xref: /openbmc/linux/kernel/sched/core.c (revision 31368ce8)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 
20 #include <linux/blkdev.h>
21 #include <linux/kprobes.h>
22 #include <linux/mmu_context.h>
23 #include <linux/module.h>
24 #include <linux/nmi.h>
25 #include <linux/prefetch.h>
26 #include <linux/profile.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 
30 #include <asm/switch_to.h>
31 #include <asm/tlb.h>
32 #ifdef CONFIG_PARAVIRT
33 #include <asm/paravirt.h>
34 #endif
35 
36 #include "sched.h"
37 #include "../workqueue_internal.h"
38 #include "../smpboot.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/sched.h>
42 
43 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
44 
45 /*
46  * Debugging: various feature bits
47  */
48 
49 #define SCHED_FEAT(name, enabled)	\
50 	(1UL << __SCHED_FEAT_##name) * enabled |
51 
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 	0;
55 
56 #undef SCHED_FEAT
57 
58 /*
59  * Number of tasks to iterate in a single balance run.
60  * Limited because this is done with IRQs disabled.
61  */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63 
64 /*
65  * period over which we average the RT time consumption, measured
66  * in ms.
67  *
68  * default: 1s
69  */
70 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
71 
72 /*
73  * period over which we measure -rt task CPU usage in us.
74  * default: 1s
75  */
76 unsigned int sysctl_sched_rt_period = 1000000;
77 
78 __read_mostly int scheduler_running;
79 
80 /*
81  * part of the period that we allow rt tasks to run in us.
82  * default: 0.95s
83  */
84 int sysctl_sched_rt_runtime = 950000;
85 
86 /* CPUs with isolated domains */
87 cpumask_var_t cpu_isolated_map;
88 
89 /*
90  * __task_rq_lock - lock the rq @p resides on.
91  */
92 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 	__acquires(rq->lock)
94 {
95 	struct rq *rq;
96 
97 	lockdep_assert_held(&p->pi_lock);
98 
99 	for (;;) {
100 		rq = task_rq(p);
101 		raw_spin_lock(&rq->lock);
102 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
103 			rq_pin_lock(rq, rf);
104 			return rq;
105 		}
106 		raw_spin_unlock(&rq->lock);
107 
108 		while (unlikely(task_on_rq_migrating(p)))
109 			cpu_relax();
110 	}
111 }
112 
113 /*
114  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
115  */
116 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
117 	__acquires(p->pi_lock)
118 	__acquires(rq->lock)
119 {
120 	struct rq *rq;
121 
122 	for (;;) {
123 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
124 		rq = task_rq(p);
125 		raw_spin_lock(&rq->lock);
126 		/*
127 		 *	move_queued_task()		task_rq_lock()
128 		 *
129 		 *	ACQUIRE (rq->lock)
130 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
131 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
132 		 *	[S] ->cpu = new_cpu		[L] task_rq()
133 		 *					[L] ->on_rq
134 		 *	RELEASE (rq->lock)
135 		 *
136 		 * If we observe the old cpu in task_rq_lock, the acquire of
137 		 * the old rq->lock will fully serialize against the stores.
138 		 *
139 		 * If we observe the new CPU in task_rq_lock, the acquire will
140 		 * pair with the WMB to ensure we must then also see migrating.
141 		 */
142 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
143 			rq_pin_lock(rq, rf);
144 			return rq;
145 		}
146 		raw_spin_unlock(&rq->lock);
147 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
148 
149 		while (unlikely(task_on_rq_migrating(p)))
150 			cpu_relax();
151 	}
152 }
153 
154 /*
155  * RQ-clock updating methods:
156  */
157 
158 static void update_rq_clock_task(struct rq *rq, s64 delta)
159 {
160 /*
161  * In theory, the compile should just see 0 here, and optimize out the call
162  * to sched_rt_avg_update. But I don't trust it...
163  */
164 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
165 	s64 steal = 0, irq_delta = 0;
166 #endif
167 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
168 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
169 
170 	/*
171 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
172 	 * this case when a previous update_rq_clock() happened inside a
173 	 * {soft,}irq region.
174 	 *
175 	 * When this happens, we stop ->clock_task and only update the
176 	 * prev_irq_time stamp to account for the part that fit, so that a next
177 	 * update will consume the rest. This ensures ->clock_task is
178 	 * monotonic.
179 	 *
180 	 * It does however cause some slight miss-attribution of {soft,}irq
181 	 * time, a more accurate solution would be to update the irq_time using
182 	 * the current rq->clock timestamp, except that would require using
183 	 * atomic ops.
184 	 */
185 	if (irq_delta > delta)
186 		irq_delta = delta;
187 
188 	rq->prev_irq_time += irq_delta;
189 	delta -= irq_delta;
190 #endif
191 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
192 	if (static_key_false((&paravirt_steal_rq_enabled))) {
193 		steal = paravirt_steal_clock(cpu_of(rq));
194 		steal -= rq->prev_steal_time_rq;
195 
196 		if (unlikely(steal > delta))
197 			steal = delta;
198 
199 		rq->prev_steal_time_rq += steal;
200 		delta -= steal;
201 	}
202 #endif
203 
204 	rq->clock_task += delta;
205 
206 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
207 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
208 		sched_rt_avg_update(rq, irq_delta + steal);
209 #endif
210 }
211 
212 void update_rq_clock(struct rq *rq)
213 {
214 	s64 delta;
215 
216 	lockdep_assert_held(&rq->lock);
217 
218 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
219 		return;
220 
221 #ifdef CONFIG_SCHED_DEBUG
222 	if (sched_feat(WARN_DOUBLE_CLOCK))
223 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
224 	rq->clock_update_flags |= RQCF_UPDATED;
225 #endif
226 
227 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
228 	if (delta < 0)
229 		return;
230 	rq->clock += delta;
231 	update_rq_clock_task(rq, delta);
232 }
233 
234 
235 #ifdef CONFIG_SCHED_HRTICK
236 /*
237  * Use HR-timers to deliver accurate preemption points.
238  */
239 
240 static void hrtick_clear(struct rq *rq)
241 {
242 	if (hrtimer_active(&rq->hrtick_timer))
243 		hrtimer_cancel(&rq->hrtick_timer);
244 }
245 
246 /*
247  * High-resolution timer tick.
248  * Runs from hardirq context with interrupts disabled.
249  */
250 static enum hrtimer_restart hrtick(struct hrtimer *timer)
251 {
252 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
253 	struct rq_flags rf;
254 
255 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
256 
257 	rq_lock(rq, &rf);
258 	update_rq_clock(rq);
259 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
260 	rq_unlock(rq, &rf);
261 
262 	return HRTIMER_NORESTART;
263 }
264 
265 #ifdef CONFIG_SMP
266 
267 static void __hrtick_restart(struct rq *rq)
268 {
269 	struct hrtimer *timer = &rq->hrtick_timer;
270 
271 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
272 }
273 
274 /*
275  * called from hardirq (IPI) context
276  */
277 static void __hrtick_start(void *arg)
278 {
279 	struct rq *rq = arg;
280 	struct rq_flags rf;
281 
282 	rq_lock(rq, &rf);
283 	__hrtick_restart(rq);
284 	rq->hrtick_csd_pending = 0;
285 	rq_unlock(rq, &rf);
286 }
287 
288 /*
289  * Called to set the hrtick timer state.
290  *
291  * called with rq->lock held and irqs disabled
292  */
293 void hrtick_start(struct rq *rq, u64 delay)
294 {
295 	struct hrtimer *timer = &rq->hrtick_timer;
296 	ktime_t time;
297 	s64 delta;
298 
299 	/*
300 	 * Don't schedule slices shorter than 10000ns, that just
301 	 * doesn't make sense and can cause timer DoS.
302 	 */
303 	delta = max_t(s64, delay, 10000LL);
304 	time = ktime_add_ns(timer->base->get_time(), delta);
305 
306 	hrtimer_set_expires(timer, time);
307 
308 	if (rq == this_rq()) {
309 		__hrtick_restart(rq);
310 	} else if (!rq->hrtick_csd_pending) {
311 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
312 		rq->hrtick_csd_pending = 1;
313 	}
314 }
315 
316 #else
317 /*
318  * Called to set the hrtick timer state.
319  *
320  * called with rq->lock held and irqs disabled
321  */
322 void hrtick_start(struct rq *rq, u64 delay)
323 {
324 	/*
325 	 * Don't schedule slices shorter than 10000ns, that just
326 	 * doesn't make sense. Rely on vruntime for fairness.
327 	 */
328 	delay = max_t(u64, delay, 10000LL);
329 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
330 		      HRTIMER_MODE_REL_PINNED);
331 }
332 #endif /* CONFIG_SMP */
333 
334 static void init_rq_hrtick(struct rq *rq)
335 {
336 #ifdef CONFIG_SMP
337 	rq->hrtick_csd_pending = 0;
338 
339 	rq->hrtick_csd.flags = 0;
340 	rq->hrtick_csd.func = __hrtick_start;
341 	rq->hrtick_csd.info = rq;
342 #endif
343 
344 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
345 	rq->hrtick_timer.function = hrtick;
346 }
347 #else	/* CONFIG_SCHED_HRTICK */
348 static inline void hrtick_clear(struct rq *rq)
349 {
350 }
351 
352 static inline void init_rq_hrtick(struct rq *rq)
353 {
354 }
355 #endif	/* CONFIG_SCHED_HRTICK */
356 
357 /*
358  * cmpxchg based fetch_or, macro so it works for different integer types
359  */
360 #define fetch_or(ptr, mask)						\
361 	({								\
362 		typeof(ptr) _ptr = (ptr);				\
363 		typeof(mask) _mask = (mask);				\
364 		typeof(*_ptr) _old, _val = *_ptr;			\
365 									\
366 		for (;;) {						\
367 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
368 			if (_old == _val)				\
369 				break;					\
370 			_val = _old;					\
371 		}							\
372 	_old;								\
373 })
374 
375 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
376 /*
377  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
378  * this avoids any races wrt polling state changes and thereby avoids
379  * spurious IPIs.
380  */
381 static bool set_nr_and_not_polling(struct task_struct *p)
382 {
383 	struct thread_info *ti = task_thread_info(p);
384 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
385 }
386 
387 /*
388  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
389  *
390  * If this returns true, then the idle task promises to call
391  * sched_ttwu_pending() and reschedule soon.
392  */
393 static bool set_nr_if_polling(struct task_struct *p)
394 {
395 	struct thread_info *ti = task_thread_info(p);
396 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
397 
398 	for (;;) {
399 		if (!(val & _TIF_POLLING_NRFLAG))
400 			return false;
401 		if (val & _TIF_NEED_RESCHED)
402 			return true;
403 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
404 		if (old == val)
405 			break;
406 		val = old;
407 	}
408 	return true;
409 }
410 
411 #else
412 static bool set_nr_and_not_polling(struct task_struct *p)
413 {
414 	set_tsk_need_resched(p);
415 	return true;
416 }
417 
418 #ifdef CONFIG_SMP
419 static bool set_nr_if_polling(struct task_struct *p)
420 {
421 	return false;
422 }
423 #endif
424 #endif
425 
426 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
427 {
428 	struct wake_q_node *node = &task->wake_q;
429 
430 	/*
431 	 * Atomically grab the task, if ->wake_q is !nil already it means
432 	 * its already queued (either by us or someone else) and will get the
433 	 * wakeup due to that.
434 	 *
435 	 * This cmpxchg() implies a full barrier, which pairs with the write
436 	 * barrier implied by the wakeup in wake_up_q().
437 	 */
438 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
439 		return;
440 
441 	get_task_struct(task);
442 
443 	/*
444 	 * The head is context local, there can be no concurrency.
445 	 */
446 	*head->lastp = node;
447 	head->lastp = &node->next;
448 }
449 
450 void wake_up_q(struct wake_q_head *head)
451 {
452 	struct wake_q_node *node = head->first;
453 
454 	while (node != WAKE_Q_TAIL) {
455 		struct task_struct *task;
456 
457 		task = container_of(node, struct task_struct, wake_q);
458 		BUG_ON(!task);
459 		/* Task can safely be re-inserted now: */
460 		node = node->next;
461 		task->wake_q.next = NULL;
462 
463 		/*
464 		 * wake_up_process() implies a wmb() to pair with the queueing
465 		 * in wake_q_add() so as not to miss wakeups.
466 		 */
467 		wake_up_process(task);
468 		put_task_struct(task);
469 	}
470 }
471 
472 /*
473  * resched_curr - mark rq's current task 'to be rescheduled now'.
474  *
475  * On UP this means the setting of the need_resched flag, on SMP it
476  * might also involve a cross-CPU call to trigger the scheduler on
477  * the target CPU.
478  */
479 void resched_curr(struct rq *rq)
480 {
481 	struct task_struct *curr = rq->curr;
482 	int cpu;
483 
484 	lockdep_assert_held(&rq->lock);
485 
486 	if (test_tsk_need_resched(curr))
487 		return;
488 
489 	cpu = cpu_of(rq);
490 
491 	if (cpu == smp_processor_id()) {
492 		set_tsk_need_resched(curr);
493 		set_preempt_need_resched();
494 		return;
495 	}
496 
497 	if (set_nr_and_not_polling(curr))
498 		smp_send_reschedule(cpu);
499 	else
500 		trace_sched_wake_idle_without_ipi(cpu);
501 }
502 
503 void resched_cpu(int cpu)
504 {
505 	struct rq *rq = cpu_rq(cpu);
506 	unsigned long flags;
507 
508 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
509 		return;
510 	resched_curr(rq);
511 	raw_spin_unlock_irqrestore(&rq->lock, flags);
512 }
513 
514 #ifdef CONFIG_SMP
515 #ifdef CONFIG_NO_HZ_COMMON
516 /*
517  * In the semi idle case, use the nearest busy CPU for migrating timers
518  * from an idle CPU.  This is good for power-savings.
519  *
520  * We don't do similar optimization for completely idle system, as
521  * selecting an idle CPU will add more delays to the timers than intended
522  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
523  */
524 int get_nohz_timer_target(void)
525 {
526 	int i, cpu = smp_processor_id();
527 	struct sched_domain *sd;
528 
529 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
530 		return cpu;
531 
532 	rcu_read_lock();
533 	for_each_domain(cpu, sd) {
534 		for_each_cpu(i, sched_domain_span(sd)) {
535 			if (cpu == i)
536 				continue;
537 
538 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
539 				cpu = i;
540 				goto unlock;
541 			}
542 		}
543 	}
544 
545 	if (!is_housekeeping_cpu(cpu))
546 		cpu = housekeeping_any_cpu();
547 unlock:
548 	rcu_read_unlock();
549 	return cpu;
550 }
551 
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 	struct rq *rq = cpu_rq(cpu);
565 
566 	if (cpu == smp_processor_id())
567 		return;
568 
569 	if (set_nr_and_not_polling(rq->idle))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 	/*
578 	 * We just need the target to call irq_exit() and re-evaluate
579 	 * the next tick. The nohz full kick at least implies that.
580 	 * If needed we can still optimize that later with an
581 	 * empty IRQ.
582 	 */
583 	if (cpu_is_offline(cpu))
584 		return true;  /* Don't try to wake offline CPUs. */
585 	if (tick_nohz_full_cpu(cpu)) {
586 		if (cpu != smp_processor_id() ||
587 		    tick_nohz_tick_stopped())
588 			tick_nohz_full_kick_cpu(cpu);
589 		return true;
590 	}
591 
592 	return false;
593 }
594 
595 /*
596  * Wake up the specified CPU.  If the CPU is going offline, it is the
597  * caller's responsibility to deal with the lost wakeup, for example,
598  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
599  */
600 void wake_up_nohz_cpu(int cpu)
601 {
602 	if (!wake_up_full_nohz_cpu(cpu))
603 		wake_up_idle_cpu(cpu);
604 }
605 
606 static inline bool got_nohz_idle_kick(void)
607 {
608 	int cpu = smp_processor_id();
609 
610 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
611 		return false;
612 
613 	if (idle_cpu(cpu) && !need_resched())
614 		return true;
615 
616 	/*
617 	 * We can't run Idle Load Balance on this CPU for this time so we
618 	 * cancel it and clear NOHZ_BALANCE_KICK
619 	 */
620 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
621 	return false;
622 }
623 
624 #else /* CONFIG_NO_HZ_COMMON */
625 
626 static inline bool got_nohz_idle_kick(void)
627 {
628 	return false;
629 }
630 
631 #endif /* CONFIG_NO_HZ_COMMON */
632 
633 #ifdef CONFIG_NO_HZ_FULL
634 bool sched_can_stop_tick(struct rq *rq)
635 {
636 	int fifo_nr_running;
637 
638 	/* Deadline tasks, even if single, need the tick */
639 	if (rq->dl.dl_nr_running)
640 		return false;
641 
642 	/*
643 	 * If there are more than one RR tasks, we need the tick to effect the
644 	 * actual RR behaviour.
645 	 */
646 	if (rq->rt.rr_nr_running) {
647 		if (rq->rt.rr_nr_running == 1)
648 			return true;
649 		else
650 			return false;
651 	}
652 
653 	/*
654 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
655 	 * forced preemption between FIFO tasks.
656 	 */
657 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
658 	if (fifo_nr_running)
659 		return true;
660 
661 	/*
662 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
663 	 * if there's more than one we need the tick for involuntary
664 	 * preemption.
665 	 */
666 	if (rq->nr_running > 1)
667 		return false;
668 
669 	return true;
670 }
671 #endif /* CONFIG_NO_HZ_FULL */
672 
673 void sched_avg_update(struct rq *rq)
674 {
675 	s64 period = sched_avg_period();
676 
677 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
678 		/*
679 		 * Inline assembly required to prevent the compiler
680 		 * optimising this loop into a divmod call.
681 		 * See __iter_div_u64_rem() for another example of this.
682 		 */
683 		asm("" : "+rm" (rq->age_stamp));
684 		rq->age_stamp += period;
685 		rq->rt_avg /= 2;
686 	}
687 }
688 
689 #endif /* CONFIG_SMP */
690 
691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
692 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693 /*
694  * Iterate task_group tree rooted at *from, calling @down when first entering a
695  * node and @up when leaving it for the final time.
696  *
697  * Caller must hold rcu_lock or sufficient equivalent.
698  */
699 int walk_tg_tree_from(struct task_group *from,
700 			     tg_visitor down, tg_visitor up, void *data)
701 {
702 	struct task_group *parent, *child;
703 	int ret;
704 
705 	parent = from;
706 
707 down:
708 	ret = (*down)(parent, data);
709 	if (ret)
710 		goto out;
711 	list_for_each_entry_rcu(child, &parent->children, siblings) {
712 		parent = child;
713 		goto down;
714 
715 up:
716 		continue;
717 	}
718 	ret = (*up)(parent, data);
719 	if (ret || parent == from)
720 		goto out;
721 
722 	child = parent;
723 	parent = parent->parent;
724 	if (parent)
725 		goto up;
726 out:
727 	return ret;
728 }
729 
730 int tg_nop(struct task_group *tg, void *data)
731 {
732 	return 0;
733 }
734 #endif
735 
736 static void set_load_weight(struct task_struct *p)
737 {
738 	int prio = p->static_prio - MAX_RT_PRIO;
739 	struct load_weight *load = &p->se.load;
740 
741 	/*
742 	 * SCHED_IDLE tasks get minimal weight:
743 	 */
744 	if (idle_policy(p->policy)) {
745 		load->weight = scale_load(WEIGHT_IDLEPRIO);
746 		load->inv_weight = WMULT_IDLEPRIO;
747 		return;
748 	}
749 
750 	load->weight = scale_load(sched_prio_to_weight[prio]);
751 	load->inv_weight = sched_prio_to_wmult[prio];
752 }
753 
754 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
755 {
756 	if (!(flags & ENQUEUE_NOCLOCK))
757 		update_rq_clock(rq);
758 
759 	if (!(flags & ENQUEUE_RESTORE))
760 		sched_info_queued(rq, p);
761 
762 	p->sched_class->enqueue_task(rq, p, flags);
763 }
764 
765 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 	if (!(flags & DEQUEUE_NOCLOCK))
768 		update_rq_clock(rq);
769 
770 	if (!(flags & DEQUEUE_SAVE))
771 		sched_info_dequeued(rq, p);
772 
773 	p->sched_class->dequeue_task(rq, p, flags);
774 }
775 
776 void activate_task(struct rq *rq, struct task_struct *p, int flags)
777 {
778 	if (task_contributes_to_load(p))
779 		rq->nr_uninterruptible--;
780 
781 	enqueue_task(rq, p, flags);
782 }
783 
784 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
785 {
786 	if (task_contributes_to_load(p))
787 		rq->nr_uninterruptible++;
788 
789 	dequeue_task(rq, p, flags);
790 }
791 
792 /*
793  * __normal_prio - return the priority that is based on the static prio
794  */
795 static inline int __normal_prio(struct task_struct *p)
796 {
797 	return p->static_prio;
798 }
799 
800 /*
801  * Calculate the expected normal priority: i.e. priority
802  * without taking RT-inheritance into account. Might be
803  * boosted by interactivity modifiers. Changes upon fork,
804  * setprio syscalls, and whenever the interactivity
805  * estimator recalculates.
806  */
807 static inline int normal_prio(struct task_struct *p)
808 {
809 	int prio;
810 
811 	if (task_has_dl_policy(p))
812 		prio = MAX_DL_PRIO-1;
813 	else if (task_has_rt_policy(p))
814 		prio = MAX_RT_PRIO-1 - p->rt_priority;
815 	else
816 		prio = __normal_prio(p);
817 	return prio;
818 }
819 
820 /*
821  * Calculate the current priority, i.e. the priority
822  * taken into account by the scheduler. This value might
823  * be boosted by RT tasks, or might be boosted by
824  * interactivity modifiers. Will be RT if the task got
825  * RT-boosted. If not then it returns p->normal_prio.
826  */
827 static int effective_prio(struct task_struct *p)
828 {
829 	p->normal_prio = normal_prio(p);
830 	/*
831 	 * If we are RT tasks or we were boosted to RT priority,
832 	 * keep the priority unchanged. Otherwise, update priority
833 	 * to the normal priority:
834 	 */
835 	if (!rt_prio(p->prio))
836 		return p->normal_prio;
837 	return p->prio;
838 }
839 
840 /**
841  * task_curr - is this task currently executing on a CPU?
842  * @p: the task in question.
843  *
844  * Return: 1 if the task is currently executing. 0 otherwise.
845  */
846 inline int task_curr(const struct task_struct *p)
847 {
848 	return cpu_curr(task_cpu(p)) == p;
849 }
850 
851 /*
852  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
853  * use the balance_callback list if you want balancing.
854  *
855  * this means any call to check_class_changed() must be followed by a call to
856  * balance_callback().
857  */
858 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
859 				       const struct sched_class *prev_class,
860 				       int oldprio)
861 {
862 	if (prev_class != p->sched_class) {
863 		if (prev_class->switched_from)
864 			prev_class->switched_from(rq, p);
865 
866 		p->sched_class->switched_to(rq, p);
867 	} else if (oldprio != p->prio || dl_task(p))
868 		p->sched_class->prio_changed(rq, p, oldprio);
869 }
870 
871 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
872 {
873 	const struct sched_class *class;
874 
875 	if (p->sched_class == rq->curr->sched_class) {
876 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
877 	} else {
878 		for_each_class(class) {
879 			if (class == rq->curr->sched_class)
880 				break;
881 			if (class == p->sched_class) {
882 				resched_curr(rq);
883 				break;
884 			}
885 		}
886 	}
887 
888 	/*
889 	 * A queue event has occurred, and we're going to schedule.  In
890 	 * this case, we can save a useless back to back clock update.
891 	 */
892 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
893 		rq_clock_skip_update(rq, true);
894 }
895 
896 #ifdef CONFIG_SMP
897 /*
898  * This is how migration works:
899  *
900  * 1) we invoke migration_cpu_stop() on the target CPU using
901  *    stop_one_cpu().
902  * 2) stopper starts to run (implicitly forcing the migrated thread
903  *    off the CPU)
904  * 3) it checks whether the migrated task is still in the wrong runqueue.
905  * 4) if it's in the wrong runqueue then the migration thread removes
906  *    it and puts it into the right queue.
907  * 5) stopper completes and stop_one_cpu() returns and the migration
908  *    is done.
909  */
910 
911 /*
912  * move_queued_task - move a queued task to new rq.
913  *
914  * Returns (locked) new rq. Old rq's lock is released.
915  */
916 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
917 				   struct task_struct *p, int new_cpu)
918 {
919 	lockdep_assert_held(&rq->lock);
920 
921 	p->on_rq = TASK_ON_RQ_MIGRATING;
922 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
923 	set_task_cpu(p, new_cpu);
924 	rq_unlock(rq, rf);
925 
926 	rq = cpu_rq(new_cpu);
927 
928 	rq_lock(rq, rf);
929 	BUG_ON(task_cpu(p) != new_cpu);
930 	enqueue_task(rq, p, 0);
931 	p->on_rq = TASK_ON_RQ_QUEUED;
932 	check_preempt_curr(rq, p, 0);
933 
934 	return rq;
935 }
936 
937 struct migration_arg {
938 	struct task_struct *task;
939 	int dest_cpu;
940 };
941 
942 /*
943  * Move (not current) task off this CPU, onto the destination CPU. We're doing
944  * this because either it can't run here any more (set_cpus_allowed()
945  * away from this CPU, or CPU going down), or because we're
946  * attempting to rebalance this task on exec (sched_exec).
947  *
948  * So we race with normal scheduler movements, but that's OK, as long
949  * as the task is no longer on this CPU.
950  */
951 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
952 				 struct task_struct *p, int dest_cpu)
953 {
954 	if (unlikely(!cpu_active(dest_cpu)))
955 		return rq;
956 
957 	/* Affinity changed (again). */
958 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
959 		return rq;
960 
961 	update_rq_clock(rq);
962 	rq = move_queued_task(rq, rf, p, dest_cpu);
963 
964 	return rq;
965 }
966 
967 /*
968  * migration_cpu_stop - this will be executed by a highprio stopper thread
969  * and performs thread migration by bumping thread off CPU then
970  * 'pushing' onto another runqueue.
971  */
972 static int migration_cpu_stop(void *data)
973 {
974 	struct migration_arg *arg = data;
975 	struct task_struct *p = arg->task;
976 	struct rq *rq = this_rq();
977 	struct rq_flags rf;
978 
979 	/*
980 	 * The original target CPU might have gone down and we might
981 	 * be on another CPU but it doesn't matter.
982 	 */
983 	local_irq_disable();
984 	/*
985 	 * We need to explicitly wake pending tasks before running
986 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
987 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
988 	 */
989 	sched_ttwu_pending();
990 
991 	raw_spin_lock(&p->pi_lock);
992 	rq_lock(rq, &rf);
993 	/*
994 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
995 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
996 	 * we're holding p->pi_lock.
997 	 */
998 	if (task_rq(p) == rq) {
999 		if (task_on_rq_queued(p))
1000 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1001 		else
1002 			p->wake_cpu = arg->dest_cpu;
1003 	}
1004 	rq_unlock(rq, &rf);
1005 	raw_spin_unlock(&p->pi_lock);
1006 
1007 	local_irq_enable();
1008 	return 0;
1009 }
1010 
1011 /*
1012  * sched_class::set_cpus_allowed must do the below, but is not required to
1013  * actually call this function.
1014  */
1015 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1016 {
1017 	cpumask_copy(&p->cpus_allowed, new_mask);
1018 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1019 }
1020 
1021 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1022 {
1023 	struct rq *rq = task_rq(p);
1024 	bool queued, running;
1025 
1026 	lockdep_assert_held(&p->pi_lock);
1027 
1028 	queued = task_on_rq_queued(p);
1029 	running = task_current(rq, p);
1030 
1031 	if (queued) {
1032 		/*
1033 		 * Because __kthread_bind() calls this on blocked tasks without
1034 		 * holding rq->lock.
1035 		 */
1036 		lockdep_assert_held(&rq->lock);
1037 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1038 	}
1039 	if (running)
1040 		put_prev_task(rq, p);
1041 
1042 	p->sched_class->set_cpus_allowed(p, new_mask);
1043 
1044 	if (queued)
1045 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1046 	if (running)
1047 		set_curr_task(rq, p);
1048 }
1049 
1050 /*
1051  * Change a given task's CPU affinity. Migrate the thread to a
1052  * proper CPU and schedule it away if the CPU it's executing on
1053  * is removed from the allowed bitmask.
1054  *
1055  * NOTE: the caller must have a valid reference to the task, the
1056  * task must not exit() & deallocate itself prematurely. The
1057  * call is not atomic; no spinlocks may be held.
1058  */
1059 static int __set_cpus_allowed_ptr(struct task_struct *p,
1060 				  const struct cpumask *new_mask, bool check)
1061 {
1062 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1063 	unsigned int dest_cpu;
1064 	struct rq_flags rf;
1065 	struct rq *rq;
1066 	int ret = 0;
1067 
1068 	rq = task_rq_lock(p, &rf);
1069 	update_rq_clock(rq);
1070 
1071 	if (p->flags & PF_KTHREAD) {
1072 		/*
1073 		 * Kernel threads are allowed on online && !active CPUs
1074 		 */
1075 		cpu_valid_mask = cpu_online_mask;
1076 	}
1077 
1078 	/*
1079 	 * Must re-check here, to close a race against __kthread_bind(),
1080 	 * sched_setaffinity() is not guaranteed to observe the flag.
1081 	 */
1082 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1083 		ret = -EINVAL;
1084 		goto out;
1085 	}
1086 
1087 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1088 		goto out;
1089 
1090 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1091 		ret = -EINVAL;
1092 		goto out;
1093 	}
1094 
1095 	do_set_cpus_allowed(p, new_mask);
1096 
1097 	if (p->flags & PF_KTHREAD) {
1098 		/*
1099 		 * For kernel threads that do indeed end up on online &&
1100 		 * !active we want to ensure they are strict per-CPU threads.
1101 		 */
1102 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1103 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1104 			p->nr_cpus_allowed != 1);
1105 	}
1106 
1107 	/* Can the task run on the task's current CPU? If so, we're done */
1108 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1109 		goto out;
1110 
1111 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1112 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1113 		struct migration_arg arg = { p, dest_cpu };
1114 		/* Need help from migration thread: drop lock and wait. */
1115 		task_rq_unlock(rq, p, &rf);
1116 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1117 		tlb_migrate_finish(p->mm);
1118 		return 0;
1119 	} else if (task_on_rq_queued(p)) {
1120 		/*
1121 		 * OK, since we're going to drop the lock immediately
1122 		 * afterwards anyway.
1123 		 */
1124 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1125 	}
1126 out:
1127 	task_rq_unlock(rq, p, &rf);
1128 
1129 	return ret;
1130 }
1131 
1132 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1133 {
1134 	return __set_cpus_allowed_ptr(p, new_mask, false);
1135 }
1136 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1137 
1138 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1139 {
1140 #ifdef CONFIG_SCHED_DEBUG
1141 	/*
1142 	 * We should never call set_task_cpu() on a blocked task,
1143 	 * ttwu() will sort out the placement.
1144 	 */
1145 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1146 			!p->on_rq);
1147 
1148 	/*
1149 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1150 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1151 	 * time relying on p->on_rq.
1152 	 */
1153 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1154 		     p->sched_class == &fair_sched_class &&
1155 		     (p->on_rq && !task_on_rq_migrating(p)));
1156 
1157 #ifdef CONFIG_LOCKDEP
1158 	/*
1159 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1160 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1161 	 *
1162 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1163 	 * see task_group().
1164 	 *
1165 	 * Furthermore, all task_rq users should acquire both locks, see
1166 	 * task_rq_lock().
1167 	 */
1168 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1169 				      lockdep_is_held(&task_rq(p)->lock)));
1170 #endif
1171 #endif
1172 
1173 	trace_sched_migrate_task(p, new_cpu);
1174 
1175 	if (task_cpu(p) != new_cpu) {
1176 		if (p->sched_class->migrate_task_rq)
1177 			p->sched_class->migrate_task_rq(p);
1178 		p->se.nr_migrations++;
1179 		perf_event_task_migrate(p);
1180 	}
1181 
1182 	__set_task_cpu(p, new_cpu);
1183 }
1184 
1185 static void __migrate_swap_task(struct task_struct *p, int cpu)
1186 {
1187 	if (task_on_rq_queued(p)) {
1188 		struct rq *src_rq, *dst_rq;
1189 		struct rq_flags srf, drf;
1190 
1191 		src_rq = task_rq(p);
1192 		dst_rq = cpu_rq(cpu);
1193 
1194 		rq_pin_lock(src_rq, &srf);
1195 		rq_pin_lock(dst_rq, &drf);
1196 
1197 		p->on_rq = TASK_ON_RQ_MIGRATING;
1198 		deactivate_task(src_rq, p, 0);
1199 		set_task_cpu(p, cpu);
1200 		activate_task(dst_rq, p, 0);
1201 		p->on_rq = TASK_ON_RQ_QUEUED;
1202 		check_preempt_curr(dst_rq, p, 0);
1203 
1204 		rq_unpin_lock(dst_rq, &drf);
1205 		rq_unpin_lock(src_rq, &srf);
1206 
1207 	} else {
1208 		/*
1209 		 * Task isn't running anymore; make it appear like we migrated
1210 		 * it before it went to sleep. This means on wakeup we make the
1211 		 * previous CPU our target instead of where it really is.
1212 		 */
1213 		p->wake_cpu = cpu;
1214 	}
1215 }
1216 
1217 struct migration_swap_arg {
1218 	struct task_struct *src_task, *dst_task;
1219 	int src_cpu, dst_cpu;
1220 };
1221 
1222 static int migrate_swap_stop(void *data)
1223 {
1224 	struct migration_swap_arg *arg = data;
1225 	struct rq *src_rq, *dst_rq;
1226 	int ret = -EAGAIN;
1227 
1228 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1229 		return -EAGAIN;
1230 
1231 	src_rq = cpu_rq(arg->src_cpu);
1232 	dst_rq = cpu_rq(arg->dst_cpu);
1233 
1234 	double_raw_lock(&arg->src_task->pi_lock,
1235 			&arg->dst_task->pi_lock);
1236 	double_rq_lock(src_rq, dst_rq);
1237 
1238 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1239 		goto unlock;
1240 
1241 	if (task_cpu(arg->src_task) != arg->src_cpu)
1242 		goto unlock;
1243 
1244 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1245 		goto unlock;
1246 
1247 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1248 		goto unlock;
1249 
1250 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1251 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1252 
1253 	ret = 0;
1254 
1255 unlock:
1256 	double_rq_unlock(src_rq, dst_rq);
1257 	raw_spin_unlock(&arg->dst_task->pi_lock);
1258 	raw_spin_unlock(&arg->src_task->pi_lock);
1259 
1260 	return ret;
1261 }
1262 
1263 /*
1264  * Cross migrate two tasks
1265  */
1266 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1267 {
1268 	struct migration_swap_arg arg;
1269 	int ret = -EINVAL;
1270 
1271 	arg = (struct migration_swap_arg){
1272 		.src_task = cur,
1273 		.src_cpu = task_cpu(cur),
1274 		.dst_task = p,
1275 		.dst_cpu = task_cpu(p),
1276 	};
1277 
1278 	if (arg.src_cpu == arg.dst_cpu)
1279 		goto out;
1280 
1281 	/*
1282 	 * These three tests are all lockless; this is OK since all of them
1283 	 * will be re-checked with proper locks held further down the line.
1284 	 */
1285 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1286 		goto out;
1287 
1288 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1289 		goto out;
1290 
1291 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1292 		goto out;
1293 
1294 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1295 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1296 
1297 out:
1298 	return ret;
1299 }
1300 
1301 /*
1302  * wait_task_inactive - wait for a thread to unschedule.
1303  *
1304  * If @match_state is nonzero, it's the @p->state value just checked and
1305  * not expected to change.  If it changes, i.e. @p might have woken up,
1306  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1307  * we return a positive number (its total switch count).  If a second call
1308  * a short while later returns the same number, the caller can be sure that
1309  * @p has remained unscheduled the whole time.
1310  *
1311  * The caller must ensure that the task *will* unschedule sometime soon,
1312  * else this function might spin for a *long* time. This function can't
1313  * be called with interrupts off, or it may introduce deadlock with
1314  * smp_call_function() if an IPI is sent by the same process we are
1315  * waiting to become inactive.
1316  */
1317 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1318 {
1319 	int running, queued;
1320 	struct rq_flags rf;
1321 	unsigned long ncsw;
1322 	struct rq *rq;
1323 
1324 	for (;;) {
1325 		/*
1326 		 * We do the initial early heuristics without holding
1327 		 * any task-queue locks at all. We'll only try to get
1328 		 * the runqueue lock when things look like they will
1329 		 * work out!
1330 		 */
1331 		rq = task_rq(p);
1332 
1333 		/*
1334 		 * If the task is actively running on another CPU
1335 		 * still, just relax and busy-wait without holding
1336 		 * any locks.
1337 		 *
1338 		 * NOTE! Since we don't hold any locks, it's not
1339 		 * even sure that "rq" stays as the right runqueue!
1340 		 * But we don't care, since "task_running()" will
1341 		 * return false if the runqueue has changed and p
1342 		 * is actually now running somewhere else!
1343 		 */
1344 		while (task_running(rq, p)) {
1345 			if (match_state && unlikely(p->state != match_state))
1346 				return 0;
1347 			cpu_relax();
1348 		}
1349 
1350 		/*
1351 		 * Ok, time to look more closely! We need the rq
1352 		 * lock now, to be *sure*. If we're wrong, we'll
1353 		 * just go back and repeat.
1354 		 */
1355 		rq = task_rq_lock(p, &rf);
1356 		trace_sched_wait_task(p);
1357 		running = task_running(rq, p);
1358 		queued = task_on_rq_queued(p);
1359 		ncsw = 0;
1360 		if (!match_state || p->state == match_state)
1361 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1362 		task_rq_unlock(rq, p, &rf);
1363 
1364 		/*
1365 		 * If it changed from the expected state, bail out now.
1366 		 */
1367 		if (unlikely(!ncsw))
1368 			break;
1369 
1370 		/*
1371 		 * Was it really running after all now that we
1372 		 * checked with the proper locks actually held?
1373 		 *
1374 		 * Oops. Go back and try again..
1375 		 */
1376 		if (unlikely(running)) {
1377 			cpu_relax();
1378 			continue;
1379 		}
1380 
1381 		/*
1382 		 * It's not enough that it's not actively running,
1383 		 * it must be off the runqueue _entirely_, and not
1384 		 * preempted!
1385 		 *
1386 		 * So if it was still runnable (but just not actively
1387 		 * running right now), it's preempted, and we should
1388 		 * yield - it could be a while.
1389 		 */
1390 		if (unlikely(queued)) {
1391 			ktime_t to = NSEC_PER_SEC / HZ;
1392 
1393 			set_current_state(TASK_UNINTERRUPTIBLE);
1394 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1395 			continue;
1396 		}
1397 
1398 		/*
1399 		 * Ahh, all good. It wasn't running, and it wasn't
1400 		 * runnable, which means that it will never become
1401 		 * running in the future either. We're all done!
1402 		 */
1403 		break;
1404 	}
1405 
1406 	return ncsw;
1407 }
1408 
1409 /***
1410  * kick_process - kick a running thread to enter/exit the kernel
1411  * @p: the to-be-kicked thread
1412  *
1413  * Cause a process which is running on another CPU to enter
1414  * kernel-mode, without any delay. (to get signals handled.)
1415  *
1416  * NOTE: this function doesn't have to take the runqueue lock,
1417  * because all it wants to ensure is that the remote task enters
1418  * the kernel. If the IPI races and the task has been migrated
1419  * to another CPU then no harm is done and the purpose has been
1420  * achieved as well.
1421  */
1422 void kick_process(struct task_struct *p)
1423 {
1424 	int cpu;
1425 
1426 	preempt_disable();
1427 	cpu = task_cpu(p);
1428 	if ((cpu != smp_processor_id()) && task_curr(p))
1429 		smp_send_reschedule(cpu);
1430 	preempt_enable();
1431 }
1432 EXPORT_SYMBOL_GPL(kick_process);
1433 
1434 /*
1435  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1436  *
1437  * A few notes on cpu_active vs cpu_online:
1438  *
1439  *  - cpu_active must be a subset of cpu_online
1440  *
1441  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1442  *    see __set_cpus_allowed_ptr(). At this point the newly online
1443  *    CPU isn't yet part of the sched domains, and balancing will not
1444  *    see it.
1445  *
1446  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1447  *    avoid the load balancer to place new tasks on the to be removed
1448  *    CPU. Existing tasks will remain running there and will be taken
1449  *    off.
1450  *
1451  * This means that fallback selection must not select !active CPUs.
1452  * And can assume that any active CPU must be online. Conversely
1453  * select_task_rq() below may allow selection of !active CPUs in order
1454  * to satisfy the above rules.
1455  */
1456 static int select_fallback_rq(int cpu, struct task_struct *p)
1457 {
1458 	int nid = cpu_to_node(cpu);
1459 	const struct cpumask *nodemask = NULL;
1460 	enum { cpuset, possible, fail } state = cpuset;
1461 	int dest_cpu;
1462 
1463 	/*
1464 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1465 	 * will return -1. There is no CPU on the node, and we should
1466 	 * select the CPU on the other node.
1467 	 */
1468 	if (nid != -1) {
1469 		nodemask = cpumask_of_node(nid);
1470 
1471 		/* Look for allowed, online CPU in same node. */
1472 		for_each_cpu(dest_cpu, nodemask) {
1473 			if (!cpu_active(dest_cpu))
1474 				continue;
1475 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1476 				return dest_cpu;
1477 		}
1478 	}
1479 
1480 	for (;;) {
1481 		/* Any allowed, online CPU? */
1482 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1483 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1484 				continue;
1485 			if (!cpu_online(dest_cpu))
1486 				continue;
1487 			goto out;
1488 		}
1489 
1490 		/* No more Mr. Nice Guy. */
1491 		switch (state) {
1492 		case cpuset:
1493 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1494 				cpuset_cpus_allowed_fallback(p);
1495 				state = possible;
1496 				break;
1497 			}
1498 			/* Fall-through */
1499 		case possible:
1500 			do_set_cpus_allowed(p, cpu_possible_mask);
1501 			state = fail;
1502 			break;
1503 
1504 		case fail:
1505 			BUG();
1506 			break;
1507 		}
1508 	}
1509 
1510 out:
1511 	if (state != cpuset) {
1512 		/*
1513 		 * Don't tell them about moving exiting tasks or
1514 		 * kernel threads (both mm NULL), since they never
1515 		 * leave kernel.
1516 		 */
1517 		if (p->mm && printk_ratelimit()) {
1518 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1519 					task_pid_nr(p), p->comm, cpu);
1520 		}
1521 	}
1522 
1523 	return dest_cpu;
1524 }
1525 
1526 /*
1527  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1528  */
1529 static inline
1530 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1531 {
1532 	lockdep_assert_held(&p->pi_lock);
1533 
1534 	if (p->nr_cpus_allowed > 1)
1535 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1536 	else
1537 		cpu = cpumask_any(&p->cpus_allowed);
1538 
1539 	/*
1540 	 * In order not to call set_task_cpu() on a blocking task we need
1541 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1542 	 * CPU.
1543 	 *
1544 	 * Since this is common to all placement strategies, this lives here.
1545 	 *
1546 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1547 	 *   not worry about this generic constraint ]
1548 	 */
1549 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1550 		     !cpu_online(cpu)))
1551 		cpu = select_fallback_rq(task_cpu(p), p);
1552 
1553 	return cpu;
1554 }
1555 
1556 static void update_avg(u64 *avg, u64 sample)
1557 {
1558 	s64 diff = sample - *avg;
1559 	*avg += diff >> 3;
1560 }
1561 
1562 void sched_set_stop_task(int cpu, struct task_struct *stop)
1563 {
1564 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1565 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1566 
1567 	if (stop) {
1568 		/*
1569 		 * Make it appear like a SCHED_FIFO task, its something
1570 		 * userspace knows about and won't get confused about.
1571 		 *
1572 		 * Also, it will make PI more or less work without too
1573 		 * much confusion -- but then, stop work should not
1574 		 * rely on PI working anyway.
1575 		 */
1576 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1577 
1578 		stop->sched_class = &stop_sched_class;
1579 	}
1580 
1581 	cpu_rq(cpu)->stop = stop;
1582 
1583 	if (old_stop) {
1584 		/*
1585 		 * Reset it back to a normal scheduling class so that
1586 		 * it can die in pieces.
1587 		 */
1588 		old_stop->sched_class = &rt_sched_class;
1589 	}
1590 }
1591 
1592 #else
1593 
1594 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1595 					 const struct cpumask *new_mask, bool check)
1596 {
1597 	return set_cpus_allowed_ptr(p, new_mask);
1598 }
1599 
1600 #endif /* CONFIG_SMP */
1601 
1602 static void
1603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1604 {
1605 	struct rq *rq;
1606 
1607 	if (!schedstat_enabled())
1608 		return;
1609 
1610 	rq = this_rq();
1611 
1612 #ifdef CONFIG_SMP
1613 	if (cpu == rq->cpu) {
1614 		schedstat_inc(rq->ttwu_local);
1615 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1616 	} else {
1617 		struct sched_domain *sd;
1618 
1619 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1620 		rcu_read_lock();
1621 		for_each_domain(rq->cpu, sd) {
1622 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1623 				schedstat_inc(sd->ttwu_wake_remote);
1624 				break;
1625 			}
1626 		}
1627 		rcu_read_unlock();
1628 	}
1629 
1630 	if (wake_flags & WF_MIGRATED)
1631 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1632 #endif /* CONFIG_SMP */
1633 
1634 	schedstat_inc(rq->ttwu_count);
1635 	schedstat_inc(p->se.statistics.nr_wakeups);
1636 
1637 	if (wake_flags & WF_SYNC)
1638 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1639 }
1640 
1641 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1642 {
1643 	activate_task(rq, p, en_flags);
1644 	p->on_rq = TASK_ON_RQ_QUEUED;
1645 
1646 	/* If a worker is waking up, notify the workqueue: */
1647 	if (p->flags & PF_WQ_WORKER)
1648 		wq_worker_waking_up(p, cpu_of(rq));
1649 }
1650 
1651 /*
1652  * Mark the task runnable and perform wakeup-preemption.
1653  */
1654 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1655 			   struct rq_flags *rf)
1656 {
1657 	check_preempt_curr(rq, p, wake_flags);
1658 	p->state = TASK_RUNNING;
1659 	trace_sched_wakeup(p);
1660 
1661 #ifdef CONFIG_SMP
1662 	if (p->sched_class->task_woken) {
1663 		/*
1664 		 * Our task @p is fully woken up and running; so its safe to
1665 		 * drop the rq->lock, hereafter rq is only used for statistics.
1666 		 */
1667 		rq_unpin_lock(rq, rf);
1668 		p->sched_class->task_woken(rq, p);
1669 		rq_repin_lock(rq, rf);
1670 	}
1671 
1672 	if (rq->idle_stamp) {
1673 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1674 		u64 max = 2*rq->max_idle_balance_cost;
1675 
1676 		update_avg(&rq->avg_idle, delta);
1677 
1678 		if (rq->avg_idle > max)
1679 			rq->avg_idle = max;
1680 
1681 		rq->idle_stamp = 0;
1682 	}
1683 #endif
1684 }
1685 
1686 static void
1687 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1688 		 struct rq_flags *rf)
1689 {
1690 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1691 
1692 	lockdep_assert_held(&rq->lock);
1693 
1694 #ifdef CONFIG_SMP
1695 	if (p->sched_contributes_to_load)
1696 		rq->nr_uninterruptible--;
1697 
1698 	if (wake_flags & WF_MIGRATED)
1699 		en_flags |= ENQUEUE_MIGRATED;
1700 #endif
1701 
1702 	ttwu_activate(rq, p, en_flags);
1703 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1704 }
1705 
1706 /*
1707  * Called in case the task @p isn't fully descheduled from its runqueue,
1708  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709  * since all we need to do is flip p->state to TASK_RUNNING, since
1710  * the task is still ->on_rq.
1711  */
1712 static int ttwu_remote(struct task_struct *p, int wake_flags)
1713 {
1714 	struct rq_flags rf;
1715 	struct rq *rq;
1716 	int ret = 0;
1717 
1718 	rq = __task_rq_lock(p, &rf);
1719 	if (task_on_rq_queued(p)) {
1720 		/* check_preempt_curr() may use rq clock */
1721 		update_rq_clock(rq);
1722 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1723 		ret = 1;
1724 	}
1725 	__task_rq_unlock(rq, &rf);
1726 
1727 	return ret;
1728 }
1729 
1730 #ifdef CONFIG_SMP
1731 void sched_ttwu_pending(void)
1732 {
1733 	struct rq *rq = this_rq();
1734 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1735 	struct task_struct *p, *t;
1736 	struct rq_flags rf;
1737 
1738 	if (!llist)
1739 		return;
1740 
1741 	rq_lock_irqsave(rq, &rf);
1742 	update_rq_clock(rq);
1743 
1744 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1745 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1746 
1747 	rq_unlock_irqrestore(rq, &rf);
1748 }
1749 
1750 void scheduler_ipi(void)
1751 {
1752 	/*
1753 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 	 * this IPI.
1756 	 */
1757 	preempt_fold_need_resched();
1758 
1759 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1760 		return;
1761 
1762 	/*
1763 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 	 * traditionally all their work was done from the interrupt return
1765 	 * path. Now that we actually do some work, we need to make sure
1766 	 * we do call them.
1767 	 *
1768 	 * Some archs already do call them, luckily irq_enter/exit nest
1769 	 * properly.
1770 	 *
1771 	 * Arguably we should visit all archs and update all handlers,
1772 	 * however a fair share of IPIs are still resched only so this would
1773 	 * somewhat pessimize the simple resched case.
1774 	 */
1775 	irq_enter();
1776 	sched_ttwu_pending();
1777 
1778 	/*
1779 	 * Check if someone kicked us for doing the nohz idle load balance.
1780 	 */
1781 	if (unlikely(got_nohz_idle_kick())) {
1782 		this_rq()->idle_balance = 1;
1783 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1784 	}
1785 	irq_exit();
1786 }
1787 
1788 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1789 {
1790 	struct rq *rq = cpu_rq(cpu);
1791 
1792 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1793 
1794 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 		if (!set_nr_if_polling(rq->idle))
1796 			smp_send_reschedule(cpu);
1797 		else
1798 			trace_sched_wake_idle_without_ipi(cpu);
1799 	}
1800 }
1801 
1802 void wake_up_if_idle(int cpu)
1803 {
1804 	struct rq *rq = cpu_rq(cpu);
1805 	struct rq_flags rf;
1806 
1807 	rcu_read_lock();
1808 
1809 	if (!is_idle_task(rcu_dereference(rq->curr)))
1810 		goto out;
1811 
1812 	if (set_nr_if_polling(rq->idle)) {
1813 		trace_sched_wake_idle_without_ipi(cpu);
1814 	} else {
1815 		rq_lock_irqsave(rq, &rf);
1816 		if (is_idle_task(rq->curr))
1817 			smp_send_reschedule(cpu);
1818 		/* Else CPU is not idle, do nothing here: */
1819 		rq_unlock_irqrestore(rq, &rf);
1820 	}
1821 
1822 out:
1823 	rcu_read_unlock();
1824 }
1825 
1826 bool cpus_share_cache(int this_cpu, int that_cpu)
1827 {
1828 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1829 }
1830 #endif /* CONFIG_SMP */
1831 
1832 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1833 {
1834 	struct rq *rq = cpu_rq(cpu);
1835 	struct rq_flags rf;
1836 
1837 #if defined(CONFIG_SMP)
1838 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1839 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1840 		ttwu_queue_remote(p, cpu, wake_flags);
1841 		return;
1842 	}
1843 #endif
1844 
1845 	rq_lock(rq, &rf);
1846 	update_rq_clock(rq);
1847 	ttwu_do_activate(rq, p, wake_flags, &rf);
1848 	rq_unlock(rq, &rf);
1849 }
1850 
1851 /*
1852  * Notes on Program-Order guarantees on SMP systems.
1853  *
1854  *  MIGRATION
1855  *
1856  * The basic program-order guarantee on SMP systems is that when a task [t]
1857  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858  * execution on its new CPU [c1].
1859  *
1860  * For migration (of runnable tasks) this is provided by the following means:
1861  *
1862  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1863  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1864  *     rq(c1)->lock (if not at the same time, then in that order).
1865  *  C) LOCK of the rq(c1)->lock scheduling in task
1866  *
1867  * Transitivity guarantees that B happens after A and C after B.
1868  * Note: we only require RCpc transitivity.
1869  * Note: the CPU doing B need not be c0 or c1
1870  *
1871  * Example:
1872  *
1873  *   CPU0            CPU1            CPU2
1874  *
1875  *   LOCK rq(0)->lock
1876  *   sched-out X
1877  *   sched-in Y
1878  *   UNLOCK rq(0)->lock
1879  *
1880  *                                   LOCK rq(0)->lock // orders against CPU0
1881  *                                   dequeue X
1882  *                                   UNLOCK rq(0)->lock
1883  *
1884  *                                   LOCK rq(1)->lock
1885  *                                   enqueue X
1886  *                                   UNLOCK rq(1)->lock
1887  *
1888  *                   LOCK rq(1)->lock // orders against CPU2
1889  *                   sched-out Z
1890  *                   sched-in X
1891  *                   UNLOCK rq(1)->lock
1892  *
1893  *
1894  *  BLOCKING -- aka. SLEEP + WAKEUP
1895  *
1896  * For blocking we (obviously) need to provide the same guarantee as for
1897  * migration. However the means are completely different as there is no lock
1898  * chain to provide order. Instead we do:
1899  *
1900  *   1) smp_store_release(X->on_cpu, 0)
1901  *   2) smp_cond_load_acquire(!X->on_cpu)
1902  *
1903  * Example:
1904  *
1905  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1906  *
1907  *   LOCK rq(0)->lock LOCK X->pi_lock
1908  *   dequeue X
1909  *   sched-out X
1910  *   smp_store_release(X->on_cpu, 0);
1911  *
1912  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1913  *                    X->state = WAKING
1914  *                    set_task_cpu(X,2)
1915  *
1916  *                    LOCK rq(2)->lock
1917  *                    enqueue X
1918  *                    X->state = RUNNING
1919  *                    UNLOCK rq(2)->lock
1920  *
1921  *                                          LOCK rq(2)->lock // orders against CPU1
1922  *                                          sched-out Z
1923  *                                          sched-in X
1924  *                                          UNLOCK rq(2)->lock
1925  *
1926  *                    UNLOCK X->pi_lock
1927  *   UNLOCK rq(0)->lock
1928  *
1929  *
1930  * However; for wakeups there is a second guarantee we must provide, namely we
1931  * must observe the state that lead to our wakeup. That is, not only must our
1932  * task observe its own prior state, it must also observe the stores prior to
1933  * its wakeup.
1934  *
1935  * This means that any means of doing remote wakeups must order the CPU doing
1936  * the wakeup against the CPU the task is going to end up running on. This,
1937  * however, is already required for the regular Program-Order guarantee above,
1938  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1939  *
1940  */
1941 
1942 /**
1943  * try_to_wake_up - wake up a thread
1944  * @p: the thread to be awakened
1945  * @state: the mask of task states that can be woken
1946  * @wake_flags: wake modifier flags (WF_*)
1947  *
1948  * If (@state & @p->state) @p->state = TASK_RUNNING.
1949  *
1950  * If the task was not queued/runnable, also place it back on a runqueue.
1951  *
1952  * Atomic against schedule() which would dequeue a task, also see
1953  * set_current_state().
1954  *
1955  * Return: %true if @p->state changes (an actual wakeup was done),
1956  *	   %false otherwise.
1957  */
1958 static int
1959 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1960 {
1961 	unsigned long flags;
1962 	int cpu, success = 0;
1963 
1964 	/*
1965 	 * If we are going to wake up a thread waiting for CONDITION we
1966 	 * need to ensure that CONDITION=1 done by the caller can not be
1967 	 * reordered with p->state check below. This pairs with mb() in
1968 	 * set_current_state() the waiting thread does.
1969 	 */
1970 	smp_mb__before_spinlock();
1971 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1972 	if (!(p->state & state))
1973 		goto out;
1974 
1975 	trace_sched_waking(p);
1976 
1977 	/* We're going to change ->state: */
1978 	success = 1;
1979 	cpu = task_cpu(p);
1980 
1981 	/*
1982 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1983 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1984 	 * in smp_cond_load_acquire() below.
1985 	 *
1986 	 * sched_ttwu_pending()                 try_to_wake_up()
1987 	 *   [S] p->on_rq = 1;                  [L] P->state
1988 	 *       UNLOCK rq->lock  -----.
1989 	 *                              \
1990 	 *				 +---   RMB
1991 	 * schedule()                   /
1992 	 *       LOCK rq->lock    -----'
1993 	 *       UNLOCK rq->lock
1994 	 *
1995 	 * [task p]
1996 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
1997 	 *
1998 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
1999 	 * last wakeup of our task and the schedule that got our task
2000 	 * current.
2001 	 */
2002 	smp_rmb();
2003 	if (p->on_rq && ttwu_remote(p, wake_flags))
2004 		goto stat;
2005 
2006 #ifdef CONFIG_SMP
2007 	/*
2008 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2009 	 * possible to, falsely, observe p->on_cpu == 0.
2010 	 *
2011 	 * One must be running (->on_cpu == 1) in order to remove oneself
2012 	 * from the runqueue.
2013 	 *
2014 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2015 	 *      UNLOCK rq->lock
2016 	 *			RMB
2017 	 *      LOCK   rq->lock
2018 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2019 	 *
2020 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2021 	 * from the consecutive calls to schedule(); the first switching to our
2022 	 * task, the second putting it to sleep.
2023 	 */
2024 	smp_rmb();
2025 
2026 	/*
2027 	 * If the owning (remote) CPU is still in the middle of schedule() with
2028 	 * this task as prev, wait until its done referencing the task.
2029 	 *
2030 	 * Pairs with the smp_store_release() in finish_lock_switch().
2031 	 *
2032 	 * This ensures that tasks getting woken will be fully ordered against
2033 	 * their previous state and preserve Program Order.
2034 	 */
2035 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2036 
2037 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2038 	p->state = TASK_WAKING;
2039 
2040 	if (p->in_iowait) {
2041 		delayacct_blkio_end();
2042 		atomic_dec(&task_rq(p)->nr_iowait);
2043 	}
2044 
2045 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2046 	if (task_cpu(p) != cpu) {
2047 		wake_flags |= WF_MIGRATED;
2048 		set_task_cpu(p, cpu);
2049 	}
2050 
2051 #else /* CONFIG_SMP */
2052 
2053 	if (p->in_iowait) {
2054 		delayacct_blkio_end();
2055 		atomic_dec(&task_rq(p)->nr_iowait);
2056 	}
2057 
2058 #endif /* CONFIG_SMP */
2059 
2060 	ttwu_queue(p, cpu, wake_flags);
2061 stat:
2062 	ttwu_stat(p, cpu, wake_flags);
2063 out:
2064 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2065 
2066 	return success;
2067 }
2068 
2069 /**
2070  * try_to_wake_up_local - try to wake up a local task with rq lock held
2071  * @p: the thread to be awakened
2072  * @cookie: context's cookie for pinning
2073  *
2074  * Put @p on the run-queue if it's not already there. The caller must
2075  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2076  * the current task.
2077  */
2078 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2079 {
2080 	struct rq *rq = task_rq(p);
2081 
2082 	if (WARN_ON_ONCE(rq != this_rq()) ||
2083 	    WARN_ON_ONCE(p == current))
2084 		return;
2085 
2086 	lockdep_assert_held(&rq->lock);
2087 
2088 	if (!raw_spin_trylock(&p->pi_lock)) {
2089 		/*
2090 		 * This is OK, because current is on_cpu, which avoids it being
2091 		 * picked for load-balance and preemption/IRQs are still
2092 		 * disabled avoiding further scheduler activity on it and we've
2093 		 * not yet picked a replacement task.
2094 		 */
2095 		rq_unlock(rq, rf);
2096 		raw_spin_lock(&p->pi_lock);
2097 		rq_relock(rq, rf);
2098 	}
2099 
2100 	if (!(p->state & TASK_NORMAL))
2101 		goto out;
2102 
2103 	trace_sched_waking(p);
2104 
2105 	if (!task_on_rq_queued(p)) {
2106 		if (p->in_iowait) {
2107 			delayacct_blkio_end();
2108 			atomic_dec(&rq->nr_iowait);
2109 		}
2110 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2111 	}
2112 
2113 	ttwu_do_wakeup(rq, p, 0, rf);
2114 	ttwu_stat(p, smp_processor_id(), 0);
2115 out:
2116 	raw_spin_unlock(&p->pi_lock);
2117 }
2118 
2119 /**
2120  * wake_up_process - Wake up a specific process
2121  * @p: The process to be woken up.
2122  *
2123  * Attempt to wake up the nominated process and move it to the set of runnable
2124  * processes.
2125  *
2126  * Return: 1 if the process was woken up, 0 if it was already running.
2127  *
2128  * It may be assumed that this function implies a write memory barrier before
2129  * changing the task state if and only if any tasks are woken up.
2130  */
2131 int wake_up_process(struct task_struct *p)
2132 {
2133 	return try_to_wake_up(p, TASK_NORMAL, 0);
2134 }
2135 EXPORT_SYMBOL(wake_up_process);
2136 
2137 int wake_up_state(struct task_struct *p, unsigned int state)
2138 {
2139 	return try_to_wake_up(p, state, 0);
2140 }
2141 
2142 /*
2143  * Perform scheduler related setup for a newly forked process p.
2144  * p is forked by current.
2145  *
2146  * __sched_fork() is basic setup used by init_idle() too:
2147  */
2148 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2149 {
2150 	p->on_rq			= 0;
2151 
2152 	p->se.on_rq			= 0;
2153 	p->se.exec_start		= 0;
2154 	p->se.sum_exec_runtime		= 0;
2155 	p->se.prev_sum_exec_runtime	= 0;
2156 	p->se.nr_migrations		= 0;
2157 	p->se.vruntime			= 0;
2158 	INIT_LIST_HEAD(&p->se.group_node);
2159 
2160 #ifdef CONFIG_FAIR_GROUP_SCHED
2161 	p->se.cfs_rq			= NULL;
2162 #endif
2163 
2164 #ifdef CONFIG_SCHEDSTATS
2165 	/* Even if schedstat is disabled, there should not be garbage */
2166 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2167 #endif
2168 
2169 	RB_CLEAR_NODE(&p->dl.rb_node);
2170 	init_dl_task_timer(&p->dl);
2171 	init_dl_inactive_task_timer(&p->dl);
2172 	__dl_clear_params(p);
2173 
2174 	INIT_LIST_HEAD(&p->rt.run_list);
2175 	p->rt.timeout		= 0;
2176 	p->rt.time_slice	= sched_rr_timeslice;
2177 	p->rt.on_rq		= 0;
2178 	p->rt.on_list		= 0;
2179 
2180 #ifdef CONFIG_PREEMPT_NOTIFIERS
2181 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2182 #endif
2183 
2184 #ifdef CONFIG_NUMA_BALANCING
2185 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2186 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2187 		p->mm->numa_scan_seq = 0;
2188 	}
2189 
2190 	if (clone_flags & CLONE_VM)
2191 		p->numa_preferred_nid = current->numa_preferred_nid;
2192 	else
2193 		p->numa_preferred_nid = -1;
2194 
2195 	p->node_stamp = 0ULL;
2196 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2197 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2198 	p->numa_work.next = &p->numa_work;
2199 	p->numa_faults = NULL;
2200 	p->last_task_numa_placement = 0;
2201 	p->last_sum_exec_runtime = 0;
2202 
2203 	p->numa_group = NULL;
2204 #endif /* CONFIG_NUMA_BALANCING */
2205 }
2206 
2207 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2208 
2209 #ifdef CONFIG_NUMA_BALANCING
2210 
2211 void set_numabalancing_state(bool enabled)
2212 {
2213 	if (enabled)
2214 		static_branch_enable(&sched_numa_balancing);
2215 	else
2216 		static_branch_disable(&sched_numa_balancing);
2217 }
2218 
2219 #ifdef CONFIG_PROC_SYSCTL
2220 int sysctl_numa_balancing(struct ctl_table *table, int write,
2221 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2222 {
2223 	struct ctl_table t;
2224 	int err;
2225 	int state = static_branch_likely(&sched_numa_balancing);
2226 
2227 	if (write && !capable(CAP_SYS_ADMIN))
2228 		return -EPERM;
2229 
2230 	t = *table;
2231 	t.data = &state;
2232 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2233 	if (err < 0)
2234 		return err;
2235 	if (write)
2236 		set_numabalancing_state(state);
2237 	return err;
2238 }
2239 #endif
2240 #endif
2241 
2242 #ifdef CONFIG_SCHEDSTATS
2243 
2244 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2245 static bool __initdata __sched_schedstats = false;
2246 
2247 static void set_schedstats(bool enabled)
2248 {
2249 	if (enabled)
2250 		static_branch_enable(&sched_schedstats);
2251 	else
2252 		static_branch_disable(&sched_schedstats);
2253 }
2254 
2255 void force_schedstat_enabled(void)
2256 {
2257 	if (!schedstat_enabled()) {
2258 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2259 		static_branch_enable(&sched_schedstats);
2260 	}
2261 }
2262 
2263 static int __init setup_schedstats(char *str)
2264 {
2265 	int ret = 0;
2266 	if (!str)
2267 		goto out;
2268 
2269 	/*
2270 	 * This code is called before jump labels have been set up, so we can't
2271 	 * change the static branch directly just yet.  Instead set a temporary
2272 	 * variable so init_schedstats() can do it later.
2273 	 */
2274 	if (!strcmp(str, "enable")) {
2275 		__sched_schedstats = true;
2276 		ret = 1;
2277 	} else if (!strcmp(str, "disable")) {
2278 		__sched_schedstats = false;
2279 		ret = 1;
2280 	}
2281 out:
2282 	if (!ret)
2283 		pr_warn("Unable to parse schedstats=\n");
2284 
2285 	return ret;
2286 }
2287 __setup("schedstats=", setup_schedstats);
2288 
2289 static void __init init_schedstats(void)
2290 {
2291 	set_schedstats(__sched_schedstats);
2292 }
2293 
2294 #ifdef CONFIG_PROC_SYSCTL
2295 int sysctl_schedstats(struct ctl_table *table, int write,
2296 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2297 {
2298 	struct ctl_table t;
2299 	int err;
2300 	int state = static_branch_likely(&sched_schedstats);
2301 
2302 	if (write && !capable(CAP_SYS_ADMIN))
2303 		return -EPERM;
2304 
2305 	t = *table;
2306 	t.data = &state;
2307 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2308 	if (err < 0)
2309 		return err;
2310 	if (write)
2311 		set_schedstats(state);
2312 	return err;
2313 }
2314 #endif /* CONFIG_PROC_SYSCTL */
2315 #else  /* !CONFIG_SCHEDSTATS */
2316 static inline void init_schedstats(void) {}
2317 #endif /* CONFIG_SCHEDSTATS */
2318 
2319 /*
2320  * fork()/clone()-time setup:
2321  */
2322 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2323 {
2324 	unsigned long flags;
2325 	int cpu = get_cpu();
2326 
2327 	__sched_fork(clone_flags, p);
2328 	/*
2329 	 * We mark the process as NEW here. This guarantees that
2330 	 * nobody will actually run it, and a signal or other external
2331 	 * event cannot wake it up and insert it on the runqueue either.
2332 	 */
2333 	p->state = TASK_NEW;
2334 
2335 	/*
2336 	 * Make sure we do not leak PI boosting priority to the child.
2337 	 */
2338 	p->prio = current->normal_prio;
2339 
2340 	/*
2341 	 * Revert to default priority/policy on fork if requested.
2342 	 */
2343 	if (unlikely(p->sched_reset_on_fork)) {
2344 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2345 			p->policy = SCHED_NORMAL;
2346 			p->static_prio = NICE_TO_PRIO(0);
2347 			p->rt_priority = 0;
2348 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2349 			p->static_prio = NICE_TO_PRIO(0);
2350 
2351 		p->prio = p->normal_prio = __normal_prio(p);
2352 		set_load_weight(p);
2353 
2354 		/*
2355 		 * We don't need the reset flag anymore after the fork. It has
2356 		 * fulfilled its duty:
2357 		 */
2358 		p->sched_reset_on_fork = 0;
2359 	}
2360 
2361 	if (dl_prio(p->prio)) {
2362 		put_cpu();
2363 		return -EAGAIN;
2364 	} else if (rt_prio(p->prio)) {
2365 		p->sched_class = &rt_sched_class;
2366 	} else {
2367 		p->sched_class = &fair_sched_class;
2368 	}
2369 
2370 	init_entity_runnable_average(&p->se);
2371 
2372 	/*
2373 	 * The child is not yet in the pid-hash so no cgroup attach races,
2374 	 * and the cgroup is pinned to this child due to cgroup_fork()
2375 	 * is ran before sched_fork().
2376 	 *
2377 	 * Silence PROVE_RCU.
2378 	 */
2379 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2380 	/*
2381 	 * We're setting the CPU for the first time, we don't migrate,
2382 	 * so use __set_task_cpu().
2383 	 */
2384 	__set_task_cpu(p, cpu);
2385 	if (p->sched_class->task_fork)
2386 		p->sched_class->task_fork(p);
2387 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2388 
2389 #ifdef CONFIG_SCHED_INFO
2390 	if (likely(sched_info_on()))
2391 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2392 #endif
2393 #if defined(CONFIG_SMP)
2394 	p->on_cpu = 0;
2395 #endif
2396 	init_task_preempt_count(p);
2397 #ifdef CONFIG_SMP
2398 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2399 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2400 #endif
2401 
2402 	put_cpu();
2403 	return 0;
2404 }
2405 
2406 unsigned long to_ratio(u64 period, u64 runtime)
2407 {
2408 	if (runtime == RUNTIME_INF)
2409 		return BW_UNIT;
2410 
2411 	/*
2412 	 * Doing this here saves a lot of checks in all
2413 	 * the calling paths, and returning zero seems
2414 	 * safe for them anyway.
2415 	 */
2416 	if (period == 0)
2417 		return 0;
2418 
2419 	return div64_u64(runtime << BW_SHIFT, period);
2420 }
2421 
2422 /*
2423  * wake_up_new_task - wake up a newly created task for the first time.
2424  *
2425  * This function will do some initial scheduler statistics housekeeping
2426  * that must be done for every newly created context, then puts the task
2427  * on the runqueue and wakes it.
2428  */
2429 void wake_up_new_task(struct task_struct *p)
2430 {
2431 	struct rq_flags rf;
2432 	struct rq *rq;
2433 
2434 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2435 	p->state = TASK_RUNNING;
2436 #ifdef CONFIG_SMP
2437 	/*
2438 	 * Fork balancing, do it here and not earlier because:
2439 	 *  - cpus_allowed can change in the fork path
2440 	 *  - any previously selected CPU might disappear through hotplug
2441 	 *
2442 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2443 	 * as we're not fully set-up yet.
2444 	 */
2445 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2446 #endif
2447 	rq = __task_rq_lock(p, &rf);
2448 	update_rq_clock(rq);
2449 	post_init_entity_util_avg(&p->se);
2450 
2451 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2452 	p->on_rq = TASK_ON_RQ_QUEUED;
2453 	trace_sched_wakeup_new(p);
2454 	check_preempt_curr(rq, p, WF_FORK);
2455 #ifdef CONFIG_SMP
2456 	if (p->sched_class->task_woken) {
2457 		/*
2458 		 * Nothing relies on rq->lock after this, so its fine to
2459 		 * drop it.
2460 		 */
2461 		rq_unpin_lock(rq, &rf);
2462 		p->sched_class->task_woken(rq, p);
2463 		rq_repin_lock(rq, &rf);
2464 	}
2465 #endif
2466 	task_rq_unlock(rq, p, &rf);
2467 }
2468 
2469 #ifdef CONFIG_PREEMPT_NOTIFIERS
2470 
2471 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2472 
2473 void preempt_notifier_inc(void)
2474 {
2475 	static_key_slow_inc(&preempt_notifier_key);
2476 }
2477 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2478 
2479 void preempt_notifier_dec(void)
2480 {
2481 	static_key_slow_dec(&preempt_notifier_key);
2482 }
2483 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2484 
2485 /**
2486  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2487  * @notifier: notifier struct to register
2488  */
2489 void preempt_notifier_register(struct preempt_notifier *notifier)
2490 {
2491 	if (!static_key_false(&preempt_notifier_key))
2492 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2493 
2494 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2495 }
2496 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2497 
2498 /**
2499  * preempt_notifier_unregister - no longer interested in preemption notifications
2500  * @notifier: notifier struct to unregister
2501  *
2502  * This is *not* safe to call from within a preemption notifier.
2503  */
2504 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2505 {
2506 	hlist_del(&notifier->link);
2507 }
2508 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2509 
2510 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 {
2512 	struct preempt_notifier *notifier;
2513 
2514 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2515 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2516 }
2517 
2518 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2519 {
2520 	if (static_key_false(&preempt_notifier_key))
2521 		__fire_sched_in_preempt_notifiers(curr);
2522 }
2523 
2524 static void
2525 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2526 				   struct task_struct *next)
2527 {
2528 	struct preempt_notifier *notifier;
2529 
2530 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2531 		notifier->ops->sched_out(notifier, next);
2532 }
2533 
2534 static __always_inline void
2535 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2536 				 struct task_struct *next)
2537 {
2538 	if (static_key_false(&preempt_notifier_key))
2539 		__fire_sched_out_preempt_notifiers(curr, next);
2540 }
2541 
2542 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2543 
2544 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2545 {
2546 }
2547 
2548 static inline void
2549 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2550 				 struct task_struct *next)
2551 {
2552 }
2553 
2554 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2555 
2556 /**
2557  * prepare_task_switch - prepare to switch tasks
2558  * @rq: the runqueue preparing to switch
2559  * @prev: the current task that is being switched out
2560  * @next: the task we are going to switch to.
2561  *
2562  * This is called with the rq lock held and interrupts off. It must
2563  * be paired with a subsequent finish_task_switch after the context
2564  * switch.
2565  *
2566  * prepare_task_switch sets up locking and calls architecture specific
2567  * hooks.
2568  */
2569 static inline void
2570 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2571 		    struct task_struct *next)
2572 {
2573 	sched_info_switch(rq, prev, next);
2574 	perf_event_task_sched_out(prev, next);
2575 	fire_sched_out_preempt_notifiers(prev, next);
2576 	prepare_lock_switch(rq, next);
2577 	prepare_arch_switch(next);
2578 }
2579 
2580 /**
2581  * finish_task_switch - clean up after a task-switch
2582  * @prev: the thread we just switched away from.
2583  *
2584  * finish_task_switch must be called after the context switch, paired
2585  * with a prepare_task_switch call before the context switch.
2586  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2587  * and do any other architecture-specific cleanup actions.
2588  *
2589  * Note that we may have delayed dropping an mm in context_switch(). If
2590  * so, we finish that here outside of the runqueue lock. (Doing it
2591  * with the lock held can cause deadlocks; see schedule() for
2592  * details.)
2593  *
2594  * The context switch have flipped the stack from under us and restored the
2595  * local variables which were saved when this task called schedule() in the
2596  * past. prev == current is still correct but we need to recalculate this_rq
2597  * because prev may have moved to another CPU.
2598  */
2599 static struct rq *finish_task_switch(struct task_struct *prev)
2600 	__releases(rq->lock)
2601 {
2602 	struct rq *rq = this_rq();
2603 	struct mm_struct *mm = rq->prev_mm;
2604 	long prev_state;
2605 
2606 	/*
2607 	 * The previous task will have left us with a preempt_count of 2
2608 	 * because it left us after:
2609 	 *
2610 	 *	schedule()
2611 	 *	  preempt_disable();			// 1
2612 	 *	  __schedule()
2613 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2614 	 *
2615 	 * Also, see FORK_PREEMPT_COUNT.
2616 	 */
2617 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2618 		      "corrupted preempt_count: %s/%d/0x%x\n",
2619 		      current->comm, current->pid, preempt_count()))
2620 		preempt_count_set(FORK_PREEMPT_COUNT);
2621 
2622 	rq->prev_mm = NULL;
2623 
2624 	/*
2625 	 * A task struct has one reference for the use as "current".
2626 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2627 	 * schedule one last time. The schedule call will never return, and
2628 	 * the scheduled task must drop that reference.
2629 	 *
2630 	 * We must observe prev->state before clearing prev->on_cpu (in
2631 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2632 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2633 	 * transition, resulting in a double drop.
2634 	 */
2635 	prev_state = prev->state;
2636 	vtime_task_switch(prev);
2637 	perf_event_task_sched_in(prev, current);
2638 	finish_lock_switch(rq, prev);
2639 	finish_arch_post_lock_switch();
2640 
2641 	fire_sched_in_preempt_notifiers(current);
2642 	if (mm)
2643 		mmdrop(mm);
2644 	if (unlikely(prev_state == TASK_DEAD)) {
2645 		if (prev->sched_class->task_dead)
2646 			prev->sched_class->task_dead(prev);
2647 
2648 		/*
2649 		 * Remove function-return probe instances associated with this
2650 		 * task and put them back on the free list.
2651 		 */
2652 		kprobe_flush_task(prev);
2653 
2654 		/* Task is done with its stack. */
2655 		put_task_stack(prev);
2656 
2657 		put_task_struct(prev);
2658 	}
2659 
2660 	tick_nohz_task_switch();
2661 	return rq;
2662 }
2663 
2664 #ifdef CONFIG_SMP
2665 
2666 /* rq->lock is NOT held, but preemption is disabled */
2667 static void __balance_callback(struct rq *rq)
2668 {
2669 	struct callback_head *head, *next;
2670 	void (*func)(struct rq *rq);
2671 	unsigned long flags;
2672 
2673 	raw_spin_lock_irqsave(&rq->lock, flags);
2674 	head = rq->balance_callback;
2675 	rq->balance_callback = NULL;
2676 	while (head) {
2677 		func = (void (*)(struct rq *))head->func;
2678 		next = head->next;
2679 		head->next = NULL;
2680 		head = next;
2681 
2682 		func(rq);
2683 	}
2684 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2685 }
2686 
2687 static inline void balance_callback(struct rq *rq)
2688 {
2689 	if (unlikely(rq->balance_callback))
2690 		__balance_callback(rq);
2691 }
2692 
2693 #else
2694 
2695 static inline void balance_callback(struct rq *rq)
2696 {
2697 }
2698 
2699 #endif
2700 
2701 /**
2702  * schedule_tail - first thing a freshly forked thread must call.
2703  * @prev: the thread we just switched away from.
2704  */
2705 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2706 	__releases(rq->lock)
2707 {
2708 	struct rq *rq;
2709 
2710 	/*
2711 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2712 	 * finish_task_switch() for details.
2713 	 *
2714 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2715 	 * and the preempt_enable() will end up enabling preemption (on
2716 	 * PREEMPT_COUNT kernels).
2717 	 */
2718 
2719 	rq = finish_task_switch(prev);
2720 	balance_callback(rq);
2721 	preempt_enable();
2722 
2723 	if (current->set_child_tid)
2724 		put_user(task_pid_vnr(current), current->set_child_tid);
2725 }
2726 
2727 /*
2728  * context_switch - switch to the new MM and the new thread's register state.
2729  */
2730 static __always_inline struct rq *
2731 context_switch(struct rq *rq, struct task_struct *prev,
2732 	       struct task_struct *next, struct rq_flags *rf)
2733 {
2734 	struct mm_struct *mm, *oldmm;
2735 
2736 	prepare_task_switch(rq, prev, next);
2737 
2738 	mm = next->mm;
2739 	oldmm = prev->active_mm;
2740 	/*
2741 	 * For paravirt, this is coupled with an exit in switch_to to
2742 	 * combine the page table reload and the switch backend into
2743 	 * one hypercall.
2744 	 */
2745 	arch_start_context_switch(prev);
2746 
2747 	if (!mm) {
2748 		next->active_mm = oldmm;
2749 		mmgrab(oldmm);
2750 		enter_lazy_tlb(oldmm, next);
2751 	} else
2752 		switch_mm_irqs_off(oldmm, mm, next);
2753 
2754 	if (!prev->mm) {
2755 		prev->active_mm = NULL;
2756 		rq->prev_mm = oldmm;
2757 	}
2758 
2759 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2760 
2761 	/*
2762 	 * Since the runqueue lock will be released by the next
2763 	 * task (which is an invalid locking op but in the case
2764 	 * of the scheduler it's an obvious special-case), so we
2765 	 * do an early lockdep release here:
2766 	 */
2767 	rq_unpin_lock(rq, rf);
2768 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2769 
2770 	/* Here we just switch the register state and the stack. */
2771 	switch_to(prev, next, prev);
2772 	barrier();
2773 
2774 	return finish_task_switch(prev);
2775 }
2776 
2777 /*
2778  * nr_running and nr_context_switches:
2779  *
2780  * externally visible scheduler statistics: current number of runnable
2781  * threads, total number of context switches performed since bootup.
2782  */
2783 unsigned long nr_running(void)
2784 {
2785 	unsigned long i, sum = 0;
2786 
2787 	for_each_online_cpu(i)
2788 		sum += cpu_rq(i)->nr_running;
2789 
2790 	return sum;
2791 }
2792 
2793 /*
2794  * Check if only the current task is running on the CPU.
2795  *
2796  * Caution: this function does not check that the caller has disabled
2797  * preemption, thus the result might have a time-of-check-to-time-of-use
2798  * race.  The caller is responsible to use it correctly, for example:
2799  *
2800  * - from a non-preemptable section (of course)
2801  *
2802  * - from a thread that is bound to a single CPU
2803  *
2804  * - in a loop with very short iterations (e.g. a polling loop)
2805  */
2806 bool single_task_running(void)
2807 {
2808 	return raw_rq()->nr_running == 1;
2809 }
2810 EXPORT_SYMBOL(single_task_running);
2811 
2812 unsigned long long nr_context_switches(void)
2813 {
2814 	int i;
2815 	unsigned long long sum = 0;
2816 
2817 	for_each_possible_cpu(i)
2818 		sum += cpu_rq(i)->nr_switches;
2819 
2820 	return sum;
2821 }
2822 
2823 /*
2824  * IO-wait accounting, and how its mostly bollocks (on SMP).
2825  *
2826  * The idea behind IO-wait account is to account the idle time that we could
2827  * have spend running if it were not for IO. That is, if we were to improve the
2828  * storage performance, we'd have a proportional reduction in IO-wait time.
2829  *
2830  * This all works nicely on UP, where, when a task blocks on IO, we account
2831  * idle time as IO-wait, because if the storage were faster, it could've been
2832  * running and we'd not be idle.
2833  *
2834  * This has been extended to SMP, by doing the same for each CPU. This however
2835  * is broken.
2836  *
2837  * Imagine for instance the case where two tasks block on one CPU, only the one
2838  * CPU will have IO-wait accounted, while the other has regular idle. Even
2839  * though, if the storage were faster, both could've ran at the same time,
2840  * utilising both CPUs.
2841  *
2842  * This means, that when looking globally, the current IO-wait accounting on
2843  * SMP is a lower bound, by reason of under accounting.
2844  *
2845  * Worse, since the numbers are provided per CPU, they are sometimes
2846  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2847  * associated with any one particular CPU, it can wake to another CPU than it
2848  * blocked on. This means the per CPU IO-wait number is meaningless.
2849  *
2850  * Task CPU affinities can make all that even more 'interesting'.
2851  */
2852 
2853 unsigned long nr_iowait(void)
2854 {
2855 	unsigned long i, sum = 0;
2856 
2857 	for_each_possible_cpu(i)
2858 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2859 
2860 	return sum;
2861 }
2862 
2863 /*
2864  * Consumers of these two interfaces, like for example the cpufreq menu
2865  * governor are using nonsensical data. Boosting frequency for a CPU that has
2866  * IO-wait which might not even end up running the task when it does become
2867  * runnable.
2868  */
2869 
2870 unsigned long nr_iowait_cpu(int cpu)
2871 {
2872 	struct rq *this = cpu_rq(cpu);
2873 	return atomic_read(&this->nr_iowait);
2874 }
2875 
2876 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2877 {
2878 	struct rq *rq = this_rq();
2879 	*nr_waiters = atomic_read(&rq->nr_iowait);
2880 	*load = rq->load.weight;
2881 }
2882 
2883 #ifdef CONFIG_SMP
2884 
2885 /*
2886  * sched_exec - execve() is a valuable balancing opportunity, because at
2887  * this point the task has the smallest effective memory and cache footprint.
2888  */
2889 void sched_exec(void)
2890 {
2891 	struct task_struct *p = current;
2892 	unsigned long flags;
2893 	int dest_cpu;
2894 
2895 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2896 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2897 	if (dest_cpu == smp_processor_id())
2898 		goto unlock;
2899 
2900 	if (likely(cpu_active(dest_cpu))) {
2901 		struct migration_arg arg = { p, dest_cpu };
2902 
2903 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2905 		return;
2906 	}
2907 unlock:
2908 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2909 }
2910 
2911 #endif
2912 
2913 DEFINE_PER_CPU(struct kernel_stat, kstat);
2914 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2915 
2916 EXPORT_PER_CPU_SYMBOL(kstat);
2917 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2918 
2919 /*
2920  * The function fair_sched_class.update_curr accesses the struct curr
2921  * and its field curr->exec_start; when called from task_sched_runtime(),
2922  * we observe a high rate of cache misses in practice.
2923  * Prefetching this data results in improved performance.
2924  */
2925 static inline void prefetch_curr_exec_start(struct task_struct *p)
2926 {
2927 #ifdef CONFIG_FAIR_GROUP_SCHED
2928 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2929 #else
2930 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2931 #endif
2932 	prefetch(curr);
2933 	prefetch(&curr->exec_start);
2934 }
2935 
2936 /*
2937  * Return accounted runtime for the task.
2938  * In case the task is currently running, return the runtime plus current's
2939  * pending runtime that have not been accounted yet.
2940  */
2941 unsigned long long task_sched_runtime(struct task_struct *p)
2942 {
2943 	struct rq_flags rf;
2944 	struct rq *rq;
2945 	u64 ns;
2946 
2947 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2948 	/*
2949 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2950 	 * So we have a optimization chance when the task's delta_exec is 0.
2951 	 * Reading ->on_cpu is racy, but this is ok.
2952 	 *
2953 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
2954 	 * If we race with it entering CPU, unaccounted time is 0. This is
2955 	 * indistinguishable from the read occurring a few cycles earlier.
2956 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2957 	 * been accounted, so we're correct here as well.
2958 	 */
2959 	if (!p->on_cpu || !task_on_rq_queued(p))
2960 		return p->se.sum_exec_runtime;
2961 #endif
2962 
2963 	rq = task_rq_lock(p, &rf);
2964 	/*
2965 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2966 	 * project cycles that may never be accounted to this
2967 	 * thread, breaking clock_gettime().
2968 	 */
2969 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2970 		prefetch_curr_exec_start(p);
2971 		update_rq_clock(rq);
2972 		p->sched_class->update_curr(rq);
2973 	}
2974 	ns = p->se.sum_exec_runtime;
2975 	task_rq_unlock(rq, p, &rf);
2976 
2977 	return ns;
2978 }
2979 
2980 /*
2981  * This function gets called by the timer code, with HZ frequency.
2982  * We call it with interrupts disabled.
2983  */
2984 void scheduler_tick(void)
2985 {
2986 	int cpu = smp_processor_id();
2987 	struct rq *rq = cpu_rq(cpu);
2988 	struct task_struct *curr = rq->curr;
2989 	struct rq_flags rf;
2990 
2991 	sched_clock_tick();
2992 
2993 	rq_lock(rq, &rf);
2994 
2995 	update_rq_clock(rq);
2996 	curr->sched_class->task_tick(rq, curr, 0);
2997 	cpu_load_update_active(rq);
2998 	calc_global_load_tick(rq);
2999 
3000 	rq_unlock(rq, &rf);
3001 
3002 	perf_event_task_tick();
3003 
3004 #ifdef CONFIG_SMP
3005 	rq->idle_balance = idle_cpu(cpu);
3006 	trigger_load_balance(rq);
3007 #endif
3008 	rq_last_tick_reset(rq);
3009 }
3010 
3011 #ifdef CONFIG_NO_HZ_FULL
3012 /**
3013  * scheduler_tick_max_deferment
3014  *
3015  * Keep at least one tick per second when a single
3016  * active task is running because the scheduler doesn't
3017  * yet completely support full dynticks environment.
3018  *
3019  * This makes sure that uptime, CFS vruntime, load
3020  * balancing, etc... continue to move forward, even
3021  * with a very low granularity.
3022  *
3023  * Return: Maximum deferment in nanoseconds.
3024  */
3025 u64 scheduler_tick_max_deferment(void)
3026 {
3027 	struct rq *rq = this_rq();
3028 	unsigned long next, now = READ_ONCE(jiffies);
3029 
3030 	next = rq->last_sched_tick + HZ;
3031 
3032 	if (time_before_eq(next, now))
3033 		return 0;
3034 
3035 	return jiffies_to_nsecs(next - now);
3036 }
3037 #endif
3038 
3039 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3040 				defined(CONFIG_PREEMPT_TRACER))
3041 /*
3042  * If the value passed in is equal to the current preempt count
3043  * then we just disabled preemption. Start timing the latency.
3044  */
3045 static inline void preempt_latency_start(int val)
3046 {
3047 	if (preempt_count() == val) {
3048 		unsigned long ip = get_lock_parent_ip();
3049 #ifdef CONFIG_DEBUG_PREEMPT
3050 		current->preempt_disable_ip = ip;
3051 #endif
3052 		trace_preempt_off(CALLER_ADDR0, ip);
3053 	}
3054 }
3055 
3056 void preempt_count_add(int val)
3057 {
3058 #ifdef CONFIG_DEBUG_PREEMPT
3059 	/*
3060 	 * Underflow?
3061 	 */
3062 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3063 		return;
3064 #endif
3065 	__preempt_count_add(val);
3066 #ifdef CONFIG_DEBUG_PREEMPT
3067 	/*
3068 	 * Spinlock count overflowing soon?
3069 	 */
3070 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3071 				PREEMPT_MASK - 10);
3072 #endif
3073 	preempt_latency_start(val);
3074 }
3075 EXPORT_SYMBOL(preempt_count_add);
3076 NOKPROBE_SYMBOL(preempt_count_add);
3077 
3078 /*
3079  * If the value passed in equals to the current preempt count
3080  * then we just enabled preemption. Stop timing the latency.
3081  */
3082 static inline void preempt_latency_stop(int val)
3083 {
3084 	if (preempt_count() == val)
3085 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3086 }
3087 
3088 void preempt_count_sub(int val)
3089 {
3090 #ifdef CONFIG_DEBUG_PREEMPT
3091 	/*
3092 	 * Underflow?
3093 	 */
3094 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3095 		return;
3096 	/*
3097 	 * Is the spinlock portion underflowing?
3098 	 */
3099 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3100 			!(preempt_count() & PREEMPT_MASK)))
3101 		return;
3102 #endif
3103 
3104 	preempt_latency_stop(val);
3105 	__preempt_count_sub(val);
3106 }
3107 EXPORT_SYMBOL(preempt_count_sub);
3108 NOKPROBE_SYMBOL(preempt_count_sub);
3109 
3110 #else
3111 static inline void preempt_latency_start(int val) { }
3112 static inline void preempt_latency_stop(int val) { }
3113 #endif
3114 
3115 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3116 {
3117 #ifdef CONFIG_DEBUG_PREEMPT
3118 	return p->preempt_disable_ip;
3119 #else
3120 	return 0;
3121 #endif
3122 }
3123 
3124 /*
3125  * Print scheduling while atomic bug:
3126  */
3127 static noinline void __schedule_bug(struct task_struct *prev)
3128 {
3129 	/* Save this before calling printk(), since that will clobber it */
3130 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3131 
3132 	if (oops_in_progress)
3133 		return;
3134 
3135 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3136 		prev->comm, prev->pid, preempt_count());
3137 
3138 	debug_show_held_locks(prev);
3139 	print_modules();
3140 	if (irqs_disabled())
3141 		print_irqtrace_events(prev);
3142 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3143 	    && in_atomic_preempt_off()) {
3144 		pr_err("Preemption disabled at:");
3145 		print_ip_sym(preempt_disable_ip);
3146 		pr_cont("\n");
3147 	}
3148 	if (panic_on_warn)
3149 		panic("scheduling while atomic\n");
3150 
3151 	dump_stack();
3152 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3153 }
3154 
3155 /*
3156  * Various schedule()-time debugging checks and statistics:
3157  */
3158 static inline void schedule_debug(struct task_struct *prev)
3159 {
3160 #ifdef CONFIG_SCHED_STACK_END_CHECK
3161 	if (task_stack_end_corrupted(prev))
3162 		panic("corrupted stack end detected inside scheduler\n");
3163 #endif
3164 
3165 	if (unlikely(in_atomic_preempt_off())) {
3166 		__schedule_bug(prev);
3167 		preempt_count_set(PREEMPT_DISABLED);
3168 	}
3169 	rcu_sleep_check();
3170 
3171 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3172 
3173 	schedstat_inc(this_rq()->sched_count);
3174 }
3175 
3176 /*
3177  * Pick up the highest-prio task:
3178  */
3179 static inline struct task_struct *
3180 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3181 {
3182 	const struct sched_class *class;
3183 	struct task_struct *p;
3184 
3185 	/*
3186 	 * Optimization: we know that if all tasks are in the fair class we can
3187 	 * call that function directly, but only if the @prev task wasn't of a
3188 	 * higher scheduling class, because otherwise those loose the
3189 	 * opportunity to pull in more work from other CPUs.
3190 	 */
3191 	if (likely((prev->sched_class == &idle_sched_class ||
3192 		    prev->sched_class == &fair_sched_class) &&
3193 		   rq->nr_running == rq->cfs.h_nr_running)) {
3194 
3195 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3196 		if (unlikely(p == RETRY_TASK))
3197 			goto again;
3198 
3199 		/* Assumes fair_sched_class->next == idle_sched_class */
3200 		if (unlikely(!p))
3201 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3202 
3203 		return p;
3204 	}
3205 
3206 again:
3207 	for_each_class(class) {
3208 		p = class->pick_next_task(rq, prev, rf);
3209 		if (p) {
3210 			if (unlikely(p == RETRY_TASK))
3211 				goto again;
3212 			return p;
3213 		}
3214 	}
3215 
3216 	/* The idle class should always have a runnable task: */
3217 	BUG();
3218 }
3219 
3220 /*
3221  * __schedule() is the main scheduler function.
3222  *
3223  * The main means of driving the scheduler and thus entering this function are:
3224  *
3225  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3226  *
3227  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3228  *      paths. For example, see arch/x86/entry_64.S.
3229  *
3230  *      To drive preemption between tasks, the scheduler sets the flag in timer
3231  *      interrupt handler scheduler_tick().
3232  *
3233  *   3. Wakeups don't really cause entry into schedule(). They add a
3234  *      task to the run-queue and that's it.
3235  *
3236  *      Now, if the new task added to the run-queue preempts the current
3237  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3238  *      called on the nearest possible occasion:
3239  *
3240  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3241  *
3242  *         - in syscall or exception context, at the next outmost
3243  *           preempt_enable(). (this might be as soon as the wake_up()'s
3244  *           spin_unlock()!)
3245  *
3246  *         - in IRQ context, return from interrupt-handler to
3247  *           preemptible context
3248  *
3249  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3250  *         then at the next:
3251  *
3252  *          - cond_resched() call
3253  *          - explicit schedule() call
3254  *          - return from syscall or exception to user-space
3255  *          - return from interrupt-handler to user-space
3256  *
3257  * WARNING: must be called with preemption disabled!
3258  */
3259 static void __sched notrace __schedule(bool preempt)
3260 {
3261 	struct task_struct *prev, *next;
3262 	unsigned long *switch_count;
3263 	struct rq_flags rf;
3264 	struct rq *rq;
3265 	int cpu;
3266 
3267 	cpu = smp_processor_id();
3268 	rq = cpu_rq(cpu);
3269 	prev = rq->curr;
3270 
3271 	schedule_debug(prev);
3272 
3273 	if (sched_feat(HRTICK))
3274 		hrtick_clear(rq);
3275 
3276 	local_irq_disable();
3277 	rcu_note_context_switch(preempt);
3278 
3279 	/*
3280 	 * Make sure that signal_pending_state()->signal_pending() below
3281 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3282 	 * done by the caller to avoid the race with signal_wake_up().
3283 	 */
3284 	smp_mb__before_spinlock();
3285 	rq_lock(rq, &rf);
3286 
3287 	/* Promote REQ to ACT */
3288 	rq->clock_update_flags <<= 1;
3289 	update_rq_clock(rq);
3290 
3291 	switch_count = &prev->nivcsw;
3292 	if (!preempt && prev->state) {
3293 		if (unlikely(signal_pending_state(prev->state, prev))) {
3294 			prev->state = TASK_RUNNING;
3295 		} else {
3296 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3297 			prev->on_rq = 0;
3298 
3299 			if (prev->in_iowait) {
3300 				atomic_inc(&rq->nr_iowait);
3301 				delayacct_blkio_start();
3302 			}
3303 
3304 			/*
3305 			 * If a worker went to sleep, notify and ask workqueue
3306 			 * whether it wants to wake up a task to maintain
3307 			 * concurrency.
3308 			 */
3309 			if (prev->flags & PF_WQ_WORKER) {
3310 				struct task_struct *to_wakeup;
3311 
3312 				to_wakeup = wq_worker_sleeping(prev);
3313 				if (to_wakeup)
3314 					try_to_wake_up_local(to_wakeup, &rf);
3315 			}
3316 		}
3317 		switch_count = &prev->nvcsw;
3318 	}
3319 
3320 	next = pick_next_task(rq, prev, &rf);
3321 	clear_tsk_need_resched(prev);
3322 	clear_preempt_need_resched();
3323 
3324 	if (likely(prev != next)) {
3325 		rq->nr_switches++;
3326 		rq->curr = next;
3327 		++*switch_count;
3328 
3329 		trace_sched_switch(preempt, prev, next);
3330 
3331 		/* Also unlocks the rq: */
3332 		rq = context_switch(rq, prev, next, &rf);
3333 	} else {
3334 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3335 		rq_unlock_irq(rq, &rf);
3336 	}
3337 
3338 	balance_callback(rq);
3339 }
3340 
3341 void __noreturn do_task_dead(void)
3342 {
3343 	/*
3344 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3345 	 * when the following two conditions become true.
3346 	 *   - There is race condition of mmap_sem (It is acquired by
3347 	 *     exit_mm()), and
3348 	 *   - SMI occurs before setting TASK_RUNINNG.
3349 	 *     (or hypervisor of virtual machine switches to other guest)
3350 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3351 	 *
3352 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3353 	 * is held by try_to_wake_up()
3354 	 */
3355 	smp_mb();
3356 	raw_spin_unlock_wait(&current->pi_lock);
3357 
3358 	/* Causes final put_task_struct in finish_task_switch(): */
3359 	__set_current_state(TASK_DEAD);
3360 
3361 	/* Tell freezer to ignore us: */
3362 	current->flags |= PF_NOFREEZE;
3363 
3364 	__schedule(false);
3365 	BUG();
3366 
3367 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3368 	for (;;)
3369 		cpu_relax();
3370 }
3371 
3372 static inline void sched_submit_work(struct task_struct *tsk)
3373 {
3374 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3375 		return;
3376 	/*
3377 	 * If we are going to sleep and we have plugged IO queued,
3378 	 * make sure to submit it to avoid deadlocks.
3379 	 */
3380 	if (blk_needs_flush_plug(tsk))
3381 		blk_schedule_flush_plug(tsk);
3382 }
3383 
3384 asmlinkage __visible void __sched schedule(void)
3385 {
3386 	struct task_struct *tsk = current;
3387 
3388 	sched_submit_work(tsk);
3389 	do {
3390 		preempt_disable();
3391 		__schedule(false);
3392 		sched_preempt_enable_no_resched();
3393 	} while (need_resched());
3394 }
3395 EXPORT_SYMBOL(schedule);
3396 
3397 /*
3398  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3399  * state (have scheduled out non-voluntarily) by making sure that all
3400  * tasks have either left the run queue or have gone into user space.
3401  * As idle tasks do not do either, they must not ever be preempted
3402  * (schedule out non-voluntarily).
3403  *
3404  * schedule_idle() is similar to schedule_preempt_disable() except that it
3405  * never enables preemption because it does not call sched_submit_work().
3406  */
3407 void __sched schedule_idle(void)
3408 {
3409 	/*
3410 	 * As this skips calling sched_submit_work(), which the idle task does
3411 	 * regardless because that function is a nop when the task is in a
3412 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3413 	 * current task can be in any other state. Note, idle is always in the
3414 	 * TASK_RUNNING state.
3415 	 */
3416 	WARN_ON_ONCE(current->state);
3417 	do {
3418 		__schedule(false);
3419 	} while (need_resched());
3420 }
3421 
3422 #ifdef CONFIG_CONTEXT_TRACKING
3423 asmlinkage __visible void __sched schedule_user(void)
3424 {
3425 	/*
3426 	 * If we come here after a random call to set_need_resched(),
3427 	 * or we have been woken up remotely but the IPI has not yet arrived,
3428 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3429 	 * we find a better solution.
3430 	 *
3431 	 * NB: There are buggy callers of this function.  Ideally we
3432 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3433 	 * too frequently to make sense yet.
3434 	 */
3435 	enum ctx_state prev_state = exception_enter();
3436 	schedule();
3437 	exception_exit(prev_state);
3438 }
3439 #endif
3440 
3441 /**
3442  * schedule_preempt_disabled - called with preemption disabled
3443  *
3444  * Returns with preemption disabled. Note: preempt_count must be 1
3445  */
3446 void __sched schedule_preempt_disabled(void)
3447 {
3448 	sched_preempt_enable_no_resched();
3449 	schedule();
3450 	preempt_disable();
3451 }
3452 
3453 static void __sched notrace preempt_schedule_common(void)
3454 {
3455 	do {
3456 		/*
3457 		 * Because the function tracer can trace preempt_count_sub()
3458 		 * and it also uses preempt_enable/disable_notrace(), if
3459 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3460 		 * by the function tracer will call this function again and
3461 		 * cause infinite recursion.
3462 		 *
3463 		 * Preemption must be disabled here before the function
3464 		 * tracer can trace. Break up preempt_disable() into two
3465 		 * calls. One to disable preemption without fear of being
3466 		 * traced. The other to still record the preemption latency,
3467 		 * which can also be traced by the function tracer.
3468 		 */
3469 		preempt_disable_notrace();
3470 		preempt_latency_start(1);
3471 		__schedule(true);
3472 		preempt_latency_stop(1);
3473 		preempt_enable_no_resched_notrace();
3474 
3475 		/*
3476 		 * Check again in case we missed a preemption opportunity
3477 		 * between schedule and now.
3478 		 */
3479 	} while (need_resched());
3480 }
3481 
3482 #ifdef CONFIG_PREEMPT
3483 /*
3484  * this is the entry point to schedule() from in-kernel preemption
3485  * off of preempt_enable. Kernel preemptions off return from interrupt
3486  * occur there and call schedule directly.
3487  */
3488 asmlinkage __visible void __sched notrace preempt_schedule(void)
3489 {
3490 	/*
3491 	 * If there is a non-zero preempt_count or interrupts are disabled,
3492 	 * we do not want to preempt the current task. Just return..
3493 	 */
3494 	if (likely(!preemptible()))
3495 		return;
3496 
3497 	preempt_schedule_common();
3498 }
3499 NOKPROBE_SYMBOL(preempt_schedule);
3500 EXPORT_SYMBOL(preempt_schedule);
3501 
3502 /**
3503  * preempt_schedule_notrace - preempt_schedule called by tracing
3504  *
3505  * The tracing infrastructure uses preempt_enable_notrace to prevent
3506  * recursion and tracing preempt enabling caused by the tracing
3507  * infrastructure itself. But as tracing can happen in areas coming
3508  * from userspace or just about to enter userspace, a preempt enable
3509  * can occur before user_exit() is called. This will cause the scheduler
3510  * to be called when the system is still in usermode.
3511  *
3512  * To prevent this, the preempt_enable_notrace will use this function
3513  * instead of preempt_schedule() to exit user context if needed before
3514  * calling the scheduler.
3515  */
3516 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3517 {
3518 	enum ctx_state prev_ctx;
3519 
3520 	if (likely(!preemptible()))
3521 		return;
3522 
3523 	do {
3524 		/*
3525 		 * Because the function tracer can trace preempt_count_sub()
3526 		 * and it also uses preempt_enable/disable_notrace(), if
3527 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3528 		 * by the function tracer will call this function again and
3529 		 * cause infinite recursion.
3530 		 *
3531 		 * Preemption must be disabled here before the function
3532 		 * tracer can trace. Break up preempt_disable() into two
3533 		 * calls. One to disable preemption without fear of being
3534 		 * traced. The other to still record the preemption latency,
3535 		 * which can also be traced by the function tracer.
3536 		 */
3537 		preempt_disable_notrace();
3538 		preempt_latency_start(1);
3539 		/*
3540 		 * Needs preempt disabled in case user_exit() is traced
3541 		 * and the tracer calls preempt_enable_notrace() causing
3542 		 * an infinite recursion.
3543 		 */
3544 		prev_ctx = exception_enter();
3545 		__schedule(true);
3546 		exception_exit(prev_ctx);
3547 
3548 		preempt_latency_stop(1);
3549 		preempt_enable_no_resched_notrace();
3550 	} while (need_resched());
3551 }
3552 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3553 
3554 #endif /* CONFIG_PREEMPT */
3555 
3556 /*
3557  * this is the entry point to schedule() from kernel preemption
3558  * off of irq context.
3559  * Note, that this is called and return with irqs disabled. This will
3560  * protect us against recursive calling from irq.
3561  */
3562 asmlinkage __visible void __sched preempt_schedule_irq(void)
3563 {
3564 	enum ctx_state prev_state;
3565 
3566 	/* Catch callers which need to be fixed */
3567 	BUG_ON(preempt_count() || !irqs_disabled());
3568 
3569 	prev_state = exception_enter();
3570 
3571 	do {
3572 		preempt_disable();
3573 		local_irq_enable();
3574 		__schedule(true);
3575 		local_irq_disable();
3576 		sched_preempt_enable_no_resched();
3577 	} while (need_resched());
3578 
3579 	exception_exit(prev_state);
3580 }
3581 
3582 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3583 			  void *key)
3584 {
3585 	return try_to_wake_up(curr->private, mode, wake_flags);
3586 }
3587 EXPORT_SYMBOL(default_wake_function);
3588 
3589 #ifdef CONFIG_RT_MUTEXES
3590 
3591 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3592 {
3593 	if (pi_task)
3594 		prio = min(prio, pi_task->prio);
3595 
3596 	return prio;
3597 }
3598 
3599 static inline int rt_effective_prio(struct task_struct *p, int prio)
3600 {
3601 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3602 
3603 	return __rt_effective_prio(pi_task, prio);
3604 }
3605 
3606 /*
3607  * rt_mutex_setprio - set the current priority of a task
3608  * @p: task to boost
3609  * @pi_task: donor task
3610  *
3611  * This function changes the 'effective' priority of a task. It does
3612  * not touch ->normal_prio like __setscheduler().
3613  *
3614  * Used by the rt_mutex code to implement priority inheritance
3615  * logic. Call site only calls if the priority of the task changed.
3616  */
3617 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3618 {
3619 	int prio, oldprio, queued, running, queue_flag =
3620 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3621 	const struct sched_class *prev_class;
3622 	struct rq_flags rf;
3623 	struct rq *rq;
3624 
3625 	/* XXX used to be waiter->prio, not waiter->task->prio */
3626 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3627 
3628 	/*
3629 	 * If nothing changed; bail early.
3630 	 */
3631 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3632 		return;
3633 
3634 	rq = __task_rq_lock(p, &rf);
3635 	update_rq_clock(rq);
3636 	/*
3637 	 * Set under pi_lock && rq->lock, such that the value can be used under
3638 	 * either lock.
3639 	 *
3640 	 * Note that there is loads of tricky to make this pointer cache work
3641 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3642 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3643 	 * task is allowed to run again (and can exit). This ensures the pointer
3644 	 * points to a blocked task -- which guaratees the task is present.
3645 	 */
3646 	p->pi_top_task = pi_task;
3647 
3648 	/*
3649 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3650 	 */
3651 	if (prio == p->prio && !dl_prio(prio))
3652 		goto out_unlock;
3653 
3654 	/*
3655 	 * Idle task boosting is a nono in general. There is one
3656 	 * exception, when PREEMPT_RT and NOHZ is active:
3657 	 *
3658 	 * The idle task calls get_next_timer_interrupt() and holds
3659 	 * the timer wheel base->lock on the CPU and another CPU wants
3660 	 * to access the timer (probably to cancel it). We can safely
3661 	 * ignore the boosting request, as the idle CPU runs this code
3662 	 * with interrupts disabled and will complete the lock
3663 	 * protected section without being interrupted. So there is no
3664 	 * real need to boost.
3665 	 */
3666 	if (unlikely(p == rq->idle)) {
3667 		WARN_ON(p != rq->curr);
3668 		WARN_ON(p->pi_blocked_on);
3669 		goto out_unlock;
3670 	}
3671 
3672 	trace_sched_pi_setprio(p, pi_task);
3673 	oldprio = p->prio;
3674 
3675 	if (oldprio == prio)
3676 		queue_flag &= ~DEQUEUE_MOVE;
3677 
3678 	prev_class = p->sched_class;
3679 	queued = task_on_rq_queued(p);
3680 	running = task_current(rq, p);
3681 	if (queued)
3682 		dequeue_task(rq, p, queue_flag);
3683 	if (running)
3684 		put_prev_task(rq, p);
3685 
3686 	/*
3687 	 * Boosting condition are:
3688 	 * 1. -rt task is running and holds mutex A
3689 	 *      --> -dl task blocks on mutex A
3690 	 *
3691 	 * 2. -dl task is running and holds mutex A
3692 	 *      --> -dl task blocks on mutex A and could preempt the
3693 	 *          running task
3694 	 */
3695 	if (dl_prio(prio)) {
3696 		if (!dl_prio(p->normal_prio) ||
3697 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3698 			p->dl.dl_boosted = 1;
3699 			queue_flag |= ENQUEUE_REPLENISH;
3700 		} else
3701 			p->dl.dl_boosted = 0;
3702 		p->sched_class = &dl_sched_class;
3703 	} else if (rt_prio(prio)) {
3704 		if (dl_prio(oldprio))
3705 			p->dl.dl_boosted = 0;
3706 		if (oldprio < prio)
3707 			queue_flag |= ENQUEUE_HEAD;
3708 		p->sched_class = &rt_sched_class;
3709 	} else {
3710 		if (dl_prio(oldprio))
3711 			p->dl.dl_boosted = 0;
3712 		if (rt_prio(oldprio))
3713 			p->rt.timeout = 0;
3714 		p->sched_class = &fair_sched_class;
3715 	}
3716 
3717 	p->prio = prio;
3718 
3719 	if (queued)
3720 		enqueue_task(rq, p, queue_flag);
3721 	if (running)
3722 		set_curr_task(rq, p);
3723 
3724 	check_class_changed(rq, p, prev_class, oldprio);
3725 out_unlock:
3726 	/* Avoid rq from going away on us: */
3727 	preempt_disable();
3728 	__task_rq_unlock(rq, &rf);
3729 
3730 	balance_callback(rq);
3731 	preempt_enable();
3732 }
3733 #else
3734 static inline int rt_effective_prio(struct task_struct *p, int prio)
3735 {
3736 	return prio;
3737 }
3738 #endif
3739 
3740 void set_user_nice(struct task_struct *p, long nice)
3741 {
3742 	bool queued, running;
3743 	int old_prio, delta;
3744 	struct rq_flags rf;
3745 	struct rq *rq;
3746 
3747 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3748 		return;
3749 	/*
3750 	 * We have to be careful, if called from sys_setpriority(),
3751 	 * the task might be in the middle of scheduling on another CPU.
3752 	 */
3753 	rq = task_rq_lock(p, &rf);
3754 	update_rq_clock(rq);
3755 
3756 	/*
3757 	 * The RT priorities are set via sched_setscheduler(), but we still
3758 	 * allow the 'normal' nice value to be set - but as expected
3759 	 * it wont have any effect on scheduling until the task is
3760 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3761 	 */
3762 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3763 		p->static_prio = NICE_TO_PRIO(nice);
3764 		goto out_unlock;
3765 	}
3766 	queued = task_on_rq_queued(p);
3767 	running = task_current(rq, p);
3768 	if (queued)
3769 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3770 	if (running)
3771 		put_prev_task(rq, p);
3772 
3773 	p->static_prio = NICE_TO_PRIO(nice);
3774 	set_load_weight(p);
3775 	old_prio = p->prio;
3776 	p->prio = effective_prio(p);
3777 	delta = p->prio - old_prio;
3778 
3779 	if (queued) {
3780 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3781 		/*
3782 		 * If the task increased its priority or is running and
3783 		 * lowered its priority, then reschedule its CPU:
3784 		 */
3785 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3786 			resched_curr(rq);
3787 	}
3788 	if (running)
3789 		set_curr_task(rq, p);
3790 out_unlock:
3791 	task_rq_unlock(rq, p, &rf);
3792 }
3793 EXPORT_SYMBOL(set_user_nice);
3794 
3795 /*
3796  * can_nice - check if a task can reduce its nice value
3797  * @p: task
3798  * @nice: nice value
3799  */
3800 int can_nice(const struct task_struct *p, const int nice)
3801 {
3802 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3803 	int nice_rlim = nice_to_rlimit(nice);
3804 
3805 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3806 		capable(CAP_SYS_NICE));
3807 }
3808 
3809 #ifdef __ARCH_WANT_SYS_NICE
3810 
3811 /*
3812  * sys_nice - change the priority of the current process.
3813  * @increment: priority increment
3814  *
3815  * sys_setpriority is a more generic, but much slower function that
3816  * does similar things.
3817  */
3818 SYSCALL_DEFINE1(nice, int, increment)
3819 {
3820 	long nice, retval;
3821 
3822 	/*
3823 	 * Setpriority might change our priority at the same moment.
3824 	 * We don't have to worry. Conceptually one call occurs first
3825 	 * and we have a single winner.
3826 	 */
3827 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3828 	nice = task_nice(current) + increment;
3829 
3830 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3831 	if (increment < 0 && !can_nice(current, nice))
3832 		return -EPERM;
3833 
3834 	retval = security_task_setnice(current, nice);
3835 	if (retval)
3836 		return retval;
3837 
3838 	set_user_nice(current, nice);
3839 	return 0;
3840 }
3841 
3842 #endif
3843 
3844 /**
3845  * task_prio - return the priority value of a given task.
3846  * @p: the task in question.
3847  *
3848  * Return: The priority value as seen by users in /proc.
3849  * RT tasks are offset by -200. Normal tasks are centered
3850  * around 0, value goes from -16 to +15.
3851  */
3852 int task_prio(const struct task_struct *p)
3853 {
3854 	return p->prio - MAX_RT_PRIO;
3855 }
3856 
3857 /**
3858  * idle_cpu - is a given CPU idle currently?
3859  * @cpu: the processor in question.
3860  *
3861  * Return: 1 if the CPU is currently idle. 0 otherwise.
3862  */
3863 int idle_cpu(int cpu)
3864 {
3865 	struct rq *rq = cpu_rq(cpu);
3866 
3867 	if (rq->curr != rq->idle)
3868 		return 0;
3869 
3870 	if (rq->nr_running)
3871 		return 0;
3872 
3873 #ifdef CONFIG_SMP
3874 	if (!llist_empty(&rq->wake_list))
3875 		return 0;
3876 #endif
3877 
3878 	return 1;
3879 }
3880 
3881 /**
3882  * idle_task - return the idle task for a given CPU.
3883  * @cpu: the processor in question.
3884  *
3885  * Return: The idle task for the CPU @cpu.
3886  */
3887 struct task_struct *idle_task(int cpu)
3888 {
3889 	return cpu_rq(cpu)->idle;
3890 }
3891 
3892 /**
3893  * find_process_by_pid - find a process with a matching PID value.
3894  * @pid: the pid in question.
3895  *
3896  * The task of @pid, if found. %NULL otherwise.
3897  */
3898 static struct task_struct *find_process_by_pid(pid_t pid)
3899 {
3900 	return pid ? find_task_by_vpid(pid) : current;
3901 }
3902 
3903 /*
3904  * sched_setparam() passes in -1 for its policy, to let the functions
3905  * it calls know not to change it.
3906  */
3907 #define SETPARAM_POLICY	-1
3908 
3909 static void __setscheduler_params(struct task_struct *p,
3910 		const struct sched_attr *attr)
3911 {
3912 	int policy = attr->sched_policy;
3913 
3914 	if (policy == SETPARAM_POLICY)
3915 		policy = p->policy;
3916 
3917 	p->policy = policy;
3918 
3919 	if (dl_policy(policy))
3920 		__setparam_dl(p, attr);
3921 	else if (fair_policy(policy))
3922 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3923 
3924 	/*
3925 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3926 	 * !rt_policy. Always setting this ensures that things like
3927 	 * getparam()/getattr() don't report silly values for !rt tasks.
3928 	 */
3929 	p->rt_priority = attr->sched_priority;
3930 	p->normal_prio = normal_prio(p);
3931 	set_load_weight(p);
3932 }
3933 
3934 /* Actually do priority change: must hold pi & rq lock. */
3935 static void __setscheduler(struct rq *rq, struct task_struct *p,
3936 			   const struct sched_attr *attr, bool keep_boost)
3937 {
3938 	__setscheduler_params(p, attr);
3939 
3940 	/*
3941 	 * Keep a potential priority boosting if called from
3942 	 * sched_setscheduler().
3943 	 */
3944 	p->prio = normal_prio(p);
3945 	if (keep_boost)
3946 		p->prio = rt_effective_prio(p, p->prio);
3947 
3948 	if (dl_prio(p->prio))
3949 		p->sched_class = &dl_sched_class;
3950 	else if (rt_prio(p->prio))
3951 		p->sched_class = &rt_sched_class;
3952 	else
3953 		p->sched_class = &fair_sched_class;
3954 }
3955 
3956 /*
3957  * Check the target process has a UID that matches the current process's:
3958  */
3959 static bool check_same_owner(struct task_struct *p)
3960 {
3961 	const struct cred *cred = current_cred(), *pcred;
3962 	bool match;
3963 
3964 	rcu_read_lock();
3965 	pcred = __task_cred(p);
3966 	match = (uid_eq(cred->euid, pcred->euid) ||
3967 		 uid_eq(cred->euid, pcred->uid));
3968 	rcu_read_unlock();
3969 	return match;
3970 }
3971 
3972 static int __sched_setscheduler(struct task_struct *p,
3973 				const struct sched_attr *attr,
3974 				bool user, bool pi)
3975 {
3976 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3977 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3978 	int retval, oldprio, oldpolicy = -1, queued, running;
3979 	int new_effective_prio, policy = attr->sched_policy;
3980 	const struct sched_class *prev_class;
3981 	struct rq_flags rf;
3982 	int reset_on_fork;
3983 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3984 	struct rq *rq;
3985 
3986 	/* The pi code expects interrupts enabled */
3987 	BUG_ON(pi && in_interrupt());
3988 recheck:
3989 	/* Double check policy once rq lock held: */
3990 	if (policy < 0) {
3991 		reset_on_fork = p->sched_reset_on_fork;
3992 		policy = oldpolicy = p->policy;
3993 	} else {
3994 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3995 
3996 		if (!valid_policy(policy))
3997 			return -EINVAL;
3998 	}
3999 
4000 	if (attr->sched_flags &
4001 		~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4002 		return -EINVAL;
4003 
4004 	/*
4005 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4006 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4007 	 * SCHED_BATCH and SCHED_IDLE is 0.
4008 	 */
4009 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4010 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4011 		return -EINVAL;
4012 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4013 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4014 		return -EINVAL;
4015 
4016 	/*
4017 	 * Allow unprivileged RT tasks to decrease priority:
4018 	 */
4019 	if (user && !capable(CAP_SYS_NICE)) {
4020 		if (fair_policy(policy)) {
4021 			if (attr->sched_nice < task_nice(p) &&
4022 			    !can_nice(p, attr->sched_nice))
4023 				return -EPERM;
4024 		}
4025 
4026 		if (rt_policy(policy)) {
4027 			unsigned long rlim_rtprio =
4028 					task_rlimit(p, RLIMIT_RTPRIO);
4029 
4030 			/* Can't set/change the rt policy: */
4031 			if (policy != p->policy && !rlim_rtprio)
4032 				return -EPERM;
4033 
4034 			/* Can't increase priority: */
4035 			if (attr->sched_priority > p->rt_priority &&
4036 			    attr->sched_priority > rlim_rtprio)
4037 				return -EPERM;
4038 		}
4039 
4040 		 /*
4041 		  * Can't set/change SCHED_DEADLINE policy at all for now
4042 		  * (safest behavior); in the future we would like to allow
4043 		  * unprivileged DL tasks to increase their relative deadline
4044 		  * or reduce their runtime (both ways reducing utilization)
4045 		  */
4046 		if (dl_policy(policy))
4047 			return -EPERM;
4048 
4049 		/*
4050 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4051 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4052 		 */
4053 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4054 			if (!can_nice(p, task_nice(p)))
4055 				return -EPERM;
4056 		}
4057 
4058 		/* Can't change other user's priorities: */
4059 		if (!check_same_owner(p))
4060 			return -EPERM;
4061 
4062 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4063 		if (p->sched_reset_on_fork && !reset_on_fork)
4064 			return -EPERM;
4065 	}
4066 
4067 	if (user) {
4068 		retval = security_task_setscheduler(p);
4069 		if (retval)
4070 			return retval;
4071 	}
4072 
4073 	/*
4074 	 * Make sure no PI-waiters arrive (or leave) while we are
4075 	 * changing the priority of the task:
4076 	 *
4077 	 * To be able to change p->policy safely, the appropriate
4078 	 * runqueue lock must be held.
4079 	 */
4080 	rq = task_rq_lock(p, &rf);
4081 	update_rq_clock(rq);
4082 
4083 	/*
4084 	 * Changing the policy of the stop threads its a very bad idea:
4085 	 */
4086 	if (p == rq->stop) {
4087 		task_rq_unlock(rq, p, &rf);
4088 		return -EINVAL;
4089 	}
4090 
4091 	/*
4092 	 * If not changing anything there's no need to proceed further,
4093 	 * but store a possible modification of reset_on_fork.
4094 	 */
4095 	if (unlikely(policy == p->policy)) {
4096 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4097 			goto change;
4098 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4099 			goto change;
4100 		if (dl_policy(policy) && dl_param_changed(p, attr))
4101 			goto change;
4102 
4103 		p->sched_reset_on_fork = reset_on_fork;
4104 		task_rq_unlock(rq, p, &rf);
4105 		return 0;
4106 	}
4107 change:
4108 
4109 	if (user) {
4110 #ifdef CONFIG_RT_GROUP_SCHED
4111 		/*
4112 		 * Do not allow realtime tasks into groups that have no runtime
4113 		 * assigned.
4114 		 */
4115 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4116 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4117 				!task_group_is_autogroup(task_group(p))) {
4118 			task_rq_unlock(rq, p, &rf);
4119 			return -EPERM;
4120 		}
4121 #endif
4122 #ifdef CONFIG_SMP
4123 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4124 			cpumask_t *span = rq->rd->span;
4125 
4126 			/*
4127 			 * Don't allow tasks with an affinity mask smaller than
4128 			 * the entire root_domain to become SCHED_DEADLINE. We
4129 			 * will also fail if there's no bandwidth available.
4130 			 */
4131 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4132 			    rq->rd->dl_bw.bw == 0) {
4133 				task_rq_unlock(rq, p, &rf);
4134 				return -EPERM;
4135 			}
4136 		}
4137 #endif
4138 	}
4139 
4140 	/* Re-check policy now with rq lock held: */
4141 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4142 		policy = oldpolicy = -1;
4143 		task_rq_unlock(rq, p, &rf);
4144 		goto recheck;
4145 	}
4146 
4147 	/*
4148 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4149 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4150 	 * is available.
4151 	 */
4152 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4153 		task_rq_unlock(rq, p, &rf);
4154 		return -EBUSY;
4155 	}
4156 
4157 	p->sched_reset_on_fork = reset_on_fork;
4158 	oldprio = p->prio;
4159 
4160 	if (pi) {
4161 		/*
4162 		 * Take priority boosted tasks into account. If the new
4163 		 * effective priority is unchanged, we just store the new
4164 		 * normal parameters and do not touch the scheduler class and
4165 		 * the runqueue. This will be done when the task deboost
4166 		 * itself.
4167 		 */
4168 		new_effective_prio = rt_effective_prio(p, newprio);
4169 		if (new_effective_prio == oldprio)
4170 			queue_flags &= ~DEQUEUE_MOVE;
4171 	}
4172 
4173 	queued = task_on_rq_queued(p);
4174 	running = task_current(rq, p);
4175 	if (queued)
4176 		dequeue_task(rq, p, queue_flags);
4177 	if (running)
4178 		put_prev_task(rq, p);
4179 
4180 	prev_class = p->sched_class;
4181 	__setscheduler(rq, p, attr, pi);
4182 
4183 	if (queued) {
4184 		/*
4185 		 * We enqueue to tail when the priority of a task is
4186 		 * increased (user space view).
4187 		 */
4188 		if (oldprio < p->prio)
4189 			queue_flags |= ENQUEUE_HEAD;
4190 
4191 		enqueue_task(rq, p, queue_flags);
4192 	}
4193 	if (running)
4194 		set_curr_task(rq, p);
4195 
4196 	check_class_changed(rq, p, prev_class, oldprio);
4197 
4198 	/* Avoid rq from going away on us: */
4199 	preempt_disable();
4200 	task_rq_unlock(rq, p, &rf);
4201 
4202 	if (pi)
4203 		rt_mutex_adjust_pi(p);
4204 
4205 	/* Run balance callbacks after we've adjusted the PI chain: */
4206 	balance_callback(rq);
4207 	preempt_enable();
4208 
4209 	return 0;
4210 }
4211 
4212 static int _sched_setscheduler(struct task_struct *p, int policy,
4213 			       const struct sched_param *param, bool check)
4214 {
4215 	struct sched_attr attr = {
4216 		.sched_policy   = policy,
4217 		.sched_priority = param->sched_priority,
4218 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4219 	};
4220 
4221 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4222 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4223 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4224 		policy &= ~SCHED_RESET_ON_FORK;
4225 		attr.sched_policy = policy;
4226 	}
4227 
4228 	return __sched_setscheduler(p, &attr, check, true);
4229 }
4230 /**
4231  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4232  * @p: the task in question.
4233  * @policy: new policy.
4234  * @param: structure containing the new RT priority.
4235  *
4236  * Return: 0 on success. An error code otherwise.
4237  *
4238  * NOTE that the task may be already dead.
4239  */
4240 int sched_setscheduler(struct task_struct *p, int policy,
4241 		       const struct sched_param *param)
4242 {
4243 	return _sched_setscheduler(p, policy, param, true);
4244 }
4245 EXPORT_SYMBOL_GPL(sched_setscheduler);
4246 
4247 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4248 {
4249 	return __sched_setscheduler(p, attr, true, true);
4250 }
4251 EXPORT_SYMBOL_GPL(sched_setattr);
4252 
4253 /**
4254  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4255  * @p: the task in question.
4256  * @policy: new policy.
4257  * @param: structure containing the new RT priority.
4258  *
4259  * Just like sched_setscheduler, only don't bother checking if the
4260  * current context has permission.  For example, this is needed in
4261  * stop_machine(): we create temporary high priority worker threads,
4262  * but our caller might not have that capability.
4263  *
4264  * Return: 0 on success. An error code otherwise.
4265  */
4266 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4267 			       const struct sched_param *param)
4268 {
4269 	return _sched_setscheduler(p, policy, param, false);
4270 }
4271 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4272 
4273 static int
4274 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4275 {
4276 	struct sched_param lparam;
4277 	struct task_struct *p;
4278 	int retval;
4279 
4280 	if (!param || pid < 0)
4281 		return -EINVAL;
4282 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4283 		return -EFAULT;
4284 
4285 	rcu_read_lock();
4286 	retval = -ESRCH;
4287 	p = find_process_by_pid(pid);
4288 	if (p != NULL)
4289 		retval = sched_setscheduler(p, policy, &lparam);
4290 	rcu_read_unlock();
4291 
4292 	return retval;
4293 }
4294 
4295 /*
4296  * Mimics kernel/events/core.c perf_copy_attr().
4297  */
4298 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4299 {
4300 	u32 size;
4301 	int ret;
4302 
4303 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4304 		return -EFAULT;
4305 
4306 	/* Zero the full structure, so that a short copy will be nice: */
4307 	memset(attr, 0, sizeof(*attr));
4308 
4309 	ret = get_user(size, &uattr->size);
4310 	if (ret)
4311 		return ret;
4312 
4313 	/* Bail out on silly large: */
4314 	if (size > PAGE_SIZE)
4315 		goto err_size;
4316 
4317 	/* ABI compatibility quirk: */
4318 	if (!size)
4319 		size = SCHED_ATTR_SIZE_VER0;
4320 
4321 	if (size < SCHED_ATTR_SIZE_VER0)
4322 		goto err_size;
4323 
4324 	/*
4325 	 * If we're handed a bigger struct than we know of,
4326 	 * ensure all the unknown bits are 0 - i.e. new
4327 	 * user-space does not rely on any kernel feature
4328 	 * extensions we dont know about yet.
4329 	 */
4330 	if (size > sizeof(*attr)) {
4331 		unsigned char __user *addr;
4332 		unsigned char __user *end;
4333 		unsigned char val;
4334 
4335 		addr = (void __user *)uattr + sizeof(*attr);
4336 		end  = (void __user *)uattr + size;
4337 
4338 		for (; addr < end; addr++) {
4339 			ret = get_user(val, addr);
4340 			if (ret)
4341 				return ret;
4342 			if (val)
4343 				goto err_size;
4344 		}
4345 		size = sizeof(*attr);
4346 	}
4347 
4348 	ret = copy_from_user(attr, uattr, size);
4349 	if (ret)
4350 		return -EFAULT;
4351 
4352 	/*
4353 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4354 	 * to be strict and return an error on out-of-bounds values?
4355 	 */
4356 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4357 
4358 	return 0;
4359 
4360 err_size:
4361 	put_user(sizeof(*attr), &uattr->size);
4362 	return -E2BIG;
4363 }
4364 
4365 /**
4366  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4367  * @pid: the pid in question.
4368  * @policy: new policy.
4369  * @param: structure containing the new RT priority.
4370  *
4371  * Return: 0 on success. An error code otherwise.
4372  */
4373 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4374 {
4375 	if (policy < 0)
4376 		return -EINVAL;
4377 
4378 	return do_sched_setscheduler(pid, policy, param);
4379 }
4380 
4381 /**
4382  * sys_sched_setparam - set/change the RT priority of a thread
4383  * @pid: the pid in question.
4384  * @param: structure containing the new RT priority.
4385  *
4386  * Return: 0 on success. An error code otherwise.
4387  */
4388 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4389 {
4390 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4391 }
4392 
4393 /**
4394  * sys_sched_setattr - same as above, but with extended sched_attr
4395  * @pid: the pid in question.
4396  * @uattr: structure containing the extended parameters.
4397  * @flags: for future extension.
4398  */
4399 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4400 			       unsigned int, flags)
4401 {
4402 	struct sched_attr attr;
4403 	struct task_struct *p;
4404 	int retval;
4405 
4406 	if (!uattr || pid < 0 || flags)
4407 		return -EINVAL;
4408 
4409 	retval = sched_copy_attr(uattr, &attr);
4410 	if (retval)
4411 		return retval;
4412 
4413 	if ((int)attr.sched_policy < 0)
4414 		return -EINVAL;
4415 
4416 	rcu_read_lock();
4417 	retval = -ESRCH;
4418 	p = find_process_by_pid(pid);
4419 	if (p != NULL)
4420 		retval = sched_setattr(p, &attr);
4421 	rcu_read_unlock();
4422 
4423 	return retval;
4424 }
4425 
4426 /**
4427  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4428  * @pid: the pid in question.
4429  *
4430  * Return: On success, the policy of the thread. Otherwise, a negative error
4431  * code.
4432  */
4433 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4434 {
4435 	struct task_struct *p;
4436 	int retval;
4437 
4438 	if (pid < 0)
4439 		return -EINVAL;
4440 
4441 	retval = -ESRCH;
4442 	rcu_read_lock();
4443 	p = find_process_by_pid(pid);
4444 	if (p) {
4445 		retval = security_task_getscheduler(p);
4446 		if (!retval)
4447 			retval = p->policy
4448 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4449 	}
4450 	rcu_read_unlock();
4451 	return retval;
4452 }
4453 
4454 /**
4455  * sys_sched_getparam - get the RT priority of a thread
4456  * @pid: the pid in question.
4457  * @param: structure containing the RT priority.
4458  *
4459  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4460  * code.
4461  */
4462 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4463 {
4464 	struct sched_param lp = { .sched_priority = 0 };
4465 	struct task_struct *p;
4466 	int retval;
4467 
4468 	if (!param || pid < 0)
4469 		return -EINVAL;
4470 
4471 	rcu_read_lock();
4472 	p = find_process_by_pid(pid);
4473 	retval = -ESRCH;
4474 	if (!p)
4475 		goto out_unlock;
4476 
4477 	retval = security_task_getscheduler(p);
4478 	if (retval)
4479 		goto out_unlock;
4480 
4481 	if (task_has_rt_policy(p))
4482 		lp.sched_priority = p->rt_priority;
4483 	rcu_read_unlock();
4484 
4485 	/*
4486 	 * This one might sleep, we cannot do it with a spinlock held ...
4487 	 */
4488 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4489 
4490 	return retval;
4491 
4492 out_unlock:
4493 	rcu_read_unlock();
4494 	return retval;
4495 }
4496 
4497 static int sched_read_attr(struct sched_attr __user *uattr,
4498 			   struct sched_attr *attr,
4499 			   unsigned int usize)
4500 {
4501 	int ret;
4502 
4503 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4504 		return -EFAULT;
4505 
4506 	/*
4507 	 * If we're handed a smaller struct than we know of,
4508 	 * ensure all the unknown bits are 0 - i.e. old
4509 	 * user-space does not get uncomplete information.
4510 	 */
4511 	if (usize < sizeof(*attr)) {
4512 		unsigned char *addr;
4513 		unsigned char *end;
4514 
4515 		addr = (void *)attr + usize;
4516 		end  = (void *)attr + sizeof(*attr);
4517 
4518 		for (; addr < end; addr++) {
4519 			if (*addr)
4520 				return -EFBIG;
4521 		}
4522 
4523 		attr->size = usize;
4524 	}
4525 
4526 	ret = copy_to_user(uattr, attr, attr->size);
4527 	if (ret)
4528 		return -EFAULT;
4529 
4530 	return 0;
4531 }
4532 
4533 /**
4534  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4535  * @pid: the pid in question.
4536  * @uattr: structure containing the extended parameters.
4537  * @size: sizeof(attr) for fwd/bwd comp.
4538  * @flags: for future extension.
4539  */
4540 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4541 		unsigned int, size, unsigned int, flags)
4542 {
4543 	struct sched_attr attr = {
4544 		.size = sizeof(struct sched_attr),
4545 	};
4546 	struct task_struct *p;
4547 	int retval;
4548 
4549 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4550 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4551 		return -EINVAL;
4552 
4553 	rcu_read_lock();
4554 	p = find_process_by_pid(pid);
4555 	retval = -ESRCH;
4556 	if (!p)
4557 		goto out_unlock;
4558 
4559 	retval = security_task_getscheduler(p);
4560 	if (retval)
4561 		goto out_unlock;
4562 
4563 	attr.sched_policy = p->policy;
4564 	if (p->sched_reset_on_fork)
4565 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4566 	if (task_has_dl_policy(p))
4567 		__getparam_dl(p, &attr);
4568 	else if (task_has_rt_policy(p))
4569 		attr.sched_priority = p->rt_priority;
4570 	else
4571 		attr.sched_nice = task_nice(p);
4572 
4573 	rcu_read_unlock();
4574 
4575 	retval = sched_read_attr(uattr, &attr, size);
4576 	return retval;
4577 
4578 out_unlock:
4579 	rcu_read_unlock();
4580 	return retval;
4581 }
4582 
4583 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4584 {
4585 	cpumask_var_t cpus_allowed, new_mask;
4586 	struct task_struct *p;
4587 	int retval;
4588 
4589 	rcu_read_lock();
4590 
4591 	p = find_process_by_pid(pid);
4592 	if (!p) {
4593 		rcu_read_unlock();
4594 		return -ESRCH;
4595 	}
4596 
4597 	/* Prevent p going away */
4598 	get_task_struct(p);
4599 	rcu_read_unlock();
4600 
4601 	if (p->flags & PF_NO_SETAFFINITY) {
4602 		retval = -EINVAL;
4603 		goto out_put_task;
4604 	}
4605 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4606 		retval = -ENOMEM;
4607 		goto out_put_task;
4608 	}
4609 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4610 		retval = -ENOMEM;
4611 		goto out_free_cpus_allowed;
4612 	}
4613 	retval = -EPERM;
4614 	if (!check_same_owner(p)) {
4615 		rcu_read_lock();
4616 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4617 			rcu_read_unlock();
4618 			goto out_free_new_mask;
4619 		}
4620 		rcu_read_unlock();
4621 	}
4622 
4623 	retval = security_task_setscheduler(p);
4624 	if (retval)
4625 		goto out_free_new_mask;
4626 
4627 
4628 	cpuset_cpus_allowed(p, cpus_allowed);
4629 	cpumask_and(new_mask, in_mask, cpus_allowed);
4630 
4631 	/*
4632 	 * Since bandwidth control happens on root_domain basis,
4633 	 * if admission test is enabled, we only admit -deadline
4634 	 * tasks allowed to run on all the CPUs in the task's
4635 	 * root_domain.
4636 	 */
4637 #ifdef CONFIG_SMP
4638 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4639 		rcu_read_lock();
4640 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4641 			retval = -EBUSY;
4642 			rcu_read_unlock();
4643 			goto out_free_new_mask;
4644 		}
4645 		rcu_read_unlock();
4646 	}
4647 #endif
4648 again:
4649 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4650 
4651 	if (!retval) {
4652 		cpuset_cpus_allowed(p, cpus_allowed);
4653 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4654 			/*
4655 			 * We must have raced with a concurrent cpuset
4656 			 * update. Just reset the cpus_allowed to the
4657 			 * cpuset's cpus_allowed
4658 			 */
4659 			cpumask_copy(new_mask, cpus_allowed);
4660 			goto again;
4661 		}
4662 	}
4663 out_free_new_mask:
4664 	free_cpumask_var(new_mask);
4665 out_free_cpus_allowed:
4666 	free_cpumask_var(cpus_allowed);
4667 out_put_task:
4668 	put_task_struct(p);
4669 	return retval;
4670 }
4671 
4672 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4673 			     struct cpumask *new_mask)
4674 {
4675 	if (len < cpumask_size())
4676 		cpumask_clear(new_mask);
4677 	else if (len > cpumask_size())
4678 		len = cpumask_size();
4679 
4680 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4681 }
4682 
4683 /**
4684  * sys_sched_setaffinity - set the CPU affinity of a process
4685  * @pid: pid of the process
4686  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4687  * @user_mask_ptr: user-space pointer to the new CPU mask
4688  *
4689  * Return: 0 on success. An error code otherwise.
4690  */
4691 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4692 		unsigned long __user *, user_mask_ptr)
4693 {
4694 	cpumask_var_t new_mask;
4695 	int retval;
4696 
4697 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4698 		return -ENOMEM;
4699 
4700 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4701 	if (retval == 0)
4702 		retval = sched_setaffinity(pid, new_mask);
4703 	free_cpumask_var(new_mask);
4704 	return retval;
4705 }
4706 
4707 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4708 {
4709 	struct task_struct *p;
4710 	unsigned long flags;
4711 	int retval;
4712 
4713 	rcu_read_lock();
4714 
4715 	retval = -ESRCH;
4716 	p = find_process_by_pid(pid);
4717 	if (!p)
4718 		goto out_unlock;
4719 
4720 	retval = security_task_getscheduler(p);
4721 	if (retval)
4722 		goto out_unlock;
4723 
4724 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4725 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4726 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4727 
4728 out_unlock:
4729 	rcu_read_unlock();
4730 
4731 	return retval;
4732 }
4733 
4734 /**
4735  * sys_sched_getaffinity - get the CPU affinity of a process
4736  * @pid: pid of the process
4737  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4738  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4739  *
4740  * Return: size of CPU mask copied to user_mask_ptr on success. An
4741  * error code otherwise.
4742  */
4743 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4744 		unsigned long __user *, user_mask_ptr)
4745 {
4746 	int ret;
4747 	cpumask_var_t mask;
4748 
4749 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4750 		return -EINVAL;
4751 	if (len & (sizeof(unsigned long)-1))
4752 		return -EINVAL;
4753 
4754 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4755 		return -ENOMEM;
4756 
4757 	ret = sched_getaffinity(pid, mask);
4758 	if (ret == 0) {
4759 		size_t retlen = min_t(size_t, len, cpumask_size());
4760 
4761 		if (copy_to_user(user_mask_ptr, mask, retlen))
4762 			ret = -EFAULT;
4763 		else
4764 			ret = retlen;
4765 	}
4766 	free_cpumask_var(mask);
4767 
4768 	return ret;
4769 }
4770 
4771 /**
4772  * sys_sched_yield - yield the current processor to other threads.
4773  *
4774  * This function yields the current CPU to other tasks. If there are no
4775  * other threads running on this CPU then this function will return.
4776  *
4777  * Return: 0.
4778  */
4779 SYSCALL_DEFINE0(sched_yield)
4780 {
4781 	struct rq_flags rf;
4782 	struct rq *rq;
4783 
4784 	local_irq_disable();
4785 	rq = this_rq();
4786 	rq_lock(rq, &rf);
4787 
4788 	schedstat_inc(rq->yld_count);
4789 	current->sched_class->yield_task(rq);
4790 
4791 	/*
4792 	 * Since we are going to call schedule() anyway, there's
4793 	 * no need to preempt or enable interrupts:
4794 	 */
4795 	preempt_disable();
4796 	rq_unlock(rq, &rf);
4797 	sched_preempt_enable_no_resched();
4798 
4799 	schedule();
4800 
4801 	return 0;
4802 }
4803 
4804 #ifndef CONFIG_PREEMPT
4805 int __sched _cond_resched(void)
4806 {
4807 	if (should_resched(0)) {
4808 		preempt_schedule_common();
4809 		return 1;
4810 	}
4811 	return 0;
4812 }
4813 EXPORT_SYMBOL(_cond_resched);
4814 #endif
4815 
4816 /*
4817  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4818  * call schedule, and on return reacquire the lock.
4819  *
4820  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4821  * operations here to prevent schedule() from being called twice (once via
4822  * spin_unlock(), once by hand).
4823  */
4824 int __cond_resched_lock(spinlock_t *lock)
4825 {
4826 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4827 	int ret = 0;
4828 
4829 	lockdep_assert_held(lock);
4830 
4831 	if (spin_needbreak(lock) || resched) {
4832 		spin_unlock(lock);
4833 		if (resched)
4834 			preempt_schedule_common();
4835 		else
4836 			cpu_relax();
4837 		ret = 1;
4838 		spin_lock(lock);
4839 	}
4840 	return ret;
4841 }
4842 EXPORT_SYMBOL(__cond_resched_lock);
4843 
4844 int __sched __cond_resched_softirq(void)
4845 {
4846 	BUG_ON(!in_softirq());
4847 
4848 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4849 		local_bh_enable();
4850 		preempt_schedule_common();
4851 		local_bh_disable();
4852 		return 1;
4853 	}
4854 	return 0;
4855 }
4856 EXPORT_SYMBOL(__cond_resched_softirq);
4857 
4858 /**
4859  * yield - yield the current processor to other threads.
4860  *
4861  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4862  *
4863  * The scheduler is at all times free to pick the calling task as the most
4864  * eligible task to run, if removing the yield() call from your code breaks
4865  * it, its already broken.
4866  *
4867  * Typical broken usage is:
4868  *
4869  * while (!event)
4870  *	yield();
4871  *
4872  * where one assumes that yield() will let 'the other' process run that will
4873  * make event true. If the current task is a SCHED_FIFO task that will never
4874  * happen. Never use yield() as a progress guarantee!!
4875  *
4876  * If you want to use yield() to wait for something, use wait_event().
4877  * If you want to use yield() to be 'nice' for others, use cond_resched().
4878  * If you still want to use yield(), do not!
4879  */
4880 void __sched yield(void)
4881 {
4882 	set_current_state(TASK_RUNNING);
4883 	sys_sched_yield();
4884 }
4885 EXPORT_SYMBOL(yield);
4886 
4887 /**
4888  * yield_to - yield the current processor to another thread in
4889  * your thread group, or accelerate that thread toward the
4890  * processor it's on.
4891  * @p: target task
4892  * @preempt: whether task preemption is allowed or not
4893  *
4894  * It's the caller's job to ensure that the target task struct
4895  * can't go away on us before we can do any checks.
4896  *
4897  * Return:
4898  *	true (>0) if we indeed boosted the target task.
4899  *	false (0) if we failed to boost the target.
4900  *	-ESRCH if there's no task to yield to.
4901  */
4902 int __sched yield_to(struct task_struct *p, bool preempt)
4903 {
4904 	struct task_struct *curr = current;
4905 	struct rq *rq, *p_rq;
4906 	unsigned long flags;
4907 	int yielded = 0;
4908 
4909 	local_irq_save(flags);
4910 	rq = this_rq();
4911 
4912 again:
4913 	p_rq = task_rq(p);
4914 	/*
4915 	 * If we're the only runnable task on the rq and target rq also
4916 	 * has only one task, there's absolutely no point in yielding.
4917 	 */
4918 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4919 		yielded = -ESRCH;
4920 		goto out_irq;
4921 	}
4922 
4923 	double_rq_lock(rq, p_rq);
4924 	if (task_rq(p) != p_rq) {
4925 		double_rq_unlock(rq, p_rq);
4926 		goto again;
4927 	}
4928 
4929 	if (!curr->sched_class->yield_to_task)
4930 		goto out_unlock;
4931 
4932 	if (curr->sched_class != p->sched_class)
4933 		goto out_unlock;
4934 
4935 	if (task_running(p_rq, p) || p->state)
4936 		goto out_unlock;
4937 
4938 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4939 	if (yielded) {
4940 		schedstat_inc(rq->yld_count);
4941 		/*
4942 		 * Make p's CPU reschedule; pick_next_entity takes care of
4943 		 * fairness.
4944 		 */
4945 		if (preempt && rq != p_rq)
4946 			resched_curr(p_rq);
4947 	}
4948 
4949 out_unlock:
4950 	double_rq_unlock(rq, p_rq);
4951 out_irq:
4952 	local_irq_restore(flags);
4953 
4954 	if (yielded > 0)
4955 		schedule();
4956 
4957 	return yielded;
4958 }
4959 EXPORT_SYMBOL_GPL(yield_to);
4960 
4961 int io_schedule_prepare(void)
4962 {
4963 	int old_iowait = current->in_iowait;
4964 
4965 	current->in_iowait = 1;
4966 	blk_schedule_flush_plug(current);
4967 
4968 	return old_iowait;
4969 }
4970 
4971 void io_schedule_finish(int token)
4972 {
4973 	current->in_iowait = token;
4974 }
4975 
4976 /*
4977  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4978  * that process accounting knows that this is a task in IO wait state.
4979  */
4980 long __sched io_schedule_timeout(long timeout)
4981 {
4982 	int token;
4983 	long ret;
4984 
4985 	token = io_schedule_prepare();
4986 	ret = schedule_timeout(timeout);
4987 	io_schedule_finish(token);
4988 
4989 	return ret;
4990 }
4991 EXPORT_SYMBOL(io_schedule_timeout);
4992 
4993 void io_schedule(void)
4994 {
4995 	int token;
4996 
4997 	token = io_schedule_prepare();
4998 	schedule();
4999 	io_schedule_finish(token);
5000 }
5001 EXPORT_SYMBOL(io_schedule);
5002 
5003 /**
5004  * sys_sched_get_priority_max - return maximum RT priority.
5005  * @policy: scheduling class.
5006  *
5007  * Return: On success, this syscall returns the maximum
5008  * rt_priority that can be used by a given scheduling class.
5009  * On failure, a negative error code is returned.
5010  */
5011 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5012 {
5013 	int ret = -EINVAL;
5014 
5015 	switch (policy) {
5016 	case SCHED_FIFO:
5017 	case SCHED_RR:
5018 		ret = MAX_USER_RT_PRIO-1;
5019 		break;
5020 	case SCHED_DEADLINE:
5021 	case SCHED_NORMAL:
5022 	case SCHED_BATCH:
5023 	case SCHED_IDLE:
5024 		ret = 0;
5025 		break;
5026 	}
5027 	return ret;
5028 }
5029 
5030 /**
5031  * sys_sched_get_priority_min - return minimum RT priority.
5032  * @policy: scheduling class.
5033  *
5034  * Return: On success, this syscall returns the minimum
5035  * rt_priority that can be used by a given scheduling class.
5036  * On failure, a negative error code is returned.
5037  */
5038 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5039 {
5040 	int ret = -EINVAL;
5041 
5042 	switch (policy) {
5043 	case SCHED_FIFO:
5044 	case SCHED_RR:
5045 		ret = 1;
5046 		break;
5047 	case SCHED_DEADLINE:
5048 	case SCHED_NORMAL:
5049 	case SCHED_BATCH:
5050 	case SCHED_IDLE:
5051 		ret = 0;
5052 	}
5053 	return ret;
5054 }
5055 
5056 /**
5057  * sys_sched_rr_get_interval - return the default timeslice of a process.
5058  * @pid: pid of the process.
5059  * @interval: userspace pointer to the timeslice value.
5060  *
5061  * this syscall writes the default timeslice value of a given process
5062  * into the user-space timespec buffer. A value of '0' means infinity.
5063  *
5064  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5065  * an error code.
5066  */
5067 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5068 		struct timespec __user *, interval)
5069 {
5070 	struct task_struct *p;
5071 	unsigned int time_slice;
5072 	struct rq_flags rf;
5073 	struct timespec t;
5074 	struct rq *rq;
5075 	int retval;
5076 
5077 	if (pid < 0)
5078 		return -EINVAL;
5079 
5080 	retval = -ESRCH;
5081 	rcu_read_lock();
5082 	p = find_process_by_pid(pid);
5083 	if (!p)
5084 		goto out_unlock;
5085 
5086 	retval = security_task_getscheduler(p);
5087 	if (retval)
5088 		goto out_unlock;
5089 
5090 	rq = task_rq_lock(p, &rf);
5091 	time_slice = 0;
5092 	if (p->sched_class->get_rr_interval)
5093 		time_slice = p->sched_class->get_rr_interval(rq, p);
5094 	task_rq_unlock(rq, p, &rf);
5095 
5096 	rcu_read_unlock();
5097 	jiffies_to_timespec(time_slice, &t);
5098 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5099 	return retval;
5100 
5101 out_unlock:
5102 	rcu_read_unlock();
5103 	return retval;
5104 }
5105 
5106 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5107 
5108 void sched_show_task(struct task_struct *p)
5109 {
5110 	unsigned long free = 0;
5111 	int ppid;
5112 	unsigned long state = p->state;
5113 
5114 	/* Make sure the string lines up properly with the number of task states: */
5115 	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5116 
5117 	if (!try_get_task_stack(p))
5118 		return;
5119 	if (state)
5120 		state = __ffs(state) + 1;
5121 	printk(KERN_INFO "%-15.15s %c", p->comm,
5122 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5123 	if (state == TASK_RUNNING)
5124 		printk(KERN_CONT "  running task    ");
5125 #ifdef CONFIG_DEBUG_STACK_USAGE
5126 	free = stack_not_used(p);
5127 #endif
5128 	ppid = 0;
5129 	rcu_read_lock();
5130 	if (pid_alive(p))
5131 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5132 	rcu_read_unlock();
5133 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5134 		task_pid_nr(p), ppid,
5135 		(unsigned long)task_thread_info(p)->flags);
5136 
5137 	print_worker_info(KERN_INFO, p);
5138 	show_stack(p, NULL);
5139 	put_task_stack(p);
5140 }
5141 
5142 void show_state_filter(unsigned long state_filter)
5143 {
5144 	struct task_struct *g, *p;
5145 
5146 #if BITS_PER_LONG == 32
5147 	printk(KERN_INFO
5148 		"  task                PC stack   pid father\n");
5149 #else
5150 	printk(KERN_INFO
5151 		"  task                        PC stack   pid father\n");
5152 #endif
5153 	rcu_read_lock();
5154 	for_each_process_thread(g, p) {
5155 		/*
5156 		 * reset the NMI-timeout, listing all files on a slow
5157 		 * console might take a lot of time:
5158 		 * Also, reset softlockup watchdogs on all CPUs, because
5159 		 * another CPU might be blocked waiting for us to process
5160 		 * an IPI.
5161 		 */
5162 		touch_nmi_watchdog();
5163 		touch_all_softlockup_watchdogs();
5164 		if (!state_filter || (p->state & state_filter))
5165 			sched_show_task(p);
5166 	}
5167 
5168 #ifdef CONFIG_SCHED_DEBUG
5169 	if (!state_filter)
5170 		sysrq_sched_debug_show();
5171 #endif
5172 	rcu_read_unlock();
5173 	/*
5174 	 * Only show locks if all tasks are dumped:
5175 	 */
5176 	if (!state_filter)
5177 		debug_show_all_locks();
5178 }
5179 
5180 void init_idle_bootup_task(struct task_struct *idle)
5181 {
5182 	idle->sched_class = &idle_sched_class;
5183 }
5184 
5185 /**
5186  * init_idle - set up an idle thread for a given CPU
5187  * @idle: task in question
5188  * @cpu: CPU the idle task belongs to
5189  *
5190  * NOTE: this function does not set the idle thread's NEED_RESCHED
5191  * flag, to make booting more robust.
5192  */
5193 void init_idle(struct task_struct *idle, int cpu)
5194 {
5195 	struct rq *rq = cpu_rq(cpu);
5196 	unsigned long flags;
5197 
5198 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5199 	raw_spin_lock(&rq->lock);
5200 
5201 	__sched_fork(0, idle);
5202 	idle->state = TASK_RUNNING;
5203 	idle->se.exec_start = sched_clock();
5204 	idle->flags |= PF_IDLE;
5205 
5206 	kasan_unpoison_task_stack(idle);
5207 
5208 #ifdef CONFIG_SMP
5209 	/*
5210 	 * Its possible that init_idle() gets called multiple times on a task,
5211 	 * in that case do_set_cpus_allowed() will not do the right thing.
5212 	 *
5213 	 * And since this is boot we can forgo the serialization.
5214 	 */
5215 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5216 #endif
5217 	/*
5218 	 * We're having a chicken and egg problem, even though we are
5219 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5220 	 * lockdep check in task_group() will fail.
5221 	 *
5222 	 * Similar case to sched_fork(). / Alternatively we could
5223 	 * use task_rq_lock() here and obtain the other rq->lock.
5224 	 *
5225 	 * Silence PROVE_RCU
5226 	 */
5227 	rcu_read_lock();
5228 	__set_task_cpu(idle, cpu);
5229 	rcu_read_unlock();
5230 
5231 	rq->curr = rq->idle = idle;
5232 	idle->on_rq = TASK_ON_RQ_QUEUED;
5233 #ifdef CONFIG_SMP
5234 	idle->on_cpu = 1;
5235 #endif
5236 	raw_spin_unlock(&rq->lock);
5237 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5238 
5239 	/* Set the preempt count _outside_ the spinlocks! */
5240 	init_idle_preempt_count(idle, cpu);
5241 
5242 	/*
5243 	 * The idle tasks have their own, simple scheduling class:
5244 	 */
5245 	idle->sched_class = &idle_sched_class;
5246 	ftrace_graph_init_idle_task(idle, cpu);
5247 	vtime_init_idle(idle, cpu);
5248 #ifdef CONFIG_SMP
5249 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5250 #endif
5251 }
5252 
5253 #ifdef CONFIG_SMP
5254 
5255 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5256 			      const struct cpumask *trial)
5257 {
5258 	int ret = 1;
5259 
5260 	if (!cpumask_weight(cur))
5261 		return ret;
5262 
5263 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5264 
5265 	return ret;
5266 }
5267 
5268 int task_can_attach(struct task_struct *p,
5269 		    const struct cpumask *cs_cpus_allowed)
5270 {
5271 	int ret = 0;
5272 
5273 	/*
5274 	 * Kthreads which disallow setaffinity shouldn't be moved
5275 	 * to a new cpuset; we don't want to change their CPU
5276 	 * affinity and isolating such threads by their set of
5277 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5278 	 * applicable for such threads.  This prevents checking for
5279 	 * success of set_cpus_allowed_ptr() on all attached tasks
5280 	 * before cpus_allowed may be changed.
5281 	 */
5282 	if (p->flags & PF_NO_SETAFFINITY) {
5283 		ret = -EINVAL;
5284 		goto out;
5285 	}
5286 
5287 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5288 					      cs_cpus_allowed))
5289 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5290 
5291 out:
5292 	return ret;
5293 }
5294 
5295 bool sched_smp_initialized __read_mostly;
5296 
5297 #ifdef CONFIG_NUMA_BALANCING
5298 /* Migrate current task p to target_cpu */
5299 int migrate_task_to(struct task_struct *p, int target_cpu)
5300 {
5301 	struct migration_arg arg = { p, target_cpu };
5302 	int curr_cpu = task_cpu(p);
5303 
5304 	if (curr_cpu == target_cpu)
5305 		return 0;
5306 
5307 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5308 		return -EINVAL;
5309 
5310 	/* TODO: This is not properly updating schedstats */
5311 
5312 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5313 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5314 }
5315 
5316 /*
5317  * Requeue a task on a given node and accurately track the number of NUMA
5318  * tasks on the runqueues
5319  */
5320 void sched_setnuma(struct task_struct *p, int nid)
5321 {
5322 	bool queued, running;
5323 	struct rq_flags rf;
5324 	struct rq *rq;
5325 
5326 	rq = task_rq_lock(p, &rf);
5327 	queued = task_on_rq_queued(p);
5328 	running = task_current(rq, p);
5329 
5330 	if (queued)
5331 		dequeue_task(rq, p, DEQUEUE_SAVE);
5332 	if (running)
5333 		put_prev_task(rq, p);
5334 
5335 	p->numa_preferred_nid = nid;
5336 
5337 	if (queued)
5338 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5339 	if (running)
5340 		set_curr_task(rq, p);
5341 	task_rq_unlock(rq, p, &rf);
5342 }
5343 #endif /* CONFIG_NUMA_BALANCING */
5344 
5345 #ifdef CONFIG_HOTPLUG_CPU
5346 /*
5347  * Ensure that the idle task is using init_mm right before its CPU goes
5348  * offline.
5349  */
5350 void idle_task_exit(void)
5351 {
5352 	struct mm_struct *mm = current->active_mm;
5353 
5354 	BUG_ON(cpu_online(smp_processor_id()));
5355 
5356 	if (mm != &init_mm) {
5357 		switch_mm(mm, &init_mm, current);
5358 		finish_arch_post_lock_switch();
5359 	}
5360 	mmdrop(mm);
5361 }
5362 
5363 /*
5364  * Since this CPU is going 'away' for a while, fold any nr_active delta
5365  * we might have. Assumes we're called after migrate_tasks() so that the
5366  * nr_active count is stable. We need to take the teardown thread which
5367  * is calling this into account, so we hand in adjust = 1 to the load
5368  * calculation.
5369  *
5370  * Also see the comment "Global load-average calculations".
5371  */
5372 static void calc_load_migrate(struct rq *rq)
5373 {
5374 	long delta = calc_load_fold_active(rq, 1);
5375 	if (delta)
5376 		atomic_long_add(delta, &calc_load_tasks);
5377 }
5378 
5379 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5380 {
5381 }
5382 
5383 static const struct sched_class fake_sched_class = {
5384 	.put_prev_task = put_prev_task_fake,
5385 };
5386 
5387 static struct task_struct fake_task = {
5388 	/*
5389 	 * Avoid pull_{rt,dl}_task()
5390 	 */
5391 	.prio = MAX_PRIO + 1,
5392 	.sched_class = &fake_sched_class,
5393 };
5394 
5395 /*
5396  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5397  * try_to_wake_up()->select_task_rq().
5398  *
5399  * Called with rq->lock held even though we'er in stop_machine() and
5400  * there's no concurrency possible, we hold the required locks anyway
5401  * because of lock validation efforts.
5402  */
5403 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5404 {
5405 	struct rq *rq = dead_rq;
5406 	struct task_struct *next, *stop = rq->stop;
5407 	struct rq_flags orf = *rf;
5408 	int dest_cpu;
5409 
5410 	/*
5411 	 * Fudge the rq selection such that the below task selection loop
5412 	 * doesn't get stuck on the currently eligible stop task.
5413 	 *
5414 	 * We're currently inside stop_machine() and the rq is either stuck
5415 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5416 	 * either way we should never end up calling schedule() until we're
5417 	 * done here.
5418 	 */
5419 	rq->stop = NULL;
5420 
5421 	/*
5422 	 * put_prev_task() and pick_next_task() sched
5423 	 * class method both need to have an up-to-date
5424 	 * value of rq->clock[_task]
5425 	 */
5426 	update_rq_clock(rq);
5427 
5428 	for (;;) {
5429 		/*
5430 		 * There's this thread running, bail when that's the only
5431 		 * remaining thread:
5432 		 */
5433 		if (rq->nr_running == 1)
5434 			break;
5435 
5436 		/*
5437 		 * pick_next_task() assumes pinned rq->lock:
5438 		 */
5439 		next = pick_next_task(rq, &fake_task, rf);
5440 		BUG_ON(!next);
5441 		next->sched_class->put_prev_task(rq, next);
5442 
5443 		/*
5444 		 * Rules for changing task_struct::cpus_allowed are holding
5445 		 * both pi_lock and rq->lock, such that holding either
5446 		 * stabilizes the mask.
5447 		 *
5448 		 * Drop rq->lock is not quite as disastrous as it usually is
5449 		 * because !cpu_active at this point, which means load-balance
5450 		 * will not interfere. Also, stop-machine.
5451 		 */
5452 		rq_unlock(rq, rf);
5453 		raw_spin_lock(&next->pi_lock);
5454 		rq_relock(rq, rf);
5455 
5456 		/*
5457 		 * Since we're inside stop-machine, _nothing_ should have
5458 		 * changed the task, WARN if weird stuff happened, because in
5459 		 * that case the above rq->lock drop is a fail too.
5460 		 */
5461 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5462 			raw_spin_unlock(&next->pi_lock);
5463 			continue;
5464 		}
5465 
5466 		/* Find suitable destination for @next, with force if needed. */
5467 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5468 		rq = __migrate_task(rq, rf, next, dest_cpu);
5469 		if (rq != dead_rq) {
5470 			rq_unlock(rq, rf);
5471 			rq = dead_rq;
5472 			*rf = orf;
5473 			rq_relock(rq, rf);
5474 		}
5475 		raw_spin_unlock(&next->pi_lock);
5476 	}
5477 
5478 	rq->stop = stop;
5479 }
5480 #endif /* CONFIG_HOTPLUG_CPU */
5481 
5482 void set_rq_online(struct rq *rq)
5483 {
5484 	if (!rq->online) {
5485 		const struct sched_class *class;
5486 
5487 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5488 		rq->online = 1;
5489 
5490 		for_each_class(class) {
5491 			if (class->rq_online)
5492 				class->rq_online(rq);
5493 		}
5494 	}
5495 }
5496 
5497 void set_rq_offline(struct rq *rq)
5498 {
5499 	if (rq->online) {
5500 		const struct sched_class *class;
5501 
5502 		for_each_class(class) {
5503 			if (class->rq_offline)
5504 				class->rq_offline(rq);
5505 		}
5506 
5507 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5508 		rq->online = 0;
5509 	}
5510 }
5511 
5512 static void set_cpu_rq_start_time(unsigned int cpu)
5513 {
5514 	struct rq *rq = cpu_rq(cpu);
5515 
5516 	rq->age_stamp = sched_clock_cpu(cpu);
5517 }
5518 
5519 /*
5520  * used to mark begin/end of suspend/resume:
5521  */
5522 static int num_cpus_frozen;
5523 
5524 /*
5525  * Update cpusets according to cpu_active mask.  If cpusets are
5526  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5527  * around partition_sched_domains().
5528  *
5529  * If we come here as part of a suspend/resume, don't touch cpusets because we
5530  * want to restore it back to its original state upon resume anyway.
5531  */
5532 static void cpuset_cpu_active(void)
5533 {
5534 	if (cpuhp_tasks_frozen) {
5535 		/*
5536 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5537 		 * resume sequence. As long as this is not the last online
5538 		 * operation in the resume sequence, just build a single sched
5539 		 * domain, ignoring cpusets.
5540 		 */
5541 		num_cpus_frozen--;
5542 		if (likely(num_cpus_frozen)) {
5543 			partition_sched_domains(1, NULL, NULL);
5544 			return;
5545 		}
5546 		/*
5547 		 * This is the last CPU online operation. So fall through and
5548 		 * restore the original sched domains by considering the
5549 		 * cpuset configurations.
5550 		 */
5551 	}
5552 	cpuset_update_active_cpus();
5553 }
5554 
5555 static int cpuset_cpu_inactive(unsigned int cpu)
5556 {
5557 	if (!cpuhp_tasks_frozen) {
5558 		if (dl_cpu_busy(cpu))
5559 			return -EBUSY;
5560 		cpuset_update_active_cpus();
5561 	} else {
5562 		num_cpus_frozen++;
5563 		partition_sched_domains(1, NULL, NULL);
5564 	}
5565 	return 0;
5566 }
5567 
5568 int sched_cpu_activate(unsigned int cpu)
5569 {
5570 	struct rq *rq = cpu_rq(cpu);
5571 	struct rq_flags rf;
5572 
5573 	set_cpu_active(cpu, true);
5574 
5575 	if (sched_smp_initialized) {
5576 		sched_domains_numa_masks_set(cpu);
5577 		cpuset_cpu_active();
5578 	}
5579 
5580 	/*
5581 	 * Put the rq online, if not already. This happens:
5582 	 *
5583 	 * 1) In the early boot process, because we build the real domains
5584 	 *    after all CPUs have been brought up.
5585 	 *
5586 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5587 	 *    domains.
5588 	 */
5589 	rq_lock_irqsave(rq, &rf);
5590 	if (rq->rd) {
5591 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5592 		set_rq_online(rq);
5593 	}
5594 	rq_unlock_irqrestore(rq, &rf);
5595 
5596 	update_max_interval();
5597 
5598 	return 0;
5599 }
5600 
5601 int sched_cpu_deactivate(unsigned int cpu)
5602 {
5603 	int ret;
5604 
5605 	set_cpu_active(cpu, false);
5606 	/*
5607 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5608 	 * users of this state to go away such that all new such users will
5609 	 * observe it.
5610 	 *
5611 	 * Do sync before park smpboot threads to take care the rcu boost case.
5612 	 */
5613 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5614 
5615 	if (!sched_smp_initialized)
5616 		return 0;
5617 
5618 	ret = cpuset_cpu_inactive(cpu);
5619 	if (ret) {
5620 		set_cpu_active(cpu, true);
5621 		return ret;
5622 	}
5623 	sched_domains_numa_masks_clear(cpu);
5624 	return 0;
5625 }
5626 
5627 static void sched_rq_cpu_starting(unsigned int cpu)
5628 {
5629 	struct rq *rq = cpu_rq(cpu);
5630 
5631 	rq->calc_load_update = calc_load_update;
5632 	update_max_interval();
5633 }
5634 
5635 int sched_cpu_starting(unsigned int cpu)
5636 {
5637 	set_cpu_rq_start_time(cpu);
5638 	sched_rq_cpu_starting(cpu);
5639 	return 0;
5640 }
5641 
5642 #ifdef CONFIG_HOTPLUG_CPU
5643 int sched_cpu_dying(unsigned int cpu)
5644 {
5645 	struct rq *rq = cpu_rq(cpu);
5646 	struct rq_flags rf;
5647 
5648 	/* Handle pending wakeups and then migrate everything off */
5649 	sched_ttwu_pending();
5650 
5651 	rq_lock_irqsave(rq, &rf);
5652 	if (rq->rd) {
5653 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5654 		set_rq_offline(rq);
5655 	}
5656 	migrate_tasks(rq, &rf);
5657 	BUG_ON(rq->nr_running != 1);
5658 	rq_unlock_irqrestore(rq, &rf);
5659 
5660 	calc_load_migrate(rq);
5661 	update_max_interval();
5662 	nohz_balance_exit_idle(cpu);
5663 	hrtick_clear(rq);
5664 	return 0;
5665 }
5666 #endif
5667 
5668 #ifdef CONFIG_SCHED_SMT
5669 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5670 
5671 static void sched_init_smt(void)
5672 {
5673 	/*
5674 	 * We've enumerated all CPUs and will assume that if any CPU
5675 	 * has SMT siblings, CPU0 will too.
5676 	 */
5677 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5678 		static_branch_enable(&sched_smt_present);
5679 }
5680 #else
5681 static inline void sched_init_smt(void) { }
5682 #endif
5683 
5684 void __init sched_init_smp(void)
5685 {
5686 	cpumask_var_t non_isolated_cpus;
5687 
5688 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5689 
5690 	sched_init_numa();
5691 
5692 	/*
5693 	 * There's no userspace yet to cause hotplug operations; hence all the
5694 	 * CPU masks are stable and all blatant races in the below code cannot
5695 	 * happen.
5696 	 */
5697 	mutex_lock(&sched_domains_mutex);
5698 	sched_init_domains(cpu_active_mask);
5699 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5700 	if (cpumask_empty(non_isolated_cpus))
5701 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5702 	mutex_unlock(&sched_domains_mutex);
5703 
5704 	/* Move init over to a non-isolated CPU */
5705 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5706 		BUG();
5707 	sched_init_granularity();
5708 	free_cpumask_var(non_isolated_cpus);
5709 
5710 	init_sched_rt_class();
5711 	init_sched_dl_class();
5712 
5713 	sched_init_smt();
5714 
5715 	sched_smp_initialized = true;
5716 }
5717 
5718 static int __init migration_init(void)
5719 {
5720 	sched_rq_cpu_starting(smp_processor_id());
5721 	return 0;
5722 }
5723 early_initcall(migration_init);
5724 
5725 #else
5726 void __init sched_init_smp(void)
5727 {
5728 	sched_init_granularity();
5729 }
5730 #endif /* CONFIG_SMP */
5731 
5732 int in_sched_functions(unsigned long addr)
5733 {
5734 	return in_lock_functions(addr) ||
5735 		(addr >= (unsigned long)__sched_text_start
5736 		&& addr < (unsigned long)__sched_text_end);
5737 }
5738 
5739 #ifdef CONFIG_CGROUP_SCHED
5740 /*
5741  * Default task group.
5742  * Every task in system belongs to this group at bootup.
5743  */
5744 struct task_group root_task_group;
5745 LIST_HEAD(task_groups);
5746 
5747 /* Cacheline aligned slab cache for task_group */
5748 static struct kmem_cache *task_group_cache __read_mostly;
5749 #endif
5750 
5751 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5752 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5753 
5754 void __init sched_init(void)
5755 {
5756 	int i, j;
5757 	unsigned long alloc_size = 0, ptr;
5758 
5759 	sched_clock_init();
5760 	wait_bit_init();
5761 
5762 #ifdef CONFIG_FAIR_GROUP_SCHED
5763 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5764 #endif
5765 #ifdef CONFIG_RT_GROUP_SCHED
5766 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5767 #endif
5768 	if (alloc_size) {
5769 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5770 
5771 #ifdef CONFIG_FAIR_GROUP_SCHED
5772 		root_task_group.se = (struct sched_entity **)ptr;
5773 		ptr += nr_cpu_ids * sizeof(void **);
5774 
5775 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5776 		ptr += nr_cpu_ids * sizeof(void **);
5777 
5778 #endif /* CONFIG_FAIR_GROUP_SCHED */
5779 #ifdef CONFIG_RT_GROUP_SCHED
5780 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5781 		ptr += nr_cpu_ids * sizeof(void **);
5782 
5783 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5784 		ptr += nr_cpu_ids * sizeof(void **);
5785 
5786 #endif /* CONFIG_RT_GROUP_SCHED */
5787 	}
5788 #ifdef CONFIG_CPUMASK_OFFSTACK
5789 	for_each_possible_cpu(i) {
5790 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5791 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5792 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5793 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5794 	}
5795 #endif /* CONFIG_CPUMASK_OFFSTACK */
5796 
5797 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5798 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5799 
5800 #ifdef CONFIG_SMP
5801 	init_defrootdomain();
5802 #endif
5803 
5804 #ifdef CONFIG_RT_GROUP_SCHED
5805 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5806 			global_rt_period(), global_rt_runtime());
5807 #endif /* CONFIG_RT_GROUP_SCHED */
5808 
5809 #ifdef CONFIG_CGROUP_SCHED
5810 	task_group_cache = KMEM_CACHE(task_group, 0);
5811 
5812 	list_add(&root_task_group.list, &task_groups);
5813 	INIT_LIST_HEAD(&root_task_group.children);
5814 	INIT_LIST_HEAD(&root_task_group.siblings);
5815 	autogroup_init(&init_task);
5816 #endif /* CONFIG_CGROUP_SCHED */
5817 
5818 	for_each_possible_cpu(i) {
5819 		struct rq *rq;
5820 
5821 		rq = cpu_rq(i);
5822 		raw_spin_lock_init(&rq->lock);
5823 		rq->nr_running = 0;
5824 		rq->calc_load_active = 0;
5825 		rq->calc_load_update = jiffies + LOAD_FREQ;
5826 		init_cfs_rq(&rq->cfs);
5827 		init_rt_rq(&rq->rt);
5828 		init_dl_rq(&rq->dl);
5829 #ifdef CONFIG_FAIR_GROUP_SCHED
5830 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5831 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5832 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5833 		/*
5834 		 * How much CPU bandwidth does root_task_group get?
5835 		 *
5836 		 * In case of task-groups formed thr' the cgroup filesystem, it
5837 		 * gets 100% of the CPU resources in the system. This overall
5838 		 * system CPU resource is divided among the tasks of
5839 		 * root_task_group and its child task-groups in a fair manner,
5840 		 * based on each entity's (task or task-group's) weight
5841 		 * (se->load.weight).
5842 		 *
5843 		 * In other words, if root_task_group has 10 tasks of weight
5844 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5845 		 * then A0's share of the CPU resource is:
5846 		 *
5847 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5848 		 *
5849 		 * We achieve this by letting root_task_group's tasks sit
5850 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5851 		 */
5852 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5853 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5854 #endif /* CONFIG_FAIR_GROUP_SCHED */
5855 
5856 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5857 #ifdef CONFIG_RT_GROUP_SCHED
5858 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5859 #endif
5860 
5861 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5862 			rq->cpu_load[j] = 0;
5863 
5864 #ifdef CONFIG_SMP
5865 		rq->sd = NULL;
5866 		rq->rd = NULL;
5867 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5868 		rq->balance_callback = NULL;
5869 		rq->active_balance = 0;
5870 		rq->next_balance = jiffies;
5871 		rq->push_cpu = 0;
5872 		rq->cpu = i;
5873 		rq->online = 0;
5874 		rq->idle_stamp = 0;
5875 		rq->avg_idle = 2*sysctl_sched_migration_cost;
5876 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5877 
5878 		INIT_LIST_HEAD(&rq->cfs_tasks);
5879 
5880 		rq_attach_root(rq, &def_root_domain);
5881 #ifdef CONFIG_NO_HZ_COMMON
5882 		rq->last_load_update_tick = jiffies;
5883 		rq->nohz_flags = 0;
5884 #endif
5885 #ifdef CONFIG_NO_HZ_FULL
5886 		rq->last_sched_tick = 0;
5887 #endif
5888 #endif /* CONFIG_SMP */
5889 		init_rq_hrtick(rq);
5890 		atomic_set(&rq->nr_iowait, 0);
5891 	}
5892 
5893 	set_load_weight(&init_task);
5894 
5895 	/*
5896 	 * The boot idle thread does lazy MMU switching as well:
5897 	 */
5898 	mmgrab(&init_mm);
5899 	enter_lazy_tlb(&init_mm, current);
5900 
5901 	/*
5902 	 * Make us the idle thread. Technically, schedule() should not be
5903 	 * called from this thread, however somewhere below it might be,
5904 	 * but because we are the idle thread, we just pick up running again
5905 	 * when this runqueue becomes "idle".
5906 	 */
5907 	init_idle(current, smp_processor_id());
5908 
5909 	calc_load_update = jiffies + LOAD_FREQ;
5910 
5911 #ifdef CONFIG_SMP
5912 	/* May be allocated at isolcpus cmdline parse time */
5913 	if (cpu_isolated_map == NULL)
5914 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
5915 	idle_thread_set_boot_cpu();
5916 	set_cpu_rq_start_time(smp_processor_id());
5917 #endif
5918 	init_sched_fair_class();
5919 
5920 	init_schedstats();
5921 
5922 	scheduler_running = 1;
5923 }
5924 
5925 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5926 static inline int preempt_count_equals(int preempt_offset)
5927 {
5928 	int nested = preempt_count() + rcu_preempt_depth();
5929 
5930 	return (nested == preempt_offset);
5931 }
5932 
5933 void __might_sleep(const char *file, int line, int preempt_offset)
5934 {
5935 	/*
5936 	 * Blocking primitives will set (and therefore destroy) current->state,
5937 	 * since we will exit with TASK_RUNNING make sure we enter with it,
5938 	 * otherwise we will destroy state.
5939 	 */
5940 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
5941 			"do not call blocking ops when !TASK_RUNNING; "
5942 			"state=%lx set at [<%p>] %pS\n",
5943 			current->state,
5944 			(void *)current->task_state_change,
5945 			(void *)current->task_state_change);
5946 
5947 	___might_sleep(file, line, preempt_offset);
5948 }
5949 EXPORT_SYMBOL(__might_sleep);
5950 
5951 void ___might_sleep(const char *file, int line, int preempt_offset)
5952 {
5953 	/* Ratelimiting timestamp: */
5954 	static unsigned long prev_jiffy;
5955 
5956 	unsigned long preempt_disable_ip;
5957 
5958 	/* WARN_ON_ONCE() by default, no rate limit required: */
5959 	rcu_sleep_check();
5960 
5961 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
5962 	     !is_idle_task(current)) ||
5963 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
5964 	    oops_in_progress)
5965 		return;
5966 
5967 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5968 		return;
5969 	prev_jiffy = jiffies;
5970 
5971 	/* Save this before calling printk(), since that will clobber it: */
5972 	preempt_disable_ip = get_preempt_disable_ip(current);
5973 
5974 	printk(KERN_ERR
5975 		"BUG: sleeping function called from invalid context at %s:%d\n",
5976 			file, line);
5977 	printk(KERN_ERR
5978 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
5979 			in_atomic(), irqs_disabled(),
5980 			current->pid, current->comm);
5981 
5982 	if (task_stack_end_corrupted(current))
5983 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
5984 
5985 	debug_show_held_locks(current);
5986 	if (irqs_disabled())
5987 		print_irqtrace_events(current);
5988 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5989 	    && !preempt_count_equals(preempt_offset)) {
5990 		pr_err("Preemption disabled at:");
5991 		print_ip_sym(preempt_disable_ip);
5992 		pr_cont("\n");
5993 	}
5994 	dump_stack();
5995 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5996 }
5997 EXPORT_SYMBOL(___might_sleep);
5998 #endif
5999 
6000 #ifdef CONFIG_MAGIC_SYSRQ
6001 void normalize_rt_tasks(void)
6002 {
6003 	struct task_struct *g, *p;
6004 	struct sched_attr attr = {
6005 		.sched_policy = SCHED_NORMAL,
6006 	};
6007 
6008 	read_lock(&tasklist_lock);
6009 	for_each_process_thread(g, p) {
6010 		/*
6011 		 * Only normalize user tasks:
6012 		 */
6013 		if (p->flags & PF_KTHREAD)
6014 			continue;
6015 
6016 		p->se.exec_start = 0;
6017 		schedstat_set(p->se.statistics.wait_start,  0);
6018 		schedstat_set(p->se.statistics.sleep_start, 0);
6019 		schedstat_set(p->se.statistics.block_start, 0);
6020 
6021 		if (!dl_task(p) && !rt_task(p)) {
6022 			/*
6023 			 * Renice negative nice level userspace
6024 			 * tasks back to 0:
6025 			 */
6026 			if (task_nice(p) < 0)
6027 				set_user_nice(p, 0);
6028 			continue;
6029 		}
6030 
6031 		__sched_setscheduler(p, &attr, false, false);
6032 	}
6033 	read_unlock(&tasklist_lock);
6034 }
6035 
6036 #endif /* CONFIG_MAGIC_SYSRQ */
6037 
6038 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6039 /*
6040  * These functions are only useful for the IA64 MCA handling, or kdb.
6041  *
6042  * They can only be called when the whole system has been
6043  * stopped - every CPU needs to be quiescent, and no scheduling
6044  * activity can take place. Using them for anything else would
6045  * be a serious bug, and as a result, they aren't even visible
6046  * under any other configuration.
6047  */
6048 
6049 /**
6050  * curr_task - return the current task for a given CPU.
6051  * @cpu: the processor in question.
6052  *
6053  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6054  *
6055  * Return: The current task for @cpu.
6056  */
6057 struct task_struct *curr_task(int cpu)
6058 {
6059 	return cpu_curr(cpu);
6060 }
6061 
6062 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6063 
6064 #ifdef CONFIG_IA64
6065 /**
6066  * set_curr_task - set the current task for a given CPU.
6067  * @cpu: the processor in question.
6068  * @p: the task pointer to set.
6069  *
6070  * Description: This function must only be used when non-maskable interrupts
6071  * are serviced on a separate stack. It allows the architecture to switch the
6072  * notion of the current task on a CPU in a non-blocking manner. This function
6073  * must be called with all CPU's synchronized, and interrupts disabled, the
6074  * and caller must save the original value of the current task (see
6075  * curr_task() above) and restore that value before reenabling interrupts and
6076  * re-starting the system.
6077  *
6078  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6079  */
6080 void ia64_set_curr_task(int cpu, struct task_struct *p)
6081 {
6082 	cpu_curr(cpu) = p;
6083 }
6084 
6085 #endif
6086 
6087 #ifdef CONFIG_CGROUP_SCHED
6088 /* task_group_lock serializes the addition/removal of task groups */
6089 static DEFINE_SPINLOCK(task_group_lock);
6090 
6091 static void sched_free_group(struct task_group *tg)
6092 {
6093 	free_fair_sched_group(tg);
6094 	free_rt_sched_group(tg);
6095 	autogroup_free(tg);
6096 	kmem_cache_free(task_group_cache, tg);
6097 }
6098 
6099 /* allocate runqueue etc for a new task group */
6100 struct task_group *sched_create_group(struct task_group *parent)
6101 {
6102 	struct task_group *tg;
6103 
6104 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6105 	if (!tg)
6106 		return ERR_PTR(-ENOMEM);
6107 
6108 	if (!alloc_fair_sched_group(tg, parent))
6109 		goto err;
6110 
6111 	if (!alloc_rt_sched_group(tg, parent))
6112 		goto err;
6113 
6114 	return tg;
6115 
6116 err:
6117 	sched_free_group(tg);
6118 	return ERR_PTR(-ENOMEM);
6119 }
6120 
6121 void sched_online_group(struct task_group *tg, struct task_group *parent)
6122 {
6123 	unsigned long flags;
6124 
6125 	spin_lock_irqsave(&task_group_lock, flags);
6126 	list_add_rcu(&tg->list, &task_groups);
6127 
6128 	/* Root should already exist: */
6129 	WARN_ON(!parent);
6130 
6131 	tg->parent = parent;
6132 	INIT_LIST_HEAD(&tg->children);
6133 	list_add_rcu(&tg->siblings, &parent->children);
6134 	spin_unlock_irqrestore(&task_group_lock, flags);
6135 
6136 	online_fair_sched_group(tg);
6137 }
6138 
6139 /* rcu callback to free various structures associated with a task group */
6140 static void sched_free_group_rcu(struct rcu_head *rhp)
6141 {
6142 	/* Now it should be safe to free those cfs_rqs: */
6143 	sched_free_group(container_of(rhp, struct task_group, rcu));
6144 }
6145 
6146 void sched_destroy_group(struct task_group *tg)
6147 {
6148 	/* Wait for possible concurrent references to cfs_rqs complete: */
6149 	call_rcu(&tg->rcu, sched_free_group_rcu);
6150 }
6151 
6152 void sched_offline_group(struct task_group *tg)
6153 {
6154 	unsigned long flags;
6155 
6156 	/* End participation in shares distribution: */
6157 	unregister_fair_sched_group(tg);
6158 
6159 	spin_lock_irqsave(&task_group_lock, flags);
6160 	list_del_rcu(&tg->list);
6161 	list_del_rcu(&tg->siblings);
6162 	spin_unlock_irqrestore(&task_group_lock, flags);
6163 }
6164 
6165 static void sched_change_group(struct task_struct *tsk, int type)
6166 {
6167 	struct task_group *tg;
6168 
6169 	/*
6170 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6171 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6172 	 * to prevent lockdep warnings.
6173 	 */
6174 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6175 			  struct task_group, css);
6176 	tg = autogroup_task_group(tsk, tg);
6177 	tsk->sched_task_group = tg;
6178 
6179 #ifdef CONFIG_FAIR_GROUP_SCHED
6180 	if (tsk->sched_class->task_change_group)
6181 		tsk->sched_class->task_change_group(tsk, type);
6182 	else
6183 #endif
6184 		set_task_rq(tsk, task_cpu(tsk));
6185 }
6186 
6187 /*
6188  * Change task's runqueue when it moves between groups.
6189  *
6190  * The caller of this function should have put the task in its new group by
6191  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6192  * its new group.
6193  */
6194 void sched_move_task(struct task_struct *tsk)
6195 {
6196 	int queued, running, queue_flags =
6197 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6198 	struct rq_flags rf;
6199 	struct rq *rq;
6200 
6201 	rq = task_rq_lock(tsk, &rf);
6202 	update_rq_clock(rq);
6203 
6204 	running = task_current(rq, tsk);
6205 	queued = task_on_rq_queued(tsk);
6206 
6207 	if (queued)
6208 		dequeue_task(rq, tsk, queue_flags);
6209 	if (running)
6210 		put_prev_task(rq, tsk);
6211 
6212 	sched_change_group(tsk, TASK_MOVE_GROUP);
6213 
6214 	if (queued)
6215 		enqueue_task(rq, tsk, queue_flags);
6216 	if (running)
6217 		set_curr_task(rq, tsk);
6218 
6219 	task_rq_unlock(rq, tsk, &rf);
6220 }
6221 
6222 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6223 {
6224 	return css ? container_of(css, struct task_group, css) : NULL;
6225 }
6226 
6227 static struct cgroup_subsys_state *
6228 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6229 {
6230 	struct task_group *parent = css_tg(parent_css);
6231 	struct task_group *tg;
6232 
6233 	if (!parent) {
6234 		/* This is early initialization for the top cgroup */
6235 		return &root_task_group.css;
6236 	}
6237 
6238 	tg = sched_create_group(parent);
6239 	if (IS_ERR(tg))
6240 		return ERR_PTR(-ENOMEM);
6241 
6242 	return &tg->css;
6243 }
6244 
6245 /* Expose task group only after completing cgroup initialization */
6246 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6247 {
6248 	struct task_group *tg = css_tg(css);
6249 	struct task_group *parent = css_tg(css->parent);
6250 
6251 	if (parent)
6252 		sched_online_group(tg, parent);
6253 	return 0;
6254 }
6255 
6256 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6257 {
6258 	struct task_group *tg = css_tg(css);
6259 
6260 	sched_offline_group(tg);
6261 }
6262 
6263 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6264 {
6265 	struct task_group *tg = css_tg(css);
6266 
6267 	/*
6268 	 * Relies on the RCU grace period between css_released() and this.
6269 	 */
6270 	sched_free_group(tg);
6271 }
6272 
6273 /*
6274  * This is called before wake_up_new_task(), therefore we really only
6275  * have to set its group bits, all the other stuff does not apply.
6276  */
6277 static void cpu_cgroup_fork(struct task_struct *task)
6278 {
6279 	struct rq_flags rf;
6280 	struct rq *rq;
6281 
6282 	rq = task_rq_lock(task, &rf);
6283 
6284 	update_rq_clock(rq);
6285 	sched_change_group(task, TASK_SET_GROUP);
6286 
6287 	task_rq_unlock(rq, task, &rf);
6288 }
6289 
6290 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6291 {
6292 	struct task_struct *task;
6293 	struct cgroup_subsys_state *css;
6294 	int ret = 0;
6295 
6296 	cgroup_taskset_for_each(task, css, tset) {
6297 #ifdef CONFIG_RT_GROUP_SCHED
6298 		if (!sched_rt_can_attach(css_tg(css), task))
6299 			return -EINVAL;
6300 #else
6301 		/* We don't support RT-tasks being in separate groups */
6302 		if (task->sched_class != &fair_sched_class)
6303 			return -EINVAL;
6304 #endif
6305 		/*
6306 		 * Serialize against wake_up_new_task() such that if its
6307 		 * running, we're sure to observe its full state.
6308 		 */
6309 		raw_spin_lock_irq(&task->pi_lock);
6310 		/*
6311 		 * Avoid calling sched_move_task() before wake_up_new_task()
6312 		 * has happened. This would lead to problems with PELT, due to
6313 		 * move wanting to detach+attach while we're not attached yet.
6314 		 */
6315 		if (task->state == TASK_NEW)
6316 			ret = -EINVAL;
6317 		raw_spin_unlock_irq(&task->pi_lock);
6318 
6319 		if (ret)
6320 			break;
6321 	}
6322 	return ret;
6323 }
6324 
6325 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6326 {
6327 	struct task_struct *task;
6328 	struct cgroup_subsys_state *css;
6329 
6330 	cgroup_taskset_for_each(task, css, tset)
6331 		sched_move_task(task);
6332 }
6333 
6334 #ifdef CONFIG_FAIR_GROUP_SCHED
6335 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6336 				struct cftype *cftype, u64 shareval)
6337 {
6338 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6339 }
6340 
6341 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6342 			       struct cftype *cft)
6343 {
6344 	struct task_group *tg = css_tg(css);
6345 
6346 	return (u64) scale_load_down(tg->shares);
6347 }
6348 
6349 #ifdef CONFIG_CFS_BANDWIDTH
6350 static DEFINE_MUTEX(cfs_constraints_mutex);
6351 
6352 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6353 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6354 
6355 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6356 
6357 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6358 {
6359 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6360 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6361 
6362 	if (tg == &root_task_group)
6363 		return -EINVAL;
6364 
6365 	/*
6366 	 * Ensure we have at some amount of bandwidth every period.  This is
6367 	 * to prevent reaching a state of large arrears when throttled via
6368 	 * entity_tick() resulting in prolonged exit starvation.
6369 	 */
6370 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6371 		return -EINVAL;
6372 
6373 	/*
6374 	 * Likewise, bound things on the otherside by preventing insane quota
6375 	 * periods.  This also allows us to normalize in computing quota
6376 	 * feasibility.
6377 	 */
6378 	if (period > max_cfs_quota_period)
6379 		return -EINVAL;
6380 
6381 	/*
6382 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6383 	 * unthrottle_offline_cfs_rqs().
6384 	 */
6385 	get_online_cpus();
6386 	mutex_lock(&cfs_constraints_mutex);
6387 	ret = __cfs_schedulable(tg, period, quota);
6388 	if (ret)
6389 		goto out_unlock;
6390 
6391 	runtime_enabled = quota != RUNTIME_INF;
6392 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6393 	/*
6394 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6395 	 * before making related changes, and on->off must occur afterwards
6396 	 */
6397 	if (runtime_enabled && !runtime_was_enabled)
6398 		cfs_bandwidth_usage_inc();
6399 	raw_spin_lock_irq(&cfs_b->lock);
6400 	cfs_b->period = ns_to_ktime(period);
6401 	cfs_b->quota = quota;
6402 
6403 	__refill_cfs_bandwidth_runtime(cfs_b);
6404 
6405 	/* Restart the period timer (if active) to handle new period expiry: */
6406 	if (runtime_enabled)
6407 		start_cfs_bandwidth(cfs_b);
6408 
6409 	raw_spin_unlock_irq(&cfs_b->lock);
6410 
6411 	for_each_online_cpu(i) {
6412 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6413 		struct rq *rq = cfs_rq->rq;
6414 		struct rq_flags rf;
6415 
6416 		rq_lock_irq(rq, &rf);
6417 		cfs_rq->runtime_enabled = runtime_enabled;
6418 		cfs_rq->runtime_remaining = 0;
6419 
6420 		if (cfs_rq->throttled)
6421 			unthrottle_cfs_rq(cfs_rq);
6422 		rq_unlock_irq(rq, &rf);
6423 	}
6424 	if (runtime_was_enabled && !runtime_enabled)
6425 		cfs_bandwidth_usage_dec();
6426 out_unlock:
6427 	mutex_unlock(&cfs_constraints_mutex);
6428 	put_online_cpus();
6429 
6430 	return ret;
6431 }
6432 
6433 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6434 {
6435 	u64 quota, period;
6436 
6437 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6438 	if (cfs_quota_us < 0)
6439 		quota = RUNTIME_INF;
6440 	else
6441 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6442 
6443 	return tg_set_cfs_bandwidth(tg, period, quota);
6444 }
6445 
6446 long tg_get_cfs_quota(struct task_group *tg)
6447 {
6448 	u64 quota_us;
6449 
6450 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6451 		return -1;
6452 
6453 	quota_us = tg->cfs_bandwidth.quota;
6454 	do_div(quota_us, NSEC_PER_USEC);
6455 
6456 	return quota_us;
6457 }
6458 
6459 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6460 {
6461 	u64 quota, period;
6462 
6463 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6464 	quota = tg->cfs_bandwidth.quota;
6465 
6466 	return tg_set_cfs_bandwidth(tg, period, quota);
6467 }
6468 
6469 long tg_get_cfs_period(struct task_group *tg)
6470 {
6471 	u64 cfs_period_us;
6472 
6473 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6474 	do_div(cfs_period_us, NSEC_PER_USEC);
6475 
6476 	return cfs_period_us;
6477 }
6478 
6479 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6480 				  struct cftype *cft)
6481 {
6482 	return tg_get_cfs_quota(css_tg(css));
6483 }
6484 
6485 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6486 				   struct cftype *cftype, s64 cfs_quota_us)
6487 {
6488 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6489 }
6490 
6491 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6492 				   struct cftype *cft)
6493 {
6494 	return tg_get_cfs_period(css_tg(css));
6495 }
6496 
6497 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6498 				    struct cftype *cftype, u64 cfs_period_us)
6499 {
6500 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6501 }
6502 
6503 struct cfs_schedulable_data {
6504 	struct task_group *tg;
6505 	u64 period, quota;
6506 };
6507 
6508 /*
6509  * normalize group quota/period to be quota/max_period
6510  * note: units are usecs
6511  */
6512 static u64 normalize_cfs_quota(struct task_group *tg,
6513 			       struct cfs_schedulable_data *d)
6514 {
6515 	u64 quota, period;
6516 
6517 	if (tg == d->tg) {
6518 		period = d->period;
6519 		quota = d->quota;
6520 	} else {
6521 		period = tg_get_cfs_period(tg);
6522 		quota = tg_get_cfs_quota(tg);
6523 	}
6524 
6525 	/* note: these should typically be equivalent */
6526 	if (quota == RUNTIME_INF || quota == -1)
6527 		return RUNTIME_INF;
6528 
6529 	return to_ratio(period, quota);
6530 }
6531 
6532 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6533 {
6534 	struct cfs_schedulable_data *d = data;
6535 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6536 	s64 quota = 0, parent_quota = -1;
6537 
6538 	if (!tg->parent) {
6539 		quota = RUNTIME_INF;
6540 	} else {
6541 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6542 
6543 		quota = normalize_cfs_quota(tg, d);
6544 		parent_quota = parent_b->hierarchical_quota;
6545 
6546 		/*
6547 		 * Ensure max(child_quota) <= parent_quota, inherit when no
6548 		 * limit is set:
6549 		 */
6550 		if (quota == RUNTIME_INF)
6551 			quota = parent_quota;
6552 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6553 			return -EINVAL;
6554 	}
6555 	cfs_b->hierarchical_quota = quota;
6556 
6557 	return 0;
6558 }
6559 
6560 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6561 {
6562 	int ret;
6563 	struct cfs_schedulable_data data = {
6564 		.tg = tg,
6565 		.period = period,
6566 		.quota = quota,
6567 	};
6568 
6569 	if (quota != RUNTIME_INF) {
6570 		do_div(data.period, NSEC_PER_USEC);
6571 		do_div(data.quota, NSEC_PER_USEC);
6572 	}
6573 
6574 	rcu_read_lock();
6575 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6576 	rcu_read_unlock();
6577 
6578 	return ret;
6579 }
6580 
6581 static int cpu_stats_show(struct seq_file *sf, void *v)
6582 {
6583 	struct task_group *tg = css_tg(seq_css(sf));
6584 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6585 
6586 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6587 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6588 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6589 
6590 	return 0;
6591 }
6592 #endif /* CONFIG_CFS_BANDWIDTH */
6593 #endif /* CONFIG_FAIR_GROUP_SCHED */
6594 
6595 #ifdef CONFIG_RT_GROUP_SCHED
6596 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6597 				struct cftype *cft, s64 val)
6598 {
6599 	return sched_group_set_rt_runtime(css_tg(css), val);
6600 }
6601 
6602 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6603 			       struct cftype *cft)
6604 {
6605 	return sched_group_rt_runtime(css_tg(css));
6606 }
6607 
6608 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6609 				    struct cftype *cftype, u64 rt_period_us)
6610 {
6611 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6612 }
6613 
6614 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6615 				   struct cftype *cft)
6616 {
6617 	return sched_group_rt_period(css_tg(css));
6618 }
6619 #endif /* CONFIG_RT_GROUP_SCHED */
6620 
6621 static struct cftype cpu_files[] = {
6622 #ifdef CONFIG_FAIR_GROUP_SCHED
6623 	{
6624 		.name = "shares",
6625 		.read_u64 = cpu_shares_read_u64,
6626 		.write_u64 = cpu_shares_write_u64,
6627 	},
6628 #endif
6629 #ifdef CONFIG_CFS_BANDWIDTH
6630 	{
6631 		.name = "cfs_quota_us",
6632 		.read_s64 = cpu_cfs_quota_read_s64,
6633 		.write_s64 = cpu_cfs_quota_write_s64,
6634 	},
6635 	{
6636 		.name = "cfs_period_us",
6637 		.read_u64 = cpu_cfs_period_read_u64,
6638 		.write_u64 = cpu_cfs_period_write_u64,
6639 	},
6640 	{
6641 		.name = "stat",
6642 		.seq_show = cpu_stats_show,
6643 	},
6644 #endif
6645 #ifdef CONFIG_RT_GROUP_SCHED
6646 	{
6647 		.name = "rt_runtime_us",
6648 		.read_s64 = cpu_rt_runtime_read,
6649 		.write_s64 = cpu_rt_runtime_write,
6650 	},
6651 	{
6652 		.name = "rt_period_us",
6653 		.read_u64 = cpu_rt_period_read_uint,
6654 		.write_u64 = cpu_rt_period_write_uint,
6655 	},
6656 #endif
6657 	{ }	/* Terminate */
6658 };
6659 
6660 struct cgroup_subsys cpu_cgrp_subsys = {
6661 	.css_alloc	= cpu_cgroup_css_alloc,
6662 	.css_online	= cpu_cgroup_css_online,
6663 	.css_released	= cpu_cgroup_css_released,
6664 	.css_free	= cpu_cgroup_css_free,
6665 	.fork		= cpu_cgroup_fork,
6666 	.can_attach	= cpu_cgroup_can_attach,
6667 	.attach		= cpu_cgroup_attach,
6668 	.legacy_cftypes	= cpu_files,
6669 	.early_init	= true,
6670 };
6671 
6672 #endif	/* CONFIG_CGROUP_SCHED */
6673 
6674 void dump_cpu_task(int cpu)
6675 {
6676 	pr_info("Task dump for CPU %d:\n", cpu);
6677 	sched_show_task(cpu_curr(cpu));
6678 }
6679 
6680 /*
6681  * Nice levels are multiplicative, with a gentle 10% change for every
6682  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6683  * nice 1, it will get ~10% less CPU time than another CPU-bound task
6684  * that remained on nice 0.
6685  *
6686  * The "10% effect" is relative and cumulative: from _any_ nice level,
6687  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6688  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6689  * If a task goes up by ~10% and another task goes down by ~10% then
6690  * the relative distance between them is ~25%.)
6691  */
6692 const int sched_prio_to_weight[40] = {
6693  /* -20 */     88761,     71755,     56483,     46273,     36291,
6694  /* -15 */     29154,     23254,     18705,     14949,     11916,
6695  /* -10 */      9548,      7620,      6100,      4904,      3906,
6696  /*  -5 */      3121,      2501,      1991,      1586,      1277,
6697  /*   0 */      1024,       820,       655,       526,       423,
6698  /*   5 */       335,       272,       215,       172,       137,
6699  /*  10 */       110,        87,        70,        56,        45,
6700  /*  15 */        36,        29,        23,        18,        15,
6701 };
6702 
6703 /*
6704  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6705  *
6706  * In cases where the weight does not change often, we can use the
6707  * precalculated inverse to speed up arithmetics by turning divisions
6708  * into multiplications:
6709  */
6710 const u32 sched_prio_to_wmult[40] = {
6711  /* -20 */     48388,     59856,     76040,     92818,    118348,
6712  /* -15 */    147320,    184698,    229616,    287308,    360437,
6713  /* -10 */    449829,    563644,    704093,    875809,   1099582,
6714  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
6715  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
6716  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
6717  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
6718  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
6719 };
6720