1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <asm/switch_to.h> 11 #include <asm/tlb.h> 12 13 #include "../workqueue_internal.h" 14 #include "../smpboot.h" 15 16 #define CREATE_TRACE_POINTS 17 #include <trace/events/sched.h> 18 19 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 20 21 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 22 /* 23 * Debugging: various feature bits 24 * 25 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 26 * sysctl_sched_features, defined in sched.h, to allow constants propagation 27 * at compile time and compiler optimization based on features default. 28 */ 29 #define SCHED_FEAT(name, enabled) \ 30 (1UL << __SCHED_FEAT_##name) * enabled | 31 const_debug unsigned int sysctl_sched_features = 32 #include "features.h" 33 0; 34 #undef SCHED_FEAT 35 #endif 36 37 /* 38 * Number of tasks to iterate in a single balance run. 39 * Limited because this is done with IRQs disabled. 40 */ 41 const_debug unsigned int sysctl_sched_nr_migrate = 32; 42 43 /* 44 * period over which we average the RT time consumption, measured 45 * in ms. 46 * 47 * default: 1s 48 */ 49 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 50 51 /* 52 * period over which we measure -rt task CPU usage in us. 53 * default: 1s 54 */ 55 unsigned int sysctl_sched_rt_period = 1000000; 56 57 __read_mostly int scheduler_running; 58 59 /* 60 * part of the period that we allow rt tasks to run in us. 61 * default: 0.95s 62 */ 63 int sysctl_sched_rt_runtime = 950000; 64 65 /* 66 * __task_rq_lock - lock the rq @p resides on. 67 */ 68 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 69 __acquires(rq->lock) 70 { 71 struct rq *rq; 72 73 lockdep_assert_held(&p->pi_lock); 74 75 for (;;) { 76 rq = task_rq(p); 77 raw_spin_lock(&rq->lock); 78 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 79 rq_pin_lock(rq, rf); 80 return rq; 81 } 82 raw_spin_unlock(&rq->lock); 83 84 while (unlikely(task_on_rq_migrating(p))) 85 cpu_relax(); 86 } 87 } 88 89 /* 90 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 91 */ 92 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 93 __acquires(p->pi_lock) 94 __acquires(rq->lock) 95 { 96 struct rq *rq; 97 98 for (;;) { 99 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 100 rq = task_rq(p); 101 raw_spin_lock(&rq->lock); 102 /* 103 * move_queued_task() task_rq_lock() 104 * 105 * ACQUIRE (rq->lock) 106 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 107 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 108 * [S] ->cpu = new_cpu [L] task_rq() 109 * [L] ->on_rq 110 * RELEASE (rq->lock) 111 * 112 * If we observe the old CPU in task_rq_lock, the acquire of 113 * the old rq->lock will fully serialize against the stores. 114 * 115 * If we observe the new CPU in task_rq_lock, the acquire will 116 * pair with the WMB to ensure we must then also see migrating. 117 */ 118 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 119 rq_pin_lock(rq, rf); 120 return rq; 121 } 122 raw_spin_unlock(&rq->lock); 123 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 124 125 while (unlikely(task_on_rq_migrating(p))) 126 cpu_relax(); 127 } 128 } 129 130 /* 131 * RQ-clock updating methods: 132 */ 133 134 static void update_rq_clock_task(struct rq *rq, s64 delta) 135 { 136 /* 137 * In theory, the compile should just see 0 here, and optimize out the call 138 * to sched_rt_avg_update. But I don't trust it... 139 */ 140 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 141 s64 steal = 0, irq_delta = 0; 142 #endif 143 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 144 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 145 146 /* 147 * Since irq_time is only updated on {soft,}irq_exit, we might run into 148 * this case when a previous update_rq_clock() happened inside a 149 * {soft,}irq region. 150 * 151 * When this happens, we stop ->clock_task and only update the 152 * prev_irq_time stamp to account for the part that fit, so that a next 153 * update will consume the rest. This ensures ->clock_task is 154 * monotonic. 155 * 156 * It does however cause some slight miss-attribution of {soft,}irq 157 * time, a more accurate solution would be to update the irq_time using 158 * the current rq->clock timestamp, except that would require using 159 * atomic ops. 160 */ 161 if (irq_delta > delta) 162 irq_delta = delta; 163 164 rq->prev_irq_time += irq_delta; 165 delta -= irq_delta; 166 #endif 167 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 168 if (static_key_false((¶virt_steal_rq_enabled))) { 169 steal = paravirt_steal_clock(cpu_of(rq)); 170 steal -= rq->prev_steal_time_rq; 171 172 if (unlikely(steal > delta)) 173 steal = delta; 174 175 rq->prev_steal_time_rq += steal; 176 delta -= steal; 177 } 178 #endif 179 180 rq->clock_task += delta; 181 182 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 183 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 184 sched_rt_avg_update(rq, irq_delta + steal); 185 #endif 186 } 187 188 void update_rq_clock(struct rq *rq) 189 { 190 s64 delta; 191 192 lockdep_assert_held(&rq->lock); 193 194 if (rq->clock_update_flags & RQCF_ACT_SKIP) 195 return; 196 197 #ifdef CONFIG_SCHED_DEBUG 198 if (sched_feat(WARN_DOUBLE_CLOCK)) 199 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 200 rq->clock_update_flags |= RQCF_UPDATED; 201 #endif 202 203 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 204 if (delta < 0) 205 return; 206 rq->clock += delta; 207 update_rq_clock_task(rq, delta); 208 } 209 210 211 #ifdef CONFIG_SCHED_HRTICK 212 /* 213 * Use HR-timers to deliver accurate preemption points. 214 */ 215 216 static void hrtick_clear(struct rq *rq) 217 { 218 if (hrtimer_active(&rq->hrtick_timer)) 219 hrtimer_cancel(&rq->hrtick_timer); 220 } 221 222 /* 223 * High-resolution timer tick. 224 * Runs from hardirq context with interrupts disabled. 225 */ 226 static enum hrtimer_restart hrtick(struct hrtimer *timer) 227 { 228 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 229 struct rq_flags rf; 230 231 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 232 233 rq_lock(rq, &rf); 234 update_rq_clock(rq); 235 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 236 rq_unlock(rq, &rf); 237 238 return HRTIMER_NORESTART; 239 } 240 241 #ifdef CONFIG_SMP 242 243 static void __hrtick_restart(struct rq *rq) 244 { 245 struct hrtimer *timer = &rq->hrtick_timer; 246 247 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 248 } 249 250 /* 251 * called from hardirq (IPI) context 252 */ 253 static void __hrtick_start(void *arg) 254 { 255 struct rq *rq = arg; 256 struct rq_flags rf; 257 258 rq_lock(rq, &rf); 259 __hrtick_restart(rq); 260 rq->hrtick_csd_pending = 0; 261 rq_unlock(rq, &rf); 262 } 263 264 /* 265 * Called to set the hrtick timer state. 266 * 267 * called with rq->lock held and irqs disabled 268 */ 269 void hrtick_start(struct rq *rq, u64 delay) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 ktime_t time; 273 s64 delta; 274 275 /* 276 * Don't schedule slices shorter than 10000ns, that just 277 * doesn't make sense and can cause timer DoS. 278 */ 279 delta = max_t(s64, delay, 10000LL); 280 time = ktime_add_ns(timer->base->get_time(), delta); 281 282 hrtimer_set_expires(timer, time); 283 284 if (rq == this_rq()) { 285 __hrtick_restart(rq); 286 } else if (!rq->hrtick_csd_pending) { 287 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 288 rq->hrtick_csd_pending = 1; 289 } 290 } 291 292 #else 293 /* 294 * Called to set the hrtick timer state. 295 * 296 * called with rq->lock held and irqs disabled 297 */ 298 void hrtick_start(struct rq *rq, u64 delay) 299 { 300 /* 301 * Don't schedule slices shorter than 10000ns, that just 302 * doesn't make sense. Rely on vruntime for fairness. 303 */ 304 delay = max_t(u64, delay, 10000LL); 305 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 306 HRTIMER_MODE_REL_PINNED); 307 } 308 #endif /* CONFIG_SMP */ 309 310 static void hrtick_rq_init(struct rq *rq) 311 { 312 #ifdef CONFIG_SMP 313 rq->hrtick_csd_pending = 0; 314 315 rq->hrtick_csd.flags = 0; 316 rq->hrtick_csd.func = __hrtick_start; 317 rq->hrtick_csd.info = rq; 318 #endif 319 320 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 321 rq->hrtick_timer.function = hrtick; 322 } 323 #else /* CONFIG_SCHED_HRTICK */ 324 static inline void hrtick_clear(struct rq *rq) 325 { 326 } 327 328 static inline void hrtick_rq_init(struct rq *rq) 329 { 330 } 331 #endif /* CONFIG_SCHED_HRTICK */ 332 333 /* 334 * cmpxchg based fetch_or, macro so it works for different integer types 335 */ 336 #define fetch_or(ptr, mask) \ 337 ({ \ 338 typeof(ptr) _ptr = (ptr); \ 339 typeof(mask) _mask = (mask); \ 340 typeof(*_ptr) _old, _val = *_ptr; \ 341 \ 342 for (;;) { \ 343 _old = cmpxchg(_ptr, _val, _val | _mask); \ 344 if (_old == _val) \ 345 break; \ 346 _val = _old; \ 347 } \ 348 _old; \ 349 }) 350 351 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 352 /* 353 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 354 * this avoids any races wrt polling state changes and thereby avoids 355 * spurious IPIs. 356 */ 357 static bool set_nr_and_not_polling(struct task_struct *p) 358 { 359 struct thread_info *ti = task_thread_info(p); 360 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 361 } 362 363 /* 364 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 365 * 366 * If this returns true, then the idle task promises to call 367 * sched_ttwu_pending() and reschedule soon. 368 */ 369 static bool set_nr_if_polling(struct task_struct *p) 370 { 371 struct thread_info *ti = task_thread_info(p); 372 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 373 374 for (;;) { 375 if (!(val & _TIF_POLLING_NRFLAG)) 376 return false; 377 if (val & _TIF_NEED_RESCHED) 378 return true; 379 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 380 if (old == val) 381 break; 382 val = old; 383 } 384 return true; 385 } 386 387 #else 388 static bool set_nr_and_not_polling(struct task_struct *p) 389 { 390 set_tsk_need_resched(p); 391 return true; 392 } 393 394 #ifdef CONFIG_SMP 395 static bool set_nr_if_polling(struct task_struct *p) 396 { 397 return false; 398 } 399 #endif 400 #endif 401 402 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 403 { 404 struct wake_q_node *node = &task->wake_q; 405 406 /* 407 * Atomically grab the task, if ->wake_q is !nil already it means 408 * its already queued (either by us or someone else) and will get the 409 * wakeup due to that. 410 * 411 * This cmpxchg() implies a full barrier, which pairs with the write 412 * barrier implied by the wakeup in wake_up_q(). 413 */ 414 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 415 return; 416 417 get_task_struct(task); 418 419 /* 420 * The head is context local, there can be no concurrency. 421 */ 422 *head->lastp = node; 423 head->lastp = &node->next; 424 } 425 426 void wake_up_q(struct wake_q_head *head) 427 { 428 struct wake_q_node *node = head->first; 429 430 while (node != WAKE_Q_TAIL) { 431 struct task_struct *task; 432 433 task = container_of(node, struct task_struct, wake_q); 434 BUG_ON(!task); 435 /* Task can safely be re-inserted now: */ 436 node = node->next; 437 task->wake_q.next = NULL; 438 439 /* 440 * wake_up_process() implies a wmb() to pair with the queueing 441 * in wake_q_add() so as not to miss wakeups. 442 */ 443 wake_up_process(task); 444 put_task_struct(task); 445 } 446 } 447 448 /* 449 * resched_curr - mark rq's current task 'to be rescheduled now'. 450 * 451 * On UP this means the setting of the need_resched flag, on SMP it 452 * might also involve a cross-CPU call to trigger the scheduler on 453 * the target CPU. 454 */ 455 void resched_curr(struct rq *rq) 456 { 457 struct task_struct *curr = rq->curr; 458 int cpu; 459 460 lockdep_assert_held(&rq->lock); 461 462 if (test_tsk_need_resched(curr)) 463 return; 464 465 cpu = cpu_of(rq); 466 467 if (cpu == smp_processor_id()) { 468 set_tsk_need_resched(curr); 469 set_preempt_need_resched(); 470 return; 471 } 472 473 if (set_nr_and_not_polling(curr)) 474 smp_send_reschedule(cpu); 475 else 476 trace_sched_wake_idle_without_ipi(cpu); 477 } 478 479 void resched_cpu(int cpu) 480 { 481 struct rq *rq = cpu_rq(cpu); 482 unsigned long flags; 483 484 raw_spin_lock_irqsave(&rq->lock, flags); 485 if (cpu_online(cpu) || cpu == smp_processor_id()) 486 resched_curr(rq); 487 raw_spin_unlock_irqrestore(&rq->lock, flags); 488 } 489 490 #ifdef CONFIG_SMP 491 #ifdef CONFIG_NO_HZ_COMMON 492 /* 493 * In the semi idle case, use the nearest busy CPU for migrating timers 494 * from an idle CPU. This is good for power-savings. 495 * 496 * We don't do similar optimization for completely idle system, as 497 * selecting an idle CPU will add more delays to the timers than intended 498 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 499 */ 500 int get_nohz_timer_target(void) 501 { 502 int i, cpu = smp_processor_id(); 503 struct sched_domain *sd; 504 505 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 506 return cpu; 507 508 rcu_read_lock(); 509 for_each_domain(cpu, sd) { 510 for_each_cpu(i, sched_domain_span(sd)) { 511 if (cpu == i) 512 continue; 513 514 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 515 cpu = i; 516 goto unlock; 517 } 518 } 519 } 520 521 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 522 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 523 unlock: 524 rcu_read_unlock(); 525 return cpu; 526 } 527 528 /* 529 * When add_timer_on() enqueues a timer into the timer wheel of an 530 * idle CPU then this timer might expire before the next timer event 531 * which is scheduled to wake up that CPU. In case of a completely 532 * idle system the next event might even be infinite time into the 533 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 534 * leaves the inner idle loop so the newly added timer is taken into 535 * account when the CPU goes back to idle and evaluates the timer 536 * wheel for the next timer event. 537 */ 538 static void wake_up_idle_cpu(int cpu) 539 { 540 struct rq *rq = cpu_rq(cpu); 541 542 if (cpu == smp_processor_id()) 543 return; 544 545 if (set_nr_and_not_polling(rq->idle)) 546 smp_send_reschedule(cpu); 547 else 548 trace_sched_wake_idle_without_ipi(cpu); 549 } 550 551 static bool wake_up_full_nohz_cpu(int cpu) 552 { 553 /* 554 * We just need the target to call irq_exit() and re-evaluate 555 * the next tick. The nohz full kick at least implies that. 556 * If needed we can still optimize that later with an 557 * empty IRQ. 558 */ 559 if (cpu_is_offline(cpu)) 560 return true; /* Don't try to wake offline CPUs. */ 561 if (tick_nohz_full_cpu(cpu)) { 562 if (cpu != smp_processor_id() || 563 tick_nohz_tick_stopped()) 564 tick_nohz_full_kick_cpu(cpu); 565 return true; 566 } 567 568 return false; 569 } 570 571 /* 572 * Wake up the specified CPU. If the CPU is going offline, it is the 573 * caller's responsibility to deal with the lost wakeup, for example, 574 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 575 */ 576 void wake_up_nohz_cpu(int cpu) 577 { 578 if (!wake_up_full_nohz_cpu(cpu)) 579 wake_up_idle_cpu(cpu); 580 } 581 582 static inline bool got_nohz_idle_kick(void) 583 { 584 int cpu = smp_processor_id(); 585 586 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 587 return false; 588 589 if (idle_cpu(cpu) && !need_resched()) 590 return true; 591 592 /* 593 * We can't run Idle Load Balance on this CPU for this time so we 594 * cancel it and clear NOHZ_BALANCE_KICK 595 */ 596 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 597 return false; 598 } 599 600 #else /* CONFIG_NO_HZ_COMMON */ 601 602 static inline bool got_nohz_idle_kick(void) 603 { 604 return false; 605 } 606 607 #endif /* CONFIG_NO_HZ_COMMON */ 608 609 #ifdef CONFIG_NO_HZ_FULL 610 bool sched_can_stop_tick(struct rq *rq) 611 { 612 int fifo_nr_running; 613 614 /* Deadline tasks, even if single, need the tick */ 615 if (rq->dl.dl_nr_running) 616 return false; 617 618 /* 619 * If there are more than one RR tasks, we need the tick to effect the 620 * actual RR behaviour. 621 */ 622 if (rq->rt.rr_nr_running) { 623 if (rq->rt.rr_nr_running == 1) 624 return true; 625 else 626 return false; 627 } 628 629 /* 630 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 631 * forced preemption between FIFO tasks. 632 */ 633 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 634 if (fifo_nr_running) 635 return true; 636 637 /* 638 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 639 * if there's more than one we need the tick for involuntary 640 * preemption. 641 */ 642 if (rq->nr_running > 1) 643 return false; 644 645 return true; 646 } 647 #endif /* CONFIG_NO_HZ_FULL */ 648 649 void sched_avg_update(struct rq *rq) 650 { 651 s64 period = sched_avg_period(); 652 653 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 654 /* 655 * Inline assembly required to prevent the compiler 656 * optimising this loop into a divmod call. 657 * See __iter_div_u64_rem() for another example of this. 658 */ 659 asm("" : "+rm" (rq->age_stamp)); 660 rq->age_stamp += period; 661 rq->rt_avg /= 2; 662 } 663 } 664 665 #endif /* CONFIG_SMP */ 666 667 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 668 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 669 /* 670 * Iterate task_group tree rooted at *from, calling @down when first entering a 671 * node and @up when leaving it for the final time. 672 * 673 * Caller must hold rcu_lock or sufficient equivalent. 674 */ 675 int walk_tg_tree_from(struct task_group *from, 676 tg_visitor down, tg_visitor up, void *data) 677 { 678 struct task_group *parent, *child; 679 int ret; 680 681 parent = from; 682 683 down: 684 ret = (*down)(parent, data); 685 if (ret) 686 goto out; 687 list_for_each_entry_rcu(child, &parent->children, siblings) { 688 parent = child; 689 goto down; 690 691 up: 692 continue; 693 } 694 ret = (*up)(parent, data); 695 if (ret || parent == from) 696 goto out; 697 698 child = parent; 699 parent = parent->parent; 700 if (parent) 701 goto up; 702 out: 703 return ret; 704 } 705 706 int tg_nop(struct task_group *tg, void *data) 707 { 708 return 0; 709 } 710 #endif 711 712 static void set_load_weight(struct task_struct *p, bool update_load) 713 { 714 int prio = p->static_prio - MAX_RT_PRIO; 715 struct load_weight *load = &p->se.load; 716 717 /* 718 * SCHED_IDLE tasks get minimal weight: 719 */ 720 if (idle_policy(p->policy)) { 721 load->weight = scale_load(WEIGHT_IDLEPRIO); 722 load->inv_weight = WMULT_IDLEPRIO; 723 return; 724 } 725 726 /* 727 * SCHED_OTHER tasks have to update their load when changing their 728 * weight 729 */ 730 if (update_load && p->sched_class == &fair_sched_class) { 731 reweight_task(p, prio); 732 } else { 733 load->weight = scale_load(sched_prio_to_weight[prio]); 734 load->inv_weight = sched_prio_to_wmult[prio]; 735 } 736 } 737 738 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 739 { 740 if (!(flags & ENQUEUE_NOCLOCK)) 741 update_rq_clock(rq); 742 743 if (!(flags & ENQUEUE_RESTORE)) 744 sched_info_queued(rq, p); 745 746 p->sched_class->enqueue_task(rq, p, flags); 747 } 748 749 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 750 { 751 if (!(flags & DEQUEUE_NOCLOCK)) 752 update_rq_clock(rq); 753 754 if (!(flags & DEQUEUE_SAVE)) 755 sched_info_dequeued(rq, p); 756 757 p->sched_class->dequeue_task(rq, p, flags); 758 } 759 760 void activate_task(struct rq *rq, struct task_struct *p, int flags) 761 { 762 if (task_contributes_to_load(p)) 763 rq->nr_uninterruptible--; 764 765 enqueue_task(rq, p, flags); 766 } 767 768 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 769 { 770 if (task_contributes_to_load(p)) 771 rq->nr_uninterruptible++; 772 773 dequeue_task(rq, p, flags); 774 } 775 776 /* 777 * __normal_prio - return the priority that is based on the static prio 778 */ 779 static inline int __normal_prio(struct task_struct *p) 780 { 781 return p->static_prio; 782 } 783 784 /* 785 * Calculate the expected normal priority: i.e. priority 786 * without taking RT-inheritance into account. Might be 787 * boosted by interactivity modifiers. Changes upon fork, 788 * setprio syscalls, and whenever the interactivity 789 * estimator recalculates. 790 */ 791 static inline int normal_prio(struct task_struct *p) 792 { 793 int prio; 794 795 if (task_has_dl_policy(p)) 796 prio = MAX_DL_PRIO-1; 797 else if (task_has_rt_policy(p)) 798 prio = MAX_RT_PRIO-1 - p->rt_priority; 799 else 800 prio = __normal_prio(p); 801 return prio; 802 } 803 804 /* 805 * Calculate the current priority, i.e. the priority 806 * taken into account by the scheduler. This value might 807 * be boosted by RT tasks, or might be boosted by 808 * interactivity modifiers. Will be RT if the task got 809 * RT-boosted. If not then it returns p->normal_prio. 810 */ 811 static int effective_prio(struct task_struct *p) 812 { 813 p->normal_prio = normal_prio(p); 814 /* 815 * If we are RT tasks or we were boosted to RT priority, 816 * keep the priority unchanged. Otherwise, update priority 817 * to the normal priority: 818 */ 819 if (!rt_prio(p->prio)) 820 return p->normal_prio; 821 return p->prio; 822 } 823 824 /** 825 * task_curr - is this task currently executing on a CPU? 826 * @p: the task in question. 827 * 828 * Return: 1 if the task is currently executing. 0 otherwise. 829 */ 830 inline int task_curr(const struct task_struct *p) 831 { 832 return cpu_curr(task_cpu(p)) == p; 833 } 834 835 /* 836 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 837 * use the balance_callback list if you want balancing. 838 * 839 * this means any call to check_class_changed() must be followed by a call to 840 * balance_callback(). 841 */ 842 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 843 const struct sched_class *prev_class, 844 int oldprio) 845 { 846 if (prev_class != p->sched_class) { 847 if (prev_class->switched_from) 848 prev_class->switched_from(rq, p); 849 850 p->sched_class->switched_to(rq, p); 851 } else if (oldprio != p->prio || dl_task(p)) 852 p->sched_class->prio_changed(rq, p, oldprio); 853 } 854 855 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 856 { 857 const struct sched_class *class; 858 859 if (p->sched_class == rq->curr->sched_class) { 860 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 861 } else { 862 for_each_class(class) { 863 if (class == rq->curr->sched_class) 864 break; 865 if (class == p->sched_class) { 866 resched_curr(rq); 867 break; 868 } 869 } 870 } 871 872 /* 873 * A queue event has occurred, and we're going to schedule. In 874 * this case, we can save a useless back to back clock update. 875 */ 876 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 877 rq_clock_skip_update(rq); 878 } 879 880 #ifdef CONFIG_SMP 881 /* 882 * This is how migration works: 883 * 884 * 1) we invoke migration_cpu_stop() on the target CPU using 885 * stop_one_cpu(). 886 * 2) stopper starts to run (implicitly forcing the migrated thread 887 * off the CPU) 888 * 3) it checks whether the migrated task is still in the wrong runqueue. 889 * 4) if it's in the wrong runqueue then the migration thread removes 890 * it and puts it into the right queue. 891 * 5) stopper completes and stop_one_cpu() returns and the migration 892 * is done. 893 */ 894 895 /* 896 * move_queued_task - move a queued task to new rq. 897 * 898 * Returns (locked) new rq. Old rq's lock is released. 899 */ 900 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 901 struct task_struct *p, int new_cpu) 902 { 903 lockdep_assert_held(&rq->lock); 904 905 p->on_rq = TASK_ON_RQ_MIGRATING; 906 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 907 set_task_cpu(p, new_cpu); 908 rq_unlock(rq, rf); 909 910 rq = cpu_rq(new_cpu); 911 912 rq_lock(rq, rf); 913 BUG_ON(task_cpu(p) != new_cpu); 914 enqueue_task(rq, p, 0); 915 p->on_rq = TASK_ON_RQ_QUEUED; 916 check_preempt_curr(rq, p, 0); 917 918 return rq; 919 } 920 921 struct migration_arg { 922 struct task_struct *task; 923 int dest_cpu; 924 }; 925 926 /* 927 * Move (not current) task off this CPU, onto the destination CPU. We're doing 928 * this because either it can't run here any more (set_cpus_allowed() 929 * away from this CPU, or CPU going down), or because we're 930 * attempting to rebalance this task on exec (sched_exec). 931 * 932 * So we race with normal scheduler movements, but that's OK, as long 933 * as the task is no longer on this CPU. 934 */ 935 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 936 struct task_struct *p, int dest_cpu) 937 { 938 if (p->flags & PF_KTHREAD) { 939 if (unlikely(!cpu_online(dest_cpu))) 940 return rq; 941 } else { 942 if (unlikely(!cpu_active(dest_cpu))) 943 return rq; 944 } 945 946 /* Affinity changed (again). */ 947 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 948 return rq; 949 950 update_rq_clock(rq); 951 rq = move_queued_task(rq, rf, p, dest_cpu); 952 953 return rq; 954 } 955 956 /* 957 * migration_cpu_stop - this will be executed by a highprio stopper thread 958 * and performs thread migration by bumping thread off CPU then 959 * 'pushing' onto another runqueue. 960 */ 961 static int migration_cpu_stop(void *data) 962 { 963 struct migration_arg *arg = data; 964 struct task_struct *p = arg->task; 965 struct rq *rq = this_rq(); 966 struct rq_flags rf; 967 968 /* 969 * The original target CPU might have gone down and we might 970 * be on another CPU but it doesn't matter. 971 */ 972 local_irq_disable(); 973 /* 974 * We need to explicitly wake pending tasks before running 975 * __migrate_task() such that we will not miss enforcing cpus_allowed 976 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 977 */ 978 sched_ttwu_pending(); 979 980 raw_spin_lock(&p->pi_lock); 981 rq_lock(rq, &rf); 982 /* 983 * If task_rq(p) != rq, it cannot be migrated here, because we're 984 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 985 * we're holding p->pi_lock. 986 */ 987 if (task_rq(p) == rq) { 988 if (task_on_rq_queued(p)) 989 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 990 else 991 p->wake_cpu = arg->dest_cpu; 992 } 993 rq_unlock(rq, &rf); 994 raw_spin_unlock(&p->pi_lock); 995 996 local_irq_enable(); 997 return 0; 998 } 999 1000 /* 1001 * sched_class::set_cpus_allowed must do the below, but is not required to 1002 * actually call this function. 1003 */ 1004 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1005 { 1006 cpumask_copy(&p->cpus_allowed, new_mask); 1007 p->nr_cpus_allowed = cpumask_weight(new_mask); 1008 } 1009 1010 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1011 { 1012 struct rq *rq = task_rq(p); 1013 bool queued, running; 1014 1015 lockdep_assert_held(&p->pi_lock); 1016 1017 queued = task_on_rq_queued(p); 1018 running = task_current(rq, p); 1019 1020 if (queued) { 1021 /* 1022 * Because __kthread_bind() calls this on blocked tasks without 1023 * holding rq->lock. 1024 */ 1025 lockdep_assert_held(&rq->lock); 1026 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1027 } 1028 if (running) 1029 put_prev_task(rq, p); 1030 1031 p->sched_class->set_cpus_allowed(p, new_mask); 1032 1033 if (queued) 1034 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1035 if (running) 1036 set_curr_task(rq, p); 1037 } 1038 1039 /* 1040 * Change a given task's CPU affinity. Migrate the thread to a 1041 * proper CPU and schedule it away if the CPU it's executing on 1042 * is removed from the allowed bitmask. 1043 * 1044 * NOTE: the caller must have a valid reference to the task, the 1045 * task must not exit() & deallocate itself prematurely. The 1046 * call is not atomic; no spinlocks may be held. 1047 */ 1048 static int __set_cpus_allowed_ptr(struct task_struct *p, 1049 const struct cpumask *new_mask, bool check) 1050 { 1051 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1052 unsigned int dest_cpu; 1053 struct rq_flags rf; 1054 struct rq *rq; 1055 int ret = 0; 1056 1057 rq = task_rq_lock(p, &rf); 1058 update_rq_clock(rq); 1059 1060 if (p->flags & PF_KTHREAD) { 1061 /* 1062 * Kernel threads are allowed on online && !active CPUs 1063 */ 1064 cpu_valid_mask = cpu_online_mask; 1065 } 1066 1067 /* 1068 * Must re-check here, to close a race against __kthread_bind(), 1069 * sched_setaffinity() is not guaranteed to observe the flag. 1070 */ 1071 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1072 ret = -EINVAL; 1073 goto out; 1074 } 1075 1076 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1077 goto out; 1078 1079 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1080 ret = -EINVAL; 1081 goto out; 1082 } 1083 1084 do_set_cpus_allowed(p, new_mask); 1085 1086 if (p->flags & PF_KTHREAD) { 1087 /* 1088 * For kernel threads that do indeed end up on online && 1089 * !active we want to ensure they are strict per-CPU threads. 1090 */ 1091 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1092 !cpumask_intersects(new_mask, cpu_active_mask) && 1093 p->nr_cpus_allowed != 1); 1094 } 1095 1096 /* Can the task run on the task's current CPU? If so, we're done */ 1097 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1098 goto out; 1099 1100 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1101 if (task_running(rq, p) || p->state == TASK_WAKING) { 1102 struct migration_arg arg = { p, dest_cpu }; 1103 /* Need help from migration thread: drop lock and wait. */ 1104 task_rq_unlock(rq, p, &rf); 1105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1106 tlb_migrate_finish(p->mm); 1107 return 0; 1108 } else if (task_on_rq_queued(p)) { 1109 /* 1110 * OK, since we're going to drop the lock immediately 1111 * afterwards anyway. 1112 */ 1113 rq = move_queued_task(rq, &rf, p, dest_cpu); 1114 } 1115 out: 1116 task_rq_unlock(rq, p, &rf); 1117 1118 return ret; 1119 } 1120 1121 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1122 { 1123 return __set_cpus_allowed_ptr(p, new_mask, false); 1124 } 1125 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1126 1127 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1128 { 1129 #ifdef CONFIG_SCHED_DEBUG 1130 /* 1131 * We should never call set_task_cpu() on a blocked task, 1132 * ttwu() will sort out the placement. 1133 */ 1134 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1135 !p->on_rq); 1136 1137 /* 1138 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1139 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1140 * time relying on p->on_rq. 1141 */ 1142 WARN_ON_ONCE(p->state == TASK_RUNNING && 1143 p->sched_class == &fair_sched_class && 1144 (p->on_rq && !task_on_rq_migrating(p))); 1145 1146 #ifdef CONFIG_LOCKDEP 1147 /* 1148 * The caller should hold either p->pi_lock or rq->lock, when changing 1149 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1150 * 1151 * sched_move_task() holds both and thus holding either pins the cgroup, 1152 * see task_group(). 1153 * 1154 * Furthermore, all task_rq users should acquire both locks, see 1155 * task_rq_lock(). 1156 */ 1157 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1158 lockdep_is_held(&task_rq(p)->lock))); 1159 #endif 1160 /* 1161 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1162 */ 1163 WARN_ON_ONCE(!cpu_online(new_cpu)); 1164 #endif 1165 1166 trace_sched_migrate_task(p, new_cpu); 1167 1168 if (task_cpu(p) != new_cpu) { 1169 if (p->sched_class->migrate_task_rq) 1170 p->sched_class->migrate_task_rq(p); 1171 p->se.nr_migrations++; 1172 perf_event_task_migrate(p); 1173 } 1174 1175 __set_task_cpu(p, new_cpu); 1176 } 1177 1178 static void __migrate_swap_task(struct task_struct *p, int cpu) 1179 { 1180 if (task_on_rq_queued(p)) { 1181 struct rq *src_rq, *dst_rq; 1182 struct rq_flags srf, drf; 1183 1184 src_rq = task_rq(p); 1185 dst_rq = cpu_rq(cpu); 1186 1187 rq_pin_lock(src_rq, &srf); 1188 rq_pin_lock(dst_rq, &drf); 1189 1190 p->on_rq = TASK_ON_RQ_MIGRATING; 1191 deactivate_task(src_rq, p, 0); 1192 set_task_cpu(p, cpu); 1193 activate_task(dst_rq, p, 0); 1194 p->on_rq = TASK_ON_RQ_QUEUED; 1195 check_preempt_curr(dst_rq, p, 0); 1196 1197 rq_unpin_lock(dst_rq, &drf); 1198 rq_unpin_lock(src_rq, &srf); 1199 1200 } else { 1201 /* 1202 * Task isn't running anymore; make it appear like we migrated 1203 * it before it went to sleep. This means on wakeup we make the 1204 * previous CPU our target instead of where it really is. 1205 */ 1206 p->wake_cpu = cpu; 1207 } 1208 } 1209 1210 struct migration_swap_arg { 1211 struct task_struct *src_task, *dst_task; 1212 int src_cpu, dst_cpu; 1213 }; 1214 1215 static int migrate_swap_stop(void *data) 1216 { 1217 struct migration_swap_arg *arg = data; 1218 struct rq *src_rq, *dst_rq; 1219 int ret = -EAGAIN; 1220 1221 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1222 return -EAGAIN; 1223 1224 src_rq = cpu_rq(arg->src_cpu); 1225 dst_rq = cpu_rq(arg->dst_cpu); 1226 1227 double_raw_lock(&arg->src_task->pi_lock, 1228 &arg->dst_task->pi_lock); 1229 double_rq_lock(src_rq, dst_rq); 1230 1231 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1232 goto unlock; 1233 1234 if (task_cpu(arg->src_task) != arg->src_cpu) 1235 goto unlock; 1236 1237 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1238 goto unlock; 1239 1240 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1241 goto unlock; 1242 1243 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1244 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1245 1246 ret = 0; 1247 1248 unlock: 1249 double_rq_unlock(src_rq, dst_rq); 1250 raw_spin_unlock(&arg->dst_task->pi_lock); 1251 raw_spin_unlock(&arg->src_task->pi_lock); 1252 1253 return ret; 1254 } 1255 1256 /* 1257 * Cross migrate two tasks 1258 */ 1259 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1260 { 1261 struct migration_swap_arg arg; 1262 int ret = -EINVAL; 1263 1264 arg = (struct migration_swap_arg){ 1265 .src_task = cur, 1266 .src_cpu = task_cpu(cur), 1267 .dst_task = p, 1268 .dst_cpu = task_cpu(p), 1269 }; 1270 1271 if (arg.src_cpu == arg.dst_cpu) 1272 goto out; 1273 1274 /* 1275 * These three tests are all lockless; this is OK since all of them 1276 * will be re-checked with proper locks held further down the line. 1277 */ 1278 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1279 goto out; 1280 1281 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1282 goto out; 1283 1284 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1285 goto out; 1286 1287 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1288 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1289 1290 out: 1291 return ret; 1292 } 1293 1294 /* 1295 * wait_task_inactive - wait for a thread to unschedule. 1296 * 1297 * If @match_state is nonzero, it's the @p->state value just checked and 1298 * not expected to change. If it changes, i.e. @p might have woken up, 1299 * then return zero. When we succeed in waiting for @p to be off its CPU, 1300 * we return a positive number (its total switch count). If a second call 1301 * a short while later returns the same number, the caller can be sure that 1302 * @p has remained unscheduled the whole time. 1303 * 1304 * The caller must ensure that the task *will* unschedule sometime soon, 1305 * else this function might spin for a *long* time. This function can't 1306 * be called with interrupts off, or it may introduce deadlock with 1307 * smp_call_function() if an IPI is sent by the same process we are 1308 * waiting to become inactive. 1309 */ 1310 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1311 { 1312 int running, queued; 1313 struct rq_flags rf; 1314 unsigned long ncsw; 1315 struct rq *rq; 1316 1317 for (;;) { 1318 /* 1319 * We do the initial early heuristics without holding 1320 * any task-queue locks at all. We'll only try to get 1321 * the runqueue lock when things look like they will 1322 * work out! 1323 */ 1324 rq = task_rq(p); 1325 1326 /* 1327 * If the task is actively running on another CPU 1328 * still, just relax and busy-wait without holding 1329 * any locks. 1330 * 1331 * NOTE! Since we don't hold any locks, it's not 1332 * even sure that "rq" stays as the right runqueue! 1333 * But we don't care, since "task_running()" will 1334 * return false if the runqueue has changed and p 1335 * is actually now running somewhere else! 1336 */ 1337 while (task_running(rq, p)) { 1338 if (match_state && unlikely(p->state != match_state)) 1339 return 0; 1340 cpu_relax(); 1341 } 1342 1343 /* 1344 * Ok, time to look more closely! We need the rq 1345 * lock now, to be *sure*. If we're wrong, we'll 1346 * just go back and repeat. 1347 */ 1348 rq = task_rq_lock(p, &rf); 1349 trace_sched_wait_task(p); 1350 running = task_running(rq, p); 1351 queued = task_on_rq_queued(p); 1352 ncsw = 0; 1353 if (!match_state || p->state == match_state) 1354 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1355 task_rq_unlock(rq, p, &rf); 1356 1357 /* 1358 * If it changed from the expected state, bail out now. 1359 */ 1360 if (unlikely(!ncsw)) 1361 break; 1362 1363 /* 1364 * Was it really running after all now that we 1365 * checked with the proper locks actually held? 1366 * 1367 * Oops. Go back and try again.. 1368 */ 1369 if (unlikely(running)) { 1370 cpu_relax(); 1371 continue; 1372 } 1373 1374 /* 1375 * It's not enough that it's not actively running, 1376 * it must be off the runqueue _entirely_, and not 1377 * preempted! 1378 * 1379 * So if it was still runnable (but just not actively 1380 * running right now), it's preempted, and we should 1381 * yield - it could be a while. 1382 */ 1383 if (unlikely(queued)) { 1384 ktime_t to = NSEC_PER_SEC / HZ; 1385 1386 set_current_state(TASK_UNINTERRUPTIBLE); 1387 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1388 continue; 1389 } 1390 1391 /* 1392 * Ahh, all good. It wasn't running, and it wasn't 1393 * runnable, which means that it will never become 1394 * running in the future either. We're all done! 1395 */ 1396 break; 1397 } 1398 1399 return ncsw; 1400 } 1401 1402 /*** 1403 * kick_process - kick a running thread to enter/exit the kernel 1404 * @p: the to-be-kicked thread 1405 * 1406 * Cause a process which is running on another CPU to enter 1407 * kernel-mode, without any delay. (to get signals handled.) 1408 * 1409 * NOTE: this function doesn't have to take the runqueue lock, 1410 * because all it wants to ensure is that the remote task enters 1411 * the kernel. If the IPI races and the task has been migrated 1412 * to another CPU then no harm is done and the purpose has been 1413 * achieved as well. 1414 */ 1415 void kick_process(struct task_struct *p) 1416 { 1417 int cpu; 1418 1419 preempt_disable(); 1420 cpu = task_cpu(p); 1421 if ((cpu != smp_processor_id()) && task_curr(p)) 1422 smp_send_reschedule(cpu); 1423 preempt_enable(); 1424 } 1425 EXPORT_SYMBOL_GPL(kick_process); 1426 1427 /* 1428 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1429 * 1430 * A few notes on cpu_active vs cpu_online: 1431 * 1432 * - cpu_active must be a subset of cpu_online 1433 * 1434 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1435 * see __set_cpus_allowed_ptr(). At this point the newly online 1436 * CPU isn't yet part of the sched domains, and balancing will not 1437 * see it. 1438 * 1439 * - on CPU-down we clear cpu_active() to mask the sched domains and 1440 * avoid the load balancer to place new tasks on the to be removed 1441 * CPU. Existing tasks will remain running there and will be taken 1442 * off. 1443 * 1444 * This means that fallback selection must not select !active CPUs. 1445 * And can assume that any active CPU must be online. Conversely 1446 * select_task_rq() below may allow selection of !active CPUs in order 1447 * to satisfy the above rules. 1448 */ 1449 static int select_fallback_rq(int cpu, struct task_struct *p) 1450 { 1451 int nid = cpu_to_node(cpu); 1452 const struct cpumask *nodemask = NULL; 1453 enum { cpuset, possible, fail } state = cpuset; 1454 int dest_cpu; 1455 1456 /* 1457 * If the node that the CPU is on has been offlined, cpu_to_node() 1458 * will return -1. There is no CPU on the node, and we should 1459 * select the CPU on the other node. 1460 */ 1461 if (nid != -1) { 1462 nodemask = cpumask_of_node(nid); 1463 1464 /* Look for allowed, online CPU in same node. */ 1465 for_each_cpu(dest_cpu, nodemask) { 1466 if (!cpu_active(dest_cpu)) 1467 continue; 1468 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1469 return dest_cpu; 1470 } 1471 } 1472 1473 for (;;) { 1474 /* Any allowed, online CPU? */ 1475 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1476 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1477 continue; 1478 if (!cpu_online(dest_cpu)) 1479 continue; 1480 goto out; 1481 } 1482 1483 /* No more Mr. Nice Guy. */ 1484 switch (state) { 1485 case cpuset: 1486 if (IS_ENABLED(CONFIG_CPUSETS)) { 1487 cpuset_cpus_allowed_fallback(p); 1488 state = possible; 1489 break; 1490 } 1491 /* Fall-through */ 1492 case possible: 1493 do_set_cpus_allowed(p, cpu_possible_mask); 1494 state = fail; 1495 break; 1496 1497 case fail: 1498 BUG(); 1499 break; 1500 } 1501 } 1502 1503 out: 1504 if (state != cpuset) { 1505 /* 1506 * Don't tell them about moving exiting tasks or 1507 * kernel threads (both mm NULL), since they never 1508 * leave kernel. 1509 */ 1510 if (p->mm && printk_ratelimit()) { 1511 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1512 task_pid_nr(p), p->comm, cpu); 1513 } 1514 } 1515 1516 return dest_cpu; 1517 } 1518 1519 /* 1520 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1521 */ 1522 static inline 1523 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1524 { 1525 lockdep_assert_held(&p->pi_lock); 1526 1527 if (p->nr_cpus_allowed > 1) 1528 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1529 else 1530 cpu = cpumask_any(&p->cpus_allowed); 1531 1532 /* 1533 * In order not to call set_task_cpu() on a blocking task we need 1534 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1535 * CPU. 1536 * 1537 * Since this is common to all placement strategies, this lives here. 1538 * 1539 * [ this allows ->select_task() to simply return task_cpu(p) and 1540 * not worry about this generic constraint ] 1541 */ 1542 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1543 !cpu_online(cpu))) 1544 cpu = select_fallback_rq(task_cpu(p), p); 1545 1546 return cpu; 1547 } 1548 1549 static void update_avg(u64 *avg, u64 sample) 1550 { 1551 s64 diff = sample - *avg; 1552 *avg += diff >> 3; 1553 } 1554 1555 void sched_set_stop_task(int cpu, struct task_struct *stop) 1556 { 1557 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1558 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1559 1560 if (stop) { 1561 /* 1562 * Make it appear like a SCHED_FIFO task, its something 1563 * userspace knows about and won't get confused about. 1564 * 1565 * Also, it will make PI more or less work without too 1566 * much confusion -- but then, stop work should not 1567 * rely on PI working anyway. 1568 */ 1569 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1570 1571 stop->sched_class = &stop_sched_class; 1572 } 1573 1574 cpu_rq(cpu)->stop = stop; 1575 1576 if (old_stop) { 1577 /* 1578 * Reset it back to a normal scheduling class so that 1579 * it can die in pieces. 1580 */ 1581 old_stop->sched_class = &rt_sched_class; 1582 } 1583 } 1584 1585 #else 1586 1587 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1588 const struct cpumask *new_mask, bool check) 1589 { 1590 return set_cpus_allowed_ptr(p, new_mask); 1591 } 1592 1593 #endif /* CONFIG_SMP */ 1594 1595 static void 1596 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1597 { 1598 struct rq *rq; 1599 1600 if (!schedstat_enabled()) 1601 return; 1602 1603 rq = this_rq(); 1604 1605 #ifdef CONFIG_SMP 1606 if (cpu == rq->cpu) { 1607 __schedstat_inc(rq->ttwu_local); 1608 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1609 } else { 1610 struct sched_domain *sd; 1611 1612 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1613 rcu_read_lock(); 1614 for_each_domain(rq->cpu, sd) { 1615 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1616 __schedstat_inc(sd->ttwu_wake_remote); 1617 break; 1618 } 1619 } 1620 rcu_read_unlock(); 1621 } 1622 1623 if (wake_flags & WF_MIGRATED) 1624 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1625 #endif /* CONFIG_SMP */ 1626 1627 __schedstat_inc(rq->ttwu_count); 1628 __schedstat_inc(p->se.statistics.nr_wakeups); 1629 1630 if (wake_flags & WF_SYNC) 1631 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1632 } 1633 1634 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1635 { 1636 activate_task(rq, p, en_flags); 1637 p->on_rq = TASK_ON_RQ_QUEUED; 1638 1639 /* If a worker is waking up, notify the workqueue: */ 1640 if (p->flags & PF_WQ_WORKER) 1641 wq_worker_waking_up(p, cpu_of(rq)); 1642 } 1643 1644 /* 1645 * Mark the task runnable and perform wakeup-preemption. 1646 */ 1647 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1648 struct rq_flags *rf) 1649 { 1650 check_preempt_curr(rq, p, wake_flags); 1651 p->state = TASK_RUNNING; 1652 trace_sched_wakeup(p); 1653 1654 #ifdef CONFIG_SMP 1655 if (p->sched_class->task_woken) { 1656 /* 1657 * Our task @p is fully woken up and running; so its safe to 1658 * drop the rq->lock, hereafter rq is only used for statistics. 1659 */ 1660 rq_unpin_lock(rq, rf); 1661 p->sched_class->task_woken(rq, p); 1662 rq_repin_lock(rq, rf); 1663 } 1664 1665 if (rq->idle_stamp) { 1666 u64 delta = rq_clock(rq) - rq->idle_stamp; 1667 u64 max = 2*rq->max_idle_balance_cost; 1668 1669 update_avg(&rq->avg_idle, delta); 1670 1671 if (rq->avg_idle > max) 1672 rq->avg_idle = max; 1673 1674 rq->idle_stamp = 0; 1675 } 1676 #endif 1677 } 1678 1679 static void 1680 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1681 struct rq_flags *rf) 1682 { 1683 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1684 1685 lockdep_assert_held(&rq->lock); 1686 1687 #ifdef CONFIG_SMP 1688 if (p->sched_contributes_to_load) 1689 rq->nr_uninterruptible--; 1690 1691 if (wake_flags & WF_MIGRATED) 1692 en_flags |= ENQUEUE_MIGRATED; 1693 #endif 1694 1695 ttwu_activate(rq, p, en_flags); 1696 ttwu_do_wakeup(rq, p, wake_flags, rf); 1697 } 1698 1699 /* 1700 * Called in case the task @p isn't fully descheduled from its runqueue, 1701 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1702 * since all we need to do is flip p->state to TASK_RUNNING, since 1703 * the task is still ->on_rq. 1704 */ 1705 static int ttwu_remote(struct task_struct *p, int wake_flags) 1706 { 1707 struct rq_flags rf; 1708 struct rq *rq; 1709 int ret = 0; 1710 1711 rq = __task_rq_lock(p, &rf); 1712 if (task_on_rq_queued(p)) { 1713 /* check_preempt_curr() may use rq clock */ 1714 update_rq_clock(rq); 1715 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1716 ret = 1; 1717 } 1718 __task_rq_unlock(rq, &rf); 1719 1720 return ret; 1721 } 1722 1723 #ifdef CONFIG_SMP 1724 void sched_ttwu_pending(void) 1725 { 1726 struct rq *rq = this_rq(); 1727 struct llist_node *llist = llist_del_all(&rq->wake_list); 1728 struct task_struct *p, *t; 1729 struct rq_flags rf; 1730 1731 if (!llist) 1732 return; 1733 1734 rq_lock_irqsave(rq, &rf); 1735 update_rq_clock(rq); 1736 1737 llist_for_each_entry_safe(p, t, llist, wake_entry) 1738 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1739 1740 rq_unlock_irqrestore(rq, &rf); 1741 } 1742 1743 void scheduler_ipi(void) 1744 { 1745 /* 1746 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1747 * TIF_NEED_RESCHED remotely (for the first time) will also send 1748 * this IPI. 1749 */ 1750 preempt_fold_need_resched(); 1751 1752 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1753 return; 1754 1755 /* 1756 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1757 * traditionally all their work was done from the interrupt return 1758 * path. Now that we actually do some work, we need to make sure 1759 * we do call them. 1760 * 1761 * Some archs already do call them, luckily irq_enter/exit nest 1762 * properly. 1763 * 1764 * Arguably we should visit all archs and update all handlers, 1765 * however a fair share of IPIs are still resched only so this would 1766 * somewhat pessimize the simple resched case. 1767 */ 1768 irq_enter(); 1769 sched_ttwu_pending(); 1770 1771 /* 1772 * Check if someone kicked us for doing the nohz idle load balance. 1773 */ 1774 if (unlikely(got_nohz_idle_kick())) { 1775 this_rq()->idle_balance = 1; 1776 raise_softirq_irqoff(SCHED_SOFTIRQ); 1777 } 1778 irq_exit(); 1779 } 1780 1781 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1782 { 1783 struct rq *rq = cpu_rq(cpu); 1784 1785 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1786 1787 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1788 if (!set_nr_if_polling(rq->idle)) 1789 smp_send_reschedule(cpu); 1790 else 1791 trace_sched_wake_idle_without_ipi(cpu); 1792 } 1793 } 1794 1795 void wake_up_if_idle(int cpu) 1796 { 1797 struct rq *rq = cpu_rq(cpu); 1798 struct rq_flags rf; 1799 1800 rcu_read_lock(); 1801 1802 if (!is_idle_task(rcu_dereference(rq->curr))) 1803 goto out; 1804 1805 if (set_nr_if_polling(rq->idle)) { 1806 trace_sched_wake_idle_without_ipi(cpu); 1807 } else { 1808 rq_lock_irqsave(rq, &rf); 1809 if (is_idle_task(rq->curr)) 1810 smp_send_reschedule(cpu); 1811 /* Else CPU is not idle, do nothing here: */ 1812 rq_unlock_irqrestore(rq, &rf); 1813 } 1814 1815 out: 1816 rcu_read_unlock(); 1817 } 1818 1819 bool cpus_share_cache(int this_cpu, int that_cpu) 1820 { 1821 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1822 } 1823 #endif /* CONFIG_SMP */ 1824 1825 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1826 { 1827 struct rq *rq = cpu_rq(cpu); 1828 struct rq_flags rf; 1829 1830 #if defined(CONFIG_SMP) 1831 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1832 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1833 ttwu_queue_remote(p, cpu, wake_flags); 1834 return; 1835 } 1836 #endif 1837 1838 rq_lock(rq, &rf); 1839 update_rq_clock(rq); 1840 ttwu_do_activate(rq, p, wake_flags, &rf); 1841 rq_unlock(rq, &rf); 1842 } 1843 1844 /* 1845 * Notes on Program-Order guarantees on SMP systems. 1846 * 1847 * MIGRATION 1848 * 1849 * The basic program-order guarantee on SMP systems is that when a task [t] 1850 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1851 * execution on its new CPU [c1]. 1852 * 1853 * For migration (of runnable tasks) this is provided by the following means: 1854 * 1855 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1856 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1857 * rq(c1)->lock (if not at the same time, then in that order). 1858 * C) LOCK of the rq(c1)->lock scheduling in task 1859 * 1860 * Transitivity guarantees that B happens after A and C after B. 1861 * Note: we only require RCpc transitivity. 1862 * Note: the CPU doing B need not be c0 or c1 1863 * 1864 * Example: 1865 * 1866 * CPU0 CPU1 CPU2 1867 * 1868 * LOCK rq(0)->lock 1869 * sched-out X 1870 * sched-in Y 1871 * UNLOCK rq(0)->lock 1872 * 1873 * LOCK rq(0)->lock // orders against CPU0 1874 * dequeue X 1875 * UNLOCK rq(0)->lock 1876 * 1877 * LOCK rq(1)->lock 1878 * enqueue X 1879 * UNLOCK rq(1)->lock 1880 * 1881 * LOCK rq(1)->lock // orders against CPU2 1882 * sched-out Z 1883 * sched-in X 1884 * UNLOCK rq(1)->lock 1885 * 1886 * 1887 * BLOCKING -- aka. SLEEP + WAKEUP 1888 * 1889 * For blocking we (obviously) need to provide the same guarantee as for 1890 * migration. However the means are completely different as there is no lock 1891 * chain to provide order. Instead we do: 1892 * 1893 * 1) smp_store_release(X->on_cpu, 0) 1894 * 2) smp_cond_load_acquire(!X->on_cpu) 1895 * 1896 * Example: 1897 * 1898 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1899 * 1900 * LOCK rq(0)->lock LOCK X->pi_lock 1901 * dequeue X 1902 * sched-out X 1903 * smp_store_release(X->on_cpu, 0); 1904 * 1905 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1906 * X->state = WAKING 1907 * set_task_cpu(X,2) 1908 * 1909 * LOCK rq(2)->lock 1910 * enqueue X 1911 * X->state = RUNNING 1912 * UNLOCK rq(2)->lock 1913 * 1914 * LOCK rq(2)->lock // orders against CPU1 1915 * sched-out Z 1916 * sched-in X 1917 * UNLOCK rq(2)->lock 1918 * 1919 * UNLOCK X->pi_lock 1920 * UNLOCK rq(0)->lock 1921 * 1922 * 1923 * However; for wakeups there is a second guarantee we must provide, namely we 1924 * must observe the state that lead to our wakeup. That is, not only must our 1925 * task observe its own prior state, it must also observe the stores prior to 1926 * its wakeup. 1927 * 1928 * This means that any means of doing remote wakeups must order the CPU doing 1929 * the wakeup against the CPU the task is going to end up running on. This, 1930 * however, is already required for the regular Program-Order guarantee above, 1931 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1932 * 1933 */ 1934 1935 /** 1936 * try_to_wake_up - wake up a thread 1937 * @p: the thread to be awakened 1938 * @state: the mask of task states that can be woken 1939 * @wake_flags: wake modifier flags (WF_*) 1940 * 1941 * If (@state & @p->state) @p->state = TASK_RUNNING. 1942 * 1943 * If the task was not queued/runnable, also place it back on a runqueue. 1944 * 1945 * Atomic against schedule() which would dequeue a task, also see 1946 * set_current_state(). 1947 * 1948 * Return: %true if @p->state changes (an actual wakeup was done), 1949 * %false otherwise. 1950 */ 1951 static int 1952 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1953 { 1954 unsigned long flags; 1955 int cpu, success = 0; 1956 1957 /* 1958 * If we are going to wake up a thread waiting for CONDITION we 1959 * need to ensure that CONDITION=1 done by the caller can not be 1960 * reordered with p->state check below. This pairs with mb() in 1961 * set_current_state() the waiting thread does. 1962 */ 1963 raw_spin_lock_irqsave(&p->pi_lock, flags); 1964 smp_mb__after_spinlock(); 1965 if (!(p->state & state)) 1966 goto out; 1967 1968 trace_sched_waking(p); 1969 1970 /* We're going to change ->state: */ 1971 success = 1; 1972 cpu = task_cpu(p); 1973 1974 /* 1975 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1976 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1977 * in smp_cond_load_acquire() below. 1978 * 1979 * sched_ttwu_pending() try_to_wake_up() 1980 * [S] p->on_rq = 1; [L] P->state 1981 * UNLOCK rq->lock -----. 1982 * \ 1983 * +--- RMB 1984 * schedule() / 1985 * LOCK rq->lock -----' 1986 * UNLOCK rq->lock 1987 * 1988 * [task p] 1989 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 1990 * 1991 * Pairs with the UNLOCK+LOCK on rq->lock from the 1992 * last wakeup of our task and the schedule that got our task 1993 * current. 1994 */ 1995 smp_rmb(); 1996 if (p->on_rq && ttwu_remote(p, wake_flags)) 1997 goto stat; 1998 1999 #ifdef CONFIG_SMP 2000 /* 2001 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2002 * possible to, falsely, observe p->on_cpu == 0. 2003 * 2004 * One must be running (->on_cpu == 1) in order to remove oneself 2005 * from the runqueue. 2006 * 2007 * [S] ->on_cpu = 1; [L] ->on_rq 2008 * UNLOCK rq->lock 2009 * RMB 2010 * LOCK rq->lock 2011 * [S] ->on_rq = 0; [L] ->on_cpu 2012 * 2013 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2014 * from the consecutive calls to schedule(); the first switching to our 2015 * task, the second putting it to sleep. 2016 */ 2017 smp_rmb(); 2018 2019 /* 2020 * If the owning (remote) CPU is still in the middle of schedule() with 2021 * this task as prev, wait until its done referencing the task. 2022 * 2023 * Pairs with the smp_store_release() in finish_task(). 2024 * 2025 * This ensures that tasks getting woken will be fully ordered against 2026 * their previous state and preserve Program Order. 2027 */ 2028 smp_cond_load_acquire(&p->on_cpu, !VAL); 2029 2030 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2031 p->state = TASK_WAKING; 2032 2033 if (p->in_iowait) { 2034 delayacct_blkio_end(p); 2035 atomic_dec(&task_rq(p)->nr_iowait); 2036 } 2037 2038 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2039 if (task_cpu(p) != cpu) { 2040 wake_flags |= WF_MIGRATED; 2041 set_task_cpu(p, cpu); 2042 } 2043 2044 #else /* CONFIG_SMP */ 2045 2046 if (p->in_iowait) { 2047 delayacct_blkio_end(p); 2048 atomic_dec(&task_rq(p)->nr_iowait); 2049 } 2050 2051 #endif /* CONFIG_SMP */ 2052 2053 ttwu_queue(p, cpu, wake_flags); 2054 stat: 2055 ttwu_stat(p, cpu, wake_flags); 2056 out: 2057 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2058 2059 return success; 2060 } 2061 2062 /** 2063 * try_to_wake_up_local - try to wake up a local task with rq lock held 2064 * @p: the thread to be awakened 2065 * @rf: request-queue flags for pinning 2066 * 2067 * Put @p on the run-queue if it's not already there. The caller must 2068 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2069 * the current task. 2070 */ 2071 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2072 { 2073 struct rq *rq = task_rq(p); 2074 2075 if (WARN_ON_ONCE(rq != this_rq()) || 2076 WARN_ON_ONCE(p == current)) 2077 return; 2078 2079 lockdep_assert_held(&rq->lock); 2080 2081 if (!raw_spin_trylock(&p->pi_lock)) { 2082 /* 2083 * This is OK, because current is on_cpu, which avoids it being 2084 * picked for load-balance and preemption/IRQs are still 2085 * disabled avoiding further scheduler activity on it and we've 2086 * not yet picked a replacement task. 2087 */ 2088 rq_unlock(rq, rf); 2089 raw_spin_lock(&p->pi_lock); 2090 rq_relock(rq, rf); 2091 } 2092 2093 if (!(p->state & TASK_NORMAL)) 2094 goto out; 2095 2096 trace_sched_waking(p); 2097 2098 if (!task_on_rq_queued(p)) { 2099 if (p->in_iowait) { 2100 delayacct_blkio_end(p); 2101 atomic_dec(&rq->nr_iowait); 2102 } 2103 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2104 } 2105 2106 ttwu_do_wakeup(rq, p, 0, rf); 2107 ttwu_stat(p, smp_processor_id(), 0); 2108 out: 2109 raw_spin_unlock(&p->pi_lock); 2110 } 2111 2112 /** 2113 * wake_up_process - Wake up a specific process 2114 * @p: The process to be woken up. 2115 * 2116 * Attempt to wake up the nominated process and move it to the set of runnable 2117 * processes. 2118 * 2119 * Return: 1 if the process was woken up, 0 if it was already running. 2120 * 2121 * It may be assumed that this function implies a write memory barrier before 2122 * changing the task state if and only if any tasks are woken up. 2123 */ 2124 int wake_up_process(struct task_struct *p) 2125 { 2126 return try_to_wake_up(p, TASK_NORMAL, 0); 2127 } 2128 EXPORT_SYMBOL(wake_up_process); 2129 2130 int wake_up_state(struct task_struct *p, unsigned int state) 2131 { 2132 return try_to_wake_up(p, state, 0); 2133 } 2134 2135 /* 2136 * Perform scheduler related setup for a newly forked process p. 2137 * p is forked by current. 2138 * 2139 * __sched_fork() is basic setup used by init_idle() too: 2140 */ 2141 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2142 { 2143 p->on_rq = 0; 2144 2145 p->se.on_rq = 0; 2146 p->se.exec_start = 0; 2147 p->se.sum_exec_runtime = 0; 2148 p->se.prev_sum_exec_runtime = 0; 2149 p->se.nr_migrations = 0; 2150 p->se.vruntime = 0; 2151 INIT_LIST_HEAD(&p->se.group_node); 2152 2153 #ifdef CONFIG_FAIR_GROUP_SCHED 2154 p->se.cfs_rq = NULL; 2155 #endif 2156 2157 #ifdef CONFIG_SCHEDSTATS 2158 /* Even if schedstat is disabled, there should not be garbage */ 2159 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2160 #endif 2161 2162 RB_CLEAR_NODE(&p->dl.rb_node); 2163 init_dl_task_timer(&p->dl); 2164 init_dl_inactive_task_timer(&p->dl); 2165 __dl_clear_params(p); 2166 2167 INIT_LIST_HEAD(&p->rt.run_list); 2168 p->rt.timeout = 0; 2169 p->rt.time_slice = sched_rr_timeslice; 2170 p->rt.on_rq = 0; 2171 p->rt.on_list = 0; 2172 2173 #ifdef CONFIG_PREEMPT_NOTIFIERS 2174 INIT_HLIST_HEAD(&p->preempt_notifiers); 2175 #endif 2176 2177 #ifdef CONFIG_NUMA_BALANCING 2178 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2179 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2180 p->mm->numa_scan_seq = 0; 2181 } 2182 2183 if (clone_flags & CLONE_VM) 2184 p->numa_preferred_nid = current->numa_preferred_nid; 2185 else 2186 p->numa_preferred_nid = -1; 2187 2188 p->node_stamp = 0ULL; 2189 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2190 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2191 p->numa_work.next = &p->numa_work; 2192 p->numa_faults = NULL; 2193 p->last_task_numa_placement = 0; 2194 p->last_sum_exec_runtime = 0; 2195 2196 p->numa_group = NULL; 2197 #endif /* CONFIG_NUMA_BALANCING */ 2198 } 2199 2200 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2201 2202 #ifdef CONFIG_NUMA_BALANCING 2203 2204 void set_numabalancing_state(bool enabled) 2205 { 2206 if (enabled) 2207 static_branch_enable(&sched_numa_balancing); 2208 else 2209 static_branch_disable(&sched_numa_balancing); 2210 } 2211 2212 #ifdef CONFIG_PROC_SYSCTL 2213 int sysctl_numa_balancing(struct ctl_table *table, int write, 2214 void __user *buffer, size_t *lenp, loff_t *ppos) 2215 { 2216 struct ctl_table t; 2217 int err; 2218 int state = static_branch_likely(&sched_numa_balancing); 2219 2220 if (write && !capable(CAP_SYS_ADMIN)) 2221 return -EPERM; 2222 2223 t = *table; 2224 t.data = &state; 2225 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2226 if (err < 0) 2227 return err; 2228 if (write) 2229 set_numabalancing_state(state); 2230 return err; 2231 } 2232 #endif 2233 #endif 2234 2235 #ifdef CONFIG_SCHEDSTATS 2236 2237 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2238 static bool __initdata __sched_schedstats = false; 2239 2240 static void set_schedstats(bool enabled) 2241 { 2242 if (enabled) 2243 static_branch_enable(&sched_schedstats); 2244 else 2245 static_branch_disable(&sched_schedstats); 2246 } 2247 2248 void force_schedstat_enabled(void) 2249 { 2250 if (!schedstat_enabled()) { 2251 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2252 static_branch_enable(&sched_schedstats); 2253 } 2254 } 2255 2256 static int __init setup_schedstats(char *str) 2257 { 2258 int ret = 0; 2259 if (!str) 2260 goto out; 2261 2262 /* 2263 * This code is called before jump labels have been set up, so we can't 2264 * change the static branch directly just yet. Instead set a temporary 2265 * variable so init_schedstats() can do it later. 2266 */ 2267 if (!strcmp(str, "enable")) { 2268 __sched_schedstats = true; 2269 ret = 1; 2270 } else if (!strcmp(str, "disable")) { 2271 __sched_schedstats = false; 2272 ret = 1; 2273 } 2274 out: 2275 if (!ret) 2276 pr_warn("Unable to parse schedstats=\n"); 2277 2278 return ret; 2279 } 2280 __setup("schedstats=", setup_schedstats); 2281 2282 static void __init init_schedstats(void) 2283 { 2284 set_schedstats(__sched_schedstats); 2285 } 2286 2287 #ifdef CONFIG_PROC_SYSCTL 2288 int sysctl_schedstats(struct ctl_table *table, int write, 2289 void __user *buffer, size_t *lenp, loff_t *ppos) 2290 { 2291 struct ctl_table t; 2292 int err; 2293 int state = static_branch_likely(&sched_schedstats); 2294 2295 if (write && !capable(CAP_SYS_ADMIN)) 2296 return -EPERM; 2297 2298 t = *table; 2299 t.data = &state; 2300 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2301 if (err < 0) 2302 return err; 2303 if (write) 2304 set_schedstats(state); 2305 return err; 2306 } 2307 #endif /* CONFIG_PROC_SYSCTL */ 2308 #else /* !CONFIG_SCHEDSTATS */ 2309 static inline void init_schedstats(void) {} 2310 #endif /* CONFIG_SCHEDSTATS */ 2311 2312 /* 2313 * fork()/clone()-time setup: 2314 */ 2315 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2316 { 2317 unsigned long flags; 2318 int cpu = get_cpu(); 2319 2320 __sched_fork(clone_flags, p); 2321 /* 2322 * We mark the process as NEW here. This guarantees that 2323 * nobody will actually run it, and a signal or other external 2324 * event cannot wake it up and insert it on the runqueue either. 2325 */ 2326 p->state = TASK_NEW; 2327 2328 /* 2329 * Make sure we do not leak PI boosting priority to the child. 2330 */ 2331 p->prio = current->normal_prio; 2332 2333 /* 2334 * Revert to default priority/policy on fork if requested. 2335 */ 2336 if (unlikely(p->sched_reset_on_fork)) { 2337 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2338 p->policy = SCHED_NORMAL; 2339 p->static_prio = NICE_TO_PRIO(0); 2340 p->rt_priority = 0; 2341 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2342 p->static_prio = NICE_TO_PRIO(0); 2343 2344 p->prio = p->normal_prio = __normal_prio(p); 2345 set_load_weight(p, false); 2346 2347 /* 2348 * We don't need the reset flag anymore after the fork. It has 2349 * fulfilled its duty: 2350 */ 2351 p->sched_reset_on_fork = 0; 2352 } 2353 2354 if (dl_prio(p->prio)) { 2355 put_cpu(); 2356 return -EAGAIN; 2357 } else if (rt_prio(p->prio)) { 2358 p->sched_class = &rt_sched_class; 2359 } else { 2360 p->sched_class = &fair_sched_class; 2361 } 2362 2363 init_entity_runnable_average(&p->se); 2364 2365 /* 2366 * The child is not yet in the pid-hash so no cgroup attach races, 2367 * and the cgroup is pinned to this child due to cgroup_fork() 2368 * is ran before sched_fork(). 2369 * 2370 * Silence PROVE_RCU. 2371 */ 2372 raw_spin_lock_irqsave(&p->pi_lock, flags); 2373 /* 2374 * We're setting the CPU for the first time, we don't migrate, 2375 * so use __set_task_cpu(). 2376 */ 2377 __set_task_cpu(p, cpu); 2378 if (p->sched_class->task_fork) 2379 p->sched_class->task_fork(p); 2380 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2381 2382 #ifdef CONFIG_SCHED_INFO 2383 if (likely(sched_info_on())) 2384 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2385 #endif 2386 #if defined(CONFIG_SMP) 2387 p->on_cpu = 0; 2388 #endif 2389 init_task_preempt_count(p); 2390 #ifdef CONFIG_SMP 2391 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2392 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2393 #endif 2394 2395 put_cpu(); 2396 return 0; 2397 } 2398 2399 unsigned long to_ratio(u64 period, u64 runtime) 2400 { 2401 if (runtime == RUNTIME_INF) 2402 return BW_UNIT; 2403 2404 /* 2405 * Doing this here saves a lot of checks in all 2406 * the calling paths, and returning zero seems 2407 * safe for them anyway. 2408 */ 2409 if (period == 0) 2410 return 0; 2411 2412 return div64_u64(runtime << BW_SHIFT, period); 2413 } 2414 2415 /* 2416 * wake_up_new_task - wake up a newly created task for the first time. 2417 * 2418 * This function will do some initial scheduler statistics housekeeping 2419 * that must be done for every newly created context, then puts the task 2420 * on the runqueue and wakes it. 2421 */ 2422 void wake_up_new_task(struct task_struct *p) 2423 { 2424 struct rq_flags rf; 2425 struct rq *rq; 2426 2427 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2428 p->state = TASK_RUNNING; 2429 #ifdef CONFIG_SMP 2430 /* 2431 * Fork balancing, do it here and not earlier because: 2432 * - cpus_allowed can change in the fork path 2433 * - any previously selected CPU might disappear through hotplug 2434 * 2435 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2436 * as we're not fully set-up yet. 2437 */ 2438 p->recent_used_cpu = task_cpu(p); 2439 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2440 #endif 2441 rq = __task_rq_lock(p, &rf); 2442 update_rq_clock(rq); 2443 post_init_entity_util_avg(&p->se); 2444 2445 activate_task(rq, p, ENQUEUE_NOCLOCK); 2446 p->on_rq = TASK_ON_RQ_QUEUED; 2447 trace_sched_wakeup_new(p); 2448 check_preempt_curr(rq, p, WF_FORK); 2449 #ifdef CONFIG_SMP 2450 if (p->sched_class->task_woken) { 2451 /* 2452 * Nothing relies on rq->lock after this, so its fine to 2453 * drop it. 2454 */ 2455 rq_unpin_lock(rq, &rf); 2456 p->sched_class->task_woken(rq, p); 2457 rq_repin_lock(rq, &rf); 2458 } 2459 #endif 2460 task_rq_unlock(rq, p, &rf); 2461 } 2462 2463 #ifdef CONFIG_PREEMPT_NOTIFIERS 2464 2465 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2466 2467 void preempt_notifier_inc(void) 2468 { 2469 static_branch_inc(&preempt_notifier_key); 2470 } 2471 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2472 2473 void preempt_notifier_dec(void) 2474 { 2475 static_branch_dec(&preempt_notifier_key); 2476 } 2477 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2478 2479 /** 2480 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2481 * @notifier: notifier struct to register 2482 */ 2483 void preempt_notifier_register(struct preempt_notifier *notifier) 2484 { 2485 if (!static_branch_unlikely(&preempt_notifier_key)) 2486 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2487 2488 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2489 } 2490 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2491 2492 /** 2493 * preempt_notifier_unregister - no longer interested in preemption notifications 2494 * @notifier: notifier struct to unregister 2495 * 2496 * This is *not* safe to call from within a preemption notifier. 2497 */ 2498 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2499 { 2500 hlist_del(¬ifier->link); 2501 } 2502 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2503 2504 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2505 { 2506 struct preempt_notifier *notifier; 2507 2508 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2509 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2510 } 2511 2512 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2513 { 2514 if (static_branch_unlikely(&preempt_notifier_key)) 2515 __fire_sched_in_preempt_notifiers(curr); 2516 } 2517 2518 static void 2519 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2520 struct task_struct *next) 2521 { 2522 struct preempt_notifier *notifier; 2523 2524 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2525 notifier->ops->sched_out(notifier, next); 2526 } 2527 2528 static __always_inline void 2529 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2530 struct task_struct *next) 2531 { 2532 if (static_branch_unlikely(&preempt_notifier_key)) 2533 __fire_sched_out_preempt_notifiers(curr, next); 2534 } 2535 2536 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2537 2538 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2539 { 2540 } 2541 2542 static inline void 2543 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2544 struct task_struct *next) 2545 { 2546 } 2547 2548 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2549 2550 static inline void prepare_task(struct task_struct *next) 2551 { 2552 #ifdef CONFIG_SMP 2553 /* 2554 * Claim the task as running, we do this before switching to it 2555 * such that any running task will have this set. 2556 */ 2557 next->on_cpu = 1; 2558 #endif 2559 } 2560 2561 static inline void finish_task(struct task_struct *prev) 2562 { 2563 #ifdef CONFIG_SMP 2564 /* 2565 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2566 * We must ensure this doesn't happen until the switch is completely 2567 * finished. 2568 * 2569 * In particular, the load of prev->state in finish_task_switch() must 2570 * happen before this. 2571 * 2572 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2573 */ 2574 smp_store_release(&prev->on_cpu, 0); 2575 #endif 2576 } 2577 2578 static inline void 2579 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2580 { 2581 /* 2582 * Since the runqueue lock will be released by the next 2583 * task (which is an invalid locking op but in the case 2584 * of the scheduler it's an obvious special-case), so we 2585 * do an early lockdep release here: 2586 */ 2587 rq_unpin_lock(rq, rf); 2588 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2589 #ifdef CONFIG_DEBUG_SPINLOCK 2590 /* this is a valid case when another task releases the spinlock */ 2591 rq->lock.owner = next; 2592 #endif 2593 } 2594 2595 static inline void finish_lock_switch(struct rq *rq) 2596 { 2597 /* 2598 * If we are tracking spinlock dependencies then we have to 2599 * fix up the runqueue lock - which gets 'carried over' from 2600 * prev into current: 2601 */ 2602 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2603 raw_spin_unlock_irq(&rq->lock); 2604 } 2605 2606 /* 2607 * NOP if the arch has not defined these: 2608 */ 2609 2610 #ifndef prepare_arch_switch 2611 # define prepare_arch_switch(next) do { } while (0) 2612 #endif 2613 2614 #ifndef finish_arch_post_lock_switch 2615 # define finish_arch_post_lock_switch() do { } while (0) 2616 #endif 2617 2618 /** 2619 * prepare_task_switch - prepare to switch tasks 2620 * @rq: the runqueue preparing to switch 2621 * @prev: the current task that is being switched out 2622 * @next: the task we are going to switch to. 2623 * 2624 * This is called with the rq lock held and interrupts off. It must 2625 * be paired with a subsequent finish_task_switch after the context 2626 * switch. 2627 * 2628 * prepare_task_switch sets up locking and calls architecture specific 2629 * hooks. 2630 */ 2631 static inline void 2632 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2633 struct task_struct *next) 2634 { 2635 sched_info_switch(rq, prev, next); 2636 perf_event_task_sched_out(prev, next); 2637 fire_sched_out_preempt_notifiers(prev, next); 2638 prepare_task(next); 2639 prepare_arch_switch(next); 2640 } 2641 2642 /** 2643 * finish_task_switch - clean up after a task-switch 2644 * @prev: the thread we just switched away from. 2645 * 2646 * finish_task_switch must be called after the context switch, paired 2647 * with a prepare_task_switch call before the context switch. 2648 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2649 * and do any other architecture-specific cleanup actions. 2650 * 2651 * Note that we may have delayed dropping an mm in context_switch(). If 2652 * so, we finish that here outside of the runqueue lock. (Doing it 2653 * with the lock held can cause deadlocks; see schedule() for 2654 * details.) 2655 * 2656 * The context switch have flipped the stack from under us and restored the 2657 * local variables which were saved when this task called schedule() in the 2658 * past. prev == current is still correct but we need to recalculate this_rq 2659 * because prev may have moved to another CPU. 2660 */ 2661 static struct rq *finish_task_switch(struct task_struct *prev) 2662 __releases(rq->lock) 2663 { 2664 struct rq *rq = this_rq(); 2665 struct mm_struct *mm = rq->prev_mm; 2666 long prev_state; 2667 2668 /* 2669 * The previous task will have left us with a preempt_count of 2 2670 * because it left us after: 2671 * 2672 * schedule() 2673 * preempt_disable(); // 1 2674 * __schedule() 2675 * raw_spin_lock_irq(&rq->lock) // 2 2676 * 2677 * Also, see FORK_PREEMPT_COUNT. 2678 */ 2679 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2680 "corrupted preempt_count: %s/%d/0x%x\n", 2681 current->comm, current->pid, preempt_count())) 2682 preempt_count_set(FORK_PREEMPT_COUNT); 2683 2684 rq->prev_mm = NULL; 2685 2686 /* 2687 * A task struct has one reference for the use as "current". 2688 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2689 * schedule one last time. The schedule call will never return, and 2690 * the scheduled task must drop that reference. 2691 * 2692 * We must observe prev->state before clearing prev->on_cpu (in 2693 * finish_task), otherwise a concurrent wakeup can get prev 2694 * running on another CPU and we could rave with its RUNNING -> DEAD 2695 * transition, resulting in a double drop. 2696 */ 2697 prev_state = prev->state; 2698 vtime_task_switch(prev); 2699 perf_event_task_sched_in(prev, current); 2700 finish_task(prev); 2701 finish_lock_switch(rq); 2702 finish_arch_post_lock_switch(); 2703 2704 fire_sched_in_preempt_notifiers(current); 2705 /* 2706 * When switching through a kernel thread, the loop in 2707 * membarrier_{private,global}_expedited() may have observed that 2708 * kernel thread and not issued an IPI. It is therefore possible to 2709 * schedule between user->kernel->user threads without passing though 2710 * switch_mm(). Membarrier requires a barrier after storing to 2711 * rq->curr, before returning to userspace, so provide them here: 2712 * 2713 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2714 * provided by mmdrop(), 2715 * - a sync_core for SYNC_CORE. 2716 */ 2717 if (mm) { 2718 membarrier_mm_sync_core_before_usermode(mm); 2719 mmdrop(mm); 2720 } 2721 if (unlikely(prev_state == TASK_DEAD)) { 2722 if (prev->sched_class->task_dead) 2723 prev->sched_class->task_dead(prev); 2724 2725 /* 2726 * Remove function-return probe instances associated with this 2727 * task and put them back on the free list. 2728 */ 2729 kprobe_flush_task(prev); 2730 2731 /* Task is done with its stack. */ 2732 put_task_stack(prev); 2733 2734 put_task_struct(prev); 2735 } 2736 2737 tick_nohz_task_switch(); 2738 return rq; 2739 } 2740 2741 #ifdef CONFIG_SMP 2742 2743 /* rq->lock is NOT held, but preemption is disabled */ 2744 static void __balance_callback(struct rq *rq) 2745 { 2746 struct callback_head *head, *next; 2747 void (*func)(struct rq *rq); 2748 unsigned long flags; 2749 2750 raw_spin_lock_irqsave(&rq->lock, flags); 2751 head = rq->balance_callback; 2752 rq->balance_callback = NULL; 2753 while (head) { 2754 func = (void (*)(struct rq *))head->func; 2755 next = head->next; 2756 head->next = NULL; 2757 head = next; 2758 2759 func(rq); 2760 } 2761 raw_spin_unlock_irqrestore(&rq->lock, flags); 2762 } 2763 2764 static inline void balance_callback(struct rq *rq) 2765 { 2766 if (unlikely(rq->balance_callback)) 2767 __balance_callback(rq); 2768 } 2769 2770 #else 2771 2772 static inline void balance_callback(struct rq *rq) 2773 { 2774 } 2775 2776 #endif 2777 2778 /** 2779 * schedule_tail - first thing a freshly forked thread must call. 2780 * @prev: the thread we just switched away from. 2781 */ 2782 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2783 __releases(rq->lock) 2784 { 2785 struct rq *rq; 2786 2787 /* 2788 * New tasks start with FORK_PREEMPT_COUNT, see there and 2789 * finish_task_switch() for details. 2790 * 2791 * finish_task_switch() will drop rq->lock() and lower preempt_count 2792 * and the preempt_enable() will end up enabling preemption (on 2793 * PREEMPT_COUNT kernels). 2794 */ 2795 2796 rq = finish_task_switch(prev); 2797 balance_callback(rq); 2798 preempt_enable(); 2799 2800 if (current->set_child_tid) 2801 put_user(task_pid_vnr(current), current->set_child_tid); 2802 } 2803 2804 /* 2805 * context_switch - switch to the new MM and the new thread's register state. 2806 */ 2807 static __always_inline struct rq * 2808 context_switch(struct rq *rq, struct task_struct *prev, 2809 struct task_struct *next, struct rq_flags *rf) 2810 { 2811 struct mm_struct *mm, *oldmm; 2812 2813 prepare_task_switch(rq, prev, next); 2814 2815 mm = next->mm; 2816 oldmm = prev->active_mm; 2817 /* 2818 * For paravirt, this is coupled with an exit in switch_to to 2819 * combine the page table reload and the switch backend into 2820 * one hypercall. 2821 */ 2822 arch_start_context_switch(prev); 2823 2824 /* 2825 * If mm is non-NULL, we pass through switch_mm(). If mm is 2826 * NULL, we will pass through mmdrop() in finish_task_switch(). 2827 * Both of these contain the full memory barrier required by 2828 * membarrier after storing to rq->curr, before returning to 2829 * user-space. 2830 */ 2831 if (!mm) { 2832 next->active_mm = oldmm; 2833 mmgrab(oldmm); 2834 enter_lazy_tlb(oldmm, next); 2835 } else 2836 switch_mm_irqs_off(oldmm, mm, next); 2837 2838 if (!prev->mm) { 2839 prev->active_mm = NULL; 2840 rq->prev_mm = oldmm; 2841 } 2842 2843 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2844 2845 prepare_lock_switch(rq, next, rf); 2846 2847 /* Here we just switch the register state and the stack. */ 2848 switch_to(prev, next, prev); 2849 barrier(); 2850 2851 return finish_task_switch(prev); 2852 } 2853 2854 /* 2855 * nr_running and nr_context_switches: 2856 * 2857 * externally visible scheduler statistics: current number of runnable 2858 * threads, total number of context switches performed since bootup. 2859 */ 2860 unsigned long nr_running(void) 2861 { 2862 unsigned long i, sum = 0; 2863 2864 for_each_online_cpu(i) 2865 sum += cpu_rq(i)->nr_running; 2866 2867 return sum; 2868 } 2869 2870 /* 2871 * Check if only the current task is running on the CPU. 2872 * 2873 * Caution: this function does not check that the caller has disabled 2874 * preemption, thus the result might have a time-of-check-to-time-of-use 2875 * race. The caller is responsible to use it correctly, for example: 2876 * 2877 * - from a non-preemptable section (of course) 2878 * 2879 * - from a thread that is bound to a single CPU 2880 * 2881 * - in a loop with very short iterations (e.g. a polling loop) 2882 */ 2883 bool single_task_running(void) 2884 { 2885 return raw_rq()->nr_running == 1; 2886 } 2887 EXPORT_SYMBOL(single_task_running); 2888 2889 unsigned long long nr_context_switches(void) 2890 { 2891 int i; 2892 unsigned long long sum = 0; 2893 2894 for_each_possible_cpu(i) 2895 sum += cpu_rq(i)->nr_switches; 2896 2897 return sum; 2898 } 2899 2900 /* 2901 * IO-wait accounting, and how its mostly bollocks (on SMP). 2902 * 2903 * The idea behind IO-wait account is to account the idle time that we could 2904 * have spend running if it were not for IO. That is, if we were to improve the 2905 * storage performance, we'd have a proportional reduction in IO-wait time. 2906 * 2907 * This all works nicely on UP, where, when a task blocks on IO, we account 2908 * idle time as IO-wait, because if the storage were faster, it could've been 2909 * running and we'd not be idle. 2910 * 2911 * This has been extended to SMP, by doing the same for each CPU. This however 2912 * is broken. 2913 * 2914 * Imagine for instance the case where two tasks block on one CPU, only the one 2915 * CPU will have IO-wait accounted, while the other has regular idle. Even 2916 * though, if the storage were faster, both could've ran at the same time, 2917 * utilising both CPUs. 2918 * 2919 * This means, that when looking globally, the current IO-wait accounting on 2920 * SMP is a lower bound, by reason of under accounting. 2921 * 2922 * Worse, since the numbers are provided per CPU, they are sometimes 2923 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2924 * associated with any one particular CPU, it can wake to another CPU than it 2925 * blocked on. This means the per CPU IO-wait number is meaningless. 2926 * 2927 * Task CPU affinities can make all that even more 'interesting'. 2928 */ 2929 2930 unsigned long nr_iowait(void) 2931 { 2932 unsigned long i, sum = 0; 2933 2934 for_each_possible_cpu(i) 2935 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2936 2937 return sum; 2938 } 2939 2940 /* 2941 * Consumers of these two interfaces, like for example the cpufreq menu 2942 * governor are using nonsensical data. Boosting frequency for a CPU that has 2943 * IO-wait which might not even end up running the task when it does become 2944 * runnable. 2945 */ 2946 2947 unsigned long nr_iowait_cpu(int cpu) 2948 { 2949 struct rq *this = cpu_rq(cpu); 2950 return atomic_read(&this->nr_iowait); 2951 } 2952 2953 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2954 { 2955 struct rq *rq = this_rq(); 2956 *nr_waiters = atomic_read(&rq->nr_iowait); 2957 *load = rq->load.weight; 2958 } 2959 2960 #ifdef CONFIG_SMP 2961 2962 /* 2963 * sched_exec - execve() is a valuable balancing opportunity, because at 2964 * this point the task has the smallest effective memory and cache footprint. 2965 */ 2966 void sched_exec(void) 2967 { 2968 struct task_struct *p = current; 2969 unsigned long flags; 2970 int dest_cpu; 2971 2972 raw_spin_lock_irqsave(&p->pi_lock, flags); 2973 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2974 if (dest_cpu == smp_processor_id()) 2975 goto unlock; 2976 2977 if (likely(cpu_active(dest_cpu))) { 2978 struct migration_arg arg = { p, dest_cpu }; 2979 2980 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2981 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2982 return; 2983 } 2984 unlock: 2985 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2986 } 2987 2988 #endif 2989 2990 DEFINE_PER_CPU(struct kernel_stat, kstat); 2991 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2992 2993 EXPORT_PER_CPU_SYMBOL(kstat); 2994 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2995 2996 /* 2997 * The function fair_sched_class.update_curr accesses the struct curr 2998 * and its field curr->exec_start; when called from task_sched_runtime(), 2999 * we observe a high rate of cache misses in practice. 3000 * Prefetching this data results in improved performance. 3001 */ 3002 static inline void prefetch_curr_exec_start(struct task_struct *p) 3003 { 3004 #ifdef CONFIG_FAIR_GROUP_SCHED 3005 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3006 #else 3007 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3008 #endif 3009 prefetch(curr); 3010 prefetch(&curr->exec_start); 3011 } 3012 3013 /* 3014 * Return accounted runtime for the task. 3015 * In case the task is currently running, return the runtime plus current's 3016 * pending runtime that have not been accounted yet. 3017 */ 3018 unsigned long long task_sched_runtime(struct task_struct *p) 3019 { 3020 struct rq_flags rf; 3021 struct rq *rq; 3022 u64 ns; 3023 3024 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3025 /* 3026 * 64-bit doesn't need locks to atomically read a 64-bit value. 3027 * So we have a optimization chance when the task's delta_exec is 0. 3028 * Reading ->on_cpu is racy, but this is ok. 3029 * 3030 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3031 * If we race with it entering CPU, unaccounted time is 0. This is 3032 * indistinguishable from the read occurring a few cycles earlier. 3033 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3034 * been accounted, so we're correct here as well. 3035 */ 3036 if (!p->on_cpu || !task_on_rq_queued(p)) 3037 return p->se.sum_exec_runtime; 3038 #endif 3039 3040 rq = task_rq_lock(p, &rf); 3041 /* 3042 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3043 * project cycles that may never be accounted to this 3044 * thread, breaking clock_gettime(). 3045 */ 3046 if (task_current(rq, p) && task_on_rq_queued(p)) { 3047 prefetch_curr_exec_start(p); 3048 update_rq_clock(rq); 3049 p->sched_class->update_curr(rq); 3050 } 3051 ns = p->se.sum_exec_runtime; 3052 task_rq_unlock(rq, p, &rf); 3053 3054 return ns; 3055 } 3056 3057 /* 3058 * This function gets called by the timer code, with HZ frequency. 3059 * We call it with interrupts disabled. 3060 */ 3061 void scheduler_tick(void) 3062 { 3063 int cpu = smp_processor_id(); 3064 struct rq *rq = cpu_rq(cpu); 3065 struct task_struct *curr = rq->curr; 3066 struct rq_flags rf; 3067 3068 sched_clock_tick(); 3069 3070 rq_lock(rq, &rf); 3071 3072 update_rq_clock(rq); 3073 curr->sched_class->task_tick(rq, curr, 0); 3074 cpu_load_update_active(rq); 3075 calc_global_load_tick(rq); 3076 3077 rq_unlock(rq, &rf); 3078 3079 perf_event_task_tick(); 3080 3081 #ifdef CONFIG_SMP 3082 rq->idle_balance = idle_cpu(cpu); 3083 trigger_load_balance(rq); 3084 #endif 3085 } 3086 3087 #ifdef CONFIG_NO_HZ_FULL 3088 3089 struct tick_work { 3090 int cpu; 3091 struct delayed_work work; 3092 }; 3093 3094 static struct tick_work __percpu *tick_work_cpu; 3095 3096 static void sched_tick_remote(struct work_struct *work) 3097 { 3098 struct delayed_work *dwork = to_delayed_work(work); 3099 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3100 int cpu = twork->cpu; 3101 struct rq *rq = cpu_rq(cpu); 3102 struct rq_flags rf; 3103 3104 /* 3105 * Handle the tick only if it appears the remote CPU is running in full 3106 * dynticks mode. The check is racy by nature, but missing a tick or 3107 * having one too much is no big deal because the scheduler tick updates 3108 * statistics and checks timeslices in a time-independent way, regardless 3109 * of when exactly it is running. 3110 */ 3111 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) { 3112 struct task_struct *curr; 3113 u64 delta; 3114 3115 rq_lock_irq(rq, &rf); 3116 update_rq_clock(rq); 3117 curr = rq->curr; 3118 delta = rq_clock_task(rq) - curr->se.exec_start; 3119 3120 /* 3121 * Make sure the next tick runs within a reasonable 3122 * amount of time. 3123 */ 3124 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3125 curr->sched_class->task_tick(rq, curr, 0); 3126 rq_unlock_irq(rq, &rf); 3127 } 3128 3129 /* 3130 * Run the remote tick once per second (1Hz). This arbitrary 3131 * frequency is large enough to avoid overload but short enough 3132 * to keep scheduler internal stats reasonably up to date. 3133 */ 3134 queue_delayed_work(system_unbound_wq, dwork, HZ); 3135 } 3136 3137 static void sched_tick_start(int cpu) 3138 { 3139 struct tick_work *twork; 3140 3141 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3142 return; 3143 3144 WARN_ON_ONCE(!tick_work_cpu); 3145 3146 twork = per_cpu_ptr(tick_work_cpu, cpu); 3147 twork->cpu = cpu; 3148 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3149 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3150 } 3151 3152 #ifdef CONFIG_HOTPLUG_CPU 3153 static void sched_tick_stop(int cpu) 3154 { 3155 struct tick_work *twork; 3156 3157 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3158 return; 3159 3160 WARN_ON_ONCE(!tick_work_cpu); 3161 3162 twork = per_cpu_ptr(tick_work_cpu, cpu); 3163 cancel_delayed_work_sync(&twork->work); 3164 } 3165 #endif /* CONFIG_HOTPLUG_CPU */ 3166 3167 int __init sched_tick_offload_init(void) 3168 { 3169 tick_work_cpu = alloc_percpu(struct tick_work); 3170 BUG_ON(!tick_work_cpu); 3171 3172 return 0; 3173 } 3174 3175 #else /* !CONFIG_NO_HZ_FULL */ 3176 static inline void sched_tick_start(int cpu) { } 3177 static inline void sched_tick_stop(int cpu) { } 3178 #endif 3179 3180 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3181 defined(CONFIG_PREEMPT_TRACER)) 3182 /* 3183 * If the value passed in is equal to the current preempt count 3184 * then we just disabled preemption. Start timing the latency. 3185 */ 3186 static inline void preempt_latency_start(int val) 3187 { 3188 if (preempt_count() == val) { 3189 unsigned long ip = get_lock_parent_ip(); 3190 #ifdef CONFIG_DEBUG_PREEMPT 3191 current->preempt_disable_ip = ip; 3192 #endif 3193 trace_preempt_off(CALLER_ADDR0, ip); 3194 } 3195 } 3196 3197 void preempt_count_add(int val) 3198 { 3199 #ifdef CONFIG_DEBUG_PREEMPT 3200 /* 3201 * Underflow? 3202 */ 3203 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3204 return; 3205 #endif 3206 __preempt_count_add(val); 3207 #ifdef CONFIG_DEBUG_PREEMPT 3208 /* 3209 * Spinlock count overflowing soon? 3210 */ 3211 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3212 PREEMPT_MASK - 10); 3213 #endif 3214 preempt_latency_start(val); 3215 } 3216 EXPORT_SYMBOL(preempt_count_add); 3217 NOKPROBE_SYMBOL(preempt_count_add); 3218 3219 /* 3220 * If the value passed in equals to the current preempt count 3221 * then we just enabled preemption. Stop timing the latency. 3222 */ 3223 static inline void preempt_latency_stop(int val) 3224 { 3225 if (preempt_count() == val) 3226 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3227 } 3228 3229 void preempt_count_sub(int val) 3230 { 3231 #ifdef CONFIG_DEBUG_PREEMPT 3232 /* 3233 * Underflow? 3234 */ 3235 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3236 return; 3237 /* 3238 * Is the spinlock portion underflowing? 3239 */ 3240 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3241 !(preempt_count() & PREEMPT_MASK))) 3242 return; 3243 #endif 3244 3245 preempt_latency_stop(val); 3246 __preempt_count_sub(val); 3247 } 3248 EXPORT_SYMBOL(preempt_count_sub); 3249 NOKPROBE_SYMBOL(preempt_count_sub); 3250 3251 #else 3252 static inline void preempt_latency_start(int val) { } 3253 static inline void preempt_latency_stop(int val) { } 3254 #endif 3255 3256 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3257 { 3258 #ifdef CONFIG_DEBUG_PREEMPT 3259 return p->preempt_disable_ip; 3260 #else 3261 return 0; 3262 #endif 3263 } 3264 3265 /* 3266 * Print scheduling while atomic bug: 3267 */ 3268 static noinline void __schedule_bug(struct task_struct *prev) 3269 { 3270 /* Save this before calling printk(), since that will clobber it */ 3271 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3272 3273 if (oops_in_progress) 3274 return; 3275 3276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3277 prev->comm, prev->pid, preempt_count()); 3278 3279 debug_show_held_locks(prev); 3280 print_modules(); 3281 if (irqs_disabled()) 3282 print_irqtrace_events(prev); 3283 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3284 && in_atomic_preempt_off()) { 3285 pr_err("Preemption disabled at:"); 3286 print_ip_sym(preempt_disable_ip); 3287 pr_cont("\n"); 3288 } 3289 if (panic_on_warn) 3290 panic("scheduling while atomic\n"); 3291 3292 dump_stack(); 3293 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3294 } 3295 3296 /* 3297 * Various schedule()-time debugging checks and statistics: 3298 */ 3299 static inline void schedule_debug(struct task_struct *prev) 3300 { 3301 #ifdef CONFIG_SCHED_STACK_END_CHECK 3302 if (task_stack_end_corrupted(prev)) 3303 panic("corrupted stack end detected inside scheduler\n"); 3304 #endif 3305 3306 if (unlikely(in_atomic_preempt_off())) { 3307 __schedule_bug(prev); 3308 preempt_count_set(PREEMPT_DISABLED); 3309 } 3310 rcu_sleep_check(); 3311 3312 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3313 3314 schedstat_inc(this_rq()->sched_count); 3315 } 3316 3317 /* 3318 * Pick up the highest-prio task: 3319 */ 3320 static inline struct task_struct * 3321 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3322 { 3323 const struct sched_class *class; 3324 struct task_struct *p; 3325 3326 /* 3327 * Optimization: we know that if all tasks are in the fair class we can 3328 * call that function directly, but only if the @prev task wasn't of a 3329 * higher scheduling class, because otherwise those loose the 3330 * opportunity to pull in more work from other CPUs. 3331 */ 3332 if (likely((prev->sched_class == &idle_sched_class || 3333 prev->sched_class == &fair_sched_class) && 3334 rq->nr_running == rq->cfs.h_nr_running)) { 3335 3336 p = fair_sched_class.pick_next_task(rq, prev, rf); 3337 if (unlikely(p == RETRY_TASK)) 3338 goto again; 3339 3340 /* Assumes fair_sched_class->next == idle_sched_class */ 3341 if (unlikely(!p)) 3342 p = idle_sched_class.pick_next_task(rq, prev, rf); 3343 3344 return p; 3345 } 3346 3347 again: 3348 for_each_class(class) { 3349 p = class->pick_next_task(rq, prev, rf); 3350 if (p) { 3351 if (unlikely(p == RETRY_TASK)) 3352 goto again; 3353 return p; 3354 } 3355 } 3356 3357 /* The idle class should always have a runnable task: */ 3358 BUG(); 3359 } 3360 3361 /* 3362 * __schedule() is the main scheduler function. 3363 * 3364 * The main means of driving the scheduler and thus entering this function are: 3365 * 3366 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3367 * 3368 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3369 * paths. For example, see arch/x86/entry_64.S. 3370 * 3371 * To drive preemption between tasks, the scheduler sets the flag in timer 3372 * interrupt handler scheduler_tick(). 3373 * 3374 * 3. Wakeups don't really cause entry into schedule(). They add a 3375 * task to the run-queue and that's it. 3376 * 3377 * Now, if the new task added to the run-queue preempts the current 3378 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3379 * called on the nearest possible occasion: 3380 * 3381 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3382 * 3383 * - in syscall or exception context, at the next outmost 3384 * preempt_enable(). (this might be as soon as the wake_up()'s 3385 * spin_unlock()!) 3386 * 3387 * - in IRQ context, return from interrupt-handler to 3388 * preemptible context 3389 * 3390 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3391 * then at the next: 3392 * 3393 * - cond_resched() call 3394 * - explicit schedule() call 3395 * - return from syscall or exception to user-space 3396 * - return from interrupt-handler to user-space 3397 * 3398 * WARNING: must be called with preemption disabled! 3399 */ 3400 static void __sched notrace __schedule(bool preempt) 3401 { 3402 struct task_struct *prev, *next; 3403 unsigned long *switch_count; 3404 struct rq_flags rf; 3405 struct rq *rq; 3406 int cpu; 3407 3408 cpu = smp_processor_id(); 3409 rq = cpu_rq(cpu); 3410 prev = rq->curr; 3411 3412 schedule_debug(prev); 3413 3414 if (sched_feat(HRTICK)) 3415 hrtick_clear(rq); 3416 3417 local_irq_disable(); 3418 rcu_note_context_switch(preempt); 3419 3420 /* 3421 * Make sure that signal_pending_state()->signal_pending() below 3422 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3423 * done by the caller to avoid the race with signal_wake_up(). 3424 * 3425 * The membarrier system call requires a full memory barrier 3426 * after coming from user-space, before storing to rq->curr. 3427 */ 3428 rq_lock(rq, &rf); 3429 smp_mb__after_spinlock(); 3430 3431 /* Promote REQ to ACT */ 3432 rq->clock_update_flags <<= 1; 3433 update_rq_clock(rq); 3434 3435 switch_count = &prev->nivcsw; 3436 if (!preempt && prev->state) { 3437 if (unlikely(signal_pending_state(prev->state, prev))) { 3438 prev->state = TASK_RUNNING; 3439 } else { 3440 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3441 prev->on_rq = 0; 3442 3443 if (prev->in_iowait) { 3444 atomic_inc(&rq->nr_iowait); 3445 delayacct_blkio_start(); 3446 } 3447 3448 /* 3449 * If a worker went to sleep, notify and ask workqueue 3450 * whether it wants to wake up a task to maintain 3451 * concurrency. 3452 */ 3453 if (prev->flags & PF_WQ_WORKER) { 3454 struct task_struct *to_wakeup; 3455 3456 to_wakeup = wq_worker_sleeping(prev); 3457 if (to_wakeup) 3458 try_to_wake_up_local(to_wakeup, &rf); 3459 } 3460 } 3461 switch_count = &prev->nvcsw; 3462 } 3463 3464 next = pick_next_task(rq, prev, &rf); 3465 clear_tsk_need_resched(prev); 3466 clear_preempt_need_resched(); 3467 3468 if (likely(prev != next)) { 3469 rq->nr_switches++; 3470 rq->curr = next; 3471 /* 3472 * The membarrier system call requires each architecture 3473 * to have a full memory barrier after updating 3474 * rq->curr, before returning to user-space. 3475 * 3476 * Here are the schemes providing that barrier on the 3477 * various architectures: 3478 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3479 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3480 * - finish_lock_switch() for weakly-ordered 3481 * architectures where spin_unlock is a full barrier, 3482 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3483 * is a RELEASE barrier), 3484 */ 3485 ++*switch_count; 3486 3487 trace_sched_switch(preempt, prev, next); 3488 3489 /* Also unlocks the rq: */ 3490 rq = context_switch(rq, prev, next, &rf); 3491 } else { 3492 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3493 rq_unlock_irq(rq, &rf); 3494 } 3495 3496 balance_callback(rq); 3497 } 3498 3499 void __noreturn do_task_dead(void) 3500 { 3501 /* 3502 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3503 * when the following two conditions become true. 3504 * - There is race condition of mmap_sem (It is acquired by 3505 * exit_mm()), and 3506 * - SMI occurs before setting TASK_RUNINNG. 3507 * (or hypervisor of virtual machine switches to other guest) 3508 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3509 * 3510 * To avoid it, we have to wait for releasing tsk->pi_lock which 3511 * is held by try_to_wake_up() 3512 */ 3513 raw_spin_lock_irq(¤t->pi_lock); 3514 raw_spin_unlock_irq(¤t->pi_lock); 3515 3516 /* Causes final put_task_struct in finish_task_switch(): */ 3517 __set_current_state(TASK_DEAD); 3518 3519 /* Tell freezer to ignore us: */ 3520 current->flags |= PF_NOFREEZE; 3521 3522 __schedule(false); 3523 BUG(); 3524 3525 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3526 for (;;) 3527 cpu_relax(); 3528 } 3529 3530 static inline void sched_submit_work(struct task_struct *tsk) 3531 { 3532 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3533 return; 3534 /* 3535 * If we are going to sleep and we have plugged IO queued, 3536 * make sure to submit it to avoid deadlocks. 3537 */ 3538 if (blk_needs_flush_plug(tsk)) 3539 blk_schedule_flush_plug(tsk); 3540 } 3541 3542 asmlinkage __visible void __sched schedule(void) 3543 { 3544 struct task_struct *tsk = current; 3545 3546 sched_submit_work(tsk); 3547 do { 3548 preempt_disable(); 3549 __schedule(false); 3550 sched_preempt_enable_no_resched(); 3551 } while (need_resched()); 3552 } 3553 EXPORT_SYMBOL(schedule); 3554 3555 /* 3556 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3557 * state (have scheduled out non-voluntarily) by making sure that all 3558 * tasks have either left the run queue or have gone into user space. 3559 * As idle tasks do not do either, they must not ever be preempted 3560 * (schedule out non-voluntarily). 3561 * 3562 * schedule_idle() is similar to schedule_preempt_disable() except that it 3563 * never enables preemption because it does not call sched_submit_work(). 3564 */ 3565 void __sched schedule_idle(void) 3566 { 3567 /* 3568 * As this skips calling sched_submit_work(), which the idle task does 3569 * regardless because that function is a nop when the task is in a 3570 * TASK_RUNNING state, make sure this isn't used someplace that the 3571 * current task can be in any other state. Note, idle is always in the 3572 * TASK_RUNNING state. 3573 */ 3574 WARN_ON_ONCE(current->state); 3575 do { 3576 __schedule(false); 3577 } while (need_resched()); 3578 } 3579 3580 #ifdef CONFIG_CONTEXT_TRACKING 3581 asmlinkage __visible void __sched schedule_user(void) 3582 { 3583 /* 3584 * If we come here after a random call to set_need_resched(), 3585 * or we have been woken up remotely but the IPI has not yet arrived, 3586 * we haven't yet exited the RCU idle mode. Do it here manually until 3587 * we find a better solution. 3588 * 3589 * NB: There are buggy callers of this function. Ideally we 3590 * should warn if prev_state != CONTEXT_USER, but that will trigger 3591 * too frequently to make sense yet. 3592 */ 3593 enum ctx_state prev_state = exception_enter(); 3594 schedule(); 3595 exception_exit(prev_state); 3596 } 3597 #endif 3598 3599 /** 3600 * schedule_preempt_disabled - called with preemption disabled 3601 * 3602 * Returns with preemption disabled. Note: preempt_count must be 1 3603 */ 3604 void __sched schedule_preempt_disabled(void) 3605 { 3606 sched_preempt_enable_no_resched(); 3607 schedule(); 3608 preempt_disable(); 3609 } 3610 3611 static void __sched notrace preempt_schedule_common(void) 3612 { 3613 do { 3614 /* 3615 * Because the function tracer can trace preempt_count_sub() 3616 * and it also uses preempt_enable/disable_notrace(), if 3617 * NEED_RESCHED is set, the preempt_enable_notrace() called 3618 * by the function tracer will call this function again and 3619 * cause infinite recursion. 3620 * 3621 * Preemption must be disabled here before the function 3622 * tracer can trace. Break up preempt_disable() into two 3623 * calls. One to disable preemption without fear of being 3624 * traced. The other to still record the preemption latency, 3625 * which can also be traced by the function tracer. 3626 */ 3627 preempt_disable_notrace(); 3628 preempt_latency_start(1); 3629 __schedule(true); 3630 preempt_latency_stop(1); 3631 preempt_enable_no_resched_notrace(); 3632 3633 /* 3634 * Check again in case we missed a preemption opportunity 3635 * between schedule and now. 3636 */ 3637 } while (need_resched()); 3638 } 3639 3640 #ifdef CONFIG_PREEMPT 3641 /* 3642 * this is the entry point to schedule() from in-kernel preemption 3643 * off of preempt_enable. Kernel preemptions off return from interrupt 3644 * occur there and call schedule directly. 3645 */ 3646 asmlinkage __visible void __sched notrace preempt_schedule(void) 3647 { 3648 /* 3649 * If there is a non-zero preempt_count or interrupts are disabled, 3650 * we do not want to preempt the current task. Just return.. 3651 */ 3652 if (likely(!preemptible())) 3653 return; 3654 3655 preempt_schedule_common(); 3656 } 3657 NOKPROBE_SYMBOL(preempt_schedule); 3658 EXPORT_SYMBOL(preempt_schedule); 3659 3660 /** 3661 * preempt_schedule_notrace - preempt_schedule called by tracing 3662 * 3663 * The tracing infrastructure uses preempt_enable_notrace to prevent 3664 * recursion and tracing preempt enabling caused by the tracing 3665 * infrastructure itself. But as tracing can happen in areas coming 3666 * from userspace or just about to enter userspace, a preempt enable 3667 * can occur before user_exit() is called. This will cause the scheduler 3668 * to be called when the system is still in usermode. 3669 * 3670 * To prevent this, the preempt_enable_notrace will use this function 3671 * instead of preempt_schedule() to exit user context if needed before 3672 * calling the scheduler. 3673 */ 3674 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3675 { 3676 enum ctx_state prev_ctx; 3677 3678 if (likely(!preemptible())) 3679 return; 3680 3681 do { 3682 /* 3683 * Because the function tracer can trace preempt_count_sub() 3684 * and it also uses preempt_enable/disable_notrace(), if 3685 * NEED_RESCHED is set, the preempt_enable_notrace() called 3686 * by the function tracer will call this function again and 3687 * cause infinite recursion. 3688 * 3689 * Preemption must be disabled here before the function 3690 * tracer can trace. Break up preempt_disable() into two 3691 * calls. One to disable preemption without fear of being 3692 * traced. The other to still record the preemption latency, 3693 * which can also be traced by the function tracer. 3694 */ 3695 preempt_disable_notrace(); 3696 preempt_latency_start(1); 3697 /* 3698 * Needs preempt disabled in case user_exit() is traced 3699 * and the tracer calls preempt_enable_notrace() causing 3700 * an infinite recursion. 3701 */ 3702 prev_ctx = exception_enter(); 3703 __schedule(true); 3704 exception_exit(prev_ctx); 3705 3706 preempt_latency_stop(1); 3707 preempt_enable_no_resched_notrace(); 3708 } while (need_resched()); 3709 } 3710 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3711 3712 #endif /* CONFIG_PREEMPT */ 3713 3714 /* 3715 * this is the entry point to schedule() from kernel preemption 3716 * off of irq context. 3717 * Note, that this is called and return with irqs disabled. This will 3718 * protect us against recursive calling from irq. 3719 */ 3720 asmlinkage __visible void __sched preempt_schedule_irq(void) 3721 { 3722 enum ctx_state prev_state; 3723 3724 /* Catch callers which need to be fixed */ 3725 BUG_ON(preempt_count() || !irqs_disabled()); 3726 3727 prev_state = exception_enter(); 3728 3729 do { 3730 preempt_disable(); 3731 local_irq_enable(); 3732 __schedule(true); 3733 local_irq_disable(); 3734 sched_preempt_enable_no_resched(); 3735 } while (need_resched()); 3736 3737 exception_exit(prev_state); 3738 } 3739 3740 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3741 void *key) 3742 { 3743 return try_to_wake_up(curr->private, mode, wake_flags); 3744 } 3745 EXPORT_SYMBOL(default_wake_function); 3746 3747 #ifdef CONFIG_RT_MUTEXES 3748 3749 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3750 { 3751 if (pi_task) 3752 prio = min(prio, pi_task->prio); 3753 3754 return prio; 3755 } 3756 3757 static inline int rt_effective_prio(struct task_struct *p, int prio) 3758 { 3759 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3760 3761 return __rt_effective_prio(pi_task, prio); 3762 } 3763 3764 /* 3765 * rt_mutex_setprio - set the current priority of a task 3766 * @p: task to boost 3767 * @pi_task: donor task 3768 * 3769 * This function changes the 'effective' priority of a task. It does 3770 * not touch ->normal_prio like __setscheduler(). 3771 * 3772 * Used by the rt_mutex code to implement priority inheritance 3773 * logic. Call site only calls if the priority of the task changed. 3774 */ 3775 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3776 { 3777 int prio, oldprio, queued, running, queue_flag = 3778 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3779 const struct sched_class *prev_class; 3780 struct rq_flags rf; 3781 struct rq *rq; 3782 3783 /* XXX used to be waiter->prio, not waiter->task->prio */ 3784 prio = __rt_effective_prio(pi_task, p->normal_prio); 3785 3786 /* 3787 * If nothing changed; bail early. 3788 */ 3789 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3790 return; 3791 3792 rq = __task_rq_lock(p, &rf); 3793 update_rq_clock(rq); 3794 /* 3795 * Set under pi_lock && rq->lock, such that the value can be used under 3796 * either lock. 3797 * 3798 * Note that there is loads of tricky to make this pointer cache work 3799 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3800 * ensure a task is de-boosted (pi_task is set to NULL) before the 3801 * task is allowed to run again (and can exit). This ensures the pointer 3802 * points to a blocked task -- which guaratees the task is present. 3803 */ 3804 p->pi_top_task = pi_task; 3805 3806 /* 3807 * For FIFO/RR we only need to set prio, if that matches we're done. 3808 */ 3809 if (prio == p->prio && !dl_prio(prio)) 3810 goto out_unlock; 3811 3812 /* 3813 * Idle task boosting is a nono in general. There is one 3814 * exception, when PREEMPT_RT and NOHZ is active: 3815 * 3816 * The idle task calls get_next_timer_interrupt() and holds 3817 * the timer wheel base->lock on the CPU and another CPU wants 3818 * to access the timer (probably to cancel it). We can safely 3819 * ignore the boosting request, as the idle CPU runs this code 3820 * with interrupts disabled and will complete the lock 3821 * protected section without being interrupted. So there is no 3822 * real need to boost. 3823 */ 3824 if (unlikely(p == rq->idle)) { 3825 WARN_ON(p != rq->curr); 3826 WARN_ON(p->pi_blocked_on); 3827 goto out_unlock; 3828 } 3829 3830 trace_sched_pi_setprio(p, pi_task); 3831 oldprio = p->prio; 3832 3833 if (oldprio == prio) 3834 queue_flag &= ~DEQUEUE_MOVE; 3835 3836 prev_class = p->sched_class; 3837 queued = task_on_rq_queued(p); 3838 running = task_current(rq, p); 3839 if (queued) 3840 dequeue_task(rq, p, queue_flag); 3841 if (running) 3842 put_prev_task(rq, p); 3843 3844 /* 3845 * Boosting condition are: 3846 * 1. -rt task is running and holds mutex A 3847 * --> -dl task blocks on mutex A 3848 * 3849 * 2. -dl task is running and holds mutex A 3850 * --> -dl task blocks on mutex A and could preempt the 3851 * running task 3852 */ 3853 if (dl_prio(prio)) { 3854 if (!dl_prio(p->normal_prio) || 3855 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3856 p->dl.dl_boosted = 1; 3857 queue_flag |= ENQUEUE_REPLENISH; 3858 } else 3859 p->dl.dl_boosted = 0; 3860 p->sched_class = &dl_sched_class; 3861 } else if (rt_prio(prio)) { 3862 if (dl_prio(oldprio)) 3863 p->dl.dl_boosted = 0; 3864 if (oldprio < prio) 3865 queue_flag |= ENQUEUE_HEAD; 3866 p->sched_class = &rt_sched_class; 3867 } else { 3868 if (dl_prio(oldprio)) 3869 p->dl.dl_boosted = 0; 3870 if (rt_prio(oldprio)) 3871 p->rt.timeout = 0; 3872 p->sched_class = &fair_sched_class; 3873 } 3874 3875 p->prio = prio; 3876 3877 if (queued) 3878 enqueue_task(rq, p, queue_flag); 3879 if (running) 3880 set_curr_task(rq, p); 3881 3882 check_class_changed(rq, p, prev_class, oldprio); 3883 out_unlock: 3884 /* Avoid rq from going away on us: */ 3885 preempt_disable(); 3886 __task_rq_unlock(rq, &rf); 3887 3888 balance_callback(rq); 3889 preempt_enable(); 3890 } 3891 #else 3892 static inline int rt_effective_prio(struct task_struct *p, int prio) 3893 { 3894 return prio; 3895 } 3896 #endif 3897 3898 void set_user_nice(struct task_struct *p, long nice) 3899 { 3900 bool queued, running; 3901 int old_prio, delta; 3902 struct rq_flags rf; 3903 struct rq *rq; 3904 3905 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3906 return; 3907 /* 3908 * We have to be careful, if called from sys_setpriority(), 3909 * the task might be in the middle of scheduling on another CPU. 3910 */ 3911 rq = task_rq_lock(p, &rf); 3912 update_rq_clock(rq); 3913 3914 /* 3915 * The RT priorities are set via sched_setscheduler(), but we still 3916 * allow the 'normal' nice value to be set - but as expected 3917 * it wont have any effect on scheduling until the task is 3918 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3919 */ 3920 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3921 p->static_prio = NICE_TO_PRIO(nice); 3922 goto out_unlock; 3923 } 3924 queued = task_on_rq_queued(p); 3925 running = task_current(rq, p); 3926 if (queued) 3927 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3928 if (running) 3929 put_prev_task(rq, p); 3930 3931 p->static_prio = NICE_TO_PRIO(nice); 3932 set_load_weight(p, true); 3933 old_prio = p->prio; 3934 p->prio = effective_prio(p); 3935 delta = p->prio - old_prio; 3936 3937 if (queued) { 3938 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3939 /* 3940 * If the task increased its priority or is running and 3941 * lowered its priority, then reschedule its CPU: 3942 */ 3943 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3944 resched_curr(rq); 3945 } 3946 if (running) 3947 set_curr_task(rq, p); 3948 out_unlock: 3949 task_rq_unlock(rq, p, &rf); 3950 } 3951 EXPORT_SYMBOL(set_user_nice); 3952 3953 /* 3954 * can_nice - check if a task can reduce its nice value 3955 * @p: task 3956 * @nice: nice value 3957 */ 3958 int can_nice(const struct task_struct *p, const int nice) 3959 { 3960 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3961 int nice_rlim = nice_to_rlimit(nice); 3962 3963 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3964 capable(CAP_SYS_NICE)); 3965 } 3966 3967 #ifdef __ARCH_WANT_SYS_NICE 3968 3969 /* 3970 * sys_nice - change the priority of the current process. 3971 * @increment: priority increment 3972 * 3973 * sys_setpriority is a more generic, but much slower function that 3974 * does similar things. 3975 */ 3976 SYSCALL_DEFINE1(nice, int, increment) 3977 { 3978 long nice, retval; 3979 3980 /* 3981 * Setpriority might change our priority at the same moment. 3982 * We don't have to worry. Conceptually one call occurs first 3983 * and we have a single winner. 3984 */ 3985 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3986 nice = task_nice(current) + increment; 3987 3988 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3989 if (increment < 0 && !can_nice(current, nice)) 3990 return -EPERM; 3991 3992 retval = security_task_setnice(current, nice); 3993 if (retval) 3994 return retval; 3995 3996 set_user_nice(current, nice); 3997 return 0; 3998 } 3999 4000 #endif 4001 4002 /** 4003 * task_prio - return the priority value of a given task. 4004 * @p: the task in question. 4005 * 4006 * Return: The priority value as seen by users in /proc. 4007 * RT tasks are offset by -200. Normal tasks are centered 4008 * around 0, value goes from -16 to +15. 4009 */ 4010 int task_prio(const struct task_struct *p) 4011 { 4012 return p->prio - MAX_RT_PRIO; 4013 } 4014 4015 /** 4016 * idle_cpu - is a given CPU idle currently? 4017 * @cpu: the processor in question. 4018 * 4019 * Return: 1 if the CPU is currently idle. 0 otherwise. 4020 */ 4021 int idle_cpu(int cpu) 4022 { 4023 struct rq *rq = cpu_rq(cpu); 4024 4025 if (rq->curr != rq->idle) 4026 return 0; 4027 4028 if (rq->nr_running) 4029 return 0; 4030 4031 #ifdef CONFIG_SMP 4032 if (!llist_empty(&rq->wake_list)) 4033 return 0; 4034 #endif 4035 4036 return 1; 4037 } 4038 4039 /** 4040 * idle_task - return the idle task for a given CPU. 4041 * @cpu: the processor in question. 4042 * 4043 * Return: The idle task for the CPU @cpu. 4044 */ 4045 struct task_struct *idle_task(int cpu) 4046 { 4047 return cpu_rq(cpu)->idle; 4048 } 4049 4050 /** 4051 * find_process_by_pid - find a process with a matching PID value. 4052 * @pid: the pid in question. 4053 * 4054 * The task of @pid, if found. %NULL otherwise. 4055 */ 4056 static struct task_struct *find_process_by_pid(pid_t pid) 4057 { 4058 return pid ? find_task_by_vpid(pid) : current; 4059 } 4060 4061 /* 4062 * sched_setparam() passes in -1 for its policy, to let the functions 4063 * it calls know not to change it. 4064 */ 4065 #define SETPARAM_POLICY -1 4066 4067 static void __setscheduler_params(struct task_struct *p, 4068 const struct sched_attr *attr) 4069 { 4070 int policy = attr->sched_policy; 4071 4072 if (policy == SETPARAM_POLICY) 4073 policy = p->policy; 4074 4075 p->policy = policy; 4076 4077 if (dl_policy(policy)) 4078 __setparam_dl(p, attr); 4079 else if (fair_policy(policy)) 4080 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4081 4082 /* 4083 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4084 * !rt_policy. Always setting this ensures that things like 4085 * getparam()/getattr() don't report silly values for !rt tasks. 4086 */ 4087 p->rt_priority = attr->sched_priority; 4088 p->normal_prio = normal_prio(p); 4089 set_load_weight(p, true); 4090 } 4091 4092 /* Actually do priority change: must hold pi & rq lock. */ 4093 static void __setscheduler(struct rq *rq, struct task_struct *p, 4094 const struct sched_attr *attr, bool keep_boost) 4095 { 4096 __setscheduler_params(p, attr); 4097 4098 /* 4099 * Keep a potential priority boosting if called from 4100 * sched_setscheduler(). 4101 */ 4102 p->prio = normal_prio(p); 4103 if (keep_boost) 4104 p->prio = rt_effective_prio(p, p->prio); 4105 4106 if (dl_prio(p->prio)) 4107 p->sched_class = &dl_sched_class; 4108 else if (rt_prio(p->prio)) 4109 p->sched_class = &rt_sched_class; 4110 else 4111 p->sched_class = &fair_sched_class; 4112 } 4113 4114 /* 4115 * Check the target process has a UID that matches the current process's: 4116 */ 4117 static bool check_same_owner(struct task_struct *p) 4118 { 4119 const struct cred *cred = current_cred(), *pcred; 4120 bool match; 4121 4122 rcu_read_lock(); 4123 pcred = __task_cred(p); 4124 match = (uid_eq(cred->euid, pcred->euid) || 4125 uid_eq(cred->euid, pcred->uid)); 4126 rcu_read_unlock(); 4127 return match; 4128 } 4129 4130 static int __sched_setscheduler(struct task_struct *p, 4131 const struct sched_attr *attr, 4132 bool user, bool pi) 4133 { 4134 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4135 MAX_RT_PRIO - 1 - attr->sched_priority; 4136 int retval, oldprio, oldpolicy = -1, queued, running; 4137 int new_effective_prio, policy = attr->sched_policy; 4138 const struct sched_class *prev_class; 4139 struct rq_flags rf; 4140 int reset_on_fork; 4141 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4142 struct rq *rq; 4143 4144 /* The pi code expects interrupts enabled */ 4145 BUG_ON(pi && in_interrupt()); 4146 recheck: 4147 /* Double check policy once rq lock held: */ 4148 if (policy < 0) { 4149 reset_on_fork = p->sched_reset_on_fork; 4150 policy = oldpolicy = p->policy; 4151 } else { 4152 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4153 4154 if (!valid_policy(policy)) 4155 return -EINVAL; 4156 } 4157 4158 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4159 return -EINVAL; 4160 4161 /* 4162 * Valid priorities for SCHED_FIFO and SCHED_RR are 4163 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4164 * SCHED_BATCH and SCHED_IDLE is 0. 4165 */ 4166 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4167 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4168 return -EINVAL; 4169 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4170 (rt_policy(policy) != (attr->sched_priority != 0))) 4171 return -EINVAL; 4172 4173 /* 4174 * Allow unprivileged RT tasks to decrease priority: 4175 */ 4176 if (user && !capable(CAP_SYS_NICE)) { 4177 if (fair_policy(policy)) { 4178 if (attr->sched_nice < task_nice(p) && 4179 !can_nice(p, attr->sched_nice)) 4180 return -EPERM; 4181 } 4182 4183 if (rt_policy(policy)) { 4184 unsigned long rlim_rtprio = 4185 task_rlimit(p, RLIMIT_RTPRIO); 4186 4187 /* Can't set/change the rt policy: */ 4188 if (policy != p->policy && !rlim_rtprio) 4189 return -EPERM; 4190 4191 /* Can't increase priority: */ 4192 if (attr->sched_priority > p->rt_priority && 4193 attr->sched_priority > rlim_rtprio) 4194 return -EPERM; 4195 } 4196 4197 /* 4198 * Can't set/change SCHED_DEADLINE policy at all for now 4199 * (safest behavior); in the future we would like to allow 4200 * unprivileged DL tasks to increase their relative deadline 4201 * or reduce their runtime (both ways reducing utilization) 4202 */ 4203 if (dl_policy(policy)) 4204 return -EPERM; 4205 4206 /* 4207 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4208 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4209 */ 4210 if (idle_policy(p->policy) && !idle_policy(policy)) { 4211 if (!can_nice(p, task_nice(p))) 4212 return -EPERM; 4213 } 4214 4215 /* Can't change other user's priorities: */ 4216 if (!check_same_owner(p)) 4217 return -EPERM; 4218 4219 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4220 if (p->sched_reset_on_fork && !reset_on_fork) 4221 return -EPERM; 4222 } 4223 4224 if (user) { 4225 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4226 return -EINVAL; 4227 4228 retval = security_task_setscheduler(p); 4229 if (retval) 4230 return retval; 4231 } 4232 4233 /* 4234 * Make sure no PI-waiters arrive (or leave) while we are 4235 * changing the priority of the task: 4236 * 4237 * To be able to change p->policy safely, the appropriate 4238 * runqueue lock must be held. 4239 */ 4240 rq = task_rq_lock(p, &rf); 4241 update_rq_clock(rq); 4242 4243 /* 4244 * Changing the policy of the stop threads its a very bad idea: 4245 */ 4246 if (p == rq->stop) { 4247 task_rq_unlock(rq, p, &rf); 4248 return -EINVAL; 4249 } 4250 4251 /* 4252 * If not changing anything there's no need to proceed further, 4253 * but store a possible modification of reset_on_fork. 4254 */ 4255 if (unlikely(policy == p->policy)) { 4256 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4257 goto change; 4258 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4259 goto change; 4260 if (dl_policy(policy) && dl_param_changed(p, attr)) 4261 goto change; 4262 4263 p->sched_reset_on_fork = reset_on_fork; 4264 task_rq_unlock(rq, p, &rf); 4265 return 0; 4266 } 4267 change: 4268 4269 if (user) { 4270 #ifdef CONFIG_RT_GROUP_SCHED 4271 /* 4272 * Do not allow realtime tasks into groups that have no runtime 4273 * assigned. 4274 */ 4275 if (rt_bandwidth_enabled() && rt_policy(policy) && 4276 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4277 !task_group_is_autogroup(task_group(p))) { 4278 task_rq_unlock(rq, p, &rf); 4279 return -EPERM; 4280 } 4281 #endif 4282 #ifdef CONFIG_SMP 4283 if (dl_bandwidth_enabled() && dl_policy(policy) && 4284 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4285 cpumask_t *span = rq->rd->span; 4286 4287 /* 4288 * Don't allow tasks with an affinity mask smaller than 4289 * the entire root_domain to become SCHED_DEADLINE. We 4290 * will also fail if there's no bandwidth available. 4291 */ 4292 if (!cpumask_subset(span, &p->cpus_allowed) || 4293 rq->rd->dl_bw.bw == 0) { 4294 task_rq_unlock(rq, p, &rf); 4295 return -EPERM; 4296 } 4297 } 4298 #endif 4299 } 4300 4301 /* Re-check policy now with rq lock held: */ 4302 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4303 policy = oldpolicy = -1; 4304 task_rq_unlock(rq, p, &rf); 4305 goto recheck; 4306 } 4307 4308 /* 4309 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4310 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4311 * is available. 4312 */ 4313 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4314 task_rq_unlock(rq, p, &rf); 4315 return -EBUSY; 4316 } 4317 4318 p->sched_reset_on_fork = reset_on_fork; 4319 oldprio = p->prio; 4320 4321 if (pi) { 4322 /* 4323 * Take priority boosted tasks into account. If the new 4324 * effective priority is unchanged, we just store the new 4325 * normal parameters and do not touch the scheduler class and 4326 * the runqueue. This will be done when the task deboost 4327 * itself. 4328 */ 4329 new_effective_prio = rt_effective_prio(p, newprio); 4330 if (new_effective_prio == oldprio) 4331 queue_flags &= ~DEQUEUE_MOVE; 4332 } 4333 4334 queued = task_on_rq_queued(p); 4335 running = task_current(rq, p); 4336 if (queued) 4337 dequeue_task(rq, p, queue_flags); 4338 if (running) 4339 put_prev_task(rq, p); 4340 4341 prev_class = p->sched_class; 4342 __setscheduler(rq, p, attr, pi); 4343 4344 if (queued) { 4345 /* 4346 * We enqueue to tail when the priority of a task is 4347 * increased (user space view). 4348 */ 4349 if (oldprio < p->prio) 4350 queue_flags |= ENQUEUE_HEAD; 4351 4352 enqueue_task(rq, p, queue_flags); 4353 } 4354 if (running) 4355 set_curr_task(rq, p); 4356 4357 check_class_changed(rq, p, prev_class, oldprio); 4358 4359 /* Avoid rq from going away on us: */ 4360 preempt_disable(); 4361 task_rq_unlock(rq, p, &rf); 4362 4363 if (pi) 4364 rt_mutex_adjust_pi(p); 4365 4366 /* Run balance callbacks after we've adjusted the PI chain: */ 4367 balance_callback(rq); 4368 preempt_enable(); 4369 4370 return 0; 4371 } 4372 4373 static int _sched_setscheduler(struct task_struct *p, int policy, 4374 const struct sched_param *param, bool check) 4375 { 4376 struct sched_attr attr = { 4377 .sched_policy = policy, 4378 .sched_priority = param->sched_priority, 4379 .sched_nice = PRIO_TO_NICE(p->static_prio), 4380 }; 4381 4382 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4383 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4384 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4385 policy &= ~SCHED_RESET_ON_FORK; 4386 attr.sched_policy = policy; 4387 } 4388 4389 return __sched_setscheduler(p, &attr, check, true); 4390 } 4391 /** 4392 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4393 * @p: the task in question. 4394 * @policy: new policy. 4395 * @param: structure containing the new RT priority. 4396 * 4397 * Return: 0 on success. An error code otherwise. 4398 * 4399 * NOTE that the task may be already dead. 4400 */ 4401 int sched_setscheduler(struct task_struct *p, int policy, 4402 const struct sched_param *param) 4403 { 4404 return _sched_setscheduler(p, policy, param, true); 4405 } 4406 EXPORT_SYMBOL_GPL(sched_setscheduler); 4407 4408 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4409 { 4410 return __sched_setscheduler(p, attr, true, true); 4411 } 4412 EXPORT_SYMBOL_GPL(sched_setattr); 4413 4414 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4415 { 4416 return __sched_setscheduler(p, attr, false, true); 4417 } 4418 4419 /** 4420 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4421 * @p: the task in question. 4422 * @policy: new policy. 4423 * @param: structure containing the new RT priority. 4424 * 4425 * Just like sched_setscheduler, only don't bother checking if the 4426 * current context has permission. For example, this is needed in 4427 * stop_machine(): we create temporary high priority worker threads, 4428 * but our caller might not have that capability. 4429 * 4430 * Return: 0 on success. An error code otherwise. 4431 */ 4432 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4433 const struct sched_param *param) 4434 { 4435 return _sched_setscheduler(p, policy, param, false); 4436 } 4437 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4438 4439 static int 4440 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4441 { 4442 struct sched_param lparam; 4443 struct task_struct *p; 4444 int retval; 4445 4446 if (!param || pid < 0) 4447 return -EINVAL; 4448 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4449 return -EFAULT; 4450 4451 rcu_read_lock(); 4452 retval = -ESRCH; 4453 p = find_process_by_pid(pid); 4454 if (p != NULL) 4455 retval = sched_setscheduler(p, policy, &lparam); 4456 rcu_read_unlock(); 4457 4458 return retval; 4459 } 4460 4461 /* 4462 * Mimics kernel/events/core.c perf_copy_attr(). 4463 */ 4464 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4465 { 4466 u32 size; 4467 int ret; 4468 4469 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4470 return -EFAULT; 4471 4472 /* Zero the full structure, so that a short copy will be nice: */ 4473 memset(attr, 0, sizeof(*attr)); 4474 4475 ret = get_user(size, &uattr->size); 4476 if (ret) 4477 return ret; 4478 4479 /* Bail out on silly large: */ 4480 if (size > PAGE_SIZE) 4481 goto err_size; 4482 4483 /* ABI compatibility quirk: */ 4484 if (!size) 4485 size = SCHED_ATTR_SIZE_VER0; 4486 4487 if (size < SCHED_ATTR_SIZE_VER0) 4488 goto err_size; 4489 4490 /* 4491 * If we're handed a bigger struct than we know of, 4492 * ensure all the unknown bits are 0 - i.e. new 4493 * user-space does not rely on any kernel feature 4494 * extensions we dont know about yet. 4495 */ 4496 if (size > sizeof(*attr)) { 4497 unsigned char __user *addr; 4498 unsigned char __user *end; 4499 unsigned char val; 4500 4501 addr = (void __user *)uattr + sizeof(*attr); 4502 end = (void __user *)uattr + size; 4503 4504 for (; addr < end; addr++) { 4505 ret = get_user(val, addr); 4506 if (ret) 4507 return ret; 4508 if (val) 4509 goto err_size; 4510 } 4511 size = sizeof(*attr); 4512 } 4513 4514 ret = copy_from_user(attr, uattr, size); 4515 if (ret) 4516 return -EFAULT; 4517 4518 /* 4519 * XXX: Do we want to be lenient like existing syscalls; or do we want 4520 * to be strict and return an error on out-of-bounds values? 4521 */ 4522 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4523 4524 return 0; 4525 4526 err_size: 4527 put_user(sizeof(*attr), &uattr->size); 4528 return -E2BIG; 4529 } 4530 4531 /** 4532 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4533 * @pid: the pid in question. 4534 * @policy: new policy. 4535 * @param: structure containing the new RT priority. 4536 * 4537 * Return: 0 on success. An error code otherwise. 4538 */ 4539 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4540 { 4541 if (policy < 0) 4542 return -EINVAL; 4543 4544 return do_sched_setscheduler(pid, policy, param); 4545 } 4546 4547 /** 4548 * sys_sched_setparam - set/change the RT priority of a thread 4549 * @pid: the pid in question. 4550 * @param: structure containing the new RT priority. 4551 * 4552 * Return: 0 on success. An error code otherwise. 4553 */ 4554 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4555 { 4556 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4557 } 4558 4559 /** 4560 * sys_sched_setattr - same as above, but with extended sched_attr 4561 * @pid: the pid in question. 4562 * @uattr: structure containing the extended parameters. 4563 * @flags: for future extension. 4564 */ 4565 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4566 unsigned int, flags) 4567 { 4568 struct sched_attr attr; 4569 struct task_struct *p; 4570 int retval; 4571 4572 if (!uattr || pid < 0 || flags) 4573 return -EINVAL; 4574 4575 retval = sched_copy_attr(uattr, &attr); 4576 if (retval) 4577 return retval; 4578 4579 if ((int)attr.sched_policy < 0) 4580 return -EINVAL; 4581 4582 rcu_read_lock(); 4583 retval = -ESRCH; 4584 p = find_process_by_pid(pid); 4585 if (p != NULL) 4586 retval = sched_setattr(p, &attr); 4587 rcu_read_unlock(); 4588 4589 return retval; 4590 } 4591 4592 /** 4593 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4594 * @pid: the pid in question. 4595 * 4596 * Return: On success, the policy of the thread. Otherwise, a negative error 4597 * code. 4598 */ 4599 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4600 { 4601 struct task_struct *p; 4602 int retval; 4603 4604 if (pid < 0) 4605 return -EINVAL; 4606 4607 retval = -ESRCH; 4608 rcu_read_lock(); 4609 p = find_process_by_pid(pid); 4610 if (p) { 4611 retval = security_task_getscheduler(p); 4612 if (!retval) 4613 retval = p->policy 4614 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4615 } 4616 rcu_read_unlock(); 4617 return retval; 4618 } 4619 4620 /** 4621 * sys_sched_getparam - get the RT priority of a thread 4622 * @pid: the pid in question. 4623 * @param: structure containing the RT priority. 4624 * 4625 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4626 * code. 4627 */ 4628 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4629 { 4630 struct sched_param lp = { .sched_priority = 0 }; 4631 struct task_struct *p; 4632 int retval; 4633 4634 if (!param || pid < 0) 4635 return -EINVAL; 4636 4637 rcu_read_lock(); 4638 p = find_process_by_pid(pid); 4639 retval = -ESRCH; 4640 if (!p) 4641 goto out_unlock; 4642 4643 retval = security_task_getscheduler(p); 4644 if (retval) 4645 goto out_unlock; 4646 4647 if (task_has_rt_policy(p)) 4648 lp.sched_priority = p->rt_priority; 4649 rcu_read_unlock(); 4650 4651 /* 4652 * This one might sleep, we cannot do it with a spinlock held ... 4653 */ 4654 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4655 4656 return retval; 4657 4658 out_unlock: 4659 rcu_read_unlock(); 4660 return retval; 4661 } 4662 4663 static int sched_read_attr(struct sched_attr __user *uattr, 4664 struct sched_attr *attr, 4665 unsigned int usize) 4666 { 4667 int ret; 4668 4669 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4670 return -EFAULT; 4671 4672 /* 4673 * If we're handed a smaller struct than we know of, 4674 * ensure all the unknown bits are 0 - i.e. old 4675 * user-space does not get uncomplete information. 4676 */ 4677 if (usize < sizeof(*attr)) { 4678 unsigned char *addr; 4679 unsigned char *end; 4680 4681 addr = (void *)attr + usize; 4682 end = (void *)attr + sizeof(*attr); 4683 4684 for (; addr < end; addr++) { 4685 if (*addr) 4686 return -EFBIG; 4687 } 4688 4689 attr->size = usize; 4690 } 4691 4692 ret = copy_to_user(uattr, attr, attr->size); 4693 if (ret) 4694 return -EFAULT; 4695 4696 return 0; 4697 } 4698 4699 /** 4700 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4701 * @pid: the pid in question. 4702 * @uattr: structure containing the extended parameters. 4703 * @size: sizeof(attr) for fwd/bwd comp. 4704 * @flags: for future extension. 4705 */ 4706 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4707 unsigned int, size, unsigned int, flags) 4708 { 4709 struct sched_attr attr = { 4710 .size = sizeof(struct sched_attr), 4711 }; 4712 struct task_struct *p; 4713 int retval; 4714 4715 if (!uattr || pid < 0 || size > PAGE_SIZE || 4716 size < SCHED_ATTR_SIZE_VER0 || flags) 4717 return -EINVAL; 4718 4719 rcu_read_lock(); 4720 p = find_process_by_pid(pid); 4721 retval = -ESRCH; 4722 if (!p) 4723 goto out_unlock; 4724 4725 retval = security_task_getscheduler(p); 4726 if (retval) 4727 goto out_unlock; 4728 4729 attr.sched_policy = p->policy; 4730 if (p->sched_reset_on_fork) 4731 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4732 if (task_has_dl_policy(p)) 4733 __getparam_dl(p, &attr); 4734 else if (task_has_rt_policy(p)) 4735 attr.sched_priority = p->rt_priority; 4736 else 4737 attr.sched_nice = task_nice(p); 4738 4739 rcu_read_unlock(); 4740 4741 retval = sched_read_attr(uattr, &attr, size); 4742 return retval; 4743 4744 out_unlock: 4745 rcu_read_unlock(); 4746 return retval; 4747 } 4748 4749 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4750 { 4751 cpumask_var_t cpus_allowed, new_mask; 4752 struct task_struct *p; 4753 int retval; 4754 4755 rcu_read_lock(); 4756 4757 p = find_process_by_pid(pid); 4758 if (!p) { 4759 rcu_read_unlock(); 4760 return -ESRCH; 4761 } 4762 4763 /* Prevent p going away */ 4764 get_task_struct(p); 4765 rcu_read_unlock(); 4766 4767 if (p->flags & PF_NO_SETAFFINITY) { 4768 retval = -EINVAL; 4769 goto out_put_task; 4770 } 4771 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4772 retval = -ENOMEM; 4773 goto out_put_task; 4774 } 4775 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4776 retval = -ENOMEM; 4777 goto out_free_cpus_allowed; 4778 } 4779 retval = -EPERM; 4780 if (!check_same_owner(p)) { 4781 rcu_read_lock(); 4782 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4783 rcu_read_unlock(); 4784 goto out_free_new_mask; 4785 } 4786 rcu_read_unlock(); 4787 } 4788 4789 retval = security_task_setscheduler(p); 4790 if (retval) 4791 goto out_free_new_mask; 4792 4793 4794 cpuset_cpus_allowed(p, cpus_allowed); 4795 cpumask_and(new_mask, in_mask, cpus_allowed); 4796 4797 /* 4798 * Since bandwidth control happens on root_domain basis, 4799 * if admission test is enabled, we only admit -deadline 4800 * tasks allowed to run on all the CPUs in the task's 4801 * root_domain. 4802 */ 4803 #ifdef CONFIG_SMP 4804 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4805 rcu_read_lock(); 4806 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4807 retval = -EBUSY; 4808 rcu_read_unlock(); 4809 goto out_free_new_mask; 4810 } 4811 rcu_read_unlock(); 4812 } 4813 #endif 4814 again: 4815 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4816 4817 if (!retval) { 4818 cpuset_cpus_allowed(p, cpus_allowed); 4819 if (!cpumask_subset(new_mask, cpus_allowed)) { 4820 /* 4821 * We must have raced with a concurrent cpuset 4822 * update. Just reset the cpus_allowed to the 4823 * cpuset's cpus_allowed 4824 */ 4825 cpumask_copy(new_mask, cpus_allowed); 4826 goto again; 4827 } 4828 } 4829 out_free_new_mask: 4830 free_cpumask_var(new_mask); 4831 out_free_cpus_allowed: 4832 free_cpumask_var(cpus_allowed); 4833 out_put_task: 4834 put_task_struct(p); 4835 return retval; 4836 } 4837 4838 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4839 struct cpumask *new_mask) 4840 { 4841 if (len < cpumask_size()) 4842 cpumask_clear(new_mask); 4843 else if (len > cpumask_size()) 4844 len = cpumask_size(); 4845 4846 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4847 } 4848 4849 /** 4850 * sys_sched_setaffinity - set the CPU affinity of a process 4851 * @pid: pid of the process 4852 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4853 * @user_mask_ptr: user-space pointer to the new CPU mask 4854 * 4855 * Return: 0 on success. An error code otherwise. 4856 */ 4857 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4858 unsigned long __user *, user_mask_ptr) 4859 { 4860 cpumask_var_t new_mask; 4861 int retval; 4862 4863 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4864 return -ENOMEM; 4865 4866 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4867 if (retval == 0) 4868 retval = sched_setaffinity(pid, new_mask); 4869 free_cpumask_var(new_mask); 4870 return retval; 4871 } 4872 4873 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4874 { 4875 struct task_struct *p; 4876 unsigned long flags; 4877 int retval; 4878 4879 rcu_read_lock(); 4880 4881 retval = -ESRCH; 4882 p = find_process_by_pid(pid); 4883 if (!p) 4884 goto out_unlock; 4885 4886 retval = security_task_getscheduler(p); 4887 if (retval) 4888 goto out_unlock; 4889 4890 raw_spin_lock_irqsave(&p->pi_lock, flags); 4891 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4892 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4893 4894 out_unlock: 4895 rcu_read_unlock(); 4896 4897 return retval; 4898 } 4899 4900 /** 4901 * sys_sched_getaffinity - get the CPU affinity of a process 4902 * @pid: pid of the process 4903 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4904 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4905 * 4906 * Return: size of CPU mask copied to user_mask_ptr on success. An 4907 * error code otherwise. 4908 */ 4909 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4910 unsigned long __user *, user_mask_ptr) 4911 { 4912 int ret; 4913 cpumask_var_t mask; 4914 4915 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4916 return -EINVAL; 4917 if (len & (sizeof(unsigned long)-1)) 4918 return -EINVAL; 4919 4920 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4921 return -ENOMEM; 4922 4923 ret = sched_getaffinity(pid, mask); 4924 if (ret == 0) { 4925 unsigned int retlen = min(len, cpumask_size()); 4926 4927 if (copy_to_user(user_mask_ptr, mask, retlen)) 4928 ret = -EFAULT; 4929 else 4930 ret = retlen; 4931 } 4932 free_cpumask_var(mask); 4933 4934 return ret; 4935 } 4936 4937 /** 4938 * sys_sched_yield - yield the current processor to other threads. 4939 * 4940 * This function yields the current CPU to other tasks. If there are no 4941 * other threads running on this CPU then this function will return. 4942 * 4943 * Return: 0. 4944 */ 4945 static void do_sched_yield(void) 4946 { 4947 struct rq_flags rf; 4948 struct rq *rq; 4949 4950 local_irq_disable(); 4951 rq = this_rq(); 4952 rq_lock(rq, &rf); 4953 4954 schedstat_inc(rq->yld_count); 4955 current->sched_class->yield_task(rq); 4956 4957 /* 4958 * Since we are going to call schedule() anyway, there's 4959 * no need to preempt or enable interrupts: 4960 */ 4961 preempt_disable(); 4962 rq_unlock(rq, &rf); 4963 sched_preempt_enable_no_resched(); 4964 4965 schedule(); 4966 } 4967 4968 SYSCALL_DEFINE0(sched_yield) 4969 { 4970 do_sched_yield(); 4971 return 0; 4972 } 4973 4974 #ifndef CONFIG_PREEMPT 4975 int __sched _cond_resched(void) 4976 { 4977 if (should_resched(0)) { 4978 preempt_schedule_common(); 4979 return 1; 4980 } 4981 rcu_all_qs(); 4982 return 0; 4983 } 4984 EXPORT_SYMBOL(_cond_resched); 4985 #endif 4986 4987 /* 4988 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4989 * call schedule, and on return reacquire the lock. 4990 * 4991 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4992 * operations here to prevent schedule() from being called twice (once via 4993 * spin_unlock(), once by hand). 4994 */ 4995 int __cond_resched_lock(spinlock_t *lock) 4996 { 4997 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4998 int ret = 0; 4999 5000 lockdep_assert_held(lock); 5001 5002 if (spin_needbreak(lock) || resched) { 5003 spin_unlock(lock); 5004 if (resched) 5005 preempt_schedule_common(); 5006 else 5007 cpu_relax(); 5008 ret = 1; 5009 spin_lock(lock); 5010 } 5011 return ret; 5012 } 5013 EXPORT_SYMBOL(__cond_resched_lock); 5014 5015 int __sched __cond_resched_softirq(void) 5016 { 5017 BUG_ON(!in_softirq()); 5018 5019 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 5020 local_bh_enable(); 5021 preempt_schedule_common(); 5022 local_bh_disable(); 5023 return 1; 5024 } 5025 return 0; 5026 } 5027 EXPORT_SYMBOL(__cond_resched_softirq); 5028 5029 /** 5030 * yield - yield the current processor to other threads. 5031 * 5032 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5033 * 5034 * The scheduler is at all times free to pick the calling task as the most 5035 * eligible task to run, if removing the yield() call from your code breaks 5036 * it, its already broken. 5037 * 5038 * Typical broken usage is: 5039 * 5040 * while (!event) 5041 * yield(); 5042 * 5043 * where one assumes that yield() will let 'the other' process run that will 5044 * make event true. If the current task is a SCHED_FIFO task that will never 5045 * happen. Never use yield() as a progress guarantee!! 5046 * 5047 * If you want to use yield() to wait for something, use wait_event(). 5048 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5049 * If you still want to use yield(), do not! 5050 */ 5051 void __sched yield(void) 5052 { 5053 set_current_state(TASK_RUNNING); 5054 do_sched_yield(); 5055 } 5056 EXPORT_SYMBOL(yield); 5057 5058 /** 5059 * yield_to - yield the current processor to another thread in 5060 * your thread group, or accelerate that thread toward the 5061 * processor it's on. 5062 * @p: target task 5063 * @preempt: whether task preemption is allowed or not 5064 * 5065 * It's the caller's job to ensure that the target task struct 5066 * can't go away on us before we can do any checks. 5067 * 5068 * Return: 5069 * true (>0) if we indeed boosted the target task. 5070 * false (0) if we failed to boost the target. 5071 * -ESRCH if there's no task to yield to. 5072 */ 5073 int __sched yield_to(struct task_struct *p, bool preempt) 5074 { 5075 struct task_struct *curr = current; 5076 struct rq *rq, *p_rq; 5077 unsigned long flags; 5078 int yielded = 0; 5079 5080 local_irq_save(flags); 5081 rq = this_rq(); 5082 5083 again: 5084 p_rq = task_rq(p); 5085 /* 5086 * If we're the only runnable task on the rq and target rq also 5087 * has only one task, there's absolutely no point in yielding. 5088 */ 5089 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5090 yielded = -ESRCH; 5091 goto out_irq; 5092 } 5093 5094 double_rq_lock(rq, p_rq); 5095 if (task_rq(p) != p_rq) { 5096 double_rq_unlock(rq, p_rq); 5097 goto again; 5098 } 5099 5100 if (!curr->sched_class->yield_to_task) 5101 goto out_unlock; 5102 5103 if (curr->sched_class != p->sched_class) 5104 goto out_unlock; 5105 5106 if (task_running(p_rq, p) || p->state) 5107 goto out_unlock; 5108 5109 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5110 if (yielded) { 5111 schedstat_inc(rq->yld_count); 5112 /* 5113 * Make p's CPU reschedule; pick_next_entity takes care of 5114 * fairness. 5115 */ 5116 if (preempt && rq != p_rq) 5117 resched_curr(p_rq); 5118 } 5119 5120 out_unlock: 5121 double_rq_unlock(rq, p_rq); 5122 out_irq: 5123 local_irq_restore(flags); 5124 5125 if (yielded > 0) 5126 schedule(); 5127 5128 return yielded; 5129 } 5130 EXPORT_SYMBOL_GPL(yield_to); 5131 5132 int io_schedule_prepare(void) 5133 { 5134 int old_iowait = current->in_iowait; 5135 5136 current->in_iowait = 1; 5137 blk_schedule_flush_plug(current); 5138 5139 return old_iowait; 5140 } 5141 5142 void io_schedule_finish(int token) 5143 { 5144 current->in_iowait = token; 5145 } 5146 5147 /* 5148 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5149 * that process accounting knows that this is a task in IO wait state. 5150 */ 5151 long __sched io_schedule_timeout(long timeout) 5152 { 5153 int token; 5154 long ret; 5155 5156 token = io_schedule_prepare(); 5157 ret = schedule_timeout(timeout); 5158 io_schedule_finish(token); 5159 5160 return ret; 5161 } 5162 EXPORT_SYMBOL(io_schedule_timeout); 5163 5164 void io_schedule(void) 5165 { 5166 int token; 5167 5168 token = io_schedule_prepare(); 5169 schedule(); 5170 io_schedule_finish(token); 5171 } 5172 EXPORT_SYMBOL(io_schedule); 5173 5174 /** 5175 * sys_sched_get_priority_max - return maximum RT priority. 5176 * @policy: scheduling class. 5177 * 5178 * Return: On success, this syscall returns the maximum 5179 * rt_priority that can be used by a given scheduling class. 5180 * On failure, a negative error code is returned. 5181 */ 5182 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5183 { 5184 int ret = -EINVAL; 5185 5186 switch (policy) { 5187 case SCHED_FIFO: 5188 case SCHED_RR: 5189 ret = MAX_USER_RT_PRIO-1; 5190 break; 5191 case SCHED_DEADLINE: 5192 case SCHED_NORMAL: 5193 case SCHED_BATCH: 5194 case SCHED_IDLE: 5195 ret = 0; 5196 break; 5197 } 5198 return ret; 5199 } 5200 5201 /** 5202 * sys_sched_get_priority_min - return minimum RT priority. 5203 * @policy: scheduling class. 5204 * 5205 * Return: On success, this syscall returns the minimum 5206 * rt_priority that can be used by a given scheduling class. 5207 * On failure, a negative error code is returned. 5208 */ 5209 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5210 { 5211 int ret = -EINVAL; 5212 5213 switch (policy) { 5214 case SCHED_FIFO: 5215 case SCHED_RR: 5216 ret = 1; 5217 break; 5218 case SCHED_DEADLINE: 5219 case SCHED_NORMAL: 5220 case SCHED_BATCH: 5221 case SCHED_IDLE: 5222 ret = 0; 5223 } 5224 return ret; 5225 } 5226 5227 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5228 { 5229 struct task_struct *p; 5230 unsigned int time_slice; 5231 struct rq_flags rf; 5232 struct rq *rq; 5233 int retval; 5234 5235 if (pid < 0) 5236 return -EINVAL; 5237 5238 retval = -ESRCH; 5239 rcu_read_lock(); 5240 p = find_process_by_pid(pid); 5241 if (!p) 5242 goto out_unlock; 5243 5244 retval = security_task_getscheduler(p); 5245 if (retval) 5246 goto out_unlock; 5247 5248 rq = task_rq_lock(p, &rf); 5249 time_slice = 0; 5250 if (p->sched_class->get_rr_interval) 5251 time_slice = p->sched_class->get_rr_interval(rq, p); 5252 task_rq_unlock(rq, p, &rf); 5253 5254 rcu_read_unlock(); 5255 jiffies_to_timespec64(time_slice, t); 5256 return 0; 5257 5258 out_unlock: 5259 rcu_read_unlock(); 5260 return retval; 5261 } 5262 5263 /** 5264 * sys_sched_rr_get_interval - return the default timeslice of a process. 5265 * @pid: pid of the process. 5266 * @interval: userspace pointer to the timeslice value. 5267 * 5268 * this syscall writes the default timeslice value of a given process 5269 * into the user-space timespec buffer. A value of '0' means infinity. 5270 * 5271 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5272 * an error code. 5273 */ 5274 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5275 struct timespec __user *, interval) 5276 { 5277 struct timespec64 t; 5278 int retval = sched_rr_get_interval(pid, &t); 5279 5280 if (retval == 0) 5281 retval = put_timespec64(&t, interval); 5282 5283 return retval; 5284 } 5285 5286 #ifdef CONFIG_COMPAT 5287 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5288 compat_pid_t, pid, 5289 struct compat_timespec __user *, interval) 5290 { 5291 struct timespec64 t; 5292 int retval = sched_rr_get_interval(pid, &t); 5293 5294 if (retval == 0) 5295 retval = compat_put_timespec64(&t, interval); 5296 return retval; 5297 } 5298 #endif 5299 5300 void sched_show_task(struct task_struct *p) 5301 { 5302 unsigned long free = 0; 5303 int ppid; 5304 5305 if (!try_get_task_stack(p)) 5306 return; 5307 5308 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5309 5310 if (p->state == TASK_RUNNING) 5311 printk(KERN_CONT " running task "); 5312 #ifdef CONFIG_DEBUG_STACK_USAGE 5313 free = stack_not_used(p); 5314 #endif 5315 ppid = 0; 5316 rcu_read_lock(); 5317 if (pid_alive(p)) 5318 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5319 rcu_read_unlock(); 5320 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5321 task_pid_nr(p), ppid, 5322 (unsigned long)task_thread_info(p)->flags); 5323 5324 print_worker_info(KERN_INFO, p); 5325 show_stack(p, NULL); 5326 put_task_stack(p); 5327 } 5328 EXPORT_SYMBOL_GPL(sched_show_task); 5329 5330 static inline bool 5331 state_filter_match(unsigned long state_filter, struct task_struct *p) 5332 { 5333 /* no filter, everything matches */ 5334 if (!state_filter) 5335 return true; 5336 5337 /* filter, but doesn't match */ 5338 if (!(p->state & state_filter)) 5339 return false; 5340 5341 /* 5342 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5343 * TASK_KILLABLE). 5344 */ 5345 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5346 return false; 5347 5348 return true; 5349 } 5350 5351 5352 void show_state_filter(unsigned long state_filter) 5353 { 5354 struct task_struct *g, *p; 5355 5356 #if BITS_PER_LONG == 32 5357 printk(KERN_INFO 5358 " task PC stack pid father\n"); 5359 #else 5360 printk(KERN_INFO 5361 " task PC stack pid father\n"); 5362 #endif 5363 rcu_read_lock(); 5364 for_each_process_thread(g, p) { 5365 /* 5366 * reset the NMI-timeout, listing all files on a slow 5367 * console might take a lot of time: 5368 * Also, reset softlockup watchdogs on all CPUs, because 5369 * another CPU might be blocked waiting for us to process 5370 * an IPI. 5371 */ 5372 touch_nmi_watchdog(); 5373 touch_all_softlockup_watchdogs(); 5374 if (state_filter_match(state_filter, p)) 5375 sched_show_task(p); 5376 } 5377 5378 #ifdef CONFIG_SCHED_DEBUG 5379 if (!state_filter) 5380 sysrq_sched_debug_show(); 5381 #endif 5382 rcu_read_unlock(); 5383 /* 5384 * Only show locks if all tasks are dumped: 5385 */ 5386 if (!state_filter) 5387 debug_show_all_locks(); 5388 } 5389 5390 /** 5391 * init_idle - set up an idle thread for a given CPU 5392 * @idle: task in question 5393 * @cpu: CPU the idle task belongs to 5394 * 5395 * NOTE: this function does not set the idle thread's NEED_RESCHED 5396 * flag, to make booting more robust. 5397 */ 5398 void init_idle(struct task_struct *idle, int cpu) 5399 { 5400 struct rq *rq = cpu_rq(cpu); 5401 unsigned long flags; 5402 5403 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5404 raw_spin_lock(&rq->lock); 5405 5406 __sched_fork(0, idle); 5407 idle->state = TASK_RUNNING; 5408 idle->se.exec_start = sched_clock(); 5409 idle->flags |= PF_IDLE; 5410 5411 kasan_unpoison_task_stack(idle); 5412 5413 #ifdef CONFIG_SMP 5414 /* 5415 * Its possible that init_idle() gets called multiple times on a task, 5416 * in that case do_set_cpus_allowed() will not do the right thing. 5417 * 5418 * And since this is boot we can forgo the serialization. 5419 */ 5420 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5421 #endif 5422 /* 5423 * We're having a chicken and egg problem, even though we are 5424 * holding rq->lock, the CPU isn't yet set to this CPU so the 5425 * lockdep check in task_group() will fail. 5426 * 5427 * Similar case to sched_fork(). / Alternatively we could 5428 * use task_rq_lock() here and obtain the other rq->lock. 5429 * 5430 * Silence PROVE_RCU 5431 */ 5432 rcu_read_lock(); 5433 __set_task_cpu(idle, cpu); 5434 rcu_read_unlock(); 5435 5436 rq->curr = rq->idle = idle; 5437 idle->on_rq = TASK_ON_RQ_QUEUED; 5438 #ifdef CONFIG_SMP 5439 idle->on_cpu = 1; 5440 #endif 5441 raw_spin_unlock(&rq->lock); 5442 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5443 5444 /* Set the preempt count _outside_ the spinlocks! */ 5445 init_idle_preempt_count(idle, cpu); 5446 5447 /* 5448 * The idle tasks have their own, simple scheduling class: 5449 */ 5450 idle->sched_class = &idle_sched_class; 5451 ftrace_graph_init_idle_task(idle, cpu); 5452 vtime_init_idle(idle, cpu); 5453 #ifdef CONFIG_SMP 5454 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5455 #endif 5456 } 5457 5458 #ifdef CONFIG_SMP 5459 5460 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5461 const struct cpumask *trial) 5462 { 5463 int ret = 1; 5464 5465 if (!cpumask_weight(cur)) 5466 return ret; 5467 5468 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5469 5470 return ret; 5471 } 5472 5473 int task_can_attach(struct task_struct *p, 5474 const struct cpumask *cs_cpus_allowed) 5475 { 5476 int ret = 0; 5477 5478 /* 5479 * Kthreads which disallow setaffinity shouldn't be moved 5480 * to a new cpuset; we don't want to change their CPU 5481 * affinity and isolating such threads by their set of 5482 * allowed nodes is unnecessary. Thus, cpusets are not 5483 * applicable for such threads. This prevents checking for 5484 * success of set_cpus_allowed_ptr() on all attached tasks 5485 * before cpus_allowed may be changed. 5486 */ 5487 if (p->flags & PF_NO_SETAFFINITY) { 5488 ret = -EINVAL; 5489 goto out; 5490 } 5491 5492 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5493 cs_cpus_allowed)) 5494 ret = dl_task_can_attach(p, cs_cpus_allowed); 5495 5496 out: 5497 return ret; 5498 } 5499 5500 bool sched_smp_initialized __read_mostly; 5501 5502 #ifdef CONFIG_NUMA_BALANCING 5503 /* Migrate current task p to target_cpu */ 5504 int migrate_task_to(struct task_struct *p, int target_cpu) 5505 { 5506 struct migration_arg arg = { p, target_cpu }; 5507 int curr_cpu = task_cpu(p); 5508 5509 if (curr_cpu == target_cpu) 5510 return 0; 5511 5512 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5513 return -EINVAL; 5514 5515 /* TODO: This is not properly updating schedstats */ 5516 5517 trace_sched_move_numa(p, curr_cpu, target_cpu); 5518 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5519 } 5520 5521 /* 5522 * Requeue a task on a given node and accurately track the number of NUMA 5523 * tasks on the runqueues 5524 */ 5525 void sched_setnuma(struct task_struct *p, int nid) 5526 { 5527 bool queued, running; 5528 struct rq_flags rf; 5529 struct rq *rq; 5530 5531 rq = task_rq_lock(p, &rf); 5532 queued = task_on_rq_queued(p); 5533 running = task_current(rq, p); 5534 5535 if (queued) 5536 dequeue_task(rq, p, DEQUEUE_SAVE); 5537 if (running) 5538 put_prev_task(rq, p); 5539 5540 p->numa_preferred_nid = nid; 5541 5542 if (queued) 5543 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5544 if (running) 5545 set_curr_task(rq, p); 5546 task_rq_unlock(rq, p, &rf); 5547 } 5548 #endif /* CONFIG_NUMA_BALANCING */ 5549 5550 #ifdef CONFIG_HOTPLUG_CPU 5551 /* 5552 * Ensure that the idle task is using init_mm right before its CPU goes 5553 * offline. 5554 */ 5555 void idle_task_exit(void) 5556 { 5557 struct mm_struct *mm = current->active_mm; 5558 5559 BUG_ON(cpu_online(smp_processor_id())); 5560 5561 if (mm != &init_mm) { 5562 switch_mm(mm, &init_mm, current); 5563 current->active_mm = &init_mm; 5564 finish_arch_post_lock_switch(); 5565 } 5566 mmdrop(mm); 5567 } 5568 5569 /* 5570 * Since this CPU is going 'away' for a while, fold any nr_active delta 5571 * we might have. Assumes we're called after migrate_tasks() so that the 5572 * nr_active count is stable. We need to take the teardown thread which 5573 * is calling this into account, so we hand in adjust = 1 to the load 5574 * calculation. 5575 * 5576 * Also see the comment "Global load-average calculations". 5577 */ 5578 static void calc_load_migrate(struct rq *rq) 5579 { 5580 long delta = calc_load_fold_active(rq, 1); 5581 if (delta) 5582 atomic_long_add(delta, &calc_load_tasks); 5583 } 5584 5585 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5586 { 5587 } 5588 5589 static const struct sched_class fake_sched_class = { 5590 .put_prev_task = put_prev_task_fake, 5591 }; 5592 5593 static struct task_struct fake_task = { 5594 /* 5595 * Avoid pull_{rt,dl}_task() 5596 */ 5597 .prio = MAX_PRIO + 1, 5598 .sched_class = &fake_sched_class, 5599 }; 5600 5601 /* 5602 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5603 * try_to_wake_up()->select_task_rq(). 5604 * 5605 * Called with rq->lock held even though we'er in stop_machine() and 5606 * there's no concurrency possible, we hold the required locks anyway 5607 * because of lock validation efforts. 5608 */ 5609 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5610 { 5611 struct rq *rq = dead_rq; 5612 struct task_struct *next, *stop = rq->stop; 5613 struct rq_flags orf = *rf; 5614 int dest_cpu; 5615 5616 /* 5617 * Fudge the rq selection such that the below task selection loop 5618 * doesn't get stuck on the currently eligible stop task. 5619 * 5620 * We're currently inside stop_machine() and the rq is either stuck 5621 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5622 * either way we should never end up calling schedule() until we're 5623 * done here. 5624 */ 5625 rq->stop = NULL; 5626 5627 /* 5628 * put_prev_task() and pick_next_task() sched 5629 * class method both need to have an up-to-date 5630 * value of rq->clock[_task] 5631 */ 5632 update_rq_clock(rq); 5633 5634 for (;;) { 5635 /* 5636 * There's this thread running, bail when that's the only 5637 * remaining thread: 5638 */ 5639 if (rq->nr_running == 1) 5640 break; 5641 5642 /* 5643 * pick_next_task() assumes pinned rq->lock: 5644 */ 5645 next = pick_next_task(rq, &fake_task, rf); 5646 BUG_ON(!next); 5647 put_prev_task(rq, next); 5648 5649 /* 5650 * Rules for changing task_struct::cpus_allowed are holding 5651 * both pi_lock and rq->lock, such that holding either 5652 * stabilizes the mask. 5653 * 5654 * Drop rq->lock is not quite as disastrous as it usually is 5655 * because !cpu_active at this point, which means load-balance 5656 * will not interfere. Also, stop-machine. 5657 */ 5658 rq_unlock(rq, rf); 5659 raw_spin_lock(&next->pi_lock); 5660 rq_relock(rq, rf); 5661 5662 /* 5663 * Since we're inside stop-machine, _nothing_ should have 5664 * changed the task, WARN if weird stuff happened, because in 5665 * that case the above rq->lock drop is a fail too. 5666 */ 5667 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5668 raw_spin_unlock(&next->pi_lock); 5669 continue; 5670 } 5671 5672 /* Find suitable destination for @next, with force if needed. */ 5673 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5674 rq = __migrate_task(rq, rf, next, dest_cpu); 5675 if (rq != dead_rq) { 5676 rq_unlock(rq, rf); 5677 rq = dead_rq; 5678 *rf = orf; 5679 rq_relock(rq, rf); 5680 } 5681 raw_spin_unlock(&next->pi_lock); 5682 } 5683 5684 rq->stop = stop; 5685 } 5686 #endif /* CONFIG_HOTPLUG_CPU */ 5687 5688 void set_rq_online(struct rq *rq) 5689 { 5690 if (!rq->online) { 5691 const struct sched_class *class; 5692 5693 cpumask_set_cpu(rq->cpu, rq->rd->online); 5694 rq->online = 1; 5695 5696 for_each_class(class) { 5697 if (class->rq_online) 5698 class->rq_online(rq); 5699 } 5700 } 5701 } 5702 5703 void set_rq_offline(struct rq *rq) 5704 { 5705 if (rq->online) { 5706 const struct sched_class *class; 5707 5708 for_each_class(class) { 5709 if (class->rq_offline) 5710 class->rq_offline(rq); 5711 } 5712 5713 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5714 rq->online = 0; 5715 } 5716 } 5717 5718 static void set_cpu_rq_start_time(unsigned int cpu) 5719 { 5720 struct rq *rq = cpu_rq(cpu); 5721 5722 rq->age_stamp = sched_clock_cpu(cpu); 5723 } 5724 5725 /* 5726 * used to mark begin/end of suspend/resume: 5727 */ 5728 static int num_cpus_frozen; 5729 5730 /* 5731 * Update cpusets according to cpu_active mask. If cpusets are 5732 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5733 * around partition_sched_domains(). 5734 * 5735 * If we come here as part of a suspend/resume, don't touch cpusets because we 5736 * want to restore it back to its original state upon resume anyway. 5737 */ 5738 static void cpuset_cpu_active(void) 5739 { 5740 if (cpuhp_tasks_frozen) { 5741 /* 5742 * num_cpus_frozen tracks how many CPUs are involved in suspend 5743 * resume sequence. As long as this is not the last online 5744 * operation in the resume sequence, just build a single sched 5745 * domain, ignoring cpusets. 5746 */ 5747 partition_sched_domains(1, NULL, NULL); 5748 if (--num_cpus_frozen) 5749 return; 5750 /* 5751 * This is the last CPU online operation. So fall through and 5752 * restore the original sched domains by considering the 5753 * cpuset configurations. 5754 */ 5755 cpuset_force_rebuild(); 5756 } 5757 cpuset_update_active_cpus(); 5758 } 5759 5760 static int cpuset_cpu_inactive(unsigned int cpu) 5761 { 5762 if (!cpuhp_tasks_frozen) { 5763 if (dl_cpu_busy(cpu)) 5764 return -EBUSY; 5765 cpuset_update_active_cpus(); 5766 } else { 5767 num_cpus_frozen++; 5768 partition_sched_domains(1, NULL, NULL); 5769 } 5770 return 0; 5771 } 5772 5773 int sched_cpu_activate(unsigned int cpu) 5774 { 5775 struct rq *rq = cpu_rq(cpu); 5776 struct rq_flags rf; 5777 5778 set_cpu_active(cpu, true); 5779 5780 if (sched_smp_initialized) { 5781 sched_domains_numa_masks_set(cpu); 5782 cpuset_cpu_active(); 5783 } 5784 5785 /* 5786 * Put the rq online, if not already. This happens: 5787 * 5788 * 1) In the early boot process, because we build the real domains 5789 * after all CPUs have been brought up. 5790 * 5791 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5792 * domains. 5793 */ 5794 rq_lock_irqsave(rq, &rf); 5795 if (rq->rd) { 5796 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5797 set_rq_online(rq); 5798 } 5799 rq_unlock_irqrestore(rq, &rf); 5800 5801 update_max_interval(); 5802 5803 return 0; 5804 } 5805 5806 int sched_cpu_deactivate(unsigned int cpu) 5807 { 5808 int ret; 5809 5810 set_cpu_active(cpu, false); 5811 /* 5812 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5813 * users of this state to go away such that all new such users will 5814 * observe it. 5815 * 5816 * Do sync before park smpboot threads to take care the rcu boost case. 5817 */ 5818 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5819 5820 if (!sched_smp_initialized) 5821 return 0; 5822 5823 ret = cpuset_cpu_inactive(cpu); 5824 if (ret) { 5825 set_cpu_active(cpu, true); 5826 return ret; 5827 } 5828 sched_domains_numa_masks_clear(cpu); 5829 return 0; 5830 } 5831 5832 static void sched_rq_cpu_starting(unsigned int cpu) 5833 { 5834 struct rq *rq = cpu_rq(cpu); 5835 5836 rq->calc_load_update = calc_load_update; 5837 update_max_interval(); 5838 } 5839 5840 int sched_cpu_starting(unsigned int cpu) 5841 { 5842 set_cpu_rq_start_time(cpu); 5843 sched_rq_cpu_starting(cpu); 5844 sched_tick_start(cpu); 5845 return 0; 5846 } 5847 5848 #ifdef CONFIG_HOTPLUG_CPU 5849 int sched_cpu_dying(unsigned int cpu) 5850 { 5851 struct rq *rq = cpu_rq(cpu); 5852 struct rq_flags rf; 5853 5854 /* Handle pending wakeups and then migrate everything off */ 5855 sched_ttwu_pending(); 5856 sched_tick_stop(cpu); 5857 5858 rq_lock_irqsave(rq, &rf); 5859 if (rq->rd) { 5860 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5861 set_rq_offline(rq); 5862 } 5863 migrate_tasks(rq, &rf); 5864 BUG_ON(rq->nr_running != 1); 5865 rq_unlock_irqrestore(rq, &rf); 5866 5867 calc_load_migrate(rq); 5868 update_max_interval(); 5869 nohz_balance_exit_idle(rq); 5870 hrtick_clear(rq); 5871 return 0; 5872 } 5873 #endif 5874 5875 #ifdef CONFIG_SCHED_SMT 5876 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5877 5878 static void sched_init_smt(void) 5879 { 5880 /* 5881 * We've enumerated all CPUs and will assume that if any CPU 5882 * has SMT siblings, CPU0 will too. 5883 */ 5884 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5885 static_branch_enable(&sched_smt_present); 5886 } 5887 #else 5888 static inline void sched_init_smt(void) { } 5889 #endif 5890 5891 void __init sched_init_smp(void) 5892 { 5893 sched_init_numa(); 5894 5895 /* 5896 * There's no userspace yet to cause hotplug operations; hence all the 5897 * CPU masks are stable and all blatant races in the below code cannot 5898 * happen. 5899 */ 5900 mutex_lock(&sched_domains_mutex); 5901 sched_init_domains(cpu_active_mask); 5902 mutex_unlock(&sched_domains_mutex); 5903 5904 /* Move init over to a non-isolated CPU */ 5905 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5906 BUG(); 5907 sched_init_granularity(); 5908 5909 init_sched_rt_class(); 5910 init_sched_dl_class(); 5911 5912 sched_init_smt(); 5913 5914 sched_smp_initialized = true; 5915 } 5916 5917 static int __init migration_init(void) 5918 { 5919 sched_rq_cpu_starting(smp_processor_id()); 5920 return 0; 5921 } 5922 early_initcall(migration_init); 5923 5924 #else 5925 void __init sched_init_smp(void) 5926 { 5927 sched_init_granularity(); 5928 } 5929 #endif /* CONFIG_SMP */ 5930 5931 int in_sched_functions(unsigned long addr) 5932 { 5933 return in_lock_functions(addr) || 5934 (addr >= (unsigned long)__sched_text_start 5935 && addr < (unsigned long)__sched_text_end); 5936 } 5937 5938 #ifdef CONFIG_CGROUP_SCHED 5939 /* 5940 * Default task group. 5941 * Every task in system belongs to this group at bootup. 5942 */ 5943 struct task_group root_task_group; 5944 LIST_HEAD(task_groups); 5945 5946 /* Cacheline aligned slab cache for task_group */ 5947 static struct kmem_cache *task_group_cache __read_mostly; 5948 #endif 5949 5950 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5951 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5952 5953 void __init sched_init(void) 5954 { 5955 int i, j; 5956 unsigned long alloc_size = 0, ptr; 5957 5958 sched_clock_init(); 5959 wait_bit_init(); 5960 5961 #ifdef CONFIG_FAIR_GROUP_SCHED 5962 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5963 #endif 5964 #ifdef CONFIG_RT_GROUP_SCHED 5965 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5966 #endif 5967 if (alloc_size) { 5968 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5969 5970 #ifdef CONFIG_FAIR_GROUP_SCHED 5971 root_task_group.se = (struct sched_entity **)ptr; 5972 ptr += nr_cpu_ids * sizeof(void **); 5973 5974 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5975 ptr += nr_cpu_ids * sizeof(void **); 5976 5977 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5978 #ifdef CONFIG_RT_GROUP_SCHED 5979 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5980 ptr += nr_cpu_ids * sizeof(void **); 5981 5982 root_task_group.rt_rq = (struct rt_rq **)ptr; 5983 ptr += nr_cpu_ids * sizeof(void **); 5984 5985 #endif /* CONFIG_RT_GROUP_SCHED */ 5986 } 5987 #ifdef CONFIG_CPUMASK_OFFSTACK 5988 for_each_possible_cpu(i) { 5989 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5990 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5991 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5992 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5993 } 5994 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5995 5996 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5997 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5998 5999 #ifdef CONFIG_SMP 6000 init_defrootdomain(); 6001 #endif 6002 6003 #ifdef CONFIG_RT_GROUP_SCHED 6004 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6005 global_rt_period(), global_rt_runtime()); 6006 #endif /* CONFIG_RT_GROUP_SCHED */ 6007 6008 #ifdef CONFIG_CGROUP_SCHED 6009 task_group_cache = KMEM_CACHE(task_group, 0); 6010 6011 list_add(&root_task_group.list, &task_groups); 6012 INIT_LIST_HEAD(&root_task_group.children); 6013 INIT_LIST_HEAD(&root_task_group.siblings); 6014 autogroup_init(&init_task); 6015 #endif /* CONFIG_CGROUP_SCHED */ 6016 6017 for_each_possible_cpu(i) { 6018 struct rq *rq; 6019 6020 rq = cpu_rq(i); 6021 raw_spin_lock_init(&rq->lock); 6022 rq->nr_running = 0; 6023 rq->calc_load_active = 0; 6024 rq->calc_load_update = jiffies + LOAD_FREQ; 6025 init_cfs_rq(&rq->cfs); 6026 init_rt_rq(&rq->rt); 6027 init_dl_rq(&rq->dl); 6028 #ifdef CONFIG_FAIR_GROUP_SCHED 6029 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6030 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6031 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6032 /* 6033 * How much CPU bandwidth does root_task_group get? 6034 * 6035 * In case of task-groups formed thr' the cgroup filesystem, it 6036 * gets 100% of the CPU resources in the system. This overall 6037 * system CPU resource is divided among the tasks of 6038 * root_task_group and its child task-groups in a fair manner, 6039 * based on each entity's (task or task-group's) weight 6040 * (se->load.weight). 6041 * 6042 * In other words, if root_task_group has 10 tasks of weight 6043 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6044 * then A0's share of the CPU resource is: 6045 * 6046 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6047 * 6048 * We achieve this by letting root_task_group's tasks sit 6049 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6050 */ 6051 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6052 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6053 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6054 6055 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6056 #ifdef CONFIG_RT_GROUP_SCHED 6057 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6058 #endif 6059 6060 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6061 rq->cpu_load[j] = 0; 6062 6063 #ifdef CONFIG_SMP 6064 rq->sd = NULL; 6065 rq->rd = NULL; 6066 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6067 rq->balance_callback = NULL; 6068 rq->active_balance = 0; 6069 rq->next_balance = jiffies; 6070 rq->push_cpu = 0; 6071 rq->cpu = i; 6072 rq->online = 0; 6073 rq->idle_stamp = 0; 6074 rq->avg_idle = 2*sysctl_sched_migration_cost; 6075 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6076 6077 INIT_LIST_HEAD(&rq->cfs_tasks); 6078 6079 rq_attach_root(rq, &def_root_domain); 6080 #ifdef CONFIG_NO_HZ_COMMON 6081 rq->last_load_update_tick = jiffies; 6082 rq->last_blocked_load_update_tick = jiffies; 6083 atomic_set(&rq->nohz_flags, 0); 6084 #endif 6085 #endif /* CONFIG_SMP */ 6086 hrtick_rq_init(rq); 6087 atomic_set(&rq->nr_iowait, 0); 6088 } 6089 6090 set_load_weight(&init_task, false); 6091 6092 /* 6093 * The boot idle thread does lazy MMU switching as well: 6094 */ 6095 mmgrab(&init_mm); 6096 enter_lazy_tlb(&init_mm, current); 6097 6098 /* 6099 * Make us the idle thread. Technically, schedule() should not be 6100 * called from this thread, however somewhere below it might be, 6101 * but because we are the idle thread, we just pick up running again 6102 * when this runqueue becomes "idle". 6103 */ 6104 init_idle(current, smp_processor_id()); 6105 6106 calc_load_update = jiffies + LOAD_FREQ; 6107 6108 #ifdef CONFIG_SMP 6109 idle_thread_set_boot_cpu(); 6110 set_cpu_rq_start_time(smp_processor_id()); 6111 #endif 6112 init_sched_fair_class(); 6113 6114 init_schedstats(); 6115 6116 scheduler_running = 1; 6117 } 6118 6119 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6120 static inline int preempt_count_equals(int preempt_offset) 6121 { 6122 int nested = preempt_count() + rcu_preempt_depth(); 6123 6124 return (nested == preempt_offset); 6125 } 6126 6127 void __might_sleep(const char *file, int line, int preempt_offset) 6128 { 6129 /* 6130 * Blocking primitives will set (and therefore destroy) current->state, 6131 * since we will exit with TASK_RUNNING make sure we enter with it, 6132 * otherwise we will destroy state. 6133 */ 6134 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6135 "do not call blocking ops when !TASK_RUNNING; " 6136 "state=%lx set at [<%p>] %pS\n", 6137 current->state, 6138 (void *)current->task_state_change, 6139 (void *)current->task_state_change); 6140 6141 ___might_sleep(file, line, preempt_offset); 6142 } 6143 EXPORT_SYMBOL(__might_sleep); 6144 6145 void ___might_sleep(const char *file, int line, int preempt_offset) 6146 { 6147 /* Ratelimiting timestamp: */ 6148 static unsigned long prev_jiffy; 6149 6150 unsigned long preempt_disable_ip; 6151 6152 /* WARN_ON_ONCE() by default, no rate limit required: */ 6153 rcu_sleep_check(); 6154 6155 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6156 !is_idle_task(current)) || 6157 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6158 oops_in_progress) 6159 return; 6160 6161 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6162 return; 6163 prev_jiffy = jiffies; 6164 6165 /* Save this before calling printk(), since that will clobber it: */ 6166 preempt_disable_ip = get_preempt_disable_ip(current); 6167 6168 printk(KERN_ERR 6169 "BUG: sleeping function called from invalid context at %s:%d\n", 6170 file, line); 6171 printk(KERN_ERR 6172 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6173 in_atomic(), irqs_disabled(), 6174 current->pid, current->comm); 6175 6176 if (task_stack_end_corrupted(current)) 6177 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6178 6179 debug_show_held_locks(current); 6180 if (irqs_disabled()) 6181 print_irqtrace_events(current); 6182 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6183 && !preempt_count_equals(preempt_offset)) { 6184 pr_err("Preemption disabled at:"); 6185 print_ip_sym(preempt_disable_ip); 6186 pr_cont("\n"); 6187 } 6188 dump_stack(); 6189 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6190 } 6191 EXPORT_SYMBOL(___might_sleep); 6192 #endif 6193 6194 #ifdef CONFIG_MAGIC_SYSRQ 6195 void normalize_rt_tasks(void) 6196 { 6197 struct task_struct *g, *p; 6198 struct sched_attr attr = { 6199 .sched_policy = SCHED_NORMAL, 6200 }; 6201 6202 read_lock(&tasklist_lock); 6203 for_each_process_thread(g, p) { 6204 /* 6205 * Only normalize user tasks: 6206 */ 6207 if (p->flags & PF_KTHREAD) 6208 continue; 6209 6210 p->se.exec_start = 0; 6211 schedstat_set(p->se.statistics.wait_start, 0); 6212 schedstat_set(p->se.statistics.sleep_start, 0); 6213 schedstat_set(p->se.statistics.block_start, 0); 6214 6215 if (!dl_task(p) && !rt_task(p)) { 6216 /* 6217 * Renice negative nice level userspace 6218 * tasks back to 0: 6219 */ 6220 if (task_nice(p) < 0) 6221 set_user_nice(p, 0); 6222 continue; 6223 } 6224 6225 __sched_setscheduler(p, &attr, false, false); 6226 } 6227 read_unlock(&tasklist_lock); 6228 } 6229 6230 #endif /* CONFIG_MAGIC_SYSRQ */ 6231 6232 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6233 /* 6234 * These functions are only useful for the IA64 MCA handling, or kdb. 6235 * 6236 * They can only be called when the whole system has been 6237 * stopped - every CPU needs to be quiescent, and no scheduling 6238 * activity can take place. Using them for anything else would 6239 * be a serious bug, and as a result, they aren't even visible 6240 * under any other configuration. 6241 */ 6242 6243 /** 6244 * curr_task - return the current task for a given CPU. 6245 * @cpu: the processor in question. 6246 * 6247 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6248 * 6249 * Return: The current task for @cpu. 6250 */ 6251 struct task_struct *curr_task(int cpu) 6252 { 6253 return cpu_curr(cpu); 6254 } 6255 6256 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6257 6258 #ifdef CONFIG_IA64 6259 /** 6260 * set_curr_task - set the current task for a given CPU. 6261 * @cpu: the processor in question. 6262 * @p: the task pointer to set. 6263 * 6264 * Description: This function must only be used when non-maskable interrupts 6265 * are serviced on a separate stack. It allows the architecture to switch the 6266 * notion of the current task on a CPU in a non-blocking manner. This function 6267 * must be called with all CPU's synchronized, and interrupts disabled, the 6268 * and caller must save the original value of the current task (see 6269 * curr_task() above) and restore that value before reenabling interrupts and 6270 * re-starting the system. 6271 * 6272 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6273 */ 6274 void ia64_set_curr_task(int cpu, struct task_struct *p) 6275 { 6276 cpu_curr(cpu) = p; 6277 } 6278 6279 #endif 6280 6281 #ifdef CONFIG_CGROUP_SCHED 6282 /* task_group_lock serializes the addition/removal of task groups */ 6283 static DEFINE_SPINLOCK(task_group_lock); 6284 6285 static void sched_free_group(struct task_group *tg) 6286 { 6287 free_fair_sched_group(tg); 6288 free_rt_sched_group(tg); 6289 autogroup_free(tg); 6290 kmem_cache_free(task_group_cache, tg); 6291 } 6292 6293 /* allocate runqueue etc for a new task group */ 6294 struct task_group *sched_create_group(struct task_group *parent) 6295 { 6296 struct task_group *tg; 6297 6298 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6299 if (!tg) 6300 return ERR_PTR(-ENOMEM); 6301 6302 if (!alloc_fair_sched_group(tg, parent)) 6303 goto err; 6304 6305 if (!alloc_rt_sched_group(tg, parent)) 6306 goto err; 6307 6308 return tg; 6309 6310 err: 6311 sched_free_group(tg); 6312 return ERR_PTR(-ENOMEM); 6313 } 6314 6315 void sched_online_group(struct task_group *tg, struct task_group *parent) 6316 { 6317 unsigned long flags; 6318 6319 spin_lock_irqsave(&task_group_lock, flags); 6320 list_add_rcu(&tg->list, &task_groups); 6321 6322 /* Root should already exist: */ 6323 WARN_ON(!parent); 6324 6325 tg->parent = parent; 6326 INIT_LIST_HEAD(&tg->children); 6327 list_add_rcu(&tg->siblings, &parent->children); 6328 spin_unlock_irqrestore(&task_group_lock, flags); 6329 6330 online_fair_sched_group(tg); 6331 } 6332 6333 /* rcu callback to free various structures associated with a task group */ 6334 static void sched_free_group_rcu(struct rcu_head *rhp) 6335 { 6336 /* Now it should be safe to free those cfs_rqs: */ 6337 sched_free_group(container_of(rhp, struct task_group, rcu)); 6338 } 6339 6340 void sched_destroy_group(struct task_group *tg) 6341 { 6342 /* Wait for possible concurrent references to cfs_rqs complete: */ 6343 call_rcu(&tg->rcu, sched_free_group_rcu); 6344 } 6345 6346 void sched_offline_group(struct task_group *tg) 6347 { 6348 unsigned long flags; 6349 6350 /* End participation in shares distribution: */ 6351 unregister_fair_sched_group(tg); 6352 6353 spin_lock_irqsave(&task_group_lock, flags); 6354 list_del_rcu(&tg->list); 6355 list_del_rcu(&tg->siblings); 6356 spin_unlock_irqrestore(&task_group_lock, flags); 6357 } 6358 6359 static void sched_change_group(struct task_struct *tsk, int type) 6360 { 6361 struct task_group *tg; 6362 6363 /* 6364 * All callers are synchronized by task_rq_lock(); we do not use RCU 6365 * which is pointless here. Thus, we pass "true" to task_css_check() 6366 * to prevent lockdep warnings. 6367 */ 6368 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6369 struct task_group, css); 6370 tg = autogroup_task_group(tsk, tg); 6371 tsk->sched_task_group = tg; 6372 6373 #ifdef CONFIG_FAIR_GROUP_SCHED 6374 if (tsk->sched_class->task_change_group) 6375 tsk->sched_class->task_change_group(tsk, type); 6376 else 6377 #endif 6378 set_task_rq(tsk, task_cpu(tsk)); 6379 } 6380 6381 /* 6382 * Change task's runqueue when it moves between groups. 6383 * 6384 * The caller of this function should have put the task in its new group by 6385 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6386 * its new group. 6387 */ 6388 void sched_move_task(struct task_struct *tsk) 6389 { 6390 int queued, running, queue_flags = 6391 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6392 struct rq_flags rf; 6393 struct rq *rq; 6394 6395 rq = task_rq_lock(tsk, &rf); 6396 update_rq_clock(rq); 6397 6398 running = task_current(rq, tsk); 6399 queued = task_on_rq_queued(tsk); 6400 6401 if (queued) 6402 dequeue_task(rq, tsk, queue_flags); 6403 if (running) 6404 put_prev_task(rq, tsk); 6405 6406 sched_change_group(tsk, TASK_MOVE_GROUP); 6407 6408 if (queued) 6409 enqueue_task(rq, tsk, queue_flags); 6410 if (running) 6411 set_curr_task(rq, tsk); 6412 6413 task_rq_unlock(rq, tsk, &rf); 6414 } 6415 6416 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6417 { 6418 return css ? container_of(css, struct task_group, css) : NULL; 6419 } 6420 6421 static struct cgroup_subsys_state * 6422 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6423 { 6424 struct task_group *parent = css_tg(parent_css); 6425 struct task_group *tg; 6426 6427 if (!parent) { 6428 /* This is early initialization for the top cgroup */ 6429 return &root_task_group.css; 6430 } 6431 6432 tg = sched_create_group(parent); 6433 if (IS_ERR(tg)) 6434 return ERR_PTR(-ENOMEM); 6435 6436 return &tg->css; 6437 } 6438 6439 /* Expose task group only after completing cgroup initialization */ 6440 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6441 { 6442 struct task_group *tg = css_tg(css); 6443 struct task_group *parent = css_tg(css->parent); 6444 6445 if (parent) 6446 sched_online_group(tg, parent); 6447 return 0; 6448 } 6449 6450 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6451 { 6452 struct task_group *tg = css_tg(css); 6453 6454 sched_offline_group(tg); 6455 } 6456 6457 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6458 { 6459 struct task_group *tg = css_tg(css); 6460 6461 /* 6462 * Relies on the RCU grace period between css_released() and this. 6463 */ 6464 sched_free_group(tg); 6465 } 6466 6467 /* 6468 * This is called before wake_up_new_task(), therefore we really only 6469 * have to set its group bits, all the other stuff does not apply. 6470 */ 6471 static void cpu_cgroup_fork(struct task_struct *task) 6472 { 6473 struct rq_flags rf; 6474 struct rq *rq; 6475 6476 rq = task_rq_lock(task, &rf); 6477 6478 update_rq_clock(rq); 6479 sched_change_group(task, TASK_SET_GROUP); 6480 6481 task_rq_unlock(rq, task, &rf); 6482 } 6483 6484 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6485 { 6486 struct task_struct *task; 6487 struct cgroup_subsys_state *css; 6488 int ret = 0; 6489 6490 cgroup_taskset_for_each(task, css, tset) { 6491 #ifdef CONFIG_RT_GROUP_SCHED 6492 if (!sched_rt_can_attach(css_tg(css), task)) 6493 return -EINVAL; 6494 #else 6495 /* We don't support RT-tasks being in separate groups */ 6496 if (task->sched_class != &fair_sched_class) 6497 return -EINVAL; 6498 #endif 6499 /* 6500 * Serialize against wake_up_new_task() such that if its 6501 * running, we're sure to observe its full state. 6502 */ 6503 raw_spin_lock_irq(&task->pi_lock); 6504 /* 6505 * Avoid calling sched_move_task() before wake_up_new_task() 6506 * has happened. This would lead to problems with PELT, due to 6507 * move wanting to detach+attach while we're not attached yet. 6508 */ 6509 if (task->state == TASK_NEW) 6510 ret = -EINVAL; 6511 raw_spin_unlock_irq(&task->pi_lock); 6512 6513 if (ret) 6514 break; 6515 } 6516 return ret; 6517 } 6518 6519 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6520 { 6521 struct task_struct *task; 6522 struct cgroup_subsys_state *css; 6523 6524 cgroup_taskset_for_each(task, css, tset) 6525 sched_move_task(task); 6526 } 6527 6528 #ifdef CONFIG_FAIR_GROUP_SCHED 6529 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6530 struct cftype *cftype, u64 shareval) 6531 { 6532 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6533 } 6534 6535 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6536 struct cftype *cft) 6537 { 6538 struct task_group *tg = css_tg(css); 6539 6540 return (u64) scale_load_down(tg->shares); 6541 } 6542 6543 #ifdef CONFIG_CFS_BANDWIDTH 6544 static DEFINE_MUTEX(cfs_constraints_mutex); 6545 6546 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6547 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6548 6549 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6550 6551 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6552 { 6553 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6554 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6555 6556 if (tg == &root_task_group) 6557 return -EINVAL; 6558 6559 /* 6560 * Ensure we have at some amount of bandwidth every period. This is 6561 * to prevent reaching a state of large arrears when throttled via 6562 * entity_tick() resulting in prolonged exit starvation. 6563 */ 6564 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6565 return -EINVAL; 6566 6567 /* 6568 * Likewise, bound things on the otherside by preventing insane quota 6569 * periods. This also allows us to normalize in computing quota 6570 * feasibility. 6571 */ 6572 if (period > max_cfs_quota_period) 6573 return -EINVAL; 6574 6575 /* 6576 * Prevent race between setting of cfs_rq->runtime_enabled and 6577 * unthrottle_offline_cfs_rqs(). 6578 */ 6579 get_online_cpus(); 6580 mutex_lock(&cfs_constraints_mutex); 6581 ret = __cfs_schedulable(tg, period, quota); 6582 if (ret) 6583 goto out_unlock; 6584 6585 runtime_enabled = quota != RUNTIME_INF; 6586 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6587 /* 6588 * If we need to toggle cfs_bandwidth_used, off->on must occur 6589 * before making related changes, and on->off must occur afterwards 6590 */ 6591 if (runtime_enabled && !runtime_was_enabled) 6592 cfs_bandwidth_usage_inc(); 6593 raw_spin_lock_irq(&cfs_b->lock); 6594 cfs_b->period = ns_to_ktime(period); 6595 cfs_b->quota = quota; 6596 6597 __refill_cfs_bandwidth_runtime(cfs_b); 6598 6599 /* Restart the period timer (if active) to handle new period expiry: */ 6600 if (runtime_enabled) 6601 start_cfs_bandwidth(cfs_b); 6602 6603 raw_spin_unlock_irq(&cfs_b->lock); 6604 6605 for_each_online_cpu(i) { 6606 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6607 struct rq *rq = cfs_rq->rq; 6608 struct rq_flags rf; 6609 6610 rq_lock_irq(rq, &rf); 6611 cfs_rq->runtime_enabled = runtime_enabled; 6612 cfs_rq->runtime_remaining = 0; 6613 6614 if (cfs_rq->throttled) 6615 unthrottle_cfs_rq(cfs_rq); 6616 rq_unlock_irq(rq, &rf); 6617 } 6618 if (runtime_was_enabled && !runtime_enabled) 6619 cfs_bandwidth_usage_dec(); 6620 out_unlock: 6621 mutex_unlock(&cfs_constraints_mutex); 6622 put_online_cpus(); 6623 6624 return ret; 6625 } 6626 6627 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6628 { 6629 u64 quota, period; 6630 6631 period = ktime_to_ns(tg->cfs_bandwidth.period); 6632 if (cfs_quota_us < 0) 6633 quota = RUNTIME_INF; 6634 else 6635 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6636 6637 return tg_set_cfs_bandwidth(tg, period, quota); 6638 } 6639 6640 long tg_get_cfs_quota(struct task_group *tg) 6641 { 6642 u64 quota_us; 6643 6644 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6645 return -1; 6646 6647 quota_us = tg->cfs_bandwidth.quota; 6648 do_div(quota_us, NSEC_PER_USEC); 6649 6650 return quota_us; 6651 } 6652 6653 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6654 { 6655 u64 quota, period; 6656 6657 period = (u64)cfs_period_us * NSEC_PER_USEC; 6658 quota = tg->cfs_bandwidth.quota; 6659 6660 return tg_set_cfs_bandwidth(tg, period, quota); 6661 } 6662 6663 long tg_get_cfs_period(struct task_group *tg) 6664 { 6665 u64 cfs_period_us; 6666 6667 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6668 do_div(cfs_period_us, NSEC_PER_USEC); 6669 6670 return cfs_period_us; 6671 } 6672 6673 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6674 struct cftype *cft) 6675 { 6676 return tg_get_cfs_quota(css_tg(css)); 6677 } 6678 6679 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6680 struct cftype *cftype, s64 cfs_quota_us) 6681 { 6682 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6683 } 6684 6685 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6686 struct cftype *cft) 6687 { 6688 return tg_get_cfs_period(css_tg(css)); 6689 } 6690 6691 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6692 struct cftype *cftype, u64 cfs_period_us) 6693 { 6694 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6695 } 6696 6697 struct cfs_schedulable_data { 6698 struct task_group *tg; 6699 u64 period, quota; 6700 }; 6701 6702 /* 6703 * normalize group quota/period to be quota/max_period 6704 * note: units are usecs 6705 */ 6706 static u64 normalize_cfs_quota(struct task_group *tg, 6707 struct cfs_schedulable_data *d) 6708 { 6709 u64 quota, period; 6710 6711 if (tg == d->tg) { 6712 period = d->period; 6713 quota = d->quota; 6714 } else { 6715 period = tg_get_cfs_period(tg); 6716 quota = tg_get_cfs_quota(tg); 6717 } 6718 6719 /* note: these should typically be equivalent */ 6720 if (quota == RUNTIME_INF || quota == -1) 6721 return RUNTIME_INF; 6722 6723 return to_ratio(period, quota); 6724 } 6725 6726 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6727 { 6728 struct cfs_schedulable_data *d = data; 6729 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6730 s64 quota = 0, parent_quota = -1; 6731 6732 if (!tg->parent) { 6733 quota = RUNTIME_INF; 6734 } else { 6735 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6736 6737 quota = normalize_cfs_quota(tg, d); 6738 parent_quota = parent_b->hierarchical_quota; 6739 6740 /* 6741 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6742 * always take the min. On cgroup1, only inherit when no 6743 * limit is set: 6744 */ 6745 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6746 quota = min(quota, parent_quota); 6747 } else { 6748 if (quota == RUNTIME_INF) 6749 quota = parent_quota; 6750 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6751 return -EINVAL; 6752 } 6753 } 6754 cfs_b->hierarchical_quota = quota; 6755 6756 return 0; 6757 } 6758 6759 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6760 { 6761 int ret; 6762 struct cfs_schedulable_data data = { 6763 .tg = tg, 6764 .period = period, 6765 .quota = quota, 6766 }; 6767 6768 if (quota != RUNTIME_INF) { 6769 do_div(data.period, NSEC_PER_USEC); 6770 do_div(data.quota, NSEC_PER_USEC); 6771 } 6772 6773 rcu_read_lock(); 6774 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6775 rcu_read_unlock(); 6776 6777 return ret; 6778 } 6779 6780 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6781 { 6782 struct task_group *tg = css_tg(seq_css(sf)); 6783 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6784 6785 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6786 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6787 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6788 6789 return 0; 6790 } 6791 #endif /* CONFIG_CFS_BANDWIDTH */ 6792 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6793 6794 #ifdef CONFIG_RT_GROUP_SCHED 6795 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6796 struct cftype *cft, s64 val) 6797 { 6798 return sched_group_set_rt_runtime(css_tg(css), val); 6799 } 6800 6801 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6802 struct cftype *cft) 6803 { 6804 return sched_group_rt_runtime(css_tg(css)); 6805 } 6806 6807 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6808 struct cftype *cftype, u64 rt_period_us) 6809 { 6810 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6811 } 6812 6813 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6814 struct cftype *cft) 6815 { 6816 return sched_group_rt_period(css_tg(css)); 6817 } 6818 #endif /* CONFIG_RT_GROUP_SCHED */ 6819 6820 static struct cftype cpu_legacy_files[] = { 6821 #ifdef CONFIG_FAIR_GROUP_SCHED 6822 { 6823 .name = "shares", 6824 .read_u64 = cpu_shares_read_u64, 6825 .write_u64 = cpu_shares_write_u64, 6826 }, 6827 #endif 6828 #ifdef CONFIG_CFS_BANDWIDTH 6829 { 6830 .name = "cfs_quota_us", 6831 .read_s64 = cpu_cfs_quota_read_s64, 6832 .write_s64 = cpu_cfs_quota_write_s64, 6833 }, 6834 { 6835 .name = "cfs_period_us", 6836 .read_u64 = cpu_cfs_period_read_u64, 6837 .write_u64 = cpu_cfs_period_write_u64, 6838 }, 6839 { 6840 .name = "stat", 6841 .seq_show = cpu_cfs_stat_show, 6842 }, 6843 #endif 6844 #ifdef CONFIG_RT_GROUP_SCHED 6845 { 6846 .name = "rt_runtime_us", 6847 .read_s64 = cpu_rt_runtime_read, 6848 .write_s64 = cpu_rt_runtime_write, 6849 }, 6850 { 6851 .name = "rt_period_us", 6852 .read_u64 = cpu_rt_period_read_uint, 6853 .write_u64 = cpu_rt_period_write_uint, 6854 }, 6855 #endif 6856 { } /* Terminate */ 6857 }; 6858 6859 static int cpu_extra_stat_show(struct seq_file *sf, 6860 struct cgroup_subsys_state *css) 6861 { 6862 #ifdef CONFIG_CFS_BANDWIDTH 6863 { 6864 struct task_group *tg = css_tg(css); 6865 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6866 u64 throttled_usec; 6867 6868 throttled_usec = cfs_b->throttled_time; 6869 do_div(throttled_usec, NSEC_PER_USEC); 6870 6871 seq_printf(sf, "nr_periods %d\n" 6872 "nr_throttled %d\n" 6873 "throttled_usec %llu\n", 6874 cfs_b->nr_periods, cfs_b->nr_throttled, 6875 throttled_usec); 6876 } 6877 #endif 6878 return 0; 6879 } 6880 6881 #ifdef CONFIG_FAIR_GROUP_SCHED 6882 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6883 struct cftype *cft) 6884 { 6885 struct task_group *tg = css_tg(css); 6886 u64 weight = scale_load_down(tg->shares); 6887 6888 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6889 } 6890 6891 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6892 struct cftype *cft, u64 weight) 6893 { 6894 /* 6895 * cgroup weight knobs should use the common MIN, DFL and MAX 6896 * values which are 1, 100 and 10000 respectively. While it loses 6897 * a bit of range on both ends, it maps pretty well onto the shares 6898 * value used by scheduler and the round-trip conversions preserve 6899 * the original value over the entire range. 6900 */ 6901 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6902 return -ERANGE; 6903 6904 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6905 6906 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6907 } 6908 6909 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6910 struct cftype *cft) 6911 { 6912 unsigned long weight = scale_load_down(css_tg(css)->shares); 6913 int last_delta = INT_MAX; 6914 int prio, delta; 6915 6916 /* find the closest nice value to the current weight */ 6917 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6918 delta = abs(sched_prio_to_weight[prio] - weight); 6919 if (delta >= last_delta) 6920 break; 6921 last_delta = delta; 6922 } 6923 6924 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6925 } 6926 6927 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6928 struct cftype *cft, s64 nice) 6929 { 6930 unsigned long weight; 6931 6932 if (nice < MIN_NICE || nice > MAX_NICE) 6933 return -ERANGE; 6934 6935 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO]; 6936 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6937 } 6938 #endif 6939 6940 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6941 long period, long quota) 6942 { 6943 if (quota < 0) 6944 seq_puts(sf, "max"); 6945 else 6946 seq_printf(sf, "%ld", quota); 6947 6948 seq_printf(sf, " %ld\n", period); 6949 } 6950 6951 /* caller should put the current value in *@periodp before calling */ 6952 static int __maybe_unused cpu_period_quota_parse(char *buf, 6953 u64 *periodp, u64 *quotap) 6954 { 6955 char tok[21]; /* U64_MAX */ 6956 6957 if (!sscanf(buf, "%s %llu", tok, periodp)) 6958 return -EINVAL; 6959 6960 *periodp *= NSEC_PER_USEC; 6961 6962 if (sscanf(tok, "%llu", quotap)) 6963 *quotap *= NSEC_PER_USEC; 6964 else if (!strcmp(tok, "max")) 6965 *quotap = RUNTIME_INF; 6966 else 6967 return -EINVAL; 6968 6969 return 0; 6970 } 6971 6972 #ifdef CONFIG_CFS_BANDWIDTH 6973 static int cpu_max_show(struct seq_file *sf, void *v) 6974 { 6975 struct task_group *tg = css_tg(seq_css(sf)); 6976 6977 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6978 return 0; 6979 } 6980 6981 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6982 char *buf, size_t nbytes, loff_t off) 6983 { 6984 struct task_group *tg = css_tg(of_css(of)); 6985 u64 period = tg_get_cfs_period(tg); 6986 u64 quota; 6987 int ret; 6988 6989 ret = cpu_period_quota_parse(buf, &period, "a); 6990 if (!ret) 6991 ret = tg_set_cfs_bandwidth(tg, period, quota); 6992 return ret ?: nbytes; 6993 } 6994 #endif 6995 6996 static struct cftype cpu_files[] = { 6997 #ifdef CONFIG_FAIR_GROUP_SCHED 6998 { 6999 .name = "weight", 7000 .flags = CFTYPE_NOT_ON_ROOT, 7001 .read_u64 = cpu_weight_read_u64, 7002 .write_u64 = cpu_weight_write_u64, 7003 }, 7004 { 7005 .name = "weight.nice", 7006 .flags = CFTYPE_NOT_ON_ROOT, 7007 .read_s64 = cpu_weight_nice_read_s64, 7008 .write_s64 = cpu_weight_nice_write_s64, 7009 }, 7010 #endif 7011 #ifdef CONFIG_CFS_BANDWIDTH 7012 { 7013 .name = "max", 7014 .flags = CFTYPE_NOT_ON_ROOT, 7015 .seq_show = cpu_max_show, 7016 .write = cpu_max_write, 7017 }, 7018 #endif 7019 { } /* terminate */ 7020 }; 7021 7022 struct cgroup_subsys cpu_cgrp_subsys = { 7023 .css_alloc = cpu_cgroup_css_alloc, 7024 .css_online = cpu_cgroup_css_online, 7025 .css_released = cpu_cgroup_css_released, 7026 .css_free = cpu_cgroup_css_free, 7027 .css_extra_stat_show = cpu_extra_stat_show, 7028 .fork = cpu_cgroup_fork, 7029 .can_attach = cpu_cgroup_can_attach, 7030 .attach = cpu_cgroup_attach, 7031 .legacy_cftypes = cpu_legacy_files, 7032 .dfl_cftypes = cpu_files, 7033 .early_init = true, 7034 .threaded = true, 7035 }; 7036 7037 #endif /* CONFIG_CGROUP_SCHED */ 7038 7039 void dump_cpu_task(int cpu) 7040 { 7041 pr_info("Task dump for CPU %d:\n", cpu); 7042 sched_show_task(cpu_curr(cpu)); 7043 } 7044 7045 /* 7046 * Nice levels are multiplicative, with a gentle 10% change for every 7047 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7048 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7049 * that remained on nice 0. 7050 * 7051 * The "10% effect" is relative and cumulative: from _any_ nice level, 7052 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7053 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7054 * If a task goes up by ~10% and another task goes down by ~10% then 7055 * the relative distance between them is ~25%.) 7056 */ 7057 const int sched_prio_to_weight[40] = { 7058 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7059 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7060 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7061 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7062 /* 0 */ 1024, 820, 655, 526, 423, 7063 /* 5 */ 335, 272, 215, 172, 137, 7064 /* 10 */ 110, 87, 70, 56, 45, 7065 /* 15 */ 36, 29, 23, 18, 15, 7066 }; 7067 7068 /* 7069 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7070 * 7071 * In cases where the weight does not change often, we can use the 7072 * precalculated inverse to speed up arithmetics by turning divisions 7073 * into multiplications: 7074 */ 7075 const u32 sched_prio_to_wmult[40] = { 7076 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7077 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7078 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7079 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7080 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7081 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7082 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7083 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7084 }; 7085 7086 #undef CREATE_TRACE_POINTS 7087