xref: /openbmc/linux/kernel/sched/core.c (revision 2bdd5238)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 
62 /*
63  * Print a warning if need_resched is set for the given duration (if
64  * LATENCY_WARN is enabled).
65  *
66  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67  * per boot.
68  */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72 
73 /*
74  * Number of tasks to iterate in a single balance run.
75  * Limited because this is done with IRQs disabled.
76  */
77 const_debug unsigned int sysctl_sched_nr_migrate = 32;
78 
79 /*
80  * period over which we measure -rt task CPU usage in us.
81  * default: 1s
82  */
83 unsigned int sysctl_sched_rt_period = 1000000;
84 
85 __read_mostly int scheduler_running;
86 
87 #ifdef CONFIG_SCHED_CORE
88 
89 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90 
91 /* kernel prio, less is more */
92 static inline int __task_prio(struct task_struct *p)
93 {
94 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 		return -2;
96 
97 	if (rt_prio(p->prio)) /* includes deadline */
98 		return p->prio; /* [-1, 99] */
99 
100 	if (p->sched_class == &idle_sched_class)
101 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102 
103 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104 }
105 
106 /*
107  * l(a,b)
108  * le(a,b) := !l(b,a)
109  * g(a,b)  := l(b,a)
110  * ge(a,b) := !l(a,b)
111  */
112 
113 /* real prio, less is less */
114 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115 {
116 
117 	int pa = __task_prio(a), pb = __task_prio(b);
118 
119 	if (-pa < -pb)
120 		return true;
121 
122 	if (-pb < -pa)
123 		return false;
124 
125 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
127 
128 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
129 		return cfs_prio_less(a, b, in_fi);
130 
131 	return false;
132 }
133 
134 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135 {
136 	if (a->core_cookie < b->core_cookie)
137 		return true;
138 
139 	if (a->core_cookie > b->core_cookie)
140 		return false;
141 
142 	/* flip prio, so high prio is leftmost */
143 	if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144 		return true;
145 
146 	return false;
147 }
148 
149 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150 
151 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152 {
153 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154 }
155 
156 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157 {
158 	const struct task_struct *p = __node_2_sc(node);
159 	unsigned long cookie = (unsigned long)key;
160 
161 	if (cookie < p->core_cookie)
162 		return -1;
163 
164 	if (cookie > p->core_cookie)
165 		return 1;
166 
167 	return 0;
168 }
169 
170 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171 {
172 	rq->core->core_task_seq++;
173 
174 	if (!p->core_cookie)
175 		return;
176 
177 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178 }
179 
180 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181 {
182 	rq->core->core_task_seq++;
183 
184 	if (!sched_core_enqueued(p))
185 		return;
186 
187 	rb_erase(&p->core_node, &rq->core_tree);
188 	RB_CLEAR_NODE(&p->core_node);
189 }
190 
191 /*
192  * Find left-most (aka, highest priority) task matching @cookie.
193  */
194 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195 {
196 	struct rb_node *node;
197 
198 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 	/*
200 	 * The idle task always matches any cookie!
201 	 */
202 	if (!node)
203 		return idle_sched_class.pick_task(rq);
204 
205 	return __node_2_sc(node);
206 }
207 
208 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209 {
210 	struct rb_node *node = &p->core_node;
211 
212 	node = rb_next(node);
213 	if (!node)
214 		return NULL;
215 
216 	p = container_of(node, struct task_struct, core_node);
217 	if (p->core_cookie != cookie)
218 		return NULL;
219 
220 	return p;
221 }
222 
223 /*
224  * Magic required such that:
225  *
226  *	raw_spin_rq_lock(rq);
227  *	...
228  *	raw_spin_rq_unlock(rq);
229  *
230  * ends up locking and unlocking the _same_ lock, and all CPUs
231  * always agree on what rq has what lock.
232  *
233  * XXX entirely possible to selectively enable cores, don't bother for now.
234  */
235 
236 static DEFINE_MUTEX(sched_core_mutex);
237 static atomic_t sched_core_count;
238 static struct cpumask sched_core_mask;
239 
240 static void sched_core_lock(int cpu, unsigned long *flags)
241 {
242 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
243 	int t, i = 0;
244 
245 	local_irq_save(*flags);
246 	for_each_cpu(t, smt_mask)
247 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
248 }
249 
250 static void sched_core_unlock(int cpu, unsigned long *flags)
251 {
252 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
253 	int t;
254 
255 	for_each_cpu(t, smt_mask)
256 		raw_spin_unlock(&cpu_rq(t)->__lock);
257 	local_irq_restore(*flags);
258 }
259 
260 static void __sched_core_flip(bool enabled)
261 {
262 	unsigned long flags;
263 	int cpu, t;
264 
265 	cpus_read_lock();
266 
267 	/*
268 	 * Toggle the online cores, one by one.
269 	 */
270 	cpumask_copy(&sched_core_mask, cpu_online_mask);
271 	for_each_cpu(cpu, &sched_core_mask) {
272 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
273 
274 		sched_core_lock(cpu, &flags);
275 
276 		for_each_cpu(t, smt_mask)
277 			cpu_rq(t)->core_enabled = enabled;
278 
279 		sched_core_unlock(cpu, &flags);
280 
281 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
282 	}
283 
284 	/*
285 	 * Toggle the offline CPUs.
286 	 */
287 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
288 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
289 
290 	for_each_cpu(cpu, &sched_core_mask)
291 		cpu_rq(cpu)->core_enabled = enabled;
292 
293 	cpus_read_unlock();
294 }
295 
296 static void sched_core_assert_empty(void)
297 {
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu)
301 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
302 }
303 
304 static void __sched_core_enable(void)
305 {
306 	static_branch_enable(&__sched_core_enabled);
307 	/*
308 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
309 	 * and future ones will observe !sched_core_disabled().
310 	 */
311 	synchronize_rcu();
312 	__sched_core_flip(true);
313 	sched_core_assert_empty();
314 }
315 
316 static void __sched_core_disable(void)
317 {
318 	sched_core_assert_empty();
319 	__sched_core_flip(false);
320 	static_branch_disable(&__sched_core_enabled);
321 }
322 
323 void sched_core_get(void)
324 {
325 	if (atomic_inc_not_zero(&sched_core_count))
326 		return;
327 
328 	mutex_lock(&sched_core_mutex);
329 	if (!atomic_read(&sched_core_count))
330 		__sched_core_enable();
331 
332 	smp_mb__before_atomic();
333 	atomic_inc(&sched_core_count);
334 	mutex_unlock(&sched_core_mutex);
335 }
336 
337 static void __sched_core_put(struct work_struct *work)
338 {
339 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
340 		__sched_core_disable();
341 		mutex_unlock(&sched_core_mutex);
342 	}
343 }
344 
345 void sched_core_put(void)
346 {
347 	static DECLARE_WORK(_work, __sched_core_put);
348 
349 	/*
350 	 * "There can be only one"
351 	 *
352 	 * Either this is the last one, or we don't actually need to do any
353 	 * 'work'. If it is the last *again*, we rely on
354 	 * WORK_STRUCT_PENDING_BIT.
355 	 */
356 	if (!atomic_add_unless(&sched_core_count, -1, 1))
357 		schedule_work(&_work);
358 }
359 
360 #else /* !CONFIG_SCHED_CORE */
361 
362 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
363 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
364 
365 #endif /* CONFIG_SCHED_CORE */
366 
367 /*
368  * part of the period that we allow rt tasks to run in us.
369  * default: 0.95s
370  */
371 int sysctl_sched_rt_runtime = 950000;
372 
373 
374 /*
375  * Serialization rules:
376  *
377  * Lock order:
378  *
379  *   p->pi_lock
380  *     rq->lock
381  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
382  *
383  *  rq1->lock
384  *    rq2->lock  where: rq1 < rq2
385  *
386  * Regular state:
387  *
388  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
389  * local CPU's rq->lock, it optionally removes the task from the runqueue and
390  * always looks at the local rq data structures to find the most eligible task
391  * to run next.
392  *
393  * Task enqueue is also under rq->lock, possibly taken from another CPU.
394  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
395  * the local CPU to avoid bouncing the runqueue state around [ see
396  * ttwu_queue_wakelist() ]
397  *
398  * Task wakeup, specifically wakeups that involve migration, are horribly
399  * complicated to avoid having to take two rq->locks.
400  *
401  * Special state:
402  *
403  * System-calls and anything external will use task_rq_lock() which acquires
404  * both p->pi_lock and rq->lock. As a consequence the state they change is
405  * stable while holding either lock:
406  *
407  *  - sched_setaffinity()/
408  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
409  *  - set_user_nice():		p->se.load, p->*prio
410  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
411  *				p->se.load, p->rt_priority,
412  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
413  *  - sched_setnuma():		p->numa_preferred_nid
414  *  - sched_move_task()/
415  *    cpu_cgroup_fork():	p->sched_task_group
416  *  - uclamp_update_active()	p->uclamp*
417  *
418  * p->state <- TASK_*:
419  *
420  *   is changed locklessly using set_current_state(), __set_current_state() or
421  *   set_special_state(), see their respective comments, or by
422  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
423  *   concurrent self.
424  *
425  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
426  *
427  *   is set by activate_task() and cleared by deactivate_task(), under
428  *   rq->lock. Non-zero indicates the task is runnable, the special
429  *   ON_RQ_MIGRATING state is used for migration without holding both
430  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
431  *
432  * p->on_cpu <- { 0, 1 }:
433  *
434  *   is set by prepare_task() and cleared by finish_task() such that it will be
435  *   set before p is scheduled-in and cleared after p is scheduled-out, both
436  *   under rq->lock. Non-zero indicates the task is running on its CPU.
437  *
438  *   [ The astute reader will observe that it is possible for two tasks on one
439  *     CPU to have ->on_cpu = 1 at the same time. ]
440  *
441  * task_cpu(p): is changed by set_task_cpu(), the rules are:
442  *
443  *  - Don't call set_task_cpu() on a blocked task:
444  *
445  *    We don't care what CPU we're not running on, this simplifies hotplug,
446  *    the CPU assignment of blocked tasks isn't required to be valid.
447  *
448  *  - for try_to_wake_up(), called under p->pi_lock:
449  *
450  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
451  *
452  *  - for migration called under rq->lock:
453  *    [ see task_on_rq_migrating() in task_rq_lock() ]
454  *
455  *    o move_queued_task()
456  *    o detach_task()
457  *
458  *  - for migration called under double_rq_lock():
459  *
460  *    o __migrate_swap_task()
461  *    o push_rt_task() / pull_rt_task()
462  *    o push_dl_task() / pull_dl_task()
463  *    o dl_task_offline_migration()
464  *
465  */
466 
467 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
468 {
469 	raw_spinlock_t *lock;
470 
471 	/* Matches synchronize_rcu() in __sched_core_enable() */
472 	preempt_disable();
473 	if (sched_core_disabled()) {
474 		raw_spin_lock_nested(&rq->__lock, subclass);
475 		/* preempt_count *MUST* be > 1 */
476 		preempt_enable_no_resched();
477 		return;
478 	}
479 
480 	for (;;) {
481 		lock = __rq_lockp(rq);
482 		raw_spin_lock_nested(lock, subclass);
483 		if (likely(lock == __rq_lockp(rq))) {
484 			/* preempt_count *MUST* be > 1 */
485 			preempt_enable_no_resched();
486 			return;
487 		}
488 		raw_spin_unlock(lock);
489 	}
490 }
491 
492 bool raw_spin_rq_trylock(struct rq *rq)
493 {
494 	raw_spinlock_t *lock;
495 	bool ret;
496 
497 	/* Matches synchronize_rcu() in __sched_core_enable() */
498 	preempt_disable();
499 	if (sched_core_disabled()) {
500 		ret = raw_spin_trylock(&rq->__lock);
501 		preempt_enable();
502 		return ret;
503 	}
504 
505 	for (;;) {
506 		lock = __rq_lockp(rq);
507 		ret = raw_spin_trylock(lock);
508 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
509 			preempt_enable();
510 			return ret;
511 		}
512 		raw_spin_unlock(lock);
513 	}
514 }
515 
516 void raw_spin_rq_unlock(struct rq *rq)
517 {
518 	raw_spin_unlock(rq_lockp(rq));
519 }
520 
521 #ifdef CONFIG_SMP
522 /*
523  * double_rq_lock - safely lock two runqueues
524  */
525 void double_rq_lock(struct rq *rq1, struct rq *rq2)
526 {
527 	lockdep_assert_irqs_disabled();
528 
529 	if (rq_order_less(rq2, rq1))
530 		swap(rq1, rq2);
531 
532 	raw_spin_rq_lock(rq1);
533 	if (__rq_lockp(rq1) == __rq_lockp(rq2))
534 		return;
535 
536 	raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
537 }
538 #endif
539 
540 /*
541  * __task_rq_lock - lock the rq @p resides on.
542  */
543 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
544 	__acquires(rq->lock)
545 {
546 	struct rq *rq;
547 
548 	lockdep_assert_held(&p->pi_lock);
549 
550 	for (;;) {
551 		rq = task_rq(p);
552 		raw_spin_rq_lock(rq);
553 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
554 			rq_pin_lock(rq, rf);
555 			return rq;
556 		}
557 		raw_spin_rq_unlock(rq);
558 
559 		while (unlikely(task_on_rq_migrating(p)))
560 			cpu_relax();
561 	}
562 }
563 
564 /*
565  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
566  */
567 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
568 	__acquires(p->pi_lock)
569 	__acquires(rq->lock)
570 {
571 	struct rq *rq;
572 
573 	for (;;) {
574 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
575 		rq = task_rq(p);
576 		raw_spin_rq_lock(rq);
577 		/*
578 		 *	move_queued_task()		task_rq_lock()
579 		 *
580 		 *	ACQUIRE (rq->lock)
581 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
582 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
583 		 *	[S] ->cpu = new_cpu		[L] task_rq()
584 		 *					[L] ->on_rq
585 		 *	RELEASE (rq->lock)
586 		 *
587 		 * If we observe the old CPU in task_rq_lock(), the acquire of
588 		 * the old rq->lock will fully serialize against the stores.
589 		 *
590 		 * If we observe the new CPU in task_rq_lock(), the address
591 		 * dependency headed by '[L] rq = task_rq()' and the acquire
592 		 * will pair with the WMB to ensure we then also see migrating.
593 		 */
594 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
595 			rq_pin_lock(rq, rf);
596 			return rq;
597 		}
598 		raw_spin_rq_unlock(rq);
599 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
600 
601 		while (unlikely(task_on_rq_migrating(p)))
602 			cpu_relax();
603 	}
604 }
605 
606 /*
607  * RQ-clock updating methods:
608  */
609 
610 static void update_rq_clock_task(struct rq *rq, s64 delta)
611 {
612 /*
613  * In theory, the compile should just see 0 here, and optimize out the call
614  * to sched_rt_avg_update. But I don't trust it...
615  */
616 	s64 __maybe_unused steal = 0, irq_delta = 0;
617 
618 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
619 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
620 
621 	/*
622 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
623 	 * this case when a previous update_rq_clock() happened inside a
624 	 * {soft,}irq region.
625 	 *
626 	 * When this happens, we stop ->clock_task and only update the
627 	 * prev_irq_time stamp to account for the part that fit, so that a next
628 	 * update will consume the rest. This ensures ->clock_task is
629 	 * monotonic.
630 	 *
631 	 * It does however cause some slight miss-attribution of {soft,}irq
632 	 * time, a more accurate solution would be to update the irq_time using
633 	 * the current rq->clock timestamp, except that would require using
634 	 * atomic ops.
635 	 */
636 	if (irq_delta > delta)
637 		irq_delta = delta;
638 
639 	rq->prev_irq_time += irq_delta;
640 	delta -= irq_delta;
641 #endif
642 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
643 	if (static_key_false((&paravirt_steal_rq_enabled))) {
644 		steal = paravirt_steal_clock(cpu_of(rq));
645 		steal -= rq->prev_steal_time_rq;
646 
647 		if (unlikely(steal > delta))
648 			steal = delta;
649 
650 		rq->prev_steal_time_rq += steal;
651 		delta -= steal;
652 	}
653 #endif
654 
655 	rq->clock_task += delta;
656 
657 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
658 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
659 		update_irq_load_avg(rq, irq_delta + steal);
660 #endif
661 	update_rq_clock_pelt(rq, delta);
662 }
663 
664 void update_rq_clock(struct rq *rq)
665 {
666 	s64 delta;
667 
668 	lockdep_assert_rq_held(rq);
669 
670 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
671 		return;
672 
673 #ifdef CONFIG_SCHED_DEBUG
674 	if (sched_feat(WARN_DOUBLE_CLOCK))
675 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
676 	rq->clock_update_flags |= RQCF_UPDATED;
677 #endif
678 
679 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
680 	if (delta < 0)
681 		return;
682 	rq->clock += delta;
683 	update_rq_clock_task(rq, delta);
684 }
685 
686 #ifdef CONFIG_SCHED_HRTICK
687 /*
688  * Use HR-timers to deliver accurate preemption points.
689  */
690 
691 static void hrtick_clear(struct rq *rq)
692 {
693 	if (hrtimer_active(&rq->hrtick_timer))
694 		hrtimer_cancel(&rq->hrtick_timer);
695 }
696 
697 /*
698  * High-resolution timer tick.
699  * Runs from hardirq context with interrupts disabled.
700  */
701 static enum hrtimer_restart hrtick(struct hrtimer *timer)
702 {
703 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
704 	struct rq_flags rf;
705 
706 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
707 
708 	rq_lock(rq, &rf);
709 	update_rq_clock(rq);
710 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
711 	rq_unlock(rq, &rf);
712 
713 	return HRTIMER_NORESTART;
714 }
715 
716 #ifdef CONFIG_SMP
717 
718 static void __hrtick_restart(struct rq *rq)
719 {
720 	struct hrtimer *timer = &rq->hrtick_timer;
721 	ktime_t time = rq->hrtick_time;
722 
723 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
724 }
725 
726 /*
727  * called from hardirq (IPI) context
728  */
729 static void __hrtick_start(void *arg)
730 {
731 	struct rq *rq = arg;
732 	struct rq_flags rf;
733 
734 	rq_lock(rq, &rf);
735 	__hrtick_restart(rq);
736 	rq_unlock(rq, &rf);
737 }
738 
739 /*
740  * Called to set the hrtick timer state.
741  *
742  * called with rq->lock held and irqs disabled
743  */
744 void hrtick_start(struct rq *rq, u64 delay)
745 {
746 	struct hrtimer *timer = &rq->hrtick_timer;
747 	s64 delta;
748 
749 	/*
750 	 * Don't schedule slices shorter than 10000ns, that just
751 	 * doesn't make sense and can cause timer DoS.
752 	 */
753 	delta = max_t(s64, delay, 10000LL);
754 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
755 
756 	if (rq == this_rq())
757 		__hrtick_restart(rq);
758 	else
759 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
760 }
761 
762 #else
763 /*
764  * Called to set the hrtick timer state.
765  *
766  * called with rq->lock held and irqs disabled
767  */
768 void hrtick_start(struct rq *rq, u64 delay)
769 {
770 	/*
771 	 * Don't schedule slices shorter than 10000ns, that just
772 	 * doesn't make sense. Rely on vruntime for fairness.
773 	 */
774 	delay = max_t(u64, delay, 10000LL);
775 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
776 		      HRTIMER_MODE_REL_PINNED_HARD);
777 }
778 
779 #endif /* CONFIG_SMP */
780 
781 static void hrtick_rq_init(struct rq *rq)
782 {
783 #ifdef CONFIG_SMP
784 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
785 #endif
786 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
787 	rq->hrtick_timer.function = hrtick;
788 }
789 #else	/* CONFIG_SCHED_HRTICK */
790 static inline void hrtick_clear(struct rq *rq)
791 {
792 }
793 
794 static inline void hrtick_rq_init(struct rq *rq)
795 {
796 }
797 #endif	/* CONFIG_SCHED_HRTICK */
798 
799 /*
800  * cmpxchg based fetch_or, macro so it works for different integer types
801  */
802 #define fetch_or(ptr, mask)						\
803 	({								\
804 		typeof(ptr) _ptr = (ptr);				\
805 		typeof(mask) _mask = (mask);				\
806 		typeof(*_ptr) _old, _val = *_ptr;			\
807 									\
808 		for (;;) {						\
809 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
810 			if (_old == _val)				\
811 				break;					\
812 			_val = _old;					\
813 		}							\
814 	_old;								\
815 })
816 
817 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
818 /*
819  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
820  * this avoids any races wrt polling state changes and thereby avoids
821  * spurious IPIs.
822  */
823 static bool set_nr_and_not_polling(struct task_struct *p)
824 {
825 	struct thread_info *ti = task_thread_info(p);
826 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
827 }
828 
829 /*
830  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
831  *
832  * If this returns true, then the idle task promises to call
833  * sched_ttwu_pending() and reschedule soon.
834  */
835 static bool set_nr_if_polling(struct task_struct *p)
836 {
837 	struct thread_info *ti = task_thread_info(p);
838 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
839 
840 	for (;;) {
841 		if (!(val & _TIF_POLLING_NRFLAG))
842 			return false;
843 		if (val & _TIF_NEED_RESCHED)
844 			return true;
845 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
846 		if (old == val)
847 			break;
848 		val = old;
849 	}
850 	return true;
851 }
852 
853 #else
854 static bool set_nr_and_not_polling(struct task_struct *p)
855 {
856 	set_tsk_need_resched(p);
857 	return true;
858 }
859 
860 #ifdef CONFIG_SMP
861 static bool set_nr_if_polling(struct task_struct *p)
862 {
863 	return false;
864 }
865 #endif
866 #endif
867 
868 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
869 {
870 	struct wake_q_node *node = &task->wake_q;
871 
872 	/*
873 	 * Atomically grab the task, if ->wake_q is !nil already it means
874 	 * it's already queued (either by us or someone else) and will get the
875 	 * wakeup due to that.
876 	 *
877 	 * In order to ensure that a pending wakeup will observe our pending
878 	 * state, even in the failed case, an explicit smp_mb() must be used.
879 	 */
880 	smp_mb__before_atomic();
881 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
882 		return false;
883 
884 	/*
885 	 * The head is context local, there can be no concurrency.
886 	 */
887 	*head->lastp = node;
888 	head->lastp = &node->next;
889 	return true;
890 }
891 
892 /**
893  * wake_q_add() - queue a wakeup for 'later' waking.
894  * @head: the wake_q_head to add @task to
895  * @task: the task to queue for 'later' wakeup
896  *
897  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
898  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
899  * instantly.
900  *
901  * This function must be used as-if it were wake_up_process(); IOW the task
902  * must be ready to be woken at this location.
903  */
904 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
905 {
906 	if (__wake_q_add(head, task))
907 		get_task_struct(task);
908 }
909 
910 /**
911  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
912  * @head: the wake_q_head to add @task to
913  * @task: the task to queue for 'later' wakeup
914  *
915  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
916  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
917  * instantly.
918  *
919  * This function must be used as-if it were wake_up_process(); IOW the task
920  * must be ready to be woken at this location.
921  *
922  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
923  * that already hold reference to @task can call the 'safe' version and trust
924  * wake_q to do the right thing depending whether or not the @task is already
925  * queued for wakeup.
926  */
927 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
928 {
929 	if (!__wake_q_add(head, task))
930 		put_task_struct(task);
931 }
932 
933 void wake_up_q(struct wake_q_head *head)
934 {
935 	struct wake_q_node *node = head->first;
936 
937 	while (node != WAKE_Q_TAIL) {
938 		struct task_struct *task;
939 
940 		task = container_of(node, struct task_struct, wake_q);
941 		/* Task can safely be re-inserted now: */
942 		node = node->next;
943 		task->wake_q.next = NULL;
944 
945 		/*
946 		 * wake_up_process() executes a full barrier, which pairs with
947 		 * the queueing in wake_q_add() so as not to miss wakeups.
948 		 */
949 		wake_up_process(task);
950 		put_task_struct(task);
951 	}
952 }
953 
954 /*
955  * resched_curr - mark rq's current task 'to be rescheduled now'.
956  *
957  * On UP this means the setting of the need_resched flag, on SMP it
958  * might also involve a cross-CPU call to trigger the scheduler on
959  * the target CPU.
960  */
961 void resched_curr(struct rq *rq)
962 {
963 	struct task_struct *curr = rq->curr;
964 	int cpu;
965 
966 	lockdep_assert_rq_held(rq);
967 
968 	if (test_tsk_need_resched(curr))
969 		return;
970 
971 	cpu = cpu_of(rq);
972 
973 	if (cpu == smp_processor_id()) {
974 		set_tsk_need_resched(curr);
975 		set_preempt_need_resched();
976 		return;
977 	}
978 
979 	if (set_nr_and_not_polling(curr))
980 		smp_send_reschedule(cpu);
981 	else
982 		trace_sched_wake_idle_without_ipi(cpu);
983 }
984 
985 void resched_cpu(int cpu)
986 {
987 	struct rq *rq = cpu_rq(cpu);
988 	unsigned long flags;
989 
990 	raw_spin_rq_lock_irqsave(rq, flags);
991 	if (cpu_online(cpu) || cpu == smp_processor_id())
992 		resched_curr(rq);
993 	raw_spin_rq_unlock_irqrestore(rq, flags);
994 }
995 
996 #ifdef CONFIG_SMP
997 #ifdef CONFIG_NO_HZ_COMMON
998 /*
999  * In the semi idle case, use the nearest busy CPU for migrating timers
1000  * from an idle CPU.  This is good for power-savings.
1001  *
1002  * We don't do similar optimization for completely idle system, as
1003  * selecting an idle CPU will add more delays to the timers than intended
1004  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1005  */
1006 int get_nohz_timer_target(void)
1007 {
1008 	int i, cpu = smp_processor_id(), default_cpu = -1;
1009 	struct sched_domain *sd;
1010 	const struct cpumask *hk_mask;
1011 
1012 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1013 		if (!idle_cpu(cpu))
1014 			return cpu;
1015 		default_cpu = cpu;
1016 	}
1017 
1018 	hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1019 
1020 	rcu_read_lock();
1021 	for_each_domain(cpu, sd) {
1022 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1023 			if (cpu == i)
1024 				continue;
1025 
1026 			if (!idle_cpu(i)) {
1027 				cpu = i;
1028 				goto unlock;
1029 			}
1030 		}
1031 	}
1032 
1033 	if (default_cpu == -1)
1034 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1035 	cpu = default_cpu;
1036 unlock:
1037 	rcu_read_unlock();
1038 	return cpu;
1039 }
1040 
1041 /*
1042  * When add_timer_on() enqueues a timer into the timer wheel of an
1043  * idle CPU then this timer might expire before the next timer event
1044  * which is scheduled to wake up that CPU. In case of a completely
1045  * idle system the next event might even be infinite time into the
1046  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1047  * leaves the inner idle loop so the newly added timer is taken into
1048  * account when the CPU goes back to idle and evaluates the timer
1049  * wheel for the next timer event.
1050  */
1051 static void wake_up_idle_cpu(int cpu)
1052 {
1053 	struct rq *rq = cpu_rq(cpu);
1054 
1055 	if (cpu == smp_processor_id())
1056 		return;
1057 
1058 	if (set_nr_and_not_polling(rq->idle))
1059 		smp_send_reschedule(cpu);
1060 	else
1061 		trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063 
1064 static bool wake_up_full_nohz_cpu(int cpu)
1065 {
1066 	/*
1067 	 * We just need the target to call irq_exit() and re-evaluate
1068 	 * the next tick. The nohz full kick at least implies that.
1069 	 * If needed we can still optimize that later with an
1070 	 * empty IRQ.
1071 	 */
1072 	if (cpu_is_offline(cpu))
1073 		return true;  /* Don't try to wake offline CPUs. */
1074 	if (tick_nohz_full_cpu(cpu)) {
1075 		if (cpu != smp_processor_id() ||
1076 		    tick_nohz_tick_stopped())
1077 			tick_nohz_full_kick_cpu(cpu);
1078 		return true;
1079 	}
1080 
1081 	return false;
1082 }
1083 
1084 /*
1085  * Wake up the specified CPU.  If the CPU is going offline, it is the
1086  * caller's responsibility to deal with the lost wakeup, for example,
1087  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1088  */
1089 void wake_up_nohz_cpu(int cpu)
1090 {
1091 	if (!wake_up_full_nohz_cpu(cpu))
1092 		wake_up_idle_cpu(cpu);
1093 }
1094 
1095 static void nohz_csd_func(void *info)
1096 {
1097 	struct rq *rq = info;
1098 	int cpu = cpu_of(rq);
1099 	unsigned int flags;
1100 
1101 	/*
1102 	 * Release the rq::nohz_csd.
1103 	 */
1104 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1105 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1106 
1107 	rq->idle_balance = idle_cpu(cpu);
1108 	if (rq->idle_balance && !need_resched()) {
1109 		rq->nohz_idle_balance = flags;
1110 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1111 	}
1112 }
1113 
1114 #endif /* CONFIG_NO_HZ_COMMON */
1115 
1116 #ifdef CONFIG_NO_HZ_FULL
1117 bool sched_can_stop_tick(struct rq *rq)
1118 {
1119 	int fifo_nr_running;
1120 
1121 	/* Deadline tasks, even if single, need the tick */
1122 	if (rq->dl.dl_nr_running)
1123 		return false;
1124 
1125 	/*
1126 	 * If there are more than one RR tasks, we need the tick to affect the
1127 	 * actual RR behaviour.
1128 	 */
1129 	if (rq->rt.rr_nr_running) {
1130 		if (rq->rt.rr_nr_running == 1)
1131 			return true;
1132 		else
1133 			return false;
1134 	}
1135 
1136 	/*
1137 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1138 	 * forced preemption between FIFO tasks.
1139 	 */
1140 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1141 	if (fifo_nr_running)
1142 		return true;
1143 
1144 	/*
1145 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1146 	 * if there's more than one we need the tick for involuntary
1147 	 * preemption.
1148 	 */
1149 	if (rq->nr_running > 1)
1150 		return false;
1151 
1152 	return true;
1153 }
1154 #endif /* CONFIG_NO_HZ_FULL */
1155 #endif /* CONFIG_SMP */
1156 
1157 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1158 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1159 /*
1160  * Iterate task_group tree rooted at *from, calling @down when first entering a
1161  * node and @up when leaving it for the final time.
1162  *
1163  * Caller must hold rcu_lock or sufficient equivalent.
1164  */
1165 int walk_tg_tree_from(struct task_group *from,
1166 			     tg_visitor down, tg_visitor up, void *data)
1167 {
1168 	struct task_group *parent, *child;
1169 	int ret;
1170 
1171 	parent = from;
1172 
1173 down:
1174 	ret = (*down)(parent, data);
1175 	if (ret)
1176 		goto out;
1177 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1178 		parent = child;
1179 		goto down;
1180 
1181 up:
1182 		continue;
1183 	}
1184 	ret = (*up)(parent, data);
1185 	if (ret || parent == from)
1186 		goto out;
1187 
1188 	child = parent;
1189 	parent = parent->parent;
1190 	if (parent)
1191 		goto up;
1192 out:
1193 	return ret;
1194 }
1195 
1196 int tg_nop(struct task_group *tg, void *data)
1197 {
1198 	return 0;
1199 }
1200 #endif
1201 
1202 static void set_load_weight(struct task_struct *p, bool update_load)
1203 {
1204 	int prio = p->static_prio - MAX_RT_PRIO;
1205 	struct load_weight *load = &p->se.load;
1206 
1207 	/*
1208 	 * SCHED_IDLE tasks get minimal weight:
1209 	 */
1210 	if (task_has_idle_policy(p)) {
1211 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1212 		load->inv_weight = WMULT_IDLEPRIO;
1213 		return;
1214 	}
1215 
1216 	/*
1217 	 * SCHED_OTHER tasks have to update their load when changing their
1218 	 * weight
1219 	 */
1220 	if (update_load && p->sched_class == &fair_sched_class) {
1221 		reweight_task(p, prio);
1222 	} else {
1223 		load->weight = scale_load(sched_prio_to_weight[prio]);
1224 		load->inv_weight = sched_prio_to_wmult[prio];
1225 	}
1226 }
1227 
1228 #ifdef CONFIG_UCLAMP_TASK
1229 /*
1230  * Serializes updates of utilization clamp values
1231  *
1232  * The (slow-path) user-space triggers utilization clamp value updates which
1233  * can require updates on (fast-path) scheduler's data structures used to
1234  * support enqueue/dequeue operations.
1235  * While the per-CPU rq lock protects fast-path update operations, user-space
1236  * requests are serialized using a mutex to reduce the risk of conflicting
1237  * updates or API abuses.
1238  */
1239 static DEFINE_MUTEX(uclamp_mutex);
1240 
1241 /* Max allowed minimum utilization */
1242 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1243 
1244 /* Max allowed maximum utilization */
1245 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1246 
1247 /*
1248  * By default RT tasks run at the maximum performance point/capacity of the
1249  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1250  * SCHED_CAPACITY_SCALE.
1251  *
1252  * This knob allows admins to change the default behavior when uclamp is being
1253  * used. In battery powered devices, particularly, running at the maximum
1254  * capacity and frequency will increase energy consumption and shorten the
1255  * battery life.
1256  *
1257  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1258  *
1259  * This knob will not override the system default sched_util_clamp_min defined
1260  * above.
1261  */
1262 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1263 
1264 /* All clamps are required to be less or equal than these values */
1265 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1266 
1267 /*
1268  * This static key is used to reduce the uclamp overhead in the fast path. It
1269  * primarily disables the call to uclamp_rq_{inc, dec}() in
1270  * enqueue/dequeue_task().
1271  *
1272  * This allows users to continue to enable uclamp in their kernel config with
1273  * minimum uclamp overhead in the fast path.
1274  *
1275  * As soon as userspace modifies any of the uclamp knobs, the static key is
1276  * enabled, since we have an actual users that make use of uclamp
1277  * functionality.
1278  *
1279  * The knobs that would enable this static key are:
1280  *
1281  *   * A task modifying its uclamp value with sched_setattr().
1282  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1283  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1284  */
1285 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1286 
1287 /* Integer rounded range for each bucket */
1288 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1289 
1290 #define for_each_clamp_id(clamp_id) \
1291 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1292 
1293 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1294 {
1295 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1296 }
1297 
1298 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1299 {
1300 	if (clamp_id == UCLAMP_MIN)
1301 		return 0;
1302 	return SCHED_CAPACITY_SCALE;
1303 }
1304 
1305 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1306 				 unsigned int value, bool user_defined)
1307 {
1308 	uc_se->value = value;
1309 	uc_se->bucket_id = uclamp_bucket_id(value);
1310 	uc_se->user_defined = user_defined;
1311 }
1312 
1313 static inline unsigned int
1314 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1315 		  unsigned int clamp_value)
1316 {
1317 	/*
1318 	 * Avoid blocked utilization pushing up the frequency when we go
1319 	 * idle (which drops the max-clamp) by retaining the last known
1320 	 * max-clamp.
1321 	 */
1322 	if (clamp_id == UCLAMP_MAX) {
1323 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1324 		return clamp_value;
1325 	}
1326 
1327 	return uclamp_none(UCLAMP_MIN);
1328 }
1329 
1330 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1331 				     unsigned int clamp_value)
1332 {
1333 	/* Reset max-clamp retention only on idle exit */
1334 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1335 		return;
1336 
1337 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1338 }
1339 
1340 static inline
1341 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1342 				   unsigned int clamp_value)
1343 {
1344 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1345 	int bucket_id = UCLAMP_BUCKETS - 1;
1346 
1347 	/*
1348 	 * Since both min and max clamps are max aggregated, find the
1349 	 * top most bucket with tasks in.
1350 	 */
1351 	for ( ; bucket_id >= 0; bucket_id--) {
1352 		if (!bucket[bucket_id].tasks)
1353 			continue;
1354 		return bucket[bucket_id].value;
1355 	}
1356 
1357 	/* No tasks -- default clamp values */
1358 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1359 }
1360 
1361 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1362 {
1363 	unsigned int default_util_min;
1364 	struct uclamp_se *uc_se;
1365 
1366 	lockdep_assert_held(&p->pi_lock);
1367 
1368 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1369 
1370 	/* Only sync if user didn't override the default */
1371 	if (uc_se->user_defined)
1372 		return;
1373 
1374 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1375 	uclamp_se_set(uc_se, default_util_min, false);
1376 }
1377 
1378 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1379 {
1380 	struct rq_flags rf;
1381 	struct rq *rq;
1382 
1383 	if (!rt_task(p))
1384 		return;
1385 
1386 	/* Protect updates to p->uclamp_* */
1387 	rq = task_rq_lock(p, &rf);
1388 	__uclamp_update_util_min_rt_default(p);
1389 	task_rq_unlock(rq, p, &rf);
1390 }
1391 
1392 static void uclamp_sync_util_min_rt_default(void)
1393 {
1394 	struct task_struct *g, *p;
1395 
1396 	/*
1397 	 * copy_process()			sysctl_uclamp
1398 	 *					  uclamp_min_rt = X;
1399 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1400 	 *   // link thread			  smp_mb__after_spinlock()
1401 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1402 	 *   sched_post_fork()			  for_each_process_thread()
1403 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1404 	 *
1405 	 * Ensures that either sched_post_fork() will observe the new
1406 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1407 	 * task.
1408 	 */
1409 	read_lock(&tasklist_lock);
1410 	smp_mb__after_spinlock();
1411 	read_unlock(&tasklist_lock);
1412 
1413 	rcu_read_lock();
1414 	for_each_process_thread(g, p)
1415 		uclamp_update_util_min_rt_default(p);
1416 	rcu_read_unlock();
1417 }
1418 
1419 static inline struct uclamp_se
1420 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1421 {
1422 	/* Copy by value as we could modify it */
1423 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1424 #ifdef CONFIG_UCLAMP_TASK_GROUP
1425 	unsigned int tg_min, tg_max, value;
1426 
1427 	/*
1428 	 * Tasks in autogroups or root task group will be
1429 	 * restricted by system defaults.
1430 	 */
1431 	if (task_group_is_autogroup(task_group(p)))
1432 		return uc_req;
1433 	if (task_group(p) == &root_task_group)
1434 		return uc_req;
1435 
1436 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1437 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1438 	value = uc_req.value;
1439 	value = clamp(value, tg_min, tg_max);
1440 	uclamp_se_set(&uc_req, value, false);
1441 #endif
1442 
1443 	return uc_req;
1444 }
1445 
1446 /*
1447  * The effective clamp bucket index of a task depends on, by increasing
1448  * priority:
1449  * - the task specific clamp value, when explicitly requested from userspace
1450  * - the task group effective clamp value, for tasks not either in the root
1451  *   group or in an autogroup
1452  * - the system default clamp value, defined by the sysadmin
1453  */
1454 static inline struct uclamp_se
1455 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1456 {
1457 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1458 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1459 
1460 	/* System default restrictions always apply */
1461 	if (unlikely(uc_req.value > uc_max.value))
1462 		return uc_max;
1463 
1464 	return uc_req;
1465 }
1466 
1467 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1468 {
1469 	struct uclamp_se uc_eff;
1470 
1471 	/* Task currently refcounted: use back-annotated (effective) value */
1472 	if (p->uclamp[clamp_id].active)
1473 		return (unsigned long)p->uclamp[clamp_id].value;
1474 
1475 	uc_eff = uclamp_eff_get(p, clamp_id);
1476 
1477 	return (unsigned long)uc_eff.value;
1478 }
1479 
1480 /*
1481  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1482  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1483  * updates the rq's clamp value if required.
1484  *
1485  * Tasks can have a task-specific value requested from user-space, track
1486  * within each bucket the maximum value for tasks refcounted in it.
1487  * This "local max aggregation" allows to track the exact "requested" value
1488  * for each bucket when all its RUNNABLE tasks require the same clamp.
1489  */
1490 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1491 				    enum uclamp_id clamp_id)
1492 {
1493 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1494 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1495 	struct uclamp_bucket *bucket;
1496 
1497 	lockdep_assert_rq_held(rq);
1498 
1499 	/* Update task effective clamp */
1500 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1501 
1502 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1503 	bucket->tasks++;
1504 	uc_se->active = true;
1505 
1506 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1507 
1508 	/*
1509 	 * Local max aggregation: rq buckets always track the max
1510 	 * "requested" clamp value of its RUNNABLE tasks.
1511 	 */
1512 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1513 		bucket->value = uc_se->value;
1514 
1515 	if (uc_se->value > READ_ONCE(uc_rq->value))
1516 		WRITE_ONCE(uc_rq->value, uc_se->value);
1517 }
1518 
1519 /*
1520  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1521  * is released. If this is the last task reference counting the rq's max
1522  * active clamp value, then the rq's clamp value is updated.
1523  *
1524  * Both refcounted tasks and rq's cached clamp values are expected to be
1525  * always valid. If it's detected they are not, as defensive programming,
1526  * enforce the expected state and warn.
1527  */
1528 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1529 				    enum uclamp_id clamp_id)
1530 {
1531 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1532 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1533 	struct uclamp_bucket *bucket;
1534 	unsigned int bkt_clamp;
1535 	unsigned int rq_clamp;
1536 
1537 	lockdep_assert_rq_held(rq);
1538 
1539 	/*
1540 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1541 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1542 	 *
1543 	 * In this case the uc_se->active flag should be false since no uclamp
1544 	 * accounting was performed at enqueue time and we can just return
1545 	 * here.
1546 	 *
1547 	 * Need to be careful of the following enqueue/dequeue ordering
1548 	 * problem too
1549 	 *
1550 	 *	enqueue(taskA)
1551 	 *	// sched_uclamp_used gets enabled
1552 	 *	enqueue(taskB)
1553 	 *	dequeue(taskA)
1554 	 *	// Must not decrement bucket->tasks here
1555 	 *	dequeue(taskB)
1556 	 *
1557 	 * where we could end up with stale data in uc_se and
1558 	 * bucket[uc_se->bucket_id].
1559 	 *
1560 	 * The following check here eliminates the possibility of such race.
1561 	 */
1562 	if (unlikely(!uc_se->active))
1563 		return;
1564 
1565 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1566 
1567 	SCHED_WARN_ON(!bucket->tasks);
1568 	if (likely(bucket->tasks))
1569 		bucket->tasks--;
1570 
1571 	uc_se->active = false;
1572 
1573 	/*
1574 	 * Keep "local max aggregation" simple and accept to (possibly)
1575 	 * overboost some RUNNABLE tasks in the same bucket.
1576 	 * The rq clamp bucket value is reset to its base value whenever
1577 	 * there are no more RUNNABLE tasks refcounting it.
1578 	 */
1579 	if (likely(bucket->tasks))
1580 		return;
1581 
1582 	rq_clamp = READ_ONCE(uc_rq->value);
1583 	/*
1584 	 * Defensive programming: this should never happen. If it happens,
1585 	 * e.g. due to future modification, warn and fixup the expected value.
1586 	 */
1587 	SCHED_WARN_ON(bucket->value > rq_clamp);
1588 	if (bucket->value >= rq_clamp) {
1589 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1590 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1591 	}
1592 }
1593 
1594 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1595 {
1596 	enum uclamp_id clamp_id;
1597 
1598 	/*
1599 	 * Avoid any overhead until uclamp is actually used by the userspace.
1600 	 *
1601 	 * The condition is constructed such that a NOP is generated when
1602 	 * sched_uclamp_used is disabled.
1603 	 */
1604 	if (!static_branch_unlikely(&sched_uclamp_used))
1605 		return;
1606 
1607 	if (unlikely(!p->sched_class->uclamp_enabled))
1608 		return;
1609 
1610 	for_each_clamp_id(clamp_id)
1611 		uclamp_rq_inc_id(rq, p, clamp_id);
1612 
1613 	/* Reset clamp idle holding when there is one RUNNABLE task */
1614 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1615 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1616 }
1617 
1618 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1619 {
1620 	enum uclamp_id clamp_id;
1621 
1622 	/*
1623 	 * Avoid any overhead until uclamp is actually used by the userspace.
1624 	 *
1625 	 * The condition is constructed such that a NOP is generated when
1626 	 * sched_uclamp_used is disabled.
1627 	 */
1628 	if (!static_branch_unlikely(&sched_uclamp_used))
1629 		return;
1630 
1631 	if (unlikely(!p->sched_class->uclamp_enabled))
1632 		return;
1633 
1634 	for_each_clamp_id(clamp_id)
1635 		uclamp_rq_dec_id(rq, p, clamp_id);
1636 }
1637 
1638 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1639 				      enum uclamp_id clamp_id)
1640 {
1641 	if (!p->uclamp[clamp_id].active)
1642 		return;
1643 
1644 	uclamp_rq_dec_id(rq, p, clamp_id);
1645 	uclamp_rq_inc_id(rq, p, clamp_id);
1646 
1647 	/*
1648 	 * Make sure to clear the idle flag if we've transiently reached 0
1649 	 * active tasks on rq.
1650 	 */
1651 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1652 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1653 }
1654 
1655 static inline void
1656 uclamp_update_active(struct task_struct *p)
1657 {
1658 	enum uclamp_id clamp_id;
1659 	struct rq_flags rf;
1660 	struct rq *rq;
1661 
1662 	/*
1663 	 * Lock the task and the rq where the task is (or was) queued.
1664 	 *
1665 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1666 	 * price to pay to safely serialize util_{min,max} updates with
1667 	 * enqueues, dequeues and migration operations.
1668 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1669 	 */
1670 	rq = task_rq_lock(p, &rf);
1671 
1672 	/*
1673 	 * Setting the clamp bucket is serialized by task_rq_lock().
1674 	 * If the task is not yet RUNNABLE and its task_struct is not
1675 	 * affecting a valid clamp bucket, the next time it's enqueued,
1676 	 * it will already see the updated clamp bucket value.
1677 	 */
1678 	for_each_clamp_id(clamp_id)
1679 		uclamp_rq_reinc_id(rq, p, clamp_id);
1680 
1681 	task_rq_unlock(rq, p, &rf);
1682 }
1683 
1684 #ifdef CONFIG_UCLAMP_TASK_GROUP
1685 static inline void
1686 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1687 {
1688 	struct css_task_iter it;
1689 	struct task_struct *p;
1690 
1691 	css_task_iter_start(css, 0, &it);
1692 	while ((p = css_task_iter_next(&it)))
1693 		uclamp_update_active(p);
1694 	css_task_iter_end(&it);
1695 }
1696 
1697 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1698 static void uclamp_update_root_tg(void)
1699 {
1700 	struct task_group *tg = &root_task_group;
1701 
1702 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1703 		      sysctl_sched_uclamp_util_min, false);
1704 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1705 		      sysctl_sched_uclamp_util_max, false);
1706 
1707 	rcu_read_lock();
1708 	cpu_util_update_eff(&root_task_group.css);
1709 	rcu_read_unlock();
1710 }
1711 #else
1712 static void uclamp_update_root_tg(void) { }
1713 #endif
1714 
1715 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1716 				void *buffer, size_t *lenp, loff_t *ppos)
1717 {
1718 	bool update_root_tg = false;
1719 	int old_min, old_max, old_min_rt;
1720 	int result;
1721 
1722 	mutex_lock(&uclamp_mutex);
1723 	old_min = sysctl_sched_uclamp_util_min;
1724 	old_max = sysctl_sched_uclamp_util_max;
1725 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1726 
1727 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1728 	if (result)
1729 		goto undo;
1730 	if (!write)
1731 		goto done;
1732 
1733 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1734 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1735 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1736 
1737 		result = -EINVAL;
1738 		goto undo;
1739 	}
1740 
1741 	if (old_min != sysctl_sched_uclamp_util_min) {
1742 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1743 			      sysctl_sched_uclamp_util_min, false);
1744 		update_root_tg = true;
1745 	}
1746 	if (old_max != sysctl_sched_uclamp_util_max) {
1747 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1748 			      sysctl_sched_uclamp_util_max, false);
1749 		update_root_tg = true;
1750 	}
1751 
1752 	if (update_root_tg) {
1753 		static_branch_enable(&sched_uclamp_used);
1754 		uclamp_update_root_tg();
1755 	}
1756 
1757 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1758 		static_branch_enable(&sched_uclamp_used);
1759 		uclamp_sync_util_min_rt_default();
1760 	}
1761 
1762 	/*
1763 	 * We update all RUNNABLE tasks only when task groups are in use.
1764 	 * Otherwise, keep it simple and do just a lazy update at each next
1765 	 * task enqueue time.
1766 	 */
1767 
1768 	goto done;
1769 
1770 undo:
1771 	sysctl_sched_uclamp_util_min = old_min;
1772 	sysctl_sched_uclamp_util_max = old_max;
1773 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1774 done:
1775 	mutex_unlock(&uclamp_mutex);
1776 
1777 	return result;
1778 }
1779 
1780 static int uclamp_validate(struct task_struct *p,
1781 			   const struct sched_attr *attr)
1782 {
1783 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1784 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1785 
1786 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1787 		util_min = attr->sched_util_min;
1788 
1789 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1790 			return -EINVAL;
1791 	}
1792 
1793 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1794 		util_max = attr->sched_util_max;
1795 
1796 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1797 			return -EINVAL;
1798 	}
1799 
1800 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1801 		return -EINVAL;
1802 
1803 	/*
1804 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1805 	 *
1806 	 * We need to do that here, because enabling static branches is a
1807 	 * blocking operation which obviously cannot be done while holding
1808 	 * scheduler locks.
1809 	 */
1810 	static_branch_enable(&sched_uclamp_used);
1811 
1812 	return 0;
1813 }
1814 
1815 static bool uclamp_reset(const struct sched_attr *attr,
1816 			 enum uclamp_id clamp_id,
1817 			 struct uclamp_se *uc_se)
1818 {
1819 	/* Reset on sched class change for a non user-defined clamp value. */
1820 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1821 	    !uc_se->user_defined)
1822 		return true;
1823 
1824 	/* Reset on sched_util_{min,max} == -1. */
1825 	if (clamp_id == UCLAMP_MIN &&
1826 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1827 	    attr->sched_util_min == -1) {
1828 		return true;
1829 	}
1830 
1831 	if (clamp_id == UCLAMP_MAX &&
1832 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1833 	    attr->sched_util_max == -1) {
1834 		return true;
1835 	}
1836 
1837 	return false;
1838 }
1839 
1840 static void __setscheduler_uclamp(struct task_struct *p,
1841 				  const struct sched_attr *attr)
1842 {
1843 	enum uclamp_id clamp_id;
1844 
1845 	for_each_clamp_id(clamp_id) {
1846 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1847 		unsigned int value;
1848 
1849 		if (!uclamp_reset(attr, clamp_id, uc_se))
1850 			continue;
1851 
1852 		/*
1853 		 * RT by default have a 100% boost value that could be modified
1854 		 * at runtime.
1855 		 */
1856 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1857 			value = sysctl_sched_uclamp_util_min_rt_default;
1858 		else
1859 			value = uclamp_none(clamp_id);
1860 
1861 		uclamp_se_set(uc_se, value, false);
1862 
1863 	}
1864 
1865 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1866 		return;
1867 
1868 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1869 	    attr->sched_util_min != -1) {
1870 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1871 			      attr->sched_util_min, true);
1872 	}
1873 
1874 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1875 	    attr->sched_util_max != -1) {
1876 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1877 			      attr->sched_util_max, true);
1878 	}
1879 }
1880 
1881 static void uclamp_fork(struct task_struct *p)
1882 {
1883 	enum uclamp_id clamp_id;
1884 
1885 	/*
1886 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1887 	 * as the task is still at its early fork stages.
1888 	 */
1889 	for_each_clamp_id(clamp_id)
1890 		p->uclamp[clamp_id].active = false;
1891 
1892 	if (likely(!p->sched_reset_on_fork))
1893 		return;
1894 
1895 	for_each_clamp_id(clamp_id) {
1896 		uclamp_se_set(&p->uclamp_req[clamp_id],
1897 			      uclamp_none(clamp_id), false);
1898 	}
1899 }
1900 
1901 static void uclamp_post_fork(struct task_struct *p)
1902 {
1903 	uclamp_update_util_min_rt_default(p);
1904 }
1905 
1906 static void __init init_uclamp_rq(struct rq *rq)
1907 {
1908 	enum uclamp_id clamp_id;
1909 	struct uclamp_rq *uc_rq = rq->uclamp;
1910 
1911 	for_each_clamp_id(clamp_id) {
1912 		uc_rq[clamp_id] = (struct uclamp_rq) {
1913 			.value = uclamp_none(clamp_id)
1914 		};
1915 	}
1916 
1917 	rq->uclamp_flags = 0;
1918 }
1919 
1920 static void __init init_uclamp(void)
1921 {
1922 	struct uclamp_se uc_max = {};
1923 	enum uclamp_id clamp_id;
1924 	int cpu;
1925 
1926 	for_each_possible_cpu(cpu)
1927 		init_uclamp_rq(cpu_rq(cpu));
1928 
1929 	for_each_clamp_id(clamp_id) {
1930 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1931 			      uclamp_none(clamp_id), false);
1932 	}
1933 
1934 	/* System defaults allow max clamp values for both indexes */
1935 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1936 	for_each_clamp_id(clamp_id) {
1937 		uclamp_default[clamp_id] = uc_max;
1938 #ifdef CONFIG_UCLAMP_TASK_GROUP
1939 		root_task_group.uclamp_req[clamp_id] = uc_max;
1940 		root_task_group.uclamp[clamp_id] = uc_max;
1941 #endif
1942 	}
1943 }
1944 
1945 #else /* CONFIG_UCLAMP_TASK */
1946 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1947 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1948 static inline int uclamp_validate(struct task_struct *p,
1949 				  const struct sched_attr *attr)
1950 {
1951 	return -EOPNOTSUPP;
1952 }
1953 static void __setscheduler_uclamp(struct task_struct *p,
1954 				  const struct sched_attr *attr) { }
1955 static inline void uclamp_fork(struct task_struct *p) { }
1956 static inline void uclamp_post_fork(struct task_struct *p) { }
1957 static inline void init_uclamp(void) { }
1958 #endif /* CONFIG_UCLAMP_TASK */
1959 
1960 bool sched_task_on_rq(struct task_struct *p)
1961 {
1962 	return task_on_rq_queued(p);
1963 }
1964 
1965 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1966 {
1967 	if (!(flags & ENQUEUE_NOCLOCK))
1968 		update_rq_clock(rq);
1969 
1970 	if (!(flags & ENQUEUE_RESTORE)) {
1971 		sched_info_enqueue(rq, p);
1972 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1973 	}
1974 
1975 	uclamp_rq_inc(rq, p);
1976 	p->sched_class->enqueue_task(rq, p, flags);
1977 
1978 	if (sched_core_enabled(rq))
1979 		sched_core_enqueue(rq, p);
1980 }
1981 
1982 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1983 {
1984 	if (sched_core_enabled(rq))
1985 		sched_core_dequeue(rq, p);
1986 
1987 	if (!(flags & DEQUEUE_NOCLOCK))
1988 		update_rq_clock(rq);
1989 
1990 	if (!(flags & DEQUEUE_SAVE)) {
1991 		sched_info_dequeue(rq, p);
1992 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1993 	}
1994 
1995 	uclamp_rq_dec(rq, p);
1996 	p->sched_class->dequeue_task(rq, p, flags);
1997 }
1998 
1999 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2000 {
2001 	enqueue_task(rq, p, flags);
2002 
2003 	p->on_rq = TASK_ON_RQ_QUEUED;
2004 }
2005 
2006 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2007 {
2008 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2009 
2010 	dequeue_task(rq, p, flags);
2011 }
2012 
2013 static inline int __normal_prio(int policy, int rt_prio, int nice)
2014 {
2015 	int prio;
2016 
2017 	if (dl_policy(policy))
2018 		prio = MAX_DL_PRIO - 1;
2019 	else if (rt_policy(policy))
2020 		prio = MAX_RT_PRIO - 1 - rt_prio;
2021 	else
2022 		prio = NICE_TO_PRIO(nice);
2023 
2024 	return prio;
2025 }
2026 
2027 /*
2028  * Calculate the expected normal priority: i.e. priority
2029  * without taking RT-inheritance into account. Might be
2030  * boosted by interactivity modifiers. Changes upon fork,
2031  * setprio syscalls, and whenever the interactivity
2032  * estimator recalculates.
2033  */
2034 static inline int normal_prio(struct task_struct *p)
2035 {
2036 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2037 }
2038 
2039 /*
2040  * Calculate the current priority, i.e. the priority
2041  * taken into account by the scheduler. This value might
2042  * be boosted by RT tasks, or might be boosted by
2043  * interactivity modifiers. Will be RT if the task got
2044  * RT-boosted. If not then it returns p->normal_prio.
2045  */
2046 static int effective_prio(struct task_struct *p)
2047 {
2048 	p->normal_prio = normal_prio(p);
2049 	/*
2050 	 * If we are RT tasks or we were boosted to RT priority,
2051 	 * keep the priority unchanged. Otherwise, update priority
2052 	 * to the normal priority:
2053 	 */
2054 	if (!rt_prio(p->prio))
2055 		return p->normal_prio;
2056 	return p->prio;
2057 }
2058 
2059 /**
2060  * task_curr - is this task currently executing on a CPU?
2061  * @p: the task in question.
2062  *
2063  * Return: 1 if the task is currently executing. 0 otherwise.
2064  */
2065 inline int task_curr(const struct task_struct *p)
2066 {
2067 	return cpu_curr(task_cpu(p)) == p;
2068 }
2069 
2070 /*
2071  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2072  * use the balance_callback list if you want balancing.
2073  *
2074  * this means any call to check_class_changed() must be followed by a call to
2075  * balance_callback().
2076  */
2077 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2078 				       const struct sched_class *prev_class,
2079 				       int oldprio)
2080 {
2081 	if (prev_class != p->sched_class) {
2082 		if (prev_class->switched_from)
2083 			prev_class->switched_from(rq, p);
2084 
2085 		p->sched_class->switched_to(rq, p);
2086 	} else if (oldprio != p->prio || dl_task(p))
2087 		p->sched_class->prio_changed(rq, p, oldprio);
2088 }
2089 
2090 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 	if (p->sched_class == rq->curr->sched_class)
2093 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2094 	else if (p->sched_class > rq->curr->sched_class)
2095 		resched_curr(rq);
2096 
2097 	/*
2098 	 * A queue event has occurred, and we're going to schedule.  In
2099 	 * this case, we can save a useless back to back clock update.
2100 	 */
2101 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2102 		rq_clock_skip_update(rq);
2103 }
2104 
2105 #ifdef CONFIG_SMP
2106 
2107 static void
2108 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2109 
2110 static int __set_cpus_allowed_ptr(struct task_struct *p,
2111 				  const struct cpumask *new_mask,
2112 				  u32 flags);
2113 
2114 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2115 {
2116 	if (likely(!p->migration_disabled))
2117 		return;
2118 
2119 	if (p->cpus_ptr != &p->cpus_mask)
2120 		return;
2121 
2122 	/*
2123 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2124 	 */
2125 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2126 }
2127 
2128 void migrate_disable(void)
2129 {
2130 	struct task_struct *p = current;
2131 
2132 	if (p->migration_disabled) {
2133 		p->migration_disabled++;
2134 		return;
2135 	}
2136 
2137 	preempt_disable();
2138 	this_rq()->nr_pinned++;
2139 	p->migration_disabled = 1;
2140 	preempt_enable();
2141 }
2142 EXPORT_SYMBOL_GPL(migrate_disable);
2143 
2144 void migrate_enable(void)
2145 {
2146 	struct task_struct *p = current;
2147 
2148 	if (p->migration_disabled > 1) {
2149 		p->migration_disabled--;
2150 		return;
2151 	}
2152 
2153 	/*
2154 	 * Ensure stop_task runs either before or after this, and that
2155 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2156 	 */
2157 	preempt_disable();
2158 	if (p->cpus_ptr != &p->cpus_mask)
2159 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2160 	/*
2161 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2162 	 * regular cpus_mask, otherwise things that race (eg.
2163 	 * select_fallback_rq) get confused.
2164 	 */
2165 	barrier();
2166 	p->migration_disabled = 0;
2167 	this_rq()->nr_pinned--;
2168 	preempt_enable();
2169 }
2170 EXPORT_SYMBOL_GPL(migrate_enable);
2171 
2172 static inline bool rq_has_pinned_tasks(struct rq *rq)
2173 {
2174 	return rq->nr_pinned;
2175 }
2176 
2177 /*
2178  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2179  * __set_cpus_allowed_ptr() and select_fallback_rq().
2180  */
2181 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2182 {
2183 	/* When not in the task's cpumask, no point in looking further. */
2184 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2185 		return false;
2186 
2187 	/* migrate_disabled() must be allowed to finish. */
2188 	if (is_migration_disabled(p))
2189 		return cpu_online(cpu);
2190 
2191 	/* Non kernel threads are not allowed during either online or offline. */
2192 	if (!(p->flags & PF_KTHREAD))
2193 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2194 
2195 	/* KTHREAD_IS_PER_CPU is always allowed. */
2196 	if (kthread_is_per_cpu(p))
2197 		return cpu_online(cpu);
2198 
2199 	/* Regular kernel threads don't get to stay during offline. */
2200 	if (cpu_dying(cpu))
2201 		return false;
2202 
2203 	/* But are allowed during online. */
2204 	return cpu_online(cpu);
2205 }
2206 
2207 /*
2208  * This is how migration works:
2209  *
2210  * 1) we invoke migration_cpu_stop() on the target CPU using
2211  *    stop_one_cpu().
2212  * 2) stopper starts to run (implicitly forcing the migrated thread
2213  *    off the CPU)
2214  * 3) it checks whether the migrated task is still in the wrong runqueue.
2215  * 4) if it's in the wrong runqueue then the migration thread removes
2216  *    it and puts it into the right queue.
2217  * 5) stopper completes and stop_one_cpu() returns and the migration
2218  *    is done.
2219  */
2220 
2221 /*
2222  * move_queued_task - move a queued task to new rq.
2223  *
2224  * Returns (locked) new rq. Old rq's lock is released.
2225  */
2226 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2227 				   struct task_struct *p, int new_cpu)
2228 {
2229 	lockdep_assert_rq_held(rq);
2230 
2231 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2232 	set_task_cpu(p, new_cpu);
2233 	rq_unlock(rq, rf);
2234 
2235 	rq = cpu_rq(new_cpu);
2236 
2237 	rq_lock(rq, rf);
2238 	BUG_ON(task_cpu(p) != new_cpu);
2239 	activate_task(rq, p, 0);
2240 	check_preempt_curr(rq, p, 0);
2241 
2242 	return rq;
2243 }
2244 
2245 struct migration_arg {
2246 	struct task_struct		*task;
2247 	int				dest_cpu;
2248 	struct set_affinity_pending	*pending;
2249 };
2250 
2251 /*
2252  * @refs: number of wait_for_completion()
2253  * @stop_pending: is @stop_work in use
2254  */
2255 struct set_affinity_pending {
2256 	refcount_t		refs;
2257 	unsigned int		stop_pending;
2258 	struct completion	done;
2259 	struct cpu_stop_work	stop_work;
2260 	struct migration_arg	arg;
2261 };
2262 
2263 /*
2264  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2265  * this because either it can't run here any more (set_cpus_allowed()
2266  * away from this CPU, or CPU going down), or because we're
2267  * attempting to rebalance this task on exec (sched_exec).
2268  *
2269  * So we race with normal scheduler movements, but that's OK, as long
2270  * as the task is no longer on this CPU.
2271  */
2272 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2273 				 struct task_struct *p, int dest_cpu)
2274 {
2275 	/* Affinity changed (again). */
2276 	if (!is_cpu_allowed(p, dest_cpu))
2277 		return rq;
2278 
2279 	update_rq_clock(rq);
2280 	rq = move_queued_task(rq, rf, p, dest_cpu);
2281 
2282 	return rq;
2283 }
2284 
2285 /*
2286  * migration_cpu_stop - this will be executed by a highprio stopper thread
2287  * and performs thread migration by bumping thread off CPU then
2288  * 'pushing' onto another runqueue.
2289  */
2290 static int migration_cpu_stop(void *data)
2291 {
2292 	struct migration_arg *arg = data;
2293 	struct set_affinity_pending *pending = arg->pending;
2294 	struct task_struct *p = arg->task;
2295 	struct rq *rq = this_rq();
2296 	bool complete = false;
2297 	struct rq_flags rf;
2298 
2299 	/*
2300 	 * The original target CPU might have gone down and we might
2301 	 * be on another CPU but it doesn't matter.
2302 	 */
2303 	local_irq_save(rf.flags);
2304 	/*
2305 	 * We need to explicitly wake pending tasks before running
2306 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2307 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2308 	 */
2309 	flush_smp_call_function_from_idle();
2310 
2311 	raw_spin_lock(&p->pi_lock);
2312 	rq_lock(rq, &rf);
2313 
2314 	/*
2315 	 * If we were passed a pending, then ->stop_pending was set, thus
2316 	 * p->migration_pending must have remained stable.
2317 	 */
2318 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2319 
2320 	/*
2321 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2322 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2323 	 * we're holding p->pi_lock.
2324 	 */
2325 	if (task_rq(p) == rq) {
2326 		if (is_migration_disabled(p))
2327 			goto out;
2328 
2329 		if (pending) {
2330 			p->migration_pending = NULL;
2331 			complete = true;
2332 
2333 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2334 				goto out;
2335 		}
2336 
2337 		if (task_on_rq_queued(p))
2338 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2339 		else
2340 			p->wake_cpu = arg->dest_cpu;
2341 
2342 		/*
2343 		 * XXX __migrate_task() can fail, at which point we might end
2344 		 * up running on a dodgy CPU, AFAICT this can only happen
2345 		 * during CPU hotplug, at which point we'll get pushed out
2346 		 * anyway, so it's probably not a big deal.
2347 		 */
2348 
2349 	} else if (pending) {
2350 		/*
2351 		 * This happens when we get migrated between migrate_enable()'s
2352 		 * preempt_enable() and scheduling the stopper task. At that
2353 		 * point we're a regular task again and not current anymore.
2354 		 *
2355 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2356 		 * more likely.
2357 		 */
2358 
2359 		/*
2360 		 * The task moved before the stopper got to run. We're holding
2361 		 * ->pi_lock, so the allowed mask is stable - if it got
2362 		 * somewhere allowed, we're done.
2363 		 */
2364 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2365 			p->migration_pending = NULL;
2366 			complete = true;
2367 			goto out;
2368 		}
2369 
2370 		/*
2371 		 * When migrate_enable() hits a rq mis-match we can't reliably
2372 		 * determine is_migration_disabled() and so have to chase after
2373 		 * it.
2374 		 */
2375 		WARN_ON_ONCE(!pending->stop_pending);
2376 		task_rq_unlock(rq, p, &rf);
2377 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2378 				    &pending->arg, &pending->stop_work);
2379 		return 0;
2380 	}
2381 out:
2382 	if (pending)
2383 		pending->stop_pending = false;
2384 	task_rq_unlock(rq, p, &rf);
2385 
2386 	if (complete)
2387 		complete_all(&pending->done);
2388 
2389 	return 0;
2390 }
2391 
2392 int push_cpu_stop(void *arg)
2393 {
2394 	struct rq *lowest_rq = NULL, *rq = this_rq();
2395 	struct task_struct *p = arg;
2396 
2397 	raw_spin_lock_irq(&p->pi_lock);
2398 	raw_spin_rq_lock(rq);
2399 
2400 	if (task_rq(p) != rq)
2401 		goto out_unlock;
2402 
2403 	if (is_migration_disabled(p)) {
2404 		p->migration_flags |= MDF_PUSH;
2405 		goto out_unlock;
2406 	}
2407 
2408 	p->migration_flags &= ~MDF_PUSH;
2409 
2410 	if (p->sched_class->find_lock_rq)
2411 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2412 
2413 	if (!lowest_rq)
2414 		goto out_unlock;
2415 
2416 	// XXX validate p is still the highest prio task
2417 	if (task_rq(p) == rq) {
2418 		deactivate_task(rq, p, 0);
2419 		set_task_cpu(p, lowest_rq->cpu);
2420 		activate_task(lowest_rq, p, 0);
2421 		resched_curr(lowest_rq);
2422 	}
2423 
2424 	double_unlock_balance(rq, lowest_rq);
2425 
2426 out_unlock:
2427 	rq->push_busy = false;
2428 	raw_spin_rq_unlock(rq);
2429 	raw_spin_unlock_irq(&p->pi_lock);
2430 
2431 	put_task_struct(p);
2432 	return 0;
2433 }
2434 
2435 /*
2436  * sched_class::set_cpus_allowed must do the below, but is not required to
2437  * actually call this function.
2438  */
2439 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2440 {
2441 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2442 		p->cpus_ptr = new_mask;
2443 		return;
2444 	}
2445 
2446 	cpumask_copy(&p->cpus_mask, new_mask);
2447 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2448 }
2449 
2450 static void
2451 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2452 {
2453 	struct rq *rq = task_rq(p);
2454 	bool queued, running;
2455 
2456 	/*
2457 	 * This here violates the locking rules for affinity, since we're only
2458 	 * supposed to change these variables while holding both rq->lock and
2459 	 * p->pi_lock.
2460 	 *
2461 	 * HOWEVER, it magically works, because ttwu() is the only code that
2462 	 * accesses these variables under p->pi_lock and only does so after
2463 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2464 	 * before finish_task().
2465 	 *
2466 	 * XXX do further audits, this smells like something putrid.
2467 	 */
2468 	if (flags & SCA_MIGRATE_DISABLE)
2469 		SCHED_WARN_ON(!p->on_cpu);
2470 	else
2471 		lockdep_assert_held(&p->pi_lock);
2472 
2473 	queued = task_on_rq_queued(p);
2474 	running = task_current(rq, p);
2475 
2476 	if (queued) {
2477 		/*
2478 		 * Because __kthread_bind() calls this on blocked tasks without
2479 		 * holding rq->lock.
2480 		 */
2481 		lockdep_assert_rq_held(rq);
2482 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2483 	}
2484 	if (running)
2485 		put_prev_task(rq, p);
2486 
2487 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2488 
2489 	if (queued)
2490 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2491 	if (running)
2492 		set_next_task(rq, p);
2493 }
2494 
2495 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2496 {
2497 	__do_set_cpus_allowed(p, new_mask, 0);
2498 }
2499 
2500 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2501 		      int node)
2502 {
2503 	if (!src->user_cpus_ptr)
2504 		return 0;
2505 
2506 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2507 	if (!dst->user_cpus_ptr)
2508 		return -ENOMEM;
2509 
2510 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2511 	return 0;
2512 }
2513 
2514 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2515 {
2516 	struct cpumask *user_mask = NULL;
2517 
2518 	swap(p->user_cpus_ptr, user_mask);
2519 
2520 	return user_mask;
2521 }
2522 
2523 void release_user_cpus_ptr(struct task_struct *p)
2524 {
2525 	kfree(clear_user_cpus_ptr(p));
2526 }
2527 
2528 /*
2529  * This function is wildly self concurrent; here be dragons.
2530  *
2531  *
2532  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2533  * designated task is enqueued on an allowed CPU. If that task is currently
2534  * running, we have to kick it out using the CPU stopper.
2535  *
2536  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2537  * Consider:
2538  *
2539  *     Initial conditions: P0->cpus_mask = [0, 1]
2540  *
2541  *     P0@CPU0                  P1
2542  *
2543  *     migrate_disable();
2544  *     <preempted>
2545  *                              set_cpus_allowed_ptr(P0, [1]);
2546  *
2547  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2548  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2549  * This means we need the following scheme:
2550  *
2551  *     P0@CPU0                  P1
2552  *
2553  *     migrate_disable();
2554  *     <preempted>
2555  *                              set_cpus_allowed_ptr(P0, [1]);
2556  *                                <blocks>
2557  *     <resumes>
2558  *     migrate_enable();
2559  *       __set_cpus_allowed_ptr();
2560  *       <wakes local stopper>
2561  *                         `--> <woken on migration completion>
2562  *
2563  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2564  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2565  * task p are serialized by p->pi_lock, which we can leverage: the one that
2566  * should come into effect at the end of the Migrate-Disable region is the last
2567  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2568  * but we still need to properly signal those waiting tasks at the appropriate
2569  * moment.
2570  *
2571  * This is implemented using struct set_affinity_pending. The first
2572  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2573  * setup an instance of that struct and install it on the targeted task_struct.
2574  * Any and all further callers will reuse that instance. Those then wait for
2575  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2576  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2577  *
2578  *
2579  * (1) In the cases covered above. There is one more where the completion is
2580  * signaled within affine_move_task() itself: when a subsequent affinity request
2581  * occurs after the stopper bailed out due to the targeted task still being
2582  * Migrate-Disable. Consider:
2583  *
2584  *     Initial conditions: P0->cpus_mask = [0, 1]
2585  *
2586  *     CPU0		  P1				P2
2587  *     <P0>
2588  *       migrate_disable();
2589  *       <preempted>
2590  *                        set_cpus_allowed_ptr(P0, [1]);
2591  *                          <blocks>
2592  *     <migration/0>
2593  *       migration_cpu_stop()
2594  *         is_migration_disabled()
2595  *           <bails>
2596  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2597  *                                                         <signal completion>
2598  *                          <awakes>
2599  *
2600  * Note that the above is safe vs a concurrent migrate_enable(), as any
2601  * pending affinity completion is preceded by an uninstallation of
2602  * p->migration_pending done with p->pi_lock held.
2603  */
2604 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2605 			    int dest_cpu, unsigned int flags)
2606 {
2607 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2608 	bool stop_pending, complete = false;
2609 
2610 	/* Can the task run on the task's current CPU? If so, we're done */
2611 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2612 		struct task_struct *push_task = NULL;
2613 
2614 		if ((flags & SCA_MIGRATE_ENABLE) &&
2615 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2616 			rq->push_busy = true;
2617 			push_task = get_task_struct(p);
2618 		}
2619 
2620 		/*
2621 		 * If there are pending waiters, but no pending stop_work,
2622 		 * then complete now.
2623 		 */
2624 		pending = p->migration_pending;
2625 		if (pending && !pending->stop_pending) {
2626 			p->migration_pending = NULL;
2627 			complete = true;
2628 		}
2629 
2630 		task_rq_unlock(rq, p, rf);
2631 
2632 		if (push_task) {
2633 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2634 					    p, &rq->push_work);
2635 		}
2636 
2637 		if (complete)
2638 			complete_all(&pending->done);
2639 
2640 		return 0;
2641 	}
2642 
2643 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2644 		/* serialized by p->pi_lock */
2645 		if (!p->migration_pending) {
2646 			/* Install the request */
2647 			refcount_set(&my_pending.refs, 1);
2648 			init_completion(&my_pending.done);
2649 			my_pending.arg = (struct migration_arg) {
2650 				.task = p,
2651 				.dest_cpu = dest_cpu,
2652 				.pending = &my_pending,
2653 			};
2654 
2655 			p->migration_pending = &my_pending;
2656 		} else {
2657 			pending = p->migration_pending;
2658 			refcount_inc(&pending->refs);
2659 			/*
2660 			 * Affinity has changed, but we've already installed a
2661 			 * pending. migration_cpu_stop() *must* see this, else
2662 			 * we risk a completion of the pending despite having a
2663 			 * task on a disallowed CPU.
2664 			 *
2665 			 * Serialized by p->pi_lock, so this is safe.
2666 			 */
2667 			pending->arg.dest_cpu = dest_cpu;
2668 		}
2669 	}
2670 	pending = p->migration_pending;
2671 	/*
2672 	 * - !MIGRATE_ENABLE:
2673 	 *   we'll have installed a pending if there wasn't one already.
2674 	 *
2675 	 * - MIGRATE_ENABLE:
2676 	 *   we're here because the current CPU isn't matching anymore,
2677 	 *   the only way that can happen is because of a concurrent
2678 	 *   set_cpus_allowed_ptr() call, which should then still be
2679 	 *   pending completion.
2680 	 *
2681 	 * Either way, we really should have a @pending here.
2682 	 */
2683 	if (WARN_ON_ONCE(!pending)) {
2684 		task_rq_unlock(rq, p, rf);
2685 		return -EINVAL;
2686 	}
2687 
2688 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2689 		/*
2690 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2691 		 * anything else we cannot do is_migration_disabled(), punt
2692 		 * and have the stopper function handle it all race-free.
2693 		 */
2694 		stop_pending = pending->stop_pending;
2695 		if (!stop_pending)
2696 			pending->stop_pending = true;
2697 
2698 		if (flags & SCA_MIGRATE_ENABLE)
2699 			p->migration_flags &= ~MDF_PUSH;
2700 
2701 		task_rq_unlock(rq, p, rf);
2702 
2703 		if (!stop_pending) {
2704 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2705 					    &pending->arg, &pending->stop_work);
2706 		}
2707 
2708 		if (flags & SCA_MIGRATE_ENABLE)
2709 			return 0;
2710 	} else {
2711 
2712 		if (!is_migration_disabled(p)) {
2713 			if (task_on_rq_queued(p))
2714 				rq = move_queued_task(rq, rf, p, dest_cpu);
2715 
2716 			if (!pending->stop_pending) {
2717 				p->migration_pending = NULL;
2718 				complete = true;
2719 			}
2720 		}
2721 		task_rq_unlock(rq, p, rf);
2722 
2723 		if (complete)
2724 			complete_all(&pending->done);
2725 	}
2726 
2727 	wait_for_completion(&pending->done);
2728 
2729 	if (refcount_dec_and_test(&pending->refs))
2730 		wake_up_var(&pending->refs); /* No UaF, just an address */
2731 
2732 	/*
2733 	 * Block the original owner of &pending until all subsequent callers
2734 	 * have seen the completion and decremented the refcount
2735 	 */
2736 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2737 
2738 	/* ARGH */
2739 	WARN_ON_ONCE(my_pending.stop_pending);
2740 
2741 	return 0;
2742 }
2743 
2744 /*
2745  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2746  */
2747 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2748 					 const struct cpumask *new_mask,
2749 					 u32 flags,
2750 					 struct rq *rq,
2751 					 struct rq_flags *rf)
2752 	__releases(rq->lock)
2753 	__releases(p->pi_lock)
2754 {
2755 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2756 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2757 	bool kthread = p->flags & PF_KTHREAD;
2758 	struct cpumask *user_mask = NULL;
2759 	unsigned int dest_cpu;
2760 	int ret = 0;
2761 
2762 	update_rq_clock(rq);
2763 
2764 	if (kthread || is_migration_disabled(p)) {
2765 		/*
2766 		 * Kernel threads are allowed on online && !active CPUs,
2767 		 * however, during cpu-hot-unplug, even these might get pushed
2768 		 * away if not KTHREAD_IS_PER_CPU.
2769 		 *
2770 		 * Specifically, migration_disabled() tasks must not fail the
2771 		 * cpumask_any_and_distribute() pick below, esp. so on
2772 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2773 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2774 		 */
2775 		cpu_valid_mask = cpu_online_mask;
2776 	}
2777 
2778 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2779 		ret = -EINVAL;
2780 		goto out;
2781 	}
2782 
2783 	/*
2784 	 * Must re-check here, to close a race against __kthread_bind(),
2785 	 * sched_setaffinity() is not guaranteed to observe the flag.
2786 	 */
2787 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2788 		ret = -EINVAL;
2789 		goto out;
2790 	}
2791 
2792 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2793 		if (cpumask_equal(&p->cpus_mask, new_mask))
2794 			goto out;
2795 
2796 		if (WARN_ON_ONCE(p == current &&
2797 				 is_migration_disabled(p) &&
2798 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2799 			ret = -EBUSY;
2800 			goto out;
2801 		}
2802 	}
2803 
2804 	/*
2805 	 * Picking a ~random cpu helps in cases where we are changing affinity
2806 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2807 	 * immediately required to distribute the tasks within their new mask.
2808 	 */
2809 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2810 	if (dest_cpu >= nr_cpu_ids) {
2811 		ret = -EINVAL;
2812 		goto out;
2813 	}
2814 
2815 	__do_set_cpus_allowed(p, new_mask, flags);
2816 
2817 	if (flags & SCA_USER)
2818 		user_mask = clear_user_cpus_ptr(p);
2819 
2820 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2821 
2822 	kfree(user_mask);
2823 
2824 	return ret;
2825 
2826 out:
2827 	task_rq_unlock(rq, p, rf);
2828 
2829 	return ret;
2830 }
2831 
2832 /*
2833  * Change a given task's CPU affinity. Migrate the thread to a
2834  * proper CPU and schedule it away if the CPU it's executing on
2835  * is removed from the allowed bitmask.
2836  *
2837  * NOTE: the caller must have a valid reference to the task, the
2838  * task must not exit() & deallocate itself prematurely. The
2839  * call is not atomic; no spinlocks may be held.
2840  */
2841 static int __set_cpus_allowed_ptr(struct task_struct *p,
2842 				  const struct cpumask *new_mask, u32 flags)
2843 {
2844 	struct rq_flags rf;
2845 	struct rq *rq;
2846 
2847 	rq = task_rq_lock(p, &rf);
2848 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2849 }
2850 
2851 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2852 {
2853 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2854 }
2855 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2856 
2857 /*
2858  * Change a given task's CPU affinity to the intersection of its current
2859  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2860  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2861  * If the resulting mask is empty, leave the affinity unchanged and return
2862  * -EINVAL.
2863  */
2864 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2865 				     struct cpumask *new_mask,
2866 				     const struct cpumask *subset_mask)
2867 {
2868 	struct cpumask *user_mask = NULL;
2869 	struct rq_flags rf;
2870 	struct rq *rq;
2871 	int err;
2872 
2873 	if (!p->user_cpus_ptr) {
2874 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2875 		if (!user_mask)
2876 			return -ENOMEM;
2877 	}
2878 
2879 	rq = task_rq_lock(p, &rf);
2880 
2881 	/*
2882 	 * Forcefully restricting the affinity of a deadline task is
2883 	 * likely to cause problems, so fail and noisily override the
2884 	 * mask entirely.
2885 	 */
2886 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2887 		err = -EPERM;
2888 		goto err_unlock;
2889 	}
2890 
2891 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2892 		err = -EINVAL;
2893 		goto err_unlock;
2894 	}
2895 
2896 	/*
2897 	 * We're about to butcher the task affinity, so keep track of what
2898 	 * the user asked for in case we're able to restore it later on.
2899 	 */
2900 	if (user_mask) {
2901 		cpumask_copy(user_mask, p->cpus_ptr);
2902 		p->user_cpus_ptr = user_mask;
2903 	}
2904 
2905 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2906 
2907 err_unlock:
2908 	task_rq_unlock(rq, p, &rf);
2909 	kfree(user_mask);
2910 	return err;
2911 }
2912 
2913 /*
2914  * Restrict the CPU affinity of task @p so that it is a subset of
2915  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2916  * old affinity mask. If the resulting mask is empty, we warn and walk
2917  * up the cpuset hierarchy until we find a suitable mask.
2918  */
2919 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2920 {
2921 	cpumask_var_t new_mask;
2922 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
2923 
2924 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
2925 
2926 	/*
2927 	 * __migrate_task() can fail silently in the face of concurrent
2928 	 * offlining of the chosen destination CPU, so take the hotplug
2929 	 * lock to ensure that the migration succeeds.
2930 	 */
2931 	cpus_read_lock();
2932 	if (!cpumask_available(new_mask))
2933 		goto out_set_mask;
2934 
2935 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2936 		goto out_free_mask;
2937 
2938 	/*
2939 	 * We failed to find a valid subset of the affinity mask for the
2940 	 * task, so override it based on its cpuset hierarchy.
2941 	 */
2942 	cpuset_cpus_allowed(p, new_mask);
2943 	override_mask = new_mask;
2944 
2945 out_set_mask:
2946 	if (printk_ratelimit()) {
2947 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2948 				task_pid_nr(p), p->comm,
2949 				cpumask_pr_args(override_mask));
2950 	}
2951 
2952 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2953 out_free_mask:
2954 	cpus_read_unlock();
2955 	free_cpumask_var(new_mask);
2956 }
2957 
2958 static int
2959 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2960 
2961 /*
2962  * Restore the affinity of a task @p which was previously restricted by a
2963  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
2964  * @p->user_cpus_ptr.
2965  *
2966  * It is the caller's responsibility to serialise this with any calls to
2967  * force_compatible_cpus_allowed_ptr(@p).
2968  */
2969 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
2970 {
2971 	struct cpumask *user_mask = p->user_cpus_ptr;
2972 	unsigned long flags;
2973 
2974 	/*
2975 	 * Try to restore the old affinity mask. If this fails, then
2976 	 * we free the mask explicitly to avoid it being inherited across
2977 	 * a subsequent fork().
2978 	 */
2979 	if (!user_mask || !__sched_setaffinity(p, user_mask))
2980 		return;
2981 
2982 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2983 	user_mask = clear_user_cpus_ptr(p);
2984 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2985 
2986 	kfree(user_mask);
2987 }
2988 
2989 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2990 {
2991 #ifdef CONFIG_SCHED_DEBUG
2992 	unsigned int state = READ_ONCE(p->__state);
2993 
2994 	/*
2995 	 * We should never call set_task_cpu() on a blocked task,
2996 	 * ttwu() will sort out the placement.
2997 	 */
2998 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2999 
3000 	/*
3001 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3002 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3003 	 * time relying on p->on_rq.
3004 	 */
3005 	WARN_ON_ONCE(state == TASK_RUNNING &&
3006 		     p->sched_class == &fair_sched_class &&
3007 		     (p->on_rq && !task_on_rq_migrating(p)));
3008 
3009 #ifdef CONFIG_LOCKDEP
3010 	/*
3011 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3012 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3013 	 *
3014 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3015 	 * see task_group().
3016 	 *
3017 	 * Furthermore, all task_rq users should acquire both locks, see
3018 	 * task_rq_lock().
3019 	 */
3020 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3021 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3022 #endif
3023 	/*
3024 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3025 	 */
3026 	WARN_ON_ONCE(!cpu_online(new_cpu));
3027 
3028 	WARN_ON_ONCE(is_migration_disabled(p));
3029 #endif
3030 
3031 	trace_sched_migrate_task(p, new_cpu);
3032 
3033 	if (task_cpu(p) != new_cpu) {
3034 		if (p->sched_class->migrate_task_rq)
3035 			p->sched_class->migrate_task_rq(p, new_cpu);
3036 		p->se.nr_migrations++;
3037 		rseq_migrate(p);
3038 		perf_event_task_migrate(p);
3039 	}
3040 
3041 	__set_task_cpu(p, new_cpu);
3042 }
3043 
3044 #ifdef CONFIG_NUMA_BALANCING
3045 static void __migrate_swap_task(struct task_struct *p, int cpu)
3046 {
3047 	if (task_on_rq_queued(p)) {
3048 		struct rq *src_rq, *dst_rq;
3049 		struct rq_flags srf, drf;
3050 
3051 		src_rq = task_rq(p);
3052 		dst_rq = cpu_rq(cpu);
3053 
3054 		rq_pin_lock(src_rq, &srf);
3055 		rq_pin_lock(dst_rq, &drf);
3056 
3057 		deactivate_task(src_rq, p, 0);
3058 		set_task_cpu(p, cpu);
3059 		activate_task(dst_rq, p, 0);
3060 		check_preempt_curr(dst_rq, p, 0);
3061 
3062 		rq_unpin_lock(dst_rq, &drf);
3063 		rq_unpin_lock(src_rq, &srf);
3064 
3065 	} else {
3066 		/*
3067 		 * Task isn't running anymore; make it appear like we migrated
3068 		 * it before it went to sleep. This means on wakeup we make the
3069 		 * previous CPU our target instead of where it really is.
3070 		 */
3071 		p->wake_cpu = cpu;
3072 	}
3073 }
3074 
3075 struct migration_swap_arg {
3076 	struct task_struct *src_task, *dst_task;
3077 	int src_cpu, dst_cpu;
3078 };
3079 
3080 static int migrate_swap_stop(void *data)
3081 {
3082 	struct migration_swap_arg *arg = data;
3083 	struct rq *src_rq, *dst_rq;
3084 	int ret = -EAGAIN;
3085 
3086 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3087 		return -EAGAIN;
3088 
3089 	src_rq = cpu_rq(arg->src_cpu);
3090 	dst_rq = cpu_rq(arg->dst_cpu);
3091 
3092 	double_raw_lock(&arg->src_task->pi_lock,
3093 			&arg->dst_task->pi_lock);
3094 	double_rq_lock(src_rq, dst_rq);
3095 
3096 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3097 		goto unlock;
3098 
3099 	if (task_cpu(arg->src_task) != arg->src_cpu)
3100 		goto unlock;
3101 
3102 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3103 		goto unlock;
3104 
3105 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3106 		goto unlock;
3107 
3108 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3109 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3110 
3111 	ret = 0;
3112 
3113 unlock:
3114 	double_rq_unlock(src_rq, dst_rq);
3115 	raw_spin_unlock(&arg->dst_task->pi_lock);
3116 	raw_spin_unlock(&arg->src_task->pi_lock);
3117 
3118 	return ret;
3119 }
3120 
3121 /*
3122  * Cross migrate two tasks
3123  */
3124 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3125 		int target_cpu, int curr_cpu)
3126 {
3127 	struct migration_swap_arg arg;
3128 	int ret = -EINVAL;
3129 
3130 	arg = (struct migration_swap_arg){
3131 		.src_task = cur,
3132 		.src_cpu = curr_cpu,
3133 		.dst_task = p,
3134 		.dst_cpu = target_cpu,
3135 	};
3136 
3137 	if (arg.src_cpu == arg.dst_cpu)
3138 		goto out;
3139 
3140 	/*
3141 	 * These three tests are all lockless; this is OK since all of them
3142 	 * will be re-checked with proper locks held further down the line.
3143 	 */
3144 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3145 		goto out;
3146 
3147 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3148 		goto out;
3149 
3150 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3151 		goto out;
3152 
3153 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3154 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3155 
3156 out:
3157 	return ret;
3158 }
3159 #endif /* CONFIG_NUMA_BALANCING */
3160 
3161 /*
3162  * wait_task_inactive - wait for a thread to unschedule.
3163  *
3164  * If @match_state is nonzero, it's the @p->state value just checked and
3165  * not expected to change.  If it changes, i.e. @p might have woken up,
3166  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3167  * we return a positive number (its total switch count).  If a second call
3168  * a short while later returns the same number, the caller can be sure that
3169  * @p has remained unscheduled the whole time.
3170  *
3171  * The caller must ensure that the task *will* unschedule sometime soon,
3172  * else this function might spin for a *long* time. This function can't
3173  * be called with interrupts off, or it may introduce deadlock with
3174  * smp_call_function() if an IPI is sent by the same process we are
3175  * waiting to become inactive.
3176  */
3177 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3178 {
3179 	int running, queued;
3180 	struct rq_flags rf;
3181 	unsigned long ncsw;
3182 	struct rq *rq;
3183 
3184 	for (;;) {
3185 		/*
3186 		 * We do the initial early heuristics without holding
3187 		 * any task-queue locks at all. We'll only try to get
3188 		 * the runqueue lock when things look like they will
3189 		 * work out!
3190 		 */
3191 		rq = task_rq(p);
3192 
3193 		/*
3194 		 * If the task is actively running on another CPU
3195 		 * still, just relax and busy-wait without holding
3196 		 * any locks.
3197 		 *
3198 		 * NOTE! Since we don't hold any locks, it's not
3199 		 * even sure that "rq" stays as the right runqueue!
3200 		 * But we don't care, since "task_running()" will
3201 		 * return false if the runqueue has changed and p
3202 		 * is actually now running somewhere else!
3203 		 */
3204 		while (task_running(rq, p)) {
3205 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3206 				return 0;
3207 			cpu_relax();
3208 		}
3209 
3210 		/*
3211 		 * Ok, time to look more closely! We need the rq
3212 		 * lock now, to be *sure*. If we're wrong, we'll
3213 		 * just go back and repeat.
3214 		 */
3215 		rq = task_rq_lock(p, &rf);
3216 		trace_sched_wait_task(p);
3217 		running = task_running(rq, p);
3218 		queued = task_on_rq_queued(p);
3219 		ncsw = 0;
3220 		if (!match_state || READ_ONCE(p->__state) == match_state)
3221 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3222 		task_rq_unlock(rq, p, &rf);
3223 
3224 		/*
3225 		 * If it changed from the expected state, bail out now.
3226 		 */
3227 		if (unlikely(!ncsw))
3228 			break;
3229 
3230 		/*
3231 		 * Was it really running after all now that we
3232 		 * checked with the proper locks actually held?
3233 		 *
3234 		 * Oops. Go back and try again..
3235 		 */
3236 		if (unlikely(running)) {
3237 			cpu_relax();
3238 			continue;
3239 		}
3240 
3241 		/*
3242 		 * It's not enough that it's not actively running,
3243 		 * it must be off the runqueue _entirely_, and not
3244 		 * preempted!
3245 		 *
3246 		 * So if it was still runnable (but just not actively
3247 		 * running right now), it's preempted, and we should
3248 		 * yield - it could be a while.
3249 		 */
3250 		if (unlikely(queued)) {
3251 			ktime_t to = NSEC_PER_SEC / HZ;
3252 
3253 			set_current_state(TASK_UNINTERRUPTIBLE);
3254 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3255 			continue;
3256 		}
3257 
3258 		/*
3259 		 * Ahh, all good. It wasn't running, and it wasn't
3260 		 * runnable, which means that it will never become
3261 		 * running in the future either. We're all done!
3262 		 */
3263 		break;
3264 	}
3265 
3266 	return ncsw;
3267 }
3268 
3269 /***
3270  * kick_process - kick a running thread to enter/exit the kernel
3271  * @p: the to-be-kicked thread
3272  *
3273  * Cause a process which is running on another CPU to enter
3274  * kernel-mode, without any delay. (to get signals handled.)
3275  *
3276  * NOTE: this function doesn't have to take the runqueue lock,
3277  * because all it wants to ensure is that the remote task enters
3278  * the kernel. If the IPI races and the task has been migrated
3279  * to another CPU then no harm is done and the purpose has been
3280  * achieved as well.
3281  */
3282 void kick_process(struct task_struct *p)
3283 {
3284 	int cpu;
3285 
3286 	preempt_disable();
3287 	cpu = task_cpu(p);
3288 	if ((cpu != smp_processor_id()) && task_curr(p))
3289 		smp_send_reschedule(cpu);
3290 	preempt_enable();
3291 }
3292 EXPORT_SYMBOL_GPL(kick_process);
3293 
3294 /*
3295  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3296  *
3297  * A few notes on cpu_active vs cpu_online:
3298  *
3299  *  - cpu_active must be a subset of cpu_online
3300  *
3301  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3302  *    see __set_cpus_allowed_ptr(). At this point the newly online
3303  *    CPU isn't yet part of the sched domains, and balancing will not
3304  *    see it.
3305  *
3306  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3307  *    avoid the load balancer to place new tasks on the to be removed
3308  *    CPU. Existing tasks will remain running there and will be taken
3309  *    off.
3310  *
3311  * This means that fallback selection must not select !active CPUs.
3312  * And can assume that any active CPU must be online. Conversely
3313  * select_task_rq() below may allow selection of !active CPUs in order
3314  * to satisfy the above rules.
3315  */
3316 static int select_fallback_rq(int cpu, struct task_struct *p)
3317 {
3318 	int nid = cpu_to_node(cpu);
3319 	const struct cpumask *nodemask = NULL;
3320 	enum { cpuset, possible, fail } state = cpuset;
3321 	int dest_cpu;
3322 
3323 	/*
3324 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3325 	 * will return -1. There is no CPU on the node, and we should
3326 	 * select the CPU on the other node.
3327 	 */
3328 	if (nid != -1) {
3329 		nodemask = cpumask_of_node(nid);
3330 
3331 		/* Look for allowed, online CPU in same node. */
3332 		for_each_cpu(dest_cpu, nodemask) {
3333 			if (is_cpu_allowed(p, dest_cpu))
3334 				return dest_cpu;
3335 		}
3336 	}
3337 
3338 	for (;;) {
3339 		/* Any allowed, online CPU? */
3340 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3341 			if (!is_cpu_allowed(p, dest_cpu))
3342 				continue;
3343 
3344 			goto out;
3345 		}
3346 
3347 		/* No more Mr. Nice Guy. */
3348 		switch (state) {
3349 		case cpuset:
3350 			if (cpuset_cpus_allowed_fallback(p)) {
3351 				state = possible;
3352 				break;
3353 			}
3354 			fallthrough;
3355 		case possible:
3356 			/*
3357 			 * XXX When called from select_task_rq() we only
3358 			 * hold p->pi_lock and again violate locking order.
3359 			 *
3360 			 * More yuck to audit.
3361 			 */
3362 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3363 			state = fail;
3364 			break;
3365 		case fail:
3366 			BUG();
3367 			break;
3368 		}
3369 	}
3370 
3371 out:
3372 	if (state != cpuset) {
3373 		/*
3374 		 * Don't tell them about moving exiting tasks or
3375 		 * kernel threads (both mm NULL), since they never
3376 		 * leave kernel.
3377 		 */
3378 		if (p->mm && printk_ratelimit()) {
3379 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3380 					task_pid_nr(p), p->comm, cpu);
3381 		}
3382 	}
3383 
3384 	return dest_cpu;
3385 }
3386 
3387 /*
3388  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3389  */
3390 static inline
3391 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3392 {
3393 	lockdep_assert_held(&p->pi_lock);
3394 
3395 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3396 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3397 	else
3398 		cpu = cpumask_any(p->cpus_ptr);
3399 
3400 	/*
3401 	 * In order not to call set_task_cpu() on a blocking task we need
3402 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3403 	 * CPU.
3404 	 *
3405 	 * Since this is common to all placement strategies, this lives here.
3406 	 *
3407 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3408 	 *   not worry about this generic constraint ]
3409 	 */
3410 	if (unlikely(!is_cpu_allowed(p, cpu)))
3411 		cpu = select_fallback_rq(task_cpu(p), p);
3412 
3413 	return cpu;
3414 }
3415 
3416 void sched_set_stop_task(int cpu, struct task_struct *stop)
3417 {
3418 	static struct lock_class_key stop_pi_lock;
3419 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3420 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3421 
3422 	if (stop) {
3423 		/*
3424 		 * Make it appear like a SCHED_FIFO task, its something
3425 		 * userspace knows about and won't get confused about.
3426 		 *
3427 		 * Also, it will make PI more or less work without too
3428 		 * much confusion -- but then, stop work should not
3429 		 * rely on PI working anyway.
3430 		 */
3431 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3432 
3433 		stop->sched_class = &stop_sched_class;
3434 
3435 		/*
3436 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3437 		 * adjust the effective priority of a task. As a result,
3438 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3439 		 * which can then trigger wakeups of the stop thread to push
3440 		 * around the current task.
3441 		 *
3442 		 * The stop task itself will never be part of the PI-chain, it
3443 		 * never blocks, therefore that ->pi_lock recursion is safe.
3444 		 * Tell lockdep about this by placing the stop->pi_lock in its
3445 		 * own class.
3446 		 */
3447 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3448 	}
3449 
3450 	cpu_rq(cpu)->stop = stop;
3451 
3452 	if (old_stop) {
3453 		/*
3454 		 * Reset it back to a normal scheduling class so that
3455 		 * it can die in pieces.
3456 		 */
3457 		old_stop->sched_class = &rt_sched_class;
3458 	}
3459 }
3460 
3461 #else /* CONFIG_SMP */
3462 
3463 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3464 					 const struct cpumask *new_mask,
3465 					 u32 flags)
3466 {
3467 	return set_cpus_allowed_ptr(p, new_mask);
3468 }
3469 
3470 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3471 
3472 static inline bool rq_has_pinned_tasks(struct rq *rq)
3473 {
3474 	return false;
3475 }
3476 
3477 #endif /* !CONFIG_SMP */
3478 
3479 static void
3480 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3481 {
3482 	struct rq *rq;
3483 
3484 	if (!schedstat_enabled())
3485 		return;
3486 
3487 	rq = this_rq();
3488 
3489 #ifdef CONFIG_SMP
3490 	if (cpu == rq->cpu) {
3491 		__schedstat_inc(rq->ttwu_local);
3492 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
3493 	} else {
3494 		struct sched_domain *sd;
3495 
3496 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
3497 		rcu_read_lock();
3498 		for_each_domain(rq->cpu, sd) {
3499 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3500 				__schedstat_inc(sd->ttwu_wake_remote);
3501 				break;
3502 			}
3503 		}
3504 		rcu_read_unlock();
3505 	}
3506 
3507 	if (wake_flags & WF_MIGRATED)
3508 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3509 #endif /* CONFIG_SMP */
3510 
3511 	__schedstat_inc(rq->ttwu_count);
3512 	__schedstat_inc(p->se.statistics.nr_wakeups);
3513 
3514 	if (wake_flags & WF_SYNC)
3515 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
3516 }
3517 
3518 /*
3519  * Mark the task runnable and perform wakeup-preemption.
3520  */
3521 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3522 			   struct rq_flags *rf)
3523 {
3524 	check_preempt_curr(rq, p, wake_flags);
3525 	WRITE_ONCE(p->__state, TASK_RUNNING);
3526 	trace_sched_wakeup(p);
3527 
3528 #ifdef CONFIG_SMP
3529 	if (p->sched_class->task_woken) {
3530 		/*
3531 		 * Our task @p is fully woken up and running; so it's safe to
3532 		 * drop the rq->lock, hereafter rq is only used for statistics.
3533 		 */
3534 		rq_unpin_lock(rq, rf);
3535 		p->sched_class->task_woken(rq, p);
3536 		rq_repin_lock(rq, rf);
3537 	}
3538 
3539 	if (rq->idle_stamp) {
3540 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3541 		u64 max = 2*rq->max_idle_balance_cost;
3542 
3543 		update_avg(&rq->avg_idle, delta);
3544 
3545 		if (rq->avg_idle > max)
3546 			rq->avg_idle = max;
3547 
3548 		rq->wake_stamp = jiffies;
3549 		rq->wake_avg_idle = rq->avg_idle / 2;
3550 
3551 		rq->idle_stamp = 0;
3552 	}
3553 #endif
3554 }
3555 
3556 static void
3557 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3558 		 struct rq_flags *rf)
3559 {
3560 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3561 
3562 	lockdep_assert_rq_held(rq);
3563 
3564 	if (p->sched_contributes_to_load)
3565 		rq->nr_uninterruptible--;
3566 
3567 #ifdef CONFIG_SMP
3568 	if (wake_flags & WF_MIGRATED)
3569 		en_flags |= ENQUEUE_MIGRATED;
3570 	else
3571 #endif
3572 	if (p->in_iowait) {
3573 		delayacct_blkio_end(p);
3574 		atomic_dec(&task_rq(p)->nr_iowait);
3575 	}
3576 
3577 	activate_task(rq, p, en_flags);
3578 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3579 }
3580 
3581 /*
3582  * Consider @p being inside a wait loop:
3583  *
3584  *   for (;;) {
3585  *      set_current_state(TASK_UNINTERRUPTIBLE);
3586  *
3587  *      if (CONDITION)
3588  *         break;
3589  *
3590  *      schedule();
3591  *   }
3592  *   __set_current_state(TASK_RUNNING);
3593  *
3594  * between set_current_state() and schedule(). In this case @p is still
3595  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3596  * an atomic manner.
3597  *
3598  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3599  * then schedule() must still happen and p->state can be changed to
3600  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3601  * need to do a full wakeup with enqueue.
3602  *
3603  * Returns: %true when the wakeup is done,
3604  *          %false otherwise.
3605  */
3606 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3607 {
3608 	struct rq_flags rf;
3609 	struct rq *rq;
3610 	int ret = 0;
3611 
3612 	rq = __task_rq_lock(p, &rf);
3613 	if (task_on_rq_queued(p)) {
3614 		/* check_preempt_curr() may use rq clock */
3615 		update_rq_clock(rq);
3616 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3617 		ret = 1;
3618 	}
3619 	__task_rq_unlock(rq, &rf);
3620 
3621 	return ret;
3622 }
3623 
3624 #ifdef CONFIG_SMP
3625 void sched_ttwu_pending(void *arg)
3626 {
3627 	struct llist_node *llist = arg;
3628 	struct rq *rq = this_rq();
3629 	struct task_struct *p, *t;
3630 	struct rq_flags rf;
3631 
3632 	if (!llist)
3633 		return;
3634 
3635 	/*
3636 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3637 	 * Races such that false-negatives are possible, since they
3638 	 * are shorter lived that false-positives would be.
3639 	 */
3640 	WRITE_ONCE(rq->ttwu_pending, 0);
3641 
3642 	rq_lock_irqsave(rq, &rf);
3643 	update_rq_clock(rq);
3644 
3645 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3646 		if (WARN_ON_ONCE(p->on_cpu))
3647 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3648 
3649 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3650 			set_task_cpu(p, cpu_of(rq));
3651 
3652 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3653 	}
3654 
3655 	rq_unlock_irqrestore(rq, &rf);
3656 }
3657 
3658 void send_call_function_single_ipi(int cpu)
3659 {
3660 	struct rq *rq = cpu_rq(cpu);
3661 
3662 	if (!set_nr_if_polling(rq->idle))
3663 		arch_send_call_function_single_ipi(cpu);
3664 	else
3665 		trace_sched_wake_idle_without_ipi(cpu);
3666 }
3667 
3668 /*
3669  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3670  * necessary. The wakee CPU on receipt of the IPI will queue the task
3671  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3672  * of the wakeup instead of the waker.
3673  */
3674 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3675 {
3676 	struct rq *rq = cpu_rq(cpu);
3677 
3678 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3679 
3680 	WRITE_ONCE(rq->ttwu_pending, 1);
3681 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3682 }
3683 
3684 void wake_up_if_idle(int cpu)
3685 {
3686 	struct rq *rq = cpu_rq(cpu);
3687 	struct rq_flags rf;
3688 
3689 	rcu_read_lock();
3690 
3691 	if (!is_idle_task(rcu_dereference(rq->curr)))
3692 		goto out;
3693 
3694 	if (set_nr_if_polling(rq->idle)) {
3695 		trace_sched_wake_idle_without_ipi(cpu);
3696 	} else {
3697 		rq_lock_irqsave(rq, &rf);
3698 		if (is_idle_task(rq->curr))
3699 			smp_send_reschedule(cpu);
3700 		/* Else CPU is not idle, do nothing here: */
3701 		rq_unlock_irqrestore(rq, &rf);
3702 	}
3703 
3704 out:
3705 	rcu_read_unlock();
3706 }
3707 
3708 bool cpus_share_cache(int this_cpu, int that_cpu)
3709 {
3710 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3711 }
3712 
3713 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3714 {
3715 	/*
3716 	 * Do not complicate things with the async wake_list while the CPU is
3717 	 * in hotplug state.
3718 	 */
3719 	if (!cpu_active(cpu))
3720 		return false;
3721 
3722 	/*
3723 	 * If the CPU does not share cache, then queue the task on the
3724 	 * remote rqs wakelist to avoid accessing remote data.
3725 	 */
3726 	if (!cpus_share_cache(smp_processor_id(), cpu))
3727 		return true;
3728 
3729 	/*
3730 	 * If the task is descheduling and the only running task on the
3731 	 * CPU then use the wakelist to offload the task activation to
3732 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3733 	 * nr_running is checked to avoid unnecessary task stacking.
3734 	 */
3735 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3736 		return true;
3737 
3738 	return false;
3739 }
3740 
3741 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3742 {
3743 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3744 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3745 			return false;
3746 
3747 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3748 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3749 		return true;
3750 	}
3751 
3752 	return false;
3753 }
3754 
3755 #else /* !CONFIG_SMP */
3756 
3757 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3758 {
3759 	return false;
3760 }
3761 
3762 #endif /* CONFIG_SMP */
3763 
3764 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3765 {
3766 	struct rq *rq = cpu_rq(cpu);
3767 	struct rq_flags rf;
3768 
3769 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3770 		return;
3771 
3772 	rq_lock(rq, &rf);
3773 	update_rq_clock(rq);
3774 	ttwu_do_activate(rq, p, wake_flags, &rf);
3775 	rq_unlock(rq, &rf);
3776 }
3777 
3778 /*
3779  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3780  *
3781  * The caller holds p::pi_lock if p != current or has preemption
3782  * disabled when p == current.
3783  *
3784  * The rules of PREEMPT_RT saved_state:
3785  *
3786  *   The related locking code always holds p::pi_lock when updating
3787  *   p::saved_state, which means the code is fully serialized in both cases.
3788  *
3789  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3790  *   bits set. This allows to distinguish all wakeup scenarios.
3791  */
3792 static __always_inline
3793 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3794 {
3795 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3796 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3797 			     state != TASK_RTLOCK_WAIT);
3798 	}
3799 
3800 	if (READ_ONCE(p->__state) & state) {
3801 		*success = 1;
3802 		return true;
3803 	}
3804 
3805 #ifdef CONFIG_PREEMPT_RT
3806 	/*
3807 	 * Saved state preserves the task state across blocking on
3808 	 * an RT lock.  If the state matches, set p::saved_state to
3809 	 * TASK_RUNNING, but do not wake the task because it waits
3810 	 * for a lock wakeup. Also indicate success because from
3811 	 * the regular waker's point of view this has succeeded.
3812 	 *
3813 	 * After acquiring the lock the task will restore p::__state
3814 	 * from p::saved_state which ensures that the regular
3815 	 * wakeup is not lost. The restore will also set
3816 	 * p::saved_state to TASK_RUNNING so any further tests will
3817 	 * not result in false positives vs. @success
3818 	 */
3819 	if (p->saved_state & state) {
3820 		p->saved_state = TASK_RUNNING;
3821 		*success = 1;
3822 	}
3823 #endif
3824 	return false;
3825 }
3826 
3827 /*
3828  * Notes on Program-Order guarantees on SMP systems.
3829  *
3830  *  MIGRATION
3831  *
3832  * The basic program-order guarantee on SMP systems is that when a task [t]
3833  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3834  * execution on its new CPU [c1].
3835  *
3836  * For migration (of runnable tasks) this is provided by the following means:
3837  *
3838  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3839  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3840  *     rq(c1)->lock (if not at the same time, then in that order).
3841  *  C) LOCK of the rq(c1)->lock scheduling in task
3842  *
3843  * Release/acquire chaining guarantees that B happens after A and C after B.
3844  * Note: the CPU doing B need not be c0 or c1
3845  *
3846  * Example:
3847  *
3848  *   CPU0            CPU1            CPU2
3849  *
3850  *   LOCK rq(0)->lock
3851  *   sched-out X
3852  *   sched-in Y
3853  *   UNLOCK rq(0)->lock
3854  *
3855  *                                   LOCK rq(0)->lock // orders against CPU0
3856  *                                   dequeue X
3857  *                                   UNLOCK rq(0)->lock
3858  *
3859  *                                   LOCK rq(1)->lock
3860  *                                   enqueue X
3861  *                                   UNLOCK rq(1)->lock
3862  *
3863  *                   LOCK rq(1)->lock // orders against CPU2
3864  *                   sched-out Z
3865  *                   sched-in X
3866  *                   UNLOCK rq(1)->lock
3867  *
3868  *
3869  *  BLOCKING -- aka. SLEEP + WAKEUP
3870  *
3871  * For blocking we (obviously) need to provide the same guarantee as for
3872  * migration. However the means are completely different as there is no lock
3873  * chain to provide order. Instead we do:
3874  *
3875  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3876  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3877  *
3878  * Example:
3879  *
3880  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3881  *
3882  *   LOCK rq(0)->lock LOCK X->pi_lock
3883  *   dequeue X
3884  *   sched-out X
3885  *   smp_store_release(X->on_cpu, 0);
3886  *
3887  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3888  *                    X->state = WAKING
3889  *                    set_task_cpu(X,2)
3890  *
3891  *                    LOCK rq(2)->lock
3892  *                    enqueue X
3893  *                    X->state = RUNNING
3894  *                    UNLOCK rq(2)->lock
3895  *
3896  *                                          LOCK rq(2)->lock // orders against CPU1
3897  *                                          sched-out Z
3898  *                                          sched-in X
3899  *                                          UNLOCK rq(2)->lock
3900  *
3901  *                    UNLOCK X->pi_lock
3902  *   UNLOCK rq(0)->lock
3903  *
3904  *
3905  * However, for wakeups there is a second guarantee we must provide, namely we
3906  * must ensure that CONDITION=1 done by the caller can not be reordered with
3907  * accesses to the task state; see try_to_wake_up() and set_current_state().
3908  */
3909 
3910 /**
3911  * try_to_wake_up - wake up a thread
3912  * @p: the thread to be awakened
3913  * @state: the mask of task states that can be woken
3914  * @wake_flags: wake modifier flags (WF_*)
3915  *
3916  * Conceptually does:
3917  *
3918  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3919  *
3920  * If the task was not queued/runnable, also place it back on a runqueue.
3921  *
3922  * This function is atomic against schedule() which would dequeue the task.
3923  *
3924  * It issues a full memory barrier before accessing @p->state, see the comment
3925  * with set_current_state().
3926  *
3927  * Uses p->pi_lock to serialize against concurrent wake-ups.
3928  *
3929  * Relies on p->pi_lock stabilizing:
3930  *  - p->sched_class
3931  *  - p->cpus_ptr
3932  *  - p->sched_task_group
3933  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3934  *
3935  * Tries really hard to only take one task_rq(p)->lock for performance.
3936  * Takes rq->lock in:
3937  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3938  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3939  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3940  *
3941  * As a consequence we race really badly with just about everything. See the
3942  * many memory barriers and their comments for details.
3943  *
3944  * Return: %true if @p->state changes (an actual wakeup was done),
3945  *	   %false otherwise.
3946  */
3947 static int
3948 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3949 {
3950 	unsigned long flags;
3951 	int cpu, success = 0;
3952 
3953 	preempt_disable();
3954 	if (p == current) {
3955 		/*
3956 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3957 		 * == smp_processor_id()'. Together this means we can special
3958 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3959 		 * without taking any locks.
3960 		 *
3961 		 * In particular:
3962 		 *  - we rely on Program-Order guarantees for all the ordering,
3963 		 *  - we're serialized against set_special_state() by virtue of
3964 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3965 		 */
3966 		if (!ttwu_state_match(p, state, &success))
3967 			goto out;
3968 
3969 		trace_sched_waking(p);
3970 		WRITE_ONCE(p->__state, TASK_RUNNING);
3971 		trace_sched_wakeup(p);
3972 		goto out;
3973 	}
3974 
3975 	/*
3976 	 * If we are going to wake up a thread waiting for CONDITION we
3977 	 * need to ensure that CONDITION=1 done by the caller can not be
3978 	 * reordered with p->state check below. This pairs with smp_store_mb()
3979 	 * in set_current_state() that the waiting thread does.
3980 	 */
3981 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3982 	smp_mb__after_spinlock();
3983 	if (!ttwu_state_match(p, state, &success))
3984 		goto unlock;
3985 
3986 	trace_sched_waking(p);
3987 
3988 	/*
3989 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3990 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3991 	 * in smp_cond_load_acquire() below.
3992 	 *
3993 	 * sched_ttwu_pending()			try_to_wake_up()
3994 	 *   STORE p->on_rq = 1			  LOAD p->state
3995 	 *   UNLOCK rq->lock
3996 	 *
3997 	 * __schedule() (switch to task 'p')
3998 	 *   LOCK rq->lock			  smp_rmb();
3999 	 *   smp_mb__after_spinlock();
4000 	 *   UNLOCK rq->lock
4001 	 *
4002 	 * [task p]
4003 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4004 	 *
4005 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4006 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4007 	 *
4008 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4009 	 */
4010 	smp_rmb();
4011 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4012 		goto unlock;
4013 
4014 #ifdef CONFIG_SMP
4015 	/*
4016 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4017 	 * possible to, falsely, observe p->on_cpu == 0.
4018 	 *
4019 	 * One must be running (->on_cpu == 1) in order to remove oneself
4020 	 * from the runqueue.
4021 	 *
4022 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4023 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4024 	 *   UNLOCK rq->lock
4025 	 *
4026 	 * __schedule() (put 'p' to sleep)
4027 	 *   LOCK rq->lock			  smp_rmb();
4028 	 *   smp_mb__after_spinlock();
4029 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4030 	 *
4031 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4032 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4033 	 *
4034 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4035 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4036 	 * care about it's own p->state. See the comment in __schedule().
4037 	 */
4038 	smp_acquire__after_ctrl_dep();
4039 
4040 	/*
4041 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4042 	 * == 0), which means we need to do an enqueue, change p->state to
4043 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4044 	 * enqueue, such as ttwu_queue_wakelist().
4045 	 */
4046 	WRITE_ONCE(p->__state, TASK_WAKING);
4047 
4048 	/*
4049 	 * If the owning (remote) CPU is still in the middle of schedule() with
4050 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4051 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4052 	 * let the waker make forward progress. This is safe because IRQs are
4053 	 * disabled and the IPI will deliver after on_cpu is cleared.
4054 	 *
4055 	 * Ensure we load task_cpu(p) after p->on_cpu:
4056 	 *
4057 	 * set_task_cpu(p, cpu);
4058 	 *   STORE p->cpu = @cpu
4059 	 * __schedule() (switch to task 'p')
4060 	 *   LOCK rq->lock
4061 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4062 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4063 	 *
4064 	 * to ensure we observe the correct CPU on which the task is currently
4065 	 * scheduling.
4066 	 */
4067 	if (smp_load_acquire(&p->on_cpu) &&
4068 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4069 		goto unlock;
4070 
4071 	/*
4072 	 * If the owning (remote) CPU is still in the middle of schedule() with
4073 	 * this task as prev, wait until it's done referencing the task.
4074 	 *
4075 	 * Pairs with the smp_store_release() in finish_task().
4076 	 *
4077 	 * This ensures that tasks getting woken will be fully ordered against
4078 	 * their previous state and preserve Program Order.
4079 	 */
4080 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4081 
4082 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4083 	if (task_cpu(p) != cpu) {
4084 		if (p->in_iowait) {
4085 			delayacct_blkio_end(p);
4086 			atomic_dec(&task_rq(p)->nr_iowait);
4087 		}
4088 
4089 		wake_flags |= WF_MIGRATED;
4090 		psi_ttwu_dequeue(p);
4091 		set_task_cpu(p, cpu);
4092 	}
4093 #else
4094 	cpu = task_cpu(p);
4095 #endif /* CONFIG_SMP */
4096 
4097 	ttwu_queue(p, cpu, wake_flags);
4098 unlock:
4099 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4100 out:
4101 	if (success)
4102 		ttwu_stat(p, task_cpu(p), wake_flags);
4103 	preempt_enable();
4104 
4105 	return success;
4106 }
4107 
4108 /**
4109  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
4110  * @p: Process for which the function is to be invoked, can be @current.
4111  * @func: Function to invoke.
4112  * @arg: Argument to function.
4113  *
4114  * If the specified task can be quickly locked into a definite state
4115  * (either sleeping or on a given runqueue), arrange to keep it in that
4116  * state while invoking @func(@arg).  This function can use ->on_rq and
4117  * task_curr() to work out what the state is, if required.  Given that
4118  * @func can be invoked with a runqueue lock held, it had better be quite
4119  * lightweight.
4120  *
4121  * Returns:
4122  *	@false if the task slipped out from under the locks.
4123  *	@true if the task was locked onto a runqueue or is sleeping.
4124  *		However, @func can override this by returning @false.
4125  */
4126 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
4127 {
4128 	struct rq_flags rf;
4129 	bool ret = false;
4130 	struct rq *rq;
4131 
4132 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4133 	if (p->on_rq) {
4134 		rq = __task_rq_lock(p, &rf);
4135 		if (task_rq(p) == rq)
4136 			ret = func(p, arg);
4137 		rq_unlock(rq, &rf);
4138 	} else {
4139 		switch (READ_ONCE(p->__state)) {
4140 		case TASK_RUNNING:
4141 		case TASK_WAKING:
4142 			break;
4143 		default:
4144 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
4145 			if (!p->on_rq)
4146 				ret = func(p, arg);
4147 		}
4148 	}
4149 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4150 	return ret;
4151 }
4152 
4153 /**
4154  * wake_up_process - Wake up a specific process
4155  * @p: The process to be woken up.
4156  *
4157  * Attempt to wake up the nominated process and move it to the set of runnable
4158  * processes.
4159  *
4160  * Return: 1 if the process was woken up, 0 if it was already running.
4161  *
4162  * This function executes a full memory barrier before accessing the task state.
4163  */
4164 int wake_up_process(struct task_struct *p)
4165 {
4166 	return try_to_wake_up(p, TASK_NORMAL, 0);
4167 }
4168 EXPORT_SYMBOL(wake_up_process);
4169 
4170 int wake_up_state(struct task_struct *p, unsigned int state)
4171 {
4172 	return try_to_wake_up(p, state, 0);
4173 }
4174 
4175 /*
4176  * Perform scheduler related setup for a newly forked process p.
4177  * p is forked by current.
4178  *
4179  * __sched_fork() is basic setup used by init_idle() too:
4180  */
4181 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4182 {
4183 	p->on_rq			= 0;
4184 
4185 	p->se.on_rq			= 0;
4186 	p->se.exec_start		= 0;
4187 	p->se.sum_exec_runtime		= 0;
4188 	p->se.prev_sum_exec_runtime	= 0;
4189 	p->se.nr_migrations		= 0;
4190 	p->se.vruntime			= 0;
4191 	INIT_LIST_HEAD(&p->se.group_node);
4192 
4193 #ifdef CONFIG_FAIR_GROUP_SCHED
4194 	p->se.cfs_rq			= NULL;
4195 #endif
4196 
4197 #ifdef CONFIG_SCHEDSTATS
4198 	/* Even if schedstat is disabled, there should not be garbage */
4199 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
4200 #endif
4201 
4202 	RB_CLEAR_NODE(&p->dl.rb_node);
4203 	init_dl_task_timer(&p->dl);
4204 	init_dl_inactive_task_timer(&p->dl);
4205 	__dl_clear_params(p);
4206 
4207 	INIT_LIST_HEAD(&p->rt.run_list);
4208 	p->rt.timeout		= 0;
4209 	p->rt.time_slice	= sched_rr_timeslice;
4210 	p->rt.on_rq		= 0;
4211 	p->rt.on_list		= 0;
4212 
4213 #ifdef CONFIG_PREEMPT_NOTIFIERS
4214 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4215 #endif
4216 
4217 #ifdef CONFIG_COMPACTION
4218 	p->capture_control = NULL;
4219 #endif
4220 	init_numa_balancing(clone_flags, p);
4221 #ifdef CONFIG_SMP
4222 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4223 	p->migration_pending = NULL;
4224 #endif
4225 }
4226 
4227 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4228 
4229 #ifdef CONFIG_NUMA_BALANCING
4230 
4231 void set_numabalancing_state(bool enabled)
4232 {
4233 	if (enabled)
4234 		static_branch_enable(&sched_numa_balancing);
4235 	else
4236 		static_branch_disable(&sched_numa_balancing);
4237 }
4238 
4239 #ifdef CONFIG_PROC_SYSCTL
4240 int sysctl_numa_balancing(struct ctl_table *table, int write,
4241 			  void *buffer, size_t *lenp, loff_t *ppos)
4242 {
4243 	struct ctl_table t;
4244 	int err;
4245 	int state = static_branch_likely(&sched_numa_balancing);
4246 
4247 	if (write && !capable(CAP_SYS_ADMIN))
4248 		return -EPERM;
4249 
4250 	t = *table;
4251 	t.data = &state;
4252 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4253 	if (err < 0)
4254 		return err;
4255 	if (write)
4256 		set_numabalancing_state(state);
4257 	return err;
4258 }
4259 #endif
4260 #endif
4261 
4262 #ifdef CONFIG_SCHEDSTATS
4263 
4264 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4265 
4266 static void set_schedstats(bool enabled)
4267 {
4268 	if (enabled)
4269 		static_branch_enable(&sched_schedstats);
4270 	else
4271 		static_branch_disable(&sched_schedstats);
4272 }
4273 
4274 void force_schedstat_enabled(void)
4275 {
4276 	if (!schedstat_enabled()) {
4277 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4278 		static_branch_enable(&sched_schedstats);
4279 	}
4280 }
4281 
4282 static int __init setup_schedstats(char *str)
4283 {
4284 	int ret = 0;
4285 	if (!str)
4286 		goto out;
4287 
4288 	if (!strcmp(str, "enable")) {
4289 		set_schedstats(true);
4290 		ret = 1;
4291 	} else if (!strcmp(str, "disable")) {
4292 		set_schedstats(false);
4293 		ret = 1;
4294 	}
4295 out:
4296 	if (!ret)
4297 		pr_warn("Unable to parse schedstats=\n");
4298 
4299 	return ret;
4300 }
4301 __setup("schedstats=", setup_schedstats);
4302 
4303 #ifdef CONFIG_PROC_SYSCTL
4304 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4305 		size_t *lenp, loff_t *ppos)
4306 {
4307 	struct ctl_table t;
4308 	int err;
4309 	int state = static_branch_likely(&sched_schedstats);
4310 
4311 	if (write && !capable(CAP_SYS_ADMIN))
4312 		return -EPERM;
4313 
4314 	t = *table;
4315 	t.data = &state;
4316 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4317 	if (err < 0)
4318 		return err;
4319 	if (write)
4320 		set_schedstats(state);
4321 	return err;
4322 }
4323 #endif /* CONFIG_PROC_SYSCTL */
4324 #endif /* CONFIG_SCHEDSTATS */
4325 
4326 /*
4327  * fork()/clone()-time setup:
4328  */
4329 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4330 {
4331 	unsigned long flags;
4332 
4333 	__sched_fork(clone_flags, p);
4334 	/*
4335 	 * We mark the process as NEW here. This guarantees that
4336 	 * nobody will actually run it, and a signal or other external
4337 	 * event cannot wake it up and insert it on the runqueue either.
4338 	 */
4339 	p->__state = TASK_NEW;
4340 
4341 	/*
4342 	 * Make sure we do not leak PI boosting priority to the child.
4343 	 */
4344 	p->prio = current->normal_prio;
4345 
4346 	uclamp_fork(p);
4347 
4348 	/*
4349 	 * Revert to default priority/policy on fork if requested.
4350 	 */
4351 	if (unlikely(p->sched_reset_on_fork)) {
4352 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4353 			p->policy = SCHED_NORMAL;
4354 			p->static_prio = NICE_TO_PRIO(0);
4355 			p->rt_priority = 0;
4356 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4357 			p->static_prio = NICE_TO_PRIO(0);
4358 
4359 		p->prio = p->normal_prio = p->static_prio;
4360 		set_load_weight(p, false);
4361 
4362 		/*
4363 		 * We don't need the reset flag anymore after the fork. It has
4364 		 * fulfilled its duty:
4365 		 */
4366 		p->sched_reset_on_fork = 0;
4367 	}
4368 
4369 	if (dl_prio(p->prio))
4370 		return -EAGAIN;
4371 	else if (rt_prio(p->prio))
4372 		p->sched_class = &rt_sched_class;
4373 	else
4374 		p->sched_class = &fair_sched_class;
4375 
4376 	init_entity_runnable_average(&p->se);
4377 
4378 	/*
4379 	 * The child is not yet in the pid-hash so no cgroup attach races,
4380 	 * and the cgroup is pinned to this child due to cgroup_fork()
4381 	 * is ran before sched_fork().
4382 	 *
4383 	 * Silence PROVE_RCU.
4384 	 */
4385 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4386 	rseq_migrate(p);
4387 	/*
4388 	 * We're setting the CPU for the first time, we don't migrate,
4389 	 * so use __set_task_cpu().
4390 	 */
4391 	__set_task_cpu(p, smp_processor_id());
4392 	if (p->sched_class->task_fork)
4393 		p->sched_class->task_fork(p);
4394 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4395 
4396 #ifdef CONFIG_SCHED_INFO
4397 	if (likely(sched_info_on()))
4398 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4399 #endif
4400 #if defined(CONFIG_SMP)
4401 	p->on_cpu = 0;
4402 #endif
4403 	init_task_preempt_count(p);
4404 #ifdef CONFIG_SMP
4405 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4406 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4407 #endif
4408 	return 0;
4409 }
4410 
4411 void sched_post_fork(struct task_struct *p)
4412 {
4413 	uclamp_post_fork(p);
4414 }
4415 
4416 unsigned long to_ratio(u64 period, u64 runtime)
4417 {
4418 	if (runtime == RUNTIME_INF)
4419 		return BW_UNIT;
4420 
4421 	/*
4422 	 * Doing this here saves a lot of checks in all
4423 	 * the calling paths, and returning zero seems
4424 	 * safe for them anyway.
4425 	 */
4426 	if (period == 0)
4427 		return 0;
4428 
4429 	return div64_u64(runtime << BW_SHIFT, period);
4430 }
4431 
4432 /*
4433  * wake_up_new_task - wake up a newly created task for the first time.
4434  *
4435  * This function will do some initial scheduler statistics housekeeping
4436  * that must be done for every newly created context, then puts the task
4437  * on the runqueue and wakes it.
4438  */
4439 void wake_up_new_task(struct task_struct *p)
4440 {
4441 	struct rq_flags rf;
4442 	struct rq *rq;
4443 
4444 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4445 	WRITE_ONCE(p->__state, TASK_RUNNING);
4446 #ifdef CONFIG_SMP
4447 	/*
4448 	 * Fork balancing, do it here and not earlier because:
4449 	 *  - cpus_ptr can change in the fork path
4450 	 *  - any previously selected CPU might disappear through hotplug
4451 	 *
4452 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4453 	 * as we're not fully set-up yet.
4454 	 */
4455 	p->recent_used_cpu = task_cpu(p);
4456 	rseq_migrate(p);
4457 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4458 #endif
4459 	rq = __task_rq_lock(p, &rf);
4460 	update_rq_clock(rq);
4461 	post_init_entity_util_avg(p);
4462 
4463 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4464 	trace_sched_wakeup_new(p);
4465 	check_preempt_curr(rq, p, WF_FORK);
4466 #ifdef CONFIG_SMP
4467 	if (p->sched_class->task_woken) {
4468 		/*
4469 		 * Nothing relies on rq->lock after this, so it's fine to
4470 		 * drop it.
4471 		 */
4472 		rq_unpin_lock(rq, &rf);
4473 		p->sched_class->task_woken(rq, p);
4474 		rq_repin_lock(rq, &rf);
4475 	}
4476 #endif
4477 	task_rq_unlock(rq, p, &rf);
4478 }
4479 
4480 #ifdef CONFIG_PREEMPT_NOTIFIERS
4481 
4482 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4483 
4484 void preempt_notifier_inc(void)
4485 {
4486 	static_branch_inc(&preempt_notifier_key);
4487 }
4488 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4489 
4490 void preempt_notifier_dec(void)
4491 {
4492 	static_branch_dec(&preempt_notifier_key);
4493 }
4494 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4495 
4496 /**
4497  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4498  * @notifier: notifier struct to register
4499  */
4500 void preempt_notifier_register(struct preempt_notifier *notifier)
4501 {
4502 	if (!static_branch_unlikely(&preempt_notifier_key))
4503 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4504 
4505 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4506 }
4507 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4508 
4509 /**
4510  * preempt_notifier_unregister - no longer interested in preemption notifications
4511  * @notifier: notifier struct to unregister
4512  *
4513  * This is *not* safe to call from within a preemption notifier.
4514  */
4515 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4516 {
4517 	hlist_del(&notifier->link);
4518 }
4519 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4520 
4521 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4522 {
4523 	struct preempt_notifier *notifier;
4524 
4525 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4526 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4527 }
4528 
4529 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4530 {
4531 	if (static_branch_unlikely(&preempt_notifier_key))
4532 		__fire_sched_in_preempt_notifiers(curr);
4533 }
4534 
4535 static void
4536 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4537 				   struct task_struct *next)
4538 {
4539 	struct preempt_notifier *notifier;
4540 
4541 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4542 		notifier->ops->sched_out(notifier, next);
4543 }
4544 
4545 static __always_inline void
4546 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4547 				 struct task_struct *next)
4548 {
4549 	if (static_branch_unlikely(&preempt_notifier_key))
4550 		__fire_sched_out_preempt_notifiers(curr, next);
4551 }
4552 
4553 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4554 
4555 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4556 {
4557 }
4558 
4559 static inline void
4560 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4561 				 struct task_struct *next)
4562 {
4563 }
4564 
4565 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4566 
4567 static inline void prepare_task(struct task_struct *next)
4568 {
4569 #ifdef CONFIG_SMP
4570 	/*
4571 	 * Claim the task as running, we do this before switching to it
4572 	 * such that any running task will have this set.
4573 	 *
4574 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4575 	 */
4576 	WRITE_ONCE(next->on_cpu, 1);
4577 #endif
4578 }
4579 
4580 static inline void finish_task(struct task_struct *prev)
4581 {
4582 #ifdef CONFIG_SMP
4583 	/*
4584 	 * This must be the very last reference to @prev from this CPU. After
4585 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4586 	 * must ensure this doesn't happen until the switch is completely
4587 	 * finished.
4588 	 *
4589 	 * In particular, the load of prev->state in finish_task_switch() must
4590 	 * happen before this.
4591 	 *
4592 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4593 	 */
4594 	smp_store_release(&prev->on_cpu, 0);
4595 #endif
4596 }
4597 
4598 #ifdef CONFIG_SMP
4599 
4600 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4601 {
4602 	void (*func)(struct rq *rq);
4603 	struct callback_head *next;
4604 
4605 	lockdep_assert_rq_held(rq);
4606 
4607 	while (head) {
4608 		func = (void (*)(struct rq *))head->func;
4609 		next = head->next;
4610 		head->next = NULL;
4611 		head = next;
4612 
4613 		func(rq);
4614 	}
4615 }
4616 
4617 static void balance_push(struct rq *rq);
4618 
4619 struct callback_head balance_push_callback = {
4620 	.next = NULL,
4621 	.func = (void (*)(struct callback_head *))balance_push,
4622 };
4623 
4624 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4625 {
4626 	struct callback_head *head = rq->balance_callback;
4627 
4628 	lockdep_assert_rq_held(rq);
4629 	if (head)
4630 		rq->balance_callback = NULL;
4631 
4632 	return head;
4633 }
4634 
4635 static void __balance_callbacks(struct rq *rq)
4636 {
4637 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4638 }
4639 
4640 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4641 {
4642 	unsigned long flags;
4643 
4644 	if (unlikely(head)) {
4645 		raw_spin_rq_lock_irqsave(rq, flags);
4646 		do_balance_callbacks(rq, head);
4647 		raw_spin_rq_unlock_irqrestore(rq, flags);
4648 	}
4649 }
4650 
4651 #else
4652 
4653 static inline void __balance_callbacks(struct rq *rq)
4654 {
4655 }
4656 
4657 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4658 {
4659 	return NULL;
4660 }
4661 
4662 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4663 {
4664 }
4665 
4666 #endif
4667 
4668 static inline void
4669 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4670 {
4671 	/*
4672 	 * Since the runqueue lock will be released by the next
4673 	 * task (which is an invalid locking op but in the case
4674 	 * of the scheduler it's an obvious special-case), so we
4675 	 * do an early lockdep release here:
4676 	 */
4677 	rq_unpin_lock(rq, rf);
4678 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4679 #ifdef CONFIG_DEBUG_SPINLOCK
4680 	/* this is a valid case when another task releases the spinlock */
4681 	rq_lockp(rq)->owner = next;
4682 #endif
4683 }
4684 
4685 static inline void finish_lock_switch(struct rq *rq)
4686 {
4687 	/*
4688 	 * If we are tracking spinlock dependencies then we have to
4689 	 * fix up the runqueue lock - which gets 'carried over' from
4690 	 * prev into current:
4691 	 */
4692 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4693 	__balance_callbacks(rq);
4694 	raw_spin_rq_unlock_irq(rq);
4695 }
4696 
4697 /*
4698  * NOP if the arch has not defined these:
4699  */
4700 
4701 #ifndef prepare_arch_switch
4702 # define prepare_arch_switch(next)	do { } while (0)
4703 #endif
4704 
4705 #ifndef finish_arch_post_lock_switch
4706 # define finish_arch_post_lock_switch()	do { } while (0)
4707 #endif
4708 
4709 static inline void kmap_local_sched_out(void)
4710 {
4711 #ifdef CONFIG_KMAP_LOCAL
4712 	if (unlikely(current->kmap_ctrl.idx))
4713 		__kmap_local_sched_out();
4714 #endif
4715 }
4716 
4717 static inline void kmap_local_sched_in(void)
4718 {
4719 #ifdef CONFIG_KMAP_LOCAL
4720 	if (unlikely(current->kmap_ctrl.idx))
4721 		__kmap_local_sched_in();
4722 #endif
4723 }
4724 
4725 /**
4726  * prepare_task_switch - prepare to switch tasks
4727  * @rq: the runqueue preparing to switch
4728  * @prev: the current task that is being switched out
4729  * @next: the task we are going to switch to.
4730  *
4731  * This is called with the rq lock held and interrupts off. It must
4732  * be paired with a subsequent finish_task_switch after the context
4733  * switch.
4734  *
4735  * prepare_task_switch sets up locking and calls architecture specific
4736  * hooks.
4737  */
4738 static inline void
4739 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4740 		    struct task_struct *next)
4741 {
4742 	kcov_prepare_switch(prev);
4743 	sched_info_switch(rq, prev, next);
4744 	perf_event_task_sched_out(prev, next);
4745 	rseq_preempt(prev);
4746 	fire_sched_out_preempt_notifiers(prev, next);
4747 	kmap_local_sched_out();
4748 	prepare_task(next);
4749 	prepare_arch_switch(next);
4750 }
4751 
4752 /**
4753  * finish_task_switch - clean up after a task-switch
4754  * @prev: the thread we just switched away from.
4755  *
4756  * finish_task_switch must be called after the context switch, paired
4757  * with a prepare_task_switch call before the context switch.
4758  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4759  * and do any other architecture-specific cleanup actions.
4760  *
4761  * Note that we may have delayed dropping an mm in context_switch(). If
4762  * so, we finish that here outside of the runqueue lock. (Doing it
4763  * with the lock held can cause deadlocks; see schedule() for
4764  * details.)
4765  *
4766  * The context switch have flipped the stack from under us and restored the
4767  * local variables which were saved when this task called schedule() in the
4768  * past. prev == current is still correct but we need to recalculate this_rq
4769  * because prev may have moved to another CPU.
4770  */
4771 static struct rq *finish_task_switch(struct task_struct *prev)
4772 	__releases(rq->lock)
4773 {
4774 	struct rq *rq = this_rq();
4775 	struct mm_struct *mm = rq->prev_mm;
4776 	long prev_state;
4777 
4778 	/*
4779 	 * The previous task will have left us with a preempt_count of 2
4780 	 * because it left us after:
4781 	 *
4782 	 *	schedule()
4783 	 *	  preempt_disable();			// 1
4784 	 *	  __schedule()
4785 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4786 	 *
4787 	 * Also, see FORK_PREEMPT_COUNT.
4788 	 */
4789 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4790 		      "corrupted preempt_count: %s/%d/0x%x\n",
4791 		      current->comm, current->pid, preempt_count()))
4792 		preempt_count_set(FORK_PREEMPT_COUNT);
4793 
4794 	rq->prev_mm = NULL;
4795 
4796 	/*
4797 	 * A task struct has one reference for the use as "current".
4798 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4799 	 * schedule one last time. The schedule call will never return, and
4800 	 * the scheduled task must drop that reference.
4801 	 *
4802 	 * We must observe prev->state before clearing prev->on_cpu (in
4803 	 * finish_task), otherwise a concurrent wakeup can get prev
4804 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4805 	 * transition, resulting in a double drop.
4806 	 */
4807 	prev_state = READ_ONCE(prev->__state);
4808 	vtime_task_switch(prev);
4809 	perf_event_task_sched_in(prev, current);
4810 	finish_task(prev);
4811 	tick_nohz_task_switch();
4812 	finish_lock_switch(rq);
4813 	finish_arch_post_lock_switch();
4814 	kcov_finish_switch(current);
4815 	/*
4816 	 * kmap_local_sched_out() is invoked with rq::lock held and
4817 	 * interrupts disabled. There is no requirement for that, but the
4818 	 * sched out code does not have an interrupt enabled section.
4819 	 * Restoring the maps on sched in does not require interrupts being
4820 	 * disabled either.
4821 	 */
4822 	kmap_local_sched_in();
4823 
4824 	fire_sched_in_preempt_notifiers(current);
4825 	/*
4826 	 * When switching through a kernel thread, the loop in
4827 	 * membarrier_{private,global}_expedited() may have observed that
4828 	 * kernel thread and not issued an IPI. It is therefore possible to
4829 	 * schedule between user->kernel->user threads without passing though
4830 	 * switch_mm(). Membarrier requires a barrier after storing to
4831 	 * rq->curr, before returning to userspace, so provide them here:
4832 	 *
4833 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4834 	 *   provided by mmdrop(),
4835 	 * - a sync_core for SYNC_CORE.
4836 	 */
4837 	if (mm) {
4838 		membarrier_mm_sync_core_before_usermode(mm);
4839 		mmdrop(mm);
4840 	}
4841 	if (unlikely(prev_state == TASK_DEAD)) {
4842 		if (prev->sched_class->task_dead)
4843 			prev->sched_class->task_dead(prev);
4844 
4845 		/*
4846 		 * Remove function-return probe instances associated with this
4847 		 * task and put them back on the free list.
4848 		 */
4849 		kprobe_flush_task(prev);
4850 
4851 		/* Task is done with its stack. */
4852 		put_task_stack(prev);
4853 
4854 		put_task_struct_rcu_user(prev);
4855 	}
4856 
4857 	return rq;
4858 }
4859 
4860 /**
4861  * schedule_tail - first thing a freshly forked thread must call.
4862  * @prev: the thread we just switched away from.
4863  */
4864 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4865 	__releases(rq->lock)
4866 {
4867 	/*
4868 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4869 	 * finish_task_switch() for details.
4870 	 *
4871 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4872 	 * and the preempt_enable() will end up enabling preemption (on
4873 	 * PREEMPT_COUNT kernels).
4874 	 */
4875 
4876 	finish_task_switch(prev);
4877 	preempt_enable();
4878 
4879 	if (current->set_child_tid)
4880 		put_user(task_pid_vnr(current), current->set_child_tid);
4881 
4882 	calculate_sigpending();
4883 }
4884 
4885 /*
4886  * context_switch - switch to the new MM and the new thread's register state.
4887  */
4888 static __always_inline struct rq *
4889 context_switch(struct rq *rq, struct task_struct *prev,
4890 	       struct task_struct *next, struct rq_flags *rf)
4891 {
4892 	prepare_task_switch(rq, prev, next);
4893 
4894 	/*
4895 	 * For paravirt, this is coupled with an exit in switch_to to
4896 	 * combine the page table reload and the switch backend into
4897 	 * one hypercall.
4898 	 */
4899 	arch_start_context_switch(prev);
4900 
4901 	/*
4902 	 * kernel -> kernel   lazy + transfer active
4903 	 *   user -> kernel   lazy + mmgrab() active
4904 	 *
4905 	 * kernel ->   user   switch + mmdrop() active
4906 	 *   user ->   user   switch
4907 	 */
4908 	if (!next->mm) {                                // to kernel
4909 		enter_lazy_tlb(prev->active_mm, next);
4910 
4911 		next->active_mm = prev->active_mm;
4912 		if (prev->mm)                           // from user
4913 			mmgrab(prev->active_mm);
4914 		else
4915 			prev->active_mm = NULL;
4916 	} else {                                        // to user
4917 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4918 		/*
4919 		 * sys_membarrier() requires an smp_mb() between setting
4920 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4921 		 *
4922 		 * The below provides this either through switch_mm(), or in
4923 		 * case 'prev->active_mm == next->mm' through
4924 		 * finish_task_switch()'s mmdrop().
4925 		 */
4926 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4927 
4928 		if (!prev->mm) {                        // from kernel
4929 			/* will mmdrop() in finish_task_switch(). */
4930 			rq->prev_mm = prev->active_mm;
4931 			prev->active_mm = NULL;
4932 		}
4933 	}
4934 
4935 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4936 
4937 	prepare_lock_switch(rq, next, rf);
4938 
4939 	/* Here we just switch the register state and the stack. */
4940 	switch_to(prev, next, prev);
4941 	barrier();
4942 
4943 	return finish_task_switch(prev);
4944 }
4945 
4946 /*
4947  * nr_running and nr_context_switches:
4948  *
4949  * externally visible scheduler statistics: current number of runnable
4950  * threads, total number of context switches performed since bootup.
4951  */
4952 unsigned int nr_running(void)
4953 {
4954 	unsigned int i, sum = 0;
4955 
4956 	for_each_online_cpu(i)
4957 		sum += cpu_rq(i)->nr_running;
4958 
4959 	return sum;
4960 }
4961 
4962 /*
4963  * Check if only the current task is running on the CPU.
4964  *
4965  * Caution: this function does not check that the caller has disabled
4966  * preemption, thus the result might have a time-of-check-to-time-of-use
4967  * race.  The caller is responsible to use it correctly, for example:
4968  *
4969  * - from a non-preemptible section (of course)
4970  *
4971  * - from a thread that is bound to a single CPU
4972  *
4973  * - in a loop with very short iterations (e.g. a polling loop)
4974  */
4975 bool single_task_running(void)
4976 {
4977 	return raw_rq()->nr_running == 1;
4978 }
4979 EXPORT_SYMBOL(single_task_running);
4980 
4981 unsigned long long nr_context_switches(void)
4982 {
4983 	int i;
4984 	unsigned long long sum = 0;
4985 
4986 	for_each_possible_cpu(i)
4987 		sum += cpu_rq(i)->nr_switches;
4988 
4989 	return sum;
4990 }
4991 
4992 /*
4993  * Consumers of these two interfaces, like for example the cpuidle menu
4994  * governor, are using nonsensical data. Preferring shallow idle state selection
4995  * for a CPU that has IO-wait which might not even end up running the task when
4996  * it does become runnable.
4997  */
4998 
4999 unsigned int nr_iowait_cpu(int cpu)
5000 {
5001 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5002 }
5003 
5004 /*
5005  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5006  *
5007  * The idea behind IO-wait account is to account the idle time that we could
5008  * have spend running if it were not for IO. That is, if we were to improve the
5009  * storage performance, we'd have a proportional reduction in IO-wait time.
5010  *
5011  * This all works nicely on UP, where, when a task blocks on IO, we account
5012  * idle time as IO-wait, because if the storage were faster, it could've been
5013  * running and we'd not be idle.
5014  *
5015  * This has been extended to SMP, by doing the same for each CPU. This however
5016  * is broken.
5017  *
5018  * Imagine for instance the case where two tasks block on one CPU, only the one
5019  * CPU will have IO-wait accounted, while the other has regular idle. Even
5020  * though, if the storage were faster, both could've ran at the same time,
5021  * utilising both CPUs.
5022  *
5023  * This means, that when looking globally, the current IO-wait accounting on
5024  * SMP is a lower bound, by reason of under accounting.
5025  *
5026  * Worse, since the numbers are provided per CPU, they are sometimes
5027  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5028  * associated with any one particular CPU, it can wake to another CPU than it
5029  * blocked on. This means the per CPU IO-wait number is meaningless.
5030  *
5031  * Task CPU affinities can make all that even more 'interesting'.
5032  */
5033 
5034 unsigned int nr_iowait(void)
5035 {
5036 	unsigned int i, sum = 0;
5037 
5038 	for_each_possible_cpu(i)
5039 		sum += nr_iowait_cpu(i);
5040 
5041 	return sum;
5042 }
5043 
5044 #ifdef CONFIG_SMP
5045 
5046 /*
5047  * sched_exec - execve() is a valuable balancing opportunity, because at
5048  * this point the task has the smallest effective memory and cache footprint.
5049  */
5050 void sched_exec(void)
5051 {
5052 	struct task_struct *p = current;
5053 	unsigned long flags;
5054 	int dest_cpu;
5055 
5056 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5057 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5058 	if (dest_cpu == smp_processor_id())
5059 		goto unlock;
5060 
5061 	if (likely(cpu_active(dest_cpu))) {
5062 		struct migration_arg arg = { p, dest_cpu };
5063 
5064 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5065 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5066 		return;
5067 	}
5068 unlock:
5069 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5070 }
5071 
5072 #endif
5073 
5074 DEFINE_PER_CPU(struct kernel_stat, kstat);
5075 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5076 
5077 EXPORT_PER_CPU_SYMBOL(kstat);
5078 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5079 
5080 /*
5081  * The function fair_sched_class.update_curr accesses the struct curr
5082  * and its field curr->exec_start; when called from task_sched_runtime(),
5083  * we observe a high rate of cache misses in practice.
5084  * Prefetching this data results in improved performance.
5085  */
5086 static inline void prefetch_curr_exec_start(struct task_struct *p)
5087 {
5088 #ifdef CONFIG_FAIR_GROUP_SCHED
5089 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5090 #else
5091 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5092 #endif
5093 	prefetch(curr);
5094 	prefetch(&curr->exec_start);
5095 }
5096 
5097 /*
5098  * Return accounted runtime for the task.
5099  * In case the task is currently running, return the runtime plus current's
5100  * pending runtime that have not been accounted yet.
5101  */
5102 unsigned long long task_sched_runtime(struct task_struct *p)
5103 {
5104 	struct rq_flags rf;
5105 	struct rq *rq;
5106 	u64 ns;
5107 
5108 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5109 	/*
5110 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5111 	 * So we have a optimization chance when the task's delta_exec is 0.
5112 	 * Reading ->on_cpu is racy, but this is ok.
5113 	 *
5114 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5115 	 * If we race with it entering CPU, unaccounted time is 0. This is
5116 	 * indistinguishable from the read occurring a few cycles earlier.
5117 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5118 	 * been accounted, so we're correct here as well.
5119 	 */
5120 	if (!p->on_cpu || !task_on_rq_queued(p))
5121 		return p->se.sum_exec_runtime;
5122 #endif
5123 
5124 	rq = task_rq_lock(p, &rf);
5125 	/*
5126 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5127 	 * project cycles that may never be accounted to this
5128 	 * thread, breaking clock_gettime().
5129 	 */
5130 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5131 		prefetch_curr_exec_start(p);
5132 		update_rq_clock(rq);
5133 		p->sched_class->update_curr(rq);
5134 	}
5135 	ns = p->se.sum_exec_runtime;
5136 	task_rq_unlock(rq, p, &rf);
5137 
5138 	return ns;
5139 }
5140 
5141 #ifdef CONFIG_SCHED_DEBUG
5142 static u64 cpu_resched_latency(struct rq *rq)
5143 {
5144 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5145 	u64 resched_latency, now = rq_clock(rq);
5146 	static bool warned_once;
5147 
5148 	if (sysctl_resched_latency_warn_once && warned_once)
5149 		return 0;
5150 
5151 	if (!need_resched() || !latency_warn_ms)
5152 		return 0;
5153 
5154 	if (system_state == SYSTEM_BOOTING)
5155 		return 0;
5156 
5157 	if (!rq->last_seen_need_resched_ns) {
5158 		rq->last_seen_need_resched_ns = now;
5159 		rq->ticks_without_resched = 0;
5160 		return 0;
5161 	}
5162 
5163 	rq->ticks_without_resched++;
5164 	resched_latency = now - rq->last_seen_need_resched_ns;
5165 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5166 		return 0;
5167 
5168 	warned_once = true;
5169 
5170 	return resched_latency;
5171 }
5172 
5173 static int __init setup_resched_latency_warn_ms(char *str)
5174 {
5175 	long val;
5176 
5177 	if ((kstrtol(str, 0, &val))) {
5178 		pr_warn("Unable to set resched_latency_warn_ms\n");
5179 		return 1;
5180 	}
5181 
5182 	sysctl_resched_latency_warn_ms = val;
5183 	return 1;
5184 }
5185 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5186 #else
5187 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5188 #endif /* CONFIG_SCHED_DEBUG */
5189 
5190 /*
5191  * This function gets called by the timer code, with HZ frequency.
5192  * We call it with interrupts disabled.
5193  */
5194 void scheduler_tick(void)
5195 {
5196 	int cpu = smp_processor_id();
5197 	struct rq *rq = cpu_rq(cpu);
5198 	struct task_struct *curr = rq->curr;
5199 	struct rq_flags rf;
5200 	unsigned long thermal_pressure;
5201 	u64 resched_latency;
5202 
5203 	arch_scale_freq_tick();
5204 	sched_clock_tick();
5205 
5206 	rq_lock(rq, &rf);
5207 
5208 	update_rq_clock(rq);
5209 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5210 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5211 	curr->sched_class->task_tick(rq, curr, 0);
5212 	if (sched_feat(LATENCY_WARN))
5213 		resched_latency = cpu_resched_latency(rq);
5214 	calc_global_load_tick(rq);
5215 
5216 	rq_unlock(rq, &rf);
5217 
5218 	if (sched_feat(LATENCY_WARN) && resched_latency)
5219 		resched_latency_warn(cpu, resched_latency);
5220 
5221 	perf_event_task_tick();
5222 
5223 #ifdef CONFIG_SMP
5224 	rq->idle_balance = idle_cpu(cpu);
5225 	trigger_load_balance(rq);
5226 #endif
5227 }
5228 
5229 #ifdef CONFIG_NO_HZ_FULL
5230 
5231 struct tick_work {
5232 	int			cpu;
5233 	atomic_t		state;
5234 	struct delayed_work	work;
5235 };
5236 /* Values for ->state, see diagram below. */
5237 #define TICK_SCHED_REMOTE_OFFLINE	0
5238 #define TICK_SCHED_REMOTE_OFFLINING	1
5239 #define TICK_SCHED_REMOTE_RUNNING	2
5240 
5241 /*
5242  * State diagram for ->state:
5243  *
5244  *
5245  *          TICK_SCHED_REMOTE_OFFLINE
5246  *                    |   ^
5247  *                    |   |
5248  *                    |   | sched_tick_remote()
5249  *                    |   |
5250  *                    |   |
5251  *                    +--TICK_SCHED_REMOTE_OFFLINING
5252  *                    |   ^
5253  *                    |   |
5254  * sched_tick_start() |   | sched_tick_stop()
5255  *                    |   |
5256  *                    V   |
5257  *          TICK_SCHED_REMOTE_RUNNING
5258  *
5259  *
5260  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5261  * and sched_tick_start() are happy to leave the state in RUNNING.
5262  */
5263 
5264 static struct tick_work __percpu *tick_work_cpu;
5265 
5266 static void sched_tick_remote(struct work_struct *work)
5267 {
5268 	struct delayed_work *dwork = to_delayed_work(work);
5269 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5270 	int cpu = twork->cpu;
5271 	struct rq *rq = cpu_rq(cpu);
5272 	struct task_struct *curr;
5273 	struct rq_flags rf;
5274 	u64 delta;
5275 	int os;
5276 
5277 	/*
5278 	 * Handle the tick only if it appears the remote CPU is running in full
5279 	 * dynticks mode. The check is racy by nature, but missing a tick or
5280 	 * having one too much is no big deal because the scheduler tick updates
5281 	 * statistics and checks timeslices in a time-independent way, regardless
5282 	 * of when exactly it is running.
5283 	 */
5284 	if (!tick_nohz_tick_stopped_cpu(cpu))
5285 		goto out_requeue;
5286 
5287 	rq_lock_irq(rq, &rf);
5288 	curr = rq->curr;
5289 	if (cpu_is_offline(cpu))
5290 		goto out_unlock;
5291 
5292 	update_rq_clock(rq);
5293 
5294 	if (!is_idle_task(curr)) {
5295 		/*
5296 		 * Make sure the next tick runs within a reasonable
5297 		 * amount of time.
5298 		 */
5299 		delta = rq_clock_task(rq) - curr->se.exec_start;
5300 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5301 	}
5302 	curr->sched_class->task_tick(rq, curr, 0);
5303 
5304 	calc_load_nohz_remote(rq);
5305 out_unlock:
5306 	rq_unlock_irq(rq, &rf);
5307 out_requeue:
5308 
5309 	/*
5310 	 * Run the remote tick once per second (1Hz). This arbitrary
5311 	 * frequency is large enough to avoid overload but short enough
5312 	 * to keep scheduler internal stats reasonably up to date.  But
5313 	 * first update state to reflect hotplug activity if required.
5314 	 */
5315 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5316 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5317 	if (os == TICK_SCHED_REMOTE_RUNNING)
5318 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5319 }
5320 
5321 static void sched_tick_start(int cpu)
5322 {
5323 	int os;
5324 	struct tick_work *twork;
5325 
5326 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5327 		return;
5328 
5329 	WARN_ON_ONCE(!tick_work_cpu);
5330 
5331 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5332 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5333 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5334 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5335 		twork->cpu = cpu;
5336 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5337 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5338 	}
5339 }
5340 
5341 #ifdef CONFIG_HOTPLUG_CPU
5342 static void sched_tick_stop(int cpu)
5343 {
5344 	struct tick_work *twork;
5345 	int os;
5346 
5347 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5348 		return;
5349 
5350 	WARN_ON_ONCE(!tick_work_cpu);
5351 
5352 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5353 	/* There cannot be competing actions, but don't rely on stop-machine. */
5354 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5355 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5356 	/* Don't cancel, as this would mess up the state machine. */
5357 }
5358 #endif /* CONFIG_HOTPLUG_CPU */
5359 
5360 int __init sched_tick_offload_init(void)
5361 {
5362 	tick_work_cpu = alloc_percpu(struct tick_work);
5363 	BUG_ON(!tick_work_cpu);
5364 	return 0;
5365 }
5366 
5367 #else /* !CONFIG_NO_HZ_FULL */
5368 static inline void sched_tick_start(int cpu) { }
5369 static inline void sched_tick_stop(int cpu) { }
5370 #endif
5371 
5372 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5373 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5374 /*
5375  * If the value passed in is equal to the current preempt count
5376  * then we just disabled preemption. Start timing the latency.
5377  */
5378 static inline void preempt_latency_start(int val)
5379 {
5380 	if (preempt_count() == val) {
5381 		unsigned long ip = get_lock_parent_ip();
5382 #ifdef CONFIG_DEBUG_PREEMPT
5383 		current->preempt_disable_ip = ip;
5384 #endif
5385 		trace_preempt_off(CALLER_ADDR0, ip);
5386 	}
5387 }
5388 
5389 void preempt_count_add(int val)
5390 {
5391 #ifdef CONFIG_DEBUG_PREEMPT
5392 	/*
5393 	 * Underflow?
5394 	 */
5395 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5396 		return;
5397 #endif
5398 	__preempt_count_add(val);
5399 #ifdef CONFIG_DEBUG_PREEMPT
5400 	/*
5401 	 * Spinlock count overflowing soon?
5402 	 */
5403 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5404 				PREEMPT_MASK - 10);
5405 #endif
5406 	preempt_latency_start(val);
5407 }
5408 EXPORT_SYMBOL(preempt_count_add);
5409 NOKPROBE_SYMBOL(preempt_count_add);
5410 
5411 /*
5412  * If the value passed in equals to the current preempt count
5413  * then we just enabled preemption. Stop timing the latency.
5414  */
5415 static inline void preempt_latency_stop(int val)
5416 {
5417 	if (preempt_count() == val)
5418 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5419 }
5420 
5421 void preempt_count_sub(int val)
5422 {
5423 #ifdef CONFIG_DEBUG_PREEMPT
5424 	/*
5425 	 * Underflow?
5426 	 */
5427 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5428 		return;
5429 	/*
5430 	 * Is the spinlock portion underflowing?
5431 	 */
5432 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5433 			!(preempt_count() & PREEMPT_MASK)))
5434 		return;
5435 #endif
5436 
5437 	preempt_latency_stop(val);
5438 	__preempt_count_sub(val);
5439 }
5440 EXPORT_SYMBOL(preempt_count_sub);
5441 NOKPROBE_SYMBOL(preempt_count_sub);
5442 
5443 #else
5444 static inline void preempt_latency_start(int val) { }
5445 static inline void preempt_latency_stop(int val) { }
5446 #endif
5447 
5448 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5449 {
5450 #ifdef CONFIG_DEBUG_PREEMPT
5451 	return p->preempt_disable_ip;
5452 #else
5453 	return 0;
5454 #endif
5455 }
5456 
5457 /*
5458  * Print scheduling while atomic bug:
5459  */
5460 static noinline void __schedule_bug(struct task_struct *prev)
5461 {
5462 	/* Save this before calling printk(), since that will clobber it */
5463 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5464 
5465 	if (oops_in_progress)
5466 		return;
5467 
5468 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5469 		prev->comm, prev->pid, preempt_count());
5470 
5471 	debug_show_held_locks(prev);
5472 	print_modules();
5473 	if (irqs_disabled())
5474 		print_irqtrace_events(prev);
5475 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5476 	    && in_atomic_preempt_off()) {
5477 		pr_err("Preemption disabled at:");
5478 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5479 	}
5480 	if (panic_on_warn)
5481 		panic("scheduling while atomic\n");
5482 
5483 	dump_stack();
5484 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5485 }
5486 
5487 /*
5488  * Various schedule()-time debugging checks and statistics:
5489  */
5490 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5491 {
5492 #ifdef CONFIG_SCHED_STACK_END_CHECK
5493 	if (task_stack_end_corrupted(prev))
5494 		panic("corrupted stack end detected inside scheduler\n");
5495 
5496 	if (task_scs_end_corrupted(prev))
5497 		panic("corrupted shadow stack detected inside scheduler\n");
5498 #endif
5499 
5500 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5501 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5502 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5503 			prev->comm, prev->pid, prev->non_block_count);
5504 		dump_stack();
5505 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5506 	}
5507 #endif
5508 
5509 	if (unlikely(in_atomic_preempt_off())) {
5510 		__schedule_bug(prev);
5511 		preempt_count_set(PREEMPT_DISABLED);
5512 	}
5513 	rcu_sleep_check();
5514 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5515 
5516 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5517 
5518 	schedstat_inc(this_rq()->sched_count);
5519 }
5520 
5521 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5522 				  struct rq_flags *rf)
5523 {
5524 #ifdef CONFIG_SMP
5525 	const struct sched_class *class;
5526 	/*
5527 	 * We must do the balancing pass before put_prev_task(), such
5528 	 * that when we release the rq->lock the task is in the same
5529 	 * state as before we took rq->lock.
5530 	 *
5531 	 * We can terminate the balance pass as soon as we know there is
5532 	 * a runnable task of @class priority or higher.
5533 	 */
5534 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5535 		if (class->balance(rq, prev, rf))
5536 			break;
5537 	}
5538 #endif
5539 
5540 	put_prev_task(rq, prev);
5541 }
5542 
5543 /*
5544  * Pick up the highest-prio task:
5545  */
5546 static inline struct task_struct *
5547 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5548 {
5549 	const struct sched_class *class;
5550 	struct task_struct *p;
5551 
5552 	/*
5553 	 * Optimization: we know that if all tasks are in the fair class we can
5554 	 * call that function directly, but only if the @prev task wasn't of a
5555 	 * higher scheduling class, because otherwise those lose the
5556 	 * opportunity to pull in more work from other CPUs.
5557 	 */
5558 	if (likely(prev->sched_class <= &fair_sched_class &&
5559 		   rq->nr_running == rq->cfs.h_nr_running)) {
5560 
5561 		p = pick_next_task_fair(rq, prev, rf);
5562 		if (unlikely(p == RETRY_TASK))
5563 			goto restart;
5564 
5565 		/* Assume the next prioritized class is idle_sched_class */
5566 		if (!p) {
5567 			put_prev_task(rq, prev);
5568 			p = pick_next_task_idle(rq);
5569 		}
5570 
5571 		return p;
5572 	}
5573 
5574 restart:
5575 	put_prev_task_balance(rq, prev, rf);
5576 
5577 	for_each_class(class) {
5578 		p = class->pick_next_task(rq);
5579 		if (p)
5580 			return p;
5581 	}
5582 
5583 	/* The idle class should always have a runnable task: */
5584 	BUG();
5585 }
5586 
5587 #ifdef CONFIG_SCHED_CORE
5588 static inline bool is_task_rq_idle(struct task_struct *t)
5589 {
5590 	return (task_rq(t)->idle == t);
5591 }
5592 
5593 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5594 {
5595 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5596 }
5597 
5598 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5599 {
5600 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5601 		return true;
5602 
5603 	return a->core_cookie == b->core_cookie;
5604 }
5605 
5606 // XXX fairness/fwd progress conditions
5607 /*
5608  * Returns
5609  * - NULL if there is no runnable task for this class.
5610  * - the highest priority task for this runqueue if it matches
5611  *   rq->core->core_cookie or its priority is greater than max.
5612  * - Else returns idle_task.
5613  */
5614 static struct task_struct *
5615 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5616 {
5617 	struct task_struct *class_pick, *cookie_pick;
5618 	unsigned long cookie = rq->core->core_cookie;
5619 
5620 	class_pick = class->pick_task(rq);
5621 	if (!class_pick)
5622 		return NULL;
5623 
5624 	if (!cookie) {
5625 		/*
5626 		 * If class_pick is tagged, return it only if it has
5627 		 * higher priority than max.
5628 		 */
5629 		if (max && class_pick->core_cookie &&
5630 		    prio_less(class_pick, max, in_fi))
5631 			return idle_sched_class.pick_task(rq);
5632 
5633 		return class_pick;
5634 	}
5635 
5636 	/*
5637 	 * If class_pick is idle or matches cookie, return early.
5638 	 */
5639 	if (cookie_equals(class_pick, cookie))
5640 		return class_pick;
5641 
5642 	cookie_pick = sched_core_find(rq, cookie);
5643 
5644 	/*
5645 	 * If class > max && class > cookie, it is the highest priority task on
5646 	 * the core (so far) and it must be selected, otherwise we must go with
5647 	 * the cookie pick in order to satisfy the constraint.
5648 	 */
5649 	if (prio_less(cookie_pick, class_pick, in_fi) &&
5650 	    (!max || prio_less(max, class_pick, in_fi)))
5651 		return class_pick;
5652 
5653 	return cookie_pick;
5654 }
5655 
5656 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5657 
5658 static struct task_struct *
5659 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5660 {
5661 	struct task_struct *next, *max = NULL;
5662 	const struct sched_class *class;
5663 	const struct cpumask *smt_mask;
5664 	bool fi_before = false;
5665 	int i, j, cpu, occ = 0;
5666 	bool need_sync;
5667 
5668 	if (!sched_core_enabled(rq))
5669 		return __pick_next_task(rq, prev, rf);
5670 
5671 	cpu = cpu_of(rq);
5672 
5673 	/* Stopper task is switching into idle, no need core-wide selection. */
5674 	if (cpu_is_offline(cpu)) {
5675 		/*
5676 		 * Reset core_pick so that we don't enter the fastpath when
5677 		 * coming online. core_pick would already be migrated to
5678 		 * another cpu during offline.
5679 		 */
5680 		rq->core_pick = NULL;
5681 		return __pick_next_task(rq, prev, rf);
5682 	}
5683 
5684 	/*
5685 	 * If there were no {en,de}queues since we picked (IOW, the task
5686 	 * pointers are all still valid), and we haven't scheduled the last
5687 	 * pick yet, do so now.
5688 	 *
5689 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5690 	 * it was either offline or went offline during a sibling's core-wide
5691 	 * selection. In this case, do a core-wide selection.
5692 	 */
5693 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5694 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5695 	    rq->core_pick) {
5696 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5697 
5698 		next = rq->core_pick;
5699 		if (next != prev) {
5700 			put_prev_task(rq, prev);
5701 			set_next_task(rq, next);
5702 		}
5703 
5704 		rq->core_pick = NULL;
5705 		return next;
5706 	}
5707 
5708 	put_prev_task_balance(rq, prev, rf);
5709 
5710 	smt_mask = cpu_smt_mask(cpu);
5711 	need_sync = !!rq->core->core_cookie;
5712 
5713 	/* reset state */
5714 	rq->core->core_cookie = 0UL;
5715 	if (rq->core->core_forceidle) {
5716 		need_sync = true;
5717 		fi_before = true;
5718 		rq->core->core_forceidle = false;
5719 	}
5720 
5721 	/*
5722 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5723 	 *
5724 	 * @task_seq guards the task state ({en,de}queues)
5725 	 * @pick_seq is the @task_seq we did a selection on
5726 	 * @sched_seq is the @pick_seq we scheduled
5727 	 *
5728 	 * However, preemptions can cause multiple picks on the same task set.
5729 	 * 'Fix' this by also increasing @task_seq for every pick.
5730 	 */
5731 	rq->core->core_task_seq++;
5732 
5733 	/*
5734 	 * Optimize for common case where this CPU has no cookies
5735 	 * and there are no cookied tasks running on siblings.
5736 	 */
5737 	if (!need_sync) {
5738 		for_each_class(class) {
5739 			next = class->pick_task(rq);
5740 			if (next)
5741 				break;
5742 		}
5743 
5744 		if (!next->core_cookie) {
5745 			rq->core_pick = NULL;
5746 			/*
5747 			 * For robustness, update the min_vruntime_fi for
5748 			 * unconstrained picks as well.
5749 			 */
5750 			WARN_ON_ONCE(fi_before);
5751 			task_vruntime_update(rq, next, false);
5752 			goto done;
5753 		}
5754 	}
5755 
5756 	for_each_cpu(i, smt_mask) {
5757 		struct rq *rq_i = cpu_rq(i);
5758 
5759 		rq_i->core_pick = NULL;
5760 
5761 		if (i != cpu)
5762 			update_rq_clock(rq_i);
5763 	}
5764 
5765 	/*
5766 	 * Try and select tasks for each sibling in descending sched_class
5767 	 * order.
5768 	 */
5769 	for_each_class(class) {
5770 again:
5771 		for_each_cpu_wrap(i, smt_mask, cpu) {
5772 			struct rq *rq_i = cpu_rq(i);
5773 			struct task_struct *p;
5774 
5775 			if (rq_i->core_pick)
5776 				continue;
5777 
5778 			/*
5779 			 * If this sibling doesn't yet have a suitable task to
5780 			 * run; ask for the most eligible task, given the
5781 			 * highest priority task already selected for this
5782 			 * core.
5783 			 */
5784 			p = pick_task(rq_i, class, max, fi_before);
5785 			if (!p)
5786 				continue;
5787 
5788 			if (!is_task_rq_idle(p))
5789 				occ++;
5790 
5791 			rq_i->core_pick = p;
5792 			if (rq_i->idle == p && rq_i->nr_running) {
5793 				rq->core->core_forceidle = true;
5794 				if (!fi_before)
5795 					rq->core->core_forceidle_seq++;
5796 			}
5797 
5798 			/*
5799 			 * If this new candidate is of higher priority than the
5800 			 * previous; and they're incompatible; we need to wipe
5801 			 * the slate and start over. pick_task makes sure that
5802 			 * p's priority is more than max if it doesn't match
5803 			 * max's cookie.
5804 			 *
5805 			 * NOTE: this is a linear max-filter and is thus bounded
5806 			 * in execution time.
5807 			 */
5808 			if (!max || !cookie_match(max, p)) {
5809 				struct task_struct *old_max = max;
5810 
5811 				rq->core->core_cookie = p->core_cookie;
5812 				max = p;
5813 
5814 				if (old_max) {
5815 					rq->core->core_forceidle = false;
5816 					for_each_cpu(j, smt_mask) {
5817 						if (j == i)
5818 							continue;
5819 
5820 						cpu_rq(j)->core_pick = NULL;
5821 					}
5822 					occ = 1;
5823 					goto again;
5824 				}
5825 			}
5826 		}
5827 	}
5828 
5829 	rq->core->core_pick_seq = rq->core->core_task_seq;
5830 	next = rq->core_pick;
5831 	rq->core_sched_seq = rq->core->core_pick_seq;
5832 
5833 	/* Something should have been selected for current CPU */
5834 	WARN_ON_ONCE(!next);
5835 
5836 	/*
5837 	 * Reschedule siblings
5838 	 *
5839 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5840 	 * sending an IPI (below) ensures the sibling will no longer be running
5841 	 * their task. This ensures there is no inter-sibling overlap between
5842 	 * non-matching user state.
5843 	 */
5844 	for_each_cpu(i, smt_mask) {
5845 		struct rq *rq_i = cpu_rq(i);
5846 
5847 		/*
5848 		 * An online sibling might have gone offline before a task
5849 		 * could be picked for it, or it might be offline but later
5850 		 * happen to come online, but its too late and nothing was
5851 		 * picked for it.  That's Ok - it will pick tasks for itself,
5852 		 * so ignore it.
5853 		 */
5854 		if (!rq_i->core_pick)
5855 			continue;
5856 
5857 		/*
5858 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5859 		 * fi_before     fi      update?
5860 		 *  0            0       1
5861 		 *  0            1       1
5862 		 *  1            0       1
5863 		 *  1            1       0
5864 		 */
5865 		if (!(fi_before && rq->core->core_forceidle))
5866 			task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5867 
5868 		rq_i->core_pick->core_occupation = occ;
5869 
5870 		if (i == cpu) {
5871 			rq_i->core_pick = NULL;
5872 			continue;
5873 		}
5874 
5875 		/* Did we break L1TF mitigation requirements? */
5876 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5877 
5878 		if (rq_i->curr == rq_i->core_pick) {
5879 			rq_i->core_pick = NULL;
5880 			continue;
5881 		}
5882 
5883 		resched_curr(rq_i);
5884 	}
5885 
5886 done:
5887 	set_next_task(rq, next);
5888 	return next;
5889 }
5890 
5891 static bool try_steal_cookie(int this, int that)
5892 {
5893 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5894 	struct task_struct *p;
5895 	unsigned long cookie;
5896 	bool success = false;
5897 
5898 	local_irq_disable();
5899 	double_rq_lock(dst, src);
5900 
5901 	cookie = dst->core->core_cookie;
5902 	if (!cookie)
5903 		goto unlock;
5904 
5905 	if (dst->curr != dst->idle)
5906 		goto unlock;
5907 
5908 	p = sched_core_find(src, cookie);
5909 	if (p == src->idle)
5910 		goto unlock;
5911 
5912 	do {
5913 		if (p == src->core_pick || p == src->curr)
5914 			goto next;
5915 
5916 		if (!cpumask_test_cpu(this, &p->cpus_mask))
5917 			goto next;
5918 
5919 		if (p->core_occupation > dst->idle->core_occupation)
5920 			goto next;
5921 
5922 		deactivate_task(src, p, 0);
5923 		set_task_cpu(p, this);
5924 		activate_task(dst, p, 0);
5925 
5926 		resched_curr(dst);
5927 
5928 		success = true;
5929 		break;
5930 
5931 next:
5932 		p = sched_core_next(p, cookie);
5933 	} while (p);
5934 
5935 unlock:
5936 	double_rq_unlock(dst, src);
5937 	local_irq_enable();
5938 
5939 	return success;
5940 }
5941 
5942 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5943 {
5944 	int i;
5945 
5946 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5947 		if (i == cpu)
5948 			continue;
5949 
5950 		if (need_resched())
5951 			break;
5952 
5953 		if (try_steal_cookie(cpu, i))
5954 			return true;
5955 	}
5956 
5957 	return false;
5958 }
5959 
5960 static void sched_core_balance(struct rq *rq)
5961 {
5962 	struct sched_domain *sd;
5963 	int cpu = cpu_of(rq);
5964 
5965 	preempt_disable();
5966 	rcu_read_lock();
5967 	raw_spin_rq_unlock_irq(rq);
5968 	for_each_domain(cpu, sd) {
5969 		if (need_resched())
5970 			break;
5971 
5972 		if (steal_cookie_task(cpu, sd))
5973 			break;
5974 	}
5975 	raw_spin_rq_lock_irq(rq);
5976 	rcu_read_unlock();
5977 	preempt_enable();
5978 }
5979 
5980 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5981 
5982 void queue_core_balance(struct rq *rq)
5983 {
5984 	if (!sched_core_enabled(rq))
5985 		return;
5986 
5987 	if (!rq->core->core_cookie)
5988 		return;
5989 
5990 	if (!rq->nr_running) /* not forced idle */
5991 		return;
5992 
5993 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5994 }
5995 
5996 static void sched_core_cpu_starting(unsigned int cpu)
5997 {
5998 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5999 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6000 	unsigned long flags;
6001 	int t;
6002 
6003 	sched_core_lock(cpu, &flags);
6004 
6005 	WARN_ON_ONCE(rq->core != rq);
6006 
6007 	/* if we're the first, we'll be our own leader */
6008 	if (cpumask_weight(smt_mask) == 1)
6009 		goto unlock;
6010 
6011 	/* find the leader */
6012 	for_each_cpu(t, smt_mask) {
6013 		if (t == cpu)
6014 			continue;
6015 		rq = cpu_rq(t);
6016 		if (rq->core == rq) {
6017 			core_rq = rq;
6018 			break;
6019 		}
6020 	}
6021 
6022 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6023 		goto unlock;
6024 
6025 	/* install and validate core_rq */
6026 	for_each_cpu(t, smt_mask) {
6027 		rq = cpu_rq(t);
6028 
6029 		if (t == cpu)
6030 			rq->core = core_rq;
6031 
6032 		WARN_ON_ONCE(rq->core != core_rq);
6033 	}
6034 
6035 unlock:
6036 	sched_core_unlock(cpu, &flags);
6037 }
6038 
6039 static void sched_core_cpu_deactivate(unsigned int cpu)
6040 {
6041 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6042 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6043 	unsigned long flags;
6044 	int t;
6045 
6046 	sched_core_lock(cpu, &flags);
6047 
6048 	/* if we're the last man standing, nothing to do */
6049 	if (cpumask_weight(smt_mask) == 1) {
6050 		WARN_ON_ONCE(rq->core != rq);
6051 		goto unlock;
6052 	}
6053 
6054 	/* if we're not the leader, nothing to do */
6055 	if (rq->core != rq)
6056 		goto unlock;
6057 
6058 	/* find a new leader */
6059 	for_each_cpu(t, smt_mask) {
6060 		if (t == cpu)
6061 			continue;
6062 		core_rq = cpu_rq(t);
6063 		break;
6064 	}
6065 
6066 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6067 		goto unlock;
6068 
6069 	/* copy the shared state to the new leader */
6070 	core_rq->core_task_seq      = rq->core_task_seq;
6071 	core_rq->core_pick_seq      = rq->core_pick_seq;
6072 	core_rq->core_cookie        = rq->core_cookie;
6073 	core_rq->core_forceidle     = rq->core_forceidle;
6074 	core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6075 
6076 	/* install new leader */
6077 	for_each_cpu(t, smt_mask) {
6078 		rq = cpu_rq(t);
6079 		rq->core = core_rq;
6080 	}
6081 
6082 unlock:
6083 	sched_core_unlock(cpu, &flags);
6084 }
6085 
6086 static inline void sched_core_cpu_dying(unsigned int cpu)
6087 {
6088 	struct rq *rq = cpu_rq(cpu);
6089 
6090 	if (rq->core != rq)
6091 		rq->core = rq;
6092 }
6093 
6094 #else /* !CONFIG_SCHED_CORE */
6095 
6096 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6097 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6098 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6099 
6100 static struct task_struct *
6101 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6102 {
6103 	return __pick_next_task(rq, prev, rf);
6104 }
6105 
6106 #endif /* CONFIG_SCHED_CORE */
6107 
6108 /*
6109  * Constants for the sched_mode argument of __schedule().
6110  *
6111  * The mode argument allows RT enabled kernels to differentiate a
6112  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6113  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6114  * optimize the AND operation out and just check for zero.
6115  */
6116 #define SM_NONE			0x0
6117 #define SM_PREEMPT		0x1
6118 #define SM_RTLOCK_WAIT		0x2
6119 
6120 #ifndef CONFIG_PREEMPT_RT
6121 # define SM_MASK_PREEMPT	(~0U)
6122 #else
6123 # define SM_MASK_PREEMPT	SM_PREEMPT
6124 #endif
6125 
6126 /*
6127  * __schedule() is the main scheduler function.
6128  *
6129  * The main means of driving the scheduler and thus entering this function are:
6130  *
6131  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6132  *
6133  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6134  *      paths. For example, see arch/x86/entry_64.S.
6135  *
6136  *      To drive preemption between tasks, the scheduler sets the flag in timer
6137  *      interrupt handler scheduler_tick().
6138  *
6139  *   3. Wakeups don't really cause entry into schedule(). They add a
6140  *      task to the run-queue and that's it.
6141  *
6142  *      Now, if the new task added to the run-queue preempts the current
6143  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6144  *      called on the nearest possible occasion:
6145  *
6146  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6147  *
6148  *         - in syscall or exception context, at the next outmost
6149  *           preempt_enable(). (this might be as soon as the wake_up()'s
6150  *           spin_unlock()!)
6151  *
6152  *         - in IRQ context, return from interrupt-handler to
6153  *           preemptible context
6154  *
6155  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6156  *         then at the next:
6157  *
6158  *          - cond_resched() call
6159  *          - explicit schedule() call
6160  *          - return from syscall or exception to user-space
6161  *          - return from interrupt-handler to user-space
6162  *
6163  * WARNING: must be called with preemption disabled!
6164  */
6165 static void __sched notrace __schedule(unsigned int sched_mode)
6166 {
6167 	struct task_struct *prev, *next;
6168 	unsigned long *switch_count;
6169 	unsigned long prev_state;
6170 	struct rq_flags rf;
6171 	struct rq *rq;
6172 	int cpu;
6173 
6174 	cpu = smp_processor_id();
6175 	rq = cpu_rq(cpu);
6176 	prev = rq->curr;
6177 
6178 	schedule_debug(prev, !!sched_mode);
6179 
6180 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6181 		hrtick_clear(rq);
6182 
6183 	local_irq_disable();
6184 	rcu_note_context_switch(!!sched_mode);
6185 
6186 	/*
6187 	 * Make sure that signal_pending_state()->signal_pending() below
6188 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6189 	 * done by the caller to avoid the race with signal_wake_up():
6190 	 *
6191 	 * __set_current_state(@state)		signal_wake_up()
6192 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6193 	 *					  wake_up_state(p, state)
6194 	 *   LOCK rq->lock			    LOCK p->pi_state
6195 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6196 	 *     if (signal_pending_state())	    if (p->state & @state)
6197 	 *
6198 	 * Also, the membarrier system call requires a full memory barrier
6199 	 * after coming from user-space, before storing to rq->curr.
6200 	 */
6201 	rq_lock(rq, &rf);
6202 	smp_mb__after_spinlock();
6203 
6204 	/* Promote REQ to ACT */
6205 	rq->clock_update_flags <<= 1;
6206 	update_rq_clock(rq);
6207 
6208 	switch_count = &prev->nivcsw;
6209 
6210 	/*
6211 	 * We must load prev->state once (task_struct::state is volatile), such
6212 	 * that:
6213 	 *
6214 	 *  - we form a control dependency vs deactivate_task() below.
6215 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6216 	 */
6217 	prev_state = READ_ONCE(prev->__state);
6218 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6219 		if (signal_pending_state(prev_state, prev)) {
6220 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6221 		} else {
6222 			prev->sched_contributes_to_load =
6223 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6224 				!(prev_state & TASK_NOLOAD) &&
6225 				!(prev->flags & PF_FROZEN);
6226 
6227 			if (prev->sched_contributes_to_load)
6228 				rq->nr_uninterruptible++;
6229 
6230 			/*
6231 			 * __schedule()			ttwu()
6232 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6233 			 *   if (prev_state)		    goto out;
6234 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6235 			 *				  p->state = TASK_WAKING
6236 			 *
6237 			 * Where __schedule() and ttwu() have matching control dependencies.
6238 			 *
6239 			 * After this, schedule() must not care about p->state any more.
6240 			 */
6241 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6242 
6243 			if (prev->in_iowait) {
6244 				atomic_inc(&rq->nr_iowait);
6245 				delayacct_blkio_start();
6246 			}
6247 		}
6248 		switch_count = &prev->nvcsw;
6249 	}
6250 
6251 	next = pick_next_task(rq, prev, &rf);
6252 	clear_tsk_need_resched(prev);
6253 	clear_preempt_need_resched();
6254 #ifdef CONFIG_SCHED_DEBUG
6255 	rq->last_seen_need_resched_ns = 0;
6256 #endif
6257 
6258 	if (likely(prev != next)) {
6259 		rq->nr_switches++;
6260 		/*
6261 		 * RCU users of rcu_dereference(rq->curr) may not see
6262 		 * changes to task_struct made by pick_next_task().
6263 		 */
6264 		RCU_INIT_POINTER(rq->curr, next);
6265 		/*
6266 		 * The membarrier system call requires each architecture
6267 		 * to have a full memory barrier after updating
6268 		 * rq->curr, before returning to user-space.
6269 		 *
6270 		 * Here are the schemes providing that barrier on the
6271 		 * various architectures:
6272 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6273 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6274 		 * - finish_lock_switch() for weakly-ordered
6275 		 *   architectures where spin_unlock is a full barrier,
6276 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6277 		 *   is a RELEASE barrier),
6278 		 */
6279 		++*switch_count;
6280 
6281 		migrate_disable_switch(rq, prev);
6282 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6283 
6284 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6285 
6286 		/* Also unlocks the rq: */
6287 		rq = context_switch(rq, prev, next, &rf);
6288 	} else {
6289 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6290 
6291 		rq_unpin_lock(rq, &rf);
6292 		__balance_callbacks(rq);
6293 		raw_spin_rq_unlock_irq(rq);
6294 	}
6295 }
6296 
6297 void __noreturn do_task_dead(void)
6298 {
6299 	/* Causes final put_task_struct in finish_task_switch(): */
6300 	set_special_state(TASK_DEAD);
6301 
6302 	/* Tell freezer to ignore us: */
6303 	current->flags |= PF_NOFREEZE;
6304 
6305 	__schedule(SM_NONE);
6306 	BUG();
6307 
6308 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6309 	for (;;)
6310 		cpu_relax();
6311 }
6312 
6313 static inline void sched_submit_work(struct task_struct *tsk)
6314 {
6315 	unsigned int task_flags;
6316 
6317 	if (task_is_running(tsk))
6318 		return;
6319 
6320 	task_flags = tsk->flags;
6321 	/*
6322 	 * If a worker went to sleep, notify and ask workqueue whether
6323 	 * it wants to wake up a task to maintain concurrency.
6324 	 * As this function is called inside the schedule() context,
6325 	 * we disable preemption to avoid it calling schedule() again
6326 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
6327 	 * requires it.
6328 	 */
6329 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6330 		preempt_disable();
6331 		if (task_flags & PF_WQ_WORKER)
6332 			wq_worker_sleeping(tsk);
6333 		else
6334 			io_wq_worker_sleeping(tsk);
6335 		preempt_enable_no_resched();
6336 	}
6337 
6338 	if (tsk_is_pi_blocked(tsk))
6339 		return;
6340 
6341 	/*
6342 	 * If we are going to sleep and we have plugged IO queued,
6343 	 * make sure to submit it to avoid deadlocks.
6344 	 */
6345 	if (blk_needs_flush_plug(tsk))
6346 		blk_schedule_flush_plug(tsk);
6347 }
6348 
6349 static void sched_update_worker(struct task_struct *tsk)
6350 {
6351 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6352 		if (tsk->flags & PF_WQ_WORKER)
6353 			wq_worker_running(tsk);
6354 		else
6355 			io_wq_worker_running(tsk);
6356 	}
6357 }
6358 
6359 asmlinkage __visible void __sched schedule(void)
6360 {
6361 	struct task_struct *tsk = current;
6362 
6363 	sched_submit_work(tsk);
6364 	do {
6365 		preempt_disable();
6366 		__schedule(SM_NONE);
6367 		sched_preempt_enable_no_resched();
6368 	} while (need_resched());
6369 	sched_update_worker(tsk);
6370 }
6371 EXPORT_SYMBOL(schedule);
6372 
6373 /*
6374  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6375  * state (have scheduled out non-voluntarily) by making sure that all
6376  * tasks have either left the run queue or have gone into user space.
6377  * As idle tasks do not do either, they must not ever be preempted
6378  * (schedule out non-voluntarily).
6379  *
6380  * schedule_idle() is similar to schedule_preempt_disable() except that it
6381  * never enables preemption because it does not call sched_submit_work().
6382  */
6383 void __sched schedule_idle(void)
6384 {
6385 	/*
6386 	 * As this skips calling sched_submit_work(), which the idle task does
6387 	 * regardless because that function is a nop when the task is in a
6388 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6389 	 * current task can be in any other state. Note, idle is always in the
6390 	 * TASK_RUNNING state.
6391 	 */
6392 	WARN_ON_ONCE(current->__state);
6393 	do {
6394 		__schedule(SM_NONE);
6395 	} while (need_resched());
6396 }
6397 
6398 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6399 asmlinkage __visible void __sched schedule_user(void)
6400 {
6401 	/*
6402 	 * If we come here after a random call to set_need_resched(),
6403 	 * or we have been woken up remotely but the IPI has not yet arrived,
6404 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6405 	 * we find a better solution.
6406 	 *
6407 	 * NB: There are buggy callers of this function.  Ideally we
6408 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6409 	 * too frequently to make sense yet.
6410 	 */
6411 	enum ctx_state prev_state = exception_enter();
6412 	schedule();
6413 	exception_exit(prev_state);
6414 }
6415 #endif
6416 
6417 /**
6418  * schedule_preempt_disabled - called with preemption disabled
6419  *
6420  * Returns with preemption disabled. Note: preempt_count must be 1
6421  */
6422 void __sched schedule_preempt_disabled(void)
6423 {
6424 	sched_preempt_enable_no_resched();
6425 	schedule();
6426 	preempt_disable();
6427 }
6428 
6429 #ifdef CONFIG_PREEMPT_RT
6430 void __sched notrace schedule_rtlock(void)
6431 {
6432 	do {
6433 		preempt_disable();
6434 		__schedule(SM_RTLOCK_WAIT);
6435 		sched_preempt_enable_no_resched();
6436 	} while (need_resched());
6437 }
6438 NOKPROBE_SYMBOL(schedule_rtlock);
6439 #endif
6440 
6441 static void __sched notrace preempt_schedule_common(void)
6442 {
6443 	do {
6444 		/*
6445 		 * Because the function tracer can trace preempt_count_sub()
6446 		 * and it also uses preempt_enable/disable_notrace(), if
6447 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6448 		 * by the function tracer will call this function again and
6449 		 * cause infinite recursion.
6450 		 *
6451 		 * Preemption must be disabled here before the function
6452 		 * tracer can trace. Break up preempt_disable() into two
6453 		 * calls. One to disable preemption without fear of being
6454 		 * traced. The other to still record the preemption latency,
6455 		 * which can also be traced by the function tracer.
6456 		 */
6457 		preempt_disable_notrace();
6458 		preempt_latency_start(1);
6459 		__schedule(SM_PREEMPT);
6460 		preempt_latency_stop(1);
6461 		preempt_enable_no_resched_notrace();
6462 
6463 		/*
6464 		 * Check again in case we missed a preemption opportunity
6465 		 * between schedule and now.
6466 		 */
6467 	} while (need_resched());
6468 }
6469 
6470 #ifdef CONFIG_PREEMPTION
6471 /*
6472  * This is the entry point to schedule() from in-kernel preemption
6473  * off of preempt_enable.
6474  */
6475 asmlinkage __visible void __sched notrace preempt_schedule(void)
6476 {
6477 	/*
6478 	 * If there is a non-zero preempt_count or interrupts are disabled,
6479 	 * we do not want to preempt the current task. Just return..
6480 	 */
6481 	if (likely(!preemptible()))
6482 		return;
6483 
6484 	preempt_schedule_common();
6485 }
6486 NOKPROBE_SYMBOL(preempt_schedule);
6487 EXPORT_SYMBOL(preempt_schedule);
6488 
6489 #ifdef CONFIG_PREEMPT_DYNAMIC
6490 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6491 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6492 #endif
6493 
6494 
6495 /**
6496  * preempt_schedule_notrace - preempt_schedule called by tracing
6497  *
6498  * The tracing infrastructure uses preempt_enable_notrace to prevent
6499  * recursion and tracing preempt enabling caused by the tracing
6500  * infrastructure itself. But as tracing can happen in areas coming
6501  * from userspace or just about to enter userspace, a preempt enable
6502  * can occur before user_exit() is called. This will cause the scheduler
6503  * to be called when the system is still in usermode.
6504  *
6505  * To prevent this, the preempt_enable_notrace will use this function
6506  * instead of preempt_schedule() to exit user context if needed before
6507  * calling the scheduler.
6508  */
6509 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6510 {
6511 	enum ctx_state prev_ctx;
6512 
6513 	if (likely(!preemptible()))
6514 		return;
6515 
6516 	do {
6517 		/*
6518 		 * Because the function tracer can trace preempt_count_sub()
6519 		 * and it also uses preempt_enable/disable_notrace(), if
6520 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6521 		 * by the function tracer will call this function again and
6522 		 * cause infinite recursion.
6523 		 *
6524 		 * Preemption must be disabled here before the function
6525 		 * tracer can trace. Break up preempt_disable() into two
6526 		 * calls. One to disable preemption without fear of being
6527 		 * traced. The other to still record the preemption latency,
6528 		 * which can also be traced by the function tracer.
6529 		 */
6530 		preempt_disable_notrace();
6531 		preempt_latency_start(1);
6532 		/*
6533 		 * Needs preempt disabled in case user_exit() is traced
6534 		 * and the tracer calls preempt_enable_notrace() causing
6535 		 * an infinite recursion.
6536 		 */
6537 		prev_ctx = exception_enter();
6538 		__schedule(SM_PREEMPT);
6539 		exception_exit(prev_ctx);
6540 
6541 		preempt_latency_stop(1);
6542 		preempt_enable_no_resched_notrace();
6543 	} while (need_resched());
6544 }
6545 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6546 
6547 #ifdef CONFIG_PREEMPT_DYNAMIC
6548 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6549 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6550 #endif
6551 
6552 #endif /* CONFIG_PREEMPTION */
6553 
6554 #ifdef CONFIG_PREEMPT_DYNAMIC
6555 
6556 #include <linux/entry-common.h>
6557 
6558 /*
6559  * SC:cond_resched
6560  * SC:might_resched
6561  * SC:preempt_schedule
6562  * SC:preempt_schedule_notrace
6563  * SC:irqentry_exit_cond_resched
6564  *
6565  *
6566  * NONE:
6567  *   cond_resched               <- __cond_resched
6568  *   might_resched              <- RET0
6569  *   preempt_schedule           <- NOP
6570  *   preempt_schedule_notrace   <- NOP
6571  *   irqentry_exit_cond_resched <- NOP
6572  *
6573  * VOLUNTARY:
6574  *   cond_resched               <- __cond_resched
6575  *   might_resched              <- __cond_resched
6576  *   preempt_schedule           <- NOP
6577  *   preempt_schedule_notrace   <- NOP
6578  *   irqentry_exit_cond_resched <- NOP
6579  *
6580  * FULL:
6581  *   cond_resched               <- RET0
6582  *   might_resched              <- RET0
6583  *   preempt_schedule           <- preempt_schedule
6584  *   preempt_schedule_notrace   <- preempt_schedule_notrace
6585  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6586  */
6587 
6588 enum {
6589 	preempt_dynamic_none = 0,
6590 	preempt_dynamic_voluntary,
6591 	preempt_dynamic_full,
6592 };
6593 
6594 int preempt_dynamic_mode = preempt_dynamic_full;
6595 
6596 int sched_dynamic_mode(const char *str)
6597 {
6598 	if (!strcmp(str, "none"))
6599 		return preempt_dynamic_none;
6600 
6601 	if (!strcmp(str, "voluntary"))
6602 		return preempt_dynamic_voluntary;
6603 
6604 	if (!strcmp(str, "full"))
6605 		return preempt_dynamic_full;
6606 
6607 	return -EINVAL;
6608 }
6609 
6610 void sched_dynamic_update(int mode)
6611 {
6612 	/*
6613 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6614 	 * the ZERO state, which is invalid.
6615 	 */
6616 	static_call_update(cond_resched, __cond_resched);
6617 	static_call_update(might_resched, __cond_resched);
6618 	static_call_update(preempt_schedule, __preempt_schedule_func);
6619 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6620 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6621 
6622 	switch (mode) {
6623 	case preempt_dynamic_none:
6624 		static_call_update(cond_resched, __cond_resched);
6625 		static_call_update(might_resched, (void *)&__static_call_return0);
6626 		static_call_update(preempt_schedule, NULL);
6627 		static_call_update(preempt_schedule_notrace, NULL);
6628 		static_call_update(irqentry_exit_cond_resched, NULL);
6629 		pr_info("Dynamic Preempt: none\n");
6630 		break;
6631 
6632 	case preempt_dynamic_voluntary:
6633 		static_call_update(cond_resched, __cond_resched);
6634 		static_call_update(might_resched, __cond_resched);
6635 		static_call_update(preempt_schedule, NULL);
6636 		static_call_update(preempt_schedule_notrace, NULL);
6637 		static_call_update(irqentry_exit_cond_resched, NULL);
6638 		pr_info("Dynamic Preempt: voluntary\n");
6639 		break;
6640 
6641 	case preempt_dynamic_full:
6642 		static_call_update(cond_resched, (void *)&__static_call_return0);
6643 		static_call_update(might_resched, (void *)&__static_call_return0);
6644 		static_call_update(preempt_schedule, __preempt_schedule_func);
6645 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6646 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6647 		pr_info("Dynamic Preempt: full\n");
6648 		break;
6649 	}
6650 
6651 	preempt_dynamic_mode = mode;
6652 }
6653 
6654 static int __init setup_preempt_mode(char *str)
6655 {
6656 	int mode = sched_dynamic_mode(str);
6657 	if (mode < 0) {
6658 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6659 		return 1;
6660 	}
6661 
6662 	sched_dynamic_update(mode);
6663 	return 0;
6664 }
6665 __setup("preempt=", setup_preempt_mode);
6666 
6667 #endif /* CONFIG_PREEMPT_DYNAMIC */
6668 
6669 /*
6670  * This is the entry point to schedule() from kernel preemption
6671  * off of irq context.
6672  * Note, that this is called and return with irqs disabled. This will
6673  * protect us against recursive calling from irq.
6674  */
6675 asmlinkage __visible void __sched preempt_schedule_irq(void)
6676 {
6677 	enum ctx_state prev_state;
6678 
6679 	/* Catch callers which need to be fixed */
6680 	BUG_ON(preempt_count() || !irqs_disabled());
6681 
6682 	prev_state = exception_enter();
6683 
6684 	do {
6685 		preempt_disable();
6686 		local_irq_enable();
6687 		__schedule(SM_PREEMPT);
6688 		local_irq_disable();
6689 		sched_preempt_enable_no_resched();
6690 	} while (need_resched());
6691 
6692 	exception_exit(prev_state);
6693 }
6694 
6695 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6696 			  void *key)
6697 {
6698 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6699 	return try_to_wake_up(curr->private, mode, wake_flags);
6700 }
6701 EXPORT_SYMBOL(default_wake_function);
6702 
6703 static void __setscheduler_prio(struct task_struct *p, int prio)
6704 {
6705 	if (dl_prio(prio))
6706 		p->sched_class = &dl_sched_class;
6707 	else if (rt_prio(prio))
6708 		p->sched_class = &rt_sched_class;
6709 	else
6710 		p->sched_class = &fair_sched_class;
6711 
6712 	p->prio = prio;
6713 }
6714 
6715 #ifdef CONFIG_RT_MUTEXES
6716 
6717 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6718 {
6719 	if (pi_task)
6720 		prio = min(prio, pi_task->prio);
6721 
6722 	return prio;
6723 }
6724 
6725 static inline int rt_effective_prio(struct task_struct *p, int prio)
6726 {
6727 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6728 
6729 	return __rt_effective_prio(pi_task, prio);
6730 }
6731 
6732 /*
6733  * rt_mutex_setprio - set the current priority of a task
6734  * @p: task to boost
6735  * @pi_task: donor task
6736  *
6737  * This function changes the 'effective' priority of a task. It does
6738  * not touch ->normal_prio like __setscheduler().
6739  *
6740  * Used by the rt_mutex code to implement priority inheritance
6741  * logic. Call site only calls if the priority of the task changed.
6742  */
6743 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6744 {
6745 	int prio, oldprio, queued, running, queue_flag =
6746 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6747 	const struct sched_class *prev_class;
6748 	struct rq_flags rf;
6749 	struct rq *rq;
6750 
6751 	/* XXX used to be waiter->prio, not waiter->task->prio */
6752 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6753 
6754 	/*
6755 	 * If nothing changed; bail early.
6756 	 */
6757 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6758 		return;
6759 
6760 	rq = __task_rq_lock(p, &rf);
6761 	update_rq_clock(rq);
6762 	/*
6763 	 * Set under pi_lock && rq->lock, such that the value can be used under
6764 	 * either lock.
6765 	 *
6766 	 * Note that there is loads of tricky to make this pointer cache work
6767 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6768 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6769 	 * task is allowed to run again (and can exit). This ensures the pointer
6770 	 * points to a blocked task -- which guarantees the task is present.
6771 	 */
6772 	p->pi_top_task = pi_task;
6773 
6774 	/*
6775 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6776 	 */
6777 	if (prio == p->prio && !dl_prio(prio))
6778 		goto out_unlock;
6779 
6780 	/*
6781 	 * Idle task boosting is a nono in general. There is one
6782 	 * exception, when PREEMPT_RT and NOHZ is active:
6783 	 *
6784 	 * The idle task calls get_next_timer_interrupt() and holds
6785 	 * the timer wheel base->lock on the CPU and another CPU wants
6786 	 * to access the timer (probably to cancel it). We can safely
6787 	 * ignore the boosting request, as the idle CPU runs this code
6788 	 * with interrupts disabled and will complete the lock
6789 	 * protected section without being interrupted. So there is no
6790 	 * real need to boost.
6791 	 */
6792 	if (unlikely(p == rq->idle)) {
6793 		WARN_ON(p != rq->curr);
6794 		WARN_ON(p->pi_blocked_on);
6795 		goto out_unlock;
6796 	}
6797 
6798 	trace_sched_pi_setprio(p, pi_task);
6799 	oldprio = p->prio;
6800 
6801 	if (oldprio == prio)
6802 		queue_flag &= ~DEQUEUE_MOVE;
6803 
6804 	prev_class = p->sched_class;
6805 	queued = task_on_rq_queued(p);
6806 	running = task_current(rq, p);
6807 	if (queued)
6808 		dequeue_task(rq, p, queue_flag);
6809 	if (running)
6810 		put_prev_task(rq, p);
6811 
6812 	/*
6813 	 * Boosting condition are:
6814 	 * 1. -rt task is running and holds mutex A
6815 	 *      --> -dl task blocks on mutex A
6816 	 *
6817 	 * 2. -dl task is running and holds mutex A
6818 	 *      --> -dl task blocks on mutex A and could preempt the
6819 	 *          running task
6820 	 */
6821 	if (dl_prio(prio)) {
6822 		if (!dl_prio(p->normal_prio) ||
6823 		    (pi_task && dl_prio(pi_task->prio) &&
6824 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6825 			p->dl.pi_se = pi_task->dl.pi_se;
6826 			queue_flag |= ENQUEUE_REPLENISH;
6827 		} else {
6828 			p->dl.pi_se = &p->dl;
6829 		}
6830 	} else if (rt_prio(prio)) {
6831 		if (dl_prio(oldprio))
6832 			p->dl.pi_se = &p->dl;
6833 		if (oldprio < prio)
6834 			queue_flag |= ENQUEUE_HEAD;
6835 	} else {
6836 		if (dl_prio(oldprio))
6837 			p->dl.pi_se = &p->dl;
6838 		if (rt_prio(oldprio))
6839 			p->rt.timeout = 0;
6840 	}
6841 
6842 	__setscheduler_prio(p, prio);
6843 
6844 	if (queued)
6845 		enqueue_task(rq, p, queue_flag);
6846 	if (running)
6847 		set_next_task(rq, p);
6848 
6849 	check_class_changed(rq, p, prev_class, oldprio);
6850 out_unlock:
6851 	/* Avoid rq from going away on us: */
6852 	preempt_disable();
6853 
6854 	rq_unpin_lock(rq, &rf);
6855 	__balance_callbacks(rq);
6856 	raw_spin_rq_unlock(rq);
6857 
6858 	preempt_enable();
6859 }
6860 #else
6861 static inline int rt_effective_prio(struct task_struct *p, int prio)
6862 {
6863 	return prio;
6864 }
6865 #endif
6866 
6867 void set_user_nice(struct task_struct *p, long nice)
6868 {
6869 	bool queued, running;
6870 	int old_prio;
6871 	struct rq_flags rf;
6872 	struct rq *rq;
6873 
6874 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6875 		return;
6876 	/*
6877 	 * We have to be careful, if called from sys_setpriority(),
6878 	 * the task might be in the middle of scheduling on another CPU.
6879 	 */
6880 	rq = task_rq_lock(p, &rf);
6881 	update_rq_clock(rq);
6882 
6883 	/*
6884 	 * The RT priorities are set via sched_setscheduler(), but we still
6885 	 * allow the 'normal' nice value to be set - but as expected
6886 	 * it won't have any effect on scheduling until the task is
6887 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6888 	 */
6889 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6890 		p->static_prio = NICE_TO_PRIO(nice);
6891 		goto out_unlock;
6892 	}
6893 	queued = task_on_rq_queued(p);
6894 	running = task_current(rq, p);
6895 	if (queued)
6896 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6897 	if (running)
6898 		put_prev_task(rq, p);
6899 
6900 	p->static_prio = NICE_TO_PRIO(nice);
6901 	set_load_weight(p, true);
6902 	old_prio = p->prio;
6903 	p->prio = effective_prio(p);
6904 
6905 	if (queued)
6906 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6907 	if (running)
6908 		set_next_task(rq, p);
6909 
6910 	/*
6911 	 * If the task increased its priority or is running and
6912 	 * lowered its priority, then reschedule its CPU:
6913 	 */
6914 	p->sched_class->prio_changed(rq, p, old_prio);
6915 
6916 out_unlock:
6917 	task_rq_unlock(rq, p, &rf);
6918 }
6919 EXPORT_SYMBOL(set_user_nice);
6920 
6921 /*
6922  * can_nice - check if a task can reduce its nice value
6923  * @p: task
6924  * @nice: nice value
6925  */
6926 int can_nice(const struct task_struct *p, const int nice)
6927 {
6928 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6929 	int nice_rlim = nice_to_rlimit(nice);
6930 
6931 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6932 		capable(CAP_SYS_NICE));
6933 }
6934 
6935 #ifdef __ARCH_WANT_SYS_NICE
6936 
6937 /*
6938  * sys_nice - change the priority of the current process.
6939  * @increment: priority increment
6940  *
6941  * sys_setpriority is a more generic, but much slower function that
6942  * does similar things.
6943  */
6944 SYSCALL_DEFINE1(nice, int, increment)
6945 {
6946 	long nice, retval;
6947 
6948 	/*
6949 	 * Setpriority might change our priority at the same moment.
6950 	 * We don't have to worry. Conceptually one call occurs first
6951 	 * and we have a single winner.
6952 	 */
6953 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6954 	nice = task_nice(current) + increment;
6955 
6956 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6957 	if (increment < 0 && !can_nice(current, nice))
6958 		return -EPERM;
6959 
6960 	retval = security_task_setnice(current, nice);
6961 	if (retval)
6962 		return retval;
6963 
6964 	set_user_nice(current, nice);
6965 	return 0;
6966 }
6967 
6968 #endif
6969 
6970 /**
6971  * task_prio - return the priority value of a given task.
6972  * @p: the task in question.
6973  *
6974  * Return: The priority value as seen by users in /proc.
6975  *
6976  * sched policy         return value   kernel prio    user prio/nice
6977  *
6978  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6979  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6980  * deadline                     -101             -1           0
6981  */
6982 int task_prio(const struct task_struct *p)
6983 {
6984 	return p->prio - MAX_RT_PRIO;
6985 }
6986 
6987 /**
6988  * idle_cpu - is a given CPU idle currently?
6989  * @cpu: the processor in question.
6990  *
6991  * Return: 1 if the CPU is currently idle. 0 otherwise.
6992  */
6993 int idle_cpu(int cpu)
6994 {
6995 	struct rq *rq = cpu_rq(cpu);
6996 
6997 	if (rq->curr != rq->idle)
6998 		return 0;
6999 
7000 	if (rq->nr_running)
7001 		return 0;
7002 
7003 #ifdef CONFIG_SMP
7004 	if (rq->ttwu_pending)
7005 		return 0;
7006 #endif
7007 
7008 	return 1;
7009 }
7010 
7011 /**
7012  * available_idle_cpu - is a given CPU idle for enqueuing work.
7013  * @cpu: the CPU in question.
7014  *
7015  * Return: 1 if the CPU is currently idle. 0 otherwise.
7016  */
7017 int available_idle_cpu(int cpu)
7018 {
7019 	if (!idle_cpu(cpu))
7020 		return 0;
7021 
7022 	if (vcpu_is_preempted(cpu))
7023 		return 0;
7024 
7025 	return 1;
7026 }
7027 
7028 /**
7029  * idle_task - return the idle task for a given CPU.
7030  * @cpu: the processor in question.
7031  *
7032  * Return: The idle task for the CPU @cpu.
7033  */
7034 struct task_struct *idle_task(int cpu)
7035 {
7036 	return cpu_rq(cpu)->idle;
7037 }
7038 
7039 #ifdef CONFIG_SMP
7040 /*
7041  * This function computes an effective utilization for the given CPU, to be
7042  * used for frequency selection given the linear relation: f = u * f_max.
7043  *
7044  * The scheduler tracks the following metrics:
7045  *
7046  *   cpu_util_{cfs,rt,dl,irq}()
7047  *   cpu_bw_dl()
7048  *
7049  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7050  * synchronized windows and are thus directly comparable.
7051  *
7052  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7053  * which excludes things like IRQ and steal-time. These latter are then accrued
7054  * in the irq utilization.
7055  *
7056  * The DL bandwidth number otoh is not a measured metric but a value computed
7057  * based on the task model parameters and gives the minimal utilization
7058  * required to meet deadlines.
7059  */
7060 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7061 				 unsigned long max, enum cpu_util_type type,
7062 				 struct task_struct *p)
7063 {
7064 	unsigned long dl_util, util, irq;
7065 	struct rq *rq = cpu_rq(cpu);
7066 
7067 	if (!uclamp_is_used() &&
7068 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7069 		return max;
7070 	}
7071 
7072 	/*
7073 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7074 	 * because of inaccuracies in how we track these -- see
7075 	 * update_irq_load_avg().
7076 	 */
7077 	irq = cpu_util_irq(rq);
7078 	if (unlikely(irq >= max))
7079 		return max;
7080 
7081 	/*
7082 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7083 	 * CFS tasks and we use the same metric to track the effective
7084 	 * utilization (PELT windows are synchronized) we can directly add them
7085 	 * to obtain the CPU's actual utilization.
7086 	 *
7087 	 * CFS and RT utilization can be boosted or capped, depending on
7088 	 * utilization clamp constraints requested by currently RUNNABLE
7089 	 * tasks.
7090 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7091 	 * frequency will be gracefully reduced with the utilization decay.
7092 	 */
7093 	util = util_cfs + cpu_util_rt(rq);
7094 	if (type == FREQUENCY_UTIL)
7095 		util = uclamp_rq_util_with(rq, util, p);
7096 
7097 	dl_util = cpu_util_dl(rq);
7098 
7099 	/*
7100 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7101 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7102 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7103 	 * that we select f_max when there is no idle time.
7104 	 *
7105 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7106 	 * saturation when we should -- something for later.
7107 	 */
7108 	if (util + dl_util >= max)
7109 		return max;
7110 
7111 	/*
7112 	 * OTOH, for energy computation we need the estimated running time, so
7113 	 * include util_dl and ignore dl_bw.
7114 	 */
7115 	if (type == ENERGY_UTIL)
7116 		util += dl_util;
7117 
7118 	/*
7119 	 * There is still idle time; further improve the number by using the
7120 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7121 	 * need to scale the task numbers:
7122 	 *
7123 	 *              max - irq
7124 	 *   U' = irq + --------- * U
7125 	 *                 max
7126 	 */
7127 	util = scale_irq_capacity(util, irq, max);
7128 	util += irq;
7129 
7130 	/*
7131 	 * Bandwidth required by DEADLINE must always be granted while, for
7132 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7133 	 * to gracefully reduce the frequency when no tasks show up for longer
7134 	 * periods of time.
7135 	 *
7136 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7137 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7138 	 * an interface. So, we only do the latter for now.
7139 	 */
7140 	if (type == FREQUENCY_UTIL)
7141 		util += cpu_bw_dl(rq);
7142 
7143 	return min(max, util);
7144 }
7145 
7146 unsigned long sched_cpu_util(int cpu, unsigned long max)
7147 {
7148 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7149 				  ENERGY_UTIL, NULL);
7150 }
7151 #endif /* CONFIG_SMP */
7152 
7153 /**
7154  * find_process_by_pid - find a process with a matching PID value.
7155  * @pid: the pid in question.
7156  *
7157  * The task of @pid, if found. %NULL otherwise.
7158  */
7159 static struct task_struct *find_process_by_pid(pid_t pid)
7160 {
7161 	return pid ? find_task_by_vpid(pid) : current;
7162 }
7163 
7164 /*
7165  * sched_setparam() passes in -1 for its policy, to let the functions
7166  * it calls know not to change it.
7167  */
7168 #define SETPARAM_POLICY	-1
7169 
7170 static void __setscheduler_params(struct task_struct *p,
7171 		const struct sched_attr *attr)
7172 {
7173 	int policy = attr->sched_policy;
7174 
7175 	if (policy == SETPARAM_POLICY)
7176 		policy = p->policy;
7177 
7178 	p->policy = policy;
7179 
7180 	if (dl_policy(policy))
7181 		__setparam_dl(p, attr);
7182 	else if (fair_policy(policy))
7183 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7184 
7185 	/*
7186 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7187 	 * !rt_policy. Always setting this ensures that things like
7188 	 * getparam()/getattr() don't report silly values for !rt tasks.
7189 	 */
7190 	p->rt_priority = attr->sched_priority;
7191 	p->normal_prio = normal_prio(p);
7192 	set_load_weight(p, true);
7193 }
7194 
7195 /*
7196  * Check the target process has a UID that matches the current process's:
7197  */
7198 static bool check_same_owner(struct task_struct *p)
7199 {
7200 	const struct cred *cred = current_cred(), *pcred;
7201 	bool match;
7202 
7203 	rcu_read_lock();
7204 	pcred = __task_cred(p);
7205 	match = (uid_eq(cred->euid, pcred->euid) ||
7206 		 uid_eq(cred->euid, pcred->uid));
7207 	rcu_read_unlock();
7208 	return match;
7209 }
7210 
7211 static int __sched_setscheduler(struct task_struct *p,
7212 				const struct sched_attr *attr,
7213 				bool user, bool pi)
7214 {
7215 	int oldpolicy = -1, policy = attr->sched_policy;
7216 	int retval, oldprio, newprio, queued, running;
7217 	const struct sched_class *prev_class;
7218 	struct callback_head *head;
7219 	struct rq_flags rf;
7220 	int reset_on_fork;
7221 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7222 	struct rq *rq;
7223 
7224 	/* The pi code expects interrupts enabled */
7225 	BUG_ON(pi && in_interrupt());
7226 recheck:
7227 	/* Double check policy once rq lock held: */
7228 	if (policy < 0) {
7229 		reset_on_fork = p->sched_reset_on_fork;
7230 		policy = oldpolicy = p->policy;
7231 	} else {
7232 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7233 
7234 		if (!valid_policy(policy))
7235 			return -EINVAL;
7236 	}
7237 
7238 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7239 		return -EINVAL;
7240 
7241 	/*
7242 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7243 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7244 	 * SCHED_BATCH and SCHED_IDLE is 0.
7245 	 */
7246 	if (attr->sched_priority > MAX_RT_PRIO-1)
7247 		return -EINVAL;
7248 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7249 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7250 		return -EINVAL;
7251 
7252 	/*
7253 	 * Allow unprivileged RT tasks to decrease priority:
7254 	 */
7255 	if (user && !capable(CAP_SYS_NICE)) {
7256 		if (fair_policy(policy)) {
7257 			if (attr->sched_nice < task_nice(p) &&
7258 			    !can_nice(p, attr->sched_nice))
7259 				return -EPERM;
7260 		}
7261 
7262 		if (rt_policy(policy)) {
7263 			unsigned long rlim_rtprio =
7264 					task_rlimit(p, RLIMIT_RTPRIO);
7265 
7266 			/* Can't set/change the rt policy: */
7267 			if (policy != p->policy && !rlim_rtprio)
7268 				return -EPERM;
7269 
7270 			/* Can't increase priority: */
7271 			if (attr->sched_priority > p->rt_priority &&
7272 			    attr->sched_priority > rlim_rtprio)
7273 				return -EPERM;
7274 		}
7275 
7276 		 /*
7277 		  * Can't set/change SCHED_DEADLINE policy at all for now
7278 		  * (safest behavior); in the future we would like to allow
7279 		  * unprivileged DL tasks to increase their relative deadline
7280 		  * or reduce their runtime (both ways reducing utilization)
7281 		  */
7282 		if (dl_policy(policy))
7283 			return -EPERM;
7284 
7285 		/*
7286 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7287 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7288 		 */
7289 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
7290 			if (!can_nice(p, task_nice(p)))
7291 				return -EPERM;
7292 		}
7293 
7294 		/* Can't change other user's priorities: */
7295 		if (!check_same_owner(p))
7296 			return -EPERM;
7297 
7298 		/* Normal users shall not reset the sched_reset_on_fork flag: */
7299 		if (p->sched_reset_on_fork && !reset_on_fork)
7300 			return -EPERM;
7301 	}
7302 
7303 	if (user) {
7304 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7305 			return -EINVAL;
7306 
7307 		retval = security_task_setscheduler(p);
7308 		if (retval)
7309 			return retval;
7310 	}
7311 
7312 	/* Update task specific "requested" clamps */
7313 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7314 		retval = uclamp_validate(p, attr);
7315 		if (retval)
7316 			return retval;
7317 	}
7318 
7319 	if (pi)
7320 		cpuset_read_lock();
7321 
7322 	/*
7323 	 * Make sure no PI-waiters arrive (or leave) while we are
7324 	 * changing the priority of the task:
7325 	 *
7326 	 * To be able to change p->policy safely, the appropriate
7327 	 * runqueue lock must be held.
7328 	 */
7329 	rq = task_rq_lock(p, &rf);
7330 	update_rq_clock(rq);
7331 
7332 	/*
7333 	 * Changing the policy of the stop threads its a very bad idea:
7334 	 */
7335 	if (p == rq->stop) {
7336 		retval = -EINVAL;
7337 		goto unlock;
7338 	}
7339 
7340 	/*
7341 	 * If not changing anything there's no need to proceed further,
7342 	 * but store a possible modification of reset_on_fork.
7343 	 */
7344 	if (unlikely(policy == p->policy)) {
7345 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7346 			goto change;
7347 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7348 			goto change;
7349 		if (dl_policy(policy) && dl_param_changed(p, attr))
7350 			goto change;
7351 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7352 			goto change;
7353 
7354 		p->sched_reset_on_fork = reset_on_fork;
7355 		retval = 0;
7356 		goto unlock;
7357 	}
7358 change:
7359 
7360 	if (user) {
7361 #ifdef CONFIG_RT_GROUP_SCHED
7362 		/*
7363 		 * Do not allow realtime tasks into groups that have no runtime
7364 		 * assigned.
7365 		 */
7366 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7367 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7368 				!task_group_is_autogroup(task_group(p))) {
7369 			retval = -EPERM;
7370 			goto unlock;
7371 		}
7372 #endif
7373 #ifdef CONFIG_SMP
7374 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7375 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7376 			cpumask_t *span = rq->rd->span;
7377 
7378 			/*
7379 			 * Don't allow tasks with an affinity mask smaller than
7380 			 * the entire root_domain to become SCHED_DEADLINE. We
7381 			 * will also fail if there's no bandwidth available.
7382 			 */
7383 			if (!cpumask_subset(span, p->cpus_ptr) ||
7384 			    rq->rd->dl_bw.bw == 0) {
7385 				retval = -EPERM;
7386 				goto unlock;
7387 			}
7388 		}
7389 #endif
7390 	}
7391 
7392 	/* Re-check policy now with rq lock held: */
7393 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7394 		policy = oldpolicy = -1;
7395 		task_rq_unlock(rq, p, &rf);
7396 		if (pi)
7397 			cpuset_read_unlock();
7398 		goto recheck;
7399 	}
7400 
7401 	/*
7402 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7403 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7404 	 * is available.
7405 	 */
7406 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7407 		retval = -EBUSY;
7408 		goto unlock;
7409 	}
7410 
7411 	p->sched_reset_on_fork = reset_on_fork;
7412 	oldprio = p->prio;
7413 
7414 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7415 	if (pi) {
7416 		/*
7417 		 * Take priority boosted tasks into account. If the new
7418 		 * effective priority is unchanged, we just store the new
7419 		 * normal parameters and do not touch the scheduler class and
7420 		 * the runqueue. This will be done when the task deboost
7421 		 * itself.
7422 		 */
7423 		newprio = rt_effective_prio(p, newprio);
7424 		if (newprio == oldprio)
7425 			queue_flags &= ~DEQUEUE_MOVE;
7426 	}
7427 
7428 	queued = task_on_rq_queued(p);
7429 	running = task_current(rq, p);
7430 	if (queued)
7431 		dequeue_task(rq, p, queue_flags);
7432 	if (running)
7433 		put_prev_task(rq, p);
7434 
7435 	prev_class = p->sched_class;
7436 
7437 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7438 		__setscheduler_params(p, attr);
7439 		__setscheduler_prio(p, newprio);
7440 	}
7441 	__setscheduler_uclamp(p, attr);
7442 
7443 	if (queued) {
7444 		/*
7445 		 * We enqueue to tail when the priority of a task is
7446 		 * increased (user space view).
7447 		 */
7448 		if (oldprio < p->prio)
7449 			queue_flags |= ENQUEUE_HEAD;
7450 
7451 		enqueue_task(rq, p, queue_flags);
7452 	}
7453 	if (running)
7454 		set_next_task(rq, p);
7455 
7456 	check_class_changed(rq, p, prev_class, oldprio);
7457 
7458 	/* Avoid rq from going away on us: */
7459 	preempt_disable();
7460 	head = splice_balance_callbacks(rq);
7461 	task_rq_unlock(rq, p, &rf);
7462 
7463 	if (pi) {
7464 		cpuset_read_unlock();
7465 		rt_mutex_adjust_pi(p);
7466 	}
7467 
7468 	/* Run balance callbacks after we've adjusted the PI chain: */
7469 	balance_callbacks(rq, head);
7470 	preempt_enable();
7471 
7472 	return 0;
7473 
7474 unlock:
7475 	task_rq_unlock(rq, p, &rf);
7476 	if (pi)
7477 		cpuset_read_unlock();
7478 	return retval;
7479 }
7480 
7481 static int _sched_setscheduler(struct task_struct *p, int policy,
7482 			       const struct sched_param *param, bool check)
7483 {
7484 	struct sched_attr attr = {
7485 		.sched_policy   = policy,
7486 		.sched_priority = param->sched_priority,
7487 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7488 	};
7489 
7490 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7491 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7492 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7493 		policy &= ~SCHED_RESET_ON_FORK;
7494 		attr.sched_policy = policy;
7495 	}
7496 
7497 	return __sched_setscheduler(p, &attr, check, true);
7498 }
7499 /**
7500  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7501  * @p: the task in question.
7502  * @policy: new policy.
7503  * @param: structure containing the new RT priority.
7504  *
7505  * Use sched_set_fifo(), read its comment.
7506  *
7507  * Return: 0 on success. An error code otherwise.
7508  *
7509  * NOTE that the task may be already dead.
7510  */
7511 int sched_setscheduler(struct task_struct *p, int policy,
7512 		       const struct sched_param *param)
7513 {
7514 	return _sched_setscheduler(p, policy, param, true);
7515 }
7516 
7517 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7518 {
7519 	return __sched_setscheduler(p, attr, true, true);
7520 }
7521 
7522 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7523 {
7524 	return __sched_setscheduler(p, attr, false, true);
7525 }
7526 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7527 
7528 /**
7529  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7530  * @p: the task in question.
7531  * @policy: new policy.
7532  * @param: structure containing the new RT priority.
7533  *
7534  * Just like sched_setscheduler, only don't bother checking if the
7535  * current context has permission.  For example, this is needed in
7536  * stop_machine(): we create temporary high priority worker threads,
7537  * but our caller might not have that capability.
7538  *
7539  * Return: 0 on success. An error code otherwise.
7540  */
7541 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7542 			       const struct sched_param *param)
7543 {
7544 	return _sched_setscheduler(p, policy, param, false);
7545 }
7546 
7547 /*
7548  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7549  * incapable of resource management, which is the one thing an OS really should
7550  * be doing.
7551  *
7552  * This is of course the reason it is limited to privileged users only.
7553  *
7554  * Worse still; it is fundamentally impossible to compose static priority
7555  * workloads. You cannot take two correctly working static prio workloads
7556  * and smash them together and still expect them to work.
7557  *
7558  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7559  *
7560  *   MAX_RT_PRIO / 2
7561  *
7562  * The administrator _MUST_ configure the system, the kernel simply doesn't
7563  * know enough information to make a sensible choice.
7564  */
7565 void sched_set_fifo(struct task_struct *p)
7566 {
7567 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7568 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7569 }
7570 EXPORT_SYMBOL_GPL(sched_set_fifo);
7571 
7572 /*
7573  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7574  */
7575 void sched_set_fifo_low(struct task_struct *p)
7576 {
7577 	struct sched_param sp = { .sched_priority = 1 };
7578 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7579 }
7580 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7581 
7582 void sched_set_normal(struct task_struct *p, int nice)
7583 {
7584 	struct sched_attr attr = {
7585 		.sched_policy = SCHED_NORMAL,
7586 		.sched_nice = nice,
7587 	};
7588 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7589 }
7590 EXPORT_SYMBOL_GPL(sched_set_normal);
7591 
7592 static int
7593 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7594 {
7595 	struct sched_param lparam;
7596 	struct task_struct *p;
7597 	int retval;
7598 
7599 	if (!param || pid < 0)
7600 		return -EINVAL;
7601 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7602 		return -EFAULT;
7603 
7604 	rcu_read_lock();
7605 	retval = -ESRCH;
7606 	p = find_process_by_pid(pid);
7607 	if (likely(p))
7608 		get_task_struct(p);
7609 	rcu_read_unlock();
7610 
7611 	if (likely(p)) {
7612 		retval = sched_setscheduler(p, policy, &lparam);
7613 		put_task_struct(p);
7614 	}
7615 
7616 	return retval;
7617 }
7618 
7619 /*
7620  * Mimics kernel/events/core.c perf_copy_attr().
7621  */
7622 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7623 {
7624 	u32 size;
7625 	int ret;
7626 
7627 	/* Zero the full structure, so that a short copy will be nice: */
7628 	memset(attr, 0, sizeof(*attr));
7629 
7630 	ret = get_user(size, &uattr->size);
7631 	if (ret)
7632 		return ret;
7633 
7634 	/* ABI compatibility quirk: */
7635 	if (!size)
7636 		size = SCHED_ATTR_SIZE_VER0;
7637 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7638 		goto err_size;
7639 
7640 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7641 	if (ret) {
7642 		if (ret == -E2BIG)
7643 			goto err_size;
7644 		return ret;
7645 	}
7646 
7647 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7648 	    size < SCHED_ATTR_SIZE_VER1)
7649 		return -EINVAL;
7650 
7651 	/*
7652 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7653 	 * to be strict and return an error on out-of-bounds values?
7654 	 */
7655 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7656 
7657 	return 0;
7658 
7659 err_size:
7660 	put_user(sizeof(*attr), &uattr->size);
7661 	return -E2BIG;
7662 }
7663 
7664 static void get_params(struct task_struct *p, struct sched_attr *attr)
7665 {
7666 	if (task_has_dl_policy(p))
7667 		__getparam_dl(p, attr);
7668 	else if (task_has_rt_policy(p))
7669 		attr->sched_priority = p->rt_priority;
7670 	else
7671 		attr->sched_nice = task_nice(p);
7672 }
7673 
7674 /**
7675  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7676  * @pid: the pid in question.
7677  * @policy: new policy.
7678  * @param: structure containing the new RT priority.
7679  *
7680  * Return: 0 on success. An error code otherwise.
7681  */
7682 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7683 {
7684 	if (policy < 0)
7685 		return -EINVAL;
7686 
7687 	return do_sched_setscheduler(pid, policy, param);
7688 }
7689 
7690 /**
7691  * sys_sched_setparam - set/change the RT priority of a thread
7692  * @pid: the pid in question.
7693  * @param: structure containing the new RT priority.
7694  *
7695  * Return: 0 on success. An error code otherwise.
7696  */
7697 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7698 {
7699 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7700 }
7701 
7702 /**
7703  * sys_sched_setattr - same as above, but with extended sched_attr
7704  * @pid: the pid in question.
7705  * @uattr: structure containing the extended parameters.
7706  * @flags: for future extension.
7707  */
7708 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7709 			       unsigned int, flags)
7710 {
7711 	struct sched_attr attr;
7712 	struct task_struct *p;
7713 	int retval;
7714 
7715 	if (!uattr || pid < 0 || flags)
7716 		return -EINVAL;
7717 
7718 	retval = sched_copy_attr(uattr, &attr);
7719 	if (retval)
7720 		return retval;
7721 
7722 	if ((int)attr.sched_policy < 0)
7723 		return -EINVAL;
7724 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7725 		attr.sched_policy = SETPARAM_POLICY;
7726 
7727 	rcu_read_lock();
7728 	retval = -ESRCH;
7729 	p = find_process_by_pid(pid);
7730 	if (likely(p))
7731 		get_task_struct(p);
7732 	rcu_read_unlock();
7733 
7734 	if (likely(p)) {
7735 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7736 			get_params(p, &attr);
7737 		retval = sched_setattr(p, &attr);
7738 		put_task_struct(p);
7739 	}
7740 
7741 	return retval;
7742 }
7743 
7744 /**
7745  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7746  * @pid: the pid in question.
7747  *
7748  * Return: On success, the policy of the thread. Otherwise, a negative error
7749  * code.
7750  */
7751 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7752 {
7753 	struct task_struct *p;
7754 	int retval;
7755 
7756 	if (pid < 0)
7757 		return -EINVAL;
7758 
7759 	retval = -ESRCH;
7760 	rcu_read_lock();
7761 	p = find_process_by_pid(pid);
7762 	if (p) {
7763 		retval = security_task_getscheduler(p);
7764 		if (!retval)
7765 			retval = p->policy
7766 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7767 	}
7768 	rcu_read_unlock();
7769 	return retval;
7770 }
7771 
7772 /**
7773  * sys_sched_getparam - get the RT priority of a thread
7774  * @pid: the pid in question.
7775  * @param: structure containing the RT priority.
7776  *
7777  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7778  * code.
7779  */
7780 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7781 {
7782 	struct sched_param lp = { .sched_priority = 0 };
7783 	struct task_struct *p;
7784 	int retval;
7785 
7786 	if (!param || pid < 0)
7787 		return -EINVAL;
7788 
7789 	rcu_read_lock();
7790 	p = find_process_by_pid(pid);
7791 	retval = -ESRCH;
7792 	if (!p)
7793 		goto out_unlock;
7794 
7795 	retval = security_task_getscheduler(p);
7796 	if (retval)
7797 		goto out_unlock;
7798 
7799 	if (task_has_rt_policy(p))
7800 		lp.sched_priority = p->rt_priority;
7801 	rcu_read_unlock();
7802 
7803 	/*
7804 	 * This one might sleep, we cannot do it with a spinlock held ...
7805 	 */
7806 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7807 
7808 	return retval;
7809 
7810 out_unlock:
7811 	rcu_read_unlock();
7812 	return retval;
7813 }
7814 
7815 /*
7816  * Copy the kernel size attribute structure (which might be larger
7817  * than what user-space knows about) to user-space.
7818  *
7819  * Note that all cases are valid: user-space buffer can be larger or
7820  * smaller than the kernel-space buffer. The usual case is that both
7821  * have the same size.
7822  */
7823 static int
7824 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7825 			struct sched_attr *kattr,
7826 			unsigned int usize)
7827 {
7828 	unsigned int ksize = sizeof(*kattr);
7829 
7830 	if (!access_ok(uattr, usize))
7831 		return -EFAULT;
7832 
7833 	/*
7834 	 * sched_getattr() ABI forwards and backwards compatibility:
7835 	 *
7836 	 * If usize == ksize then we just copy everything to user-space and all is good.
7837 	 *
7838 	 * If usize < ksize then we only copy as much as user-space has space for,
7839 	 * this keeps ABI compatibility as well. We skip the rest.
7840 	 *
7841 	 * If usize > ksize then user-space is using a newer version of the ABI,
7842 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7843 	 * detect the kernel's knowledge of attributes from the attr->size value
7844 	 * which is set to ksize in this case.
7845 	 */
7846 	kattr->size = min(usize, ksize);
7847 
7848 	if (copy_to_user(uattr, kattr, kattr->size))
7849 		return -EFAULT;
7850 
7851 	return 0;
7852 }
7853 
7854 /**
7855  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7856  * @pid: the pid in question.
7857  * @uattr: structure containing the extended parameters.
7858  * @usize: sizeof(attr) for fwd/bwd comp.
7859  * @flags: for future extension.
7860  */
7861 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7862 		unsigned int, usize, unsigned int, flags)
7863 {
7864 	struct sched_attr kattr = { };
7865 	struct task_struct *p;
7866 	int retval;
7867 
7868 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7869 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7870 		return -EINVAL;
7871 
7872 	rcu_read_lock();
7873 	p = find_process_by_pid(pid);
7874 	retval = -ESRCH;
7875 	if (!p)
7876 		goto out_unlock;
7877 
7878 	retval = security_task_getscheduler(p);
7879 	if (retval)
7880 		goto out_unlock;
7881 
7882 	kattr.sched_policy = p->policy;
7883 	if (p->sched_reset_on_fork)
7884 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7885 	get_params(p, &kattr);
7886 	kattr.sched_flags &= SCHED_FLAG_ALL;
7887 
7888 #ifdef CONFIG_UCLAMP_TASK
7889 	/*
7890 	 * This could race with another potential updater, but this is fine
7891 	 * because it'll correctly read the old or the new value. We don't need
7892 	 * to guarantee who wins the race as long as it doesn't return garbage.
7893 	 */
7894 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7895 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7896 #endif
7897 
7898 	rcu_read_unlock();
7899 
7900 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7901 
7902 out_unlock:
7903 	rcu_read_unlock();
7904 	return retval;
7905 }
7906 
7907 #ifdef CONFIG_SMP
7908 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7909 {
7910 	int ret = 0;
7911 
7912 	/*
7913 	 * If the task isn't a deadline task or admission control is
7914 	 * disabled then we don't care about affinity changes.
7915 	 */
7916 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7917 		return 0;
7918 
7919 	/*
7920 	 * Since bandwidth control happens on root_domain basis,
7921 	 * if admission test is enabled, we only admit -deadline
7922 	 * tasks allowed to run on all the CPUs in the task's
7923 	 * root_domain.
7924 	 */
7925 	rcu_read_lock();
7926 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
7927 		ret = -EBUSY;
7928 	rcu_read_unlock();
7929 	return ret;
7930 }
7931 #endif
7932 
7933 static int
7934 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7935 {
7936 	int retval;
7937 	cpumask_var_t cpus_allowed, new_mask;
7938 
7939 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7940 		return -ENOMEM;
7941 
7942 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7943 		retval = -ENOMEM;
7944 		goto out_free_cpus_allowed;
7945 	}
7946 
7947 	cpuset_cpus_allowed(p, cpus_allowed);
7948 	cpumask_and(new_mask, mask, cpus_allowed);
7949 
7950 	retval = dl_task_check_affinity(p, new_mask);
7951 	if (retval)
7952 		goto out_free_new_mask;
7953 again:
7954 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7955 	if (retval)
7956 		goto out_free_new_mask;
7957 
7958 	cpuset_cpus_allowed(p, cpus_allowed);
7959 	if (!cpumask_subset(new_mask, cpus_allowed)) {
7960 		/*
7961 		 * We must have raced with a concurrent cpuset update.
7962 		 * Just reset the cpumask to the cpuset's cpus_allowed.
7963 		 */
7964 		cpumask_copy(new_mask, cpus_allowed);
7965 		goto again;
7966 	}
7967 
7968 out_free_new_mask:
7969 	free_cpumask_var(new_mask);
7970 out_free_cpus_allowed:
7971 	free_cpumask_var(cpus_allowed);
7972 	return retval;
7973 }
7974 
7975 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7976 {
7977 	struct task_struct *p;
7978 	int retval;
7979 
7980 	rcu_read_lock();
7981 
7982 	p = find_process_by_pid(pid);
7983 	if (!p) {
7984 		rcu_read_unlock();
7985 		return -ESRCH;
7986 	}
7987 
7988 	/* Prevent p going away */
7989 	get_task_struct(p);
7990 	rcu_read_unlock();
7991 
7992 	if (p->flags & PF_NO_SETAFFINITY) {
7993 		retval = -EINVAL;
7994 		goto out_put_task;
7995 	}
7996 
7997 	if (!check_same_owner(p)) {
7998 		rcu_read_lock();
7999 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8000 			rcu_read_unlock();
8001 			retval = -EPERM;
8002 			goto out_put_task;
8003 		}
8004 		rcu_read_unlock();
8005 	}
8006 
8007 	retval = security_task_setscheduler(p);
8008 	if (retval)
8009 		goto out_put_task;
8010 
8011 	retval = __sched_setaffinity(p, in_mask);
8012 out_put_task:
8013 	put_task_struct(p);
8014 	return retval;
8015 }
8016 
8017 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8018 			     struct cpumask *new_mask)
8019 {
8020 	if (len < cpumask_size())
8021 		cpumask_clear(new_mask);
8022 	else if (len > cpumask_size())
8023 		len = cpumask_size();
8024 
8025 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8026 }
8027 
8028 /**
8029  * sys_sched_setaffinity - set the CPU affinity of a process
8030  * @pid: pid of the process
8031  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8032  * @user_mask_ptr: user-space pointer to the new CPU mask
8033  *
8034  * Return: 0 on success. An error code otherwise.
8035  */
8036 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8037 		unsigned long __user *, user_mask_ptr)
8038 {
8039 	cpumask_var_t new_mask;
8040 	int retval;
8041 
8042 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8043 		return -ENOMEM;
8044 
8045 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8046 	if (retval == 0)
8047 		retval = sched_setaffinity(pid, new_mask);
8048 	free_cpumask_var(new_mask);
8049 	return retval;
8050 }
8051 
8052 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8053 {
8054 	struct task_struct *p;
8055 	unsigned long flags;
8056 	int retval;
8057 
8058 	rcu_read_lock();
8059 
8060 	retval = -ESRCH;
8061 	p = find_process_by_pid(pid);
8062 	if (!p)
8063 		goto out_unlock;
8064 
8065 	retval = security_task_getscheduler(p);
8066 	if (retval)
8067 		goto out_unlock;
8068 
8069 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8070 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8071 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8072 
8073 out_unlock:
8074 	rcu_read_unlock();
8075 
8076 	return retval;
8077 }
8078 
8079 /**
8080  * sys_sched_getaffinity - get the CPU affinity of a process
8081  * @pid: pid of the process
8082  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8083  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8084  *
8085  * Return: size of CPU mask copied to user_mask_ptr on success. An
8086  * error code otherwise.
8087  */
8088 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8089 		unsigned long __user *, user_mask_ptr)
8090 {
8091 	int ret;
8092 	cpumask_var_t mask;
8093 
8094 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8095 		return -EINVAL;
8096 	if (len & (sizeof(unsigned long)-1))
8097 		return -EINVAL;
8098 
8099 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8100 		return -ENOMEM;
8101 
8102 	ret = sched_getaffinity(pid, mask);
8103 	if (ret == 0) {
8104 		unsigned int retlen = min(len, cpumask_size());
8105 
8106 		if (copy_to_user(user_mask_ptr, mask, retlen))
8107 			ret = -EFAULT;
8108 		else
8109 			ret = retlen;
8110 	}
8111 	free_cpumask_var(mask);
8112 
8113 	return ret;
8114 }
8115 
8116 static void do_sched_yield(void)
8117 {
8118 	struct rq_flags rf;
8119 	struct rq *rq;
8120 
8121 	rq = this_rq_lock_irq(&rf);
8122 
8123 	schedstat_inc(rq->yld_count);
8124 	current->sched_class->yield_task(rq);
8125 
8126 	preempt_disable();
8127 	rq_unlock_irq(rq, &rf);
8128 	sched_preempt_enable_no_resched();
8129 
8130 	schedule();
8131 }
8132 
8133 /**
8134  * sys_sched_yield - yield the current processor to other threads.
8135  *
8136  * This function yields the current CPU to other tasks. If there are no
8137  * other threads running on this CPU then this function will return.
8138  *
8139  * Return: 0.
8140  */
8141 SYSCALL_DEFINE0(sched_yield)
8142 {
8143 	do_sched_yield();
8144 	return 0;
8145 }
8146 
8147 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8148 int __sched __cond_resched(void)
8149 {
8150 	if (should_resched(0)) {
8151 		preempt_schedule_common();
8152 		return 1;
8153 	}
8154 	/*
8155 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8156 	 * whether the current CPU is in an RCU read-side critical section,
8157 	 * so the tick can report quiescent states even for CPUs looping
8158 	 * in kernel context.  In contrast, in non-preemptible kernels,
8159 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8160 	 * processes executing in kernel context might never report an
8161 	 * RCU quiescent state.  Therefore, the following code causes
8162 	 * cond_resched() to report a quiescent state, but only when RCU
8163 	 * is in urgent need of one.
8164 	 */
8165 #ifndef CONFIG_PREEMPT_RCU
8166 	rcu_all_qs();
8167 #endif
8168 	return 0;
8169 }
8170 EXPORT_SYMBOL(__cond_resched);
8171 #endif
8172 
8173 #ifdef CONFIG_PREEMPT_DYNAMIC
8174 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8175 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8176 
8177 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8178 EXPORT_STATIC_CALL_TRAMP(might_resched);
8179 #endif
8180 
8181 /*
8182  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8183  * call schedule, and on return reacquire the lock.
8184  *
8185  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8186  * operations here to prevent schedule() from being called twice (once via
8187  * spin_unlock(), once by hand).
8188  */
8189 int __cond_resched_lock(spinlock_t *lock)
8190 {
8191 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8192 	int ret = 0;
8193 
8194 	lockdep_assert_held(lock);
8195 
8196 	if (spin_needbreak(lock) || resched) {
8197 		spin_unlock(lock);
8198 		if (resched)
8199 			preempt_schedule_common();
8200 		else
8201 			cpu_relax();
8202 		ret = 1;
8203 		spin_lock(lock);
8204 	}
8205 	return ret;
8206 }
8207 EXPORT_SYMBOL(__cond_resched_lock);
8208 
8209 int __cond_resched_rwlock_read(rwlock_t *lock)
8210 {
8211 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8212 	int ret = 0;
8213 
8214 	lockdep_assert_held_read(lock);
8215 
8216 	if (rwlock_needbreak(lock) || resched) {
8217 		read_unlock(lock);
8218 		if (resched)
8219 			preempt_schedule_common();
8220 		else
8221 			cpu_relax();
8222 		ret = 1;
8223 		read_lock(lock);
8224 	}
8225 	return ret;
8226 }
8227 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8228 
8229 int __cond_resched_rwlock_write(rwlock_t *lock)
8230 {
8231 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8232 	int ret = 0;
8233 
8234 	lockdep_assert_held_write(lock);
8235 
8236 	if (rwlock_needbreak(lock) || resched) {
8237 		write_unlock(lock);
8238 		if (resched)
8239 			preempt_schedule_common();
8240 		else
8241 			cpu_relax();
8242 		ret = 1;
8243 		write_lock(lock);
8244 	}
8245 	return ret;
8246 }
8247 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8248 
8249 /**
8250  * yield - yield the current processor to other threads.
8251  *
8252  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8253  *
8254  * The scheduler is at all times free to pick the calling task as the most
8255  * eligible task to run, if removing the yield() call from your code breaks
8256  * it, it's already broken.
8257  *
8258  * Typical broken usage is:
8259  *
8260  * while (!event)
8261  *	yield();
8262  *
8263  * where one assumes that yield() will let 'the other' process run that will
8264  * make event true. If the current task is a SCHED_FIFO task that will never
8265  * happen. Never use yield() as a progress guarantee!!
8266  *
8267  * If you want to use yield() to wait for something, use wait_event().
8268  * If you want to use yield() to be 'nice' for others, use cond_resched().
8269  * If you still want to use yield(), do not!
8270  */
8271 void __sched yield(void)
8272 {
8273 	set_current_state(TASK_RUNNING);
8274 	do_sched_yield();
8275 }
8276 EXPORT_SYMBOL(yield);
8277 
8278 /**
8279  * yield_to - yield the current processor to another thread in
8280  * your thread group, or accelerate that thread toward the
8281  * processor it's on.
8282  * @p: target task
8283  * @preempt: whether task preemption is allowed or not
8284  *
8285  * It's the caller's job to ensure that the target task struct
8286  * can't go away on us before we can do any checks.
8287  *
8288  * Return:
8289  *	true (>0) if we indeed boosted the target task.
8290  *	false (0) if we failed to boost the target.
8291  *	-ESRCH if there's no task to yield to.
8292  */
8293 int __sched yield_to(struct task_struct *p, bool preempt)
8294 {
8295 	struct task_struct *curr = current;
8296 	struct rq *rq, *p_rq;
8297 	unsigned long flags;
8298 	int yielded = 0;
8299 
8300 	local_irq_save(flags);
8301 	rq = this_rq();
8302 
8303 again:
8304 	p_rq = task_rq(p);
8305 	/*
8306 	 * If we're the only runnable task on the rq and target rq also
8307 	 * has only one task, there's absolutely no point in yielding.
8308 	 */
8309 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8310 		yielded = -ESRCH;
8311 		goto out_irq;
8312 	}
8313 
8314 	double_rq_lock(rq, p_rq);
8315 	if (task_rq(p) != p_rq) {
8316 		double_rq_unlock(rq, p_rq);
8317 		goto again;
8318 	}
8319 
8320 	if (!curr->sched_class->yield_to_task)
8321 		goto out_unlock;
8322 
8323 	if (curr->sched_class != p->sched_class)
8324 		goto out_unlock;
8325 
8326 	if (task_running(p_rq, p) || !task_is_running(p))
8327 		goto out_unlock;
8328 
8329 	yielded = curr->sched_class->yield_to_task(rq, p);
8330 	if (yielded) {
8331 		schedstat_inc(rq->yld_count);
8332 		/*
8333 		 * Make p's CPU reschedule; pick_next_entity takes care of
8334 		 * fairness.
8335 		 */
8336 		if (preempt && rq != p_rq)
8337 			resched_curr(p_rq);
8338 	}
8339 
8340 out_unlock:
8341 	double_rq_unlock(rq, p_rq);
8342 out_irq:
8343 	local_irq_restore(flags);
8344 
8345 	if (yielded > 0)
8346 		schedule();
8347 
8348 	return yielded;
8349 }
8350 EXPORT_SYMBOL_GPL(yield_to);
8351 
8352 int io_schedule_prepare(void)
8353 {
8354 	int old_iowait = current->in_iowait;
8355 
8356 	current->in_iowait = 1;
8357 	blk_schedule_flush_plug(current);
8358 
8359 	return old_iowait;
8360 }
8361 
8362 void io_schedule_finish(int token)
8363 {
8364 	current->in_iowait = token;
8365 }
8366 
8367 /*
8368  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8369  * that process accounting knows that this is a task in IO wait state.
8370  */
8371 long __sched io_schedule_timeout(long timeout)
8372 {
8373 	int token;
8374 	long ret;
8375 
8376 	token = io_schedule_prepare();
8377 	ret = schedule_timeout(timeout);
8378 	io_schedule_finish(token);
8379 
8380 	return ret;
8381 }
8382 EXPORT_SYMBOL(io_schedule_timeout);
8383 
8384 void __sched io_schedule(void)
8385 {
8386 	int token;
8387 
8388 	token = io_schedule_prepare();
8389 	schedule();
8390 	io_schedule_finish(token);
8391 }
8392 EXPORT_SYMBOL(io_schedule);
8393 
8394 /**
8395  * sys_sched_get_priority_max - return maximum RT priority.
8396  * @policy: scheduling class.
8397  *
8398  * Return: On success, this syscall returns the maximum
8399  * rt_priority that can be used by a given scheduling class.
8400  * On failure, a negative error code is returned.
8401  */
8402 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8403 {
8404 	int ret = -EINVAL;
8405 
8406 	switch (policy) {
8407 	case SCHED_FIFO:
8408 	case SCHED_RR:
8409 		ret = MAX_RT_PRIO-1;
8410 		break;
8411 	case SCHED_DEADLINE:
8412 	case SCHED_NORMAL:
8413 	case SCHED_BATCH:
8414 	case SCHED_IDLE:
8415 		ret = 0;
8416 		break;
8417 	}
8418 	return ret;
8419 }
8420 
8421 /**
8422  * sys_sched_get_priority_min - return minimum RT priority.
8423  * @policy: scheduling class.
8424  *
8425  * Return: On success, this syscall returns the minimum
8426  * rt_priority that can be used by a given scheduling class.
8427  * On failure, a negative error code is returned.
8428  */
8429 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8430 {
8431 	int ret = -EINVAL;
8432 
8433 	switch (policy) {
8434 	case SCHED_FIFO:
8435 	case SCHED_RR:
8436 		ret = 1;
8437 		break;
8438 	case SCHED_DEADLINE:
8439 	case SCHED_NORMAL:
8440 	case SCHED_BATCH:
8441 	case SCHED_IDLE:
8442 		ret = 0;
8443 	}
8444 	return ret;
8445 }
8446 
8447 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8448 {
8449 	struct task_struct *p;
8450 	unsigned int time_slice;
8451 	struct rq_flags rf;
8452 	struct rq *rq;
8453 	int retval;
8454 
8455 	if (pid < 0)
8456 		return -EINVAL;
8457 
8458 	retval = -ESRCH;
8459 	rcu_read_lock();
8460 	p = find_process_by_pid(pid);
8461 	if (!p)
8462 		goto out_unlock;
8463 
8464 	retval = security_task_getscheduler(p);
8465 	if (retval)
8466 		goto out_unlock;
8467 
8468 	rq = task_rq_lock(p, &rf);
8469 	time_slice = 0;
8470 	if (p->sched_class->get_rr_interval)
8471 		time_slice = p->sched_class->get_rr_interval(rq, p);
8472 	task_rq_unlock(rq, p, &rf);
8473 
8474 	rcu_read_unlock();
8475 	jiffies_to_timespec64(time_slice, t);
8476 	return 0;
8477 
8478 out_unlock:
8479 	rcu_read_unlock();
8480 	return retval;
8481 }
8482 
8483 /**
8484  * sys_sched_rr_get_interval - return the default timeslice of a process.
8485  * @pid: pid of the process.
8486  * @interval: userspace pointer to the timeslice value.
8487  *
8488  * this syscall writes the default timeslice value of a given process
8489  * into the user-space timespec buffer. A value of '0' means infinity.
8490  *
8491  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8492  * an error code.
8493  */
8494 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8495 		struct __kernel_timespec __user *, interval)
8496 {
8497 	struct timespec64 t;
8498 	int retval = sched_rr_get_interval(pid, &t);
8499 
8500 	if (retval == 0)
8501 		retval = put_timespec64(&t, interval);
8502 
8503 	return retval;
8504 }
8505 
8506 #ifdef CONFIG_COMPAT_32BIT_TIME
8507 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8508 		struct old_timespec32 __user *, interval)
8509 {
8510 	struct timespec64 t;
8511 	int retval = sched_rr_get_interval(pid, &t);
8512 
8513 	if (retval == 0)
8514 		retval = put_old_timespec32(&t, interval);
8515 	return retval;
8516 }
8517 #endif
8518 
8519 void sched_show_task(struct task_struct *p)
8520 {
8521 	unsigned long free = 0;
8522 	int ppid;
8523 
8524 	if (!try_get_task_stack(p))
8525 		return;
8526 
8527 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8528 
8529 	if (task_is_running(p))
8530 		pr_cont("  running task    ");
8531 #ifdef CONFIG_DEBUG_STACK_USAGE
8532 	free = stack_not_used(p);
8533 #endif
8534 	ppid = 0;
8535 	rcu_read_lock();
8536 	if (pid_alive(p))
8537 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8538 	rcu_read_unlock();
8539 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8540 		free, task_pid_nr(p), ppid,
8541 		(unsigned long)task_thread_info(p)->flags);
8542 
8543 	print_worker_info(KERN_INFO, p);
8544 	print_stop_info(KERN_INFO, p);
8545 	show_stack(p, NULL, KERN_INFO);
8546 	put_task_stack(p);
8547 }
8548 EXPORT_SYMBOL_GPL(sched_show_task);
8549 
8550 static inline bool
8551 state_filter_match(unsigned long state_filter, struct task_struct *p)
8552 {
8553 	unsigned int state = READ_ONCE(p->__state);
8554 
8555 	/* no filter, everything matches */
8556 	if (!state_filter)
8557 		return true;
8558 
8559 	/* filter, but doesn't match */
8560 	if (!(state & state_filter))
8561 		return false;
8562 
8563 	/*
8564 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8565 	 * TASK_KILLABLE).
8566 	 */
8567 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8568 		return false;
8569 
8570 	return true;
8571 }
8572 
8573 
8574 void show_state_filter(unsigned int state_filter)
8575 {
8576 	struct task_struct *g, *p;
8577 
8578 	rcu_read_lock();
8579 	for_each_process_thread(g, p) {
8580 		/*
8581 		 * reset the NMI-timeout, listing all files on a slow
8582 		 * console might take a lot of time:
8583 		 * Also, reset softlockup watchdogs on all CPUs, because
8584 		 * another CPU might be blocked waiting for us to process
8585 		 * an IPI.
8586 		 */
8587 		touch_nmi_watchdog();
8588 		touch_all_softlockup_watchdogs();
8589 		if (state_filter_match(state_filter, p))
8590 			sched_show_task(p);
8591 	}
8592 
8593 #ifdef CONFIG_SCHED_DEBUG
8594 	if (!state_filter)
8595 		sysrq_sched_debug_show();
8596 #endif
8597 	rcu_read_unlock();
8598 	/*
8599 	 * Only show locks if all tasks are dumped:
8600 	 */
8601 	if (!state_filter)
8602 		debug_show_all_locks();
8603 }
8604 
8605 /**
8606  * init_idle - set up an idle thread for a given CPU
8607  * @idle: task in question
8608  * @cpu: CPU the idle task belongs to
8609  *
8610  * NOTE: this function does not set the idle thread's NEED_RESCHED
8611  * flag, to make booting more robust.
8612  */
8613 void __init init_idle(struct task_struct *idle, int cpu)
8614 {
8615 	struct rq *rq = cpu_rq(cpu);
8616 	unsigned long flags;
8617 
8618 	__sched_fork(0, idle);
8619 
8620 	/*
8621 	 * The idle task doesn't need the kthread struct to function, but it
8622 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8623 	 * if we want to avoid special-casing it in code that deals with per-CPU
8624 	 * kthreads.
8625 	 */
8626 	set_kthread_struct(idle);
8627 
8628 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8629 	raw_spin_rq_lock(rq);
8630 
8631 	idle->__state = TASK_RUNNING;
8632 	idle->se.exec_start = sched_clock();
8633 	/*
8634 	 * PF_KTHREAD should already be set at this point; regardless, make it
8635 	 * look like a proper per-CPU kthread.
8636 	 */
8637 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8638 	kthread_set_per_cpu(idle, cpu);
8639 
8640 	scs_task_reset(idle);
8641 	kasan_unpoison_task_stack(idle);
8642 
8643 #ifdef CONFIG_SMP
8644 	/*
8645 	 * It's possible that init_idle() gets called multiple times on a task,
8646 	 * in that case do_set_cpus_allowed() will not do the right thing.
8647 	 *
8648 	 * And since this is boot we can forgo the serialization.
8649 	 */
8650 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8651 #endif
8652 	/*
8653 	 * We're having a chicken and egg problem, even though we are
8654 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8655 	 * lockdep check in task_group() will fail.
8656 	 *
8657 	 * Similar case to sched_fork(). / Alternatively we could
8658 	 * use task_rq_lock() here and obtain the other rq->lock.
8659 	 *
8660 	 * Silence PROVE_RCU
8661 	 */
8662 	rcu_read_lock();
8663 	__set_task_cpu(idle, cpu);
8664 	rcu_read_unlock();
8665 
8666 	rq->idle = idle;
8667 	rcu_assign_pointer(rq->curr, idle);
8668 	idle->on_rq = TASK_ON_RQ_QUEUED;
8669 #ifdef CONFIG_SMP
8670 	idle->on_cpu = 1;
8671 #endif
8672 	raw_spin_rq_unlock(rq);
8673 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8674 
8675 	/* Set the preempt count _outside_ the spinlocks! */
8676 	init_idle_preempt_count(idle, cpu);
8677 
8678 	/*
8679 	 * The idle tasks have their own, simple scheduling class:
8680 	 */
8681 	idle->sched_class = &idle_sched_class;
8682 	ftrace_graph_init_idle_task(idle, cpu);
8683 	vtime_init_idle(idle, cpu);
8684 #ifdef CONFIG_SMP
8685 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8686 #endif
8687 }
8688 
8689 #ifdef CONFIG_SMP
8690 
8691 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8692 			      const struct cpumask *trial)
8693 {
8694 	int ret = 1;
8695 
8696 	if (!cpumask_weight(cur))
8697 		return ret;
8698 
8699 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8700 
8701 	return ret;
8702 }
8703 
8704 int task_can_attach(struct task_struct *p,
8705 		    const struct cpumask *cs_cpus_allowed)
8706 {
8707 	int ret = 0;
8708 
8709 	/*
8710 	 * Kthreads which disallow setaffinity shouldn't be moved
8711 	 * to a new cpuset; we don't want to change their CPU
8712 	 * affinity and isolating such threads by their set of
8713 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8714 	 * applicable for such threads.  This prevents checking for
8715 	 * success of set_cpus_allowed_ptr() on all attached tasks
8716 	 * before cpus_mask may be changed.
8717 	 */
8718 	if (p->flags & PF_NO_SETAFFINITY) {
8719 		ret = -EINVAL;
8720 		goto out;
8721 	}
8722 
8723 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8724 					      cs_cpus_allowed))
8725 		ret = dl_task_can_attach(p, cs_cpus_allowed);
8726 
8727 out:
8728 	return ret;
8729 }
8730 
8731 bool sched_smp_initialized __read_mostly;
8732 
8733 #ifdef CONFIG_NUMA_BALANCING
8734 /* Migrate current task p to target_cpu */
8735 int migrate_task_to(struct task_struct *p, int target_cpu)
8736 {
8737 	struct migration_arg arg = { p, target_cpu };
8738 	int curr_cpu = task_cpu(p);
8739 
8740 	if (curr_cpu == target_cpu)
8741 		return 0;
8742 
8743 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8744 		return -EINVAL;
8745 
8746 	/* TODO: This is not properly updating schedstats */
8747 
8748 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8749 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8750 }
8751 
8752 /*
8753  * Requeue a task on a given node and accurately track the number of NUMA
8754  * tasks on the runqueues
8755  */
8756 void sched_setnuma(struct task_struct *p, int nid)
8757 {
8758 	bool queued, running;
8759 	struct rq_flags rf;
8760 	struct rq *rq;
8761 
8762 	rq = task_rq_lock(p, &rf);
8763 	queued = task_on_rq_queued(p);
8764 	running = task_current(rq, p);
8765 
8766 	if (queued)
8767 		dequeue_task(rq, p, DEQUEUE_SAVE);
8768 	if (running)
8769 		put_prev_task(rq, p);
8770 
8771 	p->numa_preferred_nid = nid;
8772 
8773 	if (queued)
8774 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8775 	if (running)
8776 		set_next_task(rq, p);
8777 	task_rq_unlock(rq, p, &rf);
8778 }
8779 #endif /* CONFIG_NUMA_BALANCING */
8780 
8781 #ifdef CONFIG_HOTPLUG_CPU
8782 /*
8783  * Ensure that the idle task is using init_mm right before its CPU goes
8784  * offline.
8785  */
8786 void idle_task_exit(void)
8787 {
8788 	struct mm_struct *mm = current->active_mm;
8789 
8790 	BUG_ON(cpu_online(smp_processor_id()));
8791 	BUG_ON(current != this_rq()->idle);
8792 
8793 	if (mm != &init_mm) {
8794 		switch_mm(mm, &init_mm, current);
8795 		finish_arch_post_lock_switch();
8796 	}
8797 
8798 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8799 }
8800 
8801 static int __balance_push_cpu_stop(void *arg)
8802 {
8803 	struct task_struct *p = arg;
8804 	struct rq *rq = this_rq();
8805 	struct rq_flags rf;
8806 	int cpu;
8807 
8808 	raw_spin_lock_irq(&p->pi_lock);
8809 	rq_lock(rq, &rf);
8810 
8811 	update_rq_clock(rq);
8812 
8813 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8814 		cpu = select_fallback_rq(rq->cpu, p);
8815 		rq = __migrate_task(rq, &rf, p, cpu);
8816 	}
8817 
8818 	rq_unlock(rq, &rf);
8819 	raw_spin_unlock_irq(&p->pi_lock);
8820 
8821 	put_task_struct(p);
8822 
8823 	return 0;
8824 }
8825 
8826 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8827 
8828 /*
8829  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8830  *
8831  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8832  * effective when the hotplug motion is down.
8833  */
8834 static void balance_push(struct rq *rq)
8835 {
8836 	struct task_struct *push_task = rq->curr;
8837 
8838 	lockdep_assert_rq_held(rq);
8839 
8840 	/*
8841 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8842 	 */
8843 	rq->balance_callback = &balance_push_callback;
8844 
8845 	/*
8846 	 * Only active while going offline and when invoked on the outgoing
8847 	 * CPU.
8848 	 */
8849 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8850 		return;
8851 
8852 	/*
8853 	 * Both the cpu-hotplug and stop task are in this case and are
8854 	 * required to complete the hotplug process.
8855 	 */
8856 	if (kthread_is_per_cpu(push_task) ||
8857 	    is_migration_disabled(push_task)) {
8858 
8859 		/*
8860 		 * If this is the idle task on the outgoing CPU try to wake
8861 		 * up the hotplug control thread which might wait for the
8862 		 * last task to vanish. The rcuwait_active() check is
8863 		 * accurate here because the waiter is pinned on this CPU
8864 		 * and can't obviously be running in parallel.
8865 		 *
8866 		 * On RT kernels this also has to check whether there are
8867 		 * pinned and scheduled out tasks on the runqueue. They
8868 		 * need to leave the migrate disabled section first.
8869 		 */
8870 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8871 		    rcuwait_active(&rq->hotplug_wait)) {
8872 			raw_spin_rq_unlock(rq);
8873 			rcuwait_wake_up(&rq->hotplug_wait);
8874 			raw_spin_rq_lock(rq);
8875 		}
8876 		return;
8877 	}
8878 
8879 	get_task_struct(push_task);
8880 	/*
8881 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8882 	 * Both preemption and IRQs are still disabled.
8883 	 */
8884 	raw_spin_rq_unlock(rq);
8885 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8886 			    this_cpu_ptr(&push_work));
8887 	/*
8888 	 * At this point need_resched() is true and we'll take the loop in
8889 	 * schedule(). The next pick is obviously going to be the stop task
8890 	 * which kthread_is_per_cpu() and will push this task away.
8891 	 */
8892 	raw_spin_rq_lock(rq);
8893 }
8894 
8895 static void balance_push_set(int cpu, bool on)
8896 {
8897 	struct rq *rq = cpu_rq(cpu);
8898 	struct rq_flags rf;
8899 
8900 	rq_lock_irqsave(rq, &rf);
8901 	if (on) {
8902 		WARN_ON_ONCE(rq->balance_callback);
8903 		rq->balance_callback = &balance_push_callback;
8904 	} else if (rq->balance_callback == &balance_push_callback) {
8905 		rq->balance_callback = NULL;
8906 	}
8907 	rq_unlock_irqrestore(rq, &rf);
8908 }
8909 
8910 /*
8911  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8912  * inactive. All tasks which are not per CPU kernel threads are either
8913  * pushed off this CPU now via balance_push() or placed on a different CPU
8914  * during wakeup. Wait until the CPU is quiescent.
8915  */
8916 static void balance_hotplug_wait(void)
8917 {
8918 	struct rq *rq = this_rq();
8919 
8920 	rcuwait_wait_event(&rq->hotplug_wait,
8921 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8922 			   TASK_UNINTERRUPTIBLE);
8923 }
8924 
8925 #else
8926 
8927 static inline void balance_push(struct rq *rq)
8928 {
8929 }
8930 
8931 static inline void balance_push_set(int cpu, bool on)
8932 {
8933 }
8934 
8935 static inline void balance_hotplug_wait(void)
8936 {
8937 }
8938 
8939 #endif /* CONFIG_HOTPLUG_CPU */
8940 
8941 void set_rq_online(struct rq *rq)
8942 {
8943 	if (!rq->online) {
8944 		const struct sched_class *class;
8945 
8946 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8947 		rq->online = 1;
8948 
8949 		for_each_class(class) {
8950 			if (class->rq_online)
8951 				class->rq_online(rq);
8952 		}
8953 	}
8954 }
8955 
8956 void set_rq_offline(struct rq *rq)
8957 {
8958 	if (rq->online) {
8959 		const struct sched_class *class;
8960 
8961 		for_each_class(class) {
8962 			if (class->rq_offline)
8963 				class->rq_offline(rq);
8964 		}
8965 
8966 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8967 		rq->online = 0;
8968 	}
8969 }
8970 
8971 /*
8972  * used to mark begin/end of suspend/resume:
8973  */
8974 static int num_cpus_frozen;
8975 
8976 /*
8977  * Update cpusets according to cpu_active mask.  If cpusets are
8978  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8979  * around partition_sched_domains().
8980  *
8981  * If we come here as part of a suspend/resume, don't touch cpusets because we
8982  * want to restore it back to its original state upon resume anyway.
8983  */
8984 static void cpuset_cpu_active(void)
8985 {
8986 	if (cpuhp_tasks_frozen) {
8987 		/*
8988 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8989 		 * resume sequence. As long as this is not the last online
8990 		 * operation in the resume sequence, just build a single sched
8991 		 * domain, ignoring cpusets.
8992 		 */
8993 		partition_sched_domains(1, NULL, NULL);
8994 		if (--num_cpus_frozen)
8995 			return;
8996 		/*
8997 		 * This is the last CPU online operation. So fall through and
8998 		 * restore the original sched domains by considering the
8999 		 * cpuset configurations.
9000 		 */
9001 		cpuset_force_rebuild();
9002 	}
9003 	cpuset_update_active_cpus();
9004 }
9005 
9006 static int cpuset_cpu_inactive(unsigned int cpu)
9007 {
9008 	if (!cpuhp_tasks_frozen) {
9009 		if (dl_cpu_busy(cpu))
9010 			return -EBUSY;
9011 		cpuset_update_active_cpus();
9012 	} else {
9013 		num_cpus_frozen++;
9014 		partition_sched_domains(1, NULL, NULL);
9015 	}
9016 	return 0;
9017 }
9018 
9019 int sched_cpu_activate(unsigned int cpu)
9020 {
9021 	struct rq *rq = cpu_rq(cpu);
9022 	struct rq_flags rf;
9023 
9024 	/*
9025 	 * Clear the balance_push callback and prepare to schedule
9026 	 * regular tasks.
9027 	 */
9028 	balance_push_set(cpu, false);
9029 
9030 #ifdef CONFIG_SCHED_SMT
9031 	/*
9032 	 * When going up, increment the number of cores with SMT present.
9033 	 */
9034 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9035 		static_branch_inc_cpuslocked(&sched_smt_present);
9036 #endif
9037 	set_cpu_active(cpu, true);
9038 
9039 	if (sched_smp_initialized) {
9040 		sched_domains_numa_masks_set(cpu);
9041 		cpuset_cpu_active();
9042 	}
9043 
9044 	/*
9045 	 * Put the rq online, if not already. This happens:
9046 	 *
9047 	 * 1) In the early boot process, because we build the real domains
9048 	 *    after all CPUs have been brought up.
9049 	 *
9050 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9051 	 *    domains.
9052 	 */
9053 	rq_lock_irqsave(rq, &rf);
9054 	if (rq->rd) {
9055 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9056 		set_rq_online(rq);
9057 	}
9058 	rq_unlock_irqrestore(rq, &rf);
9059 
9060 	return 0;
9061 }
9062 
9063 int sched_cpu_deactivate(unsigned int cpu)
9064 {
9065 	struct rq *rq = cpu_rq(cpu);
9066 	struct rq_flags rf;
9067 	int ret;
9068 
9069 	/*
9070 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9071 	 * load balancing when not active
9072 	 */
9073 	nohz_balance_exit_idle(rq);
9074 
9075 	set_cpu_active(cpu, false);
9076 
9077 	/*
9078 	 * From this point forward, this CPU will refuse to run any task that
9079 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9080 	 * push those tasks away until this gets cleared, see
9081 	 * sched_cpu_dying().
9082 	 */
9083 	balance_push_set(cpu, true);
9084 
9085 	/*
9086 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9087 	 * preempt-disabled and RCU users of this state to go away such that
9088 	 * all new such users will observe it.
9089 	 *
9090 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9091 	 * ttwu_queue_cond() and is_cpu_allowed().
9092 	 *
9093 	 * Do sync before park smpboot threads to take care the rcu boost case.
9094 	 */
9095 	synchronize_rcu();
9096 
9097 	rq_lock_irqsave(rq, &rf);
9098 	if (rq->rd) {
9099 		update_rq_clock(rq);
9100 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9101 		set_rq_offline(rq);
9102 	}
9103 	rq_unlock_irqrestore(rq, &rf);
9104 
9105 #ifdef CONFIG_SCHED_SMT
9106 	/*
9107 	 * When going down, decrement the number of cores with SMT present.
9108 	 */
9109 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9110 		static_branch_dec_cpuslocked(&sched_smt_present);
9111 
9112 	sched_core_cpu_deactivate(cpu);
9113 #endif
9114 
9115 	if (!sched_smp_initialized)
9116 		return 0;
9117 
9118 	ret = cpuset_cpu_inactive(cpu);
9119 	if (ret) {
9120 		balance_push_set(cpu, false);
9121 		set_cpu_active(cpu, true);
9122 		return ret;
9123 	}
9124 	sched_domains_numa_masks_clear(cpu);
9125 	return 0;
9126 }
9127 
9128 static void sched_rq_cpu_starting(unsigned int cpu)
9129 {
9130 	struct rq *rq = cpu_rq(cpu);
9131 
9132 	rq->calc_load_update = calc_load_update;
9133 	update_max_interval();
9134 }
9135 
9136 int sched_cpu_starting(unsigned int cpu)
9137 {
9138 	sched_core_cpu_starting(cpu);
9139 	sched_rq_cpu_starting(cpu);
9140 	sched_tick_start(cpu);
9141 	return 0;
9142 }
9143 
9144 #ifdef CONFIG_HOTPLUG_CPU
9145 
9146 /*
9147  * Invoked immediately before the stopper thread is invoked to bring the
9148  * CPU down completely. At this point all per CPU kthreads except the
9149  * hotplug thread (current) and the stopper thread (inactive) have been
9150  * either parked or have been unbound from the outgoing CPU. Ensure that
9151  * any of those which might be on the way out are gone.
9152  *
9153  * If after this point a bound task is being woken on this CPU then the
9154  * responsible hotplug callback has failed to do it's job.
9155  * sched_cpu_dying() will catch it with the appropriate fireworks.
9156  */
9157 int sched_cpu_wait_empty(unsigned int cpu)
9158 {
9159 	balance_hotplug_wait();
9160 	return 0;
9161 }
9162 
9163 /*
9164  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9165  * might have. Called from the CPU stopper task after ensuring that the
9166  * stopper is the last running task on the CPU, so nr_active count is
9167  * stable. We need to take the teardown thread which is calling this into
9168  * account, so we hand in adjust = 1 to the load calculation.
9169  *
9170  * Also see the comment "Global load-average calculations".
9171  */
9172 static void calc_load_migrate(struct rq *rq)
9173 {
9174 	long delta = calc_load_fold_active(rq, 1);
9175 
9176 	if (delta)
9177 		atomic_long_add(delta, &calc_load_tasks);
9178 }
9179 
9180 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9181 {
9182 	struct task_struct *g, *p;
9183 	int cpu = cpu_of(rq);
9184 
9185 	lockdep_assert_rq_held(rq);
9186 
9187 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9188 	for_each_process_thread(g, p) {
9189 		if (task_cpu(p) != cpu)
9190 			continue;
9191 
9192 		if (!task_on_rq_queued(p))
9193 			continue;
9194 
9195 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9196 	}
9197 }
9198 
9199 int sched_cpu_dying(unsigned int cpu)
9200 {
9201 	struct rq *rq = cpu_rq(cpu);
9202 	struct rq_flags rf;
9203 
9204 	/* Handle pending wakeups and then migrate everything off */
9205 	sched_tick_stop(cpu);
9206 
9207 	rq_lock_irqsave(rq, &rf);
9208 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9209 		WARN(true, "Dying CPU not properly vacated!");
9210 		dump_rq_tasks(rq, KERN_WARNING);
9211 	}
9212 	rq_unlock_irqrestore(rq, &rf);
9213 
9214 	calc_load_migrate(rq);
9215 	update_max_interval();
9216 	hrtick_clear(rq);
9217 	sched_core_cpu_dying(cpu);
9218 	return 0;
9219 }
9220 #endif
9221 
9222 void __init sched_init_smp(void)
9223 {
9224 	sched_init_numa();
9225 
9226 	/*
9227 	 * There's no userspace yet to cause hotplug operations; hence all the
9228 	 * CPU masks are stable and all blatant races in the below code cannot
9229 	 * happen.
9230 	 */
9231 	mutex_lock(&sched_domains_mutex);
9232 	sched_init_domains(cpu_active_mask);
9233 	mutex_unlock(&sched_domains_mutex);
9234 
9235 	/* Move init over to a non-isolated CPU */
9236 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9237 		BUG();
9238 	current->flags &= ~PF_NO_SETAFFINITY;
9239 	sched_init_granularity();
9240 
9241 	init_sched_rt_class();
9242 	init_sched_dl_class();
9243 
9244 	sched_smp_initialized = true;
9245 }
9246 
9247 static int __init migration_init(void)
9248 {
9249 	sched_cpu_starting(smp_processor_id());
9250 	return 0;
9251 }
9252 early_initcall(migration_init);
9253 
9254 #else
9255 void __init sched_init_smp(void)
9256 {
9257 	sched_init_granularity();
9258 }
9259 #endif /* CONFIG_SMP */
9260 
9261 int in_sched_functions(unsigned long addr)
9262 {
9263 	return in_lock_functions(addr) ||
9264 		(addr >= (unsigned long)__sched_text_start
9265 		&& addr < (unsigned long)__sched_text_end);
9266 }
9267 
9268 #ifdef CONFIG_CGROUP_SCHED
9269 /*
9270  * Default task group.
9271  * Every task in system belongs to this group at bootup.
9272  */
9273 struct task_group root_task_group;
9274 LIST_HEAD(task_groups);
9275 
9276 /* Cacheline aligned slab cache for task_group */
9277 static struct kmem_cache *task_group_cache __read_mostly;
9278 #endif
9279 
9280 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9281 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9282 
9283 void __init sched_init(void)
9284 {
9285 	unsigned long ptr = 0;
9286 	int i;
9287 
9288 	/* Make sure the linker didn't screw up */
9289 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9290 	       &fair_sched_class + 1 != &rt_sched_class ||
9291 	       &rt_sched_class + 1   != &dl_sched_class);
9292 #ifdef CONFIG_SMP
9293 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9294 #endif
9295 
9296 	wait_bit_init();
9297 
9298 #ifdef CONFIG_FAIR_GROUP_SCHED
9299 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9300 #endif
9301 #ifdef CONFIG_RT_GROUP_SCHED
9302 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9303 #endif
9304 	if (ptr) {
9305 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9306 
9307 #ifdef CONFIG_FAIR_GROUP_SCHED
9308 		root_task_group.se = (struct sched_entity **)ptr;
9309 		ptr += nr_cpu_ids * sizeof(void **);
9310 
9311 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9312 		ptr += nr_cpu_ids * sizeof(void **);
9313 
9314 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9315 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9316 #endif /* CONFIG_FAIR_GROUP_SCHED */
9317 #ifdef CONFIG_RT_GROUP_SCHED
9318 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9319 		ptr += nr_cpu_ids * sizeof(void **);
9320 
9321 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9322 		ptr += nr_cpu_ids * sizeof(void **);
9323 
9324 #endif /* CONFIG_RT_GROUP_SCHED */
9325 	}
9326 #ifdef CONFIG_CPUMASK_OFFSTACK
9327 	for_each_possible_cpu(i) {
9328 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9329 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9330 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9331 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9332 	}
9333 #endif /* CONFIG_CPUMASK_OFFSTACK */
9334 
9335 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9336 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9337 
9338 #ifdef CONFIG_SMP
9339 	init_defrootdomain();
9340 #endif
9341 
9342 #ifdef CONFIG_RT_GROUP_SCHED
9343 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9344 			global_rt_period(), global_rt_runtime());
9345 #endif /* CONFIG_RT_GROUP_SCHED */
9346 
9347 #ifdef CONFIG_CGROUP_SCHED
9348 	task_group_cache = KMEM_CACHE(task_group, 0);
9349 
9350 	list_add(&root_task_group.list, &task_groups);
9351 	INIT_LIST_HEAD(&root_task_group.children);
9352 	INIT_LIST_HEAD(&root_task_group.siblings);
9353 	autogroup_init(&init_task);
9354 #endif /* CONFIG_CGROUP_SCHED */
9355 
9356 	for_each_possible_cpu(i) {
9357 		struct rq *rq;
9358 
9359 		rq = cpu_rq(i);
9360 		raw_spin_lock_init(&rq->__lock);
9361 		rq->nr_running = 0;
9362 		rq->calc_load_active = 0;
9363 		rq->calc_load_update = jiffies + LOAD_FREQ;
9364 		init_cfs_rq(&rq->cfs);
9365 		init_rt_rq(&rq->rt);
9366 		init_dl_rq(&rq->dl);
9367 #ifdef CONFIG_FAIR_GROUP_SCHED
9368 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9369 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9370 		/*
9371 		 * How much CPU bandwidth does root_task_group get?
9372 		 *
9373 		 * In case of task-groups formed thr' the cgroup filesystem, it
9374 		 * gets 100% of the CPU resources in the system. This overall
9375 		 * system CPU resource is divided among the tasks of
9376 		 * root_task_group and its child task-groups in a fair manner,
9377 		 * based on each entity's (task or task-group's) weight
9378 		 * (se->load.weight).
9379 		 *
9380 		 * In other words, if root_task_group has 10 tasks of weight
9381 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9382 		 * then A0's share of the CPU resource is:
9383 		 *
9384 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9385 		 *
9386 		 * We achieve this by letting root_task_group's tasks sit
9387 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9388 		 */
9389 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9390 #endif /* CONFIG_FAIR_GROUP_SCHED */
9391 
9392 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9393 #ifdef CONFIG_RT_GROUP_SCHED
9394 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9395 #endif
9396 #ifdef CONFIG_SMP
9397 		rq->sd = NULL;
9398 		rq->rd = NULL;
9399 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9400 		rq->balance_callback = &balance_push_callback;
9401 		rq->active_balance = 0;
9402 		rq->next_balance = jiffies;
9403 		rq->push_cpu = 0;
9404 		rq->cpu = i;
9405 		rq->online = 0;
9406 		rq->idle_stamp = 0;
9407 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9408 		rq->wake_stamp = jiffies;
9409 		rq->wake_avg_idle = rq->avg_idle;
9410 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9411 
9412 		INIT_LIST_HEAD(&rq->cfs_tasks);
9413 
9414 		rq_attach_root(rq, &def_root_domain);
9415 #ifdef CONFIG_NO_HZ_COMMON
9416 		rq->last_blocked_load_update_tick = jiffies;
9417 		atomic_set(&rq->nohz_flags, 0);
9418 
9419 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9420 #endif
9421 #ifdef CONFIG_HOTPLUG_CPU
9422 		rcuwait_init(&rq->hotplug_wait);
9423 #endif
9424 #endif /* CONFIG_SMP */
9425 		hrtick_rq_init(rq);
9426 		atomic_set(&rq->nr_iowait, 0);
9427 
9428 #ifdef CONFIG_SCHED_CORE
9429 		rq->core = rq;
9430 		rq->core_pick = NULL;
9431 		rq->core_enabled = 0;
9432 		rq->core_tree = RB_ROOT;
9433 		rq->core_forceidle = false;
9434 
9435 		rq->core_cookie = 0UL;
9436 #endif
9437 	}
9438 
9439 	set_load_weight(&init_task, false);
9440 
9441 	/*
9442 	 * The boot idle thread does lazy MMU switching as well:
9443 	 */
9444 	mmgrab(&init_mm);
9445 	enter_lazy_tlb(&init_mm, current);
9446 
9447 	/*
9448 	 * Make us the idle thread. Technically, schedule() should not be
9449 	 * called from this thread, however somewhere below it might be,
9450 	 * but because we are the idle thread, we just pick up running again
9451 	 * when this runqueue becomes "idle".
9452 	 */
9453 	init_idle(current, smp_processor_id());
9454 
9455 	calc_load_update = jiffies + LOAD_FREQ;
9456 
9457 #ifdef CONFIG_SMP
9458 	idle_thread_set_boot_cpu();
9459 	balance_push_set(smp_processor_id(), false);
9460 #endif
9461 	init_sched_fair_class();
9462 
9463 	psi_init();
9464 
9465 	init_uclamp();
9466 
9467 	scheduler_running = 1;
9468 }
9469 
9470 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9471 static inline int preempt_count_equals(int preempt_offset)
9472 {
9473 	int nested = preempt_count() + rcu_preempt_depth();
9474 
9475 	return (nested == preempt_offset);
9476 }
9477 
9478 void __might_sleep(const char *file, int line, int preempt_offset)
9479 {
9480 	unsigned int state = get_current_state();
9481 	/*
9482 	 * Blocking primitives will set (and therefore destroy) current->state,
9483 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9484 	 * otherwise we will destroy state.
9485 	 */
9486 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9487 			"do not call blocking ops when !TASK_RUNNING; "
9488 			"state=%x set at [<%p>] %pS\n", state,
9489 			(void *)current->task_state_change,
9490 			(void *)current->task_state_change);
9491 
9492 	___might_sleep(file, line, preempt_offset);
9493 }
9494 EXPORT_SYMBOL(__might_sleep);
9495 
9496 void ___might_sleep(const char *file, int line, int preempt_offset)
9497 {
9498 	/* Ratelimiting timestamp: */
9499 	static unsigned long prev_jiffy;
9500 
9501 	unsigned long preempt_disable_ip;
9502 
9503 	/* WARN_ON_ONCE() by default, no rate limit required: */
9504 	rcu_sleep_check();
9505 
9506 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9507 	     !is_idle_task(current) && !current->non_block_count) ||
9508 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9509 	    oops_in_progress)
9510 		return;
9511 
9512 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9513 		return;
9514 	prev_jiffy = jiffies;
9515 
9516 	/* Save this before calling printk(), since that will clobber it: */
9517 	preempt_disable_ip = get_preempt_disable_ip(current);
9518 
9519 	printk(KERN_ERR
9520 		"BUG: sleeping function called from invalid context at %s:%d\n",
9521 			file, line);
9522 	printk(KERN_ERR
9523 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9524 			in_atomic(), irqs_disabled(), current->non_block_count,
9525 			current->pid, current->comm);
9526 
9527 	if (task_stack_end_corrupted(current))
9528 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9529 
9530 	debug_show_held_locks(current);
9531 	if (irqs_disabled())
9532 		print_irqtrace_events(current);
9533 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9534 	    && !preempt_count_equals(preempt_offset)) {
9535 		pr_err("Preemption disabled at:");
9536 		print_ip_sym(KERN_ERR, preempt_disable_ip);
9537 	}
9538 	dump_stack();
9539 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9540 }
9541 EXPORT_SYMBOL(___might_sleep);
9542 
9543 void __cant_sleep(const char *file, int line, int preempt_offset)
9544 {
9545 	static unsigned long prev_jiffy;
9546 
9547 	if (irqs_disabled())
9548 		return;
9549 
9550 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9551 		return;
9552 
9553 	if (preempt_count() > preempt_offset)
9554 		return;
9555 
9556 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9557 		return;
9558 	prev_jiffy = jiffies;
9559 
9560 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9561 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9562 			in_atomic(), irqs_disabled(),
9563 			current->pid, current->comm);
9564 
9565 	debug_show_held_locks(current);
9566 	dump_stack();
9567 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9568 }
9569 EXPORT_SYMBOL_GPL(__cant_sleep);
9570 
9571 #ifdef CONFIG_SMP
9572 void __cant_migrate(const char *file, int line)
9573 {
9574 	static unsigned long prev_jiffy;
9575 
9576 	if (irqs_disabled())
9577 		return;
9578 
9579 	if (is_migration_disabled(current))
9580 		return;
9581 
9582 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9583 		return;
9584 
9585 	if (preempt_count() > 0)
9586 		return;
9587 
9588 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9589 		return;
9590 	prev_jiffy = jiffies;
9591 
9592 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9593 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9594 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9595 	       current->pid, current->comm);
9596 
9597 	debug_show_held_locks(current);
9598 	dump_stack();
9599 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9600 }
9601 EXPORT_SYMBOL_GPL(__cant_migrate);
9602 #endif
9603 #endif
9604 
9605 #ifdef CONFIG_MAGIC_SYSRQ
9606 void normalize_rt_tasks(void)
9607 {
9608 	struct task_struct *g, *p;
9609 	struct sched_attr attr = {
9610 		.sched_policy = SCHED_NORMAL,
9611 	};
9612 
9613 	read_lock(&tasklist_lock);
9614 	for_each_process_thread(g, p) {
9615 		/*
9616 		 * Only normalize user tasks:
9617 		 */
9618 		if (p->flags & PF_KTHREAD)
9619 			continue;
9620 
9621 		p->se.exec_start = 0;
9622 		schedstat_set(p->se.statistics.wait_start,  0);
9623 		schedstat_set(p->se.statistics.sleep_start, 0);
9624 		schedstat_set(p->se.statistics.block_start, 0);
9625 
9626 		if (!dl_task(p) && !rt_task(p)) {
9627 			/*
9628 			 * Renice negative nice level userspace
9629 			 * tasks back to 0:
9630 			 */
9631 			if (task_nice(p) < 0)
9632 				set_user_nice(p, 0);
9633 			continue;
9634 		}
9635 
9636 		__sched_setscheduler(p, &attr, false, false);
9637 	}
9638 	read_unlock(&tasklist_lock);
9639 }
9640 
9641 #endif /* CONFIG_MAGIC_SYSRQ */
9642 
9643 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9644 /*
9645  * These functions are only useful for the IA64 MCA handling, or kdb.
9646  *
9647  * They can only be called when the whole system has been
9648  * stopped - every CPU needs to be quiescent, and no scheduling
9649  * activity can take place. Using them for anything else would
9650  * be a serious bug, and as a result, they aren't even visible
9651  * under any other configuration.
9652  */
9653 
9654 /**
9655  * curr_task - return the current task for a given CPU.
9656  * @cpu: the processor in question.
9657  *
9658  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9659  *
9660  * Return: The current task for @cpu.
9661  */
9662 struct task_struct *curr_task(int cpu)
9663 {
9664 	return cpu_curr(cpu);
9665 }
9666 
9667 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9668 
9669 #ifdef CONFIG_IA64
9670 /**
9671  * ia64_set_curr_task - set the current task for a given CPU.
9672  * @cpu: the processor in question.
9673  * @p: the task pointer to set.
9674  *
9675  * Description: This function must only be used when non-maskable interrupts
9676  * are serviced on a separate stack. It allows the architecture to switch the
9677  * notion of the current task on a CPU in a non-blocking manner. This function
9678  * must be called with all CPU's synchronized, and interrupts disabled, the
9679  * and caller must save the original value of the current task (see
9680  * curr_task() above) and restore that value before reenabling interrupts and
9681  * re-starting the system.
9682  *
9683  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9684  */
9685 void ia64_set_curr_task(int cpu, struct task_struct *p)
9686 {
9687 	cpu_curr(cpu) = p;
9688 }
9689 
9690 #endif
9691 
9692 #ifdef CONFIG_CGROUP_SCHED
9693 /* task_group_lock serializes the addition/removal of task groups */
9694 static DEFINE_SPINLOCK(task_group_lock);
9695 
9696 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9697 					    struct task_group *parent)
9698 {
9699 #ifdef CONFIG_UCLAMP_TASK_GROUP
9700 	enum uclamp_id clamp_id;
9701 
9702 	for_each_clamp_id(clamp_id) {
9703 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9704 			      uclamp_none(clamp_id), false);
9705 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9706 	}
9707 #endif
9708 }
9709 
9710 static void sched_free_group(struct task_group *tg)
9711 {
9712 	free_fair_sched_group(tg);
9713 	free_rt_sched_group(tg);
9714 	autogroup_free(tg);
9715 	kmem_cache_free(task_group_cache, tg);
9716 }
9717 
9718 /* allocate runqueue etc for a new task group */
9719 struct task_group *sched_create_group(struct task_group *parent)
9720 {
9721 	struct task_group *tg;
9722 
9723 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9724 	if (!tg)
9725 		return ERR_PTR(-ENOMEM);
9726 
9727 	if (!alloc_fair_sched_group(tg, parent))
9728 		goto err;
9729 
9730 	if (!alloc_rt_sched_group(tg, parent))
9731 		goto err;
9732 
9733 	alloc_uclamp_sched_group(tg, parent);
9734 
9735 	return tg;
9736 
9737 err:
9738 	sched_free_group(tg);
9739 	return ERR_PTR(-ENOMEM);
9740 }
9741 
9742 void sched_online_group(struct task_group *tg, struct task_group *parent)
9743 {
9744 	unsigned long flags;
9745 
9746 	spin_lock_irqsave(&task_group_lock, flags);
9747 	list_add_rcu(&tg->list, &task_groups);
9748 
9749 	/* Root should already exist: */
9750 	WARN_ON(!parent);
9751 
9752 	tg->parent = parent;
9753 	INIT_LIST_HEAD(&tg->children);
9754 	list_add_rcu(&tg->siblings, &parent->children);
9755 	spin_unlock_irqrestore(&task_group_lock, flags);
9756 
9757 	online_fair_sched_group(tg);
9758 }
9759 
9760 /* rcu callback to free various structures associated with a task group */
9761 static void sched_free_group_rcu(struct rcu_head *rhp)
9762 {
9763 	/* Now it should be safe to free those cfs_rqs: */
9764 	sched_free_group(container_of(rhp, struct task_group, rcu));
9765 }
9766 
9767 void sched_destroy_group(struct task_group *tg)
9768 {
9769 	/* Wait for possible concurrent references to cfs_rqs complete: */
9770 	call_rcu(&tg->rcu, sched_free_group_rcu);
9771 }
9772 
9773 void sched_offline_group(struct task_group *tg)
9774 {
9775 	unsigned long flags;
9776 
9777 	/* End participation in shares distribution: */
9778 	unregister_fair_sched_group(tg);
9779 
9780 	spin_lock_irqsave(&task_group_lock, flags);
9781 	list_del_rcu(&tg->list);
9782 	list_del_rcu(&tg->siblings);
9783 	spin_unlock_irqrestore(&task_group_lock, flags);
9784 }
9785 
9786 static void sched_change_group(struct task_struct *tsk, int type)
9787 {
9788 	struct task_group *tg;
9789 
9790 	/*
9791 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9792 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9793 	 * to prevent lockdep warnings.
9794 	 */
9795 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9796 			  struct task_group, css);
9797 	tg = autogroup_task_group(tsk, tg);
9798 	tsk->sched_task_group = tg;
9799 
9800 #ifdef CONFIG_FAIR_GROUP_SCHED
9801 	if (tsk->sched_class->task_change_group)
9802 		tsk->sched_class->task_change_group(tsk, type);
9803 	else
9804 #endif
9805 		set_task_rq(tsk, task_cpu(tsk));
9806 }
9807 
9808 /*
9809  * Change task's runqueue when it moves between groups.
9810  *
9811  * The caller of this function should have put the task in its new group by
9812  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9813  * its new group.
9814  */
9815 void sched_move_task(struct task_struct *tsk)
9816 {
9817 	int queued, running, queue_flags =
9818 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9819 	struct rq_flags rf;
9820 	struct rq *rq;
9821 
9822 	rq = task_rq_lock(tsk, &rf);
9823 	update_rq_clock(rq);
9824 
9825 	running = task_current(rq, tsk);
9826 	queued = task_on_rq_queued(tsk);
9827 
9828 	if (queued)
9829 		dequeue_task(rq, tsk, queue_flags);
9830 	if (running)
9831 		put_prev_task(rq, tsk);
9832 
9833 	sched_change_group(tsk, TASK_MOVE_GROUP);
9834 
9835 	if (queued)
9836 		enqueue_task(rq, tsk, queue_flags);
9837 	if (running) {
9838 		set_next_task(rq, tsk);
9839 		/*
9840 		 * After changing group, the running task may have joined a
9841 		 * throttled one but it's still the running task. Trigger a
9842 		 * resched to make sure that task can still run.
9843 		 */
9844 		resched_curr(rq);
9845 	}
9846 
9847 	task_rq_unlock(rq, tsk, &rf);
9848 }
9849 
9850 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9851 {
9852 	return css ? container_of(css, struct task_group, css) : NULL;
9853 }
9854 
9855 static struct cgroup_subsys_state *
9856 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9857 {
9858 	struct task_group *parent = css_tg(parent_css);
9859 	struct task_group *tg;
9860 
9861 	if (!parent) {
9862 		/* This is early initialization for the top cgroup */
9863 		return &root_task_group.css;
9864 	}
9865 
9866 	tg = sched_create_group(parent);
9867 	if (IS_ERR(tg))
9868 		return ERR_PTR(-ENOMEM);
9869 
9870 	return &tg->css;
9871 }
9872 
9873 /* Expose task group only after completing cgroup initialization */
9874 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9875 {
9876 	struct task_group *tg = css_tg(css);
9877 	struct task_group *parent = css_tg(css->parent);
9878 
9879 	if (parent)
9880 		sched_online_group(tg, parent);
9881 
9882 #ifdef CONFIG_UCLAMP_TASK_GROUP
9883 	/* Propagate the effective uclamp value for the new group */
9884 	mutex_lock(&uclamp_mutex);
9885 	rcu_read_lock();
9886 	cpu_util_update_eff(css);
9887 	rcu_read_unlock();
9888 	mutex_unlock(&uclamp_mutex);
9889 #endif
9890 
9891 	return 0;
9892 }
9893 
9894 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9895 {
9896 	struct task_group *tg = css_tg(css);
9897 
9898 	sched_offline_group(tg);
9899 }
9900 
9901 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9902 {
9903 	struct task_group *tg = css_tg(css);
9904 
9905 	/*
9906 	 * Relies on the RCU grace period between css_released() and this.
9907 	 */
9908 	sched_free_group(tg);
9909 }
9910 
9911 /*
9912  * This is called before wake_up_new_task(), therefore we really only
9913  * have to set its group bits, all the other stuff does not apply.
9914  */
9915 static void cpu_cgroup_fork(struct task_struct *task)
9916 {
9917 	struct rq_flags rf;
9918 	struct rq *rq;
9919 
9920 	rq = task_rq_lock(task, &rf);
9921 
9922 	update_rq_clock(rq);
9923 	sched_change_group(task, TASK_SET_GROUP);
9924 
9925 	task_rq_unlock(rq, task, &rf);
9926 }
9927 
9928 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9929 {
9930 	struct task_struct *task;
9931 	struct cgroup_subsys_state *css;
9932 	int ret = 0;
9933 
9934 	cgroup_taskset_for_each(task, css, tset) {
9935 #ifdef CONFIG_RT_GROUP_SCHED
9936 		if (!sched_rt_can_attach(css_tg(css), task))
9937 			return -EINVAL;
9938 #endif
9939 		/*
9940 		 * Serialize against wake_up_new_task() such that if it's
9941 		 * running, we're sure to observe its full state.
9942 		 */
9943 		raw_spin_lock_irq(&task->pi_lock);
9944 		/*
9945 		 * Avoid calling sched_move_task() before wake_up_new_task()
9946 		 * has happened. This would lead to problems with PELT, due to
9947 		 * move wanting to detach+attach while we're not attached yet.
9948 		 */
9949 		if (READ_ONCE(task->__state) == TASK_NEW)
9950 			ret = -EINVAL;
9951 		raw_spin_unlock_irq(&task->pi_lock);
9952 
9953 		if (ret)
9954 			break;
9955 	}
9956 	return ret;
9957 }
9958 
9959 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9960 {
9961 	struct task_struct *task;
9962 	struct cgroup_subsys_state *css;
9963 
9964 	cgroup_taskset_for_each(task, css, tset)
9965 		sched_move_task(task);
9966 }
9967 
9968 #ifdef CONFIG_UCLAMP_TASK_GROUP
9969 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9970 {
9971 	struct cgroup_subsys_state *top_css = css;
9972 	struct uclamp_se *uc_parent = NULL;
9973 	struct uclamp_se *uc_se = NULL;
9974 	unsigned int eff[UCLAMP_CNT];
9975 	enum uclamp_id clamp_id;
9976 	unsigned int clamps;
9977 
9978 	lockdep_assert_held(&uclamp_mutex);
9979 	SCHED_WARN_ON(!rcu_read_lock_held());
9980 
9981 	css_for_each_descendant_pre(css, top_css) {
9982 		uc_parent = css_tg(css)->parent
9983 			? css_tg(css)->parent->uclamp : NULL;
9984 
9985 		for_each_clamp_id(clamp_id) {
9986 			/* Assume effective clamps matches requested clamps */
9987 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9988 			/* Cap effective clamps with parent's effective clamps */
9989 			if (uc_parent &&
9990 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9991 				eff[clamp_id] = uc_parent[clamp_id].value;
9992 			}
9993 		}
9994 		/* Ensure protection is always capped by limit */
9995 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9996 
9997 		/* Propagate most restrictive effective clamps */
9998 		clamps = 0x0;
9999 		uc_se = css_tg(css)->uclamp;
10000 		for_each_clamp_id(clamp_id) {
10001 			if (eff[clamp_id] == uc_se[clamp_id].value)
10002 				continue;
10003 			uc_se[clamp_id].value = eff[clamp_id];
10004 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10005 			clamps |= (0x1 << clamp_id);
10006 		}
10007 		if (!clamps) {
10008 			css = css_rightmost_descendant(css);
10009 			continue;
10010 		}
10011 
10012 		/* Immediately update descendants RUNNABLE tasks */
10013 		uclamp_update_active_tasks(css);
10014 	}
10015 }
10016 
10017 /*
10018  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10019  * C expression. Since there is no way to convert a macro argument (N) into a
10020  * character constant, use two levels of macros.
10021  */
10022 #define _POW10(exp) ((unsigned int)1e##exp)
10023 #define POW10(exp) _POW10(exp)
10024 
10025 struct uclamp_request {
10026 #define UCLAMP_PERCENT_SHIFT	2
10027 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10028 	s64 percent;
10029 	u64 util;
10030 	int ret;
10031 };
10032 
10033 static inline struct uclamp_request
10034 capacity_from_percent(char *buf)
10035 {
10036 	struct uclamp_request req = {
10037 		.percent = UCLAMP_PERCENT_SCALE,
10038 		.util = SCHED_CAPACITY_SCALE,
10039 		.ret = 0,
10040 	};
10041 
10042 	buf = strim(buf);
10043 	if (strcmp(buf, "max")) {
10044 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10045 					     &req.percent);
10046 		if (req.ret)
10047 			return req;
10048 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10049 			req.ret = -ERANGE;
10050 			return req;
10051 		}
10052 
10053 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10054 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10055 	}
10056 
10057 	return req;
10058 }
10059 
10060 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10061 				size_t nbytes, loff_t off,
10062 				enum uclamp_id clamp_id)
10063 {
10064 	struct uclamp_request req;
10065 	struct task_group *tg;
10066 
10067 	req = capacity_from_percent(buf);
10068 	if (req.ret)
10069 		return req.ret;
10070 
10071 	static_branch_enable(&sched_uclamp_used);
10072 
10073 	mutex_lock(&uclamp_mutex);
10074 	rcu_read_lock();
10075 
10076 	tg = css_tg(of_css(of));
10077 	if (tg->uclamp_req[clamp_id].value != req.util)
10078 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10079 
10080 	/*
10081 	 * Because of not recoverable conversion rounding we keep track of the
10082 	 * exact requested value
10083 	 */
10084 	tg->uclamp_pct[clamp_id] = req.percent;
10085 
10086 	/* Update effective clamps to track the most restrictive value */
10087 	cpu_util_update_eff(of_css(of));
10088 
10089 	rcu_read_unlock();
10090 	mutex_unlock(&uclamp_mutex);
10091 
10092 	return nbytes;
10093 }
10094 
10095 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10096 				    char *buf, size_t nbytes,
10097 				    loff_t off)
10098 {
10099 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10100 }
10101 
10102 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10103 				    char *buf, size_t nbytes,
10104 				    loff_t off)
10105 {
10106 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10107 }
10108 
10109 static inline void cpu_uclamp_print(struct seq_file *sf,
10110 				    enum uclamp_id clamp_id)
10111 {
10112 	struct task_group *tg;
10113 	u64 util_clamp;
10114 	u64 percent;
10115 	u32 rem;
10116 
10117 	rcu_read_lock();
10118 	tg = css_tg(seq_css(sf));
10119 	util_clamp = tg->uclamp_req[clamp_id].value;
10120 	rcu_read_unlock();
10121 
10122 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10123 		seq_puts(sf, "max\n");
10124 		return;
10125 	}
10126 
10127 	percent = tg->uclamp_pct[clamp_id];
10128 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10129 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10130 }
10131 
10132 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10133 {
10134 	cpu_uclamp_print(sf, UCLAMP_MIN);
10135 	return 0;
10136 }
10137 
10138 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10139 {
10140 	cpu_uclamp_print(sf, UCLAMP_MAX);
10141 	return 0;
10142 }
10143 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10144 
10145 #ifdef CONFIG_FAIR_GROUP_SCHED
10146 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10147 				struct cftype *cftype, u64 shareval)
10148 {
10149 	if (shareval > scale_load_down(ULONG_MAX))
10150 		shareval = MAX_SHARES;
10151 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10152 }
10153 
10154 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10155 			       struct cftype *cft)
10156 {
10157 	struct task_group *tg = css_tg(css);
10158 
10159 	return (u64) scale_load_down(tg->shares);
10160 }
10161 
10162 #ifdef CONFIG_CFS_BANDWIDTH
10163 static DEFINE_MUTEX(cfs_constraints_mutex);
10164 
10165 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10166 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10167 /* More than 203 days if BW_SHIFT equals 20. */
10168 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10169 
10170 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10171 
10172 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10173 				u64 burst)
10174 {
10175 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10176 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10177 
10178 	if (tg == &root_task_group)
10179 		return -EINVAL;
10180 
10181 	/*
10182 	 * Ensure we have at some amount of bandwidth every period.  This is
10183 	 * to prevent reaching a state of large arrears when throttled via
10184 	 * entity_tick() resulting in prolonged exit starvation.
10185 	 */
10186 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10187 		return -EINVAL;
10188 
10189 	/*
10190 	 * Likewise, bound things on the other side by preventing insane quota
10191 	 * periods.  This also allows us to normalize in computing quota
10192 	 * feasibility.
10193 	 */
10194 	if (period > max_cfs_quota_period)
10195 		return -EINVAL;
10196 
10197 	/*
10198 	 * Bound quota to defend quota against overflow during bandwidth shift.
10199 	 */
10200 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10201 		return -EINVAL;
10202 
10203 	if (quota != RUNTIME_INF && (burst > quota ||
10204 				     burst + quota > max_cfs_runtime))
10205 		return -EINVAL;
10206 
10207 	/*
10208 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10209 	 * unthrottle_offline_cfs_rqs().
10210 	 */
10211 	cpus_read_lock();
10212 	mutex_lock(&cfs_constraints_mutex);
10213 	ret = __cfs_schedulable(tg, period, quota);
10214 	if (ret)
10215 		goto out_unlock;
10216 
10217 	runtime_enabled = quota != RUNTIME_INF;
10218 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10219 	/*
10220 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10221 	 * before making related changes, and on->off must occur afterwards
10222 	 */
10223 	if (runtime_enabled && !runtime_was_enabled)
10224 		cfs_bandwidth_usage_inc();
10225 	raw_spin_lock_irq(&cfs_b->lock);
10226 	cfs_b->period = ns_to_ktime(period);
10227 	cfs_b->quota = quota;
10228 	cfs_b->burst = burst;
10229 
10230 	__refill_cfs_bandwidth_runtime(cfs_b);
10231 
10232 	/* Restart the period timer (if active) to handle new period expiry: */
10233 	if (runtime_enabled)
10234 		start_cfs_bandwidth(cfs_b);
10235 
10236 	raw_spin_unlock_irq(&cfs_b->lock);
10237 
10238 	for_each_online_cpu(i) {
10239 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10240 		struct rq *rq = cfs_rq->rq;
10241 		struct rq_flags rf;
10242 
10243 		rq_lock_irq(rq, &rf);
10244 		cfs_rq->runtime_enabled = runtime_enabled;
10245 		cfs_rq->runtime_remaining = 0;
10246 
10247 		if (cfs_rq->throttled)
10248 			unthrottle_cfs_rq(cfs_rq);
10249 		rq_unlock_irq(rq, &rf);
10250 	}
10251 	if (runtime_was_enabled && !runtime_enabled)
10252 		cfs_bandwidth_usage_dec();
10253 out_unlock:
10254 	mutex_unlock(&cfs_constraints_mutex);
10255 	cpus_read_unlock();
10256 
10257 	return ret;
10258 }
10259 
10260 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10261 {
10262 	u64 quota, period, burst;
10263 
10264 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10265 	burst = tg->cfs_bandwidth.burst;
10266 	if (cfs_quota_us < 0)
10267 		quota = RUNTIME_INF;
10268 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10269 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10270 	else
10271 		return -EINVAL;
10272 
10273 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10274 }
10275 
10276 static long tg_get_cfs_quota(struct task_group *tg)
10277 {
10278 	u64 quota_us;
10279 
10280 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10281 		return -1;
10282 
10283 	quota_us = tg->cfs_bandwidth.quota;
10284 	do_div(quota_us, NSEC_PER_USEC);
10285 
10286 	return quota_us;
10287 }
10288 
10289 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10290 {
10291 	u64 quota, period, burst;
10292 
10293 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10294 		return -EINVAL;
10295 
10296 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10297 	quota = tg->cfs_bandwidth.quota;
10298 	burst = tg->cfs_bandwidth.burst;
10299 
10300 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10301 }
10302 
10303 static long tg_get_cfs_period(struct task_group *tg)
10304 {
10305 	u64 cfs_period_us;
10306 
10307 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10308 	do_div(cfs_period_us, NSEC_PER_USEC);
10309 
10310 	return cfs_period_us;
10311 }
10312 
10313 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10314 {
10315 	u64 quota, period, burst;
10316 
10317 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10318 		return -EINVAL;
10319 
10320 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10321 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10322 	quota = tg->cfs_bandwidth.quota;
10323 
10324 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10325 }
10326 
10327 static long tg_get_cfs_burst(struct task_group *tg)
10328 {
10329 	u64 burst_us;
10330 
10331 	burst_us = tg->cfs_bandwidth.burst;
10332 	do_div(burst_us, NSEC_PER_USEC);
10333 
10334 	return burst_us;
10335 }
10336 
10337 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10338 				  struct cftype *cft)
10339 {
10340 	return tg_get_cfs_quota(css_tg(css));
10341 }
10342 
10343 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10344 				   struct cftype *cftype, s64 cfs_quota_us)
10345 {
10346 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10347 }
10348 
10349 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10350 				   struct cftype *cft)
10351 {
10352 	return tg_get_cfs_period(css_tg(css));
10353 }
10354 
10355 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10356 				    struct cftype *cftype, u64 cfs_period_us)
10357 {
10358 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10359 }
10360 
10361 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10362 				  struct cftype *cft)
10363 {
10364 	return tg_get_cfs_burst(css_tg(css));
10365 }
10366 
10367 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10368 				   struct cftype *cftype, u64 cfs_burst_us)
10369 {
10370 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10371 }
10372 
10373 struct cfs_schedulable_data {
10374 	struct task_group *tg;
10375 	u64 period, quota;
10376 };
10377 
10378 /*
10379  * normalize group quota/period to be quota/max_period
10380  * note: units are usecs
10381  */
10382 static u64 normalize_cfs_quota(struct task_group *tg,
10383 			       struct cfs_schedulable_data *d)
10384 {
10385 	u64 quota, period;
10386 
10387 	if (tg == d->tg) {
10388 		period = d->period;
10389 		quota = d->quota;
10390 	} else {
10391 		period = tg_get_cfs_period(tg);
10392 		quota = tg_get_cfs_quota(tg);
10393 	}
10394 
10395 	/* note: these should typically be equivalent */
10396 	if (quota == RUNTIME_INF || quota == -1)
10397 		return RUNTIME_INF;
10398 
10399 	return to_ratio(period, quota);
10400 }
10401 
10402 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10403 {
10404 	struct cfs_schedulable_data *d = data;
10405 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10406 	s64 quota = 0, parent_quota = -1;
10407 
10408 	if (!tg->parent) {
10409 		quota = RUNTIME_INF;
10410 	} else {
10411 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10412 
10413 		quota = normalize_cfs_quota(tg, d);
10414 		parent_quota = parent_b->hierarchical_quota;
10415 
10416 		/*
10417 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10418 		 * always take the min.  On cgroup1, only inherit when no
10419 		 * limit is set:
10420 		 */
10421 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10422 			quota = min(quota, parent_quota);
10423 		} else {
10424 			if (quota == RUNTIME_INF)
10425 				quota = parent_quota;
10426 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10427 				return -EINVAL;
10428 		}
10429 	}
10430 	cfs_b->hierarchical_quota = quota;
10431 
10432 	return 0;
10433 }
10434 
10435 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10436 {
10437 	int ret;
10438 	struct cfs_schedulable_data data = {
10439 		.tg = tg,
10440 		.period = period,
10441 		.quota = quota,
10442 	};
10443 
10444 	if (quota != RUNTIME_INF) {
10445 		do_div(data.period, NSEC_PER_USEC);
10446 		do_div(data.quota, NSEC_PER_USEC);
10447 	}
10448 
10449 	rcu_read_lock();
10450 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10451 	rcu_read_unlock();
10452 
10453 	return ret;
10454 }
10455 
10456 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10457 {
10458 	struct task_group *tg = css_tg(seq_css(sf));
10459 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10460 
10461 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10462 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10463 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10464 
10465 	if (schedstat_enabled() && tg != &root_task_group) {
10466 		u64 ws = 0;
10467 		int i;
10468 
10469 		for_each_possible_cpu(i)
10470 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10471 
10472 		seq_printf(sf, "wait_sum %llu\n", ws);
10473 	}
10474 
10475 	return 0;
10476 }
10477 #endif /* CONFIG_CFS_BANDWIDTH */
10478 #endif /* CONFIG_FAIR_GROUP_SCHED */
10479 
10480 #ifdef CONFIG_RT_GROUP_SCHED
10481 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10482 				struct cftype *cft, s64 val)
10483 {
10484 	return sched_group_set_rt_runtime(css_tg(css), val);
10485 }
10486 
10487 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10488 			       struct cftype *cft)
10489 {
10490 	return sched_group_rt_runtime(css_tg(css));
10491 }
10492 
10493 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10494 				    struct cftype *cftype, u64 rt_period_us)
10495 {
10496 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10497 }
10498 
10499 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10500 				   struct cftype *cft)
10501 {
10502 	return sched_group_rt_period(css_tg(css));
10503 }
10504 #endif /* CONFIG_RT_GROUP_SCHED */
10505 
10506 #ifdef CONFIG_FAIR_GROUP_SCHED
10507 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10508 			       struct cftype *cft)
10509 {
10510 	return css_tg(css)->idle;
10511 }
10512 
10513 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10514 				struct cftype *cft, s64 idle)
10515 {
10516 	return sched_group_set_idle(css_tg(css), idle);
10517 }
10518 #endif
10519 
10520 static struct cftype cpu_legacy_files[] = {
10521 #ifdef CONFIG_FAIR_GROUP_SCHED
10522 	{
10523 		.name = "shares",
10524 		.read_u64 = cpu_shares_read_u64,
10525 		.write_u64 = cpu_shares_write_u64,
10526 	},
10527 	{
10528 		.name = "idle",
10529 		.read_s64 = cpu_idle_read_s64,
10530 		.write_s64 = cpu_idle_write_s64,
10531 	},
10532 #endif
10533 #ifdef CONFIG_CFS_BANDWIDTH
10534 	{
10535 		.name = "cfs_quota_us",
10536 		.read_s64 = cpu_cfs_quota_read_s64,
10537 		.write_s64 = cpu_cfs_quota_write_s64,
10538 	},
10539 	{
10540 		.name = "cfs_period_us",
10541 		.read_u64 = cpu_cfs_period_read_u64,
10542 		.write_u64 = cpu_cfs_period_write_u64,
10543 	},
10544 	{
10545 		.name = "cfs_burst_us",
10546 		.read_u64 = cpu_cfs_burst_read_u64,
10547 		.write_u64 = cpu_cfs_burst_write_u64,
10548 	},
10549 	{
10550 		.name = "stat",
10551 		.seq_show = cpu_cfs_stat_show,
10552 	},
10553 #endif
10554 #ifdef CONFIG_RT_GROUP_SCHED
10555 	{
10556 		.name = "rt_runtime_us",
10557 		.read_s64 = cpu_rt_runtime_read,
10558 		.write_s64 = cpu_rt_runtime_write,
10559 	},
10560 	{
10561 		.name = "rt_period_us",
10562 		.read_u64 = cpu_rt_period_read_uint,
10563 		.write_u64 = cpu_rt_period_write_uint,
10564 	},
10565 #endif
10566 #ifdef CONFIG_UCLAMP_TASK_GROUP
10567 	{
10568 		.name = "uclamp.min",
10569 		.flags = CFTYPE_NOT_ON_ROOT,
10570 		.seq_show = cpu_uclamp_min_show,
10571 		.write = cpu_uclamp_min_write,
10572 	},
10573 	{
10574 		.name = "uclamp.max",
10575 		.flags = CFTYPE_NOT_ON_ROOT,
10576 		.seq_show = cpu_uclamp_max_show,
10577 		.write = cpu_uclamp_max_write,
10578 	},
10579 #endif
10580 	{ }	/* Terminate */
10581 };
10582 
10583 static int cpu_extra_stat_show(struct seq_file *sf,
10584 			       struct cgroup_subsys_state *css)
10585 {
10586 #ifdef CONFIG_CFS_BANDWIDTH
10587 	{
10588 		struct task_group *tg = css_tg(css);
10589 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10590 		u64 throttled_usec;
10591 
10592 		throttled_usec = cfs_b->throttled_time;
10593 		do_div(throttled_usec, NSEC_PER_USEC);
10594 
10595 		seq_printf(sf, "nr_periods %d\n"
10596 			   "nr_throttled %d\n"
10597 			   "throttled_usec %llu\n",
10598 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10599 			   throttled_usec);
10600 	}
10601 #endif
10602 	return 0;
10603 }
10604 
10605 #ifdef CONFIG_FAIR_GROUP_SCHED
10606 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10607 			       struct cftype *cft)
10608 {
10609 	struct task_group *tg = css_tg(css);
10610 	u64 weight = scale_load_down(tg->shares);
10611 
10612 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10613 }
10614 
10615 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10616 				struct cftype *cft, u64 weight)
10617 {
10618 	/*
10619 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10620 	 * values which are 1, 100 and 10000 respectively.  While it loses
10621 	 * a bit of range on both ends, it maps pretty well onto the shares
10622 	 * value used by scheduler and the round-trip conversions preserve
10623 	 * the original value over the entire range.
10624 	 */
10625 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10626 		return -ERANGE;
10627 
10628 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10629 
10630 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10631 }
10632 
10633 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10634 				    struct cftype *cft)
10635 {
10636 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10637 	int last_delta = INT_MAX;
10638 	int prio, delta;
10639 
10640 	/* find the closest nice value to the current weight */
10641 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10642 		delta = abs(sched_prio_to_weight[prio] - weight);
10643 		if (delta >= last_delta)
10644 			break;
10645 		last_delta = delta;
10646 	}
10647 
10648 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10649 }
10650 
10651 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10652 				     struct cftype *cft, s64 nice)
10653 {
10654 	unsigned long weight;
10655 	int idx;
10656 
10657 	if (nice < MIN_NICE || nice > MAX_NICE)
10658 		return -ERANGE;
10659 
10660 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10661 	idx = array_index_nospec(idx, 40);
10662 	weight = sched_prio_to_weight[idx];
10663 
10664 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10665 }
10666 #endif
10667 
10668 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10669 						  long period, long quota)
10670 {
10671 	if (quota < 0)
10672 		seq_puts(sf, "max");
10673 	else
10674 		seq_printf(sf, "%ld", quota);
10675 
10676 	seq_printf(sf, " %ld\n", period);
10677 }
10678 
10679 /* caller should put the current value in *@periodp before calling */
10680 static int __maybe_unused cpu_period_quota_parse(char *buf,
10681 						 u64 *periodp, u64 *quotap)
10682 {
10683 	char tok[21];	/* U64_MAX */
10684 
10685 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10686 		return -EINVAL;
10687 
10688 	*periodp *= NSEC_PER_USEC;
10689 
10690 	if (sscanf(tok, "%llu", quotap))
10691 		*quotap *= NSEC_PER_USEC;
10692 	else if (!strcmp(tok, "max"))
10693 		*quotap = RUNTIME_INF;
10694 	else
10695 		return -EINVAL;
10696 
10697 	return 0;
10698 }
10699 
10700 #ifdef CONFIG_CFS_BANDWIDTH
10701 static int cpu_max_show(struct seq_file *sf, void *v)
10702 {
10703 	struct task_group *tg = css_tg(seq_css(sf));
10704 
10705 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10706 	return 0;
10707 }
10708 
10709 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10710 			     char *buf, size_t nbytes, loff_t off)
10711 {
10712 	struct task_group *tg = css_tg(of_css(of));
10713 	u64 period = tg_get_cfs_period(tg);
10714 	u64 burst = tg_get_cfs_burst(tg);
10715 	u64 quota;
10716 	int ret;
10717 
10718 	ret = cpu_period_quota_parse(buf, &period, &quota);
10719 	if (!ret)
10720 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10721 	return ret ?: nbytes;
10722 }
10723 #endif
10724 
10725 static struct cftype cpu_files[] = {
10726 #ifdef CONFIG_FAIR_GROUP_SCHED
10727 	{
10728 		.name = "weight",
10729 		.flags = CFTYPE_NOT_ON_ROOT,
10730 		.read_u64 = cpu_weight_read_u64,
10731 		.write_u64 = cpu_weight_write_u64,
10732 	},
10733 	{
10734 		.name = "weight.nice",
10735 		.flags = CFTYPE_NOT_ON_ROOT,
10736 		.read_s64 = cpu_weight_nice_read_s64,
10737 		.write_s64 = cpu_weight_nice_write_s64,
10738 	},
10739 	{
10740 		.name = "idle",
10741 		.flags = CFTYPE_NOT_ON_ROOT,
10742 		.read_s64 = cpu_idle_read_s64,
10743 		.write_s64 = cpu_idle_write_s64,
10744 	},
10745 #endif
10746 #ifdef CONFIG_CFS_BANDWIDTH
10747 	{
10748 		.name = "max",
10749 		.flags = CFTYPE_NOT_ON_ROOT,
10750 		.seq_show = cpu_max_show,
10751 		.write = cpu_max_write,
10752 	},
10753 	{
10754 		.name = "max.burst",
10755 		.flags = CFTYPE_NOT_ON_ROOT,
10756 		.read_u64 = cpu_cfs_burst_read_u64,
10757 		.write_u64 = cpu_cfs_burst_write_u64,
10758 	},
10759 #endif
10760 #ifdef CONFIG_UCLAMP_TASK_GROUP
10761 	{
10762 		.name = "uclamp.min",
10763 		.flags = CFTYPE_NOT_ON_ROOT,
10764 		.seq_show = cpu_uclamp_min_show,
10765 		.write = cpu_uclamp_min_write,
10766 	},
10767 	{
10768 		.name = "uclamp.max",
10769 		.flags = CFTYPE_NOT_ON_ROOT,
10770 		.seq_show = cpu_uclamp_max_show,
10771 		.write = cpu_uclamp_max_write,
10772 	},
10773 #endif
10774 	{ }	/* terminate */
10775 };
10776 
10777 struct cgroup_subsys cpu_cgrp_subsys = {
10778 	.css_alloc	= cpu_cgroup_css_alloc,
10779 	.css_online	= cpu_cgroup_css_online,
10780 	.css_released	= cpu_cgroup_css_released,
10781 	.css_free	= cpu_cgroup_css_free,
10782 	.css_extra_stat_show = cpu_extra_stat_show,
10783 	.fork		= cpu_cgroup_fork,
10784 	.can_attach	= cpu_cgroup_can_attach,
10785 	.attach		= cpu_cgroup_attach,
10786 	.legacy_cftypes	= cpu_legacy_files,
10787 	.dfl_cftypes	= cpu_files,
10788 	.early_init	= true,
10789 	.threaded	= true,
10790 };
10791 
10792 #endif	/* CONFIG_CGROUP_SCHED */
10793 
10794 void dump_cpu_task(int cpu)
10795 {
10796 	pr_info("Task dump for CPU %d:\n", cpu);
10797 	sched_show_task(cpu_curr(cpu));
10798 }
10799 
10800 /*
10801  * Nice levels are multiplicative, with a gentle 10% change for every
10802  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10803  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10804  * that remained on nice 0.
10805  *
10806  * The "10% effect" is relative and cumulative: from _any_ nice level,
10807  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10808  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10809  * If a task goes up by ~10% and another task goes down by ~10% then
10810  * the relative distance between them is ~25%.)
10811  */
10812 const int sched_prio_to_weight[40] = {
10813  /* -20 */     88761,     71755,     56483,     46273,     36291,
10814  /* -15 */     29154,     23254,     18705,     14949,     11916,
10815  /* -10 */      9548,      7620,      6100,      4904,      3906,
10816  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10817  /*   0 */      1024,       820,       655,       526,       423,
10818  /*   5 */       335,       272,       215,       172,       137,
10819  /*  10 */       110,        87,        70,        56,        45,
10820  /*  15 */        36,        29,        23,        18,        15,
10821 };
10822 
10823 /*
10824  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10825  *
10826  * In cases where the weight does not change often, we can use the
10827  * precalculated inverse to speed up arithmetics by turning divisions
10828  * into multiplications:
10829  */
10830 const u32 sched_prio_to_wmult[40] = {
10831  /* -20 */     48388,     59856,     76040,     92818,    118348,
10832  /* -15 */    147320,    184698,    229616,    287308,    360437,
10833  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10834  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10835  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10836  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10837  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10838  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10839 };
10840 
10841 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10842 {
10843         trace_sched_update_nr_running_tp(rq, count);
10844 }
10845