1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 #ifdef smp_mb__before_atomic 94 void __smp_mb__before_atomic(void) 95 { 96 smp_mb__before_atomic(); 97 } 98 EXPORT_SYMBOL(__smp_mb__before_atomic); 99 #endif 100 101 #ifdef smp_mb__after_atomic 102 void __smp_mb__after_atomic(void) 103 { 104 smp_mb__after_atomic(); 105 } 106 EXPORT_SYMBOL(__smp_mb__after_atomic); 107 #endif 108 109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 110 { 111 unsigned long delta; 112 ktime_t soft, hard, now; 113 114 for (;;) { 115 if (hrtimer_active(period_timer)) 116 break; 117 118 now = hrtimer_cb_get_time(period_timer); 119 hrtimer_forward(period_timer, now, period); 120 121 soft = hrtimer_get_softexpires(period_timer); 122 hard = hrtimer_get_expires(period_timer); 123 delta = ktime_to_ns(ktime_sub(hard, soft)); 124 __hrtimer_start_range_ns(period_timer, soft, delta, 125 HRTIMER_MODE_ABS_PINNED, 0); 126 } 127 } 128 129 DEFINE_MUTEX(sched_domains_mutex); 130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 131 132 static void update_rq_clock_task(struct rq *rq, s64 delta); 133 134 void update_rq_clock(struct rq *rq) 135 { 136 s64 delta; 137 138 if (rq->skip_clock_update > 0) 139 return; 140 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 142 if (delta < 0) 143 return; 144 rq->clock += delta; 145 update_rq_clock_task(rq, delta); 146 } 147 148 /* 149 * Debugging: various feature bits 150 */ 151 152 #define SCHED_FEAT(name, enabled) \ 153 (1UL << __SCHED_FEAT_##name) * enabled | 154 155 const_debug unsigned int sysctl_sched_features = 156 #include "features.h" 157 0; 158 159 #undef SCHED_FEAT 160 161 #ifdef CONFIG_SCHED_DEBUG 162 #define SCHED_FEAT(name, enabled) \ 163 #name , 164 165 static const char * const sched_feat_names[] = { 166 #include "features.h" 167 }; 168 169 #undef SCHED_FEAT 170 171 static int sched_feat_show(struct seq_file *m, void *v) 172 { 173 int i; 174 175 for (i = 0; i < __SCHED_FEAT_NR; i++) { 176 if (!(sysctl_sched_features & (1UL << i))) 177 seq_puts(m, "NO_"); 178 seq_printf(m, "%s ", sched_feat_names[i]); 179 } 180 seq_puts(m, "\n"); 181 182 return 0; 183 } 184 185 #ifdef HAVE_JUMP_LABEL 186 187 #define jump_label_key__true STATIC_KEY_INIT_TRUE 188 #define jump_label_key__false STATIC_KEY_INIT_FALSE 189 190 #define SCHED_FEAT(name, enabled) \ 191 jump_label_key__##enabled , 192 193 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 194 #include "features.h" 195 }; 196 197 #undef SCHED_FEAT 198 199 static void sched_feat_disable(int i) 200 { 201 if (static_key_enabled(&sched_feat_keys[i])) 202 static_key_slow_dec(&sched_feat_keys[i]); 203 } 204 205 static void sched_feat_enable(int i) 206 { 207 if (!static_key_enabled(&sched_feat_keys[i])) 208 static_key_slow_inc(&sched_feat_keys[i]); 209 } 210 #else 211 static void sched_feat_disable(int i) { }; 212 static void sched_feat_enable(int i) { }; 213 #endif /* HAVE_JUMP_LABEL */ 214 215 static int sched_feat_set(char *cmp) 216 { 217 int i; 218 int neg = 0; 219 220 if (strncmp(cmp, "NO_", 3) == 0) { 221 neg = 1; 222 cmp += 3; 223 } 224 225 for (i = 0; i < __SCHED_FEAT_NR; i++) { 226 if (strcmp(cmp, sched_feat_names[i]) == 0) { 227 if (neg) { 228 sysctl_sched_features &= ~(1UL << i); 229 sched_feat_disable(i); 230 } else { 231 sysctl_sched_features |= (1UL << i); 232 sched_feat_enable(i); 233 } 234 break; 235 } 236 } 237 238 return i; 239 } 240 241 static ssize_t 242 sched_feat_write(struct file *filp, const char __user *ubuf, 243 size_t cnt, loff_t *ppos) 244 { 245 char buf[64]; 246 char *cmp; 247 int i; 248 struct inode *inode; 249 250 if (cnt > 63) 251 cnt = 63; 252 253 if (copy_from_user(&buf, ubuf, cnt)) 254 return -EFAULT; 255 256 buf[cnt] = 0; 257 cmp = strstrip(buf); 258 259 /* Ensure the static_key remains in a consistent state */ 260 inode = file_inode(filp); 261 mutex_lock(&inode->i_mutex); 262 i = sched_feat_set(cmp); 263 mutex_unlock(&inode->i_mutex); 264 if (i == __SCHED_FEAT_NR) 265 return -EINVAL; 266 267 *ppos += cnt; 268 269 return cnt; 270 } 271 272 static int sched_feat_open(struct inode *inode, struct file *filp) 273 { 274 return single_open(filp, sched_feat_show, NULL); 275 } 276 277 static const struct file_operations sched_feat_fops = { 278 .open = sched_feat_open, 279 .write = sched_feat_write, 280 .read = seq_read, 281 .llseek = seq_lseek, 282 .release = single_release, 283 }; 284 285 static __init int sched_init_debug(void) 286 { 287 debugfs_create_file("sched_features", 0644, NULL, NULL, 288 &sched_feat_fops); 289 290 return 0; 291 } 292 late_initcall(sched_init_debug); 293 #endif /* CONFIG_SCHED_DEBUG */ 294 295 /* 296 * Number of tasks to iterate in a single balance run. 297 * Limited because this is done with IRQs disabled. 298 */ 299 const_debug unsigned int sysctl_sched_nr_migrate = 32; 300 301 /* 302 * period over which we average the RT time consumption, measured 303 * in ms. 304 * 305 * default: 1s 306 */ 307 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 308 309 /* 310 * period over which we measure -rt task cpu usage in us. 311 * default: 1s 312 */ 313 unsigned int sysctl_sched_rt_period = 1000000; 314 315 __read_mostly int scheduler_running; 316 317 /* 318 * part of the period that we allow rt tasks to run in us. 319 * default: 0.95s 320 */ 321 int sysctl_sched_rt_runtime = 950000; 322 323 /* 324 * __task_rq_lock - lock the rq @p resides on. 325 */ 326 static inline struct rq *__task_rq_lock(struct task_struct *p) 327 __acquires(rq->lock) 328 { 329 struct rq *rq; 330 331 lockdep_assert_held(&p->pi_lock); 332 333 for (;;) { 334 rq = task_rq(p); 335 raw_spin_lock(&rq->lock); 336 if (likely(rq == task_rq(p))) 337 return rq; 338 raw_spin_unlock(&rq->lock); 339 } 340 } 341 342 /* 343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 344 */ 345 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 346 __acquires(p->pi_lock) 347 __acquires(rq->lock) 348 { 349 struct rq *rq; 350 351 for (;;) { 352 raw_spin_lock_irqsave(&p->pi_lock, *flags); 353 rq = task_rq(p); 354 raw_spin_lock(&rq->lock); 355 if (likely(rq == task_rq(p))) 356 return rq; 357 raw_spin_unlock(&rq->lock); 358 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 359 } 360 } 361 362 static void __task_rq_unlock(struct rq *rq) 363 __releases(rq->lock) 364 { 365 raw_spin_unlock(&rq->lock); 366 } 367 368 static inline void 369 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 370 __releases(rq->lock) 371 __releases(p->pi_lock) 372 { 373 raw_spin_unlock(&rq->lock); 374 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 375 } 376 377 /* 378 * this_rq_lock - lock this runqueue and disable interrupts. 379 */ 380 static struct rq *this_rq_lock(void) 381 __acquires(rq->lock) 382 { 383 struct rq *rq; 384 385 local_irq_disable(); 386 rq = this_rq(); 387 raw_spin_lock(&rq->lock); 388 389 return rq; 390 } 391 392 #ifdef CONFIG_SCHED_HRTICK 393 /* 394 * Use HR-timers to deliver accurate preemption points. 395 */ 396 397 static void hrtick_clear(struct rq *rq) 398 { 399 if (hrtimer_active(&rq->hrtick_timer)) 400 hrtimer_cancel(&rq->hrtick_timer); 401 } 402 403 /* 404 * High-resolution timer tick. 405 * Runs from hardirq context with interrupts disabled. 406 */ 407 static enum hrtimer_restart hrtick(struct hrtimer *timer) 408 { 409 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 410 411 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 412 413 raw_spin_lock(&rq->lock); 414 update_rq_clock(rq); 415 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 416 raw_spin_unlock(&rq->lock); 417 418 return HRTIMER_NORESTART; 419 } 420 421 #ifdef CONFIG_SMP 422 423 static int __hrtick_restart(struct rq *rq) 424 { 425 struct hrtimer *timer = &rq->hrtick_timer; 426 ktime_t time = hrtimer_get_softexpires(timer); 427 428 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 429 } 430 431 /* 432 * called from hardirq (IPI) context 433 */ 434 static void __hrtick_start(void *arg) 435 { 436 struct rq *rq = arg; 437 438 raw_spin_lock(&rq->lock); 439 __hrtick_restart(rq); 440 rq->hrtick_csd_pending = 0; 441 raw_spin_unlock(&rq->lock); 442 } 443 444 /* 445 * Called to set the hrtick timer state. 446 * 447 * called with rq->lock held and irqs disabled 448 */ 449 void hrtick_start(struct rq *rq, u64 delay) 450 { 451 struct hrtimer *timer = &rq->hrtick_timer; 452 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 453 454 hrtimer_set_expires(timer, time); 455 456 if (rq == this_rq()) { 457 __hrtick_restart(rq); 458 } else if (!rq->hrtick_csd_pending) { 459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 460 rq->hrtick_csd_pending = 1; 461 } 462 } 463 464 static int 465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 466 { 467 int cpu = (int)(long)hcpu; 468 469 switch (action) { 470 case CPU_UP_CANCELED: 471 case CPU_UP_CANCELED_FROZEN: 472 case CPU_DOWN_PREPARE: 473 case CPU_DOWN_PREPARE_FROZEN: 474 case CPU_DEAD: 475 case CPU_DEAD_FROZEN: 476 hrtick_clear(cpu_rq(cpu)); 477 return NOTIFY_OK; 478 } 479 480 return NOTIFY_DONE; 481 } 482 483 static __init void init_hrtick(void) 484 { 485 hotcpu_notifier(hotplug_hrtick, 0); 486 } 487 #else 488 /* 489 * Called to set the hrtick timer state. 490 * 491 * called with rq->lock held and irqs disabled 492 */ 493 void hrtick_start(struct rq *rq, u64 delay) 494 { 495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 496 HRTIMER_MODE_REL_PINNED, 0); 497 } 498 499 static inline void init_hrtick(void) 500 { 501 } 502 #endif /* CONFIG_SMP */ 503 504 static void init_rq_hrtick(struct rq *rq) 505 { 506 #ifdef CONFIG_SMP 507 rq->hrtick_csd_pending = 0; 508 509 rq->hrtick_csd.flags = 0; 510 rq->hrtick_csd.func = __hrtick_start; 511 rq->hrtick_csd.info = rq; 512 #endif 513 514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 515 rq->hrtick_timer.function = hrtick; 516 } 517 #else /* CONFIG_SCHED_HRTICK */ 518 static inline void hrtick_clear(struct rq *rq) 519 { 520 } 521 522 static inline void init_rq_hrtick(struct rq *rq) 523 { 524 } 525 526 static inline void init_hrtick(void) 527 { 528 } 529 #endif /* CONFIG_SCHED_HRTICK */ 530 531 /* 532 * cmpxchg based fetch_or, macro so it works for different integer types 533 */ 534 #define fetch_or(ptr, val) \ 535 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 536 for (;;) { \ 537 __old = cmpxchg((ptr), __val, __val | (val)); \ 538 if (__old == __val) \ 539 break; \ 540 __val = __old; \ 541 } \ 542 __old; \ 543 }) 544 545 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 546 /* 547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 548 * this avoids any races wrt polling state changes and thereby avoids 549 * spurious IPIs. 550 */ 551 static bool set_nr_and_not_polling(struct task_struct *p) 552 { 553 struct thread_info *ti = task_thread_info(p); 554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 555 } 556 557 /* 558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 559 * 560 * If this returns true, then the idle task promises to call 561 * sched_ttwu_pending() and reschedule soon. 562 */ 563 static bool set_nr_if_polling(struct task_struct *p) 564 { 565 struct thread_info *ti = task_thread_info(p); 566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 567 568 for (;;) { 569 if (!(val & _TIF_POLLING_NRFLAG)) 570 return false; 571 if (val & _TIF_NEED_RESCHED) 572 return true; 573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 574 if (old == val) 575 break; 576 val = old; 577 } 578 return true; 579 } 580 581 #else 582 static bool set_nr_and_not_polling(struct task_struct *p) 583 { 584 set_tsk_need_resched(p); 585 return true; 586 } 587 588 #ifdef CONFIG_SMP 589 static bool set_nr_if_polling(struct task_struct *p) 590 { 591 return false; 592 } 593 #endif 594 #endif 595 596 /* 597 * resched_curr - mark rq's current task 'to be rescheduled now'. 598 * 599 * On UP this means the setting of the need_resched flag, on SMP it 600 * might also involve a cross-CPU call to trigger the scheduler on 601 * the target CPU. 602 */ 603 void resched_curr(struct rq *rq) 604 { 605 struct task_struct *curr = rq->curr; 606 int cpu; 607 608 lockdep_assert_held(&rq->lock); 609 610 if (test_tsk_need_resched(curr)) 611 return; 612 613 cpu = cpu_of(rq); 614 615 if (cpu == smp_processor_id()) { 616 set_tsk_need_resched(curr); 617 set_preempt_need_resched(); 618 return; 619 } 620 621 if (set_nr_and_not_polling(curr)) 622 smp_send_reschedule(cpu); 623 else 624 trace_sched_wake_idle_without_ipi(cpu); 625 } 626 627 void resched_cpu(int cpu) 628 { 629 struct rq *rq = cpu_rq(cpu); 630 unsigned long flags; 631 632 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 633 return; 634 resched_curr(rq); 635 raw_spin_unlock_irqrestore(&rq->lock, flags); 636 } 637 638 #ifdef CONFIG_SMP 639 #ifdef CONFIG_NO_HZ_COMMON 640 /* 641 * In the semi idle case, use the nearest busy cpu for migrating timers 642 * from an idle cpu. This is good for power-savings. 643 * 644 * We don't do similar optimization for completely idle system, as 645 * selecting an idle cpu will add more delays to the timers than intended 646 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 647 */ 648 int get_nohz_timer_target(int pinned) 649 { 650 int cpu = smp_processor_id(); 651 int i; 652 struct sched_domain *sd; 653 654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 655 return cpu; 656 657 rcu_read_lock(); 658 for_each_domain(cpu, sd) { 659 for_each_cpu(i, sched_domain_span(sd)) { 660 if (!idle_cpu(i)) { 661 cpu = i; 662 goto unlock; 663 } 664 } 665 } 666 unlock: 667 rcu_read_unlock(); 668 return cpu; 669 } 670 /* 671 * When add_timer_on() enqueues a timer into the timer wheel of an 672 * idle CPU then this timer might expire before the next timer event 673 * which is scheduled to wake up that CPU. In case of a completely 674 * idle system the next event might even be infinite time into the 675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 676 * leaves the inner idle loop so the newly added timer is taken into 677 * account when the CPU goes back to idle and evaluates the timer 678 * wheel for the next timer event. 679 */ 680 static void wake_up_idle_cpu(int cpu) 681 { 682 struct rq *rq = cpu_rq(cpu); 683 684 if (cpu == smp_processor_id()) 685 return; 686 687 if (set_nr_and_not_polling(rq->idle)) 688 smp_send_reschedule(cpu); 689 else 690 trace_sched_wake_idle_without_ipi(cpu); 691 } 692 693 static bool wake_up_full_nohz_cpu(int cpu) 694 { 695 /* 696 * We just need the target to call irq_exit() and re-evaluate 697 * the next tick. The nohz full kick at least implies that. 698 * If needed we can still optimize that later with an 699 * empty IRQ. 700 */ 701 if (tick_nohz_full_cpu(cpu)) { 702 if (cpu != smp_processor_id() || 703 tick_nohz_tick_stopped()) 704 tick_nohz_full_kick_cpu(cpu); 705 return true; 706 } 707 708 return false; 709 } 710 711 void wake_up_nohz_cpu(int cpu) 712 { 713 if (!wake_up_full_nohz_cpu(cpu)) 714 wake_up_idle_cpu(cpu); 715 } 716 717 static inline bool got_nohz_idle_kick(void) 718 { 719 int cpu = smp_processor_id(); 720 721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 722 return false; 723 724 if (idle_cpu(cpu) && !need_resched()) 725 return true; 726 727 /* 728 * We can't run Idle Load Balance on this CPU for this time so we 729 * cancel it and clear NOHZ_BALANCE_KICK 730 */ 731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 732 return false; 733 } 734 735 #else /* CONFIG_NO_HZ_COMMON */ 736 737 static inline bool got_nohz_idle_kick(void) 738 { 739 return false; 740 } 741 742 #endif /* CONFIG_NO_HZ_COMMON */ 743 744 #ifdef CONFIG_NO_HZ_FULL 745 bool sched_can_stop_tick(void) 746 { 747 /* 748 * More than one running task need preemption. 749 * nr_running update is assumed to be visible 750 * after IPI is sent from wakers. 751 */ 752 if (this_rq()->nr_running > 1) 753 return false; 754 755 return true; 756 } 757 #endif /* CONFIG_NO_HZ_FULL */ 758 759 void sched_avg_update(struct rq *rq) 760 { 761 s64 period = sched_avg_period(); 762 763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 764 /* 765 * Inline assembly required to prevent the compiler 766 * optimising this loop into a divmod call. 767 * See __iter_div_u64_rem() for another example of this. 768 */ 769 asm("" : "+rm" (rq->age_stamp)); 770 rq->age_stamp += period; 771 rq->rt_avg /= 2; 772 } 773 } 774 775 #endif /* CONFIG_SMP */ 776 777 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 779 /* 780 * Iterate task_group tree rooted at *from, calling @down when first entering a 781 * node and @up when leaving it for the final time. 782 * 783 * Caller must hold rcu_lock or sufficient equivalent. 784 */ 785 int walk_tg_tree_from(struct task_group *from, 786 tg_visitor down, tg_visitor up, void *data) 787 { 788 struct task_group *parent, *child; 789 int ret; 790 791 parent = from; 792 793 down: 794 ret = (*down)(parent, data); 795 if (ret) 796 goto out; 797 list_for_each_entry_rcu(child, &parent->children, siblings) { 798 parent = child; 799 goto down; 800 801 up: 802 continue; 803 } 804 ret = (*up)(parent, data); 805 if (ret || parent == from) 806 goto out; 807 808 child = parent; 809 parent = parent->parent; 810 if (parent) 811 goto up; 812 out: 813 return ret; 814 } 815 816 int tg_nop(struct task_group *tg, void *data) 817 { 818 return 0; 819 } 820 #endif 821 822 static void set_load_weight(struct task_struct *p) 823 { 824 int prio = p->static_prio - MAX_RT_PRIO; 825 struct load_weight *load = &p->se.load; 826 827 /* 828 * SCHED_IDLE tasks get minimal weight: 829 */ 830 if (p->policy == SCHED_IDLE) { 831 load->weight = scale_load(WEIGHT_IDLEPRIO); 832 load->inv_weight = WMULT_IDLEPRIO; 833 return; 834 } 835 836 load->weight = scale_load(prio_to_weight[prio]); 837 load->inv_weight = prio_to_wmult[prio]; 838 } 839 840 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 841 { 842 update_rq_clock(rq); 843 sched_info_queued(rq, p); 844 p->sched_class->enqueue_task(rq, p, flags); 845 } 846 847 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 848 { 849 update_rq_clock(rq); 850 sched_info_dequeued(rq, p); 851 p->sched_class->dequeue_task(rq, p, flags); 852 } 853 854 void activate_task(struct rq *rq, struct task_struct *p, int flags) 855 { 856 if (task_contributes_to_load(p)) 857 rq->nr_uninterruptible--; 858 859 enqueue_task(rq, p, flags); 860 } 861 862 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 863 { 864 if (task_contributes_to_load(p)) 865 rq->nr_uninterruptible++; 866 867 dequeue_task(rq, p, flags); 868 } 869 870 static void update_rq_clock_task(struct rq *rq, s64 delta) 871 { 872 /* 873 * In theory, the compile should just see 0 here, and optimize out the call 874 * to sched_rt_avg_update. But I don't trust it... 875 */ 876 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 877 s64 steal = 0, irq_delta = 0; 878 #endif 879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 881 882 /* 883 * Since irq_time is only updated on {soft,}irq_exit, we might run into 884 * this case when a previous update_rq_clock() happened inside a 885 * {soft,}irq region. 886 * 887 * When this happens, we stop ->clock_task and only update the 888 * prev_irq_time stamp to account for the part that fit, so that a next 889 * update will consume the rest. This ensures ->clock_task is 890 * monotonic. 891 * 892 * It does however cause some slight miss-attribution of {soft,}irq 893 * time, a more accurate solution would be to update the irq_time using 894 * the current rq->clock timestamp, except that would require using 895 * atomic ops. 896 */ 897 if (irq_delta > delta) 898 irq_delta = delta; 899 900 rq->prev_irq_time += irq_delta; 901 delta -= irq_delta; 902 #endif 903 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 904 if (static_key_false((¶virt_steal_rq_enabled))) { 905 steal = paravirt_steal_clock(cpu_of(rq)); 906 steal -= rq->prev_steal_time_rq; 907 908 if (unlikely(steal > delta)) 909 steal = delta; 910 911 rq->prev_steal_time_rq += steal; 912 delta -= steal; 913 } 914 #endif 915 916 rq->clock_task += delta; 917 918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 920 sched_rt_avg_update(rq, irq_delta + steal); 921 #endif 922 } 923 924 void sched_set_stop_task(int cpu, struct task_struct *stop) 925 { 926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 927 struct task_struct *old_stop = cpu_rq(cpu)->stop; 928 929 if (stop) { 930 /* 931 * Make it appear like a SCHED_FIFO task, its something 932 * userspace knows about and won't get confused about. 933 * 934 * Also, it will make PI more or less work without too 935 * much confusion -- but then, stop work should not 936 * rely on PI working anyway. 937 */ 938 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 939 940 stop->sched_class = &stop_sched_class; 941 } 942 943 cpu_rq(cpu)->stop = stop; 944 945 if (old_stop) { 946 /* 947 * Reset it back to a normal scheduling class so that 948 * it can die in pieces. 949 */ 950 old_stop->sched_class = &rt_sched_class; 951 } 952 } 953 954 /* 955 * __normal_prio - return the priority that is based on the static prio 956 */ 957 static inline int __normal_prio(struct task_struct *p) 958 { 959 return p->static_prio; 960 } 961 962 /* 963 * Calculate the expected normal priority: i.e. priority 964 * without taking RT-inheritance into account. Might be 965 * boosted by interactivity modifiers. Changes upon fork, 966 * setprio syscalls, and whenever the interactivity 967 * estimator recalculates. 968 */ 969 static inline int normal_prio(struct task_struct *p) 970 { 971 int prio; 972 973 if (task_has_dl_policy(p)) 974 prio = MAX_DL_PRIO-1; 975 else if (task_has_rt_policy(p)) 976 prio = MAX_RT_PRIO-1 - p->rt_priority; 977 else 978 prio = __normal_prio(p); 979 return prio; 980 } 981 982 /* 983 * Calculate the current priority, i.e. the priority 984 * taken into account by the scheduler. This value might 985 * be boosted by RT tasks, or might be boosted by 986 * interactivity modifiers. Will be RT if the task got 987 * RT-boosted. If not then it returns p->normal_prio. 988 */ 989 static int effective_prio(struct task_struct *p) 990 { 991 p->normal_prio = normal_prio(p); 992 /* 993 * If we are RT tasks or we were boosted to RT priority, 994 * keep the priority unchanged. Otherwise, update priority 995 * to the normal priority: 996 */ 997 if (!rt_prio(p->prio)) 998 return p->normal_prio; 999 return p->prio; 1000 } 1001 1002 /** 1003 * task_curr - is this task currently executing on a CPU? 1004 * @p: the task in question. 1005 * 1006 * Return: 1 if the task is currently executing. 0 otherwise. 1007 */ 1008 inline int task_curr(const struct task_struct *p) 1009 { 1010 return cpu_curr(task_cpu(p)) == p; 1011 } 1012 1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1014 const struct sched_class *prev_class, 1015 int oldprio) 1016 { 1017 if (prev_class != p->sched_class) { 1018 if (prev_class->switched_from) 1019 prev_class->switched_from(rq, p); 1020 p->sched_class->switched_to(rq, p); 1021 } else if (oldprio != p->prio || dl_task(p)) 1022 p->sched_class->prio_changed(rq, p, oldprio); 1023 } 1024 1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1026 { 1027 const struct sched_class *class; 1028 1029 if (p->sched_class == rq->curr->sched_class) { 1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1031 } else { 1032 for_each_class(class) { 1033 if (class == rq->curr->sched_class) 1034 break; 1035 if (class == p->sched_class) { 1036 resched_curr(rq); 1037 break; 1038 } 1039 } 1040 } 1041 1042 /* 1043 * A queue event has occurred, and we're going to schedule. In 1044 * this case, we can save a useless back to back clock update. 1045 */ 1046 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1047 rq->skip_clock_update = 1; 1048 } 1049 1050 #ifdef CONFIG_SMP 1051 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1052 { 1053 #ifdef CONFIG_SCHED_DEBUG 1054 /* 1055 * We should never call set_task_cpu() on a blocked task, 1056 * ttwu() will sort out the placement. 1057 */ 1058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1059 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 1060 1061 #ifdef CONFIG_LOCKDEP 1062 /* 1063 * The caller should hold either p->pi_lock or rq->lock, when changing 1064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1065 * 1066 * sched_move_task() holds both and thus holding either pins the cgroup, 1067 * see task_group(). 1068 * 1069 * Furthermore, all task_rq users should acquire both locks, see 1070 * task_rq_lock(). 1071 */ 1072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1073 lockdep_is_held(&task_rq(p)->lock))); 1074 #endif 1075 #endif 1076 1077 trace_sched_migrate_task(p, new_cpu); 1078 1079 if (task_cpu(p) != new_cpu) { 1080 if (p->sched_class->migrate_task_rq) 1081 p->sched_class->migrate_task_rq(p, new_cpu); 1082 p->se.nr_migrations++; 1083 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1084 } 1085 1086 __set_task_cpu(p, new_cpu); 1087 } 1088 1089 static void __migrate_swap_task(struct task_struct *p, int cpu) 1090 { 1091 if (p->on_rq) { 1092 struct rq *src_rq, *dst_rq; 1093 1094 src_rq = task_rq(p); 1095 dst_rq = cpu_rq(cpu); 1096 1097 deactivate_task(src_rq, p, 0); 1098 set_task_cpu(p, cpu); 1099 activate_task(dst_rq, p, 0); 1100 check_preempt_curr(dst_rq, p, 0); 1101 } else { 1102 /* 1103 * Task isn't running anymore; make it appear like we migrated 1104 * it before it went to sleep. This means on wakeup we make the 1105 * previous cpu our targer instead of where it really is. 1106 */ 1107 p->wake_cpu = cpu; 1108 } 1109 } 1110 1111 struct migration_swap_arg { 1112 struct task_struct *src_task, *dst_task; 1113 int src_cpu, dst_cpu; 1114 }; 1115 1116 static int migrate_swap_stop(void *data) 1117 { 1118 struct migration_swap_arg *arg = data; 1119 struct rq *src_rq, *dst_rq; 1120 int ret = -EAGAIN; 1121 1122 src_rq = cpu_rq(arg->src_cpu); 1123 dst_rq = cpu_rq(arg->dst_cpu); 1124 1125 double_raw_lock(&arg->src_task->pi_lock, 1126 &arg->dst_task->pi_lock); 1127 double_rq_lock(src_rq, dst_rq); 1128 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1129 goto unlock; 1130 1131 if (task_cpu(arg->src_task) != arg->src_cpu) 1132 goto unlock; 1133 1134 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1135 goto unlock; 1136 1137 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1138 goto unlock; 1139 1140 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1141 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1142 1143 ret = 0; 1144 1145 unlock: 1146 double_rq_unlock(src_rq, dst_rq); 1147 raw_spin_unlock(&arg->dst_task->pi_lock); 1148 raw_spin_unlock(&arg->src_task->pi_lock); 1149 1150 return ret; 1151 } 1152 1153 /* 1154 * Cross migrate two tasks 1155 */ 1156 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1157 { 1158 struct migration_swap_arg arg; 1159 int ret = -EINVAL; 1160 1161 arg = (struct migration_swap_arg){ 1162 .src_task = cur, 1163 .src_cpu = task_cpu(cur), 1164 .dst_task = p, 1165 .dst_cpu = task_cpu(p), 1166 }; 1167 1168 if (arg.src_cpu == arg.dst_cpu) 1169 goto out; 1170 1171 /* 1172 * These three tests are all lockless; this is OK since all of them 1173 * will be re-checked with proper locks held further down the line. 1174 */ 1175 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1176 goto out; 1177 1178 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1179 goto out; 1180 1181 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1182 goto out; 1183 1184 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1185 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1186 1187 out: 1188 return ret; 1189 } 1190 1191 struct migration_arg { 1192 struct task_struct *task; 1193 int dest_cpu; 1194 }; 1195 1196 static int migration_cpu_stop(void *data); 1197 1198 /* 1199 * wait_task_inactive - wait for a thread to unschedule. 1200 * 1201 * If @match_state is nonzero, it's the @p->state value just checked and 1202 * not expected to change. If it changes, i.e. @p might have woken up, 1203 * then return zero. When we succeed in waiting for @p to be off its CPU, 1204 * we return a positive number (its total switch count). If a second call 1205 * a short while later returns the same number, the caller can be sure that 1206 * @p has remained unscheduled the whole time. 1207 * 1208 * The caller must ensure that the task *will* unschedule sometime soon, 1209 * else this function might spin for a *long* time. This function can't 1210 * be called with interrupts off, or it may introduce deadlock with 1211 * smp_call_function() if an IPI is sent by the same process we are 1212 * waiting to become inactive. 1213 */ 1214 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1215 { 1216 unsigned long flags; 1217 int running, on_rq; 1218 unsigned long ncsw; 1219 struct rq *rq; 1220 1221 for (;;) { 1222 /* 1223 * We do the initial early heuristics without holding 1224 * any task-queue locks at all. We'll only try to get 1225 * the runqueue lock when things look like they will 1226 * work out! 1227 */ 1228 rq = task_rq(p); 1229 1230 /* 1231 * If the task is actively running on another CPU 1232 * still, just relax and busy-wait without holding 1233 * any locks. 1234 * 1235 * NOTE! Since we don't hold any locks, it's not 1236 * even sure that "rq" stays as the right runqueue! 1237 * But we don't care, since "task_running()" will 1238 * return false if the runqueue has changed and p 1239 * is actually now running somewhere else! 1240 */ 1241 while (task_running(rq, p)) { 1242 if (match_state && unlikely(p->state != match_state)) 1243 return 0; 1244 cpu_relax(); 1245 } 1246 1247 /* 1248 * Ok, time to look more closely! We need the rq 1249 * lock now, to be *sure*. If we're wrong, we'll 1250 * just go back and repeat. 1251 */ 1252 rq = task_rq_lock(p, &flags); 1253 trace_sched_wait_task(p); 1254 running = task_running(rq, p); 1255 on_rq = p->on_rq; 1256 ncsw = 0; 1257 if (!match_state || p->state == match_state) 1258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1259 task_rq_unlock(rq, p, &flags); 1260 1261 /* 1262 * If it changed from the expected state, bail out now. 1263 */ 1264 if (unlikely(!ncsw)) 1265 break; 1266 1267 /* 1268 * Was it really running after all now that we 1269 * checked with the proper locks actually held? 1270 * 1271 * Oops. Go back and try again.. 1272 */ 1273 if (unlikely(running)) { 1274 cpu_relax(); 1275 continue; 1276 } 1277 1278 /* 1279 * It's not enough that it's not actively running, 1280 * it must be off the runqueue _entirely_, and not 1281 * preempted! 1282 * 1283 * So if it was still runnable (but just not actively 1284 * running right now), it's preempted, and we should 1285 * yield - it could be a while. 1286 */ 1287 if (unlikely(on_rq)) { 1288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1289 1290 set_current_state(TASK_UNINTERRUPTIBLE); 1291 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1292 continue; 1293 } 1294 1295 /* 1296 * Ahh, all good. It wasn't running, and it wasn't 1297 * runnable, which means that it will never become 1298 * running in the future either. We're all done! 1299 */ 1300 break; 1301 } 1302 1303 return ncsw; 1304 } 1305 1306 /*** 1307 * kick_process - kick a running thread to enter/exit the kernel 1308 * @p: the to-be-kicked thread 1309 * 1310 * Cause a process which is running on another CPU to enter 1311 * kernel-mode, without any delay. (to get signals handled.) 1312 * 1313 * NOTE: this function doesn't have to take the runqueue lock, 1314 * because all it wants to ensure is that the remote task enters 1315 * the kernel. If the IPI races and the task has been migrated 1316 * to another CPU then no harm is done and the purpose has been 1317 * achieved as well. 1318 */ 1319 void kick_process(struct task_struct *p) 1320 { 1321 int cpu; 1322 1323 preempt_disable(); 1324 cpu = task_cpu(p); 1325 if ((cpu != smp_processor_id()) && task_curr(p)) 1326 smp_send_reschedule(cpu); 1327 preempt_enable(); 1328 } 1329 EXPORT_SYMBOL_GPL(kick_process); 1330 #endif /* CONFIG_SMP */ 1331 1332 #ifdef CONFIG_SMP 1333 /* 1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1335 */ 1336 static int select_fallback_rq(int cpu, struct task_struct *p) 1337 { 1338 int nid = cpu_to_node(cpu); 1339 const struct cpumask *nodemask = NULL; 1340 enum { cpuset, possible, fail } state = cpuset; 1341 int dest_cpu; 1342 1343 /* 1344 * If the node that the cpu is on has been offlined, cpu_to_node() 1345 * will return -1. There is no cpu on the node, and we should 1346 * select the cpu on the other node. 1347 */ 1348 if (nid != -1) { 1349 nodemask = cpumask_of_node(nid); 1350 1351 /* Look for allowed, online CPU in same node. */ 1352 for_each_cpu(dest_cpu, nodemask) { 1353 if (!cpu_online(dest_cpu)) 1354 continue; 1355 if (!cpu_active(dest_cpu)) 1356 continue; 1357 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1358 return dest_cpu; 1359 } 1360 } 1361 1362 for (;;) { 1363 /* Any allowed, online CPU? */ 1364 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1365 if (!cpu_online(dest_cpu)) 1366 continue; 1367 if (!cpu_active(dest_cpu)) 1368 continue; 1369 goto out; 1370 } 1371 1372 switch (state) { 1373 case cpuset: 1374 /* No more Mr. Nice Guy. */ 1375 cpuset_cpus_allowed_fallback(p); 1376 state = possible; 1377 break; 1378 1379 case possible: 1380 do_set_cpus_allowed(p, cpu_possible_mask); 1381 state = fail; 1382 break; 1383 1384 case fail: 1385 BUG(); 1386 break; 1387 } 1388 } 1389 1390 out: 1391 if (state != cpuset) { 1392 /* 1393 * Don't tell them about moving exiting tasks or 1394 * kernel threads (both mm NULL), since they never 1395 * leave kernel. 1396 */ 1397 if (p->mm && printk_ratelimit()) { 1398 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1399 task_pid_nr(p), p->comm, cpu); 1400 } 1401 } 1402 1403 return dest_cpu; 1404 } 1405 1406 /* 1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1408 */ 1409 static inline 1410 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1411 { 1412 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1413 1414 /* 1415 * In order not to call set_task_cpu() on a blocking task we need 1416 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1417 * cpu. 1418 * 1419 * Since this is common to all placement strategies, this lives here. 1420 * 1421 * [ this allows ->select_task() to simply return task_cpu(p) and 1422 * not worry about this generic constraint ] 1423 */ 1424 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1425 !cpu_online(cpu))) 1426 cpu = select_fallback_rq(task_cpu(p), p); 1427 1428 return cpu; 1429 } 1430 1431 static void update_avg(u64 *avg, u64 sample) 1432 { 1433 s64 diff = sample - *avg; 1434 *avg += diff >> 3; 1435 } 1436 #endif 1437 1438 static void 1439 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1440 { 1441 #ifdef CONFIG_SCHEDSTATS 1442 struct rq *rq = this_rq(); 1443 1444 #ifdef CONFIG_SMP 1445 int this_cpu = smp_processor_id(); 1446 1447 if (cpu == this_cpu) { 1448 schedstat_inc(rq, ttwu_local); 1449 schedstat_inc(p, se.statistics.nr_wakeups_local); 1450 } else { 1451 struct sched_domain *sd; 1452 1453 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1454 rcu_read_lock(); 1455 for_each_domain(this_cpu, sd) { 1456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1457 schedstat_inc(sd, ttwu_wake_remote); 1458 break; 1459 } 1460 } 1461 rcu_read_unlock(); 1462 } 1463 1464 if (wake_flags & WF_MIGRATED) 1465 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1466 1467 #endif /* CONFIG_SMP */ 1468 1469 schedstat_inc(rq, ttwu_count); 1470 schedstat_inc(p, se.statistics.nr_wakeups); 1471 1472 if (wake_flags & WF_SYNC) 1473 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1474 1475 #endif /* CONFIG_SCHEDSTATS */ 1476 } 1477 1478 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1479 { 1480 activate_task(rq, p, en_flags); 1481 p->on_rq = 1; 1482 1483 /* if a worker is waking up, notify workqueue */ 1484 if (p->flags & PF_WQ_WORKER) 1485 wq_worker_waking_up(p, cpu_of(rq)); 1486 } 1487 1488 /* 1489 * Mark the task runnable and perform wakeup-preemption. 1490 */ 1491 static void 1492 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1493 { 1494 check_preempt_curr(rq, p, wake_flags); 1495 trace_sched_wakeup(p, true); 1496 1497 p->state = TASK_RUNNING; 1498 #ifdef CONFIG_SMP 1499 if (p->sched_class->task_woken) 1500 p->sched_class->task_woken(rq, p); 1501 1502 if (rq->idle_stamp) { 1503 u64 delta = rq_clock(rq) - rq->idle_stamp; 1504 u64 max = 2*rq->max_idle_balance_cost; 1505 1506 update_avg(&rq->avg_idle, delta); 1507 1508 if (rq->avg_idle > max) 1509 rq->avg_idle = max; 1510 1511 rq->idle_stamp = 0; 1512 } 1513 #endif 1514 } 1515 1516 static void 1517 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1518 { 1519 #ifdef CONFIG_SMP 1520 if (p->sched_contributes_to_load) 1521 rq->nr_uninterruptible--; 1522 #endif 1523 1524 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1525 ttwu_do_wakeup(rq, p, wake_flags); 1526 } 1527 1528 /* 1529 * Called in case the task @p isn't fully descheduled from its runqueue, 1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1531 * since all we need to do is flip p->state to TASK_RUNNING, since 1532 * the task is still ->on_rq. 1533 */ 1534 static int ttwu_remote(struct task_struct *p, int wake_flags) 1535 { 1536 struct rq *rq; 1537 int ret = 0; 1538 1539 rq = __task_rq_lock(p); 1540 if (p->on_rq) { 1541 /* check_preempt_curr() may use rq clock */ 1542 update_rq_clock(rq); 1543 ttwu_do_wakeup(rq, p, wake_flags); 1544 ret = 1; 1545 } 1546 __task_rq_unlock(rq); 1547 1548 return ret; 1549 } 1550 1551 #ifdef CONFIG_SMP 1552 void sched_ttwu_pending(void) 1553 { 1554 struct rq *rq = this_rq(); 1555 struct llist_node *llist = llist_del_all(&rq->wake_list); 1556 struct task_struct *p; 1557 unsigned long flags; 1558 1559 if (!llist) 1560 return; 1561 1562 raw_spin_lock_irqsave(&rq->lock, flags); 1563 1564 while (llist) { 1565 p = llist_entry(llist, struct task_struct, wake_entry); 1566 llist = llist_next(llist); 1567 ttwu_do_activate(rq, p, 0); 1568 } 1569 1570 raw_spin_unlock_irqrestore(&rq->lock, flags); 1571 } 1572 1573 void scheduler_ipi(void) 1574 { 1575 /* 1576 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1577 * TIF_NEED_RESCHED remotely (for the first time) will also send 1578 * this IPI. 1579 */ 1580 preempt_fold_need_resched(); 1581 1582 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1583 return; 1584 1585 /* 1586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1587 * traditionally all their work was done from the interrupt return 1588 * path. Now that we actually do some work, we need to make sure 1589 * we do call them. 1590 * 1591 * Some archs already do call them, luckily irq_enter/exit nest 1592 * properly. 1593 * 1594 * Arguably we should visit all archs and update all handlers, 1595 * however a fair share of IPIs are still resched only so this would 1596 * somewhat pessimize the simple resched case. 1597 */ 1598 irq_enter(); 1599 sched_ttwu_pending(); 1600 1601 /* 1602 * Check if someone kicked us for doing the nohz idle load balance. 1603 */ 1604 if (unlikely(got_nohz_idle_kick())) { 1605 this_rq()->idle_balance = 1; 1606 raise_softirq_irqoff(SCHED_SOFTIRQ); 1607 } 1608 irq_exit(); 1609 } 1610 1611 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1612 { 1613 struct rq *rq = cpu_rq(cpu); 1614 1615 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1616 if (!set_nr_if_polling(rq->idle)) 1617 smp_send_reschedule(cpu); 1618 else 1619 trace_sched_wake_idle_without_ipi(cpu); 1620 } 1621 } 1622 1623 bool cpus_share_cache(int this_cpu, int that_cpu) 1624 { 1625 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1626 } 1627 #endif /* CONFIG_SMP */ 1628 1629 static void ttwu_queue(struct task_struct *p, int cpu) 1630 { 1631 struct rq *rq = cpu_rq(cpu); 1632 1633 #if defined(CONFIG_SMP) 1634 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1635 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1636 ttwu_queue_remote(p, cpu); 1637 return; 1638 } 1639 #endif 1640 1641 raw_spin_lock(&rq->lock); 1642 ttwu_do_activate(rq, p, 0); 1643 raw_spin_unlock(&rq->lock); 1644 } 1645 1646 /** 1647 * try_to_wake_up - wake up a thread 1648 * @p: the thread to be awakened 1649 * @state: the mask of task states that can be woken 1650 * @wake_flags: wake modifier flags (WF_*) 1651 * 1652 * Put it on the run-queue if it's not already there. The "current" 1653 * thread is always on the run-queue (except when the actual 1654 * re-schedule is in progress), and as such you're allowed to do 1655 * the simpler "current->state = TASK_RUNNING" to mark yourself 1656 * runnable without the overhead of this. 1657 * 1658 * Return: %true if @p was woken up, %false if it was already running. 1659 * or @state didn't match @p's state. 1660 */ 1661 static int 1662 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1663 { 1664 unsigned long flags; 1665 int cpu, success = 0; 1666 1667 /* 1668 * If we are going to wake up a thread waiting for CONDITION we 1669 * need to ensure that CONDITION=1 done by the caller can not be 1670 * reordered with p->state check below. This pairs with mb() in 1671 * set_current_state() the waiting thread does. 1672 */ 1673 smp_mb__before_spinlock(); 1674 raw_spin_lock_irqsave(&p->pi_lock, flags); 1675 if (!(p->state & state)) 1676 goto out; 1677 1678 success = 1; /* we're going to change ->state */ 1679 cpu = task_cpu(p); 1680 1681 if (p->on_rq && ttwu_remote(p, wake_flags)) 1682 goto stat; 1683 1684 #ifdef CONFIG_SMP 1685 /* 1686 * If the owning (remote) cpu is still in the middle of schedule() with 1687 * this task as prev, wait until its done referencing the task. 1688 */ 1689 while (p->on_cpu) 1690 cpu_relax(); 1691 /* 1692 * Pairs with the smp_wmb() in finish_lock_switch(). 1693 */ 1694 smp_rmb(); 1695 1696 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1697 p->state = TASK_WAKING; 1698 1699 if (p->sched_class->task_waking) 1700 p->sched_class->task_waking(p); 1701 1702 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1703 if (task_cpu(p) != cpu) { 1704 wake_flags |= WF_MIGRATED; 1705 set_task_cpu(p, cpu); 1706 } 1707 #endif /* CONFIG_SMP */ 1708 1709 ttwu_queue(p, cpu); 1710 stat: 1711 ttwu_stat(p, cpu, wake_flags); 1712 out: 1713 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1714 1715 return success; 1716 } 1717 1718 /** 1719 * try_to_wake_up_local - try to wake up a local task with rq lock held 1720 * @p: the thread to be awakened 1721 * 1722 * Put @p on the run-queue if it's not already there. The caller must 1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1724 * the current task. 1725 */ 1726 static void try_to_wake_up_local(struct task_struct *p) 1727 { 1728 struct rq *rq = task_rq(p); 1729 1730 if (WARN_ON_ONCE(rq != this_rq()) || 1731 WARN_ON_ONCE(p == current)) 1732 return; 1733 1734 lockdep_assert_held(&rq->lock); 1735 1736 if (!raw_spin_trylock(&p->pi_lock)) { 1737 raw_spin_unlock(&rq->lock); 1738 raw_spin_lock(&p->pi_lock); 1739 raw_spin_lock(&rq->lock); 1740 } 1741 1742 if (!(p->state & TASK_NORMAL)) 1743 goto out; 1744 1745 if (!p->on_rq) 1746 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1747 1748 ttwu_do_wakeup(rq, p, 0); 1749 ttwu_stat(p, smp_processor_id(), 0); 1750 out: 1751 raw_spin_unlock(&p->pi_lock); 1752 } 1753 1754 /** 1755 * wake_up_process - Wake up a specific process 1756 * @p: The process to be woken up. 1757 * 1758 * Attempt to wake up the nominated process and move it to the set of runnable 1759 * processes. 1760 * 1761 * Return: 1 if the process was woken up, 0 if it was already running. 1762 * 1763 * It may be assumed that this function implies a write memory barrier before 1764 * changing the task state if and only if any tasks are woken up. 1765 */ 1766 int wake_up_process(struct task_struct *p) 1767 { 1768 WARN_ON(task_is_stopped_or_traced(p)); 1769 return try_to_wake_up(p, TASK_NORMAL, 0); 1770 } 1771 EXPORT_SYMBOL(wake_up_process); 1772 1773 int wake_up_state(struct task_struct *p, unsigned int state) 1774 { 1775 return try_to_wake_up(p, state, 0); 1776 } 1777 1778 /* 1779 * Perform scheduler related setup for a newly forked process p. 1780 * p is forked by current. 1781 * 1782 * __sched_fork() is basic setup used by init_idle() too: 1783 */ 1784 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1785 { 1786 p->on_rq = 0; 1787 1788 p->se.on_rq = 0; 1789 p->se.exec_start = 0; 1790 p->se.sum_exec_runtime = 0; 1791 p->se.prev_sum_exec_runtime = 0; 1792 p->se.nr_migrations = 0; 1793 p->se.vruntime = 0; 1794 INIT_LIST_HEAD(&p->se.group_node); 1795 1796 #ifdef CONFIG_SCHEDSTATS 1797 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1798 #endif 1799 1800 RB_CLEAR_NODE(&p->dl.rb_node); 1801 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1802 p->dl.dl_runtime = p->dl.runtime = 0; 1803 p->dl.dl_deadline = p->dl.deadline = 0; 1804 p->dl.dl_period = 0; 1805 p->dl.flags = 0; 1806 1807 INIT_LIST_HEAD(&p->rt.run_list); 1808 1809 #ifdef CONFIG_PREEMPT_NOTIFIERS 1810 INIT_HLIST_HEAD(&p->preempt_notifiers); 1811 #endif 1812 1813 #ifdef CONFIG_NUMA_BALANCING 1814 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1815 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1816 p->mm->numa_scan_seq = 0; 1817 } 1818 1819 if (clone_flags & CLONE_VM) 1820 p->numa_preferred_nid = current->numa_preferred_nid; 1821 else 1822 p->numa_preferred_nid = -1; 1823 1824 p->node_stamp = 0ULL; 1825 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1826 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1827 p->numa_work.next = &p->numa_work; 1828 p->numa_faults_memory = NULL; 1829 p->numa_faults_buffer_memory = NULL; 1830 p->last_task_numa_placement = 0; 1831 p->last_sum_exec_runtime = 0; 1832 1833 INIT_LIST_HEAD(&p->numa_entry); 1834 p->numa_group = NULL; 1835 #endif /* CONFIG_NUMA_BALANCING */ 1836 } 1837 1838 #ifdef CONFIG_NUMA_BALANCING 1839 #ifdef CONFIG_SCHED_DEBUG 1840 void set_numabalancing_state(bool enabled) 1841 { 1842 if (enabled) 1843 sched_feat_set("NUMA"); 1844 else 1845 sched_feat_set("NO_NUMA"); 1846 } 1847 #else 1848 __read_mostly bool numabalancing_enabled; 1849 1850 void set_numabalancing_state(bool enabled) 1851 { 1852 numabalancing_enabled = enabled; 1853 } 1854 #endif /* CONFIG_SCHED_DEBUG */ 1855 1856 #ifdef CONFIG_PROC_SYSCTL 1857 int sysctl_numa_balancing(struct ctl_table *table, int write, 1858 void __user *buffer, size_t *lenp, loff_t *ppos) 1859 { 1860 struct ctl_table t; 1861 int err; 1862 int state = numabalancing_enabled; 1863 1864 if (write && !capable(CAP_SYS_ADMIN)) 1865 return -EPERM; 1866 1867 t = *table; 1868 t.data = &state; 1869 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1870 if (err < 0) 1871 return err; 1872 if (write) 1873 set_numabalancing_state(state); 1874 return err; 1875 } 1876 #endif 1877 #endif 1878 1879 /* 1880 * fork()/clone()-time setup: 1881 */ 1882 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1883 { 1884 unsigned long flags; 1885 int cpu = get_cpu(); 1886 1887 __sched_fork(clone_flags, p); 1888 /* 1889 * We mark the process as running here. This guarantees that 1890 * nobody will actually run it, and a signal or other external 1891 * event cannot wake it up and insert it on the runqueue either. 1892 */ 1893 p->state = TASK_RUNNING; 1894 1895 /* 1896 * Make sure we do not leak PI boosting priority to the child. 1897 */ 1898 p->prio = current->normal_prio; 1899 1900 /* 1901 * Revert to default priority/policy on fork if requested. 1902 */ 1903 if (unlikely(p->sched_reset_on_fork)) { 1904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1905 p->policy = SCHED_NORMAL; 1906 p->static_prio = NICE_TO_PRIO(0); 1907 p->rt_priority = 0; 1908 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1909 p->static_prio = NICE_TO_PRIO(0); 1910 1911 p->prio = p->normal_prio = __normal_prio(p); 1912 set_load_weight(p); 1913 1914 /* 1915 * We don't need the reset flag anymore after the fork. It has 1916 * fulfilled its duty: 1917 */ 1918 p->sched_reset_on_fork = 0; 1919 } 1920 1921 if (dl_prio(p->prio)) { 1922 put_cpu(); 1923 return -EAGAIN; 1924 } else if (rt_prio(p->prio)) { 1925 p->sched_class = &rt_sched_class; 1926 } else { 1927 p->sched_class = &fair_sched_class; 1928 } 1929 1930 if (p->sched_class->task_fork) 1931 p->sched_class->task_fork(p); 1932 1933 /* 1934 * The child is not yet in the pid-hash so no cgroup attach races, 1935 * and the cgroup is pinned to this child due to cgroup_fork() 1936 * is ran before sched_fork(). 1937 * 1938 * Silence PROVE_RCU. 1939 */ 1940 raw_spin_lock_irqsave(&p->pi_lock, flags); 1941 set_task_cpu(p, cpu); 1942 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1943 1944 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1945 if (likely(sched_info_on())) 1946 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1947 #endif 1948 #if defined(CONFIG_SMP) 1949 p->on_cpu = 0; 1950 #endif 1951 init_task_preempt_count(p); 1952 #ifdef CONFIG_SMP 1953 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1954 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1955 #endif 1956 1957 put_cpu(); 1958 return 0; 1959 } 1960 1961 unsigned long to_ratio(u64 period, u64 runtime) 1962 { 1963 if (runtime == RUNTIME_INF) 1964 return 1ULL << 20; 1965 1966 /* 1967 * Doing this here saves a lot of checks in all 1968 * the calling paths, and returning zero seems 1969 * safe for them anyway. 1970 */ 1971 if (period == 0) 1972 return 0; 1973 1974 return div64_u64(runtime << 20, period); 1975 } 1976 1977 #ifdef CONFIG_SMP 1978 inline struct dl_bw *dl_bw_of(int i) 1979 { 1980 return &cpu_rq(i)->rd->dl_bw; 1981 } 1982 1983 static inline int dl_bw_cpus(int i) 1984 { 1985 struct root_domain *rd = cpu_rq(i)->rd; 1986 int cpus = 0; 1987 1988 for_each_cpu_and(i, rd->span, cpu_active_mask) 1989 cpus++; 1990 1991 return cpus; 1992 } 1993 #else 1994 inline struct dl_bw *dl_bw_of(int i) 1995 { 1996 return &cpu_rq(i)->dl.dl_bw; 1997 } 1998 1999 static inline int dl_bw_cpus(int i) 2000 { 2001 return 1; 2002 } 2003 #endif 2004 2005 static inline 2006 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 2007 { 2008 dl_b->total_bw -= tsk_bw; 2009 } 2010 2011 static inline 2012 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 2013 { 2014 dl_b->total_bw += tsk_bw; 2015 } 2016 2017 static inline 2018 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 2019 { 2020 return dl_b->bw != -1 && 2021 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 2022 } 2023 2024 /* 2025 * We must be sure that accepting a new task (or allowing changing the 2026 * parameters of an existing one) is consistent with the bandwidth 2027 * constraints. If yes, this function also accordingly updates the currently 2028 * allocated bandwidth to reflect the new situation. 2029 * 2030 * This function is called while holding p's rq->lock. 2031 */ 2032 static int dl_overflow(struct task_struct *p, int policy, 2033 const struct sched_attr *attr) 2034 { 2035 2036 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2037 u64 period = attr->sched_period ?: attr->sched_deadline; 2038 u64 runtime = attr->sched_runtime; 2039 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2040 int cpus, err = -1; 2041 2042 if (new_bw == p->dl.dl_bw) 2043 return 0; 2044 2045 /* 2046 * Either if a task, enters, leave, or stays -deadline but changes 2047 * its parameters, we may need to update accordingly the total 2048 * allocated bandwidth of the container. 2049 */ 2050 raw_spin_lock(&dl_b->lock); 2051 cpus = dl_bw_cpus(task_cpu(p)); 2052 if (dl_policy(policy) && !task_has_dl_policy(p) && 2053 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2054 __dl_add(dl_b, new_bw); 2055 err = 0; 2056 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2057 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2058 __dl_clear(dl_b, p->dl.dl_bw); 2059 __dl_add(dl_b, new_bw); 2060 err = 0; 2061 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2062 __dl_clear(dl_b, p->dl.dl_bw); 2063 err = 0; 2064 } 2065 raw_spin_unlock(&dl_b->lock); 2066 2067 return err; 2068 } 2069 2070 extern void init_dl_bw(struct dl_bw *dl_b); 2071 2072 /* 2073 * wake_up_new_task - wake up a newly created task for the first time. 2074 * 2075 * This function will do some initial scheduler statistics housekeeping 2076 * that must be done for every newly created context, then puts the task 2077 * on the runqueue and wakes it. 2078 */ 2079 void wake_up_new_task(struct task_struct *p) 2080 { 2081 unsigned long flags; 2082 struct rq *rq; 2083 2084 raw_spin_lock_irqsave(&p->pi_lock, flags); 2085 #ifdef CONFIG_SMP 2086 /* 2087 * Fork balancing, do it here and not earlier because: 2088 * - cpus_allowed can change in the fork path 2089 * - any previously selected cpu might disappear through hotplug 2090 */ 2091 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2092 #endif 2093 2094 /* Initialize new task's runnable average */ 2095 init_task_runnable_average(p); 2096 rq = __task_rq_lock(p); 2097 activate_task(rq, p, 0); 2098 p->on_rq = 1; 2099 trace_sched_wakeup_new(p, true); 2100 check_preempt_curr(rq, p, WF_FORK); 2101 #ifdef CONFIG_SMP 2102 if (p->sched_class->task_woken) 2103 p->sched_class->task_woken(rq, p); 2104 #endif 2105 task_rq_unlock(rq, p, &flags); 2106 } 2107 2108 #ifdef CONFIG_PREEMPT_NOTIFIERS 2109 2110 /** 2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2112 * @notifier: notifier struct to register 2113 */ 2114 void preempt_notifier_register(struct preempt_notifier *notifier) 2115 { 2116 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2117 } 2118 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2119 2120 /** 2121 * preempt_notifier_unregister - no longer interested in preemption notifications 2122 * @notifier: notifier struct to unregister 2123 * 2124 * This is safe to call from within a preemption notifier. 2125 */ 2126 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2127 { 2128 hlist_del(¬ifier->link); 2129 } 2130 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2131 2132 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2133 { 2134 struct preempt_notifier *notifier; 2135 2136 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2137 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2138 } 2139 2140 static void 2141 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2142 struct task_struct *next) 2143 { 2144 struct preempt_notifier *notifier; 2145 2146 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2147 notifier->ops->sched_out(notifier, next); 2148 } 2149 2150 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2151 2152 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2153 { 2154 } 2155 2156 static void 2157 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2158 struct task_struct *next) 2159 { 2160 } 2161 2162 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2163 2164 /** 2165 * prepare_task_switch - prepare to switch tasks 2166 * @rq: the runqueue preparing to switch 2167 * @prev: the current task that is being switched out 2168 * @next: the task we are going to switch to. 2169 * 2170 * This is called with the rq lock held and interrupts off. It must 2171 * be paired with a subsequent finish_task_switch after the context 2172 * switch. 2173 * 2174 * prepare_task_switch sets up locking and calls architecture specific 2175 * hooks. 2176 */ 2177 static inline void 2178 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2179 struct task_struct *next) 2180 { 2181 trace_sched_switch(prev, next); 2182 sched_info_switch(rq, prev, next); 2183 perf_event_task_sched_out(prev, next); 2184 fire_sched_out_preempt_notifiers(prev, next); 2185 prepare_lock_switch(rq, next); 2186 prepare_arch_switch(next); 2187 } 2188 2189 /** 2190 * finish_task_switch - clean up after a task-switch 2191 * @rq: runqueue associated with task-switch 2192 * @prev: the thread we just switched away from. 2193 * 2194 * finish_task_switch must be called after the context switch, paired 2195 * with a prepare_task_switch call before the context switch. 2196 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2197 * and do any other architecture-specific cleanup actions. 2198 * 2199 * Note that we may have delayed dropping an mm in context_switch(). If 2200 * so, we finish that here outside of the runqueue lock. (Doing it 2201 * with the lock held can cause deadlocks; see schedule() for 2202 * details.) 2203 */ 2204 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2205 __releases(rq->lock) 2206 { 2207 struct mm_struct *mm = rq->prev_mm; 2208 long prev_state; 2209 2210 rq->prev_mm = NULL; 2211 2212 /* 2213 * A task struct has one reference for the use as "current". 2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2215 * schedule one last time. The schedule call will never return, and 2216 * the scheduled task must drop that reference. 2217 * The test for TASK_DEAD must occur while the runqueue locks are 2218 * still held, otherwise prev could be scheduled on another cpu, die 2219 * there before we look at prev->state, and then the reference would 2220 * be dropped twice. 2221 * Manfred Spraul <manfred@colorfullife.com> 2222 */ 2223 prev_state = prev->state; 2224 vtime_task_switch(prev); 2225 finish_arch_switch(prev); 2226 perf_event_task_sched_in(prev, current); 2227 finish_lock_switch(rq, prev); 2228 finish_arch_post_lock_switch(); 2229 2230 fire_sched_in_preempt_notifiers(current); 2231 if (mm) 2232 mmdrop(mm); 2233 if (unlikely(prev_state == TASK_DEAD)) { 2234 if (prev->sched_class->task_dead) 2235 prev->sched_class->task_dead(prev); 2236 2237 /* 2238 * Remove function-return probe instances associated with this 2239 * task and put them back on the free list. 2240 */ 2241 kprobe_flush_task(prev); 2242 put_task_struct(prev); 2243 } 2244 2245 tick_nohz_task_switch(current); 2246 } 2247 2248 #ifdef CONFIG_SMP 2249 2250 /* rq->lock is NOT held, but preemption is disabled */ 2251 static inline void post_schedule(struct rq *rq) 2252 { 2253 if (rq->post_schedule) { 2254 unsigned long flags; 2255 2256 raw_spin_lock_irqsave(&rq->lock, flags); 2257 if (rq->curr->sched_class->post_schedule) 2258 rq->curr->sched_class->post_schedule(rq); 2259 raw_spin_unlock_irqrestore(&rq->lock, flags); 2260 2261 rq->post_schedule = 0; 2262 } 2263 } 2264 2265 #else 2266 2267 static inline void post_schedule(struct rq *rq) 2268 { 2269 } 2270 2271 #endif 2272 2273 /** 2274 * schedule_tail - first thing a freshly forked thread must call. 2275 * @prev: the thread we just switched away from. 2276 */ 2277 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2278 __releases(rq->lock) 2279 { 2280 struct rq *rq = this_rq(); 2281 2282 finish_task_switch(rq, prev); 2283 2284 /* 2285 * FIXME: do we need to worry about rq being invalidated by the 2286 * task_switch? 2287 */ 2288 post_schedule(rq); 2289 2290 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2291 /* In this case, finish_task_switch does not reenable preemption */ 2292 preempt_enable(); 2293 #endif 2294 if (current->set_child_tid) 2295 put_user(task_pid_vnr(current), current->set_child_tid); 2296 } 2297 2298 /* 2299 * context_switch - switch to the new MM and the new 2300 * thread's register state. 2301 */ 2302 static inline void 2303 context_switch(struct rq *rq, struct task_struct *prev, 2304 struct task_struct *next) 2305 { 2306 struct mm_struct *mm, *oldmm; 2307 2308 prepare_task_switch(rq, prev, next); 2309 2310 mm = next->mm; 2311 oldmm = prev->active_mm; 2312 /* 2313 * For paravirt, this is coupled with an exit in switch_to to 2314 * combine the page table reload and the switch backend into 2315 * one hypercall. 2316 */ 2317 arch_start_context_switch(prev); 2318 2319 if (!mm) { 2320 next->active_mm = oldmm; 2321 atomic_inc(&oldmm->mm_count); 2322 enter_lazy_tlb(oldmm, next); 2323 } else 2324 switch_mm(oldmm, mm, next); 2325 2326 if (!prev->mm) { 2327 prev->active_mm = NULL; 2328 rq->prev_mm = oldmm; 2329 } 2330 /* 2331 * Since the runqueue lock will be released by the next 2332 * task (which is an invalid locking op but in the case 2333 * of the scheduler it's an obvious special-case), so we 2334 * do an early lockdep release here: 2335 */ 2336 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2337 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2338 #endif 2339 2340 context_tracking_task_switch(prev, next); 2341 /* Here we just switch the register state and the stack. */ 2342 switch_to(prev, next, prev); 2343 2344 barrier(); 2345 /* 2346 * this_rq must be evaluated again because prev may have moved 2347 * CPUs since it called schedule(), thus the 'rq' on its stack 2348 * frame will be invalid. 2349 */ 2350 finish_task_switch(this_rq(), prev); 2351 } 2352 2353 /* 2354 * nr_running and nr_context_switches: 2355 * 2356 * externally visible scheduler statistics: current number of runnable 2357 * threads, total number of context switches performed since bootup. 2358 */ 2359 unsigned long nr_running(void) 2360 { 2361 unsigned long i, sum = 0; 2362 2363 for_each_online_cpu(i) 2364 sum += cpu_rq(i)->nr_running; 2365 2366 return sum; 2367 } 2368 2369 unsigned long long nr_context_switches(void) 2370 { 2371 int i; 2372 unsigned long long sum = 0; 2373 2374 for_each_possible_cpu(i) 2375 sum += cpu_rq(i)->nr_switches; 2376 2377 return sum; 2378 } 2379 2380 unsigned long nr_iowait(void) 2381 { 2382 unsigned long i, sum = 0; 2383 2384 for_each_possible_cpu(i) 2385 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2386 2387 return sum; 2388 } 2389 2390 unsigned long nr_iowait_cpu(int cpu) 2391 { 2392 struct rq *this = cpu_rq(cpu); 2393 return atomic_read(&this->nr_iowait); 2394 } 2395 2396 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2397 { 2398 struct rq *this = this_rq(); 2399 *nr_waiters = atomic_read(&this->nr_iowait); 2400 *load = this->cpu_load[0]; 2401 } 2402 2403 #ifdef CONFIG_SMP 2404 2405 /* 2406 * sched_exec - execve() is a valuable balancing opportunity, because at 2407 * this point the task has the smallest effective memory and cache footprint. 2408 */ 2409 void sched_exec(void) 2410 { 2411 struct task_struct *p = current; 2412 unsigned long flags; 2413 int dest_cpu; 2414 2415 raw_spin_lock_irqsave(&p->pi_lock, flags); 2416 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2417 if (dest_cpu == smp_processor_id()) 2418 goto unlock; 2419 2420 if (likely(cpu_active(dest_cpu))) { 2421 struct migration_arg arg = { p, dest_cpu }; 2422 2423 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2424 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2425 return; 2426 } 2427 unlock: 2428 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2429 } 2430 2431 #endif 2432 2433 DEFINE_PER_CPU(struct kernel_stat, kstat); 2434 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2435 2436 EXPORT_PER_CPU_SYMBOL(kstat); 2437 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2438 2439 /* 2440 * Return any ns on the sched_clock that have not yet been accounted in 2441 * @p in case that task is currently running. 2442 * 2443 * Called with task_rq_lock() held on @rq. 2444 */ 2445 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2446 { 2447 u64 ns = 0; 2448 2449 /* 2450 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2451 * project cycles that may never be accounted to this 2452 * thread, breaking clock_gettime(). 2453 */ 2454 if (task_current(rq, p) && p->on_rq) { 2455 update_rq_clock(rq); 2456 ns = rq_clock_task(rq) - p->se.exec_start; 2457 if ((s64)ns < 0) 2458 ns = 0; 2459 } 2460 2461 return ns; 2462 } 2463 2464 unsigned long long task_delta_exec(struct task_struct *p) 2465 { 2466 unsigned long flags; 2467 struct rq *rq; 2468 u64 ns = 0; 2469 2470 rq = task_rq_lock(p, &flags); 2471 ns = do_task_delta_exec(p, rq); 2472 task_rq_unlock(rq, p, &flags); 2473 2474 return ns; 2475 } 2476 2477 /* 2478 * Return accounted runtime for the task. 2479 * In case the task is currently running, return the runtime plus current's 2480 * pending runtime that have not been accounted yet. 2481 */ 2482 unsigned long long task_sched_runtime(struct task_struct *p) 2483 { 2484 unsigned long flags; 2485 struct rq *rq; 2486 u64 ns = 0; 2487 2488 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2489 /* 2490 * 64-bit doesn't need locks to atomically read a 64bit value. 2491 * So we have a optimization chance when the task's delta_exec is 0. 2492 * Reading ->on_cpu is racy, but this is ok. 2493 * 2494 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2495 * If we race with it entering cpu, unaccounted time is 0. This is 2496 * indistinguishable from the read occurring a few cycles earlier. 2497 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2498 * been accounted, so we're correct here as well. 2499 */ 2500 if (!p->on_cpu || !p->on_rq) 2501 return p->se.sum_exec_runtime; 2502 #endif 2503 2504 rq = task_rq_lock(p, &flags); 2505 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2506 task_rq_unlock(rq, p, &flags); 2507 2508 return ns; 2509 } 2510 2511 /* 2512 * This function gets called by the timer code, with HZ frequency. 2513 * We call it with interrupts disabled. 2514 */ 2515 void scheduler_tick(void) 2516 { 2517 int cpu = smp_processor_id(); 2518 struct rq *rq = cpu_rq(cpu); 2519 struct task_struct *curr = rq->curr; 2520 2521 sched_clock_tick(); 2522 2523 raw_spin_lock(&rq->lock); 2524 update_rq_clock(rq); 2525 curr->sched_class->task_tick(rq, curr, 0); 2526 update_cpu_load_active(rq); 2527 raw_spin_unlock(&rq->lock); 2528 2529 perf_event_task_tick(); 2530 2531 #ifdef CONFIG_SMP 2532 rq->idle_balance = idle_cpu(cpu); 2533 trigger_load_balance(rq); 2534 #endif 2535 rq_last_tick_reset(rq); 2536 } 2537 2538 #ifdef CONFIG_NO_HZ_FULL 2539 /** 2540 * scheduler_tick_max_deferment 2541 * 2542 * Keep at least one tick per second when a single 2543 * active task is running because the scheduler doesn't 2544 * yet completely support full dynticks environment. 2545 * 2546 * This makes sure that uptime, CFS vruntime, load 2547 * balancing, etc... continue to move forward, even 2548 * with a very low granularity. 2549 * 2550 * Return: Maximum deferment in nanoseconds. 2551 */ 2552 u64 scheduler_tick_max_deferment(void) 2553 { 2554 struct rq *rq = this_rq(); 2555 unsigned long next, now = ACCESS_ONCE(jiffies); 2556 2557 next = rq->last_sched_tick + HZ; 2558 2559 if (time_before_eq(next, now)) 2560 return 0; 2561 2562 return jiffies_to_nsecs(next - now); 2563 } 2564 #endif 2565 2566 notrace unsigned long get_parent_ip(unsigned long addr) 2567 { 2568 if (in_lock_functions(addr)) { 2569 addr = CALLER_ADDR2; 2570 if (in_lock_functions(addr)) 2571 addr = CALLER_ADDR3; 2572 } 2573 return addr; 2574 } 2575 2576 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2577 defined(CONFIG_PREEMPT_TRACER)) 2578 2579 void preempt_count_add(int val) 2580 { 2581 #ifdef CONFIG_DEBUG_PREEMPT 2582 /* 2583 * Underflow? 2584 */ 2585 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2586 return; 2587 #endif 2588 __preempt_count_add(val); 2589 #ifdef CONFIG_DEBUG_PREEMPT 2590 /* 2591 * Spinlock count overflowing soon? 2592 */ 2593 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2594 PREEMPT_MASK - 10); 2595 #endif 2596 if (preempt_count() == val) { 2597 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2598 #ifdef CONFIG_DEBUG_PREEMPT 2599 current->preempt_disable_ip = ip; 2600 #endif 2601 trace_preempt_off(CALLER_ADDR0, ip); 2602 } 2603 } 2604 EXPORT_SYMBOL(preempt_count_add); 2605 NOKPROBE_SYMBOL(preempt_count_add); 2606 2607 void preempt_count_sub(int val) 2608 { 2609 #ifdef CONFIG_DEBUG_PREEMPT 2610 /* 2611 * Underflow? 2612 */ 2613 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2614 return; 2615 /* 2616 * Is the spinlock portion underflowing? 2617 */ 2618 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2619 !(preempt_count() & PREEMPT_MASK))) 2620 return; 2621 #endif 2622 2623 if (preempt_count() == val) 2624 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2625 __preempt_count_sub(val); 2626 } 2627 EXPORT_SYMBOL(preempt_count_sub); 2628 NOKPROBE_SYMBOL(preempt_count_sub); 2629 2630 #endif 2631 2632 /* 2633 * Print scheduling while atomic bug: 2634 */ 2635 static noinline void __schedule_bug(struct task_struct *prev) 2636 { 2637 if (oops_in_progress) 2638 return; 2639 2640 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2641 prev->comm, prev->pid, preempt_count()); 2642 2643 debug_show_held_locks(prev); 2644 print_modules(); 2645 if (irqs_disabled()) 2646 print_irqtrace_events(prev); 2647 #ifdef CONFIG_DEBUG_PREEMPT 2648 if (in_atomic_preempt_off()) { 2649 pr_err("Preemption disabled at:"); 2650 print_ip_sym(current->preempt_disable_ip); 2651 pr_cont("\n"); 2652 } 2653 #endif 2654 dump_stack(); 2655 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2656 } 2657 2658 /* 2659 * Various schedule()-time debugging checks and statistics: 2660 */ 2661 static inline void schedule_debug(struct task_struct *prev) 2662 { 2663 /* 2664 * Test if we are atomic. Since do_exit() needs to call into 2665 * schedule() atomically, we ignore that path. Otherwise whine 2666 * if we are scheduling when we should not. 2667 */ 2668 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2669 __schedule_bug(prev); 2670 rcu_sleep_check(); 2671 2672 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2673 2674 schedstat_inc(this_rq(), sched_count); 2675 } 2676 2677 /* 2678 * Pick up the highest-prio task: 2679 */ 2680 static inline struct task_struct * 2681 pick_next_task(struct rq *rq, struct task_struct *prev) 2682 { 2683 const struct sched_class *class = &fair_sched_class; 2684 struct task_struct *p; 2685 2686 /* 2687 * Optimization: we know that if all tasks are in 2688 * the fair class we can call that function directly: 2689 */ 2690 if (likely(prev->sched_class == class && 2691 rq->nr_running == rq->cfs.h_nr_running)) { 2692 p = fair_sched_class.pick_next_task(rq, prev); 2693 if (unlikely(p == RETRY_TASK)) 2694 goto again; 2695 2696 /* assumes fair_sched_class->next == idle_sched_class */ 2697 if (unlikely(!p)) 2698 p = idle_sched_class.pick_next_task(rq, prev); 2699 2700 return p; 2701 } 2702 2703 again: 2704 for_each_class(class) { 2705 p = class->pick_next_task(rq, prev); 2706 if (p) { 2707 if (unlikely(p == RETRY_TASK)) 2708 goto again; 2709 return p; 2710 } 2711 } 2712 2713 BUG(); /* the idle class will always have a runnable task */ 2714 } 2715 2716 /* 2717 * __schedule() is the main scheduler function. 2718 * 2719 * The main means of driving the scheduler and thus entering this function are: 2720 * 2721 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2722 * 2723 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2724 * paths. For example, see arch/x86/entry_64.S. 2725 * 2726 * To drive preemption between tasks, the scheduler sets the flag in timer 2727 * interrupt handler scheduler_tick(). 2728 * 2729 * 3. Wakeups don't really cause entry into schedule(). They add a 2730 * task to the run-queue and that's it. 2731 * 2732 * Now, if the new task added to the run-queue preempts the current 2733 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2734 * called on the nearest possible occasion: 2735 * 2736 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2737 * 2738 * - in syscall or exception context, at the next outmost 2739 * preempt_enable(). (this might be as soon as the wake_up()'s 2740 * spin_unlock()!) 2741 * 2742 * - in IRQ context, return from interrupt-handler to 2743 * preemptible context 2744 * 2745 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2746 * then at the next: 2747 * 2748 * - cond_resched() call 2749 * - explicit schedule() call 2750 * - return from syscall or exception to user-space 2751 * - return from interrupt-handler to user-space 2752 */ 2753 static void __sched __schedule(void) 2754 { 2755 struct task_struct *prev, *next; 2756 unsigned long *switch_count; 2757 struct rq *rq; 2758 int cpu; 2759 2760 need_resched: 2761 preempt_disable(); 2762 cpu = smp_processor_id(); 2763 rq = cpu_rq(cpu); 2764 rcu_note_context_switch(cpu); 2765 prev = rq->curr; 2766 2767 schedule_debug(prev); 2768 2769 if (sched_feat(HRTICK)) 2770 hrtick_clear(rq); 2771 2772 /* 2773 * Make sure that signal_pending_state()->signal_pending() below 2774 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2775 * done by the caller to avoid the race with signal_wake_up(). 2776 */ 2777 smp_mb__before_spinlock(); 2778 raw_spin_lock_irq(&rq->lock); 2779 2780 switch_count = &prev->nivcsw; 2781 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2782 if (unlikely(signal_pending_state(prev->state, prev))) { 2783 prev->state = TASK_RUNNING; 2784 } else { 2785 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2786 prev->on_rq = 0; 2787 2788 /* 2789 * If a worker went to sleep, notify and ask workqueue 2790 * whether it wants to wake up a task to maintain 2791 * concurrency. 2792 */ 2793 if (prev->flags & PF_WQ_WORKER) { 2794 struct task_struct *to_wakeup; 2795 2796 to_wakeup = wq_worker_sleeping(prev, cpu); 2797 if (to_wakeup) 2798 try_to_wake_up_local(to_wakeup); 2799 } 2800 } 2801 switch_count = &prev->nvcsw; 2802 } 2803 2804 if (prev->on_rq || rq->skip_clock_update < 0) 2805 update_rq_clock(rq); 2806 2807 next = pick_next_task(rq, prev); 2808 clear_tsk_need_resched(prev); 2809 clear_preempt_need_resched(); 2810 rq->skip_clock_update = 0; 2811 2812 if (likely(prev != next)) { 2813 rq->nr_switches++; 2814 rq->curr = next; 2815 ++*switch_count; 2816 2817 context_switch(rq, prev, next); /* unlocks the rq */ 2818 /* 2819 * The context switch have flipped the stack from under us 2820 * and restored the local variables which were saved when 2821 * this task called schedule() in the past. prev == current 2822 * is still correct, but it can be moved to another cpu/rq. 2823 */ 2824 cpu = smp_processor_id(); 2825 rq = cpu_rq(cpu); 2826 } else 2827 raw_spin_unlock_irq(&rq->lock); 2828 2829 post_schedule(rq); 2830 2831 sched_preempt_enable_no_resched(); 2832 if (need_resched()) 2833 goto need_resched; 2834 } 2835 2836 static inline void sched_submit_work(struct task_struct *tsk) 2837 { 2838 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2839 return; 2840 /* 2841 * If we are going to sleep and we have plugged IO queued, 2842 * make sure to submit it to avoid deadlocks. 2843 */ 2844 if (blk_needs_flush_plug(tsk)) 2845 blk_schedule_flush_plug(tsk); 2846 } 2847 2848 asmlinkage __visible void __sched schedule(void) 2849 { 2850 struct task_struct *tsk = current; 2851 2852 sched_submit_work(tsk); 2853 __schedule(); 2854 } 2855 EXPORT_SYMBOL(schedule); 2856 2857 #ifdef CONFIG_CONTEXT_TRACKING 2858 asmlinkage __visible void __sched schedule_user(void) 2859 { 2860 /* 2861 * If we come here after a random call to set_need_resched(), 2862 * or we have been woken up remotely but the IPI has not yet arrived, 2863 * we haven't yet exited the RCU idle mode. Do it here manually until 2864 * we find a better solution. 2865 */ 2866 user_exit(); 2867 schedule(); 2868 user_enter(); 2869 } 2870 #endif 2871 2872 /** 2873 * schedule_preempt_disabled - called with preemption disabled 2874 * 2875 * Returns with preemption disabled. Note: preempt_count must be 1 2876 */ 2877 void __sched schedule_preempt_disabled(void) 2878 { 2879 sched_preempt_enable_no_resched(); 2880 schedule(); 2881 preempt_disable(); 2882 } 2883 2884 #ifdef CONFIG_PREEMPT 2885 /* 2886 * this is the entry point to schedule() from in-kernel preemption 2887 * off of preempt_enable. Kernel preemptions off return from interrupt 2888 * occur there and call schedule directly. 2889 */ 2890 asmlinkage __visible void __sched notrace preempt_schedule(void) 2891 { 2892 /* 2893 * If there is a non-zero preempt_count or interrupts are disabled, 2894 * we do not want to preempt the current task. Just return.. 2895 */ 2896 if (likely(!preemptible())) 2897 return; 2898 2899 do { 2900 __preempt_count_add(PREEMPT_ACTIVE); 2901 __schedule(); 2902 __preempt_count_sub(PREEMPT_ACTIVE); 2903 2904 /* 2905 * Check again in case we missed a preemption opportunity 2906 * between schedule and now. 2907 */ 2908 barrier(); 2909 } while (need_resched()); 2910 } 2911 NOKPROBE_SYMBOL(preempt_schedule); 2912 EXPORT_SYMBOL(preempt_schedule); 2913 #endif /* CONFIG_PREEMPT */ 2914 2915 /* 2916 * this is the entry point to schedule() from kernel preemption 2917 * off of irq context. 2918 * Note, that this is called and return with irqs disabled. This will 2919 * protect us against recursive calling from irq. 2920 */ 2921 asmlinkage __visible void __sched preempt_schedule_irq(void) 2922 { 2923 enum ctx_state prev_state; 2924 2925 /* Catch callers which need to be fixed */ 2926 BUG_ON(preempt_count() || !irqs_disabled()); 2927 2928 prev_state = exception_enter(); 2929 2930 do { 2931 __preempt_count_add(PREEMPT_ACTIVE); 2932 local_irq_enable(); 2933 __schedule(); 2934 local_irq_disable(); 2935 __preempt_count_sub(PREEMPT_ACTIVE); 2936 2937 /* 2938 * Check again in case we missed a preemption opportunity 2939 * between schedule and now. 2940 */ 2941 barrier(); 2942 } while (need_resched()); 2943 2944 exception_exit(prev_state); 2945 } 2946 2947 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2948 void *key) 2949 { 2950 return try_to_wake_up(curr->private, mode, wake_flags); 2951 } 2952 EXPORT_SYMBOL(default_wake_function); 2953 2954 #ifdef CONFIG_RT_MUTEXES 2955 2956 /* 2957 * rt_mutex_setprio - set the current priority of a task 2958 * @p: task 2959 * @prio: prio value (kernel-internal form) 2960 * 2961 * This function changes the 'effective' priority of a task. It does 2962 * not touch ->normal_prio like __setscheduler(). 2963 * 2964 * Used by the rt_mutex code to implement priority inheritance 2965 * logic. Call site only calls if the priority of the task changed. 2966 */ 2967 void rt_mutex_setprio(struct task_struct *p, int prio) 2968 { 2969 int oldprio, on_rq, running, enqueue_flag = 0; 2970 struct rq *rq; 2971 const struct sched_class *prev_class; 2972 2973 BUG_ON(prio > MAX_PRIO); 2974 2975 rq = __task_rq_lock(p); 2976 2977 /* 2978 * Idle task boosting is a nono in general. There is one 2979 * exception, when PREEMPT_RT and NOHZ is active: 2980 * 2981 * The idle task calls get_next_timer_interrupt() and holds 2982 * the timer wheel base->lock on the CPU and another CPU wants 2983 * to access the timer (probably to cancel it). We can safely 2984 * ignore the boosting request, as the idle CPU runs this code 2985 * with interrupts disabled and will complete the lock 2986 * protected section without being interrupted. So there is no 2987 * real need to boost. 2988 */ 2989 if (unlikely(p == rq->idle)) { 2990 WARN_ON(p != rq->curr); 2991 WARN_ON(p->pi_blocked_on); 2992 goto out_unlock; 2993 } 2994 2995 trace_sched_pi_setprio(p, prio); 2996 oldprio = p->prio; 2997 prev_class = p->sched_class; 2998 on_rq = p->on_rq; 2999 running = task_current(rq, p); 3000 if (on_rq) 3001 dequeue_task(rq, p, 0); 3002 if (running) 3003 p->sched_class->put_prev_task(rq, p); 3004 3005 /* 3006 * Boosting condition are: 3007 * 1. -rt task is running and holds mutex A 3008 * --> -dl task blocks on mutex A 3009 * 3010 * 2. -dl task is running and holds mutex A 3011 * --> -dl task blocks on mutex A and could preempt the 3012 * running task 3013 */ 3014 if (dl_prio(prio)) { 3015 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3016 if (!dl_prio(p->normal_prio) || 3017 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3018 p->dl.dl_boosted = 1; 3019 p->dl.dl_throttled = 0; 3020 enqueue_flag = ENQUEUE_REPLENISH; 3021 } else 3022 p->dl.dl_boosted = 0; 3023 p->sched_class = &dl_sched_class; 3024 } else if (rt_prio(prio)) { 3025 if (dl_prio(oldprio)) 3026 p->dl.dl_boosted = 0; 3027 if (oldprio < prio) 3028 enqueue_flag = ENQUEUE_HEAD; 3029 p->sched_class = &rt_sched_class; 3030 } else { 3031 if (dl_prio(oldprio)) 3032 p->dl.dl_boosted = 0; 3033 p->sched_class = &fair_sched_class; 3034 } 3035 3036 p->prio = prio; 3037 3038 if (running) 3039 p->sched_class->set_curr_task(rq); 3040 if (on_rq) 3041 enqueue_task(rq, p, enqueue_flag); 3042 3043 check_class_changed(rq, p, prev_class, oldprio); 3044 out_unlock: 3045 __task_rq_unlock(rq); 3046 } 3047 #endif 3048 3049 void set_user_nice(struct task_struct *p, long nice) 3050 { 3051 int old_prio, delta, on_rq; 3052 unsigned long flags; 3053 struct rq *rq; 3054 3055 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3056 return; 3057 /* 3058 * We have to be careful, if called from sys_setpriority(), 3059 * the task might be in the middle of scheduling on another CPU. 3060 */ 3061 rq = task_rq_lock(p, &flags); 3062 /* 3063 * The RT priorities are set via sched_setscheduler(), but we still 3064 * allow the 'normal' nice value to be set - but as expected 3065 * it wont have any effect on scheduling until the task is 3066 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3067 */ 3068 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3069 p->static_prio = NICE_TO_PRIO(nice); 3070 goto out_unlock; 3071 } 3072 on_rq = p->on_rq; 3073 if (on_rq) 3074 dequeue_task(rq, p, 0); 3075 3076 p->static_prio = NICE_TO_PRIO(nice); 3077 set_load_weight(p); 3078 old_prio = p->prio; 3079 p->prio = effective_prio(p); 3080 delta = p->prio - old_prio; 3081 3082 if (on_rq) { 3083 enqueue_task(rq, p, 0); 3084 /* 3085 * If the task increased its priority or is running and 3086 * lowered its priority, then reschedule its CPU: 3087 */ 3088 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3089 resched_curr(rq); 3090 } 3091 out_unlock: 3092 task_rq_unlock(rq, p, &flags); 3093 } 3094 EXPORT_SYMBOL(set_user_nice); 3095 3096 /* 3097 * can_nice - check if a task can reduce its nice value 3098 * @p: task 3099 * @nice: nice value 3100 */ 3101 int can_nice(const struct task_struct *p, const int nice) 3102 { 3103 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3104 int nice_rlim = nice_to_rlimit(nice); 3105 3106 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3107 capable(CAP_SYS_NICE)); 3108 } 3109 3110 #ifdef __ARCH_WANT_SYS_NICE 3111 3112 /* 3113 * sys_nice - change the priority of the current process. 3114 * @increment: priority increment 3115 * 3116 * sys_setpriority is a more generic, but much slower function that 3117 * does similar things. 3118 */ 3119 SYSCALL_DEFINE1(nice, int, increment) 3120 { 3121 long nice, retval; 3122 3123 /* 3124 * Setpriority might change our priority at the same moment. 3125 * We don't have to worry. Conceptually one call occurs first 3126 * and we have a single winner. 3127 */ 3128 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3129 nice = task_nice(current) + increment; 3130 3131 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3132 if (increment < 0 && !can_nice(current, nice)) 3133 return -EPERM; 3134 3135 retval = security_task_setnice(current, nice); 3136 if (retval) 3137 return retval; 3138 3139 set_user_nice(current, nice); 3140 return 0; 3141 } 3142 3143 #endif 3144 3145 /** 3146 * task_prio - return the priority value of a given task. 3147 * @p: the task in question. 3148 * 3149 * Return: The priority value as seen by users in /proc. 3150 * RT tasks are offset by -200. Normal tasks are centered 3151 * around 0, value goes from -16 to +15. 3152 */ 3153 int task_prio(const struct task_struct *p) 3154 { 3155 return p->prio - MAX_RT_PRIO; 3156 } 3157 3158 /** 3159 * idle_cpu - is a given cpu idle currently? 3160 * @cpu: the processor in question. 3161 * 3162 * Return: 1 if the CPU is currently idle. 0 otherwise. 3163 */ 3164 int idle_cpu(int cpu) 3165 { 3166 struct rq *rq = cpu_rq(cpu); 3167 3168 if (rq->curr != rq->idle) 3169 return 0; 3170 3171 if (rq->nr_running) 3172 return 0; 3173 3174 #ifdef CONFIG_SMP 3175 if (!llist_empty(&rq->wake_list)) 3176 return 0; 3177 #endif 3178 3179 return 1; 3180 } 3181 3182 /** 3183 * idle_task - return the idle task for a given cpu. 3184 * @cpu: the processor in question. 3185 * 3186 * Return: The idle task for the cpu @cpu. 3187 */ 3188 struct task_struct *idle_task(int cpu) 3189 { 3190 return cpu_rq(cpu)->idle; 3191 } 3192 3193 /** 3194 * find_process_by_pid - find a process with a matching PID value. 3195 * @pid: the pid in question. 3196 * 3197 * The task of @pid, if found. %NULL otherwise. 3198 */ 3199 static struct task_struct *find_process_by_pid(pid_t pid) 3200 { 3201 return pid ? find_task_by_vpid(pid) : current; 3202 } 3203 3204 /* 3205 * This function initializes the sched_dl_entity of a newly becoming 3206 * SCHED_DEADLINE task. 3207 * 3208 * Only the static values are considered here, the actual runtime and the 3209 * absolute deadline will be properly calculated when the task is enqueued 3210 * for the first time with its new policy. 3211 */ 3212 static void 3213 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3214 { 3215 struct sched_dl_entity *dl_se = &p->dl; 3216 3217 init_dl_task_timer(dl_se); 3218 dl_se->dl_runtime = attr->sched_runtime; 3219 dl_se->dl_deadline = attr->sched_deadline; 3220 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3221 dl_se->flags = attr->sched_flags; 3222 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3223 dl_se->dl_throttled = 0; 3224 dl_se->dl_new = 1; 3225 dl_se->dl_yielded = 0; 3226 } 3227 3228 /* 3229 * sched_setparam() passes in -1 for its policy, to let the functions 3230 * it calls know not to change it. 3231 */ 3232 #define SETPARAM_POLICY -1 3233 3234 static void __setscheduler_params(struct task_struct *p, 3235 const struct sched_attr *attr) 3236 { 3237 int policy = attr->sched_policy; 3238 3239 if (policy == SETPARAM_POLICY) 3240 policy = p->policy; 3241 3242 p->policy = policy; 3243 3244 if (dl_policy(policy)) 3245 __setparam_dl(p, attr); 3246 else if (fair_policy(policy)) 3247 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3248 3249 /* 3250 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3251 * !rt_policy. Always setting this ensures that things like 3252 * getparam()/getattr() don't report silly values for !rt tasks. 3253 */ 3254 p->rt_priority = attr->sched_priority; 3255 p->normal_prio = normal_prio(p); 3256 set_load_weight(p); 3257 } 3258 3259 /* Actually do priority change: must hold pi & rq lock. */ 3260 static void __setscheduler(struct rq *rq, struct task_struct *p, 3261 const struct sched_attr *attr) 3262 { 3263 __setscheduler_params(p, attr); 3264 3265 /* 3266 * If we get here, there was no pi waiters boosting the 3267 * task. It is safe to use the normal prio. 3268 */ 3269 p->prio = normal_prio(p); 3270 3271 if (dl_prio(p->prio)) 3272 p->sched_class = &dl_sched_class; 3273 else if (rt_prio(p->prio)) 3274 p->sched_class = &rt_sched_class; 3275 else 3276 p->sched_class = &fair_sched_class; 3277 } 3278 3279 static void 3280 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3281 { 3282 struct sched_dl_entity *dl_se = &p->dl; 3283 3284 attr->sched_priority = p->rt_priority; 3285 attr->sched_runtime = dl_se->dl_runtime; 3286 attr->sched_deadline = dl_se->dl_deadline; 3287 attr->sched_period = dl_se->dl_period; 3288 attr->sched_flags = dl_se->flags; 3289 } 3290 3291 /* 3292 * This function validates the new parameters of a -deadline task. 3293 * We ask for the deadline not being zero, and greater or equal 3294 * than the runtime, as well as the period of being zero or 3295 * greater than deadline. Furthermore, we have to be sure that 3296 * user parameters are above the internal resolution of 1us (we 3297 * check sched_runtime only since it is always the smaller one) and 3298 * below 2^63 ns (we have to check both sched_deadline and 3299 * sched_period, as the latter can be zero). 3300 */ 3301 static bool 3302 __checkparam_dl(const struct sched_attr *attr) 3303 { 3304 /* deadline != 0 */ 3305 if (attr->sched_deadline == 0) 3306 return false; 3307 3308 /* 3309 * Since we truncate DL_SCALE bits, make sure we're at least 3310 * that big. 3311 */ 3312 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3313 return false; 3314 3315 /* 3316 * Since we use the MSB for wrap-around and sign issues, make 3317 * sure it's not set (mind that period can be equal to zero). 3318 */ 3319 if (attr->sched_deadline & (1ULL << 63) || 3320 attr->sched_period & (1ULL << 63)) 3321 return false; 3322 3323 /* runtime <= deadline <= period (if period != 0) */ 3324 if ((attr->sched_period != 0 && 3325 attr->sched_period < attr->sched_deadline) || 3326 attr->sched_deadline < attr->sched_runtime) 3327 return false; 3328 3329 return true; 3330 } 3331 3332 /* 3333 * check the target process has a UID that matches the current process's 3334 */ 3335 static bool check_same_owner(struct task_struct *p) 3336 { 3337 const struct cred *cred = current_cred(), *pcred; 3338 bool match; 3339 3340 rcu_read_lock(); 3341 pcred = __task_cred(p); 3342 match = (uid_eq(cred->euid, pcred->euid) || 3343 uid_eq(cred->euid, pcred->uid)); 3344 rcu_read_unlock(); 3345 return match; 3346 } 3347 3348 static int __sched_setscheduler(struct task_struct *p, 3349 const struct sched_attr *attr, 3350 bool user) 3351 { 3352 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3353 MAX_RT_PRIO - 1 - attr->sched_priority; 3354 int retval, oldprio, oldpolicy = -1, on_rq, running; 3355 int policy = attr->sched_policy; 3356 unsigned long flags; 3357 const struct sched_class *prev_class; 3358 struct rq *rq; 3359 int reset_on_fork; 3360 3361 /* may grab non-irq protected spin_locks */ 3362 BUG_ON(in_interrupt()); 3363 recheck: 3364 /* double check policy once rq lock held */ 3365 if (policy < 0) { 3366 reset_on_fork = p->sched_reset_on_fork; 3367 policy = oldpolicy = p->policy; 3368 } else { 3369 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3370 3371 if (policy != SCHED_DEADLINE && 3372 policy != SCHED_FIFO && policy != SCHED_RR && 3373 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3374 policy != SCHED_IDLE) 3375 return -EINVAL; 3376 } 3377 3378 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3379 return -EINVAL; 3380 3381 /* 3382 * Valid priorities for SCHED_FIFO and SCHED_RR are 3383 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3384 * SCHED_BATCH and SCHED_IDLE is 0. 3385 */ 3386 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3387 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3388 return -EINVAL; 3389 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3390 (rt_policy(policy) != (attr->sched_priority != 0))) 3391 return -EINVAL; 3392 3393 /* 3394 * Allow unprivileged RT tasks to decrease priority: 3395 */ 3396 if (user && !capable(CAP_SYS_NICE)) { 3397 if (fair_policy(policy)) { 3398 if (attr->sched_nice < task_nice(p) && 3399 !can_nice(p, attr->sched_nice)) 3400 return -EPERM; 3401 } 3402 3403 if (rt_policy(policy)) { 3404 unsigned long rlim_rtprio = 3405 task_rlimit(p, RLIMIT_RTPRIO); 3406 3407 /* can't set/change the rt policy */ 3408 if (policy != p->policy && !rlim_rtprio) 3409 return -EPERM; 3410 3411 /* can't increase priority */ 3412 if (attr->sched_priority > p->rt_priority && 3413 attr->sched_priority > rlim_rtprio) 3414 return -EPERM; 3415 } 3416 3417 /* 3418 * Can't set/change SCHED_DEADLINE policy at all for now 3419 * (safest behavior); in the future we would like to allow 3420 * unprivileged DL tasks to increase their relative deadline 3421 * or reduce their runtime (both ways reducing utilization) 3422 */ 3423 if (dl_policy(policy)) 3424 return -EPERM; 3425 3426 /* 3427 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3428 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3429 */ 3430 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3431 if (!can_nice(p, task_nice(p))) 3432 return -EPERM; 3433 } 3434 3435 /* can't change other user's priorities */ 3436 if (!check_same_owner(p)) 3437 return -EPERM; 3438 3439 /* Normal users shall not reset the sched_reset_on_fork flag */ 3440 if (p->sched_reset_on_fork && !reset_on_fork) 3441 return -EPERM; 3442 } 3443 3444 if (user) { 3445 retval = security_task_setscheduler(p); 3446 if (retval) 3447 return retval; 3448 } 3449 3450 /* 3451 * make sure no PI-waiters arrive (or leave) while we are 3452 * changing the priority of the task: 3453 * 3454 * To be able to change p->policy safely, the appropriate 3455 * runqueue lock must be held. 3456 */ 3457 rq = task_rq_lock(p, &flags); 3458 3459 /* 3460 * Changing the policy of the stop threads its a very bad idea 3461 */ 3462 if (p == rq->stop) { 3463 task_rq_unlock(rq, p, &flags); 3464 return -EINVAL; 3465 } 3466 3467 /* 3468 * If not changing anything there's no need to proceed further, 3469 * but store a possible modification of reset_on_fork. 3470 */ 3471 if (unlikely(policy == p->policy)) { 3472 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3473 goto change; 3474 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3475 goto change; 3476 if (dl_policy(policy)) 3477 goto change; 3478 3479 p->sched_reset_on_fork = reset_on_fork; 3480 task_rq_unlock(rq, p, &flags); 3481 return 0; 3482 } 3483 change: 3484 3485 if (user) { 3486 #ifdef CONFIG_RT_GROUP_SCHED 3487 /* 3488 * Do not allow realtime tasks into groups that have no runtime 3489 * assigned. 3490 */ 3491 if (rt_bandwidth_enabled() && rt_policy(policy) && 3492 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3493 !task_group_is_autogroup(task_group(p))) { 3494 task_rq_unlock(rq, p, &flags); 3495 return -EPERM; 3496 } 3497 #endif 3498 #ifdef CONFIG_SMP 3499 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3500 cpumask_t *span = rq->rd->span; 3501 3502 /* 3503 * Don't allow tasks with an affinity mask smaller than 3504 * the entire root_domain to become SCHED_DEADLINE. We 3505 * will also fail if there's no bandwidth available. 3506 */ 3507 if (!cpumask_subset(span, &p->cpus_allowed) || 3508 rq->rd->dl_bw.bw == 0) { 3509 task_rq_unlock(rq, p, &flags); 3510 return -EPERM; 3511 } 3512 } 3513 #endif 3514 } 3515 3516 /* recheck policy now with rq lock held */ 3517 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3518 policy = oldpolicy = -1; 3519 task_rq_unlock(rq, p, &flags); 3520 goto recheck; 3521 } 3522 3523 /* 3524 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3525 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3526 * is available. 3527 */ 3528 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3529 task_rq_unlock(rq, p, &flags); 3530 return -EBUSY; 3531 } 3532 3533 p->sched_reset_on_fork = reset_on_fork; 3534 oldprio = p->prio; 3535 3536 /* 3537 * Special case for priority boosted tasks. 3538 * 3539 * If the new priority is lower or equal (user space view) 3540 * than the current (boosted) priority, we just store the new 3541 * normal parameters and do not touch the scheduler class and 3542 * the runqueue. This will be done when the task deboost 3543 * itself. 3544 */ 3545 if (rt_mutex_check_prio(p, newprio)) { 3546 __setscheduler_params(p, attr); 3547 task_rq_unlock(rq, p, &flags); 3548 return 0; 3549 } 3550 3551 on_rq = p->on_rq; 3552 running = task_current(rq, p); 3553 if (on_rq) 3554 dequeue_task(rq, p, 0); 3555 if (running) 3556 p->sched_class->put_prev_task(rq, p); 3557 3558 prev_class = p->sched_class; 3559 __setscheduler(rq, p, attr); 3560 3561 if (running) 3562 p->sched_class->set_curr_task(rq); 3563 if (on_rq) { 3564 /* 3565 * We enqueue to tail when the priority of a task is 3566 * increased (user space view). 3567 */ 3568 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3569 } 3570 3571 check_class_changed(rq, p, prev_class, oldprio); 3572 task_rq_unlock(rq, p, &flags); 3573 3574 rt_mutex_adjust_pi(p); 3575 3576 return 0; 3577 } 3578 3579 static int _sched_setscheduler(struct task_struct *p, int policy, 3580 const struct sched_param *param, bool check) 3581 { 3582 struct sched_attr attr = { 3583 .sched_policy = policy, 3584 .sched_priority = param->sched_priority, 3585 .sched_nice = PRIO_TO_NICE(p->static_prio), 3586 }; 3587 3588 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3589 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3590 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3591 policy &= ~SCHED_RESET_ON_FORK; 3592 attr.sched_policy = policy; 3593 } 3594 3595 return __sched_setscheduler(p, &attr, check); 3596 } 3597 /** 3598 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3599 * @p: the task in question. 3600 * @policy: new policy. 3601 * @param: structure containing the new RT priority. 3602 * 3603 * Return: 0 on success. An error code otherwise. 3604 * 3605 * NOTE that the task may be already dead. 3606 */ 3607 int sched_setscheduler(struct task_struct *p, int policy, 3608 const struct sched_param *param) 3609 { 3610 return _sched_setscheduler(p, policy, param, true); 3611 } 3612 EXPORT_SYMBOL_GPL(sched_setscheduler); 3613 3614 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3615 { 3616 return __sched_setscheduler(p, attr, true); 3617 } 3618 EXPORT_SYMBOL_GPL(sched_setattr); 3619 3620 /** 3621 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3622 * @p: the task in question. 3623 * @policy: new policy. 3624 * @param: structure containing the new RT priority. 3625 * 3626 * Just like sched_setscheduler, only don't bother checking if the 3627 * current context has permission. For example, this is needed in 3628 * stop_machine(): we create temporary high priority worker threads, 3629 * but our caller might not have that capability. 3630 * 3631 * Return: 0 on success. An error code otherwise. 3632 */ 3633 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3634 const struct sched_param *param) 3635 { 3636 return _sched_setscheduler(p, policy, param, false); 3637 } 3638 3639 static int 3640 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3641 { 3642 struct sched_param lparam; 3643 struct task_struct *p; 3644 int retval; 3645 3646 if (!param || pid < 0) 3647 return -EINVAL; 3648 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3649 return -EFAULT; 3650 3651 rcu_read_lock(); 3652 retval = -ESRCH; 3653 p = find_process_by_pid(pid); 3654 if (p != NULL) 3655 retval = sched_setscheduler(p, policy, &lparam); 3656 rcu_read_unlock(); 3657 3658 return retval; 3659 } 3660 3661 /* 3662 * Mimics kernel/events/core.c perf_copy_attr(). 3663 */ 3664 static int sched_copy_attr(struct sched_attr __user *uattr, 3665 struct sched_attr *attr) 3666 { 3667 u32 size; 3668 int ret; 3669 3670 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3671 return -EFAULT; 3672 3673 /* 3674 * zero the full structure, so that a short copy will be nice. 3675 */ 3676 memset(attr, 0, sizeof(*attr)); 3677 3678 ret = get_user(size, &uattr->size); 3679 if (ret) 3680 return ret; 3681 3682 if (size > PAGE_SIZE) /* silly large */ 3683 goto err_size; 3684 3685 if (!size) /* abi compat */ 3686 size = SCHED_ATTR_SIZE_VER0; 3687 3688 if (size < SCHED_ATTR_SIZE_VER0) 3689 goto err_size; 3690 3691 /* 3692 * If we're handed a bigger struct than we know of, 3693 * ensure all the unknown bits are 0 - i.e. new 3694 * user-space does not rely on any kernel feature 3695 * extensions we dont know about yet. 3696 */ 3697 if (size > sizeof(*attr)) { 3698 unsigned char __user *addr; 3699 unsigned char __user *end; 3700 unsigned char val; 3701 3702 addr = (void __user *)uattr + sizeof(*attr); 3703 end = (void __user *)uattr + size; 3704 3705 for (; addr < end; addr++) { 3706 ret = get_user(val, addr); 3707 if (ret) 3708 return ret; 3709 if (val) 3710 goto err_size; 3711 } 3712 size = sizeof(*attr); 3713 } 3714 3715 ret = copy_from_user(attr, uattr, size); 3716 if (ret) 3717 return -EFAULT; 3718 3719 /* 3720 * XXX: do we want to be lenient like existing syscalls; or do we want 3721 * to be strict and return an error on out-of-bounds values? 3722 */ 3723 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3724 3725 return 0; 3726 3727 err_size: 3728 put_user(sizeof(*attr), &uattr->size); 3729 return -E2BIG; 3730 } 3731 3732 /** 3733 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3734 * @pid: the pid in question. 3735 * @policy: new policy. 3736 * @param: structure containing the new RT priority. 3737 * 3738 * Return: 0 on success. An error code otherwise. 3739 */ 3740 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3741 struct sched_param __user *, param) 3742 { 3743 /* negative values for policy are not valid */ 3744 if (policy < 0) 3745 return -EINVAL; 3746 3747 return do_sched_setscheduler(pid, policy, param); 3748 } 3749 3750 /** 3751 * sys_sched_setparam - set/change the RT priority of a thread 3752 * @pid: the pid in question. 3753 * @param: structure containing the new RT priority. 3754 * 3755 * Return: 0 on success. An error code otherwise. 3756 */ 3757 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3758 { 3759 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3760 } 3761 3762 /** 3763 * sys_sched_setattr - same as above, but with extended sched_attr 3764 * @pid: the pid in question. 3765 * @uattr: structure containing the extended parameters. 3766 * @flags: for future extension. 3767 */ 3768 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3769 unsigned int, flags) 3770 { 3771 struct sched_attr attr; 3772 struct task_struct *p; 3773 int retval; 3774 3775 if (!uattr || pid < 0 || flags) 3776 return -EINVAL; 3777 3778 retval = sched_copy_attr(uattr, &attr); 3779 if (retval) 3780 return retval; 3781 3782 if ((int)attr.sched_policy < 0) 3783 return -EINVAL; 3784 3785 rcu_read_lock(); 3786 retval = -ESRCH; 3787 p = find_process_by_pid(pid); 3788 if (p != NULL) 3789 retval = sched_setattr(p, &attr); 3790 rcu_read_unlock(); 3791 3792 return retval; 3793 } 3794 3795 /** 3796 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3797 * @pid: the pid in question. 3798 * 3799 * Return: On success, the policy of the thread. Otherwise, a negative error 3800 * code. 3801 */ 3802 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3803 { 3804 struct task_struct *p; 3805 int retval; 3806 3807 if (pid < 0) 3808 return -EINVAL; 3809 3810 retval = -ESRCH; 3811 rcu_read_lock(); 3812 p = find_process_by_pid(pid); 3813 if (p) { 3814 retval = security_task_getscheduler(p); 3815 if (!retval) 3816 retval = p->policy 3817 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3818 } 3819 rcu_read_unlock(); 3820 return retval; 3821 } 3822 3823 /** 3824 * sys_sched_getparam - get the RT priority of a thread 3825 * @pid: the pid in question. 3826 * @param: structure containing the RT priority. 3827 * 3828 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3829 * code. 3830 */ 3831 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3832 { 3833 struct sched_param lp = { .sched_priority = 0 }; 3834 struct task_struct *p; 3835 int retval; 3836 3837 if (!param || pid < 0) 3838 return -EINVAL; 3839 3840 rcu_read_lock(); 3841 p = find_process_by_pid(pid); 3842 retval = -ESRCH; 3843 if (!p) 3844 goto out_unlock; 3845 3846 retval = security_task_getscheduler(p); 3847 if (retval) 3848 goto out_unlock; 3849 3850 if (task_has_rt_policy(p)) 3851 lp.sched_priority = p->rt_priority; 3852 rcu_read_unlock(); 3853 3854 /* 3855 * This one might sleep, we cannot do it with a spinlock held ... 3856 */ 3857 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3858 3859 return retval; 3860 3861 out_unlock: 3862 rcu_read_unlock(); 3863 return retval; 3864 } 3865 3866 static int sched_read_attr(struct sched_attr __user *uattr, 3867 struct sched_attr *attr, 3868 unsigned int usize) 3869 { 3870 int ret; 3871 3872 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3873 return -EFAULT; 3874 3875 /* 3876 * If we're handed a smaller struct than we know of, 3877 * ensure all the unknown bits are 0 - i.e. old 3878 * user-space does not get uncomplete information. 3879 */ 3880 if (usize < sizeof(*attr)) { 3881 unsigned char *addr; 3882 unsigned char *end; 3883 3884 addr = (void *)attr + usize; 3885 end = (void *)attr + sizeof(*attr); 3886 3887 for (; addr < end; addr++) { 3888 if (*addr) 3889 return -EFBIG; 3890 } 3891 3892 attr->size = usize; 3893 } 3894 3895 ret = copy_to_user(uattr, attr, attr->size); 3896 if (ret) 3897 return -EFAULT; 3898 3899 return 0; 3900 } 3901 3902 /** 3903 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3904 * @pid: the pid in question. 3905 * @uattr: structure containing the extended parameters. 3906 * @size: sizeof(attr) for fwd/bwd comp. 3907 * @flags: for future extension. 3908 */ 3909 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3910 unsigned int, size, unsigned int, flags) 3911 { 3912 struct sched_attr attr = { 3913 .size = sizeof(struct sched_attr), 3914 }; 3915 struct task_struct *p; 3916 int retval; 3917 3918 if (!uattr || pid < 0 || size > PAGE_SIZE || 3919 size < SCHED_ATTR_SIZE_VER0 || flags) 3920 return -EINVAL; 3921 3922 rcu_read_lock(); 3923 p = find_process_by_pid(pid); 3924 retval = -ESRCH; 3925 if (!p) 3926 goto out_unlock; 3927 3928 retval = security_task_getscheduler(p); 3929 if (retval) 3930 goto out_unlock; 3931 3932 attr.sched_policy = p->policy; 3933 if (p->sched_reset_on_fork) 3934 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3935 if (task_has_dl_policy(p)) 3936 __getparam_dl(p, &attr); 3937 else if (task_has_rt_policy(p)) 3938 attr.sched_priority = p->rt_priority; 3939 else 3940 attr.sched_nice = task_nice(p); 3941 3942 rcu_read_unlock(); 3943 3944 retval = sched_read_attr(uattr, &attr, size); 3945 return retval; 3946 3947 out_unlock: 3948 rcu_read_unlock(); 3949 return retval; 3950 } 3951 3952 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3953 { 3954 cpumask_var_t cpus_allowed, new_mask; 3955 struct task_struct *p; 3956 int retval; 3957 3958 rcu_read_lock(); 3959 3960 p = find_process_by_pid(pid); 3961 if (!p) { 3962 rcu_read_unlock(); 3963 return -ESRCH; 3964 } 3965 3966 /* Prevent p going away */ 3967 get_task_struct(p); 3968 rcu_read_unlock(); 3969 3970 if (p->flags & PF_NO_SETAFFINITY) { 3971 retval = -EINVAL; 3972 goto out_put_task; 3973 } 3974 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3975 retval = -ENOMEM; 3976 goto out_put_task; 3977 } 3978 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3979 retval = -ENOMEM; 3980 goto out_free_cpus_allowed; 3981 } 3982 retval = -EPERM; 3983 if (!check_same_owner(p)) { 3984 rcu_read_lock(); 3985 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3986 rcu_read_unlock(); 3987 goto out_unlock; 3988 } 3989 rcu_read_unlock(); 3990 } 3991 3992 retval = security_task_setscheduler(p); 3993 if (retval) 3994 goto out_unlock; 3995 3996 3997 cpuset_cpus_allowed(p, cpus_allowed); 3998 cpumask_and(new_mask, in_mask, cpus_allowed); 3999 4000 /* 4001 * Since bandwidth control happens on root_domain basis, 4002 * if admission test is enabled, we only admit -deadline 4003 * tasks allowed to run on all the CPUs in the task's 4004 * root_domain. 4005 */ 4006 #ifdef CONFIG_SMP 4007 if (task_has_dl_policy(p)) { 4008 const struct cpumask *span = task_rq(p)->rd->span; 4009 4010 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { 4011 retval = -EBUSY; 4012 goto out_unlock; 4013 } 4014 } 4015 #endif 4016 again: 4017 retval = set_cpus_allowed_ptr(p, new_mask); 4018 4019 if (!retval) { 4020 cpuset_cpus_allowed(p, cpus_allowed); 4021 if (!cpumask_subset(new_mask, cpus_allowed)) { 4022 /* 4023 * We must have raced with a concurrent cpuset 4024 * update. Just reset the cpus_allowed to the 4025 * cpuset's cpus_allowed 4026 */ 4027 cpumask_copy(new_mask, cpus_allowed); 4028 goto again; 4029 } 4030 } 4031 out_unlock: 4032 free_cpumask_var(new_mask); 4033 out_free_cpus_allowed: 4034 free_cpumask_var(cpus_allowed); 4035 out_put_task: 4036 put_task_struct(p); 4037 return retval; 4038 } 4039 4040 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4041 struct cpumask *new_mask) 4042 { 4043 if (len < cpumask_size()) 4044 cpumask_clear(new_mask); 4045 else if (len > cpumask_size()) 4046 len = cpumask_size(); 4047 4048 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4049 } 4050 4051 /** 4052 * sys_sched_setaffinity - set the cpu affinity of a process 4053 * @pid: pid of the process 4054 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4055 * @user_mask_ptr: user-space pointer to the new cpu mask 4056 * 4057 * Return: 0 on success. An error code otherwise. 4058 */ 4059 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4060 unsigned long __user *, user_mask_ptr) 4061 { 4062 cpumask_var_t new_mask; 4063 int retval; 4064 4065 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4066 return -ENOMEM; 4067 4068 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4069 if (retval == 0) 4070 retval = sched_setaffinity(pid, new_mask); 4071 free_cpumask_var(new_mask); 4072 return retval; 4073 } 4074 4075 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4076 { 4077 struct task_struct *p; 4078 unsigned long flags; 4079 int retval; 4080 4081 rcu_read_lock(); 4082 4083 retval = -ESRCH; 4084 p = find_process_by_pid(pid); 4085 if (!p) 4086 goto out_unlock; 4087 4088 retval = security_task_getscheduler(p); 4089 if (retval) 4090 goto out_unlock; 4091 4092 raw_spin_lock_irqsave(&p->pi_lock, flags); 4093 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4094 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4095 4096 out_unlock: 4097 rcu_read_unlock(); 4098 4099 return retval; 4100 } 4101 4102 /** 4103 * sys_sched_getaffinity - get the cpu affinity of a process 4104 * @pid: pid of the process 4105 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4106 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4107 * 4108 * Return: 0 on success. An error code otherwise. 4109 */ 4110 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4111 unsigned long __user *, user_mask_ptr) 4112 { 4113 int ret; 4114 cpumask_var_t mask; 4115 4116 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4117 return -EINVAL; 4118 if (len & (sizeof(unsigned long)-1)) 4119 return -EINVAL; 4120 4121 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4122 return -ENOMEM; 4123 4124 ret = sched_getaffinity(pid, mask); 4125 if (ret == 0) { 4126 size_t retlen = min_t(size_t, len, cpumask_size()); 4127 4128 if (copy_to_user(user_mask_ptr, mask, retlen)) 4129 ret = -EFAULT; 4130 else 4131 ret = retlen; 4132 } 4133 free_cpumask_var(mask); 4134 4135 return ret; 4136 } 4137 4138 /** 4139 * sys_sched_yield - yield the current processor to other threads. 4140 * 4141 * This function yields the current CPU to other tasks. If there are no 4142 * other threads running on this CPU then this function will return. 4143 * 4144 * Return: 0. 4145 */ 4146 SYSCALL_DEFINE0(sched_yield) 4147 { 4148 struct rq *rq = this_rq_lock(); 4149 4150 schedstat_inc(rq, yld_count); 4151 current->sched_class->yield_task(rq); 4152 4153 /* 4154 * Since we are going to call schedule() anyway, there's 4155 * no need to preempt or enable interrupts: 4156 */ 4157 __release(rq->lock); 4158 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4159 do_raw_spin_unlock(&rq->lock); 4160 sched_preempt_enable_no_resched(); 4161 4162 schedule(); 4163 4164 return 0; 4165 } 4166 4167 static void __cond_resched(void) 4168 { 4169 __preempt_count_add(PREEMPT_ACTIVE); 4170 __schedule(); 4171 __preempt_count_sub(PREEMPT_ACTIVE); 4172 } 4173 4174 int __sched _cond_resched(void) 4175 { 4176 if (should_resched()) { 4177 __cond_resched(); 4178 return 1; 4179 } 4180 return 0; 4181 } 4182 EXPORT_SYMBOL(_cond_resched); 4183 4184 /* 4185 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4186 * call schedule, and on return reacquire the lock. 4187 * 4188 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4189 * operations here to prevent schedule() from being called twice (once via 4190 * spin_unlock(), once by hand). 4191 */ 4192 int __cond_resched_lock(spinlock_t *lock) 4193 { 4194 int resched = should_resched(); 4195 int ret = 0; 4196 4197 lockdep_assert_held(lock); 4198 4199 if (spin_needbreak(lock) || resched) { 4200 spin_unlock(lock); 4201 if (resched) 4202 __cond_resched(); 4203 else 4204 cpu_relax(); 4205 ret = 1; 4206 spin_lock(lock); 4207 } 4208 return ret; 4209 } 4210 EXPORT_SYMBOL(__cond_resched_lock); 4211 4212 int __sched __cond_resched_softirq(void) 4213 { 4214 BUG_ON(!in_softirq()); 4215 4216 if (should_resched()) { 4217 local_bh_enable(); 4218 __cond_resched(); 4219 local_bh_disable(); 4220 return 1; 4221 } 4222 return 0; 4223 } 4224 EXPORT_SYMBOL(__cond_resched_softirq); 4225 4226 /** 4227 * yield - yield the current processor to other threads. 4228 * 4229 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4230 * 4231 * The scheduler is at all times free to pick the calling task as the most 4232 * eligible task to run, if removing the yield() call from your code breaks 4233 * it, its already broken. 4234 * 4235 * Typical broken usage is: 4236 * 4237 * while (!event) 4238 * yield(); 4239 * 4240 * where one assumes that yield() will let 'the other' process run that will 4241 * make event true. If the current task is a SCHED_FIFO task that will never 4242 * happen. Never use yield() as a progress guarantee!! 4243 * 4244 * If you want to use yield() to wait for something, use wait_event(). 4245 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4246 * If you still want to use yield(), do not! 4247 */ 4248 void __sched yield(void) 4249 { 4250 set_current_state(TASK_RUNNING); 4251 sys_sched_yield(); 4252 } 4253 EXPORT_SYMBOL(yield); 4254 4255 /** 4256 * yield_to - yield the current processor to another thread in 4257 * your thread group, or accelerate that thread toward the 4258 * processor it's on. 4259 * @p: target task 4260 * @preempt: whether task preemption is allowed or not 4261 * 4262 * It's the caller's job to ensure that the target task struct 4263 * can't go away on us before we can do any checks. 4264 * 4265 * Return: 4266 * true (>0) if we indeed boosted the target task. 4267 * false (0) if we failed to boost the target. 4268 * -ESRCH if there's no task to yield to. 4269 */ 4270 int __sched yield_to(struct task_struct *p, bool preempt) 4271 { 4272 struct task_struct *curr = current; 4273 struct rq *rq, *p_rq; 4274 unsigned long flags; 4275 int yielded = 0; 4276 4277 local_irq_save(flags); 4278 rq = this_rq(); 4279 4280 again: 4281 p_rq = task_rq(p); 4282 /* 4283 * If we're the only runnable task on the rq and target rq also 4284 * has only one task, there's absolutely no point in yielding. 4285 */ 4286 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4287 yielded = -ESRCH; 4288 goto out_irq; 4289 } 4290 4291 double_rq_lock(rq, p_rq); 4292 if (task_rq(p) != p_rq) { 4293 double_rq_unlock(rq, p_rq); 4294 goto again; 4295 } 4296 4297 if (!curr->sched_class->yield_to_task) 4298 goto out_unlock; 4299 4300 if (curr->sched_class != p->sched_class) 4301 goto out_unlock; 4302 4303 if (task_running(p_rq, p) || p->state) 4304 goto out_unlock; 4305 4306 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4307 if (yielded) { 4308 schedstat_inc(rq, yld_count); 4309 /* 4310 * Make p's CPU reschedule; pick_next_entity takes care of 4311 * fairness. 4312 */ 4313 if (preempt && rq != p_rq) 4314 resched_curr(p_rq); 4315 } 4316 4317 out_unlock: 4318 double_rq_unlock(rq, p_rq); 4319 out_irq: 4320 local_irq_restore(flags); 4321 4322 if (yielded > 0) 4323 schedule(); 4324 4325 return yielded; 4326 } 4327 EXPORT_SYMBOL_GPL(yield_to); 4328 4329 /* 4330 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4331 * that process accounting knows that this is a task in IO wait state. 4332 */ 4333 void __sched io_schedule(void) 4334 { 4335 struct rq *rq = raw_rq(); 4336 4337 delayacct_blkio_start(); 4338 atomic_inc(&rq->nr_iowait); 4339 blk_flush_plug(current); 4340 current->in_iowait = 1; 4341 schedule(); 4342 current->in_iowait = 0; 4343 atomic_dec(&rq->nr_iowait); 4344 delayacct_blkio_end(); 4345 } 4346 EXPORT_SYMBOL(io_schedule); 4347 4348 long __sched io_schedule_timeout(long timeout) 4349 { 4350 struct rq *rq = raw_rq(); 4351 long ret; 4352 4353 delayacct_blkio_start(); 4354 atomic_inc(&rq->nr_iowait); 4355 blk_flush_plug(current); 4356 current->in_iowait = 1; 4357 ret = schedule_timeout(timeout); 4358 current->in_iowait = 0; 4359 atomic_dec(&rq->nr_iowait); 4360 delayacct_blkio_end(); 4361 return ret; 4362 } 4363 4364 /** 4365 * sys_sched_get_priority_max - return maximum RT priority. 4366 * @policy: scheduling class. 4367 * 4368 * Return: On success, this syscall returns the maximum 4369 * rt_priority that can be used by a given scheduling class. 4370 * On failure, a negative error code is returned. 4371 */ 4372 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4373 { 4374 int ret = -EINVAL; 4375 4376 switch (policy) { 4377 case SCHED_FIFO: 4378 case SCHED_RR: 4379 ret = MAX_USER_RT_PRIO-1; 4380 break; 4381 case SCHED_DEADLINE: 4382 case SCHED_NORMAL: 4383 case SCHED_BATCH: 4384 case SCHED_IDLE: 4385 ret = 0; 4386 break; 4387 } 4388 return ret; 4389 } 4390 4391 /** 4392 * sys_sched_get_priority_min - return minimum RT priority. 4393 * @policy: scheduling class. 4394 * 4395 * Return: On success, this syscall returns the minimum 4396 * rt_priority that can be used by a given scheduling class. 4397 * On failure, a negative error code is returned. 4398 */ 4399 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4400 { 4401 int ret = -EINVAL; 4402 4403 switch (policy) { 4404 case SCHED_FIFO: 4405 case SCHED_RR: 4406 ret = 1; 4407 break; 4408 case SCHED_DEADLINE: 4409 case SCHED_NORMAL: 4410 case SCHED_BATCH: 4411 case SCHED_IDLE: 4412 ret = 0; 4413 } 4414 return ret; 4415 } 4416 4417 /** 4418 * sys_sched_rr_get_interval - return the default timeslice of a process. 4419 * @pid: pid of the process. 4420 * @interval: userspace pointer to the timeslice value. 4421 * 4422 * this syscall writes the default timeslice value of a given process 4423 * into the user-space timespec buffer. A value of '0' means infinity. 4424 * 4425 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4426 * an error code. 4427 */ 4428 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4429 struct timespec __user *, interval) 4430 { 4431 struct task_struct *p; 4432 unsigned int time_slice; 4433 unsigned long flags; 4434 struct rq *rq; 4435 int retval; 4436 struct timespec t; 4437 4438 if (pid < 0) 4439 return -EINVAL; 4440 4441 retval = -ESRCH; 4442 rcu_read_lock(); 4443 p = find_process_by_pid(pid); 4444 if (!p) 4445 goto out_unlock; 4446 4447 retval = security_task_getscheduler(p); 4448 if (retval) 4449 goto out_unlock; 4450 4451 rq = task_rq_lock(p, &flags); 4452 time_slice = 0; 4453 if (p->sched_class->get_rr_interval) 4454 time_slice = p->sched_class->get_rr_interval(rq, p); 4455 task_rq_unlock(rq, p, &flags); 4456 4457 rcu_read_unlock(); 4458 jiffies_to_timespec(time_slice, &t); 4459 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4460 return retval; 4461 4462 out_unlock: 4463 rcu_read_unlock(); 4464 return retval; 4465 } 4466 4467 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4468 4469 void sched_show_task(struct task_struct *p) 4470 { 4471 unsigned long free = 0; 4472 int ppid; 4473 unsigned state; 4474 4475 state = p->state ? __ffs(p->state) + 1 : 0; 4476 printk(KERN_INFO "%-15.15s %c", p->comm, 4477 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4478 #if BITS_PER_LONG == 32 4479 if (state == TASK_RUNNING) 4480 printk(KERN_CONT " running "); 4481 else 4482 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4483 #else 4484 if (state == TASK_RUNNING) 4485 printk(KERN_CONT " running task "); 4486 else 4487 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4488 #endif 4489 #ifdef CONFIG_DEBUG_STACK_USAGE 4490 free = stack_not_used(p); 4491 #endif 4492 rcu_read_lock(); 4493 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4494 rcu_read_unlock(); 4495 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4496 task_pid_nr(p), ppid, 4497 (unsigned long)task_thread_info(p)->flags); 4498 4499 print_worker_info(KERN_INFO, p); 4500 show_stack(p, NULL); 4501 } 4502 4503 void show_state_filter(unsigned long state_filter) 4504 { 4505 struct task_struct *g, *p; 4506 4507 #if BITS_PER_LONG == 32 4508 printk(KERN_INFO 4509 " task PC stack pid father\n"); 4510 #else 4511 printk(KERN_INFO 4512 " task PC stack pid father\n"); 4513 #endif 4514 rcu_read_lock(); 4515 do_each_thread(g, p) { 4516 /* 4517 * reset the NMI-timeout, listing all files on a slow 4518 * console might take a lot of time: 4519 */ 4520 touch_nmi_watchdog(); 4521 if (!state_filter || (p->state & state_filter)) 4522 sched_show_task(p); 4523 } while_each_thread(g, p); 4524 4525 touch_all_softlockup_watchdogs(); 4526 4527 #ifdef CONFIG_SCHED_DEBUG 4528 sysrq_sched_debug_show(); 4529 #endif 4530 rcu_read_unlock(); 4531 /* 4532 * Only show locks if all tasks are dumped: 4533 */ 4534 if (!state_filter) 4535 debug_show_all_locks(); 4536 } 4537 4538 void init_idle_bootup_task(struct task_struct *idle) 4539 { 4540 idle->sched_class = &idle_sched_class; 4541 } 4542 4543 /** 4544 * init_idle - set up an idle thread for a given CPU 4545 * @idle: task in question 4546 * @cpu: cpu the idle task belongs to 4547 * 4548 * NOTE: this function does not set the idle thread's NEED_RESCHED 4549 * flag, to make booting more robust. 4550 */ 4551 void init_idle(struct task_struct *idle, int cpu) 4552 { 4553 struct rq *rq = cpu_rq(cpu); 4554 unsigned long flags; 4555 4556 raw_spin_lock_irqsave(&rq->lock, flags); 4557 4558 __sched_fork(0, idle); 4559 idle->state = TASK_RUNNING; 4560 idle->se.exec_start = sched_clock(); 4561 4562 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4563 /* 4564 * We're having a chicken and egg problem, even though we are 4565 * holding rq->lock, the cpu isn't yet set to this cpu so the 4566 * lockdep check in task_group() will fail. 4567 * 4568 * Similar case to sched_fork(). / Alternatively we could 4569 * use task_rq_lock() here and obtain the other rq->lock. 4570 * 4571 * Silence PROVE_RCU 4572 */ 4573 rcu_read_lock(); 4574 __set_task_cpu(idle, cpu); 4575 rcu_read_unlock(); 4576 4577 rq->curr = rq->idle = idle; 4578 idle->on_rq = 1; 4579 #if defined(CONFIG_SMP) 4580 idle->on_cpu = 1; 4581 #endif 4582 raw_spin_unlock_irqrestore(&rq->lock, flags); 4583 4584 /* Set the preempt count _outside_ the spinlocks! */ 4585 init_idle_preempt_count(idle, cpu); 4586 4587 /* 4588 * The idle tasks have their own, simple scheduling class: 4589 */ 4590 idle->sched_class = &idle_sched_class; 4591 ftrace_graph_init_idle_task(idle, cpu); 4592 vtime_init_idle(idle, cpu); 4593 #if defined(CONFIG_SMP) 4594 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4595 #endif 4596 } 4597 4598 #ifdef CONFIG_SMP 4599 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4600 { 4601 if (p->sched_class && p->sched_class->set_cpus_allowed) 4602 p->sched_class->set_cpus_allowed(p, new_mask); 4603 4604 cpumask_copy(&p->cpus_allowed, new_mask); 4605 p->nr_cpus_allowed = cpumask_weight(new_mask); 4606 } 4607 4608 /* 4609 * This is how migration works: 4610 * 4611 * 1) we invoke migration_cpu_stop() on the target CPU using 4612 * stop_one_cpu(). 4613 * 2) stopper starts to run (implicitly forcing the migrated thread 4614 * off the CPU) 4615 * 3) it checks whether the migrated task is still in the wrong runqueue. 4616 * 4) if it's in the wrong runqueue then the migration thread removes 4617 * it and puts it into the right queue. 4618 * 5) stopper completes and stop_one_cpu() returns and the migration 4619 * is done. 4620 */ 4621 4622 /* 4623 * Change a given task's CPU affinity. Migrate the thread to a 4624 * proper CPU and schedule it away if the CPU it's executing on 4625 * is removed from the allowed bitmask. 4626 * 4627 * NOTE: the caller must have a valid reference to the task, the 4628 * task must not exit() & deallocate itself prematurely. The 4629 * call is not atomic; no spinlocks may be held. 4630 */ 4631 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4632 { 4633 unsigned long flags; 4634 struct rq *rq; 4635 unsigned int dest_cpu; 4636 int ret = 0; 4637 4638 rq = task_rq_lock(p, &flags); 4639 4640 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4641 goto out; 4642 4643 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4644 ret = -EINVAL; 4645 goto out; 4646 } 4647 4648 do_set_cpus_allowed(p, new_mask); 4649 4650 /* Can the task run on the task's current CPU? If so, we're done */ 4651 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4652 goto out; 4653 4654 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4655 if (p->on_rq) { 4656 struct migration_arg arg = { p, dest_cpu }; 4657 /* Need help from migration thread: drop lock and wait. */ 4658 task_rq_unlock(rq, p, &flags); 4659 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4660 tlb_migrate_finish(p->mm); 4661 return 0; 4662 } 4663 out: 4664 task_rq_unlock(rq, p, &flags); 4665 4666 return ret; 4667 } 4668 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4669 4670 /* 4671 * Move (not current) task off this cpu, onto dest cpu. We're doing 4672 * this because either it can't run here any more (set_cpus_allowed() 4673 * away from this CPU, or CPU going down), or because we're 4674 * attempting to rebalance this task on exec (sched_exec). 4675 * 4676 * So we race with normal scheduler movements, but that's OK, as long 4677 * as the task is no longer on this CPU. 4678 * 4679 * Returns non-zero if task was successfully migrated. 4680 */ 4681 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4682 { 4683 struct rq *rq_dest, *rq_src; 4684 int ret = 0; 4685 4686 if (unlikely(!cpu_active(dest_cpu))) 4687 return ret; 4688 4689 rq_src = cpu_rq(src_cpu); 4690 rq_dest = cpu_rq(dest_cpu); 4691 4692 raw_spin_lock(&p->pi_lock); 4693 double_rq_lock(rq_src, rq_dest); 4694 /* Already moved. */ 4695 if (task_cpu(p) != src_cpu) 4696 goto done; 4697 /* Affinity changed (again). */ 4698 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4699 goto fail; 4700 4701 /* 4702 * If we're not on a rq, the next wake-up will ensure we're 4703 * placed properly. 4704 */ 4705 if (p->on_rq) { 4706 dequeue_task(rq_src, p, 0); 4707 set_task_cpu(p, dest_cpu); 4708 enqueue_task(rq_dest, p, 0); 4709 check_preempt_curr(rq_dest, p, 0); 4710 } 4711 done: 4712 ret = 1; 4713 fail: 4714 double_rq_unlock(rq_src, rq_dest); 4715 raw_spin_unlock(&p->pi_lock); 4716 return ret; 4717 } 4718 4719 #ifdef CONFIG_NUMA_BALANCING 4720 /* Migrate current task p to target_cpu */ 4721 int migrate_task_to(struct task_struct *p, int target_cpu) 4722 { 4723 struct migration_arg arg = { p, target_cpu }; 4724 int curr_cpu = task_cpu(p); 4725 4726 if (curr_cpu == target_cpu) 4727 return 0; 4728 4729 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4730 return -EINVAL; 4731 4732 /* TODO: This is not properly updating schedstats */ 4733 4734 trace_sched_move_numa(p, curr_cpu, target_cpu); 4735 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4736 } 4737 4738 /* 4739 * Requeue a task on a given node and accurately track the number of NUMA 4740 * tasks on the runqueues 4741 */ 4742 void sched_setnuma(struct task_struct *p, int nid) 4743 { 4744 struct rq *rq; 4745 unsigned long flags; 4746 bool on_rq, running; 4747 4748 rq = task_rq_lock(p, &flags); 4749 on_rq = p->on_rq; 4750 running = task_current(rq, p); 4751 4752 if (on_rq) 4753 dequeue_task(rq, p, 0); 4754 if (running) 4755 p->sched_class->put_prev_task(rq, p); 4756 4757 p->numa_preferred_nid = nid; 4758 4759 if (running) 4760 p->sched_class->set_curr_task(rq); 4761 if (on_rq) 4762 enqueue_task(rq, p, 0); 4763 task_rq_unlock(rq, p, &flags); 4764 } 4765 #endif 4766 4767 /* 4768 * migration_cpu_stop - this will be executed by a highprio stopper thread 4769 * and performs thread migration by bumping thread off CPU then 4770 * 'pushing' onto another runqueue. 4771 */ 4772 static int migration_cpu_stop(void *data) 4773 { 4774 struct migration_arg *arg = data; 4775 4776 /* 4777 * The original target cpu might have gone down and we might 4778 * be on another cpu but it doesn't matter. 4779 */ 4780 local_irq_disable(); 4781 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4782 local_irq_enable(); 4783 return 0; 4784 } 4785 4786 #ifdef CONFIG_HOTPLUG_CPU 4787 4788 /* 4789 * Ensures that the idle task is using init_mm right before its cpu goes 4790 * offline. 4791 */ 4792 void idle_task_exit(void) 4793 { 4794 struct mm_struct *mm = current->active_mm; 4795 4796 BUG_ON(cpu_online(smp_processor_id())); 4797 4798 if (mm != &init_mm) { 4799 switch_mm(mm, &init_mm, current); 4800 finish_arch_post_lock_switch(); 4801 } 4802 mmdrop(mm); 4803 } 4804 4805 /* 4806 * Since this CPU is going 'away' for a while, fold any nr_active delta 4807 * we might have. Assumes we're called after migrate_tasks() so that the 4808 * nr_active count is stable. 4809 * 4810 * Also see the comment "Global load-average calculations". 4811 */ 4812 static void calc_load_migrate(struct rq *rq) 4813 { 4814 long delta = calc_load_fold_active(rq); 4815 if (delta) 4816 atomic_long_add(delta, &calc_load_tasks); 4817 } 4818 4819 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4820 { 4821 } 4822 4823 static const struct sched_class fake_sched_class = { 4824 .put_prev_task = put_prev_task_fake, 4825 }; 4826 4827 static struct task_struct fake_task = { 4828 /* 4829 * Avoid pull_{rt,dl}_task() 4830 */ 4831 .prio = MAX_PRIO + 1, 4832 .sched_class = &fake_sched_class, 4833 }; 4834 4835 /* 4836 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4837 * try_to_wake_up()->select_task_rq(). 4838 * 4839 * Called with rq->lock held even though we'er in stop_machine() and 4840 * there's no concurrency possible, we hold the required locks anyway 4841 * because of lock validation efforts. 4842 */ 4843 static void migrate_tasks(unsigned int dead_cpu) 4844 { 4845 struct rq *rq = cpu_rq(dead_cpu); 4846 struct task_struct *next, *stop = rq->stop; 4847 int dest_cpu; 4848 4849 /* 4850 * Fudge the rq selection such that the below task selection loop 4851 * doesn't get stuck on the currently eligible stop task. 4852 * 4853 * We're currently inside stop_machine() and the rq is either stuck 4854 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4855 * either way we should never end up calling schedule() until we're 4856 * done here. 4857 */ 4858 rq->stop = NULL; 4859 4860 /* 4861 * put_prev_task() and pick_next_task() sched 4862 * class method both need to have an up-to-date 4863 * value of rq->clock[_task] 4864 */ 4865 update_rq_clock(rq); 4866 4867 for ( ; ; ) { 4868 /* 4869 * There's this thread running, bail when that's the only 4870 * remaining thread. 4871 */ 4872 if (rq->nr_running == 1) 4873 break; 4874 4875 next = pick_next_task(rq, &fake_task); 4876 BUG_ON(!next); 4877 next->sched_class->put_prev_task(rq, next); 4878 4879 /* Find suitable destination for @next, with force if needed. */ 4880 dest_cpu = select_fallback_rq(dead_cpu, next); 4881 raw_spin_unlock(&rq->lock); 4882 4883 __migrate_task(next, dead_cpu, dest_cpu); 4884 4885 raw_spin_lock(&rq->lock); 4886 } 4887 4888 rq->stop = stop; 4889 } 4890 4891 #endif /* CONFIG_HOTPLUG_CPU */ 4892 4893 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4894 4895 static struct ctl_table sd_ctl_dir[] = { 4896 { 4897 .procname = "sched_domain", 4898 .mode = 0555, 4899 }, 4900 {} 4901 }; 4902 4903 static struct ctl_table sd_ctl_root[] = { 4904 { 4905 .procname = "kernel", 4906 .mode = 0555, 4907 .child = sd_ctl_dir, 4908 }, 4909 {} 4910 }; 4911 4912 static struct ctl_table *sd_alloc_ctl_entry(int n) 4913 { 4914 struct ctl_table *entry = 4915 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4916 4917 return entry; 4918 } 4919 4920 static void sd_free_ctl_entry(struct ctl_table **tablep) 4921 { 4922 struct ctl_table *entry; 4923 4924 /* 4925 * In the intermediate directories, both the child directory and 4926 * procname are dynamically allocated and could fail but the mode 4927 * will always be set. In the lowest directory the names are 4928 * static strings and all have proc handlers. 4929 */ 4930 for (entry = *tablep; entry->mode; entry++) { 4931 if (entry->child) 4932 sd_free_ctl_entry(&entry->child); 4933 if (entry->proc_handler == NULL) 4934 kfree(entry->procname); 4935 } 4936 4937 kfree(*tablep); 4938 *tablep = NULL; 4939 } 4940 4941 static int min_load_idx = 0; 4942 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4943 4944 static void 4945 set_table_entry(struct ctl_table *entry, 4946 const char *procname, void *data, int maxlen, 4947 umode_t mode, proc_handler *proc_handler, 4948 bool load_idx) 4949 { 4950 entry->procname = procname; 4951 entry->data = data; 4952 entry->maxlen = maxlen; 4953 entry->mode = mode; 4954 entry->proc_handler = proc_handler; 4955 4956 if (load_idx) { 4957 entry->extra1 = &min_load_idx; 4958 entry->extra2 = &max_load_idx; 4959 } 4960 } 4961 4962 static struct ctl_table * 4963 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4964 { 4965 struct ctl_table *table = sd_alloc_ctl_entry(14); 4966 4967 if (table == NULL) 4968 return NULL; 4969 4970 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4971 sizeof(long), 0644, proc_doulongvec_minmax, false); 4972 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4973 sizeof(long), 0644, proc_doulongvec_minmax, false); 4974 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4975 sizeof(int), 0644, proc_dointvec_minmax, true); 4976 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4977 sizeof(int), 0644, proc_dointvec_minmax, true); 4978 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4979 sizeof(int), 0644, proc_dointvec_minmax, true); 4980 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4981 sizeof(int), 0644, proc_dointvec_minmax, true); 4982 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4983 sizeof(int), 0644, proc_dointvec_minmax, true); 4984 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4985 sizeof(int), 0644, proc_dointvec_minmax, false); 4986 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4987 sizeof(int), 0644, proc_dointvec_minmax, false); 4988 set_table_entry(&table[9], "cache_nice_tries", 4989 &sd->cache_nice_tries, 4990 sizeof(int), 0644, proc_dointvec_minmax, false); 4991 set_table_entry(&table[10], "flags", &sd->flags, 4992 sizeof(int), 0644, proc_dointvec_minmax, false); 4993 set_table_entry(&table[11], "max_newidle_lb_cost", 4994 &sd->max_newidle_lb_cost, 4995 sizeof(long), 0644, proc_doulongvec_minmax, false); 4996 set_table_entry(&table[12], "name", sd->name, 4997 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4998 /* &table[13] is terminator */ 4999 5000 return table; 5001 } 5002 5003 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5004 { 5005 struct ctl_table *entry, *table; 5006 struct sched_domain *sd; 5007 int domain_num = 0, i; 5008 char buf[32]; 5009 5010 for_each_domain(cpu, sd) 5011 domain_num++; 5012 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5013 if (table == NULL) 5014 return NULL; 5015 5016 i = 0; 5017 for_each_domain(cpu, sd) { 5018 snprintf(buf, 32, "domain%d", i); 5019 entry->procname = kstrdup(buf, GFP_KERNEL); 5020 entry->mode = 0555; 5021 entry->child = sd_alloc_ctl_domain_table(sd); 5022 entry++; 5023 i++; 5024 } 5025 return table; 5026 } 5027 5028 static struct ctl_table_header *sd_sysctl_header; 5029 static void register_sched_domain_sysctl(void) 5030 { 5031 int i, cpu_num = num_possible_cpus(); 5032 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5033 char buf[32]; 5034 5035 WARN_ON(sd_ctl_dir[0].child); 5036 sd_ctl_dir[0].child = entry; 5037 5038 if (entry == NULL) 5039 return; 5040 5041 for_each_possible_cpu(i) { 5042 snprintf(buf, 32, "cpu%d", i); 5043 entry->procname = kstrdup(buf, GFP_KERNEL); 5044 entry->mode = 0555; 5045 entry->child = sd_alloc_ctl_cpu_table(i); 5046 entry++; 5047 } 5048 5049 WARN_ON(sd_sysctl_header); 5050 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5051 } 5052 5053 /* may be called multiple times per register */ 5054 static void unregister_sched_domain_sysctl(void) 5055 { 5056 if (sd_sysctl_header) 5057 unregister_sysctl_table(sd_sysctl_header); 5058 sd_sysctl_header = NULL; 5059 if (sd_ctl_dir[0].child) 5060 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5061 } 5062 #else 5063 static void register_sched_domain_sysctl(void) 5064 { 5065 } 5066 static void unregister_sched_domain_sysctl(void) 5067 { 5068 } 5069 #endif 5070 5071 static void set_rq_online(struct rq *rq) 5072 { 5073 if (!rq->online) { 5074 const struct sched_class *class; 5075 5076 cpumask_set_cpu(rq->cpu, rq->rd->online); 5077 rq->online = 1; 5078 5079 for_each_class(class) { 5080 if (class->rq_online) 5081 class->rq_online(rq); 5082 } 5083 } 5084 } 5085 5086 static void set_rq_offline(struct rq *rq) 5087 { 5088 if (rq->online) { 5089 const struct sched_class *class; 5090 5091 for_each_class(class) { 5092 if (class->rq_offline) 5093 class->rq_offline(rq); 5094 } 5095 5096 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5097 rq->online = 0; 5098 } 5099 } 5100 5101 /* 5102 * migration_call - callback that gets triggered when a CPU is added. 5103 * Here we can start up the necessary migration thread for the new CPU. 5104 */ 5105 static int 5106 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5107 { 5108 int cpu = (long)hcpu; 5109 unsigned long flags; 5110 struct rq *rq = cpu_rq(cpu); 5111 5112 switch (action & ~CPU_TASKS_FROZEN) { 5113 5114 case CPU_UP_PREPARE: 5115 rq->calc_load_update = calc_load_update; 5116 break; 5117 5118 case CPU_ONLINE: 5119 /* Update our root-domain */ 5120 raw_spin_lock_irqsave(&rq->lock, flags); 5121 if (rq->rd) { 5122 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5123 5124 set_rq_online(rq); 5125 } 5126 raw_spin_unlock_irqrestore(&rq->lock, flags); 5127 break; 5128 5129 #ifdef CONFIG_HOTPLUG_CPU 5130 case CPU_DYING: 5131 sched_ttwu_pending(); 5132 /* Update our root-domain */ 5133 raw_spin_lock_irqsave(&rq->lock, flags); 5134 if (rq->rd) { 5135 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5136 set_rq_offline(rq); 5137 } 5138 migrate_tasks(cpu); 5139 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5140 raw_spin_unlock_irqrestore(&rq->lock, flags); 5141 break; 5142 5143 case CPU_DEAD: 5144 calc_load_migrate(rq); 5145 break; 5146 #endif 5147 } 5148 5149 update_max_interval(); 5150 5151 return NOTIFY_OK; 5152 } 5153 5154 /* 5155 * Register at high priority so that task migration (migrate_all_tasks) 5156 * happens before everything else. This has to be lower priority than 5157 * the notifier in the perf_event subsystem, though. 5158 */ 5159 static struct notifier_block migration_notifier = { 5160 .notifier_call = migration_call, 5161 .priority = CPU_PRI_MIGRATION, 5162 }; 5163 5164 static void __cpuinit set_cpu_rq_start_time(void) 5165 { 5166 int cpu = smp_processor_id(); 5167 struct rq *rq = cpu_rq(cpu); 5168 rq->age_stamp = sched_clock_cpu(cpu); 5169 } 5170 5171 static int sched_cpu_active(struct notifier_block *nfb, 5172 unsigned long action, void *hcpu) 5173 { 5174 switch (action & ~CPU_TASKS_FROZEN) { 5175 case CPU_STARTING: 5176 set_cpu_rq_start_time(); 5177 return NOTIFY_OK; 5178 case CPU_DOWN_FAILED: 5179 set_cpu_active((long)hcpu, true); 5180 return NOTIFY_OK; 5181 default: 5182 return NOTIFY_DONE; 5183 } 5184 } 5185 5186 static int sched_cpu_inactive(struct notifier_block *nfb, 5187 unsigned long action, void *hcpu) 5188 { 5189 unsigned long flags; 5190 long cpu = (long)hcpu; 5191 5192 switch (action & ~CPU_TASKS_FROZEN) { 5193 case CPU_DOWN_PREPARE: 5194 set_cpu_active(cpu, false); 5195 5196 /* explicitly allow suspend */ 5197 if (!(action & CPU_TASKS_FROZEN)) { 5198 struct dl_bw *dl_b = dl_bw_of(cpu); 5199 bool overflow; 5200 int cpus; 5201 5202 raw_spin_lock_irqsave(&dl_b->lock, flags); 5203 cpus = dl_bw_cpus(cpu); 5204 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5205 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5206 5207 if (overflow) 5208 return notifier_from_errno(-EBUSY); 5209 } 5210 return NOTIFY_OK; 5211 } 5212 5213 return NOTIFY_DONE; 5214 } 5215 5216 static int __init migration_init(void) 5217 { 5218 void *cpu = (void *)(long)smp_processor_id(); 5219 int err; 5220 5221 /* Initialize migration for the boot CPU */ 5222 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5223 BUG_ON(err == NOTIFY_BAD); 5224 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5225 register_cpu_notifier(&migration_notifier); 5226 5227 /* Register cpu active notifiers */ 5228 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5229 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5230 5231 return 0; 5232 } 5233 early_initcall(migration_init); 5234 #endif 5235 5236 #ifdef CONFIG_SMP 5237 5238 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5239 5240 #ifdef CONFIG_SCHED_DEBUG 5241 5242 static __read_mostly int sched_debug_enabled; 5243 5244 static int __init sched_debug_setup(char *str) 5245 { 5246 sched_debug_enabled = 1; 5247 5248 return 0; 5249 } 5250 early_param("sched_debug", sched_debug_setup); 5251 5252 static inline bool sched_debug(void) 5253 { 5254 return sched_debug_enabled; 5255 } 5256 5257 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5258 struct cpumask *groupmask) 5259 { 5260 struct sched_group *group = sd->groups; 5261 char str[256]; 5262 5263 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5264 cpumask_clear(groupmask); 5265 5266 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5267 5268 if (!(sd->flags & SD_LOAD_BALANCE)) { 5269 printk("does not load-balance\n"); 5270 if (sd->parent) 5271 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5272 " has parent"); 5273 return -1; 5274 } 5275 5276 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5277 5278 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5279 printk(KERN_ERR "ERROR: domain->span does not contain " 5280 "CPU%d\n", cpu); 5281 } 5282 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5283 printk(KERN_ERR "ERROR: domain->groups does not contain" 5284 " CPU%d\n", cpu); 5285 } 5286 5287 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5288 do { 5289 if (!group) { 5290 printk("\n"); 5291 printk(KERN_ERR "ERROR: group is NULL\n"); 5292 break; 5293 } 5294 5295 /* 5296 * Even though we initialize ->capacity to something semi-sane, 5297 * we leave capacity_orig unset. This allows us to detect if 5298 * domain iteration is still funny without causing /0 traps. 5299 */ 5300 if (!group->sgc->capacity_orig) { 5301 printk(KERN_CONT "\n"); 5302 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5303 break; 5304 } 5305 5306 if (!cpumask_weight(sched_group_cpus(group))) { 5307 printk(KERN_CONT "\n"); 5308 printk(KERN_ERR "ERROR: empty group\n"); 5309 break; 5310 } 5311 5312 if (!(sd->flags & SD_OVERLAP) && 5313 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5314 printk(KERN_CONT "\n"); 5315 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5316 break; 5317 } 5318 5319 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5320 5321 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5322 5323 printk(KERN_CONT " %s", str); 5324 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5325 printk(KERN_CONT " (cpu_capacity = %d)", 5326 group->sgc->capacity); 5327 } 5328 5329 group = group->next; 5330 } while (group != sd->groups); 5331 printk(KERN_CONT "\n"); 5332 5333 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5334 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5335 5336 if (sd->parent && 5337 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5338 printk(KERN_ERR "ERROR: parent span is not a superset " 5339 "of domain->span\n"); 5340 return 0; 5341 } 5342 5343 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5344 { 5345 int level = 0; 5346 5347 if (!sched_debug_enabled) 5348 return; 5349 5350 if (!sd) { 5351 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5352 return; 5353 } 5354 5355 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5356 5357 for (;;) { 5358 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5359 break; 5360 level++; 5361 sd = sd->parent; 5362 if (!sd) 5363 break; 5364 } 5365 } 5366 #else /* !CONFIG_SCHED_DEBUG */ 5367 # define sched_domain_debug(sd, cpu) do { } while (0) 5368 static inline bool sched_debug(void) 5369 { 5370 return false; 5371 } 5372 #endif /* CONFIG_SCHED_DEBUG */ 5373 5374 static int sd_degenerate(struct sched_domain *sd) 5375 { 5376 if (cpumask_weight(sched_domain_span(sd)) == 1) 5377 return 1; 5378 5379 /* Following flags need at least 2 groups */ 5380 if (sd->flags & (SD_LOAD_BALANCE | 5381 SD_BALANCE_NEWIDLE | 5382 SD_BALANCE_FORK | 5383 SD_BALANCE_EXEC | 5384 SD_SHARE_CPUCAPACITY | 5385 SD_SHARE_PKG_RESOURCES | 5386 SD_SHARE_POWERDOMAIN)) { 5387 if (sd->groups != sd->groups->next) 5388 return 0; 5389 } 5390 5391 /* Following flags don't use groups */ 5392 if (sd->flags & (SD_WAKE_AFFINE)) 5393 return 0; 5394 5395 return 1; 5396 } 5397 5398 static int 5399 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5400 { 5401 unsigned long cflags = sd->flags, pflags = parent->flags; 5402 5403 if (sd_degenerate(parent)) 5404 return 1; 5405 5406 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5407 return 0; 5408 5409 /* Flags needing groups don't count if only 1 group in parent */ 5410 if (parent->groups == parent->groups->next) { 5411 pflags &= ~(SD_LOAD_BALANCE | 5412 SD_BALANCE_NEWIDLE | 5413 SD_BALANCE_FORK | 5414 SD_BALANCE_EXEC | 5415 SD_SHARE_CPUCAPACITY | 5416 SD_SHARE_PKG_RESOURCES | 5417 SD_PREFER_SIBLING | 5418 SD_SHARE_POWERDOMAIN); 5419 if (nr_node_ids == 1) 5420 pflags &= ~SD_SERIALIZE; 5421 } 5422 if (~cflags & pflags) 5423 return 0; 5424 5425 return 1; 5426 } 5427 5428 static void free_rootdomain(struct rcu_head *rcu) 5429 { 5430 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5431 5432 cpupri_cleanup(&rd->cpupri); 5433 cpudl_cleanup(&rd->cpudl); 5434 free_cpumask_var(rd->dlo_mask); 5435 free_cpumask_var(rd->rto_mask); 5436 free_cpumask_var(rd->online); 5437 free_cpumask_var(rd->span); 5438 kfree(rd); 5439 } 5440 5441 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5442 { 5443 struct root_domain *old_rd = NULL; 5444 unsigned long flags; 5445 5446 raw_spin_lock_irqsave(&rq->lock, flags); 5447 5448 if (rq->rd) { 5449 old_rd = rq->rd; 5450 5451 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5452 set_rq_offline(rq); 5453 5454 cpumask_clear_cpu(rq->cpu, old_rd->span); 5455 5456 /* 5457 * If we dont want to free the old_rd yet then 5458 * set old_rd to NULL to skip the freeing later 5459 * in this function: 5460 */ 5461 if (!atomic_dec_and_test(&old_rd->refcount)) 5462 old_rd = NULL; 5463 } 5464 5465 atomic_inc(&rd->refcount); 5466 rq->rd = rd; 5467 5468 cpumask_set_cpu(rq->cpu, rd->span); 5469 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5470 set_rq_online(rq); 5471 5472 raw_spin_unlock_irqrestore(&rq->lock, flags); 5473 5474 if (old_rd) 5475 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5476 } 5477 5478 static int init_rootdomain(struct root_domain *rd) 5479 { 5480 memset(rd, 0, sizeof(*rd)); 5481 5482 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5483 goto out; 5484 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5485 goto free_span; 5486 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5487 goto free_online; 5488 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5489 goto free_dlo_mask; 5490 5491 init_dl_bw(&rd->dl_bw); 5492 if (cpudl_init(&rd->cpudl) != 0) 5493 goto free_dlo_mask; 5494 5495 if (cpupri_init(&rd->cpupri) != 0) 5496 goto free_rto_mask; 5497 return 0; 5498 5499 free_rto_mask: 5500 free_cpumask_var(rd->rto_mask); 5501 free_dlo_mask: 5502 free_cpumask_var(rd->dlo_mask); 5503 free_online: 5504 free_cpumask_var(rd->online); 5505 free_span: 5506 free_cpumask_var(rd->span); 5507 out: 5508 return -ENOMEM; 5509 } 5510 5511 /* 5512 * By default the system creates a single root-domain with all cpus as 5513 * members (mimicking the global state we have today). 5514 */ 5515 struct root_domain def_root_domain; 5516 5517 static void init_defrootdomain(void) 5518 { 5519 init_rootdomain(&def_root_domain); 5520 5521 atomic_set(&def_root_domain.refcount, 1); 5522 } 5523 5524 static struct root_domain *alloc_rootdomain(void) 5525 { 5526 struct root_domain *rd; 5527 5528 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5529 if (!rd) 5530 return NULL; 5531 5532 if (init_rootdomain(rd) != 0) { 5533 kfree(rd); 5534 return NULL; 5535 } 5536 5537 return rd; 5538 } 5539 5540 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5541 { 5542 struct sched_group *tmp, *first; 5543 5544 if (!sg) 5545 return; 5546 5547 first = sg; 5548 do { 5549 tmp = sg->next; 5550 5551 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5552 kfree(sg->sgc); 5553 5554 kfree(sg); 5555 sg = tmp; 5556 } while (sg != first); 5557 } 5558 5559 static void free_sched_domain(struct rcu_head *rcu) 5560 { 5561 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5562 5563 /* 5564 * If its an overlapping domain it has private groups, iterate and 5565 * nuke them all. 5566 */ 5567 if (sd->flags & SD_OVERLAP) { 5568 free_sched_groups(sd->groups, 1); 5569 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5570 kfree(sd->groups->sgc); 5571 kfree(sd->groups); 5572 } 5573 kfree(sd); 5574 } 5575 5576 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5577 { 5578 call_rcu(&sd->rcu, free_sched_domain); 5579 } 5580 5581 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5582 { 5583 for (; sd; sd = sd->parent) 5584 destroy_sched_domain(sd, cpu); 5585 } 5586 5587 /* 5588 * Keep a special pointer to the highest sched_domain that has 5589 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5590 * allows us to avoid some pointer chasing select_idle_sibling(). 5591 * 5592 * Also keep a unique ID per domain (we use the first cpu number in 5593 * the cpumask of the domain), this allows us to quickly tell if 5594 * two cpus are in the same cache domain, see cpus_share_cache(). 5595 */ 5596 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5597 DEFINE_PER_CPU(int, sd_llc_size); 5598 DEFINE_PER_CPU(int, sd_llc_id); 5599 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5600 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5601 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5602 5603 static void update_top_cache_domain(int cpu) 5604 { 5605 struct sched_domain *sd; 5606 struct sched_domain *busy_sd = NULL; 5607 int id = cpu; 5608 int size = 1; 5609 5610 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5611 if (sd) { 5612 id = cpumask_first(sched_domain_span(sd)); 5613 size = cpumask_weight(sched_domain_span(sd)); 5614 busy_sd = sd->parent; /* sd_busy */ 5615 } 5616 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5617 5618 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5619 per_cpu(sd_llc_size, cpu) = size; 5620 per_cpu(sd_llc_id, cpu) = id; 5621 5622 sd = lowest_flag_domain(cpu, SD_NUMA); 5623 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5624 5625 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5626 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5627 } 5628 5629 /* 5630 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5631 * hold the hotplug lock. 5632 */ 5633 static void 5634 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5635 { 5636 struct rq *rq = cpu_rq(cpu); 5637 struct sched_domain *tmp; 5638 5639 /* Remove the sched domains which do not contribute to scheduling. */ 5640 for (tmp = sd; tmp; ) { 5641 struct sched_domain *parent = tmp->parent; 5642 if (!parent) 5643 break; 5644 5645 if (sd_parent_degenerate(tmp, parent)) { 5646 tmp->parent = parent->parent; 5647 if (parent->parent) 5648 parent->parent->child = tmp; 5649 /* 5650 * Transfer SD_PREFER_SIBLING down in case of a 5651 * degenerate parent; the spans match for this 5652 * so the property transfers. 5653 */ 5654 if (parent->flags & SD_PREFER_SIBLING) 5655 tmp->flags |= SD_PREFER_SIBLING; 5656 destroy_sched_domain(parent, cpu); 5657 } else 5658 tmp = tmp->parent; 5659 } 5660 5661 if (sd && sd_degenerate(sd)) { 5662 tmp = sd; 5663 sd = sd->parent; 5664 destroy_sched_domain(tmp, cpu); 5665 if (sd) 5666 sd->child = NULL; 5667 } 5668 5669 sched_domain_debug(sd, cpu); 5670 5671 rq_attach_root(rq, rd); 5672 tmp = rq->sd; 5673 rcu_assign_pointer(rq->sd, sd); 5674 destroy_sched_domains(tmp, cpu); 5675 5676 update_top_cache_domain(cpu); 5677 } 5678 5679 /* cpus with isolated domains */ 5680 static cpumask_var_t cpu_isolated_map; 5681 5682 /* Setup the mask of cpus configured for isolated domains */ 5683 static int __init isolated_cpu_setup(char *str) 5684 { 5685 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5686 cpulist_parse(str, cpu_isolated_map); 5687 return 1; 5688 } 5689 5690 __setup("isolcpus=", isolated_cpu_setup); 5691 5692 struct s_data { 5693 struct sched_domain ** __percpu sd; 5694 struct root_domain *rd; 5695 }; 5696 5697 enum s_alloc { 5698 sa_rootdomain, 5699 sa_sd, 5700 sa_sd_storage, 5701 sa_none, 5702 }; 5703 5704 /* 5705 * Build an iteration mask that can exclude certain CPUs from the upwards 5706 * domain traversal. 5707 * 5708 * Asymmetric node setups can result in situations where the domain tree is of 5709 * unequal depth, make sure to skip domains that already cover the entire 5710 * range. 5711 * 5712 * In that case build_sched_domains() will have terminated the iteration early 5713 * and our sibling sd spans will be empty. Domains should always include the 5714 * cpu they're built on, so check that. 5715 * 5716 */ 5717 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5718 { 5719 const struct cpumask *span = sched_domain_span(sd); 5720 struct sd_data *sdd = sd->private; 5721 struct sched_domain *sibling; 5722 int i; 5723 5724 for_each_cpu(i, span) { 5725 sibling = *per_cpu_ptr(sdd->sd, i); 5726 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5727 continue; 5728 5729 cpumask_set_cpu(i, sched_group_mask(sg)); 5730 } 5731 } 5732 5733 /* 5734 * Return the canonical balance cpu for this group, this is the first cpu 5735 * of this group that's also in the iteration mask. 5736 */ 5737 int group_balance_cpu(struct sched_group *sg) 5738 { 5739 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5740 } 5741 5742 static int 5743 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5744 { 5745 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5746 const struct cpumask *span = sched_domain_span(sd); 5747 struct cpumask *covered = sched_domains_tmpmask; 5748 struct sd_data *sdd = sd->private; 5749 struct sched_domain *child; 5750 int i; 5751 5752 cpumask_clear(covered); 5753 5754 for_each_cpu(i, span) { 5755 struct cpumask *sg_span; 5756 5757 if (cpumask_test_cpu(i, covered)) 5758 continue; 5759 5760 child = *per_cpu_ptr(sdd->sd, i); 5761 5762 /* See the comment near build_group_mask(). */ 5763 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5764 continue; 5765 5766 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5767 GFP_KERNEL, cpu_to_node(cpu)); 5768 5769 if (!sg) 5770 goto fail; 5771 5772 sg_span = sched_group_cpus(sg); 5773 if (child->child) { 5774 child = child->child; 5775 cpumask_copy(sg_span, sched_domain_span(child)); 5776 } else 5777 cpumask_set_cpu(i, sg_span); 5778 5779 cpumask_or(covered, covered, sg_span); 5780 5781 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5782 if (atomic_inc_return(&sg->sgc->ref) == 1) 5783 build_group_mask(sd, sg); 5784 5785 /* 5786 * Initialize sgc->capacity such that even if we mess up the 5787 * domains and no possible iteration will get us here, we won't 5788 * die on a /0 trap. 5789 */ 5790 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5791 sg->sgc->capacity_orig = sg->sgc->capacity; 5792 5793 /* 5794 * Make sure the first group of this domain contains the 5795 * canonical balance cpu. Otherwise the sched_domain iteration 5796 * breaks. See update_sg_lb_stats(). 5797 */ 5798 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5799 group_balance_cpu(sg) == cpu) 5800 groups = sg; 5801 5802 if (!first) 5803 first = sg; 5804 if (last) 5805 last->next = sg; 5806 last = sg; 5807 last->next = first; 5808 } 5809 sd->groups = groups; 5810 5811 return 0; 5812 5813 fail: 5814 free_sched_groups(first, 0); 5815 5816 return -ENOMEM; 5817 } 5818 5819 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5820 { 5821 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5822 struct sched_domain *child = sd->child; 5823 5824 if (child) 5825 cpu = cpumask_first(sched_domain_span(child)); 5826 5827 if (sg) { 5828 *sg = *per_cpu_ptr(sdd->sg, cpu); 5829 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5830 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5831 } 5832 5833 return cpu; 5834 } 5835 5836 /* 5837 * build_sched_groups will build a circular linked list of the groups 5838 * covered by the given span, and will set each group's ->cpumask correctly, 5839 * and ->cpu_capacity to 0. 5840 * 5841 * Assumes the sched_domain tree is fully constructed 5842 */ 5843 static int 5844 build_sched_groups(struct sched_domain *sd, int cpu) 5845 { 5846 struct sched_group *first = NULL, *last = NULL; 5847 struct sd_data *sdd = sd->private; 5848 const struct cpumask *span = sched_domain_span(sd); 5849 struct cpumask *covered; 5850 int i; 5851 5852 get_group(cpu, sdd, &sd->groups); 5853 atomic_inc(&sd->groups->ref); 5854 5855 if (cpu != cpumask_first(span)) 5856 return 0; 5857 5858 lockdep_assert_held(&sched_domains_mutex); 5859 covered = sched_domains_tmpmask; 5860 5861 cpumask_clear(covered); 5862 5863 for_each_cpu(i, span) { 5864 struct sched_group *sg; 5865 int group, j; 5866 5867 if (cpumask_test_cpu(i, covered)) 5868 continue; 5869 5870 group = get_group(i, sdd, &sg); 5871 cpumask_setall(sched_group_mask(sg)); 5872 5873 for_each_cpu(j, span) { 5874 if (get_group(j, sdd, NULL) != group) 5875 continue; 5876 5877 cpumask_set_cpu(j, covered); 5878 cpumask_set_cpu(j, sched_group_cpus(sg)); 5879 } 5880 5881 if (!first) 5882 first = sg; 5883 if (last) 5884 last->next = sg; 5885 last = sg; 5886 } 5887 last->next = first; 5888 5889 return 0; 5890 } 5891 5892 /* 5893 * Initialize sched groups cpu_capacity. 5894 * 5895 * cpu_capacity indicates the capacity of sched group, which is used while 5896 * distributing the load between different sched groups in a sched domain. 5897 * Typically cpu_capacity for all the groups in a sched domain will be same 5898 * unless there are asymmetries in the topology. If there are asymmetries, 5899 * group having more cpu_capacity will pickup more load compared to the 5900 * group having less cpu_capacity. 5901 */ 5902 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 5903 { 5904 struct sched_group *sg = sd->groups; 5905 5906 WARN_ON(!sg); 5907 5908 do { 5909 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5910 sg = sg->next; 5911 } while (sg != sd->groups); 5912 5913 if (cpu != group_balance_cpu(sg)) 5914 return; 5915 5916 update_group_capacity(sd, cpu); 5917 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 5918 } 5919 5920 /* 5921 * Initializers for schedule domains 5922 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5923 */ 5924 5925 static int default_relax_domain_level = -1; 5926 int sched_domain_level_max; 5927 5928 static int __init setup_relax_domain_level(char *str) 5929 { 5930 if (kstrtoint(str, 0, &default_relax_domain_level)) 5931 pr_warn("Unable to set relax_domain_level\n"); 5932 5933 return 1; 5934 } 5935 __setup("relax_domain_level=", setup_relax_domain_level); 5936 5937 static void set_domain_attribute(struct sched_domain *sd, 5938 struct sched_domain_attr *attr) 5939 { 5940 int request; 5941 5942 if (!attr || attr->relax_domain_level < 0) { 5943 if (default_relax_domain_level < 0) 5944 return; 5945 else 5946 request = default_relax_domain_level; 5947 } else 5948 request = attr->relax_domain_level; 5949 if (request < sd->level) { 5950 /* turn off idle balance on this domain */ 5951 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5952 } else { 5953 /* turn on idle balance on this domain */ 5954 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5955 } 5956 } 5957 5958 static void __sdt_free(const struct cpumask *cpu_map); 5959 static int __sdt_alloc(const struct cpumask *cpu_map); 5960 5961 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5962 const struct cpumask *cpu_map) 5963 { 5964 switch (what) { 5965 case sa_rootdomain: 5966 if (!atomic_read(&d->rd->refcount)) 5967 free_rootdomain(&d->rd->rcu); /* fall through */ 5968 case sa_sd: 5969 free_percpu(d->sd); /* fall through */ 5970 case sa_sd_storage: 5971 __sdt_free(cpu_map); /* fall through */ 5972 case sa_none: 5973 break; 5974 } 5975 } 5976 5977 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5978 const struct cpumask *cpu_map) 5979 { 5980 memset(d, 0, sizeof(*d)); 5981 5982 if (__sdt_alloc(cpu_map)) 5983 return sa_sd_storage; 5984 d->sd = alloc_percpu(struct sched_domain *); 5985 if (!d->sd) 5986 return sa_sd_storage; 5987 d->rd = alloc_rootdomain(); 5988 if (!d->rd) 5989 return sa_sd; 5990 return sa_rootdomain; 5991 } 5992 5993 /* 5994 * NULL the sd_data elements we've used to build the sched_domain and 5995 * sched_group structure so that the subsequent __free_domain_allocs() 5996 * will not free the data we're using. 5997 */ 5998 static void claim_allocations(int cpu, struct sched_domain *sd) 5999 { 6000 struct sd_data *sdd = sd->private; 6001 6002 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6003 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6004 6005 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6006 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6007 6008 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6009 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6010 } 6011 6012 #ifdef CONFIG_NUMA 6013 static int sched_domains_numa_levels; 6014 static int *sched_domains_numa_distance; 6015 static struct cpumask ***sched_domains_numa_masks; 6016 static int sched_domains_curr_level; 6017 #endif 6018 6019 /* 6020 * SD_flags allowed in topology descriptions. 6021 * 6022 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6023 * SD_SHARE_PKG_RESOURCES - describes shared caches 6024 * SD_NUMA - describes NUMA topologies 6025 * SD_SHARE_POWERDOMAIN - describes shared power domain 6026 * 6027 * Odd one out: 6028 * SD_ASYM_PACKING - describes SMT quirks 6029 */ 6030 #define TOPOLOGY_SD_FLAGS \ 6031 (SD_SHARE_CPUCAPACITY | \ 6032 SD_SHARE_PKG_RESOURCES | \ 6033 SD_NUMA | \ 6034 SD_ASYM_PACKING | \ 6035 SD_SHARE_POWERDOMAIN) 6036 6037 static struct sched_domain * 6038 sd_init(struct sched_domain_topology_level *tl, int cpu) 6039 { 6040 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6041 int sd_weight, sd_flags = 0; 6042 6043 #ifdef CONFIG_NUMA 6044 /* 6045 * Ugly hack to pass state to sd_numa_mask()... 6046 */ 6047 sched_domains_curr_level = tl->numa_level; 6048 #endif 6049 6050 sd_weight = cpumask_weight(tl->mask(cpu)); 6051 6052 if (tl->sd_flags) 6053 sd_flags = (*tl->sd_flags)(); 6054 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6055 "wrong sd_flags in topology description\n")) 6056 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6057 6058 *sd = (struct sched_domain){ 6059 .min_interval = sd_weight, 6060 .max_interval = 2*sd_weight, 6061 .busy_factor = 32, 6062 .imbalance_pct = 125, 6063 6064 .cache_nice_tries = 0, 6065 .busy_idx = 0, 6066 .idle_idx = 0, 6067 .newidle_idx = 0, 6068 .wake_idx = 0, 6069 .forkexec_idx = 0, 6070 6071 .flags = 1*SD_LOAD_BALANCE 6072 | 1*SD_BALANCE_NEWIDLE 6073 | 1*SD_BALANCE_EXEC 6074 | 1*SD_BALANCE_FORK 6075 | 0*SD_BALANCE_WAKE 6076 | 1*SD_WAKE_AFFINE 6077 | 0*SD_SHARE_CPUCAPACITY 6078 | 0*SD_SHARE_PKG_RESOURCES 6079 | 0*SD_SERIALIZE 6080 | 0*SD_PREFER_SIBLING 6081 | 0*SD_NUMA 6082 | sd_flags 6083 , 6084 6085 .last_balance = jiffies, 6086 .balance_interval = sd_weight, 6087 .smt_gain = 0, 6088 .max_newidle_lb_cost = 0, 6089 .next_decay_max_lb_cost = jiffies, 6090 #ifdef CONFIG_SCHED_DEBUG 6091 .name = tl->name, 6092 #endif 6093 }; 6094 6095 /* 6096 * Convert topological properties into behaviour. 6097 */ 6098 6099 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6100 sd->imbalance_pct = 110; 6101 sd->smt_gain = 1178; /* ~15% */ 6102 6103 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6104 sd->imbalance_pct = 117; 6105 sd->cache_nice_tries = 1; 6106 sd->busy_idx = 2; 6107 6108 #ifdef CONFIG_NUMA 6109 } else if (sd->flags & SD_NUMA) { 6110 sd->cache_nice_tries = 2; 6111 sd->busy_idx = 3; 6112 sd->idle_idx = 2; 6113 6114 sd->flags |= SD_SERIALIZE; 6115 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6116 sd->flags &= ~(SD_BALANCE_EXEC | 6117 SD_BALANCE_FORK | 6118 SD_WAKE_AFFINE); 6119 } 6120 6121 #endif 6122 } else { 6123 sd->flags |= SD_PREFER_SIBLING; 6124 sd->cache_nice_tries = 1; 6125 sd->busy_idx = 2; 6126 sd->idle_idx = 1; 6127 } 6128 6129 sd->private = &tl->data; 6130 6131 return sd; 6132 } 6133 6134 /* 6135 * Topology list, bottom-up. 6136 */ 6137 static struct sched_domain_topology_level default_topology[] = { 6138 #ifdef CONFIG_SCHED_SMT 6139 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6140 #endif 6141 #ifdef CONFIG_SCHED_MC 6142 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6143 #endif 6144 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6145 { NULL, }, 6146 }; 6147 6148 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6149 6150 #define for_each_sd_topology(tl) \ 6151 for (tl = sched_domain_topology; tl->mask; tl++) 6152 6153 void set_sched_topology(struct sched_domain_topology_level *tl) 6154 { 6155 sched_domain_topology = tl; 6156 } 6157 6158 #ifdef CONFIG_NUMA 6159 6160 static const struct cpumask *sd_numa_mask(int cpu) 6161 { 6162 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6163 } 6164 6165 static void sched_numa_warn(const char *str) 6166 { 6167 static int done = false; 6168 int i,j; 6169 6170 if (done) 6171 return; 6172 6173 done = true; 6174 6175 printk(KERN_WARNING "ERROR: %s\n\n", str); 6176 6177 for (i = 0; i < nr_node_ids; i++) { 6178 printk(KERN_WARNING " "); 6179 for (j = 0; j < nr_node_ids; j++) 6180 printk(KERN_CONT "%02d ", node_distance(i,j)); 6181 printk(KERN_CONT "\n"); 6182 } 6183 printk(KERN_WARNING "\n"); 6184 } 6185 6186 static bool find_numa_distance(int distance) 6187 { 6188 int i; 6189 6190 if (distance == node_distance(0, 0)) 6191 return true; 6192 6193 for (i = 0; i < sched_domains_numa_levels; i++) { 6194 if (sched_domains_numa_distance[i] == distance) 6195 return true; 6196 } 6197 6198 return false; 6199 } 6200 6201 static void sched_init_numa(void) 6202 { 6203 int next_distance, curr_distance = node_distance(0, 0); 6204 struct sched_domain_topology_level *tl; 6205 int level = 0; 6206 int i, j, k; 6207 6208 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6209 if (!sched_domains_numa_distance) 6210 return; 6211 6212 /* 6213 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6214 * unique distances in the node_distance() table. 6215 * 6216 * Assumes node_distance(0,j) includes all distances in 6217 * node_distance(i,j) in order to avoid cubic time. 6218 */ 6219 next_distance = curr_distance; 6220 for (i = 0; i < nr_node_ids; i++) { 6221 for (j = 0; j < nr_node_ids; j++) { 6222 for (k = 0; k < nr_node_ids; k++) { 6223 int distance = node_distance(i, k); 6224 6225 if (distance > curr_distance && 6226 (distance < next_distance || 6227 next_distance == curr_distance)) 6228 next_distance = distance; 6229 6230 /* 6231 * While not a strong assumption it would be nice to know 6232 * about cases where if node A is connected to B, B is not 6233 * equally connected to A. 6234 */ 6235 if (sched_debug() && node_distance(k, i) != distance) 6236 sched_numa_warn("Node-distance not symmetric"); 6237 6238 if (sched_debug() && i && !find_numa_distance(distance)) 6239 sched_numa_warn("Node-0 not representative"); 6240 } 6241 if (next_distance != curr_distance) { 6242 sched_domains_numa_distance[level++] = next_distance; 6243 sched_domains_numa_levels = level; 6244 curr_distance = next_distance; 6245 } else break; 6246 } 6247 6248 /* 6249 * In case of sched_debug() we verify the above assumption. 6250 */ 6251 if (!sched_debug()) 6252 break; 6253 } 6254 /* 6255 * 'level' contains the number of unique distances, excluding the 6256 * identity distance node_distance(i,i). 6257 * 6258 * The sched_domains_numa_distance[] array includes the actual distance 6259 * numbers. 6260 */ 6261 6262 /* 6263 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6264 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6265 * the array will contain less then 'level' members. This could be 6266 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6267 * in other functions. 6268 * 6269 * We reset it to 'level' at the end of this function. 6270 */ 6271 sched_domains_numa_levels = 0; 6272 6273 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6274 if (!sched_domains_numa_masks) 6275 return; 6276 6277 /* 6278 * Now for each level, construct a mask per node which contains all 6279 * cpus of nodes that are that many hops away from us. 6280 */ 6281 for (i = 0; i < level; i++) { 6282 sched_domains_numa_masks[i] = 6283 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6284 if (!sched_domains_numa_masks[i]) 6285 return; 6286 6287 for (j = 0; j < nr_node_ids; j++) { 6288 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6289 if (!mask) 6290 return; 6291 6292 sched_domains_numa_masks[i][j] = mask; 6293 6294 for (k = 0; k < nr_node_ids; k++) { 6295 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6296 continue; 6297 6298 cpumask_or(mask, mask, cpumask_of_node(k)); 6299 } 6300 } 6301 } 6302 6303 /* Compute default topology size */ 6304 for (i = 0; sched_domain_topology[i].mask; i++); 6305 6306 tl = kzalloc((i + level + 1) * 6307 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6308 if (!tl) 6309 return; 6310 6311 /* 6312 * Copy the default topology bits.. 6313 */ 6314 for (i = 0; sched_domain_topology[i].mask; i++) 6315 tl[i] = sched_domain_topology[i]; 6316 6317 /* 6318 * .. and append 'j' levels of NUMA goodness. 6319 */ 6320 for (j = 0; j < level; i++, j++) { 6321 tl[i] = (struct sched_domain_topology_level){ 6322 .mask = sd_numa_mask, 6323 .sd_flags = cpu_numa_flags, 6324 .flags = SDTL_OVERLAP, 6325 .numa_level = j, 6326 SD_INIT_NAME(NUMA) 6327 }; 6328 } 6329 6330 sched_domain_topology = tl; 6331 6332 sched_domains_numa_levels = level; 6333 } 6334 6335 static void sched_domains_numa_masks_set(int cpu) 6336 { 6337 int i, j; 6338 int node = cpu_to_node(cpu); 6339 6340 for (i = 0; i < sched_domains_numa_levels; i++) { 6341 for (j = 0; j < nr_node_ids; j++) { 6342 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6343 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6344 } 6345 } 6346 } 6347 6348 static void sched_domains_numa_masks_clear(int cpu) 6349 { 6350 int i, j; 6351 for (i = 0; i < sched_domains_numa_levels; i++) { 6352 for (j = 0; j < nr_node_ids; j++) 6353 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6354 } 6355 } 6356 6357 /* 6358 * Update sched_domains_numa_masks[level][node] array when new cpus 6359 * are onlined. 6360 */ 6361 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6362 unsigned long action, 6363 void *hcpu) 6364 { 6365 int cpu = (long)hcpu; 6366 6367 switch (action & ~CPU_TASKS_FROZEN) { 6368 case CPU_ONLINE: 6369 sched_domains_numa_masks_set(cpu); 6370 break; 6371 6372 case CPU_DEAD: 6373 sched_domains_numa_masks_clear(cpu); 6374 break; 6375 6376 default: 6377 return NOTIFY_DONE; 6378 } 6379 6380 return NOTIFY_OK; 6381 } 6382 #else 6383 static inline void sched_init_numa(void) 6384 { 6385 } 6386 6387 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6388 unsigned long action, 6389 void *hcpu) 6390 { 6391 return 0; 6392 } 6393 #endif /* CONFIG_NUMA */ 6394 6395 static int __sdt_alloc(const struct cpumask *cpu_map) 6396 { 6397 struct sched_domain_topology_level *tl; 6398 int j; 6399 6400 for_each_sd_topology(tl) { 6401 struct sd_data *sdd = &tl->data; 6402 6403 sdd->sd = alloc_percpu(struct sched_domain *); 6404 if (!sdd->sd) 6405 return -ENOMEM; 6406 6407 sdd->sg = alloc_percpu(struct sched_group *); 6408 if (!sdd->sg) 6409 return -ENOMEM; 6410 6411 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6412 if (!sdd->sgc) 6413 return -ENOMEM; 6414 6415 for_each_cpu(j, cpu_map) { 6416 struct sched_domain *sd; 6417 struct sched_group *sg; 6418 struct sched_group_capacity *sgc; 6419 6420 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6421 GFP_KERNEL, cpu_to_node(j)); 6422 if (!sd) 6423 return -ENOMEM; 6424 6425 *per_cpu_ptr(sdd->sd, j) = sd; 6426 6427 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6428 GFP_KERNEL, cpu_to_node(j)); 6429 if (!sg) 6430 return -ENOMEM; 6431 6432 sg->next = sg; 6433 6434 *per_cpu_ptr(sdd->sg, j) = sg; 6435 6436 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6437 GFP_KERNEL, cpu_to_node(j)); 6438 if (!sgc) 6439 return -ENOMEM; 6440 6441 *per_cpu_ptr(sdd->sgc, j) = sgc; 6442 } 6443 } 6444 6445 return 0; 6446 } 6447 6448 static void __sdt_free(const struct cpumask *cpu_map) 6449 { 6450 struct sched_domain_topology_level *tl; 6451 int j; 6452 6453 for_each_sd_topology(tl) { 6454 struct sd_data *sdd = &tl->data; 6455 6456 for_each_cpu(j, cpu_map) { 6457 struct sched_domain *sd; 6458 6459 if (sdd->sd) { 6460 sd = *per_cpu_ptr(sdd->sd, j); 6461 if (sd && (sd->flags & SD_OVERLAP)) 6462 free_sched_groups(sd->groups, 0); 6463 kfree(*per_cpu_ptr(sdd->sd, j)); 6464 } 6465 6466 if (sdd->sg) 6467 kfree(*per_cpu_ptr(sdd->sg, j)); 6468 if (sdd->sgc) 6469 kfree(*per_cpu_ptr(sdd->sgc, j)); 6470 } 6471 free_percpu(sdd->sd); 6472 sdd->sd = NULL; 6473 free_percpu(sdd->sg); 6474 sdd->sg = NULL; 6475 free_percpu(sdd->sgc); 6476 sdd->sgc = NULL; 6477 } 6478 } 6479 6480 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6481 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6482 struct sched_domain *child, int cpu) 6483 { 6484 struct sched_domain *sd = sd_init(tl, cpu); 6485 if (!sd) 6486 return child; 6487 6488 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6489 if (child) { 6490 sd->level = child->level + 1; 6491 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6492 child->parent = sd; 6493 sd->child = child; 6494 6495 if (!cpumask_subset(sched_domain_span(child), 6496 sched_domain_span(sd))) { 6497 pr_err("BUG: arch topology borken\n"); 6498 #ifdef CONFIG_SCHED_DEBUG 6499 pr_err(" the %s domain not a subset of the %s domain\n", 6500 child->name, sd->name); 6501 #endif 6502 /* Fixup, ensure @sd has at least @child cpus. */ 6503 cpumask_or(sched_domain_span(sd), 6504 sched_domain_span(sd), 6505 sched_domain_span(child)); 6506 } 6507 6508 } 6509 set_domain_attribute(sd, attr); 6510 6511 return sd; 6512 } 6513 6514 /* 6515 * Build sched domains for a given set of cpus and attach the sched domains 6516 * to the individual cpus 6517 */ 6518 static int build_sched_domains(const struct cpumask *cpu_map, 6519 struct sched_domain_attr *attr) 6520 { 6521 enum s_alloc alloc_state; 6522 struct sched_domain *sd; 6523 struct s_data d; 6524 int i, ret = -ENOMEM; 6525 6526 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6527 if (alloc_state != sa_rootdomain) 6528 goto error; 6529 6530 /* Set up domains for cpus specified by the cpu_map. */ 6531 for_each_cpu(i, cpu_map) { 6532 struct sched_domain_topology_level *tl; 6533 6534 sd = NULL; 6535 for_each_sd_topology(tl) { 6536 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6537 if (tl == sched_domain_topology) 6538 *per_cpu_ptr(d.sd, i) = sd; 6539 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6540 sd->flags |= SD_OVERLAP; 6541 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6542 break; 6543 } 6544 } 6545 6546 /* Build the groups for the domains */ 6547 for_each_cpu(i, cpu_map) { 6548 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6549 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6550 if (sd->flags & SD_OVERLAP) { 6551 if (build_overlap_sched_groups(sd, i)) 6552 goto error; 6553 } else { 6554 if (build_sched_groups(sd, i)) 6555 goto error; 6556 } 6557 } 6558 } 6559 6560 /* Calculate CPU capacity for physical packages and nodes */ 6561 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6562 if (!cpumask_test_cpu(i, cpu_map)) 6563 continue; 6564 6565 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6566 claim_allocations(i, sd); 6567 init_sched_groups_capacity(i, sd); 6568 } 6569 } 6570 6571 /* Attach the domains */ 6572 rcu_read_lock(); 6573 for_each_cpu(i, cpu_map) { 6574 sd = *per_cpu_ptr(d.sd, i); 6575 cpu_attach_domain(sd, d.rd, i); 6576 } 6577 rcu_read_unlock(); 6578 6579 ret = 0; 6580 error: 6581 __free_domain_allocs(&d, alloc_state, cpu_map); 6582 return ret; 6583 } 6584 6585 static cpumask_var_t *doms_cur; /* current sched domains */ 6586 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6587 static struct sched_domain_attr *dattr_cur; 6588 /* attribues of custom domains in 'doms_cur' */ 6589 6590 /* 6591 * Special case: If a kmalloc of a doms_cur partition (array of 6592 * cpumask) fails, then fallback to a single sched domain, 6593 * as determined by the single cpumask fallback_doms. 6594 */ 6595 static cpumask_var_t fallback_doms; 6596 6597 /* 6598 * arch_update_cpu_topology lets virtualized architectures update the 6599 * cpu core maps. It is supposed to return 1 if the topology changed 6600 * or 0 if it stayed the same. 6601 */ 6602 int __weak arch_update_cpu_topology(void) 6603 { 6604 return 0; 6605 } 6606 6607 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6608 { 6609 int i; 6610 cpumask_var_t *doms; 6611 6612 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6613 if (!doms) 6614 return NULL; 6615 for (i = 0; i < ndoms; i++) { 6616 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6617 free_sched_domains(doms, i); 6618 return NULL; 6619 } 6620 } 6621 return doms; 6622 } 6623 6624 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6625 { 6626 unsigned int i; 6627 for (i = 0; i < ndoms; i++) 6628 free_cpumask_var(doms[i]); 6629 kfree(doms); 6630 } 6631 6632 /* 6633 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6634 * For now this just excludes isolated cpus, but could be used to 6635 * exclude other special cases in the future. 6636 */ 6637 static int init_sched_domains(const struct cpumask *cpu_map) 6638 { 6639 int err; 6640 6641 arch_update_cpu_topology(); 6642 ndoms_cur = 1; 6643 doms_cur = alloc_sched_domains(ndoms_cur); 6644 if (!doms_cur) 6645 doms_cur = &fallback_doms; 6646 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6647 err = build_sched_domains(doms_cur[0], NULL); 6648 register_sched_domain_sysctl(); 6649 6650 return err; 6651 } 6652 6653 /* 6654 * Detach sched domains from a group of cpus specified in cpu_map 6655 * These cpus will now be attached to the NULL domain 6656 */ 6657 static void detach_destroy_domains(const struct cpumask *cpu_map) 6658 { 6659 int i; 6660 6661 rcu_read_lock(); 6662 for_each_cpu(i, cpu_map) 6663 cpu_attach_domain(NULL, &def_root_domain, i); 6664 rcu_read_unlock(); 6665 } 6666 6667 /* handle null as "default" */ 6668 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6669 struct sched_domain_attr *new, int idx_new) 6670 { 6671 struct sched_domain_attr tmp; 6672 6673 /* fast path */ 6674 if (!new && !cur) 6675 return 1; 6676 6677 tmp = SD_ATTR_INIT; 6678 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6679 new ? (new + idx_new) : &tmp, 6680 sizeof(struct sched_domain_attr)); 6681 } 6682 6683 /* 6684 * Partition sched domains as specified by the 'ndoms_new' 6685 * cpumasks in the array doms_new[] of cpumasks. This compares 6686 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6687 * It destroys each deleted domain and builds each new domain. 6688 * 6689 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6690 * The masks don't intersect (don't overlap.) We should setup one 6691 * sched domain for each mask. CPUs not in any of the cpumasks will 6692 * not be load balanced. If the same cpumask appears both in the 6693 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6694 * it as it is. 6695 * 6696 * The passed in 'doms_new' should be allocated using 6697 * alloc_sched_domains. This routine takes ownership of it and will 6698 * free_sched_domains it when done with it. If the caller failed the 6699 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6700 * and partition_sched_domains() will fallback to the single partition 6701 * 'fallback_doms', it also forces the domains to be rebuilt. 6702 * 6703 * If doms_new == NULL it will be replaced with cpu_online_mask. 6704 * ndoms_new == 0 is a special case for destroying existing domains, 6705 * and it will not create the default domain. 6706 * 6707 * Call with hotplug lock held 6708 */ 6709 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6710 struct sched_domain_attr *dattr_new) 6711 { 6712 int i, j, n; 6713 int new_topology; 6714 6715 mutex_lock(&sched_domains_mutex); 6716 6717 /* always unregister in case we don't destroy any domains */ 6718 unregister_sched_domain_sysctl(); 6719 6720 /* Let architecture update cpu core mappings. */ 6721 new_topology = arch_update_cpu_topology(); 6722 6723 n = doms_new ? ndoms_new : 0; 6724 6725 /* Destroy deleted domains */ 6726 for (i = 0; i < ndoms_cur; i++) { 6727 for (j = 0; j < n && !new_topology; j++) { 6728 if (cpumask_equal(doms_cur[i], doms_new[j]) 6729 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6730 goto match1; 6731 } 6732 /* no match - a current sched domain not in new doms_new[] */ 6733 detach_destroy_domains(doms_cur[i]); 6734 match1: 6735 ; 6736 } 6737 6738 n = ndoms_cur; 6739 if (doms_new == NULL) { 6740 n = 0; 6741 doms_new = &fallback_doms; 6742 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6743 WARN_ON_ONCE(dattr_new); 6744 } 6745 6746 /* Build new domains */ 6747 for (i = 0; i < ndoms_new; i++) { 6748 for (j = 0; j < n && !new_topology; j++) { 6749 if (cpumask_equal(doms_new[i], doms_cur[j]) 6750 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6751 goto match2; 6752 } 6753 /* no match - add a new doms_new */ 6754 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6755 match2: 6756 ; 6757 } 6758 6759 /* Remember the new sched domains */ 6760 if (doms_cur != &fallback_doms) 6761 free_sched_domains(doms_cur, ndoms_cur); 6762 kfree(dattr_cur); /* kfree(NULL) is safe */ 6763 doms_cur = doms_new; 6764 dattr_cur = dattr_new; 6765 ndoms_cur = ndoms_new; 6766 6767 register_sched_domain_sysctl(); 6768 6769 mutex_unlock(&sched_domains_mutex); 6770 } 6771 6772 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6773 6774 /* 6775 * Update cpusets according to cpu_active mask. If cpusets are 6776 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6777 * around partition_sched_domains(). 6778 * 6779 * If we come here as part of a suspend/resume, don't touch cpusets because we 6780 * want to restore it back to its original state upon resume anyway. 6781 */ 6782 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6783 void *hcpu) 6784 { 6785 switch (action) { 6786 case CPU_ONLINE_FROZEN: 6787 case CPU_DOWN_FAILED_FROZEN: 6788 6789 /* 6790 * num_cpus_frozen tracks how many CPUs are involved in suspend 6791 * resume sequence. As long as this is not the last online 6792 * operation in the resume sequence, just build a single sched 6793 * domain, ignoring cpusets. 6794 */ 6795 num_cpus_frozen--; 6796 if (likely(num_cpus_frozen)) { 6797 partition_sched_domains(1, NULL, NULL); 6798 break; 6799 } 6800 6801 /* 6802 * This is the last CPU online operation. So fall through and 6803 * restore the original sched domains by considering the 6804 * cpuset configurations. 6805 */ 6806 6807 case CPU_ONLINE: 6808 case CPU_DOWN_FAILED: 6809 cpuset_update_active_cpus(true); 6810 break; 6811 default: 6812 return NOTIFY_DONE; 6813 } 6814 return NOTIFY_OK; 6815 } 6816 6817 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6818 void *hcpu) 6819 { 6820 switch (action) { 6821 case CPU_DOWN_PREPARE: 6822 cpuset_update_active_cpus(false); 6823 break; 6824 case CPU_DOWN_PREPARE_FROZEN: 6825 num_cpus_frozen++; 6826 partition_sched_domains(1, NULL, NULL); 6827 break; 6828 default: 6829 return NOTIFY_DONE; 6830 } 6831 return NOTIFY_OK; 6832 } 6833 6834 void __init sched_init_smp(void) 6835 { 6836 cpumask_var_t non_isolated_cpus; 6837 6838 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6839 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6840 6841 sched_init_numa(); 6842 6843 /* 6844 * There's no userspace yet to cause hotplug operations; hence all the 6845 * cpu masks are stable and all blatant races in the below code cannot 6846 * happen. 6847 */ 6848 mutex_lock(&sched_domains_mutex); 6849 init_sched_domains(cpu_active_mask); 6850 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6851 if (cpumask_empty(non_isolated_cpus)) 6852 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6853 mutex_unlock(&sched_domains_mutex); 6854 6855 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6856 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6857 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6858 6859 init_hrtick(); 6860 6861 /* Move init over to a non-isolated CPU */ 6862 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6863 BUG(); 6864 sched_init_granularity(); 6865 free_cpumask_var(non_isolated_cpus); 6866 6867 init_sched_rt_class(); 6868 init_sched_dl_class(); 6869 } 6870 #else 6871 void __init sched_init_smp(void) 6872 { 6873 sched_init_granularity(); 6874 } 6875 #endif /* CONFIG_SMP */ 6876 6877 const_debug unsigned int sysctl_timer_migration = 1; 6878 6879 int in_sched_functions(unsigned long addr) 6880 { 6881 return in_lock_functions(addr) || 6882 (addr >= (unsigned long)__sched_text_start 6883 && addr < (unsigned long)__sched_text_end); 6884 } 6885 6886 #ifdef CONFIG_CGROUP_SCHED 6887 /* 6888 * Default task group. 6889 * Every task in system belongs to this group at bootup. 6890 */ 6891 struct task_group root_task_group; 6892 LIST_HEAD(task_groups); 6893 #endif 6894 6895 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6896 6897 void __init sched_init(void) 6898 { 6899 int i, j; 6900 unsigned long alloc_size = 0, ptr; 6901 6902 #ifdef CONFIG_FAIR_GROUP_SCHED 6903 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6904 #endif 6905 #ifdef CONFIG_RT_GROUP_SCHED 6906 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6907 #endif 6908 #ifdef CONFIG_CPUMASK_OFFSTACK 6909 alloc_size += num_possible_cpus() * cpumask_size(); 6910 #endif 6911 if (alloc_size) { 6912 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6913 6914 #ifdef CONFIG_FAIR_GROUP_SCHED 6915 root_task_group.se = (struct sched_entity **)ptr; 6916 ptr += nr_cpu_ids * sizeof(void **); 6917 6918 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6919 ptr += nr_cpu_ids * sizeof(void **); 6920 6921 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6922 #ifdef CONFIG_RT_GROUP_SCHED 6923 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6924 ptr += nr_cpu_ids * sizeof(void **); 6925 6926 root_task_group.rt_rq = (struct rt_rq **)ptr; 6927 ptr += nr_cpu_ids * sizeof(void **); 6928 6929 #endif /* CONFIG_RT_GROUP_SCHED */ 6930 #ifdef CONFIG_CPUMASK_OFFSTACK 6931 for_each_possible_cpu(i) { 6932 per_cpu(load_balance_mask, i) = (void *)ptr; 6933 ptr += cpumask_size(); 6934 } 6935 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6936 } 6937 6938 init_rt_bandwidth(&def_rt_bandwidth, 6939 global_rt_period(), global_rt_runtime()); 6940 init_dl_bandwidth(&def_dl_bandwidth, 6941 global_rt_period(), global_rt_runtime()); 6942 6943 #ifdef CONFIG_SMP 6944 init_defrootdomain(); 6945 #endif 6946 6947 #ifdef CONFIG_RT_GROUP_SCHED 6948 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6949 global_rt_period(), global_rt_runtime()); 6950 #endif /* CONFIG_RT_GROUP_SCHED */ 6951 6952 #ifdef CONFIG_CGROUP_SCHED 6953 list_add(&root_task_group.list, &task_groups); 6954 INIT_LIST_HEAD(&root_task_group.children); 6955 INIT_LIST_HEAD(&root_task_group.siblings); 6956 autogroup_init(&init_task); 6957 6958 #endif /* CONFIG_CGROUP_SCHED */ 6959 6960 for_each_possible_cpu(i) { 6961 struct rq *rq; 6962 6963 rq = cpu_rq(i); 6964 raw_spin_lock_init(&rq->lock); 6965 rq->nr_running = 0; 6966 rq->calc_load_active = 0; 6967 rq->calc_load_update = jiffies + LOAD_FREQ; 6968 init_cfs_rq(&rq->cfs); 6969 init_rt_rq(&rq->rt, rq); 6970 init_dl_rq(&rq->dl, rq); 6971 #ifdef CONFIG_FAIR_GROUP_SCHED 6972 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6973 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6974 /* 6975 * How much cpu bandwidth does root_task_group get? 6976 * 6977 * In case of task-groups formed thr' the cgroup filesystem, it 6978 * gets 100% of the cpu resources in the system. This overall 6979 * system cpu resource is divided among the tasks of 6980 * root_task_group and its child task-groups in a fair manner, 6981 * based on each entity's (task or task-group's) weight 6982 * (se->load.weight). 6983 * 6984 * In other words, if root_task_group has 10 tasks of weight 6985 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6986 * then A0's share of the cpu resource is: 6987 * 6988 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6989 * 6990 * We achieve this by letting root_task_group's tasks sit 6991 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6992 */ 6993 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6994 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6995 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6996 6997 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6998 #ifdef CONFIG_RT_GROUP_SCHED 6999 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7000 #endif 7001 7002 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7003 rq->cpu_load[j] = 0; 7004 7005 rq->last_load_update_tick = jiffies; 7006 7007 #ifdef CONFIG_SMP 7008 rq->sd = NULL; 7009 rq->rd = NULL; 7010 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 7011 rq->post_schedule = 0; 7012 rq->active_balance = 0; 7013 rq->next_balance = jiffies; 7014 rq->push_cpu = 0; 7015 rq->cpu = i; 7016 rq->online = 0; 7017 rq->idle_stamp = 0; 7018 rq->avg_idle = 2*sysctl_sched_migration_cost; 7019 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7020 7021 INIT_LIST_HEAD(&rq->cfs_tasks); 7022 7023 rq_attach_root(rq, &def_root_domain); 7024 #ifdef CONFIG_NO_HZ_COMMON 7025 rq->nohz_flags = 0; 7026 #endif 7027 #ifdef CONFIG_NO_HZ_FULL 7028 rq->last_sched_tick = 0; 7029 #endif 7030 #endif 7031 init_rq_hrtick(rq); 7032 atomic_set(&rq->nr_iowait, 0); 7033 } 7034 7035 set_load_weight(&init_task); 7036 7037 #ifdef CONFIG_PREEMPT_NOTIFIERS 7038 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7039 #endif 7040 7041 /* 7042 * The boot idle thread does lazy MMU switching as well: 7043 */ 7044 atomic_inc(&init_mm.mm_count); 7045 enter_lazy_tlb(&init_mm, current); 7046 7047 /* 7048 * Make us the idle thread. Technically, schedule() should not be 7049 * called from this thread, however somewhere below it might be, 7050 * but because we are the idle thread, we just pick up running again 7051 * when this runqueue becomes "idle". 7052 */ 7053 init_idle(current, smp_processor_id()); 7054 7055 calc_load_update = jiffies + LOAD_FREQ; 7056 7057 /* 7058 * During early bootup we pretend to be a normal task: 7059 */ 7060 current->sched_class = &fair_sched_class; 7061 7062 #ifdef CONFIG_SMP 7063 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7064 /* May be allocated at isolcpus cmdline parse time */ 7065 if (cpu_isolated_map == NULL) 7066 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7067 idle_thread_set_boot_cpu(); 7068 set_cpu_rq_start_time(); 7069 #endif 7070 init_sched_fair_class(); 7071 7072 scheduler_running = 1; 7073 } 7074 7075 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7076 static inline int preempt_count_equals(int preempt_offset) 7077 { 7078 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7079 7080 return (nested == preempt_offset); 7081 } 7082 7083 void __might_sleep(const char *file, int line, int preempt_offset) 7084 { 7085 static unsigned long prev_jiffy; /* ratelimiting */ 7086 7087 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7088 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7089 !is_idle_task(current)) || 7090 system_state != SYSTEM_RUNNING || oops_in_progress) 7091 return; 7092 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7093 return; 7094 prev_jiffy = jiffies; 7095 7096 printk(KERN_ERR 7097 "BUG: sleeping function called from invalid context at %s:%d\n", 7098 file, line); 7099 printk(KERN_ERR 7100 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7101 in_atomic(), irqs_disabled(), 7102 current->pid, current->comm); 7103 7104 debug_show_held_locks(current); 7105 if (irqs_disabled()) 7106 print_irqtrace_events(current); 7107 #ifdef CONFIG_DEBUG_PREEMPT 7108 if (!preempt_count_equals(preempt_offset)) { 7109 pr_err("Preemption disabled at:"); 7110 print_ip_sym(current->preempt_disable_ip); 7111 pr_cont("\n"); 7112 } 7113 #endif 7114 dump_stack(); 7115 } 7116 EXPORT_SYMBOL(__might_sleep); 7117 #endif 7118 7119 #ifdef CONFIG_MAGIC_SYSRQ 7120 static void normalize_task(struct rq *rq, struct task_struct *p) 7121 { 7122 const struct sched_class *prev_class = p->sched_class; 7123 struct sched_attr attr = { 7124 .sched_policy = SCHED_NORMAL, 7125 }; 7126 int old_prio = p->prio; 7127 int on_rq; 7128 7129 on_rq = p->on_rq; 7130 if (on_rq) 7131 dequeue_task(rq, p, 0); 7132 __setscheduler(rq, p, &attr); 7133 if (on_rq) { 7134 enqueue_task(rq, p, 0); 7135 resched_curr(rq); 7136 } 7137 7138 check_class_changed(rq, p, prev_class, old_prio); 7139 } 7140 7141 void normalize_rt_tasks(void) 7142 { 7143 struct task_struct *g, *p; 7144 unsigned long flags; 7145 struct rq *rq; 7146 7147 read_lock_irqsave(&tasklist_lock, flags); 7148 do_each_thread(g, p) { 7149 /* 7150 * Only normalize user tasks: 7151 */ 7152 if (!p->mm) 7153 continue; 7154 7155 p->se.exec_start = 0; 7156 #ifdef CONFIG_SCHEDSTATS 7157 p->se.statistics.wait_start = 0; 7158 p->se.statistics.sleep_start = 0; 7159 p->se.statistics.block_start = 0; 7160 #endif 7161 7162 if (!dl_task(p) && !rt_task(p)) { 7163 /* 7164 * Renice negative nice level userspace 7165 * tasks back to 0: 7166 */ 7167 if (task_nice(p) < 0 && p->mm) 7168 set_user_nice(p, 0); 7169 continue; 7170 } 7171 7172 raw_spin_lock(&p->pi_lock); 7173 rq = __task_rq_lock(p); 7174 7175 normalize_task(rq, p); 7176 7177 __task_rq_unlock(rq); 7178 raw_spin_unlock(&p->pi_lock); 7179 } while_each_thread(g, p); 7180 7181 read_unlock_irqrestore(&tasklist_lock, flags); 7182 } 7183 7184 #endif /* CONFIG_MAGIC_SYSRQ */ 7185 7186 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7187 /* 7188 * These functions are only useful for the IA64 MCA handling, or kdb. 7189 * 7190 * They can only be called when the whole system has been 7191 * stopped - every CPU needs to be quiescent, and no scheduling 7192 * activity can take place. Using them for anything else would 7193 * be a serious bug, and as a result, they aren't even visible 7194 * under any other configuration. 7195 */ 7196 7197 /** 7198 * curr_task - return the current task for a given cpu. 7199 * @cpu: the processor in question. 7200 * 7201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7202 * 7203 * Return: The current task for @cpu. 7204 */ 7205 struct task_struct *curr_task(int cpu) 7206 { 7207 return cpu_curr(cpu); 7208 } 7209 7210 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7211 7212 #ifdef CONFIG_IA64 7213 /** 7214 * set_curr_task - set the current task for a given cpu. 7215 * @cpu: the processor in question. 7216 * @p: the task pointer to set. 7217 * 7218 * Description: This function must only be used when non-maskable interrupts 7219 * are serviced on a separate stack. It allows the architecture to switch the 7220 * notion of the current task on a cpu in a non-blocking manner. This function 7221 * must be called with all CPU's synchronized, and interrupts disabled, the 7222 * and caller must save the original value of the current task (see 7223 * curr_task() above) and restore that value before reenabling interrupts and 7224 * re-starting the system. 7225 * 7226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7227 */ 7228 void set_curr_task(int cpu, struct task_struct *p) 7229 { 7230 cpu_curr(cpu) = p; 7231 } 7232 7233 #endif 7234 7235 #ifdef CONFIG_CGROUP_SCHED 7236 /* task_group_lock serializes the addition/removal of task groups */ 7237 static DEFINE_SPINLOCK(task_group_lock); 7238 7239 static void free_sched_group(struct task_group *tg) 7240 { 7241 free_fair_sched_group(tg); 7242 free_rt_sched_group(tg); 7243 autogroup_free(tg); 7244 kfree(tg); 7245 } 7246 7247 /* allocate runqueue etc for a new task group */ 7248 struct task_group *sched_create_group(struct task_group *parent) 7249 { 7250 struct task_group *tg; 7251 7252 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7253 if (!tg) 7254 return ERR_PTR(-ENOMEM); 7255 7256 if (!alloc_fair_sched_group(tg, parent)) 7257 goto err; 7258 7259 if (!alloc_rt_sched_group(tg, parent)) 7260 goto err; 7261 7262 return tg; 7263 7264 err: 7265 free_sched_group(tg); 7266 return ERR_PTR(-ENOMEM); 7267 } 7268 7269 void sched_online_group(struct task_group *tg, struct task_group *parent) 7270 { 7271 unsigned long flags; 7272 7273 spin_lock_irqsave(&task_group_lock, flags); 7274 list_add_rcu(&tg->list, &task_groups); 7275 7276 WARN_ON(!parent); /* root should already exist */ 7277 7278 tg->parent = parent; 7279 INIT_LIST_HEAD(&tg->children); 7280 list_add_rcu(&tg->siblings, &parent->children); 7281 spin_unlock_irqrestore(&task_group_lock, flags); 7282 } 7283 7284 /* rcu callback to free various structures associated with a task group */ 7285 static void free_sched_group_rcu(struct rcu_head *rhp) 7286 { 7287 /* now it should be safe to free those cfs_rqs */ 7288 free_sched_group(container_of(rhp, struct task_group, rcu)); 7289 } 7290 7291 /* Destroy runqueue etc associated with a task group */ 7292 void sched_destroy_group(struct task_group *tg) 7293 { 7294 /* wait for possible concurrent references to cfs_rqs complete */ 7295 call_rcu(&tg->rcu, free_sched_group_rcu); 7296 } 7297 7298 void sched_offline_group(struct task_group *tg) 7299 { 7300 unsigned long flags; 7301 int i; 7302 7303 /* end participation in shares distribution */ 7304 for_each_possible_cpu(i) 7305 unregister_fair_sched_group(tg, i); 7306 7307 spin_lock_irqsave(&task_group_lock, flags); 7308 list_del_rcu(&tg->list); 7309 list_del_rcu(&tg->siblings); 7310 spin_unlock_irqrestore(&task_group_lock, flags); 7311 } 7312 7313 /* change task's runqueue when it moves between groups. 7314 * The caller of this function should have put the task in its new group 7315 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7316 * reflect its new group. 7317 */ 7318 void sched_move_task(struct task_struct *tsk) 7319 { 7320 struct task_group *tg; 7321 int on_rq, running; 7322 unsigned long flags; 7323 struct rq *rq; 7324 7325 rq = task_rq_lock(tsk, &flags); 7326 7327 running = task_current(rq, tsk); 7328 on_rq = tsk->on_rq; 7329 7330 if (on_rq) 7331 dequeue_task(rq, tsk, 0); 7332 if (unlikely(running)) 7333 tsk->sched_class->put_prev_task(rq, tsk); 7334 7335 tg = container_of(task_css_check(tsk, cpu_cgrp_id, 7336 lockdep_is_held(&tsk->sighand->siglock)), 7337 struct task_group, css); 7338 tg = autogroup_task_group(tsk, tg); 7339 tsk->sched_task_group = tg; 7340 7341 #ifdef CONFIG_FAIR_GROUP_SCHED 7342 if (tsk->sched_class->task_move_group) 7343 tsk->sched_class->task_move_group(tsk, on_rq); 7344 else 7345 #endif 7346 set_task_rq(tsk, task_cpu(tsk)); 7347 7348 if (unlikely(running)) 7349 tsk->sched_class->set_curr_task(rq); 7350 if (on_rq) 7351 enqueue_task(rq, tsk, 0); 7352 7353 task_rq_unlock(rq, tsk, &flags); 7354 } 7355 #endif /* CONFIG_CGROUP_SCHED */ 7356 7357 #ifdef CONFIG_RT_GROUP_SCHED 7358 /* 7359 * Ensure that the real time constraints are schedulable. 7360 */ 7361 static DEFINE_MUTEX(rt_constraints_mutex); 7362 7363 /* Must be called with tasklist_lock held */ 7364 static inline int tg_has_rt_tasks(struct task_group *tg) 7365 { 7366 struct task_struct *g, *p; 7367 7368 do_each_thread(g, p) { 7369 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7370 return 1; 7371 } while_each_thread(g, p); 7372 7373 return 0; 7374 } 7375 7376 struct rt_schedulable_data { 7377 struct task_group *tg; 7378 u64 rt_period; 7379 u64 rt_runtime; 7380 }; 7381 7382 static int tg_rt_schedulable(struct task_group *tg, void *data) 7383 { 7384 struct rt_schedulable_data *d = data; 7385 struct task_group *child; 7386 unsigned long total, sum = 0; 7387 u64 period, runtime; 7388 7389 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7390 runtime = tg->rt_bandwidth.rt_runtime; 7391 7392 if (tg == d->tg) { 7393 period = d->rt_period; 7394 runtime = d->rt_runtime; 7395 } 7396 7397 /* 7398 * Cannot have more runtime than the period. 7399 */ 7400 if (runtime > period && runtime != RUNTIME_INF) 7401 return -EINVAL; 7402 7403 /* 7404 * Ensure we don't starve existing RT tasks. 7405 */ 7406 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7407 return -EBUSY; 7408 7409 total = to_ratio(period, runtime); 7410 7411 /* 7412 * Nobody can have more than the global setting allows. 7413 */ 7414 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7415 return -EINVAL; 7416 7417 /* 7418 * The sum of our children's runtime should not exceed our own. 7419 */ 7420 list_for_each_entry_rcu(child, &tg->children, siblings) { 7421 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7422 runtime = child->rt_bandwidth.rt_runtime; 7423 7424 if (child == d->tg) { 7425 period = d->rt_period; 7426 runtime = d->rt_runtime; 7427 } 7428 7429 sum += to_ratio(period, runtime); 7430 } 7431 7432 if (sum > total) 7433 return -EINVAL; 7434 7435 return 0; 7436 } 7437 7438 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7439 { 7440 int ret; 7441 7442 struct rt_schedulable_data data = { 7443 .tg = tg, 7444 .rt_period = period, 7445 .rt_runtime = runtime, 7446 }; 7447 7448 rcu_read_lock(); 7449 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7450 rcu_read_unlock(); 7451 7452 return ret; 7453 } 7454 7455 static int tg_set_rt_bandwidth(struct task_group *tg, 7456 u64 rt_period, u64 rt_runtime) 7457 { 7458 int i, err = 0; 7459 7460 mutex_lock(&rt_constraints_mutex); 7461 read_lock(&tasklist_lock); 7462 err = __rt_schedulable(tg, rt_period, rt_runtime); 7463 if (err) 7464 goto unlock; 7465 7466 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7467 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7468 tg->rt_bandwidth.rt_runtime = rt_runtime; 7469 7470 for_each_possible_cpu(i) { 7471 struct rt_rq *rt_rq = tg->rt_rq[i]; 7472 7473 raw_spin_lock(&rt_rq->rt_runtime_lock); 7474 rt_rq->rt_runtime = rt_runtime; 7475 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7476 } 7477 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7478 unlock: 7479 read_unlock(&tasklist_lock); 7480 mutex_unlock(&rt_constraints_mutex); 7481 7482 return err; 7483 } 7484 7485 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7486 { 7487 u64 rt_runtime, rt_period; 7488 7489 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7490 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7491 if (rt_runtime_us < 0) 7492 rt_runtime = RUNTIME_INF; 7493 7494 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7495 } 7496 7497 static long sched_group_rt_runtime(struct task_group *tg) 7498 { 7499 u64 rt_runtime_us; 7500 7501 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7502 return -1; 7503 7504 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7505 do_div(rt_runtime_us, NSEC_PER_USEC); 7506 return rt_runtime_us; 7507 } 7508 7509 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7510 { 7511 u64 rt_runtime, rt_period; 7512 7513 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7514 rt_runtime = tg->rt_bandwidth.rt_runtime; 7515 7516 if (rt_period == 0) 7517 return -EINVAL; 7518 7519 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7520 } 7521 7522 static long sched_group_rt_period(struct task_group *tg) 7523 { 7524 u64 rt_period_us; 7525 7526 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7527 do_div(rt_period_us, NSEC_PER_USEC); 7528 return rt_period_us; 7529 } 7530 #endif /* CONFIG_RT_GROUP_SCHED */ 7531 7532 #ifdef CONFIG_RT_GROUP_SCHED 7533 static int sched_rt_global_constraints(void) 7534 { 7535 int ret = 0; 7536 7537 mutex_lock(&rt_constraints_mutex); 7538 read_lock(&tasklist_lock); 7539 ret = __rt_schedulable(NULL, 0, 0); 7540 read_unlock(&tasklist_lock); 7541 mutex_unlock(&rt_constraints_mutex); 7542 7543 return ret; 7544 } 7545 7546 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7547 { 7548 /* Don't accept realtime tasks when there is no way for them to run */ 7549 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7550 return 0; 7551 7552 return 1; 7553 } 7554 7555 #else /* !CONFIG_RT_GROUP_SCHED */ 7556 static int sched_rt_global_constraints(void) 7557 { 7558 unsigned long flags; 7559 int i, ret = 0; 7560 7561 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7562 for_each_possible_cpu(i) { 7563 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7564 7565 raw_spin_lock(&rt_rq->rt_runtime_lock); 7566 rt_rq->rt_runtime = global_rt_runtime(); 7567 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7568 } 7569 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7570 7571 return ret; 7572 } 7573 #endif /* CONFIG_RT_GROUP_SCHED */ 7574 7575 static int sched_dl_global_constraints(void) 7576 { 7577 u64 runtime = global_rt_runtime(); 7578 u64 period = global_rt_period(); 7579 u64 new_bw = to_ratio(period, runtime); 7580 int cpu, ret = 0; 7581 unsigned long flags; 7582 7583 /* 7584 * Here we want to check the bandwidth not being set to some 7585 * value smaller than the currently allocated bandwidth in 7586 * any of the root_domains. 7587 * 7588 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7589 * cycling on root_domains... Discussion on different/better 7590 * solutions is welcome! 7591 */ 7592 for_each_possible_cpu(cpu) { 7593 struct dl_bw *dl_b = dl_bw_of(cpu); 7594 7595 raw_spin_lock_irqsave(&dl_b->lock, flags); 7596 if (new_bw < dl_b->total_bw) 7597 ret = -EBUSY; 7598 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7599 7600 if (ret) 7601 break; 7602 } 7603 7604 return ret; 7605 } 7606 7607 static void sched_dl_do_global(void) 7608 { 7609 u64 new_bw = -1; 7610 int cpu; 7611 unsigned long flags; 7612 7613 def_dl_bandwidth.dl_period = global_rt_period(); 7614 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7615 7616 if (global_rt_runtime() != RUNTIME_INF) 7617 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7618 7619 /* 7620 * FIXME: As above... 7621 */ 7622 for_each_possible_cpu(cpu) { 7623 struct dl_bw *dl_b = dl_bw_of(cpu); 7624 7625 raw_spin_lock_irqsave(&dl_b->lock, flags); 7626 dl_b->bw = new_bw; 7627 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7628 } 7629 } 7630 7631 static int sched_rt_global_validate(void) 7632 { 7633 if (sysctl_sched_rt_period <= 0) 7634 return -EINVAL; 7635 7636 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7637 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7638 return -EINVAL; 7639 7640 return 0; 7641 } 7642 7643 static void sched_rt_do_global(void) 7644 { 7645 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7646 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7647 } 7648 7649 int sched_rt_handler(struct ctl_table *table, int write, 7650 void __user *buffer, size_t *lenp, 7651 loff_t *ppos) 7652 { 7653 int old_period, old_runtime; 7654 static DEFINE_MUTEX(mutex); 7655 int ret; 7656 7657 mutex_lock(&mutex); 7658 old_period = sysctl_sched_rt_period; 7659 old_runtime = sysctl_sched_rt_runtime; 7660 7661 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7662 7663 if (!ret && write) { 7664 ret = sched_rt_global_validate(); 7665 if (ret) 7666 goto undo; 7667 7668 ret = sched_rt_global_constraints(); 7669 if (ret) 7670 goto undo; 7671 7672 ret = sched_dl_global_constraints(); 7673 if (ret) 7674 goto undo; 7675 7676 sched_rt_do_global(); 7677 sched_dl_do_global(); 7678 } 7679 if (0) { 7680 undo: 7681 sysctl_sched_rt_period = old_period; 7682 sysctl_sched_rt_runtime = old_runtime; 7683 } 7684 mutex_unlock(&mutex); 7685 7686 return ret; 7687 } 7688 7689 int sched_rr_handler(struct ctl_table *table, int write, 7690 void __user *buffer, size_t *lenp, 7691 loff_t *ppos) 7692 { 7693 int ret; 7694 static DEFINE_MUTEX(mutex); 7695 7696 mutex_lock(&mutex); 7697 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7698 /* make sure that internally we keep jiffies */ 7699 /* also, writing zero resets timeslice to default */ 7700 if (!ret && write) { 7701 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7702 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7703 } 7704 mutex_unlock(&mutex); 7705 return ret; 7706 } 7707 7708 #ifdef CONFIG_CGROUP_SCHED 7709 7710 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7711 { 7712 return css ? container_of(css, struct task_group, css) : NULL; 7713 } 7714 7715 static struct cgroup_subsys_state * 7716 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7717 { 7718 struct task_group *parent = css_tg(parent_css); 7719 struct task_group *tg; 7720 7721 if (!parent) { 7722 /* This is early initialization for the top cgroup */ 7723 return &root_task_group.css; 7724 } 7725 7726 tg = sched_create_group(parent); 7727 if (IS_ERR(tg)) 7728 return ERR_PTR(-ENOMEM); 7729 7730 return &tg->css; 7731 } 7732 7733 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7734 { 7735 struct task_group *tg = css_tg(css); 7736 struct task_group *parent = css_tg(css->parent); 7737 7738 if (parent) 7739 sched_online_group(tg, parent); 7740 return 0; 7741 } 7742 7743 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7744 { 7745 struct task_group *tg = css_tg(css); 7746 7747 sched_destroy_group(tg); 7748 } 7749 7750 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7751 { 7752 struct task_group *tg = css_tg(css); 7753 7754 sched_offline_group(tg); 7755 } 7756 7757 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7758 struct cgroup_taskset *tset) 7759 { 7760 struct task_struct *task; 7761 7762 cgroup_taskset_for_each(task, tset) { 7763 #ifdef CONFIG_RT_GROUP_SCHED 7764 if (!sched_rt_can_attach(css_tg(css), task)) 7765 return -EINVAL; 7766 #else 7767 /* We don't support RT-tasks being in separate groups */ 7768 if (task->sched_class != &fair_sched_class) 7769 return -EINVAL; 7770 #endif 7771 } 7772 return 0; 7773 } 7774 7775 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7776 struct cgroup_taskset *tset) 7777 { 7778 struct task_struct *task; 7779 7780 cgroup_taskset_for_each(task, tset) 7781 sched_move_task(task); 7782 } 7783 7784 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7785 struct cgroup_subsys_state *old_css, 7786 struct task_struct *task) 7787 { 7788 /* 7789 * cgroup_exit() is called in the copy_process() failure path. 7790 * Ignore this case since the task hasn't ran yet, this avoids 7791 * trying to poke a half freed task state from generic code. 7792 */ 7793 if (!(task->flags & PF_EXITING)) 7794 return; 7795 7796 sched_move_task(task); 7797 } 7798 7799 #ifdef CONFIG_FAIR_GROUP_SCHED 7800 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7801 struct cftype *cftype, u64 shareval) 7802 { 7803 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7804 } 7805 7806 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7807 struct cftype *cft) 7808 { 7809 struct task_group *tg = css_tg(css); 7810 7811 return (u64) scale_load_down(tg->shares); 7812 } 7813 7814 #ifdef CONFIG_CFS_BANDWIDTH 7815 static DEFINE_MUTEX(cfs_constraints_mutex); 7816 7817 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7818 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7819 7820 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7821 7822 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7823 { 7824 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7825 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7826 7827 if (tg == &root_task_group) 7828 return -EINVAL; 7829 7830 /* 7831 * Ensure we have at some amount of bandwidth every period. This is 7832 * to prevent reaching a state of large arrears when throttled via 7833 * entity_tick() resulting in prolonged exit starvation. 7834 */ 7835 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7836 return -EINVAL; 7837 7838 /* 7839 * Likewise, bound things on the otherside by preventing insane quota 7840 * periods. This also allows us to normalize in computing quota 7841 * feasibility. 7842 */ 7843 if (period > max_cfs_quota_period) 7844 return -EINVAL; 7845 7846 /* 7847 * Prevent race between setting of cfs_rq->runtime_enabled and 7848 * unthrottle_offline_cfs_rqs(). 7849 */ 7850 get_online_cpus(); 7851 mutex_lock(&cfs_constraints_mutex); 7852 ret = __cfs_schedulable(tg, period, quota); 7853 if (ret) 7854 goto out_unlock; 7855 7856 runtime_enabled = quota != RUNTIME_INF; 7857 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7858 /* 7859 * If we need to toggle cfs_bandwidth_used, off->on must occur 7860 * before making related changes, and on->off must occur afterwards 7861 */ 7862 if (runtime_enabled && !runtime_was_enabled) 7863 cfs_bandwidth_usage_inc(); 7864 raw_spin_lock_irq(&cfs_b->lock); 7865 cfs_b->period = ns_to_ktime(period); 7866 cfs_b->quota = quota; 7867 7868 __refill_cfs_bandwidth_runtime(cfs_b); 7869 /* restart the period timer (if active) to handle new period expiry */ 7870 if (runtime_enabled && cfs_b->timer_active) { 7871 /* force a reprogram */ 7872 __start_cfs_bandwidth(cfs_b, true); 7873 } 7874 raw_spin_unlock_irq(&cfs_b->lock); 7875 7876 for_each_online_cpu(i) { 7877 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7878 struct rq *rq = cfs_rq->rq; 7879 7880 raw_spin_lock_irq(&rq->lock); 7881 cfs_rq->runtime_enabled = runtime_enabled; 7882 cfs_rq->runtime_remaining = 0; 7883 7884 if (cfs_rq->throttled) 7885 unthrottle_cfs_rq(cfs_rq); 7886 raw_spin_unlock_irq(&rq->lock); 7887 } 7888 if (runtime_was_enabled && !runtime_enabled) 7889 cfs_bandwidth_usage_dec(); 7890 out_unlock: 7891 mutex_unlock(&cfs_constraints_mutex); 7892 put_online_cpus(); 7893 7894 return ret; 7895 } 7896 7897 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7898 { 7899 u64 quota, period; 7900 7901 period = ktime_to_ns(tg->cfs_bandwidth.period); 7902 if (cfs_quota_us < 0) 7903 quota = RUNTIME_INF; 7904 else 7905 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7906 7907 return tg_set_cfs_bandwidth(tg, period, quota); 7908 } 7909 7910 long tg_get_cfs_quota(struct task_group *tg) 7911 { 7912 u64 quota_us; 7913 7914 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7915 return -1; 7916 7917 quota_us = tg->cfs_bandwidth.quota; 7918 do_div(quota_us, NSEC_PER_USEC); 7919 7920 return quota_us; 7921 } 7922 7923 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7924 { 7925 u64 quota, period; 7926 7927 period = (u64)cfs_period_us * NSEC_PER_USEC; 7928 quota = tg->cfs_bandwidth.quota; 7929 7930 return tg_set_cfs_bandwidth(tg, period, quota); 7931 } 7932 7933 long tg_get_cfs_period(struct task_group *tg) 7934 { 7935 u64 cfs_period_us; 7936 7937 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7938 do_div(cfs_period_us, NSEC_PER_USEC); 7939 7940 return cfs_period_us; 7941 } 7942 7943 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7944 struct cftype *cft) 7945 { 7946 return tg_get_cfs_quota(css_tg(css)); 7947 } 7948 7949 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7950 struct cftype *cftype, s64 cfs_quota_us) 7951 { 7952 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7953 } 7954 7955 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7956 struct cftype *cft) 7957 { 7958 return tg_get_cfs_period(css_tg(css)); 7959 } 7960 7961 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7962 struct cftype *cftype, u64 cfs_period_us) 7963 { 7964 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7965 } 7966 7967 struct cfs_schedulable_data { 7968 struct task_group *tg; 7969 u64 period, quota; 7970 }; 7971 7972 /* 7973 * normalize group quota/period to be quota/max_period 7974 * note: units are usecs 7975 */ 7976 static u64 normalize_cfs_quota(struct task_group *tg, 7977 struct cfs_schedulable_data *d) 7978 { 7979 u64 quota, period; 7980 7981 if (tg == d->tg) { 7982 period = d->period; 7983 quota = d->quota; 7984 } else { 7985 period = tg_get_cfs_period(tg); 7986 quota = tg_get_cfs_quota(tg); 7987 } 7988 7989 /* note: these should typically be equivalent */ 7990 if (quota == RUNTIME_INF || quota == -1) 7991 return RUNTIME_INF; 7992 7993 return to_ratio(period, quota); 7994 } 7995 7996 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7997 { 7998 struct cfs_schedulable_data *d = data; 7999 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8000 s64 quota = 0, parent_quota = -1; 8001 8002 if (!tg->parent) { 8003 quota = RUNTIME_INF; 8004 } else { 8005 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8006 8007 quota = normalize_cfs_quota(tg, d); 8008 parent_quota = parent_b->hierarchal_quota; 8009 8010 /* 8011 * ensure max(child_quota) <= parent_quota, inherit when no 8012 * limit is set 8013 */ 8014 if (quota == RUNTIME_INF) 8015 quota = parent_quota; 8016 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8017 return -EINVAL; 8018 } 8019 cfs_b->hierarchal_quota = quota; 8020 8021 return 0; 8022 } 8023 8024 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8025 { 8026 int ret; 8027 struct cfs_schedulable_data data = { 8028 .tg = tg, 8029 .period = period, 8030 .quota = quota, 8031 }; 8032 8033 if (quota != RUNTIME_INF) { 8034 do_div(data.period, NSEC_PER_USEC); 8035 do_div(data.quota, NSEC_PER_USEC); 8036 } 8037 8038 rcu_read_lock(); 8039 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8040 rcu_read_unlock(); 8041 8042 return ret; 8043 } 8044 8045 static int cpu_stats_show(struct seq_file *sf, void *v) 8046 { 8047 struct task_group *tg = css_tg(seq_css(sf)); 8048 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8049 8050 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8051 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8052 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8053 8054 return 0; 8055 } 8056 #endif /* CONFIG_CFS_BANDWIDTH */ 8057 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8058 8059 #ifdef CONFIG_RT_GROUP_SCHED 8060 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8061 struct cftype *cft, s64 val) 8062 { 8063 return sched_group_set_rt_runtime(css_tg(css), val); 8064 } 8065 8066 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8067 struct cftype *cft) 8068 { 8069 return sched_group_rt_runtime(css_tg(css)); 8070 } 8071 8072 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8073 struct cftype *cftype, u64 rt_period_us) 8074 { 8075 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8076 } 8077 8078 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8079 struct cftype *cft) 8080 { 8081 return sched_group_rt_period(css_tg(css)); 8082 } 8083 #endif /* CONFIG_RT_GROUP_SCHED */ 8084 8085 static struct cftype cpu_files[] = { 8086 #ifdef CONFIG_FAIR_GROUP_SCHED 8087 { 8088 .name = "shares", 8089 .read_u64 = cpu_shares_read_u64, 8090 .write_u64 = cpu_shares_write_u64, 8091 }, 8092 #endif 8093 #ifdef CONFIG_CFS_BANDWIDTH 8094 { 8095 .name = "cfs_quota_us", 8096 .read_s64 = cpu_cfs_quota_read_s64, 8097 .write_s64 = cpu_cfs_quota_write_s64, 8098 }, 8099 { 8100 .name = "cfs_period_us", 8101 .read_u64 = cpu_cfs_period_read_u64, 8102 .write_u64 = cpu_cfs_period_write_u64, 8103 }, 8104 { 8105 .name = "stat", 8106 .seq_show = cpu_stats_show, 8107 }, 8108 #endif 8109 #ifdef CONFIG_RT_GROUP_SCHED 8110 { 8111 .name = "rt_runtime_us", 8112 .read_s64 = cpu_rt_runtime_read, 8113 .write_s64 = cpu_rt_runtime_write, 8114 }, 8115 { 8116 .name = "rt_period_us", 8117 .read_u64 = cpu_rt_period_read_uint, 8118 .write_u64 = cpu_rt_period_write_uint, 8119 }, 8120 #endif 8121 { } /* terminate */ 8122 }; 8123 8124 struct cgroup_subsys cpu_cgrp_subsys = { 8125 .css_alloc = cpu_cgroup_css_alloc, 8126 .css_free = cpu_cgroup_css_free, 8127 .css_online = cpu_cgroup_css_online, 8128 .css_offline = cpu_cgroup_css_offline, 8129 .can_attach = cpu_cgroup_can_attach, 8130 .attach = cpu_cgroup_attach, 8131 .exit = cpu_cgroup_exit, 8132 .legacy_cftypes = cpu_files, 8133 .early_init = 1, 8134 }; 8135 8136 #endif /* CONFIG_CGROUP_SCHED */ 8137 8138 void dump_cpu_task(int cpu) 8139 { 8140 pr_info("Task dump for CPU %d:\n", cpu); 8141 sched_show_task(cpu_curr(cpu)); 8142 } 8143