1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <uapi/linux/sched/types.h> 11 #include <linux/sched/loadavg.h> 12 #include <linux/cpuset.h> 13 #include <linux/delayacct.h> 14 #include <linux/init_task.h> 15 #include <linux/context_tracking.h> 16 #include <linux/rcupdate_wait.h> 17 18 #include <linux/blkdev.h> 19 #include <linux/kprobes.h> 20 #include <linux/mmu_context.h> 21 #include <linux/module.h> 22 #include <linux/nmi.h> 23 #include <linux/prefetch.h> 24 #include <linux/profile.h> 25 #include <linux/security.h> 26 #include <linux/syscalls.h> 27 28 #include <asm/switch_to.h> 29 #include <asm/tlb.h> 30 #ifdef CONFIG_PARAVIRT 31 #include <asm/paravirt.h> 32 #endif 33 34 #include "sched.h" 35 #include "../workqueue_internal.h" 36 #include "../smpboot.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/sched.h> 40 41 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 42 43 /* 44 * Debugging: various feature bits 45 */ 46 47 #define SCHED_FEAT(name, enabled) \ 48 (1UL << __SCHED_FEAT_##name) * enabled | 49 50 const_debug unsigned int sysctl_sched_features = 51 #include "features.h" 52 0; 53 54 #undef SCHED_FEAT 55 56 /* 57 * Number of tasks to iterate in a single balance run. 58 * Limited because this is done with IRQs disabled. 59 */ 60 const_debug unsigned int sysctl_sched_nr_migrate = 32; 61 62 /* 63 * period over which we average the RT time consumption, measured 64 * in ms. 65 * 66 * default: 1s 67 */ 68 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 69 70 /* 71 * period over which we measure -rt task CPU usage in us. 72 * default: 1s 73 */ 74 unsigned int sysctl_sched_rt_period = 1000000; 75 76 __read_mostly int scheduler_running; 77 78 /* 79 * part of the period that we allow rt tasks to run in us. 80 * default: 0.95s 81 */ 82 int sysctl_sched_rt_runtime = 950000; 83 84 /* CPUs with isolated domains */ 85 cpumask_var_t cpu_isolated_map; 86 87 /* 88 * this_rq_lock - lock this runqueue and disable interrupts. 89 */ 90 static struct rq *this_rq_lock(void) 91 __acquires(rq->lock) 92 { 93 struct rq *rq; 94 95 local_irq_disable(); 96 rq = this_rq(); 97 raw_spin_lock(&rq->lock); 98 99 return rq; 100 } 101 102 /* 103 * __task_rq_lock - lock the rq @p resides on. 104 */ 105 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 106 __acquires(rq->lock) 107 { 108 struct rq *rq; 109 110 lockdep_assert_held(&p->pi_lock); 111 112 for (;;) { 113 rq = task_rq(p); 114 raw_spin_lock(&rq->lock); 115 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 116 rq_pin_lock(rq, rf); 117 return rq; 118 } 119 raw_spin_unlock(&rq->lock); 120 121 while (unlikely(task_on_rq_migrating(p))) 122 cpu_relax(); 123 } 124 } 125 126 /* 127 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 128 */ 129 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 130 __acquires(p->pi_lock) 131 __acquires(rq->lock) 132 { 133 struct rq *rq; 134 135 for (;;) { 136 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 137 rq = task_rq(p); 138 raw_spin_lock(&rq->lock); 139 /* 140 * move_queued_task() task_rq_lock() 141 * 142 * ACQUIRE (rq->lock) 143 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 144 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 145 * [S] ->cpu = new_cpu [L] task_rq() 146 * [L] ->on_rq 147 * RELEASE (rq->lock) 148 * 149 * If we observe the old cpu in task_rq_lock, the acquire of 150 * the old rq->lock will fully serialize against the stores. 151 * 152 * If we observe the new CPU in task_rq_lock, the acquire will 153 * pair with the WMB to ensure we must then also see migrating. 154 */ 155 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 156 rq_pin_lock(rq, rf); 157 return rq; 158 } 159 raw_spin_unlock(&rq->lock); 160 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 161 162 while (unlikely(task_on_rq_migrating(p))) 163 cpu_relax(); 164 } 165 } 166 167 /* 168 * RQ-clock updating methods: 169 */ 170 171 static void update_rq_clock_task(struct rq *rq, s64 delta) 172 { 173 /* 174 * In theory, the compile should just see 0 here, and optimize out the call 175 * to sched_rt_avg_update. But I don't trust it... 176 */ 177 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 178 s64 steal = 0, irq_delta = 0; 179 #endif 180 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 181 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 182 183 /* 184 * Since irq_time is only updated on {soft,}irq_exit, we might run into 185 * this case when a previous update_rq_clock() happened inside a 186 * {soft,}irq region. 187 * 188 * When this happens, we stop ->clock_task and only update the 189 * prev_irq_time stamp to account for the part that fit, so that a next 190 * update will consume the rest. This ensures ->clock_task is 191 * monotonic. 192 * 193 * It does however cause some slight miss-attribution of {soft,}irq 194 * time, a more accurate solution would be to update the irq_time using 195 * the current rq->clock timestamp, except that would require using 196 * atomic ops. 197 */ 198 if (irq_delta > delta) 199 irq_delta = delta; 200 201 rq->prev_irq_time += irq_delta; 202 delta -= irq_delta; 203 #endif 204 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 205 if (static_key_false((¶virt_steal_rq_enabled))) { 206 steal = paravirt_steal_clock(cpu_of(rq)); 207 steal -= rq->prev_steal_time_rq; 208 209 if (unlikely(steal > delta)) 210 steal = delta; 211 212 rq->prev_steal_time_rq += steal; 213 delta -= steal; 214 } 215 #endif 216 217 rq->clock_task += delta; 218 219 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 220 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 221 sched_rt_avg_update(rq, irq_delta + steal); 222 #endif 223 } 224 225 void update_rq_clock(struct rq *rq) 226 { 227 s64 delta; 228 229 lockdep_assert_held(&rq->lock); 230 231 if (rq->clock_update_flags & RQCF_ACT_SKIP) 232 return; 233 234 #ifdef CONFIG_SCHED_DEBUG 235 rq->clock_update_flags |= RQCF_UPDATED; 236 #endif 237 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 238 if (delta < 0) 239 return; 240 rq->clock += delta; 241 update_rq_clock_task(rq, delta); 242 } 243 244 245 #ifdef CONFIG_SCHED_HRTICK 246 /* 247 * Use HR-timers to deliver accurate preemption points. 248 */ 249 250 static void hrtick_clear(struct rq *rq) 251 { 252 if (hrtimer_active(&rq->hrtick_timer)) 253 hrtimer_cancel(&rq->hrtick_timer); 254 } 255 256 /* 257 * High-resolution timer tick. 258 * Runs from hardirq context with interrupts disabled. 259 */ 260 static enum hrtimer_restart hrtick(struct hrtimer *timer) 261 { 262 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 263 264 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 265 266 raw_spin_lock(&rq->lock); 267 update_rq_clock(rq); 268 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 269 raw_spin_unlock(&rq->lock); 270 271 return HRTIMER_NORESTART; 272 } 273 274 #ifdef CONFIG_SMP 275 276 static void __hrtick_restart(struct rq *rq) 277 { 278 struct hrtimer *timer = &rq->hrtick_timer; 279 280 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 281 } 282 283 /* 284 * called from hardirq (IPI) context 285 */ 286 static void __hrtick_start(void *arg) 287 { 288 struct rq *rq = arg; 289 290 raw_spin_lock(&rq->lock); 291 __hrtick_restart(rq); 292 rq->hrtick_csd_pending = 0; 293 raw_spin_unlock(&rq->lock); 294 } 295 296 /* 297 * Called to set the hrtick timer state. 298 * 299 * called with rq->lock held and irqs disabled 300 */ 301 void hrtick_start(struct rq *rq, u64 delay) 302 { 303 struct hrtimer *timer = &rq->hrtick_timer; 304 ktime_t time; 305 s64 delta; 306 307 /* 308 * Don't schedule slices shorter than 10000ns, that just 309 * doesn't make sense and can cause timer DoS. 310 */ 311 delta = max_t(s64, delay, 10000LL); 312 time = ktime_add_ns(timer->base->get_time(), delta); 313 314 hrtimer_set_expires(timer, time); 315 316 if (rq == this_rq()) { 317 __hrtick_restart(rq); 318 } else if (!rq->hrtick_csd_pending) { 319 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 320 rq->hrtick_csd_pending = 1; 321 } 322 } 323 324 #else 325 /* 326 * Called to set the hrtick timer state. 327 * 328 * called with rq->lock held and irqs disabled 329 */ 330 void hrtick_start(struct rq *rq, u64 delay) 331 { 332 /* 333 * Don't schedule slices shorter than 10000ns, that just 334 * doesn't make sense. Rely on vruntime for fairness. 335 */ 336 delay = max_t(u64, delay, 10000LL); 337 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 338 HRTIMER_MODE_REL_PINNED); 339 } 340 #endif /* CONFIG_SMP */ 341 342 static void init_rq_hrtick(struct rq *rq) 343 { 344 #ifdef CONFIG_SMP 345 rq->hrtick_csd_pending = 0; 346 347 rq->hrtick_csd.flags = 0; 348 rq->hrtick_csd.func = __hrtick_start; 349 rq->hrtick_csd.info = rq; 350 #endif 351 352 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 353 rq->hrtick_timer.function = hrtick; 354 } 355 #else /* CONFIG_SCHED_HRTICK */ 356 static inline void hrtick_clear(struct rq *rq) 357 { 358 } 359 360 static inline void init_rq_hrtick(struct rq *rq) 361 { 362 } 363 #endif /* CONFIG_SCHED_HRTICK */ 364 365 /* 366 * cmpxchg based fetch_or, macro so it works for different integer types 367 */ 368 #define fetch_or(ptr, mask) \ 369 ({ \ 370 typeof(ptr) _ptr = (ptr); \ 371 typeof(mask) _mask = (mask); \ 372 typeof(*_ptr) _old, _val = *_ptr; \ 373 \ 374 for (;;) { \ 375 _old = cmpxchg(_ptr, _val, _val | _mask); \ 376 if (_old == _val) \ 377 break; \ 378 _val = _old; \ 379 } \ 380 _old; \ 381 }) 382 383 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 384 /* 385 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 386 * this avoids any races wrt polling state changes and thereby avoids 387 * spurious IPIs. 388 */ 389 static bool set_nr_and_not_polling(struct task_struct *p) 390 { 391 struct thread_info *ti = task_thread_info(p); 392 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 393 } 394 395 /* 396 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 397 * 398 * If this returns true, then the idle task promises to call 399 * sched_ttwu_pending() and reschedule soon. 400 */ 401 static bool set_nr_if_polling(struct task_struct *p) 402 { 403 struct thread_info *ti = task_thread_info(p); 404 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 405 406 for (;;) { 407 if (!(val & _TIF_POLLING_NRFLAG)) 408 return false; 409 if (val & _TIF_NEED_RESCHED) 410 return true; 411 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 412 if (old == val) 413 break; 414 val = old; 415 } 416 return true; 417 } 418 419 #else 420 static bool set_nr_and_not_polling(struct task_struct *p) 421 { 422 set_tsk_need_resched(p); 423 return true; 424 } 425 426 #ifdef CONFIG_SMP 427 static bool set_nr_if_polling(struct task_struct *p) 428 { 429 return false; 430 } 431 #endif 432 #endif 433 434 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 435 { 436 struct wake_q_node *node = &task->wake_q; 437 438 /* 439 * Atomically grab the task, if ->wake_q is !nil already it means 440 * its already queued (either by us or someone else) and will get the 441 * wakeup due to that. 442 * 443 * This cmpxchg() implies a full barrier, which pairs with the write 444 * barrier implied by the wakeup in wake_up_q(). 445 */ 446 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 447 return; 448 449 get_task_struct(task); 450 451 /* 452 * The head is context local, there can be no concurrency. 453 */ 454 *head->lastp = node; 455 head->lastp = &node->next; 456 } 457 458 void wake_up_q(struct wake_q_head *head) 459 { 460 struct wake_q_node *node = head->first; 461 462 while (node != WAKE_Q_TAIL) { 463 struct task_struct *task; 464 465 task = container_of(node, struct task_struct, wake_q); 466 BUG_ON(!task); 467 /* Task can safely be re-inserted now: */ 468 node = node->next; 469 task->wake_q.next = NULL; 470 471 /* 472 * wake_up_process() implies a wmb() to pair with the queueing 473 * in wake_q_add() so as not to miss wakeups. 474 */ 475 wake_up_process(task); 476 put_task_struct(task); 477 } 478 } 479 480 /* 481 * resched_curr - mark rq's current task 'to be rescheduled now'. 482 * 483 * On UP this means the setting of the need_resched flag, on SMP it 484 * might also involve a cross-CPU call to trigger the scheduler on 485 * the target CPU. 486 */ 487 void resched_curr(struct rq *rq) 488 { 489 struct task_struct *curr = rq->curr; 490 int cpu; 491 492 lockdep_assert_held(&rq->lock); 493 494 if (test_tsk_need_resched(curr)) 495 return; 496 497 cpu = cpu_of(rq); 498 499 if (cpu == smp_processor_id()) { 500 set_tsk_need_resched(curr); 501 set_preempt_need_resched(); 502 return; 503 } 504 505 if (set_nr_and_not_polling(curr)) 506 smp_send_reschedule(cpu); 507 else 508 trace_sched_wake_idle_without_ipi(cpu); 509 } 510 511 void resched_cpu(int cpu) 512 { 513 struct rq *rq = cpu_rq(cpu); 514 unsigned long flags; 515 516 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 517 return; 518 resched_curr(rq); 519 raw_spin_unlock_irqrestore(&rq->lock, flags); 520 } 521 522 #ifdef CONFIG_SMP 523 #ifdef CONFIG_NO_HZ_COMMON 524 /* 525 * In the semi idle case, use the nearest busy CPU for migrating timers 526 * from an idle CPU. This is good for power-savings. 527 * 528 * We don't do similar optimization for completely idle system, as 529 * selecting an idle CPU will add more delays to the timers than intended 530 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 531 */ 532 int get_nohz_timer_target(void) 533 { 534 int i, cpu = smp_processor_id(); 535 struct sched_domain *sd; 536 537 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 538 return cpu; 539 540 rcu_read_lock(); 541 for_each_domain(cpu, sd) { 542 for_each_cpu(i, sched_domain_span(sd)) { 543 if (cpu == i) 544 continue; 545 546 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 547 cpu = i; 548 goto unlock; 549 } 550 } 551 } 552 553 if (!is_housekeeping_cpu(cpu)) 554 cpu = housekeeping_any_cpu(); 555 unlock: 556 rcu_read_unlock(); 557 return cpu; 558 } 559 560 /* 561 * When add_timer_on() enqueues a timer into the timer wheel of an 562 * idle CPU then this timer might expire before the next timer event 563 * which is scheduled to wake up that CPU. In case of a completely 564 * idle system the next event might even be infinite time into the 565 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 566 * leaves the inner idle loop so the newly added timer is taken into 567 * account when the CPU goes back to idle and evaluates the timer 568 * wheel for the next timer event. 569 */ 570 static void wake_up_idle_cpu(int cpu) 571 { 572 struct rq *rq = cpu_rq(cpu); 573 574 if (cpu == smp_processor_id()) 575 return; 576 577 if (set_nr_and_not_polling(rq->idle)) 578 smp_send_reschedule(cpu); 579 else 580 trace_sched_wake_idle_without_ipi(cpu); 581 } 582 583 static bool wake_up_full_nohz_cpu(int cpu) 584 { 585 /* 586 * We just need the target to call irq_exit() and re-evaluate 587 * the next tick. The nohz full kick at least implies that. 588 * If needed we can still optimize that later with an 589 * empty IRQ. 590 */ 591 if (cpu_is_offline(cpu)) 592 return true; /* Don't try to wake offline CPUs. */ 593 if (tick_nohz_full_cpu(cpu)) { 594 if (cpu != smp_processor_id() || 595 tick_nohz_tick_stopped()) 596 tick_nohz_full_kick_cpu(cpu); 597 return true; 598 } 599 600 return false; 601 } 602 603 /* 604 * Wake up the specified CPU. If the CPU is going offline, it is the 605 * caller's responsibility to deal with the lost wakeup, for example, 606 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 607 */ 608 void wake_up_nohz_cpu(int cpu) 609 { 610 if (!wake_up_full_nohz_cpu(cpu)) 611 wake_up_idle_cpu(cpu); 612 } 613 614 static inline bool got_nohz_idle_kick(void) 615 { 616 int cpu = smp_processor_id(); 617 618 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 619 return false; 620 621 if (idle_cpu(cpu) && !need_resched()) 622 return true; 623 624 /* 625 * We can't run Idle Load Balance on this CPU for this time so we 626 * cancel it and clear NOHZ_BALANCE_KICK 627 */ 628 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 629 return false; 630 } 631 632 #else /* CONFIG_NO_HZ_COMMON */ 633 634 static inline bool got_nohz_idle_kick(void) 635 { 636 return false; 637 } 638 639 #endif /* CONFIG_NO_HZ_COMMON */ 640 641 #ifdef CONFIG_NO_HZ_FULL 642 bool sched_can_stop_tick(struct rq *rq) 643 { 644 int fifo_nr_running; 645 646 /* Deadline tasks, even if single, need the tick */ 647 if (rq->dl.dl_nr_running) 648 return false; 649 650 /* 651 * If there are more than one RR tasks, we need the tick to effect the 652 * actual RR behaviour. 653 */ 654 if (rq->rt.rr_nr_running) { 655 if (rq->rt.rr_nr_running == 1) 656 return true; 657 else 658 return false; 659 } 660 661 /* 662 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 663 * forced preemption between FIFO tasks. 664 */ 665 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 666 if (fifo_nr_running) 667 return true; 668 669 /* 670 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 671 * if there's more than one we need the tick for involuntary 672 * preemption. 673 */ 674 if (rq->nr_running > 1) 675 return false; 676 677 return true; 678 } 679 #endif /* CONFIG_NO_HZ_FULL */ 680 681 void sched_avg_update(struct rq *rq) 682 { 683 s64 period = sched_avg_period(); 684 685 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 686 /* 687 * Inline assembly required to prevent the compiler 688 * optimising this loop into a divmod call. 689 * See __iter_div_u64_rem() for another example of this. 690 */ 691 asm("" : "+rm" (rq->age_stamp)); 692 rq->age_stamp += period; 693 rq->rt_avg /= 2; 694 } 695 } 696 697 #endif /* CONFIG_SMP */ 698 699 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 700 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 701 /* 702 * Iterate task_group tree rooted at *from, calling @down when first entering a 703 * node and @up when leaving it for the final time. 704 * 705 * Caller must hold rcu_lock or sufficient equivalent. 706 */ 707 int walk_tg_tree_from(struct task_group *from, 708 tg_visitor down, tg_visitor up, void *data) 709 { 710 struct task_group *parent, *child; 711 int ret; 712 713 parent = from; 714 715 down: 716 ret = (*down)(parent, data); 717 if (ret) 718 goto out; 719 list_for_each_entry_rcu(child, &parent->children, siblings) { 720 parent = child; 721 goto down; 722 723 up: 724 continue; 725 } 726 ret = (*up)(parent, data); 727 if (ret || parent == from) 728 goto out; 729 730 child = parent; 731 parent = parent->parent; 732 if (parent) 733 goto up; 734 out: 735 return ret; 736 } 737 738 int tg_nop(struct task_group *tg, void *data) 739 { 740 return 0; 741 } 742 #endif 743 744 static void set_load_weight(struct task_struct *p) 745 { 746 int prio = p->static_prio - MAX_RT_PRIO; 747 struct load_weight *load = &p->se.load; 748 749 /* 750 * SCHED_IDLE tasks get minimal weight: 751 */ 752 if (idle_policy(p->policy)) { 753 load->weight = scale_load(WEIGHT_IDLEPRIO); 754 load->inv_weight = WMULT_IDLEPRIO; 755 return; 756 } 757 758 load->weight = scale_load(sched_prio_to_weight[prio]); 759 load->inv_weight = sched_prio_to_wmult[prio]; 760 } 761 762 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 763 { 764 update_rq_clock(rq); 765 if (!(flags & ENQUEUE_RESTORE)) 766 sched_info_queued(rq, p); 767 p->sched_class->enqueue_task(rq, p, flags); 768 } 769 770 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 771 { 772 update_rq_clock(rq); 773 if (!(flags & DEQUEUE_SAVE)) 774 sched_info_dequeued(rq, p); 775 p->sched_class->dequeue_task(rq, p, flags); 776 } 777 778 void activate_task(struct rq *rq, struct task_struct *p, int flags) 779 { 780 if (task_contributes_to_load(p)) 781 rq->nr_uninterruptible--; 782 783 enqueue_task(rq, p, flags); 784 } 785 786 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 787 { 788 if (task_contributes_to_load(p)) 789 rq->nr_uninterruptible++; 790 791 dequeue_task(rq, p, flags); 792 } 793 794 void sched_set_stop_task(int cpu, struct task_struct *stop) 795 { 796 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 797 struct task_struct *old_stop = cpu_rq(cpu)->stop; 798 799 if (stop) { 800 /* 801 * Make it appear like a SCHED_FIFO task, its something 802 * userspace knows about and won't get confused about. 803 * 804 * Also, it will make PI more or less work without too 805 * much confusion -- but then, stop work should not 806 * rely on PI working anyway. 807 */ 808 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 809 810 stop->sched_class = &stop_sched_class; 811 } 812 813 cpu_rq(cpu)->stop = stop; 814 815 if (old_stop) { 816 /* 817 * Reset it back to a normal scheduling class so that 818 * it can die in pieces. 819 */ 820 old_stop->sched_class = &rt_sched_class; 821 } 822 } 823 824 /* 825 * __normal_prio - return the priority that is based on the static prio 826 */ 827 static inline int __normal_prio(struct task_struct *p) 828 { 829 return p->static_prio; 830 } 831 832 /* 833 * Calculate the expected normal priority: i.e. priority 834 * without taking RT-inheritance into account. Might be 835 * boosted by interactivity modifiers. Changes upon fork, 836 * setprio syscalls, and whenever the interactivity 837 * estimator recalculates. 838 */ 839 static inline int normal_prio(struct task_struct *p) 840 { 841 int prio; 842 843 if (task_has_dl_policy(p)) 844 prio = MAX_DL_PRIO-1; 845 else if (task_has_rt_policy(p)) 846 prio = MAX_RT_PRIO-1 - p->rt_priority; 847 else 848 prio = __normal_prio(p); 849 return prio; 850 } 851 852 /* 853 * Calculate the current priority, i.e. the priority 854 * taken into account by the scheduler. This value might 855 * be boosted by RT tasks, or might be boosted by 856 * interactivity modifiers. Will be RT if the task got 857 * RT-boosted. If not then it returns p->normal_prio. 858 */ 859 static int effective_prio(struct task_struct *p) 860 { 861 p->normal_prio = normal_prio(p); 862 /* 863 * If we are RT tasks or we were boosted to RT priority, 864 * keep the priority unchanged. Otherwise, update priority 865 * to the normal priority: 866 */ 867 if (!rt_prio(p->prio)) 868 return p->normal_prio; 869 return p->prio; 870 } 871 872 /** 873 * task_curr - is this task currently executing on a CPU? 874 * @p: the task in question. 875 * 876 * Return: 1 if the task is currently executing. 0 otherwise. 877 */ 878 inline int task_curr(const struct task_struct *p) 879 { 880 return cpu_curr(task_cpu(p)) == p; 881 } 882 883 /* 884 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 885 * use the balance_callback list if you want balancing. 886 * 887 * this means any call to check_class_changed() must be followed by a call to 888 * balance_callback(). 889 */ 890 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 891 const struct sched_class *prev_class, 892 int oldprio) 893 { 894 if (prev_class != p->sched_class) { 895 if (prev_class->switched_from) 896 prev_class->switched_from(rq, p); 897 898 p->sched_class->switched_to(rq, p); 899 } else if (oldprio != p->prio || dl_task(p)) 900 p->sched_class->prio_changed(rq, p, oldprio); 901 } 902 903 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 904 { 905 const struct sched_class *class; 906 907 if (p->sched_class == rq->curr->sched_class) { 908 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 909 } else { 910 for_each_class(class) { 911 if (class == rq->curr->sched_class) 912 break; 913 if (class == p->sched_class) { 914 resched_curr(rq); 915 break; 916 } 917 } 918 } 919 920 /* 921 * A queue event has occurred, and we're going to schedule. In 922 * this case, we can save a useless back to back clock update. 923 */ 924 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 925 rq_clock_skip_update(rq, true); 926 } 927 928 #ifdef CONFIG_SMP 929 /* 930 * This is how migration works: 931 * 932 * 1) we invoke migration_cpu_stop() on the target CPU using 933 * stop_one_cpu(). 934 * 2) stopper starts to run (implicitly forcing the migrated thread 935 * off the CPU) 936 * 3) it checks whether the migrated task is still in the wrong runqueue. 937 * 4) if it's in the wrong runqueue then the migration thread removes 938 * it and puts it into the right queue. 939 * 5) stopper completes and stop_one_cpu() returns and the migration 940 * is done. 941 */ 942 943 /* 944 * move_queued_task - move a queued task to new rq. 945 * 946 * Returns (locked) new rq. Old rq's lock is released. 947 */ 948 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 949 { 950 lockdep_assert_held(&rq->lock); 951 952 p->on_rq = TASK_ON_RQ_MIGRATING; 953 dequeue_task(rq, p, 0); 954 set_task_cpu(p, new_cpu); 955 raw_spin_unlock(&rq->lock); 956 957 rq = cpu_rq(new_cpu); 958 959 raw_spin_lock(&rq->lock); 960 BUG_ON(task_cpu(p) != new_cpu); 961 enqueue_task(rq, p, 0); 962 p->on_rq = TASK_ON_RQ_QUEUED; 963 check_preempt_curr(rq, p, 0); 964 965 return rq; 966 } 967 968 struct migration_arg { 969 struct task_struct *task; 970 int dest_cpu; 971 }; 972 973 /* 974 * Move (not current) task off this CPU, onto the destination CPU. We're doing 975 * this because either it can't run here any more (set_cpus_allowed() 976 * away from this CPU, or CPU going down), or because we're 977 * attempting to rebalance this task on exec (sched_exec). 978 * 979 * So we race with normal scheduler movements, but that's OK, as long 980 * as the task is no longer on this CPU. 981 */ 982 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 983 { 984 if (unlikely(!cpu_active(dest_cpu))) 985 return rq; 986 987 /* Affinity changed (again). */ 988 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 989 return rq; 990 991 rq = move_queued_task(rq, p, dest_cpu); 992 993 return rq; 994 } 995 996 /* 997 * migration_cpu_stop - this will be executed by a highprio stopper thread 998 * and performs thread migration by bumping thread off CPU then 999 * 'pushing' onto another runqueue. 1000 */ 1001 static int migration_cpu_stop(void *data) 1002 { 1003 struct migration_arg *arg = data; 1004 struct task_struct *p = arg->task; 1005 struct rq *rq = this_rq(); 1006 1007 /* 1008 * The original target CPU might have gone down and we might 1009 * be on another CPU but it doesn't matter. 1010 */ 1011 local_irq_disable(); 1012 /* 1013 * We need to explicitly wake pending tasks before running 1014 * __migrate_task() such that we will not miss enforcing cpus_allowed 1015 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1016 */ 1017 sched_ttwu_pending(); 1018 1019 raw_spin_lock(&p->pi_lock); 1020 raw_spin_lock(&rq->lock); 1021 /* 1022 * If task_rq(p) != rq, it cannot be migrated here, because we're 1023 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1024 * we're holding p->pi_lock. 1025 */ 1026 if (task_rq(p) == rq) { 1027 if (task_on_rq_queued(p)) 1028 rq = __migrate_task(rq, p, arg->dest_cpu); 1029 else 1030 p->wake_cpu = arg->dest_cpu; 1031 } 1032 raw_spin_unlock(&rq->lock); 1033 raw_spin_unlock(&p->pi_lock); 1034 1035 local_irq_enable(); 1036 return 0; 1037 } 1038 1039 /* 1040 * sched_class::set_cpus_allowed must do the below, but is not required to 1041 * actually call this function. 1042 */ 1043 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1044 { 1045 cpumask_copy(&p->cpus_allowed, new_mask); 1046 p->nr_cpus_allowed = cpumask_weight(new_mask); 1047 } 1048 1049 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1050 { 1051 struct rq *rq = task_rq(p); 1052 bool queued, running; 1053 1054 lockdep_assert_held(&p->pi_lock); 1055 1056 queued = task_on_rq_queued(p); 1057 running = task_current(rq, p); 1058 1059 if (queued) { 1060 /* 1061 * Because __kthread_bind() calls this on blocked tasks without 1062 * holding rq->lock. 1063 */ 1064 lockdep_assert_held(&rq->lock); 1065 dequeue_task(rq, p, DEQUEUE_SAVE); 1066 } 1067 if (running) 1068 put_prev_task(rq, p); 1069 1070 p->sched_class->set_cpus_allowed(p, new_mask); 1071 1072 if (queued) 1073 enqueue_task(rq, p, ENQUEUE_RESTORE); 1074 if (running) 1075 set_curr_task(rq, p); 1076 } 1077 1078 /* 1079 * Change a given task's CPU affinity. Migrate the thread to a 1080 * proper CPU and schedule it away if the CPU it's executing on 1081 * is removed from the allowed bitmask. 1082 * 1083 * NOTE: the caller must have a valid reference to the task, the 1084 * task must not exit() & deallocate itself prematurely. The 1085 * call is not atomic; no spinlocks may be held. 1086 */ 1087 static int __set_cpus_allowed_ptr(struct task_struct *p, 1088 const struct cpumask *new_mask, bool check) 1089 { 1090 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1091 unsigned int dest_cpu; 1092 struct rq_flags rf; 1093 struct rq *rq; 1094 int ret = 0; 1095 1096 rq = task_rq_lock(p, &rf); 1097 update_rq_clock(rq); 1098 1099 if (p->flags & PF_KTHREAD) { 1100 /* 1101 * Kernel threads are allowed on online && !active CPUs 1102 */ 1103 cpu_valid_mask = cpu_online_mask; 1104 } 1105 1106 /* 1107 * Must re-check here, to close a race against __kthread_bind(), 1108 * sched_setaffinity() is not guaranteed to observe the flag. 1109 */ 1110 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1111 ret = -EINVAL; 1112 goto out; 1113 } 1114 1115 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1116 goto out; 1117 1118 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1119 ret = -EINVAL; 1120 goto out; 1121 } 1122 1123 do_set_cpus_allowed(p, new_mask); 1124 1125 if (p->flags & PF_KTHREAD) { 1126 /* 1127 * For kernel threads that do indeed end up on online && 1128 * !active we want to ensure they are strict per-CPU threads. 1129 */ 1130 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1131 !cpumask_intersects(new_mask, cpu_active_mask) && 1132 p->nr_cpus_allowed != 1); 1133 } 1134 1135 /* Can the task run on the task's current CPU? If so, we're done */ 1136 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1137 goto out; 1138 1139 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1140 if (task_running(rq, p) || p->state == TASK_WAKING) { 1141 struct migration_arg arg = { p, dest_cpu }; 1142 /* Need help from migration thread: drop lock and wait. */ 1143 task_rq_unlock(rq, p, &rf); 1144 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1145 tlb_migrate_finish(p->mm); 1146 return 0; 1147 } else if (task_on_rq_queued(p)) { 1148 /* 1149 * OK, since we're going to drop the lock immediately 1150 * afterwards anyway. 1151 */ 1152 rq_unpin_lock(rq, &rf); 1153 rq = move_queued_task(rq, p, dest_cpu); 1154 rq_repin_lock(rq, &rf); 1155 } 1156 out: 1157 task_rq_unlock(rq, p, &rf); 1158 1159 return ret; 1160 } 1161 1162 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1163 { 1164 return __set_cpus_allowed_ptr(p, new_mask, false); 1165 } 1166 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1167 1168 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1169 { 1170 #ifdef CONFIG_SCHED_DEBUG 1171 /* 1172 * We should never call set_task_cpu() on a blocked task, 1173 * ttwu() will sort out the placement. 1174 */ 1175 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1176 !p->on_rq); 1177 1178 /* 1179 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1180 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1181 * time relying on p->on_rq. 1182 */ 1183 WARN_ON_ONCE(p->state == TASK_RUNNING && 1184 p->sched_class == &fair_sched_class && 1185 (p->on_rq && !task_on_rq_migrating(p))); 1186 1187 #ifdef CONFIG_LOCKDEP 1188 /* 1189 * The caller should hold either p->pi_lock or rq->lock, when changing 1190 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1191 * 1192 * sched_move_task() holds both and thus holding either pins the cgroup, 1193 * see task_group(). 1194 * 1195 * Furthermore, all task_rq users should acquire both locks, see 1196 * task_rq_lock(). 1197 */ 1198 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1199 lockdep_is_held(&task_rq(p)->lock))); 1200 #endif 1201 #endif 1202 1203 trace_sched_migrate_task(p, new_cpu); 1204 1205 if (task_cpu(p) != new_cpu) { 1206 if (p->sched_class->migrate_task_rq) 1207 p->sched_class->migrate_task_rq(p); 1208 p->se.nr_migrations++; 1209 perf_event_task_migrate(p); 1210 } 1211 1212 __set_task_cpu(p, new_cpu); 1213 } 1214 1215 static void __migrate_swap_task(struct task_struct *p, int cpu) 1216 { 1217 if (task_on_rq_queued(p)) { 1218 struct rq *src_rq, *dst_rq; 1219 1220 src_rq = task_rq(p); 1221 dst_rq = cpu_rq(cpu); 1222 1223 p->on_rq = TASK_ON_RQ_MIGRATING; 1224 deactivate_task(src_rq, p, 0); 1225 set_task_cpu(p, cpu); 1226 activate_task(dst_rq, p, 0); 1227 p->on_rq = TASK_ON_RQ_QUEUED; 1228 check_preempt_curr(dst_rq, p, 0); 1229 } else { 1230 /* 1231 * Task isn't running anymore; make it appear like we migrated 1232 * it before it went to sleep. This means on wakeup we make the 1233 * previous CPU our target instead of where it really is. 1234 */ 1235 p->wake_cpu = cpu; 1236 } 1237 } 1238 1239 struct migration_swap_arg { 1240 struct task_struct *src_task, *dst_task; 1241 int src_cpu, dst_cpu; 1242 }; 1243 1244 static int migrate_swap_stop(void *data) 1245 { 1246 struct migration_swap_arg *arg = data; 1247 struct rq *src_rq, *dst_rq; 1248 int ret = -EAGAIN; 1249 1250 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1251 return -EAGAIN; 1252 1253 src_rq = cpu_rq(arg->src_cpu); 1254 dst_rq = cpu_rq(arg->dst_cpu); 1255 1256 double_raw_lock(&arg->src_task->pi_lock, 1257 &arg->dst_task->pi_lock); 1258 double_rq_lock(src_rq, dst_rq); 1259 1260 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1261 goto unlock; 1262 1263 if (task_cpu(arg->src_task) != arg->src_cpu) 1264 goto unlock; 1265 1266 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1267 goto unlock; 1268 1269 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1270 goto unlock; 1271 1272 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1273 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1274 1275 ret = 0; 1276 1277 unlock: 1278 double_rq_unlock(src_rq, dst_rq); 1279 raw_spin_unlock(&arg->dst_task->pi_lock); 1280 raw_spin_unlock(&arg->src_task->pi_lock); 1281 1282 return ret; 1283 } 1284 1285 /* 1286 * Cross migrate two tasks 1287 */ 1288 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1289 { 1290 struct migration_swap_arg arg; 1291 int ret = -EINVAL; 1292 1293 arg = (struct migration_swap_arg){ 1294 .src_task = cur, 1295 .src_cpu = task_cpu(cur), 1296 .dst_task = p, 1297 .dst_cpu = task_cpu(p), 1298 }; 1299 1300 if (arg.src_cpu == arg.dst_cpu) 1301 goto out; 1302 1303 /* 1304 * These three tests are all lockless; this is OK since all of them 1305 * will be re-checked with proper locks held further down the line. 1306 */ 1307 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1308 goto out; 1309 1310 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1311 goto out; 1312 1313 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1314 goto out; 1315 1316 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1317 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1318 1319 out: 1320 return ret; 1321 } 1322 1323 /* 1324 * wait_task_inactive - wait for a thread to unschedule. 1325 * 1326 * If @match_state is nonzero, it's the @p->state value just checked and 1327 * not expected to change. If it changes, i.e. @p might have woken up, 1328 * then return zero. When we succeed in waiting for @p to be off its CPU, 1329 * we return a positive number (its total switch count). If a second call 1330 * a short while later returns the same number, the caller can be sure that 1331 * @p has remained unscheduled the whole time. 1332 * 1333 * The caller must ensure that the task *will* unschedule sometime soon, 1334 * else this function might spin for a *long* time. This function can't 1335 * be called with interrupts off, or it may introduce deadlock with 1336 * smp_call_function() if an IPI is sent by the same process we are 1337 * waiting to become inactive. 1338 */ 1339 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1340 { 1341 int running, queued; 1342 struct rq_flags rf; 1343 unsigned long ncsw; 1344 struct rq *rq; 1345 1346 for (;;) { 1347 /* 1348 * We do the initial early heuristics without holding 1349 * any task-queue locks at all. We'll only try to get 1350 * the runqueue lock when things look like they will 1351 * work out! 1352 */ 1353 rq = task_rq(p); 1354 1355 /* 1356 * If the task is actively running on another CPU 1357 * still, just relax and busy-wait without holding 1358 * any locks. 1359 * 1360 * NOTE! Since we don't hold any locks, it's not 1361 * even sure that "rq" stays as the right runqueue! 1362 * But we don't care, since "task_running()" will 1363 * return false if the runqueue has changed and p 1364 * is actually now running somewhere else! 1365 */ 1366 while (task_running(rq, p)) { 1367 if (match_state && unlikely(p->state != match_state)) 1368 return 0; 1369 cpu_relax(); 1370 } 1371 1372 /* 1373 * Ok, time to look more closely! We need the rq 1374 * lock now, to be *sure*. If we're wrong, we'll 1375 * just go back and repeat. 1376 */ 1377 rq = task_rq_lock(p, &rf); 1378 trace_sched_wait_task(p); 1379 running = task_running(rq, p); 1380 queued = task_on_rq_queued(p); 1381 ncsw = 0; 1382 if (!match_state || p->state == match_state) 1383 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1384 task_rq_unlock(rq, p, &rf); 1385 1386 /* 1387 * If it changed from the expected state, bail out now. 1388 */ 1389 if (unlikely(!ncsw)) 1390 break; 1391 1392 /* 1393 * Was it really running after all now that we 1394 * checked with the proper locks actually held? 1395 * 1396 * Oops. Go back and try again.. 1397 */ 1398 if (unlikely(running)) { 1399 cpu_relax(); 1400 continue; 1401 } 1402 1403 /* 1404 * It's not enough that it's not actively running, 1405 * it must be off the runqueue _entirely_, and not 1406 * preempted! 1407 * 1408 * So if it was still runnable (but just not actively 1409 * running right now), it's preempted, and we should 1410 * yield - it could be a while. 1411 */ 1412 if (unlikely(queued)) { 1413 ktime_t to = NSEC_PER_SEC / HZ; 1414 1415 set_current_state(TASK_UNINTERRUPTIBLE); 1416 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1417 continue; 1418 } 1419 1420 /* 1421 * Ahh, all good. It wasn't running, and it wasn't 1422 * runnable, which means that it will never become 1423 * running in the future either. We're all done! 1424 */ 1425 break; 1426 } 1427 1428 return ncsw; 1429 } 1430 1431 /*** 1432 * kick_process - kick a running thread to enter/exit the kernel 1433 * @p: the to-be-kicked thread 1434 * 1435 * Cause a process which is running on another CPU to enter 1436 * kernel-mode, without any delay. (to get signals handled.) 1437 * 1438 * NOTE: this function doesn't have to take the runqueue lock, 1439 * because all it wants to ensure is that the remote task enters 1440 * the kernel. If the IPI races and the task has been migrated 1441 * to another CPU then no harm is done and the purpose has been 1442 * achieved as well. 1443 */ 1444 void kick_process(struct task_struct *p) 1445 { 1446 int cpu; 1447 1448 preempt_disable(); 1449 cpu = task_cpu(p); 1450 if ((cpu != smp_processor_id()) && task_curr(p)) 1451 smp_send_reschedule(cpu); 1452 preempt_enable(); 1453 } 1454 EXPORT_SYMBOL_GPL(kick_process); 1455 1456 /* 1457 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1458 * 1459 * A few notes on cpu_active vs cpu_online: 1460 * 1461 * - cpu_active must be a subset of cpu_online 1462 * 1463 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1464 * see __set_cpus_allowed_ptr(). At this point the newly online 1465 * CPU isn't yet part of the sched domains, and balancing will not 1466 * see it. 1467 * 1468 * - on CPU-down we clear cpu_active() to mask the sched domains and 1469 * avoid the load balancer to place new tasks on the to be removed 1470 * CPU. Existing tasks will remain running there and will be taken 1471 * off. 1472 * 1473 * This means that fallback selection must not select !active CPUs. 1474 * And can assume that any active CPU must be online. Conversely 1475 * select_task_rq() below may allow selection of !active CPUs in order 1476 * to satisfy the above rules. 1477 */ 1478 static int select_fallback_rq(int cpu, struct task_struct *p) 1479 { 1480 int nid = cpu_to_node(cpu); 1481 const struct cpumask *nodemask = NULL; 1482 enum { cpuset, possible, fail } state = cpuset; 1483 int dest_cpu; 1484 1485 /* 1486 * If the node that the CPU is on has been offlined, cpu_to_node() 1487 * will return -1. There is no CPU on the node, and we should 1488 * select the CPU on the other node. 1489 */ 1490 if (nid != -1) { 1491 nodemask = cpumask_of_node(nid); 1492 1493 /* Look for allowed, online CPU in same node. */ 1494 for_each_cpu(dest_cpu, nodemask) { 1495 if (!cpu_active(dest_cpu)) 1496 continue; 1497 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1498 return dest_cpu; 1499 } 1500 } 1501 1502 for (;;) { 1503 /* Any allowed, online CPU? */ 1504 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1505 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1506 continue; 1507 if (!cpu_online(dest_cpu)) 1508 continue; 1509 goto out; 1510 } 1511 1512 /* No more Mr. Nice Guy. */ 1513 switch (state) { 1514 case cpuset: 1515 if (IS_ENABLED(CONFIG_CPUSETS)) { 1516 cpuset_cpus_allowed_fallback(p); 1517 state = possible; 1518 break; 1519 } 1520 /* Fall-through */ 1521 case possible: 1522 do_set_cpus_allowed(p, cpu_possible_mask); 1523 state = fail; 1524 break; 1525 1526 case fail: 1527 BUG(); 1528 break; 1529 } 1530 } 1531 1532 out: 1533 if (state != cpuset) { 1534 /* 1535 * Don't tell them about moving exiting tasks or 1536 * kernel threads (both mm NULL), since they never 1537 * leave kernel. 1538 */ 1539 if (p->mm && printk_ratelimit()) { 1540 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1541 task_pid_nr(p), p->comm, cpu); 1542 } 1543 } 1544 1545 return dest_cpu; 1546 } 1547 1548 /* 1549 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1550 */ 1551 static inline 1552 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1553 { 1554 lockdep_assert_held(&p->pi_lock); 1555 1556 if (p->nr_cpus_allowed > 1) 1557 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1558 else 1559 cpu = cpumask_any(&p->cpus_allowed); 1560 1561 /* 1562 * In order not to call set_task_cpu() on a blocking task we need 1563 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1564 * CPU. 1565 * 1566 * Since this is common to all placement strategies, this lives here. 1567 * 1568 * [ this allows ->select_task() to simply return task_cpu(p) and 1569 * not worry about this generic constraint ] 1570 */ 1571 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1572 !cpu_online(cpu))) 1573 cpu = select_fallback_rq(task_cpu(p), p); 1574 1575 return cpu; 1576 } 1577 1578 static void update_avg(u64 *avg, u64 sample) 1579 { 1580 s64 diff = sample - *avg; 1581 *avg += diff >> 3; 1582 } 1583 1584 #else 1585 1586 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1587 const struct cpumask *new_mask, bool check) 1588 { 1589 return set_cpus_allowed_ptr(p, new_mask); 1590 } 1591 1592 #endif /* CONFIG_SMP */ 1593 1594 static void 1595 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1596 { 1597 struct rq *rq; 1598 1599 if (!schedstat_enabled()) 1600 return; 1601 1602 rq = this_rq(); 1603 1604 #ifdef CONFIG_SMP 1605 if (cpu == rq->cpu) { 1606 schedstat_inc(rq->ttwu_local); 1607 schedstat_inc(p->se.statistics.nr_wakeups_local); 1608 } else { 1609 struct sched_domain *sd; 1610 1611 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1612 rcu_read_lock(); 1613 for_each_domain(rq->cpu, sd) { 1614 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1615 schedstat_inc(sd->ttwu_wake_remote); 1616 break; 1617 } 1618 } 1619 rcu_read_unlock(); 1620 } 1621 1622 if (wake_flags & WF_MIGRATED) 1623 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1624 #endif /* CONFIG_SMP */ 1625 1626 schedstat_inc(rq->ttwu_count); 1627 schedstat_inc(p->se.statistics.nr_wakeups); 1628 1629 if (wake_flags & WF_SYNC) 1630 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1631 } 1632 1633 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1634 { 1635 activate_task(rq, p, en_flags); 1636 p->on_rq = TASK_ON_RQ_QUEUED; 1637 1638 /* If a worker is waking up, notify the workqueue: */ 1639 if (p->flags & PF_WQ_WORKER) 1640 wq_worker_waking_up(p, cpu_of(rq)); 1641 } 1642 1643 /* 1644 * Mark the task runnable and perform wakeup-preemption. 1645 */ 1646 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1647 struct rq_flags *rf) 1648 { 1649 check_preempt_curr(rq, p, wake_flags); 1650 p->state = TASK_RUNNING; 1651 trace_sched_wakeup(p); 1652 1653 #ifdef CONFIG_SMP 1654 if (p->sched_class->task_woken) { 1655 /* 1656 * Our task @p is fully woken up and running; so its safe to 1657 * drop the rq->lock, hereafter rq is only used for statistics. 1658 */ 1659 rq_unpin_lock(rq, rf); 1660 p->sched_class->task_woken(rq, p); 1661 rq_repin_lock(rq, rf); 1662 } 1663 1664 if (rq->idle_stamp) { 1665 u64 delta = rq_clock(rq) - rq->idle_stamp; 1666 u64 max = 2*rq->max_idle_balance_cost; 1667 1668 update_avg(&rq->avg_idle, delta); 1669 1670 if (rq->avg_idle > max) 1671 rq->avg_idle = max; 1672 1673 rq->idle_stamp = 0; 1674 } 1675 #endif 1676 } 1677 1678 static void 1679 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1680 struct rq_flags *rf) 1681 { 1682 int en_flags = ENQUEUE_WAKEUP; 1683 1684 lockdep_assert_held(&rq->lock); 1685 1686 #ifdef CONFIG_SMP 1687 if (p->sched_contributes_to_load) 1688 rq->nr_uninterruptible--; 1689 1690 if (wake_flags & WF_MIGRATED) 1691 en_flags |= ENQUEUE_MIGRATED; 1692 #endif 1693 1694 ttwu_activate(rq, p, en_flags); 1695 ttwu_do_wakeup(rq, p, wake_flags, rf); 1696 } 1697 1698 /* 1699 * Called in case the task @p isn't fully descheduled from its runqueue, 1700 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1701 * since all we need to do is flip p->state to TASK_RUNNING, since 1702 * the task is still ->on_rq. 1703 */ 1704 static int ttwu_remote(struct task_struct *p, int wake_flags) 1705 { 1706 struct rq_flags rf; 1707 struct rq *rq; 1708 int ret = 0; 1709 1710 rq = __task_rq_lock(p, &rf); 1711 if (task_on_rq_queued(p)) { 1712 /* check_preempt_curr() may use rq clock */ 1713 update_rq_clock(rq); 1714 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1715 ret = 1; 1716 } 1717 __task_rq_unlock(rq, &rf); 1718 1719 return ret; 1720 } 1721 1722 #ifdef CONFIG_SMP 1723 void sched_ttwu_pending(void) 1724 { 1725 struct rq *rq = this_rq(); 1726 struct llist_node *llist = llist_del_all(&rq->wake_list); 1727 struct task_struct *p; 1728 unsigned long flags; 1729 struct rq_flags rf; 1730 1731 if (!llist) 1732 return; 1733 1734 raw_spin_lock_irqsave(&rq->lock, flags); 1735 rq_pin_lock(rq, &rf); 1736 1737 while (llist) { 1738 int wake_flags = 0; 1739 1740 p = llist_entry(llist, struct task_struct, wake_entry); 1741 llist = llist_next(llist); 1742 1743 if (p->sched_remote_wakeup) 1744 wake_flags = WF_MIGRATED; 1745 1746 ttwu_do_activate(rq, p, wake_flags, &rf); 1747 } 1748 1749 rq_unpin_lock(rq, &rf); 1750 raw_spin_unlock_irqrestore(&rq->lock, flags); 1751 } 1752 1753 void scheduler_ipi(void) 1754 { 1755 /* 1756 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1757 * TIF_NEED_RESCHED remotely (for the first time) will also send 1758 * this IPI. 1759 */ 1760 preempt_fold_need_resched(); 1761 1762 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1763 return; 1764 1765 /* 1766 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1767 * traditionally all their work was done from the interrupt return 1768 * path. Now that we actually do some work, we need to make sure 1769 * we do call them. 1770 * 1771 * Some archs already do call them, luckily irq_enter/exit nest 1772 * properly. 1773 * 1774 * Arguably we should visit all archs and update all handlers, 1775 * however a fair share of IPIs are still resched only so this would 1776 * somewhat pessimize the simple resched case. 1777 */ 1778 irq_enter(); 1779 sched_ttwu_pending(); 1780 1781 /* 1782 * Check if someone kicked us for doing the nohz idle load balance. 1783 */ 1784 if (unlikely(got_nohz_idle_kick())) { 1785 this_rq()->idle_balance = 1; 1786 raise_softirq_irqoff(SCHED_SOFTIRQ); 1787 } 1788 irq_exit(); 1789 } 1790 1791 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1792 { 1793 struct rq *rq = cpu_rq(cpu); 1794 1795 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1796 1797 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1798 if (!set_nr_if_polling(rq->idle)) 1799 smp_send_reschedule(cpu); 1800 else 1801 trace_sched_wake_idle_without_ipi(cpu); 1802 } 1803 } 1804 1805 void wake_up_if_idle(int cpu) 1806 { 1807 struct rq *rq = cpu_rq(cpu); 1808 unsigned long flags; 1809 1810 rcu_read_lock(); 1811 1812 if (!is_idle_task(rcu_dereference(rq->curr))) 1813 goto out; 1814 1815 if (set_nr_if_polling(rq->idle)) { 1816 trace_sched_wake_idle_without_ipi(cpu); 1817 } else { 1818 raw_spin_lock_irqsave(&rq->lock, flags); 1819 if (is_idle_task(rq->curr)) 1820 smp_send_reschedule(cpu); 1821 /* Else CPU is not idle, do nothing here: */ 1822 raw_spin_unlock_irqrestore(&rq->lock, flags); 1823 } 1824 1825 out: 1826 rcu_read_unlock(); 1827 } 1828 1829 bool cpus_share_cache(int this_cpu, int that_cpu) 1830 { 1831 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1832 } 1833 #endif /* CONFIG_SMP */ 1834 1835 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1836 { 1837 struct rq *rq = cpu_rq(cpu); 1838 struct rq_flags rf; 1839 1840 #if defined(CONFIG_SMP) 1841 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1842 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1843 ttwu_queue_remote(p, cpu, wake_flags); 1844 return; 1845 } 1846 #endif 1847 1848 raw_spin_lock(&rq->lock); 1849 rq_pin_lock(rq, &rf); 1850 ttwu_do_activate(rq, p, wake_flags, &rf); 1851 rq_unpin_lock(rq, &rf); 1852 raw_spin_unlock(&rq->lock); 1853 } 1854 1855 /* 1856 * Notes on Program-Order guarantees on SMP systems. 1857 * 1858 * MIGRATION 1859 * 1860 * The basic program-order guarantee on SMP systems is that when a task [t] 1861 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1862 * execution on its new CPU [c1]. 1863 * 1864 * For migration (of runnable tasks) this is provided by the following means: 1865 * 1866 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1867 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1868 * rq(c1)->lock (if not at the same time, then in that order). 1869 * C) LOCK of the rq(c1)->lock scheduling in task 1870 * 1871 * Transitivity guarantees that B happens after A and C after B. 1872 * Note: we only require RCpc transitivity. 1873 * Note: the CPU doing B need not be c0 or c1 1874 * 1875 * Example: 1876 * 1877 * CPU0 CPU1 CPU2 1878 * 1879 * LOCK rq(0)->lock 1880 * sched-out X 1881 * sched-in Y 1882 * UNLOCK rq(0)->lock 1883 * 1884 * LOCK rq(0)->lock // orders against CPU0 1885 * dequeue X 1886 * UNLOCK rq(0)->lock 1887 * 1888 * LOCK rq(1)->lock 1889 * enqueue X 1890 * UNLOCK rq(1)->lock 1891 * 1892 * LOCK rq(1)->lock // orders against CPU2 1893 * sched-out Z 1894 * sched-in X 1895 * UNLOCK rq(1)->lock 1896 * 1897 * 1898 * BLOCKING -- aka. SLEEP + WAKEUP 1899 * 1900 * For blocking we (obviously) need to provide the same guarantee as for 1901 * migration. However the means are completely different as there is no lock 1902 * chain to provide order. Instead we do: 1903 * 1904 * 1) smp_store_release(X->on_cpu, 0) 1905 * 2) smp_cond_load_acquire(!X->on_cpu) 1906 * 1907 * Example: 1908 * 1909 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1910 * 1911 * LOCK rq(0)->lock LOCK X->pi_lock 1912 * dequeue X 1913 * sched-out X 1914 * smp_store_release(X->on_cpu, 0); 1915 * 1916 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1917 * X->state = WAKING 1918 * set_task_cpu(X,2) 1919 * 1920 * LOCK rq(2)->lock 1921 * enqueue X 1922 * X->state = RUNNING 1923 * UNLOCK rq(2)->lock 1924 * 1925 * LOCK rq(2)->lock // orders against CPU1 1926 * sched-out Z 1927 * sched-in X 1928 * UNLOCK rq(2)->lock 1929 * 1930 * UNLOCK X->pi_lock 1931 * UNLOCK rq(0)->lock 1932 * 1933 * 1934 * However; for wakeups there is a second guarantee we must provide, namely we 1935 * must observe the state that lead to our wakeup. That is, not only must our 1936 * task observe its own prior state, it must also observe the stores prior to 1937 * its wakeup. 1938 * 1939 * This means that any means of doing remote wakeups must order the CPU doing 1940 * the wakeup against the CPU the task is going to end up running on. This, 1941 * however, is already required for the regular Program-Order guarantee above, 1942 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1943 * 1944 */ 1945 1946 /** 1947 * try_to_wake_up - wake up a thread 1948 * @p: the thread to be awakened 1949 * @state: the mask of task states that can be woken 1950 * @wake_flags: wake modifier flags (WF_*) 1951 * 1952 * If (@state & @p->state) @p->state = TASK_RUNNING. 1953 * 1954 * If the task was not queued/runnable, also place it back on a runqueue. 1955 * 1956 * Atomic against schedule() which would dequeue a task, also see 1957 * set_current_state(). 1958 * 1959 * Return: %true if @p->state changes (an actual wakeup was done), 1960 * %false otherwise. 1961 */ 1962 static int 1963 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1964 { 1965 unsigned long flags; 1966 int cpu, success = 0; 1967 1968 /* 1969 * If we are going to wake up a thread waiting for CONDITION we 1970 * need to ensure that CONDITION=1 done by the caller can not be 1971 * reordered with p->state check below. This pairs with mb() in 1972 * set_current_state() the waiting thread does. 1973 */ 1974 smp_mb__before_spinlock(); 1975 raw_spin_lock_irqsave(&p->pi_lock, flags); 1976 if (!(p->state & state)) 1977 goto out; 1978 1979 trace_sched_waking(p); 1980 1981 /* We're going to change ->state: */ 1982 success = 1; 1983 cpu = task_cpu(p); 1984 1985 /* 1986 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1987 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1988 * in smp_cond_load_acquire() below. 1989 * 1990 * sched_ttwu_pending() try_to_wake_up() 1991 * [S] p->on_rq = 1; [L] P->state 1992 * UNLOCK rq->lock -----. 1993 * \ 1994 * +--- RMB 1995 * schedule() / 1996 * LOCK rq->lock -----' 1997 * UNLOCK rq->lock 1998 * 1999 * [task p] 2000 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2001 * 2002 * Pairs with the UNLOCK+LOCK on rq->lock from the 2003 * last wakeup of our task and the schedule that got our task 2004 * current. 2005 */ 2006 smp_rmb(); 2007 if (p->on_rq && ttwu_remote(p, wake_flags)) 2008 goto stat; 2009 2010 #ifdef CONFIG_SMP 2011 /* 2012 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2013 * possible to, falsely, observe p->on_cpu == 0. 2014 * 2015 * One must be running (->on_cpu == 1) in order to remove oneself 2016 * from the runqueue. 2017 * 2018 * [S] ->on_cpu = 1; [L] ->on_rq 2019 * UNLOCK rq->lock 2020 * RMB 2021 * LOCK rq->lock 2022 * [S] ->on_rq = 0; [L] ->on_cpu 2023 * 2024 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2025 * from the consecutive calls to schedule(); the first switching to our 2026 * task, the second putting it to sleep. 2027 */ 2028 smp_rmb(); 2029 2030 /* 2031 * If the owning (remote) CPU is still in the middle of schedule() with 2032 * this task as prev, wait until its done referencing the task. 2033 * 2034 * Pairs with the smp_store_release() in finish_lock_switch(). 2035 * 2036 * This ensures that tasks getting woken will be fully ordered against 2037 * their previous state and preserve Program Order. 2038 */ 2039 smp_cond_load_acquire(&p->on_cpu, !VAL); 2040 2041 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2042 p->state = TASK_WAKING; 2043 2044 if (p->in_iowait) { 2045 delayacct_blkio_end(); 2046 atomic_dec(&task_rq(p)->nr_iowait); 2047 } 2048 2049 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2050 if (task_cpu(p) != cpu) { 2051 wake_flags |= WF_MIGRATED; 2052 set_task_cpu(p, cpu); 2053 } 2054 2055 #else /* CONFIG_SMP */ 2056 2057 if (p->in_iowait) { 2058 delayacct_blkio_end(); 2059 atomic_dec(&task_rq(p)->nr_iowait); 2060 } 2061 2062 #endif /* CONFIG_SMP */ 2063 2064 ttwu_queue(p, cpu, wake_flags); 2065 stat: 2066 ttwu_stat(p, cpu, wake_flags); 2067 out: 2068 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2069 2070 return success; 2071 } 2072 2073 /** 2074 * try_to_wake_up_local - try to wake up a local task with rq lock held 2075 * @p: the thread to be awakened 2076 * @cookie: context's cookie for pinning 2077 * 2078 * Put @p on the run-queue if it's not already there. The caller must 2079 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2080 * the current task. 2081 */ 2082 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2083 { 2084 struct rq *rq = task_rq(p); 2085 2086 if (WARN_ON_ONCE(rq != this_rq()) || 2087 WARN_ON_ONCE(p == current)) 2088 return; 2089 2090 lockdep_assert_held(&rq->lock); 2091 2092 if (!raw_spin_trylock(&p->pi_lock)) { 2093 /* 2094 * This is OK, because current is on_cpu, which avoids it being 2095 * picked for load-balance and preemption/IRQs are still 2096 * disabled avoiding further scheduler activity on it and we've 2097 * not yet picked a replacement task. 2098 */ 2099 rq_unpin_lock(rq, rf); 2100 raw_spin_unlock(&rq->lock); 2101 raw_spin_lock(&p->pi_lock); 2102 raw_spin_lock(&rq->lock); 2103 rq_repin_lock(rq, rf); 2104 } 2105 2106 if (!(p->state & TASK_NORMAL)) 2107 goto out; 2108 2109 trace_sched_waking(p); 2110 2111 if (!task_on_rq_queued(p)) { 2112 if (p->in_iowait) { 2113 delayacct_blkio_end(); 2114 atomic_dec(&rq->nr_iowait); 2115 } 2116 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2117 } 2118 2119 ttwu_do_wakeup(rq, p, 0, rf); 2120 ttwu_stat(p, smp_processor_id(), 0); 2121 out: 2122 raw_spin_unlock(&p->pi_lock); 2123 } 2124 2125 /** 2126 * wake_up_process - Wake up a specific process 2127 * @p: The process to be woken up. 2128 * 2129 * Attempt to wake up the nominated process and move it to the set of runnable 2130 * processes. 2131 * 2132 * Return: 1 if the process was woken up, 0 if it was already running. 2133 * 2134 * It may be assumed that this function implies a write memory barrier before 2135 * changing the task state if and only if any tasks are woken up. 2136 */ 2137 int wake_up_process(struct task_struct *p) 2138 { 2139 return try_to_wake_up(p, TASK_NORMAL, 0); 2140 } 2141 EXPORT_SYMBOL(wake_up_process); 2142 2143 int wake_up_state(struct task_struct *p, unsigned int state) 2144 { 2145 return try_to_wake_up(p, state, 0); 2146 } 2147 2148 /* 2149 * This function clears the sched_dl_entity static params. 2150 */ 2151 void __dl_clear_params(struct task_struct *p) 2152 { 2153 struct sched_dl_entity *dl_se = &p->dl; 2154 2155 dl_se->dl_runtime = 0; 2156 dl_se->dl_deadline = 0; 2157 dl_se->dl_period = 0; 2158 dl_se->flags = 0; 2159 dl_se->dl_bw = 0; 2160 2161 dl_se->dl_throttled = 0; 2162 dl_se->dl_yielded = 0; 2163 } 2164 2165 /* 2166 * Perform scheduler related setup for a newly forked process p. 2167 * p is forked by current. 2168 * 2169 * __sched_fork() is basic setup used by init_idle() too: 2170 */ 2171 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2172 { 2173 p->on_rq = 0; 2174 2175 p->se.on_rq = 0; 2176 p->se.exec_start = 0; 2177 p->se.sum_exec_runtime = 0; 2178 p->se.prev_sum_exec_runtime = 0; 2179 p->se.nr_migrations = 0; 2180 p->se.vruntime = 0; 2181 INIT_LIST_HEAD(&p->se.group_node); 2182 2183 #ifdef CONFIG_FAIR_GROUP_SCHED 2184 p->se.cfs_rq = NULL; 2185 #endif 2186 2187 #ifdef CONFIG_SCHEDSTATS 2188 /* Even if schedstat is disabled, there should not be garbage */ 2189 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2190 #endif 2191 2192 RB_CLEAR_NODE(&p->dl.rb_node); 2193 init_dl_task_timer(&p->dl); 2194 __dl_clear_params(p); 2195 2196 INIT_LIST_HEAD(&p->rt.run_list); 2197 p->rt.timeout = 0; 2198 p->rt.time_slice = sched_rr_timeslice; 2199 p->rt.on_rq = 0; 2200 p->rt.on_list = 0; 2201 2202 #ifdef CONFIG_PREEMPT_NOTIFIERS 2203 INIT_HLIST_HEAD(&p->preempt_notifiers); 2204 #endif 2205 2206 #ifdef CONFIG_NUMA_BALANCING 2207 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2208 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2209 p->mm->numa_scan_seq = 0; 2210 } 2211 2212 if (clone_flags & CLONE_VM) 2213 p->numa_preferred_nid = current->numa_preferred_nid; 2214 else 2215 p->numa_preferred_nid = -1; 2216 2217 p->node_stamp = 0ULL; 2218 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2219 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2220 p->numa_work.next = &p->numa_work; 2221 p->numa_faults = NULL; 2222 p->last_task_numa_placement = 0; 2223 p->last_sum_exec_runtime = 0; 2224 2225 p->numa_group = NULL; 2226 #endif /* CONFIG_NUMA_BALANCING */ 2227 } 2228 2229 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2230 2231 #ifdef CONFIG_NUMA_BALANCING 2232 2233 void set_numabalancing_state(bool enabled) 2234 { 2235 if (enabled) 2236 static_branch_enable(&sched_numa_balancing); 2237 else 2238 static_branch_disable(&sched_numa_balancing); 2239 } 2240 2241 #ifdef CONFIG_PROC_SYSCTL 2242 int sysctl_numa_balancing(struct ctl_table *table, int write, 2243 void __user *buffer, size_t *lenp, loff_t *ppos) 2244 { 2245 struct ctl_table t; 2246 int err; 2247 int state = static_branch_likely(&sched_numa_balancing); 2248 2249 if (write && !capable(CAP_SYS_ADMIN)) 2250 return -EPERM; 2251 2252 t = *table; 2253 t.data = &state; 2254 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2255 if (err < 0) 2256 return err; 2257 if (write) 2258 set_numabalancing_state(state); 2259 return err; 2260 } 2261 #endif 2262 #endif 2263 2264 #ifdef CONFIG_SCHEDSTATS 2265 2266 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2267 static bool __initdata __sched_schedstats = false; 2268 2269 static void set_schedstats(bool enabled) 2270 { 2271 if (enabled) 2272 static_branch_enable(&sched_schedstats); 2273 else 2274 static_branch_disable(&sched_schedstats); 2275 } 2276 2277 void force_schedstat_enabled(void) 2278 { 2279 if (!schedstat_enabled()) { 2280 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2281 static_branch_enable(&sched_schedstats); 2282 } 2283 } 2284 2285 static int __init setup_schedstats(char *str) 2286 { 2287 int ret = 0; 2288 if (!str) 2289 goto out; 2290 2291 /* 2292 * This code is called before jump labels have been set up, so we can't 2293 * change the static branch directly just yet. Instead set a temporary 2294 * variable so init_schedstats() can do it later. 2295 */ 2296 if (!strcmp(str, "enable")) { 2297 __sched_schedstats = true; 2298 ret = 1; 2299 } else if (!strcmp(str, "disable")) { 2300 __sched_schedstats = false; 2301 ret = 1; 2302 } 2303 out: 2304 if (!ret) 2305 pr_warn("Unable to parse schedstats=\n"); 2306 2307 return ret; 2308 } 2309 __setup("schedstats=", setup_schedstats); 2310 2311 static void __init init_schedstats(void) 2312 { 2313 set_schedstats(__sched_schedstats); 2314 } 2315 2316 #ifdef CONFIG_PROC_SYSCTL 2317 int sysctl_schedstats(struct ctl_table *table, int write, 2318 void __user *buffer, size_t *lenp, loff_t *ppos) 2319 { 2320 struct ctl_table t; 2321 int err; 2322 int state = static_branch_likely(&sched_schedstats); 2323 2324 if (write && !capable(CAP_SYS_ADMIN)) 2325 return -EPERM; 2326 2327 t = *table; 2328 t.data = &state; 2329 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2330 if (err < 0) 2331 return err; 2332 if (write) 2333 set_schedstats(state); 2334 return err; 2335 } 2336 #endif /* CONFIG_PROC_SYSCTL */ 2337 #else /* !CONFIG_SCHEDSTATS */ 2338 static inline void init_schedstats(void) {} 2339 #endif /* CONFIG_SCHEDSTATS */ 2340 2341 /* 2342 * fork()/clone()-time setup: 2343 */ 2344 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2345 { 2346 unsigned long flags; 2347 int cpu = get_cpu(); 2348 2349 __sched_fork(clone_flags, p); 2350 /* 2351 * We mark the process as NEW here. This guarantees that 2352 * nobody will actually run it, and a signal or other external 2353 * event cannot wake it up and insert it on the runqueue either. 2354 */ 2355 p->state = TASK_NEW; 2356 2357 /* 2358 * Make sure we do not leak PI boosting priority to the child. 2359 */ 2360 p->prio = current->normal_prio; 2361 2362 /* 2363 * Revert to default priority/policy on fork if requested. 2364 */ 2365 if (unlikely(p->sched_reset_on_fork)) { 2366 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2367 p->policy = SCHED_NORMAL; 2368 p->static_prio = NICE_TO_PRIO(0); 2369 p->rt_priority = 0; 2370 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2371 p->static_prio = NICE_TO_PRIO(0); 2372 2373 p->prio = p->normal_prio = __normal_prio(p); 2374 set_load_weight(p); 2375 2376 /* 2377 * We don't need the reset flag anymore after the fork. It has 2378 * fulfilled its duty: 2379 */ 2380 p->sched_reset_on_fork = 0; 2381 } 2382 2383 if (dl_prio(p->prio)) { 2384 put_cpu(); 2385 return -EAGAIN; 2386 } else if (rt_prio(p->prio)) { 2387 p->sched_class = &rt_sched_class; 2388 } else { 2389 p->sched_class = &fair_sched_class; 2390 } 2391 2392 init_entity_runnable_average(&p->se); 2393 2394 /* 2395 * The child is not yet in the pid-hash so no cgroup attach races, 2396 * and the cgroup is pinned to this child due to cgroup_fork() 2397 * is ran before sched_fork(). 2398 * 2399 * Silence PROVE_RCU. 2400 */ 2401 raw_spin_lock_irqsave(&p->pi_lock, flags); 2402 /* 2403 * We're setting the CPU for the first time, we don't migrate, 2404 * so use __set_task_cpu(). 2405 */ 2406 __set_task_cpu(p, cpu); 2407 if (p->sched_class->task_fork) 2408 p->sched_class->task_fork(p); 2409 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2410 2411 #ifdef CONFIG_SCHED_INFO 2412 if (likely(sched_info_on())) 2413 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2414 #endif 2415 #if defined(CONFIG_SMP) 2416 p->on_cpu = 0; 2417 #endif 2418 init_task_preempt_count(p); 2419 #ifdef CONFIG_SMP 2420 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2421 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2422 #endif 2423 2424 put_cpu(); 2425 return 0; 2426 } 2427 2428 unsigned long to_ratio(u64 period, u64 runtime) 2429 { 2430 if (runtime == RUNTIME_INF) 2431 return 1ULL << 20; 2432 2433 /* 2434 * Doing this here saves a lot of checks in all 2435 * the calling paths, and returning zero seems 2436 * safe for them anyway. 2437 */ 2438 if (period == 0) 2439 return 0; 2440 2441 return div64_u64(runtime << 20, period); 2442 } 2443 2444 #ifdef CONFIG_SMP 2445 inline struct dl_bw *dl_bw_of(int i) 2446 { 2447 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2448 "sched RCU must be held"); 2449 return &cpu_rq(i)->rd->dl_bw; 2450 } 2451 2452 static inline int dl_bw_cpus(int i) 2453 { 2454 struct root_domain *rd = cpu_rq(i)->rd; 2455 int cpus = 0; 2456 2457 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2458 "sched RCU must be held"); 2459 for_each_cpu_and(i, rd->span, cpu_active_mask) 2460 cpus++; 2461 2462 return cpus; 2463 } 2464 #else 2465 inline struct dl_bw *dl_bw_of(int i) 2466 { 2467 return &cpu_rq(i)->dl.dl_bw; 2468 } 2469 2470 static inline int dl_bw_cpus(int i) 2471 { 2472 return 1; 2473 } 2474 #endif 2475 2476 /* 2477 * We must be sure that accepting a new task (or allowing changing the 2478 * parameters of an existing one) is consistent with the bandwidth 2479 * constraints. If yes, this function also accordingly updates the currently 2480 * allocated bandwidth to reflect the new situation. 2481 * 2482 * This function is called while holding p's rq->lock. 2483 * 2484 * XXX we should delay bw change until the task's 0-lag point, see 2485 * __setparam_dl(). 2486 */ 2487 static int dl_overflow(struct task_struct *p, int policy, 2488 const struct sched_attr *attr) 2489 { 2490 2491 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2492 u64 period = attr->sched_period ?: attr->sched_deadline; 2493 u64 runtime = attr->sched_runtime; 2494 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2495 int cpus, err = -1; 2496 2497 /* !deadline task may carry old deadline bandwidth */ 2498 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2499 return 0; 2500 2501 /* 2502 * Either if a task, enters, leave, or stays -deadline but changes 2503 * its parameters, we may need to update accordingly the total 2504 * allocated bandwidth of the container. 2505 */ 2506 raw_spin_lock(&dl_b->lock); 2507 cpus = dl_bw_cpus(task_cpu(p)); 2508 if (dl_policy(policy) && !task_has_dl_policy(p) && 2509 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2510 __dl_add(dl_b, new_bw); 2511 err = 0; 2512 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2513 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2514 __dl_clear(dl_b, p->dl.dl_bw); 2515 __dl_add(dl_b, new_bw); 2516 err = 0; 2517 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2518 __dl_clear(dl_b, p->dl.dl_bw); 2519 err = 0; 2520 } 2521 raw_spin_unlock(&dl_b->lock); 2522 2523 return err; 2524 } 2525 2526 extern void init_dl_bw(struct dl_bw *dl_b); 2527 2528 /* 2529 * wake_up_new_task - wake up a newly created task for the first time. 2530 * 2531 * This function will do some initial scheduler statistics housekeeping 2532 * that must be done for every newly created context, then puts the task 2533 * on the runqueue and wakes it. 2534 */ 2535 void wake_up_new_task(struct task_struct *p) 2536 { 2537 struct rq_flags rf; 2538 struct rq *rq; 2539 2540 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2541 p->state = TASK_RUNNING; 2542 #ifdef CONFIG_SMP 2543 /* 2544 * Fork balancing, do it here and not earlier because: 2545 * - cpus_allowed can change in the fork path 2546 * - any previously selected CPU might disappear through hotplug 2547 * 2548 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2549 * as we're not fully set-up yet. 2550 */ 2551 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2552 #endif 2553 rq = __task_rq_lock(p, &rf); 2554 update_rq_clock(rq); 2555 post_init_entity_util_avg(&p->se); 2556 2557 activate_task(rq, p, 0); 2558 p->on_rq = TASK_ON_RQ_QUEUED; 2559 trace_sched_wakeup_new(p); 2560 check_preempt_curr(rq, p, WF_FORK); 2561 #ifdef CONFIG_SMP 2562 if (p->sched_class->task_woken) { 2563 /* 2564 * Nothing relies on rq->lock after this, so its fine to 2565 * drop it. 2566 */ 2567 rq_unpin_lock(rq, &rf); 2568 p->sched_class->task_woken(rq, p); 2569 rq_repin_lock(rq, &rf); 2570 } 2571 #endif 2572 task_rq_unlock(rq, p, &rf); 2573 } 2574 2575 #ifdef CONFIG_PREEMPT_NOTIFIERS 2576 2577 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2578 2579 void preempt_notifier_inc(void) 2580 { 2581 static_key_slow_inc(&preempt_notifier_key); 2582 } 2583 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2584 2585 void preempt_notifier_dec(void) 2586 { 2587 static_key_slow_dec(&preempt_notifier_key); 2588 } 2589 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2590 2591 /** 2592 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2593 * @notifier: notifier struct to register 2594 */ 2595 void preempt_notifier_register(struct preempt_notifier *notifier) 2596 { 2597 if (!static_key_false(&preempt_notifier_key)) 2598 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2599 2600 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2601 } 2602 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2603 2604 /** 2605 * preempt_notifier_unregister - no longer interested in preemption notifications 2606 * @notifier: notifier struct to unregister 2607 * 2608 * This is *not* safe to call from within a preemption notifier. 2609 */ 2610 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2611 { 2612 hlist_del(¬ifier->link); 2613 } 2614 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2615 2616 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2617 { 2618 struct preempt_notifier *notifier; 2619 2620 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2621 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2622 } 2623 2624 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2625 { 2626 if (static_key_false(&preempt_notifier_key)) 2627 __fire_sched_in_preempt_notifiers(curr); 2628 } 2629 2630 static void 2631 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2632 struct task_struct *next) 2633 { 2634 struct preempt_notifier *notifier; 2635 2636 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2637 notifier->ops->sched_out(notifier, next); 2638 } 2639 2640 static __always_inline void 2641 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2642 struct task_struct *next) 2643 { 2644 if (static_key_false(&preempt_notifier_key)) 2645 __fire_sched_out_preempt_notifiers(curr, next); 2646 } 2647 2648 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2649 2650 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2651 { 2652 } 2653 2654 static inline void 2655 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2656 struct task_struct *next) 2657 { 2658 } 2659 2660 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2661 2662 /** 2663 * prepare_task_switch - prepare to switch tasks 2664 * @rq: the runqueue preparing to switch 2665 * @prev: the current task that is being switched out 2666 * @next: the task we are going to switch to. 2667 * 2668 * This is called with the rq lock held and interrupts off. It must 2669 * be paired with a subsequent finish_task_switch after the context 2670 * switch. 2671 * 2672 * prepare_task_switch sets up locking and calls architecture specific 2673 * hooks. 2674 */ 2675 static inline void 2676 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2677 struct task_struct *next) 2678 { 2679 sched_info_switch(rq, prev, next); 2680 perf_event_task_sched_out(prev, next); 2681 fire_sched_out_preempt_notifiers(prev, next); 2682 prepare_lock_switch(rq, next); 2683 prepare_arch_switch(next); 2684 } 2685 2686 /** 2687 * finish_task_switch - clean up after a task-switch 2688 * @prev: the thread we just switched away from. 2689 * 2690 * finish_task_switch must be called after the context switch, paired 2691 * with a prepare_task_switch call before the context switch. 2692 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2693 * and do any other architecture-specific cleanup actions. 2694 * 2695 * Note that we may have delayed dropping an mm in context_switch(). If 2696 * so, we finish that here outside of the runqueue lock. (Doing it 2697 * with the lock held can cause deadlocks; see schedule() for 2698 * details.) 2699 * 2700 * The context switch have flipped the stack from under us and restored the 2701 * local variables which were saved when this task called schedule() in the 2702 * past. prev == current is still correct but we need to recalculate this_rq 2703 * because prev may have moved to another CPU. 2704 */ 2705 static struct rq *finish_task_switch(struct task_struct *prev) 2706 __releases(rq->lock) 2707 { 2708 struct rq *rq = this_rq(); 2709 struct mm_struct *mm = rq->prev_mm; 2710 long prev_state; 2711 2712 /* 2713 * The previous task will have left us with a preempt_count of 2 2714 * because it left us after: 2715 * 2716 * schedule() 2717 * preempt_disable(); // 1 2718 * __schedule() 2719 * raw_spin_lock_irq(&rq->lock) // 2 2720 * 2721 * Also, see FORK_PREEMPT_COUNT. 2722 */ 2723 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2724 "corrupted preempt_count: %s/%d/0x%x\n", 2725 current->comm, current->pid, preempt_count())) 2726 preempt_count_set(FORK_PREEMPT_COUNT); 2727 2728 rq->prev_mm = NULL; 2729 2730 /* 2731 * A task struct has one reference for the use as "current". 2732 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2733 * schedule one last time. The schedule call will never return, and 2734 * the scheduled task must drop that reference. 2735 * 2736 * We must observe prev->state before clearing prev->on_cpu (in 2737 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2738 * running on another CPU and we could rave with its RUNNING -> DEAD 2739 * transition, resulting in a double drop. 2740 */ 2741 prev_state = prev->state; 2742 vtime_task_switch(prev); 2743 perf_event_task_sched_in(prev, current); 2744 finish_lock_switch(rq, prev); 2745 finish_arch_post_lock_switch(); 2746 2747 fire_sched_in_preempt_notifiers(current); 2748 if (mm) 2749 mmdrop(mm); 2750 if (unlikely(prev_state == TASK_DEAD)) { 2751 if (prev->sched_class->task_dead) 2752 prev->sched_class->task_dead(prev); 2753 2754 /* 2755 * Remove function-return probe instances associated with this 2756 * task and put them back on the free list. 2757 */ 2758 kprobe_flush_task(prev); 2759 2760 /* Task is done with its stack. */ 2761 put_task_stack(prev); 2762 2763 put_task_struct(prev); 2764 } 2765 2766 tick_nohz_task_switch(); 2767 return rq; 2768 } 2769 2770 #ifdef CONFIG_SMP 2771 2772 /* rq->lock is NOT held, but preemption is disabled */ 2773 static void __balance_callback(struct rq *rq) 2774 { 2775 struct callback_head *head, *next; 2776 void (*func)(struct rq *rq); 2777 unsigned long flags; 2778 2779 raw_spin_lock_irqsave(&rq->lock, flags); 2780 head = rq->balance_callback; 2781 rq->balance_callback = NULL; 2782 while (head) { 2783 func = (void (*)(struct rq *))head->func; 2784 next = head->next; 2785 head->next = NULL; 2786 head = next; 2787 2788 func(rq); 2789 } 2790 raw_spin_unlock_irqrestore(&rq->lock, flags); 2791 } 2792 2793 static inline void balance_callback(struct rq *rq) 2794 { 2795 if (unlikely(rq->balance_callback)) 2796 __balance_callback(rq); 2797 } 2798 2799 #else 2800 2801 static inline void balance_callback(struct rq *rq) 2802 { 2803 } 2804 2805 #endif 2806 2807 /** 2808 * schedule_tail - first thing a freshly forked thread must call. 2809 * @prev: the thread we just switched away from. 2810 */ 2811 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2812 __releases(rq->lock) 2813 { 2814 struct rq *rq; 2815 2816 /* 2817 * New tasks start with FORK_PREEMPT_COUNT, see there and 2818 * finish_task_switch() for details. 2819 * 2820 * finish_task_switch() will drop rq->lock() and lower preempt_count 2821 * and the preempt_enable() will end up enabling preemption (on 2822 * PREEMPT_COUNT kernels). 2823 */ 2824 2825 rq = finish_task_switch(prev); 2826 balance_callback(rq); 2827 preempt_enable(); 2828 2829 if (current->set_child_tid) 2830 put_user(task_pid_vnr(current), current->set_child_tid); 2831 } 2832 2833 /* 2834 * context_switch - switch to the new MM and the new thread's register state. 2835 */ 2836 static __always_inline struct rq * 2837 context_switch(struct rq *rq, struct task_struct *prev, 2838 struct task_struct *next, struct rq_flags *rf) 2839 { 2840 struct mm_struct *mm, *oldmm; 2841 2842 prepare_task_switch(rq, prev, next); 2843 2844 mm = next->mm; 2845 oldmm = prev->active_mm; 2846 /* 2847 * For paravirt, this is coupled with an exit in switch_to to 2848 * combine the page table reload and the switch backend into 2849 * one hypercall. 2850 */ 2851 arch_start_context_switch(prev); 2852 2853 if (!mm) { 2854 next->active_mm = oldmm; 2855 mmgrab(oldmm); 2856 enter_lazy_tlb(oldmm, next); 2857 } else 2858 switch_mm_irqs_off(oldmm, mm, next); 2859 2860 if (!prev->mm) { 2861 prev->active_mm = NULL; 2862 rq->prev_mm = oldmm; 2863 } 2864 2865 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2866 2867 /* 2868 * Since the runqueue lock will be released by the next 2869 * task (which is an invalid locking op but in the case 2870 * of the scheduler it's an obvious special-case), so we 2871 * do an early lockdep release here: 2872 */ 2873 rq_unpin_lock(rq, rf); 2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2875 2876 /* Here we just switch the register state and the stack. */ 2877 switch_to(prev, next, prev); 2878 barrier(); 2879 2880 return finish_task_switch(prev); 2881 } 2882 2883 /* 2884 * nr_running and nr_context_switches: 2885 * 2886 * externally visible scheduler statistics: current number of runnable 2887 * threads, total number of context switches performed since bootup. 2888 */ 2889 unsigned long nr_running(void) 2890 { 2891 unsigned long i, sum = 0; 2892 2893 for_each_online_cpu(i) 2894 sum += cpu_rq(i)->nr_running; 2895 2896 return sum; 2897 } 2898 2899 /* 2900 * Check if only the current task is running on the CPU. 2901 * 2902 * Caution: this function does not check that the caller has disabled 2903 * preemption, thus the result might have a time-of-check-to-time-of-use 2904 * race. The caller is responsible to use it correctly, for example: 2905 * 2906 * - from a non-preemptable section (of course) 2907 * 2908 * - from a thread that is bound to a single CPU 2909 * 2910 * - in a loop with very short iterations (e.g. a polling loop) 2911 */ 2912 bool single_task_running(void) 2913 { 2914 return raw_rq()->nr_running == 1; 2915 } 2916 EXPORT_SYMBOL(single_task_running); 2917 2918 unsigned long long nr_context_switches(void) 2919 { 2920 int i; 2921 unsigned long long sum = 0; 2922 2923 for_each_possible_cpu(i) 2924 sum += cpu_rq(i)->nr_switches; 2925 2926 return sum; 2927 } 2928 2929 /* 2930 * IO-wait accounting, and how its mostly bollocks (on SMP). 2931 * 2932 * The idea behind IO-wait account is to account the idle time that we could 2933 * have spend running if it were not for IO. That is, if we were to improve the 2934 * storage performance, we'd have a proportional reduction in IO-wait time. 2935 * 2936 * This all works nicely on UP, where, when a task blocks on IO, we account 2937 * idle time as IO-wait, because if the storage were faster, it could've been 2938 * running and we'd not be idle. 2939 * 2940 * This has been extended to SMP, by doing the same for each CPU. This however 2941 * is broken. 2942 * 2943 * Imagine for instance the case where two tasks block on one CPU, only the one 2944 * CPU will have IO-wait accounted, while the other has regular idle. Even 2945 * though, if the storage were faster, both could've ran at the same time, 2946 * utilising both CPUs. 2947 * 2948 * This means, that when looking globally, the current IO-wait accounting on 2949 * SMP is a lower bound, by reason of under accounting. 2950 * 2951 * Worse, since the numbers are provided per CPU, they are sometimes 2952 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2953 * associated with any one particular CPU, it can wake to another CPU than it 2954 * blocked on. This means the per CPU IO-wait number is meaningless. 2955 * 2956 * Task CPU affinities can make all that even more 'interesting'. 2957 */ 2958 2959 unsigned long nr_iowait(void) 2960 { 2961 unsigned long i, sum = 0; 2962 2963 for_each_possible_cpu(i) 2964 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2965 2966 return sum; 2967 } 2968 2969 /* 2970 * Consumers of these two interfaces, like for example the cpufreq menu 2971 * governor are using nonsensical data. Boosting frequency for a CPU that has 2972 * IO-wait which might not even end up running the task when it does become 2973 * runnable. 2974 */ 2975 2976 unsigned long nr_iowait_cpu(int cpu) 2977 { 2978 struct rq *this = cpu_rq(cpu); 2979 return atomic_read(&this->nr_iowait); 2980 } 2981 2982 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2983 { 2984 struct rq *rq = this_rq(); 2985 *nr_waiters = atomic_read(&rq->nr_iowait); 2986 *load = rq->load.weight; 2987 } 2988 2989 #ifdef CONFIG_SMP 2990 2991 /* 2992 * sched_exec - execve() is a valuable balancing opportunity, because at 2993 * this point the task has the smallest effective memory and cache footprint. 2994 */ 2995 void sched_exec(void) 2996 { 2997 struct task_struct *p = current; 2998 unsigned long flags; 2999 int dest_cpu; 3000 3001 raw_spin_lock_irqsave(&p->pi_lock, flags); 3002 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3003 if (dest_cpu == smp_processor_id()) 3004 goto unlock; 3005 3006 if (likely(cpu_active(dest_cpu))) { 3007 struct migration_arg arg = { p, dest_cpu }; 3008 3009 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3010 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3011 return; 3012 } 3013 unlock: 3014 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3015 } 3016 3017 #endif 3018 3019 DEFINE_PER_CPU(struct kernel_stat, kstat); 3020 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3021 3022 EXPORT_PER_CPU_SYMBOL(kstat); 3023 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3024 3025 /* 3026 * The function fair_sched_class.update_curr accesses the struct curr 3027 * and its field curr->exec_start; when called from task_sched_runtime(), 3028 * we observe a high rate of cache misses in practice. 3029 * Prefetching this data results in improved performance. 3030 */ 3031 static inline void prefetch_curr_exec_start(struct task_struct *p) 3032 { 3033 #ifdef CONFIG_FAIR_GROUP_SCHED 3034 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3035 #else 3036 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3037 #endif 3038 prefetch(curr); 3039 prefetch(&curr->exec_start); 3040 } 3041 3042 /* 3043 * Return accounted runtime for the task. 3044 * In case the task is currently running, return the runtime plus current's 3045 * pending runtime that have not been accounted yet. 3046 */ 3047 unsigned long long task_sched_runtime(struct task_struct *p) 3048 { 3049 struct rq_flags rf; 3050 struct rq *rq; 3051 u64 ns; 3052 3053 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3054 /* 3055 * 64-bit doesn't need locks to atomically read a 64bit value. 3056 * So we have a optimization chance when the task's delta_exec is 0. 3057 * Reading ->on_cpu is racy, but this is ok. 3058 * 3059 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3060 * If we race with it entering CPU, unaccounted time is 0. This is 3061 * indistinguishable from the read occurring a few cycles earlier. 3062 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3063 * been accounted, so we're correct here as well. 3064 */ 3065 if (!p->on_cpu || !task_on_rq_queued(p)) 3066 return p->se.sum_exec_runtime; 3067 #endif 3068 3069 rq = task_rq_lock(p, &rf); 3070 /* 3071 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3072 * project cycles that may never be accounted to this 3073 * thread, breaking clock_gettime(). 3074 */ 3075 if (task_current(rq, p) && task_on_rq_queued(p)) { 3076 prefetch_curr_exec_start(p); 3077 update_rq_clock(rq); 3078 p->sched_class->update_curr(rq); 3079 } 3080 ns = p->se.sum_exec_runtime; 3081 task_rq_unlock(rq, p, &rf); 3082 3083 return ns; 3084 } 3085 3086 /* 3087 * This function gets called by the timer code, with HZ frequency. 3088 * We call it with interrupts disabled. 3089 */ 3090 void scheduler_tick(void) 3091 { 3092 int cpu = smp_processor_id(); 3093 struct rq *rq = cpu_rq(cpu); 3094 struct task_struct *curr = rq->curr; 3095 3096 sched_clock_tick(); 3097 3098 raw_spin_lock(&rq->lock); 3099 update_rq_clock(rq); 3100 curr->sched_class->task_tick(rq, curr, 0); 3101 cpu_load_update_active(rq); 3102 calc_global_load_tick(rq); 3103 raw_spin_unlock(&rq->lock); 3104 3105 perf_event_task_tick(); 3106 3107 #ifdef CONFIG_SMP 3108 rq->idle_balance = idle_cpu(cpu); 3109 trigger_load_balance(rq); 3110 #endif 3111 rq_last_tick_reset(rq); 3112 } 3113 3114 #ifdef CONFIG_NO_HZ_FULL 3115 /** 3116 * scheduler_tick_max_deferment 3117 * 3118 * Keep at least one tick per second when a single 3119 * active task is running because the scheduler doesn't 3120 * yet completely support full dynticks environment. 3121 * 3122 * This makes sure that uptime, CFS vruntime, load 3123 * balancing, etc... continue to move forward, even 3124 * with a very low granularity. 3125 * 3126 * Return: Maximum deferment in nanoseconds. 3127 */ 3128 u64 scheduler_tick_max_deferment(void) 3129 { 3130 struct rq *rq = this_rq(); 3131 unsigned long next, now = READ_ONCE(jiffies); 3132 3133 next = rq->last_sched_tick + HZ; 3134 3135 if (time_before_eq(next, now)) 3136 return 0; 3137 3138 return jiffies_to_nsecs(next - now); 3139 } 3140 #endif 3141 3142 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3143 defined(CONFIG_PREEMPT_TRACER)) 3144 /* 3145 * If the value passed in is equal to the current preempt count 3146 * then we just disabled preemption. Start timing the latency. 3147 */ 3148 static inline void preempt_latency_start(int val) 3149 { 3150 if (preempt_count() == val) { 3151 unsigned long ip = get_lock_parent_ip(); 3152 #ifdef CONFIG_DEBUG_PREEMPT 3153 current->preempt_disable_ip = ip; 3154 #endif 3155 trace_preempt_off(CALLER_ADDR0, ip); 3156 } 3157 } 3158 3159 void preempt_count_add(int val) 3160 { 3161 #ifdef CONFIG_DEBUG_PREEMPT 3162 /* 3163 * Underflow? 3164 */ 3165 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3166 return; 3167 #endif 3168 __preempt_count_add(val); 3169 #ifdef CONFIG_DEBUG_PREEMPT 3170 /* 3171 * Spinlock count overflowing soon? 3172 */ 3173 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3174 PREEMPT_MASK - 10); 3175 #endif 3176 preempt_latency_start(val); 3177 } 3178 EXPORT_SYMBOL(preempt_count_add); 3179 NOKPROBE_SYMBOL(preempt_count_add); 3180 3181 /* 3182 * If the value passed in equals to the current preempt count 3183 * then we just enabled preemption. Stop timing the latency. 3184 */ 3185 static inline void preempt_latency_stop(int val) 3186 { 3187 if (preempt_count() == val) 3188 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3189 } 3190 3191 void preempt_count_sub(int val) 3192 { 3193 #ifdef CONFIG_DEBUG_PREEMPT 3194 /* 3195 * Underflow? 3196 */ 3197 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3198 return; 3199 /* 3200 * Is the spinlock portion underflowing? 3201 */ 3202 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3203 !(preempt_count() & PREEMPT_MASK))) 3204 return; 3205 #endif 3206 3207 preempt_latency_stop(val); 3208 __preempt_count_sub(val); 3209 } 3210 EXPORT_SYMBOL(preempt_count_sub); 3211 NOKPROBE_SYMBOL(preempt_count_sub); 3212 3213 #else 3214 static inline void preempt_latency_start(int val) { } 3215 static inline void preempt_latency_stop(int val) { } 3216 #endif 3217 3218 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3219 { 3220 #ifdef CONFIG_DEBUG_PREEMPT 3221 return p->preempt_disable_ip; 3222 #else 3223 return 0; 3224 #endif 3225 } 3226 3227 /* 3228 * Print scheduling while atomic bug: 3229 */ 3230 static noinline void __schedule_bug(struct task_struct *prev) 3231 { 3232 /* Save this before calling printk(), since that will clobber it */ 3233 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3234 3235 if (oops_in_progress) 3236 return; 3237 3238 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3239 prev->comm, prev->pid, preempt_count()); 3240 3241 debug_show_held_locks(prev); 3242 print_modules(); 3243 if (irqs_disabled()) 3244 print_irqtrace_events(prev); 3245 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3246 && in_atomic_preempt_off()) { 3247 pr_err("Preemption disabled at:"); 3248 print_ip_sym(preempt_disable_ip); 3249 pr_cont("\n"); 3250 } 3251 if (panic_on_warn) 3252 panic("scheduling while atomic\n"); 3253 3254 dump_stack(); 3255 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3256 } 3257 3258 /* 3259 * Various schedule()-time debugging checks and statistics: 3260 */ 3261 static inline void schedule_debug(struct task_struct *prev) 3262 { 3263 #ifdef CONFIG_SCHED_STACK_END_CHECK 3264 if (task_stack_end_corrupted(prev)) 3265 panic("corrupted stack end detected inside scheduler\n"); 3266 #endif 3267 3268 if (unlikely(in_atomic_preempt_off())) { 3269 __schedule_bug(prev); 3270 preempt_count_set(PREEMPT_DISABLED); 3271 } 3272 rcu_sleep_check(); 3273 3274 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3275 3276 schedstat_inc(this_rq()->sched_count); 3277 } 3278 3279 /* 3280 * Pick up the highest-prio task: 3281 */ 3282 static inline struct task_struct * 3283 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3284 { 3285 const struct sched_class *class; 3286 struct task_struct *p; 3287 3288 /* 3289 * Optimization: we know that if all tasks are in 3290 * the fair class we can call that function directly: 3291 */ 3292 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3293 p = fair_sched_class.pick_next_task(rq, prev, rf); 3294 if (unlikely(p == RETRY_TASK)) 3295 goto again; 3296 3297 /* Assumes fair_sched_class->next == idle_sched_class */ 3298 if (unlikely(!p)) 3299 p = idle_sched_class.pick_next_task(rq, prev, rf); 3300 3301 return p; 3302 } 3303 3304 again: 3305 for_each_class(class) { 3306 p = class->pick_next_task(rq, prev, rf); 3307 if (p) { 3308 if (unlikely(p == RETRY_TASK)) 3309 goto again; 3310 return p; 3311 } 3312 } 3313 3314 /* The idle class should always have a runnable task: */ 3315 BUG(); 3316 } 3317 3318 /* 3319 * __schedule() is the main scheduler function. 3320 * 3321 * The main means of driving the scheduler and thus entering this function are: 3322 * 3323 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3324 * 3325 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3326 * paths. For example, see arch/x86/entry_64.S. 3327 * 3328 * To drive preemption between tasks, the scheduler sets the flag in timer 3329 * interrupt handler scheduler_tick(). 3330 * 3331 * 3. Wakeups don't really cause entry into schedule(). They add a 3332 * task to the run-queue and that's it. 3333 * 3334 * Now, if the new task added to the run-queue preempts the current 3335 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3336 * called on the nearest possible occasion: 3337 * 3338 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3339 * 3340 * - in syscall or exception context, at the next outmost 3341 * preempt_enable(). (this might be as soon as the wake_up()'s 3342 * spin_unlock()!) 3343 * 3344 * - in IRQ context, return from interrupt-handler to 3345 * preemptible context 3346 * 3347 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3348 * then at the next: 3349 * 3350 * - cond_resched() call 3351 * - explicit schedule() call 3352 * - return from syscall or exception to user-space 3353 * - return from interrupt-handler to user-space 3354 * 3355 * WARNING: must be called with preemption disabled! 3356 */ 3357 static void __sched notrace __schedule(bool preempt) 3358 { 3359 struct task_struct *prev, *next; 3360 unsigned long *switch_count; 3361 struct rq_flags rf; 3362 struct rq *rq; 3363 int cpu; 3364 3365 cpu = smp_processor_id(); 3366 rq = cpu_rq(cpu); 3367 prev = rq->curr; 3368 3369 schedule_debug(prev); 3370 3371 if (sched_feat(HRTICK)) 3372 hrtick_clear(rq); 3373 3374 local_irq_disable(); 3375 rcu_note_context_switch(); 3376 3377 /* 3378 * Make sure that signal_pending_state()->signal_pending() below 3379 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3380 * done by the caller to avoid the race with signal_wake_up(). 3381 */ 3382 smp_mb__before_spinlock(); 3383 raw_spin_lock(&rq->lock); 3384 rq_pin_lock(rq, &rf); 3385 3386 /* Promote REQ to ACT */ 3387 rq->clock_update_flags <<= 1; 3388 3389 switch_count = &prev->nivcsw; 3390 if (!preempt && prev->state) { 3391 if (unlikely(signal_pending_state(prev->state, prev))) { 3392 prev->state = TASK_RUNNING; 3393 } else { 3394 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3395 prev->on_rq = 0; 3396 3397 if (prev->in_iowait) { 3398 atomic_inc(&rq->nr_iowait); 3399 delayacct_blkio_start(); 3400 } 3401 3402 /* 3403 * If a worker went to sleep, notify and ask workqueue 3404 * whether it wants to wake up a task to maintain 3405 * concurrency. 3406 */ 3407 if (prev->flags & PF_WQ_WORKER) { 3408 struct task_struct *to_wakeup; 3409 3410 to_wakeup = wq_worker_sleeping(prev); 3411 if (to_wakeup) 3412 try_to_wake_up_local(to_wakeup, &rf); 3413 } 3414 } 3415 switch_count = &prev->nvcsw; 3416 } 3417 3418 if (task_on_rq_queued(prev)) 3419 update_rq_clock(rq); 3420 3421 next = pick_next_task(rq, prev, &rf); 3422 clear_tsk_need_resched(prev); 3423 clear_preempt_need_resched(); 3424 3425 if (likely(prev != next)) { 3426 rq->nr_switches++; 3427 rq->curr = next; 3428 ++*switch_count; 3429 3430 trace_sched_switch(preempt, prev, next); 3431 3432 /* Also unlocks the rq: */ 3433 rq = context_switch(rq, prev, next, &rf); 3434 } else { 3435 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3436 rq_unpin_lock(rq, &rf); 3437 raw_spin_unlock_irq(&rq->lock); 3438 } 3439 3440 balance_callback(rq); 3441 } 3442 3443 void __noreturn do_task_dead(void) 3444 { 3445 /* 3446 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3447 * when the following two conditions become true. 3448 * - There is race condition of mmap_sem (It is acquired by 3449 * exit_mm()), and 3450 * - SMI occurs before setting TASK_RUNINNG. 3451 * (or hypervisor of virtual machine switches to other guest) 3452 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3453 * 3454 * To avoid it, we have to wait for releasing tsk->pi_lock which 3455 * is held by try_to_wake_up() 3456 */ 3457 smp_mb(); 3458 raw_spin_unlock_wait(¤t->pi_lock); 3459 3460 /* Causes final put_task_struct in finish_task_switch(): */ 3461 __set_current_state(TASK_DEAD); 3462 3463 /* Tell freezer to ignore us: */ 3464 current->flags |= PF_NOFREEZE; 3465 3466 __schedule(false); 3467 BUG(); 3468 3469 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3470 for (;;) 3471 cpu_relax(); 3472 } 3473 3474 static inline void sched_submit_work(struct task_struct *tsk) 3475 { 3476 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3477 return; 3478 /* 3479 * If we are going to sleep and we have plugged IO queued, 3480 * make sure to submit it to avoid deadlocks. 3481 */ 3482 if (blk_needs_flush_plug(tsk)) 3483 blk_schedule_flush_plug(tsk); 3484 } 3485 3486 asmlinkage __visible void __sched schedule(void) 3487 { 3488 struct task_struct *tsk = current; 3489 3490 sched_submit_work(tsk); 3491 do { 3492 preempt_disable(); 3493 __schedule(false); 3494 sched_preempt_enable_no_resched(); 3495 } while (need_resched()); 3496 } 3497 EXPORT_SYMBOL(schedule); 3498 3499 #ifdef CONFIG_CONTEXT_TRACKING 3500 asmlinkage __visible void __sched schedule_user(void) 3501 { 3502 /* 3503 * If we come here after a random call to set_need_resched(), 3504 * or we have been woken up remotely but the IPI has not yet arrived, 3505 * we haven't yet exited the RCU idle mode. Do it here manually until 3506 * we find a better solution. 3507 * 3508 * NB: There are buggy callers of this function. Ideally we 3509 * should warn if prev_state != CONTEXT_USER, but that will trigger 3510 * too frequently to make sense yet. 3511 */ 3512 enum ctx_state prev_state = exception_enter(); 3513 schedule(); 3514 exception_exit(prev_state); 3515 } 3516 #endif 3517 3518 /** 3519 * schedule_preempt_disabled - called with preemption disabled 3520 * 3521 * Returns with preemption disabled. Note: preempt_count must be 1 3522 */ 3523 void __sched schedule_preempt_disabled(void) 3524 { 3525 sched_preempt_enable_no_resched(); 3526 schedule(); 3527 preempt_disable(); 3528 } 3529 3530 static void __sched notrace preempt_schedule_common(void) 3531 { 3532 do { 3533 /* 3534 * Because the function tracer can trace preempt_count_sub() 3535 * and it also uses preempt_enable/disable_notrace(), if 3536 * NEED_RESCHED is set, the preempt_enable_notrace() called 3537 * by the function tracer will call this function again and 3538 * cause infinite recursion. 3539 * 3540 * Preemption must be disabled here before the function 3541 * tracer can trace. Break up preempt_disable() into two 3542 * calls. One to disable preemption without fear of being 3543 * traced. The other to still record the preemption latency, 3544 * which can also be traced by the function tracer. 3545 */ 3546 preempt_disable_notrace(); 3547 preempt_latency_start(1); 3548 __schedule(true); 3549 preempt_latency_stop(1); 3550 preempt_enable_no_resched_notrace(); 3551 3552 /* 3553 * Check again in case we missed a preemption opportunity 3554 * between schedule and now. 3555 */ 3556 } while (need_resched()); 3557 } 3558 3559 #ifdef CONFIG_PREEMPT 3560 /* 3561 * this is the entry point to schedule() from in-kernel preemption 3562 * off of preempt_enable. Kernel preemptions off return from interrupt 3563 * occur there and call schedule directly. 3564 */ 3565 asmlinkage __visible void __sched notrace preempt_schedule(void) 3566 { 3567 /* 3568 * If there is a non-zero preempt_count or interrupts are disabled, 3569 * we do not want to preempt the current task. Just return.. 3570 */ 3571 if (likely(!preemptible())) 3572 return; 3573 3574 preempt_schedule_common(); 3575 } 3576 NOKPROBE_SYMBOL(preempt_schedule); 3577 EXPORT_SYMBOL(preempt_schedule); 3578 3579 /** 3580 * preempt_schedule_notrace - preempt_schedule called by tracing 3581 * 3582 * The tracing infrastructure uses preempt_enable_notrace to prevent 3583 * recursion and tracing preempt enabling caused by the tracing 3584 * infrastructure itself. But as tracing can happen in areas coming 3585 * from userspace or just about to enter userspace, a preempt enable 3586 * can occur before user_exit() is called. This will cause the scheduler 3587 * to be called when the system is still in usermode. 3588 * 3589 * To prevent this, the preempt_enable_notrace will use this function 3590 * instead of preempt_schedule() to exit user context if needed before 3591 * calling the scheduler. 3592 */ 3593 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3594 { 3595 enum ctx_state prev_ctx; 3596 3597 if (likely(!preemptible())) 3598 return; 3599 3600 do { 3601 /* 3602 * Because the function tracer can trace preempt_count_sub() 3603 * and it also uses preempt_enable/disable_notrace(), if 3604 * NEED_RESCHED is set, the preempt_enable_notrace() called 3605 * by the function tracer will call this function again and 3606 * cause infinite recursion. 3607 * 3608 * Preemption must be disabled here before the function 3609 * tracer can trace. Break up preempt_disable() into two 3610 * calls. One to disable preemption without fear of being 3611 * traced. The other to still record the preemption latency, 3612 * which can also be traced by the function tracer. 3613 */ 3614 preempt_disable_notrace(); 3615 preempt_latency_start(1); 3616 /* 3617 * Needs preempt disabled in case user_exit() is traced 3618 * and the tracer calls preempt_enable_notrace() causing 3619 * an infinite recursion. 3620 */ 3621 prev_ctx = exception_enter(); 3622 __schedule(true); 3623 exception_exit(prev_ctx); 3624 3625 preempt_latency_stop(1); 3626 preempt_enable_no_resched_notrace(); 3627 } while (need_resched()); 3628 } 3629 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3630 3631 #endif /* CONFIG_PREEMPT */ 3632 3633 /* 3634 * this is the entry point to schedule() from kernel preemption 3635 * off of irq context. 3636 * Note, that this is called and return with irqs disabled. This will 3637 * protect us against recursive calling from irq. 3638 */ 3639 asmlinkage __visible void __sched preempt_schedule_irq(void) 3640 { 3641 enum ctx_state prev_state; 3642 3643 /* Catch callers which need to be fixed */ 3644 BUG_ON(preempt_count() || !irqs_disabled()); 3645 3646 prev_state = exception_enter(); 3647 3648 do { 3649 preempt_disable(); 3650 local_irq_enable(); 3651 __schedule(true); 3652 local_irq_disable(); 3653 sched_preempt_enable_no_resched(); 3654 } while (need_resched()); 3655 3656 exception_exit(prev_state); 3657 } 3658 3659 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3660 void *key) 3661 { 3662 return try_to_wake_up(curr->private, mode, wake_flags); 3663 } 3664 EXPORT_SYMBOL(default_wake_function); 3665 3666 #ifdef CONFIG_RT_MUTEXES 3667 3668 /* 3669 * rt_mutex_setprio - set the current priority of a task 3670 * @p: task 3671 * @prio: prio value (kernel-internal form) 3672 * 3673 * This function changes the 'effective' priority of a task. It does 3674 * not touch ->normal_prio like __setscheduler(). 3675 * 3676 * Used by the rt_mutex code to implement priority inheritance 3677 * logic. Call site only calls if the priority of the task changed. 3678 */ 3679 void rt_mutex_setprio(struct task_struct *p, int prio) 3680 { 3681 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3682 const struct sched_class *prev_class; 3683 struct rq_flags rf; 3684 struct rq *rq; 3685 3686 BUG_ON(prio > MAX_PRIO); 3687 3688 rq = __task_rq_lock(p, &rf); 3689 update_rq_clock(rq); 3690 3691 /* 3692 * Idle task boosting is a nono in general. There is one 3693 * exception, when PREEMPT_RT and NOHZ is active: 3694 * 3695 * The idle task calls get_next_timer_interrupt() and holds 3696 * the timer wheel base->lock on the CPU and another CPU wants 3697 * to access the timer (probably to cancel it). We can safely 3698 * ignore the boosting request, as the idle CPU runs this code 3699 * with interrupts disabled and will complete the lock 3700 * protected section without being interrupted. So there is no 3701 * real need to boost. 3702 */ 3703 if (unlikely(p == rq->idle)) { 3704 WARN_ON(p != rq->curr); 3705 WARN_ON(p->pi_blocked_on); 3706 goto out_unlock; 3707 } 3708 3709 trace_sched_pi_setprio(p, prio); 3710 oldprio = p->prio; 3711 3712 if (oldprio == prio) 3713 queue_flag &= ~DEQUEUE_MOVE; 3714 3715 prev_class = p->sched_class; 3716 queued = task_on_rq_queued(p); 3717 running = task_current(rq, p); 3718 if (queued) 3719 dequeue_task(rq, p, queue_flag); 3720 if (running) 3721 put_prev_task(rq, p); 3722 3723 /* 3724 * Boosting condition are: 3725 * 1. -rt task is running and holds mutex A 3726 * --> -dl task blocks on mutex A 3727 * 3728 * 2. -dl task is running and holds mutex A 3729 * --> -dl task blocks on mutex A and could preempt the 3730 * running task 3731 */ 3732 if (dl_prio(prio)) { 3733 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3734 if (!dl_prio(p->normal_prio) || 3735 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3736 p->dl.dl_boosted = 1; 3737 queue_flag |= ENQUEUE_REPLENISH; 3738 } else 3739 p->dl.dl_boosted = 0; 3740 p->sched_class = &dl_sched_class; 3741 } else if (rt_prio(prio)) { 3742 if (dl_prio(oldprio)) 3743 p->dl.dl_boosted = 0; 3744 if (oldprio < prio) 3745 queue_flag |= ENQUEUE_HEAD; 3746 p->sched_class = &rt_sched_class; 3747 } else { 3748 if (dl_prio(oldprio)) 3749 p->dl.dl_boosted = 0; 3750 if (rt_prio(oldprio)) 3751 p->rt.timeout = 0; 3752 p->sched_class = &fair_sched_class; 3753 } 3754 3755 p->prio = prio; 3756 3757 if (queued) 3758 enqueue_task(rq, p, queue_flag); 3759 if (running) 3760 set_curr_task(rq, p); 3761 3762 check_class_changed(rq, p, prev_class, oldprio); 3763 out_unlock: 3764 /* Avoid rq from going away on us: */ 3765 preempt_disable(); 3766 __task_rq_unlock(rq, &rf); 3767 3768 balance_callback(rq); 3769 preempt_enable(); 3770 } 3771 #endif 3772 3773 void set_user_nice(struct task_struct *p, long nice) 3774 { 3775 bool queued, running; 3776 int old_prio, delta; 3777 struct rq_flags rf; 3778 struct rq *rq; 3779 3780 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3781 return; 3782 /* 3783 * We have to be careful, if called from sys_setpriority(), 3784 * the task might be in the middle of scheduling on another CPU. 3785 */ 3786 rq = task_rq_lock(p, &rf); 3787 update_rq_clock(rq); 3788 3789 /* 3790 * The RT priorities are set via sched_setscheduler(), but we still 3791 * allow the 'normal' nice value to be set - but as expected 3792 * it wont have any effect on scheduling until the task is 3793 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3794 */ 3795 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3796 p->static_prio = NICE_TO_PRIO(nice); 3797 goto out_unlock; 3798 } 3799 queued = task_on_rq_queued(p); 3800 running = task_current(rq, p); 3801 if (queued) 3802 dequeue_task(rq, p, DEQUEUE_SAVE); 3803 if (running) 3804 put_prev_task(rq, p); 3805 3806 p->static_prio = NICE_TO_PRIO(nice); 3807 set_load_weight(p); 3808 old_prio = p->prio; 3809 p->prio = effective_prio(p); 3810 delta = p->prio - old_prio; 3811 3812 if (queued) { 3813 enqueue_task(rq, p, ENQUEUE_RESTORE); 3814 /* 3815 * If the task increased its priority or is running and 3816 * lowered its priority, then reschedule its CPU: 3817 */ 3818 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3819 resched_curr(rq); 3820 } 3821 if (running) 3822 set_curr_task(rq, p); 3823 out_unlock: 3824 task_rq_unlock(rq, p, &rf); 3825 } 3826 EXPORT_SYMBOL(set_user_nice); 3827 3828 /* 3829 * can_nice - check if a task can reduce its nice value 3830 * @p: task 3831 * @nice: nice value 3832 */ 3833 int can_nice(const struct task_struct *p, const int nice) 3834 { 3835 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3836 int nice_rlim = nice_to_rlimit(nice); 3837 3838 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3839 capable(CAP_SYS_NICE)); 3840 } 3841 3842 #ifdef __ARCH_WANT_SYS_NICE 3843 3844 /* 3845 * sys_nice - change the priority of the current process. 3846 * @increment: priority increment 3847 * 3848 * sys_setpriority is a more generic, but much slower function that 3849 * does similar things. 3850 */ 3851 SYSCALL_DEFINE1(nice, int, increment) 3852 { 3853 long nice, retval; 3854 3855 /* 3856 * Setpriority might change our priority at the same moment. 3857 * We don't have to worry. Conceptually one call occurs first 3858 * and we have a single winner. 3859 */ 3860 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3861 nice = task_nice(current) + increment; 3862 3863 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3864 if (increment < 0 && !can_nice(current, nice)) 3865 return -EPERM; 3866 3867 retval = security_task_setnice(current, nice); 3868 if (retval) 3869 return retval; 3870 3871 set_user_nice(current, nice); 3872 return 0; 3873 } 3874 3875 #endif 3876 3877 /** 3878 * task_prio - return the priority value of a given task. 3879 * @p: the task in question. 3880 * 3881 * Return: The priority value as seen by users in /proc. 3882 * RT tasks are offset by -200. Normal tasks are centered 3883 * around 0, value goes from -16 to +15. 3884 */ 3885 int task_prio(const struct task_struct *p) 3886 { 3887 return p->prio - MAX_RT_PRIO; 3888 } 3889 3890 /** 3891 * idle_cpu - is a given CPU idle currently? 3892 * @cpu: the processor in question. 3893 * 3894 * Return: 1 if the CPU is currently idle. 0 otherwise. 3895 */ 3896 int idle_cpu(int cpu) 3897 { 3898 struct rq *rq = cpu_rq(cpu); 3899 3900 if (rq->curr != rq->idle) 3901 return 0; 3902 3903 if (rq->nr_running) 3904 return 0; 3905 3906 #ifdef CONFIG_SMP 3907 if (!llist_empty(&rq->wake_list)) 3908 return 0; 3909 #endif 3910 3911 return 1; 3912 } 3913 3914 /** 3915 * idle_task - return the idle task for a given CPU. 3916 * @cpu: the processor in question. 3917 * 3918 * Return: The idle task for the CPU @cpu. 3919 */ 3920 struct task_struct *idle_task(int cpu) 3921 { 3922 return cpu_rq(cpu)->idle; 3923 } 3924 3925 /** 3926 * find_process_by_pid - find a process with a matching PID value. 3927 * @pid: the pid in question. 3928 * 3929 * The task of @pid, if found. %NULL otherwise. 3930 */ 3931 static struct task_struct *find_process_by_pid(pid_t pid) 3932 { 3933 return pid ? find_task_by_vpid(pid) : current; 3934 } 3935 3936 /* 3937 * This function initializes the sched_dl_entity of a newly becoming 3938 * SCHED_DEADLINE task. 3939 * 3940 * Only the static values are considered here, the actual runtime and the 3941 * absolute deadline will be properly calculated when the task is enqueued 3942 * for the first time with its new policy. 3943 */ 3944 static void 3945 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3946 { 3947 struct sched_dl_entity *dl_se = &p->dl; 3948 3949 dl_se->dl_runtime = attr->sched_runtime; 3950 dl_se->dl_deadline = attr->sched_deadline; 3951 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3952 dl_se->flags = attr->sched_flags; 3953 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3954 3955 /* 3956 * Changing the parameters of a task is 'tricky' and we're not doing 3957 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3958 * 3959 * What we SHOULD do is delay the bandwidth release until the 0-lag 3960 * point. This would include retaining the task_struct until that time 3961 * and change dl_overflow() to not immediately decrement the current 3962 * amount. 3963 * 3964 * Instead we retain the current runtime/deadline and let the new 3965 * parameters take effect after the current reservation period lapses. 3966 * This is safe (albeit pessimistic) because the 0-lag point is always 3967 * before the current scheduling deadline. 3968 * 3969 * We can still have temporary overloads because we do not delay the 3970 * change in bandwidth until that time; so admission control is 3971 * not on the safe side. It does however guarantee tasks will never 3972 * consume more than promised. 3973 */ 3974 } 3975 3976 /* 3977 * sched_setparam() passes in -1 for its policy, to let the functions 3978 * it calls know not to change it. 3979 */ 3980 #define SETPARAM_POLICY -1 3981 3982 static void __setscheduler_params(struct task_struct *p, 3983 const struct sched_attr *attr) 3984 { 3985 int policy = attr->sched_policy; 3986 3987 if (policy == SETPARAM_POLICY) 3988 policy = p->policy; 3989 3990 p->policy = policy; 3991 3992 if (dl_policy(policy)) 3993 __setparam_dl(p, attr); 3994 else if (fair_policy(policy)) 3995 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3996 3997 /* 3998 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3999 * !rt_policy. Always setting this ensures that things like 4000 * getparam()/getattr() don't report silly values for !rt tasks. 4001 */ 4002 p->rt_priority = attr->sched_priority; 4003 p->normal_prio = normal_prio(p); 4004 set_load_weight(p); 4005 } 4006 4007 /* Actually do priority change: must hold pi & rq lock. */ 4008 static void __setscheduler(struct rq *rq, struct task_struct *p, 4009 const struct sched_attr *attr, bool keep_boost) 4010 { 4011 __setscheduler_params(p, attr); 4012 4013 /* 4014 * Keep a potential priority boosting if called from 4015 * sched_setscheduler(). 4016 */ 4017 if (keep_boost) 4018 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 4019 else 4020 p->prio = normal_prio(p); 4021 4022 if (dl_prio(p->prio)) 4023 p->sched_class = &dl_sched_class; 4024 else if (rt_prio(p->prio)) 4025 p->sched_class = &rt_sched_class; 4026 else 4027 p->sched_class = &fair_sched_class; 4028 } 4029 4030 static void 4031 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 4032 { 4033 struct sched_dl_entity *dl_se = &p->dl; 4034 4035 attr->sched_priority = p->rt_priority; 4036 attr->sched_runtime = dl_se->dl_runtime; 4037 attr->sched_deadline = dl_se->dl_deadline; 4038 attr->sched_period = dl_se->dl_period; 4039 attr->sched_flags = dl_se->flags; 4040 } 4041 4042 /* 4043 * This function validates the new parameters of a -deadline task. 4044 * We ask for the deadline not being zero, and greater or equal 4045 * than the runtime, as well as the period of being zero or 4046 * greater than deadline. Furthermore, we have to be sure that 4047 * user parameters are above the internal resolution of 1us (we 4048 * check sched_runtime only since it is always the smaller one) and 4049 * below 2^63 ns (we have to check both sched_deadline and 4050 * sched_period, as the latter can be zero). 4051 */ 4052 static bool 4053 __checkparam_dl(const struct sched_attr *attr) 4054 { 4055 /* deadline != 0 */ 4056 if (attr->sched_deadline == 0) 4057 return false; 4058 4059 /* 4060 * Since we truncate DL_SCALE bits, make sure we're at least 4061 * that big. 4062 */ 4063 if (attr->sched_runtime < (1ULL << DL_SCALE)) 4064 return false; 4065 4066 /* 4067 * Since we use the MSB for wrap-around and sign issues, make 4068 * sure it's not set (mind that period can be equal to zero). 4069 */ 4070 if (attr->sched_deadline & (1ULL << 63) || 4071 attr->sched_period & (1ULL << 63)) 4072 return false; 4073 4074 /* runtime <= deadline <= period (if period != 0) */ 4075 if ((attr->sched_period != 0 && 4076 attr->sched_period < attr->sched_deadline) || 4077 attr->sched_deadline < attr->sched_runtime) 4078 return false; 4079 4080 return true; 4081 } 4082 4083 /* 4084 * Check the target process has a UID that matches the current process's: 4085 */ 4086 static bool check_same_owner(struct task_struct *p) 4087 { 4088 const struct cred *cred = current_cred(), *pcred; 4089 bool match; 4090 4091 rcu_read_lock(); 4092 pcred = __task_cred(p); 4093 match = (uid_eq(cred->euid, pcred->euid) || 4094 uid_eq(cred->euid, pcred->uid)); 4095 rcu_read_unlock(); 4096 return match; 4097 } 4098 4099 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 4100 { 4101 struct sched_dl_entity *dl_se = &p->dl; 4102 4103 if (dl_se->dl_runtime != attr->sched_runtime || 4104 dl_se->dl_deadline != attr->sched_deadline || 4105 dl_se->dl_period != attr->sched_period || 4106 dl_se->flags != attr->sched_flags) 4107 return true; 4108 4109 return false; 4110 } 4111 4112 static int __sched_setscheduler(struct task_struct *p, 4113 const struct sched_attr *attr, 4114 bool user, bool pi) 4115 { 4116 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4117 MAX_RT_PRIO - 1 - attr->sched_priority; 4118 int retval, oldprio, oldpolicy = -1, queued, running; 4119 int new_effective_prio, policy = attr->sched_policy; 4120 const struct sched_class *prev_class; 4121 struct rq_flags rf; 4122 int reset_on_fork; 4123 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 4124 struct rq *rq; 4125 4126 /* May grab non-irq protected spin_locks: */ 4127 BUG_ON(in_interrupt()); 4128 recheck: 4129 /* Double check policy once rq lock held: */ 4130 if (policy < 0) { 4131 reset_on_fork = p->sched_reset_on_fork; 4132 policy = oldpolicy = p->policy; 4133 } else { 4134 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4135 4136 if (!valid_policy(policy)) 4137 return -EINVAL; 4138 } 4139 4140 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 4141 return -EINVAL; 4142 4143 /* 4144 * Valid priorities for SCHED_FIFO and SCHED_RR are 4145 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4146 * SCHED_BATCH and SCHED_IDLE is 0. 4147 */ 4148 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4149 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4150 return -EINVAL; 4151 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4152 (rt_policy(policy) != (attr->sched_priority != 0))) 4153 return -EINVAL; 4154 4155 /* 4156 * Allow unprivileged RT tasks to decrease priority: 4157 */ 4158 if (user && !capable(CAP_SYS_NICE)) { 4159 if (fair_policy(policy)) { 4160 if (attr->sched_nice < task_nice(p) && 4161 !can_nice(p, attr->sched_nice)) 4162 return -EPERM; 4163 } 4164 4165 if (rt_policy(policy)) { 4166 unsigned long rlim_rtprio = 4167 task_rlimit(p, RLIMIT_RTPRIO); 4168 4169 /* Can't set/change the rt policy: */ 4170 if (policy != p->policy && !rlim_rtprio) 4171 return -EPERM; 4172 4173 /* Can't increase priority: */ 4174 if (attr->sched_priority > p->rt_priority && 4175 attr->sched_priority > rlim_rtprio) 4176 return -EPERM; 4177 } 4178 4179 /* 4180 * Can't set/change SCHED_DEADLINE policy at all for now 4181 * (safest behavior); in the future we would like to allow 4182 * unprivileged DL tasks to increase their relative deadline 4183 * or reduce their runtime (both ways reducing utilization) 4184 */ 4185 if (dl_policy(policy)) 4186 return -EPERM; 4187 4188 /* 4189 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4190 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4191 */ 4192 if (idle_policy(p->policy) && !idle_policy(policy)) { 4193 if (!can_nice(p, task_nice(p))) 4194 return -EPERM; 4195 } 4196 4197 /* Can't change other user's priorities: */ 4198 if (!check_same_owner(p)) 4199 return -EPERM; 4200 4201 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4202 if (p->sched_reset_on_fork && !reset_on_fork) 4203 return -EPERM; 4204 } 4205 4206 if (user) { 4207 retval = security_task_setscheduler(p); 4208 if (retval) 4209 return retval; 4210 } 4211 4212 /* 4213 * Make sure no PI-waiters arrive (or leave) while we are 4214 * changing the priority of the task: 4215 * 4216 * To be able to change p->policy safely, the appropriate 4217 * runqueue lock must be held. 4218 */ 4219 rq = task_rq_lock(p, &rf); 4220 update_rq_clock(rq); 4221 4222 /* 4223 * Changing the policy of the stop threads its a very bad idea: 4224 */ 4225 if (p == rq->stop) { 4226 task_rq_unlock(rq, p, &rf); 4227 return -EINVAL; 4228 } 4229 4230 /* 4231 * If not changing anything there's no need to proceed further, 4232 * but store a possible modification of reset_on_fork. 4233 */ 4234 if (unlikely(policy == p->policy)) { 4235 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4236 goto change; 4237 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4238 goto change; 4239 if (dl_policy(policy) && dl_param_changed(p, attr)) 4240 goto change; 4241 4242 p->sched_reset_on_fork = reset_on_fork; 4243 task_rq_unlock(rq, p, &rf); 4244 return 0; 4245 } 4246 change: 4247 4248 if (user) { 4249 #ifdef CONFIG_RT_GROUP_SCHED 4250 /* 4251 * Do not allow realtime tasks into groups that have no runtime 4252 * assigned. 4253 */ 4254 if (rt_bandwidth_enabled() && rt_policy(policy) && 4255 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4256 !task_group_is_autogroup(task_group(p))) { 4257 task_rq_unlock(rq, p, &rf); 4258 return -EPERM; 4259 } 4260 #endif 4261 #ifdef CONFIG_SMP 4262 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4263 cpumask_t *span = rq->rd->span; 4264 4265 /* 4266 * Don't allow tasks with an affinity mask smaller than 4267 * the entire root_domain to become SCHED_DEADLINE. We 4268 * will also fail if there's no bandwidth available. 4269 */ 4270 if (!cpumask_subset(span, &p->cpus_allowed) || 4271 rq->rd->dl_bw.bw == 0) { 4272 task_rq_unlock(rq, p, &rf); 4273 return -EPERM; 4274 } 4275 } 4276 #endif 4277 } 4278 4279 /* Re-check policy now with rq lock held: */ 4280 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4281 policy = oldpolicy = -1; 4282 task_rq_unlock(rq, p, &rf); 4283 goto recheck; 4284 } 4285 4286 /* 4287 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4288 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4289 * is available. 4290 */ 4291 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4292 task_rq_unlock(rq, p, &rf); 4293 return -EBUSY; 4294 } 4295 4296 p->sched_reset_on_fork = reset_on_fork; 4297 oldprio = p->prio; 4298 4299 if (pi) { 4300 /* 4301 * Take priority boosted tasks into account. If the new 4302 * effective priority is unchanged, we just store the new 4303 * normal parameters and do not touch the scheduler class and 4304 * the runqueue. This will be done when the task deboost 4305 * itself. 4306 */ 4307 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4308 if (new_effective_prio == oldprio) 4309 queue_flags &= ~DEQUEUE_MOVE; 4310 } 4311 4312 queued = task_on_rq_queued(p); 4313 running = task_current(rq, p); 4314 if (queued) 4315 dequeue_task(rq, p, queue_flags); 4316 if (running) 4317 put_prev_task(rq, p); 4318 4319 prev_class = p->sched_class; 4320 __setscheduler(rq, p, attr, pi); 4321 4322 if (queued) { 4323 /* 4324 * We enqueue to tail when the priority of a task is 4325 * increased (user space view). 4326 */ 4327 if (oldprio < p->prio) 4328 queue_flags |= ENQUEUE_HEAD; 4329 4330 enqueue_task(rq, p, queue_flags); 4331 } 4332 if (running) 4333 set_curr_task(rq, p); 4334 4335 check_class_changed(rq, p, prev_class, oldprio); 4336 4337 /* Avoid rq from going away on us: */ 4338 preempt_disable(); 4339 task_rq_unlock(rq, p, &rf); 4340 4341 if (pi) 4342 rt_mutex_adjust_pi(p); 4343 4344 /* Run balance callbacks after we've adjusted the PI chain: */ 4345 balance_callback(rq); 4346 preempt_enable(); 4347 4348 return 0; 4349 } 4350 4351 static int _sched_setscheduler(struct task_struct *p, int policy, 4352 const struct sched_param *param, bool check) 4353 { 4354 struct sched_attr attr = { 4355 .sched_policy = policy, 4356 .sched_priority = param->sched_priority, 4357 .sched_nice = PRIO_TO_NICE(p->static_prio), 4358 }; 4359 4360 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4361 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4362 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4363 policy &= ~SCHED_RESET_ON_FORK; 4364 attr.sched_policy = policy; 4365 } 4366 4367 return __sched_setscheduler(p, &attr, check, true); 4368 } 4369 /** 4370 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4371 * @p: the task in question. 4372 * @policy: new policy. 4373 * @param: structure containing the new RT priority. 4374 * 4375 * Return: 0 on success. An error code otherwise. 4376 * 4377 * NOTE that the task may be already dead. 4378 */ 4379 int sched_setscheduler(struct task_struct *p, int policy, 4380 const struct sched_param *param) 4381 { 4382 return _sched_setscheduler(p, policy, param, true); 4383 } 4384 EXPORT_SYMBOL_GPL(sched_setscheduler); 4385 4386 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4387 { 4388 return __sched_setscheduler(p, attr, true, true); 4389 } 4390 EXPORT_SYMBOL_GPL(sched_setattr); 4391 4392 /** 4393 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4394 * @p: the task in question. 4395 * @policy: new policy. 4396 * @param: structure containing the new RT priority. 4397 * 4398 * Just like sched_setscheduler, only don't bother checking if the 4399 * current context has permission. For example, this is needed in 4400 * stop_machine(): we create temporary high priority worker threads, 4401 * but our caller might not have that capability. 4402 * 4403 * Return: 0 on success. An error code otherwise. 4404 */ 4405 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4406 const struct sched_param *param) 4407 { 4408 return _sched_setscheduler(p, policy, param, false); 4409 } 4410 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4411 4412 static int 4413 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4414 { 4415 struct sched_param lparam; 4416 struct task_struct *p; 4417 int retval; 4418 4419 if (!param || pid < 0) 4420 return -EINVAL; 4421 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4422 return -EFAULT; 4423 4424 rcu_read_lock(); 4425 retval = -ESRCH; 4426 p = find_process_by_pid(pid); 4427 if (p != NULL) 4428 retval = sched_setscheduler(p, policy, &lparam); 4429 rcu_read_unlock(); 4430 4431 return retval; 4432 } 4433 4434 /* 4435 * Mimics kernel/events/core.c perf_copy_attr(). 4436 */ 4437 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4438 { 4439 u32 size; 4440 int ret; 4441 4442 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4443 return -EFAULT; 4444 4445 /* Zero the full structure, so that a short copy will be nice: */ 4446 memset(attr, 0, sizeof(*attr)); 4447 4448 ret = get_user(size, &uattr->size); 4449 if (ret) 4450 return ret; 4451 4452 /* Bail out on silly large: */ 4453 if (size > PAGE_SIZE) 4454 goto err_size; 4455 4456 /* ABI compatibility quirk: */ 4457 if (!size) 4458 size = SCHED_ATTR_SIZE_VER0; 4459 4460 if (size < SCHED_ATTR_SIZE_VER0) 4461 goto err_size; 4462 4463 /* 4464 * If we're handed a bigger struct than we know of, 4465 * ensure all the unknown bits are 0 - i.e. new 4466 * user-space does not rely on any kernel feature 4467 * extensions we dont know about yet. 4468 */ 4469 if (size > sizeof(*attr)) { 4470 unsigned char __user *addr; 4471 unsigned char __user *end; 4472 unsigned char val; 4473 4474 addr = (void __user *)uattr + sizeof(*attr); 4475 end = (void __user *)uattr + size; 4476 4477 for (; addr < end; addr++) { 4478 ret = get_user(val, addr); 4479 if (ret) 4480 return ret; 4481 if (val) 4482 goto err_size; 4483 } 4484 size = sizeof(*attr); 4485 } 4486 4487 ret = copy_from_user(attr, uattr, size); 4488 if (ret) 4489 return -EFAULT; 4490 4491 /* 4492 * XXX: Do we want to be lenient like existing syscalls; or do we want 4493 * to be strict and return an error on out-of-bounds values? 4494 */ 4495 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4496 4497 return 0; 4498 4499 err_size: 4500 put_user(sizeof(*attr), &uattr->size); 4501 return -E2BIG; 4502 } 4503 4504 /** 4505 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4506 * @pid: the pid in question. 4507 * @policy: new policy. 4508 * @param: structure containing the new RT priority. 4509 * 4510 * Return: 0 on success. An error code otherwise. 4511 */ 4512 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4513 { 4514 if (policy < 0) 4515 return -EINVAL; 4516 4517 return do_sched_setscheduler(pid, policy, param); 4518 } 4519 4520 /** 4521 * sys_sched_setparam - set/change the RT priority of a thread 4522 * @pid: the pid in question. 4523 * @param: structure containing the new RT priority. 4524 * 4525 * Return: 0 on success. An error code otherwise. 4526 */ 4527 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4528 { 4529 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4530 } 4531 4532 /** 4533 * sys_sched_setattr - same as above, but with extended sched_attr 4534 * @pid: the pid in question. 4535 * @uattr: structure containing the extended parameters. 4536 * @flags: for future extension. 4537 */ 4538 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4539 unsigned int, flags) 4540 { 4541 struct sched_attr attr; 4542 struct task_struct *p; 4543 int retval; 4544 4545 if (!uattr || pid < 0 || flags) 4546 return -EINVAL; 4547 4548 retval = sched_copy_attr(uattr, &attr); 4549 if (retval) 4550 return retval; 4551 4552 if ((int)attr.sched_policy < 0) 4553 return -EINVAL; 4554 4555 rcu_read_lock(); 4556 retval = -ESRCH; 4557 p = find_process_by_pid(pid); 4558 if (p != NULL) 4559 retval = sched_setattr(p, &attr); 4560 rcu_read_unlock(); 4561 4562 return retval; 4563 } 4564 4565 /** 4566 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4567 * @pid: the pid in question. 4568 * 4569 * Return: On success, the policy of the thread. Otherwise, a negative error 4570 * code. 4571 */ 4572 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4573 { 4574 struct task_struct *p; 4575 int retval; 4576 4577 if (pid < 0) 4578 return -EINVAL; 4579 4580 retval = -ESRCH; 4581 rcu_read_lock(); 4582 p = find_process_by_pid(pid); 4583 if (p) { 4584 retval = security_task_getscheduler(p); 4585 if (!retval) 4586 retval = p->policy 4587 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4588 } 4589 rcu_read_unlock(); 4590 return retval; 4591 } 4592 4593 /** 4594 * sys_sched_getparam - get the RT priority of a thread 4595 * @pid: the pid in question. 4596 * @param: structure containing the RT priority. 4597 * 4598 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4599 * code. 4600 */ 4601 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4602 { 4603 struct sched_param lp = { .sched_priority = 0 }; 4604 struct task_struct *p; 4605 int retval; 4606 4607 if (!param || pid < 0) 4608 return -EINVAL; 4609 4610 rcu_read_lock(); 4611 p = find_process_by_pid(pid); 4612 retval = -ESRCH; 4613 if (!p) 4614 goto out_unlock; 4615 4616 retval = security_task_getscheduler(p); 4617 if (retval) 4618 goto out_unlock; 4619 4620 if (task_has_rt_policy(p)) 4621 lp.sched_priority = p->rt_priority; 4622 rcu_read_unlock(); 4623 4624 /* 4625 * This one might sleep, we cannot do it with a spinlock held ... 4626 */ 4627 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4628 4629 return retval; 4630 4631 out_unlock: 4632 rcu_read_unlock(); 4633 return retval; 4634 } 4635 4636 static int sched_read_attr(struct sched_attr __user *uattr, 4637 struct sched_attr *attr, 4638 unsigned int usize) 4639 { 4640 int ret; 4641 4642 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4643 return -EFAULT; 4644 4645 /* 4646 * If we're handed a smaller struct than we know of, 4647 * ensure all the unknown bits are 0 - i.e. old 4648 * user-space does not get uncomplete information. 4649 */ 4650 if (usize < sizeof(*attr)) { 4651 unsigned char *addr; 4652 unsigned char *end; 4653 4654 addr = (void *)attr + usize; 4655 end = (void *)attr + sizeof(*attr); 4656 4657 for (; addr < end; addr++) { 4658 if (*addr) 4659 return -EFBIG; 4660 } 4661 4662 attr->size = usize; 4663 } 4664 4665 ret = copy_to_user(uattr, attr, attr->size); 4666 if (ret) 4667 return -EFAULT; 4668 4669 return 0; 4670 } 4671 4672 /** 4673 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4674 * @pid: the pid in question. 4675 * @uattr: structure containing the extended parameters. 4676 * @size: sizeof(attr) for fwd/bwd comp. 4677 * @flags: for future extension. 4678 */ 4679 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4680 unsigned int, size, unsigned int, flags) 4681 { 4682 struct sched_attr attr = { 4683 .size = sizeof(struct sched_attr), 4684 }; 4685 struct task_struct *p; 4686 int retval; 4687 4688 if (!uattr || pid < 0 || size > PAGE_SIZE || 4689 size < SCHED_ATTR_SIZE_VER0 || flags) 4690 return -EINVAL; 4691 4692 rcu_read_lock(); 4693 p = find_process_by_pid(pid); 4694 retval = -ESRCH; 4695 if (!p) 4696 goto out_unlock; 4697 4698 retval = security_task_getscheduler(p); 4699 if (retval) 4700 goto out_unlock; 4701 4702 attr.sched_policy = p->policy; 4703 if (p->sched_reset_on_fork) 4704 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4705 if (task_has_dl_policy(p)) 4706 __getparam_dl(p, &attr); 4707 else if (task_has_rt_policy(p)) 4708 attr.sched_priority = p->rt_priority; 4709 else 4710 attr.sched_nice = task_nice(p); 4711 4712 rcu_read_unlock(); 4713 4714 retval = sched_read_attr(uattr, &attr, size); 4715 return retval; 4716 4717 out_unlock: 4718 rcu_read_unlock(); 4719 return retval; 4720 } 4721 4722 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4723 { 4724 cpumask_var_t cpus_allowed, new_mask; 4725 struct task_struct *p; 4726 int retval; 4727 4728 rcu_read_lock(); 4729 4730 p = find_process_by_pid(pid); 4731 if (!p) { 4732 rcu_read_unlock(); 4733 return -ESRCH; 4734 } 4735 4736 /* Prevent p going away */ 4737 get_task_struct(p); 4738 rcu_read_unlock(); 4739 4740 if (p->flags & PF_NO_SETAFFINITY) { 4741 retval = -EINVAL; 4742 goto out_put_task; 4743 } 4744 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4745 retval = -ENOMEM; 4746 goto out_put_task; 4747 } 4748 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4749 retval = -ENOMEM; 4750 goto out_free_cpus_allowed; 4751 } 4752 retval = -EPERM; 4753 if (!check_same_owner(p)) { 4754 rcu_read_lock(); 4755 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4756 rcu_read_unlock(); 4757 goto out_free_new_mask; 4758 } 4759 rcu_read_unlock(); 4760 } 4761 4762 retval = security_task_setscheduler(p); 4763 if (retval) 4764 goto out_free_new_mask; 4765 4766 4767 cpuset_cpus_allowed(p, cpus_allowed); 4768 cpumask_and(new_mask, in_mask, cpus_allowed); 4769 4770 /* 4771 * Since bandwidth control happens on root_domain basis, 4772 * if admission test is enabled, we only admit -deadline 4773 * tasks allowed to run on all the CPUs in the task's 4774 * root_domain. 4775 */ 4776 #ifdef CONFIG_SMP 4777 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4778 rcu_read_lock(); 4779 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4780 retval = -EBUSY; 4781 rcu_read_unlock(); 4782 goto out_free_new_mask; 4783 } 4784 rcu_read_unlock(); 4785 } 4786 #endif 4787 again: 4788 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4789 4790 if (!retval) { 4791 cpuset_cpus_allowed(p, cpus_allowed); 4792 if (!cpumask_subset(new_mask, cpus_allowed)) { 4793 /* 4794 * We must have raced with a concurrent cpuset 4795 * update. Just reset the cpus_allowed to the 4796 * cpuset's cpus_allowed 4797 */ 4798 cpumask_copy(new_mask, cpus_allowed); 4799 goto again; 4800 } 4801 } 4802 out_free_new_mask: 4803 free_cpumask_var(new_mask); 4804 out_free_cpus_allowed: 4805 free_cpumask_var(cpus_allowed); 4806 out_put_task: 4807 put_task_struct(p); 4808 return retval; 4809 } 4810 4811 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4812 struct cpumask *new_mask) 4813 { 4814 if (len < cpumask_size()) 4815 cpumask_clear(new_mask); 4816 else if (len > cpumask_size()) 4817 len = cpumask_size(); 4818 4819 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4820 } 4821 4822 /** 4823 * sys_sched_setaffinity - set the CPU affinity of a process 4824 * @pid: pid of the process 4825 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4826 * @user_mask_ptr: user-space pointer to the new CPU mask 4827 * 4828 * Return: 0 on success. An error code otherwise. 4829 */ 4830 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4831 unsigned long __user *, user_mask_ptr) 4832 { 4833 cpumask_var_t new_mask; 4834 int retval; 4835 4836 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4837 return -ENOMEM; 4838 4839 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4840 if (retval == 0) 4841 retval = sched_setaffinity(pid, new_mask); 4842 free_cpumask_var(new_mask); 4843 return retval; 4844 } 4845 4846 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4847 { 4848 struct task_struct *p; 4849 unsigned long flags; 4850 int retval; 4851 4852 rcu_read_lock(); 4853 4854 retval = -ESRCH; 4855 p = find_process_by_pid(pid); 4856 if (!p) 4857 goto out_unlock; 4858 4859 retval = security_task_getscheduler(p); 4860 if (retval) 4861 goto out_unlock; 4862 4863 raw_spin_lock_irqsave(&p->pi_lock, flags); 4864 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4865 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4866 4867 out_unlock: 4868 rcu_read_unlock(); 4869 4870 return retval; 4871 } 4872 4873 /** 4874 * sys_sched_getaffinity - get the CPU affinity of a process 4875 * @pid: pid of the process 4876 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4877 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4878 * 4879 * Return: size of CPU mask copied to user_mask_ptr on success. An 4880 * error code otherwise. 4881 */ 4882 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4883 unsigned long __user *, user_mask_ptr) 4884 { 4885 int ret; 4886 cpumask_var_t mask; 4887 4888 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4889 return -EINVAL; 4890 if (len & (sizeof(unsigned long)-1)) 4891 return -EINVAL; 4892 4893 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4894 return -ENOMEM; 4895 4896 ret = sched_getaffinity(pid, mask); 4897 if (ret == 0) { 4898 size_t retlen = min_t(size_t, len, cpumask_size()); 4899 4900 if (copy_to_user(user_mask_ptr, mask, retlen)) 4901 ret = -EFAULT; 4902 else 4903 ret = retlen; 4904 } 4905 free_cpumask_var(mask); 4906 4907 return ret; 4908 } 4909 4910 /** 4911 * sys_sched_yield - yield the current processor to other threads. 4912 * 4913 * This function yields the current CPU to other tasks. If there are no 4914 * other threads running on this CPU then this function will return. 4915 * 4916 * Return: 0. 4917 */ 4918 SYSCALL_DEFINE0(sched_yield) 4919 { 4920 struct rq *rq = this_rq_lock(); 4921 4922 schedstat_inc(rq->yld_count); 4923 current->sched_class->yield_task(rq); 4924 4925 /* 4926 * Since we are going to call schedule() anyway, there's 4927 * no need to preempt or enable interrupts: 4928 */ 4929 __release(rq->lock); 4930 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4931 do_raw_spin_unlock(&rq->lock); 4932 sched_preempt_enable_no_resched(); 4933 4934 schedule(); 4935 4936 return 0; 4937 } 4938 4939 #ifndef CONFIG_PREEMPT 4940 int __sched _cond_resched(void) 4941 { 4942 if (should_resched(0)) { 4943 preempt_schedule_common(); 4944 return 1; 4945 } 4946 return 0; 4947 } 4948 EXPORT_SYMBOL(_cond_resched); 4949 #endif 4950 4951 /* 4952 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4953 * call schedule, and on return reacquire the lock. 4954 * 4955 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4956 * operations here to prevent schedule() from being called twice (once via 4957 * spin_unlock(), once by hand). 4958 */ 4959 int __cond_resched_lock(spinlock_t *lock) 4960 { 4961 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4962 int ret = 0; 4963 4964 lockdep_assert_held(lock); 4965 4966 if (spin_needbreak(lock) || resched) { 4967 spin_unlock(lock); 4968 if (resched) 4969 preempt_schedule_common(); 4970 else 4971 cpu_relax(); 4972 ret = 1; 4973 spin_lock(lock); 4974 } 4975 return ret; 4976 } 4977 EXPORT_SYMBOL(__cond_resched_lock); 4978 4979 int __sched __cond_resched_softirq(void) 4980 { 4981 BUG_ON(!in_softirq()); 4982 4983 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4984 local_bh_enable(); 4985 preempt_schedule_common(); 4986 local_bh_disable(); 4987 return 1; 4988 } 4989 return 0; 4990 } 4991 EXPORT_SYMBOL(__cond_resched_softirq); 4992 4993 /** 4994 * yield - yield the current processor to other threads. 4995 * 4996 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4997 * 4998 * The scheduler is at all times free to pick the calling task as the most 4999 * eligible task to run, if removing the yield() call from your code breaks 5000 * it, its already broken. 5001 * 5002 * Typical broken usage is: 5003 * 5004 * while (!event) 5005 * yield(); 5006 * 5007 * where one assumes that yield() will let 'the other' process run that will 5008 * make event true. If the current task is a SCHED_FIFO task that will never 5009 * happen. Never use yield() as a progress guarantee!! 5010 * 5011 * If you want to use yield() to wait for something, use wait_event(). 5012 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5013 * If you still want to use yield(), do not! 5014 */ 5015 void __sched yield(void) 5016 { 5017 set_current_state(TASK_RUNNING); 5018 sys_sched_yield(); 5019 } 5020 EXPORT_SYMBOL(yield); 5021 5022 /** 5023 * yield_to - yield the current processor to another thread in 5024 * your thread group, or accelerate that thread toward the 5025 * processor it's on. 5026 * @p: target task 5027 * @preempt: whether task preemption is allowed or not 5028 * 5029 * It's the caller's job to ensure that the target task struct 5030 * can't go away on us before we can do any checks. 5031 * 5032 * Return: 5033 * true (>0) if we indeed boosted the target task. 5034 * false (0) if we failed to boost the target. 5035 * -ESRCH if there's no task to yield to. 5036 */ 5037 int __sched yield_to(struct task_struct *p, bool preempt) 5038 { 5039 struct task_struct *curr = current; 5040 struct rq *rq, *p_rq; 5041 unsigned long flags; 5042 int yielded = 0; 5043 5044 local_irq_save(flags); 5045 rq = this_rq(); 5046 5047 again: 5048 p_rq = task_rq(p); 5049 /* 5050 * If we're the only runnable task on the rq and target rq also 5051 * has only one task, there's absolutely no point in yielding. 5052 */ 5053 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5054 yielded = -ESRCH; 5055 goto out_irq; 5056 } 5057 5058 double_rq_lock(rq, p_rq); 5059 if (task_rq(p) != p_rq) { 5060 double_rq_unlock(rq, p_rq); 5061 goto again; 5062 } 5063 5064 if (!curr->sched_class->yield_to_task) 5065 goto out_unlock; 5066 5067 if (curr->sched_class != p->sched_class) 5068 goto out_unlock; 5069 5070 if (task_running(p_rq, p) || p->state) 5071 goto out_unlock; 5072 5073 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5074 if (yielded) { 5075 schedstat_inc(rq->yld_count); 5076 /* 5077 * Make p's CPU reschedule; pick_next_entity takes care of 5078 * fairness. 5079 */ 5080 if (preempt && rq != p_rq) 5081 resched_curr(p_rq); 5082 } 5083 5084 out_unlock: 5085 double_rq_unlock(rq, p_rq); 5086 out_irq: 5087 local_irq_restore(flags); 5088 5089 if (yielded > 0) 5090 schedule(); 5091 5092 return yielded; 5093 } 5094 EXPORT_SYMBOL_GPL(yield_to); 5095 5096 int io_schedule_prepare(void) 5097 { 5098 int old_iowait = current->in_iowait; 5099 5100 current->in_iowait = 1; 5101 blk_schedule_flush_plug(current); 5102 5103 return old_iowait; 5104 } 5105 5106 void io_schedule_finish(int token) 5107 { 5108 current->in_iowait = token; 5109 } 5110 5111 /* 5112 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5113 * that process accounting knows that this is a task in IO wait state. 5114 */ 5115 long __sched io_schedule_timeout(long timeout) 5116 { 5117 int token; 5118 long ret; 5119 5120 token = io_schedule_prepare(); 5121 ret = schedule_timeout(timeout); 5122 io_schedule_finish(token); 5123 5124 return ret; 5125 } 5126 EXPORT_SYMBOL(io_schedule_timeout); 5127 5128 void io_schedule(void) 5129 { 5130 int token; 5131 5132 token = io_schedule_prepare(); 5133 schedule(); 5134 io_schedule_finish(token); 5135 } 5136 EXPORT_SYMBOL(io_schedule); 5137 5138 /** 5139 * sys_sched_get_priority_max - return maximum RT priority. 5140 * @policy: scheduling class. 5141 * 5142 * Return: On success, this syscall returns the maximum 5143 * rt_priority that can be used by a given scheduling class. 5144 * On failure, a negative error code is returned. 5145 */ 5146 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5147 { 5148 int ret = -EINVAL; 5149 5150 switch (policy) { 5151 case SCHED_FIFO: 5152 case SCHED_RR: 5153 ret = MAX_USER_RT_PRIO-1; 5154 break; 5155 case SCHED_DEADLINE: 5156 case SCHED_NORMAL: 5157 case SCHED_BATCH: 5158 case SCHED_IDLE: 5159 ret = 0; 5160 break; 5161 } 5162 return ret; 5163 } 5164 5165 /** 5166 * sys_sched_get_priority_min - return minimum RT priority. 5167 * @policy: scheduling class. 5168 * 5169 * Return: On success, this syscall returns the minimum 5170 * rt_priority that can be used by a given scheduling class. 5171 * On failure, a negative error code is returned. 5172 */ 5173 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5174 { 5175 int ret = -EINVAL; 5176 5177 switch (policy) { 5178 case SCHED_FIFO: 5179 case SCHED_RR: 5180 ret = 1; 5181 break; 5182 case SCHED_DEADLINE: 5183 case SCHED_NORMAL: 5184 case SCHED_BATCH: 5185 case SCHED_IDLE: 5186 ret = 0; 5187 } 5188 return ret; 5189 } 5190 5191 /** 5192 * sys_sched_rr_get_interval - return the default timeslice of a process. 5193 * @pid: pid of the process. 5194 * @interval: userspace pointer to the timeslice value. 5195 * 5196 * this syscall writes the default timeslice value of a given process 5197 * into the user-space timespec buffer. A value of '0' means infinity. 5198 * 5199 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5200 * an error code. 5201 */ 5202 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5203 struct timespec __user *, interval) 5204 { 5205 struct task_struct *p; 5206 unsigned int time_slice; 5207 struct rq_flags rf; 5208 struct timespec t; 5209 struct rq *rq; 5210 int retval; 5211 5212 if (pid < 0) 5213 return -EINVAL; 5214 5215 retval = -ESRCH; 5216 rcu_read_lock(); 5217 p = find_process_by_pid(pid); 5218 if (!p) 5219 goto out_unlock; 5220 5221 retval = security_task_getscheduler(p); 5222 if (retval) 5223 goto out_unlock; 5224 5225 rq = task_rq_lock(p, &rf); 5226 time_slice = 0; 5227 if (p->sched_class->get_rr_interval) 5228 time_slice = p->sched_class->get_rr_interval(rq, p); 5229 task_rq_unlock(rq, p, &rf); 5230 5231 rcu_read_unlock(); 5232 jiffies_to_timespec(time_slice, &t); 5233 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5234 return retval; 5235 5236 out_unlock: 5237 rcu_read_unlock(); 5238 return retval; 5239 } 5240 5241 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5242 5243 void sched_show_task(struct task_struct *p) 5244 { 5245 unsigned long free = 0; 5246 int ppid; 5247 unsigned long state = p->state; 5248 5249 /* Make sure the string lines up properly with the number of task states: */ 5250 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1); 5251 5252 if (!try_get_task_stack(p)) 5253 return; 5254 if (state) 5255 state = __ffs(state) + 1; 5256 printk(KERN_INFO "%-15.15s %c", p->comm, 5257 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5258 if (state == TASK_RUNNING) 5259 printk(KERN_CONT " running task "); 5260 #ifdef CONFIG_DEBUG_STACK_USAGE 5261 free = stack_not_used(p); 5262 #endif 5263 ppid = 0; 5264 rcu_read_lock(); 5265 if (pid_alive(p)) 5266 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5267 rcu_read_unlock(); 5268 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5269 task_pid_nr(p), ppid, 5270 (unsigned long)task_thread_info(p)->flags); 5271 5272 print_worker_info(KERN_INFO, p); 5273 show_stack(p, NULL); 5274 put_task_stack(p); 5275 } 5276 5277 void show_state_filter(unsigned long state_filter) 5278 { 5279 struct task_struct *g, *p; 5280 5281 #if BITS_PER_LONG == 32 5282 printk(KERN_INFO 5283 " task PC stack pid father\n"); 5284 #else 5285 printk(KERN_INFO 5286 " task PC stack pid father\n"); 5287 #endif 5288 rcu_read_lock(); 5289 for_each_process_thread(g, p) { 5290 /* 5291 * reset the NMI-timeout, listing all files on a slow 5292 * console might take a lot of time: 5293 * Also, reset softlockup watchdogs on all CPUs, because 5294 * another CPU might be blocked waiting for us to process 5295 * an IPI. 5296 */ 5297 touch_nmi_watchdog(); 5298 touch_all_softlockup_watchdogs(); 5299 if (!state_filter || (p->state & state_filter)) 5300 sched_show_task(p); 5301 } 5302 5303 #ifdef CONFIG_SCHED_DEBUG 5304 if (!state_filter) 5305 sysrq_sched_debug_show(); 5306 #endif 5307 rcu_read_unlock(); 5308 /* 5309 * Only show locks if all tasks are dumped: 5310 */ 5311 if (!state_filter) 5312 debug_show_all_locks(); 5313 } 5314 5315 void init_idle_bootup_task(struct task_struct *idle) 5316 { 5317 idle->sched_class = &idle_sched_class; 5318 } 5319 5320 /** 5321 * init_idle - set up an idle thread for a given CPU 5322 * @idle: task in question 5323 * @cpu: CPU the idle task belongs to 5324 * 5325 * NOTE: this function does not set the idle thread's NEED_RESCHED 5326 * flag, to make booting more robust. 5327 */ 5328 void init_idle(struct task_struct *idle, int cpu) 5329 { 5330 struct rq *rq = cpu_rq(cpu); 5331 unsigned long flags; 5332 5333 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5334 raw_spin_lock(&rq->lock); 5335 5336 __sched_fork(0, idle); 5337 idle->state = TASK_RUNNING; 5338 idle->se.exec_start = sched_clock(); 5339 idle->flags |= PF_IDLE; 5340 5341 kasan_unpoison_task_stack(idle); 5342 5343 #ifdef CONFIG_SMP 5344 /* 5345 * Its possible that init_idle() gets called multiple times on a task, 5346 * in that case do_set_cpus_allowed() will not do the right thing. 5347 * 5348 * And since this is boot we can forgo the serialization. 5349 */ 5350 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5351 #endif 5352 /* 5353 * We're having a chicken and egg problem, even though we are 5354 * holding rq->lock, the CPU isn't yet set to this CPU so the 5355 * lockdep check in task_group() will fail. 5356 * 5357 * Similar case to sched_fork(). / Alternatively we could 5358 * use task_rq_lock() here and obtain the other rq->lock. 5359 * 5360 * Silence PROVE_RCU 5361 */ 5362 rcu_read_lock(); 5363 __set_task_cpu(idle, cpu); 5364 rcu_read_unlock(); 5365 5366 rq->curr = rq->idle = idle; 5367 idle->on_rq = TASK_ON_RQ_QUEUED; 5368 #ifdef CONFIG_SMP 5369 idle->on_cpu = 1; 5370 #endif 5371 raw_spin_unlock(&rq->lock); 5372 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5373 5374 /* Set the preempt count _outside_ the spinlocks! */ 5375 init_idle_preempt_count(idle, cpu); 5376 5377 /* 5378 * The idle tasks have their own, simple scheduling class: 5379 */ 5380 idle->sched_class = &idle_sched_class; 5381 ftrace_graph_init_idle_task(idle, cpu); 5382 vtime_init_idle(idle, cpu); 5383 #ifdef CONFIG_SMP 5384 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5385 #endif 5386 } 5387 5388 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5389 const struct cpumask *trial) 5390 { 5391 int ret = 1, trial_cpus; 5392 struct dl_bw *cur_dl_b; 5393 unsigned long flags; 5394 5395 if (!cpumask_weight(cur)) 5396 return ret; 5397 5398 rcu_read_lock_sched(); 5399 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5400 trial_cpus = cpumask_weight(trial); 5401 5402 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5403 if (cur_dl_b->bw != -1 && 5404 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5405 ret = 0; 5406 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5407 rcu_read_unlock_sched(); 5408 5409 return ret; 5410 } 5411 5412 int task_can_attach(struct task_struct *p, 5413 const struct cpumask *cs_cpus_allowed) 5414 { 5415 int ret = 0; 5416 5417 /* 5418 * Kthreads which disallow setaffinity shouldn't be moved 5419 * to a new cpuset; we don't want to change their CPU 5420 * affinity and isolating such threads by their set of 5421 * allowed nodes is unnecessary. Thus, cpusets are not 5422 * applicable for such threads. This prevents checking for 5423 * success of set_cpus_allowed_ptr() on all attached tasks 5424 * before cpus_allowed may be changed. 5425 */ 5426 if (p->flags & PF_NO_SETAFFINITY) { 5427 ret = -EINVAL; 5428 goto out; 5429 } 5430 5431 #ifdef CONFIG_SMP 5432 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5433 cs_cpus_allowed)) { 5434 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5435 cs_cpus_allowed); 5436 struct dl_bw *dl_b; 5437 bool overflow; 5438 int cpus; 5439 unsigned long flags; 5440 5441 rcu_read_lock_sched(); 5442 dl_b = dl_bw_of(dest_cpu); 5443 raw_spin_lock_irqsave(&dl_b->lock, flags); 5444 cpus = dl_bw_cpus(dest_cpu); 5445 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5446 if (overflow) 5447 ret = -EBUSY; 5448 else { 5449 /* 5450 * We reserve space for this task in the destination 5451 * root_domain, as we can't fail after this point. 5452 * We will free resources in the source root_domain 5453 * later on (see set_cpus_allowed_dl()). 5454 */ 5455 __dl_add(dl_b, p->dl.dl_bw); 5456 } 5457 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5458 rcu_read_unlock_sched(); 5459 5460 } 5461 #endif 5462 out: 5463 return ret; 5464 } 5465 5466 #ifdef CONFIG_SMP 5467 5468 bool sched_smp_initialized __read_mostly; 5469 5470 #ifdef CONFIG_NUMA_BALANCING 5471 /* Migrate current task p to target_cpu */ 5472 int migrate_task_to(struct task_struct *p, int target_cpu) 5473 { 5474 struct migration_arg arg = { p, target_cpu }; 5475 int curr_cpu = task_cpu(p); 5476 5477 if (curr_cpu == target_cpu) 5478 return 0; 5479 5480 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5481 return -EINVAL; 5482 5483 /* TODO: This is not properly updating schedstats */ 5484 5485 trace_sched_move_numa(p, curr_cpu, target_cpu); 5486 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5487 } 5488 5489 /* 5490 * Requeue a task on a given node and accurately track the number of NUMA 5491 * tasks on the runqueues 5492 */ 5493 void sched_setnuma(struct task_struct *p, int nid) 5494 { 5495 bool queued, running; 5496 struct rq_flags rf; 5497 struct rq *rq; 5498 5499 rq = task_rq_lock(p, &rf); 5500 queued = task_on_rq_queued(p); 5501 running = task_current(rq, p); 5502 5503 if (queued) 5504 dequeue_task(rq, p, DEQUEUE_SAVE); 5505 if (running) 5506 put_prev_task(rq, p); 5507 5508 p->numa_preferred_nid = nid; 5509 5510 if (queued) 5511 enqueue_task(rq, p, ENQUEUE_RESTORE); 5512 if (running) 5513 set_curr_task(rq, p); 5514 task_rq_unlock(rq, p, &rf); 5515 } 5516 #endif /* CONFIG_NUMA_BALANCING */ 5517 5518 #ifdef CONFIG_HOTPLUG_CPU 5519 /* 5520 * Ensure that the idle task is using init_mm right before its CPU goes 5521 * offline. 5522 */ 5523 void idle_task_exit(void) 5524 { 5525 struct mm_struct *mm = current->active_mm; 5526 5527 BUG_ON(cpu_online(smp_processor_id())); 5528 5529 if (mm != &init_mm) { 5530 switch_mm_irqs_off(mm, &init_mm, current); 5531 finish_arch_post_lock_switch(); 5532 } 5533 mmdrop(mm); 5534 } 5535 5536 /* 5537 * Since this CPU is going 'away' for a while, fold any nr_active delta 5538 * we might have. Assumes we're called after migrate_tasks() so that the 5539 * nr_active count is stable. We need to take the teardown thread which 5540 * is calling this into account, so we hand in adjust = 1 to the load 5541 * calculation. 5542 * 5543 * Also see the comment "Global load-average calculations". 5544 */ 5545 static void calc_load_migrate(struct rq *rq) 5546 { 5547 long delta = calc_load_fold_active(rq, 1); 5548 if (delta) 5549 atomic_long_add(delta, &calc_load_tasks); 5550 } 5551 5552 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5553 { 5554 } 5555 5556 static const struct sched_class fake_sched_class = { 5557 .put_prev_task = put_prev_task_fake, 5558 }; 5559 5560 static struct task_struct fake_task = { 5561 /* 5562 * Avoid pull_{rt,dl}_task() 5563 */ 5564 .prio = MAX_PRIO + 1, 5565 .sched_class = &fake_sched_class, 5566 }; 5567 5568 /* 5569 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5570 * try_to_wake_up()->select_task_rq(). 5571 * 5572 * Called with rq->lock held even though we'er in stop_machine() and 5573 * there's no concurrency possible, we hold the required locks anyway 5574 * because of lock validation efforts. 5575 */ 5576 static void migrate_tasks(struct rq *dead_rq) 5577 { 5578 struct rq *rq = dead_rq; 5579 struct task_struct *next, *stop = rq->stop; 5580 struct rq_flags rf; 5581 int dest_cpu; 5582 5583 /* 5584 * Fudge the rq selection such that the below task selection loop 5585 * doesn't get stuck on the currently eligible stop task. 5586 * 5587 * We're currently inside stop_machine() and the rq is either stuck 5588 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5589 * either way we should never end up calling schedule() until we're 5590 * done here. 5591 */ 5592 rq->stop = NULL; 5593 5594 /* 5595 * put_prev_task() and pick_next_task() sched 5596 * class method both need to have an up-to-date 5597 * value of rq->clock[_task] 5598 */ 5599 rq_pin_lock(rq, &rf); 5600 update_rq_clock(rq); 5601 rq_unpin_lock(rq, &rf); 5602 5603 for (;;) { 5604 /* 5605 * There's this thread running, bail when that's the only 5606 * remaining thread: 5607 */ 5608 if (rq->nr_running == 1) 5609 break; 5610 5611 /* 5612 * pick_next_task() assumes pinned rq->lock: 5613 */ 5614 rq_repin_lock(rq, &rf); 5615 next = pick_next_task(rq, &fake_task, &rf); 5616 BUG_ON(!next); 5617 next->sched_class->put_prev_task(rq, next); 5618 5619 /* 5620 * Rules for changing task_struct::cpus_allowed are holding 5621 * both pi_lock and rq->lock, such that holding either 5622 * stabilizes the mask. 5623 * 5624 * Drop rq->lock is not quite as disastrous as it usually is 5625 * because !cpu_active at this point, which means load-balance 5626 * will not interfere. Also, stop-machine. 5627 */ 5628 rq_unpin_lock(rq, &rf); 5629 raw_spin_unlock(&rq->lock); 5630 raw_spin_lock(&next->pi_lock); 5631 raw_spin_lock(&rq->lock); 5632 5633 /* 5634 * Since we're inside stop-machine, _nothing_ should have 5635 * changed the task, WARN if weird stuff happened, because in 5636 * that case the above rq->lock drop is a fail too. 5637 */ 5638 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5639 raw_spin_unlock(&next->pi_lock); 5640 continue; 5641 } 5642 5643 /* Find suitable destination for @next, with force if needed. */ 5644 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5645 5646 rq = __migrate_task(rq, next, dest_cpu); 5647 if (rq != dead_rq) { 5648 raw_spin_unlock(&rq->lock); 5649 rq = dead_rq; 5650 raw_spin_lock(&rq->lock); 5651 } 5652 raw_spin_unlock(&next->pi_lock); 5653 } 5654 5655 rq->stop = stop; 5656 } 5657 #endif /* CONFIG_HOTPLUG_CPU */ 5658 5659 void set_rq_online(struct rq *rq) 5660 { 5661 if (!rq->online) { 5662 const struct sched_class *class; 5663 5664 cpumask_set_cpu(rq->cpu, rq->rd->online); 5665 rq->online = 1; 5666 5667 for_each_class(class) { 5668 if (class->rq_online) 5669 class->rq_online(rq); 5670 } 5671 } 5672 } 5673 5674 void set_rq_offline(struct rq *rq) 5675 { 5676 if (rq->online) { 5677 const struct sched_class *class; 5678 5679 for_each_class(class) { 5680 if (class->rq_offline) 5681 class->rq_offline(rq); 5682 } 5683 5684 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5685 rq->online = 0; 5686 } 5687 } 5688 5689 static void set_cpu_rq_start_time(unsigned int cpu) 5690 { 5691 struct rq *rq = cpu_rq(cpu); 5692 5693 rq->age_stamp = sched_clock_cpu(cpu); 5694 } 5695 5696 /* 5697 * used to mark begin/end of suspend/resume: 5698 */ 5699 static int num_cpus_frozen; 5700 5701 /* 5702 * Update cpusets according to cpu_active mask. If cpusets are 5703 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5704 * around partition_sched_domains(). 5705 * 5706 * If we come here as part of a suspend/resume, don't touch cpusets because we 5707 * want to restore it back to its original state upon resume anyway. 5708 */ 5709 static void cpuset_cpu_active(void) 5710 { 5711 if (cpuhp_tasks_frozen) { 5712 /* 5713 * num_cpus_frozen tracks how many CPUs are involved in suspend 5714 * resume sequence. As long as this is not the last online 5715 * operation in the resume sequence, just build a single sched 5716 * domain, ignoring cpusets. 5717 */ 5718 num_cpus_frozen--; 5719 if (likely(num_cpus_frozen)) { 5720 partition_sched_domains(1, NULL, NULL); 5721 return; 5722 } 5723 /* 5724 * This is the last CPU online operation. So fall through and 5725 * restore the original sched domains by considering the 5726 * cpuset configurations. 5727 */ 5728 } 5729 cpuset_update_active_cpus(true); 5730 } 5731 5732 static int cpuset_cpu_inactive(unsigned int cpu) 5733 { 5734 unsigned long flags; 5735 struct dl_bw *dl_b; 5736 bool overflow; 5737 int cpus; 5738 5739 if (!cpuhp_tasks_frozen) { 5740 rcu_read_lock_sched(); 5741 dl_b = dl_bw_of(cpu); 5742 5743 raw_spin_lock_irqsave(&dl_b->lock, flags); 5744 cpus = dl_bw_cpus(cpu); 5745 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5746 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5747 5748 rcu_read_unlock_sched(); 5749 5750 if (overflow) 5751 return -EBUSY; 5752 cpuset_update_active_cpus(false); 5753 } else { 5754 num_cpus_frozen++; 5755 partition_sched_domains(1, NULL, NULL); 5756 } 5757 return 0; 5758 } 5759 5760 int sched_cpu_activate(unsigned int cpu) 5761 { 5762 struct rq *rq = cpu_rq(cpu); 5763 unsigned long flags; 5764 5765 set_cpu_active(cpu, true); 5766 5767 if (sched_smp_initialized) { 5768 sched_domains_numa_masks_set(cpu); 5769 cpuset_cpu_active(); 5770 } 5771 5772 /* 5773 * Put the rq online, if not already. This happens: 5774 * 5775 * 1) In the early boot process, because we build the real domains 5776 * after all CPUs have been brought up. 5777 * 5778 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5779 * domains. 5780 */ 5781 raw_spin_lock_irqsave(&rq->lock, flags); 5782 if (rq->rd) { 5783 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5784 set_rq_online(rq); 5785 } 5786 raw_spin_unlock_irqrestore(&rq->lock, flags); 5787 5788 update_max_interval(); 5789 5790 return 0; 5791 } 5792 5793 int sched_cpu_deactivate(unsigned int cpu) 5794 { 5795 int ret; 5796 5797 set_cpu_active(cpu, false); 5798 /* 5799 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5800 * users of this state to go away such that all new such users will 5801 * observe it. 5802 * 5803 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 5804 * not imply sync_sched(), so wait for both. 5805 * 5806 * Do sync before park smpboot threads to take care the rcu boost case. 5807 */ 5808 if (IS_ENABLED(CONFIG_PREEMPT)) 5809 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5810 else 5811 synchronize_rcu(); 5812 5813 if (!sched_smp_initialized) 5814 return 0; 5815 5816 ret = cpuset_cpu_inactive(cpu); 5817 if (ret) { 5818 set_cpu_active(cpu, true); 5819 return ret; 5820 } 5821 sched_domains_numa_masks_clear(cpu); 5822 return 0; 5823 } 5824 5825 static void sched_rq_cpu_starting(unsigned int cpu) 5826 { 5827 struct rq *rq = cpu_rq(cpu); 5828 5829 rq->calc_load_update = calc_load_update; 5830 update_max_interval(); 5831 } 5832 5833 int sched_cpu_starting(unsigned int cpu) 5834 { 5835 set_cpu_rq_start_time(cpu); 5836 sched_rq_cpu_starting(cpu); 5837 return 0; 5838 } 5839 5840 #ifdef CONFIG_HOTPLUG_CPU 5841 int sched_cpu_dying(unsigned int cpu) 5842 { 5843 struct rq *rq = cpu_rq(cpu); 5844 unsigned long flags; 5845 5846 /* Handle pending wakeups and then migrate everything off */ 5847 sched_ttwu_pending(); 5848 raw_spin_lock_irqsave(&rq->lock, flags); 5849 if (rq->rd) { 5850 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5851 set_rq_offline(rq); 5852 } 5853 migrate_tasks(rq); 5854 BUG_ON(rq->nr_running != 1); 5855 raw_spin_unlock_irqrestore(&rq->lock, flags); 5856 calc_load_migrate(rq); 5857 update_max_interval(); 5858 nohz_balance_exit_idle(cpu); 5859 hrtick_clear(rq); 5860 return 0; 5861 } 5862 #endif 5863 5864 #ifdef CONFIG_SCHED_SMT 5865 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5866 5867 static void sched_init_smt(void) 5868 { 5869 /* 5870 * We've enumerated all CPUs and will assume that if any CPU 5871 * has SMT siblings, CPU0 will too. 5872 */ 5873 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5874 static_branch_enable(&sched_smt_present); 5875 } 5876 #else 5877 static inline void sched_init_smt(void) { } 5878 #endif 5879 5880 void __init sched_init_smp(void) 5881 { 5882 cpumask_var_t non_isolated_cpus; 5883 5884 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 5885 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 5886 5887 sched_init_numa(); 5888 5889 /* 5890 * There's no userspace yet to cause hotplug operations; hence all the 5891 * CPU masks are stable and all blatant races in the below code cannot 5892 * happen. 5893 */ 5894 mutex_lock(&sched_domains_mutex); 5895 init_sched_domains(cpu_active_mask); 5896 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 5897 if (cpumask_empty(non_isolated_cpus)) 5898 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 5899 mutex_unlock(&sched_domains_mutex); 5900 5901 /* Move init over to a non-isolated CPU */ 5902 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 5903 BUG(); 5904 sched_init_granularity(); 5905 free_cpumask_var(non_isolated_cpus); 5906 5907 init_sched_rt_class(); 5908 init_sched_dl_class(); 5909 5910 sched_init_smt(); 5911 sched_clock_init_late(); 5912 5913 sched_smp_initialized = true; 5914 } 5915 5916 static int __init migration_init(void) 5917 { 5918 sched_rq_cpu_starting(smp_processor_id()); 5919 return 0; 5920 } 5921 early_initcall(migration_init); 5922 5923 #else 5924 void __init sched_init_smp(void) 5925 { 5926 sched_init_granularity(); 5927 sched_clock_init_late(); 5928 } 5929 #endif /* CONFIG_SMP */ 5930 5931 int in_sched_functions(unsigned long addr) 5932 { 5933 return in_lock_functions(addr) || 5934 (addr >= (unsigned long)__sched_text_start 5935 && addr < (unsigned long)__sched_text_end); 5936 } 5937 5938 #ifdef CONFIG_CGROUP_SCHED 5939 /* 5940 * Default task group. 5941 * Every task in system belongs to this group at bootup. 5942 */ 5943 struct task_group root_task_group; 5944 LIST_HEAD(task_groups); 5945 5946 /* Cacheline aligned slab cache for task_group */ 5947 static struct kmem_cache *task_group_cache __read_mostly; 5948 #endif 5949 5950 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5951 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5952 5953 #define WAIT_TABLE_BITS 8 5954 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) 5955 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; 5956 5957 wait_queue_head_t *bit_waitqueue(void *word, int bit) 5958 { 5959 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 5960 unsigned long val = (unsigned long)word << shift | bit; 5961 5962 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); 5963 } 5964 EXPORT_SYMBOL(bit_waitqueue); 5965 5966 void __init sched_init(void) 5967 { 5968 int i, j; 5969 unsigned long alloc_size = 0, ptr; 5970 5971 sched_clock_init(); 5972 5973 for (i = 0; i < WAIT_TABLE_SIZE; i++) 5974 init_waitqueue_head(bit_wait_table + i); 5975 5976 #ifdef CONFIG_FAIR_GROUP_SCHED 5977 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5978 #endif 5979 #ifdef CONFIG_RT_GROUP_SCHED 5980 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5981 #endif 5982 if (alloc_size) { 5983 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5984 5985 #ifdef CONFIG_FAIR_GROUP_SCHED 5986 root_task_group.se = (struct sched_entity **)ptr; 5987 ptr += nr_cpu_ids * sizeof(void **); 5988 5989 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5990 ptr += nr_cpu_ids * sizeof(void **); 5991 5992 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5993 #ifdef CONFIG_RT_GROUP_SCHED 5994 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5995 ptr += nr_cpu_ids * sizeof(void **); 5996 5997 root_task_group.rt_rq = (struct rt_rq **)ptr; 5998 ptr += nr_cpu_ids * sizeof(void **); 5999 6000 #endif /* CONFIG_RT_GROUP_SCHED */ 6001 } 6002 #ifdef CONFIG_CPUMASK_OFFSTACK 6003 for_each_possible_cpu(i) { 6004 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6005 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6006 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6007 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6008 } 6009 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6010 6011 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6012 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6013 6014 #ifdef CONFIG_SMP 6015 init_defrootdomain(); 6016 #endif 6017 6018 #ifdef CONFIG_RT_GROUP_SCHED 6019 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6020 global_rt_period(), global_rt_runtime()); 6021 #endif /* CONFIG_RT_GROUP_SCHED */ 6022 6023 #ifdef CONFIG_CGROUP_SCHED 6024 task_group_cache = KMEM_CACHE(task_group, 0); 6025 6026 list_add(&root_task_group.list, &task_groups); 6027 INIT_LIST_HEAD(&root_task_group.children); 6028 INIT_LIST_HEAD(&root_task_group.siblings); 6029 autogroup_init(&init_task); 6030 #endif /* CONFIG_CGROUP_SCHED */ 6031 6032 for_each_possible_cpu(i) { 6033 struct rq *rq; 6034 6035 rq = cpu_rq(i); 6036 raw_spin_lock_init(&rq->lock); 6037 rq->nr_running = 0; 6038 rq->calc_load_active = 0; 6039 rq->calc_load_update = jiffies + LOAD_FREQ; 6040 init_cfs_rq(&rq->cfs); 6041 init_rt_rq(&rq->rt); 6042 init_dl_rq(&rq->dl); 6043 #ifdef CONFIG_FAIR_GROUP_SCHED 6044 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6045 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6046 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6047 /* 6048 * How much CPU bandwidth does root_task_group get? 6049 * 6050 * In case of task-groups formed thr' the cgroup filesystem, it 6051 * gets 100% of the CPU resources in the system. This overall 6052 * system CPU resource is divided among the tasks of 6053 * root_task_group and its child task-groups in a fair manner, 6054 * based on each entity's (task or task-group's) weight 6055 * (se->load.weight). 6056 * 6057 * In other words, if root_task_group has 10 tasks of weight 6058 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6059 * then A0's share of the CPU resource is: 6060 * 6061 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6062 * 6063 * We achieve this by letting root_task_group's tasks sit 6064 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6065 */ 6066 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6067 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6068 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6069 6070 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6071 #ifdef CONFIG_RT_GROUP_SCHED 6072 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6073 #endif 6074 6075 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6076 rq->cpu_load[j] = 0; 6077 6078 #ifdef CONFIG_SMP 6079 rq->sd = NULL; 6080 rq->rd = NULL; 6081 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6082 rq->balance_callback = NULL; 6083 rq->active_balance = 0; 6084 rq->next_balance = jiffies; 6085 rq->push_cpu = 0; 6086 rq->cpu = i; 6087 rq->online = 0; 6088 rq->idle_stamp = 0; 6089 rq->avg_idle = 2*sysctl_sched_migration_cost; 6090 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6091 6092 INIT_LIST_HEAD(&rq->cfs_tasks); 6093 6094 rq_attach_root(rq, &def_root_domain); 6095 #ifdef CONFIG_NO_HZ_COMMON 6096 rq->last_load_update_tick = jiffies; 6097 rq->nohz_flags = 0; 6098 #endif 6099 #ifdef CONFIG_NO_HZ_FULL 6100 rq->last_sched_tick = 0; 6101 #endif 6102 #endif /* CONFIG_SMP */ 6103 init_rq_hrtick(rq); 6104 atomic_set(&rq->nr_iowait, 0); 6105 } 6106 6107 set_load_weight(&init_task); 6108 6109 /* 6110 * The boot idle thread does lazy MMU switching as well: 6111 */ 6112 mmgrab(&init_mm); 6113 enter_lazy_tlb(&init_mm, current); 6114 6115 /* 6116 * Make us the idle thread. Technically, schedule() should not be 6117 * called from this thread, however somewhere below it might be, 6118 * but because we are the idle thread, we just pick up running again 6119 * when this runqueue becomes "idle". 6120 */ 6121 init_idle(current, smp_processor_id()); 6122 6123 calc_load_update = jiffies + LOAD_FREQ; 6124 6125 #ifdef CONFIG_SMP 6126 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6127 /* May be allocated at isolcpus cmdline parse time */ 6128 if (cpu_isolated_map == NULL) 6129 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6130 idle_thread_set_boot_cpu(); 6131 set_cpu_rq_start_time(smp_processor_id()); 6132 #endif 6133 init_sched_fair_class(); 6134 6135 init_schedstats(); 6136 6137 scheduler_running = 1; 6138 } 6139 6140 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6141 static inline int preempt_count_equals(int preempt_offset) 6142 { 6143 int nested = preempt_count() + rcu_preempt_depth(); 6144 6145 return (nested == preempt_offset); 6146 } 6147 6148 void __might_sleep(const char *file, int line, int preempt_offset) 6149 { 6150 /* 6151 * Blocking primitives will set (and therefore destroy) current->state, 6152 * since we will exit with TASK_RUNNING make sure we enter with it, 6153 * otherwise we will destroy state. 6154 */ 6155 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6156 "do not call blocking ops when !TASK_RUNNING; " 6157 "state=%lx set at [<%p>] %pS\n", 6158 current->state, 6159 (void *)current->task_state_change, 6160 (void *)current->task_state_change); 6161 6162 ___might_sleep(file, line, preempt_offset); 6163 } 6164 EXPORT_SYMBOL(__might_sleep); 6165 6166 void ___might_sleep(const char *file, int line, int preempt_offset) 6167 { 6168 /* Ratelimiting timestamp: */ 6169 static unsigned long prev_jiffy; 6170 6171 unsigned long preempt_disable_ip; 6172 6173 /* WARN_ON_ONCE() by default, no rate limit required: */ 6174 rcu_sleep_check(); 6175 6176 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6177 !is_idle_task(current)) || 6178 system_state != SYSTEM_RUNNING || oops_in_progress) 6179 return; 6180 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6181 return; 6182 prev_jiffy = jiffies; 6183 6184 /* Save this before calling printk(), since that will clobber it: */ 6185 preempt_disable_ip = get_preempt_disable_ip(current); 6186 6187 printk(KERN_ERR 6188 "BUG: sleeping function called from invalid context at %s:%d\n", 6189 file, line); 6190 printk(KERN_ERR 6191 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6192 in_atomic(), irqs_disabled(), 6193 current->pid, current->comm); 6194 6195 if (task_stack_end_corrupted(current)) 6196 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6197 6198 debug_show_held_locks(current); 6199 if (irqs_disabled()) 6200 print_irqtrace_events(current); 6201 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6202 && !preempt_count_equals(preempt_offset)) { 6203 pr_err("Preemption disabled at:"); 6204 print_ip_sym(preempt_disable_ip); 6205 pr_cont("\n"); 6206 } 6207 dump_stack(); 6208 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6209 } 6210 EXPORT_SYMBOL(___might_sleep); 6211 #endif 6212 6213 #ifdef CONFIG_MAGIC_SYSRQ 6214 void normalize_rt_tasks(void) 6215 { 6216 struct task_struct *g, *p; 6217 struct sched_attr attr = { 6218 .sched_policy = SCHED_NORMAL, 6219 }; 6220 6221 read_lock(&tasklist_lock); 6222 for_each_process_thread(g, p) { 6223 /* 6224 * Only normalize user tasks: 6225 */ 6226 if (p->flags & PF_KTHREAD) 6227 continue; 6228 6229 p->se.exec_start = 0; 6230 schedstat_set(p->se.statistics.wait_start, 0); 6231 schedstat_set(p->se.statistics.sleep_start, 0); 6232 schedstat_set(p->se.statistics.block_start, 0); 6233 6234 if (!dl_task(p) && !rt_task(p)) { 6235 /* 6236 * Renice negative nice level userspace 6237 * tasks back to 0: 6238 */ 6239 if (task_nice(p) < 0) 6240 set_user_nice(p, 0); 6241 continue; 6242 } 6243 6244 __sched_setscheduler(p, &attr, false, false); 6245 } 6246 read_unlock(&tasklist_lock); 6247 } 6248 6249 #endif /* CONFIG_MAGIC_SYSRQ */ 6250 6251 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6252 /* 6253 * These functions are only useful for the IA64 MCA handling, or kdb. 6254 * 6255 * They can only be called when the whole system has been 6256 * stopped - every CPU needs to be quiescent, and no scheduling 6257 * activity can take place. Using them for anything else would 6258 * be a serious bug, and as a result, they aren't even visible 6259 * under any other configuration. 6260 */ 6261 6262 /** 6263 * curr_task - return the current task for a given CPU. 6264 * @cpu: the processor in question. 6265 * 6266 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6267 * 6268 * Return: The current task for @cpu. 6269 */ 6270 struct task_struct *curr_task(int cpu) 6271 { 6272 return cpu_curr(cpu); 6273 } 6274 6275 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6276 6277 #ifdef CONFIG_IA64 6278 /** 6279 * set_curr_task - set the current task for a given CPU. 6280 * @cpu: the processor in question. 6281 * @p: the task pointer to set. 6282 * 6283 * Description: This function must only be used when non-maskable interrupts 6284 * are serviced on a separate stack. It allows the architecture to switch the 6285 * notion of the current task on a CPU in a non-blocking manner. This function 6286 * must be called with all CPU's synchronized, and interrupts disabled, the 6287 * and caller must save the original value of the current task (see 6288 * curr_task() above) and restore that value before reenabling interrupts and 6289 * re-starting the system. 6290 * 6291 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6292 */ 6293 void ia64_set_curr_task(int cpu, struct task_struct *p) 6294 { 6295 cpu_curr(cpu) = p; 6296 } 6297 6298 #endif 6299 6300 #ifdef CONFIG_CGROUP_SCHED 6301 /* task_group_lock serializes the addition/removal of task groups */ 6302 static DEFINE_SPINLOCK(task_group_lock); 6303 6304 static void sched_free_group(struct task_group *tg) 6305 { 6306 free_fair_sched_group(tg); 6307 free_rt_sched_group(tg); 6308 autogroup_free(tg); 6309 kmem_cache_free(task_group_cache, tg); 6310 } 6311 6312 /* allocate runqueue etc for a new task group */ 6313 struct task_group *sched_create_group(struct task_group *parent) 6314 { 6315 struct task_group *tg; 6316 6317 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6318 if (!tg) 6319 return ERR_PTR(-ENOMEM); 6320 6321 if (!alloc_fair_sched_group(tg, parent)) 6322 goto err; 6323 6324 if (!alloc_rt_sched_group(tg, parent)) 6325 goto err; 6326 6327 return tg; 6328 6329 err: 6330 sched_free_group(tg); 6331 return ERR_PTR(-ENOMEM); 6332 } 6333 6334 void sched_online_group(struct task_group *tg, struct task_group *parent) 6335 { 6336 unsigned long flags; 6337 6338 spin_lock_irqsave(&task_group_lock, flags); 6339 list_add_rcu(&tg->list, &task_groups); 6340 6341 /* Root should already exist: */ 6342 WARN_ON(!parent); 6343 6344 tg->parent = parent; 6345 INIT_LIST_HEAD(&tg->children); 6346 list_add_rcu(&tg->siblings, &parent->children); 6347 spin_unlock_irqrestore(&task_group_lock, flags); 6348 6349 online_fair_sched_group(tg); 6350 } 6351 6352 /* rcu callback to free various structures associated with a task group */ 6353 static void sched_free_group_rcu(struct rcu_head *rhp) 6354 { 6355 /* Now it should be safe to free those cfs_rqs: */ 6356 sched_free_group(container_of(rhp, struct task_group, rcu)); 6357 } 6358 6359 void sched_destroy_group(struct task_group *tg) 6360 { 6361 /* Wait for possible concurrent references to cfs_rqs complete: */ 6362 call_rcu(&tg->rcu, sched_free_group_rcu); 6363 } 6364 6365 void sched_offline_group(struct task_group *tg) 6366 { 6367 unsigned long flags; 6368 6369 /* End participation in shares distribution: */ 6370 unregister_fair_sched_group(tg); 6371 6372 spin_lock_irqsave(&task_group_lock, flags); 6373 list_del_rcu(&tg->list); 6374 list_del_rcu(&tg->siblings); 6375 spin_unlock_irqrestore(&task_group_lock, flags); 6376 } 6377 6378 static void sched_change_group(struct task_struct *tsk, int type) 6379 { 6380 struct task_group *tg; 6381 6382 /* 6383 * All callers are synchronized by task_rq_lock(); we do not use RCU 6384 * which is pointless here. Thus, we pass "true" to task_css_check() 6385 * to prevent lockdep warnings. 6386 */ 6387 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6388 struct task_group, css); 6389 tg = autogroup_task_group(tsk, tg); 6390 tsk->sched_task_group = tg; 6391 6392 #ifdef CONFIG_FAIR_GROUP_SCHED 6393 if (tsk->sched_class->task_change_group) 6394 tsk->sched_class->task_change_group(tsk, type); 6395 else 6396 #endif 6397 set_task_rq(tsk, task_cpu(tsk)); 6398 } 6399 6400 /* 6401 * Change task's runqueue when it moves between groups. 6402 * 6403 * The caller of this function should have put the task in its new group by 6404 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6405 * its new group. 6406 */ 6407 void sched_move_task(struct task_struct *tsk) 6408 { 6409 int queued, running; 6410 struct rq_flags rf; 6411 struct rq *rq; 6412 6413 rq = task_rq_lock(tsk, &rf); 6414 update_rq_clock(rq); 6415 6416 running = task_current(rq, tsk); 6417 queued = task_on_rq_queued(tsk); 6418 6419 if (queued) 6420 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 6421 if (running) 6422 put_prev_task(rq, tsk); 6423 6424 sched_change_group(tsk, TASK_MOVE_GROUP); 6425 6426 if (queued) 6427 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 6428 if (running) 6429 set_curr_task(rq, tsk); 6430 6431 task_rq_unlock(rq, tsk, &rf); 6432 } 6433 #endif /* CONFIG_CGROUP_SCHED */ 6434 6435 #ifdef CONFIG_RT_GROUP_SCHED 6436 /* 6437 * Ensure that the real time constraints are schedulable. 6438 */ 6439 static DEFINE_MUTEX(rt_constraints_mutex); 6440 6441 /* Must be called with tasklist_lock held */ 6442 static inline int tg_has_rt_tasks(struct task_group *tg) 6443 { 6444 struct task_struct *g, *p; 6445 6446 /* 6447 * Autogroups do not have RT tasks; see autogroup_create(). 6448 */ 6449 if (task_group_is_autogroup(tg)) 6450 return 0; 6451 6452 for_each_process_thread(g, p) { 6453 if (rt_task(p) && task_group(p) == tg) 6454 return 1; 6455 } 6456 6457 return 0; 6458 } 6459 6460 struct rt_schedulable_data { 6461 struct task_group *tg; 6462 u64 rt_period; 6463 u64 rt_runtime; 6464 }; 6465 6466 static int tg_rt_schedulable(struct task_group *tg, void *data) 6467 { 6468 struct rt_schedulable_data *d = data; 6469 struct task_group *child; 6470 unsigned long total, sum = 0; 6471 u64 period, runtime; 6472 6473 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6474 runtime = tg->rt_bandwidth.rt_runtime; 6475 6476 if (tg == d->tg) { 6477 period = d->rt_period; 6478 runtime = d->rt_runtime; 6479 } 6480 6481 /* 6482 * Cannot have more runtime than the period. 6483 */ 6484 if (runtime > period && runtime != RUNTIME_INF) 6485 return -EINVAL; 6486 6487 /* 6488 * Ensure we don't starve existing RT tasks. 6489 */ 6490 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 6491 return -EBUSY; 6492 6493 total = to_ratio(period, runtime); 6494 6495 /* 6496 * Nobody can have more than the global setting allows. 6497 */ 6498 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 6499 return -EINVAL; 6500 6501 /* 6502 * The sum of our children's runtime should not exceed our own. 6503 */ 6504 list_for_each_entry_rcu(child, &tg->children, siblings) { 6505 period = ktime_to_ns(child->rt_bandwidth.rt_period); 6506 runtime = child->rt_bandwidth.rt_runtime; 6507 6508 if (child == d->tg) { 6509 period = d->rt_period; 6510 runtime = d->rt_runtime; 6511 } 6512 6513 sum += to_ratio(period, runtime); 6514 } 6515 6516 if (sum > total) 6517 return -EINVAL; 6518 6519 return 0; 6520 } 6521 6522 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 6523 { 6524 int ret; 6525 6526 struct rt_schedulable_data data = { 6527 .tg = tg, 6528 .rt_period = period, 6529 .rt_runtime = runtime, 6530 }; 6531 6532 rcu_read_lock(); 6533 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 6534 rcu_read_unlock(); 6535 6536 return ret; 6537 } 6538 6539 static int tg_set_rt_bandwidth(struct task_group *tg, 6540 u64 rt_period, u64 rt_runtime) 6541 { 6542 int i, err = 0; 6543 6544 /* 6545 * Disallowing the root group RT runtime is BAD, it would disallow the 6546 * kernel creating (and or operating) RT threads. 6547 */ 6548 if (tg == &root_task_group && rt_runtime == 0) 6549 return -EINVAL; 6550 6551 /* No period doesn't make any sense. */ 6552 if (rt_period == 0) 6553 return -EINVAL; 6554 6555 mutex_lock(&rt_constraints_mutex); 6556 read_lock(&tasklist_lock); 6557 err = __rt_schedulable(tg, rt_period, rt_runtime); 6558 if (err) 6559 goto unlock; 6560 6561 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6562 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 6563 tg->rt_bandwidth.rt_runtime = rt_runtime; 6564 6565 for_each_possible_cpu(i) { 6566 struct rt_rq *rt_rq = tg->rt_rq[i]; 6567 6568 raw_spin_lock(&rt_rq->rt_runtime_lock); 6569 rt_rq->rt_runtime = rt_runtime; 6570 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6571 } 6572 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6573 unlock: 6574 read_unlock(&tasklist_lock); 6575 mutex_unlock(&rt_constraints_mutex); 6576 6577 return err; 6578 } 6579 6580 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 6581 { 6582 u64 rt_runtime, rt_period; 6583 6584 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6585 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 6586 if (rt_runtime_us < 0) 6587 rt_runtime = RUNTIME_INF; 6588 6589 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6590 } 6591 6592 static long sched_group_rt_runtime(struct task_group *tg) 6593 { 6594 u64 rt_runtime_us; 6595 6596 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 6597 return -1; 6598 6599 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 6600 do_div(rt_runtime_us, NSEC_PER_USEC); 6601 return rt_runtime_us; 6602 } 6603 6604 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 6605 { 6606 u64 rt_runtime, rt_period; 6607 6608 rt_period = rt_period_us * NSEC_PER_USEC; 6609 rt_runtime = tg->rt_bandwidth.rt_runtime; 6610 6611 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6612 } 6613 6614 static long sched_group_rt_period(struct task_group *tg) 6615 { 6616 u64 rt_period_us; 6617 6618 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 6619 do_div(rt_period_us, NSEC_PER_USEC); 6620 return rt_period_us; 6621 } 6622 #endif /* CONFIG_RT_GROUP_SCHED */ 6623 6624 #ifdef CONFIG_RT_GROUP_SCHED 6625 static int sched_rt_global_constraints(void) 6626 { 6627 int ret = 0; 6628 6629 mutex_lock(&rt_constraints_mutex); 6630 read_lock(&tasklist_lock); 6631 ret = __rt_schedulable(NULL, 0, 0); 6632 read_unlock(&tasklist_lock); 6633 mutex_unlock(&rt_constraints_mutex); 6634 6635 return ret; 6636 } 6637 6638 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 6639 { 6640 /* Don't accept realtime tasks when there is no way for them to run */ 6641 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 6642 return 0; 6643 6644 return 1; 6645 } 6646 6647 #else /* !CONFIG_RT_GROUP_SCHED */ 6648 static int sched_rt_global_constraints(void) 6649 { 6650 unsigned long flags; 6651 int i; 6652 6653 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 6654 for_each_possible_cpu(i) { 6655 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 6656 6657 raw_spin_lock(&rt_rq->rt_runtime_lock); 6658 rt_rq->rt_runtime = global_rt_runtime(); 6659 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6660 } 6661 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 6662 6663 return 0; 6664 } 6665 #endif /* CONFIG_RT_GROUP_SCHED */ 6666 6667 static int sched_dl_global_validate(void) 6668 { 6669 u64 runtime = global_rt_runtime(); 6670 u64 period = global_rt_period(); 6671 u64 new_bw = to_ratio(period, runtime); 6672 struct dl_bw *dl_b; 6673 int cpu, ret = 0; 6674 unsigned long flags; 6675 6676 /* 6677 * Here we want to check the bandwidth not being set to some 6678 * value smaller than the currently allocated bandwidth in 6679 * any of the root_domains. 6680 * 6681 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 6682 * cycling on root_domains... Discussion on different/better 6683 * solutions is welcome! 6684 */ 6685 for_each_possible_cpu(cpu) { 6686 rcu_read_lock_sched(); 6687 dl_b = dl_bw_of(cpu); 6688 6689 raw_spin_lock_irqsave(&dl_b->lock, flags); 6690 if (new_bw < dl_b->total_bw) 6691 ret = -EBUSY; 6692 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 6693 6694 rcu_read_unlock_sched(); 6695 6696 if (ret) 6697 break; 6698 } 6699 6700 return ret; 6701 } 6702 6703 static void sched_dl_do_global(void) 6704 { 6705 u64 new_bw = -1; 6706 struct dl_bw *dl_b; 6707 int cpu; 6708 unsigned long flags; 6709 6710 def_dl_bandwidth.dl_period = global_rt_period(); 6711 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 6712 6713 if (global_rt_runtime() != RUNTIME_INF) 6714 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 6715 6716 /* 6717 * FIXME: As above... 6718 */ 6719 for_each_possible_cpu(cpu) { 6720 rcu_read_lock_sched(); 6721 dl_b = dl_bw_of(cpu); 6722 6723 raw_spin_lock_irqsave(&dl_b->lock, flags); 6724 dl_b->bw = new_bw; 6725 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 6726 6727 rcu_read_unlock_sched(); 6728 } 6729 } 6730 6731 static int sched_rt_global_validate(void) 6732 { 6733 if (sysctl_sched_rt_period <= 0) 6734 return -EINVAL; 6735 6736 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 6737 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 6738 return -EINVAL; 6739 6740 return 0; 6741 } 6742 6743 static void sched_rt_do_global(void) 6744 { 6745 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 6746 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 6747 } 6748 6749 int sched_rt_handler(struct ctl_table *table, int write, 6750 void __user *buffer, size_t *lenp, 6751 loff_t *ppos) 6752 { 6753 int old_period, old_runtime; 6754 static DEFINE_MUTEX(mutex); 6755 int ret; 6756 6757 mutex_lock(&mutex); 6758 old_period = sysctl_sched_rt_period; 6759 old_runtime = sysctl_sched_rt_runtime; 6760 6761 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6762 6763 if (!ret && write) { 6764 ret = sched_rt_global_validate(); 6765 if (ret) 6766 goto undo; 6767 6768 ret = sched_dl_global_validate(); 6769 if (ret) 6770 goto undo; 6771 6772 ret = sched_rt_global_constraints(); 6773 if (ret) 6774 goto undo; 6775 6776 sched_rt_do_global(); 6777 sched_dl_do_global(); 6778 } 6779 if (0) { 6780 undo: 6781 sysctl_sched_rt_period = old_period; 6782 sysctl_sched_rt_runtime = old_runtime; 6783 } 6784 mutex_unlock(&mutex); 6785 6786 return ret; 6787 } 6788 6789 int sched_rr_handler(struct ctl_table *table, int write, 6790 void __user *buffer, size_t *lenp, 6791 loff_t *ppos) 6792 { 6793 int ret; 6794 static DEFINE_MUTEX(mutex); 6795 6796 mutex_lock(&mutex); 6797 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6798 /* 6799 * Make sure that internally we keep jiffies. 6800 * Also, writing zero resets the timeslice to default: 6801 */ 6802 if (!ret && write) { 6803 sched_rr_timeslice = 6804 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 6805 msecs_to_jiffies(sysctl_sched_rr_timeslice); 6806 } 6807 mutex_unlock(&mutex); 6808 return ret; 6809 } 6810 6811 #ifdef CONFIG_CGROUP_SCHED 6812 6813 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6814 { 6815 return css ? container_of(css, struct task_group, css) : NULL; 6816 } 6817 6818 static struct cgroup_subsys_state * 6819 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6820 { 6821 struct task_group *parent = css_tg(parent_css); 6822 struct task_group *tg; 6823 6824 if (!parent) { 6825 /* This is early initialization for the top cgroup */ 6826 return &root_task_group.css; 6827 } 6828 6829 tg = sched_create_group(parent); 6830 if (IS_ERR(tg)) 6831 return ERR_PTR(-ENOMEM); 6832 6833 return &tg->css; 6834 } 6835 6836 /* Expose task group only after completing cgroup initialization */ 6837 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6838 { 6839 struct task_group *tg = css_tg(css); 6840 struct task_group *parent = css_tg(css->parent); 6841 6842 if (parent) 6843 sched_online_group(tg, parent); 6844 return 0; 6845 } 6846 6847 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6848 { 6849 struct task_group *tg = css_tg(css); 6850 6851 sched_offline_group(tg); 6852 } 6853 6854 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6855 { 6856 struct task_group *tg = css_tg(css); 6857 6858 /* 6859 * Relies on the RCU grace period between css_released() and this. 6860 */ 6861 sched_free_group(tg); 6862 } 6863 6864 /* 6865 * This is called before wake_up_new_task(), therefore we really only 6866 * have to set its group bits, all the other stuff does not apply. 6867 */ 6868 static void cpu_cgroup_fork(struct task_struct *task) 6869 { 6870 struct rq_flags rf; 6871 struct rq *rq; 6872 6873 rq = task_rq_lock(task, &rf); 6874 6875 update_rq_clock(rq); 6876 sched_change_group(task, TASK_SET_GROUP); 6877 6878 task_rq_unlock(rq, task, &rf); 6879 } 6880 6881 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6882 { 6883 struct task_struct *task; 6884 struct cgroup_subsys_state *css; 6885 int ret = 0; 6886 6887 cgroup_taskset_for_each(task, css, tset) { 6888 #ifdef CONFIG_RT_GROUP_SCHED 6889 if (!sched_rt_can_attach(css_tg(css), task)) 6890 return -EINVAL; 6891 #else 6892 /* We don't support RT-tasks being in separate groups */ 6893 if (task->sched_class != &fair_sched_class) 6894 return -EINVAL; 6895 #endif 6896 /* 6897 * Serialize against wake_up_new_task() such that if its 6898 * running, we're sure to observe its full state. 6899 */ 6900 raw_spin_lock_irq(&task->pi_lock); 6901 /* 6902 * Avoid calling sched_move_task() before wake_up_new_task() 6903 * has happened. This would lead to problems with PELT, due to 6904 * move wanting to detach+attach while we're not attached yet. 6905 */ 6906 if (task->state == TASK_NEW) 6907 ret = -EINVAL; 6908 raw_spin_unlock_irq(&task->pi_lock); 6909 6910 if (ret) 6911 break; 6912 } 6913 return ret; 6914 } 6915 6916 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6917 { 6918 struct task_struct *task; 6919 struct cgroup_subsys_state *css; 6920 6921 cgroup_taskset_for_each(task, css, tset) 6922 sched_move_task(task); 6923 } 6924 6925 #ifdef CONFIG_FAIR_GROUP_SCHED 6926 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6927 struct cftype *cftype, u64 shareval) 6928 { 6929 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6930 } 6931 6932 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6933 struct cftype *cft) 6934 { 6935 struct task_group *tg = css_tg(css); 6936 6937 return (u64) scale_load_down(tg->shares); 6938 } 6939 6940 #ifdef CONFIG_CFS_BANDWIDTH 6941 static DEFINE_MUTEX(cfs_constraints_mutex); 6942 6943 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6944 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6945 6946 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6947 6948 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6949 { 6950 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6951 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6952 6953 if (tg == &root_task_group) 6954 return -EINVAL; 6955 6956 /* 6957 * Ensure we have at some amount of bandwidth every period. This is 6958 * to prevent reaching a state of large arrears when throttled via 6959 * entity_tick() resulting in prolonged exit starvation. 6960 */ 6961 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6962 return -EINVAL; 6963 6964 /* 6965 * Likewise, bound things on the otherside by preventing insane quota 6966 * periods. This also allows us to normalize in computing quota 6967 * feasibility. 6968 */ 6969 if (period > max_cfs_quota_period) 6970 return -EINVAL; 6971 6972 /* 6973 * Prevent race between setting of cfs_rq->runtime_enabled and 6974 * unthrottle_offline_cfs_rqs(). 6975 */ 6976 get_online_cpus(); 6977 mutex_lock(&cfs_constraints_mutex); 6978 ret = __cfs_schedulable(tg, period, quota); 6979 if (ret) 6980 goto out_unlock; 6981 6982 runtime_enabled = quota != RUNTIME_INF; 6983 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6984 /* 6985 * If we need to toggle cfs_bandwidth_used, off->on must occur 6986 * before making related changes, and on->off must occur afterwards 6987 */ 6988 if (runtime_enabled && !runtime_was_enabled) 6989 cfs_bandwidth_usage_inc(); 6990 raw_spin_lock_irq(&cfs_b->lock); 6991 cfs_b->period = ns_to_ktime(period); 6992 cfs_b->quota = quota; 6993 6994 __refill_cfs_bandwidth_runtime(cfs_b); 6995 6996 /* Restart the period timer (if active) to handle new period expiry: */ 6997 if (runtime_enabled) 6998 start_cfs_bandwidth(cfs_b); 6999 7000 raw_spin_unlock_irq(&cfs_b->lock); 7001 7002 for_each_online_cpu(i) { 7003 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7004 struct rq *rq = cfs_rq->rq; 7005 7006 raw_spin_lock_irq(&rq->lock); 7007 cfs_rq->runtime_enabled = runtime_enabled; 7008 cfs_rq->runtime_remaining = 0; 7009 7010 if (cfs_rq->throttled) 7011 unthrottle_cfs_rq(cfs_rq); 7012 raw_spin_unlock_irq(&rq->lock); 7013 } 7014 if (runtime_was_enabled && !runtime_enabled) 7015 cfs_bandwidth_usage_dec(); 7016 out_unlock: 7017 mutex_unlock(&cfs_constraints_mutex); 7018 put_online_cpus(); 7019 7020 return ret; 7021 } 7022 7023 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7024 { 7025 u64 quota, period; 7026 7027 period = ktime_to_ns(tg->cfs_bandwidth.period); 7028 if (cfs_quota_us < 0) 7029 quota = RUNTIME_INF; 7030 else 7031 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7032 7033 return tg_set_cfs_bandwidth(tg, period, quota); 7034 } 7035 7036 long tg_get_cfs_quota(struct task_group *tg) 7037 { 7038 u64 quota_us; 7039 7040 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7041 return -1; 7042 7043 quota_us = tg->cfs_bandwidth.quota; 7044 do_div(quota_us, NSEC_PER_USEC); 7045 7046 return quota_us; 7047 } 7048 7049 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7050 { 7051 u64 quota, period; 7052 7053 period = (u64)cfs_period_us * NSEC_PER_USEC; 7054 quota = tg->cfs_bandwidth.quota; 7055 7056 return tg_set_cfs_bandwidth(tg, period, quota); 7057 } 7058 7059 long tg_get_cfs_period(struct task_group *tg) 7060 { 7061 u64 cfs_period_us; 7062 7063 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7064 do_div(cfs_period_us, NSEC_PER_USEC); 7065 7066 return cfs_period_us; 7067 } 7068 7069 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7070 struct cftype *cft) 7071 { 7072 return tg_get_cfs_quota(css_tg(css)); 7073 } 7074 7075 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7076 struct cftype *cftype, s64 cfs_quota_us) 7077 { 7078 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7079 } 7080 7081 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7082 struct cftype *cft) 7083 { 7084 return tg_get_cfs_period(css_tg(css)); 7085 } 7086 7087 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7088 struct cftype *cftype, u64 cfs_period_us) 7089 { 7090 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7091 } 7092 7093 struct cfs_schedulable_data { 7094 struct task_group *tg; 7095 u64 period, quota; 7096 }; 7097 7098 /* 7099 * normalize group quota/period to be quota/max_period 7100 * note: units are usecs 7101 */ 7102 static u64 normalize_cfs_quota(struct task_group *tg, 7103 struct cfs_schedulable_data *d) 7104 { 7105 u64 quota, period; 7106 7107 if (tg == d->tg) { 7108 period = d->period; 7109 quota = d->quota; 7110 } else { 7111 period = tg_get_cfs_period(tg); 7112 quota = tg_get_cfs_quota(tg); 7113 } 7114 7115 /* note: these should typically be equivalent */ 7116 if (quota == RUNTIME_INF || quota == -1) 7117 return RUNTIME_INF; 7118 7119 return to_ratio(period, quota); 7120 } 7121 7122 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7123 { 7124 struct cfs_schedulable_data *d = data; 7125 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7126 s64 quota = 0, parent_quota = -1; 7127 7128 if (!tg->parent) { 7129 quota = RUNTIME_INF; 7130 } else { 7131 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7132 7133 quota = normalize_cfs_quota(tg, d); 7134 parent_quota = parent_b->hierarchical_quota; 7135 7136 /* 7137 * Ensure max(child_quota) <= parent_quota, inherit when no 7138 * limit is set: 7139 */ 7140 if (quota == RUNTIME_INF) 7141 quota = parent_quota; 7142 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7143 return -EINVAL; 7144 } 7145 cfs_b->hierarchical_quota = quota; 7146 7147 return 0; 7148 } 7149 7150 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7151 { 7152 int ret; 7153 struct cfs_schedulable_data data = { 7154 .tg = tg, 7155 .period = period, 7156 .quota = quota, 7157 }; 7158 7159 if (quota != RUNTIME_INF) { 7160 do_div(data.period, NSEC_PER_USEC); 7161 do_div(data.quota, NSEC_PER_USEC); 7162 } 7163 7164 rcu_read_lock(); 7165 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7166 rcu_read_unlock(); 7167 7168 return ret; 7169 } 7170 7171 static int cpu_stats_show(struct seq_file *sf, void *v) 7172 { 7173 struct task_group *tg = css_tg(seq_css(sf)); 7174 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7175 7176 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7177 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7178 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7179 7180 return 0; 7181 } 7182 #endif /* CONFIG_CFS_BANDWIDTH */ 7183 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7184 7185 #ifdef CONFIG_RT_GROUP_SCHED 7186 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7187 struct cftype *cft, s64 val) 7188 { 7189 return sched_group_set_rt_runtime(css_tg(css), val); 7190 } 7191 7192 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7193 struct cftype *cft) 7194 { 7195 return sched_group_rt_runtime(css_tg(css)); 7196 } 7197 7198 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7199 struct cftype *cftype, u64 rt_period_us) 7200 { 7201 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7202 } 7203 7204 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7205 struct cftype *cft) 7206 { 7207 return sched_group_rt_period(css_tg(css)); 7208 } 7209 #endif /* CONFIG_RT_GROUP_SCHED */ 7210 7211 static struct cftype cpu_files[] = { 7212 #ifdef CONFIG_FAIR_GROUP_SCHED 7213 { 7214 .name = "shares", 7215 .read_u64 = cpu_shares_read_u64, 7216 .write_u64 = cpu_shares_write_u64, 7217 }, 7218 #endif 7219 #ifdef CONFIG_CFS_BANDWIDTH 7220 { 7221 .name = "cfs_quota_us", 7222 .read_s64 = cpu_cfs_quota_read_s64, 7223 .write_s64 = cpu_cfs_quota_write_s64, 7224 }, 7225 { 7226 .name = "cfs_period_us", 7227 .read_u64 = cpu_cfs_period_read_u64, 7228 .write_u64 = cpu_cfs_period_write_u64, 7229 }, 7230 { 7231 .name = "stat", 7232 .seq_show = cpu_stats_show, 7233 }, 7234 #endif 7235 #ifdef CONFIG_RT_GROUP_SCHED 7236 { 7237 .name = "rt_runtime_us", 7238 .read_s64 = cpu_rt_runtime_read, 7239 .write_s64 = cpu_rt_runtime_write, 7240 }, 7241 { 7242 .name = "rt_period_us", 7243 .read_u64 = cpu_rt_period_read_uint, 7244 .write_u64 = cpu_rt_period_write_uint, 7245 }, 7246 #endif 7247 { } /* Terminate */ 7248 }; 7249 7250 struct cgroup_subsys cpu_cgrp_subsys = { 7251 .css_alloc = cpu_cgroup_css_alloc, 7252 .css_online = cpu_cgroup_css_online, 7253 .css_released = cpu_cgroup_css_released, 7254 .css_free = cpu_cgroup_css_free, 7255 .fork = cpu_cgroup_fork, 7256 .can_attach = cpu_cgroup_can_attach, 7257 .attach = cpu_cgroup_attach, 7258 .legacy_cftypes = cpu_files, 7259 .early_init = true, 7260 }; 7261 7262 #endif /* CONFIG_CGROUP_SCHED */ 7263 7264 void dump_cpu_task(int cpu) 7265 { 7266 pr_info("Task dump for CPU %d:\n", cpu); 7267 sched_show_task(cpu_curr(cpu)); 7268 } 7269 7270 /* 7271 * Nice levels are multiplicative, with a gentle 10% change for every 7272 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7273 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7274 * that remained on nice 0. 7275 * 7276 * The "10% effect" is relative and cumulative: from _any_ nice level, 7277 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7278 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7279 * If a task goes up by ~10% and another task goes down by ~10% then 7280 * the relative distance between them is ~25%.) 7281 */ 7282 const int sched_prio_to_weight[40] = { 7283 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7284 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7285 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7286 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7287 /* 0 */ 1024, 820, 655, 526, 423, 7288 /* 5 */ 335, 272, 215, 172, 137, 7289 /* 10 */ 110, 87, 70, 56, 45, 7290 /* 15 */ 36, 29, 23, 18, 15, 7291 }; 7292 7293 /* 7294 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7295 * 7296 * In cases where the weight does not change often, we can use the 7297 * precalculated inverse to speed up arithmetics by turning divisions 7298 * into multiplications: 7299 */ 7300 const u32 sched_prio_to_wmult[40] = { 7301 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7302 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7303 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7304 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7305 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7306 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7307 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7308 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7309 }; 7310