1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 62 /* 63 * Print a warning if need_resched is set for the given duration (if 64 * LATENCY_WARN is enabled). 65 * 66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 67 * per boot. 68 */ 69 __read_mostly int sysctl_resched_latency_warn_ms = 100; 70 __read_mostly int sysctl_resched_latency_warn_once = 1; 71 #endif /* CONFIG_SCHED_DEBUG */ 72 73 /* 74 * Number of tasks to iterate in a single balance run. 75 * Limited because this is done with IRQs disabled. 76 */ 77 const_debug unsigned int sysctl_sched_nr_migrate = 32; 78 79 /* 80 * period over which we measure -rt task CPU usage in us. 81 * default: 1s 82 */ 83 unsigned int sysctl_sched_rt_period = 1000000; 84 85 __read_mostly int scheduler_running; 86 87 #ifdef CONFIG_SCHED_CORE 88 89 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 90 91 /* kernel prio, less is more */ 92 static inline int __task_prio(struct task_struct *p) 93 { 94 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 95 return -2; 96 97 if (rt_prio(p->prio)) /* includes deadline */ 98 return p->prio; /* [-1, 99] */ 99 100 if (p->sched_class == &idle_sched_class) 101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 102 103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 104 } 105 106 /* 107 * l(a,b) 108 * le(a,b) := !l(b,a) 109 * g(a,b) := l(b,a) 110 * ge(a,b) := !l(a,b) 111 */ 112 113 /* real prio, less is less */ 114 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 115 { 116 117 int pa = __task_prio(a), pb = __task_prio(b); 118 119 if (-pa < -pb) 120 return true; 121 122 if (-pb < -pa) 123 return false; 124 125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 126 return !dl_time_before(a->dl.deadline, b->dl.deadline); 127 128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 129 return cfs_prio_less(a, b, in_fi); 130 131 return false; 132 } 133 134 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 135 { 136 if (a->core_cookie < b->core_cookie) 137 return true; 138 139 if (a->core_cookie > b->core_cookie) 140 return false; 141 142 /* flip prio, so high prio is leftmost */ 143 if (prio_less(b, a, task_rq(a)->core->core_forceidle)) 144 return true; 145 146 return false; 147 } 148 149 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 150 151 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 152 { 153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 154 } 155 156 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 157 { 158 const struct task_struct *p = __node_2_sc(node); 159 unsigned long cookie = (unsigned long)key; 160 161 if (cookie < p->core_cookie) 162 return -1; 163 164 if (cookie > p->core_cookie) 165 return 1; 166 167 return 0; 168 } 169 170 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 171 { 172 rq->core->core_task_seq++; 173 174 if (!p->core_cookie) 175 return; 176 177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 178 } 179 180 void sched_core_dequeue(struct rq *rq, struct task_struct *p) 181 { 182 rq->core->core_task_seq++; 183 184 if (!sched_core_enqueued(p)) 185 return; 186 187 rb_erase(&p->core_node, &rq->core_tree); 188 RB_CLEAR_NODE(&p->core_node); 189 } 190 191 /* 192 * Find left-most (aka, highest priority) task matching @cookie. 193 */ 194 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 195 { 196 struct rb_node *node; 197 198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 199 /* 200 * The idle task always matches any cookie! 201 */ 202 if (!node) 203 return idle_sched_class.pick_task(rq); 204 205 return __node_2_sc(node); 206 } 207 208 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 209 { 210 struct rb_node *node = &p->core_node; 211 212 node = rb_next(node); 213 if (!node) 214 return NULL; 215 216 p = container_of(node, struct task_struct, core_node); 217 if (p->core_cookie != cookie) 218 return NULL; 219 220 return p; 221 } 222 223 /* 224 * Magic required such that: 225 * 226 * raw_spin_rq_lock(rq); 227 * ... 228 * raw_spin_rq_unlock(rq); 229 * 230 * ends up locking and unlocking the _same_ lock, and all CPUs 231 * always agree on what rq has what lock. 232 * 233 * XXX entirely possible to selectively enable cores, don't bother for now. 234 */ 235 236 static DEFINE_MUTEX(sched_core_mutex); 237 static atomic_t sched_core_count; 238 static struct cpumask sched_core_mask; 239 240 static void sched_core_lock(int cpu, unsigned long *flags) 241 { 242 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 243 int t, i = 0; 244 245 local_irq_save(*flags); 246 for_each_cpu(t, smt_mask) 247 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 248 } 249 250 static void sched_core_unlock(int cpu, unsigned long *flags) 251 { 252 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 253 int t; 254 255 for_each_cpu(t, smt_mask) 256 raw_spin_unlock(&cpu_rq(t)->__lock); 257 local_irq_restore(*flags); 258 } 259 260 static void __sched_core_flip(bool enabled) 261 { 262 unsigned long flags; 263 int cpu, t; 264 265 cpus_read_lock(); 266 267 /* 268 * Toggle the online cores, one by one. 269 */ 270 cpumask_copy(&sched_core_mask, cpu_online_mask); 271 for_each_cpu(cpu, &sched_core_mask) { 272 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 273 274 sched_core_lock(cpu, &flags); 275 276 for_each_cpu(t, smt_mask) 277 cpu_rq(t)->core_enabled = enabled; 278 279 sched_core_unlock(cpu, &flags); 280 281 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 282 } 283 284 /* 285 * Toggle the offline CPUs. 286 */ 287 cpumask_copy(&sched_core_mask, cpu_possible_mask); 288 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask); 289 290 for_each_cpu(cpu, &sched_core_mask) 291 cpu_rq(cpu)->core_enabled = enabled; 292 293 cpus_read_unlock(); 294 } 295 296 static void sched_core_assert_empty(void) 297 { 298 int cpu; 299 300 for_each_possible_cpu(cpu) 301 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 302 } 303 304 static void __sched_core_enable(void) 305 { 306 static_branch_enable(&__sched_core_enabled); 307 /* 308 * Ensure all previous instances of raw_spin_rq_*lock() have finished 309 * and future ones will observe !sched_core_disabled(). 310 */ 311 synchronize_rcu(); 312 __sched_core_flip(true); 313 sched_core_assert_empty(); 314 } 315 316 static void __sched_core_disable(void) 317 { 318 sched_core_assert_empty(); 319 __sched_core_flip(false); 320 static_branch_disable(&__sched_core_enabled); 321 } 322 323 void sched_core_get(void) 324 { 325 if (atomic_inc_not_zero(&sched_core_count)) 326 return; 327 328 mutex_lock(&sched_core_mutex); 329 if (!atomic_read(&sched_core_count)) 330 __sched_core_enable(); 331 332 smp_mb__before_atomic(); 333 atomic_inc(&sched_core_count); 334 mutex_unlock(&sched_core_mutex); 335 } 336 337 static void __sched_core_put(struct work_struct *work) 338 { 339 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 340 __sched_core_disable(); 341 mutex_unlock(&sched_core_mutex); 342 } 343 } 344 345 void sched_core_put(void) 346 { 347 static DECLARE_WORK(_work, __sched_core_put); 348 349 /* 350 * "There can be only one" 351 * 352 * Either this is the last one, or we don't actually need to do any 353 * 'work'. If it is the last *again*, we rely on 354 * WORK_STRUCT_PENDING_BIT. 355 */ 356 if (!atomic_add_unless(&sched_core_count, -1, 1)) 357 schedule_work(&_work); 358 } 359 360 #else /* !CONFIG_SCHED_CORE */ 361 362 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 363 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { } 364 365 #endif /* CONFIG_SCHED_CORE */ 366 367 /* 368 * part of the period that we allow rt tasks to run in us. 369 * default: 0.95s 370 */ 371 int sysctl_sched_rt_runtime = 950000; 372 373 374 /* 375 * Serialization rules: 376 * 377 * Lock order: 378 * 379 * p->pi_lock 380 * rq->lock 381 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 382 * 383 * rq1->lock 384 * rq2->lock where: rq1 < rq2 385 * 386 * Regular state: 387 * 388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 389 * local CPU's rq->lock, it optionally removes the task from the runqueue and 390 * always looks at the local rq data structures to find the most eligible task 391 * to run next. 392 * 393 * Task enqueue is also under rq->lock, possibly taken from another CPU. 394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 395 * the local CPU to avoid bouncing the runqueue state around [ see 396 * ttwu_queue_wakelist() ] 397 * 398 * Task wakeup, specifically wakeups that involve migration, are horribly 399 * complicated to avoid having to take two rq->locks. 400 * 401 * Special state: 402 * 403 * System-calls and anything external will use task_rq_lock() which acquires 404 * both p->pi_lock and rq->lock. As a consequence the state they change is 405 * stable while holding either lock: 406 * 407 * - sched_setaffinity()/ 408 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 409 * - set_user_nice(): p->se.load, p->*prio 410 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 411 * p->se.load, p->rt_priority, 412 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 413 * - sched_setnuma(): p->numa_preferred_nid 414 * - sched_move_task()/ 415 * cpu_cgroup_fork(): p->sched_task_group 416 * - uclamp_update_active() p->uclamp* 417 * 418 * p->state <- TASK_*: 419 * 420 * is changed locklessly using set_current_state(), __set_current_state() or 421 * set_special_state(), see their respective comments, or by 422 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 423 * concurrent self. 424 * 425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 426 * 427 * is set by activate_task() and cleared by deactivate_task(), under 428 * rq->lock. Non-zero indicates the task is runnable, the special 429 * ON_RQ_MIGRATING state is used for migration without holding both 430 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 431 * 432 * p->on_cpu <- { 0, 1 }: 433 * 434 * is set by prepare_task() and cleared by finish_task() such that it will be 435 * set before p is scheduled-in and cleared after p is scheduled-out, both 436 * under rq->lock. Non-zero indicates the task is running on its CPU. 437 * 438 * [ The astute reader will observe that it is possible for two tasks on one 439 * CPU to have ->on_cpu = 1 at the same time. ] 440 * 441 * task_cpu(p): is changed by set_task_cpu(), the rules are: 442 * 443 * - Don't call set_task_cpu() on a blocked task: 444 * 445 * We don't care what CPU we're not running on, this simplifies hotplug, 446 * the CPU assignment of blocked tasks isn't required to be valid. 447 * 448 * - for try_to_wake_up(), called under p->pi_lock: 449 * 450 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 451 * 452 * - for migration called under rq->lock: 453 * [ see task_on_rq_migrating() in task_rq_lock() ] 454 * 455 * o move_queued_task() 456 * o detach_task() 457 * 458 * - for migration called under double_rq_lock(): 459 * 460 * o __migrate_swap_task() 461 * o push_rt_task() / pull_rt_task() 462 * o push_dl_task() / pull_dl_task() 463 * o dl_task_offline_migration() 464 * 465 */ 466 467 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 468 { 469 raw_spinlock_t *lock; 470 471 /* Matches synchronize_rcu() in __sched_core_enable() */ 472 preempt_disable(); 473 if (sched_core_disabled()) { 474 raw_spin_lock_nested(&rq->__lock, subclass); 475 /* preempt_count *MUST* be > 1 */ 476 preempt_enable_no_resched(); 477 return; 478 } 479 480 for (;;) { 481 lock = __rq_lockp(rq); 482 raw_spin_lock_nested(lock, subclass); 483 if (likely(lock == __rq_lockp(rq))) { 484 /* preempt_count *MUST* be > 1 */ 485 preempt_enable_no_resched(); 486 return; 487 } 488 raw_spin_unlock(lock); 489 } 490 } 491 492 bool raw_spin_rq_trylock(struct rq *rq) 493 { 494 raw_spinlock_t *lock; 495 bool ret; 496 497 /* Matches synchronize_rcu() in __sched_core_enable() */ 498 preempt_disable(); 499 if (sched_core_disabled()) { 500 ret = raw_spin_trylock(&rq->__lock); 501 preempt_enable(); 502 return ret; 503 } 504 505 for (;;) { 506 lock = __rq_lockp(rq); 507 ret = raw_spin_trylock(lock); 508 if (!ret || (likely(lock == __rq_lockp(rq)))) { 509 preempt_enable(); 510 return ret; 511 } 512 raw_spin_unlock(lock); 513 } 514 } 515 516 void raw_spin_rq_unlock(struct rq *rq) 517 { 518 raw_spin_unlock(rq_lockp(rq)); 519 } 520 521 #ifdef CONFIG_SMP 522 /* 523 * double_rq_lock - safely lock two runqueues 524 */ 525 void double_rq_lock(struct rq *rq1, struct rq *rq2) 526 { 527 lockdep_assert_irqs_disabled(); 528 529 if (rq_order_less(rq2, rq1)) 530 swap(rq1, rq2); 531 532 raw_spin_rq_lock(rq1); 533 if (__rq_lockp(rq1) == __rq_lockp(rq2)) 534 return; 535 536 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 537 } 538 #endif 539 540 /* 541 * __task_rq_lock - lock the rq @p resides on. 542 */ 543 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 544 __acquires(rq->lock) 545 { 546 struct rq *rq; 547 548 lockdep_assert_held(&p->pi_lock); 549 550 for (;;) { 551 rq = task_rq(p); 552 raw_spin_rq_lock(rq); 553 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 554 rq_pin_lock(rq, rf); 555 return rq; 556 } 557 raw_spin_rq_unlock(rq); 558 559 while (unlikely(task_on_rq_migrating(p))) 560 cpu_relax(); 561 } 562 } 563 564 /* 565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 566 */ 567 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 568 __acquires(p->pi_lock) 569 __acquires(rq->lock) 570 { 571 struct rq *rq; 572 573 for (;;) { 574 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 575 rq = task_rq(p); 576 raw_spin_rq_lock(rq); 577 /* 578 * move_queued_task() task_rq_lock() 579 * 580 * ACQUIRE (rq->lock) 581 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 582 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 583 * [S] ->cpu = new_cpu [L] task_rq() 584 * [L] ->on_rq 585 * RELEASE (rq->lock) 586 * 587 * If we observe the old CPU in task_rq_lock(), the acquire of 588 * the old rq->lock will fully serialize against the stores. 589 * 590 * If we observe the new CPU in task_rq_lock(), the address 591 * dependency headed by '[L] rq = task_rq()' and the acquire 592 * will pair with the WMB to ensure we then also see migrating. 593 */ 594 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 595 rq_pin_lock(rq, rf); 596 return rq; 597 } 598 raw_spin_rq_unlock(rq); 599 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 600 601 while (unlikely(task_on_rq_migrating(p))) 602 cpu_relax(); 603 } 604 } 605 606 /* 607 * RQ-clock updating methods: 608 */ 609 610 static void update_rq_clock_task(struct rq *rq, s64 delta) 611 { 612 /* 613 * In theory, the compile should just see 0 here, and optimize out the call 614 * to sched_rt_avg_update. But I don't trust it... 615 */ 616 s64 __maybe_unused steal = 0, irq_delta = 0; 617 618 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 619 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 620 621 /* 622 * Since irq_time is only updated on {soft,}irq_exit, we might run into 623 * this case when a previous update_rq_clock() happened inside a 624 * {soft,}irq region. 625 * 626 * When this happens, we stop ->clock_task and only update the 627 * prev_irq_time stamp to account for the part that fit, so that a next 628 * update will consume the rest. This ensures ->clock_task is 629 * monotonic. 630 * 631 * It does however cause some slight miss-attribution of {soft,}irq 632 * time, a more accurate solution would be to update the irq_time using 633 * the current rq->clock timestamp, except that would require using 634 * atomic ops. 635 */ 636 if (irq_delta > delta) 637 irq_delta = delta; 638 639 rq->prev_irq_time += irq_delta; 640 delta -= irq_delta; 641 #endif 642 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 643 if (static_key_false((¶virt_steal_rq_enabled))) { 644 steal = paravirt_steal_clock(cpu_of(rq)); 645 steal -= rq->prev_steal_time_rq; 646 647 if (unlikely(steal > delta)) 648 steal = delta; 649 650 rq->prev_steal_time_rq += steal; 651 delta -= steal; 652 } 653 #endif 654 655 rq->clock_task += delta; 656 657 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 658 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 659 update_irq_load_avg(rq, irq_delta + steal); 660 #endif 661 update_rq_clock_pelt(rq, delta); 662 } 663 664 void update_rq_clock(struct rq *rq) 665 { 666 s64 delta; 667 668 lockdep_assert_rq_held(rq); 669 670 if (rq->clock_update_flags & RQCF_ACT_SKIP) 671 return; 672 673 #ifdef CONFIG_SCHED_DEBUG 674 if (sched_feat(WARN_DOUBLE_CLOCK)) 675 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 676 rq->clock_update_flags |= RQCF_UPDATED; 677 #endif 678 679 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 680 if (delta < 0) 681 return; 682 rq->clock += delta; 683 update_rq_clock_task(rq, delta); 684 } 685 686 #ifdef CONFIG_SCHED_HRTICK 687 /* 688 * Use HR-timers to deliver accurate preemption points. 689 */ 690 691 static void hrtick_clear(struct rq *rq) 692 { 693 if (hrtimer_active(&rq->hrtick_timer)) 694 hrtimer_cancel(&rq->hrtick_timer); 695 } 696 697 /* 698 * High-resolution timer tick. 699 * Runs from hardirq context with interrupts disabled. 700 */ 701 static enum hrtimer_restart hrtick(struct hrtimer *timer) 702 { 703 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 704 struct rq_flags rf; 705 706 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 707 708 rq_lock(rq, &rf); 709 update_rq_clock(rq); 710 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 711 rq_unlock(rq, &rf); 712 713 return HRTIMER_NORESTART; 714 } 715 716 #ifdef CONFIG_SMP 717 718 static void __hrtick_restart(struct rq *rq) 719 { 720 struct hrtimer *timer = &rq->hrtick_timer; 721 ktime_t time = rq->hrtick_time; 722 723 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 724 } 725 726 /* 727 * called from hardirq (IPI) context 728 */ 729 static void __hrtick_start(void *arg) 730 { 731 struct rq *rq = arg; 732 struct rq_flags rf; 733 734 rq_lock(rq, &rf); 735 __hrtick_restart(rq); 736 rq_unlock(rq, &rf); 737 } 738 739 /* 740 * Called to set the hrtick timer state. 741 * 742 * called with rq->lock held and irqs disabled 743 */ 744 void hrtick_start(struct rq *rq, u64 delay) 745 { 746 struct hrtimer *timer = &rq->hrtick_timer; 747 s64 delta; 748 749 /* 750 * Don't schedule slices shorter than 10000ns, that just 751 * doesn't make sense and can cause timer DoS. 752 */ 753 delta = max_t(s64, delay, 10000LL); 754 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 755 756 if (rq == this_rq()) 757 __hrtick_restart(rq); 758 else 759 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 760 } 761 762 #else 763 /* 764 * Called to set the hrtick timer state. 765 * 766 * called with rq->lock held and irqs disabled 767 */ 768 void hrtick_start(struct rq *rq, u64 delay) 769 { 770 /* 771 * Don't schedule slices shorter than 10000ns, that just 772 * doesn't make sense. Rely on vruntime for fairness. 773 */ 774 delay = max_t(u64, delay, 10000LL); 775 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 776 HRTIMER_MODE_REL_PINNED_HARD); 777 } 778 779 #endif /* CONFIG_SMP */ 780 781 static void hrtick_rq_init(struct rq *rq) 782 { 783 #ifdef CONFIG_SMP 784 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 785 #endif 786 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 787 rq->hrtick_timer.function = hrtick; 788 } 789 #else /* CONFIG_SCHED_HRTICK */ 790 static inline void hrtick_clear(struct rq *rq) 791 { 792 } 793 794 static inline void hrtick_rq_init(struct rq *rq) 795 { 796 } 797 #endif /* CONFIG_SCHED_HRTICK */ 798 799 /* 800 * cmpxchg based fetch_or, macro so it works for different integer types 801 */ 802 #define fetch_or(ptr, mask) \ 803 ({ \ 804 typeof(ptr) _ptr = (ptr); \ 805 typeof(mask) _mask = (mask); \ 806 typeof(*_ptr) _old, _val = *_ptr; \ 807 \ 808 for (;;) { \ 809 _old = cmpxchg(_ptr, _val, _val | _mask); \ 810 if (_old == _val) \ 811 break; \ 812 _val = _old; \ 813 } \ 814 _old; \ 815 }) 816 817 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 818 /* 819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 820 * this avoids any races wrt polling state changes and thereby avoids 821 * spurious IPIs. 822 */ 823 static bool set_nr_and_not_polling(struct task_struct *p) 824 { 825 struct thread_info *ti = task_thread_info(p); 826 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 827 } 828 829 /* 830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 831 * 832 * If this returns true, then the idle task promises to call 833 * sched_ttwu_pending() and reschedule soon. 834 */ 835 static bool set_nr_if_polling(struct task_struct *p) 836 { 837 struct thread_info *ti = task_thread_info(p); 838 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 839 840 for (;;) { 841 if (!(val & _TIF_POLLING_NRFLAG)) 842 return false; 843 if (val & _TIF_NEED_RESCHED) 844 return true; 845 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 846 if (old == val) 847 break; 848 val = old; 849 } 850 return true; 851 } 852 853 #else 854 static bool set_nr_and_not_polling(struct task_struct *p) 855 { 856 set_tsk_need_resched(p); 857 return true; 858 } 859 860 #ifdef CONFIG_SMP 861 static bool set_nr_if_polling(struct task_struct *p) 862 { 863 return false; 864 } 865 #endif 866 #endif 867 868 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 869 { 870 struct wake_q_node *node = &task->wake_q; 871 872 /* 873 * Atomically grab the task, if ->wake_q is !nil already it means 874 * it's already queued (either by us or someone else) and will get the 875 * wakeup due to that. 876 * 877 * In order to ensure that a pending wakeup will observe our pending 878 * state, even in the failed case, an explicit smp_mb() must be used. 879 */ 880 smp_mb__before_atomic(); 881 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 882 return false; 883 884 /* 885 * The head is context local, there can be no concurrency. 886 */ 887 *head->lastp = node; 888 head->lastp = &node->next; 889 return true; 890 } 891 892 /** 893 * wake_q_add() - queue a wakeup for 'later' waking. 894 * @head: the wake_q_head to add @task to 895 * @task: the task to queue for 'later' wakeup 896 * 897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 899 * instantly. 900 * 901 * This function must be used as-if it were wake_up_process(); IOW the task 902 * must be ready to be woken at this location. 903 */ 904 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 905 { 906 if (__wake_q_add(head, task)) 907 get_task_struct(task); 908 } 909 910 /** 911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 912 * @head: the wake_q_head to add @task to 913 * @task: the task to queue for 'later' wakeup 914 * 915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 917 * instantly. 918 * 919 * This function must be used as-if it were wake_up_process(); IOW the task 920 * must be ready to be woken at this location. 921 * 922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 923 * that already hold reference to @task can call the 'safe' version and trust 924 * wake_q to do the right thing depending whether or not the @task is already 925 * queued for wakeup. 926 */ 927 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 928 { 929 if (!__wake_q_add(head, task)) 930 put_task_struct(task); 931 } 932 933 void wake_up_q(struct wake_q_head *head) 934 { 935 struct wake_q_node *node = head->first; 936 937 while (node != WAKE_Q_TAIL) { 938 struct task_struct *task; 939 940 task = container_of(node, struct task_struct, wake_q); 941 /* Task can safely be re-inserted now: */ 942 node = node->next; 943 task->wake_q.next = NULL; 944 945 /* 946 * wake_up_process() executes a full barrier, which pairs with 947 * the queueing in wake_q_add() so as not to miss wakeups. 948 */ 949 wake_up_process(task); 950 put_task_struct(task); 951 } 952 } 953 954 /* 955 * resched_curr - mark rq's current task 'to be rescheduled now'. 956 * 957 * On UP this means the setting of the need_resched flag, on SMP it 958 * might also involve a cross-CPU call to trigger the scheduler on 959 * the target CPU. 960 */ 961 void resched_curr(struct rq *rq) 962 { 963 struct task_struct *curr = rq->curr; 964 int cpu; 965 966 lockdep_assert_rq_held(rq); 967 968 if (test_tsk_need_resched(curr)) 969 return; 970 971 cpu = cpu_of(rq); 972 973 if (cpu == smp_processor_id()) { 974 set_tsk_need_resched(curr); 975 set_preempt_need_resched(); 976 return; 977 } 978 979 if (set_nr_and_not_polling(curr)) 980 smp_send_reschedule(cpu); 981 else 982 trace_sched_wake_idle_without_ipi(cpu); 983 } 984 985 void resched_cpu(int cpu) 986 { 987 struct rq *rq = cpu_rq(cpu); 988 unsigned long flags; 989 990 raw_spin_rq_lock_irqsave(rq, flags); 991 if (cpu_online(cpu) || cpu == smp_processor_id()) 992 resched_curr(rq); 993 raw_spin_rq_unlock_irqrestore(rq, flags); 994 } 995 996 #ifdef CONFIG_SMP 997 #ifdef CONFIG_NO_HZ_COMMON 998 /* 999 * In the semi idle case, use the nearest busy CPU for migrating timers 1000 * from an idle CPU. This is good for power-savings. 1001 * 1002 * We don't do similar optimization for completely idle system, as 1003 * selecting an idle CPU will add more delays to the timers than intended 1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1005 */ 1006 int get_nohz_timer_target(void) 1007 { 1008 int i, cpu = smp_processor_id(), default_cpu = -1; 1009 struct sched_domain *sd; 1010 const struct cpumask *hk_mask; 1011 1012 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 1013 if (!idle_cpu(cpu)) 1014 return cpu; 1015 default_cpu = cpu; 1016 } 1017 1018 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER); 1019 1020 rcu_read_lock(); 1021 for_each_domain(cpu, sd) { 1022 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1023 if (cpu == i) 1024 continue; 1025 1026 if (!idle_cpu(i)) { 1027 cpu = i; 1028 goto unlock; 1029 } 1030 } 1031 } 1032 1033 if (default_cpu == -1) 1034 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 1035 cpu = default_cpu; 1036 unlock: 1037 rcu_read_unlock(); 1038 return cpu; 1039 } 1040 1041 /* 1042 * When add_timer_on() enqueues a timer into the timer wheel of an 1043 * idle CPU then this timer might expire before the next timer event 1044 * which is scheduled to wake up that CPU. In case of a completely 1045 * idle system the next event might even be infinite time into the 1046 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1047 * leaves the inner idle loop so the newly added timer is taken into 1048 * account when the CPU goes back to idle and evaluates the timer 1049 * wheel for the next timer event. 1050 */ 1051 static void wake_up_idle_cpu(int cpu) 1052 { 1053 struct rq *rq = cpu_rq(cpu); 1054 1055 if (cpu == smp_processor_id()) 1056 return; 1057 1058 if (set_nr_and_not_polling(rq->idle)) 1059 smp_send_reschedule(cpu); 1060 else 1061 trace_sched_wake_idle_without_ipi(cpu); 1062 } 1063 1064 static bool wake_up_full_nohz_cpu(int cpu) 1065 { 1066 /* 1067 * We just need the target to call irq_exit() and re-evaluate 1068 * the next tick. The nohz full kick at least implies that. 1069 * If needed we can still optimize that later with an 1070 * empty IRQ. 1071 */ 1072 if (cpu_is_offline(cpu)) 1073 return true; /* Don't try to wake offline CPUs. */ 1074 if (tick_nohz_full_cpu(cpu)) { 1075 if (cpu != smp_processor_id() || 1076 tick_nohz_tick_stopped()) 1077 tick_nohz_full_kick_cpu(cpu); 1078 return true; 1079 } 1080 1081 return false; 1082 } 1083 1084 /* 1085 * Wake up the specified CPU. If the CPU is going offline, it is the 1086 * caller's responsibility to deal with the lost wakeup, for example, 1087 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1088 */ 1089 void wake_up_nohz_cpu(int cpu) 1090 { 1091 if (!wake_up_full_nohz_cpu(cpu)) 1092 wake_up_idle_cpu(cpu); 1093 } 1094 1095 static void nohz_csd_func(void *info) 1096 { 1097 struct rq *rq = info; 1098 int cpu = cpu_of(rq); 1099 unsigned int flags; 1100 1101 /* 1102 * Release the rq::nohz_csd. 1103 */ 1104 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1105 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1106 1107 rq->idle_balance = idle_cpu(cpu); 1108 if (rq->idle_balance && !need_resched()) { 1109 rq->nohz_idle_balance = flags; 1110 raise_softirq_irqoff(SCHED_SOFTIRQ); 1111 } 1112 } 1113 1114 #endif /* CONFIG_NO_HZ_COMMON */ 1115 1116 #ifdef CONFIG_NO_HZ_FULL 1117 bool sched_can_stop_tick(struct rq *rq) 1118 { 1119 int fifo_nr_running; 1120 1121 /* Deadline tasks, even if single, need the tick */ 1122 if (rq->dl.dl_nr_running) 1123 return false; 1124 1125 /* 1126 * If there are more than one RR tasks, we need the tick to affect the 1127 * actual RR behaviour. 1128 */ 1129 if (rq->rt.rr_nr_running) { 1130 if (rq->rt.rr_nr_running == 1) 1131 return true; 1132 else 1133 return false; 1134 } 1135 1136 /* 1137 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1138 * forced preemption between FIFO tasks. 1139 */ 1140 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1141 if (fifo_nr_running) 1142 return true; 1143 1144 /* 1145 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1146 * if there's more than one we need the tick for involuntary 1147 * preemption. 1148 */ 1149 if (rq->nr_running > 1) 1150 return false; 1151 1152 return true; 1153 } 1154 #endif /* CONFIG_NO_HZ_FULL */ 1155 #endif /* CONFIG_SMP */ 1156 1157 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1158 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1159 /* 1160 * Iterate task_group tree rooted at *from, calling @down when first entering a 1161 * node and @up when leaving it for the final time. 1162 * 1163 * Caller must hold rcu_lock or sufficient equivalent. 1164 */ 1165 int walk_tg_tree_from(struct task_group *from, 1166 tg_visitor down, tg_visitor up, void *data) 1167 { 1168 struct task_group *parent, *child; 1169 int ret; 1170 1171 parent = from; 1172 1173 down: 1174 ret = (*down)(parent, data); 1175 if (ret) 1176 goto out; 1177 list_for_each_entry_rcu(child, &parent->children, siblings) { 1178 parent = child; 1179 goto down; 1180 1181 up: 1182 continue; 1183 } 1184 ret = (*up)(parent, data); 1185 if (ret || parent == from) 1186 goto out; 1187 1188 child = parent; 1189 parent = parent->parent; 1190 if (parent) 1191 goto up; 1192 out: 1193 return ret; 1194 } 1195 1196 int tg_nop(struct task_group *tg, void *data) 1197 { 1198 return 0; 1199 } 1200 #endif 1201 1202 static void set_load_weight(struct task_struct *p, bool update_load) 1203 { 1204 int prio = p->static_prio - MAX_RT_PRIO; 1205 struct load_weight *load = &p->se.load; 1206 1207 /* 1208 * SCHED_IDLE tasks get minimal weight: 1209 */ 1210 if (task_has_idle_policy(p)) { 1211 load->weight = scale_load(WEIGHT_IDLEPRIO); 1212 load->inv_weight = WMULT_IDLEPRIO; 1213 return; 1214 } 1215 1216 /* 1217 * SCHED_OTHER tasks have to update their load when changing their 1218 * weight 1219 */ 1220 if (update_load && p->sched_class == &fair_sched_class) { 1221 reweight_task(p, prio); 1222 } else { 1223 load->weight = scale_load(sched_prio_to_weight[prio]); 1224 load->inv_weight = sched_prio_to_wmult[prio]; 1225 } 1226 } 1227 1228 #ifdef CONFIG_UCLAMP_TASK 1229 /* 1230 * Serializes updates of utilization clamp values 1231 * 1232 * The (slow-path) user-space triggers utilization clamp value updates which 1233 * can require updates on (fast-path) scheduler's data structures used to 1234 * support enqueue/dequeue operations. 1235 * While the per-CPU rq lock protects fast-path update operations, user-space 1236 * requests are serialized using a mutex to reduce the risk of conflicting 1237 * updates or API abuses. 1238 */ 1239 static DEFINE_MUTEX(uclamp_mutex); 1240 1241 /* Max allowed minimum utilization */ 1242 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1243 1244 /* Max allowed maximum utilization */ 1245 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1246 1247 /* 1248 * By default RT tasks run at the maximum performance point/capacity of the 1249 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1250 * SCHED_CAPACITY_SCALE. 1251 * 1252 * This knob allows admins to change the default behavior when uclamp is being 1253 * used. In battery powered devices, particularly, running at the maximum 1254 * capacity and frequency will increase energy consumption and shorten the 1255 * battery life. 1256 * 1257 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1258 * 1259 * This knob will not override the system default sched_util_clamp_min defined 1260 * above. 1261 */ 1262 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1263 1264 /* All clamps are required to be less or equal than these values */ 1265 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1266 1267 /* 1268 * This static key is used to reduce the uclamp overhead in the fast path. It 1269 * primarily disables the call to uclamp_rq_{inc, dec}() in 1270 * enqueue/dequeue_task(). 1271 * 1272 * This allows users to continue to enable uclamp in their kernel config with 1273 * minimum uclamp overhead in the fast path. 1274 * 1275 * As soon as userspace modifies any of the uclamp knobs, the static key is 1276 * enabled, since we have an actual users that make use of uclamp 1277 * functionality. 1278 * 1279 * The knobs that would enable this static key are: 1280 * 1281 * * A task modifying its uclamp value with sched_setattr(). 1282 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1283 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1284 */ 1285 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1286 1287 /* Integer rounded range for each bucket */ 1288 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1289 1290 #define for_each_clamp_id(clamp_id) \ 1291 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1292 1293 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1294 { 1295 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1296 } 1297 1298 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1299 { 1300 if (clamp_id == UCLAMP_MIN) 1301 return 0; 1302 return SCHED_CAPACITY_SCALE; 1303 } 1304 1305 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1306 unsigned int value, bool user_defined) 1307 { 1308 uc_se->value = value; 1309 uc_se->bucket_id = uclamp_bucket_id(value); 1310 uc_se->user_defined = user_defined; 1311 } 1312 1313 static inline unsigned int 1314 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1315 unsigned int clamp_value) 1316 { 1317 /* 1318 * Avoid blocked utilization pushing up the frequency when we go 1319 * idle (which drops the max-clamp) by retaining the last known 1320 * max-clamp. 1321 */ 1322 if (clamp_id == UCLAMP_MAX) { 1323 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1324 return clamp_value; 1325 } 1326 1327 return uclamp_none(UCLAMP_MIN); 1328 } 1329 1330 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1331 unsigned int clamp_value) 1332 { 1333 /* Reset max-clamp retention only on idle exit */ 1334 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1335 return; 1336 1337 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1338 } 1339 1340 static inline 1341 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1342 unsigned int clamp_value) 1343 { 1344 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1345 int bucket_id = UCLAMP_BUCKETS - 1; 1346 1347 /* 1348 * Since both min and max clamps are max aggregated, find the 1349 * top most bucket with tasks in. 1350 */ 1351 for ( ; bucket_id >= 0; bucket_id--) { 1352 if (!bucket[bucket_id].tasks) 1353 continue; 1354 return bucket[bucket_id].value; 1355 } 1356 1357 /* No tasks -- default clamp values */ 1358 return uclamp_idle_value(rq, clamp_id, clamp_value); 1359 } 1360 1361 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1362 { 1363 unsigned int default_util_min; 1364 struct uclamp_se *uc_se; 1365 1366 lockdep_assert_held(&p->pi_lock); 1367 1368 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1369 1370 /* Only sync if user didn't override the default */ 1371 if (uc_se->user_defined) 1372 return; 1373 1374 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1375 uclamp_se_set(uc_se, default_util_min, false); 1376 } 1377 1378 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1379 { 1380 struct rq_flags rf; 1381 struct rq *rq; 1382 1383 if (!rt_task(p)) 1384 return; 1385 1386 /* Protect updates to p->uclamp_* */ 1387 rq = task_rq_lock(p, &rf); 1388 __uclamp_update_util_min_rt_default(p); 1389 task_rq_unlock(rq, p, &rf); 1390 } 1391 1392 static void uclamp_sync_util_min_rt_default(void) 1393 { 1394 struct task_struct *g, *p; 1395 1396 /* 1397 * copy_process() sysctl_uclamp 1398 * uclamp_min_rt = X; 1399 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1400 * // link thread smp_mb__after_spinlock() 1401 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1402 * sched_post_fork() for_each_process_thread() 1403 * __uclamp_sync_rt() __uclamp_sync_rt() 1404 * 1405 * Ensures that either sched_post_fork() will observe the new 1406 * uclamp_min_rt or for_each_process_thread() will observe the new 1407 * task. 1408 */ 1409 read_lock(&tasklist_lock); 1410 smp_mb__after_spinlock(); 1411 read_unlock(&tasklist_lock); 1412 1413 rcu_read_lock(); 1414 for_each_process_thread(g, p) 1415 uclamp_update_util_min_rt_default(p); 1416 rcu_read_unlock(); 1417 } 1418 1419 static inline struct uclamp_se 1420 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1421 { 1422 /* Copy by value as we could modify it */ 1423 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1424 #ifdef CONFIG_UCLAMP_TASK_GROUP 1425 unsigned int tg_min, tg_max, value; 1426 1427 /* 1428 * Tasks in autogroups or root task group will be 1429 * restricted by system defaults. 1430 */ 1431 if (task_group_is_autogroup(task_group(p))) 1432 return uc_req; 1433 if (task_group(p) == &root_task_group) 1434 return uc_req; 1435 1436 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1437 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1438 value = uc_req.value; 1439 value = clamp(value, tg_min, tg_max); 1440 uclamp_se_set(&uc_req, value, false); 1441 #endif 1442 1443 return uc_req; 1444 } 1445 1446 /* 1447 * The effective clamp bucket index of a task depends on, by increasing 1448 * priority: 1449 * - the task specific clamp value, when explicitly requested from userspace 1450 * - the task group effective clamp value, for tasks not either in the root 1451 * group or in an autogroup 1452 * - the system default clamp value, defined by the sysadmin 1453 */ 1454 static inline struct uclamp_se 1455 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1456 { 1457 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1458 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1459 1460 /* System default restrictions always apply */ 1461 if (unlikely(uc_req.value > uc_max.value)) 1462 return uc_max; 1463 1464 return uc_req; 1465 } 1466 1467 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1468 { 1469 struct uclamp_se uc_eff; 1470 1471 /* Task currently refcounted: use back-annotated (effective) value */ 1472 if (p->uclamp[clamp_id].active) 1473 return (unsigned long)p->uclamp[clamp_id].value; 1474 1475 uc_eff = uclamp_eff_get(p, clamp_id); 1476 1477 return (unsigned long)uc_eff.value; 1478 } 1479 1480 /* 1481 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1482 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1483 * updates the rq's clamp value if required. 1484 * 1485 * Tasks can have a task-specific value requested from user-space, track 1486 * within each bucket the maximum value for tasks refcounted in it. 1487 * This "local max aggregation" allows to track the exact "requested" value 1488 * for each bucket when all its RUNNABLE tasks require the same clamp. 1489 */ 1490 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1491 enum uclamp_id clamp_id) 1492 { 1493 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1494 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1495 struct uclamp_bucket *bucket; 1496 1497 lockdep_assert_rq_held(rq); 1498 1499 /* Update task effective clamp */ 1500 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1501 1502 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1503 bucket->tasks++; 1504 uc_se->active = true; 1505 1506 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1507 1508 /* 1509 * Local max aggregation: rq buckets always track the max 1510 * "requested" clamp value of its RUNNABLE tasks. 1511 */ 1512 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1513 bucket->value = uc_se->value; 1514 1515 if (uc_se->value > READ_ONCE(uc_rq->value)) 1516 WRITE_ONCE(uc_rq->value, uc_se->value); 1517 } 1518 1519 /* 1520 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1521 * is released. If this is the last task reference counting the rq's max 1522 * active clamp value, then the rq's clamp value is updated. 1523 * 1524 * Both refcounted tasks and rq's cached clamp values are expected to be 1525 * always valid. If it's detected they are not, as defensive programming, 1526 * enforce the expected state and warn. 1527 */ 1528 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1529 enum uclamp_id clamp_id) 1530 { 1531 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1532 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1533 struct uclamp_bucket *bucket; 1534 unsigned int bkt_clamp; 1535 unsigned int rq_clamp; 1536 1537 lockdep_assert_rq_held(rq); 1538 1539 /* 1540 * If sched_uclamp_used was enabled after task @p was enqueued, 1541 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1542 * 1543 * In this case the uc_se->active flag should be false since no uclamp 1544 * accounting was performed at enqueue time and we can just return 1545 * here. 1546 * 1547 * Need to be careful of the following enqueue/dequeue ordering 1548 * problem too 1549 * 1550 * enqueue(taskA) 1551 * // sched_uclamp_used gets enabled 1552 * enqueue(taskB) 1553 * dequeue(taskA) 1554 * // Must not decrement bucket->tasks here 1555 * dequeue(taskB) 1556 * 1557 * where we could end up with stale data in uc_se and 1558 * bucket[uc_se->bucket_id]. 1559 * 1560 * The following check here eliminates the possibility of such race. 1561 */ 1562 if (unlikely(!uc_se->active)) 1563 return; 1564 1565 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1566 1567 SCHED_WARN_ON(!bucket->tasks); 1568 if (likely(bucket->tasks)) 1569 bucket->tasks--; 1570 1571 uc_se->active = false; 1572 1573 /* 1574 * Keep "local max aggregation" simple and accept to (possibly) 1575 * overboost some RUNNABLE tasks in the same bucket. 1576 * The rq clamp bucket value is reset to its base value whenever 1577 * there are no more RUNNABLE tasks refcounting it. 1578 */ 1579 if (likely(bucket->tasks)) 1580 return; 1581 1582 rq_clamp = READ_ONCE(uc_rq->value); 1583 /* 1584 * Defensive programming: this should never happen. If it happens, 1585 * e.g. due to future modification, warn and fixup the expected value. 1586 */ 1587 SCHED_WARN_ON(bucket->value > rq_clamp); 1588 if (bucket->value >= rq_clamp) { 1589 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1590 WRITE_ONCE(uc_rq->value, bkt_clamp); 1591 } 1592 } 1593 1594 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1595 { 1596 enum uclamp_id clamp_id; 1597 1598 /* 1599 * Avoid any overhead until uclamp is actually used by the userspace. 1600 * 1601 * The condition is constructed such that a NOP is generated when 1602 * sched_uclamp_used is disabled. 1603 */ 1604 if (!static_branch_unlikely(&sched_uclamp_used)) 1605 return; 1606 1607 if (unlikely(!p->sched_class->uclamp_enabled)) 1608 return; 1609 1610 for_each_clamp_id(clamp_id) 1611 uclamp_rq_inc_id(rq, p, clamp_id); 1612 1613 /* Reset clamp idle holding when there is one RUNNABLE task */ 1614 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1615 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1616 } 1617 1618 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1619 { 1620 enum uclamp_id clamp_id; 1621 1622 /* 1623 * Avoid any overhead until uclamp is actually used by the userspace. 1624 * 1625 * The condition is constructed such that a NOP is generated when 1626 * sched_uclamp_used is disabled. 1627 */ 1628 if (!static_branch_unlikely(&sched_uclamp_used)) 1629 return; 1630 1631 if (unlikely(!p->sched_class->uclamp_enabled)) 1632 return; 1633 1634 for_each_clamp_id(clamp_id) 1635 uclamp_rq_dec_id(rq, p, clamp_id); 1636 } 1637 1638 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1639 enum uclamp_id clamp_id) 1640 { 1641 if (!p->uclamp[clamp_id].active) 1642 return; 1643 1644 uclamp_rq_dec_id(rq, p, clamp_id); 1645 uclamp_rq_inc_id(rq, p, clamp_id); 1646 1647 /* 1648 * Make sure to clear the idle flag if we've transiently reached 0 1649 * active tasks on rq. 1650 */ 1651 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1652 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1653 } 1654 1655 static inline void 1656 uclamp_update_active(struct task_struct *p) 1657 { 1658 enum uclamp_id clamp_id; 1659 struct rq_flags rf; 1660 struct rq *rq; 1661 1662 /* 1663 * Lock the task and the rq where the task is (or was) queued. 1664 * 1665 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1666 * price to pay to safely serialize util_{min,max} updates with 1667 * enqueues, dequeues and migration operations. 1668 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1669 */ 1670 rq = task_rq_lock(p, &rf); 1671 1672 /* 1673 * Setting the clamp bucket is serialized by task_rq_lock(). 1674 * If the task is not yet RUNNABLE and its task_struct is not 1675 * affecting a valid clamp bucket, the next time it's enqueued, 1676 * it will already see the updated clamp bucket value. 1677 */ 1678 for_each_clamp_id(clamp_id) 1679 uclamp_rq_reinc_id(rq, p, clamp_id); 1680 1681 task_rq_unlock(rq, p, &rf); 1682 } 1683 1684 #ifdef CONFIG_UCLAMP_TASK_GROUP 1685 static inline void 1686 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1687 { 1688 struct css_task_iter it; 1689 struct task_struct *p; 1690 1691 css_task_iter_start(css, 0, &it); 1692 while ((p = css_task_iter_next(&it))) 1693 uclamp_update_active(p); 1694 css_task_iter_end(&it); 1695 } 1696 1697 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1698 static void uclamp_update_root_tg(void) 1699 { 1700 struct task_group *tg = &root_task_group; 1701 1702 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1703 sysctl_sched_uclamp_util_min, false); 1704 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1705 sysctl_sched_uclamp_util_max, false); 1706 1707 rcu_read_lock(); 1708 cpu_util_update_eff(&root_task_group.css); 1709 rcu_read_unlock(); 1710 } 1711 #else 1712 static void uclamp_update_root_tg(void) { } 1713 #endif 1714 1715 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1716 void *buffer, size_t *lenp, loff_t *ppos) 1717 { 1718 bool update_root_tg = false; 1719 int old_min, old_max, old_min_rt; 1720 int result; 1721 1722 mutex_lock(&uclamp_mutex); 1723 old_min = sysctl_sched_uclamp_util_min; 1724 old_max = sysctl_sched_uclamp_util_max; 1725 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1726 1727 result = proc_dointvec(table, write, buffer, lenp, ppos); 1728 if (result) 1729 goto undo; 1730 if (!write) 1731 goto done; 1732 1733 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1734 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1735 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1736 1737 result = -EINVAL; 1738 goto undo; 1739 } 1740 1741 if (old_min != sysctl_sched_uclamp_util_min) { 1742 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1743 sysctl_sched_uclamp_util_min, false); 1744 update_root_tg = true; 1745 } 1746 if (old_max != sysctl_sched_uclamp_util_max) { 1747 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1748 sysctl_sched_uclamp_util_max, false); 1749 update_root_tg = true; 1750 } 1751 1752 if (update_root_tg) { 1753 static_branch_enable(&sched_uclamp_used); 1754 uclamp_update_root_tg(); 1755 } 1756 1757 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1758 static_branch_enable(&sched_uclamp_used); 1759 uclamp_sync_util_min_rt_default(); 1760 } 1761 1762 /* 1763 * We update all RUNNABLE tasks only when task groups are in use. 1764 * Otherwise, keep it simple and do just a lazy update at each next 1765 * task enqueue time. 1766 */ 1767 1768 goto done; 1769 1770 undo: 1771 sysctl_sched_uclamp_util_min = old_min; 1772 sysctl_sched_uclamp_util_max = old_max; 1773 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1774 done: 1775 mutex_unlock(&uclamp_mutex); 1776 1777 return result; 1778 } 1779 1780 static int uclamp_validate(struct task_struct *p, 1781 const struct sched_attr *attr) 1782 { 1783 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1784 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1785 1786 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1787 util_min = attr->sched_util_min; 1788 1789 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1790 return -EINVAL; 1791 } 1792 1793 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1794 util_max = attr->sched_util_max; 1795 1796 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1797 return -EINVAL; 1798 } 1799 1800 if (util_min != -1 && util_max != -1 && util_min > util_max) 1801 return -EINVAL; 1802 1803 /* 1804 * We have valid uclamp attributes; make sure uclamp is enabled. 1805 * 1806 * We need to do that here, because enabling static branches is a 1807 * blocking operation which obviously cannot be done while holding 1808 * scheduler locks. 1809 */ 1810 static_branch_enable(&sched_uclamp_used); 1811 1812 return 0; 1813 } 1814 1815 static bool uclamp_reset(const struct sched_attr *attr, 1816 enum uclamp_id clamp_id, 1817 struct uclamp_se *uc_se) 1818 { 1819 /* Reset on sched class change for a non user-defined clamp value. */ 1820 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1821 !uc_se->user_defined) 1822 return true; 1823 1824 /* Reset on sched_util_{min,max} == -1. */ 1825 if (clamp_id == UCLAMP_MIN && 1826 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1827 attr->sched_util_min == -1) { 1828 return true; 1829 } 1830 1831 if (clamp_id == UCLAMP_MAX && 1832 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1833 attr->sched_util_max == -1) { 1834 return true; 1835 } 1836 1837 return false; 1838 } 1839 1840 static void __setscheduler_uclamp(struct task_struct *p, 1841 const struct sched_attr *attr) 1842 { 1843 enum uclamp_id clamp_id; 1844 1845 for_each_clamp_id(clamp_id) { 1846 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1847 unsigned int value; 1848 1849 if (!uclamp_reset(attr, clamp_id, uc_se)) 1850 continue; 1851 1852 /* 1853 * RT by default have a 100% boost value that could be modified 1854 * at runtime. 1855 */ 1856 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1857 value = sysctl_sched_uclamp_util_min_rt_default; 1858 else 1859 value = uclamp_none(clamp_id); 1860 1861 uclamp_se_set(uc_se, value, false); 1862 1863 } 1864 1865 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1866 return; 1867 1868 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1869 attr->sched_util_min != -1) { 1870 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1871 attr->sched_util_min, true); 1872 } 1873 1874 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1875 attr->sched_util_max != -1) { 1876 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1877 attr->sched_util_max, true); 1878 } 1879 } 1880 1881 static void uclamp_fork(struct task_struct *p) 1882 { 1883 enum uclamp_id clamp_id; 1884 1885 /* 1886 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1887 * as the task is still at its early fork stages. 1888 */ 1889 for_each_clamp_id(clamp_id) 1890 p->uclamp[clamp_id].active = false; 1891 1892 if (likely(!p->sched_reset_on_fork)) 1893 return; 1894 1895 for_each_clamp_id(clamp_id) { 1896 uclamp_se_set(&p->uclamp_req[clamp_id], 1897 uclamp_none(clamp_id), false); 1898 } 1899 } 1900 1901 static void uclamp_post_fork(struct task_struct *p) 1902 { 1903 uclamp_update_util_min_rt_default(p); 1904 } 1905 1906 static void __init init_uclamp_rq(struct rq *rq) 1907 { 1908 enum uclamp_id clamp_id; 1909 struct uclamp_rq *uc_rq = rq->uclamp; 1910 1911 for_each_clamp_id(clamp_id) { 1912 uc_rq[clamp_id] = (struct uclamp_rq) { 1913 .value = uclamp_none(clamp_id) 1914 }; 1915 } 1916 1917 rq->uclamp_flags = 0; 1918 } 1919 1920 static void __init init_uclamp(void) 1921 { 1922 struct uclamp_se uc_max = {}; 1923 enum uclamp_id clamp_id; 1924 int cpu; 1925 1926 for_each_possible_cpu(cpu) 1927 init_uclamp_rq(cpu_rq(cpu)); 1928 1929 for_each_clamp_id(clamp_id) { 1930 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1931 uclamp_none(clamp_id), false); 1932 } 1933 1934 /* System defaults allow max clamp values for both indexes */ 1935 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1936 for_each_clamp_id(clamp_id) { 1937 uclamp_default[clamp_id] = uc_max; 1938 #ifdef CONFIG_UCLAMP_TASK_GROUP 1939 root_task_group.uclamp_req[clamp_id] = uc_max; 1940 root_task_group.uclamp[clamp_id] = uc_max; 1941 #endif 1942 } 1943 } 1944 1945 #else /* CONFIG_UCLAMP_TASK */ 1946 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1947 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1948 static inline int uclamp_validate(struct task_struct *p, 1949 const struct sched_attr *attr) 1950 { 1951 return -EOPNOTSUPP; 1952 } 1953 static void __setscheduler_uclamp(struct task_struct *p, 1954 const struct sched_attr *attr) { } 1955 static inline void uclamp_fork(struct task_struct *p) { } 1956 static inline void uclamp_post_fork(struct task_struct *p) { } 1957 static inline void init_uclamp(void) { } 1958 #endif /* CONFIG_UCLAMP_TASK */ 1959 1960 bool sched_task_on_rq(struct task_struct *p) 1961 { 1962 return task_on_rq_queued(p); 1963 } 1964 1965 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1966 { 1967 if (!(flags & ENQUEUE_NOCLOCK)) 1968 update_rq_clock(rq); 1969 1970 if (!(flags & ENQUEUE_RESTORE)) { 1971 sched_info_enqueue(rq, p); 1972 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1973 } 1974 1975 uclamp_rq_inc(rq, p); 1976 p->sched_class->enqueue_task(rq, p, flags); 1977 1978 if (sched_core_enabled(rq)) 1979 sched_core_enqueue(rq, p); 1980 } 1981 1982 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1983 { 1984 if (sched_core_enabled(rq)) 1985 sched_core_dequeue(rq, p); 1986 1987 if (!(flags & DEQUEUE_NOCLOCK)) 1988 update_rq_clock(rq); 1989 1990 if (!(flags & DEQUEUE_SAVE)) { 1991 sched_info_dequeue(rq, p); 1992 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1993 } 1994 1995 uclamp_rq_dec(rq, p); 1996 p->sched_class->dequeue_task(rq, p, flags); 1997 } 1998 1999 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2000 { 2001 enqueue_task(rq, p, flags); 2002 2003 p->on_rq = TASK_ON_RQ_QUEUED; 2004 } 2005 2006 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2007 { 2008 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2009 2010 dequeue_task(rq, p, flags); 2011 } 2012 2013 static inline int __normal_prio(int policy, int rt_prio, int nice) 2014 { 2015 int prio; 2016 2017 if (dl_policy(policy)) 2018 prio = MAX_DL_PRIO - 1; 2019 else if (rt_policy(policy)) 2020 prio = MAX_RT_PRIO - 1 - rt_prio; 2021 else 2022 prio = NICE_TO_PRIO(nice); 2023 2024 return prio; 2025 } 2026 2027 /* 2028 * Calculate the expected normal priority: i.e. priority 2029 * without taking RT-inheritance into account. Might be 2030 * boosted by interactivity modifiers. Changes upon fork, 2031 * setprio syscalls, and whenever the interactivity 2032 * estimator recalculates. 2033 */ 2034 static inline int normal_prio(struct task_struct *p) 2035 { 2036 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2037 } 2038 2039 /* 2040 * Calculate the current priority, i.e. the priority 2041 * taken into account by the scheduler. This value might 2042 * be boosted by RT tasks, or might be boosted by 2043 * interactivity modifiers. Will be RT if the task got 2044 * RT-boosted. If not then it returns p->normal_prio. 2045 */ 2046 static int effective_prio(struct task_struct *p) 2047 { 2048 p->normal_prio = normal_prio(p); 2049 /* 2050 * If we are RT tasks or we were boosted to RT priority, 2051 * keep the priority unchanged. Otherwise, update priority 2052 * to the normal priority: 2053 */ 2054 if (!rt_prio(p->prio)) 2055 return p->normal_prio; 2056 return p->prio; 2057 } 2058 2059 /** 2060 * task_curr - is this task currently executing on a CPU? 2061 * @p: the task in question. 2062 * 2063 * Return: 1 if the task is currently executing. 0 otherwise. 2064 */ 2065 inline int task_curr(const struct task_struct *p) 2066 { 2067 return cpu_curr(task_cpu(p)) == p; 2068 } 2069 2070 /* 2071 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2072 * use the balance_callback list if you want balancing. 2073 * 2074 * this means any call to check_class_changed() must be followed by a call to 2075 * balance_callback(). 2076 */ 2077 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2078 const struct sched_class *prev_class, 2079 int oldprio) 2080 { 2081 if (prev_class != p->sched_class) { 2082 if (prev_class->switched_from) 2083 prev_class->switched_from(rq, p); 2084 2085 p->sched_class->switched_to(rq, p); 2086 } else if (oldprio != p->prio || dl_task(p)) 2087 p->sched_class->prio_changed(rq, p, oldprio); 2088 } 2089 2090 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2091 { 2092 if (p->sched_class == rq->curr->sched_class) 2093 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2094 else if (p->sched_class > rq->curr->sched_class) 2095 resched_curr(rq); 2096 2097 /* 2098 * A queue event has occurred, and we're going to schedule. In 2099 * this case, we can save a useless back to back clock update. 2100 */ 2101 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2102 rq_clock_skip_update(rq); 2103 } 2104 2105 #ifdef CONFIG_SMP 2106 2107 static void 2108 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2109 2110 static int __set_cpus_allowed_ptr(struct task_struct *p, 2111 const struct cpumask *new_mask, 2112 u32 flags); 2113 2114 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2115 { 2116 if (likely(!p->migration_disabled)) 2117 return; 2118 2119 if (p->cpus_ptr != &p->cpus_mask) 2120 return; 2121 2122 /* 2123 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2124 */ 2125 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2126 } 2127 2128 void migrate_disable(void) 2129 { 2130 struct task_struct *p = current; 2131 2132 if (p->migration_disabled) { 2133 p->migration_disabled++; 2134 return; 2135 } 2136 2137 preempt_disable(); 2138 this_rq()->nr_pinned++; 2139 p->migration_disabled = 1; 2140 preempt_enable(); 2141 } 2142 EXPORT_SYMBOL_GPL(migrate_disable); 2143 2144 void migrate_enable(void) 2145 { 2146 struct task_struct *p = current; 2147 2148 if (p->migration_disabled > 1) { 2149 p->migration_disabled--; 2150 return; 2151 } 2152 2153 /* 2154 * Ensure stop_task runs either before or after this, and that 2155 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2156 */ 2157 preempt_disable(); 2158 if (p->cpus_ptr != &p->cpus_mask) 2159 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2160 /* 2161 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2162 * regular cpus_mask, otherwise things that race (eg. 2163 * select_fallback_rq) get confused. 2164 */ 2165 barrier(); 2166 p->migration_disabled = 0; 2167 this_rq()->nr_pinned--; 2168 preempt_enable(); 2169 } 2170 EXPORT_SYMBOL_GPL(migrate_enable); 2171 2172 static inline bool rq_has_pinned_tasks(struct rq *rq) 2173 { 2174 return rq->nr_pinned; 2175 } 2176 2177 /* 2178 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2179 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2180 */ 2181 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2182 { 2183 /* When not in the task's cpumask, no point in looking further. */ 2184 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2185 return false; 2186 2187 /* migrate_disabled() must be allowed to finish. */ 2188 if (is_migration_disabled(p)) 2189 return cpu_online(cpu); 2190 2191 /* Non kernel threads are not allowed during either online or offline. */ 2192 if (!(p->flags & PF_KTHREAD)) 2193 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2194 2195 /* KTHREAD_IS_PER_CPU is always allowed. */ 2196 if (kthread_is_per_cpu(p)) 2197 return cpu_online(cpu); 2198 2199 /* Regular kernel threads don't get to stay during offline. */ 2200 if (cpu_dying(cpu)) 2201 return false; 2202 2203 /* But are allowed during online. */ 2204 return cpu_online(cpu); 2205 } 2206 2207 /* 2208 * This is how migration works: 2209 * 2210 * 1) we invoke migration_cpu_stop() on the target CPU using 2211 * stop_one_cpu(). 2212 * 2) stopper starts to run (implicitly forcing the migrated thread 2213 * off the CPU) 2214 * 3) it checks whether the migrated task is still in the wrong runqueue. 2215 * 4) if it's in the wrong runqueue then the migration thread removes 2216 * it and puts it into the right queue. 2217 * 5) stopper completes and stop_one_cpu() returns and the migration 2218 * is done. 2219 */ 2220 2221 /* 2222 * move_queued_task - move a queued task to new rq. 2223 * 2224 * Returns (locked) new rq. Old rq's lock is released. 2225 */ 2226 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2227 struct task_struct *p, int new_cpu) 2228 { 2229 lockdep_assert_rq_held(rq); 2230 2231 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2232 set_task_cpu(p, new_cpu); 2233 rq_unlock(rq, rf); 2234 2235 rq = cpu_rq(new_cpu); 2236 2237 rq_lock(rq, rf); 2238 BUG_ON(task_cpu(p) != new_cpu); 2239 activate_task(rq, p, 0); 2240 check_preempt_curr(rq, p, 0); 2241 2242 return rq; 2243 } 2244 2245 struct migration_arg { 2246 struct task_struct *task; 2247 int dest_cpu; 2248 struct set_affinity_pending *pending; 2249 }; 2250 2251 /* 2252 * @refs: number of wait_for_completion() 2253 * @stop_pending: is @stop_work in use 2254 */ 2255 struct set_affinity_pending { 2256 refcount_t refs; 2257 unsigned int stop_pending; 2258 struct completion done; 2259 struct cpu_stop_work stop_work; 2260 struct migration_arg arg; 2261 }; 2262 2263 /* 2264 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2265 * this because either it can't run here any more (set_cpus_allowed() 2266 * away from this CPU, or CPU going down), or because we're 2267 * attempting to rebalance this task on exec (sched_exec). 2268 * 2269 * So we race with normal scheduler movements, but that's OK, as long 2270 * as the task is no longer on this CPU. 2271 */ 2272 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2273 struct task_struct *p, int dest_cpu) 2274 { 2275 /* Affinity changed (again). */ 2276 if (!is_cpu_allowed(p, dest_cpu)) 2277 return rq; 2278 2279 update_rq_clock(rq); 2280 rq = move_queued_task(rq, rf, p, dest_cpu); 2281 2282 return rq; 2283 } 2284 2285 /* 2286 * migration_cpu_stop - this will be executed by a highprio stopper thread 2287 * and performs thread migration by bumping thread off CPU then 2288 * 'pushing' onto another runqueue. 2289 */ 2290 static int migration_cpu_stop(void *data) 2291 { 2292 struct migration_arg *arg = data; 2293 struct set_affinity_pending *pending = arg->pending; 2294 struct task_struct *p = arg->task; 2295 struct rq *rq = this_rq(); 2296 bool complete = false; 2297 struct rq_flags rf; 2298 2299 /* 2300 * The original target CPU might have gone down and we might 2301 * be on another CPU but it doesn't matter. 2302 */ 2303 local_irq_save(rf.flags); 2304 /* 2305 * We need to explicitly wake pending tasks before running 2306 * __migrate_task() such that we will not miss enforcing cpus_ptr 2307 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2308 */ 2309 flush_smp_call_function_from_idle(); 2310 2311 raw_spin_lock(&p->pi_lock); 2312 rq_lock(rq, &rf); 2313 2314 /* 2315 * If we were passed a pending, then ->stop_pending was set, thus 2316 * p->migration_pending must have remained stable. 2317 */ 2318 WARN_ON_ONCE(pending && pending != p->migration_pending); 2319 2320 /* 2321 * If task_rq(p) != rq, it cannot be migrated here, because we're 2322 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2323 * we're holding p->pi_lock. 2324 */ 2325 if (task_rq(p) == rq) { 2326 if (is_migration_disabled(p)) 2327 goto out; 2328 2329 if (pending) { 2330 p->migration_pending = NULL; 2331 complete = true; 2332 2333 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2334 goto out; 2335 } 2336 2337 if (task_on_rq_queued(p)) 2338 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2339 else 2340 p->wake_cpu = arg->dest_cpu; 2341 2342 /* 2343 * XXX __migrate_task() can fail, at which point we might end 2344 * up running on a dodgy CPU, AFAICT this can only happen 2345 * during CPU hotplug, at which point we'll get pushed out 2346 * anyway, so it's probably not a big deal. 2347 */ 2348 2349 } else if (pending) { 2350 /* 2351 * This happens when we get migrated between migrate_enable()'s 2352 * preempt_enable() and scheduling the stopper task. At that 2353 * point we're a regular task again and not current anymore. 2354 * 2355 * A !PREEMPT kernel has a giant hole here, which makes it far 2356 * more likely. 2357 */ 2358 2359 /* 2360 * The task moved before the stopper got to run. We're holding 2361 * ->pi_lock, so the allowed mask is stable - if it got 2362 * somewhere allowed, we're done. 2363 */ 2364 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2365 p->migration_pending = NULL; 2366 complete = true; 2367 goto out; 2368 } 2369 2370 /* 2371 * When migrate_enable() hits a rq mis-match we can't reliably 2372 * determine is_migration_disabled() and so have to chase after 2373 * it. 2374 */ 2375 WARN_ON_ONCE(!pending->stop_pending); 2376 task_rq_unlock(rq, p, &rf); 2377 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2378 &pending->arg, &pending->stop_work); 2379 return 0; 2380 } 2381 out: 2382 if (pending) 2383 pending->stop_pending = false; 2384 task_rq_unlock(rq, p, &rf); 2385 2386 if (complete) 2387 complete_all(&pending->done); 2388 2389 return 0; 2390 } 2391 2392 int push_cpu_stop(void *arg) 2393 { 2394 struct rq *lowest_rq = NULL, *rq = this_rq(); 2395 struct task_struct *p = arg; 2396 2397 raw_spin_lock_irq(&p->pi_lock); 2398 raw_spin_rq_lock(rq); 2399 2400 if (task_rq(p) != rq) 2401 goto out_unlock; 2402 2403 if (is_migration_disabled(p)) { 2404 p->migration_flags |= MDF_PUSH; 2405 goto out_unlock; 2406 } 2407 2408 p->migration_flags &= ~MDF_PUSH; 2409 2410 if (p->sched_class->find_lock_rq) 2411 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2412 2413 if (!lowest_rq) 2414 goto out_unlock; 2415 2416 // XXX validate p is still the highest prio task 2417 if (task_rq(p) == rq) { 2418 deactivate_task(rq, p, 0); 2419 set_task_cpu(p, lowest_rq->cpu); 2420 activate_task(lowest_rq, p, 0); 2421 resched_curr(lowest_rq); 2422 } 2423 2424 double_unlock_balance(rq, lowest_rq); 2425 2426 out_unlock: 2427 rq->push_busy = false; 2428 raw_spin_rq_unlock(rq); 2429 raw_spin_unlock_irq(&p->pi_lock); 2430 2431 put_task_struct(p); 2432 return 0; 2433 } 2434 2435 /* 2436 * sched_class::set_cpus_allowed must do the below, but is not required to 2437 * actually call this function. 2438 */ 2439 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2440 { 2441 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2442 p->cpus_ptr = new_mask; 2443 return; 2444 } 2445 2446 cpumask_copy(&p->cpus_mask, new_mask); 2447 p->nr_cpus_allowed = cpumask_weight(new_mask); 2448 } 2449 2450 static void 2451 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2452 { 2453 struct rq *rq = task_rq(p); 2454 bool queued, running; 2455 2456 /* 2457 * This here violates the locking rules for affinity, since we're only 2458 * supposed to change these variables while holding both rq->lock and 2459 * p->pi_lock. 2460 * 2461 * HOWEVER, it magically works, because ttwu() is the only code that 2462 * accesses these variables under p->pi_lock and only does so after 2463 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2464 * before finish_task(). 2465 * 2466 * XXX do further audits, this smells like something putrid. 2467 */ 2468 if (flags & SCA_MIGRATE_DISABLE) 2469 SCHED_WARN_ON(!p->on_cpu); 2470 else 2471 lockdep_assert_held(&p->pi_lock); 2472 2473 queued = task_on_rq_queued(p); 2474 running = task_current(rq, p); 2475 2476 if (queued) { 2477 /* 2478 * Because __kthread_bind() calls this on blocked tasks without 2479 * holding rq->lock. 2480 */ 2481 lockdep_assert_rq_held(rq); 2482 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2483 } 2484 if (running) 2485 put_prev_task(rq, p); 2486 2487 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2488 2489 if (queued) 2490 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2491 if (running) 2492 set_next_task(rq, p); 2493 } 2494 2495 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2496 { 2497 __do_set_cpus_allowed(p, new_mask, 0); 2498 } 2499 2500 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2501 int node) 2502 { 2503 if (!src->user_cpus_ptr) 2504 return 0; 2505 2506 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2507 if (!dst->user_cpus_ptr) 2508 return -ENOMEM; 2509 2510 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2511 return 0; 2512 } 2513 2514 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2515 { 2516 struct cpumask *user_mask = NULL; 2517 2518 swap(p->user_cpus_ptr, user_mask); 2519 2520 return user_mask; 2521 } 2522 2523 void release_user_cpus_ptr(struct task_struct *p) 2524 { 2525 kfree(clear_user_cpus_ptr(p)); 2526 } 2527 2528 /* 2529 * This function is wildly self concurrent; here be dragons. 2530 * 2531 * 2532 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2533 * designated task is enqueued on an allowed CPU. If that task is currently 2534 * running, we have to kick it out using the CPU stopper. 2535 * 2536 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2537 * Consider: 2538 * 2539 * Initial conditions: P0->cpus_mask = [0, 1] 2540 * 2541 * P0@CPU0 P1 2542 * 2543 * migrate_disable(); 2544 * <preempted> 2545 * set_cpus_allowed_ptr(P0, [1]); 2546 * 2547 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2548 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2549 * This means we need the following scheme: 2550 * 2551 * P0@CPU0 P1 2552 * 2553 * migrate_disable(); 2554 * <preempted> 2555 * set_cpus_allowed_ptr(P0, [1]); 2556 * <blocks> 2557 * <resumes> 2558 * migrate_enable(); 2559 * __set_cpus_allowed_ptr(); 2560 * <wakes local stopper> 2561 * `--> <woken on migration completion> 2562 * 2563 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2564 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2565 * task p are serialized by p->pi_lock, which we can leverage: the one that 2566 * should come into effect at the end of the Migrate-Disable region is the last 2567 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2568 * but we still need to properly signal those waiting tasks at the appropriate 2569 * moment. 2570 * 2571 * This is implemented using struct set_affinity_pending. The first 2572 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2573 * setup an instance of that struct and install it on the targeted task_struct. 2574 * Any and all further callers will reuse that instance. Those then wait for 2575 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2576 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2577 * 2578 * 2579 * (1) In the cases covered above. There is one more where the completion is 2580 * signaled within affine_move_task() itself: when a subsequent affinity request 2581 * occurs after the stopper bailed out due to the targeted task still being 2582 * Migrate-Disable. Consider: 2583 * 2584 * Initial conditions: P0->cpus_mask = [0, 1] 2585 * 2586 * CPU0 P1 P2 2587 * <P0> 2588 * migrate_disable(); 2589 * <preempted> 2590 * set_cpus_allowed_ptr(P0, [1]); 2591 * <blocks> 2592 * <migration/0> 2593 * migration_cpu_stop() 2594 * is_migration_disabled() 2595 * <bails> 2596 * set_cpus_allowed_ptr(P0, [0, 1]); 2597 * <signal completion> 2598 * <awakes> 2599 * 2600 * Note that the above is safe vs a concurrent migrate_enable(), as any 2601 * pending affinity completion is preceded by an uninstallation of 2602 * p->migration_pending done with p->pi_lock held. 2603 */ 2604 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2605 int dest_cpu, unsigned int flags) 2606 { 2607 struct set_affinity_pending my_pending = { }, *pending = NULL; 2608 bool stop_pending, complete = false; 2609 2610 /* Can the task run on the task's current CPU? If so, we're done */ 2611 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2612 struct task_struct *push_task = NULL; 2613 2614 if ((flags & SCA_MIGRATE_ENABLE) && 2615 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2616 rq->push_busy = true; 2617 push_task = get_task_struct(p); 2618 } 2619 2620 /* 2621 * If there are pending waiters, but no pending stop_work, 2622 * then complete now. 2623 */ 2624 pending = p->migration_pending; 2625 if (pending && !pending->stop_pending) { 2626 p->migration_pending = NULL; 2627 complete = true; 2628 } 2629 2630 task_rq_unlock(rq, p, rf); 2631 2632 if (push_task) { 2633 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2634 p, &rq->push_work); 2635 } 2636 2637 if (complete) 2638 complete_all(&pending->done); 2639 2640 return 0; 2641 } 2642 2643 if (!(flags & SCA_MIGRATE_ENABLE)) { 2644 /* serialized by p->pi_lock */ 2645 if (!p->migration_pending) { 2646 /* Install the request */ 2647 refcount_set(&my_pending.refs, 1); 2648 init_completion(&my_pending.done); 2649 my_pending.arg = (struct migration_arg) { 2650 .task = p, 2651 .dest_cpu = dest_cpu, 2652 .pending = &my_pending, 2653 }; 2654 2655 p->migration_pending = &my_pending; 2656 } else { 2657 pending = p->migration_pending; 2658 refcount_inc(&pending->refs); 2659 /* 2660 * Affinity has changed, but we've already installed a 2661 * pending. migration_cpu_stop() *must* see this, else 2662 * we risk a completion of the pending despite having a 2663 * task on a disallowed CPU. 2664 * 2665 * Serialized by p->pi_lock, so this is safe. 2666 */ 2667 pending->arg.dest_cpu = dest_cpu; 2668 } 2669 } 2670 pending = p->migration_pending; 2671 /* 2672 * - !MIGRATE_ENABLE: 2673 * we'll have installed a pending if there wasn't one already. 2674 * 2675 * - MIGRATE_ENABLE: 2676 * we're here because the current CPU isn't matching anymore, 2677 * the only way that can happen is because of a concurrent 2678 * set_cpus_allowed_ptr() call, which should then still be 2679 * pending completion. 2680 * 2681 * Either way, we really should have a @pending here. 2682 */ 2683 if (WARN_ON_ONCE(!pending)) { 2684 task_rq_unlock(rq, p, rf); 2685 return -EINVAL; 2686 } 2687 2688 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2689 /* 2690 * MIGRATE_ENABLE gets here because 'p == current', but for 2691 * anything else we cannot do is_migration_disabled(), punt 2692 * and have the stopper function handle it all race-free. 2693 */ 2694 stop_pending = pending->stop_pending; 2695 if (!stop_pending) 2696 pending->stop_pending = true; 2697 2698 if (flags & SCA_MIGRATE_ENABLE) 2699 p->migration_flags &= ~MDF_PUSH; 2700 2701 task_rq_unlock(rq, p, rf); 2702 2703 if (!stop_pending) { 2704 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2705 &pending->arg, &pending->stop_work); 2706 } 2707 2708 if (flags & SCA_MIGRATE_ENABLE) 2709 return 0; 2710 } else { 2711 2712 if (!is_migration_disabled(p)) { 2713 if (task_on_rq_queued(p)) 2714 rq = move_queued_task(rq, rf, p, dest_cpu); 2715 2716 if (!pending->stop_pending) { 2717 p->migration_pending = NULL; 2718 complete = true; 2719 } 2720 } 2721 task_rq_unlock(rq, p, rf); 2722 2723 if (complete) 2724 complete_all(&pending->done); 2725 } 2726 2727 wait_for_completion(&pending->done); 2728 2729 if (refcount_dec_and_test(&pending->refs)) 2730 wake_up_var(&pending->refs); /* No UaF, just an address */ 2731 2732 /* 2733 * Block the original owner of &pending until all subsequent callers 2734 * have seen the completion and decremented the refcount 2735 */ 2736 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2737 2738 /* ARGH */ 2739 WARN_ON_ONCE(my_pending.stop_pending); 2740 2741 return 0; 2742 } 2743 2744 /* 2745 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2746 */ 2747 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2748 const struct cpumask *new_mask, 2749 u32 flags, 2750 struct rq *rq, 2751 struct rq_flags *rf) 2752 __releases(rq->lock) 2753 __releases(p->pi_lock) 2754 { 2755 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2756 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2757 bool kthread = p->flags & PF_KTHREAD; 2758 struct cpumask *user_mask = NULL; 2759 unsigned int dest_cpu; 2760 int ret = 0; 2761 2762 update_rq_clock(rq); 2763 2764 if (kthread || is_migration_disabled(p)) { 2765 /* 2766 * Kernel threads are allowed on online && !active CPUs, 2767 * however, during cpu-hot-unplug, even these might get pushed 2768 * away if not KTHREAD_IS_PER_CPU. 2769 * 2770 * Specifically, migration_disabled() tasks must not fail the 2771 * cpumask_any_and_distribute() pick below, esp. so on 2772 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2773 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2774 */ 2775 cpu_valid_mask = cpu_online_mask; 2776 } 2777 2778 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2779 ret = -EINVAL; 2780 goto out; 2781 } 2782 2783 /* 2784 * Must re-check here, to close a race against __kthread_bind(), 2785 * sched_setaffinity() is not guaranteed to observe the flag. 2786 */ 2787 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2788 ret = -EINVAL; 2789 goto out; 2790 } 2791 2792 if (!(flags & SCA_MIGRATE_ENABLE)) { 2793 if (cpumask_equal(&p->cpus_mask, new_mask)) 2794 goto out; 2795 2796 if (WARN_ON_ONCE(p == current && 2797 is_migration_disabled(p) && 2798 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2799 ret = -EBUSY; 2800 goto out; 2801 } 2802 } 2803 2804 /* 2805 * Picking a ~random cpu helps in cases where we are changing affinity 2806 * for groups of tasks (ie. cpuset), so that load balancing is not 2807 * immediately required to distribute the tasks within their new mask. 2808 */ 2809 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2810 if (dest_cpu >= nr_cpu_ids) { 2811 ret = -EINVAL; 2812 goto out; 2813 } 2814 2815 __do_set_cpus_allowed(p, new_mask, flags); 2816 2817 if (flags & SCA_USER) 2818 user_mask = clear_user_cpus_ptr(p); 2819 2820 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2821 2822 kfree(user_mask); 2823 2824 return ret; 2825 2826 out: 2827 task_rq_unlock(rq, p, rf); 2828 2829 return ret; 2830 } 2831 2832 /* 2833 * Change a given task's CPU affinity. Migrate the thread to a 2834 * proper CPU and schedule it away if the CPU it's executing on 2835 * is removed from the allowed bitmask. 2836 * 2837 * NOTE: the caller must have a valid reference to the task, the 2838 * task must not exit() & deallocate itself prematurely. The 2839 * call is not atomic; no spinlocks may be held. 2840 */ 2841 static int __set_cpus_allowed_ptr(struct task_struct *p, 2842 const struct cpumask *new_mask, u32 flags) 2843 { 2844 struct rq_flags rf; 2845 struct rq *rq; 2846 2847 rq = task_rq_lock(p, &rf); 2848 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2849 } 2850 2851 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2852 { 2853 return __set_cpus_allowed_ptr(p, new_mask, 0); 2854 } 2855 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2856 2857 /* 2858 * Change a given task's CPU affinity to the intersection of its current 2859 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2860 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2861 * If the resulting mask is empty, leave the affinity unchanged and return 2862 * -EINVAL. 2863 */ 2864 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2865 struct cpumask *new_mask, 2866 const struct cpumask *subset_mask) 2867 { 2868 struct cpumask *user_mask = NULL; 2869 struct rq_flags rf; 2870 struct rq *rq; 2871 int err; 2872 2873 if (!p->user_cpus_ptr) { 2874 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2875 if (!user_mask) 2876 return -ENOMEM; 2877 } 2878 2879 rq = task_rq_lock(p, &rf); 2880 2881 /* 2882 * Forcefully restricting the affinity of a deadline task is 2883 * likely to cause problems, so fail and noisily override the 2884 * mask entirely. 2885 */ 2886 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2887 err = -EPERM; 2888 goto err_unlock; 2889 } 2890 2891 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2892 err = -EINVAL; 2893 goto err_unlock; 2894 } 2895 2896 /* 2897 * We're about to butcher the task affinity, so keep track of what 2898 * the user asked for in case we're able to restore it later on. 2899 */ 2900 if (user_mask) { 2901 cpumask_copy(user_mask, p->cpus_ptr); 2902 p->user_cpus_ptr = user_mask; 2903 } 2904 2905 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2906 2907 err_unlock: 2908 task_rq_unlock(rq, p, &rf); 2909 kfree(user_mask); 2910 return err; 2911 } 2912 2913 /* 2914 * Restrict the CPU affinity of task @p so that it is a subset of 2915 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 2916 * old affinity mask. If the resulting mask is empty, we warn and walk 2917 * up the cpuset hierarchy until we find a suitable mask. 2918 */ 2919 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 2920 { 2921 cpumask_var_t new_mask; 2922 const struct cpumask *override_mask = task_cpu_possible_mask(p); 2923 2924 alloc_cpumask_var(&new_mask, GFP_KERNEL); 2925 2926 /* 2927 * __migrate_task() can fail silently in the face of concurrent 2928 * offlining of the chosen destination CPU, so take the hotplug 2929 * lock to ensure that the migration succeeds. 2930 */ 2931 cpus_read_lock(); 2932 if (!cpumask_available(new_mask)) 2933 goto out_set_mask; 2934 2935 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 2936 goto out_free_mask; 2937 2938 /* 2939 * We failed to find a valid subset of the affinity mask for the 2940 * task, so override it based on its cpuset hierarchy. 2941 */ 2942 cpuset_cpus_allowed(p, new_mask); 2943 override_mask = new_mask; 2944 2945 out_set_mask: 2946 if (printk_ratelimit()) { 2947 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 2948 task_pid_nr(p), p->comm, 2949 cpumask_pr_args(override_mask)); 2950 } 2951 2952 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 2953 out_free_mask: 2954 cpus_read_unlock(); 2955 free_cpumask_var(new_mask); 2956 } 2957 2958 static int 2959 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 2960 2961 /* 2962 * Restore the affinity of a task @p which was previously restricted by a 2963 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 2964 * @p->user_cpus_ptr. 2965 * 2966 * It is the caller's responsibility to serialise this with any calls to 2967 * force_compatible_cpus_allowed_ptr(@p). 2968 */ 2969 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 2970 { 2971 struct cpumask *user_mask = p->user_cpus_ptr; 2972 unsigned long flags; 2973 2974 /* 2975 * Try to restore the old affinity mask. If this fails, then 2976 * we free the mask explicitly to avoid it being inherited across 2977 * a subsequent fork(). 2978 */ 2979 if (!user_mask || !__sched_setaffinity(p, user_mask)) 2980 return; 2981 2982 raw_spin_lock_irqsave(&p->pi_lock, flags); 2983 user_mask = clear_user_cpus_ptr(p); 2984 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2985 2986 kfree(user_mask); 2987 } 2988 2989 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2990 { 2991 #ifdef CONFIG_SCHED_DEBUG 2992 unsigned int state = READ_ONCE(p->__state); 2993 2994 /* 2995 * We should never call set_task_cpu() on a blocked task, 2996 * ttwu() will sort out the placement. 2997 */ 2998 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 2999 3000 /* 3001 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3002 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3003 * time relying on p->on_rq. 3004 */ 3005 WARN_ON_ONCE(state == TASK_RUNNING && 3006 p->sched_class == &fair_sched_class && 3007 (p->on_rq && !task_on_rq_migrating(p))); 3008 3009 #ifdef CONFIG_LOCKDEP 3010 /* 3011 * The caller should hold either p->pi_lock or rq->lock, when changing 3012 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3013 * 3014 * sched_move_task() holds both and thus holding either pins the cgroup, 3015 * see task_group(). 3016 * 3017 * Furthermore, all task_rq users should acquire both locks, see 3018 * task_rq_lock(). 3019 */ 3020 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3021 lockdep_is_held(__rq_lockp(task_rq(p))))); 3022 #endif 3023 /* 3024 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3025 */ 3026 WARN_ON_ONCE(!cpu_online(new_cpu)); 3027 3028 WARN_ON_ONCE(is_migration_disabled(p)); 3029 #endif 3030 3031 trace_sched_migrate_task(p, new_cpu); 3032 3033 if (task_cpu(p) != new_cpu) { 3034 if (p->sched_class->migrate_task_rq) 3035 p->sched_class->migrate_task_rq(p, new_cpu); 3036 p->se.nr_migrations++; 3037 rseq_migrate(p); 3038 perf_event_task_migrate(p); 3039 } 3040 3041 __set_task_cpu(p, new_cpu); 3042 } 3043 3044 #ifdef CONFIG_NUMA_BALANCING 3045 static void __migrate_swap_task(struct task_struct *p, int cpu) 3046 { 3047 if (task_on_rq_queued(p)) { 3048 struct rq *src_rq, *dst_rq; 3049 struct rq_flags srf, drf; 3050 3051 src_rq = task_rq(p); 3052 dst_rq = cpu_rq(cpu); 3053 3054 rq_pin_lock(src_rq, &srf); 3055 rq_pin_lock(dst_rq, &drf); 3056 3057 deactivate_task(src_rq, p, 0); 3058 set_task_cpu(p, cpu); 3059 activate_task(dst_rq, p, 0); 3060 check_preempt_curr(dst_rq, p, 0); 3061 3062 rq_unpin_lock(dst_rq, &drf); 3063 rq_unpin_lock(src_rq, &srf); 3064 3065 } else { 3066 /* 3067 * Task isn't running anymore; make it appear like we migrated 3068 * it before it went to sleep. This means on wakeup we make the 3069 * previous CPU our target instead of where it really is. 3070 */ 3071 p->wake_cpu = cpu; 3072 } 3073 } 3074 3075 struct migration_swap_arg { 3076 struct task_struct *src_task, *dst_task; 3077 int src_cpu, dst_cpu; 3078 }; 3079 3080 static int migrate_swap_stop(void *data) 3081 { 3082 struct migration_swap_arg *arg = data; 3083 struct rq *src_rq, *dst_rq; 3084 int ret = -EAGAIN; 3085 3086 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3087 return -EAGAIN; 3088 3089 src_rq = cpu_rq(arg->src_cpu); 3090 dst_rq = cpu_rq(arg->dst_cpu); 3091 3092 double_raw_lock(&arg->src_task->pi_lock, 3093 &arg->dst_task->pi_lock); 3094 double_rq_lock(src_rq, dst_rq); 3095 3096 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3097 goto unlock; 3098 3099 if (task_cpu(arg->src_task) != arg->src_cpu) 3100 goto unlock; 3101 3102 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3103 goto unlock; 3104 3105 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3106 goto unlock; 3107 3108 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3109 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3110 3111 ret = 0; 3112 3113 unlock: 3114 double_rq_unlock(src_rq, dst_rq); 3115 raw_spin_unlock(&arg->dst_task->pi_lock); 3116 raw_spin_unlock(&arg->src_task->pi_lock); 3117 3118 return ret; 3119 } 3120 3121 /* 3122 * Cross migrate two tasks 3123 */ 3124 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3125 int target_cpu, int curr_cpu) 3126 { 3127 struct migration_swap_arg arg; 3128 int ret = -EINVAL; 3129 3130 arg = (struct migration_swap_arg){ 3131 .src_task = cur, 3132 .src_cpu = curr_cpu, 3133 .dst_task = p, 3134 .dst_cpu = target_cpu, 3135 }; 3136 3137 if (arg.src_cpu == arg.dst_cpu) 3138 goto out; 3139 3140 /* 3141 * These three tests are all lockless; this is OK since all of them 3142 * will be re-checked with proper locks held further down the line. 3143 */ 3144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3145 goto out; 3146 3147 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3148 goto out; 3149 3150 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3151 goto out; 3152 3153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3155 3156 out: 3157 return ret; 3158 } 3159 #endif /* CONFIG_NUMA_BALANCING */ 3160 3161 /* 3162 * wait_task_inactive - wait for a thread to unschedule. 3163 * 3164 * If @match_state is nonzero, it's the @p->state value just checked and 3165 * not expected to change. If it changes, i.e. @p might have woken up, 3166 * then return zero. When we succeed in waiting for @p to be off its CPU, 3167 * we return a positive number (its total switch count). If a second call 3168 * a short while later returns the same number, the caller can be sure that 3169 * @p has remained unscheduled the whole time. 3170 * 3171 * The caller must ensure that the task *will* unschedule sometime soon, 3172 * else this function might spin for a *long* time. This function can't 3173 * be called with interrupts off, or it may introduce deadlock with 3174 * smp_call_function() if an IPI is sent by the same process we are 3175 * waiting to become inactive. 3176 */ 3177 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3178 { 3179 int running, queued; 3180 struct rq_flags rf; 3181 unsigned long ncsw; 3182 struct rq *rq; 3183 3184 for (;;) { 3185 /* 3186 * We do the initial early heuristics without holding 3187 * any task-queue locks at all. We'll only try to get 3188 * the runqueue lock when things look like they will 3189 * work out! 3190 */ 3191 rq = task_rq(p); 3192 3193 /* 3194 * If the task is actively running on another CPU 3195 * still, just relax and busy-wait without holding 3196 * any locks. 3197 * 3198 * NOTE! Since we don't hold any locks, it's not 3199 * even sure that "rq" stays as the right runqueue! 3200 * But we don't care, since "task_running()" will 3201 * return false if the runqueue has changed and p 3202 * is actually now running somewhere else! 3203 */ 3204 while (task_running(rq, p)) { 3205 if (match_state && unlikely(READ_ONCE(p->__state) != match_state)) 3206 return 0; 3207 cpu_relax(); 3208 } 3209 3210 /* 3211 * Ok, time to look more closely! We need the rq 3212 * lock now, to be *sure*. If we're wrong, we'll 3213 * just go back and repeat. 3214 */ 3215 rq = task_rq_lock(p, &rf); 3216 trace_sched_wait_task(p); 3217 running = task_running(rq, p); 3218 queued = task_on_rq_queued(p); 3219 ncsw = 0; 3220 if (!match_state || READ_ONCE(p->__state) == match_state) 3221 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3222 task_rq_unlock(rq, p, &rf); 3223 3224 /* 3225 * If it changed from the expected state, bail out now. 3226 */ 3227 if (unlikely(!ncsw)) 3228 break; 3229 3230 /* 3231 * Was it really running after all now that we 3232 * checked with the proper locks actually held? 3233 * 3234 * Oops. Go back and try again.. 3235 */ 3236 if (unlikely(running)) { 3237 cpu_relax(); 3238 continue; 3239 } 3240 3241 /* 3242 * It's not enough that it's not actively running, 3243 * it must be off the runqueue _entirely_, and not 3244 * preempted! 3245 * 3246 * So if it was still runnable (but just not actively 3247 * running right now), it's preempted, and we should 3248 * yield - it could be a while. 3249 */ 3250 if (unlikely(queued)) { 3251 ktime_t to = NSEC_PER_SEC / HZ; 3252 3253 set_current_state(TASK_UNINTERRUPTIBLE); 3254 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 3255 continue; 3256 } 3257 3258 /* 3259 * Ahh, all good. It wasn't running, and it wasn't 3260 * runnable, which means that it will never become 3261 * running in the future either. We're all done! 3262 */ 3263 break; 3264 } 3265 3266 return ncsw; 3267 } 3268 3269 /*** 3270 * kick_process - kick a running thread to enter/exit the kernel 3271 * @p: the to-be-kicked thread 3272 * 3273 * Cause a process which is running on another CPU to enter 3274 * kernel-mode, without any delay. (to get signals handled.) 3275 * 3276 * NOTE: this function doesn't have to take the runqueue lock, 3277 * because all it wants to ensure is that the remote task enters 3278 * the kernel. If the IPI races and the task has been migrated 3279 * to another CPU then no harm is done and the purpose has been 3280 * achieved as well. 3281 */ 3282 void kick_process(struct task_struct *p) 3283 { 3284 int cpu; 3285 3286 preempt_disable(); 3287 cpu = task_cpu(p); 3288 if ((cpu != smp_processor_id()) && task_curr(p)) 3289 smp_send_reschedule(cpu); 3290 preempt_enable(); 3291 } 3292 EXPORT_SYMBOL_GPL(kick_process); 3293 3294 /* 3295 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3296 * 3297 * A few notes on cpu_active vs cpu_online: 3298 * 3299 * - cpu_active must be a subset of cpu_online 3300 * 3301 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3302 * see __set_cpus_allowed_ptr(). At this point the newly online 3303 * CPU isn't yet part of the sched domains, and balancing will not 3304 * see it. 3305 * 3306 * - on CPU-down we clear cpu_active() to mask the sched domains and 3307 * avoid the load balancer to place new tasks on the to be removed 3308 * CPU. Existing tasks will remain running there and will be taken 3309 * off. 3310 * 3311 * This means that fallback selection must not select !active CPUs. 3312 * And can assume that any active CPU must be online. Conversely 3313 * select_task_rq() below may allow selection of !active CPUs in order 3314 * to satisfy the above rules. 3315 */ 3316 static int select_fallback_rq(int cpu, struct task_struct *p) 3317 { 3318 int nid = cpu_to_node(cpu); 3319 const struct cpumask *nodemask = NULL; 3320 enum { cpuset, possible, fail } state = cpuset; 3321 int dest_cpu; 3322 3323 /* 3324 * If the node that the CPU is on has been offlined, cpu_to_node() 3325 * will return -1. There is no CPU on the node, and we should 3326 * select the CPU on the other node. 3327 */ 3328 if (nid != -1) { 3329 nodemask = cpumask_of_node(nid); 3330 3331 /* Look for allowed, online CPU in same node. */ 3332 for_each_cpu(dest_cpu, nodemask) { 3333 if (is_cpu_allowed(p, dest_cpu)) 3334 return dest_cpu; 3335 } 3336 } 3337 3338 for (;;) { 3339 /* Any allowed, online CPU? */ 3340 for_each_cpu(dest_cpu, p->cpus_ptr) { 3341 if (!is_cpu_allowed(p, dest_cpu)) 3342 continue; 3343 3344 goto out; 3345 } 3346 3347 /* No more Mr. Nice Guy. */ 3348 switch (state) { 3349 case cpuset: 3350 if (cpuset_cpus_allowed_fallback(p)) { 3351 state = possible; 3352 break; 3353 } 3354 fallthrough; 3355 case possible: 3356 /* 3357 * XXX When called from select_task_rq() we only 3358 * hold p->pi_lock and again violate locking order. 3359 * 3360 * More yuck to audit. 3361 */ 3362 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3363 state = fail; 3364 break; 3365 case fail: 3366 BUG(); 3367 break; 3368 } 3369 } 3370 3371 out: 3372 if (state != cpuset) { 3373 /* 3374 * Don't tell them about moving exiting tasks or 3375 * kernel threads (both mm NULL), since they never 3376 * leave kernel. 3377 */ 3378 if (p->mm && printk_ratelimit()) { 3379 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3380 task_pid_nr(p), p->comm, cpu); 3381 } 3382 } 3383 3384 return dest_cpu; 3385 } 3386 3387 /* 3388 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3389 */ 3390 static inline 3391 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3392 { 3393 lockdep_assert_held(&p->pi_lock); 3394 3395 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3396 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3397 else 3398 cpu = cpumask_any(p->cpus_ptr); 3399 3400 /* 3401 * In order not to call set_task_cpu() on a blocking task we need 3402 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3403 * CPU. 3404 * 3405 * Since this is common to all placement strategies, this lives here. 3406 * 3407 * [ this allows ->select_task() to simply return task_cpu(p) and 3408 * not worry about this generic constraint ] 3409 */ 3410 if (unlikely(!is_cpu_allowed(p, cpu))) 3411 cpu = select_fallback_rq(task_cpu(p), p); 3412 3413 return cpu; 3414 } 3415 3416 void sched_set_stop_task(int cpu, struct task_struct *stop) 3417 { 3418 static struct lock_class_key stop_pi_lock; 3419 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3420 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3421 3422 if (stop) { 3423 /* 3424 * Make it appear like a SCHED_FIFO task, its something 3425 * userspace knows about and won't get confused about. 3426 * 3427 * Also, it will make PI more or less work without too 3428 * much confusion -- but then, stop work should not 3429 * rely on PI working anyway. 3430 */ 3431 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3432 3433 stop->sched_class = &stop_sched_class; 3434 3435 /* 3436 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3437 * adjust the effective priority of a task. As a result, 3438 * rt_mutex_setprio() can trigger (RT) balancing operations, 3439 * which can then trigger wakeups of the stop thread to push 3440 * around the current task. 3441 * 3442 * The stop task itself will never be part of the PI-chain, it 3443 * never blocks, therefore that ->pi_lock recursion is safe. 3444 * Tell lockdep about this by placing the stop->pi_lock in its 3445 * own class. 3446 */ 3447 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3448 } 3449 3450 cpu_rq(cpu)->stop = stop; 3451 3452 if (old_stop) { 3453 /* 3454 * Reset it back to a normal scheduling class so that 3455 * it can die in pieces. 3456 */ 3457 old_stop->sched_class = &rt_sched_class; 3458 } 3459 } 3460 3461 #else /* CONFIG_SMP */ 3462 3463 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3464 const struct cpumask *new_mask, 3465 u32 flags) 3466 { 3467 return set_cpus_allowed_ptr(p, new_mask); 3468 } 3469 3470 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3471 3472 static inline bool rq_has_pinned_tasks(struct rq *rq) 3473 { 3474 return false; 3475 } 3476 3477 #endif /* !CONFIG_SMP */ 3478 3479 static void 3480 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3481 { 3482 struct rq *rq; 3483 3484 if (!schedstat_enabled()) 3485 return; 3486 3487 rq = this_rq(); 3488 3489 #ifdef CONFIG_SMP 3490 if (cpu == rq->cpu) { 3491 __schedstat_inc(rq->ttwu_local); 3492 __schedstat_inc(p->se.statistics.nr_wakeups_local); 3493 } else { 3494 struct sched_domain *sd; 3495 3496 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 3497 rcu_read_lock(); 3498 for_each_domain(rq->cpu, sd) { 3499 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3500 __schedstat_inc(sd->ttwu_wake_remote); 3501 break; 3502 } 3503 } 3504 rcu_read_unlock(); 3505 } 3506 3507 if (wake_flags & WF_MIGRATED) 3508 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 3509 #endif /* CONFIG_SMP */ 3510 3511 __schedstat_inc(rq->ttwu_count); 3512 __schedstat_inc(p->se.statistics.nr_wakeups); 3513 3514 if (wake_flags & WF_SYNC) 3515 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 3516 } 3517 3518 /* 3519 * Mark the task runnable and perform wakeup-preemption. 3520 */ 3521 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3522 struct rq_flags *rf) 3523 { 3524 check_preempt_curr(rq, p, wake_flags); 3525 WRITE_ONCE(p->__state, TASK_RUNNING); 3526 trace_sched_wakeup(p); 3527 3528 #ifdef CONFIG_SMP 3529 if (p->sched_class->task_woken) { 3530 /* 3531 * Our task @p is fully woken up and running; so it's safe to 3532 * drop the rq->lock, hereafter rq is only used for statistics. 3533 */ 3534 rq_unpin_lock(rq, rf); 3535 p->sched_class->task_woken(rq, p); 3536 rq_repin_lock(rq, rf); 3537 } 3538 3539 if (rq->idle_stamp) { 3540 u64 delta = rq_clock(rq) - rq->idle_stamp; 3541 u64 max = 2*rq->max_idle_balance_cost; 3542 3543 update_avg(&rq->avg_idle, delta); 3544 3545 if (rq->avg_idle > max) 3546 rq->avg_idle = max; 3547 3548 rq->wake_stamp = jiffies; 3549 rq->wake_avg_idle = rq->avg_idle / 2; 3550 3551 rq->idle_stamp = 0; 3552 } 3553 #endif 3554 } 3555 3556 static void 3557 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3558 struct rq_flags *rf) 3559 { 3560 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3561 3562 lockdep_assert_rq_held(rq); 3563 3564 if (p->sched_contributes_to_load) 3565 rq->nr_uninterruptible--; 3566 3567 #ifdef CONFIG_SMP 3568 if (wake_flags & WF_MIGRATED) 3569 en_flags |= ENQUEUE_MIGRATED; 3570 else 3571 #endif 3572 if (p->in_iowait) { 3573 delayacct_blkio_end(p); 3574 atomic_dec(&task_rq(p)->nr_iowait); 3575 } 3576 3577 activate_task(rq, p, en_flags); 3578 ttwu_do_wakeup(rq, p, wake_flags, rf); 3579 } 3580 3581 /* 3582 * Consider @p being inside a wait loop: 3583 * 3584 * for (;;) { 3585 * set_current_state(TASK_UNINTERRUPTIBLE); 3586 * 3587 * if (CONDITION) 3588 * break; 3589 * 3590 * schedule(); 3591 * } 3592 * __set_current_state(TASK_RUNNING); 3593 * 3594 * between set_current_state() and schedule(). In this case @p is still 3595 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3596 * an atomic manner. 3597 * 3598 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3599 * then schedule() must still happen and p->state can be changed to 3600 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3601 * need to do a full wakeup with enqueue. 3602 * 3603 * Returns: %true when the wakeup is done, 3604 * %false otherwise. 3605 */ 3606 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3607 { 3608 struct rq_flags rf; 3609 struct rq *rq; 3610 int ret = 0; 3611 3612 rq = __task_rq_lock(p, &rf); 3613 if (task_on_rq_queued(p)) { 3614 /* check_preempt_curr() may use rq clock */ 3615 update_rq_clock(rq); 3616 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3617 ret = 1; 3618 } 3619 __task_rq_unlock(rq, &rf); 3620 3621 return ret; 3622 } 3623 3624 #ifdef CONFIG_SMP 3625 void sched_ttwu_pending(void *arg) 3626 { 3627 struct llist_node *llist = arg; 3628 struct rq *rq = this_rq(); 3629 struct task_struct *p, *t; 3630 struct rq_flags rf; 3631 3632 if (!llist) 3633 return; 3634 3635 /* 3636 * rq::ttwu_pending racy indication of out-standing wakeups. 3637 * Races such that false-negatives are possible, since they 3638 * are shorter lived that false-positives would be. 3639 */ 3640 WRITE_ONCE(rq->ttwu_pending, 0); 3641 3642 rq_lock_irqsave(rq, &rf); 3643 update_rq_clock(rq); 3644 3645 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3646 if (WARN_ON_ONCE(p->on_cpu)) 3647 smp_cond_load_acquire(&p->on_cpu, !VAL); 3648 3649 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3650 set_task_cpu(p, cpu_of(rq)); 3651 3652 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3653 } 3654 3655 rq_unlock_irqrestore(rq, &rf); 3656 } 3657 3658 void send_call_function_single_ipi(int cpu) 3659 { 3660 struct rq *rq = cpu_rq(cpu); 3661 3662 if (!set_nr_if_polling(rq->idle)) 3663 arch_send_call_function_single_ipi(cpu); 3664 else 3665 trace_sched_wake_idle_without_ipi(cpu); 3666 } 3667 3668 /* 3669 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3670 * necessary. The wakee CPU on receipt of the IPI will queue the task 3671 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3672 * of the wakeup instead of the waker. 3673 */ 3674 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3675 { 3676 struct rq *rq = cpu_rq(cpu); 3677 3678 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3679 3680 WRITE_ONCE(rq->ttwu_pending, 1); 3681 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3682 } 3683 3684 void wake_up_if_idle(int cpu) 3685 { 3686 struct rq *rq = cpu_rq(cpu); 3687 struct rq_flags rf; 3688 3689 rcu_read_lock(); 3690 3691 if (!is_idle_task(rcu_dereference(rq->curr))) 3692 goto out; 3693 3694 if (set_nr_if_polling(rq->idle)) { 3695 trace_sched_wake_idle_without_ipi(cpu); 3696 } else { 3697 rq_lock_irqsave(rq, &rf); 3698 if (is_idle_task(rq->curr)) 3699 smp_send_reschedule(cpu); 3700 /* Else CPU is not idle, do nothing here: */ 3701 rq_unlock_irqrestore(rq, &rf); 3702 } 3703 3704 out: 3705 rcu_read_unlock(); 3706 } 3707 3708 bool cpus_share_cache(int this_cpu, int that_cpu) 3709 { 3710 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3711 } 3712 3713 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3714 { 3715 /* 3716 * Do not complicate things with the async wake_list while the CPU is 3717 * in hotplug state. 3718 */ 3719 if (!cpu_active(cpu)) 3720 return false; 3721 3722 /* 3723 * If the CPU does not share cache, then queue the task on the 3724 * remote rqs wakelist to avoid accessing remote data. 3725 */ 3726 if (!cpus_share_cache(smp_processor_id(), cpu)) 3727 return true; 3728 3729 /* 3730 * If the task is descheduling and the only running task on the 3731 * CPU then use the wakelist to offload the task activation to 3732 * the soon-to-be-idle CPU as the current CPU is likely busy. 3733 * nr_running is checked to avoid unnecessary task stacking. 3734 */ 3735 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3736 return true; 3737 3738 return false; 3739 } 3740 3741 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3742 { 3743 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3744 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3745 return false; 3746 3747 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3748 __ttwu_queue_wakelist(p, cpu, wake_flags); 3749 return true; 3750 } 3751 3752 return false; 3753 } 3754 3755 #else /* !CONFIG_SMP */ 3756 3757 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3758 { 3759 return false; 3760 } 3761 3762 #endif /* CONFIG_SMP */ 3763 3764 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3765 { 3766 struct rq *rq = cpu_rq(cpu); 3767 struct rq_flags rf; 3768 3769 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3770 return; 3771 3772 rq_lock(rq, &rf); 3773 update_rq_clock(rq); 3774 ttwu_do_activate(rq, p, wake_flags, &rf); 3775 rq_unlock(rq, &rf); 3776 } 3777 3778 /* 3779 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3780 * 3781 * The caller holds p::pi_lock if p != current or has preemption 3782 * disabled when p == current. 3783 * 3784 * The rules of PREEMPT_RT saved_state: 3785 * 3786 * The related locking code always holds p::pi_lock when updating 3787 * p::saved_state, which means the code is fully serialized in both cases. 3788 * 3789 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3790 * bits set. This allows to distinguish all wakeup scenarios. 3791 */ 3792 static __always_inline 3793 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3794 { 3795 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3796 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3797 state != TASK_RTLOCK_WAIT); 3798 } 3799 3800 if (READ_ONCE(p->__state) & state) { 3801 *success = 1; 3802 return true; 3803 } 3804 3805 #ifdef CONFIG_PREEMPT_RT 3806 /* 3807 * Saved state preserves the task state across blocking on 3808 * an RT lock. If the state matches, set p::saved_state to 3809 * TASK_RUNNING, but do not wake the task because it waits 3810 * for a lock wakeup. Also indicate success because from 3811 * the regular waker's point of view this has succeeded. 3812 * 3813 * After acquiring the lock the task will restore p::__state 3814 * from p::saved_state which ensures that the regular 3815 * wakeup is not lost. The restore will also set 3816 * p::saved_state to TASK_RUNNING so any further tests will 3817 * not result in false positives vs. @success 3818 */ 3819 if (p->saved_state & state) { 3820 p->saved_state = TASK_RUNNING; 3821 *success = 1; 3822 } 3823 #endif 3824 return false; 3825 } 3826 3827 /* 3828 * Notes on Program-Order guarantees on SMP systems. 3829 * 3830 * MIGRATION 3831 * 3832 * The basic program-order guarantee on SMP systems is that when a task [t] 3833 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3834 * execution on its new CPU [c1]. 3835 * 3836 * For migration (of runnable tasks) this is provided by the following means: 3837 * 3838 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3839 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3840 * rq(c1)->lock (if not at the same time, then in that order). 3841 * C) LOCK of the rq(c1)->lock scheduling in task 3842 * 3843 * Release/acquire chaining guarantees that B happens after A and C after B. 3844 * Note: the CPU doing B need not be c0 or c1 3845 * 3846 * Example: 3847 * 3848 * CPU0 CPU1 CPU2 3849 * 3850 * LOCK rq(0)->lock 3851 * sched-out X 3852 * sched-in Y 3853 * UNLOCK rq(0)->lock 3854 * 3855 * LOCK rq(0)->lock // orders against CPU0 3856 * dequeue X 3857 * UNLOCK rq(0)->lock 3858 * 3859 * LOCK rq(1)->lock 3860 * enqueue X 3861 * UNLOCK rq(1)->lock 3862 * 3863 * LOCK rq(1)->lock // orders against CPU2 3864 * sched-out Z 3865 * sched-in X 3866 * UNLOCK rq(1)->lock 3867 * 3868 * 3869 * BLOCKING -- aka. SLEEP + WAKEUP 3870 * 3871 * For blocking we (obviously) need to provide the same guarantee as for 3872 * migration. However the means are completely different as there is no lock 3873 * chain to provide order. Instead we do: 3874 * 3875 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3876 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3877 * 3878 * Example: 3879 * 3880 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3881 * 3882 * LOCK rq(0)->lock LOCK X->pi_lock 3883 * dequeue X 3884 * sched-out X 3885 * smp_store_release(X->on_cpu, 0); 3886 * 3887 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3888 * X->state = WAKING 3889 * set_task_cpu(X,2) 3890 * 3891 * LOCK rq(2)->lock 3892 * enqueue X 3893 * X->state = RUNNING 3894 * UNLOCK rq(2)->lock 3895 * 3896 * LOCK rq(2)->lock // orders against CPU1 3897 * sched-out Z 3898 * sched-in X 3899 * UNLOCK rq(2)->lock 3900 * 3901 * UNLOCK X->pi_lock 3902 * UNLOCK rq(0)->lock 3903 * 3904 * 3905 * However, for wakeups there is a second guarantee we must provide, namely we 3906 * must ensure that CONDITION=1 done by the caller can not be reordered with 3907 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3908 */ 3909 3910 /** 3911 * try_to_wake_up - wake up a thread 3912 * @p: the thread to be awakened 3913 * @state: the mask of task states that can be woken 3914 * @wake_flags: wake modifier flags (WF_*) 3915 * 3916 * Conceptually does: 3917 * 3918 * If (@state & @p->state) @p->state = TASK_RUNNING. 3919 * 3920 * If the task was not queued/runnable, also place it back on a runqueue. 3921 * 3922 * This function is atomic against schedule() which would dequeue the task. 3923 * 3924 * It issues a full memory barrier before accessing @p->state, see the comment 3925 * with set_current_state(). 3926 * 3927 * Uses p->pi_lock to serialize against concurrent wake-ups. 3928 * 3929 * Relies on p->pi_lock stabilizing: 3930 * - p->sched_class 3931 * - p->cpus_ptr 3932 * - p->sched_task_group 3933 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3934 * 3935 * Tries really hard to only take one task_rq(p)->lock for performance. 3936 * Takes rq->lock in: 3937 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3938 * - ttwu_queue() -- new rq, for enqueue of the task; 3939 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3940 * 3941 * As a consequence we race really badly with just about everything. See the 3942 * many memory barriers and their comments for details. 3943 * 3944 * Return: %true if @p->state changes (an actual wakeup was done), 3945 * %false otherwise. 3946 */ 3947 static int 3948 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3949 { 3950 unsigned long flags; 3951 int cpu, success = 0; 3952 3953 preempt_disable(); 3954 if (p == current) { 3955 /* 3956 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3957 * == smp_processor_id()'. Together this means we can special 3958 * case the whole 'p->on_rq && ttwu_runnable()' case below 3959 * without taking any locks. 3960 * 3961 * In particular: 3962 * - we rely on Program-Order guarantees for all the ordering, 3963 * - we're serialized against set_special_state() by virtue of 3964 * it disabling IRQs (this allows not taking ->pi_lock). 3965 */ 3966 if (!ttwu_state_match(p, state, &success)) 3967 goto out; 3968 3969 trace_sched_waking(p); 3970 WRITE_ONCE(p->__state, TASK_RUNNING); 3971 trace_sched_wakeup(p); 3972 goto out; 3973 } 3974 3975 /* 3976 * If we are going to wake up a thread waiting for CONDITION we 3977 * need to ensure that CONDITION=1 done by the caller can not be 3978 * reordered with p->state check below. This pairs with smp_store_mb() 3979 * in set_current_state() that the waiting thread does. 3980 */ 3981 raw_spin_lock_irqsave(&p->pi_lock, flags); 3982 smp_mb__after_spinlock(); 3983 if (!ttwu_state_match(p, state, &success)) 3984 goto unlock; 3985 3986 trace_sched_waking(p); 3987 3988 /* 3989 * Ensure we load p->on_rq _after_ p->state, otherwise it would 3990 * be possible to, falsely, observe p->on_rq == 0 and get stuck 3991 * in smp_cond_load_acquire() below. 3992 * 3993 * sched_ttwu_pending() try_to_wake_up() 3994 * STORE p->on_rq = 1 LOAD p->state 3995 * UNLOCK rq->lock 3996 * 3997 * __schedule() (switch to task 'p') 3998 * LOCK rq->lock smp_rmb(); 3999 * smp_mb__after_spinlock(); 4000 * UNLOCK rq->lock 4001 * 4002 * [task p] 4003 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4004 * 4005 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4006 * __schedule(). See the comment for smp_mb__after_spinlock(). 4007 * 4008 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4009 */ 4010 smp_rmb(); 4011 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4012 goto unlock; 4013 4014 #ifdef CONFIG_SMP 4015 /* 4016 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4017 * possible to, falsely, observe p->on_cpu == 0. 4018 * 4019 * One must be running (->on_cpu == 1) in order to remove oneself 4020 * from the runqueue. 4021 * 4022 * __schedule() (switch to task 'p') try_to_wake_up() 4023 * STORE p->on_cpu = 1 LOAD p->on_rq 4024 * UNLOCK rq->lock 4025 * 4026 * __schedule() (put 'p' to sleep) 4027 * LOCK rq->lock smp_rmb(); 4028 * smp_mb__after_spinlock(); 4029 * STORE p->on_rq = 0 LOAD p->on_cpu 4030 * 4031 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4032 * __schedule(). See the comment for smp_mb__after_spinlock(). 4033 * 4034 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4035 * schedule()'s deactivate_task() has 'happened' and p will no longer 4036 * care about it's own p->state. See the comment in __schedule(). 4037 */ 4038 smp_acquire__after_ctrl_dep(); 4039 4040 /* 4041 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4042 * == 0), which means we need to do an enqueue, change p->state to 4043 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4044 * enqueue, such as ttwu_queue_wakelist(). 4045 */ 4046 WRITE_ONCE(p->__state, TASK_WAKING); 4047 4048 /* 4049 * If the owning (remote) CPU is still in the middle of schedule() with 4050 * this task as prev, considering queueing p on the remote CPUs wake_list 4051 * which potentially sends an IPI instead of spinning on p->on_cpu to 4052 * let the waker make forward progress. This is safe because IRQs are 4053 * disabled and the IPI will deliver after on_cpu is cleared. 4054 * 4055 * Ensure we load task_cpu(p) after p->on_cpu: 4056 * 4057 * set_task_cpu(p, cpu); 4058 * STORE p->cpu = @cpu 4059 * __schedule() (switch to task 'p') 4060 * LOCK rq->lock 4061 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4062 * STORE p->on_cpu = 1 LOAD p->cpu 4063 * 4064 * to ensure we observe the correct CPU on which the task is currently 4065 * scheduling. 4066 */ 4067 if (smp_load_acquire(&p->on_cpu) && 4068 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 4069 goto unlock; 4070 4071 /* 4072 * If the owning (remote) CPU is still in the middle of schedule() with 4073 * this task as prev, wait until it's done referencing the task. 4074 * 4075 * Pairs with the smp_store_release() in finish_task(). 4076 * 4077 * This ensures that tasks getting woken will be fully ordered against 4078 * their previous state and preserve Program Order. 4079 */ 4080 smp_cond_load_acquire(&p->on_cpu, !VAL); 4081 4082 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4083 if (task_cpu(p) != cpu) { 4084 if (p->in_iowait) { 4085 delayacct_blkio_end(p); 4086 atomic_dec(&task_rq(p)->nr_iowait); 4087 } 4088 4089 wake_flags |= WF_MIGRATED; 4090 psi_ttwu_dequeue(p); 4091 set_task_cpu(p, cpu); 4092 } 4093 #else 4094 cpu = task_cpu(p); 4095 #endif /* CONFIG_SMP */ 4096 4097 ttwu_queue(p, cpu, wake_flags); 4098 unlock: 4099 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4100 out: 4101 if (success) 4102 ttwu_stat(p, task_cpu(p), wake_flags); 4103 preempt_enable(); 4104 4105 return success; 4106 } 4107 4108 /** 4109 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 4110 * @p: Process for which the function is to be invoked, can be @current. 4111 * @func: Function to invoke. 4112 * @arg: Argument to function. 4113 * 4114 * If the specified task can be quickly locked into a definite state 4115 * (either sleeping or on a given runqueue), arrange to keep it in that 4116 * state while invoking @func(@arg). This function can use ->on_rq and 4117 * task_curr() to work out what the state is, if required. Given that 4118 * @func can be invoked with a runqueue lock held, it had better be quite 4119 * lightweight. 4120 * 4121 * Returns: 4122 * @false if the task slipped out from under the locks. 4123 * @true if the task was locked onto a runqueue or is sleeping. 4124 * However, @func can override this by returning @false. 4125 */ 4126 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 4127 { 4128 struct rq_flags rf; 4129 bool ret = false; 4130 struct rq *rq; 4131 4132 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4133 if (p->on_rq) { 4134 rq = __task_rq_lock(p, &rf); 4135 if (task_rq(p) == rq) 4136 ret = func(p, arg); 4137 rq_unlock(rq, &rf); 4138 } else { 4139 switch (READ_ONCE(p->__state)) { 4140 case TASK_RUNNING: 4141 case TASK_WAKING: 4142 break; 4143 default: 4144 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 4145 if (!p->on_rq) 4146 ret = func(p, arg); 4147 } 4148 } 4149 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4150 return ret; 4151 } 4152 4153 /** 4154 * wake_up_process - Wake up a specific process 4155 * @p: The process to be woken up. 4156 * 4157 * Attempt to wake up the nominated process and move it to the set of runnable 4158 * processes. 4159 * 4160 * Return: 1 if the process was woken up, 0 if it was already running. 4161 * 4162 * This function executes a full memory barrier before accessing the task state. 4163 */ 4164 int wake_up_process(struct task_struct *p) 4165 { 4166 return try_to_wake_up(p, TASK_NORMAL, 0); 4167 } 4168 EXPORT_SYMBOL(wake_up_process); 4169 4170 int wake_up_state(struct task_struct *p, unsigned int state) 4171 { 4172 return try_to_wake_up(p, state, 0); 4173 } 4174 4175 /* 4176 * Perform scheduler related setup for a newly forked process p. 4177 * p is forked by current. 4178 * 4179 * __sched_fork() is basic setup used by init_idle() too: 4180 */ 4181 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4182 { 4183 p->on_rq = 0; 4184 4185 p->se.on_rq = 0; 4186 p->se.exec_start = 0; 4187 p->se.sum_exec_runtime = 0; 4188 p->se.prev_sum_exec_runtime = 0; 4189 p->se.nr_migrations = 0; 4190 p->se.vruntime = 0; 4191 INIT_LIST_HEAD(&p->se.group_node); 4192 4193 #ifdef CONFIG_FAIR_GROUP_SCHED 4194 p->se.cfs_rq = NULL; 4195 #endif 4196 4197 #ifdef CONFIG_SCHEDSTATS 4198 /* Even if schedstat is disabled, there should not be garbage */ 4199 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 4200 #endif 4201 4202 RB_CLEAR_NODE(&p->dl.rb_node); 4203 init_dl_task_timer(&p->dl); 4204 init_dl_inactive_task_timer(&p->dl); 4205 __dl_clear_params(p); 4206 4207 INIT_LIST_HEAD(&p->rt.run_list); 4208 p->rt.timeout = 0; 4209 p->rt.time_slice = sched_rr_timeslice; 4210 p->rt.on_rq = 0; 4211 p->rt.on_list = 0; 4212 4213 #ifdef CONFIG_PREEMPT_NOTIFIERS 4214 INIT_HLIST_HEAD(&p->preempt_notifiers); 4215 #endif 4216 4217 #ifdef CONFIG_COMPACTION 4218 p->capture_control = NULL; 4219 #endif 4220 init_numa_balancing(clone_flags, p); 4221 #ifdef CONFIG_SMP 4222 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4223 p->migration_pending = NULL; 4224 #endif 4225 } 4226 4227 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4228 4229 #ifdef CONFIG_NUMA_BALANCING 4230 4231 void set_numabalancing_state(bool enabled) 4232 { 4233 if (enabled) 4234 static_branch_enable(&sched_numa_balancing); 4235 else 4236 static_branch_disable(&sched_numa_balancing); 4237 } 4238 4239 #ifdef CONFIG_PROC_SYSCTL 4240 int sysctl_numa_balancing(struct ctl_table *table, int write, 4241 void *buffer, size_t *lenp, loff_t *ppos) 4242 { 4243 struct ctl_table t; 4244 int err; 4245 int state = static_branch_likely(&sched_numa_balancing); 4246 4247 if (write && !capable(CAP_SYS_ADMIN)) 4248 return -EPERM; 4249 4250 t = *table; 4251 t.data = &state; 4252 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4253 if (err < 0) 4254 return err; 4255 if (write) 4256 set_numabalancing_state(state); 4257 return err; 4258 } 4259 #endif 4260 #endif 4261 4262 #ifdef CONFIG_SCHEDSTATS 4263 4264 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4265 4266 static void set_schedstats(bool enabled) 4267 { 4268 if (enabled) 4269 static_branch_enable(&sched_schedstats); 4270 else 4271 static_branch_disable(&sched_schedstats); 4272 } 4273 4274 void force_schedstat_enabled(void) 4275 { 4276 if (!schedstat_enabled()) { 4277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4278 static_branch_enable(&sched_schedstats); 4279 } 4280 } 4281 4282 static int __init setup_schedstats(char *str) 4283 { 4284 int ret = 0; 4285 if (!str) 4286 goto out; 4287 4288 if (!strcmp(str, "enable")) { 4289 set_schedstats(true); 4290 ret = 1; 4291 } else if (!strcmp(str, "disable")) { 4292 set_schedstats(false); 4293 ret = 1; 4294 } 4295 out: 4296 if (!ret) 4297 pr_warn("Unable to parse schedstats=\n"); 4298 4299 return ret; 4300 } 4301 __setup("schedstats=", setup_schedstats); 4302 4303 #ifdef CONFIG_PROC_SYSCTL 4304 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4305 size_t *lenp, loff_t *ppos) 4306 { 4307 struct ctl_table t; 4308 int err; 4309 int state = static_branch_likely(&sched_schedstats); 4310 4311 if (write && !capable(CAP_SYS_ADMIN)) 4312 return -EPERM; 4313 4314 t = *table; 4315 t.data = &state; 4316 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4317 if (err < 0) 4318 return err; 4319 if (write) 4320 set_schedstats(state); 4321 return err; 4322 } 4323 #endif /* CONFIG_PROC_SYSCTL */ 4324 #endif /* CONFIG_SCHEDSTATS */ 4325 4326 /* 4327 * fork()/clone()-time setup: 4328 */ 4329 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4330 { 4331 unsigned long flags; 4332 4333 __sched_fork(clone_flags, p); 4334 /* 4335 * We mark the process as NEW here. This guarantees that 4336 * nobody will actually run it, and a signal or other external 4337 * event cannot wake it up and insert it on the runqueue either. 4338 */ 4339 p->__state = TASK_NEW; 4340 4341 /* 4342 * Make sure we do not leak PI boosting priority to the child. 4343 */ 4344 p->prio = current->normal_prio; 4345 4346 uclamp_fork(p); 4347 4348 /* 4349 * Revert to default priority/policy on fork if requested. 4350 */ 4351 if (unlikely(p->sched_reset_on_fork)) { 4352 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4353 p->policy = SCHED_NORMAL; 4354 p->static_prio = NICE_TO_PRIO(0); 4355 p->rt_priority = 0; 4356 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4357 p->static_prio = NICE_TO_PRIO(0); 4358 4359 p->prio = p->normal_prio = p->static_prio; 4360 set_load_weight(p, false); 4361 4362 /* 4363 * We don't need the reset flag anymore after the fork. It has 4364 * fulfilled its duty: 4365 */ 4366 p->sched_reset_on_fork = 0; 4367 } 4368 4369 if (dl_prio(p->prio)) 4370 return -EAGAIN; 4371 else if (rt_prio(p->prio)) 4372 p->sched_class = &rt_sched_class; 4373 else 4374 p->sched_class = &fair_sched_class; 4375 4376 init_entity_runnable_average(&p->se); 4377 4378 /* 4379 * The child is not yet in the pid-hash so no cgroup attach races, 4380 * and the cgroup is pinned to this child due to cgroup_fork() 4381 * is ran before sched_fork(). 4382 * 4383 * Silence PROVE_RCU. 4384 */ 4385 raw_spin_lock_irqsave(&p->pi_lock, flags); 4386 rseq_migrate(p); 4387 /* 4388 * We're setting the CPU for the first time, we don't migrate, 4389 * so use __set_task_cpu(). 4390 */ 4391 __set_task_cpu(p, smp_processor_id()); 4392 if (p->sched_class->task_fork) 4393 p->sched_class->task_fork(p); 4394 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4395 4396 #ifdef CONFIG_SCHED_INFO 4397 if (likely(sched_info_on())) 4398 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4399 #endif 4400 #if defined(CONFIG_SMP) 4401 p->on_cpu = 0; 4402 #endif 4403 init_task_preempt_count(p); 4404 #ifdef CONFIG_SMP 4405 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4406 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4407 #endif 4408 return 0; 4409 } 4410 4411 void sched_post_fork(struct task_struct *p) 4412 { 4413 uclamp_post_fork(p); 4414 } 4415 4416 unsigned long to_ratio(u64 period, u64 runtime) 4417 { 4418 if (runtime == RUNTIME_INF) 4419 return BW_UNIT; 4420 4421 /* 4422 * Doing this here saves a lot of checks in all 4423 * the calling paths, and returning zero seems 4424 * safe for them anyway. 4425 */ 4426 if (period == 0) 4427 return 0; 4428 4429 return div64_u64(runtime << BW_SHIFT, period); 4430 } 4431 4432 /* 4433 * wake_up_new_task - wake up a newly created task for the first time. 4434 * 4435 * This function will do some initial scheduler statistics housekeeping 4436 * that must be done for every newly created context, then puts the task 4437 * on the runqueue and wakes it. 4438 */ 4439 void wake_up_new_task(struct task_struct *p) 4440 { 4441 struct rq_flags rf; 4442 struct rq *rq; 4443 4444 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4445 WRITE_ONCE(p->__state, TASK_RUNNING); 4446 #ifdef CONFIG_SMP 4447 /* 4448 * Fork balancing, do it here and not earlier because: 4449 * - cpus_ptr can change in the fork path 4450 * - any previously selected CPU might disappear through hotplug 4451 * 4452 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4453 * as we're not fully set-up yet. 4454 */ 4455 p->recent_used_cpu = task_cpu(p); 4456 rseq_migrate(p); 4457 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4458 #endif 4459 rq = __task_rq_lock(p, &rf); 4460 update_rq_clock(rq); 4461 post_init_entity_util_avg(p); 4462 4463 activate_task(rq, p, ENQUEUE_NOCLOCK); 4464 trace_sched_wakeup_new(p); 4465 check_preempt_curr(rq, p, WF_FORK); 4466 #ifdef CONFIG_SMP 4467 if (p->sched_class->task_woken) { 4468 /* 4469 * Nothing relies on rq->lock after this, so it's fine to 4470 * drop it. 4471 */ 4472 rq_unpin_lock(rq, &rf); 4473 p->sched_class->task_woken(rq, p); 4474 rq_repin_lock(rq, &rf); 4475 } 4476 #endif 4477 task_rq_unlock(rq, p, &rf); 4478 } 4479 4480 #ifdef CONFIG_PREEMPT_NOTIFIERS 4481 4482 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4483 4484 void preempt_notifier_inc(void) 4485 { 4486 static_branch_inc(&preempt_notifier_key); 4487 } 4488 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4489 4490 void preempt_notifier_dec(void) 4491 { 4492 static_branch_dec(&preempt_notifier_key); 4493 } 4494 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4495 4496 /** 4497 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4498 * @notifier: notifier struct to register 4499 */ 4500 void preempt_notifier_register(struct preempt_notifier *notifier) 4501 { 4502 if (!static_branch_unlikely(&preempt_notifier_key)) 4503 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4504 4505 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4506 } 4507 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4508 4509 /** 4510 * preempt_notifier_unregister - no longer interested in preemption notifications 4511 * @notifier: notifier struct to unregister 4512 * 4513 * This is *not* safe to call from within a preemption notifier. 4514 */ 4515 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4516 { 4517 hlist_del(¬ifier->link); 4518 } 4519 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4520 4521 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4522 { 4523 struct preempt_notifier *notifier; 4524 4525 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4526 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4527 } 4528 4529 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4530 { 4531 if (static_branch_unlikely(&preempt_notifier_key)) 4532 __fire_sched_in_preempt_notifiers(curr); 4533 } 4534 4535 static void 4536 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4537 struct task_struct *next) 4538 { 4539 struct preempt_notifier *notifier; 4540 4541 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4542 notifier->ops->sched_out(notifier, next); 4543 } 4544 4545 static __always_inline void 4546 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4547 struct task_struct *next) 4548 { 4549 if (static_branch_unlikely(&preempt_notifier_key)) 4550 __fire_sched_out_preempt_notifiers(curr, next); 4551 } 4552 4553 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4554 4555 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4556 { 4557 } 4558 4559 static inline void 4560 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4561 struct task_struct *next) 4562 { 4563 } 4564 4565 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4566 4567 static inline void prepare_task(struct task_struct *next) 4568 { 4569 #ifdef CONFIG_SMP 4570 /* 4571 * Claim the task as running, we do this before switching to it 4572 * such that any running task will have this set. 4573 * 4574 * See the ttwu() WF_ON_CPU case and its ordering comment. 4575 */ 4576 WRITE_ONCE(next->on_cpu, 1); 4577 #endif 4578 } 4579 4580 static inline void finish_task(struct task_struct *prev) 4581 { 4582 #ifdef CONFIG_SMP 4583 /* 4584 * This must be the very last reference to @prev from this CPU. After 4585 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4586 * must ensure this doesn't happen until the switch is completely 4587 * finished. 4588 * 4589 * In particular, the load of prev->state in finish_task_switch() must 4590 * happen before this. 4591 * 4592 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4593 */ 4594 smp_store_release(&prev->on_cpu, 0); 4595 #endif 4596 } 4597 4598 #ifdef CONFIG_SMP 4599 4600 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4601 { 4602 void (*func)(struct rq *rq); 4603 struct callback_head *next; 4604 4605 lockdep_assert_rq_held(rq); 4606 4607 while (head) { 4608 func = (void (*)(struct rq *))head->func; 4609 next = head->next; 4610 head->next = NULL; 4611 head = next; 4612 4613 func(rq); 4614 } 4615 } 4616 4617 static void balance_push(struct rq *rq); 4618 4619 struct callback_head balance_push_callback = { 4620 .next = NULL, 4621 .func = (void (*)(struct callback_head *))balance_push, 4622 }; 4623 4624 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4625 { 4626 struct callback_head *head = rq->balance_callback; 4627 4628 lockdep_assert_rq_held(rq); 4629 if (head) 4630 rq->balance_callback = NULL; 4631 4632 return head; 4633 } 4634 4635 static void __balance_callbacks(struct rq *rq) 4636 { 4637 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4638 } 4639 4640 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4641 { 4642 unsigned long flags; 4643 4644 if (unlikely(head)) { 4645 raw_spin_rq_lock_irqsave(rq, flags); 4646 do_balance_callbacks(rq, head); 4647 raw_spin_rq_unlock_irqrestore(rq, flags); 4648 } 4649 } 4650 4651 #else 4652 4653 static inline void __balance_callbacks(struct rq *rq) 4654 { 4655 } 4656 4657 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4658 { 4659 return NULL; 4660 } 4661 4662 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4663 { 4664 } 4665 4666 #endif 4667 4668 static inline void 4669 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4670 { 4671 /* 4672 * Since the runqueue lock will be released by the next 4673 * task (which is an invalid locking op but in the case 4674 * of the scheduler it's an obvious special-case), so we 4675 * do an early lockdep release here: 4676 */ 4677 rq_unpin_lock(rq, rf); 4678 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4679 #ifdef CONFIG_DEBUG_SPINLOCK 4680 /* this is a valid case when another task releases the spinlock */ 4681 rq_lockp(rq)->owner = next; 4682 #endif 4683 } 4684 4685 static inline void finish_lock_switch(struct rq *rq) 4686 { 4687 /* 4688 * If we are tracking spinlock dependencies then we have to 4689 * fix up the runqueue lock - which gets 'carried over' from 4690 * prev into current: 4691 */ 4692 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4693 __balance_callbacks(rq); 4694 raw_spin_rq_unlock_irq(rq); 4695 } 4696 4697 /* 4698 * NOP if the arch has not defined these: 4699 */ 4700 4701 #ifndef prepare_arch_switch 4702 # define prepare_arch_switch(next) do { } while (0) 4703 #endif 4704 4705 #ifndef finish_arch_post_lock_switch 4706 # define finish_arch_post_lock_switch() do { } while (0) 4707 #endif 4708 4709 static inline void kmap_local_sched_out(void) 4710 { 4711 #ifdef CONFIG_KMAP_LOCAL 4712 if (unlikely(current->kmap_ctrl.idx)) 4713 __kmap_local_sched_out(); 4714 #endif 4715 } 4716 4717 static inline void kmap_local_sched_in(void) 4718 { 4719 #ifdef CONFIG_KMAP_LOCAL 4720 if (unlikely(current->kmap_ctrl.idx)) 4721 __kmap_local_sched_in(); 4722 #endif 4723 } 4724 4725 /** 4726 * prepare_task_switch - prepare to switch tasks 4727 * @rq: the runqueue preparing to switch 4728 * @prev: the current task that is being switched out 4729 * @next: the task we are going to switch to. 4730 * 4731 * This is called with the rq lock held and interrupts off. It must 4732 * be paired with a subsequent finish_task_switch after the context 4733 * switch. 4734 * 4735 * prepare_task_switch sets up locking and calls architecture specific 4736 * hooks. 4737 */ 4738 static inline void 4739 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4740 struct task_struct *next) 4741 { 4742 kcov_prepare_switch(prev); 4743 sched_info_switch(rq, prev, next); 4744 perf_event_task_sched_out(prev, next); 4745 rseq_preempt(prev); 4746 fire_sched_out_preempt_notifiers(prev, next); 4747 kmap_local_sched_out(); 4748 prepare_task(next); 4749 prepare_arch_switch(next); 4750 } 4751 4752 /** 4753 * finish_task_switch - clean up after a task-switch 4754 * @prev: the thread we just switched away from. 4755 * 4756 * finish_task_switch must be called after the context switch, paired 4757 * with a prepare_task_switch call before the context switch. 4758 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4759 * and do any other architecture-specific cleanup actions. 4760 * 4761 * Note that we may have delayed dropping an mm in context_switch(). If 4762 * so, we finish that here outside of the runqueue lock. (Doing it 4763 * with the lock held can cause deadlocks; see schedule() for 4764 * details.) 4765 * 4766 * The context switch have flipped the stack from under us and restored the 4767 * local variables which were saved when this task called schedule() in the 4768 * past. prev == current is still correct but we need to recalculate this_rq 4769 * because prev may have moved to another CPU. 4770 */ 4771 static struct rq *finish_task_switch(struct task_struct *prev) 4772 __releases(rq->lock) 4773 { 4774 struct rq *rq = this_rq(); 4775 struct mm_struct *mm = rq->prev_mm; 4776 long prev_state; 4777 4778 /* 4779 * The previous task will have left us with a preempt_count of 2 4780 * because it left us after: 4781 * 4782 * schedule() 4783 * preempt_disable(); // 1 4784 * __schedule() 4785 * raw_spin_lock_irq(&rq->lock) // 2 4786 * 4787 * Also, see FORK_PREEMPT_COUNT. 4788 */ 4789 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4790 "corrupted preempt_count: %s/%d/0x%x\n", 4791 current->comm, current->pid, preempt_count())) 4792 preempt_count_set(FORK_PREEMPT_COUNT); 4793 4794 rq->prev_mm = NULL; 4795 4796 /* 4797 * A task struct has one reference for the use as "current". 4798 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4799 * schedule one last time. The schedule call will never return, and 4800 * the scheduled task must drop that reference. 4801 * 4802 * We must observe prev->state before clearing prev->on_cpu (in 4803 * finish_task), otherwise a concurrent wakeup can get prev 4804 * running on another CPU and we could rave with its RUNNING -> DEAD 4805 * transition, resulting in a double drop. 4806 */ 4807 prev_state = READ_ONCE(prev->__state); 4808 vtime_task_switch(prev); 4809 perf_event_task_sched_in(prev, current); 4810 finish_task(prev); 4811 tick_nohz_task_switch(); 4812 finish_lock_switch(rq); 4813 finish_arch_post_lock_switch(); 4814 kcov_finish_switch(current); 4815 /* 4816 * kmap_local_sched_out() is invoked with rq::lock held and 4817 * interrupts disabled. There is no requirement for that, but the 4818 * sched out code does not have an interrupt enabled section. 4819 * Restoring the maps on sched in does not require interrupts being 4820 * disabled either. 4821 */ 4822 kmap_local_sched_in(); 4823 4824 fire_sched_in_preempt_notifiers(current); 4825 /* 4826 * When switching through a kernel thread, the loop in 4827 * membarrier_{private,global}_expedited() may have observed that 4828 * kernel thread and not issued an IPI. It is therefore possible to 4829 * schedule between user->kernel->user threads without passing though 4830 * switch_mm(). Membarrier requires a barrier after storing to 4831 * rq->curr, before returning to userspace, so provide them here: 4832 * 4833 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4834 * provided by mmdrop(), 4835 * - a sync_core for SYNC_CORE. 4836 */ 4837 if (mm) { 4838 membarrier_mm_sync_core_before_usermode(mm); 4839 mmdrop(mm); 4840 } 4841 if (unlikely(prev_state == TASK_DEAD)) { 4842 if (prev->sched_class->task_dead) 4843 prev->sched_class->task_dead(prev); 4844 4845 /* 4846 * Remove function-return probe instances associated with this 4847 * task and put them back on the free list. 4848 */ 4849 kprobe_flush_task(prev); 4850 4851 /* Task is done with its stack. */ 4852 put_task_stack(prev); 4853 4854 put_task_struct_rcu_user(prev); 4855 } 4856 4857 return rq; 4858 } 4859 4860 /** 4861 * schedule_tail - first thing a freshly forked thread must call. 4862 * @prev: the thread we just switched away from. 4863 */ 4864 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4865 __releases(rq->lock) 4866 { 4867 /* 4868 * New tasks start with FORK_PREEMPT_COUNT, see there and 4869 * finish_task_switch() for details. 4870 * 4871 * finish_task_switch() will drop rq->lock() and lower preempt_count 4872 * and the preempt_enable() will end up enabling preemption (on 4873 * PREEMPT_COUNT kernels). 4874 */ 4875 4876 finish_task_switch(prev); 4877 preempt_enable(); 4878 4879 if (current->set_child_tid) 4880 put_user(task_pid_vnr(current), current->set_child_tid); 4881 4882 calculate_sigpending(); 4883 } 4884 4885 /* 4886 * context_switch - switch to the new MM and the new thread's register state. 4887 */ 4888 static __always_inline struct rq * 4889 context_switch(struct rq *rq, struct task_struct *prev, 4890 struct task_struct *next, struct rq_flags *rf) 4891 { 4892 prepare_task_switch(rq, prev, next); 4893 4894 /* 4895 * For paravirt, this is coupled with an exit in switch_to to 4896 * combine the page table reload and the switch backend into 4897 * one hypercall. 4898 */ 4899 arch_start_context_switch(prev); 4900 4901 /* 4902 * kernel -> kernel lazy + transfer active 4903 * user -> kernel lazy + mmgrab() active 4904 * 4905 * kernel -> user switch + mmdrop() active 4906 * user -> user switch 4907 */ 4908 if (!next->mm) { // to kernel 4909 enter_lazy_tlb(prev->active_mm, next); 4910 4911 next->active_mm = prev->active_mm; 4912 if (prev->mm) // from user 4913 mmgrab(prev->active_mm); 4914 else 4915 prev->active_mm = NULL; 4916 } else { // to user 4917 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4918 /* 4919 * sys_membarrier() requires an smp_mb() between setting 4920 * rq->curr / membarrier_switch_mm() and returning to userspace. 4921 * 4922 * The below provides this either through switch_mm(), or in 4923 * case 'prev->active_mm == next->mm' through 4924 * finish_task_switch()'s mmdrop(). 4925 */ 4926 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4927 4928 if (!prev->mm) { // from kernel 4929 /* will mmdrop() in finish_task_switch(). */ 4930 rq->prev_mm = prev->active_mm; 4931 prev->active_mm = NULL; 4932 } 4933 } 4934 4935 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4936 4937 prepare_lock_switch(rq, next, rf); 4938 4939 /* Here we just switch the register state and the stack. */ 4940 switch_to(prev, next, prev); 4941 barrier(); 4942 4943 return finish_task_switch(prev); 4944 } 4945 4946 /* 4947 * nr_running and nr_context_switches: 4948 * 4949 * externally visible scheduler statistics: current number of runnable 4950 * threads, total number of context switches performed since bootup. 4951 */ 4952 unsigned int nr_running(void) 4953 { 4954 unsigned int i, sum = 0; 4955 4956 for_each_online_cpu(i) 4957 sum += cpu_rq(i)->nr_running; 4958 4959 return sum; 4960 } 4961 4962 /* 4963 * Check if only the current task is running on the CPU. 4964 * 4965 * Caution: this function does not check that the caller has disabled 4966 * preemption, thus the result might have a time-of-check-to-time-of-use 4967 * race. The caller is responsible to use it correctly, for example: 4968 * 4969 * - from a non-preemptible section (of course) 4970 * 4971 * - from a thread that is bound to a single CPU 4972 * 4973 * - in a loop with very short iterations (e.g. a polling loop) 4974 */ 4975 bool single_task_running(void) 4976 { 4977 return raw_rq()->nr_running == 1; 4978 } 4979 EXPORT_SYMBOL(single_task_running); 4980 4981 unsigned long long nr_context_switches(void) 4982 { 4983 int i; 4984 unsigned long long sum = 0; 4985 4986 for_each_possible_cpu(i) 4987 sum += cpu_rq(i)->nr_switches; 4988 4989 return sum; 4990 } 4991 4992 /* 4993 * Consumers of these two interfaces, like for example the cpuidle menu 4994 * governor, are using nonsensical data. Preferring shallow idle state selection 4995 * for a CPU that has IO-wait which might not even end up running the task when 4996 * it does become runnable. 4997 */ 4998 4999 unsigned int nr_iowait_cpu(int cpu) 5000 { 5001 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5002 } 5003 5004 /* 5005 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5006 * 5007 * The idea behind IO-wait account is to account the idle time that we could 5008 * have spend running if it were not for IO. That is, if we were to improve the 5009 * storage performance, we'd have a proportional reduction in IO-wait time. 5010 * 5011 * This all works nicely on UP, where, when a task blocks on IO, we account 5012 * idle time as IO-wait, because if the storage were faster, it could've been 5013 * running and we'd not be idle. 5014 * 5015 * This has been extended to SMP, by doing the same for each CPU. This however 5016 * is broken. 5017 * 5018 * Imagine for instance the case where two tasks block on one CPU, only the one 5019 * CPU will have IO-wait accounted, while the other has regular idle. Even 5020 * though, if the storage were faster, both could've ran at the same time, 5021 * utilising both CPUs. 5022 * 5023 * This means, that when looking globally, the current IO-wait accounting on 5024 * SMP is a lower bound, by reason of under accounting. 5025 * 5026 * Worse, since the numbers are provided per CPU, they are sometimes 5027 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5028 * associated with any one particular CPU, it can wake to another CPU than it 5029 * blocked on. This means the per CPU IO-wait number is meaningless. 5030 * 5031 * Task CPU affinities can make all that even more 'interesting'. 5032 */ 5033 5034 unsigned int nr_iowait(void) 5035 { 5036 unsigned int i, sum = 0; 5037 5038 for_each_possible_cpu(i) 5039 sum += nr_iowait_cpu(i); 5040 5041 return sum; 5042 } 5043 5044 #ifdef CONFIG_SMP 5045 5046 /* 5047 * sched_exec - execve() is a valuable balancing opportunity, because at 5048 * this point the task has the smallest effective memory and cache footprint. 5049 */ 5050 void sched_exec(void) 5051 { 5052 struct task_struct *p = current; 5053 unsigned long flags; 5054 int dest_cpu; 5055 5056 raw_spin_lock_irqsave(&p->pi_lock, flags); 5057 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5058 if (dest_cpu == smp_processor_id()) 5059 goto unlock; 5060 5061 if (likely(cpu_active(dest_cpu))) { 5062 struct migration_arg arg = { p, dest_cpu }; 5063 5064 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5065 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5066 return; 5067 } 5068 unlock: 5069 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5070 } 5071 5072 #endif 5073 5074 DEFINE_PER_CPU(struct kernel_stat, kstat); 5075 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5076 5077 EXPORT_PER_CPU_SYMBOL(kstat); 5078 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5079 5080 /* 5081 * The function fair_sched_class.update_curr accesses the struct curr 5082 * and its field curr->exec_start; when called from task_sched_runtime(), 5083 * we observe a high rate of cache misses in practice. 5084 * Prefetching this data results in improved performance. 5085 */ 5086 static inline void prefetch_curr_exec_start(struct task_struct *p) 5087 { 5088 #ifdef CONFIG_FAIR_GROUP_SCHED 5089 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5090 #else 5091 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5092 #endif 5093 prefetch(curr); 5094 prefetch(&curr->exec_start); 5095 } 5096 5097 /* 5098 * Return accounted runtime for the task. 5099 * In case the task is currently running, return the runtime plus current's 5100 * pending runtime that have not been accounted yet. 5101 */ 5102 unsigned long long task_sched_runtime(struct task_struct *p) 5103 { 5104 struct rq_flags rf; 5105 struct rq *rq; 5106 u64 ns; 5107 5108 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5109 /* 5110 * 64-bit doesn't need locks to atomically read a 64-bit value. 5111 * So we have a optimization chance when the task's delta_exec is 0. 5112 * Reading ->on_cpu is racy, but this is ok. 5113 * 5114 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5115 * If we race with it entering CPU, unaccounted time is 0. This is 5116 * indistinguishable from the read occurring a few cycles earlier. 5117 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5118 * been accounted, so we're correct here as well. 5119 */ 5120 if (!p->on_cpu || !task_on_rq_queued(p)) 5121 return p->se.sum_exec_runtime; 5122 #endif 5123 5124 rq = task_rq_lock(p, &rf); 5125 /* 5126 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5127 * project cycles that may never be accounted to this 5128 * thread, breaking clock_gettime(). 5129 */ 5130 if (task_current(rq, p) && task_on_rq_queued(p)) { 5131 prefetch_curr_exec_start(p); 5132 update_rq_clock(rq); 5133 p->sched_class->update_curr(rq); 5134 } 5135 ns = p->se.sum_exec_runtime; 5136 task_rq_unlock(rq, p, &rf); 5137 5138 return ns; 5139 } 5140 5141 #ifdef CONFIG_SCHED_DEBUG 5142 static u64 cpu_resched_latency(struct rq *rq) 5143 { 5144 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5145 u64 resched_latency, now = rq_clock(rq); 5146 static bool warned_once; 5147 5148 if (sysctl_resched_latency_warn_once && warned_once) 5149 return 0; 5150 5151 if (!need_resched() || !latency_warn_ms) 5152 return 0; 5153 5154 if (system_state == SYSTEM_BOOTING) 5155 return 0; 5156 5157 if (!rq->last_seen_need_resched_ns) { 5158 rq->last_seen_need_resched_ns = now; 5159 rq->ticks_without_resched = 0; 5160 return 0; 5161 } 5162 5163 rq->ticks_without_resched++; 5164 resched_latency = now - rq->last_seen_need_resched_ns; 5165 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5166 return 0; 5167 5168 warned_once = true; 5169 5170 return resched_latency; 5171 } 5172 5173 static int __init setup_resched_latency_warn_ms(char *str) 5174 { 5175 long val; 5176 5177 if ((kstrtol(str, 0, &val))) { 5178 pr_warn("Unable to set resched_latency_warn_ms\n"); 5179 return 1; 5180 } 5181 5182 sysctl_resched_latency_warn_ms = val; 5183 return 1; 5184 } 5185 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5186 #else 5187 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5188 #endif /* CONFIG_SCHED_DEBUG */ 5189 5190 /* 5191 * This function gets called by the timer code, with HZ frequency. 5192 * We call it with interrupts disabled. 5193 */ 5194 void scheduler_tick(void) 5195 { 5196 int cpu = smp_processor_id(); 5197 struct rq *rq = cpu_rq(cpu); 5198 struct task_struct *curr = rq->curr; 5199 struct rq_flags rf; 5200 unsigned long thermal_pressure; 5201 u64 resched_latency; 5202 5203 arch_scale_freq_tick(); 5204 sched_clock_tick(); 5205 5206 rq_lock(rq, &rf); 5207 5208 update_rq_clock(rq); 5209 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5210 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5211 curr->sched_class->task_tick(rq, curr, 0); 5212 if (sched_feat(LATENCY_WARN)) 5213 resched_latency = cpu_resched_latency(rq); 5214 calc_global_load_tick(rq); 5215 5216 rq_unlock(rq, &rf); 5217 5218 if (sched_feat(LATENCY_WARN) && resched_latency) 5219 resched_latency_warn(cpu, resched_latency); 5220 5221 perf_event_task_tick(); 5222 5223 #ifdef CONFIG_SMP 5224 rq->idle_balance = idle_cpu(cpu); 5225 trigger_load_balance(rq); 5226 #endif 5227 } 5228 5229 #ifdef CONFIG_NO_HZ_FULL 5230 5231 struct tick_work { 5232 int cpu; 5233 atomic_t state; 5234 struct delayed_work work; 5235 }; 5236 /* Values for ->state, see diagram below. */ 5237 #define TICK_SCHED_REMOTE_OFFLINE 0 5238 #define TICK_SCHED_REMOTE_OFFLINING 1 5239 #define TICK_SCHED_REMOTE_RUNNING 2 5240 5241 /* 5242 * State diagram for ->state: 5243 * 5244 * 5245 * TICK_SCHED_REMOTE_OFFLINE 5246 * | ^ 5247 * | | 5248 * | | sched_tick_remote() 5249 * | | 5250 * | | 5251 * +--TICK_SCHED_REMOTE_OFFLINING 5252 * | ^ 5253 * | | 5254 * sched_tick_start() | | sched_tick_stop() 5255 * | | 5256 * V | 5257 * TICK_SCHED_REMOTE_RUNNING 5258 * 5259 * 5260 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5261 * and sched_tick_start() are happy to leave the state in RUNNING. 5262 */ 5263 5264 static struct tick_work __percpu *tick_work_cpu; 5265 5266 static void sched_tick_remote(struct work_struct *work) 5267 { 5268 struct delayed_work *dwork = to_delayed_work(work); 5269 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5270 int cpu = twork->cpu; 5271 struct rq *rq = cpu_rq(cpu); 5272 struct task_struct *curr; 5273 struct rq_flags rf; 5274 u64 delta; 5275 int os; 5276 5277 /* 5278 * Handle the tick only if it appears the remote CPU is running in full 5279 * dynticks mode. The check is racy by nature, but missing a tick or 5280 * having one too much is no big deal because the scheduler tick updates 5281 * statistics and checks timeslices in a time-independent way, regardless 5282 * of when exactly it is running. 5283 */ 5284 if (!tick_nohz_tick_stopped_cpu(cpu)) 5285 goto out_requeue; 5286 5287 rq_lock_irq(rq, &rf); 5288 curr = rq->curr; 5289 if (cpu_is_offline(cpu)) 5290 goto out_unlock; 5291 5292 update_rq_clock(rq); 5293 5294 if (!is_idle_task(curr)) { 5295 /* 5296 * Make sure the next tick runs within a reasonable 5297 * amount of time. 5298 */ 5299 delta = rq_clock_task(rq) - curr->se.exec_start; 5300 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5301 } 5302 curr->sched_class->task_tick(rq, curr, 0); 5303 5304 calc_load_nohz_remote(rq); 5305 out_unlock: 5306 rq_unlock_irq(rq, &rf); 5307 out_requeue: 5308 5309 /* 5310 * Run the remote tick once per second (1Hz). This arbitrary 5311 * frequency is large enough to avoid overload but short enough 5312 * to keep scheduler internal stats reasonably up to date. But 5313 * first update state to reflect hotplug activity if required. 5314 */ 5315 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5316 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5317 if (os == TICK_SCHED_REMOTE_RUNNING) 5318 queue_delayed_work(system_unbound_wq, dwork, HZ); 5319 } 5320 5321 static void sched_tick_start(int cpu) 5322 { 5323 int os; 5324 struct tick_work *twork; 5325 5326 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5327 return; 5328 5329 WARN_ON_ONCE(!tick_work_cpu); 5330 5331 twork = per_cpu_ptr(tick_work_cpu, cpu); 5332 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5333 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5334 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5335 twork->cpu = cpu; 5336 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5337 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5338 } 5339 } 5340 5341 #ifdef CONFIG_HOTPLUG_CPU 5342 static void sched_tick_stop(int cpu) 5343 { 5344 struct tick_work *twork; 5345 int os; 5346 5347 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5348 return; 5349 5350 WARN_ON_ONCE(!tick_work_cpu); 5351 5352 twork = per_cpu_ptr(tick_work_cpu, cpu); 5353 /* There cannot be competing actions, but don't rely on stop-machine. */ 5354 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5355 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5356 /* Don't cancel, as this would mess up the state machine. */ 5357 } 5358 #endif /* CONFIG_HOTPLUG_CPU */ 5359 5360 int __init sched_tick_offload_init(void) 5361 { 5362 tick_work_cpu = alloc_percpu(struct tick_work); 5363 BUG_ON(!tick_work_cpu); 5364 return 0; 5365 } 5366 5367 #else /* !CONFIG_NO_HZ_FULL */ 5368 static inline void sched_tick_start(int cpu) { } 5369 static inline void sched_tick_stop(int cpu) { } 5370 #endif 5371 5372 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5373 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5374 /* 5375 * If the value passed in is equal to the current preempt count 5376 * then we just disabled preemption. Start timing the latency. 5377 */ 5378 static inline void preempt_latency_start(int val) 5379 { 5380 if (preempt_count() == val) { 5381 unsigned long ip = get_lock_parent_ip(); 5382 #ifdef CONFIG_DEBUG_PREEMPT 5383 current->preempt_disable_ip = ip; 5384 #endif 5385 trace_preempt_off(CALLER_ADDR0, ip); 5386 } 5387 } 5388 5389 void preempt_count_add(int val) 5390 { 5391 #ifdef CONFIG_DEBUG_PREEMPT 5392 /* 5393 * Underflow? 5394 */ 5395 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5396 return; 5397 #endif 5398 __preempt_count_add(val); 5399 #ifdef CONFIG_DEBUG_PREEMPT 5400 /* 5401 * Spinlock count overflowing soon? 5402 */ 5403 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5404 PREEMPT_MASK - 10); 5405 #endif 5406 preempt_latency_start(val); 5407 } 5408 EXPORT_SYMBOL(preempt_count_add); 5409 NOKPROBE_SYMBOL(preempt_count_add); 5410 5411 /* 5412 * If the value passed in equals to the current preempt count 5413 * then we just enabled preemption. Stop timing the latency. 5414 */ 5415 static inline void preempt_latency_stop(int val) 5416 { 5417 if (preempt_count() == val) 5418 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5419 } 5420 5421 void preempt_count_sub(int val) 5422 { 5423 #ifdef CONFIG_DEBUG_PREEMPT 5424 /* 5425 * Underflow? 5426 */ 5427 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5428 return; 5429 /* 5430 * Is the spinlock portion underflowing? 5431 */ 5432 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5433 !(preempt_count() & PREEMPT_MASK))) 5434 return; 5435 #endif 5436 5437 preempt_latency_stop(val); 5438 __preempt_count_sub(val); 5439 } 5440 EXPORT_SYMBOL(preempt_count_sub); 5441 NOKPROBE_SYMBOL(preempt_count_sub); 5442 5443 #else 5444 static inline void preempt_latency_start(int val) { } 5445 static inline void preempt_latency_stop(int val) { } 5446 #endif 5447 5448 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5449 { 5450 #ifdef CONFIG_DEBUG_PREEMPT 5451 return p->preempt_disable_ip; 5452 #else 5453 return 0; 5454 #endif 5455 } 5456 5457 /* 5458 * Print scheduling while atomic bug: 5459 */ 5460 static noinline void __schedule_bug(struct task_struct *prev) 5461 { 5462 /* Save this before calling printk(), since that will clobber it */ 5463 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5464 5465 if (oops_in_progress) 5466 return; 5467 5468 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5469 prev->comm, prev->pid, preempt_count()); 5470 5471 debug_show_held_locks(prev); 5472 print_modules(); 5473 if (irqs_disabled()) 5474 print_irqtrace_events(prev); 5475 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5476 && in_atomic_preempt_off()) { 5477 pr_err("Preemption disabled at:"); 5478 print_ip_sym(KERN_ERR, preempt_disable_ip); 5479 } 5480 if (panic_on_warn) 5481 panic("scheduling while atomic\n"); 5482 5483 dump_stack(); 5484 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5485 } 5486 5487 /* 5488 * Various schedule()-time debugging checks and statistics: 5489 */ 5490 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5491 { 5492 #ifdef CONFIG_SCHED_STACK_END_CHECK 5493 if (task_stack_end_corrupted(prev)) 5494 panic("corrupted stack end detected inside scheduler\n"); 5495 5496 if (task_scs_end_corrupted(prev)) 5497 panic("corrupted shadow stack detected inside scheduler\n"); 5498 #endif 5499 5500 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5501 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5502 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5503 prev->comm, prev->pid, prev->non_block_count); 5504 dump_stack(); 5505 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5506 } 5507 #endif 5508 5509 if (unlikely(in_atomic_preempt_off())) { 5510 __schedule_bug(prev); 5511 preempt_count_set(PREEMPT_DISABLED); 5512 } 5513 rcu_sleep_check(); 5514 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5515 5516 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5517 5518 schedstat_inc(this_rq()->sched_count); 5519 } 5520 5521 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5522 struct rq_flags *rf) 5523 { 5524 #ifdef CONFIG_SMP 5525 const struct sched_class *class; 5526 /* 5527 * We must do the balancing pass before put_prev_task(), such 5528 * that when we release the rq->lock the task is in the same 5529 * state as before we took rq->lock. 5530 * 5531 * We can terminate the balance pass as soon as we know there is 5532 * a runnable task of @class priority or higher. 5533 */ 5534 for_class_range(class, prev->sched_class, &idle_sched_class) { 5535 if (class->balance(rq, prev, rf)) 5536 break; 5537 } 5538 #endif 5539 5540 put_prev_task(rq, prev); 5541 } 5542 5543 /* 5544 * Pick up the highest-prio task: 5545 */ 5546 static inline struct task_struct * 5547 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5548 { 5549 const struct sched_class *class; 5550 struct task_struct *p; 5551 5552 /* 5553 * Optimization: we know that if all tasks are in the fair class we can 5554 * call that function directly, but only if the @prev task wasn't of a 5555 * higher scheduling class, because otherwise those lose the 5556 * opportunity to pull in more work from other CPUs. 5557 */ 5558 if (likely(prev->sched_class <= &fair_sched_class && 5559 rq->nr_running == rq->cfs.h_nr_running)) { 5560 5561 p = pick_next_task_fair(rq, prev, rf); 5562 if (unlikely(p == RETRY_TASK)) 5563 goto restart; 5564 5565 /* Assume the next prioritized class is idle_sched_class */ 5566 if (!p) { 5567 put_prev_task(rq, prev); 5568 p = pick_next_task_idle(rq); 5569 } 5570 5571 return p; 5572 } 5573 5574 restart: 5575 put_prev_task_balance(rq, prev, rf); 5576 5577 for_each_class(class) { 5578 p = class->pick_next_task(rq); 5579 if (p) 5580 return p; 5581 } 5582 5583 /* The idle class should always have a runnable task: */ 5584 BUG(); 5585 } 5586 5587 #ifdef CONFIG_SCHED_CORE 5588 static inline bool is_task_rq_idle(struct task_struct *t) 5589 { 5590 return (task_rq(t)->idle == t); 5591 } 5592 5593 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5594 { 5595 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5596 } 5597 5598 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5599 { 5600 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5601 return true; 5602 5603 return a->core_cookie == b->core_cookie; 5604 } 5605 5606 // XXX fairness/fwd progress conditions 5607 /* 5608 * Returns 5609 * - NULL if there is no runnable task for this class. 5610 * - the highest priority task for this runqueue if it matches 5611 * rq->core->core_cookie or its priority is greater than max. 5612 * - Else returns idle_task. 5613 */ 5614 static struct task_struct * 5615 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi) 5616 { 5617 struct task_struct *class_pick, *cookie_pick; 5618 unsigned long cookie = rq->core->core_cookie; 5619 5620 class_pick = class->pick_task(rq); 5621 if (!class_pick) 5622 return NULL; 5623 5624 if (!cookie) { 5625 /* 5626 * If class_pick is tagged, return it only if it has 5627 * higher priority than max. 5628 */ 5629 if (max && class_pick->core_cookie && 5630 prio_less(class_pick, max, in_fi)) 5631 return idle_sched_class.pick_task(rq); 5632 5633 return class_pick; 5634 } 5635 5636 /* 5637 * If class_pick is idle or matches cookie, return early. 5638 */ 5639 if (cookie_equals(class_pick, cookie)) 5640 return class_pick; 5641 5642 cookie_pick = sched_core_find(rq, cookie); 5643 5644 /* 5645 * If class > max && class > cookie, it is the highest priority task on 5646 * the core (so far) and it must be selected, otherwise we must go with 5647 * the cookie pick in order to satisfy the constraint. 5648 */ 5649 if (prio_less(cookie_pick, class_pick, in_fi) && 5650 (!max || prio_less(max, class_pick, in_fi))) 5651 return class_pick; 5652 5653 return cookie_pick; 5654 } 5655 5656 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5657 5658 static struct task_struct * 5659 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5660 { 5661 struct task_struct *next, *max = NULL; 5662 const struct sched_class *class; 5663 const struct cpumask *smt_mask; 5664 bool fi_before = false; 5665 int i, j, cpu, occ = 0; 5666 bool need_sync; 5667 5668 if (!sched_core_enabled(rq)) 5669 return __pick_next_task(rq, prev, rf); 5670 5671 cpu = cpu_of(rq); 5672 5673 /* Stopper task is switching into idle, no need core-wide selection. */ 5674 if (cpu_is_offline(cpu)) { 5675 /* 5676 * Reset core_pick so that we don't enter the fastpath when 5677 * coming online. core_pick would already be migrated to 5678 * another cpu during offline. 5679 */ 5680 rq->core_pick = NULL; 5681 return __pick_next_task(rq, prev, rf); 5682 } 5683 5684 /* 5685 * If there were no {en,de}queues since we picked (IOW, the task 5686 * pointers are all still valid), and we haven't scheduled the last 5687 * pick yet, do so now. 5688 * 5689 * rq->core_pick can be NULL if no selection was made for a CPU because 5690 * it was either offline or went offline during a sibling's core-wide 5691 * selection. In this case, do a core-wide selection. 5692 */ 5693 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5694 rq->core->core_pick_seq != rq->core_sched_seq && 5695 rq->core_pick) { 5696 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5697 5698 next = rq->core_pick; 5699 if (next != prev) { 5700 put_prev_task(rq, prev); 5701 set_next_task(rq, next); 5702 } 5703 5704 rq->core_pick = NULL; 5705 return next; 5706 } 5707 5708 put_prev_task_balance(rq, prev, rf); 5709 5710 smt_mask = cpu_smt_mask(cpu); 5711 need_sync = !!rq->core->core_cookie; 5712 5713 /* reset state */ 5714 rq->core->core_cookie = 0UL; 5715 if (rq->core->core_forceidle) { 5716 need_sync = true; 5717 fi_before = true; 5718 rq->core->core_forceidle = false; 5719 } 5720 5721 /* 5722 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5723 * 5724 * @task_seq guards the task state ({en,de}queues) 5725 * @pick_seq is the @task_seq we did a selection on 5726 * @sched_seq is the @pick_seq we scheduled 5727 * 5728 * However, preemptions can cause multiple picks on the same task set. 5729 * 'Fix' this by also increasing @task_seq for every pick. 5730 */ 5731 rq->core->core_task_seq++; 5732 5733 /* 5734 * Optimize for common case where this CPU has no cookies 5735 * and there are no cookied tasks running on siblings. 5736 */ 5737 if (!need_sync) { 5738 for_each_class(class) { 5739 next = class->pick_task(rq); 5740 if (next) 5741 break; 5742 } 5743 5744 if (!next->core_cookie) { 5745 rq->core_pick = NULL; 5746 /* 5747 * For robustness, update the min_vruntime_fi for 5748 * unconstrained picks as well. 5749 */ 5750 WARN_ON_ONCE(fi_before); 5751 task_vruntime_update(rq, next, false); 5752 goto done; 5753 } 5754 } 5755 5756 for_each_cpu(i, smt_mask) { 5757 struct rq *rq_i = cpu_rq(i); 5758 5759 rq_i->core_pick = NULL; 5760 5761 if (i != cpu) 5762 update_rq_clock(rq_i); 5763 } 5764 5765 /* 5766 * Try and select tasks for each sibling in descending sched_class 5767 * order. 5768 */ 5769 for_each_class(class) { 5770 again: 5771 for_each_cpu_wrap(i, smt_mask, cpu) { 5772 struct rq *rq_i = cpu_rq(i); 5773 struct task_struct *p; 5774 5775 if (rq_i->core_pick) 5776 continue; 5777 5778 /* 5779 * If this sibling doesn't yet have a suitable task to 5780 * run; ask for the most eligible task, given the 5781 * highest priority task already selected for this 5782 * core. 5783 */ 5784 p = pick_task(rq_i, class, max, fi_before); 5785 if (!p) 5786 continue; 5787 5788 if (!is_task_rq_idle(p)) 5789 occ++; 5790 5791 rq_i->core_pick = p; 5792 if (rq_i->idle == p && rq_i->nr_running) { 5793 rq->core->core_forceidle = true; 5794 if (!fi_before) 5795 rq->core->core_forceidle_seq++; 5796 } 5797 5798 /* 5799 * If this new candidate is of higher priority than the 5800 * previous; and they're incompatible; we need to wipe 5801 * the slate and start over. pick_task makes sure that 5802 * p's priority is more than max if it doesn't match 5803 * max's cookie. 5804 * 5805 * NOTE: this is a linear max-filter and is thus bounded 5806 * in execution time. 5807 */ 5808 if (!max || !cookie_match(max, p)) { 5809 struct task_struct *old_max = max; 5810 5811 rq->core->core_cookie = p->core_cookie; 5812 max = p; 5813 5814 if (old_max) { 5815 rq->core->core_forceidle = false; 5816 for_each_cpu(j, smt_mask) { 5817 if (j == i) 5818 continue; 5819 5820 cpu_rq(j)->core_pick = NULL; 5821 } 5822 occ = 1; 5823 goto again; 5824 } 5825 } 5826 } 5827 } 5828 5829 rq->core->core_pick_seq = rq->core->core_task_seq; 5830 next = rq->core_pick; 5831 rq->core_sched_seq = rq->core->core_pick_seq; 5832 5833 /* Something should have been selected for current CPU */ 5834 WARN_ON_ONCE(!next); 5835 5836 /* 5837 * Reschedule siblings 5838 * 5839 * NOTE: L1TF -- at this point we're no longer running the old task and 5840 * sending an IPI (below) ensures the sibling will no longer be running 5841 * their task. This ensures there is no inter-sibling overlap between 5842 * non-matching user state. 5843 */ 5844 for_each_cpu(i, smt_mask) { 5845 struct rq *rq_i = cpu_rq(i); 5846 5847 /* 5848 * An online sibling might have gone offline before a task 5849 * could be picked for it, or it might be offline but later 5850 * happen to come online, but its too late and nothing was 5851 * picked for it. That's Ok - it will pick tasks for itself, 5852 * so ignore it. 5853 */ 5854 if (!rq_i->core_pick) 5855 continue; 5856 5857 /* 5858 * Update for new !FI->FI transitions, or if continuing to be in !FI: 5859 * fi_before fi update? 5860 * 0 0 1 5861 * 0 1 1 5862 * 1 0 1 5863 * 1 1 0 5864 */ 5865 if (!(fi_before && rq->core->core_forceidle)) 5866 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle); 5867 5868 rq_i->core_pick->core_occupation = occ; 5869 5870 if (i == cpu) { 5871 rq_i->core_pick = NULL; 5872 continue; 5873 } 5874 5875 /* Did we break L1TF mitigation requirements? */ 5876 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 5877 5878 if (rq_i->curr == rq_i->core_pick) { 5879 rq_i->core_pick = NULL; 5880 continue; 5881 } 5882 5883 resched_curr(rq_i); 5884 } 5885 5886 done: 5887 set_next_task(rq, next); 5888 return next; 5889 } 5890 5891 static bool try_steal_cookie(int this, int that) 5892 { 5893 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 5894 struct task_struct *p; 5895 unsigned long cookie; 5896 bool success = false; 5897 5898 local_irq_disable(); 5899 double_rq_lock(dst, src); 5900 5901 cookie = dst->core->core_cookie; 5902 if (!cookie) 5903 goto unlock; 5904 5905 if (dst->curr != dst->idle) 5906 goto unlock; 5907 5908 p = sched_core_find(src, cookie); 5909 if (p == src->idle) 5910 goto unlock; 5911 5912 do { 5913 if (p == src->core_pick || p == src->curr) 5914 goto next; 5915 5916 if (!cpumask_test_cpu(this, &p->cpus_mask)) 5917 goto next; 5918 5919 if (p->core_occupation > dst->idle->core_occupation) 5920 goto next; 5921 5922 deactivate_task(src, p, 0); 5923 set_task_cpu(p, this); 5924 activate_task(dst, p, 0); 5925 5926 resched_curr(dst); 5927 5928 success = true; 5929 break; 5930 5931 next: 5932 p = sched_core_next(p, cookie); 5933 } while (p); 5934 5935 unlock: 5936 double_rq_unlock(dst, src); 5937 local_irq_enable(); 5938 5939 return success; 5940 } 5941 5942 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 5943 { 5944 int i; 5945 5946 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 5947 if (i == cpu) 5948 continue; 5949 5950 if (need_resched()) 5951 break; 5952 5953 if (try_steal_cookie(cpu, i)) 5954 return true; 5955 } 5956 5957 return false; 5958 } 5959 5960 static void sched_core_balance(struct rq *rq) 5961 { 5962 struct sched_domain *sd; 5963 int cpu = cpu_of(rq); 5964 5965 preempt_disable(); 5966 rcu_read_lock(); 5967 raw_spin_rq_unlock_irq(rq); 5968 for_each_domain(cpu, sd) { 5969 if (need_resched()) 5970 break; 5971 5972 if (steal_cookie_task(cpu, sd)) 5973 break; 5974 } 5975 raw_spin_rq_lock_irq(rq); 5976 rcu_read_unlock(); 5977 preempt_enable(); 5978 } 5979 5980 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 5981 5982 void queue_core_balance(struct rq *rq) 5983 { 5984 if (!sched_core_enabled(rq)) 5985 return; 5986 5987 if (!rq->core->core_cookie) 5988 return; 5989 5990 if (!rq->nr_running) /* not forced idle */ 5991 return; 5992 5993 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 5994 } 5995 5996 static void sched_core_cpu_starting(unsigned int cpu) 5997 { 5998 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 5999 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6000 unsigned long flags; 6001 int t; 6002 6003 sched_core_lock(cpu, &flags); 6004 6005 WARN_ON_ONCE(rq->core != rq); 6006 6007 /* if we're the first, we'll be our own leader */ 6008 if (cpumask_weight(smt_mask) == 1) 6009 goto unlock; 6010 6011 /* find the leader */ 6012 for_each_cpu(t, smt_mask) { 6013 if (t == cpu) 6014 continue; 6015 rq = cpu_rq(t); 6016 if (rq->core == rq) { 6017 core_rq = rq; 6018 break; 6019 } 6020 } 6021 6022 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6023 goto unlock; 6024 6025 /* install and validate core_rq */ 6026 for_each_cpu(t, smt_mask) { 6027 rq = cpu_rq(t); 6028 6029 if (t == cpu) 6030 rq->core = core_rq; 6031 6032 WARN_ON_ONCE(rq->core != core_rq); 6033 } 6034 6035 unlock: 6036 sched_core_unlock(cpu, &flags); 6037 } 6038 6039 static void sched_core_cpu_deactivate(unsigned int cpu) 6040 { 6041 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6042 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6043 unsigned long flags; 6044 int t; 6045 6046 sched_core_lock(cpu, &flags); 6047 6048 /* if we're the last man standing, nothing to do */ 6049 if (cpumask_weight(smt_mask) == 1) { 6050 WARN_ON_ONCE(rq->core != rq); 6051 goto unlock; 6052 } 6053 6054 /* if we're not the leader, nothing to do */ 6055 if (rq->core != rq) 6056 goto unlock; 6057 6058 /* find a new leader */ 6059 for_each_cpu(t, smt_mask) { 6060 if (t == cpu) 6061 continue; 6062 core_rq = cpu_rq(t); 6063 break; 6064 } 6065 6066 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6067 goto unlock; 6068 6069 /* copy the shared state to the new leader */ 6070 core_rq->core_task_seq = rq->core_task_seq; 6071 core_rq->core_pick_seq = rq->core_pick_seq; 6072 core_rq->core_cookie = rq->core_cookie; 6073 core_rq->core_forceidle = rq->core_forceidle; 6074 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6075 6076 /* install new leader */ 6077 for_each_cpu(t, smt_mask) { 6078 rq = cpu_rq(t); 6079 rq->core = core_rq; 6080 } 6081 6082 unlock: 6083 sched_core_unlock(cpu, &flags); 6084 } 6085 6086 static inline void sched_core_cpu_dying(unsigned int cpu) 6087 { 6088 struct rq *rq = cpu_rq(cpu); 6089 6090 if (rq->core != rq) 6091 rq->core = rq; 6092 } 6093 6094 #else /* !CONFIG_SCHED_CORE */ 6095 6096 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6097 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6098 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6099 6100 static struct task_struct * 6101 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6102 { 6103 return __pick_next_task(rq, prev, rf); 6104 } 6105 6106 #endif /* CONFIG_SCHED_CORE */ 6107 6108 /* 6109 * Constants for the sched_mode argument of __schedule(). 6110 * 6111 * The mode argument allows RT enabled kernels to differentiate a 6112 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6113 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6114 * optimize the AND operation out and just check for zero. 6115 */ 6116 #define SM_NONE 0x0 6117 #define SM_PREEMPT 0x1 6118 #define SM_RTLOCK_WAIT 0x2 6119 6120 #ifndef CONFIG_PREEMPT_RT 6121 # define SM_MASK_PREEMPT (~0U) 6122 #else 6123 # define SM_MASK_PREEMPT SM_PREEMPT 6124 #endif 6125 6126 /* 6127 * __schedule() is the main scheduler function. 6128 * 6129 * The main means of driving the scheduler and thus entering this function are: 6130 * 6131 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6132 * 6133 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6134 * paths. For example, see arch/x86/entry_64.S. 6135 * 6136 * To drive preemption between tasks, the scheduler sets the flag in timer 6137 * interrupt handler scheduler_tick(). 6138 * 6139 * 3. Wakeups don't really cause entry into schedule(). They add a 6140 * task to the run-queue and that's it. 6141 * 6142 * Now, if the new task added to the run-queue preempts the current 6143 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6144 * called on the nearest possible occasion: 6145 * 6146 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6147 * 6148 * - in syscall or exception context, at the next outmost 6149 * preempt_enable(). (this might be as soon as the wake_up()'s 6150 * spin_unlock()!) 6151 * 6152 * - in IRQ context, return from interrupt-handler to 6153 * preemptible context 6154 * 6155 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6156 * then at the next: 6157 * 6158 * - cond_resched() call 6159 * - explicit schedule() call 6160 * - return from syscall or exception to user-space 6161 * - return from interrupt-handler to user-space 6162 * 6163 * WARNING: must be called with preemption disabled! 6164 */ 6165 static void __sched notrace __schedule(unsigned int sched_mode) 6166 { 6167 struct task_struct *prev, *next; 6168 unsigned long *switch_count; 6169 unsigned long prev_state; 6170 struct rq_flags rf; 6171 struct rq *rq; 6172 int cpu; 6173 6174 cpu = smp_processor_id(); 6175 rq = cpu_rq(cpu); 6176 prev = rq->curr; 6177 6178 schedule_debug(prev, !!sched_mode); 6179 6180 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6181 hrtick_clear(rq); 6182 6183 local_irq_disable(); 6184 rcu_note_context_switch(!!sched_mode); 6185 6186 /* 6187 * Make sure that signal_pending_state()->signal_pending() below 6188 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6189 * done by the caller to avoid the race with signal_wake_up(): 6190 * 6191 * __set_current_state(@state) signal_wake_up() 6192 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6193 * wake_up_state(p, state) 6194 * LOCK rq->lock LOCK p->pi_state 6195 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6196 * if (signal_pending_state()) if (p->state & @state) 6197 * 6198 * Also, the membarrier system call requires a full memory barrier 6199 * after coming from user-space, before storing to rq->curr. 6200 */ 6201 rq_lock(rq, &rf); 6202 smp_mb__after_spinlock(); 6203 6204 /* Promote REQ to ACT */ 6205 rq->clock_update_flags <<= 1; 6206 update_rq_clock(rq); 6207 6208 switch_count = &prev->nivcsw; 6209 6210 /* 6211 * We must load prev->state once (task_struct::state is volatile), such 6212 * that: 6213 * 6214 * - we form a control dependency vs deactivate_task() below. 6215 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 6216 */ 6217 prev_state = READ_ONCE(prev->__state); 6218 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6219 if (signal_pending_state(prev_state, prev)) { 6220 WRITE_ONCE(prev->__state, TASK_RUNNING); 6221 } else { 6222 prev->sched_contributes_to_load = 6223 (prev_state & TASK_UNINTERRUPTIBLE) && 6224 !(prev_state & TASK_NOLOAD) && 6225 !(prev->flags & PF_FROZEN); 6226 6227 if (prev->sched_contributes_to_load) 6228 rq->nr_uninterruptible++; 6229 6230 /* 6231 * __schedule() ttwu() 6232 * prev_state = prev->state; if (p->on_rq && ...) 6233 * if (prev_state) goto out; 6234 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6235 * p->state = TASK_WAKING 6236 * 6237 * Where __schedule() and ttwu() have matching control dependencies. 6238 * 6239 * After this, schedule() must not care about p->state any more. 6240 */ 6241 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6242 6243 if (prev->in_iowait) { 6244 atomic_inc(&rq->nr_iowait); 6245 delayacct_blkio_start(); 6246 } 6247 } 6248 switch_count = &prev->nvcsw; 6249 } 6250 6251 next = pick_next_task(rq, prev, &rf); 6252 clear_tsk_need_resched(prev); 6253 clear_preempt_need_resched(); 6254 #ifdef CONFIG_SCHED_DEBUG 6255 rq->last_seen_need_resched_ns = 0; 6256 #endif 6257 6258 if (likely(prev != next)) { 6259 rq->nr_switches++; 6260 /* 6261 * RCU users of rcu_dereference(rq->curr) may not see 6262 * changes to task_struct made by pick_next_task(). 6263 */ 6264 RCU_INIT_POINTER(rq->curr, next); 6265 /* 6266 * The membarrier system call requires each architecture 6267 * to have a full memory barrier after updating 6268 * rq->curr, before returning to user-space. 6269 * 6270 * Here are the schemes providing that barrier on the 6271 * various architectures: 6272 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6273 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6274 * - finish_lock_switch() for weakly-ordered 6275 * architectures where spin_unlock is a full barrier, 6276 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6277 * is a RELEASE barrier), 6278 */ 6279 ++*switch_count; 6280 6281 migrate_disable_switch(rq, prev); 6282 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6283 6284 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next); 6285 6286 /* Also unlocks the rq: */ 6287 rq = context_switch(rq, prev, next, &rf); 6288 } else { 6289 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6290 6291 rq_unpin_lock(rq, &rf); 6292 __balance_callbacks(rq); 6293 raw_spin_rq_unlock_irq(rq); 6294 } 6295 } 6296 6297 void __noreturn do_task_dead(void) 6298 { 6299 /* Causes final put_task_struct in finish_task_switch(): */ 6300 set_special_state(TASK_DEAD); 6301 6302 /* Tell freezer to ignore us: */ 6303 current->flags |= PF_NOFREEZE; 6304 6305 __schedule(SM_NONE); 6306 BUG(); 6307 6308 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6309 for (;;) 6310 cpu_relax(); 6311 } 6312 6313 static inline void sched_submit_work(struct task_struct *tsk) 6314 { 6315 unsigned int task_flags; 6316 6317 if (task_is_running(tsk)) 6318 return; 6319 6320 task_flags = tsk->flags; 6321 /* 6322 * If a worker went to sleep, notify and ask workqueue whether 6323 * it wants to wake up a task to maintain concurrency. 6324 * As this function is called inside the schedule() context, 6325 * we disable preemption to avoid it calling schedule() again 6326 * in the possible wakeup of a kworker and because wq_worker_sleeping() 6327 * requires it. 6328 */ 6329 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6330 preempt_disable(); 6331 if (task_flags & PF_WQ_WORKER) 6332 wq_worker_sleeping(tsk); 6333 else 6334 io_wq_worker_sleeping(tsk); 6335 preempt_enable_no_resched(); 6336 } 6337 6338 if (tsk_is_pi_blocked(tsk)) 6339 return; 6340 6341 /* 6342 * If we are going to sleep and we have plugged IO queued, 6343 * make sure to submit it to avoid deadlocks. 6344 */ 6345 if (blk_needs_flush_plug(tsk)) 6346 blk_schedule_flush_plug(tsk); 6347 } 6348 6349 static void sched_update_worker(struct task_struct *tsk) 6350 { 6351 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6352 if (tsk->flags & PF_WQ_WORKER) 6353 wq_worker_running(tsk); 6354 else 6355 io_wq_worker_running(tsk); 6356 } 6357 } 6358 6359 asmlinkage __visible void __sched schedule(void) 6360 { 6361 struct task_struct *tsk = current; 6362 6363 sched_submit_work(tsk); 6364 do { 6365 preempt_disable(); 6366 __schedule(SM_NONE); 6367 sched_preempt_enable_no_resched(); 6368 } while (need_resched()); 6369 sched_update_worker(tsk); 6370 } 6371 EXPORT_SYMBOL(schedule); 6372 6373 /* 6374 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6375 * state (have scheduled out non-voluntarily) by making sure that all 6376 * tasks have either left the run queue or have gone into user space. 6377 * As idle tasks do not do either, they must not ever be preempted 6378 * (schedule out non-voluntarily). 6379 * 6380 * schedule_idle() is similar to schedule_preempt_disable() except that it 6381 * never enables preemption because it does not call sched_submit_work(). 6382 */ 6383 void __sched schedule_idle(void) 6384 { 6385 /* 6386 * As this skips calling sched_submit_work(), which the idle task does 6387 * regardless because that function is a nop when the task is in a 6388 * TASK_RUNNING state, make sure this isn't used someplace that the 6389 * current task can be in any other state. Note, idle is always in the 6390 * TASK_RUNNING state. 6391 */ 6392 WARN_ON_ONCE(current->__state); 6393 do { 6394 __schedule(SM_NONE); 6395 } while (need_resched()); 6396 } 6397 6398 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 6399 asmlinkage __visible void __sched schedule_user(void) 6400 { 6401 /* 6402 * If we come here after a random call to set_need_resched(), 6403 * or we have been woken up remotely but the IPI has not yet arrived, 6404 * we haven't yet exited the RCU idle mode. Do it here manually until 6405 * we find a better solution. 6406 * 6407 * NB: There are buggy callers of this function. Ideally we 6408 * should warn if prev_state != CONTEXT_USER, but that will trigger 6409 * too frequently to make sense yet. 6410 */ 6411 enum ctx_state prev_state = exception_enter(); 6412 schedule(); 6413 exception_exit(prev_state); 6414 } 6415 #endif 6416 6417 /** 6418 * schedule_preempt_disabled - called with preemption disabled 6419 * 6420 * Returns with preemption disabled. Note: preempt_count must be 1 6421 */ 6422 void __sched schedule_preempt_disabled(void) 6423 { 6424 sched_preempt_enable_no_resched(); 6425 schedule(); 6426 preempt_disable(); 6427 } 6428 6429 #ifdef CONFIG_PREEMPT_RT 6430 void __sched notrace schedule_rtlock(void) 6431 { 6432 do { 6433 preempt_disable(); 6434 __schedule(SM_RTLOCK_WAIT); 6435 sched_preempt_enable_no_resched(); 6436 } while (need_resched()); 6437 } 6438 NOKPROBE_SYMBOL(schedule_rtlock); 6439 #endif 6440 6441 static void __sched notrace preempt_schedule_common(void) 6442 { 6443 do { 6444 /* 6445 * Because the function tracer can trace preempt_count_sub() 6446 * and it also uses preempt_enable/disable_notrace(), if 6447 * NEED_RESCHED is set, the preempt_enable_notrace() called 6448 * by the function tracer will call this function again and 6449 * cause infinite recursion. 6450 * 6451 * Preemption must be disabled here before the function 6452 * tracer can trace. Break up preempt_disable() into two 6453 * calls. One to disable preemption without fear of being 6454 * traced. The other to still record the preemption latency, 6455 * which can also be traced by the function tracer. 6456 */ 6457 preempt_disable_notrace(); 6458 preempt_latency_start(1); 6459 __schedule(SM_PREEMPT); 6460 preempt_latency_stop(1); 6461 preempt_enable_no_resched_notrace(); 6462 6463 /* 6464 * Check again in case we missed a preemption opportunity 6465 * between schedule and now. 6466 */ 6467 } while (need_resched()); 6468 } 6469 6470 #ifdef CONFIG_PREEMPTION 6471 /* 6472 * This is the entry point to schedule() from in-kernel preemption 6473 * off of preempt_enable. 6474 */ 6475 asmlinkage __visible void __sched notrace preempt_schedule(void) 6476 { 6477 /* 6478 * If there is a non-zero preempt_count or interrupts are disabled, 6479 * we do not want to preempt the current task. Just return.. 6480 */ 6481 if (likely(!preemptible())) 6482 return; 6483 6484 preempt_schedule_common(); 6485 } 6486 NOKPROBE_SYMBOL(preempt_schedule); 6487 EXPORT_SYMBOL(preempt_schedule); 6488 6489 #ifdef CONFIG_PREEMPT_DYNAMIC 6490 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 6491 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6492 #endif 6493 6494 6495 /** 6496 * preempt_schedule_notrace - preempt_schedule called by tracing 6497 * 6498 * The tracing infrastructure uses preempt_enable_notrace to prevent 6499 * recursion and tracing preempt enabling caused by the tracing 6500 * infrastructure itself. But as tracing can happen in areas coming 6501 * from userspace or just about to enter userspace, a preempt enable 6502 * can occur before user_exit() is called. This will cause the scheduler 6503 * to be called when the system is still in usermode. 6504 * 6505 * To prevent this, the preempt_enable_notrace will use this function 6506 * instead of preempt_schedule() to exit user context if needed before 6507 * calling the scheduler. 6508 */ 6509 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6510 { 6511 enum ctx_state prev_ctx; 6512 6513 if (likely(!preemptible())) 6514 return; 6515 6516 do { 6517 /* 6518 * Because the function tracer can trace preempt_count_sub() 6519 * and it also uses preempt_enable/disable_notrace(), if 6520 * NEED_RESCHED is set, the preempt_enable_notrace() called 6521 * by the function tracer will call this function again and 6522 * cause infinite recursion. 6523 * 6524 * Preemption must be disabled here before the function 6525 * tracer can trace. Break up preempt_disable() into two 6526 * calls. One to disable preemption without fear of being 6527 * traced. The other to still record the preemption latency, 6528 * which can also be traced by the function tracer. 6529 */ 6530 preempt_disable_notrace(); 6531 preempt_latency_start(1); 6532 /* 6533 * Needs preempt disabled in case user_exit() is traced 6534 * and the tracer calls preempt_enable_notrace() causing 6535 * an infinite recursion. 6536 */ 6537 prev_ctx = exception_enter(); 6538 __schedule(SM_PREEMPT); 6539 exception_exit(prev_ctx); 6540 6541 preempt_latency_stop(1); 6542 preempt_enable_no_resched_notrace(); 6543 } while (need_resched()); 6544 } 6545 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6546 6547 #ifdef CONFIG_PREEMPT_DYNAMIC 6548 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6549 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6550 #endif 6551 6552 #endif /* CONFIG_PREEMPTION */ 6553 6554 #ifdef CONFIG_PREEMPT_DYNAMIC 6555 6556 #include <linux/entry-common.h> 6557 6558 /* 6559 * SC:cond_resched 6560 * SC:might_resched 6561 * SC:preempt_schedule 6562 * SC:preempt_schedule_notrace 6563 * SC:irqentry_exit_cond_resched 6564 * 6565 * 6566 * NONE: 6567 * cond_resched <- __cond_resched 6568 * might_resched <- RET0 6569 * preempt_schedule <- NOP 6570 * preempt_schedule_notrace <- NOP 6571 * irqentry_exit_cond_resched <- NOP 6572 * 6573 * VOLUNTARY: 6574 * cond_resched <- __cond_resched 6575 * might_resched <- __cond_resched 6576 * preempt_schedule <- NOP 6577 * preempt_schedule_notrace <- NOP 6578 * irqentry_exit_cond_resched <- NOP 6579 * 6580 * FULL: 6581 * cond_resched <- RET0 6582 * might_resched <- RET0 6583 * preempt_schedule <- preempt_schedule 6584 * preempt_schedule_notrace <- preempt_schedule_notrace 6585 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 6586 */ 6587 6588 enum { 6589 preempt_dynamic_none = 0, 6590 preempt_dynamic_voluntary, 6591 preempt_dynamic_full, 6592 }; 6593 6594 int preempt_dynamic_mode = preempt_dynamic_full; 6595 6596 int sched_dynamic_mode(const char *str) 6597 { 6598 if (!strcmp(str, "none")) 6599 return preempt_dynamic_none; 6600 6601 if (!strcmp(str, "voluntary")) 6602 return preempt_dynamic_voluntary; 6603 6604 if (!strcmp(str, "full")) 6605 return preempt_dynamic_full; 6606 6607 return -EINVAL; 6608 } 6609 6610 void sched_dynamic_update(int mode) 6611 { 6612 /* 6613 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 6614 * the ZERO state, which is invalid. 6615 */ 6616 static_call_update(cond_resched, __cond_resched); 6617 static_call_update(might_resched, __cond_resched); 6618 static_call_update(preempt_schedule, __preempt_schedule_func); 6619 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6620 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6621 6622 switch (mode) { 6623 case preempt_dynamic_none: 6624 static_call_update(cond_resched, __cond_resched); 6625 static_call_update(might_resched, (void *)&__static_call_return0); 6626 static_call_update(preempt_schedule, NULL); 6627 static_call_update(preempt_schedule_notrace, NULL); 6628 static_call_update(irqentry_exit_cond_resched, NULL); 6629 pr_info("Dynamic Preempt: none\n"); 6630 break; 6631 6632 case preempt_dynamic_voluntary: 6633 static_call_update(cond_resched, __cond_resched); 6634 static_call_update(might_resched, __cond_resched); 6635 static_call_update(preempt_schedule, NULL); 6636 static_call_update(preempt_schedule_notrace, NULL); 6637 static_call_update(irqentry_exit_cond_resched, NULL); 6638 pr_info("Dynamic Preempt: voluntary\n"); 6639 break; 6640 6641 case preempt_dynamic_full: 6642 static_call_update(cond_resched, (void *)&__static_call_return0); 6643 static_call_update(might_resched, (void *)&__static_call_return0); 6644 static_call_update(preempt_schedule, __preempt_schedule_func); 6645 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6646 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6647 pr_info("Dynamic Preempt: full\n"); 6648 break; 6649 } 6650 6651 preempt_dynamic_mode = mode; 6652 } 6653 6654 static int __init setup_preempt_mode(char *str) 6655 { 6656 int mode = sched_dynamic_mode(str); 6657 if (mode < 0) { 6658 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 6659 return 1; 6660 } 6661 6662 sched_dynamic_update(mode); 6663 return 0; 6664 } 6665 __setup("preempt=", setup_preempt_mode); 6666 6667 #endif /* CONFIG_PREEMPT_DYNAMIC */ 6668 6669 /* 6670 * This is the entry point to schedule() from kernel preemption 6671 * off of irq context. 6672 * Note, that this is called and return with irqs disabled. This will 6673 * protect us against recursive calling from irq. 6674 */ 6675 asmlinkage __visible void __sched preempt_schedule_irq(void) 6676 { 6677 enum ctx_state prev_state; 6678 6679 /* Catch callers which need to be fixed */ 6680 BUG_ON(preempt_count() || !irqs_disabled()); 6681 6682 prev_state = exception_enter(); 6683 6684 do { 6685 preempt_disable(); 6686 local_irq_enable(); 6687 __schedule(SM_PREEMPT); 6688 local_irq_disable(); 6689 sched_preempt_enable_no_resched(); 6690 } while (need_resched()); 6691 6692 exception_exit(prev_state); 6693 } 6694 6695 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6696 void *key) 6697 { 6698 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6699 return try_to_wake_up(curr->private, mode, wake_flags); 6700 } 6701 EXPORT_SYMBOL(default_wake_function); 6702 6703 static void __setscheduler_prio(struct task_struct *p, int prio) 6704 { 6705 if (dl_prio(prio)) 6706 p->sched_class = &dl_sched_class; 6707 else if (rt_prio(prio)) 6708 p->sched_class = &rt_sched_class; 6709 else 6710 p->sched_class = &fair_sched_class; 6711 6712 p->prio = prio; 6713 } 6714 6715 #ifdef CONFIG_RT_MUTEXES 6716 6717 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6718 { 6719 if (pi_task) 6720 prio = min(prio, pi_task->prio); 6721 6722 return prio; 6723 } 6724 6725 static inline int rt_effective_prio(struct task_struct *p, int prio) 6726 { 6727 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6728 6729 return __rt_effective_prio(pi_task, prio); 6730 } 6731 6732 /* 6733 * rt_mutex_setprio - set the current priority of a task 6734 * @p: task to boost 6735 * @pi_task: donor task 6736 * 6737 * This function changes the 'effective' priority of a task. It does 6738 * not touch ->normal_prio like __setscheduler(). 6739 * 6740 * Used by the rt_mutex code to implement priority inheritance 6741 * logic. Call site only calls if the priority of the task changed. 6742 */ 6743 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6744 { 6745 int prio, oldprio, queued, running, queue_flag = 6746 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6747 const struct sched_class *prev_class; 6748 struct rq_flags rf; 6749 struct rq *rq; 6750 6751 /* XXX used to be waiter->prio, not waiter->task->prio */ 6752 prio = __rt_effective_prio(pi_task, p->normal_prio); 6753 6754 /* 6755 * If nothing changed; bail early. 6756 */ 6757 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6758 return; 6759 6760 rq = __task_rq_lock(p, &rf); 6761 update_rq_clock(rq); 6762 /* 6763 * Set under pi_lock && rq->lock, such that the value can be used under 6764 * either lock. 6765 * 6766 * Note that there is loads of tricky to make this pointer cache work 6767 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6768 * ensure a task is de-boosted (pi_task is set to NULL) before the 6769 * task is allowed to run again (and can exit). This ensures the pointer 6770 * points to a blocked task -- which guarantees the task is present. 6771 */ 6772 p->pi_top_task = pi_task; 6773 6774 /* 6775 * For FIFO/RR we only need to set prio, if that matches we're done. 6776 */ 6777 if (prio == p->prio && !dl_prio(prio)) 6778 goto out_unlock; 6779 6780 /* 6781 * Idle task boosting is a nono in general. There is one 6782 * exception, when PREEMPT_RT and NOHZ is active: 6783 * 6784 * The idle task calls get_next_timer_interrupt() and holds 6785 * the timer wheel base->lock on the CPU and another CPU wants 6786 * to access the timer (probably to cancel it). We can safely 6787 * ignore the boosting request, as the idle CPU runs this code 6788 * with interrupts disabled and will complete the lock 6789 * protected section without being interrupted. So there is no 6790 * real need to boost. 6791 */ 6792 if (unlikely(p == rq->idle)) { 6793 WARN_ON(p != rq->curr); 6794 WARN_ON(p->pi_blocked_on); 6795 goto out_unlock; 6796 } 6797 6798 trace_sched_pi_setprio(p, pi_task); 6799 oldprio = p->prio; 6800 6801 if (oldprio == prio) 6802 queue_flag &= ~DEQUEUE_MOVE; 6803 6804 prev_class = p->sched_class; 6805 queued = task_on_rq_queued(p); 6806 running = task_current(rq, p); 6807 if (queued) 6808 dequeue_task(rq, p, queue_flag); 6809 if (running) 6810 put_prev_task(rq, p); 6811 6812 /* 6813 * Boosting condition are: 6814 * 1. -rt task is running and holds mutex A 6815 * --> -dl task blocks on mutex A 6816 * 6817 * 2. -dl task is running and holds mutex A 6818 * --> -dl task blocks on mutex A and could preempt the 6819 * running task 6820 */ 6821 if (dl_prio(prio)) { 6822 if (!dl_prio(p->normal_prio) || 6823 (pi_task && dl_prio(pi_task->prio) && 6824 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6825 p->dl.pi_se = pi_task->dl.pi_se; 6826 queue_flag |= ENQUEUE_REPLENISH; 6827 } else { 6828 p->dl.pi_se = &p->dl; 6829 } 6830 } else if (rt_prio(prio)) { 6831 if (dl_prio(oldprio)) 6832 p->dl.pi_se = &p->dl; 6833 if (oldprio < prio) 6834 queue_flag |= ENQUEUE_HEAD; 6835 } else { 6836 if (dl_prio(oldprio)) 6837 p->dl.pi_se = &p->dl; 6838 if (rt_prio(oldprio)) 6839 p->rt.timeout = 0; 6840 } 6841 6842 __setscheduler_prio(p, prio); 6843 6844 if (queued) 6845 enqueue_task(rq, p, queue_flag); 6846 if (running) 6847 set_next_task(rq, p); 6848 6849 check_class_changed(rq, p, prev_class, oldprio); 6850 out_unlock: 6851 /* Avoid rq from going away on us: */ 6852 preempt_disable(); 6853 6854 rq_unpin_lock(rq, &rf); 6855 __balance_callbacks(rq); 6856 raw_spin_rq_unlock(rq); 6857 6858 preempt_enable(); 6859 } 6860 #else 6861 static inline int rt_effective_prio(struct task_struct *p, int prio) 6862 { 6863 return prio; 6864 } 6865 #endif 6866 6867 void set_user_nice(struct task_struct *p, long nice) 6868 { 6869 bool queued, running; 6870 int old_prio; 6871 struct rq_flags rf; 6872 struct rq *rq; 6873 6874 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6875 return; 6876 /* 6877 * We have to be careful, if called from sys_setpriority(), 6878 * the task might be in the middle of scheduling on another CPU. 6879 */ 6880 rq = task_rq_lock(p, &rf); 6881 update_rq_clock(rq); 6882 6883 /* 6884 * The RT priorities are set via sched_setscheduler(), but we still 6885 * allow the 'normal' nice value to be set - but as expected 6886 * it won't have any effect on scheduling until the task is 6887 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 6888 */ 6889 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 6890 p->static_prio = NICE_TO_PRIO(nice); 6891 goto out_unlock; 6892 } 6893 queued = task_on_rq_queued(p); 6894 running = task_current(rq, p); 6895 if (queued) 6896 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 6897 if (running) 6898 put_prev_task(rq, p); 6899 6900 p->static_prio = NICE_TO_PRIO(nice); 6901 set_load_weight(p, true); 6902 old_prio = p->prio; 6903 p->prio = effective_prio(p); 6904 6905 if (queued) 6906 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6907 if (running) 6908 set_next_task(rq, p); 6909 6910 /* 6911 * If the task increased its priority or is running and 6912 * lowered its priority, then reschedule its CPU: 6913 */ 6914 p->sched_class->prio_changed(rq, p, old_prio); 6915 6916 out_unlock: 6917 task_rq_unlock(rq, p, &rf); 6918 } 6919 EXPORT_SYMBOL(set_user_nice); 6920 6921 /* 6922 * can_nice - check if a task can reduce its nice value 6923 * @p: task 6924 * @nice: nice value 6925 */ 6926 int can_nice(const struct task_struct *p, const int nice) 6927 { 6928 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 6929 int nice_rlim = nice_to_rlimit(nice); 6930 6931 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 6932 capable(CAP_SYS_NICE)); 6933 } 6934 6935 #ifdef __ARCH_WANT_SYS_NICE 6936 6937 /* 6938 * sys_nice - change the priority of the current process. 6939 * @increment: priority increment 6940 * 6941 * sys_setpriority is a more generic, but much slower function that 6942 * does similar things. 6943 */ 6944 SYSCALL_DEFINE1(nice, int, increment) 6945 { 6946 long nice, retval; 6947 6948 /* 6949 * Setpriority might change our priority at the same moment. 6950 * We don't have to worry. Conceptually one call occurs first 6951 * and we have a single winner. 6952 */ 6953 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 6954 nice = task_nice(current) + increment; 6955 6956 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 6957 if (increment < 0 && !can_nice(current, nice)) 6958 return -EPERM; 6959 6960 retval = security_task_setnice(current, nice); 6961 if (retval) 6962 return retval; 6963 6964 set_user_nice(current, nice); 6965 return 0; 6966 } 6967 6968 #endif 6969 6970 /** 6971 * task_prio - return the priority value of a given task. 6972 * @p: the task in question. 6973 * 6974 * Return: The priority value as seen by users in /proc. 6975 * 6976 * sched policy return value kernel prio user prio/nice 6977 * 6978 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 6979 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 6980 * deadline -101 -1 0 6981 */ 6982 int task_prio(const struct task_struct *p) 6983 { 6984 return p->prio - MAX_RT_PRIO; 6985 } 6986 6987 /** 6988 * idle_cpu - is a given CPU idle currently? 6989 * @cpu: the processor in question. 6990 * 6991 * Return: 1 if the CPU is currently idle. 0 otherwise. 6992 */ 6993 int idle_cpu(int cpu) 6994 { 6995 struct rq *rq = cpu_rq(cpu); 6996 6997 if (rq->curr != rq->idle) 6998 return 0; 6999 7000 if (rq->nr_running) 7001 return 0; 7002 7003 #ifdef CONFIG_SMP 7004 if (rq->ttwu_pending) 7005 return 0; 7006 #endif 7007 7008 return 1; 7009 } 7010 7011 /** 7012 * available_idle_cpu - is a given CPU idle for enqueuing work. 7013 * @cpu: the CPU in question. 7014 * 7015 * Return: 1 if the CPU is currently idle. 0 otherwise. 7016 */ 7017 int available_idle_cpu(int cpu) 7018 { 7019 if (!idle_cpu(cpu)) 7020 return 0; 7021 7022 if (vcpu_is_preempted(cpu)) 7023 return 0; 7024 7025 return 1; 7026 } 7027 7028 /** 7029 * idle_task - return the idle task for a given CPU. 7030 * @cpu: the processor in question. 7031 * 7032 * Return: The idle task for the CPU @cpu. 7033 */ 7034 struct task_struct *idle_task(int cpu) 7035 { 7036 return cpu_rq(cpu)->idle; 7037 } 7038 7039 #ifdef CONFIG_SMP 7040 /* 7041 * This function computes an effective utilization for the given CPU, to be 7042 * used for frequency selection given the linear relation: f = u * f_max. 7043 * 7044 * The scheduler tracks the following metrics: 7045 * 7046 * cpu_util_{cfs,rt,dl,irq}() 7047 * cpu_bw_dl() 7048 * 7049 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7050 * synchronized windows and are thus directly comparable. 7051 * 7052 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7053 * which excludes things like IRQ and steal-time. These latter are then accrued 7054 * in the irq utilization. 7055 * 7056 * The DL bandwidth number otoh is not a measured metric but a value computed 7057 * based on the task model parameters and gives the minimal utilization 7058 * required to meet deadlines. 7059 */ 7060 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7061 unsigned long max, enum cpu_util_type type, 7062 struct task_struct *p) 7063 { 7064 unsigned long dl_util, util, irq; 7065 struct rq *rq = cpu_rq(cpu); 7066 7067 if (!uclamp_is_used() && 7068 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7069 return max; 7070 } 7071 7072 /* 7073 * Early check to see if IRQ/steal time saturates the CPU, can be 7074 * because of inaccuracies in how we track these -- see 7075 * update_irq_load_avg(). 7076 */ 7077 irq = cpu_util_irq(rq); 7078 if (unlikely(irq >= max)) 7079 return max; 7080 7081 /* 7082 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7083 * CFS tasks and we use the same metric to track the effective 7084 * utilization (PELT windows are synchronized) we can directly add them 7085 * to obtain the CPU's actual utilization. 7086 * 7087 * CFS and RT utilization can be boosted or capped, depending on 7088 * utilization clamp constraints requested by currently RUNNABLE 7089 * tasks. 7090 * When there are no CFS RUNNABLE tasks, clamps are released and 7091 * frequency will be gracefully reduced with the utilization decay. 7092 */ 7093 util = util_cfs + cpu_util_rt(rq); 7094 if (type == FREQUENCY_UTIL) 7095 util = uclamp_rq_util_with(rq, util, p); 7096 7097 dl_util = cpu_util_dl(rq); 7098 7099 /* 7100 * For frequency selection we do not make cpu_util_dl() a permanent part 7101 * of this sum because we want to use cpu_bw_dl() later on, but we need 7102 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7103 * that we select f_max when there is no idle time. 7104 * 7105 * NOTE: numerical errors or stop class might cause us to not quite hit 7106 * saturation when we should -- something for later. 7107 */ 7108 if (util + dl_util >= max) 7109 return max; 7110 7111 /* 7112 * OTOH, for energy computation we need the estimated running time, so 7113 * include util_dl and ignore dl_bw. 7114 */ 7115 if (type == ENERGY_UTIL) 7116 util += dl_util; 7117 7118 /* 7119 * There is still idle time; further improve the number by using the 7120 * irq metric. Because IRQ/steal time is hidden from the task clock we 7121 * need to scale the task numbers: 7122 * 7123 * max - irq 7124 * U' = irq + --------- * U 7125 * max 7126 */ 7127 util = scale_irq_capacity(util, irq, max); 7128 util += irq; 7129 7130 /* 7131 * Bandwidth required by DEADLINE must always be granted while, for 7132 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7133 * to gracefully reduce the frequency when no tasks show up for longer 7134 * periods of time. 7135 * 7136 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7137 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7138 * an interface. So, we only do the latter for now. 7139 */ 7140 if (type == FREQUENCY_UTIL) 7141 util += cpu_bw_dl(rq); 7142 7143 return min(max, util); 7144 } 7145 7146 unsigned long sched_cpu_util(int cpu, unsigned long max) 7147 { 7148 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 7149 ENERGY_UTIL, NULL); 7150 } 7151 #endif /* CONFIG_SMP */ 7152 7153 /** 7154 * find_process_by_pid - find a process with a matching PID value. 7155 * @pid: the pid in question. 7156 * 7157 * The task of @pid, if found. %NULL otherwise. 7158 */ 7159 static struct task_struct *find_process_by_pid(pid_t pid) 7160 { 7161 return pid ? find_task_by_vpid(pid) : current; 7162 } 7163 7164 /* 7165 * sched_setparam() passes in -1 for its policy, to let the functions 7166 * it calls know not to change it. 7167 */ 7168 #define SETPARAM_POLICY -1 7169 7170 static void __setscheduler_params(struct task_struct *p, 7171 const struct sched_attr *attr) 7172 { 7173 int policy = attr->sched_policy; 7174 7175 if (policy == SETPARAM_POLICY) 7176 policy = p->policy; 7177 7178 p->policy = policy; 7179 7180 if (dl_policy(policy)) 7181 __setparam_dl(p, attr); 7182 else if (fair_policy(policy)) 7183 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7184 7185 /* 7186 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7187 * !rt_policy. Always setting this ensures that things like 7188 * getparam()/getattr() don't report silly values for !rt tasks. 7189 */ 7190 p->rt_priority = attr->sched_priority; 7191 p->normal_prio = normal_prio(p); 7192 set_load_weight(p, true); 7193 } 7194 7195 /* 7196 * Check the target process has a UID that matches the current process's: 7197 */ 7198 static bool check_same_owner(struct task_struct *p) 7199 { 7200 const struct cred *cred = current_cred(), *pcred; 7201 bool match; 7202 7203 rcu_read_lock(); 7204 pcred = __task_cred(p); 7205 match = (uid_eq(cred->euid, pcred->euid) || 7206 uid_eq(cred->euid, pcred->uid)); 7207 rcu_read_unlock(); 7208 return match; 7209 } 7210 7211 static int __sched_setscheduler(struct task_struct *p, 7212 const struct sched_attr *attr, 7213 bool user, bool pi) 7214 { 7215 int oldpolicy = -1, policy = attr->sched_policy; 7216 int retval, oldprio, newprio, queued, running; 7217 const struct sched_class *prev_class; 7218 struct callback_head *head; 7219 struct rq_flags rf; 7220 int reset_on_fork; 7221 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7222 struct rq *rq; 7223 7224 /* The pi code expects interrupts enabled */ 7225 BUG_ON(pi && in_interrupt()); 7226 recheck: 7227 /* Double check policy once rq lock held: */ 7228 if (policy < 0) { 7229 reset_on_fork = p->sched_reset_on_fork; 7230 policy = oldpolicy = p->policy; 7231 } else { 7232 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7233 7234 if (!valid_policy(policy)) 7235 return -EINVAL; 7236 } 7237 7238 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7239 return -EINVAL; 7240 7241 /* 7242 * Valid priorities for SCHED_FIFO and SCHED_RR are 7243 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7244 * SCHED_BATCH and SCHED_IDLE is 0. 7245 */ 7246 if (attr->sched_priority > MAX_RT_PRIO-1) 7247 return -EINVAL; 7248 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7249 (rt_policy(policy) != (attr->sched_priority != 0))) 7250 return -EINVAL; 7251 7252 /* 7253 * Allow unprivileged RT tasks to decrease priority: 7254 */ 7255 if (user && !capable(CAP_SYS_NICE)) { 7256 if (fair_policy(policy)) { 7257 if (attr->sched_nice < task_nice(p) && 7258 !can_nice(p, attr->sched_nice)) 7259 return -EPERM; 7260 } 7261 7262 if (rt_policy(policy)) { 7263 unsigned long rlim_rtprio = 7264 task_rlimit(p, RLIMIT_RTPRIO); 7265 7266 /* Can't set/change the rt policy: */ 7267 if (policy != p->policy && !rlim_rtprio) 7268 return -EPERM; 7269 7270 /* Can't increase priority: */ 7271 if (attr->sched_priority > p->rt_priority && 7272 attr->sched_priority > rlim_rtprio) 7273 return -EPERM; 7274 } 7275 7276 /* 7277 * Can't set/change SCHED_DEADLINE policy at all for now 7278 * (safest behavior); in the future we would like to allow 7279 * unprivileged DL tasks to increase their relative deadline 7280 * or reduce their runtime (both ways reducing utilization) 7281 */ 7282 if (dl_policy(policy)) 7283 return -EPERM; 7284 7285 /* 7286 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7287 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7288 */ 7289 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7290 if (!can_nice(p, task_nice(p))) 7291 return -EPERM; 7292 } 7293 7294 /* Can't change other user's priorities: */ 7295 if (!check_same_owner(p)) 7296 return -EPERM; 7297 7298 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7299 if (p->sched_reset_on_fork && !reset_on_fork) 7300 return -EPERM; 7301 } 7302 7303 if (user) { 7304 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7305 return -EINVAL; 7306 7307 retval = security_task_setscheduler(p); 7308 if (retval) 7309 return retval; 7310 } 7311 7312 /* Update task specific "requested" clamps */ 7313 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7314 retval = uclamp_validate(p, attr); 7315 if (retval) 7316 return retval; 7317 } 7318 7319 if (pi) 7320 cpuset_read_lock(); 7321 7322 /* 7323 * Make sure no PI-waiters arrive (or leave) while we are 7324 * changing the priority of the task: 7325 * 7326 * To be able to change p->policy safely, the appropriate 7327 * runqueue lock must be held. 7328 */ 7329 rq = task_rq_lock(p, &rf); 7330 update_rq_clock(rq); 7331 7332 /* 7333 * Changing the policy of the stop threads its a very bad idea: 7334 */ 7335 if (p == rq->stop) { 7336 retval = -EINVAL; 7337 goto unlock; 7338 } 7339 7340 /* 7341 * If not changing anything there's no need to proceed further, 7342 * but store a possible modification of reset_on_fork. 7343 */ 7344 if (unlikely(policy == p->policy)) { 7345 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7346 goto change; 7347 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7348 goto change; 7349 if (dl_policy(policy) && dl_param_changed(p, attr)) 7350 goto change; 7351 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7352 goto change; 7353 7354 p->sched_reset_on_fork = reset_on_fork; 7355 retval = 0; 7356 goto unlock; 7357 } 7358 change: 7359 7360 if (user) { 7361 #ifdef CONFIG_RT_GROUP_SCHED 7362 /* 7363 * Do not allow realtime tasks into groups that have no runtime 7364 * assigned. 7365 */ 7366 if (rt_bandwidth_enabled() && rt_policy(policy) && 7367 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7368 !task_group_is_autogroup(task_group(p))) { 7369 retval = -EPERM; 7370 goto unlock; 7371 } 7372 #endif 7373 #ifdef CONFIG_SMP 7374 if (dl_bandwidth_enabled() && dl_policy(policy) && 7375 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7376 cpumask_t *span = rq->rd->span; 7377 7378 /* 7379 * Don't allow tasks with an affinity mask smaller than 7380 * the entire root_domain to become SCHED_DEADLINE. We 7381 * will also fail if there's no bandwidth available. 7382 */ 7383 if (!cpumask_subset(span, p->cpus_ptr) || 7384 rq->rd->dl_bw.bw == 0) { 7385 retval = -EPERM; 7386 goto unlock; 7387 } 7388 } 7389 #endif 7390 } 7391 7392 /* Re-check policy now with rq lock held: */ 7393 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7394 policy = oldpolicy = -1; 7395 task_rq_unlock(rq, p, &rf); 7396 if (pi) 7397 cpuset_read_unlock(); 7398 goto recheck; 7399 } 7400 7401 /* 7402 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7403 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7404 * is available. 7405 */ 7406 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7407 retval = -EBUSY; 7408 goto unlock; 7409 } 7410 7411 p->sched_reset_on_fork = reset_on_fork; 7412 oldprio = p->prio; 7413 7414 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7415 if (pi) { 7416 /* 7417 * Take priority boosted tasks into account. If the new 7418 * effective priority is unchanged, we just store the new 7419 * normal parameters and do not touch the scheduler class and 7420 * the runqueue. This will be done when the task deboost 7421 * itself. 7422 */ 7423 newprio = rt_effective_prio(p, newprio); 7424 if (newprio == oldprio) 7425 queue_flags &= ~DEQUEUE_MOVE; 7426 } 7427 7428 queued = task_on_rq_queued(p); 7429 running = task_current(rq, p); 7430 if (queued) 7431 dequeue_task(rq, p, queue_flags); 7432 if (running) 7433 put_prev_task(rq, p); 7434 7435 prev_class = p->sched_class; 7436 7437 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7438 __setscheduler_params(p, attr); 7439 __setscheduler_prio(p, newprio); 7440 } 7441 __setscheduler_uclamp(p, attr); 7442 7443 if (queued) { 7444 /* 7445 * We enqueue to tail when the priority of a task is 7446 * increased (user space view). 7447 */ 7448 if (oldprio < p->prio) 7449 queue_flags |= ENQUEUE_HEAD; 7450 7451 enqueue_task(rq, p, queue_flags); 7452 } 7453 if (running) 7454 set_next_task(rq, p); 7455 7456 check_class_changed(rq, p, prev_class, oldprio); 7457 7458 /* Avoid rq from going away on us: */ 7459 preempt_disable(); 7460 head = splice_balance_callbacks(rq); 7461 task_rq_unlock(rq, p, &rf); 7462 7463 if (pi) { 7464 cpuset_read_unlock(); 7465 rt_mutex_adjust_pi(p); 7466 } 7467 7468 /* Run balance callbacks after we've adjusted the PI chain: */ 7469 balance_callbacks(rq, head); 7470 preempt_enable(); 7471 7472 return 0; 7473 7474 unlock: 7475 task_rq_unlock(rq, p, &rf); 7476 if (pi) 7477 cpuset_read_unlock(); 7478 return retval; 7479 } 7480 7481 static int _sched_setscheduler(struct task_struct *p, int policy, 7482 const struct sched_param *param, bool check) 7483 { 7484 struct sched_attr attr = { 7485 .sched_policy = policy, 7486 .sched_priority = param->sched_priority, 7487 .sched_nice = PRIO_TO_NICE(p->static_prio), 7488 }; 7489 7490 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7491 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7492 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7493 policy &= ~SCHED_RESET_ON_FORK; 7494 attr.sched_policy = policy; 7495 } 7496 7497 return __sched_setscheduler(p, &attr, check, true); 7498 } 7499 /** 7500 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7501 * @p: the task in question. 7502 * @policy: new policy. 7503 * @param: structure containing the new RT priority. 7504 * 7505 * Use sched_set_fifo(), read its comment. 7506 * 7507 * Return: 0 on success. An error code otherwise. 7508 * 7509 * NOTE that the task may be already dead. 7510 */ 7511 int sched_setscheduler(struct task_struct *p, int policy, 7512 const struct sched_param *param) 7513 { 7514 return _sched_setscheduler(p, policy, param, true); 7515 } 7516 7517 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7518 { 7519 return __sched_setscheduler(p, attr, true, true); 7520 } 7521 7522 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7523 { 7524 return __sched_setscheduler(p, attr, false, true); 7525 } 7526 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7527 7528 /** 7529 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7530 * @p: the task in question. 7531 * @policy: new policy. 7532 * @param: structure containing the new RT priority. 7533 * 7534 * Just like sched_setscheduler, only don't bother checking if the 7535 * current context has permission. For example, this is needed in 7536 * stop_machine(): we create temporary high priority worker threads, 7537 * but our caller might not have that capability. 7538 * 7539 * Return: 0 on success. An error code otherwise. 7540 */ 7541 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7542 const struct sched_param *param) 7543 { 7544 return _sched_setscheduler(p, policy, param, false); 7545 } 7546 7547 /* 7548 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7549 * incapable of resource management, which is the one thing an OS really should 7550 * be doing. 7551 * 7552 * This is of course the reason it is limited to privileged users only. 7553 * 7554 * Worse still; it is fundamentally impossible to compose static priority 7555 * workloads. You cannot take two correctly working static prio workloads 7556 * and smash them together and still expect them to work. 7557 * 7558 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7559 * 7560 * MAX_RT_PRIO / 2 7561 * 7562 * The administrator _MUST_ configure the system, the kernel simply doesn't 7563 * know enough information to make a sensible choice. 7564 */ 7565 void sched_set_fifo(struct task_struct *p) 7566 { 7567 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7568 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7569 } 7570 EXPORT_SYMBOL_GPL(sched_set_fifo); 7571 7572 /* 7573 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7574 */ 7575 void sched_set_fifo_low(struct task_struct *p) 7576 { 7577 struct sched_param sp = { .sched_priority = 1 }; 7578 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7579 } 7580 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7581 7582 void sched_set_normal(struct task_struct *p, int nice) 7583 { 7584 struct sched_attr attr = { 7585 .sched_policy = SCHED_NORMAL, 7586 .sched_nice = nice, 7587 }; 7588 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7589 } 7590 EXPORT_SYMBOL_GPL(sched_set_normal); 7591 7592 static int 7593 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7594 { 7595 struct sched_param lparam; 7596 struct task_struct *p; 7597 int retval; 7598 7599 if (!param || pid < 0) 7600 return -EINVAL; 7601 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7602 return -EFAULT; 7603 7604 rcu_read_lock(); 7605 retval = -ESRCH; 7606 p = find_process_by_pid(pid); 7607 if (likely(p)) 7608 get_task_struct(p); 7609 rcu_read_unlock(); 7610 7611 if (likely(p)) { 7612 retval = sched_setscheduler(p, policy, &lparam); 7613 put_task_struct(p); 7614 } 7615 7616 return retval; 7617 } 7618 7619 /* 7620 * Mimics kernel/events/core.c perf_copy_attr(). 7621 */ 7622 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7623 { 7624 u32 size; 7625 int ret; 7626 7627 /* Zero the full structure, so that a short copy will be nice: */ 7628 memset(attr, 0, sizeof(*attr)); 7629 7630 ret = get_user(size, &uattr->size); 7631 if (ret) 7632 return ret; 7633 7634 /* ABI compatibility quirk: */ 7635 if (!size) 7636 size = SCHED_ATTR_SIZE_VER0; 7637 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7638 goto err_size; 7639 7640 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7641 if (ret) { 7642 if (ret == -E2BIG) 7643 goto err_size; 7644 return ret; 7645 } 7646 7647 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7648 size < SCHED_ATTR_SIZE_VER1) 7649 return -EINVAL; 7650 7651 /* 7652 * XXX: Do we want to be lenient like existing syscalls; or do we want 7653 * to be strict and return an error on out-of-bounds values? 7654 */ 7655 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7656 7657 return 0; 7658 7659 err_size: 7660 put_user(sizeof(*attr), &uattr->size); 7661 return -E2BIG; 7662 } 7663 7664 static void get_params(struct task_struct *p, struct sched_attr *attr) 7665 { 7666 if (task_has_dl_policy(p)) 7667 __getparam_dl(p, attr); 7668 else if (task_has_rt_policy(p)) 7669 attr->sched_priority = p->rt_priority; 7670 else 7671 attr->sched_nice = task_nice(p); 7672 } 7673 7674 /** 7675 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7676 * @pid: the pid in question. 7677 * @policy: new policy. 7678 * @param: structure containing the new RT priority. 7679 * 7680 * Return: 0 on success. An error code otherwise. 7681 */ 7682 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7683 { 7684 if (policy < 0) 7685 return -EINVAL; 7686 7687 return do_sched_setscheduler(pid, policy, param); 7688 } 7689 7690 /** 7691 * sys_sched_setparam - set/change the RT priority of a thread 7692 * @pid: the pid in question. 7693 * @param: structure containing the new RT priority. 7694 * 7695 * Return: 0 on success. An error code otherwise. 7696 */ 7697 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7698 { 7699 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7700 } 7701 7702 /** 7703 * sys_sched_setattr - same as above, but with extended sched_attr 7704 * @pid: the pid in question. 7705 * @uattr: structure containing the extended parameters. 7706 * @flags: for future extension. 7707 */ 7708 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7709 unsigned int, flags) 7710 { 7711 struct sched_attr attr; 7712 struct task_struct *p; 7713 int retval; 7714 7715 if (!uattr || pid < 0 || flags) 7716 return -EINVAL; 7717 7718 retval = sched_copy_attr(uattr, &attr); 7719 if (retval) 7720 return retval; 7721 7722 if ((int)attr.sched_policy < 0) 7723 return -EINVAL; 7724 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7725 attr.sched_policy = SETPARAM_POLICY; 7726 7727 rcu_read_lock(); 7728 retval = -ESRCH; 7729 p = find_process_by_pid(pid); 7730 if (likely(p)) 7731 get_task_struct(p); 7732 rcu_read_unlock(); 7733 7734 if (likely(p)) { 7735 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7736 get_params(p, &attr); 7737 retval = sched_setattr(p, &attr); 7738 put_task_struct(p); 7739 } 7740 7741 return retval; 7742 } 7743 7744 /** 7745 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7746 * @pid: the pid in question. 7747 * 7748 * Return: On success, the policy of the thread. Otherwise, a negative error 7749 * code. 7750 */ 7751 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7752 { 7753 struct task_struct *p; 7754 int retval; 7755 7756 if (pid < 0) 7757 return -EINVAL; 7758 7759 retval = -ESRCH; 7760 rcu_read_lock(); 7761 p = find_process_by_pid(pid); 7762 if (p) { 7763 retval = security_task_getscheduler(p); 7764 if (!retval) 7765 retval = p->policy 7766 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7767 } 7768 rcu_read_unlock(); 7769 return retval; 7770 } 7771 7772 /** 7773 * sys_sched_getparam - get the RT priority of a thread 7774 * @pid: the pid in question. 7775 * @param: structure containing the RT priority. 7776 * 7777 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7778 * code. 7779 */ 7780 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7781 { 7782 struct sched_param lp = { .sched_priority = 0 }; 7783 struct task_struct *p; 7784 int retval; 7785 7786 if (!param || pid < 0) 7787 return -EINVAL; 7788 7789 rcu_read_lock(); 7790 p = find_process_by_pid(pid); 7791 retval = -ESRCH; 7792 if (!p) 7793 goto out_unlock; 7794 7795 retval = security_task_getscheduler(p); 7796 if (retval) 7797 goto out_unlock; 7798 7799 if (task_has_rt_policy(p)) 7800 lp.sched_priority = p->rt_priority; 7801 rcu_read_unlock(); 7802 7803 /* 7804 * This one might sleep, we cannot do it with a spinlock held ... 7805 */ 7806 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7807 7808 return retval; 7809 7810 out_unlock: 7811 rcu_read_unlock(); 7812 return retval; 7813 } 7814 7815 /* 7816 * Copy the kernel size attribute structure (which might be larger 7817 * than what user-space knows about) to user-space. 7818 * 7819 * Note that all cases are valid: user-space buffer can be larger or 7820 * smaller than the kernel-space buffer. The usual case is that both 7821 * have the same size. 7822 */ 7823 static int 7824 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7825 struct sched_attr *kattr, 7826 unsigned int usize) 7827 { 7828 unsigned int ksize = sizeof(*kattr); 7829 7830 if (!access_ok(uattr, usize)) 7831 return -EFAULT; 7832 7833 /* 7834 * sched_getattr() ABI forwards and backwards compatibility: 7835 * 7836 * If usize == ksize then we just copy everything to user-space and all is good. 7837 * 7838 * If usize < ksize then we only copy as much as user-space has space for, 7839 * this keeps ABI compatibility as well. We skip the rest. 7840 * 7841 * If usize > ksize then user-space is using a newer version of the ABI, 7842 * which part the kernel doesn't know about. Just ignore it - tooling can 7843 * detect the kernel's knowledge of attributes from the attr->size value 7844 * which is set to ksize in this case. 7845 */ 7846 kattr->size = min(usize, ksize); 7847 7848 if (copy_to_user(uattr, kattr, kattr->size)) 7849 return -EFAULT; 7850 7851 return 0; 7852 } 7853 7854 /** 7855 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 7856 * @pid: the pid in question. 7857 * @uattr: structure containing the extended parameters. 7858 * @usize: sizeof(attr) for fwd/bwd comp. 7859 * @flags: for future extension. 7860 */ 7861 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 7862 unsigned int, usize, unsigned int, flags) 7863 { 7864 struct sched_attr kattr = { }; 7865 struct task_struct *p; 7866 int retval; 7867 7868 if (!uattr || pid < 0 || usize > PAGE_SIZE || 7869 usize < SCHED_ATTR_SIZE_VER0 || flags) 7870 return -EINVAL; 7871 7872 rcu_read_lock(); 7873 p = find_process_by_pid(pid); 7874 retval = -ESRCH; 7875 if (!p) 7876 goto out_unlock; 7877 7878 retval = security_task_getscheduler(p); 7879 if (retval) 7880 goto out_unlock; 7881 7882 kattr.sched_policy = p->policy; 7883 if (p->sched_reset_on_fork) 7884 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7885 get_params(p, &kattr); 7886 kattr.sched_flags &= SCHED_FLAG_ALL; 7887 7888 #ifdef CONFIG_UCLAMP_TASK 7889 /* 7890 * This could race with another potential updater, but this is fine 7891 * because it'll correctly read the old or the new value. We don't need 7892 * to guarantee who wins the race as long as it doesn't return garbage. 7893 */ 7894 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 7895 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 7896 #endif 7897 7898 rcu_read_unlock(); 7899 7900 return sched_attr_copy_to_user(uattr, &kattr, usize); 7901 7902 out_unlock: 7903 rcu_read_unlock(); 7904 return retval; 7905 } 7906 7907 #ifdef CONFIG_SMP 7908 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 7909 { 7910 int ret = 0; 7911 7912 /* 7913 * If the task isn't a deadline task or admission control is 7914 * disabled then we don't care about affinity changes. 7915 */ 7916 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 7917 return 0; 7918 7919 /* 7920 * Since bandwidth control happens on root_domain basis, 7921 * if admission test is enabled, we only admit -deadline 7922 * tasks allowed to run on all the CPUs in the task's 7923 * root_domain. 7924 */ 7925 rcu_read_lock(); 7926 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 7927 ret = -EBUSY; 7928 rcu_read_unlock(); 7929 return ret; 7930 } 7931 #endif 7932 7933 static int 7934 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 7935 { 7936 int retval; 7937 cpumask_var_t cpus_allowed, new_mask; 7938 7939 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 7940 return -ENOMEM; 7941 7942 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 7943 retval = -ENOMEM; 7944 goto out_free_cpus_allowed; 7945 } 7946 7947 cpuset_cpus_allowed(p, cpus_allowed); 7948 cpumask_and(new_mask, mask, cpus_allowed); 7949 7950 retval = dl_task_check_affinity(p, new_mask); 7951 if (retval) 7952 goto out_free_new_mask; 7953 again: 7954 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 7955 if (retval) 7956 goto out_free_new_mask; 7957 7958 cpuset_cpus_allowed(p, cpus_allowed); 7959 if (!cpumask_subset(new_mask, cpus_allowed)) { 7960 /* 7961 * We must have raced with a concurrent cpuset update. 7962 * Just reset the cpumask to the cpuset's cpus_allowed. 7963 */ 7964 cpumask_copy(new_mask, cpus_allowed); 7965 goto again; 7966 } 7967 7968 out_free_new_mask: 7969 free_cpumask_var(new_mask); 7970 out_free_cpus_allowed: 7971 free_cpumask_var(cpus_allowed); 7972 return retval; 7973 } 7974 7975 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 7976 { 7977 struct task_struct *p; 7978 int retval; 7979 7980 rcu_read_lock(); 7981 7982 p = find_process_by_pid(pid); 7983 if (!p) { 7984 rcu_read_unlock(); 7985 return -ESRCH; 7986 } 7987 7988 /* Prevent p going away */ 7989 get_task_struct(p); 7990 rcu_read_unlock(); 7991 7992 if (p->flags & PF_NO_SETAFFINITY) { 7993 retval = -EINVAL; 7994 goto out_put_task; 7995 } 7996 7997 if (!check_same_owner(p)) { 7998 rcu_read_lock(); 7999 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8000 rcu_read_unlock(); 8001 retval = -EPERM; 8002 goto out_put_task; 8003 } 8004 rcu_read_unlock(); 8005 } 8006 8007 retval = security_task_setscheduler(p); 8008 if (retval) 8009 goto out_put_task; 8010 8011 retval = __sched_setaffinity(p, in_mask); 8012 out_put_task: 8013 put_task_struct(p); 8014 return retval; 8015 } 8016 8017 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8018 struct cpumask *new_mask) 8019 { 8020 if (len < cpumask_size()) 8021 cpumask_clear(new_mask); 8022 else if (len > cpumask_size()) 8023 len = cpumask_size(); 8024 8025 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8026 } 8027 8028 /** 8029 * sys_sched_setaffinity - set the CPU affinity of a process 8030 * @pid: pid of the process 8031 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8032 * @user_mask_ptr: user-space pointer to the new CPU mask 8033 * 8034 * Return: 0 on success. An error code otherwise. 8035 */ 8036 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8037 unsigned long __user *, user_mask_ptr) 8038 { 8039 cpumask_var_t new_mask; 8040 int retval; 8041 8042 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8043 return -ENOMEM; 8044 8045 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8046 if (retval == 0) 8047 retval = sched_setaffinity(pid, new_mask); 8048 free_cpumask_var(new_mask); 8049 return retval; 8050 } 8051 8052 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8053 { 8054 struct task_struct *p; 8055 unsigned long flags; 8056 int retval; 8057 8058 rcu_read_lock(); 8059 8060 retval = -ESRCH; 8061 p = find_process_by_pid(pid); 8062 if (!p) 8063 goto out_unlock; 8064 8065 retval = security_task_getscheduler(p); 8066 if (retval) 8067 goto out_unlock; 8068 8069 raw_spin_lock_irqsave(&p->pi_lock, flags); 8070 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8071 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8072 8073 out_unlock: 8074 rcu_read_unlock(); 8075 8076 return retval; 8077 } 8078 8079 /** 8080 * sys_sched_getaffinity - get the CPU affinity of a process 8081 * @pid: pid of the process 8082 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8083 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8084 * 8085 * Return: size of CPU mask copied to user_mask_ptr on success. An 8086 * error code otherwise. 8087 */ 8088 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8089 unsigned long __user *, user_mask_ptr) 8090 { 8091 int ret; 8092 cpumask_var_t mask; 8093 8094 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8095 return -EINVAL; 8096 if (len & (sizeof(unsigned long)-1)) 8097 return -EINVAL; 8098 8099 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8100 return -ENOMEM; 8101 8102 ret = sched_getaffinity(pid, mask); 8103 if (ret == 0) { 8104 unsigned int retlen = min(len, cpumask_size()); 8105 8106 if (copy_to_user(user_mask_ptr, mask, retlen)) 8107 ret = -EFAULT; 8108 else 8109 ret = retlen; 8110 } 8111 free_cpumask_var(mask); 8112 8113 return ret; 8114 } 8115 8116 static void do_sched_yield(void) 8117 { 8118 struct rq_flags rf; 8119 struct rq *rq; 8120 8121 rq = this_rq_lock_irq(&rf); 8122 8123 schedstat_inc(rq->yld_count); 8124 current->sched_class->yield_task(rq); 8125 8126 preempt_disable(); 8127 rq_unlock_irq(rq, &rf); 8128 sched_preempt_enable_no_resched(); 8129 8130 schedule(); 8131 } 8132 8133 /** 8134 * sys_sched_yield - yield the current processor to other threads. 8135 * 8136 * This function yields the current CPU to other tasks. If there are no 8137 * other threads running on this CPU then this function will return. 8138 * 8139 * Return: 0. 8140 */ 8141 SYSCALL_DEFINE0(sched_yield) 8142 { 8143 do_sched_yield(); 8144 return 0; 8145 } 8146 8147 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8148 int __sched __cond_resched(void) 8149 { 8150 if (should_resched(0)) { 8151 preempt_schedule_common(); 8152 return 1; 8153 } 8154 /* 8155 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8156 * whether the current CPU is in an RCU read-side critical section, 8157 * so the tick can report quiescent states even for CPUs looping 8158 * in kernel context. In contrast, in non-preemptible kernels, 8159 * RCU readers leave no in-memory hints, which means that CPU-bound 8160 * processes executing in kernel context might never report an 8161 * RCU quiescent state. Therefore, the following code causes 8162 * cond_resched() to report a quiescent state, but only when RCU 8163 * is in urgent need of one. 8164 */ 8165 #ifndef CONFIG_PREEMPT_RCU 8166 rcu_all_qs(); 8167 #endif 8168 return 0; 8169 } 8170 EXPORT_SYMBOL(__cond_resched); 8171 #endif 8172 8173 #ifdef CONFIG_PREEMPT_DYNAMIC 8174 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8175 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8176 8177 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8178 EXPORT_STATIC_CALL_TRAMP(might_resched); 8179 #endif 8180 8181 /* 8182 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8183 * call schedule, and on return reacquire the lock. 8184 * 8185 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8186 * operations here to prevent schedule() from being called twice (once via 8187 * spin_unlock(), once by hand). 8188 */ 8189 int __cond_resched_lock(spinlock_t *lock) 8190 { 8191 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8192 int ret = 0; 8193 8194 lockdep_assert_held(lock); 8195 8196 if (spin_needbreak(lock) || resched) { 8197 spin_unlock(lock); 8198 if (resched) 8199 preempt_schedule_common(); 8200 else 8201 cpu_relax(); 8202 ret = 1; 8203 spin_lock(lock); 8204 } 8205 return ret; 8206 } 8207 EXPORT_SYMBOL(__cond_resched_lock); 8208 8209 int __cond_resched_rwlock_read(rwlock_t *lock) 8210 { 8211 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8212 int ret = 0; 8213 8214 lockdep_assert_held_read(lock); 8215 8216 if (rwlock_needbreak(lock) || resched) { 8217 read_unlock(lock); 8218 if (resched) 8219 preempt_schedule_common(); 8220 else 8221 cpu_relax(); 8222 ret = 1; 8223 read_lock(lock); 8224 } 8225 return ret; 8226 } 8227 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8228 8229 int __cond_resched_rwlock_write(rwlock_t *lock) 8230 { 8231 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8232 int ret = 0; 8233 8234 lockdep_assert_held_write(lock); 8235 8236 if (rwlock_needbreak(lock) || resched) { 8237 write_unlock(lock); 8238 if (resched) 8239 preempt_schedule_common(); 8240 else 8241 cpu_relax(); 8242 ret = 1; 8243 write_lock(lock); 8244 } 8245 return ret; 8246 } 8247 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8248 8249 /** 8250 * yield - yield the current processor to other threads. 8251 * 8252 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8253 * 8254 * The scheduler is at all times free to pick the calling task as the most 8255 * eligible task to run, if removing the yield() call from your code breaks 8256 * it, it's already broken. 8257 * 8258 * Typical broken usage is: 8259 * 8260 * while (!event) 8261 * yield(); 8262 * 8263 * where one assumes that yield() will let 'the other' process run that will 8264 * make event true. If the current task is a SCHED_FIFO task that will never 8265 * happen. Never use yield() as a progress guarantee!! 8266 * 8267 * If you want to use yield() to wait for something, use wait_event(). 8268 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8269 * If you still want to use yield(), do not! 8270 */ 8271 void __sched yield(void) 8272 { 8273 set_current_state(TASK_RUNNING); 8274 do_sched_yield(); 8275 } 8276 EXPORT_SYMBOL(yield); 8277 8278 /** 8279 * yield_to - yield the current processor to another thread in 8280 * your thread group, or accelerate that thread toward the 8281 * processor it's on. 8282 * @p: target task 8283 * @preempt: whether task preemption is allowed or not 8284 * 8285 * It's the caller's job to ensure that the target task struct 8286 * can't go away on us before we can do any checks. 8287 * 8288 * Return: 8289 * true (>0) if we indeed boosted the target task. 8290 * false (0) if we failed to boost the target. 8291 * -ESRCH if there's no task to yield to. 8292 */ 8293 int __sched yield_to(struct task_struct *p, bool preempt) 8294 { 8295 struct task_struct *curr = current; 8296 struct rq *rq, *p_rq; 8297 unsigned long flags; 8298 int yielded = 0; 8299 8300 local_irq_save(flags); 8301 rq = this_rq(); 8302 8303 again: 8304 p_rq = task_rq(p); 8305 /* 8306 * If we're the only runnable task on the rq and target rq also 8307 * has only one task, there's absolutely no point in yielding. 8308 */ 8309 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8310 yielded = -ESRCH; 8311 goto out_irq; 8312 } 8313 8314 double_rq_lock(rq, p_rq); 8315 if (task_rq(p) != p_rq) { 8316 double_rq_unlock(rq, p_rq); 8317 goto again; 8318 } 8319 8320 if (!curr->sched_class->yield_to_task) 8321 goto out_unlock; 8322 8323 if (curr->sched_class != p->sched_class) 8324 goto out_unlock; 8325 8326 if (task_running(p_rq, p) || !task_is_running(p)) 8327 goto out_unlock; 8328 8329 yielded = curr->sched_class->yield_to_task(rq, p); 8330 if (yielded) { 8331 schedstat_inc(rq->yld_count); 8332 /* 8333 * Make p's CPU reschedule; pick_next_entity takes care of 8334 * fairness. 8335 */ 8336 if (preempt && rq != p_rq) 8337 resched_curr(p_rq); 8338 } 8339 8340 out_unlock: 8341 double_rq_unlock(rq, p_rq); 8342 out_irq: 8343 local_irq_restore(flags); 8344 8345 if (yielded > 0) 8346 schedule(); 8347 8348 return yielded; 8349 } 8350 EXPORT_SYMBOL_GPL(yield_to); 8351 8352 int io_schedule_prepare(void) 8353 { 8354 int old_iowait = current->in_iowait; 8355 8356 current->in_iowait = 1; 8357 blk_schedule_flush_plug(current); 8358 8359 return old_iowait; 8360 } 8361 8362 void io_schedule_finish(int token) 8363 { 8364 current->in_iowait = token; 8365 } 8366 8367 /* 8368 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8369 * that process accounting knows that this is a task in IO wait state. 8370 */ 8371 long __sched io_schedule_timeout(long timeout) 8372 { 8373 int token; 8374 long ret; 8375 8376 token = io_schedule_prepare(); 8377 ret = schedule_timeout(timeout); 8378 io_schedule_finish(token); 8379 8380 return ret; 8381 } 8382 EXPORT_SYMBOL(io_schedule_timeout); 8383 8384 void __sched io_schedule(void) 8385 { 8386 int token; 8387 8388 token = io_schedule_prepare(); 8389 schedule(); 8390 io_schedule_finish(token); 8391 } 8392 EXPORT_SYMBOL(io_schedule); 8393 8394 /** 8395 * sys_sched_get_priority_max - return maximum RT priority. 8396 * @policy: scheduling class. 8397 * 8398 * Return: On success, this syscall returns the maximum 8399 * rt_priority that can be used by a given scheduling class. 8400 * On failure, a negative error code is returned. 8401 */ 8402 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8403 { 8404 int ret = -EINVAL; 8405 8406 switch (policy) { 8407 case SCHED_FIFO: 8408 case SCHED_RR: 8409 ret = MAX_RT_PRIO-1; 8410 break; 8411 case SCHED_DEADLINE: 8412 case SCHED_NORMAL: 8413 case SCHED_BATCH: 8414 case SCHED_IDLE: 8415 ret = 0; 8416 break; 8417 } 8418 return ret; 8419 } 8420 8421 /** 8422 * sys_sched_get_priority_min - return minimum RT priority. 8423 * @policy: scheduling class. 8424 * 8425 * Return: On success, this syscall returns the minimum 8426 * rt_priority that can be used by a given scheduling class. 8427 * On failure, a negative error code is returned. 8428 */ 8429 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8430 { 8431 int ret = -EINVAL; 8432 8433 switch (policy) { 8434 case SCHED_FIFO: 8435 case SCHED_RR: 8436 ret = 1; 8437 break; 8438 case SCHED_DEADLINE: 8439 case SCHED_NORMAL: 8440 case SCHED_BATCH: 8441 case SCHED_IDLE: 8442 ret = 0; 8443 } 8444 return ret; 8445 } 8446 8447 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8448 { 8449 struct task_struct *p; 8450 unsigned int time_slice; 8451 struct rq_flags rf; 8452 struct rq *rq; 8453 int retval; 8454 8455 if (pid < 0) 8456 return -EINVAL; 8457 8458 retval = -ESRCH; 8459 rcu_read_lock(); 8460 p = find_process_by_pid(pid); 8461 if (!p) 8462 goto out_unlock; 8463 8464 retval = security_task_getscheduler(p); 8465 if (retval) 8466 goto out_unlock; 8467 8468 rq = task_rq_lock(p, &rf); 8469 time_slice = 0; 8470 if (p->sched_class->get_rr_interval) 8471 time_slice = p->sched_class->get_rr_interval(rq, p); 8472 task_rq_unlock(rq, p, &rf); 8473 8474 rcu_read_unlock(); 8475 jiffies_to_timespec64(time_slice, t); 8476 return 0; 8477 8478 out_unlock: 8479 rcu_read_unlock(); 8480 return retval; 8481 } 8482 8483 /** 8484 * sys_sched_rr_get_interval - return the default timeslice of a process. 8485 * @pid: pid of the process. 8486 * @interval: userspace pointer to the timeslice value. 8487 * 8488 * this syscall writes the default timeslice value of a given process 8489 * into the user-space timespec buffer. A value of '0' means infinity. 8490 * 8491 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8492 * an error code. 8493 */ 8494 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8495 struct __kernel_timespec __user *, interval) 8496 { 8497 struct timespec64 t; 8498 int retval = sched_rr_get_interval(pid, &t); 8499 8500 if (retval == 0) 8501 retval = put_timespec64(&t, interval); 8502 8503 return retval; 8504 } 8505 8506 #ifdef CONFIG_COMPAT_32BIT_TIME 8507 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8508 struct old_timespec32 __user *, interval) 8509 { 8510 struct timespec64 t; 8511 int retval = sched_rr_get_interval(pid, &t); 8512 8513 if (retval == 0) 8514 retval = put_old_timespec32(&t, interval); 8515 return retval; 8516 } 8517 #endif 8518 8519 void sched_show_task(struct task_struct *p) 8520 { 8521 unsigned long free = 0; 8522 int ppid; 8523 8524 if (!try_get_task_stack(p)) 8525 return; 8526 8527 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8528 8529 if (task_is_running(p)) 8530 pr_cont(" running task "); 8531 #ifdef CONFIG_DEBUG_STACK_USAGE 8532 free = stack_not_used(p); 8533 #endif 8534 ppid = 0; 8535 rcu_read_lock(); 8536 if (pid_alive(p)) 8537 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8538 rcu_read_unlock(); 8539 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 8540 free, task_pid_nr(p), ppid, 8541 (unsigned long)task_thread_info(p)->flags); 8542 8543 print_worker_info(KERN_INFO, p); 8544 print_stop_info(KERN_INFO, p); 8545 show_stack(p, NULL, KERN_INFO); 8546 put_task_stack(p); 8547 } 8548 EXPORT_SYMBOL_GPL(sched_show_task); 8549 8550 static inline bool 8551 state_filter_match(unsigned long state_filter, struct task_struct *p) 8552 { 8553 unsigned int state = READ_ONCE(p->__state); 8554 8555 /* no filter, everything matches */ 8556 if (!state_filter) 8557 return true; 8558 8559 /* filter, but doesn't match */ 8560 if (!(state & state_filter)) 8561 return false; 8562 8563 /* 8564 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8565 * TASK_KILLABLE). 8566 */ 8567 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE) 8568 return false; 8569 8570 return true; 8571 } 8572 8573 8574 void show_state_filter(unsigned int state_filter) 8575 { 8576 struct task_struct *g, *p; 8577 8578 rcu_read_lock(); 8579 for_each_process_thread(g, p) { 8580 /* 8581 * reset the NMI-timeout, listing all files on a slow 8582 * console might take a lot of time: 8583 * Also, reset softlockup watchdogs on all CPUs, because 8584 * another CPU might be blocked waiting for us to process 8585 * an IPI. 8586 */ 8587 touch_nmi_watchdog(); 8588 touch_all_softlockup_watchdogs(); 8589 if (state_filter_match(state_filter, p)) 8590 sched_show_task(p); 8591 } 8592 8593 #ifdef CONFIG_SCHED_DEBUG 8594 if (!state_filter) 8595 sysrq_sched_debug_show(); 8596 #endif 8597 rcu_read_unlock(); 8598 /* 8599 * Only show locks if all tasks are dumped: 8600 */ 8601 if (!state_filter) 8602 debug_show_all_locks(); 8603 } 8604 8605 /** 8606 * init_idle - set up an idle thread for a given CPU 8607 * @idle: task in question 8608 * @cpu: CPU the idle task belongs to 8609 * 8610 * NOTE: this function does not set the idle thread's NEED_RESCHED 8611 * flag, to make booting more robust. 8612 */ 8613 void __init init_idle(struct task_struct *idle, int cpu) 8614 { 8615 struct rq *rq = cpu_rq(cpu); 8616 unsigned long flags; 8617 8618 __sched_fork(0, idle); 8619 8620 /* 8621 * The idle task doesn't need the kthread struct to function, but it 8622 * is dressed up as a per-CPU kthread and thus needs to play the part 8623 * if we want to avoid special-casing it in code that deals with per-CPU 8624 * kthreads. 8625 */ 8626 set_kthread_struct(idle); 8627 8628 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8629 raw_spin_rq_lock(rq); 8630 8631 idle->__state = TASK_RUNNING; 8632 idle->se.exec_start = sched_clock(); 8633 /* 8634 * PF_KTHREAD should already be set at this point; regardless, make it 8635 * look like a proper per-CPU kthread. 8636 */ 8637 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8638 kthread_set_per_cpu(idle, cpu); 8639 8640 scs_task_reset(idle); 8641 kasan_unpoison_task_stack(idle); 8642 8643 #ifdef CONFIG_SMP 8644 /* 8645 * It's possible that init_idle() gets called multiple times on a task, 8646 * in that case do_set_cpus_allowed() will not do the right thing. 8647 * 8648 * And since this is boot we can forgo the serialization. 8649 */ 8650 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8651 #endif 8652 /* 8653 * We're having a chicken and egg problem, even though we are 8654 * holding rq->lock, the CPU isn't yet set to this CPU so the 8655 * lockdep check in task_group() will fail. 8656 * 8657 * Similar case to sched_fork(). / Alternatively we could 8658 * use task_rq_lock() here and obtain the other rq->lock. 8659 * 8660 * Silence PROVE_RCU 8661 */ 8662 rcu_read_lock(); 8663 __set_task_cpu(idle, cpu); 8664 rcu_read_unlock(); 8665 8666 rq->idle = idle; 8667 rcu_assign_pointer(rq->curr, idle); 8668 idle->on_rq = TASK_ON_RQ_QUEUED; 8669 #ifdef CONFIG_SMP 8670 idle->on_cpu = 1; 8671 #endif 8672 raw_spin_rq_unlock(rq); 8673 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8674 8675 /* Set the preempt count _outside_ the spinlocks! */ 8676 init_idle_preempt_count(idle, cpu); 8677 8678 /* 8679 * The idle tasks have their own, simple scheduling class: 8680 */ 8681 idle->sched_class = &idle_sched_class; 8682 ftrace_graph_init_idle_task(idle, cpu); 8683 vtime_init_idle(idle, cpu); 8684 #ifdef CONFIG_SMP 8685 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8686 #endif 8687 } 8688 8689 #ifdef CONFIG_SMP 8690 8691 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8692 const struct cpumask *trial) 8693 { 8694 int ret = 1; 8695 8696 if (!cpumask_weight(cur)) 8697 return ret; 8698 8699 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8700 8701 return ret; 8702 } 8703 8704 int task_can_attach(struct task_struct *p, 8705 const struct cpumask *cs_cpus_allowed) 8706 { 8707 int ret = 0; 8708 8709 /* 8710 * Kthreads which disallow setaffinity shouldn't be moved 8711 * to a new cpuset; we don't want to change their CPU 8712 * affinity and isolating such threads by their set of 8713 * allowed nodes is unnecessary. Thus, cpusets are not 8714 * applicable for such threads. This prevents checking for 8715 * success of set_cpus_allowed_ptr() on all attached tasks 8716 * before cpus_mask may be changed. 8717 */ 8718 if (p->flags & PF_NO_SETAFFINITY) { 8719 ret = -EINVAL; 8720 goto out; 8721 } 8722 8723 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 8724 cs_cpus_allowed)) 8725 ret = dl_task_can_attach(p, cs_cpus_allowed); 8726 8727 out: 8728 return ret; 8729 } 8730 8731 bool sched_smp_initialized __read_mostly; 8732 8733 #ifdef CONFIG_NUMA_BALANCING 8734 /* Migrate current task p to target_cpu */ 8735 int migrate_task_to(struct task_struct *p, int target_cpu) 8736 { 8737 struct migration_arg arg = { p, target_cpu }; 8738 int curr_cpu = task_cpu(p); 8739 8740 if (curr_cpu == target_cpu) 8741 return 0; 8742 8743 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8744 return -EINVAL; 8745 8746 /* TODO: This is not properly updating schedstats */ 8747 8748 trace_sched_move_numa(p, curr_cpu, target_cpu); 8749 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8750 } 8751 8752 /* 8753 * Requeue a task on a given node and accurately track the number of NUMA 8754 * tasks on the runqueues 8755 */ 8756 void sched_setnuma(struct task_struct *p, int nid) 8757 { 8758 bool queued, running; 8759 struct rq_flags rf; 8760 struct rq *rq; 8761 8762 rq = task_rq_lock(p, &rf); 8763 queued = task_on_rq_queued(p); 8764 running = task_current(rq, p); 8765 8766 if (queued) 8767 dequeue_task(rq, p, DEQUEUE_SAVE); 8768 if (running) 8769 put_prev_task(rq, p); 8770 8771 p->numa_preferred_nid = nid; 8772 8773 if (queued) 8774 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8775 if (running) 8776 set_next_task(rq, p); 8777 task_rq_unlock(rq, p, &rf); 8778 } 8779 #endif /* CONFIG_NUMA_BALANCING */ 8780 8781 #ifdef CONFIG_HOTPLUG_CPU 8782 /* 8783 * Ensure that the idle task is using init_mm right before its CPU goes 8784 * offline. 8785 */ 8786 void idle_task_exit(void) 8787 { 8788 struct mm_struct *mm = current->active_mm; 8789 8790 BUG_ON(cpu_online(smp_processor_id())); 8791 BUG_ON(current != this_rq()->idle); 8792 8793 if (mm != &init_mm) { 8794 switch_mm(mm, &init_mm, current); 8795 finish_arch_post_lock_switch(); 8796 } 8797 8798 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8799 } 8800 8801 static int __balance_push_cpu_stop(void *arg) 8802 { 8803 struct task_struct *p = arg; 8804 struct rq *rq = this_rq(); 8805 struct rq_flags rf; 8806 int cpu; 8807 8808 raw_spin_lock_irq(&p->pi_lock); 8809 rq_lock(rq, &rf); 8810 8811 update_rq_clock(rq); 8812 8813 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8814 cpu = select_fallback_rq(rq->cpu, p); 8815 rq = __migrate_task(rq, &rf, p, cpu); 8816 } 8817 8818 rq_unlock(rq, &rf); 8819 raw_spin_unlock_irq(&p->pi_lock); 8820 8821 put_task_struct(p); 8822 8823 return 0; 8824 } 8825 8826 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8827 8828 /* 8829 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8830 * 8831 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8832 * effective when the hotplug motion is down. 8833 */ 8834 static void balance_push(struct rq *rq) 8835 { 8836 struct task_struct *push_task = rq->curr; 8837 8838 lockdep_assert_rq_held(rq); 8839 8840 /* 8841 * Ensure the thing is persistent until balance_push_set(.on = false); 8842 */ 8843 rq->balance_callback = &balance_push_callback; 8844 8845 /* 8846 * Only active while going offline and when invoked on the outgoing 8847 * CPU. 8848 */ 8849 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8850 return; 8851 8852 /* 8853 * Both the cpu-hotplug and stop task are in this case and are 8854 * required to complete the hotplug process. 8855 */ 8856 if (kthread_is_per_cpu(push_task) || 8857 is_migration_disabled(push_task)) { 8858 8859 /* 8860 * If this is the idle task on the outgoing CPU try to wake 8861 * up the hotplug control thread which might wait for the 8862 * last task to vanish. The rcuwait_active() check is 8863 * accurate here because the waiter is pinned on this CPU 8864 * and can't obviously be running in parallel. 8865 * 8866 * On RT kernels this also has to check whether there are 8867 * pinned and scheduled out tasks on the runqueue. They 8868 * need to leave the migrate disabled section first. 8869 */ 8870 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8871 rcuwait_active(&rq->hotplug_wait)) { 8872 raw_spin_rq_unlock(rq); 8873 rcuwait_wake_up(&rq->hotplug_wait); 8874 raw_spin_rq_lock(rq); 8875 } 8876 return; 8877 } 8878 8879 get_task_struct(push_task); 8880 /* 8881 * Temporarily drop rq->lock such that we can wake-up the stop task. 8882 * Both preemption and IRQs are still disabled. 8883 */ 8884 raw_spin_rq_unlock(rq); 8885 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8886 this_cpu_ptr(&push_work)); 8887 /* 8888 * At this point need_resched() is true and we'll take the loop in 8889 * schedule(). The next pick is obviously going to be the stop task 8890 * which kthread_is_per_cpu() and will push this task away. 8891 */ 8892 raw_spin_rq_lock(rq); 8893 } 8894 8895 static void balance_push_set(int cpu, bool on) 8896 { 8897 struct rq *rq = cpu_rq(cpu); 8898 struct rq_flags rf; 8899 8900 rq_lock_irqsave(rq, &rf); 8901 if (on) { 8902 WARN_ON_ONCE(rq->balance_callback); 8903 rq->balance_callback = &balance_push_callback; 8904 } else if (rq->balance_callback == &balance_push_callback) { 8905 rq->balance_callback = NULL; 8906 } 8907 rq_unlock_irqrestore(rq, &rf); 8908 } 8909 8910 /* 8911 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8912 * inactive. All tasks which are not per CPU kernel threads are either 8913 * pushed off this CPU now via balance_push() or placed on a different CPU 8914 * during wakeup. Wait until the CPU is quiescent. 8915 */ 8916 static void balance_hotplug_wait(void) 8917 { 8918 struct rq *rq = this_rq(); 8919 8920 rcuwait_wait_event(&rq->hotplug_wait, 8921 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8922 TASK_UNINTERRUPTIBLE); 8923 } 8924 8925 #else 8926 8927 static inline void balance_push(struct rq *rq) 8928 { 8929 } 8930 8931 static inline void balance_push_set(int cpu, bool on) 8932 { 8933 } 8934 8935 static inline void balance_hotplug_wait(void) 8936 { 8937 } 8938 8939 #endif /* CONFIG_HOTPLUG_CPU */ 8940 8941 void set_rq_online(struct rq *rq) 8942 { 8943 if (!rq->online) { 8944 const struct sched_class *class; 8945 8946 cpumask_set_cpu(rq->cpu, rq->rd->online); 8947 rq->online = 1; 8948 8949 for_each_class(class) { 8950 if (class->rq_online) 8951 class->rq_online(rq); 8952 } 8953 } 8954 } 8955 8956 void set_rq_offline(struct rq *rq) 8957 { 8958 if (rq->online) { 8959 const struct sched_class *class; 8960 8961 for_each_class(class) { 8962 if (class->rq_offline) 8963 class->rq_offline(rq); 8964 } 8965 8966 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8967 rq->online = 0; 8968 } 8969 } 8970 8971 /* 8972 * used to mark begin/end of suspend/resume: 8973 */ 8974 static int num_cpus_frozen; 8975 8976 /* 8977 * Update cpusets according to cpu_active mask. If cpusets are 8978 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8979 * around partition_sched_domains(). 8980 * 8981 * If we come here as part of a suspend/resume, don't touch cpusets because we 8982 * want to restore it back to its original state upon resume anyway. 8983 */ 8984 static void cpuset_cpu_active(void) 8985 { 8986 if (cpuhp_tasks_frozen) { 8987 /* 8988 * num_cpus_frozen tracks how many CPUs are involved in suspend 8989 * resume sequence. As long as this is not the last online 8990 * operation in the resume sequence, just build a single sched 8991 * domain, ignoring cpusets. 8992 */ 8993 partition_sched_domains(1, NULL, NULL); 8994 if (--num_cpus_frozen) 8995 return; 8996 /* 8997 * This is the last CPU online operation. So fall through and 8998 * restore the original sched domains by considering the 8999 * cpuset configurations. 9000 */ 9001 cpuset_force_rebuild(); 9002 } 9003 cpuset_update_active_cpus(); 9004 } 9005 9006 static int cpuset_cpu_inactive(unsigned int cpu) 9007 { 9008 if (!cpuhp_tasks_frozen) { 9009 if (dl_cpu_busy(cpu)) 9010 return -EBUSY; 9011 cpuset_update_active_cpus(); 9012 } else { 9013 num_cpus_frozen++; 9014 partition_sched_domains(1, NULL, NULL); 9015 } 9016 return 0; 9017 } 9018 9019 int sched_cpu_activate(unsigned int cpu) 9020 { 9021 struct rq *rq = cpu_rq(cpu); 9022 struct rq_flags rf; 9023 9024 /* 9025 * Clear the balance_push callback and prepare to schedule 9026 * regular tasks. 9027 */ 9028 balance_push_set(cpu, false); 9029 9030 #ifdef CONFIG_SCHED_SMT 9031 /* 9032 * When going up, increment the number of cores with SMT present. 9033 */ 9034 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9035 static_branch_inc_cpuslocked(&sched_smt_present); 9036 #endif 9037 set_cpu_active(cpu, true); 9038 9039 if (sched_smp_initialized) { 9040 sched_domains_numa_masks_set(cpu); 9041 cpuset_cpu_active(); 9042 } 9043 9044 /* 9045 * Put the rq online, if not already. This happens: 9046 * 9047 * 1) In the early boot process, because we build the real domains 9048 * after all CPUs have been brought up. 9049 * 9050 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9051 * domains. 9052 */ 9053 rq_lock_irqsave(rq, &rf); 9054 if (rq->rd) { 9055 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9056 set_rq_online(rq); 9057 } 9058 rq_unlock_irqrestore(rq, &rf); 9059 9060 return 0; 9061 } 9062 9063 int sched_cpu_deactivate(unsigned int cpu) 9064 { 9065 struct rq *rq = cpu_rq(cpu); 9066 struct rq_flags rf; 9067 int ret; 9068 9069 /* 9070 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9071 * load balancing when not active 9072 */ 9073 nohz_balance_exit_idle(rq); 9074 9075 set_cpu_active(cpu, false); 9076 9077 /* 9078 * From this point forward, this CPU will refuse to run any task that 9079 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9080 * push those tasks away until this gets cleared, see 9081 * sched_cpu_dying(). 9082 */ 9083 balance_push_set(cpu, true); 9084 9085 /* 9086 * We've cleared cpu_active_mask / set balance_push, wait for all 9087 * preempt-disabled and RCU users of this state to go away such that 9088 * all new such users will observe it. 9089 * 9090 * Specifically, we rely on ttwu to no longer target this CPU, see 9091 * ttwu_queue_cond() and is_cpu_allowed(). 9092 * 9093 * Do sync before park smpboot threads to take care the rcu boost case. 9094 */ 9095 synchronize_rcu(); 9096 9097 rq_lock_irqsave(rq, &rf); 9098 if (rq->rd) { 9099 update_rq_clock(rq); 9100 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9101 set_rq_offline(rq); 9102 } 9103 rq_unlock_irqrestore(rq, &rf); 9104 9105 #ifdef CONFIG_SCHED_SMT 9106 /* 9107 * When going down, decrement the number of cores with SMT present. 9108 */ 9109 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9110 static_branch_dec_cpuslocked(&sched_smt_present); 9111 9112 sched_core_cpu_deactivate(cpu); 9113 #endif 9114 9115 if (!sched_smp_initialized) 9116 return 0; 9117 9118 ret = cpuset_cpu_inactive(cpu); 9119 if (ret) { 9120 balance_push_set(cpu, false); 9121 set_cpu_active(cpu, true); 9122 return ret; 9123 } 9124 sched_domains_numa_masks_clear(cpu); 9125 return 0; 9126 } 9127 9128 static void sched_rq_cpu_starting(unsigned int cpu) 9129 { 9130 struct rq *rq = cpu_rq(cpu); 9131 9132 rq->calc_load_update = calc_load_update; 9133 update_max_interval(); 9134 } 9135 9136 int sched_cpu_starting(unsigned int cpu) 9137 { 9138 sched_core_cpu_starting(cpu); 9139 sched_rq_cpu_starting(cpu); 9140 sched_tick_start(cpu); 9141 return 0; 9142 } 9143 9144 #ifdef CONFIG_HOTPLUG_CPU 9145 9146 /* 9147 * Invoked immediately before the stopper thread is invoked to bring the 9148 * CPU down completely. At this point all per CPU kthreads except the 9149 * hotplug thread (current) and the stopper thread (inactive) have been 9150 * either parked or have been unbound from the outgoing CPU. Ensure that 9151 * any of those which might be on the way out are gone. 9152 * 9153 * If after this point a bound task is being woken on this CPU then the 9154 * responsible hotplug callback has failed to do it's job. 9155 * sched_cpu_dying() will catch it with the appropriate fireworks. 9156 */ 9157 int sched_cpu_wait_empty(unsigned int cpu) 9158 { 9159 balance_hotplug_wait(); 9160 return 0; 9161 } 9162 9163 /* 9164 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9165 * might have. Called from the CPU stopper task after ensuring that the 9166 * stopper is the last running task on the CPU, so nr_active count is 9167 * stable. We need to take the teardown thread which is calling this into 9168 * account, so we hand in adjust = 1 to the load calculation. 9169 * 9170 * Also see the comment "Global load-average calculations". 9171 */ 9172 static void calc_load_migrate(struct rq *rq) 9173 { 9174 long delta = calc_load_fold_active(rq, 1); 9175 9176 if (delta) 9177 atomic_long_add(delta, &calc_load_tasks); 9178 } 9179 9180 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9181 { 9182 struct task_struct *g, *p; 9183 int cpu = cpu_of(rq); 9184 9185 lockdep_assert_rq_held(rq); 9186 9187 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9188 for_each_process_thread(g, p) { 9189 if (task_cpu(p) != cpu) 9190 continue; 9191 9192 if (!task_on_rq_queued(p)) 9193 continue; 9194 9195 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9196 } 9197 } 9198 9199 int sched_cpu_dying(unsigned int cpu) 9200 { 9201 struct rq *rq = cpu_rq(cpu); 9202 struct rq_flags rf; 9203 9204 /* Handle pending wakeups and then migrate everything off */ 9205 sched_tick_stop(cpu); 9206 9207 rq_lock_irqsave(rq, &rf); 9208 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9209 WARN(true, "Dying CPU not properly vacated!"); 9210 dump_rq_tasks(rq, KERN_WARNING); 9211 } 9212 rq_unlock_irqrestore(rq, &rf); 9213 9214 calc_load_migrate(rq); 9215 update_max_interval(); 9216 hrtick_clear(rq); 9217 sched_core_cpu_dying(cpu); 9218 return 0; 9219 } 9220 #endif 9221 9222 void __init sched_init_smp(void) 9223 { 9224 sched_init_numa(); 9225 9226 /* 9227 * There's no userspace yet to cause hotplug operations; hence all the 9228 * CPU masks are stable and all blatant races in the below code cannot 9229 * happen. 9230 */ 9231 mutex_lock(&sched_domains_mutex); 9232 sched_init_domains(cpu_active_mask); 9233 mutex_unlock(&sched_domains_mutex); 9234 9235 /* Move init over to a non-isolated CPU */ 9236 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 9237 BUG(); 9238 current->flags &= ~PF_NO_SETAFFINITY; 9239 sched_init_granularity(); 9240 9241 init_sched_rt_class(); 9242 init_sched_dl_class(); 9243 9244 sched_smp_initialized = true; 9245 } 9246 9247 static int __init migration_init(void) 9248 { 9249 sched_cpu_starting(smp_processor_id()); 9250 return 0; 9251 } 9252 early_initcall(migration_init); 9253 9254 #else 9255 void __init sched_init_smp(void) 9256 { 9257 sched_init_granularity(); 9258 } 9259 #endif /* CONFIG_SMP */ 9260 9261 int in_sched_functions(unsigned long addr) 9262 { 9263 return in_lock_functions(addr) || 9264 (addr >= (unsigned long)__sched_text_start 9265 && addr < (unsigned long)__sched_text_end); 9266 } 9267 9268 #ifdef CONFIG_CGROUP_SCHED 9269 /* 9270 * Default task group. 9271 * Every task in system belongs to this group at bootup. 9272 */ 9273 struct task_group root_task_group; 9274 LIST_HEAD(task_groups); 9275 9276 /* Cacheline aligned slab cache for task_group */ 9277 static struct kmem_cache *task_group_cache __read_mostly; 9278 #endif 9279 9280 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 9281 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 9282 9283 void __init sched_init(void) 9284 { 9285 unsigned long ptr = 0; 9286 int i; 9287 9288 /* Make sure the linker didn't screw up */ 9289 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 9290 &fair_sched_class + 1 != &rt_sched_class || 9291 &rt_sched_class + 1 != &dl_sched_class); 9292 #ifdef CONFIG_SMP 9293 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 9294 #endif 9295 9296 wait_bit_init(); 9297 9298 #ifdef CONFIG_FAIR_GROUP_SCHED 9299 ptr += 2 * nr_cpu_ids * sizeof(void **); 9300 #endif 9301 #ifdef CONFIG_RT_GROUP_SCHED 9302 ptr += 2 * nr_cpu_ids * sizeof(void **); 9303 #endif 9304 if (ptr) { 9305 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9306 9307 #ifdef CONFIG_FAIR_GROUP_SCHED 9308 root_task_group.se = (struct sched_entity **)ptr; 9309 ptr += nr_cpu_ids * sizeof(void **); 9310 9311 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9312 ptr += nr_cpu_ids * sizeof(void **); 9313 9314 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9315 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9316 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9317 #ifdef CONFIG_RT_GROUP_SCHED 9318 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9319 ptr += nr_cpu_ids * sizeof(void **); 9320 9321 root_task_group.rt_rq = (struct rt_rq **)ptr; 9322 ptr += nr_cpu_ids * sizeof(void **); 9323 9324 #endif /* CONFIG_RT_GROUP_SCHED */ 9325 } 9326 #ifdef CONFIG_CPUMASK_OFFSTACK 9327 for_each_possible_cpu(i) { 9328 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 9329 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9330 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 9331 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9332 } 9333 #endif /* CONFIG_CPUMASK_OFFSTACK */ 9334 9335 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9336 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 9337 9338 #ifdef CONFIG_SMP 9339 init_defrootdomain(); 9340 #endif 9341 9342 #ifdef CONFIG_RT_GROUP_SCHED 9343 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9344 global_rt_period(), global_rt_runtime()); 9345 #endif /* CONFIG_RT_GROUP_SCHED */ 9346 9347 #ifdef CONFIG_CGROUP_SCHED 9348 task_group_cache = KMEM_CACHE(task_group, 0); 9349 9350 list_add(&root_task_group.list, &task_groups); 9351 INIT_LIST_HEAD(&root_task_group.children); 9352 INIT_LIST_HEAD(&root_task_group.siblings); 9353 autogroup_init(&init_task); 9354 #endif /* CONFIG_CGROUP_SCHED */ 9355 9356 for_each_possible_cpu(i) { 9357 struct rq *rq; 9358 9359 rq = cpu_rq(i); 9360 raw_spin_lock_init(&rq->__lock); 9361 rq->nr_running = 0; 9362 rq->calc_load_active = 0; 9363 rq->calc_load_update = jiffies + LOAD_FREQ; 9364 init_cfs_rq(&rq->cfs); 9365 init_rt_rq(&rq->rt); 9366 init_dl_rq(&rq->dl); 9367 #ifdef CONFIG_FAIR_GROUP_SCHED 9368 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9369 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9370 /* 9371 * How much CPU bandwidth does root_task_group get? 9372 * 9373 * In case of task-groups formed thr' the cgroup filesystem, it 9374 * gets 100% of the CPU resources in the system. This overall 9375 * system CPU resource is divided among the tasks of 9376 * root_task_group and its child task-groups in a fair manner, 9377 * based on each entity's (task or task-group's) weight 9378 * (se->load.weight). 9379 * 9380 * In other words, if root_task_group has 10 tasks of weight 9381 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9382 * then A0's share of the CPU resource is: 9383 * 9384 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9385 * 9386 * We achieve this by letting root_task_group's tasks sit 9387 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9388 */ 9389 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9390 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9391 9392 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9393 #ifdef CONFIG_RT_GROUP_SCHED 9394 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9395 #endif 9396 #ifdef CONFIG_SMP 9397 rq->sd = NULL; 9398 rq->rd = NULL; 9399 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9400 rq->balance_callback = &balance_push_callback; 9401 rq->active_balance = 0; 9402 rq->next_balance = jiffies; 9403 rq->push_cpu = 0; 9404 rq->cpu = i; 9405 rq->online = 0; 9406 rq->idle_stamp = 0; 9407 rq->avg_idle = 2*sysctl_sched_migration_cost; 9408 rq->wake_stamp = jiffies; 9409 rq->wake_avg_idle = rq->avg_idle; 9410 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9411 9412 INIT_LIST_HEAD(&rq->cfs_tasks); 9413 9414 rq_attach_root(rq, &def_root_domain); 9415 #ifdef CONFIG_NO_HZ_COMMON 9416 rq->last_blocked_load_update_tick = jiffies; 9417 atomic_set(&rq->nohz_flags, 0); 9418 9419 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9420 #endif 9421 #ifdef CONFIG_HOTPLUG_CPU 9422 rcuwait_init(&rq->hotplug_wait); 9423 #endif 9424 #endif /* CONFIG_SMP */ 9425 hrtick_rq_init(rq); 9426 atomic_set(&rq->nr_iowait, 0); 9427 9428 #ifdef CONFIG_SCHED_CORE 9429 rq->core = rq; 9430 rq->core_pick = NULL; 9431 rq->core_enabled = 0; 9432 rq->core_tree = RB_ROOT; 9433 rq->core_forceidle = false; 9434 9435 rq->core_cookie = 0UL; 9436 #endif 9437 } 9438 9439 set_load_weight(&init_task, false); 9440 9441 /* 9442 * The boot idle thread does lazy MMU switching as well: 9443 */ 9444 mmgrab(&init_mm); 9445 enter_lazy_tlb(&init_mm, current); 9446 9447 /* 9448 * Make us the idle thread. Technically, schedule() should not be 9449 * called from this thread, however somewhere below it might be, 9450 * but because we are the idle thread, we just pick up running again 9451 * when this runqueue becomes "idle". 9452 */ 9453 init_idle(current, smp_processor_id()); 9454 9455 calc_load_update = jiffies + LOAD_FREQ; 9456 9457 #ifdef CONFIG_SMP 9458 idle_thread_set_boot_cpu(); 9459 balance_push_set(smp_processor_id(), false); 9460 #endif 9461 init_sched_fair_class(); 9462 9463 psi_init(); 9464 9465 init_uclamp(); 9466 9467 scheduler_running = 1; 9468 } 9469 9470 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9471 static inline int preempt_count_equals(int preempt_offset) 9472 { 9473 int nested = preempt_count() + rcu_preempt_depth(); 9474 9475 return (nested == preempt_offset); 9476 } 9477 9478 void __might_sleep(const char *file, int line, int preempt_offset) 9479 { 9480 unsigned int state = get_current_state(); 9481 /* 9482 * Blocking primitives will set (and therefore destroy) current->state, 9483 * since we will exit with TASK_RUNNING make sure we enter with it, 9484 * otherwise we will destroy state. 9485 */ 9486 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9487 "do not call blocking ops when !TASK_RUNNING; " 9488 "state=%x set at [<%p>] %pS\n", state, 9489 (void *)current->task_state_change, 9490 (void *)current->task_state_change); 9491 9492 ___might_sleep(file, line, preempt_offset); 9493 } 9494 EXPORT_SYMBOL(__might_sleep); 9495 9496 void ___might_sleep(const char *file, int line, int preempt_offset) 9497 { 9498 /* Ratelimiting timestamp: */ 9499 static unsigned long prev_jiffy; 9500 9501 unsigned long preempt_disable_ip; 9502 9503 /* WARN_ON_ONCE() by default, no rate limit required: */ 9504 rcu_sleep_check(); 9505 9506 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 9507 !is_idle_task(current) && !current->non_block_count) || 9508 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9509 oops_in_progress) 9510 return; 9511 9512 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9513 return; 9514 prev_jiffy = jiffies; 9515 9516 /* Save this before calling printk(), since that will clobber it: */ 9517 preempt_disable_ip = get_preempt_disable_ip(current); 9518 9519 printk(KERN_ERR 9520 "BUG: sleeping function called from invalid context at %s:%d\n", 9521 file, line); 9522 printk(KERN_ERR 9523 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9524 in_atomic(), irqs_disabled(), current->non_block_count, 9525 current->pid, current->comm); 9526 9527 if (task_stack_end_corrupted(current)) 9528 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 9529 9530 debug_show_held_locks(current); 9531 if (irqs_disabled()) 9532 print_irqtrace_events(current); 9533 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 9534 && !preempt_count_equals(preempt_offset)) { 9535 pr_err("Preemption disabled at:"); 9536 print_ip_sym(KERN_ERR, preempt_disable_ip); 9537 } 9538 dump_stack(); 9539 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9540 } 9541 EXPORT_SYMBOL(___might_sleep); 9542 9543 void __cant_sleep(const char *file, int line, int preempt_offset) 9544 { 9545 static unsigned long prev_jiffy; 9546 9547 if (irqs_disabled()) 9548 return; 9549 9550 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9551 return; 9552 9553 if (preempt_count() > preempt_offset) 9554 return; 9555 9556 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9557 return; 9558 prev_jiffy = jiffies; 9559 9560 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9561 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9562 in_atomic(), irqs_disabled(), 9563 current->pid, current->comm); 9564 9565 debug_show_held_locks(current); 9566 dump_stack(); 9567 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9568 } 9569 EXPORT_SYMBOL_GPL(__cant_sleep); 9570 9571 #ifdef CONFIG_SMP 9572 void __cant_migrate(const char *file, int line) 9573 { 9574 static unsigned long prev_jiffy; 9575 9576 if (irqs_disabled()) 9577 return; 9578 9579 if (is_migration_disabled(current)) 9580 return; 9581 9582 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9583 return; 9584 9585 if (preempt_count() > 0) 9586 return; 9587 9588 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9589 return; 9590 prev_jiffy = jiffies; 9591 9592 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9593 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9594 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9595 current->pid, current->comm); 9596 9597 debug_show_held_locks(current); 9598 dump_stack(); 9599 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9600 } 9601 EXPORT_SYMBOL_GPL(__cant_migrate); 9602 #endif 9603 #endif 9604 9605 #ifdef CONFIG_MAGIC_SYSRQ 9606 void normalize_rt_tasks(void) 9607 { 9608 struct task_struct *g, *p; 9609 struct sched_attr attr = { 9610 .sched_policy = SCHED_NORMAL, 9611 }; 9612 9613 read_lock(&tasklist_lock); 9614 for_each_process_thread(g, p) { 9615 /* 9616 * Only normalize user tasks: 9617 */ 9618 if (p->flags & PF_KTHREAD) 9619 continue; 9620 9621 p->se.exec_start = 0; 9622 schedstat_set(p->se.statistics.wait_start, 0); 9623 schedstat_set(p->se.statistics.sleep_start, 0); 9624 schedstat_set(p->se.statistics.block_start, 0); 9625 9626 if (!dl_task(p) && !rt_task(p)) { 9627 /* 9628 * Renice negative nice level userspace 9629 * tasks back to 0: 9630 */ 9631 if (task_nice(p) < 0) 9632 set_user_nice(p, 0); 9633 continue; 9634 } 9635 9636 __sched_setscheduler(p, &attr, false, false); 9637 } 9638 read_unlock(&tasklist_lock); 9639 } 9640 9641 #endif /* CONFIG_MAGIC_SYSRQ */ 9642 9643 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9644 /* 9645 * These functions are only useful for the IA64 MCA handling, or kdb. 9646 * 9647 * They can only be called when the whole system has been 9648 * stopped - every CPU needs to be quiescent, and no scheduling 9649 * activity can take place. Using them for anything else would 9650 * be a serious bug, and as a result, they aren't even visible 9651 * under any other configuration. 9652 */ 9653 9654 /** 9655 * curr_task - return the current task for a given CPU. 9656 * @cpu: the processor in question. 9657 * 9658 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9659 * 9660 * Return: The current task for @cpu. 9661 */ 9662 struct task_struct *curr_task(int cpu) 9663 { 9664 return cpu_curr(cpu); 9665 } 9666 9667 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 9668 9669 #ifdef CONFIG_IA64 9670 /** 9671 * ia64_set_curr_task - set the current task for a given CPU. 9672 * @cpu: the processor in question. 9673 * @p: the task pointer to set. 9674 * 9675 * Description: This function must only be used when non-maskable interrupts 9676 * are serviced on a separate stack. It allows the architecture to switch the 9677 * notion of the current task on a CPU in a non-blocking manner. This function 9678 * must be called with all CPU's synchronized, and interrupts disabled, the 9679 * and caller must save the original value of the current task (see 9680 * curr_task() above) and restore that value before reenabling interrupts and 9681 * re-starting the system. 9682 * 9683 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9684 */ 9685 void ia64_set_curr_task(int cpu, struct task_struct *p) 9686 { 9687 cpu_curr(cpu) = p; 9688 } 9689 9690 #endif 9691 9692 #ifdef CONFIG_CGROUP_SCHED 9693 /* task_group_lock serializes the addition/removal of task groups */ 9694 static DEFINE_SPINLOCK(task_group_lock); 9695 9696 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9697 struct task_group *parent) 9698 { 9699 #ifdef CONFIG_UCLAMP_TASK_GROUP 9700 enum uclamp_id clamp_id; 9701 9702 for_each_clamp_id(clamp_id) { 9703 uclamp_se_set(&tg->uclamp_req[clamp_id], 9704 uclamp_none(clamp_id), false); 9705 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9706 } 9707 #endif 9708 } 9709 9710 static void sched_free_group(struct task_group *tg) 9711 { 9712 free_fair_sched_group(tg); 9713 free_rt_sched_group(tg); 9714 autogroup_free(tg); 9715 kmem_cache_free(task_group_cache, tg); 9716 } 9717 9718 /* allocate runqueue etc for a new task group */ 9719 struct task_group *sched_create_group(struct task_group *parent) 9720 { 9721 struct task_group *tg; 9722 9723 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9724 if (!tg) 9725 return ERR_PTR(-ENOMEM); 9726 9727 if (!alloc_fair_sched_group(tg, parent)) 9728 goto err; 9729 9730 if (!alloc_rt_sched_group(tg, parent)) 9731 goto err; 9732 9733 alloc_uclamp_sched_group(tg, parent); 9734 9735 return tg; 9736 9737 err: 9738 sched_free_group(tg); 9739 return ERR_PTR(-ENOMEM); 9740 } 9741 9742 void sched_online_group(struct task_group *tg, struct task_group *parent) 9743 { 9744 unsigned long flags; 9745 9746 spin_lock_irqsave(&task_group_lock, flags); 9747 list_add_rcu(&tg->list, &task_groups); 9748 9749 /* Root should already exist: */ 9750 WARN_ON(!parent); 9751 9752 tg->parent = parent; 9753 INIT_LIST_HEAD(&tg->children); 9754 list_add_rcu(&tg->siblings, &parent->children); 9755 spin_unlock_irqrestore(&task_group_lock, flags); 9756 9757 online_fair_sched_group(tg); 9758 } 9759 9760 /* rcu callback to free various structures associated with a task group */ 9761 static void sched_free_group_rcu(struct rcu_head *rhp) 9762 { 9763 /* Now it should be safe to free those cfs_rqs: */ 9764 sched_free_group(container_of(rhp, struct task_group, rcu)); 9765 } 9766 9767 void sched_destroy_group(struct task_group *tg) 9768 { 9769 /* Wait for possible concurrent references to cfs_rqs complete: */ 9770 call_rcu(&tg->rcu, sched_free_group_rcu); 9771 } 9772 9773 void sched_offline_group(struct task_group *tg) 9774 { 9775 unsigned long flags; 9776 9777 /* End participation in shares distribution: */ 9778 unregister_fair_sched_group(tg); 9779 9780 spin_lock_irqsave(&task_group_lock, flags); 9781 list_del_rcu(&tg->list); 9782 list_del_rcu(&tg->siblings); 9783 spin_unlock_irqrestore(&task_group_lock, flags); 9784 } 9785 9786 static void sched_change_group(struct task_struct *tsk, int type) 9787 { 9788 struct task_group *tg; 9789 9790 /* 9791 * All callers are synchronized by task_rq_lock(); we do not use RCU 9792 * which is pointless here. Thus, we pass "true" to task_css_check() 9793 * to prevent lockdep warnings. 9794 */ 9795 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9796 struct task_group, css); 9797 tg = autogroup_task_group(tsk, tg); 9798 tsk->sched_task_group = tg; 9799 9800 #ifdef CONFIG_FAIR_GROUP_SCHED 9801 if (tsk->sched_class->task_change_group) 9802 tsk->sched_class->task_change_group(tsk, type); 9803 else 9804 #endif 9805 set_task_rq(tsk, task_cpu(tsk)); 9806 } 9807 9808 /* 9809 * Change task's runqueue when it moves between groups. 9810 * 9811 * The caller of this function should have put the task in its new group by 9812 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9813 * its new group. 9814 */ 9815 void sched_move_task(struct task_struct *tsk) 9816 { 9817 int queued, running, queue_flags = 9818 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9819 struct rq_flags rf; 9820 struct rq *rq; 9821 9822 rq = task_rq_lock(tsk, &rf); 9823 update_rq_clock(rq); 9824 9825 running = task_current(rq, tsk); 9826 queued = task_on_rq_queued(tsk); 9827 9828 if (queued) 9829 dequeue_task(rq, tsk, queue_flags); 9830 if (running) 9831 put_prev_task(rq, tsk); 9832 9833 sched_change_group(tsk, TASK_MOVE_GROUP); 9834 9835 if (queued) 9836 enqueue_task(rq, tsk, queue_flags); 9837 if (running) { 9838 set_next_task(rq, tsk); 9839 /* 9840 * After changing group, the running task may have joined a 9841 * throttled one but it's still the running task. Trigger a 9842 * resched to make sure that task can still run. 9843 */ 9844 resched_curr(rq); 9845 } 9846 9847 task_rq_unlock(rq, tsk, &rf); 9848 } 9849 9850 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 9851 { 9852 return css ? container_of(css, struct task_group, css) : NULL; 9853 } 9854 9855 static struct cgroup_subsys_state * 9856 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9857 { 9858 struct task_group *parent = css_tg(parent_css); 9859 struct task_group *tg; 9860 9861 if (!parent) { 9862 /* This is early initialization for the top cgroup */ 9863 return &root_task_group.css; 9864 } 9865 9866 tg = sched_create_group(parent); 9867 if (IS_ERR(tg)) 9868 return ERR_PTR(-ENOMEM); 9869 9870 return &tg->css; 9871 } 9872 9873 /* Expose task group only after completing cgroup initialization */ 9874 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9875 { 9876 struct task_group *tg = css_tg(css); 9877 struct task_group *parent = css_tg(css->parent); 9878 9879 if (parent) 9880 sched_online_group(tg, parent); 9881 9882 #ifdef CONFIG_UCLAMP_TASK_GROUP 9883 /* Propagate the effective uclamp value for the new group */ 9884 mutex_lock(&uclamp_mutex); 9885 rcu_read_lock(); 9886 cpu_util_update_eff(css); 9887 rcu_read_unlock(); 9888 mutex_unlock(&uclamp_mutex); 9889 #endif 9890 9891 return 0; 9892 } 9893 9894 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9895 { 9896 struct task_group *tg = css_tg(css); 9897 9898 sched_offline_group(tg); 9899 } 9900 9901 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9902 { 9903 struct task_group *tg = css_tg(css); 9904 9905 /* 9906 * Relies on the RCU grace period between css_released() and this. 9907 */ 9908 sched_free_group(tg); 9909 } 9910 9911 /* 9912 * This is called before wake_up_new_task(), therefore we really only 9913 * have to set its group bits, all the other stuff does not apply. 9914 */ 9915 static void cpu_cgroup_fork(struct task_struct *task) 9916 { 9917 struct rq_flags rf; 9918 struct rq *rq; 9919 9920 rq = task_rq_lock(task, &rf); 9921 9922 update_rq_clock(rq); 9923 sched_change_group(task, TASK_SET_GROUP); 9924 9925 task_rq_unlock(rq, task, &rf); 9926 } 9927 9928 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9929 { 9930 struct task_struct *task; 9931 struct cgroup_subsys_state *css; 9932 int ret = 0; 9933 9934 cgroup_taskset_for_each(task, css, tset) { 9935 #ifdef CONFIG_RT_GROUP_SCHED 9936 if (!sched_rt_can_attach(css_tg(css), task)) 9937 return -EINVAL; 9938 #endif 9939 /* 9940 * Serialize against wake_up_new_task() such that if it's 9941 * running, we're sure to observe its full state. 9942 */ 9943 raw_spin_lock_irq(&task->pi_lock); 9944 /* 9945 * Avoid calling sched_move_task() before wake_up_new_task() 9946 * has happened. This would lead to problems with PELT, due to 9947 * move wanting to detach+attach while we're not attached yet. 9948 */ 9949 if (READ_ONCE(task->__state) == TASK_NEW) 9950 ret = -EINVAL; 9951 raw_spin_unlock_irq(&task->pi_lock); 9952 9953 if (ret) 9954 break; 9955 } 9956 return ret; 9957 } 9958 9959 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9960 { 9961 struct task_struct *task; 9962 struct cgroup_subsys_state *css; 9963 9964 cgroup_taskset_for_each(task, css, tset) 9965 sched_move_task(task); 9966 } 9967 9968 #ifdef CONFIG_UCLAMP_TASK_GROUP 9969 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9970 { 9971 struct cgroup_subsys_state *top_css = css; 9972 struct uclamp_se *uc_parent = NULL; 9973 struct uclamp_se *uc_se = NULL; 9974 unsigned int eff[UCLAMP_CNT]; 9975 enum uclamp_id clamp_id; 9976 unsigned int clamps; 9977 9978 lockdep_assert_held(&uclamp_mutex); 9979 SCHED_WARN_ON(!rcu_read_lock_held()); 9980 9981 css_for_each_descendant_pre(css, top_css) { 9982 uc_parent = css_tg(css)->parent 9983 ? css_tg(css)->parent->uclamp : NULL; 9984 9985 for_each_clamp_id(clamp_id) { 9986 /* Assume effective clamps matches requested clamps */ 9987 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9988 /* Cap effective clamps with parent's effective clamps */ 9989 if (uc_parent && 9990 eff[clamp_id] > uc_parent[clamp_id].value) { 9991 eff[clamp_id] = uc_parent[clamp_id].value; 9992 } 9993 } 9994 /* Ensure protection is always capped by limit */ 9995 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9996 9997 /* Propagate most restrictive effective clamps */ 9998 clamps = 0x0; 9999 uc_se = css_tg(css)->uclamp; 10000 for_each_clamp_id(clamp_id) { 10001 if (eff[clamp_id] == uc_se[clamp_id].value) 10002 continue; 10003 uc_se[clamp_id].value = eff[clamp_id]; 10004 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10005 clamps |= (0x1 << clamp_id); 10006 } 10007 if (!clamps) { 10008 css = css_rightmost_descendant(css); 10009 continue; 10010 } 10011 10012 /* Immediately update descendants RUNNABLE tasks */ 10013 uclamp_update_active_tasks(css); 10014 } 10015 } 10016 10017 /* 10018 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10019 * C expression. Since there is no way to convert a macro argument (N) into a 10020 * character constant, use two levels of macros. 10021 */ 10022 #define _POW10(exp) ((unsigned int)1e##exp) 10023 #define POW10(exp) _POW10(exp) 10024 10025 struct uclamp_request { 10026 #define UCLAMP_PERCENT_SHIFT 2 10027 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10028 s64 percent; 10029 u64 util; 10030 int ret; 10031 }; 10032 10033 static inline struct uclamp_request 10034 capacity_from_percent(char *buf) 10035 { 10036 struct uclamp_request req = { 10037 .percent = UCLAMP_PERCENT_SCALE, 10038 .util = SCHED_CAPACITY_SCALE, 10039 .ret = 0, 10040 }; 10041 10042 buf = strim(buf); 10043 if (strcmp(buf, "max")) { 10044 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10045 &req.percent); 10046 if (req.ret) 10047 return req; 10048 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10049 req.ret = -ERANGE; 10050 return req; 10051 } 10052 10053 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10054 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10055 } 10056 10057 return req; 10058 } 10059 10060 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10061 size_t nbytes, loff_t off, 10062 enum uclamp_id clamp_id) 10063 { 10064 struct uclamp_request req; 10065 struct task_group *tg; 10066 10067 req = capacity_from_percent(buf); 10068 if (req.ret) 10069 return req.ret; 10070 10071 static_branch_enable(&sched_uclamp_used); 10072 10073 mutex_lock(&uclamp_mutex); 10074 rcu_read_lock(); 10075 10076 tg = css_tg(of_css(of)); 10077 if (tg->uclamp_req[clamp_id].value != req.util) 10078 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10079 10080 /* 10081 * Because of not recoverable conversion rounding we keep track of the 10082 * exact requested value 10083 */ 10084 tg->uclamp_pct[clamp_id] = req.percent; 10085 10086 /* Update effective clamps to track the most restrictive value */ 10087 cpu_util_update_eff(of_css(of)); 10088 10089 rcu_read_unlock(); 10090 mutex_unlock(&uclamp_mutex); 10091 10092 return nbytes; 10093 } 10094 10095 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10096 char *buf, size_t nbytes, 10097 loff_t off) 10098 { 10099 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10100 } 10101 10102 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10103 char *buf, size_t nbytes, 10104 loff_t off) 10105 { 10106 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10107 } 10108 10109 static inline void cpu_uclamp_print(struct seq_file *sf, 10110 enum uclamp_id clamp_id) 10111 { 10112 struct task_group *tg; 10113 u64 util_clamp; 10114 u64 percent; 10115 u32 rem; 10116 10117 rcu_read_lock(); 10118 tg = css_tg(seq_css(sf)); 10119 util_clamp = tg->uclamp_req[clamp_id].value; 10120 rcu_read_unlock(); 10121 10122 if (util_clamp == SCHED_CAPACITY_SCALE) { 10123 seq_puts(sf, "max\n"); 10124 return; 10125 } 10126 10127 percent = tg->uclamp_pct[clamp_id]; 10128 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10129 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10130 } 10131 10132 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10133 { 10134 cpu_uclamp_print(sf, UCLAMP_MIN); 10135 return 0; 10136 } 10137 10138 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10139 { 10140 cpu_uclamp_print(sf, UCLAMP_MAX); 10141 return 0; 10142 } 10143 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10144 10145 #ifdef CONFIG_FAIR_GROUP_SCHED 10146 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10147 struct cftype *cftype, u64 shareval) 10148 { 10149 if (shareval > scale_load_down(ULONG_MAX)) 10150 shareval = MAX_SHARES; 10151 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10152 } 10153 10154 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10155 struct cftype *cft) 10156 { 10157 struct task_group *tg = css_tg(css); 10158 10159 return (u64) scale_load_down(tg->shares); 10160 } 10161 10162 #ifdef CONFIG_CFS_BANDWIDTH 10163 static DEFINE_MUTEX(cfs_constraints_mutex); 10164 10165 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10166 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10167 /* More than 203 days if BW_SHIFT equals 20. */ 10168 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10169 10170 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10171 10172 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10173 u64 burst) 10174 { 10175 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10176 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10177 10178 if (tg == &root_task_group) 10179 return -EINVAL; 10180 10181 /* 10182 * Ensure we have at some amount of bandwidth every period. This is 10183 * to prevent reaching a state of large arrears when throttled via 10184 * entity_tick() resulting in prolonged exit starvation. 10185 */ 10186 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10187 return -EINVAL; 10188 10189 /* 10190 * Likewise, bound things on the other side by preventing insane quota 10191 * periods. This also allows us to normalize in computing quota 10192 * feasibility. 10193 */ 10194 if (period > max_cfs_quota_period) 10195 return -EINVAL; 10196 10197 /* 10198 * Bound quota to defend quota against overflow during bandwidth shift. 10199 */ 10200 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10201 return -EINVAL; 10202 10203 if (quota != RUNTIME_INF && (burst > quota || 10204 burst + quota > max_cfs_runtime)) 10205 return -EINVAL; 10206 10207 /* 10208 * Prevent race between setting of cfs_rq->runtime_enabled and 10209 * unthrottle_offline_cfs_rqs(). 10210 */ 10211 cpus_read_lock(); 10212 mutex_lock(&cfs_constraints_mutex); 10213 ret = __cfs_schedulable(tg, period, quota); 10214 if (ret) 10215 goto out_unlock; 10216 10217 runtime_enabled = quota != RUNTIME_INF; 10218 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10219 /* 10220 * If we need to toggle cfs_bandwidth_used, off->on must occur 10221 * before making related changes, and on->off must occur afterwards 10222 */ 10223 if (runtime_enabled && !runtime_was_enabled) 10224 cfs_bandwidth_usage_inc(); 10225 raw_spin_lock_irq(&cfs_b->lock); 10226 cfs_b->period = ns_to_ktime(period); 10227 cfs_b->quota = quota; 10228 cfs_b->burst = burst; 10229 10230 __refill_cfs_bandwidth_runtime(cfs_b); 10231 10232 /* Restart the period timer (if active) to handle new period expiry: */ 10233 if (runtime_enabled) 10234 start_cfs_bandwidth(cfs_b); 10235 10236 raw_spin_unlock_irq(&cfs_b->lock); 10237 10238 for_each_online_cpu(i) { 10239 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10240 struct rq *rq = cfs_rq->rq; 10241 struct rq_flags rf; 10242 10243 rq_lock_irq(rq, &rf); 10244 cfs_rq->runtime_enabled = runtime_enabled; 10245 cfs_rq->runtime_remaining = 0; 10246 10247 if (cfs_rq->throttled) 10248 unthrottle_cfs_rq(cfs_rq); 10249 rq_unlock_irq(rq, &rf); 10250 } 10251 if (runtime_was_enabled && !runtime_enabled) 10252 cfs_bandwidth_usage_dec(); 10253 out_unlock: 10254 mutex_unlock(&cfs_constraints_mutex); 10255 cpus_read_unlock(); 10256 10257 return ret; 10258 } 10259 10260 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10261 { 10262 u64 quota, period, burst; 10263 10264 period = ktime_to_ns(tg->cfs_bandwidth.period); 10265 burst = tg->cfs_bandwidth.burst; 10266 if (cfs_quota_us < 0) 10267 quota = RUNTIME_INF; 10268 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10269 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10270 else 10271 return -EINVAL; 10272 10273 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10274 } 10275 10276 static long tg_get_cfs_quota(struct task_group *tg) 10277 { 10278 u64 quota_us; 10279 10280 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10281 return -1; 10282 10283 quota_us = tg->cfs_bandwidth.quota; 10284 do_div(quota_us, NSEC_PER_USEC); 10285 10286 return quota_us; 10287 } 10288 10289 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10290 { 10291 u64 quota, period, burst; 10292 10293 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10294 return -EINVAL; 10295 10296 period = (u64)cfs_period_us * NSEC_PER_USEC; 10297 quota = tg->cfs_bandwidth.quota; 10298 burst = tg->cfs_bandwidth.burst; 10299 10300 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10301 } 10302 10303 static long tg_get_cfs_period(struct task_group *tg) 10304 { 10305 u64 cfs_period_us; 10306 10307 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10308 do_div(cfs_period_us, NSEC_PER_USEC); 10309 10310 return cfs_period_us; 10311 } 10312 10313 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10314 { 10315 u64 quota, period, burst; 10316 10317 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10318 return -EINVAL; 10319 10320 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10321 period = ktime_to_ns(tg->cfs_bandwidth.period); 10322 quota = tg->cfs_bandwidth.quota; 10323 10324 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10325 } 10326 10327 static long tg_get_cfs_burst(struct task_group *tg) 10328 { 10329 u64 burst_us; 10330 10331 burst_us = tg->cfs_bandwidth.burst; 10332 do_div(burst_us, NSEC_PER_USEC); 10333 10334 return burst_us; 10335 } 10336 10337 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10338 struct cftype *cft) 10339 { 10340 return tg_get_cfs_quota(css_tg(css)); 10341 } 10342 10343 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10344 struct cftype *cftype, s64 cfs_quota_us) 10345 { 10346 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10347 } 10348 10349 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10350 struct cftype *cft) 10351 { 10352 return tg_get_cfs_period(css_tg(css)); 10353 } 10354 10355 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10356 struct cftype *cftype, u64 cfs_period_us) 10357 { 10358 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10359 } 10360 10361 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10362 struct cftype *cft) 10363 { 10364 return tg_get_cfs_burst(css_tg(css)); 10365 } 10366 10367 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10368 struct cftype *cftype, u64 cfs_burst_us) 10369 { 10370 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10371 } 10372 10373 struct cfs_schedulable_data { 10374 struct task_group *tg; 10375 u64 period, quota; 10376 }; 10377 10378 /* 10379 * normalize group quota/period to be quota/max_period 10380 * note: units are usecs 10381 */ 10382 static u64 normalize_cfs_quota(struct task_group *tg, 10383 struct cfs_schedulable_data *d) 10384 { 10385 u64 quota, period; 10386 10387 if (tg == d->tg) { 10388 period = d->period; 10389 quota = d->quota; 10390 } else { 10391 period = tg_get_cfs_period(tg); 10392 quota = tg_get_cfs_quota(tg); 10393 } 10394 10395 /* note: these should typically be equivalent */ 10396 if (quota == RUNTIME_INF || quota == -1) 10397 return RUNTIME_INF; 10398 10399 return to_ratio(period, quota); 10400 } 10401 10402 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10403 { 10404 struct cfs_schedulable_data *d = data; 10405 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10406 s64 quota = 0, parent_quota = -1; 10407 10408 if (!tg->parent) { 10409 quota = RUNTIME_INF; 10410 } else { 10411 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10412 10413 quota = normalize_cfs_quota(tg, d); 10414 parent_quota = parent_b->hierarchical_quota; 10415 10416 /* 10417 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10418 * always take the min. On cgroup1, only inherit when no 10419 * limit is set: 10420 */ 10421 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10422 quota = min(quota, parent_quota); 10423 } else { 10424 if (quota == RUNTIME_INF) 10425 quota = parent_quota; 10426 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10427 return -EINVAL; 10428 } 10429 } 10430 cfs_b->hierarchical_quota = quota; 10431 10432 return 0; 10433 } 10434 10435 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10436 { 10437 int ret; 10438 struct cfs_schedulable_data data = { 10439 .tg = tg, 10440 .period = period, 10441 .quota = quota, 10442 }; 10443 10444 if (quota != RUNTIME_INF) { 10445 do_div(data.period, NSEC_PER_USEC); 10446 do_div(data.quota, NSEC_PER_USEC); 10447 } 10448 10449 rcu_read_lock(); 10450 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10451 rcu_read_unlock(); 10452 10453 return ret; 10454 } 10455 10456 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10457 { 10458 struct task_group *tg = css_tg(seq_css(sf)); 10459 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10460 10461 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10462 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10463 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10464 10465 if (schedstat_enabled() && tg != &root_task_group) { 10466 u64 ws = 0; 10467 int i; 10468 10469 for_each_possible_cpu(i) 10470 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 10471 10472 seq_printf(sf, "wait_sum %llu\n", ws); 10473 } 10474 10475 return 0; 10476 } 10477 #endif /* CONFIG_CFS_BANDWIDTH */ 10478 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10479 10480 #ifdef CONFIG_RT_GROUP_SCHED 10481 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10482 struct cftype *cft, s64 val) 10483 { 10484 return sched_group_set_rt_runtime(css_tg(css), val); 10485 } 10486 10487 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10488 struct cftype *cft) 10489 { 10490 return sched_group_rt_runtime(css_tg(css)); 10491 } 10492 10493 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10494 struct cftype *cftype, u64 rt_period_us) 10495 { 10496 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10497 } 10498 10499 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10500 struct cftype *cft) 10501 { 10502 return sched_group_rt_period(css_tg(css)); 10503 } 10504 #endif /* CONFIG_RT_GROUP_SCHED */ 10505 10506 #ifdef CONFIG_FAIR_GROUP_SCHED 10507 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10508 struct cftype *cft) 10509 { 10510 return css_tg(css)->idle; 10511 } 10512 10513 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10514 struct cftype *cft, s64 idle) 10515 { 10516 return sched_group_set_idle(css_tg(css), idle); 10517 } 10518 #endif 10519 10520 static struct cftype cpu_legacy_files[] = { 10521 #ifdef CONFIG_FAIR_GROUP_SCHED 10522 { 10523 .name = "shares", 10524 .read_u64 = cpu_shares_read_u64, 10525 .write_u64 = cpu_shares_write_u64, 10526 }, 10527 { 10528 .name = "idle", 10529 .read_s64 = cpu_idle_read_s64, 10530 .write_s64 = cpu_idle_write_s64, 10531 }, 10532 #endif 10533 #ifdef CONFIG_CFS_BANDWIDTH 10534 { 10535 .name = "cfs_quota_us", 10536 .read_s64 = cpu_cfs_quota_read_s64, 10537 .write_s64 = cpu_cfs_quota_write_s64, 10538 }, 10539 { 10540 .name = "cfs_period_us", 10541 .read_u64 = cpu_cfs_period_read_u64, 10542 .write_u64 = cpu_cfs_period_write_u64, 10543 }, 10544 { 10545 .name = "cfs_burst_us", 10546 .read_u64 = cpu_cfs_burst_read_u64, 10547 .write_u64 = cpu_cfs_burst_write_u64, 10548 }, 10549 { 10550 .name = "stat", 10551 .seq_show = cpu_cfs_stat_show, 10552 }, 10553 #endif 10554 #ifdef CONFIG_RT_GROUP_SCHED 10555 { 10556 .name = "rt_runtime_us", 10557 .read_s64 = cpu_rt_runtime_read, 10558 .write_s64 = cpu_rt_runtime_write, 10559 }, 10560 { 10561 .name = "rt_period_us", 10562 .read_u64 = cpu_rt_period_read_uint, 10563 .write_u64 = cpu_rt_period_write_uint, 10564 }, 10565 #endif 10566 #ifdef CONFIG_UCLAMP_TASK_GROUP 10567 { 10568 .name = "uclamp.min", 10569 .flags = CFTYPE_NOT_ON_ROOT, 10570 .seq_show = cpu_uclamp_min_show, 10571 .write = cpu_uclamp_min_write, 10572 }, 10573 { 10574 .name = "uclamp.max", 10575 .flags = CFTYPE_NOT_ON_ROOT, 10576 .seq_show = cpu_uclamp_max_show, 10577 .write = cpu_uclamp_max_write, 10578 }, 10579 #endif 10580 { } /* Terminate */ 10581 }; 10582 10583 static int cpu_extra_stat_show(struct seq_file *sf, 10584 struct cgroup_subsys_state *css) 10585 { 10586 #ifdef CONFIG_CFS_BANDWIDTH 10587 { 10588 struct task_group *tg = css_tg(css); 10589 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10590 u64 throttled_usec; 10591 10592 throttled_usec = cfs_b->throttled_time; 10593 do_div(throttled_usec, NSEC_PER_USEC); 10594 10595 seq_printf(sf, "nr_periods %d\n" 10596 "nr_throttled %d\n" 10597 "throttled_usec %llu\n", 10598 cfs_b->nr_periods, cfs_b->nr_throttled, 10599 throttled_usec); 10600 } 10601 #endif 10602 return 0; 10603 } 10604 10605 #ifdef CONFIG_FAIR_GROUP_SCHED 10606 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10607 struct cftype *cft) 10608 { 10609 struct task_group *tg = css_tg(css); 10610 u64 weight = scale_load_down(tg->shares); 10611 10612 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10613 } 10614 10615 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10616 struct cftype *cft, u64 weight) 10617 { 10618 /* 10619 * cgroup weight knobs should use the common MIN, DFL and MAX 10620 * values which are 1, 100 and 10000 respectively. While it loses 10621 * a bit of range on both ends, it maps pretty well onto the shares 10622 * value used by scheduler and the round-trip conversions preserve 10623 * the original value over the entire range. 10624 */ 10625 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10626 return -ERANGE; 10627 10628 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10629 10630 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10631 } 10632 10633 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10634 struct cftype *cft) 10635 { 10636 unsigned long weight = scale_load_down(css_tg(css)->shares); 10637 int last_delta = INT_MAX; 10638 int prio, delta; 10639 10640 /* find the closest nice value to the current weight */ 10641 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10642 delta = abs(sched_prio_to_weight[prio] - weight); 10643 if (delta >= last_delta) 10644 break; 10645 last_delta = delta; 10646 } 10647 10648 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10649 } 10650 10651 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10652 struct cftype *cft, s64 nice) 10653 { 10654 unsigned long weight; 10655 int idx; 10656 10657 if (nice < MIN_NICE || nice > MAX_NICE) 10658 return -ERANGE; 10659 10660 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10661 idx = array_index_nospec(idx, 40); 10662 weight = sched_prio_to_weight[idx]; 10663 10664 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10665 } 10666 #endif 10667 10668 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10669 long period, long quota) 10670 { 10671 if (quota < 0) 10672 seq_puts(sf, "max"); 10673 else 10674 seq_printf(sf, "%ld", quota); 10675 10676 seq_printf(sf, " %ld\n", period); 10677 } 10678 10679 /* caller should put the current value in *@periodp before calling */ 10680 static int __maybe_unused cpu_period_quota_parse(char *buf, 10681 u64 *periodp, u64 *quotap) 10682 { 10683 char tok[21]; /* U64_MAX */ 10684 10685 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10686 return -EINVAL; 10687 10688 *periodp *= NSEC_PER_USEC; 10689 10690 if (sscanf(tok, "%llu", quotap)) 10691 *quotap *= NSEC_PER_USEC; 10692 else if (!strcmp(tok, "max")) 10693 *quotap = RUNTIME_INF; 10694 else 10695 return -EINVAL; 10696 10697 return 0; 10698 } 10699 10700 #ifdef CONFIG_CFS_BANDWIDTH 10701 static int cpu_max_show(struct seq_file *sf, void *v) 10702 { 10703 struct task_group *tg = css_tg(seq_css(sf)); 10704 10705 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10706 return 0; 10707 } 10708 10709 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10710 char *buf, size_t nbytes, loff_t off) 10711 { 10712 struct task_group *tg = css_tg(of_css(of)); 10713 u64 period = tg_get_cfs_period(tg); 10714 u64 burst = tg_get_cfs_burst(tg); 10715 u64 quota; 10716 int ret; 10717 10718 ret = cpu_period_quota_parse(buf, &period, "a); 10719 if (!ret) 10720 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10721 return ret ?: nbytes; 10722 } 10723 #endif 10724 10725 static struct cftype cpu_files[] = { 10726 #ifdef CONFIG_FAIR_GROUP_SCHED 10727 { 10728 .name = "weight", 10729 .flags = CFTYPE_NOT_ON_ROOT, 10730 .read_u64 = cpu_weight_read_u64, 10731 .write_u64 = cpu_weight_write_u64, 10732 }, 10733 { 10734 .name = "weight.nice", 10735 .flags = CFTYPE_NOT_ON_ROOT, 10736 .read_s64 = cpu_weight_nice_read_s64, 10737 .write_s64 = cpu_weight_nice_write_s64, 10738 }, 10739 { 10740 .name = "idle", 10741 .flags = CFTYPE_NOT_ON_ROOT, 10742 .read_s64 = cpu_idle_read_s64, 10743 .write_s64 = cpu_idle_write_s64, 10744 }, 10745 #endif 10746 #ifdef CONFIG_CFS_BANDWIDTH 10747 { 10748 .name = "max", 10749 .flags = CFTYPE_NOT_ON_ROOT, 10750 .seq_show = cpu_max_show, 10751 .write = cpu_max_write, 10752 }, 10753 { 10754 .name = "max.burst", 10755 .flags = CFTYPE_NOT_ON_ROOT, 10756 .read_u64 = cpu_cfs_burst_read_u64, 10757 .write_u64 = cpu_cfs_burst_write_u64, 10758 }, 10759 #endif 10760 #ifdef CONFIG_UCLAMP_TASK_GROUP 10761 { 10762 .name = "uclamp.min", 10763 .flags = CFTYPE_NOT_ON_ROOT, 10764 .seq_show = cpu_uclamp_min_show, 10765 .write = cpu_uclamp_min_write, 10766 }, 10767 { 10768 .name = "uclamp.max", 10769 .flags = CFTYPE_NOT_ON_ROOT, 10770 .seq_show = cpu_uclamp_max_show, 10771 .write = cpu_uclamp_max_write, 10772 }, 10773 #endif 10774 { } /* terminate */ 10775 }; 10776 10777 struct cgroup_subsys cpu_cgrp_subsys = { 10778 .css_alloc = cpu_cgroup_css_alloc, 10779 .css_online = cpu_cgroup_css_online, 10780 .css_released = cpu_cgroup_css_released, 10781 .css_free = cpu_cgroup_css_free, 10782 .css_extra_stat_show = cpu_extra_stat_show, 10783 .fork = cpu_cgroup_fork, 10784 .can_attach = cpu_cgroup_can_attach, 10785 .attach = cpu_cgroup_attach, 10786 .legacy_cftypes = cpu_legacy_files, 10787 .dfl_cftypes = cpu_files, 10788 .early_init = true, 10789 .threaded = true, 10790 }; 10791 10792 #endif /* CONFIG_CGROUP_SCHED */ 10793 10794 void dump_cpu_task(int cpu) 10795 { 10796 pr_info("Task dump for CPU %d:\n", cpu); 10797 sched_show_task(cpu_curr(cpu)); 10798 } 10799 10800 /* 10801 * Nice levels are multiplicative, with a gentle 10% change for every 10802 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10803 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10804 * that remained on nice 0. 10805 * 10806 * The "10% effect" is relative and cumulative: from _any_ nice level, 10807 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10808 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10809 * If a task goes up by ~10% and another task goes down by ~10% then 10810 * the relative distance between them is ~25%.) 10811 */ 10812 const int sched_prio_to_weight[40] = { 10813 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10814 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10815 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10816 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10817 /* 0 */ 1024, 820, 655, 526, 423, 10818 /* 5 */ 335, 272, 215, 172, 137, 10819 /* 10 */ 110, 87, 70, 56, 45, 10820 /* 15 */ 36, 29, 23, 18, 15, 10821 }; 10822 10823 /* 10824 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 10825 * 10826 * In cases where the weight does not change often, we can use the 10827 * precalculated inverse to speed up arithmetics by turning divisions 10828 * into multiplications: 10829 */ 10830 const u32 sched_prio_to_wmult[40] = { 10831 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10832 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10833 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10834 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10835 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10836 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10837 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10838 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10839 }; 10840 10841 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10842 { 10843 trace_sched_update_nr_running_tp(rq, count); 10844 } 10845