1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 #ifdef CONFIG_SCHED_DEBUG 128 #define SCHED_FEAT(name, enabled) \ 129 #name , 130 131 static const char * const sched_feat_names[] = { 132 #include "features.h" 133 }; 134 135 #undef SCHED_FEAT 136 137 static int sched_feat_show(struct seq_file *m, void *v) 138 { 139 int i; 140 141 for (i = 0; i < __SCHED_FEAT_NR; i++) { 142 if (!(sysctl_sched_features & (1UL << i))) 143 seq_puts(m, "NO_"); 144 seq_printf(m, "%s ", sched_feat_names[i]); 145 } 146 seq_puts(m, "\n"); 147 148 return 0; 149 } 150 151 #ifdef HAVE_JUMP_LABEL 152 153 #define jump_label_key__true STATIC_KEY_INIT_TRUE 154 #define jump_label_key__false STATIC_KEY_INIT_FALSE 155 156 #define SCHED_FEAT(name, enabled) \ 157 jump_label_key__##enabled , 158 159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 160 #include "features.h" 161 }; 162 163 #undef SCHED_FEAT 164 165 static void sched_feat_disable(int i) 166 { 167 static_key_disable(&sched_feat_keys[i]); 168 } 169 170 static void sched_feat_enable(int i) 171 { 172 static_key_enable(&sched_feat_keys[i]); 173 } 174 #else 175 static void sched_feat_disable(int i) { }; 176 static void sched_feat_enable(int i) { }; 177 #endif /* HAVE_JUMP_LABEL */ 178 179 static int sched_feat_set(char *cmp) 180 { 181 int i; 182 int neg = 0; 183 184 if (strncmp(cmp, "NO_", 3) == 0) { 185 neg = 1; 186 cmp += 3; 187 } 188 189 for (i = 0; i < __SCHED_FEAT_NR; i++) { 190 if (strcmp(cmp, sched_feat_names[i]) == 0) { 191 if (neg) { 192 sysctl_sched_features &= ~(1UL << i); 193 sched_feat_disable(i); 194 } else { 195 sysctl_sched_features |= (1UL << i); 196 sched_feat_enable(i); 197 } 198 break; 199 } 200 } 201 202 return i; 203 } 204 205 static ssize_t 206 sched_feat_write(struct file *filp, const char __user *ubuf, 207 size_t cnt, loff_t *ppos) 208 { 209 char buf[64]; 210 char *cmp; 211 int i; 212 struct inode *inode; 213 214 if (cnt > 63) 215 cnt = 63; 216 217 if (copy_from_user(&buf, ubuf, cnt)) 218 return -EFAULT; 219 220 buf[cnt] = 0; 221 cmp = strstrip(buf); 222 223 /* Ensure the static_key remains in a consistent state */ 224 inode = file_inode(filp); 225 mutex_lock(&inode->i_mutex); 226 i = sched_feat_set(cmp); 227 mutex_unlock(&inode->i_mutex); 228 if (i == __SCHED_FEAT_NR) 229 return -EINVAL; 230 231 *ppos += cnt; 232 233 return cnt; 234 } 235 236 static int sched_feat_open(struct inode *inode, struct file *filp) 237 { 238 return single_open(filp, sched_feat_show, NULL); 239 } 240 241 static const struct file_operations sched_feat_fops = { 242 .open = sched_feat_open, 243 .write = sched_feat_write, 244 .read = seq_read, 245 .llseek = seq_lseek, 246 .release = single_release, 247 }; 248 249 static __init int sched_init_debug(void) 250 { 251 debugfs_create_file("sched_features", 0644, NULL, NULL, 252 &sched_feat_fops); 253 254 return 0; 255 } 256 late_initcall(sched_init_debug); 257 #endif /* CONFIG_SCHED_DEBUG */ 258 259 /* 260 * Number of tasks to iterate in a single balance run. 261 * Limited because this is done with IRQs disabled. 262 */ 263 const_debug unsigned int sysctl_sched_nr_migrate = 32; 264 265 /* 266 * period over which we average the RT time consumption, measured 267 * in ms. 268 * 269 * default: 1s 270 */ 271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 272 273 /* 274 * period over which we measure -rt task cpu usage in us. 275 * default: 1s 276 */ 277 unsigned int sysctl_sched_rt_period = 1000000; 278 279 __read_mostly int scheduler_running; 280 281 /* 282 * part of the period that we allow rt tasks to run in us. 283 * default: 0.95s 284 */ 285 int sysctl_sched_rt_runtime = 950000; 286 287 /* cpus with isolated domains */ 288 cpumask_var_t cpu_isolated_map; 289 290 /* 291 * this_rq_lock - lock this runqueue and disable interrupts. 292 */ 293 static struct rq *this_rq_lock(void) 294 __acquires(rq->lock) 295 { 296 struct rq *rq; 297 298 local_irq_disable(); 299 rq = this_rq(); 300 raw_spin_lock(&rq->lock); 301 302 return rq; 303 } 304 305 #ifdef CONFIG_SCHED_HRTICK 306 /* 307 * Use HR-timers to deliver accurate preemption points. 308 */ 309 310 static void hrtick_clear(struct rq *rq) 311 { 312 if (hrtimer_active(&rq->hrtick_timer)) 313 hrtimer_cancel(&rq->hrtick_timer); 314 } 315 316 /* 317 * High-resolution timer tick. 318 * Runs from hardirq context with interrupts disabled. 319 */ 320 static enum hrtimer_restart hrtick(struct hrtimer *timer) 321 { 322 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 323 324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 325 326 raw_spin_lock(&rq->lock); 327 update_rq_clock(rq); 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 329 raw_spin_unlock(&rq->lock); 330 331 return HRTIMER_NORESTART; 332 } 333 334 #ifdef CONFIG_SMP 335 336 static void __hrtick_restart(struct rq *rq) 337 { 338 struct hrtimer *timer = &rq->hrtick_timer; 339 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 341 } 342 343 /* 344 * called from hardirq (IPI) context 345 */ 346 static void __hrtick_start(void *arg) 347 { 348 struct rq *rq = arg; 349 350 raw_spin_lock(&rq->lock); 351 __hrtick_restart(rq); 352 rq->hrtick_csd_pending = 0; 353 raw_spin_unlock(&rq->lock); 354 } 355 356 /* 357 * Called to set the hrtick timer state. 358 * 359 * called with rq->lock held and irqs disabled 360 */ 361 void hrtick_start(struct rq *rq, u64 delay) 362 { 363 struct hrtimer *timer = &rq->hrtick_timer; 364 ktime_t time; 365 s64 delta; 366 367 /* 368 * Don't schedule slices shorter than 10000ns, that just 369 * doesn't make sense and can cause timer DoS. 370 */ 371 delta = max_t(s64, delay, 10000LL); 372 time = ktime_add_ns(timer->base->get_time(), delta); 373 374 hrtimer_set_expires(timer, time); 375 376 if (rq == this_rq()) { 377 __hrtick_restart(rq); 378 } else if (!rq->hrtick_csd_pending) { 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 380 rq->hrtick_csd_pending = 1; 381 } 382 } 383 384 static int 385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 386 { 387 int cpu = (int)(long)hcpu; 388 389 switch (action) { 390 case CPU_UP_CANCELED: 391 case CPU_UP_CANCELED_FROZEN: 392 case CPU_DOWN_PREPARE: 393 case CPU_DOWN_PREPARE_FROZEN: 394 case CPU_DEAD: 395 case CPU_DEAD_FROZEN: 396 hrtick_clear(cpu_rq(cpu)); 397 return NOTIFY_OK; 398 } 399 400 return NOTIFY_DONE; 401 } 402 403 static __init void init_hrtick(void) 404 { 405 hotcpu_notifier(hotplug_hrtick, 0); 406 } 407 #else 408 /* 409 * Called to set the hrtick timer state. 410 * 411 * called with rq->lock held and irqs disabled 412 */ 413 void hrtick_start(struct rq *rq, u64 delay) 414 { 415 /* 416 * Don't schedule slices shorter than 10000ns, that just 417 * doesn't make sense. Rely on vruntime for fairness. 418 */ 419 delay = max_t(u64, delay, 10000LL); 420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 421 HRTIMER_MODE_REL_PINNED); 422 } 423 424 static inline void init_hrtick(void) 425 { 426 } 427 #endif /* CONFIG_SMP */ 428 429 static void init_rq_hrtick(struct rq *rq) 430 { 431 #ifdef CONFIG_SMP 432 rq->hrtick_csd_pending = 0; 433 434 rq->hrtick_csd.flags = 0; 435 rq->hrtick_csd.func = __hrtick_start; 436 rq->hrtick_csd.info = rq; 437 #endif 438 439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 440 rq->hrtick_timer.function = hrtick; 441 } 442 #else /* CONFIG_SCHED_HRTICK */ 443 static inline void hrtick_clear(struct rq *rq) 444 { 445 } 446 447 static inline void init_rq_hrtick(struct rq *rq) 448 { 449 } 450 451 static inline void init_hrtick(void) 452 { 453 } 454 #endif /* CONFIG_SCHED_HRTICK */ 455 456 /* 457 * cmpxchg based fetch_or, macro so it works for different integer types 458 */ 459 #define fetch_or(ptr, val) \ 460 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 461 for (;;) { \ 462 __old = cmpxchg((ptr), __val, __val | (val)); \ 463 if (__old == __val) \ 464 break; \ 465 __val = __old; \ 466 } \ 467 __old; \ 468 }) 469 470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 471 /* 472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 473 * this avoids any races wrt polling state changes and thereby avoids 474 * spurious IPIs. 475 */ 476 static bool set_nr_and_not_polling(struct task_struct *p) 477 { 478 struct thread_info *ti = task_thread_info(p); 479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 480 } 481 482 /* 483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 484 * 485 * If this returns true, then the idle task promises to call 486 * sched_ttwu_pending() and reschedule soon. 487 */ 488 static bool set_nr_if_polling(struct task_struct *p) 489 { 490 struct thread_info *ti = task_thread_info(p); 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 492 493 for (;;) { 494 if (!(val & _TIF_POLLING_NRFLAG)) 495 return false; 496 if (val & _TIF_NEED_RESCHED) 497 return true; 498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 499 if (old == val) 500 break; 501 val = old; 502 } 503 return true; 504 } 505 506 #else 507 static bool set_nr_and_not_polling(struct task_struct *p) 508 { 509 set_tsk_need_resched(p); 510 return true; 511 } 512 513 #ifdef CONFIG_SMP 514 static bool set_nr_if_polling(struct task_struct *p) 515 { 516 return false; 517 } 518 #endif 519 #endif 520 521 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 522 { 523 struct wake_q_node *node = &task->wake_q; 524 525 /* 526 * Atomically grab the task, if ->wake_q is !nil already it means 527 * its already queued (either by us or someone else) and will get the 528 * wakeup due to that. 529 * 530 * This cmpxchg() implies a full barrier, which pairs with the write 531 * barrier implied by the wakeup in wake_up_list(). 532 */ 533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 534 return; 535 536 get_task_struct(task); 537 538 /* 539 * The head is context local, there can be no concurrency. 540 */ 541 *head->lastp = node; 542 head->lastp = &node->next; 543 } 544 545 void wake_up_q(struct wake_q_head *head) 546 { 547 struct wake_q_node *node = head->first; 548 549 while (node != WAKE_Q_TAIL) { 550 struct task_struct *task; 551 552 task = container_of(node, struct task_struct, wake_q); 553 BUG_ON(!task); 554 /* task can safely be re-inserted now */ 555 node = node->next; 556 task->wake_q.next = NULL; 557 558 /* 559 * wake_up_process() implies a wmb() to pair with the queueing 560 * in wake_q_add() so as not to miss wakeups. 561 */ 562 wake_up_process(task); 563 put_task_struct(task); 564 } 565 } 566 567 /* 568 * resched_curr - mark rq's current task 'to be rescheduled now'. 569 * 570 * On UP this means the setting of the need_resched flag, on SMP it 571 * might also involve a cross-CPU call to trigger the scheduler on 572 * the target CPU. 573 */ 574 void resched_curr(struct rq *rq) 575 { 576 struct task_struct *curr = rq->curr; 577 int cpu; 578 579 lockdep_assert_held(&rq->lock); 580 581 if (test_tsk_need_resched(curr)) 582 return; 583 584 cpu = cpu_of(rq); 585 586 if (cpu == smp_processor_id()) { 587 set_tsk_need_resched(curr); 588 set_preempt_need_resched(); 589 return; 590 } 591 592 if (set_nr_and_not_polling(curr)) 593 smp_send_reschedule(cpu); 594 else 595 trace_sched_wake_idle_without_ipi(cpu); 596 } 597 598 void resched_cpu(int cpu) 599 { 600 struct rq *rq = cpu_rq(cpu); 601 unsigned long flags; 602 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 604 return; 605 resched_curr(rq); 606 raw_spin_unlock_irqrestore(&rq->lock, flags); 607 } 608 609 #ifdef CONFIG_SMP 610 #ifdef CONFIG_NO_HZ_COMMON 611 /* 612 * In the semi idle case, use the nearest busy cpu for migrating timers 613 * from an idle cpu. This is good for power-savings. 614 * 615 * We don't do similar optimization for completely idle system, as 616 * selecting an idle cpu will add more delays to the timers than intended 617 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 618 */ 619 int get_nohz_timer_target(void) 620 { 621 int i, cpu = smp_processor_id(); 622 struct sched_domain *sd; 623 624 if (!idle_cpu(cpu)) 625 return cpu; 626 627 rcu_read_lock(); 628 for_each_domain(cpu, sd) { 629 for_each_cpu(i, sched_domain_span(sd)) { 630 if (!idle_cpu(i)) { 631 cpu = i; 632 goto unlock; 633 } 634 } 635 } 636 unlock: 637 rcu_read_unlock(); 638 return cpu; 639 } 640 /* 641 * When add_timer_on() enqueues a timer into the timer wheel of an 642 * idle CPU then this timer might expire before the next timer event 643 * which is scheduled to wake up that CPU. In case of a completely 644 * idle system the next event might even be infinite time into the 645 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 646 * leaves the inner idle loop so the newly added timer is taken into 647 * account when the CPU goes back to idle and evaluates the timer 648 * wheel for the next timer event. 649 */ 650 static void wake_up_idle_cpu(int cpu) 651 { 652 struct rq *rq = cpu_rq(cpu); 653 654 if (cpu == smp_processor_id()) 655 return; 656 657 if (set_nr_and_not_polling(rq->idle)) 658 smp_send_reschedule(cpu); 659 else 660 trace_sched_wake_idle_without_ipi(cpu); 661 } 662 663 static bool wake_up_full_nohz_cpu(int cpu) 664 { 665 /* 666 * We just need the target to call irq_exit() and re-evaluate 667 * the next tick. The nohz full kick at least implies that. 668 * If needed we can still optimize that later with an 669 * empty IRQ. 670 */ 671 if (tick_nohz_full_cpu(cpu)) { 672 if (cpu != smp_processor_id() || 673 tick_nohz_tick_stopped()) 674 tick_nohz_full_kick_cpu(cpu); 675 return true; 676 } 677 678 return false; 679 } 680 681 void wake_up_nohz_cpu(int cpu) 682 { 683 if (!wake_up_full_nohz_cpu(cpu)) 684 wake_up_idle_cpu(cpu); 685 } 686 687 static inline bool got_nohz_idle_kick(void) 688 { 689 int cpu = smp_processor_id(); 690 691 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 692 return false; 693 694 if (idle_cpu(cpu) && !need_resched()) 695 return true; 696 697 /* 698 * We can't run Idle Load Balance on this CPU for this time so we 699 * cancel it and clear NOHZ_BALANCE_KICK 700 */ 701 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 702 return false; 703 } 704 705 #else /* CONFIG_NO_HZ_COMMON */ 706 707 static inline bool got_nohz_idle_kick(void) 708 { 709 return false; 710 } 711 712 #endif /* CONFIG_NO_HZ_COMMON */ 713 714 #ifdef CONFIG_NO_HZ_FULL 715 bool sched_can_stop_tick(void) 716 { 717 /* 718 * FIFO realtime policy runs the highest priority task. Other runnable 719 * tasks are of a lower priority. The scheduler tick does nothing. 720 */ 721 if (current->policy == SCHED_FIFO) 722 return true; 723 724 /* 725 * Round-robin realtime tasks time slice with other tasks at the same 726 * realtime priority. Is this task the only one at this priority? 727 */ 728 if (current->policy == SCHED_RR) { 729 struct sched_rt_entity *rt_se = ¤t->rt; 730 731 return rt_se->run_list.prev == rt_se->run_list.next; 732 } 733 734 /* 735 * More than one running task need preemption. 736 * nr_running update is assumed to be visible 737 * after IPI is sent from wakers. 738 */ 739 if (this_rq()->nr_running > 1) 740 return false; 741 742 return true; 743 } 744 #endif /* CONFIG_NO_HZ_FULL */ 745 746 void sched_avg_update(struct rq *rq) 747 { 748 s64 period = sched_avg_period(); 749 750 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 751 /* 752 * Inline assembly required to prevent the compiler 753 * optimising this loop into a divmod call. 754 * See __iter_div_u64_rem() for another example of this. 755 */ 756 asm("" : "+rm" (rq->age_stamp)); 757 rq->age_stamp += period; 758 rq->rt_avg /= 2; 759 } 760 } 761 762 #endif /* CONFIG_SMP */ 763 764 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 765 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 766 /* 767 * Iterate task_group tree rooted at *from, calling @down when first entering a 768 * node and @up when leaving it for the final time. 769 * 770 * Caller must hold rcu_lock or sufficient equivalent. 771 */ 772 int walk_tg_tree_from(struct task_group *from, 773 tg_visitor down, tg_visitor up, void *data) 774 { 775 struct task_group *parent, *child; 776 int ret; 777 778 parent = from; 779 780 down: 781 ret = (*down)(parent, data); 782 if (ret) 783 goto out; 784 list_for_each_entry_rcu(child, &parent->children, siblings) { 785 parent = child; 786 goto down; 787 788 up: 789 continue; 790 } 791 ret = (*up)(parent, data); 792 if (ret || parent == from) 793 goto out; 794 795 child = parent; 796 parent = parent->parent; 797 if (parent) 798 goto up; 799 out: 800 return ret; 801 } 802 803 int tg_nop(struct task_group *tg, void *data) 804 { 805 return 0; 806 } 807 #endif 808 809 static void set_load_weight(struct task_struct *p) 810 { 811 int prio = p->static_prio - MAX_RT_PRIO; 812 struct load_weight *load = &p->se.load; 813 814 /* 815 * SCHED_IDLE tasks get minimal weight: 816 */ 817 if (p->policy == SCHED_IDLE) { 818 load->weight = scale_load(WEIGHT_IDLEPRIO); 819 load->inv_weight = WMULT_IDLEPRIO; 820 return; 821 } 822 823 load->weight = scale_load(prio_to_weight[prio]); 824 load->inv_weight = prio_to_wmult[prio]; 825 } 826 827 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 828 { 829 update_rq_clock(rq); 830 sched_info_queued(rq, p); 831 p->sched_class->enqueue_task(rq, p, flags); 832 } 833 834 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 835 { 836 update_rq_clock(rq); 837 sched_info_dequeued(rq, p); 838 p->sched_class->dequeue_task(rq, p, flags); 839 } 840 841 void activate_task(struct rq *rq, struct task_struct *p, int flags) 842 { 843 if (task_contributes_to_load(p)) 844 rq->nr_uninterruptible--; 845 846 enqueue_task(rq, p, flags); 847 } 848 849 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 850 { 851 if (task_contributes_to_load(p)) 852 rq->nr_uninterruptible++; 853 854 dequeue_task(rq, p, flags); 855 } 856 857 static void update_rq_clock_task(struct rq *rq, s64 delta) 858 { 859 /* 860 * In theory, the compile should just see 0 here, and optimize out the call 861 * to sched_rt_avg_update. But I don't trust it... 862 */ 863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 864 s64 steal = 0, irq_delta = 0; 865 #endif 866 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 867 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 868 869 /* 870 * Since irq_time is only updated on {soft,}irq_exit, we might run into 871 * this case when a previous update_rq_clock() happened inside a 872 * {soft,}irq region. 873 * 874 * When this happens, we stop ->clock_task and only update the 875 * prev_irq_time stamp to account for the part that fit, so that a next 876 * update will consume the rest. This ensures ->clock_task is 877 * monotonic. 878 * 879 * It does however cause some slight miss-attribution of {soft,}irq 880 * time, a more accurate solution would be to update the irq_time using 881 * the current rq->clock timestamp, except that would require using 882 * atomic ops. 883 */ 884 if (irq_delta > delta) 885 irq_delta = delta; 886 887 rq->prev_irq_time += irq_delta; 888 delta -= irq_delta; 889 #endif 890 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 891 if (static_key_false((¶virt_steal_rq_enabled))) { 892 steal = paravirt_steal_clock(cpu_of(rq)); 893 steal -= rq->prev_steal_time_rq; 894 895 if (unlikely(steal > delta)) 896 steal = delta; 897 898 rq->prev_steal_time_rq += steal; 899 delta -= steal; 900 } 901 #endif 902 903 rq->clock_task += delta; 904 905 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 906 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 907 sched_rt_avg_update(rq, irq_delta + steal); 908 #endif 909 } 910 911 void sched_set_stop_task(int cpu, struct task_struct *stop) 912 { 913 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 914 struct task_struct *old_stop = cpu_rq(cpu)->stop; 915 916 if (stop) { 917 /* 918 * Make it appear like a SCHED_FIFO task, its something 919 * userspace knows about and won't get confused about. 920 * 921 * Also, it will make PI more or less work without too 922 * much confusion -- but then, stop work should not 923 * rely on PI working anyway. 924 */ 925 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 926 927 stop->sched_class = &stop_sched_class; 928 } 929 930 cpu_rq(cpu)->stop = stop; 931 932 if (old_stop) { 933 /* 934 * Reset it back to a normal scheduling class so that 935 * it can die in pieces. 936 */ 937 old_stop->sched_class = &rt_sched_class; 938 } 939 } 940 941 /* 942 * __normal_prio - return the priority that is based on the static prio 943 */ 944 static inline int __normal_prio(struct task_struct *p) 945 { 946 return p->static_prio; 947 } 948 949 /* 950 * Calculate the expected normal priority: i.e. priority 951 * without taking RT-inheritance into account. Might be 952 * boosted by interactivity modifiers. Changes upon fork, 953 * setprio syscalls, and whenever the interactivity 954 * estimator recalculates. 955 */ 956 static inline int normal_prio(struct task_struct *p) 957 { 958 int prio; 959 960 if (task_has_dl_policy(p)) 961 prio = MAX_DL_PRIO-1; 962 else if (task_has_rt_policy(p)) 963 prio = MAX_RT_PRIO-1 - p->rt_priority; 964 else 965 prio = __normal_prio(p); 966 return prio; 967 } 968 969 /* 970 * Calculate the current priority, i.e. the priority 971 * taken into account by the scheduler. This value might 972 * be boosted by RT tasks, or might be boosted by 973 * interactivity modifiers. Will be RT if the task got 974 * RT-boosted. If not then it returns p->normal_prio. 975 */ 976 static int effective_prio(struct task_struct *p) 977 { 978 p->normal_prio = normal_prio(p); 979 /* 980 * If we are RT tasks or we were boosted to RT priority, 981 * keep the priority unchanged. Otherwise, update priority 982 * to the normal priority: 983 */ 984 if (!rt_prio(p->prio)) 985 return p->normal_prio; 986 return p->prio; 987 } 988 989 /** 990 * task_curr - is this task currently executing on a CPU? 991 * @p: the task in question. 992 * 993 * Return: 1 if the task is currently executing. 0 otherwise. 994 */ 995 inline int task_curr(const struct task_struct *p) 996 { 997 return cpu_curr(task_cpu(p)) == p; 998 } 999 1000 /* 1001 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1002 * use the balance_callback list if you want balancing. 1003 * 1004 * this means any call to check_class_changed() must be followed by a call to 1005 * balance_callback(). 1006 */ 1007 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1008 const struct sched_class *prev_class, 1009 int oldprio) 1010 { 1011 if (prev_class != p->sched_class) { 1012 if (prev_class->switched_from) 1013 prev_class->switched_from(rq, p); 1014 1015 p->sched_class->switched_to(rq, p); 1016 } else if (oldprio != p->prio || dl_task(p)) 1017 p->sched_class->prio_changed(rq, p, oldprio); 1018 } 1019 1020 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1021 { 1022 const struct sched_class *class; 1023 1024 if (p->sched_class == rq->curr->sched_class) { 1025 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1026 } else { 1027 for_each_class(class) { 1028 if (class == rq->curr->sched_class) 1029 break; 1030 if (class == p->sched_class) { 1031 resched_curr(rq); 1032 break; 1033 } 1034 } 1035 } 1036 1037 /* 1038 * A queue event has occurred, and we're going to schedule. In 1039 * this case, we can save a useless back to back clock update. 1040 */ 1041 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1042 rq_clock_skip_update(rq, true); 1043 } 1044 1045 #ifdef CONFIG_SMP 1046 /* 1047 * This is how migration works: 1048 * 1049 * 1) we invoke migration_cpu_stop() on the target CPU using 1050 * stop_one_cpu(). 1051 * 2) stopper starts to run (implicitly forcing the migrated thread 1052 * off the CPU) 1053 * 3) it checks whether the migrated task is still in the wrong runqueue. 1054 * 4) if it's in the wrong runqueue then the migration thread removes 1055 * it and puts it into the right queue. 1056 * 5) stopper completes and stop_one_cpu() returns and the migration 1057 * is done. 1058 */ 1059 1060 /* 1061 * move_queued_task - move a queued task to new rq. 1062 * 1063 * Returns (locked) new rq. Old rq's lock is released. 1064 */ 1065 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 1066 { 1067 lockdep_assert_held(&rq->lock); 1068 1069 dequeue_task(rq, p, 0); 1070 p->on_rq = TASK_ON_RQ_MIGRATING; 1071 set_task_cpu(p, new_cpu); 1072 raw_spin_unlock(&rq->lock); 1073 1074 rq = cpu_rq(new_cpu); 1075 1076 raw_spin_lock(&rq->lock); 1077 BUG_ON(task_cpu(p) != new_cpu); 1078 p->on_rq = TASK_ON_RQ_QUEUED; 1079 enqueue_task(rq, p, 0); 1080 check_preempt_curr(rq, p, 0); 1081 1082 return rq; 1083 } 1084 1085 struct migration_arg { 1086 struct task_struct *task; 1087 int dest_cpu; 1088 }; 1089 1090 /* 1091 * Move (not current) task off this cpu, onto dest cpu. We're doing 1092 * this because either it can't run here any more (set_cpus_allowed() 1093 * away from this CPU, or CPU going down), or because we're 1094 * attempting to rebalance this task on exec (sched_exec). 1095 * 1096 * So we race with normal scheduler movements, but that's OK, as long 1097 * as the task is no longer on this CPU. 1098 */ 1099 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1100 { 1101 if (unlikely(!cpu_active(dest_cpu))) 1102 return rq; 1103 1104 /* Affinity changed (again). */ 1105 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1106 return rq; 1107 1108 rq = move_queued_task(rq, p, dest_cpu); 1109 1110 return rq; 1111 } 1112 1113 /* 1114 * migration_cpu_stop - this will be executed by a highprio stopper thread 1115 * and performs thread migration by bumping thread off CPU then 1116 * 'pushing' onto another runqueue. 1117 */ 1118 static int migration_cpu_stop(void *data) 1119 { 1120 struct migration_arg *arg = data; 1121 struct task_struct *p = arg->task; 1122 struct rq *rq = this_rq(); 1123 1124 /* 1125 * The original target cpu might have gone down and we might 1126 * be on another cpu but it doesn't matter. 1127 */ 1128 local_irq_disable(); 1129 /* 1130 * We need to explicitly wake pending tasks before running 1131 * __migrate_task() such that we will not miss enforcing cpus_allowed 1132 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1133 */ 1134 sched_ttwu_pending(); 1135 1136 raw_spin_lock(&p->pi_lock); 1137 raw_spin_lock(&rq->lock); 1138 /* 1139 * If task_rq(p) != rq, it cannot be migrated here, because we're 1140 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1141 * we're holding p->pi_lock. 1142 */ 1143 if (task_rq(p) == rq && task_on_rq_queued(p)) 1144 rq = __migrate_task(rq, p, arg->dest_cpu); 1145 raw_spin_unlock(&rq->lock); 1146 raw_spin_unlock(&p->pi_lock); 1147 1148 local_irq_enable(); 1149 return 0; 1150 } 1151 1152 /* 1153 * sched_class::set_cpus_allowed must do the below, but is not required to 1154 * actually call this function. 1155 */ 1156 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1157 { 1158 cpumask_copy(&p->cpus_allowed, new_mask); 1159 p->nr_cpus_allowed = cpumask_weight(new_mask); 1160 } 1161 1162 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1163 { 1164 struct rq *rq = task_rq(p); 1165 bool queued, running; 1166 1167 lockdep_assert_held(&p->pi_lock); 1168 1169 queued = task_on_rq_queued(p); 1170 running = task_current(rq, p); 1171 1172 if (queued) { 1173 /* 1174 * Because __kthread_bind() calls this on blocked tasks without 1175 * holding rq->lock. 1176 */ 1177 lockdep_assert_held(&rq->lock); 1178 dequeue_task(rq, p, 0); 1179 } 1180 if (running) 1181 put_prev_task(rq, p); 1182 1183 p->sched_class->set_cpus_allowed(p, new_mask); 1184 1185 if (running) 1186 p->sched_class->set_curr_task(rq); 1187 if (queued) 1188 enqueue_task(rq, p, 0); 1189 } 1190 1191 /* 1192 * Change a given task's CPU affinity. Migrate the thread to a 1193 * proper CPU and schedule it away if the CPU it's executing on 1194 * is removed from the allowed bitmask. 1195 * 1196 * NOTE: the caller must have a valid reference to the task, the 1197 * task must not exit() & deallocate itself prematurely. The 1198 * call is not atomic; no spinlocks may be held. 1199 */ 1200 static int __set_cpus_allowed_ptr(struct task_struct *p, 1201 const struct cpumask *new_mask, bool check) 1202 { 1203 unsigned long flags; 1204 struct rq *rq; 1205 unsigned int dest_cpu; 1206 int ret = 0; 1207 1208 rq = task_rq_lock(p, &flags); 1209 1210 /* 1211 * Must re-check here, to close a race against __kthread_bind(), 1212 * sched_setaffinity() is not guaranteed to observe the flag. 1213 */ 1214 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1215 ret = -EINVAL; 1216 goto out; 1217 } 1218 1219 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1220 goto out; 1221 1222 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 1223 ret = -EINVAL; 1224 goto out; 1225 } 1226 1227 do_set_cpus_allowed(p, new_mask); 1228 1229 /* Can the task run on the task's current CPU? If so, we're done */ 1230 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1231 goto out; 1232 1233 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 1234 if (task_running(rq, p) || p->state == TASK_WAKING) { 1235 struct migration_arg arg = { p, dest_cpu }; 1236 /* Need help from migration thread: drop lock and wait. */ 1237 task_rq_unlock(rq, p, &flags); 1238 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1239 tlb_migrate_finish(p->mm); 1240 return 0; 1241 } else if (task_on_rq_queued(p)) { 1242 /* 1243 * OK, since we're going to drop the lock immediately 1244 * afterwards anyway. 1245 */ 1246 lockdep_unpin_lock(&rq->lock); 1247 rq = move_queued_task(rq, p, dest_cpu); 1248 lockdep_pin_lock(&rq->lock); 1249 } 1250 out: 1251 task_rq_unlock(rq, p, &flags); 1252 1253 return ret; 1254 } 1255 1256 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1257 { 1258 return __set_cpus_allowed_ptr(p, new_mask, false); 1259 } 1260 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1261 1262 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1263 { 1264 #ifdef CONFIG_SCHED_DEBUG 1265 /* 1266 * We should never call set_task_cpu() on a blocked task, 1267 * ttwu() will sort out the placement. 1268 */ 1269 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1270 !p->on_rq); 1271 1272 #ifdef CONFIG_LOCKDEP 1273 /* 1274 * The caller should hold either p->pi_lock or rq->lock, when changing 1275 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1276 * 1277 * sched_move_task() holds both and thus holding either pins the cgroup, 1278 * see task_group(). 1279 * 1280 * Furthermore, all task_rq users should acquire both locks, see 1281 * task_rq_lock(). 1282 */ 1283 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1284 lockdep_is_held(&task_rq(p)->lock))); 1285 #endif 1286 #endif 1287 1288 trace_sched_migrate_task(p, new_cpu); 1289 1290 if (task_cpu(p) != new_cpu) { 1291 if (p->sched_class->migrate_task_rq) 1292 p->sched_class->migrate_task_rq(p, new_cpu); 1293 p->se.nr_migrations++; 1294 perf_event_task_migrate(p); 1295 } 1296 1297 __set_task_cpu(p, new_cpu); 1298 } 1299 1300 static void __migrate_swap_task(struct task_struct *p, int cpu) 1301 { 1302 if (task_on_rq_queued(p)) { 1303 struct rq *src_rq, *dst_rq; 1304 1305 src_rq = task_rq(p); 1306 dst_rq = cpu_rq(cpu); 1307 1308 deactivate_task(src_rq, p, 0); 1309 set_task_cpu(p, cpu); 1310 activate_task(dst_rq, p, 0); 1311 check_preempt_curr(dst_rq, p, 0); 1312 } else { 1313 /* 1314 * Task isn't running anymore; make it appear like we migrated 1315 * it before it went to sleep. This means on wakeup we make the 1316 * previous cpu our targer instead of where it really is. 1317 */ 1318 p->wake_cpu = cpu; 1319 } 1320 } 1321 1322 struct migration_swap_arg { 1323 struct task_struct *src_task, *dst_task; 1324 int src_cpu, dst_cpu; 1325 }; 1326 1327 static int migrate_swap_stop(void *data) 1328 { 1329 struct migration_swap_arg *arg = data; 1330 struct rq *src_rq, *dst_rq; 1331 int ret = -EAGAIN; 1332 1333 src_rq = cpu_rq(arg->src_cpu); 1334 dst_rq = cpu_rq(arg->dst_cpu); 1335 1336 double_raw_lock(&arg->src_task->pi_lock, 1337 &arg->dst_task->pi_lock); 1338 double_rq_lock(src_rq, dst_rq); 1339 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1340 goto unlock; 1341 1342 if (task_cpu(arg->src_task) != arg->src_cpu) 1343 goto unlock; 1344 1345 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1346 goto unlock; 1347 1348 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1349 goto unlock; 1350 1351 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1352 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1353 1354 ret = 0; 1355 1356 unlock: 1357 double_rq_unlock(src_rq, dst_rq); 1358 raw_spin_unlock(&arg->dst_task->pi_lock); 1359 raw_spin_unlock(&arg->src_task->pi_lock); 1360 1361 return ret; 1362 } 1363 1364 /* 1365 * Cross migrate two tasks 1366 */ 1367 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1368 { 1369 struct migration_swap_arg arg; 1370 int ret = -EINVAL; 1371 1372 arg = (struct migration_swap_arg){ 1373 .src_task = cur, 1374 .src_cpu = task_cpu(cur), 1375 .dst_task = p, 1376 .dst_cpu = task_cpu(p), 1377 }; 1378 1379 if (arg.src_cpu == arg.dst_cpu) 1380 goto out; 1381 1382 /* 1383 * These three tests are all lockless; this is OK since all of them 1384 * will be re-checked with proper locks held further down the line. 1385 */ 1386 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1387 goto out; 1388 1389 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1390 goto out; 1391 1392 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1393 goto out; 1394 1395 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1396 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1397 1398 out: 1399 return ret; 1400 } 1401 1402 /* 1403 * wait_task_inactive - wait for a thread to unschedule. 1404 * 1405 * If @match_state is nonzero, it's the @p->state value just checked and 1406 * not expected to change. If it changes, i.e. @p might have woken up, 1407 * then return zero. When we succeed in waiting for @p to be off its CPU, 1408 * we return a positive number (its total switch count). If a second call 1409 * a short while later returns the same number, the caller can be sure that 1410 * @p has remained unscheduled the whole time. 1411 * 1412 * The caller must ensure that the task *will* unschedule sometime soon, 1413 * else this function might spin for a *long* time. This function can't 1414 * be called with interrupts off, or it may introduce deadlock with 1415 * smp_call_function() if an IPI is sent by the same process we are 1416 * waiting to become inactive. 1417 */ 1418 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1419 { 1420 unsigned long flags; 1421 int running, queued; 1422 unsigned long ncsw; 1423 struct rq *rq; 1424 1425 for (;;) { 1426 /* 1427 * We do the initial early heuristics without holding 1428 * any task-queue locks at all. We'll only try to get 1429 * the runqueue lock when things look like they will 1430 * work out! 1431 */ 1432 rq = task_rq(p); 1433 1434 /* 1435 * If the task is actively running on another CPU 1436 * still, just relax and busy-wait without holding 1437 * any locks. 1438 * 1439 * NOTE! Since we don't hold any locks, it's not 1440 * even sure that "rq" stays as the right runqueue! 1441 * But we don't care, since "task_running()" will 1442 * return false if the runqueue has changed and p 1443 * is actually now running somewhere else! 1444 */ 1445 while (task_running(rq, p)) { 1446 if (match_state && unlikely(p->state != match_state)) 1447 return 0; 1448 cpu_relax(); 1449 } 1450 1451 /* 1452 * Ok, time to look more closely! We need the rq 1453 * lock now, to be *sure*. If we're wrong, we'll 1454 * just go back and repeat. 1455 */ 1456 rq = task_rq_lock(p, &flags); 1457 trace_sched_wait_task(p); 1458 running = task_running(rq, p); 1459 queued = task_on_rq_queued(p); 1460 ncsw = 0; 1461 if (!match_state || p->state == match_state) 1462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1463 task_rq_unlock(rq, p, &flags); 1464 1465 /* 1466 * If it changed from the expected state, bail out now. 1467 */ 1468 if (unlikely(!ncsw)) 1469 break; 1470 1471 /* 1472 * Was it really running after all now that we 1473 * checked with the proper locks actually held? 1474 * 1475 * Oops. Go back and try again.. 1476 */ 1477 if (unlikely(running)) { 1478 cpu_relax(); 1479 continue; 1480 } 1481 1482 /* 1483 * It's not enough that it's not actively running, 1484 * it must be off the runqueue _entirely_, and not 1485 * preempted! 1486 * 1487 * So if it was still runnable (but just not actively 1488 * running right now), it's preempted, and we should 1489 * yield - it could be a while. 1490 */ 1491 if (unlikely(queued)) { 1492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1493 1494 set_current_state(TASK_UNINTERRUPTIBLE); 1495 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1496 continue; 1497 } 1498 1499 /* 1500 * Ahh, all good. It wasn't running, and it wasn't 1501 * runnable, which means that it will never become 1502 * running in the future either. We're all done! 1503 */ 1504 break; 1505 } 1506 1507 return ncsw; 1508 } 1509 1510 /*** 1511 * kick_process - kick a running thread to enter/exit the kernel 1512 * @p: the to-be-kicked thread 1513 * 1514 * Cause a process which is running on another CPU to enter 1515 * kernel-mode, without any delay. (to get signals handled.) 1516 * 1517 * NOTE: this function doesn't have to take the runqueue lock, 1518 * because all it wants to ensure is that the remote task enters 1519 * the kernel. If the IPI races and the task has been migrated 1520 * to another CPU then no harm is done and the purpose has been 1521 * achieved as well. 1522 */ 1523 void kick_process(struct task_struct *p) 1524 { 1525 int cpu; 1526 1527 preempt_disable(); 1528 cpu = task_cpu(p); 1529 if ((cpu != smp_processor_id()) && task_curr(p)) 1530 smp_send_reschedule(cpu); 1531 preempt_enable(); 1532 } 1533 EXPORT_SYMBOL_GPL(kick_process); 1534 1535 /* 1536 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1537 */ 1538 static int select_fallback_rq(int cpu, struct task_struct *p) 1539 { 1540 int nid = cpu_to_node(cpu); 1541 const struct cpumask *nodemask = NULL; 1542 enum { cpuset, possible, fail } state = cpuset; 1543 int dest_cpu; 1544 1545 /* 1546 * If the node that the cpu is on has been offlined, cpu_to_node() 1547 * will return -1. There is no cpu on the node, and we should 1548 * select the cpu on the other node. 1549 */ 1550 if (nid != -1) { 1551 nodemask = cpumask_of_node(nid); 1552 1553 /* Look for allowed, online CPU in same node. */ 1554 for_each_cpu(dest_cpu, nodemask) { 1555 if (!cpu_online(dest_cpu)) 1556 continue; 1557 if (!cpu_active(dest_cpu)) 1558 continue; 1559 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1560 return dest_cpu; 1561 } 1562 } 1563 1564 for (;;) { 1565 /* Any allowed, online CPU? */ 1566 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1567 if (!cpu_online(dest_cpu)) 1568 continue; 1569 if (!cpu_active(dest_cpu)) 1570 continue; 1571 goto out; 1572 } 1573 1574 switch (state) { 1575 case cpuset: 1576 /* No more Mr. Nice Guy. */ 1577 cpuset_cpus_allowed_fallback(p); 1578 state = possible; 1579 break; 1580 1581 case possible: 1582 do_set_cpus_allowed(p, cpu_possible_mask); 1583 state = fail; 1584 break; 1585 1586 case fail: 1587 BUG(); 1588 break; 1589 } 1590 } 1591 1592 out: 1593 if (state != cpuset) { 1594 /* 1595 * Don't tell them about moving exiting tasks or 1596 * kernel threads (both mm NULL), since they never 1597 * leave kernel. 1598 */ 1599 if (p->mm && printk_ratelimit()) { 1600 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1601 task_pid_nr(p), p->comm, cpu); 1602 } 1603 } 1604 1605 return dest_cpu; 1606 } 1607 1608 /* 1609 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1610 */ 1611 static inline 1612 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1613 { 1614 lockdep_assert_held(&p->pi_lock); 1615 1616 if (p->nr_cpus_allowed > 1) 1617 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1618 1619 /* 1620 * In order not to call set_task_cpu() on a blocking task we need 1621 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1622 * cpu. 1623 * 1624 * Since this is common to all placement strategies, this lives here. 1625 * 1626 * [ this allows ->select_task() to simply return task_cpu(p) and 1627 * not worry about this generic constraint ] 1628 */ 1629 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1630 !cpu_online(cpu))) 1631 cpu = select_fallback_rq(task_cpu(p), p); 1632 1633 return cpu; 1634 } 1635 1636 static void update_avg(u64 *avg, u64 sample) 1637 { 1638 s64 diff = sample - *avg; 1639 *avg += diff >> 3; 1640 } 1641 1642 #else 1643 1644 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1645 const struct cpumask *new_mask, bool check) 1646 { 1647 return set_cpus_allowed_ptr(p, new_mask); 1648 } 1649 1650 #endif /* CONFIG_SMP */ 1651 1652 static void 1653 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1654 { 1655 #ifdef CONFIG_SCHEDSTATS 1656 struct rq *rq = this_rq(); 1657 1658 #ifdef CONFIG_SMP 1659 int this_cpu = smp_processor_id(); 1660 1661 if (cpu == this_cpu) { 1662 schedstat_inc(rq, ttwu_local); 1663 schedstat_inc(p, se.statistics.nr_wakeups_local); 1664 } else { 1665 struct sched_domain *sd; 1666 1667 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1668 rcu_read_lock(); 1669 for_each_domain(this_cpu, sd) { 1670 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1671 schedstat_inc(sd, ttwu_wake_remote); 1672 break; 1673 } 1674 } 1675 rcu_read_unlock(); 1676 } 1677 1678 if (wake_flags & WF_MIGRATED) 1679 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1680 1681 #endif /* CONFIG_SMP */ 1682 1683 schedstat_inc(rq, ttwu_count); 1684 schedstat_inc(p, se.statistics.nr_wakeups); 1685 1686 if (wake_flags & WF_SYNC) 1687 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1688 1689 #endif /* CONFIG_SCHEDSTATS */ 1690 } 1691 1692 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1693 { 1694 activate_task(rq, p, en_flags); 1695 p->on_rq = TASK_ON_RQ_QUEUED; 1696 1697 /* if a worker is waking up, notify workqueue */ 1698 if (p->flags & PF_WQ_WORKER) 1699 wq_worker_waking_up(p, cpu_of(rq)); 1700 } 1701 1702 /* 1703 * Mark the task runnable and perform wakeup-preemption. 1704 */ 1705 static void 1706 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1707 { 1708 check_preempt_curr(rq, p, wake_flags); 1709 p->state = TASK_RUNNING; 1710 trace_sched_wakeup(p); 1711 1712 #ifdef CONFIG_SMP 1713 if (p->sched_class->task_woken) { 1714 /* 1715 * Our task @p is fully woken up and running; so its safe to 1716 * drop the rq->lock, hereafter rq is only used for statistics. 1717 */ 1718 lockdep_unpin_lock(&rq->lock); 1719 p->sched_class->task_woken(rq, p); 1720 lockdep_pin_lock(&rq->lock); 1721 } 1722 1723 if (rq->idle_stamp) { 1724 u64 delta = rq_clock(rq) - rq->idle_stamp; 1725 u64 max = 2*rq->max_idle_balance_cost; 1726 1727 update_avg(&rq->avg_idle, delta); 1728 1729 if (rq->avg_idle > max) 1730 rq->avg_idle = max; 1731 1732 rq->idle_stamp = 0; 1733 } 1734 #endif 1735 } 1736 1737 static void 1738 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1739 { 1740 lockdep_assert_held(&rq->lock); 1741 1742 #ifdef CONFIG_SMP 1743 if (p->sched_contributes_to_load) 1744 rq->nr_uninterruptible--; 1745 #endif 1746 1747 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1748 ttwu_do_wakeup(rq, p, wake_flags); 1749 } 1750 1751 /* 1752 * Called in case the task @p isn't fully descheduled from its runqueue, 1753 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1754 * since all we need to do is flip p->state to TASK_RUNNING, since 1755 * the task is still ->on_rq. 1756 */ 1757 static int ttwu_remote(struct task_struct *p, int wake_flags) 1758 { 1759 struct rq *rq; 1760 int ret = 0; 1761 1762 rq = __task_rq_lock(p); 1763 if (task_on_rq_queued(p)) { 1764 /* check_preempt_curr() may use rq clock */ 1765 update_rq_clock(rq); 1766 ttwu_do_wakeup(rq, p, wake_flags); 1767 ret = 1; 1768 } 1769 __task_rq_unlock(rq); 1770 1771 return ret; 1772 } 1773 1774 #ifdef CONFIG_SMP 1775 void sched_ttwu_pending(void) 1776 { 1777 struct rq *rq = this_rq(); 1778 struct llist_node *llist = llist_del_all(&rq->wake_list); 1779 struct task_struct *p; 1780 unsigned long flags; 1781 1782 if (!llist) 1783 return; 1784 1785 raw_spin_lock_irqsave(&rq->lock, flags); 1786 lockdep_pin_lock(&rq->lock); 1787 1788 while (llist) { 1789 p = llist_entry(llist, struct task_struct, wake_entry); 1790 llist = llist_next(llist); 1791 ttwu_do_activate(rq, p, 0); 1792 } 1793 1794 lockdep_unpin_lock(&rq->lock); 1795 raw_spin_unlock_irqrestore(&rq->lock, flags); 1796 } 1797 1798 void scheduler_ipi(void) 1799 { 1800 /* 1801 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1802 * TIF_NEED_RESCHED remotely (for the first time) will also send 1803 * this IPI. 1804 */ 1805 preempt_fold_need_resched(); 1806 1807 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1808 return; 1809 1810 /* 1811 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1812 * traditionally all their work was done from the interrupt return 1813 * path. Now that we actually do some work, we need to make sure 1814 * we do call them. 1815 * 1816 * Some archs already do call them, luckily irq_enter/exit nest 1817 * properly. 1818 * 1819 * Arguably we should visit all archs and update all handlers, 1820 * however a fair share of IPIs are still resched only so this would 1821 * somewhat pessimize the simple resched case. 1822 */ 1823 irq_enter(); 1824 sched_ttwu_pending(); 1825 1826 /* 1827 * Check if someone kicked us for doing the nohz idle load balance. 1828 */ 1829 if (unlikely(got_nohz_idle_kick())) { 1830 this_rq()->idle_balance = 1; 1831 raise_softirq_irqoff(SCHED_SOFTIRQ); 1832 } 1833 irq_exit(); 1834 } 1835 1836 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1837 { 1838 struct rq *rq = cpu_rq(cpu); 1839 1840 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1841 if (!set_nr_if_polling(rq->idle)) 1842 smp_send_reschedule(cpu); 1843 else 1844 trace_sched_wake_idle_without_ipi(cpu); 1845 } 1846 } 1847 1848 void wake_up_if_idle(int cpu) 1849 { 1850 struct rq *rq = cpu_rq(cpu); 1851 unsigned long flags; 1852 1853 rcu_read_lock(); 1854 1855 if (!is_idle_task(rcu_dereference(rq->curr))) 1856 goto out; 1857 1858 if (set_nr_if_polling(rq->idle)) { 1859 trace_sched_wake_idle_without_ipi(cpu); 1860 } else { 1861 raw_spin_lock_irqsave(&rq->lock, flags); 1862 if (is_idle_task(rq->curr)) 1863 smp_send_reschedule(cpu); 1864 /* Else cpu is not in idle, do nothing here */ 1865 raw_spin_unlock_irqrestore(&rq->lock, flags); 1866 } 1867 1868 out: 1869 rcu_read_unlock(); 1870 } 1871 1872 bool cpus_share_cache(int this_cpu, int that_cpu) 1873 { 1874 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1875 } 1876 #endif /* CONFIG_SMP */ 1877 1878 static void ttwu_queue(struct task_struct *p, int cpu) 1879 { 1880 struct rq *rq = cpu_rq(cpu); 1881 1882 #if defined(CONFIG_SMP) 1883 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1884 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1885 ttwu_queue_remote(p, cpu); 1886 return; 1887 } 1888 #endif 1889 1890 raw_spin_lock(&rq->lock); 1891 lockdep_pin_lock(&rq->lock); 1892 ttwu_do_activate(rq, p, 0); 1893 lockdep_unpin_lock(&rq->lock); 1894 raw_spin_unlock(&rq->lock); 1895 } 1896 1897 /** 1898 * try_to_wake_up - wake up a thread 1899 * @p: the thread to be awakened 1900 * @state: the mask of task states that can be woken 1901 * @wake_flags: wake modifier flags (WF_*) 1902 * 1903 * Put it on the run-queue if it's not already there. The "current" 1904 * thread is always on the run-queue (except when the actual 1905 * re-schedule is in progress), and as such you're allowed to do 1906 * the simpler "current->state = TASK_RUNNING" to mark yourself 1907 * runnable without the overhead of this. 1908 * 1909 * Return: %true if @p was woken up, %false if it was already running. 1910 * or @state didn't match @p's state. 1911 */ 1912 static int 1913 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1914 { 1915 unsigned long flags; 1916 int cpu, success = 0; 1917 1918 /* 1919 * If we are going to wake up a thread waiting for CONDITION we 1920 * need to ensure that CONDITION=1 done by the caller can not be 1921 * reordered with p->state check below. This pairs with mb() in 1922 * set_current_state() the waiting thread does. 1923 */ 1924 smp_mb__before_spinlock(); 1925 raw_spin_lock_irqsave(&p->pi_lock, flags); 1926 if (!(p->state & state)) 1927 goto out; 1928 1929 trace_sched_waking(p); 1930 1931 success = 1; /* we're going to change ->state */ 1932 cpu = task_cpu(p); 1933 1934 if (p->on_rq && ttwu_remote(p, wake_flags)) 1935 goto stat; 1936 1937 #ifdef CONFIG_SMP 1938 /* 1939 * If the owning (remote) cpu is still in the middle of schedule() with 1940 * this task as prev, wait until its done referencing the task. 1941 */ 1942 while (p->on_cpu) 1943 cpu_relax(); 1944 /* 1945 * Pairs with the smp_wmb() in finish_lock_switch(). 1946 */ 1947 smp_rmb(); 1948 1949 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1950 p->state = TASK_WAKING; 1951 1952 if (p->sched_class->task_waking) 1953 p->sched_class->task_waking(p); 1954 1955 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1956 if (task_cpu(p) != cpu) { 1957 wake_flags |= WF_MIGRATED; 1958 set_task_cpu(p, cpu); 1959 } 1960 #endif /* CONFIG_SMP */ 1961 1962 ttwu_queue(p, cpu); 1963 stat: 1964 ttwu_stat(p, cpu, wake_flags); 1965 out: 1966 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1967 1968 return success; 1969 } 1970 1971 /** 1972 * try_to_wake_up_local - try to wake up a local task with rq lock held 1973 * @p: the thread to be awakened 1974 * 1975 * Put @p on the run-queue if it's not already there. The caller must 1976 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1977 * the current task. 1978 */ 1979 static void try_to_wake_up_local(struct task_struct *p) 1980 { 1981 struct rq *rq = task_rq(p); 1982 1983 if (WARN_ON_ONCE(rq != this_rq()) || 1984 WARN_ON_ONCE(p == current)) 1985 return; 1986 1987 lockdep_assert_held(&rq->lock); 1988 1989 if (!raw_spin_trylock(&p->pi_lock)) { 1990 /* 1991 * This is OK, because current is on_cpu, which avoids it being 1992 * picked for load-balance and preemption/IRQs are still 1993 * disabled avoiding further scheduler activity on it and we've 1994 * not yet picked a replacement task. 1995 */ 1996 lockdep_unpin_lock(&rq->lock); 1997 raw_spin_unlock(&rq->lock); 1998 raw_spin_lock(&p->pi_lock); 1999 raw_spin_lock(&rq->lock); 2000 lockdep_pin_lock(&rq->lock); 2001 } 2002 2003 if (!(p->state & TASK_NORMAL)) 2004 goto out; 2005 2006 trace_sched_waking(p); 2007 2008 if (!task_on_rq_queued(p)) 2009 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2010 2011 ttwu_do_wakeup(rq, p, 0); 2012 ttwu_stat(p, smp_processor_id(), 0); 2013 out: 2014 raw_spin_unlock(&p->pi_lock); 2015 } 2016 2017 /** 2018 * wake_up_process - Wake up a specific process 2019 * @p: The process to be woken up. 2020 * 2021 * Attempt to wake up the nominated process and move it to the set of runnable 2022 * processes. 2023 * 2024 * Return: 1 if the process was woken up, 0 if it was already running. 2025 * 2026 * It may be assumed that this function implies a write memory barrier before 2027 * changing the task state if and only if any tasks are woken up. 2028 */ 2029 int wake_up_process(struct task_struct *p) 2030 { 2031 WARN_ON(task_is_stopped_or_traced(p)); 2032 return try_to_wake_up(p, TASK_NORMAL, 0); 2033 } 2034 EXPORT_SYMBOL(wake_up_process); 2035 2036 int wake_up_state(struct task_struct *p, unsigned int state) 2037 { 2038 return try_to_wake_up(p, state, 0); 2039 } 2040 2041 /* 2042 * This function clears the sched_dl_entity static params. 2043 */ 2044 void __dl_clear_params(struct task_struct *p) 2045 { 2046 struct sched_dl_entity *dl_se = &p->dl; 2047 2048 dl_se->dl_runtime = 0; 2049 dl_se->dl_deadline = 0; 2050 dl_se->dl_period = 0; 2051 dl_se->flags = 0; 2052 dl_se->dl_bw = 0; 2053 2054 dl_se->dl_throttled = 0; 2055 dl_se->dl_new = 1; 2056 dl_se->dl_yielded = 0; 2057 } 2058 2059 /* 2060 * Perform scheduler related setup for a newly forked process p. 2061 * p is forked by current. 2062 * 2063 * __sched_fork() is basic setup used by init_idle() too: 2064 */ 2065 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2066 { 2067 p->on_rq = 0; 2068 2069 p->se.on_rq = 0; 2070 p->se.exec_start = 0; 2071 p->se.sum_exec_runtime = 0; 2072 p->se.prev_sum_exec_runtime = 0; 2073 p->se.nr_migrations = 0; 2074 p->se.vruntime = 0; 2075 INIT_LIST_HEAD(&p->se.group_node); 2076 2077 #ifdef CONFIG_SCHEDSTATS 2078 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2079 #endif 2080 2081 RB_CLEAR_NODE(&p->dl.rb_node); 2082 init_dl_task_timer(&p->dl); 2083 __dl_clear_params(p); 2084 2085 INIT_LIST_HEAD(&p->rt.run_list); 2086 2087 #ifdef CONFIG_PREEMPT_NOTIFIERS 2088 INIT_HLIST_HEAD(&p->preempt_notifiers); 2089 #endif 2090 2091 #ifdef CONFIG_NUMA_BALANCING 2092 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2093 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2094 p->mm->numa_scan_seq = 0; 2095 } 2096 2097 if (clone_flags & CLONE_VM) 2098 p->numa_preferred_nid = current->numa_preferred_nid; 2099 else 2100 p->numa_preferred_nid = -1; 2101 2102 p->node_stamp = 0ULL; 2103 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2104 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2105 p->numa_work.next = &p->numa_work; 2106 p->numa_faults = NULL; 2107 p->last_task_numa_placement = 0; 2108 p->last_sum_exec_runtime = 0; 2109 2110 p->numa_group = NULL; 2111 #endif /* CONFIG_NUMA_BALANCING */ 2112 } 2113 2114 #ifdef CONFIG_NUMA_BALANCING 2115 #ifdef CONFIG_SCHED_DEBUG 2116 void set_numabalancing_state(bool enabled) 2117 { 2118 if (enabled) 2119 sched_feat_set("NUMA"); 2120 else 2121 sched_feat_set("NO_NUMA"); 2122 } 2123 #else 2124 __read_mostly bool numabalancing_enabled; 2125 2126 void set_numabalancing_state(bool enabled) 2127 { 2128 numabalancing_enabled = enabled; 2129 } 2130 #endif /* CONFIG_SCHED_DEBUG */ 2131 2132 #ifdef CONFIG_PROC_SYSCTL 2133 int sysctl_numa_balancing(struct ctl_table *table, int write, 2134 void __user *buffer, size_t *lenp, loff_t *ppos) 2135 { 2136 struct ctl_table t; 2137 int err; 2138 int state = numabalancing_enabled; 2139 2140 if (write && !capable(CAP_SYS_ADMIN)) 2141 return -EPERM; 2142 2143 t = *table; 2144 t.data = &state; 2145 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2146 if (err < 0) 2147 return err; 2148 if (write) 2149 set_numabalancing_state(state); 2150 return err; 2151 } 2152 #endif 2153 #endif 2154 2155 /* 2156 * fork()/clone()-time setup: 2157 */ 2158 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2159 { 2160 unsigned long flags; 2161 int cpu = get_cpu(); 2162 2163 __sched_fork(clone_flags, p); 2164 /* 2165 * We mark the process as running here. This guarantees that 2166 * nobody will actually run it, and a signal or other external 2167 * event cannot wake it up and insert it on the runqueue either. 2168 */ 2169 p->state = TASK_RUNNING; 2170 2171 /* 2172 * Make sure we do not leak PI boosting priority to the child. 2173 */ 2174 p->prio = current->normal_prio; 2175 2176 /* 2177 * Revert to default priority/policy on fork if requested. 2178 */ 2179 if (unlikely(p->sched_reset_on_fork)) { 2180 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2181 p->policy = SCHED_NORMAL; 2182 p->static_prio = NICE_TO_PRIO(0); 2183 p->rt_priority = 0; 2184 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2185 p->static_prio = NICE_TO_PRIO(0); 2186 2187 p->prio = p->normal_prio = __normal_prio(p); 2188 set_load_weight(p); 2189 2190 /* 2191 * We don't need the reset flag anymore after the fork. It has 2192 * fulfilled its duty: 2193 */ 2194 p->sched_reset_on_fork = 0; 2195 } 2196 2197 if (dl_prio(p->prio)) { 2198 put_cpu(); 2199 return -EAGAIN; 2200 } else if (rt_prio(p->prio)) { 2201 p->sched_class = &rt_sched_class; 2202 } else { 2203 p->sched_class = &fair_sched_class; 2204 } 2205 2206 if (p->sched_class->task_fork) 2207 p->sched_class->task_fork(p); 2208 2209 /* 2210 * The child is not yet in the pid-hash so no cgroup attach races, 2211 * and the cgroup is pinned to this child due to cgroup_fork() 2212 * is ran before sched_fork(). 2213 * 2214 * Silence PROVE_RCU. 2215 */ 2216 raw_spin_lock_irqsave(&p->pi_lock, flags); 2217 set_task_cpu(p, cpu); 2218 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2219 2220 #ifdef CONFIG_SCHED_INFO 2221 if (likely(sched_info_on())) 2222 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2223 #endif 2224 #if defined(CONFIG_SMP) 2225 p->on_cpu = 0; 2226 #endif 2227 init_task_preempt_count(p); 2228 #ifdef CONFIG_SMP 2229 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2230 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2231 #endif 2232 2233 put_cpu(); 2234 return 0; 2235 } 2236 2237 unsigned long to_ratio(u64 period, u64 runtime) 2238 { 2239 if (runtime == RUNTIME_INF) 2240 return 1ULL << 20; 2241 2242 /* 2243 * Doing this here saves a lot of checks in all 2244 * the calling paths, and returning zero seems 2245 * safe for them anyway. 2246 */ 2247 if (period == 0) 2248 return 0; 2249 2250 return div64_u64(runtime << 20, period); 2251 } 2252 2253 #ifdef CONFIG_SMP 2254 inline struct dl_bw *dl_bw_of(int i) 2255 { 2256 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2257 "sched RCU must be held"); 2258 return &cpu_rq(i)->rd->dl_bw; 2259 } 2260 2261 static inline int dl_bw_cpus(int i) 2262 { 2263 struct root_domain *rd = cpu_rq(i)->rd; 2264 int cpus = 0; 2265 2266 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2267 "sched RCU must be held"); 2268 for_each_cpu_and(i, rd->span, cpu_active_mask) 2269 cpus++; 2270 2271 return cpus; 2272 } 2273 #else 2274 inline struct dl_bw *dl_bw_of(int i) 2275 { 2276 return &cpu_rq(i)->dl.dl_bw; 2277 } 2278 2279 static inline int dl_bw_cpus(int i) 2280 { 2281 return 1; 2282 } 2283 #endif 2284 2285 /* 2286 * We must be sure that accepting a new task (or allowing changing the 2287 * parameters of an existing one) is consistent with the bandwidth 2288 * constraints. If yes, this function also accordingly updates the currently 2289 * allocated bandwidth to reflect the new situation. 2290 * 2291 * This function is called while holding p's rq->lock. 2292 * 2293 * XXX we should delay bw change until the task's 0-lag point, see 2294 * __setparam_dl(). 2295 */ 2296 static int dl_overflow(struct task_struct *p, int policy, 2297 const struct sched_attr *attr) 2298 { 2299 2300 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2301 u64 period = attr->sched_period ?: attr->sched_deadline; 2302 u64 runtime = attr->sched_runtime; 2303 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2304 int cpus, err = -1; 2305 2306 if (new_bw == p->dl.dl_bw) 2307 return 0; 2308 2309 /* 2310 * Either if a task, enters, leave, or stays -deadline but changes 2311 * its parameters, we may need to update accordingly the total 2312 * allocated bandwidth of the container. 2313 */ 2314 raw_spin_lock(&dl_b->lock); 2315 cpus = dl_bw_cpus(task_cpu(p)); 2316 if (dl_policy(policy) && !task_has_dl_policy(p) && 2317 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2318 __dl_add(dl_b, new_bw); 2319 err = 0; 2320 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2321 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2322 __dl_clear(dl_b, p->dl.dl_bw); 2323 __dl_add(dl_b, new_bw); 2324 err = 0; 2325 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2326 __dl_clear(dl_b, p->dl.dl_bw); 2327 err = 0; 2328 } 2329 raw_spin_unlock(&dl_b->lock); 2330 2331 return err; 2332 } 2333 2334 extern void init_dl_bw(struct dl_bw *dl_b); 2335 2336 /* 2337 * wake_up_new_task - wake up a newly created task for the first time. 2338 * 2339 * This function will do some initial scheduler statistics housekeeping 2340 * that must be done for every newly created context, then puts the task 2341 * on the runqueue and wakes it. 2342 */ 2343 void wake_up_new_task(struct task_struct *p) 2344 { 2345 unsigned long flags; 2346 struct rq *rq; 2347 2348 raw_spin_lock_irqsave(&p->pi_lock, flags); 2349 #ifdef CONFIG_SMP 2350 /* 2351 * Fork balancing, do it here and not earlier because: 2352 * - cpus_allowed can change in the fork path 2353 * - any previously selected cpu might disappear through hotplug 2354 */ 2355 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2356 #endif 2357 2358 /* Initialize new task's runnable average */ 2359 init_entity_runnable_average(&p->se); 2360 rq = __task_rq_lock(p); 2361 activate_task(rq, p, 0); 2362 p->on_rq = TASK_ON_RQ_QUEUED; 2363 trace_sched_wakeup_new(p); 2364 check_preempt_curr(rq, p, WF_FORK); 2365 #ifdef CONFIG_SMP 2366 if (p->sched_class->task_woken) 2367 p->sched_class->task_woken(rq, p); 2368 #endif 2369 task_rq_unlock(rq, p, &flags); 2370 } 2371 2372 #ifdef CONFIG_PREEMPT_NOTIFIERS 2373 2374 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2375 2376 void preempt_notifier_inc(void) 2377 { 2378 static_key_slow_inc(&preempt_notifier_key); 2379 } 2380 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2381 2382 void preempt_notifier_dec(void) 2383 { 2384 static_key_slow_dec(&preempt_notifier_key); 2385 } 2386 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2387 2388 /** 2389 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2390 * @notifier: notifier struct to register 2391 */ 2392 void preempt_notifier_register(struct preempt_notifier *notifier) 2393 { 2394 if (!static_key_false(&preempt_notifier_key)) 2395 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2396 2397 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2398 } 2399 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2400 2401 /** 2402 * preempt_notifier_unregister - no longer interested in preemption notifications 2403 * @notifier: notifier struct to unregister 2404 * 2405 * This is *not* safe to call from within a preemption notifier. 2406 */ 2407 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2408 { 2409 hlist_del(¬ifier->link); 2410 } 2411 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2412 2413 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2414 { 2415 struct preempt_notifier *notifier; 2416 2417 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2418 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2419 } 2420 2421 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2422 { 2423 if (static_key_false(&preempt_notifier_key)) 2424 __fire_sched_in_preempt_notifiers(curr); 2425 } 2426 2427 static void 2428 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2429 struct task_struct *next) 2430 { 2431 struct preempt_notifier *notifier; 2432 2433 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2434 notifier->ops->sched_out(notifier, next); 2435 } 2436 2437 static __always_inline void 2438 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2439 struct task_struct *next) 2440 { 2441 if (static_key_false(&preempt_notifier_key)) 2442 __fire_sched_out_preempt_notifiers(curr, next); 2443 } 2444 2445 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2446 2447 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2448 { 2449 } 2450 2451 static inline void 2452 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2453 struct task_struct *next) 2454 { 2455 } 2456 2457 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2458 2459 /** 2460 * prepare_task_switch - prepare to switch tasks 2461 * @rq: the runqueue preparing to switch 2462 * @prev: the current task that is being switched out 2463 * @next: the task we are going to switch to. 2464 * 2465 * This is called with the rq lock held and interrupts off. It must 2466 * be paired with a subsequent finish_task_switch after the context 2467 * switch. 2468 * 2469 * prepare_task_switch sets up locking and calls architecture specific 2470 * hooks. 2471 */ 2472 static inline void 2473 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2474 struct task_struct *next) 2475 { 2476 trace_sched_switch(prev, next); 2477 sched_info_switch(rq, prev, next); 2478 perf_event_task_sched_out(prev, next); 2479 fire_sched_out_preempt_notifiers(prev, next); 2480 prepare_lock_switch(rq, next); 2481 prepare_arch_switch(next); 2482 } 2483 2484 /** 2485 * finish_task_switch - clean up after a task-switch 2486 * @prev: the thread we just switched away from. 2487 * 2488 * finish_task_switch must be called after the context switch, paired 2489 * with a prepare_task_switch call before the context switch. 2490 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2491 * and do any other architecture-specific cleanup actions. 2492 * 2493 * Note that we may have delayed dropping an mm in context_switch(). If 2494 * so, we finish that here outside of the runqueue lock. (Doing it 2495 * with the lock held can cause deadlocks; see schedule() for 2496 * details.) 2497 * 2498 * The context switch have flipped the stack from under us and restored the 2499 * local variables which were saved when this task called schedule() in the 2500 * past. prev == current is still correct but we need to recalculate this_rq 2501 * because prev may have moved to another CPU. 2502 */ 2503 static struct rq *finish_task_switch(struct task_struct *prev) 2504 __releases(rq->lock) 2505 { 2506 struct rq *rq = this_rq(); 2507 struct mm_struct *mm = rq->prev_mm; 2508 long prev_state; 2509 2510 rq->prev_mm = NULL; 2511 2512 /* 2513 * A task struct has one reference for the use as "current". 2514 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2515 * schedule one last time. The schedule call will never return, and 2516 * the scheduled task must drop that reference. 2517 * The test for TASK_DEAD must occur while the runqueue locks are 2518 * still held, otherwise prev could be scheduled on another cpu, die 2519 * there before we look at prev->state, and then the reference would 2520 * be dropped twice. 2521 * Manfred Spraul <manfred@colorfullife.com> 2522 */ 2523 prev_state = prev->state; 2524 vtime_task_switch(prev); 2525 perf_event_task_sched_in(prev, current); 2526 finish_lock_switch(rq, prev); 2527 finish_arch_post_lock_switch(); 2528 2529 fire_sched_in_preempt_notifiers(current); 2530 if (mm) 2531 mmdrop(mm); 2532 if (unlikely(prev_state == TASK_DEAD)) { 2533 if (prev->sched_class->task_dead) 2534 prev->sched_class->task_dead(prev); 2535 2536 /* 2537 * Remove function-return probe instances associated with this 2538 * task and put them back on the free list. 2539 */ 2540 kprobe_flush_task(prev); 2541 put_task_struct(prev); 2542 } 2543 2544 tick_nohz_task_switch(); 2545 return rq; 2546 } 2547 2548 #ifdef CONFIG_SMP 2549 2550 /* rq->lock is NOT held, but preemption is disabled */ 2551 static void __balance_callback(struct rq *rq) 2552 { 2553 struct callback_head *head, *next; 2554 void (*func)(struct rq *rq); 2555 unsigned long flags; 2556 2557 raw_spin_lock_irqsave(&rq->lock, flags); 2558 head = rq->balance_callback; 2559 rq->balance_callback = NULL; 2560 while (head) { 2561 func = (void (*)(struct rq *))head->func; 2562 next = head->next; 2563 head->next = NULL; 2564 head = next; 2565 2566 func(rq); 2567 } 2568 raw_spin_unlock_irqrestore(&rq->lock, flags); 2569 } 2570 2571 static inline void balance_callback(struct rq *rq) 2572 { 2573 if (unlikely(rq->balance_callback)) 2574 __balance_callback(rq); 2575 } 2576 2577 #else 2578 2579 static inline void balance_callback(struct rq *rq) 2580 { 2581 } 2582 2583 #endif 2584 2585 /** 2586 * schedule_tail - first thing a freshly forked thread must call. 2587 * @prev: the thread we just switched away from. 2588 */ 2589 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2590 __releases(rq->lock) 2591 { 2592 struct rq *rq; 2593 2594 /* finish_task_switch() drops rq->lock and enables preemtion */ 2595 preempt_disable(); 2596 rq = finish_task_switch(prev); 2597 balance_callback(rq); 2598 preempt_enable(); 2599 2600 if (current->set_child_tid) 2601 put_user(task_pid_vnr(current), current->set_child_tid); 2602 } 2603 2604 /* 2605 * context_switch - switch to the new MM and the new thread's register state. 2606 */ 2607 static inline struct rq * 2608 context_switch(struct rq *rq, struct task_struct *prev, 2609 struct task_struct *next) 2610 { 2611 struct mm_struct *mm, *oldmm; 2612 2613 prepare_task_switch(rq, prev, next); 2614 2615 mm = next->mm; 2616 oldmm = prev->active_mm; 2617 /* 2618 * For paravirt, this is coupled with an exit in switch_to to 2619 * combine the page table reload and the switch backend into 2620 * one hypercall. 2621 */ 2622 arch_start_context_switch(prev); 2623 2624 if (!mm) { 2625 next->active_mm = oldmm; 2626 atomic_inc(&oldmm->mm_count); 2627 enter_lazy_tlb(oldmm, next); 2628 } else 2629 switch_mm(oldmm, mm, next); 2630 2631 if (!prev->mm) { 2632 prev->active_mm = NULL; 2633 rq->prev_mm = oldmm; 2634 } 2635 /* 2636 * Since the runqueue lock will be released by the next 2637 * task (which is an invalid locking op but in the case 2638 * of the scheduler it's an obvious special-case), so we 2639 * do an early lockdep release here: 2640 */ 2641 lockdep_unpin_lock(&rq->lock); 2642 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2643 2644 /* Here we just switch the register state and the stack. */ 2645 switch_to(prev, next, prev); 2646 barrier(); 2647 2648 return finish_task_switch(prev); 2649 } 2650 2651 /* 2652 * nr_running and nr_context_switches: 2653 * 2654 * externally visible scheduler statistics: current number of runnable 2655 * threads, total number of context switches performed since bootup. 2656 */ 2657 unsigned long nr_running(void) 2658 { 2659 unsigned long i, sum = 0; 2660 2661 for_each_online_cpu(i) 2662 sum += cpu_rq(i)->nr_running; 2663 2664 return sum; 2665 } 2666 2667 /* 2668 * Check if only the current task is running on the cpu. 2669 */ 2670 bool single_task_running(void) 2671 { 2672 if (cpu_rq(smp_processor_id())->nr_running == 1) 2673 return true; 2674 else 2675 return false; 2676 } 2677 EXPORT_SYMBOL(single_task_running); 2678 2679 unsigned long long nr_context_switches(void) 2680 { 2681 int i; 2682 unsigned long long sum = 0; 2683 2684 for_each_possible_cpu(i) 2685 sum += cpu_rq(i)->nr_switches; 2686 2687 return sum; 2688 } 2689 2690 unsigned long nr_iowait(void) 2691 { 2692 unsigned long i, sum = 0; 2693 2694 for_each_possible_cpu(i) 2695 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2696 2697 return sum; 2698 } 2699 2700 unsigned long nr_iowait_cpu(int cpu) 2701 { 2702 struct rq *this = cpu_rq(cpu); 2703 return atomic_read(&this->nr_iowait); 2704 } 2705 2706 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2707 { 2708 struct rq *rq = this_rq(); 2709 *nr_waiters = atomic_read(&rq->nr_iowait); 2710 *load = rq->load.weight; 2711 } 2712 2713 #ifdef CONFIG_SMP 2714 2715 /* 2716 * sched_exec - execve() is a valuable balancing opportunity, because at 2717 * this point the task has the smallest effective memory and cache footprint. 2718 */ 2719 void sched_exec(void) 2720 { 2721 struct task_struct *p = current; 2722 unsigned long flags; 2723 int dest_cpu; 2724 2725 raw_spin_lock_irqsave(&p->pi_lock, flags); 2726 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2727 if (dest_cpu == smp_processor_id()) 2728 goto unlock; 2729 2730 if (likely(cpu_active(dest_cpu))) { 2731 struct migration_arg arg = { p, dest_cpu }; 2732 2733 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2734 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2735 return; 2736 } 2737 unlock: 2738 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2739 } 2740 2741 #endif 2742 2743 DEFINE_PER_CPU(struct kernel_stat, kstat); 2744 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2745 2746 EXPORT_PER_CPU_SYMBOL(kstat); 2747 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2748 2749 /* 2750 * Return accounted runtime for the task. 2751 * In case the task is currently running, return the runtime plus current's 2752 * pending runtime that have not been accounted yet. 2753 */ 2754 unsigned long long task_sched_runtime(struct task_struct *p) 2755 { 2756 unsigned long flags; 2757 struct rq *rq; 2758 u64 ns; 2759 2760 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2761 /* 2762 * 64-bit doesn't need locks to atomically read a 64bit value. 2763 * So we have a optimization chance when the task's delta_exec is 0. 2764 * Reading ->on_cpu is racy, but this is ok. 2765 * 2766 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2767 * If we race with it entering cpu, unaccounted time is 0. This is 2768 * indistinguishable from the read occurring a few cycles earlier. 2769 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2770 * been accounted, so we're correct here as well. 2771 */ 2772 if (!p->on_cpu || !task_on_rq_queued(p)) 2773 return p->se.sum_exec_runtime; 2774 #endif 2775 2776 rq = task_rq_lock(p, &flags); 2777 /* 2778 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2779 * project cycles that may never be accounted to this 2780 * thread, breaking clock_gettime(). 2781 */ 2782 if (task_current(rq, p) && task_on_rq_queued(p)) { 2783 update_rq_clock(rq); 2784 p->sched_class->update_curr(rq); 2785 } 2786 ns = p->se.sum_exec_runtime; 2787 task_rq_unlock(rq, p, &flags); 2788 2789 return ns; 2790 } 2791 2792 /* 2793 * This function gets called by the timer code, with HZ frequency. 2794 * We call it with interrupts disabled. 2795 */ 2796 void scheduler_tick(void) 2797 { 2798 int cpu = smp_processor_id(); 2799 struct rq *rq = cpu_rq(cpu); 2800 struct task_struct *curr = rq->curr; 2801 2802 sched_clock_tick(); 2803 2804 raw_spin_lock(&rq->lock); 2805 update_rq_clock(rq); 2806 curr->sched_class->task_tick(rq, curr, 0); 2807 update_cpu_load_active(rq); 2808 calc_global_load_tick(rq); 2809 raw_spin_unlock(&rq->lock); 2810 2811 perf_event_task_tick(); 2812 2813 #ifdef CONFIG_SMP 2814 rq->idle_balance = idle_cpu(cpu); 2815 trigger_load_balance(rq); 2816 #endif 2817 rq_last_tick_reset(rq); 2818 } 2819 2820 #ifdef CONFIG_NO_HZ_FULL 2821 /** 2822 * scheduler_tick_max_deferment 2823 * 2824 * Keep at least one tick per second when a single 2825 * active task is running because the scheduler doesn't 2826 * yet completely support full dynticks environment. 2827 * 2828 * This makes sure that uptime, CFS vruntime, load 2829 * balancing, etc... continue to move forward, even 2830 * with a very low granularity. 2831 * 2832 * Return: Maximum deferment in nanoseconds. 2833 */ 2834 u64 scheduler_tick_max_deferment(void) 2835 { 2836 struct rq *rq = this_rq(); 2837 unsigned long next, now = READ_ONCE(jiffies); 2838 2839 next = rq->last_sched_tick + HZ; 2840 2841 if (time_before_eq(next, now)) 2842 return 0; 2843 2844 return jiffies_to_nsecs(next - now); 2845 } 2846 #endif 2847 2848 notrace unsigned long get_parent_ip(unsigned long addr) 2849 { 2850 if (in_lock_functions(addr)) { 2851 addr = CALLER_ADDR2; 2852 if (in_lock_functions(addr)) 2853 addr = CALLER_ADDR3; 2854 } 2855 return addr; 2856 } 2857 2858 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2859 defined(CONFIG_PREEMPT_TRACER)) 2860 2861 void preempt_count_add(int val) 2862 { 2863 #ifdef CONFIG_DEBUG_PREEMPT 2864 /* 2865 * Underflow? 2866 */ 2867 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2868 return; 2869 #endif 2870 __preempt_count_add(val); 2871 #ifdef CONFIG_DEBUG_PREEMPT 2872 /* 2873 * Spinlock count overflowing soon? 2874 */ 2875 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2876 PREEMPT_MASK - 10); 2877 #endif 2878 if (preempt_count() == val) { 2879 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2880 #ifdef CONFIG_DEBUG_PREEMPT 2881 current->preempt_disable_ip = ip; 2882 #endif 2883 trace_preempt_off(CALLER_ADDR0, ip); 2884 } 2885 } 2886 EXPORT_SYMBOL(preempt_count_add); 2887 NOKPROBE_SYMBOL(preempt_count_add); 2888 2889 void preempt_count_sub(int val) 2890 { 2891 #ifdef CONFIG_DEBUG_PREEMPT 2892 /* 2893 * Underflow? 2894 */ 2895 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2896 return; 2897 /* 2898 * Is the spinlock portion underflowing? 2899 */ 2900 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2901 !(preempt_count() & PREEMPT_MASK))) 2902 return; 2903 #endif 2904 2905 if (preempt_count() == val) 2906 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2907 __preempt_count_sub(val); 2908 } 2909 EXPORT_SYMBOL(preempt_count_sub); 2910 NOKPROBE_SYMBOL(preempt_count_sub); 2911 2912 #endif 2913 2914 /* 2915 * Print scheduling while atomic bug: 2916 */ 2917 static noinline void __schedule_bug(struct task_struct *prev) 2918 { 2919 if (oops_in_progress) 2920 return; 2921 2922 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2923 prev->comm, prev->pid, preempt_count()); 2924 2925 debug_show_held_locks(prev); 2926 print_modules(); 2927 if (irqs_disabled()) 2928 print_irqtrace_events(prev); 2929 #ifdef CONFIG_DEBUG_PREEMPT 2930 if (in_atomic_preempt_off()) { 2931 pr_err("Preemption disabled at:"); 2932 print_ip_sym(current->preempt_disable_ip); 2933 pr_cont("\n"); 2934 } 2935 #endif 2936 dump_stack(); 2937 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2938 } 2939 2940 /* 2941 * Various schedule()-time debugging checks and statistics: 2942 */ 2943 static inline void schedule_debug(struct task_struct *prev) 2944 { 2945 #ifdef CONFIG_SCHED_STACK_END_CHECK 2946 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2947 #endif 2948 /* 2949 * Test if we are atomic. Since do_exit() needs to call into 2950 * schedule() atomically, we ignore that path. Otherwise whine 2951 * if we are scheduling when we should not. 2952 */ 2953 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2954 __schedule_bug(prev); 2955 rcu_sleep_check(); 2956 2957 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2958 2959 schedstat_inc(this_rq(), sched_count); 2960 } 2961 2962 /* 2963 * Pick up the highest-prio task: 2964 */ 2965 static inline struct task_struct * 2966 pick_next_task(struct rq *rq, struct task_struct *prev) 2967 { 2968 const struct sched_class *class = &fair_sched_class; 2969 struct task_struct *p; 2970 2971 /* 2972 * Optimization: we know that if all tasks are in 2973 * the fair class we can call that function directly: 2974 */ 2975 if (likely(prev->sched_class == class && 2976 rq->nr_running == rq->cfs.h_nr_running)) { 2977 p = fair_sched_class.pick_next_task(rq, prev); 2978 if (unlikely(p == RETRY_TASK)) 2979 goto again; 2980 2981 /* assumes fair_sched_class->next == idle_sched_class */ 2982 if (unlikely(!p)) 2983 p = idle_sched_class.pick_next_task(rq, prev); 2984 2985 return p; 2986 } 2987 2988 again: 2989 for_each_class(class) { 2990 p = class->pick_next_task(rq, prev); 2991 if (p) { 2992 if (unlikely(p == RETRY_TASK)) 2993 goto again; 2994 return p; 2995 } 2996 } 2997 2998 BUG(); /* the idle class will always have a runnable task */ 2999 } 3000 3001 /* 3002 * __schedule() is the main scheduler function. 3003 * 3004 * The main means of driving the scheduler and thus entering this function are: 3005 * 3006 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3007 * 3008 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3009 * paths. For example, see arch/x86/entry_64.S. 3010 * 3011 * To drive preemption between tasks, the scheduler sets the flag in timer 3012 * interrupt handler scheduler_tick(). 3013 * 3014 * 3. Wakeups don't really cause entry into schedule(). They add a 3015 * task to the run-queue and that's it. 3016 * 3017 * Now, if the new task added to the run-queue preempts the current 3018 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3019 * called on the nearest possible occasion: 3020 * 3021 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3022 * 3023 * - in syscall or exception context, at the next outmost 3024 * preempt_enable(). (this might be as soon as the wake_up()'s 3025 * spin_unlock()!) 3026 * 3027 * - in IRQ context, return from interrupt-handler to 3028 * preemptible context 3029 * 3030 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3031 * then at the next: 3032 * 3033 * - cond_resched() call 3034 * - explicit schedule() call 3035 * - return from syscall or exception to user-space 3036 * - return from interrupt-handler to user-space 3037 * 3038 * WARNING: must be called with preemption disabled! 3039 */ 3040 static void __sched __schedule(void) 3041 { 3042 struct task_struct *prev, *next; 3043 unsigned long *switch_count; 3044 struct rq *rq; 3045 int cpu; 3046 3047 cpu = smp_processor_id(); 3048 rq = cpu_rq(cpu); 3049 rcu_note_context_switch(); 3050 prev = rq->curr; 3051 3052 schedule_debug(prev); 3053 3054 if (sched_feat(HRTICK)) 3055 hrtick_clear(rq); 3056 3057 /* 3058 * Make sure that signal_pending_state()->signal_pending() below 3059 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3060 * done by the caller to avoid the race with signal_wake_up(). 3061 */ 3062 smp_mb__before_spinlock(); 3063 raw_spin_lock_irq(&rq->lock); 3064 lockdep_pin_lock(&rq->lock); 3065 3066 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3067 3068 switch_count = &prev->nivcsw; 3069 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3070 if (unlikely(signal_pending_state(prev->state, prev))) { 3071 prev->state = TASK_RUNNING; 3072 } else { 3073 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3074 prev->on_rq = 0; 3075 3076 /* 3077 * If a worker went to sleep, notify and ask workqueue 3078 * whether it wants to wake up a task to maintain 3079 * concurrency. 3080 */ 3081 if (prev->flags & PF_WQ_WORKER) { 3082 struct task_struct *to_wakeup; 3083 3084 to_wakeup = wq_worker_sleeping(prev, cpu); 3085 if (to_wakeup) 3086 try_to_wake_up_local(to_wakeup); 3087 } 3088 } 3089 switch_count = &prev->nvcsw; 3090 } 3091 3092 if (task_on_rq_queued(prev)) 3093 update_rq_clock(rq); 3094 3095 next = pick_next_task(rq, prev); 3096 clear_tsk_need_resched(prev); 3097 clear_preempt_need_resched(); 3098 rq->clock_skip_update = 0; 3099 3100 if (likely(prev != next)) { 3101 rq->nr_switches++; 3102 rq->curr = next; 3103 ++*switch_count; 3104 3105 rq = context_switch(rq, prev, next); /* unlocks the rq */ 3106 cpu = cpu_of(rq); 3107 } else { 3108 lockdep_unpin_lock(&rq->lock); 3109 raw_spin_unlock_irq(&rq->lock); 3110 } 3111 3112 balance_callback(rq); 3113 } 3114 3115 static inline void sched_submit_work(struct task_struct *tsk) 3116 { 3117 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3118 return; 3119 /* 3120 * If we are going to sleep and we have plugged IO queued, 3121 * make sure to submit it to avoid deadlocks. 3122 */ 3123 if (blk_needs_flush_plug(tsk)) 3124 blk_schedule_flush_plug(tsk); 3125 } 3126 3127 asmlinkage __visible void __sched schedule(void) 3128 { 3129 struct task_struct *tsk = current; 3130 3131 sched_submit_work(tsk); 3132 do { 3133 preempt_disable(); 3134 __schedule(); 3135 sched_preempt_enable_no_resched(); 3136 } while (need_resched()); 3137 } 3138 EXPORT_SYMBOL(schedule); 3139 3140 #ifdef CONFIG_CONTEXT_TRACKING 3141 asmlinkage __visible void __sched schedule_user(void) 3142 { 3143 /* 3144 * If we come here after a random call to set_need_resched(), 3145 * or we have been woken up remotely but the IPI has not yet arrived, 3146 * we haven't yet exited the RCU idle mode. Do it here manually until 3147 * we find a better solution. 3148 * 3149 * NB: There are buggy callers of this function. Ideally we 3150 * should warn if prev_state != CONTEXT_USER, but that will trigger 3151 * too frequently to make sense yet. 3152 */ 3153 enum ctx_state prev_state = exception_enter(); 3154 schedule(); 3155 exception_exit(prev_state); 3156 } 3157 #endif 3158 3159 /** 3160 * schedule_preempt_disabled - called with preemption disabled 3161 * 3162 * Returns with preemption disabled. Note: preempt_count must be 1 3163 */ 3164 void __sched schedule_preempt_disabled(void) 3165 { 3166 sched_preempt_enable_no_resched(); 3167 schedule(); 3168 preempt_disable(); 3169 } 3170 3171 static void __sched notrace preempt_schedule_common(void) 3172 { 3173 do { 3174 preempt_active_enter(); 3175 __schedule(); 3176 preempt_active_exit(); 3177 3178 /* 3179 * Check again in case we missed a preemption opportunity 3180 * between schedule and now. 3181 */ 3182 } while (need_resched()); 3183 } 3184 3185 #ifdef CONFIG_PREEMPT 3186 /* 3187 * this is the entry point to schedule() from in-kernel preemption 3188 * off of preempt_enable. Kernel preemptions off return from interrupt 3189 * occur there and call schedule directly. 3190 */ 3191 asmlinkage __visible void __sched notrace preempt_schedule(void) 3192 { 3193 /* 3194 * If there is a non-zero preempt_count or interrupts are disabled, 3195 * we do not want to preempt the current task. Just return.. 3196 */ 3197 if (likely(!preemptible())) 3198 return; 3199 3200 preempt_schedule_common(); 3201 } 3202 NOKPROBE_SYMBOL(preempt_schedule); 3203 EXPORT_SYMBOL(preempt_schedule); 3204 3205 /** 3206 * preempt_schedule_notrace - preempt_schedule called by tracing 3207 * 3208 * The tracing infrastructure uses preempt_enable_notrace to prevent 3209 * recursion and tracing preempt enabling caused by the tracing 3210 * infrastructure itself. But as tracing can happen in areas coming 3211 * from userspace or just about to enter userspace, a preempt enable 3212 * can occur before user_exit() is called. This will cause the scheduler 3213 * to be called when the system is still in usermode. 3214 * 3215 * To prevent this, the preempt_enable_notrace will use this function 3216 * instead of preempt_schedule() to exit user context if needed before 3217 * calling the scheduler. 3218 */ 3219 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3220 { 3221 enum ctx_state prev_ctx; 3222 3223 if (likely(!preemptible())) 3224 return; 3225 3226 do { 3227 /* 3228 * Use raw __prempt_count() ops that don't call function. 3229 * We can't call functions before disabling preemption which 3230 * disarm preemption tracing recursions. 3231 */ 3232 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET); 3233 barrier(); 3234 /* 3235 * Needs preempt disabled in case user_exit() is traced 3236 * and the tracer calls preempt_enable_notrace() causing 3237 * an infinite recursion. 3238 */ 3239 prev_ctx = exception_enter(); 3240 __schedule(); 3241 exception_exit(prev_ctx); 3242 3243 barrier(); 3244 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET); 3245 } while (need_resched()); 3246 } 3247 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3248 3249 #endif /* CONFIG_PREEMPT */ 3250 3251 /* 3252 * this is the entry point to schedule() from kernel preemption 3253 * off of irq context. 3254 * Note, that this is called and return with irqs disabled. This will 3255 * protect us against recursive calling from irq. 3256 */ 3257 asmlinkage __visible void __sched preempt_schedule_irq(void) 3258 { 3259 enum ctx_state prev_state; 3260 3261 /* Catch callers which need to be fixed */ 3262 BUG_ON(preempt_count() || !irqs_disabled()); 3263 3264 prev_state = exception_enter(); 3265 3266 do { 3267 preempt_active_enter(); 3268 local_irq_enable(); 3269 __schedule(); 3270 local_irq_disable(); 3271 preempt_active_exit(); 3272 } while (need_resched()); 3273 3274 exception_exit(prev_state); 3275 } 3276 3277 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3278 void *key) 3279 { 3280 return try_to_wake_up(curr->private, mode, wake_flags); 3281 } 3282 EXPORT_SYMBOL(default_wake_function); 3283 3284 #ifdef CONFIG_RT_MUTEXES 3285 3286 /* 3287 * rt_mutex_setprio - set the current priority of a task 3288 * @p: task 3289 * @prio: prio value (kernel-internal form) 3290 * 3291 * This function changes the 'effective' priority of a task. It does 3292 * not touch ->normal_prio like __setscheduler(). 3293 * 3294 * Used by the rt_mutex code to implement priority inheritance 3295 * logic. Call site only calls if the priority of the task changed. 3296 */ 3297 void rt_mutex_setprio(struct task_struct *p, int prio) 3298 { 3299 int oldprio, queued, running, enqueue_flag = 0; 3300 struct rq *rq; 3301 const struct sched_class *prev_class; 3302 3303 BUG_ON(prio > MAX_PRIO); 3304 3305 rq = __task_rq_lock(p); 3306 3307 /* 3308 * Idle task boosting is a nono in general. There is one 3309 * exception, when PREEMPT_RT and NOHZ is active: 3310 * 3311 * The idle task calls get_next_timer_interrupt() and holds 3312 * the timer wheel base->lock on the CPU and another CPU wants 3313 * to access the timer (probably to cancel it). We can safely 3314 * ignore the boosting request, as the idle CPU runs this code 3315 * with interrupts disabled and will complete the lock 3316 * protected section without being interrupted. So there is no 3317 * real need to boost. 3318 */ 3319 if (unlikely(p == rq->idle)) { 3320 WARN_ON(p != rq->curr); 3321 WARN_ON(p->pi_blocked_on); 3322 goto out_unlock; 3323 } 3324 3325 trace_sched_pi_setprio(p, prio); 3326 oldprio = p->prio; 3327 prev_class = p->sched_class; 3328 queued = task_on_rq_queued(p); 3329 running = task_current(rq, p); 3330 if (queued) 3331 dequeue_task(rq, p, 0); 3332 if (running) 3333 put_prev_task(rq, p); 3334 3335 /* 3336 * Boosting condition are: 3337 * 1. -rt task is running and holds mutex A 3338 * --> -dl task blocks on mutex A 3339 * 3340 * 2. -dl task is running and holds mutex A 3341 * --> -dl task blocks on mutex A and could preempt the 3342 * running task 3343 */ 3344 if (dl_prio(prio)) { 3345 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3346 if (!dl_prio(p->normal_prio) || 3347 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3348 p->dl.dl_boosted = 1; 3349 enqueue_flag = ENQUEUE_REPLENISH; 3350 } else 3351 p->dl.dl_boosted = 0; 3352 p->sched_class = &dl_sched_class; 3353 } else if (rt_prio(prio)) { 3354 if (dl_prio(oldprio)) 3355 p->dl.dl_boosted = 0; 3356 if (oldprio < prio) 3357 enqueue_flag = ENQUEUE_HEAD; 3358 p->sched_class = &rt_sched_class; 3359 } else { 3360 if (dl_prio(oldprio)) 3361 p->dl.dl_boosted = 0; 3362 if (rt_prio(oldprio)) 3363 p->rt.timeout = 0; 3364 p->sched_class = &fair_sched_class; 3365 } 3366 3367 p->prio = prio; 3368 3369 if (running) 3370 p->sched_class->set_curr_task(rq); 3371 if (queued) 3372 enqueue_task(rq, p, enqueue_flag); 3373 3374 check_class_changed(rq, p, prev_class, oldprio); 3375 out_unlock: 3376 preempt_disable(); /* avoid rq from going away on us */ 3377 __task_rq_unlock(rq); 3378 3379 balance_callback(rq); 3380 preempt_enable(); 3381 } 3382 #endif 3383 3384 void set_user_nice(struct task_struct *p, long nice) 3385 { 3386 int old_prio, delta, queued; 3387 unsigned long flags; 3388 struct rq *rq; 3389 3390 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3391 return; 3392 /* 3393 * We have to be careful, if called from sys_setpriority(), 3394 * the task might be in the middle of scheduling on another CPU. 3395 */ 3396 rq = task_rq_lock(p, &flags); 3397 /* 3398 * The RT priorities are set via sched_setscheduler(), but we still 3399 * allow the 'normal' nice value to be set - but as expected 3400 * it wont have any effect on scheduling until the task is 3401 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3402 */ 3403 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3404 p->static_prio = NICE_TO_PRIO(nice); 3405 goto out_unlock; 3406 } 3407 queued = task_on_rq_queued(p); 3408 if (queued) 3409 dequeue_task(rq, p, 0); 3410 3411 p->static_prio = NICE_TO_PRIO(nice); 3412 set_load_weight(p); 3413 old_prio = p->prio; 3414 p->prio = effective_prio(p); 3415 delta = p->prio - old_prio; 3416 3417 if (queued) { 3418 enqueue_task(rq, p, 0); 3419 /* 3420 * If the task increased its priority or is running and 3421 * lowered its priority, then reschedule its CPU: 3422 */ 3423 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3424 resched_curr(rq); 3425 } 3426 out_unlock: 3427 task_rq_unlock(rq, p, &flags); 3428 } 3429 EXPORT_SYMBOL(set_user_nice); 3430 3431 /* 3432 * can_nice - check if a task can reduce its nice value 3433 * @p: task 3434 * @nice: nice value 3435 */ 3436 int can_nice(const struct task_struct *p, const int nice) 3437 { 3438 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3439 int nice_rlim = nice_to_rlimit(nice); 3440 3441 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3442 capable(CAP_SYS_NICE)); 3443 } 3444 3445 #ifdef __ARCH_WANT_SYS_NICE 3446 3447 /* 3448 * sys_nice - change the priority of the current process. 3449 * @increment: priority increment 3450 * 3451 * sys_setpriority is a more generic, but much slower function that 3452 * does similar things. 3453 */ 3454 SYSCALL_DEFINE1(nice, int, increment) 3455 { 3456 long nice, retval; 3457 3458 /* 3459 * Setpriority might change our priority at the same moment. 3460 * We don't have to worry. Conceptually one call occurs first 3461 * and we have a single winner. 3462 */ 3463 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3464 nice = task_nice(current) + increment; 3465 3466 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3467 if (increment < 0 && !can_nice(current, nice)) 3468 return -EPERM; 3469 3470 retval = security_task_setnice(current, nice); 3471 if (retval) 3472 return retval; 3473 3474 set_user_nice(current, nice); 3475 return 0; 3476 } 3477 3478 #endif 3479 3480 /** 3481 * task_prio - return the priority value of a given task. 3482 * @p: the task in question. 3483 * 3484 * Return: The priority value as seen by users in /proc. 3485 * RT tasks are offset by -200. Normal tasks are centered 3486 * around 0, value goes from -16 to +15. 3487 */ 3488 int task_prio(const struct task_struct *p) 3489 { 3490 return p->prio - MAX_RT_PRIO; 3491 } 3492 3493 /** 3494 * idle_cpu - is a given cpu idle currently? 3495 * @cpu: the processor in question. 3496 * 3497 * Return: 1 if the CPU is currently idle. 0 otherwise. 3498 */ 3499 int idle_cpu(int cpu) 3500 { 3501 struct rq *rq = cpu_rq(cpu); 3502 3503 if (rq->curr != rq->idle) 3504 return 0; 3505 3506 if (rq->nr_running) 3507 return 0; 3508 3509 #ifdef CONFIG_SMP 3510 if (!llist_empty(&rq->wake_list)) 3511 return 0; 3512 #endif 3513 3514 return 1; 3515 } 3516 3517 /** 3518 * idle_task - return the idle task for a given cpu. 3519 * @cpu: the processor in question. 3520 * 3521 * Return: The idle task for the cpu @cpu. 3522 */ 3523 struct task_struct *idle_task(int cpu) 3524 { 3525 return cpu_rq(cpu)->idle; 3526 } 3527 3528 /** 3529 * find_process_by_pid - find a process with a matching PID value. 3530 * @pid: the pid in question. 3531 * 3532 * The task of @pid, if found. %NULL otherwise. 3533 */ 3534 static struct task_struct *find_process_by_pid(pid_t pid) 3535 { 3536 return pid ? find_task_by_vpid(pid) : current; 3537 } 3538 3539 /* 3540 * This function initializes the sched_dl_entity of a newly becoming 3541 * SCHED_DEADLINE task. 3542 * 3543 * Only the static values are considered here, the actual runtime and the 3544 * absolute deadline will be properly calculated when the task is enqueued 3545 * for the first time with its new policy. 3546 */ 3547 static void 3548 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3549 { 3550 struct sched_dl_entity *dl_se = &p->dl; 3551 3552 dl_se->dl_runtime = attr->sched_runtime; 3553 dl_se->dl_deadline = attr->sched_deadline; 3554 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3555 dl_se->flags = attr->sched_flags; 3556 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3557 3558 /* 3559 * Changing the parameters of a task is 'tricky' and we're not doing 3560 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3561 * 3562 * What we SHOULD do is delay the bandwidth release until the 0-lag 3563 * point. This would include retaining the task_struct until that time 3564 * and change dl_overflow() to not immediately decrement the current 3565 * amount. 3566 * 3567 * Instead we retain the current runtime/deadline and let the new 3568 * parameters take effect after the current reservation period lapses. 3569 * This is safe (albeit pessimistic) because the 0-lag point is always 3570 * before the current scheduling deadline. 3571 * 3572 * We can still have temporary overloads because we do not delay the 3573 * change in bandwidth until that time; so admission control is 3574 * not on the safe side. It does however guarantee tasks will never 3575 * consume more than promised. 3576 */ 3577 } 3578 3579 /* 3580 * sched_setparam() passes in -1 for its policy, to let the functions 3581 * it calls know not to change it. 3582 */ 3583 #define SETPARAM_POLICY -1 3584 3585 static void __setscheduler_params(struct task_struct *p, 3586 const struct sched_attr *attr) 3587 { 3588 int policy = attr->sched_policy; 3589 3590 if (policy == SETPARAM_POLICY) 3591 policy = p->policy; 3592 3593 p->policy = policy; 3594 3595 if (dl_policy(policy)) 3596 __setparam_dl(p, attr); 3597 else if (fair_policy(policy)) 3598 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3599 3600 /* 3601 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3602 * !rt_policy. Always setting this ensures that things like 3603 * getparam()/getattr() don't report silly values for !rt tasks. 3604 */ 3605 p->rt_priority = attr->sched_priority; 3606 p->normal_prio = normal_prio(p); 3607 set_load_weight(p); 3608 } 3609 3610 /* Actually do priority change: must hold pi & rq lock. */ 3611 static void __setscheduler(struct rq *rq, struct task_struct *p, 3612 const struct sched_attr *attr, bool keep_boost) 3613 { 3614 __setscheduler_params(p, attr); 3615 3616 /* 3617 * Keep a potential priority boosting if called from 3618 * sched_setscheduler(). 3619 */ 3620 if (keep_boost) 3621 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3622 else 3623 p->prio = normal_prio(p); 3624 3625 if (dl_prio(p->prio)) 3626 p->sched_class = &dl_sched_class; 3627 else if (rt_prio(p->prio)) 3628 p->sched_class = &rt_sched_class; 3629 else 3630 p->sched_class = &fair_sched_class; 3631 } 3632 3633 static void 3634 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3635 { 3636 struct sched_dl_entity *dl_se = &p->dl; 3637 3638 attr->sched_priority = p->rt_priority; 3639 attr->sched_runtime = dl_se->dl_runtime; 3640 attr->sched_deadline = dl_se->dl_deadline; 3641 attr->sched_period = dl_se->dl_period; 3642 attr->sched_flags = dl_se->flags; 3643 } 3644 3645 /* 3646 * This function validates the new parameters of a -deadline task. 3647 * We ask for the deadline not being zero, and greater or equal 3648 * than the runtime, as well as the period of being zero or 3649 * greater than deadline. Furthermore, we have to be sure that 3650 * user parameters are above the internal resolution of 1us (we 3651 * check sched_runtime only since it is always the smaller one) and 3652 * below 2^63 ns (we have to check both sched_deadline and 3653 * sched_period, as the latter can be zero). 3654 */ 3655 static bool 3656 __checkparam_dl(const struct sched_attr *attr) 3657 { 3658 /* deadline != 0 */ 3659 if (attr->sched_deadline == 0) 3660 return false; 3661 3662 /* 3663 * Since we truncate DL_SCALE bits, make sure we're at least 3664 * that big. 3665 */ 3666 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3667 return false; 3668 3669 /* 3670 * Since we use the MSB for wrap-around and sign issues, make 3671 * sure it's not set (mind that period can be equal to zero). 3672 */ 3673 if (attr->sched_deadline & (1ULL << 63) || 3674 attr->sched_period & (1ULL << 63)) 3675 return false; 3676 3677 /* runtime <= deadline <= period (if period != 0) */ 3678 if ((attr->sched_period != 0 && 3679 attr->sched_period < attr->sched_deadline) || 3680 attr->sched_deadline < attr->sched_runtime) 3681 return false; 3682 3683 return true; 3684 } 3685 3686 /* 3687 * check the target process has a UID that matches the current process's 3688 */ 3689 static bool check_same_owner(struct task_struct *p) 3690 { 3691 const struct cred *cred = current_cred(), *pcred; 3692 bool match; 3693 3694 rcu_read_lock(); 3695 pcred = __task_cred(p); 3696 match = (uid_eq(cred->euid, pcred->euid) || 3697 uid_eq(cred->euid, pcred->uid)); 3698 rcu_read_unlock(); 3699 return match; 3700 } 3701 3702 static bool dl_param_changed(struct task_struct *p, 3703 const struct sched_attr *attr) 3704 { 3705 struct sched_dl_entity *dl_se = &p->dl; 3706 3707 if (dl_se->dl_runtime != attr->sched_runtime || 3708 dl_se->dl_deadline != attr->sched_deadline || 3709 dl_se->dl_period != attr->sched_period || 3710 dl_se->flags != attr->sched_flags) 3711 return true; 3712 3713 return false; 3714 } 3715 3716 static int __sched_setscheduler(struct task_struct *p, 3717 const struct sched_attr *attr, 3718 bool user, bool pi) 3719 { 3720 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3721 MAX_RT_PRIO - 1 - attr->sched_priority; 3722 int retval, oldprio, oldpolicy = -1, queued, running; 3723 int new_effective_prio, policy = attr->sched_policy; 3724 unsigned long flags; 3725 const struct sched_class *prev_class; 3726 struct rq *rq; 3727 int reset_on_fork; 3728 3729 /* may grab non-irq protected spin_locks */ 3730 BUG_ON(in_interrupt()); 3731 recheck: 3732 /* double check policy once rq lock held */ 3733 if (policy < 0) { 3734 reset_on_fork = p->sched_reset_on_fork; 3735 policy = oldpolicy = p->policy; 3736 } else { 3737 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3738 3739 if (policy != SCHED_DEADLINE && 3740 policy != SCHED_FIFO && policy != SCHED_RR && 3741 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3742 policy != SCHED_IDLE) 3743 return -EINVAL; 3744 } 3745 3746 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3747 return -EINVAL; 3748 3749 /* 3750 * Valid priorities for SCHED_FIFO and SCHED_RR are 3751 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3752 * SCHED_BATCH and SCHED_IDLE is 0. 3753 */ 3754 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3755 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3756 return -EINVAL; 3757 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3758 (rt_policy(policy) != (attr->sched_priority != 0))) 3759 return -EINVAL; 3760 3761 /* 3762 * Allow unprivileged RT tasks to decrease priority: 3763 */ 3764 if (user && !capable(CAP_SYS_NICE)) { 3765 if (fair_policy(policy)) { 3766 if (attr->sched_nice < task_nice(p) && 3767 !can_nice(p, attr->sched_nice)) 3768 return -EPERM; 3769 } 3770 3771 if (rt_policy(policy)) { 3772 unsigned long rlim_rtprio = 3773 task_rlimit(p, RLIMIT_RTPRIO); 3774 3775 /* can't set/change the rt policy */ 3776 if (policy != p->policy && !rlim_rtprio) 3777 return -EPERM; 3778 3779 /* can't increase priority */ 3780 if (attr->sched_priority > p->rt_priority && 3781 attr->sched_priority > rlim_rtprio) 3782 return -EPERM; 3783 } 3784 3785 /* 3786 * Can't set/change SCHED_DEADLINE policy at all for now 3787 * (safest behavior); in the future we would like to allow 3788 * unprivileged DL tasks to increase their relative deadline 3789 * or reduce their runtime (both ways reducing utilization) 3790 */ 3791 if (dl_policy(policy)) 3792 return -EPERM; 3793 3794 /* 3795 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3796 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3797 */ 3798 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3799 if (!can_nice(p, task_nice(p))) 3800 return -EPERM; 3801 } 3802 3803 /* can't change other user's priorities */ 3804 if (!check_same_owner(p)) 3805 return -EPERM; 3806 3807 /* Normal users shall not reset the sched_reset_on_fork flag */ 3808 if (p->sched_reset_on_fork && !reset_on_fork) 3809 return -EPERM; 3810 } 3811 3812 if (user) { 3813 retval = security_task_setscheduler(p); 3814 if (retval) 3815 return retval; 3816 } 3817 3818 /* 3819 * make sure no PI-waiters arrive (or leave) while we are 3820 * changing the priority of the task: 3821 * 3822 * To be able to change p->policy safely, the appropriate 3823 * runqueue lock must be held. 3824 */ 3825 rq = task_rq_lock(p, &flags); 3826 3827 /* 3828 * Changing the policy of the stop threads its a very bad idea 3829 */ 3830 if (p == rq->stop) { 3831 task_rq_unlock(rq, p, &flags); 3832 return -EINVAL; 3833 } 3834 3835 /* 3836 * If not changing anything there's no need to proceed further, 3837 * but store a possible modification of reset_on_fork. 3838 */ 3839 if (unlikely(policy == p->policy)) { 3840 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3841 goto change; 3842 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3843 goto change; 3844 if (dl_policy(policy) && dl_param_changed(p, attr)) 3845 goto change; 3846 3847 p->sched_reset_on_fork = reset_on_fork; 3848 task_rq_unlock(rq, p, &flags); 3849 return 0; 3850 } 3851 change: 3852 3853 if (user) { 3854 #ifdef CONFIG_RT_GROUP_SCHED 3855 /* 3856 * Do not allow realtime tasks into groups that have no runtime 3857 * assigned. 3858 */ 3859 if (rt_bandwidth_enabled() && rt_policy(policy) && 3860 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3861 !task_group_is_autogroup(task_group(p))) { 3862 task_rq_unlock(rq, p, &flags); 3863 return -EPERM; 3864 } 3865 #endif 3866 #ifdef CONFIG_SMP 3867 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3868 cpumask_t *span = rq->rd->span; 3869 3870 /* 3871 * Don't allow tasks with an affinity mask smaller than 3872 * the entire root_domain to become SCHED_DEADLINE. We 3873 * will also fail if there's no bandwidth available. 3874 */ 3875 if (!cpumask_subset(span, &p->cpus_allowed) || 3876 rq->rd->dl_bw.bw == 0) { 3877 task_rq_unlock(rq, p, &flags); 3878 return -EPERM; 3879 } 3880 } 3881 #endif 3882 } 3883 3884 /* recheck policy now with rq lock held */ 3885 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3886 policy = oldpolicy = -1; 3887 task_rq_unlock(rq, p, &flags); 3888 goto recheck; 3889 } 3890 3891 /* 3892 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3893 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3894 * is available. 3895 */ 3896 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3897 task_rq_unlock(rq, p, &flags); 3898 return -EBUSY; 3899 } 3900 3901 p->sched_reset_on_fork = reset_on_fork; 3902 oldprio = p->prio; 3903 3904 if (pi) { 3905 /* 3906 * Take priority boosted tasks into account. If the new 3907 * effective priority is unchanged, we just store the new 3908 * normal parameters and do not touch the scheduler class and 3909 * the runqueue. This will be done when the task deboost 3910 * itself. 3911 */ 3912 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 3913 if (new_effective_prio == oldprio) { 3914 __setscheduler_params(p, attr); 3915 task_rq_unlock(rq, p, &flags); 3916 return 0; 3917 } 3918 } 3919 3920 queued = task_on_rq_queued(p); 3921 running = task_current(rq, p); 3922 if (queued) 3923 dequeue_task(rq, p, 0); 3924 if (running) 3925 put_prev_task(rq, p); 3926 3927 prev_class = p->sched_class; 3928 __setscheduler(rq, p, attr, pi); 3929 3930 if (running) 3931 p->sched_class->set_curr_task(rq); 3932 if (queued) { 3933 /* 3934 * We enqueue to tail when the priority of a task is 3935 * increased (user space view). 3936 */ 3937 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3938 } 3939 3940 check_class_changed(rq, p, prev_class, oldprio); 3941 preempt_disable(); /* avoid rq from going away on us */ 3942 task_rq_unlock(rq, p, &flags); 3943 3944 if (pi) 3945 rt_mutex_adjust_pi(p); 3946 3947 /* 3948 * Run balance callbacks after we've adjusted the PI chain. 3949 */ 3950 balance_callback(rq); 3951 preempt_enable(); 3952 3953 return 0; 3954 } 3955 3956 static int _sched_setscheduler(struct task_struct *p, int policy, 3957 const struct sched_param *param, bool check) 3958 { 3959 struct sched_attr attr = { 3960 .sched_policy = policy, 3961 .sched_priority = param->sched_priority, 3962 .sched_nice = PRIO_TO_NICE(p->static_prio), 3963 }; 3964 3965 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3966 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3967 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3968 policy &= ~SCHED_RESET_ON_FORK; 3969 attr.sched_policy = policy; 3970 } 3971 3972 return __sched_setscheduler(p, &attr, check, true); 3973 } 3974 /** 3975 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3976 * @p: the task in question. 3977 * @policy: new policy. 3978 * @param: structure containing the new RT priority. 3979 * 3980 * Return: 0 on success. An error code otherwise. 3981 * 3982 * NOTE that the task may be already dead. 3983 */ 3984 int sched_setscheduler(struct task_struct *p, int policy, 3985 const struct sched_param *param) 3986 { 3987 return _sched_setscheduler(p, policy, param, true); 3988 } 3989 EXPORT_SYMBOL_GPL(sched_setscheduler); 3990 3991 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3992 { 3993 return __sched_setscheduler(p, attr, true, true); 3994 } 3995 EXPORT_SYMBOL_GPL(sched_setattr); 3996 3997 /** 3998 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3999 * @p: the task in question. 4000 * @policy: new policy. 4001 * @param: structure containing the new RT priority. 4002 * 4003 * Just like sched_setscheduler, only don't bother checking if the 4004 * current context has permission. For example, this is needed in 4005 * stop_machine(): we create temporary high priority worker threads, 4006 * but our caller might not have that capability. 4007 * 4008 * Return: 0 on success. An error code otherwise. 4009 */ 4010 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4011 const struct sched_param *param) 4012 { 4013 return _sched_setscheduler(p, policy, param, false); 4014 } 4015 4016 static int 4017 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4018 { 4019 struct sched_param lparam; 4020 struct task_struct *p; 4021 int retval; 4022 4023 if (!param || pid < 0) 4024 return -EINVAL; 4025 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4026 return -EFAULT; 4027 4028 rcu_read_lock(); 4029 retval = -ESRCH; 4030 p = find_process_by_pid(pid); 4031 if (p != NULL) 4032 retval = sched_setscheduler(p, policy, &lparam); 4033 rcu_read_unlock(); 4034 4035 return retval; 4036 } 4037 4038 /* 4039 * Mimics kernel/events/core.c perf_copy_attr(). 4040 */ 4041 static int sched_copy_attr(struct sched_attr __user *uattr, 4042 struct sched_attr *attr) 4043 { 4044 u32 size; 4045 int ret; 4046 4047 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4048 return -EFAULT; 4049 4050 /* 4051 * zero the full structure, so that a short copy will be nice. 4052 */ 4053 memset(attr, 0, sizeof(*attr)); 4054 4055 ret = get_user(size, &uattr->size); 4056 if (ret) 4057 return ret; 4058 4059 if (size > PAGE_SIZE) /* silly large */ 4060 goto err_size; 4061 4062 if (!size) /* abi compat */ 4063 size = SCHED_ATTR_SIZE_VER0; 4064 4065 if (size < SCHED_ATTR_SIZE_VER0) 4066 goto err_size; 4067 4068 /* 4069 * If we're handed a bigger struct than we know of, 4070 * ensure all the unknown bits are 0 - i.e. new 4071 * user-space does not rely on any kernel feature 4072 * extensions we dont know about yet. 4073 */ 4074 if (size > sizeof(*attr)) { 4075 unsigned char __user *addr; 4076 unsigned char __user *end; 4077 unsigned char val; 4078 4079 addr = (void __user *)uattr + sizeof(*attr); 4080 end = (void __user *)uattr + size; 4081 4082 for (; addr < end; addr++) { 4083 ret = get_user(val, addr); 4084 if (ret) 4085 return ret; 4086 if (val) 4087 goto err_size; 4088 } 4089 size = sizeof(*attr); 4090 } 4091 4092 ret = copy_from_user(attr, uattr, size); 4093 if (ret) 4094 return -EFAULT; 4095 4096 /* 4097 * XXX: do we want to be lenient like existing syscalls; or do we want 4098 * to be strict and return an error on out-of-bounds values? 4099 */ 4100 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4101 4102 return 0; 4103 4104 err_size: 4105 put_user(sizeof(*attr), &uattr->size); 4106 return -E2BIG; 4107 } 4108 4109 /** 4110 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4111 * @pid: the pid in question. 4112 * @policy: new policy. 4113 * @param: structure containing the new RT priority. 4114 * 4115 * Return: 0 on success. An error code otherwise. 4116 */ 4117 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4118 struct sched_param __user *, param) 4119 { 4120 /* negative values for policy are not valid */ 4121 if (policy < 0) 4122 return -EINVAL; 4123 4124 return do_sched_setscheduler(pid, policy, param); 4125 } 4126 4127 /** 4128 * sys_sched_setparam - set/change the RT priority of a thread 4129 * @pid: the pid in question. 4130 * @param: structure containing the new RT priority. 4131 * 4132 * Return: 0 on success. An error code otherwise. 4133 */ 4134 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4135 { 4136 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4137 } 4138 4139 /** 4140 * sys_sched_setattr - same as above, but with extended sched_attr 4141 * @pid: the pid in question. 4142 * @uattr: structure containing the extended parameters. 4143 * @flags: for future extension. 4144 */ 4145 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4146 unsigned int, flags) 4147 { 4148 struct sched_attr attr; 4149 struct task_struct *p; 4150 int retval; 4151 4152 if (!uattr || pid < 0 || flags) 4153 return -EINVAL; 4154 4155 retval = sched_copy_attr(uattr, &attr); 4156 if (retval) 4157 return retval; 4158 4159 if ((int)attr.sched_policy < 0) 4160 return -EINVAL; 4161 4162 rcu_read_lock(); 4163 retval = -ESRCH; 4164 p = find_process_by_pid(pid); 4165 if (p != NULL) 4166 retval = sched_setattr(p, &attr); 4167 rcu_read_unlock(); 4168 4169 return retval; 4170 } 4171 4172 /** 4173 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4174 * @pid: the pid in question. 4175 * 4176 * Return: On success, the policy of the thread. Otherwise, a negative error 4177 * code. 4178 */ 4179 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4180 { 4181 struct task_struct *p; 4182 int retval; 4183 4184 if (pid < 0) 4185 return -EINVAL; 4186 4187 retval = -ESRCH; 4188 rcu_read_lock(); 4189 p = find_process_by_pid(pid); 4190 if (p) { 4191 retval = security_task_getscheduler(p); 4192 if (!retval) 4193 retval = p->policy 4194 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4195 } 4196 rcu_read_unlock(); 4197 return retval; 4198 } 4199 4200 /** 4201 * sys_sched_getparam - get the RT priority of a thread 4202 * @pid: the pid in question. 4203 * @param: structure containing the RT priority. 4204 * 4205 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4206 * code. 4207 */ 4208 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4209 { 4210 struct sched_param lp = { .sched_priority = 0 }; 4211 struct task_struct *p; 4212 int retval; 4213 4214 if (!param || pid < 0) 4215 return -EINVAL; 4216 4217 rcu_read_lock(); 4218 p = find_process_by_pid(pid); 4219 retval = -ESRCH; 4220 if (!p) 4221 goto out_unlock; 4222 4223 retval = security_task_getscheduler(p); 4224 if (retval) 4225 goto out_unlock; 4226 4227 if (task_has_rt_policy(p)) 4228 lp.sched_priority = p->rt_priority; 4229 rcu_read_unlock(); 4230 4231 /* 4232 * This one might sleep, we cannot do it with a spinlock held ... 4233 */ 4234 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4235 4236 return retval; 4237 4238 out_unlock: 4239 rcu_read_unlock(); 4240 return retval; 4241 } 4242 4243 static int sched_read_attr(struct sched_attr __user *uattr, 4244 struct sched_attr *attr, 4245 unsigned int usize) 4246 { 4247 int ret; 4248 4249 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4250 return -EFAULT; 4251 4252 /* 4253 * If we're handed a smaller struct than we know of, 4254 * ensure all the unknown bits are 0 - i.e. old 4255 * user-space does not get uncomplete information. 4256 */ 4257 if (usize < sizeof(*attr)) { 4258 unsigned char *addr; 4259 unsigned char *end; 4260 4261 addr = (void *)attr + usize; 4262 end = (void *)attr + sizeof(*attr); 4263 4264 for (; addr < end; addr++) { 4265 if (*addr) 4266 return -EFBIG; 4267 } 4268 4269 attr->size = usize; 4270 } 4271 4272 ret = copy_to_user(uattr, attr, attr->size); 4273 if (ret) 4274 return -EFAULT; 4275 4276 return 0; 4277 } 4278 4279 /** 4280 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4281 * @pid: the pid in question. 4282 * @uattr: structure containing the extended parameters. 4283 * @size: sizeof(attr) for fwd/bwd comp. 4284 * @flags: for future extension. 4285 */ 4286 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4287 unsigned int, size, unsigned int, flags) 4288 { 4289 struct sched_attr attr = { 4290 .size = sizeof(struct sched_attr), 4291 }; 4292 struct task_struct *p; 4293 int retval; 4294 4295 if (!uattr || pid < 0 || size > PAGE_SIZE || 4296 size < SCHED_ATTR_SIZE_VER0 || flags) 4297 return -EINVAL; 4298 4299 rcu_read_lock(); 4300 p = find_process_by_pid(pid); 4301 retval = -ESRCH; 4302 if (!p) 4303 goto out_unlock; 4304 4305 retval = security_task_getscheduler(p); 4306 if (retval) 4307 goto out_unlock; 4308 4309 attr.sched_policy = p->policy; 4310 if (p->sched_reset_on_fork) 4311 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4312 if (task_has_dl_policy(p)) 4313 __getparam_dl(p, &attr); 4314 else if (task_has_rt_policy(p)) 4315 attr.sched_priority = p->rt_priority; 4316 else 4317 attr.sched_nice = task_nice(p); 4318 4319 rcu_read_unlock(); 4320 4321 retval = sched_read_attr(uattr, &attr, size); 4322 return retval; 4323 4324 out_unlock: 4325 rcu_read_unlock(); 4326 return retval; 4327 } 4328 4329 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4330 { 4331 cpumask_var_t cpus_allowed, new_mask; 4332 struct task_struct *p; 4333 int retval; 4334 4335 rcu_read_lock(); 4336 4337 p = find_process_by_pid(pid); 4338 if (!p) { 4339 rcu_read_unlock(); 4340 return -ESRCH; 4341 } 4342 4343 /* Prevent p going away */ 4344 get_task_struct(p); 4345 rcu_read_unlock(); 4346 4347 if (p->flags & PF_NO_SETAFFINITY) { 4348 retval = -EINVAL; 4349 goto out_put_task; 4350 } 4351 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4352 retval = -ENOMEM; 4353 goto out_put_task; 4354 } 4355 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4356 retval = -ENOMEM; 4357 goto out_free_cpus_allowed; 4358 } 4359 retval = -EPERM; 4360 if (!check_same_owner(p)) { 4361 rcu_read_lock(); 4362 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4363 rcu_read_unlock(); 4364 goto out_free_new_mask; 4365 } 4366 rcu_read_unlock(); 4367 } 4368 4369 retval = security_task_setscheduler(p); 4370 if (retval) 4371 goto out_free_new_mask; 4372 4373 4374 cpuset_cpus_allowed(p, cpus_allowed); 4375 cpumask_and(new_mask, in_mask, cpus_allowed); 4376 4377 /* 4378 * Since bandwidth control happens on root_domain basis, 4379 * if admission test is enabled, we only admit -deadline 4380 * tasks allowed to run on all the CPUs in the task's 4381 * root_domain. 4382 */ 4383 #ifdef CONFIG_SMP 4384 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4385 rcu_read_lock(); 4386 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4387 retval = -EBUSY; 4388 rcu_read_unlock(); 4389 goto out_free_new_mask; 4390 } 4391 rcu_read_unlock(); 4392 } 4393 #endif 4394 again: 4395 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4396 4397 if (!retval) { 4398 cpuset_cpus_allowed(p, cpus_allowed); 4399 if (!cpumask_subset(new_mask, cpus_allowed)) { 4400 /* 4401 * We must have raced with a concurrent cpuset 4402 * update. Just reset the cpus_allowed to the 4403 * cpuset's cpus_allowed 4404 */ 4405 cpumask_copy(new_mask, cpus_allowed); 4406 goto again; 4407 } 4408 } 4409 out_free_new_mask: 4410 free_cpumask_var(new_mask); 4411 out_free_cpus_allowed: 4412 free_cpumask_var(cpus_allowed); 4413 out_put_task: 4414 put_task_struct(p); 4415 return retval; 4416 } 4417 4418 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4419 struct cpumask *new_mask) 4420 { 4421 if (len < cpumask_size()) 4422 cpumask_clear(new_mask); 4423 else if (len > cpumask_size()) 4424 len = cpumask_size(); 4425 4426 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4427 } 4428 4429 /** 4430 * sys_sched_setaffinity - set the cpu affinity of a process 4431 * @pid: pid of the process 4432 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4433 * @user_mask_ptr: user-space pointer to the new cpu mask 4434 * 4435 * Return: 0 on success. An error code otherwise. 4436 */ 4437 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4438 unsigned long __user *, user_mask_ptr) 4439 { 4440 cpumask_var_t new_mask; 4441 int retval; 4442 4443 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4444 return -ENOMEM; 4445 4446 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4447 if (retval == 0) 4448 retval = sched_setaffinity(pid, new_mask); 4449 free_cpumask_var(new_mask); 4450 return retval; 4451 } 4452 4453 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4454 { 4455 struct task_struct *p; 4456 unsigned long flags; 4457 int retval; 4458 4459 rcu_read_lock(); 4460 4461 retval = -ESRCH; 4462 p = find_process_by_pid(pid); 4463 if (!p) 4464 goto out_unlock; 4465 4466 retval = security_task_getscheduler(p); 4467 if (retval) 4468 goto out_unlock; 4469 4470 raw_spin_lock_irqsave(&p->pi_lock, flags); 4471 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4472 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4473 4474 out_unlock: 4475 rcu_read_unlock(); 4476 4477 return retval; 4478 } 4479 4480 /** 4481 * sys_sched_getaffinity - get the cpu affinity of a process 4482 * @pid: pid of the process 4483 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4484 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4485 * 4486 * Return: 0 on success. An error code otherwise. 4487 */ 4488 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4489 unsigned long __user *, user_mask_ptr) 4490 { 4491 int ret; 4492 cpumask_var_t mask; 4493 4494 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4495 return -EINVAL; 4496 if (len & (sizeof(unsigned long)-1)) 4497 return -EINVAL; 4498 4499 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4500 return -ENOMEM; 4501 4502 ret = sched_getaffinity(pid, mask); 4503 if (ret == 0) { 4504 size_t retlen = min_t(size_t, len, cpumask_size()); 4505 4506 if (copy_to_user(user_mask_ptr, mask, retlen)) 4507 ret = -EFAULT; 4508 else 4509 ret = retlen; 4510 } 4511 free_cpumask_var(mask); 4512 4513 return ret; 4514 } 4515 4516 /** 4517 * sys_sched_yield - yield the current processor to other threads. 4518 * 4519 * This function yields the current CPU to other tasks. If there are no 4520 * other threads running on this CPU then this function will return. 4521 * 4522 * Return: 0. 4523 */ 4524 SYSCALL_DEFINE0(sched_yield) 4525 { 4526 struct rq *rq = this_rq_lock(); 4527 4528 schedstat_inc(rq, yld_count); 4529 current->sched_class->yield_task(rq); 4530 4531 /* 4532 * Since we are going to call schedule() anyway, there's 4533 * no need to preempt or enable interrupts: 4534 */ 4535 __release(rq->lock); 4536 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4537 do_raw_spin_unlock(&rq->lock); 4538 sched_preempt_enable_no_resched(); 4539 4540 schedule(); 4541 4542 return 0; 4543 } 4544 4545 int __sched _cond_resched(void) 4546 { 4547 if (should_resched(0)) { 4548 preempt_schedule_common(); 4549 return 1; 4550 } 4551 return 0; 4552 } 4553 EXPORT_SYMBOL(_cond_resched); 4554 4555 /* 4556 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4557 * call schedule, and on return reacquire the lock. 4558 * 4559 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4560 * operations here to prevent schedule() from being called twice (once via 4561 * spin_unlock(), once by hand). 4562 */ 4563 int __cond_resched_lock(spinlock_t *lock) 4564 { 4565 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4566 int ret = 0; 4567 4568 lockdep_assert_held(lock); 4569 4570 if (spin_needbreak(lock) || resched) { 4571 spin_unlock(lock); 4572 if (resched) 4573 preempt_schedule_common(); 4574 else 4575 cpu_relax(); 4576 ret = 1; 4577 spin_lock(lock); 4578 } 4579 return ret; 4580 } 4581 EXPORT_SYMBOL(__cond_resched_lock); 4582 4583 int __sched __cond_resched_softirq(void) 4584 { 4585 BUG_ON(!in_softirq()); 4586 4587 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4588 local_bh_enable(); 4589 preempt_schedule_common(); 4590 local_bh_disable(); 4591 return 1; 4592 } 4593 return 0; 4594 } 4595 EXPORT_SYMBOL(__cond_resched_softirq); 4596 4597 /** 4598 * yield - yield the current processor to other threads. 4599 * 4600 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4601 * 4602 * The scheduler is at all times free to pick the calling task as the most 4603 * eligible task to run, if removing the yield() call from your code breaks 4604 * it, its already broken. 4605 * 4606 * Typical broken usage is: 4607 * 4608 * while (!event) 4609 * yield(); 4610 * 4611 * where one assumes that yield() will let 'the other' process run that will 4612 * make event true. If the current task is a SCHED_FIFO task that will never 4613 * happen. Never use yield() as a progress guarantee!! 4614 * 4615 * If you want to use yield() to wait for something, use wait_event(). 4616 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4617 * If you still want to use yield(), do not! 4618 */ 4619 void __sched yield(void) 4620 { 4621 set_current_state(TASK_RUNNING); 4622 sys_sched_yield(); 4623 } 4624 EXPORT_SYMBOL(yield); 4625 4626 /** 4627 * yield_to - yield the current processor to another thread in 4628 * your thread group, or accelerate that thread toward the 4629 * processor it's on. 4630 * @p: target task 4631 * @preempt: whether task preemption is allowed or not 4632 * 4633 * It's the caller's job to ensure that the target task struct 4634 * can't go away on us before we can do any checks. 4635 * 4636 * Return: 4637 * true (>0) if we indeed boosted the target task. 4638 * false (0) if we failed to boost the target. 4639 * -ESRCH if there's no task to yield to. 4640 */ 4641 int __sched yield_to(struct task_struct *p, bool preempt) 4642 { 4643 struct task_struct *curr = current; 4644 struct rq *rq, *p_rq; 4645 unsigned long flags; 4646 int yielded = 0; 4647 4648 local_irq_save(flags); 4649 rq = this_rq(); 4650 4651 again: 4652 p_rq = task_rq(p); 4653 /* 4654 * If we're the only runnable task on the rq and target rq also 4655 * has only one task, there's absolutely no point in yielding. 4656 */ 4657 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4658 yielded = -ESRCH; 4659 goto out_irq; 4660 } 4661 4662 double_rq_lock(rq, p_rq); 4663 if (task_rq(p) != p_rq) { 4664 double_rq_unlock(rq, p_rq); 4665 goto again; 4666 } 4667 4668 if (!curr->sched_class->yield_to_task) 4669 goto out_unlock; 4670 4671 if (curr->sched_class != p->sched_class) 4672 goto out_unlock; 4673 4674 if (task_running(p_rq, p) || p->state) 4675 goto out_unlock; 4676 4677 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4678 if (yielded) { 4679 schedstat_inc(rq, yld_count); 4680 /* 4681 * Make p's CPU reschedule; pick_next_entity takes care of 4682 * fairness. 4683 */ 4684 if (preempt && rq != p_rq) 4685 resched_curr(p_rq); 4686 } 4687 4688 out_unlock: 4689 double_rq_unlock(rq, p_rq); 4690 out_irq: 4691 local_irq_restore(flags); 4692 4693 if (yielded > 0) 4694 schedule(); 4695 4696 return yielded; 4697 } 4698 EXPORT_SYMBOL_GPL(yield_to); 4699 4700 /* 4701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4702 * that process accounting knows that this is a task in IO wait state. 4703 */ 4704 long __sched io_schedule_timeout(long timeout) 4705 { 4706 int old_iowait = current->in_iowait; 4707 struct rq *rq; 4708 long ret; 4709 4710 current->in_iowait = 1; 4711 blk_schedule_flush_plug(current); 4712 4713 delayacct_blkio_start(); 4714 rq = raw_rq(); 4715 atomic_inc(&rq->nr_iowait); 4716 ret = schedule_timeout(timeout); 4717 current->in_iowait = old_iowait; 4718 atomic_dec(&rq->nr_iowait); 4719 delayacct_blkio_end(); 4720 4721 return ret; 4722 } 4723 EXPORT_SYMBOL(io_schedule_timeout); 4724 4725 /** 4726 * sys_sched_get_priority_max - return maximum RT priority. 4727 * @policy: scheduling class. 4728 * 4729 * Return: On success, this syscall returns the maximum 4730 * rt_priority that can be used by a given scheduling class. 4731 * On failure, a negative error code is returned. 4732 */ 4733 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4734 { 4735 int ret = -EINVAL; 4736 4737 switch (policy) { 4738 case SCHED_FIFO: 4739 case SCHED_RR: 4740 ret = MAX_USER_RT_PRIO-1; 4741 break; 4742 case SCHED_DEADLINE: 4743 case SCHED_NORMAL: 4744 case SCHED_BATCH: 4745 case SCHED_IDLE: 4746 ret = 0; 4747 break; 4748 } 4749 return ret; 4750 } 4751 4752 /** 4753 * sys_sched_get_priority_min - return minimum RT priority. 4754 * @policy: scheduling class. 4755 * 4756 * Return: On success, this syscall returns the minimum 4757 * rt_priority that can be used by a given scheduling class. 4758 * On failure, a negative error code is returned. 4759 */ 4760 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4761 { 4762 int ret = -EINVAL; 4763 4764 switch (policy) { 4765 case SCHED_FIFO: 4766 case SCHED_RR: 4767 ret = 1; 4768 break; 4769 case SCHED_DEADLINE: 4770 case SCHED_NORMAL: 4771 case SCHED_BATCH: 4772 case SCHED_IDLE: 4773 ret = 0; 4774 } 4775 return ret; 4776 } 4777 4778 /** 4779 * sys_sched_rr_get_interval - return the default timeslice of a process. 4780 * @pid: pid of the process. 4781 * @interval: userspace pointer to the timeslice value. 4782 * 4783 * this syscall writes the default timeslice value of a given process 4784 * into the user-space timespec buffer. A value of '0' means infinity. 4785 * 4786 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4787 * an error code. 4788 */ 4789 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4790 struct timespec __user *, interval) 4791 { 4792 struct task_struct *p; 4793 unsigned int time_slice; 4794 unsigned long flags; 4795 struct rq *rq; 4796 int retval; 4797 struct timespec t; 4798 4799 if (pid < 0) 4800 return -EINVAL; 4801 4802 retval = -ESRCH; 4803 rcu_read_lock(); 4804 p = find_process_by_pid(pid); 4805 if (!p) 4806 goto out_unlock; 4807 4808 retval = security_task_getscheduler(p); 4809 if (retval) 4810 goto out_unlock; 4811 4812 rq = task_rq_lock(p, &flags); 4813 time_slice = 0; 4814 if (p->sched_class->get_rr_interval) 4815 time_slice = p->sched_class->get_rr_interval(rq, p); 4816 task_rq_unlock(rq, p, &flags); 4817 4818 rcu_read_unlock(); 4819 jiffies_to_timespec(time_slice, &t); 4820 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4821 return retval; 4822 4823 out_unlock: 4824 rcu_read_unlock(); 4825 return retval; 4826 } 4827 4828 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4829 4830 void sched_show_task(struct task_struct *p) 4831 { 4832 unsigned long free = 0; 4833 int ppid; 4834 unsigned long state = p->state; 4835 4836 if (state) 4837 state = __ffs(state) + 1; 4838 printk(KERN_INFO "%-15.15s %c", p->comm, 4839 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4840 #if BITS_PER_LONG == 32 4841 if (state == TASK_RUNNING) 4842 printk(KERN_CONT " running "); 4843 else 4844 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4845 #else 4846 if (state == TASK_RUNNING) 4847 printk(KERN_CONT " running task "); 4848 else 4849 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4850 #endif 4851 #ifdef CONFIG_DEBUG_STACK_USAGE 4852 free = stack_not_used(p); 4853 #endif 4854 ppid = 0; 4855 rcu_read_lock(); 4856 if (pid_alive(p)) 4857 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4858 rcu_read_unlock(); 4859 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4860 task_pid_nr(p), ppid, 4861 (unsigned long)task_thread_info(p)->flags); 4862 4863 print_worker_info(KERN_INFO, p); 4864 show_stack(p, NULL); 4865 } 4866 4867 void show_state_filter(unsigned long state_filter) 4868 { 4869 struct task_struct *g, *p; 4870 4871 #if BITS_PER_LONG == 32 4872 printk(KERN_INFO 4873 " task PC stack pid father\n"); 4874 #else 4875 printk(KERN_INFO 4876 " task PC stack pid father\n"); 4877 #endif 4878 rcu_read_lock(); 4879 for_each_process_thread(g, p) { 4880 /* 4881 * reset the NMI-timeout, listing all files on a slow 4882 * console might take a lot of time: 4883 */ 4884 touch_nmi_watchdog(); 4885 if (!state_filter || (p->state & state_filter)) 4886 sched_show_task(p); 4887 } 4888 4889 touch_all_softlockup_watchdogs(); 4890 4891 #ifdef CONFIG_SCHED_DEBUG 4892 sysrq_sched_debug_show(); 4893 #endif 4894 rcu_read_unlock(); 4895 /* 4896 * Only show locks if all tasks are dumped: 4897 */ 4898 if (!state_filter) 4899 debug_show_all_locks(); 4900 } 4901 4902 void init_idle_bootup_task(struct task_struct *idle) 4903 { 4904 idle->sched_class = &idle_sched_class; 4905 } 4906 4907 /** 4908 * init_idle - set up an idle thread for a given CPU 4909 * @idle: task in question 4910 * @cpu: cpu the idle task belongs to 4911 * 4912 * NOTE: this function does not set the idle thread's NEED_RESCHED 4913 * flag, to make booting more robust. 4914 */ 4915 void init_idle(struct task_struct *idle, int cpu) 4916 { 4917 struct rq *rq = cpu_rq(cpu); 4918 unsigned long flags; 4919 4920 raw_spin_lock_irqsave(&idle->pi_lock, flags); 4921 raw_spin_lock(&rq->lock); 4922 4923 __sched_fork(0, idle); 4924 idle->state = TASK_RUNNING; 4925 idle->se.exec_start = sched_clock(); 4926 4927 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4928 /* 4929 * We're having a chicken and egg problem, even though we are 4930 * holding rq->lock, the cpu isn't yet set to this cpu so the 4931 * lockdep check in task_group() will fail. 4932 * 4933 * Similar case to sched_fork(). / Alternatively we could 4934 * use task_rq_lock() here and obtain the other rq->lock. 4935 * 4936 * Silence PROVE_RCU 4937 */ 4938 rcu_read_lock(); 4939 __set_task_cpu(idle, cpu); 4940 rcu_read_unlock(); 4941 4942 rq->curr = rq->idle = idle; 4943 idle->on_rq = TASK_ON_RQ_QUEUED; 4944 #if defined(CONFIG_SMP) 4945 idle->on_cpu = 1; 4946 #endif 4947 raw_spin_unlock(&rq->lock); 4948 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 4949 4950 /* Set the preempt count _outside_ the spinlocks! */ 4951 init_idle_preempt_count(idle, cpu); 4952 4953 /* 4954 * The idle tasks have their own, simple scheduling class: 4955 */ 4956 idle->sched_class = &idle_sched_class; 4957 ftrace_graph_init_idle_task(idle, cpu); 4958 vtime_init_idle(idle, cpu); 4959 #if defined(CONFIG_SMP) 4960 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4961 #endif 4962 } 4963 4964 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4965 const struct cpumask *trial) 4966 { 4967 int ret = 1, trial_cpus; 4968 struct dl_bw *cur_dl_b; 4969 unsigned long flags; 4970 4971 if (!cpumask_weight(cur)) 4972 return ret; 4973 4974 rcu_read_lock_sched(); 4975 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4976 trial_cpus = cpumask_weight(trial); 4977 4978 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4979 if (cur_dl_b->bw != -1 && 4980 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4981 ret = 0; 4982 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4983 rcu_read_unlock_sched(); 4984 4985 return ret; 4986 } 4987 4988 int task_can_attach(struct task_struct *p, 4989 const struct cpumask *cs_cpus_allowed) 4990 { 4991 int ret = 0; 4992 4993 /* 4994 * Kthreads which disallow setaffinity shouldn't be moved 4995 * to a new cpuset; we don't want to change their cpu 4996 * affinity and isolating such threads by their set of 4997 * allowed nodes is unnecessary. Thus, cpusets are not 4998 * applicable for such threads. This prevents checking for 4999 * success of set_cpus_allowed_ptr() on all attached tasks 5000 * before cpus_allowed may be changed. 5001 */ 5002 if (p->flags & PF_NO_SETAFFINITY) { 5003 ret = -EINVAL; 5004 goto out; 5005 } 5006 5007 #ifdef CONFIG_SMP 5008 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5009 cs_cpus_allowed)) { 5010 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5011 cs_cpus_allowed); 5012 struct dl_bw *dl_b; 5013 bool overflow; 5014 int cpus; 5015 unsigned long flags; 5016 5017 rcu_read_lock_sched(); 5018 dl_b = dl_bw_of(dest_cpu); 5019 raw_spin_lock_irqsave(&dl_b->lock, flags); 5020 cpus = dl_bw_cpus(dest_cpu); 5021 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5022 if (overflow) 5023 ret = -EBUSY; 5024 else { 5025 /* 5026 * We reserve space for this task in the destination 5027 * root_domain, as we can't fail after this point. 5028 * We will free resources in the source root_domain 5029 * later on (see set_cpus_allowed_dl()). 5030 */ 5031 __dl_add(dl_b, p->dl.dl_bw); 5032 } 5033 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5034 rcu_read_unlock_sched(); 5035 5036 } 5037 #endif 5038 out: 5039 return ret; 5040 } 5041 5042 #ifdef CONFIG_SMP 5043 5044 #ifdef CONFIG_NUMA_BALANCING 5045 /* Migrate current task p to target_cpu */ 5046 int migrate_task_to(struct task_struct *p, int target_cpu) 5047 { 5048 struct migration_arg arg = { p, target_cpu }; 5049 int curr_cpu = task_cpu(p); 5050 5051 if (curr_cpu == target_cpu) 5052 return 0; 5053 5054 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5055 return -EINVAL; 5056 5057 /* TODO: This is not properly updating schedstats */ 5058 5059 trace_sched_move_numa(p, curr_cpu, target_cpu); 5060 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5061 } 5062 5063 /* 5064 * Requeue a task on a given node and accurately track the number of NUMA 5065 * tasks on the runqueues 5066 */ 5067 void sched_setnuma(struct task_struct *p, int nid) 5068 { 5069 struct rq *rq; 5070 unsigned long flags; 5071 bool queued, running; 5072 5073 rq = task_rq_lock(p, &flags); 5074 queued = task_on_rq_queued(p); 5075 running = task_current(rq, p); 5076 5077 if (queued) 5078 dequeue_task(rq, p, 0); 5079 if (running) 5080 put_prev_task(rq, p); 5081 5082 p->numa_preferred_nid = nid; 5083 5084 if (running) 5085 p->sched_class->set_curr_task(rq); 5086 if (queued) 5087 enqueue_task(rq, p, 0); 5088 task_rq_unlock(rq, p, &flags); 5089 } 5090 #endif /* CONFIG_NUMA_BALANCING */ 5091 5092 #ifdef CONFIG_HOTPLUG_CPU 5093 /* 5094 * Ensures that the idle task is using init_mm right before its cpu goes 5095 * offline. 5096 */ 5097 void idle_task_exit(void) 5098 { 5099 struct mm_struct *mm = current->active_mm; 5100 5101 BUG_ON(cpu_online(smp_processor_id())); 5102 5103 if (mm != &init_mm) { 5104 switch_mm(mm, &init_mm, current); 5105 finish_arch_post_lock_switch(); 5106 } 5107 mmdrop(mm); 5108 } 5109 5110 /* 5111 * Since this CPU is going 'away' for a while, fold any nr_active delta 5112 * we might have. Assumes we're called after migrate_tasks() so that the 5113 * nr_active count is stable. 5114 * 5115 * Also see the comment "Global load-average calculations". 5116 */ 5117 static void calc_load_migrate(struct rq *rq) 5118 { 5119 long delta = calc_load_fold_active(rq); 5120 if (delta) 5121 atomic_long_add(delta, &calc_load_tasks); 5122 } 5123 5124 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5125 { 5126 } 5127 5128 static const struct sched_class fake_sched_class = { 5129 .put_prev_task = put_prev_task_fake, 5130 }; 5131 5132 static struct task_struct fake_task = { 5133 /* 5134 * Avoid pull_{rt,dl}_task() 5135 */ 5136 .prio = MAX_PRIO + 1, 5137 .sched_class = &fake_sched_class, 5138 }; 5139 5140 /* 5141 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5142 * try_to_wake_up()->select_task_rq(). 5143 * 5144 * Called with rq->lock held even though we'er in stop_machine() and 5145 * there's no concurrency possible, we hold the required locks anyway 5146 * because of lock validation efforts. 5147 */ 5148 static void migrate_tasks(struct rq *dead_rq) 5149 { 5150 struct rq *rq = dead_rq; 5151 struct task_struct *next, *stop = rq->stop; 5152 int dest_cpu; 5153 5154 /* 5155 * Fudge the rq selection such that the below task selection loop 5156 * doesn't get stuck on the currently eligible stop task. 5157 * 5158 * We're currently inside stop_machine() and the rq is either stuck 5159 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5160 * either way we should never end up calling schedule() until we're 5161 * done here. 5162 */ 5163 rq->stop = NULL; 5164 5165 /* 5166 * put_prev_task() and pick_next_task() sched 5167 * class method both need to have an up-to-date 5168 * value of rq->clock[_task] 5169 */ 5170 update_rq_clock(rq); 5171 5172 for (;;) { 5173 /* 5174 * There's this thread running, bail when that's the only 5175 * remaining thread. 5176 */ 5177 if (rq->nr_running == 1) 5178 break; 5179 5180 /* 5181 * Ensure rq->lock covers the entire task selection 5182 * until the migration. 5183 */ 5184 lockdep_pin_lock(&rq->lock); 5185 next = pick_next_task(rq, &fake_task); 5186 BUG_ON(!next); 5187 next->sched_class->put_prev_task(rq, next); 5188 5189 /* Find suitable destination for @next, with force if needed. */ 5190 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5191 5192 lockdep_unpin_lock(&rq->lock); 5193 rq = __migrate_task(rq, next, dest_cpu); 5194 if (rq != dead_rq) { 5195 raw_spin_unlock(&rq->lock); 5196 rq = dead_rq; 5197 raw_spin_lock(&rq->lock); 5198 } 5199 } 5200 5201 rq->stop = stop; 5202 } 5203 #endif /* CONFIG_HOTPLUG_CPU */ 5204 5205 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5206 5207 static struct ctl_table sd_ctl_dir[] = { 5208 { 5209 .procname = "sched_domain", 5210 .mode = 0555, 5211 }, 5212 {} 5213 }; 5214 5215 static struct ctl_table sd_ctl_root[] = { 5216 { 5217 .procname = "kernel", 5218 .mode = 0555, 5219 .child = sd_ctl_dir, 5220 }, 5221 {} 5222 }; 5223 5224 static struct ctl_table *sd_alloc_ctl_entry(int n) 5225 { 5226 struct ctl_table *entry = 5227 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5228 5229 return entry; 5230 } 5231 5232 static void sd_free_ctl_entry(struct ctl_table **tablep) 5233 { 5234 struct ctl_table *entry; 5235 5236 /* 5237 * In the intermediate directories, both the child directory and 5238 * procname are dynamically allocated and could fail but the mode 5239 * will always be set. In the lowest directory the names are 5240 * static strings and all have proc handlers. 5241 */ 5242 for (entry = *tablep; entry->mode; entry++) { 5243 if (entry->child) 5244 sd_free_ctl_entry(&entry->child); 5245 if (entry->proc_handler == NULL) 5246 kfree(entry->procname); 5247 } 5248 5249 kfree(*tablep); 5250 *tablep = NULL; 5251 } 5252 5253 static int min_load_idx = 0; 5254 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5255 5256 static void 5257 set_table_entry(struct ctl_table *entry, 5258 const char *procname, void *data, int maxlen, 5259 umode_t mode, proc_handler *proc_handler, 5260 bool load_idx) 5261 { 5262 entry->procname = procname; 5263 entry->data = data; 5264 entry->maxlen = maxlen; 5265 entry->mode = mode; 5266 entry->proc_handler = proc_handler; 5267 5268 if (load_idx) { 5269 entry->extra1 = &min_load_idx; 5270 entry->extra2 = &max_load_idx; 5271 } 5272 } 5273 5274 static struct ctl_table * 5275 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5276 { 5277 struct ctl_table *table = sd_alloc_ctl_entry(14); 5278 5279 if (table == NULL) 5280 return NULL; 5281 5282 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5283 sizeof(long), 0644, proc_doulongvec_minmax, false); 5284 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5285 sizeof(long), 0644, proc_doulongvec_minmax, false); 5286 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5287 sizeof(int), 0644, proc_dointvec_minmax, true); 5288 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5289 sizeof(int), 0644, proc_dointvec_minmax, true); 5290 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5291 sizeof(int), 0644, proc_dointvec_minmax, true); 5292 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5293 sizeof(int), 0644, proc_dointvec_minmax, true); 5294 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5295 sizeof(int), 0644, proc_dointvec_minmax, true); 5296 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5297 sizeof(int), 0644, proc_dointvec_minmax, false); 5298 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5299 sizeof(int), 0644, proc_dointvec_minmax, false); 5300 set_table_entry(&table[9], "cache_nice_tries", 5301 &sd->cache_nice_tries, 5302 sizeof(int), 0644, proc_dointvec_minmax, false); 5303 set_table_entry(&table[10], "flags", &sd->flags, 5304 sizeof(int), 0644, proc_dointvec_minmax, false); 5305 set_table_entry(&table[11], "max_newidle_lb_cost", 5306 &sd->max_newidle_lb_cost, 5307 sizeof(long), 0644, proc_doulongvec_minmax, false); 5308 set_table_entry(&table[12], "name", sd->name, 5309 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5310 /* &table[13] is terminator */ 5311 5312 return table; 5313 } 5314 5315 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5316 { 5317 struct ctl_table *entry, *table; 5318 struct sched_domain *sd; 5319 int domain_num = 0, i; 5320 char buf[32]; 5321 5322 for_each_domain(cpu, sd) 5323 domain_num++; 5324 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5325 if (table == NULL) 5326 return NULL; 5327 5328 i = 0; 5329 for_each_domain(cpu, sd) { 5330 snprintf(buf, 32, "domain%d", i); 5331 entry->procname = kstrdup(buf, GFP_KERNEL); 5332 entry->mode = 0555; 5333 entry->child = sd_alloc_ctl_domain_table(sd); 5334 entry++; 5335 i++; 5336 } 5337 return table; 5338 } 5339 5340 static struct ctl_table_header *sd_sysctl_header; 5341 static void register_sched_domain_sysctl(void) 5342 { 5343 int i, cpu_num = num_possible_cpus(); 5344 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5345 char buf[32]; 5346 5347 WARN_ON(sd_ctl_dir[0].child); 5348 sd_ctl_dir[0].child = entry; 5349 5350 if (entry == NULL) 5351 return; 5352 5353 for_each_possible_cpu(i) { 5354 snprintf(buf, 32, "cpu%d", i); 5355 entry->procname = kstrdup(buf, GFP_KERNEL); 5356 entry->mode = 0555; 5357 entry->child = sd_alloc_ctl_cpu_table(i); 5358 entry++; 5359 } 5360 5361 WARN_ON(sd_sysctl_header); 5362 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5363 } 5364 5365 /* may be called multiple times per register */ 5366 static void unregister_sched_domain_sysctl(void) 5367 { 5368 unregister_sysctl_table(sd_sysctl_header); 5369 sd_sysctl_header = NULL; 5370 if (sd_ctl_dir[0].child) 5371 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5372 } 5373 #else 5374 static void register_sched_domain_sysctl(void) 5375 { 5376 } 5377 static void unregister_sched_domain_sysctl(void) 5378 { 5379 } 5380 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */ 5381 5382 static void set_rq_online(struct rq *rq) 5383 { 5384 if (!rq->online) { 5385 const struct sched_class *class; 5386 5387 cpumask_set_cpu(rq->cpu, rq->rd->online); 5388 rq->online = 1; 5389 5390 for_each_class(class) { 5391 if (class->rq_online) 5392 class->rq_online(rq); 5393 } 5394 } 5395 } 5396 5397 static void set_rq_offline(struct rq *rq) 5398 { 5399 if (rq->online) { 5400 const struct sched_class *class; 5401 5402 for_each_class(class) { 5403 if (class->rq_offline) 5404 class->rq_offline(rq); 5405 } 5406 5407 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5408 rq->online = 0; 5409 } 5410 } 5411 5412 /* 5413 * migration_call - callback that gets triggered when a CPU is added. 5414 * Here we can start up the necessary migration thread for the new CPU. 5415 */ 5416 static int 5417 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5418 { 5419 int cpu = (long)hcpu; 5420 unsigned long flags; 5421 struct rq *rq = cpu_rq(cpu); 5422 5423 switch (action & ~CPU_TASKS_FROZEN) { 5424 5425 case CPU_UP_PREPARE: 5426 rq->calc_load_update = calc_load_update; 5427 break; 5428 5429 case CPU_ONLINE: 5430 /* Update our root-domain */ 5431 raw_spin_lock_irqsave(&rq->lock, flags); 5432 if (rq->rd) { 5433 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5434 5435 set_rq_online(rq); 5436 } 5437 raw_spin_unlock_irqrestore(&rq->lock, flags); 5438 break; 5439 5440 #ifdef CONFIG_HOTPLUG_CPU 5441 case CPU_DYING: 5442 sched_ttwu_pending(); 5443 /* Update our root-domain */ 5444 raw_spin_lock_irqsave(&rq->lock, flags); 5445 if (rq->rd) { 5446 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5447 set_rq_offline(rq); 5448 } 5449 migrate_tasks(rq); 5450 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5451 raw_spin_unlock_irqrestore(&rq->lock, flags); 5452 break; 5453 5454 case CPU_DEAD: 5455 calc_load_migrate(rq); 5456 break; 5457 #endif 5458 } 5459 5460 update_max_interval(); 5461 5462 return NOTIFY_OK; 5463 } 5464 5465 /* 5466 * Register at high priority so that task migration (migrate_all_tasks) 5467 * happens before everything else. This has to be lower priority than 5468 * the notifier in the perf_event subsystem, though. 5469 */ 5470 static struct notifier_block migration_notifier = { 5471 .notifier_call = migration_call, 5472 .priority = CPU_PRI_MIGRATION, 5473 }; 5474 5475 static void set_cpu_rq_start_time(void) 5476 { 5477 int cpu = smp_processor_id(); 5478 struct rq *rq = cpu_rq(cpu); 5479 rq->age_stamp = sched_clock_cpu(cpu); 5480 } 5481 5482 static int sched_cpu_active(struct notifier_block *nfb, 5483 unsigned long action, void *hcpu) 5484 { 5485 switch (action & ~CPU_TASKS_FROZEN) { 5486 case CPU_STARTING: 5487 set_cpu_rq_start_time(); 5488 return NOTIFY_OK; 5489 case CPU_ONLINE: 5490 /* 5491 * At this point a starting CPU has marked itself as online via 5492 * set_cpu_online(). But it might not yet have marked itself 5493 * as active, which is essential from here on. 5494 * 5495 * Thus, fall-through and help the starting CPU along. 5496 */ 5497 case CPU_DOWN_FAILED: 5498 set_cpu_active((long)hcpu, true); 5499 return NOTIFY_OK; 5500 default: 5501 return NOTIFY_DONE; 5502 } 5503 } 5504 5505 static int sched_cpu_inactive(struct notifier_block *nfb, 5506 unsigned long action, void *hcpu) 5507 { 5508 switch (action & ~CPU_TASKS_FROZEN) { 5509 case CPU_DOWN_PREPARE: 5510 set_cpu_active((long)hcpu, false); 5511 return NOTIFY_OK; 5512 default: 5513 return NOTIFY_DONE; 5514 } 5515 } 5516 5517 static int __init migration_init(void) 5518 { 5519 void *cpu = (void *)(long)smp_processor_id(); 5520 int err; 5521 5522 /* Initialize migration for the boot CPU */ 5523 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5524 BUG_ON(err == NOTIFY_BAD); 5525 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5526 register_cpu_notifier(&migration_notifier); 5527 5528 /* Register cpu active notifiers */ 5529 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5530 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5531 5532 return 0; 5533 } 5534 early_initcall(migration_init); 5535 5536 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5537 5538 #ifdef CONFIG_SCHED_DEBUG 5539 5540 static __read_mostly int sched_debug_enabled; 5541 5542 static int __init sched_debug_setup(char *str) 5543 { 5544 sched_debug_enabled = 1; 5545 5546 return 0; 5547 } 5548 early_param("sched_debug", sched_debug_setup); 5549 5550 static inline bool sched_debug(void) 5551 { 5552 return sched_debug_enabled; 5553 } 5554 5555 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5556 struct cpumask *groupmask) 5557 { 5558 struct sched_group *group = sd->groups; 5559 5560 cpumask_clear(groupmask); 5561 5562 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5563 5564 if (!(sd->flags & SD_LOAD_BALANCE)) { 5565 printk("does not load-balance\n"); 5566 if (sd->parent) 5567 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5568 " has parent"); 5569 return -1; 5570 } 5571 5572 printk(KERN_CONT "span %*pbl level %s\n", 5573 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5574 5575 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5576 printk(KERN_ERR "ERROR: domain->span does not contain " 5577 "CPU%d\n", cpu); 5578 } 5579 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5580 printk(KERN_ERR "ERROR: domain->groups does not contain" 5581 " CPU%d\n", cpu); 5582 } 5583 5584 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5585 do { 5586 if (!group) { 5587 printk("\n"); 5588 printk(KERN_ERR "ERROR: group is NULL\n"); 5589 break; 5590 } 5591 5592 if (!cpumask_weight(sched_group_cpus(group))) { 5593 printk(KERN_CONT "\n"); 5594 printk(KERN_ERR "ERROR: empty group\n"); 5595 break; 5596 } 5597 5598 if (!(sd->flags & SD_OVERLAP) && 5599 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5600 printk(KERN_CONT "\n"); 5601 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5602 break; 5603 } 5604 5605 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5606 5607 printk(KERN_CONT " %*pbl", 5608 cpumask_pr_args(sched_group_cpus(group))); 5609 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5610 printk(KERN_CONT " (cpu_capacity = %d)", 5611 group->sgc->capacity); 5612 } 5613 5614 group = group->next; 5615 } while (group != sd->groups); 5616 printk(KERN_CONT "\n"); 5617 5618 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5619 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5620 5621 if (sd->parent && 5622 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5623 printk(KERN_ERR "ERROR: parent span is not a superset " 5624 "of domain->span\n"); 5625 return 0; 5626 } 5627 5628 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5629 { 5630 int level = 0; 5631 5632 if (!sched_debug_enabled) 5633 return; 5634 5635 if (!sd) { 5636 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5637 return; 5638 } 5639 5640 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5641 5642 for (;;) { 5643 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5644 break; 5645 level++; 5646 sd = sd->parent; 5647 if (!sd) 5648 break; 5649 } 5650 } 5651 #else /* !CONFIG_SCHED_DEBUG */ 5652 # define sched_domain_debug(sd, cpu) do { } while (0) 5653 static inline bool sched_debug(void) 5654 { 5655 return false; 5656 } 5657 #endif /* CONFIG_SCHED_DEBUG */ 5658 5659 static int sd_degenerate(struct sched_domain *sd) 5660 { 5661 if (cpumask_weight(sched_domain_span(sd)) == 1) 5662 return 1; 5663 5664 /* Following flags need at least 2 groups */ 5665 if (sd->flags & (SD_LOAD_BALANCE | 5666 SD_BALANCE_NEWIDLE | 5667 SD_BALANCE_FORK | 5668 SD_BALANCE_EXEC | 5669 SD_SHARE_CPUCAPACITY | 5670 SD_SHARE_PKG_RESOURCES | 5671 SD_SHARE_POWERDOMAIN)) { 5672 if (sd->groups != sd->groups->next) 5673 return 0; 5674 } 5675 5676 /* Following flags don't use groups */ 5677 if (sd->flags & (SD_WAKE_AFFINE)) 5678 return 0; 5679 5680 return 1; 5681 } 5682 5683 static int 5684 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5685 { 5686 unsigned long cflags = sd->flags, pflags = parent->flags; 5687 5688 if (sd_degenerate(parent)) 5689 return 1; 5690 5691 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5692 return 0; 5693 5694 /* Flags needing groups don't count if only 1 group in parent */ 5695 if (parent->groups == parent->groups->next) { 5696 pflags &= ~(SD_LOAD_BALANCE | 5697 SD_BALANCE_NEWIDLE | 5698 SD_BALANCE_FORK | 5699 SD_BALANCE_EXEC | 5700 SD_SHARE_CPUCAPACITY | 5701 SD_SHARE_PKG_RESOURCES | 5702 SD_PREFER_SIBLING | 5703 SD_SHARE_POWERDOMAIN); 5704 if (nr_node_ids == 1) 5705 pflags &= ~SD_SERIALIZE; 5706 } 5707 if (~cflags & pflags) 5708 return 0; 5709 5710 return 1; 5711 } 5712 5713 static void free_rootdomain(struct rcu_head *rcu) 5714 { 5715 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5716 5717 cpupri_cleanup(&rd->cpupri); 5718 cpudl_cleanup(&rd->cpudl); 5719 free_cpumask_var(rd->dlo_mask); 5720 free_cpumask_var(rd->rto_mask); 5721 free_cpumask_var(rd->online); 5722 free_cpumask_var(rd->span); 5723 kfree(rd); 5724 } 5725 5726 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5727 { 5728 struct root_domain *old_rd = NULL; 5729 unsigned long flags; 5730 5731 raw_spin_lock_irqsave(&rq->lock, flags); 5732 5733 if (rq->rd) { 5734 old_rd = rq->rd; 5735 5736 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5737 set_rq_offline(rq); 5738 5739 cpumask_clear_cpu(rq->cpu, old_rd->span); 5740 5741 /* 5742 * If we dont want to free the old_rd yet then 5743 * set old_rd to NULL to skip the freeing later 5744 * in this function: 5745 */ 5746 if (!atomic_dec_and_test(&old_rd->refcount)) 5747 old_rd = NULL; 5748 } 5749 5750 atomic_inc(&rd->refcount); 5751 rq->rd = rd; 5752 5753 cpumask_set_cpu(rq->cpu, rd->span); 5754 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5755 set_rq_online(rq); 5756 5757 raw_spin_unlock_irqrestore(&rq->lock, flags); 5758 5759 if (old_rd) 5760 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5761 } 5762 5763 static int init_rootdomain(struct root_domain *rd) 5764 { 5765 memset(rd, 0, sizeof(*rd)); 5766 5767 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5768 goto out; 5769 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5770 goto free_span; 5771 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5772 goto free_online; 5773 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5774 goto free_dlo_mask; 5775 5776 init_dl_bw(&rd->dl_bw); 5777 if (cpudl_init(&rd->cpudl) != 0) 5778 goto free_dlo_mask; 5779 5780 if (cpupri_init(&rd->cpupri) != 0) 5781 goto free_rto_mask; 5782 return 0; 5783 5784 free_rto_mask: 5785 free_cpumask_var(rd->rto_mask); 5786 free_dlo_mask: 5787 free_cpumask_var(rd->dlo_mask); 5788 free_online: 5789 free_cpumask_var(rd->online); 5790 free_span: 5791 free_cpumask_var(rd->span); 5792 out: 5793 return -ENOMEM; 5794 } 5795 5796 /* 5797 * By default the system creates a single root-domain with all cpus as 5798 * members (mimicking the global state we have today). 5799 */ 5800 struct root_domain def_root_domain; 5801 5802 static void init_defrootdomain(void) 5803 { 5804 init_rootdomain(&def_root_domain); 5805 5806 atomic_set(&def_root_domain.refcount, 1); 5807 } 5808 5809 static struct root_domain *alloc_rootdomain(void) 5810 { 5811 struct root_domain *rd; 5812 5813 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5814 if (!rd) 5815 return NULL; 5816 5817 if (init_rootdomain(rd) != 0) { 5818 kfree(rd); 5819 return NULL; 5820 } 5821 5822 return rd; 5823 } 5824 5825 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5826 { 5827 struct sched_group *tmp, *first; 5828 5829 if (!sg) 5830 return; 5831 5832 first = sg; 5833 do { 5834 tmp = sg->next; 5835 5836 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5837 kfree(sg->sgc); 5838 5839 kfree(sg); 5840 sg = tmp; 5841 } while (sg != first); 5842 } 5843 5844 static void free_sched_domain(struct rcu_head *rcu) 5845 { 5846 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5847 5848 /* 5849 * If its an overlapping domain it has private groups, iterate and 5850 * nuke them all. 5851 */ 5852 if (sd->flags & SD_OVERLAP) { 5853 free_sched_groups(sd->groups, 1); 5854 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5855 kfree(sd->groups->sgc); 5856 kfree(sd->groups); 5857 } 5858 kfree(sd); 5859 } 5860 5861 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5862 { 5863 call_rcu(&sd->rcu, free_sched_domain); 5864 } 5865 5866 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5867 { 5868 for (; sd; sd = sd->parent) 5869 destroy_sched_domain(sd, cpu); 5870 } 5871 5872 /* 5873 * Keep a special pointer to the highest sched_domain that has 5874 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5875 * allows us to avoid some pointer chasing select_idle_sibling(). 5876 * 5877 * Also keep a unique ID per domain (we use the first cpu number in 5878 * the cpumask of the domain), this allows us to quickly tell if 5879 * two cpus are in the same cache domain, see cpus_share_cache(). 5880 */ 5881 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5882 DEFINE_PER_CPU(int, sd_llc_size); 5883 DEFINE_PER_CPU(int, sd_llc_id); 5884 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5885 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5886 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5887 5888 static void update_top_cache_domain(int cpu) 5889 { 5890 struct sched_domain *sd; 5891 struct sched_domain *busy_sd = NULL; 5892 int id = cpu; 5893 int size = 1; 5894 5895 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5896 if (sd) { 5897 id = cpumask_first(sched_domain_span(sd)); 5898 size = cpumask_weight(sched_domain_span(sd)); 5899 busy_sd = sd->parent; /* sd_busy */ 5900 } 5901 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5902 5903 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5904 per_cpu(sd_llc_size, cpu) = size; 5905 per_cpu(sd_llc_id, cpu) = id; 5906 5907 sd = lowest_flag_domain(cpu, SD_NUMA); 5908 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5909 5910 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5911 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5912 } 5913 5914 /* 5915 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5916 * hold the hotplug lock. 5917 */ 5918 static void 5919 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5920 { 5921 struct rq *rq = cpu_rq(cpu); 5922 struct sched_domain *tmp; 5923 5924 /* Remove the sched domains which do not contribute to scheduling. */ 5925 for (tmp = sd; tmp; ) { 5926 struct sched_domain *parent = tmp->parent; 5927 if (!parent) 5928 break; 5929 5930 if (sd_parent_degenerate(tmp, parent)) { 5931 tmp->parent = parent->parent; 5932 if (parent->parent) 5933 parent->parent->child = tmp; 5934 /* 5935 * Transfer SD_PREFER_SIBLING down in case of a 5936 * degenerate parent; the spans match for this 5937 * so the property transfers. 5938 */ 5939 if (parent->flags & SD_PREFER_SIBLING) 5940 tmp->flags |= SD_PREFER_SIBLING; 5941 destroy_sched_domain(parent, cpu); 5942 } else 5943 tmp = tmp->parent; 5944 } 5945 5946 if (sd && sd_degenerate(sd)) { 5947 tmp = sd; 5948 sd = sd->parent; 5949 destroy_sched_domain(tmp, cpu); 5950 if (sd) 5951 sd->child = NULL; 5952 } 5953 5954 sched_domain_debug(sd, cpu); 5955 5956 rq_attach_root(rq, rd); 5957 tmp = rq->sd; 5958 rcu_assign_pointer(rq->sd, sd); 5959 destroy_sched_domains(tmp, cpu); 5960 5961 update_top_cache_domain(cpu); 5962 } 5963 5964 /* Setup the mask of cpus configured for isolated domains */ 5965 static int __init isolated_cpu_setup(char *str) 5966 { 5967 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5968 cpulist_parse(str, cpu_isolated_map); 5969 return 1; 5970 } 5971 5972 __setup("isolcpus=", isolated_cpu_setup); 5973 5974 struct s_data { 5975 struct sched_domain ** __percpu sd; 5976 struct root_domain *rd; 5977 }; 5978 5979 enum s_alloc { 5980 sa_rootdomain, 5981 sa_sd, 5982 sa_sd_storage, 5983 sa_none, 5984 }; 5985 5986 /* 5987 * Build an iteration mask that can exclude certain CPUs from the upwards 5988 * domain traversal. 5989 * 5990 * Asymmetric node setups can result in situations where the domain tree is of 5991 * unequal depth, make sure to skip domains that already cover the entire 5992 * range. 5993 * 5994 * In that case build_sched_domains() will have terminated the iteration early 5995 * and our sibling sd spans will be empty. Domains should always include the 5996 * cpu they're built on, so check that. 5997 * 5998 */ 5999 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6000 { 6001 const struct cpumask *span = sched_domain_span(sd); 6002 struct sd_data *sdd = sd->private; 6003 struct sched_domain *sibling; 6004 int i; 6005 6006 for_each_cpu(i, span) { 6007 sibling = *per_cpu_ptr(sdd->sd, i); 6008 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6009 continue; 6010 6011 cpumask_set_cpu(i, sched_group_mask(sg)); 6012 } 6013 } 6014 6015 /* 6016 * Return the canonical balance cpu for this group, this is the first cpu 6017 * of this group that's also in the iteration mask. 6018 */ 6019 int group_balance_cpu(struct sched_group *sg) 6020 { 6021 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6022 } 6023 6024 static int 6025 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6026 { 6027 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6028 const struct cpumask *span = sched_domain_span(sd); 6029 struct cpumask *covered = sched_domains_tmpmask; 6030 struct sd_data *sdd = sd->private; 6031 struct sched_domain *sibling; 6032 int i; 6033 6034 cpumask_clear(covered); 6035 6036 for_each_cpu(i, span) { 6037 struct cpumask *sg_span; 6038 6039 if (cpumask_test_cpu(i, covered)) 6040 continue; 6041 6042 sibling = *per_cpu_ptr(sdd->sd, i); 6043 6044 /* See the comment near build_group_mask(). */ 6045 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6046 continue; 6047 6048 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6049 GFP_KERNEL, cpu_to_node(cpu)); 6050 6051 if (!sg) 6052 goto fail; 6053 6054 sg_span = sched_group_cpus(sg); 6055 if (sibling->child) 6056 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6057 else 6058 cpumask_set_cpu(i, sg_span); 6059 6060 cpumask_or(covered, covered, sg_span); 6061 6062 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6063 if (atomic_inc_return(&sg->sgc->ref) == 1) 6064 build_group_mask(sd, sg); 6065 6066 /* 6067 * Initialize sgc->capacity such that even if we mess up the 6068 * domains and no possible iteration will get us here, we won't 6069 * die on a /0 trap. 6070 */ 6071 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6072 6073 /* 6074 * Make sure the first group of this domain contains the 6075 * canonical balance cpu. Otherwise the sched_domain iteration 6076 * breaks. See update_sg_lb_stats(). 6077 */ 6078 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6079 group_balance_cpu(sg) == cpu) 6080 groups = sg; 6081 6082 if (!first) 6083 first = sg; 6084 if (last) 6085 last->next = sg; 6086 last = sg; 6087 last->next = first; 6088 } 6089 sd->groups = groups; 6090 6091 return 0; 6092 6093 fail: 6094 free_sched_groups(first, 0); 6095 6096 return -ENOMEM; 6097 } 6098 6099 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6100 { 6101 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6102 struct sched_domain *child = sd->child; 6103 6104 if (child) 6105 cpu = cpumask_first(sched_domain_span(child)); 6106 6107 if (sg) { 6108 *sg = *per_cpu_ptr(sdd->sg, cpu); 6109 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6110 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6111 } 6112 6113 return cpu; 6114 } 6115 6116 /* 6117 * build_sched_groups will build a circular linked list of the groups 6118 * covered by the given span, and will set each group's ->cpumask correctly, 6119 * and ->cpu_capacity to 0. 6120 * 6121 * Assumes the sched_domain tree is fully constructed 6122 */ 6123 static int 6124 build_sched_groups(struct sched_domain *sd, int cpu) 6125 { 6126 struct sched_group *first = NULL, *last = NULL; 6127 struct sd_data *sdd = sd->private; 6128 const struct cpumask *span = sched_domain_span(sd); 6129 struct cpumask *covered; 6130 int i; 6131 6132 get_group(cpu, sdd, &sd->groups); 6133 atomic_inc(&sd->groups->ref); 6134 6135 if (cpu != cpumask_first(span)) 6136 return 0; 6137 6138 lockdep_assert_held(&sched_domains_mutex); 6139 covered = sched_domains_tmpmask; 6140 6141 cpumask_clear(covered); 6142 6143 for_each_cpu(i, span) { 6144 struct sched_group *sg; 6145 int group, j; 6146 6147 if (cpumask_test_cpu(i, covered)) 6148 continue; 6149 6150 group = get_group(i, sdd, &sg); 6151 cpumask_setall(sched_group_mask(sg)); 6152 6153 for_each_cpu(j, span) { 6154 if (get_group(j, sdd, NULL) != group) 6155 continue; 6156 6157 cpumask_set_cpu(j, covered); 6158 cpumask_set_cpu(j, sched_group_cpus(sg)); 6159 } 6160 6161 if (!first) 6162 first = sg; 6163 if (last) 6164 last->next = sg; 6165 last = sg; 6166 } 6167 last->next = first; 6168 6169 return 0; 6170 } 6171 6172 /* 6173 * Initialize sched groups cpu_capacity. 6174 * 6175 * cpu_capacity indicates the capacity of sched group, which is used while 6176 * distributing the load between different sched groups in a sched domain. 6177 * Typically cpu_capacity for all the groups in a sched domain will be same 6178 * unless there are asymmetries in the topology. If there are asymmetries, 6179 * group having more cpu_capacity will pickup more load compared to the 6180 * group having less cpu_capacity. 6181 */ 6182 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6183 { 6184 struct sched_group *sg = sd->groups; 6185 6186 WARN_ON(!sg); 6187 6188 do { 6189 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6190 sg = sg->next; 6191 } while (sg != sd->groups); 6192 6193 if (cpu != group_balance_cpu(sg)) 6194 return; 6195 6196 update_group_capacity(sd, cpu); 6197 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6198 } 6199 6200 /* 6201 * Initializers for schedule domains 6202 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6203 */ 6204 6205 static int default_relax_domain_level = -1; 6206 int sched_domain_level_max; 6207 6208 static int __init setup_relax_domain_level(char *str) 6209 { 6210 if (kstrtoint(str, 0, &default_relax_domain_level)) 6211 pr_warn("Unable to set relax_domain_level\n"); 6212 6213 return 1; 6214 } 6215 __setup("relax_domain_level=", setup_relax_domain_level); 6216 6217 static void set_domain_attribute(struct sched_domain *sd, 6218 struct sched_domain_attr *attr) 6219 { 6220 int request; 6221 6222 if (!attr || attr->relax_domain_level < 0) { 6223 if (default_relax_domain_level < 0) 6224 return; 6225 else 6226 request = default_relax_domain_level; 6227 } else 6228 request = attr->relax_domain_level; 6229 if (request < sd->level) { 6230 /* turn off idle balance on this domain */ 6231 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6232 } else { 6233 /* turn on idle balance on this domain */ 6234 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6235 } 6236 } 6237 6238 static void __sdt_free(const struct cpumask *cpu_map); 6239 static int __sdt_alloc(const struct cpumask *cpu_map); 6240 6241 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6242 const struct cpumask *cpu_map) 6243 { 6244 switch (what) { 6245 case sa_rootdomain: 6246 if (!atomic_read(&d->rd->refcount)) 6247 free_rootdomain(&d->rd->rcu); /* fall through */ 6248 case sa_sd: 6249 free_percpu(d->sd); /* fall through */ 6250 case sa_sd_storage: 6251 __sdt_free(cpu_map); /* fall through */ 6252 case sa_none: 6253 break; 6254 } 6255 } 6256 6257 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6258 const struct cpumask *cpu_map) 6259 { 6260 memset(d, 0, sizeof(*d)); 6261 6262 if (__sdt_alloc(cpu_map)) 6263 return sa_sd_storage; 6264 d->sd = alloc_percpu(struct sched_domain *); 6265 if (!d->sd) 6266 return sa_sd_storage; 6267 d->rd = alloc_rootdomain(); 6268 if (!d->rd) 6269 return sa_sd; 6270 return sa_rootdomain; 6271 } 6272 6273 /* 6274 * NULL the sd_data elements we've used to build the sched_domain and 6275 * sched_group structure so that the subsequent __free_domain_allocs() 6276 * will not free the data we're using. 6277 */ 6278 static void claim_allocations(int cpu, struct sched_domain *sd) 6279 { 6280 struct sd_data *sdd = sd->private; 6281 6282 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6283 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6284 6285 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6286 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6287 6288 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6289 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6290 } 6291 6292 #ifdef CONFIG_NUMA 6293 static int sched_domains_numa_levels; 6294 enum numa_topology_type sched_numa_topology_type; 6295 static int *sched_domains_numa_distance; 6296 int sched_max_numa_distance; 6297 static struct cpumask ***sched_domains_numa_masks; 6298 static int sched_domains_curr_level; 6299 #endif 6300 6301 /* 6302 * SD_flags allowed in topology descriptions. 6303 * 6304 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6305 * SD_SHARE_PKG_RESOURCES - describes shared caches 6306 * SD_NUMA - describes NUMA topologies 6307 * SD_SHARE_POWERDOMAIN - describes shared power domain 6308 * 6309 * Odd one out: 6310 * SD_ASYM_PACKING - describes SMT quirks 6311 */ 6312 #define TOPOLOGY_SD_FLAGS \ 6313 (SD_SHARE_CPUCAPACITY | \ 6314 SD_SHARE_PKG_RESOURCES | \ 6315 SD_NUMA | \ 6316 SD_ASYM_PACKING | \ 6317 SD_SHARE_POWERDOMAIN) 6318 6319 static struct sched_domain * 6320 sd_init(struct sched_domain_topology_level *tl, int cpu) 6321 { 6322 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6323 int sd_weight, sd_flags = 0; 6324 6325 #ifdef CONFIG_NUMA 6326 /* 6327 * Ugly hack to pass state to sd_numa_mask()... 6328 */ 6329 sched_domains_curr_level = tl->numa_level; 6330 #endif 6331 6332 sd_weight = cpumask_weight(tl->mask(cpu)); 6333 6334 if (tl->sd_flags) 6335 sd_flags = (*tl->sd_flags)(); 6336 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6337 "wrong sd_flags in topology description\n")) 6338 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6339 6340 *sd = (struct sched_domain){ 6341 .min_interval = sd_weight, 6342 .max_interval = 2*sd_weight, 6343 .busy_factor = 32, 6344 .imbalance_pct = 125, 6345 6346 .cache_nice_tries = 0, 6347 .busy_idx = 0, 6348 .idle_idx = 0, 6349 .newidle_idx = 0, 6350 .wake_idx = 0, 6351 .forkexec_idx = 0, 6352 6353 .flags = 1*SD_LOAD_BALANCE 6354 | 1*SD_BALANCE_NEWIDLE 6355 | 1*SD_BALANCE_EXEC 6356 | 1*SD_BALANCE_FORK 6357 | 0*SD_BALANCE_WAKE 6358 | 1*SD_WAKE_AFFINE 6359 | 0*SD_SHARE_CPUCAPACITY 6360 | 0*SD_SHARE_PKG_RESOURCES 6361 | 0*SD_SERIALIZE 6362 | 0*SD_PREFER_SIBLING 6363 | 0*SD_NUMA 6364 | sd_flags 6365 , 6366 6367 .last_balance = jiffies, 6368 .balance_interval = sd_weight, 6369 .smt_gain = 0, 6370 .max_newidle_lb_cost = 0, 6371 .next_decay_max_lb_cost = jiffies, 6372 #ifdef CONFIG_SCHED_DEBUG 6373 .name = tl->name, 6374 #endif 6375 }; 6376 6377 /* 6378 * Convert topological properties into behaviour. 6379 */ 6380 6381 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6382 sd->flags |= SD_PREFER_SIBLING; 6383 sd->imbalance_pct = 110; 6384 sd->smt_gain = 1178; /* ~15% */ 6385 6386 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6387 sd->imbalance_pct = 117; 6388 sd->cache_nice_tries = 1; 6389 sd->busy_idx = 2; 6390 6391 #ifdef CONFIG_NUMA 6392 } else if (sd->flags & SD_NUMA) { 6393 sd->cache_nice_tries = 2; 6394 sd->busy_idx = 3; 6395 sd->idle_idx = 2; 6396 6397 sd->flags |= SD_SERIALIZE; 6398 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6399 sd->flags &= ~(SD_BALANCE_EXEC | 6400 SD_BALANCE_FORK | 6401 SD_WAKE_AFFINE); 6402 } 6403 6404 #endif 6405 } else { 6406 sd->flags |= SD_PREFER_SIBLING; 6407 sd->cache_nice_tries = 1; 6408 sd->busy_idx = 2; 6409 sd->idle_idx = 1; 6410 } 6411 6412 sd->private = &tl->data; 6413 6414 return sd; 6415 } 6416 6417 /* 6418 * Topology list, bottom-up. 6419 */ 6420 static struct sched_domain_topology_level default_topology[] = { 6421 #ifdef CONFIG_SCHED_SMT 6422 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6423 #endif 6424 #ifdef CONFIG_SCHED_MC 6425 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6426 #endif 6427 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6428 { NULL, }, 6429 }; 6430 6431 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6432 6433 #define for_each_sd_topology(tl) \ 6434 for (tl = sched_domain_topology; tl->mask; tl++) 6435 6436 void set_sched_topology(struct sched_domain_topology_level *tl) 6437 { 6438 sched_domain_topology = tl; 6439 } 6440 6441 #ifdef CONFIG_NUMA 6442 6443 static const struct cpumask *sd_numa_mask(int cpu) 6444 { 6445 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6446 } 6447 6448 static void sched_numa_warn(const char *str) 6449 { 6450 static int done = false; 6451 int i,j; 6452 6453 if (done) 6454 return; 6455 6456 done = true; 6457 6458 printk(KERN_WARNING "ERROR: %s\n\n", str); 6459 6460 for (i = 0; i < nr_node_ids; i++) { 6461 printk(KERN_WARNING " "); 6462 for (j = 0; j < nr_node_ids; j++) 6463 printk(KERN_CONT "%02d ", node_distance(i,j)); 6464 printk(KERN_CONT "\n"); 6465 } 6466 printk(KERN_WARNING "\n"); 6467 } 6468 6469 bool find_numa_distance(int distance) 6470 { 6471 int i; 6472 6473 if (distance == node_distance(0, 0)) 6474 return true; 6475 6476 for (i = 0; i < sched_domains_numa_levels; i++) { 6477 if (sched_domains_numa_distance[i] == distance) 6478 return true; 6479 } 6480 6481 return false; 6482 } 6483 6484 /* 6485 * A system can have three types of NUMA topology: 6486 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6487 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6488 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6489 * 6490 * The difference between a glueless mesh topology and a backplane 6491 * topology lies in whether communication between not directly 6492 * connected nodes goes through intermediary nodes (where programs 6493 * could run), or through backplane controllers. This affects 6494 * placement of programs. 6495 * 6496 * The type of topology can be discerned with the following tests: 6497 * - If the maximum distance between any nodes is 1 hop, the system 6498 * is directly connected. 6499 * - If for two nodes A and B, located N > 1 hops away from each other, 6500 * there is an intermediary node C, which is < N hops away from both 6501 * nodes A and B, the system is a glueless mesh. 6502 */ 6503 static void init_numa_topology_type(void) 6504 { 6505 int a, b, c, n; 6506 6507 n = sched_max_numa_distance; 6508 6509 if (sched_domains_numa_levels <= 1) { 6510 sched_numa_topology_type = NUMA_DIRECT; 6511 return; 6512 } 6513 6514 for_each_online_node(a) { 6515 for_each_online_node(b) { 6516 /* Find two nodes furthest removed from each other. */ 6517 if (node_distance(a, b) < n) 6518 continue; 6519 6520 /* Is there an intermediary node between a and b? */ 6521 for_each_online_node(c) { 6522 if (node_distance(a, c) < n && 6523 node_distance(b, c) < n) { 6524 sched_numa_topology_type = 6525 NUMA_GLUELESS_MESH; 6526 return; 6527 } 6528 } 6529 6530 sched_numa_topology_type = NUMA_BACKPLANE; 6531 return; 6532 } 6533 } 6534 } 6535 6536 static void sched_init_numa(void) 6537 { 6538 int next_distance, curr_distance = node_distance(0, 0); 6539 struct sched_domain_topology_level *tl; 6540 int level = 0; 6541 int i, j, k; 6542 6543 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6544 if (!sched_domains_numa_distance) 6545 return; 6546 6547 /* 6548 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6549 * unique distances in the node_distance() table. 6550 * 6551 * Assumes node_distance(0,j) includes all distances in 6552 * node_distance(i,j) in order to avoid cubic time. 6553 */ 6554 next_distance = curr_distance; 6555 for (i = 0; i < nr_node_ids; i++) { 6556 for (j = 0; j < nr_node_ids; j++) { 6557 for (k = 0; k < nr_node_ids; k++) { 6558 int distance = node_distance(i, k); 6559 6560 if (distance > curr_distance && 6561 (distance < next_distance || 6562 next_distance == curr_distance)) 6563 next_distance = distance; 6564 6565 /* 6566 * While not a strong assumption it would be nice to know 6567 * about cases where if node A is connected to B, B is not 6568 * equally connected to A. 6569 */ 6570 if (sched_debug() && node_distance(k, i) != distance) 6571 sched_numa_warn("Node-distance not symmetric"); 6572 6573 if (sched_debug() && i && !find_numa_distance(distance)) 6574 sched_numa_warn("Node-0 not representative"); 6575 } 6576 if (next_distance != curr_distance) { 6577 sched_domains_numa_distance[level++] = next_distance; 6578 sched_domains_numa_levels = level; 6579 curr_distance = next_distance; 6580 } else break; 6581 } 6582 6583 /* 6584 * In case of sched_debug() we verify the above assumption. 6585 */ 6586 if (!sched_debug()) 6587 break; 6588 } 6589 6590 if (!level) 6591 return; 6592 6593 /* 6594 * 'level' contains the number of unique distances, excluding the 6595 * identity distance node_distance(i,i). 6596 * 6597 * The sched_domains_numa_distance[] array includes the actual distance 6598 * numbers. 6599 */ 6600 6601 /* 6602 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6603 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6604 * the array will contain less then 'level' members. This could be 6605 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6606 * in other functions. 6607 * 6608 * We reset it to 'level' at the end of this function. 6609 */ 6610 sched_domains_numa_levels = 0; 6611 6612 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6613 if (!sched_domains_numa_masks) 6614 return; 6615 6616 /* 6617 * Now for each level, construct a mask per node which contains all 6618 * cpus of nodes that are that many hops away from us. 6619 */ 6620 for (i = 0; i < level; i++) { 6621 sched_domains_numa_masks[i] = 6622 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6623 if (!sched_domains_numa_masks[i]) 6624 return; 6625 6626 for (j = 0; j < nr_node_ids; j++) { 6627 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6628 if (!mask) 6629 return; 6630 6631 sched_domains_numa_masks[i][j] = mask; 6632 6633 for (k = 0; k < nr_node_ids; k++) { 6634 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6635 continue; 6636 6637 cpumask_or(mask, mask, cpumask_of_node(k)); 6638 } 6639 } 6640 } 6641 6642 /* Compute default topology size */ 6643 for (i = 0; sched_domain_topology[i].mask; i++); 6644 6645 tl = kzalloc((i + level + 1) * 6646 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6647 if (!tl) 6648 return; 6649 6650 /* 6651 * Copy the default topology bits.. 6652 */ 6653 for (i = 0; sched_domain_topology[i].mask; i++) 6654 tl[i] = sched_domain_topology[i]; 6655 6656 /* 6657 * .. and append 'j' levels of NUMA goodness. 6658 */ 6659 for (j = 0; j < level; i++, j++) { 6660 tl[i] = (struct sched_domain_topology_level){ 6661 .mask = sd_numa_mask, 6662 .sd_flags = cpu_numa_flags, 6663 .flags = SDTL_OVERLAP, 6664 .numa_level = j, 6665 SD_INIT_NAME(NUMA) 6666 }; 6667 } 6668 6669 sched_domain_topology = tl; 6670 6671 sched_domains_numa_levels = level; 6672 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6673 6674 init_numa_topology_type(); 6675 } 6676 6677 static void sched_domains_numa_masks_set(int cpu) 6678 { 6679 int i, j; 6680 int node = cpu_to_node(cpu); 6681 6682 for (i = 0; i < sched_domains_numa_levels; i++) { 6683 for (j = 0; j < nr_node_ids; j++) { 6684 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6685 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6686 } 6687 } 6688 } 6689 6690 static void sched_domains_numa_masks_clear(int cpu) 6691 { 6692 int i, j; 6693 for (i = 0; i < sched_domains_numa_levels; i++) { 6694 for (j = 0; j < nr_node_ids; j++) 6695 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6696 } 6697 } 6698 6699 /* 6700 * Update sched_domains_numa_masks[level][node] array when new cpus 6701 * are onlined. 6702 */ 6703 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6704 unsigned long action, 6705 void *hcpu) 6706 { 6707 int cpu = (long)hcpu; 6708 6709 switch (action & ~CPU_TASKS_FROZEN) { 6710 case CPU_ONLINE: 6711 sched_domains_numa_masks_set(cpu); 6712 break; 6713 6714 case CPU_DEAD: 6715 sched_domains_numa_masks_clear(cpu); 6716 break; 6717 6718 default: 6719 return NOTIFY_DONE; 6720 } 6721 6722 return NOTIFY_OK; 6723 } 6724 #else 6725 static inline void sched_init_numa(void) 6726 { 6727 } 6728 6729 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6730 unsigned long action, 6731 void *hcpu) 6732 { 6733 return 0; 6734 } 6735 #endif /* CONFIG_NUMA */ 6736 6737 static int __sdt_alloc(const struct cpumask *cpu_map) 6738 { 6739 struct sched_domain_topology_level *tl; 6740 int j; 6741 6742 for_each_sd_topology(tl) { 6743 struct sd_data *sdd = &tl->data; 6744 6745 sdd->sd = alloc_percpu(struct sched_domain *); 6746 if (!sdd->sd) 6747 return -ENOMEM; 6748 6749 sdd->sg = alloc_percpu(struct sched_group *); 6750 if (!sdd->sg) 6751 return -ENOMEM; 6752 6753 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6754 if (!sdd->sgc) 6755 return -ENOMEM; 6756 6757 for_each_cpu(j, cpu_map) { 6758 struct sched_domain *sd; 6759 struct sched_group *sg; 6760 struct sched_group_capacity *sgc; 6761 6762 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6763 GFP_KERNEL, cpu_to_node(j)); 6764 if (!sd) 6765 return -ENOMEM; 6766 6767 *per_cpu_ptr(sdd->sd, j) = sd; 6768 6769 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6770 GFP_KERNEL, cpu_to_node(j)); 6771 if (!sg) 6772 return -ENOMEM; 6773 6774 sg->next = sg; 6775 6776 *per_cpu_ptr(sdd->sg, j) = sg; 6777 6778 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6779 GFP_KERNEL, cpu_to_node(j)); 6780 if (!sgc) 6781 return -ENOMEM; 6782 6783 *per_cpu_ptr(sdd->sgc, j) = sgc; 6784 } 6785 } 6786 6787 return 0; 6788 } 6789 6790 static void __sdt_free(const struct cpumask *cpu_map) 6791 { 6792 struct sched_domain_topology_level *tl; 6793 int j; 6794 6795 for_each_sd_topology(tl) { 6796 struct sd_data *sdd = &tl->data; 6797 6798 for_each_cpu(j, cpu_map) { 6799 struct sched_domain *sd; 6800 6801 if (sdd->sd) { 6802 sd = *per_cpu_ptr(sdd->sd, j); 6803 if (sd && (sd->flags & SD_OVERLAP)) 6804 free_sched_groups(sd->groups, 0); 6805 kfree(*per_cpu_ptr(sdd->sd, j)); 6806 } 6807 6808 if (sdd->sg) 6809 kfree(*per_cpu_ptr(sdd->sg, j)); 6810 if (sdd->sgc) 6811 kfree(*per_cpu_ptr(sdd->sgc, j)); 6812 } 6813 free_percpu(sdd->sd); 6814 sdd->sd = NULL; 6815 free_percpu(sdd->sg); 6816 sdd->sg = NULL; 6817 free_percpu(sdd->sgc); 6818 sdd->sgc = NULL; 6819 } 6820 } 6821 6822 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6823 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6824 struct sched_domain *child, int cpu) 6825 { 6826 struct sched_domain *sd = sd_init(tl, cpu); 6827 if (!sd) 6828 return child; 6829 6830 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6831 if (child) { 6832 sd->level = child->level + 1; 6833 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6834 child->parent = sd; 6835 sd->child = child; 6836 6837 if (!cpumask_subset(sched_domain_span(child), 6838 sched_domain_span(sd))) { 6839 pr_err("BUG: arch topology borken\n"); 6840 #ifdef CONFIG_SCHED_DEBUG 6841 pr_err(" the %s domain not a subset of the %s domain\n", 6842 child->name, sd->name); 6843 #endif 6844 /* Fixup, ensure @sd has at least @child cpus. */ 6845 cpumask_or(sched_domain_span(sd), 6846 sched_domain_span(sd), 6847 sched_domain_span(child)); 6848 } 6849 6850 } 6851 set_domain_attribute(sd, attr); 6852 6853 return sd; 6854 } 6855 6856 /* 6857 * Build sched domains for a given set of cpus and attach the sched domains 6858 * to the individual cpus 6859 */ 6860 static int build_sched_domains(const struct cpumask *cpu_map, 6861 struct sched_domain_attr *attr) 6862 { 6863 enum s_alloc alloc_state; 6864 struct sched_domain *sd; 6865 struct s_data d; 6866 int i, ret = -ENOMEM; 6867 6868 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6869 if (alloc_state != sa_rootdomain) 6870 goto error; 6871 6872 /* Set up domains for cpus specified by the cpu_map. */ 6873 for_each_cpu(i, cpu_map) { 6874 struct sched_domain_topology_level *tl; 6875 6876 sd = NULL; 6877 for_each_sd_topology(tl) { 6878 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6879 if (tl == sched_domain_topology) 6880 *per_cpu_ptr(d.sd, i) = sd; 6881 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6882 sd->flags |= SD_OVERLAP; 6883 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6884 break; 6885 } 6886 } 6887 6888 /* Build the groups for the domains */ 6889 for_each_cpu(i, cpu_map) { 6890 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6891 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6892 if (sd->flags & SD_OVERLAP) { 6893 if (build_overlap_sched_groups(sd, i)) 6894 goto error; 6895 } else { 6896 if (build_sched_groups(sd, i)) 6897 goto error; 6898 } 6899 } 6900 } 6901 6902 /* Calculate CPU capacity for physical packages and nodes */ 6903 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6904 if (!cpumask_test_cpu(i, cpu_map)) 6905 continue; 6906 6907 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6908 claim_allocations(i, sd); 6909 init_sched_groups_capacity(i, sd); 6910 } 6911 } 6912 6913 /* Attach the domains */ 6914 rcu_read_lock(); 6915 for_each_cpu(i, cpu_map) { 6916 sd = *per_cpu_ptr(d.sd, i); 6917 cpu_attach_domain(sd, d.rd, i); 6918 } 6919 rcu_read_unlock(); 6920 6921 ret = 0; 6922 error: 6923 __free_domain_allocs(&d, alloc_state, cpu_map); 6924 return ret; 6925 } 6926 6927 static cpumask_var_t *doms_cur; /* current sched domains */ 6928 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6929 static struct sched_domain_attr *dattr_cur; 6930 /* attribues of custom domains in 'doms_cur' */ 6931 6932 /* 6933 * Special case: If a kmalloc of a doms_cur partition (array of 6934 * cpumask) fails, then fallback to a single sched domain, 6935 * as determined by the single cpumask fallback_doms. 6936 */ 6937 static cpumask_var_t fallback_doms; 6938 6939 /* 6940 * arch_update_cpu_topology lets virtualized architectures update the 6941 * cpu core maps. It is supposed to return 1 if the topology changed 6942 * or 0 if it stayed the same. 6943 */ 6944 int __weak arch_update_cpu_topology(void) 6945 { 6946 return 0; 6947 } 6948 6949 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6950 { 6951 int i; 6952 cpumask_var_t *doms; 6953 6954 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6955 if (!doms) 6956 return NULL; 6957 for (i = 0; i < ndoms; i++) { 6958 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6959 free_sched_domains(doms, i); 6960 return NULL; 6961 } 6962 } 6963 return doms; 6964 } 6965 6966 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6967 { 6968 unsigned int i; 6969 for (i = 0; i < ndoms; i++) 6970 free_cpumask_var(doms[i]); 6971 kfree(doms); 6972 } 6973 6974 /* 6975 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6976 * For now this just excludes isolated cpus, but could be used to 6977 * exclude other special cases in the future. 6978 */ 6979 static int init_sched_domains(const struct cpumask *cpu_map) 6980 { 6981 int err; 6982 6983 arch_update_cpu_topology(); 6984 ndoms_cur = 1; 6985 doms_cur = alloc_sched_domains(ndoms_cur); 6986 if (!doms_cur) 6987 doms_cur = &fallback_doms; 6988 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6989 err = build_sched_domains(doms_cur[0], NULL); 6990 register_sched_domain_sysctl(); 6991 6992 return err; 6993 } 6994 6995 /* 6996 * Detach sched domains from a group of cpus specified in cpu_map 6997 * These cpus will now be attached to the NULL domain 6998 */ 6999 static void detach_destroy_domains(const struct cpumask *cpu_map) 7000 { 7001 int i; 7002 7003 rcu_read_lock(); 7004 for_each_cpu(i, cpu_map) 7005 cpu_attach_domain(NULL, &def_root_domain, i); 7006 rcu_read_unlock(); 7007 } 7008 7009 /* handle null as "default" */ 7010 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7011 struct sched_domain_attr *new, int idx_new) 7012 { 7013 struct sched_domain_attr tmp; 7014 7015 /* fast path */ 7016 if (!new && !cur) 7017 return 1; 7018 7019 tmp = SD_ATTR_INIT; 7020 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7021 new ? (new + idx_new) : &tmp, 7022 sizeof(struct sched_domain_attr)); 7023 } 7024 7025 /* 7026 * Partition sched domains as specified by the 'ndoms_new' 7027 * cpumasks in the array doms_new[] of cpumasks. This compares 7028 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7029 * It destroys each deleted domain and builds each new domain. 7030 * 7031 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7032 * The masks don't intersect (don't overlap.) We should setup one 7033 * sched domain for each mask. CPUs not in any of the cpumasks will 7034 * not be load balanced. If the same cpumask appears both in the 7035 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7036 * it as it is. 7037 * 7038 * The passed in 'doms_new' should be allocated using 7039 * alloc_sched_domains. This routine takes ownership of it and will 7040 * free_sched_domains it when done with it. If the caller failed the 7041 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7042 * and partition_sched_domains() will fallback to the single partition 7043 * 'fallback_doms', it also forces the domains to be rebuilt. 7044 * 7045 * If doms_new == NULL it will be replaced with cpu_online_mask. 7046 * ndoms_new == 0 is a special case for destroying existing domains, 7047 * and it will not create the default domain. 7048 * 7049 * Call with hotplug lock held 7050 */ 7051 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7052 struct sched_domain_attr *dattr_new) 7053 { 7054 int i, j, n; 7055 int new_topology; 7056 7057 mutex_lock(&sched_domains_mutex); 7058 7059 /* always unregister in case we don't destroy any domains */ 7060 unregister_sched_domain_sysctl(); 7061 7062 /* Let architecture update cpu core mappings. */ 7063 new_topology = arch_update_cpu_topology(); 7064 7065 n = doms_new ? ndoms_new : 0; 7066 7067 /* Destroy deleted domains */ 7068 for (i = 0; i < ndoms_cur; i++) { 7069 for (j = 0; j < n && !new_topology; j++) { 7070 if (cpumask_equal(doms_cur[i], doms_new[j]) 7071 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7072 goto match1; 7073 } 7074 /* no match - a current sched domain not in new doms_new[] */ 7075 detach_destroy_domains(doms_cur[i]); 7076 match1: 7077 ; 7078 } 7079 7080 n = ndoms_cur; 7081 if (doms_new == NULL) { 7082 n = 0; 7083 doms_new = &fallback_doms; 7084 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7085 WARN_ON_ONCE(dattr_new); 7086 } 7087 7088 /* Build new domains */ 7089 for (i = 0; i < ndoms_new; i++) { 7090 for (j = 0; j < n && !new_topology; j++) { 7091 if (cpumask_equal(doms_new[i], doms_cur[j]) 7092 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7093 goto match2; 7094 } 7095 /* no match - add a new doms_new */ 7096 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7097 match2: 7098 ; 7099 } 7100 7101 /* Remember the new sched domains */ 7102 if (doms_cur != &fallback_doms) 7103 free_sched_domains(doms_cur, ndoms_cur); 7104 kfree(dattr_cur); /* kfree(NULL) is safe */ 7105 doms_cur = doms_new; 7106 dattr_cur = dattr_new; 7107 ndoms_cur = ndoms_new; 7108 7109 register_sched_domain_sysctl(); 7110 7111 mutex_unlock(&sched_domains_mutex); 7112 } 7113 7114 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7115 7116 /* 7117 * Update cpusets according to cpu_active mask. If cpusets are 7118 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7119 * around partition_sched_domains(). 7120 * 7121 * If we come here as part of a suspend/resume, don't touch cpusets because we 7122 * want to restore it back to its original state upon resume anyway. 7123 */ 7124 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7125 void *hcpu) 7126 { 7127 switch (action) { 7128 case CPU_ONLINE_FROZEN: 7129 case CPU_DOWN_FAILED_FROZEN: 7130 7131 /* 7132 * num_cpus_frozen tracks how many CPUs are involved in suspend 7133 * resume sequence. As long as this is not the last online 7134 * operation in the resume sequence, just build a single sched 7135 * domain, ignoring cpusets. 7136 */ 7137 num_cpus_frozen--; 7138 if (likely(num_cpus_frozen)) { 7139 partition_sched_domains(1, NULL, NULL); 7140 break; 7141 } 7142 7143 /* 7144 * This is the last CPU online operation. So fall through and 7145 * restore the original sched domains by considering the 7146 * cpuset configurations. 7147 */ 7148 7149 case CPU_ONLINE: 7150 cpuset_update_active_cpus(true); 7151 break; 7152 default: 7153 return NOTIFY_DONE; 7154 } 7155 return NOTIFY_OK; 7156 } 7157 7158 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7159 void *hcpu) 7160 { 7161 unsigned long flags; 7162 long cpu = (long)hcpu; 7163 struct dl_bw *dl_b; 7164 bool overflow; 7165 int cpus; 7166 7167 switch (action) { 7168 case CPU_DOWN_PREPARE: 7169 rcu_read_lock_sched(); 7170 dl_b = dl_bw_of(cpu); 7171 7172 raw_spin_lock_irqsave(&dl_b->lock, flags); 7173 cpus = dl_bw_cpus(cpu); 7174 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7175 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7176 7177 rcu_read_unlock_sched(); 7178 7179 if (overflow) 7180 return notifier_from_errno(-EBUSY); 7181 cpuset_update_active_cpus(false); 7182 break; 7183 case CPU_DOWN_PREPARE_FROZEN: 7184 num_cpus_frozen++; 7185 partition_sched_domains(1, NULL, NULL); 7186 break; 7187 default: 7188 return NOTIFY_DONE; 7189 } 7190 return NOTIFY_OK; 7191 } 7192 7193 void __init sched_init_smp(void) 7194 { 7195 cpumask_var_t non_isolated_cpus; 7196 7197 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7198 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7199 7200 /* nohz_full won't take effect without isolating the cpus. */ 7201 tick_nohz_full_add_cpus_to(cpu_isolated_map); 7202 7203 sched_init_numa(); 7204 7205 /* 7206 * There's no userspace yet to cause hotplug operations; hence all the 7207 * cpu masks are stable and all blatant races in the below code cannot 7208 * happen. 7209 */ 7210 mutex_lock(&sched_domains_mutex); 7211 init_sched_domains(cpu_active_mask); 7212 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7213 if (cpumask_empty(non_isolated_cpus)) 7214 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7215 mutex_unlock(&sched_domains_mutex); 7216 7217 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7218 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7219 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7220 7221 init_hrtick(); 7222 7223 /* Move init over to a non-isolated CPU */ 7224 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7225 BUG(); 7226 sched_init_granularity(); 7227 free_cpumask_var(non_isolated_cpus); 7228 7229 init_sched_rt_class(); 7230 init_sched_dl_class(); 7231 } 7232 #else 7233 void __init sched_init_smp(void) 7234 { 7235 sched_init_granularity(); 7236 } 7237 #endif /* CONFIG_SMP */ 7238 7239 int in_sched_functions(unsigned long addr) 7240 { 7241 return in_lock_functions(addr) || 7242 (addr >= (unsigned long)__sched_text_start 7243 && addr < (unsigned long)__sched_text_end); 7244 } 7245 7246 #ifdef CONFIG_CGROUP_SCHED 7247 /* 7248 * Default task group. 7249 * Every task in system belongs to this group at bootup. 7250 */ 7251 struct task_group root_task_group; 7252 LIST_HEAD(task_groups); 7253 #endif 7254 7255 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7256 7257 void __init sched_init(void) 7258 { 7259 int i, j; 7260 unsigned long alloc_size = 0, ptr; 7261 7262 #ifdef CONFIG_FAIR_GROUP_SCHED 7263 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7264 #endif 7265 #ifdef CONFIG_RT_GROUP_SCHED 7266 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7267 #endif 7268 if (alloc_size) { 7269 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7270 7271 #ifdef CONFIG_FAIR_GROUP_SCHED 7272 root_task_group.se = (struct sched_entity **)ptr; 7273 ptr += nr_cpu_ids * sizeof(void **); 7274 7275 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7276 ptr += nr_cpu_ids * sizeof(void **); 7277 7278 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7279 #ifdef CONFIG_RT_GROUP_SCHED 7280 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7281 ptr += nr_cpu_ids * sizeof(void **); 7282 7283 root_task_group.rt_rq = (struct rt_rq **)ptr; 7284 ptr += nr_cpu_ids * sizeof(void **); 7285 7286 #endif /* CONFIG_RT_GROUP_SCHED */ 7287 } 7288 #ifdef CONFIG_CPUMASK_OFFSTACK 7289 for_each_possible_cpu(i) { 7290 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7291 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7292 } 7293 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7294 7295 init_rt_bandwidth(&def_rt_bandwidth, 7296 global_rt_period(), global_rt_runtime()); 7297 init_dl_bandwidth(&def_dl_bandwidth, 7298 global_rt_period(), global_rt_runtime()); 7299 7300 #ifdef CONFIG_SMP 7301 init_defrootdomain(); 7302 #endif 7303 7304 #ifdef CONFIG_RT_GROUP_SCHED 7305 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7306 global_rt_period(), global_rt_runtime()); 7307 #endif /* CONFIG_RT_GROUP_SCHED */ 7308 7309 #ifdef CONFIG_CGROUP_SCHED 7310 list_add(&root_task_group.list, &task_groups); 7311 INIT_LIST_HEAD(&root_task_group.children); 7312 INIT_LIST_HEAD(&root_task_group.siblings); 7313 autogroup_init(&init_task); 7314 7315 #endif /* CONFIG_CGROUP_SCHED */ 7316 7317 for_each_possible_cpu(i) { 7318 struct rq *rq; 7319 7320 rq = cpu_rq(i); 7321 raw_spin_lock_init(&rq->lock); 7322 rq->nr_running = 0; 7323 rq->calc_load_active = 0; 7324 rq->calc_load_update = jiffies + LOAD_FREQ; 7325 init_cfs_rq(&rq->cfs); 7326 init_rt_rq(&rq->rt); 7327 init_dl_rq(&rq->dl); 7328 #ifdef CONFIG_FAIR_GROUP_SCHED 7329 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7330 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7331 /* 7332 * How much cpu bandwidth does root_task_group get? 7333 * 7334 * In case of task-groups formed thr' the cgroup filesystem, it 7335 * gets 100% of the cpu resources in the system. This overall 7336 * system cpu resource is divided among the tasks of 7337 * root_task_group and its child task-groups in a fair manner, 7338 * based on each entity's (task or task-group's) weight 7339 * (se->load.weight). 7340 * 7341 * In other words, if root_task_group has 10 tasks of weight 7342 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7343 * then A0's share of the cpu resource is: 7344 * 7345 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7346 * 7347 * We achieve this by letting root_task_group's tasks sit 7348 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7349 */ 7350 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7351 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7352 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7353 7354 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7355 #ifdef CONFIG_RT_GROUP_SCHED 7356 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7357 #endif 7358 7359 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7360 rq->cpu_load[j] = 0; 7361 7362 rq->last_load_update_tick = jiffies; 7363 7364 #ifdef CONFIG_SMP 7365 rq->sd = NULL; 7366 rq->rd = NULL; 7367 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7368 rq->balance_callback = NULL; 7369 rq->active_balance = 0; 7370 rq->next_balance = jiffies; 7371 rq->push_cpu = 0; 7372 rq->cpu = i; 7373 rq->online = 0; 7374 rq->idle_stamp = 0; 7375 rq->avg_idle = 2*sysctl_sched_migration_cost; 7376 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7377 7378 INIT_LIST_HEAD(&rq->cfs_tasks); 7379 7380 rq_attach_root(rq, &def_root_domain); 7381 #ifdef CONFIG_NO_HZ_COMMON 7382 rq->nohz_flags = 0; 7383 #endif 7384 #ifdef CONFIG_NO_HZ_FULL 7385 rq->last_sched_tick = 0; 7386 #endif 7387 #endif 7388 init_rq_hrtick(rq); 7389 atomic_set(&rq->nr_iowait, 0); 7390 } 7391 7392 set_load_weight(&init_task); 7393 7394 #ifdef CONFIG_PREEMPT_NOTIFIERS 7395 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7396 #endif 7397 7398 /* 7399 * The boot idle thread does lazy MMU switching as well: 7400 */ 7401 atomic_inc(&init_mm.mm_count); 7402 enter_lazy_tlb(&init_mm, current); 7403 7404 /* 7405 * During early bootup we pretend to be a normal task: 7406 */ 7407 current->sched_class = &fair_sched_class; 7408 7409 /* 7410 * Make us the idle thread. Technically, schedule() should not be 7411 * called from this thread, however somewhere below it might be, 7412 * but because we are the idle thread, we just pick up running again 7413 * when this runqueue becomes "idle". 7414 */ 7415 init_idle(current, smp_processor_id()); 7416 7417 calc_load_update = jiffies + LOAD_FREQ; 7418 7419 #ifdef CONFIG_SMP 7420 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7421 /* May be allocated at isolcpus cmdline parse time */ 7422 if (cpu_isolated_map == NULL) 7423 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7424 idle_thread_set_boot_cpu(); 7425 set_cpu_rq_start_time(); 7426 #endif 7427 init_sched_fair_class(); 7428 7429 scheduler_running = 1; 7430 } 7431 7432 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7433 static inline int preempt_count_equals(int preempt_offset) 7434 { 7435 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7436 7437 return (nested == preempt_offset); 7438 } 7439 7440 void __might_sleep(const char *file, int line, int preempt_offset) 7441 { 7442 /* 7443 * Blocking primitives will set (and therefore destroy) current->state, 7444 * since we will exit with TASK_RUNNING make sure we enter with it, 7445 * otherwise we will destroy state. 7446 */ 7447 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7448 "do not call blocking ops when !TASK_RUNNING; " 7449 "state=%lx set at [<%p>] %pS\n", 7450 current->state, 7451 (void *)current->task_state_change, 7452 (void *)current->task_state_change); 7453 7454 ___might_sleep(file, line, preempt_offset); 7455 } 7456 EXPORT_SYMBOL(__might_sleep); 7457 7458 void ___might_sleep(const char *file, int line, int preempt_offset) 7459 { 7460 static unsigned long prev_jiffy; /* ratelimiting */ 7461 7462 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7463 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7464 !is_idle_task(current)) || 7465 system_state != SYSTEM_RUNNING || oops_in_progress) 7466 return; 7467 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7468 return; 7469 prev_jiffy = jiffies; 7470 7471 printk(KERN_ERR 7472 "BUG: sleeping function called from invalid context at %s:%d\n", 7473 file, line); 7474 printk(KERN_ERR 7475 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7476 in_atomic(), irqs_disabled(), 7477 current->pid, current->comm); 7478 7479 if (task_stack_end_corrupted(current)) 7480 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7481 7482 debug_show_held_locks(current); 7483 if (irqs_disabled()) 7484 print_irqtrace_events(current); 7485 #ifdef CONFIG_DEBUG_PREEMPT 7486 if (!preempt_count_equals(preempt_offset)) { 7487 pr_err("Preemption disabled at:"); 7488 print_ip_sym(current->preempt_disable_ip); 7489 pr_cont("\n"); 7490 } 7491 #endif 7492 dump_stack(); 7493 } 7494 EXPORT_SYMBOL(___might_sleep); 7495 #endif 7496 7497 #ifdef CONFIG_MAGIC_SYSRQ 7498 void normalize_rt_tasks(void) 7499 { 7500 struct task_struct *g, *p; 7501 struct sched_attr attr = { 7502 .sched_policy = SCHED_NORMAL, 7503 }; 7504 7505 read_lock(&tasklist_lock); 7506 for_each_process_thread(g, p) { 7507 /* 7508 * Only normalize user tasks: 7509 */ 7510 if (p->flags & PF_KTHREAD) 7511 continue; 7512 7513 p->se.exec_start = 0; 7514 #ifdef CONFIG_SCHEDSTATS 7515 p->se.statistics.wait_start = 0; 7516 p->se.statistics.sleep_start = 0; 7517 p->se.statistics.block_start = 0; 7518 #endif 7519 7520 if (!dl_task(p) && !rt_task(p)) { 7521 /* 7522 * Renice negative nice level userspace 7523 * tasks back to 0: 7524 */ 7525 if (task_nice(p) < 0) 7526 set_user_nice(p, 0); 7527 continue; 7528 } 7529 7530 __sched_setscheduler(p, &attr, false, false); 7531 } 7532 read_unlock(&tasklist_lock); 7533 } 7534 7535 #endif /* CONFIG_MAGIC_SYSRQ */ 7536 7537 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7538 /* 7539 * These functions are only useful for the IA64 MCA handling, or kdb. 7540 * 7541 * They can only be called when the whole system has been 7542 * stopped - every CPU needs to be quiescent, and no scheduling 7543 * activity can take place. Using them for anything else would 7544 * be a serious bug, and as a result, they aren't even visible 7545 * under any other configuration. 7546 */ 7547 7548 /** 7549 * curr_task - return the current task for a given cpu. 7550 * @cpu: the processor in question. 7551 * 7552 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7553 * 7554 * Return: The current task for @cpu. 7555 */ 7556 struct task_struct *curr_task(int cpu) 7557 { 7558 return cpu_curr(cpu); 7559 } 7560 7561 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7562 7563 #ifdef CONFIG_IA64 7564 /** 7565 * set_curr_task - set the current task for a given cpu. 7566 * @cpu: the processor in question. 7567 * @p: the task pointer to set. 7568 * 7569 * Description: This function must only be used when non-maskable interrupts 7570 * are serviced on a separate stack. It allows the architecture to switch the 7571 * notion of the current task on a cpu in a non-blocking manner. This function 7572 * must be called with all CPU's synchronized, and interrupts disabled, the 7573 * and caller must save the original value of the current task (see 7574 * curr_task() above) and restore that value before reenabling interrupts and 7575 * re-starting the system. 7576 * 7577 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7578 */ 7579 void set_curr_task(int cpu, struct task_struct *p) 7580 { 7581 cpu_curr(cpu) = p; 7582 } 7583 7584 #endif 7585 7586 #ifdef CONFIG_CGROUP_SCHED 7587 /* task_group_lock serializes the addition/removal of task groups */ 7588 static DEFINE_SPINLOCK(task_group_lock); 7589 7590 static void free_sched_group(struct task_group *tg) 7591 { 7592 free_fair_sched_group(tg); 7593 free_rt_sched_group(tg); 7594 autogroup_free(tg); 7595 kfree(tg); 7596 } 7597 7598 /* allocate runqueue etc for a new task group */ 7599 struct task_group *sched_create_group(struct task_group *parent) 7600 { 7601 struct task_group *tg; 7602 7603 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7604 if (!tg) 7605 return ERR_PTR(-ENOMEM); 7606 7607 if (!alloc_fair_sched_group(tg, parent)) 7608 goto err; 7609 7610 if (!alloc_rt_sched_group(tg, parent)) 7611 goto err; 7612 7613 return tg; 7614 7615 err: 7616 free_sched_group(tg); 7617 return ERR_PTR(-ENOMEM); 7618 } 7619 7620 void sched_online_group(struct task_group *tg, struct task_group *parent) 7621 { 7622 unsigned long flags; 7623 7624 spin_lock_irqsave(&task_group_lock, flags); 7625 list_add_rcu(&tg->list, &task_groups); 7626 7627 WARN_ON(!parent); /* root should already exist */ 7628 7629 tg->parent = parent; 7630 INIT_LIST_HEAD(&tg->children); 7631 list_add_rcu(&tg->siblings, &parent->children); 7632 spin_unlock_irqrestore(&task_group_lock, flags); 7633 } 7634 7635 /* rcu callback to free various structures associated with a task group */ 7636 static void free_sched_group_rcu(struct rcu_head *rhp) 7637 { 7638 /* now it should be safe to free those cfs_rqs */ 7639 free_sched_group(container_of(rhp, struct task_group, rcu)); 7640 } 7641 7642 /* Destroy runqueue etc associated with a task group */ 7643 void sched_destroy_group(struct task_group *tg) 7644 { 7645 /* wait for possible concurrent references to cfs_rqs complete */ 7646 call_rcu(&tg->rcu, free_sched_group_rcu); 7647 } 7648 7649 void sched_offline_group(struct task_group *tg) 7650 { 7651 unsigned long flags; 7652 int i; 7653 7654 /* end participation in shares distribution */ 7655 for_each_possible_cpu(i) 7656 unregister_fair_sched_group(tg, i); 7657 7658 spin_lock_irqsave(&task_group_lock, flags); 7659 list_del_rcu(&tg->list); 7660 list_del_rcu(&tg->siblings); 7661 spin_unlock_irqrestore(&task_group_lock, flags); 7662 } 7663 7664 /* change task's runqueue when it moves between groups. 7665 * The caller of this function should have put the task in its new group 7666 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7667 * reflect its new group. 7668 */ 7669 void sched_move_task(struct task_struct *tsk) 7670 { 7671 struct task_group *tg; 7672 int queued, running; 7673 unsigned long flags; 7674 struct rq *rq; 7675 7676 rq = task_rq_lock(tsk, &flags); 7677 7678 running = task_current(rq, tsk); 7679 queued = task_on_rq_queued(tsk); 7680 7681 if (queued) 7682 dequeue_task(rq, tsk, 0); 7683 if (unlikely(running)) 7684 put_prev_task(rq, tsk); 7685 7686 /* 7687 * All callers are synchronized by task_rq_lock(); we do not use RCU 7688 * which is pointless here. Thus, we pass "true" to task_css_check() 7689 * to prevent lockdep warnings. 7690 */ 7691 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7692 struct task_group, css); 7693 tg = autogroup_task_group(tsk, tg); 7694 tsk->sched_task_group = tg; 7695 7696 #ifdef CONFIG_FAIR_GROUP_SCHED 7697 if (tsk->sched_class->task_move_group) 7698 tsk->sched_class->task_move_group(tsk, queued); 7699 else 7700 #endif 7701 set_task_rq(tsk, task_cpu(tsk)); 7702 7703 if (unlikely(running)) 7704 tsk->sched_class->set_curr_task(rq); 7705 if (queued) 7706 enqueue_task(rq, tsk, 0); 7707 7708 task_rq_unlock(rq, tsk, &flags); 7709 } 7710 #endif /* CONFIG_CGROUP_SCHED */ 7711 7712 #ifdef CONFIG_RT_GROUP_SCHED 7713 /* 7714 * Ensure that the real time constraints are schedulable. 7715 */ 7716 static DEFINE_MUTEX(rt_constraints_mutex); 7717 7718 /* Must be called with tasklist_lock held */ 7719 static inline int tg_has_rt_tasks(struct task_group *tg) 7720 { 7721 struct task_struct *g, *p; 7722 7723 /* 7724 * Autogroups do not have RT tasks; see autogroup_create(). 7725 */ 7726 if (task_group_is_autogroup(tg)) 7727 return 0; 7728 7729 for_each_process_thread(g, p) { 7730 if (rt_task(p) && task_group(p) == tg) 7731 return 1; 7732 } 7733 7734 return 0; 7735 } 7736 7737 struct rt_schedulable_data { 7738 struct task_group *tg; 7739 u64 rt_period; 7740 u64 rt_runtime; 7741 }; 7742 7743 static int tg_rt_schedulable(struct task_group *tg, void *data) 7744 { 7745 struct rt_schedulable_data *d = data; 7746 struct task_group *child; 7747 unsigned long total, sum = 0; 7748 u64 period, runtime; 7749 7750 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7751 runtime = tg->rt_bandwidth.rt_runtime; 7752 7753 if (tg == d->tg) { 7754 period = d->rt_period; 7755 runtime = d->rt_runtime; 7756 } 7757 7758 /* 7759 * Cannot have more runtime than the period. 7760 */ 7761 if (runtime > period && runtime != RUNTIME_INF) 7762 return -EINVAL; 7763 7764 /* 7765 * Ensure we don't starve existing RT tasks. 7766 */ 7767 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7768 return -EBUSY; 7769 7770 total = to_ratio(period, runtime); 7771 7772 /* 7773 * Nobody can have more than the global setting allows. 7774 */ 7775 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7776 return -EINVAL; 7777 7778 /* 7779 * The sum of our children's runtime should not exceed our own. 7780 */ 7781 list_for_each_entry_rcu(child, &tg->children, siblings) { 7782 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7783 runtime = child->rt_bandwidth.rt_runtime; 7784 7785 if (child == d->tg) { 7786 period = d->rt_period; 7787 runtime = d->rt_runtime; 7788 } 7789 7790 sum += to_ratio(period, runtime); 7791 } 7792 7793 if (sum > total) 7794 return -EINVAL; 7795 7796 return 0; 7797 } 7798 7799 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7800 { 7801 int ret; 7802 7803 struct rt_schedulable_data data = { 7804 .tg = tg, 7805 .rt_period = period, 7806 .rt_runtime = runtime, 7807 }; 7808 7809 rcu_read_lock(); 7810 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7811 rcu_read_unlock(); 7812 7813 return ret; 7814 } 7815 7816 static int tg_set_rt_bandwidth(struct task_group *tg, 7817 u64 rt_period, u64 rt_runtime) 7818 { 7819 int i, err = 0; 7820 7821 /* 7822 * Disallowing the root group RT runtime is BAD, it would disallow the 7823 * kernel creating (and or operating) RT threads. 7824 */ 7825 if (tg == &root_task_group && rt_runtime == 0) 7826 return -EINVAL; 7827 7828 /* No period doesn't make any sense. */ 7829 if (rt_period == 0) 7830 return -EINVAL; 7831 7832 mutex_lock(&rt_constraints_mutex); 7833 read_lock(&tasklist_lock); 7834 err = __rt_schedulable(tg, rt_period, rt_runtime); 7835 if (err) 7836 goto unlock; 7837 7838 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7839 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7840 tg->rt_bandwidth.rt_runtime = rt_runtime; 7841 7842 for_each_possible_cpu(i) { 7843 struct rt_rq *rt_rq = tg->rt_rq[i]; 7844 7845 raw_spin_lock(&rt_rq->rt_runtime_lock); 7846 rt_rq->rt_runtime = rt_runtime; 7847 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7848 } 7849 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7850 unlock: 7851 read_unlock(&tasklist_lock); 7852 mutex_unlock(&rt_constraints_mutex); 7853 7854 return err; 7855 } 7856 7857 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7858 { 7859 u64 rt_runtime, rt_period; 7860 7861 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7862 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7863 if (rt_runtime_us < 0) 7864 rt_runtime = RUNTIME_INF; 7865 7866 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7867 } 7868 7869 static long sched_group_rt_runtime(struct task_group *tg) 7870 { 7871 u64 rt_runtime_us; 7872 7873 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7874 return -1; 7875 7876 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7877 do_div(rt_runtime_us, NSEC_PER_USEC); 7878 return rt_runtime_us; 7879 } 7880 7881 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7882 { 7883 u64 rt_runtime, rt_period; 7884 7885 rt_period = rt_period_us * NSEC_PER_USEC; 7886 rt_runtime = tg->rt_bandwidth.rt_runtime; 7887 7888 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7889 } 7890 7891 static long sched_group_rt_period(struct task_group *tg) 7892 { 7893 u64 rt_period_us; 7894 7895 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7896 do_div(rt_period_us, NSEC_PER_USEC); 7897 return rt_period_us; 7898 } 7899 #endif /* CONFIG_RT_GROUP_SCHED */ 7900 7901 #ifdef CONFIG_RT_GROUP_SCHED 7902 static int sched_rt_global_constraints(void) 7903 { 7904 int ret = 0; 7905 7906 mutex_lock(&rt_constraints_mutex); 7907 read_lock(&tasklist_lock); 7908 ret = __rt_schedulable(NULL, 0, 0); 7909 read_unlock(&tasklist_lock); 7910 mutex_unlock(&rt_constraints_mutex); 7911 7912 return ret; 7913 } 7914 7915 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7916 { 7917 /* Don't accept realtime tasks when there is no way for them to run */ 7918 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7919 return 0; 7920 7921 return 1; 7922 } 7923 7924 #else /* !CONFIG_RT_GROUP_SCHED */ 7925 static int sched_rt_global_constraints(void) 7926 { 7927 unsigned long flags; 7928 int i, ret = 0; 7929 7930 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7931 for_each_possible_cpu(i) { 7932 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7933 7934 raw_spin_lock(&rt_rq->rt_runtime_lock); 7935 rt_rq->rt_runtime = global_rt_runtime(); 7936 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7937 } 7938 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7939 7940 return ret; 7941 } 7942 #endif /* CONFIG_RT_GROUP_SCHED */ 7943 7944 static int sched_dl_global_validate(void) 7945 { 7946 u64 runtime = global_rt_runtime(); 7947 u64 period = global_rt_period(); 7948 u64 new_bw = to_ratio(period, runtime); 7949 struct dl_bw *dl_b; 7950 int cpu, ret = 0; 7951 unsigned long flags; 7952 7953 /* 7954 * Here we want to check the bandwidth not being set to some 7955 * value smaller than the currently allocated bandwidth in 7956 * any of the root_domains. 7957 * 7958 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7959 * cycling on root_domains... Discussion on different/better 7960 * solutions is welcome! 7961 */ 7962 for_each_possible_cpu(cpu) { 7963 rcu_read_lock_sched(); 7964 dl_b = dl_bw_of(cpu); 7965 7966 raw_spin_lock_irqsave(&dl_b->lock, flags); 7967 if (new_bw < dl_b->total_bw) 7968 ret = -EBUSY; 7969 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7970 7971 rcu_read_unlock_sched(); 7972 7973 if (ret) 7974 break; 7975 } 7976 7977 return ret; 7978 } 7979 7980 static void sched_dl_do_global(void) 7981 { 7982 u64 new_bw = -1; 7983 struct dl_bw *dl_b; 7984 int cpu; 7985 unsigned long flags; 7986 7987 def_dl_bandwidth.dl_period = global_rt_period(); 7988 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7989 7990 if (global_rt_runtime() != RUNTIME_INF) 7991 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7992 7993 /* 7994 * FIXME: As above... 7995 */ 7996 for_each_possible_cpu(cpu) { 7997 rcu_read_lock_sched(); 7998 dl_b = dl_bw_of(cpu); 7999 8000 raw_spin_lock_irqsave(&dl_b->lock, flags); 8001 dl_b->bw = new_bw; 8002 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8003 8004 rcu_read_unlock_sched(); 8005 } 8006 } 8007 8008 static int sched_rt_global_validate(void) 8009 { 8010 if (sysctl_sched_rt_period <= 0) 8011 return -EINVAL; 8012 8013 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8014 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8015 return -EINVAL; 8016 8017 return 0; 8018 } 8019 8020 static void sched_rt_do_global(void) 8021 { 8022 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8023 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8024 } 8025 8026 int sched_rt_handler(struct ctl_table *table, int write, 8027 void __user *buffer, size_t *lenp, 8028 loff_t *ppos) 8029 { 8030 int old_period, old_runtime; 8031 static DEFINE_MUTEX(mutex); 8032 int ret; 8033 8034 mutex_lock(&mutex); 8035 old_period = sysctl_sched_rt_period; 8036 old_runtime = sysctl_sched_rt_runtime; 8037 8038 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8039 8040 if (!ret && write) { 8041 ret = sched_rt_global_validate(); 8042 if (ret) 8043 goto undo; 8044 8045 ret = sched_dl_global_validate(); 8046 if (ret) 8047 goto undo; 8048 8049 ret = sched_rt_global_constraints(); 8050 if (ret) 8051 goto undo; 8052 8053 sched_rt_do_global(); 8054 sched_dl_do_global(); 8055 } 8056 if (0) { 8057 undo: 8058 sysctl_sched_rt_period = old_period; 8059 sysctl_sched_rt_runtime = old_runtime; 8060 } 8061 mutex_unlock(&mutex); 8062 8063 return ret; 8064 } 8065 8066 int sched_rr_handler(struct ctl_table *table, int write, 8067 void __user *buffer, size_t *lenp, 8068 loff_t *ppos) 8069 { 8070 int ret; 8071 static DEFINE_MUTEX(mutex); 8072 8073 mutex_lock(&mutex); 8074 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8075 /* make sure that internally we keep jiffies */ 8076 /* also, writing zero resets timeslice to default */ 8077 if (!ret && write) { 8078 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8079 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8080 } 8081 mutex_unlock(&mutex); 8082 return ret; 8083 } 8084 8085 #ifdef CONFIG_CGROUP_SCHED 8086 8087 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8088 { 8089 return css ? container_of(css, struct task_group, css) : NULL; 8090 } 8091 8092 static struct cgroup_subsys_state * 8093 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8094 { 8095 struct task_group *parent = css_tg(parent_css); 8096 struct task_group *tg; 8097 8098 if (!parent) { 8099 /* This is early initialization for the top cgroup */ 8100 return &root_task_group.css; 8101 } 8102 8103 tg = sched_create_group(parent); 8104 if (IS_ERR(tg)) 8105 return ERR_PTR(-ENOMEM); 8106 8107 return &tg->css; 8108 } 8109 8110 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8111 { 8112 struct task_group *tg = css_tg(css); 8113 struct task_group *parent = css_tg(css->parent); 8114 8115 if (parent) 8116 sched_online_group(tg, parent); 8117 return 0; 8118 } 8119 8120 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8121 { 8122 struct task_group *tg = css_tg(css); 8123 8124 sched_destroy_group(tg); 8125 } 8126 8127 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 8128 { 8129 struct task_group *tg = css_tg(css); 8130 8131 sched_offline_group(tg); 8132 } 8133 8134 static void cpu_cgroup_fork(struct task_struct *task, void *private) 8135 { 8136 sched_move_task(task); 8137 } 8138 8139 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 8140 struct cgroup_taskset *tset) 8141 { 8142 struct task_struct *task; 8143 8144 cgroup_taskset_for_each(task, tset) { 8145 #ifdef CONFIG_RT_GROUP_SCHED 8146 if (!sched_rt_can_attach(css_tg(css), task)) 8147 return -EINVAL; 8148 #else 8149 /* We don't support RT-tasks being in separate groups */ 8150 if (task->sched_class != &fair_sched_class) 8151 return -EINVAL; 8152 #endif 8153 } 8154 return 0; 8155 } 8156 8157 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8158 struct cgroup_taskset *tset) 8159 { 8160 struct task_struct *task; 8161 8162 cgroup_taskset_for_each(task, tset) 8163 sched_move_task(task); 8164 } 8165 8166 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8167 struct cgroup_subsys_state *old_css, 8168 struct task_struct *task) 8169 { 8170 /* 8171 * cgroup_exit() is called in the copy_process() failure path. 8172 * Ignore this case since the task hasn't ran yet, this avoids 8173 * trying to poke a half freed task state from generic code. 8174 */ 8175 if (!(task->flags & PF_EXITING)) 8176 return; 8177 8178 sched_move_task(task); 8179 } 8180 8181 #ifdef CONFIG_FAIR_GROUP_SCHED 8182 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8183 struct cftype *cftype, u64 shareval) 8184 { 8185 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8186 } 8187 8188 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8189 struct cftype *cft) 8190 { 8191 struct task_group *tg = css_tg(css); 8192 8193 return (u64) scale_load_down(tg->shares); 8194 } 8195 8196 #ifdef CONFIG_CFS_BANDWIDTH 8197 static DEFINE_MUTEX(cfs_constraints_mutex); 8198 8199 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8200 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8201 8202 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8203 8204 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8205 { 8206 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8207 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8208 8209 if (tg == &root_task_group) 8210 return -EINVAL; 8211 8212 /* 8213 * Ensure we have at some amount of bandwidth every period. This is 8214 * to prevent reaching a state of large arrears when throttled via 8215 * entity_tick() resulting in prolonged exit starvation. 8216 */ 8217 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8218 return -EINVAL; 8219 8220 /* 8221 * Likewise, bound things on the otherside by preventing insane quota 8222 * periods. This also allows us to normalize in computing quota 8223 * feasibility. 8224 */ 8225 if (period > max_cfs_quota_period) 8226 return -EINVAL; 8227 8228 /* 8229 * Prevent race between setting of cfs_rq->runtime_enabled and 8230 * unthrottle_offline_cfs_rqs(). 8231 */ 8232 get_online_cpus(); 8233 mutex_lock(&cfs_constraints_mutex); 8234 ret = __cfs_schedulable(tg, period, quota); 8235 if (ret) 8236 goto out_unlock; 8237 8238 runtime_enabled = quota != RUNTIME_INF; 8239 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8240 /* 8241 * If we need to toggle cfs_bandwidth_used, off->on must occur 8242 * before making related changes, and on->off must occur afterwards 8243 */ 8244 if (runtime_enabled && !runtime_was_enabled) 8245 cfs_bandwidth_usage_inc(); 8246 raw_spin_lock_irq(&cfs_b->lock); 8247 cfs_b->period = ns_to_ktime(period); 8248 cfs_b->quota = quota; 8249 8250 __refill_cfs_bandwidth_runtime(cfs_b); 8251 /* restart the period timer (if active) to handle new period expiry */ 8252 if (runtime_enabled) 8253 start_cfs_bandwidth(cfs_b); 8254 raw_spin_unlock_irq(&cfs_b->lock); 8255 8256 for_each_online_cpu(i) { 8257 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8258 struct rq *rq = cfs_rq->rq; 8259 8260 raw_spin_lock_irq(&rq->lock); 8261 cfs_rq->runtime_enabled = runtime_enabled; 8262 cfs_rq->runtime_remaining = 0; 8263 8264 if (cfs_rq->throttled) 8265 unthrottle_cfs_rq(cfs_rq); 8266 raw_spin_unlock_irq(&rq->lock); 8267 } 8268 if (runtime_was_enabled && !runtime_enabled) 8269 cfs_bandwidth_usage_dec(); 8270 out_unlock: 8271 mutex_unlock(&cfs_constraints_mutex); 8272 put_online_cpus(); 8273 8274 return ret; 8275 } 8276 8277 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8278 { 8279 u64 quota, period; 8280 8281 period = ktime_to_ns(tg->cfs_bandwidth.period); 8282 if (cfs_quota_us < 0) 8283 quota = RUNTIME_INF; 8284 else 8285 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8286 8287 return tg_set_cfs_bandwidth(tg, period, quota); 8288 } 8289 8290 long tg_get_cfs_quota(struct task_group *tg) 8291 { 8292 u64 quota_us; 8293 8294 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8295 return -1; 8296 8297 quota_us = tg->cfs_bandwidth.quota; 8298 do_div(quota_us, NSEC_PER_USEC); 8299 8300 return quota_us; 8301 } 8302 8303 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8304 { 8305 u64 quota, period; 8306 8307 period = (u64)cfs_period_us * NSEC_PER_USEC; 8308 quota = tg->cfs_bandwidth.quota; 8309 8310 return tg_set_cfs_bandwidth(tg, period, quota); 8311 } 8312 8313 long tg_get_cfs_period(struct task_group *tg) 8314 { 8315 u64 cfs_period_us; 8316 8317 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8318 do_div(cfs_period_us, NSEC_PER_USEC); 8319 8320 return cfs_period_us; 8321 } 8322 8323 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8324 struct cftype *cft) 8325 { 8326 return tg_get_cfs_quota(css_tg(css)); 8327 } 8328 8329 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8330 struct cftype *cftype, s64 cfs_quota_us) 8331 { 8332 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8333 } 8334 8335 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8336 struct cftype *cft) 8337 { 8338 return tg_get_cfs_period(css_tg(css)); 8339 } 8340 8341 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8342 struct cftype *cftype, u64 cfs_period_us) 8343 { 8344 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8345 } 8346 8347 struct cfs_schedulable_data { 8348 struct task_group *tg; 8349 u64 period, quota; 8350 }; 8351 8352 /* 8353 * normalize group quota/period to be quota/max_period 8354 * note: units are usecs 8355 */ 8356 static u64 normalize_cfs_quota(struct task_group *tg, 8357 struct cfs_schedulable_data *d) 8358 { 8359 u64 quota, period; 8360 8361 if (tg == d->tg) { 8362 period = d->period; 8363 quota = d->quota; 8364 } else { 8365 period = tg_get_cfs_period(tg); 8366 quota = tg_get_cfs_quota(tg); 8367 } 8368 8369 /* note: these should typically be equivalent */ 8370 if (quota == RUNTIME_INF || quota == -1) 8371 return RUNTIME_INF; 8372 8373 return to_ratio(period, quota); 8374 } 8375 8376 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8377 { 8378 struct cfs_schedulable_data *d = data; 8379 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8380 s64 quota = 0, parent_quota = -1; 8381 8382 if (!tg->parent) { 8383 quota = RUNTIME_INF; 8384 } else { 8385 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8386 8387 quota = normalize_cfs_quota(tg, d); 8388 parent_quota = parent_b->hierarchical_quota; 8389 8390 /* 8391 * ensure max(child_quota) <= parent_quota, inherit when no 8392 * limit is set 8393 */ 8394 if (quota == RUNTIME_INF) 8395 quota = parent_quota; 8396 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8397 return -EINVAL; 8398 } 8399 cfs_b->hierarchical_quota = quota; 8400 8401 return 0; 8402 } 8403 8404 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8405 { 8406 int ret; 8407 struct cfs_schedulable_data data = { 8408 .tg = tg, 8409 .period = period, 8410 .quota = quota, 8411 }; 8412 8413 if (quota != RUNTIME_INF) { 8414 do_div(data.period, NSEC_PER_USEC); 8415 do_div(data.quota, NSEC_PER_USEC); 8416 } 8417 8418 rcu_read_lock(); 8419 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8420 rcu_read_unlock(); 8421 8422 return ret; 8423 } 8424 8425 static int cpu_stats_show(struct seq_file *sf, void *v) 8426 { 8427 struct task_group *tg = css_tg(seq_css(sf)); 8428 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8429 8430 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8431 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8432 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8433 8434 return 0; 8435 } 8436 #endif /* CONFIG_CFS_BANDWIDTH */ 8437 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8438 8439 #ifdef CONFIG_RT_GROUP_SCHED 8440 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8441 struct cftype *cft, s64 val) 8442 { 8443 return sched_group_set_rt_runtime(css_tg(css), val); 8444 } 8445 8446 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8447 struct cftype *cft) 8448 { 8449 return sched_group_rt_runtime(css_tg(css)); 8450 } 8451 8452 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8453 struct cftype *cftype, u64 rt_period_us) 8454 { 8455 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8456 } 8457 8458 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8459 struct cftype *cft) 8460 { 8461 return sched_group_rt_period(css_tg(css)); 8462 } 8463 #endif /* CONFIG_RT_GROUP_SCHED */ 8464 8465 static struct cftype cpu_files[] = { 8466 #ifdef CONFIG_FAIR_GROUP_SCHED 8467 { 8468 .name = "shares", 8469 .read_u64 = cpu_shares_read_u64, 8470 .write_u64 = cpu_shares_write_u64, 8471 }, 8472 #endif 8473 #ifdef CONFIG_CFS_BANDWIDTH 8474 { 8475 .name = "cfs_quota_us", 8476 .read_s64 = cpu_cfs_quota_read_s64, 8477 .write_s64 = cpu_cfs_quota_write_s64, 8478 }, 8479 { 8480 .name = "cfs_period_us", 8481 .read_u64 = cpu_cfs_period_read_u64, 8482 .write_u64 = cpu_cfs_period_write_u64, 8483 }, 8484 { 8485 .name = "stat", 8486 .seq_show = cpu_stats_show, 8487 }, 8488 #endif 8489 #ifdef CONFIG_RT_GROUP_SCHED 8490 { 8491 .name = "rt_runtime_us", 8492 .read_s64 = cpu_rt_runtime_read, 8493 .write_s64 = cpu_rt_runtime_write, 8494 }, 8495 { 8496 .name = "rt_period_us", 8497 .read_u64 = cpu_rt_period_read_uint, 8498 .write_u64 = cpu_rt_period_write_uint, 8499 }, 8500 #endif 8501 { } /* terminate */ 8502 }; 8503 8504 struct cgroup_subsys cpu_cgrp_subsys = { 8505 .css_alloc = cpu_cgroup_css_alloc, 8506 .css_free = cpu_cgroup_css_free, 8507 .css_online = cpu_cgroup_css_online, 8508 .css_offline = cpu_cgroup_css_offline, 8509 .fork = cpu_cgroup_fork, 8510 .can_attach = cpu_cgroup_can_attach, 8511 .attach = cpu_cgroup_attach, 8512 .exit = cpu_cgroup_exit, 8513 .legacy_cftypes = cpu_files, 8514 .early_init = 1, 8515 }; 8516 8517 #endif /* CONFIG_CGROUP_SCHED */ 8518 8519 void dump_cpu_task(int cpu) 8520 { 8521 pr_info("Task dump for CPU %d:\n", cpu); 8522 sched_show_task(cpu_curr(cpu)); 8523 } 8524