xref: /openbmc/linux/kernel/sched/core.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	static_key_disable(&sched_feat_keys[i]);
168 }
169 
170 static void sched_feat_enable(int i)
171 {
172 	static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178 
179 static int sched_feat_set(char *cmp)
180 {
181 	int i;
182 	int neg = 0;
183 
184 	if (strncmp(cmp, "NO_", 3) == 0) {
185 		neg = 1;
186 		cmp += 3;
187 	}
188 
189 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 			if (neg) {
192 				sysctl_sched_features &= ~(1UL << i);
193 				sched_feat_disable(i);
194 			} else {
195 				sysctl_sched_features |= (1UL << i);
196 				sched_feat_enable(i);
197 			}
198 			break;
199 		}
200 	}
201 
202 	return i;
203 }
204 
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 		size_t cnt, loff_t *ppos)
208 {
209 	char buf[64];
210 	char *cmp;
211 	int i;
212 	struct inode *inode;
213 
214 	if (cnt > 63)
215 		cnt = 63;
216 
217 	if (copy_from_user(&buf, ubuf, cnt))
218 		return -EFAULT;
219 
220 	buf[cnt] = 0;
221 	cmp = strstrip(buf);
222 
223 	/* Ensure the static_key remains in a consistent state */
224 	inode = file_inode(filp);
225 	mutex_lock(&inode->i_mutex);
226 	i = sched_feat_set(cmp);
227 	mutex_unlock(&inode->i_mutex);
228 	if (i == __SCHED_FEAT_NR)
229 		return -EINVAL;
230 
231 	*ppos += cnt;
232 
233 	return cnt;
234 }
235 
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 	return single_open(filp, sched_feat_show, NULL);
239 }
240 
241 static const struct file_operations sched_feat_fops = {
242 	.open		= sched_feat_open,
243 	.write		= sched_feat_write,
244 	.read		= seq_read,
245 	.llseek		= seq_lseek,
246 	.release	= single_release,
247 };
248 
249 static __init int sched_init_debug(void)
250 {
251 	debugfs_create_file("sched_features", 0644, NULL, NULL,
252 			&sched_feat_fops);
253 
254 	return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258 
259 /*
260  * Number of tasks to iterate in a single balance run.
261  * Limited because this is done with IRQs disabled.
262  */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264 
265 /*
266  * period over which we average the RT time consumption, measured
267  * in ms.
268  *
269  * default: 1s
270  */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272 
273 /*
274  * period over which we measure -rt task cpu usage in us.
275  * default: 1s
276  */
277 unsigned int sysctl_sched_rt_period = 1000000;
278 
279 __read_mostly int scheduler_running;
280 
281 /*
282  * part of the period that we allow rt tasks to run in us.
283  * default: 0.95s
284  */
285 int sysctl_sched_rt_runtime = 950000;
286 
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289 
290 /*
291  * this_rq_lock - lock this runqueue and disable interrupts.
292  */
293 static struct rq *this_rq_lock(void)
294 	__acquires(rq->lock)
295 {
296 	struct rq *rq;
297 
298 	local_irq_disable();
299 	rq = this_rq();
300 	raw_spin_lock(&rq->lock);
301 
302 	return rq;
303 }
304 
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307  * Use HR-timers to deliver accurate preemption points.
308  */
309 
310 static void hrtick_clear(struct rq *rq)
311 {
312 	if (hrtimer_active(&rq->hrtick_timer))
313 		hrtimer_cancel(&rq->hrtick_timer);
314 }
315 
316 /*
317  * High-resolution timer tick.
318  * Runs from hardirq context with interrupts disabled.
319  */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323 
324 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325 
326 	raw_spin_lock(&rq->lock);
327 	update_rq_clock(rq);
328 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 	raw_spin_unlock(&rq->lock);
330 
331 	return HRTIMER_NORESTART;
332 }
333 
334 #ifdef CONFIG_SMP
335 
336 static void __hrtick_restart(struct rq *rq)
337 {
338 	struct hrtimer *timer = &rq->hrtick_timer;
339 
340 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342 
343 /*
344  * called from hardirq (IPI) context
345  */
346 static void __hrtick_start(void *arg)
347 {
348 	struct rq *rq = arg;
349 
350 	raw_spin_lock(&rq->lock);
351 	__hrtick_restart(rq);
352 	rq->hrtick_csd_pending = 0;
353 	raw_spin_unlock(&rq->lock);
354 }
355 
356 /*
357  * Called to set the hrtick timer state.
358  *
359  * called with rq->lock held and irqs disabled
360  */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 	struct hrtimer *timer = &rq->hrtick_timer;
364 	ktime_t time;
365 	s64 delta;
366 
367 	/*
368 	 * Don't schedule slices shorter than 10000ns, that just
369 	 * doesn't make sense and can cause timer DoS.
370 	 */
371 	delta = max_t(s64, delay, 10000LL);
372 	time = ktime_add_ns(timer->base->get_time(), delta);
373 
374 	hrtimer_set_expires(timer, time);
375 
376 	if (rq == this_rq()) {
377 		__hrtick_restart(rq);
378 	} else if (!rq->hrtick_csd_pending) {
379 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 		rq->hrtick_csd_pending = 1;
381 	}
382 }
383 
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 	int cpu = (int)(long)hcpu;
388 
389 	switch (action) {
390 	case CPU_UP_CANCELED:
391 	case CPU_UP_CANCELED_FROZEN:
392 	case CPU_DOWN_PREPARE:
393 	case CPU_DOWN_PREPARE_FROZEN:
394 	case CPU_DEAD:
395 	case CPU_DEAD_FROZEN:
396 		hrtick_clear(cpu_rq(cpu));
397 		return NOTIFY_OK;
398 	}
399 
400 	return NOTIFY_DONE;
401 }
402 
403 static __init void init_hrtick(void)
404 {
405 	hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409  * Called to set the hrtick timer state.
410  *
411  * called with rq->lock held and irqs disabled
412  */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 	/*
416 	 * Don't schedule slices shorter than 10000ns, that just
417 	 * doesn't make sense. Rely on vruntime for fairness.
418 	 */
419 	delay = max_t(u64, delay, 10000LL);
420 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 		      HRTIMER_MODE_REL_PINNED);
422 }
423 
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428 
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 	rq->hrtick_csd_pending = 0;
433 
434 	rq->hrtick_csd.flags = 0;
435 	rq->hrtick_csd.func = __hrtick_start;
436 	rq->hrtick_csd.info = rq;
437 #endif
438 
439 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 	rq->hrtick_timer.function = hrtick;
441 }
442 #else	/* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446 
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450 
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif	/* CONFIG_SCHED_HRTICK */
455 
456 /*
457  * cmpxchg based fetch_or, macro so it works for different integer types
458  */
459 #define fetch_or(ptr, val)						\
460 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
461  	for (;;) {							\
462  		__old = cmpxchg((ptr), __val, __val | (val));		\
463  		if (__old == __val)					\
464  			break;						\
465  		__val = __old;						\
466  	}								\
467  	__old;								\
468 })
469 
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473  * this avoids any races wrt polling state changes and thereby avoids
474  * spurious IPIs.
475  */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 	struct thread_info *ti = task_thread_info(p);
479 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481 
482 /*
483  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484  *
485  * If this returns true, then the idle task promises to call
486  * sched_ttwu_pending() and reschedule soon.
487  */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 	struct thread_info *ti = task_thread_info(p);
491 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 
493 	for (;;) {
494 		if (!(val & _TIF_POLLING_NRFLAG))
495 			return false;
496 		if (val & _TIF_NEED_RESCHED)
497 			return true;
498 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 		if (old == val)
500 			break;
501 		val = old;
502 	}
503 	return true;
504 }
505 
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 	set_tsk_need_resched(p);
510 	return true;
511 }
512 
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 	return false;
517 }
518 #endif
519 #endif
520 
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 	struct wake_q_node *node = &task->wake_q;
524 
525 	/*
526 	 * Atomically grab the task, if ->wake_q is !nil already it means
527 	 * its already queued (either by us or someone else) and will get the
528 	 * wakeup due to that.
529 	 *
530 	 * This cmpxchg() implies a full barrier, which pairs with the write
531 	 * barrier implied by the wakeup in wake_up_list().
532 	 */
533 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 		return;
535 
536 	get_task_struct(task);
537 
538 	/*
539 	 * The head is context local, there can be no concurrency.
540 	 */
541 	*head->lastp = node;
542 	head->lastp = &node->next;
543 }
544 
545 void wake_up_q(struct wake_q_head *head)
546 {
547 	struct wake_q_node *node = head->first;
548 
549 	while (node != WAKE_Q_TAIL) {
550 		struct task_struct *task;
551 
552 		task = container_of(node, struct task_struct, wake_q);
553 		BUG_ON(!task);
554 		/* task can safely be re-inserted now */
555 		node = node->next;
556 		task->wake_q.next = NULL;
557 
558 		/*
559 		 * wake_up_process() implies a wmb() to pair with the queueing
560 		 * in wake_q_add() so as not to miss wakeups.
561 		 */
562 		wake_up_process(task);
563 		put_task_struct(task);
564 	}
565 }
566 
567 /*
568  * resched_curr - mark rq's current task 'to be rescheduled now'.
569  *
570  * On UP this means the setting of the need_resched flag, on SMP it
571  * might also involve a cross-CPU call to trigger the scheduler on
572  * the target CPU.
573  */
574 void resched_curr(struct rq *rq)
575 {
576 	struct task_struct *curr = rq->curr;
577 	int cpu;
578 
579 	lockdep_assert_held(&rq->lock);
580 
581 	if (test_tsk_need_resched(curr))
582 		return;
583 
584 	cpu = cpu_of(rq);
585 
586 	if (cpu == smp_processor_id()) {
587 		set_tsk_need_resched(curr);
588 		set_preempt_need_resched();
589 		return;
590 	}
591 
592 	if (set_nr_and_not_polling(curr))
593 		smp_send_reschedule(cpu);
594 	else
595 		trace_sched_wake_idle_without_ipi(cpu);
596 }
597 
598 void resched_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 	unsigned long flags;
602 
603 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 		return;
605 	resched_curr(rq);
606 	raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608 
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612  * In the semi idle case, use the nearest busy cpu for migrating timers
613  * from an idle cpu.  This is good for power-savings.
614  *
615  * We don't do similar optimization for completely idle system, as
616  * selecting an idle cpu will add more delays to the timers than intended
617  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618  */
619 int get_nohz_timer_target(void)
620 {
621 	int i, cpu = smp_processor_id();
622 	struct sched_domain *sd;
623 
624 	if (!idle_cpu(cpu))
625 		return cpu;
626 
627 	rcu_read_lock();
628 	for_each_domain(cpu, sd) {
629 		for_each_cpu(i, sched_domain_span(sd)) {
630 			if (!idle_cpu(i)) {
631 				cpu = i;
632 				goto unlock;
633 			}
634 		}
635 	}
636 unlock:
637 	rcu_read_unlock();
638 	return cpu;
639 }
640 /*
641  * When add_timer_on() enqueues a timer into the timer wheel of an
642  * idle CPU then this timer might expire before the next timer event
643  * which is scheduled to wake up that CPU. In case of a completely
644  * idle system the next event might even be infinite time into the
645  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
646  * leaves the inner idle loop so the newly added timer is taken into
647  * account when the CPU goes back to idle and evaluates the timer
648  * wheel for the next timer event.
649  */
650 static void wake_up_idle_cpu(int cpu)
651 {
652 	struct rq *rq = cpu_rq(cpu);
653 
654 	if (cpu == smp_processor_id())
655 		return;
656 
657 	if (set_nr_and_not_polling(rq->idle))
658 		smp_send_reschedule(cpu);
659 	else
660 		trace_sched_wake_idle_without_ipi(cpu);
661 }
662 
663 static bool wake_up_full_nohz_cpu(int cpu)
664 {
665 	/*
666 	 * We just need the target to call irq_exit() and re-evaluate
667 	 * the next tick. The nohz full kick at least implies that.
668 	 * If needed we can still optimize that later with an
669 	 * empty IRQ.
670 	 */
671 	if (tick_nohz_full_cpu(cpu)) {
672 		if (cpu != smp_processor_id() ||
673 		    tick_nohz_tick_stopped())
674 			tick_nohz_full_kick_cpu(cpu);
675 		return true;
676 	}
677 
678 	return false;
679 }
680 
681 void wake_up_nohz_cpu(int cpu)
682 {
683 	if (!wake_up_full_nohz_cpu(cpu))
684 		wake_up_idle_cpu(cpu);
685 }
686 
687 static inline bool got_nohz_idle_kick(void)
688 {
689 	int cpu = smp_processor_id();
690 
691 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
692 		return false;
693 
694 	if (idle_cpu(cpu) && !need_resched())
695 		return true;
696 
697 	/*
698 	 * We can't run Idle Load Balance on this CPU for this time so we
699 	 * cancel it and clear NOHZ_BALANCE_KICK
700 	 */
701 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
702 	return false;
703 }
704 
705 #else /* CONFIG_NO_HZ_COMMON */
706 
707 static inline bool got_nohz_idle_kick(void)
708 {
709 	return false;
710 }
711 
712 #endif /* CONFIG_NO_HZ_COMMON */
713 
714 #ifdef CONFIG_NO_HZ_FULL
715 bool sched_can_stop_tick(void)
716 {
717 	/*
718 	 * FIFO realtime policy runs the highest priority task. Other runnable
719 	 * tasks are of a lower priority. The scheduler tick does nothing.
720 	 */
721 	if (current->policy == SCHED_FIFO)
722 		return true;
723 
724 	/*
725 	 * Round-robin realtime tasks time slice with other tasks at the same
726 	 * realtime priority. Is this task the only one at this priority?
727 	 */
728 	if (current->policy == SCHED_RR) {
729 		struct sched_rt_entity *rt_se = &current->rt;
730 
731 		return rt_se->run_list.prev == rt_se->run_list.next;
732 	}
733 
734 	/*
735 	 * More than one running task need preemption.
736 	 * nr_running update is assumed to be visible
737 	 * after IPI is sent from wakers.
738 	 */
739 	if (this_rq()->nr_running > 1)
740 		return false;
741 
742 	return true;
743 }
744 #endif /* CONFIG_NO_HZ_FULL */
745 
746 void sched_avg_update(struct rq *rq)
747 {
748 	s64 period = sched_avg_period();
749 
750 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
751 		/*
752 		 * Inline assembly required to prevent the compiler
753 		 * optimising this loop into a divmod call.
754 		 * See __iter_div_u64_rem() for another example of this.
755 		 */
756 		asm("" : "+rm" (rq->age_stamp));
757 		rq->age_stamp += period;
758 		rq->rt_avg /= 2;
759 	}
760 }
761 
762 #endif /* CONFIG_SMP */
763 
764 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
765 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
766 /*
767  * Iterate task_group tree rooted at *from, calling @down when first entering a
768  * node and @up when leaving it for the final time.
769  *
770  * Caller must hold rcu_lock or sufficient equivalent.
771  */
772 int walk_tg_tree_from(struct task_group *from,
773 			     tg_visitor down, tg_visitor up, void *data)
774 {
775 	struct task_group *parent, *child;
776 	int ret;
777 
778 	parent = from;
779 
780 down:
781 	ret = (*down)(parent, data);
782 	if (ret)
783 		goto out;
784 	list_for_each_entry_rcu(child, &parent->children, siblings) {
785 		parent = child;
786 		goto down;
787 
788 up:
789 		continue;
790 	}
791 	ret = (*up)(parent, data);
792 	if (ret || parent == from)
793 		goto out;
794 
795 	child = parent;
796 	parent = parent->parent;
797 	if (parent)
798 		goto up;
799 out:
800 	return ret;
801 }
802 
803 int tg_nop(struct task_group *tg, void *data)
804 {
805 	return 0;
806 }
807 #endif
808 
809 static void set_load_weight(struct task_struct *p)
810 {
811 	int prio = p->static_prio - MAX_RT_PRIO;
812 	struct load_weight *load = &p->se.load;
813 
814 	/*
815 	 * SCHED_IDLE tasks get minimal weight:
816 	 */
817 	if (p->policy == SCHED_IDLE) {
818 		load->weight = scale_load(WEIGHT_IDLEPRIO);
819 		load->inv_weight = WMULT_IDLEPRIO;
820 		return;
821 	}
822 
823 	load->weight = scale_load(prio_to_weight[prio]);
824 	load->inv_weight = prio_to_wmult[prio];
825 }
826 
827 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
828 {
829 	update_rq_clock(rq);
830 	sched_info_queued(rq, p);
831 	p->sched_class->enqueue_task(rq, p, flags);
832 }
833 
834 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
835 {
836 	update_rq_clock(rq);
837 	sched_info_dequeued(rq, p);
838 	p->sched_class->dequeue_task(rq, p, flags);
839 }
840 
841 void activate_task(struct rq *rq, struct task_struct *p, int flags)
842 {
843 	if (task_contributes_to_load(p))
844 		rq->nr_uninterruptible--;
845 
846 	enqueue_task(rq, p, flags);
847 }
848 
849 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
850 {
851 	if (task_contributes_to_load(p))
852 		rq->nr_uninterruptible++;
853 
854 	dequeue_task(rq, p, flags);
855 }
856 
857 static void update_rq_clock_task(struct rq *rq, s64 delta)
858 {
859 /*
860  * In theory, the compile should just see 0 here, and optimize out the call
861  * to sched_rt_avg_update. But I don't trust it...
862  */
863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864 	s64 steal = 0, irq_delta = 0;
865 #endif
866 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
867 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
868 
869 	/*
870 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
871 	 * this case when a previous update_rq_clock() happened inside a
872 	 * {soft,}irq region.
873 	 *
874 	 * When this happens, we stop ->clock_task and only update the
875 	 * prev_irq_time stamp to account for the part that fit, so that a next
876 	 * update will consume the rest. This ensures ->clock_task is
877 	 * monotonic.
878 	 *
879 	 * It does however cause some slight miss-attribution of {soft,}irq
880 	 * time, a more accurate solution would be to update the irq_time using
881 	 * the current rq->clock timestamp, except that would require using
882 	 * atomic ops.
883 	 */
884 	if (irq_delta > delta)
885 		irq_delta = delta;
886 
887 	rq->prev_irq_time += irq_delta;
888 	delta -= irq_delta;
889 #endif
890 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
891 	if (static_key_false((&paravirt_steal_rq_enabled))) {
892 		steal = paravirt_steal_clock(cpu_of(rq));
893 		steal -= rq->prev_steal_time_rq;
894 
895 		if (unlikely(steal > delta))
896 			steal = delta;
897 
898 		rq->prev_steal_time_rq += steal;
899 		delta -= steal;
900 	}
901 #endif
902 
903 	rq->clock_task += delta;
904 
905 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
906 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
907 		sched_rt_avg_update(rq, irq_delta + steal);
908 #endif
909 }
910 
911 void sched_set_stop_task(int cpu, struct task_struct *stop)
912 {
913 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
914 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
915 
916 	if (stop) {
917 		/*
918 		 * Make it appear like a SCHED_FIFO task, its something
919 		 * userspace knows about and won't get confused about.
920 		 *
921 		 * Also, it will make PI more or less work without too
922 		 * much confusion -- but then, stop work should not
923 		 * rely on PI working anyway.
924 		 */
925 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
926 
927 		stop->sched_class = &stop_sched_class;
928 	}
929 
930 	cpu_rq(cpu)->stop = stop;
931 
932 	if (old_stop) {
933 		/*
934 		 * Reset it back to a normal scheduling class so that
935 		 * it can die in pieces.
936 		 */
937 		old_stop->sched_class = &rt_sched_class;
938 	}
939 }
940 
941 /*
942  * __normal_prio - return the priority that is based on the static prio
943  */
944 static inline int __normal_prio(struct task_struct *p)
945 {
946 	return p->static_prio;
947 }
948 
949 /*
950  * Calculate the expected normal priority: i.e. priority
951  * without taking RT-inheritance into account. Might be
952  * boosted by interactivity modifiers. Changes upon fork,
953  * setprio syscalls, and whenever the interactivity
954  * estimator recalculates.
955  */
956 static inline int normal_prio(struct task_struct *p)
957 {
958 	int prio;
959 
960 	if (task_has_dl_policy(p))
961 		prio = MAX_DL_PRIO-1;
962 	else if (task_has_rt_policy(p))
963 		prio = MAX_RT_PRIO-1 - p->rt_priority;
964 	else
965 		prio = __normal_prio(p);
966 	return prio;
967 }
968 
969 /*
970  * Calculate the current priority, i.e. the priority
971  * taken into account by the scheduler. This value might
972  * be boosted by RT tasks, or might be boosted by
973  * interactivity modifiers. Will be RT if the task got
974  * RT-boosted. If not then it returns p->normal_prio.
975  */
976 static int effective_prio(struct task_struct *p)
977 {
978 	p->normal_prio = normal_prio(p);
979 	/*
980 	 * If we are RT tasks or we were boosted to RT priority,
981 	 * keep the priority unchanged. Otherwise, update priority
982 	 * to the normal priority:
983 	 */
984 	if (!rt_prio(p->prio))
985 		return p->normal_prio;
986 	return p->prio;
987 }
988 
989 /**
990  * task_curr - is this task currently executing on a CPU?
991  * @p: the task in question.
992  *
993  * Return: 1 if the task is currently executing. 0 otherwise.
994  */
995 inline int task_curr(const struct task_struct *p)
996 {
997 	return cpu_curr(task_cpu(p)) == p;
998 }
999 
1000 /*
1001  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1002  * use the balance_callback list if you want balancing.
1003  *
1004  * this means any call to check_class_changed() must be followed by a call to
1005  * balance_callback().
1006  */
1007 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1008 				       const struct sched_class *prev_class,
1009 				       int oldprio)
1010 {
1011 	if (prev_class != p->sched_class) {
1012 		if (prev_class->switched_from)
1013 			prev_class->switched_from(rq, p);
1014 
1015 		p->sched_class->switched_to(rq, p);
1016 	} else if (oldprio != p->prio || dl_task(p))
1017 		p->sched_class->prio_changed(rq, p, oldprio);
1018 }
1019 
1020 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1021 {
1022 	const struct sched_class *class;
1023 
1024 	if (p->sched_class == rq->curr->sched_class) {
1025 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1026 	} else {
1027 		for_each_class(class) {
1028 			if (class == rq->curr->sched_class)
1029 				break;
1030 			if (class == p->sched_class) {
1031 				resched_curr(rq);
1032 				break;
1033 			}
1034 		}
1035 	}
1036 
1037 	/*
1038 	 * A queue event has occurred, and we're going to schedule.  In
1039 	 * this case, we can save a useless back to back clock update.
1040 	 */
1041 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1042 		rq_clock_skip_update(rq, true);
1043 }
1044 
1045 #ifdef CONFIG_SMP
1046 /*
1047  * This is how migration works:
1048  *
1049  * 1) we invoke migration_cpu_stop() on the target CPU using
1050  *    stop_one_cpu().
1051  * 2) stopper starts to run (implicitly forcing the migrated thread
1052  *    off the CPU)
1053  * 3) it checks whether the migrated task is still in the wrong runqueue.
1054  * 4) if it's in the wrong runqueue then the migration thread removes
1055  *    it and puts it into the right queue.
1056  * 5) stopper completes and stop_one_cpu() returns and the migration
1057  *    is done.
1058  */
1059 
1060 /*
1061  * move_queued_task - move a queued task to new rq.
1062  *
1063  * Returns (locked) new rq. Old rq's lock is released.
1064  */
1065 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1066 {
1067 	lockdep_assert_held(&rq->lock);
1068 
1069 	dequeue_task(rq, p, 0);
1070 	p->on_rq = TASK_ON_RQ_MIGRATING;
1071 	set_task_cpu(p, new_cpu);
1072 	raw_spin_unlock(&rq->lock);
1073 
1074 	rq = cpu_rq(new_cpu);
1075 
1076 	raw_spin_lock(&rq->lock);
1077 	BUG_ON(task_cpu(p) != new_cpu);
1078 	p->on_rq = TASK_ON_RQ_QUEUED;
1079 	enqueue_task(rq, p, 0);
1080 	check_preempt_curr(rq, p, 0);
1081 
1082 	return rq;
1083 }
1084 
1085 struct migration_arg {
1086 	struct task_struct *task;
1087 	int dest_cpu;
1088 };
1089 
1090 /*
1091  * Move (not current) task off this cpu, onto dest cpu. We're doing
1092  * this because either it can't run here any more (set_cpus_allowed()
1093  * away from this CPU, or CPU going down), or because we're
1094  * attempting to rebalance this task on exec (sched_exec).
1095  *
1096  * So we race with normal scheduler movements, but that's OK, as long
1097  * as the task is no longer on this CPU.
1098  */
1099 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1100 {
1101 	if (unlikely(!cpu_active(dest_cpu)))
1102 		return rq;
1103 
1104 	/* Affinity changed (again). */
1105 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1106 		return rq;
1107 
1108 	rq = move_queued_task(rq, p, dest_cpu);
1109 
1110 	return rq;
1111 }
1112 
1113 /*
1114  * migration_cpu_stop - this will be executed by a highprio stopper thread
1115  * and performs thread migration by bumping thread off CPU then
1116  * 'pushing' onto another runqueue.
1117  */
1118 static int migration_cpu_stop(void *data)
1119 {
1120 	struct migration_arg *arg = data;
1121 	struct task_struct *p = arg->task;
1122 	struct rq *rq = this_rq();
1123 
1124 	/*
1125 	 * The original target cpu might have gone down and we might
1126 	 * be on another cpu but it doesn't matter.
1127 	 */
1128 	local_irq_disable();
1129 	/*
1130 	 * We need to explicitly wake pending tasks before running
1131 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1132 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1133 	 */
1134 	sched_ttwu_pending();
1135 
1136 	raw_spin_lock(&p->pi_lock);
1137 	raw_spin_lock(&rq->lock);
1138 	/*
1139 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1140 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1141 	 * we're holding p->pi_lock.
1142 	 */
1143 	if (task_rq(p) == rq && task_on_rq_queued(p))
1144 		rq = __migrate_task(rq, p, arg->dest_cpu);
1145 	raw_spin_unlock(&rq->lock);
1146 	raw_spin_unlock(&p->pi_lock);
1147 
1148 	local_irq_enable();
1149 	return 0;
1150 }
1151 
1152 /*
1153  * sched_class::set_cpus_allowed must do the below, but is not required to
1154  * actually call this function.
1155  */
1156 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1157 {
1158 	cpumask_copy(&p->cpus_allowed, new_mask);
1159 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1160 }
1161 
1162 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1163 {
1164 	struct rq *rq = task_rq(p);
1165 	bool queued, running;
1166 
1167 	lockdep_assert_held(&p->pi_lock);
1168 
1169 	queued = task_on_rq_queued(p);
1170 	running = task_current(rq, p);
1171 
1172 	if (queued) {
1173 		/*
1174 		 * Because __kthread_bind() calls this on blocked tasks without
1175 		 * holding rq->lock.
1176 		 */
1177 		lockdep_assert_held(&rq->lock);
1178 		dequeue_task(rq, p, 0);
1179 	}
1180 	if (running)
1181 		put_prev_task(rq, p);
1182 
1183 	p->sched_class->set_cpus_allowed(p, new_mask);
1184 
1185 	if (running)
1186 		p->sched_class->set_curr_task(rq);
1187 	if (queued)
1188 		enqueue_task(rq, p, 0);
1189 }
1190 
1191 /*
1192  * Change a given task's CPU affinity. Migrate the thread to a
1193  * proper CPU and schedule it away if the CPU it's executing on
1194  * is removed from the allowed bitmask.
1195  *
1196  * NOTE: the caller must have a valid reference to the task, the
1197  * task must not exit() & deallocate itself prematurely. The
1198  * call is not atomic; no spinlocks may be held.
1199  */
1200 static int __set_cpus_allowed_ptr(struct task_struct *p,
1201 				  const struct cpumask *new_mask, bool check)
1202 {
1203 	unsigned long flags;
1204 	struct rq *rq;
1205 	unsigned int dest_cpu;
1206 	int ret = 0;
1207 
1208 	rq = task_rq_lock(p, &flags);
1209 
1210 	/*
1211 	 * Must re-check here, to close a race against __kthread_bind(),
1212 	 * sched_setaffinity() is not guaranteed to observe the flag.
1213 	 */
1214 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1215 		ret = -EINVAL;
1216 		goto out;
1217 	}
1218 
1219 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1220 		goto out;
1221 
1222 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1223 		ret = -EINVAL;
1224 		goto out;
1225 	}
1226 
1227 	do_set_cpus_allowed(p, new_mask);
1228 
1229 	/* Can the task run on the task's current CPU? If so, we're done */
1230 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1231 		goto out;
1232 
1233 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1234 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1235 		struct migration_arg arg = { p, dest_cpu };
1236 		/* Need help from migration thread: drop lock and wait. */
1237 		task_rq_unlock(rq, p, &flags);
1238 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1239 		tlb_migrate_finish(p->mm);
1240 		return 0;
1241 	} else if (task_on_rq_queued(p)) {
1242 		/*
1243 		 * OK, since we're going to drop the lock immediately
1244 		 * afterwards anyway.
1245 		 */
1246 		lockdep_unpin_lock(&rq->lock);
1247 		rq = move_queued_task(rq, p, dest_cpu);
1248 		lockdep_pin_lock(&rq->lock);
1249 	}
1250 out:
1251 	task_rq_unlock(rq, p, &flags);
1252 
1253 	return ret;
1254 }
1255 
1256 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1257 {
1258 	return __set_cpus_allowed_ptr(p, new_mask, false);
1259 }
1260 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1261 
1262 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1263 {
1264 #ifdef CONFIG_SCHED_DEBUG
1265 	/*
1266 	 * We should never call set_task_cpu() on a blocked task,
1267 	 * ttwu() will sort out the placement.
1268 	 */
1269 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1270 			!p->on_rq);
1271 
1272 #ifdef CONFIG_LOCKDEP
1273 	/*
1274 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1275 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1276 	 *
1277 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1278 	 * see task_group().
1279 	 *
1280 	 * Furthermore, all task_rq users should acquire both locks, see
1281 	 * task_rq_lock().
1282 	 */
1283 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1284 				      lockdep_is_held(&task_rq(p)->lock)));
1285 #endif
1286 #endif
1287 
1288 	trace_sched_migrate_task(p, new_cpu);
1289 
1290 	if (task_cpu(p) != new_cpu) {
1291 		if (p->sched_class->migrate_task_rq)
1292 			p->sched_class->migrate_task_rq(p, new_cpu);
1293 		p->se.nr_migrations++;
1294 		perf_event_task_migrate(p);
1295 	}
1296 
1297 	__set_task_cpu(p, new_cpu);
1298 }
1299 
1300 static void __migrate_swap_task(struct task_struct *p, int cpu)
1301 {
1302 	if (task_on_rq_queued(p)) {
1303 		struct rq *src_rq, *dst_rq;
1304 
1305 		src_rq = task_rq(p);
1306 		dst_rq = cpu_rq(cpu);
1307 
1308 		deactivate_task(src_rq, p, 0);
1309 		set_task_cpu(p, cpu);
1310 		activate_task(dst_rq, p, 0);
1311 		check_preempt_curr(dst_rq, p, 0);
1312 	} else {
1313 		/*
1314 		 * Task isn't running anymore; make it appear like we migrated
1315 		 * it before it went to sleep. This means on wakeup we make the
1316 		 * previous cpu our targer instead of where it really is.
1317 		 */
1318 		p->wake_cpu = cpu;
1319 	}
1320 }
1321 
1322 struct migration_swap_arg {
1323 	struct task_struct *src_task, *dst_task;
1324 	int src_cpu, dst_cpu;
1325 };
1326 
1327 static int migrate_swap_stop(void *data)
1328 {
1329 	struct migration_swap_arg *arg = data;
1330 	struct rq *src_rq, *dst_rq;
1331 	int ret = -EAGAIN;
1332 
1333 	src_rq = cpu_rq(arg->src_cpu);
1334 	dst_rq = cpu_rq(arg->dst_cpu);
1335 
1336 	double_raw_lock(&arg->src_task->pi_lock,
1337 			&arg->dst_task->pi_lock);
1338 	double_rq_lock(src_rq, dst_rq);
1339 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1340 		goto unlock;
1341 
1342 	if (task_cpu(arg->src_task) != arg->src_cpu)
1343 		goto unlock;
1344 
1345 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1346 		goto unlock;
1347 
1348 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1349 		goto unlock;
1350 
1351 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1352 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1353 
1354 	ret = 0;
1355 
1356 unlock:
1357 	double_rq_unlock(src_rq, dst_rq);
1358 	raw_spin_unlock(&arg->dst_task->pi_lock);
1359 	raw_spin_unlock(&arg->src_task->pi_lock);
1360 
1361 	return ret;
1362 }
1363 
1364 /*
1365  * Cross migrate two tasks
1366  */
1367 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1368 {
1369 	struct migration_swap_arg arg;
1370 	int ret = -EINVAL;
1371 
1372 	arg = (struct migration_swap_arg){
1373 		.src_task = cur,
1374 		.src_cpu = task_cpu(cur),
1375 		.dst_task = p,
1376 		.dst_cpu = task_cpu(p),
1377 	};
1378 
1379 	if (arg.src_cpu == arg.dst_cpu)
1380 		goto out;
1381 
1382 	/*
1383 	 * These three tests are all lockless; this is OK since all of them
1384 	 * will be re-checked with proper locks held further down the line.
1385 	 */
1386 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1387 		goto out;
1388 
1389 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1390 		goto out;
1391 
1392 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1393 		goto out;
1394 
1395 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1396 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1397 
1398 out:
1399 	return ret;
1400 }
1401 
1402 /*
1403  * wait_task_inactive - wait for a thread to unschedule.
1404  *
1405  * If @match_state is nonzero, it's the @p->state value just checked and
1406  * not expected to change.  If it changes, i.e. @p might have woken up,
1407  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1408  * we return a positive number (its total switch count).  If a second call
1409  * a short while later returns the same number, the caller can be sure that
1410  * @p has remained unscheduled the whole time.
1411  *
1412  * The caller must ensure that the task *will* unschedule sometime soon,
1413  * else this function might spin for a *long* time. This function can't
1414  * be called with interrupts off, or it may introduce deadlock with
1415  * smp_call_function() if an IPI is sent by the same process we are
1416  * waiting to become inactive.
1417  */
1418 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1419 {
1420 	unsigned long flags;
1421 	int running, queued;
1422 	unsigned long ncsw;
1423 	struct rq *rq;
1424 
1425 	for (;;) {
1426 		/*
1427 		 * We do the initial early heuristics without holding
1428 		 * any task-queue locks at all. We'll only try to get
1429 		 * the runqueue lock when things look like they will
1430 		 * work out!
1431 		 */
1432 		rq = task_rq(p);
1433 
1434 		/*
1435 		 * If the task is actively running on another CPU
1436 		 * still, just relax and busy-wait without holding
1437 		 * any locks.
1438 		 *
1439 		 * NOTE! Since we don't hold any locks, it's not
1440 		 * even sure that "rq" stays as the right runqueue!
1441 		 * But we don't care, since "task_running()" will
1442 		 * return false if the runqueue has changed and p
1443 		 * is actually now running somewhere else!
1444 		 */
1445 		while (task_running(rq, p)) {
1446 			if (match_state && unlikely(p->state != match_state))
1447 				return 0;
1448 			cpu_relax();
1449 		}
1450 
1451 		/*
1452 		 * Ok, time to look more closely! We need the rq
1453 		 * lock now, to be *sure*. If we're wrong, we'll
1454 		 * just go back and repeat.
1455 		 */
1456 		rq = task_rq_lock(p, &flags);
1457 		trace_sched_wait_task(p);
1458 		running = task_running(rq, p);
1459 		queued = task_on_rq_queued(p);
1460 		ncsw = 0;
1461 		if (!match_state || p->state == match_state)
1462 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1463 		task_rq_unlock(rq, p, &flags);
1464 
1465 		/*
1466 		 * If it changed from the expected state, bail out now.
1467 		 */
1468 		if (unlikely(!ncsw))
1469 			break;
1470 
1471 		/*
1472 		 * Was it really running after all now that we
1473 		 * checked with the proper locks actually held?
1474 		 *
1475 		 * Oops. Go back and try again..
1476 		 */
1477 		if (unlikely(running)) {
1478 			cpu_relax();
1479 			continue;
1480 		}
1481 
1482 		/*
1483 		 * It's not enough that it's not actively running,
1484 		 * it must be off the runqueue _entirely_, and not
1485 		 * preempted!
1486 		 *
1487 		 * So if it was still runnable (but just not actively
1488 		 * running right now), it's preempted, and we should
1489 		 * yield - it could be a while.
1490 		 */
1491 		if (unlikely(queued)) {
1492 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1493 
1494 			set_current_state(TASK_UNINTERRUPTIBLE);
1495 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1496 			continue;
1497 		}
1498 
1499 		/*
1500 		 * Ahh, all good. It wasn't running, and it wasn't
1501 		 * runnable, which means that it will never become
1502 		 * running in the future either. We're all done!
1503 		 */
1504 		break;
1505 	}
1506 
1507 	return ncsw;
1508 }
1509 
1510 /***
1511  * kick_process - kick a running thread to enter/exit the kernel
1512  * @p: the to-be-kicked thread
1513  *
1514  * Cause a process which is running on another CPU to enter
1515  * kernel-mode, without any delay. (to get signals handled.)
1516  *
1517  * NOTE: this function doesn't have to take the runqueue lock,
1518  * because all it wants to ensure is that the remote task enters
1519  * the kernel. If the IPI races and the task has been migrated
1520  * to another CPU then no harm is done and the purpose has been
1521  * achieved as well.
1522  */
1523 void kick_process(struct task_struct *p)
1524 {
1525 	int cpu;
1526 
1527 	preempt_disable();
1528 	cpu = task_cpu(p);
1529 	if ((cpu != smp_processor_id()) && task_curr(p))
1530 		smp_send_reschedule(cpu);
1531 	preempt_enable();
1532 }
1533 EXPORT_SYMBOL_GPL(kick_process);
1534 
1535 /*
1536  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1537  */
1538 static int select_fallback_rq(int cpu, struct task_struct *p)
1539 {
1540 	int nid = cpu_to_node(cpu);
1541 	const struct cpumask *nodemask = NULL;
1542 	enum { cpuset, possible, fail } state = cpuset;
1543 	int dest_cpu;
1544 
1545 	/*
1546 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1547 	 * will return -1. There is no cpu on the node, and we should
1548 	 * select the cpu on the other node.
1549 	 */
1550 	if (nid != -1) {
1551 		nodemask = cpumask_of_node(nid);
1552 
1553 		/* Look for allowed, online CPU in same node. */
1554 		for_each_cpu(dest_cpu, nodemask) {
1555 			if (!cpu_online(dest_cpu))
1556 				continue;
1557 			if (!cpu_active(dest_cpu))
1558 				continue;
1559 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1560 				return dest_cpu;
1561 		}
1562 	}
1563 
1564 	for (;;) {
1565 		/* Any allowed, online CPU? */
1566 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1567 			if (!cpu_online(dest_cpu))
1568 				continue;
1569 			if (!cpu_active(dest_cpu))
1570 				continue;
1571 			goto out;
1572 		}
1573 
1574 		switch (state) {
1575 		case cpuset:
1576 			/* No more Mr. Nice Guy. */
1577 			cpuset_cpus_allowed_fallback(p);
1578 			state = possible;
1579 			break;
1580 
1581 		case possible:
1582 			do_set_cpus_allowed(p, cpu_possible_mask);
1583 			state = fail;
1584 			break;
1585 
1586 		case fail:
1587 			BUG();
1588 			break;
1589 		}
1590 	}
1591 
1592 out:
1593 	if (state != cpuset) {
1594 		/*
1595 		 * Don't tell them about moving exiting tasks or
1596 		 * kernel threads (both mm NULL), since they never
1597 		 * leave kernel.
1598 		 */
1599 		if (p->mm && printk_ratelimit()) {
1600 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1601 					task_pid_nr(p), p->comm, cpu);
1602 		}
1603 	}
1604 
1605 	return dest_cpu;
1606 }
1607 
1608 /*
1609  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1610  */
1611 static inline
1612 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1613 {
1614 	lockdep_assert_held(&p->pi_lock);
1615 
1616 	if (p->nr_cpus_allowed > 1)
1617 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1618 
1619 	/*
1620 	 * In order not to call set_task_cpu() on a blocking task we need
1621 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1622 	 * cpu.
1623 	 *
1624 	 * Since this is common to all placement strategies, this lives here.
1625 	 *
1626 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1627 	 *   not worry about this generic constraint ]
1628 	 */
1629 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1630 		     !cpu_online(cpu)))
1631 		cpu = select_fallback_rq(task_cpu(p), p);
1632 
1633 	return cpu;
1634 }
1635 
1636 static void update_avg(u64 *avg, u64 sample)
1637 {
1638 	s64 diff = sample - *avg;
1639 	*avg += diff >> 3;
1640 }
1641 
1642 #else
1643 
1644 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1645 					 const struct cpumask *new_mask, bool check)
1646 {
1647 	return set_cpus_allowed_ptr(p, new_mask);
1648 }
1649 
1650 #endif /* CONFIG_SMP */
1651 
1652 static void
1653 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1654 {
1655 #ifdef CONFIG_SCHEDSTATS
1656 	struct rq *rq = this_rq();
1657 
1658 #ifdef CONFIG_SMP
1659 	int this_cpu = smp_processor_id();
1660 
1661 	if (cpu == this_cpu) {
1662 		schedstat_inc(rq, ttwu_local);
1663 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1664 	} else {
1665 		struct sched_domain *sd;
1666 
1667 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1668 		rcu_read_lock();
1669 		for_each_domain(this_cpu, sd) {
1670 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1671 				schedstat_inc(sd, ttwu_wake_remote);
1672 				break;
1673 			}
1674 		}
1675 		rcu_read_unlock();
1676 	}
1677 
1678 	if (wake_flags & WF_MIGRATED)
1679 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1680 
1681 #endif /* CONFIG_SMP */
1682 
1683 	schedstat_inc(rq, ttwu_count);
1684 	schedstat_inc(p, se.statistics.nr_wakeups);
1685 
1686 	if (wake_flags & WF_SYNC)
1687 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1688 
1689 #endif /* CONFIG_SCHEDSTATS */
1690 }
1691 
1692 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1693 {
1694 	activate_task(rq, p, en_flags);
1695 	p->on_rq = TASK_ON_RQ_QUEUED;
1696 
1697 	/* if a worker is waking up, notify workqueue */
1698 	if (p->flags & PF_WQ_WORKER)
1699 		wq_worker_waking_up(p, cpu_of(rq));
1700 }
1701 
1702 /*
1703  * Mark the task runnable and perform wakeup-preemption.
1704  */
1705 static void
1706 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1707 {
1708 	check_preempt_curr(rq, p, wake_flags);
1709 	p->state = TASK_RUNNING;
1710 	trace_sched_wakeup(p);
1711 
1712 #ifdef CONFIG_SMP
1713 	if (p->sched_class->task_woken) {
1714 		/*
1715 		 * Our task @p is fully woken up and running; so its safe to
1716 		 * drop the rq->lock, hereafter rq is only used for statistics.
1717 		 */
1718 		lockdep_unpin_lock(&rq->lock);
1719 		p->sched_class->task_woken(rq, p);
1720 		lockdep_pin_lock(&rq->lock);
1721 	}
1722 
1723 	if (rq->idle_stamp) {
1724 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1725 		u64 max = 2*rq->max_idle_balance_cost;
1726 
1727 		update_avg(&rq->avg_idle, delta);
1728 
1729 		if (rq->avg_idle > max)
1730 			rq->avg_idle = max;
1731 
1732 		rq->idle_stamp = 0;
1733 	}
1734 #endif
1735 }
1736 
1737 static void
1738 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1739 {
1740 	lockdep_assert_held(&rq->lock);
1741 
1742 #ifdef CONFIG_SMP
1743 	if (p->sched_contributes_to_load)
1744 		rq->nr_uninterruptible--;
1745 #endif
1746 
1747 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1748 	ttwu_do_wakeup(rq, p, wake_flags);
1749 }
1750 
1751 /*
1752  * Called in case the task @p isn't fully descheduled from its runqueue,
1753  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1754  * since all we need to do is flip p->state to TASK_RUNNING, since
1755  * the task is still ->on_rq.
1756  */
1757 static int ttwu_remote(struct task_struct *p, int wake_flags)
1758 {
1759 	struct rq *rq;
1760 	int ret = 0;
1761 
1762 	rq = __task_rq_lock(p);
1763 	if (task_on_rq_queued(p)) {
1764 		/* check_preempt_curr() may use rq clock */
1765 		update_rq_clock(rq);
1766 		ttwu_do_wakeup(rq, p, wake_flags);
1767 		ret = 1;
1768 	}
1769 	__task_rq_unlock(rq);
1770 
1771 	return ret;
1772 }
1773 
1774 #ifdef CONFIG_SMP
1775 void sched_ttwu_pending(void)
1776 {
1777 	struct rq *rq = this_rq();
1778 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1779 	struct task_struct *p;
1780 	unsigned long flags;
1781 
1782 	if (!llist)
1783 		return;
1784 
1785 	raw_spin_lock_irqsave(&rq->lock, flags);
1786 	lockdep_pin_lock(&rq->lock);
1787 
1788 	while (llist) {
1789 		p = llist_entry(llist, struct task_struct, wake_entry);
1790 		llist = llist_next(llist);
1791 		ttwu_do_activate(rq, p, 0);
1792 	}
1793 
1794 	lockdep_unpin_lock(&rq->lock);
1795 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1796 }
1797 
1798 void scheduler_ipi(void)
1799 {
1800 	/*
1801 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1802 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1803 	 * this IPI.
1804 	 */
1805 	preempt_fold_need_resched();
1806 
1807 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1808 		return;
1809 
1810 	/*
1811 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1812 	 * traditionally all their work was done from the interrupt return
1813 	 * path. Now that we actually do some work, we need to make sure
1814 	 * we do call them.
1815 	 *
1816 	 * Some archs already do call them, luckily irq_enter/exit nest
1817 	 * properly.
1818 	 *
1819 	 * Arguably we should visit all archs and update all handlers,
1820 	 * however a fair share of IPIs are still resched only so this would
1821 	 * somewhat pessimize the simple resched case.
1822 	 */
1823 	irq_enter();
1824 	sched_ttwu_pending();
1825 
1826 	/*
1827 	 * Check if someone kicked us for doing the nohz idle load balance.
1828 	 */
1829 	if (unlikely(got_nohz_idle_kick())) {
1830 		this_rq()->idle_balance = 1;
1831 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1832 	}
1833 	irq_exit();
1834 }
1835 
1836 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1837 {
1838 	struct rq *rq = cpu_rq(cpu);
1839 
1840 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1841 		if (!set_nr_if_polling(rq->idle))
1842 			smp_send_reschedule(cpu);
1843 		else
1844 			trace_sched_wake_idle_without_ipi(cpu);
1845 	}
1846 }
1847 
1848 void wake_up_if_idle(int cpu)
1849 {
1850 	struct rq *rq = cpu_rq(cpu);
1851 	unsigned long flags;
1852 
1853 	rcu_read_lock();
1854 
1855 	if (!is_idle_task(rcu_dereference(rq->curr)))
1856 		goto out;
1857 
1858 	if (set_nr_if_polling(rq->idle)) {
1859 		trace_sched_wake_idle_without_ipi(cpu);
1860 	} else {
1861 		raw_spin_lock_irqsave(&rq->lock, flags);
1862 		if (is_idle_task(rq->curr))
1863 			smp_send_reschedule(cpu);
1864 		/* Else cpu is not in idle, do nothing here */
1865 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1866 	}
1867 
1868 out:
1869 	rcu_read_unlock();
1870 }
1871 
1872 bool cpus_share_cache(int this_cpu, int that_cpu)
1873 {
1874 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1875 }
1876 #endif /* CONFIG_SMP */
1877 
1878 static void ttwu_queue(struct task_struct *p, int cpu)
1879 {
1880 	struct rq *rq = cpu_rq(cpu);
1881 
1882 #if defined(CONFIG_SMP)
1883 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1884 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1885 		ttwu_queue_remote(p, cpu);
1886 		return;
1887 	}
1888 #endif
1889 
1890 	raw_spin_lock(&rq->lock);
1891 	lockdep_pin_lock(&rq->lock);
1892 	ttwu_do_activate(rq, p, 0);
1893 	lockdep_unpin_lock(&rq->lock);
1894 	raw_spin_unlock(&rq->lock);
1895 }
1896 
1897 /**
1898  * try_to_wake_up - wake up a thread
1899  * @p: the thread to be awakened
1900  * @state: the mask of task states that can be woken
1901  * @wake_flags: wake modifier flags (WF_*)
1902  *
1903  * Put it on the run-queue if it's not already there. The "current"
1904  * thread is always on the run-queue (except when the actual
1905  * re-schedule is in progress), and as such you're allowed to do
1906  * the simpler "current->state = TASK_RUNNING" to mark yourself
1907  * runnable without the overhead of this.
1908  *
1909  * Return: %true if @p was woken up, %false if it was already running.
1910  * or @state didn't match @p's state.
1911  */
1912 static int
1913 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1914 {
1915 	unsigned long flags;
1916 	int cpu, success = 0;
1917 
1918 	/*
1919 	 * If we are going to wake up a thread waiting for CONDITION we
1920 	 * need to ensure that CONDITION=1 done by the caller can not be
1921 	 * reordered with p->state check below. This pairs with mb() in
1922 	 * set_current_state() the waiting thread does.
1923 	 */
1924 	smp_mb__before_spinlock();
1925 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1926 	if (!(p->state & state))
1927 		goto out;
1928 
1929 	trace_sched_waking(p);
1930 
1931 	success = 1; /* we're going to change ->state */
1932 	cpu = task_cpu(p);
1933 
1934 	if (p->on_rq && ttwu_remote(p, wake_flags))
1935 		goto stat;
1936 
1937 #ifdef CONFIG_SMP
1938 	/*
1939 	 * If the owning (remote) cpu is still in the middle of schedule() with
1940 	 * this task as prev, wait until its done referencing the task.
1941 	 */
1942 	while (p->on_cpu)
1943 		cpu_relax();
1944 	/*
1945 	 * Pairs with the smp_wmb() in finish_lock_switch().
1946 	 */
1947 	smp_rmb();
1948 
1949 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1950 	p->state = TASK_WAKING;
1951 
1952 	if (p->sched_class->task_waking)
1953 		p->sched_class->task_waking(p);
1954 
1955 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1956 	if (task_cpu(p) != cpu) {
1957 		wake_flags |= WF_MIGRATED;
1958 		set_task_cpu(p, cpu);
1959 	}
1960 #endif /* CONFIG_SMP */
1961 
1962 	ttwu_queue(p, cpu);
1963 stat:
1964 	ttwu_stat(p, cpu, wake_flags);
1965 out:
1966 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1967 
1968 	return success;
1969 }
1970 
1971 /**
1972  * try_to_wake_up_local - try to wake up a local task with rq lock held
1973  * @p: the thread to be awakened
1974  *
1975  * Put @p on the run-queue if it's not already there. The caller must
1976  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1977  * the current task.
1978  */
1979 static void try_to_wake_up_local(struct task_struct *p)
1980 {
1981 	struct rq *rq = task_rq(p);
1982 
1983 	if (WARN_ON_ONCE(rq != this_rq()) ||
1984 	    WARN_ON_ONCE(p == current))
1985 		return;
1986 
1987 	lockdep_assert_held(&rq->lock);
1988 
1989 	if (!raw_spin_trylock(&p->pi_lock)) {
1990 		/*
1991 		 * This is OK, because current is on_cpu, which avoids it being
1992 		 * picked for load-balance and preemption/IRQs are still
1993 		 * disabled avoiding further scheduler activity on it and we've
1994 		 * not yet picked a replacement task.
1995 		 */
1996 		lockdep_unpin_lock(&rq->lock);
1997 		raw_spin_unlock(&rq->lock);
1998 		raw_spin_lock(&p->pi_lock);
1999 		raw_spin_lock(&rq->lock);
2000 		lockdep_pin_lock(&rq->lock);
2001 	}
2002 
2003 	if (!(p->state & TASK_NORMAL))
2004 		goto out;
2005 
2006 	trace_sched_waking(p);
2007 
2008 	if (!task_on_rq_queued(p))
2009 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2010 
2011 	ttwu_do_wakeup(rq, p, 0);
2012 	ttwu_stat(p, smp_processor_id(), 0);
2013 out:
2014 	raw_spin_unlock(&p->pi_lock);
2015 }
2016 
2017 /**
2018  * wake_up_process - Wake up a specific process
2019  * @p: The process to be woken up.
2020  *
2021  * Attempt to wake up the nominated process and move it to the set of runnable
2022  * processes.
2023  *
2024  * Return: 1 if the process was woken up, 0 if it was already running.
2025  *
2026  * It may be assumed that this function implies a write memory barrier before
2027  * changing the task state if and only if any tasks are woken up.
2028  */
2029 int wake_up_process(struct task_struct *p)
2030 {
2031 	WARN_ON(task_is_stopped_or_traced(p));
2032 	return try_to_wake_up(p, TASK_NORMAL, 0);
2033 }
2034 EXPORT_SYMBOL(wake_up_process);
2035 
2036 int wake_up_state(struct task_struct *p, unsigned int state)
2037 {
2038 	return try_to_wake_up(p, state, 0);
2039 }
2040 
2041 /*
2042  * This function clears the sched_dl_entity static params.
2043  */
2044 void __dl_clear_params(struct task_struct *p)
2045 {
2046 	struct sched_dl_entity *dl_se = &p->dl;
2047 
2048 	dl_se->dl_runtime = 0;
2049 	dl_se->dl_deadline = 0;
2050 	dl_se->dl_period = 0;
2051 	dl_se->flags = 0;
2052 	dl_se->dl_bw = 0;
2053 
2054 	dl_se->dl_throttled = 0;
2055 	dl_se->dl_new = 1;
2056 	dl_se->dl_yielded = 0;
2057 }
2058 
2059 /*
2060  * Perform scheduler related setup for a newly forked process p.
2061  * p is forked by current.
2062  *
2063  * __sched_fork() is basic setup used by init_idle() too:
2064  */
2065 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2066 {
2067 	p->on_rq			= 0;
2068 
2069 	p->se.on_rq			= 0;
2070 	p->se.exec_start		= 0;
2071 	p->se.sum_exec_runtime		= 0;
2072 	p->se.prev_sum_exec_runtime	= 0;
2073 	p->se.nr_migrations		= 0;
2074 	p->se.vruntime			= 0;
2075 	INIT_LIST_HEAD(&p->se.group_node);
2076 
2077 #ifdef CONFIG_SCHEDSTATS
2078 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2079 #endif
2080 
2081 	RB_CLEAR_NODE(&p->dl.rb_node);
2082 	init_dl_task_timer(&p->dl);
2083 	__dl_clear_params(p);
2084 
2085 	INIT_LIST_HEAD(&p->rt.run_list);
2086 
2087 #ifdef CONFIG_PREEMPT_NOTIFIERS
2088 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2089 #endif
2090 
2091 #ifdef CONFIG_NUMA_BALANCING
2092 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2093 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2094 		p->mm->numa_scan_seq = 0;
2095 	}
2096 
2097 	if (clone_flags & CLONE_VM)
2098 		p->numa_preferred_nid = current->numa_preferred_nid;
2099 	else
2100 		p->numa_preferred_nid = -1;
2101 
2102 	p->node_stamp = 0ULL;
2103 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2104 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2105 	p->numa_work.next = &p->numa_work;
2106 	p->numa_faults = NULL;
2107 	p->last_task_numa_placement = 0;
2108 	p->last_sum_exec_runtime = 0;
2109 
2110 	p->numa_group = NULL;
2111 #endif /* CONFIG_NUMA_BALANCING */
2112 }
2113 
2114 #ifdef CONFIG_NUMA_BALANCING
2115 #ifdef CONFIG_SCHED_DEBUG
2116 void set_numabalancing_state(bool enabled)
2117 {
2118 	if (enabled)
2119 		sched_feat_set("NUMA");
2120 	else
2121 		sched_feat_set("NO_NUMA");
2122 }
2123 #else
2124 __read_mostly bool numabalancing_enabled;
2125 
2126 void set_numabalancing_state(bool enabled)
2127 {
2128 	numabalancing_enabled = enabled;
2129 }
2130 #endif /* CONFIG_SCHED_DEBUG */
2131 
2132 #ifdef CONFIG_PROC_SYSCTL
2133 int sysctl_numa_balancing(struct ctl_table *table, int write,
2134 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2135 {
2136 	struct ctl_table t;
2137 	int err;
2138 	int state = numabalancing_enabled;
2139 
2140 	if (write && !capable(CAP_SYS_ADMIN))
2141 		return -EPERM;
2142 
2143 	t = *table;
2144 	t.data = &state;
2145 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2146 	if (err < 0)
2147 		return err;
2148 	if (write)
2149 		set_numabalancing_state(state);
2150 	return err;
2151 }
2152 #endif
2153 #endif
2154 
2155 /*
2156  * fork()/clone()-time setup:
2157  */
2158 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2159 {
2160 	unsigned long flags;
2161 	int cpu = get_cpu();
2162 
2163 	__sched_fork(clone_flags, p);
2164 	/*
2165 	 * We mark the process as running here. This guarantees that
2166 	 * nobody will actually run it, and a signal or other external
2167 	 * event cannot wake it up and insert it on the runqueue either.
2168 	 */
2169 	p->state = TASK_RUNNING;
2170 
2171 	/*
2172 	 * Make sure we do not leak PI boosting priority to the child.
2173 	 */
2174 	p->prio = current->normal_prio;
2175 
2176 	/*
2177 	 * Revert to default priority/policy on fork if requested.
2178 	 */
2179 	if (unlikely(p->sched_reset_on_fork)) {
2180 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2181 			p->policy = SCHED_NORMAL;
2182 			p->static_prio = NICE_TO_PRIO(0);
2183 			p->rt_priority = 0;
2184 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2185 			p->static_prio = NICE_TO_PRIO(0);
2186 
2187 		p->prio = p->normal_prio = __normal_prio(p);
2188 		set_load_weight(p);
2189 
2190 		/*
2191 		 * We don't need the reset flag anymore after the fork. It has
2192 		 * fulfilled its duty:
2193 		 */
2194 		p->sched_reset_on_fork = 0;
2195 	}
2196 
2197 	if (dl_prio(p->prio)) {
2198 		put_cpu();
2199 		return -EAGAIN;
2200 	} else if (rt_prio(p->prio)) {
2201 		p->sched_class = &rt_sched_class;
2202 	} else {
2203 		p->sched_class = &fair_sched_class;
2204 	}
2205 
2206 	if (p->sched_class->task_fork)
2207 		p->sched_class->task_fork(p);
2208 
2209 	/*
2210 	 * The child is not yet in the pid-hash so no cgroup attach races,
2211 	 * and the cgroup is pinned to this child due to cgroup_fork()
2212 	 * is ran before sched_fork().
2213 	 *
2214 	 * Silence PROVE_RCU.
2215 	 */
2216 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2217 	set_task_cpu(p, cpu);
2218 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2219 
2220 #ifdef CONFIG_SCHED_INFO
2221 	if (likely(sched_info_on()))
2222 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2223 #endif
2224 #if defined(CONFIG_SMP)
2225 	p->on_cpu = 0;
2226 #endif
2227 	init_task_preempt_count(p);
2228 #ifdef CONFIG_SMP
2229 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2230 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2231 #endif
2232 
2233 	put_cpu();
2234 	return 0;
2235 }
2236 
2237 unsigned long to_ratio(u64 period, u64 runtime)
2238 {
2239 	if (runtime == RUNTIME_INF)
2240 		return 1ULL << 20;
2241 
2242 	/*
2243 	 * Doing this here saves a lot of checks in all
2244 	 * the calling paths, and returning zero seems
2245 	 * safe for them anyway.
2246 	 */
2247 	if (period == 0)
2248 		return 0;
2249 
2250 	return div64_u64(runtime << 20, period);
2251 }
2252 
2253 #ifdef CONFIG_SMP
2254 inline struct dl_bw *dl_bw_of(int i)
2255 {
2256 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2257 			 "sched RCU must be held");
2258 	return &cpu_rq(i)->rd->dl_bw;
2259 }
2260 
2261 static inline int dl_bw_cpus(int i)
2262 {
2263 	struct root_domain *rd = cpu_rq(i)->rd;
2264 	int cpus = 0;
2265 
2266 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2267 			 "sched RCU must be held");
2268 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2269 		cpus++;
2270 
2271 	return cpus;
2272 }
2273 #else
2274 inline struct dl_bw *dl_bw_of(int i)
2275 {
2276 	return &cpu_rq(i)->dl.dl_bw;
2277 }
2278 
2279 static inline int dl_bw_cpus(int i)
2280 {
2281 	return 1;
2282 }
2283 #endif
2284 
2285 /*
2286  * We must be sure that accepting a new task (or allowing changing the
2287  * parameters of an existing one) is consistent with the bandwidth
2288  * constraints. If yes, this function also accordingly updates the currently
2289  * allocated bandwidth to reflect the new situation.
2290  *
2291  * This function is called while holding p's rq->lock.
2292  *
2293  * XXX we should delay bw change until the task's 0-lag point, see
2294  * __setparam_dl().
2295  */
2296 static int dl_overflow(struct task_struct *p, int policy,
2297 		       const struct sched_attr *attr)
2298 {
2299 
2300 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2301 	u64 period = attr->sched_period ?: attr->sched_deadline;
2302 	u64 runtime = attr->sched_runtime;
2303 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2304 	int cpus, err = -1;
2305 
2306 	if (new_bw == p->dl.dl_bw)
2307 		return 0;
2308 
2309 	/*
2310 	 * Either if a task, enters, leave, or stays -deadline but changes
2311 	 * its parameters, we may need to update accordingly the total
2312 	 * allocated bandwidth of the container.
2313 	 */
2314 	raw_spin_lock(&dl_b->lock);
2315 	cpus = dl_bw_cpus(task_cpu(p));
2316 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2317 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2318 		__dl_add(dl_b, new_bw);
2319 		err = 0;
2320 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2321 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2322 		__dl_clear(dl_b, p->dl.dl_bw);
2323 		__dl_add(dl_b, new_bw);
2324 		err = 0;
2325 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2326 		__dl_clear(dl_b, p->dl.dl_bw);
2327 		err = 0;
2328 	}
2329 	raw_spin_unlock(&dl_b->lock);
2330 
2331 	return err;
2332 }
2333 
2334 extern void init_dl_bw(struct dl_bw *dl_b);
2335 
2336 /*
2337  * wake_up_new_task - wake up a newly created task for the first time.
2338  *
2339  * This function will do some initial scheduler statistics housekeeping
2340  * that must be done for every newly created context, then puts the task
2341  * on the runqueue and wakes it.
2342  */
2343 void wake_up_new_task(struct task_struct *p)
2344 {
2345 	unsigned long flags;
2346 	struct rq *rq;
2347 
2348 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2349 #ifdef CONFIG_SMP
2350 	/*
2351 	 * Fork balancing, do it here and not earlier because:
2352 	 *  - cpus_allowed can change in the fork path
2353 	 *  - any previously selected cpu might disappear through hotplug
2354 	 */
2355 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2356 #endif
2357 
2358 	/* Initialize new task's runnable average */
2359 	init_entity_runnable_average(&p->se);
2360 	rq = __task_rq_lock(p);
2361 	activate_task(rq, p, 0);
2362 	p->on_rq = TASK_ON_RQ_QUEUED;
2363 	trace_sched_wakeup_new(p);
2364 	check_preempt_curr(rq, p, WF_FORK);
2365 #ifdef CONFIG_SMP
2366 	if (p->sched_class->task_woken)
2367 		p->sched_class->task_woken(rq, p);
2368 #endif
2369 	task_rq_unlock(rq, p, &flags);
2370 }
2371 
2372 #ifdef CONFIG_PREEMPT_NOTIFIERS
2373 
2374 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2375 
2376 void preempt_notifier_inc(void)
2377 {
2378 	static_key_slow_inc(&preempt_notifier_key);
2379 }
2380 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2381 
2382 void preempt_notifier_dec(void)
2383 {
2384 	static_key_slow_dec(&preempt_notifier_key);
2385 }
2386 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2387 
2388 /**
2389  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2390  * @notifier: notifier struct to register
2391  */
2392 void preempt_notifier_register(struct preempt_notifier *notifier)
2393 {
2394 	if (!static_key_false(&preempt_notifier_key))
2395 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2396 
2397 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2398 }
2399 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2400 
2401 /**
2402  * preempt_notifier_unregister - no longer interested in preemption notifications
2403  * @notifier: notifier struct to unregister
2404  *
2405  * This is *not* safe to call from within a preemption notifier.
2406  */
2407 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2408 {
2409 	hlist_del(&notifier->link);
2410 }
2411 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2412 
2413 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2414 {
2415 	struct preempt_notifier *notifier;
2416 
2417 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2418 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2419 }
2420 
2421 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2422 {
2423 	if (static_key_false(&preempt_notifier_key))
2424 		__fire_sched_in_preempt_notifiers(curr);
2425 }
2426 
2427 static void
2428 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2429 				   struct task_struct *next)
2430 {
2431 	struct preempt_notifier *notifier;
2432 
2433 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2434 		notifier->ops->sched_out(notifier, next);
2435 }
2436 
2437 static __always_inline void
2438 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2439 				 struct task_struct *next)
2440 {
2441 	if (static_key_false(&preempt_notifier_key))
2442 		__fire_sched_out_preempt_notifiers(curr, next);
2443 }
2444 
2445 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2446 
2447 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2448 {
2449 }
2450 
2451 static inline void
2452 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2453 				 struct task_struct *next)
2454 {
2455 }
2456 
2457 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2458 
2459 /**
2460  * prepare_task_switch - prepare to switch tasks
2461  * @rq: the runqueue preparing to switch
2462  * @prev: the current task that is being switched out
2463  * @next: the task we are going to switch to.
2464  *
2465  * This is called with the rq lock held and interrupts off. It must
2466  * be paired with a subsequent finish_task_switch after the context
2467  * switch.
2468  *
2469  * prepare_task_switch sets up locking and calls architecture specific
2470  * hooks.
2471  */
2472 static inline void
2473 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2474 		    struct task_struct *next)
2475 {
2476 	trace_sched_switch(prev, next);
2477 	sched_info_switch(rq, prev, next);
2478 	perf_event_task_sched_out(prev, next);
2479 	fire_sched_out_preempt_notifiers(prev, next);
2480 	prepare_lock_switch(rq, next);
2481 	prepare_arch_switch(next);
2482 }
2483 
2484 /**
2485  * finish_task_switch - clean up after a task-switch
2486  * @prev: the thread we just switched away from.
2487  *
2488  * finish_task_switch must be called after the context switch, paired
2489  * with a prepare_task_switch call before the context switch.
2490  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2491  * and do any other architecture-specific cleanup actions.
2492  *
2493  * Note that we may have delayed dropping an mm in context_switch(). If
2494  * so, we finish that here outside of the runqueue lock. (Doing it
2495  * with the lock held can cause deadlocks; see schedule() for
2496  * details.)
2497  *
2498  * The context switch have flipped the stack from under us and restored the
2499  * local variables which were saved when this task called schedule() in the
2500  * past. prev == current is still correct but we need to recalculate this_rq
2501  * because prev may have moved to another CPU.
2502  */
2503 static struct rq *finish_task_switch(struct task_struct *prev)
2504 	__releases(rq->lock)
2505 {
2506 	struct rq *rq = this_rq();
2507 	struct mm_struct *mm = rq->prev_mm;
2508 	long prev_state;
2509 
2510 	rq->prev_mm = NULL;
2511 
2512 	/*
2513 	 * A task struct has one reference for the use as "current".
2514 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2515 	 * schedule one last time. The schedule call will never return, and
2516 	 * the scheduled task must drop that reference.
2517 	 * The test for TASK_DEAD must occur while the runqueue locks are
2518 	 * still held, otherwise prev could be scheduled on another cpu, die
2519 	 * there before we look at prev->state, and then the reference would
2520 	 * be dropped twice.
2521 	 *		Manfred Spraul <manfred@colorfullife.com>
2522 	 */
2523 	prev_state = prev->state;
2524 	vtime_task_switch(prev);
2525 	perf_event_task_sched_in(prev, current);
2526 	finish_lock_switch(rq, prev);
2527 	finish_arch_post_lock_switch();
2528 
2529 	fire_sched_in_preempt_notifiers(current);
2530 	if (mm)
2531 		mmdrop(mm);
2532 	if (unlikely(prev_state == TASK_DEAD)) {
2533 		if (prev->sched_class->task_dead)
2534 			prev->sched_class->task_dead(prev);
2535 
2536 		/*
2537 		 * Remove function-return probe instances associated with this
2538 		 * task and put them back on the free list.
2539 		 */
2540 		kprobe_flush_task(prev);
2541 		put_task_struct(prev);
2542 	}
2543 
2544 	tick_nohz_task_switch();
2545 	return rq;
2546 }
2547 
2548 #ifdef CONFIG_SMP
2549 
2550 /* rq->lock is NOT held, but preemption is disabled */
2551 static void __balance_callback(struct rq *rq)
2552 {
2553 	struct callback_head *head, *next;
2554 	void (*func)(struct rq *rq);
2555 	unsigned long flags;
2556 
2557 	raw_spin_lock_irqsave(&rq->lock, flags);
2558 	head = rq->balance_callback;
2559 	rq->balance_callback = NULL;
2560 	while (head) {
2561 		func = (void (*)(struct rq *))head->func;
2562 		next = head->next;
2563 		head->next = NULL;
2564 		head = next;
2565 
2566 		func(rq);
2567 	}
2568 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2569 }
2570 
2571 static inline void balance_callback(struct rq *rq)
2572 {
2573 	if (unlikely(rq->balance_callback))
2574 		__balance_callback(rq);
2575 }
2576 
2577 #else
2578 
2579 static inline void balance_callback(struct rq *rq)
2580 {
2581 }
2582 
2583 #endif
2584 
2585 /**
2586  * schedule_tail - first thing a freshly forked thread must call.
2587  * @prev: the thread we just switched away from.
2588  */
2589 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2590 	__releases(rq->lock)
2591 {
2592 	struct rq *rq;
2593 
2594 	/* finish_task_switch() drops rq->lock and enables preemtion */
2595 	preempt_disable();
2596 	rq = finish_task_switch(prev);
2597 	balance_callback(rq);
2598 	preempt_enable();
2599 
2600 	if (current->set_child_tid)
2601 		put_user(task_pid_vnr(current), current->set_child_tid);
2602 }
2603 
2604 /*
2605  * context_switch - switch to the new MM and the new thread's register state.
2606  */
2607 static inline struct rq *
2608 context_switch(struct rq *rq, struct task_struct *prev,
2609 	       struct task_struct *next)
2610 {
2611 	struct mm_struct *mm, *oldmm;
2612 
2613 	prepare_task_switch(rq, prev, next);
2614 
2615 	mm = next->mm;
2616 	oldmm = prev->active_mm;
2617 	/*
2618 	 * For paravirt, this is coupled with an exit in switch_to to
2619 	 * combine the page table reload and the switch backend into
2620 	 * one hypercall.
2621 	 */
2622 	arch_start_context_switch(prev);
2623 
2624 	if (!mm) {
2625 		next->active_mm = oldmm;
2626 		atomic_inc(&oldmm->mm_count);
2627 		enter_lazy_tlb(oldmm, next);
2628 	} else
2629 		switch_mm(oldmm, mm, next);
2630 
2631 	if (!prev->mm) {
2632 		prev->active_mm = NULL;
2633 		rq->prev_mm = oldmm;
2634 	}
2635 	/*
2636 	 * Since the runqueue lock will be released by the next
2637 	 * task (which is an invalid locking op but in the case
2638 	 * of the scheduler it's an obvious special-case), so we
2639 	 * do an early lockdep release here:
2640 	 */
2641 	lockdep_unpin_lock(&rq->lock);
2642 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2643 
2644 	/* Here we just switch the register state and the stack. */
2645 	switch_to(prev, next, prev);
2646 	barrier();
2647 
2648 	return finish_task_switch(prev);
2649 }
2650 
2651 /*
2652  * nr_running and nr_context_switches:
2653  *
2654  * externally visible scheduler statistics: current number of runnable
2655  * threads, total number of context switches performed since bootup.
2656  */
2657 unsigned long nr_running(void)
2658 {
2659 	unsigned long i, sum = 0;
2660 
2661 	for_each_online_cpu(i)
2662 		sum += cpu_rq(i)->nr_running;
2663 
2664 	return sum;
2665 }
2666 
2667 /*
2668  * Check if only the current task is running on the cpu.
2669  */
2670 bool single_task_running(void)
2671 {
2672 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2673 		return true;
2674 	else
2675 		return false;
2676 }
2677 EXPORT_SYMBOL(single_task_running);
2678 
2679 unsigned long long nr_context_switches(void)
2680 {
2681 	int i;
2682 	unsigned long long sum = 0;
2683 
2684 	for_each_possible_cpu(i)
2685 		sum += cpu_rq(i)->nr_switches;
2686 
2687 	return sum;
2688 }
2689 
2690 unsigned long nr_iowait(void)
2691 {
2692 	unsigned long i, sum = 0;
2693 
2694 	for_each_possible_cpu(i)
2695 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2696 
2697 	return sum;
2698 }
2699 
2700 unsigned long nr_iowait_cpu(int cpu)
2701 {
2702 	struct rq *this = cpu_rq(cpu);
2703 	return atomic_read(&this->nr_iowait);
2704 }
2705 
2706 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2707 {
2708 	struct rq *rq = this_rq();
2709 	*nr_waiters = atomic_read(&rq->nr_iowait);
2710 	*load = rq->load.weight;
2711 }
2712 
2713 #ifdef CONFIG_SMP
2714 
2715 /*
2716  * sched_exec - execve() is a valuable balancing opportunity, because at
2717  * this point the task has the smallest effective memory and cache footprint.
2718  */
2719 void sched_exec(void)
2720 {
2721 	struct task_struct *p = current;
2722 	unsigned long flags;
2723 	int dest_cpu;
2724 
2725 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2726 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2727 	if (dest_cpu == smp_processor_id())
2728 		goto unlock;
2729 
2730 	if (likely(cpu_active(dest_cpu))) {
2731 		struct migration_arg arg = { p, dest_cpu };
2732 
2733 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2734 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2735 		return;
2736 	}
2737 unlock:
2738 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2739 }
2740 
2741 #endif
2742 
2743 DEFINE_PER_CPU(struct kernel_stat, kstat);
2744 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2745 
2746 EXPORT_PER_CPU_SYMBOL(kstat);
2747 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2748 
2749 /*
2750  * Return accounted runtime for the task.
2751  * In case the task is currently running, return the runtime plus current's
2752  * pending runtime that have not been accounted yet.
2753  */
2754 unsigned long long task_sched_runtime(struct task_struct *p)
2755 {
2756 	unsigned long flags;
2757 	struct rq *rq;
2758 	u64 ns;
2759 
2760 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2761 	/*
2762 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2763 	 * So we have a optimization chance when the task's delta_exec is 0.
2764 	 * Reading ->on_cpu is racy, but this is ok.
2765 	 *
2766 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2767 	 * If we race with it entering cpu, unaccounted time is 0. This is
2768 	 * indistinguishable from the read occurring a few cycles earlier.
2769 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2770 	 * been accounted, so we're correct here as well.
2771 	 */
2772 	if (!p->on_cpu || !task_on_rq_queued(p))
2773 		return p->se.sum_exec_runtime;
2774 #endif
2775 
2776 	rq = task_rq_lock(p, &flags);
2777 	/*
2778 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2779 	 * project cycles that may never be accounted to this
2780 	 * thread, breaking clock_gettime().
2781 	 */
2782 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2783 		update_rq_clock(rq);
2784 		p->sched_class->update_curr(rq);
2785 	}
2786 	ns = p->se.sum_exec_runtime;
2787 	task_rq_unlock(rq, p, &flags);
2788 
2789 	return ns;
2790 }
2791 
2792 /*
2793  * This function gets called by the timer code, with HZ frequency.
2794  * We call it with interrupts disabled.
2795  */
2796 void scheduler_tick(void)
2797 {
2798 	int cpu = smp_processor_id();
2799 	struct rq *rq = cpu_rq(cpu);
2800 	struct task_struct *curr = rq->curr;
2801 
2802 	sched_clock_tick();
2803 
2804 	raw_spin_lock(&rq->lock);
2805 	update_rq_clock(rq);
2806 	curr->sched_class->task_tick(rq, curr, 0);
2807 	update_cpu_load_active(rq);
2808 	calc_global_load_tick(rq);
2809 	raw_spin_unlock(&rq->lock);
2810 
2811 	perf_event_task_tick();
2812 
2813 #ifdef CONFIG_SMP
2814 	rq->idle_balance = idle_cpu(cpu);
2815 	trigger_load_balance(rq);
2816 #endif
2817 	rq_last_tick_reset(rq);
2818 }
2819 
2820 #ifdef CONFIG_NO_HZ_FULL
2821 /**
2822  * scheduler_tick_max_deferment
2823  *
2824  * Keep at least one tick per second when a single
2825  * active task is running because the scheduler doesn't
2826  * yet completely support full dynticks environment.
2827  *
2828  * This makes sure that uptime, CFS vruntime, load
2829  * balancing, etc... continue to move forward, even
2830  * with a very low granularity.
2831  *
2832  * Return: Maximum deferment in nanoseconds.
2833  */
2834 u64 scheduler_tick_max_deferment(void)
2835 {
2836 	struct rq *rq = this_rq();
2837 	unsigned long next, now = READ_ONCE(jiffies);
2838 
2839 	next = rq->last_sched_tick + HZ;
2840 
2841 	if (time_before_eq(next, now))
2842 		return 0;
2843 
2844 	return jiffies_to_nsecs(next - now);
2845 }
2846 #endif
2847 
2848 notrace unsigned long get_parent_ip(unsigned long addr)
2849 {
2850 	if (in_lock_functions(addr)) {
2851 		addr = CALLER_ADDR2;
2852 		if (in_lock_functions(addr))
2853 			addr = CALLER_ADDR3;
2854 	}
2855 	return addr;
2856 }
2857 
2858 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2859 				defined(CONFIG_PREEMPT_TRACER))
2860 
2861 void preempt_count_add(int val)
2862 {
2863 #ifdef CONFIG_DEBUG_PREEMPT
2864 	/*
2865 	 * Underflow?
2866 	 */
2867 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2868 		return;
2869 #endif
2870 	__preempt_count_add(val);
2871 #ifdef CONFIG_DEBUG_PREEMPT
2872 	/*
2873 	 * Spinlock count overflowing soon?
2874 	 */
2875 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2876 				PREEMPT_MASK - 10);
2877 #endif
2878 	if (preempt_count() == val) {
2879 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2880 #ifdef CONFIG_DEBUG_PREEMPT
2881 		current->preempt_disable_ip = ip;
2882 #endif
2883 		trace_preempt_off(CALLER_ADDR0, ip);
2884 	}
2885 }
2886 EXPORT_SYMBOL(preempt_count_add);
2887 NOKPROBE_SYMBOL(preempt_count_add);
2888 
2889 void preempt_count_sub(int val)
2890 {
2891 #ifdef CONFIG_DEBUG_PREEMPT
2892 	/*
2893 	 * Underflow?
2894 	 */
2895 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2896 		return;
2897 	/*
2898 	 * Is the spinlock portion underflowing?
2899 	 */
2900 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2901 			!(preempt_count() & PREEMPT_MASK)))
2902 		return;
2903 #endif
2904 
2905 	if (preempt_count() == val)
2906 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2907 	__preempt_count_sub(val);
2908 }
2909 EXPORT_SYMBOL(preempt_count_sub);
2910 NOKPROBE_SYMBOL(preempt_count_sub);
2911 
2912 #endif
2913 
2914 /*
2915  * Print scheduling while atomic bug:
2916  */
2917 static noinline void __schedule_bug(struct task_struct *prev)
2918 {
2919 	if (oops_in_progress)
2920 		return;
2921 
2922 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2923 		prev->comm, prev->pid, preempt_count());
2924 
2925 	debug_show_held_locks(prev);
2926 	print_modules();
2927 	if (irqs_disabled())
2928 		print_irqtrace_events(prev);
2929 #ifdef CONFIG_DEBUG_PREEMPT
2930 	if (in_atomic_preempt_off()) {
2931 		pr_err("Preemption disabled at:");
2932 		print_ip_sym(current->preempt_disable_ip);
2933 		pr_cont("\n");
2934 	}
2935 #endif
2936 	dump_stack();
2937 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2938 }
2939 
2940 /*
2941  * Various schedule()-time debugging checks and statistics:
2942  */
2943 static inline void schedule_debug(struct task_struct *prev)
2944 {
2945 #ifdef CONFIG_SCHED_STACK_END_CHECK
2946 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2947 #endif
2948 	/*
2949 	 * Test if we are atomic. Since do_exit() needs to call into
2950 	 * schedule() atomically, we ignore that path. Otherwise whine
2951 	 * if we are scheduling when we should not.
2952 	 */
2953 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2954 		__schedule_bug(prev);
2955 	rcu_sleep_check();
2956 
2957 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2958 
2959 	schedstat_inc(this_rq(), sched_count);
2960 }
2961 
2962 /*
2963  * Pick up the highest-prio task:
2964  */
2965 static inline struct task_struct *
2966 pick_next_task(struct rq *rq, struct task_struct *prev)
2967 {
2968 	const struct sched_class *class = &fair_sched_class;
2969 	struct task_struct *p;
2970 
2971 	/*
2972 	 * Optimization: we know that if all tasks are in
2973 	 * the fair class we can call that function directly:
2974 	 */
2975 	if (likely(prev->sched_class == class &&
2976 		   rq->nr_running == rq->cfs.h_nr_running)) {
2977 		p = fair_sched_class.pick_next_task(rq, prev);
2978 		if (unlikely(p == RETRY_TASK))
2979 			goto again;
2980 
2981 		/* assumes fair_sched_class->next == idle_sched_class */
2982 		if (unlikely(!p))
2983 			p = idle_sched_class.pick_next_task(rq, prev);
2984 
2985 		return p;
2986 	}
2987 
2988 again:
2989 	for_each_class(class) {
2990 		p = class->pick_next_task(rq, prev);
2991 		if (p) {
2992 			if (unlikely(p == RETRY_TASK))
2993 				goto again;
2994 			return p;
2995 		}
2996 	}
2997 
2998 	BUG(); /* the idle class will always have a runnable task */
2999 }
3000 
3001 /*
3002  * __schedule() is the main scheduler function.
3003  *
3004  * The main means of driving the scheduler and thus entering this function are:
3005  *
3006  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3007  *
3008  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3009  *      paths. For example, see arch/x86/entry_64.S.
3010  *
3011  *      To drive preemption between tasks, the scheduler sets the flag in timer
3012  *      interrupt handler scheduler_tick().
3013  *
3014  *   3. Wakeups don't really cause entry into schedule(). They add a
3015  *      task to the run-queue and that's it.
3016  *
3017  *      Now, if the new task added to the run-queue preempts the current
3018  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3019  *      called on the nearest possible occasion:
3020  *
3021  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3022  *
3023  *         - in syscall or exception context, at the next outmost
3024  *           preempt_enable(). (this might be as soon as the wake_up()'s
3025  *           spin_unlock()!)
3026  *
3027  *         - in IRQ context, return from interrupt-handler to
3028  *           preemptible context
3029  *
3030  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3031  *         then at the next:
3032  *
3033  *          - cond_resched() call
3034  *          - explicit schedule() call
3035  *          - return from syscall or exception to user-space
3036  *          - return from interrupt-handler to user-space
3037  *
3038  * WARNING: must be called with preemption disabled!
3039  */
3040 static void __sched __schedule(void)
3041 {
3042 	struct task_struct *prev, *next;
3043 	unsigned long *switch_count;
3044 	struct rq *rq;
3045 	int cpu;
3046 
3047 	cpu = smp_processor_id();
3048 	rq = cpu_rq(cpu);
3049 	rcu_note_context_switch();
3050 	prev = rq->curr;
3051 
3052 	schedule_debug(prev);
3053 
3054 	if (sched_feat(HRTICK))
3055 		hrtick_clear(rq);
3056 
3057 	/*
3058 	 * Make sure that signal_pending_state()->signal_pending() below
3059 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3060 	 * done by the caller to avoid the race with signal_wake_up().
3061 	 */
3062 	smp_mb__before_spinlock();
3063 	raw_spin_lock_irq(&rq->lock);
3064 	lockdep_pin_lock(&rq->lock);
3065 
3066 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3067 
3068 	switch_count = &prev->nivcsw;
3069 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3070 		if (unlikely(signal_pending_state(prev->state, prev))) {
3071 			prev->state = TASK_RUNNING;
3072 		} else {
3073 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3074 			prev->on_rq = 0;
3075 
3076 			/*
3077 			 * If a worker went to sleep, notify and ask workqueue
3078 			 * whether it wants to wake up a task to maintain
3079 			 * concurrency.
3080 			 */
3081 			if (prev->flags & PF_WQ_WORKER) {
3082 				struct task_struct *to_wakeup;
3083 
3084 				to_wakeup = wq_worker_sleeping(prev, cpu);
3085 				if (to_wakeup)
3086 					try_to_wake_up_local(to_wakeup);
3087 			}
3088 		}
3089 		switch_count = &prev->nvcsw;
3090 	}
3091 
3092 	if (task_on_rq_queued(prev))
3093 		update_rq_clock(rq);
3094 
3095 	next = pick_next_task(rq, prev);
3096 	clear_tsk_need_resched(prev);
3097 	clear_preempt_need_resched();
3098 	rq->clock_skip_update = 0;
3099 
3100 	if (likely(prev != next)) {
3101 		rq->nr_switches++;
3102 		rq->curr = next;
3103 		++*switch_count;
3104 
3105 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3106 		cpu = cpu_of(rq);
3107 	} else {
3108 		lockdep_unpin_lock(&rq->lock);
3109 		raw_spin_unlock_irq(&rq->lock);
3110 	}
3111 
3112 	balance_callback(rq);
3113 }
3114 
3115 static inline void sched_submit_work(struct task_struct *tsk)
3116 {
3117 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3118 		return;
3119 	/*
3120 	 * If we are going to sleep and we have plugged IO queued,
3121 	 * make sure to submit it to avoid deadlocks.
3122 	 */
3123 	if (blk_needs_flush_plug(tsk))
3124 		blk_schedule_flush_plug(tsk);
3125 }
3126 
3127 asmlinkage __visible void __sched schedule(void)
3128 {
3129 	struct task_struct *tsk = current;
3130 
3131 	sched_submit_work(tsk);
3132 	do {
3133 		preempt_disable();
3134 		__schedule();
3135 		sched_preempt_enable_no_resched();
3136 	} while (need_resched());
3137 }
3138 EXPORT_SYMBOL(schedule);
3139 
3140 #ifdef CONFIG_CONTEXT_TRACKING
3141 asmlinkage __visible void __sched schedule_user(void)
3142 {
3143 	/*
3144 	 * If we come here after a random call to set_need_resched(),
3145 	 * or we have been woken up remotely but the IPI has not yet arrived,
3146 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3147 	 * we find a better solution.
3148 	 *
3149 	 * NB: There are buggy callers of this function.  Ideally we
3150 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3151 	 * too frequently to make sense yet.
3152 	 */
3153 	enum ctx_state prev_state = exception_enter();
3154 	schedule();
3155 	exception_exit(prev_state);
3156 }
3157 #endif
3158 
3159 /**
3160  * schedule_preempt_disabled - called with preemption disabled
3161  *
3162  * Returns with preemption disabled. Note: preempt_count must be 1
3163  */
3164 void __sched schedule_preempt_disabled(void)
3165 {
3166 	sched_preempt_enable_no_resched();
3167 	schedule();
3168 	preempt_disable();
3169 }
3170 
3171 static void __sched notrace preempt_schedule_common(void)
3172 {
3173 	do {
3174 		preempt_active_enter();
3175 		__schedule();
3176 		preempt_active_exit();
3177 
3178 		/*
3179 		 * Check again in case we missed a preemption opportunity
3180 		 * between schedule and now.
3181 		 */
3182 	} while (need_resched());
3183 }
3184 
3185 #ifdef CONFIG_PREEMPT
3186 /*
3187  * this is the entry point to schedule() from in-kernel preemption
3188  * off of preempt_enable. Kernel preemptions off return from interrupt
3189  * occur there and call schedule directly.
3190  */
3191 asmlinkage __visible void __sched notrace preempt_schedule(void)
3192 {
3193 	/*
3194 	 * If there is a non-zero preempt_count or interrupts are disabled,
3195 	 * we do not want to preempt the current task. Just return..
3196 	 */
3197 	if (likely(!preemptible()))
3198 		return;
3199 
3200 	preempt_schedule_common();
3201 }
3202 NOKPROBE_SYMBOL(preempt_schedule);
3203 EXPORT_SYMBOL(preempt_schedule);
3204 
3205 /**
3206  * preempt_schedule_notrace - preempt_schedule called by tracing
3207  *
3208  * The tracing infrastructure uses preempt_enable_notrace to prevent
3209  * recursion and tracing preempt enabling caused by the tracing
3210  * infrastructure itself. But as tracing can happen in areas coming
3211  * from userspace or just about to enter userspace, a preempt enable
3212  * can occur before user_exit() is called. This will cause the scheduler
3213  * to be called when the system is still in usermode.
3214  *
3215  * To prevent this, the preempt_enable_notrace will use this function
3216  * instead of preempt_schedule() to exit user context if needed before
3217  * calling the scheduler.
3218  */
3219 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3220 {
3221 	enum ctx_state prev_ctx;
3222 
3223 	if (likely(!preemptible()))
3224 		return;
3225 
3226 	do {
3227 		/*
3228 		 * Use raw __prempt_count() ops that don't call function.
3229 		 * We can't call functions before disabling preemption which
3230 		 * disarm preemption tracing recursions.
3231 		 */
3232 		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3233 		barrier();
3234 		/*
3235 		 * Needs preempt disabled in case user_exit() is traced
3236 		 * and the tracer calls preempt_enable_notrace() causing
3237 		 * an infinite recursion.
3238 		 */
3239 		prev_ctx = exception_enter();
3240 		__schedule();
3241 		exception_exit(prev_ctx);
3242 
3243 		barrier();
3244 		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3245 	} while (need_resched());
3246 }
3247 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3248 
3249 #endif /* CONFIG_PREEMPT */
3250 
3251 /*
3252  * this is the entry point to schedule() from kernel preemption
3253  * off of irq context.
3254  * Note, that this is called and return with irqs disabled. This will
3255  * protect us against recursive calling from irq.
3256  */
3257 asmlinkage __visible void __sched preempt_schedule_irq(void)
3258 {
3259 	enum ctx_state prev_state;
3260 
3261 	/* Catch callers which need to be fixed */
3262 	BUG_ON(preempt_count() || !irqs_disabled());
3263 
3264 	prev_state = exception_enter();
3265 
3266 	do {
3267 		preempt_active_enter();
3268 		local_irq_enable();
3269 		__schedule();
3270 		local_irq_disable();
3271 		preempt_active_exit();
3272 	} while (need_resched());
3273 
3274 	exception_exit(prev_state);
3275 }
3276 
3277 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3278 			  void *key)
3279 {
3280 	return try_to_wake_up(curr->private, mode, wake_flags);
3281 }
3282 EXPORT_SYMBOL(default_wake_function);
3283 
3284 #ifdef CONFIG_RT_MUTEXES
3285 
3286 /*
3287  * rt_mutex_setprio - set the current priority of a task
3288  * @p: task
3289  * @prio: prio value (kernel-internal form)
3290  *
3291  * This function changes the 'effective' priority of a task. It does
3292  * not touch ->normal_prio like __setscheduler().
3293  *
3294  * Used by the rt_mutex code to implement priority inheritance
3295  * logic. Call site only calls if the priority of the task changed.
3296  */
3297 void rt_mutex_setprio(struct task_struct *p, int prio)
3298 {
3299 	int oldprio, queued, running, enqueue_flag = 0;
3300 	struct rq *rq;
3301 	const struct sched_class *prev_class;
3302 
3303 	BUG_ON(prio > MAX_PRIO);
3304 
3305 	rq = __task_rq_lock(p);
3306 
3307 	/*
3308 	 * Idle task boosting is a nono in general. There is one
3309 	 * exception, when PREEMPT_RT and NOHZ is active:
3310 	 *
3311 	 * The idle task calls get_next_timer_interrupt() and holds
3312 	 * the timer wheel base->lock on the CPU and another CPU wants
3313 	 * to access the timer (probably to cancel it). We can safely
3314 	 * ignore the boosting request, as the idle CPU runs this code
3315 	 * with interrupts disabled and will complete the lock
3316 	 * protected section without being interrupted. So there is no
3317 	 * real need to boost.
3318 	 */
3319 	if (unlikely(p == rq->idle)) {
3320 		WARN_ON(p != rq->curr);
3321 		WARN_ON(p->pi_blocked_on);
3322 		goto out_unlock;
3323 	}
3324 
3325 	trace_sched_pi_setprio(p, prio);
3326 	oldprio = p->prio;
3327 	prev_class = p->sched_class;
3328 	queued = task_on_rq_queued(p);
3329 	running = task_current(rq, p);
3330 	if (queued)
3331 		dequeue_task(rq, p, 0);
3332 	if (running)
3333 		put_prev_task(rq, p);
3334 
3335 	/*
3336 	 * Boosting condition are:
3337 	 * 1. -rt task is running and holds mutex A
3338 	 *      --> -dl task blocks on mutex A
3339 	 *
3340 	 * 2. -dl task is running and holds mutex A
3341 	 *      --> -dl task blocks on mutex A and could preempt the
3342 	 *          running task
3343 	 */
3344 	if (dl_prio(prio)) {
3345 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3346 		if (!dl_prio(p->normal_prio) ||
3347 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3348 			p->dl.dl_boosted = 1;
3349 			enqueue_flag = ENQUEUE_REPLENISH;
3350 		} else
3351 			p->dl.dl_boosted = 0;
3352 		p->sched_class = &dl_sched_class;
3353 	} else if (rt_prio(prio)) {
3354 		if (dl_prio(oldprio))
3355 			p->dl.dl_boosted = 0;
3356 		if (oldprio < prio)
3357 			enqueue_flag = ENQUEUE_HEAD;
3358 		p->sched_class = &rt_sched_class;
3359 	} else {
3360 		if (dl_prio(oldprio))
3361 			p->dl.dl_boosted = 0;
3362 		if (rt_prio(oldprio))
3363 			p->rt.timeout = 0;
3364 		p->sched_class = &fair_sched_class;
3365 	}
3366 
3367 	p->prio = prio;
3368 
3369 	if (running)
3370 		p->sched_class->set_curr_task(rq);
3371 	if (queued)
3372 		enqueue_task(rq, p, enqueue_flag);
3373 
3374 	check_class_changed(rq, p, prev_class, oldprio);
3375 out_unlock:
3376 	preempt_disable(); /* avoid rq from going away on us */
3377 	__task_rq_unlock(rq);
3378 
3379 	balance_callback(rq);
3380 	preempt_enable();
3381 }
3382 #endif
3383 
3384 void set_user_nice(struct task_struct *p, long nice)
3385 {
3386 	int old_prio, delta, queued;
3387 	unsigned long flags;
3388 	struct rq *rq;
3389 
3390 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3391 		return;
3392 	/*
3393 	 * We have to be careful, if called from sys_setpriority(),
3394 	 * the task might be in the middle of scheduling on another CPU.
3395 	 */
3396 	rq = task_rq_lock(p, &flags);
3397 	/*
3398 	 * The RT priorities are set via sched_setscheduler(), but we still
3399 	 * allow the 'normal' nice value to be set - but as expected
3400 	 * it wont have any effect on scheduling until the task is
3401 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3402 	 */
3403 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3404 		p->static_prio = NICE_TO_PRIO(nice);
3405 		goto out_unlock;
3406 	}
3407 	queued = task_on_rq_queued(p);
3408 	if (queued)
3409 		dequeue_task(rq, p, 0);
3410 
3411 	p->static_prio = NICE_TO_PRIO(nice);
3412 	set_load_weight(p);
3413 	old_prio = p->prio;
3414 	p->prio = effective_prio(p);
3415 	delta = p->prio - old_prio;
3416 
3417 	if (queued) {
3418 		enqueue_task(rq, p, 0);
3419 		/*
3420 		 * If the task increased its priority or is running and
3421 		 * lowered its priority, then reschedule its CPU:
3422 		 */
3423 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3424 			resched_curr(rq);
3425 	}
3426 out_unlock:
3427 	task_rq_unlock(rq, p, &flags);
3428 }
3429 EXPORT_SYMBOL(set_user_nice);
3430 
3431 /*
3432  * can_nice - check if a task can reduce its nice value
3433  * @p: task
3434  * @nice: nice value
3435  */
3436 int can_nice(const struct task_struct *p, const int nice)
3437 {
3438 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3439 	int nice_rlim = nice_to_rlimit(nice);
3440 
3441 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3442 		capable(CAP_SYS_NICE));
3443 }
3444 
3445 #ifdef __ARCH_WANT_SYS_NICE
3446 
3447 /*
3448  * sys_nice - change the priority of the current process.
3449  * @increment: priority increment
3450  *
3451  * sys_setpriority is a more generic, but much slower function that
3452  * does similar things.
3453  */
3454 SYSCALL_DEFINE1(nice, int, increment)
3455 {
3456 	long nice, retval;
3457 
3458 	/*
3459 	 * Setpriority might change our priority at the same moment.
3460 	 * We don't have to worry. Conceptually one call occurs first
3461 	 * and we have a single winner.
3462 	 */
3463 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3464 	nice = task_nice(current) + increment;
3465 
3466 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3467 	if (increment < 0 && !can_nice(current, nice))
3468 		return -EPERM;
3469 
3470 	retval = security_task_setnice(current, nice);
3471 	if (retval)
3472 		return retval;
3473 
3474 	set_user_nice(current, nice);
3475 	return 0;
3476 }
3477 
3478 #endif
3479 
3480 /**
3481  * task_prio - return the priority value of a given task.
3482  * @p: the task in question.
3483  *
3484  * Return: The priority value as seen by users in /proc.
3485  * RT tasks are offset by -200. Normal tasks are centered
3486  * around 0, value goes from -16 to +15.
3487  */
3488 int task_prio(const struct task_struct *p)
3489 {
3490 	return p->prio - MAX_RT_PRIO;
3491 }
3492 
3493 /**
3494  * idle_cpu - is a given cpu idle currently?
3495  * @cpu: the processor in question.
3496  *
3497  * Return: 1 if the CPU is currently idle. 0 otherwise.
3498  */
3499 int idle_cpu(int cpu)
3500 {
3501 	struct rq *rq = cpu_rq(cpu);
3502 
3503 	if (rq->curr != rq->idle)
3504 		return 0;
3505 
3506 	if (rq->nr_running)
3507 		return 0;
3508 
3509 #ifdef CONFIG_SMP
3510 	if (!llist_empty(&rq->wake_list))
3511 		return 0;
3512 #endif
3513 
3514 	return 1;
3515 }
3516 
3517 /**
3518  * idle_task - return the idle task for a given cpu.
3519  * @cpu: the processor in question.
3520  *
3521  * Return: The idle task for the cpu @cpu.
3522  */
3523 struct task_struct *idle_task(int cpu)
3524 {
3525 	return cpu_rq(cpu)->idle;
3526 }
3527 
3528 /**
3529  * find_process_by_pid - find a process with a matching PID value.
3530  * @pid: the pid in question.
3531  *
3532  * The task of @pid, if found. %NULL otherwise.
3533  */
3534 static struct task_struct *find_process_by_pid(pid_t pid)
3535 {
3536 	return pid ? find_task_by_vpid(pid) : current;
3537 }
3538 
3539 /*
3540  * This function initializes the sched_dl_entity of a newly becoming
3541  * SCHED_DEADLINE task.
3542  *
3543  * Only the static values are considered here, the actual runtime and the
3544  * absolute deadline will be properly calculated when the task is enqueued
3545  * for the first time with its new policy.
3546  */
3547 static void
3548 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3549 {
3550 	struct sched_dl_entity *dl_se = &p->dl;
3551 
3552 	dl_se->dl_runtime = attr->sched_runtime;
3553 	dl_se->dl_deadline = attr->sched_deadline;
3554 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3555 	dl_se->flags = attr->sched_flags;
3556 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3557 
3558 	/*
3559 	 * Changing the parameters of a task is 'tricky' and we're not doing
3560 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3561 	 *
3562 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3563 	 * point. This would include retaining the task_struct until that time
3564 	 * and change dl_overflow() to not immediately decrement the current
3565 	 * amount.
3566 	 *
3567 	 * Instead we retain the current runtime/deadline and let the new
3568 	 * parameters take effect after the current reservation period lapses.
3569 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3570 	 * before the current scheduling deadline.
3571 	 *
3572 	 * We can still have temporary overloads because we do not delay the
3573 	 * change in bandwidth until that time; so admission control is
3574 	 * not on the safe side. It does however guarantee tasks will never
3575 	 * consume more than promised.
3576 	 */
3577 }
3578 
3579 /*
3580  * sched_setparam() passes in -1 for its policy, to let the functions
3581  * it calls know not to change it.
3582  */
3583 #define SETPARAM_POLICY	-1
3584 
3585 static void __setscheduler_params(struct task_struct *p,
3586 		const struct sched_attr *attr)
3587 {
3588 	int policy = attr->sched_policy;
3589 
3590 	if (policy == SETPARAM_POLICY)
3591 		policy = p->policy;
3592 
3593 	p->policy = policy;
3594 
3595 	if (dl_policy(policy))
3596 		__setparam_dl(p, attr);
3597 	else if (fair_policy(policy))
3598 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3599 
3600 	/*
3601 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3602 	 * !rt_policy. Always setting this ensures that things like
3603 	 * getparam()/getattr() don't report silly values for !rt tasks.
3604 	 */
3605 	p->rt_priority = attr->sched_priority;
3606 	p->normal_prio = normal_prio(p);
3607 	set_load_weight(p);
3608 }
3609 
3610 /* Actually do priority change: must hold pi & rq lock. */
3611 static void __setscheduler(struct rq *rq, struct task_struct *p,
3612 			   const struct sched_attr *attr, bool keep_boost)
3613 {
3614 	__setscheduler_params(p, attr);
3615 
3616 	/*
3617 	 * Keep a potential priority boosting if called from
3618 	 * sched_setscheduler().
3619 	 */
3620 	if (keep_boost)
3621 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3622 	else
3623 		p->prio = normal_prio(p);
3624 
3625 	if (dl_prio(p->prio))
3626 		p->sched_class = &dl_sched_class;
3627 	else if (rt_prio(p->prio))
3628 		p->sched_class = &rt_sched_class;
3629 	else
3630 		p->sched_class = &fair_sched_class;
3631 }
3632 
3633 static void
3634 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3635 {
3636 	struct sched_dl_entity *dl_se = &p->dl;
3637 
3638 	attr->sched_priority = p->rt_priority;
3639 	attr->sched_runtime = dl_se->dl_runtime;
3640 	attr->sched_deadline = dl_se->dl_deadline;
3641 	attr->sched_period = dl_se->dl_period;
3642 	attr->sched_flags = dl_se->flags;
3643 }
3644 
3645 /*
3646  * This function validates the new parameters of a -deadline task.
3647  * We ask for the deadline not being zero, and greater or equal
3648  * than the runtime, as well as the period of being zero or
3649  * greater than deadline. Furthermore, we have to be sure that
3650  * user parameters are above the internal resolution of 1us (we
3651  * check sched_runtime only since it is always the smaller one) and
3652  * below 2^63 ns (we have to check both sched_deadline and
3653  * sched_period, as the latter can be zero).
3654  */
3655 static bool
3656 __checkparam_dl(const struct sched_attr *attr)
3657 {
3658 	/* deadline != 0 */
3659 	if (attr->sched_deadline == 0)
3660 		return false;
3661 
3662 	/*
3663 	 * Since we truncate DL_SCALE bits, make sure we're at least
3664 	 * that big.
3665 	 */
3666 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3667 		return false;
3668 
3669 	/*
3670 	 * Since we use the MSB for wrap-around and sign issues, make
3671 	 * sure it's not set (mind that period can be equal to zero).
3672 	 */
3673 	if (attr->sched_deadline & (1ULL << 63) ||
3674 	    attr->sched_period & (1ULL << 63))
3675 		return false;
3676 
3677 	/* runtime <= deadline <= period (if period != 0) */
3678 	if ((attr->sched_period != 0 &&
3679 	     attr->sched_period < attr->sched_deadline) ||
3680 	    attr->sched_deadline < attr->sched_runtime)
3681 		return false;
3682 
3683 	return true;
3684 }
3685 
3686 /*
3687  * check the target process has a UID that matches the current process's
3688  */
3689 static bool check_same_owner(struct task_struct *p)
3690 {
3691 	const struct cred *cred = current_cred(), *pcred;
3692 	bool match;
3693 
3694 	rcu_read_lock();
3695 	pcred = __task_cred(p);
3696 	match = (uid_eq(cred->euid, pcred->euid) ||
3697 		 uid_eq(cred->euid, pcred->uid));
3698 	rcu_read_unlock();
3699 	return match;
3700 }
3701 
3702 static bool dl_param_changed(struct task_struct *p,
3703 		const struct sched_attr *attr)
3704 {
3705 	struct sched_dl_entity *dl_se = &p->dl;
3706 
3707 	if (dl_se->dl_runtime != attr->sched_runtime ||
3708 		dl_se->dl_deadline != attr->sched_deadline ||
3709 		dl_se->dl_period != attr->sched_period ||
3710 		dl_se->flags != attr->sched_flags)
3711 		return true;
3712 
3713 	return false;
3714 }
3715 
3716 static int __sched_setscheduler(struct task_struct *p,
3717 				const struct sched_attr *attr,
3718 				bool user, bool pi)
3719 {
3720 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3721 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3722 	int retval, oldprio, oldpolicy = -1, queued, running;
3723 	int new_effective_prio, policy = attr->sched_policy;
3724 	unsigned long flags;
3725 	const struct sched_class *prev_class;
3726 	struct rq *rq;
3727 	int reset_on_fork;
3728 
3729 	/* may grab non-irq protected spin_locks */
3730 	BUG_ON(in_interrupt());
3731 recheck:
3732 	/* double check policy once rq lock held */
3733 	if (policy < 0) {
3734 		reset_on_fork = p->sched_reset_on_fork;
3735 		policy = oldpolicy = p->policy;
3736 	} else {
3737 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3738 
3739 		if (policy != SCHED_DEADLINE &&
3740 				policy != SCHED_FIFO && policy != SCHED_RR &&
3741 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3742 				policy != SCHED_IDLE)
3743 			return -EINVAL;
3744 	}
3745 
3746 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3747 		return -EINVAL;
3748 
3749 	/*
3750 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3751 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3752 	 * SCHED_BATCH and SCHED_IDLE is 0.
3753 	 */
3754 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3755 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3756 		return -EINVAL;
3757 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3758 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3759 		return -EINVAL;
3760 
3761 	/*
3762 	 * Allow unprivileged RT tasks to decrease priority:
3763 	 */
3764 	if (user && !capable(CAP_SYS_NICE)) {
3765 		if (fair_policy(policy)) {
3766 			if (attr->sched_nice < task_nice(p) &&
3767 			    !can_nice(p, attr->sched_nice))
3768 				return -EPERM;
3769 		}
3770 
3771 		if (rt_policy(policy)) {
3772 			unsigned long rlim_rtprio =
3773 					task_rlimit(p, RLIMIT_RTPRIO);
3774 
3775 			/* can't set/change the rt policy */
3776 			if (policy != p->policy && !rlim_rtprio)
3777 				return -EPERM;
3778 
3779 			/* can't increase priority */
3780 			if (attr->sched_priority > p->rt_priority &&
3781 			    attr->sched_priority > rlim_rtprio)
3782 				return -EPERM;
3783 		}
3784 
3785 		 /*
3786 		  * Can't set/change SCHED_DEADLINE policy at all for now
3787 		  * (safest behavior); in the future we would like to allow
3788 		  * unprivileged DL tasks to increase their relative deadline
3789 		  * or reduce their runtime (both ways reducing utilization)
3790 		  */
3791 		if (dl_policy(policy))
3792 			return -EPERM;
3793 
3794 		/*
3795 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3796 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3797 		 */
3798 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3799 			if (!can_nice(p, task_nice(p)))
3800 				return -EPERM;
3801 		}
3802 
3803 		/* can't change other user's priorities */
3804 		if (!check_same_owner(p))
3805 			return -EPERM;
3806 
3807 		/* Normal users shall not reset the sched_reset_on_fork flag */
3808 		if (p->sched_reset_on_fork && !reset_on_fork)
3809 			return -EPERM;
3810 	}
3811 
3812 	if (user) {
3813 		retval = security_task_setscheduler(p);
3814 		if (retval)
3815 			return retval;
3816 	}
3817 
3818 	/*
3819 	 * make sure no PI-waiters arrive (or leave) while we are
3820 	 * changing the priority of the task:
3821 	 *
3822 	 * To be able to change p->policy safely, the appropriate
3823 	 * runqueue lock must be held.
3824 	 */
3825 	rq = task_rq_lock(p, &flags);
3826 
3827 	/*
3828 	 * Changing the policy of the stop threads its a very bad idea
3829 	 */
3830 	if (p == rq->stop) {
3831 		task_rq_unlock(rq, p, &flags);
3832 		return -EINVAL;
3833 	}
3834 
3835 	/*
3836 	 * If not changing anything there's no need to proceed further,
3837 	 * but store a possible modification of reset_on_fork.
3838 	 */
3839 	if (unlikely(policy == p->policy)) {
3840 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3841 			goto change;
3842 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3843 			goto change;
3844 		if (dl_policy(policy) && dl_param_changed(p, attr))
3845 			goto change;
3846 
3847 		p->sched_reset_on_fork = reset_on_fork;
3848 		task_rq_unlock(rq, p, &flags);
3849 		return 0;
3850 	}
3851 change:
3852 
3853 	if (user) {
3854 #ifdef CONFIG_RT_GROUP_SCHED
3855 		/*
3856 		 * Do not allow realtime tasks into groups that have no runtime
3857 		 * assigned.
3858 		 */
3859 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3860 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3861 				!task_group_is_autogroup(task_group(p))) {
3862 			task_rq_unlock(rq, p, &flags);
3863 			return -EPERM;
3864 		}
3865 #endif
3866 #ifdef CONFIG_SMP
3867 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3868 			cpumask_t *span = rq->rd->span;
3869 
3870 			/*
3871 			 * Don't allow tasks with an affinity mask smaller than
3872 			 * the entire root_domain to become SCHED_DEADLINE. We
3873 			 * will also fail if there's no bandwidth available.
3874 			 */
3875 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3876 			    rq->rd->dl_bw.bw == 0) {
3877 				task_rq_unlock(rq, p, &flags);
3878 				return -EPERM;
3879 			}
3880 		}
3881 #endif
3882 	}
3883 
3884 	/* recheck policy now with rq lock held */
3885 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3886 		policy = oldpolicy = -1;
3887 		task_rq_unlock(rq, p, &flags);
3888 		goto recheck;
3889 	}
3890 
3891 	/*
3892 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3893 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3894 	 * is available.
3895 	 */
3896 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3897 		task_rq_unlock(rq, p, &flags);
3898 		return -EBUSY;
3899 	}
3900 
3901 	p->sched_reset_on_fork = reset_on_fork;
3902 	oldprio = p->prio;
3903 
3904 	if (pi) {
3905 		/*
3906 		 * Take priority boosted tasks into account. If the new
3907 		 * effective priority is unchanged, we just store the new
3908 		 * normal parameters and do not touch the scheduler class and
3909 		 * the runqueue. This will be done when the task deboost
3910 		 * itself.
3911 		 */
3912 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3913 		if (new_effective_prio == oldprio) {
3914 			__setscheduler_params(p, attr);
3915 			task_rq_unlock(rq, p, &flags);
3916 			return 0;
3917 		}
3918 	}
3919 
3920 	queued = task_on_rq_queued(p);
3921 	running = task_current(rq, p);
3922 	if (queued)
3923 		dequeue_task(rq, p, 0);
3924 	if (running)
3925 		put_prev_task(rq, p);
3926 
3927 	prev_class = p->sched_class;
3928 	__setscheduler(rq, p, attr, pi);
3929 
3930 	if (running)
3931 		p->sched_class->set_curr_task(rq);
3932 	if (queued) {
3933 		/*
3934 		 * We enqueue to tail when the priority of a task is
3935 		 * increased (user space view).
3936 		 */
3937 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3938 	}
3939 
3940 	check_class_changed(rq, p, prev_class, oldprio);
3941 	preempt_disable(); /* avoid rq from going away on us */
3942 	task_rq_unlock(rq, p, &flags);
3943 
3944 	if (pi)
3945 		rt_mutex_adjust_pi(p);
3946 
3947 	/*
3948 	 * Run balance callbacks after we've adjusted the PI chain.
3949 	 */
3950 	balance_callback(rq);
3951 	preempt_enable();
3952 
3953 	return 0;
3954 }
3955 
3956 static int _sched_setscheduler(struct task_struct *p, int policy,
3957 			       const struct sched_param *param, bool check)
3958 {
3959 	struct sched_attr attr = {
3960 		.sched_policy   = policy,
3961 		.sched_priority = param->sched_priority,
3962 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3963 	};
3964 
3965 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3966 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3967 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3968 		policy &= ~SCHED_RESET_ON_FORK;
3969 		attr.sched_policy = policy;
3970 	}
3971 
3972 	return __sched_setscheduler(p, &attr, check, true);
3973 }
3974 /**
3975  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3976  * @p: the task in question.
3977  * @policy: new policy.
3978  * @param: structure containing the new RT priority.
3979  *
3980  * Return: 0 on success. An error code otherwise.
3981  *
3982  * NOTE that the task may be already dead.
3983  */
3984 int sched_setscheduler(struct task_struct *p, int policy,
3985 		       const struct sched_param *param)
3986 {
3987 	return _sched_setscheduler(p, policy, param, true);
3988 }
3989 EXPORT_SYMBOL_GPL(sched_setscheduler);
3990 
3991 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3992 {
3993 	return __sched_setscheduler(p, attr, true, true);
3994 }
3995 EXPORT_SYMBOL_GPL(sched_setattr);
3996 
3997 /**
3998  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3999  * @p: the task in question.
4000  * @policy: new policy.
4001  * @param: structure containing the new RT priority.
4002  *
4003  * Just like sched_setscheduler, only don't bother checking if the
4004  * current context has permission.  For example, this is needed in
4005  * stop_machine(): we create temporary high priority worker threads,
4006  * but our caller might not have that capability.
4007  *
4008  * Return: 0 on success. An error code otherwise.
4009  */
4010 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4011 			       const struct sched_param *param)
4012 {
4013 	return _sched_setscheduler(p, policy, param, false);
4014 }
4015 
4016 static int
4017 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4018 {
4019 	struct sched_param lparam;
4020 	struct task_struct *p;
4021 	int retval;
4022 
4023 	if (!param || pid < 0)
4024 		return -EINVAL;
4025 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4026 		return -EFAULT;
4027 
4028 	rcu_read_lock();
4029 	retval = -ESRCH;
4030 	p = find_process_by_pid(pid);
4031 	if (p != NULL)
4032 		retval = sched_setscheduler(p, policy, &lparam);
4033 	rcu_read_unlock();
4034 
4035 	return retval;
4036 }
4037 
4038 /*
4039  * Mimics kernel/events/core.c perf_copy_attr().
4040  */
4041 static int sched_copy_attr(struct sched_attr __user *uattr,
4042 			   struct sched_attr *attr)
4043 {
4044 	u32 size;
4045 	int ret;
4046 
4047 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4048 		return -EFAULT;
4049 
4050 	/*
4051 	 * zero the full structure, so that a short copy will be nice.
4052 	 */
4053 	memset(attr, 0, sizeof(*attr));
4054 
4055 	ret = get_user(size, &uattr->size);
4056 	if (ret)
4057 		return ret;
4058 
4059 	if (size > PAGE_SIZE)	/* silly large */
4060 		goto err_size;
4061 
4062 	if (!size)		/* abi compat */
4063 		size = SCHED_ATTR_SIZE_VER0;
4064 
4065 	if (size < SCHED_ATTR_SIZE_VER0)
4066 		goto err_size;
4067 
4068 	/*
4069 	 * If we're handed a bigger struct than we know of,
4070 	 * ensure all the unknown bits are 0 - i.e. new
4071 	 * user-space does not rely on any kernel feature
4072 	 * extensions we dont know about yet.
4073 	 */
4074 	if (size > sizeof(*attr)) {
4075 		unsigned char __user *addr;
4076 		unsigned char __user *end;
4077 		unsigned char val;
4078 
4079 		addr = (void __user *)uattr + sizeof(*attr);
4080 		end  = (void __user *)uattr + size;
4081 
4082 		for (; addr < end; addr++) {
4083 			ret = get_user(val, addr);
4084 			if (ret)
4085 				return ret;
4086 			if (val)
4087 				goto err_size;
4088 		}
4089 		size = sizeof(*attr);
4090 	}
4091 
4092 	ret = copy_from_user(attr, uattr, size);
4093 	if (ret)
4094 		return -EFAULT;
4095 
4096 	/*
4097 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4098 	 * to be strict and return an error on out-of-bounds values?
4099 	 */
4100 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4101 
4102 	return 0;
4103 
4104 err_size:
4105 	put_user(sizeof(*attr), &uattr->size);
4106 	return -E2BIG;
4107 }
4108 
4109 /**
4110  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4111  * @pid: the pid in question.
4112  * @policy: new policy.
4113  * @param: structure containing the new RT priority.
4114  *
4115  * Return: 0 on success. An error code otherwise.
4116  */
4117 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4118 		struct sched_param __user *, param)
4119 {
4120 	/* negative values for policy are not valid */
4121 	if (policy < 0)
4122 		return -EINVAL;
4123 
4124 	return do_sched_setscheduler(pid, policy, param);
4125 }
4126 
4127 /**
4128  * sys_sched_setparam - set/change the RT priority of a thread
4129  * @pid: the pid in question.
4130  * @param: structure containing the new RT priority.
4131  *
4132  * Return: 0 on success. An error code otherwise.
4133  */
4134 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4135 {
4136 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4137 }
4138 
4139 /**
4140  * sys_sched_setattr - same as above, but with extended sched_attr
4141  * @pid: the pid in question.
4142  * @uattr: structure containing the extended parameters.
4143  * @flags: for future extension.
4144  */
4145 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4146 			       unsigned int, flags)
4147 {
4148 	struct sched_attr attr;
4149 	struct task_struct *p;
4150 	int retval;
4151 
4152 	if (!uattr || pid < 0 || flags)
4153 		return -EINVAL;
4154 
4155 	retval = sched_copy_attr(uattr, &attr);
4156 	if (retval)
4157 		return retval;
4158 
4159 	if ((int)attr.sched_policy < 0)
4160 		return -EINVAL;
4161 
4162 	rcu_read_lock();
4163 	retval = -ESRCH;
4164 	p = find_process_by_pid(pid);
4165 	if (p != NULL)
4166 		retval = sched_setattr(p, &attr);
4167 	rcu_read_unlock();
4168 
4169 	return retval;
4170 }
4171 
4172 /**
4173  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4174  * @pid: the pid in question.
4175  *
4176  * Return: On success, the policy of the thread. Otherwise, a negative error
4177  * code.
4178  */
4179 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4180 {
4181 	struct task_struct *p;
4182 	int retval;
4183 
4184 	if (pid < 0)
4185 		return -EINVAL;
4186 
4187 	retval = -ESRCH;
4188 	rcu_read_lock();
4189 	p = find_process_by_pid(pid);
4190 	if (p) {
4191 		retval = security_task_getscheduler(p);
4192 		if (!retval)
4193 			retval = p->policy
4194 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4195 	}
4196 	rcu_read_unlock();
4197 	return retval;
4198 }
4199 
4200 /**
4201  * sys_sched_getparam - get the RT priority of a thread
4202  * @pid: the pid in question.
4203  * @param: structure containing the RT priority.
4204  *
4205  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4206  * code.
4207  */
4208 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4209 {
4210 	struct sched_param lp = { .sched_priority = 0 };
4211 	struct task_struct *p;
4212 	int retval;
4213 
4214 	if (!param || pid < 0)
4215 		return -EINVAL;
4216 
4217 	rcu_read_lock();
4218 	p = find_process_by_pid(pid);
4219 	retval = -ESRCH;
4220 	if (!p)
4221 		goto out_unlock;
4222 
4223 	retval = security_task_getscheduler(p);
4224 	if (retval)
4225 		goto out_unlock;
4226 
4227 	if (task_has_rt_policy(p))
4228 		lp.sched_priority = p->rt_priority;
4229 	rcu_read_unlock();
4230 
4231 	/*
4232 	 * This one might sleep, we cannot do it with a spinlock held ...
4233 	 */
4234 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4235 
4236 	return retval;
4237 
4238 out_unlock:
4239 	rcu_read_unlock();
4240 	return retval;
4241 }
4242 
4243 static int sched_read_attr(struct sched_attr __user *uattr,
4244 			   struct sched_attr *attr,
4245 			   unsigned int usize)
4246 {
4247 	int ret;
4248 
4249 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4250 		return -EFAULT;
4251 
4252 	/*
4253 	 * If we're handed a smaller struct than we know of,
4254 	 * ensure all the unknown bits are 0 - i.e. old
4255 	 * user-space does not get uncomplete information.
4256 	 */
4257 	if (usize < sizeof(*attr)) {
4258 		unsigned char *addr;
4259 		unsigned char *end;
4260 
4261 		addr = (void *)attr + usize;
4262 		end  = (void *)attr + sizeof(*attr);
4263 
4264 		for (; addr < end; addr++) {
4265 			if (*addr)
4266 				return -EFBIG;
4267 		}
4268 
4269 		attr->size = usize;
4270 	}
4271 
4272 	ret = copy_to_user(uattr, attr, attr->size);
4273 	if (ret)
4274 		return -EFAULT;
4275 
4276 	return 0;
4277 }
4278 
4279 /**
4280  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4281  * @pid: the pid in question.
4282  * @uattr: structure containing the extended parameters.
4283  * @size: sizeof(attr) for fwd/bwd comp.
4284  * @flags: for future extension.
4285  */
4286 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4287 		unsigned int, size, unsigned int, flags)
4288 {
4289 	struct sched_attr attr = {
4290 		.size = sizeof(struct sched_attr),
4291 	};
4292 	struct task_struct *p;
4293 	int retval;
4294 
4295 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4296 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4297 		return -EINVAL;
4298 
4299 	rcu_read_lock();
4300 	p = find_process_by_pid(pid);
4301 	retval = -ESRCH;
4302 	if (!p)
4303 		goto out_unlock;
4304 
4305 	retval = security_task_getscheduler(p);
4306 	if (retval)
4307 		goto out_unlock;
4308 
4309 	attr.sched_policy = p->policy;
4310 	if (p->sched_reset_on_fork)
4311 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4312 	if (task_has_dl_policy(p))
4313 		__getparam_dl(p, &attr);
4314 	else if (task_has_rt_policy(p))
4315 		attr.sched_priority = p->rt_priority;
4316 	else
4317 		attr.sched_nice = task_nice(p);
4318 
4319 	rcu_read_unlock();
4320 
4321 	retval = sched_read_attr(uattr, &attr, size);
4322 	return retval;
4323 
4324 out_unlock:
4325 	rcu_read_unlock();
4326 	return retval;
4327 }
4328 
4329 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4330 {
4331 	cpumask_var_t cpus_allowed, new_mask;
4332 	struct task_struct *p;
4333 	int retval;
4334 
4335 	rcu_read_lock();
4336 
4337 	p = find_process_by_pid(pid);
4338 	if (!p) {
4339 		rcu_read_unlock();
4340 		return -ESRCH;
4341 	}
4342 
4343 	/* Prevent p going away */
4344 	get_task_struct(p);
4345 	rcu_read_unlock();
4346 
4347 	if (p->flags & PF_NO_SETAFFINITY) {
4348 		retval = -EINVAL;
4349 		goto out_put_task;
4350 	}
4351 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4352 		retval = -ENOMEM;
4353 		goto out_put_task;
4354 	}
4355 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4356 		retval = -ENOMEM;
4357 		goto out_free_cpus_allowed;
4358 	}
4359 	retval = -EPERM;
4360 	if (!check_same_owner(p)) {
4361 		rcu_read_lock();
4362 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4363 			rcu_read_unlock();
4364 			goto out_free_new_mask;
4365 		}
4366 		rcu_read_unlock();
4367 	}
4368 
4369 	retval = security_task_setscheduler(p);
4370 	if (retval)
4371 		goto out_free_new_mask;
4372 
4373 
4374 	cpuset_cpus_allowed(p, cpus_allowed);
4375 	cpumask_and(new_mask, in_mask, cpus_allowed);
4376 
4377 	/*
4378 	 * Since bandwidth control happens on root_domain basis,
4379 	 * if admission test is enabled, we only admit -deadline
4380 	 * tasks allowed to run on all the CPUs in the task's
4381 	 * root_domain.
4382 	 */
4383 #ifdef CONFIG_SMP
4384 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4385 		rcu_read_lock();
4386 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4387 			retval = -EBUSY;
4388 			rcu_read_unlock();
4389 			goto out_free_new_mask;
4390 		}
4391 		rcu_read_unlock();
4392 	}
4393 #endif
4394 again:
4395 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4396 
4397 	if (!retval) {
4398 		cpuset_cpus_allowed(p, cpus_allowed);
4399 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4400 			/*
4401 			 * We must have raced with a concurrent cpuset
4402 			 * update. Just reset the cpus_allowed to the
4403 			 * cpuset's cpus_allowed
4404 			 */
4405 			cpumask_copy(new_mask, cpus_allowed);
4406 			goto again;
4407 		}
4408 	}
4409 out_free_new_mask:
4410 	free_cpumask_var(new_mask);
4411 out_free_cpus_allowed:
4412 	free_cpumask_var(cpus_allowed);
4413 out_put_task:
4414 	put_task_struct(p);
4415 	return retval;
4416 }
4417 
4418 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4419 			     struct cpumask *new_mask)
4420 {
4421 	if (len < cpumask_size())
4422 		cpumask_clear(new_mask);
4423 	else if (len > cpumask_size())
4424 		len = cpumask_size();
4425 
4426 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4427 }
4428 
4429 /**
4430  * sys_sched_setaffinity - set the cpu affinity of a process
4431  * @pid: pid of the process
4432  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4433  * @user_mask_ptr: user-space pointer to the new cpu mask
4434  *
4435  * Return: 0 on success. An error code otherwise.
4436  */
4437 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4438 		unsigned long __user *, user_mask_ptr)
4439 {
4440 	cpumask_var_t new_mask;
4441 	int retval;
4442 
4443 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4444 		return -ENOMEM;
4445 
4446 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4447 	if (retval == 0)
4448 		retval = sched_setaffinity(pid, new_mask);
4449 	free_cpumask_var(new_mask);
4450 	return retval;
4451 }
4452 
4453 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4454 {
4455 	struct task_struct *p;
4456 	unsigned long flags;
4457 	int retval;
4458 
4459 	rcu_read_lock();
4460 
4461 	retval = -ESRCH;
4462 	p = find_process_by_pid(pid);
4463 	if (!p)
4464 		goto out_unlock;
4465 
4466 	retval = security_task_getscheduler(p);
4467 	if (retval)
4468 		goto out_unlock;
4469 
4470 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4471 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4472 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4473 
4474 out_unlock:
4475 	rcu_read_unlock();
4476 
4477 	return retval;
4478 }
4479 
4480 /**
4481  * sys_sched_getaffinity - get the cpu affinity of a process
4482  * @pid: pid of the process
4483  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4484  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4485  *
4486  * Return: 0 on success. An error code otherwise.
4487  */
4488 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4489 		unsigned long __user *, user_mask_ptr)
4490 {
4491 	int ret;
4492 	cpumask_var_t mask;
4493 
4494 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4495 		return -EINVAL;
4496 	if (len & (sizeof(unsigned long)-1))
4497 		return -EINVAL;
4498 
4499 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4500 		return -ENOMEM;
4501 
4502 	ret = sched_getaffinity(pid, mask);
4503 	if (ret == 0) {
4504 		size_t retlen = min_t(size_t, len, cpumask_size());
4505 
4506 		if (copy_to_user(user_mask_ptr, mask, retlen))
4507 			ret = -EFAULT;
4508 		else
4509 			ret = retlen;
4510 	}
4511 	free_cpumask_var(mask);
4512 
4513 	return ret;
4514 }
4515 
4516 /**
4517  * sys_sched_yield - yield the current processor to other threads.
4518  *
4519  * This function yields the current CPU to other tasks. If there are no
4520  * other threads running on this CPU then this function will return.
4521  *
4522  * Return: 0.
4523  */
4524 SYSCALL_DEFINE0(sched_yield)
4525 {
4526 	struct rq *rq = this_rq_lock();
4527 
4528 	schedstat_inc(rq, yld_count);
4529 	current->sched_class->yield_task(rq);
4530 
4531 	/*
4532 	 * Since we are going to call schedule() anyway, there's
4533 	 * no need to preempt or enable interrupts:
4534 	 */
4535 	__release(rq->lock);
4536 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4537 	do_raw_spin_unlock(&rq->lock);
4538 	sched_preempt_enable_no_resched();
4539 
4540 	schedule();
4541 
4542 	return 0;
4543 }
4544 
4545 int __sched _cond_resched(void)
4546 {
4547 	if (should_resched(0)) {
4548 		preempt_schedule_common();
4549 		return 1;
4550 	}
4551 	return 0;
4552 }
4553 EXPORT_SYMBOL(_cond_resched);
4554 
4555 /*
4556  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4557  * call schedule, and on return reacquire the lock.
4558  *
4559  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4560  * operations here to prevent schedule() from being called twice (once via
4561  * spin_unlock(), once by hand).
4562  */
4563 int __cond_resched_lock(spinlock_t *lock)
4564 {
4565 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4566 	int ret = 0;
4567 
4568 	lockdep_assert_held(lock);
4569 
4570 	if (spin_needbreak(lock) || resched) {
4571 		spin_unlock(lock);
4572 		if (resched)
4573 			preempt_schedule_common();
4574 		else
4575 			cpu_relax();
4576 		ret = 1;
4577 		spin_lock(lock);
4578 	}
4579 	return ret;
4580 }
4581 EXPORT_SYMBOL(__cond_resched_lock);
4582 
4583 int __sched __cond_resched_softirq(void)
4584 {
4585 	BUG_ON(!in_softirq());
4586 
4587 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4588 		local_bh_enable();
4589 		preempt_schedule_common();
4590 		local_bh_disable();
4591 		return 1;
4592 	}
4593 	return 0;
4594 }
4595 EXPORT_SYMBOL(__cond_resched_softirq);
4596 
4597 /**
4598  * yield - yield the current processor to other threads.
4599  *
4600  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4601  *
4602  * The scheduler is at all times free to pick the calling task as the most
4603  * eligible task to run, if removing the yield() call from your code breaks
4604  * it, its already broken.
4605  *
4606  * Typical broken usage is:
4607  *
4608  * while (!event)
4609  * 	yield();
4610  *
4611  * where one assumes that yield() will let 'the other' process run that will
4612  * make event true. If the current task is a SCHED_FIFO task that will never
4613  * happen. Never use yield() as a progress guarantee!!
4614  *
4615  * If you want to use yield() to wait for something, use wait_event().
4616  * If you want to use yield() to be 'nice' for others, use cond_resched().
4617  * If you still want to use yield(), do not!
4618  */
4619 void __sched yield(void)
4620 {
4621 	set_current_state(TASK_RUNNING);
4622 	sys_sched_yield();
4623 }
4624 EXPORT_SYMBOL(yield);
4625 
4626 /**
4627  * yield_to - yield the current processor to another thread in
4628  * your thread group, or accelerate that thread toward the
4629  * processor it's on.
4630  * @p: target task
4631  * @preempt: whether task preemption is allowed or not
4632  *
4633  * It's the caller's job to ensure that the target task struct
4634  * can't go away on us before we can do any checks.
4635  *
4636  * Return:
4637  *	true (>0) if we indeed boosted the target task.
4638  *	false (0) if we failed to boost the target.
4639  *	-ESRCH if there's no task to yield to.
4640  */
4641 int __sched yield_to(struct task_struct *p, bool preempt)
4642 {
4643 	struct task_struct *curr = current;
4644 	struct rq *rq, *p_rq;
4645 	unsigned long flags;
4646 	int yielded = 0;
4647 
4648 	local_irq_save(flags);
4649 	rq = this_rq();
4650 
4651 again:
4652 	p_rq = task_rq(p);
4653 	/*
4654 	 * If we're the only runnable task on the rq and target rq also
4655 	 * has only one task, there's absolutely no point in yielding.
4656 	 */
4657 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4658 		yielded = -ESRCH;
4659 		goto out_irq;
4660 	}
4661 
4662 	double_rq_lock(rq, p_rq);
4663 	if (task_rq(p) != p_rq) {
4664 		double_rq_unlock(rq, p_rq);
4665 		goto again;
4666 	}
4667 
4668 	if (!curr->sched_class->yield_to_task)
4669 		goto out_unlock;
4670 
4671 	if (curr->sched_class != p->sched_class)
4672 		goto out_unlock;
4673 
4674 	if (task_running(p_rq, p) || p->state)
4675 		goto out_unlock;
4676 
4677 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4678 	if (yielded) {
4679 		schedstat_inc(rq, yld_count);
4680 		/*
4681 		 * Make p's CPU reschedule; pick_next_entity takes care of
4682 		 * fairness.
4683 		 */
4684 		if (preempt && rq != p_rq)
4685 			resched_curr(p_rq);
4686 	}
4687 
4688 out_unlock:
4689 	double_rq_unlock(rq, p_rq);
4690 out_irq:
4691 	local_irq_restore(flags);
4692 
4693 	if (yielded > 0)
4694 		schedule();
4695 
4696 	return yielded;
4697 }
4698 EXPORT_SYMBOL_GPL(yield_to);
4699 
4700 /*
4701  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4702  * that process accounting knows that this is a task in IO wait state.
4703  */
4704 long __sched io_schedule_timeout(long timeout)
4705 {
4706 	int old_iowait = current->in_iowait;
4707 	struct rq *rq;
4708 	long ret;
4709 
4710 	current->in_iowait = 1;
4711 	blk_schedule_flush_plug(current);
4712 
4713 	delayacct_blkio_start();
4714 	rq = raw_rq();
4715 	atomic_inc(&rq->nr_iowait);
4716 	ret = schedule_timeout(timeout);
4717 	current->in_iowait = old_iowait;
4718 	atomic_dec(&rq->nr_iowait);
4719 	delayacct_blkio_end();
4720 
4721 	return ret;
4722 }
4723 EXPORT_SYMBOL(io_schedule_timeout);
4724 
4725 /**
4726  * sys_sched_get_priority_max - return maximum RT priority.
4727  * @policy: scheduling class.
4728  *
4729  * Return: On success, this syscall returns the maximum
4730  * rt_priority that can be used by a given scheduling class.
4731  * On failure, a negative error code is returned.
4732  */
4733 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4734 {
4735 	int ret = -EINVAL;
4736 
4737 	switch (policy) {
4738 	case SCHED_FIFO:
4739 	case SCHED_RR:
4740 		ret = MAX_USER_RT_PRIO-1;
4741 		break;
4742 	case SCHED_DEADLINE:
4743 	case SCHED_NORMAL:
4744 	case SCHED_BATCH:
4745 	case SCHED_IDLE:
4746 		ret = 0;
4747 		break;
4748 	}
4749 	return ret;
4750 }
4751 
4752 /**
4753  * sys_sched_get_priority_min - return minimum RT priority.
4754  * @policy: scheduling class.
4755  *
4756  * Return: On success, this syscall returns the minimum
4757  * rt_priority that can be used by a given scheduling class.
4758  * On failure, a negative error code is returned.
4759  */
4760 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4761 {
4762 	int ret = -EINVAL;
4763 
4764 	switch (policy) {
4765 	case SCHED_FIFO:
4766 	case SCHED_RR:
4767 		ret = 1;
4768 		break;
4769 	case SCHED_DEADLINE:
4770 	case SCHED_NORMAL:
4771 	case SCHED_BATCH:
4772 	case SCHED_IDLE:
4773 		ret = 0;
4774 	}
4775 	return ret;
4776 }
4777 
4778 /**
4779  * sys_sched_rr_get_interval - return the default timeslice of a process.
4780  * @pid: pid of the process.
4781  * @interval: userspace pointer to the timeslice value.
4782  *
4783  * this syscall writes the default timeslice value of a given process
4784  * into the user-space timespec buffer. A value of '0' means infinity.
4785  *
4786  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4787  * an error code.
4788  */
4789 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4790 		struct timespec __user *, interval)
4791 {
4792 	struct task_struct *p;
4793 	unsigned int time_slice;
4794 	unsigned long flags;
4795 	struct rq *rq;
4796 	int retval;
4797 	struct timespec t;
4798 
4799 	if (pid < 0)
4800 		return -EINVAL;
4801 
4802 	retval = -ESRCH;
4803 	rcu_read_lock();
4804 	p = find_process_by_pid(pid);
4805 	if (!p)
4806 		goto out_unlock;
4807 
4808 	retval = security_task_getscheduler(p);
4809 	if (retval)
4810 		goto out_unlock;
4811 
4812 	rq = task_rq_lock(p, &flags);
4813 	time_slice = 0;
4814 	if (p->sched_class->get_rr_interval)
4815 		time_slice = p->sched_class->get_rr_interval(rq, p);
4816 	task_rq_unlock(rq, p, &flags);
4817 
4818 	rcu_read_unlock();
4819 	jiffies_to_timespec(time_slice, &t);
4820 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4821 	return retval;
4822 
4823 out_unlock:
4824 	rcu_read_unlock();
4825 	return retval;
4826 }
4827 
4828 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4829 
4830 void sched_show_task(struct task_struct *p)
4831 {
4832 	unsigned long free = 0;
4833 	int ppid;
4834 	unsigned long state = p->state;
4835 
4836 	if (state)
4837 		state = __ffs(state) + 1;
4838 	printk(KERN_INFO "%-15.15s %c", p->comm,
4839 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4840 #if BITS_PER_LONG == 32
4841 	if (state == TASK_RUNNING)
4842 		printk(KERN_CONT " running  ");
4843 	else
4844 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4845 #else
4846 	if (state == TASK_RUNNING)
4847 		printk(KERN_CONT "  running task    ");
4848 	else
4849 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4850 #endif
4851 #ifdef CONFIG_DEBUG_STACK_USAGE
4852 	free = stack_not_used(p);
4853 #endif
4854 	ppid = 0;
4855 	rcu_read_lock();
4856 	if (pid_alive(p))
4857 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4858 	rcu_read_unlock();
4859 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4860 		task_pid_nr(p), ppid,
4861 		(unsigned long)task_thread_info(p)->flags);
4862 
4863 	print_worker_info(KERN_INFO, p);
4864 	show_stack(p, NULL);
4865 }
4866 
4867 void show_state_filter(unsigned long state_filter)
4868 {
4869 	struct task_struct *g, *p;
4870 
4871 #if BITS_PER_LONG == 32
4872 	printk(KERN_INFO
4873 		"  task                PC stack   pid father\n");
4874 #else
4875 	printk(KERN_INFO
4876 		"  task                        PC stack   pid father\n");
4877 #endif
4878 	rcu_read_lock();
4879 	for_each_process_thread(g, p) {
4880 		/*
4881 		 * reset the NMI-timeout, listing all files on a slow
4882 		 * console might take a lot of time:
4883 		 */
4884 		touch_nmi_watchdog();
4885 		if (!state_filter || (p->state & state_filter))
4886 			sched_show_task(p);
4887 	}
4888 
4889 	touch_all_softlockup_watchdogs();
4890 
4891 #ifdef CONFIG_SCHED_DEBUG
4892 	sysrq_sched_debug_show();
4893 #endif
4894 	rcu_read_unlock();
4895 	/*
4896 	 * Only show locks if all tasks are dumped:
4897 	 */
4898 	if (!state_filter)
4899 		debug_show_all_locks();
4900 }
4901 
4902 void init_idle_bootup_task(struct task_struct *idle)
4903 {
4904 	idle->sched_class = &idle_sched_class;
4905 }
4906 
4907 /**
4908  * init_idle - set up an idle thread for a given CPU
4909  * @idle: task in question
4910  * @cpu: cpu the idle task belongs to
4911  *
4912  * NOTE: this function does not set the idle thread's NEED_RESCHED
4913  * flag, to make booting more robust.
4914  */
4915 void init_idle(struct task_struct *idle, int cpu)
4916 {
4917 	struct rq *rq = cpu_rq(cpu);
4918 	unsigned long flags;
4919 
4920 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
4921 	raw_spin_lock(&rq->lock);
4922 
4923 	__sched_fork(0, idle);
4924 	idle->state = TASK_RUNNING;
4925 	idle->se.exec_start = sched_clock();
4926 
4927 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4928 	/*
4929 	 * We're having a chicken and egg problem, even though we are
4930 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4931 	 * lockdep check in task_group() will fail.
4932 	 *
4933 	 * Similar case to sched_fork(). / Alternatively we could
4934 	 * use task_rq_lock() here and obtain the other rq->lock.
4935 	 *
4936 	 * Silence PROVE_RCU
4937 	 */
4938 	rcu_read_lock();
4939 	__set_task_cpu(idle, cpu);
4940 	rcu_read_unlock();
4941 
4942 	rq->curr = rq->idle = idle;
4943 	idle->on_rq = TASK_ON_RQ_QUEUED;
4944 #if defined(CONFIG_SMP)
4945 	idle->on_cpu = 1;
4946 #endif
4947 	raw_spin_unlock(&rq->lock);
4948 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4949 
4950 	/* Set the preempt count _outside_ the spinlocks! */
4951 	init_idle_preempt_count(idle, cpu);
4952 
4953 	/*
4954 	 * The idle tasks have their own, simple scheduling class:
4955 	 */
4956 	idle->sched_class = &idle_sched_class;
4957 	ftrace_graph_init_idle_task(idle, cpu);
4958 	vtime_init_idle(idle, cpu);
4959 #if defined(CONFIG_SMP)
4960 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4961 #endif
4962 }
4963 
4964 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4965 			      const struct cpumask *trial)
4966 {
4967 	int ret = 1, trial_cpus;
4968 	struct dl_bw *cur_dl_b;
4969 	unsigned long flags;
4970 
4971 	if (!cpumask_weight(cur))
4972 		return ret;
4973 
4974 	rcu_read_lock_sched();
4975 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4976 	trial_cpus = cpumask_weight(trial);
4977 
4978 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4979 	if (cur_dl_b->bw != -1 &&
4980 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4981 		ret = 0;
4982 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4983 	rcu_read_unlock_sched();
4984 
4985 	return ret;
4986 }
4987 
4988 int task_can_attach(struct task_struct *p,
4989 		    const struct cpumask *cs_cpus_allowed)
4990 {
4991 	int ret = 0;
4992 
4993 	/*
4994 	 * Kthreads which disallow setaffinity shouldn't be moved
4995 	 * to a new cpuset; we don't want to change their cpu
4996 	 * affinity and isolating such threads by their set of
4997 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4998 	 * applicable for such threads.  This prevents checking for
4999 	 * success of set_cpus_allowed_ptr() on all attached tasks
5000 	 * before cpus_allowed may be changed.
5001 	 */
5002 	if (p->flags & PF_NO_SETAFFINITY) {
5003 		ret = -EINVAL;
5004 		goto out;
5005 	}
5006 
5007 #ifdef CONFIG_SMP
5008 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5009 					      cs_cpus_allowed)) {
5010 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5011 							cs_cpus_allowed);
5012 		struct dl_bw *dl_b;
5013 		bool overflow;
5014 		int cpus;
5015 		unsigned long flags;
5016 
5017 		rcu_read_lock_sched();
5018 		dl_b = dl_bw_of(dest_cpu);
5019 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5020 		cpus = dl_bw_cpus(dest_cpu);
5021 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5022 		if (overflow)
5023 			ret = -EBUSY;
5024 		else {
5025 			/*
5026 			 * We reserve space for this task in the destination
5027 			 * root_domain, as we can't fail after this point.
5028 			 * We will free resources in the source root_domain
5029 			 * later on (see set_cpus_allowed_dl()).
5030 			 */
5031 			__dl_add(dl_b, p->dl.dl_bw);
5032 		}
5033 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5034 		rcu_read_unlock_sched();
5035 
5036 	}
5037 #endif
5038 out:
5039 	return ret;
5040 }
5041 
5042 #ifdef CONFIG_SMP
5043 
5044 #ifdef CONFIG_NUMA_BALANCING
5045 /* Migrate current task p to target_cpu */
5046 int migrate_task_to(struct task_struct *p, int target_cpu)
5047 {
5048 	struct migration_arg arg = { p, target_cpu };
5049 	int curr_cpu = task_cpu(p);
5050 
5051 	if (curr_cpu == target_cpu)
5052 		return 0;
5053 
5054 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5055 		return -EINVAL;
5056 
5057 	/* TODO: This is not properly updating schedstats */
5058 
5059 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5060 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5061 }
5062 
5063 /*
5064  * Requeue a task on a given node and accurately track the number of NUMA
5065  * tasks on the runqueues
5066  */
5067 void sched_setnuma(struct task_struct *p, int nid)
5068 {
5069 	struct rq *rq;
5070 	unsigned long flags;
5071 	bool queued, running;
5072 
5073 	rq = task_rq_lock(p, &flags);
5074 	queued = task_on_rq_queued(p);
5075 	running = task_current(rq, p);
5076 
5077 	if (queued)
5078 		dequeue_task(rq, p, 0);
5079 	if (running)
5080 		put_prev_task(rq, p);
5081 
5082 	p->numa_preferred_nid = nid;
5083 
5084 	if (running)
5085 		p->sched_class->set_curr_task(rq);
5086 	if (queued)
5087 		enqueue_task(rq, p, 0);
5088 	task_rq_unlock(rq, p, &flags);
5089 }
5090 #endif /* CONFIG_NUMA_BALANCING */
5091 
5092 #ifdef CONFIG_HOTPLUG_CPU
5093 /*
5094  * Ensures that the idle task is using init_mm right before its cpu goes
5095  * offline.
5096  */
5097 void idle_task_exit(void)
5098 {
5099 	struct mm_struct *mm = current->active_mm;
5100 
5101 	BUG_ON(cpu_online(smp_processor_id()));
5102 
5103 	if (mm != &init_mm) {
5104 		switch_mm(mm, &init_mm, current);
5105 		finish_arch_post_lock_switch();
5106 	}
5107 	mmdrop(mm);
5108 }
5109 
5110 /*
5111  * Since this CPU is going 'away' for a while, fold any nr_active delta
5112  * we might have. Assumes we're called after migrate_tasks() so that the
5113  * nr_active count is stable.
5114  *
5115  * Also see the comment "Global load-average calculations".
5116  */
5117 static void calc_load_migrate(struct rq *rq)
5118 {
5119 	long delta = calc_load_fold_active(rq);
5120 	if (delta)
5121 		atomic_long_add(delta, &calc_load_tasks);
5122 }
5123 
5124 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5125 {
5126 }
5127 
5128 static const struct sched_class fake_sched_class = {
5129 	.put_prev_task = put_prev_task_fake,
5130 };
5131 
5132 static struct task_struct fake_task = {
5133 	/*
5134 	 * Avoid pull_{rt,dl}_task()
5135 	 */
5136 	.prio = MAX_PRIO + 1,
5137 	.sched_class = &fake_sched_class,
5138 };
5139 
5140 /*
5141  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5142  * try_to_wake_up()->select_task_rq().
5143  *
5144  * Called with rq->lock held even though we'er in stop_machine() and
5145  * there's no concurrency possible, we hold the required locks anyway
5146  * because of lock validation efforts.
5147  */
5148 static void migrate_tasks(struct rq *dead_rq)
5149 {
5150 	struct rq *rq = dead_rq;
5151 	struct task_struct *next, *stop = rq->stop;
5152 	int dest_cpu;
5153 
5154 	/*
5155 	 * Fudge the rq selection such that the below task selection loop
5156 	 * doesn't get stuck on the currently eligible stop task.
5157 	 *
5158 	 * We're currently inside stop_machine() and the rq is either stuck
5159 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5160 	 * either way we should never end up calling schedule() until we're
5161 	 * done here.
5162 	 */
5163 	rq->stop = NULL;
5164 
5165 	/*
5166 	 * put_prev_task() and pick_next_task() sched
5167 	 * class method both need to have an up-to-date
5168 	 * value of rq->clock[_task]
5169 	 */
5170 	update_rq_clock(rq);
5171 
5172 	for (;;) {
5173 		/*
5174 		 * There's this thread running, bail when that's the only
5175 		 * remaining thread.
5176 		 */
5177 		if (rq->nr_running == 1)
5178 			break;
5179 
5180 		/*
5181 		 * Ensure rq->lock covers the entire task selection
5182 		 * until the migration.
5183 		 */
5184 		lockdep_pin_lock(&rq->lock);
5185 		next = pick_next_task(rq, &fake_task);
5186 		BUG_ON(!next);
5187 		next->sched_class->put_prev_task(rq, next);
5188 
5189 		/* Find suitable destination for @next, with force if needed. */
5190 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5191 
5192 		lockdep_unpin_lock(&rq->lock);
5193 		rq = __migrate_task(rq, next, dest_cpu);
5194 		if (rq != dead_rq) {
5195 			raw_spin_unlock(&rq->lock);
5196 			rq = dead_rq;
5197 			raw_spin_lock(&rq->lock);
5198 		}
5199 	}
5200 
5201 	rq->stop = stop;
5202 }
5203 #endif /* CONFIG_HOTPLUG_CPU */
5204 
5205 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5206 
5207 static struct ctl_table sd_ctl_dir[] = {
5208 	{
5209 		.procname	= "sched_domain",
5210 		.mode		= 0555,
5211 	},
5212 	{}
5213 };
5214 
5215 static struct ctl_table sd_ctl_root[] = {
5216 	{
5217 		.procname	= "kernel",
5218 		.mode		= 0555,
5219 		.child		= sd_ctl_dir,
5220 	},
5221 	{}
5222 };
5223 
5224 static struct ctl_table *sd_alloc_ctl_entry(int n)
5225 {
5226 	struct ctl_table *entry =
5227 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5228 
5229 	return entry;
5230 }
5231 
5232 static void sd_free_ctl_entry(struct ctl_table **tablep)
5233 {
5234 	struct ctl_table *entry;
5235 
5236 	/*
5237 	 * In the intermediate directories, both the child directory and
5238 	 * procname are dynamically allocated and could fail but the mode
5239 	 * will always be set. In the lowest directory the names are
5240 	 * static strings and all have proc handlers.
5241 	 */
5242 	for (entry = *tablep; entry->mode; entry++) {
5243 		if (entry->child)
5244 			sd_free_ctl_entry(&entry->child);
5245 		if (entry->proc_handler == NULL)
5246 			kfree(entry->procname);
5247 	}
5248 
5249 	kfree(*tablep);
5250 	*tablep = NULL;
5251 }
5252 
5253 static int min_load_idx = 0;
5254 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5255 
5256 static void
5257 set_table_entry(struct ctl_table *entry,
5258 		const char *procname, void *data, int maxlen,
5259 		umode_t mode, proc_handler *proc_handler,
5260 		bool load_idx)
5261 {
5262 	entry->procname = procname;
5263 	entry->data = data;
5264 	entry->maxlen = maxlen;
5265 	entry->mode = mode;
5266 	entry->proc_handler = proc_handler;
5267 
5268 	if (load_idx) {
5269 		entry->extra1 = &min_load_idx;
5270 		entry->extra2 = &max_load_idx;
5271 	}
5272 }
5273 
5274 static struct ctl_table *
5275 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5276 {
5277 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5278 
5279 	if (table == NULL)
5280 		return NULL;
5281 
5282 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5283 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5284 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5285 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5286 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5287 		sizeof(int), 0644, proc_dointvec_minmax, true);
5288 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5289 		sizeof(int), 0644, proc_dointvec_minmax, true);
5290 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5291 		sizeof(int), 0644, proc_dointvec_minmax, true);
5292 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5293 		sizeof(int), 0644, proc_dointvec_minmax, true);
5294 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5295 		sizeof(int), 0644, proc_dointvec_minmax, true);
5296 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5297 		sizeof(int), 0644, proc_dointvec_minmax, false);
5298 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5299 		sizeof(int), 0644, proc_dointvec_minmax, false);
5300 	set_table_entry(&table[9], "cache_nice_tries",
5301 		&sd->cache_nice_tries,
5302 		sizeof(int), 0644, proc_dointvec_minmax, false);
5303 	set_table_entry(&table[10], "flags", &sd->flags,
5304 		sizeof(int), 0644, proc_dointvec_minmax, false);
5305 	set_table_entry(&table[11], "max_newidle_lb_cost",
5306 		&sd->max_newidle_lb_cost,
5307 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5308 	set_table_entry(&table[12], "name", sd->name,
5309 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5310 	/* &table[13] is terminator */
5311 
5312 	return table;
5313 }
5314 
5315 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5316 {
5317 	struct ctl_table *entry, *table;
5318 	struct sched_domain *sd;
5319 	int domain_num = 0, i;
5320 	char buf[32];
5321 
5322 	for_each_domain(cpu, sd)
5323 		domain_num++;
5324 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5325 	if (table == NULL)
5326 		return NULL;
5327 
5328 	i = 0;
5329 	for_each_domain(cpu, sd) {
5330 		snprintf(buf, 32, "domain%d", i);
5331 		entry->procname = kstrdup(buf, GFP_KERNEL);
5332 		entry->mode = 0555;
5333 		entry->child = sd_alloc_ctl_domain_table(sd);
5334 		entry++;
5335 		i++;
5336 	}
5337 	return table;
5338 }
5339 
5340 static struct ctl_table_header *sd_sysctl_header;
5341 static void register_sched_domain_sysctl(void)
5342 {
5343 	int i, cpu_num = num_possible_cpus();
5344 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5345 	char buf[32];
5346 
5347 	WARN_ON(sd_ctl_dir[0].child);
5348 	sd_ctl_dir[0].child = entry;
5349 
5350 	if (entry == NULL)
5351 		return;
5352 
5353 	for_each_possible_cpu(i) {
5354 		snprintf(buf, 32, "cpu%d", i);
5355 		entry->procname = kstrdup(buf, GFP_KERNEL);
5356 		entry->mode = 0555;
5357 		entry->child = sd_alloc_ctl_cpu_table(i);
5358 		entry++;
5359 	}
5360 
5361 	WARN_ON(sd_sysctl_header);
5362 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5363 }
5364 
5365 /* may be called multiple times per register */
5366 static void unregister_sched_domain_sysctl(void)
5367 {
5368 	unregister_sysctl_table(sd_sysctl_header);
5369 	sd_sysctl_header = NULL;
5370 	if (sd_ctl_dir[0].child)
5371 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5372 }
5373 #else
5374 static void register_sched_domain_sysctl(void)
5375 {
5376 }
5377 static void unregister_sched_domain_sysctl(void)
5378 {
5379 }
5380 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5381 
5382 static void set_rq_online(struct rq *rq)
5383 {
5384 	if (!rq->online) {
5385 		const struct sched_class *class;
5386 
5387 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5388 		rq->online = 1;
5389 
5390 		for_each_class(class) {
5391 			if (class->rq_online)
5392 				class->rq_online(rq);
5393 		}
5394 	}
5395 }
5396 
5397 static void set_rq_offline(struct rq *rq)
5398 {
5399 	if (rq->online) {
5400 		const struct sched_class *class;
5401 
5402 		for_each_class(class) {
5403 			if (class->rq_offline)
5404 				class->rq_offline(rq);
5405 		}
5406 
5407 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5408 		rq->online = 0;
5409 	}
5410 }
5411 
5412 /*
5413  * migration_call - callback that gets triggered when a CPU is added.
5414  * Here we can start up the necessary migration thread for the new CPU.
5415  */
5416 static int
5417 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5418 {
5419 	int cpu = (long)hcpu;
5420 	unsigned long flags;
5421 	struct rq *rq = cpu_rq(cpu);
5422 
5423 	switch (action & ~CPU_TASKS_FROZEN) {
5424 
5425 	case CPU_UP_PREPARE:
5426 		rq->calc_load_update = calc_load_update;
5427 		break;
5428 
5429 	case CPU_ONLINE:
5430 		/* Update our root-domain */
5431 		raw_spin_lock_irqsave(&rq->lock, flags);
5432 		if (rq->rd) {
5433 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5434 
5435 			set_rq_online(rq);
5436 		}
5437 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5438 		break;
5439 
5440 #ifdef CONFIG_HOTPLUG_CPU
5441 	case CPU_DYING:
5442 		sched_ttwu_pending();
5443 		/* Update our root-domain */
5444 		raw_spin_lock_irqsave(&rq->lock, flags);
5445 		if (rq->rd) {
5446 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5447 			set_rq_offline(rq);
5448 		}
5449 		migrate_tasks(rq);
5450 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5451 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5452 		break;
5453 
5454 	case CPU_DEAD:
5455 		calc_load_migrate(rq);
5456 		break;
5457 #endif
5458 	}
5459 
5460 	update_max_interval();
5461 
5462 	return NOTIFY_OK;
5463 }
5464 
5465 /*
5466  * Register at high priority so that task migration (migrate_all_tasks)
5467  * happens before everything else.  This has to be lower priority than
5468  * the notifier in the perf_event subsystem, though.
5469  */
5470 static struct notifier_block migration_notifier = {
5471 	.notifier_call = migration_call,
5472 	.priority = CPU_PRI_MIGRATION,
5473 };
5474 
5475 static void set_cpu_rq_start_time(void)
5476 {
5477 	int cpu = smp_processor_id();
5478 	struct rq *rq = cpu_rq(cpu);
5479 	rq->age_stamp = sched_clock_cpu(cpu);
5480 }
5481 
5482 static int sched_cpu_active(struct notifier_block *nfb,
5483 				      unsigned long action, void *hcpu)
5484 {
5485 	switch (action & ~CPU_TASKS_FROZEN) {
5486 	case CPU_STARTING:
5487 		set_cpu_rq_start_time();
5488 		return NOTIFY_OK;
5489 	case CPU_ONLINE:
5490 		/*
5491 		 * At this point a starting CPU has marked itself as online via
5492 		 * set_cpu_online(). But it might not yet have marked itself
5493 		 * as active, which is essential from here on.
5494 		 *
5495 		 * Thus, fall-through and help the starting CPU along.
5496 		 */
5497 	case CPU_DOWN_FAILED:
5498 		set_cpu_active((long)hcpu, true);
5499 		return NOTIFY_OK;
5500 	default:
5501 		return NOTIFY_DONE;
5502 	}
5503 }
5504 
5505 static int sched_cpu_inactive(struct notifier_block *nfb,
5506 					unsigned long action, void *hcpu)
5507 {
5508 	switch (action & ~CPU_TASKS_FROZEN) {
5509 	case CPU_DOWN_PREPARE:
5510 		set_cpu_active((long)hcpu, false);
5511 		return NOTIFY_OK;
5512 	default:
5513 		return NOTIFY_DONE;
5514 	}
5515 }
5516 
5517 static int __init migration_init(void)
5518 {
5519 	void *cpu = (void *)(long)smp_processor_id();
5520 	int err;
5521 
5522 	/* Initialize migration for the boot CPU */
5523 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5524 	BUG_ON(err == NOTIFY_BAD);
5525 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5526 	register_cpu_notifier(&migration_notifier);
5527 
5528 	/* Register cpu active notifiers */
5529 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5530 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5531 
5532 	return 0;
5533 }
5534 early_initcall(migration_init);
5535 
5536 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5537 
5538 #ifdef CONFIG_SCHED_DEBUG
5539 
5540 static __read_mostly int sched_debug_enabled;
5541 
5542 static int __init sched_debug_setup(char *str)
5543 {
5544 	sched_debug_enabled = 1;
5545 
5546 	return 0;
5547 }
5548 early_param("sched_debug", sched_debug_setup);
5549 
5550 static inline bool sched_debug(void)
5551 {
5552 	return sched_debug_enabled;
5553 }
5554 
5555 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5556 				  struct cpumask *groupmask)
5557 {
5558 	struct sched_group *group = sd->groups;
5559 
5560 	cpumask_clear(groupmask);
5561 
5562 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5563 
5564 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5565 		printk("does not load-balance\n");
5566 		if (sd->parent)
5567 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5568 					" has parent");
5569 		return -1;
5570 	}
5571 
5572 	printk(KERN_CONT "span %*pbl level %s\n",
5573 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5574 
5575 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5576 		printk(KERN_ERR "ERROR: domain->span does not contain "
5577 				"CPU%d\n", cpu);
5578 	}
5579 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5580 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5581 				" CPU%d\n", cpu);
5582 	}
5583 
5584 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5585 	do {
5586 		if (!group) {
5587 			printk("\n");
5588 			printk(KERN_ERR "ERROR: group is NULL\n");
5589 			break;
5590 		}
5591 
5592 		if (!cpumask_weight(sched_group_cpus(group))) {
5593 			printk(KERN_CONT "\n");
5594 			printk(KERN_ERR "ERROR: empty group\n");
5595 			break;
5596 		}
5597 
5598 		if (!(sd->flags & SD_OVERLAP) &&
5599 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5600 			printk(KERN_CONT "\n");
5601 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5602 			break;
5603 		}
5604 
5605 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5606 
5607 		printk(KERN_CONT " %*pbl",
5608 		       cpumask_pr_args(sched_group_cpus(group)));
5609 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5610 			printk(KERN_CONT " (cpu_capacity = %d)",
5611 				group->sgc->capacity);
5612 		}
5613 
5614 		group = group->next;
5615 	} while (group != sd->groups);
5616 	printk(KERN_CONT "\n");
5617 
5618 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5619 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5620 
5621 	if (sd->parent &&
5622 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5623 		printk(KERN_ERR "ERROR: parent span is not a superset "
5624 			"of domain->span\n");
5625 	return 0;
5626 }
5627 
5628 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5629 {
5630 	int level = 0;
5631 
5632 	if (!sched_debug_enabled)
5633 		return;
5634 
5635 	if (!sd) {
5636 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5637 		return;
5638 	}
5639 
5640 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5641 
5642 	for (;;) {
5643 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5644 			break;
5645 		level++;
5646 		sd = sd->parent;
5647 		if (!sd)
5648 			break;
5649 	}
5650 }
5651 #else /* !CONFIG_SCHED_DEBUG */
5652 # define sched_domain_debug(sd, cpu) do { } while (0)
5653 static inline bool sched_debug(void)
5654 {
5655 	return false;
5656 }
5657 #endif /* CONFIG_SCHED_DEBUG */
5658 
5659 static int sd_degenerate(struct sched_domain *sd)
5660 {
5661 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5662 		return 1;
5663 
5664 	/* Following flags need at least 2 groups */
5665 	if (sd->flags & (SD_LOAD_BALANCE |
5666 			 SD_BALANCE_NEWIDLE |
5667 			 SD_BALANCE_FORK |
5668 			 SD_BALANCE_EXEC |
5669 			 SD_SHARE_CPUCAPACITY |
5670 			 SD_SHARE_PKG_RESOURCES |
5671 			 SD_SHARE_POWERDOMAIN)) {
5672 		if (sd->groups != sd->groups->next)
5673 			return 0;
5674 	}
5675 
5676 	/* Following flags don't use groups */
5677 	if (sd->flags & (SD_WAKE_AFFINE))
5678 		return 0;
5679 
5680 	return 1;
5681 }
5682 
5683 static int
5684 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5685 {
5686 	unsigned long cflags = sd->flags, pflags = parent->flags;
5687 
5688 	if (sd_degenerate(parent))
5689 		return 1;
5690 
5691 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5692 		return 0;
5693 
5694 	/* Flags needing groups don't count if only 1 group in parent */
5695 	if (parent->groups == parent->groups->next) {
5696 		pflags &= ~(SD_LOAD_BALANCE |
5697 				SD_BALANCE_NEWIDLE |
5698 				SD_BALANCE_FORK |
5699 				SD_BALANCE_EXEC |
5700 				SD_SHARE_CPUCAPACITY |
5701 				SD_SHARE_PKG_RESOURCES |
5702 				SD_PREFER_SIBLING |
5703 				SD_SHARE_POWERDOMAIN);
5704 		if (nr_node_ids == 1)
5705 			pflags &= ~SD_SERIALIZE;
5706 	}
5707 	if (~cflags & pflags)
5708 		return 0;
5709 
5710 	return 1;
5711 }
5712 
5713 static void free_rootdomain(struct rcu_head *rcu)
5714 {
5715 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5716 
5717 	cpupri_cleanup(&rd->cpupri);
5718 	cpudl_cleanup(&rd->cpudl);
5719 	free_cpumask_var(rd->dlo_mask);
5720 	free_cpumask_var(rd->rto_mask);
5721 	free_cpumask_var(rd->online);
5722 	free_cpumask_var(rd->span);
5723 	kfree(rd);
5724 }
5725 
5726 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5727 {
5728 	struct root_domain *old_rd = NULL;
5729 	unsigned long flags;
5730 
5731 	raw_spin_lock_irqsave(&rq->lock, flags);
5732 
5733 	if (rq->rd) {
5734 		old_rd = rq->rd;
5735 
5736 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5737 			set_rq_offline(rq);
5738 
5739 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5740 
5741 		/*
5742 		 * If we dont want to free the old_rd yet then
5743 		 * set old_rd to NULL to skip the freeing later
5744 		 * in this function:
5745 		 */
5746 		if (!atomic_dec_and_test(&old_rd->refcount))
5747 			old_rd = NULL;
5748 	}
5749 
5750 	atomic_inc(&rd->refcount);
5751 	rq->rd = rd;
5752 
5753 	cpumask_set_cpu(rq->cpu, rd->span);
5754 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5755 		set_rq_online(rq);
5756 
5757 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5758 
5759 	if (old_rd)
5760 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5761 }
5762 
5763 static int init_rootdomain(struct root_domain *rd)
5764 {
5765 	memset(rd, 0, sizeof(*rd));
5766 
5767 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5768 		goto out;
5769 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5770 		goto free_span;
5771 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5772 		goto free_online;
5773 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5774 		goto free_dlo_mask;
5775 
5776 	init_dl_bw(&rd->dl_bw);
5777 	if (cpudl_init(&rd->cpudl) != 0)
5778 		goto free_dlo_mask;
5779 
5780 	if (cpupri_init(&rd->cpupri) != 0)
5781 		goto free_rto_mask;
5782 	return 0;
5783 
5784 free_rto_mask:
5785 	free_cpumask_var(rd->rto_mask);
5786 free_dlo_mask:
5787 	free_cpumask_var(rd->dlo_mask);
5788 free_online:
5789 	free_cpumask_var(rd->online);
5790 free_span:
5791 	free_cpumask_var(rd->span);
5792 out:
5793 	return -ENOMEM;
5794 }
5795 
5796 /*
5797  * By default the system creates a single root-domain with all cpus as
5798  * members (mimicking the global state we have today).
5799  */
5800 struct root_domain def_root_domain;
5801 
5802 static void init_defrootdomain(void)
5803 {
5804 	init_rootdomain(&def_root_domain);
5805 
5806 	atomic_set(&def_root_domain.refcount, 1);
5807 }
5808 
5809 static struct root_domain *alloc_rootdomain(void)
5810 {
5811 	struct root_domain *rd;
5812 
5813 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5814 	if (!rd)
5815 		return NULL;
5816 
5817 	if (init_rootdomain(rd) != 0) {
5818 		kfree(rd);
5819 		return NULL;
5820 	}
5821 
5822 	return rd;
5823 }
5824 
5825 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5826 {
5827 	struct sched_group *tmp, *first;
5828 
5829 	if (!sg)
5830 		return;
5831 
5832 	first = sg;
5833 	do {
5834 		tmp = sg->next;
5835 
5836 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5837 			kfree(sg->sgc);
5838 
5839 		kfree(sg);
5840 		sg = tmp;
5841 	} while (sg != first);
5842 }
5843 
5844 static void free_sched_domain(struct rcu_head *rcu)
5845 {
5846 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5847 
5848 	/*
5849 	 * If its an overlapping domain it has private groups, iterate and
5850 	 * nuke them all.
5851 	 */
5852 	if (sd->flags & SD_OVERLAP) {
5853 		free_sched_groups(sd->groups, 1);
5854 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5855 		kfree(sd->groups->sgc);
5856 		kfree(sd->groups);
5857 	}
5858 	kfree(sd);
5859 }
5860 
5861 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5862 {
5863 	call_rcu(&sd->rcu, free_sched_domain);
5864 }
5865 
5866 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5867 {
5868 	for (; sd; sd = sd->parent)
5869 		destroy_sched_domain(sd, cpu);
5870 }
5871 
5872 /*
5873  * Keep a special pointer to the highest sched_domain that has
5874  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5875  * allows us to avoid some pointer chasing select_idle_sibling().
5876  *
5877  * Also keep a unique ID per domain (we use the first cpu number in
5878  * the cpumask of the domain), this allows us to quickly tell if
5879  * two cpus are in the same cache domain, see cpus_share_cache().
5880  */
5881 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5882 DEFINE_PER_CPU(int, sd_llc_size);
5883 DEFINE_PER_CPU(int, sd_llc_id);
5884 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5885 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5886 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5887 
5888 static void update_top_cache_domain(int cpu)
5889 {
5890 	struct sched_domain *sd;
5891 	struct sched_domain *busy_sd = NULL;
5892 	int id = cpu;
5893 	int size = 1;
5894 
5895 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5896 	if (sd) {
5897 		id = cpumask_first(sched_domain_span(sd));
5898 		size = cpumask_weight(sched_domain_span(sd));
5899 		busy_sd = sd->parent; /* sd_busy */
5900 	}
5901 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5902 
5903 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5904 	per_cpu(sd_llc_size, cpu) = size;
5905 	per_cpu(sd_llc_id, cpu) = id;
5906 
5907 	sd = lowest_flag_domain(cpu, SD_NUMA);
5908 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5909 
5910 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5911 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5912 }
5913 
5914 /*
5915  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5916  * hold the hotplug lock.
5917  */
5918 static void
5919 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5920 {
5921 	struct rq *rq = cpu_rq(cpu);
5922 	struct sched_domain *tmp;
5923 
5924 	/* Remove the sched domains which do not contribute to scheduling. */
5925 	for (tmp = sd; tmp; ) {
5926 		struct sched_domain *parent = tmp->parent;
5927 		if (!parent)
5928 			break;
5929 
5930 		if (sd_parent_degenerate(tmp, parent)) {
5931 			tmp->parent = parent->parent;
5932 			if (parent->parent)
5933 				parent->parent->child = tmp;
5934 			/*
5935 			 * Transfer SD_PREFER_SIBLING down in case of a
5936 			 * degenerate parent; the spans match for this
5937 			 * so the property transfers.
5938 			 */
5939 			if (parent->flags & SD_PREFER_SIBLING)
5940 				tmp->flags |= SD_PREFER_SIBLING;
5941 			destroy_sched_domain(parent, cpu);
5942 		} else
5943 			tmp = tmp->parent;
5944 	}
5945 
5946 	if (sd && sd_degenerate(sd)) {
5947 		tmp = sd;
5948 		sd = sd->parent;
5949 		destroy_sched_domain(tmp, cpu);
5950 		if (sd)
5951 			sd->child = NULL;
5952 	}
5953 
5954 	sched_domain_debug(sd, cpu);
5955 
5956 	rq_attach_root(rq, rd);
5957 	tmp = rq->sd;
5958 	rcu_assign_pointer(rq->sd, sd);
5959 	destroy_sched_domains(tmp, cpu);
5960 
5961 	update_top_cache_domain(cpu);
5962 }
5963 
5964 /* Setup the mask of cpus configured for isolated domains */
5965 static int __init isolated_cpu_setup(char *str)
5966 {
5967 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5968 	cpulist_parse(str, cpu_isolated_map);
5969 	return 1;
5970 }
5971 
5972 __setup("isolcpus=", isolated_cpu_setup);
5973 
5974 struct s_data {
5975 	struct sched_domain ** __percpu sd;
5976 	struct root_domain	*rd;
5977 };
5978 
5979 enum s_alloc {
5980 	sa_rootdomain,
5981 	sa_sd,
5982 	sa_sd_storage,
5983 	sa_none,
5984 };
5985 
5986 /*
5987  * Build an iteration mask that can exclude certain CPUs from the upwards
5988  * domain traversal.
5989  *
5990  * Asymmetric node setups can result in situations where the domain tree is of
5991  * unequal depth, make sure to skip domains that already cover the entire
5992  * range.
5993  *
5994  * In that case build_sched_domains() will have terminated the iteration early
5995  * and our sibling sd spans will be empty. Domains should always include the
5996  * cpu they're built on, so check that.
5997  *
5998  */
5999 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6000 {
6001 	const struct cpumask *span = sched_domain_span(sd);
6002 	struct sd_data *sdd = sd->private;
6003 	struct sched_domain *sibling;
6004 	int i;
6005 
6006 	for_each_cpu(i, span) {
6007 		sibling = *per_cpu_ptr(sdd->sd, i);
6008 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6009 			continue;
6010 
6011 		cpumask_set_cpu(i, sched_group_mask(sg));
6012 	}
6013 }
6014 
6015 /*
6016  * Return the canonical balance cpu for this group, this is the first cpu
6017  * of this group that's also in the iteration mask.
6018  */
6019 int group_balance_cpu(struct sched_group *sg)
6020 {
6021 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6022 }
6023 
6024 static int
6025 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6026 {
6027 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6028 	const struct cpumask *span = sched_domain_span(sd);
6029 	struct cpumask *covered = sched_domains_tmpmask;
6030 	struct sd_data *sdd = sd->private;
6031 	struct sched_domain *sibling;
6032 	int i;
6033 
6034 	cpumask_clear(covered);
6035 
6036 	for_each_cpu(i, span) {
6037 		struct cpumask *sg_span;
6038 
6039 		if (cpumask_test_cpu(i, covered))
6040 			continue;
6041 
6042 		sibling = *per_cpu_ptr(sdd->sd, i);
6043 
6044 		/* See the comment near build_group_mask(). */
6045 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6046 			continue;
6047 
6048 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6049 				GFP_KERNEL, cpu_to_node(cpu));
6050 
6051 		if (!sg)
6052 			goto fail;
6053 
6054 		sg_span = sched_group_cpus(sg);
6055 		if (sibling->child)
6056 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6057 		else
6058 			cpumask_set_cpu(i, sg_span);
6059 
6060 		cpumask_or(covered, covered, sg_span);
6061 
6062 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6063 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6064 			build_group_mask(sd, sg);
6065 
6066 		/*
6067 		 * Initialize sgc->capacity such that even if we mess up the
6068 		 * domains and no possible iteration will get us here, we won't
6069 		 * die on a /0 trap.
6070 		 */
6071 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6072 
6073 		/*
6074 		 * Make sure the first group of this domain contains the
6075 		 * canonical balance cpu. Otherwise the sched_domain iteration
6076 		 * breaks. See update_sg_lb_stats().
6077 		 */
6078 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6079 		    group_balance_cpu(sg) == cpu)
6080 			groups = sg;
6081 
6082 		if (!first)
6083 			first = sg;
6084 		if (last)
6085 			last->next = sg;
6086 		last = sg;
6087 		last->next = first;
6088 	}
6089 	sd->groups = groups;
6090 
6091 	return 0;
6092 
6093 fail:
6094 	free_sched_groups(first, 0);
6095 
6096 	return -ENOMEM;
6097 }
6098 
6099 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6100 {
6101 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6102 	struct sched_domain *child = sd->child;
6103 
6104 	if (child)
6105 		cpu = cpumask_first(sched_domain_span(child));
6106 
6107 	if (sg) {
6108 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6109 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6110 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6111 	}
6112 
6113 	return cpu;
6114 }
6115 
6116 /*
6117  * build_sched_groups will build a circular linked list of the groups
6118  * covered by the given span, and will set each group's ->cpumask correctly,
6119  * and ->cpu_capacity to 0.
6120  *
6121  * Assumes the sched_domain tree is fully constructed
6122  */
6123 static int
6124 build_sched_groups(struct sched_domain *sd, int cpu)
6125 {
6126 	struct sched_group *first = NULL, *last = NULL;
6127 	struct sd_data *sdd = sd->private;
6128 	const struct cpumask *span = sched_domain_span(sd);
6129 	struct cpumask *covered;
6130 	int i;
6131 
6132 	get_group(cpu, sdd, &sd->groups);
6133 	atomic_inc(&sd->groups->ref);
6134 
6135 	if (cpu != cpumask_first(span))
6136 		return 0;
6137 
6138 	lockdep_assert_held(&sched_domains_mutex);
6139 	covered = sched_domains_tmpmask;
6140 
6141 	cpumask_clear(covered);
6142 
6143 	for_each_cpu(i, span) {
6144 		struct sched_group *sg;
6145 		int group, j;
6146 
6147 		if (cpumask_test_cpu(i, covered))
6148 			continue;
6149 
6150 		group = get_group(i, sdd, &sg);
6151 		cpumask_setall(sched_group_mask(sg));
6152 
6153 		for_each_cpu(j, span) {
6154 			if (get_group(j, sdd, NULL) != group)
6155 				continue;
6156 
6157 			cpumask_set_cpu(j, covered);
6158 			cpumask_set_cpu(j, sched_group_cpus(sg));
6159 		}
6160 
6161 		if (!first)
6162 			first = sg;
6163 		if (last)
6164 			last->next = sg;
6165 		last = sg;
6166 	}
6167 	last->next = first;
6168 
6169 	return 0;
6170 }
6171 
6172 /*
6173  * Initialize sched groups cpu_capacity.
6174  *
6175  * cpu_capacity indicates the capacity of sched group, which is used while
6176  * distributing the load between different sched groups in a sched domain.
6177  * Typically cpu_capacity for all the groups in a sched domain will be same
6178  * unless there are asymmetries in the topology. If there are asymmetries,
6179  * group having more cpu_capacity will pickup more load compared to the
6180  * group having less cpu_capacity.
6181  */
6182 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6183 {
6184 	struct sched_group *sg = sd->groups;
6185 
6186 	WARN_ON(!sg);
6187 
6188 	do {
6189 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6190 		sg = sg->next;
6191 	} while (sg != sd->groups);
6192 
6193 	if (cpu != group_balance_cpu(sg))
6194 		return;
6195 
6196 	update_group_capacity(sd, cpu);
6197 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6198 }
6199 
6200 /*
6201  * Initializers for schedule domains
6202  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6203  */
6204 
6205 static int default_relax_domain_level = -1;
6206 int sched_domain_level_max;
6207 
6208 static int __init setup_relax_domain_level(char *str)
6209 {
6210 	if (kstrtoint(str, 0, &default_relax_domain_level))
6211 		pr_warn("Unable to set relax_domain_level\n");
6212 
6213 	return 1;
6214 }
6215 __setup("relax_domain_level=", setup_relax_domain_level);
6216 
6217 static void set_domain_attribute(struct sched_domain *sd,
6218 				 struct sched_domain_attr *attr)
6219 {
6220 	int request;
6221 
6222 	if (!attr || attr->relax_domain_level < 0) {
6223 		if (default_relax_domain_level < 0)
6224 			return;
6225 		else
6226 			request = default_relax_domain_level;
6227 	} else
6228 		request = attr->relax_domain_level;
6229 	if (request < sd->level) {
6230 		/* turn off idle balance on this domain */
6231 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6232 	} else {
6233 		/* turn on idle balance on this domain */
6234 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6235 	}
6236 }
6237 
6238 static void __sdt_free(const struct cpumask *cpu_map);
6239 static int __sdt_alloc(const struct cpumask *cpu_map);
6240 
6241 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6242 				 const struct cpumask *cpu_map)
6243 {
6244 	switch (what) {
6245 	case sa_rootdomain:
6246 		if (!atomic_read(&d->rd->refcount))
6247 			free_rootdomain(&d->rd->rcu); /* fall through */
6248 	case sa_sd:
6249 		free_percpu(d->sd); /* fall through */
6250 	case sa_sd_storage:
6251 		__sdt_free(cpu_map); /* fall through */
6252 	case sa_none:
6253 		break;
6254 	}
6255 }
6256 
6257 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6258 						   const struct cpumask *cpu_map)
6259 {
6260 	memset(d, 0, sizeof(*d));
6261 
6262 	if (__sdt_alloc(cpu_map))
6263 		return sa_sd_storage;
6264 	d->sd = alloc_percpu(struct sched_domain *);
6265 	if (!d->sd)
6266 		return sa_sd_storage;
6267 	d->rd = alloc_rootdomain();
6268 	if (!d->rd)
6269 		return sa_sd;
6270 	return sa_rootdomain;
6271 }
6272 
6273 /*
6274  * NULL the sd_data elements we've used to build the sched_domain and
6275  * sched_group structure so that the subsequent __free_domain_allocs()
6276  * will not free the data we're using.
6277  */
6278 static void claim_allocations(int cpu, struct sched_domain *sd)
6279 {
6280 	struct sd_data *sdd = sd->private;
6281 
6282 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6283 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6284 
6285 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6286 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6287 
6288 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6289 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6290 }
6291 
6292 #ifdef CONFIG_NUMA
6293 static int sched_domains_numa_levels;
6294 enum numa_topology_type sched_numa_topology_type;
6295 static int *sched_domains_numa_distance;
6296 int sched_max_numa_distance;
6297 static struct cpumask ***sched_domains_numa_masks;
6298 static int sched_domains_curr_level;
6299 #endif
6300 
6301 /*
6302  * SD_flags allowed in topology descriptions.
6303  *
6304  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6305  * SD_SHARE_PKG_RESOURCES - describes shared caches
6306  * SD_NUMA                - describes NUMA topologies
6307  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6308  *
6309  * Odd one out:
6310  * SD_ASYM_PACKING        - describes SMT quirks
6311  */
6312 #define TOPOLOGY_SD_FLAGS		\
6313 	(SD_SHARE_CPUCAPACITY |		\
6314 	 SD_SHARE_PKG_RESOURCES |	\
6315 	 SD_NUMA |			\
6316 	 SD_ASYM_PACKING |		\
6317 	 SD_SHARE_POWERDOMAIN)
6318 
6319 static struct sched_domain *
6320 sd_init(struct sched_domain_topology_level *tl, int cpu)
6321 {
6322 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6323 	int sd_weight, sd_flags = 0;
6324 
6325 #ifdef CONFIG_NUMA
6326 	/*
6327 	 * Ugly hack to pass state to sd_numa_mask()...
6328 	 */
6329 	sched_domains_curr_level = tl->numa_level;
6330 #endif
6331 
6332 	sd_weight = cpumask_weight(tl->mask(cpu));
6333 
6334 	if (tl->sd_flags)
6335 		sd_flags = (*tl->sd_flags)();
6336 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6337 			"wrong sd_flags in topology description\n"))
6338 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6339 
6340 	*sd = (struct sched_domain){
6341 		.min_interval		= sd_weight,
6342 		.max_interval		= 2*sd_weight,
6343 		.busy_factor		= 32,
6344 		.imbalance_pct		= 125,
6345 
6346 		.cache_nice_tries	= 0,
6347 		.busy_idx		= 0,
6348 		.idle_idx		= 0,
6349 		.newidle_idx		= 0,
6350 		.wake_idx		= 0,
6351 		.forkexec_idx		= 0,
6352 
6353 		.flags			= 1*SD_LOAD_BALANCE
6354 					| 1*SD_BALANCE_NEWIDLE
6355 					| 1*SD_BALANCE_EXEC
6356 					| 1*SD_BALANCE_FORK
6357 					| 0*SD_BALANCE_WAKE
6358 					| 1*SD_WAKE_AFFINE
6359 					| 0*SD_SHARE_CPUCAPACITY
6360 					| 0*SD_SHARE_PKG_RESOURCES
6361 					| 0*SD_SERIALIZE
6362 					| 0*SD_PREFER_SIBLING
6363 					| 0*SD_NUMA
6364 					| sd_flags
6365 					,
6366 
6367 		.last_balance		= jiffies,
6368 		.balance_interval	= sd_weight,
6369 		.smt_gain		= 0,
6370 		.max_newidle_lb_cost	= 0,
6371 		.next_decay_max_lb_cost	= jiffies,
6372 #ifdef CONFIG_SCHED_DEBUG
6373 		.name			= tl->name,
6374 #endif
6375 	};
6376 
6377 	/*
6378 	 * Convert topological properties into behaviour.
6379 	 */
6380 
6381 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6382 		sd->flags |= SD_PREFER_SIBLING;
6383 		sd->imbalance_pct = 110;
6384 		sd->smt_gain = 1178; /* ~15% */
6385 
6386 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6387 		sd->imbalance_pct = 117;
6388 		sd->cache_nice_tries = 1;
6389 		sd->busy_idx = 2;
6390 
6391 #ifdef CONFIG_NUMA
6392 	} else if (sd->flags & SD_NUMA) {
6393 		sd->cache_nice_tries = 2;
6394 		sd->busy_idx = 3;
6395 		sd->idle_idx = 2;
6396 
6397 		sd->flags |= SD_SERIALIZE;
6398 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6399 			sd->flags &= ~(SD_BALANCE_EXEC |
6400 				       SD_BALANCE_FORK |
6401 				       SD_WAKE_AFFINE);
6402 		}
6403 
6404 #endif
6405 	} else {
6406 		sd->flags |= SD_PREFER_SIBLING;
6407 		sd->cache_nice_tries = 1;
6408 		sd->busy_idx = 2;
6409 		sd->idle_idx = 1;
6410 	}
6411 
6412 	sd->private = &tl->data;
6413 
6414 	return sd;
6415 }
6416 
6417 /*
6418  * Topology list, bottom-up.
6419  */
6420 static struct sched_domain_topology_level default_topology[] = {
6421 #ifdef CONFIG_SCHED_SMT
6422 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6423 #endif
6424 #ifdef CONFIG_SCHED_MC
6425 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6426 #endif
6427 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6428 	{ NULL, },
6429 };
6430 
6431 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6432 
6433 #define for_each_sd_topology(tl)			\
6434 	for (tl = sched_domain_topology; tl->mask; tl++)
6435 
6436 void set_sched_topology(struct sched_domain_topology_level *tl)
6437 {
6438 	sched_domain_topology = tl;
6439 }
6440 
6441 #ifdef CONFIG_NUMA
6442 
6443 static const struct cpumask *sd_numa_mask(int cpu)
6444 {
6445 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6446 }
6447 
6448 static void sched_numa_warn(const char *str)
6449 {
6450 	static int done = false;
6451 	int i,j;
6452 
6453 	if (done)
6454 		return;
6455 
6456 	done = true;
6457 
6458 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6459 
6460 	for (i = 0; i < nr_node_ids; i++) {
6461 		printk(KERN_WARNING "  ");
6462 		for (j = 0; j < nr_node_ids; j++)
6463 			printk(KERN_CONT "%02d ", node_distance(i,j));
6464 		printk(KERN_CONT "\n");
6465 	}
6466 	printk(KERN_WARNING "\n");
6467 }
6468 
6469 bool find_numa_distance(int distance)
6470 {
6471 	int i;
6472 
6473 	if (distance == node_distance(0, 0))
6474 		return true;
6475 
6476 	for (i = 0; i < sched_domains_numa_levels; i++) {
6477 		if (sched_domains_numa_distance[i] == distance)
6478 			return true;
6479 	}
6480 
6481 	return false;
6482 }
6483 
6484 /*
6485  * A system can have three types of NUMA topology:
6486  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6487  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6488  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6489  *
6490  * The difference between a glueless mesh topology and a backplane
6491  * topology lies in whether communication between not directly
6492  * connected nodes goes through intermediary nodes (where programs
6493  * could run), or through backplane controllers. This affects
6494  * placement of programs.
6495  *
6496  * The type of topology can be discerned with the following tests:
6497  * - If the maximum distance between any nodes is 1 hop, the system
6498  *   is directly connected.
6499  * - If for two nodes A and B, located N > 1 hops away from each other,
6500  *   there is an intermediary node C, which is < N hops away from both
6501  *   nodes A and B, the system is a glueless mesh.
6502  */
6503 static void init_numa_topology_type(void)
6504 {
6505 	int a, b, c, n;
6506 
6507 	n = sched_max_numa_distance;
6508 
6509 	if (sched_domains_numa_levels <= 1) {
6510 		sched_numa_topology_type = NUMA_DIRECT;
6511 		return;
6512 	}
6513 
6514 	for_each_online_node(a) {
6515 		for_each_online_node(b) {
6516 			/* Find two nodes furthest removed from each other. */
6517 			if (node_distance(a, b) < n)
6518 				continue;
6519 
6520 			/* Is there an intermediary node between a and b? */
6521 			for_each_online_node(c) {
6522 				if (node_distance(a, c) < n &&
6523 				    node_distance(b, c) < n) {
6524 					sched_numa_topology_type =
6525 							NUMA_GLUELESS_MESH;
6526 					return;
6527 				}
6528 			}
6529 
6530 			sched_numa_topology_type = NUMA_BACKPLANE;
6531 			return;
6532 		}
6533 	}
6534 }
6535 
6536 static void sched_init_numa(void)
6537 {
6538 	int next_distance, curr_distance = node_distance(0, 0);
6539 	struct sched_domain_topology_level *tl;
6540 	int level = 0;
6541 	int i, j, k;
6542 
6543 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6544 	if (!sched_domains_numa_distance)
6545 		return;
6546 
6547 	/*
6548 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6549 	 * unique distances in the node_distance() table.
6550 	 *
6551 	 * Assumes node_distance(0,j) includes all distances in
6552 	 * node_distance(i,j) in order to avoid cubic time.
6553 	 */
6554 	next_distance = curr_distance;
6555 	for (i = 0; i < nr_node_ids; i++) {
6556 		for (j = 0; j < nr_node_ids; j++) {
6557 			for (k = 0; k < nr_node_ids; k++) {
6558 				int distance = node_distance(i, k);
6559 
6560 				if (distance > curr_distance &&
6561 				    (distance < next_distance ||
6562 				     next_distance == curr_distance))
6563 					next_distance = distance;
6564 
6565 				/*
6566 				 * While not a strong assumption it would be nice to know
6567 				 * about cases where if node A is connected to B, B is not
6568 				 * equally connected to A.
6569 				 */
6570 				if (sched_debug() && node_distance(k, i) != distance)
6571 					sched_numa_warn("Node-distance not symmetric");
6572 
6573 				if (sched_debug() && i && !find_numa_distance(distance))
6574 					sched_numa_warn("Node-0 not representative");
6575 			}
6576 			if (next_distance != curr_distance) {
6577 				sched_domains_numa_distance[level++] = next_distance;
6578 				sched_domains_numa_levels = level;
6579 				curr_distance = next_distance;
6580 			} else break;
6581 		}
6582 
6583 		/*
6584 		 * In case of sched_debug() we verify the above assumption.
6585 		 */
6586 		if (!sched_debug())
6587 			break;
6588 	}
6589 
6590 	if (!level)
6591 		return;
6592 
6593 	/*
6594 	 * 'level' contains the number of unique distances, excluding the
6595 	 * identity distance node_distance(i,i).
6596 	 *
6597 	 * The sched_domains_numa_distance[] array includes the actual distance
6598 	 * numbers.
6599 	 */
6600 
6601 	/*
6602 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6603 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6604 	 * the array will contain less then 'level' members. This could be
6605 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6606 	 * in other functions.
6607 	 *
6608 	 * We reset it to 'level' at the end of this function.
6609 	 */
6610 	sched_domains_numa_levels = 0;
6611 
6612 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6613 	if (!sched_domains_numa_masks)
6614 		return;
6615 
6616 	/*
6617 	 * Now for each level, construct a mask per node which contains all
6618 	 * cpus of nodes that are that many hops away from us.
6619 	 */
6620 	for (i = 0; i < level; i++) {
6621 		sched_domains_numa_masks[i] =
6622 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6623 		if (!sched_domains_numa_masks[i])
6624 			return;
6625 
6626 		for (j = 0; j < nr_node_ids; j++) {
6627 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6628 			if (!mask)
6629 				return;
6630 
6631 			sched_domains_numa_masks[i][j] = mask;
6632 
6633 			for (k = 0; k < nr_node_ids; k++) {
6634 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6635 					continue;
6636 
6637 				cpumask_or(mask, mask, cpumask_of_node(k));
6638 			}
6639 		}
6640 	}
6641 
6642 	/* Compute default topology size */
6643 	for (i = 0; sched_domain_topology[i].mask; i++);
6644 
6645 	tl = kzalloc((i + level + 1) *
6646 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6647 	if (!tl)
6648 		return;
6649 
6650 	/*
6651 	 * Copy the default topology bits..
6652 	 */
6653 	for (i = 0; sched_domain_topology[i].mask; i++)
6654 		tl[i] = sched_domain_topology[i];
6655 
6656 	/*
6657 	 * .. and append 'j' levels of NUMA goodness.
6658 	 */
6659 	for (j = 0; j < level; i++, j++) {
6660 		tl[i] = (struct sched_domain_topology_level){
6661 			.mask = sd_numa_mask,
6662 			.sd_flags = cpu_numa_flags,
6663 			.flags = SDTL_OVERLAP,
6664 			.numa_level = j,
6665 			SD_INIT_NAME(NUMA)
6666 		};
6667 	}
6668 
6669 	sched_domain_topology = tl;
6670 
6671 	sched_domains_numa_levels = level;
6672 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6673 
6674 	init_numa_topology_type();
6675 }
6676 
6677 static void sched_domains_numa_masks_set(int cpu)
6678 {
6679 	int i, j;
6680 	int node = cpu_to_node(cpu);
6681 
6682 	for (i = 0; i < sched_domains_numa_levels; i++) {
6683 		for (j = 0; j < nr_node_ids; j++) {
6684 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6685 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6686 		}
6687 	}
6688 }
6689 
6690 static void sched_domains_numa_masks_clear(int cpu)
6691 {
6692 	int i, j;
6693 	for (i = 0; i < sched_domains_numa_levels; i++) {
6694 		for (j = 0; j < nr_node_ids; j++)
6695 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6696 	}
6697 }
6698 
6699 /*
6700  * Update sched_domains_numa_masks[level][node] array when new cpus
6701  * are onlined.
6702  */
6703 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6704 					   unsigned long action,
6705 					   void *hcpu)
6706 {
6707 	int cpu = (long)hcpu;
6708 
6709 	switch (action & ~CPU_TASKS_FROZEN) {
6710 	case CPU_ONLINE:
6711 		sched_domains_numa_masks_set(cpu);
6712 		break;
6713 
6714 	case CPU_DEAD:
6715 		sched_domains_numa_masks_clear(cpu);
6716 		break;
6717 
6718 	default:
6719 		return NOTIFY_DONE;
6720 	}
6721 
6722 	return NOTIFY_OK;
6723 }
6724 #else
6725 static inline void sched_init_numa(void)
6726 {
6727 }
6728 
6729 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6730 					   unsigned long action,
6731 					   void *hcpu)
6732 {
6733 	return 0;
6734 }
6735 #endif /* CONFIG_NUMA */
6736 
6737 static int __sdt_alloc(const struct cpumask *cpu_map)
6738 {
6739 	struct sched_domain_topology_level *tl;
6740 	int j;
6741 
6742 	for_each_sd_topology(tl) {
6743 		struct sd_data *sdd = &tl->data;
6744 
6745 		sdd->sd = alloc_percpu(struct sched_domain *);
6746 		if (!sdd->sd)
6747 			return -ENOMEM;
6748 
6749 		sdd->sg = alloc_percpu(struct sched_group *);
6750 		if (!sdd->sg)
6751 			return -ENOMEM;
6752 
6753 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6754 		if (!sdd->sgc)
6755 			return -ENOMEM;
6756 
6757 		for_each_cpu(j, cpu_map) {
6758 			struct sched_domain *sd;
6759 			struct sched_group *sg;
6760 			struct sched_group_capacity *sgc;
6761 
6762 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6763 					GFP_KERNEL, cpu_to_node(j));
6764 			if (!sd)
6765 				return -ENOMEM;
6766 
6767 			*per_cpu_ptr(sdd->sd, j) = sd;
6768 
6769 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6770 					GFP_KERNEL, cpu_to_node(j));
6771 			if (!sg)
6772 				return -ENOMEM;
6773 
6774 			sg->next = sg;
6775 
6776 			*per_cpu_ptr(sdd->sg, j) = sg;
6777 
6778 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6779 					GFP_KERNEL, cpu_to_node(j));
6780 			if (!sgc)
6781 				return -ENOMEM;
6782 
6783 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6784 		}
6785 	}
6786 
6787 	return 0;
6788 }
6789 
6790 static void __sdt_free(const struct cpumask *cpu_map)
6791 {
6792 	struct sched_domain_topology_level *tl;
6793 	int j;
6794 
6795 	for_each_sd_topology(tl) {
6796 		struct sd_data *sdd = &tl->data;
6797 
6798 		for_each_cpu(j, cpu_map) {
6799 			struct sched_domain *sd;
6800 
6801 			if (sdd->sd) {
6802 				sd = *per_cpu_ptr(sdd->sd, j);
6803 				if (sd && (sd->flags & SD_OVERLAP))
6804 					free_sched_groups(sd->groups, 0);
6805 				kfree(*per_cpu_ptr(sdd->sd, j));
6806 			}
6807 
6808 			if (sdd->sg)
6809 				kfree(*per_cpu_ptr(sdd->sg, j));
6810 			if (sdd->sgc)
6811 				kfree(*per_cpu_ptr(sdd->sgc, j));
6812 		}
6813 		free_percpu(sdd->sd);
6814 		sdd->sd = NULL;
6815 		free_percpu(sdd->sg);
6816 		sdd->sg = NULL;
6817 		free_percpu(sdd->sgc);
6818 		sdd->sgc = NULL;
6819 	}
6820 }
6821 
6822 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6823 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6824 		struct sched_domain *child, int cpu)
6825 {
6826 	struct sched_domain *sd = sd_init(tl, cpu);
6827 	if (!sd)
6828 		return child;
6829 
6830 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6831 	if (child) {
6832 		sd->level = child->level + 1;
6833 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6834 		child->parent = sd;
6835 		sd->child = child;
6836 
6837 		if (!cpumask_subset(sched_domain_span(child),
6838 				    sched_domain_span(sd))) {
6839 			pr_err("BUG: arch topology borken\n");
6840 #ifdef CONFIG_SCHED_DEBUG
6841 			pr_err("     the %s domain not a subset of the %s domain\n",
6842 					child->name, sd->name);
6843 #endif
6844 			/* Fixup, ensure @sd has at least @child cpus. */
6845 			cpumask_or(sched_domain_span(sd),
6846 				   sched_domain_span(sd),
6847 				   sched_domain_span(child));
6848 		}
6849 
6850 	}
6851 	set_domain_attribute(sd, attr);
6852 
6853 	return sd;
6854 }
6855 
6856 /*
6857  * Build sched domains for a given set of cpus and attach the sched domains
6858  * to the individual cpus
6859  */
6860 static int build_sched_domains(const struct cpumask *cpu_map,
6861 			       struct sched_domain_attr *attr)
6862 {
6863 	enum s_alloc alloc_state;
6864 	struct sched_domain *sd;
6865 	struct s_data d;
6866 	int i, ret = -ENOMEM;
6867 
6868 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6869 	if (alloc_state != sa_rootdomain)
6870 		goto error;
6871 
6872 	/* Set up domains for cpus specified by the cpu_map. */
6873 	for_each_cpu(i, cpu_map) {
6874 		struct sched_domain_topology_level *tl;
6875 
6876 		sd = NULL;
6877 		for_each_sd_topology(tl) {
6878 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6879 			if (tl == sched_domain_topology)
6880 				*per_cpu_ptr(d.sd, i) = sd;
6881 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6882 				sd->flags |= SD_OVERLAP;
6883 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6884 				break;
6885 		}
6886 	}
6887 
6888 	/* Build the groups for the domains */
6889 	for_each_cpu(i, cpu_map) {
6890 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6891 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6892 			if (sd->flags & SD_OVERLAP) {
6893 				if (build_overlap_sched_groups(sd, i))
6894 					goto error;
6895 			} else {
6896 				if (build_sched_groups(sd, i))
6897 					goto error;
6898 			}
6899 		}
6900 	}
6901 
6902 	/* Calculate CPU capacity for physical packages and nodes */
6903 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6904 		if (!cpumask_test_cpu(i, cpu_map))
6905 			continue;
6906 
6907 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6908 			claim_allocations(i, sd);
6909 			init_sched_groups_capacity(i, sd);
6910 		}
6911 	}
6912 
6913 	/* Attach the domains */
6914 	rcu_read_lock();
6915 	for_each_cpu(i, cpu_map) {
6916 		sd = *per_cpu_ptr(d.sd, i);
6917 		cpu_attach_domain(sd, d.rd, i);
6918 	}
6919 	rcu_read_unlock();
6920 
6921 	ret = 0;
6922 error:
6923 	__free_domain_allocs(&d, alloc_state, cpu_map);
6924 	return ret;
6925 }
6926 
6927 static cpumask_var_t *doms_cur;	/* current sched domains */
6928 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6929 static struct sched_domain_attr *dattr_cur;
6930 				/* attribues of custom domains in 'doms_cur' */
6931 
6932 /*
6933  * Special case: If a kmalloc of a doms_cur partition (array of
6934  * cpumask) fails, then fallback to a single sched domain,
6935  * as determined by the single cpumask fallback_doms.
6936  */
6937 static cpumask_var_t fallback_doms;
6938 
6939 /*
6940  * arch_update_cpu_topology lets virtualized architectures update the
6941  * cpu core maps. It is supposed to return 1 if the topology changed
6942  * or 0 if it stayed the same.
6943  */
6944 int __weak arch_update_cpu_topology(void)
6945 {
6946 	return 0;
6947 }
6948 
6949 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6950 {
6951 	int i;
6952 	cpumask_var_t *doms;
6953 
6954 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6955 	if (!doms)
6956 		return NULL;
6957 	for (i = 0; i < ndoms; i++) {
6958 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6959 			free_sched_domains(doms, i);
6960 			return NULL;
6961 		}
6962 	}
6963 	return doms;
6964 }
6965 
6966 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6967 {
6968 	unsigned int i;
6969 	for (i = 0; i < ndoms; i++)
6970 		free_cpumask_var(doms[i]);
6971 	kfree(doms);
6972 }
6973 
6974 /*
6975  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6976  * For now this just excludes isolated cpus, but could be used to
6977  * exclude other special cases in the future.
6978  */
6979 static int init_sched_domains(const struct cpumask *cpu_map)
6980 {
6981 	int err;
6982 
6983 	arch_update_cpu_topology();
6984 	ndoms_cur = 1;
6985 	doms_cur = alloc_sched_domains(ndoms_cur);
6986 	if (!doms_cur)
6987 		doms_cur = &fallback_doms;
6988 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6989 	err = build_sched_domains(doms_cur[0], NULL);
6990 	register_sched_domain_sysctl();
6991 
6992 	return err;
6993 }
6994 
6995 /*
6996  * Detach sched domains from a group of cpus specified in cpu_map
6997  * These cpus will now be attached to the NULL domain
6998  */
6999 static void detach_destroy_domains(const struct cpumask *cpu_map)
7000 {
7001 	int i;
7002 
7003 	rcu_read_lock();
7004 	for_each_cpu(i, cpu_map)
7005 		cpu_attach_domain(NULL, &def_root_domain, i);
7006 	rcu_read_unlock();
7007 }
7008 
7009 /* handle null as "default" */
7010 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7011 			struct sched_domain_attr *new, int idx_new)
7012 {
7013 	struct sched_domain_attr tmp;
7014 
7015 	/* fast path */
7016 	if (!new && !cur)
7017 		return 1;
7018 
7019 	tmp = SD_ATTR_INIT;
7020 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7021 			new ? (new + idx_new) : &tmp,
7022 			sizeof(struct sched_domain_attr));
7023 }
7024 
7025 /*
7026  * Partition sched domains as specified by the 'ndoms_new'
7027  * cpumasks in the array doms_new[] of cpumasks. This compares
7028  * doms_new[] to the current sched domain partitioning, doms_cur[].
7029  * It destroys each deleted domain and builds each new domain.
7030  *
7031  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7032  * The masks don't intersect (don't overlap.) We should setup one
7033  * sched domain for each mask. CPUs not in any of the cpumasks will
7034  * not be load balanced. If the same cpumask appears both in the
7035  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7036  * it as it is.
7037  *
7038  * The passed in 'doms_new' should be allocated using
7039  * alloc_sched_domains.  This routine takes ownership of it and will
7040  * free_sched_domains it when done with it. If the caller failed the
7041  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7042  * and partition_sched_domains() will fallback to the single partition
7043  * 'fallback_doms', it also forces the domains to be rebuilt.
7044  *
7045  * If doms_new == NULL it will be replaced with cpu_online_mask.
7046  * ndoms_new == 0 is a special case for destroying existing domains,
7047  * and it will not create the default domain.
7048  *
7049  * Call with hotplug lock held
7050  */
7051 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7052 			     struct sched_domain_attr *dattr_new)
7053 {
7054 	int i, j, n;
7055 	int new_topology;
7056 
7057 	mutex_lock(&sched_domains_mutex);
7058 
7059 	/* always unregister in case we don't destroy any domains */
7060 	unregister_sched_domain_sysctl();
7061 
7062 	/* Let architecture update cpu core mappings. */
7063 	new_topology = arch_update_cpu_topology();
7064 
7065 	n = doms_new ? ndoms_new : 0;
7066 
7067 	/* Destroy deleted domains */
7068 	for (i = 0; i < ndoms_cur; i++) {
7069 		for (j = 0; j < n && !new_topology; j++) {
7070 			if (cpumask_equal(doms_cur[i], doms_new[j])
7071 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7072 				goto match1;
7073 		}
7074 		/* no match - a current sched domain not in new doms_new[] */
7075 		detach_destroy_domains(doms_cur[i]);
7076 match1:
7077 		;
7078 	}
7079 
7080 	n = ndoms_cur;
7081 	if (doms_new == NULL) {
7082 		n = 0;
7083 		doms_new = &fallback_doms;
7084 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7085 		WARN_ON_ONCE(dattr_new);
7086 	}
7087 
7088 	/* Build new domains */
7089 	for (i = 0; i < ndoms_new; i++) {
7090 		for (j = 0; j < n && !new_topology; j++) {
7091 			if (cpumask_equal(doms_new[i], doms_cur[j])
7092 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7093 				goto match2;
7094 		}
7095 		/* no match - add a new doms_new */
7096 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7097 match2:
7098 		;
7099 	}
7100 
7101 	/* Remember the new sched domains */
7102 	if (doms_cur != &fallback_doms)
7103 		free_sched_domains(doms_cur, ndoms_cur);
7104 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7105 	doms_cur = doms_new;
7106 	dattr_cur = dattr_new;
7107 	ndoms_cur = ndoms_new;
7108 
7109 	register_sched_domain_sysctl();
7110 
7111 	mutex_unlock(&sched_domains_mutex);
7112 }
7113 
7114 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7115 
7116 /*
7117  * Update cpusets according to cpu_active mask.  If cpusets are
7118  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7119  * around partition_sched_domains().
7120  *
7121  * If we come here as part of a suspend/resume, don't touch cpusets because we
7122  * want to restore it back to its original state upon resume anyway.
7123  */
7124 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7125 			     void *hcpu)
7126 {
7127 	switch (action) {
7128 	case CPU_ONLINE_FROZEN:
7129 	case CPU_DOWN_FAILED_FROZEN:
7130 
7131 		/*
7132 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7133 		 * resume sequence. As long as this is not the last online
7134 		 * operation in the resume sequence, just build a single sched
7135 		 * domain, ignoring cpusets.
7136 		 */
7137 		num_cpus_frozen--;
7138 		if (likely(num_cpus_frozen)) {
7139 			partition_sched_domains(1, NULL, NULL);
7140 			break;
7141 		}
7142 
7143 		/*
7144 		 * This is the last CPU online operation. So fall through and
7145 		 * restore the original sched domains by considering the
7146 		 * cpuset configurations.
7147 		 */
7148 
7149 	case CPU_ONLINE:
7150 		cpuset_update_active_cpus(true);
7151 		break;
7152 	default:
7153 		return NOTIFY_DONE;
7154 	}
7155 	return NOTIFY_OK;
7156 }
7157 
7158 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7159 			       void *hcpu)
7160 {
7161 	unsigned long flags;
7162 	long cpu = (long)hcpu;
7163 	struct dl_bw *dl_b;
7164 	bool overflow;
7165 	int cpus;
7166 
7167 	switch (action) {
7168 	case CPU_DOWN_PREPARE:
7169 		rcu_read_lock_sched();
7170 		dl_b = dl_bw_of(cpu);
7171 
7172 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7173 		cpus = dl_bw_cpus(cpu);
7174 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7175 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7176 
7177 		rcu_read_unlock_sched();
7178 
7179 		if (overflow)
7180 			return notifier_from_errno(-EBUSY);
7181 		cpuset_update_active_cpus(false);
7182 		break;
7183 	case CPU_DOWN_PREPARE_FROZEN:
7184 		num_cpus_frozen++;
7185 		partition_sched_domains(1, NULL, NULL);
7186 		break;
7187 	default:
7188 		return NOTIFY_DONE;
7189 	}
7190 	return NOTIFY_OK;
7191 }
7192 
7193 void __init sched_init_smp(void)
7194 {
7195 	cpumask_var_t non_isolated_cpus;
7196 
7197 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7198 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7199 
7200 	/* nohz_full won't take effect without isolating the cpus. */
7201 	tick_nohz_full_add_cpus_to(cpu_isolated_map);
7202 
7203 	sched_init_numa();
7204 
7205 	/*
7206 	 * There's no userspace yet to cause hotplug operations; hence all the
7207 	 * cpu masks are stable and all blatant races in the below code cannot
7208 	 * happen.
7209 	 */
7210 	mutex_lock(&sched_domains_mutex);
7211 	init_sched_domains(cpu_active_mask);
7212 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7213 	if (cpumask_empty(non_isolated_cpus))
7214 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7215 	mutex_unlock(&sched_domains_mutex);
7216 
7217 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7218 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7219 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7220 
7221 	init_hrtick();
7222 
7223 	/* Move init over to a non-isolated CPU */
7224 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7225 		BUG();
7226 	sched_init_granularity();
7227 	free_cpumask_var(non_isolated_cpus);
7228 
7229 	init_sched_rt_class();
7230 	init_sched_dl_class();
7231 }
7232 #else
7233 void __init sched_init_smp(void)
7234 {
7235 	sched_init_granularity();
7236 }
7237 #endif /* CONFIG_SMP */
7238 
7239 int in_sched_functions(unsigned long addr)
7240 {
7241 	return in_lock_functions(addr) ||
7242 		(addr >= (unsigned long)__sched_text_start
7243 		&& addr < (unsigned long)__sched_text_end);
7244 }
7245 
7246 #ifdef CONFIG_CGROUP_SCHED
7247 /*
7248  * Default task group.
7249  * Every task in system belongs to this group at bootup.
7250  */
7251 struct task_group root_task_group;
7252 LIST_HEAD(task_groups);
7253 #endif
7254 
7255 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7256 
7257 void __init sched_init(void)
7258 {
7259 	int i, j;
7260 	unsigned long alloc_size = 0, ptr;
7261 
7262 #ifdef CONFIG_FAIR_GROUP_SCHED
7263 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7264 #endif
7265 #ifdef CONFIG_RT_GROUP_SCHED
7266 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7267 #endif
7268 	if (alloc_size) {
7269 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7270 
7271 #ifdef CONFIG_FAIR_GROUP_SCHED
7272 		root_task_group.se = (struct sched_entity **)ptr;
7273 		ptr += nr_cpu_ids * sizeof(void **);
7274 
7275 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7276 		ptr += nr_cpu_ids * sizeof(void **);
7277 
7278 #endif /* CONFIG_FAIR_GROUP_SCHED */
7279 #ifdef CONFIG_RT_GROUP_SCHED
7280 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7281 		ptr += nr_cpu_ids * sizeof(void **);
7282 
7283 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7284 		ptr += nr_cpu_ids * sizeof(void **);
7285 
7286 #endif /* CONFIG_RT_GROUP_SCHED */
7287 	}
7288 #ifdef CONFIG_CPUMASK_OFFSTACK
7289 	for_each_possible_cpu(i) {
7290 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7291 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7292 	}
7293 #endif /* CONFIG_CPUMASK_OFFSTACK */
7294 
7295 	init_rt_bandwidth(&def_rt_bandwidth,
7296 			global_rt_period(), global_rt_runtime());
7297 	init_dl_bandwidth(&def_dl_bandwidth,
7298 			global_rt_period(), global_rt_runtime());
7299 
7300 #ifdef CONFIG_SMP
7301 	init_defrootdomain();
7302 #endif
7303 
7304 #ifdef CONFIG_RT_GROUP_SCHED
7305 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7306 			global_rt_period(), global_rt_runtime());
7307 #endif /* CONFIG_RT_GROUP_SCHED */
7308 
7309 #ifdef CONFIG_CGROUP_SCHED
7310 	list_add(&root_task_group.list, &task_groups);
7311 	INIT_LIST_HEAD(&root_task_group.children);
7312 	INIT_LIST_HEAD(&root_task_group.siblings);
7313 	autogroup_init(&init_task);
7314 
7315 #endif /* CONFIG_CGROUP_SCHED */
7316 
7317 	for_each_possible_cpu(i) {
7318 		struct rq *rq;
7319 
7320 		rq = cpu_rq(i);
7321 		raw_spin_lock_init(&rq->lock);
7322 		rq->nr_running = 0;
7323 		rq->calc_load_active = 0;
7324 		rq->calc_load_update = jiffies + LOAD_FREQ;
7325 		init_cfs_rq(&rq->cfs);
7326 		init_rt_rq(&rq->rt);
7327 		init_dl_rq(&rq->dl);
7328 #ifdef CONFIG_FAIR_GROUP_SCHED
7329 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7330 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7331 		/*
7332 		 * How much cpu bandwidth does root_task_group get?
7333 		 *
7334 		 * In case of task-groups formed thr' the cgroup filesystem, it
7335 		 * gets 100% of the cpu resources in the system. This overall
7336 		 * system cpu resource is divided among the tasks of
7337 		 * root_task_group and its child task-groups in a fair manner,
7338 		 * based on each entity's (task or task-group's) weight
7339 		 * (se->load.weight).
7340 		 *
7341 		 * In other words, if root_task_group has 10 tasks of weight
7342 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7343 		 * then A0's share of the cpu resource is:
7344 		 *
7345 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7346 		 *
7347 		 * We achieve this by letting root_task_group's tasks sit
7348 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7349 		 */
7350 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7351 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7352 #endif /* CONFIG_FAIR_GROUP_SCHED */
7353 
7354 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7355 #ifdef CONFIG_RT_GROUP_SCHED
7356 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7357 #endif
7358 
7359 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7360 			rq->cpu_load[j] = 0;
7361 
7362 		rq->last_load_update_tick = jiffies;
7363 
7364 #ifdef CONFIG_SMP
7365 		rq->sd = NULL;
7366 		rq->rd = NULL;
7367 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7368 		rq->balance_callback = NULL;
7369 		rq->active_balance = 0;
7370 		rq->next_balance = jiffies;
7371 		rq->push_cpu = 0;
7372 		rq->cpu = i;
7373 		rq->online = 0;
7374 		rq->idle_stamp = 0;
7375 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7376 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7377 
7378 		INIT_LIST_HEAD(&rq->cfs_tasks);
7379 
7380 		rq_attach_root(rq, &def_root_domain);
7381 #ifdef CONFIG_NO_HZ_COMMON
7382 		rq->nohz_flags = 0;
7383 #endif
7384 #ifdef CONFIG_NO_HZ_FULL
7385 		rq->last_sched_tick = 0;
7386 #endif
7387 #endif
7388 		init_rq_hrtick(rq);
7389 		atomic_set(&rq->nr_iowait, 0);
7390 	}
7391 
7392 	set_load_weight(&init_task);
7393 
7394 #ifdef CONFIG_PREEMPT_NOTIFIERS
7395 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7396 #endif
7397 
7398 	/*
7399 	 * The boot idle thread does lazy MMU switching as well:
7400 	 */
7401 	atomic_inc(&init_mm.mm_count);
7402 	enter_lazy_tlb(&init_mm, current);
7403 
7404 	/*
7405 	 * During early bootup we pretend to be a normal task:
7406 	 */
7407 	current->sched_class = &fair_sched_class;
7408 
7409 	/*
7410 	 * Make us the idle thread. Technically, schedule() should not be
7411 	 * called from this thread, however somewhere below it might be,
7412 	 * but because we are the idle thread, we just pick up running again
7413 	 * when this runqueue becomes "idle".
7414 	 */
7415 	init_idle(current, smp_processor_id());
7416 
7417 	calc_load_update = jiffies + LOAD_FREQ;
7418 
7419 #ifdef CONFIG_SMP
7420 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7421 	/* May be allocated at isolcpus cmdline parse time */
7422 	if (cpu_isolated_map == NULL)
7423 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7424 	idle_thread_set_boot_cpu();
7425 	set_cpu_rq_start_time();
7426 #endif
7427 	init_sched_fair_class();
7428 
7429 	scheduler_running = 1;
7430 }
7431 
7432 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7433 static inline int preempt_count_equals(int preempt_offset)
7434 {
7435 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7436 
7437 	return (nested == preempt_offset);
7438 }
7439 
7440 void __might_sleep(const char *file, int line, int preempt_offset)
7441 {
7442 	/*
7443 	 * Blocking primitives will set (and therefore destroy) current->state,
7444 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7445 	 * otherwise we will destroy state.
7446 	 */
7447 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7448 			"do not call blocking ops when !TASK_RUNNING; "
7449 			"state=%lx set at [<%p>] %pS\n",
7450 			current->state,
7451 			(void *)current->task_state_change,
7452 			(void *)current->task_state_change);
7453 
7454 	___might_sleep(file, line, preempt_offset);
7455 }
7456 EXPORT_SYMBOL(__might_sleep);
7457 
7458 void ___might_sleep(const char *file, int line, int preempt_offset)
7459 {
7460 	static unsigned long prev_jiffy;	/* ratelimiting */
7461 
7462 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7463 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7464 	     !is_idle_task(current)) ||
7465 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7466 		return;
7467 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7468 		return;
7469 	prev_jiffy = jiffies;
7470 
7471 	printk(KERN_ERR
7472 		"BUG: sleeping function called from invalid context at %s:%d\n",
7473 			file, line);
7474 	printk(KERN_ERR
7475 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7476 			in_atomic(), irqs_disabled(),
7477 			current->pid, current->comm);
7478 
7479 	if (task_stack_end_corrupted(current))
7480 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7481 
7482 	debug_show_held_locks(current);
7483 	if (irqs_disabled())
7484 		print_irqtrace_events(current);
7485 #ifdef CONFIG_DEBUG_PREEMPT
7486 	if (!preempt_count_equals(preempt_offset)) {
7487 		pr_err("Preemption disabled at:");
7488 		print_ip_sym(current->preempt_disable_ip);
7489 		pr_cont("\n");
7490 	}
7491 #endif
7492 	dump_stack();
7493 }
7494 EXPORT_SYMBOL(___might_sleep);
7495 #endif
7496 
7497 #ifdef CONFIG_MAGIC_SYSRQ
7498 void normalize_rt_tasks(void)
7499 {
7500 	struct task_struct *g, *p;
7501 	struct sched_attr attr = {
7502 		.sched_policy = SCHED_NORMAL,
7503 	};
7504 
7505 	read_lock(&tasklist_lock);
7506 	for_each_process_thread(g, p) {
7507 		/*
7508 		 * Only normalize user tasks:
7509 		 */
7510 		if (p->flags & PF_KTHREAD)
7511 			continue;
7512 
7513 		p->se.exec_start		= 0;
7514 #ifdef CONFIG_SCHEDSTATS
7515 		p->se.statistics.wait_start	= 0;
7516 		p->se.statistics.sleep_start	= 0;
7517 		p->se.statistics.block_start	= 0;
7518 #endif
7519 
7520 		if (!dl_task(p) && !rt_task(p)) {
7521 			/*
7522 			 * Renice negative nice level userspace
7523 			 * tasks back to 0:
7524 			 */
7525 			if (task_nice(p) < 0)
7526 				set_user_nice(p, 0);
7527 			continue;
7528 		}
7529 
7530 		__sched_setscheduler(p, &attr, false, false);
7531 	}
7532 	read_unlock(&tasklist_lock);
7533 }
7534 
7535 #endif /* CONFIG_MAGIC_SYSRQ */
7536 
7537 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7538 /*
7539  * These functions are only useful for the IA64 MCA handling, or kdb.
7540  *
7541  * They can only be called when the whole system has been
7542  * stopped - every CPU needs to be quiescent, and no scheduling
7543  * activity can take place. Using them for anything else would
7544  * be a serious bug, and as a result, they aren't even visible
7545  * under any other configuration.
7546  */
7547 
7548 /**
7549  * curr_task - return the current task for a given cpu.
7550  * @cpu: the processor in question.
7551  *
7552  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7553  *
7554  * Return: The current task for @cpu.
7555  */
7556 struct task_struct *curr_task(int cpu)
7557 {
7558 	return cpu_curr(cpu);
7559 }
7560 
7561 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7562 
7563 #ifdef CONFIG_IA64
7564 /**
7565  * set_curr_task - set the current task for a given cpu.
7566  * @cpu: the processor in question.
7567  * @p: the task pointer to set.
7568  *
7569  * Description: This function must only be used when non-maskable interrupts
7570  * are serviced on a separate stack. It allows the architecture to switch the
7571  * notion of the current task on a cpu in a non-blocking manner. This function
7572  * must be called with all CPU's synchronized, and interrupts disabled, the
7573  * and caller must save the original value of the current task (see
7574  * curr_task() above) and restore that value before reenabling interrupts and
7575  * re-starting the system.
7576  *
7577  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7578  */
7579 void set_curr_task(int cpu, struct task_struct *p)
7580 {
7581 	cpu_curr(cpu) = p;
7582 }
7583 
7584 #endif
7585 
7586 #ifdef CONFIG_CGROUP_SCHED
7587 /* task_group_lock serializes the addition/removal of task groups */
7588 static DEFINE_SPINLOCK(task_group_lock);
7589 
7590 static void free_sched_group(struct task_group *tg)
7591 {
7592 	free_fair_sched_group(tg);
7593 	free_rt_sched_group(tg);
7594 	autogroup_free(tg);
7595 	kfree(tg);
7596 }
7597 
7598 /* allocate runqueue etc for a new task group */
7599 struct task_group *sched_create_group(struct task_group *parent)
7600 {
7601 	struct task_group *tg;
7602 
7603 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7604 	if (!tg)
7605 		return ERR_PTR(-ENOMEM);
7606 
7607 	if (!alloc_fair_sched_group(tg, parent))
7608 		goto err;
7609 
7610 	if (!alloc_rt_sched_group(tg, parent))
7611 		goto err;
7612 
7613 	return tg;
7614 
7615 err:
7616 	free_sched_group(tg);
7617 	return ERR_PTR(-ENOMEM);
7618 }
7619 
7620 void sched_online_group(struct task_group *tg, struct task_group *parent)
7621 {
7622 	unsigned long flags;
7623 
7624 	spin_lock_irqsave(&task_group_lock, flags);
7625 	list_add_rcu(&tg->list, &task_groups);
7626 
7627 	WARN_ON(!parent); /* root should already exist */
7628 
7629 	tg->parent = parent;
7630 	INIT_LIST_HEAD(&tg->children);
7631 	list_add_rcu(&tg->siblings, &parent->children);
7632 	spin_unlock_irqrestore(&task_group_lock, flags);
7633 }
7634 
7635 /* rcu callback to free various structures associated with a task group */
7636 static void free_sched_group_rcu(struct rcu_head *rhp)
7637 {
7638 	/* now it should be safe to free those cfs_rqs */
7639 	free_sched_group(container_of(rhp, struct task_group, rcu));
7640 }
7641 
7642 /* Destroy runqueue etc associated with a task group */
7643 void sched_destroy_group(struct task_group *tg)
7644 {
7645 	/* wait for possible concurrent references to cfs_rqs complete */
7646 	call_rcu(&tg->rcu, free_sched_group_rcu);
7647 }
7648 
7649 void sched_offline_group(struct task_group *tg)
7650 {
7651 	unsigned long flags;
7652 	int i;
7653 
7654 	/* end participation in shares distribution */
7655 	for_each_possible_cpu(i)
7656 		unregister_fair_sched_group(tg, i);
7657 
7658 	spin_lock_irqsave(&task_group_lock, flags);
7659 	list_del_rcu(&tg->list);
7660 	list_del_rcu(&tg->siblings);
7661 	spin_unlock_irqrestore(&task_group_lock, flags);
7662 }
7663 
7664 /* change task's runqueue when it moves between groups.
7665  *	The caller of this function should have put the task in its new group
7666  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7667  *	reflect its new group.
7668  */
7669 void sched_move_task(struct task_struct *tsk)
7670 {
7671 	struct task_group *tg;
7672 	int queued, running;
7673 	unsigned long flags;
7674 	struct rq *rq;
7675 
7676 	rq = task_rq_lock(tsk, &flags);
7677 
7678 	running = task_current(rq, tsk);
7679 	queued = task_on_rq_queued(tsk);
7680 
7681 	if (queued)
7682 		dequeue_task(rq, tsk, 0);
7683 	if (unlikely(running))
7684 		put_prev_task(rq, tsk);
7685 
7686 	/*
7687 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7688 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7689 	 * to prevent lockdep warnings.
7690 	 */
7691 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7692 			  struct task_group, css);
7693 	tg = autogroup_task_group(tsk, tg);
7694 	tsk->sched_task_group = tg;
7695 
7696 #ifdef CONFIG_FAIR_GROUP_SCHED
7697 	if (tsk->sched_class->task_move_group)
7698 		tsk->sched_class->task_move_group(tsk, queued);
7699 	else
7700 #endif
7701 		set_task_rq(tsk, task_cpu(tsk));
7702 
7703 	if (unlikely(running))
7704 		tsk->sched_class->set_curr_task(rq);
7705 	if (queued)
7706 		enqueue_task(rq, tsk, 0);
7707 
7708 	task_rq_unlock(rq, tsk, &flags);
7709 }
7710 #endif /* CONFIG_CGROUP_SCHED */
7711 
7712 #ifdef CONFIG_RT_GROUP_SCHED
7713 /*
7714  * Ensure that the real time constraints are schedulable.
7715  */
7716 static DEFINE_MUTEX(rt_constraints_mutex);
7717 
7718 /* Must be called with tasklist_lock held */
7719 static inline int tg_has_rt_tasks(struct task_group *tg)
7720 {
7721 	struct task_struct *g, *p;
7722 
7723 	/*
7724 	 * Autogroups do not have RT tasks; see autogroup_create().
7725 	 */
7726 	if (task_group_is_autogroup(tg))
7727 		return 0;
7728 
7729 	for_each_process_thread(g, p) {
7730 		if (rt_task(p) && task_group(p) == tg)
7731 			return 1;
7732 	}
7733 
7734 	return 0;
7735 }
7736 
7737 struct rt_schedulable_data {
7738 	struct task_group *tg;
7739 	u64 rt_period;
7740 	u64 rt_runtime;
7741 };
7742 
7743 static int tg_rt_schedulable(struct task_group *tg, void *data)
7744 {
7745 	struct rt_schedulable_data *d = data;
7746 	struct task_group *child;
7747 	unsigned long total, sum = 0;
7748 	u64 period, runtime;
7749 
7750 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7751 	runtime = tg->rt_bandwidth.rt_runtime;
7752 
7753 	if (tg == d->tg) {
7754 		period = d->rt_period;
7755 		runtime = d->rt_runtime;
7756 	}
7757 
7758 	/*
7759 	 * Cannot have more runtime than the period.
7760 	 */
7761 	if (runtime > period && runtime != RUNTIME_INF)
7762 		return -EINVAL;
7763 
7764 	/*
7765 	 * Ensure we don't starve existing RT tasks.
7766 	 */
7767 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7768 		return -EBUSY;
7769 
7770 	total = to_ratio(period, runtime);
7771 
7772 	/*
7773 	 * Nobody can have more than the global setting allows.
7774 	 */
7775 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7776 		return -EINVAL;
7777 
7778 	/*
7779 	 * The sum of our children's runtime should not exceed our own.
7780 	 */
7781 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7782 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7783 		runtime = child->rt_bandwidth.rt_runtime;
7784 
7785 		if (child == d->tg) {
7786 			period = d->rt_period;
7787 			runtime = d->rt_runtime;
7788 		}
7789 
7790 		sum += to_ratio(period, runtime);
7791 	}
7792 
7793 	if (sum > total)
7794 		return -EINVAL;
7795 
7796 	return 0;
7797 }
7798 
7799 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7800 {
7801 	int ret;
7802 
7803 	struct rt_schedulable_data data = {
7804 		.tg = tg,
7805 		.rt_period = period,
7806 		.rt_runtime = runtime,
7807 	};
7808 
7809 	rcu_read_lock();
7810 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7811 	rcu_read_unlock();
7812 
7813 	return ret;
7814 }
7815 
7816 static int tg_set_rt_bandwidth(struct task_group *tg,
7817 		u64 rt_period, u64 rt_runtime)
7818 {
7819 	int i, err = 0;
7820 
7821 	/*
7822 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7823 	 * kernel creating (and or operating) RT threads.
7824 	 */
7825 	if (tg == &root_task_group && rt_runtime == 0)
7826 		return -EINVAL;
7827 
7828 	/* No period doesn't make any sense. */
7829 	if (rt_period == 0)
7830 		return -EINVAL;
7831 
7832 	mutex_lock(&rt_constraints_mutex);
7833 	read_lock(&tasklist_lock);
7834 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7835 	if (err)
7836 		goto unlock;
7837 
7838 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7839 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7840 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7841 
7842 	for_each_possible_cpu(i) {
7843 		struct rt_rq *rt_rq = tg->rt_rq[i];
7844 
7845 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7846 		rt_rq->rt_runtime = rt_runtime;
7847 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7848 	}
7849 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7850 unlock:
7851 	read_unlock(&tasklist_lock);
7852 	mutex_unlock(&rt_constraints_mutex);
7853 
7854 	return err;
7855 }
7856 
7857 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7858 {
7859 	u64 rt_runtime, rt_period;
7860 
7861 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7862 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7863 	if (rt_runtime_us < 0)
7864 		rt_runtime = RUNTIME_INF;
7865 
7866 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7867 }
7868 
7869 static long sched_group_rt_runtime(struct task_group *tg)
7870 {
7871 	u64 rt_runtime_us;
7872 
7873 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7874 		return -1;
7875 
7876 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7877 	do_div(rt_runtime_us, NSEC_PER_USEC);
7878 	return rt_runtime_us;
7879 }
7880 
7881 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7882 {
7883 	u64 rt_runtime, rt_period;
7884 
7885 	rt_period = rt_period_us * NSEC_PER_USEC;
7886 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7887 
7888 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7889 }
7890 
7891 static long sched_group_rt_period(struct task_group *tg)
7892 {
7893 	u64 rt_period_us;
7894 
7895 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7896 	do_div(rt_period_us, NSEC_PER_USEC);
7897 	return rt_period_us;
7898 }
7899 #endif /* CONFIG_RT_GROUP_SCHED */
7900 
7901 #ifdef CONFIG_RT_GROUP_SCHED
7902 static int sched_rt_global_constraints(void)
7903 {
7904 	int ret = 0;
7905 
7906 	mutex_lock(&rt_constraints_mutex);
7907 	read_lock(&tasklist_lock);
7908 	ret = __rt_schedulable(NULL, 0, 0);
7909 	read_unlock(&tasklist_lock);
7910 	mutex_unlock(&rt_constraints_mutex);
7911 
7912 	return ret;
7913 }
7914 
7915 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7916 {
7917 	/* Don't accept realtime tasks when there is no way for them to run */
7918 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7919 		return 0;
7920 
7921 	return 1;
7922 }
7923 
7924 #else /* !CONFIG_RT_GROUP_SCHED */
7925 static int sched_rt_global_constraints(void)
7926 {
7927 	unsigned long flags;
7928 	int i, ret = 0;
7929 
7930 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7931 	for_each_possible_cpu(i) {
7932 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7933 
7934 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7935 		rt_rq->rt_runtime = global_rt_runtime();
7936 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7937 	}
7938 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7939 
7940 	return ret;
7941 }
7942 #endif /* CONFIG_RT_GROUP_SCHED */
7943 
7944 static int sched_dl_global_validate(void)
7945 {
7946 	u64 runtime = global_rt_runtime();
7947 	u64 period = global_rt_period();
7948 	u64 new_bw = to_ratio(period, runtime);
7949 	struct dl_bw *dl_b;
7950 	int cpu, ret = 0;
7951 	unsigned long flags;
7952 
7953 	/*
7954 	 * Here we want to check the bandwidth not being set to some
7955 	 * value smaller than the currently allocated bandwidth in
7956 	 * any of the root_domains.
7957 	 *
7958 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7959 	 * cycling on root_domains... Discussion on different/better
7960 	 * solutions is welcome!
7961 	 */
7962 	for_each_possible_cpu(cpu) {
7963 		rcu_read_lock_sched();
7964 		dl_b = dl_bw_of(cpu);
7965 
7966 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7967 		if (new_bw < dl_b->total_bw)
7968 			ret = -EBUSY;
7969 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7970 
7971 		rcu_read_unlock_sched();
7972 
7973 		if (ret)
7974 			break;
7975 	}
7976 
7977 	return ret;
7978 }
7979 
7980 static void sched_dl_do_global(void)
7981 {
7982 	u64 new_bw = -1;
7983 	struct dl_bw *dl_b;
7984 	int cpu;
7985 	unsigned long flags;
7986 
7987 	def_dl_bandwidth.dl_period = global_rt_period();
7988 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7989 
7990 	if (global_rt_runtime() != RUNTIME_INF)
7991 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7992 
7993 	/*
7994 	 * FIXME: As above...
7995 	 */
7996 	for_each_possible_cpu(cpu) {
7997 		rcu_read_lock_sched();
7998 		dl_b = dl_bw_of(cpu);
7999 
8000 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8001 		dl_b->bw = new_bw;
8002 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8003 
8004 		rcu_read_unlock_sched();
8005 	}
8006 }
8007 
8008 static int sched_rt_global_validate(void)
8009 {
8010 	if (sysctl_sched_rt_period <= 0)
8011 		return -EINVAL;
8012 
8013 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8014 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8015 		return -EINVAL;
8016 
8017 	return 0;
8018 }
8019 
8020 static void sched_rt_do_global(void)
8021 {
8022 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8023 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8024 }
8025 
8026 int sched_rt_handler(struct ctl_table *table, int write,
8027 		void __user *buffer, size_t *lenp,
8028 		loff_t *ppos)
8029 {
8030 	int old_period, old_runtime;
8031 	static DEFINE_MUTEX(mutex);
8032 	int ret;
8033 
8034 	mutex_lock(&mutex);
8035 	old_period = sysctl_sched_rt_period;
8036 	old_runtime = sysctl_sched_rt_runtime;
8037 
8038 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8039 
8040 	if (!ret && write) {
8041 		ret = sched_rt_global_validate();
8042 		if (ret)
8043 			goto undo;
8044 
8045 		ret = sched_dl_global_validate();
8046 		if (ret)
8047 			goto undo;
8048 
8049 		ret = sched_rt_global_constraints();
8050 		if (ret)
8051 			goto undo;
8052 
8053 		sched_rt_do_global();
8054 		sched_dl_do_global();
8055 	}
8056 	if (0) {
8057 undo:
8058 		sysctl_sched_rt_period = old_period;
8059 		sysctl_sched_rt_runtime = old_runtime;
8060 	}
8061 	mutex_unlock(&mutex);
8062 
8063 	return ret;
8064 }
8065 
8066 int sched_rr_handler(struct ctl_table *table, int write,
8067 		void __user *buffer, size_t *lenp,
8068 		loff_t *ppos)
8069 {
8070 	int ret;
8071 	static DEFINE_MUTEX(mutex);
8072 
8073 	mutex_lock(&mutex);
8074 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8075 	/* make sure that internally we keep jiffies */
8076 	/* also, writing zero resets timeslice to default */
8077 	if (!ret && write) {
8078 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8079 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8080 	}
8081 	mutex_unlock(&mutex);
8082 	return ret;
8083 }
8084 
8085 #ifdef CONFIG_CGROUP_SCHED
8086 
8087 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8088 {
8089 	return css ? container_of(css, struct task_group, css) : NULL;
8090 }
8091 
8092 static struct cgroup_subsys_state *
8093 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8094 {
8095 	struct task_group *parent = css_tg(parent_css);
8096 	struct task_group *tg;
8097 
8098 	if (!parent) {
8099 		/* This is early initialization for the top cgroup */
8100 		return &root_task_group.css;
8101 	}
8102 
8103 	tg = sched_create_group(parent);
8104 	if (IS_ERR(tg))
8105 		return ERR_PTR(-ENOMEM);
8106 
8107 	return &tg->css;
8108 }
8109 
8110 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8111 {
8112 	struct task_group *tg = css_tg(css);
8113 	struct task_group *parent = css_tg(css->parent);
8114 
8115 	if (parent)
8116 		sched_online_group(tg, parent);
8117 	return 0;
8118 }
8119 
8120 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8121 {
8122 	struct task_group *tg = css_tg(css);
8123 
8124 	sched_destroy_group(tg);
8125 }
8126 
8127 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8128 {
8129 	struct task_group *tg = css_tg(css);
8130 
8131 	sched_offline_group(tg);
8132 }
8133 
8134 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8135 {
8136 	sched_move_task(task);
8137 }
8138 
8139 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8140 				 struct cgroup_taskset *tset)
8141 {
8142 	struct task_struct *task;
8143 
8144 	cgroup_taskset_for_each(task, tset) {
8145 #ifdef CONFIG_RT_GROUP_SCHED
8146 		if (!sched_rt_can_attach(css_tg(css), task))
8147 			return -EINVAL;
8148 #else
8149 		/* We don't support RT-tasks being in separate groups */
8150 		if (task->sched_class != &fair_sched_class)
8151 			return -EINVAL;
8152 #endif
8153 	}
8154 	return 0;
8155 }
8156 
8157 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8158 			      struct cgroup_taskset *tset)
8159 {
8160 	struct task_struct *task;
8161 
8162 	cgroup_taskset_for_each(task, tset)
8163 		sched_move_task(task);
8164 }
8165 
8166 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8167 			    struct cgroup_subsys_state *old_css,
8168 			    struct task_struct *task)
8169 {
8170 	/*
8171 	 * cgroup_exit() is called in the copy_process() failure path.
8172 	 * Ignore this case since the task hasn't ran yet, this avoids
8173 	 * trying to poke a half freed task state from generic code.
8174 	 */
8175 	if (!(task->flags & PF_EXITING))
8176 		return;
8177 
8178 	sched_move_task(task);
8179 }
8180 
8181 #ifdef CONFIG_FAIR_GROUP_SCHED
8182 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8183 				struct cftype *cftype, u64 shareval)
8184 {
8185 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8186 }
8187 
8188 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8189 			       struct cftype *cft)
8190 {
8191 	struct task_group *tg = css_tg(css);
8192 
8193 	return (u64) scale_load_down(tg->shares);
8194 }
8195 
8196 #ifdef CONFIG_CFS_BANDWIDTH
8197 static DEFINE_MUTEX(cfs_constraints_mutex);
8198 
8199 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8200 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8201 
8202 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8203 
8204 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8205 {
8206 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8207 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8208 
8209 	if (tg == &root_task_group)
8210 		return -EINVAL;
8211 
8212 	/*
8213 	 * Ensure we have at some amount of bandwidth every period.  This is
8214 	 * to prevent reaching a state of large arrears when throttled via
8215 	 * entity_tick() resulting in prolonged exit starvation.
8216 	 */
8217 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8218 		return -EINVAL;
8219 
8220 	/*
8221 	 * Likewise, bound things on the otherside by preventing insane quota
8222 	 * periods.  This also allows us to normalize in computing quota
8223 	 * feasibility.
8224 	 */
8225 	if (period > max_cfs_quota_period)
8226 		return -EINVAL;
8227 
8228 	/*
8229 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8230 	 * unthrottle_offline_cfs_rqs().
8231 	 */
8232 	get_online_cpus();
8233 	mutex_lock(&cfs_constraints_mutex);
8234 	ret = __cfs_schedulable(tg, period, quota);
8235 	if (ret)
8236 		goto out_unlock;
8237 
8238 	runtime_enabled = quota != RUNTIME_INF;
8239 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8240 	/*
8241 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8242 	 * before making related changes, and on->off must occur afterwards
8243 	 */
8244 	if (runtime_enabled && !runtime_was_enabled)
8245 		cfs_bandwidth_usage_inc();
8246 	raw_spin_lock_irq(&cfs_b->lock);
8247 	cfs_b->period = ns_to_ktime(period);
8248 	cfs_b->quota = quota;
8249 
8250 	__refill_cfs_bandwidth_runtime(cfs_b);
8251 	/* restart the period timer (if active) to handle new period expiry */
8252 	if (runtime_enabled)
8253 		start_cfs_bandwidth(cfs_b);
8254 	raw_spin_unlock_irq(&cfs_b->lock);
8255 
8256 	for_each_online_cpu(i) {
8257 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8258 		struct rq *rq = cfs_rq->rq;
8259 
8260 		raw_spin_lock_irq(&rq->lock);
8261 		cfs_rq->runtime_enabled = runtime_enabled;
8262 		cfs_rq->runtime_remaining = 0;
8263 
8264 		if (cfs_rq->throttled)
8265 			unthrottle_cfs_rq(cfs_rq);
8266 		raw_spin_unlock_irq(&rq->lock);
8267 	}
8268 	if (runtime_was_enabled && !runtime_enabled)
8269 		cfs_bandwidth_usage_dec();
8270 out_unlock:
8271 	mutex_unlock(&cfs_constraints_mutex);
8272 	put_online_cpus();
8273 
8274 	return ret;
8275 }
8276 
8277 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8278 {
8279 	u64 quota, period;
8280 
8281 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8282 	if (cfs_quota_us < 0)
8283 		quota = RUNTIME_INF;
8284 	else
8285 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8286 
8287 	return tg_set_cfs_bandwidth(tg, period, quota);
8288 }
8289 
8290 long tg_get_cfs_quota(struct task_group *tg)
8291 {
8292 	u64 quota_us;
8293 
8294 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8295 		return -1;
8296 
8297 	quota_us = tg->cfs_bandwidth.quota;
8298 	do_div(quota_us, NSEC_PER_USEC);
8299 
8300 	return quota_us;
8301 }
8302 
8303 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8304 {
8305 	u64 quota, period;
8306 
8307 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8308 	quota = tg->cfs_bandwidth.quota;
8309 
8310 	return tg_set_cfs_bandwidth(tg, period, quota);
8311 }
8312 
8313 long tg_get_cfs_period(struct task_group *tg)
8314 {
8315 	u64 cfs_period_us;
8316 
8317 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8318 	do_div(cfs_period_us, NSEC_PER_USEC);
8319 
8320 	return cfs_period_us;
8321 }
8322 
8323 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8324 				  struct cftype *cft)
8325 {
8326 	return tg_get_cfs_quota(css_tg(css));
8327 }
8328 
8329 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8330 				   struct cftype *cftype, s64 cfs_quota_us)
8331 {
8332 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8333 }
8334 
8335 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8336 				   struct cftype *cft)
8337 {
8338 	return tg_get_cfs_period(css_tg(css));
8339 }
8340 
8341 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8342 				    struct cftype *cftype, u64 cfs_period_us)
8343 {
8344 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8345 }
8346 
8347 struct cfs_schedulable_data {
8348 	struct task_group *tg;
8349 	u64 period, quota;
8350 };
8351 
8352 /*
8353  * normalize group quota/period to be quota/max_period
8354  * note: units are usecs
8355  */
8356 static u64 normalize_cfs_quota(struct task_group *tg,
8357 			       struct cfs_schedulable_data *d)
8358 {
8359 	u64 quota, period;
8360 
8361 	if (tg == d->tg) {
8362 		period = d->period;
8363 		quota = d->quota;
8364 	} else {
8365 		period = tg_get_cfs_period(tg);
8366 		quota = tg_get_cfs_quota(tg);
8367 	}
8368 
8369 	/* note: these should typically be equivalent */
8370 	if (quota == RUNTIME_INF || quota == -1)
8371 		return RUNTIME_INF;
8372 
8373 	return to_ratio(period, quota);
8374 }
8375 
8376 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8377 {
8378 	struct cfs_schedulable_data *d = data;
8379 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8380 	s64 quota = 0, parent_quota = -1;
8381 
8382 	if (!tg->parent) {
8383 		quota = RUNTIME_INF;
8384 	} else {
8385 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8386 
8387 		quota = normalize_cfs_quota(tg, d);
8388 		parent_quota = parent_b->hierarchical_quota;
8389 
8390 		/*
8391 		 * ensure max(child_quota) <= parent_quota, inherit when no
8392 		 * limit is set
8393 		 */
8394 		if (quota == RUNTIME_INF)
8395 			quota = parent_quota;
8396 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8397 			return -EINVAL;
8398 	}
8399 	cfs_b->hierarchical_quota = quota;
8400 
8401 	return 0;
8402 }
8403 
8404 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8405 {
8406 	int ret;
8407 	struct cfs_schedulable_data data = {
8408 		.tg = tg,
8409 		.period = period,
8410 		.quota = quota,
8411 	};
8412 
8413 	if (quota != RUNTIME_INF) {
8414 		do_div(data.period, NSEC_PER_USEC);
8415 		do_div(data.quota, NSEC_PER_USEC);
8416 	}
8417 
8418 	rcu_read_lock();
8419 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8420 	rcu_read_unlock();
8421 
8422 	return ret;
8423 }
8424 
8425 static int cpu_stats_show(struct seq_file *sf, void *v)
8426 {
8427 	struct task_group *tg = css_tg(seq_css(sf));
8428 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8429 
8430 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8431 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8432 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8433 
8434 	return 0;
8435 }
8436 #endif /* CONFIG_CFS_BANDWIDTH */
8437 #endif /* CONFIG_FAIR_GROUP_SCHED */
8438 
8439 #ifdef CONFIG_RT_GROUP_SCHED
8440 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8441 				struct cftype *cft, s64 val)
8442 {
8443 	return sched_group_set_rt_runtime(css_tg(css), val);
8444 }
8445 
8446 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8447 			       struct cftype *cft)
8448 {
8449 	return sched_group_rt_runtime(css_tg(css));
8450 }
8451 
8452 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8453 				    struct cftype *cftype, u64 rt_period_us)
8454 {
8455 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8456 }
8457 
8458 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8459 				   struct cftype *cft)
8460 {
8461 	return sched_group_rt_period(css_tg(css));
8462 }
8463 #endif /* CONFIG_RT_GROUP_SCHED */
8464 
8465 static struct cftype cpu_files[] = {
8466 #ifdef CONFIG_FAIR_GROUP_SCHED
8467 	{
8468 		.name = "shares",
8469 		.read_u64 = cpu_shares_read_u64,
8470 		.write_u64 = cpu_shares_write_u64,
8471 	},
8472 #endif
8473 #ifdef CONFIG_CFS_BANDWIDTH
8474 	{
8475 		.name = "cfs_quota_us",
8476 		.read_s64 = cpu_cfs_quota_read_s64,
8477 		.write_s64 = cpu_cfs_quota_write_s64,
8478 	},
8479 	{
8480 		.name = "cfs_period_us",
8481 		.read_u64 = cpu_cfs_period_read_u64,
8482 		.write_u64 = cpu_cfs_period_write_u64,
8483 	},
8484 	{
8485 		.name = "stat",
8486 		.seq_show = cpu_stats_show,
8487 	},
8488 #endif
8489 #ifdef CONFIG_RT_GROUP_SCHED
8490 	{
8491 		.name = "rt_runtime_us",
8492 		.read_s64 = cpu_rt_runtime_read,
8493 		.write_s64 = cpu_rt_runtime_write,
8494 	},
8495 	{
8496 		.name = "rt_period_us",
8497 		.read_u64 = cpu_rt_period_read_uint,
8498 		.write_u64 = cpu_rt_period_write_uint,
8499 	},
8500 #endif
8501 	{ }	/* terminate */
8502 };
8503 
8504 struct cgroup_subsys cpu_cgrp_subsys = {
8505 	.css_alloc	= cpu_cgroup_css_alloc,
8506 	.css_free	= cpu_cgroup_css_free,
8507 	.css_online	= cpu_cgroup_css_online,
8508 	.css_offline	= cpu_cgroup_css_offline,
8509 	.fork		= cpu_cgroup_fork,
8510 	.can_attach	= cpu_cgroup_can_attach,
8511 	.attach		= cpu_cgroup_attach,
8512 	.exit		= cpu_cgroup_exit,
8513 	.legacy_cftypes	= cpu_files,
8514 	.early_init	= 1,
8515 };
8516 
8517 #endif	/* CONFIG_CGROUP_SCHED */
8518 
8519 void dump_cpu_task(int cpu)
8520 {
8521 	pr_info("Task dump for CPU %d:\n", cpu);
8522 	sched_show_task(cpu_curr(cpu));
8523 }
8524