1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 15 #include <asm/switch_to.h> 16 #include <asm/tlb.h> 17 18 #include "../workqueue_internal.h" 19 #include "../../fs/io-wq.h" 20 #include "../smpboot.h" 21 22 #include "pelt.h" 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/sched.h> 26 27 /* 28 * Export tracepoints that act as a bare tracehook (ie: have no trace event 29 * associated with them) to allow external modules to probe them. 30 */ 31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 37 38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 39 40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 41 /* 42 * Debugging: various feature bits 43 * 44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 45 * sysctl_sched_features, defined in sched.h, to allow constants propagation 46 * at compile time and compiler optimization based on features default. 47 */ 48 #define SCHED_FEAT(name, enabled) \ 49 (1UL << __SCHED_FEAT_##name) * enabled | 50 const_debug unsigned int sysctl_sched_features = 51 #include "features.h" 52 0; 53 #undef SCHED_FEAT 54 #endif 55 56 /* 57 * Number of tasks to iterate in a single balance run. 58 * Limited because this is done with IRQs disabled. 59 */ 60 const_debug unsigned int sysctl_sched_nr_migrate = 32; 61 62 /* 63 * period over which we measure -rt task CPU usage in us. 64 * default: 1s 65 */ 66 unsigned int sysctl_sched_rt_period = 1000000; 67 68 __read_mostly int scheduler_running; 69 70 /* 71 * part of the period that we allow rt tasks to run in us. 72 * default: 0.95s 73 */ 74 int sysctl_sched_rt_runtime = 950000; 75 76 /* 77 * __task_rq_lock - lock the rq @p resides on. 78 */ 79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 80 __acquires(rq->lock) 81 { 82 struct rq *rq; 83 84 lockdep_assert_held(&p->pi_lock); 85 86 for (;;) { 87 rq = task_rq(p); 88 raw_spin_lock(&rq->lock); 89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 90 rq_pin_lock(rq, rf); 91 return rq; 92 } 93 raw_spin_unlock(&rq->lock); 94 95 while (unlikely(task_on_rq_migrating(p))) 96 cpu_relax(); 97 } 98 } 99 100 /* 101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 102 */ 103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 104 __acquires(p->pi_lock) 105 __acquires(rq->lock) 106 { 107 struct rq *rq; 108 109 for (;;) { 110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 111 rq = task_rq(p); 112 raw_spin_lock(&rq->lock); 113 /* 114 * move_queued_task() task_rq_lock() 115 * 116 * ACQUIRE (rq->lock) 117 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 119 * [S] ->cpu = new_cpu [L] task_rq() 120 * [L] ->on_rq 121 * RELEASE (rq->lock) 122 * 123 * If we observe the old CPU in task_rq_lock(), the acquire of 124 * the old rq->lock will fully serialize against the stores. 125 * 126 * If we observe the new CPU in task_rq_lock(), the address 127 * dependency headed by '[L] rq = task_rq()' and the acquire 128 * will pair with the WMB to ensure we then also see migrating. 129 */ 130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 131 rq_pin_lock(rq, rf); 132 return rq; 133 } 134 raw_spin_unlock(&rq->lock); 135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 136 137 while (unlikely(task_on_rq_migrating(p))) 138 cpu_relax(); 139 } 140 } 141 142 /* 143 * RQ-clock updating methods: 144 */ 145 146 static void update_rq_clock_task(struct rq *rq, s64 delta) 147 { 148 /* 149 * In theory, the compile should just see 0 here, and optimize out the call 150 * to sched_rt_avg_update. But I don't trust it... 151 */ 152 s64 __maybe_unused steal = 0, irq_delta = 0; 153 154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 156 157 /* 158 * Since irq_time is only updated on {soft,}irq_exit, we might run into 159 * this case when a previous update_rq_clock() happened inside a 160 * {soft,}irq region. 161 * 162 * When this happens, we stop ->clock_task and only update the 163 * prev_irq_time stamp to account for the part that fit, so that a next 164 * update will consume the rest. This ensures ->clock_task is 165 * monotonic. 166 * 167 * It does however cause some slight miss-attribution of {soft,}irq 168 * time, a more accurate solution would be to update the irq_time using 169 * the current rq->clock timestamp, except that would require using 170 * atomic ops. 171 */ 172 if (irq_delta > delta) 173 irq_delta = delta; 174 175 rq->prev_irq_time += irq_delta; 176 delta -= irq_delta; 177 #endif 178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 179 if (static_key_false((¶virt_steal_rq_enabled))) { 180 steal = paravirt_steal_clock(cpu_of(rq)); 181 steal -= rq->prev_steal_time_rq; 182 183 if (unlikely(steal > delta)) 184 steal = delta; 185 186 rq->prev_steal_time_rq += steal; 187 delta -= steal; 188 } 189 #endif 190 191 rq->clock_task += delta; 192 193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 195 update_irq_load_avg(rq, irq_delta + steal); 196 #endif 197 update_rq_clock_pelt(rq, delta); 198 } 199 200 void update_rq_clock(struct rq *rq) 201 { 202 s64 delta; 203 204 lockdep_assert_held(&rq->lock); 205 206 if (rq->clock_update_flags & RQCF_ACT_SKIP) 207 return; 208 209 #ifdef CONFIG_SCHED_DEBUG 210 if (sched_feat(WARN_DOUBLE_CLOCK)) 211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 212 rq->clock_update_flags |= RQCF_UPDATED; 213 #endif 214 215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 216 if (delta < 0) 217 return; 218 rq->clock += delta; 219 update_rq_clock_task(rq, delta); 220 } 221 222 223 #ifdef CONFIG_SCHED_HRTICK 224 /* 225 * Use HR-timers to deliver accurate preemption points. 226 */ 227 228 static void hrtick_clear(struct rq *rq) 229 { 230 if (hrtimer_active(&rq->hrtick_timer)) 231 hrtimer_cancel(&rq->hrtick_timer); 232 } 233 234 /* 235 * High-resolution timer tick. 236 * Runs from hardirq context with interrupts disabled. 237 */ 238 static enum hrtimer_restart hrtick(struct hrtimer *timer) 239 { 240 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 241 struct rq_flags rf; 242 243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 244 245 rq_lock(rq, &rf); 246 update_rq_clock(rq); 247 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 248 rq_unlock(rq, &rf); 249 250 return HRTIMER_NORESTART; 251 } 252 253 #ifdef CONFIG_SMP 254 255 static void __hrtick_restart(struct rq *rq) 256 { 257 struct hrtimer *timer = &rq->hrtick_timer; 258 259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 260 } 261 262 /* 263 * called from hardirq (IPI) context 264 */ 265 static void __hrtick_start(void *arg) 266 { 267 struct rq *rq = arg; 268 struct rq_flags rf; 269 270 rq_lock(rq, &rf); 271 __hrtick_restart(rq); 272 rq->hrtick_csd_pending = 0; 273 rq_unlock(rq, &rf); 274 } 275 276 /* 277 * Called to set the hrtick timer state. 278 * 279 * called with rq->lock held and irqs disabled 280 */ 281 void hrtick_start(struct rq *rq, u64 delay) 282 { 283 struct hrtimer *timer = &rq->hrtick_timer; 284 ktime_t time; 285 s64 delta; 286 287 /* 288 * Don't schedule slices shorter than 10000ns, that just 289 * doesn't make sense and can cause timer DoS. 290 */ 291 delta = max_t(s64, delay, 10000LL); 292 time = ktime_add_ns(timer->base->get_time(), delta); 293 294 hrtimer_set_expires(timer, time); 295 296 if (rq == this_rq()) { 297 __hrtick_restart(rq); 298 } else if (!rq->hrtick_csd_pending) { 299 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 300 rq->hrtick_csd_pending = 1; 301 } 302 } 303 304 #else 305 /* 306 * Called to set the hrtick timer state. 307 * 308 * called with rq->lock held and irqs disabled 309 */ 310 void hrtick_start(struct rq *rq, u64 delay) 311 { 312 /* 313 * Don't schedule slices shorter than 10000ns, that just 314 * doesn't make sense. Rely on vruntime for fairness. 315 */ 316 delay = max_t(u64, delay, 10000LL); 317 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 318 HRTIMER_MODE_REL_PINNED_HARD); 319 } 320 #endif /* CONFIG_SMP */ 321 322 static void hrtick_rq_init(struct rq *rq) 323 { 324 #ifdef CONFIG_SMP 325 rq->hrtick_csd_pending = 0; 326 327 rq->hrtick_csd.flags = 0; 328 rq->hrtick_csd.func = __hrtick_start; 329 rq->hrtick_csd.info = rq; 330 #endif 331 332 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 333 rq->hrtick_timer.function = hrtick; 334 } 335 #else /* CONFIG_SCHED_HRTICK */ 336 static inline void hrtick_clear(struct rq *rq) 337 { 338 } 339 340 static inline void hrtick_rq_init(struct rq *rq) 341 { 342 } 343 #endif /* CONFIG_SCHED_HRTICK */ 344 345 /* 346 * cmpxchg based fetch_or, macro so it works for different integer types 347 */ 348 #define fetch_or(ptr, mask) \ 349 ({ \ 350 typeof(ptr) _ptr = (ptr); \ 351 typeof(mask) _mask = (mask); \ 352 typeof(*_ptr) _old, _val = *_ptr; \ 353 \ 354 for (;;) { \ 355 _old = cmpxchg(_ptr, _val, _val | _mask); \ 356 if (_old == _val) \ 357 break; \ 358 _val = _old; \ 359 } \ 360 _old; \ 361 }) 362 363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 364 /* 365 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 366 * this avoids any races wrt polling state changes and thereby avoids 367 * spurious IPIs. 368 */ 369 static bool set_nr_and_not_polling(struct task_struct *p) 370 { 371 struct thread_info *ti = task_thread_info(p); 372 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 373 } 374 375 /* 376 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 377 * 378 * If this returns true, then the idle task promises to call 379 * sched_ttwu_pending() and reschedule soon. 380 */ 381 static bool set_nr_if_polling(struct task_struct *p) 382 { 383 struct thread_info *ti = task_thread_info(p); 384 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 385 386 for (;;) { 387 if (!(val & _TIF_POLLING_NRFLAG)) 388 return false; 389 if (val & _TIF_NEED_RESCHED) 390 return true; 391 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 392 if (old == val) 393 break; 394 val = old; 395 } 396 return true; 397 } 398 399 #else 400 static bool set_nr_and_not_polling(struct task_struct *p) 401 { 402 set_tsk_need_resched(p); 403 return true; 404 } 405 406 #ifdef CONFIG_SMP 407 static bool set_nr_if_polling(struct task_struct *p) 408 { 409 return false; 410 } 411 #endif 412 #endif 413 414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 415 { 416 struct wake_q_node *node = &task->wake_q; 417 418 /* 419 * Atomically grab the task, if ->wake_q is !nil already it means 420 * its already queued (either by us or someone else) and will get the 421 * wakeup due to that. 422 * 423 * In order to ensure that a pending wakeup will observe our pending 424 * state, even in the failed case, an explicit smp_mb() must be used. 425 */ 426 smp_mb__before_atomic(); 427 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 428 return false; 429 430 /* 431 * The head is context local, there can be no concurrency. 432 */ 433 *head->lastp = node; 434 head->lastp = &node->next; 435 return true; 436 } 437 438 /** 439 * wake_q_add() - queue a wakeup for 'later' waking. 440 * @head: the wake_q_head to add @task to 441 * @task: the task to queue for 'later' wakeup 442 * 443 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 444 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 445 * instantly. 446 * 447 * This function must be used as-if it were wake_up_process(); IOW the task 448 * must be ready to be woken at this location. 449 */ 450 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 451 { 452 if (__wake_q_add(head, task)) 453 get_task_struct(task); 454 } 455 456 /** 457 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 458 * @head: the wake_q_head to add @task to 459 * @task: the task to queue for 'later' wakeup 460 * 461 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 462 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 463 * instantly. 464 * 465 * This function must be used as-if it were wake_up_process(); IOW the task 466 * must be ready to be woken at this location. 467 * 468 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 469 * that already hold reference to @task can call the 'safe' version and trust 470 * wake_q to do the right thing depending whether or not the @task is already 471 * queued for wakeup. 472 */ 473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 474 { 475 if (!__wake_q_add(head, task)) 476 put_task_struct(task); 477 } 478 479 void wake_up_q(struct wake_q_head *head) 480 { 481 struct wake_q_node *node = head->first; 482 483 while (node != WAKE_Q_TAIL) { 484 struct task_struct *task; 485 486 task = container_of(node, struct task_struct, wake_q); 487 BUG_ON(!task); 488 /* Task can safely be re-inserted now: */ 489 node = node->next; 490 task->wake_q.next = NULL; 491 492 /* 493 * wake_up_process() executes a full barrier, which pairs with 494 * the queueing in wake_q_add() so as not to miss wakeups. 495 */ 496 wake_up_process(task); 497 put_task_struct(task); 498 } 499 } 500 501 /* 502 * resched_curr - mark rq's current task 'to be rescheduled now'. 503 * 504 * On UP this means the setting of the need_resched flag, on SMP it 505 * might also involve a cross-CPU call to trigger the scheduler on 506 * the target CPU. 507 */ 508 void resched_curr(struct rq *rq) 509 { 510 struct task_struct *curr = rq->curr; 511 int cpu; 512 513 lockdep_assert_held(&rq->lock); 514 515 if (test_tsk_need_resched(curr)) 516 return; 517 518 cpu = cpu_of(rq); 519 520 if (cpu == smp_processor_id()) { 521 set_tsk_need_resched(curr); 522 set_preempt_need_resched(); 523 return; 524 } 525 526 if (set_nr_and_not_polling(curr)) 527 smp_send_reschedule(cpu); 528 else 529 trace_sched_wake_idle_without_ipi(cpu); 530 } 531 532 void resched_cpu(int cpu) 533 { 534 struct rq *rq = cpu_rq(cpu); 535 unsigned long flags; 536 537 raw_spin_lock_irqsave(&rq->lock, flags); 538 if (cpu_online(cpu) || cpu == smp_processor_id()) 539 resched_curr(rq); 540 raw_spin_unlock_irqrestore(&rq->lock, flags); 541 } 542 543 #ifdef CONFIG_SMP 544 #ifdef CONFIG_NO_HZ_COMMON 545 /* 546 * In the semi idle case, use the nearest busy CPU for migrating timers 547 * from an idle CPU. This is good for power-savings. 548 * 549 * We don't do similar optimization for completely idle system, as 550 * selecting an idle CPU will add more delays to the timers than intended 551 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 552 */ 553 int get_nohz_timer_target(void) 554 { 555 int i, cpu = smp_processor_id(); 556 struct sched_domain *sd; 557 558 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 559 return cpu; 560 561 rcu_read_lock(); 562 for_each_domain(cpu, sd) { 563 for_each_cpu(i, sched_domain_span(sd)) { 564 if (cpu == i) 565 continue; 566 567 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 568 cpu = i; 569 goto unlock; 570 } 571 } 572 } 573 574 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 575 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 576 unlock: 577 rcu_read_unlock(); 578 return cpu; 579 } 580 581 /* 582 * When add_timer_on() enqueues a timer into the timer wheel of an 583 * idle CPU then this timer might expire before the next timer event 584 * which is scheduled to wake up that CPU. In case of a completely 585 * idle system the next event might even be infinite time into the 586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 587 * leaves the inner idle loop so the newly added timer is taken into 588 * account when the CPU goes back to idle and evaluates the timer 589 * wheel for the next timer event. 590 */ 591 static void wake_up_idle_cpu(int cpu) 592 { 593 struct rq *rq = cpu_rq(cpu); 594 595 if (cpu == smp_processor_id()) 596 return; 597 598 if (set_nr_and_not_polling(rq->idle)) 599 smp_send_reschedule(cpu); 600 else 601 trace_sched_wake_idle_without_ipi(cpu); 602 } 603 604 static bool wake_up_full_nohz_cpu(int cpu) 605 { 606 /* 607 * We just need the target to call irq_exit() and re-evaluate 608 * the next tick. The nohz full kick at least implies that. 609 * If needed we can still optimize that later with an 610 * empty IRQ. 611 */ 612 if (cpu_is_offline(cpu)) 613 return true; /* Don't try to wake offline CPUs. */ 614 if (tick_nohz_full_cpu(cpu)) { 615 if (cpu != smp_processor_id() || 616 tick_nohz_tick_stopped()) 617 tick_nohz_full_kick_cpu(cpu); 618 return true; 619 } 620 621 return false; 622 } 623 624 /* 625 * Wake up the specified CPU. If the CPU is going offline, it is the 626 * caller's responsibility to deal with the lost wakeup, for example, 627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 628 */ 629 void wake_up_nohz_cpu(int cpu) 630 { 631 if (!wake_up_full_nohz_cpu(cpu)) 632 wake_up_idle_cpu(cpu); 633 } 634 635 static inline bool got_nohz_idle_kick(void) 636 { 637 int cpu = smp_processor_id(); 638 639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 640 return false; 641 642 if (idle_cpu(cpu) && !need_resched()) 643 return true; 644 645 /* 646 * We can't run Idle Load Balance on this CPU for this time so we 647 * cancel it and clear NOHZ_BALANCE_KICK 648 */ 649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 650 return false; 651 } 652 653 #else /* CONFIG_NO_HZ_COMMON */ 654 655 static inline bool got_nohz_idle_kick(void) 656 { 657 return false; 658 } 659 660 #endif /* CONFIG_NO_HZ_COMMON */ 661 662 #ifdef CONFIG_NO_HZ_FULL 663 bool sched_can_stop_tick(struct rq *rq) 664 { 665 int fifo_nr_running; 666 667 /* Deadline tasks, even if single, need the tick */ 668 if (rq->dl.dl_nr_running) 669 return false; 670 671 /* 672 * If there are more than one RR tasks, we need the tick to effect the 673 * actual RR behaviour. 674 */ 675 if (rq->rt.rr_nr_running) { 676 if (rq->rt.rr_nr_running == 1) 677 return true; 678 else 679 return false; 680 } 681 682 /* 683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 684 * forced preemption between FIFO tasks. 685 */ 686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 687 if (fifo_nr_running) 688 return true; 689 690 /* 691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 692 * if there's more than one we need the tick for involuntary 693 * preemption. 694 */ 695 if (rq->nr_running > 1) 696 return false; 697 698 return true; 699 } 700 #endif /* CONFIG_NO_HZ_FULL */ 701 #endif /* CONFIG_SMP */ 702 703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 705 /* 706 * Iterate task_group tree rooted at *from, calling @down when first entering a 707 * node and @up when leaving it for the final time. 708 * 709 * Caller must hold rcu_lock or sufficient equivalent. 710 */ 711 int walk_tg_tree_from(struct task_group *from, 712 tg_visitor down, tg_visitor up, void *data) 713 { 714 struct task_group *parent, *child; 715 int ret; 716 717 parent = from; 718 719 down: 720 ret = (*down)(parent, data); 721 if (ret) 722 goto out; 723 list_for_each_entry_rcu(child, &parent->children, siblings) { 724 parent = child; 725 goto down; 726 727 up: 728 continue; 729 } 730 ret = (*up)(parent, data); 731 if (ret || parent == from) 732 goto out; 733 734 child = parent; 735 parent = parent->parent; 736 if (parent) 737 goto up; 738 out: 739 return ret; 740 } 741 742 int tg_nop(struct task_group *tg, void *data) 743 { 744 return 0; 745 } 746 #endif 747 748 static void set_load_weight(struct task_struct *p, bool update_load) 749 { 750 int prio = p->static_prio - MAX_RT_PRIO; 751 struct load_weight *load = &p->se.load; 752 753 /* 754 * SCHED_IDLE tasks get minimal weight: 755 */ 756 if (task_has_idle_policy(p)) { 757 load->weight = scale_load(WEIGHT_IDLEPRIO); 758 load->inv_weight = WMULT_IDLEPRIO; 759 p->se.runnable_weight = load->weight; 760 return; 761 } 762 763 /* 764 * SCHED_OTHER tasks have to update their load when changing their 765 * weight 766 */ 767 if (update_load && p->sched_class == &fair_sched_class) { 768 reweight_task(p, prio); 769 } else { 770 load->weight = scale_load(sched_prio_to_weight[prio]); 771 load->inv_weight = sched_prio_to_wmult[prio]; 772 p->se.runnable_weight = load->weight; 773 } 774 } 775 776 #ifdef CONFIG_UCLAMP_TASK 777 /* 778 * Serializes updates of utilization clamp values 779 * 780 * The (slow-path) user-space triggers utilization clamp value updates which 781 * can require updates on (fast-path) scheduler's data structures used to 782 * support enqueue/dequeue operations. 783 * While the per-CPU rq lock protects fast-path update operations, user-space 784 * requests are serialized using a mutex to reduce the risk of conflicting 785 * updates or API abuses. 786 */ 787 static DEFINE_MUTEX(uclamp_mutex); 788 789 /* Max allowed minimum utilization */ 790 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 791 792 /* Max allowed maximum utilization */ 793 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 794 795 /* All clamps are required to be less or equal than these values */ 796 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 797 798 /* Integer rounded range for each bucket */ 799 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 800 801 #define for_each_clamp_id(clamp_id) \ 802 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 803 804 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 805 { 806 return clamp_value / UCLAMP_BUCKET_DELTA; 807 } 808 809 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 810 { 811 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 812 } 813 814 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 815 { 816 if (clamp_id == UCLAMP_MIN) 817 return 0; 818 return SCHED_CAPACITY_SCALE; 819 } 820 821 static inline void uclamp_se_set(struct uclamp_se *uc_se, 822 unsigned int value, bool user_defined) 823 { 824 uc_se->value = value; 825 uc_se->bucket_id = uclamp_bucket_id(value); 826 uc_se->user_defined = user_defined; 827 } 828 829 static inline unsigned int 830 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 831 unsigned int clamp_value) 832 { 833 /* 834 * Avoid blocked utilization pushing up the frequency when we go 835 * idle (which drops the max-clamp) by retaining the last known 836 * max-clamp. 837 */ 838 if (clamp_id == UCLAMP_MAX) { 839 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 840 return clamp_value; 841 } 842 843 return uclamp_none(UCLAMP_MIN); 844 } 845 846 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 847 unsigned int clamp_value) 848 { 849 /* Reset max-clamp retention only on idle exit */ 850 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 851 return; 852 853 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 854 } 855 856 static inline 857 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 858 unsigned int clamp_value) 859 { 860 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 861 int bucket_id = UCLAMP_BUCKETS - 1; 862 863 /* 864 * Since both min and max clamps are max aggregated, find the 865 * top most bucket with tasks in. 866 */ 867 for ( ; bucket_id >= 0; bucket_id--) { 868 if (!bucket[bucket_id].tasks) 869 continue; 870 return bucket[bucket_id].value; 871 } 872 873 /* No tasks -- default clamp values */ 874 return uclamp_idle_value(rq, clamp_id, clamp_value); 875 } 876 877 static inline struct uclamp_se 878 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 879 { 880 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 881 #ifdef CONFIG_UCLAMP_TASK_GROUP 882 struct uclamp_se uc_max; 883 884 /* 885 * Tasks in autogroups or root task group will be 886 * restricted by system defaults. 887 */ 888 if (task_group_is_autogroup(task_group(p))) 889 return uc_req; 890 if (task_group(p) == &root_task_group) 891 return uc_req; 892 893 uc_max = task_group(p)->uclamp[clamp_id]; 894 if (uc_req.value > uc_max.value || !uc_req.user_defined) 895 return uc_max; 896 #endif 897 898 return uc_req; 899 } 900 901 /* 902 * The effective clamp bucket index of a task depends on, by increasing 903 * priority: 904 * - the task specific clamp value, when explicitly requested from userspace 905 * - the task group effective clamp value, for tasks not either in the root 906 * group or in an autogroup 907 * - the system default clamp value, defined by the sysadmin 908 */ 909 static inline struct uclamp_se 910 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 911 { 912 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 913 struct uclamp_se uc_max = uclamp_default[clamp_id]; 914 915 /* System default restrictions always apply */ 916 if (unlikely(uc_req.value > uc_max.value)) 917 return uc_max; 918 919 return uc_req; 920 } 921 922 unsigned int uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 923 { 924 struct uclamp_se uc_eff; 925 926 /* Task currently refcounted: use back-annotated (effective) value */ 927 if (p->uclamp[clamp_id].active) 928 return p->uclamp[clamp_id].value; 929 930 uc_eff = uclamp_eff_get(p, clamp_id); 931 932 return uc_eff.value; 933 } 934 935 /* 936 * When a task is enqueued on a rq, the clamp bucket currently defined by the 937 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 938 * updates the rq's clamp value if required. 939 * 940 * Tasks can have a task-specific value requested from user-space, track 941 * within each bucket the maximum value for tasks refcounted in it. 942 * This "local max aggregation" allows to track the exact "requested" value 943 * for each bucket when all its RUNNABLE tasks require the same clamp. 944 */ 945 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 946 enum uclamp_id clamp_id) 947 { 948 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 949 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 950 struct uclamp_bucket *bucket; 951 952 lockdep_assert_held(&rq->lock); 953 954 /* Update task effective clamp */ 955 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 956 957 bucket = &uc_rq->bucket[uc_se->bucket_id]; 958 bucket->tasks++; 959 uc_se->active = true; 960 961 uclamp_idle_reset(rq, clamp_id, uc_se->value); 962 963 /* 964 * Local max aggregation: rq buckets always track the max 965 * "requested" clamp value of its RUNNABLE tasks. 966 */ 967 if (bucket->tasks == 1 || uc_se->value > bucket->value) 968 bucket->value = uc_se->value; 969 970 if (uc_se->value > READ_ONCE(uc_rq->value)) 971 WRITE_ONCE(uc_rq->value, uc_se->value); 972 } 973 974 /* 975 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 976 * is released. If this is the last task reference counting the rq's max 977 * active clamp value, then the rq's clamp value is updated. 978 * 979 * Both refcounted tasks and rq's cached clamp values are expected to be 980 * always valid. If it's detected they are not, as defensive programming, 981 * enforce the expected state and warn. 982 */ 983 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 984 enum uclamp_id clamp_id) 985 { 986 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 987 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 988 struct uclamp_bucket *bucket; 989 unsigned int bkt_clamp; 990 unsigned int rq_clamp; 991 992 lockdep_assert_held(&rq->lock); 993 994 bucket = &uc_rq->bucket[uc_se->bucket_id]; 995 SCHED_WARN_ON(!bucket->tasks); 996 if (likely(bucket->tasks)) 997 bucket->tasks--; 998 uc_se->active = false; 999 1000 /* 1001 * Keep "local max aggregation" simple and accept to (possibly) 1002 * overboost some RUNNABLE tasks in the same bucket. 1003 * The rq clamp bucket value is reset to its base value whenever 1004 * there are no more RUNNABLE tasks refcounting it. 1005 */ 1006 if (likely(bucket->tasks)) 1007 return; 1008 1009 rq_clamp = READ_ONCE(uc_rq->value); 1010 /* 1011 * Defensive programming: this should never happen. If it happens, 1012 * e.g. due to future modification, warn and fixup the expected value. 1013 */ 1014 SCHED_WARN_ON(bucket->value > rq_clamp); 1015 if (bucket->value >= rq_clamp) { 1016 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1017 WRITE_ONCE(uc_rq->value, bkt_clamp); 1018 } 1019 } 1020 1021 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1022 { 1023 enum uclamp_id clamp_id; 1024 1025 if (unlikely(!p->sched_class->uclamp_enabled)) 1026 return; 1027 1028 for_each_clamp_id(clamp_id) 1029 uclamp_rq_inc_id(rq, p, clamp_id); 1030 1031 /* Reset clamp idle holding when there is one RUNNABLE task */ 1032 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1033 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1034 } 1035 1036 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1037 { 1038 enum uclamp_id clamp_id; 1039 1040 if (unlikely(!p->sched_class->uclamp_enabled)) 1041 return; 1042 1043 for_each_clamp_id(clamp_id) 1044 uclamp_rq_dec_id(rq, p, clamp_id); 1045 } 1046 1047 static inline void 1048 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1049 { 1050 struct rq_flags rf; 1051 struct rq *rq; 1052 1053 /* 1054 * Lock the task and the rq where the task is (or was) queued. 1055 * 1056 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1057 * price to pay to safely serialize util_{min,max} updates with 1058 * enqueues, dequeues and migration operations. 1059 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1060 */ 1061 rq = task_rq_lock(p, &rf); 1062 1063 /* 1064 * Setting the clamp bucket is serialized by task_rq_lock(). 1065 * If the task is not yet RUNNABLE and its task_struct is not 1066 * affecting a valid clamp bucket, the next time it's enqueued, 1067 * it will already see the updated clamp bucket value. 1068 */ 1069 if (p->uclamp[clamp_id].active) { 1070 uclamp_rq_dec_id(rq, p, clamp_id); 1071 uclamp_rq_inc_id(rq, p, clamp_id); 1072 } 1073 1074 task_rq_unlock(rq, p, &rf); 1075 } 1076 1077 #ifdef CONFIG_UCLAMP_TASK_GROUP 1078 static inline void 1079 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1080 unsigned int clamps) 1081 { 1082 enum uclamp_id clamp_id; 1083 struct css_task_iter it; 1084 struct task_struct *p; 1085 1086 css_task_iter_start(css, 0, &it); 1087 while ((p = css_task_iter_next(&it))) { 1088 for_each_clamp_id(clamp_id) { 1089 if ((0x1 << clamp_id) & clamps) 1090 uclamp_update_active(p, clamp_id); 1091 } 1092 } 1093 css_task_iter_end(&it); 1094 } 1095 1096 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1097 static void uclamp_update_root_tg(void) 1098 { 1099 struct task_group *tg = &root_task_group; 1100 1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1102 sysctl_sched_uclamp_util_min, false); 1103 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1104 sysctl_sched_uclamp_util_max, false); 1105 1106 rcu_read_lock(); 1107 cpu_util_update_eff(&root_task_group.css); 1108 rcu_read_unlock(); 1109 } 1110 #else 1111 static void uclamp_update_root_tg(void) { } 1112 #endif 1113 1114 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1115 void __user *buffer, size_t *lenp, 1116 loff_t *ppos) 1117 { 1118 bool update_root_tg = false; 1119 int old_min, old_max; 1120 int result; 1121 1122 mutex_lock(&uclamp_mutex); 1123 old_min = sysctl_sched_uclamp_util_min; 1124 old_max = sysctl_sched_uclamp_util_max; 1125 1126 result = proc_dointvec(table, write, buffer, lenp, ppos); 1127 if (result) 1128 goto undo; 1129 if (!write) 1130 goto done; 1131 1132 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1133 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1134 result = -EINVAL; 1135 goto undo; 1136 } 1137 1138 if (old_min != sysctl_sched_uclamp_util_min) { 1139 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1140 sysctl_sched_uclamp_util_min, false); 1141 update_root_tg = true; 1142 } 1143 if (old_max != sysctl_sched_uclamp_util_max) { 1144 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1145 sysctl_sched_uclamp_util_max, false); 1146 update_root_tg = true; 1147 } 1148 1149 if (update_root_tg) 1150 uclamp_update_root_tg(); 1151 1152 /* 1153 * We update all RUNNABLE tasks only when task groups are in use. 1154 * Otherwise, keep it simple and do just a lazy update at each next 1155 * task enqueue time. 1156 */ 1157 1158 goto done; 1159 1160 undo: 1161 sysctl_sched_uclamp_util_min = old_min; 1162 sysctl_sched_uclamp_util_max = old_max; 1163 done: 1164 mutex_unlock(&uclamp_mutex); 1165 1166 return result; 1167 } 1168 1169 static int uclamp_validate(struct task_struct *p, 1170 const struct sched_attr *attr) 1171 { 1172 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1173 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1174 1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1176 lower_bound = attr->sched_util_min; 1177 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1178 upper_bound = attr->sched_util_max; 1179 1180 if (lower_bound > upper_bound) 1181 return -EINVAL; 1182 if (upper_bound > SCHED_CAPACITY_SCALE) 1183 return -EINVAL; 1184 1185 return 0; 1186 } 1187 1188 static void __setscheduler_uclamp(struct task_struct *p, 1189 const struct sched_attr *attr) 1190 { 1191 enum uclamp_id clamp_id; 1192 1193 /* 1194 * On scheduling class change, reset to default clamps for tasks 1195 * without a task-specific value. 1196 */ 1197 for_each_clamp_id(clamp_id) { 1198 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1199 unsigned int clamp_value = uclamp_none(clamp_id); 1200 1201 /* Keep using defined clamps across class changes */ 1202 if (uc_se->user_defined) 1203 continue; 1204 1205 /* By default, RT tasks always get 100% boost */ 1206 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1207 clamp_value = uclamp_none(UCLAMP_MAX); 1208 1209 uclamp_se_set(uc_se, clamp_value, false); 1210 } 1211 1212 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1213 return; 1214 1215 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1216 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1217 attr->sched_util_min, true); 1218 } 1219 1220 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1221 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1222 attr->sched_util_max, true); 1223 } 1224 } 1225 1226 static void uclamp_fork(struct task_struct *p) 1227 { 1228 enum uclamp_id clamp_id; 1229 1230 for_each_clamp_id(clamp_id) 1231 p->uclamp[clamp_id].active = false; 1232 1233 if (likely(!p->sched_reset_on_fork)) 1234 return; 1235 1236 for_each_clamp_id(clamp_id) { 1237 unsigned int clamp_value = uclamp_none(clamp_id); 1238 1239 /* By default, RT tasks always get 100% boost */ 1240 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1241 clamp_value = uclamp_none(UCLAMP_MAX); 1242 1243 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false); 1244 } 1245 } 1246 1247 static void __init init_uclamp(void) 1248 { 1249 struct uclamp_se uc_max = {}; 1250 enum uclamp_id clamp_id; 1251 int cpu; 1252 1253 mutex_init(&uclamp_mutex); 1254 1255 for_each_possible_cpu(cpu) { 1256 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq)); 1257 cpu_rq(cpu)->uclamp_flags = 0; 1258 } 1259 1260 for_each_clamp_id(clamp_id) { 1261 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1262 uclamp_none(clamp_id), false); 1263 } 1264 1265 /* System defaults allow max clamp values for both indexes */ 1266 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1267 for_each_clamp_id(clamp_id) { 1268 uclamp_default[clamp_id] = uc_max; 1269 #ifdef CONFIG_UCLAMP_TASK_GROUP 1270 root_task_group.uclamp_req[clamp_id] = uc_max; 1271 root_task_group.uclamp[clamp_id] = uc_max; 1272 #endif 1273 } 1274 } 1275 1276 #else /* CONFIG_UCLAMP_TASK */ 1277 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1278 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1279 static inline int uclamp_validate(struct task_struct *p, 1280 const struct sched_attr *attr) 1281 { 1282 return -EOPNOTSUPP; 1283 } 1284 static void __setscheduler_uclamp(struct task_struct *p, 1285 const struct sched_attr *attr) { } 1286 static inline void uclamp_fork(struct task_struct *p) { } 1287 static inline void init_uclamp(void) { } 1288 #endif /* CONFIG_UCLAMP_TASK */ 1289 1290 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1291 { 1292 if (!(flags & ENQUEUE_NOCLOCK)) 1293 update_rq_clock(rq); 1294 1295 if (!(flags & ENQUEUE_RESTORE)) { 1296 sched_info_queued(rq, p); 1297 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1298 } 1299 1300 uclamp_rq_inc(rq, p); 1301 p->sched_class->enqueue_task(rq, p, flags); 1302 } 1303 1304 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1305 { 1306 if (!(flags & DEQUEUE_NOCLOCK)) 1307 update_rq_clock(rq); 1308 1309 if (!(flags & DEQUEUE_SAVE)) { 1310 sched_info_dequeued(rq, p); 1311 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1312 } 1313 1314 uclamp_rq_dec(rq, p); 1315 p->sched_class->dequeue_task(rq, p, flags); 1316 } 1317 1318 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1319 { 1320 if (task_contributes_to_load(p)) 1321 rq->nr_uninterruptible--; 1322 1323 enqueue_task(rq, p, flags); 1324 1325 p->on_rq = TASK_ON_RQ_QUEUED; 1326 } 1327 1328 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1329 { 1330 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1331 1332 if (task_contributes_to_load(p)) 1333 rq->nr_uninterruptible++; 1334 1335 dequeue_task(rq, p, flags); 1336 } 1337 1338 /* 1339 * __normal_prio - return the priority that is based on the static prio 1340 */ 1341 static inline int __normal_prio(struct task_struct *p) 1342 { 1343 return p->static_prio; 1344 } 1345 1346 /* 1347 * Calculate the expected normal priority: i.e. priority 1348 * without taking RT-inheritance into account. Might be 1349 * boosted by interactivity modifiers. Changes upon fork, 1350 * setprio syscalls, and whenever the interactivity 1351 * estimator recalculates. 1352 */ 1353 static inline int normal_prio(struct task_struct *p) 1354 { 1355 int prio; 1356 1357 if (task_has_dl_policy(p)) 1358 prio = MAX_DL_PRIO-1; 1359 else if (task_has_rt_policy(p)) 1360 prio = MAX_RT_PRIO-1 - p->rt_priority; 1361 else 1362 prio = __normal_prio(p); 1363 return prio; 1364 } 1365 1366 /* 1367 * Calculate the current priority, i.e. the priority 1368 * taken into account by the scheduler. This value might 1369 * be boosted by RT tasks, or might be boosted by 1370 * interactivity modifiers. Will be RT if the task got 1371 * RT-boosted. If not then it returns p->normal_prio. 1372 */ 1373 static int effective_prio(struct task_struct *p) 1374 { 1375 p->normal_prio = normal_prio(p); 1376 /* 1377 * If we are RT tasks or we were boosted to RT priority, 1378 * keep the priority unchanged. Otherwise, update priority 1379 * to the normal priority: 1380 */ 1381 if (!rt_prio(p->prio)) 1382 return p->normal_prio; 1383 return p->prio; 1384 } 1385 1386 /** 1387 * task_curr - is this task currently executing on a CPU? 1388 * @p: the task in question. 1389 * 1390 * Return: 1 if the task is currently executing. 0 otherwise. 1391 */ 1392 inline int task_curr(const struct task_struct *p) 1393 { 1394 return cpu_curr(task_cpu(p)) == p; 1395 } 1396 1397 /* 1398 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1399 * use the balance_callback list if you want balancing. 1400 * 1401 * this means any call to check_class_changed() must be followed by a call to 1402 * balance_callback(). 1403 */ 1404 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1405 const struct sched_class *prev_class, 1406 int oldprio) 1407 { 1408 if (prev_class != p->sched_class) { 1409 if (prev_class->switched_from) 1410 prev_class->switched_from(rq, p); 1411 1412 p->sched_class->switched_to(rq, p); 1413 } else if (oldprio != p->prio || dl_task(p)) 1414 p->sched_class->prio_changed(rq, p, oldprio); 1415 } 1416 1417 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1418 { 1419 const struct sched_class *class; 1420 1421 if (p->sched_class == rq->curr->sched_class) { 1422 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1423 } else { 1424 for_each_class(class) { 1425 if (class == rq->curr->sched_class) 1426 break; 1427 if (class == p->sched_class) { 1428 resched_curr(rq); 1429 break; 1430 } 1431 } 1432 } 1433 1434 /* 1435 * A queue event has occurred, and we're going to schedule. In 1436 * this case, we can save a useless back to back clock update. 1437 */ 1438 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1439 rq_clock_skip_update(rq); 1440 } 1441 1442 #ifdef CONFIG_SMP 1443 1444 static inline bool is_per_cpu_kthread(struct task_struct *p) 1445 { 1446 if (!(p->flags & PF_KTHREAD)) 1447 return false; 1448 1449 if (p->nr_cpus_allowed != 1) 1450 return false; 1451 1452 return true; 1453 } 1454 1455 /* 1456 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1457 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1458 */ 1459 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1460 { 1461 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1462 return false; 1463 1464 if (is_per_cpu_kthread(p)) 1465 return cpu_online(cpu); 1466 1467 return cpu_active(cpu); 1468 } 1469 1470 /* 1471 * This is how migration works: 1472 * 1473 * 1) we invoke migration_cpu_stop() on the target CPU using 1474 * stop_one_cpu(). 1475 * 2) stopper starts to run (implicitly forcing the migrated thread 1476 * off the CPU) 1477 * 3) it checks whether the migrated task is still in the wrong runqueue. 1478 * 4) if it's in the wrong runqueue then the migration thread removes 1479 * it and puts it into the right queue. 1480 * 5) stopper completes and stop_one_cpu() returns and the migration 1481 * is done. 1482 */ 1483 1484 /* 1485 * move_queued_task - move a queued task to new rq. 1486 * 1487 * Returns (locked) new rq. Old rq's lock is released. 1488 */ 1489 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1490 struct task_struct *p, int new_cpu) 1491 { 1492 lockdep_assert_held(&rq->lock); 1493 1494 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1495 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1496 set_task_cpu(p, new_cpu); 1497 rq_unlock(rq, rf); 1498 1499 rq = cpu_rq(new_cpu); 1500 1501 rq_lock(rq, rf); 1502 BUG_ON(task_cpu(p) != new_cpu); 1503 enqueue_task(rq, p, 0); 1504 p->on_rq = TASK_ON_RQ_QUEUED; 1505 check_preempt_curr(rq, p, 0); 1506 1507 return rq; 1508 } 1509 1510 struct migration_arg { 1511 struct task_struct *task; 1512 int dest_cpu; 1513 }; 1514 1515 /* 1516 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1517 * this because either it can't run here any more (set_cpus_allowed() 1518 * away from this CPU, or CPU going down), or because we're 1519 * attempting to rebalance this task on exec (sched_exec). 1520 * 1521 * So we race with normal scheduler movements, but that's OK, as long 1522 * as the task is no longer on this CPU. 1523 */ 1524 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1525 struct task_struct *p, int dest_cpu) 1526 { 1527 /* Affinity changed (again). */ 1528 if (!is_cpu_allowed(p, dest_cpu)) 1529 return rq; 1530 1531 update_rq_clock(rq); 1532 rq = move_queued_task(rq, rf, p, dest_cpu); 1533 1534 return rq; 1535 } 1536 1537 /* 1538 * migration_cpu_stop - this will be executed by a highprio stopper thread 1539 * and performs thread migration by bumping thread off CPU then 1540 * 'pushing' onto another runqueue. 1541 */ 1542 static int migration_cpu_stop(void *data) 1543 { 1544 struct migration_arg *arg = data; 1545 struct task_struct *p = arg->task; 1546 struct rq *rq = this_rq(); 1547 struct rq_flags rf; 1548 1549 /* 1550 * The original target CPU might have gone down and we might 1551 * be on another CPU but it doesn't matter. 1552 */ 1553 local_irq_disable(); 1554 /* 1555 * We need to explicitly wake pending tasks before running 1556 * __migrate_task() such that we will not miss enforcing cpus_ptr 1557 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1558 */ 1559 sched_ttwu_pending(); 1560 1561 raw_spin_lock(&p->pi_lock); 1562 rq_lock(rq, &rf); 1563 /* 1564 * If task_rq(p) != rq, it cannot be migrated here, because we're 1565 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1566 * we're holding p->pi_lock. 1567 */ 1568 if (task_rq(p) == rq) { 1569 if (task_on_rq_queued(p)) 1570 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1571 else 1572 p->wake_cpu = arg->dest_cpu; 1573 } 1574 rq_unlock(rq, &rf); 1575 raw_spin_unlock(&p->pi_lock); 1576 1577 local_irq_enable(); 1578 return 0; 1579 } 1580 1581 /* 1582 * sched_class::set_cpus_allowed must do the below, but is not required to 1583 * actually call this function. 1584 */ 1585 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1586 { 1587 cpumask_copy(&p->cpus_mask, new_mask); 1588 p->nr_cpus_allowed = cpumask_weight(new_mask); 1589 } 1590 1591 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1592 { 1593 struct rq *rq = task_rq(p); 1594 bool queued, running; 1595 1596 lockdep_assert_held(&p->pi_lock); 1597 1598 queued = task_on_rq_queued(p); 1599 running = task_current(rq, p); 1600 1601 if (queued) { 1602 /* 1603 * Because __kthread_bind() calls this on blocked tasks without 1604 * holding rq->lock. 1605 */ 1606 lockdep_assert_held(&rq->lock); 1607 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1608 } 1609 if (running) 1610 put_prev_task(rq, p); 1611 1612 p->sched_class->set_cpus_allowed(p, new_mask); 1613 1614 if (queued) 1615 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1616 if (running) 1617 set_next_task(rq, p); 1618 } 1619 1620 /* 1621 * Change a given task's CPU affinity. Migrate the thread to a 1622 * proper CPU and schedule it away if the CPU it's executing on 1623 * is removed from the allowed bitmask. 1624 * 1625 * NOTE: the caller must have a valid reference to the task, the 1626 * task must not exit() & deallocate itself prematurely. The 1627 * call is not atomic; no spinlocks may be held. 1628 */ 1629 static int __set_cpus_allowed_ptr(struct task_struct *p, 1630 const struct cpumask *new_mask, bool check) 1631 { 1632 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1633 unsigned int dest_cpu; 1634 struct rq_flags rf; 1635 struct rq *rq; 1636 int ret = 0; 1637 1638 rq = task_rq_lock(p, &rf); 1639 update_rq_clock(rq); 1640 1641 if (p->flags & PF_KTHREAD) { 1642 /* 1643 * Kernel threads are allowed on online && !active CPUs 1644 */ 1645 cpu_valid_mask = cpu_online_mask; 1646 } 1647 1648 /* 1649 * Must re-check here, to close a race against __kthread_bind(), 1650 * sched_setaffinity() is not guaranteed to observe the flag. 1651 */ 1652 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1653 ret = -EINVAL; 1654 goto out; 1655 } 1656 1657 if (cpumask_equal(p->cpus_ptr, new_mask)) 1658 goto out; 1659 1660 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1661 if (dest_cpu >= nr_cpu_ids) { 1662 ret = -EINVAL; 1663 goto out; 1664 } 1665 1666 do_set_cpus_allowed(p, new_mask); 1667 1668 if (p->flags & PF_KTHREAD) { 1669 /* 1670 * For kernel threads that do indeed end up on online && 1671 * !active we want to ensure they are strict per-CPU threads. 1672 */ 1673 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1674 !cpumask_intersects(new_mask, cpu_active_mask) && 1675 p->nr_cpus_allowed != 1); 1676 } 1677 1678 /* Can the task run on the task's current CPU? If so, we're done */ 1679 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1680 goto out; 1681 1682 if (task_running(rq, p) || p->state == TASK_WAKING) { 1683 struct migration_arg arg = { p, dest_cpu }; 1684 /* Need help from migration thread: drop lock and wait. */ 1685 task_rq_unlock(rq, p, &rf); 1686 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1687 return 0; 1688 } else if (task_on_rq_queued(p)) { 1689 /* 1690 * OK, since we're going to drop the lock immediately 1691 * afterwards anyway. 1692 */ 1693 rq = move_queued_task(rq, &rf, p, dest_cpu); 1694 } 1695 out: 1696 task_rq_unlock(rq, p, &rf); 1697 1698 return ret; 1699 } 1700 1701 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1702 { 1703 return __set_cpus_allowed_ptr(p, new_mask, false); 1704 } 1705 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1706 1707 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1708 { 1709 #ifdef CONFIG_SCHED_DEBUG 1710 /* 1711 * We should never call set_task_cpu() on a blocked task, 1712 * ttwu() will sort out the placement. 1713 */ 1714 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1715 !p->on_rq); 1716 1717 /* 1718 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1719 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1720 * time relying on p->on_rq. 1721 */ 1722 WARN_ON_ONCE(p->state == TASK_RUNNING && 1723 p->sched_class == &fair_sched_class && 1724 (p->on_rq && !task_on_rq_migrating(p))); 1725 1726 #ifdef CONFIG_LOCKDEP 1727 /* 1728 * The caller should hold either p->pi_lock or rq->lock, when changing 1729 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1730 * 1731 * sched_move_task() holds both and thus holding either pins the cgroup, 1732 * see task_group(). 1733 * 1734 * Furthermore, all task_rq users should acquire both locks, see 1735 * task_rq_lock(). 1736 */ 1737 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1738 lockdep_is_held(&task_rq(p)->lock))); 1739 #endif 1740 /* 1741 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1742 */ 1743 WARN_ON_ONCE(!cpu_online(new_cpu)); 1744 #endif 1745 1746 trace_sched_migrate_task(p, new_cpu); 1747 1748 if (task_cpu(p) != new_cpu) { 1749 if (p->sched_class->migrate_task_rq) 1750 p->sched_class->migrate_task_rq(p, new_cpu); 1751 p->se.nr_migrations++; 1752 rseq_migrate(p); 1753 perf_event_task_migrate(p); 1754 } 1755 1756 __set_task_cpu(p, new_cpu); 1757 } 1758 1759 #ifdef CONFIG_NUMA_BALANCING 1760 static void __migrate_swap_task(struct task_struct *p, int cpu) 1761 { 1762 if (task_on_rq_queued(p)) { 1763 struct rq *src_rq, *dst_rq; 1764 struct rq_flags srf, drf; 1765 1766 src_rq = task_rq(p); 1767 dst_rq = cpu_rq(cpu); 1768 1769 rq_pin_lock(src_rq, &srf); 1770 rq_pin_lock(dst_rq, &drf); 1771 1772 deactivate_task(src_rq, p, 0); 1773 set_task_cpu(p, cpu); 1774 activate_task(dst_rq, p, 0); 1775 check_preempt_curr(dst_rq, p, 0); 1776 1777 rq_unpin_lock(dst_rq, &drf); 1778 rq_unpin_lock(src_rq, &srf); 1779 1780 } else { 1781 /* 1782 * Task isn't running anymore; make it appear like we migrated 1783 * it before it went to sleep. This means on wakeup we make the 1784 * previous CPU our target instead of where it really is. 1785 */ 1786 p->wake_cpu = cpu; 1787 } 1788 } 1789 1790 struct migration_swap_arg { 1791 struct task_struct *src_task, *dst_task; 1792 int src_cpu, dst_cpu; 1793 }; 1794 1795 static int migrate_swap_stop(void *data) 1796 { 1797 struct migration_swap_arg *arg = data; 1798 struct rq *src_rq, *dst_rq; 1799 int ret = -EAGAIN; 1800 1801 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1802 return -EAGAIN; 1803 1804 src_rq = cpu_rq(arg->src_cpu); 1805 dst_rq = cpu_rq(arg->dst_cpu); 1806 1807 double_raw_lock(&arg->src_task->pi_lock, 1808 &arg->dst_task->pi_lock); 1809 double_rq_lock(src_rq, dst_rq); 1810 1811 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1812 goto unlock; 1813 1814 if (task_cpu(arg->src_task) != arg->src_cpu) 1815 goto unlock; 1816 1817 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1818 goto unlock; 1819 1820 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1821 goto unlock; 1822 1823 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1824 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1825 1826 ret = 0; 1827 1828 unlock: 1829 double_rq_unlock(src_rq, dst_rq); 1830 raw_spin_unlock(&arg->dst_task->pi_lock); 1831 raw_spin_unlock(&arg->src_task->pi_lock); 1832 1833 return ret; 1834 } 1835 1836 /* 1837 * Cross migrate two tasks 1838 */ 1839 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1840 int target_cpu, int curr_cpu) 1841 { 1842 struct migration_swap_arg arg; 1843 int ret = -EINVAL; 1844 1845 arg = (struct migration_swap_arg){ 1846 .src_task = cur, 1847 .src_cpu = curr_cpu, 1848 .dst_task = p, 1849 .dst_cpu = target_cpu, 1850 }; 1851 1852 if (arg.src_cpu == arg.dst_cpu) 1853 goto out; 1854 1855 /* 1856 * These three tests are all lockless; this is OK since all of them 1857 * will be re-checked with proper locks held further down the line. 1858 */ 1859 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1860 goto out; 1861 1862 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1863 goto out; 1864 1865 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1866 goto out; 1867 1868 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1869 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1870 1871 out: 1872 return ret; 1873 } 1874 #endif /* CONFIG_NUMA_BALANCING */ 1875 1876 /* 1877 * wait_task_inactive - wait for a thread to unschedule. 1878 * 1879 * If @match_state is nonzero, it's the @p->state value just checked and 1880 * not expected to change. If it changes, i.e. @p might have woken up, 1881 * then return zero. When we succeed in waiting for @p to be off its CPU, 1882 * we return a positive number (its total switch count). If a second call 1883 * a short while later returns the same number, the caller can be sure that 1884 * @p has remained unscheduled the whole time. 1885 * 1886 * The caller must ensure that the task *will* unschedule sometime soon, 1887 * else this function might spin for a *long* time. This function can't 1888 * be called with interrupts off, or it may introduce deadlock with 1889 * smp_call_function() if an IPI is sent by the same process we are 1890 * waiting to become inactive. 1891 */ 1892 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1893 { 1894 int running, queued; 1895 struct rq_flags rf; 1896 unsigned long ncsw; 1897 struct rq *rq; 1898 1899 for (;;) { 1900 /* 1901 * We do the initial early heuristics without holding 1902 * any task-queue locks at all. We'll only try to get 1903 * the runqueue lock when things look like they will 1904 * work out! 1905 */ 1906 rq = task_rq(p); 1907 1908 /* 1909 * If the task is actively running on another CPU 1910 * still, just relax and busy-wait without holding 1911 * any locks. 1912 * 1913 * NOTE! Since we don't hold any locks, it's not 1914 * even sure that "rq" stays as the right runqueue! 1915 * But we don't care, since "task_running()" will 1916 * return false if the runqueue has changed and p 1917 * is actually now running somewhere else! 1918 */ 1919 while (task_running(rq, p)) { 1920 if (match_state && unlikely(p->state != match_state)) 1921 return 0; 1922 cpu_relax(); 1923 } 1924 1925 /* 1926 * Ok, time to look more closely! We need the rq 1927 * lock now, to be *sure*. If we're wrong, we'll 1928 * just go back and repeat. 1929 */ 1930 rq = task_rq_lock(p, &rf); 1931 trace_sched_wait_task(p); 1932 running = task_running(rq, p); 1933 queued = task_on_rq_queued(p); 1934 ncsw = 0; 1935 if (!match_state || p->state == match_state) 1936 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1937 task_rq_unlock(rq, p, &rf); 1938 1939 /* 1940 * If it changed from the expected state, bail out now. 1941 */ 1942 if (unlikely(!ncsw)) 1943 break; 1944 1945 /* 1946 * Was it really running after all now that we 1947 * checked with the proper locks actually held? 1948 * 1949 * Oops. Go back and try again.. 1950 */ 1951 if (unlikely(running)) { 1952 cpu_relax(); 1953 continue; 1954 } 1955 1956 /* 1957 * It's not enough that it's not actively running, 1958 * it must be off the runqueue _entirely_, and not 1959 * preempted! 1960 * 1961 * So if it was still runnable (but just not actively 1962 * running right now), it's preempted, and we should 1963 * yield - it could be a while. 1964 */ 1965 if (unlikely(queued)) { 1966 ktime_t to = NSEC_PER_SEC / HZ; 1967 1968 set_current_state(TASK_UNINTERRUPTIBLE); 1969 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1970 continue; 1971 } 1972 1973 /* 1974 * Ahh, all good. It wasn't running, and it wasn't 1975 * runnable, which means that it will never become 1976 * running in the future either. We're all done! 1977 */ 1978 break; 1979 } 1980 1981 return ncsw; 1982 } 1983 1984 /*** 1985 * kick_process - kick a running thread to enter/exit the kernel 1986 * @p: the to-be-kicked thread 1987 * 1988 * Cause a process which is running on another CPU to enter 1989 * kernel-mode, without any delay. (to get signals handled.) 1990 * 1991 * NOTE: this function doesn't have to take the runqueue lock, 1992 * because all it wants to ensure is that the remote task enters 1993 * the kernel. If the IPI races and the task has been migrated 1994 * to another CPU then no harm is done and the purpose has been 1995 * achieved as well. 1996 */ 1997 void kick_process(struct task_struct *p) 1998 { 1999 int cpu; 2000 2001 preempt_disable(); 2002 cpu = task_cpu(p); 2003 if ((cpu != smp_processor_id()) && task_curr(p)) 2004 smp_send_reschedule(cpu); 2005 preempt_enable(); 2006 } 2007 EXPORT_SYMBOL_GPL(kick_process); 2008 2009 /* 2010 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2011 * 2012 * A few notes on cpu_active vs cpu_online: 2013 * 2014 * - cpu_active must be a subset of cpu_online 2015 * 2016 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2017 * see __set_cpus_allowed_ptr(). At this point the newly online 2018 * CPU isn't yet part of the sched domains, and balancing will not 2019 * see it. 2020 * 2021 * - on CPU-down we clear cpu_active() to mask the sched domains and 2022 * avoid the load balancer to place new tasks on the to be removed 2023 * CPU. Existing tasks will remain running there and will be taken 2024 * off. 2025 * 2026 * This means that fallback selection must not select !active CPUs. 2027 * And can assume that any active CPU must be online. Conversely 2028 * select_task_rq() below may allow selection of !active CPUs in order 2029 * to satisfy the above rules. 2030 */ 2031 static int select_fallback_rq(int cpu, struct task_struct *p) 2032 { 2033 int nid = cpu_to_node(cpu); 2034 const struct cpumask *nodemask = NULL; 2035 enum { cpuset, possible, fail } state = cpuset; 2036 int dest_cpu; 2037 2038 /* 2039 * If the node that the CPU is on has been offlined, cpu_to_node() 2040 * will return -1. There is no CPU on the node, and we should 2041 * select the CPU on the other node. 2042 */ 2043 if (nid != -1) { 2044 nodemask = cpumask_of_node(nid); 2045 2046 /* Look for allowed, online CPU in same node. */ 2047 for_each_cpu(dest_cpu, nodemask) { 2048 if (!cpu_active(dest_cpu)) 2049 continue; 2050 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2051 return dest_cpu; 2052 } 2053 } 2054 2055 for (;;) { 2056 /* Any allowed, online CPU? */ 2057 for_each_cpu(dest_cpu, p->cpus_ptr) { 2058 if (!is_cpu_allowed(p, dest_cpu)) 2059 continue; 2060 2061 goto out; 2062 } 2063 2064 /* No more Mr. Nice Guy. */ 2065 switch (state) { 2066 case cpuset: 2067 if (IS_ENABLED(CONFIG_CPUSETS)) { 2068 cpuset_cpus_allowed_fallback(p); 2069 state = possible; 2070 break; 2071 } 2072 /* Fall-through */ 2073 case possible: 2074 do_set_cpus_allowed(p, cpu_possible_mask); 2075 state = fail; 2076 break; 2077 2078 case fail: 2079 BUG(); 2080 break; 2081 } 2082 } 2083 2084 out: 2085 if (state != cpuset) { 2086 /* 2087 * Don't tell them about moving exiting tasks or 2088 * kernel threads (both mm NULL), since they never 2089 * leave kernel. 2090 */ 2091 if (p->mm && printk_ratelimit()) { 2092 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2093 task_pid_nr(p), p->comm, cpu); 2094 } 2095 } 2096 2097 return dest_cpu; 2098 } 2099 2100 /* 2101 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2102 */ 2103 static inline 2104 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2105 { 2106 lockdep_assert_held(&p->pi_lock); 2107 2108 if (p->nr_cpus_allowed > 1) 2109 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2110 else 2111 cpu = cpumask_any(p->cpus_ptr); 2112 2113 /* 2114 * In order not to call set_task_cpu() on a blocking task we need 2115 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2116 * CPU. 2117 * 2118 * Since this is common to all placement strategies, this lives here. 2119 * 2120 * [ this allows ->select_task() to simply return task_cpu(p) and 2121 * not worry about this generic constraint ] 2122 */ 2123 if (unlikely(!is_cpu_allowed(p, cpu))) 2124 cpu = select_fallback_rq(task_cpu(p), p); 2125 2126 return cpu; 2127 } 2128 2129 static void update_avg(u64 *avg, u64 sample) 2130 { 2131 s64 diff = sample - *avg; 2132 *avg += diff >> 3; 2133 } 2134 2135 void sched_set_stop_task(int cpu, struct task_struct *stop) 2136 { 2137 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2138 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2139 2140 if (stop) { 2141 /* 2142 * Make it appear like a SCHED_FIFO task, its something 2143 * userspace knows about and won't get confused about. 2144 * 2145 * Also, it will make PI more or less work without too 2146 * much confusion -- but then, stop work should not 2147 * rely on PI working anyway. 2148 */ 2149 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2150 2151 stop->sched_class = &stop_sched_class; 2152 } 2153 2154 cpu_rq(cpu)->stop = stop; 2155 2156 if (old_stop) { 2157 /* 2158 * Reset it back to a normal scheduling class so that 2159 * it can die in pieces. 2160 */ 2161 old_stop->sched_class = &rt_sched_class; 2162 } 2163 } 2164 2165 #else 2166 2167 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2168 const struct cpumask *new_mask, bool check) 2169 { 2170 return set_cpus_allowed_ptr(p, new_mask); 2171 } 2172 2173 #endif /* CONFIG_SMP */ 2174 2175 static void 2176 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2177 { 2178 struct rq *rq; 2179 2180 if (!schedstat_enabled()) 2181 return; 2182 2183 rq = this_rq(); 2184 2185 #ifdef CONFIG_SMP 2186 if (cpu == rq->cpu) { 2187 __schedstat_inc(rq->ttwu_local); 2188 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2189 } else { 2190 struct sched_domain *sd; 2191 2192 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2193 rcu_read_lock(); 2194 for_each_domain(rq->cpu, sd) { 2195 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2196 __schedstat_inc(sd->ttwu_wake_remote); 2197 break; 2198 } 2199 } 2200 rcu_read_unlock(); 2201 } 2202 2203 if (wake_flags & WF_MIGRATED) 2204 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2205 #endif /* CONFIG_SMP */ 2206 2207 __schedstat_inc(rq->ttwu_count); 2208 __schedstat_inc(p->se.statistics.nr_wakeups); 2209 2210 if (wake_flags & WF_SYNC) 2211 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2212 } 2213 2214 /* 2215 * Mark the task runnable and perform wakeup-preemption. 2216 */ 2217 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2218 struct rq_flags *rf) 2219 { 2220 check_preempt_curr(rq, p, wake_flags); 2221 p->state = TASK_RUNNING; 2222 trace_sched_wakeup(p); 2223 2224 #ifdef CONFIG_SMP 2225 if (p->sched_class->task_woken) { 2226 /* 2227 * Our task @p is fully woken up and running; so its safe to 2228 * drop the rq->lock, hereafter rq is only used for statistics. 2229 */ 2230 rq_unpin_lock(rq, rf); 2231 p->sched_class->task_woken(rq, p); 2232 rq_repin_lock(rq, rf); 2233 } 2234 2235 if (rq->idle_stamp) { 2236 u64 delta = rq_clock(rq) - rq->idle_stamp; 2237 u64 max = 2*rq->max_idle_balance_cost; 2238 2239 update_avg(&rq->avg_idle, delta); 2240 2241 if (rq->avg_idle > max) 2242 rq->avg_idle = max; 2243 2244 rq->idle_stamp = 0; 2245 } 2246 #endif 2247 } 2248 2249 static void 2250 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2251 struct rq_flags *rf) 2252 { 2253 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2254 2255 lockdep_assert_held(&rq->lock); 2256 2257 #ifdef CONFIG_SMP 2258 if (p->sched_contributes_to_load) 2259 rq->nr_uninterruptible--; 2260 2261 if (wake_flags & WF_MIGRATED) 2262 en_flags |= ENQUEUE_MIGRATED; 2263 #endif 2264 2265 activate_task(rq, p, en_flags); 2266 ttwu_do_wakeup(rq, p, wake_flags, rf); 2267 } 2268 2269 /* 2270 * Called in case the task @p isn't fully descheduled from its runqueue, 2271 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2272 * since all we need to do is flip p->state to TASK_RUNNING, since 2273 * the task is still ->on_rq. 2274 */ 2275 static int ttwu_remote(struct task_struct *p, int wake_flags) 2276 { 2277 struct rq_flags rf; 2278 struct rq *rq; 2279 int ret = 0; 2280 2281 rq = __task_rq_lock(p, &rf); 2282 if (task_on_rq_queued(p)) { 2283 /* check_preempt_curr() may use rq clock */ 2284 update_rq_clock(rq); 2285 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2286 ret = 1; 2287 } 2288 __task_rq_unlock(rq, &rf); 2289 2290 return ret; 2291 } 2292 2293 #ifdef CONFIG_SMP 2294 void sched_ttwu_pending(void) 2295 { 2296 struct rq *rq = this_rq(); 2297 struct llist_node *llist = llist_del_all(&rq->wake_list); 2298 struct task_struct *p, *t; 2299 struct rq_flags rf; 2300 2301 if (!llist) 2302 return; 2303 2304 rq_lock_irqsave(rq, &rf); 2305 update_rq_clock(rq); 2306 2307 llist_for_each_entry_safe(p, t, llist, wake_entry) 2308 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2309 2310 rq_unlock_irqrestore(rq, &rf); 2311 } 2312 2313 void scheduler_ipi(void) 2314 { 2315 /* 2316 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 2317 * TIF_NEED_RESCHED remotely (for the first time) will also send 2318 * this IPI. 2319 */ 2320 preempt_fold_need_resched(); 2321 2322 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 2323 return; 2324 2325 /* 2326 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 2327 * traditionally all their work was done from the interrupt return 2328 * path. Now that we actually do some work, we need to make sure 2329 * we do call them. 2330 * 2331 * Some archs already do call them, luckily irq_enter/exit nest 2332 * properly. 2333 * 2334 * Arguably we should visit all archs and update all handlers, 2335 * however a fair share of IPIs are still resched only so this would 2336 * somewhat pessimize the simple resched case. 2337 */ 2338 irq_enter(); 2339 sched_ttwu_pending(); 2340 2341 /* 2342 * Check if someone kicked us for doing the nohz idle load balance. 2343 */ 2344 if (unlikely(got_nohz_idle_kick())) { 2345 this_rq()->idle_balance = 1; 2346 raise_softirq_irqoff(SCHED_SOFTIRQ); 2347 } 2348 irq_exit(); 2349 } 2350 2351 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 2352 { 2353 struct rq *rq = cpu_rq(cpu); 2354 2355 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2356 2357 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 2358 if (!set_nr_if_polling(rq->idle)) 2359 smp_send_reschedule(cpu); 2360 else 2361 trace_sched_wake_idle_without_ipi(cpu); 2362 } 2363 } 2364 2365 void wake_up_if_idle(int cpu) 2366 { 2367 struct rq *rq = cpu_rq(cpu); 2368 struct rq_flags rf; 2369 2370 rcu_read_lock(); 2371 2372 if (!is_idle_task(rcu_dereference(rq->curr))) 2373 goto out; 2374 2375 if (set_nr_if_polling(rq->idle)) { 2376 trace_sched_wake_idle_without_ipi(cpu); 2377 } else { 2378 rq_lock_irqsave(rq, &rf); 2379 if (is_idle_task(rq->curr)) 2380 smp_send_reschedule(cpu); 2381 /* Else CPU is not idle, do nothing here: */ 2382 rq_unlock_irqrestore(rq, &rf); 2383 } 2384 2385 out: 2386 rcu_read_unlock(); 2387 } 2388 2389 bool cpus_share_cache(int this_cpu, int that_cpu) 2390 { 2391 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2392 } 2393 #endif /* CONFIG_SMP */ 2394 2395 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2396 { 2397 struct rq *rq = cpu_rq(cpu); 2398 struct rq_flags rf; 2399 2400 #if defined(CONFIG_SMP) 2401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 2402 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2403 ttwu_queue_remote(p, cpu, wake_flags); 2404 return; 2405 } 2406 #endif 2407 2408 rq_lock(rq, &rf); 2409 update_rq_clock(rq); 2410 ttwu_do_activate(rq, p, wake_flags, &rf); 2411 rq_unlock(rq, &rf); 2412 } 2413 2414 /* 2415 * Notes on Program-Order guarantees on SMP systems. 2416 * 2417 * MIGRATION 2418 * 2419 * The basic program-order guarantee on SMP systems is that when a task [t] 2420 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2421 * execution on its new CPU [c1]. 2422 * 2423 * For migration (of runnable tasks) this is provided by the following means: 2424 * 2425 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2426 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2427 * rq(c1)->lock (if not at the same time, then in that order). 2428 * C) LOCK of the rq(c1)->lock scheduling in task 2429 * 2430 * Release/acquire chaining guarantees that B happens after A and C after B. 2431 * Note: the CPU doing B need not be c0 or c1 2432 * 2433 * Example: 2434 * 2435 * CPU0 CPU1 CPU2 2436 * 2437 * LOCK rq(0)->lock 2438 * sched-out X 2439 * sched-in Y 2440 * UNLOCK rq(0)->lock 2441 * 2442 * LOCK rq(0)->lock // orders against CPU0 2443 * dequeue X 2444 * UNLOCK rq(0)->lock 2445 * 2446 * LOCK rq(1)->lock 2447 * enqueue X 2448 * UNLOCK rq(1)->lock 2449 * 2450 * LOCK rq(1)->lock // orders against CPU2 2451 * sched-out Z 2452 * sched-in X 2453 * UNLOCK rq(1)->lock 2454 * 2455 * 2456 * BLOCKING -- aka. SLEEP + WAKEUP 2457 * 2458 * For blocking we (obviously) need to provide the same guarantee as for 2459 * migration. However the means are completely different as there is no lock 2460 * chain to provide order. Instead we do: 2461 * 2462 * 1) smp_store_release(X->on_cpu, 0) 2463 * 2) smp_cond_load_acquire(!X->on_cpu) 2464 * 2465 * Example: 2466 * 2467 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2468 * 2469 * LOCK rq(0)->lock LOCK X->pi_lock 2470 * dequeue X 2471 * sched-out X 2472 * smp_store_release(X->on_cpu, 0); 2473 * 2474 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2475 * X->state = WAKING 2476 * set_task_cpu(X,2) 2477 * 2478 * LOCK rq(2)->lock 2479 * enqueue X 2480 * X->state = RUNNING 2481 * UNLOCK rq(2)->lock 2482 * 2483 * LOCK rq(2)->lock // orders against CPU1 2484 * sched-out Z 2485 * sched-in X 2486 * UNLOCK rq(2)->lock 2487 * 2488 * UNLOCK X->pi_lock 2489 * UNLOCK rq(0)->lock 2490 * 2491 * 2492 * However, for wakeups there is a second guarantee we must provide, namely we 2493 * must ensure that CONDITION=1 done by the caller can not be reordered with 2494 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2495 */ 2496 2497 /** 2498 * try_to_wake_up - wake up a thread 2499 * @p: the thread to be awakened 2500 * @state: the mask of task states that can be woken 2501 * @wake_flags: wake modifier flags (WF_*) 2502 * 2503 * If (@state & @p->state) @p->state = TASK_RUNNING. 2504 * 2505 * If the task was not queued/runnable, also place it back on a runqueue. 2506 * 2507 * Atomic against schedule() which would dequeue a task, also see 2508 * set_current_state(). 2509 * 2510 * This function executes a full memory barrier before accessing the task 2511 * state; see set_current_state(). 2512 * 2513 * Return: %true if @p->state changes (an actual wakeup was done), 2514 * %false otherwise. 2515 */ 2516 static int 2517 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2518 { 2519 unsigned long flags; 2520 int cpu, success = 0; 2521 2522 preempt_disable(); 2523 if (p == current) { 2524 /* 2525 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2526 * == smp_processor_id()'. Together this means we can special 2527 * case the whole 'p->on_rq && ttwu_remote()' case below 2528 * without taking any locks. 2529 * 2530 * In particular: 2531 * - we rely on Program-Order guarantees for all the ordering, 2532 * - we're serialized against set_special_state() by virtue of 2533 * it disabling IRQs (this allows not taking ->pi_lock). 2534 */ 2535 if (!(p->state & state)) 2536 goto out; 2537 2538 success = 1; 2539 cpu = task_cpu(p); 2540 trace_sched_waking(p); 2541 p->state = TASK_RUNNING; 2542 trace_sched_wakeup(p); 2543 goto out; 2544 } 2545 2546 /* 2547 * If we are going to wake up a thread waiting for CONDITION we 2548 * need to ensure that CONDITION=1 done by the caller can not be 2549 * reordered with p->state check below. This pairs with mb() in 2550 * set_current_state() the waiting thread does. 2551 */ 2552 raw_spin_lock_irqsave(&p->pi_lock, flags); 2553 smp_mb__after_spinlock(); 2554 if (!(p->state & state)) 2555 goto unlock; 2556 2557 trace_sched_waking(p); 2558 2559 /* We're going to change ->state: */ 2560 success = 1; 2561 cpu = task_cpu(p); 2562 2563 /* 2564 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2565 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2566 * in smp_cond_load_acquire() below. 2567 * 2568 * sched_ttwu_pending() try_to_wake_up() 2569 * STORE p->on_rq = 1 LOAD p->state 2570 * UNLOCK rq->lock 2571 * 2572 * __schedule() (switch to task 'p') 2573 * LOCK rq->lock smp_rmb(); 2574 * smp_mb__after_spinlock(); 2575 * UNLOCK rq->lock 2576 * 2577 * [task p] 2578 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2579 * 2580 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2581 * __schedule(). See the comment for smp_mb__after_spinlock(). 2582 */ 2583 smp_rmb(); 2584 if (p->on_rq && ttwu_remote(p, wake_flags)) 2585 goto unlock; 2586 2587 #ifdef CONFIG_SMP 2588 /* 2589 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2590 * possible to, falsely, observe p->on_cpu == 0. 2591 * 2592 * One must be running (->on_cpu == 1) in order to remove oneself 2593 * from the runqueue. 2594 * 2595 * __schedule() (switch to task 'p') try_to_wake_up() 2596 * STORE p->on_cpu = 1 LOAD p->on_rq 2597 * UNLOCK rq->lock 2598 * 2599 * __schedule() (put 'p' to sleep) 2600 * LOCK rq->lock smp_rmb(); 2601 * smp_mb__after_spinlock(); 2602 * STORE p->on_rq = 0 LOAD p->on_cpu 2603 * 2604 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2605 * __schedule(). See the comment for smp_mb__after_spinlock(). 2606 */ 2607 smp_rmb(); 2608 2609 /* 2610 * If the owning (remote) CPU is still in the middle of schedule() with 2611 * this task as prev, wait until its done referencing the task. 2612 * 2613 * Pairs with the smp_store_release() in finish_task(). 2614 * 2615 * This ensures that tasks getting woken will be fully ordered against 2616 * their previous state and preserve Program Order. 2617 */ 2618 smp_cond_load_acquire(&p->on_cpu, !VAL); 2619 2620 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2621 p->state = TASK_WAKING; 2622 2623 if (p->in_iowait) { 2624 delayacct_blkio_end(p); 2625 atomic_dec(&task_rq(p)->nr_iowait); 2626 } 2627 2628 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2629 if (task_cpu(p) != cpu) { 2630 wake_flags |= WF_MIGRATED; 2631 psi_ttwu_dequeue(p); 2632 set_task_cpu(p, cpu); 2633 } 2634 2635 #else /* CONFIG_SMP */ 2636 2637 if (p->in_iowait) { 2638 delayacct_blkio_end(p); 2639 atomic_dec(&task_rq(p)->nr_iowait); 2640 } 2641 2642 #endif /* CONFIG_SMP */ 2643 2644 ttwu_queue(p, cpu, wake_flags); 2645 unlock: 2646 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2647 out: 2648 if (success) 2649 ttwu_stat(p, cpu, wake_flags); 2650 preempt_enable(); 2651 2652 return success; 2653 } 2654 2655 /** 2656 * wake_up_process - Wake up a specific process 2657 * @p: The process to be woken up. 2658 * 2659 * Attempt to wake up the nominated process and move it to the set of runnable 2660 * processes. 2661 * 2662 * Return: 1 if the process was woken up, 0 if it was already running. 2663 * 2664 * This function executes a full memory barrier before accessing the task state. 2665 */ 2666 int wake_up_process(struct task_struct *p) 2667 { 2668 return try_to_wake_up(p, TASK_NORMAL, 0); 2669 } 2670 EXPORT_SYMBOL(wake_up_process); 2671 2672 int wake_up_state(struct task_struct *p, unsigned int state) 2673 { 2674 return try_to_wake_up(p, state, 0); 2675 } 2676 2677 /* 2678 * Perform scheduler related setup for a newly forked process p. 2679 * p is forked by current. 2680 * 2681 * __sched_fork() is basic setup used by init_idle() too: 2682 */ 2683 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2684 { 2685 p->on_rq = 0; 2686 2687 p->se.on_rq = 0; 2688 p->se.exec_start = 0; 2689 p->se.sum_exec_runtime = 0; 2690 p->se.prev_sum_exec_runtime = 0; 2691 p->se.nr_migrations = 0; 2692 p->se.vruntime = 0; 2693 INIT_LIST_HEAD(&p->se.group_node); 2694 2695 #ifdef CONFIG_FAIR_GROUP_SCHED 2696 p->se.cfs_rq = NULL; 2697 #endif 2698 2699 #ifdef CONFIG_SCHEDSTATS 2700 /* Even if schedstat is disabled, there should not be garbage */ 2701 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2702 #endif 2703 2704 RB_CLEAR_NODE(&p->dl.rb_node); 2705 init_dl_task_timer(&p->dl); 2706 init_dl_inactive_task_timer(&p->dl); 2707 __dl_clear_params(p); 2708 2709 INIT_LIST_HEAD(&p->rt.run_list); 2710 p->rt.timeout = 0; 2711 p->rt.time_slice = sched_rr_timeslice; 2712 p->rt.on_rq = 0; 2713 p->rt.on_list = 0; 2714 2715 #ifdef CONFIG_PREEMPT_NOTIFIERS 2716 INIT_HLIST_HEAD(&p->preempt_notifiers); 2717 #endif 2718 2719 #ifdef CONFIG_COMPACTION 2720 p->capture_control = NULL; 2721 #endif 2722 init_numa_balancing(clone_flags, p); 2723 } 2724 2725 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2726 2727 #ifdef CONFIG_NUMA_BALANCING 2728 2729 void set_numabalancing_state(bool enabled) 2730 { 2731 if (enabled) 2732 static_branch_enable(&sched_numa_balancing); 2733 else 2734 static_branch_disable(&sched_numa_balancing); 2735 } 2736 2737 #ifdef CONFIG_PROC_SYSCTL 2738 int sysctl_numa_balancing(struct ctl_table *table, int write, 2739 void __user *buffer, size_t *lenp, loff_t *ppos) 2740 { 2741 struct ctl_table t; 2742 int err; 2743 int state = static_branch_likely(&sched_numa_balancing); 2744 2745 if (write && !capable(CAP_SYS_ADMIN)) 2746 return -EPERM; 2747 2748 t = *table; 2749 t.data = &state; 2750 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2751 if (err < 0) 2752 return err; 2753 if (write) 2754 set_numabalancing_state(state); 2755 return err; 2756 } 2757 #endif 2758 #endif 2759 2760 #ifdef CONFIG_SCHEDSTATS 2761 2762 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2763 static bool __initdata __sched_schedstats = false; 2764 2765 static void set_schedstats(bool enabled) 2766 { 2767 if (enabled) 2768 static_branch_enable(&sched_schedstats); 2769 else 2770 static_branch_disable(&sched_schedstats); 2771 } 2772 2773 void force_schedstat_enabled(void) 2774 { 2775 if (!schedstat_enabled()) { 2776 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2777 static_branch_enable(&sched_schedstats); 2778 } 2779 } 2780 2781 static int __init setup_schedstats(char *str) 2782 { 2783 int ret = 0; 2784 if (!str) 2785 goto out; 2786 2787 /* 2788 * This code is called before jump labels have been set up, so we can't 2789 * change the static branch directly just yet. Instead set a temporary 2790 * variable so init_schedstats() can do it later. 2791 */ 2792 if (!strcmp(str, "enable")) { 2793 __sched_schedstats = true; 2794 ret = 1; 2795 } else if (!strcmp(str, "disable")) { 2796 __sched_schedstats = false; 2797 ret = 1; 2798 } 2799 out: 2800 if (!ret) 2801 pr_warn("Unable to parse schedstats=\n"); 2802 2803 return ret; 2804 } 2805 __setup("schedstats=", setup_schedstats); 2806 2807 static void __init init_schedstats(void) 2808 { 2809 set_schedstats(__sched_schedstats); 2810 } 2811 2812 #ifdef CONFIG_PROC_SYSCTL 2813 int sysctl_schedstats(struct ctl_table *table, int write, 2814 void __user *buffer, size_t *lenp, loff_t *ppos) 2815 { 2816 struct ctl_table t; 2817 int err; 2818 int state = static_branch_likely(&sched_schedstats); 2819 2820 if (write && !capable(CAP_SYS_ADMIN)) 2821 return -EPERM; 2822 2823 t = *table; 2824 t.data = &state; 2825 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2826 if (err < 0) 2827 return err; 2828 if (write) 2829 set_schedstats(state); 2830 return err; 2831 } 2832 #endif /* CONFIG_PROC_SYSCTL */ 2833 #else /* !CONFIG_SCHEDSTATS */ 2834 static inline void init_schedstats(void) {} 2835 #endif /* CONFIG_SCHEDSTATS */ 2836 2837 /* 2838 * fork()/clone()-time setup: 2839 */ 2840 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2841 { 2842 unsigned long flags; 2843 2844 __sched_fork(clone_flags, p); 2845 /* 2846 * We mark the process as NEW here. This guarantees that 2847 * nobody will actually run it, and a signal or other external 2848 * event cannot wake it up and insert it on the runqueue either. 2849 */ 2850 p->state = TASK_NEW; 2851 2852 /* 2853 * Make sure we do not leak PI boosting priority to the child. 2854 */ 2855 p->prio = current->normal_prio; 2856 2857 uclamp_fork(p); 2858 2859 /* 2860 * Revert to default priority/policy on fork if requested. 2861 */ 2862 if (unlikely(p->sched_reset_on_fork)) { 2863 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2864 p->policy = SCHED_NORMAL; 2865 p->static_prio = NICE_TO_PRIO(0); 2866 p->rt_priority = 0; 2867 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2868 p->static_prio = NICE_TO_PRIO(0); 2869 2870 p->prio = p->normal_prio = __normal_prio(p); 2871 set_load_weight(p, false); 2872 2873 /* 2874 * We don't need the reset flag anymore after the fork. It has 2875 * fulfilled its duty: 2876 */ 2877 p->sched_reset_on_fork = 0; 2878 } 2879 2880 if (dl_prio(p->prio)) 2881 return -EAGAIN; 2882 else if (rt_prio(p->prio)) 2883 p->sched_class = &rt_sched_class; 2884 else 2885 p->sched_class = &fair_sched_class; 2886 2887 init_entity_runnable_average(&p->se); 2888 2889 /* 2890 * The child is not yet in the pid-hash so no cgroup attach races, 2891 * and the cgroup is pinned to this child due to cgroup_fork() 2892 * is ran before sched_fork(). 2893 * 2894 * Silence PROVE_RCU. 2895 */ 2896 raw_spin_lock_irqsave(&p->pi_lock, flags); 2897 /* 2898 * We're setting the CPU for the first time, we don't migrate, 2899 * so use __set_task_cpu(). 2900 */ 2901 __set_task_cpu(p, smp_processor_id()); 2902 if (p->sched_class->task_fork) 2903 p->sched_class->task_fork(p); 2904 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2905 2906 #ifdef CONFIG_SCHED_INFO 2907 if (likely(sched_info_on())) 2908 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2909 #endif 2910 #if defined(CONFIG_SMP) 2911 p->on_cpu = 0; 2912 #endif 2913 init_task_preempt_count(p); 2914 #ifdef CONFIG_SMP 2915 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2916 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2917 #endif 2918 return 0; 2919 } 2920 2921 unsigned long to_ratio(u64 period, u64 runtime) 2922 { 2923 if (runtime == RUNTIME_INF) 2924 return BW_UNIT; 2925 2926 /* 2927 * Doing this here saves a lot of checks in all 2928 * the calling paths, and returning zero seems 2929 * safe for them anyway. 2930 */ 2931 if (period == 0) 2932 return 0; 2933 2934 return div64_u64(runtime << BW_SHIFT, period); 2935 } 2936 2937 /* 2938 * wake_up_new_task - wake up a newly created task for the first time. 2939 * 2940 * This function will do some initial scheduler statistics housekeeping 2941 * that must be done for every newly created context, then puts the task 2942 * on the runqueue and wakes it. 2943 */ 2944 void wake_up_new_task(struct task_struct *p) 2945 { 2946 struct rq_flags rf; 2947 struct rq *rq; 2948 2949 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2950 p->state = TASK_RUNNING; 2951 #ifdef CONFIG_SMP 2952 /* 2953 * Fork balancing, do it here and not earlier because: 2954 * - cpus_ptr can change in the fork path 2955 * - any previously selected CPU might disappear through hotplug 2956 * 2957 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2958 * as we're not fully set-up yet. 2959 */ 2960 p->recent_used_cpu = task_cpu(p); 2961 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2962 #endif 2963 rq = __task_rq_lock(p, &rf); 2964 update_rq_clock(rq); 2965 post_init_entity_util_avg(p); 2966 2967 activate_task(rq, p, ENQUEUE_NOCLOCK); 2968 trace_sched_wakeup_new(p); 2969 check_preempt_curr(rq, p, WF_FORK); 2970 #ifdef CONFIG_SMP 2971 if (p->sched_class->task_woken) { 2972 /* 2973 * Nothing relies on rq->lock after this, so its fine to 2974 * drop it. 2975 */ 2976 rq_unpin_lock(rq, &rf); 2977 p->sched_class->task_woken(rq, p); 2978 rq_repin_lock(rq, &rf); 2979 } 2980 #endif 2981 task_rq_unlock(rq, p, &rf); 2982 } 2983 2984 #ifdef CONFIG_PREEMPT_NOTIFIERS 2985 2986 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2987 2988 void preempt_notifier_inc(void) 2989 { 2990 static_branch_inc(&preempt_notifier_key); 2991 } 2992 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2993 2994 void preempt_notifier_dec(void) 2995 { 2996 static_branch_dec(&preempt_notifier_key); 2997 } 2998 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2999 3000 /** 3001 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3002 * @notifier: notifier struct to register 3003 */ 3004 void preempt_notifier_register(struct preempt_notifier *notifier) 3005 { 3006 if (!static_branch_unlikely(&preempt_notifier_key)) 3007 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3008 3009 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3010 } 3011 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3012 3013 /** 3014 * preempt_notifier_unregister - no longer interested in preemption notifications 3015 * @notifier: notifier struct to unregister 3016 * 3017 * This is *not* safe to call from within a preemption notifier. 3018 */ 3019 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3020 { 3021 hlist_del(¬ifier->link); 3022 } 3023 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3024 3025 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3026 { 3027 struct preempt_notifier *notifier; 3028 3029 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3030 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3031 } 3032 3033 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3034 { 3035 if (static_branch_unlikely(&preempt_notifier_key)) 3036 __fire_sched_in_preempt_notifiers(curr); 3037 } 3038 3039 static void 3040 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3041 struct task_struct *next) 3042 { 3043 struct preempt_notifier *notifier; 3044 3045 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3046 notifier->ops->sched_out(notifier, next); 3047 } 3048 3049 static __always_inline void 3050 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3051 struct task_struct *next) 3052 { 3053 if (static_branch_unlikely(&preempt_notifier_key)) 3054 __fire_sched_out_preempt_notifiers(curr, next); 3055 } 3056 3057 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3058 3059 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3060 { 3061 } 3062 3063 static inline void 3064 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3065 struct task_struct *next) 3066 { 3067 } 3068 3069 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3070 3071 static inline void prepare_task(struct task_struct *next) 3072 { 3073 #ifdef CONFIG_SMP 3074 /* 3075 * Claim the task as running, we do this before switching to it 3076 * such that any running task will have this set. 3077 */ 3078 next->on_cpu = 1; 3079 #endif 3080 } 3081 3082 static inline void finish_task(struct task_struct *prev) 3083 { 3084 #ifdef CONFIG_SMP 3085 /* 3086 * After ->on_cpu is cleared, the task can be moved to a different CPU. 3087 * We must ensure this doesn't happen until the switch is completely 3088 * finished. 3089 * 3090 * In particular, the load of prev->state in finish_task_switch() must 3091 * happen before this. 3092 * 3093 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3094 */ 3095 smp_store_release(&prev->on_cpu, 0); 3096 #endif 3097 } 3098 3099 static inline void 3100 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3101 { 3102 /* 3103 * Since the runqueue lock will be released by the next 3104 * task (which is an invalid locking op but in the case 3105 * of the scheduler it's an obvious special-case), so we 3106 * do an early lockdep release here: 3107 */ 3108 rq_unpin_lock(rq, rf); 3109 spin_release(&rq->lock.dep_map, _THIS_IP_); 3110 #ifdef CONFIG_DEBUG_SPINLOCK 3111 /* this is a valid case when another task releases the spinlock */ 3112 rq->lock.owner = next; 3113 #endif 3114 } 3115 3116 static inline void finish_lock_switch(struct rq *rq) 3117 { 3118 /* 3119 * If we are tracking spinlock dependencies then we have to 3120 * fix up the runqueue lock - which gets 'carried over' from 3121 * prev into current: 3122 */ 3123 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3124 raw_spin_unlock_irq(&rq->lock); 3125 } 3126 3127 /* 3128 * NOP if the arch has not defined these: 3129 */ 3130 3131 #ifndef prepare_arch_switch 3132 # define prepare_arch_switch(next) do { } while (0) 3133 #endif 3134 3135 #ifndef finish_arch_post_lock_switch 3136 # define finish_arch_post_lock_switch() do { } while (0) 3137 #endif 3138 3139 /** 3140 * prepare_task_switch - prepare to switch tasks 3141 * @rq: the runqueue preparing to switch 3142 * @prev: the current task that is being switched out 3143 * @next: the task we are going to switch to. 3144 * 3145 * This is called with the rq lock held and interrupts off. It must 3146 * be paired with a subsequent finish_task_switch after the context 3147 * switch. 3148 * 3149 * prepare_task_switch sets up locking and calls architecture specific 3150 * hooks. 3151 */ 3152 static inline void 3153 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3154 struct task_struct *next) 3155 { 3156 kcov_prepare_switch(prev); 3157 sched_info_switch(rq, prev, next); 3158 perf_event_task_sched_out(prev, next); 3159 rseq_preempt(prev); 3160 fire_sched_out_preempt_notifiers(prev, next); 3161 prepare_task(next); 3162 prepare_arch_switch(next); 3163 } 3164 3165 /** 3166 * finish_task_switch - clean up after a task-switch 3167 * @prev: the thread we just switched away from. 3168 * 3169 * finish_task_switch must be called after the context switch, paired 3170 * with a prepare_task_switch call before the context switch. 3171 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3172 * and do any other architecture-specific cleanup actions. 3173 * 3174 * Note that we may have delayed dropping an mm in context_switch(). If 3175 * so, we finish that here outside of the runqueue lock. (Doing it 3176 * with the lock held can cause deadlocks; see schedule() for 3177 * details.) 3178 * 3179 * The context switch have flipped the stack from under us and restored the 3180 * local variables which were saved when this task called schedule() in the 3181 * past. prev == current is still correct but we need to recalculate this_rq 3182 * because prev may have moved to another CPU. 3183 */ 3184 static struct rq *finish_task_switch(struct task_struct *prev) 3185 __releases(rq->lock) 3186 { 3187 struct rq *rq = this_rq(); 3188 struct mm_struct *mm = rq->prev_mm; 3189 long prev_state; 3190 3191 /* 3192 * The previous task will have left us with a preempt_count of 2 3193 * because it left us after: 3194 * 3195 * schedule() 3196 * preempt_disable(); // 1 3197 * __schedule() 3198 * raw_spin_lock_irq(&rq->lock) // 2 3199 * 3200 * Also, see FORK_PREEMPT_COUNT. 3201 */ 3202 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3203 "corrupted preempt_count: %s/%d/0x%x\n", 3204 current->comm, current->pid, preempt_count())) 3205 preempt_count_set(FORK_PREEMPT_COUNT); 3206 3207 rq->prev_mm = NULL; 3208 3209 /* 3210 * A task struct has one reference for the use as "current". 3211 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3212 * schedule one last time. The schedule call will never return, and 3213 * the scheduled task must drop that reference. 3214 * 3215 * We must observe prev->state before clearing prev->on_cpu (in 3216 * finish_task), otherwise a concurrent wakeup can get prev 3217 * running on another CPU and we could rave with its RUNNING -> DEAD 3218 * transition, resulting in a double drop. 3219 */ 3220 prev_state = prev->state; 3221 vtime_task_switch(prev); 3222 perf_event_task_sched_in(prev, current); 3223 finish_task(prev); 3224 finish_lock_switch(rq); 3225 finish_arch_post_lock_switch(); 3226 kcov_finish_switch(current); 3227 3228 fire_sched_in_preempt_notifiers(current); 3229 /* 3230 * When switching through a kernel thread, the loop in 3231 * membarrier_{private,global}_expedited() may have observed that 3232 * kernel thread and not issued an IPI. It is therefore possible to 3233 * schedule between user->kernel->user threads without passing though 3234 * switch_mm(). Membarrier requires a barrier after storing to 3235 * rq->curr, before returning to userspace, so provide them here: 3236 * 3237 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3238 * provided by mmdrop(), 3239 * - a sync_core for SYNC_CORE. 3240 */ 3241 if (mm) { 3242 membarrier_mm_sync_core_before_usermode(mm); 3243 mmdrop(mm); 3244 } 3245 if (unlikely(prev_state == TASK_DEAD)) { 3246 if (prev->sched_class->task_dead) 3247 prev->sched_class->task_dead(prev); 3248 3249 /* 3250 * Remove function-return probe instances associated with this 3251 * task and put them back on the free list. 3252 */ 3253 kprobe_flush_task(prev); 3254 3255 /* Task is done with its stack. */ 3256 put_task_stack(prev); 3257 3258 put_task_struct_rcu_user(prev); 3259 } 3260 3261 tick_nohz_task_switch(); 3262 return rq; 3263 } 3264 3265 #ifdef CONFIG_SMP 3266 3267 /* rq->lock is NOT held, but preemption is disabled */ 3268 static void __balance_callback(struct rq *rq) 3269 { 3270 struct callback_head *head, *next; 3271 void (*func)(struct rq *rq); 3272 unsigned long flags; 3273 3274 raw_spin_lock_irqsave(&rq->lock, flags); 3275 head = rq->balance_callback; 3276 rq->balance_callback = NULL; 3277 while (head) { 3278 func = (void (*)(struct rq *))head->func; 3279 next = head->next; 3280 head->next = NULL; 3281 head = next; 3282 3283 func(rq); 3284 } 3285 raw_spin_unlock_irqrestore(&rq->lock, flags); 3286 } 3287 3288 static inline void balance_callback(struct rq *rq) 3289 { 3290 if (unlikely(rq->balance_callback)) 3291 __balance_callback(rq); 3292 } 3293 3294 #else 3295 3296 static inline void balance_callback(struct rq *rq) 3297 { 3298 } 3299 3300 #endif 3301 3302 /** 3303 * schedule_tail - first thing a freshly forked thread must call. 3304 * @prev: the thread we just switched away from. 3305 */ 3306 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3307 __releases(rq->lock) 3308 { 3309 struct rq *rq; 3310 3311 /* 3312 * New tasks start with FORK_PREEMPT_COUNT, see there and 3313 * finish_task_switch() for details. 3314 * 3315 * finish_task_switch() will drop rq->lock() and lower preempt_count 3316 * and the preempt_enable() will end up enabling preemption (on 3317 * PREEMPT_COUNT kernels). 3318 */ 3319 3320 rq = finish_task_switch(prev); 3321 balance_callback(rq); 3322 preempt_enable(); 3323 3324 if (current->set_child_tid) 3325 put_user(task_pid_vnr(current), current->set_child_tid); 3326 3327 calculate_sigpending(); 3328 } 3329 3330 /* 3331 * context_switch - switch to the new MM and the new thread's register state. 3332 */ 3333 static __always_inline struct rq * 3334 context_switch(struct rq *rq, struct task_struct *prev, 3335 struct task_struct *next, struct rq_flags *rf) 3336 { 3337 prepare_task_switch(rq, prev, next); 3338 3339 /* 3340 * For paravirt, this is coupled with an exit in switch_to to 3341 * combine the page table reload and the switch backend into 3342 * one hypercall. 3343 */ 3344 arch_start_context_switch(prev); 3345 3346 /* 3347 * kernel -> kernel lazy + transfer active 3348 * user -> kernel lazy + mmgrab() active 3349 * 3350 * kernel -> user switch + mmdrop() active 3351 * user -> user switch 3352 */ 3353 if (!next->mm) { // to kernel 3354 enter_lazy_tlb(prev->active_mm, next); 3355 3356 next->active_mm = prev->active_mm; 3357 if (prev->mm) // from user 3358 mmgrab(prev->active_mm); 3359 else 3360 prev->active_mm = NULL; 3361 } else { // to user 3362 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3363 /* 3364 * sys_membarrier() requires an smp_mb() between setting 3365 * rq->curr / membarrier_switch_mm() and returning to userspace. 3366 * 3367 * The below provides this either through switch_mm(), or in 3368 * case 'prev->active_mm == next->mm' through 3369 * finish_task_switch()'s mmdrop(). 3370 */ 3371 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3372 3373 if (!prev->mm) { // from kernel 3374 /* will mmdrop() in finish_task_switch(). */ 3375 rq->prev_mm = prev->active_mm; 3376 prev->active_mm = NULL; 3377 } 3378 } 3379 3380 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3381 3382 prepare_lock_switch(rq, next, rf); 3383 3384 /* Here we just switch the register state and the stack. */ 3385 switch_to(prev, next, prev); 3386 barrier(); 3387 3388 return finish_task_switch(prev); 3389 } 3390 3391 /* 3392 * nr_running and nr_context_switches: 3393 * 3394 * externally visible scheduler statistics: current number of runnable 3395 * threads, total number of context switches performed since bootup. 3396 */ 3397 unsigned long nr_running(void) 3398 { 3399 unsigned long i, sum = 0; 3400 3401 for_each_online_cpu(i) 3402 sum += cpu_rq(i)->nr_running; 3403 3404 return sum; 3405 } 3406 3407 /* 3408 * Check if only the current task is running on the CPU. 3409 * 3410 * Caution: this function does not check that the caller has disabled 3411 * preemption, thus the result might have a time-of-check-to-time-of-use 3412 * race. The caller is responsible to use it correctly, for example: 3413 * 3414 * - from a non-preemptible section (of course) 3415 * 3416 * - from a thread that is bound to a single CPU 3417 * 3418 * - in a loop with very short iterations (e.g. a polling loop) 3419 */ 3420 bool single_task_running(void) 3421 { 3422 return raw_rq()->nr_running == 1; 3423 } 3424 EXPORT_SYMBOL(single_task_running); 3425 3426 unsigned long long nr_context_switches(void) 3427 { 3428 int i; 3429 unsigned long long sum = 0; 3430 3431 for_each_possible_cpu(i) 3432 sum += cpu_rq(i)->nr_switches; 3433 3434 return sum; 3435 } 3436 3437 /* 3438 * Consumers of these two interfaces, like for example the cpuidle menu 3439 * governor, are using nonsensical data. Preferring shallow idle state selection 3440 * for a CPU that has IO-wait which might not even end up running the task when 3441 * it does become runnable. 3442 */ 3443 3444 unsigned long nr_iowait_cpu(int cpu) 3445 { 3446 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3447 } 3448 3449 /* 3450 * IO-wait accounting, and how its mostly bollocks (on SMP). 3451 * 3452 * The idea behind IO-wait account is to account the idle time that we could 3453 * have spend running if it were not for IO. That is, if we were to improve the 3454 * storage performance, we'd have a proportional reduction in IO-wait time. 3455 * 3456 * This all works nicely on UP, where, when a task blocks on IO, we account 3457 * idle time as IO-wait, because if the storage were faster, it could've been 3458 * running and we'd not be idle. 3459 * 3460 * This has been extended to SMP, by doing the same for each CPU. This however 3461 * is broken. 3462 * 3463 * Imagine for instance the case where two tasks block on one CPU, only the one 3464 * CPU will have IO-wait accounted, while the other has regular idle. Even 3465 * though, if the storage were faster, both could've ran at the same time, 3466 * utilising both CPUs. 3467 * 3468 * This means, that when looking globally, the current IO-wait accounting on 3469 * SMP is a lower bound, by reason of under accounting. 3470 * 3471 * Worse, since the numbers are provided per CPU, they are sometimes 3472 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3473 * associated with any one particular CPU, it can wake to another CPU than it 3474 * blocked on. This means the per CPU IO-wait number is meaningless. 3475 * 3476 * Task CPU affinities can make all that even more 'interesting'. 3477 */ 3478 3479 unsigned long nr_iowait(void) 3480 { 3481 unsigned long i, sum = 0; 3482 3483 for_each_possible_cpu(i) 3484 sum += nr_iowait_cpu(i); 3485 3486 return sum; 3487 } 3488 3489 #ifdef CONFIG_SMP 3490 3491 /* 3492 * sched_exec - execve() is a valuable balancing opportunity, because at 3493 * this point the task has the smallest effective memory and cache footprint. 3494 */ 3495 void sched_exec(void) 3496 { 3497 struct task_struct *p = current; 3498 unsigned long flags; 3499 int dest_cpu; 3500 3501 raw_spin_lock_irqsave(&p->pi_lock, flags); 3502 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3503 if (dest_cpu == smp_processor_id()) 3504 goto unlock; 3505 3506 if (likely(cpu_active(dest_cpu))) { 3507 struct migration_arg arg = { p, dest_cpu }; 3508 3509 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3510 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3511 return; 3512 } 3513 unlock: 3514 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3515 } 3516 3517 #endif 3518 3519 DEFINE_PER_CPU(struct kernel_stat, kstat); 3520 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3521 3522 EXPORT_PER_CPU_SYMBOL(kstat); 3523 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3524 3525 /* 3526 * The function fair_sched_class.update_curr accesses the struct curr 3527 * and its field curr->exec_start; when called from task_sched_runtime(), 3528 * we observe a high rate of cache misses in practice. 3529 * Prefetching this data results in improved performance. 3530 */ 3531 static inline void prefetch_curr_exec_start(struct task_struct *p) 3532 { 3533 #ifdef CONFIG_FAIR_GROUP_SCHED 3534 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3535 #else 3536 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3537 #endif 3538 prefetch(curr); 3539 prefetch(&curr->exec_start); 3540 } 3541 3542 /* 3543 * Return accounted runtime for the task. 3544 * In case the task is currently running, return the runtime plus current's 3545 * pending runtime that have not been accounted yet. 3546 */ 3547 unsigned long long task_sched_runtime(struct task_struct *p) 3548 { 3549 struct rq_flags rf; 3550 struct rq *rq; 3551 u64 ns; 3552 3553 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3554 /* 3555 * 64-bit doesn't need locks to atomically read a 64-bit value. 3556 * So we have a optimization chance when the task's delta_exec is 0. 3557 * Reading ->on_cpu is racy, but this is ok. 3558 * 3559 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3560 * If we race with it entering CPU, unaccounted time is 0. This is 3561 * indistinguishable from the read occurring a few cycles earlier. 3562 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3563 * been accounted, so we're correct here as well. 3564 */ 3565 if (!p->on_cpu || !task_on_rq_queued(p)) 3566 return p->se.sum_exec_runtime; 3567 #endif 3568 3569 rq = task_rq_lock(p, &rf); 3570 /* 3571 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3572 * project cycles that may never be accounted to this 3573 * thread, breaking clock_gettime(). 3574 */ 3575 if (task_current(rq, p) && task_on_rq_queued(p)) { 3576 prefetch_curr_exec_start(p); 3577 update_rq_clock(rq); 3578 p->sched_class->update_curr(rq); 3579 } 3580 ns = p->se.sum_exec_runtime; 3581 task_rq_unlock(rq, p, &rf); 3582 3583 return ns; 3584 } 3585 3586 /* 3587 * This function gets called by the timer code, with HZ frequency. 3588 * We call it with interrupts disabled. 3589 */ 3590 void scheduler_tick(void) 3591 { 3592 int cpu = smp_processor_id(); 3593 struct rq *rq = cpu_rq(cpu); 3594 struct task_struct *curr = rq->curr; 3595 struct rq_flags rf; 3596 3597 sched_clock_tick(); 3598 3599 rq_lock(rq, &rf); 3600 3601 update_rq_clock(rq); 3602 curr->sched_class->task_tick(rq, curr, 0); 3603 calc_global_load_tick(rq); 3604 psi_task_tick(rq); 3605 3606 rq_unlock(rq, &rf); 3607 3608 perf_event_task_tick(); 3609 3610 #ifdef CONFIG_SMP 3611 rq->idle_balance = idle_cpu(cpu); 3612 trigger_load_balance(rq); 3613 #endif 3614 } 3615 3616 #ifdef CONFIG_NO_HZ_FULL 3617 3618 struct tick_work { 3619 int cpu; 3620 atomic_t state; 3621 struct delayed_work work; 3622 }; 3623 /* Values for ->state, see diagram below. */ 3624 #define TICK_SCHED_REMOTE_OFFLINE 0 3625 #define TICK_SCHED_REMOTE_OFFLINING 1 3626 #define TICK_SCHED_REMOTE_RUNNING 2 3627 3628 /* 3629 * State diagram for ->state: 3630 * 3631 * 3632 * TICK_SCHED_REMOTE_OFFLINE 3633 * | ^ 3634 * | | 3635 * | | sched_tick_remote() 3636 * | | 3637 * | | 3638 * +--TICK_SCHED_REMOTE_OFFLINING 3639 * | ^ 3640 * | | 3641 * sched_tick_start() | | sched_tick_stop() 3642 * | | 3643 * V | 3644 * TICK_SCHED_REMOTE_RUNNING 3645 * 3646 * 3647 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 3648 * and sched_tick_start() are happy to leave the state in RUNNING. 3649 */ 3650 3651 static struct tick_work __percpu *tick_work_cpu; 3652 3653 static void sched_tick_remote(struct work_struct *work) 3654 { 3655 struct delayed_work *dwork = to_delayed_work(work); 3656 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3657 int cpu = twork->cpu; 3658 struct rq *rq = cpu_rq(cpu); 3659 struct task_struct *curr; 3660 struct rq_flags rf; 3661 u64 delta; 3662 int os; 3663 3664 /* 3665 * Handle the tick only if it appears the remote CPU is running in full 3666 * dynticks mode. The check is racy by nature, but missing a tick or 3667 * having one too much is no big deal because the scheduler tick updates 3668 * statistics and checks timeslices in a time-independent way, regardless 3669 * of when exactly it is running. 3670 */ 3671 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3672 goto out_requeue; 3673 3674 rq_lock_irq(rq, &rf); 3675 curr = rq->curr; 3676 if (is_idle_task(curr) || cpu_is_offline(cpu)) 3677 goto out_unlock; 3678 3679 update_rq_clock(rq); 3680 delta = rq_clock_task(rq) - curr->se.exec_start; 3681 3682 /* 3683 * Make sure the next tick runs within a reasonable 3684 * amount of time. 3685 */ 3686 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3687 curr->sched_class->task_tick(rq, curr, 0); 3688 3689 out_unlock: 3690 rq_unlock_irq(rq, &rf); 3691 3692 out_requeue: 3693 /* 3694 * Run the remote tick once per second (1Hz). This arbitrary 3695 * frequency is large enough to avoid overload but short enough 3696 * to keep scheduler internal stats reasonably up to date. But 3697 * first update state to reflect hotplug activity if required. 3698 */ 3699 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 3700 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 3701 if (os == TICK_SCHED_REMOTE_RUNNING) 3702 queue_delayed_work(system_unbound_wq, dwork, HZ); 3703 } 3704 3705 static void sched_tick_start(int cpu) 3706 { 3707 int os; 3708 struct tick_work *twork; 3709 3710 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3711 return; 3712 3713 WARN_ON_ONCE(!tick_work_cpu); 3714 3715 twork = per_cpu_ptr(tick_work_cpu, cpu); 3716 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 3717 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 3718 if (os == TICK_SCHED_REMOTE_OFFLINE) { 3719 twork->cpu = cpu; 3720 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3721 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3722 } 3723 } 3724 3725 #ifdef CONFIG_HOTPLUG_CPU 3726 static void sched_tick_stop(int cpu) 3727 { 3728 struct tick_work *twork; 3729 int os; 3730 3731 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3732 return; 3733 3734 WARN_ON_ONCE(!tick_work_cpu); 3735 3736 twork = per_cpu_ptr(tick_work_cpu, cpu); 3737 /* There cannot be competing actions, but don't rely on stop-machine. */ 3738 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 3739 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 3740 /* Don't cancel, as this would mess up the state machine. */ 3741 } 3742 #endif /* CONFIG_HOTPLUG_CPU */ 3743 3744 int __init sched_tick_offload_init(void) 3745 { 3746 tick_work_cpu = alloc_percpu(struct tick_work); 3747 BUG_ON(!tick_work_cpu); 3748 return 0; 3749 } 3750 3751 #else /* !CONFIG_NO_HZ_FULL */ 3752 static inline void sched_tick_start(int cpu) { } 3753 static inline void sched_tick_stop(int cpu) { } 3754 #endif 3755 3756 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3757 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3758 /* 3759 * If the value passed in is equal to the current preempt count 3760 * then we just disabled preemption. Start timing the latency. 3761 */ 3762 static inline void preempt_latency_start(int val) 3763 { 3764 if (preempt_count() == val) { 3765 unsigned long ip = get_lock_parent_ip(); 3766 #ifdef CONFIG_DEBUG_PREEMPT 3767 current->preempt_disable_ip = ip; 3768 #endif 3769 trace_preempt_off(CALLER_ADDR0, ip); 3770 } 3771 } 3772 3773 void preempt_count_add(int val) 3774 { 3775 #ifdef CONFIG_DEBUG_PREEMPT 3776 /* 3777 * Underflow? 3778 */ 3779 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3780 return; 3781 #endif 3782 __preempt_count_add(val); 3783 #ifdef CONFIG_DEBUG_PREEMPT 3784 /* 3785 * Spinlock count overflowing soon? 3786 */ 3787 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3788 PREEMPT_MASK - 10); 3789 #endif 3790 preempt_latency_start(val); 3791 } 3792 EXPORT_SYMBOL(preempt_count_add); 3793 NOKPROBE_SYMBOL(preempt_count_add); 3794 3795 /* 3796 * If the value passed in equals to the current preempt count 3797 * then we just enabled preemption. Stop timing the latency. 3798 */ 3799 static inline void preempt_latency_stop(int val) 3800 { 3801 if (preempt_count() == val) 3802 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3803 } 3804 3805 void preempt_count_sub(int val) 3806 { 3807 #ifdef CONFIG_DEBUG_PREEMPT 3808 /* 3809 * Underflow? 3810 */ 3811 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3812 return; 3813 /* 3814 * Is the spinlock portion underflowing? 3815 */ 3816 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3817 !(preempt_count() & PREEMPT_MASK))) 3818 return; 3819 #endif 3820 3821 preempt_latency_stop(val); 3822 __preempt_count_sub(val); 3823 } 3824 EXPORT_SYMBOL(preempt_count_sub); 3825 NOKPROBE_SYMBOL(preempt_count_sub); 3826 3827 #else 3828 static inline void preempt_latency_start(int val) { } 3829 static inline void preempt_latency_stop(int val) { } 3830 #endif 3831 3832 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3833 { 3834 #ifdef CONFIG_DEBUG_PREEMPT 3835 return p->preempt_disable_ip; 3836 #else 3837 return 0; 3838 #endif 3839 } 3840 3841 /* 3842 * Print scheduling while atomic bug: 3843 */ 3844 static noinline void __schedule_bug(struct task_struct *prev) 3845 { 3846 /* Save this before calling printk(), since that will clobber it */ 3847 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3848 3849 if (oops_in_progress) 3850 return; 3851 3852 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3853 prev->comm, prev->pid, preempt_count()); 3854 3855 debug_show_held_locks(prev); 3856 print_modules(); 3857 if (irqs_disabled()) 3858 print_irqtrace_events(prev); 3859 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3860 && in_atomic_preempt_off()) { 3861 pr_err("Preemption disabled at:"); 3862 print_ip_sym(preempt_disable_ip); 3863 pr_cont("\n"); 3864 } 3865 if (panic_on_warn) 3866 panic("scheduling while atomic\n"); 3867 3868 dump_stack(); 3869 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3870 } 3871 3872 /* 3873 * Various schedule()-time debugging checks and statistics: 3874 */ 3875 static inline void schedule_debug(struct task_struct *prev, bool preempt) 3876 { 3877 #ifdef CONFIG_SCHED_STACK_END_CHECK 3878 if (task_stack_end_corrupted(prev)) 3879 panic("corrupted stack end detected inside scheduler\n"); 3880 #endif 3881 3882 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 3883 if (!preempt && prev->state && prev->non_block_count) { 3884 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 3885 prev->comm, prev->pid, prev->non_block_count); 3886 dump_stack(); 3887 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3888 } 3889 #endif 3890 3891 if (unlikely(in_atomic_preempt_off())) { 3892 __schedule_bug(prev); 3893 preempt_count_set(PREEMPT_DISABLED); 3894 } 3895 rcu_sleep_check(); 3896 3897 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3898 3899 schedstat_inc(this_rq()->sched_count); 3900 } 3901 3902 /* 3903 * Pick up the highest-prio task: 3904 */ 3905 static inline struct task_struct * 3906 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3907 { 3908 const struct sched_class *class; 3909 struct task_struct *p; 3910 3911 /* 3912 * Optimization: we know that if all tasks are in the fair class we can 3913 * call that function directly, but only if the @prev task wasn't of a 3914 * higher scheduling class, because otherwise those loose the 3915 * opportunity to pull in more work from other CPUs. 3916 */ 3917 if (likely((prev->sched_class == &idle_sched_class || 3918 prev->sched_class == &fair_sched_class) && 3919 rq->nr_running == rq->cfs.h_nr_running)) { 3920 3921 p = pick_next_task_fair(rq, prev, rf); 3922 if (unlikely(p == RETRY_TASK)) 3923 goto restart; 3924 3925 /* Assumes fair_sched_class->next == idle_sched_class */ 3926 if (!p) { 3927 put_prev_task(rq, prev); 3928 p = pick_next_task_idle(rq); 3929 } 3930 3931 return p; 3932 } 3933 3934 restart: 3935 #ifdef CONFIG_SMP 3936 /* 3937 * We must do the balancing pass before put_next_task(), such 3938 * that when we release the rq->lock the task is in the same 3939 * state as before we took rq->lock. 3940 * 3941 * We can terminate the balance pass as soon as we know there is 3942 * a runnable task of @class priority or higher. 3943 */ 3944 for_class_range(class, prev->sched_class, &idle_sched_class) { 3945 if (class->balance(rq, prev, rf)) 3946 break; 3947 } 3948 #endif 3949 3950 put_prev_task(rq, prev); 3951 3952 for_each_class(class) { 3953 p = class->pick_next_task(rq); 3954 if (p) 3955 return p; 3956 } 3957 3958 /* The idle class should always have a runnable task: */ 3959 BUG(); 3960 } 3961 3962 /* 3963 * __schedule() is the main scheduler function. 3964 * 3965 * The main means of driving the scheduler and thus entering this function are: 3966 * 3967 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3968 * 3969 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3970 * paths. For example, see arch/x86/entry_64.S. 3971 * 3972 * To drive preemption between tasks, the scheduler sets the flag in timer 3973 * interrupt handler scheduler_tick(). 3974 * 3975 * 3. Wakeups don't really cause entry into schedule(). They add a 3976 * task to the run-queue and that's it. 3977 * 3978 * Now, if the new task added to the run-queue preempts the current 3979 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3980 * called on the nearest possible occasion: 3981 * 3982 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 3983 * 3984 * - in syscall or exception context, at the next outmost 3985 * preempt_enable(). (this might be as soon as the wake_up()'s 3986 * spin_unlock()!) 3987 * 3988 * - in IRQ context, return from interrupt-handler to 3989 * preemptible context 3990 * 3991 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 3992 * then at the next: 3993 * 3994 * - cond_resched() call 3995 * - explicit schedule() call 3996 * - return from syscall or exception to user-space 3997 * - return from interrupt-handler to user-space 3998 * 3999 * WARNING: must be called with preemption disabled! 4000 */ 4001 static void __sched notrace __schedule(bool preempt) 4002 { 4003 struct task_struct *prev, *next; 4004 unsigned long *switch_count; 4005 struct rq_flags rf; 4006 struct rq *rq; 4007 int cpu; 4008 4009 cpu = smp_processor_id(); 4010 rq = cpu_rq(cpu); 4011 prev = rq->curr; 4012 4013 schedule_debug(prev, preempt); 4014 4015 if (sched_feat(HRTICK)) 4016 hrtick_clear(rq); 4017 4018 local_irq_disable(); 4019 rcu_note_context_switch(preempt); 4020 4021 /* 4022 * Make sure that signal_pending_state()->signal_pending() below 4023 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4024 * done by the caller to avoid the race with signal_wake_up(). 4025 * 4026 * The membarrier system call requires a full memory barrier 4027 * after coming from user-space, before storing to rq->curr. 4028 */ 4029 rq_lock(rq, &rf); 4030 smp_mb__after_spinlock(); 4031 4032 /* Promote REQ to ACT */ 4033 rq->clock_update_flags <<= 1; 4034 update_rq_clock(rq); 4035 4036 switch_count = &prev->nivcsw; 4037 if (!preempt && prev->state) { 4038 if (signal_pending_state(prev->state, prev)) { 4039 prev->state = TASK_RUNNING; 4040 } else { 4041 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4042 4043 if (prev->in_iowait) { 4044 atomic_inc(&rq->nr_iowait); 4045 delayacct_blkio_start(); 4046 } 4047 } 4048 switch_count = &prev->nvcsw; 4049 } 4050 4051 next = pick_next_task(rq, prev, &rf); 4052 clear_tsk_need_resched(prev); 4053 clear_preempt_need_resched(); 4054 4055 if (likely(prev != next)) { 4056 rq->nr_switches++; 4057 /* 4058 * RCU users of rcu_dereference(rq->curr) may not see 4059 * changes to task_struct made by pick_next_task(). 4060 */ 4061 RCU_INIT_POINTER(rq->curr, next); 4062 /* 4063 * The membarrier system call requires each architecture 4064 * to have a full memory barrier after updating 4065 * rq->curr, before returning to user-space. 4066 * 4067 * Here are the schemes providing that barrier on the 4068 * various architectures: 4069 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4070 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4071 * - finish_lock_switch() for weakly-ordered 4072 * architectures where spin_unlock is a full barrier, 4073 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4074 * is a RELEASE barrier), 4075 */ 4076 ++*switch_count; 4077 4078 trace_sched_switch(preempt, prev, next); 4079 4080 /* Also unlocks the rq: */ 4081 rq = context_switch(rq, prev, next, &rf); 4082 } else { 4083 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4084 rq_unlock_irq(rq, &rf); 4085 } 4086 4087 balance_callback(rq); 4088 } 4089 4090 void __noreturn do_task_dead(void) 4091 { 4092 /* Causes final put_task_struct in finish_task_switch(): */ 4093 set_special_state(TASK_DEAD); 4094 4095 /* Tell freezer to ignore us: */ 4096 current->flags |= PF_NOFREEZE; 4097 4098 __schedule(false); 4099 BUG(); 4100 4101 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4102 for (;;) 4103 cpu_relax(); 4104 } 4105 4106 static inline void sched_submit_work(struct task_struct *tsk) 4107 { 4108 if (!tsk->state) 4109 return; 4110 4111 /* 4112 * If a worker went to sleep, notify and ask workqueue whether 4113 * it wants to wake up a task to maintain concurrency. 4114 * As this function is called inside the schedule() context, 4115 * we disable preemption to avoid it calling schedule() again 4116 * in the possible wakeup of a kworker. 4117 */ 4118 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4119 preempt_disable(); 4120 if (tsk->flags & PF_WQ_WORKER) 4121 wq_worker_sleeping(tsk); 4122 else 4123 io_wq_worker_sleeping(tsk); 4124 preempt_enable_no_resched(); 4125 } 4126 4127 if (tsk_is_pi_blocked(tsk)) 4128 return; 4129 4130 /* 4131 * If we are going to sleep and we have plugged IO queued, 4132 * make sure to submit it to avoid deadlocks. 4133 */ 4134 if (blk_needs_flush_plug(tsk)) 4135 blk_schedule_flush_plug(tsk); 4136 } 4137 4138 static void sched_update_worker(struct task_struct *tsk) 4139 { 4140 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4141 if (tsk->flags & PF_WQ_WORKER) 4142 wq_worker_running(tsk); 4143 else 4144 io_wq_worker_running(tsk); 4145 } 4146 } 4147 4148 asmlinkage __visible void __sched schedule(void) 4149 { 4150 struct task_struct *tsk = current; 4151 4152 sched_submit_work(tsk); 4153 do { 4154 preempt_disable(); 4155 __schedule(false); 4156 sched_preempt_enable_no_resched(); 4157 } while (need_resched()); 4158 sched_update_worker(tsk); 4159 } 4160 EXPORT_SYMBOL(schedule); 4161 4162 /* 4163 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4164 * state (have scheduled out non-voluntarily) by making sure that all 4165 * tasks have either left the run queue or have gone into user space. 4166 * As idle tasks do not do either, they must not ever be preempted 4167 * (schedule out non-voluntarily). 4168 * 4169 * schedule_idle() is similar to schedule_preempt_disable() except that it 4170 * never enables preemption because it does not call sched_submit_work(). 4171 */ 4172 void __sched schedule_idle(void) 4173 { 4174 /* 4175 * As this skips calling sched_submit_work(), which the idle task does 4176 * regardless because that function is a nop when the task is in a 4177 * TASK_RUNNING state, make sure this isn't used someplace that the 4178 * current task can be in any other state. Note, idle is always in the 4179 * TASK_RUNNING state. 4180 */ 4181 WARN_ON_ONCE(current->state); 4182 do { 4183 __schedule(false); 4184 } while (need_resched()); 4185 } 4186 4187 #ifdef CONFIG_CONTEXT_TRACKING 4188 asmlinkage __visible void __sched schedule_user(void) 4189 { 4190 /* 4191 * If we come here after a random call to set_need_resched(), 4192 * or we have been woken up remotely but the IPI has not yet arrived, 4193 * we haven't yet exited the RCU idle mode. Do it here manually until 4194 * we find a better solution. 4195 * 4196 * NB: There are buggy callers of this function. Ideally we 4197 * should warn if prev_state != CONTEXT_USER, but that will trigger 4198 * too frequently to make sense yet. 4199 */ 4200 enum ctx_state prev_state = exception_enter(); 4201 schedule(); 4202 exception_exit(prev_state); 4203 } 4204 #endif 4205 4206 /** 4207 * schedule_preempt_disabled - called with preemption disabled 4208 * 4209 * Returns with preemption disabled. Note: preempt_count must be 1 4210 */ 4211 void __sched schedule_preempt_disabled(void) 4212 { 4213 sched_preempt_enable_no_resched(); 4214 schedule(); 4215 preempt_disable(); 4216 } 4217 4218 static void __sched notrace preempt_schedule_common(void) 4219 { 4220 do { 4221 /* 4222 * Because the function tracer can trace preempt_count_sub() 4223 * and it also uses preempt_enable/disable_notrace(), if 4224 * NEED_RESCHED is set, the preempt_enable_notrace() called 4225 * by the function tracer will call this function again and 4226 * cause infinite recursion. 4227 * 4228 * Preemption must be disabled here before the function 4229 * tracer can trace. Break up preempt_disable() into two 4230 * calls. One to disable preemption without fear of being 4231 * traced. The other to still record the preemption latency, 4232 * which can also be traced by the function tracer. 4233 */ 4234 preempt_disable_notrace(); 4235 preempt_latency_start(1); 4236 __schedule(true); 4237 preempt_latency_stop(1); 4238 preempt_enable_no_resched_notrace(); 4239 4240 /* 4241 * Check again in case we missed a preemption opportunity 4242 * between schedule and now. 4243 */ 4244 } while (need_resched()); 4245 } 4246 4247 #ifdef CONFIG_PREEMPTION 4248 /* 4249 * This is the entry point to schedule() from in-kernel preemption 4250 * off of preempt_enable. 4251 */ 4252 asmlinkage __visible void __sched notrace preempt_schedule(void) 4253 { 4254 /* 4255 * If there is a non-zero preempt_count or interrupts are disabled, 4256 * we do not want to preempt the current task. Just return.. 4257 */ 4258 if (likely(!preemptible())) 4259 return; 4260 4261 preempt_schedule_common(); 4262 } 4263 NOKPROBE_SYMBOL(preempt_schedule); 4264 EXPORT_SYMBOL(preempt_schedule); 4265 4266 /** 4267 * preempt_schedule_notrace - preempt_schedule called by tracing 4268 * 4269 * The tracing infrastructure uses preempt_enable_notrace to prevent 4270 * recursion and tracing preempt enabling caused by the tracing 4271 * infrastructure itself. But as tracing can happen in areas coming 4272 * from userspace or just about to enter userspace, a preempt enable 4273 * can occur before user_exit() is called. This will cause the scheduler 4274 * to be called when the system is still in usermode. 4275 * 4276 * To prevent this, the preempt_enable_notrace will use this function 4277 * instead of preempt_schedule() to exit user context if needed before 4278 * calling the scheduler. 4279 */ 4280 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4281 { 4282 enum ctx_state prev_ctx; 4283 4284 if (likely(!preemptible())) 4285 return; 4286 4287 do { 4288 /* 4289 * Because the function tracer can trace preempt_count_sub() 4290 * and it also uses preempt_enable/disable_notrace(), if 4291 * NEED_RESCHED is set, the preempt_enable_notrace() called 4292 * by the function tracer will call this function again and 4293 * cause infinite recursion. 4294 * 4295 * Preemption must be disabled here before the function 4296 * tracer can trace. Break up preempt_disable() into two 4297 * calls. One to disable preemption without fear of being 4298 * traced. The other to still record the preemption latency, 4299 * which can also be traced by the function tracer. 4300 */ 4301 preempt_disable_notrace(); 4302 preempt_latency_start(1); 4303 /* 4304 * Needs preempt disabled in case user_exit() is traced 4305 * and the tracer calls preempt_enable_notrace() causing 4306 * an infinite recursion. 4307 */ 4308 prev_ctx = exception_enter(); 4309 __schedule(true); 4310 exception_exit(prev_ctx); 4311 4312 preempt_latency_stop(1); 4313 preempt_enable_no_resched_notrace(); 4314 } while (need_resched()); 4315 } 4316 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4317 4318 #endif /* CONFIG_PREEMPTION */ 4319 4320 /* 4321 * This is the entry point to schedule() from kernel preemption 4322 * off of irq context. 4323 * Note, that this is called and return with irqs disabled. This will 4324 * protect us against recursive calling from irq. 4325 */ 4326 asmlinkage __visible void __sched preempt_schedule_irq(void) 4327 { 4328 enum ctx_state prev_state; 4329 4330 /* Catch callers which need to be fixed */ 4331 BUG_ON(preempt_count() || !irqs_disabled()); 4332 4333 prev_state = exception_enter(); 4334 4335 do { 4336 preempt_disable(); 4337 local_irq_enable(); 4338 __schedule(true); 4339 local_irq_disable(); 4340 sched_preempt_enable_no_resched(); 4341 } while (need_resched()); 4342 4343 exception_exit(prev_state); 4344 } 4345 4346 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4347 void *key) 4348 { 4349 return try_to_wake_up(curr->private, mode, wake_flags); 4350 } 4351 EXPORT_SYMBOL(default_wake_function); 4352 4353 #ifdef CONFIG_RT_MUTEXES 4354 4355 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4356 { 4357 if (pi_task) 4358 prio = min(prio, pi_task->prio); 4359 4360 return prio; 4361 } 4362 4363 static inline int rt_effective_prio(struct task_struct *p, int prio) 4364 { 4365 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4366 4367 return __rt_effective_prio(pi_task, prio); 4368 } 4369 4370 /* 4371 * rt_mutex_setprio - set the current priority of a task 4372 * @p: task to boost 4373 * @pi_task: donor task 4374 * 4375 * This function changes the 'effective' priority of a task. It does 4376 * not touch ->normal_prio like __setscheduler(). 4377 * 4378 * Used by the rt_mutex code to implement priority inheritance 4379 * logic. Call site only calls if the priority of the task changed. 4380 */ 4381 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4382 { 4383 int prio, oldprio, queued, running, queue_flag = 4384 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4385 const struct sched_class *prev_class; 4386 struct rq_flags rf; 4387 struct rq *rq; 4388 4389 /* XXX used to be waiter->prio, not waiter->task->prio */ 4390 prio = __rt_effective_prio(pi_task, p->normal_prio); 4391 4392 /* 4393 * If nothing changed; bail early. 4394 */ 4395 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4396 return; 4397 4398 rq = __task_rq_lock(p, &rf); 4399 update_rq_clock(rq); 4400 /* 4401 * Set under pi_lock && rq->lock, such that the value can be used under 4402 * either lock. 4403 * 4404 * Note that there is loads of tricky to make this pointer cache work 4405 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4406 * ensure a task is de-boosted (pi_task is set to NULL) before the 4407 * task is allowed to run again (and can exit). This ensures the pointer 4408 * points to a blocked task -- which guaratees the task is present. 4409 */ 4410 p->pi_top_task = pi_task; 4411 4412 /* 4413 * For FIFO/RR we only need to set prio, if that matches we're done. 4414 */ 4415 if (prio == p->prio && !dl_prio(prio)) 4416 goto out_unlock; 4417 4418 /* 4419 * Idle task boosting is a nono in general. There is one 4420 * exception, when PREEMPT_RT and NOHZ is active: 4421 * 4422 * The idle task calls get_next_timer_interrupt() and holds 4423 * the timer wheel base->lock on the CPU and another CPU wants 4424 * to access the timer (probably to cancel it). We can safely 4425 * ignore the boosting request, as the idle CPU runs this code 4426 * with interrupts disabled and will complete the lock 4427 * protected section without being interrupted. So there is no 4428 * real need to boost. 4429 */ 4430 if (unlikely(p == rq->idle)) { 4431 WARN_ON(p != rq->curr); 4432 WARN_ON(p->pi_blocked_on); 4433 goto out_unlock; 4434 } 4435 4436 trace_sched_pi_setprio(p, pi_task); 4437 oldprio = p->prio; 4438 4439 if (oldprio == prio) 4440 queue_flag &= ~DEQUEUE_MOVE; 4441 4442 prev_class = p->sched_class; 4443 queued = task_on_rq_queued(p); 4444 running = task_current(rq, p); 4445 if (queued) 4446 dequeue_task(rq, p, queue_flag); 4447 if (running) 4448 put_prev_task(rq, p); 4449 4450 /* 4451 * Boosting condition are: 4452 * 1. -rt task is running and holds mutex A 4453 * --> -dl task blocks on mutex A 4454 * 4455 * 2. -dl task is running and holds mutex A 4456 * --> -dl task blocks on mutex A and could preempt the 4457 * running task 4458 */ 4459 if (dl_prio(prio)) { 4460 if (!dl_prio(p->normal_prio) || 4461 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 4462 p->dl.dl_boosted = 1; 4463 queue_flag |= ENQUEUE_REPLENISH; 4464 } else 4465 p->dl.dl_boosted = 0; 4466 p->sched_class = &dl_sched_class; 4467 } else if (rt_prio(prio)) { 4468 if (dl_prio(oldprio)) 4469 p->dl.dl_boosted = 0; 4470 if (oldprio < prio) 4471 queue_flag |= ENQUEUE_HEAD; 4472 p->sched_class = &rt_sched_class; 4473 } else { 4474 if (dl_prio(oldprio)) 4475 p->dl.dl_boosted = 0; 4476 if (rt_prio(oldprio)) 4477 p->rt.timeout = 0; 4478 p->sched_class = &fair_sched_class; 4479 } 4480 4481 p->prio = prio; 4482 4483 if (queued) 4484 enqueue_task(rq, p, queue_flag); 4485 if (running) 4486 set_next_task(rq, p); 4487 4488 check_class_changed(rq, p, prev_class, oldprio); 4489 out_unlock: 4490 /* Avoid rq from going away on us: */ 4491 preempt_disable(); 4492 __task_rq_unlock(rq, &rf); 4493 4494 balance_callback(rq); 4495 preempt_enable(); 4496 } 4497 #else 4498 static inline int rt_effective_prio(struct task_struct *p, int prio) 4499 { 4500 return prio; 4501 } 4502 #endif 4503 4504 void set_user_nice(struct task_struct *p, long nice) 4505 { 4506 bool queued, running; 4507 int old_prio, delta; 4508 struct rq_flags rf; 4509 struct rq *rq; 4510 4511 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4512 return; 4513 /* 4514 * We have to be careful, if called from sys_setpriority(), 4515 * the task might be in the middle of scheduling on another CPU. 4516 */ 4517 rq = task_rq_lock(p, &rf); 4518 update_rq_clock(rq); 4519 4520 /* 4521 * The RT priorities are set via sched_setscheduler(), but we still 4522 * allow the 'normal' nice value to be set - but as expected 4523 * it wont have any effect on scheduling until the task is 4524 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4525 */ 4526 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4527 p->static_prio = NICE_TO_PRIO(nice); 4528 goto out_unlock; 4529 } 4530 queued = task_on_rq_queued(p); 4531 running = task_current(rq, p); 4532 if (queued) 4533 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4534 if (running) 4535 put_prev_task(rq, p); 4536 4537 p->static_prio = NICE_TO_PRIO(nice); 4538 set_load_weight(p, true); 4539 old_prio = p->prio; 4540 p->prio = effective_prio(p); 4541 delta = p->prio - old_prio; 4542 4543 if (queued) { 4544 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4545 /* 4546 * If the task increased its priority or is running and 4547 * lowered its priority, then reschedule its CPU: 4548 */ 4549 if (delta < 0 || (delta > 0 && task_running(rq, p))) 4550 resched_curr(rq); 4551 } 4552 if (running) 4553 set_next_task(rq, p); 4554 out_unlock: 4555 task_rq_unlock(rq, p, &rf); 4556 } 4557 EXPORT_SYMBOL(set_user_nice); 4558 4559 /* 4560 * can_nice - check if a task can reduce its nice value 4561 * @p: task 4562 * @nice: nice value 4563 */ 4564 int can_nice(const struct task_struct *p, const int nice) 4565 { 4566 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4567 int nice_rlim = nice_to_rlimit(nice); 4568 4569 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4570 capable(CAP_SYS_NICE)); 4571 } 4572 4573 #ifdef __ARCH_WANT_SYS_NICE 4574 4575 /* 4576 * sys_nice - change the priority of the current process. 4577 * @increment: priority increment 4578 * 4579 * sys_setpriority is a more generic, but much slower function that 4580 * does similar things. 4581 */ 4582 SYSCALL_DEFINE1(nice, int, increment) 4583 { 4584 long nice, retval; 4585 4586 /* 4587 * Setpriority might change our priority at the same moment. 4588 * We don't have to worry. Conceptually one call occurs first 4589 * and we have a single winner. 4590 */ 4591 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4592 nice = task_nice(current) + increment; 4593 4594 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4595 if (increment < 0 && !can_nice(current, nice)) 4596 return -EPERM; 4597 4598 retval = security_task_setnice(current, nice); 4599 if (retval) 4600 return retval; 4601 4602 set_user_nice(current, nice); 4603 return 0; 4604 } 4605 4606 #endif 4607 4608 /** 4609 * task_prio - return the priority value of a given task. 4610 * @p: the task in question. 4611 * 4612 * Return: The priority value as seen by users in /proc. 4613 * RT tasks are offset by -200. Normal tasks are centered 4614 * around 0, value goes from -16 to +15. 4615 */ 4616 int task_prio(const struct task_struct *p) 4617 { 4618 return p->prio - MAX_RT_PRIO; 4619 } 4620 4621 /** 4622 * idle_cpu - is a given CPU idle currently? 4623 * @cpu: the processor in question. 4624 * 4625 * Return: 1 if the CPU is currently idle. 0 otherwise. 4626 */ 4627 int idle_cpu(int cpu) 4628 { 4629 struct rq *rq = cpu_rq(cpu); 4630 4631 if (rq->curr != rq->idle) 4632 return 0; 4633 4634 if (rq->nr_running) 4635 return 0; 4636 4637 #ifdef CONFIG_SMP 4638 if (!llist_empty(&rq->wake_list)) 4639 return 0; 4640 #endif 4641 4642 return 1; 4643 } 4644 4645 /** 4646 * available_idle_cpu - is a given CPU idle for enqueuing work. 4647 * @cpu: the CPU in question. 4648 * 4649 * Return: 1 if the CPU is currently idle. 0 otherwise. 4650 */ 4651 int available_idle_cpu(int cpu) 4652 { 4653 if (!idle_cpu(cpu)) 4654 return 0; 4655 4656 if (vcpu_is_preempted(cpu)) 4657 return 0; 4658 4659 return 1; 4660 } 4661 4662 /** 4663 * idle_task - return the idle task for a given CPU. 4664 * @cpu: the processor in question. 4665 * 4666 * Return: The idle task for the CPU @cpu. 4667 */ 4668 struct task_struct *idle_task(int cpu) 4669 { 4670 return cpu_rq(cpu)->idle; 4671 } 4672 4673 /** 4674 * find_process_by_pid - find a process with a matching PID value. 4675 * @pid: the pid in question. 4676 * 4677 * The task of @pid, if found. %NULL otherwise. 4678 */ 4679 static struct task_struct *find_process_by_pid(pid_t pid) 4680 { 4681 return pid ? find_task_by_vpid(pid) : current; 4682 } 4683 4684 /* 4685 * sched_setparam() passes in -1 for its policy, to let the functions 4686 * it calls know not to change it. 4687 */ 4688 #define SETPARAM_POLICY -1 4689 4690 static void __setscheduler_params(struct task_struct *p, 4691 const struct sched_attr *attr) 4692 { 4693 int policy = attr->sched_policy; 4694 4695 if (policy == SETPARAM_POLICY) 4696 policy = p->policy; 4697 4698 p->policy = policy; 4699 4700 if (dl_policy(policy)) 4701 __setparam_dl(p, attr); 4702 else if (fair_policy(policy)) 4703 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4704 4705 /* 4706 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4707 * !rt_policy. Always setting this ensures that things like 4708 * getparam()/getattr() don't report silly values for !rt tasks. 4709 */ 4710 p->rt_priority = attr->sched_priority; 4711 p->normal_prio = normal_prio(p); 4712 set_load_weight(p, true); 4713 } 4714 4715 /* Actually do priority change: must hold pi & rq lock. */ 4716 static void __setscheduler(struct rq *rq, struct task_struct *p, 4717 const struct sched_attr *attr, bool keep_boost) 4718 { 4719 /* 4720 * If params can't change scheduling class changes aren't allowed 4721 * either. 4722 */ 4723 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4724 return; 4725 4726 __setscheduler_params(p, attr); 4727 4728 /* 4729 * Keep a potential priority boosting if called from 4730 * sched_setscheduler(). 4731 */ 4732 p->prio = normal_prio(p); 4733 if (keep_boost) 4734 p->prio = rt_effective_prio(p, p->prio); 4735 4736 if (dl_prio(p->prio)) 4737 p->sched_class = &dl_sched_class; 4738 else if (rt_prio(p->prio)) 4739 p->sched_class = &rt_sched_class; 4740 else 4741 p->sched_class = &fair_sched_class; 4742 } 4743 4744 /* 4745 * Check the target process has a UID that matches the current process's: 4746 */ 4747 static bool check_same_owner(struct task_struct *p) 4748 { 4749 const struct cred *cred = current_cred(), *pcred; 4750 bool match; 4751 4752 rcu_read_lock(); 4753 pcred = __task_cred(p); 4754 match = (uid_eq(cred->euid, pcred->euid) || 4755 uid_eq(cred->euid, pcred->uid)); 4756 rcu_read_unlock(); 4757 return match; 4758 } 4759 4760 static int __sched_setscheduler(struct task_struct *p, 4761 const struct sched_attr *attr, 4762 bool user, bool pi) 4763 { 4764 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4765 MAX_RT_PRIO - 1 - attr->sched_priority; 4766 int retval, oldprio, oldpolicy = -1, queued, running; 4767 int new_effective_prio, policy = attr->sched_policy; 4768 const struct sched_class *prev_class; 4769 struct rq_flags rf; 4770 int reset_on_fork; 4771 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4772 struct rq *rq; 4773 4774 /* The pi code expects interrupts enabled */ 4775 BUG_ON(pi && in_interrupt()); 4776 recheck: 4777 /* Double check policy once rq lock held: */ 4778 if (policy < 0) { 4779 reset_on_fork = p->sched_reset_on_fork; 4780 policy = oldpolicy = p->policy; 4781 } else { 4782 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4783 4784 if (!valid_policy(policy)) 4785 return -EINVAL; 4786 } 4787 4788 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4789 return -EINVAL; 4790 4791 /* 4792 * Valid priorities for SCHED_FIFO and SCHED_RR are 4793 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4794 * SCHED_BATCH and SCHED_IDLE is 0. 4795 */ 4796 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4797 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4798 return -EINVAL; 4799 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4800 (rt_policy(policy) != (attr->sched_priority != 0))) 4801 return -EINVAL; 4802 4803 /* 4804 * Allow unprivileged RT tasks to decrease priority: 4805 */ 4806 if (user && !capable(CAP_SYS_NICE)) { 4807 if (fair_policy(policy)) { 4808 if (attr->sched_nice < task_nice(p) && 4809 !can_nice(p, attr->sched_nice)) 4810 return -EPERM; 4811 } 4812 4813 if (rt_policy(policy)) { 4814 unsigned long rlim_rtprio = 4815 task_rlimit(p, RLIMIT_RTPRIO); 4816 4817 /* Can't set/change the rt policy: */ 4818 if (policy != p->policy && !rlim_rtprio) 4819 return -EPERM; 4820 4821 /* Can't increase priority: */ 4822 if (attr->sched_priority > p->rt_priority && 4823 attr->sched_priority > rlim_rtprio) 4824 return -EPERM; 4825 } 4826 4827 /* 4828 * Can't set/change SCHED_DEADLINE policy at all for now 4829 * (safest behavior); in the future we would like to allow 4830 * unprivileged DL tasks to increase their relative deadline 4831 * or reduce their runtime (both ways reducing utilization) 4832 */ 4833 if (dl_policy(policy)) 4834 return -EPERM; 4835 4836 /* 4837 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4838 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4839 */ 4840 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4841 if (!can_nice(p, task_nice(p))) 4842 return -EPERM; 4843 } 4844 4845 /* Can't change other user's priorities: */ 4846 if (!check_same_owner(p)) 4847 return -EPERM; 4848 4849 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4850 if (p->sched_reset_on_fork && !reset_on_fork) 4851 return -EPERM; 4852 } 4853 4854 if (user) { 4855 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4856 return -EINVAL; 4857 4858 retval = security_task_setscheduler(p); 4859 if (retval) 4860 return retval; 4861 } 4862 4863 /* Update task specific "requested" clamps */ 4864 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 4865 retval = uclamp_validate(p, attr); 4866 if (retval) 4867 return retval; 4868 } 4869 4870 if (pi) 4871 cpuset_read_lock(); 4872 4873 /* 4874 * Make sure no PI-waiters arrive (or leave) while we are 4875 * changing the priority of the task: 4876 * 4877 * To be able to change p->policy safely, the appropriate 4878 * runqueue lock must be held. 4879 */ 4880 rq = task_rq_lock(p, &rf); 4881 update_rq_clock(rq); 4882 4883 /* 4884 * Changing the policy of the stop threads its a very bad idea: 4885 */ 4886 if (p == rq->stop) { 4887 retval = -EINVAL; 4888 goto unlock; 4889 } 4890 4891 /* 4892 * If not changing anything there's no need to proceed further, 4893 * but store a possible modification of reset_on_fork. 4894 */ 4895 if (unlikely(policy == p->policy)) { 4896 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4897 goto change; 4898 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4899 goto change; 4900 if (dl_policy(policy) && dl_param_changed(p, attr)) 4901 goto change; 4902 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 4903 goto change; 4904 4905 p->sched_reset_on_fork = reset_on_fork; 4906 retval = 0; 4907 goto unlock; 4908 } 4909 change: 4910 4911 if (user) { 4912 #ifdef CONFIG_RT_GROUP_SCHED 4913 /* 4914 * Do not allow realtime tasks into groups that have no runtime 4915 * assigned. 4916 */ 4917 if (rt_bandwidth_enabled() && rt_policy(policy) && 4918 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4919 !task_group_is_autogroup(task_group(p))) { 4920 retval = -EPERM; 4921 goto unlock; 4922 } 4923 #endif 4924 #ifdef CONFIG_SMP 4925 if (dl_bandwidth_enabled() && dl_policy(policy) && 4926 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4927 cpumask_t *span = rq->rd->span; 4928 4929 /* 4930 * Don't allow tasks with an affinity mask smaller than 4931 * the entire root_domain to become SCHED_DEADLINE. We 4932 * will also fail if there's no bandwidth available. 4933 */ 4934 if (!cpumask_subset(span, p->cpus_ptr) || 4935 rq->rd->dl_bw.bw == 0) { 4936 retval = -EPERM; 4937 goto unlock; 4938 } 4939 } 4940 #endif 4941 } 4942 4943 /* Re-check policy now with rq lock held: */ 4944 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4945 policy = oldpolicy = -1; 4946 task_rq_unlock(rq, p, &rf); 4947 if (pi) 4948 cpuset_read_unlock(); 4949 goto recheck; 4950 } 4951 4952 /* 4953 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4954 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4955 * is available. 4956 */ 4957 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4958 retval = -EBUSY; 4959 goto unlock; 4960 } 4961 4962 p->sched_reset_on_fork = reset_on_fork; 4963 oldprio = p->prio; 4964 4965 if (pi) { 4966 /* 4967 * Take priority boosted tasks into account. If the new 4968 * effective priority is unchanged, we just store the new 4969 * normal parameters and do not touch the scheduler class and 4970 * the runqueue. This will be done when the task deboost 4971 * itself. 4972 */ 4973 new_effective_prio = rt_effective_prio(p, newprio); 4974 if (new_effective_prio == oldprio) 4975 queue_flags &= ~DEQUEUE_MOVE; 4976 } 4977 4978 queued = task_on_rq_queued(p); 4979 running = task_current(rq, p); 4980 if (queued) 4981 dequeue_task(rq, p, queue_flags); 4982 if (running) 4983 put_prev_task(rq, p); 4984 4985 prev_class = p->sched_class; 4986 4987 __setscheduler(rq, p, attr, pi); 4988 __setscheduler_uclamp(p, attr); 4989 4990 if (queued) { 4991 /* 4992 * We enqueue to tail when the priority of a task is 4993 * increased (user space view). 4994 */ 4995 if (oldprio < p->prio) 4996 queue_flags |= ENQUEUE_HEAD; 4997 4998 enqueue_task(rq, p, queue_flags); 4999 } 5000 if (running) 5001 set_next_task(rq, p); 5002 5003 check_class_changed(rq, p, prev_class, oldprio); 5004 5005 /* Avoid rq from going away on us: */ 5006 preempt_disable(); 5007 task_rq_unlock(rq, p, &rf); 5008 5009 if (pi) { 5010 cpuset_read_unlock(); 5011 rt_mutex_adjust_pi(p); 5012 } 5013 5014 /* Run balance callbacks after we've adjusted the PI chain: */ 5015 balance_callback(rq); 5016 preempt_enable(); 5017 5018 return 0; 5019 5020 unlock: 5021 task_rq_unlock(rq, p, &rf); 5022 if (pi) 5023 cpuset_read_unlock(); 5024 return retval; 5025 } 5026 5027 static int _sched_setscheduler(struct task_struct *p, int policy, 5028 const struct sched_param *param, bool check) 5029 { 5030 struct sched_attr attr = { 5031 .sched_policy = policy, 5032 .sched_priority = param->sched_priority, 5033 .sched_nice = PRIO_TO_NICE(p->static_prio), 5034 }; 5035 5036 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5037 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5038 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5039 policy &= ~SCHED_RESET_ON_FORK; 5040 attr.sched_policy = policy; 5041 } 5042 5043 return __sched_setscheduler(p, &attr, check, true); 5044 } 5045 /** 5046 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5047 * @p: the task in question. 5048 * @policy: new policy. 5049 * @param: structure containing the new RT priority. 5050 * 5051 * Return: 0 on success. An error code otherwise. 5052 * 5053 * NOTE that the task may be already dead. 5054 */ 5055 int sched_setscheduler(struct task_struct *p, int policy, 5056 const struct sched_param *param) 5057 { 5058 return _sched_setscheduler(p, policy, param, true); 5059 } 5060 EXPORT_SYMBOL_GPL(sched_setscheduler); 5061 5062 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5063 { 5064 return __sched_setscheduler(p, attr, true, true); 5065 } 5066 EXPORT_SYMBOL_GPL(sched_setattr); 5067 5068 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5069 { 5070 return __sched_setscheduler(p, attr, false, true); 5071 } 5072 5073 /** 5074 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5075 * @p: the task in question. 5076 * @policy: new policy. 5077 * @param: structure containing the new RT priority. 5078 * 5079 * Just like sched_setscheduler, only don't bother checking if the 5080 * current context has permission. For example, this is needed in 5081 * stop_machine(): we create temporary high priority worker threads, 5082 * but our caller might not have that capability. 5083 * 5084 * Return: 0 on success. An error code otherwise. 5085 */ 5086 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5087 const struct sched_param *param) 5088 { 5089 return _sched_setscheduler(p, policy, param, false); 5090 } 5091 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5092 5093 static int 5094 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5095 { 5096 struct sched_param lparam; 5097 struct task_struct *p; 5098 int retval; 5099 5100 if (!param || pid < 0) 5101 return -EINVAL; 5102 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5103 return -EFAULT; 5104 5105 rcu_read_lock(); 5106 retval = -ESRCH; 5107 p = find_process_by_pid(pid); 5108 if (likely(p)) 5109 get_task_struct(p); 5110 rcu_read_unlock(); 5111 5112 if (likely(p)) { 5113 retval = sched_setscheduler(p, policy, &lparam); 5114 put_task_struct(p); 5115 } 5116 5117 return retval; 5118 } 5119 5120 /* 5121 * Mimics kernel/events/core.c perf_copy_attr(). 5122 */ 5123 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5124 { 5125 u32 size; 5126 int ret; 5127 5128 /* Zero the full structure, so that a short copy will be nice: */ 5129 memset(attr, 0, sizeof(*attr)); 5130 5131 ret = get_user(size, &uattr->size); 5132 if (ret) 5133 return ret; 5134 5135 /* ABI compatibility quirk: */ 5136 if (!size) 5137 size = SCHED_ATTR_SIZE_VER0; 5138 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5139 goto err_size; 5140 5141 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5142 if (ret) { 5143 if (ret == -E2BIG) 5144 goto err_size; 5145 return ret; 5146 } 5147 5148 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5149 size < SCHED_ATTR_SIZE_VER1) 5150 return -EINVAL; 5151 5152 /* 5153 * XXX: Do we want to be lenient like existing syscalls; or do we want 5154 * to be strict and return an error on out-of-bounds values? 5155 */ 5156 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5157 5158 return 0; 5159 5160 err_size: 5161 put_user(sizeof(*attr), &uattr->size); 5162 return -E2BIG; 5163 } 5164 5165 /** 5166 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5167 * @pid: the pid in question. 5168 * @policy: new policy. 5169 * @param: structure containing the new RT priority. 5170 * 5171 * Return: 0 on success. An error code otherwise. 5172 */ 5173 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5174 { 5175 if (policy < 0) 5176 return -EINVAL; 5177 5178 return do_sched_setscheduler(pid, policy, param); 5179 } 5180 5181 /** 5182 * sys_sched_setparam - set/change the RT priority of a thread 5183 * @pid: the pid in question. 5184 * @param: structure containing the new RT priority. 5185 * 5186 * Return: 0 on success. An error code otherwise. 5187 */ 5188 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5189 { 5190 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5191 } 5192 5193 /** 5194 * sys_sched_setattr - same as above, but with extended sched_attr 5195 * @pid: the pid in question. 5196 * @uattr: structure containing the extended parameters. 5197 * @flags: for future extension. 5198 */ 5199 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5200 unsigned int, flags) 5201 { 5202 struct sched_attr attr; 5203 struct task_struct *p; 5204 int retval; 5205 5206 if (!uattr || pid < 0 || flags) 5207 return -EINVAL; 5208 5209 retval = sched_copy_attr(uattr, &attr); 5210 if (retval) 5211 return retval; 5212 5213 if ((int)attr.sched_policy < 0) 5214 return -EINVAL; 5215 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5216 attr.sched_policy = SETPARAM_POLICY; 5217 5218 rcu_read_lock(); 5219 retval = -ESRCH; 5220 p = find_process_by_pid(pid); 5221 if (likely(p)) 5222 get_task_struct(p); 5223 rcu_read_unlock(); 5224 5225 if (likely(p)) { 5226 retval = sched_setattr(p, &attr); 5227 put_task_struct(p); 5228 } 5229 5230 return retval; 5231 } 5232 5233 /** 5234 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5235 * @pid: the pid in question. 5236 * 5237 * Return: On success, the policy of the thread. Otherwise, a negative error 5238 * code. 5239 */ 5240 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5241 { 5242 struct task_struct *p; 5243 int retval; 5244 5245 if (pid < 0) 5246 return -EINVAL; 5247 5248 retval = -ESRCH; 5249 rcu_read_lock(); 5250 p = find_process_by_pid(pid); 5251 if (p) { 5252 retval = security_task_getscheduler(p); 5253 if (!retval) 5254 retval = p->policy 5255 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5256 } 5257 rcu_read_unlock(); 5258 return retval; 5259 } 5260 5261 /** 5262 * sys_sched_getparam - get the RT priority of a thread 5263 * @pid: the pid in question. 5264 * @param: structure containing the RT priority. 5265 * 5266 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5267 * code. 5268 */ 5269 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5270 { 5271 struct sched_param lp = { .sched_priority = 0 }; 5272 struct task_struct *p; 5273 int retval; 5274 5275 if (!param || pid < 0) 5276 return -EINVAL; 5277 5278 rcu_read_lock(); 5279 p = find_process_by_pid(pid); 5280 retval = -ESRCH; 5281 if (!p) 5282 goto out_unlock; 5283 5284 retval = security_task_getscheduler(p); 5285 if (retval) 5286 goto out_unlock; 5287 5288 if (task_has_rt_policy(p)) 5289 lp.sched_priority = p->rt_priority; 5290 rcu_read_unlock(); 5291 5292 /* 5293 * This one might sleep, we cannot do it with a spinlock held ... 5294 */ 5295 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5296 5297 return retval; 5298 5299 out_unlock: 5300 rcu_read_unlock(); 5301 return retval; 5302 } 5303 5304 /* 5305 * Copy the kernel size attribute structure (which might be larger 5306 * than what user-space knows about) to user-space. 5307 * 5308 * Note that all cases are valid: user-space buffer can be larger or 5309 * smaller than the kernel-space buffer. The usual case is that both 5310 * have the same size. 5311 */ 5312 static int 5313 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5314 struct sched_attr *kattr, 5315 unsigned int usize) 5316 { 5317 unsigned int ksize = sizeof(*kattr); 5318 5319 if (!access_ok(uattr, usize)) 5320 return -EFAULT; 5321 5322 /* 5323 * sched_getattr() ABI forwards and backwards compatibility: 5324 * 5325 * If usize == ksize then we just copy everything to user-space and all is good. 5326 * 5327 * If usize < ksize then we only copy as much as user-space has space for, 5328 * this keeps ABI compatibility as well. We skip the rest. 5329 * 5330 * If usize > ksize then user-space is using a newer version of the ABI, 5331 * which part the kernel doesn't know about. Just ignore it - tooling can 5332 * detect the kernel's knowledge of attributes from the attr->size value 5333 * which is set to ksize in this case. 5334 */ 5335 kattr->size = min(usize, ksize); 5336 5337 if (copy_to_user(uattr, kattr, kattr->size)) 5338 return -EFAULT; 5339 5340 return 0; 5341 } 5342 5343 /** 5344 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5345 * @pid: the pid in question. 5346 * @uattr: structure containing the extended parameters. 5347 * @usize: sizeof(attr) for fwd/bwd comp. 5348 * @flags: for future extension. 5349 */ 5350 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5351 unsigned int, usize, unsigned int, flags) 5352 { 5353 struct sched_attr kattr = { }; 5354 struct task_struct *p; 5355 int retval; 5356 5357 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5358 usize < SCHED_ATTR_SIZE_VER0 || flags) 5359 return -EINVAL; 5360 5361 rcu_read_lock(); 5362 p = find_process_by_pid(pid); 5363 retval = -ESRCH; 5364 if (!p) 5365 goto out_unlock; 5366 5367 retval = security_task_getscheduler(p); 5368 if (retval) 5369 goto out_unlock; 5370 5371 kattr.sched_policy = p->policy; 5372 if (p->sched_reset_on_fork) 5373 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5374 if (task_has_dl_policy(p)) 5375 __getparam_dl(p, &kattr); 5376 else if (task_has_rt_policy(p)) 5377 kattr.sched_priority = p->rt_priority; 5378 else 5379 kattr.sched_nice = task_nice(p); 5380 5381 #ifdef CONFIG_UCLAMP_TASK 5382 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5383 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5384 #endif 5385 5386 rcu_read_unlock(); 5387 5388 return sched_attr_copy_to_user(uattr, &kattr, usize); 5389 5390 out_unlock: 5391 rcu_read_unlock(); 5392 return retval; 5393 } 5394 5395 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5396 { 5397 cpumask_var_t cpus_allowed, new_mask; 5398 struct task_struct *p; 5399 int retval; 5400 5401 rcu_read_lock(); 5402 5403 p = find_process_by_pid(pid); 5404 if (!p) { 5405 rcu_read_unlock(); 5406 return -ESRCH; 5407 } 5408 5409 /* Prevent p going away */ 5410 get_task_struct(p); 5411 rcu_read_unlock(); 5412 5413 if (p->flags & PF_NO_SETAFFINITY) { 5414 retval = -EINVAL; 5415 goto out_put_task; 5416 } 5417 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5418 retval = -ENOMEM; 5419 goto out_put_task; 5420 } 5421 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5422 retval = -ENOMEM; 5423 goto out_free_cpus_allowed; 5424 } 5425 retval = -EPERM; 5426 if (!check_same_owner(p)) { 5427 rcu_read_lock(); 5428 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5429 rcu_read_unlock(); 5430 goto out_free_new_mask; 5431 } 5432 rcu_read_unlock(); 5433 } 5434 5435 retval = security_task_setscheduler(p); 5436 if (retval) 5437 goto out_free_new_mask; 5438 5439 5440 cpuset_cpus_allowed(p, cpus_allowed); 5441 cpumask_and(new_mask, in_mask, cpus_allowed); 5442 5443 /* 5444 * Since bandwidth control happens on root_domain basis, 5445 * if admission test is enabled, we only admit -deadline 5446 * tasks allowed to run on all the CPUs in the task's 5447 * root_domain. 5448 */ 5449 #ifdef CONFIG_SMP 5450 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5451 rcu_read_lock(); 5452 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5453 retval = -EBUSY; 5454 rcu_read_unlock(); 5455 goto out_free_new_mask; 5456 } 5457 rcu_read_unlock(); 5458 } 5459 #endif 5460 again: 5461 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5462 5463 if (!retval) { 5464 cpuset_cpus_allowed(p, cpus_allowed); 5465 if (!cpumask_subset(new_mask, cpus_allowed)) { 5466 /* 5467 * We must have raced with a concurrent cpuset 5468 * update. Just reset the cpus_allowed to the 5469 * cpuset's cpus_allowed 5470 */ 5471 cpumask_copy(new_mask, cpus_allowed); 5472 goto again; 5473 } 5474 } 5475 out_free_new_mask: 5476 free_cpumask_var(new_mask); 5477 out_free_cpus_allowed: 5478 free_cpumask_var(cpus_allowed); 5479 out_put_task: 5480 put_task_struct(p); 5481 return retval; 5482 } 5483 5484 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5485 struct cpumask *new_mask) 5486 { 5487 if (len < cpumask_size()) 5488 cpumask_clear(new_mask); 5489 else if (len > cpumask_size()) 5490 len = cpumask_size(); 5491 5492 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5493 } 5494 5495 /** 5496 * sys_sched_setaffinity - set the CPU affinity of a process 5497 * @pid: pid of the process 5498 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5499 * @user_mask_ptr: user-space pointer to the new CPU mask 5500 * 5501 * Return: 0 on success. An error code otherwise. 5502 */ 5503 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5504 unsigned long __user *, user_mask_ptr) 5505 { 5506 cpumask_var_t new_mask; 5507 int retval; 5508 5509 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5510 return -ENOMEM; 5511 5512 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5513 if (retval == 0) 5514 retval = sched_setaffinity(pid, new_mask); 5515 free_cpumask_var(new_mask); 5516 return retval; 5517 } 5518 5519 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5520 { 5521 struct task_struct *p; 5522 unsigned long flags; 5523 int retval; 5524 5525 rcu_read_lock(); 5526 5527 retval = -ESRCH; 5528 p = find_process_by_pid(pid); 5529 if (!p) 5530 goto out_unlock; 5531 5532 retval = security_task_getscheduler(p); 5533 if (retval) 5534 goto out_unlock; 5535 5536 raw_spin_lock_irqsave(&p->pi_lock, flags); 5537 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5538 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5539 5540 out_unlock: 5541 rcu_read_unlock(); 5542 5543 return retval; 5544 } 5545 5546 /** 5547 * sys_sched_getaffinity - get the CPU affinity of a process 5548 * @pid: pid of the process 5549 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5550 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5551 * 5552 * Return: size of CPU mask copied to user_mask_ptr on success. An 5553 * error code otherwise. 5554 */ 5555 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5556 unsigned long __user *, user_mask_ptr) 5557 { 5558 int ret; 5559 cpumask_var_t mask; 5560 5561 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5562 return -EINVAL; 5563 if (len & (sizeof(unsigned long)-1)) 5564 return -EINVAL; 5565 5566 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5567 return -ENOMEM; 5568 5569 ret = sched_getaffinity(pid, mask); 5570 if (ret == 0) { 5571 unsigned int retlen = min(len, cpumask_size()); 5572 5573 if (copy_to_user(user_mask_ptr, mask, retlen)) 5574 ret = -EFAULT; 5575 else 5576 ret = retlen; 5577 } 5578 free_cpumask_var(mask); 5579 5580 return ret; 5581 } 5582 5583 /** 5584 * sys_sched_yield - yield the current processor to other threads. 5585 * 5586 * This function yields the current CPU to other tasks. If there are no 5587 * other threads running on this CPU then this function will return. 5588 * 5589 * Return: 0. 5590 */ 5591 static void do_sched_yield(void) 5592 { 5593 struct rq_flags rf; 5594 struct rq *rq; 5595 5596 rq = this_rq_lock_irq(&rf); 5597 5598 schedstat_inc(rq->yld_count); 5599 current->sched_class->yield_task(rq); 5600 5601 /* 5602 * Since we are going to call schedule() anyway, there's 5603 * no need to preempt or enable interrupts: 5604 */ 5605 preempt_disable(); 5606 rq_unlock(rq, &rf); 5607 sched_preempt_enable_no_resched(); 5608 5609 schedule(); 5610 } 5611 5612 SYSCALL_DEFINE0(sched_yield) 5613 { 5614 do_sched_yield(); 5615 return 0; 5616 } 5617 5618 #ifndef CONFIG_PREEMPTION 5619 int __sched _cond_resched(void) 5620 { 5621 if (should_resched(0)) { 5622 preempt_schedule_common(); 5623 return 1; 5624 } 5625 rcu_all_qs(); 5626 return 0; 5627 } 5628 EXPORT_SYMBOL(_cond_resched); 5629 #endif 5630 5631 /* 5632 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5633 * call schedule, and on return reacquire the lock. 5634 * 5635 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 5636 * operations here to prevent schedule() from being called twice (once via 5637 * spin_unlock(), once by hand). 5638 */ 5639 int __cond_resched_lock(spinlock_t *lock) 5640 { 5641 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5642 int ret = 0; 5643 5644 lockdep_assert_held(lock); 5645 5646 if (spin_needbreak(lock) || resched) { 5647 spin_unlock(lock); 5648 if (resched) 5649 preempt_schedule_common(); 5650 else 5651 cpu_relax(); 5652 ret = 1; 5653 spin_lock(lock); 5654 } 5655 return ret; 5656 } 5657 EXPORT_SYMBOL(__cond_resched_lock); 5658 5659 /** 5660 * yield - yield the current processor to other threads. 5661 * 5662 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5663 * 5664 * The scheduler is at all times free to pick the calling task as the most 5665 * eligible task to run, if removing the yield() call from your code breaks 5666 * it, its already broken. 5667 * 5668 * Typical broken usage is: 5669 * 5670 * while (!event) 5671 * yield(); 5672 * 5673 * where one assumes that yield() will let 'the other' process run that will 5674 * make event true. If the current task is a SCHED_FIFO task that will never 5675 * happen. Never use yield() as a progress guarantee!! 5676 * 5677 * If you want to use yield() to wait for something, use wait_event(). 5678 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5679 * If you still want to use yield(), do not! 5680 */ 5681 void __sched yield(void) 5682 { 5683 set_current_state(TASK_RUNNING); 5684 do_sched_yield(); 5685 } 5686 EXPORT_SYMBOL(yield); 5687 5688 /** 5689 * yield_to - yield the current processor to another thread in 5690 * your thread group, or accelerate that thread toward the 5691 * processor it's on. 5692 * @p: target task 5693 * @preempt: whether task preemption is allowed or not 5694 * 5695 * It's the caller's job to ensure that the target task struct 5696 * can't go away on us before we can do any checks. 5697 * 5698 * Return: 5699 * true (>0) if we indeed boosted the target task. 5700 * false (0) if we failed to boost the target. 5701 * -ESRCH if there's no task to yield to. 5702 */ 5703 int __sched yield_to(struct task_struct *p, bool preempt) 5704 { 5705 struct task_struct *curr = current; 5706 struct rq *rq, *p_rq; 5707 unsigned long flags; 5708 int yielded = 0; 5709 5710 local_irq_save(flags); 5711 rq = this_rq(); 5712 5713 again: 5714 p_rq = task_rq(p); 5715 /* 5716 * If we're the only runnable task on the rq and target rq also 5717 * has only one task, there's absolutely no point in yielding. 5718 */ 5719 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5720 yielded = -ESRCH; 5721 goto out_irq; 5722 } 5723 5724 double_rq_lock(rq, p_rq); 5725 if (task_rq(p) != p_rq) { 5726 double_rq_unlock(rq, p_rq); 5727 goto again; 5728 } 5729 5730 if (!curr->sched_class->yield_to_task) 5731 goto out_unlock; 5732 5733 if (curr->sched_class != p->sched_class) 5734 goto out_unlock; 5735 5736 if (task_running(p_rq, p) || p->state) 5737 goto out_unlock; 5738 5739 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5740 if (yielded) { 5741 schedstat_inc(rq->yld_count); 5742 /* 5743 * Make p's CPU reschedule; pick_next_entity takes care of 5744 * fairness. 5745 */ 5746 if (preempt && rq != p_rq) 5747 resched_curr(p_rq); 5748 } 5749 5750 out_unlock: 5751 double_rq_unlock(rq, p_rq); 5752 out_irq: 5753 local_irq_restore(flags); 5754 5755 if (yielded > 0) 5756 schedule(); 5757 5758 return yielded; 5759 } 5760 EXPORT_SYMBOL_GPL(yield_to); 5761 5762 int io_schedule_prepare(void) 5763 { 5764 int old_iowait = current->in_iowait; 5765 5766 current->in_iowait = 1; 5767 blk_schedule_flush_plug(current); 5768 5769 return old_iowait; 5770 } 5771 5772 void io_schedule_finish(int token) 5773 { 5774 current->in_iowait = token; 5775 } 5776 5777 /* 5778 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5779 * that process accounting knows that this is a task in IO wait state. 5780 */ 5781 long __sched io_schedule_timeout(long timeout) 5782 { 5783 int token; 5784 long ret; 5785 5786 token = io_schedule_prepare(); 5787 ret = schedule_timeout(timeout); 5788 io_schedule_finish(token); 5789 5790 return ret; 5791 } 5792 EXPORT_SYMBOL(io_schedule_timeout); 5793 5794 void __sched io_schedule(void) 5795 { 5796 int token; 5797 5798 token = io_schedule_prepare(); 5799 schedule(); 5800 io_schedule_finish(token); 5801 } 5802 EXPORT_SYMBOL(io_schedule); 5803 5804 /** 5805 * sys_sched_get_priority_max - return maximum RT priority. 5806 * @policy: scheduling class. 5807 * 5808 * Return: On success, this syscall returns the maximum 5809 * rt_priority that can be used by a given scheduling class. 5810 * On failure, a negative error code is returned. 5811 */ 5812 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5813 { 5814 int ret = -EINVAL; 5815 5816 switch (policy) { 5817 case SCHED_FIFO: 5818 case SCHED_RR: 5819 ret = MAX_USER_RT_PRIO-1; 5820 break; 5821 case SCHED_DEADLINE: 5822 case SCHED_NORMAL: 5823 case SCHED_BATCH: 5824 case SCHED_IDLE: 5825 ret = 0; 5826 break; 5827 } 5828 return ret; 5829 } 5830 5831 /** 5832 * sys_sched_get_priority_min - return minimum RT priority. 5833 * @policy: scheduling class. 5834 * 5835 * Return: On success, this syscall returns the minimum 5836 * rt_priority that can be used by a given scheduling class. 5837 * On failure, a negative error code is returned. 5838 */ 5839 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5840 { 5841 int ret = -EINVAL; 5842 5843 switch (policy) { 5844 case SCHED_FIFO: 5845 case SCHED_RR: 5846 ret = 1; 5847 break; 5848 case SCHED_DEADLINE: 5849 case SCHED_NORMAL: 5850 case SCHED_BATCH: 5851 case SCHED_IDLE: 5852 ret = 0; 5853 } 5854 return ret; 5855 } 5856 5857 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5858 { 5859 struct task_struct *p; 5860 unsigned int time_slice; 5861 struct rq_flags rf; 5862 struct rq *rq; 5863 int retval; 5864 5865 if (pid < 0) 5866 return -EINVAL; 5867 5868 retval = -ESRCH; 5869 rcu_read_lock(); 5870 p = find_process_by_pid(pid); 5871 if (!p) 5872 goto out_unlock; 5873 5874 retval = security_task_getscheduler(p); 5875 if (retval) 5876 goto out_unlock; 5877 5878 rq = task_rq_lock(p, &rf); 5879 time_slice = 0; 5880 if (p->sched_class->get_rr_interval) 5881 time_slice = p->sched_class->get_rr_interval(rq, p); 5882 task_rq_unlock(rq, p, &rf); 5883 5884 rcu_read_unlock(); 5885 jiffies_to_timespec64(time_slice, t); 5886 return 0; 5887 5888 out_unlock: 5889 rcu_read_unlock(); 5890 return retval; 5891 } 5892 5893 /** 5894 * sys_sched_rr_get_interval - return the default timeslice of a process. 5895 * @pid: pid of the process. 5896 * @interval: userspace pointer to the timeslice value. 5897 * 5898 * this syscall writes the default timeslice value of a given process 5899 * into the user-space timespec buffer. A value of '0' means infinity. 5900 * 5901 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5902 * an error code. 5903 */ 5904 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5905 struct __kernel_timespec __user *, interval) 5906 { 5907 struct timespec64 t; 5908 int retval = sched_rr_get_interval(pid, &t); 5909 5910 if (retval == 0) 5911 retval = put_timespec64(&t, interval); 5912 5913 return retval; 5914 } 5915 5916 #ifdef CONFIG_COMPAT_32BIT_TIME 5917 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5918 struct old_timespec32 __user *, interval) 5919 { 5920 struct timespec64 t; 5921 int retval = sched_rr_get_interval(pid, &t); 5922 5923 if (retval == 0) 5924 retval = put_old_timespec32(&t, interval); 5925 return retval; 5926 } 5927 #endif 5928 5929 void sched_show_task(struct task_struct *p) 5930 { 5931 unsigned long free = 0; 5932 int ppid; 5933 5934 if (!try_get_task_stack(p)) 5935 return; 5936 5937 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5938 5939 if (p->state == TASK_RUNNING) 5940 printk(KERN_CONT " running task "); 5941 #ifdef CONFIG_DEBUG_STACK_USAGE 5942 free = stack_not_used(p); 5943 #endif 5944 ppid = 0; 5945 rcu_read_lock(); 5946 if (pid_alive(p)) 5947 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5948 rcu_read_unlock(); 5949 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5950 task_pid_nr(p), ppid, 5951 (unsigned long)task_thread_info(p)->flags); 5952 5953 print_worker_info(KERN_INFO, p); 5954 show_stack(p, NULL); 5955 put_task_stack(p); 5956 } 5957 EXPORT_SYMBOL_GPL(sched_show_task); 5958 5959 static inline bool 5960 state_filter_match(unsigned long state_filter, struct task_struct *p) 5961 { 5962 /* no filter, everything matches */ 5963 if (!state_filter) 5964 return true; 5965 5966 /* filter, but doesn't match */ 5967 if (!(p->state & state_filter)) 5968 return false; 5969 5970 /* 5971 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5972 * TASK_KILLABLE). 5973 */ 5974 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5975 return false; 5976 5977 return true; 5978 } 5979 5980 5981 void show_state_filter(unsigned long state_filter) 5982 { 5983 struct task_struct *g, *p; 5984 5985 #if BITS_PER_LONG == 32 5986 printk(KERN_INFO 5987 " task PC stack pid father\n"); 5988 #else 5989 printk(KERN_INFO 5990 " task PC stack pid father\n"); 5991 #endif 5992 rcu_read_lock(); 5993 for_each_process_thread(g, p) { 5994 /* 5995 * reset the NMI-timeout, listing all files on a slow 5996 * console might take a lot of time: 5997 * Also, reset softlockup watchdogs on all CPUs, because 5998 * another CPU might be blocked waiting for us to process 5999 * an IPI. 6000 */ 6001 touch_nmi_watchdog(); 6002 touch_all_softlockup_watchdogs(); 6003 if (state_filter_match(state_filter, p)) 6004 sched_show_task(p); 6005 } 6006 6007 #ifdef CONFIG_SCHED_DEBUG 6008 if (!state_filter) 6009 sysrq_sched_debug_show(); 6010 #endif 6011 rcu_read_unlock(); 6012 /* 6013 * Only show locks if all tasks are dumped: 6014 */ 6015 if (!state_filter) 6016 debug_show_all_locks(); 6017 } 6018 6019 /** 6020 * init_idle - set up an idle thread for a given CPU 6021 * @idle: task in question 6022 * @cpu: CPU the idle task belongs to 6023 * 6024 * NOTE: this function does not set the idle thread's NEED_RESCHED 6025 * flag, to make booting more robust. 6026 */ 6027 void init_idle(struct task_struct *idle, int cpu) 6028 { 6029 struct rq *rq = cpu_rq(cpu); 6030 unsigned long flags; 6031 6032 __sched_fork(0, idle); 6033 6034 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6035 raw_spin_lock(&rq->lock); 6036 6037 idle->state = TASK_RUNNING; 6038 idle->se.exec_start = sched_clock(); 6039 idle->flags |= PF_IDLE; 6040 6041 kasan_unpoison_task_stack(idle); 6042 6043 #ifdef CONFIG_SMP 6044 /* 6045 * Its possible that init_idle() gets called multiple times on a task, 6046 * in that case do_set_cpus_allowed() will not do the right thing. 6047 * 6048 * And since this is boot we can forgo the serialization. 6049 */ 6050 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6051 #endif 6052 /* 6053 * We're having a chicken and egg problem, even though we are 6054 * holding rq->lock, the CPU isn't yet set to this CPU so the 6055 * lockdep check in task_group() will fail. 6056 * 6057 * Similar case to sched_fork(). / Alternatively we could 6058 * use task_rq_lock() here and obtain the other rq->lock. 6059 * 6060 * Silence PROVE_RCU 6061 */ 6062 rcu_read_lock(); 6063 __set_task_cpu(idle, cpu); 6064 rcu_read_unlock(); 6065 6066 rq->idle = idle; 6067 rcu_assign_pointer(rq->curr, idle); 6068 idle->on_rq = TASK_ON_RQ_QUEUED; 6069 #ifdef CONFIG_SMP 6070 idle->on_cpu = 1; 6071 #endif 6072 raw_spin_unlock(&rq->lock); 6073 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6074 6075 /* Set the preempt count _outside_ the spinlocks! */ 6076 init_idle_preempt_count(idle, cpu); 6077 6078 /* 6079 * The idle tasks have their own, simple scheduling class: 6080 */ 6081 idle->sched_class = &idle_sched_class; 6082 ftrace_graph_init_idle_task(idle, cpu); 6083 vtime_init_idle(idle, cpu); 6084 #ifdef CONFIG_SMP 6085 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6086 #endif 6087 } 6088 6089 #ifdef CONFIG_SMP 6090 6091 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6092 const struct cpumask *trial) 6093 { 6094 int ret = 1; 6095 6096 if (!cpumask_weight(cur)) 6097 return ret; 6098 6099 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6100 6101 return ret; 6102 } 6103 6104 int task_can_attach(struct task_struct *p, 6105 const struct cpumask *cs_cpus_allowed) 6106 { 6107 int ret = 0; 6108 6109 /* 6110 * Kthreads which disallow setaffinity shouldn't be moved 6111 * to a new cpuset; we don't want to change their CPU 6112 * affinity and isolating such threads by their set of 6113 * allowed nodes is unnecessary. Thus, cpusets are not 6114 * applicable for such threads. This prevents checking for 6115 * success of set_cpus_allowed_ptr() on all attached tasks 6116 * before cpus_mask may be changed. 6117 */ 6118 if (p->flags & PF_NO_SETAFFINITY) { 6119 ret = -EINVAL; 6120 goto out; 6121 } 6122 6123 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6124 cs_cpus_allowed)) 6125 ret = dl_task_can_attach(p, cs_cpus_allowed); 6126 6127 out: 6128 return ret; 6129 } 6130 6131 bool sched_smp_initialized __read_mostly; 6132 6133 #ifdef CONFIG_NUMA_BALANCING 6134 /* Migrate current task p to target_cpu */ 6135 int migrate_task_to(struct task_struct *p, int target_cpu) 6136 { 6137 struct migration_arg arg = { p, target_cpu }; 6138 int curr_cpu = task_cpu(p); 6139 6140 if (curr_cpu == target_cpu) 6141 return 0; 6142 6143 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6144 return -EINVAL; 6145 6146 /* TODO: This is not properly updating schedstats */ 6147 6148 trace_sched_move_numa(p, curr_cpu, target_cpu); 6149 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6150 } 6151 6152 /* 6153 * Requeue a task on a given node and accurately track the number of NUMA 6154 * tasks on the runqueues 6155 */ 6156 void sched_setnuma(struct task_struct *p, int nid) 6157 { 6158 bool queued, running; 6159 struct rq_flags rf; 6160 struct rq *rq; 6161 6162 rq = task_rq_lock(p, &rf); 6163 queued = task_on_rq_queued(p); 6164 running = task_current(rq, p); 6165 6166 if (queued) 6167 dequeue_task(rq, p, DEQUEUE_SAVE); 6168 if (running) 6169 put_prev_task(rq, p); 6170 6171 p->numa_preferred_nid = nid; 6172 6173 if (queued) 6174 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6175 if (running) 6176 set_next_task(rq, p); 6177 task_rq_unlock(rq, p, &rf); 6178 } 6179 #endif /* CONFIG_NUMA_BALANCING */ 6180 6181 #ifdef CONFIG_HOTPLUG_CPU 6182 /* 6183 * Ensure that the idle task is using init_mm right before its CPU goes 6184 * offline. 6185 */ 6186 void idle_task_exit(void) 6187 { 6188 struct mm_struct *mm = current->active_mm; 6189 6190 BUG_ON(cpu_online(smp_processor_id())); 6191 6192 if (mm != &init_mm) { 6193 switch_mm(mm, &init_mm, current); 6194 current->active_mm = &init_mm; 6195 finish_arch_post_lock_switch(); 6196 } 6197 mmdrop(mm); 6198 } 6199 6200 /* 6201 * Since this CPU is going 'away' for a while, fold any nr_active delta 6202 * we might have. Assumes we're called after migrate_tasks() so that the 6203 * nr_active count is stable. We need to take the teardown thread which 6204 * is calling this into account, so we hand in adjust = 1 to the load 6205 * calculation. 6206 * 6207 * Also see the comment "Global load-average calculations". 6208 */ 6209 static void calc_load_migrate(struct rq *rq) 6210 { 6211 long delta = calc_load_fold_active(rq, 1); 6212 if (delta) 6213 atomic_long_add(delta, &calc_load_tasks); 6214 } 6215 6216 static struct task_struct *__pick_migrate_task(struct rq *rq) 6217 { 6218 const struct sched_class *class; 6219 struct task_struct *next; 6220 6221 for_each_class(class) { 6222 next = class->pick_next_task(rq); 6223 if (next) { 6224 next->sched_class->put_prev_task(rq, next); 6225 return next; 6226 } 6227 } 6228 6229 /* The idle class should always have a runnable task */ 6230 BUG(); 6231 } 6232 6233 /* 6234 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6235 * try_to_wake_up()->select_task_rq(). 6236 * 6237 * Called with rq->lock held even though we'er in stop_machine() and 6238 * there's no concurrency possible, we hold the required locks anyway 6239 * because of lock validation efforts. 6240 */ 6241 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6242 { 6243 struct rq *rq = dead_rq; 6244 struct task_struct *next, *stop = rq->stop; 6245 struct rq_flags orf = *rf; 6246 int dest_cpu; 6247 6248 /* 6249 * Fudge the rq selection such that the below task selection loop 6250 * doesn't get stuck on the currently eligible stop task. 6251 * 6252 * We're currently inside stop_machine() and the rq is either stuck 6253 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6254 * either way we should never end up calling schedule() until we're 6255 * done here. 6256 */ 6257 rq->stop = NULL; 6258 6259 /* 6260 * put_prev_task() and pick_next_task() sched 6261 * class method both need to have an up-to-date 6262 * value of rq->clock[_task] 6263 */ 6264 update_rq_clock(rq); 6265 6266 for (;;) { 6267 /* 6268 * There's this thread running, bail when that's the only 6269 * remaining thread: 6270 */ 6271 if (rq->nr_running == 1) 6272 break; 6273 6274 next = __pick_migrate_task(rq); 6275 6276 /* 6277 * Rules for changing task_struct::cpus_mask are holding 6278 * both pi_lock and rq->lock, such that holding either 6279 * stabilizes the mask. 6280 * 6281 * Drop rq->lock is not quite as disastrous as it usually is 6282 * because !cpu_active at this point, which means load-balance 6283 * will not interfere. Also, stop-machine. 6284 */ 6285 rq_unlock(rq, rf); 6286 raw_spin_lock(&next->pi_lock); 6287 rq_relock(rq, rf); 6288 6289 /* 6290 * Since we're inside stop-machine, _nothing_ should have 6291 * changed the task, WARN if weird stuff happened, because in 6292 * that case the above rq->lock drop is a fail too. 6293 */ 6294 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6295 raw_spin_unlock(&next->pi_lock); 6296 continue; 6297 } 6298 6299 /* Find suitable destination for @next, with force if needed. */ 6300 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6301 rq = __migrate_task(rq, rf, next, dest_cpu); 6302 if (rq != dead_rq) { 6303 rq_unlock(rq, rf); 6304 rq = dead_rq; 6305 *rf = orf; 6306 rq_relock(rq, rf); 6307 } 6308 raw_spin_unlock(&next->pi_lock); 6309 } 6310 6311 rq->stop = stop; 6312 } 6313 #endif /* CONFIG_HOTPLUG_CPU */ 6314 6315 void set_rq_online(struct rq *rq) 6316 { 6317 if (!rq->online) { 6318 const struct sched_class *class; 6319 6320 cpumask_set_cpu(rq->cpu, rq->rd->online); 6321 rq->online = 1; 6322 6323 for_each_class(class) { 6324 if (class->rq_online) 6325 class->rq_online(rq); 6326 } 6327 } 6328 } 6329 6330 void set_rq_offline(struct rq *rq) 6331 { 6332 if (rq->online) { 6333 const struct sched_class *class; 6334 6335 for_each_class(class) { 6336 if (class->rq_offline) 6337 class->rq_offline(rq); 6338 } 6339 6340 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6341 rq->online = 0; 6342 } 6343 } 6344 6345 /* 6346 * used to mark begin/end of suspend/resume: 6347 */ 6348 static int num_cpus_frozen; 6349 6350 /* 6351 * Update cpusets according to cpu_active mask. If cpusets are 6352 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6353 * around partition_sched_domains(). 6354 * 6355 * If we come here as part of a suspend/resume, don't touch cpusets because we 6356 * want to restore it back to its original state upon resume anyway. 6357 */ 6358 static void cpuset_cpu_active(void) 6359 { 6360 if (cpuhp_tasks_frozen) { 6361 /* 6362 * num_cpus_frozen tracks how many CPUs are involved in suspend 6363 * resume sequence. As long as this is not the last online 6364 * operation in the resume sequence, just build a single sched 6365 * domain, ignoring cpusets. 6366 */ 6367 partition_sched_domains(1, NULL, NULL); 6368 if (--num_cpus_frozen) 6369 return; 6370 /* 6371 * This is the last CPU online operation. So fall through and 6372 * restore the original sched domains by considering the 6373 * cpuset configurations. 6374 */ 6375 cpuset_force_rebuild(); 6376 } 6377 cpuset_update_active_cpus(); 6378 } 6379 6380 static int cpuset_cpu_inactive(unsigned int cpu) 6381 { 6382 if (!cpuhp_tasks_frozen) { 6383 if (dl_cpu_busy(cpu)) 6384 return -EBUSY; 6385 cpuset_update_active_cpus(); 6386 } else { 6387 num_cpus_frozen++; 6388 partition_sched_domains(1, NULL, NULL); 6389 } 6390 return 0; 6391 } 6392 6393 int sched_cpu_activate(unsigned int cpu) 6394 { 6395 struct rq *rq = cpu_rq(cpu); 6396 struct rq_flags rf; 6397 6398 #ifdef CONFIG_SCHED_SMT 6399 /* 6400 * When going up, increment the number of cores with SMT present. 6401 */ 6402 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6403 static_branch_inc_cpuslocked(&sched_smt_present); 6404 #endif 6405 set_cpu_active(cpu, true); 6406 6407 if (sched_smp_initialized) { 6408 sched_domains_numa_masks_set(cpu); 6409 cpuset_cpu_active(); 6410 } 6411 6412 /* 6413 * Put the rq online, if not already. This happens: 6414 * 6415 * 1) In the early boot process, because we build the real domains 6416 * after all CPUs have been brought up. 6417 * 6418 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6419 * domains. 6420 */ 6421 rq_lock_irqsave(rq, &rf); 6422 if (rq->rd) { 6423 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6424 set_rq_online(rq); 6425 } 6426 rq_unlock_irqrestore(rq, &rf); 6427 6428 return 0; 6429 } 6430 6431 int sched_cpu_deactivate(unsigned int cpu) 6432 { 6433 int ret; 6434 6435 set_cpu_active(cpu, false); 6436 /* 6437 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6438 * users of this state to go away such that all new such users will 6439 * observe it. 6440 * 6441 * Do sync before park smpboot threads to take care the rcu boost case. 6442 */ 6443 synchronize_rcu(); 6444 6445 #ifdef CONFIG_SCHED_SMT 6446 /* 6447 * When going down, decrement the number of cores with SMT present. 6448 */ 6449 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6450 static_branch_dec_cpuslocked(&sched_smt_present); 6451 #endif 6452 6453 if (!sched_smp_initialized) 6454 return 0; 6455 6456 ret = cpuset_cpu_inactive(cpu); 6457 if (ret) { 6458 set_cpu_active(cpu, true); 6459 return ret; 6460 } 6461 sched_domains_numa_masks_clear(cpu); 6462 return 0; 6463 } 6464 6465 static void sched_rq_cpu_starting(unsigned int cpu) 6466 { 6467 struct rq *rq = cpu_rq(cpu); 6468 6469 rq->calc_load_update = calc_load_update; 6470 update_max_interval(); 6471 } 6472 6473 int sched_cpu_starting(unsigned int cpu) 6474 { 6475 sched_rq_cpu_starting(cpu); 6476 sched_tick_start(cpu); 6477 return 0; 6478 } 6479 6480 #ifdef CONFIG_HOTPLUG_CPU 6481 int sched_cpu_dying(unsigned int cpu) 6482 { 6483 struct rq *rq = cpu_rq(cpu); 6484 struct rq_flags rf; 6485 6486 /* Handle pending wakeups and then migrate everything off */ 6487 sched_ttwu_pending(); 6488 sched_tick_stop(cpu); 6489 6490 rq_lock_irqsave(rq, &rf); 6491 if (rq->rd) { 6492 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6493 set_rq_offline(rq); 6494 } 6495 migrate_tasks(rq, &rf); 6496 BUG_ON(rq->nr_running != 1); 6497 rq_unlock_irqrestore(rq, &rf); 6498 6499 calc_load_migrate(rq); 6500 update_max_interval(); 6501 nohz_balance_exit_idle(rq); 6502 hrtick_clear(rq); 6503 return 0; 6504 } 6505 #endif 6506 6507 void __init sched_init_smp(void) 6508 { 6509 sched_init_numa(); 6510 6511 /* 6512 * There's no userspace yet to cause hotplug operations; hence all the 6513 * CPU masks are stable and all blatant races in the below code cannot 6514 * happen. 6515 */ 6516 mutex_lock(&sched_domains_mutex); 6517 sched_init_domains(cpu_active_mask); 6518 mutex_unlock(&sched_domains_mutex); 6519 6520 /* Move init over to a non-isolated CPU */ 6521 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6522 BUG(); 6523 sched_init_granularity(); 6524 6525 init_sched_rt_class(); 6526 init_sched_dl_class(); 6527 6528 sched_smp_initialized = true; 6529 } 6530 6531 static int __init migration_init(void) 6532 { 6533 sched_cpu_starting(smp_processor_id()); 6534 return 0; 6535 } 6536 early_initcall(migration_init); 6537 6538 #else 6539 void __init sched_init_smp(void) 6540 { 6541 sched_init_granularity(); 6542 } 6543 #endif /* CONFIG_SMP */ 6544 6545 int in_sched_functions(unsigned long addr) 6546 { 6547 return in_lock_functions(addr) || 6548 (addr >= (unsigned long)__sched_text_start 6549 && addr < (unsigned long)__sched_text_end); 6550 } 6551 6552 #ifdef CONFIG_CGROUP_SCHED 6553 /* 6554 * Default task group. 6555 * Every task in system belongs to this group at bootup. 6556 */ 6557 struct task_group root_task_group; 6558 LIST_HEAD(task_groups); 6559 6560 /* Cacheline aligned slab cache for task_group */ 6561 static struct kmem_cache *task_group_cache __read_mostly; 6562 #endif 6563 6564 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6565 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6566 6567 void __init sched_init(void) 6568 { 6569 unsigned long ptr = 0; 6570 int i; 6571 6572 wait_bit_init(); 6573 6574 #ifdef CONFIG_FAIR_GROUP_SCHED 6575 ptr += 2 * nr_cpu_ids * sizeof(void **); 6576 #endif 6577 #ifdef CONFIG_RT_GROUP_SCHED 6578 ptr += 2 * nr_cpu_ids * sizeof(void **); 6579 #endif 6580 if (ptr) { 6581 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 6582 6583 #ifdef CONFIG_FAIR_GROUP_SCHED 6584 root_task_group.se = (struct sched_entity **)ptr; 6585 ptr += nr_cpu_ids * sizeof(void **); 6586 6587 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6588 ptr += nr_cpu_ids * sizeof(void **); 6589 6590 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6591 #ifdef CONFIG_RT_GROUP_SCHED 6592 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6593 ptr += nr_cpu_ids * sizeof(void **); 6594 6595 root_task_group.rt_rq = (struct rt_rq **)ptr; 6596 ptr += nr_cpu_ids * sizeof(void **); 6597 6598 #endif /* CONFIG_RT_GROUP_SCHED */ 6599 } 6600 #ifdef CONFIG_CPUMASK_OFFSTACK 6601 for_each_possible_cpu(i) { 6602 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6603 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6604 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6605 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6606 } 6607 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6608 6609 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6610 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6611 6612 #ifdef CONFIG_SMP 6613 init_defrootdomain(); 6614 #endif 6615 6616 #ifdef CONFIG_RT_GROUP_SCHED 6617 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6618 global_rt_period(), global_rt_runtime()); 6619 #endif /* CONFIG_RT_GROUP_SCHED */ 6620 6621 #ifdef CONFIG_CGROUP_SCHED 6622 task_group_cache = KMEM_CACHE(task_group, 0); 6623 6624 list_add(&root_task_group.list, &task_groups); 6625 INIT_LIST_HEAD(&root_task_group.children); 6626 INIT_LIST_HEAD(&root_task_group.siblings); 6627 autogroup_init(&init_task); 6628 #endif /* CONFIG_CGROUP_SCHED */ 6629 6630 for_each_possible_cpu(i) { 6631 struct rq *rq; 6632 6633 rq = cpu_rq(i); 6634 raw_spin_lock_init(&rq->lock); 6635 rq->nr_running = 0; 6636 rq->calc_load_active = 0; 6637 rq->calc_load_update = jiffies + LOAD_FREQ; 6638 init_cfs_rq(&rq->cfs); 6639 init_rt_rq(&rq->rt); 6640 init_dl_rq(&rq->dl); 6641 #ifdef CONFIG_FAIR_GROUP_SCHED 6642 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6643 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6644 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6645 /* 6646 * How much CPU bandwidth does root_task_group get? 6647 * 6648 * In case of task-groups formed thr' the cgroup filesystem, it 6649 * gets 100% of the CPU resources in the system. This overall 6650 * system CPU resource is divided among the tasks of 6651 * root_task_group and its child task-groups in a fair manner, 6652 * based on each entity's (task or task-group's) weight 6653 * (se->load.weight). 6654 * 6655 * In other words, if root_task_group has 10 tasks of weight 6656 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6657 * then A0's share of the CPU resource is: 6658 * 6659 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6660 * 6661 * We achieve this by letting root_task_group's tasks sit 6662 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6663 */ 6664 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6665 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6666 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6667 6668 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6669 #ifdef CONFIG_RT_GROUP_SCHED 6670 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6671 #endif 6672 #ifdef CONFIG_SMP 6673 rq->sd = NULL; 6674 rq->rd = NULL; 6675 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6676 rq->balance_callback = NULL; 6677 rq->active_balance = 0; 6678 rq->next_balance = jiffies; 6679 rq->push_cpu = 0; 6680 rq->cpu = i; 6681 rq->online = 0; 6682 rq->idle_stamp = 0; 6683 rq->avg_idle = 2*sysctl_sched_migration_cost; 6684 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6685 6686 INIT_LIST_HEAD(&rq->cfs_tasks); 6687 6688 rq_attach_root(rq, &def_root_domain); 6689 #ifdef CONFIG_NO_HZ_COMMON 6690 rq->last_load_update_tick = jiffies; 6691 rq->last_blocked_load_update_tick = jiffies; 6692 atomic_set(&rq->nohz_flags, 0); 6693 #endif 6694 #endif /* CONFIG_SMP */ 6695 hrtick_rq_init(rq); 6696 atomic_set(&rq->nr_iowait, 0); 6697 } 6698 6699 set_load_weight(&init_task, false); 6700 6701 /* 6702 * The boot idle thread does lazy MMU switching as well: 6703 */ 6704 mmgrab(&init_mm); 6705 enter_lazy_tlb(&init_mm, current); 6706 6707 /* 6708 * Make us the idle thread. Technically, schedule() should not be 6709 * called from this thread, however somewhere below it might be, 6710 * but because we are the idle thread, we just pick up running again 6711 * when this runqueue becomes "idle". 6712 */ 6713 init_idle(current, smp_processor_id()); 6714 6715 calc_load_update = jiffies + LOAD_FREQ; 6716 6717 #ifdef CONFIG_SMP 6718 idle_thread_set_boot_cpu(); 6719 #endif 6720 init_sched_fair_class(); 6721 6722 init_schedstats(); 6723 6724 psi_init(); 6725 6726 init_uclamp(); 6727 6728 scheduler_running = 1; 6729 } 6730 6731 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6732 static inline int preempt_count_equals(int preempt_offset) 6733 { 6734 int nested = preempt_count() + rcu_preempt_depth(); 6735 6736 return (nested == preempt_offset); 6737 } 6738 6739 void __might_sleep(const char *file, int line, int preempt_offset) 6740 { 6741 /* 6742 * Blocking primitives will set (and therefore destroy) current->state, 6743 * since we will exit with TASK_RUNNING make sure we enter with it, 6744 * otherwise we will destroy state. 6745 */ 6746 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6747 "do not call blocking ops when !TASK_RUNNING; " 6748 "state=%lx set at [<%p>] %pS\n", 6749 current->state, 6750 (void *)current->task_state_change, 6751 (void *)current->task_state_change); 6752 6753 ___might_sleep(file, line, preempt_offset); 6754 } 6755 EXPORT_SYMBOL(__might_sleep); 6756 6757 void ___might_sleep(const char *file, int line, int preempt_offset) 6758 { 6759 /* Ratelimiting timestamp: */ 6760 static unsigned long prev_jiffy; 6761 6762 unsigned long preempt_disable_ip; 6763 6764 /* WARN_ON_ONCE() by default, no rate limit required: */ 6765 rcu_sleep_check(); 6766 6767 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6768 !is_idle_task(current) && !current->non_block_count) || 6769 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6770 oops_in_progress) 6771 return; 6772 6773 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6774 return; 6775 prev_jiffy = jiffies; 6776 6777 /* Save this before calling printk(), since that will clobber it: */ 6778 preempt_disable_ip = get_preempt_disable_ip(current); 6779 6780 printk(KERN_ERR 6781 "BUG: sleeping function called from invalid context at %s:%d\n", 6782 file, line); 6783 printk(KERN_ERR 6784 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 6785 in_atomic(), irqs_disabled(), current->non_block_count, 6786 current->pid, current->comm); 6787 6788 if (task_stack_end_corrupted(current)) 6789 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6790 6791 debug_show_held_locks(current); 6792 if (irqs_disabled()) 6793 print_irqtrace_events(current); 6794 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6795 && !preempt_count_equals(preempt_offset)) { 6796 pr_err("Preemption disabled at:"); 6797 print_ip_sym(preempt_disable_ip); 6798 pr_cont("\n"); 6799 } 6800 dump_stack(); 6801 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6802 } 6803 EXPORT_SYMBOL(___might_sleep); 6804 6805 void __cant_sleep(const char *file, int line, int preempt_offset) 6806 { 6807 static unsigned long prev_jiffy; 6808 6809 if (irqs_disabled()) 6810 return; 6811 6812 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6813 return; 6814 6815 if (preempt_count() > preempt_offset) 6816 return; 6817 6818 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6819 return; 6820 prev_jiffy = jiffies; 6821 6822 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6823 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6824 in_atomic(), irqs_disabled(), 6825 current->pid, current->comm); 6826 6827 debug_show_held_locks(current); 6828 dump_stack(); 6829 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6830 } 6831 EXPORT_SYMBOL_GPL(__cant_sleep); 6832 #endif 6833 6834 #ifdef CONFIG_MAGIC_SYSRQ 6835 void normalize_rt_tasks(void) 6836 { 6837 struct task_struct *g, *p; 6838 struct sched_attr attr = { 6839 .sched_policy = SCHED_NORMAL, 6840 }; 6841 6842 read_lock(&tasklist_lock); 6843 for_each_process_thread(g, p) { 6844 /* 6845 * Only normalize user tasks: 6846 */ 6847 if (p->flags & PF_KTHREAD) 6848 continue; 6849 6850 p->se.exec_start = 0; 6851 schedstat_set(p->se.statistics.wait_start, 0); 6852 schedstat_set(p->se.statistics.sleep_start, 0); 6853 schedstat_set(p->se.statistics.block_start, 0); 6854 6855 if (!dl_task(p) && !rt_task(p)) { 6856 /* 6857 * Renice negative nice level userspace 6858 * tasks back to 0: 6859 */ 6860 if (task_nice(p) < 0) 6861 set_user_nice(p, 0); 6862 continue; 6863 } 6864 6865 __sched_setscheduler(p, &attr, false, false); 6866 } 6867 read_unlock(&tasklist_lock); 6868 } 6869 6870 #endif /* CONFIG_MAGIC_SYSRQ */ 6871 6872 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6873 /* 6874 * These functions are only useful for the IA64 MCA handling, or kdb. 6875 * 6876 * They can only be called when the whole system has been 6877 * stopped - every CPU needs to be quiescent, and no scheduling 6878 * activity can take place. Using them for anything else would 6879 * be a serious bug, and as a result, they aren't even visible 6880 * under any other configuration. 6881 */ 6882 6883 /** 6884 * curr_task - return the current task for a given CPU. 6885 * @cpu: the processor in question. 6886 * 6887 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6888 * 6889 * Return: The current task for @cpu. 6890 */ 6891 struct task_struct *curr_task(int cpu) 6892 { 6893 return cpu_curr(cpu); 6894 } 6895 6896 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6897 6898 #ifdef CONFIG_IA64 6899 /** 6900 * ia64_set_curr_task - set the current task for a given CPU. 6901 * @cpu: the processor in question. 6902 * @p: the task pointer to set. 6903 * 6904 * Description: This function must only be used when non-maskable interrupts 6905 * are serviced on a separate stack. It allows the architecture to switch the 6906 * notion of the current task on a CPU in a non-blocking manner. This function 6907 * must be called with all CPU's synchronized, and interrupts disabled, the 6908 * and caller must save the original value of the current task (see 6909 * curr_task() above) and restore that value before reenabling interrupts and 6910 * re-starting the system. 6911 * 6912 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6913 */ 6914 void ia64_set_curr_task(int cpu, struct task_struct *p) 6915 { 6916 cpu_curr(cpu) = p; 6917 } 6918 6919 #endif 6920 6921 #ifdef CONFIG_CGROUP_SCHED 6922 /* task_group_lock serializes the addition/removal of task groups */ 6923 static DEFINE_SPINLOCK(task_group_lock); 6924 6925 static inline void alloc_uclamp_sched_group(struct task_group *tg, 6926 struct task_group *parent) 6927 { 6928 #ifdef CONFIG_UCLAMP_TASK_GROUP 6929 enum uclamp_id clamp_id; 6930 6931 for_each_clamp_id(clamp_id) { 6932 uclamp_se_set(&tg->uclamp_req[clamp_id], 6933 uclamp_none(clamp_id), false); 6934 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 6935 } 6936 #endif 6937 } 6938 6939 static void sched_free_group(struct task_group *tg) 6940 { 6941 free_fair_sched_group(tg); 6942 free_rt_sched_group(tg); 6943 autogroup_free(tg); 6944 kmem_cache_free(task_group_cache, tg); 6945 } 6946 6947 /* allocate runqueue etc for a new task group */ 6948 struct task_group *sched_create_group(struct task_group *parent) 6949 { 6950 struct task_group *tg; 6951 6952 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6953 if (!tg) 6954 return ERR_PTR(-ENOMEM); 6955 6956 if (!alloc_fair_sched_group(tg, parent)) 6957 goto err; 6958 6959 if (!alloc_rt_sched_group(tg, parent)) 6960 goto err; 6961 6962 alloc_uclamp_sched_group(tg, parent); 6963 6964 return tg; 6965 6966 err: 6967 sched_free_group(tg); 6968 return ERR_PTR(-ENOMEM); 6969 } 6970 6971 void sched_online_group(struct task_group *tg, struct task_group *parent) 6972 { 6973 unsigned long flags; 6974 6975 spin_lock_irqsave(&task_group_lock, flags); 6976 list_add_rcu(&tg->list, &task_groups); 6977 6978 /* Root should already exist: */ 6979 WARN_ON(!parent); 6980 6981 tg->parent = parent; 6982 INIT_LIST_HEAD(&tg->children); 6983 list_add_rcu(&tg->siblings, &parent->children); 6984 spin_unlock_irqrestore(&task_group_lock, flags); 6985 6986 online_fair_sched_group(tg); 6987 } 6988 6989 /* rcu callback to free various structures associated with a task group */ 6990 static void sched_free_group_rcu(struct rcu_head *rhp) 6991 { 6992 /* Now it should be safe to free those cfs_rqs: */ 6993 sched_free_group(container_of(rhp, struct task_group, rcu)); 6994 } 6995 6996 void sched_destroy_group(struct task_group *tg) 6997 { 6998 /* Wait for possible concurrent references to cfs_rqs complete: */ 6999 call_rcu(&tg->rcu, sched_free_group_rcu); 7000 } 7001 7002 void sched_offline_group(struct task_group *tg) 7003 { 7004 unsigned long flags; 7005 7006 /* End participation in shares distribution: */ 7007 unregister_fair_sched_group(tg); 7008 7009 spin_lock_irqsave(&task_group_lock, flags); 7010 list_del_rcu(&tg->list); 7011 list_del_rcu(&tg->siblings); 7012 spin_unlock_irqrestore(&task_group_lock, flags); 7013 } 7014 7015 static void sched_change_group(struct task_struct *tsk, int type) 7016 { 7017 struct task_group *tg; 7018 7019 /* 7020 * All callers are synchronized by task_rq_lock(); we do not use RCU 7021 * which is pointless here. Thus, we pass "true" to task_css_check() 7022 * to prevent lockdep warnings. 7023 */ 7024 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7025 struct task_group, css); 7026 tg = autogroup_task_group(tsk, tg); 7027 tsk->sched_task_group = tg; 7028 7029 #ifdef CONFIG_FAIR_GROUP_SCHED 7030 if (tsk->sched_class->task_change_group) 7031 tsk->sched_class->task_change_group(tsk, type); 7032 else 7033 #endif 7034 set_task_rq(tsk, task_cpu(tsk)); 7035 } 7036 7037 /* 7038 * Change task's runqueue when it moves between groups. 7039 * 7040 * The caller of this function should have put the task in its new group by 7041 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7042 * its new group. 7043 */ 7044 void sched_move_task(struct task_struct *tsk) 7045 { 7046 int queued, running, queue_flags = 7047 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7048 struct rq_flags rf; 7049 struct rq *rq; 7050 7051 rq = task_rq_lock(tsk, &rf); 7052 update_rq_clock(rq); 7053 7054 running = task_current(rq, tsk); 7055 queued = task_on_rq_queued(tsk); 7056 7057 if (queued) 7058 dequeue_task(rq, tsk, queue_flags); 7059 if (running) 7060 put_prev_task(rq, tsk); 7061 7062 sched_change_group(tsk, TASK_MOVE_GROUP); 7063 7064 if (queued) 7065 enqueue_task(rq, tsk, queue_flags); 7066 if (running) 7067 set_next_task(rq, tsk); 7068 7069 task_rq_unlock(rq, tsk, &rf); 7070 } 7071 7072 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7073 { 7074 return css ? container_of(css, struct task_group, css) : NULL; 7075 } 7076 7077 static struct cgroup_subsys_state * 7078 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7079 { 7080 struct task_group *parent = css_tg(parent_css); 7081 struct task_group *tg; 7082 7083 if (!parent) { 7084 /* This is early initialization for the top cgroup */ 7085 return &root_task_group.css; 7086 } 7087 7088 tg = sched_create_group(parent); 7089 if (IS_ERR(tg)) 7090 return ERR_PTR(-ENOMEM); 7091 7092 return &tg->css; 7093 } 7094 7095 /* Expose task group only after completing cgroup initialization */ 7096 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7097 { 7098 struct task_group *tg = css_tg(css); 7099 struct task_group *parent = css_tg(css->parent); 7100 7101 if (parent) 7102 sched_online_group(tg, parent); 7103 return 0; 7104 } 7105 7106 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7107 { 7108 struct task_group *tg = css_tg(css); 7109 7110 sched_offline_group(tg); 7111 } 7112 7113 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7114 { 7115 struct task_group *tg = css_tg(css); 7116 7117 /* 7118 * Relies on the RCU grace period between css_released() and this. 7119 */ 7120 sched_free_group(tg); 7121 } 7122 7123 /* 7124 * This is called before wake_up_new_task(), therefore we really only 7125 * have to set its group bits, all the other stuff does not apply. 7126 */ 7127 static void cpu_cgroup_fork(struct task_struct *task) 7128 { 7129 struct rq_flags rf; 7130 struct rq *rq; 7131 7132 rq = task_rq_lock(task, &rf); 7133 7134 update_rq_clock(rq); 7135 sched_change_group(task, TASK_SET_GROUP); 7136 7137 task_rq_unlock(rq, task, &rf); 7138 } 7139 7140 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7141 { 7142 struct task_struct *task; 7143 struct cgroup_subsys_state *css; 7144 int ret = 0; 7145 7146 cgroup_taskset_for_each(task, css, tset) { 7147 #ifdef CONFIG_RT_GROUP_SCHED 7148 if (!sched_rt_can_attach(css_tg(css), task)) 7149 return -EINVAL; 7150 #endif 7151 /* 7152 * Serialize against wake_up_new_task() such that if its 7153 * running, we're sure to observe its full state. 7154 */ 7155 raw_spin_lock_irq(&task->pi_lock); 7156 /* 7157 * Avoid calling sched_move_task() before wake_up_new_task() 7158 * has happened. This would lead to problems with PELT, due to 7159 * move wanting to detach+attach while we're not attached yet. 7160 */ 7161 if (task->state == TASK_NEW) 7162 ret = -EINVAL; 7163 raw_spin_unlock_irq(&task->pi_lock); 7164 7165 if (ret) 7166 break; 7167 } 7168 return ret; 7169 } 7170 7171 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7172 { 7173 struct task_struct *task; 7174 struct cgroup_subsys_state *css; 7175 7176 cgroup_taskset_for_each(task, css, tset) 7177 sched_move_task(task); 7178 } 7179 7180 #ifdef CONFIG_UCLAMP_TASK_GROUP 7181 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7182 { 7183 struct cgroup_subsys_state *top_css = css; 7184 struct uclamp_se *uc_parent = NULL; 7185 struct uclamp_se *uc_se = NULL; 7186 unsigned int eff[UCLAMP_CNT]; 7187 enum uclamp_id clamp_id; 7188 unsigned int clamps; 7189 7190 css_for_each_descendant_pre(css, top_css) { 7191 uc_parent = css_tg(css)->parent 7192 ? css_tg(css)->parent->uclamp : NULL; 7193 7194 for_each_clamp_id(clamp_id) { 7195 /* Assume effective clamps matches requested clamps */ 7196 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7197 /* Cap effective clamps with parent's effective clamps */ 7198 if (uc_parent && 7199 eff[clamp_id] > uc_parent[clamp_id].value) { 7200 eff[clamp_id] = uc_parent[clamp_id].value; 7201 } 7202 } 7203 /* Ensure protection is always capped by limit */ 7204 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7205 7206 /* Propagate most restrictive effective clamps */ 7207 clamps = 0x0; 7208 uc_se = css_tg(css)->uclamp; 7209 for_each_clamp_id(clamp_id) { 7210 if (eff[clamp_id] == uc_se[clamp_id].value) 7211 continue; 7212 uc_se[clamp_id].value = eff[clamp_id]; 7213 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7214 clamps |= (0x1 << clamp_id); 7215 } 7216 if (!clamps) { 7217 css = css_rightmost_descendant(css); 7218 continue; 7219 } 7220 7221 /* Immediately update descendants RUNNABLE tasks */ 7222 uclamp_update_active_tasks(css, clamps); 7223 } 7224 } 7225 7226 /* 7227 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7228 * C expression. Since there is no way to convert a macro argument (N) into a 7229 * character constant, use two levels of macros. 7230 */ 7231 #define _POW10(exp) ((unsigned int)1e##exp) 7232 #define POW10(exp) _POW10(exp) 7233 7234 struct uclamp_request { 7235 #define UCLAMP_PERCENT_SHIFT 2 7236 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7237 s64 percent; 7238 u64 util; 7239 int ret; 7240 }; 7241 7242 static inline struct uclamp_request 7243 capacity_from_percent(char *buf) 7244 { 7245 struct uclamp_request req = { 7246 .percent = UCLAMP_PERCENT_SCALE, 7247 .util = SCHED_CAPACITY_SCALE, 7248 .ret = 0, 7249 }; 7250 7251 buf = strim(buf); 7252 if (strcmp(buf, "max")) { 7253 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7254 &req.percent); 7255 if (req.ret) 7256 return req; 7257 if (req.percent > UCLAMP_PERCENT_SCALE) { 7258 req.ret = -ERANGE; 7259 return req; 7260 } 7261 7262 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7263 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7264 } 7265 7266 return req; 7267 } 7268 7269 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7270 size_t nbytes, loff_t off, 7271 enum uclamp_id clamp_id) 7272 { 7273 struct uclamp_request req; 7274 struct task_group *tg; 7275 7276 req = capacity_from_percent(buf); 7277 if (req.ret) 7278 return req.ret; 7279 7280 mutex_lock(&uclamp_mutex); 7281 rcu_read_lock(); 7282 7283 tg = css_tg(of_css(of)); 7284 if (tg->uclamp_req[clamp_id].value != req.util) 7285 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7286 7287 /* 7288 * Because of not recoverable conversion rounding we keep track of the 7289 * exact requested value 7290 */ 7291 tg->uclamp_pct[clamp_id] = req.percent; 7292 7293 /* Update effective clamps to track the most restrictive value */ 7294 cpu_util_update_eff(of_css(of)); 7295 7296 rcu_read_unlock(); 7297 mutex_unlock(&uclamp_mutex); 7298 7299 return nbytes; 7300 } 7301 7302 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7303 char *buf, size_t nbytes, 7304 loff_t off) 7305 { 7306 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7307 } 7308 7309 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7310 char *buf, size_t nbytes, 7311 loff_t off) 7312 { 7313 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7314 } 7315 7316 static inline void cpu_uclamp_print(struct seq_file *sf, 7317 enum uclamp_id clamp_id) 7318 { 7319 struct task_group *tg; 7320 u64 util_clamp; 7321 u64 percent; 7322 u32 rem; 7323 7324 rcu_read_lock(); 7325 tg = css_tg(seq_css(sf)); 7326 util_clamp = tg->uclamp_req[clamp_id].value; 7327 rcu_read_unlock(); 7328 7329 if (util_clamp == SCHED_CAPACITY_SCALE) { 7330 seq_puts(sf, "max\n"); 7331 return; 7332 } 7333 7334 percent = tg->uclamp_pct[clamp_id]; 7335 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7336 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7337 } 7338 7339 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7340 { 7341 cpu_uclamp_print(sf, UCLAMP_MIN); 7342 return 0; 7343 } 7344 7345 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7346 { 7347 cpu_uclamp_print(sf, UCLAMP_MAX); 7348 return 0; 7349 } 7350 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7351 7352 #ifdef CONFIG_FAIR_GROUP_SCHED 7353 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7354 struct cftype *cftype, u64 shareval) 7355 { 7356 if (shareval > scale_load_down(ULONG_MAX)) 7357 shareval = MAX_SHARES; 7358 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7359 } 7360 7361 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7362 struct cftype *cft) 7363 { 7364 struct task_group *tg = css_tg(css); 7365 7366 return (u64) scale_load_down(tg->shares); 7367 } 7368 7369 #ifdef CONFIG_CFS_BANDWIDTH 7370 static DEFINE_MUTEX(cfs_constraints_mutex); 7371 7372 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7373 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7374 7375 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7376 7377 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7378 { 7379 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7380 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7381 7382 if (tg == &root_task_group) 7383 return -EINVAL; 7384 7385 /* 7386 * Ensure we have at some amount of bandwidth every period. This is 7387 * to prevent reaching a state of large arrears when throttled via 7388 * entity_tick() resulting in prolonged exit starvation. 7389 */ 7390 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7391 return -EINVAL; 7392 7393 /* 7394 * Likewise, bound things on the otherside by preventing insane quota 7395 * periods. This also allows us to normalize in computing quota 7396 * feasibility. 7397 */ 7398 if (period > max_cfs_quota_period) 7399 return -EINVAL; 7400 7401 /* 7402 * Prevent race between setting of cfs_rq->runtime_enabled and 7403 * unthrottle_offline_cfs_rqs(). 7404 */ 7405 get_online_cpus(); 7406 mutex_lock(&cfs_constraints_mutex); 7407 ret = __cfs_schedulable(tg, period, quota); 7408 if (ret) 7409 goto out_unlock; 7410 7411 runtime_enabled = quota != RUNTIME_INF; 7412 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7413 /* 7414 * If we need to toggle cfs_bandwidth_used, off->on must occur 7415 * before making related changes, and on->off must occur afterwards 7416 */ 7417 if (runtime_enabled && !runtime_was_enabled) 7418 cfs_bandwidth_usage_inc(); 7419 raw_spin_lock_irq(&cfs_b->lock); 7420 cfs_b->period = ns_to_ktime(period); 7421 cfs_b->quota = quota; 7422 7423 __refill_cfs_bandwidth_runtime(cfs_b); 7424 7425 /* Restart the period timer (if active) to handle new period expiry: */ 7426 if (runtime_enabled) 7427 start_cfs_bandwidth(cfs_b); 7428 7429 raw_spin_unlock_irq(&cfs_b->lock); 7430 7431 for_each_online_cpu(i) { 7432 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7433 struct rq *rq = cfs_rq->rq; 7434 struct rq_flags rf; 7435 7436 rq_lock_irq(rq, &rf); 7437 cfs_rq->runtime_enabled = runtime_enabled; 7438 cfs_rq->runtime_remaining = 0; 7439 7440 if (cfs_rq->throttled) 7441 unthrottle_cfs_rq(cfs_rq); 7442 rq_unlock_irq(rq, &rf); 7443 } 7444 if (runtime_was_enabled && !runtime_enabled) 7445 cfs_bandwidth_usage_dec(); 7446 out_unlock: 7447 mutex_unlock(&cfs_constraints_mutex); 7448 put_online_cpus(); 7449 7450 return ret; 7451 } 7452 7453 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7454 { 7455 u64 quota, period; 7456 7457 period = ktime_to_ns(tg->cfs_bandwidth.period); 7458 if (cfs_quota_us < 0) 7459 quota = RUNTIME_INF; 7460 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7461 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7462 else 7463 return -EINVAL; 7464 7465 return tg_set_cfs_bandwidth(tg, period, quota); 7466 } 7467 7468 static long tg_get_cfs_quota(struct task_group *tg) 7469 { 7470 u64 quota_us; 7471 7472 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7473 return -1; 7474 7475 quota_us = tg->cfs_bandwidth.quota; 7476 do_div(quota_us, NSEC_PER_USEC); 7477 7478 return quota_us; 7479 } 7480 7481 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7482 { 7483 u64 quota, period; 7484 7485 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7486 return -EINVAL; 7487 7488 period = (u64)cfs_period_us * NSEC_PER_USEC; 7489 quota = tg->cfs_bandwidth.quota; 7490 7491 return tg_set_cfs_bandwidth(tg, period, quota); 7492 } 7493 7494 static long tg_get_cfs_period(struct task_group *tg) 7495 { 7496 u64 cfs_period_us; 7497 7498 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7499 do_div(cfs_period_us, NSEC_PER_USEC); 7500 7501 return cfs_period_us; 7502 } 7503 7504 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7505 struct cftype *cft) 7506 { 7507 return tg_get_cfs_quota(css_tg(css)); 7508 } 7509 7510 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7511 struct cftype *cftype, s64 cfs_quota_us) 7512 { 7513 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7514 } 7515 7516 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7517 struct cftype *cft) 7518 { 7519 return tg_get_cfs_period(css_tg(css)); 7520 } 7521 7522 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7523 struct cftype *cftype, u64 cfs_period_us) 7524 { 7525 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7526 } 7527 7528 struct cfs_schedulable_data { 7529 struct task_group *tg; 7530 u64 period, quota; 7531 }; 7532 7533 /* 7534 * normalize group quota/period to be quota/max_period 7535 * note: units are usecs 7536 */ 7537 static u64 normalize_cfs_quota(struct task_group *tg, 7538 struct cfs_schedulable_data *d) 7539 { 7540 u64 quota, period; 7541 7542 if (tg == d->tg) { 7543 period = d->period; 7544 quota = d->quota; 7545 } else { 7546 period = tg_get_cfs_period(tg); 7547 quota = tg_get_cfs_quota(tg); 7548 } 7549 7550 /* note: these should typically be equivalent */ 7551 if (quota == RUNTIME_INF || quota == -1) 7552 return RUNTIME_INF; 7553 7554 return to_ratio(period, quota); 7555 } 7556 7557 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7558 { 7559 struct cfs_schedulable_data *d = data; 7560 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7561 s64 quota = 0, parent_quota = -1; 7562 7563 if (!tg->parent) { 7564 quota = RUNTIME_INF; 7565 } else { 7566 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7567 7568 quota = normalize_cfs_quota(tg, d); 7569 parent_quota = parent_b->hierarchical_quota; 7570 7571 /* 7572 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7573 * always take the min. On cgroup1, only inherit when no 7574 * limit is set: 7575 */ 7576 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7577 quota = min(quota, parent_quota); 7578 } else { 7579 if (quota == RUNTIME_INF) 7580 quota = parent_quota; 7581 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7582 return -EINVAL; 7583 } 7584 } 7585 cfs_b->hierarchical_quota = quota; 7586 7587 return 0; 7588 } 7589 7590 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7591 { 7592 int ret; 7593 struct cfs_schedulable_data data = { 7594 .tg = tg, 7595 .period = period, 7596 .quota = quota, 7597 }; 7598 7599 if (quota != RUNTIME_INF) { 7600 do_div(data.period, NSEC_PER_USEC); 7601 do_div(data.quota, NSEC_PER_USEC); 7602 } 7603 7604 rcu_read_lock(); 7605 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7606 rcu_read_unlock(); 7607 7608 return ret; 7609 } 7610 7611 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7612 { 7613 struct task_group *tg = css_tg(seq_css(sf)); 7614 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7615 7616 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7617 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7618 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7619 7620 if (schedstat_enabled() && tg != &root_task_group) { 7621 u64 ws = 0; 7622 int i; 7623 7624 for_each_possible_cpu(i) 7625 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7626 7627 seq_printf(sf, "wait_sum %llu\n", ws); 7628 } 7629 7630 return 0; 7631 } 7632 #endif /* CONFIG_CFS_BANDWIDTH */ 7633 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7634 7635 #ifdef CONFIG_RT_GROUP_SCHED 7636 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7637 struct cftype *cft, s64 val) 7638 { 7639 return sched_group_set_rt_runtime(css_tg(css), val); 7640 } 7641 7642 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7643 struct cftype *cft) 7644 { 7645 return sched_group_rt_runtime(css_tg(css)); 7646 } 7647 7648 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7649 struct cftype *cftype, u64 rt_period_us) 7650 { 7651 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7652 } 7653 7654 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7655 struct cftype *cft) 7656 { 7657 return sched_group_rt_period(css_tg(css)); 7658 } 7659 #endif /* CONFIG_RT_GROUP_SCHED */ 7660 7661 static struct cftype cpu_legacy_files[] = { 7662 #ifdef CONFIG_FAIR_GROUP_SCHED 7663 { 7664 .name = "shares", 7665 .read_u64 = cpu_shares_read_u64, 7666 .write_u64 = cpu_shares_write_u64, 7667 }, 7668 #endif 7669 #ifdef CONFIG_CFS_BANDWIDTH 7670 { 7671 .name = "cfs_quota_us", 7672 .read_s64 = cpu_cfs_quota_read_s64, 7673 .write_s64 = cpu_cfs_quota_write_s64, 7674 }, 7675 { 7676 .name = "cfs_period_us", 7677 .read_u64 = cpu_cfs_period_read_u64, 7678 .write_u64 = cpu_cfs_period_write_u64, 7679 }, 7680 { 7681 .name = "stat", 7682 .seq_show = cpu_cfs_stat_show, 7683 }, 7684 #endif 7685 #ifdef CONFIG_RT_GROUP_SCHED 7686 { 7687 .name = "rt_runtime_us", 7688 .read_s64 = cpu_rt_runtime_read, 7689 .write_s64 = cpu_rt_runtime_write, 7690 }, 7691 { 7692 .name = "rt_period_us", 7693 .read_u64 = cpu_rt_period_read_uint, 7694 .write_u64 = cpu_rt_period_write_uint, 7695 }, 7696 #endif 7697 #ifdef CONFIG_UCLAMP_TASK_GROUP 7698 { 7699 .name = "uclamp.min", 7700 .flags = CFTYPE_NOT_ON_ROOT, 7701 .seq_show = cpu_uclamp_min_show, 7702 .write = cpu_uclamp_min_write, 7703 }, 7704 { 7705 .name = "uclamp.max", 7706 .flags = CFTYPE_NOT_ON_ROOT, 7707 .seq_show = cpu_uclamp_max_show, 7708 .write = cpu_uclamp_max_write, 7709 }, 7710 #endif 7711 { } /* Terminate */ 7712 }; 7713 7714 static int cpu_extra_stat_show(struct seq_file *sf, 7715 struct cgroup_subsys_state *css) 7716 { 7717 #ifdef CONFIG_CFS_BANDWIDTH 7718 { 7719 struct task_group *tg = css_tg(css); 7720 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7721 u64 throttled_usec; 7722 7723 throttled_usec = cfs_b->throttled_time; 7724 do_div(throttled_usec, NSEC_PER_USEC); 7725 7726 seq_printf(sf, "nr_periods %d\n" 7727 "nr_throttled %d\n" 7728 "throttled_usec %llu\n", 7729 cfs_b->nr_periods, cfs_b->nr_throttled, 7730 throttled_usec); 7731 } 7732 #endif 7733 return 0; 7734 } 7735 7736 #ifdef CONFIG_FAIR_GROUP_SCHED 7737 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7738 struct cftype *cft) 7739 { 7740 struct task_group *tg = css_tg(css); 7741 u64 weight = scale_load_down(tg->shares); 7742 7743 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7744 } 7745 7746 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7747 struct cftype *cft, u64 weight) 7748 { 7749 /* 7750 * cgroup weight knobs should use the common MIN, DFL and MAX 7751 * values which are 1, 100 and 10000 respectively. While it loses 7752 * a bit of range on both ends, it maps pretty well onto the shares 7753 * value used by scheduler and the round-trip conversions preserve 7754 * the original value over the entire range. 7755 */ 7756 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7757 return -ERANGE; 7758 7759 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7760 7761 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7762 } 7763 7764 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7765 struct cftype *cft) 7766 { 7767 unsigned long weight = scale_load_down(css_tg(css)->shares); 7768 int last_delta = INT_MAX; 7769 int prio, delta; 7770 7771 /* find the closest nice value to the current weight */ 7772 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7773 delta = abs(sched_prio_to_weight[prio] - weight); 7774 if (delta >= last_delta) 7775 break; 7776 last_delta = delta; 7777 } 7778 7779 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7780 } 7781 7782 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7783 struct cftype *cft, s64 nice) 7784 { 7785 unsigned long weight; 7786 int idx; 7787 7788 if (nice < MIN_NICE || nice > MAX_NICE) 7789 return -ERANGE; 7790 7791 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7792 idx = array_index_nospec(idx, 40); 7793 weight = sched_prio_to_weight[idx]; 7794 7795 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7796 } 7797 #endif 7798 7799 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7800 long period, long quota) 7801 { 7802 if (quota < 0) 7803 seq_puts(sf, "max"); 7804 else 7805 seq_printf(sf, "%ld", quota); 7806 7807 seq_printf(sf, " %ld\n", period); 7808 } 7809 7810 /* caller should put the current value in *@periodp before calling */ 7811 static int __maybe_unused cpu_period_quota_parse(char *buf, 7812 u64 *periodp, u64 *quotap) 7813 { 7814 char tok[21]; /* U64_MAX */ 7815 7816 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7817 return -EINVAL; 7818 7819 *periodp *= NSEC_PER_USEC; 7820 7821 if (sscanf(tok, "%llu", quotap)) 7822 *quotap *= NSEC_PER_USEC; 7823 else if (!strcmp(tok, "max")) 7824 *quotap = RUNTIME_INF; 7825 else 7826 return -EINVAL; 7827 7828 return 0; 7829 } 7830 7831 #ifdef CONFIG_CFS_BANDWIDTH 7832 static int cpu_max_show(struct seq_file *sf, void *v) 7833 { 7834 struct task_group *tg = css_tg(seq_css(sf)); 7835 7836 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7837 return 0; 7838 } 7839 7840 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7841 char *buf, size_t nbytes, loff_t off) 7842 { 7843 struct task_group *tg = css_tg(of_css(of)); 7844 u64 period = tg_get_cfs_period(tg); 7845 u64 quota; 7846 int ret; 7847 7848 ret = cpu_period_quota_parse(buf, &period, "a); 7849 if (!ret) 7850 ret = tg_set_cfs_bandwidth(tg, period, quota); 7851 return ret ?: nbytes; 7852 } 7853 #endif 7854 7855 static struct cftype cpu_files[] = { 7856 #ifdef CONFIG_FAIR_GROUP_SCHED 7857 { 7858 .name = "weight", 7859 .flags = CFTYPE_NOT_ON_ROOT, 7860 .read_u64 = cpu_weight_read_u64, 7861 .write_u64 = cpu_weight_write_u64, 7862 }, 7863 { 7864 .name = "weight.nice", 7865 .flags = CFTYPE_NOT_ON_ROOT, 7866 .read_s64 = cpu_weight_nice_read_s64, 7867 .write_s64 = cpu_weight_nice_write_s64, 7868 }, 7869 #endif 7870 #ifdef CONFIG_CFS_BANDWIDTH 7871 { 7872 .name = "max", 7873 .flags = CFTYPE_NOT_ON_ROOT, 7874 .seq_show = cpu_max_show, 7875 .write = cpu_max_write, 7876 }, 7877 #endif 7878 #ifdef CONFIG_UCLAMP_TASK_GROUP 7879 { 7880 .name = "uclamp.min", 7881 .flags = CFTYPE_NOT_ON_ROOT, 7882 .seq_show = cpu_uclamp_min_show, 7883 .write = cpu_uclamp_min_write, 7884 }, 7885 { 7886 .name = "uclamp.max", 7887 .flags = CFTYPE_NOT_ON_ROOT, 7888 .seq_show = cpu_uclamp_max_show, 7889 .write = cpu_uclamp_max_write, 7890 }, 7891 #endif 7892 { } /* terminate */ 7893 }; 7894 7895 struct cgroup_subsys cpu_cgrp_subsys = { 7896 .css_alloc = cpu_cgroup_css_alloc, 7897 .css_online = cpu_cgroup_css_online, 7898 .css_released = cpu_cgroup_css_released, 7899 .css_free = cpu_cgroup_css_free, 7900 .css_extra_stat_show = cpu_extra_stat_show, 7901 .fork = cpu_cgroup_fork, 7902 .can_attach = cpu_cgroup_can_attach, 7903 .attach = cpu_cgroup_attach, 7904 .legacy_cftypes = cpu_legacy_files, 7905 .dfl_cftypes = cpu_files, 7906 .early_init = true, 7907 .threaded = true, 7908 }; 7909 7910 #endif /* CONFIG_CGROUP_SCHED */ 7911 7912 void dump_cpu_task(int cpu) 7913 { 7914 pr_info("Task dump for CPU %d:\n", cpu); 7915 sched_show_task(cpu_curr(cpu)); 7916 } 7917 7918 /* 7919 * Nice levels are multiplicative, with a gentle 10% change for every 7920 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7921 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7922 * that remained on nice 0. 7923 * 7924 * The "10% effect" is relative and cumulative: from _any_ nice level, 7925 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7926 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7927 * If a task goes up by ~10% and another task goes down by ~10% then 7928 * the relative distance between them is ~25%.) 7929 */ 7930 const int sched_prio_to_weight[40] = { 7931 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7932 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7933 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7934 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7935 /* 0 */ 1024, 820, 655, 526, 423, 7936 /* 5 */ 335, 272, 215, 172, 137, 7937 /* 10 */ 110, 87, 70, 56, 45, 7938 /* 15 */ 36, 29, 23, 18, 15, 7939 }; 7940 7941 /* 7942 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7943 * 7944 * In cases where the weight does not change often, we can use the 7945 * precalculated inverse to speed up arithmetics by turning divisions 7946 * into multiplications: 7947 */ 7948 const u32 sched_prio_to_wmult[40] = { 7949 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7950 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7951 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7952 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7953 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7954 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7955 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7956 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7957 }; 7958 7959 #undef CREATE_TRACE_POINTS 7960