xref: /openbmc/linux/kernel/sched/core.c (revision 1c2f87c2)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	if (rq->skip_clock_update > 0)
123 		return;
124 
125 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 	rq->clock += delta;
127 	update_rq_clock_task(rq, delta);
128 }
129 
130 /*
131  * Debugging: various feature bits
132  */
133 
134 #define SCHED_FEAT(name, enabled)	\
135 	(1UL << __SCHED_FEAT_##name) * enabled |
136 
137 const_debug unsigned int sysctl_sched_features =
138 #include "features.h"
139 	0;
140 
141 #undef SCHED_FEAT
142 
143 #ifdef CONFIG_SCHED_DEBUG
144 #define SCHED_FEAT(name, enabled)	\
145 	#name ,
146 
147 static const char * const sched_feat_names[] = {
148 #include "features.h"
149 };
150 
151 #undef SCHED_FEAT
152 
153 static int sched_feat_show(struct seq_file *m, void *v)
154 {
155 	int i;
156 
157 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
158 		if (!(sysctl_sched_features & (1UL << i)))
159 			seq_puts(m, "NO_");
160 		seq_printf(m, "%s ", sched_feat_names[i]);
161 	}
162 	seq_puts(m, "\n");
163 
164 	return 0;
165 }
166 
167 #ifdef HAVE_JUMP_LABEL
168 
169 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
170 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171 
172 #define SCHED_FEAT(name, enabled)	\
173 	jump_label_key__##enabled ,
174 
175 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176 #include "features.h"
177 };
178 
179 #undef SCHED_FEAT
180 
181 static void sched_feat_disable(int i)
182 {
183 	if (static_key_enabled(&sched_feat_keys[i]))
184 		static_key_slow_dec(&sched_feat_keys[i]);
185 }
186 
187 static void sched_feat_enable(int i)
188 {
189 	if (!static_key_enabled(&sched_feat_keys[i]))
190 		static_key_slow_inc(&sched_feat_keys[i]);
191 }
192 #else
193 static void sched_feat_disable(int i) { };
194 static void sched_feat_enable(int i) { };
195 #endif /* HAVE_JUMP_LABEL */
196 
197 static int sched_feat_set(char *cmp)
198 {
199 	int i;
200 	int neg = 0;
201 
202 	if (strncmp(cmp, "NO_", 3) == 0) {
203 		neg = 1;
204 		cmp += 3;
205 	}
206 
207 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 			if (neg) {
210 				sysctl_sched_features &= ~(1UL << i);
211 				sched_feat_disable(i);
212 			} else {
213 				sysctl_sched_features |= (1UL << i);
214 				sched_feat_enable(i);
215 			}
216 			break;
217 		}
218 	}
219 
220 	return i;
221 }
222 
223 static ssize_t
224 sched_feat_write(struct file *filp, const char __user *ubuf,
225 		size_t cnt, loff_t *ppos)
226 {
227 	char buf[64];
228 	char *cmp;
229 	int i;
230 
231 	if (cnt > 63)
232 		cnt = 63;
233 
234 	if (copy_from_user(&buf, ubuf, cnt))
235 		return -EFAULT;
236 
237 	buf[cnt] = 0;
238 	cmp = strstrip(buf);
239 
240 	i = sched_feat_set(cmp);
241 	if (i == __SCHED_FEAT_NR)
242 		return -EINVAL;
243 
244 	*ppos += cnt;
245 
246 	return cnt;
247 }
248 
249 static int sched_feat_open(struct inode *inode, struct file *filp)
250 {
251 	return single_open(filp, sched_feat_show, NULL);
252 }
253 
254 static const struct file_operations sched_feat_fops = {
255 	.open		= sched_feat_open,
256 	.write		= sched_feat_write,
257 	.read		= seq_read,
258 	.llseek		= seq_lseek,
259 	.release	= single_release,
260 };
261 
262 static __init int sched_init_debug(void)
263 {
264 	debugfs_create_file("sched_features", 0644, NULL, NULL,
265 			&sched_feat_fops);
266 
267 	return 0;
268 }
269 late_initcall(sched_init_debug);
270 #endif /* CONFIG_SCHED_DEBUG */
271 
272 /*
273  * Number of tasks to iterate in a single balance run.
274  * Limited because this is done with IRQs disabled.
275  */
276 const_debug unsigned int sysctl_sched_nr_migrate = 32;
277 
278 /*
279  * period over which we average the RT time consumption, measured
280  * in ms.
281  *
282  * default: 1s
283  */
284 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285 
286 /*
287  * period over which we measure -rt task cpu usage in us.
288  * default: 1s
289  */
290 unsigned int sysctl_sched_rt_period = 1000000;
291 
292 __read_mostly int scheduler_running;
293 
294 /*
295  * part of the period that we allow rt tasks to run in us.
296  * default: 0.95s
297  */
298 int sysctl_sched_rt_runtime = 950000;
299 
300 /*
301  * __task_rq_lock - lock the rq @p resides on.
302  */
303 static inline struct rq *__task_rq_lock(struct task_struct *p)
304 	__acquires(rq->lock)
305 {
306 	struct rq *rq;
307 
308 	lockdep_assert_held(&p->pi_lock);
309 
310 	for (;;) {
311 		rq = task_rq(p);
312 		raw_spin_lock(&rq->lock);
313 		if (likely(rq == task_rq(p)))
314 			return rq;
315 		raw_spin_unlock(&rq->lock);
316 	}
317 }
318 
319 /*
320  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321  */
322 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323 	__acquires(p->pi_lock)
324 	__acquires(rq->lock)
325 {
326 	struct rq *rq;
327 
328 	for (;;) {
329 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 		rq = task_rq(p);
331 		raw_spin_lock(&rq->lock);
332 		if (likely(rq == task_rq(p)))
333 			return rq;
334 		raw_spin_unlock(&rq->lock);
335 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336 	}
337 }
338 
339 static void __task_rq_unlock(struct rq *rq)
340 	__releases(rq->lock)
341 {
342 	raw_spin_unlock(&rq->lock);
343 }
344 
345 static inline void
346 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 	__releases(rq->lock)
348 	__releases(p->pi_lock)
349 {
350 	raw_spin_unlock(&rq->lock);
351 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 }
353 
354 /*
355  * this_rq_lock - lock this runqueue and disable interrupts.
356  */
357 static struct rq *this_rq_lock(void)
358 	__acquires(rq->lock)
359 {
360 	struct rq *rq;
361 
362 	local_irq_disable();
363 	rq = this_rq();
364 	raw_spin_lock(&rq->lock);
365 
366 	return rq;
367 }
368 
369 #ifdef CONFIG_SCHED_HRTICK
370 /*
371  * Use HR-timers to deliver accurate preemption points.
372  */
373 
374 static void hrtick_clear(struct rq *rq)
375 {
376 	if (hrtimer_active(&rq->hrtick_timer))
377 		hrtimer_cancel(&rq->hrtick_timer);
378 }
379 
380 /*
381  * High-resolution timer tick.
382  * Runs from hardirq context with interrupts disabled.
383  */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 {
386 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387 
388 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389 
390 	raw_spin_lock(&rq->lock);
391 	update_rq_clock(rq);
392 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 	raw_spin_unlock(&rq->lock);
394 
395 	return HRTIMER_NORESTART;
396 }
397 
398 #ifdef CONFIG_SMP
399 
400 static int __hrtick_restart(struct rq *rq)
401 {
402 	struct hrtimer *timer = &rq->hrtick_timer;
403 	ktime_t time = hrtimer_get_softexpires(timer);
404 
405 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406 }
407 
408 /*
409  * called from hardirq (IPI) context
410  */
411 static void __hrtick_start(void *arg)
412 {
413 	struct rq *rq = arg;
414 
415 	raw_spin_lock(&rq->lock);
416 	__hrtick_restart(rq);
417 	rq->hrtick_csd_pending = 0;
418 	raw_spin_unlock(&rq->lock);
419 }
420 
421 /*
422  * Called to set the hrtick timer state.
423  *
424  * called with rq->lock held and irqs disabled
425  */
426 void hrtick_start(struct rq *rq, u64 delay)
427 {
428 	struct hrtimer *timer = &rq->hrtick_timer;
429 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430 
431 	hrtimer_set_expires(timer, time);
432 
433 	if (rq == this_rq()) {
434 		__hrtick_restart(rq);
435 	} else if (!rq->hrtick_csd_pending) {
436 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 		rq->hrtick_csd_pending = 1;
438 	}
439 }
440 
441 static int
442 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 {
444 	int cpu = (int)(long)hcpu;
445 
446 	switch (action) {
447 	case CPU_UP_CANCELED:
448 	case CPU_UP_CANCELED_FROZEN:
449 	case CPU_DOWN_PREPARE:
450 	case CPU_DOWN_PREPARE_FROZEN:
451 	case CPU_DEAD:
452 	case CPU_DEAD_FROZEN:
453 		hrtick_clear(cpu_rq(cpu));
454 		return NOTIFY_OK;
455 	}
456 
457 	return NOTIFY_DONE;
458 }
459 
460 static __init void init_hrtick(void)
461 {
462 	hotcpu_notifier(hotplug_hrtick, 0);
463 }
464 #else
465 /*
466  * Called to set the hrtick timer state.
467  *
468  * called with rq->lock held and irqs disabled
469  */
470 void hrtick_start(struct rq *rq, u64 delay)
471 {
472 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473 			HRTIMER_MODE_REL_PINNED, 0);
474 }
475 
476 static inline void init_hrtick(void)
477 {
478 }
479 #endif /* CONFIG_SMP */
480 
481 static void init_rq_hrtick(struct rq *rq)
482 {
483 #ifdef CONFIG_SMP
484 	rq->hrtick_csd_pending = 0;
485 
486 	rq->hrtick_csd.flags = 0;
487 	rq->hrtick_csd.func = __hrtick_start;
488 	rq->hrtick_csd.info = rq;
489 #endif
490 
491 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 	rq->hrtick_timer.function = hrtick;
493 }
494 #else	/* CONFIG_SCHED_HRTICK */
495 static inline void hrtick_clear(struct rq *rq)
496 {
497 }
498 
499 static inline void init_rq_hrtick(struct rq *rq)
500 {
501 }
502 
503 static inline void init_hrtick(void)
504 {
505 }
506 #endif	/* CONFIG_SCHED_HRTICK */
507 
508 /*
509  * resched_task - mark a task 'to be rescheduled now'.
510  *
511  * On UP this means the setting of the need_resched flag, on SMP it
512  * might also involve a cross-CPU call to trigger the scheduler on
513  * the target CPU.
514  */
515 void resched_task(struct task_struct *p)
516 {
517 	int cpu;
518 
519 	lockdep_assert_held(&task_rq(p)->lock);
520 
521 	if (test_tsk_need_resched(p))
522 		return;
523 
524 	set_tsk_need_resched(p);
525 
526 	cpu = task_cpu(p);
527 	if (cpu == smp_processor_id()) {
528 		set_preempt_need_resched();
529 		return;
530 	}
531 
532 	/* NEED_RESCHED must be visible before we test polling */
533 	smp_mb();
534 	if (!tsk_is_polling(p))
535 		smp_send_reschedule(cpu);
536 }
537 
538 void resched_cpu(int cpu)
539 {
540 	struct rq *rq = cpu_rq(cpu);
541 	unsigned long flags;
542 
543 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 		return;
545 	resched_task(cpu_curr(cpu));
546 	raw_spin_unlock_irqrestore(&rq->lock, flags);
547 }
548 
549 #ifdef CONFIG_SMP
550 #ifdef CONFIG_NO_HZ_COMMON
551 /*
552  * In the semi idle case, use the nearest busy cpu for migrating timers
553  * from an idle cpu.  This is good for power-savings.
554  *
555  * We don't do similar optimization for completely idle system, as
556  * selecting an idle cpu will add more delays to the timers than intended
557  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558  */
559 int get_nohz_timer_target(int pinned)
560 {
561 	int cpu = smp_processor_id();
562 	int i;
563 	struct sched_domain *sd;
564 
565 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566 		return cpu;
567 
568 	rcu_read_lock();
569 	for_each_domain(cpu, sd) {
570 		for_each_cpu(i, sched_domain_span(sd)) {
571 			if (!idle_cpu(i)) {
572 				cpu = i;
573 				goto unlock;
574 			}
575 		}
576 	}
577 unlock:
578 	rcu_read_unlock();
579 	return cpu;
580 }
581 /*
582  * When add_timer_on() enqueues a timer into the timer wheel of an
583  * idle CPU then this timer might expire before the next timer event
584  * which is scheduled to wake up that CPU. In case of a completely
585  * idle system the next event might even be infinite time into the
586  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587  * leaves the inner idle loop so the newly added timer is taken into
588  * account when the CPU goes back to idle and evaluates the timer
589  * wheel for the next timer event.
590  */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 	struct rq *rq = cpu_rq(cpu);
594 
595 	if (cpu == smp_processor_id())
596 		return;
597 
598 	/*
599 	 * This is safe, as this function is called with the timer
600 	 * wheel base lock of (cpu) held. When the CPU is on the way
601 	 * to idle and has not yet set rq->curr to idle then it will
602 	 * be serialized on the timer wheel base lock and take the new
603 	 * timer into account automatically.
604 	 */
605 	if (rq->curr != rq->idle)
606 		return;
607 
608 	/*
609 	 * We can set TIF_RESCHED on the idle task of the other CPU
610 	 * lockless. The worst case is that the other CPU runs the
611 	 * idle task through an additional NOOP schedule()
612 	 */
613 	set_tsk_need_resched(rq->idle);
614 
615 	/* NEED_RESCHED must be visible before we test polling */
616 	smp_mb();
617 	if (!tsk_is_polling(rq->idle))
618 		smp_send_reschedule(cpu);
619 }
620 
621 static bool wake_up_full_nohz_cpu(int cpu)
622 {
623 	if (tick_nohz_full_cpu(cpu)) {
624 		if (cpu != smp_processor_id() ||
625 		    tick_nohz_tick_stopped())
626 			smp_send_reschedule(cpu);
627 		return true;
628 	}
629 
630 	return false;
631 }
632 
633 void wake_up_nohz_cpu(int cpu)
634 {
635 	if (!wake_up_full_nohz_cpu(cpu))
636 		wake_up_idle_cpu(cpu);
637 }
638 
639 static inline bool got_nohz_idle_kick(void)
640 {
641 	int cpu = smp_processor_id();
642 
643 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644 		return false;
645 
646 	if (idle_cpu(cpu) && !need_resched())
647 		return true;
648 
649 	/*
650 	 * We can't run Idle Load Balance on this CPU for this time so we
651 	 * cancel it and clear NOHZ_BALANCE_KICK
652 	 */
653 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654 	return false;
655 }
656 
657 #else /* CONFIG_NO_HZ_COMMON */
658 
659 static inline bool got_nohz_idle_kick(void)
660 {
661 	return false;
662 }
663 
664 #endif /* CONFIG_NO_HZ_COMMON */
665 
666 #ifdef CONFIG_NO_HZ_FULL
667 bool sched_can_stop_tick(void)
668 {
669        struct rq *rq;
670 
671        rq = this_rq();
672 
673        /* Make sure rq->nr_running update is visible after the IPI */
674        smp_rmb();
675 
676        /* More than one running task need preemption */
677        if (rq->nr_running > 1)
678                return false;
679 
680        return true;
681 }
682 #endif /* CONFIG_NO_HZ_FULL */
683 
684 void sched_avg_update(struct rq *rq)
685 {
686 	s64 period = sched_avg_period();
687 
688 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 		/*
690 		 * Inline assembly required to prevent the compiler
691 		 * optimising this loop into a divmod call.
692 		 * See __iter_div_u64_rem() for another example of this.
693 		 */
694 		asm("" : "+rm" (rq->age_stamp));
695 		rq->age_stamp += period;
696 		rq->rt_avg /= 2;
697 	}
698 }
699 
700 #endif /* CONFIG_SMP */
701 
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705  * Iterate task_group tree rooted at *from, calling @down when first entering a
706  * node and @up when leaving it for the final time.
707  *
708  * Caller must hold rcu_lock or sufficient equivalent.
709  */
710 int walk_tg_tree_from(struct task_group *from,
711 			     tg_visitor down, tg_visitor up, void *data)
712 {
713 	struct task_group *parent, *child;
714 	int ret;
715 
716 	parent = from;
717 
718 down:
719 	ret = (*down)(parent, data);
720 	if (ret)
721 		goto out;
722 	list_for_each_entry_rcu(child, &parent->children, siblings) {
723 		parent = child;
724 		goto down;
725 
726 up:
727 		continue;
728 	}
729 	ret = (*up)(parent, data);
730 	if (ret || parent == from)
731 		goto out;
732 
733 	child = parent;
734 	parent = parent->parent;
735 	if (parent)
736 		goto up;
737 out:
738 	return ret;
739 }
740 
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 	return 0;
744 }
745 #endif
746 
747 static void set_load_weight(struct task_struct *p)
748 {
749 	int prio = p->static_prio - MAX_RT_PRIO;
750 	struct load_weight *load = &p->se.load;
751 
752 	/*
753 	 * SCHED_IDLE tasks get minimal weight:
754 	 */
755 	if (p->policy == SCHED_IDLE) {
756 		load->weight = scale_load(WEIGHT_IDLEPRIO);
757 		load->inv_weight = WMULT_IDLEPRIO;
758 		return;
759 	}
760 
761 	load->weight = scale_load(prio_to_weight[prio]);
762 	load->inv_weight = prio_to_wmult[prio];
763 }
764 
765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 	update_rq_clock(rq);
768 	sched_info_queued(rq, p);
769 	p->sched_class->enqueue_task(rq, p, flags);
770 }
771 
772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 	update_rq_clock(rq);
775 	sched_info_dequeued(rq, p);
776 	p->sched_class->dequeue_task(rq, p, flags);
777 }
778 
779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 	if (task_contributes_to_load(p))
782 		rq->nr_uninterruptible--;
783 
784 	enqueue_task(rq, p, flags);
785 }
786 
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 {
789 	if (task_contributes_to_load(p))
790 		rq->nr_uninterruptible++;
791 
792 	dequeue_task(rq, p, flags);
793 }
794 
795 static void update_rq_clock_task(struct rq *rq, s64 delta)
796 {
797 /*
798  * In theory, the compile should just see 0 here, and optimize out the call
799  * to sched_rt_avg_update. But I don't trust it...
800  */
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 	s64 steal = 0, irq_delta = 0;
803 #endif
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806 
807 	/*
808 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 	 * this case when a previous update_rq_clock() happened inside a
810 	 * {soft,}irq region.
811 	 *
812 	 * When this happens, we stop ->clock_task and only update the
813 	 * prev_irq_time stamp to account for the part that fit, so that a next
814 	 * update will consume the rest. This ensures ->clock_task is
815 	 * monotonic.
816 	 *
817 	 * It does however cause some slight miss-attribution of {soft,}irq
818 	 * time, a more accurate solution would be to update the irq_time using
819 	 * the current rq->clock timestamp, except that would require using
820 	 * atomic ops.
821 	 */
822 	if (irq_delta > delta)
823 		irq_delta = delta;
824 
825 	rq->prev_irq_time += irq_delta;
826 	delta -= irq_delta;
827 #endif
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 	if (static_key_false((&paravirt_steal_rq_enabled))) {
830 		steal = paravirt_steal_clock(cpu_of(rq));
831 		steal -= rq->prev_steal_time_rq;
832 
833 		if (unlikely(steal > delta))
834 			steal = delta;
835 
836 		rq->prev_steal_time_rq += steal;
837 		delta -= steal;
838 	}
839 #endif
840 
841 	rq->clock_task += delta;
842 
843 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845 		sched_rt_avg_update(rq, irq_delta + steal);
846 #endif
847 }
848 
849 void sched_set_stop_task(int cpu, struct task_struct *stop)
850 {
851 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
853 
854 	if (stop) {
855 		/*
856 		 * Make it appear like a SCHED_FIFO task, its something
857 		 * userspace knows about and won't get confused about.
858 		 *
859 		 * Also, it will make PI more or less work without too
860 		 * much confusion -- but then, stop work should not
861 		 * rely on PI working anyway.
862 		 */
863 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864 
865 		stop->sched_class = &stop_sched_class;
866 	}
867 
868 	cpu_rq(cpu)->stop = stop;
869 
870 	if (old_stop) {
871 		/*
872 		 * Reset it back to a normal scheduling class so that
873 		 * it can die in pieces.
874 		 */
875 		old_stop->sched_class = &rt_sched_class;
876 	}
877 }
878 
879 /*
880  * __normal_prio - return the priority that is based on the static prio
881  */
882 static inline int __normal_prio(struct task_struct *p)
883 {
884 	return p->static_prio;
885 }
886 
887 /*
888  * Calculate the expected normal priority: i.e. priority
889  * without taking RT-inheritance into account. Might be
890  * boosted by interactivity modifiers. Changes upon fork,
891  * setprio syscalls, and whenever the interactivity
892  * estimator recalculates.
893  */
894 static inline int normal_prio(struct task_struct *p)
895 {
896 	int prio;
897 
898 	if (task_has_dl_policy(p))
899 		prio = MAX_DL_PRIO-1;
900 	else if (task_has_rt_policy(p))
901 		prio = MAX_RT_PRIO-1 - p->rt_priority;
902 	else
903 		prio = __normal_prio(p);
904 	return prio;
905 }
906 
907 /*
908  * Calculate the current priority, i.e. the priority
909  * taken into account by the scheduler. This value might
910  * be boosted by RT tasks, or might be boosted by
911  * interactivity modifiers. Will be RT if the task got
912  * RT-boosted. If not then it returns p->normal_prio.
913  */
914 static int effective_prio(struct task_struct *p)
915 {
916 	p->normal_prio = normal_prio(p);
917 	/*
918 	 * If we are RT tasks or we were boosted to RT priority,
919 	 * keep the priority unchanged. Otherwise, update priority
920 	 * to the normal priority:
921 	 */
922 	if (!rt_prio(p->prio))
923 		return p->normal_prio;
924 	return p->prio;
925 }
926 
927 /**
928  * task_curr - is this task currently executing on a CPU?
929  * @p: the task in question.
930  *
931  * Return: 1 if the task is currently executing. 0 otherwise.
932  */
933 inline int task_curr(const struct task_struct *p)
934 {
935 	return cpu_curr(task_cpu(p)) == p;
936 }
937 
938 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 				       const struct sched_class *prev_class,
940 				       int oldprio)
941 {
942 	if (prev_class != p->sched_class) {
943 		if (prev_class->switched_from)
944 			prev_class->switched_from(rq, p);
945 		p->sched_class->switched_to(rq, p);
946 	} else if (oldprio != p->prio || dl_task(p))
947 		p->sched_class->prio_changed(rq, p, oldprio);
948 }
949 
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 	const struct sched_class *class;
953 
954 	if (p->sched_class == rq->curr->sched_class) {
955 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 	} else {
957 		for_each_class(class) {
958 			if (class == rq->curr->sched_class)
959 				break;
960 			if (class == p->sched_class) {
961 				resched_task(rq->curr);
962 				break;
963 			}
964 		}
965 	}
966 
967 	/*
968 	 * A queue event has occurred, and we're going to schedule.  In
969 	 * this case, we can save a useless back to back clock update.
970 	 */
971 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 		rq->skip_clock_update = 1;
973 }
974 
975 #ifdef CONFIG_SMP
976 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977 {
978 #ifdef CONFIG_SCHED_DEBUG
979 	/*
980 	 * We should never call set_task_cpu() on a blocked task,
981 	 * ttwu() will sort out the placement.
982 	 */
983 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
985 
986 #ifdef CONFIG_LOCKDEP
987 	/*
988 	 * The caller should hold either p->pi_lock or rq->lock, when changing
989 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 	 *
991 	 * sched_move_task() holds both and thus holding either pins the cgroup,
992 	 * see task_group().
993 	 *
994 	 * Furthermore, all task_rq users should acquire both locks, see
995 	 * task_rq_lock().
996 	 */
997 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 				      lockdep_is_held(&task_rq(p)->lock)));
999 #endif
1000 #endif
1001 
1002 	trace_sched_migrate_task(p, new_cpu);
1003 
1004 	if (task_cpu(p) != new_cpu) {
1005 		if (p->sched_class->migrate_task_rq)
1006 			p->sched_class->migrate_task_rq(p, new_cpu);
1007 		p->se.nr_migrations++;
1008 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009 	}
1010 
1011 	__set_task_cpu(p, new_cpu);
1012 }
1013 
1014 static void __migrate_swap_task(struct task_struct *p, int cpu)
1015 {
1016 	if (p->on_rq) {
1017 		struct rq *src_rq, *dst_rq;
1018 
1019 		src_rq = task_rq(p);
1020 		dst_rq = cpu_rq(cpu);
1021 
1022 		deactivate_task(src_rq, p, 0);
1023 		set_task_cpu(p, cpu);
1024 		activate_task(dst_rq, p, 0);
1025 		check_preempt_curr(dst_rq, p, 0);
1026 	} else {
1027 		/*
1028 		 * Task isn't running anymore; make it appear like we migrated
1029 		 * it before it went to sleep. This means on wakeup we make the
1030 		 * previous cpu our targer instead of where it really is.
1031 		 */
1032 		p->wake_cpu = cpu;
1033 	}
1034 }
1035 
1036 struct migration_swap_arg {
1037 	struct task_struct *src_task, *dst_task;
1038 	int src_cpu, dst_cpu;
1039 };
1040 
1041 static int migrate_swap_stop(void *data)
1042 {
1043 	struct migration_swap_arg *arg = data;
1044 	struct rq *src_rq, *dst_rq;
1045 	int ret = -EAGAIN;
1046 
1047 	src_rq = cpu_rq(arg->src_cpu);
1048 	dst_rq = cpu_rq(arg->dst_cpu);
1049 
1050 	double_raw_lock(&arg->src_task->pi_lock,
1051 			&arg->dst_task->pi_lock);
1052 	double_rq_lock(src_rq, dst_rq);
1053 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 		goto unlock;
1055 
1056 	if (task_cpu(arg->src_task) != arg->src_cpu)
1057 		goto unlock;
1058 
1059 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 		goto unlock;
1061 
1062 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 		goto unlock;
1064 
1065 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1067 
1068 	ret = 0;
1069 
1070 unlock:
1071 	double_rq_unlock(src_rq, dst_rq);
1072 	raw_spin_unlock(&arg->dst_task->pi_lock);
1073 	raw_spin_unlock(&arg->src_task->pi_lock);
1074 
1075 	return ret;
1076 }
1077 
1078 /*
1079  * Cross migrate two tasks
1080  */
1081 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082 {
1083 	struct migration_swap_arg arg;
1084 	int ret = -EINVAL;
1085 
1086 	arg = (struct migration_swap_arg){
1087 		.src_task = cur,
1088 		.src_cpu = task_cpu(cur),
1089 		.dst_task = p,
1090 		.dst_cpu = task_cpu(p),
1091 	};
1092 
1093 	if (arg.src_cpu == arg.dst_cpu)
1094 		goto out;
1095 
1096 	/*
1097 	 * These three tests are all lockless; this is OK since all of them
1098 	 * will be re-checked with proper locks held further down the line.
1099 	 */
1100 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 		goto out;
1102 
1103 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 		goto out;
1105 
1106 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 		goto out;
1108 
1109 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111 
1112 out:
1113 	return ret;
1114 }
1115 
1116 struct migration_arg {
1117 	struct task_struct *task;
1118 	int dest_cpu;
1119 };
1120 
1121 static int migration_cpu_stop(void *data);
1122 
1123 /*
1124  * wait_task_inactive - wait for a thread to unschedule.
1125  *
1126  * If @match_state is nonzero, it's the @p->state value just checked and
1127  * not expected to change.  If it changes, i.e. @p might have woken up,
1128  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1129  * we return a positive number (its total switch count).  If a second call
1130  * a short while later returns the same number, the caller can be sure that
1131  * @p has remained unscheduled the whole time.
1132  *
1133  * The caller must ensure that the task *will* unschedule sometime soon,
1134  * else this function might spin for a *long* time. This function can't
1135  * be called with interrupts off, or it may introduce deadlock with
1136  * smp_call_function() if an IPI is sent by the same process we are
1137  * waiting to become inactive.
1138  */
1139 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140 {
1141 	unsigned long flags;
1142 	int running, on_rq;
1143 	unsigned long ncsw;
1144 	struct rq *rq;
1145 
1146 	for (;;) {
1147 		/*
1148 		 * We do the initial early heuristics without holding
1149 		 * any task-queue locks at all. We'll only try to get
1150 		 * the runqueue lock when things look like they will
1151 		 * work out!
1152 		 */
1153 		rq = task_rq(p);
1154 
1155 		/*
1156 		 * If the task is actively running on another CPU
1157 		 * still, just relax and busy-wait without holding
1158 		 * any locks.
1159 		 *
1160 		 * NOTE! Since we don't hold any locks, it's not
1161 		 * even sure that "rq" stays as the right runqueue!
1162 		 * But we don't care, since "task_running()" will
1163 		 * return false if the runqueue has changed and p
1164 		 * is actually now running somewhere else!
1165 		 */
1166 		while (task_running(rq, p)) {
1167 			if (match_state && unlikely(p->state != match_state))
1168 				return 0;
1169 			cpu_relax();
1170 		}
1171 
1172 		/*
1173 		 * Ok, time to look more closely! We need the rq
1174 		 * lock now, to be *sure*. If we're wrong, we'll
1175 		 * just go back and repeat.
1176 		 */
1177 		rq = task_rq_lock(p, &flags);
1178 		trace_sched_wait_task(p);
1179 		running = task_running(rq, p);
1180 		on_rq = p->on_rq;
1181 		ncsw = 0;
1182 		if (!match_state || p->state == match_state)
1183 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184 		task_rq_unlock(rq, p, &flags);
1185 
1186 		/*
1187 		 * If it changed from the expected state, bail out now.
1188 		 */
1189 		if (unlikely(!ncsw))
1190 			break;
1191 
1192 		/*
1193 		 * Was it really running after all now that we
1194 		 * checked with the proper locks actually held?
1195 		 *
1196 		 * Oops. Go back and try again..
1197 		 */
1198 		if (unlikely(running)) {
1199 			cpu_relax();
1200 			continue;
1201 		}
1202 
1203 		/*
1204 		 * It's not enough that it's not actively running,
1205 		 * it must be off the runqueue _entirely_, and not
1206 		 * preempted!
1207 		 *
1208 		 * So if it was still runnable (but just not actively
1209 		 * running right now), it's preempted, and we should
1210 		 * yield - it could be a while.
1211 		 */
1212 		if (unlikely(on_rq)) {
1213 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214 
1215 			set_current_state(TASK_UNINTERRUPTIBLE);
1216 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217 			continue;
1218 		}
1219 
1220 		/*
1221 		 * Ahh, all good. It wasn't running, and it wasn't
1222 		 * runnable, which means that it will never become
1223 		 * running in the future either. We're all done!
1224 		 */
1225 		break;
1226 	}
1227 
1228 	return ncsw;
1229 }
1230 
1231 /***
1232  * kick_process - kick a running thread to enter/exit the kernel
1233  * @p: the to-be-kicked thread
1234  *
1235  * Cause a process which is running on another CPU to enter
1236  * kernel-mode, without any delay. (to get signals handled.)
1237  *
1238  * NOTE: this function doesn't have to take the runqueue lock,
1239  * because all it wants to ensure is that the remote task enters
1240  * the kernel. If the IPI races and the task has been migrated
1241  * to another CPU then no harm is done and the purpose has been
1242  * achieved as well.
1243  */
1244 void kick_process(struct task_struct *p)
1245 {
1246 	int cpu;
1247 
1248 	preempt_disable();
1249 	cpu = task_cpu(p);
1250 	if ((cpu != smp_processor_id()) && task_curr(p))
1251 		smp_send_reschedule(cpu);
1252 	preempt_enable();
1253 }
1254 EXPORT_SYMBOL_GPL(kick_process);
1255 #endif /* CONFIG_SMP */
1256 
1257 #ifdef CONFIG_SMP
1258 /*
1259  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260  */
1261 static int select_fallback_rq(int cpu, struct task_struct *p)
1262 {
1263 	int nid = cpu_to_node(cpu);
1264 	const struct cpumask *nodemask = NULL;
1265 	enum { cpuset, possible, fail } state = cpuset;
1266 	int dest_cpu;
1267 
1268 	/*
1269 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 	 * will return -1. There is no cpu on the node, and we should
1271 	 * select the cpu on the other node.
1272 	 */
1273 	if (nid != -1) {
1274 		nodemask = cpumask_of_node(nid);
1275 
1276 		/* Look for allowed, online CPU in same node. */
1277 		for_each_cpu(dest_cpu, nodemask) {
1278 			if (!cpu_online(dest_cpu))
1279 				continue;
1280 			if (!cpu_active(dest_cpu))
1281 				continue;
1282 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 				return dest_cpu;
1284 		}
1285 	}
1286 
1287 	for (;;) {
1288 		/* Any allowed, online CPU? */
1289 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290 			if (!cpu_online(dest_cpu))
1291 				continue;
1292 			if (!cpu_active(dest_cpu))
1293 				continue;
1294 			goto out;
1295 		}
1296 
1297 		switch (state) {
1298 		case cpuset:
1299 			/* No more Mr. Nice Guy. */
1300 			cpuset_cpus_allowed_fallback(p);
1301 			state = possible;
1302 			break;
1303 
1304 		case possible:
1305 			do_set_cpus_allowed(p, cpu_possible_mask);
1306 			state = fail;
1307 			break;
1308 
1309 		case fail:
1310 			BUG();
1311 			break;
1312 		}
1313 	}
1314 
1315 out:
1316 	if (state != cpuset) {
1317 		/*
1318 		 * Don't tell them about moving exiting tasks or
1319 		 * kernel threads (both mm NULL), since they never
1320 		 * leave kernel.
1321 		 */
1322 		if (p->mm && printk_ratelimit()) {
1323 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 					task_pid_nr(p), p->comm, cpu);
1325 		}
1326 	}
1327 
1328 	return dest_cpu;
1329 }
1330 
1331 /*
1332  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333  */
1334 static inline
1335 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336 {
1337 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338 
1339 	/*
1340 	 * In order not to call set_task_cpu() on a blocking task we need
1341 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 	 * cpu.
1343 	 *
1344 	 * Since this is common to all placement strategies, this lives here.
1345 	 *
1346 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 	 *   not worry about this generic constraint ]
1348 	 */
1349 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350 		     !cpu_online(cpu)))
1351 		cpu = select_fallback_rq(task_cpu(p), p);
1352 
1353 	return cpu;
1354 }
1355 
1356 static void update_avg(u64 *avg, u64 sample)
1357 {
1358 	s64 diff = sample - *avg;
1359 	*avg += diff >> 3;
1360 }
1361 #endif
1362 
1363 static void
1364 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365 {
1366 #ifdef CONFIG_SCHEDSTATS
1367 	struct rq *rq = this_rq();
1368 
1369 #ifdef CONFIG_SMP
1370 	int this_cpu = smp_processor_id();
1371 
1372 	if (cpu == this_cpu) {
1373 		schedstat_inc(rq, ttwu_local);
1374 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 	} else {
1376 		struct sched_domain *sd;
1377 
1378 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379 		rcu_read_lock();
1380 		for_each_domain(this_cpu, sd) {
1381 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 				schedstat_inc(sd, ttwu_wake_remote);
1383 				break;
1384 			}
1385 		}
1386 		rcu_read_unlock();
1387 	}
1388 
1389 	if (wake_flags & WF_MIGRATED)
1390 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391 
1392 #endif /* CONFIG_SMP */
1393 
1394 	schedstat_inc(rq, ttwu_count);
1395 	schedstat_inc(p, se.statistics.nr_wakeups);
1396 
1397 	if (wake_flags & WF_SYNC)
1398 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399 
1400 #endif /* CONFIG_SCHEDSTATS */
1401 }
1402 
1403 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404 {
1405 	activate_task(rq, p, en_flags);
1406 	p->on_rq = 1;
1407 
1408 	/* if a worker is waking up, notify workqueue */
1409 	if (p->flags & PF_WQ_WORKER)
1410 		wq_worker_waking_up(p, cpu_of(rq));
1411 }
1412 
1413 /*
1414  * Mark the task runnable and perform wakeup-preemption.
1415  */
1416 static void
1417 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418 {
1419 	check_preempt_curr(rq, p, wake_flags);
1420 	trace_sched_wakeup(p, true);
1421 
1422 	p->state = TASK_RUNNING;
1423 #ifdef CONFIG_SMP
1424 	if (p->sched_class->task_woken)
1425 		p->sched_class->task_woken(rq, p);
1426 
1427 	if (rq->idle_stamp) {
1428 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1429 		u64 max = 2*rq->max_idle_balance_cost;
1430 
1431 		update_avg(&rq->avg_idle, delta);
1432 
1433 		if (rq->avg_idle > max)
1434 			rq->avg_idle = max;
1435 
1436 		rq->idle_stamp = 0;
1437 	}
1438 #endif
1439 }
1440 
1441 static void
1442 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443 {
1444 #ifdef CONFIG_SMP
1445 	if (p->sched_contributes_to_load)
1446 		rq->nr_uninterruptible--;
1447 #endif
1448 
1449 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 	ttwu_do_wakeup(rq, p, wake_flags);
1451 }
1452 
1453 /*
1454  * Called in case the task @p isn't fully descheduled from its runqueue,
1455  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456  * since all we need to do is flip p->state to TASK_RUNNING, since
1457  * the task is still ->on_rq.
1458  */
1459 static int ttwu_remote(struct task_struct *p, int wake_flags)
1460 {
1461 	struct rq *rq;
1462 	int ret = 0;
1463 
1464 	rq = __task_rq_lock(p);
1465 	if (p->on_rq) {
1466 		/* check_preempt_curr() may use rq clock */
1467 		update_rq_clock(rq);
1468 		ttwu_do_wakeup(rq, p, wake_flags);
1469 		ret = 1;
1470 	}
1471 	__task_rq_unlock(rq);
1472 
1473 	return ret;
1474 }
1475 
1476 #ifdef CONFIG_SMP
1477 static void sched_ttwu_pending(void)
1478 {
1479 	struct rq *rq = this_rq();
1480 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 	struct task_struct *p;
1482 
1483 	raw_spin_lock(&rq->lock);
1484 
1485 	while (llist) {
1486 		p = llist_entry(llist, struct task_struct, wake_entry);
1487 		llist = llist_next(llist);
1488 		ttwu_do_activate(rq, p, 0);
1489 	}
1490 
1491 	raw_spin_unlock(&rq->lock);
1492 }
1493 
1494 void scheduler_ipi(void)
1495 {
1496 	/*
1497 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 	 * this IPI.
1500 	 */
1501 	preempt_fold_need_resched();
1502 
1503 	if (llist_empty(&this_rq()->wake_list)
1504 			&& !tick_nohz_full_cpu(smp_processor_id())
1505 			&& !got_nohz_idle_kick())
1506 		return;
1507 
1508 	/*
1509 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510 	 * traditionally all their work was done from the interrupt return
1511 	 * path. Now that we actually do some work, we need to make sure
1512 	 * we do call them.
1513 	 *
1514 	 * Some archs already do call them, luckily irq_enter/exit nest
1515 	 * properly.
1516 	 *
1517 	 * Arguably we should visit all archs and update all handlers,
1518 	 * however a fair share of IPIs are still resched only so this would
1519 	 * somewhat pessimize the simple resched case.
1520 	 */
1521 	irq_enter();
1522 	tick_nohz_full_check();
1523 	sched_ttwu_pending();
1524 
1525 	/*
1526 	 * Check if someone kicked us for doing the nohz idle load balance.
1527 	 */
1528 	if (unlikely(got_nohz_idle_kick())) {
1529 		this_rq()->idle_balance = 1;
1530 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1531 	}
1532 	irq_exit();
1533 }
1534 
1535 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536 {
1537 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538 		smp_send_reschedule(cpu);
1539 }
1540 
1541 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 {
1543 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 }
1545 #endif /* CONFIG_SMP */
1546 
1547 static void ttwu_queue(struct task_struct *p, int cpu)
1548 {
1549 	struct rq *rq = cpu_rq(cpu);
1550 
1551 #if defined(CONFIG_SMP)
1552 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 		ttwu_queue_remote(p, cpu);
1555 		return;
1556 	}
1557 #endif
1558 
1559 	raw_spin_lock(&rq->lock);
1560 	ttwu_do_activate(rq, p, 0);
1561 	raw_spin_unlock(&rq->lock);
1562 }
1563 
1564 /**
1565  * try_to_wake_up - wake up a thread
1566  * @p: the thread to be awakened
1567  * @state: the mask of task states that can be woken
1568  * @wake_flags: wake modifier flags (WF_*)
1569  *
1570  * Put it on the run-queue if it's not already there. The "current"
1571  * thread is always on the run-queue (except when the actual
1572  * re-schedule is in progress), and as such you're allowed to do
1573  * the simpler "current->state = TASK_RUNNING" to mark yourself
1574  * runnable without the overhead of this.
1575  *
1576  * Return: %true if @p was woken up, %false if it was already running.
1577  * or @state didn't match @p's state.
1578  */
1579 static int
1580 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 {
1582 	unsigned long flags;
1583 	int cpu, success = 0;
1584 
1585 	/*
1586 	 * If we are going to wake up a thread waiting for CONDITION we
1587 	 * need to ensure that CONDITION=1 done by the caller can not be
1588 	 * reordered with p->state check below. This pairs with mb() in
1589 	 * set_current_state() the waiting thread does.
1590 	 */
1591 	smp_mb__before_spinlock();
1592 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1593 	if (!(p->state & state))
1594 		goto out;
1595 
1596 	success = 1; /* we're going to change ->state */
1597 	cpu = task_cpu(p);
1598 
1599 	if (p->on_rq && ttwu_remote(p, wake_flags))
1600 		goto stat;
1601 
1602 #ifdef CONFIG_SMP
1603 	/*
1604 	 * If the owning (remote) cpu is still in the middle of schedule() with
1605 	 * this task as prev, wait until its done referencing the task.
1606 	 */
1607 	while (p->on_cpu)
1608 		cpu_relax();
1609 	/*
1610 	 * Pairs with the smp_wmb() in finish_lock_switch().
1611 	 */
1612 	smp_rmb();
1613 
1614 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615 	p->state = TASK_WAKING;
1616 
1617 	if (p->sched_class->task_waking)
1618 		p->sched_class->task_waking(p);
1619 
1620 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621 	if (task_cpu(p) != cpu) {
1622 		wake_flags |= WF_MIGRATED;
1623 		set_task_cpu(p, cpu);
1624 	}
1625 #endif /* CONFIG_SMP */
1626 
1627 	ttwu_queue(p, cpu);
1628 stat:
1629 	ttwu_stat(p, cpu, wake_flags);
1630 out:
1631 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632 
1633 	return success;
1634 }
1635 
1636 /**
1637  * try_to_wake_up_local - try to wake up a local task with rq lock held
1638  * @p: the thread to be awakened
1639  *
1640  * Put @p on the run-queue if it's not already there. The caller must
1641  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642  * the current task.
1643  */
1644 static void try_to_wake_up_local(struct task_struct *p)
1645 {
1646 	struct rq *rq = task_rq(p);
1647 
1648 	if (WARN_ON_ONCE(rq != this_rq()) ||
1649 	    WARN_ON_ONCE(p == current))
1650 		return;
1651 
1652 	lockdep_assert_held(&rq->lock);
1653 
1654 	if (!raw_spin_trylock(&p->pi_lock)) {
1655 		raw_spin_unlock(&rq->lock);
1656 		raw_spin_lock(&p->pi_lock);
1657 		raw_spin_lock(&rq->lock);
1658 	}
1659 
1660 	if (!(p->state & TASK_NORMAL))
1661 		goto out;
1662 
1663 	if (!p->on_rq)
1664 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665 
1666 	ttwu_do_wakeup(rq, p, 0);
1667 	ttwu_stat(p, smp_processor_id(), 0);
1668 out:
1669 	raw_spin_unlock(&p->pi_lock);
1670 }
1671 
1672 /**
1673  * wake_up_process - Wake up a specific process
1674  * @p: The process to be woken up.
1675  *
1676  * Attempt to wake up the nominated process and move it to the set of runnable
1677  * processes.
1678  *
1679  * Return: 1 if the process was woken up, 0 if it was already running.
1680  *
1681  * It may be assumed that this function implies a write memory barrier before
1682  * changing the task state if and only if any tasks are woken up.
1683  */
1684 int wake_up_process(struct task_struct *p)
1685 {
1686 	WARN_ON(task_is_stopped_or_traced(p));
1687 	return try_to_wake_up(p, TASK_NORMAL, 0);
1688 }
1689 EXPORT_SYMBOL(wake_up_process);
1690 
1691 int wake_up_state(struct task_struct *p, unsigned int state)
1692 {
1693 	return try_to_wake_up(p, state, 0);
1694 }
1695 
1696 /*
1697  * Perform scheduler related setup for a newly forked process p.
1698  * p is forked by current.
1699  *
1700  * __sched_fork() is basic setup used by init_idle() too:
1701  */
1702 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703 {
1704 	p->on_rq			= 0;
1705 
1706 	p->se.on_rq			= 0;
1707 	p->se.exec_start		= 0;
1708 	p->se.sum_exec_runtime		= 0;
1709 	p->se.prev_sum_exec_runtime	= 0;
1710 	p->se.nr_migrations		= 0;
1711 	p->se.vruntime			= 0;
1712 	INIT_LIST_HEAD(&p->se.group_node);
1713 
1714 #ifdef CONFIG_SCHEDSTATS
1715 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716 #endif
1717 
1718 	RB_CLEAR_NODE(&p->dl.rb_node);
1719 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720 	p->dl.dl_runtime = p->dl.runtime = 0;
1721 	p->dl.dl_deadline = p->dl.deadline = 0;
1722 	p->dl.dl_period = 0;
1723 	p->dl.flags = 0;
1724 
1725 	INIT_LIST_HEAD(&p->rt.run_list);
1726 
1727 #ifdef CONFIG_PREEMPT_NOTIFIERS
1728 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1729 #endif
1730 
1731 #ifdef CONFIG_NUMA_BALANCING
1732 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734 		p->mm->numa_scan_seq = 0;
1735 	}
1736 
1737 	if (clone_flags & CLONE_VM)
1738 		p->numa_preferred_nid = current->numa_preferred_nid;
1739 	else
1740 		p->numa_preferred_nid = -1;
1741 
1742 	p->node_stamp = 0ULL;
1743 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745 	p->numa_work.next = &p->numa_work;
1746 	p->numa_faults_memory = NULL;
1747 	p->numa_faults_buffer_memory = NULL;
1748 	p->last_task_numa_placement = 0;
1749 	p->last_sum_exec_runtime = 0;
1750 
1751 	INIT_LIST_HEAD(&p->numa_entry);
1752 	p->numa_group = NULL;
1753 #endif /* CONFIG_NUMA_BALANCING */
1754 }
1755 
1756 #ifdef CONFIG_NUMA_BALANCING
1757 #ifdef CONFIG_SCHED_DEBUG
1758 void set_numabalancing_state(bool enabled)
1759 {
1760 	if (enabled)
1761 		sched_feat_set("NUMA");
1762 	else
1763 		sched_feat_set("NO_NUMA");
1764 }
1765 #else
1766 __read_mostly bool numabalancing_enabled;
1767 
1768 void set_numabalancing_state(bool enabled)
1769 {
1770 	numabalancing_enabled = enabled;
1771 }
1772 #endif /* CONFIG_SCHED_DEBUG */
1773 
1774 #ifdef CONFIG_PROC_SYSCTL
1775 int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1777 {
1778 	struct ctl_table t;
1779 	int err;
1780 	int state = numabalancing_enabled;
1781 
1782 	if (write && !capable(CAP_SYS_ADMIN))
1783 		return -EPERM;
1784 
1785 	t = *table;
1786 	t.data = &state;
1787 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 	if (err < 0)
1789 		return err;
1790 	if (write)
1791 		set_numabalancing_state(state);
1792 	return err;
1793 }
1794 #endif
1795 #endif
1796 
1797 /*
1798  * fork()/clone()-time setup:
1799  */
1800 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801 {
1802 	unsigned long flags;
1803 	int cpu = get_cpu();
1804 
1805 	__sched_fork(clone_flags, p);
1806 	/*
1807 	 * We mark the process as running here. This guarantees that
1808 	 * nobody will actually run it, and a signal or other external
1809 	 * event cannot wake it up and insert it on the runqueue either.
1810 	 */
1811 	p->state = TASK_RUNNING;
1812 
1813 	/*
1814 	 * Make sure we do not leak PI boosting priority to the child.
1815 	 */
1816 	p->prio = current->normal_prio;
1817 
1818 	/*
1819 	 * Revert to default priority/policy on fork if requested.
1820 	 */
1821 	if (unlikely(p->sched_reset_on_fork)) {
1822 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 			p->policy = SCHED_NORMAL;
1824 			p->static_prio = NICE_TO_PRIO(0);
1825 			p->rt_priority = 0;
1826 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 			p->static_prio = NICE_TO_PRIO(0);
1828 
1829 		p->prio = p->normal_prio = __normal_prio(p);
1830 		set_load_weight(p);
1831 
1832 		/*
1833 		 * We don't need the reset flag anymore after the fork. It has
1834 		 * fulfilled its duty:
1835 		 */
1836 		p->sched_reset_on_fork = 0;
1837 	}
1838 
1839 	if (dl_prio(p->prio)) {
1840 		put_cpu();
1841 		return -EAGAIN;
1842 	} else if (rt_prio(p->prio)) {
1843 		p->sched_class = &rt_sched_class;
1844 	} else {
1845 		p->sched_class = &fair_sched_class;
1846 	}
1847 
1848 	if (p->sched_class->task_fork)
1849 		p->sched_class->task_fork(p);
1850 
1851 	/*
1852 	 * The child is not yet in the pid-hash so no cgroup attach races,
1853 	 * and the cgroup is pinned to this child due to cgroup_fork()
1854 	 * is ran before sched_fork().
1855 	 *
1856 	 * Silence PROVE_RCU.
1857 	 */
1858 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 	set_task_cpu(p, cpu);
1860 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861 
1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 	if (likely(sched_info_on()))
1864 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1865 #endif
1866 #if defined(CONFIG_SMP)
1867 	p->on_cpu = 0;
1868 #endif
1869 	init_task_preempt_count(p);
1870 #ifdef CONFIG_SMP
1871 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873 #endif
1874 
1875 	put_cpu();
1876 	return 0;
1877 }
1878 
1879 unsigned long to_ratio(u64 period, u64 runtime)
1880 {
1881 	if (runtime == RUNTIME_INF)
1882 		return 1ULL << 20;
1883 
1884 	/*
1885 	 * Doing this here saves a lot of checks in all
1886 	 * the calling paths, and returning zero seems
1887 	 * safe for them anyway.
1888 	 */
1889 	if (period == 0)
1890 		return 0;
1891 
1892 	return div64_u64(runtime << 20, period);
1893 }
1894 
1895 #ifdef CONFIG_SMP
1896 inline struct dl_bw *dl_bw_of(int i)
1897 {
1898 	return &cpu_rq(i)->rd->dl_bw;
1899 }
1900 
1901 static inline int dl_bw_cpus(int i)
1902 {
1903 	struct root_domain *rd = cpu_rq(i)->rd;
1904 	int cpus = 0;
1905 
1906 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 		cpus++;
1908 
1909 	return cpus;
1910 }
1911 #else
1912 inline struct dl_bw *dl_bw_of(int i)
1913 {
1914 	return &cpu_rq(i)->dl.dl_bw;
1915 }
1916 
1917 static inline int dl_bw_cpus(int i)
1918 {
1919 	return 1;
1920 }
1921 #endif
1922 
1923 static inline
1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925 {
1926 	dl_b->total_bw -= tsk_bw;
1927 }
1928 
1929 static inline
1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931 {
1932 	dl_b->total_bw += tsk_bw;
1933 }
1934 
1935 static inline
1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937 {
1938 	return dl_b->bw != -1 &&
1939 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940 }
1941 
1942 /*
1943  * We must be sure that accepting a new task (or allowing changing the
1944  * parameters of an existing one) is consistent with the bandwidth
1945  * constraints. If yes, this function also accordingly updates the currently
1946  * allocated bandwidth to reflect the new situation.
1947  *
1948  * This function is called while holding p's rq->lock.
1949  */
1950 static int dl_overflow(struct task_struct *p, int policy,
1951 		       const struct sched_attr *attr)
1952 {
1953 
1954 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 	u64 period = attr->sched_period ?: attr->sched_deadline;
1956 	u64 runtime = attr->sched_runtime;
1957 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 	int cpus, err = -1;
1959 
1960 	if (new_bw == p->dl.dl_bw)
1961 		return 0;
1962 
1963 	/*
1964 	 * Either if a task, enters, leave, or stays -deadline but changes
1965 	 * its parameters, we may need to update accordingly the total
1966 	 * allocated bandwidth of the container.
1967 	 */
1968 	raw_spin_lock(&dl_b->lock);
1969 	cpus = dl_bw_cpus(task_cpu(p));
1970 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 		__dl_add(dl_b, new_bw);
1973 		err = 0;
1974 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 		__dl_clear(dl_b, p->dl.dl_bw);
1977 		__dl_add(dl_b, new_bw);
1978 		err = 0;
1979 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 		__dl_clear(dl_b, p->dl.dl_bw);
1981 		err = 0;
1982 	}
1983 	raw_spin_unlock(&dl_b->lock);
1984 
1985 	return err;
1986 }
1987 
1988 extern void init_dl_bw(struct dl_bw *dl_b);
1989 
1990 /*
1991  * wake_up_new_task - wake up a newly created task for the first time.
1992  *
1993  * This function will do some initial scheduler statistics housekeeping
1994  * that must be done for every newly created context, then puts the task
1995  * on the runqueue and wakes it.
1996  */
1997 void wake_up_new_task(struct task_struct *p)
1998 {
1999 	unsigned long flags;
2000 	struct rq *rq;
2001 
2002 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2003 #ifdef CONFIG_SMP
2004 	/*
2005 	 * Fork balancing, do it here and not earlier because:
2006 	 *  - cpus_allowed can change in the fork path
2007 	 *  - any previously selected cpu might disappear through hotplug
2008 	 */
2009 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010 #endif
2011 
2012 	/* Initialize new task's runnable average */
2013 	init_task_runnable_average(p);
2014 	rq = __task_rq_lock(p);
2015 	activate_task(rq, p, 0);
2016 	p->on_rq = 1;
2017 	trace_sched_wakeup_new(p, true);
2018 	check_preempt_curr(rq, p, WF_FORK);
2019 #ifdef CONFIG_SMP
2020 	if (p->sched_class->task_woken)
2021 		p->sched_class->task_woken(rq, p);
2022 #endif
2023 	task_rq_unlock(rq, p, &flags);
2024 }
2025 
2026 #ifdef CONFIG_PREEMPT_NOTIFIERS
2027 
2028 /**
2029  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030  * @notifier: notifier struct to register
2031  */
2032 void preempt_notifier_register(struct preempt_notifier *notifier)
2033 {
2034 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035 }
2036 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037 
2038 /**
2039  * preempt_notifier_unregister - no longer interested in preemption notifications
2040  * @notifier: notifier struct to unregister
2041  *
2042  * This is safe to call from within a preemption notifier.
2043  */
2044 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045 {
2046 	hlist_del(&notifier->link);
2047 }
2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049 
2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 {
2052 	struct preempt_notifier *notifier;
2053 
2054 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056 }
2057 
2058 static void
2059 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 				 struct task_struct *next)
2061 {
2062 	struct preempt_notifier *notifier;
2063 
2064 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 		notifier->ops->sched_out(notifier, next);
2066 }
2067 
2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2069 
2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071 {
2072 }
2073 
2074 static void
2075 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 				 struct task_struct *next)
2077 {
2078 }
2079 
2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2081 
2082 /**
2083  * prepare_task_switch - prepare to switch tasks
2084  * @rq: the runqueue preparing to switch
2085  * @prev: the current task that is being switched out
2086  * @next: the task we are going to switch to.
2087  *
2088  * This is called with the rq lock held and interrupts off. It must
2089  * be paired with a subsequent finish_task_switch after the context
2090  * switch.
2091  *
2092  * prepare_task_switch sets up locking and calls architecture specific
2093  * hooks.
2094  */
2095 static inline void
2096 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 		    struct task_struct *next)
2098 {
2099 	trace_sched_switch(prev, next);
2100 	sched_info_switch(rq, prev, next);
2101 	perf_event_task_sched_out(prev, next);
2102 	fire_sched_out_preempt_notifiers(prev, next);
2103 	prepare_lock_switch(rq, next);
2104 	prepare_arch_switch(next);
2105 }
2106 
2107 /**
2108  * finish_task_switch - clean up after a task-switch
2109  * @rq: runqueue associated with task-switch
2110  * @prev: the thread we just switched away from.
2111  *
2112  * finish_task_switch must be called after the context switch, paired
2113  * with a prepare_task_switch call before the context switch.
2114  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115  * and do any other architecture-specific cleanup actions.
2116  *
2117  * Note that we may have delayed dropping an mm in context_switch(). If
2118  * so, we finish that here outside of the runqueue lock. (Doing it
2119  * with the lock held can cause deadlocks; see schedule() for
2120  * details.)
2121  */
2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 	__releases(rq->lock)
2124 {
2125 	struct mm_struct *mm = rq->prev_mm;
2126 	long prev_state;
2127 
2128 	rq->prev_mm = NULL;
2129 
2130 	/*
2131 	 * A task struct has one reference for the use as "current".
2132 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 	 * schedule one last time. The schedule call will never return, and
2134 	 * the scheduled task must drop that reference.
2135 	 * The test for TASK_DEAD must occur while the runqueue locks are
2136 	 * still held, otherwise prev could be scheduled on another cpu, die
2137 	 * there before we look at prev->state, and then the reference would
2138 	 * be dropped twice.
2139 	 *		Manfred Spraul <manfred@colorfullife.com>
2140 	 */
2141 	prev_state = prev->state;
2142 	vtime_task_switch(prev);
2143 	finish_arch_switch(prev);
2144 	perf_event_task_sched_in(prev, current);
2145 	finish_lock_switch(rq, prev);
2146 	finish_arch_post_lock_switch();
2147 
2148 	fire_sched_in_preempt_notifiers(current);
2149 	if (mm)
2150 		mmdrop(mm);
2151 	if (unlikely(prev_state == TASK_DEAD)) {
2152 		if (prev->sched_class->task_dead)
2153 			prev->sched_class->task_dead(prev);
2154 
2155 		/*
2156 		 * Remove function-return probe instances associated with this
2157 		 * task and put them back on the free list.
2158 		 */
2159 		kprobe_flush_task(prev);
2160 		put_task_struct(prev);
2161 	}
2162 
2163 	tick_nohz_task_switch(current);
2164 }
2165 
2166 #ifdef CONFIG_SMP
2167 
2168 /* rq->lock is NOT held, but preemption is disabled */
2169 static inline void post_schedule(struct rq *rq)
2170 {
2171 	if (rq->post_schedule) {
2172 		unsigned long flags;
2173 
2174 		raw_spin_lock_irqsave(&rq->lock, flags);
2175 		if (rq->curr->sched_class->post_schedule)
2176 			rq->curr->sched_class->post_schedule(rq);
2177 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2178 
2179 		rq->post_schedule = 0;
2180 	}
2181 }
2182 
2183 #else
2184 
2185 static inline void post_schedule(struct rq *rq)
2186 {
2187 }
2188 
2189 #endif
2190 
2191 /**
2192  * schedule_tail - first thing a freshly forked thread must call.
2193  * @prev: the thread we just switched away from.
2194  */
2195 asmlinkage void schedule_tail(struct task_struct *prev)
2196 	__releases(rq->lock)
2197 {
2198 	struct rq *rq = this_rq();
2199 
2200 	finish_task_switch(rq, prev);
2201 
2202 	/*
2203 	 * FIXME: do we need to worry about rq being invalidated by the
2204 	 * task_switch?
2205 	 */
2206 	post_schedule(rq);
2207 
2208 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209 	/* In this case, finish_task_switch does not reenable preemption */
2210 	preempt_enable();
2211 #endif
2212 	if (current->set_child_tid)
2213 		put_user(task_pid_vnr(current), current->set_child_tid);
2214 }
2215 
2216 /*
2217  * context_switch - switch to the new MM and the new
2218  * thread's register state.
2219  */
2220 static inline void
2221 context_switch(struct rq *rq, struct task_struct *prev,
2222 	       struct task_struct *next)
2223 {
2224 	struct mm_struct *mm, *oldmm;
2225 
2226 	prepare_task_switch(rq, prev, next);
2227 
2228 	mm = next->mm;
2229 	oldmm = prev->active_mm;
2230 	/*
2231 	 * For paravirt, this is coupled with an exit in switch_to to
2232 	 * combine the page table reload and the switch backend into
2233 	 * one hypercall.
2234 	 */
2235 	arch_start_context_switch(prev);
2236 
2237 	if (!mm) {
2238 		next->active_mm = oldmm;
2239 		atomic_inc(&oldmm->mm_count);
2240 		enter_lazy_tlb(oldmm, next);
2241 	} else
2242 		switch_mm(oldmm, mm, next);
2243 
2244 	if (!prev->mm) {
2245 		prev->active_mm = NULL;
2246 		rq->prev_mm = oldmm;
2247 	}
2248 	/*
2249 	 * Since the runqueue lock will be released by the next
2250 	 * task (which is an invalid locking op but in the case
2251 	 * of the scheduler it's an obvious special-case), so we
2252 	 * do an early lockdep release here:
2253 	 */
2254 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256 #endif
2257 
2258 	context_tracking_task_switch(prev, next);
2259 	/* Here we just switch the register state and the stack. */
2260 	switch_to(prev, next, prev);
2261 
2262 	barrier();
2263 	/*
2264 	 * this_rq must be evaluated again because prev may have moved
2265 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2266 	 * frame will be invalid.
2267 	 */
2268 	finish_task_switch(this_rq(), prev);
2269 }
2270 
2271 /*
2272  * nr_running and nr_context_switches:
2273  *
2274  * externally visible scheduler statistics: current number of runnable
2275  * threads, total number of context switches performed since bootup.
2276  */
2277 unsigned long nr_running(void)
2278 {
2279 	unsigned long i, sum = 0;
2280 
2281 	for_each_online_cpu(i)
2282 		sum += cpu_rq(i)->nr_running;
2283 
2284 	return sum;
2285 }
2286 
2287 unsigned long long nr_context_switches(void)
2288 {
2289 	int i;
2290 	unsigned long long sum = 0;
2291 
2292 	for_each_possible_cpu(i)
2293 		sum += cpu_rq(i)->nr_switches;
2294 
2295 	return sum;
2296 }
2297 
2298 unsigned long nr_iowait(void)
2299 {
2300 	unsigned long i, sum = 0;
2301 
2302 	for_each_possible_cpu(i)
2303 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304 
2305 	return sum;
2306 }
2307 
2308 unsigned long nr_iowait_cpu(int cpu)
2309 {
2310 	struct rq *this = cpu_rq(cpu);
2311 	return atomic_read(&this->nr_iowait);
2312 }
2313 
2314 #ifdef CONFIG_SMP
2315 
2316 /*
2317  * sched_exec - execve() is a valuable balancing opportunity, because at
2318  * this point the task has the smallest effective memory and cache footprint.
2319  */
2320 void sched_exec(void)
2321 {
2322 	struct task_struct *p = current;
2323 	unsigned long flags;
2324 	int dest_cpu;
2325 
2326 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2327 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328 	if (dest_cpu == smp_processor_id())
2329 		goto unlock;
2330 
2331 	if (likely(cpu_active(dest_cpu))) {
2332 		struct migration_arg arg = { p, dest_cpu };
2333 
2334 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336 		return;
2337 	}
2338 unlock:
2339 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340 }
2341 
2342 #endif
2343 
2344 DEFINE_PER_CPU(struct kernel_stat, kstat);
2345 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346 
2347 EXPORT_PER_CPU_SYMBOL(kstat);
2348 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349 
2350 /*
2351  * Return any ns on the sched_clock that have not yet been accounted in
2352  * @p in case that task is currently running.
2353  *
2354  * Called with task_rq_lock() held on @rq.
2355  */
2356 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357 {
2358 	u64 ns = 0;
2359 
2360 	if (task_current(rq, p)) {
2361 		update_rq_clock(rq);
2362 		ns = rq_clock_task(rq) - p->se.exec_start;
2363 		if ((s64)ns < 0)
2364 			ns = 0;
2365 	}
2366 
2367 	return ns;
2368 }
2369 
2370 unsigned long long task_delta_exec(struct task_struct *p)
2371 {
2372 	unsigned long flags;
2373 	struct rq *rq;
2374 	u64 ns = 0;
2375 
2376 	rq = task_rq_lock(p, &flags);
2377 	ns = do_task_delta_exec(p, rq);
2378 	task_rq_unlock(rq, p, &flags);
2379 
2380 	return ns;
2381 }
2382 
2383 /*
2384  * Return accounted runtime for the task.
2385  * In case the task is currently running, return the runtime plus current's
2386  * pending runtime that have not been accounted yet.
2387  */
2388 unsigned long long task_sched_runtime(struct task_struct *p)
2389 {
2390 	unsigned long flags;
2391 	struct rq *rq;
2392 	u64 ns = 0;
2393 
2394 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 	/*
2396 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2397 	 * So we have a optimization chance when the task's delta_exec is 0.
2398 	 * Reading ->on_cpu is racy, but this is ok.
2399 	 *
2400 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401 	 * If we race with it entering cpu, unaccounted time is 0. This is
2402 	 * indistinguishable from the read occurring a few cycles earlier.
2403 	 */
2404 	if (!p->on_cpu)
2405 		return p->se.sum_exec_runtime;
2406 #endif
2407 
2408 	rq = task_rq_lock(p, &flags);
2409 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410 	task_rq_unlock(rq, p, &flags);
2411 
2412 	return ns;
2413 }
2414 
2415 /*
2416  * This function gets called by the timer code, with HZ frequency.
2417  * We call it with interrupts disabled.
2418  */
2419 void scheduler_tick(void)
2420 {
2421 	int cpu = smp_processor_id();
2422 	struct rq *rq = cpu_rq(cpu);
2423 	struct task_struct *curr = rq->curr;
2424 
2425 	sched_clock_tick();
2426 
2427 	raw_spin_lock(&rq->lock);
2428 	update_rq_clock(rq);
2429 	curr->sched_class->task_tick(rq, curr, 0);
2430 	update_cpu_load_active(rq);
2431 	raw_spin_unlock(&rq->lock);
2432 
2433 	perf_event_task_tick();
2434 
2435 #ifdef CONFIG_SMP
2436 	rq->idle_balance = idle_cpu(cpu);
2437 	trigger_load_balance(rq);
2438 #endif
2439 	rq_last_tick_reset(rq);
2440 }
2441 
2442 #ifdef CONFIG_NO_HZ_FULL
2443 /**
2444  * scheduler_tick_max_deferment
2445  *
2446  * Keep at least one tick per second when a single
2447  * active task is running because the scheduler doesn't
2448  * yet completely support full dynticks environment.
2449  *
2450  * This makes sure that uptime, CFS vruntime, load
2451  * balancing, etc... continue to move forward, even
2452  * with a very low granularity.
2453  *
2454  * Return: Maximum deferment in nanoseconds.
2455  */
2456 u64 scheduler_tick_max_deferment(void)
2457 {
2458 	struct rq *rq = this_rq();
2459 	unsigned long next, now = ACCESS_ONCE(jiffies);
2460 
2461 	next = rq->last_sched_tick + HZ;
2462 
2463 	if (time_before_eq(next, now))
2464 		return 0;
2465 
2466 	return jiffies_to_nsecs(next - now);
2467 }
2468 #endif
2469 
2470 notrace unsigned long get_parent_ip(unsigned long addr)
2471 {
2472 	if (in_lock_functions(addr)) {
2473 		addr = CALLER_ADDR2;
2474 		if (in_lock_functions(addr))
2475 			addr = CALLER_ADDR3;
2476 	}
2477 	return addr;
2478 }
2479 
2480 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481 				defined(CONFIG_PREEMPT_TRACER))
2482 
2483 void __kprobes preempt_count_add(int val)
2484 {
2485 #ifdef CONFIG_DEBUG_PREEMPT
2486 	/*
2487 	 * Underflow?
2488 	 */
2489 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490 		return;
2491 #endif
2492 	__preempt_count_add(val);
2493 #ifdef CONFIG_DEBUG_PREEMPT
2494 	/*
2495 	 * Spinlock count overflowing soon?
2496 	 */
2497 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498 				PREEMPT_MASK - 10);
2499 #endif
2500 	if (preempt_count() == val) {
2501 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502 #ifdef CONFIG_DEBUG_PREEMPT
2503 		current->preempt_disable_ip = ip;
2504 #endif
2505 		trace_preempt_off(CALLER_ADDR0, ip);
2506 	}
2507 }
2508 EXPORT_SYMBOL(preempt_count_add);
2509 
2510 void __kprobes preempt_count_sub(int val)
2511 {
2512 #ifdef CONFIG_DEBUG_PREEMPT
2513 	/*
2514 	 * Underflow?
2515 	 */
2516 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517 		return;
2518 	/*
2519 	 * Is the spinlock portion underflowing?
2520 	 */
2521 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522 			!(preempt_count() & PREEMPT_MASK)))
2523 		return;
2524 #endif
2525 
2526 	if (preempt_count() == val)
2527 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528 	__preempt_count_sub(val);
2529 }
2530 EXPORT_SYMBOL(preempt_count_sub);
2531 
2532 #endif
2533 
2534 /*
2535  * Print scheduling while atomic bug:
2536  */
2537 static noinline void __schedule_bug(struct task_struct *prev)
2538 {
2539 	if (oops_in_progress)
2540 		return;
2541 
2542 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543 		prev->comm, prev->pid, preempt_count());
2544 
2545 	debug_show_held_locks(prev);
2546 	print_modules();
2547 	if (irqs_disabled())
2548 		print_irqtrace_events(prev);
2549 #ifdef CONFIG_DEBUG_PREEMPT
2550 	if (in_atomic_preempt_off()) {
2551 		pr_err("Preemption disabled at:");
2552 		print_ip_sym(current->preempt_disable_ip);
2553 		pr_cont("\n");
2554 	}
2555 #endif
2556 	dump_stack();
2557 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558 }
2559 
2560 /*
2561  * Various schedule()-time debugging checks and statistics:
2562  */
2563 static inline void schedule_debug(struct task_struct *prev)
2564 {
2565 	/*
2566 	 * Test if we are atomic. Since do_exit() needs to call into
2567 	 * schedule() atomically, we ignore that path. Otherwise whine
2568 	 * if we are scheduling when we should not.
2569 	 */
2570 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571 		__schedule_bug(prev);
2572 	rcu_sleep_check();
2573 
2574 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575 
2576 	schedstat_inc(this_rq(), sched_count);
2577 }
2578 
2579 /*
2580  * Pick up the highest-prio task:
2581  */
2582 static inline struct task_struct *
2583 pick_next_task(struct rq *rq, struct task_struct *prev)
2584 {
2585 	const struct sched_class *class = &fair_sched_class;
2586 	struct task_struct *p;
2587 
2588 	/*
2589 	 * Optimization: we know that if all tasks are in
2590 	 * the fair class we can call that function directly:
2591 	 */
2592 	if (likely(prev->sched_class == class &&
2593 		   rq->nr_running == rq->cfs.h_nr_running)) {
2594 		p = fair_sched_class.pick_next_task(rq, prev);
2595 		if (likely(p && p != RETRY_TASK))
2596 			return p;
2597 	}
2598 
2599 again:
2600 	for_each_class(class) {
2601 		p = class->pick_next_task(rq, prev);
2602 		if (p) {
2603 			if (unlikely(p == RETRY_TASK))
2604 				goto again;
2605 			return p;
2606 		}
2607 	}
2608 
2609 	BUG(); /* the idle class will always have a runnable task */
2610 }
2611 
2612 /*
2613  * __schedule() is the main scheduler function.
2614  *
2615  * The main means of driving the scheduler and thus entering this function are:
2616  *
2617  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2618  *
2619  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2620  *      paths. For example, see arch/x86/entry_64.S.
2621  *
2622  *      To drive preemption between tasks, the scheduler sets the flag in timer
2623  *      interrupt handler scheduler_tick().
2624  *
2625  *   3. Wakeups don't really cause entry into schedule(). They add a
2626  *      task to the run-queue and that's it.
2627  *
2628  *      Now, if the new task added to the run-queue preempts the current
2629  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2630  *      called on the nearest possible occasion:
2631  *
2632  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2633  *
2634  *         - in syscall or exception context, at the next outmost
2635  *           preempt_enable(). (this might be as soon as the wake_up()'s
2636  *           spin_unlock()!)
2637  *
2638  *         - in IRQ context, return from interrupt-handler to
2639  *           preemptible context
2640  *
2641  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2642  *         then at the next:
2643  *
2644  *          - cond_resched() call
2645  *          - explicit schedule() call
2646  *          - return from syscall or exception to user-space
2647  *          - return from interrupt-handler to user-space
2648  */
2649 static void __sched __schedule(void)
2650 {
2651 	struct task_struct *prev, *next;
2652 	unsigned long *switch_count;
2653 	struct rq *rq;
2654 	int cpu;
2655 
2656 need_resched:
2657 	preempt_disable();
2658 	cpu = smp_processor_id();
2659 	rq = cpu_rq(cpu);
2660 	rcu_note_context_switch(cpu);
2661 	prev = rq->curr;
2662 
2663 	schedule_debug(prev);
2664 
2665 	if (sched_feat(HRTICK))
2666 		hrtick_clear(rq);
2667 
2668 	/*
2669 	 * Make sure that signal_pending_state()->signal_pending() below
2670 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2671 	 * done by the caller to avoid the race with signal_wake_up().
2672 	 */
2673 	smp_mb__before_spinlock();
2674 	raw_spin_lock_irq(&rq->lock);
2675 
2676 	switch_count = &prev->nivcsw;
2677 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2678 		if (unlikely(signal_pending_state(prev->state, prev))) {
2679 			prev->state = TASK_RUNNING;
2680 		} else {
2681 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2682 			prev->on_rq = 0;
2683 
2684 			/*
2685 			 * If a worker went to sleep, notify and ask workqueue
2686 			 * whether it wants to wake up a task to maintain
2687 			 * concurrency.
2688 			 */
2689 			if (prev->flags & PF_WQ_WORKER) {
2690 				struct task_struct *to_wakeup;
2691 
2692 				to_wakeup = wq_worker_sleeping(prev, cpu);
2693 				if (to_wakeup)
2694 					try_to_wake_up_local(to_wakeup);
2695 			}
2696 		}
2697 		switch_count = &prev->nvcsw;
2698 	}
2699 
2700 	if (prev->on_rq || rq->skip_clock_update < 0)
2701 		update_rq_clock(rq);
2702 
2703 	next = pick_next_task(rq, prev);
2704 	clear_tsk_need_resched(prev);
2705 	clear_preempt_need_resched();
2706 	rq->skip_clock_update = 0;
2707 
2708 	if (likely(prev != next)) {
2709 		rq->nr_switches++;
2710 		rq->curr = next;
2711 		++*switch_count;
2712 
2713 		context_switch(rq, prev, next); /* unlocks the rq */
2714 		/*
2715 		 * The context switch have flipped the stack from under us
2716 		 * and restored the local variables which were saved when
2717 		 * this task called schedule() in the past. prev == current
2718 		 * is still correct, but it can be moved to another cpu/rq.
2719 		 */
2720 		cpu = smp_processor_id();
2721 		rq = cpu_rq(cpu);
2722 	} else
2723 		raw_spin_unlock_irq(&rq->lock);
2724 
2725 	post_schedule(rq);
2726 
2727 	sched_preempt_enable_no_resched();
2728 	if (need_resched())
2729 		goto need_resched;
2730 }
2731 
2732 static inline void sched_submit_work(struct task_struct *tsk)
2733 {
2734 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2735 		return;
2736 	/*
2737 	 * If we are going to sleep and we have plugged IO queued,
2738 	 * make sure to submit it to avoid deadlocks.
2739 	 */
2740 	if (blk_needs_flush_plug(tsk))
2741 		blk_schedule_flush_plug(tsk);
2742 }
2743 
2744 asmlinkage void __sched schedule(void)
2745 {
2746 	struct task_struct *tsk = current;
2747 
2748 	sched_submit_work(tsk);
2749 	__schedule();
2750 }
2751 EXPORT_SYMBOL(schedule);
2752 
2753 #ifdef CONFIG_CONTEXT_TRACKING
2754 asmlinkage void __sched schedule_user(void)
2755 {
2756 	/*
2757 	 * If we come here after a random call to set_need_resched(),
2758 	 * or we have been woken up remotely but the IPI has not yet arrived,
2759 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2760 	 * we find a better solution.
2761 	 */
2762 	user_exit();
2763 	schedule();
2764 	user_enter();
2765 }
2766 #endif
2767 
2768 /**
2769  * schedule_preempt_disabled - called with preemption disabled
2770  *
2771  * Returns with preemption disabled. Note: preempt_count must be 1
2772  */
2773 void __sched schedule_preempt_disabled(void)
2774 {
2775 	sched_preempt_enable_no_resched();
2776 	schedule();
2777 	preempt_disable();
2778 }
2779 
2780 #ifdef CONFIG_PREEMPT
2781 /*
2782  * this is the entry point to schedule() from in-kernel preemption
2783  * off of preempt_enable. Kernel preemptions off return from interrupt
2784  * occur there and call schedule directly.
2785  */
2786 asmlinkage void __sched notrace preempt_schedule(void)
2787 {
2788 	/*
2789 	 * If there is a non-zero preempt_count or interrupts are disabled,
2790 	 * we do not want to preempt the current task. Just return..
2791 	 */
2792 	if (likely(!preemptible()))
2793 		return;
2794 
2795 	do {
2796 		__preempt_count_add(PREEMPT_ACTIVE);
2797 		__schedule();
2798 		__preempt_count_sub(PREEMPT_ACTIVE);
2799 
2800 		/*
2801 		 * Check again in case we missed a preemption opportunity
2802 		 * between schedule and now.
2803 		 */
2804 		barrier();
2805 	} while (need_resched());
2806 }
2807 EXPORT_SYMBOL(preempt_schedule);
2808 #endif /* CONFIG_PREEMPT */
2809 
2810 /*
2811  * this is the entry point to schedule() from kernel preemption
2812  * off of irq context.
2813  * Note, that this is called and return with irqs disabled. This will
2814  * protect us against recursive calling from irq.
2815  */
2816 asmlinkage void __sched preempt_schedule_irq(void)
2817 {
2818 	enum ctx_state prev_state;
2819 
2820 	/* Catch callers which need to be fixed */
2821 	BUG_ON(preempt_count() || !irqs_disabled());
2822 
2823 	prev_state = exception_enter();
2824 
2825 	do {
2826 		__preempt_count_add(PREEMPT_ACTIVE);
2827 		local_irq_enable();
2828 		__schedule();
2829 		local_irq_disable();
2830 		__preempt_count_sub(PREEMPT_ACTIVE);
2831 
2832 		/*
2833 		 * Check again in case we missed a preemption opportunity
2834 		 * between schedule and now.
2835 		 */
2836 		barrier();
2837 	} while (need_resched());
2838 
2839 	exception_exit(prev_state);
2840 }
2841 
2842 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2843 			  void *key)
2844 {
2845 	return try_to_wake_up(curr->private, mode, wake_flags);
2846 }
2847 EXPORT_SYMBOL(default_wake_function);
2848 
2849 #ifdef CONFIG_RT_MUTEXES
2850 
2851 /*
2852  * rt_mutex_setprio - set the current priority of a task
2853  * @p: task
2854  * @prio: prio value (kernel-internal form)
2855  *
2856  * This function changes the 'effective' priority of a task. It does
2857  * not touch ->normal_prio like __setscheduler().
2858  *
2859  * Used by the rt_mutex code to implement priority inheritance
2860  * logic. Call site only calls if the priority of the task changed.
2861  */
2862 void rt_mutex_setprio(struct task_struct *p, int prio)
2863 {
2864 	int oldprio, on_rq, running, enqueue_flag = 0;
2865 	struct rq *rq;
2866 	const struct sched_class *prev_class;
2867 
2868 	BUG_ON(prio > MAX_PRIO);
2869 
2870 	rq = __task_rq_lock(p);
2871 
2872 	/*
2873 	 * Idle task boosting is a nono in general. There is one
2874 	 * exception, when PREEMPT_RT and NOHZ is active:
2875 	 *
2876 	 * The idle task calls get_next_timer_interrupt() and holds
2877 	 * the timer wheel base->lock on the CPU and another CPU wants
2878 	 * to access the timer (probably to cancel it). We can safely
2879 	 * ignore the boosting request, as the idle CPU runs this code
2880 	 * with interrupts disabled and will complete the lock
2881 	 * protected section without being interrupted. So there is no
2882 	 * real need to boost.
2883 	 */
2884 	if (unlikely(p == rq->idle)) {
2885 		WARN_ON(p != rq->curr);
2886 		WARN_ON(p->pi_blocked_on);
2887 		goto out_unlock;
2888 	}
2889 
2890 	trace_sched_pi_setprio(p, prio);
2891 	p->pi_top_task = rt_mutex_get_top_task(p);
2892 	oldprio = p->prio;
2893 	prev_class = p->sched_class;
2894 	on_rq = p->on_rq;
2895 	running = task_current(rq, p);
2896 	if (on_rq)
2897 		dequeue_task(rq, p, 0);
2898 	if (running)
2899 		p->sched_class->put_prev_task(rq, p);
2900 
2901 	/*
2902 	 * Boosting condition are:
2903 	 * 1. -rt task is running and holds mutex A
2904 	 *      --> -dl task blocks on mutex A
2905 	 *
2906 	 * 2. -dl task is running and holds mutex A
2907 	 *      --> -dl task blocks on mutex A and could preempt the
2908 	 *          running task
2909 	 */
2910 	if (dl_prio(prio)) {
2911 		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2912 			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2913 			p->dl.dl_boosted = 1;
2914 			p->dl.dl_throttled = 0;
2915 			enqueue_flag = ENQUEUE_REPLENISH;
2916 		} else
2917 			p->dl.dl_boosted = 0;
2918 		p->sched_class = &dl_sched_class;
2919 	} else if (rt_prio(prio)) {
2920 		if (dl_prio(oldprio))
2921 			p->dl.dl_boosted = 0;
2922 		if (oldprio < prio)
2923 			enqueue_flag = ENQUEUE_HEAD;
2924 		p->sched_class = &rt_sched_class;
2925 	} else {
2926 		if (dl_prio(oldprio))
2927 			p->dl.dl_boosted = 0;
2928 		p->sched_class = &fair_sched_class;
2929 	}
2930 
2931 	p->prio = prio;
2932 
2933 	if (running)
2934 		p->sched_class->set_curr_task(rq);
2935 	if (on_rq)
2936 		enqueue_task(rq, p, enqueue_flag);
2937 
2938 	check_class_changed(rq, p, prev_class, oldprio);
2939 out_unlock:
2940 	__task_rq_unlock(rq);
2941 }
2942 #endif
2943 
2944 void set_user_nice(struct task_struct *p, long nice)
2945 {
2946 	int old_prio, delta, on_rq;
2947 	unsigned long flags;
2948 	struct rq *rq;
2949 
2950 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2951 		return;
2952 	/*
2953 	 * We have to be careful, if called from sys_setpriority(),
2954 	 * the task might be in the middle of scheduling on another CPU.
2955 	 */
2956 	rq = task_rq_lock(p, &flags);
2957 	/*
2958 	 * The RT priorities are set via sched_setscheduler(), but we still
2959 	 * allow the 'normal' nice value to be set - but as expected
2960 	 * it wont have any effect on scheduling until the task is
2961 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2962 	 */
2963 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2964 		p->static_prio = NICE_TO_PRIO(nice);
2965 		goto out_unlock;
2966 	}
2967 	on_rq = p->on_rq;
2968 	if (on_rq)
2969 		dequeue_task(rq, p, 0);
2970 
2971 	p->static_prio = NICE_TO_PRIO(nice);
2972 	set_load_weight(p);
2973 	old_prio = p->prio;
2974 	p->prio = effective_prio(p);
2975 	delta = p->prio - old_prio;
2976 
2977 	if (on_rq) {
2978 		enqueue_task(rq, p, 0);
2979 		/*
2980 		 * If the task increased its priority or is running and
2981 		 * lowered its priority, then reschedule its CPU:
2982 		 */
2983 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2984 			resched_task(rq->curr);
2985 	}
2986 out_unlock:
2987 	task_rq_unlock(rq, p, &flags);
2988 }
2989 EXPORT_SYMBOL(set_user_nice);
2990 
2991 /*
2992  * can_nice - check if a task can reduce its nice value
2993  * @p: task
2994  * @nice: nice value
2995  */
2996 int can_nice(const struct task_struct *p, const int nice)
2997 {
2998 	/* convert nice value [19,-20] to rlimit style value [1,40] */
2999 	int nice_rlim = 20 - nice;
3000 
3001 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3002 		capable(CAP_SYS_NICE));
3003 }
3004 
3005 #ifdef __ARCH_WANT_SYS_NICE
3006 
3007 /*
3008  * sys_nice - change the priority of the current process.
3009  * @increment: priority increment
3010  *
3011  * sys_setpriority is a more generic, but much slower function that
3012  * does similar things.
3013  */
3014 SYSCALL_DEFINE1(nice, int, increment)
3015 {
3016 	long nice, retval;
3017 
3018 	/*
3019 	 * Setpriority might change our priority at the same moment.
3020 	 * We don't have to worry. Conceptually one call occurs first
3021 	 * and we have a single winner.
3022 	 */
3023 	if (increment < -40)
3024 		increment = -40;
3025 	if (increment > 40)
3026 		increment = 40;
3027 
3028 	nice = task_nice(current) + increment;
3029 	if (nice < MIN_NICE)
3030 		nice = MIN_NICE;
3031 	if (nice > MAX_NICE)
3032 		nice = MAX_NICE;
3033 
3034 	if (increment < 0 && !can_nice(current, nice))
3035 		return -EPERM;
3036 
3037 	retval = security_task_setnice(current, nice);
3038 	if (retval)
3039 		return retval;
3040 
3041 	set_user_nice(current, nice);
3042 	return 0;
3043 }
3044 
3045 #endif
3046 
3047 /**
3048  * task_prio - return the priority value of a given task.
3049  * @p: the task in question.
3050  *
3051  * Return: The priority value as seen by users in /proc.
3052  * RT tasks are offset by -200. Normal tasks are centered
3053  * around 0, value goes from -16 to +15.
3054  */
3055 int task_prio(const struct task_struct *p)
3056 {
3057 	return p->prio - MAX_RT_PRIO;
3058 }
3059 
3060 /**
3061  * idle_cpu - is a given cpu idle currently?
3062  * @cpu: the processor in question.
3063  *
3064  * Return: 1 if the CPU is currently idle. 0 otherwise.
3065  */
3066 int idle_cpu(int cpu)
3067 {
3068 	struct rq *rq = cpu_rq(cpu);
3069 
3070 	if (rq->curr != rq->idle)
3071 		return 0;
3072 
3073 	if (rq->nr_running)
3074 		return 0;
3075 
3076 #ifdef CONFIG_SMP
3077 	if (!llist_empty(&rq->wake_list))
3078 		return 0;
3079 #endif
3080 
3081 	return 1;
3082 }
3083 
3084 /**
3085  * idle_task - return the idle task for a given cpu.
3086  * @cpu: the processor in question.
3087  *
3088  * Return: The idle task for the cpu @cpu.
3089  */
3090 struct task_struct *idle_task(int cpu)
3091 {
3092 	return cpu_rq(cpu)->idle;
3093 }
3094 
3095 /**
3096  * find_process_by_pid - find a process with a matching PID value.
3097  * @pid: the pid in question.
3098  *
3099  * The task of @pid, if found. %NULL otherwise.
3100  */
3101 static struct task_struct *find_process_by_pid(pid_t pid)
3102 {
3103 	return pid ? find_task_by_vpid(pid) : current;
3104 }
3105 
3106 /*
3107  * This function initializes the sched_dl_entity of a newly becoming
3108  * SCHED_DEADLINE task.
3109  *
3110  * Only the static values are considered here, the actual runtime and the
3111  * absolute deadline will be properly calculated when the task is enqueued
3112  * for the first time with its new policy.
3113  */
3114 static void
3115 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3116 {
3117 	struct sched_dl_entity *dl_se = &p->dl;
3118 
3119 	init_dl_task_timer(dl_se);
3120 	dl_se->dl_runtime = attr->sched_runtime;
3121 	dl_se->dl_deadline = attr->sched_deadline;
3122 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3123 	dl_se->flags = attr->sched_flags;
3124 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3125 	dl_se->dl_throttled = 0;
3126 	dl_se->dl_new = 1;
3127 }
3128 
3129 static void __setscheduler_params(struct task_struct *p,
3130 		const struct sched_attr *attr)
3131 {
3132 	int policy = attr->sched_policy;
3133 
3134 	if (policy == -1) /* setparam */
3135 		policy = p->policy;
3136 
3137 	p->policy = policy;
3138 
3139 	if (dl_policy(policy))
3140 		__setparam_dl(p, attr);
3141 	else if (fair_policy(policy))
3142 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3143 
3144 	/*
3145 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3146 	 * !rt_policy. Always setting this ensures that things like
3147 	 * getparam()/getattr() don't report silly values for !rt tasks.
3148 	 */
3149 	p->rt_priority = attr->sched_priority;
3150 	p->normal_prio = normal_prio(p);
3151 	set_load_weight(p);
3152 }
3153 
3154 /* Actually do priority change: must hold pi & rq lock. */
3155 static void __setscheduler(struct rq *rq, struct task_struct *p,
3156 			   const struct sched_attr *attr)
3157 {
3158 	__setscheduler_params(p, attr);
3159 
3160 	/*
3161 	 * If we get here, there was no pi waiters boosting the
3162 	 * task. It is safe to use the normal prio.
3163 	 */
3164 	p->prio = normal_prio(p);
3165 
3166 	if (dl_prio(p->prio))
3167 		p->sched_class = &dl_sched_class;
3168 	else if (rt_prio(p->prio))
3169 		p->sched_class = &rt_sched_class;
3170 	else
3171 		p->sched_class = &fair_sched_class;
3172 }
3173 
3174 static void
3175 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3176 {
3177 	struct sched_dl_entity *dl_se = &p->dl;
3178 
3179 	attr->sched_priority = p->rt_priority;
3180 	attr->sched_runtime = dl_se->dl_runtime;
3181 	attr->sched_deadline = dl_se->dl_deadline;
3182 	attr->sched_period = dl_se->dl_period;
3183 	attr->sched_flags = dl_se->flags;
3184 }
3185 
3186 /*
3187  * This function validates the new parameters of a -deadline task.
3188  * We ask for the deadline not being zero, and greater or equal
3189  * than the runtime, as well as the period of being zero or
3190  * greater than deadline. Furthermore, we have to be sure that
3191  * user parameters are above the internal resolution (1us); we
3192  * check sched_runtime only since it is always the smaller one.
3193  */
3194 static bool
3195 __checkparam_dl(const struct sched_attr *attr)
3196 {
3197 	return attr && attr->sched_deadline != 0 &&
3198 		(attr->sched_period == 0 ||
3199 		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3200 		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3201 		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3202 }
3203 
3204 /*
3205  * check the target process has a UID that matches the current process's
3206  */
3207 static bool check_same_owner(struct task_struct *p)
3208 {
3209 	const struct cred *cred = current_cred(), *pcred;
3210 	bool match;
3211 
3212 	rcu_read_lock();
3213 	pcred = __task_cred(p);
3214 	match = (uid_eq(cred->euid, pcred->euid) ||
3215 		 uid_eq(cred->euid, pcred->uid));
3216 	rcu_read_unlock();
3217 	return match;
3218 }
3219 
3220 static int __sched_setscheduler(struct task_struct *p,
3221 				const struct sched_attr *attr,
3222 				bool user)
3223 {
3224 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3225 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3226 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3227 	int policy = attr->sched_policy;
3228 	unsigned long flags;
3229 	const struct sched_class *prev_class;
3230 	struct rq *rq;
3231 	int reset_on_fork;
3232 
3233 	/* may grab non-irq protected spin_locks */
3234 	BUG_ON(in_interrupt());
3235 recheck:
3236 	/* double check policy once rq lock held */
3237 	if (policy < 0) {
3238 		reset_on_fork = p->sched_reset_on_fork;
3239 		policy = oldpolicy = p->policy;
3240 	} else {
3241 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3242 
3243 		if (policy != SCHED_DEADLINE &&
3244 				policy != SCHED_FIFO && policy != SCHED_RR &&
3245 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3246 				policy != SCHED_IDLE)
3247 			return -EINVAL;
3248 	}
3249 
3250 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3251 		return -EINVAL;
3252 
3253 	/*
3254 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3255 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3256 	 * SCHED_BATCH and SCHED_IDLE is 0.
3257 	 */
3258 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3259 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3260 		return -EINVAL;
3261 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3262 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3263 		return -EINVAL;
3264 
3265 	/*
3266 	 * Allow unprivileged RT tasks to decrease priority:
3267 	 */
3268 	if (user && !capable(CAP_SYS_NICE)) {
3269 		if (fair_policy(policy)) {
3270 			if (attr->sched_nice < task_nice(p) &&
3271 			    !can_nice(p, attr->sched_nice))
3272 				return -EPERM;
3273 		}
3274 
3275 		if (rt_policy(policy)) {
3276 			unsigned long rlim_rtprio =
3277 					task_rlimit(p, RLIMIT_RTPRIO);
3278 
3279 			/* can't set/change the rt policy */
3280 			if (policy != p->policy && !rlim_rtprio)
3281 				return -EPERM;
3282 
3283 			/* can't increase priority */
3284 			if (attr->sched_priority > p->rt_priority &&
3285 			    attr->sched_priority > rlim_rtprio)
3286 				return -EPERM;
3287 		}
3288 
3289 		 /*
3290 		  * Can't set/change SCHED_DEADLINE policy at all for now
3291 		  * (safest behavior); in the future we would like to allow
3292 		  * unprivileged DL tasks to increase their relative deadline
3293 		  * or reduce their runtime (both ways reducing utilization)
3294 		  */
3295 		if (dl_policy(policy))
3296 			return -EPERM;
3297 
3298 		/*
3299 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3300 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3301 		 */
3302 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3303 			if (!can_nice(p, task_nice(p)))
3304 				return -EPERM;
3305 		}
3306 
3307 		/* can't change other user's priorities */
3308 		if (!check_same_owner(p))
3309 			return -EPERM;
3310 
3311 		/* Normal users shall not reset the sched_reset_on_fork flag */
3312 		if (p->sched_reset_on_fork && !reset_on_fork)
3313 			return -EPERM;
3314 	}
3315 
3316 	if (user) {
3317 		retval = security_task_setscheduler(p);
3318 		if (retval)
3319 			return retval;
3320 	}
3321 
3322 	/*
3323 	 * make sure no PI-waiters arrive (or leave) while we are
3324 	 * changing the priority of the task:
3325 	 *
3326 	 * To be able to change p->policy safely, the appropriate
3327 	 * runqueue lock must be held.
3328 	 */
3329 	rq = task_rq_lock(p, &flags);
3330 
3331 	/*
3332 	 * Changing the policy of the stop threads its a very bad idea
3333 	 */
3334 	if (p == rq->stop) {
3335 		task_rq_unlock(rq, p, &flags);
3336 		return -EINVAL;
3337 	}
3338 
3339 	/*
3340 	 * If not changing anything there's no need to proceed further,
3341 	 * but store a possible modification of reset_on_fork.
3342 	 */
3343 	if (unlikely(policy == p->policy)) {
3344 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3345 			goto change;
3346 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3347 			goto change;
3348 		if (dl_policy(policy))
3349 			goto change;
3350 
3351 		p->sched_reset_on_fork = reset_on_fork;
3352 		task_rq_unlock(rq, p, &flags);
3353 		return 0;
3354 	}
3355 change:
3356 
3357 	if (user) {
3358 #ifdef CONFIG_RT_GROUP_SCHED
3359 		/*
3360 		 * Do not allow realtime tasks into groups that have no runtime
3361 		 * assigned.
3362 		 */
3363 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3364 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3365 				!task_group_is_autogroup(task_group(p))) {
3366 			task_rq_unlock(rq, p, &flags);
3367 			return -EPERM;
3368 		}
3369 #endif
3370 #ifdef CONFIG_SMP
3371 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3372 			cpumask_t *span = rq->rd->span;
3373 
3374 			/*
3375 			 * Don't allow tasks with an affinity mask smaller than
3376 			 * the entire root_domain to become SCHED_DEADLINE. We
3377 			 * will also fail if there's no bandwidth available.
3378 			 */
3379 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3380 			    rq->rd->dl_bw.bw == 0) {
3381 				task_rq_unlock(rq, p, &flags);
3382 				return -EPERM;
3383 			}
3384 		}
3385 #endif
3386 	}
3387 
3388 	/* recheck policy now with rq lock held */
3389 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3390 		policy = oldpolicy = -1;
3391 		task_rq_unlock(rq, p, &flags);
3392 		goto recheck;
3393 	}
3394 
3395 	/*
3396 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3397 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3398 	 * is available.
3399 	 */
3400 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3401 		task_rq_unlock(rq, p, &flags);
3402 		return -EBUSY;
3403 	}
3404 
3405 	p->sched_reset_on_fork = reset_on_fork;
3406 	oldprio = p->prio;
3407 
3408 	/*
3409 	 * Special case for priority boosted tasks.
3410 	 *
3411 	 * If the new priority is lower or equal (user space view)
3412 	 * than the current (boosted) priority, we just store the new
3413 	 * normal parameters and do not touch the scheduler class and
3414 	 * the runqueue. This will be done when the task deboost
3415 	 * itself.
3416 	 */
3417 	if (rt_mutex_check_prio(p, newprio)) {
3418 		__setscheduler_params(p, attr);
3419 		task_rq_unlock(rq, p, &flags);
3420 		return 0;
3421 	}
3422 
3423 	on_rq = p->on_rq;
3424 	running = task_current(rq, p);
3425 	if (on_rq)
3426 		dequeue_task(rq, p, 0);
3427 	if (running)
3428 		p->sched_class->put_prev_task(rq, p);
3429 
3430 	prev_class = p->sched_class;
3431 	__setscheduler(rq, p, attr);
3432 
3433 	if (running)
3434 		p->sched_class->set_curr_task(rq);
3435 	if (on_rq) {
3436 		/*
3437 		 * We enqueue to tail when the priority of a task is
3438 		 * increased (user space view).
3439 		 */
3440 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3441 	}
3442 
3443 	check_class_changed(rq, p, prev_class, oldprio);
3444 	task_rq_unlock(rq, p, &flags);
3445 
3446 	rt_mutex_adjust_pi(p);
3447 
3448 	return 0;
3449 }
3450 
3451 static int _sched_setscheduler(struct task_struct *p, int policy,
3452 			       const struct sched_param *param, bool check)
3453 {
3454 	struct sched_attr attr = {
3455 		.sched_policy   = policy,
3456 		.sched_priority = param->sched_priority,
3457 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3458 	};
3459 
3460 	/*
3461 	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3462 	 */
3463 	if (policy & SCHED_RESET_ON_FORK) {
3464 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3465 		policy &= ~SCHED_RESET_ON_FORK;
3466 		attr.sched_policy = policy;
3467 	}
3468 
3469 	return __sched_setscheduler(p, &attr, check);
3470 }
3471 /**
3472  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3473  * @p: the task in question.
3474  * @policy: new policy.
3475  * @param: structure containing the new RT priority.
3476  *
3477  * Return: 0 on success. An error code otherwise.
3478  *
3479  * NOTE that the task may be already dead.
3480  */
3481 int sched_setscheduler(struct task_struct *p, int policy,
3482 		       const struct sched_param *param)
3483 {
3484 	return _sched_setscheduler(p, policy, param, true);
3485 }
3486 EXPORT_SYMBOL_GPL(sched_setscheduler);
3487 
3488 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3489 {
3490 	return __sched_setscheduler(p, attr, true);
3491 }
3492 EXPORT_SYMBOL_GPL(sched_setattr);
3493 
3494 /**
3495  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3496  * @p: the task in question.
3497  * @policy: new policy.
3498  * @param: structure containing the new RT priority.
3499  *
3500  * Just like sched_setscheduler, only don't bother checking if the
3501  * current context has permission.  For example, this is needed in
3502  * stop_machine(): we create temporary high priority worker threads,
3503  * but our caller might not have that capability.
3504  *
3505  * Return: 0 on success. An error code otherwise.
3506  */
3507 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3508 			       const struct sched_param *param)
3509 {
3510 	return _sched_setscheduler(p, policy, param, false);
3511 }
3512 
3513 static int
3514 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3515 {
3516 	struct sched_param lparam;
3517 	struct task_struct *p;
3518 	int retval;
3519 
3520 	if (!param || pid < 0)
3521 		return -EINVAL;
3522 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3523 		return -EFAULT;
3524 
3525 	rcu_read_lock();
3526 	retval = -ESRCH;
3527 	p = find_process_by_pid(pid);
3528 	if (p != NULL)
3529 		retval = sched_setscheduler(p, policy, &lparam);
3530 	rcu_read_unlock();
3531 
3532 	return retval;
3533 }
3534 
3535 /*
3536  * Mimics kernel/events/core.c perf_copy_attr().
3537  */
3538 static int sched_copy_attr(struct sched_attr __user *uattr,
3539 			   struct sched_attr *attr)
3540 {
3541 	u32 size;
3542 	int ret;
3543 
3544 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3545 		return -EFAULT;
3546 
3547 	/*
3548 	 * zero the full structure, so that a short copy will be nice.
3549 	 */
3550 	memset(attr, 0, sizeof(*attr));
3551 
3552 	ret = get_user(size, &uattr->size);
3553 	if (ret)
3554 		return ret;
3555 
3556 	if (size > PAGE_SIZE)	/* silly large */
3557 		goto err_size;
3558 
3559 	if (!size)		/* abi compat */
3560 		size = SCHED_ATTR_SIZE_VER0;
3561 
3562 	if (size < SCHED_ATTR_SIZE_VER0)
3563 		goto err_size;
3564 
3565 	/*
3566 	 * If we're handed a bigger struct than we know of,
3567 	 * ensure all the unknown bits are 0 - i.e. new
3568 	 * user-space does not rely on any kernel feature
3569 	 * extensions we dont know about yet.
3570 	 */
3571 	if (size > sizeof(*attr)) {
3572 		unsigned char __user *addr;
3573 		unsigned char __user *end;
3574 		unsigned char val;
3575 
3576 		addr = (void __user *)uattr + sizeof(*attr);
3577 		end  = (void __user *)uattr + size;
3578 
3579 		for (; addr < end; addr++) {
3580 			ret = get_user(val, addr);
3581 			if (ret)
3582 				return ret;
3583 			if (val)
3584 				goto err_size;
3585 		}
3586 		size = sizeof(*attr);
3587 	}
3588 
3589 	ret = copy_from_user(attr, uattr, size);
3590 	if (ret)
3591 		return -EFAULT;
3592 
3593 	/*
3594 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3595 	 * to be strict and return an error on out-of-bounds values?
3596 	 */
3597 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3598 
3599 out:
3600 	return ret;
3601 
3602 err_size:
3603 	put_user(sizeof(*attr), &uattr->size);
3604 	ret = -E2BIG;
3605 	goto out;
3606 }
3607 
3608 /**
3609  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3610  * @pid: the pid in question.
3611  * @policy: new policy.
3612  * @param: structure containing the new RT priority.
3613  *
3614  * Return: 0 on success. An error code otherwise.
3615  */
3616 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3617 		struct sched_param __user *, param)
3618 {
3619 	/* negative values for policy are not valid */
3620 	if (policy < 0)
3621 		return -EINVAL;
3622 
3623 	return do_sched_setscheduler(pid, policy, param);
3624 }
3625 
3626 /**
3627  * sys_sched_setparam - set/change the RT priority of a thread
3628  * @pid: the pid in question.
3629  * @param: structure containing the new RT priority.
3630  *
3631  * Return: 0 on success. An error code otherwise.
3632  */
3633 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3634 {
3635 	return do_sched_setscheduler(pid, -1, param);
3636 }
3637 
3638 /**
3639  * sys_sched_setattr - same as above, but with extended sched_attr
3640  * @pid: the pid in question.
3641  * @uattr: structure containing the extended parameters.
3642  */
3643 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3644 			       unsigned int, flags)
3645 {
3646 	struct sched_attr attr;
3647 	struct task_struct *p;
3648 	int retval;
3649 
3650 	if (!uattr || pid < 0 || flags)
3651 		return -EINVAL;
3652 
3653 	if (sched_copy_attr(uattr, &attr))
3654 		return -EFAULT;
3655 
3656 	rcu_read_lock();
3657 	retval = -ESRCH;
3658 	p = find_process_by_pid(pid);
3659 	if (p != NULL)
3660 		retval = sched_setattr(p, &attr);
3661 	rcu_read_unlock();
3662 
3663 	return retval;
3664 }
3665 
3666 /**
3667  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3668  * @pid: the pid in question.
3669  *
3670  * Return: On success, the policy of the thread. Otherwise, a negative error
3671  * code.
3672  */
3673 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3674 {
3675 	struct task_struct *p;
3676 	int retval;
3677 
3678 	if (pid < 0)
3679 		return -EINVAL;
3680 
3681 	retval = -ESRCH;
3682 	rcu_read_lock();
3683 	p = find_process_by_pid(pid);
3684 	if (p) {
3685 		retval = security_task_getscheduler(p);
3686 		if (!retval)
3687 			retval = p->policy
3688 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3689 	}
3690 	rcu_read_unlock();
3691 	return retval;
3692 }
3693 
3694 /**
3695  * sys_sched_getparam - get the RT priority of a thread
3696  * @pid: the pid in question.
3697  * @param: structure containing the RT priority.
3698  *
3699  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3700  * code.
3701  */
3702 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3703 {
3704 	struct sched_param lp;
3705 	struct task_struct *p;
3706 	int retval;
3707 
3708 	if (!param || pid < 0)
3709 		return -EINVAL;
3710 
3711 	rcu_read_lock();
3712 	p = find_process_by_pid(pid);
3713 	retval = -ESRCH;
3714 	if (!p)
3715 		goto out_unlock;
3716 
3717 	retval = security_task_getscheduler(p);
3718 	if (retval)
3719 		goto out_unlock;
3720 
3721 	if (task_has_dl_policy(p)) {
3722 		retval = -EINVAL;
3723 		goto out_unlock;
3724 	}
3725 	lp.sched_priority = p->rt_priority;
3726 	rcu_read_unlock();
3727 
3728 	/*
3729 	 * This one might sleep, we cannot do it with a spinlock held ...
3730 	 */
3731 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3732 
3733 	return retval;
3734 
3735 out_unlock:
3736 	rcu_read_unlock();
3737 	return retval;
3738 }
3739 
3740 static int sched_read_attr(struct sched_attr __user *uattr,
3741 			   struct sched_attr *attr,
3742 			   unsigned int usize)
3743 {
3744 	int ret;
3745 
3746 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3747 		return -EFAULT;
3748 
3749 	/*
3750 	 * If we're handed a smaller struct than we know of,
3751 	 * ensure all the unknown bits are 0 - i.e. old
3752 	 * user-space does not get uncomplete information.
3753 	 */
3754 	if (usize < sizeof(*attr)) {
3755 		unsigned char *addr;
3756 		unsigned char *end;
3757 
3758 		addr = (void *)attr + usize;
3759 		end  = (void *)attr + sizeof(*attr);
3760 
3761 		for (; addr < end; addr++) {
3762 			if (*addr)
3763 				goto err_size;
3764 		}
3765 
3766 		attr->size = usize;
3767 	}
3768 
3769 	ret = copy_to_user(uattr, attr, attr->size);
3770 	if (ret)
3771 		return -EFAULT;
3772 
3773 out:
3774 	return ret;
3775 
3776 err_size:
3777 	ret = -E2BIG;
3778 	goto out;
3779 }
3780 
3781 /**
3782  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3783  * @pid: the pid in question.
3784  * @uattr: structure containing the extended parameters.
3785  * @size: sizeof(attr) for fwd/bwd comp.
3786  */
3787 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3788 		unsigned int, size, unsigned int, flags)
3789 {
3790 	struct sched_attr attr = {
3791 		.size = sizeof(struct sched_attr),
3792 	};
3793 	struct task_struct *p;
3794 	int retval;
3795 
3796 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3797 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3798 		return -EINVAL;
3799 
3800 	rcu_read_lock();
3801 	p = find_process_by_pid(pid);
3802 	retval = -ESRCH;
3803 	if (!p)
3804 		goto out_unlock;
3805 
3806 	retval = security_task_getscheduler(p);
3807 	if (retval)
3808 		goto out_unlock;
3809 
3810 	attr.sched_policy = p->policy;
3811 	if (p->sched_reset_on_fork)
3812 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3813 	if (task_has_dl_policy(p))
3814 		__getparam_dl(p, &attr);
3815 	else if (task_has_rt_policy(p))
3816 		attr.sched_priority = p->rt_priority;
3817 	else
3818 		attr.sched_nice = task_nice(p);
3819 
3820 	rcu_read_unlock();
3821 
3822 	retval = sched_read_attr(uattr, &attr, size);
3823 	return retval;
3824 
3825 out_unlock:
3826 	rcu_read_unlock();
3827 	return retval;
3828 }
3829 
3830 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3831 {
3832 	cpumask_var_t cpus_allowed, new_mask;
3833 	struct task_struct *p;
3834 	int retval;
3835 
3836 	rcu_read_lock();
3837 
3838 	p = find_process_by_pid(pid);
3839 	if (!p) {
3840 		rcu_read_unlock();
3841 		return -ESRCH;
3842 	}
3843 
3844 	/* Prevent p going away */
3845 	get_task_struct(p);
3846 	rcu_read_unlock();
3847 
3848 	if (p->flags & PF_NO_SETAFFINITY) {
3849 		retval = -EINVAL;
3850 		goto out_put_task;
3851 	}
3852 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3853 		retval = -ENOMEM;
3854 		goto out_put_task;
3855 	}
3856 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3857 		retval = -ENOMEM;
3858 		goto out_free_cpus_allowed;
3859 	}
3860 	retval = -EPERM;
3861 	if (!check_same_owner(p)) {
3862 		rcu_read_lock();
3863 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3864 			rcu_read_unlock();
3865 			goto out_unlock;
3866 		}
3867 		rcu_read_unlock();
3868 	}
3869 
3870 	retval = security_task_setscheduler(p);
3871 	if (retval)
3872 		goto out_unlock;
3873 
3874 
3875 	cpuset_cpus_allowed(p, cpus_allowed);
3876 	cpumask_and(new_mask, in_mask, cpus_allowed);
3877 
3878 	/*
3879 	 * Since bandwidth control happens on root_domain basis,
3880 	 * if admission test is enabled, we only admit -deadline
3881 	 * tasks allowed to run on all the CPUs in the task's
3882 	 * root_domain.
3883 	 */
3884 #ifdef CONFIG_SMP
3885 	if (task_has_dl_policy(p)) {
3886 		const struct cpumask *span = task_rq(p)->rd->span;
3887 
3888 		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3889 			retval = -EBUSY;
3890 			goto out_unlock;
3891 		}
3892 	}
3893 #endif
3894 again:
3895 	retval = set_cpus_allowed_ptr(p, new_mask);
3896 
3897 	if (!retval) {
3898 		cpuset_cpus_allowed(p, cpus_allowed);
3899 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3900 			/*
3901 			 * We must have raced with a concurrent cpuset
3902 			 * update. Just reset the cpus_allowed to the
3903 			 * cpuset's cpus_allowed
3904 			 */
3905 			cpumask_copy(new_mask, cpus_allowed);
3906 			goto again;
3907 		}
3908 	}
3909 out_unlock:
3910 	free_cpumask_var(new_mask);
3911 out_free_cpus_allowed:
3912 	free_cpumask_var(cpus_allowed);
3913 out_put_task:
3914 	put_task_struct(p);
3915 	return retval;
3916 }
3917 
3918 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3919 			     struct cpumask *new_mask)
3920 {
3921 	if (len < cpumask_size())
3922 		cpumask_clear(new_mask);
3923 	else if (len > cpumask_size())
3924 		len = cpumask_size();
3925 
3926 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3927 }
3928 
3929 /**
3930  * sys_sched_setaffinity - set the cpu affinity of a process
3931  * @pid: pid of the process
3932  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3933  * @user_mask_ptr: user-space pointer to the new cpu mask
3934  *
3935  * Return: 0 on success. An error code otherwise.
3936  */
3937 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3938 		unsigned long __user *, user_mask_ptr)
3939 {
3940 	cpumask_var_t new_mask;
3941 	int retval;
3942 
3943 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3944 		return -ENOMEM;
3945 
3946 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3947 	if (retval == 0)
3948 		retval = sched_setaffinity(pid, new_mask);
3949 	free_cpumask_var(new_mask);
3950 	return retval;
3951 }
3952 
3953 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3954 {
3955 	struct task_struct *p;
3956 	unsigned long flags;
3957 	int retval;
3958 
3959 	rcu_read_lock();
3960 
3961 	retval = -ESRCH;
3962 	p = find_process_by_pid(pid);
3963 	if (!p)
3964 		goto out_unlock;
3965 
3966 	retval = security_task_getscheduler(p);
3967 	if (retval)
3968 		goto out_unlock;
3969 
3970 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3971 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3972 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3973 
3974 out_unlock:
3975 	rcu_read_unlock();
3976 
3977 	return retval;
3978 }
3979 
3980 /**
3981  * sys_sched_getaffinity - get the cpu affinity of a process
3982  * @pid: pid of the process
3983  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3984  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3985  *
3986  * Return: 0 on success. An error code otherwise.
3987  */
3988 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3989 		unsigned long __user *, user_mask_ptr)
3990 {
3991 	int ret;
3992 	cpumask_var_t mask;
3993 
3994 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3995 		return -EINVAL;
3996 	if (len & (sizeof(unsigned long)-1))
3997 		return -EINVAL;
3998 
3999 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4000 		return -ENOMEM;
4001 
4002 	ret = sched_getaffinity(pid, mask);
4003 	if (ret == 0) {
4004 		size_t retlen = min_t(size_t, len, cpumask_size());
4005 
4006 		if (copy_to_user(user_mask_ptr, mask, retlen))
4007 			ret = -EFAULT;
4008 		else
4009 			ret = retlen;
4010 	}
4011 	free_cpumask_var(mask);
4012 
4013 	return ret;
4014 }
4015 
4016 /**
4017  * sys_sched_yield - yield the current processor to other threads.
4018  *
4019  * This function yields the current CPU to other tasks. If there are no
4020  * other threads running on this CPU then this function will return.
4021  *
4022  * Return: 0.
4023  */
4024 SYSCALL_DEFINE0(sched_yield)
4025 {
4026 	struct rq *rq = this_rq_lock();
4027 
4028 	schedstat_inc(rq, yld_count);
4029 	current->sched_class->yield_task(rq);
4030 
4031 	/*
4032 	 * Since we are going to call schedule() anyway, there's
4033 	 * no need to preempt or enable interrupts:
4034 	 */
4035 	__release(rq->lock);
4036 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4037 	do_raw_spin_unlock(&rq->lock);
4038 	sched_preempt_enable_no_resched();
4039 
4040 	schedule();
4041 
4042 	return 0;
4043 }
4044 
4045 static void __cond_resched(void)
4046 {
4047 	__preempt_count_add(PREEMPT_ACTIVE);
4048 	__schedule();
4049 	__preempt_count_sub(PREEMPT_ACTIVE);
4050 }
4051 
4052 int __sched _cond_resched(void)
4053 {
4054 	if (should_resched()) {
4055 		__cond_resched();
4056 		return 1;
4057 	}
4058 	return 0;
4059 }
4060 EXPORT_SYMBOL(_cond_resched);
4061 
4062 /*
4063  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4064  * call schedule, and on return reacquire the lock.
4065  *
4066  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4067  * operations here to prevent schedule() from being called twice (once via
4068  * spin_unlock(), once by hand).
4069  */
4070 int __cond_resched_lock(spinlock_t *lock)
4071 {
4072 	int resched = should_resched();
4073 	int ret = 0;
4074 
4075 	lockdep_assert_held(lock);
4076 
4077 	if (spin_needbreak(lock) || resched) {
4078 		spin_unlock(lock);
4079 		if (resched)
4080 			__cond_resched();
4081 		else
4082 			cpu_relax();
4083 		ret = 1;
4084 		spin_lock(lock);
4085 	}
4086 	return ret;
4087 }
4088 EXPORT_SYMBOL(__cond_resched_lock);
4089 
4090 int __sched __cond_resched_softirq(void)
4091 {
4092 	BUG_ON(!in_softirq());
4093 
4094 	if (should_resched()) {
4095 		local_bh_enable();
4096 		__cond_resched();
4097 		local_bh_disable();
4098 		return 1;
4099 	}
4100 	return 0;
4101 }
4102 EXPORT_SYMBOL(__cond_resched_softirq);
4103 
4104 /**
4105  * yield - yield the current processor to other threads.
4106  *
4107  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4108  *
4109  * The scheduler is at all times free to pick the calling task as the most
4110  * eligible task to run, if removing the yield() call from your code breaks
4111  * it, its already broken.
4112  *
4113  * Typical broken usage is:
4114  *
4115  * while (!event)
4116  * 	yield();
4117  *
4118  * where one assumes that yield() will let 'the other' process run that will
4119  * make event true. If the current task is a SCHED_FIFO task that will never
4120  * happen. Never use yield() as a progress guarantee!!
4121  *
4122  * If you want to use yield() to wait for something, use wait_event().
4123  * If you want to use yield() to be 'nice' for others, use cond_resched().
4124  * If you still want to use yield(), do not!
4125  */
4126 void __sched yield(void)
4127 {
4128 	set_current_state(TASK_RUNNING);
4129 	sys_sched_yield();
4130 }
4131 EXPORT_SYMBOL(yield);
4132 
4133 /**
4134  * yield_to - yield the current processor to another thread in
4135  * your thread group, or accelerate that thread toward the
4136  * processor it's on.
4137  * @p: target task
4138  * @preempt: whether task preemption is allowed or not
4139  *
4140  * It's the caller's job to ensure that the target task struct
4141  * can't go away on us before we can do any checks.
4142  *
4143  * Return:
4144  *	true (>0) if we indeed boosted the target task.
4145  *	false (0) if we failed to boost the target.
4146  *	-ESRCH if there's no task to yield to.
4147  */
4148 bool __sched yield_to(struct task_struct *p, bool preempt)
4149 {
4150 	struct task_struct *curr = current;
4151 	struct rq *rq, *p_rq;
4152 	unsigned long flags;
4153 	int yielded = 0;
4154 
4155 	local_irq_save(flags);
4156 	rq = this_rq();
4157 
4158 again:
4159 	p_rq = task_rq(p);
4160 	/*
4161 	 * If we're the only runnable task on the rq and target rq also
4162 	 * has only one task, there's absolutely no point in yielding.
4163 	 */
4164 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4165 		yielded = -ESRCH;
4166 		goto out_irq;
4167 	}
4168 
4169 	double_rq_lock(rq, p_rq);
4170 	if (task_rq(p) != p_rq) {
4171 		double_rq_unlock(rq, p_rq);
4172 		goto again;
4173 	}
4174 
4175 	if (!curr->sched_class->yield_to_task)
4176 		goto out_unlock;
4177 
4178 	if (curr->sched_class != p->sched_class)
4179 		goto out_unlock;
4180 
4181 	if (task_running(p_rq, p) || p->state)
4182 		goto out_unlock;
4183 
4184 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4185 	if (yielded) {
4186 		schedstat_inc(rq, yld_count);
4187 		/*
4188 		 * Make p's CPU reschedule; pick_next_entity takes care of
4189 		 * fairness.
4190 		 */
4191 		if (preempt && rq != p_rq)
4192 			resched_task(p_rq->curr);
4193 	}
4194 
4195 out_unlock:
4196 	double_rq_unlock(rq, p_rq);
4197 out_irq:
4198 	local_irq_restore(flags);
4199 
4200 	if (yielded > 0)
4201 		schedule();
4202 
4203 	return yielded;
4204 }
4205 EXPORT_SYMBOL_GPL(yield_to);
4206 
4207 /*
4208  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4209  * that process accounting knows that this is a task in IO wait state.
4210  */
4211 void __sched io_schedule(void)
4212 {
4213 	struct rq *rq = raw_rq();
4214 
4215 	delayacct_blkio_start();
4216 	atomic_inc(&rq->nr_iowait);
4217 	blk_flush_plug(current);
4218 	current->in_iowait = 1;
4219 	schedule();
4220 	current->in_iowait = 0;
4221 	atomic_dec(&rq->nr_iowait);
4222 	delayacct_blkio_end();
4223 }
4224 EXPORT_SYMBOL(io_schedule);
4225 
4226 long __sched io_schedule_timeout(long timeout)
4227 {
4228 	struct rq *rq = raw_rq();
4229 	long ret;
4230 
4231 	delayacct_blkio_start();
4232 	atomic_inc(&rq->nr_iowait);
4233 	blk_flush_plug(current);
4234 	current->in_iowait = 1;
4235 	ret = schedule_timeout(timeout);
4236 	current->in_iowait = 0;
4237 	atomic_dec(&rq->nr_iowait);
4238 	delayacct_blkio_end();
4239 	return ret;
4240 }
4241 
4242 /**
4243  * sys_sched_get_priority_max - return maximum RT priority.
4244  * @policy: scheduling class.
4245  *
4246  * Return: On success, this syscall returns the maximum
4247  * rt_priority that can be used by a given scheduling class.
4248  * On failure, a negative error code is returned.
4249  */
4250 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4251 {
4252 	int ret = -EINVAL;
4253 
4254 	switch (policy) {
4255 	case SCHED_FIFO:
4256 	case SCHED_RR:
4257 		ret = MAX_USER_RT_PRIO-1;
4258 		break;
4259 	case SCHED_DEADLINE:
4260 	case SCHED_NORMAL:
4261 	case SCHED_BATCH:
4262 	case SCHED_IDLE:
4263 		ret = 0;
4264 		break;
4265 	}
4266 	return ret;
4267 }
4268 
4269 /**
4270  * sys_sched_get_priority_min - return minimum RT priority.
4271  * @policy: scheduling class.
4272  *
4273  * Return: On success, this syscall returns the minimum
4274  * rt_priority that can be used by a given scheduling class.
4275  * On failure, a negative error code is returned.
4276  */
4277 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4278 {
4279 	int ret = -EINVAL;
4280 
4281 	switch (policy) {
4282 	case SCHED_FIFO:
4283 	case SCHED_RR:
4284 		ret = 1;
4285 		break;
4286 	case SCHED_DEADLINE:
4287 	case SCHED_NORMAL:
4288 	case SCHED_BATCH:
4289 	case SCHED_IDLE:
4290 		ret = 0;
4291 	}
4292 	return ret;
4293 }
4294 
4295 /**
4296  * sys_sched_rr_get_interval - return the default timeslice of a process.
4297  * @pid: pid of the process.
4298  * @interval: userspace pointer to the timeslice value.
4299  *
4300  * this syscall writes the default timeslice value of a given process
4301  * into the user-space timespec buffer. A value of '0' means infinity.
4302  *
4303  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4304  * an error code.
4305  */
4306 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4307 		struct timespec __user *, interval)
4308 {
4309 	struct task_struct *p;
4310 	unsigned int time_slice;
4311 	unsigned long flags;
4312 	struct rq *rq;
4313 	int retval;
4314 	struct timespec t;
4315 
4316 	if (pid < 0)
4317 		return -EINVAL;
4318 
4319 	retval = -ESRCH;
4320 	rcu_read_lock();
4321 	p = find_process_by_pid(pid);
4322 	if (!p)
4323 		goto out_unlock;
4324 
4325 	retval = security_task_getscheduler(p);
4326 	if (retval)
4327 		goto out_unlock;
4328 
4329 	rq = task_rq_lock(p, &flags);
4330 	time_slice = 0;
4331 	if (p->sched_class->get_rr_interval)
4332 		time_slice = p->sched_class->get_rr_interval(rq, p);
4333 	task_rq_unlock(rq, p, &flags);
4334 
4335 	rcu_read_unlock();
4336 	jiffies_to_timespec(time_slice, &t);
4337 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4338 	return retval;
4339 
4340 out_unlock:
4341 	rcu_read_unlock();
4342 	return retval;
4343 }
4344 
4345 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4346 
4347 void sched_show_task(struct task_struct *p)
4348 {
4349 	unsigned long free = 0;
4350 	int ppid;
4351 	unsigned state;
4352 
4353 	state = p->state ? __ffs(p->state) + 1 : 0;
4354 	printk(KERN_INFO "%-15.15s %c", p->comm,
4355 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4356 #if BITS_PER_LONG == 32
4357 	if (state == TASK_RUNNING)
4358 		printk(KERN_CONT " running  ");
4359 	else
4360 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4361 #else
4362 	if (state == TASK_RUNNING)
4363 		printk(KERN_CONT "  running task    ");
4364 	else
4365 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4366 #endif
4367 #ifdef CONFIG_DEBUG_STACK_USAGE
4368 	free = stack_not_used(p);
4369 #endif
4370 	rcu_read_lock();
4371 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4372 	rcu_read_unlock();
4373 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4374 		task_pid_nr(p), ppid,
4375 		(unsigned long)task_thread_info(p)->flags);
4376 
4377 	print_worker_info(KERN_INFO, p);
4378 	show_stack(p, NULL);
4379 }
4380 
4381 void show_state_filter(unsigned long state_filter)
4382 {
4383 	struct task_struct *g, *p;
4384 
4385 #if BITS_PER_LONG == 32
4386 	printk(KERN_INFO
4387 		"  task                PC stack   pid father\n");
4388 #else
4389 	printk(KERN_INFO
4390 		"  task                        PC stack   pid father\n");
4391 #endif
4392 	rcu_read_lock();
4393 	do_each_thread(g, p) {
4394 		/*
4395 		 * reset the NMI-timeout, listing all files on a slow
4396 		 * console might take a lot of time:
4397 		 */
4398 		touch_nmi_watchdog();
4399 		if (!state_filter || (p->state & state_filter))
4400 			sched_show_task(p);
4401 	} while_each_thread(g, p);
4402 
4403 	touch_all_softlockup_watchdogs();
4404 
4405 #ifdef CONFIG_SCHED_DEBUG
4406 	sysrq_sched_debug_show();
4407 #endif
4408 	rcu_read_unlock();
4409 	/*
4410 	 * Only show locks if all tasks are dumped:
4411 	 */
4412 	if (!state_filter)
4413 		debug_show_all_locks();
4414 }
4415 
4416 void init_idle_bootup_task(struct task_struct *idle)
4417 {
4418 	idle->sched_class = &idle_sched_class;
4419 }
4420 
4421 /**
4422  * init_idle - set up an idle thread for a given CPU
4423  * @idle: task in question
4424  * @cpu: cpu the idle task belongs to
4425  *
4426  * NOTE: this function does not set the idle thread's NEED_RESCHED
4427  * flag, to make booting more robust.
4428  */
4429 void init_idle(struct task_struct *idle, int cpu)
4430 {
4431 	struct rq *rq = cpu_rq(cpu);
4432 	unsigned long flags;
4433 
4434 	raw_spin_lock_irqsave(&rq->lock, flags);
4435 
4436 	__sched_fork(0, idle);
4437 	idle->state = TASK_RUNNING;
4438 	idle->se.exec_start = sched_clock();
4439 
4440 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4441 	/*
4442 	 * We're having a chicken and egg problem, even though we are
4443 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4444 	 * lockdep check in task_group() will fail.
4445 	 *
4446 	 * Similar case to sched_fork(). / Alternatively we could
4447 	 * use task_rq_lock() here and obtain the other rq->lock.
4448 	 *
4449 	 * Silence PROVE_RCU
4450 	 */
4451 	rcu_read_lock();
4452 	__set_task_cpu(idle, cpu);
4453 	rcu_read_unlock();
4454 
4455 	rq->curr = rq->idle = idle;
4456 	idle->on_rq = 1;
4457 #if defined(CONFIG_SMP)
4458 	idle->on_cpu = 1;
4459 #endif
4460 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4461 
4462 	/* Set the preempt count _outside_ the spinlocks! */
4463 	init_idle_preempt_count(idle, cpu);
4464 
4465 	/*
4466 	 * The idle tasks have their own, simple scheduling class:
4467 	 */
4468 	idle->sched_class = &idle_sched_class;
4469 	ftrace_graph_init_idle_task(idle, cpu);
4470 	vtime_init_idle(idle, cpu);
4471 #if defined(CONFIG_SMP)
4472 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4473 #endif
4474 }
4475 
4476 #ifdef CONFIG_SMP
4477 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4478 {
4479 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4480 		p->sched_class->set_cpus_allowed(p, new_mask);
4481 
4482 	cpumask_copy(&p->cpus_allowed, new_mask);
4483 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4484 }
4485 
4486 /*
4487  * This is how migration works:
4488  *
4489  * 1) we invoke migration_cpu_stop() on the target CPU using
4490  *    stop_one_cpu().
4491  * 2) stopper starts to run (implicitly forcing the migrated thread
4492  *    off the CPU)
4493  * 3) it checks whether the migrated task is still in the wrong runqueue.
4494  * 4) if it's in the wrong runqueue then the migration thread removes
4495  *    it and puts it into the right queue.
4496  * 5) stopper completes and stop_one_cpu() returns and the migration
4497  *    is done.
4498  */
4499 
4500 /*
4501  * Change a given task's CPU affinity. Migrate the thread to a
4502  * proper CPU and schedule it away if the CPU it's executing on
4503  * is removed from the allowed bitmask.
4504  *
4505  * NOTE: the caller must have a valid reference to the task, the
4506  * task must not exit() & deallocate itself prematurely. The
4507  * call is not atomic; no spinlocks may be held.
4508  */
4509 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4510 {
4511 	unsigned long flags;
4512 	struct rq *rq;
4513 	unsigned int dest_cpu;
4514 	int ret = 0;
4515 
4516 	rq = task_rq_lock(p, &flags);
4517 
4518 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4519 		goto out;
4520 
4521 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4522 		ret = -EINVAL;
4523 		goto out;
4524 	}
4525 
4526 	do_set_cpus_allowed(p, new_mask);
4527 
4528 	/* Can the task run on the task's current CPU? If so, we're done */
4529 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4530 		goto out;
4531 
4532 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4533 	if (p->on_rq) {
4534 		struct migration_arg arg = { p, dest_cpu };
4535 		/* Need help from migration thread: drop lock and wait. */
4536 		task_rq_unlock(rq, p, &flags);
4537 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4538 		tlb_migrate_finish(p->mm);
4539 		return 0;
4540 	}
4541 out:
4542 	task_rq_unlock(rq, p, &flags);
4543 
4544 	return ret;
4545 }
4546 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4547 
4548 /*
4549  * Move (not current) task off this cpu, onto dest cpu. We're doing
4550  * this because either it can't run here any more (set_cpus_allowed()
4551  * away from this CPU, or CPU going down), or because we're
4552  * attempting to rebalance this task on exec (sched_exec).
4553  *
4554  * So we race with normal scheduler movements, but that's OK, as long
4555  * as the task is no longer on this CPU.
4556  *
4557  * Returns non-zero if task was successfully migrated.
4558  */
4559 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4560 {
4561 	struct rq *rq_dest, *rq_src;
4562 	int ret = 0;
4563 
4564 	if (unlikely(!cpu_active(dest_cpu)))
4565 		return ret;
4566 
4567 	rq_src = cpu_rq(src_cpu);
4568 	rq_dest = cpu_rq(dest_cpu);
4569 
4570 	raw_spin_lock(&p->pi_lock);
4571 	double_rq_lock(rq_src, rq_dest);
4572 	/* Already moved. */
4573 	if (task_cpu(p) != src_cpu)
4574 		goto done;
4575 	/* Affinity changed (again). */
4576 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4577 		goto fail;
4578 
4579 	/*
4580 	 * If we're not on a rq, the next wake-up will ensure we're
4581 	 * placed properly.
4582 	 */
4583 	if (p->on_rq) {
4584 		dequeue_task(rq_src, p, 0);
4585 		set_task_cpu(p, dest_cpu);
4586 		enqueue_task(rq_dest, p, 0);
4587 		check_preempt_curr(rq_dest, p, 0);
4588 	}
4589 done:
4590 	ret = 1;
4591 fail:
4592 	double_rq_unlock(rq_src, rq_dest);
4593 	raw_spin_unlock(&p->pi_lock);
4594 	return ret;
4595 }
4596 
4597 #ifdef CONFIG_NUMA_BALANCING
4598 /* Migrate current task p to target_cpu */
4599 int migrate_task_to(struct task_struct *p, int target_cpu)
4600 {
4601 	struct migration_arg arg = { p, target_cpu };
4602 	int curr_cpu = task_cpu(p);
4603 
4604 	if (curr_cpu == target_cpu)
4605 		return 0;
4606 
4607 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4608 		return -EINVAL;
4609 
4610 	/* TODO: This is not properly updating schedstats */
4611 
4612 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4613 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4614 }
4615 
4616 /*
4617  * Requeue a task on a given node and accurately track the number of NUMA
4618  * tasks on the runqueues
4619  */
4620 void sched_setnuma(struct task_struct *p, int nid)
4621 {
4622 	struct rq *rq;
4623 	unsigned long flags;
4624 	bool on_rq, running;
4625 
4626 	rq = task_rq_lock(p, &flags);
4627 	on_rq = p->on_rq;
4628 	running = task_current(rq, p);
4629 
4630 	if (on_rq)
4631 		dequeue_task(rq, p, 0);
4632 	if (running)
4633 		p->sched_class->put_prev_task(rq, p);
4634 
4635 	p->numa_preferred_nid = nid;
4636 
4637 	if (running)
4638 		p->sched_class->set_curr_task(rq);
4639 	if (on_rq)
4640 		enqueue_task(rq, p, 0);
4641 	task_rq_unlock(rq, p, &flags);
4642 }
4643 #endif
4644 
4645 /*
4646  * migration_cpu_stop - this will be executed by a highprio stopper thread
4647  * and performs thread migration by bumping thread off CPU then
4648  * 'pushing' onto another runqueue.
4649  */
4650 static int migration_cpu_stop(void *data)
4651 {
4652 	struct migration_arg *arg = data;
4653 
4654 	/*
4655 	 * The original target cpu might have gone down and we might
4656 	 * be on another cpu but it doesn't matter.
4657 	 */
4658 	local_irq_disable();
4659 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4660 	local_irq_enable();
4661 	return 0;
4662 }
4663 
4664 #ifdef CONFIG_HOTPLUG_CPU
4665 
4666 /*
4667  * Ensures that the idle task is using init_mm right before its cpu goes
4668  * offline.
4669  */
4670 void idle_task_exit(void)
4671 {
4672 	struct mm_struct *mm = current->active_mm;
4673 
4674 	BUG_ON(cpu_online(smp_processor_id()));
4675 
4676 	if (mm != &init_mm) {
4677 		switch_mm(mm, &init_mm, current);
4678 		finish_arch_post_lock_switch();
4679 	}
4680 	mmdrop(mm);
4681 }
4682 
4683 /*
4684  * Since this CPU is going 'away' for a while, fold any nr_active delta
4685  * we might have. Assumes we're called after migrate_tasks() so that the
4686  * nr_active count is stable.
4687  *
4688  * Also see the comment "Global load-average calculations".
4689  */
4690 static void calc_load_migrate(struct rq *rq)
4691 {
4692 	long delta = calc_load_fold_active(rq);
4693 	if (delta)
4694 		atomic_long_add(delta, &calc_load_tasks);
4695 }
4696 
4697 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4698 {
4699 }
4700 
4701 static const struct sched_class fake_sched_class = {
4702 	.put_prev_task = put_prev_task_fake,
4703 };
4704 
4705 static struct task_struct fake_task = {
4706 	/*
4707 	 * Avoid pull_{rt,dl}_task()
4708 	 */
4709 	.prio = MAX_PRIO + 1,
4710 	.sched_class = &fake_sched_class,
4711 };
4712 
4713 /*
4714  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4715  * try_to_wake_up()->select_task_rq().
4716  *
4717  * Called with rq->lock held even though we'er in stop_machine() and
4718  * there's no concurrency possible, we hold the required locks anyway
4719  * because of lock validation efforts.
4720  */
4721 static void migrate_tasks(unsigned int dead_cpu)
4722 {
4723 	struct rq *rq = cpu_rq(dead_cpu);
4724 	struct task_struct *next, *stop = rq->stop;
4725 	int dest_cpu;
4726 
4727 	/*
4728 	 * Fudge the rq selection such that the below task selection loop
4729 	 * doesn't get stuck on the currently eligible stop task.
4730 	 *
4731 	 * We're currently inside stop_machine() and the rq is either stuck
4732 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4733 	 * either way we should never end up calling schedule() until we're
4734 	 * done here.
4735 	 */
4736 	rq->stop = NULL;
4737 
4738 	/*
4739 	 * put_prev_task() and pick_next_task() sched
4740 	 * class method both need to have an up-to-date
4741 	 * value of rq->clock[_task]
4742 	 */
4743 	update_rq_clock(rq);
4744 
4745 	for ( ; ; ) {
4746 		/*
4747 		 * There's this thread running, bail when that's the only
4748 		 * remaining thread.
4749 		 */
4750 		if (rq->nr_running == 1)
4751 			break;
4752 
4753 		next = pick_next_task(rq, &fake_task);
4754 		BUG_ON(!next);
4755 		next->sched_class->put_prev_task(rq, next);
4756 
4757 		/* Find suitable destination for @next, with force if needed. */
4758 		dest_cpu = select_fallback_rq(dead_cpu, next);
4759 		raw_spin_unlock(&rq->lock);
4760 
4761 		__migrate_task(next, dead_cpu, dest_cpu);
4762 
4763 		raw_spin_lock(&rq->lock);
4764 	}
4765 
4766 	rq->stop = stop;
4767 }
4768 
4769 #endif /* CONFIG_HOTPLUG_CPU */
4770 
4771 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4772 
4773 static struct ctl_table sd_ctl_dir[] = {
4774 	{
4775 		.procname	= "sched_domain",
4776 		.mode		= 0555,
4777 	},
4778 	{}
4779 };
4780 
4781 static struct ctl_table sd_ctl_root[] = {
4782 	{
4783 		.procname	= "kernel",
4784 		.mode		= 0555,
4785 		.child		= sd_ctl_dir,
4786 	},
4787 	{}
4788 };
4789 
4790 static struct ctl_table *sd_alloc_ctl_entry(int n)
4791 {
4792 	struct ctl_table *entry =
4793 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4794 
4795 	return entry;
4796 }
4797 
4798 static void sd_free_ctl_entry(struct ctl_table **tablep)
4799 {
4800 	struct ctl_table *entry;
4801 
4802 	/*
4803 	 * In the intermediate directories, both the child directory and
4804 	 * procname are dynamically allocated and could fail but the mode
4805 	 * will always be set. In the lowest directory the names are
4806 	 * static strings and all have proc handlers.
4807 	 */
4808 	for (entry = *tablep; entry->mode; entry++) {
4809 		if (entry->child)
4810 			sd_free_ctl_entry(&entry->child);
4811 		if (entry->proc_handler == NULL)
4812 			kfree(entry->procname);
4813 	}
4814 
4815 	kfree(*tablep);
4816 	*tablep = NULL;
4817 }
4818 
4819 static int min_load_idx = 0;
4820 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4821 
4822 static void
4823 set_table_entry(struct ctl_table *entry,
4824 		const char *procname, void *data, int maxlen,
4825 		umode_t mode, proc_handler *proc_handler,
4826 		bool load_idx)
4827 {
4828 	entry->procname = procname;
4829 	entry->data = data;
4830 	entry->maxlen = maxlen;
4831 	entry->mode = mode;
4832 	entry->proc_handler = proc_handler;
4833 
4834 	if (load_idx) {
4835 		entry->extra1 = &min_load_idx;
4836 		entry->extra2 = &max_load_idx;
4837 	}
4838 }
4839 
4840 static struct ctl_table *
4841 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4842 {
4843 	struct ctl_table *table = sd_alloc_ctl_entry(14);
4844 
4845 	if (table == NULL)
4846 		return NULL;
4847 
4848 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4849 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4850 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4851 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4852 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4853 		sizeof(int), 0644, proc_dointvec_minmax, true);
4854 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4855 		sizeof(int), 0644, proc_dointvec_minmax, true);
4856 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4857 		sizeof(int), 0644, proc_dointvec_minmax, true);
4858 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4859 		sizeof(int), 0644, proc_dointvec_minmax, true);
4860 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4861 		sizeof(int), 0644, proc_dointvec_minmax, true);
4862 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4863 		sizeof(int), 0644, proc_dointvec_minmax, false);
4864 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4865 		sizeof(int), 0644, proc_dointvec_minmax, false);
4866 	set_table_entry(&table[9], "cache_nice_tries",
4867 		&sd->cache_nice_tries,
4868 		sizeof(int), 0644, proc_dointvec_minmax, false);
4869 	set_table_entry(&table[10], "flags", &sd->flags,
4870 		sizeof(int), 0644, proc_dointvec_minmax, false);
4871 	set_table_entry(&table[11], "max_newidle_lb_cost",
4872 		&sd->max_newidle_lb_cost,
4873 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4874 	set_table_entry(&table[12], "name", sd->name,
4875 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4876 	/* &table[13] is terminator */
4877 
4878 	return table;
4879 }
4880 
4881 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4882 {
4883 	struct ctl_table *entry, *table;
4884 	struct sched_domain *sd;
4885 	int domain_num = 0, i;
4886 	char buf[32];
4887 
4888 	for_each_domain(cpu, sd)
4889 		domain_num++;
4890 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4891 	if (table == NULL)
4892 		return NULL;
4893 
4894 	i = 0;
4895 	for_each_domain(cpu, sd) {
4896 		snprintf(buf, 32, "domain%d", i);
4897 		entry->procname = kstrdup(buf, GFP_KERNEL);
4898 		entry->mode = 0555;
4899 		entry->child = sd_alloc_ctl_domain_table(sd);
4900 		entry++;
4901 		i++;
4902 	}
4903 	return table;
4904 }
4905 
4906 static struct ctl_table_header *sd_sysctl_header;
4907 static void register_sched_domain_sysctl(void)
4908 {
4909 	int i, cpu_num = num_possible_cpus();
4910 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4911 	char buf[32];
4912 
4913 	WARN_ON(sd_ctl_dir[0].child);
4914 	sd_ctl_dir[0].child = entry;
4915 
4916 	if (entry == NULL)
4917 		return;
4918 
4919 	for_each_possible_cpu(i) {
4920 		snprintf(buf, 32, "cpu%d", i);
4921 		entry->procname = kstrdup(buf, GFP_KERNEL);
4922 		entry->mode = 0555;
4923 		entry->child = sd_alloc_ctl_cpu_table(i);
4924 		entry++;
4925 	}
4926 
4927 	WARN_ON(sd_sysctl_header);
4928 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4929 }
4930 
4931 /* may be called multiple times per register */
4932 static void unregister_sched_domain_sysctl(void)
4933 {
4934 	if (sd_sysctl_header)
4935 		unregister_sysctl_table(sd_sysctl_header);
4936 	sd_sysctl_header = NULL;
4937 	if (sd_ctl_dir[0].child)
4938 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4939 }
4940 #else
4941 static void register_sched_domain_sysctl(void)
4942 {
4943 }
4944 static void unregister_sched_domain_sysctl(void)
4945 {
4946 }
4947 #endif
4948 
4949 static void set_rq_online(struct rq *rq)
4950 {
4951 	if (!rq->online) {
4952 		const struct sched_class *class;
4953 
4954 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4955 		rq->online = 1;
4956 
4957 		for_each_class(class) {
4958 			if (class->rq_online)
4959 				class->rq_online(rq);
4960 		}
4961 	}
4962 }
4963 
4964 static void set_rq_offline(struct rq *rq)
4965 {
4966 	if (rq->online) {
4967 		const struct sched_class *class;
4968 
4969 		for_each_class(class) {
4970 			if (class->rq_offline)
4971 				class->rq_offline(rq);
4972 		}
4973 
4974 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4975 		rq->online = 0;
4976 	}
4977 }
4978 
4979 /*
4980  * migration_call - callback that gets triggered when a CPU is added.
4981  * Here we can start up the necessary migration thread for the new CPU.
4982  */
4983 static int
4984 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4985 {
4986 	int cpu = (long)hcpu;
4987 	unsigned long flags;
4988 	struct rq *rq = cpu_rq(cpu);
4989 
4990 	switch (action & ~CPU_TASKS_FROZEN) {
4991 
4992 	case CPU_UP_PREPARE:
4993 		rq->calc_load_update = calc_load_update;
4994 		break;
4995 
4996 	case CPU_ONLINE:
4997 		/* Update our root-domain */
4998 		raw_spin_lock_irqsave(&rq->lock, flags);
4999 		if (rq->rd) {
5000 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5001 
5002 			set_rq_online(rq);
5003 		}
5004 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5005 		break;
5006 
5007 #ifdef CONFIG_HOTPLUG_CPU
5008 	case CPU_DYING:
5009 		sched_ttwu_pending();
5010 		/* Update our root-domain */
5011 		raw_spin_lock_irqsave(&rq->lock, flags);
5012 		if (rq->rd) {
5013 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5014 			set_rq_offline(rq);
5015 		}
5016 		migrate_tasks(cpu);
5017 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5018 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5019 		break;
5020 
5021 	case CPU_DEAD:
5022 		calc_load_migrate(rq);
5023 		break;
5024 #endif
5025 	}
5026 
5027 	update_max_interval();
5028 
5029 	return NOTIFY_OK;
5030 }
5031 
5032 /*
5033  * Register at high priority so that task migration (migrate_all_tasks)
5034  * happens before everything else.  This has to be lower priority than
5035  * the notifier in the perf_event subsystem, though.
5036  */
5037 static struct notifier_block migration_notifier = {
5038 	.notifier_call = migration_call,
5039 	.priority = CPU_PRI_MIGRATION,
5040 };
5041 
5042 static int sched_cpu_active(struct notifier_block *nfb,
5043 				      unsigned long action, void *hcpu)
5044 {
5045 	switch (action & ~CPU_TASKS_FROZEN) {
5046 	case CPU_STARTING:
5047 	case CPU_DOWN_FAILED:
5048 		set_cpu_active((long)hcpu, true);
5049 		return NOTIFY_OK;
5050 	default:
5051 		return NOTIFY_DONE;
5052 	}
5053 }
5054 
5055 static int sched_cpu_inactive(struct notifier_block *nfb,
5056 					unsigned long action, void *hcpu)
5057 {
5058 	unsigned long flags;
5059 	long cpu = (long)hcpu;
5060 
5061 	switch (action & ~CPU_TASKS_FROZEN) {
5062 	case CPU_DOWN_PREPARE:
5063 		set_cpu_active(cpu, false);
5064 
5065 		/* explicitly allow suspend */
5066 		if (!(action & CPU_TASKS_FROZEN)) {
5067 			struct dl_bw *dl_b = dl_bw_of(cpu);
5068 			bool overflow;
5069 			int cpus;
5070 
5071 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5072 			cpus = dl_bw_cpus(cpu);
5073 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5074 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5075 
5076 			if (overflow)
5077 				return notifier_from_errno(-EBUSY);
5078 		}
5079 		return NOTIFY_OK;
5080 	}
5081 
5082 	return NOTIFY_DONE;
5083 }
5084 
5085 static int __init migration_init(void)
5086 {
5087 	void *cpu = (void *)(long)smp_processor_id();
5088 	int err;
5089 
5090 	/* Initialize migration for the boot CPU */
5091 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5092 	BUG_ON(err == NOTIFY_BAD);
5093 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5094 	register_cpu_notifier(&migration_notifier);
5095 
5096 	/* Register cpu active notifiers */
5097 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5098 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5099 
5100 	return 0;
5101 }
5102 early_initcall(migration_init);
5103 #endif
5104 
5105 #ifdef CONFIG_SMP
5106 
5107 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5108 
5109 #ifdef CONFIG_SCHED_DEBUG
5110 
5111 static __read_mostly int sched_debug_enabled;
5112 
5113 static int __init sched_debug_setup(char *str)
5114 {
5115 	sched_debug_enabled = 1;
5116 
5117 	return 0;
5118 }
5119 early_param("sched_debug", sched_debug_setup);
5120 
5121 static inline bool sched_debug(void)
5122 {
5123 	return sched_debug_enabled;
5124 }
5125 
5126 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5127 				  struct cpumask *groupmask)
5128 {
5129 	struct sched_group *group = sd->groups;
5130 	char str[256];
5131 
5132 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5133 	cpumask_clear(groupmask);
5134 
5135 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5136 
5137 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5138 		printk("does not load-balance\n");
5139 		if (sd->parent)
5140 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5141 					" has parent");
5142 		return -1;
5143 	}
5144 
5145 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5146 
5147 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5148 		printk(KERN_ERR "ERROR: domain->span does not contain "
5149 				"CPU%d\n", cpu);
5150 	}
5151 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5152 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5153 				" CPU%d\n", cpu);
5154 	}
5155 
5156 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5157 	do {
5158 		if (!group) {
5159 			printk("\n");
5160 			printk(KERN_ERR "ERROR: group is NULL\n");
5161 			break;
5162 		}
5163 
5164 		/*
5165 		 * Even though we initialize ->power to something semi-sane,
5166 		 * we leave power_orig unset. This allows us to detect if
5167 		 * domain iteration is still funny without causing /0 traps.
5168 		 */
5169 		if (!group->sgp->power_orig) {
5170 			printk(KERN_CONT "\n");
5171 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5172 					"set\n");
5173 			break;
5174 		}
5175 
5176 		if (!cpumask_weight(sched_group_cpus(group))) {
5177 			printk(KERN_CONT "\n");
5178 			printk(KERN_ERR "ERROR: empty group\n");
5179 			break;
5180 		}
5181 
5182 		if (!(sd->flags & SD_OVERLAP) &&
5183 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5184 			printk(KERN_CONT "\n");
5185 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5186 			break;
5187 		}
5188 
5189 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5190 
5191 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5192 
5193 		printk(KERN_CONT " %s", str);
5194 		if (group->sgp->power != SCHED_POWER_SCALE) {
5195 			printk(KERN_CONT " (cpu_power = %d)",
5196 				group->sgp->power);
5197 		}
5198 
5199 		group = group->next;
5200 	} while (group != sd->groups);
5201 	printk(KERN_CONT "\n");
5202 
5203 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5204 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5205 
5206 	if (sd->parent &&
5207 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5208 		printk(KERN_ERR "ERROR: parent span is not a superset "
5209 			"of domain->span\n");
5210 	return 0;
5211 }
5212 
5213 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5214 {
5215 	int level = 0;
5216 
5217 	if (!sched_debug_enabled)
5218 		return;
5219 
5220 	if (!sd) {
5221 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5222 		return;
5223 	}
5224 
5225 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5226 
5227 	for (;;) {
5228 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5229 			break;
5230 		level++;
5231 		sd = sd->parent;
5232 		if (!sd)
5233 			break;
5234 	}
5235 }
5236 #else /* !CONFIG_SCHED_DEBUG */
5237 # define sched_domain_debug(sd, cpu) do { } while (0)
5238 static inline bool sched_debug(void)
5239 {
5240 	return false;
5241 }
5242 #endif /* CONFIG_SCHED_DEBUG */
5243 
5244 static int sd_degenerate(struct sched_domain *sd)
5245 {
5246 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5247 		return 1;
5248 
5249 	/* Following flags need at least 2 groups */
5250 	if (sd->flags & (SD_LOAD_BALANCE |
5251 			 SD_BALANCE_NEWIDLE |
5252 			 SD_BALANCE_FORK |
5253 			 SD_BALANCE_EXEC |
5254 			 SD_SHARE_CPUPOWER |
5255 			 SD_SHARE_PKG_RESOURCES)) {
5256 		if (sd->groups != sd->groups->next)
5257 			return 0;
5258 	}
5259 
5260 	/* Following flags don't use groups */
5261 	if (sd->flags & (SD_WAKE_AFFINE))
5262 		return 0;
5263 
5264 	return 1;
5265 }
5266 
5267 static int
5268 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5269 {
5270 	unsigned long cflags = sd->flags, pflags = parent->flags;
5271 
5272 	if (sd_degenerate(parent))
5273 		return 1;
5274 
5275 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5276 		return 0;
5277 
5278 	/* Flags needing groups don't count if only 1 group in parent */
5279 	if (parent->groups == parent->groups->next) {
5280 		pflags &= ~(SD_LOAD_BALANCE |
5281 				SD_BALANCE_NEWIDLE |
5282 				SD_BALANCE_FORK |
5283 				SD_BALANCE_EXEC |
5284 				SD_SHARE_CPUPOWER |
5285 				SD_SHARE_PKG_RESOURCES |
5286 				SD_PREFER_SIBLING);
5287 		if (nr_node_ids == 1)
5288 			pflags &= ~SD_SERIALIZE;
5289 	}
5290 	if (~cflags & pflags)
5291 		return 0;
5292 
5293 	return 1;
5294 }
5295 
5296 static void free_rootdomain(struct rcu_head *rcu)
5297 {
5298 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5299 
5300 	cpupri_cleanup(&rd->cpupri);
5301 	cpudl_cleanup(&rd->cpudl);
5302 	free_cpumask_var(rd->dlo_mask);
5303 	free_cpumask_var(rd->rto_mask);
5304 	free_cpumask_var(rd->online);
5305 	free_cpumask_var(rd->span);
5306 	kfree(rd);
5307 }
5308 
5309 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5310 {
5311 	struct root_domain *old_rd = NULL;
5312 	unsigned long flags;
5313 
5314 	raw_spin_lock_irqsave(&rq->lock, flags);
5315 
5316 	if (rq->rd) {
5317 		old_rd = rq->rd;
5318 
5319 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5320 			set_rq_offline(rq);
5321 
5322 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5323 
5324 		/*
5325 		 * If we dont want to free the old_rd yet then
5326 		 * set old_rd to NULL to skip the freeing later
5327 		 * in this function:
5328 		 */
5329 		if (!atomic_dec_and_test(&old_rd->refcount))
5330 			old_rd = NULL;
5331 	}
5332 
5333 	atomic_inc(&rd->refcount);
5334 	rq->rd = rd;
5335 
5336 	cpumask_set_cpu(rq->cpu, rd->span);
5337 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5338 		set_rq_online(rq);
5339 
5340 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5341 
5342 	if (old_rd)
5343 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5344 }
5345 
5346 static int init_rootdomain(struct root_domain *rd)
5347 {
5348 	memset(rd, 0, sizeof(*rd));
5349 
5350 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5351 		goto out;
5352 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5353 		goto free_span;
5354 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5355 		goto free_online;
5356 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5357 		goto free_dlo_mask;
5358 
5359 	init_dl_bw(&rd->dl_bw);
5360 	if (cpudl_init(&rd->cpudl) != 0)
5361 		goto free_dlo_mask;
5362 
5363 	if (cpupri_init(&rd->cpupri) != 0)
5364 		goto free_rto_mask;
5365 	return 0;
5366 
5367 free_rto_mask:
5368 	free_cpumask_var(rd->rto_mask);
5369 free_dlo_mask:
5370 	free_cpumask_var(rd->dlo_mask);
5371 free_online:
5372 	free_cpumask_var(rd->online);
5373 free_span:
5374 	free_cpumask_var(rd->span);
5375 out:
5376 	return -ENOMEM;
5377 }
5378 
5379 /*
5380  * By default the system creates a single root-domain with all cpus as
5381  * members (mimicking the global state we have today).
5382  */
5383 struct root_domain def_root_domain;
5384 
5385 static void init_defrootdomain(void)
5386 {
5387 	init_rootdomain(&def_root_domain);
5388 
5389 	atomic_set(&def_root_domain.refcount, 1);
5390 }
5391 
5392 static struct root_domain *alloc_rootdomain(void)
5393 {
5394 	struct root_domain *rd;
5395 
5396 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5397 	if (!rd)
5398 		return NULL;
5399 
5400 	if (init_rootdomain(rd) != 0) {
5401 		kfree(rd);
5402 		return NULL;
5403 	}
5404 
5405 	return rd;
5406 }
5407 
5408 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5409 {
5410 	struct sched_group *tmp, *first;
5411 
5412 	if (!sg)
5413 		return;
5414 
5415 	first = sg;
5416 	do {
5417 		tmp = sg->next;
5418 
5419 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5420 			kfree(sg->sgp);
5421 
5422 		kfree(sg);
5423 		sg = tmp;
5424 	} while (sg != first);
5425 }
5426 
5427 static void free_sched_domain(struct rcu_head *rcu)
5428 {
5429 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5430 
5431 	/*
5432 	 * If its an overlapping domain it has private groups, iterate and
5433 	 * nuke them all.
5434 	 */
5435 	if (sd->flags & SD_OVERLAP) {
5436 		free_sched_groups(sd->groups, 1);
5437 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5438 		kfree(sd->groups->sgp);
5439 		kfree(sd->groups);
5440 	}
5441 	kfree(sd);
5442 }
5443 
5444 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5445 {
5446 	call_rcu(&sd->rcu, free_sched_domain);
5447 }
5448 
5449 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5450 {
5451 	for (; sd; sd = sd->parent)
5452 		destroy_sched_domain(sd, cpu);
5453 }
5454 
5455 /*
5456  * Keep a special pointer to the highest sched_domain that has
5457  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5458  * allows us to avoid some pointer chasing select_idle_sibling().
5459  *
5460  * Also keep a unique ID per domain (we use the first cpu number in
5461  * the cpumask of the domain), this allows us to quickly tell if
5462  * two cpus are in the same cache domain, see cpus_share_cache().
5463  */
5464 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5465 DEFINE_PER_CPU(int, sd_llc_size);
5466 DEFINE_PER_CPU(int, sd_llc_id);
5467 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5468 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5469 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5470 
5471 static void update_top_cache_domain(int cpu)
5472 {
5473 	struct sched_domain *sd;
5474 	struct sched_domain *busy_sd = NULL;
5475 	int id = cpu;
5476 	int size = 1;
5477 
5478 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5479 	if (sd) {
5480 		id = cpumask_first(sched_domain_span(sd));
5481 		size = cpumask_weight(sched_domain_span(sd));
5482 		busy_sd = sd->parent; /* sd_busy */
5483 	}
5484 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5485 
5486 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5487 	per_cpu(sd_llc_size, cpu) = size;
5488 	per_cpu(sd_llc_id, cpu) = id;
5489 
5490 	sd = lowest_flag_domain(cpu, SD_NUMA);
5491 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5492 
5493 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5494 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5495 }
5496 
5497 /*
5498  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5499  * hold the hotplug lock.
5500  */
5501 static void
5502 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5503 {
5504 	struct rq *rq = cpu_rq(cpu);
5505 	struct sched_domain *tmp;
5506 
5507 	/* Remove the sched domains which do not contribute to scheduling. */
5508 	for (tmp = sd; tmp; ) {
5509 		struct sched_domain *parent = tmp->parent;
5510 		if (!parent)
5511 			break;
5512 
5513 		if (sd_parent_degenerate(tmp, parent)) {
5514 			tmp->parent = parent->parent;
5515 			if (parent->parent)
5516 				parent->parent->child = tmp;
5517 			/*
5518 			 * Transfer SD_PREFER_SIBLING down in case of a
5519 			 * degenerate parent; the spans match for this
5520 			 * so the property transfers.
5521 			 */
5522 			if (parent->flags & SD_PREFER_SIBLING)
5523 				tmp->flags |= SD_PREFER_SIBLING;
5524 			destroy_sched_domain(parent, cpu);
5525 		} else
5526 			tmp = tmp->parent;
5527 	}
5528 
5529 	if (sd && sd_degenerate(sd)) {
5530 		tmp = sd;
5531 		sd = sd->parent;
5532 		destroy_sched_domain(tmp, cpu);
5533 		if (sd)
5534 			sd->child = NULL;
5535 	}
5536 
5537 	sched_domain_debug(sd, cpu);
5538 
5539 	rq_attach_root(rq, rd);
5540 	tmp = rq->sd;
5541 	rcu_assign_pointer(rq->sd, sd);
5542 	destroy_sched_domains(tmp, cpu);
5543 
5544 	update_top_cache_domain(cpu);
5545 }
5546 
5547 /* cpus with isolated domains */
5548 static cpumask_var_t cpu_isolated_map;
5549 
5550 /* Setup the mask of cpus configured for isolated domains */
5551 static int __init isolated_cpu_setup(char *str)
5552 {
5553 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5554 	cpulist_parse(str, cpu_isolated_map);
5555 	return 1;
5556 }
5557 
5558 __setup("isolcpus=", isolated_cpu_setup);
5559 
5560 static const struct cpumask *cpu_cpu_mask(int cpu)
5561 {
5562 	return cpumask_of_node(cpu_to_node(cpu));
5563 }
5564 
5565 struct sd_data {
5566 	struct sched_domain **__percpu sd;
5567 	struct sched_group **__percpu sg;
5568 	struct sched_group_power **__percpu sgp;
5569 };
5570 
5571 struct s_data {
5572 	struct sched_domain ** __percpu sd;
5573 	struct root_domain	*rd;
5574 };
5575 
5576 enum s_alloc {
5577 	sa_rootdomain,
5578 	sa_sd,
5579 	sa_sd_storage,
5580 	sa_none,
5581 };
5582 
5583 struct sched_domain_topology_level;
5584 
5585 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5586 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5587 
5588 #define SDTL_OVERLAP	0x01
5589 
5590 struct sched_domain_topology_level {
5591 	sched_domain_init_f init;
5592 	sched_domain_mask_f mask;
5593 	int		    flags;
5594 	int		    numa_level;
5595 	struct sd_data      data;
5596 };
5597 
5598 /*
5599  * Build an iteration mask that can exclude certain CPUs from the upwards
5600  * domain traversal.
5601  *
5602  * Asymmetric node setups can result in situations where the domain tree is of
5603  * unequal depth, make sure to skip domains that already cover the entire
5604  * range.
5605  *
5606  * In that case build_sched_domains() will have terminated the iteration early
5607  * and our sibling sd spans will be empty. Domains should always include the
5608  * cpu they're built on, so check that.
5609  *
5610  */
5611 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5612 {
5613 	const struct cpumask *span = sched_domain_span(sd);
5614 	struct sd_data *sdd = sd->private;
5615 	struct sched_domain *sibling;
5616 	int i;
5617 
5618 	for_each_cpu(i, span) {
5619 		sibling = *per_cpu_ptr(sdd->sd, i);
5620 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5621 			continue;
5622 
5623 		cpumask_set_cpu(i, sched_group_mask(sg));
5624 	}
5625 }
5626 
5627 /*
5628  * Return the canonical balance cpu for this group, this is the first cpu
5629  * of this group that's also in the iteration mask.
5630  */
5631 int group_balance_cpu(struct sched_group *sg)
5632 {
5633 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5634 }
5635 
5636 static int
5637 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5638 {
5639 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5640 	const struct cpumask *span = sched_domain_span(sd);
5641 	struct cpumask *covered = sched_domains_tmpmask;
5642 	struct sd_data *sdd = sd->private;
5643 	struct sched_domain *child;
5644 	int i;
5645 
5646 	cpumask_clear(covered);
5647 
5648 	for_each_cpu(i, span) {
5649 		struct cpumask *sg_span;
5650 
5651 		if (cpumask_test_cpu(i, covered))
5652 			continue;
5653 
5654 		child = *per_cpu_ptr(sdd->sd, i);
5655 
5656 		/* See the comment near build_group_mask(). */
5657 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5658 			continue;
5659 
5660 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5661 				GFP_KERNEL, cpu_to_node(cpu));
5662 
5663 		if (!sg)
5664 			goto fail;
5665 
5666 		sg_span = sched_group_cpus(sg);
5667 		if (child->child) {
5668 			child = child->child;
5669 			cpumask_copy(sg_span, sched_domain_span(child));
5670 		} else
5671 			cpumask_set_cpu(i, sg_span);
5672 
5673 		cpumask_or(covered, covered, sg_span);
5674 
5675 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5676 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5677 			build_group_mask(sd, sg);
5678 
5679 		/*
5680 		 * Initialize sgp->power such that even if we mess up the
5681 		 * domains and no possible iteration will get us here, we won't
5682 		 * die on a /0 trap.
5683 		 */
5684 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5685 		sg->sgp->power_orig = sg->sgp->power;
5686 
5687 		/*
5688 		 * Make sure the first group of this domain contains the
5689 		 * canonical balance cpu. Otherwise the sched_domain iteration
5690 		 * breaks. See update_sg_lb_stats().
5691 		 */
5692 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5693 		    group_balance_cpu(sg) == cpu)
5694 			groups = sg;
5695 
5696 		if (!first)
5697 			first = sg;
5698 		if (last)
5699 			last->next = sg;
5700 		last = sg;
5701 		last->next = first;
5702 	}
5703 	sd->groups = groups;
5704 
5705 	return 0;
5706 
5707 fail:
5708 	free_sched_groups(first, 0);
5709 
5710 	return -ENOMEM;
5711 }
5712 
5713 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5714 {
5715 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5716 	struct sched_domain *child = sd->child;
5717 
5718 	if (child)
5719 		cpu = cpumask_first(sched_domain_span(child));
5720 
5721 	if (sg) {
5722 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5723 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5724 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5725 	}
5726 
5727 	return cpu;
5728 }
5729 
5730 /*
5731  * build_sched_groups will build a circular linked list of the groups
5732  * covered by the given span, and will set each group's ->cpumask correctly,
5733  * and ->cpu_power to 0.
5734  *
5735  * Assumes the sched_domain tree is fully constructed
5736  */
5737 static int
5738 build_sched_groups(struct sched_domain *sd, int cpu)
5739 {
5740 	struct sched_group *first = NULL, *last = NULL;
5741 	struct sd_data *sdd = sd->private;
5742 	const struct cpumask *span = sched_domain_span(sd);
5743 	struct cpumask *covered;
5744 	int i;
5745 
5746 	get_group(cpu, sdd, &sd->groups);
5747 	atomic_inc(&sd->groups->ref);
5748 
5749 	if (cpu != cpumask_first(span))
5750 		return 0;
5751 
5752 	lockdep_assert_held(&sched_domains_mutex);
5753 	covered = sched_domains_tmpmask;
5754 
5755 	cpumask_clear(covered);
5756 
5757 	for_each_cpu(i, span) {
5758 		struct sched_group *sg;
5759 		int group, j;
5760 
5761 		if (cpumask_test_cpu(i, covered))
5762 			continue;
5763 
5764 		group = get_group(i, sdd, &sg);
5765 		cpumask_clear(sched_group_cpus(sg));
5766 		sg->sgp->power = 0;
5767 		cpumask_setall(sched_group_mask(sg));
5768 
5769 		for_each_cpu(j, span) {
5770 			if (get_group(j, sdd, NULL) != group)
5771 				continue;
5772 
5773 			cpumask_set_cpu(j, covered);
5774 			cpumask_set_cpu(j, sched_group_cpus(sg));
5775 		}
5776 
5777 		if (!first)
5778 			first = sg;
5779 		if (last)
5780 			last->next = sg;
5781 		last = sg;
5782 	}
5783 	last->next = first;
5784 
5785 	return 0;
5786 }
5787 
5788 /*
5789  * Initialize sched groups cpu_power.
5790  *
5791  * cpu_power indicates the capacity of sched group, which is used while
5792  * distributing the load between different sched groups in a sched domain.
5793  * Typically cpu_power for all the groups in a sched domain will be same unless
5794  * there are asymmetries in the topology. If there are asymmetries, group
5795  * having more cpu_power will pickup more load compared to the group having
5796  * less cpu_power.
5797  */
5798 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5799 {
5800 	struct sched_group *sg = sd->groups;
5801 
5802 	WARN_ON(!sg);
5803 
5804 	do {
5805 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5806 		sg = sg->next;
5807 	} while (sg != sd->groups);
5808 
5809 	if (cpu != group_balance_cpu(sg))
5810 		return;
5811 
5812 	update_group_power(sd, cpu);
5813 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5814 }
5815 
5816 int __weak arch_sd_sibling_asym_packing(void)
5817 {
5818        return 0*SD_ASYM_PACKING;
5819 }
5820 
5821 /*
5822  * Initializers for schedule domains
5823  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5824  */
5825 
5826 #ifdef CONFIG_SCHED_DEBUG
5827 # define SD_INIT_NAME(sd, type)		sd->name = #type
5828 #else
5829 # define SD_INIT_NAME(sd, type)		do { } while (0)
5830 #endif
5831 
5832 #define SD_INIT_FUNC(type)						\
5833 static noinline struct sched_domain *					\
5834 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5835 {									\
5836 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5837 	*sd = SD_##type##_INIT;						\
5838 	SD_INIT_NAME(sd, type);						\
5839 	sd->private = &tl->data;					\
5840 	return sd;							\
5841 }
5842 
5843 SD_INIT_FUNC(CPU)
5844 #ifdef CONFIG_SCHED_SMT
5845  SD_INIT_FUNC(SIBLING)
5846 #endif
5847 #ifdef CONFIG_SCHED_MC
5848  SD_INIT_FUNC(MC)
5849 #endif
5850 #ifdef CONFIG_SCHED_BOOK
5851  SD_INIT_FUNC(BOOK)
5852 #endif
5853 
5854 static int default_relax_domain_level = -1;
5855 int sched_domain_level_max;
5856 
5857 static int __init setup_relax_domain_level(char *str)
5858 {
5859 	if (kstrtoint(str, 0, &default_relax_domain_level))
5860 		pr_warn("Unable to set relax_domain_level\n");
5861 
5862 	return 1;
5863 }
5864 __setup("relax_domain_level=", setup_relax_domain_level);
5865 
5866 static void set_domain_attribute(struct sched_domain *sd,
5867 				 struct sched_domain_attr *attr)
5868 {
5869 	int request;
5870 
5871 	if (!attr || attr->relax_domain_level < 0) {
5872 		if (default_relax_domain_level < 0)
5873 			return;
5874 		else
5875 			request = default_relax_domain_level;
5876 	} else
5877 		request = attr->relax_domain_level;
5878 	if (request < sd->level) {
5879 		/* turn off idle balance on this domain */
5880 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5881 	} else {
5882 		/* turn on idle balance on this domain */
5883 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5884 	}
5885 }
5886 
5887 static void __sdt_free(const struct cpumask *cpu_map);
5888 static int __sdt_alloc(const struct cpumask *cpu_map);
5889 
5890 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5891 				 const struct cpumask *cpu_map)
5892 {
5893 	switch (what) {
5894 	case sa_rootdomain:
5895 		if (!atomic_read(&d->rd->refcount))
5896 			free_rootdomain(&d->rd->rcu); /* fall through */
5897 	case sa_sd:
5898 		free_percpu(d->sd); /* fall through */
5899 	case sa_sd_storage:
5900 		__sdt_free(cpu_map); /* fall through */
5901 	case sa_none:
5902 		break;
5903 	}
5904 }
5905 
5906 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5907 						   const struct cpumask *cpu_map)
5908 {
5909 	memset(d, 0, sizeof(*d));
5910 
5911 	if (__sdt_alloc(cpu_map))
5912 		return sa_sd_storage;
5913 	d->sd = alloc_percpu(struct sched_domain *);
5914 	if (!d->sd)
5915 		return sa_sd_storage;
5916 	d->rd = alloc_rootdomain();
5917 	if (!d->rd)
5918 		return sa_sd;
5919 	return sa_rootdomain;
5920 }
5921 
5922 /*
5923  * NULL the sd_data elements we've used to build the sched_domain and
5924  * sched_group structure so that the subsequent __free_domain_allocs()
5925  * will not free the data we're using.
5926  */
5927 static void claim_allocations(int cpu, struct sched_domain *sd)
5928 {
5929 	struct sd_data *sdd = sd->private;
5930 
5931 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5932 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5933 
5934 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5935 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5936 
5937 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5938 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5939 }
5940 
5941 #ifdef CONFIG_SCHED_SMT
5942 static const struct cpumask *cpu_smt_mask(int cpu)
5943 {
5944 	return topology_thread_cpumask(cpu);
5945 }
5946 #endif
5947 
5948 /*
5949  * Topology list, bottom-up.
5950  */
5951 static struct sched_domain_topology_level default_topology[] = {
5952 #ifdef CONFIG_SCHED_SMT
5953 	{ sd_init_SIBLING, cpu_smt_mask, },
5954 #endif
5955 #ifdef CONFIG_SCHED_MC
5956 	{ sd_init_MC, cpu_coregroup_mask, },
5957 #endif
5958 #ifdef CONFIG_SCHED_BOOK
5959 	{ sd_init_BOOK, cpu_book_mask, },
5960 #endif
5961 	{ sd_init_CPU, cpu_cpu_mask, },
5962 	{ NULL, },
5963 };
5964 
5965 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5966 
5967 #define for_each_sd_topology(tl)			\
5968 	for (tl = sched_domain_topology; tl->init; tl++)
5969 
5970 #ifdef CONFIG_NUMA
5971 
5972 static int sched_domains_numa_levels;
5973 static int *sched_domains_numa_distance;
5974 static struct cpumask ***sched_domains_numa_masks;
5975 static int sched_domains_curr_level;
5976 
5977 static inline int sd_local_flags(int level)
5978 {
5979 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5980 		return 0;
5981 
5982 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5983 }
5984 
5985 static struct sched_domain *
5986 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5987 {
5988 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5989 	int level = tl->numa_level;
5990 	int sd_weight = cpumask_weight(
5991 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5992 
5993 	*sd = (struct sched_domain){
5994 		.min_interval		= sd_weight,
5995 		.max_interval		= 2*sd_weight,
5996 		.busy_factor		= 32,
5997 		.imbalance_pct		= 125,
5998 		.cache_nice_tries	= 2,
5999 		.busy_idx		= 3,
6000 		.idle_idx		= 2,
6001 		.newidle_idx		= 0,
6002 		.wake_idx		= 0,
6003 		.forkexec_idx		= 0,
6004 
6005 		.flags			= 1*SD_LOAD_BALANCE
6006 					| 1*SD_BALANCE_NEWIDLE
6007 					| 0*SD_BALANCE_EXEC
6008 					| 0*SD_BALANCE_FORK
6009 					| 0*SD_BALANCE_WAKE
6010 					| 0*SD_WAKE_AFFINE
6011 					| 0*SD_SHARE_CPUPOWER
6012 					| 0*SD_SHARE_PKG_RESOURCES
6013 					| 1*SD_SERIALIZE
6014 					| 0*SD_PREFER_SIBLING
6015 					| 1*SD_NUMA
6016 					| sd_local_flags(level)
6017 					,
6018 		.last_balance		= jiffies,
6019 		.balance_interval	= sd_weight,
6020 	};
6021 	SD_INIT_NAME(sd, NUMA);
6022 	sd->private = &tl->data;
6023 
6024 	/*
6025 	 * Ugly hack to pass state to sd_numa_mask()...
6026 	 */
6027 	sched_domains_curr_level = tl->numa_level;
6028 
6029 	return sd;
6030 }
6031 
6032 static const struct cpumask *sd_numa_mask(int cpu)
6033 {
6034 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6035 }
6036 
6037 static void sched_numa_warn(const char *str)
6038 {
6039 	static int done = false;
6040 	int i,j;
6041 
6042 	if (done)
6043 		return;
6044 
6045 	done = true;
6046 
6047 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6048 
6049 	for (i = 0; i < nr_node_ids; i++) {
6050 		printk(KERN_WARNING "  ");
6051 		for (j = 0; j < nr_node_ids; j++)
6052 			printk(KERN_CONT "%02d ", node_distance(i,j));
6053 		printk(KERN_CONT "\n");
6054 	}
6055 	printk(KERN_WARNING "\n");
6056 }
6057 
6058 static bool find_numa_distance(int distance)
6059 {
6060 	int i;
6061 
6062 	if (distance == node_distance(0, 0))
6063 		return true;
6064 
6065 	for (i = 0; i < sched_domains_numa_levels; i++) {
6066 		if (sched_domains_numa_distance[i] == distance)
6067 			return true;
6068 	}
6069 
6070 	return false;
6071 }
6072 
6073 static void sched_init_numa(void)
6074 {
6075 	int next_distance, curr_distance = node_distance(0, 0);
6076 	struct sched_domain_topology_level *tl;
6077 	int level = 0;
6078 	int i, j, k;
6079 
6080 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6081 	if (!sched_domains_numa_distance)
6082 		return;
6083 
6084 	/*
6085 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6086 	 * unique distances in the node_distance() table.
6087 	 *
6088 	 * Assumes node_distance(0,j) includes all distances in
6089 	 * node_distance(i,j) in order to avoid cubic time.
6090 	 */
6091 	next_distance = curr_distance;
6092 	for (i = 0; i < nr_node_ids; i++) {
6093 		for (j = 0; j < nr_node_ids; j++) {
6094 			for (k = 0; k < nr_node_ids; k++) {
6095 				int distance = node_distance(i, k);
6096 
6097 				if (distance > curr_distance &&
6098 				    (distance < next_distance ||
6099 				     next_distance == curr_distance))
6100 					next_distance = distance;
6101 
6102 				/*
6103 				 * While not a strong assumption it would be nice to know
6104 				 * about cases where if node A is connected to B, B is not
6105 				 * equally connected to A.
6106 				 */
6107 				if (sched_debug() && node_distance(k, i) != distance)
6108 					sched_numa_warn("Node-distance not symmetric");
6109 
6110 				if (sched_debug() && i && !find_numa_distance(distance))
6111 					sched_numa_warn("Node-0 not representative");
6112 			}
6113 			if (next_distance != curr_distance) {
6114 				sched_domains_numa_distance[level++] = next_distance;
6115 				sched_domains_numa_levels = level;
6116 				curr_distance = next_distance;
6117 			} else break;
6118 		}
6119 
6120 		/*
6121 		 * In case of sched_debug() we verify the above assumption.
6122 		 */
6123 		if (!sched_debug())
6124 			break;
6125 	}
6126 	/*
6127 	 * 'level' contains the number of unique distances, excluding the
6128 	 * identity distance node_distance(i,i).
6129 	 *
6130 	 * The sched_domains_numa_distance[] array includes the actual distance
6131 	 * numbers.
6132 	 */
6133 
6134 	/*
6135 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6136 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6137 	 * the array will contain less then 'level' members. This could be
6138 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6139 	 * in other functions.
6140 	 *
6141 	 * We reset it to 'level' at the end of this function.
6142 	 */
6143 	sched_domains_numa_levels = 0;
6144 
6145 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6146 	if (!sched_domains_numa_masks)
6147 		return;
6148 
6149 	/*
6150 	 * Now for each level, construct a mask per node which contains all
6151 	 * cpus of nodes that are that many hops away from us.
6152 	 */
6153 	for (i = 0; i < level; i++) {
6154 		sched_domains_numa_masks[i] =
6155 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6156 		if (!sched_domains_numa_masks[i])
6157 			return;
6158 
6159 		for (j = 0; j < nr_node_ids; j++) {
6160 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6161 			if (!mask)
6162 				return;
6163 
6164 			sched_domains_numa_masks[i][j] = mask;
6165 
6166 			for (k = 0; k < nr_node_ids; k++) {
6167 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6168 					continue;
6169 
6170 				cpumask_or(mask, mask, cpumask_of_node(k));
6171 			}
6172 		}
6173 	}
6174 
6175 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6176 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6177 	if (!tl)
6178 		return;
6179 
6180 	/*
6181 	 * Copy the default topology bits..
6182 	 */
6183 	for (i = 0; default_topology[i].init; i++)
6184 		tl[i] = default_topology[i];
6185 
6186 	/*
6187 	 * .. and append 'j' levels of NUMA goodness.
6188 	 */
6189 	for (j = 0; j < level; i++, j++) {
6190 		tl[i] = (struct sched_domain_topology_level){
6191 			.init = sd_numa_init,
6192 			.mask = sd_numa_mask,
6193 			.flags = SDTL_OVERLAP,
6194 			.numa_level = j,
6195 		};
6196 	}
6197 
6198 	sched_domain_topology = tl;
6199 
6200 	sched_domains_numa_levels = level;
6201 }
6202 
6203 static void sched_domains_numa_masks_set(int cpu)
6204 {
6205 	int i, j;
6206 	int node = cpu_to_node(cpu);
6207 
6208 	for (i = 0; i < sched_domains_numa_levels; i++) {
6209 		for (j = 0; j < nr_node_ids; j++) {
6210 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6211 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6212 		}
6213 	}
6214 }
6215 
6216 static void sched_domains_numa_masks_clear(int cpu)
6217 {
6218 	int i, j;
6219 	for (i = 0; i < sched_domains_numa_levels; i++) {
6220 		for (j = 0; j < nr_node_ids; j++)
6221 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6222 	}
6223 }
6224 
6225 /*
6226  * Update sched_domains_numa_masks[level][node] array when new cpus
6227  * are onlined.
6228  */
6229 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6230 					   unsigned long action,
6231 					   void *hcpu)
6232 {
6233 	int cpu = (long)hcpu;
6234 
6235 	switch (action & ~CPU_TASKS_FROZEN) {
6236 	case CPU_ONLINE:
6237 		sched_domains_numa_masks_set(cpu);
6238 		break;
6239 
6240 	case CPU_DEAD:
6241 		sched_domains_numa_masks_clear(cpu);
6242 		break;
6243 
6244 	default:
6245 		return NOTIFY_DONE;
6246 	}
6247 
6248 	return NOTIFY_OK;
6249 }
6250 #else
6251 static inline void sched_init_numa(void)
6252 {
6253 }
6254 
6255 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6256 					   unsigned long action,
6257 					   void *hcpu)
6258 {
6259 	return 0;
6260 }
6261 #endif /* CONFIG_NUMA */
6262 
6263 static int __sdt_alloc(const struct cpumask *cpu_map)
6264 {
6265 	struct sched_domain_topology_level *tl;
6266 	int j;
6267 
6268 	for_each_sd_topology(tl) {
6269 		struct sd_data *sdd = &tl->data;
6270 
6271 		sdd->sd = alloc_percpu(struct sched_domain *);
6272 		if (!sdd->sd)
6273 			return -ENOMEM;
6274 
6275 		sdd->sg = alloc_percpu(struct sched_group *);
6276 		if (!sdd->sg)
6277 			return -ENOMEM;
6278 
6279 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6280 		if (!sdd->sgp)
6281 			return -ENOMEM;
6282 
6283 		for_each_cpu(j, cpu_map) {
6284 			struct sched_domain *sd;
6285 			struct sched_group *sg;
6286 			struct sched_group_power *sgp;
6287 
6288 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6289 					GFP_KERNEL, cpu_to_node(j));
6290 			if (!sd)
6291 				return -ENOMEM;
6292 
6293 			*per_cpu_ptr(sdd->sd, j) = sd;
6294 
6295 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6296 					GFP_KERNEL, cpu_to_node(j));
6297 			if (!sg)
6298 				return -ENOMEM;
6299 
6300 			sg->next = sg;
6301 
6302 			*per_cpu_ptr(sdd->sg, j) = sg;
6303 
6304 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6305 					GFP_KERNEL, cpu_to_node(j));
6306 			if (!sgp)
6307 				return -ENOMEM;
6308 
6309 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6310 		}
6311 	}
6312 
6313 	return 0;
6314 }
6315 
6316 static void __sdt_free(const struct cpumask *cpu_map)
6317 {
6318 	struct sched_domain_topology_level *tl;
6319 	int j;
6320 
6321 	for_each_sd_topology(tl) {
6322 		struct sd_data *sdd = &tl->data;
6323 
6324 		for_each_cpu(j, cpu_map) {
6325 			struct sched_domain *sd;
6326 
6327 			if (sdd->sd) {
6328 				sd = *per_cpu_ptr(sdd->sd, j);
6329 				if (sd && (sd->flags & SD_OVERLAP))
6330 					free_sched_groups(sd->groups, 0);
6331 				kfree(*per_cpu_ptr(sdd->sd, j));
6332 			}
6333 
6334 			if (sdd->sg)
6335 				kfree(*per_cpu_ptr(sdd->sg, j));
6336 			if (sdd->sgp)
6337 				kfree(*per_cpu_ptr(sdd->sgp, j));
6338 		}
6339 		free_percpu(sdd->sd);
6340 		sdd->sd = NULL;
6341 		free_percpu(sdd->sg);
6342 		sdd->sg = NULL;
6343 		free_percpu(sdd->sgp);
6344 		sdd->sgp = NULL;
6345 	}
6346 }
6347 
6348 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6349 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6350 		struct sched_domain *child, int cpu)
6351 {
6352 	struct sched_domain *sd = tl->init(tl, cpu);
6353 	if (!sd)
6354 		return child;
6355 
6356 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6357 	if (child) {
6358 		sd->level = child->level + 1;
6359 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6360 		child->parent = sd;
6361 		sd->child = child;
6362 	}
6363 	set_domain_attribute(sd, attr);
6364 
6365 	return sd;
6366 }
6367 
6368 /*
6369  * Build sched domains for a given set of cpus and attach the sched domains
6370  * to the individual cpus
6371  */
6372 static int build_sched_domains(const struct cpumask *cpu_map,
6373 			       struct sched_domain_attr *attr)
6374 {
6375 	enum s_alloc alloc_state;
6376 	struct sched_domain *sd;
6377 	struct s_data d;
6378 	int i, ret = -ENOMEM;
6379 
6380 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6381 	if (alloc_state != sa_rootdomain)
6382 		goto error;
6383 
6384 	/* Set up domains for cpus specified by the cpu_map. */
6385 	for_each_cpu(i, cpu_map) {
6386 		struct sched_domain_topology_level *tl;
6387 
6388 		sd = NULL;
6389 		for_each_sd_topology(tl) {
6390 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6391 			if (tl == sched_domain_topology)
6392 				*per_cpu_ptr(d.sd, i) = sd;
6393 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6394 				sd->flags |= SD_OVERLAP;
6395 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6396 				break;
6397 		}
6398 	}
6399 
6400 	/* Build the groups for the domains */
6401 	for_each_cpu(i, cpu_map) {
6402 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6403 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6404 			if (sd->flags & SD_OVERLAP) {
6405 				if (build_overlap_sched_groups(sd, i))
6406 					goto error;
6407 			} else {
6408 				if (build_sched_groups(sd, i))
6409 					goto error;
6410 			}
6411 		}
6412 	}
6413 
6414 	/* Calculate CPU power for physical packages and nodes */
6415 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6416 		if (!cpumask_test_cpu(i, cpu_map))
6417 			continue;
6418 
6419 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6420 			claim_allocations(i, sd);
6421 			init_sched_groups_power(i, sd);
6422 		}
6423 	}
6424 
6425 	/* Attach the domains */
6426 	rcu_read_lock();
6427 	for_each_cpu(i, cpu_map) {
6428 		sd = *per_cpu_ptr(d.sd, i);
6429 		cpu_attach_domain(sd, d.rd, i);
6430 	}
6431 	rcu_read_unlock();
6432 
6433 	ret = 0;
6434 error:
6435 	__free_domain_allocs(&d, alloc_state, cpu_map);
6436 	return ret;
6437 }
6438 
6439 static cpumask_var_t *doms_cur;	/* current sched domains */
6440 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6441 static struct sched_domain_attr *dattr_cur;
6442 				/* attribues of custom domains in 'doms_cur' */
6443 
6444 /*
6445  * Special case: If a kmalloc of a doms_cur partition (array of
6446  * cpumask) fails, then fallback to a single sched domain,
6447  * as determined by the single cpumask fallback_doms.
6448  */
6449 static cpumask_var_t fallback_doms;
6450 
6451 /*
6452  * arch_update_cpu_topology lets virtualized architectures update the
6453  * cpu core maps. It is supposed to return 1 if the topology changed
6454  * or 0 if it stayed the same.
6455  */
6456 int __weak arch_update_cpu_topology(void)
6457 {
6458 	return 0;
6459 }
6460 
6461 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6462 {
6463 	int i;
6464 	cpumask_var_t *doms;
6465 
6466 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6467 	if (!doms)
6468 		return NULL;
6469 	for (i = 0; i < ndoms; i++) {
6470 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6471 			free_sched_domains(doms, i);
6472 			return NULL;
6473 		}
6474 	}
6475 	return doms;
6476 }
6477 
6478 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6479 {
6480 	unsigned int i;
6481 	for (i = 0; i < ndoms; i++)
6482 		free_cpumask_var(doms[i]);
6483 	kfree(doms);
6484 }
6485 
6486 /*
6487  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6488  * For now this just excludes isolated cpus, but could be used to
6489  * exclude other special cases in the future.
6490  */
6491 static int init_sched_domains(const struct cpumask *cpu_map)
6492 {
6493 	int err;
6494 
6495 	arch_update_cpu_topology();
6496 	ndoms_cur = 1;
6497 	doms_cur = alloc_sched_domains(ndoms_cur);
6498 	if (!doms_cur)
6499 		doms_cur = &fallback_doms;
6500 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6501 	err = build_sched_domains(doms_cur[0], NULL);
6502 	register_sched_domain_sysctl();
6503 
6504 	return err;
6505 }
6506 
6507 /*
6508  * Detach sched domains from a group of cpus specified in cpu_map
6509  * These cpus will now be attached to the NULL domain
6510  */
6511 static void detach_destroy_domains(const struct cpumask *cpu_map)
6512 {
6513 	int i;
6514 
6515 	rcu_read_lock();
6516 	for_each_cpu(i, cpu_map)
6517 		cpu_attach_domain(NULL, &def_root_domain, i);
6518 	rcu_read_unlock();
6519 }
6520 
6521 /* handle null as "default" */
6522 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6523 			struct sched_domain_attr *new, int idx_new)
6524 {
6525 	struct sched_domain_attr tmp;
6526 
6527 	/* fast path */
6528 	if (!new && !cur)
6529 		return 1;
6530 
6531 	tmp = SD_ATTR_INIT;
6532 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6533 			new ? (new + idx_new) : &tmp,
6534 			sizeof(struct sched_domain_attr));
6535 }
6536 
6537 /*
6538  * Partition sched domains as specified by the 'ndoms_new'
6539  * cpumasks in the array doms_new[] of cpumasks. This compares
6540  * doms_new[] to the current sched domain partitioning, doms_cur[].
6541  * It destroys each deleted domain and builds each new domain.
6542  *
6543  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6544  * The masks don't intersect (don't overlap.) We should setup one
6545  * sched domain for each mask. CPUs not in any of the cpumasks will
6546  * not be load balanced. If the same cpumask appears both in the
6547  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6548  * it as it is.
6549  *
6550  * The passed in 'doms_new' should be allocated using
6551  * alloc_sched_domains.  This routine takes ownership of it and will
6552  * free_sched_domains it when done with it. If the caller failed the
6553  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6554  * and partition_sched_domains() will fallback to the single partition
6555  * 'fallback_doms', it also forces the domains to be rebuilt.
6556  *
6557  * If doms_new == NULL it will be replaced with cpu_online_mask.
6558  * ndoms_new == 0 is a special case for destroying existing domains,
6559  * and it will not create the default domain.
6560  *
6561  * Call with hotplug lock held
6562  */
6563 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6564 			     struct sched_domain_attr *dattr_new)
6565 {
6566 	int i, j, n;
6567 	int new_topology;
6568 
6569 	mutex_lock(&sched_domains_mutex);
6570 
6571 	/* always unregister in case we don't destroy any domains */
6572 	unregister_sched_domain_sysctl();
6573 
6574 	/* Let architecture update cpu core mappings. */
6575 	new_topology = arch_update_cpu_topology();
6576 
6577 	n = doms_new ? ndoms_new : 0;
6578 
6579 	/* Destroy deleted domains */
6580 	for (i = 0; i < ndoms_cur; i++) {
6581 		for (j = 0; j < n && !new_topology; j++) {
6582 			if (cpumask_equal(doms_cur[i], doms_new[j])
6583 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6584 				goto match1;
6585 		}
6586 		/* no match - a current sched domain not in new doms_new[] */
6587 		detach_destroy_domains(doms_cur[i]);
6588 match1:
6589 		;
6590 	}
6591 
6592 	n = ndoms_cur;
6593 	if (doms_new == NULL) {
6594 		n = 0;
6595 		doms_new = &fallback_doms;
6596 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6597 		WARN_ON_ONCE(dattr_new);
6598 	}
6599 
6600 	/* Build new domains */
6601 	for (i = 0; i < ndoms_new; i++) {
6602 		for (j = 0; j < n && !new_topology; j++) {
6603 			if (cpumask_equal(doms_new[i], doms_cur[j])
6604 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6605 				goto match2;
6606 		}
6607 		/* no match - add a new doms_new */
6608 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6609 match2:
6610 		;
6611 	}
6612 
6613 	/* Remember the new sched domains */
6614 	if (doms_cur != &fallback_doms)
6615 		free_sched_domains(doms_cur, ndoms_cur);
6616 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6617 	doms_cur = doms_new;
6618 	dattr_cur = dattr_new;
6619 	ndoms_cur = ndoms_new;
6620 
6621 	register_sched_domain_sysctl();
6622 
6623 	mutex_unlock(&sched_domains_mutex);
6624 }
6625 
6626 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6627 
6628 /*
6629  * Update cpusets according to cpu_active mask.  If cpusets are
6630  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6631  * around partition_sched_domains().
6632  *
6633  * If we come here as part of a suspend/resume, don't touch cpusets because we
6634  * want to restore it back to its original state upon resume anyway.
6635  */
6636 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6637 			     void *hcpu)
6638 {
6639 	switch (action) {
6640 	case CPU_ONLINE_FROZEN:
6641 	case CPU_DOWN_FAILED_FROZEN:
6642 
6643 		/*
6644 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6645 		 * resume sequence. As long as this is not the last online
6646 		 * operation in the resume sequence, just build a single sched
6647 		 * domain, ignoring cpusets.
6648 		 */
6649 		num_cpus_frozen--;
6650 		if (likely(num_cpus_frozen)) {
6651 			partition_sched_domains(1, NULL, NULL);
6652 			break;
6653 		}
6654 
6655 		/*
6656 		 * This is the last CPU online operation. So fall through and
6657 		 * restore the original sched domains by considering the
6658 		 * cpuset configurations.
6659 		 */
6660 
6661 	case CPU_ONLINE:
6662 	case CPU_DOWN_FAILED:
6663 		cpuset_update_active_cpus(true);
6664 		break;
6665 	default:
6666 		return NOTIFY_DONE;
6667 	}
6668 	return NOTIFY_OK;
6669 }
6670 
6671 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6672 			       void *hcpu)
6673 {
6674 	switch (action) {
6675 	case CPU_DOWN_PREPARE:
6676 		cpuset_update_active_cpus(false);
6677 		break;
6678 	case CPU_DOWN_PREPARE_FROZEN:
6679 		num_cpus_frozen++;
6680 		partition_sched_domains(1, NULL, NULL);
6681 		break;
6682 	default:
6683 		return NOTIFY_DONE;
6684 	}
6685 	return NOTIFY_OK;
6686 }
6687 
6688 void __init sched_init_smp(void)
6689 {
6690 	cpumask_var_t non_isolated_cpus;
6691 
6692 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6693 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6694 
6695 	sched_init_numa();
6696 
6697 	/*
6698 	 * There's no userspace yet to cause hotplug operations; hence all the
6699 	 * cpu masks are stable and all blatant races in the below code cannot
6700 	 * happen.
6701 	 */
6702 	mutex_lock(&sched_domains_mutex);
6703 	init_sched_domains(cpu_active_mask);
6704 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6705 	if (cpumask_empty(non_isolated_cpus))
6706 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6707 	mutex_unlock(&sched_domains_mutex);
6708 
6709 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6710 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6711 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6712 
6713 	init_hrtick();
6714 
6715 	/* Move init over to a non-isolated CPU */
6716 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6717 		BUG();
6718 	sched_init_granularity();
6719 	free_cpumask_var(non_isolated_cpus);
6720 
6721 	init_sched_rt_class();
6722 	init_sched_dl_class();
6723 }
6724 #else
6725 void __init sched_init_smp(void)
6726 {
6727 	sched_init_granularity();
6728 }
6729 #endif /* CONFIG_SMP */
6730 
6731 const_debug unsigned int sysctl_timer_migration = 1;
6732 
6733 int in_sched_functions(unsigned long addr)
6734 {
6735 	return in_lock_functions(addr) ||
6736 		(addr >= (unsigned long)__sched_text_start
6737 		&& addr < (unsigned long)__sched_text_end);
6738 }
6739 
6740 #ifdef CONFIG_CGROUP_SCHED
6741 /*
6742  * Default task group.
6743  * Every task in system belongs to this group at bootup.
6744  */
6745 struct task_group root_task_group;
6746 LIST_HEAD(task_groups);
6747 #endif
6748 
6749 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6750 
6751 void __init sched_init(void)
6752 {
6753 	int i, j;
6754 	unsigned long alloc_size = 0, ptr;
6755 
6756 #ifdef CONFIG_FAIR_GROUP_SCHED
6757 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6758 #endif
6759 #ifdef CONFIG_RT_GROUP_SCHED
6760 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6761 #endif
6762 #ifdef CONFIG_CPUMASK_OFFSTACK
6763 	alloc_size += num_possible_cpus() * cpumask_size();
6764 #endif
6765 	if (alloc_size) {
6766 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6767 
6768 #ifdef CONFIG_FAIR_GROUP_SCHED
6769 		root_task_group.se = (struct sched_entity **)ptr;
6770 		ptr += nr_cpu_ids * sizeof(void **);
6771 
6772 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6773 		ptr += nr_cpu_ids * sizeof(void **);
6774 
6775 #endif /* CONFIG_FAIR_GROUP_SCHED */
6776 #ifdef CONFIG_RT_GROUP_SCHED
6777 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6778 		ptr += nr_cpu_ids * sizeof(void **);
6779 
6780 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6781 		ptr += nr_cpu_ids * sizeof(void **);
6782 
6783 #endif /* CONFIG_RT_GROUP_SCHED */
6784 #ifdef CONFIG_CPUMASK_OFFSTACK
6785 		for_each_possible_cpu(i) {
6786 			per_cpu(load_balance_mask, i) = (void *)ptr;
6787 			ptr += cpumask_size();
6788 		}
6789 #endif /* CONFIG_CPUMASK_OFFSTACK */
6790 	}
6791 
6792 	init_rt_bandwidth(&def_rt_bandwidth,
6793 			global_rt_period(), global_rt_runtime());
6794 	init_dl_bandwidth(&def_dl_bandwidth,
6795 			global_rt_period(), global_rt_runtime());
6796 
6797 #ifdef CONFIG_SMP
6798 	init_defrootdomain();
6799 #endif
6800 
6801 #ifdef CONFIG_RT_GROUP_SCHED
6802 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6803 			global_rt_period(), global_rt_runtime());
6804 #endif /* CONFIG_RT_GROUP_SCHED */
6805 
6806 #ifdef CONFIG_CGROUP_SCHED
6807 	list_add(&root_task_group.list, &task_groups);
6808 	INIT_LIST_HEAD(&root_task_group.children);
6809 	INIT_LIST_HEAD(&root_task_group.siblings);
6810 	autogroup_init(&init_task);
6811 
6812 #endif /* CONFIG_CGROUP_SCHED */
6813 
6814 	for_each_possible_cpu(i) {
6815 		struct rq *rq;
6816 
6817 		rq = cpu_rq(i);
6818 		raw_spin_lock_init(&rq->lock);
6819 		rq->nr_running = 0;
6820 		rq->calc_load_active = 0;
6821 		rq->calc_load_update = jiffies + LOAD_FREQ;
6822 		init_cfs_rq(&rq->cfs);
6823 		init_rt_rq(&rq->rt, rq);
6824 		init_dl_rq(&rq->dl, rq);
6825 #ifdef CONFIG_FAIR_GROUP_SCHED
6826 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6827 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6828 		/*
6829 		 * How much cpu bandwidth does root_task_group get?
6830 		 *
6831 		 * In case of task-groups formed thr' the cgroup filesystem, it
6832 		 * gets 100% of the cpu resources in the system. This overall
6833 		 * system cpu resource is divided among the tasks of
6834 		 * root_task_group and its child task-groups in a fair manner,
6835 		 * based on each entity's (task or task-group's) weight
6836 		 * (se->load.weight).
6837 		 *
6838 		 * In other words, if root_task_group has 10 tasks of weight
6839 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6840 		 * then A0's share of the cpu resource is:
6841 		 *
6842 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6843 		 *
6844 		 * We achieve this by letting root_task_group's tasks sit
6845 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6846 		 */
6847 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6848 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6849 #endif /* CONFIG_FAIR_GROUP_SCHED */
6850 
6851 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6852 #ifdef CONFIG_RT_GROUP_SCHED
6853 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6854 #endif
6855 
6856 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6857 			rq->cpu_load[j] = 0;
6858 
6859 		rq->last_load_update_tick = jiffies;
6860 
6861 #ifdef CONFIG_SMP
6862 		rq->sd = NULL;
6863 		rq->rd = NULL;
6864 		rq->cpu_power = SCHED_POWER_SCALE;
6865 		rq->post_schedule = 0;
6866 		rq->active_balance = 0;
6867 		rq->next_balance = jiffies;
6868 		rq->push_cpu = 0;
6869 		rq->cpu = i;
6870 		rq->online = 0;
6871 		rq->idle_stamp = 0;
6872 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6873 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6874 
6875 		INIT_LIST_HEAD(&rq->cfs_tasks);
6876 
6877 		rq_attach_root(rq, &def_root_domain);
6878 #ifdef CONFIG_NO_HZ_COMMON
6879 		rq->nohz_flags = 0;
6880 #endif
6881 #ifdef CONFIG_NO_HZ_FULL
6882 		rq->last_sched_tick = 0;
6883 #endif
6884 #endif
6885 		init_rq_hrtick(rq);
6886 		atomic_set(&rq->nr_iowait, 0);
6887 	}
6888 
6889 	set_load_weight(&init_task);
6890 
6891 #ifdef CONFIG_PREEMPT_NOTIFIERS
6892 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6893 #endif
6894 
6895 	/*
6896 	 * The boot idle thread does lazy MMU switching as well:
6897 	 */
6898 	atomic_inc(&init_mm.mm_count);
6899 	enter_lazy_tlb(&init_mm, current);
6900 
6901 	/*
6902 	 * Make us the idle thread. Technically, schedule() should not be
6903 	 * called from this thread, however somewhere below it might be,
6904 	 * but because we are the idle thread, we just pick up running again
6905 	 * when this runqueue becomes "idle".
6906 	 */
6907 	init_idle(current, smp_processor_id());
6908 
6909 	calc_load_update = jiffies + LOAD_FREQ;
6910 
6911 	/*
6912 	 * During early bootup we pretend to be a normal task:
6913 	 */
6914 	current->sched_class = &fair_sched_class;
6915 
6916 #ifdef CONFIG_SMP
6917 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6918 	/* May be allocated at isolcpus cmdline parse time */
6919 	if (cpu_isolated_map == NULL)
6920 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6921 	idle_thread_set_boot_cpu();
6922 #endif
6923 	init_sched_fair_class();
6924 
6925 	scheduler_running = 1;
6926 }
6927 
6928 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6929 static inline int preempt_count_equals(int preempt_offset)
6930 {
6931 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6932 
6933 	return (nested == preempt_offset);
6934 }
6935 
6936 void __might_sleep(const char *file, int line, int preempt_offset)
6937 {
6938 	static unsigned long prev_jiffy;	/* ratelimiting */
6939 
6940 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6941 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6942 	     !is_idle_task(current)) ||
6943 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6944 		return;
6945 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6946 		return;
6947 	prev_jiffy = jiffies;
6948 
6949 	printk(KERN_ERR
6950 		"BUG: sleeping function called from invalid context at %s:%d\n",
6951 			file, line);
6952 	printk(KERN_ERR
6953 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6954 			in_atomic(), irqs_disabled(),
6955 			current->pid, current->comm);
6956 
6957 	debug_show_held_locks(current);
6958 	if (irqs_disabled())
6959 		print_irqtrace_events(current);
6960 #ifdef CONFIG_DEBUG_PREEMPT
6961 	if (!preempt_count_equals(preempt_offset)) {
6962 		pr_err("Preemption disabled at:");
6963 		print_ip_sym(current->preempt_disable_ip);
6964 		pr_cont("\n");
6965 	}
6966 #endif
6967 	dump_stack();
6968 }
6969 EXPORT_SYMBOL(__might_sleep);
6970 #endif
6971 
6972 #ifdef CONFIG_MAGIC_SYSRQ
6973 static void normalize_task(struct rq *rq, struct task_struct *p)
6974 {
6975 	const struct sched_class *prev_class = p->sched_class;
6976 	struct sched_attr attr = {
6977 		.sched_policy = SCHED_NORMAL,
6978 	};
6979 	int old_prio = p->prio;
6980 	int on_rq;
6981 
6982 	on_rq = p->on_rq;
6983 	if (on_rq)
6984 		dequeue_task(rq, p, 0);
6985 	__setscheduler(rq, p, &attr);
6986 	if (on_rq) {
6987 		enqueue_task(rq, p, 0);
6988 		resched_task(rq->curr);
6989 	}
6990 
6991 	check_class_changed(rq, p, prev_class, old_prio);
6992 }
6993 
6994 void normalize_rt_tasks(void)
6995 {
6996 	struct task_struct *g, *p;
6997 	unsigned long flags;
6998 	struct rq *rq;
6999 
7000 	read_lock_irqsave(&tasklist_lock, flags);
7001 	do_each_thread(g, p) {
7002 		/*
7003 		 * Only normalize user tasks:
7004 		 */
7005 		if (!p->mm)
7006 			continue;
7007 
7008 		p->se.exec_start		= 0;
7009 #ifdef CONFIG_SCHEDSTATS
7010 		p->se.statistics.wait_start	= 0;
7011 		p->se.statistics.sleep_start	= 0;
7012 		p->se.statistics.block_start	= 0;
7013 #endif
7014 
7015 		if (!dl_task(p) && !rt_task(p)) {
7016 			/*
7017 			 * Renice negative nice level userspace
7018 			 * tasks back to 0:
7019 			 */
7020 			if (task_nice(p) < 0 && p->mm)
7021 				set_user_nice(p, 0);
7022 			continue;
7023 		}
7024 
7025 		raw_spin_lock(&p->pi_lock);
7026 		rq = __task_rq_lock(p);
7027 
7028 		normalize_task(rq, p);
7029 
7030 		__task_rq_unlock(rq);
7031 		raw_spin_unlock(&p->pi_lock);
7032 	} while_each_thread(g, p);
7033 
7034 	read_unlock_irqrestore(&tasklist_lock, flags);
7035 }
7036 
7037 #endif /* CONFIG_MAGIC_SYSRQ */
7038 
7039 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7040 /*
7041  * These functions are only useful for the IA64 MCA handling, or kdb.
7042  *
7043  * They can only be called when the whole system has been
7044  * stopped - every CPU needs to be quiescent, and no scheduling
7045  * activity can take place. Using them for anything else would
7046  * be a serious bug, and as a result, they aren't even visible
7047  * under any other configuration.
7048  */
7049 
7050 /**
7051  * curr_task - return the current task for a given cpu.
7052  * @cpu: the processor in question.
7053  *
7054  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7055  *
7056  * Return: The current task for @cpu.
7057  */
7058 struct task_struct *curr_task(int cpu)
7059 {
7060 	return cpu_curr(cpu);
7061 }
7062 
7063 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7064 
7065 #ifdef CONFIG_IA64
7066 /**
7067  * set_curr_task - set the current task for a given cpu.
7068  * @cpu: the processor in question.
7069  * @p: the task pointer to set.
7070  *
7071  * Description: This function must only be used when non-maskable interrupts
7072  * are serviced on a separate stack. It allows the architecture to switch the
7073  * notion of the current task on a cpu in a non-blocking manner. This function
7074  * must be called with all CPU's synchronized, and interrupts disabled, the
7075  * and caller must save the original value of the current task (see
7076  * curr_task() above) and restore that value before reenabling interrupts and
7077  * re-starting the system.
7078  *
7079  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7080  */
7081 void set_curr_task(int cpu, struct task_struct *p)
7082 {
7083 	cpu_curr(cpu) = p;
7084 }
7085 
7086 #endif
7087 
7088 #ifdef CONFIG_CGROUP_SCHED
7089 /* task_group_lock serializes the addition/removal of task groups */
7090 static DEFINE_SPINLOCK(task_group_lock);
7091 
7092 static void free_sched_group(struct task_group *tg)
7093 {
7094 	free_fair_sched_group(tg);
7095 	free_rt_sched_group(tg);
7096 	autogroup_free(tg);
7097 	kfree(tg);
7098 }
7099 
7100 /* allocate runqueue etc for a new task group */
7101 struct task_group *sched_create_group(struct task_group *parent)
7102 {
7103 	struct task_group *tg;
7104 
7105 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7106 	if (!tg)
7107 		return ERR_PTR(-ENOMEM);
7108 
7109 	if (!alloc_fair_sched_group(tg, parent))
7110 		goto err;
7111 
7112 	if (!alloc_rt_sched_group(tg, parent))
7113 		goto err;
7114 
7115 	return tg;
7116 
7117 err:
7118 	free_sched_group(tg);
7119 	return ERR_PTR(-ENOMEM);
7120 }
7121 
7122 void sched_online_group(struct task_group *tg, struct task_group *parent)
7123 {
7124 	unsigned long flags;
7125 
7126 	spin_lock_irqsave(&task_group_lock, flags);
7127 	list_add_rcu(&tg->list, &task_groups);
7128 
7129 	WARN_ON(!parent); /* root should already exist */
7130 
7131 	tg->parent = parent;
7132 	INIT_LIST_HEAD(&tg->children);
7133 	list_add_rcu(&tg->siblings, &parent->children);
7134 	spin_unlock_irqrestore(&task_group_lock, flags);
7135 }
7136 
7137 /* rcu callback to free various structures associated with a task group */
7138 static void free_sched_group_rcu(struct rcu_head *rhp)
7139 {
7140 	/* now it should be safe to free those cfs_rqs */
7141 	free_sched_group(container_of(rhp, struct task_group, rcu));
7142 }
7143 
7144 /* Destroy runqueue etc associated with a task group */
7145 void sched_destroy_group(struct task_group *tg)
7146 {
7147 	/* wait for possible concurrent references to cfs_rqs complete */
7148 	call_rcu(&tg->rcu, free_sched_group_rcu);
7149 }
7150 
7151 void sched_offline_group(struct task_group *tg)
7152 {
7153 	unsigned long flags;
7154 	int i;
7155 
7156 	/* end participation in shares distribution */
7157 	for_each_possible_cpu(i)
7158 		unregister_fair_sched_group(tg, i);
7159 
7160 	spin_lock_irqsave(&task_group_lock, flags);
7161 	list_del_rcu(&tg->list);
7162 	list_del_rcu(&tg->siblings);
7163 	spin_unlock_irqrestore(&task_group_lock, flags);
7164 }
7165 
7166 /* change task's runqueue when it moves between groups.
7167  *	The caller of this function should have put the task in its new group
7168  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7169  *	reflect its new group.
7170  */
7171 void sched_move_task(struct task_struct *tsk)
7172 {
7173 	struct task_group *tg;
7174 	int on_rq, running;
7175 	unsigned long flags;
7176 	struct rq *rq;
7177 
7178 	rq = task_rq_lock(tsk, &flags);
7179 
7180 	running = task_current(rq, tsk);
7181 	on_rq = tsk->on_rq;
7182 
7183 	if (on_rq)
7184 		dequeue_task(rq, tsk, 0);
7185 	if (unlikely(running))
7186 		tsk->sched_class->put_prev_task(rq, tsk);
7187 
7188 	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7189 				lockdep_is_held(&tsk->sighand->siglock)),
7190 			  struct task_group, css);
7191 	tg = autogroup_task_group(tsk, tg);
7192 	tsk->sched_task_group = tg;
7193 
7194 #ifdef CONFIG_FAIR_GROUP_SCHED
7195 	if (tsk->sched_class->task_move_group)
7196 		tsk->sched_class->task_move_group(tsk, on_rq);
7197 	else
7198 #endif
7199 		set_task_rq(tsk, task_cpu(tsk));
7200 
7201 	if (unlikely(running))
7202 		tsk->sched_class->set_curr_task(rq);
7203 	if (on_rq)
7204 		enqueue_task(rq, tsk, 0);
7205 
7206 	task_rq_unlock(rq, tsk, &flags);
7207 }
7208 #endif /* CONFIG_CGROUP_SCHED */
7209 
7210 #ifdef CONFIG_RT_GROUP_SCHED
7211 /*
7212  * Ensure that the real time constraints are schedulable.
7213  */
7214 static DEFINE_MUTEX(rt_constraints_mutex);
7215 
7216 /* Must be called with tasklist_lock held */
7217 static inline int tg_has_rt_tasks(struct task_group *tg)
7218 {
7219 	struct task_struct *g, *p;
7220 
7221 	do_each_thread(g, p) {
7222 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7223 			return 1;
7224 	} while_each_thread(g, p);
7225 
7226 	return 0;
7227 }
7228 
7229 struct rt_schedulable_data {
7230 	struct task_group *tg;
7231 	u64 rt_period;
7232 	u64 rt_runtime;
7233 };
7234 
7235 static int tg_rt_schedulable(struct task_group *tg, void *data)
7236 {
7237 	struct rt_schedulable_data *d = data;
7238 	struct task_group *child;
7239 	unsigned long total, sum = 0;
7240 	u64 period, runtime;
7241 
7242 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7243 	runtime = tg->rt_bandwidth.rt_runtime;
7244 
7245 	if (tg == d->tg) {
7246 		period = d->rt_period;
7247 		runtime = d->rt_runtime;
7248 	}
7249 
7250 	/*
7251 	 * Cannot have more runtime than the period.
7252 	 */
7253 	if (runtime > period && runtime != RUNTIME_INF)
7254 		return -EINVAL;
7255 
7256 	/*
7257 	 * Ensure we don't starve existing RT tasks.
7258 	 */
7259 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7260 		return -EBUSY;
7261 
7262 	total = to_ratio(period, runtime);
7263 
7264 	/*
7265 	 * Nobody can have more than the global setting allows.
7266 	 */
7267 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7268 		return -EINVAL;
7269 
7270 	/*
7271 	 * The sum of our children's runtime should not exceed our own.
7272 	 */
7273 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7274 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7275 		runtime = child->rt_bandwidth.rt_runtime;
7276 
7277 		if (child == d->tg) {
7278 			period = d->rt_period;
7279 			runtime = d->rt_runtime;
7280 		}
7281 
7282 		sum += to_ratio(period, runtime);
7283 	}
7284 
7285 	if (sum > total)
7286 		return -EINVAL;
7287 
7288 	return 0;
7289 }
7290 
7291 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7292 {
7293 	int ret;
7294 
7295 	struct rt_schedulable_data data = {
7296 		.tg = tg,
7297 		.rt_period = period,
7298 		.rt_runtime = runtime,
7299 	};
7300 
7301 	rcu_read_lock();
7302 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7303 	rcu_read_unlock();
7304 
7305 	return ret;
7306 }
7307 
7308 static int tg_set_rt_bandwidth(struct task_group *tg,
7309 		u64 rt_period, u64 rt_runtime)
7310 {
7311 	int i, err = 0;
7312 
7313 	mutex_lock(&rt_constraints_mutex);
7314 	read_lock(&tasklist_lock);
7315 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7316 	if (err)
7317 		goto unlock;
7318 
7319 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7320 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7321 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7322 
7323 	for_each_possible_cpu(i) {
7324 		struct rt_rq *rt_rq = tg->rt_rq[i];
7325 
7326 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7327 		rt_rq->rt_runtime = rt_runtime;
7328 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7329 	}
7330 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7331 unlock:
7332 	read_unlock(&tasklist_lock);
7333 	mutex_unlock(&rt_constraints_mutex);
7334 
7335 	return err;
7336 }
7337 
7338 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7339 {
7340 	u64 rt_runtime, rt_period;
7341 
7342 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7343 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7344 	if (rt_runtime_us < 0)
7345 		rt_runtime = RUNTIME_INF;
7346 
7347 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7348 }
7349 
7350 static long sched_group_rt_runtime(struct task_group *tg)
7351 {
7352 	u64 rt_runtime_us;
7353 
7354 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7355 		return -1;
7356 
7357 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7358 	do_div(rt_runtime_us, NSEC_PER_USEC);
7359 	return rt_runtime_us;
7360 }
7361 
7362 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7363 {
7364 	u64 rt_runtime, rt_period;
7365 
7366 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7367 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7368 
7369 	if (rt_period == 0)
7370 		return -EINVAL;
7371 
7372 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7373 }
7374 
7375 static long sched_group_rt_period(struct task_group *tg)
7376 {
7377 	u64 rt_period_us;
7378 
7379 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7380 	do_div(rt_period_us, NSEC_PER_USEC);
7381 	return rt_period_us;
7382 }
7383 #endif /* CONFIG_RT_GROUP_SCHED */
7384 
7385 #ifdef CONFIG_RT_GROUP_SCHED
7386 static int sched_rt_global_constraints(void)
7387 {
7388 	int ret = 0;
7389 
7390 	mutex_lock(&rt_constraints_mutex);
7391 	read_lock(&tasklist_lock);
7392 	ret = __rt_schedulable(NULL, 0, 0);
7393 	read_unlock(&tasklist_lock);
7394 	mutex_unlock(&rt_constraints_mutex);
7395 
7396 	return ret;
7397 }
7398 
7399 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7400 {
7401 	/* Don't accept realtime tasks when there is no way for them to run */
7402 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7403 		return 0;
7404 
7405 	return 1;
7406 }
7407 
7408 #else /* !CONFIG_RT_GROUP_SCHED */
7409 static int sched_rt_global_constraints(void)
7410 {
7411 	unsigned long flags;
7412 	int i, ret = 0;
7413 
7414 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7415 	for_each_possible_cpu(i) {
7416 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7417 
7418 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7419 		rt_rq->rt_runtime = global_rt_runtime();
7420 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7421 	}
7422 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7423 
7424 	return ret;
7425 }
7426 #endif /* CONFIG_RT_GROUP_SCHED */
7427 
7428 static int sched_dl_global_constraints(void)
7429 {
7430 	u64 runtime = global_rt_runtime();
7431 	u64 period = global_rt_period();
7432 	u64 new_bw = to_ratio(period, runtime);
7433 	int cpu, ret = 0;
7434 	unsigned long flags;
7435 
7436 	/*
7437 	 * Here we want to check the bandwidth not being set to some
7438 	 * value smaller than the currently allocated bandwidth in
7439 	 * any of the root_domains.
7440 	 *
7441 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7442 	 * cycling on root_domains... Discussion on different/better
7443 	 * solutions is welcome!
7444 	 */
7445 	for_each_possible_cpu(cpu) {
7446 		struct dl_bw *dl_b = dl_bw_of(cpu);
7447 
7448 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7449 		if (new_bw < dl_b->total_bw)
7450 			ret = -EBUSY;
7451 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7452 
7453 		if (ret)
7454 			break;
7455 	}
7456 
7457 	return ret;
7458 }
7459 
7460 static void sched_dl_do_global(void)
7461 {
7462 	u64 new_bw = -1;
7463 	int cpu;
7464 	unsigned long flags;
7465 
7466 	def_dl_bandwidth.dl_period = global_rt_period();
7467 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7468 
7469 	if (global_rt_runtime() != RUNTIME_INF)
7470 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7471 
7472 	/*
7473 	 * FIXME: As above...
7474 	 */
7475 	for_each_possible_cpu(cpu) {
7476 		struct dl_bw *dl_b = dl_bw_of(cpu);
7477 
7478 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7479 		dl_b->bw = new_bw;
7480 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7481 	}
7482 }
7483 
7484 static int sched_rt_global_validate(void)
7485 {
7486 	if (sysctl_sched_rt_period <= 0)
7487 		return -EINVAL;
7488 
7489 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7490 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7491 		return -EINVAL;
7492 
7493 	return 0;
7494 }
7495 
7496 static void sched_rt_do_global(void)
7497 {
7498 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7499 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7500 }
7501 
7502 int sched_rt_handler(struct ctl_table *table, int write,
7503 		void __user *buffer, size_t *lenp,
7504 		loff_t *ppos)
7505 {
7506 	int old_period, old_runtime;
7507 	static DEFINE_MUTEX(mutex);
7508 	int ret;
7509 
7510 	mutex_lock(&mutex);
7511 	old_period = sysctl_sched_rt_period;
7512 	old_runtime = sysctl_sched_rt_runtime;
7513 
7514 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7515 
7516 	if (!ret && write) {
7517 		ret = sched_rt_global_validate();
7518 		if (ret)
7519 			goto undo;
7520 
7521 		ret = sched_rt_global_constraints();
7522 		if (ret)
7523 			goto undo;
7524 
7525 		ret = sched_dl_global_constraints();
7526 		if (ret)
7527 			goto undo;
7528 
7529 		sched_rt_do_global();
7530 		sched_dl_do_global();
7531 	}
7532 	if (0) {
7533 undo:
7534 		sysctl_sched_rt_period = old_period;
7535 		sysctl_sched_rt_runtime = old_runtime;
7536 	}
7537 	mutex_unlock(&mutex);
7538 
7539 	return ret;
7540 }
7541 
7542 int sched_rr_handler(struct ctl_table *table, int write,
7543 		void __user *buffer, size_t *lenp,
7544 		loff_t *ppos)
7545 {
7546 	int ret;
7547 	static DEFINE_MUTEX(mutex);
7548 
7549 	mutex_lock(&mutex);
7550 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7551 	/* make sure that internally we keep jiffies */
7552 	/* also, writing zero resets timeslice to default */
7553 	if (!ret && write) {
7554 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7555 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7556 	}
7557 	mutex_unlock(&mutex);
7558 	return ret;
7559 }
7560 
7561 #ifdef CONFIG_CGROUP_SCHED
7562 
7563 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7564 {
7565 	return css ? container_of(css, struct task_group, css) : NULL;
7566 }
7567 
7568 static struct cgroup_subsys_state *
7569 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7570 {
7571 	struct task_group *parent = css_tg(parent_css);
7572 	struct task_group *tg;
7573 
7574 	if (!parent) {
7575 		/* This is early initialization for the top cgroup */
7576 		return &root_task_group.css;
7577 	}
7578 
7579 	tg = sched_create_group(parent);
7580 	if (IS_ERR(tg))
7581 		return ERR_PTR(-ENOMEM);
7582 
7583 	return &tg->css;
7584 }
7585 
7586 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7587 {
7588 	struct task_group *tg = css_tg(css);
7589 	struct task_group *parent = css_tg(css_parent(css));
7590 
7591 	if (parent)
7592 		sched_online_group(tg, parent);
7593 	return 0;
7594 }
7595 
7596 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7597 {
7598 	struct task_group *tg = css_tg(css);
7599 
7600 	sched_destroy_group(tg);
7601 }
7602 
7603 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7604 {
7605 	struct task_group *tg = css_tg(css);
7606 
7607 	sched_offline_group(tg);
7608 }
7609 
7610 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7611 				 struct cgroup_taskset *tset)
7612 {
7613 	struct task_struct *task;
7614 
7615 	cgroup_taskset_for_each(task, tset) {
7616 #ifdef CONFIG_RT_GROUP_SCHED
7617 		if (!sched_rt_can_attach(css_tg(css), task))
7618 			return -EINVAL;
7619 #else
7620 		/* We don't support RT-tasks being in separate groups */
7621 		if (task->sched_class != &fair_sched_class)
7622 			return -EINVAL;
7623 #endif
7624 	}
7625 	return 0;
7626 }
7627 
7628 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7629 			      struct cgroup_taskset *tset)
7630 {
7631 	struct task_struct *task;
7632 
7633 	cgroup_taskset_for_each(task, tset)
7634 		sched_move_task(task);
7635 }
7636 
7637 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7638 			    struct cgroup_subsys_state *old_css,
7639 			    struct task_struct *task)
7640 {
7641 	/*
7642 	 * cgroup_exit() is called in the copy_process() failure path.
7643 	 * Ignore this case since the task hasn't ran yet, this avoids
7644 	 * trying to poke a half freed task state from generic code.
7645 	 */
7646 	if (!(task->flags & PF_EXITING))
7647 		return;
7648 
7649 	sched_move_task(task);
7650 }
7651 
7652 #ifdef CONFIG_FAIR_GROUP_SCHED
7653 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7654 				struct cftype *cftype, u64 shareval)
7655 {
7656 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7657 }
7658 
7659 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7660 			       struct cftype *cft)
7661 {
7662 	struct task_group *tg = css_tg(css);
7663 
7664 	return (u64) scale_load_down(tg->shares);
7665 }
7666 
7667 #ifdef CONFIG_CFS_BANDWIDTH
7668 static DEFINE_MUTEX(cfs_constraints_mutex);
7669 
7670 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7671 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7672 
7673 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7674 
7675 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7676 {
7677 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7678 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7679 
7680 	if (tg == &root_task_group)
7681 		return -EINVAL;
7682 
7683 	/*
7684 	 * Ensure we have at some amount of bandwidth every period.  This is
7685 	 * to prevent reaching a state of large arrears when throttled via
7686 	 * entity_tick() resulting in prolonged exit starvation.
7687 	 */
7688 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7689 		return -EINVAL;
7690 
7691 	/*
7692 	 * Likewise, bound things on the otherside by preventing insane quota
7693 	 * periods.  This also allows us to normalize in computing quota
7694 	 * feasibility.
7695 	 */
7696 	if (period > max_cfs_quota_period)
7697 		return -EINVAL;
7698 
7699 	mutex_lock(&cfs_constraints_mutex);
7700 	ret = __cfs_schedulable(tg, period, quota);
7701 	if (ret)
7702 		goto out_unlock;
7703 
7704 	runtime_enabled = quota != RUNTIME_INF;
7705 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7706 	/*
7707 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7708 	 * before making related changes, and on->off must occur afterwards
7709 	 */
7710 	if (runtime_enabled && !runtime_was_enabled)
7711 		cfs_bandwidth_usage_inc();
7712 	raw_spin_lock_irq(&cfs_b->lock);
7713 	cfs_b->period = ns_to_ktime(period);
7714 	cfs_b->quota = quota;
7715 
7716 	__refill_cfs_bandwidth_runtime(cfs_b);
7717 	/* restart the period timer (if active) to handle new period expiry */
7718 	if (runtime_enabled && cfs_b->timer_active) {
7719 		/* force a reprogram */
7720 		cfs_b->timer_active = 0;
7721 		__start_cfs_bandwidth(cfs_b);
7722 	}
7723 	raw_spin_unlock_irq(&cfs_b->lock);
7724 
7725 	for_each_possible_cpu(i) {
7726 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7727 		struct rq *rq = cfs_rq->rq;
7728 
7729 		raw_spin_lock_irq(&rq->lock);
7730 		cfs_rq->runtime_enabled = runtime_enabled;
7731 		cfs_rq->runtime_remaining = 0;
7732 
7733 		if (cfs_rq->throttled)
7734 			unthrottle_cfs_rq(cfs_rq);
7735 		raw_spin_unlock_irq(&rq->lock);
7736 	}
7737 	if (runtime_was_enabled && !runtime_enabled)
7738 		cfs_bandwidth_usage_dec();
7739 out_unlock:
7740 	mutex_unlock(&cfs_constraints_mutex);
7741 
7742 	return ret;
7743 }
7744 
7745 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7746 {
7747 	u64 quota, period;
7748 
7749 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7750 	if (cfs_quota_us < 0)
7751 		quota = RUNTIME_INF;
7752 	else
7753 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7754 
7755 	return tg_set_cfs_bandwidth(tg, period, quota);
7756 }
7757 
7758 long tg_get_cfs_quota(struct task_group *tg)
7759 {
7760 	u64 quota_us;
7761 
7762 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7763 		return -1;
7764 
7765 	quota_us = tg->cfs_bandwidth.quota;
7766 	do_div(quota_us, NSEC_PER_USEC);
7767 
7768 	return quota_us;
7769 }
7770 
7771 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7772 {
7773 	u64 quota, period;
7774 
7775 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7776 	quota = tg->cfs_bandwidth.quota;
7777 
7778 	return tg_set_cfs_bandwidth(tg, period, quota);
7779 }
7780 
7781 long tg_get_cfs_period(struct task_group *tg)
7782 {
7783 	u64 cfs_period_us;
7784 
7785 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7786 	do_div(cfs_period_us, NSEC_PER_USEC);
7787 
7788 	return cfs_period_us;
7789 }
7790 
7791 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7792 				  struct cftype *cft)
7793 {
7794 	return tg_get_cfs_quota(css_tg(css));
7795 }
7796 
7797 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7798 				   struct cftype *cftype, s64 cfs_quota_us)
7799 {
7800 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7801 }
7802 
7803 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7804 				   struct cftype *cft)
7805 {
7806 	return tg_get_cfs_period(css_tg(css));
7807 }
7808 
7809 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7810 				    struct cftype *cftype, u64 cfs_period_us)
7811 {
7812 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7813 }
7814 
7815 struct cfs_schedulable_data {
7816 	struct task_group *tg;
7817 	u64 period, quota;
7818 };
7819 
7820 /*
7821  * normalize group quota/period to be quota/max_period
7822  * note: units are usecs
7823  */
7824 static u64 normalize_cfs_quota(struct task_group *tg,
7825 			       struct cfs_schedulable_data *d)
7826 {
7827 	u64 quota, period;
7828 
7829 	if (tg == d->tg) {
7830 		period = d->period;
7831 		quota = d->quota;
7832 	} else {
7833 		period = tg_get_cfs_period(tg);
7834 		quota = tg_get_cfs_quota(tg);
7835 	}
7836 
7837 	/* note: these should typically be equivalent */
7838 	if (quota == RUNTIME_INF || quota == -1)
7839 		return RUNTIME_INF;
7840 
7841 	return to_ratio(period, quota);
7842 }
7843 
7844 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7845 {
7846 	struct cfs_schedulable_data *d = data;
7847 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7848 	s64 quota = 0, parent_quota = -1;
7849 
7850 	if (!tg->parent) {
7851 		quota = RUNTIME_INF;
7852 	} else {
7853 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7854 
7855 		quota = normalize_cfs_quota(tg, d);
7856 		parent_quota = parent_b->hierarchal_quota;
7857 
7858 		/*
7859 		 * ensure max(child_quota) <= parent_quota, inherit when no
7860 		 * limit is set
7861 		 */
7862 		if (quota == RUNTIME_INF)
7863 			quota = parent_quota;
7864 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7865 			return -EINVAL;
7866 	}
7867 	cfs_b->hierarchal_quota = quota;
7868 
7869 	return 0;
7870 }
7871 
7872 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7873 {
7874 	int ret;
7875 	struct cfs_schedulable_data data = {
7876 		.tg = tg,
7877 		.period = period,
7878 		.quota = quota,
7879 	};
7880 
7881 	if (quota != RUNTIME_INF) {
7882 		do_div(data.period, NSEC_PER_USEC);
7883 		do_div(data.quota, NSEC_PER_USEC);
7884 	}
7885 
7886 	rcu_read_lock();
7887 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7888 	rcu_read_unlock();
7889 
7890 	return ret;
7891 }
7892 
7893 static int cpu_stats_show(struct seq_file *sf, void *v)
7894 {
7895 	struct task_group *tg = css_tg(seq_css(sf));
7896 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897 
7898 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7899 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7900 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7901 
7902 	return 0;
7903 }
7904 #endif /* CONFIG_CFS_BANDWIDTH */
7905 #endif /* CONFIG_FAIR_GROUP_SCHED */
7906 
7907 #ifdef CONFIG_RT_GROUP_SCHED
7908 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7909 				struct cftype *cft, s64 val)
7910 {
7911 	return sched_group_set_rt_runtime(css_tg(css), val);
7912 }
7913 
7914 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7915 			       struct cftype *cft)
7916 {
7917 	return sched_group_rt_runtime(css_tg(css));
7918 }
7919 
7920 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7921 				    struct cftype *cftype, u64 rt_period_us)
7922 {
7923 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7924 }
7925 
7926 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7927 				   struct cftype *cft)
7928 {
7929 	return sched_group_rt_period(css_tg(css));
7930 }
7931 #endif /* CONFIG_RT_GROUP_SCHED */
7932 
7933 static struct cftype cpu_files[] = {
7934 #ifdef CONFIG_FAIR_GROUP_SCHED
7935 	{
7936 		.name = "shares",
7937 		.read_u64 = cpu_shares_read_u64,
7938 		.write_u64 = cpu_shares_write_u64,
7939 	},
7940 #endif
7941 #ifdef CONFIG_CFS_BANDWIDTH
7942 	{
7943 		.name = "cfs_quota_us",
7944 		.read_s64 = cpu_cfs_quota_read_s64,
7945 		.write_s64 = cpu_cfs_quota_write_s64,
7946 	},
7947 	{
7948 		.name = "cfs_period_us",
7949 		.read_u64 = cpu_cfs_period_read_u64,
7950 		.write_u64 = cpu_cfs_period_write_u64,
7951 	},
7952 	{
7953 		.name = "stat",
7954 		.seq_show = cpu_stats_show,
7955 	},
7956 #endif
7957 #ifdef CONFIG_RT_GROUP_SCHED
7958 	{
7959 		.name = "rt_runtime_us",
7960 		.read_s64 = cpu_rt_runtime_read,
7961 		.write_s64 = cpu_rt_runtime_write,
7962 	},
7963 	{
7964 		.name = "rt_period_us",
7965 		.read_u64 = cpu_rt_period_read_uint,
7966 		.write_u64 = cpu_rt_period_write_uint,
7967 	},
7968 #endif
7969 	{ }	/* terminate */
7970 };
7971 
7972 struct cgroup_subsys cpu_cgrp_subsys = {
7973 	.css_alloc	= cpu_cgroup_css_alloc,
7974 	.css_free	= cpu_cgroup_css_free,
7975 	.css_online	= cpu_cgroup_css_online,
7976 	.css_offline	= cpu_cgroup_css_offline,
7977 	.can_attach	= cpu_cgroup_can_attach,
7978 	.attach		= cpu_cgroup_attach,
7979 	.exit		= cpu_cgroup_exit,
7980 	.base_cftypes	= cpu_files,
7981 	.early_init	= 1,
7982 };
7983 
7984 #endif	/* CONFIG_CGROUP_SCHED */
7985 
7986 void dump_cpu_task(int cpu)
7987 {
7988 	pr_info("Task dump for CPU %d:\n", cpu);
7989 	sched_show_task(cpu_curr(cpu));
7990 }
7991