045 	__task_rq_unlock(rq);
3046 }
3047 #endif
3048 
3049 void set_user_nice(struct task_struct *p, long nice)
3050 {
3051 	int old_prio, delta, on_rq;
3052 	unsigned long flags;
3053 	struct rq *rq;
3054 
3055 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3056 		return;
3057 	/*
3058 	 * We have to be careful, if called from sys_setpriority(),
3059 	 * the task might be in the middle of scheduling on another CPU.
3060 	 */
3061 	rq = task_rq_lock(p, &flags);
3062 	/*
3063 	 * The RT priorities are set via sched_setscheduler(), but we still
3064 	 * allow the 'normal' nice value to be set - but as expected
3065 	 * it wont have any effect on scheduling until the task is
3066 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3067 	 */
3068 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3069 		p->static_prio = NICE_TO_PRIO(nice);
3070 		goto out_unlock;
3071 	}
3072 	on_rq = p->on_rq;
3073 	if (on_rq)
3074 		dequeue_task(rq, p, 0);
3075 
3076 	p->static_prio = NICE_TO_PRIO(nice);
3077 	set_load_weight(p);
3078 	old_prio = p->prio;
3079 	p->prio = effective_prio(p);
3080 	delta = p->prio - old_prio;
3081 
3082 	if (on_rq) {
3083 		enqueue_task(rq, p, 0);
3084 		/*
3085 		 * If the task increased its priority or is running and
3086 		 * lowered its priority, then reschedule its CPU:
3087 		 */
3088 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3089 			resched_curr(rq);
3090 	}
3091 out_unlock:
3092 	task_rq_unlock(rq, p, &flags);
3093 }
3094 EXPORT_SYMBOL(set_user_nice);
3095 
3096 /*
3097  * can_nice - check if a task can reduce its nice value
3098  * @p: task
3099  * @nice: nice value
3100  */
3101 int can_nice(const struct task_struct *p, const int nice)
3102 {
3103 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3104 	int nice_rlim = nice_to_rlimit(nice);
3105 
3106 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3107 		capable(CAP_SYS_NICE));
3108 }
3109 
3110 #ifdef __ARCH_WANT_SYS_NICE
3111 
3112 /*
3113  * sys_nice - change the priority of the current process.
3114  * @increment: priority increment
3115  *
3116  * sys_setpriority is a more generic, but much slower function that
3117  * does similar things.
3118  */
3119 SYSCALL_DEFINE1(nice, int, increment)
3120 {
3121 	long nice, retval;
3122 
3123 	/*
3124 	 * Setpriority might change our priority at the same moment.
3125 	 * We don't have to worry. Conceptually one call occurs first
3126 	 * and we have a single winner.
3127 	 */
3128 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3129 	nice = task_nice(current) + increment;
3130 
3131 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3132 	if (increment < 0 && !can_nice(current, nice))
3133 		return -EPERM;
3134 
3135 	retval = security_task_setnice(current, nice);
3136 	if (retval)
3137 		return retval;
3138 
3139 	set_user_nice(current, nice);
3140 	return 0;
3141 }
3142 
3143 #endif
3144 
3145 /**
3146  * task_prio - return the priority value of a given task.
3147  * @p: the task in question.
3148  *
3149  * Return: The priority value as seen by users in /proc.
3150  * RT tasks are offset by -200. Normal tasks are centered
3151  * around 0, value goes from -16 to +15.
3152  */
3153 int task_prio(const struct task_struct *p)
3154 {
3155 	return p->prio - MAX_RT_PRIO;
3156 }
3157 
3158 /**
3159  * idle_cpu - is a given cpu idle currently?
3160  * @cpu: the processor in question.
3161  *
3162  * Return: 1 if the CPU is currently idle. 0 otherwise.
3163  */
3164 int idle_cpu(int cpu)
3165 {
3166 	struct rq *rq = cpu_rq(cpu);
3167 
3168 	if (rq->curr != rq->idle)
3169 		return 0;
3170 
3171 	if (rq->nr_running)
3172 		return 0;
3173 
3174 #ifdef CONFIG_SMP
3175 	if (!llist_empty(&rq->wake_list))
3176 		return 0;
3177 #endif
3178 
3179 	return 1;
3180 }
3181 
3182 /**
3183  * idle_task - return the idle task for a given cpu.
3184  * @cpu: the processor in question.
3185  *
3186  * Return: The idle task for the cpu @cpu.
3187  */
3188 struct task_struct *idle_task(int cpu)
3189 {
3190 	return cpu_rq(cpu)->idle;
3191 }
3192 
3193 /**
3194  * find_process_by_pid - find a process with a matching PID value.
3195  * @pid: the pid in question.
3196  *
3197  * The task of @pid, if found. %NULL otherwise.
3198  */
3199 static struct task_struct *find_process_by_pid(pid_t pid)
3200 {
3201 	return pid ? find_task_by_vpid(pid) : current;
3202 }
3203 
3204 /*
3205  * This function initializes the sched_dl_entity of a newly becoming
3206  * SCHED_DEADLINE task.
3207  *
3208  * Only the static values are considered here, the actual runtime and the
3209  * absolute deadline will be properly calculated when the task is enqueued
3210  * for the first time with its new policy.
3211  */
3212 static void
3213 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3214 {
3215 	struct sched_dl_entity *dl_se = &p->dl;
3216 
3217 	init_dl_task_timer(dl_se);
3218 	dl_se->dl_runtime = attr->sched_runtime;
3219 	dl_se->dl_deadline = attr->sched_deadline;
3220 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3221 	dl_se->flags = attr->sched_flags;
3222 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3223 	dl_se->dl_throttled = 0;
3224 	dl_se->dl_new = 1;
3225 	dl_se->dl_yielded = 0;
3226 }
3227 
3228 /*
3229  * sched_setparam() passes in -1 for its policy, to let the functions
3230  * it calls know not to change it.
3231  */
3232 #define SETPARAM_POLICY	-1
3233 
3234 static void __setscheduler_params(struct task_struct *p,
3235 		const struct sched_attr *attr)
3236 {
3237 	int policy = attr->sched_policy;
3238 
3239 	if (policy == SETPARAM_POLICY)
3240 		policy = p->policy;
3241 
3242 	p->policy = policy;
3243 
3244 	if (dl_policy(policy))
3245 		__setparam_dl(p, attr);
3246 	else if (fair_policy(policy))
3247 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3248 
3249 	/*
3250 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3251 	 * !rt_policy. Always setting this ensures that things like
3252 	 * getparam()/getattr() don't report silly values for !rt tasks.
3253 	 */
3254 	p->rt_priority = attr->sched_priority;
3255 	p->normal_prio = normal_prio(p);
3256 	set_load_weight(p);
3257 }
3258 
3259 /* Actually do priority change: must hold pi & rq lock. */
3260 static void __setscheduler(struct rq *rq, struct task_struct *p,
3261 			   const struct sched_attr *attr)
3262 {
3263 	__setscheduler_params(p, attr);
3264 
3265 	/*
3266 	 * If we get here, there was no pi waiters boosting the
3267 	 * task. It is safe to use the normal prio.
3268 	 */
3269 	p->prio = normal_prio(p);
3270 
3271 	if (dl_prio(p->prio))
3272 		p->sched_class = &dl_sched_class;
3273 	else if (rt_prio(p->prio))
3274 		p->sched_class = &rt_sched_class;
3275 	else
3276 		p->sched_class = &fair_sched_class;
3277 }
3278 
3279 static void
3280 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3281 {
3282 	struct sched_dl_entity *dl_se = &p->dl;
3283 
3284 	attr->sched_priority = p->rt_priority;
3285 	attr->sched_runtime = dl_se->dl_runtime;
3286 	attr->sched_deadline = dl_se->dl_deadline;
3287 	attr->sched_period = dl_se->dl_period;
3288 	attr->sched_flags = dl_se->flags;
3289 }
3290 
3291 /*
3292  * This function validates the new parameters of a -deadline task.
3293  * We ask for the deadline not being zero, and greater or equal
3294  * than the runtime, as well as the period of being zero or
3295  * greater than deadline. Furthermore, we have to be sure that
3296  * user parameters are above the internal resolution of 1us (we
3297  * check sched_runtime only since it is always the smaller one) and
3298  * below 2^63 ns (we have to check both sched_deadline and
3299  * sched_period, as the latter can be zero).
3300  */
3301 static bool
3302 __checkparam_dl(const struct sched_attr *attr)
3303 {
3304 	/* deadline != 0 */
3305 	if (attr->sched_deadline == 0)
3306 		return false;
3307 
3308 	/*
3309 	 * Since we truncate DL_SCALE bits, make sure we're at least
3310 	 * that big.
3311 	 */
3312 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3313 		return false;
3314 
3315 	/*
3316 	 * Since we use the MSB for wrap-around and sign issues, make
3317 	 * sure it's not set (mind that period can be equal to zero).
3318 	 */
3319 	if (attr->sched_deadline & (1ULL << 63) ||
3320 	    attr->sched_period & (1ULL << 63))
3321 		return false;
3322 
3323 	/* runtime <= deadline <= period (if period != 0) */
3324 	if ((attr->sched_period != 0 &&
3325 	     attr->sched_period < attr->sched_deadline) ||
3326 	    attr->sched_deadline < attr->sched_runtime)
3327 		return false;
3328 
3329 	return true;
3330 }
3331 
3332 /*
3333  * check the target process has a UID that matches the current process's
3334  */
3335 static bool check_same_owner(struct task_struct *p)
3336 {
3337 	const struct cred *cred = current_cred(), *pcred;
3338 	bool match;
3339 
3340 	rcu_read_lock();
3341 	pcred = __task_cred(p);
3342 	match = (uid_eq(cred->euid, pcred->euid) ||
3343 		 uid_eq(cred->euid, pcred->uid));
3344 	rcu_read_unlock();
3345 	return match;
3346 }
3347 
3348 static int __sched_setscheduler(struct task_struct *p,
3349 				const struct sched_attr *attr,
3350 				bool user)
3351 {
3352 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3353 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3354 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3355 	int policy = attr->sched_policy;
3356 	unsigned long flags;
3357 	const struct sched_class *prev_class;
3358 	struct rq *rq;
3359 	int reset_on_fork;
3360 
3361 	/* may grab non-irq protected spin_locks */
3362 	BUG_ON(in_interrupt());
3363 recheck:
3364 	/* double check policy once rq lock held */
3365 	if (policy < 0) {
3366 		reset_on_fork = p->sched_reset_on_fork;
3367 		policy = oldpolicy = p->policy;
3368 	} else {
3369 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3370 
3371 		if (policy != SCHED_DEADLINE &&
3372 				policy != SCHED_FIFO && policy != SCHED_RR &&
3373 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3374 				policy != SCHED_IDLE)
3375 			return -EINVAL;
3376 	}
3377 
3378 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3379 		return -EINVAL;
3380 
3381 	/*
3382 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3383 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3384 	 * SCHED_BATCH and SCHED_IDLE is 0.
3385 	 */
3386 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3387 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3388 		return -EINVAL;
3389 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3390 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3391 		return -EINVAL;
3392 
3393 	/*
3394 	 * Allow unprivileged RT tasks to decrease priority:
3395 	 */
3396 	if (user && !capable(CAP_SYS_NICE)) {
3397 		if (fair_policy(policy)) {
3398 			if (attr->sched_nice < task_nice(p) &&
3399 			    !can_nice(p, attr->sched_nice))
3400 				return -EPERM;
3401 		}
3402 
3403 		if (rt_policy(policy)) {
3404 			unsigned long rlim_rtprio =
3405 					task_rlimit(p, RLIMIT_RTPRIO);
3406 
3407 			/* can't set/change the rt policy */
3408 			if (policy != p->policy && !rlim_rtprio)
3409 				return -EPERM;
3410 
3411 			/* can't increase priority */
3412 			if (attr->sched_priority > p->rt_priority &&
3413 			    attr->sched_priority > rlim_rtprio)
3414 				return -EPERM;
3415 		}
3416 
3417 		 /*
3418 		  * Can't set/change SCHED_DEADLINE policy at all for now
3419 		  * (safest behavior); in the future we would like to allow
3420 		  * unprivileged DL tasks to increase their relative deadline
3421 		  * or reduce their runtime (both ways reducing utilization)
3422 		  */
3423 		if (dl_policy(policy))
3424 			return -EPERM;
3425 
3426 		/*
3427 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3428 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3429 		 */
3430 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3431 			if (!can_nice(p, task_nice(p)))
3432 				return -EPERM;
3433 		}
3434 
3435 		/* can't change other user's priorities */
3436 		if (!check_same_owner(p))
3437 			return -EPERM;
3438 
3439 		/* Normal users shall not reset the sched_reset_on_fork flag */
3440 		if (p->sched_reset_on_fork && !reset_on_fork)
3441 			return -EPERM;
3442 	}
3443 
3444 	if (user) {
3445 		retval = security_task_setscheduler(p);
3446 		if (retval)
3447 			return retval;
3448 	}
3449 
3450 	/*
3451 	 * make sure no PI-waiters arrive (or leave) while we are
3452 	 * changing the priority of the task:
3453 	 *
3454 	 * To be able to change p->policy safely, the appropriate
3455 	 * runqueue lock must be held.
3456 	 */
3457 	rq = task_rq_lock(p, &flags);
3458 
3459 	/*
3460 	 * Changing the policy of the stop threads its a very bad idea
3461 	 */
3462 	if (p == rq->stop) {
3463 		task_rq_unlock(rq, p, &flags);
3464 		return -EINVAL;
3465 	}
3466 
3467 	/*
3468 	 * If not changing anything there's no need to proceed further,
3469 	 * but store a possible modification of reset_on_fork.
3470 	 */
3471 	if (unlikely(policy == p->policy)) {
3472 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3473 			goto change;
3474 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3475 			goto change;
3476 		if (dl_policy(policy))
3477 			goto change;
3478 
3479 		p->sched_reset_on_fork = reset_on_fork;
3480 		task_rq_unlock(rq, p, &flags);
3481 		return 0;
3482 	}
3483 change:
3484 
3485 	if (user) {
3486 #ifdef CONFIG_RT_GROUP_SCHED
3487 		/*
3488 		 * Do not allow realtime tasks into groups that have no runtime
3489 		 * assigned.
3490 		 */
3491 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3492 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3493 				!task_group_is_autogroup(task_group(p))) {
3494 			task_rq_unlock(rq, p, &flags);
3495 			return -EPERM;
3496 		}
3497 #endif
3498 #ifdef CONFIG_SMP
3499 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3500 			cpumask_t *span = rq->rd->span;
3501 
3502 			/*
3503 			 * Don't allow tasks with an affinity mask smaller than
3504 			 * the entire root_domain to become SCHED_DEADLINE. We
3505 			 * will also fail if there's no bandwidth available.
3506 			 */
3507 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3508 			    rq->rd->dl_bw.bw == 0) {
3509 				task_rq_unlock(rq, p, &flags);
3510 				return -EPERM;
3511 			}
3512 		}
3513 #endif
3514 	}
3515 
3516 	/* recheck policy now with rq lock held */
3517 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3518 		policy = oldpolicy = -1;
3519 		task_rq_unlock(rq, p, &flags);
3520 		goto recheck;
3521 	}
3522 
3523 	/*
3524 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3525 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3526 	 * is available.
3527 	 */
3528 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3529 		task_rq_unlock(rq, p, &flags);
3530 		return -EBUSY;
3531 	}
3532 
3533 	p->sched_reset_on_fork = reset_on_fork;
3534 	oldprio = p->prio;
3535 
3536 	/*
3537 	 * Special case for priority boosted tasks.
3538 	 *
3539 	 * If the new priority is lower or equal (user space view)
3540 	 * than the current (boosted) priority, we just store the new
3541 	 * normal parameters and do not touch the scheduler class and
3542 	 * the runqueue. This will be done when the task deboost
3543 	 * itself.
3544 	 */
3545 	if (rt_mutex_check_prio(p, newprio)) {
3546 		__setscheduler_params(p, attr);
3547 		task_rq_unlock(rq, p, &flags);
3548 		return 0;
3549 	}
3550 
3551 	on_rq = p->on_rq;
3552 	running = task_current(rq, p);
3553 	if (on_rq)
3554 		dequeue_task(rq, p, 0);
3555 	if (running)
3556 		p->sched_class->put_prev_task(rq, p);
3557 
3558 	prev_class = p->sched_class;
3559 	__setscheduler(rq, p, attr);
3560 
3561 	if (running)
3562 		p->sched_class->set_curr_task(rq);
3563 	if (on_rq) {
3564 		/*
3565 		 * We enqueue to tail when the priority of a task is
3566 		 * increased (user space view).
3567 		 */
3568 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3569 	}
3570 
3571 	check_class_changed(rq, p, prev_class, oldprio);
3572 	task_rq_unlock(rq, p, &flags);
3573 
3574 	rt_mutex_adjust_pi(p);
3575 
3576 	return 0;
3577 }
3578 
3579 static int _sched_setscheduler(struct task_struct *p, int policy,
3580 			       const struct sched_param *param, bool check)
3581 {
3582 	struct sched_attr attr = {
3583 		.sched_policy   = policy,
3584 		.sched_priority = param->sched_priority,
3585 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3586 	};
3587 
3588 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3589 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3590 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3591 		policy &= ~SCHED_RESET_ON_FORK;
3592 		attr.sched_policy = policy;
3593 	}
3594 
3595 	return __sched_setscheduler(p, &attr, check);
3596 }
3597 /**
3598  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3599  * @p: the task in question.
3600  * @policy: new policy.
3601  * @param: structure containing the new RT priority.
3602  *
3603  * Return: 0 on success. An error code otherwise.
3604  *
3605  * NOTE that the task may be already dead.
3606  */
3607 int sched_setscheduler(struct task_struct *p, int policy,
3608 		       const struct sched_param *param)
3609 {
3610 	return _sched_setscheduler(p, policy, param, true);
3611 }
3612 EXPORT_SYMBOL_GPL(sched_setscheduler);
3613 
3614 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3615 {
3616 	return __sched_setscheduler(p, attr, true);
3617 }
3618 EXPORT_SYMBOL_GPL(sched_setattr);
3619 
3620 /**
3621  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3622  * @p: the task in question.
3623  * @policy: new policy.
3624  * @param: structure containing the new RT priority.
3625  *
3626  * Just like sched_setscheduler, only don't bother checking if the
3627  * current context has permission.  For example, this is needed in
3628  * stop_machine(): we create temporary high priority worker threads,
3629  * but our caller might not have that capability.
3630  *
3631  * Return: 0 on success. An error code otherwise.
3632  */
3633 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3634 			       const struct sched_param *param)
3635 {
3636 	return _sched_setscheduler(p, policy, param, false);
3637 }
3638 
3639 static int
3640 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3641 {
3642 	struct sched_param lparam;
3643 	struct task_struct *p;
3644 	int retval;
3645 
3646 	if (!param || pid < 0)
3647 		return -EINVAL;
3648 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3649 		return -EFAULT;
3650 
3651 	rcu_read_lock();
3652 	retval = -ESRCH;
3653 	p = find_process_by_pid(pid);
3654 	if (p != NULL)
3655 		retval = sched_setscheduler(p, policy, &lparam);
3656 	rcu_read_unlock();
3657 
3658 	return retval;
3659 }
3660 
3661 /*
3662  * Mimics kernel/events/core.c perf_copy_attr().
3663  */
3664 static int sched_copy_attr(struct sched_attr __user *uattr,
3665 			   struct sched_attr *attr)
3666 {
3667 	u32 size;
3668 	int ret;
3669 
3670 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3671 		return -EFAULT;
3672 
3673 	/*
3674 	 * zero the full structure, so that a short copy will be nice.
3675 	 */
3676 	memset(attr, 0, sizeof(*attr));
3677 
3678 	ret = get_user(size, &uattr->size);
3679 	if (ret)
3680 		return ret;
3681 
3682 	if (size > PAGE_SIZE)	/* silly large */
3683 		goto err_size;
3684 
3685 	if (!size)		/* abi compat */
3686 		size = SCHED_ATTR_SIZE_VER0;
3687 
3688 	if (size < SCHED_ATTR_SIZE_VER0)
3689 		goto err_size;
3690 
3691 	/*
3692 	 * If we're handed a bigger struct than we know of,
3693 	 * ensure all the unknown bits are 0 - i.e. new
3694 	 * user-space does not rely on any kernel feature
3695 	 * extensions we dont know about yet.
3696 	 */
3697 	if (size > sizeof(*attr)) {
3698 		unsigned char __user *addr;
3699 		unsigned char __user *end;
3700 		unsigned char val;
3701 
3702 		addr = (void __user *)uattr + sizeof(*attr);
3703 		end  = (void __user *)uattr + size;
3704 
3705 		for (; addr < end; addr++) {
3706 			ret = get_user(val, addr);
3707 			if (ret)
3708 				return ret;
3709 			if (val)
3710 				goto err_size;
3711 		}
3712 		size = sizeof(*attr);
3713 	}
3714 
3715 	ret = copy_from_user(attr, uattr, size);
3716 	if (ret)
3717 		return -EFAULT;
3718 
3719 	/*
3720 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3721 	 * to be strict and return an error on out-of-bounds values?
3722 	 */
3723 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3724 
3725 	return 0;
3726 
3727 err_size:
3728 	put_user(sizeof(*attr), &uattr->size);
3729 	return -E2BIG;
3730 }
3731 
3732 /**
3733  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3734  * @pid: the pid in question.
3735  * @policy: new policy.
3736  * @param: structure containing the new RT priority.
3737  *
3738  * Return: 0 on success. An error code otherwise.
3739  */
3740 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3741 		struct sched_param __user *, param)
3742 {
3743 	/* negative values for policy are not valid */
3744 	if (policy < 0)
3745 		return -EINVAL;
3746 
3747 	return do_sched_setscheduler(pid, policy, param);
3748 }
3749 
3750 /**
3751  * sys_sched_setparam - set/change the RT priority of a thread
3752  * @pid: the pid in question.
3753  * @param: structure containing the new RT priority.
3754  *
3755  * Return: 0 on success. An error code otherwise.
3756  */
3757 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3758 {
3759 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3760 }
3761 
3762 /**
3763  * sys_sched_setattr - same as above, but with extended sched_attr
3764  * @pid: the pid in question.
3765  * @uattr: structure containing the extended parameters.
3766  * @flags: for future extension.
3767  */
3768 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3769 			       unsigned int, flags)
3770 {
3771 	struct sched_attr attr;
3772 	struct task_struct *p;
3773 	int retval;
3774 
3775 	if (!uattr || pid < 0 || flags)
3776 		return -EINVAL;
3777 
3778 	retval = sched_copy_attr(uattr, &attr);
3779 	if (retval)
3780 		return retval;
3781 
3782 	if ((int)attr.sched_policy < 0)
3783 		return -EINVAL;
3784 
3785 	rcu_read_lock();
3786 	retval = -ESRCH;
3787 	p = find_process_by_pid(pid);
3788 	if (p != NULL)
3789 		retval = sched_setattr(p, &attr);
3790 	rcu_read_unlock();
3791 
3792 	return retval;
3793 }
3794 
3795 /**
3796  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3797  * @pid: the pid in question.
3798  *
3799  * Return: On success, the policy of the thread. Otherwise, a negative error
3800  * code.
3801  */
3802 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3803 {
3804 	struct task_struct *p;
3805 	int retval;
3806 
3807 	if (pid < 0)
3808 		return -EINVAL;
3809 
3810 	retval = -ESRCH;
3811 	rcu_read_lock();
3812 	p = find_process_by_pid(pid);
3813 	if (p) {
3814 		retval = security_task_getscheduler(p);
3815 		if (!retval)
3816 			retval = p->policy
3817 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3818 	}
3819 	rcu_read_unlock();
3820 	return retval;
3821 }
3822 
3823 /**
3824  * sys_sched_getparam - get the RT priority of a thread
3825  * @pid: the pid in question.
3826  * @param: structure containing the RT priority.
3827  *
3828  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3829  * code.
3830  */
3831 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3832 {
3833 	struct sched_param lp = { .sched_priority = 0 };
3834 	struct task_struct *p;
3835 	int retval;
3836 
3837 	if (!param || pid < 0)
3838 		return -EINVAL;
3839 
3840 	rcu_read_lock();
3841 	p = find_process_by_pid(pid);
3842 	retval = -ESRCH;
3843 	if (!p)
3844 		goto out_unlock;
3845 
3846 	retval = security_task_getscheduler(p);
3847 	if (retval)
3848 		goto out_unlock;
3849 
3850 	if (task_has_rt_policy(p))
3851 		lp.sched_priority = p->rt_priority;
3852 	rcu_read_unlock();
3853 
3854 	/*
3855 	 * This one might sleep, we cannot do it with a spinlock held ...
3856 	 */
3857 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3858 
3859 	return retval;
3860 
3861 out_unlock:
3862 	rcu_read_unlock();
3863 	return retval;
3864 }
3865 
3866 static int sched_read_attr(struct sched_attr __user *uattr,
3867 			   struct sched_attr *attr,
3868 			   unsigned int usize)
3869 {
3870 	int ret;
3871 
3872 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3873 		return -EFAULT;
3874 
3875 	/*
3876 	 * If we're handed a smaller struct than we know of,
3877 	 * ensure all the unknown bits are 0 - i.e. old
3878 	 * user-space does not get uncomplete information.
3879 	 */
3880 	if (usize < sizeof(*attr)) {
3881 		unsigned char *addr;
3882 		unsigned char *end;
3883 
3884 		addr = (void *)attr + usize;
3885 		end  = (void *)attr + sizeof(*attr);
3886 
3887 		for (; addr < end; addr++) {
3888 			if (*addr)
3889 				return -EFBIG;
3890 		}
3891 
3892 		attr->size = usize;
3893 	}
3894 
3895 	ret = copy_to_user(uattr, attr, attr->size);
3896 	if (ret)
3897 		return -EFAULT;
3898 
3899 	return 0;
3900 }
3901 
3902 /**
3903  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3904  * @pid: the pid in question.
3905  * @uattr: structure containing the extended parameters.
3906  * @size: sizeof(attr) for fwd/bwd comp.
3907  * @flags: for future extension.
3908  */
3909 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3910 		unsigned int, size, unsigned int, flags)
3911 {
3912 	struct sched_attr attr = {
3913 		.size = sizeof(struct sched_attr),
3914 	};
3915 	struct task_struct *p;
3916 	int retval;
3917 
3918 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3919 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3920 		return -EINVAL;
3921 
3922 	rcu_read_lock();
3923 	p = find_process_by_pid(pid);
3924 	retval = -ESRCH;
3925 	if (!p)
3926 		goto out_unlock;
3927 
3928 	retval = security_task_getscheduler(p);
3929 	if (retval)
3930 		goto out_unlock;
3931 
3932 	attr.sched_policy = p->policy;
3933 	if (p->sched_reset_on_fork)
3934 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3935 	if (task_has_dl_policy(p))
3936 		__getparam_dl(p, &attr);
3937 	else if (task_has_rt_policy(p))
3938 		attr.sched_priority = p->rt_priority;
3939 	else
3940 		attr.sched_nice = task_nice(p);
3941 
3942 	rcu_read_unlock();
3943 
3944 	retval = sched_read_attr(uattr, &attr, size);
3945 	return retval;
3946 
3947 out_unlock:
3948 	rcu_read_unlock();
3949 	return retval;
3950 }
3951 
3952 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3953 {
3954 	cpumask_var_t cpus_allowed, new_mask;
3955 	struct task_struct *p;
3956 	int retval;
3957 
3958 	rcu_read_lock();
3959 
3960 	p = find_process_by_pid(pid);
3961 	if (!p) {
3962 		rcu_read_unlock();
3963 		return -ESRCH;
3964 	}
3965 
3966 	/* Prevent p going away */
3967 	get_task_struct(p);
3968 	rcu_read_unlock();
3969 
3970 	if (p->flags & PF_NO_SETAFFINITY) {
3971 		retval = -EINVAL;
3972 		goto out_put_task;
3973 	}
3974 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3975 		retval = -ENOMEM;
3976 		goto out_put_task;
3977 	}
3978 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3979 		retval = -ENOMEM;
3980 		goto out_free_cpus_allowed;
3981 	}
3982 	retval = -EPERM;
3983 	if (!check_same_owner(p)) {
3984 		rcu_read_lock();
3985 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3986 			rcu_read_unlock();
3987 			goto out_unlock;
3988 		}
3989 		rcu_read_unlock();
3990 	}
3991 
3992 	retval = security_task_setscheduler(p);
3993 	if (retval)
3994 		goto out_unlock;
3995 
3996 
3997 	cpuset_cpus_allowed(p, cpus_allowed);
3998 	cpumask_and(new_mask, in_mask, cpus_allowed);
3999 
4000 	/*
4001 	 * Since bandwidth control happens on root_domain basis,
4002 	 * if admission test is enabled, we only admit -deadline
4003 	 * tasks allowed to run on all the CPUs in the task's
4004 	 * root_domain.
4005 	 */
4006 #ifdef CONFIG_SMP
4007 	if (task_has_dl_policy(p)) {
4008 		const struct cpumask *span = task_rq(p)->rd->span;
4009 
4010 		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4011 			retval = -EBUSY;
4012 			goto out_unlock;
4013 		}
4014 	}
4015 #endif
4016 again:
4017 	retval = set_cpus_allowed_ptr(p, new_mask);
4018 
4019 	if (!retval) {
4020 		cpuset_cpus_allowed(p, cpus_allowed);
4021 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4022 			/*
4023 			 * We must have raced with a concurrent cpuset
4024 			 * update. Just reset the cpus_allowed to the
4025 			 * cpuset's cpus_allowed
4026 			 */
4027 			cpumask_copy(new_mask, cpus_allowed);
4028 			goto again;
4029 		}
4030 	}
4031 out_unlock:
4032 	free_cpumask_var(new_mask);
4033 out_free_cpus_allowed:
4034 	free_cpumask_var(cpus_allowed);
4035 out_put_task:
4036 	put_task_struct(p);
4037 	return retval;
4038 }
4039 
4040 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4041 			     struct cpumask *new_mask)
4042 {
4043 	if (len < cpumask_size())
4044 		cpumask_clear(new_mask);
4045 	else if (len > cpumask_size())
4046 		len = cpumask_size();
4047 
4048 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4049 }
4050 
4051 /**
4052  * sys_sched_setaffinity - set the cpu affinity of a process
4053  * @pid: pid of the process
4054  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4055  * @user_mask_ptr: user-space pointer to the new cpu mask
4056  *
4057  * Return: 0 on success. An error code otherwise.
4058  */
4059 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4060 		unsigned long __user *, user_mask_ptr)
4061 {
4062 	cpumask_var_t new_mask;
4063 	int retval;
4064 
4065 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4066 		return -ENOMEM;
4067 
4068 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4069 	if (retval == 0)
4070 		retval = sched_setaffinity(pid, new_mask);
4071 	free_cpumask_var(new_mask);
4072 	return retval;
4073 }
4074 
4075 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4076 {
4077 	struct task_struct *p;
4078 	unsigned long flags;
4079 	int retval;
4080 
4081 	rcu_read_lock();
4082 
4083 	retval = -ESRCH;
4084 	p = find_process_by_pid(pid);
4085 	if (!p)
4086 		goto out_unlock;
4087 
4088 	retval = security_task_getscheduler(p);
4089 	if (retval)
4090 		goto out_unlock;
4091 
4092 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4093 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4094 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4095 
4096 out_unlock:
4097 	rcu_read_unlock();
4098 
4099 	return retval;
4100 }
4101 
4102 /**
4103  * sys_sched_getaffinity - get the cpu affinity of a process
4104  * @pid: pid of the process
4105  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4106  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4107  *
4108  * Return: 0 on success. An error code otherwise.
4109  */
4110 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4111 		unsigned long __user *, user_mask_ptr)
4112 {
4113 	int ret;
4114 	cpumask_var_t mask;
4115 
4116 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4117 		return -EINVAL;
4118 	if (len & (sizeof(unsigned long)-1))
4119 		return -EINVAL;
4120 
4121 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4122 		return -ENOMEM;
4123 
4124 	ret = sched_getaffinity(pid, mask);
4125 	if (ret == 0) {
4126 		size_t retlen = min_t(size_t, len, cpumask_size());
4127 
4128 		if (copy_to_user(user_mask_ptr, mask, retlen))
4129 			ret = -EFAULT;
4130 		else
4131 			ret = retlen;
4132 	}
4133 	free_cpumask_var(mask);
4134 
4135 	return ret;
4136 }
4137 
4138 /**
4139  * sys_sched_yield - yield the current processor to other threads.
4140  *
4141  * This function yields the current CPU to other tasks. If there are no
4142  * other threads running on this CPU then this function will return.
4143  *
4144  * Return: 0.
4145  */
4146 SYSCALL_DEFINE0(sched_yield)
4147 {
4148 	struct rq *rq = this_rq_lock();
4149 
4150 	schedstat_inc(rq, yld_count);
4151 	current->sched_class->yield_task(rq);
4152 
4153 	/*
4154 	 * Since we are going to call schedule() anyway, there's
4155 	 * no need to preempt or enable interrupts:
4156 	 */
4157 	__release(rq->lock);
4158 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4159 	do_raw_spin_unlock(&rq->lock);
4160 	sched_preempt_enable_no_resched();
4161 
4162 	schedule();
4163 
4164 	return 0;
4165 }
4166 
4167 static void __cond_resched(void)
4168 {
4169 	__preempt_count_add(PREEMPT_ACTIVE);
4170 	__schedule();
4171 	__preempt_count_sub(PREEMPT_ACTIVE);
4172 }
4173 
4174 int __sched _cond_resched(void)
4175 {
4176 	if (should_resched()) {
4177 		__cond_resched();
4178 		return 1;
4179 	}
4180 	return 0;
4181 }
4182 EXPORT_SYMBOL(_cond_resched);
4183 
4184 /*
4185  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4186  * call schedule, and on return reacquire the lock.
4187  *
4188  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4189  * operations here to prevent schedule() from being called twice (once via
4190  * spin_unlock(), once by hand).
4191  */
4192 int __cond_resched_lock(spinlock_t *lock)
4193 {
4194 	int resched = should_resched();
4195 	int ret = 0;
4196 
4197 	lockdep_assert_held(lock);
4198 
4199 	if (spin_needbreak(lock) || resched) {
4200 		spin_unlock(lock);
4201 		if (resched)
4202 			__cond_resched();
4203 		else
4204 			cpu_relax();
4205 		ret = 1;
4206 		spin_lock(lock);
4207 	}
4208 	return ret;
4209 }
4210 EXPORT_SYMBOL(__cond_resched_lock);
4211 
4212 int __sched __cond_resched_softirq(void)
4213 {
4214 	BUG_ON(!in_softirq());
4215 
4216 	if (should_resched()) {
4217 		local_bh_enable();
4218 		__cond_resched();
4219 		local_bh_disable();
4220 		return 1;
4221 	}
4222 	return 0;
4223 }
4224 EXPORT_SYMBOL(__cond_resched_softirq);
4225 
4226 /**
4227  * yield - yield the current processor to other threads.
4228  *
4229  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4230  *
4231  * The scheduler is at all times free to pick the calling task as the most
4232  * eligible task to run, if removing the yield() call from your code breaks
4233  * it, its already broken.
4234  *
4235  * Typical broken usage is:
4236  *
4237  * while (!event)
4238  * 	yield();
4239  *
4240  * where one assumes that yield() will let 'the other' process run that will
4241  * make event true. If the current task is a SCHED_FIFO task that will never
4242  * happen. Never use yield() as a progress guarantee!!
4243  *
4244  * If you want to use yield() to wait for something, use wait_event().
4245  * If you want to use yield() to be 'nice' for others, use cond_resched().
4246  * If you still want to use yield(), do not!
4247  */
4248 void __sched yield(void)
4249 {
4250 	set_current_state(TASK_RUNNING);
4251 	sys_sched_yield();
4252 }
4253 EXPORT_SYMBOL(yield);
4254 
4255 /**
4256  * yield_to - yield the current processor to another thread in
4257  * your thread group, or accelerate that thread toward the
4258  * processor it's on.
4259  * @p: target task
4260  * @preempt: whether task preemption is allowed or not
4261  *
4262  * It's the caller's job to ensure that the target task struct
4263  * can't go away on us before we can do any checks.
4264  *
4265  * Return:
4266  *	true (>0) if we indeed boosted the target task.
4267  *	false (0) if we failed to boost the target.
4268  *	-ESRCH if there's no task to yield to.
4269  */
4270 int __sched yield_to(struct task_struct *p, bool preempt)
4271 {
4272 	struct task_struct *curr = current;
4273 	struct rq *rq, *p_rq;
4274 	unsigned long flags;
4275 	int yielded = 0;
4276 
4277 	local_irq_save(flags);
4278 	rq = this_rq();
4279 
4280 again:
4281 	p_rq = task_rq(p);
4282 	/*
4283 	 * If we're the only runnable task on the rq and target rq also
4284 	 * has only one task, there's absolutely no point in yielding.
4285 	 */
4286 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4287 		yielded = -ESRCH;
4288 		goto out_irq;
4289 	}
4290 
4291 	double_rq_lock(rq, p_rq);
4292 	if (task_rq(p) != p_rq) {
4293 		double_rq_unlock(rq, p_rq);
4294 		goto again;
4295 	}
4296 
4297 	if (!curr->sched_class->yield_to_task)
4298 		goto out_unlock;
4299 
4300 	if (curr->sched_class != p->sched_class)
4301 		goto out_unlock;
4302 
4303 	if (task_running(p_rq, p) || p->state)
4304 		goto out_unlock;
4305 
4306 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4307 	if (yielded) {
4308 		schedstat_inc(rq, yld_count);
4309 		/*
4310 		 * Make p's CPU reschedule; pick_next_entity takes care of
4311 		 * fairness.
4312 		 */
4313 		if (preempt && rq != p_rq)
4314 			resched_curr(p_rq);
4315 	}
4316 
4317 out_unlock:
4318 	double_rq_unlock(rq, p_rq);
4319 out_irq:
4320 	local_irq_restore(flags);
4321 
4322 	if (yielded > 0)
4323 		schedule();
4324 
4325 	return yielded;
4326 }
4327 EXPORT_SYMBOL_GPL(yield_to);
4328 
4329 /*
4330  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4331  * that process accounting knows that this is a task in IO wait state.
4332  */
4333 void __sched io_schedule(void)
4334 {
4335 	struct rq *rq = raw_rq();
4336 
4337 	delayacct_blkio_start();
4338 	atomic_inc(&rq->nr_iowait);
4339 	blk_flush_plug(current);
4340 	current->in_iowait = 1;
4341 	schedule();
4342 	current->in_iowait = 0;
4343 	atomic_dec(&rq->nr_iowait);
4344 	delayacct_blkio_end();
4345 }
4346 EXPORT_SYMBOL(io_schedule);
4347 
4348 long __sched io_schedule_timeout(long timeout)
4349 {
4350 	struct rq *rq = raw_rq();
4351 	long ret;
4352 
4353 	delayacct_blkio_start();
4354 	atomic_inc(&rq->nr_iowait);
4355 	blk_flush_plug(current);
4356 	current->in_iowait = 1;
4357 	ret = schedule_timeout(timeout);
4358 	current->in_iowait = 0;
4359 	atomic_dec(&rq->nr_iowait);
4360 	delayacct_blkio_end();
4361 	return ret;
4362 }
4363 
4364 /**
4365  * sys_sched_get_priority_max - return maximum RT priority.
4366  * @policy: scheduling class.
4367  *
4368  * Return: On success, this syscall returns the maximum
4369  * rt_priority that can be used by a given scheduling class.
4370  * On failure, a negative error code is returned.
4371  */
4372 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4373 {
4374 	int ret = -EINVAL;
4375 
4376 	switch (policy) {
4377 	case SCHED_FIFO:
4378 	case SCHED_RR:
4379 		ret = MAX_USER_RT_PRIO-1;
4380 		break;
4381 	case SCHED_DEADLINE:
4382 	case SCHED_NORMAL:
4383 	case SCHED_BATCH:
4384 	case SCHED_IDLE:
4385 		ret = 0;
4386 		break;
4387 	}
4388 	return ret;
4389 }
4390 
4391 /**
4392  * sys_sched_get_priority_min - return minimum RT priority.
4393  * @policy: scheduling class.
4394  *
4395  * Return: On success, this syscall returns the minimum
4396  * rt_priority that can be used by a given scheduling class.
4397  * On failure, a negative error code is returned.
4398  */
4399 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4400 {
4401 	int ret = -EINVAL;
4402 
4403 	switch (policy) {
4404 	case SCHED_FIFO:
4405 	case SCHED_RR:
4406 		ret = 1;
4407 		break;
4408 	case SCHED_DEADLINE:
4409 	case SCHED_NORMAL:
4410 	case SCHED_BATCH:
4411 	case SCHED_IDLE:
4412 		ret = 0;
4413 	}
4414 	return ret;
4415 }
4416 
4417 /**
4418  * sys_sched_rr_get_interval - return the default timeslice of a process.
4419  * @pid: pid of the process.
4420  * @interval: userspace pointer to the timeslice value.
4421  *
4422  * this syscall writes the default timeslice value of a given process
4423  * into the user-space timespec buffer. A value of '0' means infinity.
4424  *
4425  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4426  * an error code.
4427  */
4428 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4429 		struct timespec __user *, interval)
4430 {
4431 	struct task_struct *p;
4432 	unsigned int time_slice;
4433 	unsigned long flags;
4434 	struct rq *rq;
4435 	int retval;
4436 	struct timespec t;
4437 
4438 	if (pid < 0)
4439 		return -EINVAL;
4440 
4441 	retval = -ESRCH;
4442 	rcu_read_lock();
4443 	p = find_process_by_pid(pid);
4444 	if (!p)
4445 		goto out_unlock;
4446 
4447 	retval = security_task_getscheduler(p);
4448 	if (retval)
4449 		goto out_unlock;
4450 
4451 	rq = task_rq_lock(p, &flags);
4452 	time_slice = 0;
4453 	if (p->sched_class->get_rr_interval)
4454 		time_slice = p->sched_class->get_rr_interval(rq, p);
4455 	task_rq_unlock(rq, p, &flags);
4456 
4457 	rcu_read_unlock();
4458 	jiffies_to_timespec(time_slice, &t);
4459 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4460 	return retval;
4461 
4462 out_unlock:
4463 	rcu_read_unlock();
4464 	return retval;
4465 }
4466 
4467 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4468 
4469 void sched_show_task(struct task_struct *p)
4470 {
4471 	unsigned long free = 0;
4472 	int ppid;
4473 	unsigned state;
4474 
4475 	state = p->state ? __ffs(p->state) + 1 : 0;
4476 	printk(KERN_INFO "%-15.15s %c", p->comm,
4477 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4478 #if BITS_PER_LONG == 32
4479 	if (state == TASK_RUNNING)
4480 		printk(KERN_CONT " running  ");
4481 	else
4482 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4483 #else
4484 	if (state == TASK_RUNNING)
4485 		printk(KERN_CONT "  running task    ");
4486 	else
4487 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4488 #endif
4489 #ifdef CONFIG_DEBUG_STACK_USAGE
4490 	free = stack_not_used(p);
4491 #endif
4492 	rcu_read_lock();
4493 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4494 	rcu_read_unlock();
4495 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4496 		task_pid_nr(p), ppid,
4497 		(unsigned long)task_thread_info(p)->flags);
4498 
4499 	print_worker_info(KERN_INFO, p);
4500 	show_stack(p, NULL);
4501 }
4502 
4503 void show_state_filter(unsigned long state_filter)
4504 {
4505 	struct task_struct *g, *p;
4506 
4507 #if BITS_PER_LONG == 32
4508 	printk(KERN_INFO
4509 		"  task                PC stack   pid father\n");
4510 #else
4511 	printk(KERN_INFO
4512 		"  task                        PC stack   pid father\n");
4513 #endif
4514 	rcu_read_lock();
4515 	do_each_thread(g, p) {
4516 		/*
4517 		 * reset the NMI-timeout, listing all files on a slow
4518 		 * console might take a lot of time:
4519 		 */
4520 		touch_nmi_watchdog();
4521 		if (!state_filter || (p->state & state_filter))
4522 			sched_show_task(p);
4523 	} while_each_thread(g, p);
4524 
4525 	touch_all_softlockup_watchdogs();
4526 
4527 #ifdef CONFIG_SCHED_DEBUG
4528 	sysrq_sched_debug_show();
4529 #endif
4530 	rcu_read_unlock();
4531 	/*
4532 	 * Only show locks if all tasks are dumped:
4533 	 */
4534 	if (!state_filter)
4535 		debug_show_all_locks();
4536 }
4537 
4538 void init_idle_bootup_task(struct task_struct *idle)
4539 {
4540 	idle->sched_class = &idle_sched_class;
4541 }
4542 
4543 /**
4544  * init_idle - set up an idle thread for a given CPU
4545  * @idle: task in question
4546  * @cpu: cpu the idle task belongs to
4547  *
4548  * NOTE: this function does not set the idle thread's NEED_RESCHED
4549  * flag, to make booting more robust.
4550  */
4551 void init_idle(struct task_struct *idle, int cpu)
4552 {
4553 	struct rq *rq = cpu_rq(cpu);
4554 	unsigned long flags;
4555 
4556 	raw_spin_lock_irqsave(&rq->lock, flags);
4557 
4558 	__sched_fork(0, idle);
4559 	idle->state = TASK_RUNNING;
4560 	idle->se.exec_start = sched_clock();
4561 
4562 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4563 	/*
4564 	 * We're having a chicken and egg problem, even though we are
4565 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4566 	 * lockdep check in task_group() will fail.
4567 	 *
4568 	 * Similar case to sched_fork(). / Alternatively we could
4569 	 * use task_rq_lock() here and obtain the other rq->lock.
4570 	 *
4571 	 * Silence PROVE_RCU
4572 	 */
4573 	rcu_read_lock();
4574 	__set_task_cpu(idle, cpu);
4575 	rcu_read_unlock();
4576 
4577 	rq->curr = rq->idle = idle;
4578 	idle->on_rq = 1;
4579 #if defined(CONFIG_SMP)
4580 	idle->on_cpu = 1;
4581 #endif
4582 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4583 
4584 	/* Set the preempt count _outside_ the spinlocks! */
4585 	init_idle_preempt_count(idle, cpu);
4586 
4587 	/*
4588 	 * The idle tasks have their own, simple scheduling class:
4589 	 */
4590 	idle->sched_class = &idle_sched_class;
4591 	ftrace_graph_init_idle_task(idle, cpu);
4592 	vtime_init_idle(idle, cpu);
4593 #if defined(CONFIG_SMP)
4594 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4595 #endif
4596 }
4597 
4598 #ifdef CONFIG_SMP
4599 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4600 {
4601 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4602 		p->sched_class->set_cpus_allowed(p, new_mask);
4603 
4604 	cpumask_copy(&p->cpus_allowed, new_mask);
4605 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4606 }
4607 
4608 /*
4609  * This is how migration works:
4610  *
4611  * 1) we invoke migration_cpu_stop() on the target CPU using
4612  *    stop_one_cpu().
4613  * 2) stopper starts to run (implicitly forcing the migrated thread
4614  *    off the CPU)
4615  * 3) it checks whether the migrated task is still in the wrong runqueue.
4616  * 4) if it's in the wrong runqueue then the migration thread removes
4617  *    it and puts it into the right queue.
4618  * 5) stopper completes and stop_one_cpu() returns and the migration
4619  *    is done.
4620  */
4621 
4622 /*
4623  * Change a given task's CPU affinity. Migrate the thread to a
4624  * proper CPU and schedule it away if the CPU it's executing on
4625  * is removed from the allowed bitmask.
4626  *
4627  * NOTE: the caller must have a valid reference to the task, the
4628  * task must not exit() & deallocate itself prematurely. The
4629  * call is not atomic; no spinlocks may be held.
4630  */
4631 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4632 {
4633 	unsigned long flags;
4634 	struct rq *rq;
4635 	unsigned int dest_cpu;
4636 	int ret = 0;
4637 
4638 	rq = task_rq_lock(p, &flags);
4639 
4640 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4641 		goto out;
4642 
4643 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4644 		ret = -EINVAL;
4645 		goto out;
4646 	}
4647 
4648 	do_set_cpus_allowed(p, new_mask);
4649 
4650 	/* Can the task run on the task's current CPU? If so, we're done */
4651 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4652 		goto out;
4653 
4654 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4655 	if (p->on_rq) {
4656 		struct migration_arg arg = { p, dest_cpu };
4657 		/* Need help from migration thread: drop lock and wait. */
4658 		task_rq_unlock(rq, p, &flags);
4659 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4660 		tlb_migrate_finish(p->mm);
4661 		return 0;
4662 	}
4663 out:
4664 	task_rq_unlock(rq, p, &flags);
4665 
4666 	return ret;
4667 }
4668 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4669 
4670 /*
4671  * Move (not current) task off this cpu, onto dest cpu. We're doing
4672  * this because either it can't run here any more (set_cpus_allowed()
4673  * away from this CPU, or CPU going down), or because we're
4674  * attempting to rebalance this task on exec (sched_exec).
4675  *
4676  * So we race with normal scheduler movements, but that's OK, as long
4677  * as the task is no longer on this CPU.
4678  *
4679  * Returns non-zero if task was successfully migrated.
4680  */
4681 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4682 {
4683 	struct rq *rq_dest, *rq_src;
4684 	int ret = 0;
4685 
4686 	if (unlikely(!cpu_active(dest_cpu)))
4687 		return ret;
4688 
4689 	rq_src = cpu_rq(src_cpu);
4690 	rq_dest = cpu_rq(dest_cpu);
4691 
4692 	raw_spin_lock(&p->pi_lock);
4693 	double_rq_lock(rq_src, rq_dest);
4694 	/* Already moved. */
4695 	if (task_cpu(p) != src_cpu)
4696 		goto done;
4697 	/* Affinity changed (again). */
4698 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4699 		goto fail;
4700 
4701 	/*
4702 	 * If we're not on a rq, the next wake-up will ensure we're
4703 	 * placed properly.
4704 	 */
4705 	if (p->on_rq) {
4706 		dequeue_task(rq_src, p, 0);
4707 		set_task_cpu(p, dest_cpu);
4708 		enqueue_task(rq_dest, p, 0);
4709 		check_preempt_curr(rq_dest, p, 0);
4710 	}
4711 done:
4712 	ret = 1;
4713 fail:
4714 	double_rq_unlock(rq_src, rq_dest);
4715 	raw_spin_unlock(&p->pi_lock);
4716 	return ret;
4717 }
4718 
4719 #ifdef CONFIG_NUMA_BALANCING
4720 /* Migrate current task p to target_cpu */
4721 int migrate_task_to(struct task_struct *p, int target_cpu)
4722 {
4723 	struct migration_arg arg = { p, target_cpu };
4724 	int curr_cpu = task_cpu(p);
4725 
4726 	if (curr_cpu == target_cpu)
4727 		return 0;
4728 
4729 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4730 		return -EINVAL;
4731 
4732 	/* TODO: This is not properly updating schedstats */
4733 
4734 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4735 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4736 }
4737 
4738 /*
4739  * Requeue a task on a given node and accurately track the number of NUMA
4740  * tasks on the runqueues
4741  */
4742 void sched_setnuma(struct task_struct *p, int nid)
4743 {
4744 	struct rq *rq;
4745 	unsigned long flags;
4746 	bool on_rq, running;
4747 
4748 	rq = task_rq_lock(p, &flags);
4749 	on_rq = p->on_rq;
4750 	running = task_current(rq, p);
4751 
4752 	if (on_rq)
4753 		dequeue_task(rq, p, 0);
4754 	if (running)
4755 		p->sched_class->put_prev_task(rq, p);
4756 
4757 	p->numa_preferred_nid = nid;
4758 
4759 	if (running)
4760 		p->sched_class->set_curr_task(rq);
4761 	if (on_rq)
4762 		enqueue_task(rq, p, 0);
4763 	task_rq_unlock(rq, p, &flags);
4764 }
4765 #endif
4766 
4767 /*
4768  * migration_cpu_stop - this will be executed by a highprio stopper thread
4769  * and performs thread migration by bumping thread off CPU then
4770  * 'pushing' onto another runqueue.
4771  */
4772 static int migration_cpu_stop(void *data)
4773 {
4774 	struct migration_arg *arg = data;
4775 
4776 	/*
4777 	 * The original target cpu might have gone down and we might
4778 	 * be on another cpu but it doesn't matter.
4779 	 */
4780 	local_irq_disable();
4781 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4782 	local_irq_enable();
4783 	return 0;
4784 }
4785 
4786 #ifdef CONFIG_HOTPLUG_CPU
4787 
4788 /*
4789  * Ensures that the idle task is using init_mm right before its cpu goes
4790  * offline.
4791  */
4792 void idle_task_exit(void)
4793 {
4794 	struct mm_struct *mm = current->active_mm;
4795 
4796 	BUG_ON(cpu_online(smp_processor_id()));
4797 
4798 	if (mm != &init_mm) {
4799 		switch_mm(mm, &init_mm, current);
4800 		finish_arch_post_lock_switch();
4801 	}
4802 	mmdrop(mm);
4803 }
4804 
4805 /*
4806  * Since this CPU is going 'away' for a while, fold any nr_active delta
4807  * we might have. Assumes we're called after migrate_tasks() so that the
4808  * nr_active count is stable.
4809  *
4810  * Also see the comment "Global load-average calculations".
4811  */
4812 static void calc_load_migrate(struct rq *rq)
4813 {
4814 	long delta = calc_load_fold_active(rq);
4815 	if (delta)
4816 		atomic_long_add(delta, &calc_load_tasks);
4817 }
4818 
4819 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4820 {
4821 }
4822 
4823 static const struct sched_class fake_sched_class = {
4824 	.put_prev_task = put_prev_task_fake,
4825 };
4826 
4827 static struct task_struct fake_task = {
4828 	/*
4829 	 * Avoid pull_{rt,dl}_task()
4830 	 */
4831 	.prio = MAX_PRIO + 1,
4832 	.sched_class = &fake_sched_class,
4833 };
4834 
4835 /*
4836  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4837  * try_to_wake_up()->select_task_rq().
4838  *
4839  * Called with rq->lock held even though we'er in stop_machine() and
4840  * there's no concurrency possible, we hold the required locks anyway
4841  * because of lock validation efforts.
4842  */
4843 static void migrate_tasks(unsigned int dead_cpu)
4844 {
4845 	struct rq *rq = cpu_rq(dead_cpu);
4846 	struct task_struct *next, *stop = rq->stop;
4847 	int dest_cpu;
4848 
4849 	/*
4850 	 * Fudge the rq selection such that the below task selection loop
4851 	 * doesn't get stuck on the currently eligible stop task.
4852 	 *
4853 	 * We're currently inside stop_machine() and the rq is either stuck
4854 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4855 	 * either way we should never end up calling schedule() until we're
4856 	 * done here.
4857 	 */
4858 	rq->stop = NULL;
4859 
4860 	/*
4861 	 * put_prev_task() and pick_next_task() sched
4862 	 * class method both need to have an up-to-date
4863 	 * value of rq->clock[_task]
4864 	 */
4865 	update_rq_clock(rq);
4866 
4867 	for ( ; ; ) {
4868 		/*
4869 		 * There's this thread running, bail when that's the only
4870 		 * remaining thread.
4871 		 */
4872 		if (rq->nr_running == 1)
4873 			break;
4874 
4875 		next = pick_next_task(rq, &fake_task);
4876 		BUG_ON(!next);
4877 		next->sched_class->put_prev_task(rq, next);
4878 
4879 		/* Find suitable destination for @next, with force if needed. */
4880 		dest_cpu = select_fallback_rq(dead_cpu, next);
4881 		raw_spin_unlock(&rq->lock);
4882 
4883 		__migrate_task(next, dead_cpu, dest_cpu);
4884 
4885 		raw_spin_lock(&rq->lock);
4886 	}
4887 
4888 	rq->stop = stop;
4889 }
4890 
4891 #endif /* CONFIG_HOTPLUG_CPU */
4892 
4893 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4894 
4895 static struct ctl_table sd_ctl_dir[] = {
4896 	{
4897 		.procname	= "sched_domain",
4898 		.mode		= 0555,
4899 	},
4900 	{}
4901 };
4902 
4903 static struct ctl_table sd_ctl_root[] = {
4904 	{
4905 		.procname	= "kernel",
4906 		.mode		= 0555,
4907 		.child		= sd_ctl_dir,
4908 	},
4909 	{}
4910 };
4911 
4912 static struct ctl_table *sd_alloc_ctl_entry(int n)
4913 {
4914 	struct ctl_table *entry =
4915 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4916 
4917 	return entry;
4918 }
4919 
4920 static void sd_free_ctl_entry(struct ctl_table **tablep)
4921 {
4922 	struct ctl_table *entry;
4923 
4924 	/*
4925 	 * In the intermediate directories, both the child directory and
4926 	 * procname are dynamically allocated and could fail but the mode
4927 	 * will always be set. In the lowest directory the names are
4928 	 * static strings and all have proc handlers.
4929 	 */
4930 	for (entry = *tablep; entry->mode; entry++) {
4931 		if (entry->child)
4932 			sd_free_ctl_entry(&entry->child);
4933 		if (entry->proc_handler == NULL)
4934 			kfree(entry->procname);
4935 	}
4936 
4937 	kfree(*tablep);
4938 	*tablep = NULL;
4939 }
4940 
4941 static int min_load_idx = 0;
4942 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4943 
4944 static void
4945 set_table_entry(struct ctl_table *entry,
4946 		const char *procname, void *data, int maxlen,
4947 		umode_t mode, proc_handler *proc_handler,
4948 		bool load_idx)
4949 {
4950 	entry->procname = procname;
4951 	entry->data = data;
4952 	entry->maxlen = maxlen;
4953 	entry->mode = mode;
4954 	entry->proc_handler = proc_handler;
4955 
4956 	if (load_idx) {
4957 		entry->extra1 = &min_load_idx;
4958 		entry->extra2 = &max_load_idx;
4959 	}
4960 }
4961 
4962 static struct ctl_table *
4963 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4964 {
4965 	struct ctl_table *table = sd_alloc_ctl_entry(14);
4966 
4967 	if (table == NULL)
4968 		return NULL;
4969 
4970 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4971 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4972 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4973 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4974 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4975 		sizeof(int), 0644, proc_dointvec_minmax, true);
4976 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4977 		sizeof(int), 0644, proc_dointvec_minmax, true);
4978 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4979 		sizeof(int), 0644, proc_dointvec_minmax, true);
4980 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4981 		sizeof(int), 0644, proc_dointvec_minmax, true);
4982 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4983 		sizeof(int), 0644, proc_dointvec_minmax, true);
4984 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4985 		sizeof(int), 0644, proc_dointvec_minmax, false);
4986 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4987 		sizeof(int), 0644, proc_dointvec_minmax, false);
4988 	set_table_entry(&table[9], "cache_nice_tries",
4989 		&sd->cache_nice_tries,
4990 		sizeof(int), 0644, proc_dointvec_minmax, false);
4991 	set_table_entry(&table[10], "flags", &sd->flags,
4992 		sizeof(int), 0644, proc_dointvec_minmax, false);
4993 	set_table_entry(&table[11], "max_newidle_lb_cost",
4994 		&sd->max_newidle_lb_cost,
4995 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4996 	set_table_entry(&table[12], "name", sd->name,
4997 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4998 	/* &table[13] is terminator */
4999 
5000 	return table;
5001 }
5002 
5003 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5004 {
5005 	struct ctl_table *entry, *table;
5006 	struct sched_domain *sd;
5007 	int domain_num = 0, i;
5008 	char buf[32];
5009 
5010 	for_each_domain(cpu, sd)
5011 		domain_num++;
5012 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5013 	if (table == NULL)
5014 		return NULL;
5015 
5016 	i = 0;
5017 	for_each_domain(cpu, sd) {
5018 		snprintf(buf, 32, "domain%d", i);
5019 		entry->procname = kstrdup(buf, GFP_KERNEL);
5020 		entry->mode = 0555;
5021 		entry->child = sd_alloc_ctl_domain_table(sd);
5022 		entry++;
5023 		i++;
5024 	}
5025 	return table;
5026 }
5027 
5028 static struct ctl_table_header *sd_sysctl_header;
5029 static void register_sched_domain_sysctl(void)
5030 {
5031 	int i, cpu_num = num_possible_cpus();
5032 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5033 	char buf[32];
5034 
5035 	WARN_ON(sd_ctl_dir[0].child);
5036 	sd_ctl_dir[0].child = entry;
5037 
5038 	if (entry == NULL)
5039 		return;
5040 
5041 	for_each_possible_cpu(i) {
5042 		snprintf(buf, 32, "cpu%d", i);
5043 		entry->procname = kstrdup(buf, GFP_KERNEL);
5044 		entry->mode = 0555;
5045 		entry->child = sd_alloc_ctl_cpu_table(i);
5046 		entry++;
5047 	}
5048 
5049 	WARN_ON(sd_sysctl_header);
5050 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5051 }
5052 
5053 /* may be called multiple times per register */
5054 static void unregister_sched_domain_sysctl(void)
5055 {
5056 	if (sd_sysctl_header)
5057 		unregister_sysctl_table(sd_sysctl_header);
5058 	sd_sysctl_header = NULL;
5059 	if (sd_ctl_dir[0].child)
5060 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5061 }
5062 #else
5063 static void register_sched_domain_sysctl(void)
5064 {
5065 }
5066 static void unregister_sched_domain_sysctl(void)
5067 {
5068 }
5069 #endif
5070 
5071 static void set_rq_online(struct rq *rq)
5072 {
5073 	if (!rq->online) {
5074 		const struct sched_class *class;
5075 
5076 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5077 		rq->online = 1;
5078 
5079 		for_each_class(class) {
5080 			if (class->rq_online)
5081 				class->rq_online(rq);
5082 		}
5083 	}
5084 }
5085 
5086 static void set_rq_offline(struct rq *rq)
5087 {
5088 	if (rq->online) {
5089 		const struct sched_class *class;
5090 
5091 		for_each_class(class) {
5092 			if (class->rq_offline)
5093 				class->rq_offline(rq);
5094 		}
5095 
5096 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5097 		rq->online = 0;
5098 	}
5099 }
5100 
5101 /*
5102  * migration_call - callback that gets triggered when a CPU is added.
5103  * Here we can start up the necessary migration thread for the new CPU.
5104  */
5105 static int
5106 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5107 {
5108 	int cpu = (long)hcpu;
5109 	unsigned long flags;
5110 	struct rq *rq = cpu_rq(cpu);
5111 
5112 	switch (action & ~CPU_TASKS_FROZEN) {
5113 
5114 	case CPU_UP_PREPARE:
5115 		rq->calc_load_update = calc_load_update;
5116 		break;
5117 
5118 	case CPU_ONLINE:
5119 		/* Update our root-domain */
5120 		raw_spin_lock_irqsave(&rq->lock, flags);
5121 		if (rq->rd) {
5122 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5123 
5124 			set_rq_online(rq);
5125 		}
5126 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5127 		break;
5128 
5129 #ifdef CONFIG_HOTPLUG_CPU
5130 	case CPU_DYING:
5131 		sched_ttwu_pending();
5132 		/* Update our root-domain */
5133 		raw_spin_lock_irqsave(&rq->lock, flags);
5134 		if (rq->rd) {
5135 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5136 			set_rq_offline(rq);
5137 		}
5138 		migrate_tasks(cpu);
5139 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5140 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5141 		break;
5142 
5143 	case CPU_DEAD:
5144 		calc_load_migrate(rq);
5145 		break;
5146 #endif
5147 	}
5148 
5149 	update_max_interval();
5150 
5151 	return NOTIFY_OK;
5152 }
5153 
5154 /*
5155  * Register at high priority so that task migration (migrate_all_tasks)
5156  * happens before everything else.  This has to be lower priority than
5157  * the notifier in the perf_event subsystem, though.
5158  */
5159 static struct notifier_block migration_notifier = {
5160 	.notifier_call = migration_call,
5161 	.priority = CPU_PRI_MIGRATION,
5162 };
5163 
5164 static void __cpuinit set_cpu_rq_start_time(void)
5165 {
5166 	int cpu = smp_processor_id();
5167 	struct rq *rq = cpu_rq(cpu);
5168 	rq->age_stamp = sched_clock_cpu(cpu);
5169 }
5170 
5171 static int sched_cpu_active(struct notifier_block *nfb,
5172 				      unsigned long action, void *hcpu)
5173 {
5174 	switch (action & ~CPU_TASKS_FROZEN) {
5175 	case CPU_STARTING:
5176 		set_cpu_rq_start_time();
5177 		return NOTIFY_OK;
5178 	case CPU_DOWN_FAILED:
5179 		set_cpu_active((long)hcpu, true);
5180 		return NOTIFY_OK;
5181 	default:
5182 		return NOTIFY_DONE;
5183 	}
5184 }
5185 
5186 static int sched_cpu_inactive(struct notifier_block *nfb,
5187 					unsigned long action, void *hcpu)
5188 {
5189 	unsigned long flags;
5190 	long cpu = (long)hcpu;
5191 
5192 	switch (action & ~CPU_TASKS_FROZEN) {
5193 	case CPU_DOWN_PREPARE:
5194 		set_cpu_active(cpu, false);
5195 
5196 		/* explicitly allow suspend */
5197 		if (!(action & CPU_TASKS_FROZEN)) {
5198 			struct dl_bw *dl_b = dl_bw_of(cpu);
5199 			bool overflow;
5200 			int cpus;
5201 
5202 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5203 			cpus = dl_bw_cpus(cpu);
5204 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5205 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5206 
5207 			if (overflow)
5208 				return notifier_from_errno(-EBUSY);
5209 		}
5210 		return NOTIFY_OK;
5211 	}
5212 
5213 	return NOTIFY_DONE;
5214 }
5215 
5216 static int __init migration_init(void)
5217 {
5218 	void *cpu = (void *)(long)smp_processor_id();
5219 	int err;
5220 
5221 	/* Initialize migration for the boot CPU */
5222 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5223 	BUG_ON(err == NOTIFY_BAD);
5224 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5225 	register_cpu_notifier(&migration_notifier);
5226 
5227 	/* Register cpu active notifiers */
5228 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5229 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5230 
5231 	return 0;
5232 }
5233 early_initcall(migration_init);
5234 #endif
5235 
5236 #ifdef CONFIG_SMP
5237 
5238 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5239 
5240 #ifdef CONFIG_SCHED_DEBUG
5241 
5242 static __read_mostly int sched_debug_enabled;
5243 
5244 static int __init sched_debug_setup(char *str)
5245 {
5246 	sched_debug_enabled = 1;
5247 
5248 	return 0;
5249 }
5250 early_param("sched_debug", sched_debug_setup);
5251 
5252 static inline bool sched_debug(void)
5253 {
5254 	return sched_debug_enabled;
5255 }
5256 
5257 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5258 				  struct cpumask *groupmask)
5259 {
5260 	struct sched_group *group = sd->groups;
5261 	char str[256];
5262 
5263 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5264 	cpumask_clear(groupmask);
5265 
5266 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5267 
5268 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5269 		printk("does not load-balance\n");
5270 		if (sd->parent)
5271 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5272 					" has parent");
5273 		return -1;
5274 	}
5275 
5276 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5277 
5278 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5279 		printk(KERN_ERR "ERROR: domain->span does not contain "
5280 				"CPU%d\n", cpu);
5281 	}
5282 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5283 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5284 				" CPU%d\n", cpu);
5285 	}
5286 
5287 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5288 	do {
5289 		if (!group) {
5290 			printk("\n");
5291 			printk(KERN_ERR "ERROR: group is NULL\n");
5292 			break;
5293 		}
5294 
5295 		/*
5296 		 * Even though we initialize ->capacity to something semi-sane,
5297 		 * we leave capacity_orig unset. This allows us to detect if
5298 		 * domain iteration is still funny without causing /0 traps.
5299 		 */
5300 		if (!group->sgc->capacity_orig) {
5301 			printk(KERN_CONT "\n");
5302 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5303 			break;
5304 		}
5305 
5306 		if (!cpumask_weight(sched_group_cpus(group))) {
5307 			printk(KERN_CONT "\n");
5308 			printk(KERN_ERR "ERROR: empty group\n");
5309 			break;
5310 		}
5311 
5312 		if (!(sd->flags & SD_OVERLAP) &&
5313 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5314 			printk(KERN_CONT "\n");
5315 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5316 			break;
5317 		}
5318 
5319 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5320 
5321 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5322 
5323 		printk(KERN_CONT " %s", str);
5324 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5325 			printk(KERN_CONT " (cpu_capacity = %d)",
5326 				group->sgc->capacity);
5327 		}
5328 
5329 		group = group->next;
5330 	} while (group != sd->groups);
5331 	printk(KERN_CONT "\n");
5332 
5333 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5334 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5335 
5336 	if (sd->parent &&
5337 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5338 		printk(KERN_ERR "ERROR: parent span is not a superset "
5339 			"of domain->span\n");
5340 	return 0;
5341 }
5342 
5343 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5344 {
5345 	int level = 0;
5346 
5347 	if (!sched_debug_enabled)
5348 		return;
5349 
5350 	if (!sd) {
5351 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5352 		return;
5353 	}
5354 
5355 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5356 
5357 	for (;;) {
5358 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5359 			break;
5360 		level++;
5361 		sd = sd->parent;
5362 		if (!sd)
5363 			break;
5364 	}
5365 }
5366 #else /* !CONFIG_SCHED_DEBUG */
5367 # define sched_domain_debug(sd, cpu) do { } while (0)
5368 static inline bool sched_debug(void)
5369 {
5370 	return false;
5371 }
5372 #endif /* CONFIG_SCHED_DEBUG */
5373 
5374 static int sd_degenerate(struct sched_domain *sd)
5375 {
5376 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5377 		return 1;
5378 
5379 	/* Following flags need at least 2 groups */
5380 	if (sd->flags & (SD_LOAD_BALANCE |
5381 			 SD_BALANCE_NEWIDLE |
5382 			 SD_BALANCE_FORK |
5383 			 SD_BALANCE_EXEC |
5384 			 SD_SHARE_CPUCAPACITY |
5385 			 SD_SHARE_PKG_RESOURCES |
5386 			 SD_SHARE_POWERDOMAIN)) {
5387 		if (sd->groups != sd->groups->next)
5388 			return 0;
5389 	}
5390 
5391 	/* Following flags don't use groups */
5392 	if (sd->flags & (SD_WAKE_AFFINE))
5393 		return 0;
5394 
5395 	return 1;
5396 }
5397 
5398 static int
5399 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5400 {
5401 	unsigned long cflags = sd->flags, pflags = parent->flags;
5402 
5403 	if (sd_degenerate(parent))
5404 		return 1;
5405 
5406 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5407 		return 0;
5408 
5409 	/* Flags needing groups don't count if only 1 group in parent */
5410 	if (parent->groups == parent->groups->next) {
5411 		pflags &= ~(SD_LOAD_BALANCE |
5412 				SD_BALANCE_NEWIDLE |
5413 				SD_BALANCE_FORK |
5414 				SD_BALANCE_EXEC |
5415 				SD_SHARE_CPUCAPACITY |
5416 				SD_SHARE_PKG_RESOURCES |
5417 				SD_PREFER_SIBLING |
5418 				SD_SHARE_POWERDOMAIN);
5419 		if (nr_node_ids == 1)
5420 			pflags &= ~SD_SERIALIZE;
5421 	}
5422 	if (~cflags & pflags)
5423 		return 0;
5424 
5425 	return 1;
5426 }
5427 
5428 static void free_rootdomain(struct rcu_head *rcu)
5429 {
5430 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5431 
5432 	cpupri_cleanup(&rd->cpupri);
5433 	cpudl_cleanup(&rd->cpudl);
5434 	free_cpumask_var(rd->dlo_mask);
5435 	free_cpumask_var(rd->rto_mask);
5436 	free_cpumask_var(rd->online);
5437 	free_cpumask_var(rd->span);
5438 	kfree(rd);
5439 }
5440 
5441 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5442 {
5443 	struct root_domain *old_rd = NULL;
5444 	unsigned long flags;
5445 
5446 	raw_spin_lock_irqsave(&rq->lock, flags);
5447 
5448 	if (rq->rd) {
5449 		old_rd = rq->rd;
5450 
5451 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5452 			set_rq_offline(rq);
5453 
5454 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5455 
5456 		/*
5457 		 * If we dont want to free the old_rd yet then
5458 		 * set old_rd to NULL to skip the freeing later
5459 		 * in this function:
5460 		 */
5461 		if (!atomic_dec_and_test(&old_rd->refcount))
5462 			old_rd = NULL;
5463 	}
5464 
5465 	atomic_inc(&rd->refcount);
5466 	rq->rd = rd;
5467 
5468 	cpumask_set_cpu(rq->cpu, rd->span);
5469 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5470 		set_rq_online(rq);
5471 
5472 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5473 
5474 	if (old_rd)
5475 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5476 }
5477 
5478 static int init_rootdomain(struct root_domain *rd)
5479 {
5480 	memset(rd, 0, sizeof(*rd));
5481 
5482 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5483 		goto out;
5484 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5485 		goto free_span;
5486 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5487 		goto free_online;
5488 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5489 		goto free_dlo_mask;
5490 
5491 	init_dl_bw(&rd->dl_bw);
5492 	if (cpudl_init(&rd->cpudl) != 0)
5493 		goto free_dlo_mask;
5494 
5495 	if (cpupri_init(&rd->cpupri) != 0)
5496 		goto free_rto_mask;
5497 	return 0;
5498 
5499 free_rto_mask:
5500 	free_cpumask_var(rd->rto_mask);
5501 free_dlo_mask:
5502 	free_cpumask_var(rd->dlo_mask);
5503 free_online:
5504 	free_cpumask_var(rd->online);
5505 free_span:
5506 	free_cpumask_var(rd->span);
5507 out:
5508 	return -ENOMEM;
5509 }
5510 
5511 /*
5512  * By default the system creates a single root-domain with all cpus as
5513  * members (mimicking the global state we have today).
5514  */
5515 struct root_domain def_root_domain;
5516 
5517 static void init_defrootdomain(void)
5518 {
5519 	init_rootdomain(&def_root_domain);
5520 
5521 	atomic_set(&def_root_domain.refcount, 1);
5522 }
5523 
5524 static struct root_domain *alloc_rootdomain(void)
5525 {
5526 	struct root_domain *rd;
5527 
5528 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5529 	if (!rd)
5530 		return NULL;
5531 
5532 	if (init_rootdomain(rd) != 0) {
5533 		kfree(rd);
5534 		return NULL;
5535 	}
5536 
5537 	return rd;
5538 }
5539 
5540 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5541 {
5542 	struct sched_group *tmp, *first;
5543 
5544 	if (!sg)
5545 		return;
5546 
5547 	first = sg;
5548 	do {
5549 		tmp = sg->next;
5550 
5551 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5552 			kfree(sg->sgc);
5553 
5554 		kfree(sg);
5555 		sg = tmp;
5556 	} while (sg != first);
5557 }
5558 
5559 static void free_sched_domain(struct rcu_head *rcu)
5560 {
5561 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5562 
5563 	/*
5564 	 * If its an overlapping domain it has private groups, iterate and
5565 	 * nuke them all.
5566 	 */
5567 	if (sd->flags & SD_OVERLAP) {
5568 		free_sched_groups(sd->groups, 1);
5569 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5570 		kfree(sd->groups->sgc);
5571 		kfree(sd->groups);
5572 	}
5573 	kfree(sd);
5574 }
5575 
5576 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5577 {
5578 	call_rcu(&sd->rcu, free_sched_domain);
5579 }
5580 
5581 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5582 {
5583 	for (; sd; sd = sd->parent)
5584 		destroy_sched_domain(sd, cpu);
5585 }
5586 
5587 /*
5588  * Keep a special pointer to the highest sched_domain that has
5589  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5590  * allows us to avoid some pointer chasing select_idle_sibling().
5591  *
5592  * Also keep a unique ID per domain (we use the first cpu number in
5593  * the cpumask of the domain), this allows us to quickly tell if
5594  * two cpus are in the same cache domain, see cpus_share_cache().
5595  */
5596 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5597 DEFINE_PER_CPU(int, sd_llc_size);
5598 DEFINE_PER_CPU(int, sd_llc_id);
5599 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5600 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5601 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5602 
5603 static void update_top_cache_domain(int cpu)
5604 {
5605 	struct sched_domain *sd;
5606 	struct sched_domain *busy_sd = NULL;
5607 	int id = cpu;
5608 	int size = 1;
5609 
5610 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5611 	if (sd) {
5612 		id = cpumask_first(sched_domain_span(sd));
5613 		size = cpumask_weight(sched_domain_span(sd));
5614 		busy_sd = sd->parent; /* sd_busy */
5615 	}
5616 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5617 
5618 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5619 	per_cpu(sd_llc_size, cpu) = size;
5620 	per_cpu(sd_llc_id, cpu) = id;
5621 
5622 	sd = lowest_flag_domain(cpu, SD_NUMA);
5623 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5624 
5625 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5626 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5627 }
5628 
5629 /*
5630  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5631  * hold the hotplug lock.
5632  */
5633 static void
5634 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5635 {
5636 	struct rq *rq = cpu_rq(cpu);
5637 	struct sched_domain *tmp;
5638 
5639 	/* Remove the sched domains which do not contribute to scheduling. */
5640 	for (tmp = sd; tmp; ) {
5641 		struct sched_domain *parent = tmp->parent;
5642 		if (!parent)
5643 			break;
5644 
5645 		if (sd_parent_degenerate(tmp, parent)) {
5646 			tmp->parent = parent->parent;
5647 			if (parent->parent)
5648 				parent->parent->child = tmp;
5649 			/*
5650 			 * Transfer SD_PREFER_SIBLING down in case of a
5651 			 * degenerate parent; the spans match for this
5652 			 * so the property transfers.
5653 			 */
5654 			if (parent->flags & SD_PREFER_SIBLING)
5655 				tmp->flags |= SD_PREFER_SIBLING;
5656 			destroy_sched_domain(parent, cpu);
5657 		} else
5658 			tmp = tmp->parent;
5659 	}
5660 
5661 	if (sd && sd_degenerate(sd)) {
5662 		tmp = sd;
5663 		sd = sd->parent;
5664 		destroy_sched_domain(tmp, cpu);
5665 		if (sd)
5666 			sd->child = NULL;
5667 	}
5668 
5669 	sched_domain_debug(sd, cpu);
5670 
5671 	rq_attach_root(rq, rd);
5672 	tmp = rq->sd;
5673 	rcu_assign_pointer(rq->sd, sd);
5674 	destroy_sched_domains(tmp, cpu);
5675 
5676 	update_top_cache_domain(cpu);
5677 }
5678 
5679 /* cpus with isolated domains */
5680 static cpumask_var_t cpu_isolated_map;
5681 
5682 /* Setup the mask of cpus configured for isolated domains */
5683 static int __init isolated_cpu_setup(char *str)
5684 {
5685 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5686 	cpulist_parse(str, cpu_isolated_map);
5687 	return 1;
5688 }
5689 
5690 __setup("isolcpus=", isolated_cpu_setup);
5691 
5692 struct s_data {
5693 	struct sched_domain ** __percpu sd;
5694 	struct root_domain	*rd;
5695 };
5696 
5697 enum s_alloc {
5698 	sa_rootdomain,
5699 	sa_sd,
5700 	sa_sd_storage,
5701 	sa_none,
5702 };
5703 
5704 /*
5705  * Build an iteration mask that can exclude certain CPUs from the upwards
5706  * domain traversal.
5707  *
5708  * Asymmetric node setups can result in situations where the domain tree is of
5709  * unequal depth, make sure to skip domains that already cover the entire
5710  * range.
5711  *
5712  * In that case build_sched_domains() will have terminated the iteration early
5713  * and our sibling sd spans will be empty. Domains should always include the
5714  * cpu they're built on, so check that.
5715  *
5716  */
5717 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5718 {
5719 	const struct cpumask *span = sched_domain_span(sd);
5720 	struct sd_data *sdd = sd->private;
5721 	struct sched_domain *sibling;
5722 	int i;
5723 
5724 	for_each_cpu(i, span) {
5725 		sibling = *per_cpu_ptr(sdd->sd, i);
5726 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5727 			continue;
5728 
5729 		cpumask_set_cpu(i, sched_group_mask(sg));
5730 	}
5731 }
5732 
5733 /*
5734  * Return the canonical balance cpu for this group, this is the first cpu
5735  * of this group that's also in the iteration mask.
5736  */
5737 int group_balance_cpu(struct sched_group *sg)
5738 {
5739 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5740 }
5741 
5742 static int
5743 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5744 {
5745 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5746 	const struct cpumask *span = sched_domain_span(sd);
5747 	struct cpumask *covered = sched_domains_tmpmask;
5748 	struct sd_data *sdd = sd->private;
5749 	struct sched_domain *child;
5750 	int i;
5751 
5752 	cpumask_clear(covered);
5753 
5754 	for_each_cpu(i, span) {
5755 		struct cpumask *sg_span;
5756 
5757 		if (cpumask_test_cpu(i, covered))
5758 			continue;
5759 
5760 		child = *per_cpu_ptr(sdd->sd, i);
5761 
5762 		/* See the comment near build_group_mask(). */
5763 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5764 			continue;
5765 
5766 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5767 				GFP_KERNEL, cpu_to_node(cpu));
5768 
5769 		if (!sg)
5770 			goto fail;
5771 
5772 		sg_span = sched_group_cpus(sg);
5773 		if (child->child) {
5774 			child = child->child;
5775 			cpumask_copy(sg_span, sched_domain_span(child));
5776 		} else
5777 			cpumask_set_cpu(i, sg_span);
5778 
5779 		cpumask_or(covered, covered, sg_span);
5780 
5781 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5782 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5783 			build_group_mask(sd, sg);
5784 
5785 		/*
5786 		 * Initialize sgc->capacity such that even if we mess up the
5787 		 * domains and no possible iteration will get us here, we won't
5788 		 * die on a /0 trap.
5789 		 */
5790 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5791 		sg->sgc->capacity_orig = sg->sgc->capacity;
5792 
5793 		/*
5794 		 * Make sure the first group of this domain contains the
5795 		 * canonical balance cpu. Otherwise the sched_domain iteration
5796 		 * breaks. See update_sg_lb_stats().
5797 		 */
5798 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5799 		    group_balance_cpu(sg) == cpu)
5800 			groups = sg;
5801 
5802 		if (!first)
5803 			first = sg;
5804 		if (last)
5805 			last->next = sg;
5806 		last = sg;
5807 		last->next = first;
5808 	}
5809 	sd->groups = groups;
5810 
5811 	return 0;
5812 
5813 fail:
5814 	free_sched_groups(first, 0);
5815 
5816 	return -ENOMEM;
5817 }
5818 
5819 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5820 {
5821 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5822 	struct sched_domain *child = sd->child;
5823 
5824 	if (child)
5825 		cpu = cpumask_first(sched_domain_span(child));
5826 
5827 	if (sg) {
5828 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5829 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5830 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5831 	}
5832 
5833 	return cpu;
5834 }
5835 
5836 /*
5837  * build_sched_groups will build a circular linked list of the groups
5838  * covered by the given span, and will set each group's ->cpumask correctly,
5839  * and ->cpu_capacity to 0.
5840  *
5841  * Assumes the sched_domain tree is fully constructed
5842  */
5843 static int
5844 build_sched_groups(struct sched_domain *sd, int cpu)
5845 {
5846 	struct sched_group *first = NULL, *last = NULL;
5847 	struct sd_data *sdd = sd->private;
5848 	const struct cpumask *span = sched_domain_span(sd);
5849 	struct cpumask *covered;
5850 	int i;
5851 
5852 	get_group(cpu, sdd, &sd->groups);
5853 	atomic_inc(&sd->groups->ref);
5854 
5855 	if (cpu != cpumask_first(span))
5856 		return 0;
5857 
5858 	lockdep_assert_held(&sched_domains_mutex);
5859 	covered = sched_domains_tmpmask;
5860 
5861 	cpumask_clear(covered);
5862 
5863 	for_each_cpu(i, span) {
5864 		struct sched_group *sg;
5865 		int group, j;
5866 
5867 		if (cpumask_test_cpu(i, covered))
5868 			continue;
5869 
5870 		group = get_group(i, sdd, &sg);
5871 		cpumask_setall(sched_group_mask(sg));
5872 
5873 		for_each_cpu(j, span) {
5874 			if (get_group(j, sdd, NULL) != group)
5875 				continue;
5876 
5877 			cpumask_set_cpu(j, covered);
5878 			cpumask_set_cpu(j, sched_group_cpus(sg));
5879 		}
5880 
5881 		if (!first)
5882 			first = sg;
5883 		if (last)
5884 			last->next = sg;
5885 		last = sg;
5886 	}
5887 	last->next = first;
5888 
5889 	return 0;
5890 }
5891 
5892 /*
5893  * Initialize sched groups cpu_capacity.
5894  *
5895  * cpu_capacity indicates the capacity of sched group, which is used while
5896  * distributing the load between different sched groups in a sched domain.
5897  * Typically cpu_capacity for all the groups in a sched domain will be same
5898  * unless there are asymmetries in the topology. If there are asymmetries,
5899  * group having more cpu_capacity will pickup more load compared to the
5900  * group having less cpu_capacity.
5901  */
5902 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5903 {
5904 	struct sched_group *sg = sd->groups;
5905 
5906 	WARN_ON(!sg);
5907 
5908 	do {
5909 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5910 		sg = sg->next;
5911 	} while (sg != sd->groups);
5912 
5913 	if (cpu != group_balance_cpu(sg))
5914 		return;
5915 
5916 	update_group_capacity(sd, cpu);
5917 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5918 }
5919 
5920 /*
5921  * Initializers for schedule domains
5922  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5923  */
5924 
5925 static int default_relax_domain_level = -1;
5926 int sched_domain_level_max;
5927 
5928 static int __init setup_relax_domain_level(char *str)
5929 {
5930 	if (kstrtoint(str, 0, &default_relax_domain_level))
5931 		pr_warn("Unable to set relax_domain_level\n");
5932 
5933 	return 1;
5934 }
5935 __setup("relax_domain_level=", setup_relax_domain_level);
5936 
5937 static void set_domain_attribute(struct sched_domain *sd,
5938 				 struct sched_domain_attr *attr)
5939 {
5940 	int request;
5941 
5942 	if (!attr || attr->relax_domain_level < 0) {
5943 		if (default_relax_domain_level < 0)
5944 			return;
5945 		else
5946 			request = default_relax_domain_level;
5947 	} else
5948 		request = attr->relax_domain_level;
5949 	if (request < sd->level) {
5950 		/* turn off idle balance on this domain */
5951 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5952 	} else {
5953 		/* turn on idle balance on this domain */
5954 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5955 	}
5956 }
5957 
5958 static void __sdt_free(const struct cpumask *cpu_map);
5959 static int __sdt_alloc(const struct cpumask *cpu_map);
5960 
5961 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5962 				 const struct cpumask *cpu_map)
5963 {
5964 	switch (what) {
5965 	case sa_rootdomain:
5966 		if (!atomic_read(&d->rd->refcount))
5967 			free_rootdomain(&d->rd->rcu); /* fall through */
5968 	case sa_sd:
5969 		free_percpu(d->sd); /* fall through */
5970 	case sa_sd_storage:
5971 		__sdt_free(cpu_map); /* fall through */
5972 	case sa_none:
5973 		break;
5974 	}
5975 }
5976 
5977 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5978 						   const struct cpumask *cpu_map)
5979 {
5980 	memset(d, 0, sizeof(*d));
5981 
5982 	if (__sdt_alloc(cpu_map))
5983 		return sa_sd_storage;
5984 	d->sd = alloc_percpu(struct sched_domain *);
5985 	if (!d->sd)
5986 		return sa_sd_storage;
5987 	d->rd = alloc_rootdomain();
5988 	if (!d->rd)
5989 		return sa_sd;
5990 	return sa_rootdomain;
5991 }
5992 
5993 /*
5994  * NULL the sd_data elements we've used to build the sched_domain and
5995  * sched_group structure so that the subsequent __free_domain_allocs()
5996  * will not free the data we're using.
5997  */
5998 static void claim_allocations(int cpu, struct sched_domain *sd)
5999 {
6000 	struct sd_data *sdd = sd->private;
6001 
6002 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6003 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6004 
6005 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6006 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6007 
6008 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6009 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6010 }
6011 
6012 #ifdef CONFIG_NUMA
6013 static int sched_domains_numa_levels;
6014 static int *sched_domains_numa_distance;
6015 static struct cpumask ***sched_domains_numa_masks;
6016 static int sched_domains_curr_level;
6017 #endif
6018 
6019 /*
6020  * SD_flags allowed in topology descriptions.
6021  *
6022  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6023  * SD_SHARE_PKG_RESOURCES - describes shared caches
6024  * SD_NUMA                - describes NUMA topologies
6025  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6026  *
6027  * Odd one out:
6028  * SD_ASYM_PACKING        - describes SMT quirks
6029  */
6030 #define TOPOLOGY_SD_FLAGS		\
6031 	(SD_SHARE_CPUCAPACITY |		\
6032 	 SD_SHARE_PKG_RESOURCES |	\
6033 	 SD_NUMA |			\
6034 	 SD_ASYM_PACKING |		\
6035 	 SD_SHARE_POWERDOMAIN)
6036 
6037 static struct sched_domain *
6038 sd_init(struct sched_domain_topology_level *tl, int cpu)
6039 {
6040 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6041 	int sd_weight, sd_flags = 0;
6042 
6043 #ifdef CONFIG_NUMA
6044 	/*
6045 	 * Ugly hack to pass state to sd_numa_mask()...
6046 	 */
6047 	sched_domains_curr_level = tl->numa_level;
6048 #endif
6049 
6050 	sd_weight = cpumask_weight(tl->mask(cpu));
6051 
6052 	if (tl->sd_flags)
6053 		sd_flags = (*tl->sd_flags)();
6054 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6055 			"wrong sd_flags in topology description\n"))
6056 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6057 
6058 	*sd = (struct sched_domain){
6059 		.min_interval		= sd_weight,
6060 		.max_interval		= 2*sd_weight,
6061 		.busy_factor		= 32,
6062 		.imbalance_pct		= 125,
6063 
6064 		.cache_nice_tries	= 0,
6065 		.busy_idx		= 0,
6066 		.idle_idx		= 0,
6067 		.newidle_idx		= 0,
6068 		.wake_idx		= 0,
6069 		.forkexec_idx		= 0,
6070 
6071 		.flags			= 1*SD_LOAD_BALANCE
6072 					| 1*SD_BALANCE_NEWIDLE
6073 					| 1*SD_BALANCE_EXEC
6074 					| 1*SD_BALANCE_FORK
6075 					| 0*SD_BALANCE_WAKE
6076 					| 1*SD_WAKE_AFFINE
6077 					| 0*SD_SHARE_CPUCAPACITY
6078 					| 0*SD_SHARE_PKG_RESOURCES
6079 					| 0*SD_SERIALIZE
6080 					| 0*SD_PREFER_SIBLING
6081 					| 0*SD_NUMA
6082 					| sd_flags
6083 					,
6084 
6085 		.last_balance		= jiffies,
6086 		.balance_interval	= sd_weight,
6087 		.smt_gain		= 0,
6088 		.max_newidle_lb_cost	= 0,
6089 		.next_decay_max_lb_cost	= jiffies,
6090 #ifdef CONFIG_SCHED_DEBUG
6091 		.name			= tl->name,
6092 #endif
6093 	};
6094 
6095 	/*
6096 	 * Convert topological properties into behaviour.
6097 	 */
6098 
6099 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6100 		sd->imbalance_pct = 110;
6101 		sd->smt_gain = 1178; /* ~15% */
6102 
6103 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6104 		sd->imbalance_pct = 117;
6105 		sd->cache_nice_tries = 1;
6106 		sd->busy_idx = 2;
6107 
6108 #ifdef CONFIG_NUMA
6109 	} else if (sd->flags & SD_NUMA) {
6110 		sd->cache_nice_tries = 2;
6111 		sd->busy_idx = 3;
6112 		sd->idle_idx = 2;
6113 
6114 		sd->flags |= SD_SERIALIZE;
6115 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6116 			sd->flags &= ~(SD_BALANCE_EXEC |
6117 				       SD_BALANCE_FORK |
6118 				       SD_WAKE_AFFINE);
6119 		}
6120 
6121 #endif
6122 	} else {
6123 		sd->flags |= SD_PREFER_SIBLING;
6124 		sd->cache_nice_tries = 1;
6125 		sd->busy_idx = 2;
6126 		sd->idle_idx = 1;
6127 	}
6128 
6129 	sd->private = &tl->data;
6130 
6131 	return sd;
6132 }
6133 
6134 /*
6135  * Topology list, bottom-up.
6136  */
6137 static struct sched_domain_topology_level default_topology[] = {
6138 #ifdef CONFIG_SCHED_SMT
6139 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6140 #endif
6141 #ifdef CONFIG_SCHED_MC
6142 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6143 #endif
6144 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6145 	{ NULL, },
6146 };
6147 
6148 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6149 
6150 #define for_each_sd_topology(tl)			\
6151 	for (tl = sched_domain_topology; tl->mask; tl++)
6152 
6153 void set_sched_topology(struct sched_domain_topology_level *tl)
6154 {
6155 	sched_domain_topology = tl;
6156 }
6157 
6158 #ifdef CONFIG_NUMA
6159 
6160 static const struct cpumask *sd_numa_mask(int cpu)
6161 {
6162 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6163 }
6164 
6165 static void sched_numa_warn(const char *str)
6166 {
6167 	static int done = false;
6168 	int i,j;
6169 
6170 	if (done)
6171 		return;
6172 
6173 	done = true;
6174 
6175 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6176 
6177 	for (i = 0; i < nr_node_ids; i++) {
6178 		printk(KERN_WARNING "  ");
6179 		for (j = 0; j < nr_node_ids; j++)
6180 			printk(KERN_CONT "%02d ", node_distance(i,j));
6181 		printk(KERN_CONT "\n");
6182 	}
6183 	printk(KERN_WARNING "\n");
6184 }
6185 
6186 static bool find_numa_distance(int distance)
6187 {
6188 	int i;
6189 
6190 	if (distance == node_distance(0, 0))
6191 		return true;
6192 
6193 	for (i = 0; i < sched_domains_numa_levels; i++) {
6194 		if (sched_domains_numa_distance[i] == distance)
6195 			return true;
6196 	}
6197 
6198 	return false;
6199 }
6200 
6201 static void sched_init_numa(void)
6202 {
6203 	int next_distance, curr_distance = node_distance(0, 0);
6204 	struct sched_domain_topology_level *tl;
6205 	int level = 0;
6206 	int i, j, k;
6207 
6208 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6209 	if (!sched_domains_numa_distance)
6210 		return;
6211 
6212 	/*
6213 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6214 	 * unique distances in the node_distance() table.
6215 	 *
6216 	 * Assumes node_distance(0,j) includes all distances in
6217 	 * node_distance(i,j) in order to avoid cubic time.
6218 	 */
6219 	next_distance = curr_distance;
6220 	for (i = 0; i < nr_node_ids; i++) {
6221 		for (j = 0; j < nr_node_ids; j++) {
6222 			for (k = 0; k < nr_node_ids; k++) {
6223 				int distance = node_distance(i, k);
6224 
6225 				if (distance > curr_distance &&
6226 				    (distance < next_distance ||
6227 				     next_distance == curr_distance))
6228 					next_distance = distance;
6229 
6230 				/*
6231 				 * While not a strong assumption it would be nice to know
6232 				 * about cases where if node A is connected to B, B is not
6233 				 * equally connected to A.
6234 				 */
6235 				if (sched_debug() && node_distance(k, i) != distance)
6236 					sched_numa_warn("Node-distance not symmetric");
6237 
6238 				if (sched_debug() && i && !find_numa_distance(distance))
6239 					sched_numa_warn("Node-0 not representative");
6240 			}
6241 			if (next_distance != curr_distance) {
6242 				sched_domains_numa_distance[level++] = next_distance;
6243 				sched_domains_numa_levels = level;
6244 				curr_distance = next_distance;
6245 			} else break;
6246 		}
6247 
6248 		/*
6249 		 * In case of sched_debug() we verify the above assumption.
6250 		 */
6251 		if (!sched_debug())
6252 			break;
6253 	}
6254 	/*
6255 	 * 'level' contains the number of unique distances, excluding the
6256 	 * identity distance node_distance(i,i).
6257 	 *
6258 	 * The sched_domains_numa_distance[] array includes the actual distance
6259 	 * numbers.
6260 	 */
6261 
6262 	/*
6263 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6264 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6265 	 * the array will contain less then 'level' members. This could be
6266 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6267 	 * in other functions.
6268 	 *
6269 	 * We reset it to 'level' at the end of this function.
6270 	 */
6271 	sched_domains_numa_levels = 0;
6272 
6273 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6274 	if (!sched_domains_numa_masks)
6275 		return;
6276 
6277 	/*
6278 	 * Now for each level, construct a mask per node which contains all
6279 	 * cpus of nodes that are that many hops away from us.
6280 	 */
6281 	for (i = 0; i < level; i++) {
6282 		sched_domains_numa_masks[i] =
6283 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6284 		if (!sched_domains_numa_masks[i])
6285 			return;
6286 
6287 		for (j = 0; j < nr_node_ids; j++) {
6288 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6289 			if (!mask)
6290 				return;
6291 
6292 			sched_domains_numa_masks[i][j] = mask;
6293 
6294 			for (k = 0; k < nr_node_ids; k++) {
6295 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6296 					continue;
6297 
6298 				cpumask_or(mask, mask, cpumask_of_node(k));
6299 			}
6300 		}
6301 	}
6302 
6303 	/* Compute default topology size */
6304 	for (i = 0; sched_domain_topology[i].mask; i++);
6305 
6306 	tl = kzalloc((i + level + 1) *
6307 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6308 	if (!tl)
6309 		return;
6310 
6311 	/*
6312 	 * Copy the default topology bits..
6313 	 */
6314 	for (i = 0; sched_domain_topology[i].mask; i++)
6315 		tl[i] = sched_domain_topology[i];
6316 
6317 	/*
6318 	 * .. and append 'j' levels of NUMA goodness.
6319 	 */
6320 	for (j = 0; j < level; i++, j++) {
6321 		tl[i] = (struct sched_domain_topology_level){
6322 			.mask = sd_numa_mask,
6323 			.sd_flags = cpu_numa_flags,
6324 			.flags = SDTL_OVERLAP,
6325 			.numa_level = j,
6326 			SD_INIT_NAME(NUMA)
6327 		};
6328 	}
6329 
6330 	sched_domain_topology = tl;
6331 
6332 	sched_domains_numa_levels = level;
6333 }
6334 
6335 static void sched_domains_numa_masks_set(int cpu)
6336 {
6337 	int i, j;
6338 	int node = cpu_to_node(cpu);
6339 
6340 	for (i = 0; i < sched_domains_numa_levels; i++) {
6341 		for (j = 0; j < nr_node_ids; j++) {
6342 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6343 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6344 		}
6345 	}
6346 }
6347 
6348 static void sched_domains_numa_masks_clear(int cpu)
6349 {
6350 	int i, j;
6351 	for (i = 0; i < sched_domains_numa_levels; i++) {
6352 		for (j = 0; j < nr_node_ids; j++)
6353 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6354 	}
6355 }
6356 
6357 /*
6358  * Update sched_domains_numa_masks[level][node] array when new cpus
6359  * are onlined.
6360  */
6361 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6362 					   unsigned long action,
6363 					   void *hcpu)
6364 {
6365 	int cpu = (long)hcpu;
6366 
6367 	switch (action & ~CPU_TASKS_FROZEN) {
6368 	case CPU_ONLINE:
6369 		sched_domains_numa_masks_set(cpu);
6370 		break;
6371 
6372 	case CPU_DEAD:
6373 		sched_domains_numa_masks_clear(cpu);
6374 		break;
6375 
6376 	default:
6377 		return NOTIFY_DONE;
6378 	}
6379 
6380 	return NOTIFY_OK;
6381 }
6382 #else
6383 static inline void sched_init_numa(void)
6384 {
6385 }
6386 
6387 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6388 					   unsigned long action,
6389 					   void *hcpu)
6390 {
6391 	return 0;
6392 }
6393 #endif /* CONFIG_NUMA */
6394 
6395 static int __sdt_alloc(const struct cpumask *cpu_map)
6396 {
6397 	struct sched_domain_topology_level *tl;
6398 	int j;
6399 
6400 	for_each_sd_topology(tl) {
6401 		struct sd_data *sdd = &tl->data;
6402 
6403 		sdd->sd = alloc_percpu(struct sched_domain *);
6404 		if (!sdd->sd)
6405 			return -ENOMEM;
6406 
6407 		sdd->sg = alloc_percpu(struct sched_group *);
6408 		if (!sdd->sg)
6409 			return -ENOMEM;
6410 
6411 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6412 		if (!sdd->sgc)
6413 			return -ENOMEM;
6414 
6415 		for_each_cpu(j, cpu_map) {
6416 			struct sched_domain *sd;
6417 			struct sched_group *sg;
6418 			struct sched_group_capacity *sgc;
6419 
6420 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6421 					GFP_KERNEL, cpu_to_node(j));
6422 			if (!sd)
6423 				return -ENOMEM;
6424 
6425 			*per_cpu_ptr(sdd->sd, j) = sd;
6426 
6427 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6428 					GFP_KERNEL, cpu_to_node(j));
6429 			if (!sg)
6430 				return -ENOMEM;
6431 
6432 			sg->next = sg;
6433 
6434 			*per_cpu_ptr(sdd->sg, j) = sg;
6435 
6436 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6437 					GFP_KERNEL, cpu_to_node(j));
6438 			if (!sgc)
6439 				return -ENOMEM;
6440 
6441 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6442 		}
6443 	}
6444 
6445 	return 0;
6446 }
6447 
6448 static void __sdt_free(const struct cpumask *cpu_map)
6449 {
6450 	struct sched_domain_topology_level *tl;
6451 	int j;
6452 
6453 	for_each_sd_topology(tl) {
6454 		struct sd_data *sdd = &tl->data;
6455 
6456 		for_each_cpu(j, cpu_map) {
6457 			struct sched_domain *sd;
6458 
6459 			if (sdd->sd) {
6460 				sd = *per_cpu_ptr(sdd->sd, j);
6461 				if (sd && (sd->flags & SD_OVERLAP))
6462 					free_sched_groups(sd->groups, 0);
6463 				kfree(*per_cpu_ptr(sdd->sd, j));
6464 			}
6465 
6466 			if (sdd->sg)
6467 				kfree(*per_cpu_ptr(sdd->sg, j));
6468 			if (sdd->sgc)
6469 				kfree(*per_cpu_ptr(sdd->sgc, j));
6470 		}
6471 		free_percpu(sdd->sd);
6472 		sdd->sd = NULL;
6473 		free_percpu(sdd->sg);
6474 		sdd->sg = NULL;
6475 		free_percpu(sdd->sgc);
6476 		sdd->sgc = NULL;
6477 	}
6478 }
6479 
6480 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6481 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6482 		struct sched_domain *child, int cpu)
6483 {
6484 	struct sched_domain *sd = sd_init(tl, cpu);
6485 	if (!sd)
6486 		return child;
6487 
6488 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6489 	if (child) {
6490 		sd->level = child->level + 1;
6491 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6492 		child->parent = sd;
6493 		sd->child = child;
6494 
6495 		if (!cpumask_subset(sched_domain_span(child),
6496 				    sched_domain_span(sd))) {
6497 			pr_err("BUG: arch topology borken\n");
6498 #ifdef CONFIG_SCHED_DEBUG
6499 			pr_err("     the %s domain not a subset of the %s domain\n",
6500 					child->name, sd->name);
6501 #endif
6502 			/* Fixup, ensure @sd has at least @child cpus. */
6503 			cpumask_or(sched_domain_span(sd),
6504 				   sched_domain_span(sd),
6505 				   sched_domain_span(child));
6506 		}
6507 
6508 	}
6509 	set_domain_attribute(sd, attr);
6510 
6511 	return sd;
6512 }
6513 
6514 /*
6515  * Build sched domains for a given set of cpus and attach the sched domains
6516  * to the individual cpus
6517  */
6518 static int build_sched_domains(const struct cpumask *cpu_map,
6519 			       struct sched_domain_attr *attr)
6520 {
6521 	enum s_alloc alloc_state;
6522 	struct sched_domain *sd;
6523 	struct s_data d;
6524 	int i, ret = -ENOMEM;
6525 
6526 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6527 	if (alloc_state != sa_rootdomain)
6528 		goto error;
6529 
6530 	/* Set up domains for cpus specified by the cpu_map. */
6531 	for_each_cpu(i, cpu_map) {
6532 		struct sched_domain_topology_level *tl;
6533 
6534 		sd = NULL;
6535 		for_each_sd_topology(tl) {
6536 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6537 			if (tl == sched_domain_topology)
6538 				*per_cpu_ptr(d.sd, i) = sd;
6539 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6540 				sd->flags |= SD_OVERLAP;
6541 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6542 				break;
6543 		}
6544 	}
6545 
6546 	/* Build the groups for the domains */
6547 	for_each_cpu(i, cpu_map) {
6548 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6549 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6550 			if (sd->flags & SD_OVERLAP) {
6551 				if (build_overlap_sched_groups(sd, i))
6552 					goto error;
6553 			} else {
6554 				if (build_sched_groups(sd, i))
6555 					goto error;
6556 			}
6557 		}
6558 	}
6559 
6560 	/* Calculate CPU capacity for physical packages and nodes */
6561 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6562 		if (!cpumask_test_cpu(i, cpu_map))
6563 			continue;
6564 
6565 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6566 			claim_allocations(i, sd);
6567 			init_sched_groups_capacity(i, sd);
6568 		}
6569 	}
6570 
6571 	/* Attach the domains */
6572 	rcu_read_lock();
6573 	for_each_cpu(i, cpu_map) {
6574 		sd = *per_cpu_ptr(d.sd, i);
6575 		cpu_attach_domain(sd, d.rd, i);
6576 	}
6577 	rcu_read_unlock();
6578 
6579 	ret = 0;
6580 error:
6581 	__free_domain_allocs(&d, alloc_state, cpu_map);
6582 	return ret;
6583 }
6584 
6585 static cpumask_var_t *doms_cur;	/* current sched domains */
6586 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6587 static struct sched_domain_attr *dattr_cur;
6588 				/* attribues of custom domains in 'doms_cur' */
6589 
6590 /*
6591  * Special case: If a kmalloc of a doms_cur partition (array of
6592  * cpumask) fails, then fallback to a single sched domain,
6593  * as determined by the single cpumask fallback_doms.
6594  */
6595 static cpumask_var_t fallback_doms;
6596 
6597 /*
6598  * arch_update_cpu_topology lets virtualized architectures update the
6599  * cpu core maps. It is supposed to return 1 if the topology changed
6600  * or 0 if it stayed the same.
6601  */
6602 int __weak arch_update_cpu_topology(void)
6603 {
6604 	return 0;
6605 }
6606 
6607 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6608 {
6609 	int i;
6610 	cpumask_var_t *doms;
6611 
6612 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6613 	if (!doms)
6614 		return NULL;
6615 	for (i = 0; i < ndoms; i++) {
6616 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6617 			free_sched_domains(doms, i);
6618 			return NULL;
6619 		}
6620 	}
6621 	return doms;
6622 }
6623 
6624 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6625 {
6626 	unsigned int i;
6627 	for (i = 0; i < ndoms; i++)
6628 		free_cpumask_var(doms[i]);
6629 	kfree(doms);
6630 }
6631 
6632 /*
6633  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6634  * For now this just excludes isolated cpus, but could be used to
6635  * exclude other special cases in the future.
6636  */
6637 static int init_sched_domains(const struct cpumask *cpu_map)
6638 {
6639 	int err;
6640 
6641 	arch_update_cpu_topology();
6642 	ndoms_cur = 1;
6643 	doms_cur = alloc_sched_domains(ndoms_cur);
6644 	if (!doms_cur)
6645 		doms_cur = &fallback_doms;
6646 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6647 	err = build_sched_domains(doms_cur[0], NULL);
6648 	register_sched_domain_sysctl();
6649 
6650 	return err;
6651 }
6652 
6653 /*
6654  * Detach sched domains from a group of cpus specified in cpu_map
6655  * These cpus will now be attached to the NULL domain
6656  */
6657 static void detach_destroy_domains(const struct cpumask *cpu_map)
6658 {
6659 	int i;
6660 
6661 	rcu_read_lock();
6662 	for_each_cpu(i, cpu_map)
6663 		cpu_attach_domain(NULL, &def_root_domain, i);
6664 	rcu_read_unlock();
6665 }
6666 
6667 /* handle null as "default" */
6668 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6669 			struct sched_domain_attr *new, int idx_new)
6670 {
6671 	struct sched_domain_attr tmp;
6672 
6673 	/* fast path */
6674 	if (!new && !cur)
6675 		return 1;
6676 
6677 	tmp = SD_ATTR_INIT;
6678 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6679 			new ? (new + idx_new) : &tmp,
6680 			sizeof(struct sched_domain_attr));
6681 }
6682 
6683 /*
6684  * Partition sched domains as specified by the 'ndoms_new'
6685  * cpumasks in the array doms_new[] of cpumasks. This compares
6686  * doms_new[] to the current sched domain partitioning, doms_cur[].
6687  * It destroys each deleted domain and builds each new domain.
6688  *
6689  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6690  * The masks don't intersect (don't overlap.) We should setup one
6691  * sched domain for each mask. CPUs not in any of the cpumasks will
6692  * not be load balanced. If the same cpumask appears both in the
6693  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6694  * it as it is.
6695  *
6696  * The passed in 'doms_new' should be allocated using
6697  * alloc_sched_domains.  This routine takes ownership of it and will
6698  * free_sched_domains it when done with it. If the caller failed the
6699  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6700  * and partition_sched_domains() will fallback to the single partition
6701  * 'fallback_doms', it also forces the domains to be rebuilt.
6702  *
6703  * If doms_new == NULL it will be replaced with cpu_online_mask.
6704  * ndoms_new == 0 is a special case for destroying existing domains,
6705  * and it will not create the default domain.
6706  *
6707  * Call with hotplug lock held
6708  */
6709 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6710 			     struct sched_domain_attr *dattr_new)
6711 {
6712 	int i, j, n;
6713 	int new_topology;
6714 
6715 	mutex_lock(&sched_domains_mutex);
6716 
6717 	/* always unregister in case we don't destroy any domains */
6718 	unregister_sched_domain_sysctl();
6719 
6720 	/* Let architecture update cpu core mappings. */
6721 	new_topology = arch_update_cpu_topology();
6722 
6723 	n = doms_new ? ndoms_new : 0;
6724 
6725 	/* Destroy deleted domains */
6726 	for (i = 0; i < ndoms_cur; i++) {
6727 		for (j = 0; j < n && !new_topology; j++) {
6728 			if (cpumask_equal(doms_cur[i], doms_new[j])
6729 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6730 				goto match1;
6731 		}
6732 		/* no match - a current sched domain not in new doms_new[] */
6733 		detach_destroy_domains(doms_cur[i]);
6734 match1:
6735 		;
6736 	}
6737 
6738 	n = ndoms_cur;
6739 	if (doms_new == NULL) {
6740 		n = 0;
6741 		doms_new = &fallback_doms;
6742 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6743 		WARN_ON_ONCE(dattr_new);
6744 	}
6745 
6746 	/* Build new domains */
6747 	for (i = 0; i < ndoms_new; i++) {
6748 		for (j = 0; j < n && !new_topology; j++) {
6749 			if (cpumask_equal(doms_new[i], doms_cur[j])
6750 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6751 				goto match2;
6752 		}
6753 		/* no match - add a new doms_new */
6754 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6755 match2:
6756 		;
6757 	}
6758 
6759 	/* Remember the new sched domains */
6760 	if (doms_cur != &fallback_doms)
6761 		free_sched_domains(doms_cur, ndoms_cur);
6762 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6763 	doms_cur = doms_new;
6764 	dattr_cur = dattr_new;
6765 	ndoms_cur = ndoms_new;
6766 
6767 	register_sched_domain_sysctl();
6768 
6769 	mutex_unlock(&sched_domains_mutex);
6770 }
6771 
6772 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6773 
6774 /*
6775  * Update cpusets according to cpu_active mask.  If cpusets are
6776  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6777  * around partition_sched_domains().
6778  *
6779  * If we come here as part of a suspend/resume, don't touch cpusets because we
6780  * want to restore it back to its original state upon resume anyway.
6781  */
6782 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6783 			     void *hcpu)
6784 {
6785 	switch (action) {
6786 	case CPU_ONLINE_FROZEN:
6787 	case CPU_DOWN_FAILED_FROZEN:
6788 
6789 		/*
6790 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6791 		 * resume sequence. As long as this is not the last online
6792 		 * operation in the resume sequence, just build a single sched
6793 		 * domain, ignoring cpusets.
6794 		 */
6795 		num_cpus_frozen--;
6796 		if (likely(num_cpus_frozen)) {
6797 			partition_sched_domains(1, NULL, NULL);
6798 			break;
6799 		}
6800 
6801 		/*
6802 		 * This is the last CPU online operation. So fall through and
6803 		 * restore the original sched domains by considering the
6804 		 * cpuset configurations.
6805 		 */
6806 
6807 	case CPU_ONLINE:
6808 	case CPU_DOWN_FAILED:
6809 		cpuset_update_active_cpus(true);
6810 		break;
6811 	default:
6812 		return NOTIFY_DONE;
6813 	}
6814 	return NOTIFY_OK;
6815 }
6816 
6817 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6818 			       void *hcpu)
6819 {
6820 	switch (action) {
6821 	case CPU_DOWN_PREPARE:
6822 		cpuset_update_active_cpus(false);
6823 		break;
6824 	case CPU_DOWN_PREPARE_FROZEN:
6825 		num_cpus_frozen++;
6826 		partition_sched_domains(1, NULL, NULL);
6827 		break;
6828 	default:
6829 		return NOTIFY_DONE;
6830 	}
6831 	return NOTIFY_OK;
6832 }
6833 
6834 void __init sched_init_smp(void)
6835 {
6836 	cpumask_var_t non_isolated_cpus;
6837 
6838 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6839 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6840 
6841 	sched_init_numa();
6842 
6843 	/*
6844 	 * There's no userspace yet to cause hotplug operations; hence all the
6845 	 * cpu masks are stable and all blatant races in the below code cannot
6846 	 * happen.
6847 	 */
6848 	mutex_lock(&sched_domains_mutex);
6849 	init_sched_domains(cpu_active_mask);
6850 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6851 	if (cpumask_empty(non_isolated_cpus))
6852 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6853 	mutex_unlock(&sched_domains_mutex);
6854 
6855 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6856 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6857 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6858 
6859 	init_hrtick();
6860 
6861 	/* Move init over to a non-isolated CPU */
6862 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6863 		BUG();
6864 	sched_init_granularity();
6865 	free_cpumask_var(non_isolated_cpus);
6866 
6867 	init_sched_rt_class();
6868 	init_sched_dl_class();
6869 }
6870 #else
6871 void __init sched_init_smp(void)
6872 {
6873 	sched_init_granularity();
6874 }
6875 #endif /* CONFIG_SMP */
6876 
6877 const_debug unsigned int sysctl_timer_migration = 1;
6878 
6879 int in_sched_functions(unsigned long addr)
6880 {
6881 	return in_lock_functions(addr) ||
6882 		(addr >= (unsigned long)__sched_text_start
6883 		&& addr < (unsigned long)__sched_text_end);
6884 }
6885 
6886 #ifdef CONFIG_CGROUP_SCHED
6887 /*
6888  * Default task group.
6889  * Every task in system belongs to this group at bootup.
6890  */
6891 struct task_group root_task_group;
6892 LIST_HEAD(task_groups);
6893 #endif
6894 
6895 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6896 
6897 void __init sched_init(void)
6898 {
6899 	int i, j;
6900 	unsigned long alloc_size = 0, ptr;
6901 
6902 #ifdef CONFIG_FAIR_GROUP_SCHED
6903 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6904 #endif
6905 #ifdef CONFIG_RT_GROUP_SCHED
6906 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6907 #endif
6908 #ifdef CONFIG_CPUMASK_OFFSTACK
6909 	alloc_size += num_possible_cpus() * cpumask_size();
6910 #endif
6911 	if (alloc_size) {
6912 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6913 
6914 #ifdef CONFIG_FAIR_GROUP_SCHED
6915 		root_task_group.se = (struct sched_entity **)ptr;
6916 		ptr += nr_cpu_ids * sizeof(void **);
6917 
6918 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6919 		ptr += nr_cpu_ids * sizeof(void **);
6920 
6921 #endif /* CONFIG_FAIR_GROUP_SCHED */
6922 #ifdef CONFIG_RT_GROUP_SCHED
6923 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6924 		ptr += nr_cpu_ids * sizeof(void **);
6925 
6926 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6927 		ptr += nr_cpu_ids * sizeof(void **);
6928 
6929 #endif /* CONFIG_RT_GROUP_SCHED */
6930 #ifdef CONFIG_CPUMASK_OFFSTACK
6931 		for_each_possible_cpu(i) {
6932 			per_cpu(load_balance_mask, i) = (void *)ptr;
6933 			ptr += cpumask_size();
6934 		}
6935 #endif /* CONFIG_CPUMASK_OFFSTACK */
6936 	}
6937 
6938 	init_rt_bandwidth(&def_rt_bandwidth,
6939 			global_rt_period(), global_rt_runtime());
6940 	init_dl_bandwidth(&def_dl_bandwidth,
6941 			global_rt_period(), global_rt_runtime());
6942 
6943 #ifdef CONFIG_SMP
6944 	init_defrootdomain();
6945 #endif
6946 
6947 #ifdef CONFIG_RT_GROUP_SCHED
6948 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6949 			global_rt_period(), global_rt_runtime());
6950 #endif /* CONFIG_RT_GROUP_SCHED */
6951 
6952 #ifdef CONFIG_CGROUP_SCHED
6953 	list_add(&root_task_group.list, &task_groups);
6954 	INIT_LIST_HEAD(&root_task_group.children);
6955 	INIT_LIST_HEAD(&root_task_group.siblings);
6956 	autogroup_init(&init_task);
6957 
6958 #endif /* CONFIG_CGROUP_SCHED */
6959 
6960 	for_each_possible_cpu(i) {
6961 		struct rq *rq;
6962 
6963 		rq = cpu_rq(i);
6964 		raw_spin_lock_init(&rq->lock);
6965 		rq->nr_running = 0;
6966 		rq->calc_load_active = 0;
6967 		rq->calc_load_update = jiffies + LOAD_FREQ;
6968 		init_cfs_rq(&rq->cfs);
6969 		init_rt_rq(&rq->rt, rq);
6970 		init_dl_rq(&rq->dl, rq);
6971 #ifdef CONFIG_FAIR_GROUP_SCHED
6972 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6973 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6974 		/*
6975 		 * How much cpu bandwidth does root_task_group get?
6976 		 *
6977 		 * In case of task-groups formed thr' the cgroup filesystem, it
6978 		 * gets 100% of the cpu resources in the system. This overall
6979 		 * system cpu resource is divided among the tasks of
6980 		 * root_task_group and its child task-groups in a fair manner,
6981 		 * based on each entity's (task or task-group's) weight
6982 		 * (se->load.weight).
6983 		 *
6984 		 * In other words, if root_task_group has 10 tasks of weight
6985 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6986 		 * then A0's share of the cpu resource is:
6987 		 *
6988 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6989 		 *
6990 		 * We achieve this by letting root_task_group's tasks sit
6991 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6992 		 */
6993 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6994 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6995 #endif /* CONFIG_FAIR_GROUP_SCHED */
6996 
6997 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6998 #ifdef CONFIG_RT_GROUP_SCHED
6999 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7000 #endif
7001 
7002 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7003 			rq->cpu_load[j] = 0;
7004 
7005 		rq->last_load_update_tick = jiffies;
7006 
7007 #ifdef CONFIG_SMP
7008 		rq->sd = NULL;
7009 		rq->rd = NULL;
7010 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7011 		rq->post_schedule = 0;
7012 		rq->active_balance = 0;
7013 		rq->next_balance = jiffies;
7014 		rq->push_cpu = 0;
7015 		rq->cpu = i;
7016 		rq->online = 0;
7017 		rq->idle_stamp = 0;
7018 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7019 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7020 
7021 		INIT_LIST_HEAD(&rq->cfs_tasks);
7022 
7023 		rq_attach_root(rq, &def_root_domain);
7024 #ifdef CONFIG_NO_HZ_COMMON
7025 		rq->nohz_flags = 0;
7026 #endif
7027 #ifdef CONFIG_NO_HZ_FULL
7028 		rq->last_sched_tick = 0;
7029 #endif
7030 #endif
7031 		init_rq_hrtick(rq);
7032 		atomic_set(&rq->nr_iowait, 0);
7033 	}
7034 
7035 	set_load_weight(&init_task);
7036 
7037 #ifdef CONFIG_PREEMPT_NOTIFIERS
7038 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7039 #endif
7040 
7041 	/*
7042 	 * The boot idle thread does lazy MMU switching as well:
7043 	 */
7044 	atomic_inc(&init_mm.mm_count);
7045 	enter_lazy_tlb(&init_mm, current);
7046 
7047 	/*
7048 	 * Make us the idle thread. Technically, schedule() should not be
7049 	 * called from this thread, however somewhere below it might be,
7050 	 * but because we are the idle thread, we just pick up running again
7051 	 * when this runqueue becomes "idle".
7052 	 */
7053 	init_idle(current, smp_processor_id());
7054 
7055 	calc_load_update = jiffies + LOAD_FREQ;
7056 
7057 	/*
7058 	 * During early bootup we pretend to be a normal task:
7059 	 */
7060 	current->sched_class = &fair_sched_class;
7061 
7062 #ifdef CONFIG_SMP
7063 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7064 	/* May be allocated at isolcpus cmdline parse time */
7065 	if (cpu_isolated_map == NULL)
7066 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7067 	idle_thread_set_boot_cpu();
7068 	set_cpu_rq_start_time();
7069 #endif
7070 	init_sched_fair_class();
7071 
7072 	scheduler_running = 1;
7073 }
7074 
7075 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7076 static inline int preempt_count_equals(int preempt_offset)
7077 {
7078 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7079 
7080 	return (nested == preempt_offset);
7081 }
7082 
7083 void __might_sleep(const char *file, int line, int preempt_offset)
7084 {
7085 	static unsigned long prev_jiffy;	/* ratelimiting */
7086 
7087 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7088 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7089 	     !is_idle_task(current)) ||
7090 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7091 		return;
7092 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7093 		return;
7094 	prev_jiffy = jiffies;
7095 
7096 	printk(KERN_ERR
7097 		"BUG: sleeping function called from invalid context at %s:%d\n",
7098 			file, line);
7099 	printk(KERN_ERR
7100 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7101 			in_atomic(), irqs_disabled(),
7102 			current->pid, current->comm);
7103 
7104 	debug_show_held_locks(current);
7105 	if (irqs_disabled())
7106 		print_irqtrace_events(current);
7107 #ifdef CONFIG_DEBUG_PREEMPT
7108 	if (!preempt_count_equals(preempt_offset)) {
7109 		pr_err("Preemption disabled at:");
7110 		print_ip_sym(current->preempt_disable_ip);
7111 		pr_cont("\n");
7112 	}
7113 #endif
7114 	dump_stack();
7115 }
7116 EXPORT_SYMBOL(__might_sleep);
7117 #endif
7118 
7119 #ifdef CONFIG_MAGIC_SYSRQ
7120 static void normalize_task(struct rq *rq, struct task_struct *p)
7121 {
7122 	const struct sched_class *prev_class = p->sched_class;
7123 	struct sched_attr attr = {
7124 		.sched_policy = SCHED_NORMAL,
7125 	};
7126 	int old_prio = p->prio;
7127 	int on_rq;
7128 
7129 	on_rq = p->on_rq;
7130 	if (on_rq)
7131 		dequeue_task(rq, p, 0);
7132 	__setscheduler(rq, p, &attr);
7133 	if (on_rq) {
7134 		enqueue_task(rq, p, 0);
7135 		resched_curr(rq);
7136 	}
7137 
7138 	check_class_changed(rq, p, prev_class, old_prio);
7139 }
7140 
7141 void normalize_rt_tasks(void)
7142 {
7143 	struct task_struct *g, *p;
7144 	unsigned long flags;
7145 	struct rq *rq;
7146 
7147 	read_lock_irqsave(&tasklist_lock, flags);
7148 	do_each_thread(g, p) {
7149 		/*
7150 		 * Only normalize user tasks:
7151 		 */
7152 		if (!p->mm)
7153 			continue;
7154 
7155 		p->se.exec_start		= 0;
7156 #ifdef CONFIG_SCHEDSTATS
7157 		p->se.statistics.wait_start	= 0;
7158 		p->se.statistics.sleep_start	= 0;
7159 		p->se.statistics.block_start	= 0;
7160 #endif
7161 
7162 		if (!dl_task(p) && !rt_task(p)) {
7163 			/*
7164 			 * Renice negative nice level userspace
7165 			 * tasks back to 0:
7166 			 */
7167 			if (task_nice(p) < 0 && p->mm)
7168 				set_user_nice(p, 0);
7169 			continue;
7170 		}
7171 
7172 		raw_spin_lock(&p->pi_lock);
7173 		rq = __task_rq_lock(p);
7174 
7175 		normalize_task(rq, p);
7176 
7177 		__task_rq_unlock(rq);
7178 		raw_spin_unlock(&p->pi_lock);
7179 	} while_each_thread(g, p);
7180 
7181 	read_unlock_irqrestore(&tasklist_lock, flags);
7182 }
7183 
7184 #endif /* CONFIG_MAGIC_SYSRQ */
7185 
7186 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7187 /*
7188  * These functions are only useful for the IA64 MCA handling, or kdb.
7189  *
7190  * They can only be called when the whole system has been
7191  * stopped - every CPU needs to be quiescent, and no scheduling
7192  * activity can take place. Using them for anything else would
7193  * be a serious bug, and as a result, they aren't even visible
7194  * under any other configuration.
7195  */
7196 
7197 /**
7198  * curr_task - return the current task for a given cpu.
7199  * @cpu: the processor in question.
7200  *
7201  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7202  *
7203  * Return: The current task for @cpu.
7204  */
7205 struct task_struct *curr_task(int cpu)
7206 {
7207 	return cpu_curr(cpu);
7208 }
7209 
7210 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7211 
7212 #ifdef CONFIG_IA64
7213 /**
7214  * set_curr_task - set the current task for a given cpu.
7215  * @cpu: the processor in question.
7216  * @p: the task pointer to set.
7217  *
7218  * Description: This function must only be used when non-maskable interrupts
7219  * are serviced on a separate stack. It allows the architecture to switch the
7220  * notion of the current task on a cpu in a non-blocking manner. This function
7221  * must be called with all CPU's synchronized, and interrupts disabled, the
7222  * and caller must save the original value of the current task (see
7223  * curr_task() above) and restore that value before reenabling interrupts and
7224  * re-starting the system.
7225  *
7226  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7227  */
7228 void set_curr_task(int cpu, struct task_struct *p)
7229 {
7230 	cpu_curr(cpu) = p;
7231 }
7232 
7233 #endif
7234 
7235 #ifdef CONFIG_CGROUP_SCHED
7236 /* task_group_lock serializes the addition/removal of task groups */
7237 static DEFINE_SPINLOCK(task_group_lock);
7238 
7239 static void free_sched_group(struct task_group *tg)
7240 {
7241 	free_fair_sched_group(tg);
7242 	free_rt_sched_group(tg);
7243 	autogroup_free(tg);
7244 	kfree(tg);
7245 }
7246 
7247 /* allocate runqueue etc for a new task group */
7248 struct task_group *sched_create_group(struct task_group *parent)
7249 {
7250 	struct task_group *tg;
7251 
7252 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7253 	if (!tg)
7254 		return ERR_PTR(-ENOMEM);
7255 
7256 	if (!alloc_fair_sched_group(tg, parent))
7257 		goto err;
7258 
7259 	if (!alloc_rt_sched_group(tg, parent))
7260 		goto err;
7261 
7262 	return tg;
7263 
7264 err:
7265 	free_sched_group(tg);
7266 	return ERR_PTR(-ENOMEM);
7267 }
7268 
7269 void sched_online_group(struct task_group *tg, struct task_group *parent)
7270 {
7271 	unsigned long flags;
7272 
7273 	spin_lock_irqsave(&task_group_lock, flags);
7274 	list_add_rcu(&tg->list, &task_groups);
7275 
7276 	WARN_ON(!parent); /* root should already exist */
7277 
7278 	tg->parent = parent;
7279 	INIT_LIST_HEAD(&tg->children);
7280 	list_add_rcu(&tg->siblings, &parent->children);
7281 	spin_unlock_irqrestore(&task_group_lock, flags);
7282 }
7283 
7284 /* rcu callback to free various structures associated with a task group */
7285 static void free_sched_group_rcu(struct rcu_head *rhp)
7286 {
7287 	/* now it should be safe to free those cfs_rqs */
7288 	free_sched_group(container_of(rhp, struct task_group, rcu));
7289 }
7290 
7291 /* Destroy runqueue etc associated with a task group */
7292 void sched_destroy_group(struct task_group *tg)
7293 {
7294 	/* wait for possible concurrent references to cfs_rqs complete */
7295 	call_rcu(&tg->rcu, free_sched_group_rcu);
7296 }
7297 
7298 void sched_offline_group(struct task_group *tg)
7299 {
7300 	unsigned long flags;
7301 	int i;
7302 
7303 	/* end participation in shares distribution */
7304 	for_each_possible_cpu(i)
7305 		unregister_fair_sched_group(tg, i);
7306 
7307 	spin_lock_irqsave(&task_group_lock, flags);
7308 	list_del_rcu(&tg->list);
7309 	list_del_rcu(&tg->siblings);
7310 	spin_unlock_irqrestore(&task_group_lock, flags);
7311 }
7312 
7313 /* change task's runqueue when it moves between groups.
7314  *	The caller of this function should have put the task in its new group
7315  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7316  *	reflect its new group.
7317  */
7318 void sched_move_task(struct task_struct *tsk)
7319 {
7320 	struct task_group *tg;
7321 	int on_rq, running;
7322 	unsigned long flags;
7323 	struct rq *rq;
7324 
7325 	rq = task_rq_lock(tsk, &flags);
7326 
7327 	running = task_current(rq, tsk);
7328 	on_rq = tsk->on_rq;
7329 
7330 	if (on_rq)
7331 		dequeue_task(rq, tsk, 0);
7332 	if (unlikely(running))
7333 		tsk->sched_class->put_prev_task(rq, tsk);
7334 
7335 	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7336 				lockdep_is_held(&tsk->sighand->siglock)),
7337 			  struct task_group, css);
7338 	tg = autogroup_task_group(tsk, tg);
7339 	tsk->sched_task_group = tg;
7340 
7341 #ifdef CONFIG_FAIR_GROUP_SCHED
7342 	if (tsk->sched_class->task_move_group)
7343 		tsk->sched_class->task_move_group(tsk, on_rq);
7344 	else
7345 #endif
7346 		set_task_rq(tsk, task_cpu(tsk));
7347 
7348 	if (unlikely(running))
7349 		tsk->sched_class->set_curr_task(rq);
7350 	if (on_rq)
7351 		enqueue_task(rq, tsk, 0);
7352 
7353 	task_rq_unlock(rq, tsk, &flags);
7354 }
7355 #endif /* CONFIG_CGROUP_SCHED */
7356 
7357 #ifdef CONFIG_RT_GROUP_SCHED
7358 /*
7359  * Ensure that the real time constraints are schedulable.
7360  */
7361 static DEFINE_MUTEX(rt_constraints_mutex);
7362 
7363 /* Must be called with tasklist_lock held */
7364 static inline int tg_has_rt_tasks(struct task_group *tg)
7365 {
7366 	struct task_struct *g, *p;
7367 
7368 	do_each_thread(g, p) {
7369 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7370 			return 1;
7371 	} while_each_thread(g, p);
7372 
7373 	return 0;
7374 }
7375 
7376 struct rt_schedulable_data {
7377 	struct task_group *tg;
7378 	u64 rt_period;
7379 	u64 rt_runtime;
7380 };
7381 
7382 static int tg_rt_schedulable(struct task_group *tg, void *data)
7383 {
7384 	struct rt_schedulable_data *d = data;
7385 	struct task_group *child;
7386 	unsigned long total, sum = 0;
7387 	u64 period, runtime;
7388 
7389 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7390 	runtime = tg->rt_bandwidth.rt_runtime;
7391 
7392 	if (tg == d->tg) {
7393 		period = d->rt_period;
7394 		runtime = d->rt_runtime;
7395 	}
7396 
7397 	/*
7398 	 * Cannot have more runtime than the period.
7399 	 */
7400 	if (runtime > period && runtime != RUNTIME_INF)
7401 		return -EINVAL;
7402 
7403 	/*
7404 	 * Ensure we don't starve existing RT tasks.
7405 	 */
7406 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7407 		return -EBUSY;
7408 
7409 	total = to_ratio(period, runtime);
7410 
7411 	/*
7412 	 * Nobody can have more than the global setting allows.
7413 	 */
7414 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7415 		return -EINVAL;
7416 
7417 	/*
7418 	 * The sum of our children's runtime should not exceed our own.
7419 	 */
7420 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7421 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7422 		runtime = child->rt_bandwidth.rt_runtime;
7423 
7424 		if (child == d->tg) {
7425 			period = d->rt_period;
7426 			runtime = d->rt_runtime;
7427 		}
7428 
7429 		sum += to_ratio(period, runtime);
7430 	}
7431 
7432 	if (sum > total)
7433 		return -EINVAL;
7434 
7435 	return 0;
7436 }
7437 
7438 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7439 {
7440 	int ret;
7441 
7442 	struct rt_schedulable_data data = {
7443 		.tg = tg,
7444 		.rt_period = period,
7445 		.rt_runtime = runtime,
7446 	};
7447 
7448 	rcu_read_lock();
7449 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7450 	rcu_read_unlock();
7451 
7452 	return ret;
7453 }
7454 
7455 static int tg_set_rt_bandwidth(struct task_group *tg,
7456 		u64 rt_period, u64 rt_runtime)
7457 {
7458 	int i, err = 0;
7459 
7460 	mutex_lock(&rt_constraints_mutex);
7461 	read_lock(&tasklist_lock);
7462 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7463 	if (err)
7464 		goto unlock;
7465 
7466 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7467 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7468 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7469 
7470 	for_each_possible_cpu(i) {
7471 		struct rt_rq *rt_rq = tg->rt_rq[i];
7472 
7473 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7474 		rt_rq->rt_runtime = rt_runtime;
7475 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7476 	}
7477 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7478 unlock:
7479 	read_unlock(&tasklist_lock);
7480 	mutex_unlock(&rt_constraints_mutex);
7481 
7482 	return err;
7483 }
7484 
7485 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7486 {
7487 	u64 rt_runtime, rt_period;
7488 
7489 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7490 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7491 	if (rt_runtime_us < 0)
7492 		rt_runtime = RUNTIME_INF;
7493 
7494 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7495 }
7496 
7497 static long sched_group_rt_runtime(struct task_group *tg)
7498 {
7499 	u64 rt_runtime_us;
7500 
7501 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7502 		return -1;
7503 
7504 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7505 	do_div(rt_runtime_us, NSEC_PER_USEC);
7506 	return rt_runtime_us;
7507 }
7508 
7509 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7510 {
7511 	u64 rt_runtime, rt_period;
7512 
7513 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7514 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7515 
7516 	if (rt_period == 0)
7517 		return -EINVAL;
7518 
7519 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7520 }
7521 
7522 static long sched_group_rt_period(struct task_group *tg)
7523 {
7524 	u64 rt_period_us;
7525 
7526 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7527 	do_div(rt_period_us, NSEC_PER_USEC);
7528 	return rt_period_us;
7529 }
7530 #endif /* CONFIG_RT_GROUP_SCHED */
7531 
7532 #ifdef CONFIG_RT_GROUP_SCHED
7533 static int sched_rt_global_constraints(void)
7534 {
7535 	int ret = 0;
7536 
7537 	mutex_lock(&rt_constraints_mutex);
7538 	read_lock(&tasklist_lock);
7539 	ret = __rt_schedulable(NULL, 0, 0);
7540 	read_unlock(&tasklist_lock);
7541 	mutex_unlock(&rt_constraints_mutex);
7542 
7543 	return ret;
7544 }
7545 
7546 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7547 {
7548 	/* Don't accept realtime tasks when there is no way for them to run */
7549 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7550 		return 0;
7551 
7552 	return 1;
7553 }
7554 
7555 #else /* !CONFIG_RT_GROUP_SCHED */
7556 static int sched_rt_global_constraints(void)
7557 {
7558 	unsigned long flags;
7559 	int i, ret = 0;
7560 
7561 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7562 	for_each_possible_cpu(i) {
7563 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7564 
7565 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7566 		rt_rq->rt_runtime = global_rt_runtime();
7567 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7568 	}
7569 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7570 
7571 	return ret;
7572 }
7573 #endif /* CONFIG_RT_GROUP_SCHED */
7574 
7575 static int sched_dl_global_constraints(void)
7576 {
7577 	u64 runtime = global_rt_runtime();
7578 	u64 period = global_rt_period();
7579 	u64 new_bw = to_ratio(period, runtime);
7580 	int cpu, ret = 0;
7581 	unsigned long flags;
7582 
7583 	/*
7584 	 * Here we want to check the bandwidth not being set to some
7585 	 * value smaller than the currently allocated bandwidth in
7586 	 * any of the root_domains.
7587 	 *
7588 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7589 	 * cycling on root_domains... Discussion on different/better
7590 	 * solutions is welcome!
7591 	 */
7592 	for_each_possible_cpu(cpu) {
7593 		struct dl_bw *dl_b = dl_bw_of(cpu);
7594 
7595 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7596 		if (new_bw < dl_b->total_bw)
7597 			ret = -EBUSY;
7598 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7599 
7600 		if (ret)
7601 			break;
7602 	}
7603 
7604 	return ret;
7605 }
7606 
7607 static void sched_dl_do_global(void)
7608 {
7609 	u64 new_bw = -1;
7610 	int cpu;
7611 	unsigned long flags;
7612 
7613 	def_dl_bandwidth.dl_period = global_rt_period();
7614 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7615 
7616 	if (global_rt_runtime() != RUNTIME_INF)
7617 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7618 
7619 	/*
7620 	 * FIXME: As above...
7621 	 */
7622 	for_each_possible_cpu(cpu) {
7623 		struct dl_bw *dl_b = dl_bw_of(cpu);
7624 
7625 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7626 		dl_b->bw = new_bw;
7627 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7628 	}
7629 }
7630 
7631 static int sched_rt_global_validate(void)
7632 {
7633 	if (sysctl_sched_rt_period <= 0)
7634 		return -EINVAL;
7635 
7636 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7637 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7638 		return -EINVAL;
7639 
7640 	return 0;
7641 }
7642 
7643 static void sched_rt_do_global(void)
7644 {
7645 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7646 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7647 }
7648 
7649 int sched_rt_handler(struct ctl_table *table, int write,
7650 		void __user *buffer, size_t *lenp,
7651 		loff_t *ppos)
7652 {
7653 	int old_period, old_runtime;
7654 	static DEFINE_MUTEX(mutex);
7655 	int ret;
7656 
7657 	mutex_lock(&mutex);
7658 	old_period = sysctl_sched_rt_period;
7659 	old_runtime = sysctl_sched_rt_runtime;
7660 
7661 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7662 
7663 	if (!ret && write) {
7664 		ret = sched_rt_global_validate();
7665 		if (ret)
7666 			goto undo;
7667 
7668 		ret = sched_rt_global_constraints();
7669 		if (ret)
7670 			goto undo;
7671 
7672 		ret = sched_dl_global_constraints();
7673 		if (ret)
7674 			goto undo;
7675 
7676 		sched_rt_do_global();
7677 		sched_dl_do_global();
7678 	}
7679 	if (0) {
7680 undo:
7681 		sysctl_sched_rt_period = old_period;
7682 		sysctl_sched_rt_runtime = old_runtime;
7683 	}
7684 	mutex_unlock(&mutex);
7685 
7686 	return ret;
7687 }
7688 
7689 int sched_rr_handler(struct ctl_table *table, int write,
7690 		void __user *buffer, size_t *lenp,
7691 		loff_t *ppos)
7692 {
7693 	int ret;
7694 	static DEFINE_MUTEX(mutex);
7695 
7696 	mutex_lock(&mutex);
7697 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7698 	/* make sure that internally we keep jiffies */
7699 	/* also, writing zero resets timeslice to default */
7700 	if (!ret && write) {
7701 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7702 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7703 	}
7704 	mutex_unlock(&mutex);
7705 	return ret;
7706 }
7707 
7708 #ifdef CONFIG_CGROUP_SCHED
7709 
7710 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7711 {
7712 	return css ? container_of(css, struct task_group, css) : NULL;
7713 }
7714 
7715 static struct cgroup_subsys_state *
7716 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7717 {
7718 	struct task_group *parent = css_tg(parent_css);
7719 	struct task_group *tg;
7720 
7721 	if (!parent) {
7722 		/* This is early initialization for the top cgroup */
7723 		return &root_task_group.css;
7724 	}
7725 
7726 	tg = sched_create_group(parent);
7727 	if (IS_ERR(tg))
7728 		return ERR_PTR(-ENOMEM);
7729 
7730 	return &tg->css;
7731 }
7732 
7733 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7734 {
7735 	struct task_group *tg = css_tg(css);
7736 	struct task_group *parent = css_tg(css->parent);
7737 
7738 	if (parent)
7739 		sched_online_group(tg, parent);
7740 	return 0;
7741 }
7742 
7743 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7744 {
7745 	struct task_group *tg = css_tg(css);
7746 
7747 	sched_destroy_group(tg);
7748 }
7749 
7750 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7751 {
7752 	struct task_group *tg = css_tg(css);
7753 
7754 	sched_offline_group(tg);
7755 }
7756 
7757 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7758 				 struct cgroup_taskset *tset)
7759 {
7760 	struct task_struct *task;
7761 
7762 	cgroup_taskset_for_each(task, tset) {
7763 #ifdef CONFIG_RT_GROUP_SCHED
7764 		if (!sched_rt_can_attach(css_tg(css), task))
7765 			return -EINVAL;
7766 #else
7767 		/* We don't support RT-tasks being in separate groups */
7768 		if (task->sched_class != &fair_sched_class)
7769 			return -EINVAL;
7770 #endif
7771 	}
7772 	return 0;
7773 }
7774 
7775 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7776 			      struct cgroup_taskset *tset)
7777 {
7778 	struct task_struct *task;
7779 
7780 	cgroup_taskset_for_each(task, tset)
7781 		sched_move_task(task);
7782 }
7783 
7784 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7785 			    struct cgroup_subsys_state *old_css,
7786 			    struct task_struct *task)
7787 {
7788 	/*
7789 	 * cgroup_exit() is called in the copy_process() failure path.
7790 	 * Ignore this case since the task hasn't ran yet, this avoids
7791 	 * trying to poke a half freed task state from generic code.
7792 	 */
7793 	if (!(task->flags & PF_EXITING))
7794 		return;
7795 
7796 	sched_move_task(task);
7797 }
7798 
7799 #ifdef CONFIG_FAIR_GROUP_SCHED
7800 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7801 				struct cftype *cftype, u64 shareval)
7802 {
7803 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7804 }
7805 
7806 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7807 			       struct cftype *cft)
7808 {
7809 	struct task_group *tg = css_tg(css);
7810 
7811 	return (u64) scale_load_down(tg->shares);
7812 }
7813 
7814 #ifdef CONFIG_CFS_BANDWIDTH
7815 static DEFINE_MUTEX(cfs_constraints_mutex);
7816 
7817 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7818 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7819 
7820 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7821 
7822 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7823 {
7824 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7825 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7826 
7827 	if (tg == &root_task_group)
7828 		return -EINVAL;
7829 
7830 	/*
7831 	 * Ensure we have at some amount of bandwidth every period.  This is
7832 	 * to prevent reaching a state of large arrears when throttled via
7833 	 * entity_tick() resulting in prolonged exit starvation.
7834 	 */
7835 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7836 		return -EINVAL;
7837 
7838 	/*
7839 	 * Likewise, bound things on the otherside by preventing insane quota
7840 	 * periods.  This also allows us to normalize in computing quota
7841 	 * feasibility.
7842 	 */
7843 	if (period > max_cfs_quota_period)
7844 		return -EINVAL;
7845 
7846 	/*
7847 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7848 	 * unthrottle_offline_cfs_rqs().
7849 	 */
7850 	get_online_cpus();
7851 	mutex_lock(&cfs_constraints_mutex);
7852 	ret = __cfs_schedulable(tg, period, quota);
7853 	if (ret)
7854 		goto out_unlock;
7855 
7856 	runtime_enabled = quota != RUNTIME_INF;
7857 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7858 	/*
7859 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7860 	 * before making related changes, and on->off must occur afterwards
7861 	 */
7862 	if (runtime_enabled && !runtime_was_enabled)
7863 		cfs_bandwidth_usage_inc();
7864 	raw_spin_lock_irq(&cfs_b->lock);
7865 	cfs_b->period = ns_to_ktime(period);
7866 	cfs_b->quota = quota;
7867 
7868 	__refill_cfs_bandwidth_runtime(cfs_b);
7869 	/* restart the period timer (if active) to handle new period expiry */
7870 	if (runtime_enabled && cfs_b->timer_active) {
7871 		/* force a reprogram */
7872 		__start_cfs_bandwidth(cfs_b, true);
7873 	}
7874 	raw_spin_unlock_irq(&cfs_b->lock);
7875 
7876 	for_each_online_cpu(i) {
7877 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7878 		struct rq *rq = cfs_rq->rq;
7879 
7880 		raw_spin_lock_irq(&rq->lock);
7881 		cfs_rq->runtime_enabled = runtime_enabled;
7882 		cfs_rq->runtime_remaining = 0;
7883 
7884 		if (cfs_rq->throttled)
7885 			unthrottle_cfs_rq(cfs_rq);
7886 		raw_spin_unlock_irq(&rq->lock);
7887 	}
7888 	if (runtime_was_enabled && !runtime_enabled)
7889 		cfs_bandwidth_usage_dec();
7890 out_unlock:
7891 	mutex_unlock(&cfs_constraints_mutex);
7892 	put_online_cpus();
7893 
7894 	return ret;
7895 }
7896 
7897 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7898 {
7899 	u64 quota, period;
7900 
7901 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7902 	if (cfs_quota_us < 0)
7903 		quota = RUNTIME_INF;
7904 	else
7905 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7906 
7907 	return tg_set_cfs_bandwidth(tg, period, quota);
7908 }
7909 
7910 long tg_get_cfs_quota(struct task_group *tg)
7911 {
7912 	u64 quota_us;
7913 
7914 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7915 		return -1;
7916 
7917 	quota_us = tg->cfs_bandwidth.quota;
7918 	do_div(quota_us, NSEC_PER_USEC);
7919 
7920 	return quota_us;
7921 }
7922 
7923 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7924 {
7925 	u64 quota, period;
7926 
7927 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7928 	quota = tg->cfs_bandwidth.quota;
7929 
7930 	return tg_set_cfs_bandwidth(tg, period, quota);
7931 }
7932 
7933 long tg_get_cfs_period(struct task_group *tg)
7934 {
7935 	u64 cfs_period_us;
7936 
7937 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7938 	do_div(cfs_period_us, NSEC_PER_USEC);
7939 
7940 	return cfs_period_us;
7941 }
7942 
7943 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7944 				  struct cftype *cft)
7945 {
7946 	return tg_get_cfs_quota(css_tg(css));
7947 }
7948 
7949 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7950 				   struct cftype *cftype, s64 cfs_quota_us)
7951 {
7952 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7953 }
7954 
7955 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7956 				   struct cftype *cft)
7957 {
7958 	return tg_get_cfs_period(css_tg(css));
7959 }
7960 
7961 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7962 				    struct cftype *cftype, u64 cfs_period_us)
7963 {
7964 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7965 }
7966 
7967 struct cfs_schedulable_data {
7968 	struct task_group *tg;
7969 	u64 period, quota;
7970 };
7971 
7972 /*
7973  * normalize group quota/period to be quota/max_period
7974  * note: units are usecs
7975  */
7976 static u64 normalize_cfs_quota(struct task_group *tg,
7977 			       struct cfs_schedulable_data *d)
7978 {
7979 	u64 quota, period;
7980 
7981 	if (tg == d->tg) {
7982 		period = d->period;
7983 		quota = d->quota;
7984 	} else {
7985 		period = tg_get_cfs_period(tg);
7986 		quota = tg_get_cfs_quota(tg);
7987 	}
7988 
7989 	/* note: these should typically be equivalent */
7990 	if (quota == RUNTIME_INF || quota == -1)
7991 		return RUNTIME_INF;
7992 
7993 	return to_ratio(period, quota);
7994 }
7995 
7996 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7997 {
7998 	struct cfs_schedulable_data *d = data;
7999 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8000 	s64 quota = 0, parent_quota = -1;
8001 
8002 	if (!tg->parent) {
8003 		quota = RUNTIME_INF;
8004 	} else {
8005 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8006 
8007 		quota = normalize_cfs_quota(tg, d);
8008 		parent_quota = parent_b->hierarchal_quota;
8009 
8010 		/*
8011 		 * ensure max(child_quota) <= parent_quota, inherit when no
8012 		 * limit is set
8013 		 */
8014 		if (quota == RUNTIME_INF)
8015 			quota = parent_quota;
8016 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8017 			return -EINVAL;
8018 	}
8019 	cfs_b->hierarchal_quota = quota;
8020 
8021 	return 0;
8022 }
8023 
8024 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8025 {
8026 	int ret;
8027 	struct cfs_schedulable_data data = {
8028 		.tg = tg,
8029 		.period = period,
8030 		.quota = quota,
8031 	};
8032 
8033 	if (quota != RUNTIME_INF) {
8034 		do_div(data.period, NSEC_PER_USEC);
8035 		do_div(data.quota, NSEC_PER_USEC);
8036 	}
8037 
8038 	rcu_read_lock();
8039 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8040 	rcu_read_unlock();
8041 
8042 	return ret;
8043 }
8044 
8045 static int cpu_stats_show(struct seq_file *sf, void *v)
8046 {
8047 	struct task_group *tg = css_tg(seq_css(sf));
8048 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8049 
8050 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8051 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8052 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8053 
8054 	return 0;
8055 }
8056 #endif /* CONFIG_CFS_BANDWIDTH */
8057 #endif /* CONFIG_FAIR_GROUP_SCHED */
8058 
8059 #ifdef CONFIG_RT_GROUP_SCHED
8060 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8061 				struct cftype *cft, s64 val)
8062 {
8063 	return sched_group_set_rt_runtime(css_tg(css), val);
8064 }
8065 
8066 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8067 			       struct cftype *cft)
8068 {
8069 	return sched_group_rt_runtime(css_tg(css));
8070 }
8071 
8072 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8073 				    struct cftype *cftype, u64 rt_period_us)
8074 {
8075 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8076 }
8077 
8078 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8079 				   struct cftype *cft)
8080 {
8081 	return sched_group_rt_period(css_tg(css));
8082 }
8083 #endif /* CONFIG_RT_GROUP_SCHED */
8084 
8085 static struct cftype cpu_files[] = {
8086 #ifdef CONFIG_FAIR_GROUP_SCHED
8087 	{
8088 		.name = "shares",
8089 		.read_u64 = cpu_shares_read_u64,
8090 		.write_u64 = cpu_shares_write_u64,
8091 	},
8092 #endif
8093 #ifdef CONFIG_CFS_BANDWIDTH
8094 	{
8095 		.name = "cfs_quota_us",
8096 		.read_s64 = cpu_cfs_quota_read_s64,
8097 		.write_s64 = cpu_cfs_quota_write_s64,
8098 	},
8099 	{
8100 		.name = "cfs_period_us",
8101 		.read_u64 = cpu_cfs_period_read_u64,
8102 		.write_u64 = cpu_cfs_period_write_u64,
8103 	},
8104 	{
8105 		.name = "stat",
8106 		.seq_show = cpu_stats_show,
8107 	},
8108 #endif
8109 #ifdef CONFIG_RT_GROUP_SCHED
8110 	{
8111 		.name = "rt_runtime_us",
8112 		.read_s64 = cpu_rt_runtime_read,
8113 		.write_s64 = cpu_rt_runtime_write,
8114 	},
8115 	{
8116 		.name = "rt_period_us",
8117 		.read_u64 = cpu_rt_period_read_uint,
8118 		.write_u64 = cpu_rt_period_write_uint,
8119 	},
8120 #endif
8121 	{ }	/* terminate */
8122 };
8123 
8124 struct cgroup_subsys cpu_cgrp_subsys = {
8125 	.css_alloc	= cpu_cgroup_css_alloc,
8126 	.css_free	= cpu_cgroup_css_free,
8127 	.css_online	= cpu_cgroup_css_online,
8128 	.css_offline	= cpu_cgroup_css_offline,
8129 	.can_attach	= cpu_cgroup_can_attach,
8130 	.attach		= cpu_cgroup_attach,
8131 	.exit		= cpu_cgroup_exit,
8132 	.legacy_cftypes	= cpu_files,
8133 	.early_init	= 1,
8134 };
8135 
8136 #endif	/* CONFIG_CGROUP_SCHED */
8137 
8138 void dump_cpu_task(int cpu)
8139 {
8140 	pr_info("Task dump for CPU %d:\n", cpu);
8141 	sched_show_task(cpu_curr(cpu));
8142 }
8143