1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <uapi/linux/sched/types.h> 11 #include <linux/sched/loadavg.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/cpuset.h> 14 #include <linux/delayacct.h> 15 #include <linux/init_task.h> 16 #include <linux/context_tracking.h> 17 #include <linux/rcupdate_wait.h> 18 19 #include <linux/blkdev.h> 20 #include <linux/kprobes.h> 21 #include <linux/mmu_context.h> 22 #include <linux/module.h> 23 #include <linux/nmi.h> 24 #include <linux/prefetch.h> 25 #include <linux/profile.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 29 #include <asm/switch_to.h> 30 #include <asm/tlb.h> 31 #ifdef CONFIG_PARAVIRT 32 #include <asm/paravirt.h> 33 #endif 34 35 #include "sched.h" 36 #include "../workqueue_internal.h" 37 #include "../smpboot.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/sched.h> 41 42 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 43 44 /* 45 * Debugging: various feature bits 46 */ 47 48 #define SCHED_FEAT(name, enabled) \ 49 (1UL << __SCHED_FEAT_##name) * enabled | 50 51 const_debug unsigned int sysctl_sched_features = 52 #include "features.h" 53 0; 54 55 #undef SCHED_FEAT 56 57 /* 58 * Number of tasks to iterate in a single balance run. 59 * Limited because this is done with IRQs disabled. 60 */ 61 const_debug unsigned int sysctl_sched_nr_migrate = 32; 62 63 /* 64 * period over which we average the RT time consumption, measured 65 * in ms. 66 * 67 * default: 1s 68 */ 69 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 70 71 /* 72 * period over which we measure -rt task CPU usage in us. 73 * default: 1s 74 */ 75 unsigned int sysctl_sched_rt_period = 1000000; 76 77 __read_mostly int scheduler_running; 78 79 /* 80 * part of the period that we allow rt tasks to run in us. 81 * default: 0.95s 82 */ 83 int sysctl_sched_rt_runtime = 950000; 84 85 /* CPUs with isolated domains */ 86 cpumask_var_t cpu_isolated_map; 87 88 /* 89 * __task_rq_lock - lock the rq @p resides on. 90 */ 91 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 92 __acquires(rq->lock) 93 { 94 struct rq *rq; 95 96 lockdep_assert_held(&p->pi_lock); 97 98 for (;;) { 99 rq = task_rq(p); 100 raw_spin_lock(&rq->lock); 101 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 102 rq_pin_lock(rq, rf); 103 return rq; 104 } 105 raw_spin_unlock(&rq->lock); 106 107 while (unlikely(task_on_rq_migrating(p))) 108 cpu_relax(); 109 } 110 } 111 112 /* 113 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 114 */ 115 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 116 __acquires(p->pi_lock) 117 __acquires(rq->lock) 118 { 119 struct rq *rq; 120 121 for (;;) { 122 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 123 rq = task_rq(p); 124 raw_spin_lock(&rq->lock); 125 /* 126 * move_queued_task() task_rq_lock() 127 * 128 * ACQUIRE (rq->lock) 129 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 130 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 131 * [S] ->cpu = new_cpu [L] task_rq() 132 * [L] ->on_rq 133 * RELEASE (rq->lock) 134 * 135 * If we observe the old cpu in task_rq_lock, the acquire of 136 * the old rq->lock will fully serialize against the stores. 137 * 138 * If we observe the new CPU in task_rq_lock, the acquire will 139 * pair with the WMB to ensure we must then also see migrating. 140 */ 141 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 142 rq_pin_lock(rq, rf); 143 return rq; 144 } 145 raw_spin_unlock(&rq->lock); 146 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 147 148 while (unlikely(task_on_rq_migrating(p))) 149 cpu_relax(); 150 } 151 } 152 153 /* 154 * RQ-clock updating methods: 155 */ 156 157 static void update_rq_clock_task(struct rq *rq, s64 delta) 158 { 159 /* 160 * In theory, the compile should just see 0 here, and optimize out the call 161 * to sched_rt_avg_update. But I don't trust it... 162 */ 163 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 164 s64 steal = 0, irq_delta = 0; 165 #endif 166 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 167 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 168 169 /* 170 * Since irq_time is only updated on {soft,}irq_exit, we might run into 171 * this case when a previous update_rq_clock() happened inside a 172 * {soft,}irq region. 173 * 174 * When this happens, we stop ->clock_task and only update the 175 * prev_irq_time stamp to account for the part that fit, so that a next 176 * update will consume the rest. This ensures ->clock_task is 177 * monotonic. 178 * 179 * It does however cause some slight miss-attribution of {soft,}irq 180 * time, a more accurate solution would be to update the irq_time using 181 * the current rq->clock timestamp, except that would require using 182 * atomic ops. 183 */ 184 if (irq_delta > delta) 185 irq_delta = delta; 186 187 rq->prev_irq_time += irq_delta; 188 delta -= irq_delta; 189 #endif 190 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 191 if (static_key_false((¶virt_steal_rq_enabled))) { 192 steal = paravirt_steal_clock(cpu_of(rq)); 193 steal -= rq->prev_steal_time_rq; 194 195 if (unlikely(steal > delta)) 196 steal = delta; 197 198 rq->prev_steal_time_rq += steal; 199 delta -= steal; 200 } 201 #endif 202 203 rq->clock_task += delta; 204 205 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 206 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 207 sched_rt_avg_update(rq, irq_delta + steal); 208 #endif 209 } 210 211 void update_rq_clock(struct rq *rq) 212 { 213 s64 delta; 214 215 lockdep_assert_held(&rq->lock); 216 217 if (rq->clock_update_flags & RQCF_ACT_SKIP) 218 return; 219 220 #ifdef CONFIG_SCHED_DEBUG 221 if (sched_feat(WARN_DOUBLE_CLOCK)) 222 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 223 rq->clock_update_flags |= RQCF_UPDATED; 224 #endif 225 226 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 227 if (delta < 0) 228 return; 229 rq->clock += delta; 230 update_rq_clock_task(rq, delta); 231 } 232 233 234 #ifdef CONFIG_SCHED_HRTICK 235 /* 236 * Use HR-timers to deliver accurate preemption points. 237 */ 238 239 static void hrtick_clear(struct rq *rq) 240 { 241 if (hrtimer_active(&rq->hrtick_timer)) 242 hrtimer_cancel(&rq->hrtick_timer); 243 } 244 245 /* 246 * High-resolution timer tick. 247 * Runs from hardirq context with interrupts disabled. 248 */ 249 static enum hrtimer_restart hrtick(struct hrtimer *timer) 250 { 251 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 252 struct rq_flags rf; 253 254 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 255 256 rq_lock(rq, &rf); 257 update_rq_clock(rq); 258 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 259 rq_unlock(rq, &rf); 260 261 return HRTIMER_NORESTART; 262 } 263 264 #ifdef CONFIG_SMP 265 266 static void __hrtick_restart(struct rq *rq) 267 { 268 struct hrtimer *timer = &rq->hrtick_timer; 269 270 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 271 } 272 273 /* 274 * called from hardirq (IPI) context 275 */ 276 static void __hrtick_start(void *arg) 277 { 278 struct rq *rq = arg; 279 struct rq_flags rf; 280 281 rq_lock(rq, &rf); 282 __hrtick_restart(rq); 283 rq->hrtick_csd_pending = 0; 284 rq_unlock(rq, &rf); 285 } 286 287 /* 288 * Called to set the hrtick timer state. 289 * 290 * called with rq->lock held and irqs disabled 291 */ 292 void hrtick_start(struct rq *rq, u64 delay) 293 { 294 struct hrtimer *timer = &rq->hrtick_timer; 295 ktime_t time; 296 s64 delta; 297 298 /* 299 * Don't schedule slices shorter than 10000ns, that just 300 * doesn't make sense and can cause timer DoS. 301 */ 302 delta = max_t(s64, delay, 10000LL); 303 time = ktime_add_ns(timer->base->get_time(), delta); 304 305 hrtimer_set_expires(timer, time); 306 307 if (rq == this_rq()) { 308 __hrtick_restart(rq); 309 } else if (!rq->hrtick_csd_pending) { 310 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 311 rq->hrtick_csd_pending = 1; 312 } 313 } 314 315 #else 316 /* 317 * Called to set the hrtick timer state. 318 * 319 * called with rq->lock held and irqs disabled 320 */ 321 void hrtick_start(struct rq *rq, u64 delay) 322 { 323 /* 324 * Don't schedule slices shorter than 10000ns, that just 325 * doesn't make sense. Rely on vruntime for fairness. 326 */ 327 delay = max_t(u64, delay, 10000LL); 328 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 329 HRTIMER_MODE_REL_PINNED); 330 } 331 #endif /* CONFIG_SMP */ 332 333 static void init_rq_hrtick(struct rq *rq) 334 { 335 #ifdef CONFIG_SMP 336 rq->hrtick_csd_pending = 0; 337 338 rq->hrtick_csd.flags = 0; 339 rq->hrtick_csd.func = __hrtick_start; 340 rq->hrtick_csd.info = rq; 341 #endif 342 343 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 344 rq->hrtick_timer.function = hrtick; 345 } 346 #else /* CONFIG_SCHED_HRTICK */ 347 static inline void hrtick_clear(struct rq *rq) 348 { 349 } 350 351 static inline void init_rq_hrtick(struct rq *rq) 352 { 353 } 354 #endif /* CONFIG_SCHED_HRTICK */ 355 356 /* 357 * cmpxchg based fetch_or, macro so it works for different integer types 358 */ 359 #define fetch_or(ptr, mask) \ 360 ({ \ 361 typeof(ptr) _ptr = (ptr); \ 362 typeof(mask) _mask = (mask); \ 363 typeof(*_ptr) _old, _val = *_ptr; \ 364 \ 365 for (;;) { \ 366 _old = cmpxchg(_ptr, _val, _val | _mask); \ 367 if (_old == _val) \ 368 break; \ 369 _val = _old; \ 370 } \ 371 _old; \ 372 }) 373 374 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 375 /* 376 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 377 * this avoids any races wrt polling state changes and thereby avoids 378 * spurious IPIs. 379 */ 380 static bool set_nr_and_not_polling(struct task_struct *p) 381 { 382 struct thread_info *ti = task_thread_info(p); 383 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 384 } 385 386 /* 387 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 388 * 389 * If this returns true, then the idle task promises to call 390 * sched_ttwu_pending() and reschedule soon. 391 */ 392 static bool set_nr_if_polling(struct task_struct *p) 393 { 394 struct thread_info *ti = task_thread_info(p); 395 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 396 397 for (;;) { 398 if (!(val & _TIF_POLLING_NRFLAG)) 399 return false; 400 if (val & _TIF_NEED_RESCHED) 401 return true; 402 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 403 if (old == val) 404 break; 405 val = old; 406 } 407 return true; 408 } 409 410 #else 411 static bool set_nr_and_not_polling(struct task_struct *p) 412 { 413 set_tsk_need_resched(p); 414 return true; 415 } 416 417 #ifdef CONFIG_SMP 418 static bool set_nr_if_polling(struct task_struct *p) 419 { 420 return false; 421 } 422 #endif 423 #endif 424 425 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 426 { 427 struct wake_q_node *node = &task->wake_q; 428 429 /* 430 * Atomically grab the task, if ->wake_q is !nil already it means 431 * its already queued (either by us or someone else) and will get the 432 * wakeup due to that. 433 * 434 * This cmpxchg() implies a full barrier, which pairs with the write 435 * barrier implied by the wakeup in wake_up_q(). 436 */ 437 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 438 return; 439 440 get_task_struct(task); 441 442 /* 443 * The head is context local, there can be no concurrency. 444 */ 445 *head->lastp = node; 446 head->lastp = &node->next; 447 } 448 449 void wake_up_q(struct wake_q_head *head) 450 { 451 struct wake_q_node *node = head->first; 452 453 while (node != WAKE_Q_TAIL) { 454 struct task_struct *task; 455 456 task = container_of(node, struct task_struct, wake_q); 457 BUG_ON(!task); 458 /* Task can safely be re-inserted now: */ 459 node = node->next; 460 task->wake_q.next = NULL; 461 462 /* 463 * wake_up_process() implies a wmb() to pair with the queueing 464 * in wake_q_add() so as not to miss wakeups. 465 */ 466 wake_up_process(task); 467 put_task_struct(task); 468 } 469 } 470 471 /* 472 * resched_curr - mark rq's current task 'to be rescheduled now'. 473 * 474 * On UP this means the setting of the need_resched flag, on SMP it 475 * might also involve a cross-CPU call to trigger the scheduler on 476 * the target CPU. 477 */ 478 void resched_curr(struct rq *rq) 479 { 480 struct task_struct *curr = rq->curr; 481 int cpu; 482 483 lockdep_assert_held(&rq->lock); 484 485 if (test_tsk_need_resched(curr)) 486 return; 487 488 cpu = cpu_of(rq); 489 490 if (cpu == smp_processor_id()) { 491 set_tsk_need_resched(curr); 492 set_preempt_need_resched(); 493 return; 494 } 495 496 if (set_nr_and_not_polling(curr)) 497 smp_send_reschedule(cpu); 498 else 499 trace_sched_wake_idle_without_ipi(cpu); 500 } 501 502 void resched_cpu(int cpu) 503 { 504 struct rq *rq = cpu_rq(cpu); 505 unsigned long flags; 506 507 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 508 return; 509 resched_curr(rq); 510 raw_spin_unlock_irqrestore(&rq->lock, flags); 511 } 512 513 #ifdef CONFIG_SMP 514 #ifdef CONFIG_NO_HZ_COMMON 515 /* 516 * In the semi idle case, use the nearest busy CPU for migrating timers 517 * from an idle CPU. This is good for power-savings. 518 * 519 * We don't do similar optimization for completely idle system, as 520 * selecting an idle CPU will add more delays to the timers than intended 521 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 522 */ 523 int get_nohz_timer_target(void) 524 { 525 int i, cpu = smp_processor_id(); 526 struct sched_domain *sd; 527 528 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 529 return cpu; 530 531 rcu_read_lock(); 532 for_each_domain(cpu, sd) { 533 for_each_cpu(i, sched_domain_span(sd)) { 534 if (cpu == i) 535 continue; 536 537 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 538 cpu = i; 539 goto unlock; 540 } 541 } 542 } 543 544 if (!is_housekeeping_cpu(cpu)) 545 cpu = housekeeping_any_cpu(); 546 unlock: 547 rcu_read_unlock(); 548 return cpu; 549 } 550 551 /* 552 * When add_timer_on() enqueues a timer into the timer wheel of an 553 * idle CPU then this timer might expire before the next timer event 554 * which is scheduled to wake up that CPU. In case of a completely 555 * idle system the next event might even be infinite time into the 556 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 557 * leaves the inner idle loop so the newly added timer is taken into 558 * account when the CPU goes back to idle and evaluates the timer 559 * wheel for the next timer event. 560 */ 561 static void wake_up_idle_cpu(int cpu) 562 { 563 struct rq *rq = cpu_rq(cpu); 564 565 if (cpu == smp_processor_id()) 566 return; 567 568 if (set_nr_and_not_polling(rq->idle)) 569 smp_send_reschedule(cpu); 570 else 571 trace_sched_wake_idle_without_ipi(cpu); 572 } 573 574 static bool wake_up_full_nohz_cpu(int cpu) 575 { 576 /* 577 * We just need the target to call irq_exit() and re-evaluate 578 * the next tick. The nohz full kick at least implies that. 579 * If needed we can still optimize that later with an 580 * empty IRQ. 581 */ 582 if (cpu_is_offline(cpu)) 583 return true; /* Don't try to wake offline CPUs. */ 584 if (tick_nohz_full_cpu(cpu)) { 585 if (cpu != smp_processor_id() || 586 tick_nohz_tick_stopped()) 587 tick_nohz_full_kick_cpu(cpu); 588 return true; 589 } 590 591 return false; 592 } 593 594 /* 595 * Wake up the specified CPU. If the CPU is going offline, it is the 596 * caller's responsibility to deal with the lost wakeup, for example, 597 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 598 */ 599 void wake_up_nohz_cpu(int cpu) 600 { 601 if (!wake_up_full_nohz_cpu(cpu)) 602 wake_up_idle_cpu(cpu); 603 } 604 605 static inline bool got_nohz_idle_kick(void) 606 { 607 int cpu = smp_processor_id(); 608 609 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 610 return false; 611 612 if (idle_cpu(cpu) && !need_resched()) 613 return true; 614 615 /* 616 * We can't run Idle Load Balance on this CPU for this time so we 617 * cancel it and clear NOHZ_BALANCE_KICK 618 */ 619 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 620 return false; 621 } 622 623 #else /* CONFIG_NO_HZ_COMMON */ 624 625 static inline bool got_nohz_idle_kick(void) 626 { 627 return false; 628 } 629 630 #endif /* CONFIG_NO_HZ_COMMON */ 631 632 #ifdef CONFIG_NO_HZ_FULL 633 bool sched_can_stop_tick(struct rq *rq) 634 { 635 int fifo_nr_running; 636 637 /* Deadline tasks, even if single, need the tick */ 638 if (rq->dl.dl_nr_running) 639 return false; 640 641 /* 642 * If there are more than one RR tasks, we need the tick to effect the 643 * actual RR behaviour. 644 */ 645 if (rq->rt.rr_nr_running) { 646 if (rq->rt.rr_nr_running == 1) 647 return true; 648 else 649 return false; 650 } 651 652 /* 653 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 654 * forced preemption between FIFO tasks. 655 */ 656 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 657 if (fifo_nr_running) 658 return true; 659 660 /* 661 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 662 * if there's more than one we need the tick for involuntary 663 * preemption. 664 */ 665 if (rq->nr_running > 1) 666 return false; 667 668 return true; 669 } 670 #endif /* CONFIG_NO_HZ_FULL */ 671 672 void sched_avg_update(struct rq *rq) 673 { 674 s64 period = sched_avg_period(); 675 676 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 677 /* 678 * Inline assembly required to prevent the compiler 679 * optimising this loop into a divmod call. 680 * See __iter_div_u64_rem() for another example of this. 681 */ 682 asm("" : "+rm" (rq->age_stamp)); 683 rq->age_stamp += period; 684 rq->rt_avg /= 2; 685 } 686 } 687 688 #endif /* CONFIG_SMP */ 689 690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 692 /* 693 * Iterate task_group tree rooted at *from, calling @down when first entering a 694 * node and @up when leaving it for the final time. 695 * 696 * Caller must hold rcu_lock or sufficient equivalent. 697 */ 698 int walk_tg_tree_from(struct task_group *from, 699 tg_visitor down, tg_visitor up, void *data) 700 { 701 struct task_group *parent, *child; 702 int ret; 703 704 parent = from; 705 706 down: 707 ret = (*down)(parent, data); 708 if (ret) 709 goto out; 710 list_for_each_entry_rcu(child, &parent->children, siblings) { 711 parent = child; 712 goto down; 713 714 up: 715 continue; 716 } 717 ret = (*up)(parent, data); 718 if (ret || parent == from) 719 goto out; 720 721 child = parent; 722 parent = parent->parent; 723 if (parent) 724 goto up; 725 out: 726 return ret; 727 } 728 729 int tg_nop(struct task_group *tg, void *data) 730 { 731 return 0; 732 } 733 #endif 734 735 static void set_load_weight(struct task_struct *p) 736 { 737 int prio = p->static_prio - MAX_RT_PRIO; 738 struct load_weight *load = &p->se.load; 739 740 /* 741 * SCHED_IDLE tasks get minimal weight: 742 */ 743 if (idle_policy(p->policy)) { 744 load->weight = scale_load(WEIGHT_IDLEPRIO); 745 load->inv_weight = WMULT_IDLEPRIO; 746 return; 747 } 748 749 load->weight = scale_load(sched_prio_to_weight[prio]); 750 load->inv_weight = sched_prio_to_wmult[prio]; 751 } 752 753 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 754 { 755 if (!(flags & ENQUEUE_NOCLOCK)) 756 update_rq_clock(rq); 757 758 if (!(flags & ENQUEUE_RESTORE)) 759 sched_info_queued(rq, p); 760 761 p->sched_class->enqueue_task(rq, p, flags); 762 } 763 764 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 765 { 766 if (!(flags & DEQUEUE_NOCLOCK)) 767 update_rq_clock(rq); 768 769 if (!(flags & DEQUEUE_SAVE)) 770 sched_info_dequeued(rq, p); 771 772 p->sched_class->dequeue_task(rq, p, flags); 773 } 774 775 void activate_task(struct rq *rq, struct task_struct *p, int flags) 776 { 777 if (task_contributes_to_load(p)) 778 rq->nr_uninterruptible--; 779 780 enqueue_task(rq, p, flags); 781 } 782 783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 784 { 785 if (task_contributes_to_load(p)) 786 rq->nr_uninterruptible++; 787 788 dequeue_task(rq, p, flags); 789 } 790 791 void sched_set_stop_task(int cpu, struct task_struct *stop) 792 { 793 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 794 struct task_struct *old_stop = cpu_rq(cpu)->stop; 795 796 if (stop) { 797 /* 798 * Make it appear like a SCHED_FIFO task, its something 799 * userspace knows about and won't get confused about. 800 * 801 * Also, it will make PI more or less work without too 802 * much confusion -- but then, stop work should not 803 * rely on PI working anyway. 804 */ 805 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 806 807 stop->sched_class = &stop_sched_class; 808 } 809 810 cpu_rq(cpu)->stop = stop; 811 812 if (old_stop) { 813 /* 814 * Reset it back to a normal scheduling class so that 815 * it can die in pieces. 816 */ 817 old_stop->sched_class = &rt_sched_class; 818 } 819 } 820 821 /* 822 * __normal_prio - return the priority that is based on the static prio 823 */ 824 static inline int __normal_prio(struct task_struct *p) 825 { 826 return p->static_prio; 827 } 828 829 /* 830 * Calculate the expected normal priority: i.e. priority 831 * without taking RT-inheritance into account. Might be 832 * boosted by interactivity modifiers. Changes upon fork, 833 * setprio syscalls, and whenever the interactivity 834 * estimator recalculates. 835 */ 836 static inline int normal_prio(struct task_struct *p) 837 { 838 int prio; 839 840 if (task_has_dl_policy(p)) 841 prio = MAX_DL_PRIO-1; 842 else if (task_has_rt_policy(p)) 843 prio = MAX_RT_PRIO-1 - p->rt_priority; 844 else 845 prio = __normal_prio(p); 846 return prio; 847 } 848 849 /* 850 * Calculate the current priority, i.e. the priority 851 * taken into account by the scheduler. This value might 852 * be boosted by RT tasks, or might be boosted by 853 * interactivity modifiers. Will be RT if the task got 854 * RT-boosted. If not then it returns p->normal_prio. 855 */ 856 static int effective_prio(struct task_struct *p) 857 { 858 p->normal_prio = normal_prio(p); 859 /* 860 * If we are RT tasks or we were boosted to RT priority, 861 * keep the priority unchanged. Otherwise, update priority 862 * to the normal priority: 863 */ 864 if (!rt_prio(p->prio)) 865 return p->normal_prio; 866 return p->prio; 867 } 868 869 /** 870 * task_curr - is this task currently executing on a CPU? 871 * @p: the task in question. 872 * 873 * Return: 1 if the task is currently executing. 0 otherwise. 874 */ 875 inline int task_curr(const struct task_struct *p) 876 { 877 return cpu_curr(task_cpu(p)) == p; 878 } 879 880 /* 881 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 882 * use the balance_callback list if you want balancing. 883 * 884 * this means any call to check_class_changed() must be followed by a call to 885 * balance_callback(). 886 */ 887 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 888 const struct sched_class *prev_class, 889 int oldprio) 890 { 891 if (prev_class != p->sched_class) { 892 if (prev_class->switched_from) 893 prev_class->switched_from(rq, p); 894 895 p->sched_class->switched_to(rq, p); 896 } else if (oldprio != p->prio || dl_task(p)) 897 p->sched_class->prio_changed(rq, p, oldprio); 898 } 899 900 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 901 { 902 const struct sched_class *class; 903 904 if (p->sched_class == rq->curr->sched_class) { 905 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 906 } else { 907 for_each_class(class) { 908 if (class == rq->curr->sched_class) 909 break; 910 if (class == p->sched_class) { 911 resched_curr(rq); 912 break; 913 } 914 } 915 } 916 917 /* 918 * A queue event has occurred, and we're going to schedule. In 919 * this case, we can save a useless back to back clock update. 920 */ 921 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 922 rq_clock_skip_update(rq, true); 923 } 924 925 #ifdef CONFIG_SMP 926 /* 927 * This is how migration works: 928 * 929 * 1) we invoke migration_cpu_stop() on the target CPU using 930 * stop_one_cpu(). 931 * 2) stopper starts to run (implicitly forcing the migrated thread 932 * off the CPU) 933 * 3) it checks whether the migrated task is still in the wrong runqueue. 934 * 4) if it's in the wrong runqueue then the migration thread removes 935 * it and puts it into the right queue. 936 * 5) stopper completes and stop_one_cpu() returns and the migration 937 * is done. 938 */ 939 940 /* 941 * move_queued_task - move a queued task to new rq. 942 * 943 * Returns (locked) new rq. Old rq's lock is released. 944 */ 945 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 946 struct task_struct *p, int new_cpu) 947 { 948 lockdep_assert_held(&rq->lock); 949 950 p->on_rq = TASK_ON_RQ_MIGRATING; 951 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 952 set_task_cpu(p, new_cpu); 953 rq_unlock(rq, rf); 954 955 rq = cpu_rq(new_cpu); 956 957 rq_lock(rq, rf); 958 BUG_ON(task_cpu(p) != new_cpu); 959 enqueue_task(rq, p, 0); 960 p->on_rq = TASK_ON_RQ_QUEUED; 961 check_preempt_curr(rq, p, 0); 962 963 return rq; 964 } 965 966 struct migration_arg { 967 struct task_struct *task; 968 int dest_cpu; 969 }; 970 971 /* 972 * Move (not current) task off this CPU, onto the destination CPU. We're doing 973 * this because either it can't run here any more (set_cpus_allowed() 974 * away from this CPU, or CPU going down), or because we're 975 * attempting to rebalance this task on exec (sched_exec). 976 * 977 * So we race with normal scheduler movements, but that's OK, as long 978 * as the task is no longer on this CPU. 979 */ 980 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 981 struct task_struct *p, int dest_cpu) 982 { 983 if (unlikely(!cpu_active(dest_cpu))) 984 return rq; 985 986 /* Affinity changed (again). */ 987 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 988 return rq; 989 990 update_rq_clock(rq); 991 rq = move_queued_task(rq, rf, p, dest_cpu); 992 993 return rq; 994 } 995 996 /* 997 * migration_cpu_stop - this will be executed by a highprio stopper thread 998 * and performs thread migration by bumping thread off CPU then 999 * 'pushing' onto another runqueue. 1000 */ 1001 static int migration_cpu_stop(void *data) 1002 { 1003 struct migration_arg *arg = data; 1004 struct task_struct *p = arg->task; 1005 struct rq *rq = this_rq(); 1006 struct rq_flags rf; 1007 1008 /* 1009 * The original target CPU might have gone down and we might 1010 * be on another CPU but it doesn't matter. 1011 */ 1012 local_irq_disable(); 1013 /* 1014 * We need to explicitly wake pending tasks before running 1015 * __migrate_task() such that we will not miss enforcing cpus_allowed 1016 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1017 */ 1018 sched_ttwu_pending(); 1019 1020 raw_spin_lock(&p->pi_lock); 1021 rq_lock(rq, &rf); 1022 /* 1023 * If task_rq(p) != rq, it cannot be migrated here, because we're 1024 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1025 * we're holding p->pi_lock. 1026 */ 1027 if (task_rq(p) == rq) { 1028 if (task_on_rq_queued(p)) 1029 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1030 else 1031 p->wake_cpu = arg->dest_cpu; 1032 } 1033 rq_unlock(rq, &rf); 1034 raw_spin_unlock(&p->pi_lock); 1035 1036 local_irq_enable(); 1037 return 0; 1038 } 1039 1040 /* 1041 * sched_class::set_cpus_allowed must do the below, but is not required to 1042 * actually call this function. 1043 */ 1044 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1045 { 1046 cpumask_copy(&p->cpus_allowed, new_mask); 1047 p->nr_cpus_allowed = cpumask_weight(new_mask); 1048 } 1049 1050 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1051 { 1052 struct rq *rq = task_rq(p); 1053 bool queued, running; 1054 1055 lockdep_assert_held(&p->pi_lock); 1056 1057 queued = task_on_rq_queued(p); 1058 running = task_current(rq, p); 1059 1060 if (queued) { 1061 /* 1062 * Because __kthread_bind() calls this on blocked tasks without 1063 * holding rq->lock. 1064 */ 1065 lockdep_assert_held(&rq->lock); 1066 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1067 } 1068 if (running) 1069 put_prev_task(rq, p); 1070 1071 p->sched_class->set_cpus_allowed(p, new_mask); 1072 1073 if (queued) 1074 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1075 if (running) 1076 set_curr_task(rq, p); 1077 } 1078 1079 /* 1080 * Change a given task's CPU affinity. Migrate the thread to a 1081 * proper CPU and schedule it away if the CPU it's executing on 1082 * is removed from the allowed bitmask. 1083 * 1084 * NOTE: the caller must have a valid reference to the task, the 1085 * task must not exit() & deallocate itself prematurely. The 1086 * call is not atomic; no spinlocks may be held. 1087 */ 1088 static int __set_cpus_allowed_ptr(struct task_struct *p, 1089 const struct cpumask *new_mask, bool check) 1090 { 1091 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1092 unsigned int dest_cpu; 1093 struct rq_flags rf; 1094 struct rq *rq; 1095 int ret = 0; 1096 1097 rq = task_rq_lock(p, &rf); 1098 update_rq_clock(rq); 1099 1100 if (p->flags & PF_KTHREAD) { 1101 /* 1102 * Kernel threads are allowed on online && !active CPUs 1103 */ 1104 cpu_valid_mask = cpu_online_mask; 1105 } 1106 1107 /* 1108 * Must re-check here, to close a race against __kthread_bind(), 1109 * sched_setaffinity() is not guaranteed to observe the flag. 1110 */ 1111 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1112 ret = -EINVAL; 1113 goto out; 1114 } 1115 1116 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1117 goto out; 1118 1119 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1120 ret = -EINVAL; 1121 goto out; 1122 } 1123 1124 do_set_cpus_allowed(p, new_mask); 1125 1126 if (p->flags & PF_KTHREAD) { 1127 /* 1128 * For kernel threads that do indeed end up on online && 1129 * !active we want to ensure they are strict per-CPU threads. 1130 */ 1131 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1132 !cpumask_intersects(new_mask, cpu_active_mask) && 1133 p->nr_cpus_allowed != 1); 1134 } 1135 1136 /* Can the task run on the task's current CPU? If so, we're done */ 1137 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1138 goto out; 1139 1140 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1141 if (task_running(rq, p) || p->state == TASK_WAKING) { 1142 struct migration_arg arg = { p, dest_cpu }; 1143 /* Need help from migration thread: drop lock and wait. */ 1144 task_rq_unlock(rq, p, &rf); 1145 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1146 tlb_migrate_finish(p->mm); 1147 return 0; 1148 } else if (task_on_rq_queued(p)) { 1149 /* 1150 * OK, since we're going to drop the lock immediately 1151 * afterwards anyway. 1152 */ 1153 rq = move_queued_task(rq, &rf, p, dest_cpu); 1154 } 1155 out: 1156 task_rq_unlock(rq, p, &rf); 1157 1158 return ret; 1159 } 1160 1161 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1162 { 1163 return __set_cpus_allowed_ptr(p, new_mask, false); 1164 } 1165 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1166 1167 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1168 { 1169 #ifdef CONFIG_SCHED_DEBUG 1170 /* 1171 * We should never call set_task_cpu() on a blocked task, 1172 * ttwu() will sort out the placement. 1173 */ 1174 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1175 !p->on_rq); 1176 1177 /* 1178 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1179 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1180 * time relying on p->on_rq. 1181 */ 1182 WARN_ON_ONCE(p->state == TASK_RUNNING && 1183 p->sched_class == &fair_sched_class && 1184 (p->on_rq && !task_on_rq_migrating(p))); 1185 1186 #ifdef CONFIG_LOCKDEP 1187 /* 1188 * The caller should hold either p->pi_lock or rq->lock, when changing 1189 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1190 * 1191 * sched_move_task() holds both and thus holding either pins the cgroup, 1192 * see task_group(). 1193 * 1194 * Furthermore, all task_rq users should acquire both locks, see 1195 * task_rq_lock(). 1196 */ 1197 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1198 lockdep_is_held(&task_rq(p)->lock))); 1199 #endif 1200 #endif 1201 1202 trace_sched_migrate_task(p, new_cpu); 1203 1204 if (task_cpu(p) != new_cpu) { 1205 if (p->sched_class->migrate_task_rq) 1206 p->sched_class->migrate_task_rq(p); 1207 p->se.nr_migrations++; 1208 perf_event_task_migrate(p); 1209 } 1210 1211 __set_task_cpu(p, new_cpu); 1212 } 1213 1214 static void __migrate_swap_task(struct task_struct *p, int cpu) 1215 { 1216 if (task_on_rq_queued(p)) { 1217 struct rq *src_rq, *dst_rq; 1218 struct rq_flags srf, drf; 1219 1220 src_rq = task_rq(p); 1221 dst_rq = cpu_rq(cpu); 1222 1223 rq_pin_lock(src_rq, &srf); 1224 rq_pin_lock(dst_rq, &drf); 1225 1226 p->on_rq = TASK_ON_RQ_MIGRATING; 1227 deactivate_task(src_rq, p, 0); 1228 set_task_cpu(p, cpu); 1229 activate_task(dst_rq, p, 0); 1230 p->on_rq = TASK_ON_RQ_QUEUED; 1231 check_preempt_curr(dst_rq, p, 0); 1232 1233 rq_unpin_lock(dst_rq, &drf); 1234 rq_unpin_lock(src_rq, &srf); 1235 1236 } else { 1237 /* 1238 * Task isn't running anymore; make it appear like we migrated 1239 * it before it went to sleep. This means on wakeup we make the 1240 * previous CPU our target instead of where it really is. 1241 */ 1242 p->wake_cpu = cpu; 1243 } 1244 } 1245 1246 struct migration_swap_arg { 1247 struct task_struct *src_task, *dst_task; 1248 int src_cpu, dst_cpu; 1249 }; 1250 1251 static int migrate_swap_stop(void *data) 1252 { 1253 struct migration_swap_arg *arg = data; 1254 struct rq *src_rq, *dst_rq; 1255 int ret = -EAGAIN; 1256 1257 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1258 return -EAGAIN; 1259 1260 src_rq = cpu_rq(arg->src_cpu); 1261 dst_rq = cpu_rq(arg->dst_cpu); 1262 1263 double_raw_lock(&arg->src_task->pi_lock, 1264 &arg->dst_task->pi_lock); 1265 double_rq_lock(src_rq, dst_rq); 1266 1267 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1268 goto unlock; 1269 1270 if (task_cpu(arg->src_task) != arg->src_cpu) 1271 goto unlock; 1272 1273 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1274 goto unlock; 1275 1276 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1277 goto unlock; 1278 1279 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1280 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1281 1282 ret = 0; 1283 1284 unlock: 1285 double_rq_unlock(src_rq, dst_rq); 1286 raw_spin_unlock(&arg->dst_task->pi_lock); 1287 raw_spin_unlock(&arg->src_task->pi_lock); 1288 1289 return ret; 1290 } 1291 1292 /* 1293 * Cross migrate two tasks 1294 */ 1295 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1296 { 1297 struct migration_swap_arg arg; 1298 int ret = -EINVAL; 1299 1300 arg = (struct migration_swap_arg){ 1301 .src_task = cur, 1302 .src_cpu = task_cpu(cur), 1303 .dst_task = p, 1304 .dst_cpu = task_cpu(p), 1305 }; 1306 1307 if (arg.src_cpu == arg.dst_cpu) 1308 goto out; 1309 1310 /* 1311 * These three tests are all lockless; this is OK since all of them 1312 * will be re-checked with proper locks held further down the line. 1313 */ 1314 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1315 goto out; 1316 1317 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1318 goto out; 1319 1320 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1321 goto out; 1322 1323 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1324 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1325 1326 out: 1327 return ret; 1328 } 1329 1330 /* 1331 * wait_task_inactive - wait for a thread to unschedule. 1332 * 1333 * If @match_state is nonzero, it's the @p->state value just checked and 1334 * not expected to change. If it changes, i.e. @p might have woken up, 1335 * then return zero. When we succeed in waiting for @p to be off its CPU, 1336 * we return a positive number (its total switch count). If a second call 1337 * a short while later returns the same number, the caller can be sure that 1338 * @p has remained unscheduled the whole time. 1339 * 1340 * The caller must ensure that the task *will* unschedule sometime soon, 1341 * else this function might spin for a *long* time. This function can't 1342 * be called with interrupts off, or it may introduce deadlock with 1343 * smp_call_function() if an IPI is sent by the same process we are 1344 * waiting to become inactive. 1345 */ 1346 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1347 { 1348 int running, queued; 1349 struct rq_flags rf; 1350 unsigned long ncsw; 1351 struct rq *rq; 1352 1353 for (;;) { 1354 /* 1355 * We do the initial early heuristics without holding 1356 * any task-queue locks at all. We'll only try to get 1357 * the runqueue lock when things look like they will 1358 * work out! 1359 */ 1360 rq = task_rq(p); 1361 1362 /* 1363 * If the task is actively running on another CPU 1364 * still, just relax and busy-wait without holding 1365 * any locks. 1366 * 1367 * NOTE! Since we don't hold any locks, it's not 1368 * even sure that "rq" stays as the right runqueue! 1369 * But we don't care, since "task_running()" will 1370 * return false if the runqueue has changed and p 1371 * is actually now running somewhere else! 1372 */ 1373 while (task_running(rq, p)) { 1374 if (match_state && unlikely(p->state != match_state)) 1375 return 0; 1376 cpu_relax(); 1377 } 1378 1379 /* 1380 * Ok, time to look more closely! We need the rq 1381 * lock now, to be *sure*. If we're wrong, we'll 1382 * just go back and repeat. 1383 */ 1384 rq = task_rq_lock(p, &rf); 1385 trace_sched_wait_task(p); 1386 running = task_running(rq, p); 1387 queued = task_on_rq_queued(p); 1388 ncsw = 0; 1389 if (!match_state || p->state == match_state) 1390 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1391 task_rq_unlock(rq, p, &rf); 1392 1393 /* 1394 * If it changed from the expected state, bail out now. 1395 */ 1396 if (unlikely(!ncsw)) 1397 break; 1398 1399 /* 1400 * Was it really running after all now that we 1401 * checked with the proper locks actually held? 1402 * 1403 * Oops. Go back and try again.. 1404 */ 1405 if (unlikely(running)) { 1406 cpu_relax(); 1407 continue; 1408 } 1409 1410 /* 1411 * It's not enough that it's not actively running, 1412 * it must be off the runqueue _entirely_, and not 1413 * preempted! 1414 * 1415 * So if it was still runnable (but just not actively 1416 * running right now), it's preempted, and we should 1417 * yield - it could be a while. 1418 */ 1419 if (unlikely(queued)) { 1420 ktime_t to = NSEC_PER_SEC / HZ; 1421 1422 set_current_state(TASK_UNINTERRUPTIBLE); 1423 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1424 continue; 1425 } 1426 1427 /* 1428 * Ahh, all good. It wasn't running, and it wasn't 1429 * runnable, which means that it will never become 1430 * running in the future either. We're all done! 1431 */ 1432 break; 1433 } 1434 1435 return ncsw; 1436 } 1437 1438 /*** 1439 * kick_process - kick a running thread to enter/exit the kernel 1440 * @p: the to-be-kicked thread 1441 * 1442 * Cause a process which is running on another CPU to enter 1443 * kernel-mode, without any delay. (to get signals handled.) 1444 * 1445 * NOTE: this function doesn't have to take the runqueue lock, 1446 * because all it wants to ensure is that the remote task enters 1447 * the kernel. If the IPI races and the task has been migrated 1448 * to another CPU then no harm is done and the purpose has been 1449 * achieved as well. 1450 */ 1451 void kick_process(struct task_struct *p) 1452 { 1453 int cpu; 1454 1455 preempt_disable(); 1456 cpu = task_cpu(p); 1457 if ((cpu != smp_processor_id()) && task_curr(p)) 1458 smp_send_reschedule(cpu); 1459 preempt_enable(); 1460 } 1461 EXPORT_SYMBOL_GPL(kick_process); 1462 1463 /* 1464 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1465 * 1466 * A few notes on cpu_active vs cpu_online: 1467 * 1468 * - cpu_active must be a subset of cpu_online 1469 * 1470 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1471 * see __set_cpus_allowed_ptr(). At this point the newly online 1472 * CPU isn't yet part of the sched domains, and balancing will not 1473 * see it. 1474 * 1475 * - on CPU-down we clear cpu_active() to mask the sched domains and 1476 * avoid the load balancer to place new tasks on the to be removed 1477 * CPU. Existing tasks will remain running there and will be taken 1478 * off. 1479 * 1480 * This means that fallback selection must not select !active CPUs. 1481 * And can assume that any active CPU must be online. Conversely 1482 * select_task_rq() below may allow selection of !active CPUs in order 1483 * to satisfy the above rules. 1484 */ 1485 static int select_fallback_rq(int cpu, struct task_struct *p) 1486 { 1487 int nid = cpu_to_node(cpu); 1488 const struct cpumask *nodemask = NULL; 1489 enum { cpuset, possible, fail } state = cpuset; 1490 int dest_cpu; 1491 1492 /* 1493 * If the node that the CPU is on has been offlined, cpu_to_node() 1494 * will return -1. There is no CPU on the node, and we should 1495 * select the CPU on the other node. 1496 */ 1497 if (nid != -1) { 1498 nodemask = cpumask_of_node(nid); 1499 1500 /* Look for allowed, online CPU in same node. */ 1501 for_each_cpu(dest_cpu, nodemask) { 1502 if (!cpu_active(dest_cpu)) 1503 continue; 1504 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1505 return dest_cpu; 1506 } 1507 } 1508 1509 for (;;) { 1510 /* Any allowed, online CPU? */ 1511 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1512 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1513 continue; 1514 if (!cpu_online(dest_cpu)) 1515 continue; 1516 goto out; 1517 } 1518 1519 /* No more Mr. Nice Guy. */ 1520 switch (state) { 1521 case cpuset: 1522 if (IS_ENABLED(CONFIG_CPUSETS)) { 1523 cpuset_cpus_allowed_fallback(p); 1524 state = possible; 1525 break; 1526 } 1527 /* Fall-through */ 1528 case possible: 1529 do_set_cpus_allowed(p, cpu_possible_mask); 1530 state = fail; 1531 break; 1532 1533 case fail: 1534 BUG(); 1535 break; 1536 } 1537 } 1538 1539 out: 1540 if (state != cpuset) { 1541 /* 1542 * Don't tell them about moving exiting tasks or 1543 * kernel threads (both mm NULL), since they never 1544 * leave kernel. 1545 */ 1546 if (p->mm && printk_ratelimit()) { 1547 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1548 task_pid_nr(p), p->comm, cpu); 1549 } 1550 } 1551 1552 return dest_cpu; 1553 } 1554 1555 /* 1556 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1557 */ 1558 static inline 1559 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1560 { 1561 lockdep_assert_held(&p->pi_lock); 1562 1563 if (p->nr_cpus_allowed > 1) 1564 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1565 else 1566 cpu = cpumask_any(&p->cpus_allowed); 1567 1568 /* 1569 * In order not to call set_task_cpu() on a blocking task we need 1570 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1571 * CPU. 1572 * 1573 * Since this is common to all placement strategies, this lives here. 1574 * 1575 * [ this allows ->select_task() to simply return task_cpu(p) and 1576 * not worry about this generic constraint ] 1577 */ 1578 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1579 !cpu_online(cpu))) 1580 cpu = select_fallback_rq(task_cpu(p), p); 1581 1582 return cpu; 1583 } 1584 1585 static void update_avg(u64 *avg, u64 sample) 1586 { 1587 s64 diff = sample - *avg; 1588 *avg += diff >> 3; 1589 } 1590 1591 #else 1592 1593 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1594 const struct cpumask *new_mask, bool check) 1595 { 1596 return set_cpus_allowed_ptr(p, new_mask); 1597 } 1598 1599 #endif /* CONFIG_SMP */ 1600 1601 static void 1602 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1603 { 1604 struct rq *rq; 1605 1606 if (!schedstat_enabled()) 1607 return; 1608 1609 rq = this_rq(); 1610 1611 #ifdef CONFIG_SMP 1612 if (cpu == rq->cpu) { 1613 schedstat_inc(rq->ttwu_local); 1614 schedstat_inc(p->se.statistics.nr_wakeups_local); 1615 } else { 1616 struct sched_domain *sd; 1617 1618 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1619 rcu_read_lock(); 1620 for_each_domain(rq->cpu, sd) { 1621 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1622 schedstat_inc(sd->ttwu_wake_remote); 1623 break; 1624 } 1625 } 1626 rcu_read_unlock(); 1627 } 1628 1629 if (wake_flags & WF_MIGRATED) 1630 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1631 #endif /* CONFIG_SMP */ 1632 1633 schedstat_inc(rq->ttwu_count); 1634 schedstat_inc(p->se.statistics.nr_wakeups); 1635 1636 if (wake_flags & WF_SYNC) 1637 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1638 } 1639 1640 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1641 { 1642 activate_task(rq, p, en_flags); 1643 p->on_rq = TASK_ON_RQ_QUEUED; 1644 1645 /* If a worker is waking up, notify the workqueue: */ 1646 if (p->flags & PF_WQ_WORKER) 1647 wq_worker_waking_up(p, cpu_of(rq)); 1648 } 1649 1650 /* 1651 * Mark the task runnable and perform wakeup-preemption. 1652 */ 1653 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1654 struct rq_flags *rf) 1655 { 1656 check_preempt_curr(rq, p, wake_flags); 1657 p->state = TASK_RUNNING; 1658 trace_sched_wakeup(p); 1659 1660 #ifdef CONFIG_SMP 1661 if (p->sched_class->task_woken) { 1662 /* 1663 * Our task @p is fully woken up and running; so its safe to 1664 * drop the rq->lock, hereafter rq is only used for statistics. 1665 */ 1666 rq_unpin_lock(rq, rf); 1667 p->sched_class->task_woken(rq, p); 1668 rq_repin_lock(rq, rf); 1669 } 1670 1671 if (rq->idle_stamp) { 1672 u64 delta = rq_clock(rq) - rq->idle_stamp; 1673 u64 max = 2*rq->max_idle_balance_cost; 1674 1675 update_avg(&rq->avg_idle, delta); 1676 1677 if (rq->avg_idle > max) 1678 rq->avg_idle = max; 1679 1680 rq->idle_stamp = 0; 1681 } 1682 #endif 1683 } 1684 1685 static void 1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1687 struct rq_flags *rf) 1688 { 1689 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1690 1691 lockdep_assert_held(&rq->lock); 1692 1693 #ifdef CONFIG_SMP 1694 if (p->sched_contributes_to_load) 1695 rq->nr_uninterruptible--; 1696 1697 if (wake_flags & WF_MIGRATED) 1698 en_flags |= ENQUEUE_MIGRATED; 1699 #endif 1700 1701 ttwu_activate(rq, p, en_flags); 1702 ttwu_do_wakeup(rq, p, wake_flags, rf); 1703 } 1704 1705 /* 1706 * Called in case the task @p isn't fully descheduled from its runqueue, 1707 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1708 * since all we need to do is flip p->state to TASK_RUNNING, since 1709 * the task is still ->on_rq. 1710 */ 1711 static int ttwu_remote(struct task_struct *p, int wake_flags) 1712 { 1713 struct rq_flags rf; 1714 struct rq *rq; 1715 int ret = 0; 1716 1717 rq = __task_rq_lock(p, &rf); 1718 if (task_on_rq_queued(p)) { 1719 /* check_preempt_curr() may use rq clock */ 1720 update_rq_clock(rq); 1721 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1722 ret = 1; 1723 } 1724 __task_rq_unlock(rq, &rf); 1725 1726 return ret; 1727 } 1728 1729 #ifdef CONFIG_SMP 1730 void sched_ttwu_pending(void) 1731 { 1732 struct rq *rq = this_rq(); 1733 struct llist_node *llist = llist_del_all(&rq->wake_list); 1734 struct task_struct *p; 1735 struct rq_flags rf; 1736 1737 if (!llist) 1738 return; 1739 1740 rq_lock_irqsave(rq, &rf); 1741 update_rq_clock(rq); 1742 1743 while (llist) { 1744 int wake_flags = 0; 1745 1746 p = llist_entry(llist, struct task_struct, wake_entry); 1747 llist = llist_next(llist); 1748 1749 if (p->sched_remote_wakeup) 1750 wake_flags = WF_MIGRATED; 1751 1752 ttwu_do_activate(rq, p, wake_flags, &rf); 1753 } 1754 1755 rq_unlock_irqrestore(rq, &rf); 1756 } 1757 1758 void scheduler_ipi(void) 1759 { 1760 /* 1761 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1762 * TIF_NEED_RESCHED remotely (for the first time) will also send 1763 * this IPI. 1764 */ 1765 preempt_fold_need_resched(); 1766 1767 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1768 return; 1769 1770 /* 1771 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1772 * traditionally all their work was done from the interrupt return 1773 * path. Now that we actually do some work, we need to make sure 1774 * we do call them. 1775 * 1776 * Some archs already do call them, luckily irq_enter/exit nest 1777 * properly. 1778 * 1779 * Arguably we should visit all archs and update all handlers, 1780 * however a fair share of IPIs are still resched only so this would 1781 * somewhat pessimize the simple resched case. 1782 */ 1783 irq_enter(); 1784 sched_ttwu_pending(); 1785 1786 /* 1787 * Check if someone kicked us for doing the nohz idle load balance. 1788 */ 1789 if (unlikely(got_nohz_idle_kick())) { 1790 this_rq()->idle_balance = 1; 1791 raise_softirq_irqoff(SCHED_SOFTIRQ); 1792 } 1793 irq_exit(); 1794 } 1795 1796 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1797 { 1798 struct rq *rq = cpu_rq(cpu); 1799 1800 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1801 1802 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1803 if (!set_nr_if_polling(rq->idle)) 1804 smp_send_reschedule(cpu); 1805 else 1806 trace_sched_wake_idle_without_ipi(cpu); 1807 } 1808 } 1809 1810 void wake_up_if_idle(int cpu) 1811 { 1812 struct rq *rq = cpu_rq(cpu); 1813 struct rq_flags rf; 1814 1815 rcu_read_lock(); 1816 1817 if (!is_idle_task(rcu_dereference(rq->curr))) 1818 goto out; 1819 1820 if (set_nr_if_polling(rq->idle)) { 1821 trace_sched_wake_idle_without_ipi(cpu); 1822 } else { 1823 rq_lock_irqsave(rq, &rf); 1824 if (is_idle_task(rq->curr)) 1825 smp_send_reschedule(cpu); 1826 /* Else CPU is not idle, do nothing here: */ 1827 rq_unlock_irqrestore(rq, &rf); 1828 } 1829 1830 out: 1831 rcu_read_unlock(); 1832 } 1833 1834 bool cpus_share_cache(int this_cpu, int that_cpu) 1835 { 1836 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1837 } 1838 #endif /* CONFIG_SMP */ 1839 1840 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1841 { 1842 struct rq *rq = cpu_rq(cpu); 1843 struct rq_flags rf; 1844 1845 #if defined(CONFIG_SMP) 1846 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1847 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1848 ttwu_queue_remote(p, cpu, wake_flags); 1849 return; 1850 } 1851 #endif 1852 1853 rq_lock(rq, &rf); 1854 update_rq_clock(rq); 1855 ttwu_do_activate(rq, p, wake_flags, &rf); 1856 rq_unlock(rq, &rf); 1857 } 1858 1859 /* 1860 * Notes on Program-Order guarantees on SMP systems. 1861 * 1862 * MIGRATION 1863 * 1864 * The basic program-order guarantee on SMP systems is that when a task [t] 1865 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1866 * execution on its new CPU [c1]. 1867 * 1868 * For migration (of runnable tasks) this is provided by the following means: 1869 * 1870 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1871 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1872 * rq(c1)->lock (if not at the same time, then in that order). 1873 * C) LOCK of the rq(c1)->lock scheduling in task 1874 * 1875 * Transitivity guarantees that B happens after A and C after B. 1876 * Note: we only require RCpc transitivity. 1877 * Note: the CPU doing B need not be c0 or c1 1878 * 1879 * Example: 1880 * 1881 * CPU0 CPU1 CPU2 1882 * 1883 * LOCK rq(0)->lock 1884 * sched-out X 1885 * sched-in Y 1886 * UNLOCK rq(0)->lock 1887 * 1888 * LOCK rq(0)->lock // orders against CPU0 1889 * dequeue X 1890 * UNLOCK rq(0)->lock 1891 * 1892 * LOCK rq(1)->lock 1893 * enqueue X 1894 * UNLOCK rq(1)->lock 1895 * 1896 * LOCK rq(1)->lock // orders against CPU2 1897 * sched-out Z 1898 * sched-in X 1899 * UNLOCK rq(1)->lock 1900 * 1901 * 1902 * BLOCKING -- aka. SLEEP + WAKEUP 1903 * 1904 * For blocking we (obviously) need to provide the same guarantee as for 1905 * migration. However the means are completely different as there is no lock 1906 * chain to provide order. Instead we do: 1907 * 1908 * 1) smp_store_release(X->on_cpu, 0) 1909 * 2) smp_cond_load_acquire(!X->on_cpu) 1910 * 1911 * Example: 1912 * 1913 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1914 * 1915 * LOCK rq(0)->lock LOCK X->pi_lock 1916 * dequeue X 1917 * sched-out X 1918 * smp_store_release(X->on_cpu, 0); 1919 * 1920 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1921 * X->state = WAKING 1922 * set_task_cpu(X,2) 1923 * 1924 * LOCK rq(2)->lock 1925 * enqueue X 1926 * X->state = RUNNING 1927 * UNLOCK rq(2)->lock 1928 * 1929 * LOCK rq(2)->lock // orders against CPU1 1930 * sched-out Z 1931 * sched-in X 1932 * UNLOCK rq(2)->lock 1933 * 1934 * UNLOCK X->pi_lock 1935 * UNLOCK rq(0)->lock 1936 * 1937 * 1938 * However; for wakeups there is a second guarantee we must provide, namely we 1939 * must observe the state that lead to our wakeup. That is, not only must our 1940 * task observe its own prior state, it must also observe the stores prior to 1941 * its wakeup. 1942 * 1943 * This means that any means of doing remote wakeups must order the CPU doing 1944 * the wakeup against the CPU the task is going to end up running on. This, 1945 * however, is already required for the regular Program-Order guarantee above, 1946 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1947 * 1948 */ 1949 1950 /** 1951 * try_to_wake_up - wake up a thread 1952 * @p: the thread to be awakened 1953 * @state: the mask of task states that can be woken 1954 * @wake_flags: wake modifier flags (WF_*) 1955 * 1956 * If (@state & @p->state) @p->state = TASK_RUNNING. 1957 * 1958 * If the task was not queued/runnable, also place it back on a runqueue. 1959 * 1960 * Atomic against schedule() which would dequeue a task, also see 1961 * set_current_state(). 1962 * 1963 * Return: %true if @p->state changes (an actual wakeup was done), 1964 * %false otherwise. 1965 */ 1966 static int 1967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1968 { 1969 unsigned long flags; 1970 int cpu, success = 0; 1971 1972 /* 1973 * If we are going to wake up a thread waiting for CONDITION we 1974 * need to ensure that CONDITION=1 done by the caller can not be 1975 * reordered with p->state check below. This pairs with mb() in 1976 * set_current_state() the waiting thread does. 1977 */ 1978 smp_mb__before_spinlock(); 1979 raw_spin_lock_irqsave(&p->pi_lock, flags); 1980 if (!(p->state & state)) 1981 goto out; 1982 1983 trace_sched_waking(p); 1984 1985 /* We're going to change ->state: */ 1986 success = 1; 1987 cpu = task_cpu(p); 1988 1989 /* 1990 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1991 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1992 * in smp_cond_load_acquire() below. 1993 * 1994 * sched_ttwu_pending() try_to_wake_up() 1995 * [S] p->on_rq = 1; [L] P->state 1996 * UNLOCK rq->lock -----. 1997 * \ 1998 * +--- RMB 1999 * schedule() / 2000 * LOCK rq->lock -----' 2001 * UNLOCK rq->lock 2002 * 2003 * [task p] 2004 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2005 * 2006 * Pairs with the UNLOCK+LOCK on rq->lock from the 2007 * last wakeup of our task and the schedule that got our task 2008 * current. 2009 */ 2010 smp_rmb(); 2011 if (p->on_rq && ttwu_remote(p, wake_flags)) 2012 goto stat; 2013 2014 #ifdef CONFIG_SMP 2015 /* 2016 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2017 * possible to, falsely, observe p->on_cpu == 0. 2018 * 2019 * One must be running (->on_cpu == 1) in order to remove oneself 2020 * from the runqueue. 2021 * 2022 * [S] ->on_cpu = 1; [L] ->on_rq 2023 * UNLOCK rq->lock 2024 * RMB 2025 * LOCK rq->lock 2026 * [S] ->on_rq = 0; [L] ->on_cpu 2027 * 2028 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2029 * from the consecutive calls to schedule(); the first switching to our 2030 * task, the second putting it to sleep. 2031 */ 2032 smp_rmb(); 2033 2034 /* 2035 * If the owning (remote) CPU is still in the middle of schedule() with 2036 * this task as prev, wait until its done referencing the task. 2037 * 2038 * Pairs with the smp_store_release() in finish_lock_switch(). 2039 * 2040 * This ensures that tasks getting woken will be fully ordered against 2041 * their previous state and preserve Program Order. 2042 */ 2043 smp_cond_load_acquire(&p->on_cpu, !VAL); 2044 2045 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2046 p->state = TASK_WAKING; 2047 2048 if (p->in_iowait) { 2049 delayacct_blkio_end(); 2050 atomic_dec(&task_rq(p)->nr_iowait); 2051 } 2052 2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2054 if (task_cpu(p) != cpu) { 2055 wake_flags |= WF_MIGRATED; 2056 set_task_cpu(p, cpu); 2057 } 2058 2059 #else /* CONFIG_SMP */ 2060 2061 if (p->in_iowait) { 2062 delayacct_blkio_end(); 2063 atomic_dec(&task_rq(p)->nr_iowait); 2064 } 2065 2066 #endif /* CONFIG_SMP */ 2067 2068 ttwu_queue(p, cpu, wake_flags); 2069 stat: 2070 ttwu_stat(p, cpu, wake_flags); 2071 out: 2072 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2073 2074 return success; 2075 } 2076 2077 /** 2078 * try_to_wake_up_local - try to wake up a local task with rq lock held 2079 * @p: the thread to be awakened 2080 * @cookie: context's cookie for pinning 2081 * 2082 * Put @p on the run-queue if it's not already there. The caller must 2083 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2084 * the current task. 2085 */ 2086 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2087 { 2088 struct rq *rq = task_rq(p); 2089 2090 if (WARN_ON_ONCE(rq != this_rq()) || 2091 WARN_ON_ONCE(p == current)) 2092 return; 2093 2094 lockdep_assert_held(&rq->lock); 2095 2096 if (!raw_spin_trylock(&p->pi_lock)) { 2097 /* 2098 * This is OK, because current is on_cpu, which avoids it being 2099 * picked for load-balance and preemption/IRQs are still 2100 * disabled avoiding further scheduler activity on it and we've 2101 * not yet picked a replacement task. 2102 */ 2103 rq_unlock(rq, rf); 2104 raw_spin_lock(&p->pi_lock); 2105 rq_relock(rq, rf); 2106 } 2107 2108 if (!(p->state & TASK_NORMAL)) 2109 goto out; 2110 2111 trace_sched_waking(p); 2112 2113 if (!task_on_rq_queued(p)) { 2114 if (p->in_iowait) { 2115 delayacct_blkio_end(); 2116 atomic_dec(&rq->nr_iowait); 2117 } 2118 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2119 } 2120 2121 ttwu_do_wakeup(rq, p, 0, rf); 2122 ttwu_stat(p, smp_processor_id(), 0); 2123 out: 2124 raw_spin_unlock(&p->pi_lock); 2125 } 2126 2127 /** 2128 * wake_up_process - Wake up a specific process 2129 * @p: The process to be woken up. 2130 * 2131 * Attempt to wake up the nominated process and move it to the set of runnable 2132 * processes. 2133 * 2134 * Return: 1 if the process was woken up, 0 if it was already running. 2135 * 2136 * It may be assumed that this function implies a write memory barrier before 2137 * changing the task state if and only if any tasks are woken up. 2138 */ 2139 int wake_up_process(struct task_struct *p) 2140 { 2141 return try_to_wake_up(p, TASK_NORMAL, 0); 2142 } 2143 EXPORT_SYMBOL(wake_up_process); 2144 2145 int wake_up_state(struct task_struct *p, unsigned int state) 2146 { 2147 return try_to_wake_up(p, state, 0); 2148 } 2149 2150 /* 2151 * This function clears the sched_dl_entity static params. 2152 */ 2153 void __dl_clear_params(struct task_struct *p) 2154 { 2155 struct sched_dl_entity *dl_se = &p->dl; 2156 2157 dl_se->dl_runtime = 0; 2158 dl_se->dl_deadline = 0; 2159 dl_se->dl_period = 0; 2160 dl_se->flags = 0; 2161 dl_se->dl_bw = 0; 2162 2163 dl_se->dl_throttled = 0; 2164 dl_se->dl_yielded = 0; 2165 } 2166 2167 /* 2168 * Perform scheduler related setup for a newly forked process p. 2169 * p is forked by current. 2170 * 2171 * __sched_fork() is basic setup used by init_idle() too: 2172 */ 2173 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2174 { 2175 p->on_rq = 0; 2176 2177 p->se.on_rq = 0; 2178 p->se.exec_start = 0; 2179 p->se.sum_exec_runtime = 0; 2180 p->se.prev_sum_exec_runtime = 0; 2181 p->se.nr_migrations = 0; 2182 p->se.vruntime = 0; 2183 INIT_LIST_HEAD(&p->se.group_node); 2184 2185 #ifdef CONFIG_FAIR_GROUP_SCHED 2186 p->se.cfs_rq = NULL; 2187 #endif 2188 2189 #ifdef CONFIG_SCHEDSTATS 2190 /* Even if schedstat is disabled, there should not be garbage */ 2191 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2192 #endif 2193 2194 RB_CLEAR_NODE(&p->dl.rb_node); 2195 init_dl_task_timer(&p->dl); 2196 __dl_clear_params(p); 2197 2198 INIT_LIST_HEAD(&p->rt.run_list); 2199 p->rt.timeout = 0; 2200 p->rt.time_slice = sched_rr_timeslice; 2201 p->rt.on_rq = 0; 2202 p->rt.on_list = 0; 2203 2204 #ifdef CONFIG_PREEMPT_NOTIFIERS 2205 INIT_HLIST_HEAD(&p->preempt_notifiers); 2206 #endif 2207 2208 #ifdef CONFIG_NUMA_BALANCING 2209 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2210 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2211 p->mm->numa_scan_seq = 0; 2212 } 2213 2214 if (clone_flags & CLONE_VM) 2215 p->numa_preferred_nid = current->numa_preferred_nid; 2216 else 2217 p->numa_preferred_nid = -1; 2218 2219 p->node_stamp = 0ULL; 2220 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2221 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2222 p->numa_work.next = &p->numa_work; 2223 p->numa_faults = NULL; 2224 p->last_task_numa_placement = 0; 2225 p->last_sum_exec_runtime = 0; 2226 2227 p->numa_group = NULL; 2228 #endif /* CONFIG_NUMA_BALANCING */ 2229 } 2230 2231 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2232 2233 #ifdef CONFIG_NUMA_BALANCING 2234 2235 void set_numabalancing_state(bool enabled) 2236 { 2237 if (enabled) 2238 static_branch_enable(&sched_numa_balancing); 2239 else 2240 static_branch_disable(&sched_numa_balancing); 2241 } 2242 2243 #ifdef CONFIG_PROC_SYSCTL 2244 int sysctl_numa_balancing(struct ctl_table *table, int write, 2245 void __user *buffer, size_t *lenp, loff_t *ppos) 2246 { 2247 struct ctl_table t; 2248 int err; 2249 int state = static_branch_likely(&sched_numa_balancing); 2250 2251 if (write && !capable(CAP_SYS_ADMIN)) 2252 return -EPERM; 2253 2254 t = *table; 2255 t.data = &state; 2256 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2257 if (err < 0) 2258 return err; 2259 if (write) 2260 set_numabalancing_state(state); 2261 return err; 2262 } 2263 #endif 2264 #endif 2265 2266 #ifdef CONFIG_SCHEDSTATS 2267 2268 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2269 static bool __initdata __sched_schedstats = false; 2270 2271 static void set_schedstats(bool enabled) 2272 { 2273 if (enabled) 2274 static_branch_enable(&sched_schedstats); 2275 else 2276 static_branch_disable(&sched_schedstats); 2277 } 2278 2279 void force_schedstat_enabled(void) 2280 { 2281 if (!schedstat_enabled()) { 2282 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2283 static_branch_enable(&sched_schedstats); 2284 } 2285 } 2286 2287 static int __init setup_schedstats(char *str) 2288 { 2289 int ret = 0; 2290 if (!str) 2291 goto out; 2292 2293 /* 2294 * This code is called before jump labels have been set up, so we can't 2295 * change the static branch directly just yet. Instead set a temporary 2296 * variable so init_schedstats() can do it later. 2297 */ 2298 if (!strcmp(str, "enable")) { 2299 __sched_schedstats = true; 2300 ret = 1; 2301 } else if (!strcmp(str, "disable")) { 2302 __sched_schedstats = false; 2303 ret = 1; 2304 } 2305 out: 2306 if (!ret) 2307 pr_warn("Unable to parse schedstats=\n"); 2308 2309 return ret; 2310 } 2311 __setup("schedstats=", setup_schedstats); 2312 2313 static void __init init_schedstats(void) 2314 { 2315 set_schedstats(__sched_schedstats); 2316 } 2317 2318 #ifdef CONFIG_PROC_SYSCTL 2319 int sysctl_schedstats(struct ctl_table *table, int write, 2320 void __user *buffer, size_t *lenp, loff_t *ppos) 2321 { 2322 struct ctl_table t; 2323 int err; 2324 int state = static_branch_likely(&sched_schedstats); 2325 2326 if (write && !capable(CAP_SYS_ADMIN)) 2327 return -EPERM; 2328 2329 t = *table; 2330 t.data = &state; 2331 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2332 if (err < 0) 2333 return err; 2334 if (write) 2335 set_schedstats(state); 2336 return err; 2337 } 2338 #endif /* CONFIG_PROC_SYSCTL */ 2339 #else /* !CONFIG_SCHEDSTATS */ 2340 static inline void init_schedstats(void) {} 2341 #endif /* CONFIG_SCHEDSTATS */ 2342 2343 /* 2344 * fork()/clone()-time setup: 2345 */ 2346 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2347 { 2348 unsigned long flags; 2349 int cpu = get_cpu(); 2350 2351 __sched_fork(clone_flags, p); 2352 /* 2353 * We mark the process as NEW here. This guarantees that 2354 * nobody will actually run it, and a signal or other external 2355 * event cannot wake it up and insert it on the runqueue either. 2356 */ 2357 p->state = TASK_NEW; 2358 2359 /* 2360 * Make sure we do not leak PI boosting priority to the child. 2361 */ 2362 p->prio = current->normal_prio; 2363 2364 /* 2365 * Revert to default priority/policy on fork if requested. 2366 */ 2367 if (unlikely(p->sched_reset_on_fork)) { 2368 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2369 p->policy = SCHED_NORMAL; 2370 p->static_prio = NICE_TO_PRIO(0); 2371 p->rt_priority = 0; 2372 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2373 p->static_prio = NICE_TO_PRIO(0); 2374 2375 p->prio = p->normal_prio = __normal_prio(p); 2376 set_load_weight(p); 2377 2378 /* 2379 * We don't need the reset flag anymore after the fork. It has 2380 * fulfilled its duty: 2381 */ 2382 p->sched_reset_on_fork = 0; 2383 } 2384 2385 if (dl_prio(p->prio)) { 2386 put_cpu(); 2387 return -EAGAIN; 2388 } else if (rt_prio(p->prio)) { 2389 p->sched_class = &rt_sched_class; 2390 } else { 2391 p->sched_class = &fair_sched_class; 2392 } 2393 2394 init_entity_runnable_average(&p->se); 2395 2396 /* 2397 * The child is not yet in the pid-hash so no cgroup attach races, 2398 * and the cgroup is pinned to this child due to cgroup_fork() 2399 * is ran before sched_fork(). 2400 * 2401 * Silence PROVE_RCU. 2402 */ 2403 raw_spin_lock_irqsave(&p->pi_lock, flags); 2404 /* 2405 * We're setting the CPU for the first time, we don't migrate, 2406 * so use __set_task_cpu(). 2407 */ 2408 __set_task_cpu(p, cpu); 2409 if (p->sched_class->task_fork) 2410 p->sched_class->task_fork(p); 2411 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2412 2413 #ifdef CONFIG_SCHED_INFO 2414 if (likely(sched_info_on())) 2415 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2416 #endif 2417 #if defined(CONFIG_SMP) 2418 p->on_cpu = 0; 2419 #endif 2420 init_task_preempt_count(p); 2421 #ifdef CONFIG_SMP 2422 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2423 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2424 #endif 2425 2426 put_cpu(); 2427 return 0; 2428 } 2429 2430 unsigned long to_ratio(u64 period, u64 runtime) 2431 { 2432 if (runtime == RUNTIME_INF) 2433 return 1ULL << 20; 2434 2435 /* 2436 * Doing this here saves a lot of checks in all 2437 * the calling paths, and returning zero seems 2438 * safe for them anyway. 2439 */ 2440 if (period == 0) 2441 return 0; 2442 2443 return div64_u64(runtime << 20, period); 2444 } 2445 2446 #ifdef CONFIG_SMP 2447 inline struct dl_bw *dl_bw_of(int i) 2448 { 2449 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2450 "sched RCU must be held"); 2451 return &cpu_rq(i)->rd->dl_bw; 2452 } 2453 2454 static inline int dl_bw_cpus(int i) 2455 { 2456 struct root_domain *rd = cpu_rq(i)->rd; 2457 int cpus = 0; 2458 2459 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2460 "sched RCU must be held"); 2461 for_each_cpu_and(i, rd->span, cpu_active_mask) 2462 cpus++; 2463 2464 return cpus; 2465 } 2466 #else 2467 inline struct dl_bw *dl_bw_of(int i) 2468 { 2469 return &cpu_rq(i)->dl.dl_bw; 2470 } 2471 2472 static inline int dl_bw_cpus(int i) 2473 { 2474 return 1; 2475 } 2476 #endif 2477 2478 /* 2479 * We must be sure that accepting a new task (or allowing changing the 2480 * parameters of an existing one) is consistent with the bandwidth 2481 * constraints. If yes, this function also accordingly updates the currently 2482 * allocated bandwidth to reflect the new situation. 2483 * 2484 * This function is called while holding p's rq->lock. 2485 * 2486 * XXX we should delay bw change until the task's 0-lag point, see 2487 * __setparam_dl(). 2488 */ 2489 static int dl_overflow(struct task_struct *p, int policy, 2490 const struct sched_attr *attr) 2491 { 2492 2493 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2494 u64 period = attr->sched_period ?: attr->sched_deadline; 2495 u64 runtime = attr->sched_runtime; 2496 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2497 int cpus, err = -1; 2498 2499 /* !deadline task may carry old deadline bandwidth */ 2500 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2501 return 0; 2502 2503 /* 2504 * Either if a task, enters, leave, or stays -deadline but changes 2505 * its parameters, we may need to update accordingly the total 2506 * allocated bandwidth of the container. 2507 */ 2508 raw_spin_lock(&dl_b->lock); 2509 cpus = dl_bw_cpus(task_cpu(p)); 2510 if (dl_policy(policy) && !task_has_dl_policy(p) && 2511 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2512 __dl_add(dl_b, new_bw); 2513 err = 0; 2514 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2515 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2516 __dl_clear(dl_b, p->dl.dl_bw); 2517 __dl_add(dl_b, new_bw); 2518 err = 0; 2519 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2520 __dl_clear(dl_b, p->dl.dl_bw); 2521 err = 0; 2522 } 2523 raw_spin_unlock(&dl_b->lock); 2524 2525 return err; 2526 } 2527 2528 extern void init_dl_bw(struct dl_bw *dl_b); 2529 2530 /* 2531 * wake_up_new_task - wake up a newly created task for the first time. 2532 * 2533 * This function will do some initial scheduler statistics housekeeping 2534 * that must be done for every newly created context, then puts the task 2535 * on the runqueue and wakes it. 2536 */ 2537 void wake_up_new_task(struct task_struct *p) 2538 { 2539 struct rq_flags rf; 2540 struct rq *rq; 2541 2542 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2543 p->state = TASK_RUNNING; 2544 #ifdef CONFIG_SMP 2545 /* 2546 * Fork balancing, do it here and not earlier because: 2547 * - cpus_allowed can change in the fork path 2548 * - any previously selected CPU might disappear through hotplug 2549 * 2550 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2551 * as we're not fully set-up yet. 2552 */ 2553 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2554 #endif 2555 rq = __task_rq_lock(p, &rf); 2556 update_rq_clock(rq); 2557 post_init_entity_util_avg(&p->se); 2558 2559 activate_task(rq, p, ENQUEUE_NOCLOCK); 2560 p->on_rq = TASK_ON_RQ_QUEUED; 2561 trace_sched_wakeup_new(p); 2562 check_preempt_curr(rq, p, WF_FORK); 2563 #ifdef CONFIG_SMP 2564 if (p->sched_class->task_woken) { 2565 /* 2566 * Nothing relies on rq->lock after this, so its fine to 2567 * drop it. 2568 */ 2569 rq_unpin_lock(rq, &rf); 2570 p->sched_class->task_woken(rq, p); 2571 rq_repin_lock(rq, &rf); 2572 } 2573 #endif 2574 task_rq_unlock(rq, p, &rf); 2575 } 2576 2577 #ifdef CONFIG_PREEMPT_NOTIFIERS 2578 2579 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2580 2581 void preempt_notifier_inc(void) 2582 { 2583 static_key_slow_inc(&preempt_notifier_key); 2584 } 2585 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2586 2587 void preempt_notifier_dec(void) 2588 { 2589 static_key_slow_dec(&preempt_notifier_key); 2590 } 2591 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2592 2593 /** 2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2595 * @notifier: notifier struct to register 2596 */ 2597 void preempt_notifier_register(struct preempt_notifier *notifier) 2598 { 2599 if (!static_key_false(&preempt_notifier_key)) 2600 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2601 2602 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2603 } 2604 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2605 2606 /** 2607 * preempt_notifier_unregister - no longer interested in preemption notifications 2608 * @notifier: notifier struct to unregister 2609 * 2610 * This is *not* safe to call from within a preemption notifier. 2611 */ 2612 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2613 { 2614 hlist_del(¬ifier->link); 2615 } 2616 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2617 2618 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2619 { 2620 struct preempt_notifier *notifier; 2621 2622 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2623 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2624 } 2625 2626 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2627 { 2628 if (static_key_false(&preempt_notifier_key)) 2629 __fire_sched_in_preempt_notifiers(curr); 2630 } 2631 2632 static void 2633 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2634 struct task_struct *next) 2635 { 2636 struct preempt_notifier *notifier; 2637 2638 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2639 notifier->ops->sched_out(notifier, next); 2640 } 2641 2642 static __always_inline void 2643 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2644 struct task_struct *next) 2645 { 2646 if (static_key_false(&preempt_notifier_key)) 2647 __fire_sched_out_preempt_notifiers(curr, next); 2648 } 2649 2650 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2651 2652 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2653 { 2654 } 2655 2656 static inline void 2657 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2658 struct task_struct *next) 2659 { 2660 } 2661 2662 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2663 2664 /** 2665 * prepare_task_switch - prepare to switch tasks 2666 * @rq: the runqueue preparing to switch 2667 * @prev: the current task that is being switched out 2668 * @next: the task we are going to switch to. 2669 * 2670 * This is called with the rq lock held and interrupts off. It must 2671 * be paired with a subsequent finish_task_switch after the context 2672 * switch. 2673 * 2674 * prepare_task_switch sets up locking and calls architecture specific 2675 * hooks. 2676 */ 2677 static inline void 2678 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2679 struct task_struct *next) 2680 { 2681 sched_info_switch(rq, prev, next); 2682 perf_event_task_sched_out(prev, next); 2683 fire_sched_out_preempt_notifiers(prev, next); 2684 prepare_lock_switch(rq, next); 2685 prepare_arch_switch(next); 2686 } 2687 2688 /** 2689 * finish_task_switch - clean up after a task-switch 2690 * @prev: the thread we just switched away from. 2691 * 2692 * finish_task_switch must be called after the context switch, paired 2693 * with a prepare_task_switch call before the context switch. 2694 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2695 * and do any other architecture-specific cleanup actions. 2696 * 2697 * Note that we may have delayed dropping an mm in context_switch(). If 2698 * so, we finish that here outside of the runqueue lock. (Doing it 2699 * with the lock held can cause deadlocks; see schedule() for 2700 * details.) 2701 * 2702 * The context switch have flipped the stack from under us and restored the 2703 * local variables which were saved when this task called schedule() in the 2704 * past. prev == current is still correct but we need to recalculate this_rq 2705 * because prev may have moved to another CPU. 2706 */ 2707 static struct rq *finish_task_switch(struct task_struct *prev) 2708 __releases(rq->lock) 2709 { 2710 struct rq *rq = this_rq(); 2711 struct mm_struct *mm = rq->prev_mm; 2712 long prev_state; 2713 2714 /* 2715 * The previous task will have left us with a preempt_count of 2 2716 * because it left us after: 2717 * 2718 * schedule() 2719 * preempt_disable(); // 1 2720 * __schedule() 2721 * raw_spin_lock_irq(&rq->lock) // 2 2722 * 2723 * Also, see FORK_PREEMPT_COUNT. 2724 */ 2725 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2726 "corrupted preempt_count: %s/%d/0x%x\n", 2727 current->comm, current->pid, preempt_count())) 2728 preempt_count_set(FORK_PREEMPT_COUNT); 2729 2730 rq->prev_mm = NULL; 2731 2732 /* 2733 * A task struct has one reference for the use as "current". 2734 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2735 * schedule one last time. The schedule call will never return, and 2736 * the scheduled task must drop that reference. 2737 * 2738 * We must observe prev->state before clearing prev->on_cpu (in 2739 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2740 * running on another CPU and we could rave with its RUNNING -> DEAD 2741 * transition, resulting in a double drop. 2742 */ 2743 prev_state = prev->state; 2744 vtime_task_switch(prev); 2745 perf_event_task_sched_in(prev, current); 2746 finish_lock_switch(rq, prev); 2747 finish_arch_post_lock_switch(); 2748 2749 fire_sched_in_preempt_notifiers(current); 2750 if (mm) 2751 mmdrop(mm); 2752 if (unlikely(prev_state == TASK_DEAD)) { 2753 if (prev->sched_class->task_dead) 2754 prev->sched_class->task_dead(prev); 2755 2756 /* 2757 * Remove function-return probe instances associated with this 2758 * task and put them back on the free list. 2759 */ 2760 kprobe_flush_task(prev); 2761 2762 /* Task is done with its stack. */ 2763 put_task_stack(prev); 2764 2765 put_task_struct(prev); 2766 } 2767 2768 tick_nohz_task_switch(); 2769 return rq; 2770 } 2771 2772 #ifdef CONFIG_SMP 2773 2774 /* rq->lock is NOT held, but preemption is disabled */ 2775 static void __balance_callback(struct rq *rq) 2776 { 2777 struct callback_head *head, *next; 2778 void (*func)(struct rq *rq); 2779 unsigned long flags; 2780 2781 raw_spin_lock_irqsave(&rq->lock, flags); 2782 head = rq->balance_callback; 2783 rq->balance_callback = NULL; 2784 while (head) { 2785 func = (void (*)(struct rq *))head->func; 2786 next = head->next; 2787 head->next = NULL; 2788 head = next; 2789 2790 func(rq); 2791 } 2792 raw_spin_unlock_irqrestore(&rq->lock, flags); 2793 } 2794 2795 static inline void balance_callback(struct rq *rq) 2796 { 2797 if (unlikely(rq->balance_callback)) 2798 __balance_callback(rq); 2799 } 2800 2801 #else 2802 2803 static inline void balance_callback(struct rq *rq) 2804 { 2805 } 2806 2807 #endif 2808 2809 /** 2810 * schedule_tail - first thing a freshly forked thread must call. 2811 * @prev: the thread we just switched away from. 2812 */ 2813 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2814 __releases(rq->lock) 2815 { 2816 struct rq *rq; 2817 2818 /* 2819 * New tasks start with FORK_PREEMPT_COUNT, see there and 2820 * finish_task_switch() for details. 2821 * 2822 * finish_task_switch() will drop rq->lock() and lower preempt_count 2823 * and the preempt_enable() will end up enabling preemption (on 2824 * PREEMPT_COUNT kernels). 2825 */ 2826 2827 rq = finish_task_switch(prev); 2828 balance_callback(rq); 2829 preempt_enable(); 2830 2831 if (current->set_child_tid) 2832 put_user(task_pid_vnr(current), current->set_child_tid); 2833 } 2834 2835 /* 2836 * context_switch - switch to the new MM and the new thread's register state. 2837 */ 2838 static __always_inline struct rq * 2839 context_switch(struct rq *rq, struct task_struct *prev, 2840 struct task_struct *next, struct rq_flags *rf) 2841 { 2842 struct mm_struct *mm, *oldmm; 2843 2844 prepare_task_switch(rq, prev, next); 2845 2846 mm = next->mm; 2847 oldmm = prev->active_mm; 2848 /* 2849 * For paravirt, this is coupled with an exit in switch_to to 2850 * combine the page table reload and the switch backend into 2851 * one hypercall. 2852 */ 2853 arch_start_context_switch(prev); 2854 2855 if (!mm) { 2856 next->active_mm = oldmm; 2857 mmgrab(oldmm); 2858 enter_lazy_tlb(oldmm, next); 2859 } else 2860 switch_mm_irqs_off(oldmm, mm, next); 2861 2862 if (!prev->mm) { 2863 prev->active_mm = NULL; 2864 rq->prev_mm = oldmm; 2865 } 2866 2867 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2868 2869 /* 2870 * Since the runqueue lock will be released by the next 2871 * task (which is an invalid locking op but in the case 2872 * of the scheduler it's an obvious special-case), so we 2873 * do an early lockdep release here: 2874 */ 2875 rq_unpin_lock(rq, rf); 2876 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2877 2878 /* Here we just switch the register state and the stack. */ 2879 switch_to(prev, next, prev); 2880 barrier(); 2881 2882 return finish_task_switch(prev); 2883 } 2884 2885 /* 2886 * nr_running and nr_context_switches: 2887 * 2888 * externally visible scheduler statistics: current number of runnable 2889 * threads, total number of context switches performed since bootup. 2890 */ 2891 unsigned long nr_running(void) 2892 { 2893 unsigned long i, sum = 0; 2894 2895 for_each_online_cpu(i) 2896 sum += cpu_rq(i)->nr_running; 2897 2898 return sum; 2899 } 2900 2901 /* 2902 * Check if only the current task is running on the CPU. 2903 * 2904 * Caution: this function does not check that the caller has disabled 2905 * preemption, thus the result might have a time-of-check-to-time-of-use 2906 * race. The caller is responsible to use it correctly, for example: 2907 * 2908 * - from a non-preemptable section (of course) 2909 * 2910 * - from a thread that is bound to a single CPU 2911 * 2912 * - in a loop with very short iterations (e.g. a polling loop) 2913 */ 2914 bool single_task_running(void) 2915 { 2916 return raw_rq()->nr_running == 1; 2917 } 2918 EXPORT_SYMBOL(single_task_running); 2919 2920 unsigned long long nr_context_switches(void) 2921 { 2922 int i; 2923 unsigned long long sum = 0; 2924 2925 for_each_possible_cpu(i) 2926 sum += cpu_rq(i)->nr_switches; 2927 2928 return sum; 2929 } 2930 2931 /* 2932 * IO-wait accounting, and how its mostly bollocks (on SMP). 2933 * 2934 * The idea behind IO-wait account is to account the idle time that we could 2935 * have spend running if it were not for IO. That is, if we were to improve the 2936 * storage performance, we'd have a proportional reduction in IO-wait time. 2937 * 2938 * This all works nicely on UP, where, when a task blocks on IO, we account 2939 * idle time as IO-wait, because if the storage were faster, it could've been 2940 * running and we'd not be idle. 2941 * 2942 * This has been extended to SMP, by doing the same for each CPU. This however 2943 * is broken. 2944 * 2945 * Imagine for instance the case where two tasks block on one CPU, only the one 2946 * CPU will have IO-wait accounted, while the other has regular idle. Even 2947 * though, if the storage were faster, both could've ran at the same time, 2948 * utilising both CPUs. 2949 * 2950 * This means, that when looking globally, the current IO-wait accounting on 2951 * SMP is a lower bound, by reason of under accounting. 2952 * 2953 * Worse, since the numbers are provided per CPU, they are sometimes 2954 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2955 * associated with any one particular CPU, it can wake to another CPU than it 2956 * blocked on. This means the per CPU IO-wait number is meaningless. 2957 * 2958 * Task CPU affinities can make all that even more 'interesting'. 2959 */ 2960 2961 unsigned long nr_iowait(void) 2962 { 2963 unsigned long i, sum = 0; 2964 2965 for_each_possible_cpu(i) 2966 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2967 2968 return sum; 2969 } 2970 2971 /* 2972 * Consumers of these two interfaces, like for example the cpufreq menu 2973 * governor are using nonsensical data. Boosting frequency for a CPU that has 2974 * IO-wait which might not even end up running the task when it does become 2975 * runnable. 2976 */ 2977 2978 unsigned long nr_iowait_cpu(int cpu) 2979 { 2980 struct rq *this = cpu_rq(cpu); 2981 return atomic_read(&this->nr_iowait); 2982 } 2983 2984 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2985 { 2986 struct rq *rq = this_rq(); 2987 *nr_waiters = atomic_read(&rq->nr_iowait); 2988 *load = rq->load.weight; 2989 } 2990 2991 #ifdef CONFIG_SMP 2992 2993 /* 2994 * sched_exec - execve() is a valuable balancing opportunity, because at 2995 * this point the task has the smallest effective memory and cache footprint. 2996 */ 2997 void sched_exec(void) 2998 { 2999 struct task_struct *p = current; 3000 unsigned long flags; 3001 int dest_cpu; 3002 3003 raw_spin_lock_irqsave(&p->pi_lock, flags); 3004 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3005 if (dest_cpu == smp_processor_id()) 3006 goto unlock; 3007 3008 if (likely(cpu_active(dest_cpu))) { 3009 struct migration_arg arg = { p, dest_cpu }; 3010 3011 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3012 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3013 return; 3014 } 3015 unlock: 3016 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3017 } 3018 3019 #endif 3020 3021 DEFINE_PER_CPU(struct kernel_stat, kstat); 3022 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3023 3024 EXPORT_PER_CPU_SYMBOL(kstat); 3025 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3026 3027 /* 3028 * The function fair_sched_class.update_curr accesses the struct curr 3029 * and its field curr->exec_start; when called from task_sched_runtime(), 3030 * we observe a high rate of cache misses in practice. 3031 * Prefetching this data results in improved performance. 3032 */ 3033 static inline void prefetch_curr_exec_start(struct task_struct *p) 3034 { 3035 #ifdef CONFIG_FAIR_GROUP_SCHED 3036 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3037 #else 3038 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3039 #endif 3040 prefetch(curr); 3041 prefetch(&curr->exec_start); 3042 } 3043 3044 /* 3045 * Return accounted runtime for the task. 3046 * In case the task is currently running, return the runtime plus current's 3047 * pending runtime that have not been accounted yet. 3048 */ 3049 unsigned long long task_sched_runtime(struct task_struct *p) 3050 { 3051 struct rq_flags rf; 3052 struct rq *rq; 3053 u64 ns; 3054 3055 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3056 /* 3057 * 64-bit doesn't need locks to atomically read a 64bit value. 3058 * So we have a optimization chance when the task's delta_exec is 0. 3059 * Reading ->on_cpu is racy, but this is ok. 3060 * 3061 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3062 * If we race with it entering CPU, unaccounted time is 0. This is 3063 * indistinguishable from the read occurring a few cycles earlier. 3064 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3065 * been accounted, so we're correct here as well. 3066 */ 3067 if (!p->on_cpu || !task_on_rq_queued(p)) 3068 return p->se.sum_exec_runtime; 3069 #endif 3070 3071 rq = task_rq_lock(p, &rf); 3072 /* 3073 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3074 * project cycles that may never be accounted to this 3075 * thread, breaking clock_gettime(). 3076 */ 3077 if (task_current(rq, p) && task_on_rq_queued(p)) { 3078 prefetch_curr_exec_start(p); 3079 update_rq_clock(rq); 3080 p->sched_class->update_curr(rq); 3081 } 3082 ns = p->se.sum_exec_runtime; 3083 task_rq_unlock(rq, p, &rf); 3084 3085 return ns; 3086 } 3087 3088 /* 3089 * This function gets called by the timer code, with HZ frequency. 3090 * We call it with interrupts disabled. 3091 */ 3092 void scheduler_tick(void) 3093 { 3094 int cpu = smp_processor_id(); 3095 struct rq *rq = cpu_rq(cpu); 3096 struct task_struct *curr = rq->curr; 3097 struct rq_flags rf; 3098 3099 sched_clock_tick(); 3100 3101 rq_lock(rq, &rf); 3102 3103 update_rq_clock(rq); 3104 curr->sched_class->task_tick(rq, curr, 0); 3105 cpu_load_update_active(rq); 3106 calc_global_load_tick(rq); 3107 3108 rq_unlock(rq, &rf); 3109 3110 perf_event_task_tick(); 3111 3112 #ifdef CONFIG_SMP 3113 rq->idle_balance = idle_cpu(cpu); 3114 trigger_load_balance(rq); 3115 #endif 3116 rq_last_tick_reset(rq); 3117 } 3118 3119 #ifdef CONFIG_NO_HZ_FULL 3120 /** 3121 * scheduler_tick_max_deferment 3122 * 3123 * Keep at least one tick per second when a single 3124 * active task is running because the scheduler doesn't 3125 * yet completely support full dynticks environment. 3126 * 3127 * This makes sure that uptime, CFS vruntime, load 3128 * balancing, etc... continue to move forward, even 3129 * with a very low granularity. 3130 * 3131 * Return: Maximum deferment in nanoseconds. 3132 */ 3133 u64 scheduler_tick_max_deferment(void) 3134 { 3135 struct rq *rq = this_rq(); 3136 unsigned long next, now = READ_ONCE(jiffies); 3137 3138 next = rq->last_sched_tick + HZ; 3139 3140 if (time_before_eq(next, now)) 3141 return 0; 3142 3143 return jiffies_to_nsecs(next - now); 3144 } 3145 #endif 3146 3147 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3148 defined(CONFIG_PREEMPT_TRACER)) 3149 /* 3150 * If the value passed in is equal to the current preempt count 3151 * then we just disabled preemption. Start timing the latency. 3152 */ 3153 static inline void preempt_latency_start(int val) 3154 { 3155 if (preempt_count() == val) { 3156 unsigned long ip = get_lock_parent_ip(); 3157 #ifdef CONFIG_DEBUG_PREEMPT 3158 current->preempt_disable_ip = ip; 3159 #endif 3160 trace_preempt_off(CALLER_ADDR0, ip); 3161 } 3162 } 3163 3164 void preempt_count_add(int val) 3165 { 3166 #ifdef CONFIG_DEBUG_PREEMPT 3167 /* 3168 * Underflow? 3169 */ 3170 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3171 return; 3172 #endif 3173 __preempt_count_add(val); 3174 #ifdef CONFIG_DEBUG_PREEMPT 3175 /* 3176 * Spinlock count overflowing soon? 3177 */ 3178 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3179 PREEMPT_MASK - 10); 3180 #endif 3181 preempt_latency_start(val); 3182 } 3183 EXPORT_SYMBOL(preempt_count_add); 3184 NOKPROBE_SYMBOL(preempt_count_add); 3185 3186 /* 3187 * If the value passed in equals to the current preempt count 3188 * then we just enabled preemption. Stop timing the latency. 3189 */ 3190 static inline void preempt_latency_stop(int val) 3191 { 3192 if (preempt_count() == val) 3193 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3194 } 3195 3196 void preempt_count_sub(int val) 3197 { 3198 #ifdef CONFIG_DEBUG_PREEMPT 3199 /* 3200 * Underflow? 3201 */ 3202 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3203 return; 3204 /* 3205 * Is the spinlock portion underflowing? 3206 */ 3207 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3208 !(preempt_count() & PREEMPT_MASK))) 3209 return; 3210 #endif 3211 3212 preempt_latency_stop(val); 3213 __preempt_count_sub(val); 3214 } 3215 EXPORT_SYMBOL(preempt_count_sub); 3216 NOKPROBE_SYMBOL(preempt_count_sub); 3217 3218 #else 3219 static inline void preempt_latency_start(int val) { } 3220 static inline void preempt_latency_stop(int val) { } 3221 #endif 3222 3223 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3224 { 3225 #ifdef CONFIG_DEBUG_PREEMPT 3226 return p->preempt_disable_ip; 3227 #else 3228 return 0; 3229 #endif 3230 } 3231 3232 /* 3233 * Print scheduling while atomic bug: 3234 */ 3235 static noinline void __schedule_bug(struct task_struct *prev) 3236 { 3237 /* Save this before calling printk(), since that will clobber it */ 3238 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3239 3240 if (oops_in_progress) 3241 return; 3242 3243 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3244 prev->comm, prev->pid, preempt_count()); 3245 3246 debug_show_held_locks(prev); 3247 print_modules(); 3248 if (irqs_disabled()) 3249 print_irqtrace_events(prev); 3250 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3251 && in_atomic_preempt_off()) { 3252 pr_err("Preemption disabled at:"); 3253 print_ip_sym(preempt_disable_ip); 3254 pr_cont("\n"); 3255 } 3256 if (panic_on_warn) 3257 panic("scheduling while atomic\n"); 3258 3259 dump_stack(); 3260 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3261 } 3262 3263 /* 3264 * Various schedule()-time debugging checks and statistics: 3265 */ 3266 static inline void schedule_debug(struct task_struct *prev) 3267 { 3268 #ifdef CONFIG_SCHED_STACK_END_CHECK 3269 if (task_stack_end_corrupted(prev)) 3270 panic("corrupted stack end detected inside scheduler\n"); 3271 #endif 3272 3273 if (unlikely(in_atomic_preempt_off())) { 3274 __schedule_bug(prev); 3275 preempt_count_set(PREEMPT_DISABLED); 3276 } 3277 rcu_sleep_check(); 3278 3279 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3280 3281 schedstat_inc(this_rq()->sched_count); 3282 } 3283 3284 /* 3285 * Pick up the highest-prio task: 3286 */ 3287 static inline struct task_struct * 3288 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3289 { 3290 const struct sched_class *class; 3291 struct task_struct *p; 3292 3293 /* 3294 * Optimization: we know that if all tasks are in the fair class we can 3295 * call that function directly, but only if the @prev task wasn't of a 3296 * higher scheduling class, because otherwise those loose the 3297 * opportunity to pull in more work from other CPUs. 3298 */ 3299 if (likely((prev->sched_class == &idle_sched_class || 3300 prev->sched_class == &fair_sched_class) && 3301 rq->nr_running == rq->cfs.h_nr_running)) { 3302 3303 p = fair_sched_class.pick_next_task(rq, prev, rf); 3304 if (unlikely(p == RETRY_TASK)) 3305 goto again; 3306 3307 /* Assumes fair_sched_class->next == idle_sched_class */ 3308 if (unlikely(!p)) 3309 p = idle_sched_class.pick_next_task(rq, prev, rf); 3310 3311 return p; 3312 } 3313 3314 again: 3315 for_each_class(class) { 3316 p = class->pick_next_task(rq, prev, rf); 3317 if (p) { 3318 if (unlikely(p == RETRY_TASK)) 3319 goto again; 3320 return p; 3321 } 3322 } 3323 3324 /* The idle class should always have a runnable task: */ 3325 BUG(); 3326 } 3327 3328 /* 3329 * __schedule() is the main scheduler function. 3330 * 3331 * The main means of driving the scheduler and thus entering this function are: 3332 * 3333 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3334 * 3335 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3336 * paths. For example, see arch/x86/entry_64.S. 3337 * 3338 * To drive preemption between tasks, the scheduler sets the flag in timer 3339 * interrupt handler scheduler_tick(). 3340 * 3341 * 3. Wakeups don't really cause entry into schedule(). They add a 3342 * task to the run-queue and that's it. 3343 * 3344 * Now, if the new task added to the run-queue preempts the current 3345 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3346 * called on the nearest possible occasion: 3347 * 3348 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3349 * 3350 * - in syscall or exception context, at the next outmost 3351 * preempt_enable(). (this might be as soon as the wake_up()'s 3352 * spin_unlock()!) 3353 * 3354 * - in IRQ context, return from interrupt-handler to 3355 * preemptible context 3356 * 3357 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3358 * then at the next: 3359 * 3360 * - cond_resched() call 3361 * - explicit schedule() call 3362 * - return from syscall or exception to user-space 3363 * - return from interrupt-handler to user-space 3364 * 3365 * WARNING: must be called with preemption disabled! 3366 */ 3367 static void __sched notrace __schedule(bool preempt) 3368 { 3369 struct task_struct *prev, *next; 3370 unsigned long *switch_count; 3371 struct rq_flags rf; 3372 struct rq *rq; 3373 int cpu; 3374 3375 cpu = smp_processor_id(); 3376 rq = cpu_rq(cpu); 3377 prev = rq->curr; 3378 3379 schedule_debug(prev); 3380 3381 if (sched_feat(HRTICK)) 3382 hrtick_clear(rq); 3383 3384 local_irq_disable(); 3385 rcu_note_context_switch(preempt); 3386 3387 /* 3388 * Make sure that signal_pending_state()->signal_pending() below 3389 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3390 * done by the caller to avoid the race with signal_wake_up(). 3391 */ 3392 smp_mb__before_spinlock(); 3393 rq_lock(rq, &rf); 3394 3395 /* Promote REQ to ACT */ 3396 rq->clock_update_flags <<= 1; 3397 update_rq_clock(rq); 3398 3399 switch_count = &prev->nivcsw; 3400 if (!preempt && prev->state) { 3401 if (unlikely(signal_pending_state(prev->state, prev))) { 3402 prev->state = TASK_RUNNING; 3403 } else { 3404 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3405 prev->on_rq = 0; 3406 3407 if (prev->in_iowait) { 3408 atomic_inc(&rq->nr_iowait); 3409 delayacct_blkio_start(); 3410 } 3411 3412 /* 3413 * If a worker went to sleep, notify and ask workqueue 3414 * whether it wants to wake up a task to maintain 3415 * concurrency. 3416 */ 3417 if (prev->flags & PF_WQ_WORKER) { 3418 struct task_struct *to_wakeup; 3419 3420 to_wakeup = wq_worker_sleeping(prev); 3421 if (to_wakeup) 3422 try_to_wake_up_local(to_wakeup, &rf); 3423 } 3424 } 3425 switch_count = &prev->nvcsw; 3426 } 3427 3428 next = pick_next_task(rq, prev, &rf); 3429 clear_tsk_need_resched(prev); 3430 clear_preempt_need_resched(); 3431 3432 if (likely(prev != next)) { 3433 rq->nr_switches++; 3434 rq->curr = next; 3435 ++*switch_count; 3436 3437 trace_sched_switch(preempt, prev, next); 3438 3439 /* Also unlocks the rq: */ 3440 rq = context_switch(rq, prev, next, &rf); 3441 } else { 3442 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3443 rq_unlock_irq(rq, &rf); 3444 } 3445 3446 balance_callback(rq); 3447 } 3448 3449 void __noreturn do_task_dead(void) 3450 { 3451 /* 3452 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3453 * when the following two conditions become true. 3454 * - There is race condition of mmap_sem (It is acquired by 3455 * exit_mm()), and 3456 * - SMI occurs before setting TASK_RUNINNG. 3457 * (or hypervisor of virtual machine switches to other guest) 3458 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3459 * 3460 * To avoid it, we have to wait for releasing tsk->pi_lock which 3461 * is held by try_to_wake_up() 3462 */ 3463 smp_mb(); 3464 raw_spin_unlock_wait(¤t->pi_lock); 3465 3466 /* Causes final put_task_struct in finish_task_switch(): */ 3467 __set_current_state(TASK_DEAD); 3468 3469 /* Tell freezer to ignore us: */ 3470 current->flags |= PF_NOFREEZE; 3471 3472 __schedule(false); 3473 BUG(); 3474 3475 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3476 for (;;) 3477 cpu_relax(); 3478 } 3479 3480 static inline void sched_submit_work(struct task_struct *tsk) 3481 { 3482 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3483 return; 3484 /* 3485 * If we are going to sleep and we have plugged IO queued, 3486 * make sure to submit it to avoid deadlocks. 3487 */ 3488 if (blk_needs_flush_plug(tsk)) 3489 blk_schedule_flush_plug(tsk); 3490 } 3491 3492 asmlinkage __visible void __sched schedule(void) 3493 { 3494 struct task_struct *tsk = current; 3495 3496 sched_submit_work(tsk); 3497 do { 3498 preempt_disable(); 3499 __schedule(false); 3500 sched_preempt_enable_no_resched(); 3501 } while (need_resched()); 3502 } 3503 EXPORT_SYMBOL(schedule); 3504 3505 #ifdef CONFIG_CONTEXT_TRACKING 3506 asmlinkage __visible void __sched schedule_user(void) 3507 { 3508 /* 3509 * If we come here after a random call to set_need_resched(), 3510 * or we have been woken up remotely but the IPI has not yet arrived, 3511 * we haven't yet exited the RCU idle mode. Do it here manually until 3512 * we find a better solution. 3513 * 3514 * NB: There are buggy callers of this function. Ideally we 3515 * should warn if prev_state != CONTEXT_USER, but that will trigger 3516 * too frequently to make sense yet. 3517 */ 3518 enum ctx_state prev_state = exception_enter(); 3519 schedule(); 3520 exception_exit(prev_state); 3521 } 3522 #endif 3523 3524 /** 3525 * schedule_preempt_disabled - called with preemption disabled 3526 * 3527 * Returns with preemption disabled. Note: preempt_count must be 1 3528 */ 3529 void __sched schedule_preempt_disabled(void) 3530 { 3531 sched_preempt_enable_no_resched(); 3532 schedule(); 3533 preempt_disable(); 3534 } 3535 3536 static void __sched notrace preempt_schedule_common(void) 3537 { 3538 do { 3539 /* 3540 * Because the function tracer can trace preempt_count_sub() 3541 * and it also uses preempt_enable/disable_notrace(), if 3542 * NEED_RESCHED is set, the preempt_enable_notrace() called 3543 * by the function tracer will call this function again and 3544 * cause infinite recursion. 3545 * 3546 * Preemption must be disabled here before the function 3547 * tracer can trace. Break up preempt_disable() into two 3548 * calls. One to disable preemption without fear of being 3549 * traced. The other to still record the preemption latency, 3550 * which can also be traced by the function tracer. 3551 */ 3552 preempt_disable_notrace(); 3553 preempt_latency_start(1); 3554 __schedule(true); 3555 preempt_latency_stop(1); 3556 preempt_enable_no_resched_notrace(); 3557 3558 /* 3559 * Check again in case we missed a preemption opportunity 3560 * between schedule and now. 3561 */ 3562 } while (need_resched()); 3563 } 3564 3565 #ifdef CONFIG_PREEMPT 3566 /* 3567 * this is the entry point to schedule() from in-kernel preemption 3568 * off of preempt_enable. Kernel preemptions off return from interrupt 3569 * occur there and call schedule directly. 3570 */ 3571 asmlinkage __visible void __sched notrace preempt_schedule(void) 3572 { 3573 /* 3574 * If there is a non-zero preempt_count or interrupts are disabled, 3575 * we do not want to preempt the current task. Just return.. 3576 */ 3577 if (likely(!preemptible())) 3578 return; 3579 3580 preempt_schedule_common(); 3581 } 3582 NOKPROBE_SYMBOL(preempt_schedule); 3583 EXPORT_SYMBOL(preempt_schedule); 3584 3585 /** 3586 * preempt_schedule_notrace - preempt_schedule called by tracing 3587 * 3588 * The tracing infrastructure uses preempt_enable_notrace to prevent 3589 * recursion and tracing preempt enabling caused by the tracing 3590 * infrastructure itself. But as tracing can happen in areas coming 3591 * from userspace or just about to enter userspace, a preempt enable 3592 * can occur before user_exit() is called. This will cause the scheduler 3593 * to be called when the system is still in usermode. 3594 * 3595 * To prevent this, the preempt_enable_notrace will use this function 3596 * instead of preempt_schedule() to exit user context if needed before 3597 * calling the scheduler. 3598 */ 3599 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3600 { 3601 enum ctx_state prev_ctx; 3602 3603 if (likely(!preemptible())) 3604 return; 3605 3606 do { 3607 /* 3608 * Because the function tracer can trace preempt_count_sub() 3609 * and it also uses preempt_enable/disable_notrace(), if 3610 * NEED_RESCHED is set, the preempt_enable_notrace() called 3611 * by the function tracer will call this function again and 3612 * cause infinite recursion. 3613 * 3614 * Preemption must be disabled here before the function 3615 * tracer can trace. Break up preempt_disable() into two 3616 * calls. One to disable preemption without fear of being 3617 * traced. The other to still record the preemption latency, 3618 * which can also be traced by the function tracer. 3619 */ 3620 preempt_disable_notrace(); 3621 preempt_latency_start(1); 3622 /* 3623 * Needs preempt disabled in case user_exit() is traced 3624 * and the tracer calls preempt_enable_notrace() causing 3625 * an infinite recursion. 3626 */ 3627 prev_ctx = exception_enter(); 3628 __schedule(true); 3629 exception_exit(prev_ctx); 3630 3631 preempt_latency_stop(1); 3632 preempt_enable_no_resched_notrace(); 3633 } while (need_resched()); 3634 } 3635 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3636 3637 #endif /* CONFIG_PREEMPT */ 3638 3639 /* 3640 * this is the entry point to schedule() from kernel preemption 3641 * off of irq context. 3642 * Note, that this is called and return with irqs disabled. This will 3643 * protect us against recursive calling from irq. 3644 */ 3645 asmlinkage __visible void __sched preempt_schedule_irq(void) 3646 { 3647 enum ctx_state prev_state; 3648 3649 /* Catch callers which need to be fixed */ 3650 BUG_ON(preempt_count() || !irqs_disabled()); 3651 3652 prev_state = exception_enter(); 3653 3654 do { 3655 preempt_disable(); 3656 local_irq_enable(); 3657 __schedule(true); 3658 local_irq_disable(); 3659 sched_preempt_enable_no_resched(); 3660 } while (need_resched()); 3661 3662 exception_exit(prev_state); 3663 } 3664 3665 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3666 void *key) 3667 { 3668 return try_to_wake_up(curr->private, mode, wake_flags); 3669 } 3670 EXPORT_SYMBOL(default_wake_function); 3671 3672 #ifdef CONFIG_RT_MUTEXES 3673 3674 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3675 { 3676 if (pi_task) 3677 prio = min(prio, pi_task->prio); 3678 3679 return prio; 3680 } 3681 3682 static inline int rt_effective_prio(struct task_struct *p, int prio) 3683 { 3684 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3685 3686 return __rt_effective_prio(pi_task, prio); 3687 } 3688 3689 /* 3690 * rt_mutex_setprio - set the current priority of a task 3691 * @p: task to boost 3692 * @pi_task: donor task 3693 * 3694 * This function changes the 'effective' priority of a task. It does 3695 * not touch ->normal_prio like __setscheduler(). 3696 * 3697 * Used by the rt_mutex code to implement priority inheritance 3698 * logic. Call site only calls if the priority of the task changed. 3699 */ 3700 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3701 { 3702 int prio, oldprio, queued, running, queue_flag = 3703 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3704 const struct sched_class *prev_class; 3705 struct rq_flags rf; 3706 struct rq *rq; 3707 3708 /* XXX used to be waiter->prio, not waiter->task->prio */ 3709 prio = __rt_effective_prio(pi_task, p->normal_prio); 3710 3711 /* 3712 * If nothing changed; bail early. 3713 */ 3714 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3715 return; 3716 3717 rq = __task_rq_lock(p, &rf); 3718 update_rq_clock(rq); 3719 /* 3720 * Set under pi_lock && rq->lock, such that the value can be used under 3721 * either lock. 3722 * 3723 * Note that there is loads of tricky to make this pointer cache work 3724 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3725 * ensure a task is de-boosted (pi_task is set to NULL) before the 3726 * task is allowed to run again (and can exit). This ensures the pointer 3727 * points to a blocked task -- which guaratees the task is present. 3728 */ 3729 p->pi_top_task = pi_task; 3730 3731 /* 3732 * For FIFO/RR we only need to set prio, if that matches we're done. 3733 */ 3734 if (prio == p->prio && !dl_prio(prio)) 3735 goto out_unlock; 3736 3737 /* 3738 * Idle task boosting is a nono in general. There is one 3739 * exception, when PREEMPT_RT and NOHZ is active: 3740 * 3741 * The idle task calls get_next_timer_interrupt() and holds 3742 * the timer wheel base->lock on the CPU and another CPU wants 3743 * to access the timer (probably to cancel it). We can safely 3744 * ignore the boosting request, as the idle CPU runs this code 3745 * with interrupts disabled and will complete the lock 3746 * protected section without being interrupted. So there is no 3747 * real need to boost. 3748 */ 3749 if (unlikely(p == rq->idle)) { 3750 WARN_ON(p != rq->curr); 3751 WARN_ON(p->pi_blocked_on); 3752 goto out_unlock; 3753 } 3754 3755 trace_sched_pi_setprio(p, pi_task); 3756 oldprio = p->prio; 3757 3758 if (oldprio == prio) 3759 queue_flag &= ~DEQUEUE_MOVE; 3760 3761 prev_class = p->sched_class; 3762 queued = task_on_rq_queued(p); 3763 running = task_current(rq, p); 3764 if (queued) 3765 dequeue_task(rq, p, queue_flag); 3766 if (running) 3767 put_prev_task(rq, p); 3768 3769 /* 3770 * Boosting condition are: 3771 * 1. -rt task is running and holds mutex A 3772 * --> -dl task blocks on mutex A 3773 * 3774 * 2. -dl task is running and holds mutex A 3775 * --> -dl task blocks on mutex A and could preempt the 3776 * running task 3777 */ 3778 if (dl_prio(prio)) { 3779 if (!dl_prio(p->normal_prio) || 3780 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3781 p->dl.dl_boosted = 1; 3782 queue_flag |= ENQUEUE_REPLENISH; 3783 } else 3784 p->dl.dl_boosted = 0; 3785 p->sched_class = &dl_sched_class; 3786 } else if (rt_prio(prio)) { 3787 if (dl_prio(oldprio)) 3788 p->dl.dl_boosted = 0; 3789 if (oldprio < prio) 3790 queue_flag |= ENQUEUE_HEAD; 3791 p->sched_class = &rt_sched_class; 3792 } else { 3793 if (dl_prio(oldprio)) 3794 p->dl.dl_boosted = 0; 3795 if (rt_prio(oldprio)) 3796 p->rt.timeout = 0; 3797 p->sched_class = &fair_sched_class; 3798 } 3799 3800 p->prio = prio; 3801 3802 if (queued) 3803 enqueue_task(rq, p, queue_flag); 3804 if (running) 3805 set_curr_task(rq, p); 3806 3807 check_class_changed(rq, p, prev_class, oldprio); 3808 out_unlock: 3809 /* Avoid rq from going away on us: */ 3810 preempt_disable(); 3811 __task_rq_unlock(rq, &rf); 3812 3813 balance_callback(rq); 3814 preempt_enable(); 3815 } 3816 #else 3817 static inline int rt_effective_prio(struct task_struct *p, int prio) 3818 { 3819 return prio; 3820 } 3821 #endif 3822 3823 void set_user_nice(struct task_struct *p, long nice) 3824 { 3825 bool queued, running; 3826 int old_prio, delta; 3827 struct rq_flags rf; 3828 struct rq *rq; 3829 3830 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3831 return; 3832 /* 3833 * We have to be careful, if called from sys_setpriority(), 3834 * the task might be in the middle of scheduling on another CPU. 3835 */ 3836 rq = task_rq_lock(p, &rf); 3837 update_rq_clock(rq); 3838 3839 /* 3840 * The RT priorities are set via sched_setscheduler(), but we still 3841 * allow the 'normal' nice value to be set - but as expected 3842 * it wont have any effect on scheduling until the task is 3843 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3844 */ 3845 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3846 p->static_prio = NICE_TO_PRIO(nice); 3847 goto out_unlock; 3848 } 3849 queued = task_on_rq_queued(p); 3850 running = task_current(rq, p); 3851 if (queued) 3852 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3853 if (running) 3854 put_prev_task(rq, p); 3855 3856 p->static_prio = NICE_TO_PRIO(nice); 3857 set_load_weight(p); 3858 old_prio = p->prio; 3859 p->prio = effective_prio(p); 3860 delta = p->prio - old_prio; 3861 3862 if (queued) { 3863 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3864 /* 3865 * If the task increased its priority or is running and 3866 * lowered its priority, then reschedule its CPU: 3867 */ 3868 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3869 resched_curr(rq); 3870 } 3871 if (running) 3872 set_curr_task(rq, p); 3873 out_unlock: 3874 task_rq_unlock(rq, p, &rf); 3875 } 3876 EXPORT_SYMBOL(set_user_nice); 3877 3878 /* 3879 * can_nice - check if a task can reduce its nice value 3880 * @p: task 3881 * @nice: nice value 3882 */ 3883 int can_nice(const struct task_struct *p, const int nice) 3884 { 3885 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3886 int nice_rlim = nice_to_rlimit(nice); 3887 3888 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3889 capable(CAP_SYS_NICE)); 3890 } 3891 3892 #ifdef __ARCH_WANT_SYS_NICE 3893 3894 /* 3895 * sys_nice - change the priority of the current process. 3896 * @increment: priority increment 3897 * 3898 * sys_setpriority is a more generic, but much slower function that 3899 * does similar things. 3900 */ 3901 SYSCALL_DEFINE1(nice, int, increment) 3902 { 3903 long nice, retval; 3904 3905 /* 3906 * Setpriority might change our priority at the same moment. 3907 * We don't have to worry. Conceptually one call occurs first 3908 * and we have a single winner. 3909 */ 3910 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3911 nice = task_nice(current) + increment; 3912 3913 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3914 if (increment < 0 && !can_nice(current, nice)) 3915 return -EPERM; 3916 3917 retval = security_task_setnice(current, nice); 3918 if (retval) 3919 return retval; 3920 3921 set_user_nice(current, nice); 3922 return 0; 3923 } 3924 3925 #endif 3926 3927 /** 3928 * task_prio - return the priority value of a given task. 3929 * @p: the task in question. 3930 * 3931 * Return: The priority value as seen by users in /proc. 3932 * RT tasks are offset by -200. Normal tasks are centered 3933 * around 0, value goes from -16 to +15. 3934 */ 3935 int task_prio(const struct task_struct *p) 3936 { 3937 return p->prio - MAX_RT_PRIO; 3938 } 3939 3940 /** 3941 * idle_cpu - is a given CPU idle currently? 3942 * @cpu: the processor in question. 3943 * 3944 * Return: 1 if the CPU is currently idle. 0 otherwise. 3945 */ 3946 int idle_cpu(int cpu) 3947 { 3948 struct rq *rq = cpu_rq(cpu); 3949 3950 if (rq->curr != rq->idle) 3951 return 0; 3952 3953 if (rq->nr_running) 3954 return 0; 3955 3956 #ifdef CONFIG_SMP 3957 if (!llist_empty(&rq->wake_list)) 3958 return 0; 3959 #endif 3960 3961 return 1; 3962 } 3963 3964 /** 3965 * idle_task - return the idle task for a given CPU. 3966 * @cpu: the processor in question. 3967 * 3968 * Return: The idle task for the CPU @cpu. 3969 */ 3970 struct task_struct *idle_task(int cpu) 3971 { 3972 return cpu_rq(cpu)->idle; 3973 } 3974 3975 /** 3976 * find_process_by_pid - find a process with a matching PID value. 3977 * @pid: the pid in question. 3978 * 3979 * The task of @pid, if found. %NULL otherwise. 3980 */ 3981 static struct task_struct *find_process_by_pid(pid_t pid) 3982 { 3983 return pid ? find_task_by_vpid(pid) : current; 3984 } 3985 3986 /* 3987 * This function initializes the sched_dl_entity of a newly becoming 3988 * SCHED_DEADLINE task. 3989 * 3990 * Only the static values are considered here, the actual runtime and the 3991 * absolute deadline will be properly calculated when the task is enqueued 3992 * for the first time with its new policy. 3993 */ 3994 static void 3995 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3996 { 3997 struct sched_dl_entity *dl_se = &p->dl; 3998 3999 dl_se->dl_runtime = attr->sched_runtime; 4000 dl_se->dl_deadline = attr->sched_deadline; 4001 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 4002 dl_se->flags = attr->sched_flags; 4003 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 4004 4005 /* 4006 * Changing the parameters of a task is 'tricky' and we're not doing 4007 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 4008 * 4009 * What we SHOULD do is delay the bandwidth release until the 0-lag 4010 * point. This would include retaining the task_struct until that time 4011 * and change dl_overflow() to not immediately decrement the current 4012 * amount. 4013 * 4014 * Instead we retain the current runtime/deadline and let the new 4015 * parameters take effect after the current reservation period lapses. 4016 * This is safe (albeit pessimistic) because the 0-lag point is always 4017 * before the current scheduling deadline. 4018 * 4019 * We can still have temporary overloads because we do not delay the 4020 * change in bandwidth until that time; so admission control is 4021 * not on the safe side. It does however guarantee tasks will never 4022 * consume more than promised. 4023 */ 4024 } 4025 4026 /* 4027 * sched_setparam() passes in -1 for its policy, to let the functions 4028 * it calls know not to change it. 4029 */ 4030 #define SETPARAM_POLICY -1 4031 4032 static void __setscheduler_params(struct task_struct *p, 4033 const struct sched_attr *attr) 4034 { 4035 int policy = attr->sched_policy; 4036 4037 if (policy == SETPARAM_POLICY) 4038 policy = p->policy; 4039 4040 p->policy = policy; 4041 4042 if (dl_policy(policy)) 4043 __setparam_dl(p, attr); 4044 else if (fair_policy(policy)) 4045 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4046 4047 /* 4048 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4049 * !rt_policy. Always setting this ensures that things like 4050 * getparam()/getattr() don't report silly values for !rt tasks. 4051 */ 4052 p->rt_priority = attr->sched_priority; 4053 p->normal_prio = normal_prio(p); 4054 set_load_weight(p); 4055 } 4056 4057 /* Actually do priority change: must hold pi & rq lock. */ 4058 static void __setscheduler(struct rq *rq, struct task_struct *p, 4059 const struct sched_attr *attr, bool keep_boost) 4060 { 4061 __setscheduler_params(p, attr); 4062 4063 /* 4064 * Keep a potential priority boosting if called from 4065 * sched_setscheduler(). 4066 */ 4067 p->prio = normal_prio(p); 4068 if (keep_boost) 4069 p->prio = rt_effective_prio(p, p->prio); 4070 4071 if (dl_prio(p->prio)) 4072 p->sched_class = &dl_sched_class; 4073 else if (rt_prio(p->prio)) 4074 p->sched_class = &rt_sched_class; 4075 else 4076 p->sched_class = &fair_sched_class; 4077 } 4078 4079 static void 4080 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 4081 { 4082 struct sched_dl_entity *dl_se = &p->dl; 4083 4084 attr->sched_priority = p->rt_priority; 4085 attr->sched_runtime = dl_se->dl_runtime; 4086 attr->sched_deadline = dl_se->dl_deadline; 4087 attr->sched_period = dl_se->dl_period; 4088 attr->sched_flags = dl_se->flags; 4089 } 4090 4091 /* 4092 * This function validates the new parameters of a -deadline task. 4093 * We ask for the deadline not being zero, and greater or equal 4094 * than the runtime, as well as the period of being zero or 4095 * greater than deadline. Furthermore, we have to be sure that 4096 * user parameters are above the internal resolution of 1us (we 4097 * check sched_runtime only since it is always the smaller one) and 4098 * below 2^63 ns (we have to check both sched_deadline and 4099 * sched_period, as the latter can be zero). 4100 */ 4101 static bool 4102 __checkparam_dl(const struct sched_attr *attr) 4103 { 4104 /* deadline != 0 */ 4105 if (attr->sched_deadline == 0) 4106 return false; 4107 4108 /* 4109 * Since we truncate DL_SCALE bits, make sure we're at least 4110 * that big. 4111 */ 4112 if (attr->sched_runtime < (1ULL << DL_SCALE)) 4113 return false; 4114 4115 /* 4116 * Since we use the MSB for wrap-around and sign issues, make 4117 * sure it's not set (mind that period can be equal to zero). 4118 */ 4119 if (attr->sched_deadline & (1ULL << 63) || 4120 attr->sched_period & (1ULL << 63)) 4121 return false; 4122 4123 /* runtime <= deadline <= period (if period != 0) */ 4124 if ((attr->sched_period != 0 && 4125 attr->sched_period < attr->sched_deadline) || 4126 attr->sched_deadline < attr->sched_runtime) 4127 return false; 4128 4129 return true; 4130 } 4131 4132 /* 4133 * Check the target process has a UID that matches the current process's: 4134 */ 4135 static bool check_same_owner(struct task_struct *p) 4136 { 4137 const struct cred *cred = current_cred(), *pcred; 4138 bool match; 4139 4140 rcu_read_lock(); 4141 pcred = __task_cred(p); 4142 match = (uid_eq(cred->euid, pcred->euid) || 4143 uid_eq(cred->euid, pcred->uid)); 4144 rcu_read_unlock(); 4145 return match; 4146 } 4147 4148 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 4149 { 4150 struct sched_dl_entity *dl_se = &p->dl; 4151 4152 if (dl_se->dl_runtime != attr->sched_runtime || 4153 dl_se->dl_deadline != attr->sched_deadline || 4154 dl_se->dl_period != attr->sched_period || 4155 dl_se->flags != attr->sched_flags) 4156 return true; 4157 4158 return false; 4159 } 4160 4161 static int __sched_setscheduler(struct task_struct *p, 4162 const struct sched_attr *attr, 4163 bool user, bool pi) 4164 { 4165 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4166 MAX_RT_PRIO - 1 - attr->sched_priority; 4167 int retval, oldprio, oldpolicy = -1, queued, running; 4168 int new_effective_prio, policy = attr->sched_policy; 4169 const struct sched_class *prev_class; 4170 struct rq_flags rf; 4171 int reset_on_fork; 4172 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4173 struct rq *rq; 4174 4175 /* May grab non-irq protected spin_locks: */ 4176 BUG_ON(in_interrupt()); 4177 recheck: 4178 /* Double check policy once rq lock held: */ 4179 if (policy < 0) { 4180 reset_on_fork = p->sched_reset_on_fork; 4181 policy = oldpolicy = p->policy; 4182 } else { 4183 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4184 4185 if (!valid_policy(policy)) 4186 return -EINVAL; 4187 } 4188 4189 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 4190 return -EINVAL; 4191 4192 /* 4193 * Valid priorities for SCHED_FIFO and SCHED_RR are 4194 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4195 * SCHED_BATCH and SCHED_IDLE is 0. 4196 */ 4197 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4198 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4199 return -EINVAL; 4200 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4201 (rt_policy(policy) != (attr->sched_priority != 0))) 4202 return -EINVAL; 4203 4204 /* 4205 * Allow unprivileged RT tasks to decrease priority: 4206 */ 4207 if (user && !capable(CAP_SYS_NICE)) { 4208 if (fair_policy(policy)) { 4209 if (attr->sched_nice < task_nice(p) && 4210 !can_nice(p, attr->sched_nice)) 4211 return -EPERM; 4212 } 4213 4214 if (rt_policy(policy)) { 4215 unsigned long rlim_rtprio = 4216 task_rlimit(p, RLIMIT_RTPRIO); 4217 4218 /* Can't set/change the rt policy: */ 4219 if (policy != p->policy && !rlim_rtprio) 4220 return -EPERM; 4221 4222 /* Can't increase priority: */ 4223 if (attr->sched_priority > p->rt_priority && 4224 attr->sched_priority > rlim_rtprio) 4225 return -EPERM; 4226 } 4227 4228 /* 4229 * Can't set/change SCHED_DEADLINE policy at all for now 4230 * (safest behavior); in the future we would like to allow 4231 * unprivileged DL tasks to increase their relative deadline 4232 * or reduce their runtime (both ways reducing utilization) 4233 */ 4234 if (dl_policy(policy)) 4235 return -EPERM; 4236 4237 /* 4238 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4239 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4240 */ 4241 if (idle_policy(p->policy) && !idle_policy(policy)) { 4242 if (!can_nice(p, task_nice(p))) 4243 return -EPERM; 4244 } 4245 4246 /* Can't change other user's priorities: */ 4247 if (!check_same_owner(p)) 4248 return -EPERM; 4249 4250 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4251 if (p->sched_reset_on_fork && !reset_on_fork) 4252 return -EPERM; 4253 } 4254 4255 if (user) { 4256 retval = security_task_setscheduler(p); 4257 if (retval) 4258 return retval; 4259 } 4260 4261 /* 4262 * Make sure no PI-waiters arrive (or leave) while we are 4263 * changing the priority of the task: 4264 * 4265 * To be able to change p->policy safely, the appropriate 4266 * runqueue lock must be held. 4267 */ 4268 rq = task_rq_lock(p, &rf); 4269 update_rq_clock(rq); 4270 4271 /* 4272 * Changing the policy of the stop threads its a very bad idea: 4273 */ 4274 if (p == rq->stop) { 4275 task_rq_unlock(rq, p, &rf); 4276 return -EINVAL; 4277 } 4278 4279 /* 4280 * If not changing anything there's no need to proceed further, 4281 * but store a possible modification of reset_on_fork. 4282 */ 4283 if (unlikely(policy == p->policy)) { 4284 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4285 goto change; 4286 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4287 goto change; 4288 if (dl_policy(policy) && dl_param_changed(p, attr)) 4289 goto change; 4290 4291 p->sched_reset_on_fork = reset_on_fork; 4292 task_rq_unlock(rq, p, &rf); 4293 return 0; 4294 } 4295 change: 4296 4297 if (user) { 4298 #ifdef CONFIG_RT_GROUP_SCHED 4299 /* 4300 * Do not allow realtime tasks into groups that have no runtime 4301 * assigned. 4302 */ 4303 if (rt_bandwidth_enabled() && rt_policy(policy) && 4304 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4305 !task_group_is_autogroup(task_group(p))) { 4306 task_rq_unlock(rq, p, &rf); 4307 return -EPERM; 4308 } 4309 #endif 4310 #ifdef CONFIG_SMP 4311 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4312 cpumask_t *span = rq->rd->span; 4313 4314 /* 4315 * Don't allow tasks with an affinity mask smaller than 4316 * the entire root_domain to become SCHED_DEADLINE. We 4317 * will also fail if there's no bandwidth available. 4318 */ 4319 if (!cpumask_subset(span, &p->cpus_allowed) || 4320 rq->rd->dl_bw.bw == 0) { 4321 task_rq_unlock(rq, p, &rf); 4322 return -EPERM; 4323 } 4324 } 4325 #endif 4326 } 4327 4328 /* Re-check policy now with rq lock held: */ 4329 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4330 policy = oldpolicy = -1; 4331 task_rq_unlock(rq, p, &rf); 4332 goto recheck; 4333 } 4334 4335 /* 4336 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4337 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4338 * is available. 4339 */ 4340 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4341 task_rq_unlock(rq, p, &rf); 4342 return -EBUSY; 4343 } 4344 4345 p->sched_reset_on_fork = reset_on_fork; 4346 oldprio = p->prio; 4347 4348 if (pi) { 4349 /* 4350 * Take priority boosted tasks into account. If the new 4351 * effective priority is unchanged, we just store the new 4352 * normal parameters and do not touch the scheduler class and 4353 * the runqueue. This will be done when the task deboost 4354 * itself. 4355 */ 4356 new_effective_prio = rt_effective_prio(p, newprio); 4357 if (new_effective_prio == oldprio) 4358 queue_flags &= ~DEQUEUE_MOVE; 4359 } 4360 4361 queued = task_on_rq_queued(p); 4362 running = task_current(rq, p); 4363 if (queued) 4364 dequeue_task(rq, p, queue_flags); 4365 if (running) 4366 put_prev_task(rq, p); 4367 4368 prev_class = p->sched_class; 4369 __setscheduler(rq, p, attr, pi); 4370 4371 if (queued) { 4372 /* 4373 * We enqueue to tail when the priority of a task is 4374 * increased (user space view). 4375 */ 4376 if (oldprio < p->prio) 4377 queue_flags |= ENQUEUE_HEAD; 4378 4379 enqueue_task(rq, p, queue_flags); 4380 } 4381 if (running) 4382 set_curr_task(rq, p); 4383 4384 check_class_changed(rq, p, prev_class, oldprio); 4385 4386 /* Avoid rq from going away on us: */ 4387 preempt_disable(); 4388 task_rq_unlock(rq, p, &rf); 4389 4390 if (pi) 4391 rt_mutex_adjust_pi(p); 4392 4393 /* Run balance callbacks after we've adjusted the PI chain: */ 4394 balance_callback(rq); 4395 preempt_enable(); 4396 4397 return 0; 4398 } 4399 4400 static int _sched_setscheduler(struct task_struct *p, int policy, 4401 const struct sched_param *param, bool check) 4402 { 4403 struct sched_attr attr = { 4404 .sched_policy = policy, 4405 .sched_priority = param->sched_priority, 4406 .sched_nice = PRIO_TO_NICE(p->static_prio), 4407 }; 4408 4409 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4410 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4411 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4412 policy &= ~SCHED_RESET_ON_FORK; 4413 attr.sched_policy = policy; 4414 } 4415 4416 return __sched_setscheduler(p, &attr, check, true); 4417 } 4418 /** 4419 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4420 * @p: the task in question. 4421 * @policy: new policy. 4422 * @param: structure containing the new RT priority. 4423 * 4424 * Return: 0 on success. An error code otherwise. 4425 * 4426 * NOTE that the task may be already dead. 4427 */ 4428 int sched_setscheduler(struct task_struct *p, int policy, 4429 const struct sched_param *param) 4430 { 4431 return _sched_setscheduler(p, policy, param, true); 4432 } 4433 EXPORT_SYMBOL_GPL(sched_setscheduler); 4434 4435 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4436 { 4437 return __sched_setscheduler(p, attr, true, true); 4438 } 4439 EXPORT_SYMBOL_GPL(sched_setattr); 4440 4441 /** 4442 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4443 * @p: the task in question. 4444 * @policy: new policy. 4445 * @param: structure containing the new RT priority. 4446 * 4447 * Just like sched_setscheduler, only don't bother checking if the 4448 * current context has permission. For example, this is needed in 4449 * stop_machine(): we create temporary high priority worker threads, 4450 * but our caller might not have that capability. 4451 * 4452 * Return: 0 on success. An error code otherwise. 4453 */ 4454 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4455 const struct sched_param *param) 4456 { 4457 return _sched_setscheduler(p, policy, param, false); 4458 } 4459 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4460 4461 static int 4462 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4463 { 4464 struct sched_param lparam; 4465 struct task_struct *p; 4466 int retval; 4467 4468 if (!param || pid < 0) 4469 return -EINVAL; 4470 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4471 return -EFAULT; 4472 4473 rcu_read_lock(); 4474 retval = -ESRCH; 4475 p = find_process_by_pid(pid); 4476 if (p != NULL) 4477 retval = sched_setscheduler(p, policy, &lparam); 4478 rcu_read_unlock(); 4479 4480 return retval; 4481 } 4482 4483 /* 4484 * Mimics kernel/events/core.c perf_copy_attr(). 4485 */ 4486 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4487 { 4488 u32 size; 4489 int ret; 4490 4491 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4492 return -EFAULT; 4493 4494 /* Zero the full structure, so that a short copy will be nice: */ 4495 memset(attr, 0, sizeof(*attr)); 4496 4497 ret = get_user(size, &uattr->size); 4498 if (ret) 4499 return ret; 4500 4501 /* Bail out on silly large: */ 4502 if (size > PAGE_SIZE) 4503 goto err_size; 4504 4505 /* ABI compatibility quirk: */ 4506 if (!size) 4507 size = SCHED_ATTR_SIZE_VER0; 4508 4509 if (size < SCHED_ATTR_SIZE_VER0) 4510 goto err_size; 4511 4512 /* 4513 * If we're handed a bigger struct than we know of, 4514 * ensure all the unknown bits are 0 - i.e. new 4515 * user-space does not rely on any kernel feature 4516 * extensions we dont know about yet. 4517 */ 4518 if (size > sizeof(*attr)) { 4519 unsigned char __user *addr; 4520 unsigned char __user *end; 4521 unsigned char val; 4522 4523 addr = (void __user *)uattr + sizeof(*attr); 4524 end = (void __user *)uattr + size; 4525 4526 for (; addr < end; addr++) { 4527 ret = get_user(val, addr); 4528 if (ret) 4529 return ret; 4530 if (val) 4531 goto err_size; 4532 } 4533 size = sizeof(*attr); 4534 } 4535 4536 ret = copy_from_user(attr, uattr, size); 4537 if (ret) 4538 return -EFAULT; 4539 4540 /* 4541 * XXX: Do we want to be lenient like existing syscalls; or do we want 4542 * to be strict and return an error on out-of-bounds values? 4543 */ 4544 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4545 4546 return 0; 4547 4548 err_size: 4549 put_user(sizeof(*attr), &uattr->size); 4550 return -E2BIG; 4551 } 4552 4553 /** 4554 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4555 * @pid: the pid in question. 4556 * @policy: new policy. 4557 * @param: structure containing the new RT priority. 4558 * 4559 * Return: 0 on success. An error code otherwise. 4560 */ 4561 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4562 { 4563 if (policy < 0) 4564 return -EINVAL; 4565 4566 return do_sched_setscheduler(pid, policy, param); 4567 } 4568 4569 /** 4570 * sys_sched_setparam - set/change the RT priority of a thread 4571 * @pid: the pid in question. 4572 * @param: structure containing the new RT priority. 4573 * 4574 * Return: 0 on success. An error code otherwise. 4575 */ 4576 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4577 { 4578 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4579 } 4580 4581 /** 4582 * sys_sched_setattr - same as above, but with extended sched_attr 4583 * @pid: the pid in question. 4584 * @uattr: structure containing the extended parameters. 4585 * @flags: for future extension. 4586 */ 4587 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4588 unsigned int, flags) 4589 { 4590 struct sched_attr attr; 4591 struct task_struct *p; 4592 int retval; 4593 4594 if (!uattr || pid < 0 || flags) 4595 return -EINVAL; 4596 4597 retval = sched_copy_attr(uattr, &attr); 4598 if (retval) 4599 return retval; 4600 4601 if ((int)attr.sched_policy < 0) 4602 return -EINVAL; 4603 4604 rcu_read_lock(); 4605 retval = -ESRCH; 4606 p = find_process_by_pid(pid); 4607 if (p != NULL) 4608 retval = sched_setattr(p, &attr); 4609 rcu_read_unlock(); 4610 4611 return retval; 4612 } 4613 4614 /** 4615 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4616 * @pid: the pid in question. 4617 * 4618 * Return: On success, the policy of the thread. Otherwise, a negative error 4619 * code. 4620 */ 4621 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4622 { 4623 struct task_struct *p; 4624 int retval; 4625 4626 if (pid < 0) 4627 return -EINVAL; 4628 4629 retval = -ESRCH; 4630 rcu_read_lock(); 4631 p = find_process_by_pid(pid); 4632 if (p) { 4633 retval = security_task_getscheduler(p); 4634 if (!retval) 4635 retval = p->policy 4636 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4637 } 4638 rcu_read_unlock(); 4639 return retval; 4640 } 4641 4642 /** 4643 * sys_sched_getparam - get the RT priority of a thread 4644 * @pid: the pid in question. 4645 * @param: structure containing the RT priority. 4646 * 4647 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4648 * code. 4649 */ 4650 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4651 { 4652 struct sched_param lp = { .sched_priority = 0 }; 4653 struct task_struct *p; 4654 int retval; 4655 4656 if (!param || pid < 0) 4657 return -EINVAL; 4658 4659 rcu_read_lock(); 4660 p = find_process_by_pid(pid); 4661 retval = -ESRCH; 4662 if (!p) 4663 goto out_unlock; 4664 4665 retval = security_task_getscheduler(p); 4666 if (retval) 4667 goto out_unlock; 4668 4669 if (task_has_rt_policy(p)) 4670 lp.sched_priority = p->rt_priority; 4671 rcu_read_unlock(); 4672 4673 /* 4674 * This one might sleep, we cannot do it with a spinlock held ... 4675 */ 4676 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4677 4678 return retval; 4679 4680 out_unlock: 4681 rcu_read_unlock(); 4682 return retval; 4683 } 4684 4685 static int sched_read_attr(struct sched_attr __user *uattr, 4686 struct sched_attr *attr, 4687 unsigned int usize) 4688 { 4689 int ret; 4690 4691 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4692 return -EFAULT; 4693 4694 /* 4695 * If we're handed a smaller struct than we know of, 4696 * ensure all the unknown bits are 0 - i.e. old 4697 * user-space does not get uncomplete information. 4698 */ 4699 if (usize < sizeof(*attr)) { 4700 unsigned char *addr; 4701 unsigned char *end; 4702 4703 addr = (void *)attr + usize; 4704 end = (void *)attr + sizeof(*attr); 4705 4706 for (; addr < end; addr++) { 4707 if (*addr) 4708 return -EFBIG; 4709 } 4710 4711 attr->size = usize; 4712 } 4713 4714 ret = copy_to_user(uattr, attr, attr->size); 4715 if (ret) 4716 return -EFAULT; 4717 4718 return 0; 4719 } 4720 4721 /** 4722 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4723 * @pid: the pid in question. 4724 * @uattr: structure containing the extended parameters. 4725 * @size: sizeof(attr) for fwd/bwd comp. 4726 * @flags: for future extension. 4727 */ 4728 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4729 unsigned int, size, unsigned int, flags) 4730 { 4731 struct sched_attr attr = { 4732 .size = sizeof(struct sched_attr), 4733 }; 4734 struct task_struct *p; 4735 int retval; 4736 4737 if (!uattr || pid < 0 || size > PAGE_SIZE || 4738 size < SCHED_ATTR_SIZE_VER0 || flags) 4739 return -EINVAL; 4740 4741 rcu_read_lock(); 4742 p = find_process_by_pid(pid); 4743 retval = -ESRCH; 4744 if (!p) 4745 goto out_unlock; 4746 4747 retval = security_task_getscheduler(p); 4748 if (retval) 4749 goto out_unlock; 4750 4751 attr.sched_policy = p->policy; 4752 if (p->sched_reset_on_fork) 4753 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4754 if (task_has_dl_policy(p)) 4755 __getparam_dl(p, &attr); 4756 else if (task_has_rt_policy(p)) 4757 attr.sched_priority = p->rt_priority; 4758 else 4759 attr.sched_nice = task_nice(p); 4760 4761 rcu_read_unlock(); 4762 4763 retval = sched_read_attr(uattr, &attr, size); 4764 return retval; 4765 4766 out_unlock: 4767 rcu_read_unlock(); 4768 return retval; 4769 } 4770 4771 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4772 { 4773 cpumask_var_t cpus_allowed, new_mask; 4774 struct task_struct *p; 4775 int retval; 4776 4777 rcu_read_lock(); 4778 4779 p = find_process_by_pid(pid); 4780 if (!p) { 4781 rcu_read_unlock(); 4782 return -ESRCH; 4783 } 4784 4785 /* Prevent p going away */ 4786 get_task_struct(p); 4787 rcu_read_unlock(); 4788 4789 if (p->flags & PF_NO_SETAFFINITY) { 4790 retval = -EINVAL; 4791 goto out_put_task; 4792 } 4793 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4794 retval = -ENOMEM; 4795 goto out_put_task; 4796 } 4797 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4798 retval = -ENOMEM; 4799 goto out_free_cpus_allowed; 4800 } 4801 retval = -EPERM; 4802 if (!check_same_owner(p)) { 4803 rcu_read_lock(); 4804 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4805 rcu_read_unlock(); 4806 goto out_free_new_mask; 4807 } 4808 rcu_read_unlock(); 4809 } 4810 4811 retval = security_task_setscheduler(p); 4812 if (retval) 4813 goto out_free_new_mask; 4814 4815 4816 cpuset_cpus_allowed(p, cpus_allowed); 4817 cpumask_and(new_mask, in_mask, cpus_allowed); 4818 4819 /* 4820 * Since bandwidth control happens on root_domain basis, 4821 * if admission test is enabled, we only admit -deadline 4822 * tasks allowed to run on all the CPUs in the task's 4823 * root_domain. 4824 */ 4825 #ifdef CONFIG_SMP 4826 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4827 rcu_read_lock(); 4828 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4829 retval = -EBUSY; 4830 rcu_read_unlock(); 4831 goto out_free_new_mask; 4832 } 4833 rcu_read_unlock(); 4834 } 4835 #endif 4836 again: 4837 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4838 4839 if (!retval) { 4840 cpuset_cpus_allowed(p, cpus_allowed); 4841 if (!cpumask_subset(new_mask, cpus_allowed)) { 4842 /* 4843 * We must have raced with a concurrent cpuset 4844 * update. Just reset the cpus_allowed to the 4845 * cpuset's cpus_allowed 4846 */ 4847 cpumask_copy(new_mask, cpus_allowed); 4848 goto again; 4849 } 4850 } 4851 out_free_new_mask: 4852 free_cpumask_var(new_mask); 4853 out_free_cpus_allowed: 4854 free_cpumask_var(cpus_allowed); 4855 out_put_task: 4856 put_task_struct(p); 4857 return retval; 4858 } 4859 4860 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4861 struct cpumask *new_mask) 4862 { 4863 if (len < cpumask_size()) 4864 cpumask_clear(new_mask); 4865 else if (len > cpumask_size()) 4866 len = cpumask_size(); 4867 4868 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4869 } 4870 4871 /** 4872 * sys_sched_setaffinity - set the CPU affinity of a process 4873 * @pid: pid of the process 4874 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4875 * @user_mask_ptr: user-space pointer to the new CPU mask 4876 * 4877 * Return: 0 on success. An error code otherwise. 4878 */ 4879 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4880 unsigned long __user *, user_mask_ptr) 4881 { 4882 cpumask_var_t new_mask; 4883 int retval; 4884 4885 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4886 return -ENOMEM; 4887 4888 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4889 if (retval == 0) 4890 retval = sched_setaffinity(pid, new_mask); 4891 free_cpumask_var(new_mask); 4892 return retval; 4893 } 4894 4895 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4896 { 4897 struct task_struct *p; 4898 unsigned long flags; 4899 int retval; 4900 4901 rcu_read_lock(); 4902 4903 retval = -ESRCH; 4904 p = find_process_by_pid(pid); 4905 if (!p) 4906 goto out_unlock; 4907 4908 retval = security_task_getscheduler(p); 4909 if (retval) 4910 goto out_unlock; 4911 4912 raw_spin_lock_irqsave(&p->pi_lock, flags); 4913 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4914 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4915 4916 out_unlock: 4917 rcu_read_unlock(); 4918 4919 return retval; 4920 } 4921 4922 /** 4923 * sys_sched_getaffinity - get the CPU affinity of a process 4924 * @pid: pid of the process 4925 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4926 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4927 * 4928 * Return: size of CPU mask copied to user_mask_ptr on success. An 4929 * error code otherwise. 4930 */ 4931 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4932 unsigned long __user *, user_mask_ptr) 4933 { 4934 int ret; 4935 cpumask_var_t mask; 4936 4937 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4938 return -EINVAL; 4939 if (len & (sizeof(unsigned long)-1)) 4940 return -EINVAL; 4941 4942 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4943 return -ENOMEM; 4944 4945 ret = sched_getaffinity(pid, mask); 4946 if (ret == 0) { 4947 size_t retlen = min_t(size_t, len, cpumask_size()); 4948 4949 if (copy_to_user(user_mask_ptr, mask, retlen)) 4950 ret = -EFAULT; 4951 else 4952 ret = retlen; 4953 } 4954 free_cpumask_var(mask); 4955 4956 return ret; 4957 } 4958 4959 /** 4960 * sys_sched_yield - yield the current processor to other threads. 4961 * 4962 * This function yields the current CPU to other tasks. If there are no 4963 * other threads running on this CPU then this function will return. 4964 * 4965 * Return: 0. 4966 */ 4967 SYSCALL_DEFINE0(sched_yield) 4968 { 4969 struct rq_flags rf; 4970 struct rq *rq; 4971 4972 local_irq_disable(); 4973 rq = this_rq(); 4974 rq_lock(rq, &rf); 4975 4976 schedstat_inc(rq->yld_count); 4977 current->sched_class->yield_task(rq); 4978 4979 /* 4980 * Since we are going to call schedule() anyway, there's 4981 * no need to preempt or enable interrupts: 4982 */ 4983 preempt_disable(); 4984 rq_unlock(rq, &rf); 4985 sched_preempt_enable_no_resched(); 4986 4987 schedule(); 4988 4989 return 0; 4990 } 4991 4992 #ifndef CONFIG_PREEMPT 4993 int __sched _cond_resched(void) 4994 { 4995 if (should_resched(0)) { 4996 preempt_schedule_common(); 4997 return 1; 4998 } 4999 return 0; 5000 } 5001 EXPORT_SYMBOL(_cond_resched); 5002 #endif 5003 5004 /* 5005 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5006 * call schedule, and on return reacquire the lock. 5007 * 5008 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5009 * operations here to prevent schedule() from being called twice (once via 5010 * spin_unlock(), once by hand). 5011 */ 5012 int __cond_resched_lock(spinlock_t *lock) 5013 { 5014 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5015 int ret = 0; 5016 5017 lockdep_assert_held(lock); 5018 5019 if (spin_needbreak(lock) || resched) { 5020 spin_unlock(lock); 5021 if (resched) 5022 preempt_schedule_common(); 5023 else 5024 cpu_relax(); 5025 ret = 1; 5026 spin_lock(lock); 5027 } 5028 return ret; 5029 } 5030 EXPORT_SYMBOL(__cond_resched_lock); 5031 5032 int __sched __cond_resched_softirq(void) 5033 { 5034 BUG_ON(!in_softirq()); 5035 5036 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 5037 local_bh_enable(); 5038 preempt_schedule_common(); 5039 local_bh_disable(); 5040 return 1; 5041 } 5042 return 0; 5043 } 5044 EXPORT_SYMBOL(__cond_resched_softirq); 5045 5046 /** 5047 * yield - yield the current processor to other threads. 5048 * 5049 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5050 * 5051 * The scheduler is at all times free to pick the calling task as the most 5052 * eligible task to run, if removing the yield() call from your code breaks 5053 * it, its already broken. 5054 * 5055 * Typical broken usage is: 5056 * 5057 * while (!event) 5058 * yield(); 5059 * 5060 * where one assumes that yield() will let 'the other' process run that will 5061 * make event true. If the current task is a SCHED_FIFO task that will never 5062 * happen. Never use yield() as a progress guarantee!! 5063 * 5064 * If you want to use yield() to wait for something, use wait_event(). 5065 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5066 * If you still want to use yield(), do not! 5067 */ 5068 void __sched yield(void) 5069 { 5070 set_current_state(TASK_RUNNING); 5071 sys_sched_yield(); 5072 } 5073 EXPORT_SYMBOL(yield); 5074 5075 /** 5076 * yield_to - yield the current processor to another thread in 5077 * your thread group, or accelerate that thread toward the 5078 * processor it's on. 5079 * @p: target task 5080 * @preempt: whether task preemption is allowed or not 5081 * 5082 * It's the caller's job to ensure that the target task struct 5083 * can't go away on us before we can do any checks. 5084 * 5085 * Return: 5086 * true (>0) if we indeed boosted the target task. 5087 * false (0) if we failed to boost the target. 5088 * -ESRCH if there's no task to yield to. 5089 */ 5090 int __sched yield_to(struct task_struct *p, bool preempt) 5091 { 5092 struct task_struct *curr = current; 5093 struct rq *rq, *p_rq; 5094 unsigned long flags; 5095 int yielded = 0; 5096 5097 local_irq_save(flags); 5098 rq = this_rq(); 5099 5100 again: 5101 p_rq = task_rq(p); 5102 /* 5103 * If we're the only runnable task on the rq and target rq also 5104 * has only one task, there's absolutely no point in yielding. 5105 */ 5106 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5107 yielded = -ESRCH; 5108 goto out_irq; 5109 } 5110 5111 double_rq_lock(rq, p_rq); 5112 if (task_rq(p) != p_rq) { 5113 double_rq_unlock(rq, p_rq); 5114 goto again; 5115 } 5116 5117 if (!curr->sched_class->yield_to_task) 5118 goto out_unlock; 5119 5120 if (curr->sched_class != p->sched_class) 5121 goto out_unlock; 5122 5123 if (task_running(p_rq, p) || p->state) 5124 goto out_unlock; 5125 5126 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5127 if (yielded) { 5128 schedstat_inc(rq->yld_count); 5129 /* 5130 * Make p's CPU reschedule; pick_next_entity takes care of 5131 * fairness. 5132 */ 5133 if (preempt && rq != p_rq) 5134 resched_curr(p_rq); 5135 } 5136 5137 out_unlock: 5138 double_rq_unlock(rq, p_rq); 5139 out_irq: 5140 local_irq_restore(flags); 5141 5142 if (yielded > 0) 5143 schedule(); 5144 5145 return yielded; 5146 } 5147 EXPORT_SYMBOL_GPL(yield_to); 5148 5149 int io_schedule_prepare(void) 5150 { 5151 int old_iowait = current->in_iowait; 5152 5153 current->in_iowait = 1; 5154 blk_schedule_flush_plug(current); 5155 5156 return old_iowait; 5157 } 5158 5159 void io_schedule_finish(int token) 5160 { 5161 current->in_iowait = token; 5162 } 5163 5164 /* 5165 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5166 * that process accounting knows that this is a task in IO wait state. 5167 */ 5168 long __sched io_schedule_timeout(long timeout) 5169 { 5170 int token; 5171 long ret; 5172 5173 token = io_schedule_prepare(); 5174 ret = schedule_timeout(timeout); 5175 io_schedule_finish(token); 5176 5177 return ret; 5178 } 5179 EXPORT_SYMBOL(io_schedule_timeout); 5180 5181 void io_schedule(void) 5182 { 5183 int token; 5184 5185 token = io_schedule_prepare(); 5186 schedule(); 5187 io_schedule_finish(token); 5188 } 5189 EXPORT_SYMBOL(io_schedule); 5190 5191 /** 5192 * sys_sched_get_priority_max - return maximum RT priority. 5193 * @policy: scheduling class. 5194 * 5195 * Return: On success, this syscall returns the maximum 5196 * rt_priority that can be used by a given scheduling class. 5197 * On failure, a negative error code is returned. 5198 */ 5199 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5200 { 5201 int ret = -EINVAL; 5202 5203 switch (policy) { 5204 case SCHED_FIFO: 5205 case SCHED_RR: 5206 ret = MAX_USER_RT_PRIO-1; 5207 break; 5208 case SCHED_DEADLINE: 5209 case SCHED_NORMAL: 5210 case SCHED_BATCH: 5211 case SCHED_IDLE: 5212 ret = 0; 5213 break; 5214 } 5215 return ret; 5216 } 5217 5218 /** 5219 * sys_sched_get_priority_min - return minimum RT priority. 5220 * @policy: scheduling class. 5221 * 5222 * Return: On success, this syscall returns the minimum 5223 * rt_priority that can be used by a given scheduling class. 5224 * On failure, a negative error code is returned. 5225 */ 5226 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5227 { 5228 int ret = -EINVAL; 5229 5230 switch (policy) { 5231 case SCHED_FIFO: 5232 case SCHED_RR: 5233 ret = 1; 5234 break; 5235 case SCHED_DEADLINE: 5236 case SCHED_NORMAL: 5237 case SCHED_BATCH: 5238 case SCHED_IDLE: 5239 ret = 0; 5240 } 5241 return ret; 5242 } 5243 5244 /** 5245 * sys_sched_rr_get_interval - return the default timeslice of a process. 5246 * @pid: pid of the process. 5247 * @interval: userspace pointer to the timeslice value. 5248 * 5249 * this syscall writes the default timeslice value of a given process 5250 * into the user-space timespec buffer. A value of '0' means infinity. 5251 * 5252 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5253 * an error code. 5254 */ 5255 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5256 struct timespec __user *, interval) 5257 { 5258 struct task_struct *p; 5259 unsigned int time_slice; 5260 struct rq_flags rf; 5261 struct timespec t; 5262 struct rq *rq; 5263 int retval; 5264 5265 if (pid < 0) 5266 return -EINVAL; 5267 5268 retval = -ESRCH; 5269 rcu_read_lock(); 5270 p = find_process_by_pid(pid); 5271 if (!p) 5272 goto out_unlock; 5273 5274 retval = security_task_getscheduler(p); 5275 if (retval) 5276 goto out_unlock; 5277 5278 rq = task_rq_lock(p, &rf); 5279 time_slice = 0; 5280 if (p->sched_class->get_rr_interval) 5281 time_slice = p->sched_class->get_rr_interval(rq, p); 5282 task_rq_unlock(rq, p, &rf); 5283 5284 rcu_read_unlock(); 5285 jiffies_to_timespec(time_slice, &t); 5286 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5287 return retval; 5288 5289 out_unlock: 5290 rcu_read_unlock(); 5291 return retval; 5292 } 5293 5294 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5295 5296 void sched_show_task(struct task_struct *p) 5297 { 5298 unsigned long free = 0; 5299 int ppid; 5300 unsigned long state = p->state; 5301 5302 /* Make sure the string lines up properly with the number of task states: */ 5303 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1); 5304 5305 if (!try_get_task_stack(p)) 5306 return; 5307 if (state) 5308 state = __ffs(state) + 1; 5309 printk(KERN_INFO "%-15.15s %c", p->comm, 5310 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5311 if (state == TASK_RUNNING) 5312 printk(KERN_CONT " running task "); 5313 #ifdef CONFIG_DEBUG_STACK_USAGE 5314 free = stack_not_used(p); 5315 #endif 5316 ppid = 0; 5317 rcu_read_lock(); 5318 if (pid_alive(p)) 5319 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5320 rcu_read_unlock(); 5321 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5322 task_pid_nr(p), ppid, 5323 (unsigned long)task_thread_info(p)->flags); 5324 5325 print_worker_info(KERN_INFO, p); 5326 show_stack(p, NULL); 5327 put_task_stack(p); 5328 } 5329 5330 void show_state_filter(unsigned long state_filter) 5331 { 5332 struct task_struct *g, *p; 5333 5334 #if BITS_PER_LONG == 32 5335 printk(KERN_INFO 5336 " task PC stack pid father\n"); 5337 #else 5338 printk(KERN_INFO 5339 " task PC stack pid father\n"); 5340 #endif 5341 rcu_read_lock(); 5342 for_each_process_thread(g, p) { 5343 /* 5344 * reset the NMI-timeout, listing all files on a slow 5345 * console might take a lot of time: 5346 * Also, reset softlockup watchdogs on all CPUs, because 5347 * another CPU might be blocked waiting for us to process 5348 * an IPI. 5349 */ 5350 touch_nmi_watchdog(); 5351 touch_all_softlockup_watchdogs(); 5352 if (!state_filter || (p->state & state_filter)) 5353 sched_show_task(p); 5354 } 5355 5356 #ifdef CONFIG_SCHED_DEBUG 5357 if (!state_filter) 5358 sysrq_sched_debug_show(); 5359 #endif 5360 rcu_read_unlock(); 5361 /* 5362 * Only show locks if all tasks are dumped: 5363 */ 5364 if (!state_filter) 5365 debug_show_all_locks(); 5366 } 5367 5368 void init_idle_bootup_task(struct task_struct *idle) 5369 { 5370 idle->sched_class = &idle_sched_class; 5371 } 5372 5373 /** 5374 * init_idle - set up an idle thread for a given CPU 5375 * @idle: task in question 5376 * @cpu: CPU the idle task belongs to 5377 * 5378 * NOTE: this function does not set the idle thread's NEED_RESCHED 5379 * flag, to make booting more robust. 5380 */ 5381 void init_idle(struct task_struct *idle, int cpu) 5382 { 5383 struct rq *rq = cpu_rq(cpu); 5384 unsigned long flags; 5385 5386 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5387 raw_spin_lock(&rq->lock); 5388 5389 __sched_fork(0, idle); 5390 idle->state = TASK_RUNNING; 5391 idle->se.exec_start = sched_clock(); 5392 idle->flags |= PF_IDLE; 5393 5394 kasan_unpoison_task_stack(idle); 5395 5396 #ifdef CONFIG_SMP 5397 /* 5398 * Its possible that init_idle() gets called multiple times on a task, 5399 * in that case do_set_cpus_allowed() will not do the right thing. 5400 * 5401 * And since this is boot we can forgo the serialization. 5402 */ 5403 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5404 #endif 5405 /* 5406 * We're having a chicken and egg problem, even though we are 5407 * holding rq->lock, the CPU isn't yet set to this CPU so the 5408 * lockdep check in task_group() will fail. 5409 * 5410 * Similar case to sched_fork(). / Alternatively we could 5411 * use task_rq_lock() here and obtain the other rq->lock. 5412 * 5413 * Silence PROVE_RCU 5414 */ 5415 rcu_read_lock(); 5416 __set_task_cpu(idle, cpu); 5417 rcu_read_unlock(); 5418 5419 rq->curr = rq->idle = idle; 5420 idle->on_rq = TASK_ON_RQ_QUEUED; 5421 #ifdef CONFIG_SMP 5422 idle->on_cpu = 1; 5423 #endif 5424 raw_spin_unlock(&rq->lock); 5425 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5426 5427 /* Set the preempt count _outside_ the spinlocks! */ 5428 init_idle_preempt_count(idle, cpu); 5429 5430 /* 5431 * The idle tasks have their own, simple scheduling class: 5432 */ 5433 idle->sched_class = &idle_sched_class; 5434 ftrace_graph_init_idle_task(idle, cpu); 5435 vtime_init_idle(idle, cpu); 5436 #ifdef CONFIG_SMP 5437 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5438 #endif 5439 } 5440 5441 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5442 const struct cpumask *trial) 5443 { 5444 int ret = 1, trial_cpus; 5445 struct dl_bw *cur_dl_b; 5446 unsigned long flags; 5447 5448 if (!cpumask_weight(cur)) 5449 return ret; 5450 5451 rcu_read_lock_sched(); 5452 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5453 trial_cpus = cpumask_weight(trial); 5454 5455 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5456 if (cur_dl_b->bw != -1 && 5457 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5458 ret = 0; 5459 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5460 rcu_read_unlock_sched(); 5461 5462 return ret; 5463 } 5464 5465 int task_can_attach(struct task_struct *p, 5466 const struct cpumask *cs_cpus_allowed) 5467 { 5468 int ret = 0; 5469 5470 /* 5471 * Kthreads which disallow setaffinity shouldn't be moved 5472 * to a new cpuset; we don't want to change their CPU 5473 * affinity and isolating such threads by their set of 5474 * allowed nodes is unnecessary. Thus, cpusets are not 5475 * applicable for such threads. This prevents checking for 5476 * success of set_cpus_allowed_ptr() on all attached tasks 5477 * before cpus_allowed may be changed. 5478 */ 5479 if (p->flags & PF_NO_SETAFFINITY) { 5480 ret = -EINVAL; 5481 goto out; 5482 } 5483 5484 #ifdef CONFIG_SMP 5485 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5486 cs_cpus_allowed)) { 5487 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5488 cs_cpus_allowed); 5489 struct dl_bw *dl_b; 5490 bool overflow; 5491 int cpus; 5492 unsigned long flags; 5493 5494 rcu_read_lock_sched(); 5495 dl_b = dl_bw_of(dest_cpu); 5496 raw_spin_lock_irqsave(&dl_b->lock, flags); 5497 cpus = dl_bw_cpus(dest_cpu); 5498 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5499 if (overflow) 5500 ret = -EBUSY; 5501 else { 5502 /* 5503 * We reserve space for this task in the destination 5504 * root_domain, as we can't fail after this point. 5505 * We will free resources in the source root_domain 5506 * later on (see set_cpus_allowed_dl()). 5507 */ 5508 __dl_add(dl_b, p->dl.dl_bw); 5509 } 5510 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5511 rcu_read_unlock_sched(); 5512 5513 } 5514 #endif 5515 out: 5516 return ret; 5517 } 5518 5519 #ifdef CONFIG_SMP 5520 5521 bool sched_smp_initialized __read_mostly; 5522 5523 #ifdef CONFIG_NUMA_BALANCING 5524 /* Migrate current task p to target_cpu */ 5525 int migrate_task_to(struct task_struct *p, int target_cpu) 5526 { 5527 struct migration_arg arg = { p, target_cpu }; 5528 int curr_cpu = task_cpu(p); 5529 5530 if (curr_cpu == target_cpu) 5531 return 0; 5532 5533 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5534 return -EINVAL; 5535 5536 /* TODO: This is not properly updating schedstats */ 5537 5538 trace_sched_move_numa(p, curr_cpu, target_cpu); 5539 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5540 } 5541 5542 /* 5543 * Requeue a task on a given node and accurately track the number of NUMA 5544 * tasks on the runqueues 5545 */ 5546 void sched_setnuma(struct task_struct *p, int nid) 5547 { 5548 bool queued, running; 5549 struct rq_flags rf; 5550 struct rq *rq; 5551 5552 rq = task_rq_lock(p, &rf); 5553 queued = task_on_rq_queued(p); 5554 running = task_current(rq, p); 5555 5556 if (queued) 5557 dequeue_task(rq, p, DEQUEUE_SAVE); 5558 if (running) 5559 put_prev_task(rq, p); 5560 5561 p->numa_preferred_nid = nid; 5562 5563 if (queued) 5564 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5565 if (running) 5566 set_curr_task(rq, p); 5567 task_rq_unlock(rq, p, &rf); 5568 } 5569 #endif /* CONFIG_NUMA_BALANCING */ 5570 5571 #ifdef CONFIG_HOTPLUG_CPU 5572 /* 5573 * Ensure that the idle task is using init_mm right before its CPU goes 5574 * offline. 5575 */ 5576 void idle_task_exit(void) 5577 { 5578 struct mm_struct *mm = current->active_mm; 5579 5580 BUG_ON(cpu_online(smp_processor_id())); 5581 5582 if (mm != &init_mm) { 5583 switch_mm_irqs_off(mm, &init_mm, current); 5584 finish_arch_post_lock_switch(); 5585 } 5586 mmdrop(mm); 5587 } 5588 5589 /* 5590 * Since this CPU is going 'away' for a while, fold any nr_active delta 5591 * we might have. Assumes we're called after migrate_tasks() so that the 5592 * nr_active count is stable. We need to take the teardown thread which 5593 * is calling this into account, so we hand in adjust = 1 to the load 5594 * calculation. 5595 * 5596 * Also see the comment "Global load-average calculations". 5597 */ 5598 static void calc_load_migrate(struct rq *rq) 5599 { 5600 long delta = calc_load_fold_active(rq, 1); 5601 if (delta) 5602 atomic_long_add(delta, &calc_load_tasks); 5603 } 5604 5605 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5606 { 5607 } 5608 5609 static const struct sched_class fake_sched_class = { 5610 .put_prev_task = put_prev_task_fake, 5611 }; 5612 5613 static struct task_struct fake_task = { 5614 /* 5615 * Avoid pull_{rt,dl}_task() 5616 */ 5617 .prio = MAX_PRIO + 1, 5618 .sched_class = &fake_sched_class, 5619 }; 5620 5621 /* 5622 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5623 * try_to_wake_up()->select_task_rq(). 5624 * 5625 * Called with rq->lock held even though we'er in stop_machine() and 5626 * there's no concurrency possible, we hold the required locks anyway 5627 * because of lock validation efforts. 5628 */ 5629 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5630 { 5631 struct rq *rq = dead_rq; 5632 struct task_struct *next, *stop = rq->stop; 5633 struct rq_flags orf = *rf; 5634 int dest_cpu; 5635 5636 /* 5637 * Fudge the rq selection such that the below task selection loop 5638 * doesn't get stuck on the currently eligible stop task. 5639 * 5640 * We're currently inside stop_machine() and the rq is either stuck 5641 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5642 * either way we should never end up calling schedule() until we're 5643 * done here. 5644 */ 5645 rq->stop = NULL; 5646 5647 /* 5648 * put_prev_task() and pick_next_task() sched 5649 * class method both need to have an up-to-date 5650 * value of rq->clock[_task] 5651 */ 5652 update_rq_clock(rq); 5653 5654 for (;;) { 5655 /* 5656 * There's this thread running, bail when that's the only 5657 * remaining thread: 5658 */ 5659 if (rq->nr_running == 1) 5660 break; 5661 5662 /* 5663 * pick_next_task() assumes pinned rq->lock: 5664 */ 5665 next = pick_next_task(rq, &fake_task, rf); 5666 BUG_ON(!next); 5667 next->sched_class->put_prev_task(rq, next); 5668 5669 /* 5670 * Rules for changing task_struct::cpus_allowed are holding 5671 * both pi_lock and rq->lock, such that holding either 5672 * stabilizes the mask. 5673 * 5674 * Drop rq->lock is not quite as disastrous as it usually is 5675 * because !cpu_active at this point, which means load-balance 5676 * will not interfere. Also, stop-machine. 5677 */ 5678 rq_unlock(rq, rf); 5679 raw_spin_lock(&next->pi_lock); 5680 rq_relock(rq, rf); 5681 5682 /* 5683 * Since we're inside stop-machine, _nothing_ should have 5684 * changed the task, WARN if weird stuff happened, because in 5685 * that case the above rq->lock drop is a fail too. 5686 */ 5687 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5688 raw_spin_unlock(&next->pi_lock); 5689 continue; 5690 } 5691 5692 /* Find suitable destination for @next, with force if needed. */ 5693 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5694 rq = __migrate_task(rq, rf, next, dest_cpu); 5695 if (rq != dead_rq) { 5696 rq_unlock(rq, rf); 5697 rq = dead_rq; 5698 *rf = orf; 5699 rq_relock(rq, rf); 5700 } 5701 raw_spin_unlock(&next->pi_lock); 5702 } 5703 5704 rq->stop = stop; 5705 } 5706 #endif /* CONFIG_HOTPLUG_CPU */ 5707 5708 void set_rq_online(struct rq *rq) 5709 { 5710 if (!rq->online) { 5711 const struct sched_class *class; 5712 5713 cpumask_set_cpu(rq->cpu, rq->rd->online); 5714 rq->online = 1; 5715 5716 for_each_class(class) { 5717 if (class->rq_online) 5718 class->rq_online(rq); 5719 } 5720 } 5721 } 5722 5723 void set_rq_offline(struct rq *rq) 5724 { 5725 if (rq->online) { 5726 const struct sched_class *class; 5727 5728 for_each_class(class) { 5729 if (class->rq_offline) 5730 class->rq_offline(rq); 5731 } 5732 5733 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5734 rq->online = 0; 5735 } 5736 } 5737 5738 static void set_cpu_rq_start_time(unsigned int cpu) 5739 { 5740 struct rq *rq = cpu_rq(cpu); 5741 5742 rq->age_stamp = sched_clock_cpu(cpu); 5743 } 5744 5745 /* 5746 * used to mark begin/end of suspend/resume: 5747 */ 5748 static int num_cpus_frozen; 5749 5750 /* 5751 * Update cpusets according to cpu_active mask. If cpusets are 5752 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5753 * around partition_sched_domains(). 5754 * 5755 * If we come here as part of a suspend/resume, don't touch cpusets because we 5756 * want to restore it back to its original state upon resume anyway. 5757 */ 5758 static void cpuset_cpu_active(void) 5759 { 5760 if (cpuhp_tasks_frozen) { 5761 /* 5762 * num_cpus_frozen tracks how many CPUs are involved in suspend 5763 * resume sequence. As long as this is not the last online 5764 * operation in the resume sequence, just build a single sched 5765 * domain, ignoring cpusets. 5766 */ 5767 num_cpus_frozen--; 5768 if (likely(num_cpus_frozen)) { 5769 partition_sched_domains(1, NULL, NULL); 5770 return; 5771 } 5772 /* 5773 * This is the last CPU online operation. So fall through and 5774 * restore the original sched domains by considering the 5775 * cpuset configurations. 5776 */ 5777 } 5778 cpuset_update_active_cpus(); 5779 } 5780 5781 static int cpuset_cpu_inactive(unsigned int cpu) 5782 { 5783 unsigned long flags; 5784 struct dl_bw *dl_b; 5785 bool overflow; 5786 int cpus; 5787 5788 if (!cpuhp_tasks_frozen) { 5789 rcu_read_lock_sched(); 5790 dl_b = dl_bw_of(cpu); 5791 5792 raw_spin_lock_irqsave(&dl_b->lock, flags); 5793 cpus = dl_bw_cpus(cpu); 5794 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5795 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5796 5797 rcu_read_unlock_sched(); 5798 5799 if (overflow) 5800 return -EBUSY; 5801 cpuset_update_active_cpus(); 5802 } else { 5803 num_cpus_frozen++; 5804 partition_sched_domains(1, NULL, NULL); 5805 } 5806 return 0; 5807 } 5808 5809 int sched_cpu_activate(unsigned int cpu) 5810 { 5811 struct rq *rq = cpu_rq(cpu); 5812 struct rq_flags rf; 5813 5814 set_cpu_active(cpu, true); 5815 5816 if (sched_smp_initialized) { 5817 sched_domains_numa_masks_set(cpu); 5818 cpuset_cpu_active(); 5819 } 5820 5821 /* 5822 * Put the rq online, if not already. This happens: 5823 * 5824 * 1) In the early boot process, because we build the real domains 5825 * after all CPUs have been brought up. 5826 * 5827 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5828 * domains. 5829 */ 5830 rq_lock_irqsave(rq, &rf); 5831 if (rq->rd) { 5832 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5833 set_rq_online(rq); 5834 } 5835 rq_unlock_irqrestore(rq, &rf); 5836 5837 update_max_interval(); 5838 5839 return 0; 5840 } 5841 5842 int sched_cpu_deactivate(unsigned int cpu) 5843 { 5844 int ret; 5845 5846 set_cpu_active(cpu, false); 5847 /* 5848 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5849 * users of this state to go away such that all new such users will 5850 * observe it. 5851 * 5852 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 5853 * not imply sync_sched(), so wait for both. 5854 * 5855 * Do sync before park smpboot threads to take care the rcu boost case. 5856 */ 5857 if (IS_ENABLED(CONFIG_PREEMPT)) 5858 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5859 else 5860 synchronize_rcu(); 5861 5862 if (!sched_smp_initialized) 5863 return 0; 5864 5865 ret = cpuset_cpu_inactive(cpu); 5866 if (ret) { 5867 set_cpu_active(cpu, true); 5868 return ret; 5869 } 5870 sched_domains_numa_masks_clear(cpu); 5871 return 0; 5872 } 5873 5874 static void sched_rq_cpu_starting(unsigned int cpu) 5875 { 5876 struct rq *rq = cpu_rq(cpu); 5877 5878 rq->calc_load_update = calc_load_update; 5879 update_max_interval(); 5880 } 5881 5882 int sched_cpu_starting(unsigned int cpu) 5883 { 5884 set_cpu_rq_start_time(cpu); 5885 sched_rq_cpu_starting(cpu); 5886 return 0; 5887 } 5888 5889 #ifdef CONFIG_HOTPLUG_CPU 5890 int sched_cpu_dying(unsigned int cpu) 5891 { 5892 struct rq *rq = cpu_rq(cpu); 5893 struct rq_flags rf; 5894 5895 /* Handle pending wakeups and then migrate everything off */ 5896 sched_ttwu_pending(); 5897 5898 rq_lock_irqsave(rq, &rf); 5899 if (rq->rd) { 5900 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5901 set_rq_offline(rq); 5902 } 5903 migrate_tasks(rq, &rf); 5904 BUG_ON(rq->nr_running != 1); 5905 rq_unlock_irqrestore(rq, &rf); 5906 5907 calc_load_migrate(rq); 5908 update_max_interval(); 5909 nohz_balance_exit_idle(cpu); 5910 hrtick_clear(rq); 5911 return 0; 5912 } 5913 #endif 5914 5915 #ifdef CONFIG_SCHED_SMT 5916 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5917 5918 static void sched_init_smt(void) 5919 { 5920 /* 5921 * We've enumerated all CPUs and will assume that if any CPU 5922 * has SMT siblings, CPU0 will too. 5923 */ 5924 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5925 static_branch_enable(&sched_smt_present); 5926 } 5927 #else 5928 static inline void sched_init_smt(void) { } 5929 #endif 5930 5931 void __init sched_init_smp(void) 5932 { 5933 cpumask_var_t non_isolated_cpus; 5934 5935 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 5936 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 5937 5938 sched_init_numa(); 5939 5940 /* 5941 * There's no userspace yet to cause hotplug operations; hence all the 5942 * CPU masks are stable and all blatant races in the below code cannot 5943 * happen. 5944 */ 5945 mutex_lock(&sched_domains_mutex); 5946 init_sched_domains(cpu_active_mask); 5947 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 5948 if (cpumask_empty(non_isolated_cpus)) 5949 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 5950 mutex_unlock(&sched_domains_mutex); 5951 5952 /* Move init over to a non-isolated CPU */ 5953 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 5954 BUG(); 5955 sched_init_granularity(); 5956 free_cpumask_var(non_isolated_cpus); 5957 5958 init_sched_rt_class(); 5959 init_sched_dl_class(); 5960 5961 sched_init_smt(); 5962 sched_clock_init_late(); 5963 5964 sched_smp_initialized = true; 5965 } 5966 5967 static int __init migration_init(void) 5968 { 5969 sched_rq_cpu_starting(smp_processor_id()); 5970 return 0; 5971 } 5972 early_initcall(migration_init); 5973 5974 #else 5975 void __init sched_init_smp(void) 5976 { 5977 sched_init_granularity(); 5978 sched_clock_init_late(); 5979 } 5980 #endif /* CONFIG_SMP */ 5981 5982 int in_sched_functions(unsigned long addr) 5983 { 5984 return in_lock_functions(addr) || 5985 (addr >= (unsigned long)__sched_text_start 5986 && addr < (unsigned long)__sched_text_end); 5987 } 5988 5989 #ifdef CONFIG_CGROUP_SCHED 5990 /* 5991 * Default task group. 5992 * Every task in system belongs to this group at bootup. 5993 */ 5994 struct task_group root_task_group; 5995 LIST_HEAD(task_groups); 5996 5997 /* Cacheline aligned slab cache for task_group */ 5998 static struct kmem_cache *task_group_cache __read_mostly; 5999 #endif 6000 6001 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6002 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6003 6004 #define WAIT_TABLE_BITS 8 6005 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) 6006 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; 6007 6008 wait_queue_head_t *bit_waitqueue(void *word, int bit) 6009 { 6010 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 6011 unsigned long val = (unsigned long)word << shift | bit; 6012 6013 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); 6014 } 6015 EXPORT_SYMBOL(bit_waitqueue); 6016 6017 void __init sched_init(void) 6018 { 6019 int i, j; 6020 unsigned long alloc_size = 0, ptr; 6021 6022 sched_clock_init(); 6023 6024 for (i = 0; i < WAIT_TABLE_SIZE; i++) 6025 init_waitqueue_head(bit_wait_table + i); 6026 6027 #ifdef CONFIG_FAIR_GROUP_SCHED 6028 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6029 #endif 6030 #ifdef CONFIG_RT_GROUP_SCHED 6031 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6032 #endif 6033 if (alloc_size) { 6034 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6035 6036 #ifdef CONFIG_FAIR_GROUP_SCHED 6037 root_task_group.se = (struct sched_entity **)ptr; 6038 ptr += nr_cpu_ids * sizeof(void **); 6039 6040 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6041 ptr += nr_cpu_ids * sizeof(void **); 6042 6043 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6044 #ifdef CONFIG_RT_GROUP_SCHED 6045 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6046 ptr += nr_cpu_ids * sizeof(void **); 6047 6048 root_task_group.rt_rq = (struct rt_rq **)ptr; 6049 ptr += nr_cpu_ids * sizeof(void **); 6050 6051 #endif /* CONFIG_RT_GROUP_SCHED */ 6052 } 6053 #ifdef CONFIG_CPUMASK_OFFSTACK 6054 for_each_possible_cpu(i) { 6055 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6056 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6057 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6058 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6059 } 6060 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6061 6062 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6063 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6064 6065 #ifdef CONFIG_SMP 6066 init_defrootdomain(); 6067 #endif 6068 6069 #ifdef CONFIG_RT_GROUP_SCHED 6070 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6071 global_rt_period(), global_rt_runtime()); 6072 #endif /* CONFIG_RT_GROUP_SCHED */ 6073 6074 #ifdef CONFIG_CGROUP_SCHED 6075 task_group_cache = KMEM_CACHE(task_group, 0); 6076 6077 list_add(&root_task_group.list, &task_groups); 6078 INIT_LIST_HEAD(&root_task_group.children); 6079 INIT_LIST_HEAD(&root_task_group.siblings); 6080 autogroup_init(&init_task); 6081 #endif /* CONFIG_CGROUP_SCHED */ 6082 6083 for_each_possible_cpu(i) { 6084 struct rq *rq; 6085 6086 rq = cpu_rq(i); 6087 raw_spin_lock_init(&rq->lock); 6088 rq->nr_running = 0; 6089 rq->calc_load_active = 0; 6090 rq->calc_load_update = jiffies + LOAD_FREQ; 6091 init_cfs_rq(&rq->cfs); 6092 init_rt_rq(&rq->rt); 6093 init_dl_rq(&rq->dl); 6094 #ifdef CONFIG_FAIR_GROUP_SCHED 6095 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6096 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6097 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6098 /* 6099 * How much CPU bandwidth does root_task_group get? 6100 * 6101 * In case of task-groups formed thr' the cgroup filesystem, it 6102 * gets 100% of the CPU resources in the system. This overall 6103 * system CPU resource is divided among the tasks of 6104 * root_task_group and its child task-groups in a fair manner, 6105 * based on each entity's (task or task-group's) weight 6106 * (se->load.weight). 6107 * 6108 * In other words, if root_task_group has 10 tasks of weight 6109 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6110 * then A0's share of the CPU resource is: 6111 * 6112 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6113 * 6114 * We achieve this by letting root_task_group's tasks sit 6115 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6116 */ 6117 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6118 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6119 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6120 6121 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6122 #ifdef CONFIG_RT_GROUP_SCHED 6123 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6124 #endif 6125 6126 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6127 rq->cpu_load[j] = 0; 6128 6129 #ifdef CONFIG_SMP 6130 rq->sd = NULL; 6131 rq->rd = NULL; 6132 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6133 rq->balance_callback = NULL; 6134 rq->active_balance = 0; 6135 rq->next_balance = jiffies; 6136 rq->push_cpu = 0; 6137 rq->cpu = i; 6138 rq->online = 0; 6139 rq->idle_stamp = 0; 6140 rq->avg_idle = 2*sysctl_sched_migration_cost; 6141 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6142 6143 INIT_LIST_HEAD(&rq->cfs_tasks); 6144 6145 rq_attach_root(rq, &def_root_domain); 6146 #ifdef CONFIG_NO_HZ_COMMON 6147 rq->last_load_update_tick = jiffies; 6148 rq->nohz_flags = 0; 6149 #endif 6150 #ifdef CONFIG_NO_HZ_FULL 6151 rq->last_sched_tick = 0; 6152 #endif 6153 #endif /* CONFIG_SMP */ 6154 init_rq_hrtick(rq); 6155 atomic_set(&rq->nr_iowait, 0); 6156 } 6157 6158 set_load_weight(&init_task); 6159 6160 /* 6161 * The boot idle thread does lazy MMU switching as well: 6162 */ 6163 mmgrab(&init_mm); 6164 enter_lazy_tlb(&init_mm, current); 6165 6166 /* 6167 * Make us the idle thread. Technically, schedule() should not be 6168 * called from this thread, however somewhere below it might be, 6169 * but because we are the idle thread, we just pick up running again 6170 * when this runqueue becomes "idle". 6171 */ 6172 init_idle(current, smp_processor_id()); 6173 6174 calc_load_update = jiffies + LOAD_FREQ; 6175 6176 #ifdef CONFIG_SMP 6177 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6178 /* May be allocated at isolcpus cmdline parse time */ 6179 if (cpu_isolated_map == NULL) 6180 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6181 idle_thread_set_boot_cpu(); 6182 set_cpu_rq_start_time(smp_processor_id()); 6183 #endif 6184 init_sched_fair_class(); 6185 6186 init_schedstats(); 6187 6188 scheduler_running = 1; 6189 } 6190 6191 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6192 static inline int preempt_count_equals(int preempt_offset) 6193 { 6194 int nested = preempt_count() + rcu_preempt_depth(); 6195 6196 return (nested == preempt_offset); 6197 } 6198 6199 void __might_sleep(const char *file, int line, int preempt_offset) 6200 { 6201 /* 6202 * Blocking primitives will set (and therefore destroy) current->state, 6203 * since we will exit with TASK_RUNNING make sure we enter with it, 6204 * otherwise we will destroy state. 6205 */ 6206 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6207 "do not call blocking ops when !TASK_RUNNING; " 6208 "state=%lx set at [<%p>] %pS\n", 6209 current->state, 6210 (void *)current->task_state_change, 6211 (void *)current->task_state_change); 6212 6213 ___might_sleep(file, line, preempt_offset); 6214 } 6215 EXPORT_SYMBOL(__might_sleep); 6216 6217 void ___might_sleep(const char *file, int line, int preempt_offset) 6218 { 6219 /* Ratelimiting timestamp: */ 6220 static unsigned long prev_jiffy; 6221 6222 unsigned long preempt_disable_ip; 6223 6224 /* WARN_ON_ONCE() by default, no rate limit required: */ 6225 rcu_sleep_check(); 6226 6227 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6228 !is_idle_task(current)) || 6229 system_state != SYSTEM_RUNNING || oops_in_progress) 6230 return; 6231 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6232 return; 6233 prev_jiffy = jiffies; 6234 6235 /* Save this before calling printk(), since that will clobber it: */ 6236 preempt_disable_ip = get_preempt_disable_ip(current); 6237 6238 printk(KERN_ERR 6239 "BUG: sleeping function called from invalid context at %s:%d\n", 6240 file, line); 6241 printk(KERN_ERR 6242 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6243 in_atomic(), irqs_disabled(), 6244 current->pid, current->comm); 6245 6246 if (task_stack_end_corrupted(current)) 6247 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6248 6249 debug_show_held_locks(current); 6250 if (irqs_disabled()) 6251 print_irqtrace_events(current); 6252 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6253 && !preempt_count_equals(preempt_offset)) { 6254 pr_err("Preemption disabled at:"); 6255 print_ip_sym(preempt_disable_ip); 6256 pr_cont("\n"); 6257 } 6258 dump_stack(); 6259 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6260 } 6261 EXPORT_SYMBOL(___might_sleep); 6262 #endif 6263 6264 #ifdef CONFIG_MAGIC_SYSRQ 6265 void normalize_rt_tasks(void) 6266 { 6267 struct task_struct *g, *p; 6268 struct sched_attr attr = { 6269 .sched_policy = SCHED_NORMAL, 6270 }; 6271 6272 read_lock(&tasklist_lock); 6273 for_each_process_thread(g, p) { 6274 /* 6275 * Only normalize user tasks: 6276 */ 6277 if (p->flags & PF_KTHREAD) 6278 continue; 6279 6280 p->se.exec_start = 0; 6281 schedstat_set(p->se.statistics.wait_start, 0); 6282 schedstat_set(p->se.statistics.sleep_start, 0); 6283 schedstat_set(p->se.statistics.block_start, 0); 6284 6285 if (!dl_task(p) && !rt_task(p)) { 6286 /* 6287 * Renice negative nice level userspace 6288 * tasks back to 0: 6289 */ 6290 if (task_nice(p) < 0) 6291 set_user_nice(p, 0); 6292 continue; 6293 } 6294 6295 __sched_setscheduler(p, &attr, false, false); 6296 } 6297 read_unlock(&tasklist_lock); 6298 } 6299 6300 #endif /* CONFIG_MAGIC_SYSRQ */ 6301 6302 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6303 /* 6304 * These functions are only useful for the IA64 MCA handling, or kdb. 6305 * 6306 * They can only be called when the whole system has been 6307 * stopped - every CPU needs to be quiescent, and no scheduling 6308 * activity can take place. Using them for anything else would 6309 * be a serious bug, and as a result, they aren't even visible 6310 * under any other configuration. 6311 */ 6312 6313 /** 6314 * curr_task - return the current task for a given CPU. 6315 * @cpu: the processor in question. 6316 * 6317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6318 * 6319 * Return: The current task for @cpu. 6320 */ 6321 struct task_struct *curr_task(int cpu) 6322 { 6323 return cpu_curr(cpu); 6324 } 6325 6326 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6327 6328 #ifdef CONFIG_IA64 6329 /** 6330 * set_curr_task - set the current task for a given CPU. 6331 * @cpu: the processor in question. 6332 * @p: the task pointer to set. 6333 * 6334 * Description: This function must only be used when non-maskable interrupts 6335 * are serviced on a separate stack. It allows the architecture to switch the 6336 * notion of the current task on a CPU in a non-blocking manner. This function 6337 * must be called with all CPU's synchronized, and interrupts disabled, the 6338 * and caller must save the original value of the current task (see 6339 * curr_task() above) and restore that value before reenabling interrupts and 6340 * re-starting the system. 6341 * 6342 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6343 */ 6344 void ia64_set_curr_task(int cpu, struct task_struct *p) 6345 { 6346 cpu_curr(cpu) = p; 6347 } 6348 6349 #endif 6350 6351 #ifdef CONFIG_CGROUP_SCHED 6352 /* task_group_lock serializes the addition/removal of task groups */ 6353 static DEFINE_SPINLOCK(task_group_lock); 6354 6355 static void sched_free_group(struct task_group *tg) 6356 { 6357 free_fair_sched_group(tg); 6358 free_rt_sched_group(tg); 6359 autogroup_free(tg); 6360 kmem_cache_free(task_group_cache, tg); 6361 } 6362 6363 /* allocate runqueue etc for a new task group */ 6364 struct task_group *sched_create_group(struct task_group *parent) 6365 { 6366 struct task_group *tg; 6367 6368 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6369 if (!tg) 6370 return ERR_PTR(-ENOMEM); 6371 6372 if (!alloc_fair_sched_group(tg, parent)) 6373 goto err; 6374 6375 if (!alloc_rt_sched_group(tg, parent)) 6376 goto err; 6377 6378 return tg; 6379 6380 err: 6381 sched_free_group(tg); 6382 return ERR_PTR(-ENOMEM); 6383 } 6384 6385 void sched_online_group(struct task_group *tg, struct task_group *parent) 6386 { 6387 unsigned long flags; 6388 6389 spin_lock_irqsave(&task_group_lock, flags); 6390 list_add_rcu(&tg->list, &task_groups); 6391 6392 /* Root should already exist: */ 6393 WARN_ON(!parent); 6394 6395 tg->parent = parent; 6396 INIT_LIST_HEAD(&tg->children); 6397 list_add_rcu(&tg->siblings, &parent->children); 6398 spin_unlock_irqrestore(&task_group_lock, flags); 6399 6400 online_fair_sched_group(tg); 6401 } 6402 6403 /* rcu callback to free various structures associated with a task group */ 6404 static void sched_free_group_rcu(struct rcu_head *rhp) 6405 { 6406 /* Now it should be safe to free those cfs_rqs: */ 6407 sched_free_group(container_of(rhp, struct task_group, rcu)); 6408 } 6409 6410 void sched_destroy_group(struct task_group *tg) 6411 { 6412 /* Wait for possible concurrent references to cfs_rqs complete: */ 6413 call_rcu(&tg->rcu, sched_free_group_rcu); 6414 } 6415 6416 void sched_offline_group(struct task_group *tg) 6417 { 6418 unsigned long flags; 6419 6420 /* End participation in shares distribution: */ 6421 unregister_fair_sched_group(tg); 6422 6423 spin_lock_irqsave(&task_group_lock, flags); 6424 list_del_rcu(&tg->list); 6425 list_del_rcu(&tg->siblings); 6426 spin_unlock_irqrestore(&task_group_lock, flags); 6427 } 6428 6429 static void sched_change_group(struct task_struct *tsk, int type) 6430 { 6431 struct task_group *tg; 6432 6433 /* 6434 * All callers are synchronized by task_rq_lock(); we do not use RCU 6435 * which is pointless here. Thus, we pass "true" to task_css_check() 6436 * to prevent lockdep warnings. 6437 */ 6438 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6439 struct task_group, css); 6440 tg = autogroup_task_group(tsk, tg); 6441 tsk->sched_task_group = tg; 6442 6443 #ifdef CONFIG_FAIR_GROUP_SCHED 6444 if (tsk->sched_class->task_change_group) 6445 tsk->sched_class->task_change_group(tsk, type); 6446 else 6447 #endif 6448 set_task_rq(tsk, task_cpu(tsk)); 6449 } 6450 6451 /* 6452 * Change task's runqueue when it moves between groups. 6453 * 6454 * The caller of this function should have put the task in its new group by 6455 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6456 * its new group. 6457 */ 6458 void sched_move_task(struct task_struct *tsk) 6459 { 6460 int queued, running, queue_flags = 6461 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6462 struct rq_flags rf; 6463 struct rq *rq; 6464 6465 rq = task_rq_lock(tsk, &rf); 6466 update_rq_clock(rq); 6467 6468 running = task_current(rq, tsk); 6469 queued = task_on_rq_queued(tsk); 6470 6471 if (queued) 6472 dequeue_task(rq, tsk, queue_flags); 6473 if (running) 6474 put_prev_task(rq, tsk); 6475 6476 sched_change_group(tsk, TASK_MOVE_GROUP); 6477 6478 if (queued) 6479 enqueue_task(rq, tsk, queue_flags); 6480 if (running) 6481 set_curr_task(rq, tsk); 6482 6483 task_rq_unlock(rq, tsk, &rf); 6484 } 6485 #endif /* CONFIG_CGROUP_SCHED */ 6486 6487 #ifdef CONFIG_RT_GROUP_SCHED 6488 /* 6489 * Ensure that the real time constraints are schedulable. 6490 */ 6491 static DEFINE_MUTEX(rt_constraints_mutex); 6492 6493 /* Must be called with tasklist_lock held */ 6494 static inline int tg_has_rt_tasks(struct task_group *tg) 6495 { 6496 struct task_struct *g, *p; 6497 6498 /* 6499 * Autogroups do not have RT tasks; see autogroup_create(). 6500 */ 6501 if (task_group_is_autogroup(tg)) 6502 return 0; 6503 6504 for_each_process_thread(g, p) { 6505 if (rt_task(p) && task_group(p) == tg) 6506 return 1; 6507 } 6508 6509 return 0; 6510 } 6511 6512 struct rt_schedulable_data { 6513 struct task_group *tg; 6514 u64 rt_period; 6515 u64 rt_runtime; 6516 }; 6517 6518 static int tg_rt_schedulable(struct task_group *tg, void *data) 6519 { 6520 struct rt_schedulable_data *d = data; 6521 struct task_group *child; 6522 unsigned long total, sum = 0; 6523 u64 period, runtime; 6524 6525 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6526 runtime = tg->rt_bandwidth.rt_runtime; 6527 6528 if (tg == d->tg) { 6529 period = d->rt_period; 6530 runtime = d->rt_runtime; 6531 } 6532 6533 /* 6534 * Cannot have more runtime than the period. 6535 */ 6536 if (runtime > period && runtime != RUNTIME_INF) 6537 return -EINVAL; 6538 6539 /* 6540 * Ensure we don't starve existing RT tasks. 6541 */ 6542 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 6543 return -EBUSY; 6544 6545 total = to_ratio(period, runtime); 6546 6547 /* 6548 * Nobody can have more than the global setting allows. 6549 */ 6550 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 6551 return -EINVAL; 6552 6553 /* 6554 * The sum of our children's runtime should not exceed our own. 6555 */ 6556 list_for_each_entry_rcu(child, &tg->children, siblings) { 6557 period = ktime_to_ns(child->rt_bandwidth.rt_period); 6558 runtime = child->rt_bandwidth.rt_runtime; 6559 6560 if (child == d->tg) { 6561 period = d->rt_period; 6562 runtime = d->rt_runtime; 6563 } 6564 6565 sum += to_ratio(period, runtime); 6566 } 6567 6568 if (sum > total) 6569 return -EINVAL; 6570 6571 return 0; 6572 } 6573 6574 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 6575 { 6576 int ret; 6577 6578 struct rt_schedulable_data data = { 6579 .tg = tg, 6580 .rt_period = period, 6581 .rt_runtime = runtime, 6582 }; 6583 6584 rcu_read_lock(); 6585 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 6586 rcu_read_unlock(); 6587 6588 return ret; 6589 } 6590 6591 static int tg_set_rt_bandwidth(struct task_group *tg, 6592 u64 rt_period, u64 rt_runtime) 6593 { 6594 int i, err = 0; 6595 6596 /* 6597 * Disallowing the root group RT runtime is BAD, it would disallow the 6598 * kernel creating (and or operating) RT threads. 6599 */ 6600 if (tg == &root_task_group && rt_runtime == 0) 6601 return -EINVAL; 6602 6603 /* No period doesn't make any sense. */ 6604 if (rt_period == 0) 6605 return -EINVAL; 6606 6607 mutex_lock(&rt_constraints_mutex); 6608 read_lock(&tasklist_lock); 6609 err = __rt_schedulable(tg, rt_period, rt_runtime); 6610 if (err) 6611 goto unlock; 6612 6613 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6614 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 6615 tg->rt_bandwidth.rt_runtime = rt_runtime; 6616 6617 for_each_possible_cpu(i) { 6618 struct rt_rq *rt_rq = tg->rt_rq[i]; 6619 6620 raw_spin_lock(&rt_rq->rt_runtime_lock); 6621 rt_rq->rt_runtime = rt_runtime; 6622 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6623 } 6624 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6625 unlock: 6626 read_unlock(&tasklist_lock); 6627 mutex_unlock(&rt_constraints_mutex); 6628 6629 return err; 6630 } 6631 6632 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 6633 { 6634 u64 rt_runtime, rt_period; 6635 6636 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6637 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 6638 if (rt_runtime_us < 0) 6639 rt_runtime = RUNTIME_INF; 6640 6641 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6642 } 6643 6644 static long sched_group_rt_runtime(struct task_group *tg) 6645 { 6646 u64 rt_runtime_us; 6647 6648 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 6649 return -1; 6650 6651 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 6652 do_div(rt_runtime_us, NSEC_PER_USEC); 6653 return rt_runtime_us; 6654 } 6655 6656 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 6657 { 6658 u64 rt_runtime, rt_period; 6659 6660 rt_period = rt_period_us * NSEC_PER_USEC; 6661 rt_runtime = tg->rt_bandwidth.rt_runtime; 6662 6663 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6664 } 6665 6666 static long sched_group_rt_period(struct task_group *tg) 6667 { 6668 u64 rt_period_us; 6669 6670 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 6671 do_div(rt_period_us, NSEC_PER_USEC); 6672 return rt_period_us; 6673 } 6674 #endif /* CONFIG_RT_GROUP_SCHED */ 6675 6676 #ifdef CONFIG_RT_GROUP_SCHED 6677 static int sched_rt_global_constraints(void) 6678 { 6679 int ret = 0; 6680 6681 mutex_lock(&rt_constraints_mutex); 6682 read_lock(&tasklist_lock); 6683 ret = __rt_schedulable(NULL, 0, 0); 6684 read_unlock(&tasklist_lock); 6685 mutex_unlock(&rt_constraints_mutex); 6686 6687 return ret; 6688 } 6689 6690 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 6691 { 6692 /* Don't accept realtime tasks when there is no way for them to run */ 6693 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 6694 return 0; 6695 6696 return 1; 6697 } 6698 6699 #else /* !CONFIG_RT_GROUP_SCHED */ 6700 static int sched_rt_global_constraints(void) 6701 { 6702 unsigned long flags; 6703 int i; 6704 6705 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 6706 for_each_possible_cpu(i) { 6707 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 6708 6709 raw_spin_lock(&rt_rq->rt_runtime_lock); 6710 rt_rq->rt_runtime = global_rt_runtime(); 6711 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6712 } 6713 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 6714 6715 return 0; 6716 } 6717 #endif /* CONFIG_RT_GROUP_SCHED */ 6718 6719 static int sched_dl_global_validate(void) 6720 { 6721 u64 runtime = global_rt_runtime(); 6722 u64 period = global_rt_period(); 6723 u64 new_bw = to_ratio(period, runtime); 6724 struct dl_bw *dl_b; 6725 int cpu, ret = 0; 6726 unsigned long flags; 6727 6728 /* 6729 * Here we want to check the bandwidth not being set to some 6730 * value smaller than the currently allocated bandwidth in 6731 * any of the root_domains. 6732 * 6733 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 6734 * cycling on root_domains... Discussion on different/better 6735 * solutions is welcome! 6736 */ 6737 for_each_possible_cpu(cpu) { 6738 rcu_read_lock_sched(); 6739 dl_b = dl_bw_of(cpu); 6740 6741 raw_spin_lock_irqsave(&dl_b->lock, flags); 6742 if (new_bw < dl_b->total_bw) 6743 ret = -EBUSY; 6744 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 6745 6746 rcu_read_unlock_sched(); 6747 6748 if (ret) 6749 break; 6750 } 6751 6752 return ret; 6753 } 6754 6755 static void sched_dl_do_global(void) 6756 { 6757 u64 new_bw = -1; 6758 struct dl_bw *dl_b; 6759 int cpu; 6760 unsigned long flags; 6761 6762 def_dl_bandwidth.dl_period = global_rt_period(); 6763 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 6764 6765 if (global_rt_runtime() != RUNTIME_INF) 6766 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 6767 6768 /* 6769 * FIXME: As above... 6770 */ 6771 for_each_possible_cpu(cpu) { 6772 rcu_read_lock_sched(); 6773 dl_b = dl_bw_of(cpu); 6774 6775 raw_spin_lock_irqsave(&dl_b->lock, flags); 6776 dl_b->bw = new_bw; 6777 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 6778 6779 rcu_read_unlock_sched(); 6780 } 6781 } 6782 6783 static int sched_rt_global_validate(void) 6784 { 6785 if (sysctl_sched_rt_period <= 0) 6786 return -EINVAL; 6787 6788 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 6789 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 6790 return -EINVAL; 6791 6792 return 0; 6793 } 6794 6795 static void sched_rt_do_global(void) 6796 { 6797 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 6798 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 6799 } 6800 6801 int sched_rt_handler(struct ctl_table *table, int write, 6802 void __user *buffer, size_t *lenp, 6803 loff_t *ppos) 6804 { 6805 int old_period, old_runtime; 6806 static DEFINE_MUTEX(mutex); 6807 int ret; 6808 6809 mutex_lock(&mutex); 6810 old_period = sysctl_sched_rt_period; 6811 old_runtime = sysctl_sched_rt_runtime; 6812 6813 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6814 6815 if (!ret && write) { 6816 ret = sched_rt_global_validate(); 6817 if (ret) 6818 goto undo; 6819 6820 ret = sched_dl_global_validate(); 6821 if (ret) 6822 goto undo; 6823 6824 ret = sched_rt_global_constraints(); 6825 if (ret) 6826 goto undo; 6827 6828 sched_rt_do_global(); 6829 sched_dl_do_global(); 6830 } 6831 if (0) { 6832 undo: 6833 sysctl_sched_rt_period = old_period; 6834 sysctl_sched_rt_runtime = old_runtime; 6835 } 6836 mutex_unlock(&mutex); 6837 6838 return ret; 6839 } 6840 6841 int sched_rr_handler(struct ctl_table *table, int write, 6842 void __user *buffer, size_t *lenp, 6843 loff_t *ppos) 6844 { 6845 int ret; 6846 static DEFINE_MUTEX(mutex); 6847 6848 mutex_lock(&mutex); 6849 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6850 /* 6851 * Make sure that internally we keep jiffies. 6852 * Also, writing zero resets the timeslice to default: 6853 */ 6854 if (!ret && write) { 6855 sched_rr_timeslice = 6856 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 6857 msecs_to_jiffies(sysctl_sched_rr_timeslice); 6858 } 6859 mutex_unlock(&mutex); 6860 return ret; 6861 } 6862 6863 #ifdef CONFIG_CGROUP_SCHED 6864 6865 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6866 { 6867 return css ? container_of(css, struct task_group, css) : NULL; 6868 } 6869 6870 static struct cgroup_subsys_state * 6871 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6872 { 6873 struct task_group *parent = css_tg(parent_css); 6874 struct task_group *tg; 6875 6876 if (!parent) { 6877 /* This is early initialization for the top cgroup */ 6878 return &root_task_group.css; 6879 } 6880 6881 tg = sched_create_group(parent); 6882 if (IS_ERR(tg)) 6883 return ERR_PTR(-ENOMEM); 6884 6885 return &tg->css; 6886 } 6887 6888 /* Expose task group only after completing cgroup initialization */ 6889 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6890 { 6891 struct task_group *tg = css_tg(css); 6892 struct task_group *parent = css_tg(css->parent); 6893 6894 if (parent) 6895 sched_online_group(tg, parent); 6896 return 0; 6897 } 6898 6899 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6900 { 6901 struct task_group *tg = css_tg(css); 6902 6903 sched_offline_group(tg); 6904 } 6905 6906 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6907 { 6908 struct task_group *tg = css_tg(css); 6909 6910 /* 6911 * Relies on the RCU grace period between css_released() and this. 6912 */ 6913 sched_free_group(tg); 6914 } 6915 6916 /* 6917 * This is called before wake_up_new_task(), therefore we really only 6918 * have to set its group bits, all the other stuff does not apply. 6919 */ 6920 static void cpu_cgroup_fork(struct task_struct *task) 6921 { 6922 struct rq_flags rf; 6923 struct rq *rq; 6924 6925 rq = task_rq_lock(task, &rf); 6926 6927 update_rq_clock(rq); 6928 sched_change_group(task, TASK_SET_GROUP); 6929 6930 task_rq_unlock(rq, task, &rf); 6931 } 6932 6933 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6934 { 6935 struct task_struct *task; 6936 struct cgroup_subsys_state *css; 6937 int ret = 0; 6938 6939 cgroup_taskset_for_each(task, css, tset) { 6940 #ifdef CONFIG_RT_GROUP_SCHED 6941 if (!sched_rt_can_attach(css_tg(css), task)) 6942 return -EINVAL; 6943 #else 6944 /* We don't support RT-tasks being in separate groups */ 6945 if (task->sched_class != &fair_sched_class) 6946 return -EINVAL; 6947 #endif 6948 /* 6949 * Serialize against wake_up_new_task() such that if its 6950 * running, we're sure to observe its full state. 6951 */ 6952 raw_spin_lock_irq(&task->pi_lock); 6953 /* 6954 * Avoid calling sched_move_task() before wake_up_new_task() 6955 * has happened. This would lead to problems with PELT, due to 6956 * move wanting to detach+attach while we're not attached yet. 6957 */ 6958 if (task->state == TASK_NEW) 6959 ret = -EINVAL; 6960 raw_spin_unlock_irq(&task->pi_lock); 6961 6962 if (ret) 6963 break; 6964 } 6965 return ret; 6966 } 6967 6968 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6969 { 6970 struct task_struct *task; 6971 struct cgroup_subsys_state *css; 6972 6973 cgroup_taskset_for_each(task, css, tset) 6974 sched_move_task(task); 6975 } 6976 6977 #ifdef CONFIG_FAIR_GROUP_SCHED 6978 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6979 struct cftype *cftype, u64 shareval) 6980 { 6981 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6982 } 6983 6984 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6985 struct cftype *cft) 6986 { 6987 struct task_group *tg = css_tg(css); 6988 6989 return (u64) scale_load_down(tg->shares); 6990 } 6991 6992 #ifdef CONFIG_CFS_BANDWIDTH 6993 static DEFINE_MUTEX(cfs_constraints_mutex); 6994 6995 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6996 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6997 6998 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6999 7000 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7001 { 7002 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7003 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7004 7005 if (tg == &root_task_group) 7006 return -EINVAL; 7007 7008 /* 7009 * Ensure we have at some amount of bandwidth every period. This is 7010 * to prevent reaching a state of large arrears when throttled via 7011 * entity_tick() resulting in prolonged exit starvation. 7012 */ 7013 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7014 return -EINVAL; 7015 7016 /* 7017 * Likewise, bound things on the otherside by preventing insane quota 7018 * periods. This also allows us to normalize in computing quota 7019 * feasibility. 7020 */ 7021 if (period > max_cfs_quota_period) 7022 return -EINVAL; 7023 7024 /* 7025 * Prevent race between setting of cfs_rq->runtime_enabled and 7026 * unthrottle_offline_cfs_rqs(). 7027 */ 7028 get_online_cpus(); 7029 mutex_lock(&cfs_constraints_mutex); 7030 ret = __cfs_schedulable(tg, period, quota); 7031 if (ret) 7032 goto out_unlock; 7033 7034 runtime_enabled = quota != RUNTIME_INF; 7035 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7036 /* 7037 * If we need to toggle cfs_bandwidth_used, off->on must occur 7038 * before making related changes, and on->off must occur afterwards 7039 */ 7040 if (runtime_enabled && !runtime_was_enabled) 7041 cfs_bandwidth_usage_inc(); 7042 raw_spin_lock_irq(&cfs_b->lock); 7043 cfs_b->period = ns_to_ktime(period); 7044 cfs_b->quota = quota; 7045 7046 __refill_cfs_bandwidth_runtime(cfs_b); 7047 7048 /* Restart the period timer (if active) to handle new period expiry: */ 7049 if (runtime_enabled) 7050 start_cfs_bandwidth(cfs_b); 7051 7052 raw_spin_unlock_irq(&cfs_b->lock); 7053 7054 for_each_online_cpu(i) { 7055 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7056 struct rq *rq = cfs_rq->rq; 7057 struct rq_flags rf; 7058 7059 rq_lock_irq(rq, &rf); 7060 cfs_rq->runtime_enabled = runtime_enabled; 7061 cfs_rq->runtime_remaining = 0; 7062 7063 if (cfs_rq->throttled) 7064 unthrottle_cfs_rq(cfs_rq); 7065 rq_unlock_irq(rq, &rf); 7066 } 7067 if (runtime_was_enabled && !runtime_enabled) 7068 cfs_bandwidth_usage_dec(); 7069 out_unlock: 7070 mutex_unlock(&cfs_constraints_mutex); 7071 put_online_cpus(); 7072 7073 return ret; 7074 } 7075 7076 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7077 { 7078 u64 quota, period; 7079 7080 period = ktime_to_ns(tg->cfs_bandwidth.period); 7081 if (cfs_quota_us < 0) 7082 quota = RUNTIME_INF; 7083 else 7084 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7085 7086 return tg_set_cfs_bandwidth(tg, period, quota); 7087 } 7088 7089 long tg_get_cfs_quota(struct task_group *tg) 7090 { 7091 u64 quota_us; 7092 7093 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7094 return -1; 7095 7096 quota_us = tg->cfs_bandwidth.quota; 7097 do_div(quota_us, NSEC_PER_USEC); 7098 7099 return quota_us; 7100 } 7101 7102 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7103 { 7104 u64 quota, period; 7105 7106 period = (u64)cfs_period_us * NSEC_PER_USEC; 7107 quota = tg->cfs_bandwidth.quota; 7108 7109 return tg_set_cfs_bandwidth(tg, period, quota); 7110 } 7111 7112 long tg_get_cfs_period(struct task_group *tg) 7113 { 7114 u64 cfs_period_us; 7115 7116 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7117 do_div(cfs_period_us, NSEC_PER_USEC); 7118 7119 return cfs_period_us; 7120 } 7121 7122 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7123 struct cftype *cft) 7124 { 7125 return tg_get_cfs_quota(css_tg(css)); 7126 } 7127 7128 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7129 struct cftype *cftype, s64 cfs_quota_us) 7130 { 7131 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7132 } 7133 7134 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7135 struct cftype *cft) 7136 { 7137 return tg_get_cfs_period(css_tg(css)); 7138 } 7139 7140 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7141 struct cftype *cftype, u64 cfs_period_us) 7142 { 7143 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7144 } 7145 7146 struct cfs_schedulable_data { 7147 struct task_group *tg; 7148 u64 period, quota; 7149 }; 7150 7151 /* 7152 * normalize group quota/period to be quota/max_period 7153 * note: units are usecs 7154 */ 7155 static u64 normalize_cfs_quota(struct task_group *tg, 7156 struct cfs_schedulable_data *d) 7157 { 7158 u64 quota, period; 7159 7160 if (tg == d->tg) { 7161 period = d->period; 7162 quota = d->quota; 7163 } else { 7164 period = tg_get_cfs_period(tg); 7165 quota = tg_get_cfs_quota(tg); 7166 } 7167 7168 /* note: these should typically be equivalent */ 7169 if (quota == RUNTIME_INF || quota == -1) 7170 return RUNTIME_INF; 7171 7172 return to_ratio(period, quota); 7173 } 7174 7175 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7176 { 7177 struct cfs_schedulable_data *d = data; 7178 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7179 s64 quota = 0, parent_quota = -1; 7180 7181 if (!tg->parent) { 7182 quota = RUNTIME_INF; 7183 } else { 7184 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7185 7186 quota = normalize_cfs_quota(tg, d); 7187 parent_quota = parent_b->hierarchical_quota; 7188 7189 /* 7190 * Ensure max(child_quota) <= parent_quota, inherit when no 7191 * limit is set: 7192 */ 7193 if (quota == RUNTIME_INF) 7194 quota = parent_quota; 7195 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7196 return -EINVAL; 7197 } 7198 cfs_b->hierarchical_quota = quota; 7199 7200 return 0; 7201 } 7202 7203 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7204 { 7205 int ret; 7206 struct cfs_schedulable_data data = { 7207 .tg = tg, 7208 .period = period, 7209 .quota = quota, 7210 }; 7211 7212 if (quota != RUNTIME_INF) { 7213 do_div(data.period, NSEC_PER_USEC); 7214 do_div(data.quota, NSEC_PER_USEC); 7215 } 7216 7217 rcu_read_lock(); 7218 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7219 rcu_read_unlock(); 7220 7221 return ret; 7222 } 7223 7224 static int cpu_stats_show(struct seq_file *sf, void *v) 7225 { 7226 struct task_group *tg = css_tg(seq_css(sf)); 7227 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7228 7229 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7230 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7231 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7232 7233 return 0; 7234 } 7235 #endif /* CONFIG_CFS_BANDWIDTH */ 7236 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7237 7238 #ifdef CONFIG_RT_GROUP_SCHED 7239 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7240 struct cftype *cft, s64 val) 7241 { 7242 return sched_group_set_rt_runtime(css_tg(css), val); 7243 } 7244 7245 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7246 struct cftype *cft) 7247 { 7248 return sched_group_rt_runtime(css_tg(css)); 7249 } 7250 7251 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7252 struct cftype *cftype, u64 rt_period_us) 7253 { 7254 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7255 } 7256 7257 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7258 struct cftype *cft) 7259 { 7260 return sched_group_rt_period(css_tg(css)); 7261 } 7262 #endif /* CONFIG_RT_GROUP_SCHED */ 7263 7264 static struct cftype cpu_files[] = { 7265 #ifdef CONFIG_FAIR_GROUP_SCHED 7266 { 7267 .name = "shares", 7268 .read_u64 = cpu_shares_read_u64, 7269 .write_u64 = cpu_shares_write_u64, 7270 }, 7271 #endif 7272 #ifdef CONFIG_CFS_BANDWIDTH 7273 { 7274 .name = "cfs_quota_us", 7275 .read_s64 = cpu_cfs_quota_read_s64, 7276 .write_s64 = cpu_cfs_quota_write_s64, 7277 }, 7278 { 7279 .name = "cfs_period_us", 7280 .read_u64 = cpu_cfs_period_read_u64, 7281 .write_u64 = cpu_cfs_period_write_u64, 7282 }, 7283 { 7284 .name = "stat", 7285 .seq_show = cpu_stats_show, 7286 }, 7287 #endif 7288 #ifdef CONFIG_RT_GROUP_SCHED 7289 { 7290 .name = "rt_runtime_us", 7291 .read_s64 = cpu_rt_runtime_read, 7292 .write_s64 = cpu_rt_runtime_write, 7293 }, 7294 { 7295 .name = "rt_period_us", 7296 .read_u64 = cpu_rt_period_read_uint, 7297 .write_u64 = cpu_rt_period_write_uint, 7298 }, 7299 #endif 7300 { } /* Terminate */ 7301 }; 7302 7303 struct cgroup_subsys cpu_cgrp_subsys = { 7304 .css_alloc = cpu_cgroup_css_alloc, 7305 .css_online = cpu_cgroup_css_online, 7306 .css_released = cpu_cgroup_css_released, 7307 .css_free = cpu_cgroup_css_free, 7308 .fork = cpu_cgroup_fork, 7309 .can_attach = cpu_cgroup_can_attach, 7310 .attach = cpu_cgroup_attach, 7311 .legacy_cftypes = cpu_files, 7312 .early_init = true, 7313 }; 7314 7315 #endif /* CONFIG_CGROUP_SCHED */ 7316 7317 void dump_cpu_task(int cpu) 7318 { 7319 pr_info("Task dump for CPU %d:\n", cpu); 7320 sched_show_task(cpu_curr(cpu)); 7321 } 7322 7323 /* 7324 * Nice levels are multiplicative, with a gentle 10% change for every 7325 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7326 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7327 * that remained on nice 0. 7328 * 7329 * The "10% effect" is relative and cumulative: from _any_ nice level, 7330 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7331 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7332 * If a task goes up by ~10% and another task goes down by ~10% then 7333 * the relative distance between them is ~25%.) 7334 */ 7335 const int sched_prio_to_weight[40] = { 7336 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7337 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7338 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7339 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7340 /* 0 */ 1024, 820, 655, 526, 423, 7341 /* 5 */ 335, 272, 215, 172, 137, 7342 /* 10 */ 110, 87, 70, 56, 45, 7343 /* 15 */ 36, 29, 23, 18, 15, 7344 }; 7345 7346 /* 7347 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7348 * 7349 * In cases where the weight does not change often, we can use the 7350 * precalculated inverse to speed up arithmetics by turning divisions 7351 * into multiplications: 7352 */ 7353 const u32 sched_prio_to_wmult[40] = { 7354 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7355 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7356 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7357 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7358 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7359 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7360 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7361 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7362 }; 7363