xref: /openbmc/linux/kernel/sched/core.c (revision 31af04cd)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/nospec.h>
11 
12 #include <linux/kcov.h>
13 
14 #include <asm/switch_to.h>
15 #include <asm/tlb.h>
16 
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
19 
20 #include "pelt.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
26 
27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
28 /*
29  * Debugging: various feature bits
30  *
31  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32  * sysctl_sched_features, defined in sched.h, to allow constants propagation
33  * at compile time and compiler optimization based on features default.
34  */
35 #define SCHED_FEAT(name, enabled)	\
36 	(1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
38 #include "features.h"
39 	0;
40 #undef SCHED_FEAT
41 #endif
42 
43 /*
44  * Number of tasks to iterate in a single balance run.
45  * Limited because this is done with IRQs disabled.
46  */
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
48 
49 /*
50  * period over which we measure -rt task CPU usage in us.
51  * default: 1s
52  */
53 unsigned int sysctl_sched_rt_period = 1000000;
54 
55 __read_mostly int scheduler_running;
56 
57 /*
58  * part of the period that we allow rt tasks to run in us.
59  * default: 0.95s
60  */
61 int sysctl_sched_rt_runtime = 950000;
62 
63 /*
64  * __task_rq_lock - lock the rq @p resides on.
65  */
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 	__acquires(rq->lock)
68 {
69 	struct rq *rq;
70 
71 	lockdep_assert_held(&p->pi_lock);
72 
73 	for (;;) {
74 		rq = task_rq(p);
75 		raw_spin_lock(&rq->lock);
76 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77 			rq_pin_lock(rq, rf);
78 			return rq;
79 		}
80 		raw_spin_unlock(&rq->lock);
81 
82 		while (unlikely(task_on_rq_migrating(p)))
83 			cpu_relax();
84 	}
85 }
86 
87 /*
88  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89  */
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 	__acquires(p->pi_lock)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	for (;;) {
97 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 		rq = task_rq(p);
99 		raw_spin_lock(&rq->lock);
100 		/*
101 		 *	move_queued_task()		task_rq_lock()
102 		 *
103 		 *	ACQUIRE (rq->lock)
104 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
105 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
106 		 *	[S] ->cpu = new_cpu		[L] task_rq()
107 		 *					[L] ->on_rq
108 		 *	RELEASE (rq->lock)
109 		 *
110 		 * If we observe the old CPU in task_rq_lock, the acquire of
111 		 * the old rq->lock will fully serialize against the stores.
112 		 *
113 		 * If we observe the new CPU in task_rq_lock, the acquire will
114 		 * pair with the WMB to ensure we must then also see migrating.
115 		 */
116 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
117 			rq_pin_lock(rq, rf);
118 			return rq;
119 		}
120 		raw_spin_unlock(&rq->lock);
121 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
122 
123 		while (unlikely(task_on_rq_migrating(p)))
124 			cpu_relax();
125 	}
126 }
127 
128 /*
129  * RQ-clock updating methods:
130  */
131 
132 static void update_rq_clock_task(struct rq *rq, s64 delta)
133 {
134 /*
135  * In theory, the compile should just see 0 here, and optimize out the call
136  * to sched_rt_avg_update. But I don't trust it...
137  */
138 	s64 __maybe_unused steal = 0, irq_delta = 0;
139 
140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
142 
143 	/*
144 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 	 * this case when a previous update_rq_clock() happened inside a
146 	 * {soft,}irq region.
147 	 *
148 	 * When this happens, we stop ->clock_task and only update the
149 	 * prev_irq_time stamp to account for the part that fit, so that a next
150 	 * update will consume the rest. This ensures ->clock_task is
151 	 * monotonic.
152 	 *
153 	 * It does however cause some slight miss-attribution of {soft,}irq
154 	 * time, a more accurate solution would be to update the irq_time using
155 	 * the current rq->clock timestamp, except that would require using
156 	 * atomic ops.
157 	 */
158 	if (irq_delta > delta)
159 		irq_delta = delta;
160 
161 	rq->prev_irq_time += irq_delta;
162 	delta -= irq_delta;
163 #endif
164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 	if (static_key_false((&paravirt_steal_rq_enabled))) {
166 		steal = paravirt_steal_clock(cpu_of(rq));
167 		steal -= rq->prev_steal_time_rq;
168 
169 		if (unlikely(steal > delta))
170 			steal = delta;
171 
172 		rq->prev_steal_time_rq += steal;
173 		delta -= steal;
174 	}
175 #endif
176 
177 	rq->clock_task += delta;
178 
179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
180 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
181 		update_irq_load_avg(rq, irq_delta + steal);
182 #endif
183 }
184 
185 void update_rq_clock(struct rq *rq)
186 {
187 	s64 delta;
188 
189 	lockdep_assert_held(&rq->lock);
190 
191 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
192 		return;
193 
194 #ifdef CONFIG_SCHED_DEBUG
195 	if (sched_feat(WARN_DOUBLE_CLOCK))
196 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
197 	rq->clock_update_flags |= RQCF_UPDATED;
198 #endif
199 
200 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
201 	if (delta < 0)
202 		return;
203 	rq->clock += delta;
204 	update_rq_clock_task(rq, delta);
205 }
206 
207 
208 #ifdef CONFIG_SCHED_HRTICK
209 /*
210  * Use HR-timers to deliver accurate preemption points.
211  */
212 
213 static void hrtick_clear(struct rq *rq)
214 {
215 	if (hrtimer_active(&rq->hrtick_timer))
216 		hrtimer_cancel(&rq->hrtick_timer);
217 }
218 
219 /*
220  * High-resolution timer tick.
221  * Runs from hardirq context with interrupts disabled.
222  */
223 static enum hrtimer_restart hrtick(struct hrtimer *timer)
224 {
225 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
226 	struct rq_flags rf;
227 
228 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
229 
230 	rq_lock(rq, &rf);
231 	update_rq_clock(rq);
232 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
233 	rq_unlock(rq, &rf);
234 
235 	return HRTIMER_NORESTART;
236 }
237 
238 #ifdef CONFIG_SMP
239 
240 static void __hrtick_restart(struct rq *rq)
241 {
242 	struct hrtimer *timer = &rq->hrtick_timer;
243 
244 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
245 }
246 
247 /*
248  * called from hardirq (IPI) context
249  */
250 static void __hrtick_start(void *arg)
251 {
252 	struct rq *rq = arg;
253 	struct rq_flags rf;
254 
255 	rq_lock(rq, &rf);
256 	__hrtick_restart(rq);
257 	rq->hrtick_csd_pending = 0;
258 	rq_unlock(rq, &rf);
259 }
260 
261 /*
262  * Called to set the hrtick timer state.
263  *
264  * called with rq->lock held and irqs disabled
265  */
266 void hrtick_start(struct rq *rq, u64 delay)
267 {
268 	struct hrtimer *timer = &rq->hrtick_timer;
269 	ktime_t time;
270 	s64 delta;
271 
272 	/*
273 	 * Don't schedule slices shorter than 10000ns, that just
274 	 * doesn't make sense and can cause timer DoS.
275 	 */
276 	delta = max_t(s64, delay, 10000LL);
277 	time = ktime_add_ns(timer->base->get_time(), delta);
278 
279 	hrtimer_set_expires(timer, time);
280 
281 	if (rq == this_rq()) {
282 		__hrtick_restart(rq);
283 	} else if (!rq->hrtick_csd_pending) {
284 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
285 		rq->hrtick_csd_pending = 1;
286 	}
287 }
288 
289 #else
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 	/*
298 	 * Don't schedule slices shorter than 10000ns, that just
299 	 * doesn't make sense. Rely on vruntime for fairness.
300 	 */
301 	delay = max_t(u64, delay, 10000LL);
302 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
303 		      HRTIMER_MODE_REL_PINNED);
304 }
305 #endif /* CONFIG_SMP */
306 
307 static void hrtick_rq_init(struct rq *rq)
308 {
309 #ifdef CONFIG_SMP
310 	rq->hrtick_csd_pending = 0;
311 
312 	rq->hrtick_csd.flags = 0;
313 	rq->hrtick_csd.func = __hrtick_start;
314 	rq->hrtick_csd.info = rq;
315 #endif
316 
317 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
318 	rq->hrtick_timer.function = hrtick;
319 }
320 #else	/* CONFIG_SCHED_HRTICK */
321 static inline void hrtick_clear(struct rq *rq)
322 {
323 }
324 
325 static inline void hrtick_rq_init(struct rq *rq)
326 {
327 }
328 #endif	/* CONFIG_SCHED_HRTICK */
329 
330 /*
331  * cmpxchg based fetch_or, macro so it works for different integer types
332  */
333 #define fetch_or(ptr, mask)						\
334 	({								\
335 		typeof(ptr) _ptr = (ptr);				\
336 		typeof(mask) _mask = (mask);				\
337 		typeof(*_ptr) _old, _val = *_ptr;			\
338 									\
339 		for (;;) {						\
340 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
341 			if (_old == _val)				\
342 				break;					\
343 			_val = _old;					\
344 		}							\
345 	_old;								\
346 })
347 
348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
349 /*
350  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351  * this avoids any races wrt polling state changes and thereby avoids
352  * spurious IPIs.
353  */
354 static bool set_nr_and_not_polling(struct task_struct *p)
355 {
356 	struct thread_info *ti = task_thread_info(p);
357 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
358 }
359 
360 /*
361  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
362  *
363  * If this returns true, then the idle task promises to call
364  * sched_ttwu_pending() and reschedule soon.
365  */
366 static bool set_nr_if_polling(struct task_struct *p)
367 {
368 	struct thread_info *ti = task_thread_info(p);
369 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
370 
371 	for (;;) {
372 		if (!(val & _TIF_POLLING_NRFLAG))
373 			return false;
374 		if (val & _TIF_NEED_RESCHED)
375 			return true;
376 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
377 		if (old == val)
378 			break;
379 		val = old;
380 	}
381 	return true;
382 }
383 
384 #else
385 static bool set_nr_and_not_polling(struct task_struct *p)
386 {
387 	set_tsk_need_resched(p);
388 	return true;
389 }
390 
391 #ifdef CONFIG_SMP
392 static bool set_nr_if_polling(struct task_struct *p)
393 {
394 	return false;
395 }
396 #endif
397 #endif
398 
399 /**
400  * wake_q_add() - queue a wakeup for 'later' waking.
401  * @head: the wake_q_head to add @task to
402  * @task: the task to queue for 'later' wakeup
403  *
404  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
405  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
406  * instantly.
407  *
408  * This function must be used as-if it were wake_up_process(); IOW the task
409  * must be ready to be woken at this location.
410  */
411 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
412 {
413 	struct wake_q_node *node = &task->wake_q;
414 
415 	/*
416 	 * Atomically grab the task, if ->wake_q is !nil already it means
417 	 * its already queued (either by us or someone else) and will get the
418 	 * wakeup due to that.
419 	 *
420 	 * In order to ensure that a pending wakeup will observe our pending
421 	 * state, even in the failed case, an explicit smp_mb() must be used.
422 	 */
423 	smp_mb__before_atomic();
424 	if (cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))
425 		return;
426 
427 	get_task_struct(task);
428 
429 	/*
430 	 * The head is context local, there can be no concurrency.
431 	 */
432 	*head->lastp = node;
433 	head->lastp = &node->next;
434 }
435 
436 void wake_up_q(struct wake_q_head *head)
437 {
438 	struct wake_q_node *node = head->first;
439 
440 	while (node != WAKE_Q_TAIL) {
441 		struct task_struct *task;
442 
443 		task = container_of(node, struct task_struct, wake_q);
444 		BUG_ON(!task);
445 		/* Task can safely be re-inserted now: */
446 		node = node->next;
447 		task->wake_q.next = NULL;
448 
449 		/*
450 		 * wake_up_process() executes a full barrier, which pairs with
451 		 * the queueing in wake_q_add() so as not to miss wakeups.
452 		 */
453 		wake_up_process(task);
454 		put_task_struct(task);
455 	}
456 }
457 
458 /*
459  * resched_curr - mark rq's current task 'to be rescheduled now'.
460  *
461  * On UP this means the setting of the need_resched flag, on SMP it
462  * might also involve a cross-CPU call to trigger the scheduler on
463  * the target CPU.
464  */
465 void resched_curr(struct rq *rq)
466 {
467 	struct task_struct *curr = rq->curr;
468 	int cpu;
469 
470 	lockdep_assert_held(&rq->lock);
471 
472 	if (test_tsk_need_resched(curr))
473 		return;
474 
475 	cpu = cpu_of(rq);
476 
477 	if (cpu == smp_processor_id()) {
478 		set_tsk_need_resched(curr);
479 		set_preempt_need_resched();
480 		return;
481 	}
482 
483 	if (set_nr_and_not_polling(curr))
484 		smp_send_reschedule(cpu);
485 	else
486 		trace_sched_wake_idle_without_ipi(cpu);
487 }
488 
489 void resched_cpu(int cpu)
490 {
491 	struct rq *rq = cpu_rq(cpu);
492 	unsigned long flags;
493 
494 	raw_spin_lock_irqsave(&rq->lock, flags);
495 	if (cpu_online(cpu) || cpu == smp_processor_id())
496 		resched_curr(rq);
497 	raw_spin_unlock_irqrestore(&rq->lock, flags);
498 }
499 
500 #ifdef CONFIG_SMP
501 #ifdef CONFIG_NO_HZ_COMMON
502 /*
503  * In the semi idle case, use the nearest busy CPU for migrating timers
504  * from an idle CPU.  This is good for power-savings.
505  *
506  * We don't do similar optimization for completely idle system, as
507  * selecting an idle CPU will add more delays to the timers than intended
508  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
509  */
510 int get_nohz_timer_target(void)
511 {
512 	int i, cpu = smp_processor_id();
513 	struct sched_domain *sd;
514 
515 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
516 		return cpu;
517 
518 	rcu_read_lock();
519 	for_each_domain(cpu, sd) {
520 		for_each_cpu(i, sched_domain_span(sd)) {
521 			if (cpu == i)
522 				continue;
523 
524 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
525 				cpu = i;
526 				goto unlock;
527 			}
528 		}
529 	}
530 
531 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
532 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
533 unlock:
534 	rcu_read_unlock();
535 	return cpu;
536 }
537 
538 /*
539  * When add_timer_on() enqueues a timer into the timer wheel of an
540  * idle CPU then this timer might expire before the next timer event
541  * which is scheduled to wake up that CPU. In case of a completely
542  * idle system the next event might even be infinite time into the
543  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
544  * leaves the inner idle loop so the newly added timer is taken into
545  * account when the CPU goes back to idle and evaluates the timer
546  * wheel for the next timer event.
547  */
548 static void wake_up_idle_cpu(int cpu)
549 {
550 	struct rq *rq = cpu_rq(cpu);
551 
552 	if (cpu == smp_processor_id())
553 		return;
554 
555 	if (set_nr_and_not_polling(rq->idle))
556 		smp_send_reschedule(cpu);
557 	else
558 		trace_sched_wake_idle_without_ipi(cpu);
559 }
560 
561 static bool wake_up_full_nohz_cpu(int cpu)
562 {
563 	/*
564 	 * We just need the target to call irq_exit() and re-evaluate
565 	 * the next tick. The nohz full kick at least implies that.
566 	 * If needed we can still optimize that later with an
567 	 * empty IRQ.
568 	 */
569 	if (cpu_is_offline(cpu))
570 		return true;  /* Don't try to wake offline CPUs. */
571 	if (tick_nohz_full_cpu(cpu)) {
572 		if (cpu != smp_processor_id() ||
573 		    tick_nohz_tick_stopped())
574 			tick_nohz_full_kick_cpu(cpu);
575 		return true;
576 	}
577 
578 	return false;
579 }
580 
581 /*
582  * Wake up the specified CPU.  If the CPU is going offline, it is the
583  * caller's responsibility to deal with the lost wakeup, for example,
584  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
585  */
586 void wake_up_nohz_cpu(int cpu)
587 {
588 	if (!wake_up_full_nohz_cpu(cpu))
589 		wake_up_idle_cpu(cpu);
590 }
591 
592 static inline bool got_nohz_idle_kick(void)
593 {
594 	int cpu = smp_processor_id();
595 
596 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
597 		return false;
598 
599 	if (idle_cpu(cpu) && !need_resched())
600 		return true;
601 
602 	/*
603 	 * We can't run Idle Load Balance on this CPU for this time so we
604 	 * cancel it and clear NOHZ_BALANCE_KICK
605 	 */
606 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
607 	return false;
608 }
609 
610 #else /* CONFIG_NO_HZ_COMMON */
611 
612 static inline bool got_nohz_idle_kick(void)
613 {
614 	return false;
615 }
616 
617 #endif /* CONFIG_NO_HZ_COMMON */
618 
619 #ifdef CONFIG_NO_HZ_FULL
620 bool sched_can_stop_tick(struct rq *rq)
621 {
622 	int fifo_nr_running;
623 
624 	/* Deadline tasks, even if single, need the tick */
625 	if (rq->dl.dl_nr_running)
626 		return false;
627 
628 	/*
629 	 * If there are more than one RR tasks, we need the tick to effect the
630 	 * actual RR behaviour.
631 	 */
632 	if (rq->rt.rr_nr_running) {
633 		if (rq->rt.rr_nr_running == 1)
634 			return true;
635 		else
636 			return false;
637 	}
638 
639 	/*
640 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
641 	 * forced preemption between FIFO tasks.
642 	 */
643 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
644 	if (fifo_nr_running)
645 		return true;
646 
647 	/*
648 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
649 	 * if there's more than one we need the tick for involuntary
650 	 * preemption.
651 	 */
652 	if (rq->nr_running > 1)
653 		return false;
654 
655 	return true;
656 }
657 #endif /* CONFIG_NO_HZ_FULL */
658 #endif /* CONFIG_SMP */
659 
660 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
661 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
662 /*
663  * Iterate task_group tree rooted at *from, calling @down when first entering a
664  * node and @up when leaving it for the final time.
665  *
666  * Caller must hold rcu_lock or sufficient equivalent.
667  */
668 int walk_tg_tree_from(struct task_group *from,
669 			     tg_visitor down, tg_visitor up, void *data)
670 {
671 	struct task_group *parent, *child;
672 	int ret;
673 
674 	parent = from;
675 
676 down:
677 	ret = (*down)(parent, data);
678 	if (ret)
679 		goto out;
680 	list_for_each_entry_rcu(child, &parent->children, siblings) {
681 		parent = child;
682 		goto down;
683 
684 up:
685 		continue;
686 	}
687 	ret = (*up)(parent, data);
688 	if (ret || parent == from)
689 		goto out;
690 
691 	child = parent;
692 	parent = parent->parent;
693 	if (parent)
694 		goto up;
695 out:
696 	return ret;
697 }
698 
699 int tg_nop(struct task_group *tg, void *data)
700 {
701 	return 0;
702 }
703 #endif
704 
705 static void set_load_weight(struct task_struct *p, bool update_load)
706 {
707 	int prio = p->static_prio - MAX_RT_PRIO;
708 	struct load_weight *load = &p->se.load;
709 
710 	/*
711 	 * SCHED_IDLE tasks get minimal weight:
712 	 */
713 	if (task_has_idle_policy(p)) {
714 		load->weight = scale_load(WEIGHT_IDLEPRIO);
715 		load->inv_weight = WMULT_IDLEPRIO;
716 		p->se.runnable_weight = load->weight;
717 		return;
718 	}
719 
720 	/*
721 	 * SCHED_OTHER tasks have to update their load when changing their
722 	 * weight
723 	 */
724 	if (update_load && p->sched_class == &fair_sched_class) {
725 		reweight_task(p, prio);
726 	} else {
727 		load->weight = scale_load(sched_prio_to_weight[prio]);
728 		load->inv_weight = sched_prio_to_wmult[prio];
729 		p->se.runnable_weight = load->weight;
730 	}
731 }
732 
733 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
734 {
735 	if (!(flags & ENQUEUE_NOCLOCK))
736 		update_rq_clock(rq);
737 
738 	if (!(flags & ENQUEUE_RESTORE)) {
739 		sched_info_queued(rq, p);
740 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
741 	}
742 
743 	p->sched_class->enqueue_task(rq, p, flags);
744 }
745 
746 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
747 {
748 	if (!(flags & DEQUEUE_NOCLOCK))
749 		update_rq_clock(rq);
750 
751 	if (!(flags & DEQUEUE_SAVE)) {
752 		sched_info_dequeued(rq, p);
753 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
754 	}
755 
756 	p->sched_class->dequeue_task(rq, p, flags);
757 }
758 
759 void activate_task(struct rq *rq, struct task_struct *p, int flags)
760 {
761 	if (task_contributes_to_load(p))
762 		rq->nr_uninterruptible--;
763 
764 	enqueue_task(rq, p, flags);
765 }
766 
767 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
768 {
769 	if (task_contributes_to_load(p))
770 		rq->nr_uninterruptible++;
771 
772 	dequeue_task(rq, p, flags);
773 }
774 
775 /*
776  * __normal_prio - return the priority that is based on the static prio
777  */
778 static inline int __normal_prio(struct task_struct *p)
779 {
780 	return p->static_prio;
781 }
782 
783 /*
784  * Calculate the expected normal priority: i.e. priority
785  * without taking RT-inheritance into account. Might be
786  * boosted by interactivity modifiers. Changes upon fork,
787  * setprio syscalls, and whenever the interactivity
788  * estimator recalculates.
789  */
790 static inline int normal_prio(struct task_struct *p)
791 {
792 	int prio;
793 
794 	if (task_has_dl_policy(p))
795 		prio = MAX_DL_PRIO-1;
796 	else if (task_has_rt_policy(p))
797 		prio = MAX_RT_PRIO-1 - p->rt_priority;
798 	else
799 		prio = __normal_prio(p);
800 	return prio;
801 }
802 
803 /*
804  * Calculate the current priority, i.e. the priority
805  * taken into account by the scheduler. This value might
806  * be boosted by RT tasks, or might be boosted by
807  * interactivity modifiers. Will be RT if the task got
808  * RT-boosted. If not then it returns p->normal_prio.
809  */
810 static int effective_prio(struct task_struct *p)
811 {
812 	p->normal_prio = normal_prio(p);
813 	/*
814 	 * If we are RT tasks or we were boosted to RT priority,
815 	 * keep the priority unchanged. Otherwise, update priority
816 	 * to the normal priority:
817 	 */
818 	if (!rt_prio(p->prio))
819 		return p->normal_prio;
820 	return p->prio;
821 }
822 
823 /**
824  * task_curr - is this task currently executing on a CPU?
825  * @p: the task in question.
826  *
827  * Return: 1 if the task is currently executing. 0 otherwise.
828  */
829 inline int task_curr(const struct task_struct *p)
830 {
831 	return cpu_curr(task_cpu(p)) == p;
832 }
833 
834 /*
835  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
836  * use the balance_callback list if you want balancing.
837  *
838  * this means any call to check_class_changed() must be followed by a call to
839  * balance_callback().
840  */
841 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
842 				       const struct sched_class *prev_class,
843 				       int oldprio)
844 {
845 	if (prev_class != p->sched_class) {
846 		if (prev_class->switched_from)
847 			prev_class->switched_from(rq, p);
848 
849 		p->sched_class->switched_to(rq, p);
850 	} else if (oldprio != p->prio || dl_task(p))
851 		p->sched_class->prio_changed(rq, p, oldprio);
852 }
853 
854 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
855 {
856 	const struct sched_class *class;
857 
858 	if (p->sched_class == rq->curr->sched_class) {
859 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
860 	} else {
861 		for_each_class(class) {
862 			if (class == rq->curr->sched_class)
863 				break;
864 			if (class == p->sched_class) {
865 				resched_curr(rq);
866 				break;
867 			}
868 		}
869 	}
870 
871 	/*
872 	 * A queue event has occurred, and we're going to schedule.  In
873 	 * this case, we can save a useless back to back clock update.
874 	 */
875 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
876 		rq_clock_skip_update(rq);
877 }
878 
879 #ifdef CONFIG_SMP
880 
881 static inline bool is_per_cpu_kthread(struct task_struct *p)
882 {
883 	if (!(p->flags & PF_KTHREAD))
884 		return false;
885 
886 	if (p->nr_cpus_allowed != 1)
887 		return false;
888 
889 	return true;
890 }
891 
892 /*
893  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
894  * __set_cpus_allowed_ptr() and select_fallback_rq().
895  */
896 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
897 {
898 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
899 		return false;
900 
901 	if (is_per_cpu_kthread(p))
902 		return cpu_online(cpu);
903 
904 	return cpu_active(cpu);
905 }
906 
907 /*
908  * This is how migration works:
909  *
910  * 1) we invoke migration_cpu_stop() on the target CPU using
911  *    stop_one_cpu().
912  * 2) stopper starts to run (implicitly forcing the migrated thread
913  *    off the CPU)
914  * 3) it checks whether the migrated task is still in the wrong runqueue.
915  * 4) if it's in the wrong runqueue then the migration thread removes
916  *    it and puts it into the right queue.
917  * 5) stopper completes and stop_one_cpu() returns and the migration
918  *    is done.
919  */
920 
921 /*
922  * move_queued_task - move a queued task to new rq.
923  *
924  * Returns (locked) new rq. Old rq's lock is released.
925  */
926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
927 				   struct task_struct *p, int new_cpu)
928 {
929 	lockdep_assert_held(&rq->lock);
930 
931 	p->on_rq = TASK_ON_RQ_MIGRATING;
932 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
933 	set_task_cpu(p, new_cpu);
934 	rq_unlock(rq, rf);
935 
936 	rq = cpu_rq(new_cpu);
937 
938 	rq_lock(rq, rf);
939 	BUG_ON(task_cpu(p) != new_cpu);
940 	enqueue_task(rq, p, 0);
941 	p->on_rq = TASK_ON_RQ_QUEUED;
942 	check_preempt_curr(rq, p, 0);
943 
944 	return rq;
945 }
946 
947 struct migration_arg {
948 	struct task_struct *task;
949 	int dest_cpu;
950 };
951 
952 /*
953  * Move (not current) task off this CPU, onto the destination CPU. We're doing
954  * this because either it can't run here any more (set_cpus_allowed()
955  * away from this CPU, or CPU going down), or because we're
956  * attempting to rebalance this task on exec (sched_exec).
957  *
958  * So we race with normal scheduler movements, but that's OK, as long
959  * as the task is no longer on this CPU.
960  */
961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
962 				 struct task_struct *p, int dest_cpu)
963 {
964 	/* Affinity changed (again). */
965 	if (!is_cpu_allowed(p, dest_cpu))
966 		return rq;
967 
968 	update_rq_clock(rq);
969 	rq = move_queued_task(rq, rf, p, dest_cpu);
970 
971 	return rq;
972 }
973 
974 /*
975  * migration_cpu_stop - this will be executed by a highprio stopper thread
976  * and performs thread migration by bumping thread off CPU then
977  * 'pushing' onto another runqueue.
978  */
979 static int migration_cpu_stop(void *data)
980 {
981 	struct migration_arg *arg = data;
982 	struct task_struct *p = arg->task;
983 	struct rq *rq = this_rq();
984 	struct rq_flags rf;
985 
986 	/*
987 	 * The original target CPU might have gone down and we might
988 	 * be on another CPU but it doesn't matter.
989 	 */
990 	local_irq_disable();
991 	/*
992 	 * We need to explicitly wake pending tasks before running
993 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
994 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
995 	 */
996 	sched_ttwu_pending();
997 
998 	raw_spin_lock(&p->pi_lock);
999 	rq_lock(rq, &rf);
1000 	/*
1001 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1002 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1003 	 * we're holding p->pi_lock.
1004 	 */
1005 	if (task_rq(p) == rq) {
1006 		if (task_on_rq_queued(p))
1007 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1008 		else
1009 			p->wake_cpu = arg->dest_cpu;
1010 	}
1011 	rq_unlock(rq, &rf);
1012 	raw_spin_unlock(&p->pi_lock);
1013 
1014 	local_irq_enable();
1015 	return 0;
1016 }
1017 
1018 /*
1019  * sched_class::set_cpus_allowed must do the below, but is not required to
1020  * actually call this function.
1021  */
1022 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1023 {
1024 	cpumask_copy(&p->cpus_allowed, new_mask);
1025 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1026 }
1027 
1028 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1029 {
1030 	struct rq *rq = task_rq(p);
1031 	bool queued, running;
1032 
1033 	lockdep_assert_held(&p->pi_lock);
1034 
1035 	queued = task_on_rq_queued(p);
1036 	running = task_current(rq, p);
1037 
1038 	if (queued) {
1039 		/*
1040 		 * Because __kthread_bind() calls this on blocked tasks without
1041 		 * holding rq->lock.
1042 		 */
1043 		lockdep_assert_held(&rq->lock);
1044 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1045 	}
1046 	if (running)
1047 		put_prev_task(rq, p);
1048 
1049 	p->sched_class->set_cpus_allowed(p, new_mask);
1050 
1051 	if (queued)
1052 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1053 	if (running)
1054 		set_curr_task(rq, p);
1055 }
1056 
1057 /*
1058  * Change a given task's CPU affinity. Migrate the thread to a
1059  * proper CPU and schedule it away if the CPU it's executing on
1060  * is removed from the allowed bitmask.
1061  *
1062  * NOTE: the caller must have a valid reference to the task, the
1063  * task must not exit() & deallocate itself prematurely. The
1064  * call is not atomic; no spinlocks may be held.
1065  */
1066 static int __set_cpus_allowed_ptr(struct task_struct *p,
1067 				  const struct cpumask *new_mask, bool check)
1068 {
1069 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1070 	unsigned int dest_cpu;
1071 	struct rq_flags rf;
1072 	struct rq *rq;
1073 	int ret = 0;
1074 
1075 	rq = task_rq_lock(p, &rf);
1076 	update_rq_clock(rq);
1077 
1078 	if (p->flags & PF_KTHREAD) {
1079 		/*
1080 		 * Kernel threads are allowed on online && !active CPUs
1081 		 */
1082 		cpu_valid_mask = cpu_online_mask;
1083 	}
1084 
1085 	/*
1086 	 * Must re-check here, to close a race against __kthread_bind(),
1087 	 * sched_setaffinity() is not guaranteed to observe the flag.
1088 	 */
1089 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1090 		ret = -EINVAL;
1091 		goto out;
1092 	}
1093 
1094 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1095 		goto out;
1096 
1097 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1098 		ret = -EINVAL;
1099 		goto out;
1100 	}
1101 
1102 	do_set_cpus_allowed(p, new_mask);
1103 
1104 	if (p->flags & PF_KTHREAD) {
1105 		/*
1106 		 * For kernel threads that do indeed end up on online &&
1107 		 * !active we want to ensure they are strict per-CPU threads.
1108 		 */
1109 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1110 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1111 			p->nr_cpus_allowed != 1);
1112 	}
1113 
1114 	/* Can the task run on the task's current CPU? If so, we're done */
1115 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 		goto out;
1117 
1118 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1119 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 		struct migration_arg arg = { p, dest_cpu };
1121 		/* Need help from migration thread: drop lock and wait. */
1122 		task_rq_unlock(rq, p, &rf);
1123 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 		tlb_migrate_finish(p->mm);
1125 		return 0;
1126 	} else if (task_on_rq_queued(p)) {
1127 		/*
1128 		 * OK, since we're going to drop the lock immediately
1129 		 * afterwards anyway.
1130 		 */
1131 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1132 	}
1133 out:
1134 	task_rq_unlock(rq, p, &rf);
1135 
1136 	return ret;
1137 }
1138 
1139 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1140 {
1141 	return __set_cpus_allowed_ptr(p, new_mask, false);
1142 }
1143 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1144 
1145 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1146 {
1147 #ifdef CONFIG_SCHED_DEBUG
1148 	/*
1149 	 * We should never call set_task_cpu() on a blocked task,
1150 	 * ttwu() will sort out the placement.
1151 	 */
1152 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1153 			!p->on_rq);
1154 
1155 	/*
1156 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1157 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1158 	 * time relying on p->on_rq.
1159 	 */
1160 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1161 		     p->sched_class == &fair_sched_class &&
1162 		     (p->on_rq && !task_on_rq_migrating(p)));
1163 
1164 #ifdef CONFIG_LOCKDEP
1165 	/*
1166 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1167 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1168 	 *
1169 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1170 	 * see task_group().
1171 	 *
1172 	 * Furthermore, all task_rq users should acquire both locks, see
1173 	 * task_rq_lock().
1174 	 */
1175 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1176 				      lockdep_is_held(&task_rq(p)->lock)));
1177 #endif
1178 	/*
1179 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1180 	 */
1181 	WARN_ON_ONCE(!cpu_online(new_cpu));
1182 #endif
1183 
1184 	trace_sched_migrate_task(p, new_cpu);
1185 
1186 	if (task_cpu(p) != new_cpu) {
1187 		if (p->sched_class->migrate_task_rq)
1188 			p->sched_class->migrate_task_rq(p, new_cpu);
1189 		p->se.nr_migrations++;
1190 		rseq_migrate(p);
1191 		perf_event_task_migrate(p);
1192 	}
1193 
1194 	__set_task_cpu(p, new_cpu);
1195 }
1196 
1197 #ifdef CONFIG_NUMA_BALANCING
1198 static void __migrate_swap_task(struct task_struct *p, int cpu)
1199 {
1200 	if (task_on_rq_queued(p)) {
1201 		struct rq *src_rq, *dst_rq;
1202 		struct rq_flags srf, drf;
1203 
1204 		src_rq = task_rq(p);
1205 		dst_rq = cpu_rq(cpu);
1206 
1207 		rq_pin_lock(src_rq, &srf);
1208 		rq_pin_lock(dst_rq, &drf);
1209 
1210 		p->on_rq = TASK_ON_RQ_MIGRATING;
1211 		deactivate_task(src_rq, p, 0);
1212 		set_task_cpu(p, cpu);
1213 		activate_task(dst_rq, p, 0);
1214 		p->on_rq = TASK_ON_RQ_QUEUED;
1215 		check_preempt_curr(dst_rq, p, 0);
1216 
1217 		rq_unpin_lock(dst_rq, &drf);
1218 		rq_unpin_lock(src_rq, &srf);
1219 
1220 	} else {
1221 		/*
1222 		 * Task isn't running anymore; make it appear like we migrated
1223 		 * it before it went to sleep. This means on wakeup we make the
1224 		 * previous CPU our target instead of where it really is.
1225 		 */
1226 		p->wake_cpu = cpu;
1227 	}
1228 }
1229 
1230 struct migration_swap_arg {
1231 	struct task_struct *src_task, *dst_task;
1232 	int src_cpu, dst_cpu;
1233 };
1234 
1235 static int migrate_swap_stop(void *data)
1236 {
1237 	struct migration_swap_arg *arg = data;
1238 	struct rq *src_rq, *dst_rq;
1239 	int ret = -EAGAIN;
1240 
1241 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1242 		return -EAGAIN;
1243 
1244 	src_rq = cpu_rq(arg->src_cpu);
1245 	dst_rq = cpu_rq(arg->dst_cpu);
1246 
1247 	double_raw_lock(&arg->src_task->pi_lock,
1248 			&arg->dst_task->pi_lock);
1249 	double_rq_lock(src_rq, dst_rq);
1250 
1251 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1252 		goto unlock;
1253 
1254 	if (task_cpu(arg->src_task) != arg->src_cpu)
1255 		goto unlock;
1256 
1257 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1258 		goto unlock;
1259 
1260 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1261 		goto unlock;
1262 
1263 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1264 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1265 
1266 	ret = 0;
1267 
1268 unlock:
1269 	double_rq_unlock(src_rq, dst_rq);
1270 	raw_spin_unlock(&arg->dst_task->pi_lock);
1271 	raw_spin_unlock(&arg->src_task->pi_lock);
1272 
1273 	return ret;
1274 }
1275 
1276 /*
1277  * Cross migrate two tasks
1278  */
1279 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1280 		int target_cpu, int curr_cpu)
1281 {
1282 	struct migration_swap_arg arg;
1283 	int ret = -EINVAL;
1284 
1285 	arg = (struct migration_swap_arg){
1286 		.src_task = cur,
1287 		.src_cpu = curr_cpu,
1288 		.dst_task = p,
1289 		.dst_cpu = target_cpu,
1290 	};
1291 
1292 	if (arg.src_cpu == arg.dst_cpu)
1293 		goto out;
1294 
1295 	/*
1296 	 * These three tests are all lockless; this is OK since all of them
1297 	 * will be re-checked with proper locks held further down the line.
1298 	 */
1299 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1300 		goto out;
1301 
1302 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1303 		goto out;
1304 
1305 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1306 		goto out;
1307 
1308 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1309 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1310 
1311 out:
1312 	return ret;
1313 }
1314 #endif /* CONFIG_NUMA_BALANCING */
1315 
1316 /*
1317  * wait_task_inactive - wait for a thread to unschedule.
1318  *
1319  * If @match_state is nonzero, it's the @p->state value just checked and
1320  * not expected to change.  If it changes, i.e. @p might have woken up,
1321  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1322  * we return a positive number (its total switch count).  If a second call
1323  * a short while later returns the same number, the caller can be sure that
1324  * @p has remained unscheduled the whole time.
1325  *
1326  * The caller must ensure that the task *will* unschedule sometime soon,
1327  * else this function might spin for a *long* time. This function can't
1328  * be called with interrupts off, or it may introduce deadlock with
1329  * smp_call_function() if an IPI is sent by the same process we are
1330  * waiting to become inactive.
1331  */
1332 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1333 {
1334 	int running, queued;
1335 	struct rq_flags rf;
1336 	unsigned long ncsw;
1337 	struct rq *rq;
1338 
1339 	for (;;) {
1340 		/*
1341 		 * We do the initial early heuristics without holding
1342 		 * any task-queue locks at all. We'll only try to get
1343 		 * the runqueue lock when things look like they will
1344 		 * work out!
1345 		 */
1346 		rq = task_rq(p);
1347 
1348 		/*
1349 		 * If the task is actively running on another CPU
1350 		 * still, just relax and busy-wait without holding
1351 		 * any locks.
1352 		 *
1353 		 * NOTE! Since we don't hold any locks, it's not
1354 		 * even sure that "rq" stays as the right runqueue!
1355 		 * But we don't care, since "task_running()" will
1356 		 * return false if the runqueue has changed and p
1357 		 * is actually now running somewhere else!
1358 		 */
1359 		while (task_running(rq, p)) {
1360 			if (match_state && unlikely(p->state != match_state))
1361 				return 0;
1362 			cpu_relax();
1363 		}
1364 
1365 		/*
1366 		 * Ok, time to look more closely! We need the rq
1367 		 * lock now, to be *sure*. If we're wrong, we'll
1368 		 * just go back and repeat.
1369 		 */
1370 		rq = task_rq_lock(p, &rf);
1371 		trace_sched_wait_task(p);
1372 		running = task_running(rq, p);
1373 		queued = task_on_rq_queued(p);
1374 		ncsw = 0;
1375 		if (!match_state || p->state == match_state)
1376 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1377 		task_rq_unlock(rq, p, &rf);
1378 
1379 		/*
1380 		 * If it changed from the expected state, bail out now.
1381 		 */
1382 		if (unlikely(!ncsw))
1383 			break;
1384 
1385 		/*
1386 		 * Was it really running after all now that we
1387 		 * checked with the proper locks actually held?
1388 		 *
1389 		 * Oops. Go back and try again..
1390 		 */
1391 		if (unlikely(running)) {
1392 			cpu_relax();
1393 			continue;
1394 		}
1395 
1396 		/*
1397 		 * It's not enough that it's not actively running,
1398 		 * it must be off the runqueue _entirely_, and not
1399 		 * preempted!
1400 		 *
1401 		 * So if it was still runnable (but just not actively
1402 		 * running right now), it's preempted, and we should
1403 		 * yield - it could be a while.
1404 		 */
1405 		if (unlikely(queued)) {
1406 			ktime_t to = NSEC_PER_SEC / HZ;
1407 
1408 			set_current_state(TASK_UNINTERRUPTIBLE);
1409 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1410 			continue;
1411 		}
1412 
1413 		/*
1414 		 * Ahh, all good. It wasn't running, and it wasn't
1415 		 * runnable, which means that it will never become
1416 		 * running in the future either. We're all done!
1417 		 */
1418 		break;
1419 	}
1420 
1421 	return ncsw;
1422 }
1423 
1424 /***
1425  * kick_process - kick a running thread to enter/exit the kernel
1426  * @p: the to-be-kicked thread
1427  *
1428  * Cause a process which is running on another CPU to enter
1429  * kernel-mode, without any delay. (to get signals handled.)
1430  *
1431  * NOTE: this function doesn't have to take the runqueue lock,
1432  * because all it wants to ensure is that the remote task enters
1433  * the kernel. If the IPI races and the task has been migrated
1434  * to another CPU then no harm is done and the purpose has been
1435  * achieved as well.
1436  */
1437 void kick_process(struct task_struct *p)
1438 {
1439 	int cpu;
1440 
1441 	preempt_disable();
1442 	cpu = task_cpu(p);
1443 	if ((cpu != smp_processor_id()) && task_curr(p))
1444 		smp_send_reschedule(cpu);
1445 	preempt_enable();
1446 }
1447 EXPORT_SYMBOL_GPL(kick_process);
1448 
1449 /*
1450  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1451  *
1452  * A few notes on cpu_active vs cpu_online:
1453  *
1454  *  - cpu_active must be a subset of cpu_online
1455  *
1456  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1457  *    see __set_cpus_allowed_ptr(). At this point the newly online
1458  *    CPU isn't yet part of the sched domains, and balancing will not
1459  *    see it.
1460  *
1461  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1462  *    avoid the load balancer to place new tasks on the to be removed
1463  *    CPU. Existing tasks will remain running there and will be taken
1464  *    off.
1465  *
1466  * This means that fallback selection must not select !active CPUs.
1467  * And can assume that any active CPU must be online. Conversely
1468  * select_task_rq() below may allow selection of !active CPUs in order
1469  * to satisfy the above rules.
1470  */
1471 static int select_fallback_rq(int cpu, struct task_struct *p)
1472 {
1473 	int nid = cpu_to_node(cpu);
1474 	const struct cpumask *nodemask = NULL;
1475 	enum { cpuset, possible, fail } state = cpuset;
1476 	int dest_cpu;
1477 
1478 	/*
1479 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1480 	 * will return -1. There is no CPU on the node, and we should
1481 	 * select the CPU on the other node.
1482 	 */
1483 	if (nid != -1) {
1484 		nodemask = cpumask_of_node(nid);
1485 
1486 		/* Look for allowed, online CPU in same node. */
1487 		for_each_cpu(dest_cpu, nodemask) {
1488 			if (!cpu_active(dest_cpu))
1489 				continue;
1490 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1491 				return dest_cpu;
1492 		}
1493 	}
1494 
1495 	for (;;) {
1496 		/* Any allowed, online CPU? */
1497 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1498 			if (!is_cpu_allowed(p, dest_cpu))
1499 				continue;
1500 
1501 			goto out;
1502 		}
1503 
1504 		/* No more Mr. Nice Guy. */
1505 		switch (state) {
1506 		case cpuset:
1507 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1508 				cpuset_cpus_allowed_fallback(p);
1509 				state = possible;
1510 				break;
1511 			}
1512 			/* Fall-through */
1513 		case possible:
1514 			do_set_cpus_allowed(p, cpu_possible_mask);
1515 			state = fail;
1516 			break;
1517 
1518 		case fail:
1519 			BUG();
1520 			break;
1521 		}
1522 	}
1523 
1524 out:
1525 	if (state != cpuset) {
1526 		/*
1527 		 * Don't tell them about moving exiting tasks or
1528 		 * kernel threads (both mm NULL), since they never
1529 		 * leave kernel.
1530 		 */
1531 		if (p->mm && printk_ratelimit()) {
1532 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533 					task_pid_nr(p), p->comm, cpu);
1534 		}
1535 	}
1536 
1537 	return dest_cpu;
1538 }
1539 
1540 /*
1541  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1542  */
1543 static inline
1544 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1545 {
1546 	lockdep_assert_held(&p->pi_lock);
1547 
1548 	if (p->nr_cpus_allowed > 1)
1549 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1550 	else
1551 		cpu = cpumask_any(&p->cpus_allowed);
1552 
1553 	/*
1554 	 * In order not to call set_task_cpu() on a blocking task we need
1555 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1556 	 * CPU.
1557 	 *
1558 	 * Since this is common to all placement strategies, this lives here.
1559 	 *
1560 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1561 	 *   not worry about this generic constraint ]
1562 	 */
1563 	if (unlikely(!is_cpu_allowed(p, cpu)))
1564 		cpu = select_fallback_rq(task_cpu(p), p);
1565 
1566 	return cpu;
1567 }
1568 
1569 static void update_avg(u64 *avg, u64 sample)
1570 {
1571 	s64 diff = sample - *avg;
1572 	*avg += diff >> 3;
1573 }
1574 
1575 void sched_set_stop_task(int cpu, struct task_struct *stop)
1576 {
1577 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1578 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1579 
1580 	if (stop) {
1581 		/*
1582 		 * Make it appear like a SCHED_FIFO task, its something
1583 		 * userspace knows about and won't get confused about.
1584 		 *
1585 		 * Also, it will make PI more or less work without too
1586 		 * much confusion -- but then, stop work should not
1587 		 * rely on PI working anyway.
1588 		 */
1589 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1590 
1591 		stop->sched_class = &stop_sched_class;
1592 	}
1593 
1594 	cpu_rq(cpu)->stop = stop;
1595 
1596 	if (old_stop) {
1597 		/*
1598 		 * Reset it back to a normal scheduling class so that
1599 		 * it can die in pieces.
1600 		 */
1601 		old_stop->sched_class = &rt_sched_class;
1602 	}
1603 }
1604 
1605 #else
1606 
1607 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1608 					 const struct cpumask *new_mask, bool check)
1609 {
1610 	return set_cpus_allowed_ptr(p, new_mask);
1611 }
1612 
1613 #endif /* CONFIG_SMP */
1614 
1615 static void
1616 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1617 {
1618 	struct rq *rq;
1619 
1620 	if (!schedstat_enabled())
1621 		return;
1622 
1623 	rq = this_rq();
1624 
1625 #ifdef CONFIG_SMP
1626 	if (cpu == rq->cpu) {
1627 		__schedstat_inc(rq->ttwu_local);
1628 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1629 	} else {
1630 		struct sched_domain *sd;
1631 
1632 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1633 		rcu_read_lock();
1634 		for_each_domain(rq->cpu, sd) {
1635 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1636 				__schedstat_inc(sd->ttwu_wake_remote);
1637 				break;
1638 			}
1639 		}
1640 		rcu_read_unlock();
1641 	}
1642 
1643 	if (wake_flags & WF_MIGRATED)
1644 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1645 #endif /* CONFIG_SMP */
1646 
1647 	__schedstat_inc(rq->ttwu_count);
1648 	__schedstat_inc(p->se.statistics.nr_wakeups);
1649 
1650 	if (wake_flags & WF_SYNC)
1651 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1652 }
1653 
1654 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1655 {
1656 	activate_task(rq, p, en_flags);
1657 	p->on_rq = TASK_ON_RQ_QUEUED;
1658 
1659 	/* If a worker is waking up, notify the workqueue: */
1660 	if (p->flags & PF_WQ_WORKER)
1661 		wq_worker_waking_up(p, cpu_of(rq));
1662 }
1663 
1664 /*
1665  * Mark the task runnable and perform wakeup-preemption.
1666  */
1667 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1668 			   struct rq_flags *rf)
1669 {
1670 	check_preempt_curr(rq, p, wake_flags);
1671 	p->state = TASK_RUNNING;
1672 	trace_sched_wakeup(p);
1673 
1674 #ifdef CONFIG_SMP
1675 	if (p->sched_class->task_woken) {
1676 		/*
1677 		 * Our task @p is fully woken up and running; so its safe to
1678 		 * drop the rq->lock, hereafter rq is only used for statistics.
1679 		 */
1680 		rq_unpin_lock(rq, rf);
1681 		p->sched_class->task_woken(rq, p);
1682 		rq_repin_lock(rq, rf);
1683 	}
1684 
1685 	if (rq->idle_stamp) {
1686 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1687 		u64 max = 2*rq->max_idle_balance_cost;
1688 
1689 		update_avg(&rq->avg_idle, delta);
1690 
1691 		if (rq->avg_idle > max)
1692 			rq->avg_idle = max;
1693 
1694 		rq->idle_stamp = 0;
1695 	}
1696 #endif
1697 }
1698 
1699 static void
1700 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1701 		 struct rq_flags *rf)
1702 {
1703 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1704 
1705 	lockdep_assert_held(&rq->lock);
1706 
1707 #ifdef CONFIG_SMP
1708 	if (p->sched_contributes_to_load)
1709 		rq->nr_uninterruptible--;
1710 
1711 	if (wake_flags & WF_MIGRATED)
1712 		en_flags |= ENQUEUE_MIGRATED;
1713 #endif
1714 
1715 	ttwu_activate(rq, p, en_flags);
1716 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1717 }
1718 
1719 /*
1720  * Called in case the task @p isn't fully descheduled from its runqueue,
1721  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1722  * since all we need to do is flip p->state to TASK_RUNNING, since
1723  * the task is still ->on_rq.
1724  */
1725 static int ttwu_remote(struct task_struct *p, int wake_flags)
1726 {
1727 	struct rq_flags rf;
1728 	struct rq *rq;
1729 	int ret = 0;
1730 
1731 	rq = __task_rq_lock(p, &rf);
1732 	if (task_on_rq_queued(p)) {
1733 		/* check_preempt_curr() may use rq clock */
1734 		update_rq_clock(rq);
1735 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1736 		ret = 1;
1737 	}
1738 	__task_rq_unlock(rq, &rf);
1739 
1740 	return ret;
1741 }
1742 
1743 #ifdef CONFIG_SMP
1744 void sched_ttwu_pending(void)
1745 {
1746 	struct rq *rq = this_rq();
1747 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1748 	struct task_struct *p, *t;
1749 	struct rq_flags rf;
1750 
1751 	if (!llist)
1752 		return;
1753 
1754 	rq_lock_irqsave(rq, &rf);
1755 	update_rq_clock(rq);
1756 
1757 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1758 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1759 
1760 	rq_unlock_irqrestore(rq, &rf);
1761 }
1762 
1763 void scheduler_ipi(void)
1764 {
1765 	/*
1766 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1767 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1768 	 * this IPI.
1769 	 */
1770 	preempt_fold_need_resched();
1771 
1772 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1773 		return;
1774 
1775 	/*
1776 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1777 	 * traditionally all their work was done from the interrupt return
1778 	 * path. Now that we actually do some work, we need to make sure
1779 	 * we do call them.
1780 	 *
1781 	 * Some archs already do call them, luckily irq_enter/exit nest
1782 	 * properly.
1783 	 *
1784 	 * Arguably we should visit all archs and update all handlers,
1785 	 * however a fair share of IPIs are still resched only so this would
1786 	 * somewhat pessimize the simple resched case.
1787 	 */
1788 	irq_enter();
1789 	sched_ttwu_pending();
1790 
1791 	/*
1792 	 * Check if someone kicked us for doing the nohz idle load balance.
1793 	 */
1794 	if (unlikely(got_nohz_idle_kick())) {
1795 		this_rq()->idle_balance = 1;
1796 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1797 	}
1798 	irq_exit();
1799 }
1800 
1801 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1802 {
1803 	struct rq *rq = cpu_rq(cpu);
1804 
1805 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1806 
1807 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1808 		if (!set_nr_if_polling(rq->idle))
1809 			smp_send_reschedule(cpu);
1810 		else
1811 			trace_sched_wake_idle_without_ipi(cpu);
1812 	}
1813 }
1814 
1815 void wake_up_if_idle(int cpu)
1816 {
1817 	struct rq *rq = cpu_rq(cpu);
1818 	struct rq_flags rf;
1819 
1820 	rcu_read_lock();
1821 
1822 	if (!is_idle_task(rcu_dereference(rq->curr)))
1823 		goto out;
1824 
1825 	if (set_nr_if_polling(rq->idle)) {
1826 		trace_sched_wake_idle_without_ipi(cpu);
1827 	} else {
1828 		rq_lock_irqsave(rq, &rf);
1829 		if (is_idle_task(rq->curr))
1830 			smp_send_reschedule(cpu);
1831 		/* Else CPU is not idle, do nothing here: */
1832 		rq_unlock_irqrestore(rq, &rf);
1833 	}
1834 
1835 out:
1836 	rcu_read_unlock();
1837 }
1838 
1839 bool cpus_share_cache(int this_cpu, int that_cpu)
1840 {
1841 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1842 }
1843 #endif /* CONFIG_SMP */
1844 
1845 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1846 {
1847 	struct rq *rq = cpu_rq(cpu);
1848 	struct rq_flags rf;
1849 
1850 #if defined(CONFIG_SMP)
1851 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1852 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1853 		ttwu_queue_remote(p, cpu, wake_flags);
1854 		return;
1855 	}
1856 #endif
1857 
1858 	rq_lock(rq, &rf);
1859 	update_rq_clock(rq);
1860 	ttwu_do_activate(rq, p, wake_flags, &rf);
1861 	rq_unlock(rq, &rf);
1862 }
1863 
1864 /*
1865  * Notes on Program-Order guarantees on SMP systems.
1866  *
1867  *  MIGRATION
1868  *
1869  * The basic program-order guarantee on SMP systems is that when a task [t]
1870  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1871  * execution on its new CPU [c1].
1872  *
1873  * For migration (of runnable tasks) this is provided by the following means:
1874  *
1875  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1876  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1877  *     rq(c1)->lock (if not at the same time, then in that order).
1878  *  C) LOCK of the rq(c1)->lock scheduling in task
1879  *
1880  * Release/acquire chaining guarantees that B happens after A and C after B.
1881  * Note: the CPU doing B need not be c0 or c1
1882  *
1883  * Example:
1884  *
1885  *   CPU0            CPU1            CPU2
1886  *
1887  *   LOCK rq(0)->lock
1888  *   sched-out X
1889  *   sched-in Y
1890  *   UNLOCK rq(0)->lock
1891  *
1892  *                                   LOCK rq(0)->lock // orders against CPU0
1893  *                                   dequeue X
1894  *                                   UNLOCK rq(0)->lock
1895  *
1896  *                                   LOCK rq(1)->lock
1897  *                                   enqueue X
1898  *                                   UNLOCK rq(1)->lock
1899  *
1900  *                   LOCK rq(1)->lock // orders against CPU2
1901  *                   sched-out Z
1902  *                   sched-in X
1903  *                   UNLOCK rq(1)->lock
1904  *
1905  *
1906  *  BLOCKING -- aka. SLEEP + WAKEUP
1907  *
1908  * For blocking we (obviously) need to provide the same guarantee as for
1909  * migration. However the means are completely different as there is no lock
1910  * chain to provide order. Instead we do:
1911  *
1912  *   1) smp_store_release(X->on_cpu, 0)
1913  *   2) smp_cond_load_acquire(!X->on_cpu)
1914  *
1915  * Example:
1916  *
1917  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1918  *
1919  *   LOCK rq(0)->lock LOCK X->pi_lock
1920  *   dequeue X
1921  *   sched-out X
1922  *   smp_store_release(X->on_cpu, 0);
1923  *
1924  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1925  *                    X->state = WAKING
1926  *                    set_task_cpu(X,2)
1927  *
1928  *                    LOCK rq(2)->lock
1929  *                    enqueue X
1930  *                    X->state = RUNNING
1931  *                    UNLOCK rq(2)->lock
1932  *
1933  *                                          LOCK rq(2)->lock // orders against CPU1
1934  *                                          sched-out Z
1935  *                                          sched-in X
1936  *                                          UNLOCK rq(2)->lock
1937  *
1938  *                    UNLOCK X->pi_lock
1939  *   UNLOCK rq(0)->lock
1940  *
1941  *
1942  * However, for wakeups there is a second guarantee we must provide, namely we
1943  * must ensure that CONDITION=1 done by the caller can not be reordered with
1944  * accesses to the task state; see try_to_wake_up() and set_current_state().
1945  */
1946 
1947 /**
1948  * try_to_wake_up - wake up a thread
1949  * @p: the thread to be awakened
1950  * @state: the mask of task states that can be woken
1951  * @wake_flags: wake modifier flags (WF_*)
1952  *
1953  * If (@state & @p->state) @p->state = TASK_RUNNING.
1954  *
1955  * If the task was not queued/runnable, also place it back on a runqueue.
1956  *
1957  * Atomic against schedule() which would dequeue a task, also see
1958  * set_current_state().
1959  *
1960  * This function executes a full memory barrier before accessing the task
1961  * state; see set_current_state().
1962  *
1963  * Return: %true if @p->state changes (an actual wakeup was done),
1964  *	   %false otherwise.
1965  */
1966 static int
1967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1968 {
1969 	unsigned long flags;
1970 	int cpu, success = 0;
1971 
1972 	/*
1973 	 * If we are going to wake up a thread waiting for CONDITION we
1974 	 * need to ensure that CONDITION=1 done by the caller can not be
1975 	 * reordered with p->state check below. This pairs with mb() in
1976 	 * set_current_state() the waiting thread does.
1977 	 */
1978 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1979 	smp_mb__after_spinlock();
1980 	if (!(p->state & state))
1981 		goto out;
1982 
1983 	trace_sched_waking(p);
1984 
1985 	/* We're going to change ->state: */
1986 	success = 1;
1987 	cpu = task_cpu(p);
1988 
1989 	/*
1990 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1991 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1992 	 * in smp_cond_load_acquire() below.
1993 	 *
1994 	 * sched_ttwu_pending()			try_to_wake_up()
1995 	 *   STORE p->on_rq = 1			  LOAD p->state
1996 	 *   UNLOCK rq->lock
1997 	 *
1998 	 * __schedule() (switch to task 'p')
1999 	 *   LOCK rq->lock			  smp_rmb();
2000 	 *   smp_mb__after_spinlock();
2001 	 *   UNLOCK rq->lock
2002 	 *
2003 	 * [task p]
2004 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2005 	 *
2006 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2007 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2008 	 */
2009 	smp_rmb();
2010 	if (p->on_rq && ttwu_remote(p, wake_flags))
2011 		goto stat;
2012 
2013 #ifdef CONFIG_SMP
2014 	/*
2015 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2016 	 * possible to, falsely, observe p->on_cpu == 0.
2017 	 *
2018 	 * One must be running (->on_cpu == 1) in order to remove oneself
2019 	 * from the runqueue.
2020 	 *
2021 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2022 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2023 	 *   UNLOCK rq->lock
2024 	 *
2025 	 * __schedule() (put 'p' to sleep)
2026 	 *   LOCK rq->lock			  smp_rmb();
2027 	 *   smp_mb__after_spinlock();
2028 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2029 	 *
2030 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2031 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2032 	 */
2033 	smp_rmb();
2034 
2035 	/*
2036 	 * If the owning (remote) CPU is still in the middle of schedule() with
2037 	 * this task as prev, wait until its done referencing the task.
2038 	 *
2039 	 * Pairs with the smp_store_release() in finish_task().
2040 	 *
2041 	 * This ensures that tasks getting woken will be fully ordered against
2042 	 * their previous state and preserve Program Order.
2043 	 */
2044 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2045 
2046 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2047 	p->state = TASK_WAKING;
2048 
2049 	if (p->in_iowait) {
2050 		delayacct_blkio_end(p);
2051 		atomic_dec(&task_rq(p)->nr_iowait);
2052 	}
2053 
2054 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2055 	if (task_cpu(p) != cpu) {
2056 		wake_flags |= WF_MIGRATED;
2057 		psi_ttwu_dequeue(p);
2058 		set_task_cpu(p, cpu);
2059 	}
2060 
2061 #else /* CONFIG_SMP */
2062 
2063 	if (p->in_iowait) {
2064 		delayacct_blkio_end(p);
2065 		atomic_dec(&task_rq(p)->nr_iowait);
2066 	}
2067 
2068 #endif /* CONFIG_SMP */
2069 
2070 	ttwu_queue(p, cpu, wake_flags);
2071 stat:
2072 	ttwu_stat(p, cpu, wake_flags);
2073 out:
2074 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2075 
2076 	return success;
2077 }
2078 
2079 /**
2080  * try_to_wake_up_local - try to wake up a local task with rq lock held
2081  * @p: the thread to be awakened
2082  * @rf: request-queue flags for pinning
2083  *
2084  * Put @p on the run-queue if it's not already there. The caller must
2085  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2086  * the current task.
2087  */
2088 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2089 {
2090 	struct rq *rq = task_rq(p);
2091 
2092 	if (WARN_ON_ONCE(rq != this_rq()) ||
2093 	    WARN_ON_ONCE(p == current))
2094 		return;
2095 
2096 	lockdep_assert_held(&rq->lock);
2097 
2098 	if (!raw_spin_trylock(&p->pi_lock)) {
2099 		/*
2100 		 * This is OK, because current is on_cpu, which avoids it being
2101 		 * picked for load-balance and preemption/IRQs are still
2102 		 * disabled avoiding further scheduler activity on it and we've
2103 		 * not yet picked a replacement task.
2104 		 */
2105 		rq_unlock(rq, rf);
2106 		raw_spin_lock(&p->pi_lock);
2107 		rq_relock(rq, rf);
2108 	}
2109 
2110 	if (!(p->state & TASK_NORMAL))
2111 		goto out;
2112 
2113 	trace_sched_waking(p);
2114 
2115 	if (!task_on_rq_queued(p)) {
2116 		if (p->in_iowait) {
2117 			delayacct_blkio_end(p);
2118 			atomic_dec(&rq->nr_iowait);
2119 		}
2120 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2121 	}
2122 
2123 	ttwu_do_wakeup(rq, p, 0, rf);
2124 	ttwu_stat(p, smp_processor_id(), 0);
2125 out:
2126 	raw_spin_unlock(&p->pi_lock);
2127 }
2128 
2129 /**
2130  * wake_up_process - Wake up a specific process
2131  * @p: The process to be woken up.
2132  *
2133  * Attempt to wake up the nominated process and move it to the set of runnable
2134  * processes.
2135  *
2136  * Return: 1 if the process was woken up, 0 if it was already running.
2137  *
2138  * This function executes a full memory barrier before accessing the task state.
2139  */
2140 int wake_up_process(struct task_struct *p)
2141 {
2142 	return try_to_wake_up(p, TASK_NORMAL, 0);
2143 }
2144 EXPORT_SYMBOL(wake_up_process);
2145 
2146 int wake_up_state(struct task_struct *p, unsigned int state)
2147 {
2148 	return try_to_wake_up(p, state, 0);
2149 }
2150 
2151 /*
2152  * Perform scheduler related setup for a newly forked process p.
2153  * p is forked by current.
2154  *
2155  * __sched_fork() is basic setup used by init_idle() too:
2156  */
2157 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2158 {
2159 	p->on_rq			= 0;
2160 
2161 	p->se.on_rq			= 0;
2162 	p->se.exec_start		= 0;
2163 	p->se.sum_exec_runtime		= 0;
2164 	p->se.prev_sum_exec_runtime	= 0;
2165 	p->se.nr_migrations		= 0;
2166 	p->se.vruntime			= 0;
2167 	INIT_LIST_HEAD(&p->se.group_node);
2168 
2169 #ifdef CONFIG_FAIR_GROUP_SCHED
2170 	p->se.cfs_rq			= NULL;
2171 #endif
2172 
2173 #ifdef CONFIG_SCHEDSTATS
2174 	/* Even if schedstat is disabled, there should not be garbage */
2175 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2176 #endif
2177 
2178 	RB_CLEAR_NODE(&p->dl.rb_node);
2179 	init_dl_task_timer(&p->dl);
2180 	init_dl_inactive_task_timer(&p->dl);
2181 	__dl_clear_params(p);
2182 
2183 	INIT_LIST_HEAD(&p->rt.run_list);
2184 	p->rt.timeout		= 0;
2185 	p->rt.time_slice	= sched_rr_timeslice;
2186 	p->rt.on_rq		= 0;
2187 	p->rt.on_list		= 0;
2188 
2189 #ifdef CONFIG_PREEMPT_NOTIFIERS
2190 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2191 #endif
2192 
2193 	init_numa_balancing(clone_flags, p);
2194 }
2195 
2196 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2197 
2198 #ifdef CONFIG_NUMA_BALANCING
2199 
2200 void set_numabalancing_state(bool enabled)
2201 {
2202 	if (enabled)
2203 		static_branch_enable(&sched_numa_balancing);
2204 	else
2205 		static_branch_disable(&sched_numa_balancing);
2206 }
2207 
2208 #ifdef CONFIG_PROC_SYSCTL
2209 int sysctl_numa_balancing(struct ctl_table *table, int write,
2210 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2211 {
2212 	struct ctl_table t;
2213 	int err;
2214 	int state = static_branch_likely(&sched_numa_balancing);
2215 
2216 	if (write && !capable(CAP_SYS_ADMIN))
2217 		return -EPERM;
2218 
2219 	t = *table;
2220 	t.data = &state;
2221 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2222 	if (err < 0)
2223 		return err;
2224 	if (write)
2225 		set_numabalancing_state(state);
2226 	return err;
2227 }
2228 #endif
2229 #endif
2230 
2231 #ifdef CONFIG_SCHEDSTATS
2232 
2233 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2234 static bool __initdata __sched_schedstats = false;
2235 
2236 static void set_schedstats(bool enabled)
2237 {
2238 	if (enabled)
2239 		static_branch_enable(&sched_schedstats);
2240 	else
2241 		static_branch_disable(&sched_schedstats);
2242 }
2243 
2244 void force_schedstat_enabled(void)
2245 {
2246 	if (!schedstat_enabled()) {
2247 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2248 		static_branch_enable(&sched_schedstats);
2249 	}
2250 }
2251 
2252 static int __init setup_schedstats(char *str)
2253 {
2254 	int ret = 0;
2255 	if (!str)
2256 		goto out;
2257 
2258 	/*
2259 	 * This code is called before jump labels have been set up, so we can't
2260 	 * change the static branch directly just yet.  Instead set a temporary
2261 	 * variable so init_schedstats() can do it later.
2262 	 */
2263 	if (!strcmp(str, "enable")) {
2264 		__sched_schedstats = true;
2265 		ret = 1;
2266 	} else if (!strcmp(str, "disable")) {
2267 		__sched_schedstats = false;
2268 		ret = 1;
2269 	}
2270 out:
2271 	if (!ret)
2272 		pr_warn("Unable to parse schedstats=\n");
2273 
2274 	return ret;
2275 }
2276 __setup("schedstats=", setup_schedstats);
2277 
2278 static void __init init_schedstats(void)
2279 {
2280 	set_schedstats(__sched_schedstats);
2281 }
2282 
2283 #ifdef CONFIG_PROC_SYSCTL
2284 int sysctl_schedstats(struct ctl_table *table, int write,
2285 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2286 {
2287 	struct ctl_table t;
2288 	int err;
2289 	int state = static_branch_likely(&sched_schedstats);
2290 
2291 	if (write && !capable(CAP_SYS_ADMIN))
2292 		return -EPERM;
2293 
2294 	t = *table;
2295 	t.data = &state;
2296 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2297 	if (err < 0)
2298 		return err;
2299 	if (write)
2300 		set_schedstats(state);
2301 	return err;
2302 }
2303 #endif /* CONFIG_PROC_SYSCTL */
2304 #else  /* !CONFIG_SCHEDSTATS */
2305 static inline void init_schedstats(void) {}
2306 #endif /* CONFIG_SCHEDSTATS */
2307 
2308 /*
2309  * fork()/clone()-time setup:
2310  */
2311 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2312 {
2313 	unsigned long flags;
2314 
2315 	__sched_fork(clone_flags, p);
2316 	/*
2317 	 * We mark the process as NEW here. This guarantees that
2318 	 * nobody will actually run it, and a signal or other external
2319 	 * event cannot wake it up and insert it on the runqueue either.
2320 	 */
2321 	p->state = TASK_NEW;
2322 
2323 	/*
2324 	 * Make sure we do not leak PI boosting priority to the child.
2325 	 */
2326 	p->prio = current->normal_prio;
2327 
2328 	/*
2329 	 * Revert to default priority/policy on fork if requested.
2330 	 */
2331 	if (unlikely(p->sched_reset_on_fork)) {
2332 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2333 			p->policy = SCHED_NORMAL;
2334 			p->static_prio = NICE_TO_PRIO(0);
2335 			p->rt_priority = 0;
2336 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2337 			p->static_prio = NICE_TO_PRIO(0);
2338 
2339 		p->prio = p->normal_prio = __normal_prio(p);
2340 		set_load_weight(p, false);
2341 
2342 		/*
2343 		 * We don't need the reset flag anymore after the fork. It has
2344 		 * fulfilled its duty:
2345 		 */
2346 		p->sched_reset_on_fork = 0;
2347 	}
2348 
2349 	if (dl_prio(p->prio))
2350 		return -EAGAIN;
2351 	else if (rt_prio(p->prio))
2352 		p->sched_class = &rt_sched_class;
2353 	else
2354 		p->sched_class = &fair_sched_class;
2355 
2356 	init_entity_runnable_average(&p->se);
2357 
2358 	/*
2359 	 * The child is not yet in the pid-hash so no cgroup attach races,
2360 	 * and the cgroup is pinned to this child due to cgroup_fork()
2361 	 * is ran before sched_fork().
2362 	 *
2363 	 * Silence PROVE_RCU.
2364 	 */
2365 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2366 	/*
2367 	 * We're setting the CPU for the first time, we don't migrate,
2368 	 * so use __set_task_cpu().
2369 	 */
2370 	__set_task_cpu(p, smp_processor_id());
2371 	if (p->sched_class->task_fork)
2372 		p->sched_class->task_fork(p);
2373 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2374 
2375 #ifdef CONFIG_SCHED_INFO
2376 	if (likely(sched_info_on()))
2377 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2378 #endif
2379 #if defined(CONFIG_SMP)
2380 	p->on_cpu = 0;
2381 #endif
2382 	init_task_preempt_count(p);
2383 #ifdef CONFIG_SMP
2384 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2385 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2386 #endif
2387 	return 0;
2388 }
2389 
2390 unsigned long to_ratio(u64 period, u64 runtime)
2391 {
2392 	if (runtime == RUNTIME_INF)
2393 		return BW_UNIT;
2394 
2395 	/*
2396 	 * Doing this here saves a lot of checks in all
2397 	 * the calling paths, and returning zero seems
2398 	 * safe for them anyway.
2399 	 */
2400 	if (period == 0)
2401 		return 0;
2402 
2403 	return div64_u64(runtime << BW_SHIFT, period);
2404 }
2405 
2406 /*
2407  * wake_up_new_task - wake up a newly created task for the first time.
2408  *
2409  * This function will do some initial scheduler statistics housekeeping
2410  * that must be done for every newly created context, then puts the task
2411  * on the runqueue and wakes it.
2412  */
2413 void wake_up_new_task(struct task_struct *p)
2414 {
2415 	struct rq_flags rf;
2416 	struct rq *rq;
2417 
2418 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2419 	p->state = TASK_RUNNING;
2420 #ifdef CONFIG_SMP
2421 	/*
2422 	 * Fork balancing, do it here and not earlier because:
2423 	 *  - cpus_allowed can change in the fork path
2424 	 *  - any previously selected CPU might disappear through hotplug
2425 	 *
2426 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2427 	 * as we're not fully set-up yet.
2428 	 */
2429 	p->recent_used_cpu = task_cpu(p);
2430 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2431 #endif
2432 	rq = __task_rq_lock(p, &rf);
2433 	update_rq_clock(rq);
2434 	post_init_entity_util_avg(&p->se);
2435 
2436 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2437 	p->on_rq = TASK_ON_RQ_QUEUED;
2438 	trace_sched_wakeup_new(p);
2439 	check_preempt_curr(rq, p, WF_FORK);
2440 #ifdef CONFIG_SMP
2441 	if (p->sched_class->task_woken) {
2442 		/*
2443 		 * Nothing relies on rq->lock after this, so its fine to
2444 		 * drop it.
2445 		 */
2446 		rq_unpin_lock(rq, &rf);
2447 		p->sched_class->task_woken(rq, p);
2448 		rq_repin_lock(rq, &rf);
2449 	}
2450 #endif
2451 	task_rq_unlock(rq, p, &rf);
2452 }
2453 
2454 #ifdef CONFIG_PREEMPT_NOTIFIERS
2455 
2456 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2457 
2458 void preempt_notifier_inc(void)
2459 {
2460 	static_branch_inc(&preempt_notifier_key);
2461 }
2462 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2463 
2464 void preempt_notifier_dec(void)
2465 {
2466 	static_branch_dec(&preempt_notifier_key);
2467 }
2468 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2469 
2470 /**
2471  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2472  * @notifier: notifier struct to register
2473  */
2474 void preempt_notifier_register(struct preempt_notifier *notifier)
2475 {
2476 	if (!static_branch_unlikely(&preempt_notifier_key))
2477 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2478 
2479 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2480 }
2481 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2482 
2483 /**
2484  * preempt_notifier_unregister - no longer interested in preemption notifications
2485  * @notifier: notifier struct to unregister
2486  *
2487  * This is *not* safe to call from within a preemption notifier.
2488  */
2489 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2490 {
2491 	hlist_del(&notifier->link);
2492 }
2493 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2494 
2495 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2496 {
2497 	struct preempt_notifier *notifier;
2498 
2499 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2500 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2501 }
2502 
2503 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2504 {
2505 	if (static_branch_unlikely(&preempt_notifier_key))
2506 		__fire_sched_in_preempt_notifiers(curr);
2507 }
2508 
2509 static void
2510 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2511 				   struct task_struct *next)
2512 {
2513 	struct preempt_notifier *notifier;
2514 
2515 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2516 		notifier->ops->sched_out(notifier, next);
2517 }
2518 
2519 static __always_inline void
2520 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 				 struct task_struct *next)
2522 {
2523 	if (static_branch_unlikely(&preempt_notifier_key))
2524 		__fire_sched_out_preempt_notifiers(curr, next);
2525 }
2526 
2527 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2528 
2529 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2530 {
2531 }
2532 
2533 static inline void
2534 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2535 				 struct task_struct *next)
2536 {
2537 }
2538 
2539 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2540 
2541 static inline void prepare_task(struct task_struct *next)
2542 {
2543 #ifdef CONFIG_SMP
2544 	/*
2545 	 * Claim the task as running, we do this before switching to it
2546 	 * such that any running task will have this set.
2547 	 */
2548 	next->on_cpu = 1;
2549 #endif
2550 }
2551 
2552 static inline void finish_task(struct task_struct *prev)
2553 {
2554 #ifdef CONFIG_SMP
2555 	/*
2556 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2557 	 * We must ensure this doesn't happen until the switch is completely
2558 	 * finished.
2559 	 *
2560 	 * In particular, the load of prev->state in finish_task_switch() must
2561 	 * happen before this.
2562 	 *
2563 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2564 	 */
2565 	smp_store_release(&prev->on_cpu, 0);
2566 #endif
2567 }
2568 
2569 static inline void
2570 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2571 {
2572 	/*
2573 	 * Since the runqueue lock will be released by the next
2574 	 * task (which is an invalid locking op but in the case
2575 	 * of the scheduler it's an obvious special-case), so we
2576 	 * do an early lockdep release here:
2577 	 */
2578 	rq_unpin_lock(rq, rf);
2579 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2580 #ifdef CONFIG_DEBUG_SPINLOCK
2581 	/* this is a valid case when another task releases the spinlock */
2582 	rq->lock.owner = next;
2583 #endif
2584 }
2585 
2586 static inline void finish_lock_switch(struct rq *rq)
2587 {
2588 	/*
2589 	 * If we are tracking spinlock dependencies then we have to
2590 	 * fix up the runqueue lock - which gets 'carried over' from
2591 	 * prev into current:
2592 	 */
2593 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2594 	raw_spin_unlock_irq(&rq->lock);
2595 }
2596 
2597 /*
2598  * NOP if the arch has not defined these:
2599  */
2600 
2601 #ifndef prepare_arch_switch
2602 # define prepare_arch_switch(next)	do { } while (0)
2603 #endif
2604 
2605 #ifndef finish_arch_post_lock_switch
2606 # define finish_arch_post_lock_switch()	do { } while (0)
2607 #endif
2608 
2609 /**
2610  * prepare_task_switch - prepare to switch tasks
2611  * @rq: the runqueue preparing to switch
2612  * @prev: the current task that is being switched out
2613  * @next: the task we are going to switch to.
2614  *
2615  * This is called with the rq lock held and interrupts off. It must
2616  * be paired with a subsequent finish_task_switch after the context
2617  * switch.
2618  *
2619  * prepare_task_switch sets up locking and calls architecture specific
2620  * hooks.
2621  */
2622 static inline void
2623 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2624 		    struct task_struct *next)
2625 {
2626 	kcov_prepare_switch(prev);
2627 	sched_info_switch(rq, prev, next);
2628 	perf_event_task_sched_out(prev, next);
2629 	rseq_preempt(prev);
2630 	fire_sched_out_preempt_notifiers(prev, next);
2631 	prepare_task(next);
2632 	prepare_arch_switch(next);
2633 }
2634 
2635 /**
2636  * finish_task_switch - clean up after a task-switch
2637  * @prev: the thread we just switched away from.
2638  *
2639  * finish_task_switch must be called after the context switch, paired
2640  * with a prepare_task_switch call before the context switch.
2641  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2642  * and do any other architecture-specific cleanup actions.
2643  *
2644  * Note that we may have delayed dropping an mm in context_switch(). If
2645  * so, we finish that here outside of the runqueue lock. (Doing it
2646  * with the lock held can cause deadlocks; see schedule() for
2647  * details.)
2648  *
2649  * The context switch have flipped the stack from under us and restored the
2650  * local variables which were saved when this task called schedule() in the
2651  * past. prev == current is still correct but we need to recalculate this_rq
2652  * because prev may have moved to another CPU.
2653  */
2654 static struct rq *finish_task_switch(struct task_struct *prev)
2655 	__releases(rq->lock)
2656 {
2657 	struct rq *rq = this_rq();
2658 	struct mm_struct *mm = rq->prev_mm;
2659 	long prev_state;
2660 
2661 	/*
2662 	 * The previous task will have left us with a preempt_count of 2
2663 	 * because it left us after:
2664 	 *
2665 	 *	schedule()
2666 	 *	  preempt_disable();			// 1
2667 	 *	  __schedule()
2668 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2669 	 *
2670 	 * Also, see FORK_PREEMPT_COUNT.
2671 	 */
2672 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2673 		      "corrupted preempt_count: %s/%d/0x%x\n",
2674 		      current->comm, current->pid, preempt_count()))
2675 		preempt_count_set(FORK_PREEMPT_COUNT);
2676 
2677 	rq->prev_mm = NULL;
2678 
2679 	/*
2680 	 * A task struct has one reference for the use as "current".
2681 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2682 	 * schedule one last time. The schedule call will never return, and
2683 	 * the scheduled task must drop that reference.
2684 	 *
2685 	 * We must observe prev->state before clearing prev->on_cpu (in
2686 	 * finish_task), otherwise a concurrent wakeup can get prev
2687 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2688 	 * transition, resulting in a double drop.
2689 	 */
2690 	prev_state = prev->state;
2691 	vtime_task_switch(prev);
2692 	perf_event_task_sched_in(prev, current);
2693 	finish_task(prev);
2694 	finish_lock_switch(rq);
2695 	finish_arch_post_lock_switch();
2696 	kcov_finish_switch(current);
2697 
2698 	fire_sched_in_preempt_notifiers(current);
2699 	/*
2700 	 * When switching through a kernel thread, the loop in
2701 	 * membarrier_{private,global}_expedited() may have observed that
2702 	 * kernel thread and not issued an IPI. It is therefore possible to
2703 	 * schedule between user->kernel->user threads without passing though
2704 	 * switch_mm(). Membarrier requires a barrier after storing to
2705 	 * rq->curr, before returning to userspace, so provide them here:
2706 	 *
2707 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2708 	 *   provided by mmdrop(),
2709 	 * - a sync_core for SYNC_CORE.
2710 	 */
2711 	if (mm) {
2712 		membarrier_mm_sync_core_before_usermode(mm);
2713 		mmdrop(mm);
2714 	}
2715 	if (unlikely(prev_state == TASK_DEAD)) {
2716 		if (prev->sched_class->task_dead)
2717 			prev->sched_class->task_dead(prev);
2718 
2719 		/*
2720 		 * Remove function-return probe instances associated with this
2721 		 * task and put them back on the free list.
2722 		 */
2723 		kprobe_flush_task(prev);
2724 
2725 		/* Task is done with its stack. */
2726 		put_task_stack(prev);
2727 
2728 		put_task_struct(prev);
2729 	}
2730 
2731 	tick_nohz_task_switch();
2732 	return rq;
2733 }
2734 
2735 #ifdef CONFIG_SMP
2736 
2737 /* rq->lock is NOT held, but preemption is disabled */
2738 static void __balance_callback(struct rq *rq)
2739 {
2740 	struct callback_head *head, *next;
2741 	void (*func)(struct rq *rq);
2742 	unsigned long flags;
2743 
2744 	raw_spin_lock_irqsave(&rq->lock, flags);
2745 	head = rq->balance_callback;
2746 	rq->balance_callback = NULL;
2747 	while (head) {
2748 		func = (void (*)(struct rq *))head->func;
2749 		next = head->next;
2750 		head->next = NULL;
2751 		head = next;
2752 
2753 		func(rq);
2754 	}
2755 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2756 }
2757 
2758 static inline void balance_callback(struct rq *rq)
2759 {
2760 	if (unlikely(rq->balance_callback))
2761 		__balance_callback(rq);
2762 }
2763 
2764 #else
2765 
2766 static inline void balance_callback(struct rq *rq)
2767 {
2768 }
2769 
2770 #endif
2771 
2772 /**
2773  * schedule_tail - first thing a freshly forked thread must call.
2774  * @prev: the thread we just switched away from.
2775  */
2776 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2777 	__releases(rq->lock)
2778 {
2779 	struct rq *rq;
2780 
2781 	/*
2782 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2783 	 * finish_task_switch() for details.
2784 	 *
2785 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2786 	 * and the preempt_enable() will end up enabling preemption (on
2787 	 * PREEMPT_COUNT kernels).
2788 	 */
2789 
2790 	rq = finish_task_switch(prev);
2791 	balance_callback(rq);
2792 	preempt_enable();
2793 
2794 	if (current->set_child_tid)
2795 		put_user(task_pid_vnr(current), current->set_child_tid);
2796 
2797 	calculate_sigpending();
2798 }
2799 
2800 /*
2801  * context_switch - switch to the new MM and the new thread's register state.
2802  */
2803 static __always_inline struct rq *
2804 context_switch(struct rq *rq, struct task_struct *prev,
2805 	       struct task_struct *next, struct rq_flags *rf)
2806 {
2807 	struct mm_struct *mm, *oldmm;
2808 
2809 	prepare_task_switch(rq, prev, next);
2810 
2811 	mm = next->mm;
2812 	oldmm = prev->active_mm;
2813 	/*
2814 	 * For paravirt, this is coupled with an exit in switch_to to
2815 	 * combine the page table reload and the switch backend into
2816 	 * one hypercall.
2817 	 */
2818 	arch_start_context_switch(prev);
2819 
2820 	/*
2821 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2822 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2823 	 * Both of these contain the full memory barrier required by
2824 	 * membarrier after storing to rq->curr, before returning to
2825 	 * user-space.
2826 	 */
2827 	if (!mm) {
2828 		next->active_mm = oldmm;
2829 		mmgrab(oldmm);
2830 		enter_lazy_tlb(oldmm, next);
2831 	} else
2832 		switch_mm_irqs_off(oldmm, mm, next);
2833 
2834 	if (!prev->mm) {
2835 		prev->active_mm = NULL;
2836 		rq->prev_mm = oldmm;
2837 	}
2838 
2839 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2840 
2841 	prepare_lock_switch(rq, next, rf);
2842 
2843 	/* Here we just switch the register state and the stack. */
2844 	switch_to(prev, next, prev);
2845 	barrier();
2846 
2847 	return finish_task_switch(prev);
2848 }
2849 
2850 /*
2851  * nr_running and nr_context_switches:
2852  *
2853  * externally visible scheduler statistics: current number of runnable
2854  * threads, total number of context switches performed since bootup.
2855  */
2856 unsigned long nr_running(void)
2857 {
2858 	unsigned long i, sum = 0;
2859 
2860 	for_each_online_cpu(i)
2861 		sum += cpu_rq(i)->nr_running;
2862 
2863 	return sum;
2864 }
2865 
2866 /*
2867  * Check if only the current task is running on the CPU.
2868  *
2869  * Caution: this function does not check that the caller has disabled
2870  * preemption, thus the result might have a time-of-check-to-time-of-use
2871  * race.  The caller is responsible to use it correctly, for example:
2872  *
2873  * - from a non-preemptible section (of course)
2874  *
2875  * - from a thread that is bound to a single CPU
2876  *
2877  * - in a loop with very short iterations (e.g. a polling loop)
2878  */
2879 bool single_task_running(void)
2880 {
2881 	return raw_rq()->nr_running == 1;
2882 }
2883 EXPORT_SYMBOL(single_task_running);
2884 
2885 unsigned long long nr_context_switches(void)
2886 {
2887 	int i;
2888 	unsigned long long sum = 0;
2889 
2890 	for_each_possible_cpu(i)
2891 		sum += cpu_rq(i)->nr_switches;
2892 
2893 	return sum;
2894 }
2895 
2896 /*
2897  * Consumers of these two interfaces, like for example the cpuidle menu
2898  * governor, are using nonsensical data. Preferring shallow idle state selection
2899  * for a CPU that has IO-wait which might not even end up running the task when
2900  * it does become runnable.
2901  */
2902 
2903 unsigned long nr_iowait_cpu(int cpu)
2904 {
2905 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
2906 }
2907 
2908 /*
2909  * IO-wait accounting, and how its mostly bollocks (on SMP).
2910  *
2911  * The idea behind IO-wait account is to account the idle time that we could
2912  * have spend running if it were not for IO. That is, if we were to improve the
2913  * storage performance, we'd have a proportional reduction in IO-wait time.
2914  *
2915  * This all works nicely on UP, where, when a task blocks on IO, we account
2916  * idle time as IO-wait, because if the storage were faster, it could've been
2917  * running and we'd not be idle.
2918  *
2919  * This has been extended to SMP, by doing the same for each CPU. This however
2920  * is broken.
2921  *
2922  * Imagine for instance the case where two tasks block on one CPU, only the one
2923  * CPU will have IO-wait accounted, while the other has regular idle. Even
2924  * though, if the storage were faster, both could've ran at the same time,
2925  * utilising both CPUs.
2926  *
2927  * This means, that when looking globally, the current IO-wait accounting on
2928  * SMP is a lower bound, by reason of under accounting.
2929  *
2930  * Worse, since the numbers are provided per CPU, they are sometimes
2931  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2932  * associated with any one particular CPU, it can wake to another CPU than it
2933  * blocked on. This means the per CPU IO-wait number is meaningless.
2934  *
2935  * Task CPU affinities can make all that even more 'interesting'.
2936  */
2937 
2938 unsigned long nr_iowait(void)
2939 {
2940 	unsigned long i, sum = 0;
2941 
2942 	for_each_possible_cpu(i)
2943 		sum += nr_iowait_cpu(i);
2944 
2945 	return sum;
2946 }
2947 
2948 #ifdef CONFIG_SMP
2949 
2950 /*
2951  * sched_exec - execve() is a valuable balancing opportunity, because at
2952  * this point the task has the smallest effective memory and cache footprint.
2953  */
2954 void sched_exec(void)
2955 {
2956 	struct task_struct *p = current;
2957 	unsigned long flags;
2958 	int dest_cpu;
2959 
2960 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2961 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2962 	if (dest_cpu == smp_processor_id())
2963 		goto unlock;
2964 
2965 	if (likely(cpu_active(dest_cpu))) {
2966 		struct migration_arg arg = { p, dest_cpu };
2967 
2968 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2969 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2970 		return;
2971 	}
2972 unlock:
2973 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2974 }
2975 
2976 #endif
2977 
2978 DEFINE_PER_CPU(struct kernel_stat, kstat);
2979 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2980 
2981 EXPORT_PER_CPU_SYMBOL(kstat);
2982 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2983 
2984 /*
2985  * The function fair_sched_class.update_curr accesses the struct curr
2986  * and its field curr->exec_start; when called from task_sched_runtime(),
2987  * we observe a high rate of cache misses in practice.
2988  * Prefetching this data results in improved performance.
2989  */
2990 static inline void prefetch_curr_exec_start(struct task_struct *p)
2991 {
2992 #ifdef CONFIG_FAIR_GROUP_SCHED
2993 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2994 #else
2995 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2996 #endif
2997 	prefetch(curr);
2998 	prefetch(&curr->exec_start);
2999 }
3000 
3001 /*
3002  * Return accounted runtime for the task.
3003  * In case the task is currently running, return the runtime plus current's
3004  * pending runtime that have not been accounted yet.
3005  */
3006 unsigned long long task_sched_runtime(struct task_struct *p)
3007 {
3008 	struct rq_flags rf;
3009 	struct rq *rq;
3010 	u64 ns;
3011 
3012 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3013 	/*
3014 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3015 	 * So we have a optimization chance when the task's delta_exec is 0.
3016 	 * Reading ->on_cpu is racy, but this is ok.
3017 	 *
3018 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3019 	 * If we race with it entering CPU, unaccounted time is 0. This is
3020 	 * indistinguishable from the read occurring a few cycles earlier.
3021 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3022 	 * been accounted, so we're correct here as well.
3023 	 */
3024 	if (!p->on_cpu || !task_on_rq_queued(p))
3025 		return p->se.sum_exec_runtime;
3026 #endif
3027 
3028 	rq = task_rq_lock(p, &rf);
3029 	/*
3030 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3031 	 * project cycles that may never be accounted to this
3032 	 * thread, breaking clock_gettime().
3033 	 */
3034 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3035 		prefetch_curr_exec_start(p);
3036 		update_rq_clock(rq);
3037 		p->sched_class->update_curr(rq);
3038 	}
3039 	ns = p->se.sum_exec_runtime;
3040 	task_rq_unlock(rq, p, &rf);
3041 
3042 	return ns;
3043 }
3044 
3045 /*
3046  * This function gets called by the timer code, with HZ frequency.
3047  * We call it with interrupts disabled.
3048  */
3049 void scheduler_tick(void)
3050 {
3051 	int cpu = smp_processor_id();
3052 	struct rq *rq = cpu_rq(cpu);
3053 	struct task_struct *curr = rq->curr;
3054 	struct rq_flags rf;
3055 
3056 	sched_clock_tick();
3057 
3058 	rq_lock(rq, &rf);
3059 
3060 	update_rq_clock(rq);
3061 	curr->sched_class->task_tick(rq, curr, 0);
3062 	cpu_load_update_active(rq);
3063 	calc_global_load_tick(rq);
3064 	psi_task_tick(rq);
3065 
3066 	rq_unlock(rq, &rf);
3067 
3068 	perf_event_task_tick();
3069 
3070 #ifdef CONFIG_SMP
3071 	rq->idle_balance = idle_cpu(cpu);
3072 	trigger_load_balance(rq);
3073 #endif
3074 }
3075 
3076 #ifdef CONFIG_NO_HZ_FULL
3077 
3078 struct tick_work {
3079 	int			cpu;
3080 	struct delayed_work	work;
3081 };
3082 
3083 static struct tick_work __percpu *tick_work_cpu;
3084 
3085 static void sched_tick_remote(struct work_struct *work)
3086 {
3087 	struct delayed_work *dwork = to_delayed_work(work);
3088 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3089 	int cpu = twork->cpu;
3090 	struct rq *rq = cpu_rq(cpu);
3091 	struct task_struct *curr;
3092 	struct rq_flags rf;
3093 	u64 delta;
3094 
3095 	/*
3096 	 * Handle the tick only if it appears the remote CPU is running in full
3097 	 * dynticks mode. The check is racy by nature, but missing a tick or
3098 	 * having one too much is no big deal because the scheduler tick updates
3099 	 * statistics and checks timeslices in a time-independent way, regardless
3100 	 * of when exactly it is running.
3101 	 */
3102 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3103 		goto out_requeue;
3104 
3105 	rq_lock_irq(rq, &rf);
3106 	curr = rq->curr;
3107 	if (is_idle_task(curr))
3108 		goto out_unlock;
3109 
3110 	update_rq_clock(rq);
3111 	delta = rq_clock_task(rq) - curr->se.exec_start;
3112 
3113 	/*
3114 	 * Make sure the next tick runs within a reasonable
3115 	 * amount of time.
3116 	 */
3117 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3118 	curr->sched_class->task_tick(rq, curr, 0);
3119 
3120 out_unlock:
3121 	rq_unlock_irq(rq, &rf);
3122 
3123 out_requeue:
3124 	/*
3125 	 * Run the remote tick once per second (1Hz). This arbitrary
3126 	 * frequency is large enough to avoid overload but short enough
3127 	 * to keep scheduler internal stats reasonably up to date.
3128 	 */
3129 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3130 }
3131 
3132 static void sched_tick_start(int cpu)
3133 {
3134 	struct tick_work *twork;
3135 
3136 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3137 		return;
3138 
3139 	WARN_ON_ONCE(!tick_work_cpu);
3140 
3141 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3142 	twork->cpu = cpu;
3143 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3144 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3145 }
3146 
3147 #ifdef CONFIG_HOTPLUG_CPU
3148 static void sched_tick_stop(int cpu)
3149 {
3150 	struct tick_work *twork;
3151 
3152 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3153 		return;
3154 
3155 	WARN_ON_ONCE(!tick_work_cpu);
3156 
3157 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3158 	cancel_delayed_work_sync(&twork->work);
3159 }
3160 #endif /* CONFIG_HOTPLUG_CPU */
3161 
3162 int __init sched_tick_offload_init(void)
3163 {
3164 	tick_work_cpu = alloc_percpu(struct tick_work);
3165 	BUG_ON(!tick_work_cpu);
3166 
3167 	return 0;
3168 }
3169 
3170 #else /* !CONFIG_NO_HZ_FULL */
3171 static inline void sched_tick_start(int cpu) { }
3172 static inline void sched_tick_stop(int cpu) { }
3173 #endif
3174 
3175 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3176 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3177 /*
3178  * If the value passed in is equal to the current preempt count
3179  * then we just disabled preemption. Start timing the latency.
3180  */
3181 static inline void preempt_latency_start(int val)
3182 {
3183 	if (preempt_count() == val) {
3184 		unsigned long ip = get_lock_parent_ip();
3185 #ifdef CONFIG_DEBUG_PREEMPT
3186 		current->preempt_disable_ip = ip;
3187 #endif
3188 		trace_preempt_off(CALLER_ADDR0, ip);
3189 	}
3190 }
3191 
3192 void preempt_count_add(int val)
3193 {
3194 #ifdef CONFIG_DEBUG_PREEMPT
3195 	/*
3196 	 * Underflow?
3197 	 */
3198 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3199 		return;
3200 #endif
3201 	__preempt_count_add(val);
3202 #ifdef CONFIG_DEBUG_PREEMPT
3203 	/*
3204 	 * Spinlock count overflowing soon?
3205 	 */
3206 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3207 				PREEMPT_MASK - 10);
3208 #endif
3209 	preempt_latency_start(val);
3210 }
3211 EXPORT_SYMBOL(preempt_count_add);
3212 NOKPROBE_SYMBOL(preempt_count_add);
3213 
3214 /*
3215  * If the value passed in equals to the current preempt count
3216  * then we just enabled preemption. Stop timing the latency.
3217  */
3218 static inline void preempt_latency_stop(int val)
3219 {
3220 	if (preempt_count() == val)
3221 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3222 }
3223 
3224 void preempt_count_sub(int val)
3225 {
3226 #ifdef CONFIG_DEBUG_PREEMPT
3227 	/*
3228 	 * Underflow?
3229 	 */
3230 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3231 		return;
3232 	/*
3233 	 * Is the spinlock portion underflowing?
3234 	 */
3235 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3236 			!(preempt_count() & PREEMPT_MASK)))
3237 		return;
3238 #endif
3239 
3240 	preempt_latency_stop(val);
3241 	__preempt_count_sub(val);
3242 }
3243 EXPORT_SYMBOL(preempt_count_sub);
3244 NOKPROBE_SYMBOL(preempt_count_sub);
3245 
3246 #else
3247 static inline void preempt_latency_start(int val) { }
3248 static inline void preempt_latency_stop(int val) { }
3249 #endif
3250 
3251 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3252 {
3253 #ifdef CONFIG_DEBUG_PREEMPT
3254 	return p->preempt_disable_ip;
3255 #else
3256 	return 0;
3257 #endif
3258 }
3259 
3260 /*
3261  * Print scheduling while atomic bug:
3262  */
3263 static noinline void __schedule_bug(struct task_struct *prev)
3264 {
3265 	/* Save this before calling printk(), since that will clobber it */
3266 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3267 
3268 	if (oops_in_progress)
3269 		return;
3270 
3271 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3272 		prev->comm, prev->pid, preempt_count());
3273 
3274 	debug_show_held_locks(prev);
3275 	print_modules();
3276 	if (irqs_disabled())
3277 		print_irqtrace_events(prev);
3278 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3279 	    && in_atomic_preempt_off()) {
3280 		pr_err("Preemption disabled at:");
3281 		print_ip_sym(preempt_disable_ip);
3282 		pr_cont("\n");
3283 	}
3284 	if (panic_on_warn)
3285 		panic("scheduling while atomic\n");
3286 
3287 	dump_stack();
3288 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3289 }
3290 
3291 /*
3292  * Various schedule()-time debugging checks and statistics:
3293  */
3294 static inline void schedule_debug(struct task_struct *prev)
3295 {
3296 #ifdef CONFIG_SCHED_STACK_END_CHECK
3297 	if (task_stack_end_corrupted(prev))
3298 		panic("corrupted stack end detected inside scheduler\n");
3299 #endif
3300 
3301 	if (unlikely(in_atomic_preempt_off())) {
3302 		__schedule_bug(prev);
3303 		preempt_count_set(PREEMPT_DISABLED);
3304 	}
3305 	rcu_sleep_check();
3306 
3307 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3308 
3309 	schedstat_inc(this_rq()->sched_count);
3310 }
3311 
3312 /*
3313  * Pick up the highest-prio task:
3314  */
3315 static inline struct task_struct *
3316 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3317 {
3318 	const struct sched_class *class;
3319 	struct task_struct *p;
3320 
3321 	/*
3322 	 * Optimization: we know that if all tasks are in the fair class we can
3323 	 * call that function directly, but only if the @prev task wasn't of a
3324 	 * higher scheduling class, because otherwise those loose the
3325 	 * opportunity to pull in more work from other CPUs.
3326 	 */
3327 	if (likely((prev->sched_class == &idle_sched_class ||
3328 		    prev->sched_class == &fair_sched_class) &&
3329 		   rq->nr_running == rq->cfs.h_nr_running)) {
3330 
3331 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3332 		if (unlikely(p == RETRY_TASK))
3333 			goto again;
3334 
3335 		/* Assumes fair_sched_class->next == idle_sched_class */
3336 		if (unlikely(!p))
3337 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3338 
3339 		return p;
3340 	}
3341 
3342 again:
3343 	for_each_class(class) {
3344 		p = class->pick_next_task(rq, prev, rf);
3345 		if (p) {
3346 			if (unlikely(p == RETRY_TASK))
3347 				goto again;
3348 			return p;
3349 		}
3350 	}
3351 
3352 	/* The idle class should always have a runnable task: */
3353 	BUG();
3354 }
3355 
3356 /*
3357  * __schedule() is the main scheduler function.
3358  *
3359  * The main means of driving the scheduler and thus entering this function are:
3360  *
3361  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3362  *
3363  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3364  *      paths. For example, see arch/x86/entry_64.S.
3365  *
3366  *      To drive preemption between tasks, the scheduler sets the flag in timer
3367  *      interrupt handler scheduler_tick().
3368  *
3369  *   3. Wakeups don't really cause entry into schedule(). They add a
3370  *      task to the run-queue and that's it.
3371  *
3372  *      Now, if the new task added to the run-queue preempts the current
3373  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3374  *      called on the nearest possible occasion:
3375  *
3376  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3377  *
3378  *         - in syscall or exception context, at the next outmost
3379  *           preempt_enable(). (this might be as soon as the wake_up()'s
3380  *           spin_unlock()!)
3381  *
3382  *         - in IRQ context, return from interrupt-handler to
3383  *           preemptible context
3384  *
3385  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3386  *         then at the next:
3387  *
3388  *          - cond_resched() call
3389  *          - explicit schedule() call
3390  *          - return from syscall or exception to user-space
3391  *          - return from interrupt-handler to user-space
3392  *
3393  * WARNING: must be called with preemption disabled!
3394  */
3395 static void __sched notrace __schedule(bool preempt)
3396 {
3397 	struct task_struct *prev, *next;
3398 	unsigned long *switch_count;
3399 	struct rq_flags rf;
3400 	struct rq *rq;
3401 	int cpu;
3402 
3403 	cpu = smp_processor_id();
3404 	rq = cpu_rq(cpu);
3405 	prev = rq->curr;
3406 
3407 	schedule_debug(prev);
3408 
3409 	if (sched_feat(HRTICK))
3410 		hrtick_clear(rq);
3411 
3412 	local_irq_disable();
3413 	rcu_note_context_switch(preempt);
3414 
3415 	/*
3416 	 * Make sure that signal_pending_state()->signal_pending() below
3417 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3418 	 * done by the caller to avoid the race with signal_wake_up().
3419 	 *
3420 	 * The membarrier system call requires a full memory barrier
3421 	 * after coming from user-space, before storing to rq->curr.
3422 	 */
3423 	rq_lock(rq, &rf);
3424 	smp_mb__after_spinlock();
3425 
3426 	/* Promote REQ to ACT */
3427 	rq->clock_update_flags <<= 1;
3428 	update_rq_clock(rq);
3429 
3430 	switch_count = &prev->nivcsw;
3431 	if (!preempt && prev->state) {
3432 		if (signal_pending_state(prev->state, prev)) {
3433 			prev->state = TASK_RUNNING;
3434 		} else {
3435 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3436 			prev->on_rq = 0;
3437 
3438 			if (prev->in_iowait) {
3439 				atomic_inc(&rq->nr_iowait);
3440 				delayacct_blkio_start();
3441 			}
3442 
3443 			/*
3444 			 * If a worker went to sleep, notify and ask workqueue
3445 			 * whether it wants to wake up a task to maintain
3446 			 * concurrency.
3447 			 */
3448 			if (prev->flags & PF_WQ_WORKER) {
3449 				struct task_struct *to_wakeup;
3450 
3451 				to_wakeup = wq_worker_sleeping(prev);
3452 				if (to_wakeup)
3453 					try_to_wake_up_local(to_wakeup, &rf);
3454 			}
3455 		}
3456 		switch_count = &prev->nvcsw;
3457 	}
3458 
3459 	next = pick_next_task(rq, prev, &rf);
3460 	clear_tsk_need_resched(prev);
3461 	clear_preempt_need_resched();
3462 
3463 	if (likely(prev != next)) {
3464 		rq->nr_switches++;
3465 		rq->curr = next;
3466 		/*
3467 		 * The membarrier system call requires each architecture
3468 		 * to have a full memory barrier after updating
3469 		 * rq->curr, before returning to user-space.
3470 		 *
3471 		 * Here are the schemes providing that barrier on the
3472 		 * various architectures:
3473 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3474 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3475 		 * - finish_lock_switch() for weakly-ordered
3476 		 *   architectures where spin_unlock is a full barrier,
3477 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3478 		 *   is a RELEASE barrier),
3479 		 */
3480 		++*switch_count;
3481 
3482 		trace_sched_switch(preempt, prev, next);
3483 
3484 		/* Also unlocks the rq: */
3485 		rq = context_switch(rq, prev, next, &rf);
3486 	} else {
3487 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3488 		rq_unlock_irq(rq, &rf);
3489 	}
3490 
3491 	balance_callback(rq);
3492 }
3493 
3494 void __noreturn do_task_dead(void)
3495 {
3496 	/* Causes final put_task_struct in finish_task_switch(): */
3497 	set_special_state(TASK_DEAD);
3498 
3499 	/* Tell freezer to ignore us: */
3500 	current->flags |= PF_NOFREEZE;
3501 
3502 	__schedule(false);
3503 	BUG();
3504 
3505 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3506 	for (;;)
3507 		cpu_relax();
3508 }
3509 
3510 static inline void sched_submit_work(struct task_struct *tsk)
3511 {
3512 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3513 		return;
3514 	/*
3515 	 * If we are going to sleep and we have plugged IO queued,
3516 	 * make sure to submit it to avoid deadlocks.
3517 	 */
3518 	if (blk_needs_flush_plug(tsk))
3519 		blk_schedule_flush_plug(tsk);
3520 }
3521 
3522 asmlinkage __visible void __sched schedule(void)
3523 {
3524 	struct task_struct *tsk = current;
3525 
3526 	sched_submit_work(tsk);
3527 	do {
3528 		preempt_disable();
3529 		__schedule(false);
3530 		sched_preempt_enable_no_resched();
3531 	} while (need_resched());
3532 }
3533 EXPORT_SYMBOL(schedule);
3534 
3535 /*
3536  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3537  * state (have scheduled out non-voluntarily) by making sure that all
3538  * tasks have either left the run queue or have gone into user space.
3539  * As idle tasks do not do either, they must not ever be preempted
3540  * (schedule out non-voluntarily).
3541  *
3542  * schedule_idle() is similar to schedule_preempt_disable() except that it
3543  * never enables preemption because it does not call sched_submit_work().
3544  */
3545 void __sched schedule_idle(void)
3546 {
3547 	/*
3548 	 * As this skips calling sched_submit_work(), which the idle task does
3549 	 * regardless because that function is a nop when the task is in a
3550 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3551 	 * current task can be in any other state. Note, idle is always in the
3552 	 * TASK_RUNNING state.
3553 	 */
3554 	WARN_ON_ONCE(current->state);
3555 	do {
3556 		__schedule(false);
3557 	} while (need_resched());
3558 }
3559 
3560 #ifdef CONFIG_CONTEXT_TRACKING
3561 asmlinkage __visible void __sched schedule_user(void)
3562 {
3563 	/*
3564 	 * If we come here after a random call to set_need_resched(),
3565 	 * or we have been woken up remotely but the IPI has not yet arrived,
3566 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3567 	 * we find a better solution.
3568 	 *
3569 	 * NB: There are buggy callers of this function.  Ideally we
3570 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3571 	 * too frequently to make sense yet.
3572 	 */
3573 	enum ctx_state prev_state = exception_enter();
3574 	schedule();
3575 	exception_exit(prev_state);
3576 }
3577 #endif
3578 
3579 /**
3580  * schedule_preempt_disabled - called with preemption disabled
3581  *
3582  * Returns with preemption disabled. Note: preempt_count must be 1
3583  */
3584 void __sched schedule_preempt_disabled(void)
3585 {
3586 	sched_preempt_enable_no_resched();
3587 	schedule();
3588 	preempt_disable();
3589 }
3590 
3591 static void __sched notrace preempt_schedule_common(void)
3592 {
3593 	do {
3594 		/*
3595 		 * Because the function tracer can trace preempt_count_sub()
3596 		 * and it also uses preempt_enable/disable_notrace(), if
3597 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3598 		 * by the function tracer will call this function again and
3599 		 * cause infinite recursion.
3600 		 *
3601 		 * Preemption must be disabled here before the function
3602 		 * tracer can trace. Break up preempt_disable() into two
3603 		 * calls. One to disable preemption without fear of being
3604 		 * traced. The other to still record the preemption latency,
3605 		 * which can also be traced by the function tracer.
3606 		 */
3607 		preempt_disable_notrace();
3608 		preempt_latency_start(1);
3609 		__schedule(true);
3610 		preempt_latency_stop(1);
3611 		preempt_enable_no_resched_notrace();
3612 
3613 		/*
3614 		 * Check again in case we missed a preemption opportunity
3615 		 * between schedule and now.
3616 		 */
3617 	} while (need_resched());
3618 }
3619 
3620 #ifdef CONFIG_PREEMPT
3621 /*
3622  * this is the entry point to schedule() from in-kernel preemption
3623  * off of preempt_enable. Kernel preemptions off return from interrupt
3624  * occur there and call schedule directly.
3625  */
3626 asmlinkage __visible void __sched notrace preempt_schedule(void)
3627 {
3628 	/*
3629 	 * If there is a non-zero preempt_count or interrupts are disabled,
3630 	 * we do not want to preempt the current task. Just return..
3631 	 */
3632 	if (likely(!preemptible()))
3633 		return;
3634 
3635 	preempt_schedule_common();
3636 }
3637 NOKPROBE_SYMBOL(preempt_schedule);
3638 EXPORT_SYMBOL(preempt_schedule);
3639 
3640 /**
3641  * preempt_schedule_notrace - preempt_schedule called by tracing
3642  *
3643  * The tracing infrastructure uses preempt_enable_notrace to prevent
3644  * recursion and tracing preempt enabling caused by the tracing
3645  * infrastructure itself. But as tracing can happen in areas coming
3646  * from userspace or just about to enter userspace, a preempt enable
3647  * can occur before user_exit() is called. This will cause the scheduler
3648  * to be called when the system is still in usermode.
3649  *
3650  * To prevent this, the preempt_enable_notrace will use this function
3651  * instead of preempt_schedule() to exit user context if needed before
3652  * calling the scheduler.
3653  */
3654 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3655 {
3656 	enum ctx_state prev_ctx;
3657 
3658 	if (likely(!preemptible()))
3659 		return;
3660 
3661 	do {
3662 		/*
3663 		 * Because the function tracer can trace preempt_count_sub()
3664 		 * and it also uses preempt_enable/disable_notrace(), if
3665 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3666 		 * by the function tracer will call this function again and
3667 		 * cause infinite recursion.
3668 		 *
3669 		 * Preemption must be disabled here before the function
3670 		 * tracer can trace. Break up preempt_disable() into two
3671 		 * calls. One to disable preemption without fear of being
3672 		 * traced. The other to still record the preemption latency,
3673 		 * which can also be traced by the function tracer.
3674 		 */
3675 		preempt_disable_notrace();
3676 		preempt_latency_start(1);
3677 		/*
3678 		 * Needs preempt disabled in case user_exit() is traced
3679 		 * and the tracer calls preempt_enable_notrace() causing
3680 		 * an infinite recursion.
3681 		 */
3682 		prev_ctx = exception_enter();
3683 		__schedule(true);
3684 		exception_exit(prev_ctx);
3685 
3686 		preempt_latency_stop(1);
3687 		preempt_enable_no_resched_notrace();
3688 	} while (need_resched());
3689 }
3690 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3691 
3692 #endif /* CONFIG_PREEMPT */
3693 
3694 /*
3695  * this is the entry point to schedule() from kernel preemption
3696  * off of irq context.
3697  * Note, that this is called and return with irqs disabled. This will
3698  * protect us against recursive calling from irq.
3699  */
3700 asmlinkage __visible void __sched preempt_schedule_irq(void)
3701 {
3702 	enum ctx_state prev_state;
3703 
3704 	/* Catch callers which need to be fixed */
3705 	BUG_ON(preempt_count() || !irqs_disabled());
3706 
3707 	prev_state = exception_enter();
3708 
3709 	do {
3710 		preempt_disable();
3711 		local_irq_enable();
3712 		__schedule(true);
3713 		local_irq_disable();
3714 		sched_preempt_enable_no_resched();
3715 	} while (need_resched());
3716 
3717 	exception_exit(prev_state);
3718 }
3719 
3720 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3721 			  void *key)
3722 {
3723 	return try_to_wake_up(curr->private, mode, wake_flags);
3724 }
3725 EXPORT_SYMBOL(default_wake_function);
3726 
3727 #ifdef CONFIG_RT_MUTEXES
3728 
3729 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3730 {
3731 	if (pi_task)
3732 		prio = min(prio, pi_task->prio);
3733 
3734 	return prio;
3735 }
3736 
3737 static inline int rt_effective_prio(struct task_struct *p, int prio)
3738 {
3739 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3740 
3741 	return __rt_effective_prio(pi_task, prio);
3742 }
3743 
3744 /*
3745  * rt_mutex_setprio - set the current priority of a task
3746  * @p: task to boost
3747  * @pi_task: donor task
3748  *
3749  * This function changes the 'effective' priority of a task. It does
3750  * not touch ->normal_prio like __setscheduler().
3751  *
3752  * Used by the rt_mutex code to implement priority inheritance
3753  * logic. Call site only calls if the priority of the task changed.
3754  */
3755 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3756 {
3757 	int prio, oldprio, queued, running, queue_flag =
3758 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3759 	const struct sched_class *prev_class;
3760 	struct rq_flags rf;
3761 	struct rq *rq;
3762 
3763 	/* XXX used to be waiter->prio, not waiter->task->prio */
3764 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3765 
3766 	/*
3767 	 * If nothing changed; bail early.
3768 	 */
3769 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3770 		return;
3771 
3772 	rq = __task_rq_lock(p, &rf);
3773 	update_rq_clock(rq);
3774 	/*
3775 	 * Set under pi_lock && rq->lock, such that the value can be used under
3776 	 * either lock.
3777 	 *
3778 	 * Note that there is loads of tricky to make this pointer cache work
3779 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3780 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3781 	 * task is allowed to run again (and can exit). This ensures the pointer
3782 	 * points to a blocked task -- which guaratees the task is present.
3783 	 */
3784 	p->pi_top_task = pi_task;
3785 
3786 	/*
3787 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3788 	 */
3789 	if (prio == p->prio && !dl_prio(prio))
3790 		goto out_unlock;
3791 
3792 	/*
3793 	 * Idle task boosting is a nono in general. There is one
3794 	 * exception, when PREEMPT_RT and NOHZ is active:
3795 	 *
3796 	 * The idle task calls get_next_timer_interrupt() and holds
3797 	 * the timer wheel base->lock on the CPU and another CPU wants
3798 	 * to access the timer (probably to cancel it). We can safely
3799 	 * ignore the boosting request, as the idle CPU runs this code
3800 	 * with interrupts disabled and will complete the lock
3801 	 * protected section without being interrupted. So there is no
3802 	 * real need to boost.
3803 	 */
3804 	if (unlikely(p == rq->idle)) {
3805 		WARN_ON(p != rq->curr);
3806 		WARN_ON(p->pi_blocked_on);
3807 		goto out_unlock;
3808 	}
3809 
3810 	trace_sched_pi_setprio(p, pi_task);
3811 	oldprio = p->prio;
3812 
3813 	if (oldprio == prio)
3814 		queue_flag &= ~DEQUEUE_MOVE;
3815 
3816 	prev_class = p->sched_class;
3817 	queued = task_on_rq_queued(p);
3818 	running = task_current(rq, p);
3819 	if (queued)
3820 		dequeue_task(rq, p, queue_flag);
3821 	if (running)
3822 		put_prev_task(rq, p);
3823 
3824 	/*
3825 	 * Boosting condition are:
3826 	 * 1. -rt task is running and holds mutex A
3827 	 *      --> -dl task blocks on mutex A
3828 	 *
3829 	 * 2. -dl task is running and holds mutex A
3830 	 *      --> -dl task blocks on mutex A and could preempt the
3831 	 *          running task
3832 	 */
3833 	if (dl_prio(prio)) {
3834 		if (!dl_prio(p->normal_prio) ||
3835 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3836 			p->dl.dl_boosted = 1;
3837 			queue_flag |= ENQUEUE_REPLENISH;
3838 		} else
3839 			p->dl.dl_boosted = 0;
3840 		p->sched_class = &dl_sched_class;
3841 	} else if (rt_prio(prio)) {
3842 		if (dl_prio(oldprio))
3843 			p->dl.dl_boosted = 0;
3844 		if (oldprio < prio)
3845 			queue_flag |= ENQUEUE_HEAD;
3846 		p->sched_class = &rt_sched_class;
3847 	} else {
3848 		if (dl_prio(oldprio))
3849 			p->dl.dl_boosted = 0;
3850 		if (rt_prio(oldprio))
3851 			p->rt.timeout = 0;
3852 		p->sched_class = &fair_sched_class;
3853 	}
3854 
3855 	p->prio = prio;
3856 
3857 	if (queued)
3858 		enqueue_task(rq, p, queue_flag);
3859 	if (running)
3860 		set_curr_task(rq, p);
3861 
3862 	check_class_changed(rq, p, prev_class, oldprio);
3863 out_unlock:
3864 	/* Avoid rq from going away on us: */
3865 	preempt_disable();
3866 	__task_rq_unlock(rq, &rf);
3867 
3868 	balance_callback(rq);
3869 	preempt_enable();
3870 }
3871 #else
3872 static inline int rt_effective_prio(struct task_struct *p, int prio)
3873 {
3874 	return prio;
3875 }
3876 #endif
3877 
3878 void set_user_nice(struct task_struct *p, long nice)
3879 {
3880 	bool queued, running;
3881 	int old_prio, delta;
3882 	struct rq_flags rf;
3883 	struct rq *rq;
3884 
3885 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3886 		return;
3887 	/*
3888 	 * We have to be careful, if called from sys_setpriority(),
3889 	 * the task might be in the middle of scheduling on another CPU.
3890 	 */
3891 	rq = task_rq_lock(p, &rf);
3892 	update_rq_clock(rq);
3893 
3894 	/*
3895 	 * The RT priorities are set via sched_setscheduler(), but we still
3896 	 * allow the 'normal' nice value to be set - but as expected
3897 	 * it wont have any effect on scheduling until the task is
3898 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3899 	 */
3900 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3901 		p->static_prio = NICE_TO_PRIO(nice);
3902 		goto out_unlock;
3903 	}
3904 	queued = task_on_rq_queued(p);
3905 	running = task_current(rq, p);
3906 	if (queued)
3907 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3908 	if (running)
3909 		put_prev_task(rq, p);
3910 
3911 	p->static_prio = NICE_TO_PRIO(nice);
3912 	set_load_weight(p, true);
3913 	old_prio = p->prio;
3914 	p->prio = effective_prio(p);
3915 	delta = p->prio - old_prio;
3916 
3917 	if (queued) {
3918 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3919 		/*
3920 		 * If the task increased its priority or is running and
3921 		 * lowered its priority, then reschedule its CPU:
3922 		 */
3923 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3924 			resched_curr(rq);
3925 	}
3926 	if (running)
3927 		set_curr_task(rq, p);
3928 out_unlock:
3929 	task_rq_unlock(rq, p, &rf);
3930 }
3931 EXPORT_SYMBOL(set_user_nice);
3932 
3933 /*
3934  * can_nice - check if a task can reduce its nice value
3935  * @p: task
3936  * @nice: nice value
3937  */
3938 int can_nice(const struct task_struct *p, const int nice)
3939 {
3940 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3941 	int nice_rlim = nice_to_rlimit(nice);
3942 
3943 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3944 		capable(CAP_SYS_NICE));
3945 }
3946 
3947 #ifdef __ARCH_WANT_SYS_NICE
3948 
3949 /*
3950  * sys_nice - change the priority of the current process.
3951  * @increment: priority increment
3952  *
3953  * sys_setpriority is a more generic, but much slower function that
3954  * does similar things.
3955  */
3956 SYSCALL_DEFINE1(nice, int, increment)
3957 {
3958 	long nice, retval;
3959 
3960 	/*
3961 	 * Setpriority might change our priority at the same moment.
3962 	 * We don't have to worry. Conceptually one call occurs first
3963 	 * and we have a single winner.
3964 	 */
3965 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3966 	nice = task_nice(current) + increment;
3967 
3968 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3969 	if (increment < 0 && !can_nice(current, nice))
3970 		return -EPERM;
3971 
3972 	retval = security_task_setnice(current, nice);
3973 	if (retval)
3974 		return retval;
3975 
3976 	set_user_nice(current, nice);
3977 	return 0;
3978 }
3979 
3980 #endif
3981 
3982 /**
3983  * task_prio - return the priority value of a given task.
3984  * @p: the task in question.
3985  *
3986  * Return: The priority value as seen by users in /proc.
3987  * RT tasks are offset by -200. Normal tasks are centered
3988  * around 0, value goes from -16 to +15.
3989  */
3990 int task_prio(const struct task_struct *p)
3991 {
3992 	return p->prio - MAX_RT_PRIO;
3993 }
3994 
3995 /**
3996  * idle_cpu - is a given CPU idle currently?
3997  * @cpu: the processor in question.
3998  *
3999  * Return: 1 if the CPU is currently idle. 0 otherwise.
4000  */
4001 int idle_cpu(int cpu)
4002 {
4003 	struct rq *rq = cpu_rq(cpu);
4004 
4005 	if (rq->curr != rq->idle)
4006 		return 0;
4007 
4008 	if (rq->nr_running)
4009 		return 0;
4010 
4011 #ifdef CONFIG_SMP
4012 	if (!llist_empty(&rq->wake_list))
4013 		return 0;
4014 #endif
4015 
4016 	return 1;
4017 }
4018 
4019 /**
4020  * available_idle_cpu - is a given CPU idle for enqueuing work.
4021  * @cpu: the CPU in question.
4022  *
4023  * Return: 1 if the CPU is currently idle. 0 otherwise.
4024  */
4025 int available_idle_cpu(int cpu)
4026 {
4027 	if (!idle_cpu(cpu))
4028 		return 0;
4029 
4030 	if (vcpu_is_preempted(cpu))
4031 		return 0;
4032 
4033 	return 1;
4034 }
4035 
4036 /**
4037  * idle_task - return the idle task for a given CPU.
4038  * @cpu: the processor in question.
4039  *
4040  * Return: The idle task for the CPU @cpu.
4041  */
4042 struct task_struct *idle_task(int cpu)
4043 {
4044 	return cpu_rq(cpu)->idle;
4045 }
4046 
4047 /**
4048  * find_process_by_pid - find a process with a matching PID value.
4049  * @pid: the pid in question.
4050  *
4051  * The task of @pid, if found. %NULL otherwise.
4052  */
4053 static struct task_struct *find_process_by_pid(pid_t pid)
4054 {
4055 	return pid ? find_task_by_vpid(pid) : current;
4056 }
4057 
4058 /*
4059  * sched_setparam() passes in -1 for its policy, to let the functions
4060  * it calls know not to change it.
4061  */
4062 #define SETPARAM_POLICY	-1
4063 
4064 static void __setscheduler_params(struct task_struct *p,
4065 		const struct sched_attr *attr)
4066 {
4067 	int policy = attr->sched_policy;
4068 
4069 	if (policy == SETPARAM_POLICY)
4070 		policy = p->policy;
4071 
4072 	p->policy = policy;
4073 
4074 	if (dl_policy(policy))
4075 		__setparam_dl(p, attr);
4076 	else if (fair_policy(policy))
4077 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4078 
4079 	/*
4080 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4081 	 * !rt_policy. Always setting this ensures that things like
4082 	 * getparam()/getattr() don't report silly values for !rt tasks.
4083 	 */
4084 	p->rt_priority = attr->sched_priority;
4085 	p->normal_prio = normal_prio(p);
4086 	set_load_weight(p, true);
4087 }
4088 
4089 /* Actually do priority change: must hold pi & rq lock. */
4090 static void __setscheduler(struct rq *rq, struct task_struct *p,
4091 			   const struct sched_attr *attr, bool keep_boost)
4092 {
4093 	__setscheduler_params(p, attr);
4094 
4095 	/*
4096 	 * Keep a potential priority boosting if called from
4097 	 * sched_setscheduler().
4098 	 */
4099 	p->prio = normal_prio(p);
4100 	if (keep_boost)
4101 		p->prio = rt_effective_prio(p, p->prio);
4102 
4103 	if (dl_prio(p->prio))
4104 		p->sched_class = &dl_sched_class;
4105 	else if (rt_prio(p->prio))
4106 		p->sched_class = &rt_sched_class;
4107 	else
4108 		p->sched_class = &fair_sched_class;
4109 }
4110 
4111 /*
4112  * Check the target process has a UID that matches the current process's:
4113  */
4114 static bool check_same_owner(struct task_struct *p)
4115 {
4116 	const struct cred *cred = current_cred(), *pcred;
4117 	bool match;
4118 
4119 	rcu_read_lock();
4120 	pcred = __task_cred(p);
4121 	match = (uid_eq(cred->euid, pcred->euid) ||
4122 		 uid_eq(cred->euid, pcred->uid));
4123 	rcu_read_unlock();
4124 	return match;
4125 }
4126 
4127 static int __sched_setscheduler(struct task_struct *p,
4128 				const struct sched_attr *attr,
4129 				bool user, bool pi)
4130 {
4131 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4132 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4133 	int retval, oldprio, oldpolicy = -1, queued, running;
4134 	int new_effective_prio, policy = attr->sched_policy;
4135 	const struct sched_class *prev_class;
4136 	struct rq_flags rf;
4137 	int reset_on_fork;
4138 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4139 	struct rq *rq;
4140 
4141 	/* The pi code expects interrupts enabled */
4142 	BUG_ON(pi && in_interrupt());
4143 recheck:
4144 	/* Double check policy once rq lock held: */
4145 	if (policy < 0) {
4146 		reset_on_fork = p->sched_reset_on_fork;
4147 		policy = oldpolicy = p->policy;
4148 	} else {
4149 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4150 
4151 		if (!valid_policy(policy))
4152 			return -EINVAL;
4153 	}
4154 
4155 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4156 		return -EINVAL;
4157 
4158 	/*
4159 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4160 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4161 	 * SCHED_BATCH and SCHED_IDLE is 0.
4162 	 */
4163 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4164 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4165 		return -EINVAL;
4166 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4167 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4168 		return -EINVAL;
4169 
4170 	/*
4171 	 * Allow unprivileged RT tasks to decrease priority:
4172 	 */
4173 	if (user && !capable(CAP_SYS_NICE)) {
4174 		if (fair_policy(policy)) {
4175 			if (attr->sched_nice < task_nice(p) &&
4176 			    !can_nice(p, attr->sched_nice))
4177 				return -EPERM;
4178 		}
4179 
4180 		if (rt_policy(policy)) {
4181 			unsigned long rlim_rtprio =
4182 					task_rlimit(p, RLIMIT_RTPRIO);
4183 
4184 			/* Can't set/change the rt policy: */
4185 			if (policy != p->policy && !rlim_rtprio)
4186 				return -EPERM;
4187 
4188 			/* Can't increase priority: */
4189 			if (attr->sched_priority > p->rt_priority &&
4190 			    attr->sched_priority > rlim_rtprio)
4191 				return -EPERM;
4192 		}
4193 
4194 		 /*
4195 		  * Can't set/change SCHED_DEADLINE policy at all for now
4196 		  * (safest behavior); in the future we would like to allow
4197 		  * unprivileged DL tasks to increase their relative deadline
4198 		  * or reduce their runtime (both ways reducing utilization)
4199 		  */
4200 		if (dl_policy(policy))
4201 			return -EPERM;
4202 
4203 		/*
4204 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4205 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4206 		 */
4207 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4208 			if (!can_nice(p, task_nice(p)))
4209 				return -EPERM;
4210 		}
4211 
4212 		/* Can't change other user's priorities: */
4213 		if (!check_same_owner(p))
4214 			return -EPERM;
4215 
4216 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4217 		if (p->sched_reset_on_fork && !reset_on_fork)
4218 			return -EPERM;
4219 	}
4220 
4221 	if (user) {
4222 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4223 			return -EINVAL;
4224 
4225 		retval = security_task_setscheduler(p);
4226 		if (retval)
4227 			return retval;
4228 	}
4229 
4230 	/*
4231 	 * Make sure no PI-waiters arrive (or leave) while we are
4232 	 * changing the priority of the task:
4233 	 *
4234 	 * To be able to change p->policy safely, the appropriate
4235 	 * runqueue lock must be held.
4236 	 */
4237 	rq = task_rq_lock(p, &rf);
4238 	update_rq_clock(rq);
4239 
4240 	/*
4241 	 * Changing the policy of the stop threads its a very bad idea:
4242 	 */
4243 	if (p == rq->stop) {
4244 		task_rq_unlock(rq, p, &rf);
4245 		return -EINVAL;
4246 	}
4247 
4248 	/*
4249 	 * If not changing anything there's no need to proceed further,
4250 	 * but store a possible modification of reset_on_fork.
4251 	 */
4252 	if (unlikely(policy == p->policy)) {
4253 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4254 			goto change;
4255 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4256 			goto change;
4257 		if (dl_policy(policy) && dl_param_changed(p, attr))
4258 			goto change;
4259 
4260 		p->sched_reset_on_fork = reset_on_fork;
4261 		task_rq_unlock(rq, p, &rf);
4262 		return 0;
4263 	}
4264 change:
4265 
4266 	if (user) {
4267 #ifdef CONFIG_RT_GROUP_SCHED
4268 		/*
4269 		 * Do not allow realtime tasks into groups that have no runtime
4270 		 * assigned.
4271 		 */
4272 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4273 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4274 				!task_group_is_autogroup(task_group(p))) {
4275 			task_rq_unlock(rq, p, &rf);
4276 			return -EPERM;
4277 		}
4278 #endif
4279 #ifdef CONFIG_SMP
4280 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4281 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4282 			cpumask_t *span = rq->rd->span;
4283 
4284 			/*
4285 			 * Don't allow tasks with an affinity mask smaller than
4286 			 * the entire root_domain to become SCHED_DEADLINE. We
4287 			 * will also fail if there's no bandwidth available.
4288 			 */
4289 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4290 			    rq->rd->dl_bw.bw == 0) {
4291 				task_rq_unlock(rq, p, &rf);
4292 				return -EPERM;
4293 			}
4294 		}
4295 #endif
4296 	}
4297 
4298 	/* Re-check policy now with rq lock held: */
4299 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4300 		policy = oldpolicy = -1;
4301 		task_rq_unlock(rq, p, &rf);
4302 		goto recheck;
4303 	}
4304 
4305 	/*
4306 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4307 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4308 	 * is available.
4309 	 */
4310 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4311 		task_rq_unlock(rq, p, &rf);
4312 		return -EBUSY;
4313 	}
4314 
4315 	p->sched_reset_on_fork = reset_on_fork;
4316 	oldprio = p->prio;
4317 
4318 	if (pi) {
4319 		/*
4320 		 * Take priority boosted tasks into account. If the new
4321 		 * effective priority is unchanged, we just store the new
4322 		 * normal parameters and do not touch the scheduler class and
4323 		 * the runqueue. This will be done when the task deboost
4324 		 * itself.
4325 		 */
4326 		new_effective_prio = rt_effective_prio(p, newprio);
4327 		if (new_effective_prio == oldprio)
4328 			queue_flags &= ~DEQUEUE_MOVE;
4329 	}
4330 
4331 	queued = task_on_rq_queued(p);
4332 	running = task_current(rq, p);
4333 	if (queued)
4334 		dequeue_task(rq, p, queue_flags);
4335 	if (running)
4336 		put_prev_task(rq, p);
4337 
4338 	prev_class = p->sched_class;
4339 	__setscheduler(rq, p, attr, pi);
4340 
4341 	if (queued) {
4342 		/*
4343 		 * We enqueue to tail when the priority of a task is
4344 		 * increased (user space view).
4345 		 */
4346 		if (oldprio < p->prio)
4347 			queue_flags |= ENQUEUE_HEAD;
4348 
4349 		enqueue_task(rq, p, queue_flags);
4350 	}
4351 	if (running)
4352 		set_curr_task(rq, p);
4353 
4354 	check_class_changed(rq, p, prev_class, oldprio);
4355 
4356 	/* Avoid rq from going away on us: */
4357 	preempt_disable();
4358 	task_rq_unlock(rq, p, &rf);
4359 
4360 	if (pi)
4361 		rt_mutex_adjust_pi(p);
4362 
4363 	/* Run balance callbacks after we've adjusted the PI chain: */
4364 	balance_callback(rq);
4365 	preempt_enable();
4366 
4367 	return 0;
4368 }
4369 
4370 static int _sched_setscheduler(struct task_struct *p, int policy,
4371 			       const struct sched_param *param, bool check)
4372 {
4373 	struct sched_attr attr = {
4374 		.sched_policy   = policy,
4375 		.sched_priority = param->sched_priority,
4376 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4377 	};
4378 
4379 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4380 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4381 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4382 		policy &= ~SCHED_RESET_ON_FORK;
4383 		attr.sched_policy = policy;
4384 	}
4385 
4386 	return __sched_setscheduler(p, &attr, check, true);
4387 }
4388 /**
4389  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4390  * @p: the task in question.
4391  * @policy: new policy.
4392  * @param: structure containing the new RT priority.
4393  *
4394  * Return: 0 on success. An error code otherwise.
4395  *
4396  * NOTE that the task may be already dead.
4397  */
4398 int sched_setscheduler(struct task_struct *p, int policy,
4399 		       const struct sched_param *param)
4400 {
4401 	return _sched_setscheduler(p, policy, param, true);
4402 }
4403 EXPORT_SYMBOL_GPL(sched_setscheduler);
4404 
4405 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4406 {
4407 	return __sched_setscheduler(p, attr, true, true);
4408 }
4409 EXPORT_SYMBOL_GPL(sched_setattr);
4410 
4411 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4412 {
4413 	return __sched_setscheduler(p, attr, false, true);
4414 }
4415 
4416 /**
4417  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4418  * @p: the task in question.
4419  * @policy: new policy.
4420  * @param: structure containing the new RT priority.
4421  *
4422  * Just like sched_setscheduler, only don't bother checking if the
4423  * current context has permission.  For example, this is needed in
4424  * stop_machine(): we create temporary high priority worker threads,
4425  * but our caller might not have that capability.
4426  *
4427  * Return: 0 on success. An error code otherwise.
4428  */
4429 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4430 			       const struct sched_param *param)
4431 {
4432 	return _sched_setscheduler(p, policy, param, false);
4433 }
4434 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4435 
4436 static int
4437 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4438 {
4439 	struct sched_param lparam;
4440 	struct task_struct *p;
4441 	int retval;
4442 
4443 	if (!param || pid < 0)
4444 		return -EINVAL;
4445 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4446 		return -EFAULT;
4447 
4448 	rcu_read_lock();
4449 	retval = -ESRCH;
4450 	p = find_process_by_pid(pid);
4451 	if (p != NULL)
4452 		retval = sched_setscheduler(p, policy, &lparam);
4453 	rcu_read_unlock();
4454 
4455 	return retval;
4456 }
4457 
4458 /*
4459  * Mimics kernel/events/core.c perf_copy_attr().
4460  */
4461 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4462 {
4463 	u32 size;
4464 	int ret;
4465 
4466 	if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
4467 		return -EFAULT;
4468 
4469 	/* Zero the full structure, so that a short copy will be nice: */
4470 	memset(attr, 0, sizeof(*attr));
4471 
4472 	ret = get_user(size, &uattr->size);
4473 	if (ret)
4474 		return ret;
4475 
4476 	/* Bail out on silly large: */
4477 	if (size > PAGE_SIZE)
4478 		goto err_size;
4479 
4480 	/* ABI compatibility quirk: */
4481 	if (!size)
4482 		size = SCHED_ATTR_SIZE_VER0;
4483 
4484 	if (size < SCHED_ATTR_SIZE_VER0)
4485 		goto err_size;
4486 
4487 	/*
4488 	 * If we're handed a bigger struct than we know of,
4489 	 * ensure all the unknown bits are 0 - i.e. new
4490 	 * user-space does not rely on any kernel feature
4491 	 * extensions we dont know about yet.
4492 	 */
4493 	if (size > sizeof(*attr)) {
4494 		unsigned char __user *addr;
4495 		unsigned char __user *end;
4496 		unsigned char val;
4497 
4498 		addr = (void __user *)uattr + sizeof(*attr);
4499 		end  = (void __user *)uattr + size;
4500 
4501 		for (; addr < end; addr++) {
4502 			ret = get_user(val, addr);
4503 			if (ret)
4504 				return ret;
4505 			if (val)
4506 				goto err_size;
4507 		}
4508 		size = sizeof(*attr);
4509 	}
4510 
4511 	ret = copy_from_user(attr, uattr, size);
4512 	if (ret)
4513 		return -EFAULT;
4514 
4515 	/*
4516 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4517 	 * to be strict and return an error on out-of-bounds values?
4518 	 */
4519 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4520 
4521 	return 0;
4522 
4523 err_size:
4524 	put_user(sizeof(*attr), &uattr->size);
4525 	return -E2BIG;
4526 }
4527 
4528 /**
4529  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4530  * @pid: the pid in question.
4531  * @policy: new policy.
4532  * @param: structure containing the new RT priority.
4533  *
4534  * Return: 0 on success. An error code otherwise.
4535  */
4536 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4537 {
4538 	if (policy < 0)
4539 		return -EINVAL;
4540 
4541 	return do_sched_setscheduler(pid, policy, param);
4542 }
4543 
4544 /**
4545  * sys_sched_setparam - set/change the RT priority of a thread
4546  * @pid: the pid in question.
4547  * @param: structure containing the new RT priority.
4548  *
4549  * Return: 0 on success. An error code otherwise.
4550  */
4551 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4552 {
4553 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4554 }
4555 
4556 /**
4557  * sys_sched_setattr - same as above, but with extended sched_attr
4558  * @pid: the pid in question.
4559  * @uattr: structure containing the extended parameters.
4560  * @flags: for future extension.
4561  */
4562 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4563 			       unsigned int, flags)
4564 {
4565 	struct sched_attr attr;
4566 	struct task_struct *p;
4567 	int retval;
4568 
4569 	if (!uattr || pid < 0 || flags)
4570 		return -EINVAL;
4571 
4572 	retval = sched_copy_attr(uattr, &attr);
4573 	if (retval)
4574 		return retval;
4575 
4576 	if ((int)attr.sched_policy < 0)
4577 		return -EINVAL;
4578 
4579 	rcu_read_lock();
4580 	retval = -ESRCH;
4581 	p = find_process_by_pid(pid);
4582 	if (p != NULL)
4583 		retval = sched_setattr(p, &attr);
4584 	rcu_read_unlock();
4585 
4586 	return retval;
4587 }
4588 
4589 /**
4590  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4591  * @pid: the pid in question.
4592  *
4593  * Return: On success, the policy of the thread. Otherwise, a negative error
4594  * code.
4595  */
4596 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4597 {
4598 	struct task_struct *p;
4599 	int retval;
4600 
4601 	if (pid < 0)
4602 		return -EINVAL;
4603 
4604 	retval = -ESRCH;
4605 	rcu_read_lock();
4606 	p = find_process_by_pid(pid);
4607 	if (p) {
4608 		retval = security_task_getscheduler(p);
4609 		if (!retval)
4610 			retval = p->policy
4611 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4612 	}
4613 	rcu_read_unlock();
4614 	return retval;
4615 }
4616 
4617 /**
4618  * sys_sched_getparam - get the RT priority of a thread
4619  * @pid: the pid in question.
4620  * @param: structure containing the RT priority.
4621  *
4622  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4623  * code.
4624  */
4625 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4626 {
4627 	struct sched_param lp = { .sched_priority = 0 };
4628 	struct task_struct *p;
4629 	int retval;
4630 
4631 	if (!param || pid < 0)
4632 		return -EINVAL;
4633 
4634 	rcu_read_lock();
4635 	p = find_process_by_pid(pid);
4636 	retval = -ESRCH;
4637 	if (!p)
4638 		goto out_unlock;
4639 
4640 	retval = security_task_getscheduler(p);
4641 	if (retval)
4642 		goto out_unlock;
4643 
4644 	if (task_has_rt_policy(p))
4645 		lp.sched_priority = p->rt_priority;
4646 	rcu_read_unlock();
4647 
4648 	/*
4649 	 * This one might sleep, we cannot do it with a spinlock held ...
4650 	 */
4651 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4652 
4653 	return retval;
4654 
4655 out_unlock:
4656 	rcu_read_unlock();
4657 	return retval;
4658 }
4659 
4660 static int sched_read_attr(struct sched_attr __user *uattr,
4661 			   struct sched_attr *attr,
4662 			   unsigned int usize)
4663 {
4664 	int ret;
4665 
4666 	if (!access_ok(uattr, usize))
4667 		return -EFAULT;
4668 
4669 	/*
4670 	 * If we're handed a smaller struct than we know of,
4671 	 * ensure all the unknown bits are 0 - i.e. old
4672 	 * user-space does not get uncomplete information.
4673 	 */
4674 	if (usize < sizeof(*attr)) {
4675 		unsigned char *addr;
4676 		unsigned char *end;
4677 
4678 		addr = (void *)attr + usize;
4679 		end  = (void *)attr + sizeof(*attr);
4680 
4681 		for (; addr < end; addr++) {
4682 			if (*addr)
4683 				return -EFBIG;
4684 		}
4685 
4686 		attr->size = usize;
4687 	}
4688 
4689 	ret = copy_to_user(uattr, attr, attr->size);
4690 	if (ret)
4691 		return -EFAULT;
4692 
4693 	return 0;
4694 }
4695 
4696 /**
4697  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4698  * @pid: the pid in question.
4699  * @uattr: structure containing the extended parameters.
4700  * @size: sizeof(attr) for fwd/bwd comp.
4701  * @flags: for future extension.
4702  */
4703 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4704 		unsigned int, size, unsigned int, flags)
4705 {
4706 	struct sched_attr attr = {
4707 		.size = sizeof(struct sched_attr),
4708 	};
4709 	struct task_struct *p;
4710 	int retval;
4711 
4712 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4713 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4714 		return -EINVAL;
4715 
4716 	rcu_read_lock();
4717 	p = find_process_by_pid(pid);
4718 	retval = -ESRCH;
4719 	if (!p)
4720 		goto out_unlock;
4721 
4722 	retval = security_task_getscheduler(p);
4723 	if (retval)
4724 		goto out_unlock;
4725 
4726 	attr.sched_policy = p->policy;
4727 	if (p->sched_reset_on_fork)
4728 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4729 	if (task_has_dl_policy(p))
4730 		__getparam_dl(p, &attr);
4731 	else if (task_has_rt_policy(p))
4732 		attr.sched_priority = p->rt_priority;
4733 	else
4734 		attr.sched_nice = task_nice(p);
4735 
4736 	rcu_read_unlock();
4737 
4738 	retval = sched_read_attr(uattr, &attr, size);
4739 	return retval;
4740 
4741 out_unlock:
4742 	rcu_read_unlock();
4743 	return retval;
4744 }
4745 
4746 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4747 {
4748 	cpumask_var_t cpus_allowed, new_mask;
4749 	struct task_struct *p;
4750 	int retval;
4751 
4752 	rcu_read_lock();
4753 
4754 	p = find_process_by_pid(pid);
4755 	if (!p) {
4756 		rcu_read_unlock();
4757 		return -ESRCH;
4758 	}
4759 
4760 	/* Prevent p going away */
4761 	get_task_struct(p);
4762 	rcu_read_unlock();
4763 
4764 	if (p->flags & PF_NO_SETAFFINITY) {
4765 		retval = -EINVAL;
4766 		goto out_put_task;
4767 	}
4768 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4769 		retval = -ENOMEM;
4770 		goto out_put_task;
4771 	}
4772 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4773 		retval = -ENOMEM;
4774 		goto out_free_cpus_allowed;
4775 	}
4776 	retval = -EPERM;
4777 	if (!check_same_owner(p)) {
4778 		rcu_read_lock();
4779 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4780 			rcu_read_unlock();
4781 			goto out_free_new_mask;
4782 		}
4783 		rcu_read_unlock();
4784 	}
4785 
4786 	retval = security_task_setscheduler(p);
4787 	if (retval)
4788 		goto out_free_new_mask;
4789 
4790 
4791 	cpuset_cpus_allowed(p, cpus_allowed);
4792 	cpumask_and(new_mask, in_mask, cpus_allowed);
4793 
4794 	/*
4795 	 * Since bandwidth control happens on root_domain basis,
4796 	 * if admission test is enabled, we only admit -deadline
4797 	 * tasks allowed to run on all the CPUs in the task's
4798 	 * root_domain.
4799 	 */
4800 #ifdef CONFIG_SMP
4801 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4802 		rcu_read_lock();
4803 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4804 			retval = -EBUSY;
4805 			rcu_read_unlock();
4806 			goto out_free_new_mask;
4807 		}
4808 		rcu_read_unlock();
4809 	}
4810 #endif
4811 again:
4812 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4813 
4814 	if (!retval) {
4815 		cpuset_cpus_allowed(p, cpus_allowed);
4816 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4817 			/*
4818 			 * We must have raced with a concurrent cpuset
4819 			 * update. Just reset the cpus_allowed to the
4820 			 * cpuset's cpus_allowed
4821 			 */
4822 			cpumask_copy(new_mask, cpus_allowed);
4823 			goto again;
4824 		}
4825 	}
4826 out_free_new_mask:
4827 	free_cpumask_var(new_mask);
4828 out_free_cpus_allowed:
4829 	free_cpumask_var(cpus_allowed);
4830 out_put_task:
4831 	put_task_struct(p);
4832 	return retval;
4833 }
4834 
4835 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4836 			     struct cpumask *new_mask)
4837 {
4838 	if (len < cpumask_size())
4839 		cpumask_clear(new_mask);
4840 	else if (len > cpumask_size())
4841 		len = cpumask_size();
4842 
4843 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4844 }
4845 
4846 /**
4847  * sys_sched_setaffinity - set the CPU affinity of a process
4848  * @pid: pid of the process
4849  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4850  * @user_mask_ptr: user-space pointer to the new CPU mask
4851  *
4852  * Return: 0 on success. An error code otherwise.
4853  */
4854 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4855 		unsigned long __user *, user_mask_ptr)
4856 {
4857 	cpumask_var_t new_mask;
4858 	int retval;
4859 
4860 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4861 		return -ENOMEM;
4862 
4863 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4864 	if (retval == 0)
4865 		retval = sched_setaffinity(pid, new_mask);
4866 	free_cpumask_var(new_mask);
4867 	return retval;
4868 }
4869 
4870 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4871 {
4872 	struct task_struct *p;
4873 	unsigned long flags;
4874 	int retval;
4875 
4876 	rcu_read_lock();
4877 
4878 	retval = -ESRCH;
4879 	p = find_process_by_pid(pid);
4880 	if (!p)
4881 		goto out_unlock;
4882 
4883 	retval = security_task_getscheduler(p);
4884 	if (retval)
4885 		goto out_unlock;
4886 
4887 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4888 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4889 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4890 
4891 out_unlock:
4892 	rcu_read_unlock();
4893 
4894 	return retval;
4895 }
4896 
4897 /**
4898  * sys_sched_getaffinity - get the CPU affinity of a process
4899  * @pid: pid of the process
4900  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4901  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4902  *
4903  * Return: size of CPU mask copied to user_mask_ptr on success. An
4904  * error code otherwise.
4905  */
4906 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4907 		unsigned long __user *, user_mask_ptr)
4908 {
4909 	int ret;
4910 	cpumask_var_t mask;
4911 
4912 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4913 		return -EINVAL;
4914 	if (len & (sizeof(unsigned long)-1))
4915 		return -EINVAL;
4916 
4917 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4918 		return -ENOMEM;
4919 
4920 	ret = sched_getaffinity(pid, mask);
4921 	if (ret == 0) {
4922 		unsigned int retlen = min(len, cpumask_size());
4923 
4924 		if (copy_to_user(user_mask_ptr, mask, retlen))
4925 			ret = -EFAULT;
4926 		else
4927 			ret = retlen;
4928 	}
4929 	free_cpumask_var(mask);
4930 
4931 	return ret;
4932 }
4933 
4934 /**
4935  * sys_sched_yield - yield the current processor to other threads.
4936  *
4937  * This function yields the current CPU to other tasks. If there are no
4938  * other threads running on this CPU then this function will return.
4939  *
4940  * Return: 0.
4941  */
4942 static void do_sched_yield(void)
4943 {
4944 	struct rq_flags rf;
4945 	struct rq *rq;
4946 
4947 	rq = this_rq_lock_irq(&rf);
4948 
4949 	schedstat_inc(rq->yld_count);
4950 	current->sched_class->yield_task(rq);
4951 
4952 	/*
4953 	 * Since we are going to call schedule() anyway, there's
4954 	 * no need to preempt or enable interrupts:
4955 	 */
4956 	preempt_disable();
4957 	rq_unlock(rq, &rf);
4958 	sched_preempt_enable_no_resched();
4959 
4960 	schedule();
4961 }
4962 
4963 SYSCALL_DEFINE0(sched_yield)
4964 {
4965 	do_sched_yield();
4966 	return 0;
4967 }
4968 
4969 #ifndef CONFIG_PREEMPT
4970 int __sched _cond_resched(void)
4971 {
4972 	if (should_resched(0)) {
4973 		preempt_schedule_common();
4974 		return 1;
4975 	}
4976 	rcu_all_qs();
4977 	return 0;
4978 }
4979 EXPORT_SYMBOL(_cond_resched);
4980 #endif
4981 
4982 /*
4983  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4984  * call schedule, and on return reacquire the lock.
4985  *
4986  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4987  * operations here to prevent schedule() from being called twice (once via
4988  * spin_unlock(), once by hand).
4989  */
4990 int __cond_resched_lock(spinlock_t *lock)
4991 {
4992 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4993 	int ret = 0;
4994 
4995 	lockdep_assert_held(lock);
4996 
4997 	if (spin_needbreak(lock) || resched) {
4998 		spin_unlock(lock);
4999 		if (resched)
5000 			preempt_schedule_common();
5001 		else
5002 			cpu_relax();
5003 		ret = 1;
5004 		spin_lock(lock);
5005 	}
5006 	return ret;
5007 }
5008 EXPORT_SYMBOL(__cond_resched_lock);
5009 
5010 /**
5011  * yield - yield the current processor to other threads.
5012  *
5013  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5014  *
5015  * The scheduler is at all times free to pick the calling task as the most
5016  * eligible task to run, if removing the yield() call from your code breaks
5017  * it, its already broken.
5018  *
5019  * Typical broken usage is:
5020  *
5021  * while (!event)
5022  *	yield();
5023  *
5024  * where one assumes that yield() will let 'the other' process run that will
5025  * make event true. If the current task is a SCHED_FIFO task that will never
5026  * happen. Never use yield() as a progress guarantee!!
5027  *
5028  * If you want to use yield() to wait for something, use wait_event().
5029  * If you want to use yield() to be 'nice' for others, use cond_resched().
5030  * If you still want to use yield(), do not!
5031  */
5032 void __sched yield(void)
5033 {
5034 	set_current_state(TASK_RUNNING);
5035 	do_sched_yield();
5036 }
5037 EXPORT_SYMBOL(yield);
5038 
5039 /**
5040  * yield_to - yield the current processor to another thread in
5041  * your thread group, or accelerate that thread toward the
5042  * processor it's on.
5043  * @p: target task
5044  * @preempt: whether task preemption is allowed or not
5045  *
5046  * It's the caller's job to ensure that the target task struct
5047  * can't go away on us before we can do any checks.
5048  *
5049  * Return:
5050  *	true (>0) if we indeed boosted the target task.
5051  *	false (0) if we failed to boost the target.
5052  *	-ESRCH if there's no task to yield to.
5053  */
5054 int __sched yield_to(struct task_struct *p, bool preempt)
5055 {
5056 	struct task_struct *curr = current;
5057 	struct rq *rq, *p_rq;
5058 	unsigned long flags;
5059 	int yielded = 0;
5060 
5061 	local_irq_save(flags);
5062 	rq = this_rq();
5063 
5064 again:
5065 	p_rq = task_rq(p);
5066 	/*
5067 	 * If we're the only runnable task on the rq and target rq also
5068 	 * has only one task, there's absolutely no point in yielding.
5069 	 */
5070 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5071 		yielded = -ESRCH;
5072 		goto out_irq;
5073 	}
5074 
5075 	double_rq_lock(rq, p_rq);
5076 	if (task_rq(p) != p_rq) {
5077 		double_rq_unlock(rq, p_rq);
5078 		goto again;
5079 	}
5080 
5081 	if (!curr->sched_class->yield_to_task)
5082 		goto out_unlock;
5083 
5084 	if (curr->sched_class != p->sched_class)
5085 		goto out_unlock;
5086 
5087 	if (task_running(p_rq, p) || p->state)
5088 		goto out_unlock;
5089 
5090 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5091 	if (yielded) {
5092 		schedstat_inc(rq->yld_count);
5093 		/*
5094 		 * Make p's CPU reschedule; pick_next_entity takes care of
5095 		 * fairness.
5096 		 */
5097 		if (preempt && rq != p_rq)
5098 			resched_curr(p_rq);
5099 	}
5100 
5101 out_unlock:
5102 	double_rq_unlock(rq, p_rq);
5103 out_irq:
5104 	local_irq_restore(flags);
5105 
5106 	if (yielded > 0)
5107 		schedule();
5108 
5109 	return yielded;
5110 }
5111 EXPORT_SYMBOL_GPL(yield_to);
5112 
5113 int io_schedule_prepare(void)
5114 {
5115 	int old_iowait = current->in_iowait;
5116 
5117 	current->in_iowait = 1;
5118 	blk_schedule_flush_plug(current);
5119 
5120 	return old_iowait;
5121 }
5122 
5123 void io_schedule_finish(int token)
5124 {
5125 	current->in_iowait = token;
5126 }
5127 
5128 /*
5129  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5130  * that process accounting knows that this is a task in IO wait state.
5131  */
5132 long __sched io_schedule_timeout(long timeout)
5133 {
5134 	int token;
5135 	long ret;
5136 
5137 	token = io_schedule_prepare();
5138 	ret = schedule_timeout(timeout);
5139 	io_schedule_finish(token);
5140 
5141 	return ret;
5142 }
5143 EXPORT_SYMBOL(io_schedule_timeout);
5144 
5145 void io_schedule(void)
5146 {
5147 	int token;
5148 
5149 	token = io_schedule_prepare();
5150 	schedule();
5151 	io_schedule_finish(token);
5152 }
5153 EXPORT_SYMBOL(io_schedule);
5154 
5155 /**
5156  * sys_sched_get_priority_max - return maximum RT priority.
5157  * @policy: scheduling class.
5158  *
5159  * Return: On success, this syscall returns the maximum
5160  * rt_priority that can be used by a given scheduling class.
5161  * On failure, a negative error code is returned.
5162  */
5163 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5164 {
5165 	int ret = -EINVAL;
5166 
5167 	switch (policy) {
5168 	case SCHED_FIFO:
5169 	case SCHED_RR:
5170 		ret = MAX_USER_RT_PRIO-1;
5171 		break;
5172 	case SCHED_DEADLINE:
5173 	case SCHED_NORMAL:
5174 	case SCHED_BATCH:
5175 	case SCHED_IDLE:
5176 		ret = 0;
5177 		break;
5178 	}
5179 	return ret;
5180 }
5181 
5182 /**
5183  * sys_sched_get_priority_min - return minimum RT priority.
5184  * @policy: scheduling class.
5185  *
5186  * Return: On success, this syscall returns the minimum
5187  * rt_priority that can be used by a given scheduling class.
5188  * On failure, a negative error code is returned.
5189  */
5190 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5191 {
5192 	int ret = -EINVAL;
5193 
5194 	switch (policy) {
5195 	case SCHED_FIFO:
5196 	case SCHED_RR:
5197 		ret = 1;
5198 		break;
5199 	case SCHED_DEADLINE:
5200 	case SCHED_NORMAL:
5201 	case SCHED_BATCH:
5202 	case SCHED_IDLE:
5203 		ret = 0;
5204 	}
5205 	return ret;
5206 }
5207 
5208 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5209 {
5210 	struct task_struct *p;
5211 	unsigned int time_slice;
5212 	struct rq_flags rf;
5213 	struct rq *rq;
5214 	int retval;
5215 
5216 	if (pid < 0)
5217 		return -EINVAL;
5218 
5219 	retval = -ESRCH;
5220 	rcu_read_lock();
5221 	p = find_process_by_pid(pid);
5222 	if (!p)
5223 		goto out_unlock;
5224 
5225 	retval = security_task_getscheduler(p);
5226 	if (retval)
5227 		goto out_unlock;
5228 
5229 	rq = task_rq_lock(p, &rf);
5230 	time_slice = 0;
5231 	if (p->sched_class->get_rr_interval)
5232 		time_slice = p->sched_class->get_rr_interval(rq, p);
5233 	task_rq_unlock(rq, p, &rf);
5234 
5235 	rcu_read_unlock();
5236 	jiffies_to_timespec64(time_slice, t);
5237 	return 0;
5238 
5239 out_unlock:
5240 	rcu_read_unlock();
5241 	return retval;
5242 }
5243 
5244 /**
5245  * sys_sched_rr_get_interval - return the default timeslice of a process.
5246  * @pid: pid of the process.
5247  * @interval: userspace pointer to the timeslice value.
5248  *
5249  * this syscall writes the default timeslice value of a given process
5250  * into the user-space timespec buffer. A value of '0' means infinity.
5251  *
5252  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5253  * an error code.
5254  */
5255 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5256 		struct __kernel_timespec __user *, interval)
5257 {
5258 	struct timespec64 t;
5259 	int retval = sched_rr_get_interval(pid, &t);
5260 
5261 	if (retval == 0)
5262 		retval = put_timespec64(&t, interval);
5263 
5264 	return retval;
5265 }
5266 
5267 #ifdef CONFIG_COMPAT_32BIT_TIME
5268 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5269 		       compat_pid_t, pid,
5270 		       struct old_timespec32 __user *, interval)
5271 {
5272 	struct timespec64 t;
5273 	int retval = sched_rr_get_interval(pid, &t);
5274 
5275 	if (retval == 0)
5276 		retval = put_old_timespec32(&t, interval);
5277 	return retval;
5278 }
5279 #endif
5280 
5281 void sched_show_task(struct task_struct *p)
5282 {
5283 	unsigned long free = 0;
5284 	int ppid;
5285 
5286 	if (!try_get_task_stack(p))
5287 		return;
5288 
5289 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5290 
5291 	if (p->state == TASK_RUNNING)
5292 		printk(KERN_CONT "  running task    ");
5293 #ifdef CONFIG_DEBUG_STACK_USAGE
5294 	free = stack_not_used(p);
5295 #endif
5296 	ppid = 0;
5297 	rcu_read_lock();
5298 	if (pid_alive(p))
5299 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5300 	rcu_read_unlock();
5301 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5302 		task_pid_nr(p), ppid,
5303 		(unsigned long)task_thread_info(p)->flags);
5304 
5305 	print_worker_info(KERN_INFO, p);
5306 	show_stack(p, NULL);
5307 	put_task_stack(p);
5308 }
5309 EXPORT_SYMBOL_GPL(sched_show_task);
5310 
5311 static inline bool
5312 state_filter_match(unsigned long state_filter, struct task_struct *p)
5313 {
5314 	/* no filter, everything matches */
5315 	if (!state_filter)
5316 		return true;
5317 
5318 	/* filter, but doesn't match */
5319 	if (!(p->state & state_filter))
5320 		return false;
5321 
5322 	/*
5323 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5324 	 * TASK_KILLABLE).
5325 	 */
5326 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5327 		return false;
5328 
5329 	return true;
5330 }
5331 
5332 
5333 void show_state_filter(unsigned long state_filter)
5334 {
5335 	struct task_struct *g, *p;
5336 
5337 #if BITS_PER_LONG == 32
5338 	printk(KERN_INFO
5339 		"  task                PC stack   pid father\n");
5340 #else
5341 	printk(KERN_INFO
5342 		"  task                        PC stack   pid father\n");
5343 #endif
5344 	rcu_read_lock();
5345 	for_each_process_thread(g, p) {
5346 		/*
5347 		 * reset the NMI-timeout, listing all files on a slow
5348 		 * console might take a lot of time:
5349 		 * Also, reset softlockup watchdogs on all CPUs, because
5350 		 * another CPU might be blocked waiting for us to process
5351 		 * an IPI.
5352 		 */
5353 		touch_nmi_watchdog();
5354 		touch_all_softlockup_watchdogs();
5355 		if (state_filter_match(state_filter, p))
5356 			sched_show_task(p);
5357 	}
5358 
5359 #ifdef CONFIG_SCHED_DEBUG
5360 	if (!state_filter)
5361 		sysrq_sched_debug_show();
5362 #endif
5363 	rcu_read_unlock();
5364 	/*
5365 	 * Only show locks if all tasks are dumped:
5366 	 */
5367 	if (!state_filter)
5368 		debug_show_all_locks();
5369 }
5370 
5371 /**
5372  * init_idle - set up an idle thread for a given CPU
5373  * @idle: task in question
5374  * @cpu: CPU the idle task belongs to
5375  *
5376  * NOTE: this function does not set the idle thread's NEED_RESCHED
5377  * flag, to make booting more robust.
5378  */
5379 void init_idle(struct task_struct *idle, int cpu)
5380 {
5381 	struct rq *rq = cpu_rq(cpu);
5382 	unsigned long flags;
5383 
5384 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5385 	raw_spin_lock(&rq->lock);
5386 
5387 	__sched_fork(0, idle);
5388 	idle->state = TASK_RUNNING;
5389 	idle->se.exec_start = sched_clock();
5390 	idle->flags |= PF_IDLE;
5391 
5392 	kasan_unpoison_task_stack(idle);
5393 
5394 #ifdef CONFIG_SMP
5395 	/*
5396 	 * Its possible that init_idle() gets called multiple times on a task,
5397 	 * in that case do_set_cpus_allowed() will not do the right thing.
5398 	 *
5399 	 * And since this is boot we can forgo the serialization.
5400 	 */
5401 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5402 #endif
5403 	/*
5404 	 * We're having a chicken and egg problem, even though we are
5405 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5406 	 * lockdep check in task_group() will fail.
5407 	 *
5408 	 * Similar case to sched_fork(). / Alternatively we could
5409 	 * use task_rq_lock() here and obtain the other rq->lock.
5410 	 *
5411 	 * Silence PROVE_RCU
5412 	 */
5413 	rcu_read_lock();
5414 	__set_task_cpu(idle, cpu);
5415 	rcu_read_unlock();
5416 
5417 	rq->curr = rq->idle = idle;
5418 	idle->on_rq = TASK_ON_RQ_QUEUED;
5419 #ifdef CONFIG_SMP
5420 	idle->on_cpu = 1;
5421 #endif
5422 	raw_spin_unlock(&rq->lock);
5423 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5424 
5425 	/* Set the preempt count _outside_ the spinlocks! */
5426 	init_idle_preempt_count(idle, cpu);
5427 
5428 	/*
5429 	 * The idle tasks have their own, simple scheduling class:
5430 	 */
5431 	idle->sched_class = &idle_sched_class;
5432 	ftrace_graph_init_idle_task(idle, cpu);
5433 	vtime_init_idle(idle, cpu);
5434 #ifdef CONFIG_SMP
5435 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5436 #endif
5437 }
5438 
5439 #ifdef CONFIG_SMP
5440 
5441 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5442 			      const struct cpumask *trial)
5443 {
5444 	int ret = 1;
5445 
5446 	if (!cpumask_weight(cur))
5447 		return ret;
5448 
5449 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5450 
5451 	return ret;
5452 }
5453 
5454 int task_can_attach(struct task_struct *p,
5455 		    const struct cpumask *cs_cpus_allowed)
5456 {
5457 	int ret = 0;
5458 
5459 	/*
5460 	 * Kthreads which disallow setaffinity shouldn't be moved
5461 	 * to a new cpuset; we don't want to change their CPU
5462 	 * affinity and isolating such threads by their set of
5463 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5464 	 * applicable for such threads.  This prevents checking for
5465 	 * success of set_cpus_allowed_ptr() on all attached tasks
5466 	 * before cpus_allowed may be changed.
5467 	 */
5468 	if (p->flags & PF_NO_SETAFFINITY) {
5469 		ret = -EINVAL;
5470 		goto out;
5471 	}
5472 
5473 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5474 					      cs_cpus_allowed))
5475 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5476 
5477 out:
5478 	return ret;
5479 }
5480 
5481 bool sched_smp_initialized __read_mostly;
5482 
5483 #ifdef CONFIG_NUMA_BALANCING
5484 /* Migrate current task p to target_cpu */
5485 int migrate_task_to(struct task_struct *p, int target_cpu)
5486 {
5487 	struct migration_arg arg = { p, target_cpu };
5488 	int curr_cpu = task_cpu(p);
5489 
5490 	if (curr_cpu == target_cpu)
5491 		return 0;
5492 
5493 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5494 		return -EINVAL;
5495 
5496 	/* TODO: This is not properly updating schedstats */
5497 
5498 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5499 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5500 }
5501 
5502 /*
5503  * Requeue a task on a given node and accurately track the number of NUMA
5504  * tasks on the runqueues
5505  */
5506 void sched_setnuma(struct task_struct *p, int nid)
5507 {
5508 	bool queued, running;
5509 	struct rq_flags rf;
5510 	struct rq *rq;
5511 
5512 	rq = task_rq_lock(p, &rf);
5513 	queued = task_on_rq_queued(p);
5514 	running = task_current(rq, p);
5515 
5516 	if (queued)
5517 		dequeue_task(rq, p, DEQUEUE_SAVE);
5518 	if (running)
5519 		put_prev_task(rq, p);
5520 
5521 	p->numa_preferred_nid = nid;
5522 
5523 	if (queued)
5524 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5525 	if (running)
5526 		set_curr_task(rq, p);
5527 	task_rq_unlock(rq, p, &rf);
5528 }
5529 #endif /* CONFIG_NUMA_BALANCING */
5530 
5531 #ifdef CONFIG_HOTPLUG_CPU
5532 /*
5533  * Ensure that the idle task is using init_mm right before its CPU goes
5534  * offline.
5535  */
5536 void idle_task_exit(void)
5537 {
5538 	struct mm_struct *mm = current->active_mm;
5539 
5540 	BUG_ON(cpu_online(smp_processor_id()));
5541 
5542 	if (mm != &init_mm) {
5543 		switch_mm(mm, &init_mm, current);
5544 		current->active_mm = &init_mm;
5545 		finish_arch_post_lock_switch();
5546 	}
5547 	mmdrop(mm);
5548 }
5549 
5550 /*
5551  * Since this CPU is going 'away' for a while, fold any nr_active delta
5552  * we might have. Assumes we're called after migrate_tasks() so that the
5553  * nr_active count is stable. We need to take the teardown thread which
5554  * is calling this into account, so we hand in adjust = 1 to the load
5555  * calculation.
5556  *
5557  * Also see the comment "Global load-average calculations".
5558  */
5559 static void calc_load_migrate(struct rq *rq)
5560 {
5561 	long delta = calc_load_fold_active(rq, 1);
5562 	if (delta)
5563 		atomic_long_add(delta, &calc_load_tasks);
5564 }
5565 
5566 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5567 {
5568 }
5569 
5570 static const struct sched_class fake_sched_class = {
5571 	.put_prev_task = put_prev_task_fake,
5572 };
5573 
5574 static struct task_struct fake_task = {
5575 	/*
5576 	 * Avoid pull_{rt,dl}_task()
5577 	 */
5578 	.prio = MAX_PRIO + 1,
5579 	.sched_class = &fake_sched_class,
5580 };
5581 
5582 /*
5583  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5584  * try_to_wake_up()->select_task_rq().
5585  *
5586  * Called with rq->lock held even though we'er in stop_machine() and
5587  * there's no concurrency possible, we hold the required locks anyway
5588  * because of lock validation efforts.
5589  */
5590 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5591 {
5592 	struct rq *rq = dead_rq;
5593 	struct task_struct *next, *stop = rq->stop;
5594 	struct rq_flags orf = *rf;
5595 	int dest_cpu;
5596 
5597 	/*
5598 	 * Fudge the rq selection such that the below task selection loop
5599 	 * doesn't get stuck on the currently eligible stop task.
5600 	 *
5601 	 * We're currently inside stop_machine() and the rq is either stuck
5602 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5603 	 * either way we should never end up calling schedule() until we're
5604 	 * done here.
5605 	 */
5606 	rq->stop = NULL;
5607 
5608 	/*
5609 	 * put_prev_task() and pick_next_task() sched
5610 	 * class method both need to have an up-to-date
5611 	 * value of rq->clock[_task]
5612 	 */
5613 	update_rq_clock(rq);
5614 
5615 	for (;;) {
5616 		/*
5617 		 * There's this thread running, bail when that's the only
5618 		 * remaining thread:
5619 		 */
5620 		if (rq->nr_running == 1)
5621 			break;
5622 
5623 		/*
5624 		 * pick_next_task() assumes pinned rq->lock:
5625 		 */
5626 		next = pick_next_task(rq, &fake_task, rf);
5627 		BUG_ON(!next);
5628 		put_prev_task(rq, next);
5629 
5630 		/*
5631 		 * Rules for changing task_struct::cpus_allowed are holding
5632 		 * both pi_lock and rq->lock, such that holding either
5633 		 * stabilizes the mask.
5634 		 *
5635 		 * Drop rq->lock is not quite as disastrous as it usually is
5636 		 * because !cpu_active at this point, which means load-balance
5637 		 * will not interfere. Also, stop-machine.
5638 		 */
5639 		rq_unlock(rq, rf);
5640 		raw_spin_lock(&next->pi_lock);
5641 		rq_relock(rq, rf);
5642 
5643 		/*
5644 		 * Since we're inside stop-machine, _nothing_ should have
5645 		 * changed the task, WARN if weird stuff happened, because in
5646 		 * that case the above rq->lock drop is a fail too.
5647 		 */
5648 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5649 			raw_spin_unlock(&next->pi_lock);
5650 			continue;
5651 		}
5652 
5653 		/* Find suitable destination for @next, with force if needed. */
5654 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5655 		rq = __migrate_task(rq, rf, next, dest_cpu);
5656 		if (rq != dead_rq) {
5657 			rq_unlock(rq, rf);
5658 			rq = dead_rq;
5659 			*rf = orf;
5660 			rq_relock(rq, rf);
5661 		}
5662 		raw_spin_unlock(&next->pi_lock);
5663 	}
5664 
5665 	rq->stop = stop;
5666 }
5667 #endif /* CONFIG_HOTPLUG_CPU */
5668 
5669 void set_rq_online(struct rq *rq)
5670 {
5671 	if (!rq->online) {
5672 		const struct sched_class *class;
5673 
5674 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5675 		rq->online = 1;
5676 
5677 		for_each_class(class) {
5678 			if (class->rq_online)
5679 				class->rq_online(rq);
5680 		}
5681 	}
5682 }
5683 
5684 void set_rq_offline(struct rq *rq)
5685 {
5686 	if (rq->online) {
5687 		const struct sched_class *class;
5688 
5689 		for_each_class(class) {
5690 			if (class->rq_offline)
5691 				class->rq_offline(rq);
5692 		}
5693 
5694 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5695 		rq->online = 0;
5696 	}
5697 }
5698 
5699 /*
5700  * used to mark begin/end of suspend/resume:
5701  */
5702 static int num_cpus_frozen;
5703 
5704 /*
5705  * Update cpusets according to cpu_active mask.  If cpusets are
5706  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5707  * around partition_sched_domains().
5708  *
5709  * If we come here as part of a suspend/resume, don't touch cpusets because we
5710  * want to restore it back to its original state upon resume anyway.
5711  */
5712 static void cpuset_cpu_active(void)
5713 {
5714 	if (cpuhp_tasks_frozen) {
5715 		/*
5716 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5717 		 * resume sequence. As long as this is not the last online
5718 		 * operation in the resume sequence, just build a single sched
5719 		 * domain, ignoring cpusets.
5720 		 */
5721 		partition_sched_domains(1, NULL, NULL);
5722 		if (--num_cpus_frozen)
5723 			return;
5724 		/*
5725 		 * This is the last CPU online operation. So fall through and
5726 		 * restore the original sched domains by considering the
5727 		 * cpuset configurations.
5728 		 */
5729 		cpuset_force_rebuild();
5730 	}
5731 	cpuset_update_active_cpus();
5732 }
5733 
5734 static int cpuset_cpu_inactive(unsigned int cpu)
5735 {
5736 	if (!cpuhp_tasks_frozen) {
5737 		if (dl_cpu_busy(cpu))
5738 			return -EBUSY;
5739 		cpuset_update_active_cpus();
5740 	} else {
5741 		num_cpus_frozen++;
5742 		partition_sched_domains(1, NULL, NULL);
5743 	}
5744 	return 0;
5745 }
5746 
5747 int sched_cpu_activate(unsigned int cpu)
5748 {
5749 	struct rq *rq = cpu_rq(cpu);
5750 	struct rq_flags rf;
5751 
5752 #ifdef CONFIG_SCHED_SMT
5753 	/*
5754 	 * When going up, increment the number of cores with SMT present.
5755 	 */
5756 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5757 		static_branch_inc_cpuslocked(&sched_smt_present);
5758 #endif
5759 	set_cpu_active(cpu, true);
5760 
5761 	if (sched_smp_initialized) {
5762 		sched_domains_numa_masks_set(cpu);
5763 		cpuset_cpu_active();
5764 	}
5765 
5766 	/*
5767 	 * Put the rq online, if not already. This happens:
5768 	 *
5769 	 * 1) In the early boot process, because we build the real domains
5770 	 *    after all CPUs have been brought up.
5771 	 *
5772 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5773 	 *    domains.
5774 	 */
5775 	rq_lock_irqsave(rq, &rf);
5776 	if (rq->rd) {
5777 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5778 		set_rq_online(rq);
5779 	}
5780 	rq_unlock_irqrestore(rq, &rf);
5781 
5782 	update_max_interval();
5783 
5784 	return 0;
5785 }
5786 
5787 int sched_cpu_deactivate(unsigned int cpu)
5788 {
5789 	int ret;
5790 
5791 	set_cpu_active(cpu, false);
5792 	/*
5793 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5794 	 * users of this state to go away such that all new such users will
5795 	 * observe it.
5796 	 *
5797 	 * Do sync before park smpboot threads to take care the rcu boost case.
5798 	 */
5799 	synchronize_rcu();
5800 
5801 #ifdef CONFIG_SCHED_SMT
5802 	/*
5803 	 * When going down, decrement the number of cores with SMT present.
5804 	 */
5805 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5806 		static_branch_dec_cpuslocked(&sched_smt_present);
5807 #endif
5808 
5809 	if (!sched_smp_initialized)
5810 		return 0;
5811 
5812 	ret = cpuset_cpu_inactive(cpu);
5813 	if (ret) {
5814 		set_cpu_active(cpu, true);
5815 		return ret;
5816 	}
5817 	sched_domains_numa_masks_clear(cpu);
5818 	return 0;
5819 }
5820 
5821 static void sched_rq_cpu_starting(unsigned int cpu)
5822 {
5823 	struct rq *rq = cpu_rq(cpu);
5824 
5825 	rq->calc_load_update = calc_load_update;
5826 	update_max_interval();
5827 }
5828 
5829 int sched_cpu_starting(unsigned int cpu)
5830 {
5831 	sched_rq_cpu_starting(cpu);
5832 	sched_tick_start(cpu);
5833 	return 0;
5834 }
5835 
5836 #ifdef CONFIG_HOTPLUG_CPU
5837 int sched_cpu_dying(unsigned int cpu)
5838 {
5839 	struct rq *rq = cpu_rq(cpu);
5840 	struct rq_flags rf;
5841 
5842 	/* Handle pending wakeups and then migrate everything off */
5843 	sched_ttwu_pending();
5844 	sched_tick_stop(cpu);
5845 
5846 	rq_lock_irqsave(rq, &rf);
5847 	if (rq->rd) {
5848 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5849 		set_rq_offline(rq);
5850 	}
5851 	migrate_tasks(rq, &rf);
5852 	BUG_ON(rq->nr_running != 1);
5853 	rq_unlock_irqrestore(rq, &rf);
5854 
5855 	calc_load_migrate(rq);
5856 	update_max_interval();
5857 	nohz_balance_exit_idle(rq);
5858 	hrtick_clear(rq);
5859 	return 0;
5860 }
5861 #endif
5862 
5863 void __init sched_init_smp(void)
5864 {
5865 	sched_init_numa();
5866 
5867 	/*
5868 	 * There's no userspace yet to cause hotplug operations; hence all the
5869 	 * CPU masks are stable and all blatant races in the below code cannot
5870 	 * happen. The hotplug lock is nevertheless taken to satisfy lockdep,
5871 	 * but there won't be any contention on it.
5872 	 */
5873 	cpus_read_lock();
5874 	mutex_lock(&sched_domains_mutex);
5875 	sched_init_domains(cpu_active_mask);
5876 	mutex_unlock(&sched_domains_mutex);
5877 	cpus_read_unlock();
5878 
5879 	/* Move init over to a non-isolated CPU */
5880 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5881 		BUG();
5882 	sched_init_granularity();
5883 
5884 	init_sched_rt_class();
5885 	init_sched_dl_class();
5886 
5887 	sched_smp_initialized = true;
5888 }
5889 
5890 static int __init migration_init(void)
5891 {
5892 	sched_rq_cpu_starting(smp_processor_id());
5893 	return 0;
5894 }
5895 early_initcall(migration_init);
5896 
5897 #else
5898 void __init sched_init_smp(void)
5899 {
5900 	sched_init_granularity();
5901 }
5902 #endif /* CONFIG_SMP */
5903 
5904 int in_sched_functions(unsigned long addr)
5905 {
5906 	return in_lock_functions(addr) ||
5907 		(addr >= (unsigned long)__sched_text_start
5908 		&& addr < (unsigned long)__sched_text_end);
5909 }
5910 
5911 #ifdef CONFIG_CGROUP_SCHED
5912 /*
5913  * Default task group.
5914  * Every task in system belongs to this group at bootup.
5915  */
5916 struct task_group root_task_group;
5917 LIST_HEAD(task_groups);
5918 
5919 /* Cacheline aligned slab cache for task_group */
5920 static struct kmem_cache *task_group_cache __read_mostly;
5921 #endif
5922 
5923 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5924 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5925 
5926 void __init sched_init(void)
5927 {
5928 	int i, j;
5929 	unsigned long alloc_size = 0, ptr;
5930 
5931 	wait_bit_init();
5932 
5933 #ifdef CONFIG_FAIR_GROUP_SCHED
5934 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5935 #endif
5936 #ifdef CONFIG_RT_GROUP_SCHED
5937 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5938 #endif
5939 	if (alloc_size) {
5940 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5941 
5942 #ifdef CONFIG_FAIR_GROUP_SCHED
5943 		root_task_group.se = (struct sched_entity **)ptr;
5944 		ptr += nr_cpu_ids * sizeof(void **);
5945 
5946 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5947 		ptr += nr_cpu_ids * sizeof(void **);
5948 
5949 #endif /* CONFIG_FAIR_GROUP_SCHED */
5950 #ifdef CONFIG_RT_GROUP_SCHED
5951 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5952 		ptr += nr_cpu_ids * sizeof(void **);
5953 
5954 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5955 		ptr += nr_cpu_ids * sizeof(void **);
5956 
5957 #endif /* CONFIG_RT_GROUP_SCHED */
5958 	}
5959 #ifdef CONFIG_CPUMASK_OFFSTACK
5960 	for_each_possible_cpu(i) {
5961 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5962 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5963 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5964 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5965 	}
5966 #endif /* CONFIG_CPUMASK_OFFSTACK */
5967 
5968 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5969 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5970 
5971 #ifdef CONFIG_SMP
5972 	init_defrootdomain();
5973 #endif
5974 
5975 #ifdef CONFIG_RT_GROUP_SCHED
5976 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5977 			global_rt_period(), global_rt_runtime());
5978 #endif /* CONFIG_RT_GROUP_SCHED */
5979 
5980 #ifdef CONFIG_CGROUP_SCHED
5981 	task_group_cache = KMEM_CACHE(task_group, 0);
5982 
5983 	list_add(&root_task_group.list, &task_groups);
5984 	INIT_LIST_HEAD(&root_task_group.children);
5985 	INIT_LIST_HEAD(&root_task_group.siblings);
5986 	autogroup_init(&init_task);
5987 #endif /* CONFIG_CGROUP_SCHED */
5988 
5989 	for_each_possible_cpu(i) {
5990 		struct rq *rq;
5991 
5992 		rq = cpu_rq(i);
5993 		raw_spin_lock_init(&rq->lock);
5994 		rq->nr_running = 0;
5995 		rq->calc_load_active = 0;
5996 		rq->calc_load_update = jiffies + LOAD_FREQ;
5997 		init_cfs_rq(&rq->cfs);
5998 		init_rt_rq(&rq->rt);
5999 		init_dl_rq(&rq->dl);
6000 #ifdef CONFIG_FAIR_GROUP_SCHED
6001 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6002 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6003 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6004 		/*
6005 		 * How much CPU bandwidth does root_task_group get?
6006 		 *
6007 		 * In case of task-groups formed thr' the cgroup filesystem, it
6008 		 * gets 100% of the CPU resources in the system. This overall
6009 		 * system CPU resource is divided among the tasks of
6010 		 * root_task_group and its child task-groups in a fair manner,
6011 		 * based on each entity's (task or task-group's) weight
6012 		 * (se->load.weight).
6013 		 *
6014 		 * In other words, if root_task_group has 10 tasks of weight
6015 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6016 		 * then A0's share of the CPU resource is:
6017 		 *
6018 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6019 		 *
6020 		 * We achieve this by letting root_task_group's tasks sit
6021 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6022 		 */
6023 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6024 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6025 #endif /* CONFIG_FAIR_GROUP_SCHED */
6026 
6027 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6028 #ifdef CONFIG_RT_GROUP_SCHED
6029 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6030 #endif
6031 
6032 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6033 			rq->cpu_load[j] = 0;
6034 
6035 #ifdef CONFIG_SMP
6036 		rq->sd = NULL;
6037 		rq->rd = NULL;
6038 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6039 		rq->balance_callback = NULL;
6040 		rq->active_balance = 0;
6041 		rq->next_balance = jiffies;
6042 		rq->push_cpu = 0;
6043 		rq->cpu = i;
6044 		rq->online = 0;
6045 		rq->idle_stamp = 0;
6046 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6047 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6048 
6049 		INIT_LIST_HEAD(&rq->cfs_tasks);
6050 
6051 		rq_attach_root(rq, &def_root_domain);
6052 #ifdef CONFIG_NO_HZ_COMMON
6053 		rq->last_load_update_tick = jiffies;
6054 		rq->last_blocked_load_update_tick = jiffies;
6055 		atomic_set(&rq->nohz_flags, 0);
6056 #endif
6057 #endif /* CONFIG_SMP */
6058 		hrtick_rq_init(rq);
6059 		atomic_set(&rq->nr_iowait, 0);
6060 	}
6061 
6062 	set_load_weight(&init_task, false);
6063 
6064 	/*
6065 	 * The boot idle thread does lazy MMU switching as well:
6066 	 */
6067 	mmgrab(&init_mm);
6068 	enter_lazy_tlb(&init_mm, current);
6069 
6070 	/*
6071 	 * Make us the idle thread. Technically, schedule() should not be
6072 	 * called from this thread, however somewhere below it might be,
6073 	 * but because we are the idle thread, we just pick up running again
6074 	 * when this runqueue becomes "idle".
6075 	 */
6076 	init_idle(current, smp_processor_id());
6077 
6078 	calc_load_update = jiffies + LOAD_FREQ;
6079 
6080 #ifdef CONFIG_SMP
6081 	idle_thread_set_boot_cpu();
6082 #endif
6083 	init_sched_fair_class();
6084 
6085 	init_schedstats();
6086 
6087 	psi_init();
6088 
6089 	scheduler_running = 1;
6090 }
6091 
6092 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6093 static inline int preempt_count_equals(int preempt_offset)
6094 {
6095 	int nested = preempt_count() + rcu_preempt_depth();
6096 
6097 	return (nested == preempt_offset);
6098 }
6099 
6100 void __might_sleep(const char *file, int line, int preempt_offset)
6101 {
6102 	/*
6103 	 * Blocking primitives will set (and therefore destroy) current->state,
6104 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6105 	 * otherwise we will destroy state.
6106 	 */
6107 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6108 			"do not call blocking ops when !TASK_RUNNING; "
6109 			"state=%lx set at [<%p>] %pS\n",
6110 			current->state,
6111 			(void *)current->task_state_change,
6112 			(void *)current->task_state_change);
6113 
6114 	___might_sleep(file, line, preempt_offset);
6115 }
6116 EXPORT_SYMBOL(__might_sleep);
6117 
6118 void ___might_sleep(const char *file, int line, int preempt_offset)
6119 {
6120 	/* Ratelimiting timestamp: */
6121 	static unsigned long prev_jiffy;
6122 
6123 	unsigned long preempt_disable_ip;
6124 
6125 	/* WARN_ON_ONCE() by default, no rate limit required: */
6126 	rcu_sleep_check();
6127 
6128 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6129 	     !is_idle_task(current)) ||
6130 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6131 	    oops_in_progress)
6132 		return;
6133 
6134 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6135 		return;
6136 	prev_jiffy = jiffies;
6137 
6138 	/* Save this before calling printk(), since that will clobber it: */
6139 	preempt_disable_ip = get_preempt_disable_ip(current);
6140 
6141 	printk(KERN_ERR
6142 		"BUG: sleeping function called from invalid context at %s:%d\n",
6143 			file, line);
6144 	printk(KERN_ERR
6145 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6146 			in_atomic(), irqs_disabled(),
6147 			current->pid, current->comm);
6148 
6149 	if (task_stack_end_corrupted(current))
6150 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6151 
6152 	debug_show_held_locks(current);
6153 	if (irqs_disabled())
6154 		print_irqtrace_events(current);
6155 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6156 	    && !preempt_count_equals(preempt_offset)) {
6157 		pr_err("Preemption disabled at:");
6158 		print_ip_sym(preempt_disable_ip);
6159 		pr_cont("\n");
6160 	}
6161 	dump_stack();
6162 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6163 }
6164 EXPORT_SYMBOL(___might_sleep);
6165 #endif
6166 
6167 #ifdef CONFIG_MAGIC_SYSRQ
6168 void normalize_rt_tasks(void)
6169 {
6170 	struct task_struct *g, *p;
6171 	struct sched_attr attr = {
6172 		.sched_policy = SCHED_NORMAL,
6173 	};
6174 
6175 	read_lock(&tasklist_lock);
6176 	for_each_process_thread(g, p) {
6177 		/*
6178 		 * Only normalize user tasks:
6179 		 */
6180 		if (p->flags & PF_KTHREAD)
6181 			continue;
6182 
6183 		p->se.exec_start = 0;
6184 		schedstat_set(p->se.statistics.wait_start,  0);
6185 		schedstat_set(p->se.statistics.sleep_start, 0);
6186 		schedstat_set(p->se.statistics.block_start, 0);
6187 
6188 		if (!dl_task(p) && !rt_task(p)) {
6189 			/*
6190 			 * Renice negative nice level userspace
6191 			 * tasks back to 0:
6192 			 */
6193 			if (task_nice(p) < 0)
6194 				set_user_nice(p, 0);
6195 			continue;
6196 		}
6197 
6198 		__sched_setscheduler(p, &attr, false, false);
6199 	}
6200 	read_unlock(&tasklist_lock);
6201 }
6202 
6203 #endif /* CONFIG_MAGIC_SYSRQ */
6204 
6205 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6206 /*
6207  * These functions are only useful for the IA64 MCA handling, or kdb.
6208  *
6209  * They can only be called when the whole system has been
6210  * stopped - every CPU needs to be quiescent, and no scheduling
6211  * activity can take place. Using them for anything else would
6212  * be a serious bug, and as a result, they aren't even visible
6213  * under any other configuration.
6214  */
6215 
6216 /**
6217  * curr_task - return the current task for a given CPU.
6218  * @cpu: the processor in question.
6219  *
6220  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6221  *
6222  * Return: The current task for @cpu.
6223  */
6224 struct task_struct *curr_task(int cpu)
6225 {
6226 	return cpu_curr(cpu);
6227 }
6228 
6229 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6230 
6231 #ifdef CONFIG_IA64
6232 /**
6233  * set_curr_task - set the current task for a given CPU.
6234  * @cpu: the processor in question.
6235  * @p: the task pointer to set.
6236  *
6237  * Description: This function must only be used when non-maskable interrupts
6238  * are serviced on a separate stack. It allows the architecture to switch the
6239  * notion of the current task on a CPU in a non-blocking manner. This function
6240  * must be called with all CPU's synchronized, and interrupts disabled, the
6241  * and caller must save the original value of the current task (see
6242  * curr_task() above) and restore that value before reenabling interrupts and
6243  * re-starting the system.
6244  *
6245  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6246  */
6247 void ia64_set_curr_task(int cpu, struct task_struct *p)
6248 {
6249 	cpu_curr(cpu) = p;
6250 }
6251 
6252 #endif
6253 
6254 #ifdef CONFIG_CGROUP_SCHED
6255 /* task_group_lock serializes the addition/removal of task groups */
6256 static DEFINE_SPINLOCK(task_group_lock);
6257 
6258 static void sched_free_group(struct task_group *tg)
6259 {
6260 	free_fair_sched_group(tg);
6261 	free_rt_sched_group(tg);
6262 	autogroup_free(tg);
6263 	kmem_cache_free(task_group_cache, tg);
6264 }
6265 
6266 /* allocate runqueue etc for a new task group */
6267 struct task_group *sched_create_group(struct task_group *parent)
6268 {
6269 	struct task_group *tg;
6270 
6271 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6272 	if (!tg)
6273 		return ERR_PTR(-ENOMEM);
6274 
6275 	if (!alloc_fair_sched_group(tg, parent))
6276 		goto err;
6277 
6278 	if (!alloc_rt_sched_group(tg, parent))
6279 		goto err;
6280 
6281 	return tg;
6282 
6283 err:
6284 	sched_free_group(tg);
6285 	return ERR_PTR(-ENOMEM);
6286 }
6287 
6288 void sched_online_group(struct task_group *tg, struct task_group *parent)
6289 {
6290 	unsigned long flags;
6291 
6292 	spin_lock_irqsave(&task_group_lock, flags);
6293 	list_add_rcu(&tg->list, &task_groups);
6294 
6295 	/* Root should already exist: */
6296 	WARN_ON(!parent);
6297 
6298 	tg->parent = parent;
6299 	INIT_LIST_HEAD(&tg->children);
6300 	list_add_rcu(&tg->siblings, &parent->children);
6301 	spin_unlock_irqrestore(&task_group_lock, flags);
6302 
6303 	online_fair_sched_group(tg);
6304 }
6305 
6306 /* rcu callback to free various structures associated with a task group */
6307 static void sched_free_group_rcu(struct rcu_head *rhp)
6308 {
6309 	/* Now it should be safe to free those cfs_rqs: */
6310 	sched_free_group(container_of(rhp, struct task_group, rcu));
6311 }
6312 
6313 void sched_destroy_group(struct task_group *tg)
6314 {
6315 	/* Wait for possible concurrent references to cfs_rqs complete: */
6316 	call_rcu(&tg->rcu, sched_free_group_rcu);
6317 }
6318 
6319 void sched_offline_group(struct task_group *tg)
6320 {
6321 	unsigned long flags;
6322 
6323 	/* End participation in shares distribution: */
6324 	unregister_fair_sched_group(tg);
6325 
6326 	spin_lock_irqsave(&task_group_lock, flags);
6327 	list_del_rcu(&tg->list);
6328 	list_del_rcu(&tg->siblings);
6329 	spin_unlock_irqrestore(&task_group_lock, flags);
6330 }
6331 
6332 static void sched_change_group(struct task_struct *tsk, int type)
6333 {
6334 	struct task_group *tg;
6335 
6336 	/*
6337 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6338 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6339 	 * to prevent lockdep warnings.
6340 	 */
6341 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6342 			  struct task_group, css);
6343 	tg = autogroup_task_group(tsk, tg);
6344 	tsk->sched_task_group = tg;
6345 
6346 #ifdef CONFIG_FAIR_GROUP_SCHED
6347 	if (tsk->sched_class->task_change_group)
6348 		tsk->sched_class->task_change_group(tsk, type);
6349 	else
6350 #endif
6351 		set_task_rq(tsk, task_cpu(tsk));
6352 }
6353 
6354 /*
6355  * Change task's runqueue when it moves between groups.
6356  *
6357  * The caller of this function should have put the task in its new group by
6358  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6359  * its new group.
6360  */
6361 void sched_move_task(struct task_struct *tsk)
6362 {
6363 	int queued, running, queue_flags =
6364 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6365 	struct rq_flags rf;
6366 	struct rq *rq;
6367 
6368 	rq = task_rq_lock(tsk, &rf);
6369 	update_rq_clock(rq);
6370 
6371 	running = task_current(rq, tsk);
6372 	queued = task_on_rq_queued(tsk);
6373 
6374 	if (queued)
6375 		dequeue_task(rq, tsk, queue_flags);
6376 	if (running)
6377 		put_prev_task(rq, tsk);
6378 
6379 	sched_change_group(tsk, TASK_MOVE_GROUP);
6380 
6381 	if (queued)
6382 		enqueue_task(rq, tsk, queue_flags);
6383 	if (running)
6384 		set_curr_task(rq, tsk);
6385 
6386 	task_rq_unlock(rq, tsk, &rf);
6387 }
6388 
6389 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6390 {
6391 	return css ? container_of(css, struct task_group, css) : NULL;
6392 }
6393 
6394 static struct cgroup_subsys_state *
6395 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6396 {
6397 	struct task_group *parent = css_tg(parent_css);
6398 	struct task_group *tg;
6399 
6400 	if (!parent) {
6401 		/* This is early initialization for the top cgroup */
6402 		return &root_task_group.css;
6403 	}
6404 
6405 	tg = sched_create_group(parent);
6406 	if (IS_ERR(tg))
6407 		return ERR_PTR(-ENOMEM);
6408 
6409 	return &tg->css;
6410 }
6411 
6412 /* Expose task group only after completing cgroup initialization */
6413 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6414 {
6415 	struct task_group *tg = css_tg(css);
6416 	struct task_group *parent = css_tg(css->parent);
6417 
6418 	if (parent)
6419 		sched_online_group(tg, parent);
6420 	return 0;
6421 }
6422 
6423 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6424 {
6425 	struct task_group *tg = css_tg(css);
6426 
6427 	sched_offline_group(tg);
6428 }
6429 
6430 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6431 {
6432 	struct task_group *tg = css_tg(css);
6433 
6434 	/*
6435 	 * Relies on the RCU grace period between css_released() and this.
6436 	 */
6437 	sched_free_group(tg);
6438 }
6439 
6440 /*
6441  * This is called before wake_up_new_task(), therefore we really only
6442  * have to set its group bits, all the other stuff does not apply.
6443  */
6444 static void cpu_cgroup_fork(struct task_struct *task)
6445 {
6446 	struct rq_flags rf;
6447 	struct rq *rq;
6448 
6449 	rq = task_rq_lock(task, &rf);
6450 
6451 	update_rq_clock(rq);
6452 	sched_change_group(task, TASK_SET_GROUP);
6453 
6454 	task_rq_unlock(rq, task, &rf);
6455 }
6456 
6457 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6458 {
6459 	struct task_struct *task;
6460 	struct cgroup_subsys_state *css;
6461 	int ret = 0;
6462 
6463 	cgroup_taskset_for_each(task, css, tset) {
6464 #ifdef CONFIG_RT_GROUP_SCHED
6465 		if (!sched_rt_can_attach(css_tg(css), task))
6466 			return -EINVAL;
6467 #else
6468 		/* We don't support RT-tasks being in separate groups */
6469 		if (task->sched_class != &fair_sched_class)
6470 			return -EINVAL;
6471 #endif
6472 		/*
6473 		 * Serialize against wake_up_new_task() such that if its
6474 		 * running, we're sure to observe its full state.
6475 		 */
6476 		raw_spin_lock_irq(&task->pi_lock);
6477 		/*
6478 		 * Avoid calling sched_move_task() before wake_up_new_task()
6479 		 * has happened. This would lead to problems with PELT, due to
6480 		 * move wanting to detach+attach while we're not attached yet.
6481 		 */
6482 		if (task->state == TASK_NEW)
6483 			ret = -EINVAL;
6484 		raw_spin_unlock_irq(&task->pi_lock);
6485 
6486 		if (ret)
6487 			break;
6488 	}
6489 	return ret;
6490 }
6491 
6492 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6493 {
6494 	struct task_struct *task;
6495 	struct cgroup_subsys_state *css;
6496 
6497 	cgroup_taskset_for_each(task, css, tset)
6498 		sched_move_task(task);
6499 }
6500 
6501 #ifdef CONFIG_FAIR_GROUP_SCHED
6502 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6503 				struct cftype *cftype, u64 shareval)
6504 {
6505 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6506 }
6507 
6508 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6509 			       struct cftype *cft)
6510 {
6511 	struct task_group *tg = css_tg(css);
6512 
6513 	return (u64) scale_load_down(tg->shares);
6514 }
6515 
6516 #ifdef CONFIG_CFS_BANDWIDTH
6517 static DEFINE_MUTEX(cfs_constraints_mutex);
6518 
6519 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6520 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6521 
6522 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6523 
6524 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6525 {
6526 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6527 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6528 
6529 	if (tg == &root_task_group)
6530 		return -EINVAL;
6531 
6532 	/*
6533 	 * Ensure we have at some amount of bandwidth every period.  This is
6534 	 * to prevent reaching a state of large arrears when throttled via
6535 	 * entity_tick() resulting in prolonged exit starvation.
6536 	 */
6537 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6538 		return -EINVAL;
6539 
6540 	/*
6541 	 * Likewise, bound things on the otherside by preventing insane quota
6542 	 * periods.  This also allows us to normalize in computing quota
6543 	 * feasibility.
6544 	 */
6545 	if (period > max_cfs_quota_period)
6546 		return -EINVAL;
6547 
6548 	/*
6549 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6550 	 * unthrottle_offline_cfs_rqs().
6551 	 */
6552 	get_online_cpus();
6553 	mutex_lock(&cfs_constraints_mutex);
6554 	ret = __cfs_schedulable(tg, period, quota);
6555 	if (ret)
6556 		goto out_unlock;
6557 
6558 	runtime_enabled = quota != RUNTIME_INF;
6559 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6560 	/*
6561 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6562 	 * before making related changes, and on->off must occur afterwards
6563 	 */
6564 	if (runtime_enabled && !runtime_was_enabled)
6565 		cfs_bandwidth_usage_inc();
6566 	raw_spin_lock_irq(&cfs_b->lock);
6567 	cfs_b->period = ns_to_ktime(period);
6568 	cfs_b->quota = quota;
6569 
6570 	__refill_cfs_bandwidth_runtime(cfs_b);
6571 
6572 	/* Restart the period timer (if active) to handle new period expiry: */
6573 	if (runtime_enabled)
6574 		start_cfs_bandwidth(cfs_b);
6575 
6576 	raw_spin_unlock_irq(&cfs_b->lock);
6577 
6578 	for_each_online_cpu(i) {
6579 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6580 		struct rq *rq = cfs_rq->rq;
6581 		struct rq_flags rf;
6582 
6583 		rq_lock_irq(rq, &rf);
6584 		cfs_rq->runtime_enabled = runtime_enabled;
6585 		cfs_rq->runtime_remaining = 0;
6586 
6587 		if (cfs_rq->throttled)
6588 			unthrottle_cfs_rq(cfs_rq);
6589 		rq_unlock_irq(rq, &rf);
6590 	}
6591 	if (runtime_was_enabled && !runtime_enabled)
6592 		cfs_bandwidth_usage_dec();
6593 out_unlock:
6594 	mutex_unlock(&cfs_constraints_mutex);
6595 	put_online_cpus();
6596 
6597 	return ret;
6598 }
6599 
6600 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6601 {
6602 	u64 quota, period;
6603 
6604 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6605 	if (cfs_quota_us < 0)
6606 		quota = RUNTIME_INF;
6607 	else
6608 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6609 
6610 	return tg_set_cfs_bandwidth(tg, period, quota);
6611 }
6612 
6613 long tg_get_cfs_quota(struct task_group *tg)
6614 {
6615 	u64 quota_us;
6616 
6617 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6618 		return -1;
6619 
6620 	quota_us = tg->cfs_bandwidth.quota;
6621 	do_div(quota_us, NSEC_PER_USEC);
6622 
6623 	return quota_us;
6624 }
6625 
6626 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6627 {
6628 	u64 quota, period;
6629 
6630 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6631 	quota = tg->cfs_bandwidth.quota;
6632 
6633 	return tg_set_cfs_bandwidth(tg, period, quota);
6634 }
6635 
6636 long tg_get_cfs_period(struct task_group *tg)
6637 {
6638 	u64 cfs_period_us;
6639 
6640 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6641 	do_div(cfs_period_us, NSEC_PER_USEC);
6642 
6643 	return cfs_period_us;
6644 }
6645 
6646 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6647 				  struct cftype *cft)
6648 {
6649 	return tg_get_cfs_quota(css_tg(css));
6650 }
6651 
6652 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6653 				   struct cftype *cftype, s64 cfs_quota_us)
6654 {
6655 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6656 }
6657 
6658 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6659 				   struct cftype *cft)
6660 {
6661 	return tg_get_cfs_period(css_tg(css));
6662 }
6663 
6664 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6665 				    struct cftype *cftype, u64 cfs_period_us)
6666 {
6667 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6668 }
6669 
6670 struct cfs_schedulable_data {
6671 	struct task_group *tg;
6672 	u64 period, quota;
6673 };
6674 
6675 /*
6676  * normalize group quota/period to be quota/max_period
6677  * note: units are usecs
6678  */
6679 static u64 normalize_cfs_quota(struct task_group *tg,
6680 			       struct cfs_schedulable_data *d)
6681 {
6682 	u64 quota, period;
6683 
6684 	if (tg == d->tg) {
6685 		period = d->period;
6686 		quota = d->quota;
6687 	} else {
6688 		period = tg_get_cfs_period(tg);
6689 		quota = tg_get_cfs_quota(tg);
6690 	}
6691 
6692 	/* note: these should typically be equivalent */
6693 	if (quota == RUNTIME_INF || quota == -1)
6694 		return RUNTIME_INF;
6695 
6696 	return to_ratio(period, quota);
6697 }
6698 
6699 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6700 {
6701 	struct cfs_schedulable_data *d = data;
6702 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6703 	s64 quota = 0, parent_quota = -1;
6704 
6705 	if (!tg->parent) {
6706 		quota = RUNTIME_INF;
6707 	} else {
6708 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6709 
6710 		quota = normalize_cfs_quota(tg, d);
6711 		parent_quota = parent_b->hierarchical_quota;
6712 
6713 		/*
6714 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6715 		 * always take the min.  On cgroup1, only inherit when no
6716 		 * limit is set:
6717 		 */
6718 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6719 			quota = min(quota, parent_quota);
6720 		} else {
6721 			if (quota == RUNTIME_INF)
6722 				quota = parent_quota;
6723 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6724 				return -EINVAL;
6725 		}
6726 	}
6727 	cfs_b->hierarchical_quota = quota;
6728 
6729 	return 0;
6730 }
6731 
6732 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6733 {
6734 	int ret;
6735 	struct cfs_schedulable_data data = {
6736 		.tg = tg,
6737 		.period = period,
6738 		.quota = quota,
6739 	};
6740 
6741 	if (quota != RUNTIME_INF) {
6742 		do_div(data.period, NSEC_PER_USEC);
6743 		do_div(data.quota, NSEC_PER_USEC);
6744 	}
6745 
6746 	rcu_read_lock();
6747 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6748 	rcu_read_unlock();
6749 
6750 	return ret;
6751 }
6752 
6753 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6754 {
6755 	struct task_group *tg = css_tg(seq_css(sf));
6756 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6757 
6758 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6759 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6760 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6761 
6762 	if (schedstat_enabled() && tg != &root_task_group) {
6763 		u64 ws = 0;
6764 		int i;
6765 
6766 		for_each_possible_cpu(i)
6767 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6768 
6769 		seq_printf(sf, "wait_sum %llu\n", ws);
6770 	}
6771 
6772 	return 0;
6773 }
6774 #endif /* CONFIG_CFS_BANDWIDTH */
6775 #endif /* CONFIG_FAIR_GROUP_SCHED */
6776 
6777 #ifdef CONFIG_RT_GROUP_SCHED
6778 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6779 				struct cftype *cft, s64 val)
6780 {
6781 	return sched_group_set_rt_runtime(css_tg(css), val);
6782 }
6783 
6784 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6785 			       struct cftype *cft)
6786 {
6787 	return sched_group_rt_runtime(css_tg(css));
6788 }
6789 
6790 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6791 				    struct cftype *cftype, u64 rt_period_us)
6792 {
6793 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6794 }
6795 
6796 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6797 				   struct cftype *cft)
6798 {
6799 	return sched_group_rt_period(css_tg(css));
6800 }
6801 #endif /* CONFIG_RT_GROUP_SCHED */
6802 
6803 static struct cftype cpu_legacy_files[] = {
6804 #ifdef CONFIG_FAIR_GROUP_SCHED
6805 	{
6806 		.name = "shares",
6807 		.read_u64 = cpu_shares_read_u64,
6808 		.write_u64 = cpu_shares_write_u64,
6809 	},
6810 #endif
6811 #ifdef CONFIG_CFS_BANDWIDTH
6812 	{
6813 		.name = "cfs_quota_us",
6814 		.read_s64 = cpu_cfs_quota_read_s64,
6815 		.write_s64 = cpu_cfs_quota_write_s64,
6816 	},
6817 	{
6818 		.name = "cfs_period_us",
6819 		.read_u64 = cpu_cfs_period_read_u64,
6820 		.write_u64 = cpu_cfs_period_write_u64,
6821 	},
6822 	{
6823 		.name = "stat",
6824 		.seq_show = cpu_cfs_stat_show,
6825 	},
6826 #endif
6827 #ifdef CONFIG_RT_GROUP_SCHED
6828 	{
6829 		.name = "rt_runtime_us",
6830 		.read_s64 = cpu_rt_runtime_read,
6831 		.write_s64 = cpu_rt_runtime_write,
6832 	},
6833 	{
6834 		.name = "rt_period_us",
6835 		.read_u64 = cpu_rt_period_read_uint,
6836 		.write_u64 = cpu_rt_period_write_uint,
6837 	},
6838 #endif
6839 	{ }	/* Terminate */
6840 };
6841 
6842 static int cpu_extra_stat_show(struct seq_file *sf,
6843 			       struct cgroup_subsys_state *css)
6844 {
6845 #ifdef CONFIG_CFS_BANDWIDTH
6846 	{
6847 		struct task_group *tg = css_tg(css);
6848 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6849 		u64 throttled_usec;
6850 
6851 		throttled_usec = cfs_b->throttled_time;
6852 		do_div(throttled_usec, NSEC_PER_USEC);
6853 
6854 		seq_printf(sf, "nr_periods %d\n"
6855 			   "nr_throttled %d\n"
6856 			   "throttled_usec %llu\n",
6857 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6858 			   throttled_usec);
6859 	}
6860 #endif
6861 	return 0;
6862 }
6863 
6864 #ifdef CONFIG_FAIR_GROUP_SCHED
6865 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6866 			       struct cftype *cft)
6867 {
6868 	struct task_group *tg = css_tg(css);
6869 	u64 weight = scale_load_down(tg->shares);
6870 
6871 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6872 }
6873 
6874 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6875 				struct cftype *cft, u64 weight)
6876 {
6877 	/*
6878 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6879 	 * values which are 1, 100 and 10000 respectively.  While it loses
6880 	 * a bit of range on both ends, it maps pretty well onto the shares
6881 	 * value used by scheduler and the round-trip conversions preserve
6882 	 * the original value over the entire range.
6883 	 */
6884 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6885 		return -ERANGE;
6886 
6887 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6888 
6889 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6890 }
6891 
6892 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6893 				    struct cftype *cft)
6894 {
6895 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6896 	int last_delta = INT_MAX;
6897 	int prio, delta;
6898 
6899 	/* find the closest nice value to the current weight */
6900 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6901 		delta = abs(sched_prio_to_weight[prio] - weight);
6902 		if (delta >= last_delta)
6903 			break;
6904 		last_delta = delta;
6905 	}
6906 
6907 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6908 }
6909 
6910 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6911 				     struct cftype *cft, s64 nice)
6912 {
6913 	unsigned long weight;
6914 	int idx;
6915 
6916 	if (nice < MIN_NICE || nice > MAX_NICE)
6917 		return -ERANGE;
6918 
6919 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6920 	idx = array_index_nospec(idx, 40);
6921 	weight = sched_prio_to_weight[idx];
6922 
6923 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6924 }
6925 #endif
6926 
6927 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6928 						  long period, long quota)
6929 {
6930 	if (quota < 0)
6931 		seq_puts(sf, "max");
6932 	else
6933 		seq_printf(sf, "%ld", quota);
6934 
6935 	seq_printf(sf, " %ld\n", period);
6936 }
6937 
6938 /* caller should put the current value in *@periodp before calling */
6939 static int __maybe_unused cpu_period_quota_parse(char *buf,
6940 						 u64 *periodp, u64 *quotap)
6941 {
6942 	char tok[21];	/* U64_MAX */
6943 
6944 	if (!sscanf(buf, "%s %llu", tok, periodp))
6945 		return -EINVAL;
6946 
6947 	*periodp *= NSEC_PER_USEC;
6948 
6949 	if (sscanf(tok, "%llu", quotap))
6950 		*quotap *= NSEC_PER_USEC;
6951 	else if (!strcmp(tok, "max"))
6952 		*quotap = RUNTIME_INF;
6953 	else
6954 		return -EINVAL;
6955 
6956 	return 0;
6957 }
6958 
6959 #ifdef CONFIG_CFS_BANDWIDTH
6960 static int cpu_max_show(struct seq_file *sf, void *v)
6961 {
6962 	struct task_group *tg = css_tg(seq_css(sf));
6963 
6964 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6965 	return 0;
6966 }
6967 
6968 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6969 			     char *buf, size_t nbytes, loff_t off)
6970 {
6971 	struct task_group *tg = css_tg(of_css(of));
6972 	u64 period = tg_get_cfs_period(tg);
6973 	u64 quota;
6974 	int ret;
6975 
6976 	ret = cpu_period_quota_parse(buf, &period, &quota);
6977 	if (!ret)
6978 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6979 	return ret ?: nbytes;
6980 }
6981 #endif
6982 
6983 static struct cftype cpu_files[] = {
6984 #ifdef CONFIG_FAIR_GROUP_SCHED
6985 	{
6986 		.name = "weight",
6987 		.flags = CFTYPE_NOT_ON_ROOT,
6988 		.read_u64 = cpu_weight_read_u64,
6989 		.write_u64 = cpu_weight_write_u64,
6990 	},
6991 	{
6992 		.name = "weight.nice",
6993 		.flags = CFTYPE_NOT_ON_ROOT,
6994 		.read_s64 = cpu_weight_nice_read_s64,
6995 		.write_s64 = cpu_weight_nice_write_s64,
6996 	},
6997 #endif
6998 #ifdef CONFIG_CFS_BANDWIDTH
6999 	{
7000 		.name = "max",
7001 		.flags = CFTYPE_NOT_ON_ROOT,
7002 		.seq_show = cpu_max_show,
7003 		.write = cpu_max_write,
7004 	},
7005 #endif
7006 	{ }	/* terminate */
7007 };
7008 
7009 struct cgroup_subsys cpu_cgrp_subsys = {
7010 	.css_alloc	= cpu_cgroup_css_alloc,
7011 	.css_online	= cpu_cgroup_css_online,
7012 	.css_released	= cpu_cgroup_css_released,
7013 	.css_free	= cpu_cgroup_css_free,
7014 	.css_extra_stat_show = cpu_extra_stat_show,
7015 	.fork		= cpu_cgroup_fork,
7016 	.can_attach	= cpu_cgroup_can_attach,
7017 	.attach		= cpu_cgroup_attach,
7018 	.legacy_cftypes	= cpu_legacy_files,
7019 	.dfl_cftypes	= cpu_files,
7020 	.early_init	= true,
7021 	.threaded	= true,
7022 };
7023 
7024 #endif	/* CONFIG_CGROUP_SCHED */
7025 
7026 void dump_cpu_task(int cpu)
7027 {
7028 	pr_info("Task dump for CPU %d:\n", cpu);
7029 	sched_show_task(cpu_curr(cpu));
7030 }
7031 
7032 /*
7033  * Nice levels are multiplicative, with a gentle 10% change for every
7034  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7035  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7036  * that remained on nice 0.
7037  *
7038  * The "10% effect" is relative and cumulative: from _any_ nice level,
7039  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7040  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7041  * If a task goes up by ~10% and another task goes down by ~10% then
7042  * the relative distance between them is ~25%.)
7043  */
7044 const int sched_prio_to_weight[40] = {
7045  /* -20 */     88761,     71755,     56483,     46273,     36291,
7046  /* -15 */     29154,     23254,     18705,     14949,     11916,
7047  /* -10 */      9548,      7620,      6100,      4904,      3906,
7048  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7049  /*   0 */      1024,       820,       655,       526,       423,
7050  /*   5 */       335,       272,       215,       172,       137,
7051  /*  10 */       110,        87,        70,        56,        45,
7052  /*  15 */        36,        29,        23,        18,        15,
7053 };
7054 
7055 /*
7056  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7057  *
7058  * In cases where the weight does not change often, we can use the
7059  * precalculated inverse to speed up arithmetics by turning divisions
7060  * into multiplications:
7061  */
7062 const u32 sched_prio_to_wmult[40] = {
7063  /* -20 */     48388,     59856,     76040,     92818,    118348,
7064  /* -15 */    147320,    184698,    229616,    287308,    360437,
7065  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7066  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7067  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7068  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7069  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7070  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7071 };
7072 
7073 #undef CREATE_TRACE_POINTS
7074