xref: /openbmc/linux/kernel/sched/core.c (revision 239480ab)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/cpuset.h>
14 #include <linux/delayacct.h>
15 #include <linux/init_task.h>
16 #include <linux/context_tracking.h>
17 #include <linux/rcupdate_wait.h>
18 
19 #include <linux/blkdev.h>
20 #include <linux/kprobes.h>
21 #include <linux/mmu_context.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/prefetch.h>
25 #include <linux/profile.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 
29 #include <asm/switch_to.h>
30 #include <asm/tlb.h>
31 #ifdef CONFIG_PARAVIRT
32 #include <asm/paravirt.h>
33 #endif
34 
35 #include "sched.h"
36 #include "../workqueue_internal.h"
37 #include "../smpboot.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/sched.h>
41 
42 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
43 
44 /*
45  * Debugging: various feature bits
46  */
47 
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 
51 const_debug unsigned int sysctl_sched_features =
52 #include "features.h"
53 	0;
54 
55 #undef SCHED_FEAT
56 
57 /*
58  * Number of tasks to iterate in a single balance run.
59  * Limited because this is done with IRQs disabled.
60  */
61 const_debug unsigned int sysctl_sched_nr_migrate = 32;
62 
63 /*
64  * period over which we average the RT time consumption, measured
65  * in ms.
66  *
67  * default: 1s
68  */
69 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70 
71 /*
72  * period over which we measure -rt task CPU usage in us.
73  * default: 1s
74  */
75 unsigned int sysctl_sched_rt_period = 1000000;
76 
77 __read_mostly int scheduler_running;
78 
79 /*
80  * part of the period that we allow rt tasks to run in us.
81  * default: 0.95s
82  */
83 int sysctl_sched_rt_runtime = 950000;
84 
85 /* CPUs with isolated domains */
86 cpumask_var_t cpu_isolated_map;
87 
88 /*
89  * __task_rq_lock - lock the rq @p resides on.
90  */
91 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	lockdep_assert_held(&p->pi_lock);
97 
98 	for (;;) {
99 		rq = task_rq(p);
100 		raw_spin_lock(&rq->lock);
101 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
102 			rq_pin_lock(rq, rf);
103 			return rq;
104 		}
105 		raw_spin_unlock(&rq->lock);
106 
107 		while (unlikely(task_on_rq_migrating(p)))
108 			cpu_relax();
109 	}
110 }
111 
112 /*
113  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
114  */
115 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
116 	__acquires(p->pi_lock)
117 	__acquires(rq->lock)
118 {
119 	struct rq *rq;
120 
121 	for (;;) {
122 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
123 		rq = task_rq(p);
124 		raw_spin_lock(&rq->lock);
125 		/*
126 		 *	move_queued_task()		task_rq_lock()
127 		 *
128 		 *	ACQUIRE (rq->lock)
129 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
130 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
131 		 *	[S] ->cpu = new_cpu		[L] task_rq()
132 		 *					[L] ->on_rq
133 		 *	RELEASE (rq->lock)
134 		 *
135 		 * If we observe the old cpu in task_rq_lock, the acquire of
136 		 * the old rq->lock will fully serialize against the stores.
137 		 *
138 		 * If we observe the new CPU in task_rq_lock, the acquire will
139 		 * pair with the WMB to ensure we must then also see migrating.
140 		 */
141 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
142 			rq_pin_lock(rq, rf);
143 			return rq;
144 		}
145 		raw_spin_unlock(&rq->lock);
146 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
147 
148 		while (unlikely(task_on_rq_migrating(p)))
149 			cpu_relax();
150 	}
151 }
152 
153 /*
154  * RQ-clock updating methods:
155  */
156 
157 static void update_rq_clock_task(struct rq *rq, s64 delta)
158 {
159 /*
160  * In theory, the compile should just see 0 here, and optimize out the call
161  * to sched_rt_avg_update. But I don't trust it...
162  */
163 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
164 	s64 steal = 0, irq_delta = 0;
165 #endif
166 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
167 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
168 
169 	/*
170 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
171 	 * this case when a previous update_rq_clock() happened inside a
172 	 * {soft,}irq region.
173 	 *
174 	 * When this happens, we stop ->clock_task and only update the
175 	 * prev_irq_time stamp to account for the part that fit, so that a next
176 	 * update will consume the rest. This ensures ->clock_task is
177 	 * monotonic.
178 	 *
179 	 * It does however cause some slight miss-attribution of {soft,}irq
180 	 * time, a more accurate solution would be to update the irq_time using
181 	 * the current rq->clock timestamp, except that would require using
182 	 * atomic ops.
183 	 */
184 	if (irq_delta > delta)
185 		irq_delta = delta;
186 
187 	rq->prev_irq_time += irq_delta;
188 	delta -= irq_delta;
189 #endif
190 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
191 	if (static_key_false((&paravirt_steal_rq_enabled))) {
192 		steal = paravirt_steal_clock(cpu_of(rq));
193 		steal -= rq->prev_steal_time_rq;
194 
195 		if (unlikely(steal > delta))
196 			steal = delta;
197 
198 		rq->prev_steal_time_rq += steal;
199 		delta -= steal;
200 	}
201 #endif
202 
203 	rq->clock_task += delta;
204 
205 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
206 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
207 		sched_rt_avg_update(rq, irq_delta + steal);
208 #endif
209 }
210 
211 void update_rq_clock(struct rq *rq)
212 {
213 	s64 delta;
214 
215 	lockdep_assert_held(&rq->lock);
216 
217 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
218 		return;
219 
220 #ifdef CONFIG_SCHED_DEBUG
221 	if (sched_feat(WARN_DOUBLE_CLOCK))
222 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
223 	rq->clock_update_flags |= RQCF_UPDATED;
224 #endif
225 
226 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
227 	if (delta < 0)
228 		return;
229 	rq->clock += delta;
230 	update_rq_clock_task(rq, delta);
231 }
232 
233 
234 #ifdef CONFIG_SCHED_HRTICK
235 /*
236  * Use HR-timers to deliver accurate preemption points.
237  */
238 
239 static void hrtick_clear(struct rq *rq)
240 {
241 	if (hrtimer_active(&rq->hrtick_timer))
242 		hrtimer_cancel(&rq->hrtick_timer);
243 }
244 
245 /*
246  * High-resolution timer tick.
247  * Runs from hardirq context with interrupts disabled.
248  */
249 static enum hrtimer_restart hrtick(struct hrtimer *timer)
250 {
251 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
252 	struct rq_flags rf;
253 
254 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
255 
256 	rq_lock(rq, &rf);
257 	update_rq_clock(rq);
258 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
259 	rq_unlock(rq, &rf);
260 
261 	return HRTIMER_NORESTART;
262 }
263 
264 #ifdef CONFIG_SMP
265 
266 static void __hrtick_restart(struct rq *rq)
267 {
268 	struct hrtimer *timer = &rq->hrtick_timer;
269 
270 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
271 }
272 
273 /*
274  * called from hardirq (IPI) context
275  */
276 static void __hrtick_start(void *arg)
277 {
278 	struct rq *rq = arg;
279 	struct rq_flags rf;
280 
281 	rq_lock(rq, &rf);
282 	__hrtick_restart(rq);
283 	rq->hrtick_csd_pending = 0;
284 	rq_unlock(rq, &rf);
285 }
286 
287 /*
288  * Called to set the hrtick timer state.
289  *
290  * called with rq->lock held and irqs disabled
291  */
292 void hrtick_start(struct rq *rq, u64 delay)
293 {
294 	struct hrtimer *timer = &rq->hrtick_timer;
295 	ktime_t time;
296 	s64 delta;
297 
298 	/*
299 	 * Don't schedule slices shorter than 10000ns, that just
300 	 * doesn't make sense and can cause timer DoS.
301 	 */
302 	delta = max_t(s64, delay, 10000LL);
303 	time = ktime_add_ns(timer->base->get_time(), delta);
304 
305 	hrtimer_set_expires(timer, time);
306 
307 	if (rq == this_rq()) {
308 		__hrtick_restart(rq);
309 	} else if (!rq->hrtick_csd_pending) {
310 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
311 		rq->hrtick_csd_pending = 1;
312 	}
313 }
314 
315 #else
316 /*
317  * Called to set the hrtick timer state.
318  *
319  * called with rq->lock held and irqs disabled
320  */
321 void hrtick_start(struct rq *rq, u64 delay)
322 {
323 	/*
324 	 * Don't schedule slices shorter than 10000ns, that just
325 	 * doesn't make sense. Rely on vruntime for fairness.
326 	 */
327 	delay = max_t(u64, delay, 10000LL);
328 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
329 		      HRTIMER_MODE_REL_PINNED);
330 }
331 #endif /* CONFIG_SMP */
332 
333 static void init_rq_hrtick(struct rq *rq)
334 {
335 #ifdef CONFIG_SMP
336 	rq->hrtick_csd_pending = 0;
337 
338 	rq->hrtick_csd.flags = 0;
339 	rq->hrtick_csd.func = __hrtick_start;
340 	rq->hrtick_csd.info = rq;
341 #endif
342 
343 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
344 	rq->hrtick_timer.function = hrtick;
345 }
346 #else	/* CONFIG_SCHED_HRTICK */
347 static inline void hrtick_clear(struct rq *rq)
348 {
349 }
350 
351 static inline void init_rq_hrtick(struct rq *rq)
352 {
353 }
354 #endif	/* CONFIG_SCHED_HRTICK */
355 
356 /*
357  * cmpxchg based fetch_or, macro so it works for different integer types
358  */
359 #define fetch_or(ptr, mask)						\
360 	({								\
361 		typeof(ptr) _ptr = (ptr);				\
362 		typeof(mask) _mask = (mask);				\
363 		typeof(*_ptr) _old, _val = *_ptr;			\
364 									\
365 		for (;;) {						\
366 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
367 			if (_old == _val)				\
368 				break;					\
369 			_val = _old;					\
370 		}							\
371 	_old;								\
372 })
373 
374 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
375 /*
376  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
377  * this avoids any races wrt polling state changes and thereby avoids
378  * spurious IPIs.
379  */
380 static bool set_nr_and_not_polling(struct task_struct *p)
381 {
382 	struct thread_info *ti = task_thread_info(p);
383 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
384 }
385 
386 /*
387  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
388  *
389  * If this returns true, then the idle task promises to call
390  * sched_ttwu_pending() and reschedule soon.
391  */
392 static bool set_nr_if_polling(struct task_struct *p)
393 {
394 	struct thread_info *ti = task_thread_info(p);
395 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
396 
397 	for (;;) {
398 		if (!(val & _TIF_POLLING_NRFLAG))
399 			return false;
400 		if (val & _TIF_NEED_RESCHED)
401 			return true;
402 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
403 		if (old == val)
404 			break;
405 		val = old;
406 	}
407 	return true;
408 }
409 
410 #else
411 static bool set_nr_and_not_polling(struct task_struct *p)
412 {
413 	set_tsk_need_resched(p);
414 	return true;
415 }
416 
417 #ifdef CONFIG_SMP
418 static bool set_nr_if_polling(struct task_struct *p)
419 {
420 	return false;
421 }
422 #endif
423 #endif
424 
425 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
426 {
427 	struct wake_q_node *node = &task->wake_q;
428 
429 	/*
430 	 * Atomically grab the task, if ->wake_q is !nil already it means
431 	 * its already queued (either by us or someone else) and will get the
432 	 * wakeup due to that.
433 	 *
434 	 * This cmpxchg() implies a full barrier, which pairs with the write
435 	 * barrier implied by the wakeup in wake_up_q().
436 	 */
437 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
438 		return;
439 
440 	get_task_struct(task);
441 
442 	/*
443 	 * The head is context local, there can be no concurrency.
444 	 */
445 	*head->lastp = node;
446 	head->lastp = &node->next;
447 }
448 
449 void wake_up_q(struct wake_q_head *head)
450 {
451 	struct wake_q_node *node = head->first;
452 
453 	while (node != WAKE_Q_TAIL) {
454 		struct task_struct *task;
455 
456 		task = container_of(node, struct task_struct, wake_q);
457 		BUG_ON(!task);
458 		/* Task can safely be re-inserted now: */
459 		node = node->next;
460 		task->wake_q.next = NULL;
461 
462 		/*
463 		 * wake_up_process() implies a wmb() to pair with the queueing
464 		 * in wake_q_add() so as not to miss wakeups.
465 		 */
466 		wake_up_process(task);
467 		put_task_struct(task);
468 	}
469 }
470 
471 /*
472  * resched_curr - mark rq's current task 'to be rescheduled now'.
473  *
474  * On UP this means the setting of the need_resched flag, on SMP it
475  * might also involve a cross-CPU call to trigger the scheduler on
476  * the target CPU.
477  */
478 void resched_curr(struct rq *rq)
479 {
480 	struct task_struct *curr = rq->curr;
481 	int cpu;
482 
483 	lockdep_assert_held(&rq->lock);
484 
485 	if (test_tsk_need_resched(curr))
486 		return;
487 
488 	cpu = cpu_of(rq);
489 
490 	if (cpu == smp_processor_id()) {
491 		set_tsk_need_resched(curr);
492 		set_preempt_need_resched();
493 		return;
494 	}
495 
496 	if (set_nr_and_not_polling(curr))
497 		smp_send_reschedule(cpu);
498 	else
499 		trace_sched_wake_idle_without_ipi(cpu);
500 }
501 
502 void resched_cpu(int cpu)
503 {
504 	struct rq *rq = cpu_rq(cpu);
505 	unsigned long flags;
506 
507 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
508 		return;
509 	resched_curr(rq);
510 	raw_spin_unlock_irqrestore(&rq->lock, flags);
511 }
512 
513 #ifdef CONFIG_SMP
514 #ifdef CONFIG_NO_HZ_COMMON
515 /*
516  * In the semi idle case, use the nearest busy CPU for migrating timers
517  * from an idle CPU.  This is good for power-savings.
518  *
519  * We don't do similar optimization for completely idle system, as
520  * selecting an idle CPU will add more delays to the timers than intended
521  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
522  */
523 int get_nohz_timer_target(void)
524 {
525 	int i, cpu = smp_processor_id();
526 	struct sched_domain *sd;
527 
528 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
529 		return cpu;
530 
531 	rcu_read_lock();
532 	for_each_domain(cpu, sd) {
533 		for_each_cpu(i, sched_domain_span(sd)) {
534 			if (cpu == i)
535 				continue;
536 
537 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
538 				cpu = i;
539 				goto unlock;
540 			}
541 		}
542 	}
543 
544 	if (!is_housekeeping_cpu(cpu))
545 		cpu = housekeeping_any_cpu();
546 unlock:
547 	rcu_read_unlock();
548 	return cpu;
549 }
550 
551 /*
552  * When add_timer_on() enqueues a timer into the timer wheel of an
553  * idle CPU then this timer might expire before the next timer event
554  * which is scheduled to wake up that CPU. In case of a completely
555  * idle system the next event might even be infinite time into the
556  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
557  * leaves the inner idle loop so the newly added timer is taken into
558  * account when the CPU goes back to idle and evaluates the timer
559  * wheel for the next timer event.
560  */
561 static void wake_up_idle_cpu(int cpu)
562 {
563 	struct rq *rq = cpu_rq(cpu);
564 
565 	if (cpu == smp_processor_id())
566 		return;
567 
568 	if (set_nr_and_not_polling(rq->idle))
569 		smp_send_reschedule(cpu);
570 	else
571 		trace_sched_wake_idle_without_ipi(cpu);
572 }
573 
574 static bool wake_up_full_nohz_cpu(int cpu)
575 {
576 	/*
577 	 * We just need the target to call irq_exit() and re-evaluate
578 	 * the next tick. The nohz full kick at least implies that.
579 	 * If needed we can still optimize that later with an
580 	 * empty IRQ.
581 	 */
582 	if (cpu_is_offline(cpu))
583 		return true;  /* Don't try to wake offline CPUs. */
584 	if (tick_nohz_full_cpu(cpu)) {
585 		if (cpu != smp_processor_id() ||
586 		    tick_nohz_tick_stopped())
587 			tick_nohz_full_kick_cpu(cpu);
588 		return true;
589 	}
590 
591 	return false;
592 }
593 
594 /*
595  * Wake up the specified CPU.  If the CPU is going offline, it is the
596  * caller's responsibility to deal with the lost wakeup, for example,
597  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
598  */
599 void wake_up_nohz_cpu(int cpu)
600 {
601 	if (!wake_up_full_nohz_cpu(cpu))
602 		wake_up_idle_cpu(cpu);
603 }
604 
605 static inline bool got_nohz_idle_kick(void)
606 {
607 	int cpu = smp_processor_id();
608 
609 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
610 		return false;
611 
612 	if (idle_cpu(cpu) && !need_resched())
613 		return true;
614 
615 	/*
616 	 * We can't run Idle Load Balance on this CPU for this time so we
617 	 * cancel it and clear NOHZ_BALANCE_KICK
618 	 */
619 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
620 	return false;
621 }
622 
623 #else /* CONFIG_NO_HZ_COMMON */
624 
625 static inline bool got_nohz_idle_kick(void)
626 {
627 	return false;
628 }
629 
630 #endif /* CONFIG_NO_HZ_COMMON */
631 
632 #ifdef CONFIG_NO_HZ_FULL
633 bool sched_can_stop_tick(struct rq *rq)
634 {
635 	int fifo_nr_running;
636 
637 	/* Deadline tasks, even if single, need the tick */
638 	if (rq->dl.dl_nr_running)
639 		return false;
640 
641 	/*
642 	 * If there are more than one RR tasks, we need the tick to effect the
643 	 * actual RR behaviour.
644 	 */
645 	if (rq->rt.rr_nr_running) {
646 		if (rq->rt.rr_nr_running == 1)
647 			return true;
648 		else
649 			return false;
650 	}
651 
652 	/*
653 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
654 	 * forced preemption between FIFO tasks.
655 	 */
656 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
657 	if (fifo_nr_running)
658 		return true;
659 
660 	/*
661 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
662 	 * if there's more than one we need the tick for involuntary
663 	 * preemption.
664 	 */
665 	if (rq->nr_running > 1)
666 		return false;
667 
668 	return true;
669 }
670 #endif /* CONFIG_NO_HZ_FULL */
671 
672 void sched_avg_update(struct rq *rq)
673 {
674 	s64 period = sched_avg_period();
675 
676 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
677 		/*
678 		 * Inline assembly required to prevent the compiler
679 		 * optimising this loop into a divmod call.
680 		 * See __iter_div_u64_rem() for another example of this.
681 		 */
682 		asm("" : "+rm" (rq->age_stamp));
683 		rq->age_stamp += period;
684 		rq->rt_avg /= 2;
685 	}
686 }
687 
688 #endif /* CONFIG_SMP */
689 
690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692 /*
693  * Iterate task_group tree rooted at *from, calling @down when first entering a
694  * node and @up when leaving it for the final time.
695  *
696  * Caller must hold rcu_lock or sufficient equivalent.
697  */
698 int walk_tg_tree_from(struct task_group *from,
699 			     tg_visitor down, tg_visitor up, void *data)
700 {
701 	struct task_group *parent, *child;
702 	int ret;
703 
704 	parent = from;
705 
706 down:
707 	ret = (*down)(parent, data);
708 	if (ret)
709 		goto out;
710 	list_for_each_entry_rcu(child, &parent->children, siblings) {
711 		parent = child;
712 		goto down;
713 
714 up:
715 		continue;
716 	}
717 	ret = (*up)(parent, data);
718 	if (ret || parent == from)
719 		goto out;
720 
721 	child = parent;
722 	parent = parent->parent;
723 	if (parent)
724 		goto up;
725 out:
726 	return ret;
727 }
728 
729 int tg_nop(struct task_group *tg, void *data)
730 {
731 	return 0;
732 }
733 #endif
734 
735 static void set_load_weight(struct task_struct *p)
736 {
737 	int prio = p->static_prio - MAX_RT_PRIO;
738 	struct load_weight *load = &p->se.load;
739 
740 	/*
741 	 * SCHED_IDLE tasks get minimal weight:
742 	 */
743 	if (idle_policy(p->policy)) {
744 		load->weight = scale_load(WEIGHT_IDLEPRIO);
745 		load->inv_weight = WMULT_IDLEPRIO;
746 		return;
747 	}
748 
749 	load->weight = scale_load(sched_prio_to_weight[prio]);
750 	load->inv_weight = sched_prio_to_wmult[prio];
751 }
752 
753 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754 {
755 	if (!(flags & ENQUEUE_NOCLOCK))
756 		update_rq_clock(rq);
757 
758 	if (!(flags & ENQUEUE_RESTORE))
759 		sched_info_queued(rq, p);
760 
761 	p->sched_class->enqueue_task(rq, p, flags);
762 }
763 
764 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 	if (!(flags & DEQUEUE_NOCLOCK))
767 		update_rq_clock(rq);
768 
769 	if (!(flags & DEQUEUE_SAVE))
770 		sched_info_dequeued(rq, p);
771 
772 	p->sched_class->dequeue_task(rq, p, flags);
773 }
774 
775 void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 	if (task_contributes_to_load(p))
778 		rq->nr_uninterruptible--;
779 
780 	enqueue_task(rq, p, flags);
781 }
782 
783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 {
785 	if (task_contributes_to_load(p))
786 		rq->nr_uninterruptible++;
787 
788 	dequeue_task(rq, p, flags);
789 }
790 
791 void sched_set_stop_task(int cpu, struct task_struct *stop)
792 {
793 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
794 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
795 
796 	if (stop) {
797 		/*
798 		 * Make it appear like a SCHED_FIFO task, its something
799 		 * userspace knows about and won't get confused about.
800 		 *
801 		 * Also, it will make PI more or less work without too
802 		 * much confusion -- but then, stop work should not
803 		 * rely on PI working anyway.
804 		 */
805 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
806 
807 		stop->sched_class = &stop_sched_class;
808 	}
809 
810 	cpu_rq(cpu)->stop = stop;
811 
812 	if (old_stop) {
813 		/*
814 		 * Reset it back to a normal scheduling class so that
815 		 * it can die in pieces.
816 		 */
817 		old_stop->sched_class = &rt_sched_class;
818 	}
819 }
820 
821 /*
822  * __normal_prio - return the priority that is based on the static prio
823  */
824 static inline int __normal_prio(struct task_struct *p)
825 {
826 	return p->static_prio;
827 }
828 
829 /*
830  * Calculate the expected normal priority: i.e. priority
831  * without taking RT-inheritance into account. Might be
832  * boosted by interactivity modifiers. Changes upon fork,
833  * setprio syscalls, and whenever the interactivity
834  * estimator recalculates.
835  */
836 static inline int normal_prio(struct task_struct *p)
837 {
838 	int prio;
839 
840 	if (task_has_dl_policy(p))
841 		prio = MAX_DL_PRIO-1;
842 	else if (task_has_rt_policy(p))
843 		prio = MAX_RT_PRIO-1 - p->rt_priority;
844 	else
845 		prio = __normal_prio(p);
846 	return prio;
847 }
848 
849 /*
850  * Calculate the current priority, i.e. the priority
851  * taken into account by the scheduler. This value might
852  * be boosted by RT tasks, or might be boosted by
853  * interactivity modifiers. Will be RT if the task got
854  * RT-boosted. If not then it returns p->normal_prio.
855  */
856 static int effective_prio(struct task_struct *p)
857 {
858 	p->normal_prio = normal_prio(p);
859 	/*
860 	 * If we are RT tasks or we were boosted to RT priority,
861 	 * keep the priority unchanged. Otherwise, update priority
862 	 * to the normal priority:
863 	 */
864 	if (!rt_prio(p->prio))
865 		return p->normal_prio;
866 	return p->prio;
867 }
868 
869 /**
870  * task_curr - is this task currently executing on a CPU?
871  * @p: the task in question.
872  *
873  * Return: 1 if the task is currently executing. 0 otherwise.
874  */
875 inline int task_curr(const struct task_struct *p)
876 {
877 	return cpu_curr(task_cpu(p)) == p;
878 }
879 
880 /*
881  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
882  * use the balance_callback list if you want balancing.
883  *
884  * this means any call to check_class_changed() must be followed by a call to
885  * balance_callback().
886  */
887 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
888 				       const struct sched_class *prev_class,
889 				       int oldprio)
890 {
891 	if (prev_class != p->sched_class) {
892 		if (prev_class->switched_from)
893 			prev_class->switched_from(rq, p);
894 
895 		p->sched_class->switched_to(rq, p);
896 	} else if (oldprio != p->prio || dl_task(p))
897 		p->sched_class->prio_changed(rq, p, oldprio);
898 }
899 
900 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 {
902 	const struct sched_class *class;
903 
904 	if (p->sched_class == rq->curr->sched_class) {
905 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 	} else {
907 		for_each_class(class) {
908 			if (class == rq->curr->sched_class)
909 				break;
910 			if (class == p->sched_class) {
911 				resched_curr(rq);
912 				break;
913 			}
914 		}
915 	}
916 
917 	/*
918 	 * A queue event has occurred, and we're going to schedule.  In
919 	 * this case, we can save a useless back to back clock update.
920 	 */
921 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
922 		rq_clock_skip_update(rq, true);
923 }
924 
925 #ifdef CONFIG_SMP
926 /*
927  * This is how migration works:
928  *
929  * 1) we invoke migration_cpu_stop() on the target CPU using
930  *    stop_one_cpu().
931  * 2) stopper starts to run (implicitly forcing the migrated thread
932  *    off the CPU)
933  * 3) it checks whether the migrated task is still in the wrong runqueue.
934  * 4) if it's in the wrong runqueue then the migration thread removes
935  *    it and puts it into the right queue.
936  * 5) stopper completes and stop_one_cpu() returns and the migration
937  *    is done.
938  */
939 
940 /*
941  * move_queued_task - move a queued task to new rq.
942  *
943  * Returns (locked) new rq. Old rq's lock is released.
944  */
945 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
946 				   struct task_struct *p, int new_cpu)
947 {
948 	lockdep_assert_held(&rq->lock);
949 
950 	p->on_rq = TASK_ON_RQ_MIGRATING;
951 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
952 	set_task_cpu(p, new_cpu);
953 	rq_unlock(rq, rf);
954 
955 	rq = cpu_rq(new_cpu);
956 
957 	rq_lock(rq, rf);
958 	BUG_ON(task_cpu(p) != new_cpu);
959 	enqueue_task(rq, p, 0);
960 	p->on_rq = TASK_ON_RQ_QUEUED;
961 	check_preempt_curr(rq, p, 0);
962 
963 	return rq;
964 }
965 
966 struct migration_arg {
967 	struct task_struct *task;
968 	int dest_cpu;
969 };
970 
971 /*
972  * Move (not current) task off this CPU, onto the destination CPU. We're doing
973  * this because either it can't run here any more (set_cpus_allowed()
974  * away from this CPU, or CPU going down), or because we're
975  * attempting to rebalance this task on exec (sched_exec).
976  *
977  * So we race with normal scheduler movements, but that's OK, as long
978  * as the task is no longer on this CPU.
979  */
980 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
981 				 struct task_struct *p, int dest_cpu)
982 {
983 	if (unlikely(!cpu_active(dest_cpu)))
984 		return rq;
985 
986 	/* Affinity changed (again). */
987 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
988 		return rq;
989 
990 	update_rq_clock(rq);
991 	rq = move_queued_task(rq, rf, p, dest_cpu);
992 
993 	return rq;
994 }
995 
996 /*
997  * migration_cpu_stop - this will be executed by a highprio stopper thread
998  * and performs thread migration by bumping thread off CPU then
999  * 'pushing' onto another runqueue.
1000  */
1001 static int migration_cpu_stop(void *data)
1002 {
1003 	struct migration_arg *arg = data;
1004 	struct task_struct *p = arg->task;
1005 	struct rq *rq = this_rq();
1006 	struct rq_flags rf;
1007 
1008 	/*
1009 	 * The original target CPU might have gone down and we might
1010 	 * be on another CPU but it doesn't matter.
1011 	 */
1012 	local_irq_disable();
1013 	/*
1014 	 * We need to explicitly wake pending tasks before running
1015 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1016 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1017 	 */
1018 	sched_ttwu_pending();
1019 
1020 	raw_spin_lock(&p->pi_lock);
1021 	rq_lock(rq, &rf);
1022 	/*
1023 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1024 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1025 	 * we're holding p->pi_lock.
1026 	 */
1027 	if (task_rq(p) == rq) {
1028 		if (task_on_rq_queued(p))
1029 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1030 		else
1031 			p->wake_cpu = arg->dest_cpu;
1032 	}
1033 	rq_unlock(rq, &rf);
1034 	raw_spin_unlock(&p->pi_lock);
1035 
1036 	local_irq_enable();
1037 	return 0;
1038 }
1039 
1040 /*
1041  * sched_class::set_cpus_allowed must do the below, but is not required to
1042  * actually call this function.
1043  */
1044 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1045 {
1046 	cpumask_copy(&p->cpus_allowed, new_mask);
1047 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1048 }
1049 
1050 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1051 {
1052 	struct rq *rq = task_rq(p);
1053 	bool queued, running;
1054 
1055 	lockdep_assert_held(&p->pi_lock);
1056 
1057 	queued = task_on_rq_queued(p);
1058 	running = task_current(rq, p);
1059 
1060 	if (queued) {
1061 		/*
1062 		 * Because __kthread_bind() calls this on blocked tasks without
1063 		 * holding rq->lock.
1064 		 */
1065 		lockdep_assert_held(&rq->lock);
1066 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1067 	}
1068 	if (running)
1069 		put_prev_task(rq, p);
1070 
1071 	p->sched_class->set_cpus_allowed(p, new_mask);
1072 
1073 	if (queued)
1074 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1075 	if (running)
1076 		set_curr_task(rq, p);
1077 }
1078 
1079 /*
1080  * Change a given task's CPU affinity. Migrate the thread to a
1081  * proper CPU and schedule it away if the CPU it's executing on
1082  * is removed from the allowed bitmask.
1083  *
1084  * NOTE: the caller must have a valid reference to the task, the
1085  * task must not exit() & deallocate itself prematurely. The
1086  * call is not atomic; no spinlocks may be held.
1087  */
1088 static int __set_cpus_allowed_ptr(struct task_struct *p,
1089 				  const struct cpumask *new_mask, bool check)
1090 {
1091 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1092 	unsigned int dest_cpu;
1093 	struct rq_flags rf;
1094 	struct rq *rq;
1095 	int ret = 0;
1096 
1097 	rq = task_rq_lock(p, &rf);
1098 	update_rq_clock(rq);
1099 
1100 	if (p->flags & PF_KTHREAD) {
1101 		/*
1102 		 * Kernel threads are allowed on online && !active CPUs
1103 		 */
1104 		cpu_valid_mask = cpu_online_mask;
1105 	}
1106 
1107 	/*
1108 	 * Must re-check here, to close a race against __kthread_bind(),
1109 	 * sched_setaffinity() is not guaranteed to observe the flag.
1110 	 */
1111 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1112 		ret = -EINVAL;
1113 		goto out;
1114 	}
1115 
1116 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1117 		goto out;
1118 
1119 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1120 		ret = -EINVAL;
1121 		goto out;
1122 	}
1123 
1124 	do_set_cpus_allowed(p, new_mask);
1125 
1126 	if (p->flags & PF_KTHREAD) {
1127 		/*
1128 		 * For kernel threads that do indeed end up on online &&
1129 		 * !active we want to ensure they are strict per-CPU threads.
1130 		 */
1131 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1132 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1133 			p->nr_cpus_allowed != 1);
1134 	}
1135 
1136 	/* Can the task run on the task's current CPU? If so, we're done */
1137 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1138 		goto out;
1139 
1140 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1141 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1142 		struct migration_arg arg = { p, dest_cpu };
1143 		/* Need help from migration thread: drop lock and wait. */
1144 		task_rq_unlock(rq, p, &rf);
1145 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1146 		tlb_migrate_finish(p->mm);
1147 		return 0;
1148 	} else if (task_on_rq_queued(p)) {
1149 		/*
1150 		 * OK, since we're going to drop the lock immediately
1151 		 * afterwards anyway.
1152 		 */
1153 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1154 	}
1155 out:
1156 	task_rq_unlock(rq, p, &rf);
1157 
1158 	return ret;
1159 }
1160 
1161 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 	return __set_cpus_allowed_ptr(p, new_mask, false);
1164 }
1165 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1166 
1167 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1168 {
1169 #ifdef CONFIG_SCHED_DEBUG
1170 	/*
1171 	 * We should never call set_task_cpu() on a blocked task,
1172 	 * ttwu() will sort out the placement.
1173 	 */
1174 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1175 			!p->on_rq);
1176 
1177 	/*
1178 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1179 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1180 	 * time relying on p->on_rq.
1181 	 */
1182 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1183 		     p->sched_class == &fair_sched_class &&
1184 		     (p->on_rq && !task_on_rq_migrating(p)));
1185 
1186 #ifdef CONFIG_LOCKDEP
1187 	/*
1188 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1189 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1190 	 *
1191 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1192 	 * see task_group().
1193 	 *
1194 	 * Furthermore, all task_rq users should acquire both locks, see
1195 	 * task_rq_lock().
1196 	 */
1197 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1198 				      lockdep_is_held(&task_rq(p)->lock)));
1199 #endif
1200 #endif
1201 
1202 	trace_sched_migrate_task(p, new_cpu);
1203 
1204 	if (task_cpu(p) != new_cpu) {
1205 		if (p->sched_class->migrate_task_rq)
1206 			p->sched_class->migrate_task_rq(p);
1207 		p->se.nr_migrations++;
1208 		perf_event_task_migrate(p);
1209 	}
1210 
1211 	__set_task_cpu(p, new_cpu);
1212 }
1213 
1214 static void __migrate_swap_task(struct task_struct *p, int cpu)
1215 {
1216 	if (task_on_rq_queued(p)) {
1217 		struct rq *src_rq, *dst_rq;
1218 		struct rq_flags srf, drf;
1219 
1220 		src_rq = task_rq(p);
1221 		dst_rq = cpu_rq(cpu);
1222 
1223 		rq_pin_lock(src_rq, &srf);
1224 		rq_pin_lock(dst_rq, &drf);
1225 
1226 		p->on_rq = TASK_ON_RQ_MIGRATING;
1227 		deactivate_task(src_rq, p, 0);
1228 		set_task_cpu(p, cpu);
1229 		activate_task(dst_rq, p, 0);
1230 		p->on_rq = TASK_ON_RQ_QUEUED;
1231 		check_preempt_curr(dst_rq, p, 0);
1232 
1233 		rq_unpin_lock(dst_rq, &drf);
1234 		rq_unpin_lock(src_rq, &srf);
1235 
1236 	} else {
1237 		/*
1238 		 * Task isn't running anymore; make it appear like we migrated
1239 		 * it before it went to sleep. This means on wakeup we make the
1240 		 * previous CPU our target instead of where it really is.
1241 		 */
1242 		p->wake_cpu = cpu;
1243 	}
1244 }
1245 
1246 struct migration_swap_arg {
1247 	struct task_struct *src_task, *dst_task;
1248 	int src_cpu, dst_cpu;
1249 };
1250 
1251 static int migrate_swap_stop(void *data)
1252 {
1253 	struct migration_swap_arg *arg = data;
1254 	struct rq *src_rq, *dst_rq;
1255 	int ret = -EAGAIN;
1256 
1257 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1258 		return -EAGAIN;
1259 
1260 	src_rq = cpu_rq(arg->src_cpu);
1261 	dst_rq = cpu_rq(arg->dst_cpu);
1262 
1263 	double_raw_lock(&arg->src_task->pi_lock,
1264 			&arg->dst_task->pi_lock);
1265 	double_rq_lock(src_rq, dst_rq);
1266 
1267 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1268 		goto unlock;
1269 
1270 	if (task_cpu(arg->src_task) != arg->src_cpu)
1271 		goto unlock;
1272 
1273 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1274 		goto unlock;
1275 
1276 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1277 		goto unlock;
1278 
1279 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1280 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1281 
1282 	ret = 0;
1283 
1284 unlock:
1285 	double_rq_unlock(src_rq, dst_rq);
1286 	raw_spin_unlock(&arg->dst_task->pi_lock);
1287 	raw_spin_unlock(&arg->src_task->pi_lock);
1288 
1289 	return ret;
1290 }
1291 
1292 /*
1293  * Cross migrate two tasks
1294  */
1295 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1296 {
1297 	struct migration_swap_arg arg;
1298 	int ret = -EINVAL;
1299 
1300 	arg = (struct migration_swap_arg){
1301 		.src_task = cur,
1302 		.src_cpu = task_cpu(cur),
1303 		.dst_task = p,
1304 		.dst_cpu = task_cpu(p),
1305 	};
1306 
1307 	if (arg.src_cpu == arg.dst_cpu)
1308 		goto out;
1309 
1310 	/*
1311 	 * These three tests are all lockless; this is OK since all of them
1312 	 * will be re-checked with proper locks held further down the line.
1313 	 */
1314 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1315 		goto out;
1316 
1317 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1318 		goto out;
1319 
1320 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1321 		goto out;
1322 
1323 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1324 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1325 
1326 out:
1327 	return ret;
1328 }
1329 
1330 /*
1331  * wait_task_inactive - wait for a thread to unschedule.
1332  *
1333  * If @match_state is nonzero, it's the @p->state value just checked and
1334  * not expected to change.  If it changes, i.e. @p might have woken up,
1335  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1336  * we return a positive number (its total switch count).  If a second call
1337  * a short while later returns the same number, the caller can be sure that
1338  * @p has remained unscheduled the whole time.
1339  *
1340  * The caller must ensure that the task *will* unschedule sometime soon,
1341  * else this function might spin for a *long* time. This function can't
1342  * be called with interrupts off, or it may introduce deadlock with
1343  * smp_call_function() if an IPI is sent by the same process we are
1344  * waiting to become inactive.
1345  */
1346 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1347 {
1348 	int running, queued;
1349 	struct rq_flags rf;
1350 	unsigned long ncsw;
1351 	struct rq *rq;
1352 
1353 	for (;;) {
1354 		/*
1355 		 * We do the initial early heuristics without holding
1356 		 * any task-queue locks at all. We'll only try to get
1357 		 * the runqueue lock when things look like they will
1358 		 * work out!
1359 		 */
1360 		rq = task_rq(p);
1361 
1362 		/*
1363 		 * If the task is actively running on another CPU
1364 		 * still, just relax and busy-wait without holding
1365 		 * any locks.
1366 		 *
1367 		 * NOTE! Since we don't hold any locks, it's not
1368 		 * even sure that "rq" stays as the right runqueue!
1369 		 * But we don't care, since "task_running()" will
1370 		 * return false if the runqueue has changed and p
1371 		 * is actually now running somewhere else!
1372 		 */
1373 		while (task_running(rq, p)) {
1374 			if (match_state && unlikely(p->state != match_state))
1375 				return 0;
1376 			cpu_relax();
1377 		}
1378 
1379 		/*
1380 		 * Ok, time to look more closely! We need the rq
1381 		 * lock now, to be *sure*. If we're wrong, we'll
1382 		 * just go back and repeat.
1383 		 */
1384 		rq = task_rq_lock(p, &rf);
1385 		trace_sched_wait_task(p);
1386 		running = task_running(rq, p);
1387 		queued = task_on_rq_queued(p);
1388 		ncsw = 0;
1389 		if (!match_state || p->state == match_state)
1390 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1391 		task_rq_unlock(rq, p, &rf);
1392 
1393 		/*
1394 		 * If it changed from the expected state, bail out now.
1395 		 */
1396 		if (unlikely(!ncsw))
1397 			break;
1398 
1399 		/*
1400 		 * Was it really running after all now that we
1401 		 * checked with the proper locks actually held?
1402 		 *
1403 		 * Oops. Go back and try again..
1404 		 */
1405 		if (unlikely(running)) {
1406 			cpu_relax();
1407 			continue;
1408 		}
1409 
1410 		/*
1411 		 * It's not enough that it's not actively running,
1412 		 * it must be off the runqueue _entirely_, and not
1413 		 * preempted!
1414 		 *
1415 		 * So if it was still runnable (but just not actively
1416 		 * running right now), it's preempted, and we should
1417 		 * yield - it could be a while.
1418 		 */
1419 		if (unlikely(queued)) {
1420 			ktime_t to = NSEC_PER_SEC / HZ;
1421 
1422 			set_current_state(TASK_UNINTERRUPTIBLE);
1423 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1424 			continue;
1425 		}
1426 
1427 		/*
1428 		 * Ahh, all good. It wasn't running, and it wasn't
1429 		 * runnable, which means that it will never become
1430 		 * running in the future either. We're all done!
1431 		 */
1432 		break;
1433 	}
1434 
1435 	return ncsw;
1436 }
1437 
1438 /***
1439  * kick_process - kick a running thread to enter/exit the kernel
1440  * @p: the to-be-kicked thread
1441  *
1442  * Cause a process which is running on another CPU to enter
1443  * kernel-mode, without any delay. (to get signals handled.)
1444  *
1445  * NOTE: this function doesn't have to take the runqueue lock,
1446  * because all it wants to ensure is that the remote task enters
1447  * the kernel. If the IPI races and the task has been migrated
1448  * to another CPU then no harm is done and the purpose has been
1449  * achieved as well.
1450  */
1451 void kick_process(struct task_struct *p)
1452 {
1453 	int cpu;
1454 
1455 	preempt_disable();
1456 	cpu = task_cpu(p);
1457 	if ((cpu != smp_processor_id()) && task_curr(p))
1458 		smp_send_reschedule(cpu);
1459 	preempt_enable();
1460 }
1461 EXPORT_SYMBOL_GPL(kick_process);
1462 
1463 /*
1464  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1465  *
1466  * A few notes on cpu_active vs cpu_online:
1467  *
1468  *  - cpu_active must be a subset of cpu_online
1469  *
1470  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1471  *    see __set_cpus_allowed_ptr(). At this point the newly online
1472  *    CPU isn't yet part of the sched domains, and balancing will not
1473  *    see it.
1474  *
1475  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1476  *    avoid the load balancer to place new tasks on the to be removed
1477  *    CPU. Existing tasks will remain running there and will be taken
1478  *    off.
1479  *
1480  * This means that fallback selection must not select !active CPUs.
1481  * And can assume that any active CPU must be online. Conversely
1482  * select_task_rq() below may allow selection of !active CPUs in order
1483  * to satisfy the above rules.
1484  */
1485 static int select_fallback_rq(int cpu, struct task_struct *p)
1486 {
1487 	int nid = cpu_to_node(cpu);
1488 	const struct cpumask *nodemask = NULL;
1489 	enum { cpuset, possible, fail } state = cpuset;
1490 	int dest_cpu;
1491 
1492 	/*
1493 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1494 	 * will return -1. There is no CPU on the node, and we should
1495 	 * select the CPU on the other node.
1496 	 */
1497 	if (nid != -1) {
1498 		nodemask = cpumask_of_node(nid);
1499 
1500 		/* Look for allowed, online CPU in same node. */
1501 		for_each_cpu(dest_cpu, nodemask) {
1502 			if (!cpu_active(dest_cpu))
1503 				continue;
1504 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1505 				return dest_cpu;
1506 		}
1507 	}
1508 
1509 	for (;;) {
1510 		/* Any allowed, online CPU? */
1511 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1512 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1513 				continue;
1514 			if (!cpu_online(dest_cpu))
1515 				continue;
1516 			goto out;
1517 		}
1518 
1519 		/* No more Mr. Nice Guy. */
1520 		switch (state) {
1521 		case cpuset:
1522 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1523 				cpuset_cpus_allowed_fallback(p);
1524 				state = possible;
1525 				break;
1526 			}
1527 			/* Fall-through */
1528 		case possible:
1529 			do_set_cpus_allowed(p, cpu_possible_mask);
1530 			state = fail;
1531 			break;
1532 
1533 		case fail:
1534 			BUG();
1535 			break;
1536 		}
1537 	}
1538 
1539 out:
1540 	if (state != cpuset) {
1541 		/*
1542 		 * Don't tell them about moving exiting tasks or
1543 		 * kernel threads (both mm NULL), since they never
1544 		 * leave kernel.
1545 		 */
1546 		if (p->mm && printk_ratelimit()) {
1547 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1548 					task_pid_nr(p), p->comm, cpu);
1549 		}
1550 	}
1551 
1552 	return dest_cpu;
1553 }
1554 
1555 /*
1556  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1557  */
1558 static inline
1559 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1560 {
1561 	lockdep_assert_held(&p->pi_lock);
1562 
1563 	if (p->nr_cpus_allowed > 1)
1564 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1565 	else
1566 		cpu = cpumask_any(&p->cpus_allowed);
1567 
1568 	/*
1569 	 * In order not to call set_task_cpu() on a blocking task we need
1570 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1571 	 * CPU.
1572 	 *
1573 	 * Since this is common to all placement strategies, this lives here.
1574 	 *
1575 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1576 	 *   not worry about this generic constraint ]
1577 	 */
1578 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1579 		     !cpu_online(cpu)))
1580 		cpu = select_fallback_rq(task_cpu(p), p);
1581 
1582 	return cpu;
1583 }
1584 
1585 static void update_avg(u64 *avg, u64 sample)
1586 {
1587 	s64 diff = sample - *avg;
1588 	*avg += diff >> 3;
1589 }
1590 
1591 #else
1592 
1593 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1594 					 const struct cpumask *new_mask, bool check)
1595 {
1596 	return set_cpus_allowed_ptr(p, new_mask);
1597 }
1598 
1599 #endif /* CONFIG_SMP */
1600 
1601 static void
1602 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1603 {
1604 	struct rq *rq;
1605 
1606 	if (!schedstat_enabled())
1607 		return;
1608 
1609 	rq = this_rq();
1610 
1611 #ifdef CONFIG_SMP
1612 	if (cpu == rq->cpu) {
1613 		schedstat_inc(rq->ttwu_local);
1614 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1615 	} else {
1616 		struct sched_domain *sd;
1617 
1618 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1619 		rcu_read_lock();
1620 		for_each_domain(rq->cpu, sd) {
1621 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1622 				schedstat_inc(sd->ttwu_wake_remote);
1623 				break;
1624 			}
1625 		}
1626 		rcu_read_unlock();
1627 	}
1628 
1629 	if (wake_flags & WF_MIGRATED)
1630 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1631 #endif /* CONFIG_SMP */
1632 
1633 	schedstat_inc(rq->ttwu_count);
1634 	schedstat_inc(p->se.statistics.nr_wakeups);
1635 
1636 	if (wake_flags & WF_SYNC)
1637 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1638 }
1639 
1640 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1641 {
1642 	activate_task(rq, p, en_flags);
1643 	p->on_rq = TASK_ON_RQ_QUEUED;
1644 
1645 	/* If a worker is waking up, notify the workqueue: */
1646 	if (p->flags & PF_WQ_WORKER)
1647 		wq_worker_waking_up(p, cpu_of(rq));
1648 }
1649 
1650 /*
1651  * Mark the task runnable and perform wakeup-preemption.
1652  */
1653 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1654 			   struct rq_flags *rf)
1655 {
1656 	check_preempt_curr(rq, p, wake_flags);
1657 	p->state = TASK_RUNNING;
1658 	trace_sched_wakeup(p);
1659 
1660 #ifdef CONFIG_SMP
1661 	if (p->sched_class->task_woken) {
1662 		/*
1663 		 * Our task @p is fully woken up and running; so its safe to
1664 		 * drop the rq->lock, hereafter rq is only used for statistics.
1665 		 */
1666 		rq_unpin_lock(rq, rf);
1667 		p->sched_class->task_woken(rq, p);
1668 		rq_repin_lock(rq, rf);
1669 	}
1670 
1671 	if (rq->idle_stamp) {
1672 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1673 		u64 max = 2*rq->max_idle_balance_cost;
1674 
1675 		update_avg(&rq->avg_idle, delta);
1676 
1677 		if (rq->avg_idle > max)
1678 			rq->avg_idle = max;
1679 
1680 		rq->idle_stamp = 0;
1681 	}
1682 #endif
1683 }
1684 
1685 static void
1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1687 		 struct rq_flags *rf)
1688 {
1689 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1690 
1691 	lockdep_assert_held(&rq->lock);
1692 
1693 #ifdef CONFIG_SMP
1694 	if (p->sched_contributes_to_load)
1695 		rq->nr_uninterruptible--;
1696 
1697 	if (wake_flags & WF_MIGRATED)
1698 		en_flags |= ENQUEUE_MIGRATED;
1699 #endif
1700 
1701 	ttwu_activate(rq, p, en_flags);
1702 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1703 }
1704 
1705 /*
1706  * Called in case the task @p isn't fully descheduled from its runqueue,
1707  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1708  * since all we need to do is flip p->state to TASK_RUNNING, since
1709  * the task is still ->on_rq.
1710  */
1711 static int ttwu_remote(struct task_struct *p, int wake_flags)
1712 {
1713 	struct rq_flags rf;
1714 	struct rq *rq;
1715 	int ret = 0;
1716 
1717 	rq = __task_rq_lock(p, &rf);
1718 	if (task_on_rq_queued(p)) {
1719 		/* check_preempt_curr() may use rq clock */
1720 		update_rq_clock(rq);
1721 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1722 		ret = 1;
1723 	}
1724 	__task_rq_unlock(rq, &rf);
1725 
1726 	return ret;
1727 }
1728 
1729 #ifdef CONFIG_SMP
1730 void sched_ttwu_pending(void)
1731 {
1732 	struct rq *rq = this_rq();
1733 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1734 	struct task_struct *p;
1735 	struct rq_flags rf;
1736 
1737 	if (!llist)
1738 		return;
1739 
1740 	rq_lock_irqsave(rq, &rf);
1741 	update_rq_clock(rq);
1742 
1743 	while (llist) {
1744 		int wake_flags = 0;
1745 
1746 		p = llist_entry(llist, struct task_struct, wake_entry);
1747 		llist = llist_next(llist);
1748 
1749 		if (p->sched_remote_wakeup)
1750 			wake_flags = WF_MIGRATED;
1751 
1752 		ttwu_do_activate(rq, p, wake_flags, &rf);
1753 	}
1754 
1755 	rq_unlock_irqrestore(rq, &rf);
1756 }
1757 
1758 void scheduler_ipi(void)
1759 {
1760 	/*
1761 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1762 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1763 	 * this IPI.
1764 	 */
1765 	preempt_fold_need_resched();
1766 
1767 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1768 		return;
1769 
1770 	/*
1771 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1772 	 * traditionally all their work was done from the interrupt return
1773 	 * path. Now that we actually do some work, we need to make sure
1774 	 * we do call them.
1775 	 *
1776 	 * Some archs already do call them, luckily irq_enter/exit nest
1777 	 * properly.
1778 	 *
1779 	 * Arguably we should visit all archs and update all handlers,
1780 	 * however a fair share of IPIs are still resched only so this would
1781 	 * somewhat pessimize the simple resched case.
1782 	 */
1783 	irq_enter();
1784 	sched_ttwu_pending();
1785 
1786 	/*
1787 	 * Check if someone kicked us for doing the nohz idle load balance.
1788 	 */
1789 	if (unlikely(got_nohz_idle_kick())) {
1790 		this_rq()->idle_balance = 1;
1791 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1792 	}
1793 	irq_exit();
1794 }
1795 
1796 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1797 {
1798 	struct rq *rq = cpu_rq(cpu);
1799 
1800 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1801 
1802 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1803 		if (!set_nr_if_polling(rq->idle))
1804 			smp_send_reschedule(cpu);
1805 		else
1806 			trace_sched_wake_idle_without_ipi(cpu);
1807 	}
1808 }
1809 
1810 void wake_up_if_idle(int cpu)
1811 {
1812 	struct rq *rq = cpu_rq(cpu);
1813 	struct rq_flags rf;
1814 
1815 	rcu_read_lock();
1816 
1817 	if (!is_idle_task(rcu_dereference(rq->curr)))
1818 		goto out;
1819 
1820 	if (set_nr_if_polling(rq->idle)) {
1821 		trace_sched_wake_idle_without_ipi(cpu);
1822 	} else {
1823 		rq_lock_irqsave(rq, &rf);
1824 		if (is_idle_task(rq->curr))
1825 			smp_send_reschedule(cpu);
1826 		/* Else CPU is not idle, do nothing here: */
1827 		rq_unlock_irqrestore(rq, &rf);
1828 	}
1829 
1830 out:
1831 	rcu_read_unlock();
1832 }
1833 
1834 bool cpus_share_cache(int this_cpu, int that_cpu)
1835 {
1836 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1837 }
1838 #endif /* CONFIG_SMP */
1839 
1840 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1841 {
1842 	struct rq *rq = cpu_rq(cpu);
1843 	struct rq_flags rf;
1844 
1845 #if defined(CONFIG_SMP)
1846 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1847 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1848 		ttwu_queue_remote(p, cpu, wake_flags);
1849 		return;
1850 	}
1851 #endif
1852 
1853 	rq_lock(rq, &rf);
1854 	update_rq_clock(rq);
1855 	ttwu_do_activate(rq, p, wake_flags, &rf);
1856 	rq_unlock(rq, &rf);
1857 }
1858 
1859 /*
1860  * Notes on Program-Order guarantees on SMP systems.
1861  *
1862  *  MIGRATION
1863  *
1864  * The basic program-order guarantee on SMP systems is that when a task [t]
1865  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1866  * execution on its new CPU [c1].
1867  *
1868  * For migration (of runnable tasks) this is provided by the following means:
1869  *
1870  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1871  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1872  *     rq(c1)->lock (if not at the same time, then in that order).
1873  *  C) LOCK of the rq(c1)->lock scheduling in task
1874  *
1875  * Transitivity guarantees that B happens after A and C after B.
1876  * Note: we only require RCpc transitivity.
1877  * Note: the CPU doing B need not be c0 or c1
1878  *
1879  * Example:
1880  *
1881  *   CPU0            CPU1            CPU2
1882  *
1883  *   LOCK rq(0)->lock
1884  *   sched-out X
1885  *   sched-in Y
1886  *   UNLOCK rq(0)->lock
1887  *
1888  *                                   LOCK rq(0)->lock // orders against CPU0
1889  *                                   dequeue X
1890  *                                   UNLOCK rq(0)->lock
1891  *
1892  *                                   LOCK rq(1)->lock
1893  *                                   enqueue X
1894  *                                   UNLOCK rq(1)->lock
1895  *
1896  *                   LOCK rq(1)->lock // orders against CPU2
1897  *                   sched-out Z
1898  *                   sched-in X
1899  *                   UNLOCK rq(1)->lock
1900  *
1901  *
1902  *  BLOCKING -- aka. SLEEP + WAKEUP
1903  *
1904  * For blocking we (obviously) need to provide the same guarantee as for
1905  * migration. However the means are completely different as there is no lock
1906  * chain to provide order. Instead we do:
1907  *
1908  *   1) smp_store_release(X->on_cpu, 0)
1909  *   2) smp_cond_load_acquire(!X->on_cpu)
1910  *
1911  * Example:
1912  *
1913  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1914  *
1915  *   LOCK rq(0)->lock LOCK X->pi_lock
1916  *   dequeue X
1917  *   sched-out X
1918  *   smp_store_release(X->on_cpu, 0);
1919  *
1920  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1921  *                    X->state = WAKING
1922  *                    set_task_cpu(X,2)
1923  *
1924  *                    LOCK rq(2)->lock
1925  *                    enqueue X
1926  *                    X->state = RUNNING
1927  *                    UNLOCK rq(2)->lock
1928  *
1929  *                                          LOCK rq(2)->lock // orders against CPU1
1930  *                                          sched-out Z
1931  *                                          sched-in X
1932  *                                          UNLOCK rq(2)->lock
1933  *
1934  *                    UNLOCK X->pi_lock
1935  *   UNLOCK rq(0)->lock
1936  *
1937  *
1938  * However; for wakeups there is a second guarantee we must provide, namely we
1939  * must observe the state that lead to our wakeup. That is, not only must our
1940  * task observe its own prior state, it must also observe the stores prior to
1941  * its wakeup.
1942  *
1943  * This means that any means of doing remote wakeups must order the CPU doing
1944  * the wakeup against the CPU the task is going to end up running on. This,
1945  * however, is already required for the regular Program-Order guarantee above,
1946  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1947  *
1948  */
1949 
1950 /**
1951  * try_to_wake_up - wake up a thread
1952  * @p: the thread to be awakened
1953  * @state: the mask of task states that can be woken
1954  * @wake_flags: wake modifier flags (WF_*)
1955  *
1956  * If (@state & @p->state) @p->state = TASK_RUNNING.
1957  *
1958  * If the task was not queued/runnable, also place it back on a runqueue.
1959  *
1960  * Atomic against schedule() which would dequeue a task, also see
1961  * set_current_state().
1962  *
1963  * Return: %true if @p->state changes (an actual wakeup was done),
1964  *	   %false otherwise.
1965  */
1966 static int
1967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1968 {
1969 	unsigned long flags;
1970 	int cpu, success = 0;
1971 
1972 	/*
1973 	 * If we are going to wake up a thread waiting for CONDITION we
1974 	 * need to ensure that CONDITION=1 done by the caller can not be
1975 	 * reordered with p->state check below. This pairs with mb() in
1976 	 * set_current_state() the waiting thread does.
1977 	 */
1978 	smp_mb__before_spinlock();
1979 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1980 	if (!(p->state & state))
1981 		goto out;
1982 
1983 	trace_sched_waking(p);
1984 
1985 	/* We're going to change ->state: */
1986 	success = 1;
1987 	cpu = task_cpu(p);
1988 
1989 	/*
1990 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1991 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1992 	 * in smp_cond_load_acquire() below.
1993 	 *
1994 	 * sched_ttwu_pending()                 try_to_wake_up()
1995 	 *   [S] p->on_rq = 1;                  [L] P->state
1996 	 *       UNLOCK rq->lock  -----.
1997 	 *                              \
1998 	 *				 +---   RMB
1999 	 * schedule()                   /
2000 	 *       LOCK rq->lock    -----'
2001 	 *       UNLOCK rq->lock
2002 	 *
2003 	 * [task p]
2004 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2005 	 *
2006 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2007 	 * last wakeup of our task and the schedule that got our task
2008 	 * current.
2009 	 */
2010 	smp_rmb();
2011 	if (p->on_rq && ttwu_remote(p, wake_flags))
2012 		goto stat;
2013 
2014 #ifdef CONFIG_SMP
2015 	/*
2016 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2017 	 * possible to, falsely, observe p->on_cpu == 0.
2018 	 *
2019 	 * One must be running (->on_cpu == 1) in order to remove oneself
2020 	 * from the runqueue.
2021 	 *
2022 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2023 	 *      UNLOCK rq->lock
2024 	 *			RMB
2025 	 *      LOCK   rq->lock
2026 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2027 	 *
2028 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2029 	 * from the consecutive calls to schedule(); the first switching to our
2030 	 * task, the second putting it to sleep.
2031 	 */
2032 	smp_rmb();
2033 
2034 	/*
2035 	 * If the owning (remote) CPU is still in the middle of schedule() with
2036 	 * this task as prev, wait until its done referencing the task.
2037 	 *
2038 	 * Pairs with the smp_store_release() in finish_lock_switch().
2039 	 *
2040 	 * This ensures that tasks getting woken will be fully ordered against
2041 	 * their previous state and preserve Program Order.
2042 	 */
2043 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2044 
2045 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2046 	p->state = TASK_WAKING;
2047 
2048 	if (p->in_iowait) {
2049 		delayacct_blkio_end();
2050 		atomic_dec(&task_rq(p)->nr_iowait);
2051 	}
2052 
2053 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 	if (task_cpu(p) != cpu) {
2055 		wake_flags |= WF_MIGRATED;
2056 		set_task_cpu(p, cpu);
2057 	}
2058 
2059 #else /* CONFIG_SMP */
2060 
2061 	if (p->in_iowait) {
2062 		delayacct_blkio_end();
2063 		atomic_dec(&task_rq(p)->nr_iowait);
2064 	}
2065 
2066 #endif /* CONFIG_SMP */
2067 
2068 	ttwu_queue(p, cpu, wake_flags);
2069 stat:
2070 	ttwu_stat(p, cpu, wake_flags);
2071 out:
2072 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2073 
2074 	return success;
2075 }
2076 
2077 /**
2078  * try_to_wake_up_local - try to wake up a local task with rq lock held
2079  * @p: the thread to be awakened
2080  * @cookie: context's cookie for pinning
2081  *
2082  * Put @p on the run-queue if it's not already there. The caller must
2083  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2084  * the current task.
2085  */
2086 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2087 {
2088 	struct rq *rq = task_rq(p);
2089 
2090 	if (WARN_ON_ONCE(rq != this_rq()) ||
2091 	    WARN_ON_ONCE(p == current))
2092 		return;
2093 
2094 	lockdep_assert_held(&rq->lock);
2095 
2096 	if (!raw_spin_trylock(&p->pi_lock)) {
2097 		/*
2098 		 * This is OK, because current is on_cpu, which avoids it being
2099 		 * picked for load-balance and preemption/IRQs are still
2100 		 * disabled avoiding further scheduler activity on it and we've
2101 		 * not yet picked a replacement task.
2102 		 */
2103 		rq_unlock(rq, rf);
2104 		raw_spin_lock(&p->pi_lock);
2105 		rq_relock(rq, rf);
2106 	}
2107 
2108 	if (!(p->state & TASK_NORMAL))
2109 		goto out;
2110 
2111 	trace_sched_waking(p);
2112 
2113 	if (!task_on_rq_queued(p)) {
2114 		if (p->in_iowait) {
2115 			delayacct_blkio_end();
2116 			atomic_dec(&rq->nr_iowait);
2117 		}
2118 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2119 	}
2120 
2121 	ttwu_do_wakeup(rq, p, 0, rf);
2122 	ttwu_stat(p, smp_processor_id(), 0);
2123 out:
2124 	raw_spin_unlock(&p->pi_lock);
2125 }
2126 
2127 /**
2128  * wake_up_process - Wake up a specific process
2129  * @p: The process to be woken up.
2130  *
2131  * Attempt to wake up the nominated process and move it to the set of runnable
2132  * processes.
2133  *
2134  * Return: 1 if the process was woken up, 0 if it was already running.
2135  *
2136  * It may be assumed that this function implies a write memory barrier before
2137  * changing the task state if and only if any tasks are woken up.
2138  */
2139 int wake_up_process(struct task_struct *p)
2140 {
2141 	return try_to_wake_up(p, TASK_NORMAL, 0);
2142 }
2143 EXPORT_SYMBOL(wake_up_process);
2144 
2145 int wake_up_state(struct task_struct *p, unsigned int state)
2146 {
2147 	return try_to_wake_up(p, state, 0);
2148 }
2149 
2150 /*
2151  * This function clears the sched_dl_entity static params.
2152  */
2153 void __dl_clear_params(struct task_struct *p)
2154 {
2155 	struct sched_dl_entity *dl_se = &p->dl;
2156 
2157 	dl_se->dl_runtime = 0;
2158 	dl_se->dl_deadline = 0;
2159 	dl_se->dl_period = 0;
2160 	dl_se->flags = 0;
2161 	dl_se->dl_bw = 0;
2162 
2163 	dl_se->dl_throttled = 0;
2164 	dl_se->dl_yielded = 0;
2165 }
2166 
2167 /*
2168  * Perform scheduler related setup for a newly forked process p.
2169  * p is forked by current.
2170  *
2171  * __sched_fork() is basic setup used by init_idle() too:
2172  */
2173 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2174 {
2175 	p->on_rq			= 0;
2176 
2177 	p->se.on_rq			= 0;
2178 	p->se.exec_start		= 0;
2179 	p->se.sum_exec_runtime		= 0;
2180 	p->se.prev_sum_exec_runtime	= 0;
2181 	p->se.nr_migrations		= 0;
2182 	p->se.vruntime			= 0;
2183 	INIT_LIST_HEAD(&p->se.group_node);
2184 
2185 #ifdef CONFIG_FAIR_GROUP_SCHED
2186 	p->se.cfs_rq			= NULL;
2187 #endif
2188 
2189 #ifdef CONFIG_SCHEDSTATS
2190 	/* Even if schedstat is disabled, there should not be garbage */
2191 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2192 #endif
2193 
2194 	RB_CLEAR_NODE(&p->dl.rb_node);
2195 	init_dl_task_timer(&p->dl);
2196 	__dl_clear_params(p);
2197 
2198 	INIT_LIST_HEAD(&p->rt.run_list);
2199 	p->rt.timeout		= 0;
2200 	p->rt.time_slice	= sched_rr_timeslice;
2201 	p->rt.on_rq		= 0;
2202 	p->rt.on_list		= 0;
2203 
2204 #ifdef CONFIG_PREEMPT_NOTIFIERS
2205 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2206 #endif
2207 
2208 #ifdef CONFIG_NUMA_BALANCING
2209 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2210 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2211 		p->mm->numa_scan_seq = 0;
2212 	}
2213 
2214 	if (clone_flags & CLONE_VM)
2215 		p->numa_preferred_nid = current->numa_preferred_nid;
2216 	else
2217 		p->numa_preferred_nid = -1;
2218 
2219 	p->node_stamp = 0ULL;
2220 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2221 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2222 	p->numa_work.next = &p->numa_work;
2223 	p->numa_faults = NULL;
2224 	p->last_task_numa_placement = 0;
2225 	p->last_sum_exec_runtime = 0;
2226 
2227 	p->numa_group = NULL;
2228 #endif /* CONFIG_NUMA_BALANCING */
2229 }
2230 
2231 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2232 
2233 #ifdef CONFIG_NUMA_BALANCING
2234 
2235 void set_numabalancing_state(bool enabled)
2236 {
2237 	if (enabled)
2238 		static_branch_enable(&sched_numa_balancing);
2239 	else
2240 		static_branch_disable(&sched_numa_balancing);
2241 }
2242 
2243 #ifdef CONFIG_PROC_SYSCTL
2244 int sysctl_numa_balancing(struct ctl_table *table, int write,
2245 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2246 {
2247 	struct ctl_table t;
2248 	int err;
2249 	int state = static_branch_likely(&sched_numa_balancing);
2250 
2251 	if (write && !capable(CAP_SYS_ADMIN))
2252 		return -EPERM;
2253 
2254 	t = *table;
2255 	t.data = &state;
2256 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2257 	if (err < 0)
2258 		return err;
2259 	if (write)
2260 		set_numabalancing_state(state);
2261 	return err;
2262 }
2263 #endif
2264 #endif
2265 
2266 #ifdef CONFIG_SCHEDSTATS
2267 
2268 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2269 static bool __initdata __sched_schedstats = false;
2270 
2271 static void set_schedstats(bool enabled)
2272 {
2273 	if (enabled)
2274 		static_branch_enable(&sched_schedstats);
2275 	else
2276 		static_branch_disable(&sched_schedstats);
2277 }
2278 
2279 void force_schedstat_enabled(void)
2280 {
2281 	if (!schedstat_enabled()) {
2282 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2283 		static_branch_enable(&sched_schedstats);
2284 	}
2285 }
2286 
2287 static int __init setup_schedstats(char *str)
2288 {
2289 	int ret = 0;
2290 	if (!str)
2291 		goto out;
2292 
2293 	/*
2294 	 * This code is called before jump labels have been set up, so we can't
2295 	 * change the static branch directly just yet.  Instead set a temporary
2296 	 * variable so init_schedstats() can do it later.
2297 	 */
2298 	if (!strcmp(str, "enable")) {
2299 		__sched_schedstats = true;
2300 		ret = 1;
2301 	} else if (!strcmp(str, "disable")) {
2302 		__sched_schedstats = false;
2303 		ret = 1;
2304 	}
2305 out:
2306 	if (!ret)
2307 		pr_warn("Unable to parse schedstats=\n");
2308 
2309 	return ret;
2310 }
2311 __setup("schedstats=", setup_schedstats);
2312 
2313 static void __init init_schedstats(void)
2314 {
2315 	set_schedstats(__sched_schedstats);
2316 }
2317 
2318 #ifdef CONFIG_PROC_SYSCTL
2319 int sysctl_schedstats(struct ctl_table *table, int write,
2320 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2321 {
2322 	struct ctl_table t;
2323 	int err;
2324 	int state = static_branch_likely(&sched_schedstats);
2325 
2326 	if (write && !capable(CAP_SYS_ADMIN))
2327 		return -EPERM;
2328 
2329 	t = *table;
2330 	t.data = &state;
2331 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2332 	if (err < 0)
2333 		return err;
2334 	if (write)
2335 		set_schedstats(state);
2336 	return err;
2337 }
2338 #endif /* CONFIG_PROC_SYSCTL */
2339 #else  /* !CONFIG_SCHEDSTATS */
2340 static inline void init_schedstats(void) {}
2341 #endif /* CONFIG_SCHEDSTATS */
2342 
2343 /*
2344  * fork()/clone()-time setup:
2345  */
2346 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2347 {
2348 	unsigned long flags;
2349 	int cpu = get_cpu();
2350 
2351 	__sched_fork(clone_flags, p);
2352 	/*
2353 	 * We mark the process as NEW here. This guarantees that
2354 	 * nobody will actually run it, and a signal or other external
2355 	 * event cannot wake it up and insert it on the runqueue either.
2356 	 */
2357 	p->state = TASK_NEW;
2358 
2359 	/*
2360 	 * Make sure we do not leak PI boosting priority to the child.
2361 	 */
2362 	p->prio = current->normal_prio;
2363 
2364 	/*
2365 	 * Revert to default priority/policy on fork if requested.
2366 	 */
2367 	if (unlikely(p->sched_reset_on_fork)) {
2368 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2369 			p->policy = SCHED_NORMAL;
2370 			p->static_prio = NICE_TO_PRIO(0);
2371 			p->rt_priority = 0;
2372 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2373 			p->static_prio = NICE_TO_PRIO(0);
2374 
2375 		p->prio = p->normal_prio = __normal_prio(p);
2376 		set_load_weight(p);
2377 
2378 		/*
2379 		 * We don't need the reset flag anymore after the fork. It has
2380 		 * fulfilled its duty:
2381 		 */
2382 		p->sched_reset_on_fork = 0;
2383 	}
2384 
2385 	if (dl_prio(p->prio)) {
2386 		put_cpu();
2387 		return -EAGAIN;
2388 	} else if (rt_prio(p->prio)) {
2389 		p->sched_class = &rt_sched_class;
2390 	} else {
2391 		p->sched_class = &fair_sched_class;
2392 	}
2393 
2394 	init_entity_runnable_average(&p->se);
2395 
2396 	/*
2397 	 * The child is not yet in the pid-hash so no cgroup attach races,
2398 	 * and the cgroup is pinned to this child due to cgroup_fork()
2399 	 * is ran before sched_fork().
2400 	 *
2401 	 * Silence PROVE_RCU.
2402 	 */
2403 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2404 	/*
2405 	 * We're setting the CPU for the first time, we don't migrate,
2406 	 * so use __set_task_cpu().
2407 	 */
2408 	__set_task_cpu(p, cpu);
2409 	if (p->sched_class->task_fork)
2410 		p->sched_class->task_fork(p);
2411 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2412 
2413 #ifdef CONFIG_SCHED_INFO
2414 	if (likely(sched_info_on()))
2415 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2416 #endif
2417 #if defined(CONFIG_SMP)
2418 	p->on_cpu = 0;
2419 #endif
2420 	init_task_preempt_count(p);
2421 #ifdef CONFIG_SMP
2422 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2423 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2424 #endif
2425 
2426 	put_cpu();
2427 	return 0;
2428 }
2429 
2430 unsigned long to_ratio(u64 period, u64 runtime)
2431 {
2432 	if (runtime == RUNTIME_INF)
2433 		return 1ULL << 20;
2434 
2435 	/*
2436 	 * Doing this here saves a lot of checks in all
2437 	 * the calling paths, and returning zero seems
2438 	 * safe for them anyway.
2439 	 */
2440 	if (period == 0)
2441 		return 0;
2442 
2443 	return div64_u64(runtime << 20, period);
2444 }
2445 
2446 #ifdef CONFIG_SMP
2447 inline struct dl_bw *dl_bw_of(int i)
2448 {
2449 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2450 			 "sched RCU must be held");
2451 	return &cpu_rq(i)->rd->dl_bw;
2452 }
2453 
2454 static inline int dl_bw_cpus(int i)
2455 {
2456 	struct root_domain *rd = cpu_rq(i)->rd;
2457 	int cpus = 0;
2458 
2459 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2460 			 "sched RCU must be held");
2461 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2462 		cpus++;
2463 
2464 	return cpus;
2465 }
2466 #else
2467 inline struct dl_bw *dl_bw_of(int i)
2468 {
2469 	return &cpu_rq(i)->dl.dl_bw;
2470 }
2471 
2472 static inline int dl_bw_cpus(int i)
2473 {
2474 	return 1;
2475 }
2476 #endif
2477 
2478 /*
2479  * We must be sure that accepting a new task (or allowing changing the
2480  * parameters of an existing one) is consistent with the bandwidth
2481  * constraints. If yes, this function also accordingly updates the currently
2482  * allocated bandwidth to reflect the new situation.
2483  *
2484  * This function is called while holding p's rq->lock.
2485  *
2486  * XXX we should delay bw change until the task's 0-lag point, see
2487  * __setparam_dl().
2488  */
2489 static int dl_overflow(struct task_struct *p, int policy,
2490 		       const struct sched_attr *attr)
2491 {
2492 
2493 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2494 	u64 period = attr->sched_period ?: attr->sched_deadline;
2495 	u64 runtime = attr->sched_runtime;
2496 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2497 	int cpus, err = -1;
2498 
2499 	/* !deadline task may carry old deadline bandwidth */
2500 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2501 		return 0;
2502 
2503 	/*
2504 	 * Either if a task, enters, leave, or stays -deadline but changes
2505 	 * its parameters, we may need to update accordingly the total
2506 	 * allocated bandwidth of the container.
2507 	 */
2508 	raw_spin_lock(&dl_b->lock);
2509 	cpus = dl_bw_cpus(task_cpu(p));
2510 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2511 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2512 		__dl_add(dl_b, new_bw);
2513 		err = 0;
2514 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2515 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2516 		__dl_clear(dl_b, p->dl.dl_bw);
2517 		__dl_add(dl_b, new_bw);
2518 		err = 0;
2519 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2520 		__dl_clear(dl_b, p->dl.dl_bw);
2521 		err = 0;
2522 	}
2523 	raw_spin_unlock(&dl_b->lock);
2524 
2525 	return err;
2526 }
2527 
2528 extern void init_dl_bw(struct dl_bw *dl_b);
2529 
2530 /*
2531  * wake_up_new_task - wake up a newly created task for the first time.
2532  *
2533  * This function will do some initial scheduler statistics housekeeping
2534  * that must be done for every newly created context, then puts the task
2535  * on the runqueue and wakes it.
2536  */
2537 void wake_up_new_task(struct task_struct *p)
2538 {
2539 	struct rq_flags rf;
2540 	struct rq *rq;
2541 
2542 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2543 	p->state = TASK_RUNNING;
2544 #ifdef CONFIG_SMP
2545 	/*
2546 	 * Fork balancing, do it here and not earlier because:
2547 	 *  - cpus_allowed can change in the fork path
2548 	 *  - any previously selected CPU might disappear through hotplug
2549 	 *
2550 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2551 	 * as we're not fully set-up yet.
2552 	 */
2553 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2554 #endif
2555 	rq = __task_rq_lock(p, &rf);
2556 	update_rq_clock(rq);
2557 	post_init_entity_util_avg(&p->se);
2558 
2559 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2560 	p->on_rq = TASK_ON_RQ_QUEUED;
2561 	trace_sched_wakeup_new(p);
2562 	check_preempt_curr(rq, p, WF_FORK);
2563 #ifdef CONFIG_SMP
2564 	if (p->sched_class->task_woken) {
2565 		/*
2566 		 * Nothing relies on rq->lock after this, so its fine to
2567 		 * drop it.
2568 		 */
2569 		rq_unpin_lock(rq, &rf);
2570 		p->sched_class->task_woken(rq, p);
2571 		rq_repin_lock(rq, &rf);
2572 	}
2573 #endif
2574 	task_rq_unlock(rq, p, &rf);
2575 }
2576 
2577 #ifdef CONFIG_PREEMPT_NOTIFIERS
2578 
2579 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2580 
2581 void preempt_notifier_inc(void)
2582 {
2583 	static_key_slow_inc(&preempt_notifier_key);
2584 }
2585 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2586 
2587 void preempt_notifier_dec(void)
2588 {
2589 	static_key_slow_dec(&preempt_notifier_key);
2590 }
2591 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2592 
2593 /**
2594  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2595  * @notifier: notifier struct to register
2596  */
2597 void preempt_notifier_register(struct preempt_notifier *notifier)
2598 {
2599 	if (!static_key_false(&preempt_notifier_key))
2600 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2601 
2602 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2603 }
2604 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2605 
2606 /**
2607  * preempt_notifier_unregister - no longer interested in preemption notifications
2608  * @notifier: notifier struct to unregister
2609  *
2610  * This is *not* safe to call from within a preemption notifier.
2611  */
2612 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2613 {
2614 	hlist_del(&notifier->link);
2615 }
2616 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2617 
2618 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2619 {
2620 	struct preempt_notifier *notifier;
2621 
2622 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2623 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2624 }
2625 
2626 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2627 {
2628 	if (static_key_false(&preempt_notifier_key))
2629 		__fire_sched_in_preempt_notifiers(curr);
2630 }
2631 
2632 static void
2633 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2634 				   struct task_struct *next)
2635 {
2636 	struct preempt_notifier *notifier;
2637 
2638 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2639 		notifier->ops->sched_out(notifier, next);
2640 }
2641 
2642 static __always_inline void
2643 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2644 				 struct task_struct *next)
2645 {
2646 	if (static_key_false(&preempt_notifier_key))
2647 		__fire_sched_out_preempt_notifiers(curr, next);
2648 }
2649 
2650 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2651 
2652 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653 {
2654 }
2655 
2656 static inline void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 				 struct task_struct *next)
2659 {
2660 }
2661 
2662 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2663 
2664 /**
2665  * prepare_task_switch - prepare to switch tasks
2666  * @rq: the runqueue preparing to switch
2667  * @prev: the current task that is being switched out
2668  * @next: the task we are going to switch to.
2669  *
2670  * This is called with the rq lock held and interrupts off. It must
2671  * be paired with a subsequent finish_task_switch after the context
2672  * switch.
2673  *
2674  * prepare_task_switch sets up locking and calls architecture specific
2675  * hooks.
2676  */
2677 static inline void
2678 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2679 		    struct task_struct *next)
2680 {
2681 	sched_info_switch(rq, prev, next);
2682 	perf_event_task_sched_out(prev, next);
2683 	fire_sched_out_preempt_notifiers(prev, next);
2684 	prepare_lock_switch(rq, next);
2685 	prepare_arch_switch(next);
2686 }
2687 
2688 /**
2689  * finish_task_switch - clean up after a task-switch
2690  * @prev: the thread we just switched away from.
2691  *
2692  * finish_task_switch must be called after the context switch, paired
2693  * with a prepare_task_switch call before the context switch.
2694  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2695  * and do any other architecture-specific cleanup actions.
2696  *
2697  * Note that we may have delayed dropping an mm in context_switch(). If
2698  * so, we finish that here outside of the runqueue lock. (Doing it
2699  * with the lock held can cause deadlocks; see schedule() for
2700  * details.)
2701  *
2702  * The context switch have flipped the stack from under us and restored the
2703  * local variables which were saved when this task called schedule() in the
2704  * past. prev == current is still correct but we need to recalculate this_rq
2705  * because prev may have moved to another CPU.
2706  */
2707 static struct rq *finish_task_switch(struct task_struct *prev)
2708 	__releases(rq->lock)
2709 {
2710 	struct rq *rq = this_rq();
2711 	struct mm_struct *mm = rq->prev_mm;
2712 	long prev_state;
2713 
2714 	/*
2715 	 * The previous task will have left us with a preempt_count of 2
2716 	 * because it left us after:
2717 	 *
2718 	 *	schedule()
2719 	 *	  preempt_disable();			// 1
2720 	 *	  __schedule()
2721 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2722 	 *
2723 	 * Also, see FORK_PREEMPT_COUNT.
2724 	 */
2725 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2726 		      "corrupted preempt_count: %s/%d/0x%x\n",
2727 		      current->comm, current->pid, preempt_count()))
2728 		preempt_count_set(FORK_PREEMPT_COUNT);
2729 
2730 	rq->prev_mm = NULL;
2731 
2732 	/*
2733 	 * A task struct has one reference for the use as "current".
2734 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2735 	 * schedule one last time. The schedule call will never return, and
2736 	 * the scheduled task must drop that reference.
2737 	 *
2738 	 * We must observe prev->state before clearing prev->on_cpu (in
2739 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2740 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2741 	 * transition, resulting in a double drop.
2742 	 */
2743 	prev_state = prev->state;
2744 	vtime_task_switch(prev);
2745 	perf_event_task_sched_in(prev, current);
2746 	finish_lock_switch(rq, prev);
2747 	finish_arch_post_lock_switch();
2748 
2749 	fire_sched_in_preempt_notifiers(current);
2750 	if (mm)
2751 		mmdrop(mm);
2752 	if (unlikely(prev_state == TASK_DEAD)) {
2753 		if (prev->sched_class->task_dead)
2754 			prev->sched_class->task_dead(prev);
2755 
2756 		/*
2757 		 * Remove function-return probe instances associated with this
2758 		 * task and put them back on the free list.
2759 		 */
2760 		kprobe_flush_task(prev);
2761 
2762 		/* Task is done with its stack. */
2763 		put_task_stack(prev);
2764 
2765 		put_task_struct(prev);
2766 	}
2767 
2768 	tick_nohz_task_switch();
2769 	return rq;
2770 }
2771 
2772 #ifdef CONFIG_SMP
2773 
2774 /* rq->lock is NOT held, but preemption is disabled */
2775 static void __balance_callback(struct rq *rq)
2776 {
2777 	struct callback_head *head, *next;
2778 	void (*func)(struct rq *rq);
2779 	unsigned long flags;
2780 
2781 	raw_spin_lock_irqsave(&rq->lock, flags);
2782 	head = rq->balance_callback;
2783 	rq->balance_callback = NULL;
2784 	while (head) {
2785 		func = (void (*)(struct rq *))head->func;
2786 		next = head->next;
2787 		head->next = NULL;
2788 		head = next;
2789 
2790 		func(rq);
2791 	}
2792 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2793 }
2794 
2795 static inline void balance_callback(struct rq *rq)
2796 {
2797 	if (unlikely(rq->balance_callback))
2798 		__balance_callback(rq);
2799 }
2800 
2801 #else
2802 
2803 static inline void balance_callback(struct rq *rq)
2804 {
2805 }
2806 
2807 #endif
2808 
2809 /**
2810  * schedule_tail - first thing a freshly forked thread must call.
2811  * @prev: the thread we just switched away from.
2812  */
2813 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2814 	__releases(rq->lock)
2815 {
2816 	struct rq *rq;
2817 
2818 	/*
2819 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2820 	 * finish_task_switch() for details.
2821 	 *
2822 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2823 	 * and the preempt_enable() will end up enabling preemption (on
2824 	 * PREEMPT_COUNT kernels).
2825 	 */
2826 
2827 	rq = finish_task_switch(prev);
2828 	balance_callback(rq);
2829 	preempt_enable();
2830 
2831 	if (current->set_child_tid)
2832 		put_user(task_pid_vnr(current), current->set_child_tid);
2833 }
2834 
2835 /*
2836  * context_switch - switch to the new MM and the new thread's register state.
2837  */
2838 static __always_inline struct rq *
2839 context_switch(struct rq *rq, struct task_struct *prev,
2840 	       struct task_struct *next, struct rq_flags *rf)
2841 {
2842 	struct mm_struct *mm, *oldmm;
2843 
2844 	prepare_task_switch(rq, prev, next);
2845 
2846 	mm = next->mm;
2847 	oldmm = prev->active_mm;
2848 	/*
2849 	 * For paravirt, this is coupled with an exit in switch_to to
2850 	 * combine the page table reload and the switch backend into
2851 	 * one hypercall.
2852 	 */
2853 	arch_start_context_switch(prev);
2854 
2855 	if (!mm) {
2856 		next->active_mm = oldmm;
2857 		mmgrab(oldmm);
2858 		enter_lazy_tlb(oldmm, next);
2859 	} else
2860 		switch_mm_irqs_off(oldmm, mm, next);
2861 
2862 	if (!prev->mm) {
2863 		prev->active_mm = NULL;
2864 		rq->prev_mm = oldmm;
2865 	}
2866 
2867 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2868 
2869 	/*
2870 	 * Since the runqueue lock will be released by the next
2871 	 * task (which is an invalid locking op but in the case
2872 	 * of the scheduler it's an obvious special-case), so we
2873 	 * do an early lockdep release here:
2874 	 */
2875 	rq_unpin_lock(rq, rf);
2876 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2877 
2878 	/* Here we just switch the register state and the stack. */
2879 	switch_to(prev, next, prev);
2880 	barrier();
2881 
2882 	return finish_task_switch(prev);
2883 }
2884 
2885 /*
2886  * nr_running and nr_context_switches:
2887  *
2888  * externally visible scheduler statistics: current number of runnable
2889  * threads, total number of context switches performed since bootup.
2890  */
2891 unsigned long nr_running(void)
2892 {
2893 	unsigned long i, sum = 0;
2894 
2895 	for_each_online_cpu(i)
2896 		sum += cpu_rq(i)->nr_running;
2897 
2898 	return sum;
2899 }
2900 
2901 /*
2902  * Check if only the current task is running on the CPU.
2903  *
2904  * Caution: this function does not check that the caller has disabled
2905  * preemption, thus the result might have a time-of-check-to-time-of-use
2906  * race.  The caller is responsible to use it correctly, for example:
2907  *
2908  * - from a non-preemptable section (of course)
2909  *
2910  * - from a thread that is bound to a single CPU
2911  *
2912  * - in a loop with very short iterations (e.g. a polling loop)
2913  */
2914 bool single_task_running(void)
2915 {
2916 	return raw_rq()->nr_running == 1;
2917 }
2918 EXPORT_SYMBOL(single_task_running);
2919 
2920 unsigned long long nr_context_switches(void)
2921 {
2922 	int i;
2923 	unsigned long long sum = 0;
2924 
2925 	for_each_possible_cpu(i)
2926 		sum += cpu_rq(i)->nr_switches;
2927 
2928 	return sum;
2929 }
2930 
2931 /*
2932  * IO-wait accounting, and how its mostly bollocks (on SMP).
2933  *
2934  * The idea behind IO-wait account is to account the idle time that we could
2935  * have spend running if it were not for IO. That is, if we were to improve the
2936  * storage performance, we'd have a proportional reduction in IO-wait time.
2937  *
2938  * This all works nicely on UP, where, when a task blocks on IO, we account
2939  * idle time as IO-wait, because if the storage were faster, it could've been
2940  * running and we'd not be idle.
2941  *
2942  * This has been extended to SMP, by doing the same for each CPU. This however
2943  * is broken.
2944  *
2945  * Imagine for instance the case where two tasks block on one CPU, only the one
2946  * CPU will have IO-wait accounted, while the other has regular idle. Even
2947  * though, if the storage were faster, both could've ran at the same time,
2948  * utilising both CPUs.
2949  *
2950  * This means, that when looking globally, the current IO-wait accounting on
2951  * SMP is a lower bound, by reason of under accounting.
2952  *
2953  * Worse, since the numbers are provided per CPU, they are sometimes
2954  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2955  * associated with any one particular CPU, it can wake to another CPU than it
2956  * blocked on. This means the per CPU IO-wait number is meaningless.
2957  *
2958  * Task CPU affinities can make all that even more 'interesting'.
2959  */
2960 
2961 unsigned long nr_iowait(void)
2962 {
2963 	unsigned long i, sum = 0;
2964 
2965 	for_each_possible_cpu(i)
2966 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2967 
2968 	return sum;
2969 }
2970 
2971 /*
2972  * Consumers of these two interfaces, like for example the cpufreq menu
2973  * governor are using nonsensical data. Boosting frequency for a CPU that has
2974  * IO-wait which might not even end up running the task when it does become
2975  * runnable.
2976  */
2977 
2978 unsigned long nr_iowait_cpu(int cpu)
2979 {
2980 	struct rq *this = cpu_rq(cpu);
2981 	return atomic_read(&this->nr_iowait);
2982 }
2983 
2984 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2985 {
2986 	struct rq *rq = this_rq();
2987 	*nr_waiters = atomic_read(&rq->nr_iowait);
2988 	*load = rq->load.weight;
2989 }
2990 
2991 #ifdef CONFIG_SMP
2992 
2993 /*
2994  * sched_exec - execve() is a valuable balancing opportunity, because at
2995  * this point the task has the smallest effective memory and cache footprint.
2996  */
2997 void sched_exec(void)
2998 {
2999 	struct task_struct *p = current;
3000 	unsigned long flags;
3001 	int dest_cpu;
3002 
3003 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3004 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3005 	if (dest_cpu == smp_processor_id())
3006 		goto unlock;
3007 
3008 	if (likely(cpu_active(dest_cpu))) {
3009 		struct migration_arg arg = { p, dest_cpu };
3010 
3011 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3012 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3013 		return;
3014 	}
3015 unlock:
3016 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3017 }
3018 
3019 #endif
3020 
3021 DEFINE_PER_CPU(struct kernel_stat, kstat);
3022 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3023 
3024 EXPORT_PER_CPU_SYMBOL(kstat);
3025 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3026 
3027 /*
3028  * The function fair_sched_class.update_curr accesses the struct curr
3029  * and its field curr->exec_start; when called from task_sched_runtime(),
3030  * we observe a high rate of cache misses in practice.
3031  * Prefetching this data results in improved performance.
3032  */
3033 static inline void prefetch_curr_exec_start(struct task_struct *p)
3034 {
3035 #ifdef CONFIG_FAIR_GROUP_SCHED
3036 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3037 #else
3038 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3039 #endif
3040 	prefetch(curr);
3041 	prefetch(&curr->exec_start);
3042 }
3043 
3044 /*
3045  * Return accounted runtime for the task.
3046  * In case the task is currently running, return the runtime plus current's
3047  * pending runtime that have not been accounted yet.
3048  */
3049 unsigned long long task_sched_runtime(struct task_struct *p)
3050 {
3051 	struct rq_flags rf;
3052 	struct rq *rq;
3053 	u64 ns;
3054 
3055 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3056 	/*
3057 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3058 	 * So we have a optimization chance when the task's delta_exec is 0.
3059 	 * Reading ->on_cpu is racy, but this is ok.
3060 	 *
3061 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3062 	 * If we race with it entering CPU, unaccounted time is 0. This is
3063 	 * indistinguishable from the read occurring a few cycles earlier.
3064 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3065 	 * been accounted, so we're correct here as well.
3066 	 */
3067 	if (!p->on_cpu || !task_on_rq_queued(p))
3068 		return p->se.sum_exec_runtime;
3069 #endif
3070 
3071 	rq = task_rq_lock(p, &rf);
3072 	/*
3073 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3074 	 * project cycles that may never be accounted to this
3075 	 * thread, breaking clock_gettime().
3076 	 */
3077 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3078 		prefetch_curr_exec_start(p);
3079 		update_rq_clock(rq);
3080 		p->sched_class->update_curr(rq);
3081 	}
3082 	ns = p->se.sum_exec_runtime;
3083 	task_rq_unlock(rq, p, &rf);
3084 
3085 	return ns;
3086 }
3087 
3088 /*
3089  * This function gets called by the timer code, with HZ frequency.
3090  * We call it with interrupts disabled.
3091  */
3092 void scheduler_tick(void)
3093 {
3094 	int cpu = smp_processor_id();
3095 	struct rq *rq = cpu_rq(cpu);
3096 	struct task_struct *curr = rq->curr;
3097 	struct rq_flags rf;
3098 
3099 	sched_clock_tick();
3100 
3101 	rq_lock(rq, &rf);
3102 
3103 	update_rq_clock(rq);
3104 	curr->sched_class->task_tick(rq, curr, 0);
3105 	cpu_load_update_active(rq);
3106 	calc_global_load_tick(rq);
3107 
3108 	rq_unlock(rq, &rf);
3109 
3110 	perf_event_task_tick();
3111 
3112 #ifdef CONFIG_SMP
3113 	rq->idle_balance = idle_cpu(cpu);
3114 	trigger_load_balance(rq);
3115 #endif
3116 	rq_last_tick_reset(rq);
3117 }
3118 
3119 #ifdef CONFIG_NO_HZ_FULL
3120 /**
3121  * scheduler_tick_max_deferment
3122  *
3123  * Keep at least one tick per second when a single
3124  * active task is running because the scheduler doesn't
3125  * yet completely support full dynticks environment.
3126  *
3127  * This makes sure that uptime, CFS vruntime, load
3128  * balancing, etc... continue to move forward, even
3129  * with a very low granularity.
3130  *
3131  * Return: Maximum deferment in nanoseconds.
3132  */
3133 u64 scheduler_tick_max_deferment(void)
3134 {
3135 	struct rq *rq = this_rq();
3136 	unsigned long next, now = READ_ONCE(jiffies);
3137 
3138 	next = rq->last_sched_tick + HZ;
3139 
3140 	if (time_before_eq(next, now))
3141 		return 0;
3142 
3143 	return jiffies_to_nsecs(next - now);
3144 }
3145 #endif
3146 
3147 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3148 				defined(CONFIG_PREEMPT_TRACER))
3149 /*
3150  * If the value passed in is equal to the current preempt count
3151  * then we just disabled preemption. Start timing the latency.
3152  */
3153 static inline void preempt_latency_start(int val)
3154 {
3155 	if (preempt_count() == val) {
3156 		unsigned long ip = get_lock_parent_ip();
3157 #ifdef CONFIG_DEBUG_PREEMPT
3158 		current->preempt_disable_ip = ip;
3159 #endif
3160 		trace_preempt_off(CALLER_ADDR0, ip);
3161 	}
3162 }
3163 
3164 void preempt_count_add(int val)
3165 {
3166 #ifdef CONFIG_DEBUG_PREEMPT
3167 	/*
3168 	 * Underflow?
3169 	 */
3170 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3171 		return;
3172 #endif
3173 	__preempt_count_add(val);
3174 #ifdef CONFIG_DEBUG_PREEMPT
3175 	/*
3176 	 * Spinlock count overflowing soon?
3177 	 */
3178 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3179 				PREEMPT_MASK - 10);
3180 #endif
3181 	preempt_latency_start(val);
3182 }
3183 EXPORT_SYMBOL(preempt_count_add);
3184 NOKPROBE_SYMBOL(preempt_count_add);
3185 
3186 /*
3187  * If the value passed in equals to the current preempt count
3188  * then we just enabled preemption. Stop timing the latency.
3189  */
3190 static inline void preempt_latency_stop(int val)
3191 {
3192 	if (preempt_count() == val)
3193 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3194 }
3195 
3196 void preempt_count_sub(int val)
3197 {
3198 #ifdef CONFIG_DEBUG_PREEMPT
3199 	/*
3200 	 * Underflow?
3201 	 */
3202 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3203 		return;
3204 	/*
3205 	 * Is the spinlock portion underflowing?
3206 	 */
3207 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3208 			!(preempt_count() & PREEMPT_MASK)))
3209 		return;
3210 #endif
3211 
3212 	preempt_latency_stop(val);
3213 	__preempt_count_sub(val);
3214 }
3215 EXPORT_SYMBOL(preempt_count_sub);
3216 NOKPROBE_SYMBOL(preempt_count_sub);
3217 
3218 #else
3219 static inline void preempt_latency_start(int val) { }
3220 static inline void preempt_latency_stop(int val) { }
3221 #endif
3222 
3223 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3224 {
3225 #ifdef CONFIG_DEBUG_PREEMPT
3226 	return p->preempt_disable_ip;
3227 #else
3228 	return 0;
3229 #endif
3230 }
3231 
3232 /*
3233  * Print scheduling while atomic bug:
3234  */
3235 static noinline void __schedule_bug(struct task_struct *prev)
3236 {
3237 	/* Save this before calling printk(), since that will clobber it */
3238 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3239 
3240 	if (oops_in_progress)
3241 		return;
3242 
3243 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3244 		prev->comm, prev->pid, preempt_count());
3245 
3246 	debug_show_held_locks(prev);
3247 	print_modules();
3248 	if (irqs_disabled())
3249 		print_irqtrace_events(prev);
3250 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3251 	    && in_atomic_preempt_off()) {
3252 		pr_err("Preemption disabled at:");
3253 		print_ip_sym(preempt_disable_ip);
3254 		pr_cont("\n");
3255 	}
3256 	if (panic_on_warn)
3257 		panic("scheduling while atomic\n");
3258 
3259 	dump_stack();
3260 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3261 }
3262 
3263 /*
3264  * Various schedule()-time debugging checks and statistics:
3265  */
3266 static inline void schedule_debug(struct task_struct *prev)
3267 {
3268 #ifdef CONFIG_SCHED_STACK_END_CHECK
3269 	if (task_stack_end_corrupted(prev))
3270 		panic("corrupted stack end detected inside scheduler\n");
3271 #endif
3272 
3273 	if (unlikely(in_atomic_preempt_off())) {
3274 		__schedule_bug(prev);
3275 		preempt_count_set(PREEMPT_DISABLED);
3276 	}
3277 	rcu_sleep_check();
3278 
3279 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3280 
3281 	schedstat_inc(this_rq()->sched_count);
3282 }
3283 
3284 /*
3285  * Pick up the highest-prio task:
3286  */
3287 static inline struct task_struct *
3288 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3289 {
3290 	const struct sched_class *class;
3291 	struct task_struct *p;
3292 
3293 	/*
3294 	 * Optimization: we know that if all tasks are in the fair class we can
3295 	 * call that function directly, but only if the @prev task wasn't of a
3296 	 * higher scheduling class, because otherwise those loose the
3297 	 * opportunity to pull in more work from other CPUs.
3298 	 */
3299 	if (likely((prev->sched_class == &idle_sched_class ||
3300 		    prev->sched_class == &fair_sched_class) &&
3301 		   rq->nr_running == rq->cfs.h_nr_running)) {
3302 
3303 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3304 		if (unlikely(p == RETRY_TASK))
3305 			goto again;
3306 
3307 		/* Assumes fair_sched_class->next == idle_sched_class */
3308 		if (unlikely(!p))
3309 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3310 
3311 		return p;
3312 	}
3313 
3314 again:
3315 	for_each_class(class) {
3316 		p = class->pick_next_task(rq, prev, rf);
3317 		if (p) {
3318 			if (unlikely(p == RETRY_TASK))
3319 				goto again;
3320 			return p;
3321 		}
3322 	}
3323 
3324 	/* The idle class should always have a runnable task: */
3325 	BUG();
3326 }
3327 
3328 /*
3329  * __schedule() is the main scheduler function.
3330  *
3331  * The main means of driving the scheduler and thus entering this function are:
3332  *
3333  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3334  *
3335  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3336  *      paths. For example, see arch/x86/entry_64.S.
3337  *
3338  *      To drive preemption between tasks, the scheduler sets the flag in timer
3339  *      interrupt handler scheduler_tick().
3340  *
3341  *   3. Wakeups don't really cause entry into schedule(). They add a
3342  *      task to the run-queue and that's it.
3343  *
3344  *      Now, if the new task added to the run-queue preempts the current
3345  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3346  *      called on the nearest possible occasion:
3347  *
3348  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3349  *
3350  *         - in syscall or exception context, at the next outmost
3351  *           preempt_enable(). (this might be as soon as the wake_up()'s
3352  *           spin_unlock()!)
3353  *
3354  *         - in IRQ context, return from interrupt-handler to
3355  *           preemptible context
3356  *
3357  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3358  *         then at the next:
3359  *
3360  *          - cond_resched() call
3361  *          - explicit schedule() call
3362  *          - return from syscall or exception to user-space
3363  *          - return from interrupt-handler to user-space
3364  *
3365  * WARNING: must be called with preemption disabled!
3366  */
3367 static void __sched notrace __schedule(bool preempt)
3368 {
3369 	struct task_struct *prev, *next;
3370 	unsigned long *switch_count;
3371 	struct rq_flags rf;
3372 	struct rq *rq;
3373 	int cpu;
3374 
3375 	cpu = smp_processor_id();
3376 	rq = cpu_rq(cpu);
3377 	prev = rq->curr;
3378 
3379 	schedule_debug(prev);
3380 
3381 	if (sched_feat(HRTICK))
3382 		hrtick_clear(rq);
3383 
3384 	local_irq_disable();
3385 	rcu_note_context_switch(preempt);
3386 
3387 	/*
3388 	 * Make sure that signal_pending_state()->signal_pending() below
3389 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3390 	 * done by the caller to avoid the race with signal_wake_up().
3391 	 */
3392 	smp_mb__before_spinlock();
3393 	rq_lock(rq, &rf);
3394 
3395 	/* Promote REQ to ACT */
3396 	rq->clock_update_flags <<= 1;
3397 	update_rq_clock(rq);
3398 
3399 	switch_count = &prev->nivcsw;
3400 	if (!preempt && prev->state) {
3401 		if (unlikely(signal_pending_state(prev->state, prev))) {
3402 			prev->state = TASK_RUNNING;
3403 		} else {
3404 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3405 			prev->on_rq = 0;
3406 
3407 			if (prev->in_iowait) {
3408 				atomic_inc(&rq->nr_iowait);
3409 				delayacct_blkio_start();
3410 			}
3411 
3412 			/*
3413 			 * If a worker went to sleep, notify and ask workqueue
3414 			 * whether it wants to wake up a task to maintain
3415 			 * concurrency.
3416 			 */
3417 			if (prev->flags & PF_WQ_WORKER) {
3418 				struct task_struct *to_wakeup;
3419 
3420 				to_wakeup = wq_worker_sleeping(prev);
3421 				if (to_wakeup)
3422 					try_to_wake_up_local(to_wakeup, &rf);
3423 			}
3424 		}
3425 		switch_count = &prev->nvcsw;
3426 	}
3427 
3428 	next = pick_next_task(rq, prev, &rf);
3429 	clear_tsk_need_resched(prev);
3430 	clear_preempt_need_resched();
3431 
3432 	if (likely(prev != next)) {
3433 		rq->nr_switches++;
3434 		rq->curr = next;
3435 		++*switch_count;
3436 
3437 		trace_sched_switch(preempt, prev, next);
3438 
3439 		/* Also unlocks the rq: */
3440 		rq = context_switch(rq, prev, next, &rf);
3441 	} else {
3442 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3443 		rq_unlock_irq(rq, &rf);
3444 	}
3445 
3446 	balance_callback(rq);
3447 }
3448 
3449 void __noreturn do_task_dead(void)
3450 {
3451 	/*
3452 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3453 	 * when the following two conditions become true.
3454 	 *   - There is race condition of mmap_sem (It is acquired by
3455 	 *     exit_mm()), and
3456 	 *   - SMI occurs before setting TASK_RUNINNG.
3457 	 *     (or hypervisor of virtual machine switches to other guest)
3458 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3459 	 *
3460 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3461 	 * is held by try_to_wake_up()
3462 	 */
3463 	smp_mb();
3464 	raw_spin_unlock_wait(&current->pi_lock);
3465 
3466 	/* Causes final put_task_struct in finish_task_switch(): */
3467 	__set_current_state(TASK_DEAD);
3468 
3469 	/* Tell freezer to ignore us: */
3470 	current->flags |= PF_NOFREEZE;
3471 
3472 	__schedule(false);
3473 	BUG();
3474 
3475 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3476 	for (;;)
3477 		cpu_relax();
3478 }
3479 
3480 static inline void sched_submit_work(struct task_struct *tsk)
3481 {
3482 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3483 		return;
3484 	/*
3485 	 * If we are going to sleep and we have plugged IO queued,
3486 	 * make sure to submit it to avoid deadlocks.
3487 	 */
3488 	if (blk_needs_flush_plug(tsk))
3489 		blk_schedule_flush_plug(tsk);
3490 }
3491 
3492 asmlinkage __visible void __sched schedule(void)
3493 {
3494 	struct task_struct *tsk = current;
3495 
3496 	sched_submit_work(tsk);
3497 	do {
3498 		preempt_disable();
3499 		__schedule(false);
3500 		sched_preempt_enable_no_resched();
3501 	} while (need_resched());
3502 }
3503 EXPORT_SYMBOL(schedule);
3504 
3505 #ifdef CONFIG_CONTEXT_TRACKING
3506 asmlinkage __visible void __sched schedule_user(void)
3507 {
3508 	/*
3509 	 * If we come here after a random call to set_need_resched(),
3510 	 * or we have been woken up remotely but the IPI has not yet arrived,
3511 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3512 	 * we find a better solution.
3513 	 *
3514 	 * NB: There are buggy callers of this function.  Ideally we
3515 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3516 	 * too frequently to make sense yet.
3517 	 */
3518 	enum ctx_state prev_state = exception_enter();
3519 	schedule();
3520 	exception_exit(prev_state);
3521 }
3522 #endif
3523 
3524 /**
3525  * schedule_preempt_disabled - called with preemption disabled
3526  *
3527  * Returns with preemption disabled. Note: preempt_count must be 1
3528  */
3529 void __sched schedule_preempt_disabled(void)
3530 {
3531 	sched_preempt_enable_no_resched();
3532 	schedule();
3533 	preempt_disable();
3534 }
3535 
3536 static void __sched notrace preempt_schedule_common(void)
3537 {
3538 	do {
3539 		/*
3540 		 * Because the function tracer can trace preempt_count_sub()
3541 		 * and it also uses preempt_enable/disable_notrace(), if
3542 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3543 		 * by the function tracer will call this function again and
3544 		 * cause infinite recursion.
3545 		 *
3546 		 * Preemption must be disabled here before the function
3547 		 * tracer can trace. Break up preempt_disable() into two
3548 		 * calls. One to disable preemption without fear of being
3549 		 * traced. The other to still record the preemption latency,
3550 		 * which can also be traced by the function tracer.
3551 		 */
3552 		preempt_disable_notrace();
3553 		preempt_latency_start(1);
3554 		__schedule(true);
3555 		preempt_latency_stop(1);
3556 		preempt_enable_no_resched_notrace();
3557 
3558 		/*
3559 		 * Check again in case we missed a preemption opportunity
3560 		 * between schedule and now.
3561 		 */
3562 	} while (need_resched());
3563 }
3564 
3565 #ifdef CONFIG_PREEMPT
3566 /*
3567  * this is the entry point to schedule() from in-kernel preemption
3568  * off of preempt_enable. Kernel preemptions off return from interrupt
3569  * occur there and call schedule directly.
3570  */
3571 asmlinkage __visible void __sched notrace preempt_schedule(void)
3572 {
3573 	/*
3574 	 * If there is a non-zero preempt_count or interrupts are disabled,
3575 	 * we do not want to preempt the current task. Just return..
3576 	 */
3577 	if (likely(!preemptible()))
3578 		return;
3579 
3580 	preempt_schedule_common();
3581 }
3582 NOKPROBE_SYMBOL(preempt_schedule);
3583 EXPORT_SYMBOL(preempt_schedule);
3584 
3585 /**
3586  * preempt_schedule_notrace - preempt_schedule called by tracing
3587  *
3588  * The tracing infrastructure uses preempt_enable_notrace to prevent
3589  * recursion and tracing preempt enabling caused by the tracing
3590  * infrastructure itself. But as tracing can happen in areas coming
3591  * from userspace or just about to enter userspace, a preempt enable
3592  * can occur before user_exit() is called. This will cause the scheduler
3593  * to be called when the system is still in usermode.
3594  *
3595  * To prevent this, the preempt_enable_notrace will use this function
3596  * instead of preempt_schedule() to exit user context if needed before
3597  * calling the scheduler.
3598  */
3599 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3600 {
3601 	enum ctx_state prev_ctx;
3602 
3603 	if (likely(!preemptible()))
3604 		return;
3605 
3606 	do {
3607 		/*
3608 		 * Because the function tracer can trace preempt_count_sub()
3609 		 * and it also uses preempt_enable/disable_notrace(), if
3610 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3611 		 * by the function tracer will call this function again and
3612 		 * cause infinite recursion.
3613 		 *
3614 		 * Preemption must be disabled here before the function
3615 		 * tracer can trace. Break up preempt_disable() into two
3616 		 * calls. One to disable preemption without fear of being
3617 		 * traced. The other to still record the preemption latency,
3618 		 * which can also be traced by the function tracer.
3619 		 */
3620 		preempt_disable_notrace();
3621 		preempt_latency_start(1);
3622 		/*
3623 		 * Needs preempt disabled in case user_exit() is traced
3624 		 * and the tracer calls preempt_enable_notrace() causing
3625 		 * an infinite recursion.
3626 		 */
3627 		prev_ctx = exception_enter();
3628 		__schedule(true);
3629 		exception_exit(prev_ctx);
3630 
3631 		preempt_latency_stop(1);
3632 		preempt_enable_no_resched_notrace();
3633 	} while (need_resched());
3634 }
3635 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3636 
3637 #endif /* CONFIG_PREEMPT */
3638 
3639 /*
3640  * this is the entry point to schedule() from kernel preemption
3641  * off of irq context.
3642  * Note, that this is called and return with irqs disabled. This will
3643  * protect us against recursive calling from irq.
3644  */
3645 asmlinkage __visible void __sched preempt_schedule_irq(void)
3646 {
3647 	enum ctx_state prev_state;
3648 
3649 	/* Catch callers which need to be fixed */
3650 	BUG_ON(preempt_count() || !irqs_disabled());
3651 
3652 	prev_state = exception_enter();
3653 
3654 	do {
3655 		preempt_disable();
3656 		local_irq_enable();
3657 		__schedule(true);
3658 		local_irq_disable();
3659 		sched_preempt_enable_no_resched();
3660 	} while (need_resched());
3661 
3662 	exception_exit(prev_state);
3663 }
3664 
3665 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3666 			  void *key)
3667 {
3668 	return try_to_wake_up(curr->private, mode, wake_flags);
3669 }
3670 EXPORT_SYMBOL(default_wake_function);
3671 
3672 #ifdef CONFIG_RT_MUTEXES
3673 
3674 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3675 {
3676 	if (pi_task)
3677 		prio = min(prio, pi_task->prio);
3678 
3679 	return prio;
3680 }
3681 
3682 static inline int rt_effective_prio(struct task_struct *p, int prio)
3683 {
3684 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3685 
3686 	return __rt_effective_prio(pi_task, prio);
3687 }
3688 
3689 /*
3690  * rt_mutex_setprio - set the current priority of a task
3691  * @p: task to boost
3692  * @pi_task: donor task
3693  *
3694  * This function changes the 'effective' priority of a task. It does
3695  * not touch ->normal_prio like __setscheduler().
3696  *
3697  * Used by the rt_mutex code to implement priority inheritance
3698  * logic. Call site only calls if the priority of the task changed.
3699  */
3700 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3701 {
3702 	int prio, oldprio, queued, running, queue_flag =
3703 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3704 	const struct sched_class *prev_class;
3705 	struct rq_flags rf;
3706 	struct rq *rq;
3707 
3708 	/* XXX used to be waiter->prio, not waiter->task->prio */
3709 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3710 
3711 	/*
3712 	 * If nothing changed; bail early.
3713 	 */
3714 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3715 		return;
3716 
3717 	rq = __task_rq_lock(p, &rf);
3718 	update_rq_clock(rq);
3719 	/*
3720 	 * Set under pi_lock && rq->lock, such that the value can be used under
3721 	 * either lock.
3722 	 *
3723 	 * Note that there is loads of tricky to make this pointer cache work
3724 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3725 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3726 	 * task is allowed to run again (and can exit). This ensures the pointer
3727 	 * points to a blocked task -- which guaratees the task is present.
3728 	 */
3729 	p->pi_top_task = pi_task;
3730 
3731 	/*
3732 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3733 	 */
3734 	if (prio == p->prio && !dl_prio(prio))
3735 		goto out_unlock;
3736 
3737 	/*
3738 	 * Idle task boosting is a nono in general. There is one
3739 	 * exception, when PREEMPT_RT and NOHZ is active:
3740 	 *
3741 	 * The idle task calls get_next_timer_interrupt() and holds
3742 	 * the timer wheel base->lock on the CPU and another CPU wants
3743 	 * to access the timer (probably to cancel it). We can safely
3744 	 * ignore the boosting request, as the idle CPU runs this code
3745 	 * with interrupts disabled and will complete the lock
3746 	 * protected section without being interrupted. So there is no
3747 	 * real need to boost.
3748 	 */
3749 	if (unlikely(p == rq->idle)) {
3750 		WARN_ON(p != rq->curr);
3751 		WARN_ON(p->pi_blocked_on);
3752 		goto out_unlock;
3753 	}
3754 
3755 	trace_sched_pi_setprio(p, pi_task);
3756 	oldprio = p->prio;
3757 
3758 	if (oldprio == prio)
3759 		queue_flag &= ~DEQUEUE_MOVE;
3760 
3761 	prev_class = p->sched_class;
3762 	queued = task_on_rq_queued(p);
3763 	running = task_current(rq, p);
3764 	if (queued)
3765 		dequeue_task(rq, p, queue_flag);
3766 	if (running)
3767 		put_prev_task(rq, p);
3768 
3769 	/*
3770 	 * Boosting condition are:
3771 	 * 1. -rt task is running and holds mutex A
3772 	 *      --> -dl task blocks on mutex A
3773 	 *
3774 	 * 2. -dl task is running and holds mutex A
3775 	 *      --> -dl task blocks on mutex A and could preempt the
3776 	 *          running task
3777 	 */
3778 	if (dl_prio(prio)) {
3779 		if (!dl_prio(p->normal_prio) ||
3780 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3781 			p->dl.dl_boosted = 1;
3782 			queue_flag |= ENQUEUE_REPLENISH;
3783 		} else
3784 			p->dl.dl_boosted = 0;
3785 		p->sched_class = &dl_sched_class;
3786 	} else if (rt_prio(prio)) {
3787 		if (dl_prio(oldprio))
3788 			p->dl.dl_boosted = 0;
3789 		if (oldprio < prio)
3790 			queue_flag |= ENQUEUE_HEAD;
3791 		p->sched_class = &rt_sched_class;
3792 	} else {
3793 		if (dl_prio(oldprio))
3794 			p->dl.dl_boosted = 0;
3795 		if (rt_prio(oldprio))
3796 			p->rt.timeout = 0;
3797 		p->sched_class = &fair_sched_class;
3798 	}
3799 
3800 	p->prio = prio;
3801 
3802 	if (queued)
3803 		enqueue_task(rq, p, queue_flag);
3804 	if (running)
3805 		set_curr_task(rq, p);
3806 
3807 	check_class_changed(rq, p, prev_class, oldprio);
3808 out_unlock:
3809 	/* Avoid rq from going away on us: */
3810 	preempt_disable();
3811 	__task_rq_unlock(rq, &rf);
3812 
3813 	balance_callback(rq);
3814 	preempt_enable();
3815 }
3816 #else
3817 static inline int rt_effective_prio(struct task_struct *p, int prio)
3818 {
3819 	return prio;
3820 }
3821 #endif
3822 
3823 void set_user_nice(struct task_struct *p, long nice)
3824 {
3825 	bool queued, running;
3826 	int old_prio, delta;
3827 	struct rq_flags rf;
3828 	struct rq *rq;
3829 
3830 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3831 		return;
3832 	/*
3833 	 * We have to be careful, if called from sys_setpriority(),
3834 	 * the task might be in the middle of scheduling on another CPU.
3835 	 */
3836 	rq = task_rq_lock(p, &rf);
3837 	update_rq_clock(rq);
3838 
3839 	/*
3840 	 * The RT priorities are set via sched_setscheduler(), but we still
3841 	 * allow the 'normal' nice value to be set - but as expected
3842 	 * it wont have any effect on scheduling until the task is
3843 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3844 	 */
3845 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3846 		p->static_prio = NICE_TO_PRIO(nice);
3847 		goto out_unlock;
3848 	}
3849 	queued = task_on_rq_queued(p);
3850 	running = task_current(rq, p);
3851 	if (queued)
3852 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3853 	if (running)
3854 		put_prev_task(rq, p);
3855 
3856 	p->static_prio = NICE_TO_PRIO(nice);
3857 	set_load_weight(p);
3858 	old_prio = p->prio;
3859 	p->prio = effective_prio(p);
3860 	delta = p->prio - old_prio;
3861 
3862 	if (queued) {
3863 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3864 		/*
3865 		 * If the task increased its priority or is running and
3866 		 * lowered its priority, then reschedule its CPU:
3867 		 */
3868 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3869 			resched_curr(rq);
3870 	}
3871 	if (running)
3872 		set_curr_task(rq, p);
3873 out_unlock:
3874 	task_rq_unlock(rq, p, &rf);
3875 }
3876 EXPORT_SYMBOL(set_user_nice);
3877 
3878 /*
3879  * can_nice - check if a task can reduce its nice value
3880  * @p: task
3881  * @nice: nice value
3882  */
3883 int can_nice(const struct task_struct *p, const int nice)
3884 {
3885 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3886 	int nice_rlim = nice_to_rlimit(nice);
3887 
3888 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3889 		capable(CAP_SYS_NICE));
3890 }
3891 
3892 #ifdef __ARCH_WANT_SYS_NICE
3893 
3894 /*
3895  * sys_nice - change the priority of the current process.
3896  * @increment: priority increment
3897  *
3898  * sys_setpriority is a more generic, but much slower function that
3899  * does similar things.
3900  */
3901 SYSCALL_DEFINE1(nice, int, increment)
3902 {
3903 	long nice, retval;
3904 
3905 	/*
3906 	 * Setpriority might change our priority at the same moment.
3907 	 * We don't have to worry. Conceptually one call occurs first
3908 	 * and we have a single winner.
3909 	 */
3910 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3911 	nice = task_nice(current) + increment;
3912 
3913 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3914 	if (increment < 0 && !can_nice(current, nice))
3915 		return -EPERM;
3916 
3917 	retval = security_task_setnice(current, nice);
3918 	if (retval)
3919 		return retval;
3920 
3921 	set_user_nice(current, nice);
3922 	return 0;
3923 }
3924 
3925 #endif
3926 
3927 /**
3928  * task_prio - return the priority value of a given task.
3929  * @p: the task in question.
3930  *
3931  * Return: The priority value as seen by users in /proc.
3932  * RT tasks are offset by -200. Normal tasks are centered
3933  * around 0, value goes from -16 to +15.
3934  */
3935 int task_prio(const struct task_struct *p)
3936 {
3937 	return p->prio - MAX_RT_PRIO;
3938 }
3939 
3940 /**
3941  * idle_cpu - is a given CPU idle currently?
3942  * @cpu: the processor in question.
3943  *
3944  * Return: 1 if the CPU is currently idle. 0 otherwise.
3945  */
3946 int idle_cpu(int cpu)
3947 {
3948 	struct rq *rq = cpu_rq(cpu);
3949 
3950 	if (rq->curr != rq->idle)
3951 		return 0;
3952 
3953 	if (rq->nr_running)
3954 		return 0;
3955 
3956 #ifdef CONFIG_SMP
3957 	if (!llist_empty(&rq->wake_list))
3958 		return 0;
3959 #endif
3960 
3961 	return 1;
3962 }
3963 
3964 /**
3965  * idle_task - return the idle task for a given CPU.
3966  * @cpu: the processor in question.
3967  *
3968  * Return: The idle task for the CPU @cpu.
3969  */
3970 struct task_struct *idle_task(int cpu)
3971 {
3972 	return cpu_rq(cpu)->idle;
3973 }
3974 
3975 /**
3976  * find_process_by_pid - find a process with a matching PID value.
3977  * @pid: the pid in question.
3978  *
3979  * The task of @pid, if found. %NULL otherwise.
3980  */
3981 static struct task_struct *find_process_by_pid(pid_t pid)
3982 {
3983 	return pid ? find_task_by_vpid(pid) : current;
3984 }
3985 
3986 /*
3987  * This function initializes the sched_dl_entity of a newly becoming
3988  * SCHED_DEADLINE task.
3989  *
3990  * Only the static values are considered here, the actual runtime and the
3991  * absolute deadline will be properly calculated when the task is enqueued
3992  * for the first time with its new policy.
3993  */
3994 static void
3995 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3996 {
3997 	struct sched_dl_entity *dl_se = &p->dl;
3998 
3999 	dl_se->dl_runtime = attr->sched_runtime;
4000 	dl_se->dl_deadline = attr->sched_deadline;
4001 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
4002 	dl_se->flags = attr->sched_flags;
4003 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
4004 
4005 	/*
4006 	 * Changing the parameters of a task is 'tricky' and we're not doing
4007 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
4008 	 *
4009 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
4010 	 * point. This would include retaining the task_struct until that time
4011 	 * and change dl_overflow() to not immediately decrement the current
4012 	 * amount.
4013 	 *
4014 	 * Instead we retain the current runtime/deadline and let the new
4015 	 * parameters take effect after the current reservation period lapses.
4016 	 * This is safe (albeit pessimistic) because the 0-lag point is always
4017 	 * before the current scheduling deadline.
4018 	 *
4019 	 * We can still have temporary overloads because we do not delay the
4020 	 * change in bandwidth until that time; so admission control is
4021 	 * not on the safe side. It does however guarantee tasks will never
4022 	 * consume more than promised.
4023 	 */
4024 }
4025 
4026 /*
4027  * sched_setparam() passes in -1 for its policy, to let the functions
4028  * it calls know not to change it.
4029  */
4030 #define SETPARAM_POLICY	-1
4031 
4032 static void __setscheduler_params(struct task_struct *p,
4033 		const struct sched_attr *attr)
4034 {
4035 	int policy = attr->sched_policy;
4036 
4037 	if (policy == SETPARAM_POLICY)
4038 		policy = p->policy;
4039 
4040 	p->policy = policy;
4041 
4042 	if (dl_policy(policy))
4043 		__setparam_dl(p, attr);
4044 	else if (fair_policy(policy))
4045 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4046 
4047 	/*
4048 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4049 	 * !rt_policy. Always setting this ensures that things like
4050 	 * getparam()/getattr() don't report silly values for !rt tasks.
4051 	 */
4052 	p->rt_priority = attr->sched_priority;
4053 	p->normal_prio = normal_prio(p);
4054 	set_load_weight(p);
4055 }
4056 
4057 /* Actually do priority change: must hold pi & rq lock. */
4058 static void __setscheduler(struct rq *rq, struct task_struct *p,
4059 			   const struct sched_attr *attr, bool keep_boost)
4060 {
4061 	__setscheduler_params(p, attr);
4062 
4063 	/*
4064 	 * Keep a potential priority boosting if called from
4065 	 * sched_setscheduler().
4066 	 */
4067 	p->prio = normal_prio(p);
4068 	if (keep_boost)
4069 		p->prio = rt_effective_prio(p, p->prio);
4070 
4071 	if (dl_prio(p->prio))
4072 		p->sched_class = &dl_sched_class;
4073 	else if (rt_prio(p->prio))
4074 		p->sched_class = &rt_sched_class;
4075 	else
4076 		p->sched_class = &fair_sched_class;
4077 }
4078 
4079 static void
4080 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4081 {
4082 	struct sched_dl_entity *dl_se = &p->dl;
4083 
4084 	attr->sched_priority = p->rt_priority;
4085 	attr->sched_runtime = dl_se->dl_runtime;
4086 	attr->sched_deadline = dl_se->dl_deadline;
4087 	attr->sched_period = dl_se->dl_period;
4088 	attr->sched_flags = dl_se->flags;
4089 }
4090 
4091 /*
4092  * This function validates the new parameters of a -deadline task.
4093  * We ask for the deadline not being zero, and greater or equal
4094  * than the runtime, as well as the period of being zero or
4095  * greater than deadline. Furthermore, we have to be sure that
4096  * user parameters are above the internal resolution of 1us (we
4097  * check sched_runtime only since it is always the smaller one) and
4098  * below 2^63 ns (we have to check both sched_deadline and
4099  * sched_period, as the latter can be zero).
4100  */
4101 static bool
4102 __checkparam_dl(const struct sched_attr *attr)
4103 {
4104 	/* deadline != 0 */
4105 	if (attr->sched_deadline == 0)
4106 		return false;
4107 
4108 	/*
4109 	 * Since we truncate DL_SCALE bits, make sure we're at least
4110 	 * that big.
4111 	 */
4112 	if (attr->sched_runtime < (1ULL << DL_SCALE))
4113 		return false;
4114 
4115 	/*
4116 	 * Since we use the MSB for wrap-around and sign issues, make
4117 	 * sure it's not set (mind that period can be equal to zero).
4118 	 */
4119 	if (attr->sched_deadline & (1ULL << 63) ||
4120 	    attr->sched_period & (1ULL << 63))
4121 		return false;
4122 
4123 	/* runtime <= deadline <= period (if period != 0) */
4124 	if ((attr->sched_period != 0 &&
4125 	     attr->sched_period < attr->sched_deadline) ||
4126 	    attr->sched_deadline < attr->sched_runtime)
4127 		return false;
4128 
4129 	return true;
4130 }
4131 
4132 /*
4133  * Check the target process has a UID that matches the current process's:
4134  */
4135 static bool check_same_owner(struct task_struct *p)
4136 {
4137 	const struct cred *cred = current_cred(), *pcred;
4138 	bool match;
4139 
4140 	rcu_read_lock();
4141 	pcred = __task_cred(p);
4142 	match = (uid_eq(cred->euid, pcred->euid) ||
4143 		 uid_eq(cred->euid, pcred->uid));
4144 	rcu_read_unlock();
4145 	return match;
4146 }
4147 
4148 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4149 {
4150 	struct sched_dl_entity *dl_se = &p->dl;
4151 
4152 	if (dl_se->dl_runtime != attr->sched_runtime ||
4153 		dl_se->dl_deadline != attr->sched_deadline ||
4154 		dl_se->dl_period != attr->sched_period ||
4155 		dl_se->flags != attr->sched_flags)
4156 		return true;
4157 
4158 	return false;
4159 }
4160 
4161 static int __sched_setscheduler(struct task_struct *p,
4162 				const struct sched_attr *attr,
4163 				bool user, bool pi)
4164 {
4165 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4166 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4167 	int retval, oldprio, oldpolicy = -1, queued, running;
4168 	int new_effective_prio, policy = attr->sched_policy;
4169 	const struct sched_class *prev_class;
4170 	struct rq_flags rf;
4171 	int reset_on_fork;
4172 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4173 	struct rq *rq;
4174 
4175 	/* May grab non-irq protected spin_locks: */
4176 	BUG_ON(in_interrupt());
4177 recheck:
4178 	/* Double check policy once rq lock held: */
4179 	if (policy < 0) {
4180 		reset_on_fork = p->sched_reset_on_fork;
4181 		policy = oldpolicy = p->policy;
4182 	} else {
4183 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4184 
4185 		if (!valid_policy(policy))
4186 			return -EINVAL;
4187 	}
4188 
4189 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4190 		return -EINVAL;
4191 
4192 	/*
4193 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4194 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4195 	 * SCHED_BATCH and SCHED_IDLE is 0.
4196 	 */
4197 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4198 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4199 		return -EINVAL;
4200 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4201 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4202 		return -EINVAL;
4203 
4204 	/*
4205 	 * Allow unprivileged RT tasks to decrease priority:
4206 	 */
4207 	if (user && !capable(CAP_SYS_NICE)) {
4208 		if (fair_policy(policy)) {
4209 			if (attr->sched_nice < task_nice(p) &&
4210 			    !can_nice(p, attr->sched_nice))
4211 				return -EPERM;
4212 		}
4213 
4214 		if (rt_policy(policy)) {
4215 			unsigned long rlim_rtprio =
4216 					task_rlimit(p, RLIMIT_RTPRIO);
4217 
4218 			/* Can't set/change the rt policy: */
4219 			if (policy != p->policy && !rlim_rtprio)
4220 				return -EPERM;
4221 
4222 			/* Can't increase priority: */
4223 			if (attr->sched_priority > p->rt_priority &&
4224 			    attr->sched_priority > rlim_rtprio)
4225 				return -EPERM;
4226 		}
4227 
4228 		 /*
4229 		  * Can't set/change SCHED_DEADLINE policy at all for now
4230 		  * (safest behavior); in the future we would like to allow
4231 		  * unprivileged DL tasks to increase their relative deadline
4232 		  * or reduce their runtime (both ways reducing utilization)
4233 		  */
4234 		if (dl_policy(policy))
4235 			return -EPERM;
4236 
4237 		/*
4238 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4239 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4240 		 */
4241 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4242 			if (!can_nice(p, task_nice(p)))
4243 				return -EPERM;
4244 		}
4245 
4246 		/* Can't change other user's priorities: */
4247 		if (!check_same_owner(p))
4248 			return -EPERM;
4249 
4250 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4251 		if (p->sched_reset_on_fork && !reset_on_fork)
4252 			return -EPERM;
4253 	}
4254 
4255 	if (user) {
4256 		retval = security_task_setscheduler(p);
4257 		if (retval)
4258 			return retval;
4259 	}
4260 
4261 	/*
4262 	 * Make sure no PI-waiters arrive (or leave) while we are
4263 	 * changing the priority of the task:
4264 	 *
4265 	 * To be able to change p->policy safely, the appropriate
4266 	 * runqueue lock must be held.
4267 	 */
4268 	rq = task_rq_lock(p, &rf);
4269 	update_rq_clock(rq);
4270 
4271 	/*
4272 	 * Changing the policy of the stop threads its a very bad idea:
4273 	 */
4274 	if (p == rq->stop) {
4275 		task_rq_unlock(rq, p, &rf);
4276 		return -EINVAL;
4277 	}
4278 
4279 	/*
4280 	 * If not changing anything there's no need to proceed further,
4281 	 * but store a possible modification of reset_on_fork.
4282 	 */
4283 	if (unlikely(policy == p->policy)) {
4284 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4285 			goto change;
4286 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4287 			goto change;
4288 		if (dl_policy(policy) && dl_param_changed(p, attr))
4289 			goto change;
4290 
4291 		p->sched_reset_on_fork = reset_on_fork;
4292 		task_rq_unlock(rq, p, &rf);
4293 		return 0;
4294 	}
4295 change:
4296 
4297 	if (user) {
4298 #ifdef CONFIG_RT_GROUP_SCHED
4299 		/*
4300 		 * Do not allow realtime tasks into groups that have no runtime
4301 		 * assigned.
4302 		 */
4303 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4304 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4305 				!task_group_is_autogroup(task_group(p))) {
4306 			task_rq_unlock(rq, p, &rf);
4307 			return -EPERM;
4308 		}
4309 #endif
4310 #ifdef CONFIG_SMP
4311 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4312 			cpumask_t *span = rq->rd->span;
4313 
4314 			/*
4315 			 * Don't allow tasks with an affinity mask smaller than
4316 			 * the entire root_domain to become SCHED_DEADLINE. We
4317 			 * will also fail if there's no bandwidth available.
4318 			 */
4319 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4320 			    rq->rd->dl_bw.bw == 0) {
4321 				task_rq_unlock(rq, p, &rf);
4322 				return -EPERM;
4323 			}
4324 		}
4325 #endif
4326 	}
4327 
4328 	/* Re-check policy now with rq lock held: */
4329 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4330 		policy = oldpolicy = -1;
4331 		task_rq_unlock(rq, p, &rf);
4332 		goto recheck;
4333 	}
4334 
4335 	/*
4336 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4337 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4338 	 * is available.
4339 	 */
4340 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4341 		task_rq_unlock(rq, p, &rf);
4342 		return -EBUSY;
4343 	}
4344 
4345 	p->sched_reset_on_fork = reset_on_fork;
4346 	oldprio = p->prio;
4347 
4348 	if (pi) {
4349 		/*
4350 		 * Take priority boosted tasks into account. If the new
4351 		 * effective priority is unchanged, we just store the new
4352 		 * normal parameters and do not touch the scheduler class and
4353 		 * the runqueue. This will be done when the task deboost
4354 		 * itself.
4355 		 */
4356 		new_effective_prio = rt_effective_prio(p, newprio);
4357 		if (new_effective_prio == oldprio)
4358 			queue_flags &= ~DEQUEUE_MOVE;
4359 	}
4360 
4361 	queued = task_on_rq_queued(p);
4362 	running = task_current(rq, p);
4363 	if (queued)
4364 		dequeue_task(rq, p, queue_flags);
4365 	if (running)
4366 		put_prev_task(rq, p);
4367 
4368 	prev_class = p->sched_class;
4369 	__setscheduler(rq, p, attr, pi);
4370 
4371 	if (queued) {
4372 		/*
4373 		 * We enqueue to tail when the priority of a task is
4374 		 * increased (user space view).
4375 		 */
4376 		if (oldprio < p->prio)
4377 			queue_flags |= ENQUEUE_HEAD;
4378 
4379 		enqueue_task(rq, p, queue_flags);
4380 	}
4381 	if (running)
4382 		set_curr_task(rq, p);
4383 
4384 	check_class_changed(rq, p, prev_class, oldprio);
4385 
4386 	/* Avoid rq from going away on us: */
4387 	preempt_disable();
4388 	task_rq_unlock(rq, p, &rf);
4389 
4390 	if (pi)
4391 		rt_mutex_adjust_pi(p);
4392 
4393 	/* Run balance callbacks after we've adjusted the PI chain: */
4394 	balance_callback(rq);
4395 	preempt_enable();
4396 
4397 	return 0;
4398 }
4399 
4400 static int _sched_setscheduler(struct task_struct *p, int policy,
4401 			       const struct sched_param *param, bool check)
4402 {
4403 	struct sched_attr attr = {
4404 		.sched_policy   = policy,
4405 		.sched_priority = param->sched_priority,
4406 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4407 	};
4408 
4409 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4410 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4411 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4412 		policy &= ~SCHED_RESET_ON_FORK;
4413 		attr.sched_policy = policy;
4414 	}
4415 
4416 	return __sched_setscheduler(p, &attr, check, true);
4417 }
4418 /**
4419  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4420  * @p: the task in question.
4421  * @policy: new policy.
4422  * @param: structure containing the new RT priority.
4423  *
4424  * Return: 0 on success. An error code otherwise.
4425  *
4426  * NOTE that the task may be already dead.
4427  */
4428 int sched_setscheduler(struct task_struct *p, int policy,
4429 		       const struct sched_param *param)
4430 {
4431 	return _sched_setscheduler(p, policy, param, true);
4432 }
4433 EXPORT_SYMBOL_GPL(sched_setscheduler);
4434 
4435 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4436 {
4437 	return __sched_setscheduler(p, attr, true, true);
4438 }
4439 EXPORT_SYMBOL_GPL(sched_setattr);
4440 
4441 /**
4442  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4443  * @p: the task in question.
4444  * @policy: new policy.
4445  * @param: structure containing the new RT priority.
4446  *
4447  * Just like sched_setscheduler, only don't bother checking if the
4448  * current context has permission.  For example, this is needed in
4449  * stop_machine(): we create temporary high priority worker threads,
4450  * but our caller might not have that capability.
4451  *
4452  * Return: 0 on success. An error code otherwise.
4453  */
4454 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4455 			       const struct sched_param *param)
4456 {
4457 	return _sched_setscheduler(p, policy, param, false);
4458 }
4459 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4460 
4461 static int
4462 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4463 {
4464 	struct sched_param lparam;
4465 	struct task_struct *p;
4466 	int retval;
4467 
4468 	if (!param || pid < 0)
4469 		return -EINVAL;
4470 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4471 		return -EFAULT;
4472 
4473 	rcu_read_lock();
4474 	retval = -ESRCH;
4475 	p = find_process_by_pid(pid);
4476 	if (p != NULL)
4477 		retval = sched_setscheduler(p, policy, &lparam);
4478 	rcu_read_unlock();
4479 
4480 	return retval;
4481 }
4482 
4483 /*
4484  * Mimics kernel/events/core.c perf_copy_attr().
4485  */
4486 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4487 {
4488 	u32 size;
4489 	int ret;
4490 
4491 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4492 		return -EFAULT;
4493 
4494 	/* Zero the full structure, so that a short copy will be nice: */
4495 	memset(attr, 0, sizeof(*attr));
4496 
4497 	ret = get_user(size, &uattr->size);
4498 	if (ret)
4499 		return ret;
4500 
4501 	/* Bail out on silly large: */
4502 	if (size > PAGE_SIZE)
4503 		goto err_size;
4504 
4505 	/* ABI compatibility quirk: */
4506 	if (!size)
4507 		size = SCHED_ATTR_SIZE_VER0;
4508 
4509 	if (size < SCHED_ATTR_SIZE_VER0)
4510 		goto err_size;
4511 
4512 	/*
4513 	 * If we're handed a bigger struct than we know of,
4514 	 * ensure all the unknown bits are 0 - i.e. new
4515 	 * user-space does not rely on any kernel feature
4516 	 * extensions we dont know about yet.
4517 	 */
4518 	if (size > sizeof(*attr)) {
4519 		unsigned char __user *addr;
4520 		unsigned char __user *end;
4521 		unsigned char val;
4522 
4523 		addr = (void __user *)uattr + sizeof(*attr);
4524 		end  = (void __user *)uattr + size;
4525 
4526 		for (; addr < end; addr++) {
4527 			ret = get_user(val, addr);
4528 			if (ret)
4529 				return ret;
4530 			if (val)
4531 				goto err_size;
4532 		}
4533 		size = sizeof(*attr);
4534 	}
4535 
4536 	ret = copy_from_user(attr, uattr, size);
4537 	if (ret)
4538 		return -EFAULT;
4539 
4540 	/*
4541 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4542 	 * to be strict and return an error on out-of-bounds values?
4543 	 */
4544 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4545 
4546 	return 0;
4547 
4548 err_size:
4549 	put_user(sizeof(*attr), &uattr->size);
4550 	return -E2BIG;
4551 }
4552 
4553 /**
4554  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4555  * @pid: the pid in question.
4556  * @policy: new policy.
4557  * @param: structure containing the new RT priority.
4558  *
4559  * Return: 0 on success. An error code otherwise.
4560  */
4561 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4562 {
4563 	if (policy < 0)
4564 		return -EINVAL;
4565 
4566 	return do_sched_setscheduler(pid, policy, param);
4567 }
4568 
4569 /**
4570  * sys_sched_setparam - set/change the RT priority of a thread
4571  * @pid: the pid in question.
4572  * @param: structure containing the new RT priority.
4573  *
4574  * Return: 0 on success. An error code otherwise.
4575  */
4576 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4577 {
4578 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4579 }
4580 
4581 /**
4582  * sys_sched_setattr - same as above, but with extended sched_attr
4583  * @pid: the pid in question.
4584  * @uattr: structure containing the extended parameters.
4585  * @flags: for future extension.
4586  */
4587 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4588 			       unsigned int, flags)
4589 {
4590 	struct sched_attr attr;
4591 	struct task_struct *p;
4592 	int retval;
4593 
4594 	if (!uattr || pid < 0 || flags)
4595 		return -EINVAL;
4596 
4597 	retval = sched_copy_attr(uattr, &attr);
4598 	if (retval)
4599 		return retval;
4600 
4601 	if ((int)attr.sched_policy < 0)
4602 		return -EINVAL;
4603 
4604 	rcu_read_lock();
4605 	retval = -ESRCH;
4606 	p = find_process_by_pid(pid);
4607 	if (p != NULL)
4608 		retval = sched_setattr(p, &attr);
4609 	rcu_read_unlock();
4610 
4611 	return retval;
4612 }
4613 
4614 /**
4615  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4616  * @pid: the pid in question.
4617  *
4618  * Return: On success, the policy of the thread. Otherwise, a negative error
4619  * code.
4620  */
4621 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4622 {
4623 	struct task_struct *p;
4624 	int retval;
4625 
4626 	if (pid < 0)
4627 		return -EINVAL;
4628 
4629 	retval = -ESRCH;
4630 	rcu_read_lock();
4631 	p = find_process_by_pid(pid);
4632 	if (p) {
4633 		retval = security_task_getscheduler(p);
4634 		if (!retval)
4635 			retval = p->policy
4636 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4637 	}
4638 	rcu_read_unlock();
4639 	return retval;
4640 }
4641 
4642 /**
4643  * sys_sched_getparam - get the RT priority of a thread
4644  * @pid: the pid in question.
4645  * @param: structure containing the RT priority.
4646  *
4647  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4648  * code.
4649  */
4650 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4651 {
4652 	struct sched_param lp = { .sched_priority = 0 };
4653 	struct task_struct *p;
4654 	int retval;
4655 
4656 	if (!param || pid < 0)
4657 		return -EINVAL;
4658 
4659 	rcu_read_lock();
4660 	p = find_process_by_pid(pid);
4661 	retval = -ESRCH;
4662 	if (!p)
4663 		goto out_unlock;
4664 
4665 	retval = security_task_getscheduler(p);
4666 	if (retval)
4667 		goto out_unlock;
4668 
4669 	if (task_has_rt_policy(p))
4670 		lp.sched_priority = p->rt_priority;
4671 	rcu_read_unlock();
4672 
4673 	/*
4674 	 * This one might sleep, we cannot do it with a spinlock held ...
4675 	 */
4676 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4677 
4678 	return retval;
4679 
4680 out_unlock:
4681 	rcu_read_unlock();
4682 	return retval;
4683 }
4684 
4685 static int sched_read_attr(struct sched_attr __user *uattr,
4686 			   struct sched_attr *attr,
4687 			   unsigned int usize)
4688 {
4689 	int ret;
4690 
4691 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4692 		return -EFAULT;
4693 
4694 	/*
4695 	 * If we're handed a smaller struct than we know of,
4696 	 * ensure all the unknown bits are 0 - i.e. old
4697 	 * user-space does not get uncomplete information.
4698 	 */
4699 	if (usize < sizeof(*attr)) {
4700 		unsigned char *addr;
4701 		unsigned char *end;
4702 
4703 		addr = (void *)attr + usize;
4704 		end  = (void *)attr + sizeof(*attr);
4705 
4706 		for (; addr < end; addr++) {
4707 			if (*addr)
4708 				return -EFBIG;
4709 		}
4710 
4711 		attr->size = usize;
4712 	}
4713 
4714 	ret = copy_to_user(uattr, attr, attr->size);
4715 	if (ret)
4716 		return -EFAULT;
4717 
4718 	return 0;
4719 }
4720 
4721 /**
4722  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4723  * @pid: the pid in question.
4724  * @uattr: structure containing the extended parameters.
4725  * @size: sizeof(attr) for fwd/bwd comp.
4726  * @flags: for future extension.
4727  */
4728 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4729 		unsigned int, size, unsigned int, flags)
4730 {
4731 	struct sched_attr attr = {
4732 		.size = sizeof(struct sched_attr),
4733 	};
4734 	struct task_struct *p;
4735 	int retval;
4736 
4737 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4738 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4739 		return -EINVAL;
4740 
4741 	rcu_read_lock();
4742 	p = find_process_by_pid(pid);
4743 	retval = -ESRCH;
4744 	if (!p)
4745 		goto out_unlock;
4746 
4747 	retval = security_task_getscheduler(p);
4748 	if (retval)
4749 		goto out_unlock;
4750 
4751 	attr.sched_policy = p->policy;
4752 	if (p->sched_reset_on_fork)
4753 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4754 	if (task_has_dl_policy(p))
4755 		__getparam_dl(p, &attr);
4756 	else if (task_has_rt_policy(p))
4757 		attr.sched_priority = p->rt_priority;
4758 	else
4759 		attr.sched_nice = task_nice(p);
4760 
4761 	rcu_read_unlock();
4762 
4763 	retval = sched_read_attr(uattr, &attr, size);
4764 	return retval;
4765 
4766 out_unlock:
4767 	rcu_read_unlock();
4768 	return retval;
4769 }
4770 
4771 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4772 {
4773 	cpumask_var_t cpus_allowed, new_mask;
4774 	struct task_struct *p;
4775 	int retval;
4776 
4777 	rcu_read_lock();
4778 
4779 	p = find_process_by_pid(pid);
4780 	if (!p) {
4781 		rcu_read_unlock();
4782 		return -ESRCH;
4783 	}
4784 
4785 	/* Prevent p going away */
4786 	get_task_struct(p);
4787 	rcu_read_unlock();
4788 
4789 	if (p->flags & PF_NO_SETAFFINITY) {
4790 		retval = -EINVAL;
4791 		goto out_put_task;
4792 	}
4793 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4794 		retval = -ENOMEM;
4795 		goto out_put_task;
4796 	}
4797 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4798 		retval = -ENOMEM;
4799 		goto out_free_cpus_allowed;
4800 	}
4801 	retval = -EPERM;
4802 	if (!check_same_owner(p)) {
4803 		rcu_read_lock();
4804 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4805 			rcu_read_unlock();
4806 			goto out_free_new_mask;
4807 		}
4808 		rcu_read_unlock();
4809 	}
4810 
4811 	retval = security_task_setscheduler(p);
4812 	if (retval)
4813 		goto out_free_new_mask;
4814 
4815 
4816 	cpuset_cpus_allowed(p, cpus_allowed);
4817 	cpumask_and(new_mask, in_mask, cpus_allowed);
4818 
4819 	/*
4820 	 * Since bandwidth control happens on root_domain basis,
4821 	 * if admission test is enabled, we only admit -deadline
4822 	 * tasks allowed to run on all the CPUs in the task's
4823 	 * root_domain.
4824 	 */
4825 #ifdef CONFIG_SMP
4826 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4827 		rcu_read_lock();
4828 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4829 			retval = -EBUSY;
4830 			rcu_read_unlock();
4831 			goto out_free_new_mask;
4832 		}
4833 		rcu_read_unlock();
4834 	}
4835 #endif
4836 again:
4837 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4838 
4839 	if (!retval) {
4840 		cpuset_cpus_allowed(p, cpus_allowed);
4841 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4842 			/*
4843 			 * We must have raced with a concurrent cpuset
4844 			 * update. Just reset the cpus_allowed to the
4845 			 * cpuset's cpus_allowed
4846 			 */
4847 			cpumask_copy(new_mask, cpus_allowed);
4848 			goto again;
4849 		}
4850 	}
4851 out_free_new_mask:
4852 	free_cpumask_var(new_mask);
4853 out_free_cpus_allowed:
4854 	free_cpumask_var(cpus_allowed);
4855 out_put_task:
4856 	put_task_struct(p);
4857 	return retval;
4858 }
4859 
4860 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4861 			     struct cpumask *new_mask)
4862 {
4863 	if (len < cpumask_size())
4864 		cpumask_clear(new_mask);
4865 	else if (len > cpumask_size())
4866 		len = cpumask_size();
4867 
4868 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4869 }
4870 
4871 /**
4872  * sys_sched_setaffinity - set the CPU affinity of a process
4873  * @pid: pid of the process
4874  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4875  * @user_mask_ptr: user-space pointer to the new CPU mask
4876  *
4877  * Return: 0 on success. An error code otherwise.
4878  */
4879 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4880 		unsigned long __user *, user_mask_ptr)
4881 {
4882 	cpumask_var_t new_mask;
4883 	int retval;
4884 
4885 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4886 		return -ENOMEM;
4887 
4888 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4889 	if (retval == 0)
4890 		retval = sched_setaffinity(pid, new_mask);
4891 	free_cpumask_var(new_mask);
4892 	return retval;
4893 }
4894 
4895 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4896 {
4897 	struct task_struct *p;
4898 	unsigned long flags;
4899 	int retval;
4900 
4901 	rcu_read_lock();
4902 
4903 	retval = -ESRCH;
4904 	p = find_process_by_pid(pid);
4905 	if (!p)
4906 		goto out_unlock;
4907 
4908 	retval = security_task_getscheduler(p);
4909 	if (retval)
4910 		goto out_unlock;
4911 
4912 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4913 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4914 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4915 
4916 out_unlock:
4917 	rcu_read_unlock();
4918 
4919 	return retval;
4920 }
4921 
4922 /**
4923  * sys_sched_getaffinity - get the CPU affinity of a process
4924  * @pid: pid of the process
4925  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4926  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4927  *
4928  * Return: size of CPU mask copied to user_mask_ptr on success. An
4929  * error code otherwise.
4930  */
4931 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4932 		unsigned long __user *, user_mask_ptr)
4933 {
4934 	int ret;
4935 	cpumask_var_t mask;
4936 
4937 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4938 		return -EINVAL;
4939 	if (len & (sizeof(unsigned long)-1))
4940 		return -EINVAL;
4941 
4942 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4943 		return -ENOMEM;
4944 
4945 	ret = sched_getaffinity(pid, mask);
4946 	if (ret == 0) {
4947 		size_t retlen = min_t(size_t, len, cpumask_size());
4948 
4949 		if (copy_to_user(user_mask_ptr, mask, retlen))
4950 			ret = -EFAULT;
4951 		else
4952 			ret = retlen;
4953 	}
4954 	free_cpumask_var(mask);
4955 
4956 	return ret;
4957 }
4958 
4959 /**
4960  * sys_sched_yield - yield the current processor to other threads.
4961  *
4962  * This function yields the current CPU to other tasks. If there are no
4963  * other threads running on this CPU then this function will return.
4964  *
4965  * Return: 0.
4966  */
4967 SYSCALL_DEFINE0(sched_yield)
4968 {
4969 	struct rq_flags rf;
4970 	struct rq *rq;
4971 
4972 	local_irq_disable();
4973 	rq = this_rq();
4974 	rq_lock(rq, &rf);
4975 
4976 	schedstat_inc(rq->yld_count);
4977 	current->sched_class->yield_task(rq);
4978 
4979 	/*
4980 	 * Since we are going to call schedule() anyway, there's
4981 	 * no need to preempt or enable interrupts:
4982 	 */
4983 	preempt_disable();
4984 	rq_unlock(rq, &rf);
4985 	sched_preempt_enable_no_resched();
4986 
4987 	schedule();
4988 
4989 	return 0;
4990 }
4991 
4992 #ifndef CONFIG_PREEMPT
4993 int __sched _cond_resched(void)
4994 {
4995 	if (should_resched(0)) {
4996 		preempt_schedule_common();
4997 		return 1;
4998 	}
4999 	return 0;
5000 }
5001 EXPORT_SYMBOL(_cond_resched);
5002 #endif
5003 
5004 /*
5005  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5006  * call schedule, and on return reacquire the lock.
5007  *
5008  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5009  * operations here to prevent schedule() from being called twice (once via
5010  * spin_unlock(), once by hand).
5011  */
5012 int __cond_resched_lock(spinlock_t *lock)
5013 {
5014 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5015 	int ret = 0;
5016 
5017 	lockdep_assert_held(lock);
5018 
5019 	if (spin_needbreak(lock) || resched) {
5020 		spin_unlock(lock);
5021 		if (resched)
5022 			preempt_schedule_common();
5023 		else
5024 			cpu_relax();
5025 		ret = 1;
5026 		spin_lock(lock);
5027 	}
5028 	return ret;
5029 }
5030 EXPORT_SYMBOL(__cond_resched_lock);
5031 
5032 int __sched __cond_resched_softirq(void)
5033 {
5034 	BUG_ON(!in_softirq());
5035 
5036 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5037 		local_bh_enable();
5038 		preempt_schedule_common();
5039 		local_bh_disable();
5040 		return 1;
5041 	}
5042 	return 0;
5043 }
5044 EXPORT_SYMBOL(__cond_resched_softirq);
5045 
5046 /**
5047  * yield - yield the current processor to other threads.
5048  *
5049  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5050  *
5051  * The scheduler is at all times free to pick the calling task as the most
5052  * eligible task to run, if removing the yield() call from your code breaks
5053  * it, its already broken.
5054  *
5055  * Typical broken usage is:
5056  *
5057  * while (!event)
5058  *	yield();
5059  *
5060  * where one assumes that yield() will let 'the other' process run that will
5061  * make event true. If the current task is a SCHED_FIFO task that will never
5062  * happen. Never use yield() as a progress guarantee!!
5063  *
5064  * If you want to use yield() to wait for something, use wait_event().
5065  * If you want to use yield() to be 'nice' for others, use cond_resched().
5066  * If you still want to use yield(), do not!
5067  */
5068 void __sched yield(void)
5069 {
5070 	set_current_state(TASK_RUNNING);
5071 	sys_sched_yield();
5072 }
5073 EXPORT_SYMBOL(yield);
5074 
5075 /**
5076  * yield_to - yield the current processor to another thread in
5077  * your thread group, or accelerate that thread toward the
5078  * processor it's on.
5079  * @p: target task
5080  * @preempt: whether task preemption is allowed or not
5081  *
5082  * It's the caller's job to ensure that the target task struct
5083  * can't go away on us before we can do any checks.
5084  *
5085  * Return:
5086  *	true (>0) if we indeed boosted the target task.
5087  *	false (0) if we failed to boost the target.
5088  *	-ESRCH if there's no task to yield to.
5089  */
5090 int __sched yield_to(struct task_struct *p, bool preempt)
5091 {
5092 	struct task_struct *curr = current;
5093 	struct rq *rq, *p_rq;
5094 	unsigned long flags;
5095 	int yielded = 0;
5096 
5097 	local_irq_save(flags);
5098 	rq = this_rq();
5099 
5100 again:
5101 	p_rq = task_rq(p);
5102 	/*
5103 	 * If we're the only runnable task on the rq and target rq also
5104 	 * has only one task, there's absolutely no point in yielding.
5105 	 */
5106 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5107 		yielded = -ESRCH;
5108 		goto out_irq;
5109 	}
5110 
5111 	double_rq_lock(rq, p_rq);
5112 	if (task_rq(p) != p_rq) {
5113 		double_rq_unlock(rq, p_rq);
5114 		goto again;
5115 	}
5116 
5117 	if (!curr->sched_class->yield_to_task)
5118 		goto out_unlock;
5119 
5120 	if (curr->sched_class != p->sched_class)
5121 		goto out_unlock;
5122 
5123 	if (task_running(p_rq, p) || p->state)
5124 		goto out_unlock;
5125 
5126 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5127 	if (yielded) {
5128 		schedstat_inc(rq->yld_count);
5129 		/*
5130 		 * Make p's CPU reschedule; pick_next_entity takes care of
5131 		 * fairness.
5132 		 */
5133 		if (preempt && rq != p_rq)
5134 			resched_curr(p_rq);
5135 	}
5136 
5137 out_unlock:
5138 	double_rq_unlock(rq, p_rq);
5139 out_irq:
5140 	local_irq_restore(flags);
5141 
5142 	if (yielded > 0)
5143 		schedule();
5144 
5145 	return yielded;
5146 }
5147 EXPORT_SYMBOL_GPL(yield_to);
5148 
5149 int io_schedule_prepare(void)
5150 {
5151 	int old_iowait = current->in_iowait;
5152 
5153 	current->in_iowait = 1;
5154 	blk_schedule_flush_plug(current);
5155 
5156 	return old_iowait;
5157 }
5158 
5159 void io_schedule_finish(int token)
5160 {
5161 	current->in_iowait = token;
5162 }
5163 
5164 /*
5165  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5166  * that process accounting knows that this is a task in IO wait state.
5167  */
5168 long __sched io_schedule_timeout(long timeout)
5169 {
5170 	int token;
5171 	long ret;
5172 
5173 	token = io_schedule_prepare();
5174 	ret = schedule_timeout(timeout);
5175 	io_schedule_finish(token);
5176 
5177 	return ret;
5178 }
5179 EXPORT_SYMBOL(io_schedule_timeout);
5180 
5181 void io_schedule(void)
5182 {
5183 	int token;
5184 
5185 	token = io_schedule_prepare();
5186 	schedule();
5187 	io_schedule_finish(token);
5188 }
5189 EXPORT_SYMBOL(io_schedule);
5190 
5191 /**
5192  * sys_sched_get_priority_max - return maximum RT priority.
5193  * @policy: scheduling class.
5194  *
5195  * Return: On success, this syscall returns the maximum
5196  * rt_priority that can be used by a given scheduling class.
5197  * On failure, a negative error code is returned.
5198  */
5199 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5200 {
5201 	int ret = -EINVAL;
5202 
5203 	switch (policy) {
5204 	case SCHED_FIFO:
5205 	case SCHED_RR:
5206 		ret = MAX_USER_RT_PRIO-1;
5207 		break;
5208 	case SCHED_DEADLINE:
5209 	case SCHED_NORMAL:
5210 	case SCHED_BATCH:
5211 	case SCHED_IDLE:
5212 		ret = 0;
5213 		break;
5214 	}
5215 	return ret;
5216 }
5217 
5218 /**
5219  * sys_sched_get_priority_min - return minimum RT priority.
5220  * @policy: scheduling class.
5221  *
5222  * Return: On success, this syscall returns the minimum
5223  * rt_priority that can be used by a given scheduling class.
5224  * On failure, a negative error code is returned.
5225  */
5226 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5227 {
5228 	int ret = -EINVAL;
5229 
5230 	switch (policy) {
5231 	case SCHED_FIFO:
5232 	case SCHED_RR:
5233 		ret = 1;
5234 		break;
5235 	case SCHED_DEADLINE:
5236 	case SCHED_NORMAL:
5237 	case SCHED_BATCH:
5238 	case SCHED_IDLE:
5239 		ret = 0;
5240 	}
5241 	return ret;
5242 }
5243 
5244 /**
5245  * sys_sched_rr_get_interval - return the default timeslice of a process.
5246  * @pid: pid of the process.
5247  * @interval: userspace pointer to the timeslice value.
5248  *
5249  * this syscall writes the default timeslice value of a given process
5250  * into the user-space timespec buffer. A value of '0' means infinity.
5251  *
5252  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5253  * an error code.
5254  */
5255 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5256 		struct timespec __user *, interval)
5257 {
5258 	struct task_struct *p;
5259 	unsigned int time_slice;
5260 	struct rq_flags rf;
5261 	struct timespec t;
5262 	struct rq *rq;
5263 	int retval;
5264 
5265 	if (pid < 0)
5266 		return -EINVAL;
5267 
5268 	retval = -ESRCH;
5269 	rcu_read_lock();
5270 	p = find_process_by_pid(pid);
5271 	if (!p)
5272 		goto out_unlock;
5273 
5274 	retval = security_task_getscheduler(p);
5275 	if (retval)
5276 		goto out_unlock;
5277 
5278 	rq = task_rq_lock(p, &rf);
5279 	time_slice = 0;
5280 	if (p->sched_class->get_rr_interval)
5281 		time_slice = p->sched_class->get_rr_interval(rq, p);
5282 	task_rq_unlock(rq, p, &rf);
5283 
5284 	rcu_read_unlock();
5285 	jiffies_to_timespec(time_slice, &t);
5286 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5287 	return retval;
5288 
5289 out_unlock:
5290 	rcu_read_unlock();
5291 	return retval;
5292 }
5293 
5294 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5295 
5296 void sched_show_task(struct task_struct *p)
5297 {
5298 	unsigned long free = 0;
5299 	int ppid;
5300 	unsigned long state = p->state;
5301 
5302 	/* Make sure the string lines up properly with the number of task states: */
5303 	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5304 
5305 	if (!try_get_task_stack(p))
5306 		return;
5307 	if (state)
5308 		state = __ffs(state) + 1;
5309 	printk(KERN_INFO "%-15.15s %c", p->comm,
5310 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5311 	if (state == TASK_RUNNING)
5312 		printk(KERN_CONT "  running task    ");
5313 #ifdef CONFIG_DEBUG_STACK_USAGE
5314 	free = stack_not_used(p);
5315 #endif
5316 	ppid = 0;
5317 	rcu_read_lock();
5318 	if (pid_alive(p))
5319 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5320 	rcu_read_unlock();
5321 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5322 		task_pid_nr(p), ppid,
5323 		(unsigned long)task_thread_info(p)->flags);
5324 
5325 	print_worker_info(KERN_INFO, p);
5326 	show_stack(p, NULL);
5327 	put_task_stack(p);
5328 }
5329 
5330 void show_state_filter(unsigned long state_filter)
5331 {
5332 	struct task_struct *g, *p;
5333 
5334 #if BITS_PER_LONG == 32
5335 	printk(KERN_INFO
5336 		"  task                PC stack   pid father\n");
5337 #else
5338 	printk(KERN_INFO
5339 		"  task                        PC stack   pid father\n");
5340 #endif
5341 	rcu_read_lock();
5342 	for_each_process_thread(g, p) {
5343 		/*
5344 		 * reset the NMI-timeout, listing all files on a slow
5345 		 * console might take a lot of time:
5346 		 * Also, reset softlockup watchdogs on all CPUs, because
5347 		 * another CPU might be blocked waiting for us to process
5348 		 * an IPI.
5349 		 */
5350 		touch_nmi_watchdog();
5351 		touch_all_softlockup_watchdogs();
5352 		if (!state_filter || (p->state & state_filter))
5353 			sched_show_task(p);
5354 	}
5355 
5356 #ifdef CONFIG_SCHED_DEBUG
5357 	if (!state_filter)
5358 		sysrq_sched_debug_show();
5359 #endif
5360 	rcu_read_unlock();
5361 	/*
5362 	 * Only show locks if all tasks are dumped:
5363 	 */
5364 	if (!state_filter)
5365 		debug_show_all_locks();
5366 }
5367 
5368 void init_idle_bootup_task(struct task_struct *idle)
5369 {
5370 	idle->sched_class = &idle_sched_class;
5371 }
5372 
5373 /**
5374  * init_idle - set up an idle thread for a given CPU
5375  * @idle: task in question
5376  * @cpu: CPU the idle task belongs to
5377  *
5378  * NOTE: this function does not set the idle thread's NEED_RESCHED
5379  * flag, to make booting more robust.
5380  */
5381 void init_idle(struct task_struct *idle, int cpu)
5382 {
5383 	struct rq *rq = cpu_rq(cpu);
5384 	unsigned long flags;
5385 
5386 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5387 	raw_spin_lock(&rq->lock);
5388 
5389 	__sched_fork(0, idle);
5390 	idle->state = TASK_RUNNING;
5391 	idle->se.exec_start = sched_clock();
5392 	idle->flags |= PF_IDLE;
5393 
5394 	kasan_unpoison_task_stack(idle);
5395 
5396 #ifdef CONFIG_SMP
5397 	/*
5398 	 * Its possible that init_idle() gets called multiple times on a task,
5399 	 * in that case do_set_cpus_allowed() will not do the right thing.
5400 	 *
5401 	 * And since this is boot we can forgo the serialization.
5402 	 */
5403 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5404 #endif
5405 	/*
5406 	 * We're having a chicken and egg problem, even though we are
5407 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5408 	 * lockdep check in task_group() will fail.
5409 	 *
5410 	 * Similar case to sched_fork(). / Alternatively we could
5411 	 * use task_rq_lock() here and obtain the other rq->lock.
5412 	 *
5413 	 * Silence PROVE_RCU
5414 	 */
5415 	rcu_read_lock();
5416 	__set_task_cpu(idle, cpu);
5417 	rcu_read_unlock();
5418 
5419 	rq->curr = rq->idle = idle;
5420 	idle->on_rq = TASK_ON_RQ_QUEUED;
5421 #ifdef CONFIG_SMP
5422 	idle->on_cpu = 1;
5423 #endif
5424 	raw_spin_unlock(&rq->lock);
5425 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5426 
5427 	/* Set the preempt count _outside_ the spinlocks! */
5428 	init_idle_preempt_count(idle, cpu);
5429 
5430 	/*
5431 	 * The idle tasks have their own, simple scheduling class:
5432 	 */
5433 	idle->sched_class = &idle_sched_class;
5434 	ftrace_graph_init_idle_task(idle, cpu);
5435 	vtime_init_idle(idle, cpu);
5436 #ifdef CONFIG_SMP
5437 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5438 #endif
5439 }
5440 
5441 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5442 			      const struct cpumask *trial)
5443 {
5444 	int ret = 1, trial_cpus;
5445 	struct dl_bw *cur_dl_b;
5446 	unsigned long flags;
5447 
5448 	if (!cpumask_weight(cur))
5449 		return ret;
5450 
5451 	rcu_read_lock_sched();
5452 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5453 	trial_cpus = cpumask_weight(trial);
5454 
5455 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5456 	if (cur_dl_b->bw != -1 &&
5457 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5458 		ret = 0;
5459 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5460 	rcu_read_unlock_sched();
5461 
5462 	return ret;
5463 }
5464 
5465 int task_can_attach(struct task_struct *p,
5466 		    const struct cpumask *cs_cpus_allowed)
5467 {
5468 	int ret = 0;
5469 
5470 	/*
5471 	 * Kthreads which disallow setaffinity shouldn't be moved
5472 	 * to a new cpuset; we don't want to change their CPU
5473 	 * affinity and isolating such threads by their set of
5474 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5475 	 * applicable for such threads.  This prevents checking for
5476 	 * success of set_cpus_allowed_ptr() on all attached tasks
5477 	 * before cpus_allowed may be changed.
5478 	 */
5479 	if (p->flags & PF_NO_SETAFFINITY) {
5480 		ret = -EINVAL;
5481 		goto out;
5482 	}
5483 
5484 #ifdef CONFIG_SMP
5485 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5486 					      cs_cpus_allowed)) {
5487 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5488 							cs_cpus_allowed);
5489 		struct dl_bw *dl_b;
5490 		bool overflow;
5491 		int cpus;
5492 		unsigned long flags;
5493 
5494 		rcu_read_lock_sched();
5495 		dl_b = dl_bw_of(dest_cpu);
5496 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5497 		cpus = dl_bw_cpus(dest_cpu);
5498 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5499 		if (overflow)
5500 			ret = -EBUSY;
5501 		else {
5502 			/*
5503 			 * We reserve space for this task in the destination
5504 			 * root_domain, as we can't fail after this point.
5505 			 * We will free resources in the source root_domain
5506 			 * later on (see set_cpus_allowed_dl()).
5507 			 */
5508 			__dl_add(dl_b, p->dl.dl_bw);
5509 		}
5510 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5511 		rcu_read_unlock_sched();
5512 
5513 	}
5514 #endif
5515 out:
5516 	return ret;
5517 }
5518 
5519 #ifdef CONFIG_SMP
5520 
5521 bool sched_smp_initialized __read_mostly;
5522 
5523 #ifdef CONFIG_NUMA_BALANCING
5524 /* Migrate current task p to target_cpu */
5525 int migrate_task_to(struct task_struct *p, int target_cpu)
5526 {
5527 	struct migration_arg arg = { p, target_cpu };
5528 	int curr_cpu = task_cpu(p);
5529 
5530 	if (curr_cpu == target_cpu)
5531 		return 0;
5532 
5533 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5534 		return -EINVAL;
5535 
5536 	/* TODO: This is not properly updating schedstats */
5537 
5538 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5539 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5540 }
5541 
5542 /*
5543  * Requeue a task on a given node and accurately track the number of NUMA
5544  * tasks on the runqueues
5545  */
5546 void sched_setnuma(struct task_struct *p, int nid)
5547 {
5548 	bool queued, running;
5549 	struct rq_flags rf;
5550 	struct rq *rq;
5551 
5552 	rq = task_rq_lock(p, &rf);
5553 	queued = task_on_rq_queued(p);
5554 	running = task_current(rq, p);
5555 
5556 	if (queued)
5557 		dequeue_task(rq, p, DEQUEUE_SAVE);
5558 	if (running)
5559 		put_prev_task(rq, p);
5560 
5561 	p->numa_preferred_nid = nid;
5562 
5563 	if (queued)
5564 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5565 	if (running)
5566 		set_curr_task(rq, p);
5567 	task_rq_unlock(rq, p, &rf);
5568 }
5569 #endif /* CONFIG_NUMA_BALANCING */
5570 
5571 #ifdef CONFIG_HOTPLUG_CPU
5572 /*
5573  * Ensure that the idle task is using init_mm right before its CPU goes
5574  * offline.
5575  */
5576 void idle_task_exit(void)
5577 {
5578 	struct mm_struct *mm = current->active_mm;
5579 
5580 	BUG_ON(cpu_online(smp_processor_id()));
5581 
5582 	if (mm != &init_mm) {
5583 		switch_mm_irqs_off(mm, &init_mm, current);
5584 		finish_arch_post_lock_switch();
5585 	}
5586 	mmdrop(mm);
5587 }
5588 
5589 /*
5590  * Since this CPU is going 'away' for a while, fold any nr_active delta
5591  * we might have. Assumes we're called after migrate_tasks() so that the
5592  * nr_active count is stable. We need to take the teardown thread which
5593  * is calling this into account, so we hand in adjust = 1 to the load
5594  * calculation.
5595  *
5596  * Also see the comment "Global load-average calculations".
5597  */
5598 static void calc_load_migrate(struct rq *rq)
5599 {
5600 	long delta = calc_load_fold_active(rq, 1);
5601 	if (delta)
5602 		atomic_long_add(delta, &calc_load_tasks);
5603 }
5604 
5605 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5606 {
5607 }
5608 
5609 static const struct sched_class fake_sched_class = {
5610 	.put_prev_task = put_prev_task_fake,
5611 };
5612 
5613 static struct task_struct fake_task = {
5614 	/*
5615 	 * Avoid pull_{rt,dl}_task()
5616 	 */
5617 	.prio = MAX_PRIO + 1,
5618 	.sched_class = &fake_sched_class,
5619 };
5620 
5621 /*
5622  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5623  * try_to_wake_up()->select_task_rq().
5624  *
5625  * Called with rq->lock held even though we'er in stop_machine() and
5626  * there's no concurrency possible, we hold the required locks anyway
5627  * because of lock validation efforts.
5628  */
5629 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5630 {
5631 	struct rq *rq = dead_rq;
5632 	struct task_struct *next, *stop = rq->stop;
5633 	struct rq_flags orf = *rf;
5634 	int dest_cpu;
5635 
5636 	/*
5637 	 * Fudge the rq selection such that the below task selection loop
5638 	 * doesn't get stuck on the currently eligible stop task.
5639 	 *
5640 	 * We're currently inside stop_machine() and the rq is either stuck
5641 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5642 	 * either way we should never end up calling schedule() until we're
5643 	 * done here.
5644 	 */
5645 	rq->stop = NULL;
5646 
5647 	/*
5648 	 * put_prev_task() and pick_next_task() sched
5649 	 * class method both need to have an up-to-date
5650 	 * value of rq->clock[_task]
5651 	 */
5652 	update_rq_clock(rq);
5653 
5654 	for (;;) {
5655 		/*
5656 		 * There's this thread running, bail when that's the only
5657 		 * remaining thread:
5658 		 */
5659 		if (rq->nr_running == 1)
5660 			break;
5661 
5662 		/*
5663 		 * pick_next_task() assumes pinned rq->lock:
5664 		 */
5665 		next = pick_next_task(rq, &fake_task, rf);
5666 		BUG_ON(!next);
5667 		next->sched_class->put_prev_task(rq, next);
5668 
5669 		/*
5670 		 * Rules for changing task_struct::cpus_allowed are holding
5671 		 * both pi_lock and rq->lock, such that holding either
5672 		 * stabilizes the mask.
5673 		 *
5674 		 * Drop rq->lock is not quite as disastrous as it usually is
5675 		 * because !cpu_active at this point, which means load-balance
5676 		 * will not interfere. Also, stop-machine.
5677 		 */
5678 		rq_unlock(rq, rf);
5679 		raw_spin_lock(&next->pi_lock);
5680 		rq_relock(rq, rf);
5681 
5682 		/*
5683 		 * Since we're inside stop-machine, _nothing_ should have
5684 		 * changed the task, WARN if weird stuff happened, because in
5685 		 * that case the above rq->lock drop is a fail too.
5686 		 */
5687 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5688 			raw_spin_unlock(&next->pi_lock);
5689 			continue;
5690 		}
5691 
5692 		/* Find suitable destination for @next, with force if needed. */
5693 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5694 		rq = __migrate_task(rq, rf, next, dest_cpu);
5695 		if (rq != dead_rq) {
5696 			rq_unlock(rq, rf);
5697 			rq = dead_rq;
5698 			*rf = orf;
5699 			rq_relock(rq, rf);
5700 		}
5701 		raw_spin_unlock(&next->pi_lock);
5702 	}
5703 
5704 	rq->stop = stop;
5705 }
5706 #endif /* CONFIG_HOTPLUG_CPU */
5707 
5708 void set_rq_online(struct rq *rq)
5709 {
5710 	if (!rq->online) {
5711 		const struct sched_class *class;
5712 
5713 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5714 		rq->online = 1;
5715 
5716 		for_each_class(class) {
5717 			if (class->rq_online)
5718 				class->rq_online(rq);
5719 		}
5720 	}
5721 }
5722 
5723 void set_rq_offline(struct rq *rq)
5724 {
5725 	if (rq->online) {
5726 		const struct sched_class *class;
5727 
5728 		for_each_class(class) {
5729 			if (class->rq_offline)
5730 				class->rq_offline(rq);
5731 		}
5732 
5733 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5734 		rq->online = 0;
5735 	}
5736 }
5737 
5738 static void set_cpu_rq_start_time(unsigned int cpu)
5739 {
5740 	struct rq *rq = cpu_rq(cpu);
5741 
5742 	rq->age_stamp = sched_clock_cpu(cpu);
5743 }
5744 
5745 /*
5746  * used to mark begin/end of suspend/resume:
5747  */
5748 static int num_cpus_frozen;
5749 
5750 /*
5751  * Update cpusets according to cpu_active mask.  If cpusets are
5752  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5753  * around partition_sched_domains().
5754  *
5755  * If we come here as part of a suspend/resume, don't touch cpusets because we
5756  * want to restore it back to its original state upon resume anyway.
5757  */
5758 static void cpuset_cpu_active(void)
5759 {
5760 	if (cpuhp_tasks_frozen) {
5761 		/*
5762 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5763 		 * resume sequence. As long as this is not the last online
5764 		 * operation in the resume sequence, just build a single sched
5765 		 * domain, ignoring cpusets.
5766 		 */
5767 		num_cpus_frozen--;
5768 		if (likely(num_cpus_frozen)) {
5769 			partition_sched_domains(1, NULL, NULL);
5770 			return;
5771 		}
5772 		/*
5773 		 * This is the last CPU online operation. So fall through and
5774 		 * restore the original sched domains by considering the
5775 		 * cpuset configurations.
5776 		 */
5777 	}
5778 	cpuset_update_active_cpus();
5779 }
5780 
5781 static int cpuset_cpu_inactive(unsigned int cpu)
5782 {
5783 	unsigned long flags;
5784 	struct dl_bw *dl_b;
5785 	bool overflow;
5786 	int cpus;
5787 
5788 	if (!cpuhp_tasks_frozen) {
5789 		rcu_read_lock_sched();
5790 		dl_b = dl_bw_of(cpu);
5791 
5792 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5793 		cpus = dl_bw_cpus(cpu);
5794 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
5795 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5796 
5797 		rcu_read_unlock_sched();
5798 
5799 		if (overflow)
5800 			return -EBUSY;
5801 		cpuset_update_active_cpus();
5802 	} else {
5803 		num_cpus_frozen++;
5804 		partition_sched_domains(1, NULL, NULL);
5805 	}
5806 	return 0;
5807 }
5808 
5809 int sched_cpu_activate(unsigned int cpu)
5810 {
5811 	struct rq *rq = cpu_rq(cpu);
5812 	struct rq_flags rf;
5813 
5814 	set_cpu_active(cpu, true);
5815 
5816 	if (sched_smp_initialized) {
5817 		sched_domains_numa_masks_set(cpu);
5818 		cpuset_cpu_active();
5819 	}
5820 
5821 	/*
5822 	 * Put the rq online, if not already. This happens:
5823 	 *
5824 	 * 1) In the early boot process, because we build the real domains
5825 	 *    after all CPUs have been brought up.
5826 	 *
5827 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5828 	 *    domains.
5829 	 */
5830 	rq_lock_irqsave(rq, &rf);
5831 	if (rq->rd) {
5832 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5833 		set_rq_online(rq);
5834 	}
5835 	rq_unlock_irqrestore(rq, &rf);
5836 
5837 	update_max_interval();
5838 
5839 	return 0;
5840 }
5841 
5842 int sched_cpu_deactivate(unsigned int cpu)
5843 {
5844 	int ret;
5845 
5846 	set_cpu_active(cpu, false);
5847 	/*
5848 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5849 	 * users of this state to go away such that all new such users will
5850 	 * observe it.
5851 	 *
5852 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5853 	 * not imply sync_sched(), so wait for both.
5854 	 *
5855 	 * Do sync before park smpboot threads to take care the rcu boost case.
5856 	 */
5857 	if (IS_ENABLED(CONFIG_PREEMPT))
5858 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
5859 	else
5860 		synchronize_rcu();
5861 
5862 	if (!sched_smp_initialized)
5863 		return 0;
5864 
5865 	ret = cpuset_cpu_inactive(cpu);
5866 	if (ret) {
5867 		set_cpu_active(cpu, true);
5868 		return ret;
5869 	}
5870 	sched_domains_numa_masks_clear(cpu);
5871 	return 0;
5872 }
5873 
5874 static void sched_rq_cpu_starting(unsigned int cpu)
5875 {
5876 	struct rq *rq = cpu_rq(cpu);
5877 
5878 	rq->calc_load_update = calc_load_update;
5879 	update_max_interval();
5880 }
5881 
5882 int sched_cpu_starting(unsigned int cpu)
5883 {
5884 	set_cpu_rq_start_time(cpu);
5885 	sched_rq_cpu_starting(cpu);
5886 	return 0;
5887 }
5888 
5889 #ifdef CONFIG_HOTPLUG_CPU
5890 int sched_cpu_dying(unsigned int cpu)
5891 {
5892 	struct rq *rq = cpu_rq(cpu);
5893 	struct rq_flags rf;
5894 
5895 	/* Handle pending wakeups and then migrate everything off */
5896 	sched_ttwu_pending();
5897 
5898 	rq_lock_irqsave(rq, &rf);
5899 	if (rq->rd) {
5900 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5901 		set_rq_offline(rq);
5902 	}
5903 	migrate_tasks(rq, &rf);
5904 	BUG_ON(rq->nr_running != 1);
5905 	rq_unlock_irqrestore(rq, &rf);
5906 
5907 	calc_load_migrate(rq);
5908 	update_max_interval();
5909 	nohz_balance_exit_idle(cpu);
5910 	hrtick_clear(rq);
5911 	return 0;
5912 }
5913 #endif
5914 
5915 #ifdef CONFIG_SCHED_SMT
5916 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5917 
5918 static void sched_init_smt(void)
5919 {
5920 	/*
5921 	 * We've enumerated all CPUs and will assume that if any CPU
5922 	 * has SMT siblings, CPU0 will too.
5923 	 */
5924 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5925 		static_branch_enable(&sched_smt_present);
5926 }
5927 #else
5928 static inline void sched_init_smt(void) { }
5929 #endif
5930 
5931 void __init sched_init_smp(void)
5932 {
5933 	cpumask_var_t non_isolated_cpus;
5934 
5935 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5936 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5937 
5938 	sched_init_numa();
5939 
5940 	/*
5941 	 * There's no userspace yet to cause hotplug operations; hence all the
5942 	 * CPU masks are stable and all blatant races in the below code cannot
5943 	 * happen.
5944 	 */
5945 	mutex_lock(&sched_domains_mutex);
5946 	init_sched_domains(cpu_active_mask);
5947 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5948 	if (cpumask_empty(non_isolated_cpus))
5949 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5950 	mutex_unlock(&sched_domains_mutex);
5951 
5952 	/* Move init over to a non-isolated CPU */
5953 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5954 		BUG();
5955 	sched_init_granularity();
5956 	free_cpumask_var(non_isolated_cpus);
5957 
5958 	init_sched_rt_class();
5959 	init_sched_dl_class();
5960 
5961 	sched_init_smt();
5962 	sched_clock_init_late();
5963 
5964 	sched_smp_initialized = true;
5965 }
5966 
5967 static int __init migration_init(void)
5968 {
5969 	sched_rq_cpu_starting(smp_processor_id());
5970 	return 0;
5971 }
5972 early_initcall(migration_init);
5973 
5974 #else
5975 void __init sched_init_smp(void)
5976 {
5977 	sched_init_granularity();
5978 	sched_clock_init_late();
5979 }
5980 #endif /* CONFIG_SMP */
5981 
5982 int in_sched_functions(unsigned long addr)
5983 {
5984 	return in_lock_functions(addr) ||
5985 		(addr >= (unsigned long)__sched_text_start
5986 		&& addr < (unsigned long)__sched_text_end);
5987 }
5988 
5989 #ifdef CONFIG_CGROUP_SCHED
5990 /*
5991  * Default task group.
5992  * Every task in system belongs to this group at bootup.
5993  */
5994 struct task_group root_task_group;
5995 LIST_HEAD(task_groups);
5996 
5997 /* Cacheline aligned slab cache for task_group */
5998 static struct kmem_cache *task_group_cache __read_mostly;
5999 #endif
6000 
6001 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6002 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6003 
6004 #define WAIT_TABLE_BITS 8
6005 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
6006 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
6007 
6008 wait_queue_head_t *bit_waitqueue(void *word, int bit)
6009 {
6010 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
6011 	unsigned long val = (unsigned long)word << shift | bit;
6012 
6013 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
6014 }
6015 EXPORT_SYMBOL(bit_waitqueue);
6016 
6017 void __init sched_init(void)
6018 {
6019 	int i, j;
6020 	unsigned long alloc_size = 0, ptr;
6021 
6022 	sched_clock_init();
6023 
6024 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
6025 		init_waitqueue_head(bit_wait_table + i);
6026 
6027 #ifdef CONFIG_FAIR_GROUP_SCHED
6028 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6029 #endif
6030 #ifdef CONFIG_RT_GROUP_SCHED
6031 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6032 #endif
6033 	if (alloc_size) {
6034 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6035 
6036 #ifdef CONFIG_FAIR_GROUP_SCHED
6037 		root_task_group.se = (struct sched_entity **)ptr;
6038 		ptr += nr_cpu_ids * sizeof(void **);
6039 
6040 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6041 		ptr += nr_cpu_ids * sizeof(void **);
6042 
6043 #endif /* CONFIG_FAIR_GROUP_SCHED */
6044 #ifdef CONFIG_RT_GROUP_SCHED
6045 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6046 		ptr += nr_cpu_ids * sizeof(void **);
6047 
6048 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6049 		ptr += nr_cpu_ids * sizeof(void **);
6050 
6051 #endif /* CONFIG_RT_GROUP_SCHED */
6052 	}
6053 #ifdef CONFIG_CPUMASK_OFFSTACK
6054 	for_each_possible_cpu(i) {
6055 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6056 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6057 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6058 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6059 	}
6060 #endif /* CONFIG_CPUMASK_OFFSTACK */
6061 
6062 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6063 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6064 
6065 #ifdef CONFIG_SMP
6066 	init_defrootdomain();
6067 #endif
6068 
6069 #ifdef CONFIG_RT_GROUP_SCHED
6070 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6071 			global_rt_period(), global_rt_runtime());
6072 #endif /* CONFIG_RT_GROUP_SCHED */
6073 
6074 #ifdef CONFIG_CGROUP_SCHED
6075 	task_group_cache = KMEM_CACHE(task_group, 0);
6076 
6077 	list_add(&root_task_group.list, &task_groups);
6078 	INIT_LIST_HEAD(&root_task_group.children);
6079 	INIT_LIST_HEAD(&root_task_group.siblings);
6080 	autogroup_init(&init_task);
6081 #endif /* CONFIG_CGROUP_SCHED */
6082 
6083 	for_each_possible_cpu(i) {
6084 		struct rq *rq;
6085 
6086 		rq = cpu_rq(i);
6087 		raw_spin_lock_init(&rq->lock);
6088 		rq->nr_running = 0;
6089 		rq->calc_load_active = 0;
6090 		rq->calc_load_update = jiffies + LOAD_FREQ;
6091 		init_cfs_rq(&rq->cfs);
6092 		init_rt_rq(&rq->rt);
6093 		init_dl_rq(&rq->dl);
6094 #ifdef CONFIG_FAIR_GROUP_SCHED
6095 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6096 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6097 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6098 		/*
6099 		 * How much CPU bandwidth does root_task_group get?
6100 		 *
6101 		 * In case of task-groups formed thr' the cgroup filesystem, it
6102 		 * gets 100% of the CPU resources in the system. This overall
6103 		 * system CPU resource is divided among the tasks of
6104 		 * root_task_group and its child task-groups in a fair manner,
6105 		 * based on each entity's (task or task-group's) weight
6106 		 * (se->load.weight).
6107 		 *
6108 		 * In other words, if root_task_group has 10 tasks of weight
6109 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6110 		 * then A0's share of the CPU resource is:
6111 		 *
6112 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6113 		 *
6114 		 * We achieve this by letting root_task_group's tasks sit
6115 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6116 		 */
6117 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6118 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6119 #endif /* CONFIG_FAIR_GROUP_SCHED */
6120 
6121 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6122 #ifdef CONFIG_RT_GROUP_SCHED
6123 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6124 #endif
6125 
6126 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6127 			rq->cpu_load[j] = 0;
6128 
6129 #ifdef CONFIG_SMP
6130 		rq->sd = NULL;
6131 		rq->rd = NULL;
6132 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6133 		rq->balance_callback = NULL;
6134 		rq->active_balance = 0;
6135 		rq->next_balance = jiffies;
6136 		rq->push_cpu = 0;
6137 		rq->cpu = i;
6138 		rq->online = 0;
6139 		rq->idle_stamp = 0;
6140 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6141 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6142 
6143 		INIT_LIST_HEAD(&rq->cfs_tasks);
6144 
6145 		rq_attach_root(rq, &def_root_domain);
6146 #ifdef CONFIG_NO_HZ_COMMON
6147 		rq->last_load_update_tick = jiffies;
6148 		rq->nohz_flags = 0;
6149 #endif
6150 #ifdef CONFIG_NO_HZ_FULL
6151 		rq->last_sched_tick = 0;
6152 #endif
6153 #endif /* CONFIG_SMP */
6154 		init_rq_hrtick(rq);
6155 		atomic_set(&rq->nr_iowait, 0);
6156 	}
6157 
6158 	set_load_weight(&init_task);
6159 
6160 	/*
6161 	 * The boot idle thread does lazy MMU switching as well:
6162 	 */
6163 	mmgrab(&init_mm);
6164 	enter_lazy_tlb(&init_mm, current);
6165 
6166 	/*
6167 	 * Make us the idle thread. Technically, schedule() should not be
6168 	 * called from this thread, however somewhere below it might be,
6169 	 * but because we are the idle thread, we just pick up running again
6170 	 * when this runqueue becomes "idle".
6171 	 */
6172 	init_idle(current, smp_processor_id());
6173 
6174 	calc_load_update = jiffies + LOAD_FREQ;
6175 
6176 #ifdef CONFIG_SMP
6177 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6178 	/* May be allocated at isolcpus cmdline parse time */
6179 	if (cpu_isolated_map == NULL)
6180 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6181 	idle_thread_set_boot_cpu();
6182 	set_cpu_rq_start_time(smp_processor_id());
6183 #endif
6184 	init_sched_fair_class();
6185 
6186 	init_schedstats();
6187 
6188 	scheduler_running = 1;
6189 }
6190 
6191 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6192 static inline int preempt_count_equals(int preempt_offset)
6193 {
6194 	int nested = preempt_count() + rcu_preempt_depth();
6195 
6196 	return (nested == preempt_offset);
6197 }
6198 
6199 void __might_sleep(const char *file, int line, int preempt_offset)
6200 {
6201 	/*
6202 	 * Blocking primitives will set (and therefore destroy) current->state,
6203 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6204 	 * otherwise we will destroy state.
6205 	 */
6206 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6207 			"do not call blocking ops when !TASK_RUNNING; "
6208 			"state=%lx set at [<%p>] %pS\n",
6209 			current->state,
6210 			(void *)current->task_state_change,
6211 			(void *)current->task_state_change);
6212 
6213 	___might_sleep(file, line, preempt_offset);
6214 }
6215 EXPORT_SYMBOL(__might_sleep);
6216 
6217 void ___might_sleep(const char *file, int line, int preempt_offset)
6218 {
6219 	/* Ratelimiting timestamp: */
6220 	static unsigned long prev_jiffy;
6221 
6222 	unsigned long preempt_disable_ip;
6223 
6224 	/* WARN_ON_ONCE() by default, no rate limit required: */
6225 	rcu_sleep_check();
6226 
6227 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6228 	     !is_idle_task(current)) ||
6229 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6230 		return;
6231 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6232 		return;
6233 	prev_jiffy = jiffies;
6234 
6235 	/* Save this before calling printk(), since that will clobber it: */
6236 	preempt_disable_ip = get_preempt_disable_ip(current);
6237 
6238 	printk(KERN_ERR
6239 		"BUG: sleeping function called from invalid context at %s:%d\n",
6240 			file, line);
6241 	printk(KERN_ERR
6242 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6243 			in_atomic(), irqs_disabled(),
6244 			current->pid, current->comm);
6245 
6246 	if (task_stack_end_corrupted(current))
6247 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6248 
6249 	debug_show_held_locks(current);
6250 	if (irqs_disabled())
6251 		print_irqtrace_events(current);
6252 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6253 	    && !preempt_count_equals(preempt_offset)) {
6254 		pr_err("Preemption disabled at:");
6255 		print_ip_sym(preempt_disable_ip);
6256 		pr_cont("\n");
6257 	}
6258 	dump_stack();
6259 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6260 }
6261 EXPORT_SYMBOL(___might_sleep);
6262 #endif
6263 
6264 #ifdef CONFIG_MAGIC_SYSRQ
6265 void normalize_rt_tasks(void)
6266 {
6267 	struct task_struct *g, *p;
6268 	struct sched_attr attr = {
6269 		.sched_policy = SCHED_NORMAL,
6270 	};
6271 
6272 	read_lock(&tasklist_lock);
6273 	for_each_process_thread(g, p) {
6274 		/*
6275 		 * Only normalize user tasks:
6276 		 */
6277 		if (p->flags & PF_KTHREAD)
6278 			continue;
6279 
6280 		p->se.exec_start = 0;
6281 		schedstat_set(p->se.statistics.wait_start,  0);
6282 		schedstat_set(p->se.statistics.sleep_start, 0);
6283 		schedstat_set(p->se.statistics.block_start, 0);
6284 
6285 		if (!dl_task(p) && !rt_task(p)) {
6286 			/*
6287 			 * Renice negative nice level userspace
6288 			 * tasks back to 0:
6289 			 */
6290 			if (task_nice(p) < 0)
6291 				set_user_nice(p, 0);
6292 			continue;
6293 		}
6294 
6295 		__sched_setscheduler(p, &attr, false, false);
6296 	}
6297 	read_unlock(&tasklist_lock);
6298 }
6299 
6300 #endif /* CONFIG_MAGIC_SYSRQ */
6301 
6302 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6303 /*
6304  * These functions are only useful for the IA64 MCA handling, or kdb.
6305  *
6306  * They can only be called when the whole system has been
6307  * stopped - every CPU needs to be quiescent, and no scheduling
6308  * activity can take place. Using them for anything else would
6309  * be a serious bug, and as a result, they aren't even visible
6310  * under any other configuration.
6311  */
6312 
6313 /**
6314  * curr_task - return the current task for a given CPU.
6315  * @cpu: the processor in question.
6316  *
6317  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6318  *
6319  * Return: The current task for @cpu.
6320  */
6321 struct task_struct *curr_task(int cpu)
6322 {
6323 	return cpu_curr(cpu);
6324 }
6325 
6326 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6327 
6328 #ifdef CONFIG_IA64
6329 /**
6330  * set_curr_task - set the current task for a given CPU.
6331  * @cpu: the processor in question.
6332  * @p: the task pointer to set.
6333  *
6334  * Description: This function must only be used when non-maskable interrupts
6335  * are serviced on a separate stack. It allows the architecture to switch the
6336  * notion of the current task on a CPU in a non-blocking manner. This function
6337  * must be called with all CPU's synchronized, and interrupts disabled, the
6338  * and caller must save the original value of the current task (see
6339  * curr_task() above) and restore that value before reenabling interrupts and
6340  * re-starting the system.
6341  *
6342  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6343  */
6344 void ia64_set_curr_task(int cpu, struct task_struct *p)
6345 {
6346 	cpu_curr(cpu) = p;
6347 }
6348 
6349 #endif
6350 
6351 #ifdef CONFIG_CGROUP_SCHED
6352 /* task_group_lock serializes the addition/removal of task groups */
6353 static DEFINE_SPINLOCK(task_group_lock);
6354 
6355 static void sched_free_group(struct task_group *tg)
6356 {
6357 	free_fair_sched_group(tg);
6358 	free_rt_sched_group(tg);
6359 	autogroup_free(tg);
6360 	kmem_cache_free(task_group_cache, tg);
6361 }
6362 
6363 /* allocate runqueue etc for a new task group */
6364 struct task_group *sched_create_group(struct task_group *parent)
6365 {
6366 	struct task_group *tg;
6367 
6368 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6369 	if (!tg)
6370 		return ERR_PTR(-ENOMEM);
6371 
6372 	if (!alloc_fair_sched_group(tg, parent))
6373 		goto err;
6374 
6375 	if (!alloc_rt_sched_group(tg, parent))
6376 		goto err;
6377 
6378 	return tg;
6379 
6380 err:
6381 	sched_free_group(tg);
6382 	return ERR_PTR(-ENOMEM);
6383 }
6384 
6385 void sched_online_group(struct task_group *tg, struct task_group *parent)
6386 {
6387 	unsigned long flags;
6388 
6389 	spin_lock_irqsave(&task_group_lock, flags);
6390 	list_add_rcu(&tg->list, &task_groups);
6391 
6392 	/* Root should already exist: */
6393 	WARN_ON(!parent);
6394 
6395 	tg->parent = parent;
6396 	INIT_LIST_HEAD(&tg->children);
6397 	list_add_rcu(&tg->siblings, &parent->children);
6398 	spin_unlock_irqrestore(&task_group_lock, flags);
6399 
6400 	online_fair_sched_group(tg);
6401 }
6402 
6403 /* rcu callback to free various structures associated with a task group */
6404 static void sched_free_group_rcu(struct rcu_head *rhp)
6405 {
6406 	/* Now it should be safe to free those cfs_rqs: */
6407 	sched_free_group(container_of(rhp, struct task_group, rcu));
6408 }
6409 
6410 void sched_destroy_group(struct task_group *tg)
6411 {
6412 	/* Wait for possible concurrent references to cfs_rqs complete: */
6413 	call_rcu(&tg->rcu, sched_free_group_rcu);
6414 }
6415 
6416 void sched_offline_group(struct task_group *tg)
6417 {
6418 	unsigned long flags;
6419 
6420 	/* End participation in shares distribution: */
6421 	unregister_fair_sched_group(tg);
6422 
6423 	spin_lock_irqsave(&task_group_lock, flags);
6424 	list_del_rcu(&tg->list);
6425 	list_del_rcu(&tg->siblings);
6426 	spin_unlock_irqrestore(&task_group_lock, flags);
6427 }
6428 
6429 static void sched_change_group(struct task_struct *tsk, int type)
6430 {
6431 	struct task_group *tg;
6432 
6433 	/*
6434 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6435 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6436 	 * to prevent lockdep warnings.
6437 	 */
6438 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6439 			  struct task_group, css);
6440 	tg = autogroup_task_group(tsk, tg);
6441 	tsk->sched_task_group = tg;
6442 
6443 #ifdef CONFIG_FAIR_GROUP_SCHED
6444 	if (tsk->sched_class->task_change_group)
6445 		tsk->sched_class->task_change_group(tsk, type);
6446 	else
6447 #endif
6448 		set_task_rq(tsk, task_cpu(tsk));
6449 }
6450 
6451 /*
6452  * Change task's runqueue when it moves between groups.
6453  *
6454  * The caller of this function should have put the task in its new group by
6455  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6456  * its new group.
6457  */
6458 void sched_move_task(struct task_struct *tsk)
6459 {
6460 	int queued, running, queue_flags =
6461 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6462 	struct rq_flags rf;
6463 	struct rq *rq;
6464 
6465 	rq = task_rq_lock(tsk, &rf);
6466 	update_rq_clock(rq);
6467 
6468 	running = task_current(rq, tsk);
6469 	queued = task_on_rq_queued(tsk);
6470 
6471 	if (queued)
6472 		dequeue_task(rq, tsk, queue_flags);
6473 	if (running)
6474 		put_prev_task(rq, tsk);
6475 
6476 	sched_change_group(tsk, TASK_MOVE_GROUP);
6477 
6478 	if (queued)
6479 		enqueue_task(rq, tsk, queue_flags);
6480 	if (running)
6481 		set_curr_task(rq, tsk);
6482 
6483 	task_rq_unlock(rq, tsk, &rf);
6484 }
6485 #endif /* CONFIG_CGROUP_SCHED */
6486 
6487 #ifdef CONFIG_RT_GROUP_SCHED
6488 /*
6489  * Ensure that the real time constraints are schedulable.
6490  */
6491 static DEFINE_MUTEX(rt_constraints_mutex);
6492 
6493 /* Must be called with tasklist_lock held */
6494 static inline int tg_has_rt_tasks(struct task_group *tg)
6495 {
6496 	struct task_struct *g, *p;
6497 
6498 	/*
6499 	 * Autogroups do not have RT tasks; see autogroup_create().
6500 	 */
6501 	if (task_group_is_autogroup(tg))
6502 		return 0;
6503 
6504 	for_each_process_thread(g, p) {
6505 		if (rt_task(p) && task_group(p) == tg)
6506 			return 1;
6507 	}
6508 
6509 	return 0;
6510 }
6511 
6512 struct rt_schedulable_data {
6513 	struct task_group *tg;
6514 	u64 rt_period;
6515 	u64 rt_runtime;
6516 };
6517 
6518 static int tg_rt_schedulable(struct task_group *tg, void *data)
6519 {
6520 	struct rt_schedulable_data *d = data;
6521 	struct task_group *child;
6522 	unsigned long total, sum = 0;
6523 	u64 period, runtime;
6524 
6525 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6526 	runtime = tg->rt_bandwidth.rt_runtime;
6527 
6528 	if (tg == d->tg) {
6529 		period = d->rt_period;
6530 		runtime = d->rt_runtime;
6531 	}
6532 
6533 	/*
6534 	 * Cannot have more runtime than the period.
6535 	 */
6536 	if (runtime > period && runtime != RUNTIME_INF)
6537 		return -EINVAL;
6538 
6539 	/*
6540 	 * Ensure we don't starve existing RT tasks.
6541 	 */
6542 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6543 		return -EBUSY;
6544 
6545 	total = to_ratio(period, runtime);
6546 
6547 	/*
6548 	 * Nobody can have more than the global setting allows.
6549 	 */
6550 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6551 		return -EINVAL;
6552 
6553 	/*
6554 	 * The sum of our children's runtime should not exceed our own.
6555 	 */
6556 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6557 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6558 		runtime = child->rt_bandwidth.rt_runtime;
6559 
6560 		if (child == d->tg) {
6561 			period = d->rt_period;
6562 			runtime = d->rt_runtime;
6563 		}
6564 
6565 		sum += to_ratio(period, runtime);
6566 	}
6567 
6568 	if (sum > total)
6569 		return -EINVAL;
6570 
6571 	return 0;
6572 }
6573 
6574 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6575 {
6576 	int ret;
6577 
6578 	struct rt_schedulable_data data = {
6579 		.tg = tg,
6580 		.rt_period = period,
6581 		.rt_runtime = runtime,
6582 	};
6583 
6584 	rcu_read_lock();
6585 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6586 	rcu_read_unlock();
6587 
6588 	return ret;
6589 }
6590 
6591 static int tg_set_rt_bandwidth(struct task_group *tg,
6592 		u64 rt_period, u64 rt_runtime)
6593 {
6594 	int i, err = 0;
6595 
6596 	/*
6597 	 * Disallowing the root group RT runtime is BAD, it would disallow the
6598 	 * kernel creating (and or operating) RT threads.
6599 	 */
6600 	if (tg == &root_task_group && rt_runtime == 0)
6601 		return -EINVAL;
6602 
6603 	/* No period doesn't make any sense. */
6604 	if (rt_period == 0)
6605 		return -EINVAL;
6606 
6607 	mutex_lock(&rt_constraints_mutex);
6608 	read_lock(&tasklist_lock);
6609 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6610 	if (err)
6611 		goto unlock;
6612 
6613 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6614 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6615 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6616 
6617 	for_each_possible_cpu(i) {
6618 		struct rt_rq *rt_rq = tg->rt_rq[i];
6619 
6620 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6621 		rt_rq->rt_runtime = rt_runtime;
6622 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6623 	}
6624 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6625 unlock:
6626 	read_unlock(&tasklist_lock);
6627 	mutex_unlock(&rt_constraints_mutex);
6628 
6629 	return err;
6630 }
6631 
6632 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6633 {
6634 	u64 rt_runtime, rt_period;
6635 
6636 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6637 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6638 	if (rt_runtime_us < 0)
6639 		rt_runtime = RUNTIME_INF;
6640 
6641 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6642 }
6643 
6644 static long sched_group_rt_runtime(struct task_group *tg)
6645 {
6646 	u64 rt_runtime_us;
6647 
6648 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6649 		return -1;
6650 
6651 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6652 	do_div(rt_runtime_us, NSEC_PER_USEC);
6653 	return rt_runtime_us;
6654 }
6655 
6656 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6657 {
6658 	u64 rt_runtime, rt_period;
6659 
6660 	rt_period = rt_period_us * NSEC_PER_USEC;
6661 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6662 
6663 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6664 }
6665 
6666 static long sched_group_rt_period(struct task_group *tg)
6667 {
6668 	u64 rt_period_us;
6669 
6670 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6671 	do_div(rt_period_us, NSEC_PER_USEC);
6672 	return rt_period_us;
6673 }
6674 #endif /* CONFIG_RT_GROUP_SCHED */
6675 
6676 #ifdef CONFIG_RT_GROUP_SCHED
6677 static int sched_rt_global_constraints(void)
6678 {
6679 	int ret = 0;
6680 
6681 	mutex_lock(&rt_constraints_mutex);
6682 	read_lock(&tasklist_lock);
6683 	ret = __rt_schedulable(NULL, 0, 0);
6684 	read_unlock(&tasklist_lock);
6685 	mutex_unlock(&rt_constraints_mutex);
6686 
6687 	return ret;
6688 }
6689 
6690 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6691 {
6692 	/* Don't accept realtime tasks when there is no way for them to run */
6693 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6694 		return 0;
6695 
6696 	return 1;
6697 }
6698 
6699 #else /* !CONFIG_RT_GROUP_SCHED */
6700 static int sched_rt_global_constraints(void)
6701 {
6702 	unsigned long flags;
6703 	int i;
6704 
6705 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6706 	for_each_possible_cpu(i) {
6707 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6708 
6709 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6710 		rt_rq->rt_runtime = global_rt_runtime();
6711 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6712 	}
6713 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6714 
6715 	return 0;
6716 }
6717 #endif /* CONFIG_RT_GROUP_SCHED */
6718 
6719 static int sched_dl_global_validate(void)
6720 {
6721 	u64 runtime = global_rt_runtime();
6722 	u64 period = global_rt_period();
6723 	u64 new_bw = to_ratio(period, runtime);
6724 	struct dl_bw *dl_b;
6725 	int cpu, ret = 0;
6726 	unsigned long flags;
6727 
6728 	/*
6729 	 * Here we want to check the bandwidth not being set to some
6730 	 * value smaller than the currently allocated bandwidth in
6731 	 * any of the root_domains.
6732 	 *
6733 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6734 	 * cycling on root_domains... Discussion on different/better
6735 	 * solutions is welcome!
6736 	 */
6737 	for_each_possible_cpu(cpu) {
6738 		rcu_read_lock_sched();
6739 		dl_b = dl_bw_of(cpu);
6740 
6741 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6742 		if (new_bw < dl_b->total_bw)
6743 			ret = -EBUSY;
6744 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6745 
6746 		rcu_read_unlock_sched();
6747 
6748 		if (ret)
6749 			break;
6750 	}
6751 
6752 	return ret;
6753 }
6754 
6755 static void sched_dl_do_global(void)
6756 {
6757 	u64 new_bw = -1;
6758 	struct dl_bw *dl_b;
6759 	int cpu;
6760 	unsigned long flags;
6761 
6762 	def_dl_bandwidth.dl_period = global_rt_period();
6763 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
6764 
6765 	if (global_rt_runtime() != RUNTIME_INF)
6766 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6767 
6768 	/*
6769 	 * FIXME: As above...
6770 	 */
6771 	for_each_possible_cpu(cpu) {
6772 		rcu_read_lock_sched();
6773 		dl_b = dl_bw_of(cpu);
6774 
6775 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6776 		dl_b->bw = new_bw;
6777 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6778 
6779 		rcu_read_unlock_sched();
6780 	}
6781 }
6782 
6783 static int sched_rt_global_validate(void)
6784 {
6785 	if (sysctl_sched_rt_period <= 0)
6786 		return -EINVAL;
6787 
6788 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6789 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6790 		return -EINVAL;
6791 
6792 	return 0;
6793 }
6794 
6795 static void sched_rt_do_global(void)
6796 {
6797 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
6798 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6799 }
6800 
6801 int sched_rt_handler(struct ctl_table *table, int write,
6802 		void __user *buffer, size_t *lenp,
6803 		loff_t *ppos)
6804 {
6805 	int old_period, old_runtime;
6806 	static DEFINE_MUTEX(mutex);
6807 	int ret;
6808 
6809 	mutex_lock(&mutex);
6810 	old_period = sysctl_sched_rt_period;
6811 	old_runtime = sysctl_sched_rt_runtime;
6812 
6813 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6814 
6815 	if (!ret && write) {
6816 		ret = sched_rt_global_validate();
6817 		if (ret)
6818 			goto undo;
6819 
6820 		ret = sched_dl_global_validate();
6821 		if (ret)
6822 			goto undo;
6823 
6824 		ret = sched_rt_global_constraints();
6825 		if (ret)
6826 			goto undo;
6827 
6828 		sched_rt_do_global();
6829 		sched_dl_do_global();
6830 	}
6831 	if (0) {
6832 undo:
6833 		sysctl_sched_rt_period = old_period;
6834 		sysctl_sched_rt_runtime = old_runtime;
6835 	}
6836 	mutex_unlock(&mutex);
6837 
6838 	return ret;
6839 }
6840 
6841 int sched_rr_handler(struct ctl_table *table, int write,
6842 		void __user *buffer, size_t *lenp,
6843 		loff_t *ppos)
6844 {
6845 	int ret;
6846 	static DEFINE_MUTEX(mutex);
6847 
6848 	mutex_lock(&mutex);
6849 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6850 	/*
6851 	 * Make sure that internally we keep jiffies.
6852 	 * Also, writing zero resets the timeslice to default:
6853 	 */
6854 	if (!ret && write) {
6855 		sched_rr_timeslice =
6856 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6857 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6858 	}
6859 	mutex_unlock(&mutex);
6860 	return ret;
6861 }
6862 
6863 #ifdef CONFIG_CGROUP_SCHED
6864 
6865 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6866 {
6867 	return css ? container_of(css, struct task_group, css) : NULL;
6868 }
6869 
6870 static struct cgroup_subsys_state *
6871 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6872 {
6873 	struct task_group *parent = css_tg(parent_css);
6874 	struct task_group *tg;
6875 
6876 	if (!parent) {
6877 		/* This is early initialization for the top cgroup */
6878 		return &root_task_group.css;
6879 	}
6880 
6881 	tg = sched_create_group(parent);
6882 	if (IS_ERR(tg))
6883 		return ERR_PTR(-ENOMEM);
6884 
6885 	return &tg->css;
6886 }
6887 
6888 /* Expose task group only after completing cgroup initialization */
6889 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6890 {
6891 	struct task_group *tg = css_tg(css);
6892 	struct task_group *parent = css_tg(css->parent);
6893 
6894 	if (parent)
6895 		sched_online_group(tg, parent);
6896 	return 0;
6897 }
6898 
6899 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6900 {
6901 	struct task_group *tg = css_tg(css);
6902 
6903 	sched_offline_group(tg);
6904 }
6905 
6906 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6907 {
6908 	struct task_group *tg = css_tg(css);
6909 
6910 	/*
6911 	 * Relies on the RCU grace period between css_released() and this.
6912 	 */
6913 	sched_free_group(tg);
6914 }
6915 
6916 /*
6917  * This is called before wake_up_new_task(), therefore we really only
6918  * have to set its group bits, all the other stuff does not apply.
6919  */
6920 static void cpu_cgroup_fork(struct task_struct *task)
6921 {
6922 	struct rq_flags rf;
6923 	struct rq *rq;
6924 
6925 	rq = task_rq_lock(task, &rf);
6926 
6927 	update_rq_clock(rq);
6928 	sched_change_group(task, TASK_SET_GROUP);
6929 
6930 	task_rq_unlock(rq, task, &rf);
6931 }
6932 
6933 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6934 {
6935 	struct task_struct *task;
6936 	struct cgroup_subsys_state *css;
6937 	int ret = 0;
6938 
6939 	cgroup_taskset_for_each(task, css, tset) {
6940 #ifdef CONFIG_RT_GROUP_SCHED
6941 		if (!sched_rt_can_attach(css_tg(css), task))
6942 			return -EINVAL;
6943 #else
6944 		/* We don't support RT-tasks being in separate groups */
6945 		if (task->sched_class != &fair_sched_class)
6946 			return -EINVAL;
6947 #endif
6948 		/*
6949 		 * Serialize against wake_up_new_task() such that if its
6950 		 * running, we're sure to observe its full state.
6951 		 */
6952 		raw_spin_lock_irq(&task->pi_lock);
6953 		/*
6954 		 * Avoid calling sched_move_task() before wake_up_new_task()
6955 		 * has happened. This would lead to problems with PELT, due to
6956 		 * move wanting to detach+attach while we're not attached yet.
6957 		 */
6958 		if (task->state == TASK_NEW)
6959 			ret = -EINVAL;
6960 		raw_spin_unlock_irq(&task->pi_lock);
6961 
6962 		if (ret)
6963 			break;
6964 	}
6965 	return ret;
6966 }
6967 
6968 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6969 {
6970 	struct task_struct *task;
6971 	struct cgroup_subsys_state *css;
6972 
6973 	cgroup_taskset_for_each(task, css, tset)
6974 		sched_move_task(task);
6975 }
6976 
6977 #ifdef CONFIG_FAIR_GROUP_SCHED
6978 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6979 				struct cftype *cftype, u64 shareval)
6980 {
6981 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6982 }
6983 
6984 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6985 			       struct cftype *cft)
6986 {
6987 	struct task_group *tg = css_tg(css);
6988 
6989 	return (u64) scale_load_down(tg->shares);
6990 }
6991 
6992 #ifdef CONFIG_CFS_BANDWIDTH
6993 static DEFINE_MUTEX(cfs_constraints_mutex);
6994 
6995 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6996 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6997 
6998 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6999 
7000 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7001 {
7002 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7003 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7004 
7005 	if (tg == &root_task_group)
7006 		return -EINVAL;
7007 
7008 	/*
7009 	 * Ensure we have at some amount of bandwidth every period.  This is
7010 	 * to prevent reaching a state of large arrears when throttled via
7011 	 * entity_tick() resulting in prolonged exit starvation.
7012 	 */
7013 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7014 		return -EINVAL;
7015 
7016 	/*
7017 	 * Likewise, bound things on the otherside by preventing insane quota
7018 	 * periods.  This also allows us to normalize in computing quota
7019 	 * feasibility.
7020 	 */
7021 	if (period > max_cfs_quota_period)
7022 		return -EINVAL;
7023 
7024 	/*
7025 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7026 	 * unthrottle_offline_cfs_rqs().
7027 	 */
7028 	get_online_cpus();
7029 	mutex_lock(&cfs_constraints_mutex);
7030 	ret = __cfs_schedulable(tg, period, quota);
7031 	if (ret)
7032 		goto out_unlock;
7033 
7034 	runtime_enabled = quota != RUNTIME_INF;
7035 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7036 	/*
7037 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7038 	 * before making related changes, and on->off must occur afterwards
7039 	 */
7040 	if (runtime_enabled && !runtime_was_enabled)
7041 		cfs_bandwidth_usage_inc();
7042 	raw_spin_lock_irq(&cfs_b->lock);
7043 	cfs_b->period = ns_to_ktime(period);
7044 	cfs_b->quota = quota;
7045 
7046 	__refill_cfs_bandwidth_runtime(cfs_b);
7047 
7048 	/* Restart the period timer (if active) to handle new period expiry: */
7049 	if (runtime_enabled)
7050 		start_cfs_bandwidth(cfs_b);
7051 
7052 	raw_spin_unlock_irq(&cfs_b->lock);
7053 
7054 	for_each_online_cpu(i) {
7055 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7056 		struct rq *rq = cfs_rq->rq;
7057 		struct rq_flags rf;
7058 
7059 		rq_lock_irq(rq, &rf);
7060 		cfs_rq->runtime_enabled = runtime_enabled;
7061 		cfs_rq->runtime_remaining = 0;
7062 
7063 		if (cfs_rq->throttled)
7064 			unthrottle_cfs_rq(cfs_rq);
7065 		rq_unlock_irq(rq, &rf);
7066 	}
7067 	if (runtime_was_enabled && !runtime_enabled)
7068 		cfs_bandwidth_usage_dec();
7069 out_unlock:
7070 	mutex_unlock(&cfs_constraints_mutex);
7071 	put_online_cpus();
7072 
7073 	return ret;
7074 }
7075 
7076 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7077 {
7078 	u64 quota, period;
7079 
7080 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7081 	if (cfs_quota_us < 0)
7082 		quota = RUNTIME_INF;
7083 	else
7084 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7085 
7086 	return tg_set_cfs_bandwidth(tg, period, quota);
7087 }
7088 
7089 long tg_get_cfs_quota(struct task_group *tg)
7090 {
7091 	u64 quota_us;
7092 
7093 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7094 		return -1;
7095 
7096 	quota_us = tg->cfs_bandwidth.quota;
7097 	do_div(quota_us, NSEC_PER_USEC);
7098 
7099 	return quota_us;
7100 }
7101 
7102 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7103 {
7104 	u64 quota, period;
7105 
7106 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7107 	quota = tg->cfs_bandwidth.quota;
7108 
7109 	return tg_set_cfs_bandwidth(tg, period, quota);
7110 }
7111 
7112 long tg_get_cfs_period(struct task_group *tg)
7113 {
7114 	u64 cfs_period_us;
7115 
7116 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7117 	do_div(cfs_period_us, NSEC_PER_USEC);
7118 
7119 	return cfs_period_us;
7120 }
7121 
7122 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7123 				  struct cftype *cft)
7124 {
7125 	return tg_get_cfs_quota(css_tg(css));
7126 }
7127 
7128 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7129 				   struct cftype *cftype, s64 cfs_quota_us)
7130 {
7131 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7132 }
7133 
7134 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7135 				   struct cftype *cft)
7136 {
7137 	return tg_get_cfs_period(css_tg(css));
7138 }
7139 
7140 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7141 				    struct cftype *cftype, u64 cfs_period_us)
7142 {
7143 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7144 }
7145 
7146 struct cfs_schedulable_data {
7147 	struct task_group *tg;
7148 	u64 period, quota;
7149 };
7150 
7151 /*
7152  * normalize group quota/period to be quota/max_period
7153  * note: units are usecs
7154  */
7155 static u64 normalize_cfs_quota(struct task_group *tg,
7156 			       struct cfs_schedulable_data *d)
7157 {
7158 	u64 quota, period;
7159 
7160 	if (tg == d->tg) {
7161 		period = d->period;
7162 		quota = d->quota;
7163 	} else {
7164 		period = tg_get_cfs_period(tg);
7165 		quota = tg_get_cfs_quota(tg);
7166 	}
7167 
7168 	/* note: these should typically be equivalent */
7169 	if (quota == RUNTIME_INF || quota == -1)
7170 		return RUNTIME_INF;
7171 
7172 	return to_ratio(period, quota);
7173 }
7174 
7175 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7176 {
7177 	struct cfs_schedulable_data *d = data;
7178 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7179 	s64 quota = 0, parent_quota = -1;
7180 
7181 	if (!tg->parent) {
7182 		quota = RUNTIME_INF;
7183 	} else {
7184 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7185 
7186 		quota = normalize_cfs_quota(tg, d);
7187 		parent_quota = parent_b->hierarchical_quota;
7188 
7189 		/*
7190 		 * Ensure max(child_quota) <= parent_quota, inherit when no
7191 		 * limit is set:
7192 		 */
7193 		if (quota == RUNTIME_INF)
7194 			quota = parent_quota;
7195 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7196 			return -EINVAL;
7197 	}
7198 	cfs_b->hierarchical_quota = quota;
7199 
7200 	return 0;
7201 }
7202 
7203 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7204 {
7205 	int ret;
7206 	struct cfs_schedulable_data data = {
7207 		.tg = tg,
7208 		.period = period,
7209 		.quota = quota,
7210 	};
7211 
7212 	if (quota != RUNTIME_INF) {
7213 		do_div(data.period, NSEC_PER_USEC);
7214 		do_div(data.quota, NSEC_PER_USEC);
7215 	}
7216 
7217 	rcu_read_lock();
7218 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7219 	rcu_read_unlock();
7220 
7221 	return ret;
7222 }
7223 
7224 static int cpu_stats_show(struct seq_file *sf, void *v)
7225 {
7226 	struct task_group *tg = css_tg(seq_css(sf));
7227 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7228 
7229 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7230 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7231 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7232 
7233 	return 0;
7234 }
7235 #endif /* CONFIG_CFS_BANDWIDTH */
7236 #endif /* CONFIG_FAIR_GROUP_SCHED */
7237 
7238 #ifdef CONFIG_RT_GROUP_SCHED
7239 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7240 				struct cftype *cft, s64 val)
7241 {
7242 	return sched_group_set_rt_runtime(css_tg(css), val);
7243 }
7244 
7245 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7246 			       struct cftype *cft)
7247 {
7248 	return sched_group_rt_runtime(css_tg(css));
7249 }
7250 
7251 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7252 				    struct cftype *cftype, u64 rt_period_us)
7253 {
7254 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7255 }
7256 
7257 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7258 				   struct cftype *cft)
7259 {
7260 	return sched_group_rt_period(css_tg(css));
7261 }
7262 #endif /* CONFIG_RT_GROUP_SCHED */
7263 
7264 static struct cftype cpu_files[] = {
7265 #ifdef CONFIG_FAIR_GROUP_SCHED
7266 	{
7267 		.name = "shares",
7268 		.read_u64 = cpu_shares_read_u64,
7269 		.write_u64 = cpu_shares_write_u64,
7270 	},
7271 #endif
7272 #ifdef CONFIG_CFS_BANDWIDTH
7273 	{
7274 		.name = "cfs_quota_us",
7275 		.read_s64 = cpu_cfs_quota_read_s64,
7276 		.write_s64 = cpu_cfs_quota_write_s64,
7277 	},
7278 	{
7279 		.name = "cfs_period_us",
7280 		.read_u64 = cpu_cfs_period_read_u64,
7281 		.write_u64 = cpu_cfs_period_write_u64,
7282 	},
7283 	{
7284 		.name = "stat",
7285 		.seq_show = cpu_stats_show,
7286 	},
7287 #endif
7288 #ifdef CONFIG_RT_GROUP_SCHED
7289 	{
7290 		.name = "rt_runtime_us",
7291 		.read_s64 = cpu_rt_runtime_read,
7292 		.write_s64 = cpu_rt_runtime_write,
7293 	},
7294 	{
7295 		.name = "rt_period_us",
7296 		.read_u64 = cpu_rt_period_read_uint,
7297 		.write_u64 = cpu_rt_period_write_uint,
7298 	},
7299 #endif
7300 	{ }	/* Terminate */
7301 };
7302 
7303 struct cgroup_subsys cpu_cgrp_subsys = {
7304 	.css_alloc	= cpu_cgroup_css_alloc,
7305 	.css_online	= cpu_cgroup_css_online,
7306 	.css_released	= cpu_cgroup_css_released,
7307 	.css_free	= cpu_cgroup_css_free,
7308 	.fork		= cpu_cgroup_fork,
7309 	.can_attach	= cpu_cgroup_can_attach,
7310 	.attach		= cpu_cgroup_attach,
7311 	.legacy_cftypes	= cpu_files,
7312 	.early_init	= true,
7313 };
7314 
7315 #endif	/* CONFIG_CGROUP_SCHED */
7316 
7317 void dump_cpu_task(int cpu)
7318 {
7319 	pr_info("Task dump for CPU %d:\n", cpu);
7320 	sched_show_task(cpu_curr(cpu));
7321 }
7322 
7323 /*
7324  * Nice levels are multiplicative, with a gentle 10% change for every
7325  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7326  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7327  * that remained on nice 0.
7328  *
7329  * The "10% effect" is relative and cumulative: from _any_ nice level,
7330  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7331  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7332  * If a task goes up by ~10% and another task goes down by ~10% then
7333  * the relative distance between them is ~25%.)
7334  */
7335 const int sched_prio_to_weight[40] = {
7336  /* -20 */     88761,     71755,     56483,     46273,     36291,
7337  /* -15 */     29154,     23254,     18705,     14949,     11916,
7338  /* -10 */      9548,      7620,      6100,      4904,      3906,
7339  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7340  /*   0 */      1024,       820,       655,       526,       423,
7341  /*   5 */       335,       272,       215,       172,       137,
7342  /*  10 */       110,        87,        70,        56,        45,
7343  /*  15 */        36,        29,        23,        18,        15,
7344 };
7345 
7346 /*
7347  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7348  *
7349  * In cases where the weight does not change often, we can use the
7350  * precalculated inverse to speed up arithmetics by turning divisions
7351  * into multiplications:
7352  */
7353 const u32 sched_prio_to_wmult[40] = {
7354  /* -20 */     48388,     59856,     76040,     92818,    118348,
7355  /* -15 */    147320,    184698,    229616,    287308,    360437,
7356  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7357  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7358  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7359  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7360  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7361  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7362 };
7363