xref: /openbmc/linux/kernel/sched/core.c (revision 161f4089)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  */
374 
375 static void hrtick_clear(struct rq *rq)
376 {
377 	if (hrtimer_active(&rq->hrtick_timer))
378 		hrtimer_cancel(&rq->hrtick_timer);
379 }
380 
381 /*
382  * High-resolution timer tick.
383  * Runs from hardirq context with interrupts disabled.
384  */
385 static enum hrtimer_restart hrtick(struct hrtimer *timer)
386 {
387 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388 
389 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390 
391 	raw_spin_lock(&rq->lock);
392 	update_rq_clock(rq);
393 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394 	raw_spin_unlock(&rq->lock);
395 
396 	return HRTIMER_NORESTART;
397 }
398 
399 #ifdef CONFIG_SMP
400 
401 static int __hrtick_restart(struct rq *rq)
402 {
403 	struct hrtimer *timer = &rq->hrtick_timer;
404 	ktime_t time = hrtimer_get_softexpires(timer);
405 
406 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407 }
408 
409 /*
410  * called from hardirq (IPI) context
411  */
412 static void __hrtick_start(void *arg)
413 {
414 	struct rq *rq = arg;
415 
416 	raw_spin_lock(&rq->lock);
417 	__hrtick_restart(rq);
418 	rq->hrtick_csd_pending = 0;
419 	raw_spin_unlock(&rq->lock);
420 }
421 
422 /*
423  * Called to set the hrtick timer state.
424  *
425  * called with rq->lock held and irqs disabled
426  */
427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 	struct hrtimer *timer = &rq->hrtick_timer;
430 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431 
432 	hrtimer_set_expires(timer, time);
433 
434 	if (rq == this_rq()) {
435 		__hrtick_restart(rq);
436 	} else if (!rq->hrtick_csd_pending) {
437 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 		rq->hrtick_csd_pending = 1;
439 	}
440 }
441 
442 static int
443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444 {
445 	int cpu = (int)(long)hcpu;
446 
447 	switch (action) {
448 	case CPU_UP_CANCELED:
449 	case CPU_UP_CANCELED_FROZEN:
450 	case CPU_DOWN_PREPARE:
451 	case CPU_DOWN_PREPARE_FROZEN:
452 	case CPU_DEAD:
453 	case CPU_DEAD_FROZEN:
454 		hrtick_clear(cpu_rq(cpu));
455 		return NOTIFY_OK;
456 	}
457 
458 	return NOTIFY_DONE;
459 }
460 
461 static __init void init_hrtick(void)
462 {
463 	hotcpu_notifier(hotplug_hrtick, 0);
464 }
465 #else
466 /*
467  * Called to set the hrtick timer state.
468  *
469  * called with rq->lock held and irqs disabled
470  */
471 void hrtick_start(struct rq *rq, u64 delay)
472 {
473 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474 			HRTIMER_MODE_REL_PINNED, 0);
475 }
476 
477 static inline void init_hrtick(void)
478 {
479 }
480 #endif /* CONFIG_SMP */
481 
482 static void init_rq_hrtick(struct rq *rq)
483 {
484 #ifdef CONFIG_SMP
485 	rq->hrtick_csd_pending = 0;
486 
487 	rq->hrtick_csd.flags = 0;
488 	rq->hrtick_csd.func = __hrtick_start;
489 	rq->hrtick_csd.info = rq;
490 #endif
491 
492 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 	rq->hrtick_timer.function = hrtick;
494 }
495 #else	/* CONFIG_SCHED_HRTICK */
496 static inline void hrtick_clear(struct rq *rq)
497 {
498 }
499 
500 static inline void init_rq_hrtick(struct rq *rq)
501 {
502 }
503 
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif	/* CONFIG_SCHED_HRTICK */
508 
509 /*
510  * resched_task - mark a task 'to be rescheduled now'.
511  *
512  * On UP this means the setting of the need_resched flag, on SMP it
513  * might also involve a cross-CPU call to trigger the scheduler on
514  * the target CPU.
515  */
516 void resched_task(struct task_struct *p)
517 {
518 	int cpu;
519 
520 	lockdep_assert_held(&task_rq(p)->lock);
521 
522 	if (test_tsk_need_resched(p))
523 		return;
524 
525 	set_tsk_need_resched(p);
526 
527 	cpu = task_cpu(p);
528 	if (cpu == smp_processor_id()) {
529 		set_preempt_need_resched();
530 		return;
531 	}
532 
533 	/* NEED_RESCHED must be visible before we test polling */
534 	smp_mb();
535 	if (!tsk_is_polling(p))
536 		smp_send_reschedule(cpu);
537 }
538 
539 void resched_cpu(int cpu)
540 {
541 	struct rq *rq = cpu_rq(cpu);
542 	unsigned long flags;
543 
544 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545 		return;
546 	resched_task(cpu_curr(cpu));
547 	raw_spin_unlock_irqrestore(&rq->lock, flags);
548 }
549 
550 #ifdef CONFIG_SMP
551 #ifdef CONFIG_NO_HZ_COMMON
552 /*
553  * In the semi idle case, use the nearest busy cpu for migrating timers
554  * from an idle cpu.  This is good for power-savings.
555  *
556  * We don't do similar optimization for completely idle system, as
557  * selecting an idle cpu will add more delays to the timers than intended
558  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559  */
560 int get_nohz_timer_target(void)
561 {
562 	int cpu = smp_processor_id();
563 	int i;
564 	struct sched_domain *sd;
565 
566 	rcu_read_lock();
567 	for_each_domain(cpu, sd) {
568 		for_each_cpu(i, sched_domain_span(sd)) {
569 			if (!idle_cpu(i)) {
570 				cpu = i;
571 				goto unlock;
572 			}
573 		}
574 	}
575 unlock:
576 	rcu_read_unlock();
577 	return cpu;
578 }
579 /*
580  * When add_timer_on() enqueues a timer into the timer wheel of an
581  * idle CPU then this timer might expire before the next timer event
582  * which is scheduled to wake up that CPU. In case of a completely
583  * idle system the next event might even be infinite time into the
584  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585  * leaves the inner idle loop so the newly added timer is taken into
586  * account when the CPU goes back to idle and evaluates the timer
587  * wheel for the next timer event.
588  */
589 static void wake_up_idle_cpu(int cpu)
590 {
591 	struct rq *rq = cpu_rq(cpu);
592 
593 	if (cpu == smp_processor_id())
594 		return;
595 
596 	/*
597 	 * This is safe, as this function is called with the timer
598 	 * wheel base lock of (cpu) held. When the CPU is on the way
599 	 * to idle and has not yet set rq->curr to idle then it will
600 	 * be serialized on the timer wheel base lock and take the new
601 	 * timer into account automatically.
602 	 */
603 	if (rq->curr != rq->idle)
604 		return;
605 
606 	/*
607 	 * We can set TIF_RESCHED on the idle task of the other CPU
608 	 * lockless. The worst case is that the other CPU runs the
609 	 * idle task through an additional NOOP schedule()
610 	 */
611 	set_tsk_need_resched(rq->idle);
612 
613 	/* NEED_RESCHED must be visible before we test polling */
614 	smp_mb();
615 	if (!tsk_is_polling(rq->idle))
616 		smp_send_reschedule(cpu);
617 }
618 
619 static bool wake_up_full_nohz_cpu(int cpu)
620 {
621 	if (tick_nohz_full_cpu(cpu)) {
622 		if (cpu != smp_processor_id() ||
623 		    tick_nohz_tick_stopped())
624 			smp_send_reschedule(cpu);
625 		return true;
626 	}
627 
628 	return false;
629 }
630 
631 void wake_up_nohz_cpu(int cpu)
632 {
633 	if (!wake_up_full_nohz_cpu(cpu))
634 		wake_up_idle_cpu(cpu);
635 }
636 
637 static inline bool got_nohz_idle_kick(void)
638 {
639 	int cpu = smp_processor_id();
640 
641 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 		return false;
643 
644 	if (idle_cpu(cpu) && !need_resched())
645 		return true;
646 
647 	/*
648 	 * We can't run Idle Load Balance on this CPU for this time so we
649 	 * cancel it and clear NOHZ_BALANCE_KICK
650 	 */
651 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 	return false;
653 }
654 
655 #else /* CONFIG_NO_HZ_COMMON */
656 
657 static inline bool got_nohz_idle_kick(void)
658 {
659 	return false;
660 }
661 
662 #endif /* CONFIG_NO_HZ_COMMON */
663 
664 #ifdef CONFIG_NO_HZ_FULL
665 bool sched_can_stop_tick(void)
666 {
667        struct rq *rq;
668 
669        rq = this_rq();
670 
671        /* Make sure rq->nr_running update is visible after the IPI */
672        smp_rmb();
673 
674        /* More than one running task need preemption */
675        if (rq->nr_running > 1)
676                return false;
677 
678        return true;
679 }
680 #endif /* CONFIG_NO_HZ_FULL */
681 
682 void sched_avg_update(struct rq *rq)
683 {
684 	s64 period = sched_avg_period();
685 
686 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687 		/*
688 		 * Inline assembly required to prevent the compiler
689 		 * optimising this loop into a divmod call.
690 		 * See __iter_div_u64_rem() for another example of this.
691 		 */
692 		asm("" : "+rm" (rq->age_stamp));
693 		rq->age_stamp += period;
694 		rq->rt_avg /= 2;
695 	}
696 }
697 
698 #endif /* CONFIG_SMP */
699 
700 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702 /*
703  * Iterate task_group tree rooted at *from, calling @down when first entering a
704  * node and @up when leaving it for the final time.
705  *
706  * Caller must hold rcu_lock or sufficient equivalent.
707  */
708 int walk_tg_tree_from(struct task_group *from,
709 			     tg_visitor down, tg_visitor up, void *data)
710 {
711 	struct task_group *parent, *child;
712 	int ret;
713 
714 	parent = from;
715 
716 down:
717 	ret = (*down)(parent, data);
718 	if (ret)
719 		goto out;
720 	list_for_each_entry_rcu(child, &parent->children, siblings) {
721 		parent = child;
722 		goto down;
723 
724 up:
725 		continue;
726 	}
727 	ret = (*up)(parent, data);
728 	if (ret || parent == from)
729 		goto out;
730 
731 	child = parent;
732 	parent = parent->parent;
733 	if (parent)
734 		goto up;
735 out:
736 	return ret;
737 }
738 
739 int tg_nop(struct task_group *tg, void *data)
740 {
741 	return 0;
742 }
743 #endif
744 
745 static void set_load_weight(struct task_struct *p)
746 {
747 	int prio = p->static_prio - MAX_RT_PRIO;
748 	struct load_weight *load = &p->se.load;
749 
750 	/*
751 	 * SCHED_IDLE tasks get minimal weight:
752 	 */
753 	if (p->policy == SCHED_IDLE) {
754 		load->weight = scale_load(WEIGHT_IDLEPRIO);
755 		load->inv_weight = WMULT_IDLEPRIO;
756 		return;
757 	}
758 
759 	load->weight = scale_load(prio_to_weight[prio]);
760 	load->inv_weight = prio_to_wmult[prio];
761 }
762 
763 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	update_rq_clock(rq);
766 	sched_info_queued(rq, p);
767 	p->sched_class->enqueue_task(rq, p, flags);
768 }
769 
770 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771 {
772 	update_rq_clock(rq);
773 	sched_info_dequeued(rq, p);
774 	p->sched_class->dequeue_task(rq, p, flags);
775 }
776 
777 void activate_task(struct rq *rq, struct task_struct *p, int flags)
778 {
779 	if (task_contributes_to_load(p))
780 		rq->nr_uninterruptible--;
781 
782 	enqueue_task(rq, p, flags);
783 }
784 
785 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 	if (task_contributes_to_load(p))
788 		rq->nr_uninterruptible++;
789 
790 	dequeue_task(rq, p, flags);
791 }
792 
793 static void update_rq_clock_task(struct rq *rq, s64 delta)
794 {
795 /*
796  * In theory, the compile should just see 0 here, and optimize out the call
797  * to sched_rt_avg_update. But I don't trust it...
798  */
799 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 	s64 steal = 0, irq_delta = 0;
801 #endif
802 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
803 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804 
805 	/*
806 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 	 * this case when a previous update_rq_clock() happened inside a
808 	 * {soft,}irq region.
809 	 *
810 	 * When this happens, we stop ->clock_task and only update the
811 	 * prev_irq_time stamp to account for the part that fit, so that a next
812 	 * update will consume the rest. This ensures ->clock_task is
813 	 * monotonic.
814 	 *
815 	 * It does however cause some slight miss-attribution of {soft,}irq
816 	 * time, a more accurate solution would be to update the irq_time using
817 	 * the current rq->clock timestamp, except that would require using
818 	 * atomic ops.
819 	 */
820 	if (irq_delta > delta)
821 		irq_delta = delta;
822 
823 	rq->prev_irq_time += irq_delta;
824 	delta -= irq_delta;
825 #endif
826 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827 	if (static_key_false((&paravirt_steal_rq_enabled))) {
828 		u64 st;
829 
830 		steal = paravirt_steal_clock(cpu_of(rq));
831 		steal -= rq->prev_steal_time_rq;
832 
833 		if (unlikely(steal > delta))
834 			steal = delta;
835 
836 		st = steal_ticks(steal);
837 		steal = st * TICK_NSEC;
838 
839 		rq->prev_steal_time_rq += steal;
840 
841 		delta -= steal;
842 	}
843 #endif
844 
845 	rq->clock_task += delta;
846 
847 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 		sched_rt_avg_update(rq, irq_delta + steal);
850 #endif
851 }
852 
853 void sched_set_stop_task(int cpu, struct task_struct *stop)
854 {
855 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857 
858 	if (stop) {
859 		/*
860 		 * Make it appear like a SCHED_FIFO task, its something
861 		 * userspace knows about and won't get confused about.
862 		 *
863 		 * Also, it will make PI more or less work without too
864 		 * much confusion -- but then, stop work should not
865 		 * rely on PI working anyway.
866 		 */
867 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868 
869 		stop->sched_class = &stop_sched_class;
870 	}
871 
872 	cpu_rq(cpu)->stop = stop;
873 
874 	if (old_stop) {
875 		/*
876 		 * Reset it back to a normal scheduling class so that
877 		 * it can die in pieces.
878 		 */
879 		old_stop->sched_class = &rt_sched_class;
880 	}
881 }
882 
883 /*
884  * __normal_prio - return the priority that is based on the static prio
885  */
886 static inline int __normal_prio(struct task_struct *p)
887 {
888 	return p->static_prio;
889 }
890 
891 /*
892  * Calculate the expected normal priority: i.e. priority
893  * without taking RT-inheritance into account. Might be
894  * boosted by interactivity modifiers. Changes upon fork,
895  * setprio syscalls, and whenever the interactivity
896  * estimator recalculates.
897  */
898 static inline int normal_prio(struct task_struct *p)
899 {
900 	int prio;
901 
902 	if (task_has_rt_policy(p))
903 		prio = MAX_RT_PRIO-1 - p->rt_priority;
904 	else
905 		prio = __normal_prio(p);
906 	return prio;
907 }
908 
909 /*
910  * Calculate the current priority, i.e. the priority
911  * taken into account by the scheduler. This value might
912  * be boosted by RT tasks, or might be boosted by
913  * interactivity modifiers. Will be RT if the task got
914  * RT-boosted. If not then it returns p->normal_prio.
915  */
916 static int effective_prio(struct task_struct *p)
917 {
918 	p->normal_prio = normal_prio(p);
919 	/*
920 	 * If we are RT tasks or we were boosted to RT priority,
921 	 * keep the priority unchanged. Otherwise, update priority
922 	 * to the normal priority:
923 	 */
924 	if (!rt_prio(p->prio))
925 		return p->normal_prio;
926 	return p->prio;
927 }
928 
929 /**
930  * task_curr - is this task currently executing on a CPU?
931  * @p: the task in question.
932  *
933  * Return: 1 if the task is currently executing. 0 otherwise.
934  */
935 inline int task_curr(const struct task_struct *p)
936 {
937 	return cpu_curr(task_cpu(p)) == p;
938 }
939 
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 				       const struct sched_class *prev_class,
942 				       int oldprio)
943 {
944 	if (prev_class != p->sched_class) {
945 		if (prev_class->switched_from)
946 			prev_class->switched_from(rq, p);
947 		p->sched_class->switched_to(rq, p);
948 	} else if (oldprio != p->prio)
949 		p->sched_class->prio_changed(rq, p, oldprio);
950 }
951 
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 	const struct sched_class *class;
955 
956 	if (p->sched_class == rq->curr->sched_class) {
957 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 	} else {
959 		for_each_class(class) {
960 			if (class == rq->curr->sched_class)
961 				break;
962 			if (class == p->sched_class) {
963 				resched_task(rq->curr);
964 				break;
965 			}
966 		}
967 	}
968 
969 	/*
970 	 * A queue event has occurred, and we're going to schedule.  In
971 	 * this case, we can save a useless back to back clock update.
972 	 */
973 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 		rq->skip_clock_update = 1;
975 }
976 
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 	/*
982 	 * We should never call set_task_cpu() on a blocked task,
983 	 * ttwu() will sort out the placement.
984 	 */
985 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987 
988 #ifdef CONFIG_LOCKDEP
989 	/*
990 	 * The caller should hold either p->pi_lock or rq->lock, when changing
991 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 	 *
993 	 * sched_move_task() holds both and thus holding either pins the cgroup,
994 	 * see task_group().
995 	 *
996 	 * Furthermore, all task_rq users should acquire both locks, see
997 	 * task_rq_lock().
998 	 */
999 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 				      lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003 
1004 	trace_sched_migrate_task(p, new_cpu);
1005 
1006 	if (task_cpu(p) != new_cpu) {
1007 		if (p->sched_class->migrate_task_rq)
1008 			p->sched_class->migrate_task_rq(p, new_cpu);
1009 		p->se.nr_migrations++;
1010 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 	}
1012 
1013 	__set_task_cpu(p, new_cpu);
1014 }
1015 
1016 static void __migrate_swap_task(struct task_struct *p, int cpu)
1017 {
1018 	if (p->on_rq) {
1019 		struct rq *src_rq, *dst_rq;
1020 
1021 		src_rq = task_rq(p);
1022 		dst_rq = cpu_rq(cpu);
1023 
1024 		deactivate_task(src_rq, p, 0);
1025 		set_task_cpu(p, cpu);
1026 		activate_task(dst_rq, p, 0);
1027 		check_preempt_curr(dst_rq, p, 0);
1028 	} else {
1029 		/*
1030 		 * Task isn't running anymore; make it appear like we migrated
1031 		 * it before it went to sleep. This means on wakeup we make the
1032 		 * previous cpu our targer instead of where it really is.
1033 		 */
1034 		p->wake_cpu = cpu;
1035 	}
1036 }
1037 
1038 struct migration_swap_arg {
1039 	struct task_struct *src_task, *dst_task;
1040 	int src_cpu, dst_cpu;
1041 };
1042 
1043 static int migrate_swap_stop(void *data)
1044 {
1045 	struct migration_swap_arg *arg = data;
1046 	struct rq *src_rq, *dst_rq;
1047 	int ret = -EAGAIN;
1048 
1049 	src_rq = cpu_rq(arg->src_cpu);
1050 	dst_rq = cpu_rq(arg->dst_cpu);
1051 
1052 	double_raw_lock(&arg->src_task->pi_lock,
1053 			&arg->dst_task->pi_lock);
1054 	double_rq_lock(src_rq, dst_rq);
1055 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 		goto unlock;
1057 
1058 	if (task_cpu(arg->src_task) != arg->src_cpu)
1059 		goto unlock;
1060 
1061 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 		goto unlock;
1063 
1064 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 		goto unlock;
1066 
1067 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069 
1070 	ret = 0;
1071 
1072 unlock:
1073 	double_rq_unlock(src_rq, dst_rq);
1074 	raw_spin_unlock(&arg->dst_task->pi_lock);
1075 	raw_spin_unlock(&arg->src_task->pi_lock);
1076 
1077 	return ret;
1078 }
1079 
1080 /*
1081  * Cross migrate two tasks
1082  */
1083 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084 {
1085 	struct migration_swap_arg arg;
1086 	int ret = -EINVAL;
1087 
1088 	arg = (struct migration_swap_arg){
1089 		.src_task = cur,
1090 		.src_cpu = task_cpu(cur),
1091 		.dst_task = p,
1092 		.dst_cpu = task_cpu(p),
1093 	};
1094 
1095 	if (arg.src_cpu == arg.dst_cpu)
1096 		goto out;
1097 
1098 	/*
1099 	 * These three tests are all lockless; this is OK since all of them
1100 	 * will be re-checked with proper locks held further down the line.
1101 	 */
1102 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 		goto out;
1104 
1105 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 		goto out;
1107 
1108 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 		goto out;
1110 
1111 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112 
1113 out:
1114 	return ret;
1115 }
1116 
1117 struct migration_arg {
1118 	struct task_struct *task;
1119 	int dest_cpu;
1120 };
1121 
1122 static int migration_cpu_stop(void *data);
1123 
1124 /*
1125  * wait_task_inactive - wait for a thread to unschedule.
1126  *
1127  * If @match_state is nonzero, it's the @p->state value just checked and
1128  * not expected to change.  If it changes, i.e. @p might have woken up,
1129  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1130  * we return a positive number (its total switch count).  If a second call
1131  * a short while later returns the same number, the caller can be sure that
1132  * @p has remained unscheduled the whole time.
1133  *
1134  * The caller must ensure that the task *will* unschedule sometime soon,
1135  * else this function might spin for a *long* time. This function can't
1136  * be called with interrupts off, or it may introduce deadlock with
1137  * smp_call_function() if an IPI is sent by the same process we are
1138  * waiting to become inactive.
1139  */
1140 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1141 {
1142 	unsigned long flags;
1143 	int running, on_rq;
1144 	unsigned long ncsw;
1145 	struct rq *rq;
1146 
1147 	for (;;) {
1148 		/*
1149 		 * We do the initial early heuristics without holding
1150 		 * any task-queue locks at all. We'll only try to get
1151 		 * the runqueue lock when things look like they will
1152 		 * work out!
1153 		 */
1154 		rq = task_rq(p);
1155 
1156 		/*
1157 		 * If the task is actively running on another CPU
1158 		 * still, just relax and busy-wait without holding
1159 		 * any locks.
1160 		 *
1161 		 * NOTE! Since we don't hold any locks, it's not
1162 		 * even sure that "rq" stays as the right runqueue!
1163 		 * But we don't care, since "task_running()" will
1164 		 * return false if the runqueue has changed and p
1165 		 * is actually now running somewhere else!
1166 		 */
1167 		while (task_running(rq, p)) {
1168 			if (match_state && unlikely(p->state != match_state))
1169 				return 0;
1170 			cpu_relax();
1171 		}
1172 
1173 		/*
1174 		 * Ok, time to look more closely! We need the rq
1175 		 * lock now, to be *sure*. If we're wrong, we'll
1176 		 * just go back and repeat.
1177 		 */
1178 		rq = task_rq_lock(p, &flags);
1179 		trace_sched_wait_task(p);
1180 		running = task_running(rq, p);
1181 		on_rq = p->on_rq;
1182 		ncsw = 0;
1183 		if (!match_state || p->state == match_state)
1184 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1185 		task_rq_unlock(rq, p, &flags);
1186 
1187 		/*
1188 		 * If it changed from the expected state, bail out now.
1189 		 */
1190 		if (unlikely(!ncsw))
1191 			break;
1192 
1193 		/*
1194 		 * Was it really running after all now that we
1195 		 * checked with the proper locks actually held?
1196 		 *
1197 		 * Oops. Go back and try again..
1198 		 */
1199 		if (unlikely(running)) {
1200 			cpu_relax();
1201 			continue;
1202 		}
1203 
1204 		/*
1205 		 * It's not enough that it's not actively running,
1206 		 * it must be off the runqueue _entirely_, and not
1207 		 * preempted!
1208 		 *
1209 		 * So if it was still runnable (but just not actively
1210 		 * running right now), it's preempted, and we should
1211 		 * yield - it could be a while.
1212 		 */
1213 		if (unlikely(on_rq)) {
1214 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215 
1216 			set_current_state(TASK_UNINTERRUPTIBLE);
1217 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1218 			continue;
1219 		}
1220 
1221 		/*
1222 		 * Ahh, all good. It wasn't running, and it wasn't
1223 		 * runnable, which means that it will never become
1224 		 * running in the future either. We're all done!
1225 		 */
1226 		break;
1227 	}
1228 
1229 	return ncsw;
1230 }
1231 
1232 /***
1233  * kick_process - kick a running thread to enter/exit the kernel
1234  * @p: the to-be-kicked thread
1235  *
1236  * Cause a process which is running on another CPU to enter
1237  * kernel-mode, without any delay. (to get signals handled.)
1238  *
1239  * NOTE: this function doesn't have to take the runqueue lock,
1240  * because all it wants to ensure is that the remote task enters
1241  * the kernel. If the IPI races and the task has been migrated
1242  * to another CPU then no harm is done and the purpose has been
1243  * achieved as well.
1244  */
1245 void kick_process(struct task_struct *p)
1246 {
1247 	int cpu;
1248 
1249 	preempt_disable();
1250 	cpu = task_cpu(p);
1251 	if ((cpu != smp_processor_id()) && task_curr(p))
1252 		smp_send_reschedule(cpu);
1253 	preempt_enable();
1254 }
1255 EXPORT_SYMBOL_GPL(kick_process);
1256 #endif /* CONFIG_SMP */
1257 
1258 #ifdef CONFIG_SMP
1259 /*
1260  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1261  */
1262 static int select_fallback_rq(int cpu, struct task_struct *p)
1263 {
1264 	int nid = cpu_to_node(cpu);
1265 	const struct cpumask *nodemask = NULL;
1266 	enum { cpuset, possible, fail } state = cpuset;
1267 	int dest_cpu;
1268 
1269 	/*
1270 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1271 	 * will return -1. There is no cpu on the node, and we should
1272 	 * select the cpu on the other node.
1273 	 */
1274 	if (nid != -1) {
1275 		nodemask = cpumask_of_node(nid);
1276 
1277 		/* Look for allowed, online CPU in same node. */
1278 		for_each_cpu(dest_cpu, nodemask) {
1279 			if (!cpu_online(dest_cpu))
1280 				continue;
1281 			if (!cpu_active(dest_cpu))
1282 				continue;
1283 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284 				return dest_cpu;
1285 		}
1286 	}
1287 
1288 	for (;;) {
1289 		/* Any allowed, online CPU? */
1290 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1291 			if (!cpu_online(dest_cpu))
1292 				continue;
1293 			if (!cpu_active(dest_cpu))
1294 				continue;
1295 			goto out;
1296 		}
1297 
1298 		switch (state) {
1299 		case cpuset:
1300 			/* No more Mr. Nice Guy. */
1301 			cpuset_cpus_allowed_fallback(p);
1302 			state = possible;
1303 			break;
1304 
1305 		case possible:
1306 			do_set_cpus_allowed(p, cpu_possible_mask);
1307 			state = fail;
1308 			break;
1309 
1310 		case fail:
1311 			BUG();
1312 			break;
1313 		}
1314 	}
1315 
1316 out:
1317 	if (state != cpuset) {
1318 		/*
1319 		 * Don't tell them about moving exiting tasks or
1320 		 * kernel threads (both mm NULL), since they never
1321 		 * leave kernel.
1322 		 */
1323 		if (p->mm && printk_ratelimit()) {
1324 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325 					task_pid_nr(p), p->comm, cpu);
1326 		}
1327 	}
1328 
1329 	return dest_cpu;
1330 }
1331 
1332 /*
1333  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1334  */
1335 static inline
1336 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1337 {
1338 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1339 
1340 	/*
1341 	 * In order not to call set_task_cpu() on a blocking task we need
1342 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343 	 * cpu.
1344 	 *
1345 	 * Since this is common to all placement strategies, this lives here.
1346 	 *
1347 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1348 	 *   not worry about this generic constraint ]
1349 	 */
1350 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1351 		     !cpu_online(cpu)))
1352 		cpu = select_fallback_rq(task_cpu(p), p);
1353 
1354 	return cpu;
1355 }
1356 
1357 static void update_avg(u64 *avg, u64 sample)
1358 {
1359 	s64 diff = sample - *avg;
1360 	*avg += diff >> 3;
1361 }
1362 #endif
1363 
1364 static void
1365 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1366 {
1367 #ifdef CONFIG_SCHEDSTATS
1368 	struct rq *rq = this_rq();
1369 
1370 #ifdef CONFIG_SMP
1371 	int this_cpu = smp_processor_id();
1372 
1373 	if (cpu == this_cpu) {
1374 		schedstat_inc(rq, ttwu_local);
1375 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1376 	} else {
1377 		struct sched_domain *sd;
1378 
1379 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1380 		rcu_read_lock();
1381 		for_each_domain(this_cpu, sd) {
1382 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383 				schedstat_inc(sd, ttwu_wake_remote);
1384 				break;
1385 			}
1386 		}
1387 		rcu_read_unlock();
1388 	}
1389 
1390 	if (wake_flags & WF_MIGRATED)
1391 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392 
1393 #endif /* CONFIG_SMP */
1394 
1395 	schedstat_inc(rq, ttwu_count);
1396 	schedstat_inc(p, se.statistics.nr_wakeups);
1397 
1398 	if (wake_flags & WF_SYNC)
1399 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1400 
1401 #endif /* CONFIG_SCHEDSTATS */
1402 }
1403 
1404 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405 {
1406 	activate_task(rq, p, en_flags);
1407 	p->on_rq = 1;
1408 
1409 	/* if a worker is waking up, notify workqueue */
1410 	if (p->flags & PF_WQ_WORKER)
1411 		wq_worker_waking_up(p, cpu_of(rq));
1412 }
1413 
1414 /*
1415  * Mark the task runnable and perform wakeup-preemption.
1416  */
1417 static void
1418 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1419 {
1420 	check_preempt_curr(rq, p, wake_flags);
1421 	trace_sched_wakeup(p, true);
1422 
1423 	p->state = TASK_RUNNING;
1424 #ifdef CONFIG_SMP
1425 	if (p->sched_class->task_woken)
1426 		p->sched_class->task_woken(rq, p);
1427 
1428 	if (rq->idle_stamp) {
1429 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1430 		u64 max = 2*rq->max_idle_balance_cost;
1431 
1432 		update_avg(&rq->avg_idle, delta);
1433 
1434 		if (rq->avg_idle > max)
1435 			rq->avg_idle = max;
1436 
1437 		rq->idle_stamp = 0;
1438 	}
1439 #endif
1440 }
1441 
1442 static void
1443 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444 {
1445 #ifdef CONFIG_SMP
1446 	if (p->sched_contributes_to_load)
1447 		rq->nr_uninterruptible--;
1448 #endif
1449 
1450 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451 	ttwu_do_wakeup(rq, p, wake_flags);
1452 }
1453 
1454 /*
1455  * Called in case the task @p isn't fully descheduled from its runqueue,
1456  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457  * since all we need to do is flip p->state to TASK_RUNNING, since
1458  * the task is still ->on_rq.
1459  */
1460 static int ttwu_remote(struct task_struct *p, int wake_flags)
1461 {
1462 	struct rq *rq;
1463 	int ret = 0;
1464 
1465 	rq = __task_rq_lock(p);
1466 	if (p->on_rq) {
1467 		/* check_preempt_curr() may use rq clock */
1468 		update_rq_clock(rq);
1469 		ttwu_do_wakeup(rq, p, wake_flags);
1470 		ret = 1;
1471 	}
1472 	__task_rq_unlock(rq);
1473 
1474 	return ret;
1475 }
1476 
1477 #ifdef CONFIG_SMP
1478 static void sched_ttwu_pending(void)
1479 {
1480 	struct rq *rq = this_rq();
1481 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1482 	struct task_struct *p;
1483 
1484 	raw_spin_lock(&rq->lock);
1485 
1486 	while (llist) {
1487 		p = llist_entry(llist, struct task_struct, wake_entry);
1488 		llist = llist_next(llist);
1489 		ttwu_do_activate(rq, p, 0);
1490 	}
1491 
1492 	raw_spin_unlock(&rq->lock);
1493 }
1494 
1495 void scheduler_ipi(void)
1496 {
1497 	/*
1498 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500 	 * this IPI.
1501 	 */
1502 	if (tif_need_resched())
1503 		set_preempt_need_resched();
1504 
1505 	if (llist_empty(&this_rq()->wake_list)
1506 			&& !tick_nohz_full_cpu(smp_processor_id())
1507 			&& !got_nohz_idle_kick())
1508 		return;
1509 
1510 	/*
1511 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 	 * traditionally all their work was done from the interrupt return
1513 	 * path. Now that we actually do some work, we need to make sure
1514 	 * we do call them.
1515 	 *
1516 	 * Some archs already do call them, luckily irq_enter/exit nest
1517 	 * properly.
1518 	 *
1519 	 * Arguably we should visit all archs and update all handlers,
1520 	 * however a fair share of IPIs are still resched only so this would
1521 	 * somewhat pessimize the simple resched case.
1522 	 */
1523 	irq_enter();
1524 	tick_nohz_full_check();
1525 	sched_ttwu_pending();
1526 
1527 	/*
1528 	 * Check if someone kicked us for doing the nohz idle load balance.
1529 	 */
1530 	if (unlikely(got_nohz_idle_kick())) {
1531 		this_rq()->idle_balance = 1;
1532 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533 	}
1534 	irq_exit();
1535 }
1536 
1537 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538 {
1539 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 		smp_send_reschedule(cpu);
1541 }
1542 
1543 bool cpus_share_cache(int this_cpu, int that_cpu)
1544 {
1545 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546 }
1547 #endif /* CONFIG_SMP */
1548 
1549 static void ttwu_queue(struct task_struct *p, int cpu)
1550 {
1551 	struct rq *rq = cpu_rq(cpu);
1552 
1553 #if defined(CONFIG_SMP)
1554 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 		ttwu_queue_remote(p, cpu);
1557 		return;
1558 	}
1559 #endif
1560 
1561 	raw_spin_lock(&rq->lock);
1562 	ttwu_do_activate(rq, p, 0);
1563 	raw_spin_unlock(&rq->lock);
1564 }
1565 
1566 /**
1567  * try_to_wake_up - wake up a thread
1568  * @p: the thread to be awakened
1569  * @state: the mask of task states that can be woken
1570  * @wake_flags: wake modifier flags (WF_*)
1571  *
1572  * Put it on the run-queue if it's not already there. The "current"
1573  * thread is always on the run-queue (except when the actual
1574  * re-schedule is in progress), and as such you're allowed to do
1575  * the simpler "current->state = TASK_RUNNING" to mark yourself
1576  * runnable without the overhead of this.
1577  *
1578  * Return: %true if @p was woken up, %false if it was already running.
1579  * or @state didn't match @p's state.
1580  */
1581 static int
1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583 {
1584 	unsigned long flags;
1585 	int cpu, success = 0;
1586 
1587 	/*
1588 	 * If we are going to wake up a thread waiting for CONDITION we
1589 	 * need to ensure that CONDITION=1 done by the caller can not be
1590 	 * reordered with p->state check below. This pairs with mb() in
1591 	 * set_current_state() the waiting thread does.
1592 	 */
1593 	smp_mb__before_spinlock();
1594 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595 	if (!(p->state & state))
1596 		goto out;
1597 
1598 	success = 1; /* we're going to change ->state */
1599 	cpu = task_cpu(p);
1600 
1601 	if (p->on_rq && ttwu_remote(p, wake_flags))
1602 		goto stat;
1603 
1604 #ifdef CONFIG_SMP
1605 	/*
1606 	 * If the owning (remote) cpu is still in the middle of schedule() with
1607 	 * this task as prev, wait until its done referencing the task.
1608 	 */
1609 	while (p->on_cpu)
1610 		cpu_relax();
1611 	/*
1612 	 * Pairs with the smp_wmb() in finish_lock_switch().
1613 	 */
1614 	smp_rmb();
1615 
1616 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617 	p->state = TASK_WAKING;
1618 
1619 	if (p->sched_class->task_waking)
1620 		p->sched_class->task_waking(p);
1621 
1622 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 	if (task_cpu(p) != cpu) {
1624 		wake_flags |= WF_MIGRATED;
1625 		set_task_cpu(p, cpu);
1626 	}
1627 #endif /* CONFIG_SMP */
1628 
1629 	ttwu_queue(p, cpu);
1630 stat:
1631 	ttwu_stat(p, cpu, wake_flags);
1632 out:
1633 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634 
1635 	return success;
1636 }
1637 
1638 /**
1639  * try_to_wake_up_local - try to wake up a local task with rq lock held
1640  * @p: the thread to be awakened
1641  *
1642  * Put @p on the run-queue if it's not already there. The caller must
1643  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644  * the current task.
1645  */
1646 static void try_to_wake_up_local(struct task_struct *p)
1647 {
1648 	struct rq *rq = task_rq(p);
1649 
1650 	if (WARN_ON_ONCE(rq != this_rq()) ||
1651 	    WARN_ON_ONCE(p == current))
1652 		return;
1653 
1654 	lockdep_assert_held(&rq->lock);
1655 
1656 	if (!raw_spin_trylock(&p->pi_lock)) {
1657 		raw_spin_unlock(&rq->lock);
1658 		raw_spin_lock(&p->pi_lock);
1659 		raw_spin_lock(&rq->lock);
1660 	}
1661 
1662 	if (!(p->state & TASK_NORMAL))
1663 		goto out;
1664 
1665 	if (!p->on_rq)
1666 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667 
1668 	ttwu_do_wakeup(rq, p, 0);
1669 	ttwu_stat(p, smp_processor_id(), 0);
1670 out:
1671 	raw_spin_unlock(&p->pi_lock);
1672 }
1673 
1674 /**
1675  * wake_up_process - Wake up a specific process
1676  * @p: The process to be woken up.
1677  *
1678  * Attempt to wake up the nominated process and move it to the set of runnable
1679  * processes.
1680  *
1681  * Return: 1 if the process was woken up, 0 if it was already running.
1682  *
1683  * It may be assumed that this function implies a write memory barrier before
1684  * changing the task state if and only if any tasks are woken up.
1685  */
1686 int wake_up_process(struct task_struct *p)
1687 {
1688 	WARN_ON(task_is_stopped_or_traced(p));
1689 	return try_to_wake_up(p, TASK_NORMAL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692 
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 	return try_to_wake_up(p, state, 0);
1696 }
1697 
1698 /*
1699  * Perform scheduler related setup for a newly forked process p.
1700  * p is forked by current.
1701  *
1702  * __sched_fork() is basic setup used by init_idle() too:
1703  */
1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705 {
1706 	p->on_rq			= 0;
1707 
1708 	p->se.on_rq			= 0;
1709 	p->se.exec_start		= 0;
1710 	p->se.sum_exec_runtime		= 0;
1711 	p->se.prev_sum_exec_runtime	= 0;
1712 	p->se.nr_migrations		= 0;
1713 	p->se.vruntime			= 0;
1714 	INIT_LIST_HEAD(&p->se.group_node);
1715 
1716 #ifdef CONFIG_SCHEDSTATS
1717 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719 
1720 	INIT_LIST_HEAD(&p->rt.run_list);
1721 
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1725 
1726 #ifdef CONFIG_NUMA_BALANCING
1727 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1728 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1729 		p->mm->numa_scan_seq = 0;
1730 	}
1731 
1732 	if (clone_flags & CLONE_VM)
1733 		p->numa_preferred_nid = current->numa_preferred_nid;
1734 	else
1735 		p->numa_preferred_nid = -1;
1736 
1737 	p->node_stamp = 0ULL;
1738 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1739 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1740 	p->numa_work.next = &p->numa_work;
1741 	p->numa_faults = NULL;
1742 	p->numa_faults_buffer = NULL;
1743 
1744 	INIT_LIST_HEAD(&p->numa_entry);
1745 	p->numa_group = NULL;
1746 #endif /* CONFIG_NUMA_BALANCING */
1747 }
1748 
1749 #ifdef CONFIG_NUMA_BALANCING
1750 #ifdef CONFIG_SCHED_DEBUG
1751 void set_numabalancing_state(bool enabled)
1752 {
1753 	if (enabled)
1754 		sched_feat_set("NUMA");
1755 	else
1756 		sched_feat_set("NO_NUMA");
1757 }
1758 #else
1759 __read_mostly bool numabalancing_enabled;
1760 
1761 void set_numabalancing_state(bool enabled)
1762 {
1763 	numabalancing_enabled = enabled;
1764 }
1765 #endif /* CONFIG_SCHED_DEBUG */
1766 #endif /* CONFIG_NUMA_BALANCING */
1767 
1768 /*
1769  * fork()/clone()-time setup:
1770  */
1771 void sched_fork(unsigned long clone_flags, struct task_struct *p)
1772 {
1773 	unsigned long flags;
1774 	int cpu = get_cpu();
1775 
1776 	__sched_fork(clone_flags, p);
1777 	/*
1778 	 * We mark the process as running here. This guarantees that
1779 	 * nobody will actually run it, and a signal or other external
1780 	 * event cannot wake it up and insert it on the runqueue either.
1781 	 */
1782 	p->state = TASK_RUNNING;
1783 
1784 	/*
1785 	 * Make sure we do not leak PI boosting priority to the child.
1786 	 */
1787 	p->prio = current->normal_prio;
1788 
1789 	/*
1790 	 * Revert to default priority/policy on fork if requested.
1791 	 */
1792 	if (unlikely(p->sched_reset_on_fork)) {
1793 		if (task_has_rt_policy(p)) {
1794 			p->policy = SCHED_NORMAL;
1795 			p->static_prio = NICE_TO_PRIO(0);
1796 			p->rt_priority = 0;
1797 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1798 			p->static_prio = NICE_TO_PRIO(0);
1799 
1800 		p->prio = p->normal_prio = __normal_prio(p);
1801 		set_load_weight(p);
1802 
1803 		/*
1804 		 * We don't need the reset flag anymore after the fork. It has
1805 		 * fulfilled its duty:
1806 		 */
1807 		p->sched_reset_on_fork = 0;
1808 	}
1809 
1810 	if (!rt_prio(p->prio))
1811 		p->sched_class = &fair_sched_class;
1812 
1813 	if (p->sched_class->task_fork)
1814 		p->sched_class->task_fork(p);
1815 
1816 	/*
1817 	 * The child is not yet in the pid-hash so no cgroup attach races,
1818 	 * and the cgroup is pinned to this child due to cgroup_fork()
1819 	 * is ran before sched_fork().
1820 	 *
1821 	 * Silence PROVE_RCU.
1822 	 */
1823 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1824 	set_task_cpu(p, cpu);
1825 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1826 
1827 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1828 	if (likely(sched_info_on()))
1829 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1830 #endif
1831 #if defined(CONFIG_SMP)
1832 	p->on_cpu = 0;
1833 #endif
1834 	init_task_preempt_count(p);
1835 #ifdef CONFIG_SMP
1836 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1837 #endif
1838 
1839 	put_cpu();
1840 }
1841 
1842 /*
1843  * wake_up_new_task - wake up a newly created task for the first time.
1844  *
1845  * This function will do some initial scheduler statistics housekeeping
1846  * that must be done for every newly created context, then puts the task
1847  * on the runqueue and wakes it.
1848  */
1849 void wake_up_new_task(struct task_struct *p)
1850 {
1851 	unsigned long flags;
1852 	struct rq *rq;
1853 
1854 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1855 #ifdef CONFIG_SMP
1856 	/*
1857 	 * Fork balancing, do it here and not earlier because:
1858 	 *  - cpus_allowed can change in the fork path
1859 	 *  - any previously selected cpu might disappear through hotplug
1860 	 */
1861 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1862 #endif
1863 
1864 	/* Initialize new task's runnable average */
1865 	init_task_runnable_average(p);
1866 	rq = __task_rq_lock(p);
1867 	activate_task(rq, p, 0);
1868 	p->on_rq = 1;
1869 	trace_sched_wakeup_new(p, true);
1870 	check_preempt_curr(rq, p, WF_FORK);
1871 #ifdef CONFIG_SMP
1872 	if (p->sched_class->task_woken)
1873 		p->sched_class->task_woken(rq, p);
1874 #endif
1875 	task_rq_unlock(rq, p, &flags);
1876 }
1877 
1878 #ifdef CONFIG_PREEMPT_NOTIFIERS
1879 
1880 /**
1881  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1882  * @notifier: notifier struct to register
1883  */
1884 void preempt_notifier_register(struct preempt_notifier *notifier)
1885 {
1886 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1887 }
1888 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1889 
1890 /**
1891  * preempt_notifier_unregister - no longer interested in preemption notifications
1892  * @notifier: notifier struct to unregister
1893  *
1894  * This is safe to call from within a preemption notifier.
1895  */
1896 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1897 {
1898 	hlist_del(&notifier->link);
1899 }
1900 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1901 
1902 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1903 {
1904 	struct preempt_notifier *notifier;
1905 
1906 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1907 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1908 }
1909 
1910 static void
1911 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1912 				 struct task_struct *next)
1913 {
1914 	struct preempt_notifier *notifier;
1915 
1916 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1917 		notifier->ops->sched_out(notifier, next);
1918 }
1919 
1920 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1921 
1922 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1923 {
1924 }
1925 
1926 static void
1927 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1928 				 struct task_struct *next)
1929 {
1930 }
1931 
1932 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1933 
1934 /**
1935  * prepare_task_switch - prepare to switch tasks
1936  * @rq: the runqueue preparing to switch
1937  * @prev: the current task that is being switched out
1938  * @next: the task we are going to switch to.
1939  *
1940  * This is called with the rq lock held and interrupts off. It must
1941  * be paired with a subsequent finish_task_switch after the context
1942  * switch.
1943  *
1944  * prepare_task_switch sets up locking and calls architecture specific
1945  * hooks.
1946  */
1947 static inline void
1948 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1949 		    struct task_struct *next)
1950 {
1951 	trace_sched_switch(prev, next);
1952 	sched_info_switch(rq, prev, next);
1953 	perf_event_task_sched_out(prev, next);
1954 	fire_sched_out_preempt_notifiers(prev, next);
1955 	prepare_lock_switch(rq, next);
1956 	prepare_arch_switch(next);
1957 }
1958 
1959 /**
1960  * finish_task_switch - clean up after a task-switch
1961  * @rq: runqueue associated with task-switch
1962  * @prev: the thread we just switched away from.
1963  *
1964  * finish_task_switch must be called after the context switch, paired
1965  * with a prepare_task_switch call before the context switch.
1966  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1967  * and do any other architecture-specific cleanup actions.
1968  *
1969  * Note that we may have delayed dropping an mm in context_switch(). If
1970  * so, we finish that here outside of the runqueue lock. (Doing it
1971  * with the lock held can cause deadlocks; see schedule() for
1972  * details.)
1973  */
1974 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1975 	__releases(rq->lock)
1976 {
1977 	struct mm_struct *mm = rq->prev_mm;
1978 	long prev_state;
1979 
1980 	rq->prev_mm = NULL;
1981 
1982 	/*
1983 	 * A task struct has one reference for the use as "current".
1984 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1985 	 * schedule one last time. The schedule call will never return, and
1986 	 * the scheduled task must drop that reference.
1987 	 * The test for TASK_DEAD must occur while the runqueue locks are
1988 	 * still held, otherwise prev could be scheduled on another cpu, die
1989 	 * there before we look at prev->state, and then the reference would
1990 	 * be dropped twice.
1991 	 *		Manfred Spraul <manfred@colorfullife.com>
1992 	 */
1993 	prev_state = prev->state;
1994 	vtime_task_switch(prev);
1995 	finish_arch_switch(prev);
1996 	perf_event_task_sched_in(prev, current);
1997 	finish_lock_switch(rq, prev);
1998 	finish_arch_post_lock_switch();
1999 
2000 	fire_sched_in_preempt_notifiers(current);
2001 	if (mm)
2002 		mmdrop(mm);
2003 	if (unlikely(prev_state == TASK_DEAD)) {
2004 		task_numa_free(prev);
2005 
2006 		/*
2007 		 * Remove function-return probe instances associated with this
2008 		 * task and put them back on the free list.
2009 		 */
2010 		kprobe_flush_task(prev);
2011 		put_task_struct(prev);
2012 	}
2013 
2014 	tick_nohz_task_switch(current);
2015 }
2016 
2017 #ifdef CONFIG_SMP
2018 
2019 /* assumes rq->lock is held */
2020 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2021 {
2022 	if (prev->sched_class->pre_schedule)
2023 		prev->sched_class->pre_schedule(rq, prev);
2024 }
2025 
2026 /* rq->lock is NOT held, but preemption is disabled */
2027 static inline void post_schedule(struct rq *rq)
2028 {
2029 	if (rq->post_schedule) {
2030 		unsigned long flags;
2031 
2032 		raw_spin_lock_irqsave(&rq->lock, flags);
2033 		if (rq->curr->sched_class->post_schedule)
2034 			rq->curr->sched_class->post_schedule(rq);
2035 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2036 
2037 		rq->post_schedule = 0;
2038 	}
2039 }
2040 
2041 #else
2042 
2043 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2044 {
2045 }
2046 
2047 static inline void post_schedule(struct rq *rq)
2048 {
2049 }
2050 
2051 #endif
2052 
2053 /**
2054  * schedule_tail - first thing a freshly forked thread must call.
2055  * @prev: the thread we just switched away from.
2056  */
2057 asmlinkage void schedule_tail(struct task_struct *prev)
2058 	__releases(rq->lock)
2059 {
2060 	struct rq *rq = this_rq();
2061 
2062 	finish_task_switch(rq, prev);
2063 
2064 	/*
2065 	 * FIXME: do we need to worry about rq being invalidated by the
2066 	 * task_switch?
2067 	 */
2068 	post_schedule(rq);
2069 
2070 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2071 	/* In this case, finish_task_switch does not reenable preemption */
2072 	preempt_enable();
2073 #endif
2074 	if (current->set_child_tid)
2075 		put_user(task_pid_vnr(current), current->set_child_tid);
2076 }
2077 
2078 /*
2079  * context_switch - switch to the new MM and the new
2080  * thread's register state.
2081  */
2082 static inline void
2083 context_switch(struct rq *rq, struct task_struct *prev,
2084 	       struct task_struct *next)
2085 {
2086 	struct mm_struct *mm, *oldmm;
2087 
2088 	prepare_task_switch(rq, prev, next);
2089 
2090 	mm = next->mm;
2091 	oldmm = prev->active_mm;
2092 	/*
2093 	 * For paravirt, this is coupled with an exit in switch_to to
2094 	 * combine the page table reload and the switch backend into
2095 	 * one hypercall.
2096 	 */
2097 	arch_start_context_switch(prev);
2098 
2099 	if (!mm) {
2100 		next->active_mm = oldmm;
2101 		atomic_inc(&oldmm->mm_count);
2102 		enter_lazy_tlb(oldmm, next);
2103 	} else
2104 		switch_mm(oldmm, mm, next);
2105 
2106 	if (!prev->mm) {
2107 		prev->active_mm = NULL;
2108 		rq->prev_mm = oldmm;
2109 	}
2110 	/*
2111 	 * Since the runqueue lock will be released by the next
2112 	 * task (which is an invalid locking op but in the case
2113 	 * of the scheduler it's an obvious special-case), so we
2114 	 * do an early lockdep release here:
2115 	 */
2116 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2117 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2118 #endif
2119 
2120 	context_tracking_task_switch(prev, next);
2121 	/* Here we just switch the register state and the stack. */
2122 	switch_to(prev, next, prev);
2123 
2124 	barrier();
2125 	/*
2126 	 * this_rq must be evaluated again because prev may have moved
2127 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2128 	 * frame will be invalid.
2129 	 */
2130 	finish_task_switch(this_rq(), prev);
2131 }
2132 
2133 /*
2134  * nr_running and nr_context_switches:
2135  *
2136  * externally visible scheduler statistics: current number of runnable
2137  * threads, total number of context switches performed since bootup.
2138  */
2139 unsigned long nr_running(void)
2140 {
2141 	unsigned long i, sum = 0;
2142 
2143 	for_each_online_cpu(i)
2144 		sum += cpu_rq(i)->nr_running;
2145 
2146 	return sum;
2147 }
2148 
2149 unsigned long long nr_context_switches(void)
2150 {
2151 	int i;
2152 	unsigned long long sum = 0;
2153 
2154 	for_each_possible_cpu(i)
2155 		sum += cpu_rq(i)->nr_switches;
2156 
2157 	return sum;
2158 }
2159 
2160 unsigned long nr_iowait(void)
2161 {
2162 	unsigned long i, sum = 0;
2163 
2164 	for_each_possible_cpu(i)
2165 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2166 
2167 	return sum;
2168 }
2169 
2170 unsigned long nr_iowait_cpu(int cpu)
2171 {
2172 	struct rq *this = cpu_rq(cpu);
2173 	return atomic_read(&this->nr_iowait);
2174 }
2175 
2176 #ifdef CONFIG_SMP
2177 
2178 /*
2179  * sched_exec - execve() is a valuable balancing opportunity, because at
2180  * this point the task has the smallest effective memory and cache footprint.
2181  */
2182 void sched_exec(void)
2183 {
2184 	struct task_struct *p = current;
2185 	unsigned long flags;
2186 	int dest_cpu;
2187 
2188 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2189 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2190 	if (dest_cpu == smp_processor_id())
2191 		goto unlock;
2192 
2193 	if (likely(cpu_active(dest_cpu))) {
2194 		struct migration_arg arg = { p, dest_cpu };
2195 
2196 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2197 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2198 		return;
2199 	}
2200 unlock:
2201 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2202 }
2203 
2204 #endif
2205 
2206 DEFINE_PER_CPU(struct kernel_stat, kstat);
2207 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2208 
2209 EXPORT_PER_CPU_SYMBOL(kstat);
2210 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2211 
2212 /*
2213  * Return any ns on the sched_clock that have not yet been accounted in
2214  * @p in case that task is currently running.
2215  *
2216  * Called with task_rq_lock() held on @rq.
2217  */
2218 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2219 {
2220 	u64 ns = 0;
2221 
2222 	if (task_current(rq, p)) {
2223 		update_rq_clock(rq);
2224 		ns = rq_clock_task(rq) - p->se.exec_start;
2225 		if ((s64)ns < 0)
2226 			ns = 0;
2227 	}
2228 
2229 	return ns;
2230 }
2231 
2232 unsigned long long task_delta_exec(struct task_struct *p)
2233 {
2234 	unsigned long flags;
2235 	struct rq *rq;
2236 	u64 ns = 0;
2237 
2238 	rq = task_rq_lock(p, &flags);
2239 	ns = do_task_delta_exec(p, rq);
2240 	task_rq_unlock(rq, p, &flags);
2241 
2242 	return ns;
2243 }
2244 
2245 /*
2246  * Return accounted runtime for the task.
2247  * In case the task is currently running, return the runtime plus current's
2248  * pending runtime that have not been accounted yet.
2249  */
2250 unsigned long long task_sched_runtime(struct task_struct *p)
2251 {
2252 	unsigned long flags;
2253 	struct rq *rq;
2254 	u64 ns = 0;
2255 
2256 	rq = task_rq_lock(p, &flags);
2257 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2258 	task_rq_unlock(rq, p, &flags);
2259 
2260 	return ns;
2261 }
2262 
2263 /*
2264  * This function gets called by the timer code, with HZ frequency.
2265  * We call it with interrupts disabled.
2266  */
2267 void scheduler_tick(void)
2268 {
2269 	int cpu = smp_processor_id();
2270 	struct rq *rq = cpu_rq(cpu);
2271 	struct task_struct *curr = rq->curr;
2272 
2273 	sched_clock_tick();
2274 
2275 	raw_spin_lock(&rq->lock);
2276 	update_rq_clock(rq);
2277 	curr->sched_class->task_tick(rq, curr, 0);
2278 	update_cpu_load_active(rq);
2279 	raw_spin_unlock(&rq->lock);
2280 
2281 	perf_event_task_tick();
2282 
2283 #ifdef CONFIG_SMP
2284 	rq->idle_balance = idle_cpu(cpu);
2285 	trigger_load_balance(rq, cpu);
2286 #endif
2287 	rq_last_tick_reset(rq);
2288 }
2289 
2290 #ifdef CONFIG_NO_HZ_FULL
2291 /**
2292  * scheduler_tick_max_deferment
2293  *
2294  * Keep at least one tick per second when a single
2295  * active task is running because the scheduler doesn't
2296  * yet completely support full dynticks environment.
2297  *
2298  * This makes sure that uptime, CFS vruntime, load
2299  * balancing, etc... continue to move forward, even
2300  * with a very low granularity.
2301  *
2302  * Return: Maximum deferment in nanoseconds.
2303  */
2304 u64 scheduler_tick_max_deferment(void)
2305 {
2306 	struct rq *rq = this_rq();
2307 	unsigned long next, now = ACCESS_ONCE(jiffies);
2308 
2309 	next = rq->last_sched_tick + HZ;
2310 
2311 	if (time_before_eq(next, now))
2312 		return 0;
2313 
2314 	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2315 }
2316 #endif
2317 
2318 notrace unsigned long get_parent_ip(unsigned long addr)
2319 {
2320 	if (in_lock_functions(addr)) {
2321 		addr = CALLER_ADDR2;
2322 		if (in_lock_functions(addr))
2323 			addr = CALLER_ADDR3;
2324 	}
2325 	return addr;
2326 }
2327 
2328 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2329 				defined(CONFIG_PREEMPT_TRACER))
2330 
2331 void __kprobes preempt_count_add(int val)
2332 {
2333 #ifdef CONFIG_DEBUG_PREEMPT
2334 	/*
2335 	 * Underflow?
2336 	 */
2337 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2338 		return;
2339 #endif
2340 	__preempt_count_add(val);
2341 #ifdef CONFIG_DEBUG_PREEMPT
2342 	/*
2343 	 * Spinlock count overflowing soon?
2344 	 */
2345 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2346 				PREEMPT_MASK - 10);
2347 #endif
2348 	if (preempt_count() == val)
2349 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2350 }
2351 EXPORT_SYMBOL(preempt_count_add);
2352 
2353 void __kprobes preempt_count_sub(int val)
2354 {
2355 #ifdef CONFIG_DEBUG_PREEMPT
2356 	/*
2357 	 * Underflow?
2358 	 */
2359 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2360 		return;
2361 	/*
2362 	 * Is the spinlock portion underflowing?
2363 	 */
2364 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2365 			!(preempt_count() & PREEMPT_MASK)))
2366 		return;
2367 #endif
2368 
2369 	if (preempt_count() == val)
2370 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2371 	__preempt_count_sub(val);
2372 }
2373 EXPORT_SYMBOL(preempt_count_sub);
2374 
2375 #endif
2376 
2377 /*
2378  * Print scheduling while atomic bug:
2379  */
2380 static noinline void __schedule_bug(struct task_struct *prev)
2381 {
2382 	if (oops_in_progress)
2383 		return;
2384 
2385 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2386 		prev->comm, prev->pid, preempt_count());
2387 
2388 	debug_show_held_locks(prev);
2389 	print_modules();
2390 	if (irqs_disabled())
2391 		print_irqtrace_events(prev);
2392 	dump_stack();
2393 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2394 }
2395 
2396 /*
2397  * Various schedule()-time debugging checks and statistics:
2398  */
2399 static inline void schedule_debug(struct task_struct *prev)
2400 {
2401 	/*
2402 	 * Test if we are atomic. Since do_exit() needs to call into
2403 	 * schedule() atomically, we ignore that path for now.
2404 	 * Otherwise, whine if we are scheduling when we should not be.
2405 	 */
2406 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2407 		__schedule_bug(prev);
2408 	rcu_sleep_check();
2409 
2410 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2411 
2412 	schedstat_inc(this_rq(), sched_count);
2413 }
2414 
2415 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2416 {
2417 	if (prev->on_rq || rq->skip_clock_update < 0)
2418 		update_rq_clock(rq);
2419 	prev->sched_class->put_prev_task(rq, prev);
2420 }
2421 
2422 /*
2423  * Pick up the highest-prio task:
2424  */
2425 static inline struct task_struct *
2426 pick_next_task(struct rq *rq)
2427 {
2428 	const struct sched_class *class;
2429 	struct task_struct *p;
2430 
2431 	/*
2432 	 * Optimization: we know that if all tasks are in
2433 	 * the fair class we can call that function directly:
2434 	 */
2435 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2436 		p = fair_sched_class.pick_next_task(rq);
2437 		if (likely(p))
2438 			return p;
2439 	}
2440 
2441 	for_each_class(class) {
2442 		p = class->pick_next_task(rq);
2443 		if (p)
2444 			return p;
2445 	}
2446 
2447 	BUG(); /* the idle class will always have a runnable task */
2448 }
2449 
2450 /*
2451  * __schedule() is the main scheduler function.
2452  *
2453  * The main means of driving the scheduler and thus entering this function are:
2454  *
2455  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2456  *
2457  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2458  *      paths. For example, see arch/x86/entry_64.S.
2459  *
2460  *      To drive preemption between tasks, the scheduler sets the flag in timer
2461  *      interrupt handler scheduler_tick().
2462  *
2463  *   3. Wakeups don't really cause entry into schedule(). They add a
2464  *      task to the run-queue and that's it.
2465  *
2466  *      Now, if the new task added to the run-queue preempts the current
2467  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2468  *      called on the nearest possible occasion:
2469  *
2470  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2471  *
2472  *         - in syscall or exception context, at the next outmost
2473  *           preempt_enable(). (this might be as soon as the wake_up()'s
2474  *           spin_unlock()!)
2475  *
2476  *         - in IRQ context, return from interrupt-handler to
2477  *           preemptible context
2478  *
2479  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2480  *         then at the next:
2481  *
2482  *          - cond_resched() call
2483  *          - explicit schedule() call
2484  *          - return from syscall or exception to user-space
2485  *          - return from interrupt-handler to user-space
2486  */
2487 static void __sched __schedule(void)
2488 {
2489 	struct task_struct *prev, *next;
2490 	unsigned long *switch_count;
2491 	struct rq *rq;
2492 	int cpu;
2493 
2494 need_resched:
2495 	preempt_disable();
2496 	cpu = smp_processor_id();
2497 	rq = cpu_rq(cpu);
2498 	rcu_note_context_switch(cpu);
2499 	prev = rq->curr;
2500 
2501 	schedule_debug(prev);
2502 
2503 	if (sched_feat(HRTICK))
2504 		hrtick_clear(rq);
2505 
2506 	/*
2507 	 * Make sure that signal_pending_state()->signal_pending() below
2508 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2509 	 * done by the caller to avoid the race with signal_wake_up().
2510 	 */
2511 	smp_mb__before_spinlock();
2512 	raw_spin_lock_irq(&rq->lock);
2513 
2514 	switch_count = &prev->nivcsw;
2515 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2516 		if (unlikely(signal_pending_state(prev->state, prev))) {
2517 			prev->state = TASK_RUNNING;
2518 		} else {
2519 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2520 			prev->on_rq = 0;
2521 
2522 			/*
2523 			 * If a worker went to sleep, notify and ask workqueue
2524 			 * whether it wants to wake up a task to maintain
2525 			 * concurrency.
2526 			 */
2527 			if (prev->flags & PF_WQ_WORKER) {
2528 				struct task_struct *to_wakeup;
2529 
2530 				to_wakeup = wq_worker_sleeping(prev, cpu);
2531 				if (to_wakeup)
2532 					try_to_wake_up_local(to_wakeup);
2533 			}
2534 		}
2535 		switch_count = &prev->nvcsw;
2536 	}
2537 
2538 	pre_schedule(rq, prev);
2539 
2540 	if (unlikely(!rq->nr_running))
2541 		idle_balance(cpu, rq);
2542 
2543 	put_prev_task(rq, prev);
2544 	next = pick_next_task(rq);
2545 	clear_tsk_need_resched(prev);
2546 	clear_preempt_need_resched();
2547 	rq->skip_clock_update = 0;
2548 
2549 	if (likely(prev != next)) {
2550 		rq->nr_switches++;
2551 		rq->curr = next;
2552 		++*switch_count;
2553 
2554 		context_switch(rq, prev, next); /* unlocks the rq */
2555 		/*
2556 		 * The context switch have flipped the stack from under us
2557 		 * and restored the local variables which were saved when
2558 		 * this task called schedule() in the past. prev == current
2559 		 * is still correct, but it can be moved to another cpu/rq.
2560 		 */
2561 		cpu = smp_processor_id();
2562 		rq = cpu_rq(cpu);
2563 	} else
2564 		raw_spin_unlock_irq(&rq->lock);
2565 
2566 	post_schedule(rq);
2567 
2568 	sched_preempt_enable_no_resched();
2569 	if (need_resched())
2570 		goto need_resched;
2571 }
2572 
2573 static inline void sched_submit_work(struct task_struct *tsk)
2574 {
2575 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2576 		return;
2577 	/*
2578 	 * If we are going to sleep and we have plugged IO queued,
2579 	 * make sure to submit it to avoid deadlocks.
2580 	 */
2581 	if (blk_needs_flush_plug(tsk))
2582 		blk_schedule_flush_plug(tsk);
2583 }
2584 
2585 asmlinkage void __sched schedule(void)
2586 {
2587 	struct task_struct *tsk = current;
2588 
2589 	sched_submit_work(tsk);
2590 	__schedule();
2591 }
2592 EXPORT_SYMBOL(schedule);
2593 
2594 #ifdef CONFIG_CONTEXT_TRACKING
2595 asmlinkage void __sched schedule_user(void)
2596 {
2597 	/*
2598 	 * If we come here after a random call to set_need_resched(),
2599 	 * or we have been woken up remotely but the IPI has not yet arrived,
2600 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2601 	 * we find a better solution.
2602 	 */
2603 	user_exit();
2604 	schedule();
2605 	user_enter();
2606 }
2607 #endif
2608 
2609 /**
2610  * schedule_preempt_disabled - called with preemption disabled
2611  *
2612  * Returns with preemption disabled. Note: preempt_count must be 1
2613  */
2614 void __sched schedule_preempt_disabled(void)
2615 {
2616 	sched_preempt_enable_no_resched();
2617 	schedule();
2618 	preempt_disable();
2619 }
2620 
2621 #ifdef CONFIG_PREEMPT
2622 /*
2623  * this is the entry point to schedule() from in-kernel preemption
2624  * off of preempt_enable. Kernel preemptions off return from interrupt
2625  * occur there and call schedule directly.
2626  */
2627 asmlinkage void __sched notrace preempt_schedule(void)
2628 {
2629 	/*
2630 	 * If there is a non-zero preempt_count or interrupts are disabled,
2631 	 * we do not want to preempt the current task. Just return..
2632 	 */
2633 	if (likely(!preemptible()))
2634 		return;
2635 
2636 	do {
2637 		__preempt_count_add(PREEMPT_ACTIVE);
2638 		__schedule();
2639 		__preempt_count_sub(PREEMPT_ACTIVE);
2640 
2641 		/*
2642 		 * Check again in case we missed a preemption opportunity
2643 		 * between schedule and now.
2644 		 */
2645 		barrier();
2646 	} while (need_resched());
2647 }
2648 EXPORT_SYMBOL(preempt_schedule);
2649 
2650 /*
2651  * this is the entry point to schedule() from kernel preemption
2652  * off of irq context.
2653  * Note, that this is called and return with irqs disabled. This will
2654  * protect us against recursive calling from irq.
2655  */
2656 asmlinkage void __sched preempt_schedule_irq(void)
2657 {
2658 	enum ctx_state prev_state;
2659 
2660 	/* Catch callers which need to be fixed */
2661 	BUG_ON(preempt_count() || !irqs_disabled());
2662 
2663 	prev_state = exception_enter();
2664 
2665 	do {
2666 		__preempt_count_add(PREEMPT_ACTIVE);
2667 		local_irq_enable();
2668 		__schedule();
2669 		local_irq_disable();
2670 		__preempt_count_sub(PREEMPT_ACTIVE);
2671 
2672 		/*
2673 		 * Check again in case we missed a preemption opportunity
2674 		 * between schedule and now.
2675 		 */
2676 		barrier();
2677 	} while (need_resched());
2678 
2679 	exception_exit(prev_state);
2680 }
2681 
2682 #endif /* CONFIG_PREEMPT */
2683 
2684 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2685 			  void *key)
2686 {
2687 	return try_to_wake_up(curr->private, mode, wake_flags);
2688 }
2689 EXPORT_SYMBOL(default_wake_function);
2690 
2691 static long __sched
2692 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2693 {
2694 	unsigned long flags;
2695 	wait_queue_t wait;
2696 
2697 	init_waitqueue_entry(&wait, current);
2698 
2699 	__set_current_state(state);
2700 
2701 	spin_lock_irqsave(&q->lock, flags);
2702 	__add_wait_queue(q, &wait);
2703 	spin_unlock(&q->lock);
2704 	timeout = schedule_timeout(timeout);
2705 	spin_lock_irq(&q->lock);
2706 	__remove_wait_queue(q, &wait);
2707 	spin_unlock_irqrestore(&q->lock, flags);
2708 
2709 	return timeout;
2710 }
2711 
2712 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2713 {
2714 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2715 }
2716 EXPORT_SYMBOL(interruptible_sleep_on);
2717 
2718 long __sched
2719 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2720 {
2721 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2722 }
2723 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2724 
2725 void __sched sleep_on(wait_queue_head_t *q)
2726 {
2727 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2728 }
2729 EXPORT_SYMBOL(sleep_on);
2730 
2731 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2732 {
2733 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2734 }
2735 EXPORT_SYMBOL(sleep_on_timeout);
2736 
2737 #ifdef CONFIG_RT_MUTEXES
2738 
2739 /*
2740  * rt_mutex_setprio - set the current priority of a task
2741  * @p: task
2742  * @prio: prio value (kernel-internal form)
2743  *
2744  * This function changes the 'effective' priority of a task. It does
2745  * not touch ->normal_prio like __setscheduler().
2746  *
2747  * Used by the rt_mutex code to implement priority inheritance logic.
2748  */
2749 void rt_mutex_setprio(struct task_struct *p, int prio)
2750 {
2751 	int oldprio, on_rq, running;
2752 	struct rq *rq;
2753 	const struct sched_class *prev_class;
2754 
2755 	BUG_ON(prio < 0 || prio > MAX_PRIO);
2756 
2757 	rq = __task_rq_lock(p);
2758 
2759 	/*
2760 	 * Idle task boosting is a nono in general. There is one
2761 	 * exception, when PREEMPT_RT and NOHZ is active:
2762 	 *
2763 	 * The idle task calls get_next_timer_interrupt() and holds
2764 	 * the timer wheel base->lock on the CPU and another CPU wants
2765 	 * to access the timer (probably to cancel it). We can safely
2766 	 * ignore the boosting request, as the idle CPU runs this code
2767 	 * with interrupts disabled and will complete the lock
2768 	 * protected section without being interrupted. So there is no
2769 	 * real need to boost.
2770 	 */
2771 	if (unlikely(p == rq->idle)) {
2772 		WARN_ON(p != rq->curr);
2773 		WARN_ON(p->pi_blocked_on);
2774 		goto out_unlock;
2775 	}
2776 
2777 	trace_sched_pi_setprio(p, prio);
2778 	oldprio = p->prio;
2779 	prev_class = p->sched_class;
2780 	on_rq = p->on_rq;
2781 	running = task_current(rq, p);
2782 	if (on_rq)
2783 		dequeue_task(rq, p, 0);
2784 	if (running)
2785 		p->sched_class->put_prev_task(rq, p);
2786 
2787 	if (rt_prio(prio))
2788 		p->sched_class = &rt_sched_class;
2789 	else
2790 		p->sched_class = &fair_sched_class;
2791 
2792 	p->prio = prio;
2793 
2794 	if (running)
2795 		p->sched_class->set_curr_task(rq);
2796 	if (on_rq)
2797 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
2798 
2799 	check_class_changed(rq, p, prev_class, oldprio);
2800 out_unlock:
2801 	__task_rq_unlock(rq);
2802 }
2803 #endif
2804 void set_user_nice(struct task_struct *p, long nice)
2805 {
2806 	int old_prio, delta, on_rq;
2807 	unsigned long flags;
2808 	struct rq *rq;
2809 
2810 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2811 		return;
2812 	/*
2813 	 * We have to be careful, if called from sys_setpriority(),
2814 	 * the task might be in the middle of scheduling on another CPU.
2815 	 */
2816 	rq = task_rq_lock(p, &flags);
2817 	/*
2818 	 * The RT priorities are set via sched_setscheduler(), but we still
2819 	 * allow the 'normal' nice value to be set - but as expected
2820 	 * it wont have any effect on scheduling until the task is
2821 	 * SCHED_FIFO/SCHED_RR:
2822 	 */
2823 	if (task_has_rt_policy(p)) {
2824 		p->static_prio = NICE_TO_PRIO(nice);
2825 		goto out_unlock;
2826 	}
2827 	on_rq = p->on_rq;
2828 	if (on_rq)
2829 		dequeue_task(rq, p, 0);
2830 
2831 	p->static_prio = NICE_TO_PRIO(nice);
2832 	set_load_weight(p);
2833 	old_prio = p->prio;
2834 	p->prio = effective_prio(p);
2835 	delta = p->prio - old_prio;
2836 
2837 	if (on_rq) {
2838 		enqueue_task(rq, p, 0);
2839 		/*
2840 		 * If the task increased its priority or is running and
2841 		 * lowered its priority, then reschedule its CPU:
2842 		 */
2843 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2844 			resched_task(rq->curr);
2845 	}
2846 out_unlock:
2847 	task_rq_unlock(rq, p, &flags);
2848 }
2849 EXPORT_SYMBOL(set_user_nice);
2850 
2851 /*
2852  * can_nice - check if a task can reduce its nice value
2853  * @p: task
2854  * @nice: nice value
2855  */
2856 int can_nice(const struct task_struct *p, const int nice)
2857 {
2858 	/* convert nice value [19,-20] to rlimit style value [1,40] */
2859 	int nice_rlim = 20 - nice;
2860 
2861 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
2862 		capable(CAP_SYS_NICE));
2863 }
2864 
2865 #ifdef __ARCH_WANT_SYS_NICE
2866 
2867 /*
2868  * sys_nice - change the priority of the current process.
2869  * @increment: priority increment
2870  *
2871  * sys_setpriority is a more generic, but much slower function that
2872  * does similar things.
2873  */
2874 SYSCALL_DEFINE1(nice, int, increment)
2875 {
2876 	long nice, retval;
2877 
2878 	/*
2879 	 * Setpriority might change our priority at the same moment.
2880 	 * We don't have to worry. Conceptually one call occurs first
2881 	 * and we have a single winner.
2882 	 */
2883 	if (increment < -40)
2884 		increment = -40;
2885 	if (increment > 40)
2886 		increment = 40;
2887 
2888 	nice = TASK_NICE(current) + increment;
2889 	if (nice < -20)
2890 		nice = -20;
2891 	if (nice > 19)
2892 		nice = 19;
2893 
2894 	if (increment < 0 && !can_nice(current, nice))
2895 		return -EPERM;
2896 
2897 	retval = security_task_setnice(current, nice);
2898 	if (retval)
2899 		return retval;
2900 
2901 	set_user_nice(current, nice);
2902 	return 0;
2903 }
2904 
2905 #endif
2906 
2907 /**
2908  * task_prio - return the priority value of a given task.
2909  * @p: the task in question.
2910  *
2911  * Return: The priority value as seen by users in /proc.
2912  * RT tasks are offset by -200. Normal tasks are centered
2913  * around 0, value goes from -16 to +15.
2914  */
2915 int task_prio(const struct task_struct *p)
2916 {
2917 	return p->prio - MAX_RT_PRIO;
2918 }
2919 
2920 /**
2921  * task_nice - return the nice value of a given task.
2922  * @p: the task in question.
2923  *
2924  * Return: The nice value [ -20 ... 0 ... 19 ].
2925  */
2926 int task_nice(const struct task_struct *p)
2927 {
2928 	return TASK_NICE(p);
2929 }
2930 EXPORT_SYMBOL(task_nice);
2931 
2932 /**
2933  * idle_cpu - is a given cpu idle currently?
2934  * @cpu: the processor in question.
2935  *
2936  * Return: 1 if the CPU is currently idle. 0 otherwise.
2937  */
2938 int idle_cpu(int cpu)
2939 {
2940 	struct rq *rq = cpu_rq(cpu);
2941 
2942 	if (rq->curr != rq->idle)
2943 		return 0;
2944 
2945 	if (rq->nr_running)
2946 		return 0;
2947 
2948 #ifdef CONFIG_SMP
2949 	if (!llist_empty(&rq->wake_list))
2950 		return 0;
2951 #endif
2952 
2953 	return 1;
2954 }
2955 
2956 /**
2957  * idle_task - return the idle task for a given cpu.
2958  * @cpu: the processor in question.
2959  *
2960  * Return: The idle task for the cpu @cpu.
2961  */
2962 struct task_struct *idle_task(int cpu)
2963 {
2964 	return cpu_rq(cpu)->idle;
2965 }
2966 
2967 /**
2968  * find_process_by_pid - find a process with a matching PID value.
2969  * @pid: the pid in question.
2970  *
2971  * The task of @pid, if found. %NULL otherwise.
2972  */
2973 static struct task_struct *find_process_by_pid(pid_t pid)
2974 {
2975 	return pid ? find_task_by_vpid(pid) : current;
2976 }
2977 
2978 /* Actually do priority change: must hold rq lock. */
2979 static void
2980 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
2981 {
2982 	p->policy = policy;
2983 	p->rt_priority = prio;
2984 	p->normal_prio = normal_prio(p);
2985 	/* we are holding p->pi_lock already */
2986 	p->prio = rt_mutex_getprio(p);
2987 	if (rt_prio(p->prio))
2988 		p->sched_class = &rt_sched_class;
2989 	else
2990 		p->sched_class = &fair_sched_class;
2991 	set_load_weight(p);
2992 }
2993 
2994 /*
2995  * check the target process has a UID that matches the current process's
2996  */
2997 static bool check_same_owner(struct task_struct *p)
2998 {
2999 	const struct cred *cred = current_cred(), *pcred;
3000 	bool match;
3001 
3002 	rcu_read_lock();
3003 	pcred = __task_cred(p);
3004 	match = (uid_eq(cred->euid, pcred->euid) ||
3005 		 uid_eq(cred->euid, pcred->uid));
3006 	rcu_read_unlock();
3007 	return match;
3008 }
3009 
3010 static int __sched_setscheduler(struct task_struct *p, int policy,
3011 				const struct sched_param *param, bool user)
3012 {
3013 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3014 	unsigned long flags;
3015 	const struct sched_class *prev_class;
3016 	struct rq *rq;
3017 	int reset_on_fork;
3018 
3019 	/* may grab non-irq protected spin_locks */
3020 	BUG_ON(in_interrupt());
3021 recheck:
3022 	/* double check policy once rq lock held */
3023 	if (policy < 0) {
3024 		reset_on_fork = p->sched_reset_on_fork;
3025 		policy = oldpolicy = p->policy;
3026 	} else {
3027 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3028 		policy &= ~SCHED_RESET_ON_FORK;
3029 
3030 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3031 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3032 				policy != SCHED_IDLE)
3033 			return -EINVAL;
3034 	}
3035 
3036 	/*
3037 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3038 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3039 	 * SCHED_BATCH and SCHED_IDLE is 0.
3040 	 */
3041 	if (param->sched_priority < 0 ||
3042 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3043 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3044 		return -EINVAL;
3045 	if (rt_policy(policy) != (param->sched_priority != 0))
3046 		return -EINVAL;
3047 
3048 	/*
3049 	 * Allow unprivileged RT tasks to decrease priority:
3050 	 */
3051 	if (user && !capable(CAP_SYS_NICE)) {
3052 		if (rt_policy(policy)) {
3053 			unsigned long rlim_rtprio =
3054 					task_rlimit(p, RLIMIT_RTPRIO);
3055 
3056 			/* can't set/change the rt policy */
3057 			if (policy != p->policy && !rlim_rtprio)
3058 				return -EPERM;
3059 
3060 			/* can't increase priority */
3061 			if (param->sched_priority > p->rt_priority &&
3062 			    param->sched_priority > rlim_rtprio)
3063 				return -EPERM;
3064 		}
3065 
3066 		/*
3067 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3068 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3069 		 */
3070 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3071 			if (!can_nice(p, TASK_NICE(p)))
3072 				return -EPERM;
3073 		}
3074 
3075 		/* can't change other user's priorities */
3076 		if (!check_same_owner(p))
3077 			return -EPERM;
3078 
3079 		/* Normal users shall not reset the sched_reset_on_fork flag */
3080 		if (p->sched_reset_on_fork && !reset_on_fork)
3081 			return -EPERM;
3082 	}
3083 
3084 	if (user) {
3085 		retval = security_task_setscheduler(p);
3086 		if (retval)
3087 			return retval;
3088 	}
3089 
3090 	/*
3091 	 * make sure no PI-waiters arrive (or leave) while we are
3092 	 * changing the priority of the task:
3093 	 *
3094 	 * To be able to change p->policy safely, the appropriate
3095 	 * runqueue lock must be held.
3096 	 */
3097 	rq = task_rq_lock(p, &flags);
3098 
3099 	/*
3100 	 * Changing the policy of the stop threads its a very bad idea
3101 	 */
3102 	if (p == rq->stop) {
3103 		task_rq_unlock(rq, p, &flags);
3104 		return -EINVAL;
3105 	}
3106 
3107 	/*
3108 	 * If not changing anything there's no need to proceed further:
3109 	 */
3110 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3111 			param->sched_priority == p->rt_priority))) {
3112 		task_rq_unlock(rq, p, &flags);
3113 		return 0;
3114 	}
3115 
3116 #ifdef CONFIG_RT_GROUP_SCHED
3117 	if (user) {
3118 		/*
3119 		 * Do not allow realtime tasks into groups that have no runtime
3120 		 * assigned.
3121 		 */
3122 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3123 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3124 				!task_group_is_autogroup(task_group(p))) {
3125 			task_rq_unlock(rq, p, &flags);
3126 			return -EPERM;
3127 		}
3128 	}
3129 #endif
3130 
3131 	/* recheck policy now with rq lock held */
3132 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3133 		policy = oldpolicy = -1;
3134 		task_rq_unlock(rq, p, &flags);
3135 		goto recheck;
3136 	}
3137 	on_rq = p->on_rq;
3138 	running = task_current(rq, p);
3139 	if (on_rq)
3140 		dequeue_task(rq, p, 0);
3141 	if (running)
3142 		p->sched_class->put_prev_task(rq, p);
3143 
3144 	p->sched_reset_on_fork = reset_on_fork;
3145 
3146 	oldprio = p->prio;
3147 	prev_class = p->sched_class;
3148 	__setscheduler(rq, p, policy, param->sched_priority);
3149 
3150 	if (running)
3151 		p->sched_class->set_curr_task(rq);
3152 	if (on_rq)
3153 		enqueue_task(rq, p, 0);
3154 
3155 	check_class_changed(rq, p, prev_class, oldprio);
3156 	task_rq_unlock(rq, p, &flags);
3157 
3158 	rt_mutex_adjust_pi(p);
3159 
3160 	return 0;
3161 }
3162 
3163 /**
3164  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3165  * @p: the task in question.
3166  * @policy: new policy.
3167  * @param: structure containing the new RT priority.
3168  *
3169  * Return: 0 on success. An error code otherwise.
3170  *
3171  * NOTE that the task may be already dead.
3172  */
3173 int sched_setscheduler(struct task_struct *p, int policy,
3174 		       const struct sched_param *param)
3175 {
3176 	return __sched_setscheduler(p, policy, param, true);
3177 }
3178 EXPORT_SYMBOL_GPL(sched_setscheduler);
3179 
3180 /**
3181  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3182  * @p: the task in question.
3183  * @policy: new policy.
3184  * @param: structure containing the new RT priority.
3185  *
3186  * Just like sched_setscheduler, only don't bother checking if the
3187  * current context has permission.  For example, this is needed in
3188  * stop_machine(): we create temporary high priority worker threads,
3189  * but our caller might not have that capability.
3190  *
3191  * Return: 0 on success. An error code otherwise.
3192  */
3193 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3194 			       const struct sched_param *param)
3195 {
3196 	return __sched_setscheduler(p, policy, param, false);
3197 }
3198 
3199 static int
3200 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3201 {
3202 	struct sched_param lparam;
3203 	struct task_struct *p;
3204 	int retval;
3205 
3206 	if (!param || pid < 0)
3207 		return -EINVAL;
3208 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3209 		return -EFAULT;
3210 
3211 	rcu_read_lock();
3212 	retval = -ESRCH;
3213 	p = find_process_by_pid(pid);
3214 	if (p != NULL)
3215 		retval = sched_setscheduler(p, policy, &lparam);
3216 	rcu_read_unlock();
3217 
3218 	return retval;
3219 }
3220 
3221 /**
3222  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3223  * @pid: the pid in question.
3224  * @policy: new policy.
3225  * @param: structure containing the new RT priority.
3226  *
3227  * Return: 0 on success. An error code otherwise.
3228  */
3229 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3230 		struct sched_param __user *, param)
3231 {
3232 	/* negative values for policy are not valid */
3233 	if (policy < 0)
3234 		return -EINVAL;
3235 
3236 	return do_sched_setscheduler(pid, policy, param);
3237 }
3238 
3239 /**
3240  * sys_sched_setparam - set/change the RT priority of a thread
3241  * @pid: the pid in question.
3242  * @param: structure containing the new RT priority.
3243  *
3244  * Return: 0 on success. An error code otherwise.
3245  */
3246 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3247 {
3248 	return do_sched_setscheduler(pid, -1, param);
3249 }
3250 
3251 /**
3252  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3253  * @pid: the pid in question.
3254  *
3255  * Return: On success, the policy of the thread. Otherwise, a negative error
3256  * code.
3257  */
3258 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3259 {
3260 	struct task_struct *p;
3261 	int retval;
3262 
3263 	if (pid < 0)
3264 		return -EINVAL;
3265 
3266 	retval = -ESRCH;
3267 	rcu_read_lock();
3268 	p = find_process_by_pid(pid);
3269 	if (p) {
3270 		retval = security_task_getscheduler(p);
3271 		if (!retval)
3272 			retval = p->policy
3273 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3274 	}
3275 	rcu_read_unlock();
3276 	return retval;
3277 }
3278 
3279 /**
3280  * sys_sched_getparam - get the RT priority of a thread
3281  * @pid: the pid in question.
3282  * @param: structure containing the RT priority.
3283  *
3284  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3285  * code.
3286  */
3287 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3288 {
3289 	struct sched_param lp;
3290 	struct task_struct *p;
3291 	int retval;
3292 
3293 	if (!param || pid < 0)
3294 		return -EINVAL;
3295 
3296 	rcu_read_lock();
3297 	p = find_process_by_pid(pid);
3298 	retval = -ESRCH;
3299 	if (!p)
3300 		goto out_unlock;
3301 
3302 	retval = security_task_getscheduler(p);
3303 	if (retval)
3304 		goto out_unlock;
3305 
3306 	lp.sched_priority = p->rt_priority;
3307 	rcu_read_unlock();
3308 
3309 	/*
3310 	 * This one might sleep, we cannot do it with a spinlock held ...
3311 	 */
3312 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3313 
3314 	return retval;
3315 
3316 out_unlock:
3317 	rcu_read_unlock();
3318 	return retval;
3319 }
3320 
3321 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3322 {
3323 	cpumask_var_t cpus_allowed, new_mask;
3324 	struct task_struct *p;
3325 	int retval;
3326 
3327 	rcu_read_lock();
3328 
3329 	p = find_process_by_pid(pid);
3330 	if (!p) {
3331 		rcu_read_unlock();
3332 		return -ESRCH;
3333 	}
3334 
3335 	/* Prevent p going away */
3336 	get_task_struct(p);
3337 	rcu_read_unlock();
3338 
3339 	if (p->flags & PF_NO_SETAFFINITY) {
3340 		retval = -EINVAL;
3341 		goto out_put_task;
3342 	}
3343 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3344 		retval = -ENOMEM;
3345 		goto out_put_task;
3346 	}
3347 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3348 		retval = -ENOMEM;
3349 		goto out_free_cpus_allowed;
3350 	}
3351 	retval = -EPERM;
3352 	if (!check_same_owner(p)) {
3353 		rcu_read_lock();
3354 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3355 			rcu_read_unlock();
3356 			goto out_unlock;
3357 		}
3358 		rcu_read_unlock();
3359 	}
3360 
3361 	retval = security_task_setscheduler(p);
3362 	if (retval)
3363 		goto out_unlock;
3364 
3365 	cpuset_cpus_allowed(p, cpus_allowed);
3366 	cpumask_and(new_mask, in_mask, cpus_allowed);
3367 again:
3368 	retval = set_cpus_allowed_ptr(p, new_mask);
3369 
3370 	if (!retval) {
3371 		cpuset_cpus_allowed(p, cpus_allowed);
3372 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3373 			/*
3374 			 * We must have raced with a concurrent cpuset
3375 			 * update. Just reset the cpus_allowed to the
3376 			 * cpuset's cpus_allowed
3377 			 */
3378 			cpumask_copy(new_mask, cpus_allowed);
3379 			goto again;
3380 		}
3381 	}
3382 out_unlock:
3383 	free_cpumask_var(new_mask);
3384 out_free_cpus_allowed:
3385 	free_cpumask_var(cpus_allowed);
3386 out_put_task:
3387 	put_task_struct(p);
3388 	return retval;
3389 }
3390 
3391 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3392 			     struct cpumask *new_mask)
3393 {
3394 	if (len < cpumask_size())
3395 		cpumask_clear(new_mask);
3396 	else if (len > cpumask_size())
3397 		len = cpumask_size();
3398 
3399 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3400 }
3401 
3402 /**
3403  * sys_sched_setaffinity - set the cpu affinity of a process
3404  * @pid: pid of the process
3405  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3406  * @user_mask_ptr: user-space pointer to the new cpu mask
3407  *
3408  * Return: 0 on success. An error code otherwise.
3409  */
3410 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3411 		unsigned long __user *, user_mask_ptr)
3412 {
3413 	cpumask_var_t new_mask;
3414 	int retval;
3415 
3416 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3417 		return -ENOMEM;
3418 
3419 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3420 	if (retval == 0)
3421 		retval = sched_setaffinity(pid, new_mask);
3422 	free_cpumask_var(new_mask);
3423 	return retval;
3424 }
3425 
3426 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3427 {
3428 	struct task_struct *p;
3429 	unsigned long flags;
3430 	int retval;
3431 
3432 	rcu_read_lock();
3433 
3434 	retval = -ESRCH;
3435 	p = find_process_by_pid(pid);
3436 	if (!p)
3437 		goto out_unlock;
3438 
3439 	retval = security_task_getscheduler(p);
3440 	if (retval)
3441 		goto out_unlock;
3442 
3443 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3444 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3445 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3446 
3447 out_unlock:
3448 	rcu_read_unlock();
3449 
3450 	return retval;
3451 }
3452 
3453 /**
3454  * sys_sched_getaffinity - get the cpu affinity of a process
3455  * @pid: pid of the process
3456  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3457  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3458  *
3459  * Return: 0 on success. An error code otherwise.
3460  */
3461 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3462 		unsigned long __user *, user_mask_ptr)
3463 {
3464 	int ret;
3465 	cpumask_var_t mask;
3466 
3467 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3468 		return -EINVAL;
3469 	if (len & (sizeof(unsigned long)-1))
3470 		return -EINVAL;
3471 
3472 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3473 		return -ENOMEM;
3474 
3475 	ret = sched_getaffinity(pid, mask);
3476 	if (ret == 0) {
3477 		size_t retlen = min_t(size_t, len, cpumask_size());
3478 
3479 		if (copy_to_user(user_mask_ptr, mask, retlen))
3480 			ret = -EFAULT;
3481 		else
3482 			ret = retlen;
3483 	}
3484 	free_cpumask_var(mask);
3485 
3486 	return ret;
3487 }
3488 
3489 /**
3490  * sys_sched_yield - yield the current processor to other threads.
3491  *
3492  * This function yields the current CPU to other tasks. If there are no
3493  * other threads running on this CPU then this function will return.
3494  *
3495  * Return: 0.
3496  */
3497 SYSCALL_DEFINE0(sched_yield)
3498 {
3499 	struct rq *rq = this_rq_lock();
3500 
3501 	schedstat_inc(rq, yld_count);
3502 	current->sched_class->yield_task(rq);
3503 
3504 	/*
3505 	 * Since we are going to call schedule() anyway, there's
3506 	 * no need to preempt or enable interrupts:
3507 	 */
3508 	__release(rq->lock);
3509 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3510 	do_raw_spin_unlock(&rq->lock);
3511 	sched_preempt_enable_no_resched();
3512 
3513 	schedule();
3514 
3515 	return 0;
3516 }
3517 
3518 static void __cond_resched(void)
3519 {
3520 	__preempt_count_add(PREEMPT_ACTIVE);
3521 	__schedule();
3522 	__preempt_count_sub(PREEMPT_ACTIVE);
3523 }
3524 
3525 int __sched _cond_resched(void)
3526 {
3527 	if (should_resched()) {
3528 		__cond_resched();
3529 		return 1;
3530 	}
3531 	return 0;
3532 }
3533 EXPORT_SYMBOL(_cond_resched);
3534 
3535 /*
3536  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3537  * call schedule, and on return reacquire the lock.
3538  *
3539  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3540  * operations here to prevent schedule() from being called twice (once via
3541  * spin_unlock(), once by hand).
3542  */
3543 int __cond_resched_lock(spinlock_t *lock)
3544 {
3545 	int resched = should_resched();
3546 	int ret = 0;
3547 
3548 	lockdep_assert_held(lock);
3549 
3550 	if (spin_needbreak(lock) || resched) {
3551 		spin_unlock(lock);
3552 		if (resched)
3553 			__cond_resched();
3554 		else
3555 			cpu_relax();
3556 		ret = 1;
3557 		spin_lock(lock);
3558 	}
3559 	return ret;
3560 }
3561 EXPORT_SYMBOL(__cond_resched_lock);
3562 
3563 int __sched __cond_resched_softirq(void)
3564 {
3565 	BUG_ON(!in_softirq());
3566 
3567 	if (should_resched()) {
3568 		local_bh_enable();
3569 		__cond_resched();
3570 		local_bh_disable();
3571 		return 1;
3572 	}
3573 	return 0;
3574 }
3575 EXPORT_SYMBOL(__cond_resched_softirq);
3576 
3577 /**
3578  * yield - yield the current processor to other threads.
3579  *
3580  * Do not ever use this function, there's a 99% chance you're doing it wrong.
3581  *
3582  * The scheduler is at all times free to pick the calling task as the most
3583  * eligible task to run, if removing the yield() call from your code breaks
3584  * it, its already broken.
3585  *
3586  * Typical broken usage is:
3587  *
3588  * while (!event)
3589  * 	yield();
3590  *
3591  * where one assumes that yield() will let 'the other' process run that will
3592  * make event true. If the current task is a SCHED_FIFO task that will never
3593  * happen. Never use yield() as a progress guarantee!!
3594  *
3595  * If you want to use yield() to wait for something, use wait_event().
3596  * If you want to use yield() to be 'nice' for others, use cond_resched().
3597  * If you still want to use yield(), do not!
3598  */
3599 void __sched yield(void)
3600 {
3601 	set_current_state(TASK_RUNNING);
3602 	sys_sched_yield();
3603 }
3604 EXPORT_SYMBOL(yield);
3605 
3606 /**
3607  * yield_to - yield the current processor to another thread in
3608  * your thread group, or accelerate that thread toward the
3609  * processor it's on.
3610  * @p: target task
3611  * @preempt: whether task preemption is allowed or not
3612  *
3613  * It's the caller's job to ensure that the target task struct
3614  * can't go away on us before we can do any checks.
3615  *
3616  * Return:
3617  *	true (>0) if we indeed boosted the target task.
3618  *	false (0) if we failed to boost the target.
3619  *	-ESRCH if there's no task to yield to.
3620  */
3621 bool __sched yield_to(struct task_struct *p, bool preempt)
3622 {
3623 	struct task_struct *curr = current;
3624 	struct rq *rq, *p_rq;
3625 	unsigned long flags;
3626 	int yielded = 0;
3627 
3628 	local_irq_save(flags);
3629 	rq = this_rq();
3630 
3631 again:
3632 	p_rq = task_rq(p);
3633 	/*
3634 	 * If we're the only runnable task on the rq and target rq also
3635 	 * has only one task, there's absolutely no point in yielding.
3636 	 */
3637 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3638 		yielded = -ESRCH;
3639 		goto out_irq;
3640 	}
3641 
3642 	double_rq_lock(rq, p_rq);
3643 	while (task_rq(p) != p_rq) {
3644 		double_rq_unlock(rq, p_rq);
3645 		goto again;
3646 	}
3647 
3648 	if (!curr->sched_class->yield_to_task)
3649 		goto out_unlock;
3650 
3651 	if (curr->sched_class != p->sched_class)
3652 		goto out_unlock;
3653 
3654 	if (task_running(p_rq, p) || p->state)
3655 		goto out_unlock;
3656 
3657 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3658 	if (yielded) {
3659 		schedstat_inc(rq, yld_count);
3660 		/*
3661 		 * Make p's CPU reschedule; pick_next_entity takes care of
3662 		 * fairness.
3663 		 */
3664 		if (preempt && rq != p_rq)
3665 			resched_task(p_rq->curr);
3666 	}
3667 
3668 out_unlock:
3669 	double_rq_unlock(rq, p_rq);
3670 out_irq:
3671 	local_irq_restore(flags);
3672 
3673 	if (yielded > 0)
3674 		schedule();
3675 
3676 	return yielded;
3677 }
3678 EXPORT_SYMBOL_GPL(yield_to);
3679 
3680 /*
3681  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3682  * that process accounting knows that this is a task in IO wait state.
3683  */
3684 void __sched io_schedule(void)
3685 {
3686 	struct rq *rq = raw_rq();
3687 
3688 	delayacct_blkio_start();
3689 	atomic_inc(&rq->nr_iowait);
3690 	blk_flush_plug(current);
3691 	current->in_iowait = 1;
3692 	schedule();
3693 	current->in_iowait = 0;
3694 	atomic_dec(&rq->nr_iowait);
3695 	delayacct_blkio_end();
3696 }
3697 EXPORT_SYMBOL(io_schedule);
3698 
3699 long __sched io_schedule_timeout(long timeout)
3700 {
3701 	struct rq *rq = raw_rq();
3702 	long ret;
3703 
3704 	delayacct_blkio_start();
3705 	atomic_inc(&rq->nr_iowait);
3706 	blk_flush_plug(current);
3707 	current->in_iowait = 1;
3708 	ret = schedule_timeout(timeout);
3709 	current->in_iowait = 0;
3710 	atomic_dec(&rq->nr_iowait);
3711 	delayacct_blkio_end();
3712 	return ret;
3713 }
3714 
3715 /**
3716  * sys_sched_get_priority_max - return maximum RT priority.
3717  * @policy: scheduling class.
3718  *
3719  * Return: On success, this syscall returns the maximum
3720  * rt_priority that can be used by a given scheduling class.
3721  * On failure, a negative error code is returned.
3722  */
3723 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3724 {
3725 	int ret = -EINVAL;
3726 
3727 	switch (policy) {
3728 	case SCHED_FIFO:
3729 	case SCHED_RR:
3730 		ret = MAX_USER_RT_PRIO-1;
3731 		break;
3732 	case SCHED_NORMAL:
3733 	case SCHED_BATCH:
3734 	case SCHED_IDLE:
3735 		ret = 0;
3736 		break;
3737 	}
3738 	return ret;
3739 }
3740 
3741 /**
3742  * sys_sched_get_priority_min - return minimum RT priority.
3743  * @policy: scheduling class.
3744  *
3745  * Return: On success, this syscall returns the minimum
3746  * rt_priority that can be used by a given scheduling class.
3747  * On failure, a negative error code is returned.
3748  */
3749 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
3750 {
3751 	int ret = -EINVAL;
3752 
3753 	switch (policy) {
3754 	case SCHED_FIFO:
3755 	case SCHED_RR:
3756 		ret = 1;
3757 		break;
3758 	case SCHED_NORMAL:
3759 	case SCHED_BATCH:
3760 	case SCHED_IDLE:
3761 		ret = 0;
3762 	}
3763 	return ret;
3764 }
3765 
3766 /**
3767  * sys_sched_rr_get_interval - return the default timeslice of a process.
3768  * @pid: pid of the process.
3769  * @interval: userspace pointer to the timeslice value.
3770  *
3771  * this syscall writes the default timeslice value of a given process
3772  * into the user-space timespec buffer. A value of '0' means infinity.
3773  *
3774  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
3775  * an error code.
3776  */
3777 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
3778 		struct timespec __user *, interval)
3779 {
3780 	struct task_struct *p;
3781 	unsigned int time_slice;
3782 	unsigned long flags;
3783 	struct rq *rq;
3784 	int retval;
3785 	struct timespec t;
3786 
3787 	if (pid < 0)
3788 		return -EINVAL;
3789 
3790 	retval = -ESRCH;
3791 	rcu_read_lock();
3792 	p = find_process_by_pid(pid);
3793 	if (!p)
3794 		goto out_unlock;
3795 
3796 	retval = security_task_getscheduler(p);
3797 	if (retval)
3798 		goto out_unlock;
3799 
3800 	rq = task_rq_lock(p, &flags);
3801 	time_slice = p->sched_class->get_rr_interval(rq, p);
3802 	task_rq_unlock(rq, p, &flags);
3803 
3804 	rcu_read_unlock();
3805 	jiffies_to_timespec(time_slice, &t);
3806 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3807 	return retval;
3808 
3809 out_unlock:
3810 	rcu_read_unlock();
3811 	return retval;
3812 }
3813 
3814 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
3815 
3816 void sched_show_task(struct task_struct *p)
3817 {
3818 	unsigned long free = 0;
3819 	int ppid;
3820 	unsigned state;
3821 
3822 	state = p->state ? __ffs(p->state) + 1 : 0;
3823 	printk(KERN_INFO "%-15.15s %c", p->comm,
3824 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
3825 #if BITS_PER_LONG == 32
3826 	if (state == TASK_RUNNING)
3827 		printk(KERN_CONT " running  ");
3828 	else
3829 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
3830 #else
3831 	if (state == TASK_RUNNING)
3832 		printk(KERN_CONT "  running task    ");
3833 	else
3834 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
3835 #endif
3836 #ifdef CONFIG_DEBUG_STACK_USAGE
3837 	free = stack_not_used(p);
3838 #endif
3839 	rcu_read_lock();
3840 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
3841 	rcu_read_unlock();
3842 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
3843 		task_pid_nr(p), ppid,
3844 		(unsigned long)task_thread_info(p)->flags);
3845 
3846 	print_worker_info(KERN_INFO, p);
3847 	show_stack(p, NULL);
3848 }
3849 
3850 void show_state_filter(unsigned long state_filter)
3851 {
3852 	struct task_struct *g, *p;
3853 
3854 #if BITS_PER_LONG == 32
3855 	printk(KERN_INFO
3856 		"  task                PC stack   pid father\n");
3857 #else
3858 	printk(KERN_INFO
3859 		"  task                        PC stack   pid father\n");
3860 #endif
3861 	rcu_read_lock();
3862 	do_each_thread(g, p) {
3863 		/*
3864 		 * reset the NMI-timeout, listing all files on a slow
3865 		 * console might take a lot of time:
3866 		 */
3867 		touch_nmi_watchdog();
3868 		if (!state_filter || (p->state & state_filter))
3869 			sched_show_task(p);
3870 	} while_each_thread(g, p);
3871 
3872 	touch_all_softlockup_watchdogs();
3873 
3874 #ifdef CONFIG_SCHED_DEBUG
3875 	sysrq_sched_debug_show();
3876 #endif
3877 	rcu_read_unlock();
3878 	/*
3879 	 * Only show locks if all tasks are dumped:
3880 	 */
3881 	if (!state_filter)
3882 		debug_show_all_locks();
3883 }
3884 
3885 void init_idle_bootup_task(struct task_struct *idle)
3886 {
3887 	idle->sched_class = &idle_sched_class;
3888 }
3889 
3890 /**
3891  * init_idle - set up an idle thread for a given CPU
3892  * @idle: task in question
3893  * @cpu: cpu the idle task belongs to
3894  *
3895  * NOTE: this function does not set the idle thread's NEED_RESCHED
3896  * flag, to make booting more robust.
3897  */
3898 void init_idle(struct task_struct *idle, int cpu)
3899 {
3900 	struct rq *rq = cpu_rq(cpu);
3901 	unsigned long flags;
3902 
3903 	raw_spin_lock_irqsave(&rq->lock, flags);
3904 
3905 	__sched_fork(0, idle);
3906 	idle->state = TASK_RUNNING;
3907 	idle->se.exec_start = sched_clock();
3908 
3909 	do_set_cpus_allowed(idle, cpumask_of(cpu));
3910 	/*
3911 	 * We're having a chicken and egg problem, even though we are
3912 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
3913 	 * lockdep check in task_group() will fail.
3914 	 *
3915 	 * Similar case to sched_fork(). / Alternatively we could
3916 	 * use task_rq_lock() here and obtain the other rq->lock.
3917 	 *
3918 	 * Silence PROVE_RCU
3919 	 */
3920 	rcu_read_lock();
3921 	__set_task_cpu(idle, cpu);
3922 	rcu_read_unlock();
3923 
3924 	rq->curr = rq->idle = idle;
3925 #if defined(CONFIG_SMP)
3926 	idle->on_cpu = 1;
3927 #endif
3928 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3929 
3930 	/* Set the preempt count _outside_ the spinlocks! */
3931 	init_idle_preempt_count(idle, cpu);
3932 
3933 	/*
3934 	 * The idle tasks have their own, simple scheduling class:
3935 	 */
3936 	idle->sched_class = &idle_sched_class;
3937 	ftrace_graph_init_idle_task(idle, cpu);
3938 	vtime_init_idle(idle, cpu);
3939 #if defined(CONFIG_SMP)
3940 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
3941 #endif
3942 }
3943 
3944 #ifdef CONFIG_SMP
3945 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
3946 {
3947 	if (p->sched_class && p->sched_class->set_cpus_allowed)
3948 		p->sched_class->set_cpus_allowed(p, new_mask);
3949 
3950 	cpumask_copy(&p->cpus_allowed, new_mask);
3951 	p->nr_cpus_allowed = cpumask_weight(new_mask);
3952 }
3953 
3954 /*
3955  * This is how migration works:
3956  *
3957  * 1) we invoke migration_cpu_stop() on the target CPU using
3958  *    stop_one_cpu().
3959  * 2) stopper starts to run (implicitly forcing the migrated thread
3960  *    off the CPU)
3961  * 3) it checks whether the migrated task is still in the wrong runqueue.
3962  * 4) if it's in the wrong runqueue then the migration thread removes
3963  *    it and puts it into the right queue.
3964  * 5) stopper completes and stop_one_cpu() returns and the migration
3965  *    is done.
3966  */
3967 
3968 /*
3969  * Change a given task's CPU affinity. Migrate the thread to a
3970  * proper CPU and schedule it away if the CPU it's executing on
3971  * is removed from the allowed bitmask.
3972  *
3973  * NOTE: the caller must have a valid reference to the task, the
3974  * task must not exit() & deallocate itself prematurely. The
3975  * call is not atomic; no spinlocks may be held.
3976  */
3977 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3978 {
3979 	unsigned long flags;
3980 	struct rq *rq;
3981 	unsigned int dest_cpu;
3982 	int ret = 0;
3983 
3984 	rq = task_rq_lock(p, &flags);
3985 
3986 	if (cpumask_equal(&p->cpus_allowed, new_mask))
3987 		goto out;
3988 
3989 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
3990 		ret = -EINVAL;
3991 		goto out;
3992 	}
3993 
3994 	do_set_cpus_allowed(p, new_mask);
3995 
3996 	/* Can the task run on the task's current CPU? If so, we're done */
3997 	if (cpumask_test_cpu(task_cpu(p), new_mask))
3998 		goto out;
3999 
4000 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4001 	if (p->on_rq) {
4002 		struct migration_arg arg = { p, dest_cpu };
4003 		/* Need help from migration thread: drop lock and wait. */
4004 		task_rq_unlock(rq, p, &flags);
4005 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4006 		tlb_migrate_finish(p->mm);
4007 		return 0;
4008 	}
4009 out:
4010 	task_rq_unlock(rq, p, &flags);
4011 
4012 	return ret;
4013 }
4014 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4015 
4016 /*
4017  * Move (not current) task off this cpu, onto dest cpu. We're doing
4018  * this because either it can't run here any more (set_cpus_allowed()
4019  * away from this CPU, or CPU going down), or because we're
4020  * attempting to rebalance this task on exec (sched_exec).
4021  *
4022  * So we race with normal scheduler movements, but that's OK, as long
4023  * as the task is no longer on this CPU.
4024  *
4025  * Returns non-zero if task was successfully migrated.
4026  */
4027 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4028 {
4029 	struct rq *rq_dest, *rq_src;
4030 	int ret = 0;
4031 
4032 	if (unlikely(!cpu_active(dest_cpu)))
4033 		return ret;
4034 
4035 	rq_src = cpu_rq(src_cpu);
4036 	rq_dest = cpu_rq(dest_cpu);
4037 
4038 	raw_spin_lock(&p->pi_lock);
4039 	double_rq_lock(rq_src, rq_dest);
4040 	/* Already moved. */
4041 	if (task_cpu(p) != src_cpu)
4042 		goto done;
4043 	/* Affinity changed (again). */
4044 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4045 		goto fail;
4046 
4047 	/*
4048 	 * If we're not on a rq, the next wake-up will ensure we're
4049 	 * placed properly.
4050 	 */
4051 	if (p->on_rq) {
4052 		dequeue_task(rq_src, p, 0);
4053 		set_task_cpu(p, dest_cpu);
4054 		enqueue_task(rq_dest, p, 0);
4055 		check_preempt_curr(rq_dest, p, 0);
4056 	}
4057 done:
4058 	ret = 1;
4059 fail:
4060 	double_rq_unlock(rq_src, rq_dest);
4061 	raw_spin_unlock(&p->pi_lock);
4062 	return ret;
4063 }
4064 
4065 #ifdef CONFIG_NUMA_BALANCING
4066 /* Migrate current task p to target_cpu */
4067 int migrate_task_to(struct task_struct *p, int target_cpu)
4068 {
4069 	struct migration_arg arg = { p, target_cpu };
4070 	int curr_cpu = task_cpu(p);
4071 
4072 	if (curr_cpu == target_cpu)
4073 		return 0;
4074 
4075 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4076 		return -EINVAL;
4077 
4078 	/* TODO: This is not properly updating schedstats */
4079 
4080 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4081 }
4082 
4083 /*
4084  * Requeue a task on a given node and accurately track the number of NUMA
4085  * tasks on the runqueues
4086  */
4087 void sched_setnuma(struct task_struct *p, int nid)
4088 {
4089 	struct rq *rq;
4090 	unsigned long flags;
4091 	bool on_rq, running;
4092 
4093 	rq = task_rq_lock(p, &flags);
4094 	on_rq = p->on_rq;
4095 	running = task_current(rq, p);
4096 
4097 	if (on_rq)
4098 		dequeue_task(rq, p, 0);
4099 	if (running)
4100 		p->sched_class->put_prev_task(rq, p);
4101 
4102 	p->numa_preferred_nid = nid;
4103 
4104 	if (running)
4105 		p->sched_class->set_curr_task(rq);
4106 	if (on_rq)
4107 		enqueue_task(rq, p, 0);
4108 	task_rq_unlock(rq, p, &flags);
4109 }
4110 #endif
4111 
4112 /*
4113  * migration_cpu_stop - this will be executed by a highprio stopper thread
4114  * and performs thread migration by bumping thread off CPU then
4115  * 'pushing' onto another runqueue.
4116  */
4117 static int migration_cpu_stop(void *data)
4118 {
4119 	struct migration_arg *arg = data;
4120 
4121 	/*
4122 	 * The original target cpu might have gone down and we might
4123 	 * be on another cpu but it doesn't matter.
4124 	 */
4125 	local_irq_disable();
4126 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4127 	local_irq_enable();
4128 	return 0;
4129 }
4130 
4131 #ifdef CONFIG_HOTPLUG_CPU
4132 
4133 /*
4134  * Ensures that the idle task is using init_mm right before its cpu goes
4135  * offline.
4136  */
4137 void idle_task_exit(void)
4138 {
4139 	struct mm_struct *mm = current->active_mm;
4140 
4141 	BUG_ON(cpu_online(smp_processor_id()));
4142 
4143 	if (mm != &init_mm)
4144 		switch_mm(mm, &init_mm, current);
4145 	mmdrop(mm);
4146 }
4147 
4148 /*
4149  * Since this CPU is going 'away' for a while, fold any nr_active delta
4150  * we might have. Assumes we're called after migrate_tasks() so that the
4151  * nr_active count is stable.
4152  *
4153  * Also see the comment "Global load-average calculations".
4154  */
4155 static void calc_load_migrate(struct rq *rq)
4156 {
4157 	long delta = calc_load_fold_active(rq);
4158 	if (delta)
4159 		atomic_long_add(delta, &calc_load_tasks);
4160 }
4161 
4162 /*
4163  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4164  * try_to_wake_up()->select_task_rq().
4165  *
4166  * Called with rq->lock held even though we'er in stop_machine() and
4167  * there's no concurrency possible, we hold the required locks anyway
4168  * because of lock validation efforts.
4169  */
4170 static void migrate_tasks(unsigned int dead_cpu)
4171 {
4172 	struct rq *rq = cpu_rq(dead_cpu);
4173 	struct task_struct *next, *stop = rq->stop;
4174 	int dest_cpu;
4175 
4176 	/*
4177 	 * Fudge the rq selection such that the below task selection loop
4178 	 * doesn't get stuck on the currently eligible stop task.
4179 	 *
4180 	 * We're currently inside stop_machine() and the rq is either stuck
4181 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4182 	 * either way we should never end up calling schedule() until we're
4183 	 * done here.
4184 	 */
4185 	rq->stop = NULL;
4186 
4187 	/*
4188 	 * put_prev_task() and pick_next_task() sched
4189 	 * class method both need to have an up-to-date
4190 	 * value of rq->clock[_task]
4191 	 */
4192 	update_rq_clock(rq);
4193 
4194 	for ( ; ; ) {
4195 		/*
4196 		 * There's this thread running, bail when that's the only
4197 		 * remaining thread.
4198 		 */
4199 		if (rq->nr_running == 1)
4200 			break;
4201 
4202 		next = pick_next_task(rq);
4203 		BUG_ON(!next);
4204 		next->sched_class->put_prev_task(rq, next);
4205 
4206 		/* Find suitable destination for @next, with force if needed. */
4207 		dest_cpu = select_fallback_rq(dead_cpu, next);
4208 		raw_spin_unlock(&rq->lock);
4209 
4210 		__migrate_task(next, dead_cpu, dest_cpu);
4211 
4212 		raw_spin_lock(&rq->lock);
4213 	}
4214 
4215 	rq->stop = stop;
4216 }
4217 
4218 #endif /* CONFIG_HOTPLUG_CPU */
4219 
4220 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4221 
4222 static struct ctl_table sd_ctl_dir[] = {
4223 	{
4224 		.procname	= "sched_domain",
4225 		.mode		= 0555,
4226 	},
4227 	{}
4228 };
4229 
4230 static struct ctl_table sd_ctl_root[] = {
4231 	{
4232 		.procname	= "kernel",
4233 		.mode		= 0555,
4234 		.child		= sd_ctl_dir,
4235 	},
4236 	{}
4237 };
4238 
4239 static struct ctl_table *sd_alloc_ctl_entry(int n)
4240 {
4241 	struct ctl_table *entry =
4242 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4243 
4244 	return entry;
4245 }
4246 
4247 static void sd_free_ctl_entry(struct ctl_table **tablep)
4248 {
4249 	struct ctl_table *entry;
4250 
4251 	/*
4252 	 * In the intermediate directories, both the child directory and
4253 	 * procname are dynamically allocated and could fail but the mode
4254 	 * will always be set. In the lowest directory the names are
4255 	 * static strings and all have proc handlers.
4256 	 */
4257 	for (entry = *tablep; entry->mode; entry++) {
4258 		if (entry->child)
4259 			sd_free_ctl_entry(&entry->child);
4260 		if (entry->proc_handler == NULL)
4261 			kfree(entry->procname);
4262 	}
4263 
4264 	kfree(*tablep);
4265 	*tablep = NULL;
4266 }
4267 
4268 static int min_load_idx = 0;
4269 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4270 
4271 static void
4272 set_table_entry(struct ctl_table *entry,
4273 		const char *procname, void *data, int maxlen,
4274 		umode_t mode, proc_handler *proc_handler,
4275 		bool load_idx)
4276 {
4277 	entry->procname = procname;
4278 	entry->data = data;
4279 	entry->maxlen = maxlen;
4280 	entry->mode = mode;
4281 	entry->proc_handler = proc_handler;
4282 
4283 	if (load_idx) {
4284 		entry->extra1 = &min_load_idx;
4285 		entry->extra2 = &max_load_idx;
4286 	}
4287 }
4288 
4289 static struct ctl_table *
4290 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4291 {
4292 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4293 
4294 	if (table == NULL)
4295 		return NULL;
4296 
4297 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4298 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4299 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4300 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4301 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4302 		sizeof(int), 0644, proc_dointvec_minmax, true);
4303 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4304 		sizeof(int), 0644, proc_dointvec_minmax, true);
4305 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4306 		sizeof(int), 0644, proc_dointvec_minmax, true);
4307 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4308 		sizeof(int), 0644, proc_dointvec_minmax, true);
4309 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4310 		sizeof(int), 0644, proc_dointvec_minmax, true);
4311 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4312 		sizeof(int), 0644, proc_dointvec_minmax, false);
4313 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4314 		sizeof(int), 0644, proc_dointvec_minmax, false);
4315 	set_table_entry(&table[9], "cache_nice_tries",
4316 		&sd->cache_nice_tries,
4317 		sizeof(int), 0644, proc_dointvec_minmax, false);
4318 	set_table_entry(&table[10], "flags", &sd->flags,
4319 		sizeof(int), 0644, proc_dointvec_minmax, false);
4320 	set_table_entry(&table[11], "name", sd->name,
4321 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4322 	/* &table[12] is terminator */
4323 
4324 	return table;
4325 }
4326 
4327 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4328 {
4329 	struct ctl_table *entry, *table;
4330 	struct sched_domain *sd;
4331 	int domain_num = 0, i;
4332 	char buf[32];
4333 
4334 	for_each_domain(cpu, sd)
4335 		domain_num++;
4336 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4337 	if (table == NULL)
4338 		return NULL;
4339 
4340 	i = 0;
4341 	for_each_domain(cpu, sd) {
4342 		snprintf(buf, 32, "domain%d", i);
4343 		entry->procname = kstrdup(buf, GFP_KERNEL);
4344 		entry->mode = 0555;
4345 		entry->child = sd_alloc_ctl_domain_table(sd);
4346 		entry++;
4347 		i++;
4348 	}
4349 	return table;
4350 }
4351 
4352 static struct ctl_table_header *sd_sysctl_header;
4353 static void register_sched_domain_sysctl(void)
4354 {
4355 	int i, cpu_num = num_possible_cpus();
4356 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4357 	char buf[32];
4358 
4359 	WARN_ON(sd_ctl_dir[0].child);
4360 	sd_ctl_dir[0].child = entry;
4361 
4362 	if (entry == NULL)
4363 		return;
4364 
4365 	for_each_possible_cpu(i) {
4366 		snprintf(buf, 32, "cpu%d", i);
4367 		entry->procname = kstrdup(buf, GFP_KERNEL);
4368 		entry->mode = 0555;
4369 		entry->child = sd_alloc_ctl_cpu_table(i);
4370 		entry++;
4371 	}
4372 
4373 	WARN_ON(sd_sysctl_header);
4374 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4375 }
4376 
4377 /* may be called multiple times per register */
4378 static void unregister_sched_domain_sysctl(void)
4379 {
4380 	if (sd_sysctl_header)
4381 		unregister_sysctl_table(sd_sysctl_header);
4382 	sd_sysctl_header = NULL;
4383 	if (sd_ctl_dir[0].child)
4384 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4385 }
4386 #else
4387 static void register_sched_domain_sysctl(void)
4388 {
4389 }
4390 static void unregister_sched_domain_sysctl(void)
4391 {
4392 }
4393 #endif
4394 
4395 static void set_rq_online(struct rq *rq)
4396 {
4397 	if (!rq->online) {
4398 		const struct sched_class *class;
4399 
4400 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4401 		rq->online = 1;
4402 
4403 		for_each_class(class) {
4404 			if (class->rq_online)
4405 				class->rq_online(rq);
4406 		}
4407 	}
4408 }
4409 
4410 static void set_rq_offline(struct rq *rq)
4411 {
4412 	if (rq->online) {
4413 		const struct sched_class *class;
4414 
4415 		for_each_class(class) {
4416 			if (class->rq_offline)
4417 				class->rq_offline(rq);
4418 		}
4419 
4420 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4421 		rq->online = 0;
4422 	}
4423 }
4424 
4425 /*
4426  * migration_call - callback that gets triggered when a CPU is added.
4427  * Here we can start up the necessary migration thread for the new CPU.
4428  */
4429 static int
4430 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4431 {
4432 	int cpu = (long)hcpu;
4433 	unsigned long flags;
4434 	struct rq *rq = cpu_rq(cpu);
4435 
4436 	switch (action & ~CPU_TASKS_FROZEN) {
4437 
4438 	case CPU_UP_PREPARE:
4439 		rq->calc_load_update = calc_load_update;
4440 		break;
4441 
4442 	case CPU_ONLINE:
4443 		/* Update our root-domain */
4444 		raw_spin_lock_irqsave(&rq->lock, flags);
4445 		if (rq->rd) {
4446 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4447 
4448 			set_rq_online(rq);
4449 		}
4450 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4451 		break;
4452 
4453 #ifdef CONFIG_HOTPLUG_CPU
4454 	case CPU_DYING:
4455 		sched_ttwu_pending();
4456 		/* Update our root-domain */
4457 		raw_spin_lock_irqsave(&rq->lock, flags);
4458 		if (rq->rd) {
4459 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4460 			set_rq_offline(rq);
4461 		}
4462 		migrate_tasks(cpu);
4463 		BUG_ON(rq->nr_running != 1); /* the migration thread */
4464 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4465 		break;
4466 
4467 	case CPU_DEAD:
4468 		calc_load_migrate(rq);
4469 		break;
4470 #endif
4471 	}
4472 
4473 	update_max_interval();
4474 
4475 	return NOTIFY_OK;
4476 }
4477 
4478 /*
4479  * Register at high priority so that task migration (migrate_all_tasks)
4480  * happens before everything else.  This has to be lower priority than
4481  * the notifier in the perf_event subsystem, though.
4482  */
4483 static struct notifier_block migration_notifier = {
4484 	.notifier_call = migration_call,
4485 	.priority = CPU_PRI_MIGRATION,
4486 };
4487 
4488 static int sched_cpu_active(struct notifier_block *nfb,
4489 				      unsigned long action, void *hcpu)
4490 {
4491 	switch (action & ~CPU_TASKS_FROZEN) {
4492 	case CPU_STARTING:
4493 	case CPU_DOWN_FAILED:
4494 		set_cpu_active((long)hcpu, true);
4495 		return NOTIFY_OK;
4496 	default:
4497 		return NOTIFY_DONE;
4498 	}
4499 }
4500 
4501 static int sched_cpu_inactive(struct notifier_block *nfb,
4502 					unsigned long action, void *hcpu)
4503 {
4504 	switch (action & ~CPU_TASKS_FROZEN) {
4505 	case CPU_DOWN_PREPARE:
4506 		set_cpu_active((long)hcpu, false);
4507 		return NOTIFY_OK;
4508 	default:
4509 		return NOTIFY_DONE;
4510 	}
4511 }
4512 
4513 static int __init migration_init(void)
4514 {
4515 	void *cpu = (void *)(long)smp_processor_id();
4516 	int err;
4517 
4518 	/* Initialize migration for the boot CPU */
4519 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4520 	BUG_ON(err == NOTIFY_BAD);
4521 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4522 	register_cpu_notifier(&migration_notifier);
4523 
4524 	/* Register cpu active notifiers */
4525 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4526 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4527 
4528 	return 0;
4529 }
4530 early_initcall(migration_init);
4531 #endif
4532 
4533 #ifdef CONFIG_SMP
4534 
4535 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4536 
4537 #ifdef CONFIG_SCHED_DEBUG
4538 
4539 static __read_mostly int sched_debug_enabled;
4540 
4541 static int __init sched_debug_setup(char *str)
4542 {
4543 	sched_debug_enabled = 1;
4544 
4545 	return 0;
4546 }
4547 early_param("sched_debug", sched_debug_setup);
4548 
4549 static inline bool sched_debug(void)
4550 {
4551 	return sched_debug_enabled;
4552 }
4553 
4554 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4555 				  struct cpumask *groupmask)
4556 {
4557 	struct sched_group *group = sd->groups;
4558 	char str[256];
4559 
4560 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4561 	cpumask_clear(groupmask);
4562 
4563 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4564 
4565 	if (!(sd->flags & SD_LOAD_BALANCE)) {
4566 		printk("does not load-balance\n");
4567 		if (sd->parent)
4568 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4569 					" has parent");
4570 		return -1;
4571 	}
4572 
4573 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4574 
4575 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4576 		printk(KERN_ERR "ERROR: domain->span does not contain "
4577 				"CPU%d\n", cpu);
4578 	}
4579 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4580 		printk(KERN_ERR "ERROR: domain->groups does not contain"
4581 				" CPU%d\n", cpu);
4582 	}
4583 
4584 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4585 	do {
4586 		if (!group) {
4587 			printk("\n");
4588 			printk(KERN_ERR "ERROR: group is NULL\n");
4589 			break;
4590 		}
4591 
4592 		/*
4593 		 * Even though we initialize ->power to something semi-sane,
4594 		 * we leave power_orig unset. This allows us to detect if
4595 		 * domain iteration is still funny without causing /0 traps.
4596 		 */
4597 		if (!group->sgp->power_orig) {
4598 			printk(KERN_CONT "\n");
4599 			printk(KERN_ERR "ERROR: domain->cpu_power not "
4600 					"set\n");
4601 			break;
4602 		}
4603 
4604 		if (!cpumask_weight(sched_group_cpus(group))) {
4605 			printk(KERN_CONT "\n");
4606 			printk(KERN_ERR "ERROR: empty group\n");
4607 			break;
4608 		}
4609 
4610 		if (!(sd->flags & SD_OVERLAP) &&
4611 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4612 			printk(KERN_CONT "\n");
4613 			printk(KERN_ERR "ERROR: repeated CPUs\n");
4614 			break;
4615 		}
4616 
4617 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4618 
4619 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4620 
4621 		printk(KERN_CONT " %s", str);
4622 		if (group->sgp->power != SCHED_POWER_SCALE) {
4623 			printk(KERN_CONT " (cpu_power = %d)",
4624 				group->sgp->power);
4625 		}
4626 
4627 		group = group->next;
4628 	} while (group != sd->groups);
4629 	printk(KERN_CONT "\n");
4630 
4631 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4632 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4633 
4634 	if (sd->parent &&
4635 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4636 		printk(KERN_ERR "ERROR: parent span is not a superset "
4637 			"of domain->span\n");
4638 	return 0;
4639 }
4640 
4641 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4642 {
4643 	int level = 0;
4644 
4645 	if (!sched_debug_enabled)
4646 		return;
4647 
4648 	if (!sd) {
4649 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4650 		return;
4651 	}
4652 
4653 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4654 
4655 	for (;;) {
4656 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4657 			break;
4658 		level++;
4659 		sd = sd->parent;
4660 		if (!sd)
4661 			break;
4662 	}
4663 }
4664 #else /* !CONFIG_SCHED_DEBUG */
4665 # define sched_domain_debug(sd, cpu) do { } while (0)
4666 static inline bool sched_debug(void)
4667 {
4668 	return false;
4669 }
4670 #endif /* CONFIG_SCHED_DEBUG */
4671 
4672 static int sd_degenerate(struct sched_domain *sd)
4673 {
4674 	if (cpumask_weight(sched_domain_span(sd)) == 1)
4675 		return 1;
4676 
4677 	/* Following flags need at least 2 groups */
4678 	if (sd->flags & (SD_LOAD_BALANCE |
4679 			 SD_BALANCE_NEWIDLE |
4680 			 SD_BALANCE_FORK |
4681 			 SD_BALANCE_EXEC |
4682 			 SD_SHARE_CPUPOWER |
4683 			 SD_SHARE_PKG_RESOURCES)) {
4684 		if (sd->groups != sd->groups->next)
4685 			return 0;
4686 	}
4687 
4688 	/* Following flags don't use groups */
4689 	if (sd->flags & (SD_WAKE_AFFINE))
4690 		return 0;
4691 
4692 	return 1;
4693 }
4694 
4695 static int
4696 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4697 {
4698 	unsigned long cflags = sd->flags, pflags = parent->flags;
4699 
4700 	if (sd_degenerate(parent))
4701 		return 1;
4702 
4703 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4704 		return 0;
4705 
4706 	/* Flags needing groups don't count if only 1 group in parent */
4707 	if (parent->groups == parent->groups->next) {
4708 		pflags &= ~(SD_LOAD_BALANCE |
4709 				SD_BALANCE_NEWIDLE |
4710 				SD_BALANCE_FORK |
4711 				SD_BALANCE_EXEC |
4712 				SD_SHARE_CPUPOWER |
4713 				SD_SHARE_PKG_RESOURCES |
4714 				SD_PREFER_SIBLING);
4715 		if (nr_node_ids == 1)
4716 			pflags &= ~SD_SERIALIZE;
4717 	}
4718 	if (~cflags & pflags)
4719 		return 0;
4720 
4721 	return 1;
4722 }
4723 
4724 static void free_rootdomain(struct rcu_head *rcu)
4725 {
4726 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4727 
4728 	cpupri_cleanup(&rd->cpupri);
4729 	free_cpumask_var(rd->rto_mask);
4730 	free_cpumask_var(rd->online);
4731 	free_cpumask_var(rd->span);
4732 	kfree(rd);
4733 }
4734 
4735 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4736 {
4737 	struct root_domain *old_rd = NULL;
4738 	unsigned long flags;
4739 
4740 	raw_spin_lock_irqsave(&rq->lock, flags);
4741 
4742 	if (rq->rd) {
4743 		old_rd = rq->rd;
4744 
4745 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4746 			set_rq_offline(rq);
4747 
4748 		cpumask_clear_cpu(rq->cpu, old_rd->span);
4749 
4750 		/*
4751 		 * If we dont want to free the old_rt yet then
4752 		 * set old_rd to NULL to skip the freeing later
4753 		 * in this function:
4754 		 */
4755 		if (!atomic_dec_and_test(&old_rd->refcount))
4756 			old_rd = NULL;
4757 	}
4758 
4759 	atomic_inc(&rd->refcount);
4760 	rq->rd = rd;
4761 
4762 	cpumask_set_cpu(rq->cpu, rd->span);
4763 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4764 		set_rq_online(rq);
4765 
4766 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4767 
4768 	if (old_rd)
4769 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4770 }
4771 
4772 static int init_rootdomain(struct root_domain *rd)
4773 {
4774 	memset(rd, 0, sizeof(*rd));
4775 
4776 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4777 		goto out;
4778 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4779 		goto free_span;
4780 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4781 		goto free_online;
4782 
4783 	if (cpupri_init(&rd->cpupri) != 0)
4784 		goto free_rto_mask;
4785 	return 0;
4786 
4787 free_rto_mask:
4788 	free_cpumask_var(rd->rto_mask);
4789 free_online:
4790 	free_cpumask_var(rd->online);
4791 free_span:
4792 	free_cpumask_var(rd->span);
4793 out:
4794 	return -ENOMEM;
4795 }
4796 
4797 /*
4798  * By default the system creates a single root-domain with all cpus as
4799  * members (mimicking the global state we have today).
4800  */
4801 struct root_domain def_root_domain;
4802 
4803 static void init_defrootdomain(void)
4804 {
4805 	init_rootdomain(&def_root_domain);
4806 
4807 	atomic_set(&def_root_domain.refcount, 1);
4808 }
4809 
4810 static struct root_domain *alloc_rootdomain(void)
4811 {
4812 	struct root_domain *rd;
4813 
4814 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
4815 	if (!rd)
4816 		return NULL;
4817 
4818 	if (init_rootdomain(rd) != 0) {
4819 		kfree(rd);
4820 		return NULL;
4821 	}
4822 
4823 	return rd;
4824 }
4825 
4826 static void free_sched_groups(struct sched_group *sg, int free_sgp)
4827 {
4828 	struct sched_group *tmp, *first;
4829 
4830 	if (!sg)
4831 		return;
4832 
4833 	first = sg;
4834 	do {
4835 		tmp = sg->next;
4836 
4837 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
4838 			kfree(sg->sgp);
4839 
4840 		kfree(sg);
4841 		sg = tmp;
4842 	} while (sg != first);
4843 }
4844 
4845 static void free_sched_domain(struct rcu_head *rcu)
4846 {
4847 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
4848 
4849 	/*
4850 	 * If its an overlapping domain it has private groups, iterate and
4851 	 * nuke them all.
4852 	 */
4853 	if (sd->flags & SD_OVERLAP) {
4854 		free_sched_groups(sd->groups, 1);
4855 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
4856 		kfree(sd->groups->sgp);
4857 		kfree(sd->groups);
4858 	}
4859 	kfree(sd);
4860 }
4861 
4862 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
4863 {
4864 	call_rcu(&sd->rcu, free_sched_domain);
4865 }
4866 
4867 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
4868 {
4869 	for (; sd; sd = sd->parent)
4870 		destroy_sched_domain(sd, cpu);
4871 }
4872 
4873 /*
4874  * Keep a special pointer to the highest sched_domain that has
4875  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
4876  * allows us to avoid some pointer chasing select_idle_sibling().
4877  *
4878  * Also keep a unique ID per domain (we use the first cpu number in
4879  * the cpumask of the domain), this allows us to quickly tell if
4880  * two cpus are in the same cache domain, see cpus_share_cache().
4881  */
4882 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
4883 DEFINE_PER_CPU(int, sd_llc_size);
4884 DEFINE_PER_CPU(int, sd_llc_id);
4885 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
4886 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
4887 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
4888 
4889 static void update_top_cache_domain(int cpu)
4890 {
4891 	struct sched_domain *sd;
4892 	int id = cpu;
4893 	int size = 1;
4894 
4895 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
4896 	if (sd) {
4897 		id = cpumask_first(sched_domain_span(sd));
4898 		size = cpumask_weight(sched_domain_span(sd));
4899 		rcu_assign_pointer(per_cpu(sd_busy, cpu), sd->parent);
4900 	}
4901 
4902 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
4903 	per_cpu(sd_llc_size, cpu) = size;
4904 	per_cpu(sd_llc_id, cpu) = id;
4905 
4906 	sd = lowest_flag_domain(cpu, SD_NUMA);
4907 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
4908 
4909 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
4910 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
4911 }
4912 
4913 /*
4914  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4915  * hold the hotplug lock.
4916  */
4917 static void
4918 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
4919 {
4920 	struct rq *rq = cpu_rq(cpu);
4921 	struct sched_domain *tmp;
4922 
4923 	/* Remove the sched domains which do not contribute to scheduling. */
4924 	for (tmp = sd; tmp; ) {
4925 		struct sched_domain *parent = tmp->parent;
4926 		if (!parent)
4927 			break;
4928 
4929 		if (sd_parent_degenerate(tmp, parent)) {
4930 			tmp->parent = parent->parent;
4931 			if (parent->parent)
4932 				parent->parent->child = tmp;
4933 			/*
4934 			 * Transfer SD_PREFER_SIBLING down in case of a
4935 			 * degenerate parent; the spans match for this
4936 			 * so the property transfers.
4937 			 */
4938 			if (parent->flags & SD_PREFER_SIBLING)
4939 				tmp->flags |= SD_PREFER_SIBLING;
4940 			destroy_sched_domain(parent, cpu);
4941 		} else
4942 			tmp = tmp->parent;
4943 	}
4944 
4945 	if (sd && sd_degenerate(sd)) {
4946 		tmp = sd;
4947 		sd = sd->parent;
4948 		destroy_sched_domain(tmp, cpu);
4949 		if (sd)
4950 			sd->child = NULL;
4951 	}
4952 
4953 	sched_domain_debug(sd, cpu);
4954 
4955 	rq_attach_root(rq, rd);
4956 	tmp = rq->sd;
4957 	rcu_assign_pointer(rq->sd, sd);
4958 	destroy_sched_domains(tmp, cpu);
4959 
4960 	update_top_cache_domain(cpu);
4961 }
4962 
4963 /* cpus with isolated domains */
4964 static cpumask_var_t cpu_isolated_map;
4965 
4966 /* Setup the mask of cpus configured for isolated domains */
4967 static int __init isolated_cpu_setup(char *str)
4968 {
4969 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
4970 	cpulist_parse(str, cpu_isolated_map);
4971 	return 1;
4972 }
4973 
4974 __setup("isolcpus=", isolated_cpu_setup);
4975 
4976 static const struct cpumask *cpu_cpu_mask(int cpu)
4977 {
4978 	return cpumask_of_node(cpu_to_node(cpu));
4979 }
4980 
4981 struct sd_data {
4982 	struct sched_domain **__percpu sd;
4983 	struct sched_group **__percpu sg;
4984 	struct sched_group_power **__percpu sgp;
4985 };
4986 
4987 struct s_data {
4988 	struct sched_domain ** __percpu sd;
4989 	struct root_domain	*rd;
4990 };
4991 
4992 enum s_alloc {
4993 	sa_rootdomain,
4994 	sa_sd,
4995 	sa_sd_storage,
4996 	sa_none,
4997 };
4998 
4999 struct sched_domain_topology_level;
5000 
5001 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5002 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5003 
5004 #define SDTL_OVERLAP	0x01
5005 
5006 struct sched_domain_topology_level {
5007 	sched_domain_init_f init;
5008 	sched_domain_mask_f mask;
5009 	int		    flags;
5010 	int		    numa_level;
5011 	struct sd_data      data;
5012 };
5013 
5014 /*
5015  * Build an iteration mask that can exclude certain CPUs from the upwards
5016  * domain traversal.
5017  *
5018  * Asymmetric node setups can result in situations where the domain tree is of
5019  * unequal depth, make sure to skip domains that already cover the entire
5020  * range.
5021  *
5022  * In that case build_sched_domains() will have terminated the iteration early
5023  * and our sibling sd spans will be empty. Domains should always include the
5024  * cpu they're built on, so check that.
5025  *
5026  */
5027 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5028 {
5029 	const struct cpumask *span = sched_domain_span(sd);
5030 	struct sd_data *sdd = sd->private;
5031 	struct sched_domain *sibling;
5032 	int i;
5033 
5034 	for_each_cpu(i, span) {
5035 		sibling = *per_cpu_ptr(sdd->sd, i);
5036 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5037 			continue;
5038 
5039 		cpumask_set_cpu(i, sched_group_mask(sg));
5040 	}
5041 }
5042 
5043 /*
5044  * Return the canonical balance cpu for this group, this is the first cpu
5045  * of this group that's also in the iteration mask.
5046  */
5047 int group_balance_cpu(struct sched_group *sg)
5048 {
5049 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5050 }
5051 
5052 static int
5053 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5054 {
5055 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5056 	const struct cpumask *span = sched_domain_span(sd);
5057 	struct cpumask *covered = sched_domains_tmpmask;
5058 	struct sd_data *sdd = sd->private;
5059 	struct sched_domain *child;
5060 	int i;
5061 
5062 	cpumask_clear(covered);
5063 
5064 	for_each_cpu(i, span) {
5065 		struct cpumask *sg_span;
5066 
5067 		if (cpumask_test_cpu(i, covered))
5068 			continue;
5069 
5070 		child = *per_cpu_ptr(sdd->sd, i);
5071 
5072 		/* See the comment near build_group_mask(). */
5073 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5074 			continue;
5075 
5076 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5077 				GFP_KERNEL, cpu_to_node(cpu));
5078 
5079 		if (!sg)
5080 			goto fail;
5081 
5082 		sg_span = sched_group_cpus(sg);
5083 		if (child->child) {
5084 			child = child->child;
5085 			cpumask_copy(sg_span, sched_domain_span(child));
5086 		} else
5087 			cpumask_set_cpu(i, sg_span);
5088 
5089 		cpumask_or(covered, covered, sg_span);
5090 
5091 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5092 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5093 			build_group_mask(sd, sg);
5094 
5095 		/*
5096 		 * Initialize sgp->power such that even if we mess up the
5097 		 * domains and no possible iteration will get us here, we won't
5098 		 * die on a /0 trap.
5099 		 */
5100 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5101 
5102 		/*
5103 		 * Make sure the first group of this domain contains the
5104 		 * canonical balance cpu. Otherwise the sched_domain iteration
5105 		 * breaks. See update_sg_lb_stats().
5106 		 */
5107 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5108 		    group_balance_cpu(sg) == cpu)
5109 			groups = sg;
5110 
5111 		if (!first)
5112 			first = sg;
5113 		if (last)
5114 			last->next = sg;
5115 		last = sg;
5116 		last->next = first;
5117 	}
5118 	sd->groups = groups;
5119 
5120 	return 0;
5121 
5122 fail:
5123 	free_sched_groups(first, 0);
5124 
5125 	return -ENOMEM;
5126 }
5127 
5128 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5129 {
5130 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5131 	struct sched_domain *child = sd->child;
5132 
5133 	if (child)
5134 		cpu = cpumask_first(sched_domain_span(child));
5135 
5136 	if (sg) {
5137 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5138 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5139 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5140 	}
5141 
5142 	return cpu;
5143 }
5144 
5145 /*
5146  * build_sched_groups will build a circular linked list of the groups
5147  * covered by the given span, and will set each group's ->cpumask correctly,
5148  * and ->cpu_power to 0.
5149  *
5150  * Assumes the sched_domain tree is fully constructed
5151  */
5152 static int
5153 build_sched_groups(struct sched_domain *sd, int cpu)
5154 {
5155 	struct sched_group *first = NULL, *last = NULL;
5156 	struct sd_data *sdd = sd->private;
5157 	const struct cpumask *span = sched_domain_span(sd);
5158 	struct cpumask *covered;
5159 	int i;
5160 
5161 	get_group(cpu, sdd, &sd->groups);
5162 	atomic_inc(&sd->groups->ref);
5163 
5164 	if (cpu != cpumask_first(span))
5165 		return 0;
5166 
5167 	lockdep_assert_held(&sched_domains_mutex);
5168 	covered = sched_domains_tmpmask;
5169 
5170 	cpumask_clear(covered);
5171 
5172 	for_each_cpu(i, span) {
5173 		struct sched_group *sg;
5174 		int group, j;
5175 
5176 		if (cpumask_test_cpu(i, covered))
5177 			continue;
5178 
5179 		group = get_group(i, sdd, &sg);
5180 		cpumask_clear(sched_group_cpus(sg));
5181 		sg->sgp->power = 0;
5182 		cpumask_setall(sched_group_mask(sg));
5183 
5184 		for_each_cpu(j, span) {
5185 			if (get_group(j, sdd, NULL) != group)
5186 				continue;
5187 
5188 			cpumask_set_cpu(j, covered);
5189 			cpumask_set_cpu(j, sched_group_cpus(sg));
5190 		}
5191 
5192 		if (!first)
5193 			first = sg;
5194 		if (last)
5195 			last->next = sg;
5196 		last = sg;
5197 	}
5198 	last->next = first;
5199 
5200 	return 0;
5201 }
5202 
5203 /*
5204  * Initialize sched groups cpu_power.
5205  *
5206  * cpu_power indicates the capacity of sched group, which is used while
5207  * distributing the load between different sched groups in a sched domain.
5208  * Typically cpu_power for all the groups in a sched domain will be same unless
5209  * there are asymmetries in the topology. If there are asymmetries, group
5210  * having more cpu_power will pickup more load compared to the group having
5211  * less cpu_power.
5212  */
5213 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5214 {
5215 	struct sched_group *sg = sd->groups;
5216 
5217 	WARN_ON(!sg);
5218 
5219 	do {
5220 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5221 		sg = sg->next;
5222 	} while (sg != sd->groups);
5223 
5224 	if (cpu != group_balance_cpu(sg))
5225 		return;
5226 
5227 	update_group_power(sd, cpu);
5228 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5229 }
5230 
5231 int __weak arch_sd_sibling_asym_packing(void)
5232 {
5233        return 0*SD_ASYM_PACKING;
5234 }
5235 
5236 /*
5237  * Initializers for schedule domains
5238  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5239  */
5240 
5241 #ifdef CONFIG_SCHED_DEBUG
5242 # define SD_INIT_NAME(sd, type)		sd->name = #type
5243 #else
5244 # define SD_INIT_NAME(sd, type)		do { } while (0)
5245 #endif
5246 
5247 #define SD_INIT_FUNC(type)						\
5248 static noinline struct sched_domain *					\
5249 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5250 {									\
5251 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5252 	*sd = SD_##type##_INIT;						\
5253 	SD_INIT_NAME(sd, type);						\
5254 	sd->private = &tl->data;					\
5255 	return sd;							\
5256 }
5257 
5258 SD_INIT_FUNC(CPU)
5259 #ifdef CONFIG_SCHED_SMT
5260  SD_INIT_FUNC(SIBLING)
5261 #endif
5262 #ifdef CONFIG_SCHED_MC
5263  SD_INIT_FUNC(MC)
5264 #endif
5265 #ifdef CONFIG_SCHED_BOOK
5266  SD_INIT_FUNC(BOOK)
5267 #endif
5268 
5269 static int default_relax_domain_level = -1;
5270 int sched_domain_level_max;
5271 
5272 static int __init setup_relax_domain_level(char *str)
5273 {
5274 	if (kstrtoint(str, 0, &default_relax_domain_level))
5275 		pr_warn("Unable to set relax_domain_level\n");
5276 
5277 	return 1;
5278 }
5279 __setup("relax_domain_level=", setup_relax_domain_level);
5280 
5281 static void set_domain_attribute(struct sched_domain *sd,
5282 				 struct sched_domain_attr *attr)
5283 {
5284 	int request;
5285 
5286 	if (!attr || attr->relax_domain_level < 0) {
5287 		if (default_relax_domain_level < 0)
5288 			return;
5289 		else
5290 			request = default_relax_domain_level;
5291 	} else
5292 		request = attr->relax_domain_level;
5293 	if (request < sd->level) {
5294 		/* turn off idle balance on this domain */
5295 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5296 	} else {
5297 		/* turn on idle balance on this domain */
5298 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5299 	}
5300 }
5301 
5302 static void __sdt_free(const struct cpumask *cpu_map);
5303 static int __sdt_alloc(const struct cpumask *cpu_map);
5304 
5305 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5306 				 const struct cpumask *cpu_map)
5307 {
5308 	switch (what) {
5309 	case sa_rootdomain:
5310 		if (!atomic_read(&d->rd->refcount))
5311 			free_rootdomain(&d->rd->rcu); /* fall through */
5312 	case sa_sd:
5313 		free_percpu(d->sd); /* fall through */
5314 	case sa_sd_storage:
5315 		__sdt_free(cpu_map); /* fall through */
5316 	case sa_none:
5317 		break;
5318 	}
5319 }
5320 
5321 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5322 						   const struct cpumask *cpu_map)
5323 {
5324 	memset(d, 0, sizeof(*d));
5325 
5326 	if (__sdt_alloc(cpu_map))
5327 		return sa_sd_storage;
5328 	d->sd = alloc_percpu(struct sched_domain *);
5329 	if (!d->sd)
5330 		return sa_sd_storage;
5331 	d->rd = alloc_rootdomain();
5332 	if (!d->rd)
5333 		return sa_sd;
5334 	return sa_rootdomain;
5335 }
5336 
5337 /*
5338  * NULL the sd_data elements we've used to build the sched_domain and
5339  * sched_group structure so that the subsequent __free_domain_allocs()
5340  * will not free the data we're using.
5341  */
5342 static void claim_allocations(int cpu, struct sched_domain *sd)
5343 {
5344 	struct sd_data *sdd = sd->private;
5345 
5346 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5347 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5348 
5349 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5350 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5351 
5352 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5353 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5354 }
5355 
5356 #ifdef CONFIG_SCHED_SMT
5357 static const struct cpumask *cpu_smt_mask(int cpu)
5358 {
5359 	return topology_thread_cpumask(cpu);
5360 }
5361 #endif
5362 
5363 /*
5364  * Topology list, bottom-up.
5365  */
5366 static struct sched_domain_topology_level default_topology[] = {
5367 #ifdef CONFIG_SCHED_SMT
5368 	{ sd_init_SIBLING, cpu_smt_mask, },
5369 #endif
5370 #ifdef CONFIG_SCHED_MC
5371 	{ sd_init_MC, cpu_coregroup_mask, },
5372 #endif
5373 #ifdef CONFIG_SCHED_BOOK
5374 	{ sd_init_BOOK, cpu_book_mask, },
5375 #endif
5376 	{ sd_init_CPU, cpu_cpu_mask, },
5377 	{ NULL, },
5378 };
5379 
5380 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5381 
5382 #define for_each_sd_topology(tl)			\
5383 	for (tl = sched_domain_topology; tl->init; tl++)
5384 
5385 #ifdef CONFIG_NUMA
5386 
5387 static int sched_domains_numa_levels;
5388 static int *sched_domains_numa_distance;
5389 static struct cpumask ***sched_domains_numa_masks;
5390 static int sched_domains_curr_level;
5391 
5392 static inline int sd_local_flags(int level)
5393 {
5394 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5395 		return 0;
5396 
5397 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5398 }
5399 
5400 static struct sched_domain *
5401 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5402 {
5403 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5404 	int level = tl->numa_level;
5405 	int sd_weight = cpumask_weight(
5406 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5407 
5408 	*sd = (struct sched_domain){
5409 		.min_interval		= sd_weight,
5410 		.max_interval		= 2*sd_weight,
5411 		.busy_factor		= 32,
5412 		.imbalance_pct		= 125,
5413 		.cache_nice_tries	= 2,
5414 		.busy_idx		= 3,
5415 		.idle_idx		= 2,
5416 		.newidle_idx		= 0,
5417 		.wake_idx		= 0,
5418 		.forkexec_idx		= 0,
5419 
5420 		.flags			= 1*SD_LOAD_BALANCE
5421 					| 1*SD_BALANCE_NEWIDLE
5422 					| 0*SD_BALANCE_EXEC
5423 					| 0*SD_BALANCE_FORK
5424 					| 0*SD_BALANCE_WAKE
5425 					| 0*SD_WAKE_AFFINE
5426 					| 0*SD_SHARE_CPUPOWER
5427 					| 0*SD_SHARE_PKG_RESOURCES
5428 					| 1*SD_SERIALIZE
5429 					| 0*SD_PREFER_SIBLING
5430 					| 1*SD_NUMA
5431 					| sd_local_flags(level)
5432 					,
5433 		.last_balance		= jiffies,
5434 		.balance_interval	= sd_weight,
5435 	};
5436 	SD_INIT_NAME(sd, NUMA);
5437 	sd->private = &tl->data;
5438 
5439 	/*
5440 	 * Ugly hack to pass state to sd_numa_mask()...
5441 	 */
5442 	sched_domains_curr_level = tl->numa_level;
5443 
5444 	return sd;
5445 }
5446 
5447 static const struct cpumask *sd_numa_mask(int cpu)
5448 {
5449 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5450 }
5451 
5452 static void sched_numa_warn(const char *str)
5453 {
5454 	static int done = false;
5455 	int i,j;
5456 
5457 	if (done)
5458 		return;
5459 
5460 	done = true;
5461 
5462 	printk(KERN_WARNING "ERROR: %s\n\n", str);
5463 
5464 	for (i = 0; i < nr_node_ids; i++) {
5465 		printk(KERN_WARNING "  ");
5466 		for (j = 0; j < nr_node_ids; j++)
5467 			printk(KERN_CONT "%02d ", node_distance(i,j));
5468 		printk(KERN_CONT "\n");
5469 	}
5470 	printk(KERN_WARNING "\n");
5471 }
5472 
5473 static bool find_numa_distance(int distance)
5474 {
5475 	int i;
5476 
5477 	if (distance == node_distance(0, 0))
5478 		return true;
5479 
5480 	for (i = 0; i < sched_domains_numa_levels; i++) {
5481 		if (sched_domains_numa_distance[i] == distance)
5482 			return true;
5483 	}
5484 
5485 	return false;
5486 }
5487 
5488 static void sched_init_numa(void)
5489 {
5490 	int next_distance, curr_distance = node_distance(0, 0);
5491 	struct sched_domain_topology_level *tl;
5492 	int level = 0;
5493 	int i, j, k;
5494 
5495 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5496 	if (!sched_domains_numa_distance)
5497 		return;
5498 
5499 	/*
5500 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5501 	 * unique distances in the node_distance() table.
5502 	 *
5503 	 * Assumes node_distance(0,j) includes all distances in
5504 	 * node_distance(i,j) in order to avoid cubic time.
5505 	 */
5506 	next_distance = curr_distance;
5507 	for (i = 0; i < nr_node_ids; i++) {
5508 		for (j = 0; j < nr_node_ids; j++) {
5509 			for (k = 0; k < nr_node_ids; k++) {
5510 				int distance = node_distance(i, k);
5511 
5512 				if (distance > curr_distance &&
5513 				    (distance < next_distance ||
5514 				     next_distance == curr_distance))
5515 					next_distance = distance;
5516 
5517 				/*
5518 				 * While not a strong assumption it would be nice to know
5519 				 * about cases where if node A is connected to B, B is not
5520 				 * equally connected to A.
5521 				 */
5522 				if (sched_debug() && node_distance(k, i) != distance)
5523 					sched_numa_warn("Node-distance not symmetric");
5524 
5525 				if (sched_debug() && i && !find_numa_distance(distance))
5526 					sched_numa_warn("Node-0 not representative");
5527 			}
5528 			if (next_distance != curr_distance) {
5529 				sched_domains_numa_distance[level++] = next_distance;
5530 				sched_domains_numa_levels = level;
5531 				curr_distance = next_distance;
5532 			} else break;
5533 		}
5534 
5535 		/*
5536 		 * In case of sched_debug() we verify the above assumption.
5537 		 */
5538 		if (!sched_debug())
5539 			break;
5540 	}
5541 	/*
5542 	 * 'level' contains the number of unique distances, excluding the
5543 	 * identity distance node_distance(i,i).
5544 	 *
5545 	 * The sched_domains_numa_distance[] array includes the actual distance
5546 	 * numbers.
5547 	 */
5548 
5549 	/*
5550 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5551 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5552 	 * the array will contain less then 'level' members. This could be
5553 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5554 	 * in other functions.
5555 	 *
5556 	 * We reset it to 'level' at the end of this function.
5557 	 */
5558 	sched_domains_numa_levels = 0;
5559 
5560 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5561 	if (!sched_domains_numa_masks)
5562 		return;
5563 
5564 	/*
5565 	 * Now for each level, construct a mask per node which contains all
5566 	 * cpus of nodes that are that many hops away from us.
5567 	 */
5568 	for (i = 0; i < level; i++) {
5569 		sched_domains_numa_masks[i] =
5570 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5571 		if (!sched_domains_numa_masks[i])
5572 			return;
5573 
5574 		for (j = 0; j < nr_node_ids; j++) {
5575 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5576 			if (!mask)
5577 				return;
5578 
5579 			sched_domains_numa_masks[i][j] = mask;
5580 
5581 			for (k = 0; k < nr_node_ids; k++) {
5582 				if (node_distance(j, k) > sched_domains_numa_distance[i])
5583 					continue;
5584 
5585 				cpumask_or(mask, mask, cpumask_of_node(k));
5586 			}
5587 		}
5588 	}
5589 
5590 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5591 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5592 	if (!tl)
5593 		return;
5594 
5595 	/*
5596 	 * Copy the default topology bits..
5597 	 */
5598 	for (i = 0; default_topology[i].init; i++)
5599 		tl[i] = default_topology[i];
5600 
5601 	/*
5602 	 * .. and append 'j' levels of NUMA goodness.
5603 	 */
5604 	for (j = 0; j < level; i++, j++) {
5605 		tl[i] = (struct sched_domain_topology_level){
5606 			.init = sd_numa_init,
5607 			.mask = sd_numa_mask,
5608 			.flags = SDTL_OVERLAP,
5609 			.numa_level = j,
5610 		};
5611 	}
5612 
5613 	sched_domain_topology = tl;
5614 
5615 	sched_domains_numa_levels = level;
5616 }
5617 
5618 static void sched_domains_numa_masks_set(int cpu)
5619 {
5620 	int i, j;
5621 	int node = cpu_to_node(cpu);
5622 
5623 	for (i = 0; i < sched_domains_numa_levels; i++) {
5624 		for (j = 0; j < nr_node_ids; j++) {
5625 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5626 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5627 		}
5628 	}
5629 }
5630 
5631 static void sched_domains_numa_masks_clear(int cpu)
5632 {
5633 	int i, j;
5634 	for (i = 0; i < sched_domains_numa_levels; i++) {
5635 		for (j = 0; j < nr_node_ids; j++)
5636 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5637 	}
5638 }
5639 
5640 /*
5641  * Update sched_domains_numa_masks[level][node] array when new cpus
5642  * are onlined.
5643  */
5644 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5645 					   unsigned long action,
5646 					   void *hcpu)
5647 {
5648 	int cpu = (long)hcpu;
5649 
5650 	switch (action & ~CPU_TASKS_FROZEN) {
5651 	case CPU_ONLINE:
5652 		sched_domains_numa_masks_set(cpu);
5653 		break;
5654 
5655 	case CPU_DEAD:
5656 		sched_domains_numa_masks_clear(cpu);
5657 		break;
5658 
5659 	default:
5660 		return NOTIFY_DONE;
5661 	}
5662 
5663 	return NOTIFY_OK;
5664 }
5665 #else
5666 static inline void sched_init_numa(void)
5667 {
5668 }
5669 
5670 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5671 					   unsigned long action,
5672 					   void *hcpu)
5673 {
5674 	return 0;
5675 }
5676 #endif /* CONFIG_NUMA */
5677 
5678 static int __sdt_alloc(const struct cpumask *cpu_map)
5679 {
5680 	struct sched_domain_topology_level *tl;
5681 	int j;
5682 
5683 	for_each_sd_topology(tl) {
5684 		struct sd_data *sdd = &tl->data;
5685 
5686 		sdd->sd = alloc_percpu(struct sched_domain *);
5687 		if (!sdd->sd)
5688 			return -ENOMEM;
5689 
5690 		sdd->sg = alloc_percpu(struct sched_group *);
5691 		if (!sdd->sg)
5692 			return -ENOMEM;
5693 
5694 		sdd->sgp = alloc_percpu(struct sched_group_power *);
5695 		if (!sdd->sgp)
5696 			return -ENOMEM;
5697 
5698 		for_each_cpu(j, cpu_map) {
5699 			struct sched_domain *sd;
5700 			struct sched_group *sg;
5701 			struct sched_group_power *sgp;
5702 
5703 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5704 					GFP_KERNEL, cpu_to_node(j));
5705 			if (!sd)
5706 				return -ENOMEM;
5707 
5708 			*per_cpu_ptr(sdd->sd, j) = sd;
5709 
5710 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5711 					GFP_KERNEL, cpu_to_node(j));
5712 			if (!sg)
5713 				return -ENOMEM;
5714 
5715 			sg->next = sg;
5716 
5717 			*per_cpu_ptr(sdd->sg, j) = sg;
5718 
5719 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5720 					GFP_KERNEL, cpu_to_node(j));
5721 			if (!sgp)
5722 				return -ENOMEM;
5723 
5724 			*per_cpu_ptr(sdd->sgp, j) = sgp;
5725 		}
5726 	}
5727 
5728 	return 0;
5729 }
5730 
5731 static void __sdt_free(const struct cpumask *cpu_map)
5732 {
5733 	struct sched_domain_topology_level *tl;
5734 	int j;
5735 
5736 	for_each_sd_topology(tl) {
5737 		struct sd_data *sdd = &tl->data;
5738 
5739 		for_each_cpu(j, cpu_map) {
5740 			struct sched_domain *sd;
5741 
5742 			if (sdd->sd) {
5743 				sd = *per_cpu_ptr(sdd->sd, j);
5744 				if (sd && (sd->flags & SD_OVERLAP))
5745 					free_sched_groups(sd->groups, 0);
5746 				kfree(*per_cpu_ptr(sdd->sd, j));
5747 			}
5748 
5749 			if (sdd->sg)
5750 				kfree(*per_cpu_ptr(sdd->sg, j));
5751 			if (sdd->sgp)
5752 				kfree(*per_cpu_ptr(sdd->sgp, j));
5753 		}
5754 		free_percpu(sdd->sd);
5755 		sdd->sd = NULL;
5756 		free_percpu(sdd->sg);
5757 		sdd->sg = NULL;
5758 		free_percpu(sdd->sgp);
5759 		sdd->sgp = NULL;
5760 	}
5761 }
5762 
5763 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5764 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5765 		struct sched_domain *child, int cpu)
5766 {
5767 	struct sched_domain *sd = tl->init(tl, cpu);
5768 	if (!sd)
5769 		return child;
5770 
5771 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5772 	if (child) {
5773 		sd->level = child->level + 1;
5774 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5775 		child->parent = sd;
5776 		sd->child = child;
5777 	}
5778 	set_domain_attribute(sd, attr);
5779 
5780 	return sd;
5781 }
5782 
5783 /*
5784  * Build sched domains for a given set of cpus and attach the sched domains
5785  * to the individual cpus
5786  */
5787 static int build_sched_domains(const struct cpumask *cpu_map,
5788 			       struct sched_domain_attr *attr)
5789 {
5790 	enum s_alloc alloc_state;
5791 	struct sched_domain *sd;
5792 	struct s_data d;
5793 	int i, ret = -ENOMEM;
5794 
5795 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5796 	if (alloc_state != sa_rootdomain)
5797 		goto error;
5798 
5799 	/* Set up domains for cpus specified by the cpu_map. */
5800 	for_each_cpu(i, cpu_map) {
5801 		struct sched_domain_topology_level *tl;
5802 
5803 		sd = NULL;
5804 		for_each_sd_topology(tl) {
5805 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5806 			if (tl == sched_domain_topology)
5807 				*per_cpu_ptr(d.sd, i) = sd;
5808 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5809 				sd->flags |= SD_OVERLAP;
5810 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5811 				break;
5812 		}
5813 	}
5814 
5815 	/* Build the groups for the domains */
5816 	for_each_cpu(i, cpu_map) {
5817 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5818 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5819 			if (sd->flags & SD_OVERLAP) {
5820 				if (build_overlap_sched_groups(sd, i))
5821 					goto error;
5822 			} else {
5823 				if (build_sched_groups(sd, i))
5824 					goto error;
5825 			}
5826 		}
5827 	}
5828 
5829 	/* Calculate CPU power for physical packages and nodes */
5830 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
5831 		if (!cpumask_test_cpu(i, cpu_map))
5832 			continue;
5833 
5834 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5835 			claim_allocations(i, sd);
5836 			init_sched_groups_power(i, sd);
5837 		}
5838 	}
5839 
5840 	/* Attach the domains */
5841 	rcu_read_lock();
5842 	for_each_cpu(i, cpu_map) {
5843 		sd = *per_cpu_ptr(d.sd, i);
5844 		cpu_attach_domain(sd, d.rd, i);
5845 	}
5846 	rcu_read_unlock();
5847 
5848 	ret = 0;
5849 error:
5850 	__free_domain_allocs(&d, alloc_state, cpu_map);
5851 	return ret;
5852 }
5853 
5854 static cpumask_var_t *doms_cur;	/* current sched domains */
5855 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
5856 static struct sched_domain_attr *dattr_cur;
5857 				/* attribues of custom domains in 'doms_cur' */
5858 
5859 /*
5860  * Special case: If a kmalloc of a doms_cur partition (array of
5861  * cpumask) fails, then fallback to a single sched domain,
5862  * as determined by the single cpumask fallback_doms.
5863  */
5864 static cpumask_var_t fallback_doms;
5865 
5866 /*
5867  * arch_update_cpu_topology lets virtualized architectures update the
5868  * cpu core maps. It is supposed to return 1 if the topology changed
5869  * or 0 if it stayed the same.
5870  */
5871 int __attribute__((weak)) arch_update_cpu_topology(void)
5872 {
5873 	return 0;
5874 }
5875 
5876 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
5877 {
5878 	int i;
5879 	cpumask_var_t *doms;
5880 
5881 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
5882 	if (!doms)
5883 		return NULL;
5884 	for (i = 0; i < ndoms; i++) {
5885 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
5886 			free_sched_domains(doms, i);
5887 			return NULL;
5888 		}
5889 	}
5890 	return doms;
5891 }
5892 
5893 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
5894 {
5895 	unsigned int i;
5896 	for (i = 0; i < ndoms; i++)
5897 		free_cpumask_var(doms[i]);
5898 	kfree(doms);
5899 }
5900 
5901 /*
5902  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5903  * For now this just excludes isolated cpus, but could be used to
5904  * exclude other special cases in the future.
5905  */
5906 static int init_sched_domains(const struct cpumask *cpu_map)
5907 {
5908 	int err;
5909 
5910 	arch_update_cpu_topology();
5911 	ndoms_cur = 1;
5912 	doms_cur = alloc_sched_domains(ndoms_cur);
5913 	if (!doms_cur)
5914 		doms_cur = &fallback_doms;
5915 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
5916 	err = build_sched_domains(doms_cur[0], NULL);
5917 	register_sched_domain_sysctl();
5918 
5919 	return err;
5920 }
5921 
5922 /*
5923  * Detach sched domains from a group of cpus specified in cpu_map
5924  * These cpus will now be attached to the NULL domain
5925  */
5926 static void detach_destroy_domains(const struct cpumask *cpu_map)
5927 {
5928 	int i;
5929 
5930 	rcu_read_lock();
5931 	for_each_cpu(i, cpu_map)
5932 		cpu_attach_domain(NULL, &def_root_domain, i);
5933 	rcu_read_unlock();
5934 }
5935 
5936 /* handle null as "default" */
5937 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
5938 			struct sched_domain_attr *new, int idx_new)
5939 {
5940 	struct sched_domain_attr tmp;
5941 
5942 	/* fast path */
5943 	if (!new && !cur)
5944 		return 1;
5945 
5946 	tmp = SD_ATTR_INIT;
5947 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
5948 			new ? (new + idx_new) : &tmp,
5949 			sizeof(struct sched_domain_attr));
5950 }
5951 
5952 /*
5953  * Partition sched domains as specified by the 'ndoms_new'
5954  * cpumasks in the array doms_new[] of cpumasks. This compares
5955  * doms_new[] to the current sched domain partitioning, doms_cur[].
5956  * It destroys each deleted domain and builds each new domain.
5957  *
5958  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
5959  * The masks don't intersect (don't overlap.) We should setup one
5960  * sched domain for each mask. CPUs not in any of the cpumasks will
5961  * not be load balanced. If the same cpumask appears both in the
5962  * current 'doms_cur' domains and in the new 'doms_new', we can leave
5963  * it as it is.
5964  *
5965  * The passed in 'doms_new' should be allocated using
5966  * alloc_sched_domains.  This routine takes ownership of it and will
5967  * free_sched_domains it when done with it. If the caller failed the
5968  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
5969  * and partition_sched_domains() will fallback to the single partition
5970  * 'fallback_doms', it also forces the domains to be rebuilt.
5971  *
5972  * If doms_new == NULL it will be replaced with cpu_online_mask.
5973  * ndoms_new == 0 is a special case for destroying existing domains,
5974  * and it will not create the default domain.
5975  *
5976  * Call with hotplug lock held
5977  */
5978 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
5979 			     struct sched_domain_attr *dattr_new)
5980 {
5981 	int i, j, n;
5982 	int new_topology;
5983 
5984 	mutex_lock(&sched_domains_mutex);
5985 
5986 	/* always unregister in case we don't destroy any domains */
5987 	unregister_sched_domain_sysctl();
5988 
5989 	/* Let architecture update cpu core mappings. */
5990 	new_topology = arch_update_cpu_topology();
5991 
5992 	n = doms_new ? ndoms_new : 0;
5993 
5994 	/* Destroy deleted domains */
5995 	for (i = 0; i < ndoms_cur; i++) {
5996 		for (j = 0; j < n && !new_topology; j++) {
5997 			if (cpumask_equal(doms_cur[i], doms_new[j])
5998 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
5999 				goto match1;
6000 		}
6001 		/* no match - a current sched domain not in new doms_new[] */
6002 		detach_destroy_domains(doms_cur[i]);
6003 match1:
6004 		;
6005 	}
6006 
6007 	n = ndoms_cur;
6008 	if (doms_new == NULL) {
6009 		n = 0;
6010 		doms_new = &fallback_doms;
6011 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6012 		WARN_ON_ONCE(dattr_new);
6013 	}
6014 
6015 	/* Build new domains */
6016 	for (i = 0; i < ndoms_new; i++) {
6017 		for (j = 0; j < n && !new_topology; j++) {
6018 			if (cpumask_equal(doms_new[i], doms_cur[j])
6019 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6020 				goto match2;
6021 		}
6022 		/* no match - add a new doms_new */
6023 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6024 match2:
6025 		;
6026 	}
6027 
6028 	/* Remember the new sched domains */
6029 	if (doms_cur != &fallback_doms)
6030 		free_sched_domains(doms_cur, ndoms_cur);
6031 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6032 	doms_cur = doms_new;
6033 	dattr_cur = dattr_new;
6034 	ndoms_cur = ndoms_new;
6035 
6036 	register_sched_domain_sysctl();
6037 
6038 	mutex_unlock(&sched_domains_mutex);
6039 }
6040 
6041 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6042 
6043 /*
6044  * Update cpusets according to cpu_active mask.  If cpusets are
6045  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6046  * around partition_sched_domains().
6047  *
6048  * If we come here as part of a suspend/resume, don't touch cpusets because we
6049  * want to restore it back to its original state upon resume anyway.
6050  */
6051 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6052 			     void *hcpu)
6053 {
6054 	switch (action) {
6055 	case CPU_ONLINE_FROZEN:
6056 	case CPU_DOWN_FAILED_FROZEN:
6057 
6058 		/*
6059 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6060 		 * resume sequence. As long as this is not the last online
6061 		 * operation in the resume sequence, just build a single sched
6062 		 * domain, ignoring cpusets.
6063 		 */
6064 		num_cpus_frozen--;
6065 		if (likely(num_cpus_frozen)) {
6066 			partition_sched_domains(1, NULL, NULL);
6067 			break;
6068 		}
6069 
6070 		/*
6071 		 * This is the last CPU online operation. So fall through and
6072 		 * restore the original sched domains by considering the
6073 		 * cpuset configurations.
6074 		 */
6075 
6076 	case CPU_ONLINE:
6077 	case CPU_DOWN_FAILED:
6078 		cpuset_update_active_cpus(true);
6079 		break;
6080 	default:
6081 		return NOTIFY_DONE;
6082 	}
6083 	return NOTIFY_OK;
6084 }
6085 
6086 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6087 			       void *hcpu)
6088 {
6089 	switch (action) {
6090 	case CPU_DOWN_PREPARE:
6091 		cpuset_update_active_cpus(false);
6092 		break;
6093 	case CPU_DOWN_PREPARE_FROZEN:
6094 		num_cpus_frozen++;
6095 		partition_sched_domains(1, NULL, NULL);
6096 		break;
6097 	default:
6098 		return NOTIFY_DONE;
6099 	}
6100 	return NOTIFY_OK;
6101 }
6102 
6103 void __init sched_init_smp(void)
6104 {
6105 	cpumask_var_t non_isolated_cpus;
6106 
6107 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6108 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6109 
6110 	sched_init_numa();
6111 
6112 	/*
6113 	 * There's no userspace yet to cause hotplug operations; hence all the
6114 	 * cpu masks are stable and all blatant races in the below code cannot
6115 	 * happen.
6116 	 */
6117 	mutex_lock(&sched_domains_mutex);
6118 	init_sched_domains(cpu_active_mask);
6119 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6120 	if (cpumask_empty(non_isolated_cpus))
6121 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6122 	mutex_unlock(&sched_domains_mutex);
6123 
6124 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6125 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6126 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6127 
6128 	init_hrtick();
6129 
6130 	/* Move init over to a non-isolated CPU */
6131 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6132 		BUG();
6133 	sched_init_granularity();
6134 	free_cpumask_var(non_isolated_cpus);
6135 
6136 	init_sched_rt_class();
6137 }
6138 #else
6139 void __init sched_init_smp(void)
6140 {
6141 	sched_init_granularity();
6142 }
6143 #endif /* CONFIG_SMP */
6144 
6145 const_debug unsigned int sysctl_timer_migration = 1;
6146 
6147 int in_sched_functions(unsigned long addr)
6148 {
6149 	return in_lock_functions(addr) ||
6150 		(addr >= (unsigned long)__sched_text_start
6151 		&& addr < (unsigned long)__sched_text_end);
6152 }
6153 
6154 #ifdef CONFIG_CGROUP_SCHED
6155 /*
6156  * Default task group.
6157  * Every task in system belongs to this group at bootup.
6158  */
6159 struct task_group root_task_group;
6160 LIST_HEAD(task_groups);
6161 #endif
6162 
6163 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6164 
6165 void __init sched_init(void)
6166 {
6167 	int i, j;
6168 	unsigned long alloc_size = 0, ptr;
6169 
6170 #ifdef CONFIG_FAIR_GROUP_SCHED
6171 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6172 #endif
6173 #ifdef CONFIG_RT_GROUP_SCHED
6174 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6175 #endif
6176 #ifdef CONFIG_CPUMASK_OFFSTACK
6177 	alloc_size += num_possible_cpus() * cpumask_size();
6178 #endif
6179 	if (alloc_size) {
6180 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6181 
6182 #ifdef CONFIG_FAIR_GROUP_SCHED
6183 		root_task_group.se = (struct sched_entity **)ptr;
6184 		ptr += nr_cpu_ids * sizeof(void **);
6185 
6186 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6187 		ptr += nr_cpu_ids * sizeof(void **);
6188 
6189 #endif /* CONFIG_FAIR_GROUP_SCHED */
6190 #ifdef CONFIG_RT_GROUP_SCHED
6191 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6192 		ptr += nr_cpu_ids * sizeof(void **);
6193 
6194 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6195 		ptr += nr_cpu_ids * sizeof(void **);
6196 
6197 #endif /* CONFIG_RT_GROUP_SCHED */
6198 #ifdef CONFIG_CPUMASK_OFFSTACK
6199 		for_each_possible_cpu(i) {
6200 			per_cpu(load_balance_mask, i) = (void *)ptr;
6201 			ptr += cpumask_size();
6202 		}
6203 #endif /* CONFIG_CPUMASK_OFFSTACK */
6204 	}
6205 
6206 #ifdef CONFIG_SMP
6207 	init_defrootdomain();
6208 #endif
6209 
6210 	init_rt_bandwidth(&def_rt_bandwidth,
6211 			global_rt_period(), global_rt_runtime());
6212 
6213 #ifdef CONFIG_RT_GROUP_SCHED
6214 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6215 			global_rt_period(), global_rt_runtime());
6216 #endif /* CONFIG_RT_GROUP_SCHED */
6217 
6218 #ifdef CONFIG_CGROUP_SCHED
6219 	list_add(&root_task_group.list, &task_groups);
6220 	INIT_LIST_HEAD(&root_task_group.children);
6221 	INIT_LIST_HEAD(&root_task_group.siblings);
6222 	autogroup_init(&init_task);
6223 
6224 #endif /* CONFIG_CGROUP_SCHED */
6225 
6226 	for_each_possible_cpu(i) {
6227 		struct rq *rq;
6228 
6229 		rq = cpu_rq(i);
6230 		raw_spin_lock_init(&rq->lock);
6231 		rq->nr_running = 0;
6232 		rq->calc_load_active = 0;
6233 		rq->calc_load_update = jiffies + LOAD_FREQ;
6234 		init_cfs_rq(&rq->cfs);
6235 		init_rt_rq(&rq->rt, rq);
6236 #ifdef CONFIG_FAIR_GROUP_SCHED
6237 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6238 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6239 		/*
6240 		 * How much cpu bandwidth does root_task_group get?
6241 		 *
6242 		 * In case of task-groups formed thr' the cgroup filesystem, it
6243 		 * gets 100% of the cpu resources in the system. This overall
6244 		 * system cpu resource is divided among the tasks of
6245 		 * root_task_group and its child task-groups in a fair manner,
6246 		 * based on each entity's (task or task-group's) weight
6247 		 * (se->load.weight).
6248 		 *
6249 		 * In other words, if root_task_group has 10 tasks of weight
6250 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6251 		 * then A0's share of the cpu resource is:
6252 		 *
6253 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6254 		 *
6255 		 * We achieve this by letting root_task_group's tasks sit
6256 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6257 		 */
6258 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6259 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6260 #endif /* CONFIG_FAIR_GROUP_SCHED */
6261 
6262 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6263 #ifdef CONFIG_RT_GROUP_SCHED
6264 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6265 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6266 #endif
6267 
6268 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6269 			rq->cpu_load[j] = 0;
6270 
6271 		rq->last_load_update_tick = jiffies;
6272 
6273 #ifdef CONFIG_SMP
6274 		rq->sd = NULL;
6275 		rq->rd = NULL;
6276 		rq->cpu_power = SCHED_POWER_SCALE;
6277 		rq->post_schedule = 0;
6278 		rq->active_balance = 0;
6279 		rq->next_balance = jiffies;
6280 		rq->push_cpu = 0;
6281 		rq->cpu = i;
6282 		rq->online = 0;
6283 		rq->idle_stamp = 0;
6284 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6285 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6286 
6287 		INIT_LIST_HEAD(&rq->cfs_tasks);
6288 
6289 		rq_attach_root(rq, &def_root_domain);
6290 #ifdef CONFIG_NO_HZ_COMMON
6291 		rq->nohz_flags = 0;
6292 #endif
6293 #ifdef CONFIG_NO_HZ_FULL
6294 		rq->last_sched_tick = 0;
6295 #endif
6296 #endif
6297 		init_rq_hrtick(rq);
6298 		atomic_set(&rq->nr_iowait, 0);
6299 	}
6300 
6301 	set_load_weight(&init_task);
6302 
6303 #ifdef CONFIG_PREEMPT_NOTIFIERS
6304 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6305 #endif
6306 
6307 #ifdef CONFIG_RT_MUTEXES
6308 	plist_head_init(&init_task.pi_waiters);
6309 #endif
6310 
6311 	/*
6312 	 * The boot idle thread does lazy MMU switching as well:
6313 	 */
6314 	atomic_inc(&init_mm.mm_count);
6315 	enter_lazy_tlb(&init_mm, current);
6316 
6317 	/*
6318 	 * Make us the idle thread. Technically, schedule() should not be
6319 	 * called from this thread, however somewhere below it might be,
6320 	 * but because we are the idle thread, we just pick up running again
6321 	 * when this runqueue becomes "idle".
6322 	 */
6323 	init_idle(current, smp_processor_id());
6324 
6325 	calc_load_update = jiffies + LOAD_FREQ;
6326 
6327 	/*
6328 	 * During early bootup we pretend to be a normal task:
6329 	 */
6330 	current->sched_class = &fair_sched_class;
6331 
6332 #ifdef CONFIG_SMP
6333 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6334 	/* May be allocated at isolcpus cmdline parse time */
6335 	if (cpu_isolated_map == NULL)
6336 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6337 	idle_thread_set_boot_cpu();
6338 #endif
6339 	init_sched_fair_class();
6340 
6341 	scheduler_running = 1;
6342 }
6343 
6344 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6345 static inline int preempt_count_equals(int preempt_offset)
6346 {
6347 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6348 
6349 	return (nested == preempt_offset);
6350 }
6351 
6352 void __might_sleep(const char *file, int line, int preempt_offset)
6353 {
6354 	static unsigned long prev_jiffy;	/* ratelimiting */
6355 
6356 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6357 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6358 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6359 		return;
6360 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6361 		return;
6362 	prev_jiffy = jiffies;
6363 
6364 	printk(KERN_ERR
6365 		"BUG: sleeping function called from invalid context at %s:%d\n",
6366 			file, line);
6367 	printk(KERN_ERR
6368 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6369 			in_atomic(), irqs_disabled(),
6370 			current->pid, current->comm);
6371 
6372 	debug_show_held_locks(current);
6373 	if (irqs_disabled())
6374 		print_irqtrace_events(current);
6375 	dump_stack();
6376 }
6377 EXPORT_SYMBOL(__might_sleep);
6378 #endif
6379 
6380 #ifdef CONFIG_MAGIC_SYSRQ
6381 static void normalize_task(struct rq *rq, struct task_struct *p)
6382 {
6383 	const struct sched_class *prev_class = p->sched_class;
6384 	int old_prio = p->prio;
6385 	int on_rq;
6386 
6387 	on_rq = p->on_rq;
6388 	if (on_rq)
6389 		dequeue_task(rq, p, 0);
6390 	__setscheduler(rq, p, SCHED_NORMAL, 0);
6391 	if (on_rq) {
6392 		enqueue_task(rq, p, 0);
6393 		resched_task(rq->curr);
6394 	}
6395 
6396 	check_class_changed(rq, p, prev_class, old_prio);
6397 }
6398 
6399 void normalize_rt_tasks(void)
6400 {
6401 	struct task_struct *g, *p;
6402 	unsigned long flags;
6403 	struct rq *rq;
6404 
6405 	read_lock_irqsave(&tasklist_lock, flags);
6406 	do_each_thread(g, p) {
6407 		/*
6408 		 * Only normalize user tasks:
6409 		 */
6410 		if (!p->mm)
6411 			continue;
6412 
6413 		p->se.exec_start		= 0;
6414 #ifdef CONFIG_SCHEDSTATS
6415 		p->se.statistics.wait_start	= 0;
6416 		p->se.statistics.sleep_start	= 0;
6417 		p->se.statistics.block_start	= 0;
6418 #endif
6419 
6420 		if (!rt_task(p)) {
6421 			/*
6422 			 * Renice negative nice level userspace
6423 			 * tasks back to 0:
6424 			 */
6425 			if (TASK_NICE(p) < 0 && p->mm)
6426 				set_user_nice(p, 0);
6427 			continue;
6428 		}
6429 
6430 		raw_spin_lock(&p->pi_lock);
6431 		rq = __task_rq_lock(p);
6432 
6433 		normalize_task(rq, p);
6434 
6435 		__task_rq_unlock(rq);
6436 		raw_spin_unlock(&p->pi_lock);
6437 	} while_each_thread(g, p);
6438 
6439 	read_unlock_irqrestore(&tasklist_lock, flags);
6440 }
6441 
6442 #endif /* CONFIG_MAGIC_SYSRQ */
6443 
6444 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6445 /*
6446  * These functions are only useful for the IA64 MCA handling, or kdb.
6447  *
6448  * They can only be called when the whole system has been
6449  * stopped - every CPU needs to be quiescent, and no scheduling
6450  * activity can take place. Using them for anything else would
6451  * be a serious bug, and as a result, they aren't even visible
6452  * under any other configuration.
6453  */
6454 
6455 /**
6456  * curr_task - return the current task for a given cpu.
6457  * @cpu: the processor in question.
6458  *
6459  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6460  *
6461  * Return: The current task for @cpu.
6462  */
6463 struct task_struct *curr_task(int cpu)
6464 {
6465 	return cpu_curr(cpu);
6466 }
6467 
6468 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6469 
6470 #ifdef CONFIG_IA64
6471 /**
6472  * set_curr_task - set the current task for a given cpu.
6473  * @cpu: the processor in question.
6474  * @p: the task pointer to set.
6475  *
6476  * Description: This function must only be used when non-maskable interrupts
6477  * are serviced on a separate stack. It allows the architecture to switch the
6478  * notion of the current task on a cpu in a non-blocking manner. This function
6479  * must be called with all CPU's synchronized, and interrupts disabled, the
6480  * and caller must save the original value of the current task (see
6481  * curr_task() above) and restore that value before reenabling interrupts and
6482  * re-starting the system.
6483  *
6484  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6485  */
6486 void set_curr_task(int cpu, struct task_struct *p)
6487 {
6488 	cpu_curr(cpu) = p;
6489 }
6490 
6491 #endif
6492 
6493 #ifdef CONFIG_CGROUP_SCHED
6494 /* task_group_lock serializes the addition/removal of task groups */
6495 static DEFINE_SPINLOCK(task_group_lock);
6496 
6497 static void free_sched_group(struct task_group *tg)
6498 {
6499 	free_fair_sched_group(tg);
6500 	free_rt_sched_group(tg);
6501 	autogroup_free(tg);
6502 	kfree(tg);
6503 }
6504 
6505 /* allocate runqueue etc for a new task group */
6506 struct task_group *sched_create_group(struct task_group *parent)
6507 {
6508 	struct task_group *tg;
6509 
6510 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6511 	if (!tg)
6512 		return ERR_PTR(-ENOMEM);
6513 
6514 	if (!alloc_fair_sched_group(tg, parent))
6515 		goto err;
6516 
6517 	if (!alloc_rt_sched_group(tg, parent))
6518 		goto err;
6519 
6520 	return tg;
6521 
6522 err:
6523 	free_sched_group(tg);
6524 	return ERR_PTR(-ENOMEM);
6525 }
6526 
6527 void sched_online_group(struct task_group *tg, struct task_group *parent)
6528 {
6529 	unsigned long flags;
6530 
6531 	spin_lock_irqsave(&task_group_lock, flags);
6532 	list_add_rcu(&tg->list, &task_groups);
6533 
6534 	WARN_ON(!parent); /* root should already exist */
6535 
6536 	tg->parent = parent;
6537 	INIT_LIST_HEAD(&tg->children);
6538 	list_add_rcu(&tg->siblings, &parent->children);
6539 	spin_unlock_irqrestore(&task_group_lock, flags);
6540 }
6541 
6542 /* rcu callback to free various structures associated with a task group */
6543 static void free_sched_group_rcu(struct rcu_head *rhp)
6544 {
6545 	/* now it should be safe to free those cfs_rqs */
6546 	free_sched_group(container_of(rhp, struct task_group, rcu));
6547 }
6548 
6549 /* Destroy runqueue etc associated with a task group */
6550 void sched_destroy_group(struct task_group *tg)
6551 {
6552 	/* wait for possible concurrent references to cfs_rqs complete */
6553 	call_rcu(&tg->rcu, free_sched_group_rcu);
6554 }
6555 
6556 void sched_offline_group(struct task_group *tg)
6557 {
6558 	unsigned long flags;
6559 	int i;
6560 
6561 	/* end participation in shares distribution */
6562 	for_each_possible_cpu(i)
6563 		unregister_fair_sched_group(tg, i);
6564 
6565 	spin_lock_irqsave(&task_group_lock, flags);
6566 	list_del_rcu(&tg->list);
6567 	list_del_rcu(&tg->siblings);
6568 	spin_unlock_irqrestore(&task_group_lock, flags);
6569 }
6570 
6571 /* change task's runqueue when it moves between groups.
6572  *	The caller of this function should have put the task in its new group
6573  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6574  *	reflect its new group.
6575  */
6576 void sched_move_task(struct task_struct *tsk)
6577 {
6578 	struct task_group *tg;
6579 	int on_rq, running;
6580 	unsigned long flags;
6581 	struct rq *rq;
6582 
6583 	rq = task_rq_lock(tsk, &flags);
6584 
6585 	running = task_current(rq, tsk);
6586 	on_rq = tsk->on_rq;
6587 
6588 	if (on_rq)
6589 		dequeue_task(rq, tsk, 0);
6590 	if (unlikely(running))
6591 		tsk->sched_class->put_prev_task(rq, tsk);
6592 
6593 	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6594 				lockdep_is_held(&tsk->sighand->siglock)),
6595 			  struct task_group, css);
6596 	tg = autogroup_task_group(tsk, tg);
6597 	tsk->sched_task_group = tg;
6598 
6599 #ifdef CONFIG_FAIR_GROUP_SCHED
6600 	if (tsk->sched_class->task_move_group)
6601 		tsk->sched_class->task_move_group(tsk, on_rq);
6602 	else
6603 #endif
6604 		set_task_rq(tsk, task_cpu(tsk));
6605 
6606 	if (unlikely(running))
6607 		tsk->sched_class->set_curr_task(rq);
6608 	if (on_rq)
6609 		enqueue_task(rq, tsk, 0);
6610 
6611 	task_rq_unlock(rq, tsk, &flags);
6612 }
6613 #endif /* CONFIG_CGROUP_SCHED */
6614 
6615 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6616 static unsigned long to_ratio(u64 period, u64 runtime)
6617 {
6618 	if (runtime == RUNTIME_INF)
6619 		return 1ULL << 20;
6620 
6621 	return div64_u64(runtime << 20, period);
6622 }
6623 #endif
6624 
6625 #ifdef CONFIG_RT_GROUP_SCHED
6626 /*
6627  * Ensure that the real time constraints are schedulable.
6628  */
6629 static DEFINE_MUTEX(rt_constraints_mutex);
6630 
6631 /* Must be called with tasklist_lock held */
6632 static inline int tg_has_rt_tasks(struct task_group *tg)
6633 {
6634 	struct task_struct *g, *p;
6635 
6636 	do_each_thread(g, p) {
6637 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6638 			return 1;
6639 	} while_each_thread(g, p);
6640 
6641 	return 0;
6642 }
6643 
6644 struct rt_schedulable_data {
6645 	struct task_group *tg;
6646 	u64 rt_period;
6647 	u64 rt_runtime;
6648 };
6649 
6650 static int tg_rt_schedulable(struct task_group *tg, void *data)
6651 {
6652 	struct rt_schedulable_data *d = data;
6653 	struct task_group *child;
6654 	unsigned long total, sum = 0;
6655 	u64 period, runtime;
6656 
6657 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6658 	runtime = tg->rt_bandwidth.rt_runtime;
6659 
6660 	if (tg == d->tg) {
6661 		period = d->rt_period;
6662 		runtime = d->rt_runtime;
6663 	}
6664 
6665 	/*
6666 	 * Cannot have more runtime than the period.
6667 	 */
6668 	if (runtime > period && runtime != RUNTIME_INF)
6669 		return -EINVAL;
6670 
6671 	/*
6672 	 * Ensure we don't starve existing RT tasks.
6673 	 */
6674 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6675 		return -EBUSY;
6676 
6677 	total = to_ratio(period, runtime);
6678 
6679 	/*
6680 	 * Nobody can have more than the global setting allows.
6681 	 */
6682 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6683 		return -EINVAL;
6684 
6685 	/*
6686 	 * The sum of our children's runtime should not exceed our own.
6687 	 */
6688 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6689 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6690 		runtime = child->rt_bandwidth.rt_runtime;
6691 
6692 		if (child == d->tg) {
6693 			period = d->rt_period;
6694 			runtime = d->rt_runtime;
6695 		}
6696 
6697 		sum += to_ratio(period, runtime);
6698 	}
6699 
6700 	if (sum > total)
6701 		return -EINVAL;
6702 
6703 	return 0;
6704 }
6705 
6706 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6707 {
6708 	int ret;
6709 
6710 	struct rt_schedulable_data data = {
6711 		.tg = tg,
6712 		.rt_period = period,
6713 		.rt_runtime = runtime,
6714 	};
6715 
6716 	rcu_read_lock();
6717 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6718 	rcu_read_unlock();
6719 
6720 	return ret;
6721 }
6722 
6723 static int tg_set_rt_bandwidth(struct task_group *tg,
6724 		u64 rt_period, u64 rt_runtime)
6725 {
6726 	int i, err = 0;
6727 
6728 	mutex_lock(&rt_constraints_mutex);
6729 	read_lock(&tasklist_lock);
6730 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6731 	if (err)
6732 		goto unlock;
6733 
6734 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6735 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6736 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6737 
6738 	for_each_possible_cpu(i) {
6739 		struct rt_rq *rt_rq = tg->rt_rq[i];
6740 
6741 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6742 		rt_rq->rt_runtime = rt_runtime;
6743 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6744 	}
6745 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6746 unlock:
6747 	read_unlock(&tasklist_lock);
6748 	mutex_unlock(&rt_constraints_mutex);
6749 
6750 	return err;
6751 }
6752 
6753 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6754 {
6755 	u64 rt_runtime, rt_period;
6756 
6757 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6758 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6759 	if (rt_runtime_us < 0)
6760 		rt_runtime = RUNTIME_INF;
6761 
6762 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6763 }
6764 
6765 static long sched_group_rt_runtime(struct task_group *tg)
6766 {
6767 	u64 rt_runtime_us;
6768 
6769 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6770 		return -1;
6771 
6772 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6773 	do_div(rt_runtime_us, NSEC_PER_USEC);
6774 	return rt_runtime_us;
6775 }
6776 
6777 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6778 {
6779 	u64 rt_runtime, rt_period;
6780 
6781 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6782 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6783 
6784 	if (rt_period == 0)
6785 		return -EINVAL;
6786 
6787 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6788 }
6789 
6790 static long sched_group_rt_period(struct task_group *tg)
6791 {
6792 	u64 rt_period_us;
6793 
6794 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6795 	do_div(rt_period_us, NSEC_PER_USEC);
6796 	return rt_period_us;
6797 }
6798 
6799 static int sched_rt_global_constraints(void)
6800 {
6801 	u64 runtime, period;
6802 	int ret = 0;
6803 
6804 	if (sysctl_sched_rt_period <= 0)
6805 		return -EINVAL;
6806 
6807 	runtime = global_rt_runtime();
6808 	period = global_rt_period();
6809 
6810 	/*
6811 	 * Sanity check on the sysctl variables.
6812 	 */
6813 	if (runtime > period && runtime != RUNTIME_INF)
6814 		return -EINVAL;
6815 
6816 	mutex_lock(&rt_constraints_mutex);
6817 	read_lock(&tasklist_lock);
6818 	ret = __rt_schedulable(NULL, 0, 0);
6819 	read_unlock(&tasklist_lock);
6820 	mutex_unlock(&rt_constraints_mutex);
6821 
6822 	return ret;
6823 }
6824 
6825 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6826 {
6827 	/* Don't accept realtime tasks when there is no way for them to run */
6828 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6829 		return 0;
6830 
6831 	return 1;
6832 }
6833 
6834 #else /* !CONFIG_RT_GROUP_SCHED */
6835 static int sched_rt_global_constraints(void)
6836 {
6837 	unsigned long flags;
6838 	int i;
6839 
6840 	if (sysctl_sched_rt_period <= 0)
6841 		return -EINVAL;
6842 
6843 	/*
6844 	 * There's always some RT tasks in the root group
6845 	 * -- migration, kstopmachine etc..
6846 	 */
6847 	if (sysctl_sched_rt_runtime == 0)
6848 		return -EBUSY;
6849 
6850 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6851 	for_each_possible_cpu(i) {
6852 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6853 
6854 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6855 		rt_rq->rt_runtime = global_rt_runtime();
6856 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6857 	}
6858 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6859 
6860 	return 0;
6861 }
6862 #endif /* CONFIG_RT_GROUP_SCHED */
6863 
6864 int sched_rr_handler(struct ctl_table *table, int write,
6865 		void __user *buffer, size_t *lenp,
6866 		loff_t *ppos)
6867 {
6868 	int ret;
6869 	static DEFINE_MUTEX(mutex);
6870 
6871 	mutex_lock(&mutex);
6872 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6873 	/* make sure that internally we keep jiffies */
6874 	/* also, writing zero resets timeslice to default */
6875 	if (!ret && write) {
6876 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
6877 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
6878 	}
6879 	mutex_unlock(&mutex);
6880 	return ret;
6881 }
6882 
6883 int sched_rt_handler(struct ctl_table *table, int write,
6884 		void __user *buffer, size_t *lenp,
6885 		loff_t *ppos)
6886 {
6887 	int ret;
6888 	int old_period, old_runtime;
6889 	static DEFINE_MUTEX(mutex);
6890 
6891 	mutex_lock(&mutex);
6892 	old_period = sysctl_sched_rt_period;
6893 	old_runtime = sysctl_sched_rt_runtime;
6894 
6895 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6896 
6897 	if (!ret && write) {
6898 		ret = sched_rt_global_constraints();
6899 		if (ret) {
6900 			sysctl_sched_rt_period = old_period;
6901 			sysctl_sched_rt_runtime = old_runtime;
6902 		} else {
6903 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
6904 			def_rt_bandwidth.rt_period =
6905 				ns_to_ktime(global_rt_period());
6906 		}
6907 	}
6908 	mutex_unlock(&mutex);
6909 
6910 	return ret;
6911 }
6912 
6913 #ifdef CONFIG_CGROUP_SCHED
6914 
6915 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6916 {
6917 	return css ? container_of(css, struct task_group, css) : NULL;
6918 }
6919 
6920 static struct cgroup_subsys_state *
6921 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6922 {
6923 	struct task_group *parent = css_tg(parent_css);
6924 	struct task_group *tg;
6925 
6926 	if (!parent) {
6927 		/* This is early initialization for the top cgroup */
6928 		return &root_task_group.css;
6929 	}
6930 
6931 	tg = sched_create_group(parent);
6932 	if (IS_ERR(tg))
6933 		return ERR_PTR(-ENOMEM);
6934 
6935 	return &tg->css;
6936 }
6937 
6938 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6939 {
6940 	struct task_group *tg = css_tg(css);
6941 	struct task_group *parent = css_tg(css_parent(css));
6942 
6943 	if (parent)
6944 		sched_online_group(tg, parent);
6945 	return 0;
6946 }
6947 
6948 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6949 {
6950 	struct task_group *tg = css_tg(css);
6951 
6952 	sched_destroy_group(tg);
6953 }
6954 
6955 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
6956 {
6957 	struct task_group *tg = css_tg(css);
6958 
6959 	sched_offline_group(tg);
6960 }
6961 
6962 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
6963 				 struct cgroup_taskset *tset)
6964 {
6965 	struct task_struct *task;
6966 
6967 	cgroup_taskset_for_each(task, css, tset) {
6968 #ifdef CONFIG_RT_GROUP_SCHED
6969 		if (!sched_rt_can_attach(css_tg(css), task))
6970 			return -EINVAL;
6971 #else
6972 		/* We don't support RT-tasks being in separate groups */
6973 		if (task->sched_class != &fair_sched_class)
6974 			return -EINVAL;
6975 #endif
6976 	}
6977 	return 0;
6978 }
6979 
6980 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
6981 			      struct cgroup_taskset *tset)
6982 {
6983 	struct task_struct *task;
6984 
6985 	cgroup_taskset_for_each(task, css, tset)
6986 		sched_move_task(task);
6987 }
6988 
6989 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
6990 			    struct cgroup_subsys_state *old_css,
6991 			    struct task_struct *task)
6992 {
6993 	/*
6994 	 * cgroup_exit() is called in the copy_process() failure path.
6995 	 * Ignore this case since the task hasn't ran yet, this avoids
6996 	 * trying to poke a half freed task state from generic code.
6997 	 */
6998 	if (!(task->flags & PF_EXITING))
6999 		return;
7000 
7001 	sched_move_task(task);
7002 }
7003 
7004 #ifdef CONFIG_FAIR_GROUP_SCHED
7005 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7006 				struct cftype *cftype, u64 shareval)
7007 {
7008 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7009 }
7010 
7011 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7012 			       struct cftype *cft)
7013 {
7014 	struct task_group *tg = css_tg(css);
7015 
7016 	return (u64) scale_load_down(tg->shares);
7017 }
7018 
7019 #ifdef CONFIG_CFS_BANDWIDTH
7020 static DEFINE_MUTEX(cfs_constraints_mutex);
7021 
7022 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7023 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7024 
7025 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7026 
7027 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7028 {
7029 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7030 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7031 
7032 	if (tg == &root_task_group)
7033 		return -EINVAL;
7034 
7035 	/*
7036 	 * Ensure we have at some amount of bandwidth every period.  This is
7037 	 * to prevent reaching a state of large arrears when throttled via
7038 	 * entity_tick() resulting in prolonged exit starvation.
7039 	 */
7040 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7041 		return -EINVAL;
7042 
7043 	/*
7044 	 * Likewise, bound things on the otherside by preventing insane quota
7045 	 * periods.  This also allows us to normalize in computing quota
7046 	 * feasibility.
7047 	 */
7048 	if (period > max_cfs_quota_period)
7049 		return -EINVAL;
7050 
7051 	mutex_lock(&cfs_constraints_mutex);
7052 	ret = __cfs_schedulable(tg, period, quota);
7053 	if (ret)
7054 		goto out_unlock;
7055 
7056 	runtime_enabled = quota != RUNTIME_INF;
7057 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7058 	/*
7059 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7060 	 * before making related changes, and on->off must occur afterwards
7061 	 */
7062 	if (runtime_enabled && !runtime_was_enabled)
7063 		cfs_bandwidth_usage_inc();
7064 	raw_spin_lock_irq(&cfs_b->lock);
7065 	cfs_b->period = ns_to_ktime(period);
7066 	cfs_b->quota = quota;
7067 
7068 	__refill_cfs_bandwidth_runtime(cfs_b);
7069 	/* restart the period timer (if active) to handle new period expiry */
7070 	if (runtime_enabled && cfs_b->timer_active) {
7071 		/* force a reprogram */
7072 		cfs_b->timer_active = 0;
7073 		__start_cfs_bandwidth(cfs_b);
7074 	}
7075 	raw_spin_unlock_irq(&cfs_b->lock);
7076 
7077 	for_each_possible_cpu(i) {
7078 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7079 		struct rq *rq = cfs_rq->rq;
7080 
7081 		raw_spin_lock_irq(&rq->lock);
7082 		cfs_rq->runtime_enabled = runtime_enabled;
7083 		cfs_rq->runtime_remaining = 0;
7084 
7085 		if (cfs_rq->throttled)
7086 			unthrottle_cfs_rq(cfs_rq);
7087 		raw_spin_unlock_irq(&rq->lock);
7088 	}
7089 	if (runtime_was_enabled && !runtime_enabled)
7090 		cfs_bandwidth_usage_dec();
7091 out_unlock:
7092 	mutex_unlock(&cfs_constraints_mutex);
7093 
7094 	return ret;
7095 }
7096 
7097 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7098 {
7099 	u64 quota, period;
7100 
7101 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7102 	if (cfs_quota_us < 0)
7103 		quota = RUNTIME_INF;
7104 	else
7105 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7106 
7107 	return tg_set_cfs_bandwidth(tg, period, quota);
7108 }
7109 
7110 long tg_get_cfs_quota(struct task_group *tg)
7111 {
7112 	u64 quota_us;
7113 
7114 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7115 		return -1;
7116 
7117 	quota_us = tg->cfs_bandwidth.quota;
7118 	do_div(quota_us, NSEC_PER_USEC);
7119 
7120 	return quota_us;
7121 }
7122 
7123 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7124 {
7125 	u64 quota, period;
7126 
7127 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7128 	quota = tg->cfs_bandwidth.quota;
7129 
7130 	return tg_set_cfs_bandwidth(tg, period, quota);
7131 }
7132 
7133 long tg_get_cfs_period(struct task_group *tg)
7134 {
7135 	u64 cfs_period_us;
7136 
7137 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7138 	do_div(cfs_period_us, NSEC_PER_USEC);
7139 
7140 	return cfs_period_us;
7141 }
7142 
7143 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7144 				  struct cftype *cft)
7145 {
7146 	return tg_get_cfs_quota(css_tg(css));
7147 }
7148 
7149 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7150 				   struct cftype *cftype, s64 cfs_quota_us)
7151 {
7152 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7153 }
7154 
7155 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7156 				   struct cftype *cft)
7157 {
7158 	return tg_get_cfs_period(css_tg(css));
7159 }
7160 
7161 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7162 				    struct cftype *cftype, u64 cfs_period_us)
7163 {
7164 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7165 }
7166 
7167 struct cfs_schedulable_data {
7168 	struct task_group *tg;
7169 	u64 period, quota;
7170 };
7171 
7172 /*
7173  * normalize group quota/period to be quota/max_period
7174  * note: units are usecs
7175  */
7176 static u64 normalize_cfs_quota(struct task_group *tg,
7177 			       struct cfs_schedulable_data *d)
7178 {
7179 	u64 quota, period;
7180 
7181 	if (tg == d->tg) {
7182 		period = d->period;
7183 		quota = d->quota;
7184 	} else {
7185 		period = tg_get_cfs_period(tg);
7186 		quota = tg_get_cfs_quota(tg);
7187 	}
7188 
7189 	/* note: these should typically be equivalent */
7190 	if (quota == RUNTIME_INF || quota == -1)
7191 		return RUNTIME_INF;
7192 
7193 	return to_ratio(period, quota);
7194 }
7195 
7196 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7197 {
7198 	struct cfs_schedulable_data *d = data;
7199 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7200 	s64 quota = 0, parent_quota = -1;
7201 
7202 	if (!tg->parent) {
7203 		quota = RUNTIME_INF;
7204 	} else {
7205 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7206 
7207 		quota = normalize_cfs_quota(tg, d);
7208 		parent_quota = parent_b->hierarchal_quota;
7209 
7210 		/*
7211 		 * ensure max(child_quota) <= parent_quota, inherit when no
7212 		 * limit is set
7213 		 */
7214 		if (quota == RUNTIME_INF)
7215 			quota = parent_quota;
7216 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7217 			return -EINVAL;
7218 	}
7219 	cfs_b->hierarchal_quota = quota;
7220 
7221 	return 0;
7222 }
7223 
7224 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7225 {
7226 	int ret;
7227 	struct cfs_schedulable_data data = {
7228 		.tg = tg,
7229 		.period = period,
7230 		.quota = quota,
7231 	};
7232 
7233 	if (quota != RUNTIME_INF) {
7234 		do_div(data.period, NSEC_PER_USEC);
7235 		do_div(data.quota, NSEC_PER_USEC);
7236 	}
7237 
7238 	rcu_read_lock();
7239 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7240 	rcu_read_unlock();
7241 
7242 	return ret;
7243 }
7244 
7245 static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7246 		struct cgroup_map_cb *cb)
7247 {
7248 	struct task_group *tg = css_tg(css);
7249 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7250 
7251 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7252 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7253 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7254 
7255 	return 0;
7256 }
7257 #endif /* CONFIG_CFS_BANDWIDTH */
7258 #endif /* CONFIG_FAIR_GROUP_SCHED */
7259 
7260 #ifdef CONFIG_RT_GROUP_SCHED
7261 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7262 				struct cftype *cft, s64 val)
7263 {
7264 	return sched_group_set_rt_runtime(css_tg(css), val);
7265 }
7266 
7267 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7268 			       struct cftype *cft)
7269 {
7270 	return sched_group_rt_runtime(css_tg(css));
7271 }
7272 
7273 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7274 				    struct cftype *cftype, u64 rt_period_us)
7275 {
7276 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7277 }
7278 
7279 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7280 				   struct cftype *cft)
7281 {
7282 	return sched_group_rt_period(css_tg(css));
7283 }
7284 #endif /* CONFIG_RT_GROUP_SCHED */
7285 
7286 static struct cftype cpu_files[] = {
7287 #ifdef CONFIG_FAIR_GROUP_SCHED
7288 	{
7289 		.name = "shares",
7290 		.read_u64 = cpu_shares_read_u64,
7291 		.write_u64 = cpu_shares_write_u64,
7292 	},
7293 #endif
7294 #ifdef CONFIG_CFS_BANDWIDTH
7295 	{
7296 		.name = "cfs_quota_us",
7297 		.read_s64 = cpu_cfs_quota_read_s64,
7298 		.write_s64 = cpu_cfs_quota_write_s64,
7299 	},
7300 	{
7301 		.name = "cfs_period_us",
7302 		.read_u64 = cpu_cfs_period_read_u64,
7303 		.write_u64 = cpu_cfs_period_write_u64,
7304 	},
7305 	{
7306 		.name = "stat",
7307 		.read_map = cpu_stats_show,
7308 	},
7309 #endif
7310 #ifdef CONFIG_RT_GROUP_SCHED
7311 	{
7312 		.name = "rt_runtime_us",
7313 		.read_s64 = cpu_rt_runtime_read,
7314 		.write_s64 = cpu_rt_runtime_write,
7315 	},
7316 	{
7317 		.name = "rt_period_us",
7318 		.read_u64 = cpu_rt_period_read_uint,
7319 		.write_u64 = cpu_rt_period_write_uint,
7320 	},
7321 #endif
7322 	{ }	/* terminate */
7323 };
7324 
7325 struct cgroup_subsys cpu_cgroup_subsys = {
7326 	.name		= "cpu",
7327 	.css_alloc	= cpu_cgroup_css_alloc,
7328 	.css_free	= cpu_cgroup_css_free,
7329 	.css_online	= cpu_cgroup_css_online,
7330 	.css_offline	= cpu_cgroup_css_offline,
7331 	.can_attach	= cpu_cgroup_can_attach,
7332 	.attach		= cpu_cgroup_attach,
7333 	.exit		= cpu_cgroup_exit,
7334 	.subsys_id	= cpu_cgroup_subsys_id,
7335 	.base_cftypes	= cpu_files,
7336 	.early_init	= 1,
7337 };
7338 
7339 #endif	/* CONFIG_CGROUP_SCHED */
7340 
7341 void dump_cpu_task(int cpu)
7342 {
7343 	pr_info("Task dump for CPU %d:\n", cpu);
7344 	sched_show_task(cpu_curr(cpu));
7345 }
7346