xref: /openbmc/linux/kernel/sched/core.c (revision 2634682fdffd9ba6e74b76be8aa91cf8b2e05c41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
43 
44 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
45 
46 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
47 /*
48  * Debugging: various feature bits
49  *
50  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
51  * sysctl_sched_features, defined in sched.h, to allow constants propagation
52  * at compile time and compiler optimization based on features default.
53  */
54 #define SCHED_FEAT(name, enabled)	\
55 	(1UL << __SCHED_FEAT_##name) * enabled |
56 const_debug unsigned int sysctl_sched_features =
57 #include "features.h"
58 	0;
59 #undef SCHED_FEAT
60 #endif
61 
62 /*
63  * Number of tasks to iterate in a single balance run.
64  * Limited because this is done with IRQs disabled.
65  */
66 const_debug unsigned int sysctl_sched_nr_migrate = 32;
67 
68 /*
69  * period over which we measure -rt task CPU usage in us.
70  * default: 1s
71  */
72 unsigned int sysctl_sched_rt_period = 1000000;
73 
74 __read_mostly int scheduler_running;
75 
76 /*
77  * part of the period that we allow rt tasks to run in us.
78  * default: 0.95s
79  */
80 int sysctl_sched_rt_runtime = 950000;
81 
82 
83 /*
84  * Serialization rules:
85  *
86  * Lock order:
87  *
88  *   p->pi_lock
89  *     rq->lock
90  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
91  *
92  *  rq1->lock
93  *    rq2->lock  where: rq1 < rq2
94  *
95  * Regular state:
96  *
97  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
98  * local CPU's rq->lock, it optionally removes the task from the runqueue and
99  * always looks at the local rq data structures to find the most elegible task
100  * to run next.
101  *
102  * Task enqueue is also under rq->lock, possibly taken from another CPU.
103  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
104  * the local CPU to avoid bouncing the runqueue state around [ see
105  * ttwu_queue_wakelist() ]
106  *
107  * Task wakeup, specifically wakeups that involve migration, are horribly
108  * complicated to avoid having to take two rq->locks.
109  *
110  * Special state:
111  *
112  * System-calls and anything external will use task_rq_lock() which acquires
113  * both p->pi_lock and rq->lock. As a consequence the state they change is
114  * stable while holding either lock:
115  *
116  *  - sched_setaffinity()/
117  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
118  *  - set_user_nice():		p->se.load, p->*prio
119  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
120  *				p->se.load, p->rt_priority,
121  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
122  *  - sched_setnuma():		p->numa_preferred_nid
123  *  - sched_move_task()/
124  *    cpu_cgroup_fork():	p->sched_task_group
125  *  - uclamp_update_active()	p->uclamp*
126  *
127  * p->state <- TASK_*:
128  *
129  *   is changed locklessly using set_current_state(), __set_current_state() or
130  *   set_special_state(), see their respective comments, or by
131  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
132  *   concurrent self.
133  *
134  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
135  *
136  *   is set by activate_task() and cleared by deactivate_task(), under
137  *   rq->lock. Non-zero indicates the task is runnable, the special
138  *   ON_RQ_MIGRATING state is used for migration without holding both
139  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
140  *
141  * p->on_cpu <- { 0, 1 }:
142  *
143  *   is set by prepare_task() and cleared by finish_task() such that it will be
144  *   set before p is scheduled-in and cleared after p is scheduled-out, both
145  *   under rq->lock. Non-zero indicates the task is running on its CPU.
146  *
147  *   [ The astute reader will observe that it is possible for two tasks on one
148  *     CPU to have ->on_cpu = 1 at the same time. ]
149  *
150  * task_cpu(p): is changed by set_task_cpu(), the rules are:
151  *
152  *  - Don't call set_task_cpu() on a blocked task:
153  *
154  *    We don't care what CPU we're not running on, this simplifies hotplug,
155  *    the CPU assignment of blocked tasks isn't required to be valid.
156  *
157  *  - for try_to_wake_up(), called under p->pi_lock:
158  *
159  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
160  *
161  *  - for migration called under rq->lock:
162  *    [ see task_on_rq_migrating() in task_rq_lock() ]
163  *
164  *    o move_queued_task()
165  *    o detach_task()
166  *
167  *  - for migration called under double_rq_lock():
168  *
169  *    o __migrate_swap_task()
170  *    o push_rt_task() / pull_rt_task()
171  *    o push_dl_task() / pull_dl_task()
172  *    o dl_task_offline_migration()
173  *
174  */
175 
176 /*
177  * __task_rq_lock - lock the rq @p resides on.
178  */
179 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
180 	__acquires(rq->lock)
181 {
182 	struct rq *rq;
183 
184 	lockdep_assert_held(&p->pi_lock);
185 
186 	for (;;) {
187 		rq = task_rq(p);
188 		raw_spin_lock(&rq->lock);
189 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
190 			rq_pin_lock(rq, rf);
191 			return rq;
192 		}
193 		raw_spin_unlock(&rq->lock);
194 
195 		while (unlikely(task_on_rq_migrating(p)))
196 			cpu_relax();
197 	}
198 }
199 
200 /*
201  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
202  */
203 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
204 	__acquires(p->pi_lock)
205 	__acquires(rq->lock)
206 {
207 	struct rq *rq;
208 
209 	for (;;) {
210 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
211 		rq = task_rq(p);
212 		raw_spin_lock(&rq->lock);
213 		/*
214 		 *	move_queued_task()		task_rq_lock()
215 		 *
216 		 *	ACQUIRE (rq->lock)
217 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
218 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
219 		 *	[S] ->cpu = new_cpu		[L] task_rq()
220 		 *					[L] ->on_rq
221 		 *	RELEASE (rq->lock)
222 		 *
223 		 * If we observe the old CPU in task_rq_lock(), the acquire of
224 		 * the old rq->lock will fully serialize against the stores.
225 		 *
226 		 * If we observe the new CPU in task_rq_lock(), the address
227 		 * dependency headed by '[L] rq = task_rq()' and the acquire
228 		 * will pair with the WMB to ensure we then also see migrating.
229 		 */
230 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
231 			rq_pin_lock(rq, rf);
232 			return rq;
233 		}
234 		raw_spin_unlock(&rq->lock);
235 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
236 
237 		while (unlikely(task_on_rq_migrating(p)))
238 			cpu_relax();
239 	}
240 }
241 
242 /*
243  * RQ-clock updating methods:
244  */
245 
246 static void update_rq_clock_task(struct rq *rq, s64 delta)
247 {
248 /*
249  * In theory, the compile should just see 0 here, and optimize out the call
250  * to sched_rt_avg_update. But I don't trust it...
251  */
252 	s64 __maybe_unused steal = 0, irq_delta = 0;
253 
254 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
255 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
256 
257 	/*
258 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
259 	 * this case when a previous update_rq_clock() happened inside a
260 	 * {soft,}irq region.
261 	 *
262 	 * When this happens, we stop ->clock_task and only update the
263 	 * prev_irq_time stamp to account for the part that fit, so that a next
264 	 * update will consume the rest. This ensures ->clock_task is
265 	 * monotonic.
266 	 *
267 	 * It does however cause some slight miss-attribution of {soft,}irq
268 	 * time, a more accurate solution would be to update the irq_time using
269 	 * the current rq->clock timestamp, except that would require using
270 	 * atomic ops.
271 	 */
272 	if (irq_delta > delta)
273 		irq_delta = delta;
274 
275 	rq->prev_irq_time += irq_delta;
276 	delta -= irq_delta;
277 #endif
278 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
279 	if (static_key_false((&paravirt_steal_rq_enabled))) {
280 		steal = paravirt_steal_clock(cpu_of(rq));
281 		steal -= rq->prev_steal_time_rq;
282 
283 		if (unlikely(steal > delta))
284 			steal = delta;
285 
286 		rq->prev_steal_time_rq += steal;
287 		delta -= steal;
288 	}
289 #endif
290 
291 	rq->clock_task += delta;
292 
293 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
294 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
295 		update_irq_load_avg(rq, irq_delta + steal);
296 #endif
297 	update_rq_clock_pelt(rq, delta);
298 }
299 
300 void update_rq_clock(struct rq *rq)
301 {
302 	s64 delta;
303 
304 	lockdep_assert_held(&rq->lock);
305 
306 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
307 		return;
308 
309 #ifdef CONFIG_SCHED_DEBUG
310 	if (sched_feat(WARN_DOUBLE_CLOCK))
311 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
312 	rq->clock_update_flags |= RQCF_UPDATED;
313 #endif
314 
315 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
316 	if (delta < 0)
317 		return;
318 	rq->clock += delta;
319 	update_rq_clock_task(rq, delta);
320 }
321 
322 static inline void
323 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
324 {
325 	csd->flags = 0;
326 	csd->func = func;
327 	csd->info = rq;
328 }
329 
330 #ifdef CONFIG_SCHED_HRTICK
331 /*
332  * Use HR-timers to deliver accurate preemption points.
333  */
334 
335 static void hrtick_clear(struct rq *rq)
336 {
337 	if (hrtimer_active(&rq->hrtick_timer))
338 		hrtimer_cancel(&rq->hrtick_timer);
339 }
340 
341 /*
342  * High-resolution timer tick.
343  * Runs from hardirq context with interrupts disabled.
344  */
345 static enum hrtimer_restart hrtick(struct hrtimer *timer)
346 {
347 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
348 	struct rq_flags rf;
349 
350 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
351 
352 	rq_lock(rq, &rf);
353 	update_rq_clock(rq);
354 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
355 	rq_unlock(rq, &rf);
356 
357 	return HRTIMER_NORESTART;
358 }
359 
360 #ifdef CONFIG_SMP
361 
362 static void __hrtick_restart(struct rq *rq)
363 {
364 	struct hrtimer *timer = &rq->hrtick_timer;
365 
366 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
367 }
368 
369 /*
370  * called from hardirq (IPI) context
371  */
372 static void __hrtick_start(void *arg)
373 {
374 	struct rq *rq = arg;
375 	struct rq_flags rf;
376 
377 	rq_lock(rq, &rf);
378 	__hrtick_restart(rq);
379 	rq_unlock(rq, &rf);
380 }
381 
382 /*
383  * Called to set the hrtick timer state.
384  *
385  * called with rq->lock held and irqs disabled
386  */
387 void hrtick_start(struct rq *rq, u64 delay)
388 {
389 	struct hrtimer *timer = &rq->hrtick_timer;
390 	ktime_t time;
391 	s64 delta;
392 
393 	/*
394 	 * Don't schedule slices shorter than 10000ns, that just
395 	 * doesn't make sense and can cause timer DoS.
396 	 */
397 	delta = max_t(s64, delay, 10000LL);
398 	time = ktime_add_ns(timer->base->get_time(), delta);
399 
400 	hrtimer_set_expires(timer, time);
401 
402 	if (rq == this_rq())
403 		__hrtick_restart(rq);
404 	else
405 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
406 }
407 
408 #else
409 /*
410  * Called to set the hrtick timer state.
411  *
412  * called with rq->lock held and irqs disabled
413  */
414 void hrtick_start(struct rq *rq, u64 delay)
415 {
416 	/*
417 	 * Don't schedule slices shorter than 10000ns, that just
418 	 * doesn't make sense. Rely on vruntime for fairness.
419 	 */
420 	delay = max_t(u64, delay, 10000LL);
421 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
422 		      HRTIMER_MODE_REL_PINNED_HARD);
423 }
424 
425 #endif /* CONFIG_SMP */
426 
427 static void hrtick_rq_init(struct rq *rq)
428 {
429 #ifdef CONFIG_SMP
430 	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
431 #endif
432 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
433 	rq->hrtick_timer.function = hrtick;
434 }
435 #else	/* CONFIG_SCHED_HRTICK */
436 static inline void hrtick_clear(struct rq *rq)
437 {
438 }
439 
440 static inline void hrtick_rq_init(struct rq *rq)
441 {
442 }
443 #endif	/* CONFIG_SCHED_HRTICK */
444 
445 /*
446  * cmpxchg based fetch_or, macro so it works for different integer types
447  */
448 #define fetch_or(ptr, mask)						\
449 	({								\
450 		typeof(ptr) _ptr = (ptr);				\
451 		typeof(mask) _mask = (mask);				\
452 		typeof(*_ptr) _old, _val = *_ptr;			\
453 									\
454 		for (;;) {						\
455 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
456 			if (_old == _val)				\
457 				break;					\
458 			_val = _old;					\
459 		}							\
460 	_old;								\
461 })
462 
463 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
464 /*
465  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
466  * this avoids any races wrt polling state changes and thereby avoids
467  * spurious IPIs.
468  */
469 static bool set_nr_and_not_polling(struct task_struct *p)
470 {
471 	struct thread_info *ti = task_thread_info(p);
472 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
473 }
474 
475 /*
476  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
477  *
478  * If this returns true, then the idle task promises to call
479  * sched_ttwu_pending() and reschedule soon.
480  */
481 static bool set_nr_if_polling(struct task_struct *p)
482 {
483 	struct thread_info *ti = task_thread_info(p);
484 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
485 
486 	for (;;) {
487 		if (!(val & _TIF_POLLING_NRFLAG))
488 			return false;
489 		if (val & _TIF_NEED_RESCHED)
490 			return true;
491 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
492 		if (old == val)
493 			break;
494 		val = old;
495 	}
496 	return true;
497 }
498 
499 #else
500 static bool set_nr_and_not_polling(struct task_struct *p)
501 {
502 	set_tsk_need_resched(p);
503 	return true;
504 }
505 
506 #ifdef CONFIG_SMP
507 static bool set_nr_if_polling(struct task_struct *p)
508 {
509 	return false;
510 }
511 #endif
512 #endif
513 
514 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
515 {
516 	struct wake_q_node *node = &task->wake_q;
517 
518 	/*
519 	 * Atomically grab the task, if ->wake_q is !nil already it means
520 	 * its already queued (either by us or someone else) and will get the
521 	 * wakeup due to that.
522 	 *
523 	 * In order to ensure that a pending wakeup will observe our pending
524 	 * state, even in the failed case, an explicit smp_mb() must be used.
525 	 */
526 	smp_mb__before_atomic();
527 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
528 		return false;
529 
530 	/*
531 	 * The head is context local, there can be no concurrency.
532 	 */
533 	*head->lastp = node;
534 	head->lastp = &node->next;
535 	return true;
536 }
537 
538 /**
539  * wake_q_add() - queue a wakeup for 'later' waking.
540  * @head: the wake_q_head to add @task to
541  * @task: the task to queue for 'later' wakeup
542  *
543  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
544  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
545  * instantly.
546  *
547  * This function must be used as-if it were wake_up_process(); IOW the task
548  * must be ready to be woken at this location.
549  */
550 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
551 {
552 	if (__wake_q_add(head, task))
553 		get_task_struct(task);
554 }
555 
556 /**
557  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
558  * @head: the wake_q_head to add @task to
559  * @task: the task to queue for 'later' wakeup
560  *
561  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
562  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
563  * instantly.
564  *
565  * This function must be used as-if it were wake_up_process(); IOW the task
566  * must be ready to be woken at this location.
567  *
568  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
569  * that already hold reference to @task can call the 'safe' version and trust
570  * wake_q to do the right thing depending whether or not the @task is already
571  * queued for wakeup.
572  */
573 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
574 {
575 	if (!__wake_q_add(head, task))
576 		put_task_struct(task);
577 }
578 
579 void wake_up_q(struct wake_q_head *head)
580 {
581 	struct wake_q_node *node = head->first;
582 
583 	while (node != WAKE_Q_TAIL) {
584 		struct task_struct *task;
585 
586 		task = container_of(node, struct task_struct, wake_q);
587 		BUG_ON(!task);
588 		/* Task can safely be re-inserted now: */
589 		node = node->next;
590 		task->wake_q.next = NULL;
591 
592 		/*
593 		 * wake_up_process() executes a full barrier, which pairs with
594 		 * the queueing in wake_q_add() so as not to miss wakeups.
595 		 */
596 		wake_up_process(task);
597 		put_task_struct(task);
598 	}
599 }
600 
601 /*
602  * resched_curr - mark rq's current task 'to be rescheduled now'.
603  *
604  * On UP this means the setting of the need_resched flag, on SMP it
605  * might also involve a cross-CPU call to trigger the scheduler on
606  * the target CPU.
607  */
608 void resched_curr(struct rq *rq)
609 {
610 	struct task_struct *curr = rq->curr;
611 	int cpu;
612 
613 	lockdep_assert_held(&rq->lock);
614 
615 	if (test_tsk_need_resched(curr))
616 		return;
617 
618 	cpu = cpu_of(rq);
619 
620 	if (cpu == smp_processor_id()) {
621 		set_tsk_need_resched(curr);
622 		set_preempt_need_resched();
623 		return;
624 	}
625 
626 	if (set_nr_and_not_polling(curr))
627 		smp_send_reschedule(cpu);
628 	else
629 		trace_sched_wake_idle_without_ipi(cpu);
630 }
631 
632 void resched_cpu(int cpu)
633 {
634 	struct rq *rq = cpu_rq(cpu);
635 	unsigned long flags;
636 
637 	raw_spin_lock_irqsave(&rq->lock, flags);
638 	if (cpu_online(cpu) || cpu == smp_processor_id())
639 		resched_curr(rq);
640 	raw_spin_unlock_irqrestore(&rq->lock, flags);
641 }
642 
643 #ifdef CONFIG_SMP
644 #ifdef CONFIG_NO_HZ_COMMON
645 /*
646  * In the semi idle case, use the nearest busy CPU for migrating timers
647  * from an idle CPU.  This is good for power-savings.
648  *
649  * We don't do similar optimization for completely idle system, as
650  * selecting an idle CPU will add more delays to the timers than intended
651  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
652  */
653 int get_nohz_timer_target(void)
654 {
655 	int i, cpu = smp_processor_id(), default_cpu = -1;
656 	struct sched_domain *sd;
657 
658 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
659 		if (!idle_cpu(cpu))
660 			return cpu;
661 		default_cpu = cpu;
662 	}
663 
664 	rcu_read_lock();
665 	for_each_domain(cpu, sd) {
666 		for_each_cpu_and(i, sched_domain_span(sd),
667 			housekeeping_cpumask(HK_FLAG_TIMER)) {
668 			if (cpu == i)
669 				continue;
670 
671 			if (!idle_cpu(i)) {
672 				cpu = i;
673 				goto unlock;
674 			}
675 		}
676 	}
677 
678 	if (default_cpu == -1)
679 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
680 	cpu = default_cpu;
681 unlock:
682 	rcu_read_unlock();
683 	return cpu;
684 }
685 
686 /*
687  * When add_timer_on() enqueues a timer into the timer wheel of an
688  * idle CPU then this timer might expire before the next timer event
689  * which is scheduled to wake up that CPU. In case of a completely
690  * idle system the next event might even be infinite time into the
691  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
692  * leaves the inner idle loop so the newly added timer is taken into
693  * account when the CPU goes back to idle and evaluates the timer
694  * wheel for the next timer event.
695  */
696 static void wake_up_idle_cpu(int cpu)
697 {
698 	struct rq *rq = cpu_rq(cpu);
699 
700 	if (cpu == smp_processor_id())
701 		return;
702 
703 	if (set_nr_and_not_polling(rq->idle))
704 		smp_send_reschedule(cpu);
705 	else
706 		trace_sched_wake_idle_without_ipi(cpu);
707 }
708 
709 static bool wake_up_full_nohz_cpu(int cpu)
710 {
711 	/*
712 	 * We just need the target to call irq_exit() and re-evaluate
713 	 * the next tick. The nohz full kick at least implies that.
714 	 * If needed we can still optimize that later with an
715 	 * empty IRQ.
716 	 */
717 	if (cpu_is_offline(cpu))
718 		return true;  /* Don't try to wake offline CPUs. */
719 	if (tick_nohz_full_cpu(cpu)) {
720 		if (cpu != smp_processor_id() ||
721 		    tick_nohz_tick_stopped())
722 			tick_nohz_full_kick_cpu(cpu);
723 		return true;
724 	}
725 
726 	return false;
727 }
728 
729 /*
730  * Wake up the specified CPU.  If the CPU is going offline, it is the
731  * caller's responsibility to deal with the lost wakeup, for example,
732  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
733  */
734 void wake_up_nohz_cpu(int cpu)
735 {
736 	if (!wake_up_full_nohz_cpu(cpu))
737 		wake_up_idle_cpu(cpu);
738 }
739 
740 static void nohz_csd_func(void *info)
741 {
742 	struct rq *rq = info;
743 	int cpu = cpu_of(rq);
744 	unsigned int flags;
745 
746 	/*
747 	 * Release the rq::nohz_csd.
748 	 */
749 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
750 	WARN_ON(!(flags & NOHZ_KICK_MASK));
751 
752 	rq->idle_balance = idle_cpu(cpu);
753 	if (rq->idle_balance && !need_resched()) {
754 		rq->nohz_idle_balance = flags;
755 		raise_softirq_irqoff(SCHED_SOFTIRQ);
756 	}
757 }
758 
759 #endif /* CONFIG_NO_HZ_COMMON */
760 
761 #ifdef CONFIG_NO_HZ_FULL
762 bool sched_can_stop_tick(struct rq *rq)
763 {
764 	int fifo_nr_running;
765 
766 	/* Deadline tasks, even if single, need the tick */
767 	if (rq->dl.dl_nr_running)
768 		return false;
769 
770 	/*
771 	 * If there are more than one RR tasks, we need the tick to effect the
772 	 * actual RR behaviour.
773 	 */
774 	if (rq->rt.rr_nr_running) {
775 		if (rq->rt.rr_nr_running == 1)
776 			return true;
777 		else
778 			return false;
779 	}
780 
781 	/*
782 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
783 	 * forced preemption between FIFO tasks.
784 	 */
785 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
786 	if (fifo_nr_running)
787 		return true;
788 
789 	/*
790 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
791 	 * if there's more than one we need the tick for involuntary
792 	 * preemption.
793 	 */
794 	if (rq->nr_running > 1)
795 		return false;
796 
797 	return true;
798 }
799 #endif /* CONFIG_NO_HZ_FULL */
800 #endif /* CONFIG_SMP */
801 
802 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
803 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
804 /*
805  * Iterate task_group tree rooted at *from, calling @down when first entering a
806  * node and @up when leaving it for the final time.
807  *
808  * Caller must hold rcu_lock or sufficient equivalent.
809  */
810 int walk_tg_tree_from(struct task_group *from,
811 			     tg_visitor down, tg_visitor up, void *data)
812 {
813 	struct task_group *parent, *child;
814 	int ret;
815 
816 	parent = from;
817 
818 down:
819 	ret = (*down)(parent, data);
820 	if (ret)
821 		goto out;
822 	list_for_each_entry_rcu(child, &parent->children, siblings) {
823 		parent = child;
824 		goto down;
825 
826 up:
827 		continue;
828 	}
829 	ret = (*up)(parent, data);
830 	if (ret || parent == from)
831 		goto out;
832 
833 	child = parent;
834 	parent = parent->parent;
835 	if (parent)
836 		goto up;
837 out:
838 	return ret;
839 }
840 
841 int tg_nop(struct task_group *tg, void *data)
842 {
843 	return 0;
844 }
845 #endif
846 
847 static void set_load_weight(struct task_struct *p, bool update_load)
848 {
849 	int prio = p->static_prio - MAX_RT_PRIO;
850 	struct load_weight *load = &p->se.load;
851 
852 	/*
853 	 * SCHED_IDLE tasks get minimal weight:
854 	 */
855 	if (task_has_idle_policy(p)) {
856 		load->weight = scale_load(WEIGHT_IDLEPRIO);
857 		load->inv_weight = WMULT_IDLEPRIO;
858 		return;
859 	}
860 
861 	/*
862 	 * SCHED_OTHER tasks have to update their load when changing their
863 	 * weight
864 	 */
865 	if (update_load && p->sched_class == &fair_sched_class) {
866 		reweight_task(p, prio);
867 	} else {
868 		load->weight = scale_load(sched_prio_to_weight[prio]);
869 		load->inv_weight = sched_prio_to_wmult[prio];
870 	}
871 }
872 
873 #ifdef CONFIG_UCLAMP_TASK
874 /*
875  * Serializes updates of utilization clamp values
876  *
877  * The (slow-path) user-space triggers utilization clamp value updates which
878  * can require updates on (fast-path) scheduler's data structures used to
879  * support enqueue/dequeue operations.
880  * While the per-CPU rq lock protects fast-path update operations, user-space
881  * requests are serialized using a mutex to reduce the risk of conflicting
882  * updates or API abuses.
883  */
884 static DEFINE_MUTEX(uclamp_mutex);
885 
886 /* Max allowed minimum utilization */
887 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
888 
889 /* Max allowed maximum utilization */
890 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
891 
892 /*
893  * By default RT tasks run at the maximum performance point/capacity of the
894  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
895  * SCHED_CAPACITY_SCALE.
896  *
897  * This knob allows admins to change the default behavior when uclamp is being
898  * used. In battery powered devices, particularly, running at the maximum
899  * capacity and frequency will increase energy consumption and shorten the
900  * battery life.
901  *
902  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
903  *
904  * This knob will not override the system default sched_util_clamp_min defined
905  * above.
906  */
907 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
908 
909 /* All clamps are required to be less or equal than these values */
910 static struct uclamp_se uclamp_default[UCLAMP_CNT];
911 
912 /*
913  * This static key is used to reduce the uclamp overhead in the fast path. It
914  * primarily disables the call to uclamp_rq_{inc, dec}() in
915  * enqueue/dequeue_task().
916  *
917  * This allows users to continue to enable uclamp in their kernel config with
918  * minimum uclamp overhead in the fast path.
919  *
920  * As soon as userspace modifies any of the uclamp knobs, the static key is
921  * enabled, since we have an actual users that make use of uclamp
922  * functionality.
923  *
924  * The knobs that would enable this static key are:
925  *
926  *   * A task modifying its uclamp value with sched_setattr().
927  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
928  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
929  */
930 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
931 
932 /* Integer rounded range for each bucket */
933 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
934 
935 #define for_each_clamp_id(clamp_id) \
936 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
937 
938 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
939 {
940 	return clamp_value / UCLAMP_BUCKET_DELTA;
941 }
942 
943 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
944 {
945 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
946 }
947 
948 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
949 {
950 	if (clamp_id == UCLAMP_MIN)
951 		return 0;
952 	return SCHED_CAPACITY_SCALE;
953 }
954 
955 static inline void uclamp_se_set(struct uclamp_se *uc_se,
956 				 unsigned int value, bool user_defined)
957 {
958 	uc_se->value = value;
959 	uc_se->bucket_id = uclamp_bucket_id(value);
960 	uc_se->user_defined = user_defined;
961 }
962 
963 static inline unsigned int
964 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
965 		  unsigned int clamp_value)
966 {
967 	/*
968 	 * Avoid blocked utilization pushing up the frequency when we go
969 	 * idle (which drops the max-clamp) by retaining the last known
970 	 * max-clamp.
971 	 */
972 	if (clamp_id == UCLAMP_MAX) {
973 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
974 		return clamp_value;
975 	}
976 
977 	return uclamp_none(UCLAMP_MIN);
978 }
979 
980 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
981 				     unsigned int clamp_value)
982 {
983 	/* Reset max-clamp retention only on idle exit */
984 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
985 		return;
986 
987 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
988 }
989 
990 static inline
991 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
992 				   unsigned int clamp_value)
993 {
994 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
995 	int bucket_id = UCLAMP_BUCKETS - 1;
996 
997 	/*
998 	 * Since both min and max clamps are max aggregated, find the
999 	 * top most bucket with tasks in.
1000 	 */
1001 	for ( ; bucket_id >= 0; bucket_id--) {
1002 		if (!bucket[bucket_id].tasks)
1003 			continue;
1004 		return bucket[bucket_id].value;
1005 	}
1006 
1007 	/* No tasks -- default clamp values */
1008 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1009 }
1010 
1011 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1012 {
1013 	unsigned int default_util_min;
1014 	struct uclamp_se *uc_se;
1015 
1016 	lockdep_assert_held(&p->pi_lock);
1017 
1018 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1019 
1020 	/* Only sync if user didn't override the default */
1021 	if (uc_se->user_defined)
1022 		return;
1023 
1024 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1025 	uclamp_se_set(uc_se, default_util_min, false);
1026 }
1027 
1028 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1029 {
1030 	struct rq_flags rf;
1031 	struct rq *rq;
1032 
1033 	if (!rt_task(p))
1034 		return;
1035 
1036 	/* Protect updates to p->uclamp_* */
1037 	rq = task_rq_lock(p, &rf);
1038 	__uclamp_update_util_min_rt_default(p);
1039 	task_rq_unlock(rq, p, &rf);
1040 }
1041 
1042 static void uclamp_sync_util_min_rt_default(void)
1043 {
1044 	struct task_struct *g, *p;
1045 
1046 	/*
1047 	 * copy_process()			sysctl_uclamp
1048 	 *					  uclamp_min_rt = X;
1049 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1050 	 *   // link thread			  smp_mb__after_spinlock()
1051 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1052 	 *   sched_post_fork()			  for_each_process_thread()
1053 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1054 	 *
1055 	 * Ensures that either sched_post_fork() will observe the new
1056 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1057 	 * task.
1058 	 */
1059 	read_lock(&tasklist_lock);
1060 	smp_mb__after_spinlock();
1061 	read_unlock(&tasklist_lock);
1062 
1063 	rcu_read_lock();
1064 	for_each_process_thread(g, p)
1065 		uclamp_update_util_min_rt_default(p);
1066 	rcu_read_unlock();
1067 }
1068 
1069 static inline struct uclamp_se
1070 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1071 {
1072 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1073 #ifdef CONFIG_UCLAMP_TASK_GROUP
1074 	struct uclamp_se uc_max;
1075 
1076 	/*
1077 	 * Tasks in autogroups or root task group will be
1078 	 * restricted by system defaults.
1079 	 */
1080 	if (task_group_is_autogroup(task_group(p)))
1081 		return uc_req;
1082 	if (task_group(p) == &root_task_group)
1083 		return uc_req;
1084 
1085 	uc_max = task_group(p)->uclamp[clamp_id];
1086 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1087 		return uc_max;
1088 #endif
1089 
1090 	return uc_req;
1091 }
1092 
1093 /*
1094  * The effective clamp bucket index of a task depends on, by increasing
1095  * priority:
1096  * - the task specific clamp value, when explicitly requested from userspace
1097  * - the task group effective clamp value, for tasks not either in the root
1098  *   group or in an autogroup
1099  * - the system default clamp value, defined by the sysadmin
1100  */
1101 static inline struct uclamp_se
1102 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1103 {
1104 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1105 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1106 
1107 	/* System default restrictions always apply */
1108 	if (unlikely(uc_req.value > uc_max.value))
1109 		return uc_max;
1110 
1111 	return uc_req;
1112 }
1113 
1114 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1115 {
1116 	struct uclamp_se uc_eff;
1117 
1118 	/* Task currently refcounted: use back-annotated (effective) value */
1119 	if (p->uclamp[clamp_id].active)
1120 		return (unsigned long)p->uclamp[clamp_id].value;
1121 
1122 	uc_eff = uclamp_eff_get(p, clamp_id);
1123 
1124 	return (unsigned long)uc_eff.value;
1125 }
1126 
1127 /*
1128  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130  * updates the rq's clamp value if required.
1131  *
1132  * Tasks can have a task-specific value requested from user-space, track
1133  * within each bucket the maximum value for tasks refcounted in it.
1134  * This "local max aggregation" allows to track the exact "requested" value
1135  * for each bucket when all its RUNNABLE tasks require the same clamp.
1136  */
1137 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1138 				    enum uclamp_id clamp_id)
1139 {
1140 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1141 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1142 	struct uclamp_bucket *bucket;
1143 
1144 	lockdep_assert_held(&rq->lock);
1145 
1146 	/* Update task effective clamp */
1147 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1148 
1149 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1150 	bucket->tasks++;
1151 	uc_se->active = true;
1152 
1153 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1154 
1155 	/*
1156 	 * Local max aggregation: rq buckets always track the max
1157 	 * "requested" clamp value of its RUNNABLE tasks.
1158 	 */
1159 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1160 		bucket->value = uc_se->value;
1161 
1162 	if (uc_se->value > READ_ONCE(uc_rq->value))
1163 		WRITE_ONCE(uc_rq->value, uc_se->value);
1164 }
1165 
1166 /*
1167  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168  * is released. If this is the last task reference counting the rq's max
1169  * active clamp value, then the rq's clamp value is updated.
1170  *
1171  * Both refcounted tasks and rq's cached clamp values are expected to be
1172  * always valid. If it's detected they are not, as defensive programming,
1173  * enforce the expected state and warn.
1174  */
1175 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1176 				    enum uclamp_id clamp_id)
1177 {
1178 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1179 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1180 	struct uclamp_bucket *bucket;
1181 	unsigned int bkt_clamp;
1182 	unsigned int rq_clamp;
1183 
1184 	lockdep_assert_held(&rq->lock);
1185 
1186 	/*
1187 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1188 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1189 	 *
1190 	 * In this case the uc_se->active flag should be false since no uclamp
1191 	 * accounting was performed at enqueue time and we can just return
1192 	 * here.
1193 	 *
1194 	 * Need to be careful of the following enqeueue/dequeue ordering
1195 	 * problem too
1196 	 *
1197 	 *	enqueue(taskA)
1198 	 *	// sched_uclamp_used gets enabled
1199 	 *	enqueue(taskB)
1200 	 *	dequeue(taskA)
1201 	 *	// Must not decrement bukcet->tasks here
1202 	 *	dequeue(taskB)
1203 	 *
1204 	 * where we could end up with stale data in uc_se and
1205 	 * bucket[uc_se->bucket_id].
1206 	 *
1207 	 * The following check here eliminates the possibility of such race.
1208 	 */
1209 	if (unlikely(!uc_se->active))
1210 		return;
1211 
1212 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1213 
1214 	SCHED_WARN_ON(!bucket->tasks);
1215 	if (likely(bucket->tasks))
1216 		bucket->tasks--;
1217 
1218 	uc_se->active = false;
1219 
1220 	/*
1221 	 * Keep "local max aggregation" simple and accept to (possibly)
1222 	 * overboost some RUNNABLE tasks in the same bucket.
1223 	 * The rq clamp bucket value is reset to its base value whenever
1224 	 * there are no more RUNNABLE tasks refcounting it.
1225 	 */
1226 	if (likely(bucket->tasks))
1227 		return;
1228 
1229 	rq_clamp = READ_ONCE(uc_rq->value);
1230 	/*
1231 	 * Defensive programming: this should never happen. If it happens,
1232 	 * e.g. due to future modification, warn and fixup the expected value.
1233 	 */
1234 	SCHED_WARN_ON(bucket->value > rq_clamp);
1235 	if (bucket->value >= rq_clamp) {
1236 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1237 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1238 	}
1239 }
1240 
1241 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1242 {
1243 	enum uclamp_id clamp_id;
1244 
1245 	/*
1246 	 * Avoid any overhead until uclamp is actually used by the userspace.
1247 	 *
1248 	 * The condition is constructed such that a NOP is generated when
1249 	 * sched_uclamp_used is disabled.
1250 	 */
1251 	if (!static_branch_unlikely(&sched_uclamp_used))
1252 		return;
1253 
1254 	if (unlikely(!p->sched_class->uclamp_enabled))
1255 		return;
1256 
1257 	for_each_clamp_id(clamp_id)
1258 		uclamp_rq_inc_id(rq, p, clamp_id);
1259 
1260 	/* Reset clamp idle holding when there is one RUNNABLE task */
1261 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1262 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1263 }
1264 
1265 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1266 {
1267 	enum uclamp_id clamp_id;
1268 
1269 	/*
1270 	 * Avoid any overhead until uclamp is actually used by the userspace.
1271 	 *
1272 	 * The condition is constructed such that a NOP is generated when
1273 	 * sched_uclamp_used is disabled.
1274 	 */
1275 	if (!static_branch_unlikely(&sched_uclamp_used))
1276 		return;
1277 
1278 	if (unlikely(!p->sched_class->uclamp_enabled))
1279 		return;
1280 
1281 	for_each_clamp_id(clamp_id)
1282 		uclamp_rq_dec_id(rq, p, clamp_id);
1283 }
1284 
1285 static inline void
1286 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1287 {
1288 	struct rq_flags rf;
1289 	struct rq *rq;
1290 
1291 	/*
1292 	 * Lock the task and the rq where the task is (or was) queued.
1293 	 *
1294 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295 	 * price to pay to safely serialize util_{min,max} updates with
1296 	 * enqueues, dequeues and migration operations.
1297 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1298 	 */
1299 	rq = task_rq_lock(p, &rf);
1300 
1301 	/*
1302 	 * Setting the clamp bucket is serialized by task_rq_lock().
1303 	 * If the task is not yet RUNNABLE and its task_struct is not
1304 	 * affecting a valid clamp bucket, the next time it's enqueued,
1305 	 * it will already see the updated clamp bucket value.
1306 	 */
1307 	if (p->uclamp[clamp_id].active) {
1308 		uclamp_rq_dec_id(rq, p, clamp_id);
1309 		uclamp_rq_inc_id(rq, p, clamp_id);
1310 	}
1311 
1312 	task_rq_unlock(rq, p, &rf);
1313 }
1314 
1315 #ifdef CONFIG_UCLAMP_TASK_GROUP
1316 static inline void
1317 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1318 			   unsigned int clamps)
1319 {
1320 	enum uclamp_id clamp_id;
1321 	struct css_task_iter it;
1322 	struct task_struct *p;
1323 
1324 	css_task_iter_start(css, 0, &it);
1325 	while ((p = css_task_iter_next(&it))) {
1326 		for_each_clamp_id(clamp_id) {
1327 			if ((0x1 << clamp_id) & clamps)
1328 				uclamp_update_active(p, clamp_id);
1329 		}
1330 	}
1331 	css_task_iter_end(&it);
1332 }
1333 
1334 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1335 static void uclamp_update_root_tg(void)
1336 {
1337 	struct task_group *tg = &root_task_group;
1338 
1339 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1340 		      sysctl_sched_uclamp_util_min, false);
1341 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1342 		      sysctl_sched_uclamp_util_max, false);
1343 
1344 	rcu_read_lock();
1345 	cpu_util_update_eff(&root_task_group.css);
1346 	rcu_read_unlock();
1347 }
1348 #else
1349 static void uclamp_update_root_tg(void) { }
1350 #endif
1351 
1352 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1353 				void *buffer, size_t *lenp, loff_t *ppos)
1354 {
1355 	bool update_root_tg = false;
1356 	int old_min, old_max, old_min_rt;
1357 	int result;
1358 
1359 	mutex_lock(&uclamp_mutex);
1360 	old_min = sysctl_sched_uclamp_util_min;
1361 	old_max = sysctl_sched_uclamp_util_max;
1362 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1363 
1364 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1365 	if (result)
1366 		goto undo;
1367 	if (!write)
1368 		goto done;
1369 
1370 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1371 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1372 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1373 
1374 		result = -EINVAL;
1375 		goto undo;
1376 	}
1377 
1378 	if (old_min != sysctl_sched_uclamp_util_min) {
1379 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1380 			      sysctl_sched_uclamp_util_min, false);
1381 		update_root_tg = true;
1382 	}
1383 	if (old_max != sysctl_sched_uclamp_util_max) {
1384 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1385 			      sysctl_sched_uclamp_util_max, false);
1386 		update_root_tg = true;
1387 	}
1388 
1389 	if (update_root_tg) {
1390 		static_branch_enable(&sched_uclamp_used);
1391 		uclamp_update_root_tg();
1392 	}
1393 
1394 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1395 		static_branch_enable(&sched_uclamp_used);
1396 		uclamp_sync_util_min_rt_default();
1397 	}
1398 
1399 	/*
1400 	 * We update all RUNNABLE tasks only when task groups are in use.
1401 	 * Otherwise, keep it simple and do just a lazy update at each next
1402 	 * task enqueue time.
1403 	 */
1404 
1405 	goto done;
1406 
1407 undo:
1408 	sysctl_sched_uclamp_util_min = old_min;
1409 	sysctl_sched_uclamp_util_max = old_max;
1410 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1411 done:
1412 	mutex_unlock(&uclamp_mutex);
1413 
1414 	return result;
1415 }
1416 
1417 static int uclamp_validate(struct task_struct *p,
1418 			   const struct sched_attr *attr)
1419 {
1420 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1421 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1422 
1423 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1424 		lower_bound = attr->sched_util_min;
1425 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1426 		upper_bound = attr->sched_util_max;
1427 
1428 	if (lower_bound > upper_bound)
1429 		return -EINVAL;
1430 	if (upper_bound > SCHED_CAPACITY_SCALE)
1431 		return -EINVAL;
1432 
1433 	/*
1434 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1435 	 *
1436 	 * We need to do that here, because enabling static branches is a
1437 	 * blocking operation which obviously cannot be done while holding
1438 	 * scheduler locks.
1439 	 */
1440 	static_branch_enable(&sched_uclamp_used);
1441 
1442 	return 0;
1443 }
1444 
1445 static void __setscheduler_uclamp(struct task_struct *p,
1446 				  const struct sched_attr *attr)
1447 {
1448 	enum uclamp_id clamp_id;
1449 
1450 	/*
1451 	 * On scheduling class change, reset to default clamps for tasks
1452 	 * without a task-specific value.
1453 	 */
1454 	for_each_clamp_id(clamp_id) {
1455 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1456 
1457 		/* Keep using defined clamps across class changes */
1458 		if (uc_se->user_defined)
1459 			continue;
1460 
1461 		/*
1462 		 * RT by default have a 100% boost value that could be modified
1463 		 * at runtime.
1464 		 */
1465 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1466 			__uclamp_update_util_min_rt_default(p);
1467 		else
1468 			uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1469 
1470 	}
1471 
1472 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1473 		return;
1474 
1475 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1476 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1477 			      attr->sched_util_min, true);
1478 	}
1479 
1480 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1481 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1482 			      attr->sched_util_max, true);
1483 	}
1484 }
1485 
1486 static void uclamp_fork(struct task_struct *p)
1487 {
1488 	enum uclamp_id clamp_id;
1489 
1490 	/*
1491 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492 	 * as the task is still at its early fork stages.
1493 	 */
1494 	for_each_clamp_id(clamp_id)
1495 		p->uclamp[clamp_id].active = false;
1496 
1497 	if (likely(!p->sched_reset_on_fork))
1498 		return;
1499 
1500 	for_each_clamp_id(clamp_id) {
1501 		uclamp_se_set(&p->uclamp_req[clamp_id],
1502 			      uclamp_none(clamp_id), false);
1503 	}
1504 }
1505 
1506 static void uclamp_post_fork(struct task_struct *p)
1507 {
1508 	uclamp_update_util_min_rt_default(p);
1509 }
1510 
1511 static void __init init_uclamp_rq(struct rq *rq)
1512 {
1513 	enum uclamp_id clamp_id;
1514 	struct uclamp_rq *uc_rq = rq->uclamp;
1515 
1516 	for_each_clamp_id(clamp_id) {
1517 		uc_rq[clamp_id] = (struct uclamp_rq) {
1518 			.value = uclamp_none(clamp_id)
1519 		};
1520 	}
1521 
1522 	rq->uclamp_flags = 0;
1523 }
1524 
1525 static void __init init_uclamp(void)
1526 {
1527 	struct uclamp_se uc_max = {};
1528 	enum uclamp_id clamp_id;
1529 	int cpu;
1530 
1531 	for_each_possible_cpu(cpu)
1532 		init_uclamp_rq(cpu_rq(cpu));
1533 
1534 	for_each_clamp_id(clamp_id) {
1535 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1536 			      uclamp_none(clamp_id), false);
1537 	}
1538 
1539 	/* System defaults allow max clamp values for both indexes */
1540 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1541 	for_each_clamp_id(clamp_id) {
1542 		uclamp_default[clamp_id] = uc_max;
1543 #ifdef CONFIG_UCLAMP_TASK_GROUP
1544 		root_task_group.uclamp_req[clamp_id] = uc_max;
1545 		root_task_group.uclamp[clamp_id] = uc_max;
1546 #endif
1547 	}
1548 }
1549 
1550 #else /* CONFIG_UCLAMP_TASK */
1551 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1552 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1553 static inline int uclamp_validate(struct task_struct *p,
1554 				  const struct sched_attr *attr)
1555 {
1556 	return -EOPNOTSUPP;
1557 }
1558 static void __setscheduler_uclamp(struct task_struct *p,
1559 				  const struct sched_attr *attr) { }
1560 static inline void uclamp_fork(struct task_struct *p) { }
1561 static inline void uclamp_post_fork(struct task_struct *p) { }
1562 static inline void init_uclamp(void) { }
1563 #endif /* CONFIG_UCLAMP_TASK */
1564 
1565 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1566 {
1567 	if (!(flags & ENQUEUE_NOCLOCK))
1568 		update_rq_clock(rq);
1569 
1570 	if (!(flags & ENQUEUE_RESTORE)) {
1571 		sched_info_queued(rq, p);
1572 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1573 	}
1574 
1575 	uclamp_rq_inc(rq, p);
1576 	p->sched_class->enqueue_task(rq, p, flags);
1577 }
1578 
1579 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1580 {
1581 	if (!(flags & DEQUEUE_NOCLOCK))
1582 		update_rq_clock(rq);
1583 
1584 	if (!(flags & DEQUEUE_SAVE)) {
1585 		sched_info_dequeued(rq, p);
1586 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1587 	}
1588 
1589 	uclamp_rq_dec(rq, p);
1590 	p->sched_class->dequeue_task(rq, p, flags);
1591 }
1592 
1593 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1594 {
1595 	enqueue_task(rq, p, flags);
1596 
1597 	p->on_rq = TASK_ON_RQ_QUEUED;
1598 }
1599 
1600 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1601 {
1602 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1603 
1604 	dequeue_task(rq, p, flags);
1605 }
1606 
1607 /*
1608  * __normal_prio - return the priority that is based on the static prio
1609  */
1610 static inline int __normal_prio(struct task_struct *p)
1611 {
1612 	return p->static_prio;
1613 }
1614 
1615 /*
1616  * Calculate the expected normal priority: i.e. priority
1617  * without taking RT-inheritance into account. Might be
1618  * boosted by interactivity modifiers. Changes upon fork,
1619  * setprio syscalls, and whenever the interactivity
1620  * estimator recalculates.
1621  */
1622 static inline int normal_prio(struct task_struct *p)
1623 {
1624 	int prio;
1625 
1626 	if (task_has_dl_policy(p))
1627 		prio = MAX_DL_PRIO-1;
1628 	else if (task_has_rt_policy(p))
1629 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1630 	else
1631 		prio = __normal_prio(p);
1632 	return prio;
1633 }
1634 
1635 /*
1636  * Calculate the current priority, i.e. the priority
1637  * taken into account by the scheduler. This value might
1638  * be boosted by RT tasks, or might be boosted by
1639  * interactivity modifiers. Will be RT if the task got
1640  * RT-boosted. If not then it returns p->normal_prio.
1641  */
1642 static int effective_prio(struct task_struct *p)
1643 {
1644 	p->normal_prio = normal_prio(p);
1645 	/*
1646 	 * If we are RT tasks or we were boosted to RT priority,
1647 	 * keep the priority unchanged. Otherwise, update priority
1648 	 * to the normal priority:
1649 	 */
1650 	if (!rt_prio(p->prio))
1651 		return p->normal_prio;
1652 	return p->prio;
1653 }
1654 
1655 /**
1656  * task_curr - is this task currently executing on a CPU?
1657  * @p: the task in question.
1658  *
1659  * Return: 1 if the task is currently executing. 0 otherwise.
1660  */
1661 inline int task_curr(const struct task_struct *p)
1662 {
1663 	return cpu_curr(task_cpu(p)) == p;
1664 }
1665 
1666 /*
1667  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668  * use the balance_callback list if you want balancing.
1669  *
1670  * this means any call to check_class_changed() must be followed by a call to
1671  * balance_callback().
1672  */
1673 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1674 				       const struct sched_class *prev_class,
1675 				       int oldprio)
1676 {
1677 	if (prev_class != p->sched_class) {
1678 		if (prev_class->switched_from)
1679 			prev_class->switched_from(rq, p);
1680 
1681 		p->sched_class->switched_to(rq, p);
1682 	} else if (oldprio != p->prio || dl_task(p))
1683 		p->sched_class->prio_changed(rq, p, oldprio);
1684 }
1685 
1686 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1687 {
1688 	if (p->sched_class == rq->curr->sched_class)
1689 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1690 	else if (p->sched_class > rq->curr->sched_class)
1691 		resched_curr(rq);
1692 
1693 	/*
1694 	 * A queue event has occurred, and we're going to schedule.  In
1695 	 * this case, we can save a useless back to back clock update.
1696 	 */
1697 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1698 		rq_clock_skip_update(rq);
1699 }
1700 
1701 #ifdef CONFIG_SMP
1702 
1703 /*
1704  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705  * __set_cpus_allowed_ptr() and select_fallback_rq().
1706  */
1707 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1708 {
1709 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1710 		return false;
1711 
1712 	if (is_per_cpu_kthread(p))
1713 		return cpu_online(cpu);
1714 
1715 	return cpu_active(cpu);
1716 }
1717 
1718 /*
1719  * This is how migration works:
1720  *
1721  * 1) we invoke migration_cpu_stop() on the target CPU using
1722  *    stop_one_cpu().
1723  * 2) stopper starts to run (implicitly forcing the migrated thread
1724  *    off the CPU)
1725  * 3) it checks whether the migrated task is still in the wrong runqueue.
1726  * 4) if it's in the wrong runqueue then the migration thread removes
1727  *    it and puts it into the right queue.
1728  * 5) stopper completes and stop_one_cpu() returns and the migration
1729  *    is done.
1730  */
1731 
1732 /*
1733  * move_queued_task - move a queued task to new rq.
1734  *
1735  * Returns (locked) new rq. Old rq's lock is released.
1736  */
1737 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1738 				   struct task_struct *p, int new_cpu)
1739 {
1740 	lockdep_assert_held(&rq->lock);
1741 
1742 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1743 	set_task_cpu(p, new_cpu);
1744 	rq_unlock(rq, rf);
1745 
1746 	rq = cpu_rq(new_cpu);
1747 
1748 	rq_lock(rq, rf);
1749 	BUG_ON(task_cpu(p) != new_cpu);
1750 	activate_task(rq, p, 0);
1751 	check_preempt_curr(rq, p, 0);
1752 
1753 	return rq;
1754 }
1755 
1756 struct migration_arg {
1757 	struct task_struct *task;
1758 	int dest_cpu;
1759 };
1760 
1761 /*
1762  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763  * this because either it can't run here any more (set_cpus_allowed()
1764  * away from this CPU, or CPU going down), or because we're
1765  * attempting to rebalance this task on exec (sched_exec).
1766  *
1767  * So we race with normal scheduler movements, but that's OK, as long
1768  * as the task is no longer on this CPU.
1769  */
1770 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1771 				 struct task_struct *p, int dest_cpu)
1772 {
1773 	/* Affinity changed (again). */
1774 	if (!is_cpu_allowed(p, dest_cpu))
1775 		return rq;
1776 
1777 	update_rq_clock(rq);
1778 	rq = move_queued_task(rq, rf, p, dest_cpu);
1779 
1780 	return rq;
1781 }
1782 
1783 /*
1784  * migration_cpu_stop - this will be executed by a highprio stopper thread
1785  * and performs thread migration by bumping thread off CPU then
1786  * 'pushing' onto another runqueue.
1787  */
1788 static int migration_cpu_stop(void *data)
1789 {
1790 	struct migration_arg *arg = data;
1791 	struct task_struct *p = arg->task;
1792 	struct rq *rq = this_rq();
1793 	struct rq_flags rf;
1794 
1795 	/*
1796 	 * The original target CPU might have gone down and we might
1797 	 * be on another CPU but it doesn't matter.
1798 	 */
1799 	local_irq_disable();
1800 	/*
1801 	 * We need to explicitly wake pending tasks before running
1802 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1803 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1804 	 */
1805 	flush_smp_call_function_from_idle();
1806 
1807 	raw_spin_lock(&p->pi_lock);
1808 	rq_lock(rq, &rf);
1809 	/*
1810 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1811 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812 	 * we're holding p->pi_lock.
1813 	 */
1814 	if (task_rq(p) == rq) {
1815 		if (task_on_rq_queued(p))
1816 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1817 		else
1818 			p->wake_cpu = arg->dest_cpu;
1819 	}
1820 	rq_unlock(rq, &rf);
1821 	raw_spin_unlock(&p->pi_lock);
1822 
1823 	local_irq_enable();
1824 	return 0;
1825 }
1826 
1827 /*
1828  * sched_class::set_cpus_allowed must do the below, but is not required to
1829  * actually call this function.
1830  */
1831 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1832 {
1833 	cpumask_copy(&p->cpus_mask, new_mask);
1834 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1835 }
1836 
1837 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1838 {
1839 	struct rq *rq = task_rq(p);
1840 	bool queued, running;
1841 
1842 	lockdep_assert_held(&p->pi_lock);
1843 
1844 	queued = task_on_rq_queued(p);
1845 	running = task_current(rq, p);
1846 
1847 	if (queued) {
1848 		/*
1849 		 * Because __kthread_bind() calls this on blocked tasks without
1850 		 * holding rq->lock.
1851 		 */
1852 		lockdep_assert_held(&rq->lock);
1853 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1854 	}
1855 	if (running)
1856 		put_prev_task(rq, p);
1857 
1858 	p->sched_class->set_cpus_allowed(p, new_mask);
1859 
1860 	if (queued)
1861 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1862 	if (running)
1863 		set_next_task(rq, p);
1864 }
1865 
1866 /*
1867  * Change a given task's CPU affinity. Migrate the thread to a
1868  * proper CPU and schedule it away if the CPU it's executing on
1869  * is removed from the allowed bitmask.
1870  *
1871  * NOTE: the caller must have a valid reference to the task, the
1872  * task must not exit() & deallocate itself prematurely. The
1873  * call is not atomic; no spinlocks may be held.
1874  */
1875 static int __set_cpus_allowed_ptr(struct task_struct *p,
1876 				  const struct cpumask *new_mask, bool check)
1877 {
1878 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1879 	unsigned int dest_cpu;
1880 	struct rq_flags rf;
1881 	struct rq *rq;
1882 	int ret = 0;
1883 
1884 	rq = task_rq_lock(p, &rf);
1885 	update_rq_clock(rq);
1886 
1887 	if (p->flags & PF_KTHREAD) {
1888 		/*
1889 		 * Kernel threads are allowed on online && !active CPUs
1890 		 */
1891 		cpu_valid_mask = cpu_online_mask;
1892 	}
1893 
1894 	/*
1895 	 * Must re-check here, to close a race against __kthread_bind(),
1896 	 * sched_setaffinity() is not guaranteed to observe the flag.
1897 	 */
1898 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1899 		ret = -EINVAL;
1900 		goto out;
1901 	}
1902 
1903 	if (cpumask_equal(&p->cpus_mask, new_mask))
1904 		goto out;
1905 
1906 	/*
1907 	 * Picking a ~random cpu helps in cases where we are changing affinity
1908 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1909 	 * immediately required to distribute the tasks within their new mask.
1910 	 */
1911 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1912 	if (dest_cpu >= nr_cpu_ids) {
1913 		ret = -EINVAL;
1914 		goto out;
1915 	}
1916 
1917 	do_set_cpus_allowed(p, new_mask);
1918 
1919 	if (p->flags & PF_KTHREAD) {
1920 		/*
1921 		 * For kernel threads that do indeed end up on online &&
1922 		 * !active we want to ensure they are strict per-CPU threads.
1923 		 */
1924 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1925 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1926 			p->nr_cpus_allowed != 1);
1927 	}
1928 
1929 	/* Can the task run on the task's current CPU? If so, we're done */
1930 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1931 		goto out;
1932 
1933 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1934 		struct migration_arg arg = { p, dest_cpu };
1935 		/* Need help from migration thread: drop lock and wait. */
1936 		task_rq_unlock(rq, p, &rf);
1937 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1938 		return 0;
1939 	} else if (task_on_rq_queued(p)) {
1940 		/*
1941 		 * OK, since we're going to drop the lock immediately
1942 		 * afterwards anyway.
1943 		 */
1944 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1945 	}
1946 out:
1947 	task_rq_unlock(rq, p, &rf);
1948 
1949 	return ret;
1950 }
1951 
1952 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1953 {
1954 	return __set_cpus_allowed_ptr(p, new_mask, false);
1955 }
1956 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1957 
1958 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959 {
1960 #ifdef CONFIG_SCHED_DEBUG
1961 	/*
1962 	 * We should never call set_task_cpu() on a blocked task,
1963 	 * ttwu() will sort out the placement.
1964 	 */
1965 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1966 			!p->on_rq);
1967 
1968 	/*
1969 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971 	 * time relying on p->on_rq.
1972 	 */
1973 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1974 		     p->sched_class == &fair_sched_class &&
1975 		     (p->on_rq && !task_on_rq_migrating(p)));
1976 
1977 #ifdef CONFIG_LOCKDEP
1978 	/*
1979 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1980 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1981 	 *
1982 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1983 	 * see task_group().
1984 	 *
1985 	 * Furthermore, all task_rq users should acquire both locks, see
1986 	 * task_rq_lock().
1987 	 */
1988 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1989 				      lockdep_is_held(&task_rq(p)->lock)));
1990 #endif
1991 	/*
1992 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1993 	 */
1994 	WARN_ON_ONCE(!cpu_online(new_cpu));
1995 #endif
1996 
1997 	trace_sched_migrate_task(p, new_cpu);
1998 
1999 	if (task_cpu(p) != new_cpu) {
2000 		if (p->sched_class->migrate_task_rq)
2001 			p->sched_class->migrate_task_rq(p, new_cpu);
2002 		p->se.nr_migrations++;
2003 		rseq_migrate(p);
2004 		perf_event_task_migrate(p);
2005 	}
2006 
2007 	__set_task_cpu(p, new_cpu);
2008 }
2009 
2010 #ifdef CONFIG_NUMA_BALANCING
2011 static void __migrate_swap_task(struct task_struct *p, int cpu)
2012 {
2013 	if (task_on_rq_queued(p)) {
2014 		struct rq *src_rq, *dst_rq;
2015 		struct rq_flags srf, drf;
2016 
2017 		src_rq = task_rq(p);
2018 		dst_rq = cpu_rq(cpu);
2019 
2020 		rq_pin_lock(src_rq, &srf);
2021 		rq_pin_lock(dst_rq, &drf);
2022 
2023 		deactivate_task(src_rq, p, 0);
2024 		set_task_cpu(p, cpu);
2025 		activate_task(dst_rq, p, 0);
2026 		check_preempt_curr(dst_rq, p, 0);
2027 
2028 		rq_unpin_lock(dst_rq, &drf);
2029 		rq_unpin_lock(src_rq, &srf);
2030 
2031 	} else {
2032 		/*
2033 		 * Task isn't running anymore; make it appear like we migrated
2034 		 * it before it went to sleep. This means on wakeup we make the
2035 		 * previous CPU our target instead of where it really is.
2036 		 */
2037 		p->wake_cpu = cpu;
2038 	}
2039 }
2040 
2041 struct migration_swap_arg {
2042 	struct task_struct *src_task, *dst_task;
2043 	int src_cpu, dst_cpu;
2044 };
2045 
2046 static int migrate_swap_stop(void *data)
2047 {
2048 	struct migration_swap_arg *arg = data;
2049 	struct rq *src_rq, *dst_rq;
2050 	int ret = -EAGAIN;
2051 
2052 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2053 		return -EAGAIN;
2054 
2055 	src_rq = cpu_rq(arg->src_cpu);
2056 	dst_rq = cpu_rq(arg->dst_cpu);
2057 
2058 	double_raw_lock(&arg->src_task->pi_lock,
2059 			&arg->dst_task->pi_lock);
2060 	double_rq_lock(src_rq, dst_rq);
2061 
2062 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2063 		goto unlock;
2064 
2065 	if (task_cpu(arg->src_task) != arg->src_cpu)
2066 		goto unlock;
2067 
2068 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2069 		goto unlock;
2070 
2071 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2072 		goto unlock;
2073 
2074 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2075 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2076 
2077 	ret = 0;
2078 
2079 unlock:
2080 	double_rq_unlock(src_rq, dst_rq);
2081 	raw_spin_unlock(&arg->dst_task->pi_lock);
2082 	raw_spin_unlock(&arg->src_task->pi_lock);
2083 
2084 	return ret;
2085 }
2086 
2087 /*
2088  * Cross migrate two tasks
2089  */
2090 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2091 		int target_cpu, int curr_cpu)
2092 {
2093 	struct migration_swap_arg arg;
2094 	int ret = -EINVAL;
2095 
2096 	arg = (struct migration_swap_arg){
2097 		.src_task = cur,
2098 		.src_cpu = curr_cpu,
2099 		.dst_task = p,
2100 		.dst_cpu = target_cpu,
2101 	};
2102 
2103 	if (arg.src_cpu == arg.dst_cpu)
2104 		goto out;
2105 
2106 	/*
2107 	 * These three tests are all lockless; this is OK since all of them
2108 	 * will be re-checked with proper locks held further down the line.
2109 	 */
2110 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2111 		goto out;
2112 
2113 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2114 		goto out;
2115 
2116 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2117 		goto out;
2118 
2119 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2120 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2121 
2122 out:
2123 	return ret;
2124 }
2125 #endif /* CONFIG_NUMA_BALANCING */
2126 
2127 /*
2128  * wait_task_inactive - wait for a thread to unschedule.
2129  *
2130  * If @match_state is nonzero, it's the @p->state value just checked and
2131  * not expected to change.  If it changes, i.e. @p might have woken up,
2132  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2133  * we return a positive number (its total switch count).  If a second call
2134  * a short while later returns the same number, the caller can be sure that
2135  * @p has remained unscheduled the whole time.
2136  *
2137  * The caller must ensure that the task *will* unschedule sometime soon,
2138  * else this function might spin for a *long* time. This function can't
2139  * be called with interrupts off, or it may introduce deadlock with
2140  * smp_call_function() if an IPI is sent by the same process we are
2141  * waiting to become inactive.
2142  */
2143 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144 {
2145 	int running, queued;
2146 	struct rq_flags rf;
2147 	unsigned long ncsw;
2148 	struct rq *rq;
2149 
2150 	for (;;) {
2151 		/*
2152 		 * We do the initial early heuristics without holding
2153 		 * any task-queue locks at all. We'll only try to get
2154 		 * the runqueue lock when things look like they will
2155 		 * work out!
2156 		 */
2157 		rq = task_rq(p);
2158 
2159 		/*
2160 		 * If the task is actively running on another CPU
2161 		 * still, just relax and busy-wait without holding
2162 		 * any locks.
2163 		 *
2164 		 * NOTE! Since we don't hold any locks, it's not
2165 		 * even sure that "rq" stays as the right runqueue!
2166 		 * But we don't care, since "task_running()" will
2167 		 * return false if the runqueue has changed and p
2168 		 * is actually now running somewhere else!
2169 		 */
2170 		while (task_running(rq, p)) {
2171 			if (match_state && unlikely(p->state != match_state))
2172 				return 0;
2173 			cpu_relax();
2174 		}
2175 
2176 		/*
2177 		 * Ok, time to look more closely! We need the rq
2178 		 * lock now, to be *sure*. If we're wrong, we'll
2179 		 * just go back and repeat.
2180 		 */
2181 		rq = task_rq_lock(p, &rf);
2182 		trace_sched_wait_task(p);
2183 		running = task_running(rq, p);
2184 		queued = task_on_rq_queued(p);
2185 		ncsw = 0;
2186 		if (!match_state || p->state == match_state)
2187 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2188 		task_rq_unlock(rq, p, &rf);
2189 
2190 		/*
2191 		 * If it changed from the expected state, bail out now.
2192 		 */
2193 		if (unlikely(!ncsw))
2194 			break;
2195 
2196 		/*
2197 		 * Was it really running after all now that we
2198 		 * checked with the proper locks actually held?
2199 		 *
2200 		 * Oops. Go back and try again..
2201 		 */
2202 		if (unlikely(running)) {
2203 			cpu_relax();
2204 			continue;
2205 		}
2206 
2207 		/*
2208 		 * It's not enough that it's not actively running,
2209 		 * it must be off the runqueue _entirely_, and not
2210 		 * preempted!
2211 		 *
2212 		 * So if it was still runnable (but just not actively
2213 		 * running right now), it's preempted, and we should
2214 		 * yield - it could be a while.
2215 		 */
2216 		if (unlikely(queued)) {
2217 			ktime_t to = NSEC_PER_SEC / HZ;
2218 
2219 			set_current_state(TASK_UNINTERRUPTIBLE);
2220 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2221 			continue;
2222 		}
2223 
2224 		/*
2225 		 * Ahh, all good. It wasn't running, and it wasn't
2226 		 * runnable, which means that it will never become
2227 		 * running in the future either. We're all done!
2228 		 */
2229 		break;
2230 	}
2231 
2232 	return ncsw;
2233 }
2234 
2235 /***
2236  * kick_process - kick a running thread to enter/exit the kernel
2237  * @p: the to-be-kicked thread
2238  *
2239  * Cause a process which is running on another CPU to enter
2240  * kernel-mode, without any delay. (to get signals handled.)
2241  *
2242  * NOTE: this function doesn't have to take the runqueue lock,
2243  * because all it wants to ensure is that the remote task enters
2244  * the kernel. If the IPI races and the task has been migrated
2245  * to another CPU then no harm is done and the purpose has been
2246  * achieved as well.
2247  */
2248 void kick_process(struct task_struct *p)
2249 {
2250 	int cpu;
2251 
2252 	preempt_disable();
2253 	cpu = task_cpu(p);
2254 	if ((cpu != smp_processor_id()) && task_curr(p))
2255 		smp_send_reschedule(cpu);
2256 	preempt_enable();
2257 }
2258 EXPORT_SYMBOL_GPL(kick_process);
2259 
2260 /*
2261  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2262  *
2263  * A few notes on cpu_active vs cpu_online:
2264  *
2265  *  - cpu_active must be a subset of cpu_online
2266  *
2267  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268  *    see __set_cpus_allowed_ptr(). At this point the newly online
2269  *    CPU isn't yet part of the sched domains, and balancing will not
2270  *    see it.
2271  *
2272  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2273  *    avoid the load balancer to place new tasks on the to be removed
2274  *    CPU. Existing tasks will remain running there and will be taken
2275  *    off.
2276  *
2277  * This means that fallback selection must not select !active CPUs.
2278  * And can assume that any active CPU must be online. Conversely
2279  * select_task_rq() below may allow selection of !active CPUs in order
2280  * to satisfy the above rules.
2281  */
2282 static int select_fallback_rq(int cpu, struct task_struct *p)
2283 {
2284 	int nid = cpu_to_node(cpu);
2285 	const struct cpumask *nodemask = NULL;
2286 	enum { cpuset, possible, fail } state = cpuset;
2287 	int dest_cpu;
2288 
2289 	/*
2290 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2291 	 * will return -1. There is no CPU on the node, and we should
2292 	 * select the CPU on the other node.
2293 	 */
2294 	if (nid != -1) {
2295 		nodemask = cpumask_of_node(nid);
2296 
2297 		/* Look for allowed, online CPU in same node. */
2298 		for_each_cpu(dest_cpu, nodemask) {
2299 			if (!cpu_active(dest_cpu))
2300 				continue;
2301 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2302 				return dest_cpu;
2303 		}
2304 	}
2305 
2306 	for (;;) {
2307 		/* Any allowed, online CPU? */
2308 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2309 			if (!is_cpu_allowed(p, dest_cpu))
2310 				continue;
2311 
2312 			goto out;
2313 		}
2314 
2315 		/* No more Mr. Nice Guy. */
2316 		switch (state) {
2317 		case cpuset:
2318 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2319 				cpuset_cpus_allowed_fallback(p);
2320 				state = possible;
2321 				break;
2322 			}
2323 			fallthrough;
2324 		case possible:
2325 			do_set_cpus_allowed(p, cpu_possible_mask);
2326 			state = fail;
2327 			break;
2328 
2329 		case fail:
2330 			BUG();
2331 			break;
2332 		}
2333 	}
2334 
2335 out:
2336 	if (state != cpuset) {
2337 		/*
2338 		 * Don't tell them about moving exiting tasks or
2339 		 * kernel threads (both mm NULL), since they never
2340 		 * leave kernel.
2341 		 */
2342 		if (p->mm && printk_ratelimit()) {
2343 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344 					task_pid_nr(p), p->comm, cpu);
2345 		}
2346 	}
2347 
2348 	return dest_cpu;
2349 }
2350 
2351 /*
2352  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2353  */
2354 static inline
2355 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2356 {
2357 	lockdep_assert_held(&p->pi_lock);
2358 
2359 	if (p->nr_cpus_allowed > 1)
2360 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2361 	else
2362 		cpu = cpumask_any(p->cpus_ptr);
2363 
2364 	/*
2365 	 * In order not to call set_task_cpu() on a blocking task we need
2366 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2367 	 * CPU.
2368 	 *
2369 	 * Since this is common to all placement strategies, this lives here.
2370 	 *
2371 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2372 	 *   not worry about this generic constraint ]
2373 	 */
2374 	if (unlikely(!is_cpu_allowed(p, cpu)))
2375 		cpu = select_fallback_rq(task_cpu(p), p);
2376 
2377 	return cpu;
2378 }
2379 
2380 void sched_set_stop_task(int cpu, struct task_struct *stop)
2381 {
2382 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2383 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2384 
2385 	if (stop) {
2386 		/*
2387 		 * Make it appear like a SCHED_FIFO task, its something
2388 		 * userspace knows about and won't get confused about.
2389 		 *
2390 		 * Also, it will make PI more or less work without too
2391 		 * much confusion -- but then, stop work should not
2392 		 * rely on PI working anyway.
2393 		 */
2394 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2395 
2396 		stop->sched_class = &stop_sched_class;
2397 	}
2398 
2399 	cpu_rq(cpu)->stop = stop;
2400 
2401 	if (old_stop) {
2402 		/*
2403 		 * Reset it back to a normal scheduling class so that
2404 		 * it can die in pieces.
2405 		 */
2406 		old_stop->sched_class = &rt_sched_class;
2407 	}
2408 }
2409 
2410 #else
2411 
2412 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2413 					 const struct cpumask *new_mask, bool check)
2414 {
2415 	return set_cpus_allowed_ptr(p, new_mask);
2416 }
2417 
2418 #endif /* CONFIG_SMP */
2419 
2420 static void
2421 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2422 {
2423 	struct rq *rq;
2424 
2425 	if (!schedstat_enabled())
2426 		return;
2427 
2428 	rq = this_rq();
2429 
2430 #ifdef CONFIG_SMP
2431 	if (cpu == rq->cpu) {
2432 		__schedstat_inc(rq->ttwu_local);
2433 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2434 	} else {
2435 		struct sched_domain *sd;
2436 
2437 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2438 		rcu_read_lock();
2439 		for_each_domain(rq->cpu, sd) {
2440 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441 				__schedstat_inc(sd->ttwu_wake_remote);
2442 				break;
2443 			}
2444 		}
2445 		rcu_read_unlock();
2446 	}
2447 
2448 	if (wake_flags & WF_MIGRATED)
2449 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2450 #endif /* CONFIG_SMP */
2451 
2452 	__schedstat_inc(rq->ttwu_count);
2453 	__schedstat_inc(p->se.statistics.nr_wakeups);
2454 
2455 	if (wake_flags & WF_SYNC)
2456 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2457 }
2458 
2459 /*
2460  * Mark the task runnable and perform wakeup-preemption.
2461  */
2462 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2463 			   struct rq_flags *rf)
2464 {
2465 	check_preempt_curr(rq, p, wake_flags);
2466 	p->state = TASK_RUNNING;
2467 	trace_sched_wakeup(p);
2468 
2469 #ifdef CONFIG_SMP
2470 	if (p->sched_class->task_woken) {
2471 		/*
2472 		 * Our task @p is fully woken up and running; so its safe to
2473 		 * drop the rq->lock, hereafter rq is only used for statistics.
2474 		 */
2475 		rq_unpin_lock(rq, rf);
2476 		p->sched_class->task_woken(rq, p);
2477 		rq_repin_lock(rq, rf);
2478 	}
2479 
2480 	if (rq->idle_stamp) {
2481 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2482 		u64 max = 2*rq->max_idle_balance_cost;
2483 
2484 		update_avg(&rq->avg_idle, delta);
2485 
2486 		if (rq->avg_idle > max)
2487 			rq->avg_idle = max;
2488 
2489 		rq->idle_stamp = 0;
2490 	}
2491 #endif
2492 }
2493 
2494 static void
2495 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2496 		 struct rq_flags *rf)
2497 {
2498 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2499 
2500 	lockdep_assert_held(&rq->lock);
2501 
2502 	if (p->sched_contributes_to_load)
2503 		rq->nr_uninterruptible--;
2504 
2505 #ifdef CONFIG_SMP
2506 	if (wake_flags & WF_MIGRATED)
2507 		en_flags |= ENQUEUE_MIGRATED;
2508 #endif
2509 
2510 	activate_task(rq, p, en_flags);
2511 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2512 }
2513 
2514 /*
2515  * Consider @p being inside a wait loop:
2516  *
2517  *   for (;;) {
2518  *      set_current_state(TASK_UNINTERRUPTIBLE);
2519  *
2520  *      if (CONDITION)
2521  *         break;
2522  *
2523  *      schedule();
2524  *   }
2525  *   __set_current_state(TASK_RUNNING);
2526  *
2527  * between set_current_state() and schedule(). In this case @p is still
2528  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2529  * an atomic manner.
2530  *
2531  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532  * then schedule() must still happen and p->state can be changed to
2533  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534  * need to do a full wakeup with enqueue.
2535  *
2536  * Returns: %true when the wakeup is done,
2537  *          %false otherwise.
2538  */
2539 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2540 {
2541 	struct rq_flags rf;
2542 	struct rq *rq;
2543 	int ret = 0;
2544 
2545 	rq = __task_rq_lock(p, &rf);
2546 	if (task_on_rq_queued(p)) {
2547 		/* check_preempt_curr() may use rq clock */
2548 		update_rq_clock(rq);
2549 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2550 		ret = 1;
2551 	}
2552 	__task_rq_unlock(rq, &rf);
2553 
2554 	return ret;
2555 }
2556 
2557 #ifdef CONFIG_SMP
2558 void sched_ttwu_pending(void *arg)
2559 {
2560 	struct llist_node *llist = arg;
2561 	struct rq *rq = this_rq();
2562 	struct task_struct *p, *t;
2563 	struct rq_flags rf;
2564 
2565 	if (!llist)
2566 		return;
2567 
2568 	/*
2569 	 * rq::ttwu_pending racy indication of out-standing wakeups.
2570 	 * Races such that false-negatives are possible, since they
2571 	 * are shorter lived that false-positives would be.
2572 	 */
2573 	WRITE_ONCE(rq->ttwu_pending, 0);
2574 
2575 	rq_lock_irqsave(rq, &rf);
2576 	update_rq_clock(rq);
2577 
2578 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2579 		if (WARN_ON_ONCE(p->on_cpu))
2580 			smp_cond_load_acquire(&p->on_cpu, !VAL);
2581 
2582 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2583 			set_task_cpu(p, cpu_of(rq));
2584 
2585 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2586 	}
2587 
2588 	rq_unlock_irqrestore(rq, &rf);
2589 }
2590 
2591 void send_call_function_single_ipi(int cpu)
2592 {
2593 	struct rq *rq = cpu_rq(cpu);
2594 
2595 	if (!set_nr_if_polling(rq->idle))
2596 		arch_send_call_function_single_ipi(cpu);
2597 	else
2598 		trace_sched_wake_idle_without_ipi(cpu);
2599 }
2600 
2601 /*
2602  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603  * necessary. The wakee CPU on receipt of the IPI will queue the task
2604  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605  * of the wakeup instead of the waker.
2606  */
2607 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2608 {
2609 	struct rq *rq = cpu_rq(cpu);
2610 
2611 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2612 
2613 	WRITE_ONCE(rq->ttwu_pending, 1);
2614 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
2615 }
2616 
2617 void wake_up_if_idle(int cpu)
2618 {
2619 	struct rq *rq = cpu_rq(cpu);
2620 	struct rq_flags rf;
2621 
2622 	rcu_read_lock();
2623 
2624 	if (!is_idle_task(rcu_dereference(rq->curr)))
2625 		goto out;
2626 
2627 	if (set_nr_if_polling(rq->idle)) {
2628 		trace_sched_wake_idle_without_ipi(cpu);
2629 	} else {
2630 		rq_lock_irqsave(rq, &rf);
2631 		if (is_idle_task(rq->curr))
2632 			smp_send_reschedule(cpu);
2633 		/* Else CPU is not idle, do nothing here: */
2634 		rq_unlock_irqrestore(rq, &rf);
2635 	}
2636 
2637 out:
2638 	rcu_read_unlock();
2639 }
2640 
2641 bool cpus_share_cache(int this_cpu, int that_cpu)
2642 {
2643 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2644 }
2645 
2646 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2647 {
2648 	/*
2649 	 * If the CPU does not share cache, then queue the task on the
2650 	 * remote rqs wakelist to avoid accessing remote data.
2651 	 */
2652 	if (!cpus_share_cache(smp_processor_id(), cpu))
2653 		return true;
2654 
2655 	/*
2656 	 * If the task is descheduling and the only running task on the
2657 	 * CPU then use the wakelist to offload the task activation to
2658 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2659 	 * nr_running is checked to avoid unnecessary task stacking.
2660 	 */
2661 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2662 		return true;
2663 
2664 	return false;
2665 }
2666 
2667 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2668 {
2669 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2670 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2671 			return false;
2672 
2673 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2674 		__ttwu_queue_wakelist(p, cpu, wake_flags);
2675 		return true;
2676 	}
2677 
2678 	return false;
2679 }
2680 
2681 #else /* !CONFIG_SMP */
2682 
2683 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2684 {
2685 	return false;
2686 }
2687 
2688 #endif /* CONFIG_SMP */
2689 
2690 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2691 {
2692 	struct rq *rq = cpu_rq(cpu);
2693 	struct rq_flags rf;
2694 
2695 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2696 		return;
2697 
2698 	rq_lock(rq, &rf);
2699 	update_rq_clock(rq);
2700 	ttwu_do_activate(rq, p, wake_flags, &rf);
2701 	rq_unlock(rq, &rf);
2702 }
2703 
2704 /*
2705  * Notes on Program-Order guarantees on SMP systems.
2706  *
2707  *  MIGRATION
2708  *
2709  * The basic program-order guarantee on SMP systems is that when a task [t]
2710  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711  * execution on its new CPU [c1].
2712  *
2713  * For migration (of runnable tasks) this is provided by the following means:
2714  *
2715  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2716  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2717  *     rq(c1)->lock (if not at the same time, then in that order).
2718  *  C) LOCK of the rq(c1)->lock scheduling in task
2719  *
2720  * Release/acquire chaining guarantees that B happens after A and C after B.
2721  * Note: the CPU doing B need not be c0 or c1
2722  *
2723  * Example:
2724  *
2725  *   CPU0            CPU1            CPU2
2726  *
2727  *   LOCK rq(0)->lock
2728  *   sched-out X
2729  *   sched-in Y
2730  *   UNLOCK rq(0)->lock
2731  *
2732  *                                   LOCK rq(0)->lock // orders against CPU0
2733  *                                   dequeue X
2734  *                                   UNLOCK rq(0)->lock
2735  *
2736  *                                   LOCK rq(1)->lock
2737  *                                   enqueue X
2738  *                                   UNLOCK rq(1)->lock
2739  *
2740  *                   LOCK rq(1)->lock // orders against CPU2
2741  *                   sched-out Z
2742  *                   sched-in X
2743  *                   UNLOCK rq(1)->lock
2744  *
2745  *
2746  *  BLOCKING -- aka. SLEEP + WAKEUP
2747  *
2748  * For blocking we (obviously) need to provide the same guarantee as for
2749  * migration. However the means are completely different as there is no lock
2750  * chain to provide order. Instead we do:
2751  *
2752  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2753  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2754  *
2755  * Example:
2756  *
2757  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2758  *
2759  *   LOCK rq(0)->lock LOCK X->pi_lock
2760  *   dequeue X
2761  *   sched-out X
2762  *   smp_store_release(X->on_cpu, 0);
2763  *
2764  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2765  *                    X->state = WAKING
2766  *                    set_task_cpu(X,2)
2767  *
2768  *                    LOCK rq(2)->lock
2769  *                    enqueue X
2770  *                    X->state = RUNNING
2771  *                    UNLOCK rq(2)->lock
2772  *
2773  *                                          LOCK rq(2)->lock // orders against CPU1
2774  *                                          sched-out Z
2775  *                                          sched-in X
2776  *                                          UNLOCK rq(2)->lock
2777  *
2778  *                    UNLOCK X->pi_lock
2779  *   UNLOCK rq(0)->lock
2780  *
2781  *
2782  * However, for wakeups there is a second guarantee we must provide, namely we
2783  * must ensure that CONDITION=1 done by the caller can not be reordered with
2784  * accesses to the task state; see try_to_wake_up() and set_current_state().
2785  */
2786 
2787 /**
2788  * try_to_wake_up - wake up a thread
2789  * @p: the thread to be awakened
2790  * @state: the mask of task states that can be woken
2791  * @wake_flags: wake modifier flags (WF_*)
2792  *
2793  * Conceptually does:
2794  *
2795  *   If (@state & @p->state) @p->state = TASK_RUNNING.
2796  *
2797  * If the task was not queued/runnable, also place it back on a runqueue.
2798  *
2799  * This function is atomic against schedule() which would dequeue the task.
2800  *
2801  * It issues a full memory barrier before accessing @p->state, see the comment
2802  * with set_current_state().
2803  *
2804  * Uses p->pi_lock to serialize against concurrent wake-ups.
2805  *
2806  * Relies on p->pi_lock stabilizing:
2807  *  - p->sched_class
2808  *  - p->cpus_ptr
2809  *  - p->sched_task_group
2810  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2811  *
2812  * Tries really hard to only take one task_rq(p)->lock for performance.
2813  * Takes rq->lock in:
2814  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
2815  *  - ttwu_queue()       -- new rq, for enqueue of the task;
2816  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2817  *
2818  * As a consequence we race really badly with just about everything. See the
2819  * many memory barriers and their comments for details.
2820  *
2821  * Return: %true if @p->state changes (an actual wakeup was done),
2822  *	   %false otherwise.
2823  */
2824 static int
2825 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2826 {
2827 	unsigned long flags;
2828 	int cpu, success = 0;
2829 
2830 	preempt_disable();
2831 	if (p == current) {
2832 		/*
2833 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834 		 * == smp_processor_id()'. Together this means we can special
2835 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836 		 * without taking any locks.
2837 		 *
2838 		 * In particular:
2839 		 *  - we rely on Program-Order guarantees for all the ordering,
2840 		 *  - we're serialized against set_special_state() by virtue of
2841 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2842 		 */
2843 		if (!(p->state & state))
2844 			goto out;
2845 
2846 		success = 1;
2847 		trace_sched_waking(p);
2848 		p->state = TASK_RUNNING;
2849 		trace_sched_wakeup(p);
2850 		goto out;
2851 	}
2852 
2853 	/*
2854 	 * If we are going to wake up a thread waiting for CONDITION we
2855 	 * need to ensure that CONDITION=1 done by the caller can not be
2856 	 * reordered with p->state check below. This pairs with smp_store_mb()
2857 	 * in set_current_state() that the waiting thread does.
2858 	 */
2859 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2860 	smp_mb__after_spinlock();
2861 	if (!(p->state & state))
2862 		goto unlock;
2863 
2864 	trace_sched_waking(p);
2865 
2866 	/* We're going to change ->state: */
2867 	success = 1;
2868 
2869 	/*
2870 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872 	 * in smp_cond_load_acquire() below.
2873 	 *
2874 	 * sched_ttwu_pending()			try_to_wake_up()
2875 	 *   STORE p->on_rq = 1			  LOAD p->state
2876 	 *   UNLOCK rq->lock
2877 	 *
2878 	 * __schedule() (switch to task 'p')
2879 	 *   LOCK rq->lock			  smp_rmb();
2880 	 *   smp_mb__after_spinlock();
2881 	 *   UNLOCK rq->lock
2882 	 *
2883 	 * [task p]
2884 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2885 	 *
2886 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2888 	 *
2889 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2890 	 */
2891 	smp_rmb();
2892 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2893 		goto unlock;
2894 
2895 	if (p->in_iowait) {
2896 		delayacct_blkio_end(p);
2897 		atomic_dec(&task_rq(p)->nr_iowait);
2898 	}
2899 
2900 #ifdef CONFIG_SMP
2901 	/*
2902 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903 	 * possible to, falsely, observe p->on_cpu == 0.
2904 	 *
2905 	 * One must be running (->on_cpu == 1) in order to remove oneself
2906 	 * from the runqueue.
2907 	 *
2908 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2909 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2910 	 *   UNLOCK rq->lock
2911 	 *
2912 	 * __schedule() (put 'p' to sleep)
2913 	 *   LOCK rq->lock			  smp_rmb();
2914 	 *   smp_mb__after_spinlock();
2915 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2916 	 *
2917 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2919 	 *
2920 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
2922 	 * care about it's own p->state. See the comment in __schedule().
2923 	 */
2924 	smp_acquire__after_ctrl_dep();
2925 
2926 	/*
2927 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928 	 * == 0), which means we need to do an enqueue, change p->state to
2929 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930 	 * enqueue, such as ttwu_queue_wakelist().
2931 	 */
2932 	p->state = TASK_WAKING;
2933 
2934 	/*
2935 	 * If the owning (remote) CPU is still in the middle of schedule() with
2936 	 * this task as prev, considering queueing p on the remote CPUs wake_list
2937 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2938 	 * let the waker make forward progress. This is safe because IRQs are
2939 	 * disabled and the IPI will deliver after on_cpu is cleared.
2940 	 *
2941 	 * Ensure we load task_cpu(p) after p->on_cpu:
2942 	 *
2943 	 * set_task_cpu(p, cpu);
2944 	 *   STORE p->cpu = @cpu
2945 	 * __schedule() (switch to task 'p')
2946 	 *   LOCK rq->lock
2947 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
2948 	 *   STORE p->on_cpu = 1		LOAD p->cpu
2949 	 *
2950 	 * to ensure we observe the correct CPU on which the task is currently
2951 	 * scheduling.
2952 	 */
2953 	if (smp_load_acquire(&p->on_cpu) &&
2954 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2955 		goto unlock;
2956 
2957 	/*
2958 	 * If the owning (remote) CPU is still in the middle of schedule() with
2959 	 * this task as prev, wait until its done referencing the task.
2960 	 *
2961 	 * Pairs with the smp_store_release() in finish_task().
2962 	 *
2963 	 * This ensures that tasks getting woken will be fully ordered against
2964 	 * their previous state and preserve Program Order.
2965 	 */
2966 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2967 
2968 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2969 	if (task_cpu(p) != cpu) {
2970 		wake_flags |= WF_MIGRATED;
2971 		psi_ttwu_dequeue(p);
2972 		set_task_cpu(p, cpu);
2973 	}
2974 #else
2975 	cpu = task_cpu(p);
2976 #endif /* CONFIG_SMP */
2977 
2978 	ttwu_queue(p, cpu, wake_flags);
2979 unlock:
2980 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981 out:
2982 	if (success)
2983 		ttwu_stat(p, task_cpu(p), wake_flags);
2984 	preempt_enable();
2985 
2986 	return success;
2987 }
2988 
2989 /**
2990  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991  * @p: Process for which the function is to be invoked.
2992  * @func: Function to invoke.
2993  * @arg: Argument to function.
2994  *
2995  * If the specified task can be quickly locked into a definite state
2996  * (either sleeping or on a given runqueue), arrange to keep it in that
2997  * state while invoking @func(@arg).  This function can use ->on_rq and
2998  * task_curr() to work out what the state is, if required.  Given that
2999  * @func can be invoked with a runqueue lock held, it had better be quite
3000  * lightweight.
3001  *
3002  * Returns:
3003  *	@false if the task slipped out from under the locks.
3004  *	@true if the task was locked onto a runqueue or is sleeping.
3005  *		However, @func can override this by returning @false.
3006  */
3007 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3008 {
3009 	bool ret = false;
3010 	struct rq_flags rf;
3011 	struct rq *rq;
3012 
3013 	lockdep_assert_irqs_enabled();
3014 	raw_spin_lock_irq(&p->pi_lock);
3015 	if (p->on_rq) {
3016 		rq = __task_rq_lock(p, &rf);
3017 		if (task_rq(p) == rq)
3018 			ret = func(p, arg);
3019 		rq_unlock(rq, &rf);
3020 	} else {
3021 		switch (p->state) {
3022 		case TASK_RUNNING:
3023 		case TASK_WAKING:
3024 			break;
3025 		default:
3026 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3027 			if (!p->on_rq)
3028 				ret = func(p, arg);
3029 		}
3030 	}
3031 	raw_spin_unlock_irq(&p->pi_lock);
3032 	return ret;
3033 }
3034 
3035 /**
3036  * wake_up_process - Wake up a specific process
3037  * @p: The process to be woken up.
3038  *
3039  * Attempt to wake up the nominated process and move it to the set of runnable
3040  * processes.
3041  *
3042  * Return: 1 if the process was woken up, 0 if it was already running.
3043  *
3044  * This function executes a full memory barrier before accessing the task state.
3045  */
3046 int wake_up_process(struct task_struct *p)
3047 {
3048 	return try_to_wake_up(p, TASK_NORMAL, 0);
3049 }
3050 EXPORT_SYMBOL(wake_up_process);
3051 
3052 int wake_up_state(struct task_struct *p, unsigned int state)
3053 {
3054 	return try_to_wake_up(p, state, 0);
3055 }
3056 
3057 /*
3058  * Perform scheduler related setup for a newly forked process p.
3059  * p is forked by current.
3060  *
3061  * __sched_fork() is basic setup used by init_idle() too:
3062  */
3063 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3064 {
3065 	p->on_rq			= 0;
3066 
3067 	p->se.on_rq			= 0;
3068 	p->se.exec_start		= 0;
3069 	p->se.sum_exec_runtime		= 0;
3070 	p->se.prev_sum_exec_runtime	= 0;
3071 	p->se.nr_migrations		= 0;
3072 	p->se.vruntime			= 0;
3073 	INIT_LIST_HEAD(&p->se.group_node);
3074 
3075 #ifdef CONFIG_FAIR_GROUP_SCHED
3076 	p->se.cfs_rq			= NULL;
3077 #endif
3078 
3079 #ifdef CONFIG_SCHEDSTATS
3080 	/* Even if schedstat is disabled, there should not be garbage */
3081 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3082 #endif
3083 
3084 	RB_CLEAR_NODE(&p->dl.rb_node);
3085 	init_dl_task_timer(&p->dl);
3086 	init_dl_inactive_task_timer(&p->dl);
3087 	__dl_clear_params(p);
3088 
3089 	INIT_LIST_HEAD(&p->rt.run_list);
3090 	p->rt.timeout		= 0;
3091 	p->rt.time_slice	= sched_rr_timeslice;
3092 	p->rt.on_rq		= 0;
3093 	p->rt.on_list		= 0;
3094 
3095 #ifdef CONFIG_PREEMPT_NOTIFIERS
3096 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3097 #endif
3098 
3099 #ifdef CONFIG_COMPACTION
3100 	p->capture_control = NULL;
3101 #endif
3102 	init_numa_balancing(clone_flags, p);
3103 #ifdef CONFIG_SMP
3104 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3105 #endif
3106 }
3107 
3108 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3109 
3110 #ifdef CONFIG_NUMA_BALANCING
3111 
3112 void set_numabalancing_state(bool enabled)
3113 {
3114 	if (enabled)
3115 		static_branch_enable(&sched_numa_balancing);
3116 	else
3117 		static_branch_disable(&sched_numa_balancing);
3118 }
3119 
3120 #ifdef CONFIG_PROC_SYSCTL
3121 int sysctl_numa_balancing(struct ctl_table *table, int write,
3122 			  void *buffer, size_t *lenp, loff_t *ppos)
3123 {
3124 	struct ctl_table t;
3125 	int err;
3126 	int state = static_branch_likely(&sched_numa_balancing);
3127 
3128 	if (write && !capable(CAP_SYS_ADMIN))
3129 		return -EPERM;
3130 
3131 	t = *table;
3132 	t.data = &state;
3133 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3134 	if (err < 0)
3135 		return err;
3136 	if (write)
3137 		set_numabalancing_state(state);
3138 	return err;
3139 }
3140 #endif
3141 #endif
3142 
3143 #ifdef CONFIG_SCHEDSTATS
3144 
3145 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3146 static bool __initdata __sched_schedstats = false;
3147 
3148 static void set_schedstats(bool enabled)
3149 {
3150 	if (enabled)
3151 		static_branch_enable(&sched_schedstats);
3152 	else
3153 		static_branch_disable(&sched_schedstats);
3154 }
3155 
3156 void force_schedstat_enabled(void)
3157 {
3158 	if (!schedstat_enabled()) {
3159 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160 		static_branch_enable(&sched_schedstats);
3161 	}
3162 }
3163 
3164 static int __init setup_schedstats(char *str)
3165 {
3166 	int ret = 0;
3167 	if (!str)
3168 		goto out;
3169 
3170 	/*
3171 	 * This code is called before jump labels have been set up, so we can't
3172 	 * change the static branch directly just yet.  Instead set a temporary
3173 	 * variable so init_schedstats() can do it later.
3174 	 */
3175 	if (!strcmp(str, "enable")) {
3176 		__sched_schedstats = true;
3177 		ret = 1;
3178 	} else if (!strcmp(str, "disable")) {
3179 		__sched_schedstats = false;
3180 		ret = 1;
3181 	}
3182 out:
3183 	if (!ret)
3184 		pr_warn("Unable to parse schedstats=\n");
3185 
3186 	return ret;
3187 }
3188 __setup("schedstats=", setup_schedstats);
3189 
3190 static void __init init_schedstats(void)
3191 {
3192 	set_schedstats(__sched_schedstats);
3193 }
3194 
3195 #ifdef CONFIG_PROC_SYSCTL
3196 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3197 		size_t *lenp, loff_t *ppos)
3198 {
3199 	struct ctl_table t;
3200 	int err;
3201 	int state = static_branch_likely(&sched_schedstats);
3202 
3203 	if (write && !capable(CAP_SYS_ADMIN))
3204 		return -EPERM;
3205 
3206 	t = *table;
3207 	t.data = &state;
3208 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3209 	if (err < 0)
3210 		return err;
3211 	if (write)
3212 		set_schedstats(state);
3213 	return err;
3214 }
3215 #endif /* CONFIG_PROC_SYSCTL */
3216 #else  /* !CONFIG_SCHEDSTATS */
3217 static inline void init_schedstats(void) {}
3218 #endif /* CONFIG_SCHEDSTATS */
3219 
3220 /*
3221  * fork()/clone()-time setup:
3222  */
3223 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3224 {
3225 	unsigned long flags;
3226 
3227 	__sched_fork(clone_flags, p);
3228 	/*
3229 	 * We mark the process as NEW here. This guarantees that
3230 	 * nobody will actually run it, and a signal or other external
3231 	 * event cannot wake it up and insert it on the runqueue either.
3232 	 */
3233 	p->state = TASK_NEW;
3234 
3235 	/*
3236 	 * Make sure we do not leak PI boosting priority to the child.
3237 	 */
3238 	p->prio = current->normal_prio;
3239 
3240 	uclamp_fork(p);
3241 
3242 	/*
3243 	 * Revert to default priority/policy on fork if requested.
3244 	 */
3245 	if (unlikely(p->sched_reset_on_fork)) {
3246 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3247 			p->policy = SCHED_NORMAL;
3248 			p->static_prio = NICE_TO_PRIO(0);
3249 			p->rt_priority = 0;
3250 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3251 			p->static_prio = NICE_TO_PRIO(0);
3252 
3253 		p->prio = p->normal_prio = __normal_prio(p);
3254 		set_load_weight(p, false);
3255 
3256 		/*
3257 		 * We don't need the reset flag anymore after the fork. It has
3258 		 * fulfilled its duty:
3259 		 */
3260 		p->sched_reset_on_fork = 0;
3261 	}
3262 
3263 	if (dl_prio(p->prio))
3264 		return -EAGAIN;
3265 	else if (rt_prio(p->prio))
3266 		p->sched_class = &rt_sched_class;
3267 	else
3268 		p->sched_class = &fair_sched_class;
3269 
3270 	init_entity_runnable_average(&p->se);
3271 
3272 	/*
3273 	 * The child is not yet in the pid-hash so no cgroup attach races,
3274 	 * and the cgroup is pinned to this child due to cgroup_fork()
3275 	 * is ran before sched_fork().
3276 	 *
3277 	 * Silence PROVE_RCU.
3278 	 */
3279 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3280 	rseq_migrate(p);
3281 	/*
3282 	 * We're setting the CPU for the first time, we don't migrate,
3283 	 * so use __set_task_cpu().
3284 	 */
3285 	__set_task_cpu(p, smp_processor_id());
3286 	if (p->sched_class->task_fork)
3287 		p->sched_class->task_fork(p);
3288 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3289 
3290 #ifdef CONFIG_SCHED_INFO
3291 	if (likely(sched_info_on()))
3292 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3293 #endif
3294 #if defined(CONFIG_SMP)
3295 	p->on_cpu = 0;
3296 #endif
3297 	init_task_preempt_count(p);
3298 #ifdef CONFIG_SMP
3299 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3300 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3301 #endif
3302 	return 0;
3303 }
3304 
3305 void sched_post_fork(struct task_struct *p)
3306 {
3307 	uclamp_post_fork(p);
3308 }
3309 
3310 unsigned long to_ratio(u64 period, u64 runtime)
3311 {
3312 	if (runtime == RUNTIME_INF)
3313 		return BW_UNIT;
3314 
3315 	/*
3316 	 * Doing this here saves a lot of checks in all
3317 	 * the calling paths, and returning zero seems
3318 	 * safe for them anyway.
3319 	 */
3320 	if (period == 0)
3321 		return 0;
3322 
3323 	return div64_u64(runtime << BW_SHIFT, period);
3324 }
3325 
3326 /*
3327  * wake_up_new_task - wake up a newly created task for the first time.
3328  *
3329  * This function will do some initial scheduler statistics housekeeping
3330  * that must be done for every newly created context, then puts the task
3331  * on the runqueue and wakes it.
3332  */
3333 void wake_up_new_task(struct task_struct *p)
3334 {
3335 	struct rq_flags rf;
3336 	struct rq *rq;
3337 
3338 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3339 	p->state = TASK_RUNNING;
3340 #ifdef CONFIG_SMP
3341 	/*
3342 	 * Fork balancing, do it here and not earlier because:
3343 	 *  - cpus_ptr can change in the fork path
3344 	 *  - any previously selected CPU might disappear through hotplug
3345 	 *
3346 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347 	 * as we're not fully set-up yet.
3348 	 */
3349 	p->recent_used_cpu = task_cpu(p);
3350 	rseq_migrate(p);
3351 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3352 #endif
3353 	rq = __task_rq_lock(p, &rf);
3354 	update_rq_clock(rq);
3355 	post_init_entity_util_avg(p);
3356 
3357 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3358 	trace_sched_wakeup_new(p);
3359 	check_preempt_curr(rq, p, WF_FORK);
3360 #ifdef CONFIG_SMP
3361 	if (p->sched_class->task_woken) {
3362 		/*
3363 		 * Nothing relies on rq->lock after this, so its fine to
3364 		 * drop it.
3365 		 */
3366 		rq_unpin_lock(rq, &rf);
3367 		p->sched_class->task_woken(rq, p);
3368 		rq_repin_lock(rq, &rf);
3369 	}
3370 #endif
3371 	task_rq_unlock(rq, p, &rf);
3372 }
3373 
3374 #ifdef CONFIG_PREEMPT_NOTIFIERS
3375 
3376 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3377 
3378 void preempt_notifier_inc(void)
3379 {
3380 	static_branch_inc(&preempt_notifier_key);
3381 }
3382 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3383 
3384 void preempt_notifier_dec(void)
3385 {
3386 	static_branch_dec(&preempt_notifier_key);
3387 }
3388 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3389 
3390 /**
3391  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392  * @notifier: notifier struct to register
3393  */
3394 void preempt_notifier_register(struct preempt_notifier *notifier)
3395 {
3396 	if (!static_branch_unlikely(&preempt_notifier_key))
3397 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3398 
3399 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3400 }
3401 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3402 
3403 /**
3404  * preempt_notifier_unregister - no longer interested in preemption notifications
3405  * @notifier: notifier struct to unregister
3406  *
3407  * This is *not* safe to call from within a preemption notifier.
3408  */
3409 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3410 {
3411 	hlist_del(&notifier->link);
3412 }
3413 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3414 
3415 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3416 {
3417 	struct preempt_notifier *notifier;
3418 
3419 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3420 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3421 }
3422 
3423 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3424 {
3425 	if (static_branch_unlikely(&preempt_notifier_key))
3426 		__fire_sched_in_preempt_notifiers(curr);
3427 }
3428 
3429 static void
3430 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3431 				   struct task_struct *next)
3432 {
3433 	struct preempt_notifier *notifier;
3434 
3435 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3436 		notifier->ops->sched_out(notifier, next);
3437 }
3438 
3439 static __always_inline void
3440 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3441 				 struct task_struct *next)
3442 {
3443 	if (static_branch_unlikely(&preempt_notifier_key))
3444 		__fire_sched_out_preempt_notifiers(curr, next);
3445 }
3446 
3447 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3448 
3449 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3450 {
3451 }
3452 
3453 static inline void
3454 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3455 				 struct task_struct *next)
3456 {
3457 }
3458 
3459 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3460 
3461 static inline void prepare_task(struct task_struct *next)
3462 {
3463 #ifdef CONFIG_SMP
3464 	/*
3465 	 * Claim the task as running, we do this before switching to it
3466 	 * such that any running task will have this set.
3467 	 *
3468 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3469 	 */
3470 	WRITE_ONCE(next->on_cpu, 1);
3471 #endif
3472 }
3473 
3474 static inline void finish_task(struct task_struct *prev)
3475 {
3476 #ifdef CONFIG_SMP
3477 	/*
3478 	 * This must be the very last reference to @prev from this CPU. After
3479 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480 	 * must ensure this doesn't happen until the switch is completely
3481 	 * finished.
3482 	 *
3483 	 * In particular, the load of prev->state in finish_task_switch() must
3484 	 * happen before this.
3485 	 *
3486 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3487 	 */
3488 	smp_store_release(&prev->on_cpu, 0);
3489 #endif
3490 }
3491 
3492 static inline void
3493 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494 {
3495 	/*
3496 	 * Since the runqueue lock will be released by the next
3497 	 * task (which is an invalid locking op but in the case
3498 	 * of the scheduler it's an obvious special-case), so we
3499 	 * do an early lockdep release here:
3500 	 */
3501 	rq_unpin_lock(rq, rf);
3502 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3503 #ifdef CONFIG_DEBUG_SPINLOCK
3504 	/* this is a valid case when another task releases the spinlock */
3505 	rq->lock.owner = next;
3506 #endif
3507 }
3508 
3509 static inline void finish_lock_switch(struct rq *rq)
3510 {
3511 	/*
3512 	 * If we are tracking spinlock dependencies then we have to
3513 	 * fix up the runqueue lock - which gets 'carried over' from
3514 	 * prev into current:
3515 	 */
3516 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3517 	raw_spin_unlock_irq(&rq->lock);
3518 }
3519 
3520 /*
3521  * NOP if the arch has not defined these:
3522  */
3523 
3524 #ifndef prepare_arch_switch
3525 # define prepare_arch_switch(next)	do { } while (0)
3526 #endif
3527 
3528 #ifndef finish_arch_post_lock_switch
3529 # define finish_arch_post_lock_switch()	do { } while (0)
3530 #endif
3531 
3532 /**
3533  * prepare_task_switch - prepare to switch tasks
3534  * @rq: the runqueue preparing to switch
3535  * @prev: the current task that is being switched out
3536  * @next: the task we are going to switch to.
3537  *
3538  * This is called with the rq lock held and interrupts off. It must
3539  * be paired with a subsequent finish_task_switch after the context
3540  * switch.
3541  *
3542  * prepare_task_switch sets up locking and calls architecture specific
3543  * hooks.
3544  */
3545 static inline void
3546 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3547 		    struct task_struct *next)
3548 {
3549 	kcov_prepare_switch(prev);
3550 	sched_info_switch(rq, prev, next);
3551 	perf_event_task_sched_out(prev, next);
3552 	rseq_preempt(prev);
3553 	fire_sched_out_preempt_notifiers(prev, next);
3554 	prepare_task(next);
3555 	prepare_arch_switch(next);
3556 }
3557 
3558 /**
3559  * finish_task_switch - clean up after a task-switch
3560  * @prev: the thread we just switched away from.
3561  *
3562  * finish_task_switch must be called after the context switch, paired
3563  * with a prepare_task_switch call before the context switch.
3564  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565  * and do any other architecture-specific cleanup actions.
3566  *
3567  * Note that we may have delayed dropping an mm in context_switch(). If
3568  * so, we finish that here outside of the runqueue lock. (Doing it
3569  * with the lock held can cause deadlocks; see schedule() for
3570  * details.)
3571  *
3572  * The context switch have flipped the stack from under us and restored the
3573  * local variables which were saved when this task called schedule() in the
3574  * past. prev == current is still correct but we need to recalculate this_rq
3575  * because prev may have moved to another CPU.
3576  */
3577 static struct rq *finish_task_switch(struct task_struct *prev)
3578 	__releases(rq->lock)
3579 {
3580 	struct rq *rq = this_rq();
3581 	struct mm_struct *mm = rq->prev_mm;
3582 	long prev_state;
3583 
3584 	/*
3585 	 * The previous task will have left us with a preempt_count of 2
3586 	 * because it left us after:
3587 	 *
3588 	 *	schedule()
3589 	 *	  preempt_disable();			// 1
3590 	 *	  __schedule()
3591 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3592 	 *
3593 	 * Also, see FORK_PREEMPT_COUNT.
3594 	 */
3595 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3596 		      "corrupted preempt_count: %s/%d/0x%x\n",
3597 		      current->comm, current->pid, preempt_count()))
3598 		preempt_count_set(FORK_PREEMPT_COUNT);
3599 
3600 	rq->prev_mm = NULL;
3601 
3602 	/*
3603 	 * A task struct has one reference for the use as "current".
3604 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605 	 * schedule one last time. The schedule call will never return, and
3606 	 * the scheduled task must drop that reference.
3607 	 *
3608 	 * We must observe prev->state before clearing prev->on_cpu (in
3609 	 * finish_task), otherwise a concurrent wakeup can get prev
3610 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3611 	 * transition, resulting in a double drop.
3612 	 */
3613 	prev_state = prev->state;
3614 	vtime_task_switch(prev);
3615 	perf_event_task_sched_in(prev, current);
3616 	finish_task(prev);
3617 	finish_lock_switch(rq);
3618 	finish_arch_post_lock_switch();
3619 	kcov_finish_switch(current);
3620 
3621 	fire_sched_in_preempt_notifiers(current);
3622 	/*
3623 	 * When switching through a kernel thread, the loop in
3624 	 * membarrier_{private,global}_expedited() may have observed that
3625 	 * kernel thread and not issued an IPI. It is therefore possible to
3626 	 * schedule between user->kernel->user threads without passing though
3627 	 * switch_mm(). Membarrier requires a barrier after storing to
3628 	 * rq->curr, before returning to userspace, so provide them here:
3629 	 *
3630 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631 	 *   provided by mmdrop(),
3632 	 * - a sync_core for SYNC_CORE.
3633 	 */
3634 	if (mm) {
3635 		membarrier_mm_sync_core_before_usermode(mm);
3636 		mmdrop(mm);
3637 	}
3638 	if (unlikely(prev_state == TASK_DEAD)) {
3639 		if (prev->sched_class->task_dead)
3640 			prev->sched_class->task_dead(prev);
3641 
3642 		/*
3643 		 * Remove function-return probe instances associated with this
3644 		 * task and put them back on the free list.
3645 		 */
3646 		kprobe_flush_task(prev);
3647 
3648 		/* Task is done with its stack. */
3649 		put_task_stack(prev);
3650 
3651 		put_task_struct_rcu_user(prev);
3652 	}
3653 
3654 	tick_nohz_task_switch();
3655 	return rq;
3656 }
3657 
3658 #ifdef CONFIG_SMP
3659 
3660 /* rq->lock is NOT held, but preemption is disabled */
3661 static void __balance_callback(struct rq *rq)
3662 {
3663 	struct callback_head *head, *next;
3664 	void (*func)(struct rq *rq);
3665 	unsigned long flags;
3666 
3667 	raw_spin_lock_irqsave(&rq->lock, flags);
3668 	head = rq->balance_callback;
3669 	rq->balance_callback = NULL;
3670 	while (head) {
3671 		func = (void (*)(struct rq *))head->func;
3672 		next = head->next;
3673 		head->next = NULL;
3674 		head = next;
3675 
3676 		func(rq);
3677 	}
3678 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3679 }
3680 
3681 static inline void balance_callback(struct rq *rq)
3682 {
3683 	if (unlikely(rq->balance_callback))
3684 		__balance_callback(rq);
3685 }
3686 
3687 #else
3688 
3689 static inline void balance_callback(struct rq *rq)
3690 {
3691 }
3692 
3693 #endif
3694 
3695 /**
3696  * schedule_tail - first thing a freshly forked thread must call.
3697  * @prev: the thread we just switched away from.
3698  */
3699 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3700 	__releases(rq->lock)
3701 {
3702 	struct rq *rq;
3703 
3704 	/*
3705 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3706 	 * finish_task_switch() for details.
3707 	 *
3708 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3709 	 * and the preempt_enable() will end up enabling preemption (on
3710 	 * PREEMPT_COUNT kernels).
3711 	 */
3712 
3713 	rq = finish_task_switch(prev);
3714 	balance_callback(rq);
3715 	preempt_enable();
3716 
3717 	if (current->set_child_tid)
3718 		put_user(task_pid_vnr(current), current->set_child_tid);
3719 
3720 	calculate_sigpending();
3721 }
3722 
3723 /*
3724  * context_switch - switch to the new MM and the new thread's register state.
3725  */
3726 static __always_inline struct rq *
3727 context_switch(struct rq *rq, struct task_struct *prev,
3728 	       struct task_struct *next, struct rq_flags *rf)
3729 {
3730 	prepare_task_switch(rq, prev, next);
3731 
3732 	/*
3733 	 * For paravirt, this is coupled with an exit in switch_to to
3734 	 * combine the page table reload and the switch backend into
3735 	 * one hypercall.
3736 	 */
3737 	arch_start_context_switch(prev);
3738 
3739 	/*
3740 	 * kernel -> kernel   lazy + transfer active
3741 	 *   user -> kernel   lazy + mmgrab() active
3742 	 *
3743 	 * kernel ->   user   switch + mmdrop() active
3744 	 *   user ->   user   switch
3745 	 */
3746 	if (!next->mm) {                                // to kernel
3747 		enter_lazy_tlb(prev->active_mm, next);
3748 
3749 		next->active_mm = prev->active_mm;
3750 		if (prev->mm)                           // from user
3751 			mmgrab(prev->active_mm);
3752 		else
3753 			prev->active_mm = NULL;
3754 	} else {                                        // to user
3755 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3756 		/*
3757 		 * sys_membarrier() requires an smp_mb() between setting
3758 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3759 		 *
3760 		 * The below provides this either through switch_mm(), or in
3761 		 * case 'prev->active_mm == next->mm' through
3762 		 * finish_task_switch()'s mmdrop().
3763 		 */
3764 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3765 
3766 		if (!prev->mm) {                        // from kernel
3767 			/* will mmdrop() in finish_task_switch(). */
3768 			rq->prev_mm = prev->active_mm;
3769 			prev->active_mm = NULL;
3770 		}
3771 	}
3772 
3773 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3774 
3775 	prepare_lock_switch(rq, next, rf);
3776 
3777 	/* Here we just switch the register state and the stack. */
3778 	switch_to(prev, next, prev);
3779 	barrier();
3780 
3781 	return finish_task_switch(prev);
3782 }
3783 
3784 /*
3785  * nr_running and nr_context_switches:
3786  *
3787  * externally visible scheduler statistics: current number of runnable
3788  * threads, total number of context switches performed since bootup.
3789  */
3790 unsigned long nr_running(void)
3791 {
3792 	unsigned long i, sum = 0;
3793 
3794 	for_each_online_cpu(i)
3795 		sum += cpu_rq(i)->nr_running;
3796 
3797 	return sum;
3798 }
3799 
3800 /*
3801  * Check if only the current task is running on the CPU.
3802  *
3803  * Caution: this function does not check that the caller has disabled
3804  * preemption, thus the result might have a time-of-check-to-time-of-use
3805  * race.  The caller is responsible to use it correctly, for example:
3806  *
3807  * - from a non-preemptible section (of course)
3808  *
3809  * - from a thread that is bound to a single CPU
3810  *
3811  * - in a loop with very short iterations (e.g. a polling loop)
3812  */
3813 bool single_task_running(void)
3814 {
3815 	return raw_rq()->nr_running == 1;
3816 }
3817 EXPORT_SYMBOL(single_task_running);
3818 
3819 unsigned long long nr_context_switches(void)
3820 {
3821 	int i;
3822 	unsigned long long sum = 0;
3823 
3824 	for_each_possible_cpu(i)
3825 		sum += cpu_rq(i)->nr_switches;
3826 
3827 	return sum;
3828 }
3829 
3830 /*
3831  * Consumers of these two interfaces, like for example the cpuidle menu
3832  * governor, are using nonsensical data. Preferring shallow idle state selection
3833  * for a CPU that has IO-wait which might not even end up running the task when
3834  * it does become runnable.
3835  */
3836 
3837 unsigned long nr_iowait_cpu(int cpu)
3838 {
3839 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3840 }
3841 
3842 /*
3843  * IO-wait accounting, and how its mostly bollocks (on SMP).
3844  *
3845  * The idea behind IO-wait account is to account the idle time that we could
3846  * have spend running if it were not for IO. That is, if we were to improve the
3847  * storage performance, we'd have a proportional reduction in IO-wait time.
3848  *
3849  * This all works nicely on UP, where, when a task blocks on IO, we account
3850  * idle time as IO-wait, because if the storage were faster, it could've been
3851  * running and we'd not be idle.
3852  *
3853  * This has been extended to SMP, by doing the same for each CPU. This however
3854  * is broken.
3855  *
3856  * Imagine for instance the case where two tasks block on one CPU, only the one
3857  * CPU will have IO-wait accounted, while the other has regular idle. Even
3858  * though, if the storage were faster, both could've ran at the same time,
3859  * utilising both CPUs.
3860  *
3861  * This means, that when looking globally, the current IO-wait accounting on
3862  * SMP is a lower bound, by reason of under accounting.
3863  *
3864  * Worse, since the numbers are provided per CPU, they are sometimes
3865  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866  * associated with any one particular CPU, it can wake to another CPU than it
3867  * blocked on. This means the per CPU IO-wait number is meaningless.
3868  *
3869  * Task CPU affinities can make all that even more 'interesting'.
3870  */
3871 
3872 unsigned long nr_iowait(void)
3873 {
3874 	unsigned long i, sum = 0;
3875 
3876 	for_each_possible_cpu(i)
3877 		sum += nr_iowait_cpu(i);
3878 
3879 	return sum;
3880 }
3881 
3882 #ifdef CONFIG_SMP
3883 
3884 /*
3885  * sched_exec - execve() is a valuable balancing opportunity, because at
3886  * this point the task has the smallest effective memory and cache footprint.
3887  */
3888 void sched_exec(void)
3889 {
3890 	struct task_struct *p = current;
3891 	unsigned long flags;
3892 	int dest_cpu;
3893 
3894 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3895 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3896 	if (dest_cpu == smp_processor_id())
3897 		goto unlock;
3898 
3899 	if (likely(cpu_active(dest_cpu))) {
3900 		struct migration_arg arg = { p, dest_cpu };
3901 
3902 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3903 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3904 		return;
3905 	}
3906 unlock:
3907 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3908 }
3909 
3910 #endif
3911 
3912 DEFINE_PER_CPU(struct kernel_stat, kstat);
3913 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3914 
3915 EXPORT_PER_CPU_SYMBOL(kstat);
3916 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3917 
3918 /*
3919  * The function fair_sched_class.update_curr accesses the struct curr
3920  * and its field curr->exec_start; when called from task_sched_runtime(),
3921  * we observe a high rate of cache misses in practice.
3922  * Prefetching this data results in improved performance.
3923  */
3924 static inline void prefetch_curr_exec_start(struct task_struct *p)
3925 {
3926 #ifdef CONFIG_FAIR_GROUP_SCHED
3927 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3928 #else
3929 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3930 #endif
3931 	prefetch(curr);
3932 	prefetch(&curr->exec_start);
3933 }
3934 
3935 /*
3936  * Return accounted runtime for the task.
3937  * In case the task is currently running, return the runtime plus current's
3938  * pending runtime that have not been accounted yet.
3939  */
3940 unsigned long long task_sched_runtime(struct task_struct *p)
3941 {
3942 	struct rq_flags rf;
3943 	struct rq *rq;
3944 	u64 ns;
3945 
3946 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3947 	/*
3948 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3949 	 * So we have a optimization chance when the task's delta_exec is 0.
3950 	 * Reading ->on_cpu is racy, but this is ok.
3951 	 *
3952 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953 	 * If we race with it entering CPU, unaccounted time is 0. This is
3954 	 * indistinguishable from the read occurring a few cycles earlier.
3955 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956 	 * been accounted, so we're correct here as well.
3957 	 */
3958 	if (!p->on_cpu || !task_on_rq_queued(p))
3959 		return p->se.sum_exec_runtime;
3960 #endif
3961 
3962 	rq = task_rq_lock(p, &rf);
3963 	/*
3964 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3965 	 * project cycles that may never be accounted to this
3966 	 * thread, breaking clock_gettime().
3967 	 */
3968 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3969 		prefetch_curr_exec_start(p);
3970 		update_rq_clock(rq);
3971 		p->sched_class->update_curr(rq);
3972 	}
3973 	ns = p->se.sum_exec_runtime;
3974 	task_rq_unlock(rq, p, &rf);
3975 
3976 	return ns;
3977 }
3978 
3979 /*
3980  * This function gets called by the timer code, with HZ frequency.
3981  * We call it with interrupts disabled.
3982  */
3983 void scheduler_tick(void)
3984 {
3985 	int cpu = smp_processor_id();
3986 	struct rq *rq = cpu_rq(cpu);
3987 	struct task_struct *curr = rq->curr;
3988 	struct rq_flags rf;
3989 	unsigned long thermal_pressure;
3990 
3991 	arch_scale_freq_tick();
3992 	sched_clock_tick();
3993 
3994 	rq_lock(rq, &rf);
3995 
3996 	update_rq_clock(rq);
3997 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3998 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3999 	curr->sched_class->task_tick(rq, curr, 0);
4000 	calc_global_load_tick(rq);
4001 	psi_task_tick(rq);
4002 
4003 	rq_unlock(rq, &rf);
4004 
4005 	perf_event_task_tick();
4006 
4007 #ifdef CONFIG_SMP
4008 	rq->idle_balance = idle_cpu(cpu);
4009 	trigger_load_balance(rq);
4010 #endif
4011 }
4012 
4013 #ifdef CONFIG_NO_HZ_FULL
4014 
4015 struct tick_work {
4016 	int			cpu;
4017 	atomic_t		state;
4018 	struct delayed_work	work;
4019 };
4020 /* Values for ->state, see diagram below. */
4021 #define TICK_SCHED_REMOTE_OFFLINE	0
4022 #define TICK_SCHED_REMOTE_OFFLINING	1
4023 #define TICK_SCHED_REMOTE_RUNNING	2
4024 
4025 /*
4026  * State diagram for ->state:
4027  *
4028  *
4029  *          TICK_SCHED_REMOTE_OFFLINE
4030  *                    |   ^
4031  *                    |   |
4032  *                    |   | sched_tick_remote()
4033  *                    |   |
4034  *                    |   |
4035  *                    +--TICK_SCHED_REMOTE_OFFLINING
4036  *                    |   ^
4037  *                    |   |
4038  * sched_tick_start() |   | sched_tick_stop()
4039  *                    |   |
4040  *                    V   |
4041  *          TICK_SCHED_REMOTE_RUNNING
4042  *
4043  *
4044  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045  * and sched_tick_start() are happy to leave the state in RUNNING.
4046  */
4047 
4048 static struct tick_work __percpu *tick_work_cpu;
4049 
4050 static void sched_tick_remote(struct work_struct *work)
4051 {
4052 	struct delayed_work *dwork = to_delayed_work(work);
4053 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4054 	int cpu = twork->cpu;
4055 	struct rq *rq = cpu_rq(cpu);
4056 	struct task_struct *curr;
4057 	struct rq_flags rf;
4058 	u64 delta;
4059 	int os;
4060 
4061 	/*
4062 	 * Handle the tick only if it appears the remote CPU is running in full
4063 	 * dynticks mode. The check is racy by nature, but missing a tick or
4064 	 * having one too much is no big deal because the scheduler tick updates
4065 	 * statistics and checks timeslices in a time-independent way, regardless
4066 	 * of when exactly it is running.
4067 	 */
4068 	if (!tick_nohz_tick_stopped_cpu(cpu))
4069 		goto out_requeue;
4070 
4071 	rq_lock_irq(rq, &rf);
4072 	curr = rq->curr;
4073 	if (cpu_is_offline(cpu))
4074 		goto out_unlock;
4075 
4076 	update_rq_clock(rq);
4077 
4078 	if (!is_idle_task(curr)) {
4079 		/*
4080 		 * Make sure the next tick runs within a reasonable
4081 		 * amount of time.
4082 		 */
4083 		delta = rq_clock_task(rq) - curr->se.exec_start;
4084 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4085 	}
4086 	curr->sched_class->task_tick(rq, curr, 0);
4087 
4088 	calc_load_nohz_remote(rq);
4089 out_unlock:
4090 	rq_unlock_irq(rq, &rf);
4091 out_requeue:
4092 
4093 	/*
4094 	 * Run the remote tick once per second (1Hz). This arbitrary
4095 	 * frequency is large enough to avoid overload but short enough
4096 	 * to keep scheduler internal stats reasonably up to date.  But
4097 	 * first update state to reflect hotplug activity if required.
4098 	 */
4099 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4100 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4101 	if (os == TICK_SCHED_REMOTE_RUNNING)
4102 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4103 }
4104 
4105 static void sched_tick_start(int cpu)
4106 {
4107 	int os;
4108 	struct tick_work *twork;
4109 
4110 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4111 		return;
4112 
4113 	WARN_ON_ONCE(!tick_work_cpu);
4114 
4115 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4116 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4117 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4118 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4119 		twork->cpu = cpu;
4120 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4121 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4122 	}
4123 }
4124 
4125 #ifdef CONFIG_HOTPLUG_CPU
4126 static void sched_tick_stop(int cpu)
4127 {
4128 	struct tick_work *twork;
4129 	int os;
4130 
4131 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4132 		return;
4133 
4134 	WARN_ON_ONCE(!tick_work_cpu);
4135 
4136 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4137 	/* There cannot be competing actions, but don't rely on stop-machine. */
4138 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4139 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4140 	/* Don't cancel, as this would mess up the state machine. */
4141 }
4142 #endif /* CONFIG_HOTPLUG_CPU */
4143 
4144 int __init sched_tick_offload_init(void)
4145 {
4146 	tick_work_cpu = alloc_percpu(struct tick_work);
4147 	BUG_ON(!tick_work_cpu);
4148 	return 0;
4149 }
4150 
4151 #else /* !CONFIG_NO_HZ_FULL */
4152 static inline void sched_tick_start(int cpu) { }
4153 static inline void sched_tick_stop(int cpu) { }
4154 #endif
4155 
4156 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4158 /*
4159  * If the value passed in is equal to the current preempt count
4160  * then we just disabled preemption. Start timing the latency.
4161  */
4162 static inline void preempt_latency_start(int val)
4163 {
4164 	if (preempt_count() == val) {
4165 		unsigned long ip = get_lock_parent_ip();
4166 #ifdef CONFIG_DEBUG_PREEMPT
4167 		current->preempt_disable_ip = ip;
4168 #endif
4169 		trace_preempt_off(CALLER_ADDR0, ip);
4170 	}
4171 }
4172 
4173 void preempt_count_add(int val)
4174 {
4175 #ifdef CONFIG_DEBUG_PREEMPT
4176 	/*
4177 	 * Underflow?
4178 	 */
4179 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4180 		return;
4181 #endif
4182 	__preempt_count_add(val);
4183 #ifdef CONFIG_DEBUG_PREEMPT
4184 	/*
4185 	 * Spinlock count overflowing soon?
4186 	 */
4187 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4188 				PREEMPT_MASK - 10);
4189 #endif
4190 	preempt_latency_start(val);
4191 }
4192 EXPORT_SYMBOL(preempt_count_add);
4193 NOKPROBE_SYMBOL(preempt_count_add);
4194 
4195 /*
4196  * If the value passed in equals to the current preempt count
4197  * then we just enabled preemption. Stop timing the latency.
4198  */
4199 static inline void preempt_latency_stop(int val)
4200 {
4201 	if (preempt_count() == val)
4202 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4203 }
4204 
4205 void preempt_count_sub(int val)
4206 {
4207 #ifdef CONFIG_DEBUG_PREEMPT
4208 	/*
4209 	 * Underflow?
4210 	 */
4211 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4212 		return;
4213 	/*
4214 	 * Is the spinlock portion underflowing?
4215 	 */
4216 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4217 			!(preempt_count() & PREEMPT_MASK)))
4218 		return;
4219 #endif
4220 
4221 	preempt_latency_stop(val);
4222 	__preempt_count_sub(val);
4223 }
4224 EXPORT_SYMBOL(preempt_count_sub);
4225 NOKPROBE_SYMBOL(preempt_count_sub);
4226 
4227 #else
4228 static inline void preempt_latency_start(int val) { }
4229 static inline void preempt_latency_stop(int val) { }
4230 #endif
4231 
4232 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4233 {
4234 #ifdef CONFIG_DEBUG_PREEMPT
4235 	return p->preempt_disable_ip;
4236 #else
4237 	return 0;
4238 #endif
4239 }
4240 
4241 /*
4242  * Print scheduling while atomic bug:
4243  */
4244 static noinline void __schedule_bug(struct task_struct *prev)
4245 {
4246 	/* Save this before calling printk(), since that will clobber it */
4247 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4248 
4249 	if (oops_in_progress)
4250 		return;
4251 
4252 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253 		prev->comm, prev->pid, preempt_count());
4254 
4255 	debug_show_held_locks(prev);
4256 	print_modules();
4257 	if (irqs_disabled())
4258 		print_irqtrace_events(prev);
4259 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4260 	    && in_atomic_preempt_off()) {
4261 		pr_err("Preemption disabled at:");
4262 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4263 	}
4264 	if (panic_on_warn)
4265 		panic("scheduling while atomic\n");
4266 
4267 	dump_stack();
4268 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4269 }
4270 
4271 /*
4272  * Various schedule()-time debugging checks and statistics:
4273  */
4274 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4275 {
4276 #ifdef CONFIG_SCHED_STACK_END_CHECK
4277 	if (task_stack_end_corrupted(prev))
4278 		panic("corrupted stack end detected inside scheduler\n");
4279 
4280 	if (task_scs_end_corrupted(prev))
4281 		panic("corrupted shadow stack detected inside scheduler\n");
4282 #endif
4283 
4284 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285 	if (!preempt && prev->state && prev->non_block_count) {
4286 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287 			prev->comm, prev->pid, prev->non_block_count);
4288 		dump_stack();
4289 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4290 	}
4291 #endif
4292 
4293 	if (unlikely(in_atomic_preempt_off())) {
4294 		__schedule_bug(prev);
4295 		preempt_count_set(PREEMPT_DISABLED);
4296 	}
4297 	rcu_sleep_check();
4298 
4299 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4300 
4301 	schedstat_inc(this_rq()->sched_count);
4302 }
4303 
4304 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4305 				  struct rq_flags *rf)
4306 {
4307 #ifdef CONFIG_SMP
4308 	const struct sched_class *class;
4309 	/*
4310 	 * We must do the balancing pass before put_prev_task(), such
4311 	 * that when we release the rq->lock the task is in the same
4312 	 * state as before we took rq->lock.
4313 	 *
4314 	 * We can terminate the balance pass as soon as we know there is
4315 	 * a runnable task of @class priority or higher.
4316 	 */
4317 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4318 		if (class->balance(rq, prev, rf))
4319 			break;
4320 	}
4321 #endif
4322 
4323 	put_prev_task(rq, prev);
4324 }
4325 
4326 /*
4327  * Pick up the highest-prio task:
4328  */
4329 static inline struct task_struct *
4330 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4331 {
4332 	const struct sched_class *class;
4333 	struct task_struct *p;
4334 
4335 	/*
4336 	 * Optimization: we know that if all tasks are in the fair class we can
4337 	 * call that function directly, but only if the @prev task wasn't of a
4338 	 * higher scheduling class, because otherwise those loose the
4339 	 * opportunity to pull in more work from other CPUs.
4340 	 */
4341 	if (likely(prev->sched_class <= &fair_sched_class &&
4342 		   rq->nr_running == rq->cfs.h_nr_running)) {
4343 
4344 		p = pick_next_task_fair(rq, prev, rf);
4345 		if (unlikely(p == RETRY_TASK))
4346 			goto restart;
4347 
4348 		/* Assumes fair_sched_class->next == idle_sched_class */
4349 		if (!p) {
4350 			put_prev_task(rq, prev);
4351 			p = pick_next_task_idle(rq);
4352 		}
4353 
4354 		return p;
4355 	}
4356 
4357 restart:
4358 	put_prev_task_balance(rq, prev, rf);
4359 
4360 	for_each_class(class) {
4361 		p = class->pick_next_task(rq);
4362 		if (p)
4363 			return p;
4364 	}
4365 
4366 	/* The idle class should always have a runnable task: */
4367 	BUG();
4368 }
4369 
4370 /*
4371  * __schedule() is the main scheduler function.
4372  *
4373  * The main means of driving the scheduler and thus entering this function are:
4374  *
4375  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4376  *
4377  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378  *      paths. For example, see arch/x86/entry_64.S.
4379  *
4380  *      To drive preemption between tasks, the scheduler sets the flag in timer
4381  *      interrupt handler scheduler_tick().
4382  *
4383  *   3. Wakeups don't really cause entry into schedule(). They add a
4384  *      task to the run-queue and that's it.
4385  *
4386  *      Now, if the new task added to the run-queue preempts the current
4387  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388  *      called on the nearest possible occasion:
4389  *
4390  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4391  *
4392  *         - in syscall or exception context, at the next outmost
4393  *           preempt_enable(). (this might be as soon as the wake_up()'s
4394  *           spin_unlock()!)
4395  *
4396  *         - in IRQ context, return from interrupt-handler to
4397  *           preemptible context
4398  *
4399  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4400  *         then at the next:
4401  *
4402  *          - cond_resched() call
4403  *          - explicit schedule() call
4404  *          - return from syscall or exception to user-space
4405  *          - return from interrupt-handler to user-space
4406  *
4407  * WARNING: must be called with preemption disabled!
4408  */
4409 static void __sched notrace __schedule(bool preempt)
4410 {
4411 	struct task_struct *prev, *next;
4412 	unsigned long *switch_count;
4413 	unsigned long prev_state;
4414 	struct rq_flags rf;
4415 	struct rq *rq;
4416 	int cpu;
4417 
4418 	cpu = smp_processor_id();
4419 	rq = cpu_rq(cpu);
4420 	prev = rq->curr;
4421 
4422 	schedule_debug(prev, preempt);
4423 
4424 	if (sched_feat(HRTICK))
4425 		hrtick_clear(rq);
4426 
4427 	local_irq_disable();
4428 	rcu_note_context_switch(preempt);
4429 
4430 	/*
4431 	 * Make sure that signal_pending_state()->signal_pending() below
4432 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433 	 * done by the caller to avoid the race with signal_wake_up():
4434 	 *
4435 	 * __set_current_state(@state)		signal_wake_up()
4436 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4437 	 *					  wake_up_state(p, state)
4438 	 *   LOCK rq->lock			    LOCK p->pi_state
4439 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4440 	 *     if (signal_pending_state())	    if (p->state & @state)
4441 	 *
4442 	 * Also, the membarrier system call requires a full memory barrier
4443 	 * after coming from user-space, before storing to rq->curr.
4444 	 */
4445 	rq_lock(rq, &rf);
4446 	smp_mb__after_spinlock();
4447 
4448 	/* Promote REQ to ACT */
4449 	rq->clock_update_flags <<= 1;
4450 	update_rq_clock(rq);
4451 
4452 	switch_count = &prev->nivcsw;
4453 
4454 	/*
4455 	 * We must load prev->state once (task_struct::state is volatile), such
4456 	 * that:
4457 	 *
4458 	 *  - we form a control dependency vs deactivate_task() below.
4459 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4460 	 */
4461 	prev_state = prev->state;
4462 	if (!preempt && prev_state) {
4463 		if (signal_pending_state(prev_state, prev)) {
4464 			prev->state = TASK_RUNNING;
4465 		} else {
4466 			prev->sched_contributes_to_load =
4467 				(prev_state & TASK_UNINTERRUPTIBLE) &&
4468 				!(prev_state & TASK_NOLOAD) &&
4469 				!(prev->flags & PF_FROZEN);
4470 
4471 			if (prev->sched_contributes_to_load)
4472 				rq->nr_uninterruptible++;
4473 
4474 			/*
4475 			 * __schedule()			ttwu()
4476 			 *   prev_state = prev->state;    if (p->on_rq && ...)
4477 			 *   if (prev_state)		    goto out;
4478 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
4479 			 *				  p->state = TASK_WAKING
4480 			 *
4481 			 * Where __schedule() and ttwu() have matching control dependencies.
4482 			 *
4483 			 * After this, schedule() must not care about p->state any more.
4484 			 */
4485 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4486 
4487 			if (prev->in_iowait) {
4488 				atomic_inc(&rq->nr_iowait);
4489 				delayacct_blkio_start();
4490 			}
4491 		}
4492 		switch_count = &prev->nvcsw;
4493 	}
4494 
4495 	next = pick_next_task(rq, prev, &rf);
4496 	clear_tsk_need_resched(prev);
4497 	clear_preempt_need_resched();
4498 
4499 	if (likely(prev != next)) {
4500 		rq->nr_switches++;
4501 		/*
4502 		 * RCU users of rcu_dereference(rq->curr) may not see
4503 		 * changes to task_struct made by pick_next_task().
4504 		 */
4505 		RCU_INIT_POINTER(rq->curr, next);
4506 		/*
4507 		 * The membarrier system call requires each architecture
4508 		 * to have a full memory barrier after updating
4509 		 * rq->curr, before returning to user-space.
4510 		 *
4511 		 * Here are the schemes providing that barrier on the
4512 		 * various architectures:
4513 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515 		 * - finish_lock_switch() for weakly-ordered
4516 		 *   architectures where spin_unlock is a full barrier,
4517 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518 		 *   is a RELEASE barrier),
4519 		 */
4520 		++*switch_count;
4521 
4522 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4523 
4524 		trace_sched_switch(preempt, prev, next);
4525 
4526 		/* Also unlocks the rq: */
4527 		rq = context_switch(rq, prev, next, &rf);
4528 	} else {
4529 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4530 		rq_unlock_irq(rq, &rf);
4531 	}
4532 
4533 	balance_callback(rq);
4534 }
4535 
4536 void __noreturn do_task_dead(void)
4537 {
4538 	/* Causes final put_task_struct in finish_task_switch(): */
4539 	set_special_state(TASK_DEAD);
4540 
4541 	/* Tell freezer to ignore us: */
4542 	current->flags |= PF_NOFREEZE;
4543 
4544 	__schedule(false);
4545 	BUG();
4546 
4547 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4548 	for (;;)
4549 		cpu_relax();
4550 }
4551 
4552 static inline void sched_submit_work(struct task_struct *tsk)
4553 {
4554 	if (!tsk->state)
4555 		return;
4556 
4557 	/*
4558 	 * If a worker went to sleep, notify and ask workqueue whether
4559 	 * it wants to wake up a task to maintain concurrency.
4560 	 * As this function is called inside the schedule() context,
4561 	 * we disable preemption to avoid it calling schedule() again
4562 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4563 	 * requires it.
4564 	 */
4565 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4566 		preempt_disable();
4567 		if (tsk->flags & PF_WQ_WORKER)
4568 			wq_worker_sleeping(tsk);
4569 		else
4570 			io_wq_worker_sleeping(tsk);
4571 		preempt_enable_no_resched();
4572 	}
4573 
4574 	if (tsk_is_pi_blocked(tsk))
4575 		return;
4576 
4577 	/*
4578 	 * If we are going to sleep and we have plugged IO queued,
4579 	 * make sure to submit it to avoid deadlocks.
4580 	 */
4581 	if (blk_needs_flush_plug(tsk))
4582 		blk_schedule_flush_plug(tsk);
4583 }
4584 
4585 static void sched_update_worker(struct task_struct *tsk)
4586 {
4587 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4588 		if (tsk->flags & PF_WQ_WORKER)
4589 			wq_worker_running(tsk);
4590 		else
4591 			io_wq_worker_running(tsk);
4592 	}
4593 }
4594 
4595 asmlinkage __visible void __sched schedule(void)
4596 {
4597 	struct task_struct *tsk = current;
4598 
4599 	sched_submit_work(tsk);
4600 	do {
4601 		preempt_disable();
4602 		__schedule(false);
4603 		sched_preempt_enable_no_resched();
4604 	} while (need_resched());
4605 	sched_update_worker(tsk);
4606 }
4607 EXPORT_SYMBOL(schedule);
4608 
4609 /*
4610  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611  * state (have scheduled out non-voluntarily) by making sure that all
4612  * tasks have either left the run queue or have gone into user space.
4613  * As idle tasks do not do either, they must not ever be preempted
4614  * (schedule out non-voluntarily).
4615  *
4616  * schedule_idle() is similar to schedule_preempt_disable() except that it
4617  * never enables preemption because it does not call sched_submit_work().
4618  */
4619 void __sched schedule_idle(void)
4620 {
4621 	/*
4622 	 * As this skips calling sched_submit_work(), which the idle task does
4623 	 * regardless because that function is a nop when the task is in a
4624 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4625 	 * current task can be in any other state. Note, idle is always in the
4626 	 * TASK_RUNNING state.
4627 	 */
4628 	WARN_ON_ONCE(current->state);
4629 	do {
4630 		__schedule(false);
4631 	} while (need_resched());
4632 }
4633 
4634 #ifdef CONFIG_CONTEXT_TRACKING
4635 asmlinkage __visible void __sched schedule_user(void)
4636 {
4637 	/*
4638 	 * If we come here after a random call to set_need_resched(),
4639 	 * or we have been woken up remotely but the IPI has not yet arrived,
4640 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4641 	 * we find a better solution.
4642 	 *
4643 	 * NB: There are buggy callers of this function.  Ideally we
4644 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4645 	 * too frequently to make sense yet.
4646 	 */
4647 	enum ctx_state prev_state = exception_enter();
4648 	schedule();
4649 	exception_exit(prev_state);
4650 }
4651 #endif
4652 
4653 /**
4654  * schedule_preempt_disabled - called with preemption disabled
4655  *
4656  * Returns with preemption disabled. Note: preempt_count must be 1
4657  */
4658 void __sched schedule_preempt_disabled(void)
4659 {
4660 	sched_preempt_enable_no_resched();
4661 	schedule();
4662 	preempt_disable();
4663 }
4664 
4665 static void __sched notrace preempt_schedule_common(void)
4666 {
4667 	do {
4668 		/*
4669 		 * Because the function tracer can trace preempt_count_sub()
4670 		 * and it also uses preempt_enable/disable_notrace(), if
4671 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672 		 * by the function tracer will call this function again and
4673 		 * cause infinite recursion.
4674 		 *
4675 		 * Preemption must be disabled here before the function
4676 		 * tracer can trace. Break up preempt_disable() into two
4677 		 * calls. One to disable preemption without fear of being
4678 		 * traced. The other to still record the preemption latency,
4679 		 * which can also be traced by the function tracer.
4680 		 */
4681 		preempt_disable_notrace();
4682 		preempt_latency_start(1);
4683 		__schedule(true);
4684 		preempt_latency_stop(1);
4685 		preempt_enable_no_resched_notrace();
4686 
4687 		/*
4688 		 * Check again in case we missed a preemption opportunity
4689 		 * between schedule and now.
4690 		 */
4691 	} while (need_resched());
4692 }
4693 
4694 #ifdef CONFIG_PREEMPTION
4695 /*
4696  * This is the entry point to schedule() from in-kernel preemption
4697  * off of preempt_enable.
4698  */
4699 asmlinkage __visible void __sched notrace preempt_schedule(void)
4700 {
4701 	/*
4702 	 * If there is a non-zero preempt_count or interrupts are disabled,
4703 	 * we do not want to preempt the current task. Just return..
4704 	 */
4705 	if (likely(!preemptible()))
4706 		return;
4707 
4708 	preempt_schedule_common();
4709 }
4710 NOKPROBE_SYMBOL(preempt_schedule);
4711 EXPORT_SYMBOL(preempt_schedule);
4712 
4713 /**
4714  * preempt_schedule_notrace - preempt_schedule called by tracing
4715  *
4716  * The tracing infrastructure uses preempt_enable_notrace to prevent
4717  * recursion and tracing preempt enabling caused by the tracing
4718  * infrastructure itself. But as tracing can happen in areas coming
4719  * from userspace or just about to enter userspace, a preempt enable
4720  * can occur before user_exit() is called. This will cause the scheduler
4721  * to be called when the system is still in usermode.
4722  *
4723  * To prevent this, the preempt_enable_notrace will use this function
4724  * instead of preempt_schedule() to exit user context if needed before
4725  * calling the scheduler.
4726  */
4727 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4728 {
4729 	enum ctx_state prev_ctx;
4730 
4731 	if (likely(!preemptible()))
4732 		return;
4733 
4734 	do {
4735 		/*
4736 		 * Because the function tracer can trace preempt_count_sub()
4737 		 * and it also uses preempt_enable/disable_notrace(), if
4738 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739 		 * by the function tracer will call this function again and
4740 		 * cause infinite recursion.
4741 		 *
4742 		 * Preemption must be disabled here before the function
4743 		 * tracer can trace. Break up preempt_disable() into two
4744 		 * calls. One to disable preemption without fear of being
4745 		 * traced. The other to still record the preemption latency,
4746 		 * which can also be traced by the function tracer.
4747 		 */
4748 		preempt_disable_notrace();
4749 		preempt_latency_start(1);
4750 		/*
4751 		 * Needs preempt disabled in case user_exit() is traced
4752 		 * and the tracer calls preempt_enable_notrace() causing
4753 		 * an infinite recursion.
4754 		 */
4755 		prev_ctx = exception_enter();
4756 		__schedule(true);
4757 		exception_exit(prev_ctx);
4758 
4759 		preempt_latency_stop(1);
4760 		preempt_enable_no_resched_notrace();
4761 	} while (need_resched());
4762 }
4763 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4764 
4765 #endif /* CONFIG_PREEMPTION */
4766 
4767 /*
4768  * This is the entry point to schedule() from kernel preemption
4769  * off of irq context.
4770  * Note, that this is called and return with irqs disabled. This will
4771  * protect us against recursive calling from irq.
4772  */
4773 asmlinkage __visible void __sched preempt_schedule_irq(void)
4774 {
4775 	enum ctx_state prev_state;
4776 
4777 	/* Catch callers which need to be fixed */
4778 	BUG_ON(preempt_count() || !irqs_disabled());
4779 
4780 	prev_state = exception_enter();
4781 
4782 	do {
4783 		preempt_disable();
4784 		local_irq_enable();
4785 		__schedule(true);
4786 		local_irq_disable();
4787 		sched_preempt_enable_no_resched();
4788 	} while (need_resched());
4789 
4790 	exception_exit(prev_state);
4791 }
4792 
4793 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4794 			  void *key)
4795 {
4796 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4797 	return try_to_wake_up(curr->private, mode, wake_flags);
4798 }
4799 EXPORT_SYMBOL(default_wake_function);
4800 
4801 #ifdef CONFIG_RT_MUTEXES
4802 
4803 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4804 {
4805 	if (pi_task)
4806 		prio = min(prio, pi_task->prio);
4807 
4808 	return prio;
4809 }
4810 
4811 static inline int rt_effective_prio(struct task_struct *p, int prio)
4812 {
4813 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4814 
4815 	return __rt_effective_prio(pi_task, prio);
4816 }
4817 
4818 /*
4819  * rt_mutex_setprio - set the current priority of a task
4820  * @p: task to boost
4821  * @pi_task: donor task
4822  *
4823  * This function changes the 'effective' priority of a task. It does
4824  * not touch ->normal_prio like __setscheduler().
4825  *
4826  * Used by the rt_mutex code to implement priority inheritance
4827  * logic. Call site only calls if the priority of the task changed.
4828  */
4829 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4830 {
4831 	int prio, oldprio, queued, running, queue_flag =
4832 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4833 	const struct sched_class *prev_class;
4834 	struct rq_flags rf;
4835 	struct rq *rq;
4836 
4837 	/* XXX used to be waiter->prio, not waiter->task->prio */
4838 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4839 
4840 	/*
4841 	 * If nothing changed; bail early.
4842 	 */
4843 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4844 		return;
4845 
4846 	rq = __task_rq_lock(p, &rf);
4847 	update_rq_clock(rq);
4848 	/*
4849 	 * Set under pi_lock && rq->lock, such that the value can be used under
4850 	 * either lock.
4851 	 *
4852 	 * Note that there is loads of tricky to make this pointer cache work
4853 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4855 	 * task is allowed to run again (and can exit). This ensures the pointer
4856 	 * points to a blocked task -- which guaratees the task is present.
4857 	 */
4858 	p->pi_top_task = pi_task;
4859 
4860 	/*
4861 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4862 	 */
4863 	if (prio == p->prio && !dl_prio(prio))
4864 		goto out_unlock;
4865 
4866 	/*
4867 	 * Idle task boosting is a nono in general. There is one
4868 	 * exception, when PREEMPT_RT and NOHZ is active:
4869 	 *
4870 	 * The idle task calls get_next_timer_interrupt() and holds
4871 	 * the timer wheel base->lock on the CPU and another CPU wants
4872 	 * to access the timer (probably to cancel it). We can safely
4873 	 * ignore the boosting request, as the idle CPU runs this code
4874 	 * with interrupts disabled and will complete the lock
4875 	 * protected section without being interrupted. So there is no
4876 	 * real need to boost.
4877 	 */
4878 	if (unlikely(p == rq->idle)) {
4879 		WARN_ON(p != rq->curr);
4880 		WARN_ON(p->pi_blocked_on);
4881 		goto out_unlock;
4882 	}
4883 
4884 	trace_sched_pi_setprio(p, pi_task);
4885 	oldprio = p->prio;
4886 
4887 	if (oldprio == prio)
4888 		queue_flag &= ~DEQUEUE_MOVE;
4889 
4890 	prev_class = p->sched_class;
4891 	queued = task_on_rq_queued(p);
4892 	running = task_current(rq, p);
4893 	if (queued)
4894 		dequeue_task(rq, p, queue_flag);
4895 	if (running)
4896 		put_prev_task(rq, p);
4897 
4898 	/*
4899 	 * Boosting condition are:
4900 	 * 1. -rt task is running and holds mutex A
4901 	 *      --> -dl task blocks on mutex A
4902 	 *
4903 	 * 2. -dl task is running and holds mutex A
4904 	 *      --> -dl task blocks on mutex A and could preempt the
4905 	 *          running task
4906 	 */
4907 	if (dl_prio(prio)) {
4908 		if (!dl_prio(p->normal_prio) ||
4909 		    (pi_task && dl_prio(pi_task->prio) &&
4910 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4911 			p->dl.dl_boosted = 1;
4912 			queue_flag |= ENQUEUE_REPLENISH;
4913 		} else
4914 			p->dl.dl_boosted = 0;
4915 		p->sched_class = &dl_sched_class;
4916 	} else if (rt_prio(prio)) {
4917 		if (dl_prio(oldprio))
4918 			p->dl.dl_boosted = 0;
4919 		if (oldprio < prio)
4920 			queue_flag |= ENQUEUE_HEAD;
4921 		p->sched_class = &rt_sched_class;
4922 	} else {
4923 		if (dl_prio(oldprio))
4924 			p->dl.dl_boosted = 0;
4925 		if (rt_prio(oldprio))
4926 			p->rt.timeout = 0;
4927 		p->sched_class = &fair_sched_class;
4928 	}
4929 
4930 	p->prio = prio;
4931 
4932 	if (queued)
4933 		enqueue_task(rq, p, queue_flag);
4934 	if (running)
4935 		set_next_task(rq, p);
4936 
4937 	check_class_changed(rq, p, prev_class, oldprio);
4938 out_unlock:
4939 	/* Avoid rq from going away on us: */
4940 	preempt_disable();
4941 	__task_rq_unlock(rq, &rf);
4942 
4943 	balance_callback(rq);
4944 	preempt_enable();
4945 }
4946 #else
4947 static inline int rt_effective_prio(struct task_struct *p, int prio)
4948 {
4949 	return prio;
4950 }
4951 #endif
4952 
4953 void set_user_nice(struct task_struct *p, long nice)
4954 {
4955 	bool queued, running;
4956 	int old_prio;
4957 	struct rq_flags rf;
4958 	struct rq *rq;
4959 
4960 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4961 		return;
4962 	/*
4963 	 * We have to be careful, if called from sys_setpriority(),
4964 	 * the task might be in the middle of scheduling on another CPU.
4965 	 */
4966 	rq = task_rq_lock(p, &rf);
4967 	update_rq_clock(rq);
4968 
4969 	/*
4970 	 * The RT priorities are set via sched_setscheduler(), but we still
4971 	 * allow the 'normal' nice value to be set - but as expected
4972 	 * it wont have any effect on scheduling until the task is
4973 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4974 	 */
4975 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4976 		p->static_prio = NICE_TO_PRIO(nice);
4977 		goto out_unlock;
4978 	}
4979 	queued = task_on_rq_queued(p);
4980 	running = task_current(rq, p);
4981 	if (queued)
4982 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4983 	if (running)
4984 		put_prev_task(rq, p);
4985 
4986 	p->static_prio = NICE_TO_PRIO(nice);
4987 	set_load_weight(p, true);
4988 	old_prio = p->prio;
4989 	p->prio = effective_prio(p);
4990 
4991 	if (queued)
4992 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4993 	if (running)
4994 		set_next_task(rq, p);
4995 
4996 	/*
4997 	 * If the task increased its priority or is running and
4998 	 * lowered its priority, then reschedule its CPU:
4999 	 */
5000 	p->sched_class->prio_changed(rq, p, old_prio);
5001 
5002 out_unlock:
5003 	task_rq_unlock(rq, p, &rf);
5004 }
5005 EXPORT_SYMBOL(set_user_nice);
5006 
5007 /*
5008  * can_nice - check if a task can reduce its nice value
5009  * @p: task
5010  * @nice: nice value
5011  */
5012 int can_nice(const struct task_struct *p, const int nice)
5013 {
5014 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015 	int nice_rlim = nice_to_rlimit(nice);
5016 
5017 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5018 		capable(CAP_SYS_NICE));
5019 }
5020 
5021 #ifdef __ARCH_WANT_SYS_NICE
5022 
5023 /*
5024  * sys_nice - change the priority of the current process.
5025  * @increment: priority increment
5026  *
5027  * sys_setpriority is a more generic, but much slower function that
5028  * does similar things.
5029  */
5030 SYSCALL_DEFINE1(nice, int, increment)
5031 {
5032 	long nice, retval;
5033 
5034 	/*
5035 	 * Setpriority might change our priority at the same moment.
5036 	 * We don't have to worry. Conceptually one call occurs first
5037 	 * and we have a single winner.
5038 	 */
5039 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5040 	nice = task_nice(current) + increment;
5041 
5042 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5043 	if (increment < 0 && !can_nice(current, nice))
5044 		return -EPERM;
5045 
5046 	retval = security_task_setnice(current, nice);
5047 	if (retval)
5048 		return retval;
5049 
5050 	set_user_nice(current, nice);
5051 	return 0;
5052 }
5053 
5054 #endif
5055 
5056 /**
5057  * task_prio - return the priority value of a given task.
5058  * @p: the task in question.
5059  *
5060  * Return: The priority value as seen by users in /proc.
5061  * RT tasks are offset by -200. Normal tasks are centered
5062  * around 0, value goes from -16 to +15.
5063  */
5064 int task_prio(const struct task_struct *p)
5065 {
5066 	return p->prio - MAX_RT_PRIO;
5067 }
5068 
5069 /**
5070  * idle_cpu - is a given CPU idle currently?
5071  * @cpu: the processor in question.
5072  *
5073  * Return: 1 if the CPU is currently idle. 0 otherwise.
5074  */
5075 int idle_cpu(int cpu)
5076 {
5077 	struct rq *rq = cpu_rq(cpu);
5078 
5079 	if (rq->curr != rq->idle)
5080 		return 0;
5081 
5082 	if (rq->nr_running)
5083 		return 0;
5084 
5085 #ifdef CONFIG_SMP
5086 	if (rq->ttwu_pending)
5087 		return 0;
5088 #endif
5089 
5090 	return 1;
5091 }
5092 
5093 /**
5094  * available_idle_cpu - is a given CPU idle for enqueuing work.
5095  * @cpu: the CPU in question.
5096  *
5097  * Return: 1 if the CPU is currently idle. 0 otherwise.
5098  */
5099 int available_idle_cpu(int cpu)
5100 {
5101 	if (!idle_cpu(cpu))
5102 		return 0;
5103 
5104 	if (vcpu_is_preempted(cpu))
5105 		return 0;
5106 
5107 	return 1;
5108 }
5109 
5110 /**
5111  * idle_task - return the idle task for a given CPU.
5112  * @cpu: the processor in question.
5113  *
5114  * Return: The idle task for the CPU @cpu.
5115  */
5116 struct task_struct *idle_task(int cpu)
5117 {
5118 	return cpu_rq(cpu)->idle;
5119 }
5120 
5121 /**
5122  * find_process_by_pid - find a process with a matching PID value.
5123  * @pid: the pid in question.
5124  *
5125  * The task of @pid, if found. %NULL otherwise.
5126  */
5127 static struct task_struct *find_process_by_pid(pid_t pid)
5128 {
5129 	return pid ? find_task_by_vpid(pid) : current;
5130 }
5131 
5132 /*
5133  * sched_setparam() passes in -1 for its policy, to let the functions
5134  * it calls know not to change it.
5135  */
5136 #define SETPARAM_POLICY	-1
5137 
5138 static void __setscheduler_params(struct task_struct *p,
5139 		const struct sched_attr *attr)
5140 {
5141 	int policy = attr->sched_policy;
5142 
5143 	if (policy == SETPARAM_POLICY)
5144 		policy = p->policy;
5145 
5146 	p->policy = policy;
5147 
5148 	if (dl_policy(policy))
5149 		__setparam_dl(p, attr);
5150 	else if (fair_policy(policy))
5151 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5152 
5153 	/*
5154 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155 	 * !rt_policy. Always setting this ensures that things like
5156 	 * getparam()/getattr() don't report silly values for !rt tasks.
5157 	 */
5158 	p->rt_priority = attr->sched_priority;
5159 	p->normal_prio = normal_prio(p);
5160 	set_load_weight(p, true);
5161 }
5162 
5163 /* Actually do priority change: must hold pi & rq lock. */
5164 static void __setscheduler(struct rq *rq, struct task_struct *p,
5165 			   const struct sched_attr *attr, bool keep_boost)
5166 {
5167 	/*
5168 	 * If params can't change scheduling class changes aren't allowed
5169 	 * either.
5170 	 */
5171 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5172 		return;
5173 
5174 	__setscheduler_params(p, attr);
5175 
5176 	/*
5177 	 * Keep a potential priority boosting if called from
5178 	 * sched_setscheduler().
5179 	 */
5180 	p->prio = normal_prio(p);
5181 	if (keep_boost)
5182 		p->prio = rt_effective_prio(p, p->prio);
5183 
5184 	if (dl_prio(p->prio))
5185 		p->sched_class = &dl_sched_class;
5186 	else if (rt_prio(p->prio))
5187 		p->sched_class = &rt_sched_class;
5188 	else
5189 		p->sched_class = &fair_sched_class;
5190 }
5191 
5192 /*
5193  * Check the target process has a UID that matches the current process's:
5194  */
5195 static bool check_same_owner(struct task_struct *p)
5196 {
5197 	const struct cred *cred = current_cred(), *pcred;
5198 	bool match;
5199 
5200 	rcu_read_lock();
5201 	pcred = __task_cred(p);
5202 	match = (uid_eq(cred->euid, pcred->euid) ||
5203 		 uid_eq(cred->euid, pcred->uid));
5204 	rcu_read_unlock();
5205 	return match;
5206 }
5207 
5208 static int __sched_setscheduler(struct task_struct *p,
5209 				const struct sched_attr *attr,
5210 				bool user, bool pi)
5211 {
5212 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5213 		      MAX_RT_PRIO - 1 - attr->sched_priority;
5214 	int retval, oldprio, oldpolicy = -1, queued, running;
5215 	int new_effective_prio, policy = attr->sched_policy;
5216 	const struct sched_class *prev_class;
5217 	struct rq_flags rf;
5218 	int reset_on_fork;
5219 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5220 	struct rq *rq;
5221 
5222 	/* The pi code expects interrupts enabled */
5223 	BUG_ON(pi && in_interrupt());
5224 recheck:
5225 	/* Double check policy once rq lock held: */
5226 	if (policy < 0) {
5227 		reset_on_fork = p->sched_reset_on_fork;
5228 		policy = oldpolicy = p->policy;
5229 	} else {
5230 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5231 
5232 		if (!valid_policy(policy))
5233 			return -EINVAL;
5234 	}
5235 
5236 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5237 		return -EINVAL;
5238 
5239 	/*
5240 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5241 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242 	 * SCHED_BATCH and SCHED_IDLE is 0.
5243 	 */
5244 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5245 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5246 		return -EINVAL;
5247 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5248 	    (rt_policy(policy) != (attr->sched_priority != 0)))
5249 		return -EINVAL;
5250 
5251 	/*
5252 	 * Allow unprivileged RT tasks to decrease priority:
5253 	 */
5254 	if (user && !capable(CAP_SYS_NICE)) {
5255 		if (fair_policy(policy)) {
5256 			if (attr->sched_nice < task_nice(p) &&
5257 			    !can_nice(p, attr->sched_nice))
5258 				return -EPERM;
5259 		}
5260 
5261 		if (rt_policy(policy)) {
5262 			unsigned long rlim_rtprio =
5263 					task_rlimit(p, RLIMIT_RTPRIO);
5264 
5265 			/* Can't set/change the rt policy: */
5266 			if (policy != p->policy && !rlim_rtprio)
5267 				return -EPERM;
5268 
5269 			/* Can't increase priority: */
5270 			if (attr->sched_priority > p->rt_priority &&
5271 			    attr->sched_priority > rlim_rtprio)
5272 				return -EPERM;
5273 		}
5274 
5275 		 /*
5276 		  * Can't set/change SCHED_DEADLINE policy at all for now
5277 		  * (safest behavior); in the future we would like to allow
5278 		  * unprivileged DL tasks to increase their relative deadline
5279 		  * or reduce their runtime (both ways reducing utilization)
5280 		  */
5281 		if (dl_policy(policy))
5282 			return -EPERM;
5283 
5284 		/*
5285 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287 		 */
5288 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5289 			if (!can_nice(p, task_nice(p)))
5290 				return -EPERM;
5291 		}
5292 
5293 		/* Can't change other user's priorities: */
5294 		if (!check_same_owner(p))
5295 			return -EPERM;
5296 
5297 		/* Normal users shall not reset the sched_reset_on_fork flag: */
5298 		if (p->sched_reset_on_fork && !reset_on_fork)
5299 			return -EPERM;
5300 	}
5301 
5302 	if (user) {
5303 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5304 			return -EINVAL;
5305 
5306 		retval = security_task_setscheduler(p);
5307 		if (retval)
5308 			return retval;
5309 	}
5310 
5311 	/* Update task specific "requested" clamps */
5312 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5313 		retval = uclamp_validate(p, attr);
5314 		if (retval)
5315 			return retval;
5316 	}
5317 
5318 	if (pi)
5319 		cpuset_read_lock();
5320 
5321 	/*
5322 	 * Make sure no PI-waiters arrive (or leave) while we are
5323 	 * changing the priority of the task:
5324 	 *
5325 	 * To be able to change p->policy safely, the appropriate
5326 	 * runqueue lock must be held.
5327 	 */
5328 	rq = task_rq_lock(p, &rf);
5329 	update_rq_clock(rq);
5330 
5331 	/*
5332 	 * Changing the policy of the stop threads its a very bad idea:
5333 	 */
5334 	if (p == rq->stop) {
5335 		retval = -EINVAL;
5336 		goto unlock;
5337 	}
5338 
5339 	/*
5340 	 * If not changing anything there's no need to proceed further,
5341 	 * but store a possible modification of reset_on_fork.
5342 	 */
5343 	if (unlikely(policy == p->policy)) {
5344 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5345 			goto change;
5346 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5347 			goto change;
5348 		if (dl_policy(policy) && dl_param_changed(p, attr))
5349 			goto change;
5350 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5351 			goto change;
5352 
5353 		p->sched_reset_on_fork = reset_on_fork;
5354 		retval = 0;
5355 		goto unlock;
5356 	}
5357 change:
5358 
5359 	if (user) {
5360 #ifdef CONFIG_RT_GROUP_SCHED
5361 		/*
5362 		 * Do not allow realtime tasks into groups that have no runtime
5363 		 * assigned.
5364 		 */
5365 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5366 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5367 				!task_group_is_autogroup(task_group(p))) {
5368 			retval = -EPERM;
5369 			goto unlock;
5370 		}
5371 #endif
5372 #ifdef CONFIG_SMP
5373 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5374 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5375 			cpumask_t *span = rq->rd->span;
5376 
5377 			/*
5378 			 * Don't allow tasks with an affinity mask smaller than
5379 			 * the entire root_domain to become SCHED_DEADLINE. We
5380 			 * will also fail if there's no bandwidth available.
5381 			 */
5382 			if (!cpumask_subset(span, p->cpus_ptr) ||
5383 			    rq->rd->dl_bw.bw == 0) {
5384 				retval = -EPERM;
5385 				goto unlock;
5386 			}
5387 		}
5388 #endif
5389 	}
5390 
5391 	/* Re-check policy now with rq lock held: */
5392 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5393 		policy = oldpolicy = -1;
5394 		task_rq_unlock(rq, p, &rf);
5395 		if (pi)
5396 			cpuset_read_unlock();
5397 		goto recheck;
5398 	}
5399 
5400 	/*
5401 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5403 	 * is available.
5404 	 */
5405 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5406 		retval = -EBUSY;
5407 		goto unlock;
5408 	}
5409 
5410 	p->sched_reset_on_fork = reset_on_fork;
5411 	oldprio = p->prio;
5412 
5413 	if (pi) {
5414 		/*
5415 		 * Take priority boosted tasks into account. If the new
5416 		 * effective priority is unchanged, we just store the new
5417 		 * normal parameters and do not touch the scheduler class and
5418 		 * the runqueue. This will be done when the task deboost
5419 		 * itself.
5420 		 */
5421 		new_effective_prio = rt_effective_prio(p, newprio);
5422 		if (new_effective_prio == oldprio)
5423 			queue_flags &= ~DEQUEUE_MOVE;
5424 	}
5425 
5426 	queued = task_on_rq_queued(p);
5427 	running = task_current(rq, p);
5428 	if (queued)
5429 		dequeue_task(rq, p, queue_flags);
5430 	if (running)
5431 		put_prev_task(rq, p);
5432 
5433 	prev_class = p->sched_class;
5434 
5435 	__setscheduler(rq, p, attr, pi);
5436 	__setscheduler_uclamp(p, attr);
5437 
5438 	if (queued) {
5439 		/*
5440 		 * We enqueue to tail when the priority of a task is
5441 		 * increased (user space view).
5442 		 */
5443 		if (oldprio < p->prio)
5444 			queue_flags |= ENQUEUE_HEAD;
5445 
5446 		enqueue_task(rq, p, queue_flags);
5447 	}
5448 	if (running)
5449 		set_next_task(rq, p);
5450 
5451 	check_class_changed(rq, p, prev_class, oldprio);
5452 
5453 	/* Avoid rq from going away on us: */
5454 	preempt_disable();
5455 	task_rq_unlock(rq, p, &rf);
5456 
5457 	if (pi) {
5458 		cpuset_read_unlock();
5459 		rt_mutex_adjust_pi(p);
5460 	}
5461 
5462 	/* Run balance callbacks after we've adjusted the PI chain: */
5463 	balance_callback(rq);
5464 	preempt_enable();
5465 
5466 	return 0;
5467 
5468 unlock:
5469 	task_rq_unlock(rq, p, &rf);
5470 	if (pi)
5471 		cpuset_read_unlock();
5472 	return retval;
5473 }
5474 
5475 static int _sched_setscheduler(struct task_struct *p, int policy,
5476 			       const struct sched_param *param, bool check)
5477 {
5478 	struct sched_attr attr = {
5479 		.sched_policy   = policy,
5480 		.sched_priority = param->sched_priority,
5481 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5482 	};
5483 
5484 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5486 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5487 		policy &= ~SCHED_RESET_ON_FORK;
5488 		attr.sched_policy = policy;
5489 	}
5490 
5491 	return __sched_setscheduler(p, &attr, check, true);
5492 }
5493 /**
5494  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495  * @p: the task in question.
5496  * @policy: new policy.
5497  * @param: structure containing the new RT priority.
5498  *
5499  * Use sched_set_fifo(), read its comment.
5500  *
5501  * Return: 0 on success. An error code otherwise.
5502  *
5503  * NOTE that the task may be already dead.
5504  */
5505 int sched_setscheduler(struct task_struct *p, int policy,
5506 		       const struct sched_param *param)
5507 {
5508 	return _sched_setscheduler(p, policy, param, true);
5509 }
5510 
5511 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5512 {
5513 	return __sched_setscheduler(p, attr, true, true);
5514 }
5515 
5516 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5517 {
5518 	return __sched_setscheduler(p, attr, false, true);
5519 }
5520 
5521 /**
5522  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523  * @p: the task in question.
5524  * @policy: new policy.
5525  * @param: structure containing the new RT priority.
5526  *
5527  * Just like sched_setscheduler, only don't bother checking if the
5528  * current context has permission.  For example, this is needed in
5529  * stop_machine(): we create temporary high priority worker threads,
5530  * but our caller might not have that capability.
5531  *
5532  * Return: 0 on success. An error code otherwise.
5533  */
5534 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5535 			       const struct sched_param *param)
5536 {
5537 	return _sched_setscheduler(p, policy, param, false);
5538 }
5539 
5540 /*
5541  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542  * incapable of resource management, which is the one thing an OS really should
5543  * be doing.
5544  *
5545  * This is of course the reason it is limited to privileged users only.
5546  *
5547  * Worse still; it is fundamentally impossible to compose static priority
5548  * workloads. You cannot take two correctly working static prio workloads
5549  * and smash them together and still expect them to work.
5550  *
5551  * For this reason 'all' FIFO tasks the kernel creates are basically at:
5552  *
5553  *   MAX_RT_PRIO / 2
5554  *
5555  * The administrator _MUST_ configure the system, the kernel simply doesn't
5556  * know enough information to make a sensible choice.
5557  */
5558 void sched_set_fifo(struct task_struct *p)
5559 {
5560 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5561 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5562 }
5563 EXPORT_SYMBOL_GPL(sched_set_fifo);
5564 
5565 /*
5566  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5567  */
5568 void sched_set_fifo_low(struct task_struct *p)
5569 {
5570 	struct sched_param sp = { .sched_priority = 1 };
5571 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5572 }
5573 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5574 
5575 void sched_set_normal(struct task_struct *p, int nice)
5576 {
5577 	struct sched_attr attr = {
5578 		.sched_policy = SCHED_NORMAL,
5579 		.sched_nice = nice,
5580 	};
5581 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5582 }
5583 EXPORT_SYMBOL_GPL(sched_set_normal);
5584 
5585 static int
5586 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5587 {
5588 	struct sched_param lparam;
5589 	struct task_struct *p;
5590 	int retval;
5591 
5592 	if (!param || pid < 0)
5593 		return -EINVAL;
5594 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5595 		return -EFAULT;
5596 
5597 	rcu_read_lock();
5598 	retval = -ESRCH;
5599 	p = find_process_by_pid(pid);
5600 	if (likely(p))
5601 		get_task_struct(p);
5602 	rcu_read_unlock();
5603 
5604 	if (likely(p)) {
5605 		retval = sched_setscheduler(p, policy, &lparam);
5606 		put_task_struct(p);
5607 	}
5608 
5609 	return retval;
5610 }
5611 
5612 /*
5613  * Mimics kernel/events/core.c perf_copy_attr().
5614  */
5615 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5616 {
5617 	u32 size;
5618 	int ret;
5619 
5620 	/* Zero the full structure, so that a short copy will be nice: */
5621 	memset(attr, 0, sizeof(*attr));
5622 
5623 	ret = get_user(size, &uattr->size);
5624 	if (ret)
5625 		return ret;
5626 
5627 	/* ABI compatibility quirk: */
5628 	if (!size)
5629 		size = SCHED_ATTR_SIZE_VER0;
5630 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5631 		goto err_size;
5632 
5633 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5634 	if (ret) {
5635 		if (ret == -E2BIG)
5636 			goto err_size;
5637 		return ret;
5638 	}
5639 
5640 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5641 	    size < SCHED_ATTR_SIZE_VER1)
5642 		return -EINVAL;
5643 
5644 	/*
5645 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5646 	 * to be strict and return an error on out-of-bounds values?
5647 	 */
5648 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5649 
5650 	return 0;
5651 
5652 err_size:
5653 	put_user(sizeof(*attr), &uattr->size);
5654 	return -E2BIG;
5655 }
5656 
5657 /**
5658  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659  * @pid: the pid in question.
5660  * @policy: new policy.
5661  * @param: structure containing the new RT priority.
5662  *
5663  * Return: 0 on success. An error code otherwise.
5664  */
5665 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5666 {
5667 	if (policy < 0)
5668 		return -EINVAL;
5669 
5670 	return do_sched_setscheduler(pid, policy, param);
5671 }
5672 
5673 /**
5674  * sys_sched_setparam - set/change the RT priority of a thread
5675  * @pid: the pid in question.
5676  * @param: structure containing the new RT priority.
5677  *
5678  * Return: 0 on success. An error code otherwise.
5679  */
5680 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5681 {
5682 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5683 }
5684 
5685 /**
5686  * sys_sched_setattr - same as above, but with extended sched_attr
5687  * @pid: the pid in question.
5688  * @uattr: structure containing the extended parameters.
5689  * @flags: for future extension.
5690  */
5691 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5692 			       unsigned int, flags)
5693 {
5694 	struct sched_attr attr;
5695 	struct task_struct *p;
5696 	int retval;
5697 
5698 	if (!uattr || pid < 0 || flags)
5699 		return -EINVAL;
5700 
5701 	retval = sched_copy_attr(uattr, &attr);
5702 	if (retval)
5703 		return retval;
5704 
5705 	if ((int)attr.sched_policy < 0)
5706 		return -EINVAL;
5707 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5708 		attr.sched_policy = SETPARAM_POLICY;
5709 
5710 	rcu_read_lock();
5711 	retval = -ESRCH;
5712 	p = find_process_by_pid(pid);
5713 	if (likely(p))
5714 		get_task_struct(p);
5715 	rcu_read_unlock();
5716 
5717 	if (likely(p)) {
5718 		retval = sched_setattr(p, &attr);
5719 		put_task_struct(p);
5720 	}
5721 
5722 	return retval;
5723 }
5724 
5725 /**
5726  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727  * @pid: the pid in question.
5728  *
5729  * Return: On success, the policy of the thread. Otherwise, a negative error
5730  * code.
5731  */
5732 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5733 {
5734 	struct task_struct *p;
5735 	int retval;
5736 
5737 	if (pid < 0)
5738 		return -EINVAL;
5739 
5740 	retval = -ESRCH;
5741 	rcu_read_lock();
5742 	p = find_process_by_pid(pid);
5743 	if (p) {
5744 		retval = security_task_getscheduler(p);
5745 		if (!retval)
5746 			retval = p->policy
5747 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5748 	}
5749 	rcu_read_unlock();
5750 	return retval;
5751 }
5752 
5753 /**
5754  * sys_sched_getparam - get the RT priority of a thread
5755  * @pid: the pid in question.
5756  * @param: structure containing the RT priority.
5757  *
5758  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5759  * code.
5760  */
5761 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5762 {
5763 	struct sched_param lp = { .sched_priority = 0 };
5764 	struct task_struct *p;
5765 	int retval;
5766 
5767 	if (!param || pid < 0)
5768 		return -EINVAL;
5769 
5770 	rcu_read_lock();
5771 	p = find_process_by_pid(pid);
5772 	retval = -ESRCH;
5773 	if (!p)
5774 		goto out_unlock;
5775 
5776 	retval = security_task_getscheduler(p);
5777 	if (retval)
5778 		goto out_unlock;
5779 
5780 	if (task_has_rt_policy(p))
5781 		lp.sched_priority = p->rt_priority;
5782 	rcu_read_unlock();
5783 
5784 	/*
5785 	 * This one might sleep, we cannot do it with a spinlock held ...
5786 	 */
5787 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5788 
5789 	return retval;
5790 
5791 out_unlock:
5792 	rcu_read_unlock();
5793 	return retval;
5794 }
5795 
5796 /*
5797  * Copy the kernel size attribute structure (which might be larger
5798  * than what user-space knows about) to user-space.
5799  *
5800  * Note that all cases are valid: user-space buffer can be larger or
5801  * smaller than the kernel-space buffer. The usual case is that both
5802  * have the same size.
5803  */
5804 static int
5805 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5806 			struct sched_attr *kattr,
5807 			unsigned int usize)
5808 {
5809 	unsigned int ksize = sizeof(*kattr);
5810 
5811 	if (!access_ok(uattr, usize))
5812 		return -EFAULT;
5813 
5814 	/*
5815 	 * sched_getattr() ABI forwards and backwards compatibility:
5816 	 *
5817 	 * If usize == ksize then we just copy everything to user-space and all is good.
5818 	 *
5819 	 * If usize < ksize then we only copy as much as user-space has space for,
5820 	 * this keeps ABI compatibility as well. We skip the rest.
5821 	 *
5822 	 * If usize > ksize then user-space is using a newer version of the ABI,
5823 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5824 	 * detect the kernel's knowledge of attributes from the attr->size value
5825 	 * which is set to ksize in this case.
5826 	 */
5827 	kattr->size = min(usize, ksize);
5828 
5829 	if (copy_to_user(uattr, kattr, kattr->size))
5830 		return -EFAULT;
5831 
5832 	return 0;
5833 }
5834 
5835 /**
5836  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837  * @pid: the pid in question.
5838  * @uattr: structure containing the extended parameters.
5839  * @usize: sizeof(attr) for fwd/bwd comp.
5840  * @flags: for future extension.
5841  */
5842 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5843 		unsigned int, usize, unsigned int, flags)
5844 {
5845 	struct sched_attr kattr = { };
5846 	struct task_struct *p;
5847 	int retval;
5848 
5849 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5850 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5851 		return -EINVAL;
5852 
5853 	rcu_read_lock();
5854 	p = find_process_by_pid(pid);
5855 	retval = -ESRCH;
5856 	if (!p)
5857 		goto out_unlock;
5858 
5859 	retval = security_task_getscheduler(p);
5860 	if (retval)
5861 		goto out_unlock;
5862 
5863 	kattr.sched_policy = p->policy;
5864 	if (p->sched_reset_on_fork)
5865 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5866 	if (task_has_dl_policy(p))
5867 		__getparam_dl(p, &kattr);
5868 	else if (task_has_rt_policy(p))
5869 		kattr.sched_priority = p->rt_priority;
5870 	else
5871 		kattr.sched_nice = task_nice(p);
5872 
5873 #ifdef CONFIG_UCLAMP_TASK
5874 	/*
5875 	 * This could race with another potential updater, but this is fine
5876 	 * because it'll correctly read the old or the new value. We don't need
5877 	 * to guarantee who wins the race as long as it doesn't return garbage.
5878 	 */
5879 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5880 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5881 #endif
5882 
5883 	rcu_read_unlock();
5884 
5885 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5886 
5887 out_unlock:
5888 	rcu_read_unlock();
5889 	return retval;
5890 }
5891 
5892 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5893 {
5894 	cpumask_var_t cpus_allowed, new_mask;
5895 	struct task_struct *p;
5896 	int retval;
5897 
5898 	rcu_read_lock();
5899 
5900 	p = find_process_by_pid(pid);
5901 	if (!p) {
5902 		rcu_read_unlock();
5903 		return -ESRCH;
5904 	}
5905 
5906 	/* Prevent p going away */
5907 	get_task_struct(p);
5908 	rcu_read_unlock();
5909 
5910 	if (p->flags & PF_NO_SETAFFINITY) {
5911 		retval = -EINVAL;
5912 		goto out_put_task;
5913 	}
5914 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5915 		retval = -ENOMEM;
5916 		goto out_put_task;
5917 	}
5918 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5919 		retval = -ENOMEM;
5920 		goto out_free_cpus_allowed;
5921 	}
5922 	retval = -EPERM;
5923 	if (!check_same_owner(p)) {
5924 		rcu_read_lock();
5925 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5926 			rcu_read_unlock();
5927 			goto out_free_new_mask;
5928 		}
5929 		rcu_read_unlock();
5930 	}
5931 
5932 	retval = security_task_setscheduler(p);
5933 	if (retval)
5934 		goto out_free_new_mask;
5935 
5936 
5937 	cpuset_cpus_allowed(p, cpus_allowed);
5938 	cpumask_and(new_mask, in_mask, cpus_allowed);
5939 
5940 	/*
5941 	 * Since bandwidth control happens on root_domain basis,
5942 	 * if admission test is enabled, we only admit -deadline
5943 	 * tasks allowed to run on all the CPUs in the task's
5944 	 * root_domain.
5945 	 */
5946 #ifdef CONFIG_SMP
5947 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5948 		rcu_read_lock();
5949 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5950 			retval = -EBUSY;
5951 			rcu_read_unlock();
5952 			goto out_free_new_mask;
5953 		}
5954 		rcu_read_unlock();
5955 	}
5956 #endif
5957 again:
5958 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5959 
5960 	if (!retval) {
5961 		cpuset_cpus_allowed(p, cpus_allowed);
5962 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5963 			/*
5964 			 * We must have raced with a concurrent cpuset
5965 			 * update. Just reset the cpus_allowed to the
5966 			 * cpuset's cpus_allowed
5967 			 */
5968 			cpumask_copy(new_mask, cpus_allowed);
5969 			goto again;
5970 		}
5971 	}
5972 out_free_new_mask:
5973 	free_cpumask_var(new_mask);
5974 out_free_cpus_allowed:
5975 	free_cpumask_var(cpus_allowed);
5976 out_put_task:
5977 	put_task_struct(p);
5978 	return retval;
5979 }
5980 
5981 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5982 			     struct cpumask *new_mask)
5983 {
5984 	if (len < cpumask_size())
5985 		cpumask_clear(new_mask);
5986 	else if (len > cpumask_size())
5987 		len = cpumask_size();
5988 
5989 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5990 }
5991 
5992 /**
5993  * sys_sched_setaffinity - set the CPU affinity of a process
5994  * @pid: pid of the process
5995  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996  * @user_mask_ptr: user-space pointer to the new CPU mask
5997  *
5998  * Return: 0 on success. An error code otherwise.
5999  */
6000 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6001 		unsigned long __user *, user_mask_ptr)
6002 {
6003 	cpumask_var_t new_mask;
6004 	int retval;
6005 
6006 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6007 		return -ENOMEM;
6008 
6009 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6010 	if (retval == 0)
6011 		retval = sched_setaffinity(pid, new_mask);
6012 	free_cpumask_var(new_mask);
6013 	return retval;
6014 }
6015 
6016 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6017 {
6018 	struct task_struct *p;
6019 	unsigned long flags;
6020 	int retval;
6021 
6022 	rcu_read_lock();
6023 
6024 	retval = -ESRCH;
6025 	p = find_process_by_pid(pid);
6026 	if (!p)
6027 		goto out_unlock;
6028 
6029 	retval = security_task_getscheduler(p);
6030 	if (retval)
6031 		goto out_unlock;
6032 
6033 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6034 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6035 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6036 
6037 out_unlock:
6038 	rcu_read_unlock();
6039 
6040 	return retval;
6041 }
6042 
6043 /**
6044  * sys_sched_getaffinity - get the CPU affinity of a process
6045  * @pid: pid of the process
6046  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6048  *
6049  * Return: size of CPU mask copied to user_mask_ptr on success. An
6050  * error code otherwise.
6051  */
6052 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6053 		unsigned long __user *, user_mask_ptr)
6054 {
6055 	int ret;
6056 	cpumask_var_t mask;
6057 
6058 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6059 		return -EINVAL;
6060 	if (len & (sizeof(unsigned long)-1))
6061 		return -EINVAL;
6062 
6063 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064 		return -ENOMEM;
6065 
6066 	ret = sched_getaffinity(pid, mask);
6067 	if (ret == 0) {
6068 		unsigned int retlen = min(len, cpumask_size());
6069 
6070 		if (copy_to_user(user_mask_ptr, mask, retlen))
6071 			ret = -EFAULT;
6072 		else
6073 			ret = retlen;
6074 	}
6075 	free_cpumask_var(mask);
6076 
6077 	return ret;
6078 }
6079 
6080 /**
6081  * sys_sched_yield - yield the current processor to other threads.
6082  *
6083  * This function yields the current CPU to other tasks. If there are no
6084  * other threads running on this CPU then this function will return.
6085  *
6086  * Return: 0.
6087  */
6088 static void do_sched_yield(void)
6089 {
6090 	struct rq_flags rf;
6091 	struct rq *rq;
6092 
6093 	rq = this_rq_lock_irq(&rf);
6094 
6095 	schedstat_inc(rq->yld_count);
6096 	current->sched_class->yield_task(rq);
6097 
6098 	/*
6099 	 * Since we are going to call schedule() anyway, there's
6100 	 * no need to preempt or enable interrupts:
6101 	 */
6102 	preempt_disable();
6103 	rq_unlock(rq, &rf);
6104 	sched_preempt_enable_no_resched();
6105 
6106 	schedule();
6107 }
6108 
6109 SYSCALL_DEFINE0(sched_yield)
6110 {
6111 	do_sched_yield();
6112 	return 0;
6113 }
6114 
6115 #ifndef CONFIG_PREEMPTION
6116 int __sched _cond_resched(void)
6117 {
6118 	if (should_resched(0)) {
6119 		preempt_schedule_common();
6120 		return 1;
6121 	}
6122 	rcu_all_qs();
6123 	return 0;
6124 }
6125 EXPORT_SYMBOL(_cond_resched);
6126 #endif
6127 
6128 /*
6129  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130  * call schedule, and on return reacquire the lock.
6131  *
6132  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133  * operations here to prevent schedule() from being called twice (once via
6134  * spin_unlock(), once by hand).
6135  */
6136 int __cond_resched_lock(spinlock_t *lock)
6137 {
6138 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6139 	int ret = 0;
6140 
6141 	lockdep_assert_held(lock);
6142 
6143 	if (spin_needbreak(lock) || resched) {
6144 		spin_unlock(lock);
6145 		if (resched)
6146 			preempt_schedule_common();
6147 		else
6148 			cpu_relax();
6149 		ret = 1;
6150 		spin_lock(lock);
6151 	}
6152 	return ret;
6153 }
6154 EXPORT_SYMBOL(__cond_resched_lock);
6155 
6156 /**
6157  * yield - yield the current processor to other threads.
6158  *
6159  * Do not ever use this function, there's a 99% chance you're doing it wrong.
6160  *
6161  * The scheduler is at all times free to pick the calling task as the most
6162  * eligible task to run, if removing the yield() call from your code breaks
6163  * it, its already broken.
6164  *
6165  * Typical broken usage is:
6166  *
6167  * while (!event)
6168  *	yield();
6169  *
6170  * where one assumes that yield() will let 'the other' process run that will
6171  * make event true. If the current task is a SCHED_FIFO task that will never
6172  * happen. Never use yield() as a progress guarantee!!
6173  *
6174  * If you want to use yield() to wait for something, use wait_event().
6175  * If you want to use yield() to be 'nice' for others, use cond_resched().
6176  * If you still want to use yield(), do not!
6177  */
6178 void __sched yield(void)
6179 {
6180 	set_current_state(TASK_RUNNING);
6181 	do_sched_yield();
6182 }
6183 EXPORT_SYMBOL(yield);
6184 
6185 /**
6186  * yield_to - yield the current processor to another thread in
6187  * your thread group, or accelerate that thread toward the
6188  * processor it's on.
6189  * @p: target task
6190  * @preempt: whether task preemption is allowed or not
6191  *
6192  * It's the caller's job to ensure that the target task struct
6193  * can't go away on us before we can do any checks.
6194  *
6195  * Return:
6196  *	true (>0) if we indeed boosted the target task.
6197  *	false (0) if we failed to boost the target.
6198  *	-ESRCH if there's no task to yield to.
6199  */
6200 int __sched yield_to(struct task_struct *p, bool preempt)
6201 {
6202 	struct task_struct *curr = current;
6203 	struct rq *rq, *p_rq;
6204 	unsigned long flags;
6205 	int yielded = 0;
6206 
6207 	local_irq_save(flags);
6208 	rq = this_rq();
6209 
6210 again:
6211 	p_rq = task_rq(p);
6212 	/*
6213 	 * If we're the only runnable task on the rq and target rq also
6214 	 * has only one task, there's absolutely no point in yielding.
6215 	 */
6216 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6217 		yielded = -ESRCH;
6218 		goto out_irq;
6219 	}
6220 
6221 	double_rq_lock(rq, p_rq);
6222 	if (task_rq(p) != p_rq) {
6223 		double_rq_unlock(rq, p_rq);
6224 		goto again;
6225 	}
6226 
6227 	if (!curr->sched_class->yield_to_task)
6228 		goto out_unlock;
6229 
6230 	if (curr->sched_class != p->sched_class)
6231 		goto out_unlock;
6232 
6233 	if (task_running(p_rq, p) || p->state)
6234 		goto out_unlock;
6235 
6236 	yielded = curr->sched_class->yield_to_task(rq, p);
6237 	if (yielded) {
6238 		schedstat_inc(rq->yld_count);
6239 		/*
6240 		 * Make p's CPU reschedule; pick_next_entity takes care of
6241 		 * fairness.
6242 		 */
6243 		if (preempt && rq != p_rq)
6244 			resched_curr(p_rq);
6245 	}
6246 
6247 out_unlock:
6248 	double_rq_unlock(rq, p_rq);
6249 out_irq:
6250 	local_irq_restore(flags);
6251 
6252 	if (yielded > 0)
6253 		schedule();
6254 
6255 	return yielded;
6256 }
6257 EXPORT_SYMBOL_GPL(yield_to);
6258 
6259 int io_schedule_prepare(void)
6260 {
6261 	int old_iowait = current->in_iowait;
6262 
6263 	current->in_iowait = 1;
6264 	blk_schedule_flush_plug(current);
6265 
6266 	return old_iowait;
6267 }
6268 
6269 void io_schedule_finish(int token)
6270 {
6271 	current->in_iowait = token;
6272 }
6273 
6274 /*
6275  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276  * that process accounting knows that this is a task in IO wait state.
6277  */
6278 long __sched io_schedule_timeout(long timeout)
6279 {
6280 	int token;
6281 	long ret;
6282 
6283 	token = io_schedule_prepare();
6284 	ret = schedule_timeout(timeout);
6285 	io_schedule_finish(token);
6286 
6287 	return ret;
6288 }
6289 EXPORT_SYMBOL(io_schedule_timeout);
6290 
6291 void __sched io_schedule(void)
6292 {
6293 	int token;
6294 
6295 	token = io_schedule_prepare();
6296 	schedule();
6297 	io_schedule_finish(token);
6298 }
6299 EXPORT_SYMBOL(io_schedule);
6300 
6301 /**
6302  * sys_sched_get_priority_max - return maximum RT priority.
6303  * @policy: scheduling class.
6304  *
6305  * Return: On success, this syscall returns the maximum
6306  * rt_priority that can be used by a given scheduling class.
6307  * On failure, a negative error code is returned.
6308  */
6309 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6310 {
6311 	int ret = -EINVAL;
6312 
6313 	switch (policy) {
6314 	case SCHED_FIFO:
6315 	case SCHED_RR:
6316 		ret = MAX_USER_RT_PRIO-1;
6317 		break;
6318 	case SCHED_DEADLINE:
6319 	case SCHED_NORMAL:
6320 	case SCHED_BATCH:
6321 	case SCHED_IDLE:
6322 		ret = 0;
6323 		break;
6324 	}
6325 	return ret;
6326 }
6327 
6328 /**
6329  * sys_sched_get_priority_min - return minimum RT priority.
6330  * @policy: scheduling class.
6331  *
6332  * Return: On success, this syscall returns the minimum
6333  * rt_priority that can be used by a given scheduling class.
6334  * On failure, a negative error code is returned.
6335  */
6336 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6337 {
6338 	int ret = -EINVAL;
6339 
6340 	switch (policy) {
6341 	case SCHED_FIFO:
6342 	case SCHED_RR:
6343 		ret = 1;
6344 		break;
6345 	case SCHED_DEADLINE:
6346 	case SCHED_NORMAL:
6347 	case SCHED_BATCH:
6348 	case SCHED_IDLE:
6349 		ret = 0;
6350 	}
6351 	return ret;
6352 }
6353 
6354 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6355 {
6356 	struct task_struct *p;
6357 	unsigned int time_slice;
6358 	struct rq_flags rf;
6359 	struct rq *rq;
6360 	int retval;
6361 
6362 	if (pid < 0)
6363 		return -EINVAL;
6364 
6365 	retval = -ESRCH;
6366 	rcu_read_lock();
6367 	p = find_process_by_pid(pid);
6368 	if (!p)
6369 		goto out_unlock;
6370 
6371 	retval = security_task_getscheduler(p);
6372 	if (retval)
6373 		goto out_unlock;
6374 
6375 	rq = task_rq_lock(p, &rf);
6376 	time_slice = 0;
6377 	if (p->sched_class->get_rr_interval)
6378 		time_slice = p->sched_class->get_rr_interval(rq, p);
6379 	task_rq_unlock(rq, p, &rf);
6380 
6381 	rcu_read_unlock();
6382 	jiffies_to_timespec64(time_slice, t);
6383 	return 0;
6384 
6385 out_unlock:
6386 	rcu_read_unlock();
6387 	return retval;
6388 }
6389 
6390 /**
6391  * sys_sched_rr_get_interval - return the default timeslice of a process.
6392  * @pid: pid of the process.
6393  * @interval: userspace pointer to the timeslice value.
6394  *
6395  * this syscall writes the default timeslice value of a given process
6396  * into the user-space timespec buffer. A value of '0' means infinity.
6397  *
6398  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6399  * an error code.
6400  */
6401 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6402 		struct __kernel_timespec __user *, interval)
6403 {
6404 	struct timespec64 t;
6405 	int retval = sched_rr_get_interval(pid, &t);
6406 
6407 	if (retval == 0)
6408 		retval = put_timespec64(&t, interval);
6409 
6410 	return retval;
6411 }
6412 
6413 #ifdef CONFIG_COMPAT_32BIT_TIME
6414 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6415 		struct old_timespec32 __user *, interval)
6416 {
6417 	struct timespec64 t;
6418 	int retval = sched_rr_get_interval(pid, &t);
6419 
6420 	if (retval == 0)
6421 		retval = put_old_timespec32(&t, interval);
6422 	return retval;
6423 }
6424 #endif
6425 
6426 void sched_show_task(struct task_struct *p)
6427 {
6428 	unsigned long free = 0;
6429 	int ppid;
6430 
6431 	if (!try_get_task_stack(p))
6432 		return;
6433 
6434 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6435 
6436 	if (p->state == TASK_RUNNING)
6437 		pr_cont("  running task    ");
6438 #ifdef CONFIG_DEBUG_STACK_USAGE
6439 	free = stack_not_used(p);
6440 #endif
6441 	ppid = 0;
6442 	rcu_read_lock();
6443 	if (pid_alive(p))
6444 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6445 	rcu_read_unlock();
6446 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447 		free, task_pid_nr(p), ppid,
6448 		(unsigned long)task_thread_info(p)->flags);
6449 
6450 	print_worker_info(KERN_INFO, p);
6451 	show_stack(p, NULL, KERN_INFO);
6452 	put_task_stack(p);
6453 }
6454 EXPORT_SYMBOL_GPL(sched_show_task);
6455 
6456 static inline bool
6457 state_filter_match(unsigned long state_filter, struct task_struct *p)
6458 {
6459 	/* no filter, everything matches */
6460 	if (!state_filter)
6461 		return true;
6462 
6463 	/* filter, but doesn't match */
6464 	if (!(p->state & state_filter))
6465 		return false;
6466 
6467 	/*
6468 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6469 	 * TASK_KILLABLE).
6470 	 */
6471 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6472 		return false;
6473 
6474 	return true;
6475 }
6476 
6477 
6478 void show_state_filter(unsigned long state_filter)
6479 {
6480 	struct task_struct *g, *p;
6481 
6482 	rcu_read_lock();
6483 	for_each_process_thread(g, p) {
6484 		/*
6485 		 * reset the NMI-timeout, listing all files on a slow
6486 		 * console might take a lot of time:
6487 		 * Also, reset softlockup watchdogs on all CPUs, because
6488 		 * another CPU might be blocked waiting for us to process
6489 		 * an IPI.
6490 		 */
6491 		touch_nmi_watchdog();
6492 		touch_all_softlockup_watchdogs();
6493 		if (state_filter_match(state_filter, p))
6494 			sched_show_task(p);
6495 	}
6496 
6497 #ifdef CONFIG_SCHED_DEBUG
6498 	if (!state_filter)
6499 		sysrq_sched_debug_show();
6500 #endif
6501 	rcu_read_unlock();
6502 	/*
6503 	 * Only show locks if all tasks are dumped:
6504 	 */
6505 	if (!state_filter)
6506 		debug_show_all_locks();
6507 }
6508 
6509 /**
6510  * init_idle - set up an idle thread for a given CPU
6511  * @idle: task in question
6512  * @cpu: CPU the idle task belongs to
6513  *
6514  * NOTE: this function does not set the idle thread's NEED_RESCHED
6515  * flag, to make booting more robust.
6516  */
6517 void init_idle(struct task_struct *idle, int cpu)
6518 {
6519 	struct rq *rq = cpu_rq(cpu);
6520 	unsigned long flags;
6521 
6522 	__sched_fork(0, idle);
6523 
6524 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6525 	raw_spin_lock(&rq->lock);
6526 
6527 	idle->state = TASK_RUNNING;
6528 	idle->se.exec_start = sched_clock();
6529 	idle->flags |= PF_IDLE;
6530 
6531 	scs_task_reset(idle);
6532 	kasan_unpoison_task_stack(idle);
6533 
6534 #ifdef CONFIG_SMP
6535 	/*
6536 	 * Its possible that init_idle() gets called multiple times on a task,
6537 	 * in that case do_set_cpus_allowed() will not do the right thing.
6538 	 *
6539 	 * And since this is boot we can forgo the serialization.
6540 	 */
6541 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6542 #endif
6543 	/*
6544 	 * We're having a chicken and egg problem, even though we are
6545 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6546 	 * lockdep check in task_group() will fail.
6547 	 *
6548 	 * Similar case to sched_fork(). / Alternatively we could
6549 	 * use task_rq_lock() here and obtain the other rq->lock.
6550 	 *
6551 	 * Silence PROVE_RCU
6552 	 */
6553 	rcu_read_lock();
6554 	__set_task_cpu(idle, cpu);
6555 	rcu_read_unlock();
6556 
6557 	rq->idle = idle;
6558 	rcu_assign_pointer(rq->curr, idle);
6559 	idle->on_rq = TASK_ON_RQ_QUEUED;
6560 #ifdef CONFIG_SMP
6561 	idle->on_cpu = 1;
6562 #endif
6563 	raw_spin_unlock(&rq->lock);
6564 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6565 
6566 	/* Set the preempt count _outside_ the spinlocks! */
6567 	init_idle_preempt_count(idle, cpu);
6568 
6569 	/*
6570 	 * The idle tasks have their own, simple scheduling class:
6571 	 */
6572 	idle->sched_class = &idle_sched_class;
6573 	ftrace_graph_init_idle_task(idle, cpu);
6574 	vtime_init_idle(idle, cpu);
6575 #ifdef CONFIG_SMP
6576 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6577 #endif
6578 }
6579 
6580 #ifdef CONFIG_SMP
6581 
6582 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6583 			      const struct cpumask *trial)
6584 {
6585 	int ret = 1;
6586 
6587 	if (!cpumask_weight(cur))
6588 		return ret;
6589 
6590 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6591 
6592 	return ret;
6593 }
6594 
6595 int task_can_attach(struct task_struct *p,
6596 		    const struct cpumask *cs_cpus_allowed)
6597 {
6598 	int ret = 0;
6599 
6600 	/*
6601 	 * Kthreads which disallow setaffinity shouldn't be moved
6602 	 * to a new cpuset; we don't want to change their CPU
6603 	 * affinity and isolating such threads by their set of
6604 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6605 	 * applicable for such threads.  This prevents checking for
6606 	 * success of set_cpus_allowed_ptr() on all attached tasks
6607 	 * before cpus_mask may be changed.
6608 	 */
6609 	if (p->flags & PF_NO_SETAFFINITY) {
6610 		ret = -EINVAL;
6611 		goto out;
6612 	}
6613 
6614 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6615 					      cs_cpus_allowed))
6616 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6617 
6618 out:
6619 	return ret;
6620 }
6621 
6622 bool sched_smp_initialized __read_mostly;
6623 
6624 #ifdef CONFIG_NUMA_BALANCING
6625 /* Migrate current task p to target_cpu */
6626 int migrate_task_to(struct task_struct *p, int target_cpu)
6627 {
6628 	struct migration_arg arg = { p, target_cpu };
6629 	int curr_cpu = task_cpu(p);
6630 
6631 	if (curr_cpu == target_cpu)
6632 		return 0;
6633 
6634 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6635 		return -EINVAL;
6636 
6637 	/* TODO: This is not properly updating schedstats */
6638 
6639 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6640 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6641 }
6642 
6643 /*
6644  * Requeue a task on a given node and accurately track the number of NUMA
6645  * tasks on the runqueues
6646  */
6647 void sched_setnuma(struct task_struct *p, int nid)
6648 {
6649 	bool queued, running;
6650 	struct rq_flags rf;
6651 	struct rq *rq;
6652 
6653 	rq = task_rq_lock(p, &rf);
6654 	queued = task_on_rq_queued(p);
6655 	running = task_current(rq, p);
6656 
6657 	if (queued)
6658 		dequeue_task(rq, p, DEQUEUE_SAVE);
6659 	if (running)
6660 		put_prev_task(rq, p);
6661 
6662 	p->numa_preferred_nid = nid;
6663 
6664 	if (queued)
6665 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6666 	if (running)
6667 		set_next_task(rq, p);
6668 	task_rq_unlock(rq, p, &rf);
6669 }
6670 #endif /* CONFIG_NUMA_BALANCING */
6671 
6672 #ifdef CONFIG_HOTPLUG_CPU
6673 /*
6674  * Ensure that the idle task is using init_mm right before its CPU goes
6675  * offline.
6676  */
6677 void idle_task_exit(void)
6678 {
6679 	struct mm_struct *mm = current->active_mm;
6680 
6681 	BUG_ON(cpu_online(smp_processor_id()));
6682 	BUG_ON(current != this_rq()->idle);
6683 
6684 	if (mm != &init_mm) {
6685 		switch_mm(mm, &init_mm, current);
6686 		finish_arch_post_lock_switch();
6687 	}
6688 
6689 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6690 }
6691 
6692 /*
6693  * Since this CPU is going 'away' for a while, fold any nr_active delta
6694  * we might have. Assumes we're called after migrate_tasks() so that the
6695  * nr_active count is stable. We need to take the teardown thread which
6696  * is calling this into account, so we hand in adjust = 1 to the load
6697  * calculation.
6698  *
6699  * Also see the comment "Global load-average calculations".
6700  */
6701 static void calc_load_migrate(struct rq *rq)
6702 {
6703 	long delta = calc_load_fold_active(rq, 1);
6704 	if (delta)
6705 		atomic_long_add(delta, &calc_load_tasks);
6706 }
6707 
6708 static struct task_struct *__pick_migrate_task(struct rq *rq)
6709 {
6710 	const struct sched_class *class;
6711 	struct task_struct *next;
6712 
6713 	for_each_class(class) {
6714 		next = class->pick_next_task(rq);
6715 		if (next) {
6716 			next->sched_class->put_prev_task(rq, next);
6717 			return next;
6718 		}
6719 	}
6720 
6721 	/* The idle class should always have a runnable task */
6722 	BUG();
6723 }
6724 
6725 /*
6726  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727  * try_to_wake_up()->select_task_rq().
6728  *
6729  * Called with rq->lock held even though we'er in stop_machine() and
6730  * there's no concurrency possible, we hold the required locks anyway
6731  * because of lock validation efforts.
6732  */
6733 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6734 {
6735 	struct rq *rq = dead_rq;
6736 	struct task_struct *next, *stop = rq->stop;
6737 	struct rq_flags orf = *rf;
6738 	int dest_cpu;
6739 
6740 	/*
6741 	 * Fudge the rq selection such that the below task selection loop
6742 	 * doesn't get stuck on the currently eligible stop task.
6743 	 *
6744 	 * We're currently inside stop_machine() and the rq is either stuck
6745 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746 	 * either way we should never end up calling schedule() until we're
6747 	 * done here.
6748 	 */
6749 	rq->stop = NULL;
6750 
6751 	/*
6752 	 * put_prev_task() and pick_next_task() sched
6753 	 * class method both need to have an up-to-date
6754 	 * value of rq->clock[_task]
6755 	 */
6756 	update_rq_clock(rq);
6757 
6758 	for (;;) {
6759 		/*
6760 		 * There's this thread running, bail when that's the only
6761 		 * remaining thread:
6762 		 */
6763 		if (rq->nr_running == 1)
6764 			break;
6765 
6766 		next = __pick_migrate_task(rq);
6767 
6768 		/*
6769 		 * Rules for changing task_struct::cpus_mask are holding
6770 		 * both pi_lock and rq->lock, such that holding either
6771 		 * stabilizes the mask.
6772 		 *
6773 		 * Drop rq->lock is not quite as disastrous as it usually is
6774 		 * because !cpu_active at this point, which means load-balance
6775 		 * will not interfere. Also, stop-machine.
6776 		 */
6777 		rq_unlock(rq, rf);
6778 		raw_spin_lock(&next->pi_lock);
6779 		rq_relock(rq, rf);
6780 
6781 		/*
6782 		 * Since we're inside stop-machine, _nothing_ should have
6783 		 * changed the task, WARN if weird stuff happened, because in
6784 		 * that case the above rq->lock drop is a fail too.
6785 		 */
6786 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6787 			raw_spin_unlock(&next->pi_lock);
6788 			continue;
6789 		}
6790 
6791 		/* Find suitable destination for @next, with force if needed. */
6792 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6793 		rq = __migrate_task(rq, rf, next, dest_cpu);
6794 		if (rq != dead_rq) {
6795 			rq_unlock(rq, rf);
6796 			rq = dead_rq;
6797 			*rf = orf;
6798 			rq_relock(rq, rf);
6799 		}
6800 		raw_spin_unlock(&next->pi_lock);
6801 	}
6802 
6803 	rq->stop = stop;
6804 }
6805 #endif /* CONFIG_HOTPLUG_CPU */
6806 
6807 void set_rq_online(struct rq *rq)
6808 {
6809 	if (!rq->online) {
6810 		const struct sched_class *class;
6811 
6812 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6813 		rq->online = 1;
6814 
6815 		for_each_class(class) {
6816 			if (class->rq_online)
6817 				class->rq_online(rq);
6818 		}
6819 	}
6820 }
6821 
6822 void set_rq_offline(struct rq *rq)
6823 {
6824 	if (rq->online) {
6825 		const struct sched_class *class;
6826 
6827 		for_each_class(class) {
6828 			if (class->rq_offline)
6829 				class->rq_offline(rq);
6830 		}
6831 
6832 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6833 		rq->online = 0;
6834 	}
6835 }
6836 
6837 /*
6838  * used to mark begin/end of suspend/resume:
6839  */
6840 static int num_cpus_frozen;
6841 
6842 /*
6843  * Update cpusets according to cpu_active mask.  If cpusets are
6844  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845  * around partition_sched_domains().
6846  *
6847  * If we come here as part of a suspend/resume, don't touch cpusets because we
6848  * want to restore it back to its original state upon resume anyway.
6849  */
6850 static void cpuset_cpu_active(void)
6851 {
6852 	if (cpuhp_tasks_frozen) {
6853 		/*
6854 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855 		 * resume sequence. As long as this is not the last online
6856 		 * operation in the resume sequence, just build a single sched
6857 		 * domain, ignoring cpusets.
6858 		 */
6859 		partition_sched_domains(1, NULL, NULL);
6860 		if (--num_cpus_frozen)
6861 			return;
6862 		/*
6863 		 * This is the last CPU online operation. So fall through and
6864 		 * restore the original sched domains by considering the
6865 		 * cpuset configurations.
6866 		 */
6867 		cpuset_force_rebuild();
6868 	}
6869 	cpuset_update_active_cpus();
6870 }
6871 
6872 static int cpuset_cpu_inactive(unsigned int cpu)
6873 {
6874 	if (!cpuhp_tasks_frozen) {
6875 		if (dl_cpu_busy(cpu))
6876 			return -EBUSY;
6877 		cpuset_update_active_cpus();
6878 	} else {
6879 		num_cpus_frozen++;
6880 		partition_sched_domains(1, NULL, NULL);
6881 	}
6882 	return 0;
6883 }
6884 
6885 int sched_cpu_activate(unsigned int cpu)
6886 {
6887 	struct rq *rq = cpu_rq(cpu);
6888 	struct rq_flags rf;
6889 
6890 #ifdef CONFIG_SCHED_SMT
6891 	/*
6892 	 * When going up, increment the number of cores with SMT present.
6893 	 */
6894 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6895 		static_branch_inc_cpuslocked(&sched_smt_present);
6896 #endif
6897 	set_cpu_active(cpu, true);
6898 
6899 	if (sched_smp_initialized) {
6900 		sched_domains_numa_masks_set(cpu);
6901 		cpuset_cpu_active();
6902 	}
6903 
6904 	/*
6905 	 * Put the rq online, if not already. This happens:
6906 	 *
6907 	 * 1) In the early boot process, because we build the real domains
6908 	 *    after all CPUs have been brought up.
6909 	 *
6910 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6911 	 *    domains.
6912 	 */
6913 	rq_lock_irqsave(rq, &rf);
6914 	if (rq->rd) {
6915 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6916 		set_rq_online(rq);
6917 	}
6918 	rq_unlock_irqrestore(rq, &rf);
6919 
6920 	return 0;
6921 }
6922 
6923 int sched_cpu_deactivate(unsigned int cpu)
6924 {
6925 	int ret;
6926 
6927 	set_cpu_active(cpu, false);
6928 	/*
6929 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930 	 * users of this state to go away such that all new such users will
6931 	 * observe it.
6932 	 *
6933 	 * Do sync before park smpboot threads to take care the rcu boost case.
6934 	 */
6935 	synchronize_rcu();
6936 
6937 #ifdef CONFIG_SCHED_SMT
6938 	/*
6939 	 * When going down, decrement the number of cores with SMT present.
6940 	 */
6941 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6942 		static_branch_dec_cpuslocked(&sched_smt_present);
6943 #endif
6944 
6945 	if (!sched_smp_initialized)
6946 		return 0;
6947 
6948 	ret = cpuset_cpu_inactive(cpu);
6949 	if (ret) {
6950 		set_cpu_active(cpu, true);
6951 		return ret;
6952 	}
6953 	sched_domains_numa_masks_clear(cpu);
6954 	return 0;
6955 }
6956 
6957 static void sched_rq_cpu_starting(unsigned int cpu)
6958 {
6959 	struct rq *rq = cpu_rq(cpu);
6960 
6961 	rq->calc_load_update = calc_load_update;
6962 	update_max_interval();
6963 }
6964 
6965 int sched_cpu_starting(unsigned int cpu)
6966 {
6967 	sched_rq_cpu_starting(cpu);
6968 	sched_tick_start(cpu);
6969 	return 0;
6970 }
6971 
6972 #ifdef CONFIG_HOTPLUG_CPU
6973 int sched_cpu_dying(unsigned int cpu)
6974 {
6975 	struct rq *rq = cpu_rq(cpu);
6976 	struct rq_flags rf;
6977 
6978 	/* Handle pending wakeups and then migrate everything off */
6979 	sched_tick_stop(cpu);
6980 
6981 	rq_lock_irqsave(rq, &rf);
6982 	if (rq->rd) {
6983 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6984 		set_rq_offline(rq);
6985 	}
6986 	migrate_tasks(rq, &rf);
6987 	BUG_ON(rq->nr_running != 1);
6988 	rq_unlock_irqrestore(rq, &rf);
6989 
6990 	calc_load_migrate(rq);
6991 	update_max_interval();
6992 	nohz_balance_exit_idle(rq);
6993 	hrtick_clear(rq);
6994 	return 0;
6995 }
6996 #endif
6997 
6998 void __init sched_init_smp(void)
6999 {
7000 	sched_init_numa();
7001 
7002 	/*
7003 	 * There's no userspace yet to cause hotplug operations; hence all the
7004 	 * CPU masks are stable and all blatant races in the below code cannot
7005 	 * happen.
7006 	 */
7007 	mutex_lock(&sched_domains_mutex);
7008 	sched_init_domains(cpu_active_mask);
7009 	mutex_unlock(&sched_domains_mutex);
7010 
7011 	/* Move init over to a non-isolated CPU */
7012 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7013 		BUG();
7014 	sched_init_granularity();
7015 
7016 	init_sched_rt_class();
7017 	init_sched_dl_class();
7018 
7019 	sched_smp_initialized = true;
7020 }
7021 
7022 static int __init migration_init(void)
7023 {
7024 	sched_cpu_starting(smp_processor_id());
7025 	return 0;
7026 }
7027 early_initcall(migration_init);
7028 
7029 #else
7030 void __init sched_init_smp(void)
7031 {
7032 	sched_init_granularity();
7033 }
7034 #endif /* CONFIG_SMP */
7035 
7036 int in_sched_functions(unsigned long addr)
7037 {
7038 	return in_lock_functions(addr) ||
7039 		(addr >= (unsigned long)__sched_text_start
7040 		&& addr < (unsigned long)__sched_text_end);
7041 }
7042 
7043 #ifdef CONFIG_CGROUP_SCHED
7044 /*
7045  * Default task group.
7046  * Every task in system belongs to this group at bootup.
7047  */
7048 struct task_group root_task_group;
7049 LIST_HEAD(task_groups);
7050 
7051 /* Cacheline aligned slab cache for task_group */
7052 static struct kmem_cache *task_group_cache __read_mostly;
7053 #endif
7054 
7055 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7056 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7057 
7058 void __init sched_init(void)
7059 {
7060 	unsigned long ptr = 0;
7061 	int i;
7062 
7063 	/* Make sure the linker didn't screw up */
7064 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7065 	       &fair_sched_class + 1 != &rt_sched_class ||
7066 	       &rt_sched_class + 1   != &dl_sched_class);
7067 #ifdef CONFIG_SMP
7068 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7069 #endif
7070 
7071 	wait_bit_init();
7072 
7073 #ifdef CONFIG_FAIR_GROUP_SCHED
7074 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7075 #endif
7076 #ifdef CONFIG_RT_GROUP_SCHED
7077 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7078 #endif
7079 	if (ptr) {
7080 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7081 
7082 #ifdef CONFIG_FAIR_GROUP_SCHED
7083 		root_task_group.se = (struct sched_entity **)ptr;
7084 		ptr += nr_cpu_ids * sizeof(void **);
7085 
7086 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7087 		ptr += nr_cpu_ids * sizeof(void **);
7088 
7089 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7091 #endif /* CONFIG_FAIR_GROUP_SCHED */
7092 #ifdef CONFIG_RT_GROUP_SCHED
7093 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7094 		ptr += nr_cpu_ids * sizeof(void **);
7095 
7096 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7097 		ptr += nr_cpu_ids * sizeof(void **);
7098 
7099 #endif /* CONFIG_RT_GROUP_SCHED */
7100 	}
7101 #ifdef CONFIG_CPUMASK_OFFSTACK
7102 	for_each_possible_cpu(i) {
7103 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7104 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7105 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7106 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7107 	}
7108 #endif /* CONFIG_CPUMASK_OFFSTACK */
7109 
7110 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7111 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7112 
7113 #ifdef CONFIG_SMP
7114 	init_defrootdomain();
7115 #endif
7116 
7117 #ifdef CONFIG_RT_GROUP_SCHED
7118 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7119 			global_rt_period(), global_rt_runtime());
7120 #endif /* CONFIG_RT_GROUP_SCHED */
7121 
7122 #ifdef CONFIG_CGROUP_SCHED
7123 	task_group_cache = KMEM_CACHE(task_group, 0);
7124 
7125 	list_add(&root_task_group.list, &task_groups);
7126 	INIT_LIST_HEAD(&root_task_group.children);
7127 	INIT_LIST_HEAD(&root_task_group.siblings);
7128 	autogroup_init(&init_task);
7129 #endif /* CONFIG_CGROUP_SCHED */
7130 
7131 	for_each_possible_cpu(i) {
7132 		struct rq *rq;
7133 
7134 		rq = cpu_rq(i);
7135 		raw_spin_lock_init(&rq->lock);
7136 		rq->nr_running = 0;
7137 		rq->calc_load_active = 0;
7138 		rq->calc_load_update = jiffies + LOAD_FREQ;
7139 		init_cfs_rq(&rq->cfs);
7140 		init_rt_rq(&rq->rt);
7141 		init_dl_rq(&rq->dl);
7142 #ifdef CONFIG_FAIR_GROUP_SCHED
7143 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7144 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7145 		/*
7146 		 * How much CPU bandwidth does root_task_group get?
7147 		 *
7148 		 * In case of task-groups formed thr' the cgroup filesystem, it
7149 		 * gets 100% of the CPU resources in the system. This overall
7150 		 * system CPU resource is divided among the tasks of
7151 		 * root_task_group and its child task-groups in a fair manner,
7152 		 * based on each entity's (task or task-group's) weight
7153 		 * (se->load.weight).
7154 		 *
7155 		 * In other words, if root_task_group has 10 tasks of weight
7156 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157 		 * then A0's share of the CPU resource is:
7158 		 *
7159 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7160 		 *
7161 		 * We achieve this by letting root_task_group's tasks sit
7162 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7163 		 */
7164 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7165 #endif /* CONFIG_FAIR_GROUP_SCHED */
7166 
7167 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7168 #ifdef CONFIG_RT_GROUP_SCHED
7169 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7170 #endif
7171 #ifdef CONFIG_SMP
7172 		rq->sd = NULL;
7173 		rq->rd = NULL;
7174 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7175 		rq->balance_callback = NULL;
7176 		rq->active_balance = 0;
7177 		rq->next_balance = jiffies;
7178 		rq->push_cpu = 0;
7179 		rq->cpu = i;
7180 		rq->online = 0;
7181 		rq->idle_stamp = 0;
7182 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7183 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7184 
7185 		INIT_LIST_HEAD(&rq->cfs_tasks);
7186 
7187 		rq_attach_root(rq, &def_root_domain);
7188 #ifdef CONFIG_NO_HZ_COMMON
7189 		rq->last_blocked_load_update_tick = jiffies;
7190 		atomic_set(&rq->nohz_flags, 0);
7191 
7192 		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7193 #endif
7194 #endif /* CONFIG_SMP */
7195 		hrtick_rq_init(rq);
7196 		atomic_set(&rq->nr_iowait, 0);
7197 	}
7198 
7199 	set_load_weight(&init_task, false);
7200 
7201 	/*
7202 	 * The boot idle thread does lazy MMU switching as well:
7203 	 */
7204 	mmgrab(&init_mm);
7205 	enter_lazy_tlb(&init_mm, current);
7206 
7207 	/*
7208 	 * Make us the idle thread. Technically, schedule() should not be
7209 	 * called from this thread, however somewhere below it might be,
7210 	 * but because we are the idle thread, we just pick up running again
7211 	 * when this runqueue becomes "idle".
7212 	 */
7213 	init_idle(current, smp_processor_id());
7214 
7215 	calc_load_update = jiffies + LOAD_FREQ;
7216 
7217 #ifdef CONFIG_SMP
7218 	idle_thread_set_boot_cpu();
7219 #endif
7220 	init_sched_fair_class();
7221 
7222 	init_schedstats();
7223 
7224 	psi_init();
7225 
7226 	init_uclamp();
7227 
7228 	scheduler_running = 1;
7229 }
7230 
7231 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232 static inline int preempt_count_equals(int preempt_offset)
7233 {
7234 	int nested = preempt_count() + rcu_preempt_depth();
7235 
7236 	return (nested == preempt_offset);
7237 }
7238 
7239 void __might_sleep(const char *file, int line, int preempt_offset)
7240 {
7241 	/*
7242 	 * Blocking primitives will set (and therefore destroy) current->state,
7243 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7244 	 * otherwise we will destroy state.
7245 	 */
7246 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7247 			"do not call blocking ops when !TASK_RUNNING; "
7248 			"state=%lx set at [<%p>] %pS\n",
7249 			current->state,
7250 			(void *)current->task_state_change,
7251 			(void *)current->task_state_change);
7252 
7253 	___might_sleep(file, line, preempt_offset);
7254 }
7255 EXPORT_SYMBOL(__might_sleep);
7256 
7257 void ___might_sleep(const char *file, int line, int preempt_offset)
7258 {
7259 	/* Ratelimiting timestamp: */
7260 	static unsigned long prev_jiffy;
7261 
7262 	unsigned long preempt_disable_ip;
7263 
7264 	/* WARN_ON_ONCE() by default, no rate limit required: */
7265 	rcu_sleep_check();
7266 
7267 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7268 	     !is_idle_task(current) && !current->non_block_count) ||
7269 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7270 	    oops_in_progress)
7271 		return;
7272 
7273 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7274 		return;
7275 	prev_jiffy = jiffies;
7276 
7277 	/* Save this before calling printk(), since that will clobber it: */
7278 	preempt_disable_ip = get_preempt_disable_ip(current);
7279 
7280 	printk(KERN_ERR
7281 		"BUG: sleeping function called from invalid context at %s:%d\n",
7282 			file, line);
7283 	printk(KERN_ERR
7284 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285 			in_atomic(), irqs_disabled(), current->non_block_count,
7286 			current->pid, current->comm);
7287 
7288 	if (task_stack_end_corrupted(current))
7289 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7290 
7291 	debug_show_held_locks(current);
7292 	if (irqs_disabled())
7293 		print_irqtrace_events(current);
7294 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7295 	    && !preempt_count_equals(preempt_offset)) {
7296 		pr_err("Preemption disabled at:");
7297 		print_ip_sym(KERN_ERR, preempt_disable_ip);
7298 	}
7299 	dump_stack();
7300 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7301 }
7302 EXPORT_SYMBOL(___might_sleep);
7303 
7304 void __cant_sleep(const char *file, int line, int preempt_offset)
7305 {
7306 	static unsigned long prev_jiffy;
7307 
7308 	if (irqs_disabled())
7309 		return;
7310 
7311 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7312 		return;
7313 
7314 	if (preempt_count() > preempt_offset)
7315 		return;
7316 
7317 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7318 		return;
7319 	prev_jiffy = jiffies;
7320 
7321 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7322 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323 			in_atomic(), irqs_disabled(),
7324 			current->pid, current->comm);
7325 
7326 	debug_show_held_locks(current);
7327 	dump_stack();
7328 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7329 }
7330 EXPORT_SYMBOL_GPL(__cant_sleep);
7331 #endif
7332 
7333 #ifdef CONFIG_MAGIC_SYSRQ
7334 void normalize_rt_tasks(void)
7335 {
7336 	struct task_struct *g, *p;
7337 	struct sched_attr attr = {
7338 		.sched_policy = SCHED_NORMAL,
7339 	};
7340 
7341 	read_lock(&tasklist_lock);
7342 	for_each_process_thread(g, p) {
7343 		/*
7344 		 * Only normalize user tasks:
7345 		 */
7346 		if (p->flags & PF_KTHREAD)
7347 			continue;
7348 
7349 		p->se.exec_start = 0;
7350 		schedstat_set(p->se.statistics.wait_start,  0);
7351 		schedstat_set(p->se.statistics.sleep_start, 0);
7352 		schedstat_set(p->se.statistics.block_start, 0);
7353 
7354 		if (!dl_task(p) && !rt_task(p)) {
7355 			/*
7356 			 * Renice negative nice level userspace
7357 			 * tasks back to 0:
7358 			 */
7359 			if (task_nice(p) < 0)
7360 				set_user_nice(p, 0);
7361 			continue;
7362 		}
7363 
7364 		__sched_setscheduler(p, &attr, false, false);
7365 	}
7366 	read_unlock(&tasklist_lock);
7367 }
7368 
7369 #endif /* CONFIG_MAGIC_SYSRQ */
7370 
7371 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7372 /*
7373  * These functions are only useful for the IA64 MCA handling, or kdb.
7374  *
7375  * They can only be called when the whole system has been
7376  * stopped - every CPU needs to be quiescent, and no scheduling
7377  * activity can take place. Using them for anything else would
7378  * be a serious bug, and as a result, they aren't even visible
7379  * under any other configuration.
7380  */
7381 
7382 /**
7383  * curr_task - return the current task for a given CPU.
7384  * @cpu: the processor in question.
7385  *
7386  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7387  *
7388  * Return: The current task for @cpu.
7389  */
7390 struct task_struct *curr_task(int cpu)
7391 {
7392 	return cpu_curr(cpu);
7393 }
7394 
7395 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7396 
7397 #ifdef CONFIG_IA64
7398 /**
7399  * ia64_set_curr_task - set the current task for a given CPU.
7400  * @cpu: the processor in question.
7401  * @p: the task pointer to set.
7402  *
7403  * Description: This function must only be used when non-maskable interrupts
7404  * are serviced on a separate stack. It allows the architecture to switch the
7405  * notion of the current task on a CPU in a non-blocking manner. This function
7406  * must be called with all CPU's synchronized, and interrupts disabled, the
7407  * and caller must save the original value of the current task (see
7408  * curr_task() above) and restore that value before reenabling interrupts and
7409  * re-starting the system.
7410  *
7411  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412  */
7413 void ia64_set_curr_task(int cpu, struct task_struct *p)
7414 {
7415 	cpu_curr(cpu) = p;
7416 }
7417 
7418 #endif
7419 
7420 #ifdef CONFIG_CGROUP_SCHED
7421 /* task_group_lock serializes the addition/removal of task groups */
7422 static DEFINE_SPINLOCK(task_group_lock);
7423 
7424 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7425 					    struct task_group *parent)
7426 {
7427 #ifdef CONFIG_UCLAMP_TASK_GROUP
7428 	enum uclamp_id clamp_id;
7429 
7430 	for_each_clamp_id(clamp_id) {
7431 		uclamp_se_set(&tg->uclamp_req[clamp_id],
7432 			      uclamp_none(clamp_id), false);
7433 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7434 	}
7435 #endif
7436 }
7437 
7438 static void sched_free_group(struct task_group *tg)
7439 {
7440 	free_fair_sched_group(tg);
7441 	free_rt_sched_group(tg);
7442 	autogroup_free(tg);
7443 	kmem_cache_free(task_group_cache, tg);
7444 }
7445 
7446 /* allocate runqueue etc for a new task group */
7447 struct task_group *sched_create_group(struct task_group *parent)
7448 {
7449 	struct task_group *tg;
7450 
7451 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7452 	if (!tg)
7453 		return ERR_PTR(-ENOMEM);
7454 
7455 	if (!alloc_fair_sched_group(tg, parent))
7456 		goto err;
7457 
7458 	if (!alloc_rt_sched_group(tg, parent))
7459 		goto err;
7460 
7461 	alloc_uclamp_sched_group(tg, parent);
7462 
7463 	return tg;
7464 
7465 err:
7466 	sched_free_group(tg);
7467 	return ERR_PTR(-ENOMEM);
7468 }
7469 
7470 void sched_online_group(struct task_group *tg, struct task_group *parent)
7471 {
7472 	unsigned long flags;
7473 
7474 	spin_lock_irqsave(&task_group_lock, flags);
7475 	list_add_rcu(&tg->list, &task_groups);
7476 
7477 	/* Root should already exist: */
7478 	WARN_ON(!parent);
7479 
7480 	tg->parent = parent;
7481 	INIT_LIST_HEAD(&tg->children);
7482 	list_add_rcu(&tg->siblings, &parent->children);
7483 	spin_unlock_irqrestore(&task_group_lock, flags);
7484 
7485 	online_fair_sched_group(tg);
7486 }
7487 
7488 /* rcu callback to free various structures associated with a task group */
7489 static void sched_free_group_rcu(struct rcu_head *rhp)
7490 {
7491 	/* Now it should be safe to free those cfs_rqs: */
7492 	sched_free_group(container_of(rhp, struct task_group, rcu));
7493 }
7494 
7495 void sched_destroy_group(struct task_group *tg)
7496 {
7497 	/* Wait for possible concurrent references to cfs_rqs complete: */
7498 	call_rcu(&tg->rcu, sched_free_group_rcu);
7499 }
7500 
7501 void sched_offline_group(struct task_group *tg)
7502 {
7503 	unsigned long flags;
7504 
7505 	/* End participation in shares distribution: */
7506 	unregister_fair_sched_group(tg);
7507 
7508 	spin_lock_irqsave(&task_group_lock, flags);
7509 	list_del_rcu(&tg->list);
7510 	list_del_rcu(&tg->siblings);
7511 	spin_unlock_irqrestore(&task_group_lock, flags);
7512 }
7513 
7514 static void sched_change_group(struct task_struct *tsk, int type)
7515 {
7516 	struct task_group *tg;
7517 
7518 	/*
7519 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7520 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7521 	 * to prevent lockdep warnings.
7522 	 */
7523 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7524 			  struct task_group, css);
7525 	tg = autogroup_task_group(tsk, tg);
7526 	tsk->sched_task_group = tg;
7527 
7528 #ifdef CONFIG_FAIR_GROUP_SCHED
7529 	if (tsk->sched_class->task_change_group)
7530 		tsk->sched_class->task_change_group(tsk, type);
7531 	else
7532 #endif
7533 		set_task_rq(tsk, task_cpu(tsk));
7534 }
7535 
7536 /*
7537  * Change task's runqueue when it moves between groups.
7538  *
7539  * The caller of this function should have put the task in its new group by
7540  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7541  * its new group.
7542  */
7543 void sched_move_task(struct task_struct *tsk)
7544 {
7545 	int queued, running, queue_flags =
7546 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7547 	struct rq_flags rf;
7548 	struct rq *rq;
7549 
7550 	rq = task_rq_lock(tsk, &rf);
7551 	update_rq_clock(rq);
7552 
7553 	running = task_current(rq, tsk);
7554 	queued = task_on_rq_queued(tsk);
7555 
7556 	if (queued)
7557 		dequeue_task(rq, tsk, queue_flags);
7558 	if (running)
7559 		put_prev_task(rq, tsk);
7560 
7561 	sched_change_group(tsk, TASK_MOVE_GROUP);
7562 
7563 	if (queued)
7564 		enqueue_task(rq, tsk, queue_flags);
7565 	if (running) {
7566 		set_next_task(rq, tsk);
7567 		/*
7568 		 * After changing group, the running task may have joined a
7569 		 * throttled one but it's still the running task. Trigger a
7570 		 * resched to make sure that task can still run.
7571 		 */
7572 		resched_curr(rq);
7573 	}
7574 
7575 	task_rq_unlock(rq, tsk, &rf);
7576 }
7577 
7578 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7579 {
7580 	return css ? container_of(css, struct task_group, css) : NULL;
7581 }
7582 
7583 static struct cgroup_subsys_state *
7584 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7585 {
7586 	struct task_group *parent = css_tg(parent_css);
7587 	struct task_group *tg;
7588 
7589 	if (!parent) {
7590 		/* This is early initialization for the top cgroup */
7591 		return &root_task_group.css;
7592 	}
7593 
7594 	tg = sched_create_group(parent);
7595 	if (IS_ERR(tg))
7596 		return ERR_PTR(-ENOMEM);
7597 
7598 	return &tg->css;
7599 }
7600 
7601 /* Expose task group only after completing cgroup initialization */
7602 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603 {
7604 	struct task_group *tg = css_tg(css);
7605 	struct task_group *parent = css_tg(css->parent);
7606 
7607 	if (parent)
7608 		sched_online_group(tg, parent);
7609 
7610 #ifdef CONFIG_UCLAMP_TASK_GROUP
7611 	/* Propagate the effective uclamp value for the new group */
7612 	cpu_util_update_eff(css);
7613 #endif
7614 
7615 	return 0;
7616 }
7617 
7618 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7619 {
7620 	struct task_group *tg = css_tg(css);
7621 
7622 	sched_offline_group(tg);
7623 }
7624 
7625 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7626 {
7627 	struct task_group *tg = css_tg(css);
7628 
7629 	/*
7630 	 * Relies on the RCU grace period between css_released() and this.
7631 	 */
7632 	sched_free_group(tg);
7633 }
7634 
7635 /*
7636  * This is called before wake_up_new_task(), therefore we really only
7637  * have to set its group bits, all the other stuff does not apply.
7638  */
7639 static void cpu_cgroup_fork(struct task_struct *task)
7640 {
7641 	struct rq_flags rf;
7642 	struct rq *rq;
7643 
7644 	rq = task_rq_lock(task, &rf);
7645 
7646 	update_rq_clock(rq);
7647 	sched_change_group(task, TASK_SET_GROUP);
7648 
7649 	task_rq_unlock(rq, task, &rf);
7650 }
7651 
7652 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7653 {
7654 	struct task_struct *task;
7655 	struct cgroup_subsys_state *css;
7656 	int ret = 0;
7657 
7658 	cgroup_taskset_for_each(task, css, tset) {
7659 #ifdef CONFIG_RT_GROUP_SCHED
7660 		if (!sched_rt_can_attach(css_tg(css), task))
7661 			return -EINVAL;
7662 #endif
7663 		/*
7664 		 * Serialize against wake_up_new_task() such that if its
7665 		 * running, we're sure to observe its full state.
7666 		 */
7667 		raw_spin_lock_irq(&task->pi_lock);
7668 		/*
7669 		 * Avoid calling sched_move_task() before wake_up_new_task()
7670 		 * has happened. This would lead to problems with PELT, due to
7671 		 * move wanting to detach+attach while we're not attached yet.
7672 		 */
7673 		if (task->state == TASK_NEW)
7674 			ret = -EINVAL;
7675 		raw_spin_unlock_irq(&task->pi_lock);
7676 
7677 		if (ret)
7678 			break;
7679 	}
7680 	return ret;
7681 }
7682 
7683 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7684 {
7685 	struct task_struct *task;
7686 	struct cgroup_subsys_state *css;
7687 
7688 	cgroup_taskset_for_each(task, css, tset)
7689 		sched_move_task(task);
7690 }
7691 
7692 #ifdef CONFIG_UCLAMP_TASK_GROUP
7693 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7694 {
7695 	struct cgroup_subsys_state *top_css = css;
7696 	struct uclamp_se *uc_parent = NULL;
7697 	struct uclamp_se *uc_se = NULL;
7698 	unsigned int eff[UCLAMP_CNT];
7699 	enum uclamp_id clamp_id;
7700 	unsigned int clamps;
7701 
7702 	css_for_each_descendant_pre(css, top_css) {
7703 		uc_parent = css_tg(css)->parent
7704 			? css_tg(css)->parent->uclamp : NULL;
7705 
7706 		for_each_clamp_id(clamp_id) {
7707 			/* Assume effective clamps matches requested clamps */
7708 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7709 			/* Cap effective clamps with parent's effective clamps */
7710 			if (uc_parent &&
7711 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7712 				eff[clamp_id] = uc_parent[clamp_id].value;
7713 			}
7714 		}
7715 		/* Ensure protection is always capped by limit */
7716 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7717 
7718 		/* Propagate most restrictive effective clamps */
7719 		clamps = 0x0;
7720 		uc_se = css_tg(css)->uclamp;
7721 		for_each_clamp_id(clamp_id) {
7722 			if (eff[clamp_id] == uc_se[clamp_id].value)
7723 				continue;
7724 			uc_se[clamp_id].value = eff[clamp_id];
7725 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7726 			clamps |= (0x1 << clamp_id);
7727 		}
7728 		if (!clamps) {
7729 			css = css_rightmost_descendant(css);
7730 			continue;
7731 		}
7732 
7733 		/* Immediately update descendants RUNNABLE tasks */
7734 		uclamp_update_active_tasks(css, clamps);
7735 	}
7736 }
7737 
7738 /*
7739  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740  * C expression. Since there is no way to convert a macro argument (N) into a
7741  * character constant, use two levels of macros.
7742  */
7743 #define _POW10(exp) ((unsigned int)1e##exp)
7744 #define POW10(exp) _POW10(exp)
7745 
7746 struct uclamp_request {
7747 #define UCLAMP_PERCENT_SHIFT	2
7748 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7749 	s64 percent;
7750 	u64 util;
7751 	int ret;
7752 };
7753 
7754 static inline struct uclamp_request
7755 capacity_from_percent(char *buf)
7756 {
7757 	struct uclamp_request req = {
7758 		.percent = UCLAMP_PERCENT_SCALE,
7759 		.util = SCHED_CAPACITY_SCALE,
7760 		.ret = 0,
7761 	};
7762 
7763 	buf = strim(buf);
7764 	if (strcmp(buf, "max")) {
7765 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7766 					     &req.percent);
7767 		if (req.ret)
7768 			return req;
7769 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7770 			req.ret = -ERANGE;
7771 			return req;
7772 		}
7773 
7774 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7775 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7776 	}
7777 
7778 	return req;
7779 }
7780 
7781 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7782 				size_t nbytes, loff_t off,
7783 				enum uclamp_id clamp_id)
7784 {
7785 	struct uclamp_request req;
7786 	struct task_group *tg;
7787 
7788 	req = capacity_from_percent(buf);
7789 	if (req.ret)
7790 		return req.ret;
7791 
7792 	static_branch_enable(&sched_uclamp_used);
7793 
7794 	mutex_lock(&uclamp_mutex);
7795 	rcu_read_lock();
7796 
7797 	tg = css_tg(of_css(of));
7798 	if (tg->uclamp_req[clamp_id].value != req.util)
7799 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7800 
7801 	/*
7802 	 * Because of not recoverable conversion rounding we keep track of the
7803 	 * exact requested value
7804 	 */
7805 	tg->uclamp_pct[clamp_id] = req.percent;
7806 
7807 	/* Update effective clamps to track the most restrictive value */
7808 	cpu_util_update_eff(of_css(of));
7809 
7810 	rcu_read_unlock();
7811 	mutex_unlock(&uclamp_mutex);
7812 
7813 	return nbytes;
7814 }
7815 
7816 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7817 				    char *buf, size_t nbytes,
7818 				    loff_t off)
7819 {
7820 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7821 }
7822 
7823 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7824 				    char *buf, size_t nbytes,
7825 				    loff_t off)
7826 {
7827 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7828 }
7829 
7830 static inline void cpu_uclamp_print(struct seq_file *sf,
7831 				    enum uclamp_id clamp_id)
7832 {
7833 	struct task_group *tg;
7834 	u64 util_clamp;
7835 	u64 percent;
7836 	u32 rem;
7837 
7838 	rcu_read_lock();
7839 	tg = css_tg(seq_css(sf));
7840 	util_clamp = tg->uclamp_req[clamp_id].value;
7841 	rcu_read_unlock();
7842 
7843 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7844 		seq_puts(sf, "max\n");
7845 		return;
7846 	}
7847 
7848 	percent = tg->uclamp_pct[clamp_id];
7849 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7850 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7851 }
7852 
7853 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7854 {
7855 	cpu_uclamp_print(sf, UCLAMP_MIN);
7856 	return 0;
7857 }
7858 
7859 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7860 {
7861 	cpu_uclamp_print(sf, UCLAMP_MAX);
7862 	return 0;
7863 }
7864 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7865 
7866 #ifdef CONFIG_FAIR_GROUP_SCHED
7867 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7868 				struct cftype *cftype, u64 shareval)
7869 {
7870 	if (shareval > scale_load_down(ULONG_MAX))
7871 		shareval = MAX_SHARES;
7872 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7873 }
7874 
7875 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7876 			       struct cftype *cft)
7877 {
7878 	struct task_group *tg = css_tg(css);
7879 
7880 	return (u64) scale_load_down(tg->shares);
7881 }
7882 
7883 #ifdef CONFIG_CFS_BANDWIDTH
7884 static DEFINE_MUTEX(cfs_constraints_mutex);
7885 
7886 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7887 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7888 /* More than 203 days if BW_SHIFT equals 20. */
7889 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7890 
7891 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892 
7893 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7894 {
7895 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897 
7898 	if (tg == &root_task_group)
7899 		return -EINVAL;
7900 
7901 	/*
7902 	 * Ensure we have at some amount of bandwidth every period.  This is
7903 	 * to prevent reaching a state of large arrears when throttled via
7904 	 * entity_tick() resulting in prolonged exit starvation.
7905 	 */
7906 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907 		return -EINVAL;
7908 
7909 	/*
7910 	 * Likewise, bound things on the otherside by preventing insane quota
7911 	 * periods.  This also allows us to normalize in computing quota
7912 	 * feasibility.
7913 	 */
7914 	if (period > max_cfs_quota_period)
7915 		return -EINVAL;
7916 
7917 	/*
7918 	 * Bound quota to defend quota against overflow during bandwidth shift.
7919 	 */
7920 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7921 		return -EINVAL;
7922 
7923 	/*
7924 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7925 	 * unthrottle_offline_cfs_rqs().
7926 	 */
7927 	get_online_cpus();
7928 	mutex_lock(&cfs_constraints_mutex);
7929 	ret = __cfs_schedulable(tg, period, quota);
7930 	if (ret)
7931 		goto out_unlock;
7932 
7933 	runtime_enabled = quota != RUNTIME_INF;
7934 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7935 	/*
7936 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7937 	 * before making related changes, and on->off must occur afterwards
7938 	 */
7939 	if (runtime_enabled && !runtime_was_enabled)
7940 		cfs_bandwidth_usage_inc();
7941 	raw_spin_lock_irq(&cfs_b->lock);
7942 	cfs_b->period = ns_to_ktime(period);
7943 	cfs_b->quota = quota;
7944 
7945 	__refill_cfs_bandwidth_runtime(cfs_b);
7946 
7947 	/* Restart the period timer (if active) to handle new period expiry: */
7948 	if (runtime_enabled)
7949 		start_cfs_bandwidth(cfs_b);
7950 
7951 	raw_spin_unlock_irq(&cfs_b->lock);
7952 
7953 	for_each_online_cpu(i) {
7954 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7955 		struct rq *rq = cfs_rq->rq;
7956 		struct rq_flags rf;
7957 
7958 		rq_lock_irq(rq, &rf);
7959 		cfs_rq->runtime_enabled = runtime_enabled;
7960 		cfs_rq->runtime_remaining = 0;
7961 
7962 		if (cfs_rq->throttled)
7963 			unthrottle_cfs_rq(cfs_rq);
7964 		rq_unlock_irq(rq, &rf);
7965 	}
7966 	if (runtime_was_enabled && !runtime_enabled)
7967 		cfs_bandwidth_usage_dec();
7968 out_unlock:
7969 	mutex_unlock(&cfs_constraints_mutex);
7970 	put_online_cpus();
7971 
7972 	return ret;
7973 }
7974 
7975 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7976 {
7977 	u64 quota, period;
7978 
7979 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7980 	if (cfs_quota_us < 0)
7981 		quota = RUNTIME_INF;
7982 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7983 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7984 	else
7985 		return -EINVAL;
7986 
7987 	return tg_set_cfs_bandwidth(tg, period, quota);
7988 }
7989 
7990 static long tg_get_cfs_quota(struct task_group *tg)
7991 {
7992 	u64 quota_us;
7993 
7994 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7995 		return -1;
7996 
7997 	quota_us = tg->cfs_bandwidth.quota;
7998 	do_div(quota_us, NSEC_PER_USEC);
7999 
8000 	return quota_us;
8001 }
8002 
8003 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8004 {
8005 	u64 quota, period;
8006 
8007 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8008 		return -EINVAL;
8009 
8010 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8011 	quota = tg->cfs_bandwidth.quota;
8012 
8013 	return tg_set_cfs_bandwidth(tg, period, quota);
8014 }
8015 
8016 static long tg_get_cfs_period(struct task_group *tg)
8017 {
8018 	u64 cfs_period_us;
8019 
8020 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021 	do_div(cfs_period_us, NSEC_PER_USEC);
8022 
8023 	return cfs_period_us;
8024 }
8025 
8026 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027 				  struct cftype *cft)
8028 {
8029 	return tg_get_cfs_quota(css_tg(css));
8030 }
8031 
8032 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033 				   struct cftype *cftype, s64 cfs_quota_us)
8034 {
8035 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036 }
8037 
8038 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039 				   struct cftype *cft)
8040 {
8041 	return tg_get_cfs_period(css_tg(css));
8042 }
8043 
8044 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045 				    struct cftype *cftype, u64 cfs_period_us)
8046 {
8047 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048 }
8049 
8050 struct cfs_schedulable_data {
8051 	struct task_group *tg;
8052 	u64 period, quota;
8053 };
8054 
8055 /*
8056  * normalize group quota/period to be quota/max_period
8057  * note: units are usecs
8058  */
8059 static u64 normalize_cfs_quota(struct task_group *tg,
8060 			       struct cfs_schedulable_data *d)
8061 {
8062 	u64 quota, period;
8063 
8064 	if (tg == d->tg) {
8065 		period = d->period;
8066 		quota = d->quota;
8067 	} else {
8068 		period = tg_get_cfs_period(tg);
8069 		quota = tg_get_cfs_quota(tg);
8070 	}
8071 
8072 	/* note: these should typically be equivalent */
8073 	if (quota == RUNTIME_INF || quota == -1)
8074 		return RUNTIME_INF;
8075 
8076 	return to_ratio(period, quota);
8077 }
8078 
8079 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080 {
8081 	struct cfs_schedulable_data *d = data;
8082 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083 	s64 quota = 0, parent_quota = -1;
8084 
8085 	if (!tg->parent) {
8086 		quota = RUNTIME_INF;
8087 	} else {
8088 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089 
8090 		quota = normalize_cfs_quota(tg, d);
8091 		parent_quota = parent_b->hierarchical_quota;
8092 
8093 		/*
8094 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8095 		 * always take the min.  On cgroup1, only inherit when no
8096 		 * limit is set:
8097 		 */
8098 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8099 			quota = min(quota, parent_quota);
8100 		} else {
8101 			if (quota == RUNTIME_INF)
8102 				quota = parent_quota;
8103 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8104 				return -EINVAL;
8105 		}
8106 	}
8107 	cfs_b->hierarchical_quota = quota;
8108 
8109 	return 0;
8110 }
8111 
8112 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8113 {
8114 	int ret;
8115 	struct cfs_schedulable_data data = {
8116 		.tg = tg,
8117 		.period = period,
8118 		.quota = quota,
8119 	};
8120 
8121 	if (quota != RUNTIME_INF) {
8122 		do_div(data.period, NSEC_PER_USEC);
8123 		do_div(data.quota, NSEC_PER_USEC);
8124 	}
8125 
8126 	rcu_read_lock();
8127 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8128 	rcu_read_unlock();
8129 
8130 	return ret;
8131 }
8132 
8133 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8134 {
8135 	struct task_group *tg = css_tg(seq_css(sf));
8136 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8137 
8138 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8139 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8140 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8141 
8142 	if (schedstat_enabled() && tg != &root_task_group) {
8143 		u64 ws = 0;
8144 		int i;
8145 
8146 		for_each_possible_cpu(i)
8147 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8148 
8149 		seq_printf(sf, "wait_sum %llu\n", ws);
8150 	}
8151 
8152 	return 0;
8153 }
8154 #endif /* CONFIG_CFS_BANDWIDTH */
8155 #endif /* CONFIG_FAIR_GROUP_SCHED */
8156 
8157 #ifdef CONFIG_RT_GROUP_SCHED
8158 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8159 				struct cftype *cft, s64 val)
8160 {
8161 	return sched_group_set_rt_runtime(css_tg(css), val);
8162 }
8163 
8164 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8165 			       struct cftype *cft)
8166 {
8167 	return sched_group_rt_runtime(css_tg(css));
8168 }
8169 
8170 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8171 				    struct cftype *cftype, u64 rt_period_us)
8172 {
8173 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8174 }
8175 
8176 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8177 				   struct cftype *cft)
8178 {
8179 	return sched_group_rt_period(css_tg(css));
8180 }
8181 #endif /* CONFIG_RT_GROUP_SCHED */
8182 
8183 static struct cftype cpu_legacy_files[] = {
8184 #ifdef CONFIG_FAIR_GROUP_SCHED
8185 	{
8186 		.name = "shares",
8187 		.read_u64 = cpu_shares_read_u64,
8188 		.write_u64 = cpu_shares_write_u64,
8189 	},
8190 #endif
8191 #ifdef CONFIG_CFS_BANDWIDTH
8192 	{
8193 		.name = "cfs_quota_us",
8194 		.read_s64 = cpu_cfs_quota_read_s64,
8195 		.write_s64 = cpu_cfs_quota_write_s64,
8196 	},
8197 	{
8198 		.name = "cfs_period_us",
8199 		.read_u64 = cpu_cfs_period_read_u64,
8200 		.write_u64 = cpu_cfs_period_write_u64,
8201 	},
8202 	{
8203 		.name = "stat",
8204 		.seq_show = cpu_cfs_stat_show,
8205 	},
8206 #endif
8207 #ifdef CONFIG_RT_GROUP_SCHED
8208 	{
8209 		.name = "rt_runtime_us",
8210 		.read_s64 = cpu_rt_runtime_read,
8211 		.write_s64 = cpu_rt_runtime_write,
8212 	},
8213 	{
8214 		.name = "rt_period_us",
8215 		.read_u64 = cpu_rt_period_read_uint,
8216 		.write_u64 = cpu_rt_period_write_uint,
8217 	},
8218 #endif
8219 #ifdef CONFIG_UCLAMP_TASK_GROUP
8220 	{
8221 		.name = "uclamp.min",
8222 		.flags = CFTYPE_NOT_ON_ROOT,
8223 		.seq_show = cpu_uclamp_min_show,
8224 		.write = cpu_uclamp_min_write,
8225 	},
8226 	{
8227 		.name = "uclamp.max",
8228 		.flags = CFTYPE_NOT_ON_ROOT,
8229 		.seq_show = cpu_uclamp_max_show,
8230 		.write = cpu_uclamp_max_write,
8231 	},
8232 #endif
8233 	{ }	/* Terminate */
8234 };
8235 
8236 static int cpu_extra_stat_show(struct seq_file *sf,
8237 			       struct cgroup_subsys_state *css)
8238 {
8239 #ifdef CONFIG_CFS_BANDWIDTH
8240 	{
8241 		struct task_group *tg = css_tg(css);
8242 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243 		u64 throttled_usec;
8244 
8245 		throttled_usec = cfs_b->throttled_time;
8246 		do_div(throttled_usec, NSEC_PER_USEC);
8247 
8248 		seq_printf(sf, "nr_periods %d\n"
8249 			   "nr_throttled %d\n"
8250 			   "throttled_usec %llu\n",
8251 			   cfs_b->nr_periods, cfs_b->nr_throttled,
8252 			   throttled_usec);
8253 	}
8254 #endif
8255 	return 0;
8256 }
8257 
8258 #ifdef CONFIG_FAIR_GROUP_SCHED
8259 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8260 			       struct cftype *cft)
8261 {
8262 	struct task_group *tg = css_tg(css);
8263 	u64 weight = scale_load_down(tg->shares);
8264 
8265 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8266 }
8267 
8268 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8269 				struct cftype *cft, u64 weight)
8270 {
8271 	/*
8272 	 * cgroup weight knobs should use the common MIN, DFL and MAX
8273 	 * values which are 1, 100 and 10000 respectively.  While it loses
8274 	 * a bit of range on both ends, it maps pretty well onto the shares
8275 	 * value used by scheduler and the round-trip conversions preserve
8276 	 * the original value over the entire range.
8277 	 */
8278 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8279 		return -ERANGE;
8280 
8281 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8282 
8283 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8284 }
8285 
8286 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8287 				    struct cftype *cft)
8288 {
8289 	unsigned long weight = scale_load_down(css_tg(css)->shares);
8290 	int last_delta = INT_MAX;
8291 	int prio, delta;
8292 
8293 	/* find the closest nice value to the current weight */
8294 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8295 		delta = abs(sched_prio_to_weight[prio] - weight);
8296 		if (delta >= last_delta)
8297 			break;
8298 		last_delta = delta;
8299 	}
8300 
8301 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8302 }
8303 
8304 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8305 				     struct cftype *cft, s64 nice)
8306 {
8307 	unsigned long weight;
8308 	int idx;
8309 
8310 	if (nice < MIN_NICE || nice > MAX_NICE)
8311 		return -ERANGE;
8312 
8313 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8314 	idx = array_index_nospec(idx, 40);
8315 	weight = sched_prio_to_weight[idx];
8316 
8317 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8318 }
8319 #endif
8320 
8321 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8322 						  long period, long quota)
8323 {
8324 	if (quota < 0)
8325 		seq_puts(sf, "max");
8326 	else
8327 		seq_printf(sf, "%ld", quota);
8328 
8329 	seq_printf(sf, " %ld\n", period);
8330 }
8331 
8332 /* caller should put the current value in *@periodp before calling */
8333 static int __maybe_unused cpu_period_quota_parse(char *buf,
8334 						 u64 *periodp, u64 *quotap)
8335 {
8336 	char tok[21];	/* U64_MAX */
8337 
8338 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8339 		return -EINVAL;
8340 
8341 	*periodp *= NSEC_PER_USEC;
8342 
8343 	if (sscanf(tok, "%llu", quotap))
8344 		*quotap *= NSEC_PER_USEC;
8345 	else if (!strcmp(tok, "max"))
8346 		*quotap = RUNTIME_INF;
8347 	else
8348 		return -EINVAL;
8349 
8350 	return 0;
8351 }
8352 
8353 #ifdef CONFIG_CFS_BANDWIDTH
8354 static int cpu_max_show(struct seq_file *sf, void *v)
8355 {
8356 	struct task_group *tg = css_tg(seq_css(sf));
8357 
8358 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8359 	return 0;
8360 }
8361 
8362 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8363 			     char *buf, size_t nbytes, loff_t off)
8364 {
8365 	struct task_group *tg = css_tg(of_css(of));
8366 	u64 period = tg_get_cfs_period(tg);
8367 	u64 quota;
8368 	int ret;
8369 
8370 	ret = cpu_period_quota_parse(buf, &period, &quota);
8371 	if (!ret)
8372 		ret = tg_set_cfs_bandwidth(tg, period, quota);
8373 	return ret ?: nbytes;
8374 }
8375 #endif
8376 
8377 static struct cftype cpu_files[] = {
8378 #ifdef CONFIG_FAIR_GROUP_SCHED
8379 	{
8380 		.name = "weight",
8381 		.flags = CFTYPE_NOT_ON_ROOT,
8382 		.read_u64 = cpu_weight_read_u64,
8383 		.write_u64 = cpu_weight_write_u64,
8384 	},
8385 	{
8386 		.name = "weight.nice",
8387 		.flags = CFTYPE_NOT_ON_ROOT,
8388 		.read_s64 = cpu_weight_nice_read_s64,
8389 		.write_s64 = cpu_weight_nice_write_s64,
8390 	},
8391 #endif
8392 #ifdef CONFIG_CFS_BANDWIDTH
8393 	{
8394 		.name = "max",
8395 		.flags = CFTYPE_NOT_ON_ROOT,
8396 		.seq_show = cpu_max_show,
8397 		.write = cpu_max_write,
8398 	},
8399 #endif
8400 #ifdef CONFIG_UCLAMP_TASK_GROUP
8401 	{
8402 		.name = "uclamp.min",
8403 		.flags = CFTYPE_NOT_ON_ROOT,
8404 		.seq_show = cpu_uclamp_min_show,
8405 		.write = cpu_uclamp_min_write,
8406 	},
8407 	{
8408 		.name = "uclamp.max",
8409 		.flags = CFTYPE_NOT_ON_ROOT,
8410 		.seq_show = cpu_uclamp_max_show,
8411 		.write = cpu_uclamp_max_write,
8412 	},
8413 #endif
8414 	{ }	/* terminate */
8415 };
8416 
8417 struct cgroup_subsys cpu_cgrp_subsys = {
8418 	.css_alloc	= cpu_cgroup_css_alloc,
8419 	.css_online	= cpu_cgroup_css_online,
8420 	.css_released	= cpu_cgroup_css_released,
8421 	.css_free	= cpu_cgroup_css_free,
8422 	.css_extra_stat_show = cpu_extra_stat_show,
8423 	.fork		= cpu_cgroup_fork,
8424 	.can_attach	= cpu_cgroup_can_attach,
8425 	.attach		= cpu_cgroup_attach,
8426 	.legacy_cftypes	= cpu_legacy_files,
8427 	.dfl_cftypes	= cpu_files,
8428 	.early_init	= true,
8429 	.threaded	= true,
8430 };
8431 
8432 #endif	/* CONFIG_CGROUP_SCHED */
8433 
8434 void dump_cpu_task(int cpu)
8435 {
8436 	pr_info("Task dump for CPU %d:\n", cpu);
8437 	sched_show_task(cpu_curr(cpu));
8438 }
8439 
8440 /*
8441  * Nice levels are multiplicative, with a gentle 10% change for every
8442  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444  * that remained on nice 0.
8445  *
8446  * The "10% effect" is relative and cumulative: from _any_ nice level,
8447  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449  * If a task goes up by ~10% and another task goes down by ~10% then
8450  * the relative distance between them is ~25%.)
8451  */
8452 const int sched_prio_to_weight[40] = {
8453  /* -20 */     88761,     71755,     56483,     46273,     36291,
8454  /* -15 */     29154,     23254,     18705,     14949,     11916,
8455  /* -10 */      9548,      7620,      6100,      4904,      3906,
8456  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8457  /*   0 */      1024,       820,       655,       526,       423,
8458  /*   5 */       335,       272,       215,       172,       137,
8459  /*  10 */       110,        87,        70,        56,        45,
8460  /*  15 */        36,        29,        23,        18,        15,
8461 };
8462 
8463 /*
8464  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8465  *
8466  * In cases where the weight does not change often, we can use the
8467  * precalculated inverse to speed up arithmetics by turning divisions
8468  * into multiplications:
8469  */
8470 const u32 sched_prio_to_wmult[40] = {
8471  /* -20 */     48388,     59856,     76040,     92818,    118348,
8472  /* -15 */    147320,    184698,    229616,    287308,    360437,
8473  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8474  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8475  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8476  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8477  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8478  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8479 };
8480 
8481 void call_trace_sched_update_nr_running(struct rq *rq, int count)
8482 {
8483         trace_sched_update_nr_running_tp(rq, count);
8484 }
8485