xref: /openbmc/linux/kernel/sched/core.c (revision 174cd4b1)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/cpuset.h>
13 #include <linux/delayacct.h>
14 #include <linux/init_task.h>
15 #include <linux/context_tracking.h>
16 #include <linux/rcupdate_wait.h>
17 
18 #include <linux/blkdev.h>
19 #include <linux/kprobes.h>
20 #include <linux/mmu_context.h>
21 #include <linux/module.h>
22 #include <linux/nmi.h>
23 #include <linux/prefetch.h>
24 #include <linux/profile.h>
25 #include <linux/security.h>
26 #include <linux/syscalls.h>
27 
28 #include <asm/switch_to.h>
29 #include <asm/tlb.h>
30 #ifdef CONFIG_PARAVIRT
31 #include <asm/paravirt.h>
32 #endif
33 
34 #include "sched.h"
35 #include "../workqueue_internal.h"
36 #include "../smpboot.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/sched.h>
40 
41 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
42 
43 /*
44  * Debugging: various feature bits
45  */
46 
47 #define SCHED_FEAT(name, enabled)	\
48 	(1UL << __SCHED_FEAT_##name) * enabled |
49 
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 	0;
53 
54 #undef SCHED_FEAT
55 
56 /*
57  * Number of tasks to iterate in a single balance run.
58  * Limited because this is done with IRQs disabled.
59  */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61 
62 /*
63  * period over which we average the RT time consumption, measured
64  * in ms.
65  *
66  * default: 1s
67  */
68 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
69 
70 /*
71  * period over which we measure -rt task CPU usage in us.
72  * default: 1s
73  */
74 unsigned int sysctl_sched_rt_period = 1000000;
75 
76 __read_mostly int scheduler_running;
77 
78 /*
79  * part of the period that we allow rt tasks to run in us.
80  * default: 0.95s
81  */
82 int sysctl_sched_rt_runtime = 950000;
83 
84 /* CPUs with isolated domains */
85 cpumask_var_t cpu_isolated_map;
86 
87 /*
88  * this_rq_lock - lock this runqueue and disable interrupts.
89  */
90 static struct rq *this_rq_lock(void)
91 	__acquires(rq->lock)
92 {
93 	struct rq *rq;
94 
95 	local_irq_disable();
96 	rq = this_rq();
97 	raw_spin_lock(&rq->lock);
98 
99 	return rq;
100 }
101 
102 /*
103  * __task_rq_lock - lock the rq @p resides on.
104  */
105 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
106 	__acquires(rq->lock)
107 {
108 	struct rq *rq;
109 
110 	lockdep_assert_held(&p->pi_lock);
111 
112 	for (;;) {
113 		rq = task_rq(p);
114 		raw_spin_lock(&rq->lock);
115 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
116 			rq_pin_lock(rq, rf);
117 			return rq;
118 		}
119 		raw_spin_unlock(&rq->lock);
120 
121 		while (unlikely(task_on_rq_migrating(p)))
122 			cpu_relax();
123 	}
124 }
125 
126 /*
127  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
128  */
129 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
130 	__acquires(p->pi_lock)
131 	__acquires(rq->lock)
132 {
133 	struct rq *rq;
134 
135 	for (;;) {
136 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
137 		rq = task_rq(p);
138 		raw_spin_lock(&rq->lock);
139 		/*
140 		 *	move_queued_task()		task_rq_lock()
141 		 *
142 		 *	ACQUIRE (rq->lock)
143 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
144 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
145 		 *	[S] ->cpu = new_cpu		[L] task_rq()
146 		 *					[L] ->on_rq
147 		 *	RELEASE (rq->lock)
148 		 *
149 		 * If we observe the old cpu in task_rq_lock, the acquire of
150 		 * the old rq->lock will fully serialize against the stores.
151 		 *
152 		 * If we observe the new CPU in task_rq_lock, the acquire will
153 		 * pair with the WMB to ensure we must then also see migrating.
154 		 */
155 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
156 			rq_pin_lock(rq, rf);
157 			return rq;
158 		}
159 		raw_spin_unlock(&rq->lock);
160 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
161 
162 		while (unlikely(task_on_rq_migrating(p)))
163 			cpu_relax();
164 	}
165 }
166 
167 /*
168  * RQ-clock updating methods:
169  */
170 
171 static void update_rq_clock_task(struct rq *rq, s64 delta)
172 {
173 /*
174  * In theory, the compile should just see 0 here, and optimize out the call
175  * to sched_rt_avg_update. But I don't trust it...
176  */
177 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
178 	s64 steal = 0, irq_delta = 0;
179 #endif
180 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
181 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
182 
183 	/*
184 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
185 	 * this case when a previous update_rq_clock() happened inside a
186 	 * {soft,}irq region.
187 	 *
188 	 * When this happens, we stop ->clock_task and only update the
189 	 * prev_irq_time stamp to account for the part that fit, so that a next
190 	 * update will consume the rest. This ensures ->clock_task is
191 	 * monotonic.
192 	 *
193 	 * It does however cause some slight miss-attribution of {soft,}irq
194 	 * time, a more accurate solution would be to update the irq_time using
195 	 * the current rq->clock timestamp, except that would require using
196 	 * atomic ops.
197 	 */
198 	if (irq_delta > delta)
199 		irq_delta = delta;
200 
201 	rq->prev_irq_time += irq_delta;
202 	delta -= irq_delta;
203 #endif
204 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
205 	if (static_key_false((&paravirt_steal_rq_enabled))) {
206 		steal = paravirt_steal_clock(cpu_of(rq));
207 		steal -= rq->prev_steal_time_rq;
208 
209 		if (unlikely(steal > delta))
210 			steal = delta;
211 
212 		rq->prev_steal_time_rq += steal;
213 		delta -= steal;
214 	}
215 #endif
216 
217 	rq->clock_task += delta;
218 
219 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
220 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
221 		sched_rt_avg_update(rq, irq_delta + steal);
222 #endif
223 }
224 
225 void update_rq_clock(struct rq *rq)
226 {
227 	s64 delta;
228 
229 	lockdep_assert_held(&rq->lock);
230 
231 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
232 		return;
233 
234 #ifdef CONFIG_SCHED_DEBUG
235 	rq->clock_update_flags |= RQCF_UPDATED;
236 #endif
237 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
238 	if (delta < 0)
239 		return;
240 	rq->clock += delta;
241 	update_rq_clock_task(rq, delta);
242 }
243 
244 
245 #ifdef CONFIG_SCHED_HRTICK
246 /*
247  * Use HR-timers to deliver accurate preemption points.
248  */
249 
250 static void hrtick_clear(struct rq *rq)
251 {
252 	if (hrtimer_active(&rq->hrtick_timer))
253 		hrtimer_cancel(&rq->hrtick_timer);
254 }
255 
256 /*
257  * High-resolution timer tick.
258  * Runs from hardirq context with interrupts disabled.
259  */
260 static enum hrtimer_restart hrtick(struct hrtimer *timer)
261 {
262 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
263 
264 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
265 
266 	raw_spin_lock(&rq->lock);
267 	update_rq_clock(rq);
268 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
269 	raw_spin_unlock(&rq->lock);
270 
271 	return HRTIMER_NORESTART;
272 }
273 
274 #ifdef CONFIG_SMP
275 
276 static void __hrtick_restart(struct rq *rq)
277 {
278 	struct hrtimer *timer = &rq->hrtick_timer;
279 
280 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
281 }
282 
283 /*
284  * called from hardirq (IPI) context
285  */
286 static void __hrtick_start(void *arg)
287 {
288 	struct rq *rq = arg;
289 
290 	raw_spin_lock(&rq->lock);
291 	__hrtick_restart(rq);
292 	rq->hrtick_csd_pending = 0;
293 	raw_spin_unlock(&rq->lock);
294 }
295 
296 /*
297  * Called to set the hrtick timer state.
298  *
299  * called with rq->lock held and irqs disabled
300  */
301 void hrtick_start(struct rq *rq, u64 delay)
302 {
303 	struct hrtimer *timer = &rq->hrtick_timer;
304 	ktime_t time;
305 	s64 delta;
306 
307 	/*
308 	 * Don't schedule slices shorter than 10000ns, that just
309 	 * doesn't make sense and can cause timer DoS.
310 	 */
311 	delta = max_t(s64, delay, 10000LL);
312 	time = ktime_add_ns(timer->base->get_time(), delta);
313 
314 	hrtimer_set_expires(timer, time);
315 
316 	if (rq == this_rq()) {
317 		__hrtick_restart(rq);
318 	} else if (!rq->hrtick_csd_pending) {
319 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
320 		rq->hrtick_csd_pending = 1;
321 	}
322 }
323 
324 #else
325 /*
326  * Called to set the hrtick timer state.
327  *
328  * called with rq->lock held and irqs disabled
329  */
330 void hrtick_start(struct rq *rq, u64 delay)
331 {
332 	/*
333 	 * Don't schedule slices shorter than 10000ns, that just
334 	 * doesn't make sense. Rely on vruntime for fairness.
335 	 */
336 	delay = max_t(u64, delay, 10000LL);
337 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
338 		      HRTIMER_MODE_REL_PINNED);
339 }
340 #endif /* CONFIG_SMP */
341 
342 static void init_rq_hrtick(struct rq *rq)
343 {
344 #ifdef CONFIG_SMP
345 	rq->hrtick_csd_pending = 0;
346 
347 	rq->hrtick_csd.flags = 0;
348 	rq->hrtick_csd.func = __hrtick_start;
349 	rq->hrtick_csd.info = rq;
350 #endif
351 
352 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
353 	rq->hrtick_timer.function = hrtick;
354 }
355 #else	/* CONFIG_SCHED_HRTICK */
356 static inline void hrtick_clear(struct rq *rq)
357 {
358 }
359 
360 static inline void init_rq_hrtick(struct rq *rq)
361 {
362 }
363 #endif	/* CONFIG_SCHED_HRTICK */
364 
365 /*
366  * cmpxchg based fetch_or, macro so it works for different integer types
367  */
368 #define fetch_or(ptr, mask)						\
369 	({								\
370 		typeof(ptr) _ptr = (ptr);				\
371 		typeof(mask) _mask = (mask);				\
372 		typeof(*_ptr) _old, _val = *_ptr;			\
373 									\
374 		for (;;) {						\
375 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
376 			if (_old == _val)				\
377 				break;					\
378 			_val = _old;					\
379 		}							\
380 	_old;								\
381 })
382 
383 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
384 /*
385  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
386  * this avoids any races wrt polling state changes and thereby avoids
387  * spurious IPIs.
388  */
389 static bool set_nr_and_not_polling(struct task_struct *p)
390 {
391 	struct thread_info *ti = task_thread_info(p);
392 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
393 }
394 
395 /*
396  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
397  *
398  * If this returns true, then the idle task promises to call
399  * sched_ttwu_pending() and reschedule soon.
400  */
401 static bool set_nr_if_polling(struct task_struct *p)
402 {
403 	struct thread_info *ti = task_thread_info(p);
404 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
405 
406 	for (;;) {
407 		if (!(val & _TIF_POLLING_NRFLAG))
408 			return false;
409 		if (val & _TIF_NEED_RESCHED)
410 			return true;
411 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
412 		if (old == val)
413 			break;
414 		val = old;
415 	}
416 	return true;
417 }
418 
419 #else
420 static bool set_nr_and_not_polling(struct task_struct *p)
421 {
422 	set_tsk_need_resched(p);
423 	return true;
424 }
425 
426 #ifdef CONFIG_SMP
427 static bool set_nr_if_polling(struct task_struct *p)
428 {
429 	return false;
430 }
431 #endif
432 #endif
433 
434 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
435 {
436 	struct wake_q_node *node = &task->wake_q;
437 
438 	/*
439 	 * Atomically grab the task, if ->wake_q is !nil already it means
440 	 * its already queued (either by us or someone else) and will get the
441 	 * wakeup due to that.
442 	 *
443 	 * This cmpxchg() implies a full barrier, which pairs with the write
444 	 * barrier implied by the wakeup in wake_up_q().
445 	 */
446 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
447 		return;
448 
449 	get_task_struct(task);
450 
451 	/*
452 	 * The head is context local, there can be no concurrency.
453 	 */
454 	*head->lastp = node;
455 	head->lastp = &node->next;
456 }
457 
458 void wake_up_q(struct wake_q_head *head)
459 {
460 	struct wake_q_node *node = head->first;
461 
462 	while (node != WAKE_Q_TAIL) {
463 		struct task_struct *task;
464 
465 		task = container_of(node, struct task_struct, wake_q);
466 		BUG_ON(!task);
467 		/* Task can safely be re-inserted now: */
468 		node = node->next;
469 		task->wake_q.next = NULL;
470 
471 		/*
472 		 * wake_up_process() implies a wmb() to pair with the queueing
473 		 * in wake_q_add() so as not to miss wakeups.
474 		 */
475 		wake_up_process(task);
476 		put_task_struct(task);
477 	}
478 }
479 
480 /*
481  * resched_curr - mark rq's current task 'to be rescheduled now'.
482  *
483  * On UP this means the setting of the need_resched flag, on SMP it
484  * might also involve a cross-CPU call to trigger the scheduler on
485  * the target CPU.
486  */
487 void resched_curr(struct rq *rq)
488 {
489 	struct task_struct *curr = rq->curr;
490 	int cpu;
491 
492 	lockdep_assert_held(&rq->lock);
493 
494 	if (test_tsk_need_resched(curr))
495 		return;
496 
497 	cpu = cpu_of(rq);
498 
499 	if (cpu == smp_processor_id()) {
500 		set_tsk_need_resched(curr);
501 		set_preempt_need_resched();
502 		return;
503 	}
504 
505 	if (set_nr_and_not_polling(curr))
506 		smp_send_reschedule(cpu);
507 	else
508 		trace_sched_wake_idle_without_ipi(cpu);
509 }
510 
511 void resched_cpu(int cpu)
512 {
513 	struct rq *rq = cpu_rq(cpu);
514 	unsigned long flags;
515 
516 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
517 		return;
518 	resched_curr(rq);
519 	raw_spin_unlock_irqrestore(&rq->lock, flags);
520 }
521 
522 #ifdef CONFIG_SMP
523 #ifdef CONFIG_NO_HZ_COMMON
524 /*
525  * In the semi idle case, use the nearest busy CPU for migrating timers
526  * from an idle CPU.  This is good for power-savings.
527  *
528  * We don't do similar optimization for completely idle system, as
529  * selecting an idle CPU will add more delays to the timers than intended
530  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
531  */
532 int get_nohz_timer_target(void)
533 {
534 	int i, cpu = smp_processor_id();
535 	struct sched_domain *sd;
536 
537 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
538 		return cpu;
539 
540 	rcu_read_lock();
541 	for_each_domain(cpu, sd) {
542 		for_each_cpu(i, sched_domain_span(sd)) {
543 			if (cpu == i)
544 				continue;
545 
546 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
547 				cpu = i;
548 				goto unlock;
549 			}
550 		}
551 	}
552 
553 	if (!is_housekeeping_cpu(cpu))
554 		cpu = housekeeping_any_cpu();
555 unlock:
556 	rcu_read_unlock();
557 	return cpu;
558 }
559 
560 /*
561  * When add_timer_on() enqueues a timer into the timer wheel of an
562  * idle CPU then this timer might expire before the next timer event
563  * which is scheduled to wake up that CPU. In case of a completely
564  * idle system the next event might even be infinite time into the
565  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
566  * leaves the inner idle loop so the newly added timer is taken into
567  * account when the CPU goes back to idle and evaluates the timer
568  * wheel for the next timer event.
569  */
570 static void wake_up_idle_cpu(int cpu)
571 {
572 	struct rq *rq = cpu_rq(cpu);
573 
574 	if (cpu == smp_processor_id())
575 		return;
576 
577 	if (set_nr_and_not_polling(rq->idle))
578 		smp_send_reschedule(cpu);
579 	else
580 		trace_sched_wake_idle_without_ipi(cpu);
581 }
582 
583 static bool wake_up_full_nohz_cpu(int cpu)
584 {
585 	/*
586 	 * We just need the target to call irq_exit() and re-evaluate
587 	 * the next tick. The nohz full kick at least implies that.
588 	 * If needed we can still optimize that later with an
589 	 * empty IRQ.
590 	 */
591 	if (cpu_is_offline(cpu))
592 		return true;  /* Don't try to wake offline CPUs. */
593 	if (tick_nohz_full_cpu(cpu)) {
594 		if (cpu != smp_processor_id() ||
595 		    tick_nohz_tick_stopped())
596 			tick_nohz_full_kick_cpu(cpu);
597 		return true;
598 	}
599 
600 	return false;
601 }
602 
603 /*
604  * Wake up the specified CPU.  If the CPU is going offline, it is the
605  * caller's responsibility to deal with the lost wakeup, for example,
606  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
607  */
608 void wake_up_nohz_cpu(int cpu)
609 {
610 	if (!wake_up_full_nohz_cpu(cpu))
611 		wake_up_idle_cpu(cpu);
612 }
613 
614 static inline bool got_nohz_idle_kick(void)
615 {
616 	int cpu = smp_processor_id();
617 
618 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
619 		return false;
620 
621 	if (idle_cpu(cpu) && !need_resched())
622 		return true;
623 
624 	/*
625 	 * We can't run Idle Load Balance on this CPU for this time so we
626 	 * cancel it and clear NOHZ_BALANCE_KICK
627 	 */
628 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
629 	return false;
630 }
631 
632 #else /* CONFIG_NO_HZ_COMMON */
633 
634 static inline bool got_nohz_idle_kick(void)
635 {
636 	return false;
637 }
638 
639 #endif /* CONFIG_NO_HZ_COMMON */
640 
641 #ifdef CONFIG_NO_HZ_FULL
642 bool sched_can_stop_tick(struct rq *rq)
643 {
644 	int fifo_nr_running;
645 
646 	/* Deadline tasks, even if single, need the tick */
647 	if (rq->dl.dl_nr_running)
648 		return false;
649 
650 	/*
651 	 * If there are more than one RR tasks, we need the tick to effect the
652 	 * actual RR behaviour.
653 	 */
654 	if (rq->rt.rr_nr_running) {
655 		if (rq->rt.rr_nr_running == 1)
656 			return true;
657 		else
658 			return false;
659 	}
660 
661 	/*
662 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
663 	 * forced preemption between FIFO tasks.
664 	 */
665 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
666 	if (fifo_nr_running)
667 		return true;
668 
669 	/*
670 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
671 	 * if there's more than one we need the tick for involuntary
672 	 * preemption.
673 	 */
674 	if (rq->nr_running > 1)
675 		return false;
676 
677 	return true;
678 }
679 #endif /* CONFIG_NO_HZ_FULL */
680 
681 void sched_avg_update(struct rq *rq)
682 {
683 	s64 period = sched_avg_period();
684 
685 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
686 		/*
687 		 * Inline assembly required to prevent the compiler
688 		 * optimising this loop into a divmod call.
689 		 * See __iter_div_u64_rem() for another example of this.
690 		 */
691 		asm("" : "+rm" (rq->age_stamp));
692 		rq->age_stamp += period;
693 		rq->rt_avg /= 2;
694 	}
695 }
696 
697 #endif /* CONFIG_SMP */
698 
699 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
700 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
701 /*
702  * Iterate task_group tree rooted at *from, calling @down when first entering a
703  * node and @up when leaving it for the final time.
704  *
705  * Caller must hold rcu_lock or sufficient equivalent.
706  */
707 int walk_tg_tree_from(struct task_group *from,
708 			     tg_visitor down, tg_visitor up, void *data)
709 {
710 	struct task_group *parent, *child;
711 	int ret;
712 
713 	parent = from;
714 
715 down:
716 	ret = (*down)(parent, data);
717 	if (ret)
718 		goto out;
719 	list_for_each_entry_rcu(child, &parent->children, siblings) {
720 		parent = child;
721 		goto down;
722 
723 up:
724 		continue;
725 	}
726 	ret = (*up)(parent, data);
727 	if (ret || parent == from)
728 		goto out;
729 
730 	child = parent;
731 	parent = parent->parent;
732 	if (parent)
733 		goto up;
734 out:
735 	return ret;
736 }
737 
738 int tg_nop(struct task_group *tg, void *data)
739 {
740 	return 0;
741 }
742 #endif
743 
744 static void set_load_weight(struct task_struct *p)
745 {
746 	int prio = p->static_prio - MAX_RT_PRIO;
747 	struct load_weight *load = &p->se.load;
748 
749 	/*
750 	 * SCHED_IDLE tasks get minimal weight:
751 	 */
752 	if (idle_policy(p->policy)) {
753 		load->weight = scale_load(WEIGHT_IDLEPRIO);
754 		load->inv_weight = WMULT_IDLEPRIO;
755 		return;
756 	}
757 
758 	load->weight = scale_load(sched_prio_to_weight[prio]);
759 	load->inv_weight = sched_prio_to_wmult[prio];
760 }
761 
762 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
763 {
764 	update_rq_clock(rq);
765 	if (!(flags & ENQUEUE_RESTORE))
766 		sched_info_queued(rq, p);
767 	p->sched_class->enqueue_task(rq, p, flags);
768 }
769 
770 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771 {
772 	update_rq_clock(rq);
773 	if (!(flags & DEQUEUE_SAVE))
774 		sched_info_dequeued(rq, p);
775 	p->sched_class->dequeue_task(rq, p, flags);
776 }
777 
778 void activate_task(struct rq *rq, struct task_struct *p, int flags)
779 {
780 	if (task_contributes_to_load(p))
781 		rq->nr_uninterruptible--;
782 
783 	enqueue_task(rq, p, flags);
784 }
785 
786 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
787 {
788 	if (task_contributes_to_load(p))
789 		rq->nr_uninterruptible++;
790 
791 	dequeue_task(rq, p, flags);
792 }
793 
794 void sched_set_stop_task(int cpu, struct task_struct *stop)
795 {
796 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
797 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
798 
799 	if (stop) {
800 		/*
801 		 * Make it appear like a SCHED_FIFO task, its something
802 		 * userspace knows about and won't get confused about.
803 		 *
804 		 * Also, it will make PI more or less work without too
805 		 * much confusion -- but then, stop work should not
806 		 * rely on PI working anyway.
807 		 */
808 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
809 
810 		stop->sched_class = &stop_sched_class;
811 	}
812 
813 	cpu_rq(cpu)->stop = stop;
814 
815 	if (old_stop) {
816 		/*
817 		 * Reset it back to a normal scheduling class so that
818 		 * it can die in pieces.
819 		 */
820 		old_stop->sched_class = &rt_sched_class;
821 	}
822 }
823 
824 /*
825  * __normal_prio - return the priority that is based on the static prio
826  */
827 static inline int __normal_prio(struct task_struct *p)
828 {
829 	return p->static_prio;
830 }
831 
832 /*
833  * Calculate the expected normal priority: i.e. priority
834  * without taking RT-inheritance into account. Might be
835  * boosted by interactivity modifiers. Changes upon fork,
836  * setprio syscalls, and whenever the interactivity
837  * estimator recalculates.
838  */
839 static inline int normal_prio(struct task_struct *p)
840 {
841 	int prio;
842 
843 	if (task_has_dl_policy(p))
844 		prio = MAX_DL_PRIO-1;
845 	else if (task_has_rt_policy(p))
846 		prio = MAX_RT_PRIO-1 - p->rt_priority;
847 	else
848 		prio = __normal_prio(p);
849 	return prio;
850 }
851 
852 /*
853  * Calculate the current priority, i.e. the priority
854  * taken into account by the scheduler. This value might
855  * be boosted by RT tasks, or might be boosted by
856  * interactivity modifiers. Will be RT if the task got
857  * RT-boosted. If not then it returns p->normal_prio.
858  */
859 static int effective_prio(struct task_struct *p)
860 {
861 	p->normal_prio = normal_prio(p);
862 	/*
863 	 * If we are RT tasks or we were boosted to RT priority,
864 	 * keep the priority unchanged. Otherwise, update priority
865 	 * to the normal priority:
866 	 */
867 	if (!rt_prio(p->prio))
868 		return p->normal_prio;
869 	return p->prio;
870 }
871 
872 /**
873  * task_curr - is this task currently executing on a CPU?
874  * @p: the task in question.
875  *
876  * Return: 1 if the task is currently executing. 0 otherwise.
877  */
878 inline int task_curr(const struct task_struct *p)
879 {
880 	return cpu_curr(task_cpu(p)) == p;
881 }
882 
883 /*
884  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
885  * use the balance_callback list if you want balancing.
886  *
887  * this means any call to check_class_changed() must be followed by a call to
888  * balance_callback().
889  */
890 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
891 				       const struct sched_class *prev_class,
892 				       int oldprio)
893 {
894 	if (prev_class != p->sched_class) {
895 		if (prev_class->switched_from)
896 			prev_class->switched_from(rq, p);
897 
898 		p->sched_class->switched_to(rq, p);
899 	} else if (oldprio != p->prio || dl_task(p))
900 		p->sched_class->prio_changed(rq, p, oldprio);
901 }
902 
903 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
904 {
905 	const struct sched_class *class;
906 
907 	if (p->sched_class == rq->curr->sched_class) {
908 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
909 	} else {
910 		for_each_class(class) {
911 			if (class == rq->curr->sched_class)
912 				break;
913 			if (class == p->sched_class) {
914 				resched_curr(rq);
915 				break;
916 			}
917 		}
918 	}
919 
920 	/*
921 	 * A queue event has occurred, and we're going to schedule.  In
922 	 * this case, we can save a useless back to back clock update.
923 	 */
924 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
925 		rq_clock_skip_update(rq, true);
926 }
927 
928 #ifdef CONFIG_SMP
929 /*
930  * This is how migration works:
931  *
932  * 1) we invoke migration_cpu_stop() on the target CPU using
933  *    stop_one_cpu().
934  * 2) stopper starts to run (implicitly forcing the migrated thread
935  *    off the CPU)
936  * 3) it checks whether the migrated task is still in the wrong runqueue.
937  * 4) if it's in the wrong runqueue then the migration thread removes
938  *    it and puts it into the right queue.
939  * 5) stopper completes and stop_one_cpu() returns and the migration
940  *    is done.
941  */
942 
943 /*
944  * move_queued_task - move a queued task to new rq.
945  *
946  * Returns (locked) new rq. Old rq's lock is released.
947  */
948 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
949 {
950 	lockdep_assert_held(&rq->lock);
951 
952 	p->on_rq = TASK_ON_RQ_MIGRATING;
953 	dequeue_task(rq, p, 0);
954 	set_task_cpu(p, new_cpu);
955 	raw_spin_unlock(&rq->lock);
956 
957 	rq = cpu_rq(new_cpu);
958 
959 	raw_spin_lock(&rq->lock);
960 	BUG_ON(task_cpu(p) != new_cpu);
961 	enqueue_task(rq, p, 0);
962 	p->on_rq = TASK_ON_RQ_QUEUED;
963 	check_preempt_curr(rq, p, 0);
964 
965 	return rq;
966 }
967 
968 struct migration_arg {
969 	struct task_struct *task;
970 	int dest_cpu;
971 };
972 
973 /*
974  * Move (not current) task off this CPU, onto the destination CPU. We're doing
975  * this because either it can't run here any more (set_cpus_allowed()
976  * away from this CPU, or CPU going down), or because we're
977  * attempting to rebalance this task on exec (sched_exec).
978  *
979  * So we race with normal scheduler movements, but that's OK, as long
980  * as the task is no longer on this CPU.
981  */
982 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
983 {
984 	if (unlikely(!cpu_active(dest_cpu)))
985 		return rq;
986 
987 	/* Affinity changed (again). */
988 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
989 		return rq;
990 
991 	rq = move_queued_task(rq, p, dest_cpu);
992 
993 	return rq;
994 }
995 
996 /*
997  * migration_cpu_stop - this will be executed by a highprio stopper thread
998  * and performs thread migration by bumping thread off CPU then
999  * 'pushing' onto another runqueue.
1000  */
1001 static int migration_cpu_stop(void *data)
1002 {
1003 	struct migration_arg *arg = data;
1004 	struct task_struct *p = arg->task;
1005 	struct rq *rq = this_rq();
1006 
1007 	/*
1008 	 * The original target CPU might have gone down and we might
1009 	 * be on another CPU but it doesn't matter.
1010 	 */
1011 	local_irq_disable();
1012 	/*
1013 	 * We need to explicitly wake pending tasks before running
1014 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1015 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1016 	 */
1017 	sched_ttwu_pending();
1018 
1019 	raw_spin_lock(&p->pi_lock);
1020 	raw_spin_lock(&rq->lock);
1021 	/*
1022 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1023 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1024 	 * we're holding p->pi_lock.
1025 	 */
1026 	if (task_rq(p) == rq) {
1027 		if (task_on_rq_queued(p))
1028 			rq = __migrate_task(rq, p, arg->dest_cpu);
1029 		else
1030 			p->wake_cpu = arg->dest_cpu;
1031 	}
1032 	raw_spin_unlock(&rq->lock);
1033 	raw_spin_unlock(&p->pi_lock);
1034 
1035 	local_irq_enable();
1036 	return 0;
1037 }
1038 
1039 /*
1040  * sched_class::set_cpus_allowed must do the below, but is not required to
1041  * actually call this function.
1042  */
1043 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1044 {
1045 	cpumask_copy(&p->cpus_allowed, new_mask);
1046 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1047 }
1048 
1049 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1050 {
1051 	struct rq *rq = task_rq(p);
1052 	bool queued, running;
1053 
1054 	lockdep_assert_held(&p->pi_lock);
1055 
1056 	queued = task_on_rq_queued(p);
1057 	running = task_current(rq, p);
1058 
1059 	if (queued) {
1060 		/*
1061 		 * Because __kthread_bind() calls this on blocked tasks without
1062 		 * holding rq->lock.
1063 		 */
1064 		lockdep_assert_held(&rq->lock);
1065 		dequeue_task(rq, p, DEQUEUE_SAVE);
1066 	}
1067 	if (running)
1068 		put_prev_task(rq, p);
1069 
1070 	p->sched_class->set_cpus_allowed(p, new_mask);
1071 
1072 	if (queued)
1073 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1074 	if (running)
1075 		set_curr_task(rq, p);
1076 }
1077 
1078 /*
1079  * Change a given task's CPU affinity. Migrate the thread to a
1080  * proper CPU and schedule it away if the CPU it's executing on
1081  * is removed from the allowed bitmask.
1082  *
1083  * NOTE: the caller must have a valid reference to the task, the
1084  * task must not exit() & deallocate itself prematurely. The
1085  * call is not atomic; no spinlocks may be held.
1086  */
1087 static int __set_cpus_allowed_ptr(struct task_struct *p,
1088 				  const struct cpumask *new_mask, bool check)
1089 {
1090 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1091 	unsigned int dest_cpu;
1092 	struct rq_flags rf;
1093 	struct rq *rq;
1094 	int ret = 0;
1095 
1096 	rq = task_rq_lock(p, &rf);
1097 	update_rq_clock(rq);
1098 
1099 	if (p->flags & PF_KTHREAD) {
1100 		/*
1101 		 * Kernel threads are allowed on online && !active CPUs
1102 		 */
1103 		cpu_valid_mask = cpu_online_mask;
1104 	}
1105 
1106 	/*
1107 	 * Must re-check here, to close a race against __kthread_bind(),
1108 	 * sched_setaffinity() is not guaranteed to observe the flag.
1109 	 */
1110 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1111 		ret = -EINVAL;
1112 		goto out;
1113 	}
1114 
1115 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1116 		goto out;
1117 
1118 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1119 		ret = -EINVAL;
1120 		goto out;
1121 	}
1122 
1123 	do_set_cpus_allowed(p, new_mask);
1124 
1125 	if (p->flags & PF_KTHREAD) {
1126 		/*
1127 		 * For kernel threads that do indeed end up on online &&
1128 		 * !active we want to ensure they are strict per-CPU threads.
1129 		 */
1130 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1131 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1132 			p->nr_cpus_allowed != 1);
1133 	}
1134 
1135 	/* Can the task run on the task's current CPU? If so, we're done */
1136 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1137 		goto out;
1138 
1139 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1140 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1141 		struct migration_arg arg = { p, dest_cpu };
1142 		/* Need help from migration thread: drop lock and wait. */
1143 		task_rq_unlock(rq, p, &rf);
1144 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1145 		tlb_migrate_finish(p->mm);
1146 		return 0;
1147 	} else if (task_on_rq_queued(p)) {
1148 		/*
1149 		 * OK, since we're going to drop the lock immediately
1150 		 * afterwards anyway.
1151 		 */
1152 		rq_unpin_lock(rq, &rf);
1153 		rq = move_queued_task(rq, p, dest_cpu);
1154 		rq_repin_lock(rq, &rf);
1155 	}
1156 out:
1157 	task_rq_unlock(rq, p, &rf);
1158 
1159 	return ret;
1160 }
1161 
1162 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1163 {
1164 	return __set_cpus_allowed_ptr(p, new_mask, false);
1165 }
1166 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1167 
1168 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1169 {
1170 #ifdef CONFIG_SCHED_DEBUG
1171 	/*
1172 	 * We should never call set_task_cpu() on a blocked task,
1173 	 * ttwu() will sort out the placement.
1174 	 */
1175 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1176 			!p->on_rq);
1177 
1178 	/*
1179 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1180 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1181 	 * time relying on p->on_rq.
1182 	 */
1183 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1184 		     p->sched_class == &fair_sched_class &&
1185 		     (p->on_rq && !task_on_rq_migrating(p)));
1186 
1187 #ifdef CONFIG_LOCKDEP
1188 	/*
1189 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1190 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1191 	 *
1192 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1193 	 * see task_group().
1194 	 *
1195 	 * Furthermore, all task_rq users should acquire both locks, see
1196 	 * task_rq_lock().
1197 	 */
1198 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1199 				      lockdep_is_held(&task_rq(p)->lock)));
1200 #endif
1201 #endif
1202 
1203 	trace_sched_migrate_task(p, new_cpu);
1204 
1205 	if (task_cpu(p) != new_cpu) {
1206 		if (p->sched_class->migrate_task_rq)
1207 			p->sched_class->migrate_task_rq(p);
1208 		p->se.nr_migrations++;
1209 		perf_event_task_migrate(p);
1210 	}
1211 
1212 	__set_task_cpu(p, new_cpu);
1213 }
1214 
1215 static void __migrate_swap_task(struct task_struct *p, int cpu)
1216 {
1217 	if (task_on_rq_queued(p)) {
1218 		struct rq *src_rq, *dst_rq;
1219 
1220 		src_rq = task_rq(p);
1221 		dst_rq = cpu_rq(cpu);
1222 
1223 		p->on_rq = TASK_ON_RQ_MIGRATING;
1224 		deactivate_task(src_rq, p, 0);
1225 		set_task_cpu(p, cpu);
1226 		activate_task(dst_rq, p, 0);
1227 		p->on_rq = TASK_ON_RQ_QUEUED;
1228 		check_preempt_curr(dst_rq, p, 0);
1229 	} else {
1230 		/*
1231 		 * Task isn't running anymore; make it appear like we migrated
1232 		 * it before it went to sleep. This means on wakeup we make the
1233 		 * previous CPU our target instead of where it really is.
1234 		 */
1235 		p->wake_cpu = cpu;
1236 	}
1237 }
1238 
1239 struct migration_swap_arg {
1240 	struct task_struct *src_task, *dst_task;
1241 	int src_cpu, dst_cpu;
1242 };
1243 
1244 static int migrate_swap_stop(void *data)
1245 {
1246 	struct migration_swap_arg *arg = data;
1247 	struct rq *src_rq, *dst_rq;
1248 	int ret = -EAGAIN;
1249 
1250 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1251 		return -EAGAIN;
1252 
1253 	src_rq = cpu_rq(arg->src_cpu);
1254 	dst_rq = cpu_rq(arg->dst_cpu);
1255 
1256 	double_raw_lock(&arg->src_task->pi_lock,
1257 			&arg->dst_task->pi_lock);
1258 	double_rq_lock(src_rq, dst_rq);
1259 
1260 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1261 		goto unlock;
1262 
1263 	if (task_cpu(arg->src_task) != arg->src_cpu)
1264 		goto unlock;
1265 
1266 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1267 		goto unlock;
1268 
1269 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1270 		goto unlock;
1271 
1272 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1273 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1274 
1275 	ret = 0;
1276 
1277 unlock:
1278 	double_rq_unlock(src_rq, dst_rq);
1279 	raw_spin_unlock(&arg->dst_task->pi_lock);
1280 	raw_spin_unlock(&arg->src_task->pi_lock);
1281 
1282 	return ret;
1283 }
1284 
1285 /*
1286  * Cross migrate two tasks
1287  */
1288 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1289 {
1290 	struct migration_swap_arg arg;
1291 	int ret = -EINVAL;
1292 
1293 	arg = (struct migration_swap_arg){
1294 		.src_task = cur,
1295 		.src_cpu = task_cpu(cur),
1296 		.dst_task = p,
1297 		.dst_cpu = task_cpu(p),
1298 	};
1299 
1300 	if (arg.src_cpu == arg.dst_cpu)
1301 		goto out;
1302 
1303 	/*
1304 	 * These three tests are all lockless; this is OK since all of them
1305 	 * will be re-checked with proper locks held further down the line.
1306 	 */
1307 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1308 		goto out;
1309 
1310 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1311 		goto out;
1312 
1313 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1314 		goto out;
1315 
1316 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1317 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1318 
1319 out:
1320 	return ret;
1321 }
1322 
1323 /*
1324  * wait_task_inactive - wait for a thread to unschedule.
1325  *
1326  * If @match_state is nonzero, it's the @p->state value just checked and
1327  * not expected to change.  If it changes, i.e. @p might have woken up,
1328  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1329  * we return a positive number (its total switch count).  If a second call
1330  * a short while later returns the same number, the caller can be sure that
1331  * @p has remained unscheduled the whole time.
1332  *
1333  * The caller must ensure that the task *will* unschedule sometime soon,
1334  * else this function might spin for a *long* time. This function can't
1335  * be called with interrupts off, or it may introduce deadlock with
1336  * smp_call_function() if an IPI is sent by the same process we are
1337  * waiting to become inactive.
1338  */
1339 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1340 {
1341 	int running, queued;
1342 	struct rq_flags rf;
1343 	unsigned long ncsw;
1344 	struct rq *rq;
1345 
1346 	for (;;) {
1347 		/*
1348 		 * We do the initial early heuristics without holding
1349 		 * any task-queue locks at all. We'll only try to get
1350 		 * the runqueue lock when things look like they will
1351 		 * work out!
1352 		 */
1353 		rq = task_rq(p);
1354 
1355 		/*
1356 		 * If the task is actively running on another CPU
1357 		 * still, just relax and busy-wait without holding
1358 		 * any locks.
1359 		 *
1360 		 * NOTE! Since we don't hold any locks, it's not
1361 		 * even sure that "rq" stays as the right runqueue!
1362 		 * But we don't care, since "task_running()" will
1363 		 * return false if the runqueue has changed and p
1364 		 * is actually now running somewhere else!
1365 		 */
1366 		while (task_running(rq, p)) {
1367 			if (match_state && unlikely(p->state != match_state))
1368 				return 0;
1369 			cpu_relax();
1370 		}
1371 
1372 		/*
1373 		 * Ok, time to look more closely! We need the rq
1374 		 * lock now, to be *sure*. If we're wrong, we'll
1375 		 * just go back and repeat.
1376 		 */
1377 		rq = task_rq_lock(p, &rf);
1378 		trace_sched_wait_task(p);
1379 		running = task_running(rq, p);
1380 		queued = task_on_rq_queued(p);
1381 		ncsw = 0;
1382 		if (!match_state || p->state == match_state)
1383 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1384 		task_rq_unlock(rq, p, &rf);
1385 
1386 		/*
1387 		 * If it changed from the expected state, bail out now.
1388 		 */
1389 		if (unlikely(!ncsw))
1390 			break;
1391 
1392 		/*
1393 		 * Was it really running after all now that we
1394 		 * checked with the proper locks actually held?
1395 		 *
1396 		 * Oops. Go back and try again..
1397 		 */
1398 		if (unlikely(running)) {
1399 			cpu_relax();
1400 			continue;
1401 		}
1402 
1403 		/*
1404 		 * It's not enough that it's not actively running,
1405 		 * it must be off the runqueue _entirely_, and not
1406 		 * preempted!
1407 		 *
1408 		 * So if it was still runnable (but just not actively
1409 		 * running right now), it's preempted, and we should
1410 		 * yield - it could be a while.
1411 		 */
1412 		if (unlikely(queued)) {
1413 			ktime_t to = NSEC_PER_SEC / HZ;
1414 
1415 			set_current_state(TASK_UNINTERRUPTIBLE);
1416 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1417 			continue;
1418 		}
1419 
1420 		/*
1421 		 * Ahh, all good. It wasn't running, and it wasn't
1422 		 * runnable, which means that it will never become
1423 		 * running in the future either. We're all done!
1424 		 */
1425 		break;
1426 	}
1427 
1428 	return ncsw;
1429 }
1430 
1431 /***
1432  * kick_process - kick a running thread to enter/exit the kernel
1433  * @p: the to-be-kicked thread
1434  *
1435  * Cause a process which is running on another CPU to enter
1436  * kernel-mode, without any delay. (to get signals handled.)
1437  *
1438  * NOTE: this function doesn't have to take the runqueue lock,
1439  * because all it wants to ensure is that the remote task enters
1440  * the kernel. If the IPI races and the task has been migrated
1441  * to another CPU then no harm is done and the purpose has been
1442  * achieved as well.
1443  */
1444 void kick_process(struct task_struct *p)
1445 {
1446 	int cpu;
1447 
1448 	preempt_disable();
1449 	cpu = task_cpu(p);
1450 	if ((cpu != smp_processor_id()) && task_curr(p))
1451 		smp_send_reschedule(cpu);
1452 	preempt_enable();
1453 }
1454 EXPORT_SYMBOL_GPL(kick_process);
1455 
1456 /*
1457  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1458  *
1459  * A few notes on cpu_active vs cpu_online:
1460  *
1461  *  - cpu_active must be a subset of cpu_online
1462  *
1463  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1464  *    see __set_cpus_allowed_ptr(). At this point the newly online
1465  *    CPU isn't yet part of the sched domains, and balancing will not
1466  *    see it.
1467  *
1468  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1469  *    avoid the load balancer to place new tasks on the to be removed
1470  *    CPU. Existing tasks will remain running there and will be taken
1471  *    off.
1472  *
1473  * This means that fallback selection must not select !active CPUs.
1474  * And can assume that any active CPU must be online. Conversely
1475  * select_task_rq() below may allow selection of !active CPUs in order
1476  * to satisfy the above rules.
1477  */
1478 static int select_fallback_rq(int cpu, struct task_struct *p)
1479 {
1480 	int nid = cpu_to_node(cpu);
1481 	const struct cpumask *nodemask = NULL;
1482 	enum { cpuset, possible, fail } state = cpuset;
1483 	int dest_cpu;
1484 
1485 	/*
1486 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1487 	 * will return -1. There is no CPU on the node, and we should
1488 	 * select the CPU on the other node.
1489 	 */
1490 	if (nid != -1) {
1491 		nodemask = cpumask_of_node(nid);
1492 
1493 		/* Look for allowed, online CPU in same node. */
1494 		for_each_cpu(dest_cpu, nodemask) {
1495 			if (!cpu_active(dest_cpu))
1496 				continue;
1497 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1498 				return dest_cpu;
1499 		}
1500 	}
1501 
1502 	for (;;) {
1503 		/* Any allowed, online CPU? */
1504 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1505 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1506 				continue;
1507 			if (!cpu_online(dest_cpu))
1508 				continue;
1509 			goto out;
1510 		}
1511 
1512 		/* No more Mr. Nice Guy. */
1513 		switch (state) {
1514 		case cpuset:
1515 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1516 				cpuset_cpus_allowed_fallback(p);
1517 				state = possible;
1518 				break;
1519 			}
1520 			/* Fall-through */
1521 		case possible:
1522 			do_set_cpus_allowed(p, cpu_possible_mask);
1523 			state = fail;
1524 			break;
1525 
1526 		case fail:
1527 			BUG();
1528 			break;
1529 		}
1530 	}
1531 
1532 out:
1533 	if (state != cpuset) {
1534 		/*
1535 		 * Don't tell them about moving exiting tasks or
1536 		 * kernel threads (both mm NULL), since they never
1537 		 * leave kernel.
1538 		 */
1539 		if (p->mm && printk_ratelimit()) {
1540 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1541 					task_pid_nr(p), p->comm, cpu);
1542 		}
1543 	}
1544 
1545 	return dest_cpu;
1546 }
1547 
1548 /*
1549  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1550  */
1551 static inline
1552 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1553 {
1554 	lockdep_assert_held(&p->pi_lock);
1555 
1556 	if (p->nr_cpus_allowed > 1)
1557 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1558 	else
1559 		cpu = cpumask_any(&p->cpus_allowed);
1560 
1561 	/*
1562 	 * In order not to call set_task_cpu() on a blocking task we need
1563 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1564 	 * CPU.
1565 	 *
1566 	 * Since this is common to all placement strategies, this lives here.
1567 	 *
1568 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1569 	 *   not worry about this generic constraint ]
1570 	 */
1571 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1572 		     !cpu_online(cpu)))
1573 		cpu = select_fallback_rq(task_cpu(p), p);
1574 
1575 	return cpu;
1576 }
1577 
1578 static void update_avg(u64 *avg, u64 sample)
1579 {
1580 	s64 diff = sample - *avg;
1581 	*avg += diff >> 3;
1582 }
1583 
1584 #else
1585 
1586 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1587 					 const struct cpumask *new_mask, bool check)
1588 {
1589 	return set_cpus_allowed_ptr(p, new_mask);
1590 }
1591 
1592 #endif /* CONFIG_SMP */
1593 
1594 static void
1595 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1596 {
1597 	struct rq *rq;
1598 
1599 	if (!schedstat_enabled())
1600 		return;
1601 
1602 	rq = this_rq();
1603 
1604 #ifdef CONFIG_SMP
1605 	if (cpu == rq->cpu) {
1606 		schedstat_inc(rq->ttwu_local);
1607 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1608 	} else {
1609 		struct sched_domain *sd;
1610 
1611 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1612 		rcu_read_lock();
1613 		for_each_domain(rq->cpu, sd) {
1614 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1615 				schedstat_inc(sd->ttwu_wake_remote);
1616 				break;
1617 			}
1618 		}
1619 		rcu_read_unlock();
1620 	}
1621 
1622 	if (wake_flags & WF_MIGRATED)
1623 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1624 #endif /* CONFIG_SMP */
1625 
1626 	schedstat_inc(rq->ttwu_count);
1627 	schedstat_inc(p->se.statistics.nr_wakeups);
1628 
1629 	if (wake_flags & WF_SYNC)
1630 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1631 }
1632 
1633 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1634 {
1635 	activate_task(rq, p, en_flags);
1636 	p->on_rq = TASK_ON_RQ_QUEUED;
1637 
1638 	/* If a worker is waking up, notify the workqueue: */
1639 	if (p->flags & PF_WQ_WORKER)
1640 		wq_worker_waking_up(p, cpu_of(rq));
1641 }
1642 
1643 /*
1644  * Mark the task runnable and perform wakeup-preemption.
1645  */
1646 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1647 			   struct rq_flags *rf)
1648 {
1649 	check_preempt_curr(rq, p, wake_flags);
1650 	p->state = TASK_RUNNING;
1651 	trace_sched_wakeup(p);
1652 
1653 #ifdef CONFIG_SMP
1654 	if (p->sched_class->task_woken) {
1655 		/*
1656 		 * Our task @p is fully woken up and running; so its safe to
1657 		 * drop the rq->lock, hereafter rq is only used for statistics.
1658 		 */
1659 		rq_unpin_lock(rq, rf);
1660 		p->sched_class->task_woken(rq, p);
1661 		rq_repin_lock(rq, rf);
1662 	}
1663 
1664 	if (rq->idle_stamp) {
1665 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1666 		u64 max = 2*rq->max_idle_balance_cost;
1667 
1668 		update_avg(&rq->avg_idle, delta);
1669 
1670 		if (rq->avg_idle > max)
1671 			rq->avg_idle = max;
1672 
1673 		rq->idle_stamp = 0;
1674 	}
1675 #endif
1676 }
1677 
1678 static void
1679 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1680 		 struct rq_flags *rf)
1681 {
1682 	int en_flags = ENQUEUE_WAKEUP;
1683 
1684 	lockdep_assert_held(&rq->lock);
1685 
1686 #ifdef CONFIG_SMP
1687 	if (p->sched_contributes_to_load)
1688 		rq->nr_uninterruptible--;
1689 
1690 	if (wake_flags & WF_MIGRATED)
1691 		en_flags |= ENQUEUE_MIGRATED;
1692 #endif
1693 
1694 	ttwu_activate(rq, p, en_flags);
1695 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1696 }
1697 
1698 /*
1699  * Called in case the task @p isn't fully descheduled from its runqueue,
1700  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1701  * since all we need to do is flip p->state to TASK_RUNNING, since
1702  * the task is still ->on_rq.
1703  */
1704 static int ttwu_remote(struct task_struct *p, int wake_flags)
1705 {
1706 	struct rq_flags rf;
1707 	struct rq *rq;
1708 	int ret = 0;
1709 
1710 	rq = __task_rq_lock(p, &rf);
1711 	if (task_on_rq_queued(p)) {
1712 		/* check_preempt_curr() may use rq clock */
1713 		update_rq_clock(rq);
1714 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1715 		ret = 1;
1716 	}
1717 	__task_rq_unlock(rq, &rf);
1718 
1719 	return ret;
1720 }
1721 
1722 #ifdef CONFIG_SMP
1723 void sched_ttwu_pending(void)
1724 {
1725 	struct rq *rq = this_rq();
1726 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1727 	struct task_struct *p;
1728 	unsigned long flags;
1729 	struct rq_flags rf;
1730 
1731 	if (!llist)
1732 		return;
1733 
1734 	raw_spin_lock_irqsave(&rq->lock, flags);
1735 	rq_pin_lock(rq, &rf);
1736 
1737 	while (llist) {
1738 		int wake_flags = 0;
1739 
1740 		p = llist_entry(llist, struct task_struct, wake_entry);
1741 		llist = llist_next(llist);
1742 
1743 		if (p->sched_remote_wakeup)
1744 			wake_flags = WF_MIGRATED;
1745 
1746 		ttwu_do_activate(rq, p, wake_flags, &rf);
1747 	}
1748 
1749 	rq_unpin_lock(rq, &rf);
1750 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1751 }
1752 
1753 void scheduler_ipi(void)
1754 {
1755 	/*
1756 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1757 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1758 	 * this IPI.
1759 	 */
1760 	preempt_fold_need_resched();
1761 
1762 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1763 		return;
1764 
1765 	/*
1766 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1767 	 * traditionally all their work was done from the interrupt return
1768 	 * path. Now that we actually do some work, we need to make sure
1769 	 * we do call them.
1770 	 *
1771 	 * Some archs already do call them, luckily irq_enter/exit nest
1772 	 * properly.
1773 	 *
1774 	 * Arguably we should visit all archs and update all handlers,
1775 	 * however a fair share of IPIs are still resched only so this would
1776 	 * somewhat pessimize the simple resched case.
1777 	 */
1778 	irq_enter();
1779 	sched_ttwu_pending();
1780 
1781 	/*
1782 	 * Check if someone kicked us for doing the nohz idle load balance.
1783 	 */
1784 	if (unlikely(got_nohz_idle_kick())) {
1785 		this_rq()->idle_balance = 1;
1786 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1787 	}
1788 	irq_exit();
1789 }
1790 
1791 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1792 {
1793 	struct rq *rq = cpu_rq(cpu);
1794 
1795 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1796 
1797 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1798 		if (!set_nr_if_polling(rq->idle))
1799 			smp_send_reschedule(cpu);
1800 		else
1801 			trace_sched_wake_idle_without_ipi(cpu);
1802 	}
1803 }
1804 
1805 void wake_up_if_idle(int cpu)
1806 {
1807 	struct rq *rq = cpu_rq(cpu);
1808 	unsigned long flags;
1809 
1810 	rcu_read_lock();
1811 
1812 	if (!is_idle_task(rcu_dereference(rq->curr)))
1813 		goto out;
1814 
1815 	if (set_nr_if_polling(rq->idle)) {
1816 		trace_sched_wake_idle_without_ipi(cpu);
1817 	} else {
1818 		raw_spin_lock_irqsave(&rq->lock, flags);
1819 		if (is_idle_task(rq->curr))
1820 			smp_send_reschedule(cpu);
1821 		/* Else CPU is not idle, do nothing here: */
1822 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1823 	}
1824 
1825 out:
1826 	rcu_read_unlock();
1827 }
1828 
1829 bool cpus_share_cache(int this_cpu, int that_cpu)
1830 {
1831 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1832 }
1833 #endif /* CONFIG_SMP */
1834 
1835 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1836 {
1837 	struct rq *rq = cpu_rq(cpu);
1838 	struct rq_flags rf;
1839 
1840 #if defined(CONFIG_SMP)
1841 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1842 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1843 		ttwu_queue_remote(p, cpu, wake_flags);
1844 		return;
1845 	}
1846 #endif
1847 
1848 	raw_spin_lock(&rq->lock);
1849 	rq_pin_lock(rq, &rf);
1850 	ttwu_do_activate(rq, p, wake_flags, &rf);
1851 	rq_unpin_lock(rq, &rf);
1852 	raw_spin_unlock(&rq->lock);
1853 }
1854 
1855 /*
1856  * Notes on Program-Order guarantees on SMP systems.
1857  *
1858  *  MIGRATION
1859  *
1860  * The basic program-order guarantee on SMP systems is that when a task [t]
1861  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1862  * execution on its new CPU [c1].
1863  *
1864  * For migration (of runnable tasks) this is provided by the following means:
1865  *
1866  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1867  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1868  *     rq(c1)->lock (if not at the same time, then in that order).
1869  *  C) LOCK of the rq(c1)->lock scheduling in task
1870  *
1871  * Transitivity guarantees that B happens after A and C after B.
1872  * Note: we only require RCpc transitivity.
1873  * Note: the CPU doing B need not be c0 or c1
1874  *
1875  * Example:
1876  *
1877  *   CPU0            CPU1            CPU2
1878  *
1879  *   LOCK rq(0)->lock
1880  *   sched-out X
1881  *   sched-in Y
1882  *   UNLOCK rq(0)->lock
1883  *
1884  *                                   LOCK rq(0)->lock // orders against CPU0
1885  *                                   dequeue X
1886  *                                   UNLOCK rq(0)->lock
1887  *
1888  *                                   LOCK rq(1)->lock
1889  *                                   enqueue X
1890  *                                   UNLOCK rq(1)->lock
1891  *
1892  *                   LOCK rq(1)->lock // orders against CPU2
1893  *                   sched-out Z
1894  *                   sched-in X
1895  *                   UNLOCK rq(1)->lock
1896  *
1897  *
1898  *  BLOCKING -- aka. SLEEP + WAKEUP
1899  *
1900  * For blocking we (obviously) need to provide the same guarantee as for
1901  * migration. However the means are completely different as there is no lock
1902  * chain to provide order. Instead we do:
1903  *
1904  *   1) smp_store_release(X->on_cpu, 0)
1905  *   2) smp_cond_load_acquire(!X->on_cpu)
1906  *
1907  * Example:
1908  *
1909  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1910  *
1911  *   LOCK rq(0)->lock LOCK X->pi_lock
1912  *   dequeue X
1913  *   sched-out X
1914  *   smp_store_release(X->on_cpu, 0);
1915  *
1916  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1917  *                    X->state = WAKING
1918  *                    set_task_cpu(X,2)
1919  *
1920  *                    LOCK rq(2)->lock
1921  *                    enqueue X
1922  *                    X->state = RUNNING
1923  *                    UNLOCK rq(2)->lock
1924  *
1925  *                                          LOCK rq(2)->lock // orders against CPU1
1926  *                                          sched-out Z
1927  *                                          sched-in X
1928  *                                          UNLOCK rq(2)->lock
1929  *
1930  *                    UNLOCK X->pi_lock
1931  *   UNLOCK rq(0)->lock
1932  *
1933  *
1934  * However; for wakeups there is a second guarantee we must provide, namely we
1935  * must observe the state that lead to our wakeup. That is, not only must our
1936  * task observe its own prior state, it must also observe the stores prior to
1937  * its wakeup.
1938  *
1939  * This means that any means of doing remote wakeups must order the CPU doing
1940  * the wakeup against the CPU the task is going to end up running on. This,
1941  * however, is already required for the regular Program-Order guarantee above,
1942  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1943  *
1944  */
1945 
1946 /**
1947  * try_to_wake_up - wake up a thread
1948  * @p: the thread to be awakened
1949  * @state: the mask of task states that can be woken
1950  * @wake_flags: wake modifier flags (WF_*)
1951  *
1952  * If (@state & @p->state) @p->state = TASK_RUNNING.
1953  *
1954  * If the task was not queued/runnable, also place it back on a runqueue.
1955  *
1956  * Atomic against schedule() which would dequeue a task, also see
1957  * set_current_state().
1958  *
1959  * Return: %true if @p->state changes (an actual wakeup was done),
1960  *	   %false otherwise.
1961  */
1962 static int
1963 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1964 {
1965 	unsigned long flags;
1966 	int cpu, success = 0;
1967 
1968 	/*
1969 	 * If we are going to wake up a thread waiting for CONDITION we
1970 	 * need to ensure that CONDITION=1 done by the caller can not be
1971 	 * reordered with p->state check below. This pairs with mb() in
1972 	 * set_current_state() the waiting thread does.
1973 	 */
1974 	smp_mb__before_spinlock();
1975 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1976 	if (!(p->state & state))
1977 		goto out;
1978 
1979 	trace_sched_waking(p);
1980 
1981 	/* We're going to change ->state: */
1982 	success = 1;
1983 	cpu = task_cpu(p);
1984 
1985 	/*
1986 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1987 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1988 	 * in smp_cond_load_acquire() below.
1989 	 *
1990 	 * sched_ttwu_pending()                 try_to_wake_up()
1991 	 *   [S] p->on_rq = 1;                  [L] P->state
1992 	 *       UNLOCK rq->lock  -----.
1993 	 *                              \
1994 	 *				 +---   RMB
1995 	 * schedule()                   /
1996 	 *       LOCK rq->lock    -----'
1997 	 *       UNLOCK rq->lock
1998 	 *
1999 	 * [task p]
2000 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2001 	 *
2002 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2003 	 * last wakeup of our task and the schedule that got our task
2004 	 * current.
2005 	 */
2006 	smp_rmb();
2007 	if (p->on_rq && ttwu_remote(p, wake_flags))
2008 		goto stat;
2009 
2010 #ifdef CONFIG_SMP
2011 	/*
2012 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2013 	 * possible to, falsely, observe p->on_cpu == 0.
2014 	 *
2015 	 * One must be running (->on_cpu == 1) in order to remove oneself
2016 	 * from the runqueue.
2017 	 *
2018 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2019 	 *      UNLOCK rq->lock
2020 	 *			RMB
2021 	 *      LOCK   rq->lock
2022 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2023 	 *
2024 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2025 	 * from the consecutive calls to schedule(); the first switching to our
2026 	 * task, the second putting it to sleep.
2027 	 */
2028 	smp_rmb();
2029 
2030 	/*
2031 	 * If the owning (remote) CPU is still in the middle of schedule() with
2032 	 * this task as prev, wait until its done referencing the task.
2033 	 *
2034 	 * Pairs with the smp_store_release() in finish_lock_switch().
2035 	 *
2036 	 * This ensures that tasks getting woken will be fully ordered against
2037 	 * their previous state and preserve Program Order.
2038 	 */
2039 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2040 
2041 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2042 	p->state = TASK_WAKING;
2043 
2044 	if (p->in_iowait) {
2045 		delayacct_blkio_end();
2046 		atomic_dec(&task_rq(p)->nr_iowait);
2047 	}
2048 
2049 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2050 	if (task_cpu(p) != cpu) {
2051 		wake_flags |= WF_MIGRATED;
2052 		set_task_cpu(p, cpu);
2053 	}
2054 
2055 #else /* CONFIG_SMP */
2056 
2057 	if (p->in_iowait) {
2058 		delayacct_blkio_end();
2059 		atomic_dec(&task_rq(p)->nr_iowait);
2060 	}
2061 
2062 #endif /* CONFIG_SMP */
2063 
2064 	ttwu_queue(p, cpu, wake_flags);
2065 stat:
2066 	ttwu_stat(p, cpu, wake_flags);
2067 out:
2068 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2069 
2070 	return success;
2071 }
2072 
2073 /**
2074  * try_to_wake_up_local - try to wake up a local task with rq lock held
2075  * @p: the thread to be awakened
2076  * @cookie: context's cookie for pinning
2077  *
2078  * Put @p on the run-queue if it's not already there. The caller must
2079  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2080  * the current task.
2081  */
2082 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2083 {
2084 	struct rq *rq = task_rq(p);
2085 
2086 	if (WARN_ON_ONCE(rq != this_rq()) ||
2087 	    WARN_ON_ONCE(p == current))
2088 		return;
2089 
2090 	lockdep_assert_held(&rq->lock);
2091 
2092 	if (!raw_spin_trylock(&p->pi_lock)) {
2093 		/*
2094 		 * This is OK, because current is on_cpu, which avoids it being
2095 		 * picked for load-balance and preemption/IRQs are still
2096 		 * disabled avoiding further scheduler activity on it and we've
2097 		 * not yet picked a replacement task.
2098 		 */
2099 		rq_unpin_lock(rq, rf);
2100 		raw_spin_unlock(&rq->lock);
2101 		raw_spin_lock(&p->pi_lock);
2102 		raw_spin_lock(&rq->lock);
2103 		rq_repin_lock(rq, rf);
2104 	}
2105 
2106 	if (!(p->state & TASK_NORMAL))
2107 		goto out;
2108 
2109 	trace_sched_waking(p);
2110 
2111 	if (!task_on_rq_queued(p)) {
2112 		if (p->in_iowait) {
2113 			delayacct_blkio_end();
2114 			atomic_dec(&rq->nr_iowait);
2115 		}
2116 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2117 	}
2118 
2119 	ttwu_do_wakeup(rq, p, 0, rf);
2120 	ttwu_stat(p, smp_processor_id(), 0);
2121 out:
2122 	raw_spin_unlock(&p->pi_lock);
2123 }
2124 
2125 /**
2126  * wake_up_process - Wake up a specific process
2127  * @p: The process to be woken up.
2128  *
2129  * Attempt to wake up the nominated process and move it to the set of runnable
2130  * processes.
2131  *
2132  * Return: 1 if the process was woken up, 0 if it was already running.
2133  *
2134  * It may be assumed that this function implies a write memory barrier before
2135  * changing the task state if and only if any tasks are woken up.
2136  */
2137 int wake_up_process(struct task_struct *p)
2138 {
2139 	return try_to_wake_up(p, TASK_NORMAL, 0);
2140 }
2141 EXPORT_SYMBOL(wake_up_process);
2142 
2143 int wake_up_state(struct task_struct *p, unsigned int state)
2144 {
2145 	return try_to_wake_up(p, state, 0);
2146 }
2147 
2148 /*
2149  * This function clears the sched_dl_entity static params.
2150  */
2151 void __dl_clear_params(struct task_struct *p)
2152 {
2153 	struct sched_dl_entity *dl_se = &p->dl;
2154 
2155 	dl_se->dl_runtime = 0;
2156 	dl_se->dl_deadline = 0;
2157 	dl_se->dl_period = 0;
2158 	dl_se->flags = 0;
2159 	dl_se->dl_bw = 0;
2160 
2161 	dl_se->dl_throttled = 0;
2162 	dl_se->dl_yielded = 0;
2163 }
2164 
2165 /*
2166  * Perform scheduler related setup for a newly forked process p.
2167  * p is forked by current.
2168  *
2169  * __sched_fork() is basic setup used by init_idle() too:
2170  */
2171 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2172 {
2173 	p->on_rq			= 0;
2174 
2175 	p->se.on_rq			= 0;
2176 	p->se.exec_start		= 0;
2177 	p->se.sum_exec_runtime		= 0;
2178 	p->se.prev_sum_exec_runtime	= 0;
2179 	p->se.nr_migrations		= 0;
2180 	p->se.vruntime			= 0;
2181 	INIT_LIST_HEAD(&p->se.group_node);
2182 
2183 #ifdef CONFIG_FAIR_GROUP_SCHED
2184 	p->se.cfs_rq			= NULL;
2185 #endif
2186 
2187 #ifdef CONFIG_SCHEDSTATS
2188 	/* Even if schedstat is disabled, there should not be garbage */
2189 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2190 #endif
2191 
2192 	RB_CLEAR_NODE(&p->dl.rb_node);
2193 	init_dl_task_timer(&p->dl);
2194 	__dl_clear_params(p);
2195 
2196 	INIT_LIST_HEAD(&p->rt.run_list);
2197 	p->rt.timeout		= 0;
2198 	p->rt.time_slice	= sched_rr_timeslice;
2199 	p->rt.on_rq		= 0;
2200 	p->rt.on_list		= 0;
2201 
2202 #ifdef CONFIG_PREEMPT_NOTIFIERS
2203 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2204 #endif
2205 
2206 #ifdef CONFIG_NUMA_BALANCING
2207 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2208 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2209 		p->mm->numa_scan_seq = 0;
2210 	}
2211 
2212 	if (clone_flags & CLONE_VM)
2213 		p->numa_preferred_nid = current->numa_preferred_nid;
2214 	else
2215 		p->numa_preferred_nid = -1;
2216 
2217 	p->node_stamp = 0ULL;
2218 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2219 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2220 	p->numa_work.next = &p->numa_work;
2221 	p->numa_faults = NULL;
2222 	p->last_task_numa_placement = 0;
2223 	p->last_sum_exec_runtime = 0;
2224 
2225 	p->numa_group = NULL;
2226 #endif /* CONFIG_NUMA_BALANCING */
2227 }
2228 
2229 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2230 
2231 #ifdef CONFIG_NUMA_BALANCING
2232 
2233 void set_numabalancing_state(bool enabled)
2234 {
2235 	if (enabled)
2236 		static_branch_enable(&sched_numa_balancing);
2237 	else
2238 		static_branch_disable(&sched_numa_balancing);
2239 }
2240 
2241 #ifdef CONFIG_PROC_SYSCTL
2242 int sysctl_numa_balancing(struct ctl_table *table, int write,
2243 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2244 {
2245 	struct ctl_table t;
2246 	int err;
2247 	int state = static_branch_likely(&sched_numa_balancing);
2248 
2249 	if (write && !capable(CAP_SYS_ADMIN))
2250 		return -EPERM;
2251 
2252 	t = *table;
2253 	t.data = &state;
2254 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2255 	if (err < 0)
2256 		return err;
2257 	if (write)
2258 		set_numabalancing_state(state);
2259 	return err;
2260 }
2261 #endif
2262 #endif
2263 
2264 #ifdef CONFIG_SCHEDSTATS
2265 
2266 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2267 static bool __initdata __sched_schedstats = false;
2268 
2269 static void set_schedstats(bool enabled)
2270 {
2271 	if (enabled)
2272 		static_branch_enable(&sched_schedstats);
2273 	else
2274 		static_branch_disable(&sched_schedstats);
2275 }
2276 
2277 void force_schedstat_enabled(void)
2278 {
2279 	if (!schedstat_enabled()) {
2280 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2281 		static_branch_enable(&sched_schedstats);
2282 	}
2283 }
2284 
2285 static int __init setup_schedstats(char *str)
2286 {
2287 	int ret = 0;
2288 	if (!str)
2289 		goto out;
2290 
2291 	/*
2292 	 * This code is called before jump labels have been set up, so we can't
2293 	 * change the static branch directly just yet.  Instead set a temporary
2294 	 * variable so init_schedstats() can do it later.
2295 	 */
2296 	if (!strcmp(str, "enable")) {
2297 		__sched_schedstats = true;
2298 		ret = 1;
2299 	} else if (!strcmp(str, "disable")) {
2300 		__sched_schedstats = false;
2301 		ret = 1;
2302 	}
2303 out:
2304 	if (!ret)
2305 		pr_warn("Unable to parse schedstats=\n");
2306 
2307 	return ret;
2308 }
2309 __setup("schedstats=", setup_schedstats);
2310 
2311 static void __init init_schedstats(void)
2312 {
2313 	set_schedstats(__sched_schedstats);
2314 }
2315 
2316 #ifdef CONFIG_PROC_SYSCTL
2317 int sysctl_schedstats(struct ctl_table *table, int write,
2318 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2319 {
2320 	struct ctl_table t;
2321 	int err;
2322 	int state = static_branch_likely(&sched_schedstats);
2323 
2324 	if (write && !capable(CAP_SYS_ADMIN))
2325 		return -EPERM;
2326 
2327 	t = *table;
2328 	t.data = &state;
2329 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2330 	if (err < 0)
2331 		return err;
2332 	if (write)
2333 		set_schedstats(state);
2334 	return err;
2335 }
2336 #endif /* CONFIG_PROC_SYSCTL */
2337 #else  /* !CONFIG_SCHEDSTATS */
2338 static inline void init_schedstats(void) {}
2339 #endif /* CONFIG_SCHEDSTATS */
2340 
2341 /*
2342  * fork()/clone()-time setup:
2343  */
2344 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2345 {
2346 	unsigned long flags;
2347 	int cpu = get_cpu();
2348 
2349 	__sched_fork(clone_flags, p);
2350 	/*
2351 	 * We mark the process as NEW here. This guarantees that
2352 	 * nobody will actually run it, and a signal or other external
2353 	 * event cannot wake it up and insert it on the runqueue either.
2354 	 */
2355 	p->state = TASK_NEW;
2356 
2357 	/*
2358 	 * Make sure we do not leak PI boosting priority to the child.
2359 	 */
2360 	p->prio = current->normal_prio;
2361 
2362 	/*
2363 	 * Revert to default priority/policy on fork if requested.
2364 	 */
2365 	if (unlikely(p->sched_reset_on_fork)) {
2366 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2367 			p->policy = SCHED_NORMAL;
2368 			p->static_prio = NICE_TO_PRIO(0);
2369 			p->rt_priority = 0;
2370 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2371 			p->static_prio = NICE_TO_PRIO(0);
2372 
2373 		p->prio = p->normal_prio = __normal_prio(p);
2374 		set_load_weight(p);
2375 
2376 		/*
2377 		 * We don't need the reset flag anymore after the fork. It has
2378 		 * fulfilled its duty:
2379 		 */
2380 		p->sched_reset_on_fork = 0;
2381 	}
2382 
2383 	if (dl_prio(p->prio)) {
2384 		put_cpu();
2385 		return -EAGAIN;
2386 	} else if (rt_prio(p->prio)) {
2387 		p->sched_class = &rt_sched_class;
2388 	} else {
2389 		p->sched_class = &fair_sched_class;
2390 	}
2391 
2392 	init_entity_runnable_average(&p->se);
2393 
2394 	/*
2395 	 * The child is not yet in the pid-hash so no cgroup attach races,
2396 	 * and the cgroup is pinned to this child due to cgroup_fork()
2397 	 * is ran before sched_fork().
2398 	 *
2399 	 * Silence PROVE_RCU.
2400 	 */
2401 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2402 	/*
2403 	 * We're setting the CPU for the first time, we don't migrate,
2404 	 * so use __set_task_cpu().
2405 	 */
2406 	__set_task_cpu(p, cpu);
2407 	if (p->sched_class->task_fork)
2408 		p->sched_class->task_fork(p);
2409 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2410 
2411 #ifdef CONFIG_SCHED_INFO
2412 	if (likely(sched_info_on()))
2413 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2414 #endif
2415 #if defined(CONFIG_SMP)
2416 	p->on_cpu = 0;
2417 #endif
2418 	init_task_preempt_count(p);
2419 #ifdef CONFIG_SMP
2420 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2421 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2422 #endif
2423 
2424 	put_cpu();
2425 	return 0;
2426 }
2427 
2428 unsigned long to_ratio(u64 period, u64 runtime)
2429 {
2430 	if (runtime == RUNTIME_INF)
2431 		return 1ULL << 20;
2432 
2433 	/*
2434 	 * Doing this here saves a lot of checks in all
2435 	 * the calling paths, and returning zero seems
2436 	 * safe for them anyway.
2437 	 */
2438 	if (period == 0)
2439 		return 0;
2440 
2441 	return div64_u64(runtime << 20, period);
2442 }
2443 
2444 #ifdef CONFIG_SMP
2445 inline struct dl_bw *dl_bw_of(int i)
2446 {
2447 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2448 			 "sched RCU must be held");
2449 	return &cpu_rq(i)->rd->dl_bw;
2450 }
2451 
2452 static inline int dl_bw_cpus(int i)
2453 {
2454 	struct root_domain *rd = cpu_rq(i)->rd;
2455 	int cpus = 0;
2456 
2457 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2458 			 "sched RCU must be held");
2459 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2460 		cpus++;
2461 
2462 	return cpus;
2463 }
2464 #else
2465 inline struct dl_bw *dl_bw_of(int i)
2466 {
2467 	return &cpu_rq(i)->dl.dl_bw;
2468 }
2469 
2470 static inline int dl_bw_cpus(int i)
2471 {
2472 	return 1;
2473 }
2474 #endif
2475 
2476 /*
2477  * We must be sure that accepting a new task (or allowing changing the
2478  * parameters of an existing one) is consistent with the bandwidth
2479  * constraints. If yes, this function also accordingly updates the currently
2480  * allocated bandwidth to reflect the new situation.
2481  *
2482  * This function is called while holding p's rq->lock.
2483  *
2484  * XXX we should delay bw change until the task's 0-lag point, see
2485  * __setparam_dl().
2486  */
2487 static int dl_overflow(struct task_struct *p, int policy,
2488 		       const struct sched_attr *attr)
2489 {
2490 
2491 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2492 	u64 period = attr->sched_period ?: attr->sched_deadline;
2493 	u64 runtime = attr->sched_runtime;
2494 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2495 	int cpus, err = -1;
2496 
2497 	/* !deadline task may carry old deadline bandwidth */
2498 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2499 		return 0;
2500 
2501 	/*
2502 	 * Either if a task, enters, leave, or stays -deadline but changes
2503 	 * its parameters, we may need to update accordingly the total
2504 	 * allocated bandwidth of the container.
2505 	 */
2506 	raw_spin_lock(&dl_b->lock);
2507 	cpus = dl_bw_cpus(task_cpu(p));
2508 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2509 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2510 		__dl_add(dl_b, new_bw);
2511 		err = 0;
2512 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2513 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2514 		__dl_clear(dl_b, p->dl.dl_bw);
2515 		__dl_add(dl_b, new_bw);
2516 		err = 0;
2517 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2518 		__dl_clear(dl_b, p->dl.dl_bw);
2519 		err = 0;
2520 	}
2521 	raw_spin_unlock(&dl_b->lock);
2522 
2523 	return err;
2524 }
2525 
2526 extern void init_dl_bw(struct dl_bw *dl_b);
2527 
2528 /*
2529  * wake_up_new_task - wake up a newly created task for the first time.
2530  *
2531  * This function will do some initial scheduler statistics housekeeping
2532  * that must be done for every newly created context, then puts the task
2533  * on the runqueue and wakes it.
2534  */
2535 void wake_up_new_task(struct task_struct *p)
2536 {
2537 	struct rq_flags rf;
2538 	struct rq *rq;
2539 
2540 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2541 	p->state = TASK_RUNNING;
2542 #ifdef CONFIG_SMP
2543 	/*
2544 	 * Fork balancing, do it here and not earlier because:
2545 	 *  - cpus_allowed can change in the fork path
2546 	 *  - any previously selected CPU might disappear through hotplug
2547 	 *
2548 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2549 	 * as we're not fully set-up yet.
2550 	 */
2551 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2552 #endif
2553 	rq = __task_rq_lock(p, &rf);
2554 	update_rq_clock(rq);
2555 	post_init_entity_util_avg(&p->se);
2556 
2557 	activate_task(rq, p, 0);
2558 	p->on_rq = TASK_ON_RQ_QUEUED;
2559 	trace_sched_wakeup_new(p);
2560 	check_preempt_curr(rq, p, WF_FORK);
2561 #ifdef CONFIG_SMP
2562 	if (p->sched_class->task_woken) {
2563 		/*
2564 		 * Nothing relies on rq->lock after this, so its fine to
2565 		 * drop it.
2566 		 */
2567 		rq_unpin_lock(rq, &rf);
2568 		p->sched_class->task_woken(rq, p);
2569 		rq_repin_lock(rq, &rf);
2570 	}
2571 #endif
2572 	task_rq_unlock(rq, p, &rf);
2573 }
2574 
2575 #ifdef CONFIG_PREEMPT_NOTIFIERS
2576 
2577 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2578 
2579 void preempt_notifier_inc(void)
2580 {
2581 	static_key_slow_inc(&preempt_notifier_key);
2582 }
2583 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2584 
2585 void preempt_notifier_dec(void)
2586 {
2587 	static_key_slow_dec(&preempt_notifier_key);
2588 }
2589 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2590 
2591 /**
2592  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2593  * @notifier: notifier struct to register
2594  */
2595 void preempt_notifier_register(struct preempt_notifier *notifier)
2596 {
2597 	if (!static_key_false(&preempt_notifier_key))
2598 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2599 
2600 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2601 }
2602 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2603 
2604 /**
2605  * preempt_notifier_unregister - no longer interested in preemption notifications
2606  * @notifier: notifier struct to unregister
2607  *
2608  * This is *not* safe to call from within a preemption notifier.
2609  */
2610 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2611 {
2612 	hlist_del(&notifier->link);
2613 }
2614 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2615 
2616 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2617 {
2618 	struct preempt_notifier *notifier;
2619 
2620 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2621 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2622 }
2623 
2624 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2625 {
2626 	if (static_key_false(&preempt_notifier_key))
2627 		__fire_sched_in_preempt_notifiers(curr);
2628 }
2629 
2630 static void
2631 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2632 				   struct task_struct *next)
2633 {
2634 	struct preempt_notifier *notifier;
2635 
2636 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2637 		notifier->ops->sched_out(notifier, next);
2638 }
2639 
2640 static __always_inline void
2641 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2642 				 struct task_struct *next)
2643 {
2644 	if (static_key_false(&preempt_notifier_key))
2645 		__fire_sched_out_preempt_notifiers(curr, next);
2646 }
2647 
2648 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2649 
2650 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651 {
2652 }
2653 
2654 static inline void
2655 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2656 				 struct task_struct *next)
2657 {
2658 }
2659 
2660 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2661 
2662 /**
2663  * prepare_task_switch - prepare to switch tasks
2664  * @rq: the runqueue preparing to switch
2665  * @prev: the current task that is being switched out
2666  * @next: the task we are going to switch to.
2667  *
2668  * This is called with the rq lock held and interrupts off. It must
2669  * be paired with a subsequent finish_task_switch after the context
2670  * switch.
2671  *
2672  * prepare_task_switch sets up locking and calls architecture specific
2673  * hooks.
2674  */
2675 static inline void
2676 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2677 		    struct task_struct *next)
2678 {
2679 	sched_info_switch(rq, prev, next);
2680 	perf_event_task_sched_out(prev, next);
2681 	fire_sched_out_preempt_notifiers(prev, next);
2682 	prepare_lock_switch(rq, next);
2683 	prepare_arch_switch(next);
2684 }
2685 
2686 /**
2687  * finish_task_switch - clean up after a task-switch
2688  * @prev: the thread we just switched away from.
2689  *
2690  * finish_task_switch must be called after the context switch, paired
2691  * with a prepare_task_switch call before the context switch.
2692  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2693  * and do any other architecture-specific cleanup actions.
2694  *
2695  * Note that we may have delayed dropping an mm in context_switch(). If
2696  * so, we finish that here outside of the runqueue lock. (Doing it
2697  * with the lock held can cause deadlocks; see schedule() for
2698  * details.)
2699  *
2700  * The context switch have flipped the stack from under us and restored the
2701  * local variables which were saved when this task called schedule() in the
2702  * past. prev == current is still correct but we need to recalculate this_rq
2703  * because prev may have moved to another CPU.
2704  */
2705 static struct rq *finish_task_switch(struct task_struct *prev)
2706 	__releases(rq->lock)
2707 {
2708 	struct rq *rq = this_rq();
2709 	struct mm_struct *mm = rq->prev_mm;
2710 	long prev_state;
2711 
2712 	/*
2713 	 * The previous task will have left us with a preempt_count of 2
2714 	 * because it left us after:
2715 	 *
2716 	 *	schedule()
2717 	 *	  preempt_disable();			// 1
2718 	 *	  __schedule()
2719 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2720 	 *
2721 	 * Also, see FORK_PREEMPT_COUNT.
2722 	 */
2723 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2724 		      "corrupted preempt_count: %s/%d/0x%x\n",
2725 		      current->comm, current->pid, preempt_count()))
2726 		preempt_count_set(FORK_PREEMPT_COUNT);
2727 
2728 	rq->prev_mm = NULL;
2729 
2730 	/*
2731 	 * A task struct has one reference for the use as "current".
2732 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2733 	 * schedule one last time. The schedule call will never return, and
2734 	 * the scheduled task must drop that reference.
2735 	 *
2736 	 * We must observe prev->state before clearing prev->on_cpu (in
2737 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2738 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2739 	 * transition, resulting in a double drop.
2740 	 */
2741 	prev_state = prev->state;
2742 	vtime_task_switch(prev);
2743 	perf_event_task_sched_in(prev, current);
2744 	finish_lock_switch(rq, prev);
2745 	finish_arch_post_lock_switch();
2746 
2747 	fire_sched_in_preempt_notifiers(current);
2748 	if (mm)
2749 		mmdrop(mm);
2750 	if (unlikely(prev_state == TASK_DEAD)) {
2751 		if (prev->sched_class->task_dead)
2752 			prev->sched_class->task_dead(prev);
2753 
2754 		/*
2755 		 * Remove function-return probe instances associated with this
2756 		 * task and put them back on the free list.
2757 		 */
2758 		kprobe_flush_task(prev);
2759 
2760 		/* Task is done with its stack. */
2761 		put_task_stack(prev);
2762 
2763 		put_task_struct(prev);
2764 	}
2765 
2766 	tick_nohz_task_switch();
2767 	return rq;
2768 }
2769 
2770 #ifdef CONFIG_SMP
2771 
2772 /* rq->lock is NOT held, but preemption is disabled */
2773 static void __balance_callback(struct rq *rq)
2774 {
2775 	struct callback_head *head, *next;
2776 	void (*func)(struct rq *rq);
2777 	unsigned long flags;
2778 
2779 	raw_spin_lock_irqsave(&rq->lock, flags);
2780 	head = rq->balance_callback;
2781 	rq->balance_callback = NULL;
2782 	while (head) {
2783 		func = (void (*)(struct rq *))head->func;
2784 		next = head->next;
2785 		head->next = NULL;
2786 		head = next;
2787 
2788 		func(rq);
2789 	}
2790 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2791 }
2792 
2793 static inline void balance_callback(struct rq *rq)
2794 {
2795 	if (unlikely(rq->balance_callback))
2796 		__balance_callback(rq);
2797 }
2798 
2799 #else
2800 
2801 static inline void balance_callback(struct rq *rq)
2802 {
2803 }
2804 
2805 #endif
2806 
2807 /**
2808  * schedule_tail - first thing a freshly forked thread must call.
2809  * @prev: the thread we just switched away from.
2810  */
2811 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2812 	__releases(rq->lock)
2813 {
2814 	struct rq *rq;
2815 
2816 	/*
2817 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2818 	 * finish_task_switch() for details.
2819 	 *
2820 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2821 	 * and the preempt_enable() will end up enabling preemption (on
2822 	 * PREEMPT_COUNT kernels).
2823 	 */
2824 
2825 	rq = finish_task_switch(prev);
2826 	balance_callback(rq);
2827 	preempt_enable();
2828 
2829 	if (current->set_child_tid)
2830 		put_user(task_pid_vnr(current), current->set_child_tid);
2831 }
2832 
2833 /*
2834  * context_switch - switch to the new MM and the new thread's register state.
2835  */
2836 static __always_inline struct rq *
2837 context_switch(struct rq *rq, struct task_struct *prev,
2838 	       struct task_struct *next, struct rq_flags *rf)
2839 {
2840 	struct mm_struct *mm, *oldmm;
2841 
2842 	prepare_task_switch(rq, prev, next);
2843 
2844 	mm = next->mm;
2845 	oldmm = prev->active_mm;
2846 	/*
2847 	 * For paravirt, this is coupled with an exit in switch_to to
2848 	 * combine the page table reload and the switch backend into
2849 	 * one hypercall.
2850 	 */
2851 	arch_start_context_switch(prev);
2852 
2853 	if (!mm) {
2854 		next->active_mm = oldmm;
2855 		mmgrab(oldmm);
2856 		enter_lazy_tlb(oldmm, next);
2857 	} else
2858 		switch_mm_irqs_off(oldmm, mm, next);
2859 
2860 	if (!prev->mm) {
2861 		prev->active_mm = NULL;
2862 		rq->prev_mm = oldmm;
2863 	}
2864 
2865 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2866 
2867 	/*
2868 	 * Since the runqueue lock will be released by the next
2869 	 * task (which is an invalid locking op but in the case
2870 	 * of the scheduler it's an obvious special-case), so we
2871 	 * do an early lockdep release here:
2872 	 */
2873 	rq_unpin_lock(rq, rf);
2874 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2875 
2876 	/* Here we just switch the register state and the stack. */
2877 	switch_to(prev, next, prev);
2878 	barrier();
2879 
2880 	return finish_task_switch(prev);
2881 }
2882 
2883 /*
2884  * nr_running and nr_context_switches:
2885  *
2886  * externally visible scheduler statistics: current number of runnable
2887  * threads, total number of context switches performed since bootup.
2888  */
2889 unsigned long nr_running(void)
2890 {
2891 	unsigned long i, sum = 0;
2892 
2893 	for_each_online_cpu(i)
2894 		sum += cpu_rq(i)->nr_running;
2895 
2896 	return sum;
2897 }
2898 
2899 /*
2900  * Check if only the current task is running on the CPU.
2901  *
2902  * Caution: this function does not check that the caller has disabled
2903  * preemption, thus the result might have a time-of-check-to-time-of-use
2904  * race.  The caller is responsible to use it correctly, for example:
2905  *
2906  * - from a non-preemptable section (of course)
2907  *
2908  * - from a thread that is bound to a single CPU
2909  *
2910  * - in a loop with very short iterations (e.g. a polling loop)
2911  */
2912 bool single_task_running(void)
2913 {
2914 	return raw_rq()->nr_running == 1;
2915 }
2916 EXPORT_SYMBOL(single_task_running);
2917 
2918 unsigned long long nr_context_switches(void)
2919 {
2920 	int i;
2921 	unsigned long long sum = 0;
2922 
2923 	for_each_possible_cpu(i)
2924 		sum += cpu_rq(i)->nr_switches;
2925 
2926 	return sum;
2927 }
2928 
2929 /*
2930  * IO-wait accounting, and how its mostly bollocks (on SMP).
2931  *
2932  * The idea behind IO-wait account is to account the idle time that we could
2933  * have spend running if it were not for IO. That is, if we were to improve the
2934  * storage performance, we'd have a proportional reduction in IO-wait time.
2935  *
2936  * This all works nicely on UP, where, when a task blocks on IO, we account
2937  * idle time as IO-wait, because if the storage were faster, it could've been
2938  * running and we'd not be idle.
2939  *
2940  * This has been extended to SMP, by doing the same for each CPU. This however
2941  * is broken.
2942  *
2943  * Imagine for instance the case where two tasks block on one CPU, only the one
2944  * CPU will have IO-wait accounted, while the other has regular idle. Even
2945  * though, if the storage were faster, both could've ran at the same time,
2946  * utilising both CPUs.
2947  *
2948  * This means, that when looking globally, the current IO-wait accounting on
2949  * SMP is a lower bound, by reason of under accounting.
2950  *
2951  * Worse, since the numbers are provided per CPU, they are sometimes
2952  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2953  * associated with any one particular CPU, it can wake to another CPU than it
2954  * blocked on. This means the per CPU IO-wait number is meaningless.
2955  *
2956  * Task CPU affinities can make all that even more 'interesting'.
2957  */
2958 
2959 unsigned long nr_iowait(void)
2960 {
2961 	unsigned long i, sum = 0;
2962 
2963 	for_each_possible_cpu(i)
2964 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2965 
2966 	return sum;
2967 }
2968 
2969 /*
2970  * Consumers of these two interfaces, like for example the cpufreq menu
2971  * governor are using nonsensical data. Boosting frequency for a CPU that has
2972  * IO-wait which might not even end up running the task when it does become
2973  * runnable.
2974  */
2975 
2976 unsigned long nr_iowait_cpu(int cpu)
2977 {
2978 	struct rq *this = cpu_rq(cpu);
2979 	return atomic_read(&this->nr_iowait);
2980 }
2981 
2982 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2983 {
2984 	struct rq *rq = this_rq();
2985 	*nr_waiters = atomic_read(&rq->nr_iowait);
2986 	*load = rq->load.weight;
2987 }
2988 
2989 #ifdef CONFIG_SMP
2990 
2991 /*
2992  * sched_exec - execve() is a valuable balancing opportunity, because at
2993  * this point the task has the smallest effective memory and cache footprint.
2994  */
2995 void sched_exec(void)
2996 {
2997 	struct task_struct *p = current;
2998 	unsigned long flags;
2999 	int dest_cpu;
3000 
3001 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3002 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3003 	if (dest_cpu == smp_processor_id())
3004 		goto unlock;
3005 
3006 	if (likely(cpu_active(dest_cpu))) {
3007 		struct migration_arg arg = { p, dest_cpu };
3008 
3009 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3010 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3011 		return;
3012 	}
3013 unlock:
3014 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3015 }
3016 
3017 #endif
3018 
3019 DEFINE_PER_CPU(struct kernel_stat, kstat);
3020 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3021 
3022 EXPORT_PER_CPU_SYMBOL(kstat);
3023 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3024 
3025 /*
3026  * The function fair_sched_class.update_curr accesses the struct curr
3027  * and its field curr->exec_start; when called from task_sched_runtime(),
3028  * we observe a high rate of cache misses in practice.
3029  * Prefetching this data results in improved performance.
3030  */
3031 static inline void prefetch_curr_exec_start(struct task_struct *p)
3032 {
3033 #ifdef CONFIG_FAIR_GROUP_SCHED
3034 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3035 #else
3036 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3037 #endif
3038 	prefetch(curr);
3039 	prefetch(&curr->exec_start);
3040 }
3041 
3042 /*
3043  * Return accounted runtime for the task.
3044  * In case the task is currently running, return the runtime plus current's
3045  * pending runtime that have not been accounted yet.
3046  */
3047 unsigned long long task_sched_runtime(struct task_struct *p)
3048 {
3049 	struct rq_flags rf;
3050 	struct rq *rq;
3051 	u64 ns;
3052 
3053 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3054 	/*
3055 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3056 	 * So we have a optimization chance when the task's delta_exec is 0.
3057 	 * Reading ->on_cpu is racy, but this is ok.
3058 	 *
3059 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3060 	 * If we race with it entering CPU, unaccounted time is 0. This is
3061 	 * indistinguishable from the read occurring a few cycles earlier.
3062 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3063 	 * been accounted, so we're correct here as well.
3064 	 */
3065 	if (!p->on_cpu || !task_on_rq_queued(p))
3066 		return p->se.sum_exec_runtime;
3067 #endif
3068 
3069 	rq = task_rq_lock(p, &rf);
3070 	/*
3071 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3072 	 * project cycles that may never be accounted to this
3073 	 * thread, breaking clock_gettime().
3074 	 */
3075 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3076 		prefetch_curr_exec_start(p);
3077 		update_rq_clock(rq);
3078 		p->sched_class->update_curr(rq);
3079 	}
3080 	ns = p->se.sum_exec_runtime;
3081 	task_rq_unlock(rq, p, &rf);
3082 
3083 	return ns;
3084 }
3085 
3086 /*
3087  * This function gets called by the timer code, with HZ frequency.
3088  * We call it with interrupts disabled.
3089  */
3090 void scheduler_tick(void)
3091 {
3092 	int cpu = smp_processor_id();
3093 	struct rq *rq = cpu_rq(cpu);
3094 	struct task_struct *curr = rq->curr;
3095 
3096 	sched_clock_tick();
3097 
3098 	raw_spin_lock(&rq->lock);
3099 	update_rq_clock(rq);
3100 	curr->sched_class->task_tick(rq, curr, 0);
3101 	cpu_load_update_active(rq);
3102 	calc_global_load_tick(rq);
3103 	raw_spin_unlock(&rq->lock);
3104 
3105 	perf_event_task_tick();
3106 
3107 #ifdef CONFIG_SMP
3108 	rq->idle_balance = idle_cpu(cpu);
3109 	trigger_load_balance(rq);
3110 #endif
3111 	rq_last_tick_reset(rq);
3112 }
3113 
3114 #ifdef CONFIG_NO_HZ_FULL
3115 /**
3116  * scheduler_tick_max_deferment
3117  *
3118  * Keep at least one tick per second when a single
3119  * active task is running because the scheduler doesn't
3120  * yet completely support full dynticks environment.
3121  *
3122  * This makes sure that uptime, CFS vruntime, load
3123  * balancing, etc... continue to move forward, even
3124  * with a very low granularity.
3125  *
3126  * Return: Maximum deferment in nanoseconds.
3127  */
3128 u64 scheduler_tick_max_deferment(void)
3129 {
3130 	struct rq *rq = this_rq();
3131 	unsigned long next, now = READ_ONCE(jiffies);
3132 
3133 	next = rq->last_sched_tick + HZ;
3134 
3135 	if (time_before_eq(next, now))
3136 		return 0;
3137 
3138 	return jiffies_to_nsecs(next - now);
3139 }
3140 #endif
3141 
3142 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3143 				defined(CONFIG_PREEMPT_TRACER))
3144 /*
3145  * If the value passed in is equal to the current preempt count
3146  * then we just disabled preemption. Start timing the latency.
3147  */
3148 static inline void preempt_latency_start(int val)
3149 {
3150 	if (preempt_count() == val) {
3151 		unsigned long ip = get_lock_parent_ip();
3152 #ifdef CONFIG_DEBUG_PREEMPT
3153 		current->preempt_disable_ip = ip;
3154 #endif
3155 		trace_preempt_off(CALLER_ADDR0, ip);
3156 	}
3157 }
3158 
3159 void preempt_count_add(int val)
3160 {
3161 #ifdef CONFIG_DEBUG_PREEMPT
3162 	/*
3163 	 * Underflow?
3164 	 */
3165 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3166 		return;
3167 #endif
3168 	__preempt_count_add(val);
3169 #ifdef CONFIG_DEBUG_PREEMPT
3170 	/*
3171 	 * Spinlock count overflowing soon?
3172 	 */
3173 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3174 				PREEMPT_MASK - 10);
3175 #endif
3176 	preempt_latency_start(val);
3177 }
3178 EXPORT_SYMBOL(preempt_count_add);
3179 NOKPROBE_SYMBOL(preempt_count_add);
3180 
3181 /*
3182  * If the value passed in equals to the current preempt count
3183  * then we just enabled preemption. Stop timing the latency.
3184  */
3185 static inline void preempt_latency_stop(int val)
3186 {
3187 	if (preempt_count() == val)
3188 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3189 }
3190 
3191 void preempt_count_sub(int val)
3192 {
3193 #ifdef CONFIG_DEBUG_PREEMPT
3194 	/*
3195 	 * Underflow?
3196 	 */
3197 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3198 		return;
3199 	/*
3200 	 * Is the spinlock portion underflowing?
3201 	 */
3202 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3203 			!(preempt_count() & PREEMPT_MASK)))
3204 		return;
3205 #endif
3206 
3207 	preempt_latency_stop(val);
3208 	__preempt_count_sub(val);
3209 }
3210 EXPORT_SYMBOL(preempt_count_sub);
3211 NOKPROBE_SYMBOL(preempt_count_sub);
3212 
3213 #else
3214 static inline void preempt_latency_start(int val) { }
3215 static inline void preempt_latency_stop(int val) { }
3216 #endif
3217 
3218 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3219 {
3220 #ifdef CONFIG_DEBUG_PREEMPT
3221 	return p->preempt_disable_ip;
3222 #else
3223 	return 0;
3224 #endif
3225 }
3226 
3227 /*
3228  * Print scheduling while atomic bug:
3229  */
3230 static noinline void __schedule_bug(struct task_struct *prev)
3231 {
3232 	/* Save this before calling printk(), since that will clobber it */
3233 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3234 
3235 	if (oops_in_progress)
3236 		return;
3237 
3238 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3239 		prev->comm, prev->pid, preempt_count());
3240 
3241 	debug_show_held_locks(prev);
3242 	print_modules();
3243 	if (irqs_disabled())
3244 		print_irqtrace_events(prev);
3245 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3246 	    && in_atomic_preempt_off()) {
3247 		pr_err("Preemption disabled at:");
3248 		print_ip_sym(preempt_disable_ip);
3249 		pr_cont("\n");
3250 	}
3251 	if (panic_on_warn)
3252 		panic("scheduling while atomic\n");
3253 
3254 	dump_stack();
3255 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3256 }
3257 
3258 /*
3259  * Various schedule()-time debugging checks and statistics:
3260  */
3261 static inline void schedule_debug(struct task_struct *prev)
3262 {
3263 #ifdef CONFIG_SCHED_STACK_END_CHECK
3264 	if (task_stack_end_corrupted(prev))
3265 		panic("corrupted stack end detected inside scheduler\n");
3266 #endif
3267 
3268 	if (unlikely(in_atomic_preempt_off())) {
3269 		__schedule_bug(prev);
3270 		preempt_count_set(PREEMPT_DISABLED);
3271 	}
3272 	rcu_sleep_check();
3273 
3274 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3275 
3276 	schedstat_inc(this_rq()->sched_count);
3277 }
3278 
3279 /*
3280  * Pick up the highest-prio task:
3281  */
3282 static inline struct task_struct *
3283 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3284 {
3285 	const struct sched_class *class;
3286 	struct task_struct *p;
3287 
3288 	/*
3289 	 * Optimization: we know that if all tasks are in
3290 	 * the fair class we can call that function directly:
3291 	 */
3292 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3293 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3294 		if (unlikely(p == RETRY_TASK))
3295 			goto again;
3296 
3297 		/* Assumes fair_sched_class->next == idle_sched_class */
3298 		if (unlikely(!p))
3299 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3300 
3301 		return p;
3302 	}
3303 
3304 again:
3305 	for_each_class(class) {
3306 		p = class->pick_next_task(rq, prev, rf);
3307 		if (p) {
3308 			if (unlikely(p == RETRY_TASK))
3309 				goto again;
3310 			return p;
3311 		}
3312 	}
3313 
3314 	/* The idle class should always have a runnable task: */
3315 	BUG();
3316 }
3317 
3318 /*
3319  * __schedule() is the main scheduler function.
3320  *
3321  * The main means of driving the scheduler and thus entering this function are:
3322  *
3323  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3324  *
3325  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3326  *      paths. For example, see arch/x86/entry_64.S.
3327  *
3328  *      To drive preemption between tasks, the scheduler sets the flag in timer
3329  *      interrupt handler scheduler_tick().
3330  *
3331  *   3. Wakeups don't really cause entry into schedule(). They add a
3332  *      task to the run-queue and that's it.
3333  *
3334  *      Now, if the new task added to the run-queue preempts the current
3335  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3336  *      called on the nearest possible occasion:
3337  *
3338  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3339  *
3340  *         - in syscall or exception context, at the next outmost
3341  *           preempt_enable(). (this might be as soon as the wake_up()'s
3342  *           spin_unlock()!)
3343  *
3344  *         - in IRQ context, return from interrupt-handler to
3345  *           preemptible context
3346  *
3347  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3348  *         then at the next:
3349  *
3350  *          - cond_resched() call
3351  *          - explicit schedule() call
3352  *          - return from syscall or exception to user-space
3353  *          - return from interrupt-handler to user-space
3354  *
3355  * WARNING: must be called with preemption disabled!
3356  */
3357 static void __sched notrace __schedule(bool preempt)
3358 {
3359 	struct task_struct *prev, *next;
3360 	unsigned long *switch_count;
3361 	struct rq_flags rf;
3362 	struct rq *rq;
3363 	int cpu;
3364 
3365 	cpu = smp_processor_id();
3366 	rq = cpu_rq(cpu);
3367 	prev = rq->curr;
3368 
3369 	schedule_debug(prev);
3370 
3371 	if (sched_feat(HRTICK))
3372 		hrtick_clear(rq);
3373 
3374 	local_irq_disable();
3375 	rcu_note_context_switch();
3376 
3377 	/*
3378 	 * Make sure that signal_pending_state()->signal_pending() below
3379 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3380 	 * done by the caller to avoid the race with signal_wake_up().
3381 	 */
3382 	smp_mb__before_spinlock();
3383 	raw_spin_lock(&rq->lock);
3384 	rq_pin_lock(rq, &rf);
3385 
3386 	/* Promote REQ to ACT */
3387 	rq->clock_update_flags <<= 1;
3388 
3389 	switch_count = &prev->nivcsw;
3390 	if (!preempt && prev->state) {
3391 		if (unlikely(signal_pending_state(prev->state, prev))) {
3392 			prev->state = TASK_RUNNING;
3393 		} else {
3394 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3395 			prev->on_rq = 0;
3396 
3397 			if (prev->in_iowait) {
3398 				atomic_inc(&rq->nr_iowait);
3399 				delayacct_blkio_start();
3400 			}
3401 
3402 			/*
3403 			 * If a worker went to sleep, notify and ask workqueue
3404 			 * whether it wants to wake up a task to maintain
3405 			 * concurrency.
3406 			 */
3407 			if (prev->flags & PF_WQ_WORKER) {
3408 				struct task_struct *to_wakeup;
3409 
3410 				to_wakeup = wq_worker_sleeping(prev);
3411 				if (to_wakeup)
3412 					try_to_wake_up_local(to_wakeup, &rf);
3413 			}
3414 		}
3415 		switch_count = &prev->nvcsw;
3416 	}
3417 
3418 	if (task_on_rq_queued(prev))
3419 		update_rq_clock(rq);
3420 
3421 	next = pick_next_task(rq, prev, &rf);
3422 	clear_tsk_need_resched(prev);
3423 	clear_preempt_need_resched();
3424 
3425 	if (likely(prev != next)) {
3426 		rq->nr_switches++;
3427 		rq->curr = next;
3428 		++*switch_count;
3429 
3430 		trace_sched_switch(preempt, prev, next);
3431 
3432 		/* Also unlocks the rq: */
3433 		rq = context_switch(rq, prev, next, &rf);
3434 	} else {
3435 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3436 		rq_unpin_lock(rq, &rf);
3437 		raw_spin_unlock_irq(&rq->lock);
3438 	}
3439 
3440 	balance_callback(rq);
3441 }
3442 
3443 void __noreturn do_task_dead(void)
3444 {
3445 	/*
3446 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3447 	 * when the following two conditions become true.
3448 	 *   - There is race condition of mmap_sem (It is acquired by
3449 	 *     exit_mm()), and
3450 	 *   - SMI occurs before setting TASK_RUNINNG.
3451 	 *     (or hypervisor of virtual machine switches to other guest)
3452 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3453 	 *
3454 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3455 	 * is held by try_to_wake_up()
3456 	 */
3457 	smp_mb();
3458 	raw_spin_unlock_wait(&current->pi_lock);
3459 
3460 	/* Causes final put_task_struct in finish_task_switch(): */
3461 	__set_current_state(TASK_DEAD);
3462 
3463 	/* Tell freezer to ignore us: */
3464 	current->flags |= PF_NOFREEZE;
3465 
3466 	__schedule(false);
3467 	BUG();
3468 
3469 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3470 	for (;;)
3471 		cpu_relax();
3472 }
3473 
3474 static inline void sched_submit_work(struct task_struct *tsk)
3475 {
3476 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3477 		return;
3478 	/*
3479 	 * If we are going to sleep and we have plugged IO queued,
3480 	 * make sure to submit it to avoid deadlocks.
3481 	 */
3482 	if (blk_needs_flush_plug(tsk))
3483 		blk_schedule_flush_plug(tsk);
3484 }
3485 
3486 asmlinkage __visible void __sched schedule(void)
3487 {
3488 	struct task_struct *tsk = current;
3489 
3490 	sched_submit_work(tsk);
3491 	do {
3492 		preempt_disable();
3493 		__schedule(false);
3494 		sched_preempt_enable_no_resched();
3495 	} while (need_resched());
3496 }
3497 EXPORT_SYMBOL(schedule);
3498 
3499 #ifdef CONFIG_CONTEXT_TRACKING
3500 asmlinkage __visible void __sched schedule_user(void)
3501 {
3502 	/*
3503 	 * If we come here after a random call to set_need_resched(),
3504 	 * or we have been woken up remotely but the IPI has not yet arrived,
3505 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3506 	 * we find a better solution.
3507 	 *
3508 	 * NB: There are buggy callers of this function.  Ideally we
3509 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3510 	 * too frequently to make sense yet.
3511 	 */
3512 	enum ctx_state prev_state = exception_enter();
3513 	schedule();
3514 	exception_exit(prev_state);
3515 }
3516 #endif
3517 
3518 /**
3519  * schedule_preempt_disabled - called with preemption disabled
3520  *
3521  * Returns with preemption disabled. Note: preempt_count must be 1
3522  */
3523 void __sched schedule_preempt_disabled(void)
3524 {
3525 	sched_preempt_enable_no_resched();
3526 	schedule();
3527 	preempt_disable();
3528 }
3529 
3530 static void __sched notrace preempt_schedule_common(void)
3531 {
3532 	do {
3533 		/*
3534 		 * Because the function tracer can trace preempt_count_sub()
3535 		 * and it also uses preempt_enable/disable_notrace(), if
3536 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3537 		 * by the function tracer will call this function again and
3538 		 * cause infinite recursion.
3539 		 *
3540 		 * Preemption must be disabled here before the function
3541 		 * tracer can trace. Break up preempt_disable() into two
3542 		 * calls. One to disable preemption without fear of being
3543 		 * traced. The other to still record the preemption latency,
3544 		 * which can also be traced by the function tracer.
3545 		 */
3546 		preempt_disable_notrace();
3547 		preempt_latency_start(1);
3548 		__schedule(true);
3549 		preempt_latency_stop(1);
3550 		preempt_enable_no_resched_notrace();
3551 
3552 		/*
3553 		 * Check again in case we missed a preemption opportunity
3554 		 * between schedule and now.
3555 		 */
3556 	} while (need_resched());
3557 }
3558 
3559 #ifdef CONFIG_PREEMPT
3560 /*
3561  * this is the entry point to schedule() from in-kernel preemption
3562  * off of preempt_enable. Kernel preemptions off return from interrupt
3563  * occur there and call schedule directly.
3564  */
3565 asmlinkage __visible void __sched notrace preempt_schedule(void)
3566 {
3567 	/*
3568 	 * If there is a non-zero preempt_count or interrupts are disabled,
3569 	 * we do not want to preempt the current task. Just return..
3570 	 */
3571 	if (likely(!preemptible()))
3572 		return;
3573 
3574 	preempt_schedule_common();
3575 }
3576 NOKPROBE_SYMBOL(preempt_schedule);
3577 EXPORT_SYMBOL(preempt_schedule);
3578 
3579 /**
3580  * preempt_schedule_notrace - preempt_schedule called by tracing
3581  *
3582  * The tracing infrastructure uses preempt_enable_notrace to prevent
3583  * recursion and tracing preempt enabling caused by the tracing
3584  * infrastructure itself. But as tracing can happen in areas coming
3585  * from userspace or just about to enter userspace, a preempt enable
3586  * can occur before user_exit() is called. This will cause the scheduler
3587  * to be called when the system is still in usermode.
3588  *
3589  * To prevent this, the preempt_enable_notrace will use this function
3590  * instead of preempt_schedule() to exit user context if needed before
3591  * calling the scheduler.
3592  */
3593 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3594 {
3595 	enum ctx_state prev_ctx;
3596 
3597 	if (likely(!preemptible()))
3598 		return;
3599 
3600 	do {
3601 		/*
3602 		 * Because the function tracer can trace preempt_count_sub()
3603 		 * and it also uses preempt_enable/disable_notrace(), if
3604 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3605 		 * by the function tracer will call this function again and
3606 		 * cause infinite recursion.
3607 		 *
3608 		 * Preemption must be disabled here before the function
3609 		 * tracer can trace. Break up preempt_disable() into two
3610 		 * calls. One to disable preemption without fear of being
3611 		 * traced. The other to still record the preemption latency,
3612 		 * which can also be traced by the function tracer.
3613 		 */
3614 		preempt_disable_notrace();
3615 		preempt_latency_start(1);
3616 		/*
3617 		 * Needs preempt disabled in case user_exit() is traced
3618 		 * and the tracer calls preempt_enable_notrace() causing
3619 		 * an infinite recursion.
3620 		 */
3621 		prev_ctx = exception_enter();
3622 		__schedule(true);
3623 		exception_exit(prev_ctx);
3624 
3625 		preempt_latency_stop(1);
3626 		preempt_enable_no_resched_notrace();
3627 	} while (need_resched());
3628 }
3629 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3630 
3631 #endif /* CONFIG_PREEMPT */
3632 
3633 /*
3634  * this is the entry point to schedule() from kernel preemption
3635  * off of irq context.
3636  * Note, that this is called and return with irqs disabled. This will
3637  * protect us against recursive calling from irq.
3638  */
3639 asmlinkage __visible void __sched preempt_schedule_irq(void)
3640 {
3641 	enum ctx_state prev_state;
3642 
3643 	/* Catch callers which need to be fixed */
3644 	BUG_ON(preempt_count() || !irqs_disabled());
3645 
3646 	prev_state = exception_enter();
3647 
3648 	do {
3649 		preempt_disable();
3650 		local_irq_enable();
3651 		__schedule(true);
3652 		local_irq_disable();
3653 		sched_preempt_enable_no_resched();
3654 	} while (need_resched());
3655 
3656 	exception_exit(prev_state);
3657 }
3658 
3659 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3660 			  void *key)
3661 {
3662 	return try_to_wake_up(curr->private, mode, wake_flags);
3663 }
3664 EXPORT_SYMBOL(default_wake_function);
3665 
3666 #ifdef CONFIG_RT_MUTEXES
3667 
3668 /*
3669  * rt_mutex_setprio - set the current priority of a task
3670  * @p: task
3671  * @prio: prio value (kernel-internal form)
3672  *
3673  * This function changes the 'effective' priority of a task. It does
3674  * not touch ->normal_prio like __setscheduler().
3675  *
3676  * Used by the rt_mutex code to implement priority inheritance
3677  * logic. Call site only calls if the priority of the task changed.
3678  */
3679 void rt_mutex_setprio(struct task_struct *p, int prio)
3680 {
3681 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3682 	const struct sched_class *prev_class;
3683 	struct rq_flags rf;
3684 	struct rq *rq;
3685 
3686 	BUG_ON(prio > MAX_PRIO);
3687 
3688 	rq = __task_rq_lock(p, &rf);
3689 	update_rq_clock(rq);
3690 
3691 	/*
3692 	 * Idle task boosting is a nono in general. There is one
3693 	 * exception, when PREEMPT_RT and NOHZ is active:
3694 	 *
3695 	 * The idle task calls get_next_timer_interrupt() and holds
3696 	 * the timer wheel base->lock on the CPU and another CPU wants
3697 	 * to access the timer (probably to cancel it). We can safely
3698 	 * ignore the boosting request, as the idle CPU runs this code
3699 	 * with interrupts disabled and will complete the lock
3700 	 * protected section without being interrupted. So there is no
3701 	 * real need to boost.
3702 	 */
3703 	if (unlikely(p == rq->idle)) {
3704 		WARN_ON(p != rq->curr);
3705 		WARN_ON(p->pi_blocked_on);
3706 		goto out_unlock;
3707 	}
3708 
3709 	trace_sched_pi_setprio(p, prio);
3710 	oldprio = p->prio;
3711 
3712 	if (oldprio == prio)
3713 		queue_flag &= ~DEQUEUE_MOVE;
3714 
3715 	prev_class = p->sched_class;
3716 	queued = task_on_rq_queued(p);
3717 	running = task_current(rq, p);
3718 	if (queued)
3719 		dequeue_task(rq, p, queue_flag);
3720 	if (running)
3721 		put_prev_task(rq, p);
3722 
3723 	/*
3724 	 * Boosting condition are:
3725 	 * 1. -rt task is running and holds mutex A
3726 	 *      --> -dl task blocks on mutex A
3727 	 *
3728 	 * 2. -dl task is running and holds mutex A
3729 	 *      --> -dl task blocks on mutex A and could preempt the
3730 	 *          running task
3731 	 */
3732 	if (dl_prio(prio)) {
3733 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3734 		if (!dl_prio(p->normal_prio) ||
3735 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3736 			p->dl.dl_boosted = 1;
3737 			queue_flag |= ENQUEUE_REPLENISH;
3738 		} else
3739 			p->dl.dl_boosted = 0;
3740 		p->sched_class = &dl_sched_class;
3741 	} else if (rt_prio(prio)) {
3742 		if (dl_prio(oldprio))
3743 			p->dl.dl_boosted = 0;
3744 		if (oldprio < prio)
3745 			queue_flag |= ENQUEUE_HEAD;
3746 		p->sched_class = &rt_sched_class;
3747 	} else {
3748 		if (dl_prio(oldprio))
3749 			p->dl.dl_boosted = 0;
3750 		if (rt_prio(oldprio))
3751 			p->rt.timeout = 0;
3752 		p->sched_class = &fair_sched_class;
3753 	}
3754 
3755 	p->prio = prio;
3756 
3757 	if (queued)
3758 		enqueue_task(rq, p, queue_flag);
3759 	if (running)
3760 		set_curr_task(rq, p);
3761 
3762 	check_class_changed(rq, p, prev_class, oldprio);
3763 out_unlock:
3764 	/* Avoid rq from going away on us: */
3765 	preempt_disable();
3766 	__task_rq_unlock(rq, &rf);
3767 
3768 	balance_callback(rq);
3769 	preempt_enable();
3770 }
3771 #endif
3772 
3773 void set_user_nice(struct task_struct *p, long nice)
3774 {
3775 	bool queued, running;
3776 	int old_prio, delta;
3777 	struct rq_flags rf;
3778 	struct rq *rq;
3779 
3780 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3781 		return;
3782 	/*
3783 	 * We have to be careful, if called from sys_setpriority(),
3784 	 * the task might be in the middle of scheduling on another CPU.
3785 	 */
3786 	rq = task_rq_lock(p, &rf);
3787 	update_rq_clock(rq);
3788 
3789 	/*
3790 	 * The RT priorities are set via sched_setscheduler(), but we still
3791 	 * allow the 'normal' nice value to be set - but as expected
3792 	 * it wont have any effect on scheduling until the task is
3793 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3794 	 */
3795 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3796 		p->static_prio = NICE_TO_PRIO(nice);
3797 		goto out_unlock;
3798 	}
3799 	queued = task_on_rq_queued(p);
3800 	running = task_current(rq, p);
3801 	if (queued)
3802 		dequeue_task(rq, p, DEQUEUE_SAVE);
3803 	if (running)
3804 		put_prev_task(rq, p);
3805 
3806 	p->static_prio = NICE_TO_PRIO(nice);
3807 	set_load_weight(p);
3808 	old_prio = p->prio;
3809 	p->prio = effective_prio(p);
3810 	delta = p->prio - old_prio;
3811 
3812 	if (queued) {
3813 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3814 		/*
3815 		 * If the task increased its priority or is running and
3816 		 * lowered its priority, then reschedule its CPU:
3817 		 */
3818 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3819 			resched_curr(rq);
3820 	}
3821 	if (running)
3822 		set_curr_task(rq, p);
3823 out_unlock:
3824 	task_rq_unlock(rq, p, &rf);
3825 }
3826 EXPORT_SYMBOL(set_user_nice);
3827 
3828 /*
3829  * can_nice - check if a task can reduce its nice value
3830  * @p: task
3831  * @nice: nice value
3832  */
3833 int can_nice(const struct task_struct *p, const int nice)
3834 {
3835 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3836 	int nice_rlim = nice_to_rlimit(nice);
3837 
3838 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3839 		capable(CAP_SYS_NICE));
3840 }
3841 
3842 #ifdef __ARCH_WANT_SYS_NICE
3843 
3844 /*
3845  * sys_nice - change the priority of the current process.
3846  * @increment: priority increment
3847  *
3848  * sys_setpriority is a more generic, but much slower function that
3849  * does similar things.
3850  */
3851 SYSCALL_DEFINE1(nice, int, increment)
3852 {
3853 	long nice, retval;
3854 
3855 	/*
3856 	 * Setpriority might change our priority at the same moment.
3857 	 * We don't have to worry. Conceptually one call occurs first
3858 	 * and we have a single winner.
3859 	 */
3860 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3861 	nice = task_nice(current) + increment;
3862 
3863 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3864 	if (increment < 0 && !can_nice(current, nice))
3865 		return -EPERM;
3866 
3867 	retval = security_task_setnice(current, nice);
3868 	if (retval)
3869 		return retval;
3870 
3871 	set_user_nice(current, nice);
3872 	return 0;
3873 }
3874 
3875 #endif
3876 
3877 /**
3878  * task_prio - return the priority value of a given task.
3879  * @p: the task in question.
3880  *
3881  * Return: The priority value as seen by users in /proc.
3882  * RT tasks are offset by -200. Normal tasks are centered
3883  * around 0, value goes from -16 to +15.
3884  */
3885 int task_prio(const struct task_struct *p)
3886 {
3887 	return p->prio - MAX_RT_PRIO;
3888 }
3889 
3890 /**
3891  * idle_cpu - is a given CPU idle currently?
3892  * @cpu: the processor in question.
3893  *
3894  * Return: 1 if the CPU is currently idle. 0 otherwise.
3895  */
3896 int idle_cpu(int cpu)
3897 {
3898 	struct rq *rq = cpu_rq(cpu);
3899 
3900 	if (rq->curr != rq->idle)
3901 		return 0;
3902 
3903 	if (rq->nr_running)
3904 		return 0;
3905 
3906 #ifdef CONFIG_SMP
3907 	if (!llist_empty(&rq->wake_list))
3908 		return 0;
3909 #endif
3910 
3911 	return 1;
3912 }
3913 
3914 /**
3915  * idle_task - return the idle task for a given CPU.
3916  * @cpu: the processor in question.
3917  *
3918  * Return: The idle task for the CPU @cpu.
3919  */
3920 struct task_struct *idle_task(int cpu)
3921 {
3922 	return cpu_rq(cpu)->idle;
3923 }
3924 
3925 /**
3926  * find_process_by_pid - find a process with a matching PID value.
3927  * @pid: the pid in question.
3928  *
3929  * The task of @pid, if found. %NULL otherwise.
3930  */
3931 static struct task_struct *find_process_by_pid(pid_t pid)
3932 {
3933 	return pid ? find_task_by_vpid(pid) : current;
3934 }
3935 
3936 /*
3937  * This function initializes the sched_dl_entity of a newly becoming
3938  * SCHED_DEADLINE task.
3939  *
3940  * Only the static values are considered here, the actual runtime and the
3941  * absolute deadline will be properly calculated when the task is enqueued
3942  * for the first time with its new policy.
3943  */
3944 static void
3945 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3946 {
3947 	struct sched_dl_entity *dl_se = &p->dl;
3948 
3949 	dl_se->dl_runtime = attr->sched_runtime;
3950 	dl_se->dl_deadline = attr->sched_deadline;
3951 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3952 	dl_se->flags = attr->sched_flags;
3953 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3954 
3955 	/*
3956 	 * Changing the parameters of a task is 'tricky' and we're not doing
3957 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3958 	 *
3959 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3960 	 * point. This would include retaining the task_struct until that time
3961 	 * and change dl_overflow() to not immediately decrement the current
3962 	 * amount.
3963 	 *
3964 	 * Instead we retain the current runtime/deadline and let the new
3965 	 * parameters take effect after the current reservation period lapses.
3966 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3967 	 * before the current scheduling deadline.
3968 	 *
3969 	 * We can still have temporary overloads because we do not delay the
3970 	 * change in bandwidth until that time; so admission control is
3971 	 * not on the safe side. It does however guarantee tasks will never
3972 	 * consume more than promised.
3973 	 */
3974 }
3975 
3976 /*
3977  * sched_setparam() passes in -1 for its policy, to let the functions
3978  * it calls know not to change it.
3979  */
3980 #define SETPARAM_POLICY	-1
3981 
3982 static void __setscheduler_params(struct task_struct *p,
3983 		const struct sched_attr *attr)
3984 {
3985 	int policy = attr->sched_policy;
3986 
3987 	if (policy == SETPARAM_POLICY)
3988 		policy = p->policy;
3989 
3990 	p->policy = policy;
3991 
3992 	if (dl_policy(policy))
3993 		__setparam_dl(p, attr);
3994 	else if (fair_policy(policy))
3995 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3996 
3997 	/*
3998 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3999 	 * !rt_policy. Always setting this ensures that things like
4000 	 * getparam()/getattr() don't report silly values for !rt tasks.
4001 	 */
4002 	p->rt_priority = attr->sched_priority;
4003 	p->normal_prio = normal_prio(p);
4004 	set_load_weight(p);
4005 }
4006 
4007 /* Actually do priority change: must hold pi & rq lock. */
4008 static void __setscheduler(struct rq *rq, struct task_struct *p,
4009 			   const struct sched_attr *attr, bool keep_boost)
4010 {
4011 	__setscheduler_params(p, attr);
4012 
4013 	/*
4014 	 * Keep a potential priority boosting if called from
4015 	 * sched_setscheduler().
4016 	 */
4017 	if (keep_boost)
4018 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4019 	else
4020 		p->prio = normal_prio(p);
4021 
4022 	if (dl_prio(p->prio))
4023 		p->sched_class = &dl_sched_class;
4024 	else if (rt_prio(p->prio))
4025 		p->sched_class = &rt_sched_class;
4026 	else
4027 		p->sched_class = &fair_sched_class;
4028 }
4029 
4030 static void
4031 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4032 {
4033 	struct sched_dl_entity *dl_se = &p->dl;
4034 
4035 	attr->sched_priority = p->rt_priority;
4036 	attr->sched_runtime = dl_se->dl_runtime;
4037 	attr->sched_deadline = dl_se->dl_deadline;
4038 	attr->sched_period = dl_se->dl_period;
4039 	attr->sched_flags = dl_se->flags;
4040 }
4041 
4042 /*
4043  * This function validates the new parameters of a -deadline task.
4044  * We ask for the deadline not being zero, and greater or equal
4045  * than the runtime, as well as the period of being zero or
4046  * greater than deadline. Furthermore, we have to be sure that
4047  * user parameters are above the internal resolution of 1us (we
4048  * check sched_runtime only since it is always the smaller one) and
4049  * below 2^63 ns (we have to check both sched_deadline and
4050  * sched_period, as the latter can be zero).
4051  */
4052 static bool
4053 __checkparam_dl(const struct sched_attr *attr)
4054 {
4055 	/* deadline != 0 */
4056 	if (attr->sched_deadline == 0)
4057 		return false;
4058 
4059 	/*
4060 	 * Since we truncate DL_SCALE bits, make sure we're at least
4061 	 * that big.
4062 	 */
4063 	if (attr->sched_runtime < (1ULL << DL_SCALE))
4064 		return false;
4065 
4066 	/*
4067 	 * Since we use the MSB for wrap-around and sign issues, make
4068 	 * sure it's not set (mind that period can be equal to zero).
4069 	 */
4070 	if (attr->sched_deadline & (1ULL << 63) ||
4071 	    attr->sched_period & (1ULL << 63))
4072 		return false;
4073 
4074 	/* runtime <= deadline <= period (if period != 0) */
4075 	if ((attr->sched_period != 0 &&
4076 	     attr->sched_period < attr->sched_deadline) ||
4077 	    attr->sched_deadline < attr->sched_runtime)
4078 		return false;
4079 
4080 	return true;
4081 }
4082 
4083 /*
4084  * Check the target process has a UID that matches the current process's:
4085  */
4086 static bool check_same_owner(struct task_struct *p)
4087 {
4088 	const struct cred *cred = current_cred(), *pcred;
4089 	bool match;
4090 
4091 	rcu_read_lock();
4092 	pcred = __task_cred(p);
4093 	match = (uid_eq(cred->euid, pcred->euid) ||
4094 		 uid_eq(cred->euid, pcred->uid));
4095 	rcu_read_unlock();
4096 	return match;
4097 }
4098 
4099 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4100 {
4101 	struct sched_dl_entity *dl_se = &p->dl;
4102 
4103 	if (dl_se->dl_runtime != attr->sched_runtime ||
4104 		dl_se->dl_deadline != attr->sched_deadline ||
4105 		dl_se->dl_period != attr->sched_period ||
4106 		dl_se->flags != attr->sched_flags)
4107 		return true;
4108 
4109 	return false;
4110 }
4111 
4112 static int __sched_setscheduler(struct task_struct *p,
4113 				const struct sched_attr *attr,
4114 				bool user, bool pi)
4115 {
4116 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4117 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4118 	int retval, oldprio, oldpolicy = -1, queued, running;
4119 	int new_effective_prio, policy = attr->sched_policy;
4120 	const struct sched_class *prev_class;
4121 	struct rq_flags rf;
4122 	int reset_on_fork;
4123 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4124 	struct rq *rq;
4125 
4126 	/* May grab non-irq protected spin_locks: */
4127 	BUG_ON(in_interrupt());
4128 recheck:
4129 	/* Double check policy once rq lock held: */
4130 	if (policy < 0) {
4131 		reset_on_fork = p->sched_reset_on_fork;
4132 		policy = oldpolicy = p->policy;
4133 	} else {
4134 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4135 
4136 		if (!valid_policy(policy))
4137 			return -EINVAL;
4138 	}
4139 
4140 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4141 		return -EINVAL;
4142 
4143 	/*
4144 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4145 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4146 	 * SCHED_BATCH and SCHED_IDLE is 0.
4147 	 */
4148 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4149 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4150 		return -EINVAL;
4151 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4152 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4153 		return -EINVAL;
4154 
4155 	/*
4156 	 * Allow unprivileged RT tasks to decrease priority:
4157 	 */
4158 	if (user && !capable(CAP_SYS_NICE)) {
4159 		if (fair_policy(policy)) {
4160 			if (attr->sched_nice < task_nice(p) &&
4161 			    !can_nice(p, attr->sched_nice))
4162 				return -EPERM;
4163 		}
4164 
4165 		if (rt_policy(policy)) {
4166 			unsigned long rlim_rtprio =
4167 					task_rlimit(p, RLIMIT_RTPRIO);
4168 
4169 			/* Can't set/change the rt policy: */
4170 			if (policy != p->policy && !rlim_rtprio)
4171 				return -EPERM;
4172 
4173 			/* Can't increase priority: */
4174 			if (attr->sched_priority > p->rt_priority &&
4175 			    attr->sched_priority > rlim_rtprio)
4176 				return -EPERM;
4177 		}
4178 
4179 		 /*
4180 		  * Can't set/change SCHED_DEADLINE policy at all for now
4181 		  * (safest behavior); in the future we would like to allow
4182 		  * unprivileged DL tasks to increase their relative deadline
4183 		  * or reduce their runtime (both ways reducing utilization)
4184 		  */
4185 		if (dl_policy(policy))
4186 			return -EPERM;
4187 
4188 		/*
4189 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4190 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4191 		 */
4192 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4193 			if (!can_nice(p, task_nice(p)))
4194 				return -EPERM;
4195 		}
4196 
4197 		/* Can't change other user's priorities: */
4198 		if (!check_same_owner(p))
4199 			return -EPERM;
4200 
4201 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4202 		if (p->sched_reset_on_fork && !reset_on_fork)
4203 			return -EPERM;
4204 	}
4205 
4206 	if (user) {
4207 		retval = security_task_setscheduler(p);
4208 		if (retval)
4209 			return retval;
4210 	}
4211 
4212 	/*
4213 	 * Make sure no PI-waiters arrive (or leave) while we are
4214 	 * changing the priority of the task:
4215 	 *
4216 	 * To be able to change p->policy safely, the appropriate
4217 	 * runqueue lock must be held.
4218 	 */
4219 	rq = task_rq_lock(p, &rf);
4220 	update_rq_clock(rq);
4221 
4222 	/*
4223 	 * Changing the policy of the stop threads its a very bad idea:
4224 	 */
4225 	if (p == rq->stop) {
4226 		task_rq_unlock(rq, p, &rf);
4227 		return -EINVAL;
4228 	}
4229 
4230 	/*
4231 	 * If not changing anything there's no need to proceed further,
4232 	 * but store a possible modification of reset_on_fork.
4233 	 */
4234 	if (unlikely(policy == p->policy)) {
4235 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4236 			goto change;
4237 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4238 			goto change;
4239 		if (dl_policy(policy) && dl_param_changed(p, attr))
4240 			goto change;
4241 
4242 		p->sched_reset_on_fork = reset_on_fork;
4243 		task_rq_unlock(rq, p, &rf);
4244 		return 0;
4245 	}
4246 change:
4247 
4248 	if (user) {
4249 #ifdef CONFIG_RT_GROUP_SCHED
4250 		/*
4251 		 * Do not allow realtime tasks into groups that have no runtime
4252 		 * assigned.
4253 		 */
4254 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4255 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4256 				!task_group_is_autogroup(task_group(p))) {
4257 			task_rq_unlock(rq, p, &rf);
4258 			return -EPERM;
4259 		}
4260 #endif
4261 #ifdef CONFIG_SMP
4262 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4263 			cpumask_t *span = rq->rd->span;
4264 
4265 			/*
4266 			 * Don't allow tasks with an affinity mask smaller than
4267 			 * the entire root_domain to become SCHED_DEADLINE. We
4268 			 * will also fail if there's no bandwidth available.
4269 			 */
4270 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4271 			    rq->rd->dl_bw.bw == 0) {
4272 				task_rq_unlock(rq, p, &rf);
4273 				return -EPERM;
4274 			}
4275 		}
4276 #endif
4277 	}
4278 
4279 	/* Re-check policy now with rq lock held: */
4280 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4281 		policy = oldpolicy = -1;
4282 		task_rq_unlock(rq, p, &rf);
4283 		goto recheck;
4284 	}
4285 
4286 	/*
4287 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4288 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4289 	 * is available.
4290 	 */
4291 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4292 		task_rq_unlock(rq, p, &rf);
4293 		return -EBUSY;
4294 	}
4295 
4296 	p->sched_reset_on_fork = reset_on_fork;
4297 	oldprio = p->prio;
4298 
4299 	if (pi) {
4300 		/*
4301 		 * Take priority boosted tasks into account. If the new
4302 		 * effective priority is unchanged, we just store the new
4303 		 * normal parameters and do not touch the scheduler class and
4304 		 * the runqueue. This will be done when the task deboost
4305 		 * itself.
4306 		 */
4307 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4308 		if (new_effective_prio == oldprio)
4309 			queue_flags &= ~DEQUEUE_MOVE;
4310 	}
4311 
4312 	queued = task_on_rq_queued(p);
4313 	running = task_current(rq, p);
4314 	if (queued)
4315 		dequeue_task(rq, p, queue_flags);
4316 	if (running)
4317 		put_prev_task(rq, p);
4318 
4319 	prev_class = p->sched_class;
4320 	__setscheduler(rq, p, attr, pi);
4321 
4322 	if (queued) {
4323 		/*
4324 		 * We enqueue to tail when the priority of a task is
4325 		 * increased (user space view).
4326 		 */
4327 		if (oldprio < p->prio)
4328 			queue_flags |= ENQUEUE_HEAD;
4329 
4330 		enqueue_task(rq, p, queue_flags);
4331 	}
4332 	if (running)
4333 		set_curr_task(rq, p);
4334 
4335 	check_class_changed(rq, p, prev_class, oldprio);
4336 
4337 	/* Avoid rq from going away on us: */
4338 	preempt_disable();
4339 	task_rq_unlock(rq, p, &rf);
4340 
4341 	if (pi)
4342 		rt_mutex_adjust_pi(p);
4343 
4344 	/* Run balance callbacks after we've adjusted the PI chain: */
4345 	balance_callback(rq);
4346 	preempt_enable();
4347 
4348 	return 0;
4349 }
4350 
4351 static int _sched_setscheduler(struct task_struct *p, int policy,
4352 			       const struct sched_param *param, bool check)
4353 {
4354 	struct sched_attr attr = {
4355 		.sched_policy   = policy,
4356 		.sched_priority = param->sched_priority,
4357 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4358 	};
4359 
4360 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4361 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4362 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4363 		policy &= ~SCHED_RESET_ON_FORK;
4364 		attr.sched_policy = policy;
4365 	}
4366 
4367 	return __sched_setscheduler(p, &attr, check, true);
4368 }
4369 /**
4370  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4371  * @p: the task in question.
4372  * @policy: new policy.
4373  * @param: structure containing the new RT priority.
4374  *
4375  * Return: 0 on success. An error code otherwise.
4376  *
4377  * NOTE that the task may be already dead.
4378  */
4379 int sched_setscheduler(struct task_struct *p, int policy,
4380 		       const struct sched_param *param)
4381 {
4382 	return _sched_setscheduler(p, policy, param, true);
4383 }
4384 EXPORT_SYMBOL_GPL(sched_setscheduler);
4385 
4386 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4387 {
4388 	return __sched_setscheduler(p, attr, true, true);
4389 }
4390 EXPORT_SYMBOL_GPL(sched_setattr);
4391 
4392 /**
4393  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4394  * @p: the task in question.
4395  * @policy: new policy.
4396  * @param: structure containing the new RT priority.
4397  *
4398  * Just like sched_setscheduler, only don't bother checking if the
4399  * current context has permission.  For example, this is needed in
4400  * stop_machine(): we create temporary high priority worker threads,
4401  * but our caller might not have that capability.
4402  *
4403  * Return: 0 on success. An error code otherwise.
4404  */
4405 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4406 			       const struct sched_param *param)
4407 {
4408 	return _sched_setscheduler(p, policy, param, false);
4409 }
4410 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4411 
4412 static int
4413 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4414 {
4415 	struct sched_param lparam;
4416 	struct task_struct *p;
4417 	int retval;
4418 
4419 	if (!param || pid < 0)
4420 		return -EINVAL;
4421 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4422 		return -EFAULT;
4423 
4424 	rcu_read_lock();
4425 	retval = -ESRCH;
4426 	p = find_process_by_pid(pid);
4427 	if (p != NULL)
4428 		retval = sched_setscheduler(p, policy, &lparam);
4429 	rcu_read_unlock();
4430 
4431 	return retval;
4432 }
4433 
4434 /*
4435  * Mimics kernel/events/core.c perf_copy_attr().
4436  */
4437 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4438 {
4439 	u32 size;
4440 	int ret;
4441 
4442 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4443 		return -EFAULT;
4444 
4445 	/* Zero the full structure, so that a short copy will be nice: */
4446 	memset(attr, 0, sizeof(*attr));
4447 
4448 	ret = get_user(size, &uattr->size);
4449 	if (ret)
4450 		return ret;
4451 
4452 	/* Bail out on silly large: */
4453 	if (size > PAGE_SIZE)
4454 		goto err_size;
4455 
4456 	/* ABI compatibility quirk: */
4457 	if (!size)
4458 		size = SCHED_ATTR_SIZE_VER0;
4459 
4460 	if (size < SCHED_ATTR_SIZE_VER0)
4461 		goto err_size;
4462 
4463 	/*
4464 	 * If we're handed a bigger struct than we know of,
4465 	 * ensure all the unknown bits are 0 - i.e. new
4466 	 * user-space does not rely on any kernel feature
4467 	 * extensions we dont know about yet.
4468 	 */
4469 	if (size > sizeof(*attr)) {
4470 		unsigned char __user *addr;
4471 		unsigned char __user *end;
4472 		unsigned char val;
4473 
4474 		addr = (void __user *)uattr + sizeof(*attr);
4475 		end  = (void __user *)uattr + size;
4476 
4477 		for (; addr < end; addr++) {
4478 			ret = get_user(val, addr);
4479 			if (ret)
4480 				return ret;
4481 			if (val)
4482 				goto err_size;
4483 		}
4484 		size = sizeof(*attr);
4485 	}
4486 
4487 	ret = copy_from_user(attr, uattr, size);
4488 	if (ret)
4489 		return -EFAULT;
4490 
4491 	/*
4492 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4493 	 * to be strict and return an error on out-of-bounds values?
4494 	 */
4495 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4496 
4497 	return 0;
4498 
4499 err_size:
4500 	put_user(sizeof(*attr), &uattr->size);
4501 	return -E2BIG;
4502 }
4503 
4504 /**
4505  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4506  * @pid: the pid in question.
4507  * @policy: new policy.
4508  * @param: structure containing the new RT priority.
4509  *
4510  * Return: 0 on success. An error code otherwise.
4511  */
4512 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4513 {
4514 	if (policy < 0)
4515 		return -EINVAL;
4516 
4517 	return do_sched_setscheduler(pid, policy, param);
4518 }
4519 
4520 /**
4521  * sys_sched_setparam - set/change the RT priority of a thread
4522  * @pid: the pid in question.
4523  * @param: structure containing the new RT priority.
4524  *
4525  * Return: 0 on success. An error code otherwise.
4526  */
4527 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4528 {
4529 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4530 }
4531 
4532 /**
4533  * sys_sched_setattr - same as above, but with extended sched_attr
4534  * @pid: the pid in question.
4535  * @uattr: structure containing the extended parameters.
4536  * @flags: for future extension.
4537  */
4538 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4539 			       unsigned int, flags)
4540 {
4541 	struct sched_attr attr;
4542 	struct task_struct *p;
4543 	int retval;
4544 
4545 	if (!uattr || pid < 0 || flags)
4546 		return -EINVAL;
4547 
4548 	retval = sched_copy_attr(uattr, &attr);
4549 	if (retval)
4550 		return retval;
4551 
4552 	if ((int)attr.sched_policy < 0)
4553 		return -EINVAL;
4554 
4555 	rcu_read_lock();
4556 	retval = -ESRCH;
4557 	p = find_process_by_pid(pid);
4558 	if (p != NULL)
4559 		retval = sched_setattr(p, &attr);
4560 	rcu_read_unlock();
4561 
4562 	return retval;
4563 }
4564 
4565 /**
4566  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4567  * @pid: the pid in question.
4568  *
4569  * Return: On success, the policy of the thread. Otherwise, a negative error
4570  * code.
4571  */
4572 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4573 {
4574 	struct task_struct *p;
4575 	int retval;
4576 
4577 	if (pid < 0)
4578 		return -EINVAL;
4579 
4580 	retval = -ESRCH;
4581 	rcu_read_lock();
4582 	p = find_process_by_pid(pid);
4583 	if (p) {
4584 		retval = security_task_getscheduler(p);
4585 		if (!retval)
4586 			retval = p->policy
4587 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4588 	}
4589 	rcu_read_unlock();
4590 	return retval;
4591 }
4592 
4593 /**
4594  * sys_sched_getparam - get the RT priority of a thread
4595  * @pid: the pid in question.
4596  * @param: structure containing the RT priority.
4597  *
4598  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4599  * code.
4600  */
4601 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4602 {
4603 	struct sched_param lp = { .sched_priority = 0 };
4604 	struct task_struct *p;
4605 	int retval;
4606 
4607 	if (!param || pid < 0)
4608 		return -EINVAL;
4609 
4610 	rcu_read_lock();
4611 	p = find_process_by_pid(pid);
4612 	retval = -ESRCH;
4613 	if (!p)
4614 		goto out_unlock;
4615 
4616 	retval = security_task_getscheduler(p);
4617 	if (retval)
4618 		goto out_unlock;
4619 
4620 	if (task_has_rt_policy(p))
4621 		lp.sched_priority = p->rt_priority;
4622 	rcu_read_unlock();
4623 
4624 	/*
4625 	 * This one might sleep, we cannot do it with a spinlock held ...
4626 	 */
4627 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4628 
4629 	return retval;
4630 
4631 out_unlock:
4632 	rcu_read_unlock();
4633 	return retval;
4634 }
4635 
4636 static int sched_read_attr(struct sched_attr __user *uattr,
4637 			   struct sched_attr *attr,
4638 			   unsigned int usize)
4639 {
4640 	int ret;
4641 
4642 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4643 		return -EFAULT;
4644 
4645 	/*
4646 	 * If we're handed a smaller struct than we know of,
4647 	 * ensure all the unknown bits are 0 - i.e. old
4648 	 * user-space does not get uncomplete information.
4649 	 */
4650 	if (usize < sizeof(*attr)) {
4651 		unsigned char *addr;
4652 		unsigned char *end;
4653 
4654 		addr = (void *)attr + usize;
4655 		end  = (void *)attr + sizeof(*attr);
4656 
4657 		for (; addr < end; addr++) {
4658 			if (*addr)
4659 				return -EFBIG;
4660 		}
4661 
4662 		attr->size = usize;
4663 	}
4664 
4665 	ret = copy_to_user(uattr, attr, attr->size);
4666 	if (ret)
4667 		return -EFAULT;
4668 
4669 	return 0;
4670 }
4671 
4672 /**
4673  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4674  * @pid: the pid in question.
4675  * @uattr: structure containing the extended parameters.
4676  * @size: sizeof(attr) for fwd/bwd comp.
4677  * @flags: for future extension.
4678  */
4679 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4680 		unsigned int, size, unsigned int, flags)
4681 {
4682 	struct sched_attr attr = {
4683 		.size = sizeof(struct sched_attr),
4684 	};
4685 	struct task_struct *p;
4686 	int retval;
4687 
4688 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4689 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4690 		return -EINVAL;
4691 
4692 	rcu_read_lock();
4693 	p = find_process_by_pid(pid);
4694 	retval = -ESRCH;
4695 	if (!p)
4696 		goto out_unlock;
4697 
4698 	retval = security_task_getscheduler(p);
4699 	if (retval)
4700 		goto out_unlock;
4701 
4702 	attr.sched_policy = p->policy;
4703 	if (p->sched_reset_on_fork)
4704 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4705 	if (task_has_dl_policy(p))
4706 		__getparam_dl(p, &attr);
4707 	else if (task_has_rt_policy(p))
4708 		attr.sched_priority = p->rt_priority;
4709 	else
4710 		attr.sched_nice = task_nice(p);
4711 
4712 	rcu_read_unlock();
4713 
4714 	retval = sched_read_attr(uattr, &attr, size);
4715 	return retval;
4716 
4717 out_unlock:
4718 	rcu_read_unlock();
4719 	return retval;
4720 }
4721 
4722 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4723 {
4724 	cpumask_var_t cpus_allowed, new_mask;
4725 	struct task_struct *p;
4726 	int retval;
4727 
4728 	rcu_read_lock();
4729 
4730 	p = find_process_by_pid(pid);
4731 	if (!p) {
4732 		rcu_read_unlock();
4733 		return -ESRCH;
4734 	}
4735 
4736 	/* Prevent p going away */
4737 	get_task_struct(p);
4738 	rcu_read_unlock();
4739 
4740 	if (p->flags & PF_NO_SETAFFINITY) {
4741 		retval = -EINVAL;
4742 		goto out_put_task;
4743 	}
4744 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4745 		retval = -ENOMEM;
4746 		goto out_put_task;
4747 	}
4748 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4749 		retval = -ENOMEM;
4750 		goto out_free_cpus_allowed;
4751 	}
4752 	retval = -EPERM;
4753 	if (!check_same_owner(p)) {
4754 		rcu_read_lock();
4755 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4756 			rcu_read_unlock();
4757 			goto out_free_new_mask;
4758 		}
4759 		rcu_read_unlock();
4760 	}
4761 
4762 	retval = security_task_setscheduler(p);
4763 	if (retval)
4764 		goto out_free_new_mask;
4765 
4766 
4767 	cpuset_cpus_allowed(p, cpus_allowed);
4768 	cpumask_and(new_mask, in_mask, cpus_allowed);
4769 
4770 	/*
4771 	 * Since bandwidth control happens on root_domain basis,
4772 	 * if admission test is enabled, we only admit -deadline
4773 	 * tasks allowed to run on all the CPUs in the task's
4774 	 * root_domain.
4775 	 */
4776 #ifdef CONFIG_SMP
4777 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4778 		rcu_read_lock();
4779 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4780 			retval = -EBUSY;
4781 			rcu_read_unlock();
4782 			goto out_free_new_mask;
4783 		}
4784 		rcu_read_unlock();
4785 	}
4786 #endif
4787 again:
4788 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4789 
4790 	if (!retval) {
4791 		cpuset_cpus_allowed(p, cpus_allowed);
4792 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4793 			/*
4794 			 * We must have raced with a concurrent cpuset
4795 			 * update. Just reset the cpus_allowed to the
4796 			 * cpuset's cpus_allowed
4797 			 */
4798 			cpumask_copy(new_mask, cpus_allowed);
4799 			goto again;
4800 		}
4801 	}
4802 out_free_new_mask:
4803 	free_cpumask_var(new_mask);
4804 out_free_cpus_allowed:
4805 	free_cpumask_var(cpus_allowed);
4806 out_put_task:
4807 	put_task_struct(p);
4808 	return retval;
4809 }
4810 
4811 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4812 			     struct cpumask *new_mask)
4813 {
4814 	if (len < cpumask_size())
4815 		cpumask_clear(new_mask);
4816 	else if (len > cpumask_size())
4817 		len = cpumask_size();
4818 
4819 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4820 }
4821 
4822 /**
4823  * sys_sched_setaffinity - set the CPU affinity of a process
4824  * @pid: pid of the process
4825  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4826  * @user_mask_ptr: user-space pointer to the new CPU mask
4827  *
4828  * Return: 0 on success. An error code otherwise.
4829  */
4830 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4831 		unsigned long __user *, user_mask_ptr)
4832 {
4833 	cpumask_var_t new_mask;
4834 	int retval;
4835 
4836 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4837 		return -ENOMEM;
4838 
4839 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4840 	if (retval == 0)
4841 		retval = sched_setaffinity(pid, new_mask);
4842 	free_cpumask_var(new_mask);
4843 	return retval;
4844 }
4845 
4846 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4847 {
4848 	struct task_struct *p;
4849 	unsigned long flags;
4850 	int retval;
4851 
4852 	rcu_read_lock();
4853 
4854 	retval = -ESRCH;
4855 	p = find_process_by_pid(pid);
4856 	if (!p)
4857 		goto out_unlock;
4858 
4859 	retval = security_task_getscheduler(p);
4860 	if (retval)
4861 		goto out_unlock;
4862 
4863 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4864 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4865 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4866 
4867 out_unlock:
4868 	rcu_read_unlock();
4869 
4870 	return retval;
4871 }
4872 
4873 /**
4874  * sys_sched_getaffinity - get the CPU affinity of a process
4875  * @pid: pid of the process
4876  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4877  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4878  *
4879  * Return: size of CPU mask copied to user_mask_ptr on success. An
4880  * error code otherwise.
4881  */
4882 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4883 		unsigned long __user *, user_mask_ptr)
4884 {
4885 	int ret;
4886 	cpumask_var_t mask;
4887 
4888 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4889 		return -EINVAL;
4890 	if (len & (sizeof(unsigned long)-1))
4891 		return -EINVAL;
4892 
4893 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4894 		return -ENOMEM;
4895 
4896 	ret = sched_getaffinity(pid, mask);
4897 	if (ret == 0) {
4898 		size_t retlen = min_t(size_t, len, cpumask_size());
4899 
4900 		if (copy_to_user(user_mask_ptr, mask, retlen))
4901 			ret = -EFAULT;
4902 		else
4903 			ret = retlen;
4904 	}
4905 	free_cpumask_var(mask);
4906 
4907 	return ret;
4908 }
4909 
4910 /**
4911  * sys_sched_yield - yield the current processor to other threads.
4912  *
4913  * This function yields the current CPU to other tasks. If there are no
4914  * other threads running on this CPU then this function will return.
4915  *
4916  * Return: 0.
4917  */
4918 SYSCALL_DEFINE0(sched_yield)
4919 {
4920 	struct rq *rq = this_rq_lock();
4921 
4922 	schedstat_inc(rq->yld_count);
4923 	current->sched_class->yield_task(rq);
4924 
4925 	/*
4926 	 * Since we are going to call schedule() anyway, there's
4927 	 * no need to preempt or enable interrupts:
4928 	 */
4929 	__release(rq->lock);
4930 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4931 	do_raw_spin_unlock(&rq->lock);
4932 	sched_preempt_enable_no_resched();
4933 
4934 	schedule();
4935 
4936 	return 0;
4937 }
4938 
4939 #ifndef CONFIG_PREEMPT
4940 int __sched _cond_resched(void)
4941 {
4942 	if (should_resched(0)) {
4943 		preempt_schedule_common();
4944 		return 1;
4945 	}
4946 	return 0;
4947 }
4948 EXPORT_SYMBOL(_cond_resched);
4949 #endif
4950 
4951 /*
4952  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4953  * call schedule, and on return reacquire the lock.
4954  *
4955  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4956  * operations here to prevent schedule() from being called twice (once via
4957  * spin_unlock(), once by hand).
4958  */
4959 int __cond_resched_lock(spinlock_t *lock)
4960 {
4961 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4962 	int ret = 0;
4963 
4964 	lockdep_assert_held(lock);
4965 
4966 	if (spin_needbreak(lock) || resched) {
4967 		spin_unlock(lock);
4968 		if (resched)
4969 			preempt_schedule_common();
4970 		else
4971 			cpu_relax();
4972 		ret = 1;
4973 		spin_lock(lock);
4974 	}
4975 	return ret;
4976 }
4977 EXPORT_SYMBOL(__cond_resched_lock);
4978 
4979 int __sched __cond_resched_softirq(void)
4980 {
4981 	BUG_ON(!in_softirq());
4982 
4983 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4984 		local_bh_enable();
4985 		preempt_schedule_common();
4986 		local_bh_disable();
4987 		return 1;
4988 	}
4989 	return 0;
4990 }
4991 EXPORT_SYMBOL(__cond_resched_softirq);
4992 
4993 /**
4994  * yield - yield the current processor to other threads.
4995  *
4996  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4997  *
4998  * The scheduler is at all times free to pick the calling task as the most
4999  * eligible task to run, if removing the yield() call from your code breaks
5000  * it, its already broken.
5001  *
5002  * Typical broken usage is:
5003  *
5004  * while (!event)
5005  *	yield();
5006  *
5007  * where one assumes that yield() will let 'the other' process run that will
5008  * make event true. If the current task is a SCHED_FIFO task that will never
5009  * happen. Never use yield() as a progress guarantee!!
5010  *
5011  * If you want to use yield() to wait for something, use wait_event().
5012  * If you want to use yield() to be 'nice' for others, use cond_resched().
5013  * If you still want to use yield(), do not!
5014  */
5015 void __sched yield(void)
5016 {
5017 	set_current_state(TASK_RUNNING);
5018 	sys_sched_yield();
5019 }
5020 EXPORT_SYMBOL(yield);
5021 
5022 /**
5023  * yield_to - yield the current processor to another thread in
5024  * your thread group, or accelerate that thread toward the
5025  * processor it's on.
5026  * @p: target task
5027  * @preempt: whether task preemption is allowed or not
5028  *
5029  * It's the caller's job to ensure that the target task struct
5030  * can't go away on us before we can do any checks.
5031  *
5032  * Return:
5033  *	true (>0) if we indeed boosted the target task.
5034  *	false (0) if we failed to boost the target.
5035  *	-ESRCH if there's no task to yield to.
5036  */
5037 int __sched yield_to(struct task_struct *p, bool preempt)
5038 {
5039 	struct task_struct *curr = current;
5040 	struct rq *rq, *p_rq;
5041 	unsigned long flags;
5042 	int yielded = 0;
5043 
5044 	local_irq_save(flags);
5045 	rq = this_rq();
5046 
5047 again:
5048 	p_rq = task_rq(p);
5049 	/*
5050 	 * If we're the only runnable task on the rq and target rq also
5051 	 * has only one task, there's absolutely no point in yielding.
5052 	 */
5053 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5054 		yielded = -ESRCH;
5055 		goto out_irq;
5056 	}
5057 
5058 	double_rq_lock(rq, p_rq);
5059 	if (task_rq(p) != p_rq) {
5060 		double_rq_unlock(rq, p_rq);
5061 		goto again;
5062 	}
5063 
5064 	if (!curr->sched_class->yield_to_task)
5065 		goto out_unlock;
5066 
5067 	if (curr->sched_class != p->sched_class)
5068 		goto out_unlock;
5069 
5070 	if (task_running(p_rq, p) || p->state)
5071 		goto out_unlock;
5072 
5073 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5074 	if (yielded) {
5075 		schedstat_inc(rq->yld_count);
5076 		/*
5077 		 * Make p's CPU reschedule; pick_next_entity takes care of
5078 		 * fairness.
5079 		 */
5080 		if (preempt && rq != p_rq)
5081 			resched_curr(p_rq);
5082 	}
5083 
5084 out_unlock:
5085 	double_rq_unlock(rq, p_rq);
5086 out_irq:
5087 	local_irq_restore(flags);
5088 
5089 	if (yielded > 0)
5090 		schedule();
5091 
5092 	return yielded;
5093 }
5094 EXPORT_SYMBOL_GPL(yield_to);
5095 
5096 int io_schedule_prepare(void)
5097 {
5098 	int old_iowait = current->in_iowait;
5099 
5100 	current->in_iowait = 1;
5101 	blk_schedule_flush_plug(current);
5102 
5103 	return old_iowait;
5104 }
5105 
5106 void io_schedule_finish(int token)
5107 {
5108 	current->in_iowait = token;
5109 }
5110 
5111 /*
5112  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5113  * that process accounting knows that this is a task in IO wait state.
5114  */
5115 long __sched io_schedule_timeout(long timeout)
5116 {
5117 	int token;
5118 	long ret;
5119 
5120 	token = io_schedule_prepare();
5121 	ret = schedule_timeout(timeout);
5122 	io_schedule_finish(token);
5123 
5124 	return ret;
5125 }
5126 EXPORT_SYMBOL(io_schedule_timeout);
5127 
5128 void io_schedule(void)
5129 {
5130 	int token;
5131 
5132 	token = io_schedule_prepare();
5133 	schedule();
5134 	io_schedule_finish(token);
5135 }
5136 EXPORT_SYMBOL(io_schedule);
5137 
5138 /**
5139  * sys_sched_get_priority_max - return maximum RT priority.
5140  * @policy: scheduling class.
5141  *
5142  * Return: On success, this syscall returns the maximum
5143  * rt_priority that can be used by a given scheduling class.
5144  * On failure, a negative error code is returned.
5145  */
5146 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5147 {
5148 	int ret = -EINVAL;
5149 
5150 	switch (policy) {
5151 	case SCHED_FIFO:
5152 	case SCHED_RR:
5153 		ret = MAX_USER_RT_PRIO-1;
5154 		break;
5155 	case SCHED_DEADLINE:
5156 	case SCHED_NORMAL:
5157 	case SCHED_BATCH:
5158 	case SCHED_IDLE:
5159 		ret = 0;
5160 		break;
5161 	}
5162 	return ret;
5163 }
5164 
5165 /**
5166  * sys_sched_get_priority_min - return minimum RT priority.
5167  * @policy: scheduling class.
5168  *
5169  * Return: On success, this syscall returns the minimum
5170  * rt_priority that can be used by a given scheduling class.
5171  * On failure, a negative error code is returned.
5172  */
5173 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5174 {
5175 	int ret = -EINVAL;
5176 
5177 	switch (policy) {
5178 	case SCHED_FIFO:
5179 	case SCHED_RR:
5180 		ret = 1;
5181 		break;
5182 	case SCHED_DEADLINE:
5183 	case SCHED_NORMAL:
5184 	case SCHED_BATCH:
5185 	case SCHED_IDLE:
5186 		ret = 0;
5187 	}
5188 	return ret;
5189 }
5190 
5191 /**
5192  * sys_sched_rr_get_interval - return the default timeslice of a process.
5193  * @pid: pid of the process.
5194  * @interval: userspace pointer to the timeslice value.
5195  *
5196  * this syscall writes the default timeslice value of a given process
5197  * into the user-space timespec buffer. A value of '0' means infinity.
5198  *
5199  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5200  * an error code.
5201  */
5202 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5203 		struct timespec __user *, interval)
5204 {
5205 	struct task_struct *p;
5206 	unsigned int time_slice;
5207 	struct rq_flags rf;
5208 	struct timespec t;
5209 	struct rq *rq;
5210 	int retval;
5211 
5212 	if (pid < 0)
5213 		return -EINVAL;
5214 
5215 	retval = -ESRCH;
5216 	rcu_read_lock();
5217 	p = find_process_by_pid(pid);
5218 	if (!p)
5219 		goto out_unlock;
5220 
5221 	retval = security_task_getscheduler(p);
5222 	if (retval)
5223 		goto out_unlock;
5224 
5225 	rq = task_rq_lock(p, &rf);
5226 	time_slice = 0;
5227 	if (p->sched_class->get_rr_interval)
5228 		time_slice = p->sched_class->get_rr_interval(rq, p);
5229 	task_rq_unlock(rq, p, &rf);
5230 
5231 	rcu_read_unlock();
5232 	jiffies_to_timespec(time_slice, &t);
5233 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5234 	return retval;
5235 
5236 out_unlock:
5237 	rcu_read_unlock();
5238 	return retval;
5239 }
5240 
5241 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5242 
5243 void sched_show_task(struct task_struct *p)
5244 {
5245 	unsigned long free = 0;
5246 	int ppid;
5247 	unsigned long state = p->state;
5248 
5249 	/* Make sure the string lines up properly with the number of task states: */
5250 	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5251 
5252 	if (!try_get_task_stack(p))
5253 		return;
5254 	if (state)
5255 		state = __ffs(state) + 1;
5256 	printk(KERN_INFO "%-15.15s %c", p->comm,
5257 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5258 	if (state == TASK_RUNNING)
5259 		printk(KERN_CONT "  running task    ");
5260 #ifdef CONFIG_DEBUG_STACK_USAGE
5261 	free = stack_not_used(p);
5262 #endif
5263 	ppid = 0;
5264 	rcu_read_lock();
5265 	if (pid_alive(p))
5266 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5267 	rcu_read_unlock();
5268 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5269 		task_pid_nr(p), ppid,
5270 		(unsigned long)task_thread_info(p)->flags);
5271 
5272 	print_worker_info(KERN_INFO, p);
5273 	show_stack(p, NULL);
5274 	put_task_stack(p);
5275 }
5276 
5277 void show_state_filter(unsigned long state_filter)
5278 {
5279 	struct task_struct *g, *p;
5280 
5281 #if BITS_PER_LONG == 32
5282 	printk(KERN_INFO
5283 		"  task                PC stack   pid father\n");
5284 #else
5285 	printk(KERN_INFO
5286 		"  task                        PC stack   pid father\n");
5287 #endif
5288 	rcu_read_lock();
5289 	for_each_process_thread(g, p) {
5290 		/*
5291 		 * reset the NMI-timeout, listing all files on a slow
5292 		 * console might take a lot of time:
5293 		 * Also, reset softlockup watchdogs on all CPUs, because
5294 		 * another CPU might be blocked waiting for us to process
5295 		 * an IPI.
5296 		 */
5297 		touch_nmi_watchdog();
5298 		touch_all_softlockup_watchdogs();
5299 		if (!state_filter || (p->state & state_filter))
5300 			sched_show_task(p);
5301 	}
5302 
5303 #ifdef CONFIG_SCHED_DEBUG
5304 	if (!state_filter)
5305 		sysrq_sched_debug_show();
5306 #endif
5307 	rcu_read_unlock();
5308 	/*
5309 	 * Only show locks if all tasks are dumped:
5310 	 */
5311 	if (!state_filter)
5312 		debug_show_all_locks();
5313 }
5314 
5315 void init_idle_bootup_task(struct task_struct *idle)
5316 {
5317 	idle->sched_class = &idle_sched_class;
5318 }
5319 
5320 /**
5321  * init_idle - set up an idle thread for a given CPU
5322  * @idle: task in question
5323  * @cpu: CPU the idle task belongs to
5324  *
5325  * NOTE: this function does not set the idle thread's NEED_RESCHED
5326  * flag, to make booting more robust.
5327  */
5328 void init_idle(struct task_struct *idle, int cpu)
5329 {
5330 	struct rq *rq = cpu_rq(cpu);
5331 	unsigned long flags;
5332 
5333 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5334 	raw_spin_lock(&rq->lock);
5335 
5336 	__sched_fork(0, idle);
5337 	idle->state = TASK_RUNNING;
5338 	idle->se.exec_start = sched_clock();
5339 	idle->flags |= PF_IDLE;
5340 
5341 	kasan_unpoison_task_stack(idle);
5342 
5343 #ifdef CONFIG_SMP
5344 	/*
5345 	 * Its possible that init_idle() gets called multiple times on a task,
5346 	 * in that case do_set_cpus_allowed() will not do the right thing.
5347 	 *
5348 	 * And since this is boot we can forgo the serialization.
5349 	 */
5350 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5351 #endif
5352 	/*
5353 	 * We're having a chicken and egg problem, even though we are
5354 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5355 	 * lockdep check in task_group() will fail.
5356 	 *
5357 	 * Similar case to sched_fork(). / Alternatively we could
5358 	 * use task_rq_lock() here and obtain the other rq->lock.
5359 	 *
5360 	 * Silence PROVE_RCU
5361 	 */
5362 	rcu_read_lock();
5363 	__set_task_cpu(idle, cpu);
5364 	rcu_read_unlock();
5365 
5366 	rq->curr = rq->idle = idle;
5367 	idle->on_rq = TASK_ON_RQ_QUEUED;
5368 #ifdef CONFIG_SMP
5369 	idle->on_cpu = 1;
5370 #endif
5371 	raw_spin_unlock(&rq->lock);
5372 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5373 
5374 	/* Set the preempt count _outside_ the spinlocks! */
5375 	init_idle_preempt_count(idle, cpu);
5376 
5377 	/*
5378 	 * The idle tasks have their own, simple scheduling class:
5379 	 */
5380 	idle->sched_class = &idle_sched_class;
5381 	ftrace_graph_init_idle_task(idle, cpu);
5382 	vtime_init_idle(idle, cpu);
5383 #ifdef CONFIG_SMP
5384 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5385 #endif
5386 }
5387 
5388 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5389 			      const struct cpumask *trial)
5390 {
5391 	int ret = 1, trial_cpus;
5392 	struct dl_bw *cur_dl_b;
5393 	unsigned long flags;
5394 
5395 	if (!cpumask_weight(cur))
5396 		return ret;
5397 
5398 	rcu_read_lock_sched();
5399 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5400 	trial_cpus = cpumask_weight(trial);
5401 
5402 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5403 	if (cur_dl_b->bw != -1 &&
5404 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5405 		ret = 0;
5406 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5407 	rcu_read_unlock_sched();
5408 
5409 	return ret;
5410 }
5411 
5412 int task_can_attach(struct task_struct *p,
5413 		    const struct cpumask *cs_cpus_allowed)
5414 {
5415 	int ret = 0;
5416 
5417 	/*
5418 	 * Kthreads which disallow setaffinity shouldn't be moved
5419 	 * to a new cpuset; we don't want to change their CPU
5420 	 * affinity and isolating such threads by their set of
5421 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5422 	 * applicable for such threads.  This prevents checking for
5423 	 * success of set_cpus_allowed_ptr() on all attached tasks
5424 	 * before cpus_allowed may be changed.
5425 	 */
5426 	if (p->flags & PF_NO_SETAFFINITY) {
5427 		ret = -EINVAL;
5428 		goto out;
5429 	}
5430 
5431 #ifdef CONFIG_SMP
5432 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5433 					      cs_cpus_allowed)) {
5434 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5435 							cs_cpus_allowed);
5436 		struct dl_bw *dl_b;
5437 		bool overflow;
5438 		int cpus;
5439 		unsigned long flags;
5440 
5441 		rcu_read_lock_sched();
5442 		dl_b = dl_bw_of(dest_cpu);
5443 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5444 		cpus = dl_bw_cpus(dest_cpu);
5445 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5446 		if (overflow)
5447 			ret = -EBUSY;
5448 		else {
5449 			/*
5450 			 * We reserve space for this task in the destination
5451 			 * root_domain, as we can't fail after this point.
5452 			 * We will free resources in the source root_domain
5453 			 * later on (see set_cpus_allowed_dl()).
5454 			 */
5455 			__dl_add(dl_b, p->dl.dl_bw);
5456 		}
5457 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5458 		rcu_read_unlock_sched();
5459 
5460 	}
5461 #endif
5462 out:
5463 	return ret;
5464 }
5465 
5466 #ifdef CONFIG_SMP
5467 
5468 bool sched_smp_initialized __read_mostly;
5469 
5470 #ifdef CONFIG_NUMA_BALANCING
5471 /* Migrate current task p to target_cpu */
5472 int migrate_task_to(struct task_struct *p, int target_cpu)
5473 {
5474 	struct migration_arg arg = { p, target_cpu };
5475 	int curr_cpu = task_cpu(p);
5476 
5477 	if (curr_cpu == target_cpu)
5478 		return 0;
5479 
5480 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5481 		return -EINVAL;
5482 
5483 	/* TODO: This is not properly updating schedstats */
5484 
5485 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5486 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5487 }
5488 
5489 /*
5490  * Requeue a task on a given node and accurately track the number of NUMA
5491  * tasks on the runqueues
5492  */
5493 void sched_setnuma(struct task_struct *p, int nid)
5494 {
5495 	bool queued, running;
5496 	struct rq_flags rf;
5497 	struct rq *rq;
5498 
5499 	rq = task_rq_lock(p, &rf);
5500 	queued = task_on_rq_queued(p);
5501 	running = task_current(rq, p);
5502 
5503 	if (queued)
5504 		dequeue_task(rq, p, DEQUEUE_SAVE);
5505 	if (running)
5506 		put_prev_task(rq, p);
5507 
5508 	p->numa_preferred_nid = nid;
5509 
5510 	if (queued)
5511 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5512 	if (running)
5513 		set_curr_task(rq, p);
5514 	task_rq_unlock(rq, p, &rf);
5515 }
5516 #endif /* CONFIG_NUMA_BALANCING */
5517 
5518 #ifdef CONFIG_HOTPLUG_CPU
5519 /*
5520  * Ensure that the idle task is using init_mm right before its CPU goes
5521  * offline.
5522  */
5523 void idle_task_exit(void)
5524 {
5525 	struct mm_struct *mm = current->active_mm;
5526 
5527 	BUG_ON(cpu_online(smp_processor_id()));
5528 
5529 	if (mm != &init_mm) {
5530 		switch_mm_irqs_off(mm, &init_mm, current);
5531 		finish_arch_post_lock_switch();
5532 	}
5533 	mmdrop(mm);
5534 }
5535 
5536 /*
5537  * Since this CPU is going 'away' for a while, fold any nr_active delta
5538  * we might have. Assumes we're called after migrate_tasks() so that the
5539  * nr_active count is stable. We need to take the teardown thread which
5540  * is calling this into account, so we hand in adjust = 1 to the load
5541  * calculation.
5542  *
5543  * Also see the comment "Global load-average calculations".
5544  */
5545 static void calc_load_migrate(struct rq *rq)
5546 {
5547 	long delta = calc_load_fold_active(rq, 1);
5548 	if (delta)
5549 		atomic_long_add(delta, &calc_load_tasks);
5550 }
5551 
5552 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5553 {
5554 }
5555 
5556 static const struct sched_class fake_sched_class = {
5557 	.put_prev_task = put_prev_task_fake,
5558 };
5559 
5560 static struct task_struct fake_task = {
5561 	/*
5562 	 * Avoid pull_{rt,dl}_task()
5563 	 */
5564 	.prio = MAX_PRIO + 1,
5565 	.sched_class = &fake_sched_class,
5566 };
5567 
5568 /*
5569  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5570  * try_to_wake_up()->select_task_rq().
5571  *
5572  * Called with rq->lock held even though we'er in stop_machine() and
5573  * there's no concurrency possible, we hold the required locks anyway
5574  * because of lock validation efforts.
5575  */
5576 static void migrate_tasks(struct rq *dead_rq)
5577 {
5578 	struct rq *rq = dead_rq;
5579 	struct task_struct *next, *stop = rq->stop;
5580 	struct rq_flags rf;
5581 	int dest_cpu;
5582 
5583 	/*
5584 	 * Fudge the rq selection such that the below task selection loop
5585 	 * doesn't get stuck on the currently eligible stop task.
5586 	 *
5587 	 * We're currently inside stop_machine() and the rq is either stuck
5588 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5589 	 * either way we should never end up calling schedule() until we're
5590 	 * done here.
5591 	 */
5592 	rq->stop = NULL;
5593 
5594 	/*
5595 	 * put_prev_task() and pick_next_task() sched
5596 	 * class method both need to have an up-to-date
5597 	 * value of rq->clock[_task]
5598 	 */
5599 	rq_pin_lock(rq, &rf);
5600 	update_rq_clock(rq);
5601 	rq_unpin_lock(rq, &rf);
5602 
5603 	for (;;) {
5604 		/*
5605 		 * There's this thread running, bail when that's the only
5606 		 * remaining thread:
5607 		 */
5608 		if (rq->nr_running == 1)
5609 			break;
5610 
5611 		/*
5612 		 * pick_next_task() assumes pinned rq->lock:
5613 		 */
5614 		rq_repin_lock(rq, &rf);
5615 		next = pick_next_task(rq, &fake_task, &rf);
5616 		BUG_ON(!next);
5617 		next->sched_class->put_prev_task(rq, next);
5618 
5619 		/*
5620 		 * Rules for changing task_struct::cpus_allowed are holding
5621 		 * both pi_lock and rq->lock, such that holding either
5622 		 * stabilizes the mask.
5623 		 *
5624 		 * Drop rq->lock is not quite as disastrous as it usually is
5625 		 * because !cpu_active at this point, which means load-balance
5626 		 * will not interfere. Also, stop-machine.
5627 		 */
5628 		rq_unpin_lock(rq, &rf);
5629 		raw_spin_unlock(&rq->lock);
5630 		raw_spin_lock(&next->pi_lock);
5631 		raw_spin_lock(&rq->lock);
5632 
5633 		/*
5634 		 * Since we're inside stop-machine, _nothing_ should have
5635 		 * changed the task, WARN if weird stuff happened, because in
5636 		 * that case the above rq->lock drop is a fail too.
5637 		 */
5638 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5639 			raw_spin_unlock(&next->pi_lock);
5640 			continue;
5641 		}
5642 
5643 		/* Find suitable destination for @next, with force if needed. */
5644 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5645 
5646 		rq = __migrate_task(rq, next, dest_cpu);
5647 		if (rq != dead_rq) {
5648 			raw_spin_unlock(&rq->lock);
5649 			rq = dead_rq;
5650 			raw_spin_lock(&rq->lock);
5651 		}
5652 		raw_spin_unlock(&next->pi_lock);
5653 	}
5654 
5655 	rq->stop = stop;
5656 }
5657 #endif /* CONFIG_HOTPLUG_CPU */
5658 
5659 void set_rq_online(struct rq *rq)
5660 {
5661 	if (!rq->online) {
5662 		const struct sched_class *class;
5663 
5664 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5665 		rq->online = 1;
5666 
5667 		for_each_class(class) {
5668 			if (class->rq_online)
5669 				class->rq_online(rq);
5670 		}
5671 	}
5672 }
5673 
5674 void set_rq_offline(struct rq *rq)
5675 {
5676 	if (rq->online) {
5677 		const struct sched_class *class;
5678 
5679 		for_each_class(class) {
5680 			if (class->rq_offline)
5681 				class->rq_offline(rq);
5682 		}
5683 
5684 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5685 		rq->online = 0;
5686 	}
5687 }
5688 
5689 static void set_cpu_rq_start_time(unsigned int cpu)
5690 {
5691 	struct rq *rq = cpu_rq(cpu);
5692 
5693 	rq->age_stamp = sched_clock_cpu(cpu);
5694 }
5695 
5696 /*
5697  * used to mark begin/end of suspend/resume:
5698  */
5699 static int num_cpus_frozen;
5700 
5701 /*
5702  * Update cpusets according to cpu_active mask.  If cpusets are
5703  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5704  * around partition_sched_domains().
5705  *
5706  * If we come here as part of a suspend/resume, don't touch cpusets because we
5707  * want to restore it back to its original state upon resume anyway.
5708  */
5709 static void cpuset_cpu_active(void)
5710 {
5711 	if (cpuhp_tasks_frozen) {
5712 		/*
5713 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5714 		 * resume sequence. As long as this is not the last online
5715 		 * operation in the resume sequence, just build a single sched
5716 		 * domain, ignoring cpusets.
5717 		 */
5718 		num_cpus_frozen--;
5719 		if (likely(num_cpus_frozen)) {
5720 			partition_sched_domains(1, NULL, NULL);
5721 			return;
5722 		}
5723 		/*
5724 		 * This is the last CPU online operation. So fall through and
5725 		 * restore the original sched domains by considering the
5726 		 * cpuset configurations.
5727 		 */
5728 	}
5729 	cpuset_update_active_cpus(true);
5730 }
5731 
5732 static int cpuset_cpu_inactive(unsigned int cpu)
5733 {
5734 	unsigned long flags;
5735 	struct dl_bw *dl_b;
5736 	bool overflow;
5737 	int cpus;
5738 
5739 	if (!cpuhp_tasks_frozen) {
5740 		rcu_read_lock_sched();
5741 		dl_b = dl_bw_of(cpu);
5742 
5743 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5744 		cpus = dl_bw_cpus(cpu);
5745 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
5746 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5747 
5748 		rcu_read_unlock_sched();
5749 
5750 		if (overflow)
5751 			return -EBUSY;
5752 		cpuset_update_active_cpus(false);
5753 	} else {
5754 		num_cpus_frozen++;
5755 		partition_sched_domains(1, NULL, NULL);
5756 	}
5757 	return 0;
5758 }
5759 
5760 int sched_cpu_activate(unsigned int cpu)
5761 {
5762 	struct rq *rq = cpu_rq(cpu);
5763 	unsigned long flags;
5764 
5765 	set_cpu_active(cpu, true);
5766 
5767 	if (sched_smp_initialized) {
5768 		sched_domains_numa_masks_set(cpu);
5769 		cpuset_cpu_active();
5770 	}
5771 
5772 	/*
5773 	 * Put the rq online, if not already. This happens:
5774 	 *
5775 	 * 1) In the early boot process, because we build the real domains
5776 	 *    after all CPUs have been brought up.
5777 	 *
5778 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5779 	 *    domains.
5780 	 */
5781 	raw_spin_lock_irqsave(&rq->lock, flags);
5782 	if (rq->rd) {
5783 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5784 		set_rq_online(rq);
5785 	}
5786 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5787 
5788 	update_max_interval();
5789 
5790 	return 0;
5791 }
5792 
5793 int sched_cpu_deactivate(unsigned int cpu)
5794 {
5795 	int ret;
5796 
5797 	set_cpu_active(cpu, false);
5798 	/*
5799 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5800 	 * users of this state to go away such that all new such users will
5801 	 * observe it.
5802 	 *
5803 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5804 	 * not imply sync_sched(), so wait for both.
5805 	 *
5806 	 * Do sync before park smpboot threads to take care the rcu boost case.
5807 	 */
5808 	if (IS_ENABLED(CONFIG_PREEMPT))
5809 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
5810 	else
5811 		synchronize_rcu();
5812 
5813 	if (!sched_smp_initialized)
5814 		return 0;
5815 
5816 	ret = cpuset_cpu_inactive(cpu);
5817 	if (ret) {
5818 		set_cpu_active(cpu, true);
5819 		return ret;
5820 	}
5821 	sched_domains_numa_masks_clear(cpu);
5822 	return 0;
5823 }
5824 
5825 static void sched_rq_cpu_starting(unsigned int cpu)
5826 {
5827 	struct rq *rq = cpu_rq(cpu);
5828 
5829 	rq->calc_load_update = calc_load_update;
5830 	update_max_interval();
5831 }
5832 
5833 int sched_cpu_starting(unsigned int cpu)
5834 {
5835 	set_cpu_rq_start_time(cpu);
5836 	sched_rq_cpu_starting(cpu);
5837 	return 0;
5838 }
5839 
5840 #ifdef CONFIG_HOTPLUG_CPU
5841 int sched_cpu_dying(unsigned int cpu)
5842 {
5843 	struct rq *rq = cpu_rq(cpu);
5844 	unsigned long flags;
5845 
5846 	/* Handle pending wakeups and then migrate everything off */
5847 	sched_ttwu_pending();
5848 	raw_spin_lock_irqsave(&rq->lock, flags);
5849 	if (rq->rd) {
5850 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5851 		set_rq_offline(rq);
5852 	}
5853 	migrate_tasks(rq);
5854 	BUG_ON(rq->nr_running != 1);
5855 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5856 	calc_load_migrate(rq);
5857 	update_max_interval();
5858 	nohz_balance_exit_idle(cpu);
5859 	hrtick_clear(rq);
5860 	return 0;
5861 }
5862 #endif
5863 
5864 #ifdef CONFIG_SCHED_SMT
5865 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5866 
5867 static void sched_init_smt(void)
5868 {
5869 	/*
5870 	 * We've enumerated all CPUs and will assume that if any CPU
5871 	 * has SMT siblings, CPU0 will too.
5872 	 */
5873 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5874 		static_branch_enable(&sched_smt_present);
5875 }
5876 #else
5877 static inline void sched_init_smt(void) { }
5878 #endif
5879 
5880 void __init sched_init_smp(void)
5881 {
5882 	cpumask_var_t non_isolated_cpus;
5883 
5884 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5885 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5886 
5887 	sched_init_numa();
5888 
5889 	/*
5890 	 * There's no userspace yet to cause hotplug operations; hence all the
5891 	 * CPU masks are stable and all blatant races in the below code cannot
5892 	 * happen.
5893 	 */
5894 	mutex_lock(&sched_domains_mutex);
5895 	init_sched_domains(cpu_active_mask);
5896 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5897 	if (cpumask_empty(non_isolated_cpus))
5898 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5899 	mutex_unlock(&sched_domains_mutex);
5900 
5901 	/* Move init over to a non-isolated CPU */
5902 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5903 		BUG();
5904 	sched_init_granularity();
5905 	free_cpumask_var(non_isolated_cpus);
5906 
5907 	init_sched_rt_class();
5908 	init_sched_dl_class();
5909 
5910 	sched_init_smt();
5911 	sched_clock_init_late();
5912 
5913 	sched_smp_initialized = true;
5914 }
5915 
5916 static int __init migration_init(void)
5917 {
5918 	sched_rq_cpu_starting(smp_processor_id());
5919 	return 0;
5920 }
5921 early_initcall(migration_init);
5922 
5923 #else
5924 void __init sched_init_smp(void)
5925 {
5926 	sched_init_granularity();
5927 	sched_clock_init_late();
5928 }
5929 #endif /* CONFIG_SMP */
5930 
5931 int in_sched_functions(unsigned long addr)
5932 {
5933 	return in_lock_functions(addr) ||
5934 		(addr >= (unsigned long)__sched_text_start
5935 		&& addr < (unsigned long)__sched_text_end);
5936 }
5937 
5938 #ifdef CONFIG_CGROUP_SCHED
5939 /*
5940  * Default task group.
5941  * Every task in system belongs to this group at bootup.
5942  */
5943 struct task_group root_task_group;
5944 LIST_HEAD(task_groups);
5945 
5946 /* Cacheline aligned slab cache for task_group */
5947 static struct kmem_cache *task_group_cache __read_mostly;
5948 #endif
5949 
5950 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5951 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5952 
5953 #define WAIT_TABLE_BITS 8
5954 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5955 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5956 
5957 wait_queue_head_t *bit_waitqueue(void *word, int bit)
5958 {
5959 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5960 	unsigned long val = (unsigned long)word << shift | bit;
5961 
5962 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5963 }
5964 EXPORT_SYMBOL(bit_waitqueue);
5965 
5966 void __init sched_init(void)
5967 {
5968 	int i, j;
5969 	unsigned long alloc_size = 0, ptr;
5970 
5971 	sched_clock_init();
5972 
5973 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
5974 		init_waitqueue_head(bit_wait_table + i);
5975 
5976 #ifdef CONFIG_FAIR_GROUP_SCHED
5977 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5978 #endif
5979 #ifdef CONFIG_RT_GROUP_SCHED
5980 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5981 #endif
5982 	if (alloc_size) {
5983 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5984 
5985 #ifdef CONFIG_FAIR_GROUP_SCHED
5986 		root_task_group.se = (struct sched_entity **)ptr;
5987 		ptr += nr_cpu_ids * sizeof(void **);
5988 
5989 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5990 		ptr += nr_cpu_ids * sizeof(void **);
5991 
5992 #endif /* CONFIG_FAIR_GROUP_SCHED */
5993 #ifdef CONFIG_RT_GROUP_SCHED
5994 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5995 		ptr += nr_cpu_ids * sizeof(void **);
5996 
5997 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5998 		ptr += nr_cpu_ids * sizeof(void **);
5999 
6000 #endif /* CONFIG_RT_GROUP_SCHED */
6001 	}
6002 #ifdef CONFIG_CPUMASK_OFFSTACK
6003 	for_each_possible_cpu(i) {
6004 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6005 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6006 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6007 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6008 	}
6009 #endif /* CONFIG_CPUMASK_OFFSTACK */
6010 
6011 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6012 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6013 
6014 #ifdef CONFIG_SMP
6015 	init_defrootdomain();
6016 #endif
6017 
6018 #ifdef CONFIG_RT_GROUP_SCHED
6019 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6020 			global_rt_period(), global_rt_runtime());
6021 #endif /* CONFIG_RT_GROUP_SCHED */
6022 
6023 #ifdef CONFIG_CGROUP_SCHED
6024 	task_group_cache = KMEM_CACHE(task_group, 0);
6025 
6026 	list_add(&root_task_group.list, &task_groups);
6027 	INIT_LIST_HEAD(&root_task_group.children);
6028 	INIT_LIST_HEAD(&root_task_group.siblings);
6029 	autogroup_init(&init_task);
6030 #endif /* CONFIG_CGROUP_SCHED */
6031 
6032 	for_each_possible_cpu(i) {
6033 		struct rq *rq;
6034 
6035 		rq = cpu_rq(i);
6036 		raw_spin_lock_init(&rq->lock);
6037 		rq->nr_running = 0;
6038 		rq->calc_load_active = 0;
6039 		rq->calc_load_update = jiffies + LOAD_FREQ;
6040 		init_cfs_rq(&rq->cfs);
6041 		init_rt_rq(&rq->rt);
6042 		init_dl_rq(&rq->dl);
6043 #ifdef CONFIG_FAIR_GROUP_SCHED
6044 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6045 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6046 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6047 		/*
6048 		 * How much CPU bandwidth does root_task_group get?
6049 		 *
6050 		 * In case of task-groups formed thr' the cgroup filesystem, it
6051 		 * gets 100% of the CPU resources in the system. This overall
6052 		 * system CPU resource is divided among the tasks of
6053 		 * root_task_group and its child task-groups in a fair manner,
6054 		 * based on each entity's (task or task-group's) weight
6055 		 * (se->load.weight).
6056 		 *
6057 		 * In other words, if root_task_group has 10 tasks of weight
6058 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6059 		 * then A0's share of the CPU resource is:
6060 		 *
6061 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6062 		 *
6063 		 * We achieve this by letting root_task_group's tasks sit
6064 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6065 		 */
6066 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6067 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6068 #endif /* CONFIG_FAIR_GROUP_SCHED */
6069 
6070 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6071 #ifdef CONFIG_RT_GROUP_SCHED
6072 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6073 #endif
6074 
6075 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6076 			rq->cpu_load[j] = 0;
6077 
6078 #ifdef CONFIG_SMP
6079 		rq->sd = NULL;
6080 		rq->rd = NULL;
6081 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6082 		rq->balance_callback = NULL;
6083 		rq->active_balance = 0;
6084 		rq->next_balance = jiffies;
6085 		rq->push_cpu = 0;
6086 		rq->cpu = i;
6087 		rq->online = 0;
6088 		rq->idle_stamp = 0;
6089 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6090 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6091 
6092 		INIT_LIST_HEAD(&rq->cfs_tasks);
6093 
6094 		rq_attach_root(rq, &def_root_domain);
6095 #ifdef CONFIG_NO_HZ_COMMON
6096 		rq->last_load_update_tick = jiffies;
6097 		rq->nohz_flags = 0;
6098 #endif
6099 #ifdef CONFIG_NO_HZ_FULL
6100 		rq->last_sched_tick = 0;
6101 #endif
6102 #endif /* CONFIG_SMP */
6103 		init_rq_hrtick(rq);
6104 		atomic_set(&rq->nr_iowait, 0);
6105 	}
6106 
6107 	set_load_weight(&init_task);
6108 
6109 	/*
6110 	 * The boot idle thread does lazy MMU switching as well:
6111 	 */
6112 	mmgrab(&init_mm);
6113 	enter_lazy_tlb(&init_mm, current);
6114 
6115 	/*
6116 	 * Make us the idle thread. Technically, schedule() should not be
6117 	 * called from this thread, however somewhere below it might be,
6118 	 * but because we are the idle thread, we just pick up running again
6119 	 * when this runqueue becomes "idle".
6120 	 */
6121 	init_idle(current, smp_processor_id());
6122 
6123 	calc_load_update = jiffies + LOAD_FREQ;
6124 
6125 #ifdef CONFIG_SMP
6126 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6127 	/* May be allocated at isolcpus cmdline parse time */
6128 	if (cpu_isolated_map == NULL)
6129 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6130 	idle_thread_set_boot_cpu();
6131 	set_cpu_rq_start_time(smp_processor_id());
6132 #endif
6133 	init_sched_fair_class();
6134 
6135 	init_schedstats();
6136 
6137 	scheduler_running = 1;
6138 }
6139 
6140 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6141 static inline int preempt_count_equals(int preempt_offset)
6142 {
6143 	int nested = preempt_count() + rcu_preempt_depth();
6144 
6145 	return (nested == preempt_offset);
6146 }
6147 
6148 void __might_sleep(const char *file, int line, int preempt_offset)
6149 {
6150 	/*
6151 	 * Blocking primitives will set (and therefore destroy) current->state,
6152 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6153 	 * otherwise we will destroy state.
6154 	 */
6155 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6156 			"do not call blocking ops when !TASK_RUNNING; "
6157 			"state=%lx set at [<%p>] %pS\n",
6158 			current->state,
6159 			(void *)current->task_state_change,
6160 			(void *)current->task_state_change);
6161 
6162 	___might_sleep(file, line, preempt_offset);
6163 }
6164 EXPORT_SYMBOL(__might_sleep);
6165 
6166 void ___might_sleep(const char *file, int line, int preempt_offset)
6167 {
6168 	/* Ratelimiting timestamp: */
6169 	static unsigned long prev_jiffy;
6170 
6171 	unsigned long preempt_disable_ip;
6172 
6173 	/* WARN_ON_ONCE() by default, no rate limit required: */
6174 	rcu_sleep_check();
6175 
6176 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6177 	     !is_idle_task(current)) ||
6178 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6179 		return;
6180 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6181 		return;
6182 	prev_jiffy = jiffies;
6183 
6184 	/* Save this before calling printk(), since that will clobber it: */
6185 	preempt_disable_ip = get_preempt_disable_ip(current);
6186 
6187 	printk(KERN_ERR
6188 		"BUG: sleeping function called from invalid context at %s:%d\n",
6189 			file, line);
6190 	printk(KERN_ERR
6191 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6192 			in_atomic(), irqs_disabled(),
6193 			current->pid, current->comm);
6194 
6195 	if (task_stack_end_corrupted(current))
6196 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6197 
6198 	debug_show_held_locks(current);
6199 	if (irqs_disabled())
6200 		print_irqtrace_events(current);
6201 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6202 	    && !preempt_count_equals(preempt_offset)) {
6203 		pr_err("Preemption disabled at:");
6204 		print_ip_sym(preempt_disable_ip);
6205 		pr_cont("\n");
6206 	}
6207 	dump_stack();
6208 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6209 }
6210 EXPORT_SYMBOL(___might_sleep);
6211 #endif
6212 
6213 #ifdef CONFIG_MAGIC_SYSRQ
6214 void normalize_rt_tasks(void)
6215 {
6216 	struct task_struct *g, *p;
6217 	struct sched_attr attr = {
6218 		.sched_policy = SCHED_NORMAL,
6219 	};
6220 
6221 	read_lock(&tasklist_lock);
6222 	for_each_process_thread(g, p) {
6223 		/*
6224 		 * Only normalize user tasks:
6225 		 */
6226 		if (p->flags & PF_KTHREAD)
6227 			continue;
6228 
6229 		p->se.exec_start = 0;
6230 		schedstat_set(p->se.statistics.wait_start,  0);
6231 		schedstat_set(p->se.statistics.sleep_start, 0);
6232 		schedstat_set(p->se.statistics.block_start, 0);
6233 
6234 		if (!dl_task(p) && !rt_task(p)) {
6235 			/*
6236 			 * Renice negative nice level userspace
6237 			 * tasks back to 0:
6238 			 */
6239 			if (task_nice(p) < 0)
6240 				set_user_nice(p, 0);
6241 			continue;
6242 		}
6243 
6244 		__sched_setscheduler(p, &attr, false, false);
6245 	}
6246 	read_unlock(&tasklist_lock);
6247 }
6248 
6249 #endif /* CONFIG_MAGIC_SYSRQ */
6250 
6251 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6252 /*
6253  * These functions are only useful for the IA64 MCA handling, or kdb.
6254  *
6255  * They can only be called when the whole system has been
6256  * stopped - every CPU needs to be quiescent, and no scheduling
6257  * activity can take place. Using them for anything else would
6258  * be a serious bug, and as a result, they aren't even visible
6259  * under any other configuration.
6260  */
6261 
6262 /**
6263  * curr_task - return the current task for a given CPU.
6264  * @cpu: the processor in question.
6265  *
6266  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6267  *
6268  * Return: The current task for @cpu.
6269  */
6270 struct task_struct *curr_task(int cpu)
6271 {
6272 	return cpu_curr(cpu);
6273 }
6274 
6275 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6276 
6277 #ifdef CONFIG_IA64
6278 /**
6279  * set_curr_task - set the current task for a given CPU.
6280  * @cpu: the processor in question.
6281  * @p: the task pointer to set.
6282  *
6283  * Description: This function must only be used when non-maskable interrupts
6284  * are serviced on a separate stack. It allows the architecture to switch the
6285  * notion of the current task on a CPU in a non-blocking manner. This function
6286  * must be called with all CPU's synchronized, and interrupts disabled, the
6287  * and caller must save the original value of the current task (see
6288  * curr_task() above) and restore that value before reenabling interrupts and
6289  * re-starting the system.
6290  *
6291  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6292  */
6293 void ia64_set_curr_task(int cpu, struct task_struct *p)
6294 {
6295 	cpu_curr(cpu) = p;
6296 }
6297 
6298 #endif
6299 
6300 #ifdef CONFIG_CGROUP_SCHED
6301 /* task_group_lock serializes the addition/removal of task groups */
6302 static DEFINE_SPINLOCK(task_group_lock);
6303 
6304 static void sched_free_group(struct task_group *tg)
6305 {
6306 	free_fair_sched_group(tg);
6307 	free_rt_sched_group(tg);
6308 	autogroup_free(tg);
6309 	kmem_cache_free(task_group_cache, tg);
6310 }
6311 
6312 /* allocate runqueue etc for a new task group */
6313 struct task_group *sched_create_group(struct task_group *parent)
6314 {
6315 	struct task_group *tg;
6316 
6317 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6318 	if (!tg)
6319 		return ERR_PTR(-ENOMEM);
6320 
6321 	if (!alloc_fair_sched_group(tg, parent))
6322 		goto err;
6323 
6324 	if (!alloc_rt_sched_group(tg, parent))
6325 		goto err;
6326 
6327 	return tg;
6328 
6329 err:
6330 	sched_free_group(tg);
6331 	return ERR_PTR(-ENOMEM);
6332 }
6333 
6334 void sched_online_group(struct task_group *tg, struct task_group *parent)
6335 {
6336 	unsigned long flags;
6337 
6338 	spin_lock_irqsave(&task_group_lock, flags);
6339 	list_add_rcu(&tg->list, &task_groups);
6340 
6341 	/* Root should already exist: */
6342 	WARN_ON(!parent);
6343 
6344 	tg->parent = parent;
6345 	INIT_LIST_HEAD(&tg->children);
6346 	list_add_rcu(&tg->siblings, &parent->children);
6347 	spin_unlock_irqrestore(&task_group_lock, flags);
6348 
6349 	online_fair_sched_group(tg);
6350 }
6351 
6352 /* rcu callback to free various structures associated with a task group */
6353 static void sched_free_group_rcu(struct rcu_head *rhp)
6354 {
6355 	/* Now it should be safe to free those cfs_rqs: */
6356 	sched_free_group(container_of(rhp, struct task_group, rcu));
6357 }
6358 
6359 void sched_destroy_group(struct task_group *tg)
6360 {
6361 	/* Wait for possible concurrent references to cfs_rqs complete: */
6362 	call_rcu(&tg->rcu, sched_free_group_rcu);
6363 }
6364 
6365 void sched_offline_group(struct task_group *tg)
6366 {
6367 	unsigned long flags;
6368 
6369 	/* End participation in shares distribution: */
6370 	unregister_fair_sched_group(tg);
6371 
6372 	spin_lock_irqsave(&task_group_lock, flags);
6373 	list_del_rcu(&tg->list);
6374 	list_del_rcu(&tg->siblings);
6375 	spin_unlock_irqrestore(&task_group_lock, flags);
6376 }
6377 
6378 static void sched_change_group(struct task_struct *tsk, int type)
6379 {
6380 	struct task_group *tg;
6381 
6382 	/*
6383 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6384 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6385 	 * to prevent lockdep warnings.
6386 	 */
6387 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6388 			  struct task_group, css);
6389 	tg = autogroup_task_group(tsk, tg);
6390 	tsk->sched_task_group = tg;
6391 
6392 #ifdef CONFIG_FAIR_GROUP_SCHED
6393 	if (tsk->sched_class->task_change_group)
6394 		tsk->sched_class->task_change_group(tsk, type);
6395 	else
6396 #endif
6397 		set_task_rq(tsk, task_cpu(tsk));
6398 }
6399 
6400 /*
6401  * Change task's runqueue when it moves between groups.
6402  *
6403  * The caller of this function should have put the task in its new group by
6404  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6405  * its new group.
6406  */
6407 void sched_move_task(struct task_struct *tsk)
6408 {
6409 	int queued, running;
6410 	struct rq_flags rf;
6411 	struct rq *rq;
6412 
6413 	rq = task_rq_lock(tsk, &rf);
6414 	update_rq_clock(rq);
6415 
6416 	running = task_current(rq, tsk);
6417 	queued = task_on_rq_queued(tsk);
6418 
6419 	if (queued)
6420 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
6421 	if (running)
6422 		put_prev_task(rq, tsk);
6423 
6424 	sched_change_group(tsk, TASK_MOVE_GROUP);
6425 
6426 	if (queued)
6427 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
6428 	if (running)
6429 		set_curr_task(rq, tsk);
6430 
6431 	task_rq_unlock(rq, tsk, &rf);
6432 }
6433 #endif /* CONFIG_CGROUP_SCHED */
6434 
6435 #ifdef CONFIG_RT_GROUP_SCHED
6436 /*
6437  * Ensure that the real time constraints are schedulable.
6438  */
6439 static DEFINE_MUTEX(rt_constraints_mutex);
6440 
6441 /* Must be called with tasklist_lock held */
6442 static inline int tg_has_rt_tasks(struct task_group *tg)
6443 {
6444 	struct task_struct *g, *p;
6445 
6446 	/*
6447 	 * Autogroups do not have RT tasks; see autogroup_create().
6448 	 */
6449 	if (task_group_is_autogroup(tg))
6450 		return 0;
6451 
6452 	for_each_process_thread(g, p) {
6453 		if (rt_task(p) && task_group(p) == tg)
6454 			return 1;
6455 	}
6456 
6457 	return 0;
6458 }
6459 
6460 struct rt_schedulable_data {
6461 	struct task_group *tg;
6462 	u64 rt_period;
6463 	u64 rt_runtime;
6464 };
6465 
6466 static int tg_rt_schedulable(struct task_group *tg, void *data)
6467 {
6468 	struct rt_schedulable_data *d = data;
6469 	struct task_group *child;
6470 	unsigned long total, sum = 0;
6471 	u64 period, runtime;
6472 
6473 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6474 	runtime = tg->rt_bandwidth.rt_runtime;
6475 
6476 	if (tg == d->tg) {
6477 		period = d->rt_period;
6478 		runtime = d->rt_runtime;
6479 	}
6480 
6481 	/*
6482 	 * Cannot have more runtime than the period.
6483 	 */
6484 	if (runtime > period && runtime != RUNTIME_INF)
6485 		return -EINVAL;
6486 
6487 	/*
6488 	 * Ensure we don't starve existing RT tasks.
6489 	 */
6490 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6491 		return -EBUSY;
6492 
6493 	total = to_ratio(period, runtime);
6494 
6495 	/*
6496 	 * Nobody can have more than the global setting allows.
6497 	 */
6498 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6499 		return -EINVAL;
6500 
6501 	/*
6502 	 * The sum of our children's runtime should not exceed our own.
6503 	 */
6504 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6505 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6506 		runtime = child->rt_bandwidth.rt_runtime;
6507 
6508 		if (child == d->tg) {
6509 			period = d->rt_period;
6510 			runtime = d->rt_runtime;
6511 		}
6512 
6513 		sum += to_ratio(period, runtime);
6514 	}
6515 
6516 	if (sum > total)
6517 		return -EINVAL;
6518 
6519 	return 0;
6520 }
6521 
6522 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6523 {
6524 	int ret;
6525 
6526 	struct rt_schedulable_data data = {
6527 		.tg = tg,
6528 		.rt_period = period,
6529 		.rt_runtime = runtime,
6530 	};
6531 
6532 	rcu_read_lock();
6533 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6534 	rcu_read_unlock();
6535 
6536 	return ret;
6537 }
6538 
6539 static int tg_set_rt_bandwidth(struct task_group *tg,
6540 		u64 rt_period, u64 rt_runtime)
6541 {
6542 	int i, err = 0;
6543 
6544 	/*
6545 	 * Disallowing the root group RT runtime is BAD, it would disallow the
6546 	 * kernel creating (and or operating) RT threads.
6547 	 */
6548 	if (tg == &root_task_group && rt_runtime == 0)
6549 		return -EINVAL;
6550 
6551 	/* No period doesn't make any sense. */
6552 	if (rt_period == 0)
6553 		return -EINVAL;
6554 
6555 	mutex_lock(&rt_constraints_mutex);
6556 	read_lock(&tasklist_lock);
6557 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6558 	if (err)
6559 		goto unlock;
6560 
6561 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6562 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6563 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6564 
6565 	for_each_possible_cpu(i) {
6566 		struct rt_rq *rt_rq = tg->rt_rq[i];
6567 
6568 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6569 		rt_rq->rt_runtime = rt_runtime;
6570 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6571 	}
6572 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6573 unlock:
6574 	read_unlock(&tasklist_lock);
6575 	mutex_unlock(&rt_constraints_mutex);
6576 
6577 	return err;
6578 }
6579 
6580 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6581 {
6582 	u64 rt_runtime, rt_period;
6583 
6584 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6585 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6586 	if (rt_runtime_us < 0)
6587 		rt_runtime = RUNTIME_INF;
6588 
6589 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6590 }
6591 
6592 static long sched_group_rt_runtime(struct task_group *tg)
6593 {
6594 	u64 rt_runtime_us;
6595 
6596 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6597 		return -1;
6598 
6599 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6600 	do_div(rt_runtime_us, NSEC_PER_USEC);
6601 	return rt_runtime_us;
6602 }
6603 
6604 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6605 {
6606 	u64 rt_runtime, rt_period;
6607 
6608 	rt_period = rt_period_us * NSEC_PER_USEC;
6609 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6610 
6611 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6612 }
6613 
6614 static long sched_group_rt_period(struct task_group *tg)
6615 {
6616 	u64 rt_period_us;
6617 
6618 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6619 	do_div(rt_period_us, NSEC_PER_USEC);
6620 	return rt_period_us;
6621 }
6622 #endif /* CONFIG_RT_GROUP_SCHED */
6623 
6624 #ifdef CONFIG_RT_GROUP_SCHED
6625 static int sched_rt_global_constraints(void)
6626 {
6627 	int ret = 0;
6628 
6629 	mutex_lock(&rt_constraints_mutex);
6630 	read_lock(&tasklist_lock);
6631 	ret = __rt_schedulable(NULL, 0, 0);
6632 	read_unlock(&tasklist_lock);
6633 	mutex_unlock(&rt_constraints_mutex);
6634 
6635 	return ret;
6636 }
6637 
6638 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6639 {
6640 	/* Don't accept realtime tasks when there is no way for them to run */
6641 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6642 		return 0;
6643 
6644 	return 1;
6645 }
6646 
6647 #else /* !CONFIG_RT_GROUP_SCHED */
6648 static int sched_rt_global_constraints(void)
6649 {
6650 	unsigned long flags;
6651 	int i;
6652 
6653 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6654 	for_each_possible_cpu(i) {
6655 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6656 
6657 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6658 		rt_rq->rt_runtime = global_rt_runtime();
6659 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6660 	}
6661 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6662 
6663 	return 0;
6664 }
6665 #endif /* CONFIG_RT_GROUP_SCHED */
6666 
6667 static int sched_dl_global_validate(void)
6668 {
6669 	u64 runtime = global_rt_runtime();
6670 	u64 period = global_rt_period();
6671 	u64 new_bw = to_ratio(period, runtime);
6672 	struct dl_bw *dl_b;
6673 	int cpu, ret = 0;
6674 	unsigned long flags;
6675 
6676 	/*
6677 	 * Here we want to check the bandwidth not being set to some
6678 	 * value smaller than the currently allocated bandwidth in
6679 	 * any of the root_domains.
6680 	 *
6681 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6682 	 * cycling on root_domains... Discussion on different/better
6683 	 * solutions is welcome!
6684 	 */
6685 	for_each_possible_cpu(cpu) {
6686 		rcu_read_lock_sched();
6687 		dl_b = dl_bw_of(cpu);
6688 
6689 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6690 		if (new_bw < dl_b->total_bw)
6691 			ret = -EBUSY;
6692 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6693 
6694 		rcu_read_unlock_sched();
6695 
6696 		if (ret)
6697 			break;
6698 	}
6699 
6700 	return ret;
6701 }
6702 
6703 static void sched_dl_do_global(void)
6704 {
6705 	u64 new_bw = -1;
6706 	struct dl_bw *dl_b;
6707 	int cpu;
6708 	unsigned long flags;
6709 
6710 	def_dl_bandwidth.dl_period = global_rt_period();
6711 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
6712 
6713 	if (global_rt_runtime() != RUNTIME_INF)
6714 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6715 
6716 	/*
6717 	 * FIXME: As above...
6718 	 */
6719 	for_each_possible_cpu(cpu) {
6720 		rcu_read_lock_sched();
6721 		dl_b = dl_bw_of(cpu);
6722 
6723 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6724 		dl_b->bw = new_bw;
6725 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6726 
6727 		rcu_read_unlock_sched();
6728 	}
6729 }
6730 
6731 static int sched_rt_global_validate(void)
6732 {
6733 	if (sysctl_sched_rt_period <= 0)
6734 		return -EINVAL;
6735 
6736 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6737 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6738 		return -EINVAL;
6739 
6740 	return 0;
6741 }
6742 
6743 static void sched_rt_do_global(void)
6744 {
6745 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
6746 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6747 }
6748 
6749 int sched_rt_handler(struct ctl_table *table, int write,
6750 		void __user *buffer, size_t *lenp,
6751 		loff_t *ppos)
6752 {
6753 	int old_period, old_runtime;
6754 	static DEFINE_MUTEX(mutex);
6755 	int ret;
6756 
6757 	mutex_lock(&mutex);
6758 	old_period = sysctl_sched_rt_period;
6759 	old_runtime = sysctl_sched_rt_runtime;
6760 
6761 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6762 
6763 	if (!ret && write) {
6764 		ret = sched_rt_global_validate();
6765 		if (ret)
6766 			goto undo;
6767 
6768 		ret = sched_dl_global_validate();
6769 		if (ret)
6770 			goto undo;
6771 
6772 		ret = sched_rt_global_constraints();
6773 		if (ret)
6774 			goto undo;
6775 
6776 		sched_rt_do_global();
6777 		sched_dl_do_global();
6778 	}
6779 	if (0) {
6780 undo:
6781 		sysctl_sched_rt_period = old_period;
6782 		sysctl_sched_rt_runtime = old_runtime;
6783 	}
6784 	mutex_unlock(&mutex);
6785 
6786 	return ret;
6787 }
6788 
6789 int sched_rr_handler(struct ctl_table *table, int write,
6790 		void __user *buffer, size_t *lenp,
6791 		loff_t *ppos)
6792 {
6793 	int ret;
6794 	static DEFINE_MUTEX(mutex);
6795 
6796 	mutex_lock(&mutex);
6797 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6798 	/*
6799 	 * Make sure that internally we keep jiffies.
6800 	 * Also, writing zero resets the timeslice to default:
6801 	 */
6802 	if (!ret && write) {
6803 		sched_rr_timeslice =
6804 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6805 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6806 	}
6807 	mutex_unlock(&mutex);
6808 	return ret;
6809 }
6810 
6811 #ifdef CONFIG_CGROUP_SCHED
6812 
6813 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6814 {
6815 	return css ? container_of(css, struct task_group, css) : NULL;
6816 }
6817 
6818 static struct cgroup_subsys_state *
6819 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6820 {
6821 	struct task_group *parent = css_tg(parent_css);
6822 	struct task_group *tg;
6823 
6824 	if (!parent) {
6825 		/* This is early initialization for the top cgroup */
6826 		return &root_task_group.css;
6827 	}
6828 
6829 	tg = sched_create_group(parent);
6830 	if (IS_ERR(tg))
6831 		return ERR_PTR(-ENOMEM);
6832 
6833 	return &tg->css;
6834 }
6835 
6836 /* Expose task group only after completing cgroup initialization */
6837 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6838 {
6839 	struct task_group *tg = css_tg(css);
6840 	struct task_group *parent = css_tg(css->parent);
6841 
6842 	if (parent)
6843 		sched_online_group(tg, parent);
6844 	return 0;
6845 }
6846 
6847 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6848 {
6849 	struct task_group *tg = css_tg(css);
6850 
6851 	sched_offline_group(tg);
6852 }
6853 
6854 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6855 {
6856 	struct task_group *tg = css_tg(css);
6857 
6858 	/*
6859 	 * Relies on the RCU grace period between css_released() and this.
6860 	 */
6861 	sched_free_group(tg);
6862 }
6863 
6864 /*
6865  * This is called before wake_up_new_task(), therefore we really only
6866  * have to set its group bits, all the other stuff does not apply.
6867  */
6868 static void cpu_cgroup_fork(struct task_struct *task)
6869 {
6870 	struct rq_flags rf;
6871 	struct rq *rq;
6872 
6873 	rq = task_rq_lock(task, &rf);
6874 
6875 	update_rq_clock(rq);
6876 	sched_change_group(task, TASK_SET_GROUP);
6877 
6878 	task_rq_unlock(rq, task, &rf);
6879 }
6880 
6881 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6882 {
6883 	struct task_struct *task;
6884 	struct cgroup_subsys_state *css;
6885 	int ret = 0;
6886 
6887 	cgroup_taskset_for_each(task, css, tset) {
6888 #ifdef CONFIG_RT_GROUP_SCHED
6889 		if (!sched_rt_can_attach(css_tg(css), task))
6890 			return -EINVAL;
6891 #else
6892 		/* We don't support RT-tasks being in separate groups */
6893 		if (task->sched_class != &fair_sched_class)
6894 			return -EINVAL;
6895 #endif
6896 		/*
6897 		 * Serialize against wake_up_new_task() such that if its
6898 		 * running, we're sure to observe its full state.
6899 		 */
6900 		raw_spin_lock_irq(&task->pi_lock);
6901 		/*
6902 		 * Avoid calling sched_move_task() before wake_up_new_task()
6903 		 * has happened. This would lead to problems with PELT, due to
6904 		 * move wanting to detach+attach while we're not attached yet.
6905 		 */
6906 		if (task->state == TASK_NEW)
6907 			ret = -EINVAL;
6908 		raw_spin_unlock_irq(&task->pi_lock);
6909 
6910 		if (ret)
6911 			break;
6912 	}
6913 	return ret;
6914 }
6915 
6916 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6917 {
6918 	struct task_struct *task;
6919 	struct cgroup_subsys_state *css;
6920 
6921 	cgroup_taskset_for_each(task, css, tset)
6922 		sched_move_task(task);
6923 }
6924 
6925 #ifdef CONFIG_FAIR_GROUP_SCHED
6926 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6927 				struct cftype *cftype, u64 shareval)
6928 {
6929 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6930 }
6931 
6932 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6933 			       struct cftype *cft)
6934 {
6935 	struct task_group *tg = css_tg(css);
6936 
6937 	return (u64) scale_load_down(tg->shares);
6938 }
6939 
6940 #ifdef CONFIG_CFS_BANDWIDTH
6941 static DEFINE_MUTEX(cfs_constraints_mutex);
6942 
6943 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6944 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6945 
6946 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6947 
6948 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6949 {
6950 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6951 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6952 
6953 	if (tg == &root_task_group)
6954 		return -EINVAL;
6955 
6956 	/*
6957 	 * Ensure we have at some amount of bandwidth every period.  This is
6958 	 * to prevent reaching a state of large arrears when throttled via
6959 	 * entity_tick() resulting in prolonged exit starvation.
6960 	 */
6961 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6962 		return -EINVAL;
6963 
6964 	/*
6965 	 * Likewise, bound things on the otherside by preventing insane quota
6966 	 * periods.  This also allows us to normalize in computing quota
6967 	 * feasibility.
6968 	 */
6969 	if (period > max_cfs_quota_period)
6970 		return -EINVAL;
6971 
6972 	/*
6973 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6974 	 * unthrottle_offline_cfs_rqs().
6975 	 */
6976 	get_online_cpus();
6977 	mutex_lock(&cfs_constraints_mutex);
6978 	ret = __cfs_schedulable(tg, period, quota);
6979 	if (ret)
6980 		goto out_unlock;
6981 
6982 	runtime_enabled = quota != RUNTIME_INF;
6983 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6984 	/*
6985 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6986 	 * before making related changes, and on->off must occur afterwards
6987 	 */
6988 	if (runtime_enabled && !runtime_was_enabled)
6989 		cfs_bandwidth_usage_inc();
6990 	raw_spin_lock_irq(&cfs_b->lock);
6991 	cfs_b->period = ns_to_ktime(period);
6992 	cfs_b->quota = quota;
6993 
6994 	__refill_cfs_bandwidth_runtime(cfs_b);
6995 
6996 	/* Restart the period timer (if active) to handle new period expiry: */
6997 	if (runtime_enabled)
6998 		start_cfs_bandwidth(cfs_b);
6999 
7000 	raw_spin_unlock_irq(&cfs_b->lock);
7001 
7002 	for_each_online_cpu(i) {
7003 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7004 		struct rq *rq = cfs_rq->rq;
7005 
7006 		raw_spin_lock_irq(&rq->lock);
7007 		cfs_rq->runtime_enabled = runtime_enabled;
7008 		cfs_rq->runtime_remaining = 0;
7009 
7010 		if (cfs_rq->throttled)
7011 			unthrottle_cfs_rq(cfs_rq);
7012 		raw_spin_unlock_irq(&rq->lock);
7013 	}
7014 	if (runtime_was_enabled && !runtime_enabled)
7015 		cfs_bandwidth_usage_dec();
7016 out_unlock:
7017 	mutex_unlock(&cfs_constraints_mutex);
7018 	put_online_cpus();
7019 
7020 	return ret;
7021 }
7022 
7023 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7024 {
7025 	u64 quota, period;
7026 
7027 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7028 	if (cfs_quota_us < 0)
7029 		quota = RUNTIME_INF;
7030 	else
7031 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7032 
7033 	return tg_set_cfs_bandwidth(tg, period, quota);
7034 }
7035 
7036 long tg_get_cfs_quota(struct task_group *tg)
7037 {
7038 	u64 quota_us;
7039 
7040 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7041 		return -1;
7042 
7043 	quota_us = tg->cfs_bandwidth.quota;
7044 	do_div(quota_us, NSEC_PER_USEC);
7045 
7046 	return quota_us;
7047 }
7048 
7049 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7050 {
7051 	u64 quota, period;
7052 
7053 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7054 	quota = tg->cfs_bandwidth.quota;
7055 
7056 	return tg_set_cfs_bandwidth(tg, period, quota);
7057 }
7058 
7059 long tg_get_cfs_period(struct task_group *tg)
7060 {
7061 	u64 cfs_period_us;
7062 
7063 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7064 	do_div(cfs_period_us, NSEC_PER_USEC);
7065 
7066 	return cfs_period_us;
7067 }
7068 
7069 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7070 				  struct cftype *cft)
7071 {
7072 	return tg_get_cfs_quota(css_tg(css));
7073 }
7074 
7075 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7076 				   struct cftype *cftype, s64 cfs_quota_us)
7077 {
7078 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7079 }
7080 
7081 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7082 				   struct cftype *cft)
7083 {
7084 	return tg_get_cfs_period(css_tg(css));
7085 }
7086 
7087 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7088 				    struct cftype *cftype, u64 cfs_period_us)
7089 {
7090 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7091 }
7092 
7093 struct cfs_schedulable_data {
7094 	struct task_group *tg;
7095 	u64 period, quota;
7096 };
7097 
7098 /*
7099  * normalize group quota/period to be quota/max_period
7100  * note: units are usecs
7101  */
7102 static u64 normalize_cfs_quota(struct task_group *tg,
7103 			       struct cfs_schedulable_data *d)
7104 {
7105 	u64 quota, period;
7106 
7107 	if (tg == d->tg) {
7108 		period = d->period;
7109 		quota = d->quota;
7110 	} else {
7111 		period = tg_get_cfs_period(tg);
7112 		quota = tg_get_cfs_quota(tg);
7113 	}
7114 
7115 	/* note: these should typically be equivalent */
7116 	if (quota == RUNTIME_INF || quota == -1)
7117 		return RUNTIME_INF;
7118 
7119 	return to_ratio(period, quota);
7120 }
7121 
7122 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7123 {
7124 	struct cfs_schedulable_data *d = data;
7125 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7126 	s64 quota = 0, parent_quota = -1;
7127 
7128 	if (!tg->parent) {
7129 		quota = RUNTIME_INF;
7130 	} else {
7131 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7132 
7133 		quota = normalize_cfs_quota(tg, d);
7134 		parent_quota = parent_b->hierarchical_quota;
7135 
7136 		/*
7137 		 * Ensure max(child_quota) <= parent_quota, inherit when no
7138 		 * limit is set:
7139 		 */
7140 		if (quota == RUNTIME_INF)
7141 			quota = parent_quota;
7142 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7143 			return -EINVAL;
7144 	}
7145 	cfs_b->hierarchical_quota = quota;
7146 
7147 	return 0;
7148 }
7149 
7150 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7151 {
7152 	int ret;
7153 	struct cfs_schedulable_data data = {
7154 		.tg = tg,
7155 		.period = period,
7156 		.quota = quota,
7157 	};
7158 
7159 	if (quota != RUNTIME_INF) {
7160 		do_div(data.period, NSEC_PER_USEC);
7161 		do_div(data.quota, NSEC_PER_USEC);
7162 	}
7163 
7164 	rcu_read_lock();
7165 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7166 	rcu_read_unlock();
7167 
7168 	return ret;
7169 }
7170 
7171 static int cpu_stats_show(struct seq_file *sf, void *v)
7172 {
7173 	struct task_group *tg = css_tg(seq_css(sf));
7174 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7175 
7176 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7177 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7178 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7179 
7180 	return 0;
7181 }
7182 #endif /* CONFIG_CFS_BANDWIDTH */
7183 #endif /* CONFIG_FAIR_GROUP_SCHED */
7184 
7185 #ifdef CONFIG_RT_GROUP_SCHED
7186 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7187 				struct cftype *cft, s64 val)
7188 {
7189 	return sched_group_set_rt_runtime(css_tg(css), val);
7190 }
7191 
7192 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7193 			       struct cftype *cft)
7194 {
7195 	return sched_group_rt_runtime(css_tg(css));
7196 }
7197 
7198 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7199 				    struct cftype *cftype, u64 rt_period_us)
7200 {
7201 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7202 }
7203 
7204 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7205 				   struct cftype *cft)
7206 {
7207 	return sched_group_rt_period(css_tg(css));
7208 }
7209 #endif /* CONFIG_RT_GROUP_SCHED */
7210 
7211 static struct cftype cpu_files[] = {
7212 #ifdef CONFIG_FAIR_GROUP_SCHED
7213 	{
7214 		.name = "shares",
7215 		.read_u64 = cpu_shares_read_u64,
7216 		.write_u64 = cpu_shares_write_u64,
7217 	},
7218 #endif
7219 #ifdef CONFIG_CFS_BANDWIDTH
7220 	{
7221 		.name = "cfs_quota_us",
7222 		.read_s64 = cpu_cfs_quota_read_s64,
7223 		.write_s64 = cpu_cfs_quota_write_s64,
7224 	},
7225 	{
7226 		.name = "cfs_period_us",
7227 		.read_u64 = cpu_cfs_period_read_u64,
7228 		.write_u64 = cpu_cfs_period_write_u64,
7229 	},
7230 	{
7231 		.name = "stat",
7232 		.seq_show = cpu_stats_show,
7233 	},
7234 #endif
7235 #ifdef CONFIG_RT_GROUP_SCHED
7236 	{
7237 		.name = "rt_runtime_us",
7238 		.read_s64 = cpu_rt_runtime_read,
7239 		.write_s64 = cpu_rt_runtime_write,
7240 	},
7241 	{
7242 		.name = "rt_period_us",
7243 		.read_u64 = cpu_rt_period_read_uint,
7244 		.write_u64 = cpu_rt_period_write_uint,
7245 	},
7246 #endif
7247 	{ }	/* Terminate */
7248 };
7249 
7250 struct cgroup_subsys cpu_cgrp_subsys = {
7251 	.css_alloc	= cpu_cgroup_css_alloc,
7252 	.css_online	= cpu_cgroup_css_online,
7253 	.css_released	= cpu_cgroup_css_released,
7254 	.css_free	= cpu_cgroup_css_free,
7255 	.fork		= cpu_cgroup_fork,
7256 	.can_attach	= cpu_cgroup_can_attach,
7257 	.attach		= cpu_cgroup_attach,
7258 	.legacy_cftypes	= cpu_files,
7259 	.early_init	= true,
7260 };
7261 
7262 #endif	/* CONFIG_CGROUP_SCHED */
7263 
7264 void dump_cpu_task(int cpu)
7265 {
7266 	pr_info("Task dump for CPU %d:\n", cpu);
7267 	sched_show_task(cpu_curr(cpu));
7268 }
7269 
7270 /*
7271  * Nice levels are multiplicative, with a gentle 10% change for every
7272  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7273  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7274  * that remained on nice 0.
7275  *
7276  * The "10% effect" is relative and cumulative: from _any_ nice level,
7277  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7278  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7279  * If a task goes up by ~10% and another task goes down by ~10% then
7280  * the relative distance between them is ~25%.)
7281  */
7282 const int sched_prio_to_weight[40] = {
7283  /* -20 */     88761,     71755,     56483,     46273,     36291,
7284  /* -15 */     29154,     23254,     18705,     14949,     11916,
7285  /* -10 */      9548,      7620,      6100,      4904,      3906,
7286  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7287  /*   0 */      1024,       820,       655,       526,       423,
7288  /*   5 */       335,       272,       215,       172,       137,
7289  /*  10 */       110,        87,        70,        56,        45,
7290  /*  15 */        36,        29,        23,        18,        15,
7291 };
7292 
7293 /*
7294  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7295  *
7296  * In cases where the weight does not change often, we can use the
7297  * precalculated inverse to speed up arithmetics by turning divisions
7298  * into multiplications:
7299  */
7300 const u32 sched_prio_to_wmult[40] = {
7301  /* -20 */     48388,     59856,     76040,     92818,    118348,
7302  /* -15 */    147320,    184698,    229616,    287308,    360437,
7303  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7304  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7305  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7306  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7307  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7308  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7309 };
7310