1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/nospec.h> 11 12 #include <linux/kcov.h> 13 14 #include <asm/switch_to.h> 15 #include <asm/tlb.h> 16 17 #include "../workqueue_internal.h" 18 #include "../smpboot.h" 19 20 #include "pelt.h" 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/sched.h> 24 25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 26 27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 28 /* 29 * Debugging: various feature bits 30 * 31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 32 * sysctl_sched_features, defined in sched.h, to allow constants propagation 33 * at compile time and compiler optimization based on features default. 34 */ 35 #define SCHED_FEAT(name, enabled) \ 36 (1UL << __SCHED_FEAT_##name) * enabled | 37 const_debug unsigned int sysctl_sched_features = 38 #include "features.h" 39 0; 40 #undef SCHED_FEAT 41 #endif 42 43 /* 44 * Number of tasks to iterate in a single balance run. 45 * Limited because this is done with IRQs disabled. 46 */ 47 const_debug unsigned int sysctl_sched_nr_migrate = 32; 48 49 /* 50 * period over which we measure -rt task CPU usage in us. 51 * default: 1s 52 */ 53 unsigned int sysctl_sched_rt_period = 1000000; 54 55 __read_mostly int scheduler_running; 56 57 /* 58 * part of the period that we allow rt tasks to run in us. 59 * default: 0.95s 60 */ 61 int sysctl_sched_rt_runtime = 950000; 62 63 /* 64 * __task_rq_lock - lock the rq @p resides on. 65 */ 66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 67 __acquires(rq->lock) 68 { 69 struct rq *rq; 70 71 lockdep_assert_held(&p->pi_lock); 72 73 for (;;) { 74 rq = task_rq(p); 75 raw_spin_lock(&rq->lock); 76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 77 rq_pin_lock(rq, rf); 78 return rq; 79 } 80 raw_spin_unlock(&rq->lock); 81 82 while (unlikely(task_on_rq_migrating(p))) 83 cpu_relax(); 84 } 85 } 86 87 /* 88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 89 */ 90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 91 __acquires(p->pi_lock) 92 __acquires(rq->lock) 93 { 94 struct rq *rq; 95 96 for (;;) { 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 98 rq = task_rq(p); 99 raw_spin_lock(&rq->lock); 100 /* 101 * move_queued_task() task_rq_lock() 102 * 103 * ACQUIRE (rq->lock) 104 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 106 * [S] ->cpu = new_cpu [L] task_rq() 107 * [L] ->on_rq 108 * RELEASE (rq->lock) 109 * 110 * If we observe the old CPU in task_rq_lock, the acquire of 111 * the old rq->lock will fully serialize against the stores. 112 * 113 * If we observe the new CPU in task_rq_lock, the acquire will 114 * pair with the WMB to ensure we must then also see migrating. 115 */ 116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 117 rq_pin_lock(rq, rf); 118 return rq; 119 } 120 raw_spin_unlock(&rq->lock); 121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 122 123 while (unlikely(task_on_rq_migrating(p))) 124 cpu_relax(); 125 } 126 } 127 128 /* 129 * RQ-clock updating methods: 130 */ 131 132 static void update_rq_clock_task(struct rq *rq, s64 delta) 133 { 134 /* 135 * In theory, the compile should just see 0 here, and optimize out the call 136 * to sched_rt_avg_update. But I don't trust it... 137 */ 138 s64 __maybe_unused steal = 0, irq_delta = 0; 139 140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 141 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 142 143 /* 144 * Since irq_time is only updated on {soft,}irq_exit, we might run into 145 * this case when a previous update_rq_clock() happened inside a 146 * {soft,}irq region. 147 * 148 * When this happens, we stop ->clock_task and only update the 149 * prev_irq_time stamp to account for the part that fit, so that a next 150 * update will consume the rest. This ensures ->clock_task is 151 * monotonic. 152 * 153 * It does however cause some slight miss-attribution of {soft,}irq 154 * time, a more accurate solution would be to update the irq_time using 155 * the current rq->clock timestamp, except that would require using 156 * atomic ops. 157 */ 158 if (irq_delta > delta) 159 irq_delta = delta; 160 161 rq->prev_irq_time += irq_delta; 162 delta -= irq_delta; 163 #endif 164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 165 if (static_key_false((¶virt_steal_rq_enabled))) { 166 steal = paravirt_steal_clock(cpu_of(rq)); 167 steal -= rq->prev_steal_time_rq; 168 169 if (unlikely(steal > delta)) 170 steal = delta; 171 172 rq->prev_steal_time_rq += steal; 173 delta -= steal; 174 } 175 #endif 176 177 rq->clock_task += delta; 178 179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 180 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 181 update_irq_load_avg(rq, irq_delta + steal); 182 #endif 183 } 184 185 void update_rq_clock(struct rq *rq) 186 { 187 s64 delta; 188 189 lockdep_assert_held(&rq->lock); 190 191 if (rq->clock_update_flags & RQCF_ACT_SKIP) 192 return; 193 194 #ifdef CONFIG_SCHED_DEBUG 195 if (sched_feat(WARN_DOUBLE_CLOCK)) 196 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 197 rq->clock_update_flags |= RQCF_UPDATED; 198 #endif 199 200 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 201 if (delta < 0) 202 return; 203 rq->clock += delta; 204 update_rq_clock_task(rq, delta); 205 } 206 207 208 #ifdef CONFIG_SCHED_HRTICK 209 /* 210 * Use HR-timers to deliver accurate preemption points. 211 */ 212 213 static void hrtick_clear(struct rq *rq) 214 { 215 if (hrtimer_active(&rq->hrtick_timer)) 216 hrtimer_cancel(&rq->hrtick_timer); 217 } 218 219 /* 220 * High-resolution timer tick. 221 * Runs from hardirq context with interrupts disabled. 222 */ 223 static enum hrtimer_restart hrtick(struct hrtimer *timer) 224 { 225 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 226 struct rq_flags rf; 227 228 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 229 230 rq_lock(rq, &rf); 231 update_rq_clock(rq); 232 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 233 rq_unlock(rq, &rf); 234 235 return HRTIMER_NORESTART; 236 } 237 238 #ifdef CONFIG_SMP 239 240 static void __hrtick_restart(struct rq *rq) 241 { 242 struct hrtimer *timer = &rq->hrtick_timer; 243 244 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 245 } 246 247 /* 248 * called from hardirq (IPI) context 249 */ 250 static void __hrtick_start(void *arg) 251 { 252 struct rq *rq = arg; 253 struct rq_flags rf; 254 255 rq_lock(rq, &rf); 256 __hrtick_restart(rq); 257 rq->hrtick_csd_pending = 0; 258 rq_unlock(rq, &rf); 259 } 260 261 /* 262 * Called to set the hrtick timer state. 263 * 264 * called with rq->lock held and irqs disabled 265 */ 266 void hrtick_start(struct rq *rq, u64 delay) 267 { 268 struct hrtimer *timer = &rq->hrtick_timer; 269 ktime_t time; 270 s64 delta; 271 272 /* 273 * Don't schedule slices shorter than 10000ns, that just 274 * doesn't make sense and can cause timer DoS. 275 */ 276 delta = max_t(s64, delay, 10000LL); 277 time = ktime_add_ns(timer->base->get_time(), delta); 278 279 hrtimer_set_expires(timer, time); 280 281 if (rq == this_rq()) { 282 __hrtick_restart(rq); 283 } else if (!rq->hrtick_csd_pending) { 284 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 285 rq->hrtick_csd_pending = 1; 286 } 287 } 288 289 #else 290 /* 291 * Called to set the hrtick timer state. 292 * 293 * called with rq->lock held and irqs disabled 294 */ 295 void hrtick_start(struct rq *rq, u64 delay) 296 { 297 /* 298 * Don't schedule slices shorter than 10000ns, that just 299 * doesn't make sense. Rely on vruntime for fairness. 300 */ 301 delay = max_t(u64, delay, 10000LL); 302 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 303 HRTIMER_MODE_REL_PINNED); 304 } 305 #endif /* CONFIG_SMP */ 306 307 static void hrtick_rq_init(struct rq *rq) 308 { 309 #ifdef CONFIG_SMP 310 rq->hrtick_csd_pending = 0; 311 312 rq->hrtick_csd.flags = 0; 313 rq->hrtick_csd.func = __hrtick_start; 314 rq->hrtick_csd.info = rq; 315 #endif 316 317 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 318 rq->hrtick_timer.function = hrtick; 319 } 320 #else /* CONFIG_SCHED_HRTICK */ 321 static inline void hrtick_clear(struct rq *rq) 322 { 323 } 324 325 static inline void hrtick_rq_init(struct rq *rq) 326 { 327 } 328 #endif /* CONFIG_SCHED_HRTICK */ 329 330 /* 331 * cmpxchg based fetch_or, macro so it works for different integer types 332 */ 333 #define fetch_or(ptr, mask) \ 334 ({ \ 335 typeof(ptr) _ptr = (ptr); \ 336 typeof(mask) _mask = (mask); \ 337 typeof(*_ptr) _old, _val = *_ptr; \ 338 \ 339 for (;;) { \ 340 _old = cmpxchg(_ptr, _val, _val | _mask); \ 341 if (_old == _val) \ 342 break; \ 343 _val = _old; \ 344 } \ 345 _old; \ 346 }) 347 348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 349 /* 350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 351 * this avoids any races wrt polling state changes and thereby avoids 352 * spurious IPIs. 353 */ 354 static bool set_nr_and_not_polling(struct task_struct *p) 355 { 356 struct thread_info *ti = task_thread_info(p); 357 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 358 } 359 360 /* 361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 362 * 363 * If this returns true, then the idle task promises to call 364 * sched_ttwu_pending() and reschedule soon. 365 */ 366 static bool set_nr_if_polling(struct task_struct *p) 367 { 368 struct thread_info *ti = task_thread_info(p); 369 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 370 371 for (;;) { 372 if (!(val & _TIF_POLLING_NRFLAG)) 373 return false; 374 if (val & _TIF_NEED_RESCHED) 375 return true; 376 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 377 if (old == val) 378 break; 379 val = old; 380 } 381 return true; 382 } 383 384 #else 385 static bool set_nr_and_not_polling(struct task_struct *p) 386 { 387 set_tsk_need_resched(p); 388 return true; 389 } 390 391 #ifdef CONFIG_SMP 392 static bool set_nr_if_polling(struct task_struct *p) 393 { 394 return false; 395 } 396 #endif 397 #endif 398 399 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 400 { 401 struct wake_q_node *node = &task->wake_q; 402 403 /* 404 * Atomically grab the task, if ->wake_q is !nil already it means 405 * its already queued (either by us or someone else) and will get the 406 * wakeup due to that. 407 * 408 * This cmpxchg() executes a full barrier, which pairs with the full 409 * barrier executed by the wakeup in wake_up_q(). 410 */ 411 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 412 return; 413 414 get_task_struct(task); 415 416 /* 417 * The head is context local, there can be no concurrency. 418 */ 419 *head->lastp = node; 420 head->lastp = &node->next; 421 } 422 423 void wake_up_q(struct wake_q_head *head) 424 { 425 struct wake_q_node *node = head->first; 426 427 while (node != WAKE_Q_TAIL) { 428 struct task_struct *task; 429 430 task = container_of(node, struct task_struct, wake_q); 431 BUG_ON(!task); 432 /* Task can safely be re-inserted now: */ 433 node = node->next; 434 task->wake_q.next = NULL; 435 436 /* 437 * wake_up_process() executes a full barrier, which pairs with 438 * the queueing in wake_q_add() so as not to miss wakeups. 439 */ 440 wake_up_process(task); 441 put_task_struct(task); 442 } 443 } 444 445 /* 446 * resched_curr - mark rq's current task 'to be rescheduled now'. 447 * 448 * On UP this means the setting of the need_resched flag, on SMP it 449 * might also involve a cross-CPU call to trigger the scheduler on 450 * the target CPU. 451 */ 452 void resched_curr(struct rq *rq) 453 { 454 struct task_struct *curr = rq->curr; 455 int cpu; 456 457 lockdep_assert_held(&rq->lock); 458 459 if (test_tsk_need_resched(curr)) 460 return; 461 462 cpu = cpu_of(rq); 463 464 if (cpu == smp_processor_id()) { 465 set_tsk_need_resched(curr); 466 set_preempt_need_resched(); 467 return; 468 } 469 470 if (set_nr_and_not_polling(curr)) 471 smp_send_reschedule(cpu); 472 else 473 trace_sched_wake_idle_without_ipi(cpu); 474 } 475 476 void resched_cpu(int cpu) 477 { 478 struct rq *rq = cpu_rq(cpu); 479 unsigned long flags; 480 481 raw_spin_lock_irqsave(&rq->lock, flags); 482 if (cpu_online(cpu) || cpu == smp_processor_id()) 483 resched_curr(rq); 484 raw_spin_unlock_irqrestore(&rq->lock, flags); 485 } 486 487 #ifdef CONFIG_SMP 488 #ifdef CONFIG_NO_HZ_COMMON 489 /* 490 * In the semi idle case, use the nearest busy CPU for migrating timers 491 * from an idle CPU. This is good for power-savings. 492 * 493 * We don't do similar optimization for completely idle system, as 494 * selecting an idle CPU will add more delays to the timers than intended 495 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 496 */ 497 int get_nohz_timer_target(void) 498 { 499 int i, cpu = smp_processor_id(); 500 struct sched_domain *sd; 501 502 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 503 return cpu; 504 505 rcu_read_lock(); 506 for_each_domain(cpu, sd) { 507 for_each_cpu(i, sched_domain_span(sd)) { 508 if (cpu == i) 509 continue; 510 511 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 512 cpu = i; 513 goto unlock; 514 } 515 } 516 } 517 518 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 519 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 520 unlock: 521 rcu_read_unlock(); 522 return cpu; 523 } 524 525 /* 526 * When add_timer_on() enqueues a timer into the timer wheel of an 527 * idle CPU then this timer might expire before the next timer event 528 * which is scheduled to wake up that CPU. In case of a completely 529 * idle system the next event might even be infinite time into the 530 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 531 * leaves the inner idle loop so the newly added timer is taken into 532 * account when the CPU goes back to idle and evaluates the timer 533 * wheel for the next timer event. 534 */ 535 static void wake_up_idle_cpu(int cpu) 536 { 537 struct rq *rq = cpu_rq(cpu); 538 539 if (cpu == smp_processor_id()) 540 return; 541 542 if (set_nr_and_not_polling(rq->idle)) 543 smp_send_reschedule(cpu); 544 else 545 trace_sched_wake_idle_without_ipi(cpu); 546 } 547 548 static bool wake_up_full_nohz_cpu(int cpu) 549 { 550 /* 551 * We just need the target to call irq_exit() and re-evaluate 552 * the next tick. The nohz full kick at least implies that. 553 * If needed we can still optimize that later with an 554 * empty IRQ. 555 */ 556 if (cpu_is_offline(cpu)) 557 return true; /* Don't try to wake offline CPUs. */ 558 if (tick_nohz_full_cpu(cpu)) { 559 if (cpu != smp_processor_id() || 560 tick_nohz_tick_stopped()) 561 tick_nohz_full_kick_cpu(cpu); 562 return true; 563 } 564 565 return false; 566 } 567 568 /* 569 * Wake up the specified CPU. If the CPU is going offline, it is the 570 * caller's responsibility to deal with the lost wakeup, for example, 571 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 572 */ 573 void wake_up_nohz_cpu(int cpu) 574 { 575 if (!wake_up_full_nohz_cpu(cpu)) 576 wake_up_idle_cpu(cpu); 577 } 578 579 static inline bool got_nohz_idle_kick(void) 580 { 581 int cpu = smp_processor_id(); 582 583 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 584 return false; 585 586 if (idle_cpu(cpu) && !need_resched()) 587 return true; 588 589 /* 590 * We can't run Idle Load Balance on this CPU for this time so we 591 * cancel it and clear NOHZ_BALANCE_KICK 592 */ 593 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 594 return false; 595 } 596 597 #else /* CONFIG_NO_HZ_COMMON */ 598 599 static inline bool got_nohz_idle_kick(void) 600 { 601 return false; 602 } 603 604 #endif /* CONFIG_NO_HZ_COMMON */ 605 606 #ifdef CONFIG_NO_HZ_FULL 607 bool sched_can_stop_tick(struct rq *rq) 608 { 609 int fifo_nr_running; 610 611 /* Deadline tasks, even if single, need the tick */ 612 if (rq->dl.dl_nr_running) 613 return false; 614 615 /* 616 * If there are more than one RR tasks, we need the tick to effect the 617 * actual RR behaviour. 618 */ 619 if (rq->rt.rr_nr_running) { 620 if (rq->rt.rr_nr_running == 1) 621 return true; 622 else 623 return false; 624 } 625 626 /* 627 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 628 * forced preemption between FIFO tasks. 629 */ 630 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 631 if (fifo_nr_running) 632 return true; 633 634 /* 635 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 636 * if there's more than one we need the tick for involuntary 637 * preemption. 638 */ 639 if (rq->nr_running > 1) 640 return false; 641 642 return true; 643 } 644 #endif /* CONFIG_NO_HZ_FULL */ 645 #endif /* CONFIG_SMP */ 646 647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 649 /* 650 * Iterate task_group tree rooted at *from, calling @down when first entering a 651 * node and @up when leaving it for the final time. 652 * 653 * Caller must hold rcu_lock or sufficient equivalent. 654 */ 655 int walk_tg_tree_from(struct task_group *from, 656 tg_visitor down, tg_visitor up, void *data) 657 { 658 struct task_group *parent, *child; 659 int ret; 660 661 parent = from; 662 663 down: 664 ret = (*down)(parent, data); 665 if (ret) 666 goto out; 667 list_for_each_entry_rcu(child, &parent->children, siblings) { 668 parent = child; 669 goto down; 670 671 up: 672 continue; 673 } 674 ret = (*up)(parent, data); 675 if (ret || parent == from) 676 goto out; 677 678 child = parent; 679 parent = parent->parent; 680 if (parent) 681 goto up; 682 out: 683 return ret; 684 } 685 686 int tg_nop(struct task_group *tg, void *data) 687 { 688 return 0; 689 } 690 #endif 691 692 static void set_load_weight(struct task_struct *p, bool update_load) 693 { 694 int prio = p->static_prio - MAX_RT_PRIO; 695 struct load_weight *load = &p->se.load; 696 697 /* 698 * SCHED_IDLE tasks get minimal weight: 699 */ 700 if (task_has_idle_policy(p)) { 701 load->weight = scale_load(WEIGHT_IDLEPRIO); 702 load->inv_weight = WMULT_IDLEPRIO; 703 p->se.runnable_weight = load->weight; 704 return; 705 } 706 707 /* 708 * SCHED_OTHER tasks have to update their load when changing their 709 * weight 710 */ 711 if (update_load && p->sched_class == &fair_sched_class) { 712 reweight_task(p, prio); 713 } else { 714 load->weight = scale_load(sched_prio_to_weight[prio]); 715 load->inv_weight = sched_prio_to_wmult[prio]; 716 p->se.runnable_weight = load->weight; 717 } 718 } 719 720 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 721 { 722 if (!(flags & ENQUEUE_NOCLOCK)) 723 update_rq_clock(rq); 724 725 if (!(flags & ENQUEUE_RESTORE)) { 726 sched_info_queued(rq, p); 727 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 728 } 729 730 p->sched_class->enqueue_task(rq, p, flags); 731 } 732 733 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 734 { 735 if (!(flags & DEQUEUE_NOCLOCK)) 736 update_rq_clock(rq); 737 738 if (!(flags & DEQUEUE_SAVE)) { 739 sched_info_dequeued(rq, p); 740 psi_dequeue(p, flags & DEQUEUE_SLEEP); 741 } 742 743 p->sched_class->dequeue_task(rq, p, flags); 744 } 745 746 void activate_task(struct rq *rq, struct task_struct *p, int flags) 747 { 748 if (task_contributes_to_load(p)) 749 rq->nr_uninterruptible--; 750 751 enqueue_task(rq, p, flags); 752 } 753 754 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 755 { 756 if (task_contributes_to_load(p)) 757 rq->nr_uninterruptible++; 758 759 dequeue_task(rq, p, flags); 760 } 761 762 /* 763 * __normal_prio - return the priority that is based on the static prio 764 */ 765 static inline int __normal_prio(struct task_struct *p) 766 { 767 return p->static_prio; 768 } 769 770 /* 771 * Calculate the expected normal priority: i.e. priority 772 * without taking RT-inheritance into account. Might be 773 * boosted by interactivity modifiers. Changes upon fork, 774 * setprio syscalls, and whenever the interactivity 775 * estimator recalculates. 776 */ 777 static inline int normal_prio(struct task_struct *p) 778 { 779 int prio; 780 781 if (task_has_dl_policy(p)) 782 prio = MAX_DL_PRIO-1; 783 else if (task_has_rt_policy(p)) 784 prio = MAX_RT_PRIO-1 - p->rt_priority; 785 else 786 prio = __normal_prio(p); 787 return prio; 788 } 789 790 /* 791 * Calculate the current priority, i.e. the priority 792 * taken into account by the scheduler. This value might 793 * be boosted by RT tasks, or might be boosted by 794 * interactivity modifiers. Will be RT if the task got 795 * RT-boosted. If not then it returns p->normal_prio. 796 */ 797 static int effective_prio(struct task_struct *p) 798 { 799 p->normal_prio = normal_prio(p); 800 /* 801 * If we are RT tasks or we were boosted to RT priority, 802 * keep the priority unchanged. Otherwise, update priority 803 * to the normal priority: 804 */ 805 if (!rt_prio(p->prio)) 806 return p->normal_prio; 807 return p->prio; 808 } 809 810 /** 811 * task_curr - is this task currently executing on a CPU? 812 * @p: the task in question. 813 * 814 * Return: 1 if the task is currently executing. 0 otherwise. 815 */ 816 inline int task_curr(const struct task_struct *p) 817 { 818 return cpu_curr(task_cpu(p)) == p; 819 } 820 821 /* 822 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 823 * use the balance_callback list if you want balancing. 824 * 825 * this means any call to check_class_changed() must be followed by a call to 826 * balance_callback(). 827 */ 828 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 829 const struct sched_class *prev_class, 830 int oldprio) 831 { 832 if (prev_class != p->sched_class) { 833 if (prev_class->switched_from) 834 prev_class->switched_from(rq, p); 835 836 p->sched_class->switched_to(rq, p); 837 } else if (oldprio != p->prio || dl_task(p)) 838 p->sched_class->prio_changed(rq, p, oldprio); 839 } 840 841 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 842 { 843 const struct sched_class *class; 844 845 if (p->sched_class == rq->curr->sched_class) { 846 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 847 } else { 848 for_each_class(class) { 849 if (class == rq->curr->sched_class) 850 break; 851 if (class == p->sched_class) { 852 resched_curr(rq); 853 break; 854 } 855 } 856 } 857 858 /* 859 * A queue event has occurred, and we're going to schedule. In 860 * this case, we can save a useless back to back clock update. 861 */ 862 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 863 rq_clock_skip_update(rq); 864 } 865 866 #ifdef CONFIG_SMP 867 868 static inline bool is_per_cpu_kthread(struct task_struct *p) 869 { 870 if (!(p->flags & PF_KTHREAD)) 871 return false; 872 873 if (p->nr_cpus_allowed != 1) 874 return false; 875 876 return true; 877 } 878 879 /* 880 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 881 * __set_cpus_allowed_ptr() and select_fallback_rq(). 882 */ 883 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 884 { 885 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 886 return false; 887 888 if (is_per_cpu_kthread(p)) 889 return cpu_online(cpu); 890 891 return cpu_active(cpu); 892 } 893 894 /* 895 * This is how migration works: 896 * 897 * 1) we invoke migration_cpu_stop() on the target CPU using 898 * stop_one_cpu(). 899 * 2) stopper starts to run (implicitly forcing the migrated thread 900 * off the CPU) 901 * 3) it checks whether the migrated task is still in the wrong runqueue. 902 * 4) if it's in the wrong runqueue then the migration thread removes 903 * it and puts it into the right queue. 904 * 5) stopper completes and stop_one_cpu() returns and the migration 905 * is done. 906 */ 907 908 /* 909 * move_queued_task - move a queued task to new rq. 910 * 911 * Returns (locked) new rq. Old rq's lock is released. 912 */ 913 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 914 struct task_struct *p, int new_cpu) 915 { 916 lockdep_assert_held(&rq->lock); 917 918 p->on_rq = TASK_ON_RQ_MIGRATING; 919 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 920 set_task_cpu(p, new_cpu); 921 rq_unlock(rq, rf); 922 923 rq = cpu_rq(new_cpu); 924 925 rq_lock(rq, rf); 926 BUG_ON(task_cpu(p) != new_cpu); 927 enqueue_task(rq, p, 0); 928 p->on_rq = TASK_ON_RQ_QUEUED; 929 check_preempt_curr(rq, p, 0); 930 931 return rq; 932 } 933 934 struct migration_arg { 935 struct task_struct *task; 936 int dest_cpu; 937 }; 938 939 /* 940 * Move (not current) task off this CPU, onto the destination CPU. We're doing 941 * this because either it can't run here any more (set_cpus_allowed() 942 * away from this CPU, or CPU going down), or because we're 943 * attempting to rebalance this task on exec (sched_exec). 944 * 945 * So we race with normal scheduler movements, but that's OK, as long 946 * as the task is no longer on this CPU. 947 */ 948 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 949 struct task_struct *p, int dest_cpu) 950 { 951 /* Affinity changed (again). */ 952 if (!is_cpu_allowed(p, dest_cpu)) 953 return rq; 954 955 update_rq_clock(rq); 956 rq = move_queued_task(rq, rf, p, dest_cpu); 957 958 return rq; 959 } 960 961 /* 962 * migration_cpu_stop - this will be executed by a highprio stopper thread 963 * and performs thread migration by bumping thread off CPU then 964 * 'pushing' onto another runqueue. 965 */ 966 static int migration_cpu_stop(void *data) 967 { 968 struct migration_arg *arg = data; 969 struct task_struct *p = arg->task; 970 struct rq *rq = this_rq(); 971 struct rq_flags rf; 972 973 /* 974 * The original target CPU might have gone down and we might 975 * be on another CPU but it doesn't matter. 976 */ 977 local_irq_disable(); 978 /* 979 * We need to explicitly wake pending tasks before running 980 * __migrate_task() such that we will not miss enforcing cpus_allowed 981 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 982 */ 983 sched_ttwu_pending(); 984 985 raw_spin_lock(&p->pi_lock); 986 rq_lock(rq, &rf); 987 /* 988 * If task_rq(p) != rq, it cannot be migrated here, because we're 989 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 990 * we're holding p->pi_lock. 991 */ 992 if (task_rq(p) == rq) { 993 if (task_on_rq_queued(p)) 994 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 995 else 996 p->wake_cpu = arg->dest_cpu; 997 } 998 rq_unlock(rq, &rf); 999 raw_spin_unlock(&p->pi_lock); 1000 1001 local_irq_enable(); 1002 return 0; 1003 } 1004 1005 /* 1006 * sched_class::set_cpus_allowed must do the below, but is not required to 1007 * actually call this function. 1008 */ 1009 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1010 { 1011 cpumask_copy(&p->cpus_allowed, new_mask); 1012 p->nr_cpus_allowed = cpumask_weight(new_mask); 1013 } 1014 1015 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1016 { 1017 struct rq *rq = task_rq(p); 1018 bool queued, running; 1019 1020 lockdep_assert_held(&p->pi_lock); 1021 1022 queued = task_on_rq_queued(p); 1023 running = task_current(rq, p); 1024 1025 if (queued) { 1026 /* 1027 * Because __kthread_bind() calls this on blocked tasks without 1028 * holding rq->lock. 1029 */ 1030 lockdep_assert_held(&rq->lock); 1031 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1032 } 1033 if (running) 1034 put_prev_task(rq, p); 1035 1036 p->sched_class->set_cpus_allowed(p, new_mask); 1037 1038 if (queued) 1039 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1040 if (running) 1041 set_curr_task(rq, p); 1042 } 1043 1044 /* 1045 * Change a given task's CPU affinity. Migrate the thread to a 1046 * proper CPU and schedule it away if the CPU it's executing on 1047 * is removed from the allowed bitmask. 1048 * 1049 * NOTE: the caller must have a valid reference to the task, the 1050 * task must not exit() & deallocate itself prematurely. The 1051 * call is not atomic; no spinlocks may be held. 1052 */ 1053 static int __set_cpus_allowed_ptr(struct task_struct *p, 1054 const struct cpumask *new_mask, bool check) 1055 { 1056 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1057 unsigned int dest_cpu; 1058 struct rq_flags rf; 1059 struct rq *rq; 1060 int ret = 0; 1061 1062 rq = task_rq_lock(p, &rf); 1063 update_rq_clock(rq); 1064 1065 if (p->flags & PF_KTHREAD) { 1066 /* 1067 * Kernel threads are allowed on online && !active CPUs 1068 */ 1069 cpu_valid_mask = cpu_online_mask; 1070 } 1071 1072 /* 1073 * Must re-check here, to close a race against __kthread_bind(), 1074 * sched_setaffinity() is not guaranteed to observe the flag. 1075 */ 1076 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1077 ret = -EINVAL; 1078 goto out; 1079 } 1080 1081 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1082 goto out; 1083 1084 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1085 ret = -EINVAL; 1086 goto out; 1087 } 1088 1089 do_set_cpus_allowed(p, new_mask); 1090 1091 if (p->flags & PF_KTHREAD) { 1092 /* 1093 * For kernel threads that do indeed end up on online && 1094 * !active we want to ensure they are strict per-CPU threads. 1095 */ 1096 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1097 !cpumask_intersects(new_mask, cpu_active_mask) && 1098 p->nr_cpus_allowed != 1); 1099 } 1100 1101 /* Can the task run on the task's current CPU? If so, we're done */ 1102 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1103 goto out; 1104 1105 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1106 if (task_running(rq, p) || p->state == TASK_WAKING) { 1107 struct migration_arg arg = { p, dest_cpu }; 1108 /* Need help from migration thread: drop lock and wait. */ 1109 task_rq_unlock(rq, p, &rf); 1110 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1111 tlb_migrate_finish(p->mm); 1112 return 0; 1113 } else if (task_on_rq_queued(p)) { 1114 /* 1115 * OK, since we're going to drop the lock immediately 1116 * afterwards anyway. 1117 */ 1118 rq = move_queued_task(rq, &rf, p, dest_cpu); 1119 } 1120 out: 1121 task_rq_unlock(rq, p, &rf); 1122 1123 return ret; 1124 } 1125 1126 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1127 { 1128 return __set_cpus_allowed_ptr(p, new_mask, false); 1129 } 1130 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1131 1132 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1133 { 1134 #ifdef CONFIG_SCHED_DEBUG 1135 /* 1136 * We should never call set_task_cpu() on a blocked task, 1137 * ttwu() will sort out the placement. 1138 */ 1139 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1140 !p->on_rq); 1141 1142 /* 1143 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1144 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1145 * time relying on p->on_rq. 1146 */ 1147 WARN_ON_ONCE(p->state == TASK_RUNNING && 1148 p->sched_class == &fair_sched_class && 1149 (p->on_rq && !task_on_rq_migrating(p))); 1150 1151 #ifdef CONFIG_LOCKDEP 1152 /* 1153 * The caller should hold either p->pi_lock or rq->lock, when changing 1154 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1155 * 1156 * sched_move_task() holds both and thus holding either pins the cgroup, 1157 * see task_group(). 1158 * 1159 * Furthermore, all task_rq users should acquire both locks, see 1160 * task_rq_lock(). 1161 */ 1162 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1163 lockdep_is_held(&task_rq(p)->lock))); 1164 #endif 1165 /* 1166 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1167 */ 1168 WARN_ON_ONCE(!cpu_online(new_cpu)); 1169 #endif 1170 1171 trace_sched_migrate_task(p, new_cpu); 1172 1173 if (task_cpu(p) != new_cpu) { 1174 if (p->sched_class->migrate_task_rq) 1175 p->sched_class->migrate_task_rq(p, new_cpu); 1176 p->se.nr_migrations++; 1177 rseq_migrate(p); 1178 perf_event_task_migrate(p); 1179 } 1180 1181 __set_task_cpu(p, new_cpu); 1182 } 1183 1184 #ifdef CONFIG_NUMA_BALANCING 1185 static void __migrate_swap_task(struct task_struct *p, int cpu) 1186 { 1187 if (task_on_rq_queued(p)) { 1188 struct rq *src_rq, *dst_rq; 1189 struct rq_flags srf, drf; 1190 1191 src_rq = task_rq(p); 1192 dst_rq = cpu_rq(cpu); 1193 1194 rq_pin_lock(src_rq, &srf); 1195 rq_pin_lock(dst_rq, &drf); 1196 1197 p->on_rq = TASK_ON_RQ_MIGRATING; 1198 deactivate_task(src_rq, p, 0); 1199 set_task_cpu(p, cpu); 1200 activate_task(dst_rq, p, 0); 1201 p->on_rq = TASK_ON_RQ_QUEUED; 1202 check_preempt_curr(dst_rq, p, 0); 1203 1204 rq_unpin_lock(dst_rq, &drf); 1205 rq_unpin_lock(src_rq, &srf); 1206 1207 } else { 1208 /* 1209 * Task isn't running anymore; make it appear like we migrated 1210 * it before it went to sleep. This means on wakeup we make the 1211 * previous CPU our target instead of where it really is. 1212 */ 1213 p->wake_cpu = cpu; 1214 } 1215 } 1216 1217 struct migration_swap_arg { 1218 struct task_struct *src_task, *dst_task; 1219 int src_cpu, dst_cpu; 1220 }; 1221 1222 static int migrate_swap_stop(void *data) 1223 { 1224 struct migration_swap_arg *arg = data; 1225 struct rq *src_rq, *dst_rq; 1226 int ret = -EAGAIN; 1227 1228 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1229 return -EAGAIN; 1230 1231 src_rq = cpu_rq(arg->src_cpu); 1232 dst_rq = cpu_rq(arg->dst_cpu); 1233 1234 double_raw_lock(&arg->src_task->pi_lock, 1235 &arg->dst_task->pi_lock); 1236 double_rq_lock(src_rq, dst_rq); 1237 1238 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1239 goto unlock; 1240 1241 if (task_cpu(arg->src_task) != arg->src_cpu) 1242 goto unlock; 1243 1244 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1245 goto unlock; 1246 1247 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1248 goto unlock; 1249 1250 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1251 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1252 1253 ret = 0; 1254 1255 unlock: 1256 double_rq_unlock(src_rq, dst_rq); 1257 raw_spin_unlock(&arg->dst_task->pi_lock); 1258 raw_spin_unlock(&arg->src_task->pi_lock); 1259 1260 return ret; 1261 } 1262 1263 /* 1264 * Cross migrate two tasks 1265 */ 1266 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1267 int target_cpu, int curr_cpu) 1268 { 1269 struct migration_swap_arg arg; 1270 int ret = -EINVAL; 1271 1272 arg = (struct migration_swap_arg){ 1273 .src_task = cur, 1274 .src_cpu = curr_cpu, 1275 .dst_task = p, 1276 .dst_cpu = target_cpu, 1277 }; 1278 1279 if (arg.src_cpu == arg.dst_cpu) 1280 goto out; 1281 1282 /* 1283 * These three tests are all lockless; this is OK since all of them 1284 * will be re-checked with proper locks held further down the line. 1285 */ 1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1287 goto out; 1288 1289 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1290 goto out; 1291 1292 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1293 goto out; 1294 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1297 1298 out: 1299 return ret; 1300 } 1301 #endif /* CONFIG_NUMA_BALANCING */ 1302 1303 /* 1304 * wait_task_inactive - wait for a thread to unschedule. 1305 * 1306 * If @match_state is nonzero, it's the @p->state value just checked and 1307 * not expected to change. If it changes, i.e. @p might have woken up, 1308 * then return zero. When we succeed in waiting for @p to be off its CPU, 1309 * we return a positive number (its total switch count). If a second call 1310 * a short while later returns the same number, the caller can be sure that 1311 * @p has remained unscheduled the whole time. 1312 * 1313 * The caller must ensure that the task *will* unschedule sometime soon, 1314 * else this function might spin for a *long* time. This function can't 1315 * be called with interrupts off, or it may introduce deadlock with 1316 * smp_call_function() if an IPI is sent by the same process we are 1317 * waiting to become inactive. 1318 */ 1319 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1320 { 1321 int running, queued; 1322 struct rq_flags rf; 1323 unsigned long ncsw; 1324 struct rq *rq; 1325 1326 for (;;) { 1327 /* 1328 * We do the initial early heuristics without holding 1329 * any task-queue locks at all. We'll only try to get 1330 * the runqueue lock when things look like they will 1331 * work out! 1332 */ 1333 rq = task_rq(p); 1334 1335 /* 1336 * If the task is actively running on another CPU 1337 * still, just relax and busy-wait without holding 1338 * any locks. 1339 * 1340 * NOTE! Since we don't hold any locks, it's not 1341 * even sure that "rq" stays as the right runqueue! 1342 * But we don't care, since "task_running()" will 1343 * return false if the runqueue has changed and p 1344 * is actually now running somewhere else! 1345 */ 1346 while (task_running(rq, p)) { 1347 if (match_state && unlikely(p->state != match_state)) 1348 return 0; 1349 cpu_relax(); 1350 } 1351 1352 /* 1353 * Ok, time to look more closely! We need the rq 1354 * lock now, to be *sure*. If we're wrong, we'll 1355 * just go back and repeat. 1356 */ 1357 rq = task_rq_lock(p, &rf); 1358 trace_sched_wait_task(p); 1359 running = task_running(rq, p); 1360 queued = task_on_rq_queued(p); 1361 ncsw = 0; 1362 if (!match_state || p->state == match_state) 1363 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1364 task_rq_unlock(rq, p, &rf); 1365 1366 /* 1367 * If it changed from the expected state, bail out now. 1368 */ 1369 if (unlikely(!ncsw)) 1370 break; 1371 1372 /* 1373 * Was it really running after all now that we 1374 * checked with the proper locks actually held? 1375 * 1376 * Oops. Go back and try again.. 1377 */ 1378 if (unlikely(running)) { 1379 cpu_relax(); 1380 continue; 1381 } 1382 1383 /* 1384 * It's not enough that it's not actively running, 1385 * it must be off the runqueue _entirely_, and not 1386 * preempted! 1387 * 1388 * So if it was still runnable (but just not actively 1389 * running right now), it's preempted, and we should 1390 * yield - it could be a while. 1391 */ 1392 if (unlikely(queued)) { 1393 ktime_t to = NSEC_PER_SEC / HZ; 1394 1395 set_current_state(TASK_UNINTERRUPTIBLE); 1396 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1397 continue; 1398 } 1399 1400 /* 1401 * Ahh, all good. It wasn't running, and it wasn't 1402 * runnable, which means that it will never become 1403 * running in the future either. We're all done! 1404 */ 1405 break; 1406 } 1407 1408 return ncsw; 1409 } 1410 1411 /*** 1412 * kick_process - kick a running thread to enter/exit the kernel 1413 * @p: the to-be-kicked thread 1414 * 1415 * Cause a process which is running on another CPU to enter 1416 * kernel-mode, without any delay. (to get signals handled.) 1417 * 1418 * NOTE: this function doesn't have to take the runqueue lock, 1419 * because all it wants to ensure is that the remote task enters 1420 * the kernel. If the IPI races and the task has been migrated 1421 * to another CPU then no harm is done and the purpose has been 1422 * achieved as well. 1423 */ 1424 void kick_process(struct task_struct *p) 1425 { 1426 int cpu; 1427 1428 preempt_disable(); 1429 cpu = task_cpu(p); 1430 if ((cpu != smp_processor_id()) && task_curr(p)) 1431 smp_send_reschedule(cpu); 1432 preempt_enable(); 1433 } 1434 EXPORT_SYMBOL_GPL(kick_process); 1435 1436 /* 1437 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1438 * 1439 * A few notes on cpu_active vs cpu_online: 1440 * 1441 * - cpu_active must be a subset of cpu_online 1442 * 1443 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1444 * see __set_cpus_allowed_ptr(). At this point the newly online 1445 * CPU isn't yet part of the sched domains, and balancing will not 1446 * see it. 1447 * 1448 * - on CPU-down we clear cpu_active() to mask the sched domains and 1449 * avoid the load balancer to place new tasks on the to be removed 1450 * CPU. Existing tasks will remain running there and will be taken 1451 * off. 1452 * 1453 * This means that fallback selection must not select !active CPUs. 1454 * And can assume that any active CPU must be online. Conversely 1455 * select_task_rq() below may allow selection of !active CPUs in order 1456 * to satisfy the above rules. 1457 */ 1458 static int select_fallback_rq(int cpu, struct task_struct *p) 1459 { 1460 int nid = cpu_to_node(cpu); 1461 const struct cpumask *nodemask = NULL; 1462 enum { cpuset, possible, fail } state = cpuset; 1463 int dest_cpu; 1464 1465 /* 1466 * If the node that the CPU is on has been offlined, cpu_to_node() 1467 * will return -1. There is no CPU on the node, and we should 1468 * select the CPU on the other node. 1469 */ 1470 if (nid != -1) { 1471 nodemask = cpumask_of_node(nid); 1472 1473 /* Look for allowed, online CPU in same node. */ 1474 for_each_cpu(dest_cpu, nodemask) { 1475 if (!cpu_active(dest_cpu)) 1476 continue; 1477 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1478 return dest_cpu; 1479 } 1480 } 1481 1482 for (;;) { 1483 /* Any allowed, online CPU? */ 1484 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1485 if (!is_cpu_allowed(p, dest_cpu)) 1486 continue; 1487 1488 goto out; 1489 } 1490 1491 /* No more Mr. Nice Guy. */ 1492 switch (state) { 1493 case cpuset: 1494 if (IS_ENABLED(CONFIG_CPUSETS)) { 1495 cpuset_cpus_allowed_fallback(p); 1496 state = possible; 1497 break; 1498 } 1499 /* Fall-through */ 1500 case possible: 1501 do_set_cpus_allowed(p, cpu_possible_mask); 1502 state = fail; 1503 break; 1504 1505 case fail: 1506 BUG(); 1507 break; 1508 } 1509 } 1510 1511 out: 1512 if (state != cpuset) { 1513 /* 1514 * Don't tell them about moving exiting tasks or 1515 * kernel threads (both mm NULL), since they never 1516 * leave kernel. 1517 */ 1518 if (p->mm && printk_ratelimit()) { 1519 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1520 task_pid_nr(p), p->comm, cpu); 1521 } 1522 } 1523 1524 return dest_cpu; 1525 } 1526 1527 /* 1528 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1529 */ 1530 static inline 1531 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1532 { 1533 lockdep_assert_held(&p->pi_lock); 1534 1535 if (p->nr_cpus_allowed > 1) 1536 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1537 else 1538 cpu = cpumask_any(&p->cpus_allowed); 1539 1540 /* 1541 * In order not to call set_task_cpu() on a blocking task we need 1542 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1543 * CPU. 1544 * 1545 * Since this is common to all placement strategies, this lives here. 1546 * 1547 * [ this allows ->select_task() to simply return task_cpu(p) and 1548 * not worry about this generic constraint ] 1549 */ 1550 if (unlikely(!is_cpu_allowed(p, cpu))) 1551 cpu = select_fallback_rq(task_cpu(p), p); 1552 1553 return cpu; 1554 } 1555 1556 static void update_avg(u64 *avg, u64 sample) 1557 { 1558 s64 diff = sample - *avg; 1559 *avg += diff >> 3; 1560 } 1561 1562 void sched_set_stop_task(int cpu, struct task_struct *stop) 1563 { 1564 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1565 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1566 1567 if (stop) { 1568 /* 1569 * Make it appear like a SCHED_FIFO task, its something 1570 * userspace knows about and won't get confused about. 1571 * 1572 * Also, it will make PI more or less work without too 1573 * much confusion -- but then, stop work should not 1574 * rely on PI working anyway. 1575 */ 1576 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1577 1578 stop->sched_class = &stop_sched_class; 1579 } 1580 1581 cpu_rq(cpu)->stop = stop; 1582 1583 if (old_stop) { 1584 /* 1585 * Reset it back to a normal scheduling class so that 1586 * it can die in pieces. 1587 */ 1588 old_stop->sched_class = &rt_sched_class; 1589 } 1590 } 1591 1592 #else 1593 1594 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1595 const struct cpumask *new_mask, bool check) 1596 { 1597 return set_cpus_allowed_ptr(p, new_mask); 1598 } 1599 1600 #endif /* CONFIG_SMP */ 1601 1602 static void 1603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1604 { 1605 struct rq *rq; 1606 1607 if (!schedstat_enabled()) 1608 return; 1609 1610 rq = this_rq(); 1611 1612 #ifdef CONFIG_SMP 1613 if (cpu == rq->cpu) { 1614 __schedstat_inc(rq->ttwu_local); 1615 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1616 } else { 1617 struct sched_domain *sd; 1618 1619 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1620 rcu_read_lock(); 1621 for_each_domain(rq->cpu, sd) { 1622 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1623 __schedstat_inc(sd->ttwu_wake_remote); 1624 break; 1625 } 1626 } 1627 rcu_read_unlock(); 1628 } 1629 1630 if (wake_flags & WF_MIGRATED) 1631 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1632 #endif /* CONFIG_SMP */ 1633 1634 __schedstat_inc(rq->ttwu_count); 1635 __schedstat_inc(p->se.statistics.nr_wakeups); 1636 1637 if (wake_flags & WF_SYNC) 1638 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1639 } 1640 1641 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1642 { 1643 activate_task(rq, p, en_flags); 1644 p->on_rq = TASK_ON_RQ_QUEUED; 1645 1646 /* If a worker is waking up, notify the workqueue: */ 1647 if (p->flags & PF_WQ_WORKER) 1648 wq_worker_waking_up(p, cpu_of(rq)); 1649 } 1650 1651 /* 1652 * Mark the task runnable and perform wakeup-preemption. 1653 */ 1654 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1655 struct rq_flags *rf) 1656 { 1657 check_preempt_curr(rq, p, wake_flags); 1658 p->state = TASK_RUNNING; 1659 trace_sched_wakeup(p); 1660 1661 #ifdef CONFIG_SMP 1662 if (p->sched_class->task_woken) { 1663 /* 1664 * Our task @p is fully woken up and running; so its safe to 1665 * drop the rq->lock, hereafter rq is only used for statistics. 1666 */ 1667 rq_unpin_lock(rq, rf); 1668 p->sched_class->task_woken(rq, p); 1669 rq_repin_lock(rq, rf); 1670 } 1671 1672 if (rq->idle_stamp) { 1673 u64 delta = rq_clock(rq) - rq->idle_stamp; 1674 u64 max = 2*rq->max_idle_balance_cost; 1675 1676 update_avg(&rq->avg_idle, delta); 1677 1678 if (rq->avg_idle > max) 1679 rq->avg_idle = max; 1680 1681 rq->idle_stamp = 0; 1682 } 1683 #endif 1684 } 1685 1686 static void 1687 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1688 struct rq_flags *rf) 1689 { 1690 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1691 1692 lockdep_assert_held(&rq->lock); 1693 1694 #ifdef CONFIG_SMP 1695 if (p->sched_contributes_to_load) 1696 rq->nr_uninterruptible--; 1697 1698 if (wake_flags & WF_MIGRATED) 1699 en_flags |= ENQUEUE_MIGRATED; 1700 #endif 1701 1702 ttwu_activate(rq, p, en_flags); 1703 ttwu_do_wakeup(rq, p, wake_flags, rf); 1704 } 1705 1706 /* 1707 * Called in case the task @p isn't fully descheduled from its runqueue, 1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1709 * since all we need to do is flip p->state to TASK_RUNNING, since 1710 * the task is still ->on_rq. 1711 */ 1712 static int ttwu_remote(struct task_struct *p, int wake_flags) 1713 { 1714 struct rq_flags rf; 1715 struct rq *rq; 1716 int ret = 0; 1717 1718 rq = __task_rq_lock(p, &rf); 1719 if (task_on_rq_queued(p)) { 1720 /* check_preempt_curr() may use rq clock */ 1721 update_rq_clock(rq); 1722 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1723 ret = 1; 1724 } 1725 __task_rq_unlock(rq, &rf); 1726 1727 return ret; 1728 } 1729 1730 #ifdef CONFIG_SMP 1731 void sched_ttwu_pending(void) 1732 { 1733 struct rq *rq = this_rq(); 1734 struct llist_node *llist = llist_del_all(&rq->wake_list); 1735 struct task_struct *p, *t; 1736 struct rq_flags rf; 1737 1738 if (!llist) 1739 return; 1740 1741 rq_lock_irqsave(rq, &rf); 1742 update_rq_clock(rq); 1743 1744 llist_for_each_entry_safe(p, t, llist, wake_entry) 1745 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1746 1747 rq_unlock_irqrestore(rq, &rf); 1748 } 1749 1750 void scheduler_ipi(void) 1751 { 1752 /* 1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1754 * TIF_NEED_RESCHED remotely (for the first time) will also send 1755 * this IPI. 1756 */ 1757 preempt_fold_need_resched(); 1758 1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1760 return; 1761 1762 /* 1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1764 * traditionally all their work was done from the interrupt return 1765 * path. Now that we actually do some work, we need to make sure 1766 * we do call them. 1767 * 1768 * Some archs already do call them, luckily irq_enter/exit nest 1769 * properly. 1770 * 1771 * Arguably we should visit all archs and update all handlers, 1772 * however a fair share of IPIs are still resched only so this would 1773 * somewhat pessimize the simple resched case. 1774 */ 1775 irq_enter(); 1776 sched_ttwu_pending(); 1777 1778 /* 1779 * Check if someone kicked us for doing the nohz idle load balance. 1780 */ 1781 if (unlikely(got_nohz_idle_kick())) { 1782 this_rq()->idle_balance = 1; 1783 raise_softirq_irqoff(SCHED_SOFTIRQ); 1784 } 1785 irq_exit(); 1786 } 1787 1788 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1789 { 1790 struct rq *rq = cpu_rq(cpu); 1791 1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1793 1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1795 if (!set_nr_if_polling(rq->idle)) 1796 smp_send_reschedule(cpu); 1797 else 1798 trace_sched_wake_idle_without_ipi(cpu); 1799 } 1800 } 1801 1802 void wake_up_if_idle(int cpu) 1803 { 1804 struct rq *rq = cpu_rq(cpu); 1805 struct rq_flags rf; 1806 1807 rcu_read_lock(); 1808 1809 if (!is_idle_task(rcu_dereference(rq->curr))) 1810 goto out; 1811 1812 if (set_nr_if_polling(rq->idle)) { 1813 trace_sched_wake_idle_without_ipi(cpu); 1814 } else { 1815 rq_lock_irqsave(rq, &rf); 1816 if (is_idle_task(rq->curr)) 1817 smp_send_reschedule(cpu); 1818 /* Else CPU is not idle, do nothing here: */ 1819 rq_unlock_irqrestore(rq, &rf); 1820 } 1821 1822 out: 1823 rcu_read_unlock(); 1824 } 1825 1826 bool cpus_share_cache(int this_cpu, int that_cpu) 1827 { 1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1829 } 1830 #endif /* CONFIG_SMP */ 1831 1832 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1833 { 1834 struct rq *rq = cpu_rq(cpu); 1835 struct rq_flags rf; 1836 1837 #if defined(CONFIG_SMP) 1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1840 ttwu_queue_remote(p, cpu, wake_flags); 1841 return; 1842 } 1843 #endif 1844 1845 rq_lock(rq, &rf); 1846 update_rq_clock(rq); 1847 ttwu_do_activate(rq, p, wake_flags, &rf); 1848 rq_unlock(rq, &rf); 1849 } 1850 1851 /* 1852 * Notes on Program-Order guarantees on SMP systems. 1853 * 1854 * MIGRATION 1855 * 1856 * The basic program-order guarantee on SMP systems is that when a task [t] 1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1858 * execution on its new CPU [c1]. 1859 * 1860 * For migration (of runnable tasks) this is provided by the following means: 1861 * 1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1864 * rq(c1)->lock (if not at the same time, then in that order). 1865 * C) LOCK of the rq(c1)->lock scheduling in task 1866 * 1867 * Release/acquire chaining guarantees that B happens after A and C after B. 1868 * Note: the CPU doing B need not be c0 or c1 1869 * 1870 * Example: 1871 * 1872 * CPU0 CPU1 CPU2 1873 * 1874 * LOCK rq(0)->lock 1875 * sched-out X 1876 * sched-in Y 1877 * UNLOCK rq(0)->lock 1878 * 1879 * LOCK rq(0)->lock // orders against CPU0 1880 * dequeue X 1881 * UNLOCK rq(0)->lock 1882 * 1883 * LOCK rq(1)->lock 1884 * enqueue X 1885 * UNLOCK rq(1)->lock 1886 * 1887 * LOCK rq(1)->lock // orders against CPU2 1888 * sched-out Z 1889 * sched-in X 1890 * UNLOCK rq(1)->lock 1891 * 1892 * 1893 * BLOCKING -- aka. SLEEP + WAKEUP 1894 * 1895 * For blocking we (obviously) need to provide the same guarantee as for 1896 * migration. However the means are completely different as there is no lock 1897 * chain to provide order. Instead we do: 1898 * 1899 * 1) smp_store_release(X->on_cpu, 0) 1900 * 2) smp_cond_load_acquire(!X->on_cpu) 1901 * 1902 * Example: 1903 * 1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1905 * 1906 * LOCK rq(0)->lock LOCK X->pi_lock 1907 * dequeue X 1908 * sched-out X 1909 * smp_store_release(X->on_cpu, 0); 1910 * 1911 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1912 * X->state = WAKING 1913 * set_task_cpu(X,2) 1914 * 1915 * LOCK rq(2)->lock 1916 * enqueue X 1917 * X->state = RUNNING 1918 * UNLOCK rq(2)->lock 1919 * 1920 * LOCK rq(2)->lock // orders against CPU1 1921 * sched-out Z 1922 * sched-in X 1923 * UNLOCK rq(2)->lock 1924 * 1925 * UNLOCK X->pi_lock 1926 * UNLOCK rq(0)->lock 1927 * 1928 * 1929 * However, for wakeups there is a second guarantee we must provide, namely we 1930 * must ensure that CONDITION=1 done by the caller can not be reordered with 1931 * accesses to the task state; see try_to_wake_up() and set_current_state(). 1932 */ 1933 1934 /** 1935 * try_to_wake_up - wake up a thread 1936 * @p: the thread to be awakened 1937 * @state: the mask of task states that can be woken 1938 * @wake_flags: wake modifier flags (WF_*) 1939 * 1940 * If (@state & @p->state) @p->state = TASK_RUNNING. 1941 * 1942 * If the task was not queued/runnable, also place it back on a runqueue. 1943 * 1944 * Atomic against schedule() which would dequeue a task, also see 1945 * set_current_state(). 1946 * 1947 * This function executes a full memory barrier before accessing the task 1948 * state; see set_current_state(). 1949 * 1950 * Return: %true if @p->state changes (an actual wakeup was done), 1951 * %false otherwise. 1952 */ 1953 static int 1954 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1955 { 1956 unsigned long flags; 1957 int cpu, success = 0; 1958 1959 /* 1960 * If we are going to wake up a thread waiting for CONDITION we 1961 * need to ensure that CONDITION=1 done by the caller can not be 1962 * reordered with p->state check below. This pairs with mb() in 1963 * set_current_state() the waiting thread does. 1964 */ 1965 raw_spin_lock_irqsave(&p->pi_lock, flags); 1966 smp_mb__after_spinlock(); 1967 if (!(p->state & state)) 1968 goto out; 1969 1970 trace_sched_waking(p); 1971 1972 /* We're going to change ->state: */ 1973 success = 1; 1974 cpu = task_cpu(p); 1975 1976 /* 1977 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1978 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1979 * in smp_cond_load_acquire() below. 1980 * 1981 * sched_ttwu_pending() try_to_wake_up() 1982 * STORE p->on_rq = 1 LOAD p->state 1983 * UNLOCK rq->lock 1984 * 1985 * __schedule() (switch to task 'p') 1986 * LOCK rq->lock smp_rmb(); 1987 * smp_mb__after_spinlock(); 1988 * UNLOCK rq->lock 1989 * 1990 * [task p] 1991 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 1992 * 1993 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 1994 * __schedule(). See the comment for smp_mb__after_spinlock(). 1995 */ 1996 smp_rmb(); 1997 if (p->on_rq && ttwu_remote(p, wake_flags)) 1998 goto stat; 1999 2000 #ifdef CONFIG_SMP 2001 /* 2002 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2003 * possible to, falsely, observe p->on_cpu == 0. 2004 * 2005 * One must be running (->on_cpu == 1) in order to remove oneself 2006 * from the runqueue. 2007 * 2008 * __schedule() (switch to task 'p') try_to_wake_up() 2009 * STORE p->on_cpu = 1 LOAD p->on_rq 2010 * UNLOCK rq->lock 2011 * 2012 * __schedule() (put 'p' to sleep) 2013 * LOCK rq->lock smp_rmb(); 2014 * smp_mb__after_spinlock(); 2015 * STORE p->on_rq = 0 LOAD p->on_cpu 2016 * 2017 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2018 * __schedule(). See the comment for smp_mb__after_spinlock(). 2019 */ 2020 smp_rmb(); 2021 2022 /* 2023 * If the owning (remote) CPU is still in the middle of schedule() with 2024 * this task as prev, wait until its done referencing the task. 2025 * 2026 * Pairs with the smp_store_release() in finish_task(). 2027 * 2028 * This ensures that tasks getting woken will be fully ordered against 2029 * their previous state and preserve Program Order. 2030 */ 2031 smp_cond_load_acquire(&p->on_cpu, !VAL); 2032 2033 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2034 p->state = TASK_WAKING; 2035 2036 if (p->in_iowait) { 2037 delayacct_blkio_end(p); 2038 atomic_dec(&task_rq(p)->nr_iowait); 2039 } 2040 2041 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2042 if (task_cpu(p) != cpu) { 2043 wake_flags |= WF_MIGRATED; 2044 psi_ttwu_dequeue(p); 2045 set_task_cpu(p, cpu); 2046 } 2047 2048 #else /* CONFIG_SMP */ 2049 2050 if (p->in_iowait) { 2051 delayacct_blkio_end(p); 2052 atomic_dec(&task_rq(p)->nr_iowait); 2053 } 2054 2055 #endif /* CONFIG_SMP */ 2056 2057 ttwu_queue(p, cpu, wake_flags); 2058 stat: 2059 ttwu_stat(p, cpu, wake_flags); 2060 out: 2061 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2062 2063 return success; 2064 } 2065 2066 /** 2067 * try_to_wake_up_local - try to wake up a local task with rq lock held 2068 * @p: the thread to be awakened 2069 * @rf: request-queue flags for pinning 2070 * 2071 * Put @p on the run-queue if it's not already there. The caller must 2072 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2073 * the current task. 2074 */ 2075 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2076 { 2077 struct rq *rq = task_rq(p); 2078 2079 if (WARN_ON_ONCE(rq != this_rq()) || 2080 WARN_ON_ONCE(p == current)) 2081 return; 2082 2083 lockdep_assert_held(&rq->lock); 2084 2085 if (!raw_spin_trylock(&p->pi_lock)) { 2086 /* 2087 * This is OK, because current is on_cpu, which avoids it being 2088 * picked for load-balance and preemption/IRQs are still 2089 * disabled avoiding further scheduler activity on it and we've 2090 * not yet picked a replacement task. 2091 */ 2092 rq_unlock(rq, rf); 2093 raw_spin_lock(&p->pi_lock); 2094 rq_relock(rq, rf); 2095 } 2096 2097 if (!(p->state & TASK_NORMAL)) 2098 goto out; 2099 2100 trace_sched_waking(p); 2101 2102 if (!task_on_rq_queued(p)) { 2103 if (p->in_iowait) { 2104 delayacct_blkio_end(p); 2105 atomic_dec(&rq->nr_iowait); 2106 } 2107 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2108 } 2109 2110 ttwu_do_wakeup(rq, p, 0, rf); 2111 ttwu_stat(p, smp_processor_id(), 0); 2112 out: 2113 raw_spin_unlock(&p->pi_lock); 2114 } 2115 2116 /** 2117 * wake_up_process - Wake up a specific process 2118 * @p: The process to be woken up. 2119 * 2120 * Attempt to wake up the nominated process and move it to the set of runnable 2121 * processes. 2122 * 2123 * Return: 1 if the process was woken up, 0 if it was already running. 2124 * 2125 * This function executes a full memory barrier before accessing the task state. 2126 */ 2127 int wake_up_process(struct task_struct *p) 2128 { 2129 return try_to_wake_up(p, TASK_NORMAL, 0); 2130 } 2131 EXPORT_SYMBOL(wake_up_process); 2132 2133 int wake_up_state(struct task_struct *p, unsigned int state) 2134 { 2135 return try_to_wake_up(p, state, 0); 2136 } 2137 2138 /* 2139 * Perform scheduler related setup for a newly forked process p. 2140 * p is forked by current. 2141 * 2142 * __sched_fork() is basic setup used by init_idle() too: 2143 */ 2144 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2145 { 2146 p->on_rq = 0; 2147 2148 p->se.on_rq = 0; 2149 p->se.exec_start = 0; 2150 p->se.sum_exec_runtime = 0; 2151 p->se.prev_sum_exec_runtime = 0; 2152 p->se.nr_migrations = 0; 2153 p->se.vruntime = 0; 2154 INIT_LIST_HEAD(&p->se.group_node); 2155 2156 #ifdef CONFIG_FAIR_GROUP_SCHED 2157 p->se.cfs_rq = NULL; 2158 #endif 2159 2160 #ifdef CONFIG_SCHEDSTATS 2161 /* Even if schedstat is disabled, there should not be garbage */ 2162 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2163 #endif 2164 2165 RB_CLEAR_NODE(&p->dl.rb_node); 2166 init_dl_task_timer(&p->dl); 2167 init_dl_inactive_task_timer(&p->dl); 2168 __dl_clear_params(p); 2169 2170 INIT_LIST_HEAD(&p->rt.run_list); 2171 p->rt.timeout = 0; 2172 p->rt.time_slice = sched_rr_timeslice; 2173 p->rt.on_rq = 0; 2174 p->rt.on_list = 0; 2175 2176 #ifdef CONFIG_PREEMPT_NOTIFIERS 2177 INIT_HLIST_HEAD(&p->preempt_notifiers); 2178 #endif 2179 2180 init_numa_balancing(clone_flags, p); 2181 } 2182 2183 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2184 2185 #ifdef CONFIG_NUMA_BALANCING 2186 2187 void set_numabalancing_state(bool enabled) 2188 { 2189 if (enabled) 2190 static_branch_enable(&sched_numa_balancing); 2191 else 2192 static_branch_disable(&sched_numa_balancing); 2193 } 2194 2195 #ifdef CONFIG_PROC_SYSCTL 2196 int sysctl_numa_balancing(struct ctl_table *table, int write, 2197 void __user *buffer, size_t *lenp, loff_t *ppos) 2198 { 2199 struct ctl_table t; 2200 int err; 2201 int state = static_branch_likely(&sched_numa_balancing); 2202 2203 if (write && !capable(CAP_SYS_ADMIN)) 2204 return -EPERM; 2205 2206 t = *table; 2207 t.data = &state; 2208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2209 if (err < 0) 2210 return err; 2211 if (write) 2212 set_numabalancing_state(state); 2213 return err; 2214 } 2215 #endif 2216 #endif 2217 2218 #ifdef CONFIG_SCHEDSTATS 2219 2220 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2221 static bool __initdata __sched_schedstats = false; 2222 2223 static void set_schedstats(bool enabled) 2224 { 2225 if (enabled) 2226 static_branch_enable(&sched_schedstats); 2227 else 2228 static_branch_disable(&sched_schedstats); 2229 } 2230 2231 void force_schedstat_enabled(void) 2232 { 2233 if (!schedstat_enabled()) { 2234 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2235 static_branch_enable(&sched_schedstats); 2236 } 2237 } 2238 2239 static int __init setup_schedstats(char *str) 2240 { 2241 int ret = 0; 2242 if (!str) 2243 goto out; 2244 2245 /* 2246 * This code is called before jump labels have been set up, so we can't 2247 * change the static branch directly just yet. Instead set a temporary 2248 * variable so init_schedstats() can do it later. 2249 */ 2250 if (!strcmp(str, "enable")) { 2251 __sched_schedstats = true; 2252 ret = 1; 2253 } else if (!strcmp(str, "disable")) { 2254 __sched_schedstats = false; 2255 ret = 1; 2256 } 2257 out: 2258 if (!ret) 2259 pr_warn("Unable to parse schedstats=\n"); 2260 2261 return ret; 2262 } 2263 __setup("schedstats=", setup_schedstats); 2264 2265 static void __init init_schedstats(void) 2266 { 2267 set_schedstats(__sched_schedstats); 2268 } 2269 2270 #ifdef CONFIG_PROC_SYSCTL 2271 int sysctl_schedstats(struct ctl_table *table, int write, 2272 void __user *buffer, size_t *lenp, loff_t *ppos) 2273 { 2274 struct ctl_table t; 2275 int err; 2276 int state = static_branch_likely(&sched_schedstats); 2277 2278 if (write && !capable(CAP_SYS_ADMIN)) 2279 return -EPERM; 2280 2281 t = *table; 2282 t.data = &state; 2283 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2284 if (err < 0) 2285 return err; 2286 if (write) 2287 set_schedstats(state); 2288 return err; 2289 } 2290 #endif /* CONFIG_PROC_SYSCTL */ 2291 #else /* !CONFIG_SCHEDSTATS */ 2292 static inline void init_schedstats(void) {} 2293 #endif /* CONFIG_SCHEDSTATS */ 2294 2295 /* 2296 * fork()/clone()-time setup: 2297 */ 2298 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2299 { 2300 unsigned long flags; 2301 2302 __sched_fork(clone_flags, p); 2303 /* 2304 * We mark the process as NEW here. This guarantees that 2305 * nobody will actually run it, and a signal or other external 2306 * event cannot wake it up and insert it on the runqueue either. 2307 */ 2308 p->state = TASK_NEW; 2309 2310 /* 2311 * Make sure we do not leak PI boosting priority to the child. 2312 */ 2313 p->prio = current->normal_prio; 2314 2315 /* 2316 * Revert to default priority/policy on fork if requested. 2317 */ 2318 if (unlikely(p->sched_reset_on_fork)) { 2319 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2320 p->policy = SCHED_NORMAL; 2321 p->static_prio = NICE_TO_PRIO(0); 2322 p->rt_priority = 0; 2323 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2324 p->static_prio = NICE_TO_PRIO(0); 2325 2326 p->prio = p->normal_prio = __normal_prio(p); 2327 set_load_weight(p, false); 2328 2329 /* 2330 * We don't need the reset flag anymore after the fork. It has 2331 * fulfilled its duty: 2332 */ 2333 p->sched_reset_on_fork = 0; 2334 } 2335 2336 if (dl_prio(p->prio)) 2337 return -EAGAIN; 2338 else if (rt_prio(p->prio)) 2339 p->sched_class = &rt_sched_class; 2340 else 2341 p->sched_class = &fair_sched_class; 2342 2343 init_entity_runnable_average(&p->se); 2344 2345 /* 2346 * The child is not yet in the pid-hash so no cgroup attach races, 2347 * and the cgroup is pinned to this child due to cgroup_fork() 2348 * is ran before sched_fork(). 2349 * 2350 * Silence PROVE_RCU. 2351 */ 2352 raw_spin_lock_irqsave(&p->pi_lock, flags); 2353 /* 2354 * We're setting the CPU for the first time, we don't migrate, 2355 * so use __set_task_cpu(). 2356 */ 2357 __set_task_cpu(p, smp_processor_id()); 2358 if (p->sched_class->task_fork) 2359 p->sched_class->task_fork(p); 2360 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2361 2362 #ifdef CONFIG_SCHED_INFO 2363 if (likely(sched_info_on())) 2364 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2365 #endif 2366 #if defined(CONFIG_SMP) 2367 p->on_cpu = 0; 2368 #endif 2369 init_task_preempt_count(p); 2370 #ifdef CONFIG_SMP 2371 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2372 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2373 #endif 2374 return 0; 2375 } 2376 2377 unsigned long to_ratio(u64 period, u64 runtime) 2378 { 2379 if (runtime == RUNTIME_INF) 2380 return BW_UNIT; 2381 2382 /* 2383 * Doing this here saves a lot of checks in all 2384 * the calling paths, and returning zero seems 2385 * safe for them anyway. 2386 */ 2387 if (period == 0) 2388 return 0; 2389 2390 return div64_u64(runtime << BW_SHIFT, period); 2391 } 2392 2393 /* 2394 * wake_up_new_task - wake up a newly created task for the first time. 2395 * 2396 * This function will do some initial scheduler statistics housekeeping 2397 * that must be done for every newly created context, then puts the task 2398 * on the runqueue and wakes it. 2399 */ 2400 void wake_up_new_task(struct task_struct *p) 2401 { 2402 struct rq_flags rf; 2403 struct rq *rq; 2404 2405 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2406 p->state = TASK_RUNNING; 2407 #ifdef CONFIG_SMP 2408 /* 2409 * Fork balancing, do it here and not earlier because: 2410 * - cpus_allowed can change in the fork path 2411 * - any previously selected CPU might disappear through hotplug 2412 * 2413 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2414 * as we're not fully set-up yet. 2415 */ 2416 p->recent_used_cpu = task_cpu(p); 2417 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2418 #endif 2419 rq = __task_rq_lock(p, &rf); 2420 update_rq_clock(rq); 2421 post_init_entity_util_avg(&p->se); 2422 2423 activate_task(rq, p, ENQUEUE_NOCLOCK); 2424 p->on_rq = TASK_ON_RQ_QUEUED; 2425 trace_sched_wakeup_new(p); 2426 check_preempt_curr(rq, p, WF_FORK); 2427 #ifdef CONFIG_SMP 2428 if (p->sched_class->task_woken) { 2429 /* 2430 * Nothing relies on rq->lock after this, so its fine to 2431 * drop it. 2432 */ 2433 rq_unpin_lock(rq, &rf); 2434 p->sched_class->task_woken(rq, p); 2435 rq_repin_lock(rq, &rf); 2436 } 2437 #endif 2438 task_rq_unlock(rq, p, &rf); 2439 } 2440 2441 #ifdef CONFIG_PREEMPT_NOTIFIERS 2442 2443 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2444 2445 void preempt_notifier_inc(void) 2446 { 2447 static_branch_inc(&preempt_notifier_key); 2448 } 2449 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2450 2451 void preempt_notifier_dec(void) 2452 { 2453 static_branch_dec(&preempt_notifier_key); 2454 } 2455 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2456 2457 /** 2458 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2459 * @notifier: notifier struct to register 2460 */ 2461 void preempt_notifier_register(struct preempt_notifier *notifier) 2462 { 2463 if (!static_branch_unlikely(&preempt_notifier_key)) 2464 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2465 2466 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2467 } 2468 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2469 2470 /** 2471 * preempt_notifier_unregister - no longer interested in preemption notifications 2472 * @notifier: notifier struct to unregister 2473 * 2474 * This is *not* safe to call from within a preemption notifier. 2475 */ 2476 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2477 { 2478 hlist_del(¬ifier->link); 2479 } 2480 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2481 2482 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2483 { 2484 struct preempt_notifier *notifier; 2485 2486 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2487 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2488 } 2489 2490 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2491 { 2492 if (static_branch_unlikely(&preempt_notifier_key)) 2493 __fire_sched_in_preempt_notifiers(curr); 2494 } 2495 2496 static void 2497 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2498 struct task_struct *next) 2499 { 2500 struct preempt_notifier *notifier; 2501 2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2503 notifier->ops->sched_out(notifier, next); 2504 } 2505 2506 static __always_inline void 2507 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2508 struct task_struct *next) 2509 { 2510 if (static_branch_unlikely(&preempt_notifier_key)) 2511 __fire_sched_out_preempt_notifiers(curr, next); 2512 } 2513 2514 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2515 2516 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2517 { 2518 } 2519 2520 static inline void 2521 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2522 struct task_struct *next) 2523 { 2524 } 2525 2526 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2527 2528 static inline void prepare_task(struct task_struct *next) 2529 { 2530 #ifdef CONFIG_SMP 2531 /* 2532 * Claim the task as running, we do this before switching to it 2533 * such that any running task will have this set. 2534 */ 2535 next->on_cpu = 1; 2536 #endif 2537 } 2538 2539 static inline void finish_task(struct task_struct *prev) 2540 { 2541 #ifdef CONFIG_SMP 2542 /* 2543 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2544 * We must ensure this doesn't happen until the switch is completely 2545 * finished. 2546 * 2547 * In particular, the load of prev->state in finish_task_switch() must 2548 * happen before this. 2549 * 2550 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2551 */ 2552 smp_store_release(&prev->on_cpu, 0); 2553 #endif 2554 } 2555 2556 static inline void 2557 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2558 { 2559 /* 2560 * Since the runqueue lock will be released by the next 2561 * task (which is an invalid locking op but in the case 2562 * of the scheduler it's an obvious special-case), so we 2563 * do an early lockdep release here: 2564 */ 2565 rq_unpin_lock(rq, rf); 2566 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2567 #ifdef CONFIG_DEBUG_SPINLOCK 2568 /* this is a valid case when another task releases the spinlock */ 2569 rq->lock.owner = next; 2570 #endif 2571 } 2572 2573 static inline void finish_lock_switch(struct rq *rq) 2574 { 2575 /* 2576 * If we are tracking spinlock dependencies then we have to 2577 * fix up the runqueue lock - which gets 'carried over' from 2578 * prev into current: 2579 */ 2580 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2581 raw_spin_unlock_irq(&rq->lock); 2582 } 2583 2584 /* 2585 * NOP if the arch has not defined these: 2586 */ 2587 2588 #ifndef prepare_arch_switch 2589 # define prepare_arch_switch(next) do { } while (0) 2590 #endif 2591 2592 #ifndef finish_arch_post_lock_switch 2593 # define finish_arch_post_lock_switch() do { } while (0) 2594 #endif 2595 2596 /** 2597 * prepare_task_switch - prepare to switch tasks 2598 * @rq: the runqueue preparing to switch 2599 * @prev: the current task that is being switched out 2600 * @next: the task we are going to switch to. 2601 * 2602 * This is called with the rq lock held and interrupts off. It must 2603 * be paired with a subsequent finish_task_switch after the context 2604 * switch. 2605 * 2606 * prepare_task_switch sets up locking and calls architecture specific 2607 * hooks. 2608 */ 2609 static inline void 2610 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2611 struct task_struct *next) 2612 { 2613 kcov_prepare_switch(prev); 2614 sched_info_switch(rq, prev, next); 2615 perf_event_task_sched_out(prev, next); 2616 rseq_preempt(prev); 2617 fire_sched_out_preempt_notifiers(prev, next); 2618 prepare_task(next); 2619 prepare_arch_switch(next); 2620 } 2621 2622 /** 2623 * finish_task_switch - clean up after a task-switch 2624 * @prev: the thread we just switched away from. 2625 * 2626 * finish_task_switch must be called after the context switch, paired 2627 * with a prepare_task_switch call before the context switch. 2628 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2629 * and do any other architecture-specific cleanup actions. 2630 * 2631 * Note that we may have delayed dropping an mm in context_switch(). If 2632 * so, we finish that here outside of the runqueue lock. (Doing it 2633 * with the lock held can cause deadlocks; see schedule() for 2634 * details.) 2635 * 2636 * The context switch have flipped the stack from under us and restored the 2637 * local variables which were saved when this task called schedule() in the 2638 * past. prev == current is still correct but we need to recalculate this_rq 2639 * because prev may have moved to another CPU. 2640 */ 2641 static struct rq *finish_task_switch(struct task_struct *prev) 2642 __releases(rq->lock) 2643 { 2644 struct rq *rq = this_rq(); 2645 struct mm_struct *mm = rq->prev_mm; 2646 long prev_state; 2647 2648 /* 2649 * The previous task will have left us with a preempt_count of 2 2650 * because it left us after: 2651 * 2652 * schedule() 2653 * preempt_disable(); // 1 2654 * __schedule() 2655 * raw_spin_lock_irq(&rq->lock) // 2 2656 * 2657 * Also, see FORK_PREEMPT_COUNT. 2658 */ 2659 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2660 "corrupted preempt_count: %s/%d/0x%x\n", 2661 current->comm, current->pid, preempt_count())) 2662 preempt_count_set(FORK_PREEMPT_COUNT); 2663 2664 rq->prev_mm = NULL; 2665 2666 /* 2667 * A task struct has one reference for the use as "current". 2668 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2669 * schedule one last time. The schedule call will never return, and 2670 * the scheduled task must drop that reference. 2671 * 2672 * We must observe prev->state before clearing prev->on_cpu (in 2673 * finish_task), otherwise a concurrent wakeup can get prev 2674 * running on another CPU and we could rave with its RUNNING -> DEAD 2675 * transition, resulting in a double drop. 2676 */ 2677 prev_state = prev->state; 2678 vtime_task_switch(prev); 2679 perf_event_task_sched_in(prev, current); 2680 finish_task(prev); 2681 finish_lock_switch(rq); 2682 finish_arch_post_lock_switch(); 2683 kcov_finish_switch(current); 2684 2685 fire_sched_in_preempt_notifiers(current); 2686 /* 2687 * When switching through a kernel thread, the loop in 2688 * membarrier_{private,global}_expedited() may have observed that 2689 * kernel thread and not issued an IPI. It is therefore possible to 2690 * schedule between user->kernel->user threads without passing though 2691 * switch_mm(). Membarrier requires a barrier after storing to 2692 * rq->curr, before returning to userspace, so provide them here: 2693 * 2694 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2695 * provided by mmdrop(), 2696 * - a sync_core for SYNC_CORE. 2697 */ 2698 if (mm) { 2699 membarrier_mm_sync_core_before_usermode(mm); 2700 mmdrop(mm); 2701 } 2702 if (unlikely(prev_state == TASK_DEAD)) { 2703 if (prev->sched_class->task_dead) 2704 prev->sched_class->task_dead(prev); 2705 2706 /* 2707 * Remove function-return probe instances associated with this 2708 * task and put them back on the free list. 2709 */ 2710 kprobe_flush_task(prev); 2711 2712 /* Task is done with its stack. */ 2713 put_task_stack(prev); 2714 2715 put_task_struct(prev); 2716 } 2717 2718 tick_nohz_task_switch(); 2719 return rq; 2720 } 2721 2722 #ifdef CONFIG_SMP 2723 2724 /* rq->lock is NOT held, but preemption is disabled */ 2725 static void __balance_callback(struct rq *rq) 2726 { 2727 struct callback_head *head, *next; 2728 void (*func)(struct rq *rq); 2729 unsigned long flags; 2730 2731 raw_spin_lock_irqsave(&rq->lock, flags); 2732 head = rq->balance_callback; 2733 rq->balance_callback = NULL; 2734 while (head) { 2735 func = (void (*)(struct rq *))head->func; 2736 next = head->next; 2737 head->next = NULL; 2738 head = next; 2739 2740 func(rq); 2741 } 2742 raw_spin_unlock_irqrestore(&rq->lock, flags); 2743 } 2744 2745 static inline void balance_callback(struct rq *rq) 2746 { 2747 if (unlikely(rq->balance_callback)) 2748 __balance_callback(rq); 2749 } 2750 2751 #else 2752 2753 static inline void balance_callback(struct rq *rq) 2754 { 2755 } 2756 2757 #endif 2758 2759 /** 2760 * schedule_tail - first thing a freshly forked thread must call. 2761 * @prev: the thread we just switched away from. 2762 */ 2763 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2764 __releases(rq->lock) 2765 { 2766 struct rq *rq; 2767 2768 /* 2769 * New tasks start with FORK_PREEMPT_COUNT, see there and 2770 * finish_task_switch() for details. 2771 * 2772 * finish_task_switch() will drop rq->lock() and lower preempt_count 2773 * and the preempt_enable() will end up enabling preemption (on 2774 * PREEMPT_COUNT kernels). 2775 */ 2776 2777 rq = finish_task_switch(prev); 2778 balance_callback(rq); 2779 preempt_enable(); 2780 2781 if (current->set_child_tid) 2782 put_user(task_pid_vnr(current), current->set_child_tid); 2783 2784 calculate_sigpending(); 2785 } 2786 2787 /* 2788 * context_switch - switch to the new MM and the new thread's register state. 2789 */ 2790 static __always_inline struct rq * 2791 context_switch(struct rq *rq, struct task_struct *prev, 2792 struct task_struct *next, struct rq_flags *rf) 2793 { 2794 struct mm_struct *mm, *oldmm; 2795 2796 prepare_task_switch(rq, prev, next); 2797 2798 mm = next->mm; 2799 oldmm = prev->active_mm; 2800 /* 2801 * For paravirt, this is coupled with an exit in switch_to to 2802 * combine the page table reload and the switch backend into 2803 * one hypercall. 2804 */ 2805 arch_start_context_switch(prev); 2806 2807 /* 2808 * If mm is non-NULL, we pass through switch_mm(). If mm is 2809 * NULL, we will pass through mmdrop() in finish_task_switch(). 2810 * Both of these contain the full memory barrier required by 2811 * membarrier after storing to rq->curr, before returning to 2812 * user-space. 2813 */ 2814 if (!mm) { 2815 next->active_mm = oldmm; 2816 mmgrab(oldmm); 2817 enter_lazy_tlb(oldmm, next); 2818 } else 2819 switch_mm_irqs_off(oldmm, mm, next); 2820 2821 if (!prev->mm) { 2822 prev->active_mm = NULL; 2823 rq->prev_mm = oldmm; 2824 } 2825 2826 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2827 2828 prepare_lock_switch(rq, next, rf); 2829 2830 /* Here we just switch the register state and the stack. */ 2831 switch_to(prev, next, prev); 2832 barrier(); 2833 2834 return finish_task_switch(prev); 2835 } 2836 2837 /* 2838 * nr_running and nr_context_switches: 2839 * 2840 * externally visible scheduler statistics: current number of runnable 2841 * threads, total number of context switches performed since bootup. 2842 */ 2843 unsigned long nr_running(void) 2844 { 2845 unsigned long i, sum = 0; 2846 2847 for_each_online_cpu(i) 2848 sum += cpu_rq(i)->nr_running; 2849 2850 return sum; 2851 } 2852 2853 /* 2854 * Check if only the current task is running on the CPU. 2855 * 2856 * Caution: this function does not check that the caller has disabled 2857 * preemption, thus the result might have a time-of-check-to-time-of-use 2858 * race. The caller is responsible to use it correctly, for example: 2859 * 2860 * - from a non-preemptible section (of course) 2861 * 2862 * - from a thread that is bound to a single CPU 2863 * 2864 * - in a loop with very short iterations (e.g. a polling loop) 2865 */ 2866 bool single_task_running(void) 2867 { 2868 return raw_rq()->nr_running == 1; 2869 } 2870 EXPORT_SYMBOL(single_task_running); 2871 2872 unsigned long long nr_context_switches(void) 2873 { 2874 int i; 2875 unsigned long long sum = 0; 2876 2877 for_each_possible_cpu(i) 2878 sum += cpu_rq(i)->nr_switches; 2879 2880 return sum; 2881 } 2882 2883 /* 2884 * Consumers of these two interfaces, like for example the cpuidle menu 2885 * governor, are using nonsensical data. Preferring shallow idle state selection 2886 * for a CPU that has IO-wait which might not even end up running the task when 2887 * it does become runnable. 2888 */ 2889 2890 unsigned long nr_iowait_cpu(int cpu) 2891 { 2892 return atomic_read(&cpu_rq(cpu)->nr_iowait); 2893 } 2894 2895 /* 2896 * IO-wait accounting, and how its mostly bollocks (on SMP). 2897 * 2898 * The idea behind IO-wait account is to account the idle time that we could 2899 * have spend running if it were not for IO. That is, if we were to improve the 2900 * storage performance, we'd have a proportional reduction in IO-wait time. 2901 * 2902 * This all works nicely on UP, where, when a task blocks on IO, we account 2903 * idle time as IO-wait, because if the storage were faster, it could've been 2904 * running and we'd not be idle. 2905 * 2906 * This has been extended to SMP, by doing the same for each CPU. This however 2907 * is broken. 2908 * 2909 * Imagine for instance the case where two tasks block on one CPU, only the one 2910 * CPU will have IO-wait accounted, while the other has regular idle. Even 2911 * though, if the storage were faster, both could've ran at the same time, 2912 * utilising both CPUs. 2913 * 2914 * This means, that when looking globally, the current IO-wait accounting on 2915 * SMP is a lower bound, by reason of under accounting. 2916 * 2917 * Worse, since the numbers are provided per CPU, they are sometimes 2918 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2919 * associated with any one particular CPU, it can wake to another CPU than it 2920 * blocked on. This means the per CPU IO-wait number is meaningless. 2921 * 2922 * Task CPU affinities can make all that even more 'interesting'. 2923 */ 2924 2925 unsigned long nr_iowait(void) 2926 { 2927 unsigned long i, sum = 0; 2928 2929 for_each_possible_cpu(i) 2930 sum += nr_iowait_cpu(i); 2931 2932 return sum; 2933 } 2934 2935 #ifdef CONFIG_SMP 2936 2937 /* 2938 * sched_exec - execve() is a valuable balancing opportunity, because at 2939 * this point the task has the smallest effective memory and cache footprint. 2940 */ 2941 void sched_exec(void) 2942 { 2943 struct task_struct *p = current; 2944 unsigned long flags; 2945 int dest_cpu; 2946 2947 raw_spin_lock_irqsave(&p->pi_lock, flags); 2948 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2949 if (dest_cpu == smp_processor_id()) 2950 goto unlock; 2951 2952 if (likely(cpu_active(dest_cpu))) { 2953 struct migration_arg arg = { p, dest_cpu }; 2954 2955 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2956 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2957 return; 2958 } 2959 unlock: 2960 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2961 } 2962 2963 #endif 2964 2965 DEFINE_PER_CPU(struct kernel_stat, kstat); 2966 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2967 2968 EXPORT_PER_CPU_SYMBOL(kstat); 2969 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2970 2971 /* 2972 * The function fair_sched_class.update_curr accesses the struct curr 2973 * and its field curr->exec_start; when called from task_sched_runtime(), 2974 * we observe a high rate of cache misses in practice. 2975 * Prefetching this data results in improved performance. 2976 */ 2977 static inline void prefetch_curr_exec_start(struct task_struct *p) 2978 { 2979 #ifdef CONFIG_FAIR_GROUP_SCHED 2980 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 2981 #else 2982 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 2983 #endif 2984 prefetch(curr); 2985 prefetch(&curr->exec_start); 2986 } 2987 2988 /* 2989 * Return accounted runtime for the task. 2990 * In case the task is currently running, return the runtime plus current's 2991 * pending runtime that have not been accounted yet. 2992 */ 2993 unsigned long long task_sched_runtime(struct task_struct *p) 2994 { 2995 struct rq_flags rf; 2996 struct rq *rq; 2997 u64 ns; 2998 2999 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3000 /* 3001 * 64-bit doesn't need locks to atomically read a 64-bit value. 3002 * So we have a optimization chance when the task's delta_exec is 0. 3003 * Reading ->on_cpu is racy, but this is ok. 3004 * 3005 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3006 * If we race with it entering CPU, unaccounted time is 0. This is 3007 * indistinguishable from the read occurring a few cycles earlier. 3008 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3009 * been accounted, so we're correct here as well. 3010 */ 3011 if (!p->on_cpu || !task_on_rq_queued(p)) 3012 return p->se.sum_exec_runtime; 3013 #endif 3014 3015 rq = task_rq_lock(p, &rf); 3016 /* 3017 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3018 * project cycles that may never be accounted to this 3019 * thread, breaking clock_gettime(). 3020 */ 3021 if (task_current(rq, p) && task_on_rq_queued(p)) { 3022 prefetch_curr_exec_start(p); 3023 update_rq_clock(rq); 3024 p->sched_class->update_curr(rq); 3025 } 3026 ns = p->se.sum_exec_runtime; 3027 task_rq_unlock(rq, p, &rf); 3028 3029 return ns; 3030 } 3031 3032 /* 3033 * This function gets called by the timer code, with HZ frequency. 3034 * We call it with interrupts disabled. 3035 */ 3036 void scheduler_tick(void) 3037 { 3038 int cpu = smp_processor_id(); 3039 struct rq *rq = cpu_rq(cpu); 3040 struct task_struct *curr = rq->curr; 3041 struct rq_flags rf; 3042 3043 sched_clock_tick(); 3044 3045 rq_lock(rq, &rf); 3046 3047 update_rq_clock(rq); 3048 curr->sched_class->task_tick(rq, curr, 0); 3049 cpu_load_update_active(rq); 3050 calc_global_load_tick(rq); 3051 psi_task_tick(rq); 3052 3053 rq_unlock(rq, &rf); 3054 3055 perf_event_task_tick(); 3056 3057 #ifdef CONFIG_SMP 3058 rq->idle_balance = idle_cpu(cpu); 3059 trigger_load_balance(rq); 3060 #endif 3061 } 3062 3063 #ifdef CONFIG_NO_HZ_FULL 3064 3065 struct tick_work { 3066 int cpu; 3067 struct delayed_work work; 3068 }; 3069 3070 static struct tick_work __percpu *tick_work_cpu; 3071 3072 static void sched_tick_remote(struct work_struct *work) 3073 { 3074 struct delayed_work *dwork = to_delayed_work(work); 3075 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3076 int cpu = twork->cpu; 3077 struct rq *rq = cpu_rq(cpu); 3078 struct task_struct *curr; 3079 struct rq_flags rf; 3080 u64 delta; 3081 3082 /* 3083 * Handle the tick only if it appears the remote CPU is running in full 3084 * dynticks mode. The check is racy by nature, but missing a tick or 3085 * having one too much is no big deal because the scheduler tick updates 3086 * statistics and checks timeslices in a time-independent way, regardless 3087 * of when exactly it is running. 3088 */ 3089 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3090 goto out_requeue; 3091 3092 rq_lock_irq(rq, &rf); 3093 curr = rq->curr; 3094 if (is_idle_task(curr)) 3095 goto out_unlock; 3096 3097 update_rq_clock(rq); 3098 delta = rq_clock_task(rq) - curr->se.exec_start; 3099 3100 /* 3101 * Make sure the next tick runs within a reasonable 3102 * amount of time. 3103 */ 3104 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3105 curr->sched_class->task_tick(rq, curr, 0); 3106 3107 out_unlock: 3108 rq_unlock_irq(rq, &rf); 3109 3110 out_requeue: 3111 /* 3112 * Run the remote tick once per second (1Hz). This arbitrary 3113 * frequency is large enough to avoid overload but short enough 3114 * to keep scheduler internal stats reasonably up to date. 3115 */ 3116 queue_delayed_work(system_unbound_wq, dwork, HZ); 3117 } 3118 3119 static void sched_tick_start(int cpu) 3120 { 3121 struct tick_work *twork; 3122 3123 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3124 return; 3125 3126 WARN_ON_ONCE(!tick_work_cpu); 3127 3128 twork = per_cpu_ptr(tick_work_cpu, cpu); 3129 twork->cpu = cpu; 3130 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3131 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3132 } 3133 3134 #ifdef CONFIG_HOTPLUG_CPU 3135 static void sched_tick_stop(int cpu) 3136 { 3137 struct tick_work *twork; 3138 3139 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3140 return; 3141 3142 WARN_ON_ONCE(!tick_work_cpu); 3143 3144 twork = per_cpu_ptr(tick_work_cpu, cpu); 3145 cancel_delayed_work_sync(&twork->work); 3146 } 3147 #endif /* CONFIG_HOTPLUG_CPU */ 3148 3149 int __init sched_tick_offload_init(void) 3150 { 3151 tick_work_cpu = alloc_percpu(struct tick_work); 3152 BUG_ON(!tick_work_cpu); 3153 3154 return 0; 3155 } 3156 3157 #else /* !CONFIG_NO_HZ_FULL */ 3158 static inline void sched_tick_start(int cpu) { } 3159 static inline void sched_tick_stop(int cpu) { } 3160 #endif 3161 3162 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3163 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3164 /* 3165 * If the value passed in is equal to the current preempt count 3166 * then we just disabled preemption. Start timing the latency. 3167 */ 3168 static inline void preempt_latency_start(int val) 3169 { 3170 if (preempt_count() == val) { 3171 unsigned long ip = get_lock_parent_ip(); 3172 #ifdef CONFIG_DEBUG_PREEMPT 3173 current->preempt_disable_ip = ip; 3174 #endif 3175 trace_preempt_off(CALLER_ADDR0, ip); 3176 } 3177 } 3178 3179 void preempt_count_add(int val) 3180 { 3181 #ifdef CONFIG_DEBUG_PREEMPT 3182 /* 3183 * Underflow? 3184 */ 3185 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3186 return; 3187 #endif 3188 __preempt_count_add(val); 3189 #ifdef CONFIG_DEBUG_PREEMPT 3190 /* 3191 * Spinlock count overflowing soon? 3192 */ 3193 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3194 PREEMPT_MASK - 10); 3195 #endif 3196 preempt_latency_start(val); 3197 } 3198 EXPORT_SYMBOL(preempt_count_add); 3199 NOKPROBE_SYMBOL(preempt_count_add); 3200 3201 /* 3202 * If the value passed in equals to the current preempt count 3203 * then we just enabled preemption. Stop timing the latency. 3204 */ 3205 static inline void preempt_latency_stop(int val) 3206 { 3207 if (preempt_count() == val) 3208 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3209 } 3210 3211 void preempt_count_sub(int val) 3212 { 3213 #ifdef CONFIG_DEBUG_PREEMPT 3214 /* 3215 * Underflow? 3216 */ 3217 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3218 return; 3219 /* 3220 * Is the spinlock portion underflowing? 3221 */ 3222 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3223 !(preempt_count() & PREEMPT_MASK))) 3224 return; 3225 #endif 3226 3227 preempt_latency_stop(val); 3228 __preempt_count_sub(val); 3229 } 3230 EXPORT_SYMBOL(preempt_count_sub); 3231 NOKPROBE_SYMBOL(preempt_count_sub); 3232 3233 #else 3234 static inline void preempt_latency_start(int val) { } 3235 static inline void preempt_latency_stop(int val) { } 3236 #endif 3237 3238 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3239 { 3240 #ifdef CONFIG_DEBUG_PREEMPT 3241 return p->preempt_disable_ip; 3242 #else 3243 return 0; 3244 #endif 3245 } 3246 3247 /* 3248 * Print scheduling while atomic bug: 3249 */ 3250 static noinline void __schedule_bug(struct task_struct *prev) 3251 { 3252 /* Save this before calling printk(), since that will clobber it */ 3253 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3254 3255 if (oops_in_progress) 3256 return; 3257 3258 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3259 prev->comm, prev->pid, preempt_count()); 3260 3261 debug_show_held_locks(prev); 3262 print_modules(); 3263 if (irqs_disabled()) 3264 print_irqtrace_events(prev); 3265 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3266 && in_atomic_preempt_off()) { 3267 pr_err("Preemption disabled at:"); 3268 print_ip_sym(preempt_disable_ip); 3269 pr_cont("\n"); 3270 } 3271 if (panic_on_warn) 3272 panic("scheduling while atomic\n"); 3273 3274 dump_stack(); 3275 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3276 } 3277 3278 /* 3279 * Various schedule()-time debugging checks and statistics: 3280 */ 3281 static inline void schedule_debug(struct task_struct *prev) 3282 { 3283 #ifdef CONFIG_SCHED_STACK_END_CHECK 3284 if (task_stack_end_corrupted(prev)) 3285 panic("corrupted stack end detected inside scheduler\n"); 3286 #endif 3287 3288 if (unlikely(in_atomic_preempt_off())) { 3289 __schedule_bug(prev); 3290 preempt_count_set(PREEMPT_DISABLED); 3291 } 3292 rcu_sleep_check(); 3293 3294 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3295 3296 schedstat_inc(this_rq()->sched_count); 3297 } 3298 3299 /* 3300 * Pick up the highest-prio task: 3301 */ 3302 static inline struct task_struct * 3303 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3304 { 3305 const struct sched_class *class; 3306 struct task_struct *p; 3307 3308 /* 3309 * Optimization: we know that if all tasks are in the fair class we can 3310 * call that function directly, but only if the @prev task wasn't of a 3311 * higher scheduling class, because otherwise those loose the 3312 * opportunity to pull in more work from other CPUs. 3313 */ 3314 if (likely((prev->sched_class == &idle_sched_class || 3315 prev->sched_class == &fair_sched_class) && 3316 rq->nr_running == rq->cfs.h_nr_running)) { 3317 3318 p = fair_sched_class.pick_next_task(rq, prev, rf); 3319 if (unlikely(p == RETRY_TASK)) 3320 goto again; 3321 3322 /* Assumes fair_sched_class->next == idle_sched_class */ 3323 if (unlikely(!p)) 3324 p = idle_sched_class.pick_next_task(rq, prev, rf); 3325 3326 return p; 3327 } 3328 3329 again: 3330 for_each_class(class) { 3331 p = class->pick_next_task(rq, prev, rf); 3332 if (p) { 3333 if (unlikely(p == RETRY_TASK)) 3334 goto again; 3335 return p; 3336 } 3337 } 3338 3339 /* The idle class should always have a runnable task: */ 3340 BUG(); 3341 } 3342 3343 /* 3344 * __schedule() is the main scheduler function. 3345 * 3346 * The main means of driving the scheduler and thus entering this function are: 3347 * 3348 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3349 * 3350 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3351 * paths. For example, see arch/x86/entry_64.S. 3352 * 3353 * To drive preemption between tasks, the scheduler sets the flag in timer 3354 * interrupt handler scheduler_tick(). 3355 * 3356 * 3. Wakeups don't really cause entry into schedule(). They add a 3357 * task to the run-queue and that's it. 3358 * 3359 * Now, if the new task added to the run-queue preempts the current 3360 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3361 * called on the nearest possible occasion: 3362 * 3363 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3364 * 3365 * - in syscall or exception context, at the next outmost 3366 * preempt_enable(). (this might be as soon as the wake_up()'s 3367 * spin_unlock()!) 3368 * 3369 * - in IRQ context, return from interrupt-handler to 3370 * preemptible context 3371 * 3372 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3373 * then at the next: 3374 * 3375 * - cond_resched() call 3376 * - explicit schedule() call 3377 * - return from syscall or exception to user-space 3378 * - return from interrupt-handler to user-space 3379 * 3380 * WARNING: must be called with preemption disabled! 3381 */ 3382 static void __sched notrace __schedule(bool preempt) 3383 { 3384 struct task_struct *prev, *next; 3385 unsigned long *switch_count; 3386 struct rq_flags rf; 3387 struct rq *rq; 3388 int cpu; 3389 3390 cpu = smp_processor_id(); 3391 rq = cpu_rq(cpu); 3392 prev = rq->curr; 3393 3394 schedule_debug(prev); 3395 3396 if (sched_feat(HRTICK)) 3397 hrtick_clear(rq); 3398 3399 local_irq_disable(); 3400 rcu_note_context_switch(preempt); 3401 3402 /* 3403 * Make sure that signal_pending_state()->signal_pending() below 3404 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3405 * done by the caller to avoid the race with signal_wake_up(). 3406 * 3407 * The membarrier system call requires a full memory barrier 3408 * after coming from user-space, before storing to rq->curr. 3409 */ 3410 rq_lock(rq, &rf); 3411 smp_mb__after_spinlock(); 3412 3413 /* Promote REQ to ACT */ 3414 rq->clock_update_flags <<= 1; 3415 update_rq_clock(rq); 3416 3417 switch_count = &prev->nivcsw; 3418 if (!preempt && prev->state) { 3419 if (signal_pending_state(prev->state, prev)) { 3420 prev->state = TASK_RUNNING; 3421 } else { 3422 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3423 prev->on_rq = 0; 3424 3425 if (prev->in_iowait) { 3426 atomic_inc(&rq->nr_iowait); 3427 delayacct_blkio_start(); 3428 } 3429 3430 /* 3431 * If a worker went to sleep, notify and ask workqueue 3432 * whether it wants to wake up a task to maintain 3433 * concurrency. 3434 */ 3435 if (prev->flags & PF_WQ_WORKER) { 3436 struct task_struct *to_wakeup; 3437 3438 to_wakeup = wq_worker_sleeping(prev); 3439 if (to_wakeup) 3440 try_to_wake_up_local(to_wakeup, &rf); 3441 } 3442 } 3443 switch_count = &prev->nvcsw; 3444 } 3445 3446 next = pick_next_task(rq, prev, &rf); 3447 clear_tsk_need_resched(prev); 3448 clear_preempt_need_resched(); 3449 3450 if (likely(prev != next)) { 3451 rq->nr_switches++; 3452 rq->curr = next; 3453 /* 3454 * The membarrier system call requires each architecture 3455 * to have a full memory barrier after updating 3456 * rq->curr, before returning to user-space. 3457 * 3458 * Here are the schemes providing that barrier on the 3459 * various architectures: 3460 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3461 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3462 * - finish_lock_switch() for weakly-ordered 3463 * architectures where spin_unlock is a full barrier, 3464 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3465 * is a RELEASE barrier), 3466 */ 3467 ++*switch_count; 3468 3469 trace_sched_switch(preempt, prev, next); 3470 3471 /* Also unlocks the rq: */ 3472 rq = context_switch(rq, prev, next, &rf); 3473 } else { 3474 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3475 rq_unlock_irq(rq, &rf); 3476 } 3477 3478 balance_callback(rq); 3479 } 3480 3481 void __noreturn do_task_dead(void) 3482 { 3483 /* Causes final put_task_struct in finish_task_switch(): */ 3484 set_special_state(TASK_DEAD); 3485 3486 /* Tell freezer to ignore us: */ 3487 current->flags |= PF_NOFREEZE; 3488 3489 __schedule(false); 3490 BUG(); 3491 3492 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3493 for (;;) 3494 cpu_relax(); 3495 } 3496 3497 static inline void sched_submit_work(struct task_struct *tsk) 3498 { 3499 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3500 return; 3501 /* 3502 * If we are going to sleep and we have plugged IO queued, 3503 * make sure to submit it to avoid deadlocks. 3504 */ 3505 if (blk_needs_flush_plug(tsk)) 3506 blk_schedule_flush_plug(tsk); 3507 } 3508 3509 asmlinkage __visible void __sched schedule(void) 3510 { 3511 struct task_struct *tsk = current; 3512 3513 sched_submit_work(tsk); 3514 do { 3515 preempt_disable(); 3516 __schedule(false); 3517 sched_preempt_enable_no_resched(); 3518 } while (need_resched()); 3519 } 3520 EXPORT_SYMBOL(schedule); 3521 3522 /* 3523 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3524 * state (have scheduled out non-voluntarily) by making sure that all 3525 * tasks have either left the run queue or have gone into user space. 3526 * As idle tasks do not do either, they must not ever be preempted 3527 * (schedule out non-voluntarily). 3528 * 3529 * schedule_idle() is similar to schedule_preempt_disable() except that it 3530 * never enables preemption because it does not call sched_submit_work(). 3531 */ 3532 void __sched schedule_idle(void) 3533 { 3534 /* 3535 * As this skips calling sched_submit_work(), which the idle task does 3536 * regardless because that function is a nop when the task is in a 3537 * TASK_RUNNING state, make sure this isn't used someplace that the 3538 * current task can be in any other state. Note, idle is always in the 3539 * TASK_RUNNING state. 3540 */ 3541 WARN_ON_ONCE(current->state); 3542 do { 3543 __schedule(false); 3544 } while (need_resched()); 3545 } 3546 3547 #ifdef CONFIG_CONTEXT_TRACKING 3548 asmlinkage __visible void __sched schedule_user(void) 3549 { 3550 /* 3551 * If we come here after a random call to set_need_resched(), 3552 * or we have been woken up remotely but the IPI has not yet arrived, 3553 * we haven't yet exited the RCU idle mode. Do it here manually until 3554 * we find a better solution. 3555 * 3556 * NB: There are buggy callers of this function. Ideally we 3557 * should warn if prev_state != CONTEXT_USER, but that will trigger 3558 * too frequently to make sense yet. 3559 */ 3560 enum ctx_state prev_state = exception_enter(); 3561 schedule(); 3562 exception_exit(prev_state); 3563 } 3564 #endif 3565 3566 /** 3567 * schedule_preempt_disabled - called with preemption disabled 3568 * 3569 * Returns with preemption disabled. Note: preempt_count must be 1 3570 */ 3571 void __sched schedule_preempt_disabled(void) 3572 { 3573 sched_preempt_enable_no_resched(); 3574 schedule(); 3575 preempt_disable(); 3576 } 3577 3578 static void __sched notrace preempt_schedule_common(void) 3579 { 3580 do { 3581 /* 3582 * Because the function tracer can trace preempt_count_sub() 3583 * and it also uses preempt_enable/disable_notrace(), if 3584 * NEED_RESCHED is set, the preempt_enable_notrace() called 3585 * by the function tracer will call this function again and 3586 * cause infinite recursion. 3587 * 3588 * Preemption must be disabled here before the function 3589 * tracer can trace. Break up preempt_disable() into two 3590 * calls. One to disable preemption without fear of being 3591 * traced. The other to still record the preemption latency, 3592 * which can also be traced by the function tracer. 3593 */ 3594 preempt_disable_notrace(); 3595 preempt_latency_start(1); 3596 __schedule(true); 3597 preempt_latency_stop(1); 3598 preempt_enable_no_resched_notrace(); 3599 3600 /* 3601 * Check again in case we missed a preemption opportunity 3602 * between schedule and now. 3603 */ 3604 } while (need_resched()); 3605 } 3606 3607 #ifdef CONFIG_PREEMPT 3608 /* 3609 * this is the entry point to schedule() from in-kernel preemption 3610 * off of preempt_enable. Kernel preemptions off return from interrupt 3611 * occur there and call schedule directly. 3612 */ 3613 asmlinkage __visible void __sched notrace preempt_schedule(void) 3614 { 3615 /* 3616 * If there is a non-zero preempt_count or interrupts are disabled, 3617 * we do not want to preempt the current task. Just return.. 3618 */ 3619 if (likely(!preemptible())) 3620 return; 3621 3622 preempt_schedule_common(); 3623 } 3624 NOKPROBE_SYMBOL(preempt_schedule); 3625 EXPORT_SYMBOL(preempt_schedule); 3626 3627 /** 3628 * preempt_schedule_notrace - preempt_schedule called by tracing 3629 * 3630 * The tracing infrastructure uses preempt_enable_notrace to prevent 3631 * recursion and tracing preempt enabling caused by the tracing 3632 * infrastructure itself. But as tracing can happen in areas coming 3633 * from userspace or just about to enter userspace, a preempt enable 3634 * can occur before user_exit() is called. This will cause the scheduler 3635 * to be called when the system is still in usermode. 3636 * 3637 * To prevent this, the preempt_enable_notrace will use this function 3638 * instead of preempt_schedule() to exit user context if needed before 3639 * calling the scheduler. 3640 */ 3641 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3642 { 3643 enum ctx_state prev_ctx; 3644 3645 if (likely(!preemptible())) 3646 return; 3647 3648 do { 3649 /* 3650 * Because the function tracer can trace preempt_count_sub() 3651 * and it also uses preempt_enable/disable_notrace(), if 3652 * NEED_RESCHED is set, the preempt_enable_notrace() called 3653 * by the function tracer will call this function again and 3654 * cause infinite recursion. 3655 * 3656 * Preemption must be disabled here before the function 3657 * tracer can trace. Break up preempt_disable() into two 3658 * calls. One to disable preemption without fear of being 3659 * traced. The other to still record the preemption latency, 3660 * which can also be traced by the function tracer. 3661 */ 3662 preempt_disable_notrace(); 3663 preempt_latency_start(1); 3664 /* 3665 * Needs preempt disabled in case user_exit() is traced 3666 * and the tracer calls preempt_enable_notrace() causing 3667 * an infinite recursion. 3668 */ 3669 prev_ctx = exception_enter(); 3670 __schedule(true); 3671 exception_exit(prev_ctx); 3672 3673 preempt_latency_stop(1); 3674 preempt_enable_no_resched_notrace(); 3675 } while (need_resched()); 3676 } 3677 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3678 3679 #endif /* CONFIG_PREEMPT */ 3680 3681 /* 3682 * this is the entry point to schedule() from kernel preemption 3683 * off of irq context. 3684 * Note, that this is called and return with irqs disabled. This will 3685 * protect us against recursive calling from irq. 3686 */ 3687 asmlinkage __visible void __sched preempt_schedule_irq(void) 3688 { 3689 enum ctx_state prev_state; 3690 3691 /* Catch callers which need to be fixed */ 3692 BUG_ON(preempt_count() || !irqs_disabled()); 3693 3694 prev_state = exception_enter(); 3695 3696 do { 3697 preempt_disable(); 3698 local_irq_enable(); 3699 __schedule(true); 3700 local_irq_disable(); 3701 sched_preempt_enable_no_resched(); 3702 } while (need_resched()); 3703 3704 exception_exit(prev_state); 3705 } 3706 3707 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3708 void *key) 3709 { 3710 return try_to_wake_up(curr->private, mode, wake_flags); 3711 } 3712 EXPORT_SYMBOL(default_wake_function); 3713 3714 #ifdef CONFIG_RT_MUTEXES 3715 3716 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3717 { 3718 if (pi_task) 3719 prio = min(prio, pi_task->prio); 3720 3721 return prio; 3722 } 3723 3724 static inline int rt_effective_prio(struct task_struct *p, int prio) 3725 { 3726 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3727 3728 return __rt_effective_prio(pi_task, prio); 3729 } 3730 3731 /* 3732 * rt_mutex_setprio - set the current priority of a task 3733 * @p: task to boost 3734 * @pi_task: donor task 3735 * 3736 * This function changes the 'effective' priority of a task. It does 3737 * not touch ->normal_prio like __setscheduler(). 3738 * 3739 * Used by the rt_mutex code to implement priority inheritance 3740 * logic. Call site only calls if the priority of the task changed. 3741 */ 3742 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3743 { 3744 int prio, oldprio, queued, running, queue_flag = 3745 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3746 const struct sched_class *prev_class; 3747 struct rq_flags rf; 3748 struct rq *rq; 3749 3750 /* XXX used to be waiter->prio, not waiter->task->prio */ 3751 prio = __rt_effective_prio(pi_task, p->normal_prio); 3752 3753 /* 3754 * If nothing changed; bail early. 3755 */ 3756 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3757 return; 3758 3759 rq = __task_rq_lock(p, &rf); 3760 update_rq_clock(rq); 3761 /* 3762 * Set under pi_lock && rq->lock, such that the value can be used under 3763 * either lock. 3764 * 3765 * Note that there is loads of tricky to make this pointer cache work 3766 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3767 * ensure a task is de-boosted (pi_task is set to NULL) before the 3768 * task is allowed to run again (and can exit). This ensures the pointer 3769 * points to a blocked task -- which guaratees the task is present. 3770 */ 3771 p->pi_top_task = pi_task; 3772 3773 /* 3774 * For FIFO/RR we only need to set prio, if that matches we're done. 3775 */ 3776 if (prio == p->prio && !dl_prio(prio)) 3777 goto out_unlock; 3778 3779 /* 3780 * Idle task boosting is a nono in general. There is one 3781 * exception, when PREEMPT_RT and NOHZ is active: 3782 * 3783 * The idle task calls get_next_timer_interrupt() and holds 3784 * the timer wheel base->lock on the CPU and another CPU wants 3785 * to access the timer (probably to cancel it). We can safely 3786 * ignore the boosting request, as the idle CPU runs this code 3787 * with interrupts disabled and will complete the lock 3788 * protected section without being interrupted. So there is no 3789 * real need to boost. 3790 */ 3791 if (unlikely(p == rq->idle)) { 3792 WARN_ON(p != rq->curr); 3793 WARN_ON(p->pi_blocked_on); 3794 goto out_unlock; 3795 } 3796 3797 trace_sched_pi_setprio(p, pi_task); 3798 oldprio = p->prio; 3799 3800 if (oldprio == prio) 3801 queue_flag &= ~DEQUEUE_MOVE; 3802 3803 prev_class = p->sched_class; 3804 queued = task_on_rq_queued(p); 3805 running = task_current(rq, p); 3806 if (queued) 3807 dequeue_task(rq, p, queue_flag); 3808 if (running) 3809 put_prev_task(rq, p); 3810 3811 /* 3812 * Boosting condition are: 3813 * 1. -rt task is running and holds mutex A 3814 * --> -dl task blocks on mutex A 3815 * 3816 * 2. -dl task is running and holds mutex A 3817 * --> -dl task blocks on mutex A and could preempt the 3818 * running task 3819 */ 3820 if (dl_prio(prio)) { 3821 if (!dl_prio(p->normal_prio) || 3822 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3823 p->dl.dl_boosted = 1; 3824 queue_flag |= ENQUEUE_REPLENISH; 3825 } else 3826 p->dl.dl_boosted = 0; 3827 p->sched_class = &dl_sched_class; 3828 } else if (rt_prio(prio)) { 3829 if (dl_prio(oldprio)) 3830 p->dl.dl_boosted = 0; 3831 if (oldprio < prio) 3832 queue_flag |= ENQUEUE_HEAD; 3833 p->sched_class = &rt_sched_class; 3834 } else { 3835 if (dl_prio(oldprio)) 3836 p->dl.dl_boosted = 0; 3837 if (rt_prio(oldprio)) 3838 p->rt.timeout = 0; 3839 p->sched_class = &fair_sched_class; 3840 } 3841 3842 p->prio = prio; 3843 3844 if (queued) 3845 enqueue_task(rq, p, queue_flag); 3846 if (running) 3847 set_curr_task(rq, p); 3848 3849 check_class_changed(rq, p, prev_class, oldprio); 3850 out_unlock: 3851 /* Avoid rq from going away on us: */ 3852 preempt_disable(); 3853 __task_rq_unlock(rq, &rf); 3854 3855 balance_callback(rq); 3856 preempt_enable(); 3857 } 3858 #else 3859 static inline int rt_effective_prio(struct task_struct *p, int prio) 3860 { 3861 return prio; 3862 } 3863 #endif 3864 3865 void set_user_nice(struct task_struct *p, long nice) 3866 { 3867 bool queued, running; 3868 int old_prio, delta; 3869 struct rq_flags rf; 3870 struct rq *rq; 3871 3872 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3873 return; 3874 /* 3875 * We have to be careful, if called from sys_setpriority(), 3876 * the task might be in the middle of scheduling on another CPU. 3877 */ 3878 rq = task_rq_lock(p, &rf); 3879 update_rq_clock(rq); 3880 3881 /* 3882 * The RT priorities are set via sched_setscheduler(), but we still 3883 * allow the 'normal' nice value to be set - but as expected 3884 * it wont have any effect on scheduling until the task is 3885 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3886 */ 3887 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3888 p->static_prio = NICE_TO_PRIO(nice); 3889 goto out_unlock; 3890 } 3891 queued = task_on_rq_queued(p); 3892 running = task_current(rq, p); 3893 if (queued) 3894 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3895 if (running) 3896 put_prev_task(rq, p); 3897 3898 p->static_prio = NICE_TO_PRIO(nice); 3899 set_load_weight(p, true); 3900 old_prio = p->prio; 3901 p->prio = effective_prio(p); 3902 delta = p->prio - old_prio; 3903 3904 if (queued) { 3905 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3906 /* 3907 * If the task increased its priority or is running and 3908 * lowered its priority, then reschedule its CPU: 3909 */ 3910 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3911 resched_curr(rq); 3912 } 3913 if (running) 3914 set_curr_task(rq, p); 3915 out_unlock: 3916 task_rq_unlock(rq, p, &rf); 3917 } 3918 EXPORT_SYMBOL(set_user_nice); 3919 3920 /* 3921 * can_nice - check if a task can reduce its nice value 3922 * @p: task 3923 * @nice: nice value 3924 */ 3925 int can_nice(const struct task_struct *p, const int nice) 3926 { 3927 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3928 int nice_rlim = nice_to_rlimit(nice); 3929 3930 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3931 capable(CAP_SYS_NICE)); 3932 } 3933 3934 #ifdef __ARCH_WANT_SYS_NICE 3935 3936 /* 3937 * sys_nice - change the priority of the current process. 3938 * @increment: priority increment 3939 * 3940 * sys_setpriority is a more generic, but much slower function that 3941 * does similar things. 3942 */ 3943 SYSCALL_DEFINE1(nice, int, increment) 3944 { 3945 long nice, retval; 3946 3947 /* 3948 * Setpriority might change our priority at the same moment. 3949 * We don't have to worry. Conceptually one call occurs first 3950 * and we have a single winner. 3951 */ 3952 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3953 nice = task_nice(current) + increment; 3954 3955 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3956 if (increment < 0 && !can_nice(current, nice)) 3957 return -EPERM; 3958 3959 retval = security_task_setnice(current, nice); 3960 if (retval) 3961 return retval; 3962 3963 set_user_nice(current, nice); 3964 return 0; 3965 } 3966 3967 #endif 3968 3969 /** 3970 * task_prio - return the priority value of a given task. 3971 * @p: the task in question. 3972 * 3973 * Return: The priority value as seen by users in /proc. 3974 * RT tasks are offset by -200. Normal tasks are centered 3975 * around 0, value goes from -16 to +15. 3976 */ 3977 int task_prio(const struct task_struct *p) 3978 { 3979 return p->prio - MAX_RT_PRIO; 3980 } 3981 3982 /** 3983 * idle_cpu - is a given CPU idle currently? 3984 * @cpu: the processor in question. 3985 * 3986 * Return: 1 if the CPU is currently idle. 0 otherwise. 3987 */ 3988 int idle_cpu(int cpu) 3989 { 3990 struct rq *rq = cpu_rq(cpu); 3991 3992 if (rq->curr != rq->idle) 3993 return 0; 3994 3995 if (rq->nr_running) 3996 return 0; 3997 3998 #ifdef CONFIG_SMP 3999 if (!llist_empty(&rq->wake_list)) 4000 return 0; 4001 #endif 4002 4003 return 1; 4004 } 4005 4006 /** 4007 * available_idle_cpu - is a given CPU idle for enqueuing work. 4008 * @cpu: the CPU in question. 4009 * 4010 * Return: 1 if the CPU is currently idle. 0 otherwise. 4011 */ 4012 int available_idle_cpu(int cpu) 4013 { 4014 if (!idle_cpu(cpu)) 4015 return 0; 4016 4017 if (vcpu_is_preempted(cpu)) 4018 return 0; 4019 4020 return 1; 4021 } 4022 4023 /** 4024 * idle_task - return the idle task for a given CPU. 4025 * @cpu: the processor in question. 4026 * 4027 * Return: The idle task for the CPU @cpu. 4028 */ 4029 struct task_struct *idle_task(int cpu) 4030 { 4031 return cpu_rq(cpu)->idle; 4032 } 4033 4034 /** 4035 * find_process_by_pid - find a process with a matching PID value. 4036 * @pid: the pid in question. 4037 * 4038 * The task of @pid, if found. %NULL otherwise. 4039 */ 4040 static struct task_struct *find_process_by_pid(pid_t pid) 4041 { 4042 return pid ? find_task_by_vpid(pid) : current; 4043 } 4044 4045 /* 4046 * sched_setparam() passes in -1 for its policy, to let the functions 4047 * it calls know not to change it. 4048 */ 4049 #define SETPARAM_POLICY -1 4050 4051 static void __setscheduler_params(struct task_struct *p, 4052 const struct sched_attr *attr) 4053 { 4054 int policy = attr->sched_policy; 4055 4056 if (policy == SETPARAM_POLICY) 4057 policy = p->policy; 4058 4059 p->policy = policy; 4060 4061 if (dl_policy(policy)) 4062 __setparam_dl(p, attr); 4063 else if (fair_policy(policy)) 4064 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4065 4066 /* 4067 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4068 * !rt_policy. Always setting this ensures that things like 4069 * getparam()/getattr() don't report silly values for !rt tasks. 4070 */ 4071 p->rt_priority = attr->sched_priority; 4072 p->normal_prio = normal_prio(p); 4073 set_load_weight(p, true); 4074 } 4075 4076 /* Actually do priority change: must hold pi & rq lock. */ 4077 static void __setscheduler(struct rq *rq, struct task_struct *p, 4078 const struct sched_attr *attr, bool keep_boost) 4079 { 4080 __setscheduler_params(p, attr); 4081 4082 /* 4083 * Keep a potential priority boosting if called from 4084 * sched_setscheduler(). 4085 */ 4086 p->prio = normal_prio(p); 4087 if (keep_boost) 4088 p->prio = rt_effective_prio(p, p->prio); 4089 4090 if (dl_prio(p->prio)) 4091 p->sched_class = &dl_sched_class; 4092 else if (rt_prio(p->prio)) 4093 p->sched_class = &rt_sched_class; 4094 else 4095 p->sched_class = &fair_sched_class; 4096 } 4097 4098 /* 4099 * Check the target process has a UID that matches the current process's: 4100 */ 4101 static bool check_same_owner(struct task_struct *p) 4102 { 4103 const struct cred *cred = current_cred(), *pcred; 4104 bool match; 4105 4106 rcu_read_lock(); 4107 pcred = __task_cred(p); 4108 match = (uid_eq(cred->euid, pcred->euid) || 4109 uid_eq(cred->euid, pcred->uid)); 4110 rcu_read_unlock(); 4111 return match; 4112 } 4113 4114 static int __sched_setscheduler(struct task_struct *p, 4115 const struct sched_attr *attr, 4116 bool user, bool pi) 4117 { 4118 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4119 MAX_RT_PRIO - 1 - attr->sched_priority; 4120 int retval, oldprio, oldpolicy = -1, queued, running; 4121 int new_effective_prio, policy = attr->sched_policy; 4122 const struct sched_class *prev_class; 4123 struct rq_flags rf; 4124 int reset_on_fork; 4125 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4126 struct rq *rq; 4127 4128 /* The pi code expects interrupts enabled */ 4129 BUG_ON(pi && in_interrupt()); 4130 recheck: 4131 /* Double check policy once rq lock held: */ 4132 if (policy < 0) { 4133 reset_on_fork = p->sched_reset_on_fork; 4134 policy = oldpolicy = p->policy; 4135 } else { 4136 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4137 4138 if (!valid_policy(policy)) 4139 return -EINVAL; 4140 } 4141 4142 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4143 return -EINVAL; 4144 4145 /* 4146 * Valid priorities for SCHED_FIFO and SCHED_RR are 4147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4148 * SCHED_BATCH and SCHED_IDLE is 0. 4149 */ 4150 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4151 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4152 return -EINVAL; 4153 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4154 (rt_policy(policy) != (attr->sched_priority != 0))) 4155 return -EINVAL; 4156 4157 /* 4158 * Allow unprivileged RT tasks to decrease priority: 4159 */ 4160 if (user && !capable(CAP_SYS_NICE)) { 4161 if (fair_policy(policy)) { 4162 if (attr->sched_nice < task_nice(p) && 4163 !can_nice(p, attr->sched_nice)) 4164 return -EPERM; 4165 } 4166 4167 if (rt_policy(policy)) { 4168 unsigned long rlim_rtprio = 4169 task_rlimit(p, RLIMIT_RTPRIO); 4170 4171 /* Can't set/change the rt policy: */ 4172 if (policy != p->policy && !rlim_rtprio) 4173 return -EPERM; 4174 4175 /* Can't increase priority: */ 4176 if (attr->sched_priority > p->rt_priority && 4177 attr->sched_priority > rlim_rtprio) 4178 return -EPERM; 4179 } 4180 4181 /* 4182 * Can't set/change SCHED_DEADLINE policy at all for now 4183 * (safest behavior); in the future we would like to allow 4184 * unprivileged DL tasks to increase their relative deadline 4185 * or reduce their runtime (both ways reducing utilization) 4186 */ 4187 if (dl_policy(policy)) 4188 return -EPERM; 4189 4190 /* 4191 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4192 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4193 */ 4194 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4195 if (!can_nice(p, task_nice(p))) 4196 return -EPERM; 4197 } 4198 4199 /* Can't change other user's priorities: */ 4200 if (!check_same_owner(p)) 4201 return -EPERM; 4202 4203 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4204 if (p->sched_reset_on_fork && !reset_on_fork) 4205 return -EPERM; 4206 } 4207 4208 if (user) { 4209 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4210 return -EINVAL; 4211 4212 retval = security_task_setscheduler(p); 4213 if (retval) 4214 return retval; 4215 } 4216 4217 /* 4218 * Make sure no PI-waiters arrive (or leave) while we are 4219 * changing the priority of the task: 4220 * 4221 * To be able to change p->policy safely, the appropriate 4222 * runqueue lock must be held. 4223 */ 4224 rq = task_rq_lock(p, &rf); 4225 update_rq_clock(rq); 4226 4227 /* 4228 * Changing the policy of the stop threads its a very bad idea: 4229 */ 4230 if (p == rq->stop) { 4231 task_rq_unlock(rq, p, &rf); 4232 return -EINVAL; 4233 } 4234 4235 /* 4236 * If not changing anything there's no need to proceed further, 4237 * but store a possible modification of reset_on_fork. 4238 */ 4239 if (unlikely(policy == p->policy)) { 4240 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4241 goto change; 4242 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4243 goto change; 4244 if (dl_policy(policy) && dl_param_changed(p, attr)) 4245 goto change; 4246 4247 p->sched_reset_on_fork = reset_on_fork; 4248 task_rq_unlock(rq, p, &rf); 4249 return 0; 4250 } 4251 change: 4252 4253 if (user) { 4254 #ifdef CONFIG_RT_GROUP_SCHED 4255 /* 4256 * Do not allow realtime tasks into groups that have no runtime 4257 * assigned. 4258 */ 4259 if (rt_bandwidth_enabled() && rt_policy(policy) && 4260 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4261 !task_group_is_autogroup(task_group(p))) { 4262 task_rq_unlock(rq, p, &rf); 4263 return -EPERM; 4264 } 4265 #endif 4266 #ifdef CONFIG_SMP 4267 if (dl_bandwidth_enabled() && dl_policy(policy) && 4268 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4269 cpumask_t *span = rq->rd->span; 4270 4271 /* 4272 * Don't allow tasks with an affinity mask smaller than 4273 * the entire root_domain to become SCHED_DEADLINE. We 4274 * will also fail if there's no bandwidth available. 4275 */ 4276 if (!cpumask_subset(span, &p->cpus_allowed) || 4277 rq->rd->dl_bw.bw == 0) { 4278 task_rq_unlock(rq, p, &rf); 4279 return -EPERM; 4280 } 4281 } 4282 #endif 4283 } 4284 4285 /* Re-check policy now with rq lock held: */ 4286 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4287 policy = oldpolicy = -1; 4288 task_rq_unlock(rq, p, &rf); 4289 goto recheck; 4290 } 4291 4292 /* 4293 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4294 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4295 * is available. 4296 */ 4297 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4298 task_rq_unlock(rq, p, &rf); 4299 return -EBUSY; 4300 } 4301 4302 p->sched_reset_on_fork = reset_on_fork; 4303 oldprio = p->prio; 4304 4305 if (pi) { 4306 /* 4307 * Take priority boosted tasks into account. If the new 4308 * effective priority is unchanged, we just store the new 4309 * normal parameters and do not touch the scheduler class and 4310 * the runqueue. This will be done when the task deboost 4311 * itself. 4312 */ 4313 new_effective_prio = rt_effective_prio(p, newprio); 4314 if (new_effective_prio == oldprio) 4315 queue_flags &= ~DEQUEUE_MOVE; 4316 } 4317 4318 queued = task_on_rq_queued(p); 4319 running = task_current(rq, p); 4320 if (queued) 4321 dequeue_task(rq, p, queue_flags); 4322 if (running) 4323 put_prev_task(rq, p); 4324 4325 prev_class = p->sched_class; 4326 __setscheduler(rq, p, attr, pi); 4327 4328 if (queued) { 4329 /* 4330 * We enqueue to tail when the priority of a task is 4331 * increased (user space view). 4332 */ 4333 if (oldprio < p->prio) 4334 queue_flags |= ENQUEUE_HEAD; 4335 4336 enqueue_task(rq, p, queue_flags); 4337 } 4338 if (running) 4339 set_curr_task(rq, p); 4340 4341 check_class_changed(rq, p, prev_class, oldprio); 4342 4343 /* Avoid rq from going away on us: */ 4344 preempt_disable(); 4345 task_rq_unlock(rq, p, &rf); 4346 4347 if (pi) 4348 rt_mutex_adjust_pi(p); 4349 4350 /* Run balance callbacks after we've adjusted the PI chain: */ 4351 balance_callback(rq); 4352 preempt_enable(); 4353 4354 return 0; 4355 } 4356 4357 static int _sched_setscheduler(struct task_struct *p, int policy, 4358 const struct sched_param *param, bool check) 4359 { 4360 struct sched_attr attr = { 4361 .sched_policy = policy, 4362 .sched_priority = param->sched_priority, 4363 .sched_nice = PRIO_TO_NICE(p->static_prio), 4364 }; 4365 4366 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4367 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4368 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4369 policy &= ~SCHED_RESET_ON_FORK; 4370 attr.sched_policy = policy; 4371 } 4372 4373 return __sched_setscheduler(p, &attr, check, true); 4374 } 4375 /** 4376 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4377 * @p: the task in question. 4378 * @policy: new policy. 4379 * @param: structure containing the new RT priority. 4380 * 4381 * Return: 0 on success. An error code otherwise. 4382 * 4383 * NOTE that the task may be already dead. 4384 */ 4385 int sched_setscheduler(struct task_struct *p, int policy, 4386 const struct sched_param *param) 4387 { 4388 return _sched_setscheduler(p, policy, param, true); 4389 } 4390 EXPORT_SYMBOL_GPL(sched_setscheduler); 4391 4392 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4393 { 4394 return __sched_setscheduler(p, attr, true, true); 4395 } 4396 EXPORT_SYMBOL_GPL(sched_setattr); 4397 4398 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4399 { 4400 return __sched_setscheduler(p, attr, false, true); 4401 } 4402 4403 /** 4404 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4405 * @p: the task in question. 4406 * @policy: new policy. 4407 * @param: structure containing the new RT priority. 4408 * 4409 * Just like sched_setscheduler, only don't bother checking if the 4410 * current context has permission. For example, this is needed in 4411 * stop_machine(): we create temporary high priority worker threads, 4412 * but our caller might not have that capability. 4413 * 4414 * Return: 0 on success. An error code otherwise. 4415 */ 4416 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4417 const struct sched_param *param) 4418 { 4419 return _sched_setscheduler(p, policy, param, false); 4420 } 4421 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4422 4423 static int 4424 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4425 { 4426 struct sched_param lparam; 4427 struct task_struct *p; 4428 int retval; 4429 4430 if (!param || pid < 0) 4431 return -EINVAL; 4432 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4433 return -EFAULT; 4434 4435 rcu_read_lock(); 4436 retval = -ESRCH; 4437 p = find_process_by_pid(pid); 4438 if (p != NULL) 4439 retval = sched_setscheduler(p, policy, &lparam); 4440 rcu_read_unlock(); 4441 4442 return retval; 4443 } 4444 4445 /* 4446 * Mimics kernel/events/core.c perf_copy_attr(). 4447 */ 4448 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4449 { 4450 u32 size; 4451 int ret; 4452 4453 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0)) 4454 return -EFAULT; 4455 4456 /* Zero the full structure, so that a short copy will be nice: */ 4457 memset(attr, 0, sizeof(*attr)); 4458 4459 ret = get_user(size, &uattr->size); 4460 if (ret) 4461 return ret; 4462 4463 /* Bail out on silly large: */ 4464 if (size > PAGE_SIZE) 4465 goto err_size; 4466 4467 /* ABI compatibility quirk: */ 4468 if (!size) 4469 size = SCHED_ATTR_SIZE_VER0; 4470 4471 if (size < SCHED_ATTR_SIZE_VER0) 4472 goto err_size; 4473 4474 /* 4475 * If we're handed a bigger struct than we know of, 4476 * ensure all the unknown bits are 0 - i.e. new 4477 * user-space does not rely on any kernel feature 4478 * extensions we dont know about yet. 4479 */ 4480 if (size > sizeof(*attr)) { 4481 unsigned char __user *addr; 4482 unsigned char __user *end; 4483 unsigned char val; 4484 4485 addr = (void __user *)uattr + sizeof(*attr); 4486 end = (void __user *)uattr + size; 4487 4488 for (; addr < end; addr++) { 4489 ret = get_user(val, addr); 4490 if (ret) 4491 return ret; 4492 if (val) 4493 goto err_size; 4494 } 4495 size = sizeof(*attr); 4496 } 4497 4498 ret = copy_from_user(attr, uattr, size); 4499 if (ret) 4500 return -EFAULT; 4501 4502 /* 4503 * XXX: Do we want to be lenient like existing syscalls; or do we want 4504 * to be strict and return an error on out-of-bounds values? 4505 */ 4506 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4507 4508 return 0; 4509 4510 err_size: 4511 put_user(sizeof(*attr), &uattr->size); 4512 return -E2BIG; 4513 } 4514 4515 /** 4516 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4517 * @pid: the pid in question. 4518 * @policy: new policy. 4519 * @param: structure containing the new RT priority. 4520 * 4521 * Return: 0 on success. An error code otherwise. 4522 */ 4523 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4524 { 4525 if (policy < 0) 4526 return -EINVAL; 4527 4528 return do_sched_setscheduler(pid, policy, param); 4529 } 4530 4531 /** 4532 * sys_sched_setparam - set/change the RT priority of a thread 4533 * @pid: the pid in question. 4534 * @param: structure containing the new RT priority. 4535 * 4536 * Return: 0 on success. An error code otherwise. 4537 */ 4538 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4539 { 4540 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4541 } 4542 4543 /** 4544 * sys_sched_setattr - same as above, but with extended sched_attr 4545 * @pid: the pid in question. 4546 * @uattr: structure containing the extended parameters. 4547 * @flags: for future extension. 4548 */ 4549 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4550 unsigned int, flags) 4551 { 4552 struct sched_attr attr; 4553 struct task_struct *p; 4554 int retval; 4555 4556 if (!uattr || pid < 0 || flags) 4557 return -EINVAL; 4558 4559 retval = sched_copy_attr(uattr, &attr); 4560 if (retval) 4561 return retval; 4562 4563 if ((int)attr.sched_policy < 0) 4564 return -EINVAL; 4565 4566 rcu_read_lock(); 4567 retval = -ESRCH; 4568 p = find_process_by_pid(pid); 4569 if (p != NULL) 4570 retval = sched_setattr(p, &attr); 4571 rcu_read_unlock(); 4572 4573 return retval; 4574 } 4575 4576 /** 4577 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4578 * @pid: the pid in question. 4579 * 4580 * Return: On success, the policy of the thread. Otherwise, a negative error 4581 * code. 4582 */ 4583 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4584 { 4585 struct task_struct *p; 4586 int retval; 4587 4588 if (pid < 0) 4589 return -EINVAL; 4590 4591 retval = -ESRCH; 4592 rcu_read_lock(); 4593 p = find_process_by_pid(pid); 4594 if (p) { 4595 retval = security_task_getscheduler(p); 4596 if (!retval) 4597 retval = p->policy 4598 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4599 } 4600 rcu_read_unlock(); 4601 return retval; 4602 } 4603 4604 /** 4605 * sys_sched_getparam - get the RT priority of a thread 4606 * @pid: the pid in question. 4607 * @param: structure containing the RT priority. 4608 * 4609 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4610 * code. 4611 */ 4612 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4613 { 4614 struct sched_param lp = { .sched_priority = 0 }; 4615 struct task_struct *p; 4616 int retval; 4617 4618 if (!param || pid < 0) 4619 return -EINVAL; 4620 4621 rcu_read_lock(); 4622 p = find_process_by_pid(pid); 4623 retval = -ESRCH; 4624 if (!p) 4625 goto out_unlock; 4626 4627 retval = security_task_getscheduler(p); 4628 if (retval) 4629 goto out_unlock; 4630 4631 if (task_has_rt_policy(p)) 4632 lp.sched_priority = p->rt_priority; 4633 rcu_read_unlock(); 4634 4635 /* 4636 * This one might sleep, we cannot do it with a spinlock held ... 4637 */ 4638 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4639 4640 return retval; 4641 4642 out_unlock: 4643 rcu_read_unlock(); 4644 return retval; 4645 } 4646 4647 static int sched_read_attr(struct sched_attr __user *uattr, 4648 struct sched_attr *attr, 4649 unsigned int usize) 4650 { 4651 int ret; 4652 4653 if (!access_ok(uattr, usize)) 4654 return -EFAULT; 4655 4656 /* 4657 * If we're handed a smaller struct than we know of, 4658 * ensure all the unknown bits are 0 - i.e. old 4659 * user-space does not get uncomplete information. 4660 */ 4661 if (usize < sizeof(*attr)) { 4662 unsigned char *addr; 4663 unsigned char *end; 4664 4665 addr = (void *)attr + usize; 4666 end = (void *)attr + sizeof(*attr); 4667 4668 for (; addr < end; addr++) { 4669 if (*addr) 4670 return -EFBIG; 4671 } 4672 4673 attr->size = usize; 4674 } 4675 4676 ret = copy_to_user(uattr, attr, attr->size); 4677 if (ret) 4678 return -EFAULT; 4679 4680 return 0; 4681 } 4682 4683 /** 4684 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4685 * @pid: the pid in question. 4686 * @uattr: structure containing the extended parameters. 4687 * @size: sizeof(attr) for fwd/bwd comp. 4688 * @flags: for future extension. 4689 */ 4690 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4691 unsigned int, size, unsigned int, flags) 4692 { 4693 struct sched_attr attr = { 4694 .size = sizeof(struct sched_attr), 4695 }; 4696 struct task_struct *p; 4697 int retval; 4698 4699 if (!uattr || pid < 0 || size > PAGE_SIZE || 4700 size < SCHED_ATTR_SIZE_VER0 || flags) 4701 return -EINVAL; 4702 4703 rcu_read_lock(); 4704 p = find_process_by_pid(pid); 4705 retval = -ESRCH; 4706 if (!p) 4707 goto out_unlock; 4708 4709 retval = security_task_getscheduler(p); 4710 if (retval) 4711 goto out_unlock; 4712 4713 attr.sched_policy = p->policy; 4714 if (p->sched_reset_on_fork) 4715 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4716 if (task_has_dl_policy(p)) 4717 __getparam_dl(p, &attr); 4718 else if (task_has_rt_policy(p)) 4719 attr.sched_priority = p->rt_priority; 4720 else 4721 attr.sched_nice = task_nice(p); 4722 4723 rcu_read_unlock(); 4724 4725 retval = sched_read_attr(uattr, &attr, size); 4726 return retval; 4727 4728 out_unlock: 4729 rcu_read_unlock(); 4730 return retval; 4731 } 4732 4733 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4734 { 4735 cpumask_var_t cpus_allowed, new_mask; 4736 struct task_struct *p; 4737 int retval; 4738 4739 rcu_read_lock(); 4740 4741 p = find_process_by_pid(pid); 4742 if (!p) { 4743 rcu_read_unlock(); 4744 return -ESRCH; 4745 } 4746 4747 /* Prevent p going away */ 4748 get_task_struct(p); 4749 rcu_read_unlock(); 4750 4751 if (p->flags & PF_NO_SETAFFINITY) { 4752 retval = -EINVAL; 4753 goto out_put_task; 4754 } 4755 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4756 retval = -ENOMEM; 4757 goto out_put_task; 4758 } 4759 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4760 retval = -ENOMEM; 4761 goto out_free_cpus_allowed; 4762 } 4763 retval = -EPERM; 4764 if (!check_same_owner(p)) { 4765 rcu_read_lock(); 4766 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4767 rcu_read_unlock(); 4768 goto out_free_new_mask; 4769 } 4770 rcu_read_unlock(); 4771 } 4772 4773 retval = security_task_setscheduler(p); 4774 if (retval) 4775 goto out_free_new_mask; 4776 4777 4778 cpuset_cpus_allowed(p, cpus_allowed); 4779 cpumask_and(new_mask, in_mask, cpus_allowed); 4780 4781 /* 4782 * Since bandwidth control happens on root_domain basis, 4783 * if admission test is enabled, we only admit -deadline 4784 * tasks allowed to run on all the CPUs in the task's 4785 * root_domain. 4786 */ 4787 #ifdef CONFIG_SMP 4788 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4789 rcu_read_lock(); 4790 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4791 retval = -EBUSY; 4792 rcu_read_unlock(); 4793 goto out_free_new_mask; 4794 } 4795 rcu_read_unlock(); 4796 } 4797 #endif 4798 again: 4799 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4800 4801 if (!retval) { 4802 cpuset_cpus_allowed(p, cpus_allowed); 4803 if (!cpumask_subset(new_mask, cpus_allowed)) { 4804 /* 4805 * We must have raced with a concurrent cpuset 4806 * update. Just reset the cpus_allowed to the 4807 * cpuset's cpus_allowed 4808 */ 4809 cpumask_copy(new_mask, cpus_allowed); 4810 goto again; 4811 } 4812 } 4813 out_free_new_mask: 4814 free_cpumask_var(new_mask); 4815 out_free_cpus_allowed: 4816 free_cpumask_var(cpus_allowed); 4817 out_put_task: 4818 put_task_struct(p); 4819 return retval; 4820 } 4821 4822 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4823 struct cpumask *new_mask) 4824 { 4825 if (len < cpumask_size()) 4826 cpumask_clear(new_mask); 4827 else if (len > cpumask_size()) 4828 len = cpumask_size(); 4829 4830 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4831 } 4832 4833 /** 4834 * sys_sched_setaffinity - set the CPU affinity of a process 4835 * @pid: pid of the process 4836 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4837 * @user_mask_ptr: user-space pointer to the new CPU mask 4838 * 4839 * Return: 0 on success. An error code otherwise. 4840 */ 4841 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4842 unsigned long __user *, user_mask_ptr) 4843 { 4844 cpumask_var_t new_mask; 4845 int retval; 4846 4847 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4848 return -ENOMEM; 4849 4850 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4851 if (retval == 0) 4852 retval = sched_setaffinity(pid, new_mask); 4853 free_cpumask_var(new_mask); 4854 return retval; 4855 } 4856 4857 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4858 { 4859 struct task_struct *p; 4860 unsigned long flags; 4861 int retval; 4862 4863 rcu_read_lock(); 4864 4865 retval = -ESRCH; 4866 p = find_process_by_pid(pid); 4867 if (!p) 4868 goto out_unlock; 4869 4870 retval = security_task_getscheduler(p); 4871 if (retval) 4872 goto out_unlock; 4873 4874 raw_spin_lock_irqsave(&p->pi_lock, flags); 4875 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4876 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4877 4878 out_unlock: 4879 rcu_read_unlock(); 4880 4881 return retval; 4882 } 4883 4884 /** 4885 * sys_sched_getaffinity - get the CPU affinity of a process 4886 * @pid: pid of the process 4887 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4888 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4889 * 4890 * Return: size of CPU mask copied to user_mask_ptr on success. An 4891 * error code otherwise. 4892 */ 4893 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4894 unsigned long __user *, user_mask_ptr) 4895 { 4896 int ret; 4897 cpumask_var_t mask; 4898 4899 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4900 return -EINVAL; 4901 if (len & (sizeof(unsigned long)-1)) 4902 return -EINVAL; 4903 4904 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4905 return -ENOMEM; 4906 4907 ret = sched_getaffinity(pid, mask); 4908 if (ret == 0) { 4909 unsigned int retlen = min(len, cpumask_size()); 4910 4911 if (copy_to_user(user_mask_ptr, mask, retlen)) 4912 ret = -EFAULT; 4913 else 4914 ret = retlen; 4915 } 4916 free_cpumask_var(mask); 4917 4918 return ret; 4919 } 4920 4921 /** 4922 * sys_sched_yield - yield the current processor to other threads. 4923 * 4924 * This function yields the current CPU to other tasks. If there are no 4925 * other threads running on this CPU then this function will return. 4926 * 4927 * Return: 0. 4928 */ 4929 static void do_sched_yield(void) 4930 { 4931 struct rq_flags rf; 4932 struct rq *rq; 4933 4934 rq = this_rq_lock_irq(&rf); 4935 4936 schedstat_inc(rq->yld_count); 4937 current->sched_class->yield_task(rq); 4938 4939 /* 4940 * Since we are going to call schedule() anyway, there's 4941 * no need to preempt or enable interrupts: 4942 */ 4943 preempt_disable(); 4944 rq_unlock(rq, &rf); 4945 sched_preempt_enable_no_resched(); 4946 4947 schedule(); 4948 } 4949 4950 SYSCALL_DEFINE0(sched_yield) 4951 { 4952 do_sched_yield(); 4953 return 0; 4954 } 4955 4956 #ifndef CONFIG_PREEMPT 4957 int __sched _cond_resched(void) 4958 { 4959 if (should_resched(0)) { 4960 preempt_schedule_common(); 4961 return 1; 4962 } 4963 rcu_all_qs(); 4964 return 0; 4965 } 4966 EXPORT_SYMBOL(_cond_resched); 4967 #endif 4968 4969 /* 4970 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4971 * call schedule, and on return reacquire the lock. 4972 * 4973 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4974 * operations here to prevent schedule() from being called twice (once via 4975 * spin_unlock(), once by hand). 4976 */ 4977 int __cond_resched_lock(spinlock_t *lock) 4978 { 4979 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4980 int ret = 0; 4981 4982 lockdep_assert_held(lock); 4983 4984 if (spin_needbreak(lock) || resched) { 4985 spin_unlock(lock); 4986 if (resched) 4987 preempt_schedule_common(); 4988 else 4989 cpu_relax(); 4990 ret = 1; 4991 spin_lock(lock); 4992 } 4993 return ret; 4994 } 4995 EXPORT_SYMBOL(__cond_resched_lock); 4996 4997 /** 4998 * yield - yield the current processor to other threads. 4999 * 5000 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5001 * 5002 * The scheduler is at all times free to pick the calling task as the most 5003 * eligible task to run, if removing the yield() call from your code breaks 5004 * it, its already broken. 5005 * 5006 * Typical broken usage is: 5007 * 5008 * while (!event) 5009 * yield(); 5010 * 5011 * where one assumes that yield() will let 'the other' process run that will 5012 * make event true. If the current task is a SCHED_FIFO task that will never 5013 * happen. Never use yield() as a progress guarantee!! 5014 * 5015 * If you want to use yield() to wait for something, use wait_event(). 5016 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5017 * If you still want to use yield(), do not! 5018 */ 5019 void __sched yield(void) 5020 { 5021 set_current_state(TASK_RUNNING); 5022 do_sched_yield(); 5023 } 5024 EXPORT_SYMBOL(yield); 5025 5026 /** 5027 * yield_to - yield the current processor to another thread in 5028 * your thread group, or accelerate that thread toward the 5029 * processor it's on. 5030 * @p: target task 5031 * @preempt: whether task preemption is allowed or not 5032 * 5033 * It's the caller's job to ensure that the target task struct 5034 * can't go away on us before we can do any checks. 5035 * 5036 * Return: 5037 * true (>0) if we indeed boosted the target task. 5038 * false (0) if we failed to boost the target. 5039 * -ESRCH if there's no task to yield to. 5040 */ 5041 int __sched yield_to(struct task_struct *p, bool preempt) 5042 { 5043 struct task_struct *curr = current; 5044 struct rq *rq, *p_rq; 5045 unsigned long flags; 5046 int yielded = 0; 5047 5048 local_irq_save(flags); 5049 rq = this_rq(); 5050 5051 again: 5052 p_rq = task_rq(p); 5053 /* 5054 * If we're the only runnable task on the rq and target rq also 5055 * has only one task, there's absolutely no point in yielding. 5056 */ 5057 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5058 yielded = -ESRCH; 5059 goto out_irq; 5060 } 5061 5062 double_rq_lock(rq, p_rq); 5063 if (task_rq(p) != p_rq) { 5064 double_rq_unlock(rq, p_rq); 5065 goto again; 5066 } 5067 5068 if (!curr->sched_class->yield_to_task) 5069 goto out_unlock; 5070 5071 if (curr->sched_class != p->sched_class) 5072 goto out_unlock; 5073 5074 if (task_running(p_rq, p) || p->state) 5075 goto out_unlock; 5076 5077 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5078 if (yielded) { 5079 schedstat_inc(rq->yld_count); 5080 /* 5081 * Make p's CPU reschedule; pick_next_entity takes care of 5082 * fairness. 5083 */ 5084 if (preempt && rq != p_rq) 5085 resched_curr(p_rq); 5086 } 5087 5088 out_unlock: 5089 double_rq_unlock(rq, p_rq); 5090 out_irq: 5091 local_irq_restore(flags); 5092 5093 if (yielded > 0) 5094 schedule(); 5095 5096 return yielded; 5097 } 5098 EXPORT_SYMBOL_GPL(yield_to); 5099 5100 int io_schedule_prepare(void) 5101 { 5102 int old_iowait = current->in_iowait; 5103 5104 current->in_iowait = 1; 5105 blk_schedule_flush_plug(current); 5106 5107 return old_iowait; 5108 } 5109 5110 void io_schedule_finish(int token) 5111 { 5112 current->in_iowait = token; 5113 } 5114 5115 /* 5116 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5117 * that process accounting knows that this is a task in IO wait state. 5118 */ 5119 long __sched io_schedule_timeout(long timeout) 5120 { 5121 int token; 5122 long ret; 5123 5124 token = io_schedule_prepare(); 5125 ret = schedule_timeout(timeout); 5126 io_schedule_finish(token); 5127 5128 return ret; 5129 } 5130 EXPORT_SYMBOL(io_schedule_timeout); 5131 5132 void io_schedule(void) 5133 { 5134 int token; 5135 5136 token = io_schedule_prepare(); 5137 schedule(); 5138 io_schedule_finish(token); 5139 } 5140 EXPORT_SYMBOL(io_schedule); 5141 5142 /** 5143 * sys_sched_get_priority_max - return maximum RT priority. 5144 * @policy: scheduling class. 5145 * 5146 * Return: On success, this syscall returns the maximum 5147 * rt_priority that can be used by a given scheduling class. 5148 * On failure, a negative error code is returned. 5149 */ 5150 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5151 { 5152 int ret = -EINVAL; 5153 5154 switch (policy) { 5155 case SCHED_FIFO: 5156 case SCHED_RR: 5157 ret = MAX_USER_RT_PRIO-1; 5158 break; 5159 case SCHED_DEADLINE: 5160 case SCHED_NORMAL: 5161 case SCHED_BATCH: 5162 case SCHED_IDLE: 5163 ret = 0; 5164 break; 5165 } 5166 return ret; 5167 } 5168 5169 /** 5170 * sys_sched_get_priority_min - return minimum RT priority. 5171 * @policy: scheduling class. 5172 * 5173 * Return: On success, this syscall returns the minimum 5174 * rt_priority that can be used by a given scheduling class. 5175 * On failure, a negative error code is returned. 5176 */ 5177 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5178 { 5179 int ret = -EINVAL; 5180 5181 switch (policy) { 5182 case SCHED_FIFO: 5183 case SCHED_RR: 5184 ret = 1; 5185 break; 5186 case SCHED_DEADLINE: 5187 case SCHED_NORMAL: 5188 case SCHED_BATCH: 5189 case SCHED_IDLE: 5190 ret = 0; 5191 } 5192 return ret; 5193 } 5194 5195 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5196 { 5197 struct task_struct *p; 5198 unsigned int time_slice; 5199 struct rq_flags rf; 5200 struct rq *rq; 5201 int retval; 5202 5203 if (pid < 0) 5204 return -EINVAL; 5205 5206 retval = -ESRCH; 5207 rcu_read_lock(); 5208 p = find_process_by_pid(pid); 5209 if (!p) 5210 goto out_unlock; 5211 5212 retval = security_task_getscheduler(p); 5213 if (retval) 5214 goto out_unlock; 5215 5216 rq = task_rq_lock(p, &rf); 5217 time_slice = 0; 5218 if (p->sched_class->get_rr_interval) 5219 time_slice = p->sched_class->get_rr_interval(rq, p); 5220 task_rq_unlock(rq, p, &rf); 5221 5222 rcu_read_unlock(); 5223 jiffies_to_timespec64(time_slice, t); 5224 return 0; 5225 5226 out_unlock: 5227 rcu_read_unlock(); 5228 return retval; 5229 } 5230 5231 /** 5232 * sys_sched_rr_get_interval - return the default timeslice of a process. 5233 * @pid: pid of the process. 5234 * @interval: userspace pointer to the timeslice value. 5235 * 5236 * this syscall writes the default timeslice value of a given process 5237 * into the user-space timespec buffer. A value of '0' means infinity. 5238 * 5239 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5240 * an error code. 5241 */ 5242 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5243 struct __kernel_timespec __user *, interval) 5244 { 5245 struct timespec64 t; 5246 int retval = sched_rr_get_interval(pid, &t); 5247 5248 if (retval == 0) 5249 retval = put_timespec64(&t, interval); 5250 5251 return retval; 5252 } 5253 5254 #ifdef CONFIG_COMPAT_32BIT_TIME 5255 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5256 compat_pid_t, pid, 5257 struct old_timespec32 __user *, interval) 5258 { 5259 struct timespec64 t; 5260 int retval = sched_rr_get_interval(pid, &t); 5261 5262 if (retval == 0) 5263 retval = put_old_timespec32(&t, interval); 5264 return retval; 5265 } 5266 #endif 5267 5268 void sched_show_task(struct task_struct *p) 5269 { 5270 unsigned long free = 0; 5271 int ppid; 5272 5273 if (!try_get_task_stack(p)) 5274 return; 5275 5276 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5277 5278 if (p->state == TASK_RUNNING) 5279 printk(KERN_CONT " running task "); 5280 #ifdef CONFIG_DEBUG_STACK_USAGE 5281 free = stack_not_used(p); 5282 #endif 5283 ppid = 0; 5284 rcu_read_lock(); 5285 if (pid_alive(p)) 5286 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5287 rcu_read_unlock(); 5288 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5289 task_pid_nr(p), ppid, 5290 (unsigned long)task_thread_info(p)->flags); 5291 5292 print_worker_info(KERN_INFO, p); 5293 show_stack(p, NULL); 5294 put_task_stack(p); 5295 } 5296 EXPORT_SYMBOL_GPL(sched_show_task); 5297 5298 static inline bool 5299 state_filter_match(unsigned long state_filter, struct task_struct *p) 5300 { 5301 /* no filter, everything matches */ 5302 if (!state_filter) 5303 return true; 5304 5305 /* filter, but doesn't match */ 5306 if (!(p->state & state_filter)) 5307 return false; 5308 5309 /* 5310 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5311 * TASK_KILLABLE). 5312 */ 5313 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5314 return false; 5315 5316 return true; 5317 } 5318 5319 5320 void show_state_filter(unsigned long state_filter) 5321 { 5322 struct task_struct *g, *p; 5323 5324 #if BITS_PER_LONG == 32 5325 printk(KERN_INFO 5326 " task PC stack pid father\n"); 5327 #else 5328 printk(KERN_INFO 5329 " task PC stack pid father\n"); 5330 #endif 5331 rcu_read_lock(); 5332 for_each_process_thread(g, p) { 5333 /* 5334 * reset the NMI-timeout, listing all files on a slow 5335 * console might take a lot of time: 5336 * Also, reset softlockup watchdogs on all CPUs, because 5337 * another CPU might be blocked waiting for us to process 5338 * an IPI. 5339 */ 5340 touch_nmi_watchdog(); 5341 touch_all_softlockup_watchdogs(); 5342 if (state_filter_match(state_filter, p)) 5343 sched_show_task(p); 5344 } 5345 5346 #ifdef CONFIG_SCHED_DEBUG 5347 if (!state_filter) 5348 sysrq_sched_debug_show(); 5349 #endif 5350 rcu_read_unlock(); 5351 /* 5352 * Only show locks if all tasks are dumped: 5353 */ 5354 if (!state_filter) 5355 debug_show_all_locks(); 5356 } 5357 5358 /** 5359 * init_idle - set up an idle thread for a given CPU 5360 * @idle: task in question 5361 * @cpu: CPU the idle task belongs to 5362 * 5363 * NOTE: this function does not set the idle thread's NEED_RESCHED 5364 * flag, to make booting more robust. 5365 */ 5366 void init_idle(struct task_struct *idle, int cpu) 5367 { 5368 struct rq *rq = cpu_rq(cpu); 5369 unsigned long flags; 5370 5371 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5372 raw_spin_lock(&rq->lock); 5373 5374 __sched_fork(0, idle); 5375 idle->state = TASK_RUNNING; 5376 idle->se.exec_start = sched_clock(); 5377 idle->flags |= PF_IDLE; 5378 5379 kasan_unpoison_task_stack(idle); 5380 5381 #ifdef CONFIG_SMP 5382 /* 5383 * Its possible that init_idle() gets called multiple times on a task, 5384 * in that case do_set_cpus_allowed() will not do the right thing. 5385 * 5386 * And since this is boot we can forgo the serialization. 5387 */ 5388 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5389 #endif 5390 /* 5391 * We're having a chicken and egg problem, even though we are 5392 * holding rq->lock, the CPU isn't yet set to this CPU so the 5393 * lockdep check in task_group() will fail. 5394 * 5395 * Similar case to sched_fork(). / Alternatively we could 5396 * use task_rq_lock() here and obtain the other rq->lock. 5397 * 5398 * Silence PROVE_RCU 5399 */ 5400 rcu_read_lock(); 5401 __set_task_cpu(idle, cpu); 5402 rcu_read_unlock(); 5403 5404 rq->curr = rq->idle = idle; 5405 idle->on_rq = TASK_ON_RQ_QUEUED; 5406 #ifdef CONFIG_SMP 5407 idle->on_cpu = 1; 5408 #endif 5409 raw_spin_unlock(&rq->lock); 5410 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5411 5412 /* Set the preempt count _outside_ the spinlocks! */ 5413 init_idle_preempt_count(idle, cpu); 5414 5415 /* 5416 * The idle tasks have their own, simple scheduling class: 5417 */ 5418 idle->sched_class = &idle_sched_class; 5419 ftrace_graph_init_idle_task(idle, cpu); 5420 vtime_init_idle(idle, cpu); 5421 #ifdef CONFIG_SMP 5422 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5423 #endif 5424 } 5425 5426 #ifdef CONFIG_SMP 5427 5428 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5429 const struct cpumask *trial) 5430 { 5431 int ret = 1; 5432 5433 if (!cpumask_weight(cur)) 5434 return ret; 5435 5436 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5437 5438 return ret; 5439 } 5440 5441 int task_can_attach(struct task_struct *p, 5442 const struct cpumask *cs_cpus_allowed) 5443 { 5444 int ret = 0; 5445 5446 /* 5447 * Kthreads which disallow setaffinity shouldn't be moved 5448 * to a new cpuset; we don't want to change their CPU 5449 * affinity and isolating such threads by their set of 5450 * allowed nodes is unnecessary. Thus, cpusets are not 5451 * applicable for such threads. This prevents checking for 5452 * success of set_cpus_allowed_ptr() on all attached tasks 5453 * before cpus_allowed may be changed. 5454 */ 5455 if (p->flags & PF_NO_SETAFFINITY) { 5456 ret = -EINVAL; 5457 goto out; 5458 } 5459 5460 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5461 cs_cpus_allowed)) 5462 ret = dl_task_can_attach(p, cs_cpus_allowed); 5463 5464 out: 5465 return ret; 5466 } 5467 5468 bool sched_smp_initialized __read_mostly; 5469 5470 #ifdef CONFIG_NUMA_BALANCING 5471 /* Migrate current task p to target_cpu */ 5472 int migrate_task_to(struct task_struct *p, int target_cpu) 5473 { 5474 struct migration_arg arg = { p, target_cpu }; 5475 int curr_cpu = task_cpu(p); 5476 5477 if (curr_cpu == target_cpu) 5478 return 0; 5479 5480 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5481 return -EINVAL; 5482 5483 /* TODO: This is not properly updating schedstats */ 5484 5485 trace_sched_move_numa(p, curr_cpu, target_cpu); 5486 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5487 } 5488 5489 /* 5490 * Requeue a task on a given node and accurately track the number of NUMA 5491 * tasks on the runqueues 5492 */ 5493 void sched_setnuma(struct task_struct *p, int nid) 5494 { 5495 bool queued, running; 5496 struct rq_flags rf; 5497 struct rq *rq; 5498 5499 rq = task_rq_lock(p, &rf); 5500 queued = task_on_rq_queued(p); 5501 running = task_current(rq, p); 5502 5503 if (queued) 5504 dequeue_task(rq, p, DEQUEUE_SAVE); 5505 if (running) 5506 put_prev_task(rq, p); 5507 5508 p->numa_preferred_nid = nid; 5509 5510 if (queued) 5511 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5512 if (running) 5513 set_curr_task(rq, p); 5514 task_rq_unlock(rq, p, &rf); 5515 } 5516 #endif /* CONFIG_NUMA_BALANCING */ 5517 5518 #ifdef CONFIG_HOTPLUG_CPU 5519 /* 5520 * Ensure that the idle task is using init_mm right before its CPU goes 5521 * offline. 5522 */ 5523 void idle_task_exit(void) 5524 { 5525 struct mm_struct *mm = current->active_mm; 5526 5527 BUG_ON(cpu_online(smp_processor_id())); 5528 5529 if (mm != &init_mm) { 5530 switch_mm(mm, &init_mm, current); 5531 current->active_mm = &init_mm; 5532 finish_arch_post_lock_switch(); 5533 } 5534 mmdrop(mm); 5535 } 5536 5537 /* 5538 * Since this CPU is going 'away' for a while, fold any nr_active delta 5539 * we might have. Assumes we're called after migrate_tasks() so that the 5540 * nr_active count is stable. We need to take the teardown thread which 5541 * is calling this into account, so we hand in adjust = 1 to the load 5542 * calculation. 5543 * 5544 * Also see the comment "Global load-average calculations". 5545 */ 5546 static void calc_load_migrate(struct rq *rq) 5547 { 5548 long delta = calc_load_fold_active(rq, 1); 5549 if (delta) 5550 atomic_long_add(delta, &calc_load_tasks); 5551 } 5552 5553 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5554 { 5555 } 5556 5557 static const struct sched_class fake_sched_class = { 5558 .put_prev_task = put_prev_task_fake, 5559 }; 5560 5561 static struct task_struct fake_task = { 5562 /* 5563 * Avoid pull_{rt,dl}_task() 5564 */ 5565 .prio = MAX_PRIO + 1, 5566 .sched_class = &fake_sched_class, 5567 }; 5568 5569 /* 5570 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5571 * try_to_wake_up()->select_task_rq(). 5572 * 5573 * Called with rq->lock held even though we'er in stop_machine() and 5574 * there's no concurrency possible, we hold the required locks anyway 5575 * because of lock validation efforts. 5576 */ 5577 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5578 { 5579 struct rq *rq = dead_rq; 5580 struct task_struct *next, *stop = rq->stop; 5581 struct rq_flags orf = *rf; 5582 int dest_cpu; 5583 5584 /* 5585 * Fudge the rq selection such that the below task selection loop 5586 * doesn't get stuck on the currently eligible stop task. 5587 * 5588 * We're currently inside stop_machine() and the rq is either stuck 5589 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5590 * either way we should never end up calling schedule() until we're 5591 * done here. 5592 */ 5593 rq->stop = NULL; 5594 5595 /* 5596 * put_prev_task() and pick_next_task() sched 5597 * class method both need to have an up-to-date 5598 * value of rq->clock[_task] 5599 */ 5600 update_rq_clock(rq); 5601 5602 for (;;) { 5603 /* 5604 * There's this thread running, bail when that's the only 5605 * remaining thread: 5606 */ 5607 if (rq->nr_running == 1) 5608 break; 5609 5610 /* 5611 * pick_next_task() assumes pinned rq->lock: 5612 */ 5613 next = pick_next_task(rq, &fake_task, rf); 5614 BUG_ON(!next); 5615 put_prev_task(rq, next); 5616 5617 /* 5618 * Rules for changing task_struct::cpus_allowed are holding 5619 * both pi_lock and rq->lock, such that holding either 5620 * stabilizes the mask. 5621 * 5622 * Drop rq->lock is not quite as disastrous as it usually is 5623 * because !cpu_active at this point, which means load-balance 5624 * will not interfere. Also, stop-machine. 5625 */ 5626 rq_unlock(rq, rf); 5627 raw_spin_lock(&next->pi_lock); 5628 rq_relock(rq, rf); 5629 5630 /* 5631 * Since we're inside stop-machine, _nothing_ should have 5632 * changed the task, WARN if weird stuff happened, because in 5633 * that case the above rq->lock drop is a fail too. 5634 */ 5635 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5636 raw_spin_unlock(&next->pi_lock); 5637 continue; 5638 } 5639 5640 /* Find suitable destination for @next, with force if needed. */ 5641 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5642 rq = __migrate_task(rq, rf, next, dest_cpu); 5643 if (rq != dead_rq) { 5644 rq_unlock(rq, rf); 5645 rq = dead_rq; 5646 *rf = orf; 5647 rq_relock(rq, rf); 5648 } 5649 raw_spin_unlock(&next->pi_lock); 5650 } 5651 5652 rq->stop = stop; 5653 } 5654 #endif /* CONFIG_HOTPLUG_CPU */ 5655 5656 void set_rq_online(struct rq *rq) 5657 { 5658 if (!rq->online) { 5659 const struct sched_class *class; 5660 5661 cpumask_set_cpu(rq->cpu, rq->rd->online); 5662 rq->online = 1; 5663 5664 for_each_class(class) { 5665 if (class->rq_online) 5666 class->rq_online(rq); 5667 } 5668 } 5669 } 5670 5671 void set_rq_offline(struct rq *rq) 5672 { 5673 if (rq->online) { 5674 const struct sched_class *class; 5675 5676 for_each_class(class) { 5677 if (class->rq_offline) 5678 class->rq_offline(rq); 5679 } 5680 5681 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5682 rq->online = 0; 5683 } 5684 } 5685 5686 /* 5687 * used to mark begin/end of suspend/resume: 5688 */ 5689 static int num_cpus_frozen; 5690 5691 /* 5692 * Update cpusets according to cpu_active mask. If cpusets are 5693 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5694 * around partition_sched_domains(). 5695 * 5696 * If we come here as part of a suspend/resume, don't touch cpusets because we 5697 * want to restore it back to its original state upon resume anyway. 5698 */ 5699 static void cpuset_cpu_active(void) 5700 { 5701 if (cpuhp_tasks_frozen) { 5702 /* 5703 * num_cpus_frozen tracks how many CPUs are involved in suspend 5704 * resume sequence. As long as this is not the last online 5705 * operation in the resume sequence, just build a single sched 5706 * domain, ignoring cpusets. 5707 */ 5708 partition_sched_domains(1, NULL, NULL); 5709 if (--num_cpus_frozen) 5710 return; 5711 /* 5712 * This is the last CPU online operation. So fall through and 5713 * restore the original sched domains by considering the 5714 * cpuset configurations. 5715 */ 5716 cpuset_force_rebuild(); 5717 } 5718 cpuset_update_active_cpus(); 5719 } 5720 5721 static int cpuset_cpu_inactive(unsigned int cpu) 5722 { 5723 if (!cpuhp_tasks_frozen) { 5724 if (dl_cpu_busy(cpu)) 5725 return -EBUSY; 5726 cpuset_update_active_cpus(); 5727 } else { 5728 num_cpus_frozen++; 5729 partition_sched_domains(1, NULL, NULL); 5730 } 5731 return 0; 5732 } 5733 5734 int sched_cpu_activate(unsigned int cpu) 5735 { 5736 struct rq *rq = cpu_rq(cpu); 5737 struct rq_flags rf; 5738 5739 #ifdef CONFIG_SCHED_SMT 5740 /* 5741 * When going up, increment the number of cores with SMT present. 5742 */ 5743 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5744 static_branch_inc_cpuslocked(&sched_smt_present); 5745 #endif 5746 set_cpu_active(cpu, true); 5747 5748 if (sched_smp_initialized) { 5749 sched_domains_numa_masks_set(cpu); 5750 cpuset_cpu_active(); 5751 } 5752 5753 /* 5754 * Put the rq online, if not already. This happens: 5755 * 5756 * 1) In the early boot process, because we build the real domains 5757 * after all CPUs have been brought up. 5758 * 5759 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5760 * domains. 5761 */ 5762 rq_lock_irqsave(rq, &rf); 5763 if (rq->rd) { 5764 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5765 set_rq_online(rq); 5766 } 5767 rq_unlock_irqrestore(rq, &rf); 5768 5769 update_max_interval(); 5770 5771 return 0; 5772 } 5773 5774 int sched_cpu_deactivate(unsigned int cpu) 5775 { 5776 int ret; 5777 5778 set_cpu_active(cpu, false); 5779 /* 5780 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5781 * users of this state to go away such that all new such users will 5782 * observe it. 5783 * 5784 * Do sync before park smpboot threads to take care the rcu boost case. 5785 */ 5786 synchronize_rcu(); 5787 5788 #ifdef CONFIG_SCHED_SMT 5789 /* 5790 * When going down, decrement the number of cores with SMT present. 5791 */ 5792 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5793 static_branch_dec_cpuslocked(&sched_smt_present); 5794 #endif 5795 5796 if (!sched_smp_initialized) 5797 return 0; 5798 5799 ret = cpuset_cpu_inactive(cpu); 5800 if (ret) { 5801 set_cpu_active(cpu, true); 5802 return ret; 5803 } 5804 sched_domains_numa_masks_clear(cpu); 5805 return 0; 5806 } 5807 5808 static void sched_rq_cpu_starting(unsigned int cpu) 5809 { 5810 struct rq *rq = cpu_rq(cpu); 5811 5812 rq->calc_load_update = calc_load_update; 5813 update_max_interval(); 5814 } 5815 5816 int sched_cpu_starting(unsigned int cpu) 5817 { 5818 sched_rq_cpu_starting(cpu); 5819 sched_tick_start(cpu); 5820 return 0; 5821 } 5822 5823 #ifdef CONFIG_HOTPLUG_CPU 5824 int sched_cpu_dying(unsigned int cpu) 5825 { 5826 struct rq *rq = cpu_rq(cpu); 5827 struct rq_flags rf; 5828 5829 /* Handle pending wakeups and then migrate everything off */ 5830 sched_ttwu_pending(); 5831 sched_tick_stop(cpu); 5832 5833 rq_lock_irqsave(rq, &rf); 5834 if (rq->rd) { 5835 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5836 set_rq_offline(rq); 5837 } 5838 migrate_tasks(rq, &rf); 5839 BUG_ON(rq->nr_running != 1); 5840 rq_unlock_irqrestore(rq, &rf); 5841 5842 calc_load_migrate(rq); 5843 update_max_interval(); 5844 nohz_balance_exit_idle(rq); 5845 hrtick_clear(rq); 5846 return 0; 5847 } 5848 #endif 5849 5850 void __init sched_init_smp(void) 5851 { 5852 sched_init_numa(); 5853 5854 /* 5855 * There's no userspace yet to cause hotplug operations; hence all the 5856 * CPU masks are stable and all blatant races in the below code cannot 5857 * happen. The hotplug lock is nevertheless taken to satisfy lockdep, 5858 * but there won't be any contention on it. 5859 */ 5860 cpus_read_lock(); 5861 mutex_lock(&sched_domains_mutex); 5862 sched_init_domains(cpu_active_mask); 5863 mutex_unlock(&sched_domains_mutex); 5864 cpus_read_unlock(); 5865 5866 /* Move init over to a non-isolated CPU */ 5867 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5868 BUG(); 5869 sched_init_granularity(); 5870 5871 init_sched_rt_class(); 5872 init_sched_dl_class(); 5873 5874 sched_smp_initialized = true; 5875 } 5876 5877 static int __init migration_init(void) 5878 { 5879 sched_rq_cpu_starting(smp_processor_id()); 5880 return 0; 5881 } 5882 early_initcall(migration_init); 5883 5884 #else 5885 void __init sched_init_smp(void) 5886 { 5887 sched_init_granularity(); 5888 } 5889 #endif /* CONFIG_SMP */ 5890 5891 int in_sched_functions(unsigned long addr) 5892 { 5893 return in_lock_functions(addr) || 5894 (addr >= (unsigned long)__sched_text_start 5895 && addr < (unsigned long)__sched_text_end); 5896 } 5897 5898 #ifdef CONFIG_CGROUP_SCHED 5899 /* 5900 * Default task group. 5901 * Every task in system belongs to this group at bootup. 5902 */ 5903 struct task_group root_task_group; 5904 LIST_HEAD(task_groups); 5905 5906 /* Cacheline aligned slab cache for task_group */ 5907 static struct kmem_cache *task_group_cache __read_mostly; 5908 #endif 5909 5910 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5911 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5912 5913 void __init sched_init(void) 5914 { 5915 int i, j; 5916 unsigned long alloc_size = 0, ptr; 5917 5918 wait_bit_init(); 5919 5920 #ifdef CONFIG_FAIR_GROUP_SCHED 5921 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5922 #endif 5923 #ifdef CONFIG_RT_GROUP_SCHED 5924 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5925 #endif 5926 if (alloc_size) { 5927 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5928 5929 #ifdef CONFIG_FAIR_GROUP_SCHED 5930 root_task_group.se = (struct sched_entity **)ptr; 5931 ptr += nr_cpu_ids * sizeof(void **); 5932 5933 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5934 ptr += nr_cpu_ids * sizeof(void **); 5935 5936 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5937 #ifdef CONFIG_RT_GROUP_SCHED 5938 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5939 ptr += nr_cpu_ids * sizeof(void **); 5940 5941 root_task_group.rt_rq = (struct rt_rq **)ptr; 5942 ptr += nr_cpu_ids * sizeof(void **); 5943 5944 #endif /* CONFIG_RT_GROUP_SCHED */ 5945 } 5946 #ifdef CONFIG_CPUMASK_OFFSTACK 5947 for_each_possible_cpu(i) { 5948 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5949 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5950 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5951 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5952 } 5953 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5954 5955 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5956 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5957 5958 #ifdef CONFIG_SMP 5959 init_defrootdomain(); 5960 #endif 5961 5962 #ifdef CONFIG_RT_GROUP_SCHED 5963 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5964 global_rt_period(), global_rt_runtime()); 5965 #endif /* CONFIG_RT_GROUP_SCHED */ 5966 5967 #ifdef CONFIG_CGROUP_SCHED 5968 task_group_cache = KMEM_CACHE(task_group, 0); 5969 5970 list_add(&root_task_group.list, &task_groups); 5971 INIT_LIST_HEAD(&root_task_group.children); 5972 INIT_LIST_HEAD(&root_task_group.siblings); 5973 autogroup_init(&init_task); 5974 #endif /* CONFIG_CGROUP_SCHED */ 5975 5976 for_each_possible_cpu(i) { 5977 struct rq *rq; 5978 5979 rq = cpu_rq(i); 5980 raw_spin_lock_init(&rq->lock); 5981 rq->nr_running = 0; 5982 rq->calc_load_active = 0; 5983 rq->calc_load_update = jiffies + LOAD_FREQ; 5984 init_cfs_rq(&rq->cfs); 5985 init_rt_rq(&rq->rt); 5986 init_dl_rq(&rq->dl); 5987 #ifdef CONFIG_FAIR_GROUP_SCHED 5988 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5989 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5990 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5991 /* 5992 * How much CPU bandwidth does root_task_group get? 5993 * 5994 * In case of task-groups formed thr' the cgroup filesystem, it 5995 * gets 100% of the CPU resources in the system. This overall 5996 * system CPU resource is divided among the tasks of 5997 * root_task_group and its child task-groups in a fair manner, 5998 * based on each entity's (task or task-group's) weight 5999 * (se->load.weight). 6000 * 6001 * In other words, if root_task_group has 10 tasks of weight 6002 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6003 * then A0's share of the CPU resource is: 6004 * 6005 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6006 * 6007 * We achieve this by letting root_task_group's tasks sit 6008 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6009 */ 6010 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6011 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6012 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6013 6014 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6015 #ifdef CONFIG_RT_GROUP_SCHED 6016 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6017 #endif 6018 6019 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6020 rq->cpu_load[j] = 0; 6021 6022 #ifdef CONFIG_SMP 6023 rq->sd = NULL; 6024 rq->rd = NULL; 6025 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6026 rq->balance_callback = NULL; 6027 rq->active_balance = 0; 6028 rq->next_balance = jiffies; 6029 rq->push_cpu = 0; 6030 rq->cpu = i; 6031 rq->online = 0; 6032 rq->idle_stamp = 0; 6033 rq->avg_idle = 2*sysctl_sched_migration_cost; 6034 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6035 6036 INIT_LIST_HEAD(&rq->cfs_tasks); 6037 6038 rq_attach_root(rq, &def_root_domain); 6039 #ifdef CONFIG_NO_HZ_COMMON 6040 rq->last_load_update_tick = jiffies; 6041 rq->last_blocked_load_update_tick = jiffies; 6042 atomic_set(&rq->nohz_flags, 0); 6043 #endif 6044 #endif /* CONFIG_SMP */ 6045 hrtick_rq_init(rq); 6046 atomic_set(&rq->nr_iowait, 0); 6047 } 6048 6049 set_load_weight(&init_task, false); 6050 6051 /* 6052 * The boot idle thread does lazy MMU switching as well: 6053 */ 6054 mmgrab(&init_mm); 6055 enter_lazy_tlb(&init_mm, current); 6056 6057 /* 6058 * Make us the idle thread. Technically, schedule() should not be 6059 * called from this thread, however somewhere below it might be, 6060 * but because we are the idle thread, we just pick up running again 6061 * when this runqueue becomes "idle". 6062 */ 6063 init_idle(current, smp_processor_id()); 6064 6065 calc_load_update = jiffies + LOAD_FREQ; 6066 6067 #ifdef CONFIG_SMP 6068 idle_thread_set_boot_cpu(); 6069 #endif 6070 init_sched_fair_class(); 6071 6072 init_schedstats(); 6073 6074 psi_init(); 6075 6076 scheduler_running = 1; 6077 } 6078 6079 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6080 static inline int preempt_count_equals(int preempt_offset) 6081 { 6082 int nested = preempt_count() + rcu_preempt_depth(); 6083 6084 return (nested == preempt_offset); 6085 } 6086 6087 void __might_sleep(const char *file, int line, int preempt_offset) 6088 { 6089 /* 6090 * Blocking primitives will set (and therefore destroy) current->state, 6091 * since we will exit with TASK_RUNNING make sure we enter with it, 6092 * otherwise we will destroy state. 6093 */ 6094 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6095 "do not call blocking ops when !TASK_RUNNING; " 6096 "state=%lx set at [<%p>] %pS\n", 6097 current->state, 6098 (void *)current->task_state_change, 6099 (void *)current->task_state_change); 6100 6101 ___might_sleep(file, line, preempt_offset); 6102 } 6103 EXPORT_SYMBOL(__might_sleep); 6104 6105 void ___might_sleep(const char *file, int line, int preempt_offset) 6106 { 6107 /* Ratelimiting timestamp: */ 6108 static unsigned long prev_jiffy; 6109 6110 unsigned long preempt_disable_ip; 6111 6112 /* WARN_ON_ONCE() by default, no rate limit required: */ 6113 rcu_sleep_check(); 6114 6115 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6116 !is_idle_task(current)) || 6117 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6118 oops_in_progress) 6119 return; 6120 6121 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6122 return; 6123 prev_jiffy = jiffies; 6124 6125 /* Save this before calling printk(), since that will clobber it: */ 6126 preempt_disable_ip = get_preempt_disable_ip(current); 6127 6128 printk(KERN_ERR 6129 "BUG: sleeping function called from invalid context at %s:%d\n", 6130 file, line); 6131 printk(KERN_ERR 6132 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6133 in_atomic(), irqs_disabled(), 6134 current->pid, current->comm); 6135 6136 if (task_stack_end_corrupted(current)) 6137 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6138 6139 debug_show_held_locks(current); 6140 if (irqs_disabled()) 6141 print_irqtrace_events(current); 6142 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6143 && !preempt_count_equals(preempt_offset)) { 6144 pr_err("Preemption disabled at:"); 6145 print_ip_sym(preempt_disable_ip); 6146 pr_cont("\n"); 6147 } 6148 dump_stack(); 6149 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6150 } 6151 EXPORT_SYMBOL(___might_sleep); 6152 #endif 6153 6154 #ifdef CONFIG_MAGIC_SYSRQ 6155 void normalize_rt_tasks(void) 6156 { 6157 struct task_struct *g, *p; 6158 struct sched_attr attr = { 6159 .sched_policy = SCHED_NORMAL, 6160 }; 6161 6162 read_lock(&tasklist_lock); 6163 for_each_process_thread(g, p) { 6164 /* 6165 * Only normalize user tasks: 6166 */ 6167 if (p->flags & PF_KTHREAD) 6168 continue; 6169 6170 p->se.exec_start = 0; 6171 schedstat_set(p->se.statistics.wait_start, 0); 6172 schedstat_set(p->se.statistics.sleep_start, 0); 6173 schedstat_set(p->se.statistics.block_start, 0); 6174 6175 if (!dl_task(p) && !rt_task(p)) { 6176 /* 6177 * Renice negative nice level userspace 6178 * tasks back to 0: 6179 */ 6180 if (task_nice(p) < 0) 6181 set_user_nice(p, 0); 6182 continue; 6183 } 6184 6185 __sched_setscheduler(p, &attr, false, false); 6186 } 6187 read_unlock(&tasklist_lock); 6188 } 6189 6190 #endif /* CONFIG_MAGIC_SYSRQ */ 6191 6192 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6193 /* 6194 * These functions are only useful for the IA64 MCA handling, or kdb. 6195 * 6196 * They can only be called when the whole system has been 6197 * stopped - every CPU needs to be quiescent, and no scheduling 6198 * activity can take place. Using them for anything else would 6199 * be a serious bug, and as a result, they aren't even visible 6200 * under any other configuration. 6201 */ 6202 6203 /** 6204 * curr_task - return the current task for a given CPU. 6205 * @cpu: the processor in question. 6206 * 6207 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6208 * 6209 * Return: The current task for @cpu. 6210 */ 6211 struct task_struct *curr_task(int cpu) 6212 { 6213 return cpu_curr(cpu); 6214 } 6215 6216 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6217 6218 #ifdef CONFIG_IA64 6219 /** 6220 * set_curr_task - set the current task for a given CPU. 6221 * @cpu: the processor in question. 6222 * @p: the task pointer to set. 6223 * 6224 * Description: This function must only be used when non-maskable interrupts 6225 * are serviced on a separate stack. It allows the architecture to switch the 6226 * notion of the current task on a CPU in a non-blocking manner. This function 6227 * must be called with all CPU's synchronized, and interrupts disabled, the 6228 * and caller must save the original value of the current task (see 6229 * curr_task() above) and restore that value before reenabling interrupts and 6230 * re-starting the system. 6231 * 6232 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6233 */ 6234 void ia64_set_curr_task(int cpu, struct task_struct *p) 6235 { 6236 cpu_curr(cpu) = p; 6237 } 6238 6239 #endif 6240 6241 #ifdef CONFIG_CGROUP_SCHED 6242 /* task_group_lock serializes the addition/removal of task groups */ 6243 static DEFINE_SPINLOCK(task_group_lock); 6244 6245 static void sched_free_group(struct task_group *tg) 6246 { 6247 free_fair_sched_group(tg); 6248 free_rt_sched_group(tg); 6249 autogroup_free(tg); 6250 kmem_cache_free(task_group_cache, tg); 6251 } 6252 6253 /* allocate runqueue etc for a new task group */ 6254 struct task_group *sched_create_group(struct task_group *parent) 6255 { 6256 struct task_group *tg; 6257 6258 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6259 if (!tg) 6260 return ERR_PTR(-ENOMEM); 6261 6262 if (!alloc_fair_sched_group(tg, parent)) 6263 goto err; 6264 6265 if (!alloc_rt_sched_group(tg, parent)) 6266 goto err; 6267 6268 return tg; 6269 6270 err: 6271 sched_free_group(tg); 6272 return ERR_PTR(-ENOMEM); 6273 } 6274 6275 void sched_online_group(struct task_group *tg, struct task_group *parent) 6276 { 6277 unsigned long flags; 6278 6279 spin_lock_irqsave(&task_group_lock, flags); 6280 list_add_rcu(&tg->list, &task_groups); 6281 6282 /* Root should already exist: */ 6283 WARN_ON(!parent); 6284 6285 tg->parent = parent; 6286 INIT_LIST_HEAD(&tg->children); 6287 list_add_rcu(&tg->siblings, &parent->children); 6288 spin_unlock_irqrestore(&task_group_lock, flags); 6289 6290 online_fair_sched_group(tg); 6291 } 6292 6293 /* rcu callback to free various structures associated with a task group */ 6294 static void sched_free_group_rcu(struct rcu_head *rhp) 6295 { 6296 /* Now it should be safe to free those cfs_rqs: */ 6297 sched_free_group(container_of(rhp, struct task_group, rcu)); 6298 } 6299 6300 void sched_destroy_group(struct task_group *tg) 6301 { 6302 /* Wait for possible concurrent references to cfs_rqs complete: */ 6303 call_rcu(&tg->rcu, sched_free_group_rcu); 6304 } 6305 6306 void sched_offline_group(struct task_group *tg) 6307 { 6308 unsigned long flags; 6309 6310 /* End participation in shares distribution: */ 6311 unregister_fair_sched_group(tg); 6312 6313 spin_lock_irqsave(&task_group_lock, flags); 6314 list_del_rcu(&tg->list); 6315 list_del_rcu(&tg->siblings); 6316 spin_unlock_irqrestore(&task_group_lock, flags); 6317 } 6318 6319 static void sched_change_group(struct task_struct *tsk, int type) 6320 { 6321 struct task_group *tg; 6322 6323 /* 6324 * All callers are synchronized by task_rq_lock(); we do not use RCU 6325 * which is pointless here. Thus, we pass "true" to task_css_check() 6326 * to prevent lockdep warnings. 6327 */ 6328 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6329 struct task_group, css); 6330 tg = autogroup_task_group(tsk, tg); 6331 tsk->sched_task_group = tg; 6332 6333 #ifdef CONFIG_FAIR_GROUP_SCHED 6334 if (tsk->sched_class->task_change_group) 6335 tsk->sched_class->task_change_group(tsk, type); 6336 else 6337 #endif 6338 set_task_rq(tsk, task_cpu(tsk)); 6339 } 6340 6341 /* 6342 * Change task's runqueue when it moves between groups. 6343 * 6344 * The caller of this function should have put the task in its new group by 6345 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6346 * its new group. 6347 */ 6348 void sched_move_task(struct task_struct *tsk) 6349 { 6350 int queued, running, queue_flags = 6351 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6352 struct rq_flags rf; 6353 struct rq *rq; 6354 6355 rq = task_rq_lock(tsk, &rf); 6356 update_rq_clock(rq); 6357 6358 running = task_current(rq, tsk); 6359 queued = task_on_rq_queued(tsk); 6360 6361 if (queued) 6362 dequeue_task(rq, tsk, queue_flags); 6363 if (running) 6364 put_prev_task(rq, tsk); 6365 6366 sched_change_group(tsk, TASK_MOVE_GROUP); 6367 6368 if (queued) 6369 enqueue_task(rq, tsk, queue_flags); 6370 if (running) 6371 set_curr_task(rq, tsk); 6372 6373 task_rq_unlock(rq, tsk, &rf); 6374 } 6375 6376 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6377 { 6378 return css ? container_of(css, struct task_group, css) : NULL; 6379 } 6380 6381 static struct cgroup_subsys_state * 6382 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6383 { 6384 struct task_group *parent = css_tg(parent_css); 6385 struct task_group *tg; 6386 6387 if (!parent) { 6388 /* This is early initialization for the top cgroup */ 6389 return &root_task_group.css; 6390 } 6391 6392 tg = sched_create_group(parent); 6393 if (IS_ERR(tg)) 6394 return ERR_PTR(-ENOMEM); 6395 6396 return &tg->css; 6397 } 6398 6399 /* Expose task group only after completing cgroup initialization */ 6400 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6401 { 6402 struct task_group *tg = css_tg(css); 6403 struct task_group *parent = css_tg(css->parent); 6404 6405 if (parent) 6406 sched_online_group(tg, parent); 6407 return 0; 6408 } 6409 6410 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6411 { 6412 struct task_group *tg = css_tg(css); 6413 6414 sched_offline_group(tg); 6415 } 6416 6417 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6418 { 6419 struct task_group *tg = css_tg(css); 6420 6421 /* 6422 * Relies on the RCU grace period between css_released() and this. 6423 */ 6424 sched_free_group(tg); 6425 } 6426 6427 /* 6428 * This is called before wake_up_new_task(), therefore we really only 6429 * have to set its group bits, all the other stuff does not apply. 6430 */ 6431 static void cpu_cgroup_fork(struct task_struct *task) 6432 { 6433 struct rq_flags rf; 6434 struct rq *rq; 6435 6436 rq = task_rq_lock(task, &rf); 6437 6438 update_rq_clock(rq); 6439 sched_change_group(task, TASK_SET_GROUP); 6440 6441 task_rq_unlock(rq, task, &rf); 6442 } 6443 6444 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6445 { 6446 struct task_struct *task; 6447 struct cgroup_subsys_state *css; 6448 int ret = 0; 6449 6450 cgroup_taskset_for_each(task, css, tset) { 6451 #ifdef CONFIG_RT_GROUP_SCHED 6452 if (!sched_rt_can_attach(css_tg(css), task)) 6453 return -EINVAL; 6454 #else 6455 /* We don't support RT-tasks being in separate groups */ 6456 if (task->sched_class != &fair_sched_class) 6457 return -EINVAL; 6458 #endif 6459 /* 6460 * Serialize against wake_up_new_task() such that if its 6461 * running, we're sure to observe its full state. 6462 */ 6463 raw_spin_lock_irq(&task->pi_lock); 6464 /* 6465 * Avoid calling sched_move_task() before wake_up_new_task() 6466 * has happened. This would lead to problems with PELT, due to 6467 * move wanting to detach+attach while we're not attached yet. 6468 */ 6469 if (task->state == TASK_NEW) 6470 ret = -EINVAL; 6471 raw_spin_unlock_irq(&task->pi_lock); 6472 6473 if (ret) 6474 break; 6475 } 6476 return ret; 6477 } 6478 6479 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6480 { 6481 struct task_struct *task; 6482 struct cgroup_subsys_state *css; 6483 6484 cgroup_taskset_for_each(task, css, tset) 6485 sched_move_task(task); 6486 } 6487 6488 #ifdef CONFIG_FAIR_GROUP_SCHED 6489 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6490 struct cftype *cftype, u64 shareval) 6491 { 6492 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6493 } 6494 6495 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6496 struct cftype *cft) 6497 { 6498 struct task_group *tg = css_tg(css); 6499 6500 return (u64) scale_load_down(tg->shares); 6501 } 6502 6503 #ifdef CONFIG_CFS_BANDWIDTH 6504 static DEFINE_MUTEX(cfs_constraints_mutex); 6505 6506 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6507 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6508 6509 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6510 6511 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6512 { 6513 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6514 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6515 6516 if (tg == &root_task_group) 6517 return -EINVAL; 6518 6519 /* 6520 * Ensure we have at some amount of bandwidth every period. This is 6521 * to prevent reaching a state of large arrears when throttled via 6522 * entity_tick() resulting in prolonged exit starvation. 6523 */ 6524 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6525 return -EINVAL; 6526 6527 /* 6528 * Likewise, bound things on the otherside by preventing insane quota 6529 * periods. This also allows us to normalize in computing quota 6530 * feasibility. 6531 */ 6532 if (period > max_cfs_quota_period) 6533 return -EINVAL; 6534 6535 /* 6536 * Prevent race between setting of cfs_rq->runtime_enabled and 6537 * unthrottle_offline_cfs_rqs(). 6538 */ 6539 get_online_cpus(); 6540 mutex_lock(&cfs_constraints_mutex); 6541 ret = __cfs_schedulable(tg, period, quota); 6542 if (ret) 6543 goto out_unlock; 6544 6545 runtime_enabled = quota != RUNTIME_INF; 6546 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6547 /* 6548 * If we need to toggle cfs_bandwidth_used, off->on must occur 6549 * before making related changes, and on->off must occur afterwards 6550 */ 6551 if (runtime_enabled && !runtime_was_enabled) 6552 cfs_bandwidth_usage_inc(); 6553 raw_spin_lock_irq(&cfs_b->lock); 6554 cfs_b->period = ns_to_ktime(period); 6555 cfs_b->quota = quota; 6556 6557 __refill_cfs_bandwidth_runtime(cfs_b); 6558 6559 /* Restart the period timer (if active) to handle new period expiry: */ 6560 if (runtime_enabled) 6561 start_cfs_bandwidth(cfs_b); 6562 6563 raw_spin_unlock_irq(&cfs_b->lock); 6564 6565 for_each_online_cpu(i) { 6566 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6567 struct rq *rq = cfs_rq->rq; 6568 struct rq_flags rf; 6569 6570 rq_lock_irq(rq, &rf); 6571 cfs_rq->runtime_enabled = runtime_enabled; 6572 cfs_rq->runtime_remaining = 0; 6573 6574 if (cfs_rq->throttled) 6575 unthrottle_cfs_rq(cfs_rq); 6576 rq_unlock_irq(rq, &rf); 6577 } 6578 if (runtime_was_enabled && !runtime_enabled) 6579 cfs_bandwidth_usage_dec(); 6580 out_unlock: 6581 mutex_unlock(&cfs_constraints_mutex); 6582 put_online_cpus(); 6583 6584 return ret; 6585 } 6586 6587 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6588 { 6589 u64 quota, period; 6590 6591 period = ktime_to_ns(tg->cfs_bandwidth.period); 6592 if (cfs_quota_us < 0) 6593 quota = RUNTIME_INF; 6594 else 6595 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6596 6597 return tg_set_cfs_bandwidth(tg, period, quota); 6598 } 6599 6600 long tg_get_cfs_quota(struct task_group *tg) 6601 { 6602 u64 quota_us; 6603 6604 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6605 return -1; 6606 6607 quota_us = tg->cfs_bandwidth.quota; 6608 do_div(quota_us, NSEC_PER_USEC); 6609 6610 return quota_us; 6611 } 6612 6613 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6614 { 6615 u64 quota, period; 6616 6617 period = (u64)cfs_period_us * NSEC_PER_USEC; 6618 quota = tg->cfs_bandwidth.quota; 6619 6620 return tg_set_cfs_bandwidth(tg, period, quota); 6621 } 6622 6623 long tg_get_cfs_period(struct task_group *tg) 6624 { 6625 u64 cfs_period_us; 6626 6627 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6628 do_div(cfs_period_us, NSEC_PER_USEC); 6629 6630 return cfs_period_us; 6631 } 6632 6633 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6634 struct cftype *cft) 6635 { 6636 return tg_get_cfs_quota(css_tg(css)); 6637 } 6638 6639 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6640 struct cftype *cftype, s64 cfs_quota_us) 6641 { 6642 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6643 } 6644 6645 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6646 struct cftype *cft) 6647 { 6648 return tg_get_cfs_period(css_tg(css)); 6649 } 6650 6651 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6652 struct cftype *cftype, u64 cfs_period_us) 6653 { 6654 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6655 } 6656 6657 struct cfs_schedulable_data { 6658 struct task_group *tg; 6659 u64 period, quota; 6660 }; 6661 6662 /* 6663 * normalize group quota/period to be quota/max_period 6664 * note: units are usecs 6665 */ 6666 static u64 normalize_cfs_quota(struct task_group *tg, 6667 struct cfs_schedulable_data *d) 6668 { 6669 u64 quota, period; 6670 6671 if (tg == d->tg) { 6672 period = d->period; 6673 quota = d->quota; 6674 } else { 6675 period = tg_get_cfs_period(tg); 6676 quota = tg_get_cfs_quota(tg); 6677 } 6678 6679 /* note: these should typically be equivalent */ 6680 if (quota == RUNTIME_INF || quota == -1) 6681 return RUNTIME_INF; 6682 6683 return to_ratio(period, quota); 6684 } 6685 6686 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6687 { 6688 struct cfs_schedulable_data *d = data; 6689 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6690 s64 quota = 0, parent_quota = -1; 6691 6692 if (!tg->parent) { 6693 quota = RUNTIME_INF; 6694 } else { 6695 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6696 6697 quota = normalize_cfs_quota(tg, d); 6698 parent_quota = parent_b->hierarchical_quota; 6699 6700 /* 6701 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6702 * always take the min. On cgroup1, only inherit when no 6703 * limit is set: 6704 */ 6705 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6706 quota = min(quota, parent_quota); 6707 } else { 6708 if (quota == RUNTIME_INF) 6709 quota = parent_quota; 6710 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6711 return -EINVAL; 6712 } 6713 } 6714 cfs_b->hierarchical_quota = quota; 6715 6716 return 0; 6717 } 6718 6719 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6720 { 6721 int ret; 6722 struct cfs_schedulable_data data = { 6723 .tg = tg, 6724 .period = period, 6725 .quota = quota, 6726 }; 6727 6728 if (quota != RUNTIME_INF) { 6729 do_div(data.period, NSEC_PER_USEC); 6730 do_div(data.quota, NSEC_PER_USEC); 6731 } 6732 6733 rcu_read_lock(); 6734 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6735 rcu_read_unlock(); 6736 6737 return ret; 6738 } 6739 6740 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6741 { 6742 struct task_group *tg = css_tg(seq_css(sf)); 6743 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6744 6745 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6746 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6747 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6748 6749 if (schedstat_enabled() && tg != &root_task_group) { 6750 u64 ws = 0; 6751 int i; 6752 6753 for_each_possible_cpu(i) 6754 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 6755 6756 seq_printf(sf, "wait_sum %llu\n", ws); 6757 } 6758 6759 return 0; 6760 } 6761 #endif /* CONFIG_CFS_BANDWIDTH */ 6762 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6763 6764 #ifdef CONFIG_RT_GROUP_SCHED 6765 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6766 struct cftype *cft, s64 val) 6767 { 6768 return sched_group_set_rt_runtime(css_tg(css), val); 6769 } 6770 6771 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6772 struct cftype *cft) 6773 { 6774 return sched_group_rt_runtime(css_tg(css)); 6775 } 6776 6777 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6778 struct cftype *cftype, u64 rt_period_us) 6779 { 6780 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6781 } 6782 6783 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6784 struct cftype *cft) 6785 { 6786 return sched_group_rt_period(css_tg(css)); 6787 } 6788 #endif /* CONFIG_RT_GROUP_SCHED */ 6789 6790 static struct cftype cpu_legacy_files[] = { 6791 #ifdef CONFIG_FAIR_GROUP_SCHED 6792 { 6793 .name = "shares", 6794 .read_u64 = cpu_shares_read_u64, 6795 .write_u64 = cpu_shares_write_u64, 6796 }, 6797 #endif 6798 #ifdef CONFIG_CFS_BANDWIDTH 6799 { 6800 .name = "cfs_quota_us", 6801 .read_s64 = cpu_cfs_quota_read_s64, 6802 .write_s64 = cpu_cfs_quota_write_s64, 6803 }, 6804 { 6805 .name = "cfs_period_us", 6806 .read_u64 = cpu_cfs_period_read_u64, 6807 .write_u64 = cpu_cfs_period_write_u64, 6808 }, 6809 { 6810 .name = "stat", 6811 .seq_show = cpu_cfs_stat_show, 6812 }, 6813 #endif 6814 #ifdef CONFIG_RT_GROUP_SCHED 6815 { 6816 .name = "rt_runtime_us", 6817 .read_s64 = cpu_rt_runtime_read, 6818 .write_s64 = cpu_rt_runtime_write, 6819 }, 6820 { 6821 .name = "rt_period_us", 6822 .read_u64 = cpu_rt_period_read_uint, 6823 .write_u64 = cpu_rt_period_write_uint, 6824 }, 6825 #endif 6826 { } /* Terminate */ 6827 }; 6828 6829 static int cpu_extra_stat_show(struct seq_file *sf, 6830 struct cgroup_subsys_state *css) 6831 { 6832 #ifdef CONFIG_CFS_BANDWIDTH 6833 { 6834 struct task_group *tg = css_tg(css); 6835 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6836 u64 throttled_usec; 6837 6838 throttled_usec = cfs_b->throttled_time; 6839 do_div(throttled_usec, NSEC_PER_USEC); 6840 6841 seq_printf(sf, "nr_periods %d\n" 6842 "nr_throttled %d\n" 6843 "throttled_usec %llu\n", 6844 cfs_b->nr_periods, cfs_b->nr_throttled, 6845 throttled_usec); 6846 } 6847 #endif 6848 return 0; 6849 } 6850 6851 #ifdef CONFIG_FAIR_GROUP_SCHED 6852 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6853 struct cftype *cft) 6854 { 6855 struct task_group *tg = css_tg(css); 6856 u64 weight = scale_load_down(tg->shares); 6857 6858 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6859 } 6860 6861 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6862 struct cftype *cft, u64 weight) 6863 { 6864 /* 6865 * cgroup weight knobs should use the common MIN, DFL and MAX 6866 * values which are 1, 100 and 10000 respectively. While it loses 6867 * a bit of range on both ends, it maps pretty well onto the shares 6868 * value used by scheduler and the round-trip conversions preserve 6869 * the original value over the entire range. 6870 */ 6871 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6872 return -ERANGE; 6873 6874 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6875 6876 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6877 } 6878 6879 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6880 struct cftype *cft) 6881 { 6882 unsigned long weight = scale_load_down(css_tg(css)->shares); 6883 int last_delta = INT_MAX; 6884 int prio, delta; 6885 6886 /* find the closest nice value to the current weight */ 6887 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6888 delta = abs(sched_prio_to_weight[prio] - weight); 6889 if (delta >= last_delta) 6890 break; 6891 last_delta = delta; 6892 } 6893 6894 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6895 } 6896 6897 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6898 struct cftype *cft, s64 nice) 6899 { 6900 unsigned long weight; 6901 int idx; 6902 6903 if (nice < MIN_NICE || nice > MAX_NICE) 6904 return -ERANGE; 6905 6906 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6907 idx = array_index_nospec(idx, 40); 6908 weight = sched_prio_to_weight[idx]; 6909 6910 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6911 } 6912 #endif 6913 6914 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6915 long period, long quota) 6916 { 6917 if (quota < 0) 6918 seq_puts(sf, "max"); 6919 else 6920 seq_printf(sf, "%ld", quota); 6921 6922 seq_printf(sf, " %ld\n", period); 6923 } 6924 6925 /* caller should put the current value in *@periodp before calling */ 6926 static int __maybe_unused cpu_period_quota_parse(char *buf, 6927 u64 *periodp, u64 *quotap) 6928 { 6929 char tok[21]; /* U64_MAX */ 6930 6931 if (!sscanf(buf, "%s %llu", tok, periodp)) 6932 return -EINVAL; 6933 6934 *periodp *= NSEC_PER_USEC; 6935 6936 if (sscanf(tok, "%llu", quotap)) 6937 *quotap *= NSEC_PER_USEC; 6938 else if (!strcmp(tok, "max")) 6939 *quotap = RUNTIME_INF; 6940 else 6941 return -EINVAL; 6942 6943 return 0; 6944 } 6945 6946 #ifdef CONFIG_CFS_BANDWIDTH 6947 static int cpu_max_show(struct seq_file *sf, void *v) 6948 { 6949 struct task_group *tg = css_tg(seq_css(sf)); 6950 6951 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6952 return 0; 6953 } 6954 6955 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6956 char *buf, size_t nbytes, loff_t off) 6957 { 6958 struct task_group *tg = css_tg(of_css(of)); 6959 u64 period = tg_get_cfs_period(tg); 6960 u64 quota; 6961 int ret; 6962 6963 ret = cpu_period_quota_parse(buf, &period, "a); 6964 if (!ret) 6965 ret = tg_set_cfs_bandwidth(tg, period, quota); 6966 return ret ?: nbytes; 6967 } 6968 #endif 6969 6970 static struct cftype cpu_files[] = { 6971 #ifdef CONFIG_FAIR_GROUP_SCHED 6972 { 6973 .name = "weight", 6974 .flags = CFTYPE_NOT_ON_ROOT, 6975 .read_u64 = cpu_weight_read_u64, 6976 .write_u64 = cpu_weight_write_u64, 6977 }, 6978 { 6979 .name = "weight.nice", 6980 .flags = CFTYPE_NOT_ON_ROOT, 6981 .read_s64 = cpu_weight_nice_read_s64, 6982 .write_s64 = cpu_weight_nice_write_s64, 6983 }, 6984 #endif 6985 #ifdef CONFIG_CFS_BANDWIDTH 6986 { 6987 .name = "max", 6988 .flags = CFTYPE_NOT_ON_ROOT, 6989 .seq_show = cpu_max_show, 6990 .write = cpu_max_write, 6991 }, 6992 #endif 6993 { } /* terminate */ 6994 }; 6995 6996 struct cgroup_subsys cpu_cgrp_subsys = { 6997 .css_alloc = cpu_cgroup_css_alloc, 6998 .css_online = cpu_cgroup_css_online, 6999 .css_released = cpu_cgroup_css_released, 7000 .css_free = cpu_cgroup_css_free, 7001 .css_extra_stat_show = cpu_extra_stat_show, 7002 .fork = cpu_cgroup_fork, 7003 .can_attach = cpu_cgroup_can_attach, 7004 .attach = cpu_cgroup_attach, 7005 .legacy_cftypes = cpu_legacy_files, 7006 .dfl_cftypes = cpu_files, 7007 .early_init = true, 7008 .threaded = true, 7009 }; 7010 7011 #endif /* CONFIG_CGROUP_SCHED */ 7012 7013 void dump_cpu_task(int cpu) 7014 { 7015 pr_info("Task dump for CPU %d:\n", cpu); 7016 sched_show_task(cpu_curr(cpu)); 7017 } 7018 7019 /* 7020 * Nice levels are multiplicative, with a gentle 10% change for every 7021 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7022 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7023 * that remained on nice 0. 7024 * 7025 * The "10% effect" is relative and cumulative: from _any_ nice level, 7026 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7027 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7028 * If a task goes up by ~10% and another task goes down by ~10% then 7029 * the relative distance between them is ~25%.) 7030 */ 7031 const int sched_prio_to_weight[40] = { 7032 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7033 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7034 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7035 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7036 /* 0 */ 1024, 820, 655, 526, 423, 7037 /* 5 */ 335, 272, 215, 172, 137, 7038 /* 10 */ 110, 87, 70, 56, 45, 7039 /* 15 */ 36, 29, 23, 18, 15, 7040 }; 7041 7042 /* 7043 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7044 * 7045 * In cases where the weight does not change often, we can use the 7046 * precalculated inverse to speed up arithmetics by turning divisions 7047 * into multiplications: 7048 */ 7049 const u32 sched_prio_to_wmult[40] = { 7050 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7051 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7052 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7053 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7054 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7055 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7056 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7057 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7058 }; 7059 7060 #undef CREATE_TRACE_POINTS 7061