xref: /openbmc/linux/kernel/sched/core.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/debug.h>
30 #include <linux/sched/isolation.h>
31 #include <linux/sched/loadavg.h>
32 #include <linux/sched/mm.h>
33 #include <linux/sched/nohz.h>
34 #include <linux/sched/rseq_api.h>
35 #include <linux/sched/rt.h>
36 
37 #include <linux/blkdev.h>
38 #include <linux/context_tracking.h>
39 #include <linux/cpuset.h>
40 #include <linux/delayacct.h>
41 #include <linux/init_task.h>
42 #include <linux/interrupt.h>
43 #include <linux/ioprio.h>
44 #include <linux/kallsyms.h>
45 #include <linux/kcov.h>
46 #include <linux/kprobes.h>
47 #include <linux/llist_api.h>
48 #include <linux/mmu_context.h>
49 #include <linux/mmzone.h>
50 #include <linux/mutex_api.h>
51 #include <linux/nmi.h>
52 #include <linux/nospec.h>
53 #include <linux/perf_event_api.h>
54 #include <linux/profile.h>
55 #include <linux/psi.h>
56 #include <linux/rcuwait_api.h>
57 #include <linux/sched/wake_q.h>
58 #include <linux/scs.h>
59 #include <linux/slab.h>
60 #include <linux/syscalls.h>
61 #include <linux/vtime.h>
62 #include <linux/wait_api.h>
63 #include <linux/workqueue_api.h>
64 
65 #ifdef CONFIG_PREEMPT_DYNAMIC
66 # ifdef CONFIG_GENERIC_ENTRY
67 #  include <linux/entry-common.h>
68 # endif
69 #endif
70 
71 #include <uapi/linux/sched/types.h>
72 
73 #include <asm/switch_to.h>
74 #include <asm/tlb.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <linux/sched/rseq_api.h>
78 #include <trace/events/sched.h>
79 #undef CREATE_TRACE_POINTS
80 
81 #include "sched.h"
82 #include "stats.h"
83 #include "autogroup.h"
84 
85 #include "autogroup.h"
86 #include "pelt.h"
87 #include "smp.h"
88 #include "stats.h"
89 
90 #include "../workqueue_internal.h"
91 #include "../../fs/io-wq.h"
92 #include "../smpboot.h"
93 
94 /*
95  * Export tracepoints that act as a bare tracehook (ie: have no trace event
96  * associated with them) to allow external modules to probe them.
97  */
98 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
99 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
109 
110 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
111 
112 #ifdef CONFIG_SCHED_DEBUG
113 /*
114  * Debugging: various feature bits
115  *
116  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
117  * sysctl_sched_features, defined in sched.h, to allow constants propagation
118  * at compile time and compiler optimization based on features default.
119  */
120 #define SCHED_FEAT(name, enabled)	\
121 	(1UL << __SCHED_FEAT_##name) * enabled |
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 	0;
125 #undef SCHED_FEAT
126 
127 /*
128  * Print a warning if need_resched is set for the given duration (if
129  * LATENCY_WARN is enabled).
130  *
131  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
132  * per boot.
133  */
134 __read_mostly int sysctl_resched_latency_warn_ms = 100;
135 __read_mostly int sysctl_resched_latency_warn_once = 1;
136 #endif /* CONFIG_SCHED_DEBUG */
137 
138 /*
139  * Number of tasks to iterate in a single balance run.
140  * Limited because this is done with IRQs disabled.
141  */
142 #ifdef CONFIG_PREEMPT_RT
143 const_debug unsigned int sysctl_sched_nr_migrate = 8;
144 #else
145 const_debug unsigned int sysctl_sched_nr_migrate = 32;
146 #endif
147 
148 /*
149  * period over which we measure -rt task CPU usage in us.
150  * default: 1s
151  */
152 unsigned int sysctl_sched_rt_period = 1000000;
153 
154 __read_mostly int scheduler_running;
155 
156 #ifdef CONFIG_SCHED_CORE
157 
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159 
160 /* kernel prio, less is more */
161 static inline int __task_prio(struct task_struct *p)
162 {
163 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 		return -2;
165 
166 	if (rt_prio(p->prio)) /* includes deadline */
167 		return p->prio; /* [-1, 99] */
168 
169 	if (p->sched_class == &idle_sched_class)
170 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
171 
172 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
173 }
174 
175 /*
176  * l(a,b)
177  * le(a,b) := !l(b,a)
178  * g(a,b)  := l(b,a)
179  * ge(a,b) := !l(a,b)
180  */
181 
182 /* real prio, less is less */
183 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
184 {
185 
186 	int pa = __task_prio(a), pb = __task_prio(b);
187 
188 	if (-pa < -pb)
189 		return true;
190 
191 	if (-pb < -pa)
192 		return false;
193 
194 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
195 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
196 
197 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
198 		return cfs_prio_less(a, b, in_fi);
199 
200 	return false;
201 }
202 
203 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
268 /*
269  * Find left-most (aka, highest priority) task matching @cookie.
270  */
271 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
272 {
273 	struct rb_node *node;
274 
275 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
276 	/*
277 	 * The idle task always matches any cookie!
278 	 */
279 	if (!node)
280 		return idle_sched_class.pick_task(rq);
281 
282 	return __node_2_sc(node);
283 }
284 
285 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
286 {
287 	struct rb_node *node = &p->core_node;
288 
289 	node = rb_next(node);
290 	if (!node)
291 		return NULL;
292 
293 	p = container_of(node, struct task_struct, core_node);
294 	if (p->core_cookie != cookie)
295 		return NULL;
296 
297 	return p;
298 }
299 
300 /*
301  * Magic required such that:
302  *
303  *	raw_spin_rq_lock(rq);
304  *	...
305  *	raw_spin_rq_unlock(rq);
306  *
307  * ends up locking and unlocking the _same_ lock, and all CPUs
308  * always agree on what rq has what lock.
309  *
310  * XXX entirely possible to selectively enable cores, don't bother for now.
311  */
312 
313 static DEFINE_MUTEX(sched_core_mutex);
314 static atomic_t sched_core_count;
315 static struct cpumask sched_core_mask;
316 
317 static void sched_core_lock(int cpu, unsigned long *flags)
318 {
319 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
320 	int t, i = 0;
321 
322 	local_irq_save(*flags);
323 	for_each_cpu(t, smt_mask)
324 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
325 }
326 
327 static void sched_core_unlock(int cpu, unsigned long *flags)
328 {
329 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
330 	int t;
331 
332 	for_each_cpu(t, smt_mask)
333 		raw_spin_unlock(&cpu_rq(t)->__lock);
334 	local_irq_restore(*flags);
335 }
336 
337 static void __sched_core_flip(bool enabled)
338 {
339 	unsigned long flags;
340 	int cpu, t;
341 
342 	cpus_read_lock();
343 
344 	/*
345 	 * Toggle the online cores, one by one.
346 	 */
347 	cpumask_copy(&sched_core_mask, cpu_online_mask);
348 	for_each_cpu(cpu, &sched_core_mask) {
349 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
350 
351 		sched_core_lock(cpu, &flags);
352 
353 		for_each_cpu(t, smt_mask)
354 			cpu_rq(t)->core_enabled = enabled;
355 
356 		cpu_rq(cpu)->core->core_forceidle_start = 0;
357 
358 		sched_core_unlock(cpu, &flags);
359 
360 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
361 	}
362 
363 	/*
364 	 * Toggle the offline CPUs.
365 	 */
366 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
367 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
368 
369 	for_each_cpu(cpu, &sched_core_mask)
370 		cpu_rq(cpu)->core_enabled = enabled;
371 
372 	cpus_read_unlock();
373 }
374 
375 static void sched_core_assert_empty(void)
376 {
377 	int cpu;
378 
379 	for_each_possible_cpu(cpu)
380 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
381 }
382 
383 static void __sched_core_enable(void)
384 {
385 	static_branch_enable(&__sched_core_enabled);
386 	/*
387 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
388 	 * and future ones will observe !sched_core_disabled().
389 	 */
390 	synchronize_rcu();
391 	__sched_core_flip(true);
392 	sched_core_assert_empty();
393 }
394 
395 static void __sched_core_disable(void)
396 {
397 	sched_core_assert_empty();
398 	__sched_core_flip(false);
399 	static_branch_disable(&__sched_core_enabled);
400 }
401 
402 void sched_core_get(void)
403 {
404 	if (atomic_inc_not_zero(&sched_core_count))
405 		return;
406 
407 	mutex_lock(&sched_core_mutex);
408 	if (!atomic_read(&sched_core_count))
409 		__sched_core_enable();
410 
411 	smp_mb__before_atomic();
412 	atomic_inc(&sched_core_count);
413 	mutex_unlock(&sched_core_mutex);
414 }
415 
416 static void __sched_core_put(struct work_struct *work)
417 {
418 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
419 		__sched_core_disable();
420 		mutex_unlock(&sched_core_mutex);
421 	}
422 }
423 
424 void sched_core_put(void)
425 {
426 	static DECLARE_WORK(_work, __sched_core_put);
427 
428 	/*
429 	 * "There can be only one"
430 	 *
431 	 * Either this is the last one, or we don't actually need to do any
432 	 * 'work'. If it is the last *again*, we rely on
433 	 * WORK_STRUCT_PENDING_BIT.
434 	 */
435 	if (!atomic_add_unless(&sched_core_count, -1, 1))
436 		schedule_work(&_work);
437 }
438 
439 #else /* !CONFIG_SCHED_CORE */
440 
441 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
442 static inline void
443 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
444 
445 #endif /* CONFIG_SCHED_CORE */
446 
447 /*
448  * part of the period that we allow rt tasks to run in us.
449  * default: 0.95s
450  */
451 int sysctl_sched_rt_runtime = 950000;
452 
453 
454 /*
455  * Serialization rules:
456  *
457  * Lock order:
458  *
459  *   p->pi_lock
460  *     rq->lock
461  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
462  *
463  *  rq1->lock
464  *    rq2->lock  where: rq1 < rq2
465  *
466  * Regular state:
467  *
468  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
469  * local CPU's rq->lock, it optionally removes the task from the runqueue and
470  * always looks at the local rq data structures to find the most eligible task
471  * to run next.
472  *
473  * Task enqueue is also under rq->lock, possibly taken from another CPU.
474  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
475  * the local CPU to avoid bouncing the runqueue state around [ see
476  * ttwu_queue_wakelist() ]
477  *
478  * Task wakeup, specifically wakeups that involve migration, are horribly
479  * complicated to avoid having to take two rq->locks.
480  *
481  * Special state:
482  *
483  * System-calls and anything external will use task_rq_lock() which acquires
484  * both p->pi_lock and rq->lock. As a consequence the state they change is
485  * stable while holding either lock:
486  *
487  *  - sched_setaffinity()/
488  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
489  *  - set_user_nice():		p->se.load, p->*prio
490  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
491  *				p->se.load, p->rt_priority,
492  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
493  *  - sched_setnuma():		p->numa_preferred_nid
494  *  - sched_move_task()/
495  *    cpu_cgroup_fork():	p->sched_task_group
496  *  - uclamp_update_active()	p->uclamp*
497  *
498  * p->state <- TASK_*:
499  *
500  *   is changed locklessly using set_current_state(), __set_current_state() or
501  *   set_special_state(), see their respective comments, or by
502  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
503  *   concurrent self.
504  *
505  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
506  *
507  *   is set by activate_task() and cleared by deactivate_task(), under
508  *   rq->lock. Non-zero indicates the task is runnable, the special
509  *   ON_RQ_MIGRATING state is used for migration without holding both
510  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
511  *
512  * p->on_cpu <- { 0, 1 }:
513  *
514  *   is set by prepare_task() and cleared by finish_task() such that it will be
515  *   set before p is scheduled-in and cleared after p is scheduled-out, both
516  *   under rq->lock. Non-zero indicates the task is running on its CPU.
517  *
518  *   [ The astute reader will observe that it is possible for two tasks on one
519  *     CPU to have ->on_cpu = 1 at the same time. ]
520  *
521  * task_cpu(p): is changed by set_task_cpu(), the rules are:
522  *
523  *  - Don't call set_task_cpu() on a blocked task:
524  *
525  *    We don't care what CPU we're not running on, this simplifies hotplug,
526  *    the CPU assignment of blocked tasks isn't required to be valid.
527  *
528  *  - for try_to_wake_up(), called under p->pi_lock:
529  *
530  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
531  *
532  *  - for migration called under rq->lock:
533  *    [ see task_on_rq_migrating() in task_rq_lock() ]
534  *
535  *    o move_queued_task()
536  *    o detach_task()
537  *
538  *  - for migration called under double_rq_lock():
539  *
540  *    o __migrate_swap_task()
541  *    o push_rt_task() / pull_rt_task()
542  *    o push_dl_task() / pull_dl_task()
543  *    o dl_task_offline_migration()
544  *
545  */
546 
547 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
548 {
549 	raw_spinlock_t *lock;
550 
551 	/* Matches synchronize_rcu() in __sched_core_enable() */
552 	preempt_disable();
553 	if (sched_core_disabled()) {
554 		raw_spin_lock_nested(&rq->__lock, subclass);
555 		/* preempt_count *MUST* be > 1 */
556 		preempt_enable_no_resched();
557 		return;
558 	}
559 
560 	for (;;) {
561 		lock = __rq_lockp(rq);
562 		raw_spin_lock_nested(lock, subclass);
563 		if (likely(lock == __rq_lockp(rq))) {
564 			/* preempt_count *MUST* be > 1 */
565 			preempt_enable_no_resched();
566 			return;
567 		}
568 		raw_spin_unlock(lock);
569 	}
570 }
571 
572 bool raw_spin_rq_trylock(struct rq *rq)
573 {
574 	raw_spinlock_t *lock;
575 	bool ret;
576 
577 	/* Matches synchronize_rcu() in __sched_core_enable() */
578 	preempt_disable();
579 	if (sched_core_disabled()) {
580 		ret = raw_spin_trylock(&rq->__lock);
581 		preempt_enable();
582 		return ret;
583 	}
584 
585 	for (;;) {
586 		lock = __rq_lockp(rq);
587 		ret = raw_spin_trylock(lock);
588 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
589 			preempt_enable();
590 			return ret;
591 		}
592 		raw_spin_unlock(lock);
593 	}
594 }
595 
596 void raw_spin_rq_unlock(struct rq *rq)
597 {
598 	raw_spin_unlock(rq_lockp(rq));
599 }
600 
601 #ifdef CONFIG_SMP
602 /*
603  * double_rq_lock - safely lock two runqueues
604  */
605 void double_rq_lock(struct rq *rq1, struct rq *rq2)
606 {
607 	lockdep_assert_irqs_disabled();
608 
609 	if (rq_order_less(rq2, rq1))
610 		swap(rq1, rq2);
611 
612 	raw_spin_rq_lock(rq1);
613 	if (__rq_lockp(rq1) == __rq_lockp(rq2))
614 		return;
615 
616 	raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
617 }
618 #endif
619 
620 /*
621  * __task_rq_lock - lock the rq @p resides on.
622  */
623 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
624 	__acquires(rq->lock)
625 {
626 	struct rq *rq;
627 
628 	lockdep_assert_held(&p->pi_lock);
629 
630 	for (;;) {
631 		rq = task_rq(p);
632 		raw_spin_rq_lock(rq);
633 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
634 			rq_pin_lock(rq, rf);
635 			return rq;
636 		}
637 		raw_spin_rq_unlock(rq);
638 
639 		while (unlikely(task_on_rq_migrating(p)))
640 			cpu_relax();
641 	}
642 }
643 
644 /*
645  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
646  */
647 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
648 	__acquires(p->pi_lock)
649 	__acquires(rq->lock)
650 {
651 	struct rq *rq;
652 
653 	for (;;) {
654 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
655 		rq = task_rq(p);
656 		raw_spin_rq_lock(rq);
657 		/*
658 		 *	move_queued_task()		task_rq_lock()
659 		 *
660 		 *	ACQUIRE (rq->lock)
661 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
662 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
663 		 *	[S] ->cpu = new_cpu		[L] task_rq()
664 		 *					[L] ->on_rq
665 		 *	RELEASE (rq->lock)
666 		 *
667 		 * If we observe the old CPU in task_rq_lock(), the acquire of
668 		 * the old rq->lock will fully serialize against the stores.
669 		 *
670 		 * If we observe the new CPU in task_rq_lock(), the address
671 		 * dependency headed by '[L] rq = task_rq()' and the acquire
672 		 * will pair with the WMB to ensure we then also see migrating.
673 		 */
674 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
675 			rq_pin_lock(rq, rf);
676 			return rq;
677 		}
678 		raw_spin_rq_unlock(rq);
679 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
680 
681 		while (unlikely(task_on_rq_migrating(p)))
682 			cpu_relax();
683 	}
684 }
685 
686 /*
687  * RQ-clock updating methods:
688  */
689 
690 static void update_rq_clock_task(struct rq *rq, s64 delta)
691 {
692 /*
693  * In theory, the compile should just see 0 here, and optimize out the call
694  * to sched_rt_avg_update. But I don't trust it...
695  */
696 	s64 __maybe_unused steal = 0, irq_delta = 0;
697 
698 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
699 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
700 
701 	/*
702 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
703 	 * this case when a previous update_rq_clock() happened inside a
704 	 * {soft,}irq region.
705 	 *
706 	 * When this happens, we stop ->clock_task and only update the
707 	 * prev_irq_time stamp to account for the part that fit, so that a next
708 	 * update will consume the rest. This ensures ->clock_task is
709 	 * monotonic.
710 	 *
711 	 * It does however cause some slight miss-attribution of {soft,}irq
712 	 * time, a more accurate solution would be to update the irq_time using
713 	 * the current rq->clock timestamp, except that would require using
714 	 * atomic ops.
715 	 */
716 	if (irq_delta > delta)
717 		irq_delta = delta;
718 
719 	rq->prev_irq_time += irq_delta;
720 	delta -= irq_delta;
721 #endif
722 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
723 	if (static_key_false((&paravirt_steal_rq_enabled))) {
724 		steal = paravirt_steal_clock(cpu_of(rq));
725 		steal -= rq->prev_steal_time_rq;
726 
727 		if (unlikely(steal > delta))
728 			steal = delta;
729 
730 		rq->prev_steal_time_rq += steal;
731 		delta -= steal;
732 	}
733 #endif
734 
735 	rq->clock_task += delta;
736 
737 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
738 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
739 		update_irq_load_avg(rq, irq_delta + steal);
740 #endif
741 	update_rq_clock_pelt(rq, delta);
742 }
743 
744 void update_rq_clock(struct rq *rq)
745 {
746 	s64 delta;
747 
748 	lockdep_assert_rq_held(rq);
749 
750 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
751 		return;
752 
753 #ifdef CONFIG_SCHED_DEBUG
754 	if (sched_feat(WARN_DOUBLE_CLOCK))
755 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
756 	rq->clock_update_flags |= RQCF_UPDATED;
757 #endif
758 
759 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
760 	if (delta < 0)
761 		return;
762 	rq->clock += delta;
763 	update_rq_clock_task(rq, delta);
764 }
765 
766 #ifdef CONFIG_SCHED_HRTICK
767 /*
768  * Use HR-timers to deliver accurate preemption points.
769  */
770 
771 static void hrtick_clear(struct rq *rq)
772 {
773 	if (hrtimer_active(&rq->hrtick_timer))
774 		hrtimer_cancel(&rq->hrtick_timer);
775 }
776 
777 /*
778  * High-resolution timer tick.
779  * Runs from hardirq context with interrupts disabled.
780  */
781 static enum hrtimer_restart hrtick(struct hrtimer *timer)
782 {
783 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
784 	struct rq_flags rf;
785 
786 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
787 
788 	rq_lock(rq, &rf);
789 	update_rq_clock(rq);
790 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
791 	rq_unlock(rq, &rf);
792 
793 	return HRTIMER_NORESTART;
794 }
795 
796 #ifdef CONFIG_SMP
797 
798 static void __hrtick_restart(struct rq *rq)
799 {
800 	struct hrtimer *timer = &rq->hrtick_timer;
801 	ktime_t time = rq->hrtick_time;
802 
803 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
804 }
805 
806 /*
807  * called from hardirq (IPI) context
808  */
809 static void __hrtick_start(void *arg)
810 {
811 	struct rq *rq = arg;
812 	struct rq_flags rf;
813 
814 	rq_lock(rq, &rf);
815 	__hrtick_restart(rq);
816 	rq_unlock(rq, &rf);
817 }
818 
819 /*
820  * Called to set the hrtick timer state.
821  *
822  * called with rq->lock held and irqs disabled
823  */
824 void hrtick_start(struct rq *rq, u64 delay)
825 {
826 	struct hrtimer *timer = &rq->hrtick_timer;
827 	s64 delta;
828 
829 	/*
830 	 * Don't schedule slices shorter than 10000ns, that just
831 	 * doesn't make sense and can cause timer DoS.
832 	 */
833 	delta = max_t(s64, delay, 10000LL);
834 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
835 
836 	if (rq == this_rq())
837 		__hrtick_restart(rq);
838 	else
839 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
840 }
841 
842 #else
843 /*
844  * Called to set the hrtick timer state.
845  *
846  * called with rq->lock held and irqs disabled
847  */
848 void hrtick_start(struct rq *rq, u64 delay)
849 {
850 	/*
851 	 * Don't schedule slices shorter than 10000ns, that just
852 	 * doesn't make sense. Rely on vruntime for fairness.
853 	 */
854 	delay = max_t(u64, delay, 10000LL);
855 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
856 		      HRTIMER_MODE_REL_PINNED_HARD);
857 }
858 
859 #endif /* CONFIG_SMP */
860 
861 static void hrtick_rq_init(struct rq *rq)
862 {
863 #ifdef CONFIG_SMP
864 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
865 #endif
866 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
867 	rq->hrtick_timer.function = hrtick;
868 }
869 #else	/* CONFIG_SCHED_HRTICK */
870 static inline void hrtick_clear(struct rq *rq)
871 {
872 }
873 
874 static inline void hrtick_rq_init(struct rq *rq)
875 {
876 }
877 #endif	/* CONFIG_SCHED_HRTICK */
878 
879 /*
880  * cmpxchg based fetch_or, macro so it works for different integer types
881  */
882 #define fetch_or(ptr, mask)						\
883 	({								\
884 		typeof(ptr) _ptr = (ptr);				\
885 		typeof(mask) _mask = (mask);				\
886 		typeof(*_ptr) _old, _val = *_ptr;			\
887 									\
888 		for (;;) {						\
889 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
890 			if (_old == _val)				\
891 				break;					\
892 			_val = _old;					\
893 		}							\
894 	_old;								\
895 })
896 
897 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
898 /*
899  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
900  * this avoids any races wrt polling state changes and thereby avoids
901  * spurious IPIs.
902  */
903 static bool set_nr_and_not_polling(struct task_struct *p)
904 {
905 	struct thread_info *ti = task_thread_info(p);
906 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
907 }
908 
909 /*
910  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
911  *
912  * If this returns true, then the idle task promises to call
913  * sched_ttwu_pending() and reschedule soon.
914  */
915 static bool set_nr_if_polling(struct task_struct *p)
916 {
917 	struct thread_info *ti = task_thread_info(p);
918 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
919 
920 	for (;;) {
921 		if (!(val & _TIF_POLLING_NRFLAG))
922 			return false;
923 		if (val & _TIF_NEED_RESCHED)
924 			return true;
925 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
926 		if (old == val)
927 			break;
928 		val = old;
929 	}
930 	return true;
931 }
932 
933 #else
934 static bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
941 static bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085  */
1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	rcu_read_lock();
1101 	for_each_domain(cpu, sd) {
1102 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 			if (cpu == i)
1104 				continue;
1105 
1106 			if (!idle_cpu(i)) {
1107 				cpu = i;
1108 				goto unlock;
1109 			}
1110 		}
1111 	}
1112 
1113 	if (default_cpu == -1)
1114 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1115 	cpu = default_cpu;
1116 unlock:
1117 	rcu_read_unlock();
1118 	return cpu;
1119 }
1120 
1121 /*
1122  * When add_timer_on() enqueues a timer into the timer wheel of an
1123  * idle CPU then this timer might expire before the next timer event
1124  * which is scheduled to wake up that CPU. In case of a completely
1125  * idle system the next event might even be infinite time into the
1126  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1127  * leaves the inner idle loop so the newly added timer is taken into
1128  * account when the CPU goes back to idle and evaluates the timer
1129  * wheel for the next timer event.
1130  */
1131 static void wake_up_idle_cpu(int cpu)
1132 {
1133 	struct rq *rq = cpu_rq(cpu);
1134 
1135 	if (cpu == smp_processor_id())
1136 		return;
1137 
1138 	if (set_nr_and_not_polling(rq->idle))
1139 		smp_send_reschedule(cpu);
1140 	else
1141 		trace_sched_wake_idle_without_ipi(cpu);
1142 }
1143 
1144 static bool wake_up_full_nohz_cpu(int cpu)
1145 {
1146 	/*
1147 	 * We just need the target to call irq_exit() and re-evaluate
1148 	 * the next tick. The nohz full kick at least implies that.
1149 	 * If needed we can still optimize that later with an
1150 	 * empty IRQ.
1151 	 */
1152 	if (cpu_is_offline(cpu))
1153 		return true;  /* Don't try to wake offline CPUs. */
1154 	if (tick_nohz_full_cpu(cpu)) {
1155 		if (cpu != smp_processor_id() ||
1156 		    tick_nohz_tick_stopped())
1157 			tick_nohz_full_kick_cpu(cpu);
1158 		return true;
1159 	}
1160 
1161 	return false;
1162 }
1163 
1164 /*
1165  * Wake up the specified CPU.  If the CPU is going offline, it is the
1166  * caller's responsibility to deal with the lost wakeup, for example,
1167  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1168  */
1169 void wake_up_nohz_cpu(int cpu)
1170 {
1171 	if (!wake_up_full_nohz_cpu(cpu))
1172 		wake_up_idle_cpu(cpu);
1173 }
1174 
1175 static void nohz_csd_func(void *info)
1176 {
1177 	struct rq *rq = info;
1178 	int cpu = cpu_of(rq);
1179 	unsigned int flags;
1180 
1181 	/*
1182 	 * Release the rq::nohz_csd.
1183 	 */
1184 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1185 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1186 
1187 	rq->idle_balance = idle_cpu(cpu);
1188 	if (rq->idle_balance && !need_resched()) {
1189 		rq->nohz_idle_balance = flags;
1190 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1191 	}
1192 }
1193 
1194 #endif /* CONFIG_NO_HZ_COMMON */
1195 
1196 #ifdef CONFIG_NO_HZ_FULL
1197 bool sched_can_stop_tick(struct rq *rq)
1198 {
1199 	int fifo_nr_running;
1200 
1201 	/* Deadline tasks, even if single, need the tick */
1202 	if (rq->dl.dl_nr_running)
1203 		return false;
1204 
1205 	/*
1206 	 * If there are more than one RR tasks, we need the tick to affect the
1207 	 * actual RR behaviour.
1208 	 */
1209 	if (rq->rt.rr_nr_running) {
1210 		if (rq->rt.rr_nr_running == 1)
1211 			return true;
1212 		else
1213 			return false;
1214 	}
1215 
1216 	/*
1217 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1218 	 * forced preemption between FIFO tasks.
1219 	 */
1220 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1221 	if (fifo_nr_running)
1222 		return true;
1223 
1224 	/*
1225 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1226 	 * if there's more than one we need the tick for involuntary
1227 	 * preemption.
1228 	 */
1229 	if (rq->nr_running > 1)
1230 		return false;
1231 
1232 	return true;
1233 }
1234 #endif /* CONFIG_NO_HZ_FULL */
1235 #endif /* CONFIG_SMP */
1236 
1237 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1238 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1239 /*
1240  * Iterate task_group tree rooted at *from, calling @down when first entering a
1241  * node and @up when leaving it for the final time.
1242  *
1243  * Caller must hold rcu_lock or sufficient equivalent.
1244  */
1245 int walk_tg_tree_from(struct task_group *from,
1246 			     tg_visitor down, tg_visitor up, void *data)
1247 {
1248 	struct task_group *parent, *child;
1249 	int ret;
1250 
1251 	parent = from;
1252 
1253 down:
1254 	ret = (*down)(parent, data);
1255 	if (ret)
1256 		goto out;
1257 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1258 		parent = child;
1259 		goto down;
1260 
1261 up:
1262 		continue;
1263 	}
1264 	ret = (*up)(parent, data);
1265 	if (ret || parent == from)
1266 		goto out;
1267 
1268 	child = parent;
1269 	parent = parent->parent;
1270 	if (parent)
1271 		goto up;
1272 out:
1273 	return ret;
1274 }
1275 
1276 int tg_nop(struct task_group *tg, void *data)
1277 {
1278 	return 0;
1279 }
1280 #endif
1281 
1282 static void set_load_weight(struct task_struct *p, bool update_load)
1283 {
1284 	int prio = p->static_prio - MAX_RT_PRIO;
1285 	struct load_weight *load = &p->se.load;
1286 
1287 	/*
1288 	 * SCHED_IDLE tasks get minimal weight:
1289 	 */
1290 	if (task_has_idle_policy(p)) {
1291 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1292 		load->inv_weight = WMULT_IDLEPRIO;
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * SCHED_OTHER tasks have to update their load when changing their
1298 	 * weight
1299 	 */
1300 	if (update_load && p->sched_class == &fair_sched_class) {
1301 		reweight_task(p, prio);
1302 	} else {
1303 		load->weight = scale_load(sched_prio_to_weight[prio]);
1304 		load->inv_weight = sched_prio_to_wmult[prio];
1305 	}
1306 }
1307 
1308 #ifdef CONFIG_UCLAMP_TASK
1309 /*
1310  * Serializes updates of utilization clamp values
1311  *
1312  * The (slow-path) user-space triggers utilization clamp value updates which
1313  * can require updates on (fast-path) scheduler's data structures used to
1314  * support enqueue/dequeue operations.
1315  * While the per-CPU rq lock protects fast-path update operations, user-space
1316  * requests are serialized using a mutex to reduce the risk of conflicting
1317  * updates or API abuses.
1318  */
1319 static DEFINE_MUTEX(uclamp_mutex);
1320 
1321 /* Max allowed minimum utilization */
1322 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1323 
1324 /* Max allowed maximum utilization */
1325 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1326 
1327 /*
1328  * By default RT tasks run at the maximum performance point/capacity of the
1329  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1330  * SCHED_CAPACITY_SCALE.
1331  *
1332  * This knob allows admins to change the default behavior when uclamp is being
1333  * used. In battery powered devices, particularly, running at the maximum
1334  * capacity and frequency will increase energy consumption and shorten the
1335  * battery life.
1336  *
1337  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1338  *
1339  * This knob will not override the system default sched_util_clamp_min defined
1340  * above.
1341  */
1342 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1343 
1344 /* All clamps are required to be less or equal than these values */
1345 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1346 
1347 /*
1348  * This static key is used to reduce the uclamp overhead in the fast path. It
1349  * primarily disables the call to uclamp_rq_{inc, dec}() in
1350  * enqueue/dequeue_task().
1351  *
1352  * This allows users to continue to enable uclamp in their kernel config with
1353  * minimum uclamp overhead in the fast path.
1354  *
1355  * As soon as userspace modifies any of the uclamp knobs, the static key is
1356  * enabled, since we have an actual users that make use of uclamp
1357  * functionality.
1358  *
1359  * The knobs that would enable this static key are:
1360  *
1361  *   * A task modifying its uclamp value with sched_setattr().
1362  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1363  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1364  */
1365 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1366 
1367 /* Integer rounded range for each bucket */
1368 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1369 
1370 #define for_each_clamp_id(clamp_id) \
1371 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1372 
1373 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1374 {
1375 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1376 }
1377 
1378 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1379 {
1380 	if (clamp_id == UCLAMP_MIN)
1381 		return 0;
1382 	return SCHED_CAPACITY_SCALE;
1383 }
1384 
1385 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1386 				 unsigned int value, bool user_defined)
1387 {
1388 	uc_se->value = value;
1389 	uc_se->bucket_id = uclamp_bucket_id(value);
1390 	uc_se->user_defined = user_defined;
1391 }
1392 
1393 static inline unsigned int
1394 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1395 		  unsigned int clamp_value)
1396 {
1397 	/*
1398 	 * Avoid blocked utilization pushing up the frequency when we go
1399 	 * idle (which drops the max-clamp) by retaining the last known
1400 	 * max-clamp.
1401 	 */
1402 	if (clamp_id == UCLAMP_MAX) {
1403 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1404 		return clamp_value;
1405 	}
1406 
1407 	return uclamp_none(UCLAMP_MIN);
1408 }
1409 
1410 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1411 				     unsigned int clamp_value)
1412 {
1413 	/* Reset max-clamp retention only on idle exit */
1414 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1415 		return;
1416 
1417 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1418 }
1419 
1420 static inline
1421 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1422 				   unsigned int clamp_value)
1423 {
1424 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1425 	int bucket_id = UCLAMP_BUCKETS - 1;
1426 
1427 	/*
1428 	 * Since both min and max clamps are max aggregated, find the
1429 	 * top most bucket with tasks in.
1430 	 */
1431 	for ( ; bucket_id >= 0; bucket_id--) {
1432 		if (!bucket[bucket_id].tasks)
1433 			continue;
1434 		return bucket[bucket_id].value;
1435 	}
1436 
1437 	/* No tasks -- default clamp values */
1438 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1439 }
1440 
1441 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1442 {
1443 	unsigned int default_util_min;
1444 	struct uclamp_se *uc_se;
1445 
1446 	lockdep_assert_held(&p->pi_lock);
1447 
1448 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1449 
1450 	/* Only sync if user didn't override the default */
1451 	if (uc_se->user_defined)
1452 		return;
1453 
1454 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1455 	uclamp_se_set(uc_se, default_util_min, false);
1456 }
1457 
1458 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1459 {
1460 	struct rq_flags rf;
1461 	struct rq *rq;
1462 
1463 	if (!rt_task(p))
1464 		return;
1465 
1466 	/* Protect updates to p->uclamp_* */
1467 	rq = task_rq_lock(p, &rf);
1468 	__uclamp_update_util_min_rt_default(p);
1469 	task_rq_unlock(rq, p, &rf);
1470 }
1471 
1472 static void uclamp_sync_util_min_rt_default(void)
1473 {
1474 	struct task_struct *g, *p;
1475 
1476 	/*
1477 	 * copy_process()			sysctl_uclamp
1478 	 *					  uclamp_min_rt = X;
1479 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1480 	 *   // link thread			  smp_mb__after_spinlock()
1481 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1482 	 *   sched_post_fork()			  for_each_process_thread()
1483 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1484 	 *
1485 	 * Ensures that either sched_post_fork() will observe the new
1486 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1487 	 * task.
1488 	 */
1489 	read_lock(&tasklist_lock);
1490 	smp_mb__after_spinlock();
1491 	read_unlock(&tasklist_lock);
1492 
1493 	rcu_read_lock();
1494 	for_each_process_thread(g, p)
1495 		uclamp_update_util_min_rt_default(p);
1496 	rcu_read_unlock();
1497 }
1498 
1499 static inline struct uclamp_se
1500 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1501 {
1502 	/* Copy by value as we could modify it */
1503 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1504 #ifdef CONFIG_UCLAMP_TASK_GROUP
1505 	unsigned int tg_min, tg_max, value;
1506 
1507 	/*
1508 	 * Tasks in autogroups or root task group will be
1509 	 * restricted by system defaults.
1510 	 */
1511 	if (task_group_is_autogroup(task_group(p)))
1512 		return uc_req;
1513 	if (task_group(p) == &root_task_group)
1514 		return uc_req;
1515 
1516 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1517 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1518 	value = uc_req.value;
1519 	value = clamp(value, tg_min, tg_max);
1520 	uclamp_se_set(&uc_req, value, false);
1521 #endif
1522 
1523 	return uc_req;
1524 }
1525 
1526 /*
1527  * The effective clamp bucket index of a task depends on, by increasing
1528  * priority:
1529  * - the task specific clamp value, when explicitly requested from userspace
1530  * - the task group effective clamp value, for tasks not either in the root
1531  *   group or in an autogroup
1532  * - the system default clamp value, defined by the sysadmin
1533  */
1534 static inline struct uclamp_se
1535 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1536 {
1537 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1538 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1539 
1540 	/* System default restrictions always apply */
1541 	if (unlikely(uc_req.value > uc_max.value))
1542 		return uc_max;
1543 
1544 	return uc_req;
1545 }
1546 
1547 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1548 {
1549 	struct uclamp_se uc_eff;
1550 
1551 	/* Task currently refcounted: use back-annotated (effective) value */
1552 	if (p->uclamp[clamp_id].active)
1553 		return (unsigned long)p->uclamp[clamp_id].value;
1554 
1555 	uc_eff = uclamp_eff_get(p, clamp_id);
1556 
1557 	return (unsigned long)uc_eff.value;
1558 }
1559 
1560 /*
1561  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1562  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1563  * updates the rq's clamp value if required.
1564  *
1565  * Tasks can have a task-specific value requested from user-space, track
1566  * within each bucket the maximum value for tasks refcounted in it.
1567  * This "local max aggregation" allows to track the exact "requested" value
1568  * for each bucket when all its RUNNABLE tasks require the same clamp.
1569  */
1570 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1571 				    enum uclamp_id clamp_id)
1572 {
1573 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1574 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1575 	struct uclamp_bucket *bucket;
1576 
1577 	lockdep_assert_rq_held(rq);
1578 
1579 	/* Update task effective clamp */
1580 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1581 
1582 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1583 	bucket->tasks++;
1584 	uc_se->active = true;
1585 
1586 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1587 
1588 	/*
1589 	 * Local max aggregation: rq buckets always track the max
1590 	 * "requested" clamp value of its RUNNABLE tasks.
1591 	 */
1592 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1593 		bucket->value = uc_se->value;
1594 
1595 	if (uc_se->value > READ_ONCE(uc_rq->value))
1596 		WRITE_ONCE(uc_rq->value, uc_se->value);
1597 }
1598 
1599 /*
1600  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1601  * is released. If this is the last task reference counting the rq's max
1602  * active clamp value, then the rq's clamp value is updated.
1603  *
1604  * Both refcounted tasks and rq's cached clamp values are expected to be
1605  * always valid. If it's detected they are not, as defensive programming,
1606  * enforce the expected state and warn.
1607  */
1608 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1609 				    enum uclamp_id clamp_id)
1610 {
1611 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1612 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1613 	struct uclamp_bucket *bucket;
1614 	unsigned int bkt_clamp;
1615 	unsigned int rq_clamp;
1616 
1617 	lockdep_assert_rq_held(rq);
1618 
1619 	/*
1620 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1621 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1622 	 *
1623 	 * In this case the uc_se->active flag should be false since no uclamp
1624 	 * accounting was performed at enqueue time and we can just return
1625 	 * here.
1626 	 *
1627 	 * Need to be careful of the following enqueue/dequeue ordering
1628 	 * problem too
1629 	 *
1630 	 *	enqueue(taskA)
1631 	 *	// sched_uclamp_used gets enabled
1632 	 *	enqueue(taskB)
1633 	 *	dequeue(taskA)
1634 	 *	// Must not decrement bucket->tasks here
1635 	 *	dequeue(taskB)
1636 	 *
1637 	 * where we could end up with stale data in uc_se and
1638 	 * bucket[uc_se->bucket_id].
1639 	 *
1640 	 * The following check here eliminates the possibility of such race.
1641 	 */
1642 	if (unlikely(!uc_se->active))
1643 		return;
1644 
1645 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1646 
1647 	SCHED_WARN_ON(!bucket->tasks);
1648 	if (likely(bucket->tasks))
1649 		bucket->tasks--;
1650 
1651 	uc_se->active = false;
1652 
1653 	/*
1654 	 * Keep "local max aggregation" simple and accept to (possibly)
1655 	 * overboost some RUNNABLE tasks in the same bucket.
1656 	 * The rq clamp bucket value is reset to its base value whenever
1657 	 * there are no more RUNNABLE tasks refcounting it.
1658 	 */
1659 	if (likely(bucket->tasks))
1660 		return;
1661 
1662 	rq_clamp = READ_ONCE(uc_rq->value);
1663 	/*
1664 	 * Defensive programming: this should never happen. If it happens,
1665 	 * e.g. due to future modification, warn and fixup the expected value.
1666 	 */
1667 	SCHED_WARN_ON(bucket->value > rq_clamp);
1668 	if (bucket->value >= rq_clamp) {
1669 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1670 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1671 	}
1672 }
1673 
1674 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1675 {
1676 	enum uclamp_id clamp_id;
1677 
1678 	/*
1679 	 * Avoid any overhead until uclamp is actually used by the userspace.
1680 	 *
1681 	 * The condition is constructed such that a NOP is generated when
1682 	 * sched_uclamp_used is disabled.
1683 	 */
1684 	if (!static_branch_unlikely(&sched_uclamp_used))
1685 		return;
1686 
1687 	if (unlikely(!p->sched_class->uclamp_enabled))
1688 		return;
1689 
1690 	for_each_clamp_id(clamp_id)
1691 		uclamp_rq_inc_id(rq, p, clamp_id);
1692 
1693 	/* Reset clamp idle holding when there is one RUNNABLE task */
1694 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1695 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1696 }
1697 
1698 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1699 {
1700 	enum uclamp_id clamp_id;
1701 
1702 	/*
1703 	 * Avoid any overhead until uclamp is actually used by the userspace.
1704 	 *
1705 	 * The condition is constructed such that a NOP is generated when
1706 	 * sched_uclamp_used is disabled.
1707 	 */
1708 	if (!static_branch_unlikely(&sched_uclamp_used))
1709 		return;
1710 
1711 	if (unlikely(!p->sched_class->uclamp_enabled))
1712 		return;
1713 
1714 	for_each_clamp_id(clamp_id)
1715 		uclamp_rq_dec_id(rq, p, clamp_id);
1716 }
1717 
1718 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1719 				      enum uclamp_id clamp_id)
1720 {
1721 	if (!p->uclamp[clamp_id].active)
1722 		return;
1723 
1724 	uclamp_rq_dec_id(rq, p, clamp_id);
1725 	uclamp_rq_inc_id(rq, p, clamp_id);
1726 
1727 	/*
1728 	 * Make sure to clear the idle flag if we've transiently reached 0
1729 	 * active tasks on rq.
1730 	 */
1731 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1732 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1733 }
1734 
1735 static inline void
1736 uclamp_update_active(struct task_struct *p)
1737 {
1738 	enum uclamp_id clamp_id;
1739 	struct rq_flags rf;
1740 	struct rq *rq;
1741 
1742 	/*
1743 	 * Lock the task and the rq where the task is (or was) queued.
1744 	 *
1745 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1746 	 * price to pay to safely serialize util_{min,max} updates with
1747 	 * enqueues, dequeues and migration operations.
1748 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1749 	 */
1750 	rq = task_rq_lock(p, &rf);
1751 
1752 	/*
1753 	 * Setting the clamp bucket is serialized by task_rq_lock().
1754 	 * If the task is not yet RUNNABLE and its task_struct is not
1755 	 * affecting a valid clamp bucket, the next time it's enqueued,
1756 	 * it will already see the updated clamp bucket value.
1757 	 */
1758 	for_each_clamp_id(clamp_id)
1759 		uclamp_rq_reinc_id(rq, p, clamp_id);
1760 
1761 	task_rq_unlock(rq, p, &rf);
1762 }
1763 
1764 #ifdef CONFIG_UCLAMP_TASK_GROUP
1765 static inline void
1766 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1767 {
1768 	struct css_task_iter it;
1769 	struct task_struct *p;
1770 
1771 	css_task_iter_start(css, 0, &it);
1772 	while ((p = css_task_iter_next(&it)))
1773 		uclamp_update_active(p);
1774 	css_task_iter_end(&it);
1775 }
1776 
1777 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1778 static void uclamp_update_root_tg(void)
1779 {
1780 	struct task_group *tg = &root_task_group;
1781 
1782 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1783 		      sysctl_sched_uclamp_util_min, false);
1784 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1785 		      sysctl_sched_uclamp_util_max, false);
1786 
1787 	rcu_read_lock();
1788 	cpu_util_update_eff(&root_task_group.css);
1789 	rcu_read_unlock();
1790 }
1791 #else
1792 static void uclamp_update_root_tg(void) { }
1793 #endif
1794 
1795 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1796 				void *buffer, size_t *lenp, loff_t *ppos)
1797 {
1798 	bool update_root_tg = false;
1799 	int old_min, old_max, old_min_rt;
1800 	int result;
1801 
1802 	mutex_lock(&uclamp_mutex);
1803 	old_min = sysctl_sched_uclamp_util_min;
1804 	old_max = sysctl_sched_uclamp_util_max;
1805 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1806 
1807 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1808 	if (result)
1809 		goto undo;
1810 	if (!write)
1811 		goto done;
1812 
1813 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1814 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1815 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1816 
1817 		result = -EINVAL;
1818 		goto undo;
1819 	}
1820 
1821 	if (old_min != sysctl_sched_uclamp_util_min) {
1822 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1823 			      sysctl_sched_uclamp_util_min, false);
1824 		update_root_tg = true;
1825 	}
1826 	if (old_max != sysctl_sched_uclamp_util_max) {
1827 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1828 			      sysctl_sched_uclamp_util_max, false);
1829 		update_root_tg = true;
1830 	}
1831 
1832 	if (update_root_tg) {
1833 		static_branch_enable(&sched_uclamp_used);
1834 		uclamp_update_root_tg();
1835 	}
1836 
1837 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1838 		static_branch_enable(&sched_uclamp_used);
1839 		uclamp_sync_util_min_rt_default();
1840 	}
1841 
1842 	/*
1843 	 * We update all RUNNABLE tasks only when task groups are in use.
1844 	 * Otherwise, keep it simple and do just a lazy update at each next
1845 	 * task enqueue time.
1846 	 */
1847 
1848 	goto done;
1849 
1850 undo:
1851 	sysctl_sched_uclamp_util_min = old_min;
1852 	sysctl_sched_uclamp_util_max = old_max;
1853 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1854 done:
1855 	mutex_unlock(&uclamp_mutex);
1856 
1857 	return result;
1858 }
1859 
1860 static int uclamp_validate(struct task_struct *p,
1861 			   const struct sched_attr *attr)
1862 {
1863 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1864 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1865 
1866 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1867 		util_min = attr->sched_util_min;
1868 
1869 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1870 			return -EINVAL;
1871 	}
1872 
1873 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1874 		util_max = attr->sched_util_max;
1875 
1876 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1877 			return -EINVAL;
1878 	}
1879 
1880 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1881 		return -EINVAL;
1882 
1883 	/*
1884 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1885 	 *
1886 	 * We need to do that here, because enabling static branches is a
1887 	 * blocking operation which obviously cannot be done while holding
1888 	 * scheduler locks.
1889 	 */
1890 	static_branch_enable(&sched_uclamp_used);
1891 
1892 	return 0;
1893 }
1894 
1895 static bool uclamp_reset(const struct sched_attr *attr,
1896 			 enum uclamp_id clamp_id,
1897 			 struct uclamp_se *uc_se)
1898 {
1899 	/* Reset on sched class change for a non user-defined clamp value. */
1900 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1901 	    !uc_se->user_defined)
1902 		return true;
1903 
1904 	/* Reset on sched_util_{min,max} == -1. */
1905 	if (clamp_id == UCLAMP_MIN &&
1906 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1907 	    attr->sched_util_min == -1) {
1908 		return true;
1909 	}
1910 
1911 	if (clamp_id == UCLAMP_MAX &&
1912 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1913 	    attr->sched_util_max == -1) {
1914 		return true;
1915 	}
1916 
1917 	return false;
1918 }
1919 
1920 static void __setscheduler_uclamp(struct task_struct *p,
1921 				  const struct sched_attr *attr)
1922 {
1923 	enum uclamp_id clamp_id;
1924 
1925 	for_each_clamp_id(clamp_id) {
1926 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1927 		unsigned int value;
1928 
1929 		if (!uclamp_reset(attr, clamp_id, uc_se))
1930 			continue;
1931 
1932 		/*
1933 		 * RT by default have a 100% boost value that could be modified
1934 		 * at runtime.
1935 		 */
1936 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1937 			value = sysctl_sched_uclamp_util_min_rt_default;
1938 		else
1939 			value = uclamp_none(clamp_id);
1940 
1941 		uclamp_se_set(uc_se, value, false);
1942 
1943 	}
1944 
1945 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1946 		return;
1947 
1948 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1949 	    attr->sched_util_min != -1) {
1950 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1951 			      attr->sched_util_min, true);
1952 	}
1953 
1954 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1955 	    attr->sched_util_max != -1) {
1956 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1957 			      attr->sched_util_max, true);
1958 	}
1959 }
1960 
1961 static void uclamp_fork(struct task_struct *p)
1962 {
1963 	enum uclamp_id clamp_id;
1964 
1965 	/*
1966 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1967 	 * as the task is still at its early fork stages.
1968 	 */
1969 	for_each_clamp_id(clamp_id)
1970 		p->uclamp[clamp_id].active = false;
1971 
1972 	if (likely(!p->sched_reset_on_fork))
1973 		return;
1974 
1975 	for_each_clamp_id(clamp_id) {
1976 		uclamp_se_set(&p->uclamp_req[clamp_id],
1977 			      uclamp_none(clamp_id), false);
1978 	}
1979 }
1980 
1981 static void uclamp_post_fork(struct task_struct *p)
1982 {
1983 	uclamp_update_util_min_rt_default(p);
1984 }
1985 
1986 static void __init init_uclamp_rq(struct rq *rq)
1987 {
1988 	enum uclamp_id clamp_id;
1989 	struct uclamp_rq *uc_rq = rq->uclamp;
1990 
1991 	for_each_clamp_id(clamp_id) {
1992 		uc_rq[clamp_id] = (struct uclamp_rq) {
1993 			.value = uclamp_none(clamp_id)
1994 		};
1995 	}
1996 
1997 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1998 }
1999 
2000 static void __init init_uclamp(void)
2001 {
2002 	struct uclamp_se uc_max = {};
2003 	enum uclamp_id clamp_id;
2004 	int cpu;
2005 
2006 	for_each_possible_cpu(cpu)
2007 		init_uclamp_rq(cpu_rq(cpu));
2008 
2009 	for_each_clamp_id(clamp_id) {
2010 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2011 			      uclamp_none(clamp_id), false);
2012 	}
2013 
2014 	/* System defaults allow max clamp values for both indexes */
2015 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2016 	for_each_clamp_id(clamp_id) {
2017 		uclamp_default[clamp_id] = uc_max;
2018 #ifdef CONFIG_UCLAMP_TASK_GROUP
2019 		root_task_group.uclamp_req[clamp_id] = uc_max;
2020 		root_task_group.uclamp[clamp_id] = uc_max;
2021 #endif
2022 	}
2023 }
2024 
2025 #else /* CONFIG_UCLAMP_TASK */
2026 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2027 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2028 static inline int uclamp_validate(struct task_struct *p,
2029 				  const struct sched_attr *attr)
2030 {
2031 	return -EOPNOTSUPP;
2032 }
2033 static void __setscheduler_uclamp(struct task_struct *p,
2034 				  const struct sched_attr *attr) { }
2035 static inline void uclamp_fork(struct task_struct *p) { }
2036 static inline void uclamp_post_fork(struct task_struct *p) { }
2037 static inline void init_uclamp(void) { }
2038 #endif /* CONFIG_UCLAMP_TASK */
2039 
2040 bool sched_task_on_rq(struct task_struct *p)
2041 {
2042 	return task_on_rq_queued(p);
2043 }
2044 
2045 unsigned long get_wchan(struct task_struct *p)
2046 {
2047 	unsigned long ip = 0;
2048 	unsigned int state;
2049 
2050 	if (!p || p == current)
2051 		return 0;
2052 
2053 	/* Only get wchan if task is blocked and we can keep it that way. */
2054 	raw_spin_lock_irq(&p->pi_lock);
2055 	state = READ_ONCE(p->__state);
2056 	smp_rmb(); /* see try_to_wake_up() */
2057 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2058 		ip = __get_wchan(p);
2059 	raw_spin_unlock_irq(&p->pi_lock);
2060 
2061 	return ip;
2062 }
2063 
2064 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2065 {
2066 	if (!(flags & ENQUEUE_NOCLOCK))
2067 		update_rq_clock(rq);
2068 
2069 	if (!(flags & ENQUEUE_RESTORE)) {
2070 		sched_info_enqueue(rq, p);
2071 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2072 	}
2073 
2074 	uclamp_rq_inc(rq, p);
2075 	p->sched_class->enqueue_task(rq, p, flags);
2076 
2077 	if (sched_core_enabled(rq))
2078 		sched_core_enqueue(rq, p);
2079 }
2080 
2081 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2082 {
2083 	if (sched_core_enabled(rq))
2084 		sched_core_dequeue(rq, p, flags);
2085 
2086 	if (!(flags & DEQUEUE_NOCLOCK))
2087 		update_rq_clock(rq);
2088 
2089 	if (!(flags & DEQUEUE_SAVE)) {
2090 		sched_info_dequeue(rq, p);
2091 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2092 	}
2093 
2094 	uclamp_rq_dec(rq, p);
2095 	p->sched_class->dequeue_task(rq, p, flags);
2096 }
2097 
2098 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 	enqueue_task(rq, p, flags);
2101 
2102 	p->on_rq = TASK_ON_RQ_QUEUED;
2103 }
2104 
2105 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2106 {
2107 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2108 
2109 	dequeue_task(rq, p, flags);
2110 }
2111 
2112 static inline int __normal_prio(int policy, int rt_prio, int nice)
2113 {
2114 	int prio;
2115 
2116 	if (dl_policy(policy))
2117 		prio = MAX_DL_PRIO - 1;
2118 	else if (rt_policy(policy))
2119 		prio = MAX_RT_PRIO - 1 - rt_prio;
2120 	else
2121 		prio = NICE_TO_PRIO(nice);
2122 
2123 	return prio;
2124 }
2125 
2126 /*
2127  * Calculate the expected normal priority: i.e. priority
2128  * without taking RT-inheritance into account. Might be
2129  * boosted by interactivity modifiers. Changes upon fork,
2130  * setprio syscalls, and whenever the interactivity
2131  * estimator recalculates.
2132  */
2133 static inline int normal_prio(struct task_struct *p)
2134 {
2135 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2136 }
2137 
2138 /*
2139  * Calculate the current priority, i.e. the priority
2140  * taken into account by the scheduler. This value might
2141  * be boosted by RT tasks, or might be boosted by
2142  * interactivity modifiers. Will be RT if the task got
2143  * RT-boosted. If not then it returns p->normal_prio.
2144  */
2145 static int effective_prio(struct task_struct *p)
2146 {
2147 	p->normal_prio = normal_prio(p);
2148 	/*
2149 	 * If we are RT tasks or we were boosted to RT priority,
2150 	 * keep the priority unchanged. Otherwise, update priority
2151 	 * to the normal priority:
2152 	 */
2153 	if (!rt_prio(p->prio))
2154 		return p->normal_prio;
2155 	return p->prio;
2156 }
2157 
2158 /**
2159  * task_curr - is this task currently executing on a CPU?
2160  * @p: the task in question.
2161  *
2162  * Return: 1 if the task is currently executing. 0 otherwise.
2163  */
2164 inline int task_curr(const struct task_struct *p)
2165 {
2166 	return cpu_curr(task_cpu(p)) == p;
2167 }
2168 
2169 /*
2170  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2171  * use the balance_callback list if you want balancing.
2172  *
2173  * this means any call to check_class_changed() must be followed by a call to
2174  * balance_callback().
2175  */
2176 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2177 				       const struct sched_class *prev_class,
2178 				       int oldprio)
2179 {
2180 	if (prev_class != p->sched_class) {
2181 		if (prev_class->switched_from)
2182 			prev_class->switched_from(rq, p);
2183 
2184 		p->sched_class->switched_to(rq, p);
2185 	} else if (oldprio != p->prio || dl_task(p))
2186 		p->sched_class->prio_changed(rq, p, oldprio);
2187 }
2188 
2189 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2190 {
2191 	if (p->sched_class == rq->curr->sched_class)
2192 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2193 	else if (p->sched_class > rq->curr->sched_class)
2194 		resched_curr(rq);
2195 
2196 	/*
2197 	 * A queue event has occurred, and we're going to schedule.  In
2198 	 * this case, we can save a useless back to back clock update.
2199 	 */
2200 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2201 		rq_clock_skip_update(rq);
2202 }
2203 
2204 #ifdef CONFIG_SMP
2205 
2206 static void
2207 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2208 
2209 static int __set_cpus_allowed_ptr(struct task_struct *p,
2210 				  const struct cpumask *new_mask,
2211 				  u32 flags);
2212 
2213 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2214 {
2215 	if (likely(!p->migration_disabled))
2216 		return;
2217 
2218 	if (p->cpus_ptr != &p->cpus_mask)
2219 		return;
2220 
2221 	/*
2222 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2223 	 */
2224 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2225 }
2226 
2227 void migrate_disable(void)
2228 {
2229 	struct task_struct *p = current;
2230 
2231 	if (p->migration_disabled) {
2232 		p->migration_disabled++;
2233 		return;
2234 	}
2235 
2236 	preempt_disable();
2237 	this_rq()->nr_pinned++;
2238 	p->migration_disabled = 1;
2239 	preempt_enable();
2240 }
2241 EXPORT_SYMBOL_GPL(migrate_disable);
2242 
2243 void migrate_enable(void)
2244 {
2245 	struct task_struct *p = current;
2246 
2247 	if (p->migration_disabled > 1) {
2248 		p->migration_disabled--;
2249 		return;
2250 	}
2251 
2252 	if (WARN_ON_ONCE(!p->migration_disabled))
2253 		return;
2254 
2255 	/*
2256 	 * Ensure stop_task runs either before or after this, and that
2257 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2258 	 */
2259 	preempt_disable();
2260 	if (p->cpus_ptr != &p->cpus_mask)
2261 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2262 	/*
2263 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2264 	 * regular cpus_mask, otherwise things that race (eg.
2265 	 * select_fallback_rq) get confused.
2266 	 */
2267 	barrier();
2268 	p->migration_disabled = 0;
2269 	this_rq()->nr_pinned--;
2270 	preempt_enable();
2271 }
2272 EXPORT_SYMBOL_GPL(migrate_enable);
2273 
2274 static inline bool rq_has_pinned_tasks(struct rq *rq)
2275 {
2276 	return rq->nr_pinned;
2277 }
2278 
2279 /*
2280  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2281  * __set_cpus_allowed_ptr() and select_fallback_rq().
2282  */
2283 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2284 {
2285 	/* When not in the task's cpumask, no point in looking further. */
2286 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2287 		return false;
2288 
2289 	/* migrate_disabled() must be allowed to finish. */
2290 	if (is_migration_disabled(p))
2291 		return cpu_online(cpu);
2292 
2293 	/* Non kernel threads are not allowed during either online or offline. */
2294 	if (!(p->flags & PF_KTHREAD))
2295 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2296 
2297 	/* KTHREAD_IS_PER_CPU is always allowed. */
2298 	if (kthread_is_per_cpu(p))
2299 		return cpu_online(cpu);
2300 
2301 	/* Regular kernel threads don't get to stay during offline. */
2302 	if (cpu_dying(cpu))
2303 		return false;
2304 
2305 	/* But are allowed during online. */
2306 	return cpu_online(cpu);
2307 }
2308 
2309 /*
2310  * This is how migration works:
2311  *
2312  * 1) we invoke migration_cpu_stop() on the target CPU using
2313  *    stop_one_cpu().
2314  * 2) stopper starts to run (implicitly forcing the migrated thread
2315  *    off the CPU)
2316  * 3) it checks whether the migrated task is still in the wrong runqueue.
2317  * 4) if it's in the wrong runqueue then the migration thread removes
2318  *    it and puts it into the right queue.
2319  * 5) stopper completes and stop_one_cpu() returns and the migration
2320  *    is done.
2321  */
2322 
2323 /*
2324  * move_queued_task - move a queued task to new rq.
2325  *
2326  * Returns (locked) new rq. Old rq's lock is released.
2327  */
2328 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2329 				   struct task_struct *p, int new_cpu)
2330 {
2331 	lockdep_assert_rq_held(rq);
2332 
2333 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2334 	set_task_cpu(p, new_cpu);
2335 	rq_unlock(rq, rf);
2336 
2337 	rq = cpu_rq(new_cpu);
2338 
2339 	rq_lock(rq, rf);
2340 	BUG_ON(task_cpu(p) != new_cpu);
2341 	activate_task(rq, p, 0);
2342 	check_preempt_curr(rq, p, 0);
2343 
2344 	return rq;
2345 }
2346 
2347 struct migration_arg {
2348 	struct task_struct		*task;
2349 	int				dest_cpu;
2350 	struct set_affinity_pending	*pending;
2351 };
2352 
2353 /*
2354  * @refs: number of wait_for_completion()
2355  * @stop_pending: is @stop_work in use
2356  */
2357 struct set_affinity_pending {
2358 	refcount_t		refs;
2359 	unsigned int		stop_pending;
2360 	struct completion	done;
2361 	struct cpu_stop_work	stop_work;
2362 	struct migration_arg	arg;
2363 };
2364 
2365 /*
2366  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2367  * this because either it can't run here any more (set_cpus_allowed()
2368  * away from this CPU, or CPU going down), or because we're
2369  * attempting to rebalance this task on exec (sched_exec).
2370  *
2371  * So we race with normal scheduler movements, but that's OK, as long
2372  * as the task is no longer on this CPU.
2373  */
2374 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2375 				 struct task_struct *p, int dest_cpu)
2376 {
2377 	/* Affinity changed (again). */
2378 	if (!is_cpu_allowed(p, dest_cpu))
2379 		return rq;
2380 
2381 	update_rq_clock(rq);
2382 	rq = move_queued_task(rq, rf, p, dest_cpu);
2383 
2384 	return rq;
2385 }
2386 
2387 /*
2388  * migration_cpu_stop - this will be executed by a highprio stopper thread
2389  * and performs thread migration by bumping thread off CPU then
2390  * 'pushing' onto another runqueue.
2391  */
2392 static int migration_cpu_stop(void *data)
2393 {
2394 	struct migration_arg *arg = data;
2395 	struct set_affinity_pending *pending = arg->pending;
2396 	struct task_struct *p = arg->task;
2397 	struct rq *rq = this_rq();
2398 	bool complete = false;
2399 	struct rq_flags rf;
2400 
2401 	/*
2402 	 * The original target CPU might have gone down and we might
2403 	 * be on another CPU but it doesn't matter.
2404 	 */
2405 	local_irq_save(rf.flags);
2406 	/*
2407 	 * We need to explicitly wake pending tasks before running
2408 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2409 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2410 	 */
2411 	flush_smp_call_function_from_idle();
2412 
2413 	raw_spin_lock(&p->pi_lock);
2414 	rq_lock(rq, &rf);
2415 
2416 	/*
2417 	 * If we were passed a pending, then ->stop_pending was set, thus
2418 	 * p->migration_pending must have remained stable.
2419 	 */
2420 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2421 
2422 	/*
2423 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2424 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2425 	 * we're holding p->pi_lock.
2426 	 */
2427 	if (task_rq(p) == rq) {
2428 		if (is_migration_disabled(p))
2429 			goto out;
2430 
2431 		if (pending) {
2432 			p->migration_pending = NULL;
2433 			complete = true;
2434 
2435 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2436 				goto out;
2437 		}
2438 
2439 		if (task_on_rq_queued(p))
2440 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2441 		else
2442 			p->wake_cpu = arg->dest_cpu;
2443 
2444 		/*
2445 		 * XXX __migrate_task() can fail, at which point we might end
2446 		 * up running on a dodgy CPU, AFAICT this can only happen
2447 		 * during CPU hotplug, at which point we'll get pushed out
2448 		 * anyway, so it's probably not a big deal.
2449 		 */
2450 
2451 	} else if (pending) {
2452 		/*
2453 		 * This happens when we get migrated between migrate_enable()'s
2454 		 * preempt_enable() and scheduling the stopper task. At that
2455 		 * point we're a regular task again and not current anymore.
2456 		 *
2457 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2458 		 * more likely.
2459 		 */
2460 
2461 		/*
2462 		 * The task moved before the stopper got to run. We're holding
2463 		 * ->pi_lock, so the allowed mask is stable - if it got
2464 		 * somewhere allowed, we're done.
2465 		 */
2466 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2467 			p->migration_pending = NULL;
2468 			complete = true;
2469 			goto out;
2470 		}
2471 
2472 		/*
2473 		 * When migrate_enable() hits a rq mis-match we can't reliably
2474 		 * determine is_migration_disabled() and so have to chase after
2475 		 * it.
2476 		 */
2477 		WARN_ON_ONCE(!pending->stop_pending);
2478 		task_rq_unlock(rq, p, &rf);
2479 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2480 				    &pending->arg, &pending->stop_work);
2481 		return 0;
2482 	}
2483 out:
2484 	if (pending)
2485 		pending->stop_pending = false;
2486 	task_rq_unlock(rq, p, &rf);
2487 
2488 	if (complete)
2489 		complete_all(&pending->done);
2490 
2491 	return 0;
2492 }
2493 
2494 int push_cpu_stop(void *arg)
2495 {
2496 	struct rq *lowest_rq = NULL, *rq = this_rq();
2497 	struct task_struct *p = arg;
2498 
2499 	raw_spin_lock_irq(&p->pi_lock);
2500 	raw_spin_rq_lock(rq);
2501 
2502 	if (task_rq(p) != rq)
2503 		goto out_unlock;
2504 
2505 	if (is_migration_disabled(p)) {
2506 		p->migration_flags |= MDF_PUSH;
2507 		goto out_unlock;
2508 	}
2509 
2510 	p->migration_flags &= ~MDF_PUSH;
2511 
2512 	if (p->sched_class->find_lock_rq)
2513 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2514 
2515 	if (!lowest_rq)
2516 		goto out_unlock;
2517 
2518 	// XXX validate p is still the highest prio task
2519 	if (task_rq(p) == rq) {
2520 		deactivate_task(rq, p, 0);
2521 		set_task_cpu(p, lowest_rq->cpu);
2522 		activate_task(lowest_rq, p, 0);
2523 		resched_curr(lowest_rq);
2524 	}
2525 
2526 	double_unlock_balance(rq, lowest_rq);
2527 
2528 out_unlock:
2529 	rq->push_busy = false;
2530 	raw_spin_rq_unlock(rq);
2531 	raw_spin_unlock_irq(&p->pi_lock);
2532 
2533 	put_task_struct(p);
2534 	return 0;
2535 }
2536 
2537 /*
2538  * sched_class::set_cpus_allowed must do the below, but is not required to
2539  * actually call this function.
2540  */
2541 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2542 {
2543 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2544 		p->cpus_ptr = new_mask;
2545 		return;
2546 	}
2547 
2548 	cpumask_copy(&p->cpus_mask, new_mask);
2549 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2550 }
2551 
2552 static void
2553 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2554 {
2555 	struct rq *rq = task_rq(p);
2556 	bool queued, running;
2557 
2558 	/*
2559 	 * This here violates the locking rules for affinity, since we're only
2560 	 * supposed to change these variables while holding both rq->lock and
2561 	 * p->pi_lock.
2562 	 *
2563 	 * HOWEVER, it magically works, because ttwu() is the only code that
2564 	 * accesses these variables under p->pi_lock and only does so after
2565 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2566 	 * before finish_task().
2567 	 *
2568 	 * XXX do further audits, this smells like something putrid.
2569 	 */
2570 	if (flags & SCA_MIGRATE_DISABLE)
2571 		SCHED_WARN_ON(!p->on_cpu);
2572 	else
2573 		lockdep_assert_held(&p->pi_lock);
2574 
2575 	queued = task_on_rq_queued(p);
2576 	running = task_current(rq, p);
2577 
2578 	if (queued) {
2579 		/*
2580 		 * Because __kthread_bind() calls this on blocked tasks without
2581 		 * holding rq->lock.
2582 		 */
2583 		lockdep_assert_rq_held(rq);
2584 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2585 	}
2586 	if (running)
2587 		put_prev_task(rq, p);
2588 
2589 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2590 
2591 	if (queued)
2592 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2593 	if (running)
2594 		set_next_task(rq, p);
2595 }
2596 
2597 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2598 {
2599 	__do_set_cpus_allowed(p, new_mask, 0);
2600 }
2601 
2602 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2603 		      int node)
2604 {
2605 	if (!src->user_cpus_ptr)
2606 		return 0;
2607 
2608 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2609 	if (!dst->user_cpus_ptr)
2610 		return -ENOMEM;
2611 
2612 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2613 	return 0;
2614 }
2615 
2616 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2617 {
2618 	struct cpumask *user_mask = NULL;
2619 
2620 	swap(p->user_cpus_ptr, user_mask);
2621 
2622 	return user_mask;
2623 }
2624 
2625 void release_user_cpus_ptr(struct task_struct *p)
2626 {
2627 	kfree(clear_user_cpus_ptr(p));
2628 }
2629 
2630 /*
2631  * This function is wildly self concurrent; here be dragons.
2632  *
2633  *
2634  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2635  * designated task is enqueued on an allowed CPU. If that task is currently
2636  * running, we have to kick it out using the CPU stopper.
2637  *
2638  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2639  * Consider:
2640  *
2641  *     Initial conditions: P0->cpus_mask = [0, 1]
2642  *
2643  *     P0@CPU0                  P1
2644  *
2645  *     migrate_disable();
2646  *     <preempted>
2647  *                              set_cpus_allowed_ptr(P0, [1]);
2648  *
2649  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2650  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2651  * This means we need the following scheme:
2652  *
2653  *     P0@CPU0                  P1
2654  *
2655  *     migrate_disable();
2656  *     <preempted>
2657  *                              set_cpus_allowed_ptr(P0, [1]);
2658  *                                <blocks>
2659  *     <resumes>
2660  *     migrate_enable();
2661  *       __set_cpus_allowed_ptr();
2662  *       <wakes local stopper>
2663  *                         `--> <woken on migration completion>
2664  *
2665  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2666  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2667  * task p are serialized by p->pi_lock, which we can leverage: the one that
2668  * should come into effect at the end of the Migrate-Disable region is the last
2669  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2670  * but we still need to properly signal those waiting tasks at the appropriate
2671  * moment.
2672  *
2673  * This is implemented using struct set_affinity_pending. The first
2674  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2675  * setup an instance of that struct and install it on the targeted task_struct.
2676  * Any and all further callers will reuse that instance. Those then wait for
2677  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2678  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2679  *
2680  *
2681  * (1) In the cases covered above. There is one more where the completion is
2682  * signaled within affine_move_task() itself: when a subsequent affinity request
2683  * occurs after the stopper bailed out due to the targeted task still being
2684  * Migrate-Disable. Consider:
2685  *
2686  *     Initial conditions: P0->cpus_mask = [0, 1]
2687  *
2688  *     CPU0		  P1				P2
2689  *     <P0>
2690  *       migrate_disable();
2691  *       <preempted>
2692  *                        set_cpus_allowed_ptr(P0, [1]);
2693  *                          <blocks>
2694  *     <migration/0>
2695  *       migration_cpu_stop()
2696  *         is_migration_disabled()
2697  *           <bails>
2698  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2699  *                                                         <signal completion>
2700  *                          <awakes>
2701  *
2702  * Note that the above is safe vs a concurrent migrate_enable(), as any
2703  * pending affinity completion is preceded by an uninstallation of
2704  * p->migration_pending done with p->pi_lock held.
2705  */
2706 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2707 			    int dest_cpu, unsigned int flags)
2708 {
2709 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2710 	bool stop_pending, complete = false;
2711 
2712 	/* Can the task run on the task's current CPU? If so, we're done */
2713 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2714 		struct task_struct *push_task = NULL;
2715 
2716 		if ((flags & SCA_MIGRATE_ENABLE) &&
2717 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2718 			rq->push_busy = true;
2719 			push_task = get_task_struct(p);
2720 		}
2721 
2722 		/*
2723 		 * If there are pending waiters, but no pending stop_work,
2724 		 * then complete now.
2725 		 */
2726 		pending = p->migration_pending;
2727 		if (pending && !pending->stop_pending) {
2728 			p->migration_pending = NULL;
2729 			complete = true;
2730 		}
2731 
2732 		task_rq_unlock(rq, p, rf);
2733 
2734 		if (push_task) {
2735 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2736 					    p, &rq->push_work);
2737 		}
2738 
2739 		if (complete)
2740 			complete_all(&pending->done);
2741 
2742 		return 0;
2743 	}
2744 
2745 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2746 		/* serialized by p->pi_lock */
2747 		if (!p->migration_pending) {
2748 			/* Install the request */
2749 			refcount_set(&my_pending.refs, 1);
2750 			init_completion(&my_pending.done);
2751 			my_pending.arg = (struct migration_arg) {
2752 				.task = p,
2753 				.dest_cpu = dest_cpu,
2754 				.pending = &my_pending,
2755 			};
2756 
2757 			p->migration_pending = &my_pending;
2758 		} else {
2759 			pending = p->migration_pending;
2760 			refcount_inc(&pending->refs);
2761 			/*
2762 			 * Affinity has changed, but we've already installed a
2763 			 * pending. migration_cpu_stop() *must* see this, else
2764 			 * we risk a completion of the pending despite having a
2765 			 * task on a disallowed CPU.
2766 			 *
2767 			 * Serialized by p->pi_lock, so this is safe.
2768 			 */
2769 			pending->arg.dest_cpu = dest_cpu;
2770 		}
2771 	}
2772 	pending = p->migration_pending;
2773 	/*
2774 	 * - !MIGRATE_ENABLE:
2775 	 *   we'll have installed a pending if there wasn't one already.
2776 	 *
2777 	 * - MIGRATE_ENABLE:
2778 	 *   we're here because the current CPU isn't matching anymore,
2779 	 *   the only way that can happen is because of a concurrent
2780 	 *   set_cpus_allowed_ptr() call, which should then still be
2781 	 *   pending completion.
2782 	 *
2783 	 * Either way, we really should have a @pending here.
2784 	 */
2785 	if (WARN_ON_ONCE(!pending)) {
2786 		task_rq_unlock(rq, p, rf);
2787 		return -EINVAL;
2788 	}
2789 
2790 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2791 		/*
2792 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2793 		 * anything else we cannot do is_migration_disabled(), punt
2794 		 * and have the stopper function handle it all race-free.
2795 		 */
2796 		stop_pending = pending->stop_pending;
2797 		if (!stop_pending)
2798 			pending->stop_pending = true;
2799 
2800 		if (flags & SCA_MIGRATE_ENABLE)
2801 			p->migration_flags &= ~MDF_PUSH;
2802 
2803 		task_rq_unlock(rq, p, rf);
2804 
2805 		if (!stop_pending) {
2806 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2807 					    &pending->arg, &pending->stop_work);
2808 		}
2809 
2810 		if (flags & SCA_MIGRATE_ENABLE)
2811 			return 0;
2812 	} else {
2813 
2814 		if (!is_migration_disabled(p)) {
2815 			if (task_on_rq_queued(p))
2816 				rq = move_queued_task(rq, rf, p, dest_cpu);
2817 
2818 			if (!pending->stop_pending) {
2819 				p->migration_pending = NULL;
2820 				complete = true;
2821 			}
2822 		}
2823 		task_rq_unlock(rq, p, rf);
2824 
2825 		if (complete)
2826 			complete_all(&pending->done);
2827 	}
2828 
2829 	wait_for_completion(&pending->done);
2830 
2831 	if (refcount_dec_and_test(&pending->refs))
2832 		wake_up_var(&pending->refs); /* No UaF, just an address */
2833 
2834 	/*
2835 	 * Block the original owner of &pending until all subsequent callers
2836 	 * have seen the completion and decremented the refcount
2837 	 */
2838 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2839 
2840 	/* ARGH */
2841 	WARN_ON_ONCE(my_pending.stop_pending);
2842 
2843 	return 0;
2844 }
2845 
2846 /*
2847  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2848  */
2849 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2850 					 const struct cpumask *new_mask,
2851 					 u32 flags,
2852 					 struct rq *rq,
2853 					 struct rq_flags *rf)
2854 	__releases(rq->lock)
2855 	__releases(p->pi_lock)
2856 {
2857 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2858 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2859 	bool kthread = p->flags & PF_KTHREAD;
2860 	struct cpumask *user_mask = NULL;
2861 	unsigned int dest_cpu;
2862 	int ret = 0;
2863 
2864 	update_rq_clock(rq);
2865 
2866 	if (kthread || is_migration_disabled(p)) {
2867 		/*
2868 		 * Kernel threads are allowed on online && !active CPUs,
2869 		 * however, during cpu-hot-unplug, even these might get pushed
2870 		 * away if not KTHREAD_IS_PER_CPU.
2871 		 *
2872 		 * Specifically, migration_disabled() tasks must not fail the
2873 		 * cpumask_any_and_distribute() pick below, esp. so on
2874 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2875 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2876 		 */
2877 		cpu_valid_mask = cpu_online_mask;
2878 	}
2879 
2880 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2881 		ret = -EINVAL;
2882 		goto out;
2883 	}
2884 
2885 	/*
2886 	 * Must re-check here, to close a race against __kthread_bind(),
2887 	 * sched_setaffinity() is not guaranteed to observe the flag.
2888 	 */
2889 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2890 		ret = -EINVAL;
2891 		goto out;
2892 	}
2893 
2894 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2895 		if (cpumask_equal(&p->cpus_mask, new_mask))
2896 			goto out;
2897 
2898 		if (WARN_ON_ONCE(p == current &&
2899 				 is_migration_disabled(p) &&
2900 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2901 			ret = -EBUSY;
2902 			goto out;
2903 		}
2904 	}
2905 
2906 	/*
2907 	 * Picking a ~random cpu helps in cases where we are changing affinity
2908 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2909 	 * immediately required to distribute the tasks within their new mask.
2910 	 */
2911 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2912 	if (dest_cpu >= nr_cpu_ids) {
2913 		ret = -EINVAL;
2914 		goto out;
2915 	}
2916 
2917 	__do_set_cpus_allowed(p, new_mask, flags);
2918 
2919 	if (flags & SCA_USER)
2920 		user_mask = clear_user_cpus_ptr(p);
2921 
2922 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2923 
2924 	kfree(user_mask);
2925 
2926 	return ret;
2927 
2928 out:
2929 	task_rq_unlock(rq, p, rf);
2930 
2931 	return ret;
2932 }
2933 
2934 /*
2935  * Change a given task's CPU affinity. Migrate the thread to a
2936  * proper CPU and schedule it away if the CPU it's executing on
2937  * is removed from the allowed bitmask.
2938  *
2939  * NOTE: the caller must have a valid reference to the task, the
2940  * task must not exit() & deallocate itself prematurely. The
2941  * call is not atomic; no spinlocks may be held.
2942  */
2943 static int __set_cpus_allowed_ptr(struct task_struct *p,
2944 				  const struct cpumask *new_mask, u32 flags)
2945 {
2946 	struct rq_flags rf;
2947 	struct rq *rq;
2948 
2949 	rq = task_rq_lock(p, &rf);
2950 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2951 }
2952 
2953 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2954 {
2955 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2956 }
2957 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2958 
2959 /*
2960  * Change a given task's CPU affinity to the intersection of its current
2961  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2962  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2963  * If the resulting mask is empty, leave the affinity unchanged and return
2964  * -EINVAL.
2965  */
2966 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2967 				     struct cpumask *new_mask,
2968 				     const struct cpumask *subset_mask)
2969 {
2970 	struct cpumask *user_mask = NULL;
2971 	struct rq_flags rf;
2972 	struct rq *rq;
2973 	int err;
2974 
2975 	if (!p->user_cpus_ptr) {
2976 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2977 		if (!user_mask)
2978 			return -ENOMEM;
2979 	}
2980 
2981 	rq = task_rq_lock(p, &rf);
2982 
2983 	/*
2984 	 * Forcefully restricting the affinity of a deadline task is
2985 	 * likely to cause problems, so fail and noisily override the
2986 	 * mask entirely.
2987 	 */
2988 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2989 		err = -EPERM;
2990 		goto err_unlock;
2991 	}
2992 
2993 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2994 		err = -EINVAL;
2995 		goto err_unlock;
2996 	}
2997 
2998 	/*
2999 	 * We're about to butcher the task affinity, so keep track of what
3000 	 * the user asked for in case we're able to restore it later on.
3001 	 */
3002 	if (user_mask) {
3003 		cpumask_copy(user_mask, p->cpus_ptr);
3004 		p->user_cpus_ptr = user_mask;
3005 	}
3006 
3007 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
3008 
3009 err_unlock:
3010 	task_rq_unlock(rq, p, &rf);
3011 	kfree(user_mask);
3012 	return err;
3013 }
3014 
3015 /*
3016  * Restrict the CPU affinity of task @p so that it is a subset of
3017  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3018  * old affinity mask. If the resulting mask is empty, we warn and walk
3019  * up the cpuset hierarchy until we find a suitable mask.
3020  */
3021 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3022 {
3023 	cpumask_var_t new_mask;
3024 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3025 
3026 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3027 
3028 	/*
3029 	 * __migrate_task() can fail silently in the face of concurrent
3030 	 * offlining of the chosen destination CPU, so take the hotplug
3031 	 * lock to ensure that the migration succeeds.
3032 	 */
3033 	cpus_read_lock();
3034 	if (!cpumask_available(new_mask))
3035 		goto out_set_mask;
3036 
3037 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3038 		goto out_free_mask;
3039 
3040 	/*
3041 	 * We failed to find a valid subset of the affinity mask for the
3042 	 * task, so override it based on its cpuset hierarchy.
3043 	 */
3044 	cpuset_cpus_allowed(p, new_mask);
3045 	override_mask = new_mask;
3046 
3047 out_set_mask:
3048 	if (printk_ratelimit()) {
3049 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3050 				task_pid_nr(p), p->comm,
3051 				cpumask_pr_args(override_mask));
3052 	}
3053 
3054 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3055 out_free_mask:
3056 	cpus_read_unlock();
3057 	free_cpumask_var(new_mask);
3058 }
3059 
3060 static int
3061 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3062 
3063 /*
3064  * Restore the affinity of a task @p which was previously restricted by a
3065  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3066  * @p->user_cpus_ptr.
3067  *
3068  * It is the caller's responsibility to serialise this with any calls to
3069  * force_compatible_cpus_allowed_ptr(@p).
3070  */
3071 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3072 {
3073 	struct cpumask *user_mask = p->user_cpus_ptr;
3074 	unsigned long flags;
3075 
3076 	/*
3077 	 * Try to restore the old affinity mask. If this fails, then
3078 	 * we free the mask explicitly to avoid it being inherited across
3079 	 * a subsequent fork().
3080 	 */
3081 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3082 		return;
3083 
3084 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3085 	user_mask = clear_user_cpus_ptr(p);
3086 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3087 
3088 	kfree(user_mask);
3089 }
3090 
3091 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3092 {
3093 #ifdef CONFIG_SCHED_DEBUG
3094 	unsigned int state = READ_ONCE(p->__state);
3095 
3096 	/*
3097 	 * We should never call set_task_cpu() on a blocked task,
3098 	 * ttwu() will sort out the placement.
3099 	 */
3100 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3101 
3102 	/*
3103 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3104 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3105 	 * time relying on p->on_rq.
3106 	 */
3107 	WARN_ON_ONCE(state == TASK_RUNNING &&
3108 		     p->sched_class == &fair_sched_class &&
3109 		     (p->on_rq && !task_on_rq_migrating(p)));
3110 
3111 #ifdef CONFIG_LOCKDEP
3112 	/*
3113 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3114 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3115 	 *
3116 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3117 	 * see task_group().
3118 	 *
3119 	 * Furthermore, all task_rq users should acquire both locks, see
3120 	 * task_rq_lock().
3121 	 */
3122 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3123 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3124 #endif
3125 	/*
3126 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3127 	 */
3128 	WARN_ON_ONCE(!cpu_online(new_cpu));
3129 
3130 	WARN_ON_ONCE(is_migration_disabled(p));
3131 #endif
3132 
3133 	trace_sched_migrate_task(p, new_cpu);
3134 
3135 	if (task_cpu(p) != new_cpu) {
3136 		if (p->sched_class->migrate_task_rq)
3137 			p->sched_class->migrate_task_rq(p, new_cpu);
3138 		p->se.nr_migrations++;
3139 		rseq_migrate(p);
3140 		perf_event_task_migrate(p);
3141 	}
3142 
3143 	__set_task_cpu(p, new_cpu);
3144 }
3145 
3146 #ifdef CONFIG_NUMA_BALANCING
3147 static void __migrate_swap_task(struct task_struct *p, int cpu)
3148 {
3149 	if (task_on_rq_queued(p)) {
3150 		struct rq *src_rq, *dst_rq;
3151 		struct rq_flags srf, drf;
3152 
3153 		src_rq = task_rq(p);
3154 		dst_rq = cpu_rq(cpu);
3155 
3156 		rq_pin_lock(src_rq, &srf);
3157 		rq_pin_lock(dst_rq, &drf);
3158 
3159 		deactivate_task(src_rq, p, 0);
3160 		set_task_cpu(p, cpu);
3161 		activate_task(dst_rq, p, 0);
3162 		check_preempt_curr(dst_rq, p, 0);
3163 
3164 		rq_unpin_lock(dst_rq, &drf);
3165 		rq_unpin_lock(src_rq, &srf);
3166 
3167 	} else {
3168 		/*
3169 		 * Task isn't running anymore; make it appear like we migrated
3170 		 * it before it went to sleep. This means on wakeup we make the
3171 		 * previous CPU our target instead of where it really is.
3172 		 */
3173 		p->wake_cpu = cpu;
3174 	}
3175 }
3176 
3177 struct migration_swap_arg {
3178 	struct task_struct *src_task, *dst_task;
3179 	int src_cpu, dst_cpu;
3180 };
3181 
3182 static int migrate_swap_stop(void *data)
3183 {
3184 	struct migration_swap_arg *arg = data;
3185 	struct rq *src_rq, *dst_rq;
3186 	int ret = -EAGAIN;
3187 
3188 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3189 		return -EAGAIN;
3190 
3191 	src_rq = cpu_rq(arg->src_cpu);
3192 	dst_rq = cpu_rq(arg->dst_cpu);
3193 
3194 	double_raw_lock(&arg->src_task->pi_lock,
3195 			&arg->dst_task->pi_lock);
3196 	double_rq_lock(src_rq, dst_rq);
3197 
3198 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3199 		goto unlock;
3200 
3201 	if (task_cpu(arg->src_task) != arg->src_cpu)
3202 		goto unlock;
3203 
3204 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3205 		goto unlock;
3206 
3207 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3208 		goto unlock;
3209 
3210 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3211 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3212 
3213 	ret = 0;
3214 
3215 unlock:
3216 	double_rq_unlock(src_rq, dst_rq);
3217 	raw_spin_unlock(&arg->dst_task->pi_lock);
3218 	raw_spin_unlock(&arg->src_task->pi_lock);
3219 
3220 	return ret;
3221 }
3222 
3223 /*
3224  * Cross migrate two tasks
3225  */
3226 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3227 		int target_cpu, int curr_cpu)
3228 {
3229 	struct migration_swap_arg arg;
3230 	int ret = -EINVAL;
3231 
3232 	arg = (struct migration_swap_arg){
3233 		.src_task = cur,
3234 		.src_cpu = curr_cpu,
3235 		.dst_task = p,
3236 		.dst_cpu = target_cpu,
3237 	};
3238 
3239 	if (arg.src_cpu == arg.dst_cpu)
3240 		goto out;
3241 
3242 	/*
3243 	 * These three tests are all lockless; this is OK since all of them
3244 	 * will be re-checked with proper locks held further down the line.
3245 	 */
3246 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3247 		goto out;
3248 
3249 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3250 		goto out;
3251 
3252 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3253 		goto out;
3254 
3255 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3256 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3257 
3258 out:
3259 	return ret;
3260 }
3261 #endif /* CONFIG_NUMA_BALANCING */
3262 
3263 /*
3264  * wait_task_inactive - wait for a thread to unschedule.
3265  *
3266  * If @match_state is nonzero, it's the @p->state value just checked and
3267  * not expected to change.  If it changes, i.e. @p might have woken up,
3268  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3269  * we return a positive number (its total switch count).  If a second call
3270  * a short while later returns the same number, the caller can be sure that
3271  * @p has remained unscheduled the whole time.
3272  *
3273  * The caller must ensure that the task *will* unschedule sometime soon,
3274  * else this function might spin for a *long* time. This function can't
3275  * be called with interrupts off, or it may introduce deadlock with
3276  * smp_call_function() if an IPI is sent by the same process we are
3277  * waiting to become inactive.
3278  */
3279 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3280 {
3281 	int running, queued;
3282 	struct rq_flags rf;
3283 	unsigned long ncsw;
3284 	struct rq *rq;
3285 
3286 	for (;;) {
3287 		/*
3288 		 * We do the initial early heuristics without holding
3289 		 * any task-queue locks at all. We'll only try to get
3290 		 * the runqueue lock when things look like they will
3291 		 * work out!
3292 		 */
3293 		rq = task_rq(p);
3294 
3295 		/*
3296 		 * If the task is actively running on another CPU
3297 		 * still, just relax and busy-wait without holding
3298 		 * any locks.
3299 		 *
3300 		 * NOTE! Since we don't hold any locks, it's not
3301 		 * even sure that "rq" stays as the right runqueue!
3302 		 * But we don't care, since "task_running()" will
3303 		 * return false if the runqueue has changed and p
3304 		 * is actually now running somewhere else!
3305 		 */
3306 		while (task_running(rq, p)) {
3307 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3308 				return 0;
3309 			cpu_relax();
3310 		}
3311 
3312 		/*
3313 		 * Ok, time to look more closely! We need the rq
3314 		 * lock now, to be *sure*. If we're wrong, we'll
3315 		 * just go back and repeat.
3316 		 */
3317 		rq = task_rq_lock(p, &rf);
3318 		trace_sched_wait_task(p);
3319 		running = task_running(rq, p);
3320 		queued = task_on_rq_queued(p);
3321 		ncsw = 0;
3322 		if (!match_state || READ_ONCE(p->__state) == match_state)
3323 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3324 		task_rq_unlock(rq, p, &rf);
3325 
3326 		/*
3327 		 * If it changed from the expected state, bail out now.
3328 		 */
3329 		if (unlikely(!ncsw))
3330 			break;
3331 
3332 		/*
3333 		 * Was it really running after all now that we
3334 		 * checked with the proper locks actually held?
3335 		 *
3336 		 * Oops. Go back and try again..
3337 		 */
3338 		if (unlikely(running)) {
3339 			cpu_relax();
3340 			continue;
3341 		}
3342 
3343 		/*
3344 		 * It's not enough that it's not actively running,
3345 		 * it must be off the runqueue _entirely_, and not
3346 		 * preempted!
3347 		 *
3348 		 * So if it was still runnable (but just not actively
3349 		 * running right now), it's preempted, and we should
3350 		 * yield - it could be a while.
3351 		 */
3352 		if (unlikely(queued)) {
3353 			ktime_t to = NSEC_PER_SEC / HZ;
3354 
3355 			set_current_state(TASK_UNINTERRUPTIBLE);
3356 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3357 			continue;
3358 		}
3359 
3360 		/*
3361 		 * Ahh, all good. It wasn't running, and it wasn't
3362 		 * runnable, which means that it will never become
3363 		 * running in the future either. We're all done!
3364 		 */
3365 		break;
3366 	}
3367 
3368 	return ncsw;
3369 }
3370 
3371 /***
3372  * kick_process - kick a running thread to enter/exit the kernel
3373  * @p: the to-be-kicked thread
3374  *
3375  * Cause a process which is running on another CPU to enter
3376  * kernel-mode, without any delay. (to get signals handled.)
3377  *
3378  * NOTE: this function doesn't have to take the runqueue lock,
3379  * because all it wants to ensure is that the remote task enters
3380  * the kernel. If the IPI races and the task has been migrated
3381  * to another CPU then no harm is done and the purpose has been
3382  * achieved as well.
3383  */
3384 void kick_process(struct task_struct *p)
3385 {
3386 	int cpu;
3387 
3388 	preempt_disable();
3389 	cpu = task_cpu(p);
3390 	if ((cpu != smp_processor_id()) && task_curr(p))
3391 		smp_send_reschedule(cpu);
3392 	preempt_enable();
3393 }
3394 EXPORT_SYMBOL_GPL(kick_process);
3395 
3396 /*
3397  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3398  *
3399  * A few notes on cpu_active vs cpu_online:
3400  *
3401  *  - cpu_active must be a subset of cpu_online
3402  *
3403  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3404  *    see __set_cpus_allowed_ptr(). At this point the newly online
3405  *    CPU isn't yet part of the sched domains, and balancing will not
3406  *    see it.
3407  *
3408  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3409  *    avoid the load balancer to place new tasks on the to be removed
3410  *    CPU. Existing tasks will remain running there and will be taken
3411  *    off.
3412  *
3413  * This means that fallback selection must not select !active CPUs.
3414  * And can assume that any active CPU must be online. Conversely
3415  * select_task_rq() below may allow selection of !active CPUs in order
3416  * to satisfy the above rules.
3417  */
3418 static int select_fallback_rq(int cpu, struct task_struct *p)
3419 {
3420 	int nid = cpu_to_node(cpu);
3421 	const struct cpumask *nodemask = NULL;
3422 	enum { cpuset, possible, fail } state = cpuset;
3423 	int dest_cpu;
3424 
3425 	/*
3426 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3427 	 * will return -1. There is no CPU on the node, and we should
3428 	 * select the CPU on the other node.
3429 	 */
3430 	if (nid != -1) {
3431 		nodemask = cpumask_of_node(nid);
3432 
3433 		/* Look for allowed, online CPU in same node. */
3434 		for_each_cpu(dest_cpu, nodemask) {
3435 			if (is_cpu_allowed(p, dest_cpu))
3436 				return dest_cpu;
3437 		}
3438 	}
3439 
3440 	for (;;) {
3441 		/* Any allowed, online CPU? */
3442 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3443 			if (!is_cpu_allowed(p, dest_cpu))
3444 				continue;
3445 
3446 			goto out;
3447 		}
3448 
3449 		/* No more Mr. Nice Guy. */
3450 		switch (state) {
3451 		case cpuset:
3452 			if (cpuset_cpus_allowed_fallback(p)) {
3453 				state = possible;
3454 				break;
3455 			}
3456 			fallthrough;
3457 		case possible:
3458 			/*
3459 			 * XXX When called from select_task_rq() we only
3460 			 * hold p->pi_lock and again violate locking order.
3461 			 *
3462 			 * More yuck to audit.
3463 			 */
3464 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3465 			state = fail;
3466 			break;
3467 		case fail:
3468 			BUG();
3469 			break;
3470 		}
3471 	}
3472 
3473 out:
3474 	if (state != cpuset) {
3475 		/*
3476 		 * Don't tell them about moving exiting tasks or
3477 		 * kernel threads (both mm NULL), since they never
3478 		 * leave kernel.
3479 		 */
3480 		if (p->mm && printk_ratelimit()) {
3481 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3482 					task_pid_nr(p), p->comm, cpu);
3483 		}
3484 	}
3485 
3486 	return dest_cpu;
3487 }
3488 
3489 /*
3490  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3491  */
3492 static inline
3493 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3494 {
3495 	lockdep_assert_held(&p->pi_lock);
3496 
3497 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3498 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3499 	else
3500 		cpu = cpumask_any(p->cpus_ptr);
3501 
3502 	/*
3503 	 * In order not to call set_task_cpu() on a blocking task we need
3504 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3505 	 * CPU.
3506 	 *
3507 	 * Since this is common to all placement strategies, this lives here.
3508 	 *
3509 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3510 	 *   not worry about this generic constraint ]
3511 	 */
3512 	if (unlikely(!is_cpu_allowed(p, cpu)))
3513 		cpu = select_fallback_rq(task_cpu(p), p);
3514 
3515 	return cpu;
3516 }
3517 
3518 void sched_set_stop_task(int cpu, struct task_struct *stop)
3519 {
3520 	static struct lock_class_key stop_pi_lock;
3521 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3522 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3523 
3524 	if (stop) {
3525 		/*
3526 		 * Make it appear like a SCHED_FIFO task, its something
3527 		 * userspace knows about and won't get confused about.
3528 		 *
3529 		 * Also, it will make PI more or less work without too
3530 		 * much confusion -- but then, stop work should not
3531 		 * rely on PI working anyway.
3532 		 */
3533 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3534 
3535 		stop->sched_class = &stop_sched_class;
3536 
3537 		/*
3538 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3539 		 * adjust the effective priority of a task. As a result,
3540 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3541 		 * which can then trigger wakeups of the stop thread to push
3542 		 * around the current task.
3543 		 *
3544 		 * The stop task itself will never be part of the PI-chain, it
3545 		 * never blocks, therefore that ->pi_lock recursion is safe.
3546 		 * Tell lockdep about this by placing the stop->pi_lock in its
3547 		 * own class.
3548 		 */
3549 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3550 	}
3551 
3552 	cpu_rq(cpu)->stop = stop;
3553 
3554 	if (old_stop) {
3555 		/*
3556 		 * Reset it back to a normal scheduling class so that
3557 		 * it can die in pieces.
3558 		 */
3559 		old_stop->sched_class = &rt_sched_class;
3560 	}
3561 }
3562 
3563 #else /* CONFIG_SMP */
3564 
3565 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3566 					 const struct cpumask *new_mask,
3567 					 u32 flags)
3568 {
3569 	return set_cpus_allowed_ptr(p, new_mask);
3570 }
3571 
3572 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3573 
3574 static inline bool rq_has_pinned_tasks(struct rq *rq)
3575 {
3576 	return false;
3577 }
3578 
3579 #endif /* !CONFIG_SMP */
3580 
3581 static void
3582 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3583 {
3584 	struct rq *rq;
3585 
3586 	if (!schedstat_enabled())
3587 		return;
3588 
3589 	rq = this_rq();
3590 
3591 #ifdef CONFIG_SMP
3592 	if (cpu == rq->cpu) {
3593 		__schedstat_inc(rq->ttwu_local);
3594 		__schedstat_inc(p->stats.nr_wakeups_local);
3595 	} else {
3596 		struct sched_domain *sd;
3597 
3598 		__schedstat_inc(p->stats.nr_wakeups_remote);
3599 		rcu_read_lock();
3600 		for_each_domain(rq->cpu, sd) {
3601 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3602 				__schedstat_inc(sd->ttwu_wake_remote);
3603 				break;
3604 			}
3605 		}
3606 		rcu_read_unlock();
3607 	}
3608 
3609 	if (wake_flags & WF_MIGRATED)
3610 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3611 #endif /* CONFIG_SMP */
3612 
3613 	__schedstat_inc(rq->ttwu_count);
3614 	__schedstat_inc(p->stats.nr_wakeups);
3615 
3616 	if (wake_flags & WF_SYNC)
3617 		__schedstat_inc(p->stats.nr_wakeups_sync);
3618 }
3619 
3620 /*
3621  * Mark the task runnable and perform wakeup-preemption.
3622  */
3623 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3624 			   struct rq_flags *rf)
3625 {
3626 	check_preempt_curr(rq, p, wake_flags);
3627 	WRITE_ONCE(p->__state, TASK_RUNNING);
3628 	trace_sched_wakeup(p);
3629 
3630 #ifdef CONFIG_SMP
3631 	if (p->sched_class->task_woken) {
3632 		/*
3633 		 * Our task @p is fully woken up and running; so it's safe to
3634 		 * drop the rq->lock, hereafter rq is only used for statistics.
3635 		 */
3636 		rq_unpin_lock(rq, rf);
3637 		p->sched_class->task_woken(rq, p);
3638 		rq_repin_lock(rq, rf);
3639 	}
3640 
3641 	if (rq->idle_stamp) {
3642 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3643 		u64 max = 2*rq->max_idle_balance_cost;
3644 
3645 		update_avg(&rq->avg_idle, delta);
3646 
3647 		if (rq->avg_idle > max)
3648 			rq->avg_idle = max;
3649 
3650 		rq->wake_stamp = jiffies;
3651 		rq->wake_avg_idle = rq->avg_idle / 2;
3652 
3653 		rq->idle_stamp = 0;
3654 	}
3655 #endif
3656 }
3657 
3658 static void
3659 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3660 		 struct rq_flags *rf)
3661 {
3662 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3663 
3664 	lockdep_assert_rq_held(rq);
3665 
3666 	if (p->sched_contributes_to_load)
3667 		rq->nr_uninterruptible--;
3668 
3669 #ifdef CONFIG_SMP
3670 	if (wake_flags & WF_MIGRATED)
3671 		en_flags |= ENQUEUE_MIGRATED;
3672 	else
3673 #endif
3674 	if (p->in_iowait) {
3675 		delayacct_blkio_end(p);
3676 		atomic_dec(&task_rq(p)->nr_iowait);
3677 	}
3678 
3679 	activate_task(rq, p, en_flags);
3680 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3681 }
3682 
3683 /*
3684  * Consider @p being inside a wait loop:
3685  *
3686  *   for (;;) {
3687  *      set_current_state(TASK_UNINTERRUPTIBLE);
3688  *
3689  *      if (CONDITION)
3690  *         break;
3691  *
3692  *      schedule();
3693  *   }
3694  *   __set_current_state(TASK_RUNNING);
3695  *
3696  * between set_current_state() and schedule(). In this case @p is still
3697  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3698  * an atomic manner.
3699  *
3700  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3701  * then schedule() must still happen and p->state can be changed to
3702  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3703  * need to do a full wakeup with enqueue.
3704  *
3705  * Returns: %true when the wakeup is done,
3706  *          %false otherwise.
3707  */
3708 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3709 {
3710 	struct rq_flags rf;
3711 	struct rq *rq;
3712 	int ret = 0;
3713 
3714 	rq = __task_rq_lock(p, &rf);
3715 	if (task_on_rq_queued(p)) {
3716 		/* check_preempt_curr() may use rq clock */
3717 		update_rq_clock(rq);
3718 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3719 		ret = 1;
3720 	}
3721 	__task_rq_unlock(rq, &rf);
3722 
3723 	return ret;
3724 }
3725 
3726 #ifdef CONFIG_SMP
3727 void sched_ttwu_pending(void *arg)
3728 {
3729 	struct llist_node *llist = arg;
3730 	struct rq *rq = this_rq();
3731 	struct task_struct *p, *t;
3732 	struct rq_flags rf;
3733 
3734 	if (!llist)
3735 		return;
3736 
3737 	/*
3738 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3739 	 * Races such that false-negatives are possible, since they
3740 	 * are shorter lived that false-positives would be.
3741 	 */
3742 	WRITE_ONCE(rq->ttwu_pending, 0);
3743 
3744 	rq_lock_irqsave(rq, &rf);
3745 	update_rq_clock(rq);
3746 
3747 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3748 		if (WARN_ON_ONCE(p->on_cpu))
3749 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3750 
3751 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3752 			set_task_cpu(p, cpu_of(rq));
3753 
3754 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3755 	}
3756 
3757 	rq_unlock_irqrestore(rq, &rf);
3758 }
3759 
3760 void send_call_function_single_ipi(int cpu)
3761 {
3762 	struct rq *rq = cpu_rq(cpu);
3763 
3764 	if (!set_nr_if_polling(rq->idle))
3765 		arch_send_call_function_single_ipi(cpu);
3766 	else
3767 		trace_sched_wake_idle_without_ipi(cpu);
3768 }
3769 
3770 /*
3771  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3772  * necessary. The wakee CPU on receipt of the IPI will queue the task
3773  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3774  * of the wakeup instead of the waker.
3775  */
3776 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3777 {
3778 	struct rq *rq = cpu_rq(cpu);
3779 
3780 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3781 
3782 	WRITE_ONCE(rq->ttwu_pending, 1);
3783 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3784 }
3785 
3786 void wake_up_if_idle(int cpu)
3787 {
3788 	struct rq *rq = cpu_rq(cpu);
3789 	struct rq_flags rf;
3790 
3791 	rcu_read_lock();
3792 
3793 	if (!is_idle_task(rcu_dereference(rq->curr)))
3794 		goto out;
3795 
3796 	rq_lock_irqsave(rq, &rf);
3797 	if (is_idle_task(rq->curr))
3798 		resched_curr(rq);
3799 	/* Else CPU is not idle, do nothing here: */
3800 	rq_unlock_irqrestore(rq, &rf);
3801 
3802 out:
3803 	rcu_read_unlock();
3804 }
3805 
3806 bool cpus_share_cache(int this_cpu, int that_cpu)
3807 {
3808 	if (this_cpu == that_cpu)
3809 		return true;
3810 
3811 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3812 }
3813 
3814 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3815 {
3816 	/*
3817 	 * Do not complicate things with the async wake_list while the CPU is
3818 	 * in hotplug state.
3819 	 */
3820 	if (!cpu_active(cpu))
3821 		return false;
3822 
3823 	/*
3824 	 * If the CPU does not share cache, then queue the task on the
3825 	 * remote rqs wakelist to avoid accessing remote data.
3826 	 */
3827 	if (!cpus_share_cache(smp_processor_id(), cpu))
3828 		return true;
3829 
3830 	/*
3831 	 * If the task is descheduling and the only running task on the
3832 	 * CPU then use the wakelist to offload the task activation to
3833 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3834 	 * nr_running is checked to avoid unnecessary task stacking.
3835 	 */
3836 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3837 		return true;
3838 
3839 	return false;
3840 }
3841 
3842 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3843 {
3844 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3845 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3846 			return false;
3847 
3848 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3849 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3850 		return true;
3851 	}
3852 
3853 	return false;
3854 }
3855 
3856 #else /* !CONFIG_SMP */
3857 
3858 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3859 {
3860 	return false;
3861 }
3862 
3863 #endif /* CONFIG_SMP */
3864 
3865 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3866 {
3867 	struct rq *rq = cpu_rq(cpu);
3868 	struct rq_flags rf;
3869 
3870 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3871 		return;
3872 
3873 	rq_lock(rq, &rf);
3874 	update_rq_clock(rq);
3875 	ttwu_do_activate(rq, p, wake_flags, &rf);
3876 	rq_unlock(rq, &rf);
3877 }
3878 
3879 /*
3880  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3881  *
3882  * The caller holds p::pi_lock if p != current or has preemption
3883  * disabled when p == current.
3884  *
3885  * The rules of PREEMPT_RT saved_state:
3886  *
3887  *   The related locking code always holds p::pi_lock when updating
3888  *   p::saved_state, which means the code is fully serialized in both cases.
3889  *
3890  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3891  *   bits set. This allows to distinguish all wakeup scenarios.
3892  */
3893 static __always_inline
3894 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3895 {
3896 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3897 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3898 			     state != TASK_RTLOCK_WAIT);
3899 	}
3900 
3901 	if (READ_ONCE(p->__state) & state) {
3902 		*success = 1;
3903 		return true;
3904 	}
3905 
3906 #ifdef CONFIG_PREEMPT_RT
3907 	/*
3908 	 * Saved state preserves the task state across blocking on
3909 	 * an RT lock.  If the state matches, set p::saved_state to
3910 	 * TASK_RUNNING, but do not wake the task because it waits
3911 	 * for a lock wakeup. Also indicate success because from
3912 	 * the regular waker's point of view this has succeeded.
3913 	 *
3914 	 * After acquiring the lock the task will restore p::__state
3915 	 * from p::saved_state which ensures that the regular
3916 	 * wakeup is not lost. The restore will also set
3917 	 * p::saved_state to TASK_RUNNING so any further tests will
3918 	 * not result in false positives vs. @success
3919 	 */
3920 	if (p->saved_state & state) {
3921 		p->saved_state = TASK_RUNNING;
3922 		*success = 1;
3923 	}
3924 #endif
3925 	return false;
3926 }
3927 
3928 /*
3929  * Notes on Program-Order guarantees on SMP systems.
3930  *
3931  *  MIGRATION
3932  *
3933  * The basic program-order guarantee on SMP systems is that when a task [t]
3934  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3935  * execution on its new CPU [c1].
3936  *
3937  * For migration (of runnable tasks) this is provided by the following means:
3938  *
3939  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3940  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3941  *     rq(c1)->lock (if not at the same time, then in that order).
3942  *  C) LOCK of the rq(c1)->lock scheduling in task
3943  *
3944  * Release/acquire chaining guarantees that B happens after A and C after B.
3945  * Note: the CPU doing B need not be c0 or c1
3946  *
3947  * Example:
3948  *
3949  *   CPU0            CPU1            CPU2
3950  *
3951  *   LOCK rq(0)->lock
3952  *   sched-out X
3953  *   sched-in Y
3954  *   UNLOCK rq(0)->lock
3955  *
3956  *                                   LOCK rq(0)->lock // orders against CPU0
3957  *                                   dequeue X
3958  *                                   UNLOCK rq(0)->lock
3959  *
3960  *                                   LOCK rq(1)->lock
3961  *                                   enqueue X
3962  *                                   UNLOCK rq(1)->lock
3963  *
3964  *                   LOCK rq(1)->lock // orders against CPU2
3965  *                   sched-out Z
3966  *                   sched-in X
3967  *                   UNLOCK rq(1)->lock
3968  *
3969  *
3970  *  BLOCKING -- aka. SLEEP + WAKEUP
3971  *
3972  * For blocking we (obviously) need to provide the same guarantee as for
3973  * migration. However the means are completely different as there is no lock
3974  * chain to provide order. Instead we do:
3975  *
3976  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3977  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3978  *
3979  * Example:
3980  *
3981  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3982  *
3983  *   LOCK rq(0)->lock LOCK X->pi_lock
3984  *   dequeue X
3985  *   sched-out X
3986  *   smp_store_release(X->on_cpu, 0);
3987  *
3988  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3989  *                    X->state = WAKING
3990  *                    set_task_cpu(X,2)
3991  *
3992  *                    LOCK rq(2)->lock
3993  *                    enqueue X
3994  *                    X->state = RUNNING
3995  *                    UNLOCK rq(2)->lock
3996  *
3997  *                                          LOCK rq(2)->lock // orders against CPU1
3998  *                                          sched-out Z
3999  *                                          sched-in X
4000  *                                          UNLOCK rq(2)->lock
4001  *
4002  *                    UNLOCK X->pi_lock
4003  *   UNLOCK rq(0)->lock
4004  *
4005  *
4006  * However, for wakeups there is a second guarantee we must provide, namely we
4007  * must ensure that CONDITION=1 done by the caller can not be reordered with
4008  * accesses to the task state; see try_to_wake_up() and set_current_state().
4009  */
4010 
4011 /**
4012  * try_to_wake_up - wake up a thread
4013  * @p: the thread to be awakened
4014  * @state: the mask of task states that can be woken
4015  * @wake_flags: wake modifier flags (WF_*)
4016  *
4017  * Conceptually does:
4018  *
4019  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4020  *
4021  * If the task was not queued/runnable, also place it back on a runqueue.
4022  *
4023  * This function is atomic against schedule() which would dequeue the task.
4024  *
4025  * It issues a full memory barrier before accessing @p->state, see the comment
4026  * with set_current_state().
4027  *
4028  * Uses p->pi_lock to serialize against concurrent wake-ups.
4029  *
4030  * Relies on p->pi_lock stabilizing:
4031  *  - p->sched_class
4032  *  - p->cpus_ptr
4033  *  - p->sched_task_group
4034  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4035  *
4036  * Tries really hard to only take one task_rq(p)->lock for performance.
4037  * Takes rq->lock in:
4038  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4039  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4040  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4041  *
4042  * As a consequence we race really badly with just about everything. See the
4043  * many memory barriers and their comments for details.
4044  *
4045  * Return: %true if @p->state changes (an actual wakeup was done),
4046  *	   %false otherwise.
4047  */
4048 static int
4049 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4050 {
4051 	unsigned long flags;
4052 	int cpu, success = 0;
4053 
4054 	preempt_disable();
4055 	if (p == current) {
4056 		/*
4057 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4058 		 * == smp_processor_id()'. Together this means we can special
4059 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4060 		 * without taking any locks.
4061 		 *
4062 		 * In particular:
4063 		 *  - we rely on Program-Order guarantees for all the ordering,
4064 		 *  - we're serialized against set_special_state() by virtue of
4065 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4066 		 */
4067 		if (!ttwu_state_match(p, state, &success))
4068 			goto out;
4069 
4070 		trace_sched_waking(p);
4071 		WRITE_ONCE(p->__state, TASK_RUNNING);
4072 		trace_sched_wakeup(p);
4073 		goto out;
4074 	}
4075 
4076 	/*
4077 	 * If we are going to wake up a thread waiting for CONDITION we
4078 	 * need to ensure that CONDITION=1 done by the caller can not be
4079 	 * reordered with p->state check below. This pairs with smp_store_mb()
4080 	 * in set_current_state() that the waiting thread does.
4081 	 */
4082 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4083 	smp_mb__after_spinlock();
4084 	if (!ttwu_state_match(p, state, &success))
4085 		goto unlock;
4086 
4087 	trace_sched_waking(p);
4088 
4089 	/*
4090 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4091 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4092 	 * in smp_cond_load_acquire() below.
4093 	 *
4094 	 * sched_ttwu_pending()			try_to_wake_up()
4095 	 *   STORE p->on_rq = 1			  LOAD p->state
4096 	 *   UNLOCK rq->lock
4097 	 *
4098 	 * __schedule() (switch to task 'p')
4099 	 *   LOCK rq->lock			  smp_rmb();
4100 	 *   smp_mb__after_spinlock();
4101 	 *   UNLOCK rq->lock
4102 	 *
4103 	 * [task p]
4104 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4105 	 *
4106 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4107 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4108 	 *
4109 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4110 	 */
4111 	smp_rmb();
4112 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4113 		goto unlock;
4114 
4115 #ifdef CONFIG_SMP
4116 	/*
4117 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4118 	 * possible to, falsely, observe p->on_cpu == 0.
4119 	 *
4120 	 * One must be running (->on_cpu == 1) in order to remove oneself
4121 	 * from the runqueue.
4122 	 *
4123 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4124 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4125 	 *   UNLOCK rq->lock
4126 	 *
4127 	 * __schedule() (put 'p' to sleep)
4128 	 *   LOCK rq->lock			  smp_rmb();
4129 	 *   smp_mb__after_spinlock();
4130 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4131 	 *
4132 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4133 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4134 	 *
4135 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4136 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4137 	 * care about it's own p->state. See the comment in __schedule().
4138 	 */
4139 	smp_acquire__after_ctrl_dep();
4140 
4141 	/*
4142 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4143 	 * == 0), which means we need to do an enqueue, change p->state to
4144 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4145 	 * enqueue, such as ttwu_queue_wakelist().
4146 	 */
4147 	WRITE_ONCE(p->__state, TASK_WAKING);
4148 
4149 	/*
4150 	 * If the owning (remote) CPU is still in the middle of schedule() with
4151 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4152 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4153 	 * let the waker make forward progress. This is safe because IRQs are
4154 	 * disabled and the IPI will deliver after on_cpu is cleared.
4155 	 *
4156 	 * Ensure we load task_cpu(p) after p->on_cpu:
4157 	 *
4158 	 * set_task_cpu(p, cpu);
4159 	 *   STORE p->cpu = @cpu
4160 	 * __schedule() (switch to task 'p')
4161 	 *   LOCK rq->lock
4162 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4163 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4164 	 *
4165 	 * to ensure we observe the correct CPU on which the task is currently
4166 	 * scheduling.
4167 	 */
4168 	if (smp_load_acquire(&p->on_cpu) &&
4169 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4170 		goto unlock;
4171 
4172 	/*
4173 	 * If the owning (remote) CPU is still in the middle of schedule() with
4174 	 * this task as prev, wait until it's done referencing the task.
4175 	 *
4176 	 * Pairs with the smp_store_release() in finish_task().
4177 	 *
4178 	 * This ensures that tasks getting woken will be fully ordered against
4179 	 * their previous state and preserve Program Order.
4180 	 */
4181 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4182 
4183 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4184 	if (task_cpu(p) != cpu) {
4185 		if (p->in_iowait) {
4186 			delayacct_blkio_end(p);
4187 			atomic_dec(&task_rq(p)->nr_iowait);
4188 		}
4189 
4190 		wake_flags |= WF_MIGRATED;
4191 		psi_ttwu_dequeue(p);
4192 		set_task_cpu(p, cpu);
4193 	}
4194 #else
4195 	cpu = task_cpu(p);
4196 #endif /* CONFIG_SMP */
4197 
4198 	ttwu_queue(p, cpu, wake_flags);
4199 unlock:
4200 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4201 out:
4202 	if (success)
4203 		ttwu_stat(p, task_cpu(p), wake_flags);
4204 	preempt_enable();
4205 
4206 	return success;
4207 }
4208 
4209 /**
4210  * task_call_func - Invoke a function on task in fixed state
4211  * @p: Process for which the function is to be invoked, can be @current.
4212  * @func: Function to invoke.
4213  * @arg: Argument to function.
4214  *
4215  * Fix the task in it's current state by avoiding wakeups and or rq operations
4216  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4217  * to work out what the state is, if required.  Given that @func can be invoked
4218  * with a runqueue lock held, it had better be quite lightweight.
4219  *
4220  * Returns:
4221  *   Whatever @func returns
4222  */
4223 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4224 {
4225 	struct rq *rq = NULL;
4226 	unsigned int state;
4227 	struct rq_flags rf;
4228 	int ret;
4229 
4230 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4231 
4232 	state = READ_ONCE(p->__state);
4233 
4234 	/*
4235 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4236 	 * possible to, falsely, observe p->on_rq == 0.
4237 	 *
4238 	 * See try_to_wake_up() for a longer comment.
4239 	 */
4240 	smp_rmb();
4241 
4242 	/*
4243 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4244 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4245 	 * locks at the end, see ttwu_queue_wakelist().
4246 	 */
4247 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4248 		rq = __task_rq_lock(p, &rf);
4249 
4250 	/*
4251 	 * At this point the task is pinned; either:
4252 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4253 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4254 	 *  - queued, and we're holding off schedule	 (rq->lock)
4255 	 *  - running, and we're holding off de-schedule (rq->lock)
4256 	 *
4257 	 * The called function (@func) can use: task_curr(), p->on_rq and
4258 	 * p->__state to differentiate between these states.
4259 	 */
4260 	ret = func(p, arg);
4261 
4262 	if (rq)
4263 		rq_unlock(rq, &rf);
4264 
4265 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4266 	return ret;
4267 }
4268 
4269 /**
4270  * wake_up_process - Wake up a specific process
4271  * @p: The process to be woken up.
4272  *
4273  * Attempt to wake up the nominated process and move it to the set of runnable
4274  * processes.
4275  *
4276  * Return: 1 if the process was woken up, 0 if it was already running.
4277  *
4278  * This function executes a full memory barrier before accessing the task state.
4279  */
4280 int wake_up_process(struct task_struct *p)
4281 {
4282 	return try_to_wake_up(p, TASK_NORMAL, 0);
4283 }
4284 EXPORT_SYMBOL(wake_up_process);
4285 
4286 int wake_up_state(struct task_struct *p, unsigned int state)
4287 {
4288 	return try_to_wake_up(p, state, 0);
4289 }
4290 
4291 /*
4292  * Perform scheduler related setup for a newly forked process p.
4293  * p is forked by current.
4294  *
4295  * __sched_fork() is basic setup used by init_idle() too:
4296  */
4297 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4298 {
4299 	p->on_rq			= 0;
4300 
4301 	p->se.on_rq			= 0;
4302 	p->se.exec_start		= 0;
4303 	p->se.sum_exec_runtime		= 0;
4304 	p->se.prev_sum_exec_runtime	= 0;
4305 	p->se.nr_migrations		= 0;
4306 	p->se.vruntime			= 0;
4307 	INIT_LIST_HEAD(&p->se.group_node);
4308 
4309 #ifdef CONFIG_FAIR_GROUP_SCHED
4310 	p->se.cfs_rq			= NULL;
4311 #endif
4312 
4313 #ifdef CONFIG_SCHEDSTATS
4314 	/* Even if schedstat is disabled, there should not be garbage */
4315 	memset(&p->stats, 0, sizeof(p->stats));
4316 #endif
4317 
4318 	RB_CLEAR_NODE(&p->dl.rb_node);
4319 	init_dl_task_timer(&p->dl);
4320 	init_dl_inactive_task_timer(&p->dl);
4321 	__dl_clear_params(p);
4322 
4323 	INIT_LIST_HEAD(&p->rt.run_list);
4324 	p->rt.timeout		= 0;
4325 	p->rt.time_slice	= sched_rr_timeslice;
4326 	p->rt.on_rq		= 0;
4327 	p->rt.on_list		= 0;
4328 
4329 #ifdef CONFIG_PREEMPT_NOTIFIERS
4330 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4331 #endif
4332 
4333 #ifdef CONFIG_COMPACTION
4334 	p->capture_control = NULL;
4335 #endif
4336 	init_numa_balancing(clone_flags, p);
4337 #ifdef CONFIG_SMP
4338 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4339 	p->migration_pending = NULL;
4340 #endif
4341 }
4342 
4343 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4344 
4345 #ifdef CONFIG_NUMA_BALANCING
4346 
4347 int sysctl_numa_balancing_mode;
4348 
4349 static void __set_numabalancing_state(bool enabled)
4350 {
4351 	if (enabled)
4352 		static_branch_enable(&sched_numa_balancing);
4353 	else
4354 		static_branch_disable(&sched_numa_balancing);
4355 }
4356 
4357 void set_numabalancing_state(bool enabled)
4358 {
4359 	if (enabled)
4360 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4361 	else
4362 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4363 	__set_numabalancing_state(enabled);
4364 }
4365 
4366 #ifdef CONFIG_PROC_SYSCTL
4367 int sysctl_numa_balancing(struct ctl_table *table, int write,
4368 			  void *buffer, size_t *lenp, loff_t *ppos)
4369 {
4370 	struct ctl_table t;
4371 	int err;
4372 	int state = sysctl_numa_balancing_mode;
4373 
4374 	if (write && !capable(CAP_SYS_ADMIN))
4375 		return -EPERM;
4376 
4377 	t = *table;
4378 	t.data = &state;
4379 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4380 	if (err < 0)
4381 		return err;
4382 	if (write) {
4383 		sysctl_numa_balancing_mode = state;
4384 		__set_numabalancing_state(state);
4385 	}
4386 	return err;
4387 }
4388 #endif
4389 #endif
4390 
4391 #ifdef CONFIG_SCHEDSTATS
4392 
4393 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4394 
4395 static void set_schedstats(bool enabled)
4396 {
4397 	if (enabled)
4398 		static_branch_enable(&sched_schedstats);
4399 	else
4400 		static_branch_disable(&sched_schedstats);
4401 }
4402 
4403 void force_schedstat_enabled(void)
4404 {
4405 	if (!schedstat_enabled()) {
4406 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4407 		static_branch_enable(&sched_schedstats);
4408 	}
4409 }
4410 
4411 static int __init setup_schedstats(char *str)
4412 {
4413 	int ret = 0;
4414 	if (!str)
4415 		goto out;
4416 
4417 	if (!strcmp(str, "enable")) {
4418 		set_schedstats(true);
4419 		ret = 1;
4420 	} else if (!strcmp(str, "disable")) {
4421 		set_schedstats(false);
4422 		ret = 1;
4423 	}
4424 out:
4425 	if (!ret)
4426 		pr_warn("Unable to parse schedstats=\n");
4427 
4428 	return ret;
4429 }
4430 __setup("schedstats=", setup_schedstats);
4431 
4432 #ifdef CONFIG_PROC_SYSCTL
4433 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4434 		size_t *lenp, loff_t *ppos)
4435 {
4436 	struct ctl_table t;
4437 	int err;
4438 	int state = static_branch_likely(&sched_schedstats);
4439 
4440 	if (write && !capable(CAP_SYS_ADMIN))
4441 		return -EPERM;
4442 
4443 	t = *table;
4444 	t.data = &state;
4445 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4446 	if (err < 0)
4447 		return err;
4448 	if (write)
4449 		set_schedstats(state);
4450 	return err;
4451 }
4452 #endif /* CONFIG_PROC_SYSCTL */
4453 #endif /* CONFIG_SCHEDSTATS */
4454 
4455 /*
4456  * fork()/clone()-time setup:
4457  */
4458 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4459 {
4460 	__sched_fork(clone_flags, p);
4461 	/*
4462 	 * We mark the process as NEW here. This guarantees that
4463 	 * nobody will actually run it, and a signal or other external
4464 	 * event cannot wake it up and insert it on the runqueue either.
4465 	 */
4466 	p->__state = TASK_NEW;
4467 
4468 	/*
4469 	 * Make sure we do not leak PI boosting priority to the child.
4470 	 */
4471 	p->prio = current->normal_prio;
4472 
4473 	uclamp_fork(p);
4474 
4475 	/*
4476 	 * Revert to default priority/policy on fork if requested.
4477 	 */
4478 	if (unlikely(p->sched_reset_on_fork)) {
4479 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4480 			p->policy = SCHED_NORMAL;
4481 			p->static_prio = NICE_TO_PRIO(0);
4482 			p->rt_priority = 0;
4483 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4484 			p->static_prio = NICE_TO_PRIO(0);
4485 
4486 		p->prio = p->normal_prio = p->static_prio;
4487 		set_load_weight(p, false);
4488 
4489 		/*
4490 		 * We don't need the reset flag anymore after the fork. It has
4491 		 * fulfilled its duty:
4492 		 */
4493 		p->sched_reset_on_fork = 0;
4494 	}
4495 
4496 	if (dl_prio(p->prio))
4497 		return -EAGAIN;
4498 	else if (rt_prio(p->prio))
4499 		p->sched_class = &rt_sched_class;
4500 	else
4501 		p->sched_class = &fair_sched_class;
4502 
4503 	init_entity_runnable_average(&p->se);
4504 
4505 
4506 #ifdef CONFIG_SCHED_INFO
4507 	if (likely(sched_info_on()))
4508 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4509 #endif
4510 #if defined(CONFIG_SMP)
4511 	p->on_cpu = 0;
4512 #endif
4513 	init_task_preempt_count(p);
4514 #ifdef CONFIG_SMP
4515 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4516 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4517 #endif
4518 	return 0;
4519 }
4520 
4521 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4522 {
4523 	unsigned long flags;
4524 
4525 	/*
4526 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4527 	 * required yet, but lockdep gets upset if rules are violated.
4528 	 */
4529 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4530 #ifdef CONFIG_CGROUP_SCHED
4531 	if (1) {
4532 		struct task_group *tg;
4533 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4534 				  struct task_group, css);
4535 		tg = autogroup_task_group(p, tg);
4536 		p->sched_task_group = tg;
4537 	}
4538 #endif
4539 	rseq_migrate(p);
4540 	/*
4541 	 * We're setting the CPU for the first time, we don't migrate,
4542 	 * so use __set_task_cpu().
4543 	 */
4544 	__set_task_cpu(p, smp_processor_id());
4545 	if (p->sched_class->task_fork)
4546 		p->sched_class->task_fork(p);
4547 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4548 }
4549 
4550 void sched_post_fork(struct task_struct *p)
4551 {
4552 	uclamp_post_fork(p);
4553 }
4554 
4555 unsigned long to_ratio(u64 period, u64 runtime)
4556 {
4557 	if (runtime == RUNTIME_INF)
4558 		return BW_UNIT;
4559 
4560 	/*
4561 	 * Doing this here saves a lot of checks in all
4562 	 * the calling paths, and returning zero seems
4563 	 * safe for them anyway.
4564 	 */
4565 	if (period == 0)
4566 		return 0;
4567 
4568 	return div64_u64(runtime << BW_SHIFT, period);
4569 }
4570 
4571 /*
4572  * wake_up_new_task - wake up a newly created task for the first time.
4573  *
4574  * This function will do some initial scheduler statistics housekeeping
4575  * that must be done for every newly created context, then puts the task
4576  * on the runqueue and wakes it.
4577  */
4578 void wake_up_new_task(struct task_struct *p)
4579 {
4580 	struct rq_flags rf;
4581 	struct rq *rq;
4582 
4583 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4584 	WRITE_ONCE(p->__state, TASK_RUNNING);
4585 #ifdef CONFIG_SMP
4586 	/*
4587 	 * Fork balancing, do it here and not earlier because:
4588 	 *  - cpus_ptr can change in the fork path
4589 	 *  - any previously selected CPU might disappear through hotplug
4590 	 *
4591 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4592 	 * as we're not fully set-up yet.
4593 	 */
4594 	p->recent_used_cpu = task_cpu(p);
4595 	rseq_migrate(p);
4596 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4597 #endif
4598 	rq = __task_rq_lock(p, &rf);
4599 	update_rq_clock(rq);
4600 	post_init_entity_util_avg(p);
4601 
4602 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4603 	trace_sched_wakeup_new(p);
4604 	check_preempt_curr(rq, p, WF_FORK);
4605 #ifdef CONFIG_SMP
4606 	if (p->sched_class->task_woken) {
4607 		/*
4608 		 * Nothing relies on rq->lock after this, so it's fine to
4609 		 * drop it.
4610 		 */
4611 		rq_unpin_lock(rq, &rf);
4612 		p->sched_class->task_woken(rq, p);
4613 		rq_repin_lock(rq, &rf);
4614 	}
4615 #endif
4616 	task_rq_unlock(rq, p, &rf);
4617 }
4618 
4619 #ifdef CONFIG_PREEMPT_NOTIFIERS
4620 
4621 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4622 
4623 void preempt_notifier_inc(void)
4624 {
4625 	static_branch_inc(&preempt_notifier_key);
4626 }
4627 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4628 
4629 void preempt_notifier_dec(void)
4630 {
4631 	static_branch_dec(&preempt_notifier_key);
4632 }
4633 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4634 
4635 /**
4636  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4637  * @notifier: notifier struct to register
4638  */
4639 void preempt_notifier_register(struct preempt_notifier *notifier)
4640 {
4641 	if (!static_branch_unlikely(&preempt_notifier_key))
4642 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4643 
4644 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4645 }
4646 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4647 
4648 /**
4649  * preempt_notifier_unregister - no longer interested in preemption notifications
4650  * @notifier: notifier struct to unregister
4651  *
4652  * This is *not* safe to call from within a preemption notifier.
4653  */
4654 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4655 {
4656 	hlist_del(&notifier->link);
4657 }
4658 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4659 
4660 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4661 {
4662 	struct preempt_notifier *notifier;
4663 
4664 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4665 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4666 }
4667 
4668 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4669 {
4670 	if (static_branch_unlikely(&preempt_notifier_key))
4671 		__fire_sched_in_preempt_notifiers(curr);
4672 }
4673 
4674 static void
4675 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4676 				   struct task_struct *next)
4677 {
4678 	struct preempt_notifier *notifier;
4679 
4680 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4681 		notifier->ops->sched_out(notifier, next);
4682 }
4683 
4684 static __always_inline void
4685 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4686 				 struct task_struct *next)
4687 {
4688 	if (static_branch_unlikely(&preempt_notifier_key))
4689 		__fire_sched_out_preempt_notifiers(curr, next);
4690 }
4691 
4692 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4693 
4694 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4695 {
4696 }
4697 
4698 static inline void
4699 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4700 				 struct task_struct *next)
4701 {
4702 }
4703 
4704 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4705 
4706 static inline void prepare_task(struct task_struct *next)
4707 {
4708 #ifdef CONFIG_SMP
4709 	/*
4710 	 * Claim the task as running, we do this before switching to it
4711 	 * such that any running task will have this set.
4712 	 *
4713 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4714 	 */
4715 	WRITE_ONCE(next->on_cpu, 1);
4716 #endif
4717 }
4718 
4719 static inline void finish_task(struct task_struct *prev)
4720 {
4721 #ifdef CONFIG_SMP
4722 	/*
4723 	 * This must be the very last reference to @prev from this CPU. After
4724 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4725 	 * must ensure this doesn't happen until the switch is completely
4726 	 * finished.
4727 	 *
4728 	 * In particular, the load of prev->state in finish_task_switch() must
4729 	 * happen before this.
4730 	 *
4731 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4732 	 */
4733 	smp_store_release(&prev->on_cpu, 0);
4734 #endif
4735 }
4736 
4737 #ifdef CONFIG_SMP
4738 
4739 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4740 {
4741 	void (*func)(struct rq *rq);
4742 	struct callback_head *next;
4743 
4744 	lockdep_assert_rq_held(rq);
4745 
4746 	while (head) {
4747 		func = (void (*)(struct rq *))head->func;
4748 		next = head->next;
4749 		head->next = NULL;
4750 		head = next;
4751 
4752 		func(rq);
4753 	}
4754 }
4755 
4756 static void balance_push(struct rq *rq);
4757 
4758 struct callback_head balance_push_callback = {
4759 	.next = NULL,
4760 	.func = (void (*)(struct callback_head *))balance_push,
4761 };
4762 
4763 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4764 {
4765 	struct callback_head *head = rq->balance_callback;
4766 
4767 	lockdep_assert_rq_held(rq);
4768 	if (head)
4769 		rq->balance_callback = NULL;
4770 
4771 	return head;
4772 }
4773 
4774 static void __balance_callbacks(struct rq *rq)
4775 {
4776 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4777 }
4778 
4779 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4780 {
4781 	unsigned long flags;
4782 
4783 	if (unlikely(head)) {
4784 		raw_spin_rq_lock_irqsave(rq, flags);
4785 		do_balance_callbacks(rq, head);
4786 		raw_spin_rq_unlock_irqrestore(rq, flags);
4787 	}
4788 }
4789 
4790 #else
4791 
4792 static inline void __balance_callbacks(struct rq *rq)
4793 {
4794 }
4795 
4796 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4797 {
4798 	return NULL;
4799 }
4800 
4801 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4802 {
4803 }
4804 
4805 #endif
4806 
4807 static inline void
4808 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4809 {
4810 	/*
4811 	 * Since the runqueue lock will be released by the next
4812 	 * task (which is an invalid locking op but in the case
4813 	 * of the scheduler it's an obvious special-case), so we
4814 	 * do an early lockdep release here:
4815 	 */
4816 	rq_unpin_lock(rq, rf);
4817 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4818 #ifdef CONFIG_DEBUG_SPINLOCK
4819 	/* this is a valid case when another task releases the spinlock */
4820 	rq_lockp(rq)->owner = next;
4821 #endif
4822 }
4823 
4824 static inline void finish_lock_switch(struct rq *rq)
4825 {
4826 	/*
4827 	 * If we are tracking spinlock dependencies then we have to
4828 	 * fix up the runqueue lock - which gets 'carried over' from
4829 	 * prev into current:
4830 	 */
4831 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4832 	__balance_callbacks(rq);
4833 	raw_spin_rq_unlock_irq(rq);
4834 }
4835 
4836 /*
4837  * NOP if the arch has not defined these:
4838  */
4839 
4840 #ifndef prepare_arch_switch
4841 # define prepare_arch_switch(next)	do { } while (0)
4842 #endif
4843 
4844 #ifndef finish_arch_post_lock_switch
4845 # define finish_arch_post_lock_switch()	do { } while (0)
4846 #endif
4847 
4848 static inline void kmap_local_sched_out(void)
4849 {
4850 #ifdef CONFIG_KMAP_LOCAL
4851 	if (unlikely(current->kmap_ctrl.idx))
4852 		__kmap_local_sched_out();
4853 #endif
4854 }
4855 
4856 static inline void kmap_local_sched_in(void)
4857 {
4858 #ifdef CONFIG_KMAP_LOCAL
4859 	if (unlikely(current->kmap_ctrl.idx))
4860 		__kmap_local_sched_in();
4861 #endif
4862 }
4863 
4864 /**
4865  * prepare_task_switch - prepare to switch tasks
4866  * @rq: the runqueue preparing to switch
4867  * @prev: the current task that is being switched out
4868  * @next: the task we are going to switch to.
4869  *
4870  * This is called with the rq lock held and interrupts off. It must
4871  * be paired with a subsequent finish_task_switch after the context
4872  * switch.
4873  *
4874  * prepare_task_switch sets up locking and calls architecture specific
4875  * hooks.
4876  */
4877 static inline void
4878 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4879 		    struct task_struct *next)
4880 {
4881 	kcov_prepare_switch(prev);
4882 	sched_info_switch(rq, prev, next);
4883 	perf_event_task_sched_out(prev, next);
4884 	rseq_preempt(prev);
4885 	fire_sched_out_preempt_notifiers(prev, next);
4886 	kmap_local_sched_out();
4887 	prepare_task(next);
4888 	prepare_arch_switch(next);
4889 }
4890 
4891 /**
4892  * finish_task_switch - clean up after a task-switch
4893  * @prev: the thread we just switched away from.
4894  *
4895  * finish_task_switch must be called after the context switch, paired
4896  * with a prepare_task_switch call before the context switch.
4897  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4898  * and do any other architecture-specific cleanup actions.
4899  *
4900  * Note that we may have delayed dropping an mm in context_switch(). If
4901  * so, we finish that here outside of the runqueue lock. (Doing it
4902  * with the lock held can cause deadlocks; see schedule() for
4903  * details.)
4904  *
4905  * The context switch have flipped the stack from under us and restored the
4906  * local variables which were saved when this task called schedule() in the
4907  * past. prev == current is still correct but we need to recalculate this_rq
4908  * because prev may have moved to another CPU.
4909  */
4910 static struct rq *finish_task_switch(struct task_struct *prev)
4911 	__releases(rq->lock)
4912 {
4913 	struct rq *rq = this_rq();
4914 	struct mm_struct *mm = rq->prev_mm;
4915 	unsigned int prev_state;
4916 
4917 	/*
4918 	 * The previous task will have left us with a preempt_count of 2
4919 	 * because it left us after:
4920 	 *
4921 	 *	schedule()
4922 	 *	  preempt_disable();			// 1
4923 	 *	  __schedule()
4924 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4925 	 *
4926 	 * Also, see FORK_PREEMPT_COUNT.
4927 	 */
4928 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4929 		      "corrupted preempt_count: %s/%d/0x%x\n",
4930 		      current->comm, current->pid, preempt_count()))
4931 		preempt_count_set(FORK_PREEMPT_COUNT);
4932 
4933 	rq->prev_mm = NULL;
4934 
4935 	/*
4936 	 * A task struct has one reference for the use as "current".
4937 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4938 	 * schedule one last time. The schedule call will never return, and
4939 	 * the scheduled task must drop that reference.
4940 	 *
4941 	 * We must observe prev->state before clearing prev->on_cpu (in
4942 	 * finish_task), otherwise a concurrent wakeup can get prev
4943 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4944 	 * transition, resulting in a double drop.
4945 	 */
4946 	prev_state = READ_ONCE(prev->__state);
4947 	vtime_task_switch(prev);
4948 	perf_event_task_sched_in(prev, current);
4949 	finish_task(prev);
4950 	tick_nohz_task_switch();
4951 	finish_lock_switch(rq);
4952 	finish_arch_post_lock_switch();
4953 	kcov_finish_switch(current);
4954 	/*
4955 	 * kmap_local_sched_out() is invoked with rq::lock held and
4956 	 * interrupts disabled. There is no requirement for that, but the
4957 	 * sched out code does not have an interrupt enabled section.
4958 	 * Restoring the maps on sched in does not require interrupts being
4959 	 * disabled either.
4960 	 */
4961 	kmap_local_sched_in();
4962 
4963 	fire_sched_in_preempt_notifiers(current);
4964 	/*
4965 	 * When switching through a kernel thread, the loop in
4966 	 * membarrier_{private,global}_expedited() may have observed that
4967 	 * kernel thread and not issued an IPI. It is therefore possible to
4968 	 * schedule between user->kernel->user threads without passing though
4969 	 * switch_mm(). Membarrier requires a barrier after storing to
4970 	 * rq->curr, before returning to userspace, so provide them here:
4971 	 *
4972 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4973 	 *   provided by mmdrop(),
4974 	 * - a sync_core for SYNC_CORE.
4975 	 */
4976 	if (mm) {
4977 		membarrier_mm_sync_core_before_usermode(mm);
4978 		mmdrop_sched(mm);
4979 	}
4980 	if (unlikely(prev_state == TASK_DEAD)) {
4981 		if (prev->sched_class->task_dead)
4982 			prev->sched_class->task_dead(prev);
4983 
4984 		/* Task is done with its stack. */
4985 		put_task_stack(prev);
4986 
4987 		put_task_struct_rcu_user(prev);
4988 	}
4989 
4990 	return rq;
4991 }
4992 
4993 /**
4994  * schedule_tail - first thing a freshly forked thread must call.
4995  * @prev: the thread we just switched away from.
4996  */
4997 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4998 	__releases(rq->lock)
4999 {
5000 	/*
5001 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5002 	 * finish_task_switch() for details.
5003 	 *
5004 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5005 	 * and the preempt_enable() will end up enabling preemption (on
5006 	 * PREEMPT_COUNT kernels).
5007 	 */
5008 
5009 	finish_task_switch(prev);
5010 	preempt_enable();
5011 
5012 	if (current->set_child_tid)
5013 		put_user(task_pid_vnr(current), current->set_child_tid);
5014 
5015 	calculate_sigpending();
5016 }
5017 
5018 /*
5019  * context_switch - switch to the new MM and the new thread's register state.
5020  */
5021 static __always_inline struct rq *
5022 context_switch(struct rq *rq, struct task_struct *prev,
5023 	       struct task_struct *next, struct rq_flags *rf)
5024 {
5025 	prepare_task_switch(rq, prev, next);
5026 
5027 	/*
5028 	 * For paravirt, this is coupled with an exit in switch_to to
5029 	 * combine the page table reload and the switch backend into
5030 	 * one hypercall.
5031 	 */
5032 	arch_start_context_switch(prev);
5033 
5034 	/*
5035 	 * kernel -> kernel   lazy + transfer active
5036 	 *   user -> kernel   lazy + mmgrab() active
5037 	 *
5038 	 * kernel ->   user   switch + mmdrop() active
5039 	 *   user ->   user   switch
5040 	 */
5041 	if (!next->mm) {                                // to kernel
5042 		enter_lazy_tlb(prev->active_mm, next);
5043 
5044 		next->active_mm = prev->active_mm;
5045 		if (prev->mm)                           // from user
5046 			mmgrab(prev->active_mm);
5047 		else
5048 			prev->active_mm = NULL;
5049 	} else {                                        // to user
5050 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5051 		/*
5052 		 * sys_membarrier() requires an smp_mb() between setting
5053 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5054 		 *
5055 		 * The below provides this either through switch_mm(), or in
5056 		 * case 'prev->active_mm == next->mm' through
5057 		 * finish_task_switch()'s mmdrop().
5058 		 */
5059 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5060 
5061 		if (!prev->mm) {                        // from kernel
5062 			/* will mmdrop() in finish_task_switch(). */
5063 			rq->prev_mm = prev->active_mm;
5064 			prev->active_mm = NULL;
5065 		}
5066 	}
5067 
5068 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5069 
5070 	prepare_lock_switch(rq, next, rf);
5071 
5072 	/* Here we just switch the register state and the stack. */
5073 	switch_to(prev, next, prev);
5074 	barrier();
5075 
5076 	return finish_task_switch(prev);
5077 }
5078 
5079 /*
5080  * nr_running and nr_context_switches:
5081  *
5082  * externally visible scheduler statistics: current number of runnable
5083  * threads, total number of context switches performed since bootup.
5084  */
5085 unsigned int nr_running(void)
5086 {
5087 	unsigned int i, sum = 0;
5088 
5089 	for_each_online_cpu(i)
5090 		sum += cpu_rq(i)->nr_running;
5091 
5092 	return sum;
5093 }
5094 
5095 /*
5096  * Check if only the current task is running on the CPU.
5097  *
5098  * Caution: this function does not check that the caller has disabled
5099  * preemption, thus the result might have a time-of-check-to-time-of-use
5100  * race.  The caller is responsible to use it correctly, for example:
5101  *
5102  * - from a non-preemptible section (of course)
5103  *
5104  * - from a thread that is bound to a single CPU
5105  *
5106  * - in a loop with very short iterations (e.g. a polling loop)
5107  */
5108 bool single_task_running(void)
5109 {
5110 	return raw_rq()->nr_running == 1;
5111 }
5112 EXPORT_SYMBOL(single_task_running);
5113 
5114 unsigned long long nr_context_switches(void)
5115 {
5116 	int i;
5117 	unsigned long long sum = 0;
5118 
5119 	for_each_possible_cpu(i)
5120 		sum += cpu_rq(i)->nr_switches;
5121 
5122 	return sum;
5123 }
5124 
5125 /*
5126  * Consumers of these two interfaces, like for example the cpuidle menu
5127  * governor, are using nonsensical data. Preferring shallow idle state selection
5128  * for a CPU that has IO-wait which might not even end up running the task when
5129  * it does become runnable.
5130  */
5131 
5132 unsigned int nr_iowait_cpu(int cpu)
5133 {
5134 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5135 }
5136 
5137 /*
5138  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5139  *
5140  * The idea behind IO-wait account is to account the idle time that we could
5141  * have spend running if it were not for IO. That is, if we were to improve the
5142  * storage performance, we'd have a proportional reduction in IO-wait time.
5143  *
5144  * This all works nicely on UP, where, when a task blocks on IO, we account
5145  * idle time as IO-wait, because if the storage were faster, it could've been
5146  * running and we'd not be idle.
5147  *
5148  * This has been extended to SMP, by doing the same for each CPU. This however
5149  * is broken.
5150  *
5151  * Imagine for instance the case where two tasks block on one CPU, only the one
5152  * CPU will have IO-wait accounted, while the other has regular idle. Even
5153  * though, if the storage were faster, both could've ran at the same time,
5154  * utilising both CPUs.
5155  *
5156  * This means, that when looking globally, the current IO-wait accounting on
5157  * SMP is a lower bound, by reason of under accounting.
5158  *
5159  * Worse, since the numbers are provided per CPU, they are sometimes
5160  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5161  * associated with any one particular CPU, it can wake to another CPU than it
5162  * blocked on. This means the per CPU IO-wait number is meaningless.
5163  *
5164  * Task CPU affinities can make all that even more 'interesting'.
5165  */
5166 
5167 unsigned int nr_iowait(void)
5168 {
5169 	unsigned int i, sum = 0;
5170 
5171 	for_each_possible_cpu(i)
5172 		sum += nr_iowait_cpu(i);
5173 
5174 	return sum;
5175 }
5176 
5177 #ifdef CONFIG_SMP
5178 
5179 /*
5180  * sched_exec - execve() is a valuable balancing opportunity, because at
5181  * this point the task has the smallest effective memory and cache footprint.
5182  */
5183 void sched_exec(void)
5184 {
5185 	struct task_struct *p = current;
5186 	unsigned long flags;
5187 	int dest_cpu;
5188 
5189 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5190 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5191 	if (dest_cpu == smp_processor_id())
5192 		goto unlock;
5193 
5194 	if (likely(cpu_active(dest_cpu))) {
5195 		struct migration_arg arg = { p, dest_cpu };
5196 
5197 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5198 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5199 		return;
5200 	}
5201 unlock:
5202 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5203 }
5204 
5205 #endif
5206 
5207 DEFINE_PER_CPU(struct kernel_stat, kstat);
5208 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5209 
5210 EXPORT_PER_CPU_SYMBOL(kstat);
5211 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5212 
5213 /*
5214  * The function fair_sched_class.update_curr accesses the struct curr
5215  * and its field curr->exec_start; when called from task_sched_runtime(),
5216  * we observe a high rate of cache misses in practice.
5217  * Prefetching this data results in improved performance.
5218  */
5219 static inline void prefetch_curr_exec_start(struct task_struct *p)
5220 {
5221 #ifdef CONFIG_FAIR_GROUP_SCHED
5222 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5223 #else
5224 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5225 #endif
5226 	prefetch(curr);
5227 	prefetch(&curr->exec_start);
5228 }
5229 
5230 /*
5231  * Return accounted runtime for the task.
5232  * In case the task is currently running, return the runtime plus current's
5233  * pending runtime that have not been accounted yet.
5234  */
5235 unsigned long long task_sched_runtime(struct task_struct *p)
5236 {
5237 	struct rq_flags rf;
5238 	struct rq *rq;
5239 	u64 ns;
5240 
5241 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5242 	/*
5243 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5244 	 * So we have a optimization chance when the task's delta_exec is 0.
5245 	 * Reading ->on_cpu is racy, but this is ok.
5246 	 *
5247 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5248 	 * If we race with it entering CPU, unaccounted time is 0. This is
5249 	 * indistinguishable from the read occurring a few cycles earlier.
5250 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5251 	 * been accounted, so we're correct here as well.
5252 	 */
5253 	if (!p->on_cpu || !task_on_rq_queued(p))
5254 		return p->se.sum_exec_runtime;
5255 #endif
5256 
5257 	rq = task_rq_lock(p, &rf);
5258 	/*
5259 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5260 	 * project cycles that may never be accounted to this
5261 	 * thread, breaking clock_gettime().
5262 	 */
5263 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5264 		prefetch_curr_exec_start(p);
5265 		update_rq_clock(rq);
5266 		p->sched_class->update_curr(rq);
5267 	}
5268 	ns = p->se.sum_exec_runtime;
5269 	task_rq_unlock(rq, p, &rf);
5270 
5271 	return ns;
5272 }
5273 
5274 #ifdef CONFIG_SCHED_DEBUG
5275 static u64 cpu_resched_latency(struct rq *rq)
5276 {
5277 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5278 	u64 resched_latency, now = rq_clock(rq);
5279 	static bool warned_once;
5280 
5281 	if (sysctl_resched_latency_warn_once && warned_once)
5282 		return 0;
5283 
5284 	if (!need_resched() || !latency_warn_ms)
5285 		return 0;
5286 
5287 	if (system_state == SYSTEM_BOOTING)
5288 		return 0;
5289 
5290 	if (!rq->last_seen_need_resched_ns) {
5291 		rq->last_seen_need_resched_ns = now;
5292 		rq->ticks_without_resched = 0;
5293 		return 0;
5294 	}
5295 
5296 	rq->ticks_without_resched++;
5297 	resched_latency = now - rq->last_seen_need_resched_ns;
5298 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5299 		return 0;
5300 
5301 	warned_once = true;
5302 
5303 	return resched_latency;
5304 }
5305 
5306 static int __init setup_resched_latency_warn_ms(char *str)
5307 {
5308 	long val;
5309 
5310 	if ((kstrtol(str, 0, &val))) {
5311 		pr_warn("Unable to set resched_latency_warn_ms\n");
5312 		return 1;
5313 	}
5314 
5315 	sysctl_resched_latency_warn_ms = val;
5316 	return 1;
5317 }
5318 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5319 #else
5320 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5321 #endif /* CONFIG_SCHED_DEBUG */
5322 
5323 /*
5324  * This function gets called by the timer code, with HZ frequency.
5325  * We call it with interrupts disabled.
5326  */
5327 void scheduler_tick(void)
5328 {
5329 	int cpu = smp_processor_id();
5330 	struct rq *rq = cpu_rq(cpu);
5331 	struct task_struct *curr = rq->curr;
5332 	struct rq_flags rf;
5333 	unsigned long thermal_pressure;
5334 	u64 resched_latency;
5335 
5336 	arch_scale_freq_tick();
5337 	sched_clock_tick();
5338 
5339 	rq_lock(rq, &rf);
5340 
5341 	update_rq_clock(rq);
5342 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5343 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5344 	curr->sched_class->task_tick(rq, curr, 0);
5345 	if (sched_feat(LATENCY_WARN))
5346 		resched_latency = cpu_resched_latency(rq);
5347 	calc_global_load_tick(rq);
5348 	sched_core_tick(rq);
5349 
5350 	rq_unlock(rq, &rf);
5351 
5352 	if (sched_feat(LATENCY_WARN) && resched_latency)
5353 		resched_latency_warn(cpu, resched_latency);
5354 
5355 	perf_event_task_tick();
5356 
5357 #ifdef CONFIG_SMP
5358 	rq->idle_balance = idle_cpu(cpu);
5359 	trigger_load_balance(rq);
5360 #endif
5361 }
5362 
5363 #ifdef CONFIG_NO_HZ_FULL
5364 
5365 struct tick_work {
5366 	int			cpu;
5367 	atomic_t		state;
5368 	struct delayed_work	work;
5369 };
5370 /* Values for ->state, see diagram below. */
5371 #define TICK_SCHED_REMOTE_OFFLINE	0
5372 #define TICK_SCHED_REMOTE_OFFLINING	1
5373 #define TICK_SCHED_REMOTE_RUNNING	2
5374 
5375 /*
5376  * State diagram for ->state:
5377  *
5378  *
5379  *          TICK_SCHED_REMOTE_OFFLINE
5380  *                    |   ^
5381  *                    |   |
5382  *                    |   | sched_tick_remote()
5383  *                    |   |
5384  *                    |   |
5385  *                    +--TICK_SCHED_REMOTE_OFFLINING
5386  *                    |   ^
5387  *                    |   |
5388  * sched_tick_start() |   | sched_tick_stop()
5389  *                    |   |
5390  *                    V   |
5391  *          TICK_SCHED_REMOTE_RUNNING
5392  *
5393  *
5394  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5395  * and sched_tick_start() are happy to leave the state in RUNNING.
5396  */
5397 
5398 static struct tick_work __percpu *tick_work_cpu;
5399 
5400 static void sched_tick_remote(struct work_struct *work)
5401 {
5402 	struct delayed_work *dwork = to_delayed_work(work);
5403 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5404 	int cpu = twork->cpu;
5405 	struct rq *rq = cpu_rq(cpu);
5406 	struct task_struct *curr;
5407 	struct rq_flags rf;
5408 	u64 delta;
5409 	int os;
5410 
5411 	/*
5412 	 * Handle the tick only if it appears the remote CPU is running in full
5413 	 * dynticks mode. The check is racy by nature, but missing a tick or
5414 	 * having one too much is no big deal because the scheduler tick updates
5415 	 * statistics and checks timeslices in a time-independent way, regardless
5416 	 * of when exactly it is running.
5417 	 */
5418 	if (!tick_nohz_tick_stopped_cpu(cpu))
5419 		goto out_requeue;
5420 
5421 	rq_lock_irq(rq, &rf);
5422 	curr = rq->curr;
5423 	if (cpu_is_offline(cpu))
5424 		goto out_unlock;
5425 
5426 	update_rq_clock(rq);
5427 
5428 	if (!is_idle_task(curr)) {
5429 		/*
5430 		 * Make sure the next tick runs within a reasonable
5431 		 * amount of time.
5432 		 */
5433 		delta = rq_clock_task(rq) - curr->se.exec_start;
5434 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5435 	}
5436 	curr->sched_class->task_tick(rq, curr, 0);
5437 
5438 	calc_load_nohz_remote(rq);
5439 out_unlock:
5440 	rq_unlock_irq(rq, &rf);
5441 out_requeue:
5442 
5443 	/*
5444 	 * Run the remote tick once per second (1Hz). This arbitrary
5445 	 * frequency is large enough to avoid overload but short enough
5446 	 * to keep scheduler internal stats reasonably up to date.  But
5447 	 * first update state to reflect hotplug activity if required.
5448 	 */
5449 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5450 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5451 	if (os == TICK_SCHED_REMOTE_RUNNING)
5452 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5453 }
5454 
5455 static void sched_tick_start(int cpu)
5456 {
5457 	int os;
5458 	struct tick_work *twork;
5459 
5460 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5461 		return;
5462 
5463 	WARN_ON_ONCE(!tick_work_cpu);
5464 
5465 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5466 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5467 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5468 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5469 		twork->cpu = cpu;
5470 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5471 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5472 	}
5473 }
5474 
5475 #ifdef CONFIG_HOTPLUG_CPU
5476 static void sched_tick_stop(int cpu)
5477 {
5478 	struct tick_work *twork;
5479 	int os;
5480 
5481 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5482 		return;
5483 
5484 	WARN_ON_ONCE(!tick_work_cpu);
5485 
5486 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5487 	/* There cannot be competing actions, but don't rely on stop-machine. */
5488 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5489 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5490 	/* Don't cancel, as this would mess up the state machine. */
5491 }
5492 #endif /* CONFIG_HOTPLUG_CPU */
5493 
5494 int __init sched_tick_offload_init(void)
5495 {
5496 	tick_work_cpu = alloc_percpu(struct tick_work);
5497 	BUG_ON(!tick_work_cpu);
5498 	return 0;
5499 }
5500 
5501 #else /* !CONFIG_NO_HZ_FULL */
5502 static inline void sched_tick_start(int cpu) { }
5503 static inline void sched_tick_stop(int cpu) { }
5504 #endif
5505 
5506 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5507 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5508 /*
5509  * If the value passed in is equal to the current preempt count
5510  * then we just disabled preemption. Start timing the latency.
5511  */
5512 static inline void preempt_latency_start(int val)
5513 {
5514 	if (preempt_count() == val) {
5515 		unsigned long ip = get_lock_parent_ip();
5516 #ifdef CONFIG_DEBUG_PREEMPT
5517 		current->preempt_disable_ip = ip;
5518 #endif
5519 		trace_preempt_off(CALLER_ADDR0, ip);
5520 	}
5521 }
5522 
5523 void preempt_count_add(int val)
5524 {
5525 #ifdef CONFIG_DEBUG_PREEMPT
5526 	/*
5527 	 * Underflow?
5528 	 */
5529 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5530 		return;
5531 #endif
5532 	__preempt_count_add(val);
5533 #ifdef CONFIG_DEBUG_PREEMPT
5534 	/*
5535 	 * Spinlock count overflowing soon?
5536 	 */
5537 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5538 				PREEMPT_MASK - 10);
5539 #endif
5540 	preempt_latency_start(val);
5541 }
5542 EXPORT_SYMBOL(preempt_count_add);
5543 NOKPROBE_SYMBOL(preempt_count_add);
5544 
5545 /*
5546  * If the value passed in equals to the current preempt count
5547  * then we just enabled preemption. Stop timing the latency.
5548  */
5549 static inline void preempt_latency_stop(int val)
5550 {
5551 	if (preempt_count() == val)
5552 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5553 }
5554 
5555 void preempt_count_sub(int val)
5556 {
5557 #ifdef CONFIG_DEBUG_PREEMPT
5558 	/*
5559 	 * Underflow?
5560 	 */
5561 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5562 		return;
5563 	/*
5564 	 * Is the spinlock portion underflowing?
5565 	 */
5566 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5567 			!(preempt_count() & PREEMPT_MASK)))
5568 		return;
5569 #endif
5570 
5571 	preempt_latency_stop(val);
5572 	__preempt_count_sub(val);
5573 }
5574 EXPORT_SYMBOL(preempt_count_sub);
5575 NOKPROBE_SYMBOL(preempt_count_sub);
5576 
5577 #else
5578 static inline void preempt_latency_start(int val) { }
5579 static inline void preempt_latency_stop(int val) { }
5580 #endif
5581 
5582 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5583 {
5584 #ifdef CONFIG_DEBUG_PREEMPT
5585 	return p->preempt_disable_ip;
5586 #else
5587 	return 0;
5588 #endif
5589 }
5590 
5591 /*
5592  * Print scheduling while atomic bug:
5593  */
5594 static noinline void __schedule_bug(struct task_struct *prev)
5595 {
5596 	/* Save this before calling printk(), since that will clobber it */
5597 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5598 
5599 	if (oops_in_progress)
5600 		return;
5601 
5602 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5603 		prev->comm, prev->pid, preempt_count());
5604 
5605 	debug_show_held_locks(prev);
5606 	print_modules();
5607 	if (irqs_disabled())
5608 		print_irqtrace_events(prev);
5609 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5610 	    && in_atomic_preempt_off()) {
5611 		pr_err("Preemption disabled at:");
5612 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5613 	}
5614 	if (panic_on_warn)
5615 		panic("scheduling while atomic\n");
5616 
5617 	dump_stack();
5618 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5619 }
5620 
5621 /*
5622  * Various schedule()-time debugging checks and statistics:
5623  */
5624 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5625 {
5626 #ifdef CONFIG_SCHED_STACK_END_CHECK
5627 	if (task_stack_end_corrupted(prev))
5628 		panic("corrupted stack end detected inside scheduler\n");
5629 
5630 	if (task_scs_end_corrupted(prev))
5631 		panic("corrupted shadow stack detected inside scheduler\n");
5632 #endif
5633 
5634 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5635 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5636 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5637 			prev->comm, prev->pid, prev->non_block_count);
5638 		dump_stack();
5639 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5640 	}
5641 #endif
5642 
5643 	if (unlikely(in_atomic_preempt_off())) {
5644 		__schedule_bug(prev);
5645 		preempt_count_set(PREEMPT_DISABLED);
5646 	}
5647 	rcu_sleep_check();
5648 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5649 
5650 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5651 
5652 	schedstat_inc(this_rq()->sched_count);
5653 }
5654 
5655 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5656 				  struct rq_flags *rf)
5657 {
5658 #ifdef CONFIG_SMP
5659 	const struct sched_class *class;
5660 	/*
5661 	 * We must do the balancing pass before put_prev_task(), such
5662 	 * that when we release the rq->lock the task is in the same
5663 	 * state as before we took rq->lock.
5664 	 *
5665 	 * We can terminate the balance pass as soon as we know there is
5666 	 * a runnable task of @class priority or higher.
5667 	 */
5668 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5669 		if (class->balance(rq, prev, rf))
5670 			break;
5671 	}
5672 #endif
5673 
5674 	put_prev_task(rq, prev);
5675 }
5676 
5677 /*
5678  * Pick up the highest-prio task:
5679  */
5680 static inline struct task_struct *
5681 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5682 {
5683 	const struct sched_class *class;
5684 	struct task_struct *p;
5685 
5686 	/*
5687 	 * Optimization: we know that if all tasks are in the fair class we can
5688 	 * call that function directly, but only if the @prev task wasn't of a
5689 	 * higher scheduling class, because otherwise those lose the
5690 	 * opportunity to pull in more work from other CPUs.
5691 	 */
5692 	if (likely(prev->sched_class <= &fair_sched_class &&
5693 		   rq->nr_running == rq->cfs.h_nr_running)) {
5694 
5695 		p = pick_next_task_fair(rq, prev, rf);
5696 		if (unlikely(p == RETRY_TASK))
5697 			goto restart;
5698 
5699 		/* Assume the next prioritized class is idle_sched_class */
5700 		if (!p) {
5701 			put_prev_task(rq, prev);
5702 			p = pick_next_task_idle(rq);
5703 		}
5704 
5705 		return p;
5706 	}
5707 
5708 restart:
5709 	put_prev_task_balance(rq, prev, rf);
5710 
5711 	for_each_class(class) {
5712 		p = class->pick_next_task(rq);
5713 		if (p)
5714 			return p;
5715 	}
5716 
5717 	BUG(); /* The idle class should always have a runnable task. */
5718 }
5719 
5720 #ifdef CONFIG_SCHED_CORE
5721 static inline bool is_task_rq_idle(struct task_struct *t)
5722 {
5723 	return (task_rq(t)->idle == t);
5724 }
5725 
5726 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5727 {
5728 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5729 }
5730 
5731 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5732 {
5733 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5734 		return true;
5735 
5736 	return a->core_cookie == b->core_cookie;
5737 }
5738 
5739 static inline struct task_struct *pick_task(struct rq *rq)
5740 {
5741 	const struct sched_class *class;
5742 	struct task_struct *p;
5743 
5744 	for_each_class(class) {
5745 		p = class->pick_task(rq);
5746 		if (p)
5747 			return p;
5748 	}
5749 
5750 	BUG(); /* The idle class should always have a runnable task. */
5751 }
5752 
5753 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5754 
5755 static struct task_struct *
5756 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5757 {
5758 	struct task_struct *next, *p, *max = NULL;
5759 	const struct cpumask *smt_mask;
5760 	bool fi_before = false;
5761 	bool core_clock_updated = (rq == rq->core);
5762 	unsigned long cookie;
5763 	int i, cpu, occ = 0;
5764 	struct rq *rq_i;
5765 	bool need_sync;
5766 
5767 	if (!sched_core_enabled(rq))
5768 		return __pick_next_task(rq, prev, rf);
5769 
5770 	cpu = cpu_of(rq);
5771 
5772 	/* Stopper task is switching into idle, no need core-wide selection. */
5773 	if (cpu_is_offline(cpu)) {
5774 		/*
5775 		 * Reset core_pick so that we don't enter the fastpath when
5776 		 * coming online. core_pick would already be migrated to
5777 		 * another cpu during offline.
5778 		 */
5779 		rq->core_pick = NULL;
5780 		return __pick_next_task(rq, prev, rf);
5781 	}
5782 
5783 	/*
5784 	 * If there were no {en,de}queues since we picked (IOW, the task
5785 	 * pointers are all still valid), and we haven't scheduled the last
5786 	 * pick yet, do so now.
5787 	 *
5788 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5789 	 * it was either offline or went offline during a sibling's core-wide
5790 	 * selection. In this case, do a core-wide selection.
5791 	 */
5792 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5793 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5794 	    rq->core_pick) {
5795 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5796 
5797 		next = rq->core_pick;
5798 		if (next != prev) {
5799 			put_prev_task(rq, prev);
5800 			set_next_task(rq, next);
5801 		}
5802 
5803 		rq->core_pick = NULL;
5804 		return next;
5805 	}
5806 
5807 	put_prev_task_balance(rq, prev, rf);
5808 
5809 	smt_mask = cpu_smt_mask(cpu);
5810 	need_sync = !!rq->core->core_cookie;
5811 
5812 	/* reset state */
5813 	rq->core->core_cookie = 0UL;
5814 	if (rq->core->core_forceidle_count) {
5815 		if (!core_clock_updated) {
5816 			update_rq_clock(rq->core);
5817 			core_clock_updated = true;
5818 		}
5819 		sched_core_account_forceidle(rq);
5820 		/* reset after accounting force idle */
5821 		rq->core->core_forceidle_start = 0;
5822 		rq->core->core_forceidle_count = 0;
5823 		rq->core->core_forceidle_occupation = 0;
5824 		need_sync = true;
5825 		fi_before = true;
5826 	}
5827 
5828 	/*
5829 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5830 	 *
5831 	 * @task_seq guards the task state ({en,de}queues)
5832 	 * @pick_seq is the @task_seq we did a selection on
5833 	 * @sched_seq is the @pick_seq we scheduled
5834 	 *
5835 	 * However, preemptions can cause multiple picks on the same task set.
5836 	 * 'Fix' this by also increasing @task_seq for every pick.
5837 	 */
5838 	rq->core->core_task_seq++;
5839 
5840 	/*
5841 	 * Optimize for common case where this CPU has no cookies
5842 	 * and there are no cookied tasks running on siblings.
5843 	 */
5844 	if (!need_sync) {
5845 		next = pick_task(rq);
5846 		if (!next->core_cookie) {
5847 			rq->core_pick = NULL;
5848 			/*
5849 			 * For robustness, update the min_vruntime_fi for
5850 			 * unconstrained picks as well.
5851 			 */
5852 			WARN_ON_ONCE(fi_before);
5853 			task_vruntime_update(rq, next, false);
5854 			goto done;
5855 		}
5856 	}
5857 
5858 	/*
5859 	 * For each thread: do the regular task pick and find the max prio task
5860 	 * amongst them.
5861 	 *
5862 	 * Tie-break prio towards the current CPU
5863 	 */
5864 	for_each_cpu_wrap(i, smt_mask, cpu) {
5865 		rq_i = cpu_rq(i);
5866 
5867 		/*
5868 		 * Current cpu always has its clock updated on entrance to
5869 		 * pick_next_task(). If the current cpu is not the core,
5870 		 * the core may also have been updated above.
5871 		 */
5872 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5873 			update_rq_clock(rq_i);
5874 
5875 		p = rq_i->core_pick = pick_task(rq_i);
5876 		if (!max || prio_less(max, p, fi_before))
5877 			max = p;
5878 	}
5879 
5880 	cookie = rq->core->core_cookie = max->core_cookie;
5881 
5882 	/*
5883 	 * For each thread: try and find a runnable task that matches @max or
5884 	 * force idle.
5885 	 */
5886 	for_each_cpu(i, smt_mask) {
5887 		rq_i = cpu_rq(i);
5888 		p = rq_i->core_pick;
5889 
5890 		if (!cookie_equals(p, cookie)) {
5891 			p = NULL;
5892 			if (cookie)
5893 				p = sched_core_find(rq_i, cookie);
5894 			if (!p)
5895 				p = idle_sched_class.pick_task(rq_i);
5896 		}
5897 
5898 		rq_i->core_pick = p;
5899 
5900 		if (p == rq_i->idle) {
5901 			if (rq_i->nr_running) {
5902 				rq->core->core_forceidle_count++;
5903 				if (!fi_before)
5904 					rq->core->core_forceidle_seq++;
5905 			}
5906 		} else {
5907 			occ++;
5908 		}
5909 	}
5910 
5911 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
5912 		rq->core->core_forceidle_start = rq_clock(rq->core);
5913 		rq->core->core_forceidle_occupation = occ;
5914 	}
5915 
5916 	rq->core->core_pick_seq = rq->core->core_task_seq;
5917 	next = rq->core_pick;
5918 	rq->core_sched_seq = rq->core->core_pick_seq;
5919 
5920 	/* Something should have been selected for current CPU */
5921 	WARN_ON_ONCE(!next);
5922 
5923 	/*
5924 	 * Reschedule siblings
5925 	 *
5926 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5927 	 * sending an IPI (below) ensures the sibling will no longer be running
5928 	 * their task. This ensures there is no inter-sibling overlap between
5929 	 * non-matching user state.
5930 	 */
5931 	for_each_cpu(i, smt_mask) {
5932 		rq_i = cpu_rq(i);
5933 
5934 		/*
5935 		 * An online sibling might have gone offline before a task
5936 		 * could be picked for it, or it might be offline but later
5937 		 * happen to come online, but its too late and nothing was
5938 		 * picked for it.  That's Ok - it will pick tasks for itself,
5939 		 * so ignore it.
5940 		 */
5941 		if (!rq_i->core_pick)
5942 			continue;
5943 
5944 		/*
5945 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5946 		 * fi_before     fi      update?
5947 		 *  0            0       1
5948 		 *  0            1       1
5949 		 *  1            0       1
5950 		 *  1            1       0
5951 		 */
5952 		if (!(fi_before && rq->core->core_forceidle_count))
5953 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
5954 
5955 		rq_i->core_pick->core_occupation = occ;
5956 
5957 		if (i == cpu) {
5958 			rq_i->core_pick = NULL;
5959 			continue;
5960 		}
5961 
5962 		/* Did we break L1TF mitigation requirements? */
5963 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5964 
5965 		if (rq_i->curr == rq_i->core_pick) {
5966 			rq_i->core_pick = NULL;
5967 			continue;
5968 		}
5969 
5970 		resched_curr(rq_i);
5971 	}
5972 
5973 done:
5974 	set_next_task(rq, next);
5975 	return next;
5976 }
5977 
5978 static bool try_steal_cookie(int this, int that)
5979 {
5980 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5981 	struct task_struct *p;
5982 	unsigned long cookie;
5983 	bool success = false;
5984 
5985 	local_irq_disable();
5986 	double_rq_lock(dst, src);
5987 
5988 	cookie = dst->core->core_cookie;
5989 	if (!cookie)
5990 		goto unlock;
5991 
5992 	if (dst->curr != dst->idle)
5993 		goto unlock;
5994 
5995 	p = sched_core_find(src, cookie);
5996 	if (p == src->idle)
5997 		goto unlock;
5998 
5999 	do {
6000 		if (p == src->core_pick || p == src->curr)
6001 			goto next;
6002 
6003 		if (!cpumask_test_cpu(this, &p->cpus_mask))
6004 			goto next;
6005 
6006 		if (p->core_occupation > dst->idle->core_occupation)
6007 			goto next;
6008 
6009 		deactivate_task(src, p, 0);
6010 		set_task_cpu(p, this);
6011 		activate_task(dst, p, 0);
6012 
6013 		resched_curr(dst);
6014 
6015 		success = true;
6016 		break;
6017 
6018 next:
6019 		p = sched_core_next(p, cookie);
6020 	} while (p);
6021 
6022 unlock:
6023 	double_rq_unlock(dst, src);
6024 	local_irq_enable();
6025 
6026 	return success;
6027 }
6028 
6029 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6030 {
6031 	int i;
6032 
6033 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6034 		if (i == cpu)
6035 			continue;
6036 
6037 		if (need_resched())
6038 			break;
6039 
6040 		if (try_steal_cookie(cpu, i))
6041 			return true;
6042 	}
6043 
6044 	return false;
6045 }
6046 
6047 static void sched_core_balance(struct rq *rq)
6048 {
6049 	struct sched_domain *sd;
6050 	int cpu = cpu_of(rq);
6051 
6052 	preempt_disable();
6053 	rcu_read_lock();
6054 	raw_spin_rq_unlock_irq(rq);
6055 	for_each_domain(cpu, sd) {
6056 		if (need_resched())
6057 			break;
6058 
6059 		if (steal_cookie_task(cpu, sd))
6060 			break;
6061 	}
6062 	raw_spin_rq_lock_irq(rq);
6063 	rcu_read_unlock();
6064 	preempt_enable();
6065 }
6066 
6067 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6068 
6069 void queue_core_balance(struct rq *rq)
6070 {
6071 	if (!sched_core_enabled(rq))
6072 		return;
6073 
6074 	if (!rq->core->core_cookie)
6075 		return;
6076 
6077 	if (!rq->nr_running) /* not forced idle */
6078 		return;
6079 
6080 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6081 }
6082 
6083 static void sched_core_cpu_starting(unsigned int cpu)
6084 {
6085 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6086 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6087 	unsigned long flags;
6088 	int t;
6089 
6090 	sched_core_lock(cpu, &flags);
6091 
6092 	WARN_ON_ONCE(rq->core != rq);
6093 
6094 	/* if we're the first, we'll be our own leader */
6095 	if (cpumask_weight(smt_mask) == 1)
6096 		goto unlock;
6097 
6098 	/* find the leader */
6099 	for_each_cpu(t, smt_mask) {
6100 		if (t == cpu)
6101 			continue;
6102 		rq = cpu_rq(t);
6103 		if (rq->core == rq) {
6104 			core_rq = rq;
6105 			break;
6106 		}
6107 	}
6108 
6109 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6110 		goto unlock;
6111 
6112 	/* install and validate core_rq */
6113 	for_each_cpu(t, smt_mask) {
6114 		rq = cpu_rq(t);
6115 
6116 		if (t == cpu)
6117 			rq->core = core_rq;
6118 
6119 		WARN_ON_ONCE(rq->core != core_rq);
6120 	}
6121 
6122 unlock:
6123 	sched_core_unlock(cpu, &flags);
6124 }
6125 
6126 static void sched_core_cpu_deactivate(unsigned int cpu)
6127 {
6128 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6129 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6130 	unsigned long flags;
6131 	int t;
6132 
6133 	sched_core_lock(cpu, &flags);
6134 
6135 	/* if we're the last man standing, nothing to do */
6136 	if (cpumask_weight(smt_mask) == 1) {
6137 		WARN_ON_ONCE(rq->core != rq);
6138 		goto unlock;
6139 	}
6140 
6141 	/* if we're not the leader, nothing to do */
6142 	if (rq->core != rq)
6143 		goto unlock;
6144 
6145 	/* find a new leader */
6146 	for_each_cpu(t, smt_mask) {
6147 		if (t == cpu)
6148 			continue;
6149 		core_rq = cpu_rq(t);
6150 		break;
6151 	}
6152 
6153 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6154 		goto unlock;
6155 
6156 	/* copy the shared state to the new leader */
6157 	core_rq->core_task_seq             = rq->core_task_seq;
6158 	core_rq->core_pick_seq             = rq->core_pick_seq;
6159 	core_rq->core_cookie               = rq->core_cookie;
6160 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6161 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6162 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6163 
6164 	/*
6165 	 * Accounting edge for forced idle is handled in pick_next_task().
6166 	 * Don't need another one here, since the hotplug thread shouldn't
6167 	 * have a cookie.
6168 	 */
6169 	core_rq->core_forceidle_start = 0;
6170 
6171 	/* install new leader */
6172 	for_each_cpu(t, smt_mask) {
6173 		rq = cpu_rq(t);
6174 		rq->core = core_rq;
6175 	}
6176 
6177 unlock:
6178 	sched_core_unlock(cpu, &flags);
6179 }
6180 
6181 static inline void sched_core_cpu_dying(unsigned int cpu)
6182 {
6183 	struct rq *rq = cpu_rq(cpu);
6184 
6185 	if (rq->core != rq)
6186 		rq->core = rq;
6187 }
6188 
6189 #else /* !CONFIG_SCHED_CORE */
6190 
6191 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6192 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6193 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6194 
6195 static struct task_struct *
6196 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6197 {
6198 	return __pick_next_task(rq, prev, rf);
6199 }
6200 
6201 #endif /* CONFIG_SCHED_CORE */
6202 
6203 /*
6204  * Constants for the sched_mode argument of __schedule().
6205  *
6206  * The mode argument allows RT enabled kernels to differentiate a
6207  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6208  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6209  * optimize the AND operation out and just check for zero.
6210  */
6211 #define SM_NONE			0x0
6212 #define SM_PREEMPT		0x1
6213 #define SM_RTLOCK_WAIT		0x2
6214 
6215 #ifndef CONFIG_PREEMPT_RT
6216 # define SM_MASK_PREEMPT	(~0U)
6217 #else
6218 # define SM_MASK_PREEMPT	SM_PREEMPT
6219 #endif
6220 
6221 /*
6222  * __schedule() is the main scheduler function.
6223  *
6224  * The main means of driving the scheduler and thus entering this function are:
6225  *
6226  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6227  *
6228  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6229  *      paths. For example, see arch/x86/entry_64.S.
6230  *
6231  *      To drive preemption between tasks, the scheduler sets the flag in timer
6232  *      interrupt handler scheduler_tick().
6233  *
6234  *   3. Wakeups don't really cause entry into schedule(). They add a
6235  *      task to the run-queue and that's it.
6236  *
6237  *      Now, if the new task added to the run-queue preempts the current
6238  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6239  *      called on the nearest possible occasion:
6240  *
6241  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6242  *
6243  *         - in syscall or exception context, at the next outmost
6244  *           preempt_enable(). (this might be as soon as the wake_up()'s
6245  *           spin_unlock()!)
6246  *
6247  *         - in IRQ context, return from interrupt-handler to
6248  *           preemptible context
6249  *
6250  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6251  *         then at the next:
6252  *
6253  *          - cond_resched() call
6254  *          - explicit schedule() call
6255  *          - return from syscall or exception to user-space
6256  *          - return from interrupt-handler to user-space
6257  *
6258  * WARNING: must be called with preemption disabled!
6259  */
6260 static void __sched notrace __schedule(unsigned int sched_mode)
6261 {
6262 	struct task_struct *prev, *next;
6263 	unsigned long *switch_count;
6264 	unsigned long prev_state;
6265 	struct rq_flags rf;
6266 	struct rq *rq;
6267 	int cpu;
6268 
6269 	cpu = smp_processor_id();
6270 	rq = cpu_rq(cpu);
6271 	prev = rq->curr;
6272 
6273 	schedule_debug(prev, !!sched_mode);
6274 
6275 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6276 		hrtick_clear(rq);
6277 
6278 	local_irq_disable();
6279 	rcu_note_context_switch(!!sched_mode);
6280 
6281 	/*
6282 	 * Make sure that signal_pending_state()->signal_pending() below
6283 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6284 	 * done by the caller to avoid the race with signal_wake_up():
6285 	 *
6286 	 * __set_current_state(@state)		signal_wake_up()
6287 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6288 	 *					  wake_up_state(p, state)
6289 	 *   LOCK rq->lock			    LOCK p->pi_state
6290 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6291 	 *     if (signal_pending_state())	    if (p->state & @state)
6292 	 *
6293 	 * Also, the membarrier system call requires a full memory barrier
6294 	 * after coming from user-space, before storing to rq->curr.
6295 	 */
6296 	rq_lock(rq, &rf);
6297 	smp_mb__after_spinlock();
6298 
6299 	/* Promote REQ to ACT */
6300 	rq->clock_update_flags <<= 1;
6301 	update_rq_clock(rq);
6302 
6303 	switch_count = &prev->nivcsw;
6304 
6305 	/*
6306 	 * We must load prev->state once (task_struct::state is volatile), such
6307 	 * that:
6308 	 *
6309 	 *  - we form a control dependency vs deactivate_task() below.
6310 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6311 	 */
6312 	prev_state = READ_ONCE(prev->__state);
6313 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6314 		if (signal_pending_state(prev_state, prev)) {
6315 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6316 		} else {
6317 			prev->sched_contributes_to_load =
6318 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6319 				!(prev_state & TASK_NOLOAD) &&
6320 				!(prev->flags & PF_FROZEN);
6321 
6322 			if (prev->sched_contributes_to_load)
6323 				rq->nr_uninterruptible++;
6324 
6325 			/*
6326 			 * __schedule()			ttwu()
6327 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6328 			 *   if (prev_state)		    goto out;
6329 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6330 			 *				  p->state = TASK_WAKING
6331 			 *
6332 			 * Where __schedule() and ttwu() have matching control dependencies.
6333 			 *
6334 			 * After this, schedule() must not care about p->state any more.
6335 			 */
6336 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6337 
6338 			if (prev->in_iowait) {
6339 				atomic_inc(&rq->nr_iowait);
6340 				delayacct_blkio_start();
6341 			}
6342 		}
6343 		switch_count = &prev->nvcsw;
6344 	}
6345 
6346 	next = pick_next_task(rq, prev, &rf);
6347 	clear_tsk_need_resched(prev);
6348 	clear_preempt_need_resched();
6349 #ifdef CONFIG_SCHED_DEBUG
6350 	rq->last_seen_need_resched_ns = 0;
6351 #endif
6352 
6353 	if (likely(prev != next)) {
6354 		rq->nr_switches++;
6355 		/*
6356 		 * RCU users of rcu_dereference(rq->curr) may not see
6357 		 * changes to task_struct made by pick_next_task().
6358 		 */
6359 		RCU_INIT_POINTER(rq->curr, next);
6360 		/*
6361 		 * The membarrier system call requires each architecture
6362 		 * to have a full memory barrier after updating
6363 		 * rq->curr, before returning to user-space.
6364 		 *
6365 		 * Here are the schemes providing that barrier on the
6366 		 * various architectures:
6367 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6368 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6369 		 * - finish_lock_switch() for weakly-ordered
6370 		 *   architectures where spin_unlock is a full barrier,
6371 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6372 		 *   is a RELEASE barrier),
6373 		 */
6374 		++*switch_count;
6375 
6376 		migrate_disable_switch(rq, prev);
6377 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6378 
6379 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev_state, prev, next);
6380 
6381 		/* Also unlocks the rq: */
6382 		rq = context_switch(rq, prev, next, &rf);
6383 	} else {
6384 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6385 
6386 		rq_unpin_lock(rq, &rf);
6387 		__balance_callbacks(rq);
6388 		raw_spin_rq_unlock_irq(rq);
6389 	}
6390 }
6391 
6392 void __noreturn do_task_dead(void)
6393 {
6394 	/* Causes final put_task_struct in finish_task_switch(): */
6395 	set_special_state(TASK_DEAD);
6396 
6397 	/* Tell freezer to ignore us: */
6398 	current->flags |= PF_NOFREEZE;
6399 
6400 	__schedule(SM_NONE);
6401 	BUG();
6402 
6403 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6404 	for (;;)
6405 		cpu_relax();
6406 }
6407 
6408 static inline void sched_submit_work(struct task_struct *tsk)
6409 {
6410 	unsigned int task_flags;
6411 
6412 	if (task_is_running(tsk))
6413 		return;
6414 
6415 	task_flags = tsk->flags;
6416 	/*
6417 	 * If a worker goes to sleep, notify and ask workqueue whether it
6418 	 * wants to wake up a task to maintain concurrency.
6419 	 */
6420 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6421 		if (task_flags & PF_WQ_WORKER)
6422 			wq_worker_sleeping(tsk);
6423 		else
6424 			io_wq_worker_sleeping(tsk);
6425 	}
6426 
6427 	if (tsk_is_pi_blocked(tsk))
6428 		return;
6429 
6430 	/*
6431 	 * If we are going to sleep and we have plugged IO queued,
6432 	 * make sure to submit it to avoid deadlocks.
6433 	 */
6434 	blk_flush_plug(tsk->plug, true);
6435 }
6436 
6437 static void sched_update_worker(struct task_struct *tsk)
6438 {
6439 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6440 		if (tsk->flags & PF_WQ_WORKER)
6441 			wq_worker_running(tsk);
6442 		else
6443 			io_wq_worker_running(tsk);
6444 	}
6445 }
6446 
6447 asmlinkage __visible void __sched schedule(void)
6448 {
6449 	struct task_struct *tsk = current;
6450 
6451 	sched_submit_work(tsk);
6452 	do {
6453 		preempt_disable();
6454 		__schedule(SM_NONE);
6455 		sched_preempt_enable_no_resched();
6456 	} while (need_resched());
6457 	sched_update_worker(tsk);
6458 }
6459 EXPORT_SYMBOL(schedule);
6460 
6461 /*
6462  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6463  * state (have scheduled out non-voluntarily) by making sure that all
6464  * tasks have either left the run queue or have gone into user space.
6465  * As idle tasks do not do either, they must not ever be preempted
6466  * (schedule out non-voluntarily).
6467  *
6468  * schedule_idle() is similar to schedule_preempt_disable() except that it
6469  * never enables preemption because it does not call sched_submit_work().
6470  */
6471 void __sched schedule_idle(void)
6472 {
6473 	/*
6474 	 * As this skips calling sched_submit_work(), which the idle task does
6475 	 * regardless because that function is a nop when the task is in a
6476 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6477 	 * current task can be in any other state. Note, idle is always in the
6478 	 * TASK_RUNNING state.
6479 	 */
6480 	WARN_ON_ONCE(current->__state);
6481 	do {
6482 		__schedule(SM_NONE);
6483 	} while (need_resched());
6484 }
6485 
6486 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6487 asmlinkage __visible void __sched schedule_user(void)
6488 {
6489 	/*
6490 	 * If we come here after a random call to set_need_resched(),
6491 	 * or we have been woken up remotely but the IPI has not yet arrived,
6492 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6493 	 * we find a better solution.
6494 	 *
6495 	 * NB: There are buggy callers of this function.  Ideally we
6496 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6497 	 * too frequently to make sense yet.
6498 	 */
6499 	enum ctx_state prev_state = exception_enter();
6500 	schedule();
6501 	exception_exit(prev_state);
6502 }
6503 #endif
6504 
6505 /**
6506  * schedule_preempt_disabled - called with preemption disabled
6507  *
6508  * Returns with preemption disabled. Note: preempt_count must be 1
6509  */
6510 void __sched schedule_preempt_disabled(void)
6511 {
6512 	sched_preempt_enable_no_resched();
6513 	schedule();
6514 	preempt_disable();
6515 }
6516 
6517 #ifdef CONFIG_PREEMPT_RT
6518 void __sched notrace schedule_rtlock(void)
6519 {
6520 	do {
6521 		preempt_disable();
6522 		__schedule(SM_RTLOCK_WAIT);
6523 		sched_preempt_enable_no_resched();
6524 	} while (need_resched());
6525 }
6526 NOKPROBE_SYMBOL(schedule_rtlock);
6527 #endif
6528 
6529 static void __sched notrace preempt_schedule_common(void)
6530 {
6531 	do {
6532 		/*
6533 		 * Because the function tracer can trace preempt_count_sub()
6534 		 * and it also uses preempt_enable/disable_notrace(), if
6535 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6536 		 * by the function tracer will call this function again and
6537 		 * cause infinite recursion.
6538 		 *
6539 		 * Preemption must be disabled here before the function
6540 		 * tracer can trace. Break up preempt_disable() into two
6541 		 * calls. One to disable preemption without fear of being
6542 		 * traced. The other to still record the preemption latency,
6543 		 * which can also be traced by the function tracer.
6544 		 */
6545 		preempt_disable_notrace();
6546 		preempt_latency_start(1);
6547 		__schedule(SM_PREEMPT);
6548 		preempt_latency_stop(1);
6549 		preempt_enable_no_resched_notrace();
6550 
6551 		/*
6552 		 * Check again in case we missed a preemption opportunity
6553 		 * between schedule and now.
6554 		 */
6555 	} while (need_resched());
6556 }
6557 
6558 #ifdef CONFIG_PREEMPTION
6559 /*
6560  * This is the entry point to schedule() from in-kernel preemption
6561  * off of preempt_enable.
6562  */
6563 asmlinkage __visible void __sched notrace preempt_schedule(void)
6564 {
6565 	/*
6566 	 * If there is a non-zero preempt_count or interrupts are disabled,
6567 	 * we do not want to preempt the current task. Just return..
6568 	 */
6569 	if (likely(!preemptible()))
6570 		return;
6571 	preempt_schedule_common();
6572 }
6573 NOKPROBE_SYMBOL(preempt_schedule);
6574 EXPORT_SYMBOL(preempt_schedule);
6575 
6576 #ifdef CONFIG_PREEMPT_DYNAMIC
6577 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6578 #ifndef preempt_schedule_dynamic_enabled
6579 #define preempt_schedule_dynamic_enabled	preempt_schedule
6580 #define preempt_schedule_dynamic_disabled	NULL
6581 #endif
6582 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6583 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6584 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6585 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6586 void __sched notrace dynamic_preempt_schedule(void)
6587 {
6588 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6589 		return;
6590 	preempt_schedule();
6591 }
6592 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6593 EXPORT_SYMBOL(dynamic_preempt_schedule);
6594 #endif
6595 #endif
6596 
6597 /**
6598  * preempt_schedule_notrace - preempt_schedule called by tracing
6599  *
6600  * The tracing infrastructure uses preempt_enable_notrace to prevent
6601  * recursion and tracing preempt enabling caused by the tracing
6602  * infrastructure itself. But as tracing can happen in areas coming
6603  * from userspace or just about to enter userspace, a preempt enable
6604  * can occur before user_exit() is called. This will cause the scheduler
6605  * to be called when the system is still in usermode.
6606  *
6607  * To prevent this, the preempt_enable_notrace will use this function
6608  * instead of preempt_schedule() to exit user context if needed before
6609  * calling the scheduler.
6610  */
6611 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6612 {
6613 	enum ctx_state prev_ctx;
6614 
6615 	if (likely(!preemptible()))
6616 		return;
6617 
6618 	do {
6619 		/*
6620 		 * Because the function tracer can trace preempt_count_sub()
6621 		 * and it also uses preempt_enable/disable_notrace(), if
6622 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6623 		 * by the function tracer will call this function again and
6624 		 * cause infinite recursion.
6625 		 *
6626 		 * Preemption must be disabled here before the function
6627 		 * tracer can trace. Break up preempt_disable() into two
6628 		 * calls. One to disable preemption without fear of being
6629 		 * traced. The other to still record the preemption latency,
6630 		 * which can also be traced by the function tracer.
6631 		 */
6632 		preempt_disable_notrace();
6633 		preempt_latency_start(1);
6634 		/*
6635 		 * Needs preempt disabled in case user_exit() is traced
6636 		 * and the tracer calls preempt_enable_notrace() causing
6637 		 * an infinite recursion.
6638 		 */
6639 		prev_ctx = exception_enter();
6640 		__schedule(SM_PREEMPT);
6641 		exception_exit(prev_ctx);
6642 
6643 		preempt_latency_stop(1);
6644 		preempt_enable_no_resched_notrace();
6645 	} while (need_resched());
6646 }
6647 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6648 
6649 #ifdef CONFIG_PREEMPT_DYNAMIC
6650 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6651 #ifndef preempt_schedule_notrace_dynamic_enabled
6652 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6653 #define preempt_schedule_notrace_dynamic_disabled	NULL
6654 #endif
6655 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6656 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6657 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6658 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6659 void __sched notrace dynamic_preempt_schedule_notrace(void)
6660 {
6661 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6662 		return;
6663 	preempt_schedule_notrace();
6664 }
6665 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6666 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6667 #endif
6668 #endif
6669 
6670 #endif /* CONFIG_PREEMPTION */
6671 
6672 /*
6673  * This is the entry point to schedule() from kernel preemption
6674  * off of irq context.
6675  * Note, that this is called and return with irqs disabled. This will
6676  * protect us against recursive calling from irq.
6677  */
6678 asmlinkage __visible void __sched preempt_schedule_irq(void)
6679 {
6680 	enum ctx_state prev_state;
6681 
6682 	/* Catch callers which need to be fixed */
6683 	BUG_ON(preempt_count() || !irqs_disabled());
6684 
6685 	prev_state = exception_enter();
6686 
6687 	do {
6688 		preempt_disable();
6689 		local_irq_enable();
6690 		__schedule(SM_PREEMPT);
6691 		local_irq_disable();
6692 		sched_preempt_enable_no_resched();
6693 	} while (need_resched());
6694 
6695 	exception_exit(prev_state);
6696 }
6697 
6698 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6699 			  void *key)
6700 {
6701 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6702 	return try_to_wake_up(curr->private, mode, wake_flags);
6703 }
6704 EXPORT_SYMBOL(default_wake_function);
6705 
6706 static void __setscheduler_prio(struct task_struct *p, int prio)
6707 {
6708 	if (dl_prio(prio))
6709 		p->sched_class = &dl_sched_class;
6710 	else if (rt_prio(prio))
6711 		p->sched_class = &rt_sched_class;
6712 	else
6713 		p->sched_class = &fair_sched_class;
6714 
6715 	p->prio = prio;
6716 }
6717 
6718 #ifdef CONFIG_RT_MUTEXES
6719 
6720 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6721 {
6722 	if (pi_task)
6723 		prio = min(prio, pi_task->prio);
6724 
6725 	return prio;
6726 }
6727 
6728 static inline int rt_effective_prio(struct task_struct *p, int prio)
6729 {
6730 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6731 
6732 	return __rt_effective_prio(pi_task, prio);
6733 }
6734 
6735 /*
6736  * rt_mutex_setprio - set the current priority of a task
6737  * @p: task to boost
6738  * @pi_task: donor task
6739  *
6740  * This function changes the 'effective' priority of a task. It does
6741  * not touch ->normal_prio like __setscheduler().
6742  *
6743  * Used by the rt_mutex code to implement priority inheritance
6744  * logic. Call site only calls if the priority of the task changed.
6745  */
6746 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6747 {
6748 	int prio, oldprio, queued, running, queue_flag =
6749 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6750 	const struct sched_class *prev_class;
6751 	struct rq_flags rf;
6752 	struct rq *rq;
6753 
6754 	/* XXX used to be waiter->prio, not waiter->task->prio */
6755 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6756 
6757 	/*
6758 	 * If nothing changed; bail early.
6759 	 */
6760 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6761 		return;
6762 
6763 	rq = __task_rq_lock(p, &rf);
6764 	update_rq_clock(rq);
6765 	/*
6766 	 * Set under pi_lock && rq->lock, such that the value can be used under
6767 	 * either lock.
6768 	 *
6769 	 * Note that there is loads of tricky to make this pointer cache work
6770 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6771 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6772 	 * task is allowed to run again (and can exit). This ensures the pointer
6773 	 * points to a blocked task -- which guarantees the task is present.
6774 	 */
6775 	p->pi_top_task = pi_task;
6776 
6777 	/*
6778 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6779 	 */
6780 	if (prio == p->prio && !dl_prio(prio))
6781 		goto out_unlock;
6782 
6783 	/*
6784 	 * Idle task boosting is a nono in general. There is one
6785 	 * exception, when PREEMPT_RT and NOHZ is active:
6786 	 *
6787 	 * The idle task calls get_next_timer_interrupt() and holds
6788 	 * the timer wheel base->lock on the CPU and another CPU wants
6789 	 * to access the timer (probably to cancel it). We can safely
6790 	 * ignore the boosting request, as the idle CPU runs this code
6791 	 * with interrupts disabled and will complete the lock
6792 	 * protected section without being interrupted. So there is no
6793 	 * real need to boost.
6794 	 */
6795 	if (unlikely(p == rq->idle)) {
6796 		WARN_ON(p != rq->curr);
6797 		WARN_ON(p->pi_blocked_on);
6798 		goto out_unlock;
6799 	}
6800 
6801 	trace_sched_pi_setprio(p, pi_task);
6802 	oldprio = p->prio;
6803 
6804 	if (oldprio == prio)
6805 		queue_flag &= ~DEQUEUE_MOVE;
6806 
6807 	prev_class = p->sched_class;
6808 	queued = task_on_rq_queued(p);
6809 	running = task_current(rq, p);
6810 	if (queued)
6811 		dequeue_task(rq, p, queue_flag);
6812 	if (running)
6813 		put_prev_task(rq, p);
6814 
6815 	/*
6816 	 * Boosting condition are:
6817 	 * 1. -rt task is running and holds mutex A
6818 	 *      --> -dl task blocks on mutex A
6819 	 *
6820 	 * 2. -dl task is running and holds mutex A
6821 	 *      --> -dl task blocks on mutex A and could preempt the
6822 	 *          running task
6823 	 */
6824 	if (dl_prio(prio)) {
6825 		if (!dl_prio(p->normal_prio) ||
6826 		    (pi_task && dl_prio(pi_task->prio) &&
6827 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6828 			p->dl.pi_se = pi_task->dl.pi_se;
6829 			queue_flag |= ENQUEUE_REPLENISH;
6830 		} else {
6831 			p->dl.pi_se = &p->dl;
6832 		}
6833 	} else if (rt_prio(prio)) {
6834 		if (dl_prio(oldprio))
6835 			p->dl.pi_se = &p->dl;
6836 		if (oldprio < prio)
6837 			queue_flag |= ENQUEUE_HEAD;
6838 	} else {
6839 		if (dl_prio(oldprio))
6840 			p->dl.pi_se = &p->dl;
6841 		if (rt_prio(oldprio))
6842 			p->rt.timeout = 0;
6843 	}
6844 
6845 	__setscheduler_prio(p, prio);
6846 
6847 	if (queued)
6848 		enqueue_task(rq, p, queue_flag);
6849 	if (running)
6850 		set_next_task(rq, p);
6851 
6852 	check_class_changed(rq, p, prev_class, oldprio);
6853 out_unlock:
6854 	/* Avoid rq from going away on us: */
6855 	preempt_disable();
6856 
6857 	rq_unpin_lock(rq, &rf);
6858 	__balance_callbacks(rq);
6859 	raw_spin_rq_unlock(rq);
6860 
6861 	preempt_enable();
6862 }
6863 #else
6864 static inline int rt_effective_prio(struct task_struct *p, int prio)
6865 {
6866 	return prio;
6867 }
6868 #endif
6869 
6870 void set_user_nice(struct task_struct *p, long nice)
6871 {
6872 	bool queued, running;
6873 	int old_prio;
6874 	struct rq_flags rf;
6875 	struct rq *rq;
6876 
6877 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6878 		return;
6879 	/*
6880 	 * We have to be careful, if called from sys_setpriority(),
6881 	 * the task might be in the middle of scheduling on another CPU.
6882 	 */
6883 	rq = task_rq_lock(p, &rf);
6884 	update_rq_clock(rq);
6885 
6886 	/*
6887 	 * The RT priorities are set via sched_setscheduler(), but we still
6888 	 * allow the 'normal' nice value to be set - but as expected
6889 	 * it won't have any effect on scheduling until the task is
6890 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6891 	 */
6892 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6893 		p->static_prio = NICE_TO_PRIO(nice);
6894 		goto out_unlock;
6895 	}
6896 	queued = task_on_rq_queued(p);
6897 	running = task_current(rq, p);
6898 	if (queued)
6899 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6900 	if (running)
6901 		put_prev_task(rq, p);
6902 
6903 	p->static_prio = NICE_TO_PRIO(nice);
6904 	set_load_weight(p, true);
6905 	old_prio = p->prio;
6906 	p->prio = effective_prio(p);
6907 
6908 	if (queued)
6909 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6910 	if (running)
6911 		set_next_task(rq, p);
6912 
6913 	/*
6914 	 * If the task increased its priority or is running and
6915 	 * lowered its priority, then reschedule its CPU:
6916 	 */
6917 	p->sched_class->prio_changed(rq, p, old_prio);
6918 
6919 out_unlock:
6920 	task_rq_unlock(rq, p, &rf);
6921 }
6922 EXPORT_SYMBOL(set_user_nice);
6923 
6924 /*
6925  * can_nice - check if a task can reduce its nice value
6926  * @p: task
6927  * @nice: nice value
6928  */
6929 int can_nice(const struct task_struct *p, const int nice)
6930 {
6931 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6932 	int nice_rlim = nice_to_rlimit(nice);
6933 
6934 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6935 		capable(CAP_SYS_NICE));
6936 }
6937 
6938 #ifdef __ARCH_WANT_SYS_NICE
6939 
6940 /*
6941  * sys_nice - change the priority of the current process.
6942  * @increment: priority increment
6943  *
6944  * sys_setpriority is a more generic, but much slower function that
6945  * does similar things.
6946  */
6947 SYSCALL_DEFINE1(nice, int, increment)
6948 {
6949 	long nice, retval;
6950 
6951 	/*
6952 	 * Setpriority might change our priority at the same moment.
6953 	 * We don't have to worry. Conceptually one call occurs first
6954 	 * and we have a single winner.
6955 	 */
6956 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6957 	nice = task_nice(current) + increment;
6958 
6959 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6960 	if (increment < 0 && !can_nice(current, nice))
6961 		return -EPERM;
6962 
6963 	retval = security_task_setnice(current, nice);
6964 	if (retval)
6965 		return retval;
6966 
6967 	set_user_nice(current, nice);
6968 	return 0;
6969 }
6970 
6971 #endif
6972 
6973 /**
6974  * task_prio - return the priority value of a given task.
6975  * @p: the task in question.
6976  *
6977  * Return: The priority value as seen by users in /proc.
6978  *
6979  * sched policy         return value   kernel prio    user prio/nice
6980  *
6981  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6982  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6983  * deadline                     -101             -1           0
6984  */
6985 int task_prio(const struct task_struct *p)
6986 {
6987 	return p->prio - MAX_RT_PRIO;
6988 }
6989 
6990 /**
6991  * idle_cpu - is a given CPU idle currently?
6992  * @cpu: the processor in question.
6993  *
6994  * Return: 1 if the CPU is currently idle. 0 otherwise.
6995  */
6996 int idle_cpu(int cpu)
6997 {
6998 	struct rq *rq = cpu_rq(cpu);
6999 
7000 	if (rq->curr != rq->idle)
7001 		return 0;
7002 
7003 	if (rq->nr_running)
7004 		return 0;
7005 
7006 #ifdef CONFIG_SMP
7007 	if (rq->ttwu_pending)
7008 		return 0;
7009 #endif
7010 
7011 	return 1;
7012 }
7013 
7014 /**
7015  * available_idle_cpu - is a given CPU idle for enqueuing work.
7016  * @cpu: the CPU in question.
7017  *
7018  * Return: 1 if the CPU is currently idle. 0 otherwise.
7019  */
7020 int available_idle_cpu(int cpu)
7021 {
7022 	if (!idle_cpu(cpu))
7023 		return 0;
7024 
7025 	if (vcpu_is_preempted(cpu))
7026 		return 0;
7027 
7028 	return 1;
7029 }
7030 
7031 /**
7032  * idle_task - return the idle task for a given CPU.
7033  * @cpu: the processor in question.
7034  *
7035  * Return: The idle task for the CPU @cpu.
7036  */
7037 struct task_struct *idle_task(int cpu)
7038 {
7039 	return cpu_rq(cpu)->idle;
7040 }
7041 
7042 #ifdef CONFIG_SMP
7043 /*
7044  * This function computes an effective utilization for the given CPU, to be
7045  * used for frequency selection given the linear relation: f = u * f_max.
7046  *
7047  * The scheduler tracks the following metrics:
7048  *
7049  *   cpu_util_{cfs,rt,dl,irq}()
7050  *   cpu_bw_dl()
7051  *
7052  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7053  * synchronized windows and are thus directly comparable.
7054  *
7055  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7056  * which excludes things like IRQ and steal-time. These latter are then accrued
7057  * in the irq utilization.
7058  *
7059  * The DL bandwidth number otoh is not a measured metric but a value computed
7060  * based on the task model parameters and gives the minimal utilization
7061  * required to meet deadlines.
7062  */
7063 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7064 				 unsigned long max, enum cpu_util_type type,
7065 				 struct task_struct *p)
7066 {
7067 	unsigned long dl_util, util, irq;
7068 	struct rq *rq = cpu_rq(cpu);
7069 
7070 	if (!uclamp_is_used() &&
7071 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7072 		return max;
7073 	}
7074 
7075 	/*
7076 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7077 	 * because of inaccuracies in how we track these -- see
7078 	 * update_irq_load_avg().
7079 	 */
7080 	irq = cpu_util_irq(rq);
7081 	if (unlikely(irq >= max))
7082 		return max;
7083 
7084 	/*
7085 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7086 	 * CFS tasks and we use the same metric to track the effective
7087 	 * utilization (PELT windows are synchronized) we can directly add them
7088 	 * to obtain the CPU's actual utilization.
7089 	 *
7090 	 * CFS and RT utilization can be boosted or capped, depending on
7091 	 * utilization clamp constraints requested by currently RUNNABLE
7092 	 * tasks.
7093 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7094 	 * frequency will be gracefully reduced with the utilization decay.
7095 	 */
7096 	util = util_cfs + cpu_util_rt(rq);
7097 	if (type == FREQUENCY_UTIL)
7098 		util = uclamp_rq_util_with(rq, util, p);
7099 
7100 	dl_util = cpu_util_dl(rq);
7101 
7102 	/*
7103 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7104 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7105 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7106 	 * that we select f_max when there is no idle time.
7107 	 *
7108 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7109 	 * saturation when we should -- something for later.
7110 	 */
7111 	if (util + dl_util >= max)
7112 		return max;
7113 
7114 	/*
7115 	 * OTOH, for energy computation we need the estimated running time, so
7116 	 * include util_dl and ignore dl_bw.
7117 	 */
7118 	if (type == ENERGY_UTIL)
7119 		util += dl_util;
7120 
7121 	/*
7122 	 * There is still idle time; further improve the number by using the
7123 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7124 	 * need to scale the task numbers:
7125 	 *
7126 	 *              max - irq
7127 	 *   U' = irq + --------- * U
7128 	 *                 max
7129 	 */
7130 	util = scale_irq_capacity(util, irq, max);
7131 	util += irq;
7132 
7133 	/*
7134 	 * Bandwidth required by DEADLINE must always be granted while, for
7135 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7136 	 * to gracefully reduce the frequency when no tasks show up for longer
7137 	 * periods of time.
7138 	 *
7139 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7140 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7141 	 * an interface. So, we only do the latter for now.
7142 	 */
7143 	if (type == FREQUENCY_UTIL)
7144 		util += cpu_bw_dl(rq);
7145 
7146 	return min(max, util);
7147 }
7148 
7149 unsigned long sched_cpu_util(int cpu, unsigned long max)
7150 {
7151 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), max,
7152 				  ENERGY_UTIL, NULL);
7153 }
7154 #endif /* CONFIG_SMP */
7155 
7156 /**
7157  * find_process_by_pid - find a process with a matching PID value.
7158  * @pid: the pid in question.
7159  *
7160  * The task of @pid, if found. %NULL otherwise.
7161  */
7162 static struct task_struct *find_process_by_pid(pid_t pid)
7163 {
7164 	return pid ? find_task_by_vpid(pid) : current;
7165 }
7166 
7167 /*
7168  * sched_setparam() passes in -1 for its policy, to let the functions
7169  * it calls know not to change it.
7170  */
7171 #define SETPARAM_POLICY	-1
7172 
7173 static void __setscheduler_params(struct task_struct *p,
7174 		const struct sched_attr *attr)
7175 {
7176 	int policy = attr->sched_policy;
7177 
7178 	if (policy == SETPARAM_POLICY)
7179 		policy = p->policy;
7180 
7181 	p->policy = policy;
7182 
7183 	if (dl_policy(policy))
7184 		__setparam_dl(p, attr);
7185 	else if (fair_policy(policy))
7186 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7187 
7188 	/*
7189 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7190 	 * !rt_policy. Always setting this ensures that things like
7191 	 * getparam()/getattr() don't report silly values for !rt tasks.
7192 	 */
7193 	p->rt_priority = attr->sched_priority;
7194 	p->normal_prio = normal_prio(p);
7195 	set_load_weight(p, true);
7196 }
7197 
7198 /*
7199  * Check the target process has a UID that matches the current process's:
7200  */
7201 static bool check_same_owner(struct task_struct *p)
7202 {
7203 	const struct cred *cred = current_cred(), *pcred;
7204 	bool match;
7205 
7206 	rcu_read_lock();
7207 	pcred = __task_cred(p);
7208 	match = (uid_eq(cred->euid, pcred->euid) ||
7209 		 uid_eq(cred->euid, pcred->uid));
7210 	rcu_read_unlock();
7211 	return match;
7212 }
7213 
7214 static int __sched_setscheduler(struct task_struct *p,
7215 				const struct sched_attr *attr,
7216 				bool user, bool pi)
7217 {
7218 	int oldpolicy = -1, policy = attr->sched_policy;
7219 	int retval, oldprio, newprio, queued, running;
7220 	const struct sched_class *prev_class;
7221 	struct callback_head *head;
7222 	struct rq_flags rf;
7223 	int reset_on_fork;
7224 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7225 	struct rq *rq;
7226 
7227 	/* The pi code expects interrupts enabled */
7228 	BUG_ON(pi && in_interrupt());
7229 recheck:
7230 	/* Double check policy once rq lock held: */
7231 	if (policy < 0) {
7232 		reset_on_fork = p->sched_reset_on_fork;
7233 		policy = oldpolicy = p->policy;
7234 	} else {
7235 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7236 
7237 		if (!valid_policy(policy))
7238 			return -EINVAL;
7239 	}
7240 
7241 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7242 		return -EINVAL;
7243 
7244 	/*
7245 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7246 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7247 	 * SCHED_BATCH and SCHED_IDLE is 0.
7248 	 */
7249 	if (attr->sched_priority > MAX_RT_PRIO-1)
7250 		return -EINVAL;
7251 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7252 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7253 		return -EINVAL;
7254 
7255 	/*
7256 	 * Allow unprivileged RT tasks to decrease priority:
7257 	 */
7258 	if (user && !capable(CAP_SYS_NICE)) {
7259 		if (fair_policy(policy)) {
7260 			if (attr->sched_nice < task_nice(p) &&
7261 			    !can_nice(p, attr->sched_nice))
7262 				return -EPERM;
7263 		}
7264 
7265 		if (rt_policy(policy)) {
7266 			unsigned long rlim_rtprio =
7267 					task_rlimit(p, RLIMIT_RTPRIO);
7268 
7269 			/* Can't set/change the rt policy: */
7270 			if (policy != p->policy && !rlim_rtprio)
7271 				return -EPERM;
7272 
7273 			/* Can't increase priority: */
7274 			if (attr->sched_priority > p->rt_priority &&
7275 			    attr->sched_priority > rlim_rtprio)
7276 				return -EPERM;
7277 		}
7278 
7279 		 /*
7280 		  * Can't set/change SCHED_DEADLINE policy at all for now
7281 		  * (safest behavior); in the future we would like to allow
7282 		  * unprivileged DL tasks to increase their relative deadline
7283 		  * or reduce their runtime (both ways reducing utilization)
7284 		  */
7285 		if (dl_policy(policy))
7286 			return -EPERM;
7287 
7288 		/*
7289 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7290 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7291 		 */
7292 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
7293 			if (!can_nice(p, task_nice(p)))
7294 				return -EPERM;
7295 		}
7296 
7297 		/* Can't change other user's priorities: */
7298 		if (!check_same_owner(p))
7299 			return -EPERM;
7300 
7301 		/* Normal users shall not reset the sched_reset_on_fork flag: */
7302 		if (p->sched_reset_on_fork && !reset_on_fork)
7303 			return -EPERM;
7304 	}
7305 
7306 	if (user) {
7307 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7308 			return -EINVAL;
7309 
7310 		retval = security_task_setscheduler(p);
7311 		if (retval)
7312 			return retval;
7313 	}
7314 
7315 	/* Update task specific "requested" clamps */
7316 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7317 		retval = uclamp_validate(p, attr);
7318 		if (retval)
7319 			return retval;
7320 	}
7321 
7322 	if (pi)
7323 		cpuset_read_lock();
7324 
7325 	/*
7326 	 * Make sure no PI-waiters arrive (or leave) while we are
7327 	 * changing the priority of the task:
7328 	 *
7329 	 * To be able to change p->policy safely, the appropriate
7330 	 * runqueue lock must be held.
7331 	 */
7332 	rq = task_rq_lock(p, &rf);
7333 	update_rq_clock(rq);
7334 
7335 	/*
7336 	 * Changing the policy of the stop threads its a very bad idea:
7337 	 */
7338 	if (p == rq->stop) {
7339 		retval = -EINVAL;
7340 		goto unlock;
7341 	}
7342 
7343 	/*
7344 	 * If not changing anything there's no need to proceed further,
7345 	 * but store a possible modification of reset_on_fork.
7346 	 */
7347 	if (unlikely(policy == p->policy)) {
7348 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7349 			goto change;
7350 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7351 			goto change;
7352 		if (dl_policy(policy) && dl_param_changed(p, attr))
7353 			goto change;
7354 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7355 			goto change;
7356 
7357 		p->sched_reset_on_fork = reset_on_fork;
7358 		retval = 0;
7359 		goto unlock;
7360 	}
7361 change:
7362 
7363 	if (user) {
7364 #ifdef CONFIG_RT_GROUP_SCHED
7365 		/*
7366 		 * Do not allow realtime tasks into groups that have no runtime
7367 		 * assigned.
7368 		 */
7369 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7370 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7371 				!task_group_is_autogroup(task_group(p))) {
7372 			retval = -EPERM;
7373 			goto unlock;
7374 		}
7375 #endif
7376 #ifdef CONFIG_SMP
7377 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7378 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7379 			cpumask_t *span = rq->rd->span;
7380 
7381 			/*
7382 			 * Don't allow tasks with an affinity mask smaller than
7383 			 * the entire root_domain to become SCHED_DEADLINE. We
7384 			 * will also fail if there's no bandwidth available.
7385 			 */
7386 			if (!cpumask_subset(span, p->cpus_ptr) ||
7387 			    rq->rd->dl_bw.bw == 0) {
7388 				retval = -EPERM;
7389 				goto unlock;
7390 			}
7391 		}
7392 #endif
7393 	}
7394 
7395 	/* Re-check policy now with rq lock held: */
7396 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7397 		policy = oldpolicy = -1;
7398 		task_rq_unlock(rq, p, &rf);
7399 		if (pi)
7400 			cpuset_read_unlock();
7401 		goto recheck;
7402 	}
7403 
7404 	/*
7405 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7406 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7407 	 * is available.
7408 	 */
7409 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7410 		retval = -EBUSY;
7411 		goto unlock;
7412 	}
7413 
7414 	p->sched_reset_on_fork = reset_on_fork;
7415 	oldprio = p->prio;
7416 
7417 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7418 	if (pi) {
7419 		/*
7420 		 * Take priority boosted tasks into account. If the new
7421 		 * effective priority is unchanged, we just store the new
7422 		 * normal parameters and do not touch the scheduler class and
7423 		 * the runqueue. This will be done when the task deboost
7424 		 * itself.
7425 		 */
7426 		newprio = rt_effective_prio(p, newprio);
7427 		if (newprio == oldprio)
7428 			queue_flags &= ~DEQUEUE_MOVE;
7429 	}
7430 
7431 	queued = task_on_rq_queued(p);
7432 	running = task_current(rq, p);
7433 	if (queued)
7434 		dequeue_task(rq, p, queue_flags);
7435 	if (running)
7436 		put_prev_task(rq, p);
7437 
7438 	prev_class = p->sched_class;
7439 
7440 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7441 		__setscheduler_params(p, attr);
7442 		__setscheduler_prio(p, newprio);
7443 	}
7444 	__setscheduler_uclamp(p, attr);
7445 
7446 	if (queued) {
7447 		/*
7448 		 * We enqueue to tail when the priority of a task is
7449 		 * increased (user space view).
7450 		 */
7451 		if (oldprio < p->prio)
7452 			queue_flags |= ENQUEUE_HEAD;
7453 
7454 		enqueue_task(rq, p, queue_flags);
7455 	}
7456 	if (running)
7457 		set_next_task(rq, p);
7458 
7459 	check_class_changed(rq, p, prev_class, oldprio);
7460 
7461 	/* Avoid rq from going away on us: */
7462 	preempt_disable();
7463 	head = splice_balance_callbacks(rq);
7464 	task_rq_unlock(rq, p, &rf);
7465 
7466 	if (pi) {
7467 		cpuset_read_unlock();
7468 		rt_mutex_adjust_pi(p);
7469 	}
7470 
7471 	/* Run balance callbacks after we've adjusted the PI chain: */
7472 	balance_callbacks(rq, head);
7473 	preempt_enable();
7474 
7475 	return 0;
7476 
7477 unlock:
7478 	task_rq_unlock(rq, p, &rf);
7479 	if (pi)
7480 		cpuset_read_unlock();
7481 	return retval;
7482 }
7483 
7484 static int _sched_setscheduler(struct task_struct *p, int policy,
7485 			       const struct sched_param *param, bool check)
7486 {
7487 	struct sched_attr attr = {
7488 		.sched_policy   = policy,
7489 		.sched_priority = param->sched_priority,
7490 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7491 	};
7492 
7493 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7494 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7495 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7496 		policy &= ~SCHED_RESET_ON_FORK;
7497 		attr.sched_policy = policy;
7498 	}
7499 
7500 	return __sched_setscheduler(p, &attr, check, true);
7501 }
7502 /**
7503  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7504  * @p: the task in question.
7505  * @policy: new policy.
7506  * @param: structure containing the new RT priority.
7507  *
7508  * Use sched_set_fifo(), read its comment.
7509  *
7510  * Return: 0 on success. An error code otherwise.
7511  *
7512  * NOTE that the task may be already dead.
7513  */
7514 int sched_setscheduler(struct task_struct *p, int policy,
7515 		       const struct sched_param *param)
7516 {
7517 	return _sched_setscheduler(p, policy, param, true);
7518 }
7519 
7520 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7521 {
7522 	return __sched_setscheduler(p, attr, true, true);
7523 }
7524 
7525 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7526 {
7527 	return __sched_setscheduler(p, attr, false, true);
7528 }
7529 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7530 
7531 /**
7532  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7533  * @p: the task in question.
7534  * @policy: new policy.
7535  * @param: structure containing the new RT priority.
7536  *
7537  * Just like sched_setscheduler, only don't bother checking if the
7538  * current context has permission.  For example, this is needed in
7539  * stop_machine(): we create temporary high priority worker threads,
7540  * but our caller might not have that capability.
7541  *
7542  * Return: 0 on success. An error code otherwise.
7543  */
7544 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7545 			       const struct sched_param *param)
7546 {
7547 	return _sched_setscheduler(p, policy, param, false);
7548 }
7549 
7550 /*
7551  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7552  * incapable of resource management, which is the one thing an OS really should
7553  * be doing.
7554  *
7555  * This is of course the reason it is limited to privileged users only.
7556  *
7557  * Worse still; it is fundamentally impossible to compose static priority
7558  * workloads. You cannot take two correctly working static prio workloads
7559  * and smash them together and still expect them to work.
7560  *
7561  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7562  *
7563  *   MAX_RT_PRIO / 2
7564  *
7565  * The administrator _MUST_ configure the system, the kernel simply doesn't
7566  * know enough information to make a sensible choice.
7567  */
7568 void sched_set_fifo(struct task_struct *p)
7569 {
7570 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7571 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7572 }
7573 EXPORT_SYMBOL_GPL(sched_set_fifo);
7574 
7575 /*
7576  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7577  */
7578 void sched_set_fifo_low(struct task_struct *p)
7579 {
7580 	struct sched_param sp = { .sched_priority = 1 };
7581 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7582 }
7583 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7584 
7585 void sched_set_normal(struct task_struct *p, int nice)
7586 {
7587 	struct sched_attr attr = {
7588 		.sched_policy = SCHED_NORMAL,
7589 		.sched_nice = nice,
7590 	};
7591 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7592 }
7593 EXPORT_SYMBOL_GPL(sched_set_normal);
7594 
7595 static int
7596 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7597 {
7598 	struct sched_param lparam;
7599 	struct task_struct *p;
7600 	int retval;
7601 
7602 	if (!param || pid < 0)
7603 		return -EINVAL;
7604 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7605 		return -EFAULT;
7606 
7607 	rcu_read_lock();
7608 	retval = -ESRCH;
7609 	p = find_process_by_pid(pid);
7610 	if (likely(p))
7611 		get_task_struct(p);
7612 	rcu_read_unlock();
7613 
7614 	if (likely(p)) {
7615 		retval = sched_setscheduler(p, policy, &lparam);
7616 		put_task_struct(p);
7617 	}
7618 
7619 	return retval;
7620 }
7621 
7622 /*
7623  * Mimics kernel/events/core.c perf_copy_attr().
7624  */
7625 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7626 {
7627 	u32 size;
7628 	int ret;
7629 
7630 	/* Zero the full structure, so that a short copy will be nice: */
7631 	memset(attr, 0, sizeof(*attr));
7632 
7633 	ret = get_user(size, &uattr->size);
7634 	if (ret)
7635 		return ret;
7636 
7637 	/* ABI compatibility quirk: */
7638 	if (!size)
7639 		size = SCHED_ATTR_SIZE_VER0;
7640 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7641 		goto err_size;
7642 
7643 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7644 	if (ret) {
7645 		if (ret == -E2BIG)
7646 			goto err_size;
7647 		return ret;
7648 	}
7649 
7650 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7651 	    size < SCHED_ATTR_SIZE_VER1)
7652 		return -EINVAL;
7653 
7654 	/*
7655 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7656 	 * to be strict and return an error on out-of-bounds values?
7657 	 */
7658 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7659 
7660 	return 0;
7661 
7662 err_size:
7663 	put_user(sizeof(*attr), &uattr->size);
7664 	return -E2BIG;
7665 }
7666 
7667 static void get_params(struct task_struct *p, struct sched_attr *attr)
7668 {
7669 	if (task_has_dl_policy(p))
7670 		__getparam_dl(p, attr);
7671 	else if (task_has_rt_policy(p))
7672 		attr->sched_priority = p->rt_priority;
7673 	else
7674 		attr->sched_nice = task_nice(p);
7675 }
7676 
7677 /**
7678  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7679  * @pid: the pid in question.
7680  * @policy: new policy.
7681  * @param: structure containing the new RT priority.
7682  *
7683  * Return: 0 on success. An error code otherwise.
7684  */
7685 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7686 {
7687 	if (policy < 0)
7688 		return -EINVAL;
7689 
7690 	return do_sched_setscheduler(pid, policy, param);
7691 }
7692 
7693 /**
7694  * sys_sched_setparam - set/change the RT priority of a thread
7695  * @pid: the pid in question.
7696  * @param: structure containing the new RT priority.
7697  *
7698  * Return: 0 on success. An error code otherwise.
7699  */
7700 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7701 {
7702 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7703 }
7704 
7705 /**
7706  * sys_sched_setattr - same as above, but with extended sched_attr
7707  * @pid: the pid in question.
7708  * @uattr: structure containing the extended parameters.
7709  * @flags: for future extension.
7710  */
7711 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7712 			       unsigned int, flags)
7713 {
7714 	struct sched_attr attr;
7715 	struct task_struct *p;
7716 	int retval;
7717 
7718 	if (!uattr || pid < 0 || flags)
7719 		return -EINVAL;
7720 
7721 	retval = sched_copy_attr(uattr, &attr);
7722 	if (retval)
7723 		return retval;
7724 
7725 	if ((int)attr.sched_policy < 0)
7726 		return -EINVAL;
7727 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7728 		attr.sched_policy = SETPARAM_POLICY;
7729 
7730 	rcu_read_lock();
7731 	retval = -ESRCH;
7732 	p = find_process_by_pid(pid);
7733 	if (likely(p))
7734 		get_task_struct(p);
7735 	rcu_read_unlock();
7736 
7737 	if (likely(p)) {
7738 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7739 			get_params(p, &attr);
7740 		retval = sched_setattr(p, &attr);
7741 		put_task_struct(p);
7742 	}
7743 
7744 	return retval;
7745 }
7746 
7747 /**
7748  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7749  * @pid: the pid in question.
7750  *
7751  * Return: On success, the policy of the thread. Otherwise, a negative error
7752  * code.
7753  */
7754 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7755 {
7756 	struct task_struct *p;
7757 	int retval;
7758 
7759 	if (pid < 0)
7760 		return -EINVAL;
7761 
7762 	retval = -ESRCH;
7763 	rcu_read_lock();
7764 	p = find_process_by_pid(pid);
7765 	if (p) {
7766 		retval = security_task_getscheduler(p);
7767 		if (!retval)
7768 			retval = p->policy
7769 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7770 	}
7771 	rcu_read_unlock();
7772 	return retval;
7773 }
7774 
7775 /**
7776  * sys_sched_getparam - get the RT priority of a thread
7777  * @pid: the pid in question.
7778  * @param: structure containing the RT priority.
7779  *
7780  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7781  * code.
7782  */
7783 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7784 {
7785 	struct sched_param lp = { .sched_priority = 0 };
7786 	struct task_struct *p;
7787 	int retval;
7788 
7789 	if (!param || pid < 0)
7790 		return -EINVAL;
7791 
7792 	rcu_read_lock();
7793 	p = find_process_by_pid(pid);
7794 	retval = -ESRCH;
7795 	if (!p)
7796 		goto out_unlock;
7797 
7798 	retval = security_task_getscheduler(p);
7799 	if (retval)
7800 		goto out_unlock;
7801 
7802 	if (task_has_rt_policy(p))
7803 		lp.sched_priority = p->rt_priority;
7804 	rcu_read_unlock();
7805 
7806 	/*
7807 	 * This one might sleep, we cannot do it with a spinlock held ...
7808 	 */
7809 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7810 
7811 	return retval;
7812 
7813 out_unlock:
7814 	rcu_read_unlock();
7815 	return retval;
7816 }
7817 
7818 /*
7819  * Copy the kernel size attribute structure (which might be larger
7820  * than what user-space knows about) to user-space.
7821  *
7822  * Note that all cases are valid: user-space buffer can be larger or
7823  * smaller than the kernel-space buffer. The usual case is that both
7824  * have the same size.
7825  */
7826 static int
7827 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7828 			struct sched_attr *kattr,
7829 			unsigned int usize)
7830 {
7831 	unsigned int ksize = sizeof(*kattr);
7832 
7833 	if (!access_ok(uattr, usize))
7834 		return -EFAULT;
7835 
7836 	/*
7837 	 * sched_getattr() ABI forwards and backwards compatibility:
7838 	 *
7839 	 * If usize == ksize then we just copy everything to user-space and all is good.
7840 	 *
7841 	 * If usize < ksize then we only copy as much as user-space has space for,
7842 	 * this keeps ABI compatibility as well. We skip the rest.
7843 	 *
7844 	 * If usize > ksize then user-space is using a newer version of the ABI,
7845 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7846 	 * detect the kernel's knowledge of attributes from the attr->size value
7847 	 * which is set to ksize in this case.
7848 	 */
7849 	kattr->size = min(usize, ksize);
7850 
7851 	if (copy_to_user(uattr, kattr, kattr->size))
7852 		return -EFAULT;
7853 
7854 	return 0;
7855 }
7856 
7857 /**
7858  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7859  * @pid: the pid in question.
7860  * @uattr: structure containing the extended parameters.
7861  * @usize: sizeof(attr) for fwd/bwd comp.
7862  * @flags: for future extension.
7863  */
7864 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7865 		unsigned int, usize, unsigned int, flags)
7866 {
7867 	struct sched_attr kattr = { };
7868 	struct task_struct *p;
7869 	int retval;
7870 
7871 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7872 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7873 		return -EINVAL;
7874 
7875 	rcu_read_lock();
7876 	p = find_process_by_pid(pid);
7877 	retval = -ESRCH;
7878 	if (!p)
7879 		goto out_unlock;
7880 
7881 	retval = security_task_getscheduler(p);
7882 	if (retval)
7883 		goto out_unlock;
7884 
7885 	kattr.sched_policy = p->policy;
7886 	if (p->sched_reset_on_fork)
7887 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7888 	get_params(p, &kattr);
7889 	kattr.sched_flags &= SCHED_FLAG_ALL;
7890 
7891 #ifdef CONFIG_UCLAMP_TASK
7892 	/*
7893 	 * This could race with another potential updater, but this is fine
7894 	 * because it'll correctly read the old or the new value. We don't need
7895 	 * to guarantee who wins the race as long as it doesn't return garbage.
7896 	 */
7897 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7898 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7899 #endif
7900 
7901 	rcu_read_unlock();
7902 
7903 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7904 
7905 out_unlock:
7906 	rcu_read_unlock();
7907 	return retval;
7908 }
7909 
7910 #ifdef CONFIG_SMP
7911 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7912 {
7913 	int ret = 0;
7914 
7915 	/*
7916 	 * If the task isn't a deadline task or admission control is
7917 	 * disabled then we don't care about affinity changes.
7918 	 */
7919 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7920 		return 0;
7921 
7922 	/*
7923 	 * Since bandwidth control happens on root_domain basis,
7924 	 * if admission test is enabled, we only admit -deadline
7925 	 * tasks allowed to run on all the CPUs in the task's
7926 	 * root_domain.
7927 	 */
7928 	rcu_read_lock();
7929 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
7930 		ret = -EBUSY;
7931 	rcu_read_unlock();
7932 	return ret;
7933 }
7934 #endif
7935 
7936 static int
7937 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7938 {
7939 	int retval;
7940 	cpumask_var_t cpus_allowed, new_mask;
7941 
7942 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7943 		return -ENOMEM;
7944 
7945 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7946 		retval = -ENOMEM;
7947 		goto out_free_cpus_allowed;
7948 	}
7949 
7950 	cpuset_cpus_allowed(p, cpus_allowed);
7951 	cpumask_and(new_mask, mask, cpus_allowed);
7952 
7953 	retval = dl_task_check_affinity(p, new_mask);
7954 	if (retval)
7955 		goto out_free_new_mask;
7956 again:
7957 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7958 	if (retval)
7959 		goto out_free_new_mask;
7960 
7961 	cpuset_cpus_allowed(p, cpus_allowed);
7962 	if (!cpumask_subset(new_mask, cpus_allowed)) {
7963 		/*
7964 		 * We must have raced with a concurrent cpuset update.
7965 		 * Just reset the cpumask to the cpuset's cpus_allowed.
7966 		 */
7967 		cpumask_copy(new_mask, cpus_allowed);
7968 		goto again;
7969 	}
7970 
7971 out_free_new_mask:
7972 	free_cpumask_var(new_mask);
7973 out_free_cpus_allowed:
7974 	free_cpumask_var(cpus_allowed);
7975 	return retval;
7976 }
7977 
7978 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7979 {
7980 	struct task_struct *p;
7981 	int retval;
7982 
7983 	rcu_read_lock();
7984 
7985 	p = find_process_by_pid(pid);
7986 	if (!p) {
7987 		rcu_read_unlock();
7988 		return -ESRCH;
7989 	}
7990 
7991 	/* Prevent p going away */
7992 	get_task_struct(p);
7993 	rcu_read_unlock();
7994 
7995 	if (p->flags & PF_NO_SETAFFINITY) {
7996 		retval = -EINVAL;
7997 		goto out_put_task;
7998 	}
7999 
8000 	if (!check_same_owner(p)) {
8001 		rcu_read_lock();
8002 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8003 			rcu_read_unlock();
8004 			retval = -EPERM;
8005 			goto out_put_task;
8006 		}
8007 		rcu_read_unlock();
8008 	}
8009 
8010 	retval = security_task_setscheduler(p);
8011 	if (retval)
8012 		goto out_put_task;
8013 
8014 	retval = __sched_setaffinity(p, in_mask);
8015 out_put_task:
8016 	put_task_struct(p);
8017 	return retval;
8018 }
8019 
8020 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8021 			     struct cpumask *new_mask)
8022 {
8023 	if (len < cpumask_size())
8024 		cpumask_clear(new_mask);
8025 	else if (len > cpumask_size())
8026 		len = cpumask_size();
8027 
8028 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8029 }
8030 
8031 /**
8032  * sys_sched_setaffinity - set the CPU affinity of a process
8033  * @pid: pid of the process
8034  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8035  * @user_mask_ptr: user-space pointer to the new CPU mask
8036  *
8037  * Return: 0 on success. An error code otherwise.
8038  */
8039 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8040 		unsigned long __user *, user_mask_ptr)
8041 {
8042 	cpumask_var_t new_mask;
8043 	int retval;
8044 
8045 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8046 		return -ENOMEM;
8047 
8048 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8049 	if (retval == 0)
8050 		retval = sched_setaffinity(pid, new_mask);
8051 	free_cpumask_var(new_mask);
8052 	return retval;
8053 }
8054 
8055 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8056 {
8057 	struct task_struct *p;
8058 	unsigned long flags;
8059 	int retval;
8060 
8061 	rcu_read_lock();
8062 
8063 	retval = -ESRCH;
8064 	p = find_process_by_pid(pid);
8065 	if (!p)
8066 		goto out_unlock;
8067 
8068 	retval = security_task_getscheduler(p);
8069 	if (retval)
8070 		goto out_unlock;
8071 
8072 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8073 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8074 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8075 
8076 out_unlock:
8077 	rcu_read_unlock();
8078 
8079 	return retval;
8080 }
8081 
8082 /**
8083  * sys_sched_getaffinity - get the CPU affinity of a process
8084  * @pid: pid of the process
8085  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8086  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8087  *
8088  * Return: size of CPU mask copied to user_mask_ptr on success. An
8089  * error code otherwise.
8090  */
8091 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8092 		unsigned long __user *, user_mask_ptr)
8093 {
8094 	int ret;
8095 	cpumask_var_t mask;
8096 
8097 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8098 		return -EINVAL;
8099 	if (len & (sizeof(unsigned long)-1))
8100 		return -EINVAL;
8101 
8102 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8103 		return -ENOMEM;
8104 
8105 	ret = sched_getaffinity(pid, mask);
8106 	if (ret == 0) {
8107 		unsigned int retlen = min(len, cpumask_size());
8108 
8109 		if (copy_to_user(user_mask_ptr, mask, retlen))
8110 			ret = -EFAULT;
8111 		else
8112 			ret = retlen;
8113 	}
8114 	free_cpumask_var(mask);
8115 
8116 	return ret;
8117 }
8118 
8119 static void do_sched_yield(void)
8120 {
8121 	struct rq_flags rf;
8122 	struct rq *rq;
8123 
8124 	rq = this_rq_lock_irq(&rf);
8125 
8126 	schedstat_inc(rq->yld_count);
8127 	current->sched_class->yield_task(rq);
8128 
8129 	preempt_disable();
8130 	rq_unlock_irq(rq, &rf);
8131 	sched_preempt_enable_no_resched();
8132 
8133 	schedule();
8134 }
8135 
8136 /**
8137  * sys_sched_yield - yield the current processor to other threads.
8138  *
8139  * This function yields the current CPU to other tasks. If there are no
8140  * other threads running on this CPU then this function will return.
8141  *
8142  * Return: 0.
8143  */
8144 SYSCALL_DEFINE0(sched_yield)
8145 {
8146 	do_sched_yield();
8147 	return 0;
8148 }
8149 
8150 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8151 int __sched __cond_resched(void)
8152 {
8153 	if (should_resched(0)) {
8154 		preempt_schedule_common();
8155 		return 1;
8156 	}
8157 	/*
8158 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8159 	 * whether the current CPU is in an RCU read-side critical section,
8160 	 * so the tick can report quiescent states even for CPUs looping
8161 	 * in kernel context.  In contrast, in non-preemptible kernels,
8162 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8163 	 * processes executing in kernel context might never report an
8164 	 * RCU quiescent state.  Therefore, the following code causes
8165 	 * cond_resched() to report a quiescent state, but only when RCU
8166 	 * is in urgent need of one.
8167 	 */
8168 #ifndef CONFIG_PREEMPT_RCU
8169 	rcu_all_qs();
8170 #endif
8171 	return 0;
8172 }
8173 EXPORT_SYMBOL(__cond_resched);
8174 #endif
8175 
8176 #ifdef CONFIG_PREEMPT_DYNAMIC
8177 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8178 #define cond_resched_dynamic_enabled	__cond_resched
8179 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8180 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8181 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8182 
8183 #define might_resched_dynamic_enabled	__cond_resched
8184 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8185 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8186 EXPORT_STATIC_CALL_TRAMP(might_resched);
8187 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8188 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8189 int __sched dynamic_cond_resched(void)
8190 {
8191 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8192 		return 0;
8193 	return __cond_resched();
8194 }
8195 EXPORT_SYMBOL(dynamic_cond_resched);
8196 
8197 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8198 int __sched dynamic_might_resched(void)
8199 {
8200 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8201 		return 0;
8202 	return __cond_resched();
8203 }
8204 EXPORT_SYMBOL(dynamic_might_resched);
8205 #endif
8206 #endif
8207 
8208 /*
8209  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8210  * call schedule, and on return reacquire the lock.
8211  *
8212  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8213  * operations here to prevent schedule() from being called twice (once via
8214  * spin_unlock(), once by hand).
8215  */
8216 int __cond_resched_lock(spinlock_t *lock)
8217 {
8218 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8219 	int ret = 0;
8220 
8221 	lockdep_assert_held(lock);
8222 
8223 	if (spin_needbreak(lock) || resched) {
8224 		spin_unlock(lock);
8225 		if (!_cond_resched())
8226 			cpu_relax();
8227 		ret = 1;
8228 		spin_lock(lock);
8229 	}
8230 	return ret;
8231 }
8232 EXPORT_SYMBOL(__cond_resched_lock);
8233 
8234 int __cond_resched_rwlock_read(rwlock_t *lock)
8235 {
8236 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8237 	int ret = 0;
8238 
8239 	lockdep_assert_held_read(lock);
8240 
8241 	if (rwlock_needbreak(lock) || resched) {
8242 		read_unlock(lock);
8243 		if (!_cond_resched())
8244 			cpu_relax();
8245 		ret = 1;
8246 		read_lock(lock);
8247 	}
8248 	return ret;
8249 }
8250 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8251 
8252 int __cond_resched_rwlock_write(rwlock_t *lock)
8253 {
8254 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8255 	int ret = 0;
8256 
8257 	lockdep_assert_held_write(lock);
8258 
8259 	if (rwlock_needbreak(lock) || resched) {
8260 		write_unlock(lock);
8261 		if (!_cond_resched())
8262 			cpu_relax();
8263 		ret = 1;
8264 		write_lock(lock);
8265 	}
8266 	return ret;
8267 }
8268 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8269 
8270 #ifdef CONFIG_PREEMPT_DYNAMIC
8271 
8272 #ifdef CONFIG_GENERIC_ENTRY
8273 #include <linux/entry-common.h>
8274 #endif
8275 
8276 /*
8277  * SC:cond_resched
8278  * SC:might_resched
8279  * SC:preempt_schedule
8280  * SC:preempt_schedule_notrace
8281  * SC:irqentry_exit_cond_resched
8282  *
8283  *
8284  * NONE:
8285  *   cond_resched               <- __cond_resched
8286  *   might_resched              <- RET0
8287  *   preempt_schedule           <- NOP
8288  *   preempt_schedule_notrace   <- NOP
8289  *   irqentry_exit_cond_resched <- NOP
8290  *
8291  * VOLUNTARY:
8292  *   cond_resched               <- __cond_resched
8293  *   might_resched              <- __cond_resched
8294  *   preempt_schedule           <- NOP
8295  *   preempt_schedule_notrace   <- NOP
8296  *   irqentry_exit_cond_resched <- NOP
8297  *
8298  * FULL:
8299  *   cond_resched               <- RET0
8300  *   might_resched              <- RET0
8301  *   preempt_schedule           <- preempt_schedule
8302  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8303  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8304  */
8305 
8306 enum {
8307 	preempt_dynamic_undefined = -1,
8308 	preempt_dynamic_none,
8309 	preempt_dynamic_voluntary,
8310 	preempt_dynamic_full,
8311 };
8312 
8313 int preempt_dynamic_mode = preempt_dynamic_undefined;
8314 
8315 int sched_dynamic_mode(const char *str)
8316 {
8317 	if (!strcmp(str, "none"))
8318 		return preempt_dynamic_none;
8319 
8320 	if (!strcmp(str, "voluntary"))
8321 		return preempt_dynamic_voluntary;
8322 
8323 	if (!strcmp(str, "full"))
8324 		return preempt_dynamic_full;
8325 
8326 	return -EINVAL;
8327 }
8328 
8329 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8330 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8331 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8332 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8333 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8334 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8335 #else
8336 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8337 #endif
8338 
8339 void sched_dynamic_update(int mode)
8340 {
8341 	/*
8342 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8343 	 * the ZERO state, which is invalid.
8344 	 */
8345 	preempt_dynamic_enable(cond_resched);
8346 	preempt_dynamic_enable(might_resched);
8347 	preempt_dynamic_enable(preempt_schedule);
8348 	preempt_dynamic_enable(preempt_schedule_notrace);
8349 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8350 
8351 	switch (mode) {
8352 	case preempt_dynamic_none:
8353 		preempt_dynamic_enable(cond_resched);
8354 		preempt_dynamic_disable(might_resched);
8355 		preempt_dynamic_disable(preempt_schedule);
8356 		preempt_dynamic_disable(preempt_schedule_notrace);
8357 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8358 		pr_info("Dynamic Preempt: none\n");
8359 		break;
8360 
8361 	case preempt_dynamic_voluntary:
8362 		preempt_dynamic_enable(cond_resched);
8363 		preempt_dynamic_enable(might_resched);
8364 		preempt_dynamic_disable(preempt_schedule);
8365 		preempt_dynamic_disable(preempt_schedule_notrace);
8366 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8367 		pr_info("Dynamic Preempt: voluntary\n");
8368 		break;
8369 
8370 	case preempt_dynamic_full:
8371 		preempt_dynamic_disable(cond_resched);
8372 		preempt_dynamic_disable(might_resched);
8373 		preempt_dynamic_enable(preempt_schedule);
8374 		preempt_dynamic_enable(preempt_schedule_notrace);
8375 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8376 		pr_info("Dynamic Preempt: full\n");
8377 		break;
8378 	}
8379 
8380 	preempt_dynamic_mode = mode;
8381 }
8382 
8383 static int __init setup_preempt_mode(char *str)
8384 {
8385 	int mode = sched_dynamic_mode(str);
8386 	if (mode < 0) {
8387 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8388 		return 0;
8389 	}
8390 
8391 	sched_dynamic_update(mode);
8392 	return 1;
8393 }
8394 __setup("preempt=", setup_preempt_mode);
8395 
8396 static void __init preempt_dynamic_init(void)
8397 {
8398 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8399 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8400 			sched_dynamic_update(preempt_dynamic_none);
8401 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8402 			sched_dynamic_update(preempt_dynamic_voluntary);
8403 		} else {
8404 			/* Default static call setting, nothing to do */
8405 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8406 			preempt_dynamic_mode = preempt_dynamic_full;
8407 			pr_info("Dynamic Preempt: full\n");
8408 		}
8409 	}
8410 }
8411 
8412 #else /* !CONFIG_PREEMPT_DYNAMIC */
8413 
8414 static inline void preempt_dynamic_init(void) { }
8415 
8416 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8417 
8418 /**
8419  * yield - yield the current processor to other threads.
8420  *
8421  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8422  *
8423  * The scheduler is at all times free to pick the calling task as the most
8424  * eligible task to run, if removing the yield() call from your code breaks
8425  * it, it's already broken.
8426  *
8427  * Typical broken usage is:
8428  *
8429  * while (!event)
8430  *	yield();
8431  *
8432  * where one assumes that yield() will let 'the other' process run that will
8433  * make event true. If the current task is a SCHED_FIFO task that will never
8434  * happen. Never use yield() as a progress guarantee!!
8435  *
8436  * If you want to use yield() to wait for something, use wait_event().
8437  * If you want to use yield() to be 'nice' for others, use cond_resched().
8438  * If you still want to use yield(), do not!
8439  */
8440 void __sched yield(void)
8441 {
8442 	set_current_state(TASK_RUNNING);
8443 	do_sched_yield();
8444 }
8445 EXPORT_SYMBOL(yield);
8446 
8447 /**
8448  * yield_to - yield the current processor to another thread in
8449  * your thread group, or accelerate that thread toward the
8450  * processor it's on.
8451  * @p: target task
8452  * @preempt: whether task preemption is allowed or not
8453  *
8454  * It's the caller's job to ensure that the target task struct
8455  * can't go away on us before we can do any checks.
8456  *
8457  * Return:
8458  *	true (>0) if we indeed boosted the target task.
8459  *	false (0) if we failed to boost the target.
8460  *	-ESRCH if there's no task to yield to.
8461  */
8462 int __sched yield_to(struct task_struct *p, bool preempt)
8463 {
8464 	struct task_struct *curr = current;
8465 	struct rq *rq, *p_rq;
8466 	unsigned long flags;
8467 	int yielded = 0;
8468 
8469 	local_irq_save(flags);
8470 	rq = this_rq();
8471 
8472 again:
8473 	p_rq = task_rq(p);
8474 	/*
8475 	 * If we're the only runnable task on the rq and target rq also
8476 	 * has only one task, there's absolutely no point in yielding.
8477 	 */
8478 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8479 		yielded = -ESRCH;
8480 		goto out_irq;
8481 	}
8482 
8483 	double_rq_lock(rq, p_rq);
8484 	if (task_rq(p) != p_rq) {
8485 		double_rq_unlock(rq, p_rq);
8486 		goto again;
8487 	}
8488 
8489 	if (!curr->sched_class->yield_to_task)
8490 		goto out_unlock;
8491 
8492 	if (curr->sched_class != p->sched_class)
8493 		goto out_unlock;
8494 
8495 	if (task_running(p_rq, p) || !task_is_running(p))
8496 		goto out_unlock;
8497 
8498 	yielded = curr->sched_class->yield_to_task(rq, p);
8499 	if (yielded) {
8500 		schedstat_inc(rq->yld_count);
8501 		/*
8502 		 * Make p's CPU reschedule; pick_next_entity takes care of
8503 		 * fairness.
8504 		 */
8505 		if (preempt && rq != p_rq)
8506 			resched_curr(p_rq);
8507 	}
8508 
8509 out_unlock:
8510 	double_rq_unlock(rq, p_rq);
8511 out_irq:
8512 	local_irq_restore(flags);
8513 
8514 	if (yielded > 0)
8515 		schedule();
8516 
8517 	return yielded;
8518 }
8519 EXPORT_SYMBOL_GPL(yield_to);
8520 
8521 int io_schedule_prepare(void)
8522 {
8523 	int old_iowait = current->in_iowait;
8524 
8525 	current->in_iowait = 1;
8526 	blk_flush_plug(current->plug, true);
8527 	return old_iowait;
8528 }
8529 
8530 void io_schedule_finish(int token)
8531 {
8532 	current->in_iowait = token;
8533 }
8534 
8535 /*
8536  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8537  * that process accounting knows that this is a task in IO wait state.
8538  */
8539 long __sched io_schedule_timeout(long timeout)
8540 {
8541 	int token;
8542 	long ret;
8543 
8544 	token = io_schedule_prepare();
8545 	ret = schedule_timeout(timeout);
8546 	io_schedule_finish(token);
8547 
8548 	return ret;
8549 }
8550 EXPORT_SYMBOL(io_schedule_timeout);
8551 
8552 void __sched io_schedule(void)
8553 {
8554 	int token;
8555 
8556 	token = io_schedule_prepare();
8557 	schedule();
8558 	io_schedule_finish(token);
8559 }
8560 EXPORT_SYMBOL(io_schedule);
8561 
8562 /**
8563  * sys_sched_get_priority_max - return maximum RT priority.
8564  * @policy: scheduling class.
8565  *
8566  * Return: On success, this syscall returns the maximum
8567  * rt_priority that can be used by a given scheduling class.
8568  * On failure, a negative error code is returned.
8569  */
8570 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8571 {
8572 	int ret = -EINVAL;
8573 
8574 	switch (policy) {
8575 	case SCHED_FIFO:
8576 	case SCHED_RR:
8577 		ret = MAX_RT_PRIO-1;
8578 		break;
8579 	case SCHED_DEADLINE:
8580 	case SCHED_NORMAL:
8581 	case SCHED_BATCH:
8582 	case SCHED_IDLE:
8583 		ret = 0;
8584 		break;
8585 	}
8586 	return ret;
8587 }
8588 
8589 /**
8590  * sys_sched_get_priority_min - return minimum RT priority.
8591  * @policy: scheduling class.
8592  *
8593  * Return: On success, this syscall returns the minimum
8594  * rt_priority that can be used by a given scheduling class.
8595  * On failure, a negative error code is returned.
8596  */
8597 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8598 {
8599 	int ret = -EINVAL;
8600 
8601 	switch (policy) {
8602 	case SCHED_FIFO:
8603 	case SCHED_RR:
8604 		ret = 1;
8605 		break;
8606 	case SCHED_DEADLINE:
8607 	case SCHED_NORMAL:
8608 	case SCHED_BATCH:
8609 	case SCHED_IDLE:
8610 		ret = 0;
8611 	}
8612 	return ret;
8613 }
8614 
8615 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8616 {
8617 	struct task_struct *p;
8618 	unsigned int time_slice;
8619 	struct rq_flags rf;
8620 	struct rq *rq;
8621 	int retval;
8622 
8623 	if (pid < 0)
8624 		return -EINVAL;
8625 
8626 	retval = -ESRCH;
8627 	rcu_read_lock();
8628 	p = find_process_by_pid(pid);
8629 	if (!p)
8630 		goto out_unlock;
8631 
8632 	retval = security_task_getscheduler(p);
8633 	if (retval)
8634 		goto out_unlock;
8635 
8636 	rq = task_rq_lock(p, &rf);
8637 	time_slice = 0;
8638 	if (p->sched_class->get_rr_interval)
8639 		time_slice = p->sched_class->get_rr_interval(rq, p);
8640 	task_rq_unlock(rq, p, &rf);
8641 
8642 	rcu_read_unlock();
8643 	jiffies_to_timespec64(time_slice, t);
8644 	return 0;
8645 
8646 out_unlock:
8647 	rcu_read_unlock();
8648 	return retval;
8649 }
8650 
8651 /**
8652  * sys_sched_rr_get_interval - return the default timeslice of a process.
8653  * @pid: pid of the process.
8654  * @interval: userspace pointer to the timeslice value.
8655  *
8656  * this syscall writes the default timeslice value of a given process
8657  * into the user-space timespec buffer. A value of '0' means infinity.
8658  *
8659  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8660  * an error code.
8661  */
8662 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8663 		struct __kernel_timespec __user *, interval)
8664 {
8665 	struct timespec64 t;
8666 	int retval = sched_rr_get_interval(pid, &t);
8667 
8668 	if (retval == 0)
8669 		retval = put_timespec64(&t, interval);
8670 
8671 	return retval;
8672 }
8673 
8674 #ifdef CONFIG_COMPAT_32BIT_TIME
8675 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8676 		struct old_timespec32 __user *, interval)
8677 {
8678 	struct timespec64 t;
8679 	int retval = sched_rr_get_interval(pid, &t);
8680 
8681 	if (retval == 0)
8682 		retval = put_old_timespec32(&t, interval);
8683 	return retval;
8684 }
8685 #endif
8686 
8687 void sched_show_task(struct task_struct *p)
8688 {
8689 	unsigned long free = 0;
8690 	int ppid;
8691 
8692 	if (!try_get_task_stack(p))
8693 		return;
8694 
8695 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8696 
8697 	if (task_is_running(p))
8698 		pr_cont("  running task    ");
8699 #ifdef CONFIG_DEBUG_STACK_USAGE
8700 	free = stack_not_used(p);
8701 #endif
8702 	ppid = 0;
8703 	rcu_read_lock();
8704 	if (pid_alive(p))
8705 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8706 	rcu_read_unlock();
8707 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8708 		free, task_pid_nr(p), ppid,
8709 		read_task_thread_flags(p));
8710 
8711 	print_worker_info(KERN_INFO, p);
8712 	print_stop_info(KERN_INFO, p);
8713 	show_stack(p, NULL, KERN_INFO);
8714 	put_task_stack(p);
8715 }
8716 EXPORT_SYMBOL_GPL(sched_show_task);
8717 
8718 static inline bool
8719 state_filter_match(unsigned long state_filter, struct task_struct *p)
8720 {
8721 	unsigned int state = READ_ONCE(p->__state);
8722 
8723 	/* no filter, everything matches */
8724 	if (!state_filter)
8725 		return true;
8726 
8727 	/* filter, but doesn't match */
8728 	if (!(state & state_filter))
8729 		return false;
8730 
8731 	/*
8732 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8733 	 * TASK_KILLABLE).
8734 	 */
8735 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8736 		return false;
8737 
8738 	return true;
8739 }
8740 
8741 
8742 void show_state_filter(unsigned int state_filter)
8743 {
8744 	struct task_struct *g, *p;
8745 
8746 	rcu_read_lock();
8747 	for_each_process_thread(g, p) {
8748 		/*
8749 		 * reset the NMI-timeout, listing all files on a slow
8750 		 * console might take a lot of time:
8751 		 * Also, reset softlockup watchdogs on all CPUs, because
8752 		 * another CPU might be blocked waiting for us to process
8753 		 * an IPI.
8754 		 */
8755 		touch_nmi_watchdog();
8756 		touch_all_softlockup_watchdogs();
8757 		if (state_filter_match(state_filter, p))
8758 			sched_show_task(p);
8759 	}
8760 
8761 #ifdef CONFIG_SCHED_DEBUG
8762 	if (!state_filter)
8763 		sysrq_sched_debug_show();
8764 #endif
8765 	rcu_read_unlock();
8766 	/*
8767 	 * Only show locks if all tasks are dumped:
8768 	 */
8769 	if (!state_filter)
8770 		debug_show_all_locks();
8771 }
8772 
8773 /**
8774  * init_idle - set up an idle thread for a given CPU
8775  * @idle: task in question
8776  * @cpu: CPU the idle task belongs to
8777  *
8778  * NOTE: this function does not set the idle thread's NEED_RESCHED
8779  * flag, to make booting more robust.
8780  */
8781 void __init init_idle(struct task_struct *idle, int cpu)
8782 {
8783 	struct rq *rq = cpu_rq(cpu);
8784 	unsigned long flags;
8785 
8786 	__sched_fork(0, idle);
8787 
8788 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8789 	raw_spin_rq_lock(rq);
8790 
8791 	idle->__state = TASK_RUNNING;
8792 	idle->se.exec_start = sched_clock();
8793 	/*
8794 	 * PF_KTHREAD should already be set at this point; regardless, make it
8795 	 * look like a proper per-CPU kthread.
8796 	 */
8797 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8798 	kthread_set_per_cpu(idle, cpu);
8799 
8800 #ifdef CONFIG_SMP
8801 	/*
8802 	 * It's possible that init_idle() gets called multiple times on a task,
8803 	 * in that case do_set_cpus_allowed() will not do the right thing.
8804 	 *
8805 	 * And since this is boot we can forgo the serialization.
8806 	 */
8807 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8808 #endif
8809 	/*
8810 	 * We're having a chicken and egg problem, even though we are
8811 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8812 	 * lockdep check in task_group() will fail.
8813 	 *
8814 	 * Similar case to sched_fork(). / Alternatively we could
8815 	 * use task_rq_lock() here and obtain the other rq->lock.
8816 	 *
8817 	 * Silence PROVE_RCU
8818 	 */
8819 	rcu_read_lock();
8820 	__set_task_cpu(idle, cpu);
8821 	rcu_read_unlock();
8822 
8823 	rq->idle = idle;
8824 	rcu_assign_pointer(rq->curr, idle);
8825 	idle->on_rq = TASK_ON_RQ_QUEUED;
8826 #ifdef CONFIG_SMP
8827 	idle->on_cpu = 1;
8828 #endif
8829 	raw_spin_rq_unlock(rq);
8830 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8831 
8832 	/* Set the preempt count _outside_ the spinlocks! */
8833 	init_idle_preempt_count(idle, cpu);
8834 
8835 	/*
8836 	 * The idle tasks have their own, simple scheduling class:
8837 	 */
8838 	idle->sched_class = &idle_sched_class;
8839 	ftrace_graph_init_idle_task(idle, cpu);
8840 	vtime_init_idle(idle, cpu);
8841 #ifdef CONFIG_SMP
8842 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8843 #endif
8844 }
8845 
8846 #ifdef CONFIG_SMP
8847 
8848 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8849 			      const struct cpumask *trial)
8850 {
8851 	int ret = 1;
8852 
8853 	if (cpumask_empty(cur))
8854 		return ret;
8855 
8856 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8857 
8858 	return ret;
8859 }
8860 
8861 int task_can_attach(struct task_struct *p,
8862 		    const struct cpumask *cs_cpus_allowed)
8863 {
8864 	int ret = 0;
8865 
8866 	/*
8867 	 * Kthreads which disallow setaffinity shouldn't be moved
8868 	 * to a new cpuset; we don't want to change their CPU
8869 	 * affinity and isolating such threads by their set of
8870 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8871 	 * applicable for such threads.  This prevents checking for
8872 	 * success of set_cpus_allowed_ptr() on all attached tasks
8873 	 * before cpus_mask may be changed.
8874 	 */
8875 	if (p->flags & PF_NO_SETAFFINITY) {
8876 		ret = -EINVAL;
8877 		goto out;
8878 	}
8879 
8880 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8881 					      cs_cpus_allowed)) {
8882 		int cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
8883 
8884 		ret = dl_cpu_busy(cpu, p);
8885 	}
8886 
8887 out:
8888 	return ret;
8889 }
8890 
8891 bool sched_smp_initialized __read_mostly;
8892 
8893 #ifdef CONFIG_NUMA_BALANCING
8894 /* Migrate current task p to target_cpu */
8895 int migrate_task_to(struct task_struct *p, int target_cpu)
8896 {
8897 	struct migration_arg arg = { p, target_cpu };
8898 	int curr_cpu = task_cpu(p);
8899 
8900 	if (curr_cpu == target_cpu)
8901 		return 0;
8902 
8903 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8904 		return -EINVAL;
8905 
8906 	/* TODO: This is not properly updating schedstats */
8907 
8908 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8909 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8910 }
8911 
8912 /*
8913  * Requeue a task on a given node and accurately track the number of NUMA
8914  * tasks on the runqueues
8915  */
8916 void sched_setnuma(struct task_struct *p, int nid)
8917 {
8918 	bool queued, running;
8919 	struct rq_flags rf;
8920 	struct rq *rq;
8921 
8922 	rq = task_rq_lock(p, &rf);
8923 	queued = task_on_rq_queued(p);
8924 	running = task_current(rq, p);
8925 
8926 	if (queued)
8927 		dequeue_task(rq, p, DEQUEUE_SAVE);
8928 	if (running)
8929 		put_prev_task(rq, p);
8930 
8931 	p->numa_preferred_nid = nid;
8932 
8933 	if (queued)
8934 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8935 	if (running)
8936 		set_next_task(rq, p);
8937 	task_rq_unlock(rq, p, &rf);
8938 }
8939 #endif /* CONFIG_NUMA_BALANCING */
8940 
8941 #ifdef CONFIG_HOTPLUG_CPU
8942 /*
8943  * Ensure that the idle task is using init_mm right before its CPU goes
8944  * offline.
8945  */
8946 void idle_task_exit(void)
8947 {
8948 	struct mm_struct *mm = current->active_mm;
8949 
8950 	BUG_ON(cpu_online(smp_processor_id()));
8951 	BUG_ON(current != this_rq()->idle);
8952 
8953 	if (mm != &init_mm) {
8954 		switch_mm(mm, &init_mm, current);
8955 		finish_arch_post_lock_switch();
8956 	}
8957 
8958 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8959 }
8960 
8961 static int __balance_push_cpu_stop(void *arg)
8962 {
8963 	struct task_struct *p = arg;
8964 	struct rq *rq = this_rq();
8965 	struct rq_flags rf;
8966 	int cpu;
8967 
8968 	raw_spin_lock_irq(&p->pi_lock);
8969 	rq_lock(rq, &rf);
8970 
8971 	update_rq_clock(rq);
8972 
8973 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8974 		cpu = select_fallback_rq(rq->cpu, p);
8975 		rq = __migrate_task(rq, &rf, p, cpu);
8976 	}
8977 
8978 	rq_unlock(rq, &rf);
8979 	raw_spin_unlock_irq(&p->pi_lock);
8980 
8981 	put_task_struct(p);
8982 
8983 	return 0;
8984 }
8985 
8986 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8987 
8988 /*
8989  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8990  *
8991  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8992  * effective when the hotplug motion is down.
8993  */
8994 static void balance_push(struct rq *rq)
8995 {
8996 	struct task_struct *push_task = rq->curr;
8997 
8998 	lockdep_assert_rq_held(rq);
8999 
9000 	/*
9001 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9002 	 */
9003 	rq->balance_callback = &balance_push_callback;
9004 
9005 	/*
9006 	 * Only active while going offline and when invoked on the outgoing
9007 	 * CPU.
9008 	 */
9009 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9010 		return;
9011 
9012 	/*
9013 	 * Both the cpu-hotplug and stop task are in this case and are
9014 	 * required to complete the hotplug process.
9015 	 */
9016 	if (kthread_is_per_cpu(push_task) ||
9017 	    is_migration_disabled(push_task)) {
9018 
9019 		/*
9020 		 * If this is the idle task on the outgoing CPU try to wake
9021 		 * up the hotplug control thread which might wait for the
9022 		 * last task to vanish. The rcuwait_active() check is
9023 		 * accurate here because the waiter is pinned on this CPU
9024 		 * and can't obviously be running in parallel.
9025 		 *
9026 		 * On RT kernels this also has to check whether there are
9027 		 * pinned and scheduled out tasks on the runqueue. They
9028 		 * need to leave the migrate disabled section first.
9029 		 */
9030 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9031 		    rcuwait_active(&rq->hotplug_wait)) {
9032 			raw_spin_rq_unlock(rq);
9033 			rcuwait_wake_up(&rq->hotplug_wait);
9034 			raw_spin_rq_lock(rq);
9035 		}
9036 		return;
9037 	}
9038 
9039 	get_task_struct(push_task);
9040 	/*
9041 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9042 	 * Both preemption and IRQs are still disabled.
9043 	 */
9044 	raw_spin_rq_unlock(rq);
9045 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9046 			    this_cpu_ptr(&push_work));
9047 	/*
9048 	 * At this point need_resched() is true and we'll take the loop in
9049 	 * schedule(). The next pick is obviously going to be the stop task
9050 	 * which kthread_is_per_cpu() and will push this task away.
9051 	 */
9052 	raw_spin_rq_lock(rq);
9053 }
9054 
9055 static void balance_push_set(int cpu, bool on)
9056 {
9057 	struct rq *rq = cpu_rq(cpu);
9058 	struct rq_flags rf;
9059 
9060 	rq_lock_irqsave(rq, &rf);
9061 	if (on) {
9062 		WARN_ON_ONCE(rq->balance_callback);
9063 		rq->balance_callback = &balance_push_callback;
9064 	} else if (rq->balance_callback == &balance_push_callback) {
9065 		rq->balance_callback = NULL;
9066 	}
9067 	rq_unlock_irqrestore(rq, &rf);
9068 }
9069 
9070 /*
9071  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9072  * inactive. All tasks which are not per CPU kernel threads are either
9073  * pushed off this CPU now via balance_push() or placed on a different CPU
9074  * during wakeup. Wait until the CPU is quiescent.
9075  */
9076 static void balance_hotplug_wait(void)
9077 {
9078 	struct rq *rq = this_rq();
9079 
9080 	rcuwait_wait_event(&rq->hotplug_wait,
9081 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9082 			   TASK_UNINTERRUPTIBLE);
9083 }
9084 
9085 #else
9086 
9087 static inline void balance_push(struct rq *rq)
9088 {
9089 }
9090 
9091 static inline void balance_push_set(int cpu, bool on)
9092 {
9093 }
9094 
9095 static inline void balance_hotplug_wait(void)
9096 {
9097 }
9098 
9099 #endif /* CONFIG_HOTPLUG_CPU */
9100 
9101 void set_rq_online(struct rq *rq)
9102 {
9103 	if (!rq->online) {
9104 		const struct sched_class *class;
9105 
9106 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9107 		rq->online = 1;
9108 
9109 		for_each_class(class) {
9110 			if (class->rq_online)
9111 				class->rq_online(rq);
9112 		}
9113 	}
9114 }
9115 
9116 void set_rq_offline(struct rq *rq)
9117 {
9118 	if (rq->online) {
9119 		const struct sched_class *class;
9120 
9121 		for_each_class(class) {
9122 			if (class->rq_offline)
9123 				class->rq_offline(rq);
9124 		}
9125 
9126 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9127 		rq->online = 0;
9128 	}
9129 }
9130 
9131 /*
9132  * used to mark begin/end of suspend/resume:
9133  */
9134 static int num_cpus_frozen;
9135 
9136 /*
9137  * Update cpusets according to cpu_active mask.  If cpusets are
9138  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9139  * around partition_sched_domains().
9140  *
9141  * If we come here as part of a suspend/resume, don't touch cpusets because we
9142  * want to restore it back to its original state upon resume anyway.
9143  */
9144 static void cpuset_cpu_active(void)
9145 {
9146 	if (cpuhp_tasks_frozen) {
9147 		/*
9148 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9149 		 * resume sequence. As long as this is not the last online
9150 		 * operation in the resume sequence, just build a single sched
9151 		 * domain, ignoring cpusets.
9152 		 */
9153 		partition_sched_domains(1, NULL, NULL);
9154 		if (--num_cpus_frozen)
9155 			return;
9156 		/*
9157 		 * This is the last CPU online operation. So fall through and
9158 		 * restore the original sched domains by considering the
9159 		 * cpuset configurations.
9160 		 */
9161 		cpuset_force_rebuild();
9162 	}
9163 	cpuset_update_active_cpus();
9164 }
9165 
9166 static int cpuset_cpu_inactive(unsigned int cpu)
9167 {
9168 	if (!cpuhp_tasks_frozen) {
9169 		int ret = dl_cpu_busy(cpu, NULL);
9170 
9171 		if (ret)
9172 			return ret;
9173 		cpuset_update_active_cpus();
9174 	} else {
9175 		num_cpus_frozen++;
9176 		partition_sched_domains(1, NULL, NULL);
9177 	}
9178 	return 0;
9179 }
9180 
9181 int sched_cpu_activate(unsigned int cpu)
9182 {
9183 	struct rq *rq = cpu_rq(cpu);
9184 	struct rq_flags rf;
9185 
9186 	/*
9187 	 * Clear the balance_push callback and prepare to schedule
9188 	 * regular tasks.
9189 	 */
9190 	balance_push_set(cpu, false);
9191 
9192 #ifdef CONFIG_SCHED_SMT
9193 	/*
9194 	 * When going up, increment the number of cores with SMT present.
9195 	 */
9196 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9197 		static_branch_inc_cpuslocked(&sched_smt_present);
9198 #endif
9199 	set_cpu_active(cpu, true);
9200 
9201 	if (sched_smp_initialized) {
9202 		sched_update_numa(cpu, true);
9203 		sched_domains_numa_masks_set(cpu);
9204 		cpuset_cpu_active();
9205 	}
9206 
9207 	/*
9208 	 * Put the rq online, if not already. This happens:
9209 	 *
9210 	 * 1) In the early boot process, because we build the real domains
9211 	 *    after all CPUs have been brought up.
9212 	 *
9213 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9214 	 *    domains.
9215 	 */
9216 	rq_lock_irqsave(rq, &rf);
9217 	if (rq->rd) {
9218 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9219 		set_rq_online(rq);
9220 	}
9221 	rq_unlock_irqrestore(rq, &rf);
9222 
9223 	return 0;
9224 }
9225 
9226 int sched_cpu_deactivate(unsigned int cpu)
9227 {
9228 	struct rq *rq = cpu_rq(cpu);
9229 	struct rq_flags rf;
9230 	int ret;
9231 
9232 	/*
9233 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9234 	 * load balancing when not active
9235 	 */
9236 	nohz_balance_exit_idle(rq);
9237 
9238 	set_cpu_active(cpu, false);
9239 
9240 	/*
9241 	 * From this point forward, this CPU will refuse to run any task that
9242 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9243 	 * push those tasks away until this gets cleared, see
9244 	 * sched_cpu_dying().
9245 	 */
9246 	balance_push_set(cpu, true);
9247 
9248 	/*
9249 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9250 	 * preempt-disabled and RCU users of this state to go away such that
9251 	 * all new such users will observe it.
9252 	 *
9253 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9254 	 * ttwu_queue_cond() and is_cpu_allowed().
9255 	 *
9256 	 * Do sync before park smpboot threads to take care the rcu boost case.
9257 	 */
9258 	synchronize_rcu();
9259 
9260 	rq_lock_irqsave(rq, &rf);
9261 	if (rq->rd) {
9262 		update_rq_clock(rq);
9263 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9264 		set_rq_offline(rq);
9265 	}
9266 	rq_unlock_irqrestore(rq, &rf);
9267 
9268 #ifdef CONFIG_SCHED_SMT
9269 	/*
9270 	 * When going down, decrement the number of cores with SMT present.
9271 	 */
9272 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9273 		static_branch_dec_cpuslocked(&sched_smt_present);
9274 
9275 	sched_core_cpu_deactivate(cpu);
9276 #endif
9277 
9278 	if (!sched_smp_initialized)
9279 		return 0;
9280 
9281 	sched_update_numa(cpu, false);
9282 	ret = cpuset_cpu_inactive(cpu);
9283 	if (ret) {
9284 		balance_push_set(cpu, false);
9285 		set_cpu_active(cpu, true);
9286 		sched_update_numa(cpu, true);
9287 		return ret;
9288 	}
9289 	sched_domains_numa_masks_clear(cpu);
9290 	return 0;
9291 }
9292 
9293 static void sched_rq_cpu_starting(unsigned int cpu)
9294 {
9295 	struct rq *rq = cpu_rq(cpu);
9296 
9297 	rq->calc_load_update = calc_load_update;
9298 	update_max_interval();
9299 }
9300 
9301 int sched_cpu_starting(unsigned int cpu)
9302 {
9303 	sched_core_cpu_starting(cpu);
9304 	sched_rq_cpu_starting(cpu);
9305 	sched_tick_start(cpu);
9306 	return 0;
9307 }
9308 
9309 #ifdef CONFIG_HOTPLUG_CPU
9310 
9311 /*
9312  * Invoked immediately before the stopper thread is invoked to bring the
9313  * CPU down completely. At this point all per CPU kthreads except the
9314  * hotplug thread (current) and the stopper thread (inactive) have been
9315  * either parked or have been unbound from the outgoing CPU. Ensure that
9316  * any of those which might be on the way out are gone.
9317  *
9318  * If after this point a bound task is being woken on this CPU then the
9319  * responsible hotplug callback has failed to do it's job.
9320  * sched_cpu_dying() will catch it with the appropriate fireworks.
9321  */
9322 int sched_cpu_wait_empty(unsigned int cpu)
9323 {
9324 	balance_hotplug_wait();
9325 	return 0;
9326 }
9327 
9328 /*
9329  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9330  * might have. Called from the CPU stopper task after ensuring that the
9331  * stopper is the last running task on the CPU, so nr_active count is
9332  * stable. We need to take the teardown thread which is calling this into
9333  * account, so we hand in adjust = 1 to the load calculation.
9334  *
9335  * Also see the comment "Global load-average calculations".
9336  */
9337 static void calc_load_migrate(struct rq *rq)
9338 {
9339 	long delta = calc_load_fold_active(rq, 1);
9340 
9341 	if (delta)
9342 		atomic_long_add(delta, &calc_load_tasks);
9343 }
9344 
9345 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9346 {
9347 	struct task_struct *g, *p;
9348 	int cpu = cpu_of(rq);
9349 
9350 	lockdep_assert_rq_held(rq);
9351 
9352 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9353 	for_each_process_thread(g, p) {
9354 		if (task_cpu(p) != cpu)
9355 			continue;
9356 
9357 		if (!task_on_rq_queued(p))
9358 			continue;
9359 
9360 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9361 	}
9362 }
9363 
9364 int sched_cpu_dying(unsigned int cpu)
9365 {
9366 	struct rq *rq = cpu_rq(cpu);
9367 	struct rq_flags rf;
9368 
9369 	/* Handle pending wakeups and then migrate everything off */
9370 	sched_tick_stop(cpu);
9371 
9372 	rq_lock_irqsave(rq, &rf);
9373 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9374 		WARN(true, "Dying CPU not properly vacated!");
9375 		dump_rq_tasks(rq, KERN_WARNING);
9376 	}
9377 	rq_unlock_irqrestore(rq, &rf);
9378 
9379 	calc_load_migrate(rq);
9380 	update_max_interval();
9381 	hrtick_clear(rq);
9382 	sched_core_cpu_dying(cpu);
9383 	return 0;
9384 }
9385 #endif
9386 
9387 void __init sched_init_smp(void)
9388 {
9389 	sched_init_numa(NUMA_NO_NODE);
9390 
9391 	/*
9392 	 * There's no userspace yet to cause hotplug operations; hence all the
9393 	 * CPU masks are stable and all blatant races in the below code cannot
9394 	 * happen.
9395 	 */
9396 	mutex_lock(&sched_domains_mutex);
9397 	sched_init_domains(cpu_active_mask);
9398 	mutex_unlock(&sched_domains_mutex);
9399 
9400 	/* Move init over to a non-isolated CPU */
9401 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9402 		BUG();
9403 	current->flags &= ~PF_NO_SETAFFINITY;
9404 	sched_init_granularity();
9405 
9406 	init_sched_rt_class();
9407 	init_sched_dl_class();
9408 
9409 	sched_smp_initialized = true;
9410 }
9411 
9412 static int __init migration_init(void)
9413 {
9414 	sched_cpu_starting(smp_processor_id());
9415 	return 0;
9416 }
9417 early_initcall(migration_init);
9418 
9419 #else
9420 void __init sched_init_smp(void)
9421 {
9422 	sched_init_granularity();
9423 }
9424 #endif /* CONFIG_SMP */
9425 
9426 int in_sched_functions(unsigned long addr)
9427 {
9428 	return in_lock_functions(addr) ||
9429 		(addr >= (unsigned long)__sched_text_start
9430 		&& addr < (unsigned long)__sched_text_end);
9431 }
9432 
9433 #ifdef CONFIG_CGROUP_SCHED
9434 /*
9435  * Default task group.
9436  * Every task in system belongs to this group at bootup.
9437  */
9438 struct task_group root_task_group;
9439 LIST_HEAD(task_groups);
9440 
9441 /* Cacheline aligned slab cache for task_group */
9442 static struct kmem_cache *task_group_cache __read_mostly;
9443 #endif
9444 
9445 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9446 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9447 
9448 void __init sched_init(void)
9449 {
9450 	unsigned long ptr = 0;
9451 	int i;
9452 
9453 	/* Make sure the linker didn't screw up */
9454 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9455 	       &fair_sched_class + 1 != &rt_sched_class ||
9456 	       &rt_sched_class + 1   != &dl_sched_class);
9457 #ifdef CONFIG_SMP
9458 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9459 #endif
9460 
9461 	wait_bit_init();
9462 
9463 #ifdef CONFIG_FAIR_GROUP_SCHED
9464 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9465 #endif
9466 #ifdef CONFIG_RT_GROUP_SCHED
9467 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9468 #endif
9469 	if (ptr) {
9470 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9471 
9472 #ifdef CONFIG_FAIR_GROUP_SCHED
9473 		root_task_group.se = (struct sched_entity **)ptr;
9474 		ptr += nr_cpu_ids * sizeof(void **);
9475 
9476 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9477 		ptr += nr_cpu_ids * sizeof(void **);
9478 
9479 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9480 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9481 #endif /* CONFIG_FAIR_GROUP_SCHED */
9482 #ifdef CONFIG_RT_GROUP_SCHED
9483 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9484 		ptr += nr_cpu_ids * sizeof(void **);
9485 
9486 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9487 		ptr += nr_cpu_ids * sizeof(void **);
9488 
9489 #endif /* CONFIG_RT_GROUP_SCHED */
9490 	}
9491 #ifdef CONFIG_CPUMASK_OFFSTACK
9492 	for_each_possible_cpu(i) {
9493 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9494 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9495 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9496 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9497 	}
9498 #endif /* CONFIG_CPUMASK_OFFSTACK */
9499 
9500 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9501 
9502 #ifdef CONFIG_SMP
9503 	init_defrootdomain();
9504 #endif
9505 
9506 #ifdef CONFIG_RT_GROUP_SCHED
9507 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9508 			global_rt_period(), global_rt_runtime());
9509 #endif /* CONFIG_RT_GROUP_SCHED */
9510 
9511 #ifdef CONFIG_CGROUP_SCHED
9512 	task_group_cache = KMEM_CACHE(task_group, 0);
9513 
9514 	list_add(&root_task_group.list, &task_groups);
9515 	INIT_LIST_HEAD(&root_task_group.children);
9516 	INIT_LIST_HEAD(&root_task_group.siblings);
9517 	autogroup_init(&init_task);
9518 #endif /* CONFIG_CGROUP_SCHED */
9519 
9520 	for_each_possible_cpu(i) {
9521 		struct rq *rq;
9522 
9523 		rq = cpu_rq(i);
9524 		raw_spin_lock_init(&rq->__lock);
9525 		rq->nr_running = 0;
9526 		rq->calc_load_active = 0;
9527 		rq->calc_load_update = jiffies + LOAD_FREQ;
9528 		init_cfs_rq(&rq->cfs);
9529 		init_rt_rq(&rq->rt);
9530 		init_dl_rq(&rq->dl);
9531 #ifdef CONFIG_FAIR_GROUP_SCHED
9532 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9533 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9534 		/*
9535 		 * How much CPU bandwidth does root_task_group get?
9536 		 *
9537 		 * In case of task-groups formed thr' the cgroup filesystem, it
9538 		 * gets 100% of the CPU resources in the system. This overall
9539 		 * system CPU resource is divided among the tasks of
9540 		 * root_task_group and its child task-groups in a fair manner,
9541 		 * based on each entity's (task or task-group's) weight
9542 		 * (se->load.weight).
9543 		 *
9544 		 * In other words, if root_task_group has 10 tasks of weight
9545 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9546 		 * then A0's share of the CPU resource is:
9547 		 *
9548 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9549 		 *
9550 		 * We achieve this by letting root_task_group's tasks sit
9551 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9552 		 */
9553 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9554 #endif /* CONFIG_FAIR_GROUP_SCHED */
9555 
9556 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9557 #ifdef CONFIG_RT_GROUP_SCHED
9558 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9559 #endif
9560 #ifdef CONFIG_SMP
9561 		rq->sd = NULL;
9562 		rq->rd = NULL;
9563 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9564 		rq->balance_callback = &balance_push_callback;
9565 		rq->active_balance = 0;
9566 		rq->next_balance = jiffies;
9567 		rq->push_cpu = 0;
9568 		rq->cpu = i;
9569 		rq->online = 0;
9570 		rq->idle_stamp = 0;
9571 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9572 		rq->wake_stamp = jiffies;
9573 		rq->wake_avg_idle = rq->avg_idle;
9574 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9575 
9576 		INIT_LIST_HEAD(&rq->cfs_tasks);
9577 
9578 		rq_attach_root(rq, &def_root_domain);
9579 #ifdef CONFIG_NO_HZ_COMMON
9580 		rq->last_blocked_load_update_tick = jiffies;
9581 		atomic_set(&rq->nohz_flags, 0);
9582 
9583 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9584 #endif
9585 #ifdef CONFIG_HOTPLUG_CPU
9586 		rcuwait_init(&rq->hotplug_wait);
9587 #endif
9588 #endif /* CONFIG_SMP */
9589 		hrtick_rq_init(rq);
9590 		atomic_set(&rq->nr_iowait, 0);
9591 
9592 #ifdef CONFIG_SCHED_CORE
9593 		rq->core = rq;
9594 		rq->core_pick = NULL;
9595 		rq->core_enabled = 0;
9596 		rq->core_tree = RB_ROOT;
9597 		rq->core_forceidle_count = 0;
9598 		rq->core_forceidle_occupation = 0;
9599 		rq->core_forceidle_start = 0;
9600 
9601 		rq->core_cookie = 0UL;
9602 #endif
9603 	}
9604 
9605 	set_load_weight(&init_task, false);
9606 
9607 	/*
9608 	 * The boot idle thread does lazy MMU switching as well:
9609 	 */
9610 	mmgrab(&init_mm);
9611 	enter_lazy_tlb(&init_mm, current);
9612 
9613 	/*
9614 	 * The idle task doesn't need the kthread struct to function, but it
9615 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9616 	 * if we want to avoid special-casing it in code that deals with per-CPU
9617 	 * kthreads.
9618 	 */
9619 	WARN_ON(!set_kthread_struct(current));
9620 
9621 	/*
9622 	 * Make us the idle thread. Technically, schedule() should not be
9623 	 * called from this thread, however somewhere below it might be,
9624 	 * but because we are the idle thread, we just pick up running again
9625 	 * when this runqueue becomes "idle".
9626 	 */
9627 	init_idle(current, smp_processor_id());
9628 
9629 	calc_load_update = jiffies + LOAD_FREQ;
9630 
9631 #ifdef CONFIG_SMP
9632 	idle_thread_set_boot_cpu();
9633 	balance_push_set(smp_processor_id(), false);
9634 #endif
9635 	init_sched_fair_class();
9636 
9637 	psi_init();
9638 
9639 	init_uclamp();
9640 
9641 	preempt_dynamic_init();
9642 
9643 	scheduler_running = 1;
9644 }
9645 
9646 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9647 
9648 void __might_sleep(const char *file, int line)
9649 {
9650 	unsigned int state = get_current_state();
9651 	/*
9652 	 * Blocking primitives will set (and therefore destroy) current->state,
9653 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9654 	 * otherwise we will destroy state.
9655 	 */
9656 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9657 			"do not call blocking ops when !TASK_RUNNING; "
9658 			"state=%x set at [<%p>] %pS\n", state,
9659 			(void *)current->task_state_change,
9660 			(void *)current->task_state_change);
9661 
9662 	__might_resched(file, line, 0);
9663 }
9664 EXPORT_SYMBOL(__might_sleep);
9665 
9666 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9667 {
9668 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9669 		return;
9670 
9671 	if (preempt_count() == preempt_offset)
9672 		return;
9673 
9674 	pr_err("Preemption disabled at:");
9675 	print_ip_sym(KERN_ERR, ip);
9676 }
9677 
9678 static inline bool resched_offsets_ok(unsigned int offsets)
9679 {
9680 	unsigned int nested = preempt_count();
9681 
9682 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9683 
9684 	return nested == offsets;
9685 }
9686 
9687 void __might_resched(const char *file, int line, unsigned int offsets)
9688 {
9689 	/* Ratelimiting timestamp: */
9690 	static unsigned long prev_jiffy;
9691 
9692 	unsigned long preempt_disable_ip;
9693 
9694 	/* WARN_ON_ONCE() by default, no rate limit required: */
9695 	rcu_sleep_check();
9696 
9697 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9698 	     !is_idle_task(current) && !current->non_block_count) ||
9699 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9700 	    oops_in_progress)
9701 		return;
9702 
9703 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9704 		return;
9705 	prev_jiffy = jiffies;
9706 
9707 	/* Save this before calling printk(), since that will clobber it: */
9708 	preempt_disable_ip = get_preempt_disable_ip(current);
9709 
9710 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9711 	       file, line);
9712 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9713 	       in_atomic(), irqs_disabled(), current->non_block_count,
9714 	       current->pid, current->comm);
9715 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9716 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9717 
9718 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9719 		pr_err("RCU nest depth: %d, expected: %u\n",
9720 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9721 	}
9722 
9723 	if (task_stack_end_corrupted(current))
9724 		pr_emerg("Thread overran stack, or stack corrupted\n");
9725 
9726 	debug_show_held_locks(current);
9727 	if (irqs_disabled())
9728 		print_irqtrace_events(current);
9729 
9730 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9731 				 preempt_disable_ip);
9732 
9733 	dump_stack();
9734 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9735 }
9736 EXPORT_SYMBOL(__might_resched);
9737 
9738 void __cant_sleep(const char *file, int line, int preempt_offset)
9739 {
9740 	static unsigned long prev_jiffy;
9741 
9742 	if (irqs_disabled())
9743 		return;
9744 
9745 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9746 		return;
9747 
9748 	if (preempt_count() > preempt_offset)
9749 		return;
9750 
9751 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9752 		return;
9753 	prev_jiffy = jiffies;
9754 
9755 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9756 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9757 			in_atomic(), irqs_disabled(),
9758 			current->pid, current->comm);
9759 
9760 	debug_show_held_locks(current);
9761 	dump_stack();
9762 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9763 }
9764 EXPORT_SYMBOL_GPL(__cant_sleep);
9765 
9766 #ifdef CONFIG_SMP
9767 void __cant_migrate(const char *file, int line)
9768 {
9769 	static unsigned long prev_jiffy;
9770 
9771 	if (irqs_disabled())
9772 		return;
9773 
9774 	if (is_migration_disabled(current))
9775 		return;
9776 
9777 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9778 		return;
9779 
9780 	if (preempt_count() > 0)
9781 		return;
9782 
9783 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9784 		return;
9785 	prev_jiffy = jiffies;
9786 
9787 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9788 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9789 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9790 	       current->pid, current->comm);
9791 
9792 	debug_show_held_locks(current);
9793 	dump_stack();
9794 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9795 }
9796 EXPORT_SYMBOL_GPL(__cant_migrate);
9797 #endif
9798 #endif
9799 
9800 #ifdef CONFIG_MAGIC_SYSRQ
9801 void normalize_rt_tasks(void)
9802 {
9803 	struct task_struct *g, *p;
9804 	struct sched_attr attr = {
9805 		.sched_policy = SCHED_NORMAL,
9806 	};
9807 
9808 	read_lock(&tasklist_lock);
9809 	for_each_process_thread(g, p) {
9810 		/*
9811 		 * Only normalize user tasks:
9812 		 */
9813 		if (p->flags & PF_KTHREAD)
9814 			continue;
9815 
9816 		p->se.exec_start = 0;
9817 		schedstat_set(p->stats.wait_start,  0);
9818 		schedstat_set(p->stats.sleep_start, 0);
9819 		schedstat_set(p->stats.block_start, 0);
9820 
9821 		if (!dl_task(p) && !rt_task(p)) {
9822 			/*
9823 			 * Renice negative nice level userspace
9824 			 * tasks back to 0:
9825 			 */
9826 			if (task_nice(p) < 0)
9827 				set_user_nice(p, 0);
9828 			continue;
9829 		}
9830 
9831 		__sched_setscheduler(p, &attr, false, false);
9832 	}
9833 	read_unlock(&tasklist_lock);
9834 }
9835 
9836 #endif /* CONFIG_MAGIC_SYSRQ */
9837 
9838 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9839 /*
9840  * These functions are only useful for the IA64 MCA handling, or kdb.
9841  *
9842  * They can only be called when the whole system has been
9843  * stopped - every CPU needs to be quiescent, and no scheduling
9844  * activity can take place. Using them for anything else would
9845  * be a serious bug, and as a result, they aren't even visible
9846  * under any other configuration.
9847  */
9848 
9849 /**
9850  * curr_task - return the current task for a given CPU.
9851  * @cpu: the processor in question.
9852  *
9853  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9854  *
9855  * Return: The current task for @cpu.
9856  */
9857 struct task_struct *curr_task(int cpu)
9858 {
9859 	return cpu_curr(cpu);
9860 }
9861 
9862 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9863 
9864 #ifdef CONFIG_IA64
9865 /**
9866  * ia64_set_curr_task - set the current task for a given CPU.
9867  * @cpu: the processor in question.
9868  * @p: the task pointer to set.
9869  *
9870  * Description: This function must only be used when non-maskable interrupts
9871  * are serviced on a separate stack. It allows the architecture to switch the
9872  * notion of the current task on a CPU in a non-blocking manner. This function
9873  * must be called with all CPU's synchronized, and interrupts disabled, the
9874  * and caller must save the original value of the current task (see
9875  * curr_task() above) and restore that value before reenabling interrupts and
9876  * re-starting the system.
9877  *
9878  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9879  */
9880 void ia64_set_curr_task(int cpu, struct task_struct *p)
9881 {
9882 	cpu_curr(cpu) = p;
9883 }
9884 
9885 #endif
9886 
9887 #ifdef CONFIG_CGROUP_SCHED
9888 /* task_group_lock serializes the addition/removal of task groups */
9889 static DEFINE_SPINLOCK(task_group_lock);
9890 
9891 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9892 					    struct task_group *parent)
9893 {
9894 #ifdef CONFIG_UCLAMP_TASK_GROUP
9895 	enum uclamp_id clamp_id;
9896 
9897 	for_each_clamp_id(clamp_id) {
9898 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9899 			      uclamp_none(clamp_id), false);
9900 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9901 	}
9902 #endif
9903 }
9904 
9905 static void sched_free_group(struct task_group *tg)
9906 {
9907 	free_fair_sched_group(tg);
9908 	free_rt_sched_group(tg);
9909 	autogroup_free(tg);
9910 	kmem_cache_free(task_group_cache, tg);
9911 }
9912 
9913 static void sched_free_group_rcu(struct rcu_head *rcu)
9914 {
9915 	sched_free_group(container_of(rcu, struct task_group, rcu));
9916 }
9917 
9918 static void sched_unregister_group(struct task_group *tg)
9919 {
9920 	unregister_fair_sched_group(tg);
9921 	unregister_rt_sched_group(tg);
9922 	/*
9923 	 * We have to wait for yet another RCU grace period to expire, as
9924 	 * print_cfs_stats() might run concurrently.
9925 	 */
9926 	call_rcu(&tg->rcu, sched_free_group_rcu);
9927 }
9928 
9929 /* allocate runqueue etc for a new task group */
9930 struct task_group *sched_create_group(struct task_group *parent)
9931 {
9932 	struct task_group *tg;
9933 
9934 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9935 	if (!tg)
9936 		return ERR_PTR(-ENOMEM);
9937 
9938 	if (!alloc_fair_sched_group(tg, parent))
9939 		goto err;
9940 
9941 	if (!alloc_rt_sched_group(tg, parent))
9942 		goto err;
9943 
9944 	alloc_uclamp_sched_group(tg, parent);
9945 
9946 	return tg;
9947 
9948 err:
9949 	sched_free_group(tg);
9950 	return ERR_PTR(-ENOMEM);
9951 }
9952 
9953 void sched_online_group(struct task_group *tg, struct task_group *parent)
9954 {
9955 	unsigned long flags;
9956 
9957 	spin_lock_irqsave(&task_group_lock, flags);
9958 	list_add_rcu(&tg->list, &task_groups);
9959 
9960 	/* Root should already exist: */
9961 	WARN_ON(!parent);
9962 
9963 	tg->parent = parent;
9964 	INIT_LIST_HEAD(&tg->children);
9965 	list_add_rcu(&tg->siblings, &parent->children);
9966 	spin_unlock_irqrestore(&task_group_lock, flags);
9967 
9968 	online_fair_sched_group(tg);
9969 }
9970 
9971 /* rcu callback to free various structures associated with a task group */
9972 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9973 {
9974 	/* Now it should be safe to free those cfs_rqs: */
9975 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9976 }
9977 
9978 void sched_destroy_group(struct task_group *tg)
9979 {
9980 	/* Wait for possible concurrent references to cfs_rqs complete: */
9981 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9982 }
9983 
9984 void sched_release_group(struct task_group *tg)
9985 {
9986 	unsigned long flags;
9987 
9988 	/*
9989 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9990 	 * sched_cfs_period_timer()).
9991 	 *
9992 	 * For this to be effective, we have to wait for all pending users of
9993 	 * this task group to leave their RCU critical section to ensure no new
9994 	 * user will see our dying task group any more. Specifically ensure
9995 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9996 	 *
9997 	 * We therefore defer calling unregister_fair_sched_group() to
9998 	 * sched_unregister_group() which is guarantied to get called only after the
9999 	 * current RCU grace period has expired.
10000 	 */
10001 	spin_lock_irqsave(&task_group_lock, flags);
10002 	list_del_rcu(&tg->list);
10003 	list_del_rcu(&tg->siblings);
10004 	spin_unlock_irqrestore(&task_group_lock, flags);
10005 }
10006 
10007 static void sched_change_group(struct task_struct *tsk, int type)
10008 {
10009 	struct task_group *tg;
10010 
10011 	/*
10012 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10013 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10014 	 * to prevent lockdep warnings.
10015 	 */
10016 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10017 			  struct task_group, css);
10018 	tg = autogroup_task_group(tsk, tg);
10019 	tsk->sched_task_group = tg;
10020 
10021 #ifdef CONFIG_FAIR_GROUP_SCHED
10022 	if (tsk->sched_class->task_change_group)
10023 		tsk->sched_class->task_change_group(tsk, type);
10024 	else
10025 #endif
10026 		set_task_rq(tsk, task_cpu(tsk));
10027 }
10028 
10029 /*
10030  * Change task's runqueue when it moves between groups.
10031  *
10032  * The caller of this function should have put the task in its new group by
10033  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10034  * its new group.
10035  */
10036 void sched_move_task(struct task_struct *tsk)
10037 {
10038 	int queued, running, queue_flags =
10039 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10040 	struct rq_flags rf;
10041 	struct rq *rq;
10042 
10043 	rq = task_rq_lock(tsk, &rf);
10044 	update_rq_clock(rq);
10045 
10046 	running = task_current(rq, tsk);
10047 	queued = task_on_rq_queued(tsk);
10048 
10049 	if (queued)
10050 		dequeue_task(rq, tsk, queue_flags);
10051 	if (running)
10052 		put_prev_task(rq, tsk);
10053 
10054 	sched_change_group(tsk, TASK_MOVE_GROUP);
10055 
10056 	if (queued)
10057 		enqueue_task(rq, tsk, queue_flags);
10058 	if (running) {
10059 		set_next_task(rq, tsk);
10060 		/*
10061 		 * After changing group, the running task may have joined a
10062 		 * throttled one but it's still the running task. Trigger a
10063 		 * resched to make sure that task can still run.
10064 		 */
10065 		resched_curr(rq);
10066 	}
10067 
10068 	task_rq_unlock(rq, tsk, &rf);
10069 }
10070 
10071 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10072 {
10073 	return css ? container_of(css, struct task_group, css) : NULL;
10074 }
10075 
10076 static struct cgroup_subsys_state *
10077 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10078 {
10079 	struct task_group *parent = css_tg(parent_css);
10080 	struct task_group *tg;
10081 
10082 	if (!parent) {
10083 		/* This is early initialization for the top cgroup */
10084 		return &root_task_group.css;
10085 	}
10086 
10087 	tg = sched_create_group(parent);
10088 	if (IS_ERR(tg))
10089 		return ERR_PTR(-ENOMEM);
10090 
10091 	return &tg->css;
10092 }
10093 
10094 /* Expose task group only after completing cgroup initialization */
10095 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10096 {
10097 	struct task_group *tg = css_tg(css);
10098 	struct task_group *parent = css_tg(css->parent);
10099 
10100 	if (parent)
10101 		sched_online_group(tg, parent);
10102 
10103 #ifdef CONFIG_UCLAMP_TASK_GROUP
10104 	/* Propagate the effective uclamp value for the new group */
10105 	mutex_lock(&uclamp_mutex);
10106 	rcu_read_lock();
10107 	cpu_util_update_eff(css);
10108 	rcu_read_unlock();
10109 	mutex_unlock(&uclamp_mutex);
10110 #endif
10111 
10112 	return 0;
10113 }
10114 
10115 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10116 {
10117 	struct task_group *tg = css_tg(css);
10118 
10119 	sched_release_group(tg);
10120 }
10121 
10122 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10123 {
10124 	struct task_group *tg = css_tg(css);
10125 
10126 	/*
10127 	 * Relies on the RCU grace period between css_released() and this.
10128 	 */
10129 	sched_unregister_group(tg);
10130 }
10131 
10132 /*
10133  * This is called before wake_up_new_task(), therefore we really only
10134  * have to set its group bits, all the other stuff does not apply.
10135  */
10136 static void cpu_cgroup_fork(struct task_struct *task)
10137 {
10138 	struct rq_flags rf;
10139 	struct rq *rq;
10140 
10141 	rq = task_rq_lock(task, &rf);
10142 
10143 	update_rq_clock(rq);
10144 	sched_change_group(task, TASK_SET_GROUP);
10145 
10146 	task_rq_unlock(rq, task, &rf);
10147 }
10148 
10149 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10150 {
10151 	struct task_struct *task;
10152 	struct cgroup_subsys_state *css;
10153 	int ret = 0;
10154 
10155 	cgroup_taskset_for_each(task, css, tset) {
10156 #ifdef CONFIG_RT_GROUP_SCHED
10157 		if (!sched_rt_can_attach(css_tg(css), task))
10158 			return -EINVAL;
10159 #endif
10160 		/*
10161 		 * Serialize against wake_up_new_task() such that if it's
10162 		 * running, we're sure to observe its full state.
10163 		 */
10164 		raw_spin_lock_irq(&task->pi_lock);
10165 		/*
10166 		 * Avoid calling sched_move_task() before wake_up_new_task()
10167 		 * has happened. This would lead to problems with PELT, due to
10168 		 * move wanting to detach+attach while we're not attached yet.
10169 		 */
10170 		if (READ_ONCE(task->__state) == TASK_NEW)
10171 			ret = -EINVAL;
10172 		raw_spin_unlock_irq(&task->pi_lock);
10173 
10174 		if (ret)
10175 			break;
10176 	}
10177 	return ret;
10178 }
10179 
10180 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10181 {
10182 	struct task_struct *task;
10183 	struct cgroup_subsys_state *css;
10184 
10185 	cgroup_taskset_for_each(task, css, tset)
10186 		sched_move_task(task);
10187 }
10188 
10189 #ifdef CONFIG_UCLAMP_TASK_GROUP
10190 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10191 {
10192 	struct cgroup_subsys_state *top_css = css;
10193 	struct uclamp_se *uc_parent = NULL;
10194 	struct uclamp_se *uc_se = NULL;
10195 	unsigned int eff[UCLAMP_CNT];
10196 	enum uclamp_id clamp_id;
10197 	unsigned int clamps;
10198 
10199 	lockdep_assert_held(&uclamp_mutex);
10200 	SCHED_WARN_ON(!rcu_read_lock_held());
10201 
10202 	css_for_each_descendant_pre(css, top_css) {
10203 		uc_parent = css_tg(css)->parent
10204 			? css_tg(css)->parent->uclamp : NULL;
10205 
10206 		for_each_clamp_id(clamp_id) {
10207 			/* Assume effective clamps matches requested clamps */
10208 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10209 			/* Cap effective clamps with parent's effective clamps */
10210 			if (uc_parent &&
10211 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10212 				eff[clamp_id] = uc_parent[clamp_id].value;
10213 			}
10214 		}
10215 		/* Ensure protection is always capped by limit */
10216 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10217 
10218 		/* Propagate most restrictive effective clamps */
10219 		clamps = 0x0;
10220 		uc_se = css_tg(css)->uclamp;
10221 		for_each_clamp_id(clamp_id) {
10222 			if (eff[clamp_id] == uc_se[clamp_id].value)
10223 				continue;
10224 			uc_se[clamp_id].value = eff[clamp_id];
10225 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10226 			clamps |= (0x1 << clamp_id);
10227 		}
10228 		if (!clamps) {
10229 			css = css_rightmost_descendant(css);
10230 			continue;
10231 		}
10232 
10233 		/* Immediately update descendants RUNNABLE tasks */
10234 		uclamp_update_active_tasks(css);
10235 	}
10236 }
10237 
10238 /*
10239  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10240  * C expression. Since there is no way to convert a macro argument (N) into a
10241  * character constant, use two levels of macros.
10242  */
10243 #define _POW10(exp) ((unsigned int)1e##exp)
10244 #define POW10(exp) _POW10(exp)
10245 
10246 struct uclamp_request {
10247 #define UCLAMP_PERCENT_SHIFT	2
10248 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10249 	s64 percent;
10250 	u64 util;
10251 	int ret;
10252 };
10253 
10254 static inline struct uclamp_request
10255 capacity_from_percent(char *buf)
10256 {
10257 	struct uclamp_request req = {
10258 		.percent = UCLAMP_PERCENT_SCALE,
10259 		.util = SCHED_CAPACITY_SCALE,
10260 		.ret = 0,
10261 	};
10262 
10263 	buf = strim(buf);
10264 	if (strcmp(buf, "max")) {
10265 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10266 					     &req.percent);
10267 		if (req.ret)
10268 			return req;
10269 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10270 			req.ret = -ERANGE;
10271 			return req;
10272 		}
10273 
10274 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10275 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10276 	}
10277 
10278 	return req;
10279 }
10280 
10281 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10282 				size_t nbytes, loff_t off,
10283 				enum uclamp_id clamp_id)
10284 {
10285 	struct uclamp_request req;
10286 	struct task_group *tg;
10287 
10288 	req = capacity_from_percent(buf);
10289 	if (req.ret)
10290 		return req.ret;
10291 
10292 	static_branch_enable(&sched_uclamp_used);
10293 
10294 	mutex_lock(&uclamp_mutex);
10295 	rcu_read_lock();
10296 
10297 	tg = css_tg(of_css(of));
10298 	if (tg->uclamp_req[clamp_id].value != req.util)
10299 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10300 
10301 	/*
10302 	 * Because of not recoverable conversion rounding we keep track of the
10303 	 * exact requested value
10304 	 */
10305 	tg->uclamp_pct[clamp_id] = req.percent;
10306 
10307 	/* Update effective clamps to track the most restrictive value */
10308 	cpu_util_update_eff(of_css(of));
10309 
10310 	rcu_read_unlock();
10311 	mutex_unlock(&uclamp_mutex);
10312 
10313 	return nbytes;
10314 }
10315 
10316 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10317 				    char *buf, size_t nbytes,
10318 				    loff_t off)
10319 {
10320 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10321 }
10322 
10323 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10324 				    char *buf, size_t nbytes,
10325 				    loff_t off)
10326 {
10327 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10328 }
10329 
10330 static inline void cpu_uclamp_print(struct seq_file *sf,
10331 				    enum uclamp_id clamp_id)
10332 {
10333 	struct task_group *tg;
10334 	u64 util_clamp;
10335 	u64 percent;
10336 	u32 rem;
10337 
10338 	rcu_read_lock();
10339 	tg = css_tg(seq_css(sf));
10340 	util_clamp = tg->uclamp_req[clamp_id].value;
10341 	rcu_read_unlock();
10342 
10343 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10344 		seq_puts(sf, "max\n");
10345 		return;
10346 	}
10347 
10348 	percent = tg->uclamp_pct[clamp_id];
10349 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10350 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10351 }
10352 
10353 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10354 {
10355 	cpu_uclamp_print(sf, UCLAMP_MIN);
10356 	return 0;
10357 }
10358 
10359 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10360 {
10361 	cpu_uclamp_print(sf, UCLAMP_MAX);
10362 	return 0;
10363 }
10364 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10365 
10366 #ifdef CONFIG_FAIR_GROUP_SCHED
10367 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10368 				struct cftype *cftype, u64 shareval)
10369 {
10370 	if (shareval > scale_load_down(ULONG_MAX))
10371 		shareval = MAX_SHARES;
10372 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10373 }
10374 
10375 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10376 			       struct cftype *cft)
10377 {
10378 	struct task_group *tg = css_tg(css);
10379 
10380 	return (u64) scale_load_down(tg->shares);
10381 }
10382 
10383 #ifdef CONFIG_CFS_BANDWIDTH
10384 static DEFINE_MUTEX(cfs_constraints_mutex);
10385 
10386 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10387 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10388 /* More than 203 days if BW_SHIFT equals 20. */
10389 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10390 
10391 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10392 
10393 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10394 				u64 burst)
10395 {
10396 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10397 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10398 
10399 	if (tg == &root_task_group)
10400 		return -EINVAL;
10401 
10402 	/*
10403 	 * Ensure we have at some amount of bandwidth every period.  This is
10404 	 * to prevent reaching a state of large arrears when throttled via
10405 	 * entity_tick() resulting in prolonged exit starvation.
10406 	 */
10407 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10408 		return -EINVAL;
10409 
10410 	/*
10411 	 * Likewise, bound things on the other side by preventing insane quota
10412 	 * periods.  This also allows us to normalize in computing quota
10413 	 * feasibility.
10414 	 */
10415 	if (period > max_cfs_quota_period)
10416 		return -EINVAL;
10417 
10418 	/*
10419 	 * Bound quota to defend quota against overflow during bandwidth shift.
10420 	 */
10421 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10422 		return -EINVAL;
10423 
10424 	if (quota != RUNTIME_INF && (burst > quota ||
10425 				     burst + quota > max_cfs_runtime))
10426 		return -EINVAL;
10427 
10428 	/*
10429 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10430 	 * unthrottle_offline_cfs_rqs().
10431 	 */
10432 	cpus_read_lock();
10433 	mutex_lock(&cfs_constraints_mutex);
10434 	ret = __cfs_schedulable(tg, period, quota);
10435 	if (ret)
10436 		goto out_unlock;
10437 
10438 	runtime_enabled = quota != RUNTIME_INF;
10439 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10440 	/*
10441 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10442 	 * before making related changes, and on->off must occur afterwards
10443 	 */
10444 	if (runtime_enabled && !runtime_was_enabled)
10445 		cfs_bandwidth_usage_inc();
10446 	raw_spin_lock_irq(&cfs_b->lock);
10447 	cfs_b->period = ns_to_ktime(period);
10448 	cfs_b->quota = quota;
10449 	cfs_b->burst = burst;
10450 
10451 	__refill_cfs_bandwidth_runtime(cfs_b);
10452 
10453 	/* Restart the period timer (if active) to handle new period expiry: */
10454 	if (runtime_enabled)
10455 		start_cfs_bandwidth(cfs_b);
10456 
10457 	raw_spin_unlock_irq(&cfs_b->lock);
10458 
10459 	for_each_online_cpu(i) {
10460 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10461 		struct rq *rq = cfs_rq->rq;
10462 		struct rq_flags rf;
10463 
10464 		rq_lock_irq(rq, &rf);
10465 		cfs_rq->runtime_enabled = runtime_enabled;
10466 		cfs_rq->runtime_remaining = 0;
10467 
10468 		if (cfs_rq->throttled)
10469 			unthrottle_cfs_rq(cfs_rq);
10470 		rq_unlock_irq(rq, &rf);
10471 	}
10472 	if (runtime_was_enabled && !runtime_enabled)
10473 		cfs_bandwidth_usage_dec();
10474 out_unlock:
10475 	mutex_unlock(&cfs_constraints_mutex);
10476 	cpus_read_unlock();
10477 
10478 	return ret;
10479 }
10480 
10481 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10482 {
10483 	u64 quota, period, burst;
10484 
10485 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10486 	burst = tg->cfs_bandwidth.burst;
10487 	if (cfs_quota_us < 0)
10488 		quota = RUNTIME_INF;
10489 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10490 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10491 	else
10492 		return -EINVAL;
10493 
10494 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10495 }
10496 
10497 static long tg_get_cfs_quota(struct task_group *tg)
10498 {
10499 	u64 quota_us;
10500 
10501 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10502 		return -1;
10503 
10504 	quota_us = tg->cfs_bandwidth.quota;
10505 	do_div(quota_us, NSEC_PER_USEC);
10506 
10507 	return quota_us;
10508 }
10509 
10510 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10511 {
10512 	u64 quota, period, burst;
10513 
10514 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10515 		return -EINVAL;
10516 
10517 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10518 	quota = tg->cfs_bandwidth.quota;
10519 	burst = tg->cfs_bandwidth.burst;
10520 
10521 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10522 }
10523 
10524 static long tg_get_cfs_period(struct task_group *tg)
10525 {
10526 	u64 cfs_period_us;
10527 
10528 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10529 	do_div(cfs_period_us, NSEC_PER_USEC);
10530 
10531 	return cfs_period_us;
10532 }
10533 
10534 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10535 {
10536 	u64 quota, period, burst;
10537 
10538 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10539 		return -EINVAL;
10540 
10541 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10542 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10543 	quota = tg->cfs_bandwidth.quota;
10544 
10545 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10546 }
10547 
10548 static long tg_get_cfs_burst(struct task_group *tg)
10549 {
10550 	u64 burst_us;
10551 
10552 	burst_us = tg->cfs_bandwidth.burst;
10553 	do_div(burst_us, NSEC_PER_USEC);
10554 
10555 	return burst_us;
10556 }
10557 
10558 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10559 				  struct cftype *cft)
10560 {
10561 	return tg_get_cfs_quota(css_tg(css));
10562 }
10563 
10564 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10565 				   struct cftype *cftype, s64 cfs_quota_us)
10566 {
10567 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10568 }
10569 
10570 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10571 				   struct cftype *cft)
10572 {
10573 	return tg_get_cfs_period(css_tg(css));
10574 }
10575 
10576 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10577 				    struct cftype *cftype, u64 cfs_period_us)
10578 {
10579 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10580 }
10581 
10582 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10583 				  struct cftype *cft)
10584 {
10585 	return tg_get_cfs_burst(css_tg(css));
10586 }
10587 
10588 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10589 				   struct cftype *cftype, u64 cfs_burst_us)
10590 {
10591 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10592 }
10593 
10594 struct cfs_schedulable_data {
10595 	struct task_group *tg;
10596 	u64 period, quota;
10597 };
10598 
10599 /*
10600  * normalize group quota/period to be quota/max_period
10601  * note: units are usecs
10602  */
10603 static u64 normalize_cfs_quota(struct task_group *tg,
10604 			       struct cfs_schedulable_data *d)
10605 {
10606 	u64 quota, period;
10607 
10608 	if (tg == d->tg) {
10609 		period = d->period;
10610 		quota = d->quota;
10611 	} else {
10612 		period = tg_get_cfs_period(tg);
10613 		quota = tg_get_cfs_quota(tg);
10614 	}
10615 
10616 	/* note: these should typically be equivalent */
10617 	if (quota == RUNTIME_INF || quota == -1)
10618 		return RUNTIME_INF;
10619 
10620 	return to_ratio(period, quota);
10621 }
10622 
10623 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10624 {
10625 	struct cfs_schedulable_data *d = data;
10626 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10627 	s64 quota = 0, parent_quota = -1;
10628 
10629 	if (!tg->parent) {
10630 		quota = RUNTIME_INF;
10631 	} else {
10632 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10633 
10634 		quota = normalize_cfs_quota(tg, d);
10635 		parent_quota = parent_b->hierarchical_quota;
10636 
10637 		/*
10638 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10639 		 * always take the min.  On cgroup1, only inherit when no
10640 		 * limit is set:
10641 		 */
10642 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10643 			quota = min(quota, parent_quota);
10644 		} else {
10645 			if (quota == RUNTIME_INF)
10646 				quota = parent_quota;
10647 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10648 				return -EINVAL;
10649 		}
10650 	}
10651 	cfs_b->hierarchical_quota = quota;
10652 
10653 	return 0;
10654 }
10655 
10656 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10657 {
10658 	int ret;
10659 	struct cfs_schedulable_data data = {
10660 		.tg = tg,
10661 		.period = period,
10662 		.quota = quota,
10663 	};
10664 
10665 	if (quota != RUNTIME_INF) {
10666 		do_div(data.period, NSEC_PER_USEC);
10667 		do_div(data.quota, NSEC_PER_USEC);
10668 	}
10669 
10670 	rcu_read_lock();
10671 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10672 	rcu_read_unlock();
10673 
10674 	return ret;
10675 }
10676 
10677 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10678 {
10679 	struct task_group *tg = css_tg(seq_css(sf));
10680 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10681 
10682 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10683 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10684 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10685 
10686 	if (schedstat_enabled() && tg != &root_task_group) {
10687 		struct sched_statistics *stats;
10688 		u64 ws = 0;
10689 		int i;
10690 
10691 		for_each_possible_cpu(i) {
10692 			stats = __schedstats_from_se(tg->se[i]);
10693 			ws += schedstat_val(stats->wait_sum);
10694 		}
10695 
10696 		seq_printf(sf, "wait_sum %llu\n", ws);
10697 	}
10698 
10699 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10700 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10701 
10702 	return 0;
10703 }
10704 #endif /* CONFIG_CFS_BANDWIDTH */
10705 #endif /* CONFIG_FAIR_GROUP_SCHED */
10706 
10707 #ifdef CONFIG_RT_GROUP_SCHED
10708 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10709 				struct cftype *cft, s64 val)
10710 {
10711 	return sched_group_set_rt_runtime(css_tg(css), val);
10712 }
10713 
10714 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10715 			       struct cftype *cft)
10716 {
10717 	return sched_group_rt_runtime(css_tg(css));
10718 }
10719 
10720 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10721 				    struct cftype *cftype, u64 rt_period_us)
10722 {
10723 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10724 }
10725 
10726 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10727 				   struct cftype *cft)
10728 {
10729 	return sched_group_rt_period(css_tg(css));
10730 }
10731 #endif /* CONFIG_RT_GROUP_SCHED */
10732 
10733 #ifdef CONFIG_FAIR_GROUP_SCHED
10734 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10735 			       struct cftype *cft)
10736 {
10737 	return css_tg(css)->idle;
10738 }
10739 
10740 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10741 				struct cftype *cft, s64 idle)
10742 {
10743 	return sched_group_set_idle(css_tg(css), idle);
10744 }
10745 #endif
10746 
10747 static struct cftype cpu_legacy_files[] = {
10748 #ifdef CONFIG_FAIR_GROUP_SCHED
10749 	{
10750 		.name = "shares",
10751 		.read_u64 = cpu_shares_read_u64,
10752 		.write_u64 = cpu_shares_write_u64,
10753 	},
10754 	{
10755 		.name = "idle",
10756 		.read_s64 = cpu_idle_read_s64,
10757 		.write_s64 = cpu_idle_write_s64,
10758 	},
10759 #endif
10760 #ifdef CONFIG_CFS_BANDWIDTH
10761 	{
10762 		.name = "cfs_quota_us",
10763 		.read_s64 = cpu_cfs_quota_read_s64,
10764 		.write_s64 = cpu_cfs_quota_write_s64,
10765 	},
10766 	{
10767 		.name = "cfs_period_us",
10768 		.read_u64 = cpu_cfs_period_read_u64,
10769 		.write_u64 = cpu_cfs_period_write_u64,
10770 	},
10771 	{
10772 		.name = "cfs_burst_us",
10773 		.read_u64 = cpu_cfs_burst_read_u64,
10774 		.write_u64 = cpu_cfs_burst_write_u64,
10775 	},
10776 	{
10777 		.name = "stat",
10778 		.seq_show = cpu_cfs_stat_show,
10779 	},
10780 #endif
10781 #ifdef CONFIG_RT_GROUP_SCHED
10782 	{
10783 		.name = "rt_runtime_us",
10784 		.read_s64 = cpu_rt_runtime_read,
10785 		.write_s64 = cpu_rt_runtime_write,
10786 	},
10787 	{
10788 		.name = "rt_period_us",
10789 		.read_u64 = cpu_rt_period_read_uint,
10790 		.write_u64 = cpu_rt_period_write_uint,
10791 	},
10792 #endif
10793 #ifdef CONFIG_UCLAMP_TASK_GROUP
10794 	{
10795 		.name = "uclamp.min",
10796 		.flags = CFTYPE_NOT_ON_ROOT,
10797 		.seq_show = cpu_uclamp_min_show,
10798 		.write = cpu_uclamp_min_write,
10799 	},
10800 	{
10801 		.name = "uclamp.max",
10802 		.flags = CFTYPE_NOT_ON_ROOT,
10803 		.seq_show = cpu_uclamp_max_show,
10804 		.write = cpu_uclamp_max_write,
10805 	},
10806 #endif
10807 	{ }	/* Terminate */
10808 };
10809 
10810 static int cpu_extra_stat_show(struct seq_file *sf,
10811 			       struct cgroup_subsys_state *css)
10812 {
10813 #ifdef CONFIG_CFS_BANDWIDTH
10814 	{
10815 		struct task_group *tg = css_tg(css);
10816 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10817 		u64 throttled_usec, burst_usec;
10818 
10819 		throttled_usec = cfs_b->throttled_time;
10820 		do_div(throttled_usec, NSEC_PER_USEC);
10821 		burst_usec = cfs_b->burst_time;
10822 		do_div(burst_usec, NSEC_PER_USEC);
10823 
10824 		seq_printf(sf, "nr_periods %d\n"
10825 			   "nr_throttled %d\n"
10826 			   "throttled_usec %llu\n"
10827 			   "nr_bursts %d\n"
10828 			   "burst_usec %llu\n",
10829 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10830 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10831 	}
10832 #endif
10833 	return 0;
10834 }
10835 
10836 #ifdef CONFIG_FAIR_GROUP_SCHED
10837 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10838 			       struct cftype *cft)
10839 {
10840 	struct task_group *tg = css_tg(css);
10841 	u64 weight = scale_load_down(tg->shares);
10842 
10843 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10844 }
10845 
10846 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10847 				struct cftype *cft, u64 weight)
10848 {
10849 	/*
10850 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10851 	 * values which are 1, 100 and 10000 respectively.  While it loses
10852 	 * a bit of range on both ends, it maps pretty well onto the shares
10853 	 * value used by scheduler and the round-trip conversions preserve
10854 	 * the original value over the entire range.
10855 	 */
10856 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10857 		return -ERANGE;
10858 
10859 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10860 
10861 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10862 }
10863 
10864 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10865 				    struct cftype *cft)
10866 {
10867 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10868 	int last_delta = INT_MAX;
10869 	int prio, delta;
10870 
10871 	/* find the closest nice value to the current weight */
10872 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10873 		delta = abs(sched_prio_to_weight[prio] - weight);
10874 		if (delta >= last_delta)
10875 			break;
10876 		last_delta = delta;
10877 	}
10878 
10879 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10880 }
10881 
10882 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10883 				     struct cftype *cft, s64 nice)
10884 {
10885 	unsigned long weight;
10886 	int idx;
10887 
10888 	if (nice < MIN_NICE || nice > MAX_NICE)
10889 		return -ERANGE;
10890 
10891 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10892 	idx = array_index_nospec(idx, 40);
10893 	weight = sched_prio_to_weight[idx];
10894 
10895 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10896 }
10897 #endif
10898 
10899 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10900 						  long period, long quota)
10901 {
10902 	if (quota < 0)
10903 		seq_puts(sf, "max");
10904 	else
10905 		seq_printf(sf, "%ld", quota);
10906 
10907 	seq_printf(sf, " %ld\n", period);
10908 }
10909 
10910 /* caller should put the current value in *@periodp before calling */
10911 static int __maybe_unused cpu_period_quota_parse(char *buf,
10912 						 u64 *periodp, u64 *quotap)
10913 {
10914 	char tok[21];	/* U64_MAX */
10915 
10916 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10917 		return -EINVAL;
10918 
10919 	*periodp *= NSEC_PER_USEC;
10920 
10921 	if (sscanf(tok, "%llu", quotap))
10922 		*quotap *= NSEC_PER_USEC;
10923 	else if (!strcmp(tok, "max"))
10924 		*quotap = RUNTIME_INF;
10925 	else
10926 		return -EINVAL;
10927 
10928 	return 0;
10929 }
10930 
10931 #ifdef CONFIG_CFS_BANDWIDTH
10932 static int cpu_max_show(struct seq_file *sf, void *v)
10933 {
10934 	struct task_group *tg = css_tg(seq_css(sf));
10935 
10936 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10937 	return 0;
10938 }
10939 
10940 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10941 			     char *buf, size_t nbytes, loff_t off)
10942 {
10943 	struct task_group *tg = css_tg(of_css(of));
10944 	u64 period = tg_get_cfs_period(tg);
10945 	u64 burst = tg_get_cfs_burst(tg);
10946 	u64 quota;
10947 	int ret;
10948 
10949 	ret = cpu_period_quota_parse(buf, &period, &quota);
10950 	if (!ret)
10951 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10952 	return ret ?: nbytes;
10953 }
10954 #endif
10955 
10956 static struct cftype cpu_files[] = {
10957 #ifdef CONFIG_FAIR_GROUP_SCHED
10958 	{
10959 		.name = "weight",
10960 		.flags = CFTYPE_NOT_ON_ROOT,
10961 		.read_u64 = cpu_weight_read_u64,
10962 		.write_u64 = cpu_weight_write_u64,
10963 	},
10964 	{
10965 		.name = "weight.nice",
10966 		.flags = CFTYPE_NOT_ON_ROOT,
10967 		.read_s64 = cpu_weight_nice_read_s64,
10968 		.write_s64 = cpu_weight_nice_write_s64,
10969 	},
10970 	{
10971 		.name = "idle",
10972 		.flags = CFTYPE_NOT_ON_ROOT,
10973 		.read_s64 = cpu_idle_read_s64,
10974 		.write_s64 = cpu_idle_write_s64,
10975 	},
10976 #endif
10977 #ifdef CONFIG_CFS_BANDWIDTH
10978 	{
10979 		.name = "max",
10980 		.flags = CFTYPE_NOT_ON_ROOT,
10981 		.seq_show = cpu_max_show,
10982 		.write = cpu_max_write,
10983 	},
10984 	{
10985 		.name = "max.burst",
10986 		.flags = CFTYPE_NOT_ON_ROOT,
10987 		.read_u64 = cpu_cfs_burst_read_u64,
10988 		.write_u64 = cpu_cfs_burst_write_u64,
10989 	},
10990 #endif
10991 #ifdef CONFIG_UCLAMP_TASK_GROUP
10992 	{
10993 		.name = "uclamp.min",
10994 		.flags = CFTYPE_NOT_ON_ROOT,
10995 		.seq_show = cpu_uclamp_min_show,
10996 		.write = cpu_uclamp_min_write,
10997 	},
10998 	{
10999 		.name = "uclamp.max",
11000 		.flags = CFTYPE_NOT_ON_ROOT,
11001 		.seq_show = cpu_uclamp_max_show,
11002 		.write = cpu_uclamp_max_write,
11003 	},
11004 #endif
11005 	{ }	/* terminate */
11006 };
11007 
11008 struct cgroup_subsys cpu_cgrp_subsys = {
11009 	.css_alloc	= cpu_cgroup_css_alloc,
11010 	.css_online	= cpu_cgroup_css_online,
11011 	.css_released	= cpu_cgroup_css_released,
11012 	.css_free	= cpu_cgroup_css_free,
11013 	.css_extra_stat_show = cpu_extra_stat_show,
11014 	.fork		= cpu_cgroup_fork,
11015 	.can_attach	= cpu_cgroup_can_attach,
11016 	.attach		= cpu_cgroup_attach,
11017 	.legacy_cftypes	= cpu_legacy_files,
11018 	.dfl_cftypes	= cpu_files,
11019 	.early_init	= true,
11020 	.threaded	= true,
11021 };
11022 
11023 #endif	/* CONFIG_CGROUP_SCHED */
11024 
11025 void dump_cpu_task(int cpu)
11026 {
11027 	pr_info("Task dump for CPU %d:\n", cpu);
11028 	sched_show_task(cpu_curr(cpu));
11029 }
11030 
11031 /*
11032  * Nice levels are multiplicative, with a gentle 10% change for every
11033  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11034  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11035  * that remained on nice 0.
11036  *
11037  * The "10% effect" is relative and cumulative: from _any_ nice level,
11038  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11039  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11040  * If a task goes up by ~10% and another task goes down by ~10% then
11041  * the relative distance between them is ~25%.)
11042  */
11043 const int sched_prio_to_weight[40] = {
11044  /* -20 */     88761,     71755,     56483,     46273,     36291,
11045  /* -15 */     29154,     23254,     18705,     14949,     11916,
11046  /* -10 */      9548,      7620,      6100,      4904,      3906,
11047  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11048  /*   0 */      1024,       820,       655,       526,       423,
11049  /*   5 */       335,       272,       215,       172,       137,
11050  /*  10 */       110,        87,        70,        56,        45,
11051  /*  15 */        36,        29,        23,        18,        15,
11052 };
11053 
11054 /*
11055  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11056  *
11057  * In cases where the weight does not change often, we can use the
11058  * precalculated inverse to speed up arithmetics by turning divisions
11059  * into multiplications:
11060  */
11061 const u32 sched_prio_to_wmult[40] = {
11062  /* -20 */     48388,     59856,     76040,     92818,    118348,
11063  /* -15 */    147320,    184698,    229616,    287308,    360437,
11064  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11065  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11066  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11067  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11068  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11069  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11070 };
11071 
11072 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11073 {
11074         trace_sched_update_nr_running_tp(rq, count);
11075 }
11076