1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 15 #include <asm/switch_to.h> 16 #include <asm/tlb.h> 17 18 #include "../workqueue_internal.h" 19 #include "../../fs/io-wq.h" 20 #include "../smpboot.h" 21 22 #include "pelt.h" 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/sched.h> 26 27 /* 28 * Export tracepoints that act as a bare tracehook (ie: have no trace event 29 * associated with them) to allow external modules to probe them. 30 */ 31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 37 38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 39 40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 41 /* 42 * Debugging: various feature bits 43 * 44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 45 * sysctl_sched_features, defined in sched.h, to allow constants propagation 46 * at compile time and compiler optimization based on features default. 47 */ 48 #define SCHED_FEAT(name, enabled) \ 49 (1UL << __SCHED_FEAT_##name) * enabled | 50 const_debug unsigned int sysctl_sched_features = 51 #include "features.h" 52 0; 53 #undef SCHED_FEAT 54 #endif 55 56 /* 57 * Number of tasks to iterate in a single balance run. 58 * Limited because this is done with IRQs disabled. 59 */ 60 const_debug unsigned int sysctl_sched_nr_migrate = 32; 61 62 /* 63 * period over which we measure -rt task CPU usage in us. 64 * default: 1s 65 */ 66 unsigned int sysctl_sched_rt_period = 1000000; 67 68 __read_mostly int scheduler_running; 69 70 /* 71 * part of the period that we allow rt tasks to run in us. 72 * default: 0.95s 73 */ 74 int sysctl_sched_rt_runtime = 950000; 75 76 /* 77 * __task_rq_lock - lock the rq @p resides on. 78 */ 79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 80 __acquires(rq->lock) 81 { 82 struct rq *rq; 83 84 lockdep_assert_held(&p->pi_lock); 85 86 for (;;) { 87 rq = task_rq(p); 88 raw_spin_lock(&rq->lock); 89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 90 rq_pin_lock(rq, rf); 91 return rq; 92 } 93 raw_spin_unlock(&rq->lock); 94 95 while (unlikely(task_on_rq_migrating(p))) 96 cpu_relax(); 97 } 98 } 99 100 /* 101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 102 */ 103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 104 __acquires(p->pi_lock) 105 __acquires(rq->lock) 106 { 107 struct rq *rq; 108 109 for (;;) { 110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 111 rq = task_rq(p); 112 raw_spin_lock(&rq->lock); 113 /* 114 * move_queued_task() task_rq_lock() 115 * 116 * ACQUIRE (rq->lock) 117 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 119 * [S] ->cpu = new_cpu [L] task_rq() 120 * [L] ->on_rq 121 * RELEASE (rq->lock) 122 * 123 * If we observe the old CPU in task_rq_lock(), the acquire of 124 * the old rq->lock will fully serialize against the stores. 125 * 126 * If we observe the new CPU in task_rq_lock(), the address 127 * dependency headed by '[L] rq = task_rq()' and the acquire 128 * will pair with the WMB to ensure we then also see migrating. 129 */ 130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 131 rq_pin_lock(rq, rf); 132 return rq; 133 } 134 raw_spin_unlock(&rq->lock); 135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 136 137 while (unlikely(task_on_rq_migrating(p))) 138 cpu_relax(); 139 } 140 } 141 142 /* 143 * RQ-clock updating methods: 144 */ 145 146 static void update_rq_clock_task(struct rq *rq, s64 delta) 147 { 148 /* 149 * In theory, the compile should just see 0 here, and optimize out the call 150 * to sched_rt_avg_update. But I don't trust it... 151 */ 152 s64 __maybe_unused steal = 0, irq_delta = 0; 153 154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 156 157 /* 158 * Since irq_time is only updated on {soft,}irq_exit, we might run into 159 * this case when a previous update_rq_clock() happened inside a 160 * {soft,}irq region. 161 * 162 * When this happens, we stop ->clock_task and only update the 163 * prev_irq_time stamp to account for the part that fit, so that a next 164 * update will consume the rest. This ensures ->clock_task is 165 * monotonic. 166 * 167 * It does however cause some slight miss-attribution of {soft,}irq 168 * time, a more accurate solution would be to update the irq_time using 169 * the current rq->clock timestamp, except that would require using 170 * atomic ops. 171 */ 172 if (irq_delta > delta) 173 irq_delta = delta; 174 175 rq->prev_irq_time += irq_delta; 176 delta -= irq_delta; 177 #endif 178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 179 if (static_key_false((¶virt_steal_rq_enabled))) { 180 steal = paravirt_steal_clock(cpu_of(rq)); 181 steal -= rq->prev_steal_time_rq; 182 183 if (unlikely(steal > delta)) 184 steal = delta; 185 186 rq->prev_steal_time_rq += steal; 187 delta -= steal; 188 } 189 #endif 190 191 rq->clock_task += delta; 192 193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 195 update_irq_load_avg(rq, irq_delta + steal); 196 #endif 197 update_rq_clock_pelt(rq, delta); 198 } 199 200 void update_rq_clock(struct rq *rq) 201 { 202 s64 delta; 203 204 lockdep_assert_held(&rq->lock); 205 206 if (rq->clock_update_flags & RQCF_ACT_SKIP) 207 return; 208 209 #ifdef CONFIG_SCHED_DEBUG 210 if (sched_feat(WARN_DOUBLE_CLOCK)) 211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 212 rq->clock_update_flags |= RQCF_UPDATED; 213 #endif 214 215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 216 if (delta < 0) 217 return; 218 rq->clock += delta; 219 update_rq_clock_task(rq, delta); 220 } 221 222 223 #ifdef CONFIG_SCHED_HRTICK 224 /* 225 * Use HR-timers to deliver accurate preemption points. 226 */ 227 228 static void hrtick_clear(struct rq *rq) 229 { 230 if (hrtimer_active(&rq->hrtick_timer)) 231 hrtimer_cancel(&rq->hrtick_timer); 232 } 233 234 /* 235 * High-resolution timer tick. 236 * Runs from hardirq context with interrupts disabled. 237 */ 238 static enum hrtimer_restart hrtick(struct hrtimer *timer) 239 { 240 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 241 struct rq_flags rf; 242 243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 244 245 rq_lock(rq, &rf); 246 update_rq_clock(rq); 247 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 248 rq_unlock(rq, &rf); 249 250 return HRTIMER_NORESTART; 251 } 252 253 #ifdef CONFIG_SMP 254 255 static void __hrtick_restart(struct rq *rq) 256 { 257 struct hrtimer *timer = &rq->hrtick_timer; 258 259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 260 } 261 262 /* 263 * called from hardirq (IPI) context 264 */ 265 static void __hrtick_start(void *arg) 266 { 267 struct rq *rq = arg; 268 struct rq_flags rf; 269 270 rq_lock(rq, &rf); 271 __hrtick_restart(rq); 272 rq_unlock(rq, &rf); 273 } 274 275 /* 276 * Called to set the hrtick timer state. 277 * 278 * called with rq->lock held and irqs disabled 279 */ 280 void hrtick_start(struct rq *rq, u64 delay) 281 { 282 struct hrtimer *timer = &rq->hrtick_timer; 283 ktime_t time; 284 s64 delta; 285 286 /* 287 * Don't schedule slices shorter than 10000ns, that just 288 * doesn't make sense and can cause timer DoS. 289 */ 290 delta = max_t(s64, delay, 10000LL); 291 time = ktime_add_ns(timer->base->get_time(), delta); 292 293 hrtimer_set_expires(timer, time); 294 295 if (rq == this_rq()) 296 __hrtick_restart(rq); 297 else 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 299 } 300 301 #else 302 /* 303 * Called to set the hrtick timer state. 304 * 305 * called with rq->lock held and irqs disabled 306 */ 307 void hrtick_start(struct rq *rq, u64 delay) 308 { 309 /* 310 * Don't schedule slices shorter than 10000ns, that just 311 * doesn't make sense. Rely on vruntime for fairness. 312 */ 313 delay = max_t(u64, delay, 10000LL); 314 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 315 HRTIMER_MODE_REL_PINNED_HARD); 316 } 317 #endif /* CONFIG_SMP */ 318 319 static void hrtick_rq_init(struct rq *rq) 320 { 321 #ifdef CONFIG_SMP 322 rq->hrtick_csd.flags = 0; 323 rq->hrtick_csd.func = __hrtick_start; 324 rq->hrtick_csd.info = rq; 325 #endif 326 327 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 328 rq->hrtick_timer.function = hrtick; 329 } 330 #else /* CONFIG_SCHED_HRTICK */ 331 static inline void hrtick_clear(struct rq *rq) 332 { 333 } 334 335 static inline void hrtick_rq_init(struct rq *rq) 336 { 337 } 338 #endif /* CONFIG_SCHED_HRTICK */ 339 340 /* 341 * cmpxchg based fetch_or, macro so it works for different integer types 342 */ 343 #define fetch_or(ptr, mask) \ 344 ({ \ 345 typeof(ptr) _ptr = (ptr); \ 346 typeof(mask) _mask = (mask); \ 347 typeof(*_ptr) _old, _val = *_ptr; \ 348 \ 349 for (;;) { \ 350 _old = cmpxchg(_ptr, _val, _val | _mask); \ 351 if (_old == _val) \ 352 break; \ 353 _val = _old; \ 354 } \ 355 _old; \ 356 }) 357 358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 359 /* 360 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 361 * this avoids any races wrt polling state changes and thereby avoids 362 * spurious IPIs. 363 */ 364 static bool set_nr_and_not_polling(struct task_struct *p) 365 { 366 struct thread_info *ti = task_thread_info(p); 367 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 368 } 369 370 /* 371 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 372 * 373 * If this returns true, then the idle task promises to call 374 * sched_ttwu_pending() and reschedule soon. 375 */ 376 static bool set_nr_if_polling(struct task_struct *p) 377 { 378 struct thread_info *ti = task_thread_info(p); 379 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 380 381 for (;;) { 382 if (!(val & _TIF_POLLING_NRFLAG)) 383 return false; 384 if (val & _TIF_NEED_RESCHED) 385 return true; 386 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 387 if (old == val) 388 break; 389 val = old; 390 } 391 return true; 392 } 393 394 #else 395 static bool set_nr_and_not_polling(struct task_struct *p) 396 { 397 set_tsk_need_resched(p); 398 return true; 399 } 400 401 #ifdef CONFIG_SMP 402 static bool set_nr_if_polling(struct task_struct *p) 403 { 404 return false; 405 } 406 #endif 407 #endif 408 409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 410 { 411 struct wake_q_node *node = &task->wake_q; 412 413 /* 414 * Atomically grab the task, if ->wake_q is !nil already it means 415 * its already queued (either by us or someone else) and will get the 416 * wakeup due to that. 417 * 418 * In order to ensure that a pending wakeup will observe our pending 419 * state, even in the failed case, an explicit smp_mb() must be used. 420 */ 421 smp_mb__before_atomic(); 422 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 423 return false; 424 425 /* 426 * The head is context local, there can be no concurrency. 427 */ 428 *head->lastp = node; 429 head->lastp = &node->next; 430 return true; 431 } 432 433 /** 434 * wake_q_add() - queue a wakeup for 'later' waking. 435 * @head: the wake_q_head to add @task to 436 * @task: the task to queue for 'later' wakeup 437 * 438 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 439 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 440 * instantly. 441 * 442 * This function must be used as-if it were wake_up_process(); IOW the task 443 * must be ready to be woken at this location. 444 */ 445 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 446 { 447 if (__wake_q_add(head, task)) 448 get_task_struct(task); 449 } 450 451 /** 452 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 453 * @head: the wake_q_head to add @task to 454 * @task: the task to queue for 'later' wakeup 455 * 456 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 457 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 458 * instantly. 459 * 460 * This function must be used as-if it were wake_up_process(); IOW the task 461 * must be ready to be woken at this location. 462 * 463 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 464 * that already hold reference to @task can call the 'safe' version and trust 465 * wake_q to do the right thing depending whether or not the @task is already 466 * queued for wakeup. 467 */ 468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 469 { 470 if (!__wake_q_add(head, task)) 471 put_task_struct(task); 472 } 473 474 void wake_up_q(struct wake_q_head *head) 475 { 476 struct wake_q_node *node = head->first; 477 478 while (node != WAKE_Q_TAIL) { 479 struct task_struct *task; 480 481 task = container_of(node, struct task_struct, wake_q); 482 BUG_ON(!task); 483 /* Task can safely be re-inserted now: */ 484 node = node->next; 485 task->wake_q.next = NULL; 486 487 /* 488 * wake_up_process() executes a full barrier, which pairs with 489 * the queueing in wake_q_add() so as not to miss wakeups. 490 */ 491 wake_up_process(task); 492 put_task_struct(task); 493 } 494 } 495 496 /* 497 * resched_curr - mark rq's current task 'to be rescheduled now'. 498 * 499 * On UP this means the setting of the need_resched flag, on SMP it 500 * might also involve a cross-CPU call to trigger the scheduler on 501 * the target CPU. 502 */ 503 void resched_curr(struct rq *rq) 504 { 505 struct task_struct *curr = rq->curr; 506 int cpu; 507 508 lockdep_assert_held(&rq->lock); 509 510 if (test_tsk_need_resched(curr)) 511 return; 512 513 cpu = cpu_of(rq); 514 515 if (cpu == smp_processor_id()) { 516 set_tsk_need_resched(curr); 517 set_preempt_need_resched(); 518 return; 519 } 520 521 if (set_nr_and_not_polling(curr)) 522 smp_send_reschedule(cpu); 523 else 524 trace_sched_wake_idle_without_ipi(cpu); 525 } 526 527 void resched_cpu(int cpu) 528 { 529 struct rq *rq = cpu_rq(cpu); 530 unsigned long flags; 531 532 raw_spin_lock_irqsave(&rq->lock, flags); 533 if (cpu_online(cpu) || cpu == smp_processor_id()) 534 resched_curr(rq); 535 raw_spin_unlock_irqrestore(&rq->lock, flags); 536 } 537 538 #ifdef CONFIG_SMP 539 #ifdef CONFIG_NO_HZ_COMMON 540 /* 541 * In the semi idle case, use the nearest busy CPU for migrating timers 542 * from an idle CPU. This is good for power-savings. 543 * 544 * We don't do similar optimization for completely idle system, as 545 * selecting an idle CPU will add more delays to the timers than intended 546 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 547 */ 548 int get_nohz_timer_target(void) 549 { 550 int i, cpu = smp_processor_id(), default_cpu = -1; 551 struct sched_domain *sd; 552 553 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 554 if (!idle_cpu(cpu)) 555 return cpu; 556 default_cpu = cpu; 557 } 558 559 rcu_read_lock(); 560 for_each_domain(cpu, sd) { 561 for_each_cpu_and(i, sched_domain_span(sd), 562 housekeeping_cpumask(HK_FLAG_TIMER)) { 563 if (cpu == i) 564 continue; 565 566 if (!idle_cpu(i)) { 567 cpu = i; 568 goto unlock; 569 } 570 } 571 } 572 573 if (default_cpu == -1) 574 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 575 cpu = default_cpu; 576 unlock: 577 rcu_read_unlock(); 578 return cpu; 579 } 580 581 /* 582 * When add_timer_on() enqueues a timer into the timer wheel of an 583 * idle CPU then this timer might expire before the next timer event 584 * which is scheduled to wake up that CPU. In case of a completely 585 * idle system the next event might even be infinite time into the 586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 587 * leaves the inner idle loop so the newly added timer is taken into 588 * account when the CPU goes back to idle and evaluates the timer 589 * wheel for the next timer event. 590 */ 591 static void wake_up_idle_cpu(int cpu) 592 { 593 struct rq *rq = cpu_rq(cpu); 594 595 if (cpu == smp_processor_id()) 596 return; 597 598 if (set_nr_and_not_polling(rq->idle)) 599 smp_send_reschedule(cpu); 600 else 601 trace_sched_wake_idle_without_ipi(cpu); 602 } 603 604 static bool wake_up_full_nohz_cpu(int cpu) 605 { 606 /* 607 * We just need the target to call irq_exit() and re-evaluate 608 * the next tick. The nohz full kick at least implies that. 609 * If needed we can still optimize that later with an 610 * empty IRQ. 611 */ 612 if (cpu_is_offline(cpu)) 613 return true; /* Don't try to wake offline CPUs. */ 614 if (tick_nohz_full_cpu(cpu)) { 615 if (cpu != smp_processor_id() || 616 tick_nohz_tick_stopped()) 617 tick_nohz_full_kick_cpu(cpu); 618 return true; 619 } 620 621 return false; 622 } 623 624 /* 625 * Wake up the specified CPU. If the CPU is going offline, it is the 626 * caller's responsibility to deal with the lost wakeup, for example, 627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 628 */ 629 void wake_up_nohz_cpu(int cpu) 630 { 631 if (!wake_up_full_nohz_cpu(cpu)) 632 wake_up_idle_cpu(cpu); 633 } 634 635 static inline bool got_nohz_idle_kick(void) 636 { 637 int cpu = smp_processor_id(); 638 639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 640 return false; 641 642 if (idle_cpu(cpu) && !need_resched()) 643 return true; 644 645 /* 646 * We can't run Idle Load Balance on this CPU for this time so we 647 * cancel it and clear NOHZ_BALANCE_KICK 648 */ 649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 650 return false; 651 } 652 653 #else /* CONFIG_NO_HZ_COMMON */ 654 655 static inline bool got_nohz_idle_kick(void) 656 { 657 return false; 658 } 659 660 #endif /* CONFIG_NO_HZ_COMMON */ 661 662 #ifdef CONFIG_NO_HZ_FULL 663 bool sched_can_stop_tick(struct rq *rq) 664 { 665 int fifo_nr_running; 666 667 /* Deadline tasks, even if single, need the tick */ 668 if (rq->dl.dl_nr_running) 669 return false; 670 671 /* 672 * If there are more than one RR tasks, we need the tick to effect the 673 * actual RR behaviour. 674 */ 675 if (rq->rt.rr_nr_running) { 676 if (rq->rt.rr_nr_running == 1) 677 return true; 678 else 679 return false; 680 } 681 682 /* 683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 684 * forced preemption between FIFO tasks. 685 */ 686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 687 if (fifo_nr_running) 688 return true; 689 690 /* 691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 692 * if there's more than one we need the tick for involuntary 693 * preemption. 694 */ 695 if (rq->nr_running > 1) 696 return false; 697 698 return true; 699 } 700 #endif /* CONFIG_NO_HZ_FULL */ 701 #endif /* CONFIG_SMP */ 702 703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 705 /* 706 * Iterate task_group tree rooted at *from, calling @down when first entering a 707 * node and @up when leaving it for the final time. 708 * 709 * Caller must hold rcu_lock or sufficient equivalent. 710 */ 711 int walk_tg_tree_from(struct task_group *from, 712 tg_visitor down, tg_visitor up, void *data) 713 { 714 struct task_group *parent, *child; 715 int ret; 716 717 parent = from; 718 719 down: 720 ret = (*down)(parent, data); 721 if (ret) 722 goto out; 723 list_for_each_entry_rcu(child, &parent->children, siblings) { 724 parent = child; 725 goto down; 726 727 up: 728 continue; 729 } 730 ret = (*up)(parent, data); 731 if (ret || parent == from) 732 goto out; 733 734 child = parent; 735 parent = parent->parent; 736 if (parent) 737 goto up; 738 out: 739 return ret; 740 } 741 742 int tg_nop(struct task_group *tg, void *data) 743 { 744 return 0; 745 } 746 #endif 747 748 static void set_load_weight(struct task_struct *p, bool update_load) 749 { 750 int prio = p->static_prio - MAX_RT_PRIO; 751 struct load_weight *load = &p->se.load; 752 753 /* 754 * SCHED_IDLE tasks get minimal weight: 755 */ 756 if (task_has_idle_policy(p)) { 757 load->weight = scale_load(WEIGHT_IDLEPRIO); 758 load->inv_weight = WMULT_IDLEPRIO; 759 return; 760 } 761 762 /* 763 * SCHED_OTHER tasks have to update their load when changing their 764 * weight 765 */ 766 if (update_load && p->sched_class == &fair_sched_class) { 767 reweight_task(p, prio); 768 } else { 769 load->weight = scale_load(sched_prio_to_weight[prio]); 770 load->inv_weight = sched_prio_to_wmult[prio]; 771 } 772 } 773 774 #ifdef CONFIG_UCLAMP_TASK 775 /* 776 * Serializes updates of utilization clamp values 777 * 778 * The (slow-path) user-space triggers utilization clamp value updates which 779 * can require updates on (fast-path) scheduler's data structures used to 780 * support enqueue/dequeue operations. 781 * While the per-CPU rq lock protects fast-path update operations, user-space 782 * requests are serialized using a mutex to reduce the risk of conflicting 783 * updates or API abuses. 784 */ 785 static DEFINE_MUTEX(uclamp_mutex); 786 787 /* Max allowed minimum utilization */ 788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 789 790 /* Max allowed maximum utilization */ 791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 792 793 /* All clamps are required to be less or equal than these values */ 794 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 795 796 /* Integer rounded range for each bucket */ 797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 798 799 #define for_each_clamp_id(clamp_id) \ 800 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 801 802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 803 { 804 return clamp_value / UCLAMP_BUCKET_DELTA; 805 } 806 807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 808 { 809 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 810 } 811 812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 813 { 814 if (clamp_id == UCLAMP_MIN) 815 return 0; 816 return SCHED_CAPACITY_SCALE; 817 } 818 819 static inline void uclamp_se_set(struct uclamp_se *uc_se, 820 unsigned int value, bool user_defined) 821 { 822 uc_se->value = value; 823 uc_se->bucket_id = uclamp_bucket_id(value); 824 uc_se->user_defined = user_defined; 825 } 826 827 static inline unsigned int 828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 829 unsigned int clamp_value) 830 { 831 /* 832 * Avoid blocked utilization pushing up the frequency when we go 833 * idle (which drops the max-clamp) by retaining the last known 834 * max-clamp. 835 */ 836 if (clamp_id == UCLAMP_MAX) { 837 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 838 return clamp_value; 839 } 840 841 return uclamp_none(UCLAMP_MIN); 842 } 843 844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 845 unsigned int clamp_value) 846 { 847 /* Reset max-clamp retention only on idle exit */ 848 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 849 return; 850 851 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 852 } 853 854 static inline 855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 856 unsigned int clamp_value) 857 { 858 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 859 int bucket_id = UCLAMP_BUCKETS - 1; 860 861 /* 862 * Since both min and max clamps are max aggregated, find the 863 * top most bucket with tasks in. 864 */ 865 for ( ; bucket_id >= 0; bucket_id--) { 866 if (!bucket[bucket_id].tasks) 867 continue; 868 return bucket[bucket_id].value; 869 } 870 871 /* No tasks -- default clamp values */ 872 return uclamp_idle_value(rq, clamp_id, clamp_value); 873 } 874 875 static inline struct uclamp_se 876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 877 { 878 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 879 #ifdef CONFIG_UCLAMP_TASK_GROUP 880 struct uclamp_se uc_max; 881 882 /* 883 * Tasks in autogroups or root task group will be 884 * restricted by system defaults. 885 */ 886 if (task_group_is_autogroup(task_group(p))) 887 return uc_req; 888 if (task_group(p) == &root_task_group) 889 return uc_req; 890 891 uc_max = task_group(p)->uclamp[clamp_id]; 892 if (uc_req.value > uc_max.value || !uc_req.user_defined) 893 return uc_max; 894 #endif 895 896 return uc_req; 897 } 898 899 /* 900 * The effective clamp bucket index of a task depends on, by increasing 901 * priority: 902 * - the task specific clamp value, when explicitly requested from userspace 903 * - the task group effective clamp value, for tasks not either in the root 904 * group or in an autogroup 905 * - the system default clamp value, defined by the sysadmin 906 */ 907 static inline struct uclamp_se 908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 909 { 910 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 911 struct uclamp_se uc_max = uclamp_default[clamp_id]; 912 913 /* System default restrictions always apply */ 914 if (unlikely(uc_req.value > uc_max.value)) 915 return uc_max; 916 917 return uc_req; 918 } 919 920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 921 { 922 struct uclamp_se uc_eff; 923 924 /* Task currently refcounted: use back-annotated (effective) value */ 925 if (p->uclamp[clamp_id].active) 926 return (unsigned long)p->uclamp[clamp_id].value; 927 928 uc_eff = uclamp_eff_get(p, clamp_id); 929 930 return (unsigned long)uc_eff.value; 931 } 932 933 /* 934 * When a task is enqueued on a rq, the clamp bucket currently defined by the 935 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 936 * updates the rq's clamp value if required. 937 * 938 * Tasks can have a task-specific value requested from user-space, track 939 * within each bucket the maximum value for tasks refcounted in it. 940 * This "local max aggregation" allows to track the exact "requested" value 941 * for each bucket when all its RUNNABLE tasks require the same clamp. 942 */ 943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 944 enum uclamp_id clamp_id) 945 { 946 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 947 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 948 struct uclamp_bucket *bucket; 949 950 lockdep_assert_held(&rq->lock); 951 952 /* Update task effective clamp */ 953 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 954 955 bucket = &uc_rq->bucket[uc_se->bucket_id]; 956 bucket->tasks++; 957 uc_se->active = true; 958 959 uclamp_idle_reset(rq, clamp_id, uc_se->value); 960 961 /* 962 * Local max aggregation: rq buckets always track the max 963 * "requested" clamp value of its RUNNABLE tasks. 964 */ 965 if (bucket->tasks == 1 || uc_se->value > bucket->value) 966 bucket->value = uc_se->value; 967 968 if (uc_se->value > READ_ONCE(uc_rq->value)) 969 WRITE_ONCE(uc_rq->value, uc_se->value); 970 } 971 972 /* 973 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 974 * is released. If this is the last task reference counting the rq's max 975 * active clamp value, then the rq's clamp value is updated. 976 * 977 * Both refcounted tasks and rq's cached clamp values are expected to be 978 * always valid. If it's detected they are not, as defensive programming, 979 * enforce the expected state and warn. 980 */ 981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 982 enum uclamp_id clamp_id) 983 { 984 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 985 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 986 struct uclamp_bucket *bucket; 987 unsigned int bkt_clamp; 988 unsigned int rq_clamp; 989 990 lockdep_assert_held(&rq->lock); 991 992 bucket = &uc_rq->bucket[uc_se->bucket_id]; 993 SCHED_WARN_ON(!bucket->tasks); 994 if (likely(bucket->tasks)) 995 bucket->tasks--; 996 uc_se->active = false; 997 998 /* 999 * Keep "local max aggregation" simple and accept to (possibly) 1000 * overboost some RUNNABLE tasks in the same bucket. 1001 * The rq clamp bucket value is reset to its base value whenever 1002 * there are no more RUNNABLE tasks refcounting it. 1003 */ 1004 if (likely(bucket->tasks)) 1005 return; 1006 1007 rq_clamp = READ_ONCE(uc_rq->value); 1008 /* 1009 * Defensive programming: this should never happen. If it happens, 1010 * e.g. due to future modification, warn and fixup the expected value. 1011 */ 1012 SCHED_WARN_ON(bucket->value > rq_clamp); 1013 if (bucket->value >= rq_clamp) { 1014 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1015 WRITE_ONCE(uc_rq->value, bkt_clamp); 1016 } 1017 } 1018 1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1020 { 1021 enum uclamp_id clamp_id; 1022 1023 if (unlikely(!p->sched_class->uclamp_enabled)) 1024 return; 1025 1026 for_each_clamp_id(clamp_id) 1027 uclamp_rq_inc_id(rq, p, clamp_id); 1028 1029 /* Reset clamp idle holding when there is one RUNNABLE task */ 1030 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1031 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1032 } 1033 1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1035 { 1036 enum uclamp_id clamp_id; 1037 1038 if (unlikely(!p->sched_class->uclamp_enabled)) 1039 return; 1040 1041 for_each_clamp_id(clamp_id) 1042 uclamp_rq_dec_id(rq, p, clamp_id); 1043 } 1044 1045 static inline void 1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1047 { 1048 struct rq_flags rf; 1049 struct rq *rq; 1050 1051 /* 1052 * Lock the task and the rq where the task is (or was) queued. 1053 * 1054 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1055 * price to pay to safely serialize util_{min,max} updates with 1056 * enqueues, dequeues and migration operations. 1057 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1058 */ 1059 rq = task_rq_lock(p, &rf); 1060 1061 /* 1062 * Setting the clamp bucket is serialized by task_rq_lock(). 1063 * If the task is not yet RUNNABLE and its task_struct is not 1064 * affecting a valid clamp bucket, the next time it's enqueued, 1065 * it will already see the updated clamp bucket value. 1066 */ 1067 if (p->uclamp[clamp_id].active) { 1068 uclamp_rq_dec_id(rq, p, clamp_id); 1069 uclamp_rq_inc_id(rq, p, clamp_id); 1070 } 1071 1072 task_rq_unlock(rq, p, &rf); 1073 } 1074 1075 #ifdef CONFIG_UCLAMP_TASK_GROUP 1076 static inline void 1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1078 unsigned int clamps) 1079 { 1080 enum uclamp_id clamp_id; 1081 struct css_task_iter it; 1082 struct task_struct *p; 1083 1084 css_task_iter_start(css, 0, &it); 1085 while ((p = css_task_iter_next(&it))) { 1086 for_each_clamp_id(clamp_id) { 1087 if ((0x1 << clamp_id) & clamps) 1088 uclamp_update_active(p, clamp_id); 1089 } 1090 } 1091 css_task_iter_end(&it); 1092 } 1093 1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1095 static void uclamp_update_root_tg(void) 1096 { 1097 struct task_group *tg = &root_task_group; 1098 1099 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1100 sysctl_sched_uclamp_util_min, false); 1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1102 sysctl_sched_uclamp_util_max, false); 1103 1104 rcu_read_lock(); 1105 cpu_util_update_eff(&root_task_group.css); 1106 rcu_read_unlock(); 1107 } 1108 #else 1109 static void uclamp_update_root_tg(void) { } 1110 #endif 1111 1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1113 void __user *buffer, size_t *lenp, 1114 loff_t *ppos) 1115 { 1116 bool update_root_tg = false; 1117 int old_min, old_max; 1118 int result; 1119 1120 mutex_lock(&uclamp_mutex); 1121 old_min = sysctl_sched_uclamp_util_min; 1122 old_max = sysctl_sched_uclamp_util_max; 1123 1124 result = proc_dointvec(table, write, buffer, lenp, ppos); 1125 if (result) 1126 goto undo; 1127 if (!write) 1128 goto done; 1129 1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1132 result = -EINVAL; 1133 goto undo; 1134 } 1135 1136 if (old_min != sysctl_sched_uclamp_util_min) { 1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1138 sysctl_sched_uclamp_util_min, false); 1139 update_root_tg = true; 1140 } 1141 if (old_max != sysctl_sched_uclamp_util_max) { 1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1143 sysctl_sched_uclamp_util_max, false); 1144 update_root_tg = true; 1145 } 1146 1147 if (update_root_tg) 1148 uclamp_update_root_tg(); 1149 1150 /* 1151 * We update all RUNNABLE tasks only when task groups are in use. 1152 * Otherwise, keep it simple and do just a lazy update at each next 1153 * task enqueue time. 1154 */ 1155 1156 goto done; 1157 1158 undo: 1159 sysctl_sched_uclamp_util_min = old_min; 1160 sysctl_sched_uclamp_util_max = old_max; 1161 done: 1162 mutex_unlock(&uclamp_mutex); 1163 1164 return result; 1165 } 1166 1167 static int uclamp_validate(struct task_struct *p, 1168 const struct sched_attr *attr) 1169 { 1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1172 1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1174 lower_bound = attr->sched_util_min; 1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1176 upper_bound = attr->sched_util_max; 1177 1178 if (lower_bound > upper_bound) 1179 return -EINVAL; 1180 if (upper_bound > SCHED_CAPACITY_SCALE) 1181 return -EINVAL; 1182 1183 return 0; 1184 } 1185 1186 static void __setscheduler_uclamp(struct task_struct *p, 1187 const struct sched_attr *attr) 1188 { 1189 enum uclamp_id clamp_id; 1190 1191 /* 1192 * On scheduling class change, reset to default clamps for tasks 1193 * without a task-specific value. 1194 */ 1195 for_each_clamp_id(clamp_id) { 1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1197 unsigned int clamp_value = uclamp_none(clamp_id); 1198 1199 /* Keep using defined clamps across class changes */ 1200 if (uc_se->user_defined) 1201 continue; 1202 1203 /* By default, RT tasks always get 100% boost */ 1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1205 clamp_value = uclamp_none(UCLAMP_MAX); 1206 1207 uclamp_se_set(uc_se, clamp_value, false); 1208 } 1209 1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1211 return; 1212 1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1215 attr->sched_util_min, true); 1216 } 1217 1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1220 attr->sched_util_max, true); 1221 } 1222 } 1223 1224 static void uclamp_fork(struct task_struct *p) 1225 { 1226 enum uclamp_id clamp_id; 1227 1228 for_each_clamp_id(clamp_id) 1229 p->uclamp[clamp_id].active = false; 1230 1231 if (likely(!p->sched_reset_on_fork)) 1232 return; 1233 1234 for_each_clamp_id(clamp_id) { 1235 unsigned int clamp_value = uclamp_none(clamp_id); 1236 1237 /* By default, RT tasks always get 100% boost */ 1238 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1239 clamp_value = uclamp_none(UCLAMP_MAX); 1240 1241 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false); 1242 } 1243 } 1244 1245 static void __init init_uclamp(void) 1246 { 1247 struct uclamp_se uc_max = {}; 1248 enum uclamp_id clamp_id; 1249 int cpu; 1250 1251 mutex_init(&uclamp_mutex); 1252 1253 for_each_possible_cpu(cpu) { 1254 memset(&cpu_rq(cpu)->uclamp, 0, 1255 sizeof(struct uclamp_rq)*UCLAMP_CNT); 1256 cpu_rq(cpu)->uclamp_flags = 0; 1257 } 1258 1259 for_each_clamp_id(clamp_id) { 1260 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1261 uclamp_none(clamp_id), false); 1262 } 1263 1264 /* System defaults allow max clamp values for both indexes */ 1265 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1266 for_each_clamp_id(clamp_id) { 1267 uclamp_default[clamp_id] = uc_max; 1268 #ifdef CONFIG_UCLAMP_TASK_GROUP 1269 root_task_group.uclamp_req[clamp_id] = uc_max; 1270 root_task_group.uclamp[clamp_id] = uc_max; 1271 #endif 1272 } 1273 } 1274 1275 #else /* CONFIG_UCLAMP_TASK */ 1276 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1277 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1278 static inline int uclamp_validate(struct task_struct *p, 1279 const struct sched_attr *attr) 1280 { 1281 return -EOPNOTSUPP; 1282 } 1283 static void __setscheduler_uclamp(struct task_struct *p, 1284 const struct sched_attr *attr) { } 1285 static inline void uclamp_fork(struct task_struct *p) { } 1286 static inline void init_uclamp(void) { } 1287 #endif /* CONFIG_UCLAMP_TASK */ 1288 1289 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1290 { 1291 if (!(flags & ENQUEUE_NOCLOCK)) 1292 update_rq_clock(rq); 1293 1294 if (!(flags & ENQUEUE_RESTORE)) { 1295 sched_info_queued(rq, p); 1296 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1297 } 1298 1299 uclamp_rq_inc(rq, p); 1300 p->sched_class->enqueue_task(rq, p, flags); 1301 } 1302 1303 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1304 { 1305 if (!(flags & DEQUEUE_NOCLOCK)) 1306 update_rq_clock(rq); 1307 1308 if (!(flags & DEQUEUE_SAVE)) { 1309 sched_info_dequeued(rq, p); 1310 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1311 } 1312 1313 uclamp_rq_dec(rq, p); 1314 p->sched_class->dequeue_task(rq, p, flags); 1315 } 1316 1317 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1318 { 1319 if (task_contributes_to_load(p)) 1320 rq->nr_uninterruptible--; 1321 1322 enqueue_task(rq, p, flags); 1323 1324 p->on_rq = TASK_ON_RQ_QUEUED; 1325 } 1326 1327 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1328 { 1329 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1330 1331 if (task_contributes_to_load(p)) 1332 rq->nr_uninterruptible++; 1333 1334 dequeue_task(rq, p, flags); 1335 } 1336 1337 /* 1338 * __normal_prio - return the priority that is based on the static prio 1339 */ 1340 static inline int __normal_prio(struct task_struct *p) 1341 { 1342 return p->static_prio; 1343 } 1344 1345 /* 1346 * Calculate the expected normal priority: i.e. priority 1347 * without taking RT-inheritance into account. Might be 1348 * boosted by interactivity modifiers. Changes upon fork, 1349 * setprio syscalls, and whenever the interactivity 1350 * estimator recalculates. 1351 */ 1352 static inline int normal_prio(struct task_struct *p) 1353 { 1354 int prio; 1355 1356 if (task_has_dl_policy(p)) 1357 prio = MAX_DL_PRIO-1; 1358 else if (task_has_rt_policy(p)) 1359 prio = MAX_RT_PRIO-1 - p->rt_priority; 1360 else 1361 prio = __normal_prio(p); 1362 return prio; 1363 } 1364 1365 /* 1366 * Calculate the current priority, i.e. the priority 1367 * taken into account by the scheduler. This value might 1368 * be boosted by RT tasks, or might be boosted by 1369 * interactivity modifiers. Will be RT if the task got 1370 * RT-boosted. If not then it returns p->normal_prio. 1371 */ 1372 static int effective_prio(struct task_struct *p) 1373 { 1374 p->normal_prio = normal_prio(p); 1375 /* 1376 * If we are RT tasks or we were boosted to RT priority, 1377 * keep the priority unchanged. Otherwise, update priority 1378 * to the normal priority: 1379 */ 1380 if (!rt_prio(p->prio)) 1381 return p->normal_prio; 1382 return p->prio; 1383 } 1384 1385 /** 1386 * task_curr - is this task currently executing on a CPU? 1387 * @p: the task in question. 1388 * 1389 * Return: 1 if the task is currently executing. 0 otherwise. 1390 */ 1391 inline int task_curr(const struct task_struct *p) 1392 { 1393 return cpu_curr(task_cpu(p)) == p; 1394 } 1395 1396 /* 1397 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1398 * use the balance_callback list if you want balancing. 1399 * 1400 * this means any call to check_class_changed() must be followed by a call to 1401 * balance_callback(). 1402 */ 1403 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1404 const struct sched_class *prev_class, 1405 int oldprio) 1406 { 1407 if (prev_class != p->sched_class) { 1408 if (prev_class->switched_from) 1409 prev_class->switched_from(rq, p); 1410 1411 p->sched_class->switched_to(rq, p); 1412 } else if (oldprio != p->prio || dl_task(p)) 1413 p->sched_class->prio_changed(rq, p, oldprio); 1414 } 1415 1416 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1417 { 1418 const struct sched_class *class; 1419 1420 if (p->sched_class == rq->curr->sched_class) { 1421 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1422 } else { 1423 for_each_class(class) { 1424 if (class == rq->curr->sched_class) 1425 break; 1426 if (class == p->sched_class) { 1427 resched_curr(rq); 1428 break; 1429 } 1430 } 1431 } 1432 1433 /* 1434 * A queue event has occurred, and we're going to schedule. In 1435 * this case, we can save a useless back to back clock update. 1436 */ 1437 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1438 rq_clock_skip_update(rq); 1439 } 1440 1441 #ifdef CONFIG_SMP 1442 1443 /* 1444 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1445 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1446 */ 1447 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1448 { 1449 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1450 return false; 1451 1452 if (is_per_cpu_kthread(p)) 1453 return cpu_online(cpu); 1454 1455 return cpu_active(cpu); 1456 } 1457 1458 /* 1459 * This is how migration works: 1460 * 1461 * 1) we invoke migration_cpu_stop() on the target CPU using 1462 * stop_one_cpu(). 1463 * 2) stopper starts to run (implicitly forcing the migrated thread 1464 * off the CPU) 1465 * 3) it checks whether the migrated task is still in the wrong runqueue. 1466 * 4) if it's in the wrong runqueue then the migration thread removes 1467 * it and puts it into the right queue. 1468 * 5) stopper completes and stop_one_cpu() returns and the migration 1469 * is done. 1470 */ 1471 1472 /* 1473 * move_queued_task - move a queued task to new rq. 1474 * 1475 * Returns (locked) new rq. Old rq's lock is released. 1476 */ 1477 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1478 struct task_struct *p, int new_cpu) 1479 { 1480 lockdep_assert_held(&rq->lock); 1481 1482 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1483 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1484 set_task_cpu(p, new_cpu); 1485 rq_unlock(rq, rf); 1486 1487 rq = cpu_rq(new_cpu); 1488 1489 rq_lock(rq, rf); 1490 BUG_ON(task_cpu(p) != new_cpu); 1491 enqueue_task(rq, p, 0); 1492 p->on_rq = TASK_ON_RQ_QUEUED; 1493 check_preempt_curr(rq, p, 0); 1494 1495 return rq; 1496 } 1497 1498 struct migration_arg { 1499 struct task_struct *task; 1500 int dest_cpu; 1501 }; 1502 1503 /* 1504 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1505 * this because either it can't run here any more (set_cpus_allowed() 1506 * away from this CPU, or CPU going down), or because we're 1507 * attempting to rebalance this task on exec (sched_exec). 1508 * 1509 * So we race with normal scheduler movements, but that's OK, as long 1510 * as the task is no longer on this CPU. 1511 */ 1512 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1513 struct task_struct *p, int dest_cpu) 1514 { 1515 /* Affinity changed (again). */ 1516 if (!is_cpu_allowed(p, dest_cpu)) 1517 return rq; 1518 1519 update_rq_clock(rq); 1520 rq = move_queued_task(rq, rf, p, dest_cpu); 1521 1522 return rq; 1523 } 1524 1525 /* 1526 * migration_cpu_stop - this will be executed by a highprio stopper thread 1527 * and performs thread migration by bumping thread off CPU then 1528 * 'pushing' onto another runqueue. 1529 */ 1530 static int migration_cpu_stop(void *data) 1531 { 1532 struct migration_arg *arg = data; 1533 struct task_struct *p = arg->task; 1534 struct rq *rq = this_rq(); 1535 struct rq_flags rf; 1536 1537 /* 1538 * The original target CPU might have gone down and we might 1539 * be on another CPU but it doesn't matter. 1540 */ 1541 local_irq_disable(); 1542 /* 1543 * We need to explicitly wake pending tasks before running 1544 * __migrate_task() such that we will not miss enforcing cpus_ptr 1545 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1546 */ 1547 sched_ttwu_pending(); 1548 1549 raw_spin_lock(&p->pi_lock); 1550 rq_lock(rq, &rf); 1551 /* 1552 * If task_rq(p) != rq, it cannot be migrated here, because we're 1553 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1554 * we're holding p->pi_lock. 1555 */ 1556 if (task_rq(p) == rq) { 1557 if (task_on_rq_queued(p)) 1558 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1559 else 1560 p->wake_cpu = arg->dest_cpu; 1561 } 1562 rq_unlock(rq, &rf); 1563 raw_spin_unlock(&p->pi_lock); 1564 1565 local_irq_enable(); 1566 return 0; 1567 } 1568 1569 /* 1570 * sched_class::set_cpus_allowed must do the below, but is not required to 1571 * actually call this function. 1572 */ 1573 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1574 { 1575 cpumask_copy(&p->cpus_mask, new_mask); 1576 p->nr_cpus_allowed = cpumask_weight(new_mask); 1577 } 1578 1579 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1580 { 1581 struct rq *rq = task_rq(p); 1582 bool queued, running; 1583 1584 lockdep_assert_held(&p->pi_lock); 1585 1586 queued = task_on_rq_queued(p); 1587 running = task_current(rq, p); 1588 1589 if (queued) { 1590 /* 1591 * Because __kthread_bind() calls this on blocked tasks without 1592 * holding rq->lock. 1593 */ 1594 lockdep_assert_held(&rq->lock); 1595 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1596 } 1597 if (running) 1598 put_prev_task(rq, p); 1599 1600 p->sched_class->set_cpus_allowed(p, new_mask); 1601 1602 if (queued) 1603 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1604 if (running) 1605 set_next_task(rq, p); 1606 } 1607 1608 /* 1609 * Change a given task's CPU affinity. Migrate the thread to a 1610 * proper CPU and schedule it away if the CPU it's executing on 1611 * is removed from the allowed bitmask. 1612 * 1613 * NOTE: the caller must have a valid reference to the task, the 1614 * task must not exit() & deallocate itself prematurely. The 1615 * call is not atomic; no spinlocks may be held. 1616 */ 1617 static int __set_cpus_allowed_ptr(struct task_struct *p, 1618 const struct cpumask *new_mask, bool check) 1619 { 1620 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1621 unsigned int dest_cpu; 1622 struct rq_flags rf; 1623 struct rq *rq; 1624 int ret = 0; 1625 1626 rq = task_rq_lock(p, &rf); 1627 update_rq_clock(rq); 1628 1629 if (p->flags & PF_KTHREAD) { 1630 /* 1631 * Kernel threads are allowed on online && !active CPUs 1632 */ 1633 cpu_valid_mask = cpu_online_mask; 1634 } 1635 1636 /* 1637 * Must re-check here, to close a race against __kthread_bind(), 1638 * sched_setaffinity() is not guaranteed to observe the flag. 1639 */ 1640 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1641 ret = -EINVAL; 1642 goto out; 1643 } 1644 1645 if (cpumask_equal(p->cpus_ptr, new_mask)) 1646 goto out; 1647 1648 /* 1649 * Picking a ~random cpu helps in cases where we are changing affinity 1650 * for groups of tasks (ie. cpuset), so that load balancing is not 1651 * immediately required to distribute the tasks within their new mask. 1652 */ 1653 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 1654 if (dest_cpu >= nr_cpu_ids) { 1655 ret = -EINVAL; 1656 goto out; 1657 } 1658 1659 do_set_cpus_allowed(p, new_mask); 1660 1661 if (p->flags & PF_KTHREAD) { 1662 /* 1663 * For kernel threads that do indeed end up on online && 1664 * !active we want to ensure they are strict per-CPU threads. 1665 */ 1666 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1667 !cpumask_intersects(new_mask, cpu_active_mask) && 1668 p->nr_cpus_allowed != 1); 1669 } 1670 1671 /* Can the task run on the task's current CPU? If so, we're done */ 1672 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1673 goto out; 1674 1675 if (task_running(rq, p) || p->state == TASK_WAKING) { 1676 struct migration_arg arg = { p, dest_cpu }; 1677 /* Need help from migration thread: drop lock and wait. */ 1678 task_rq_unlock(rq, p, &rf); 1679 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1680 return 0; 1681 } else if (task_on_rq_queued(p)) { 1682 /* 1683 * OK, since we're going to drop the lock immediately 1684 * afterwards anyway. 1685 */ 1686 rq = move_queued_task(rq, &rf, p, dest_cpu); 1687 } 1688 out: 1689 task_rq_unlock(rq, p, &rf); 1690 1691 return ret; 1692 } 1693 1694 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1695 { 1696 return __set_cpus_allowed_ptr(p, new_mask, false); 1697 } 1698 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1699 1700 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1701 { 1702 #ifdef CONFIG_SCHED_DEBUG 1703 /* 1704 * We should never call set_task_cpu() on a blocked task, 1705 * ttwu() will sort out the placement. 1706 */ 1707 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1708 !p->on_rq); 1709 1710 /* 1711 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1712 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1713 * time relying on p->on_rq. 1714 */ 1715 WARN_ON_ONCE(p->state == TASK_RUNNING && 1716 p->sched_class == &fair_sched_class && 1717 (p->on_rq && !task_on_rq_migrating(p))); 1718 1719 #ifdef CONFIG_LOCKDEP 1720 /* 1721 * The caller should hold either p->pi_lock or rq->lock, when changing 1722 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1723 * 1724 * sched_move_task() holds both and thus holding either pins the cgroup, 1725 * see task_group(). 1726 * 1727 * Furthermore, all task_rq users should acquire both locks, see 1728 * task_rq_lock(). 1729 */ 1730 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1731 lockdep_is_held(&task_rq(p)->lock))); 1732 #endif 1733 /* 1734 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1735 */ 1736 WARN_ON_ONCE(!cpu_online(new_cpu)); 1737 #endif 1738 1739 trace_sched_migrate_task(p, new_cpu); 1740 1741 if (task_cpu(p) != new_cpu) { 1742 if (p->sched_class->migrate_task_rq) 1743 p->sched_class->migrate_task_rq(p, new_cpu); 1744 p->se.nr_migrations++; 1745 rseq_migrate(p); 1746 perf_event_task_migrate(p); 1747 } 1748 1749 __set_task_cpu(p, new_cpu); 1750 } 1751 1752 #ifdef CONFIG_NUMA_BALANCING 1753 static void __migrate_swap_task(struct task_struct *p, int cpu) 1754 { 1755 if (task_on_rq_queued(p)) { 1756 struct rq *src_rq, *dst_rq; 1757 struct rq_flags srf, drf; 1758 1759 src_rq = task_rq(p); 1760 dst_rq = cpu_rq(cpu); 1761 1762 rq_pin_lock(src_rq, &srf); 1763 rq_pin_lock(dst_rq, &drf); 1764 1765 deactivate_task(src_rq, p, 0); 1766 set_task_cpu(p, cpu); 1767 activate_task(dst_rq, p, 0); 1768 check_preempt_curr(dst_rq, p, 0); 1769 1770 rq_unpin_lock(dst_rq, &drf); 1771 rq_unpin_lock(src_rq, &srf); 1772 1773 } else { 1774 /* 1775 * Task isn't running anymore; make it appear like we migrated 1776 * it before it went to sleep. This means on wakeup we make the 1777 * previous CPU our target instead of where it really is. 1778 */ 1779 p->wake_cpu = cpu; 1780 } 1781 } 1782 1783 struct migration_swap_arg { 1784 struct task_struct *src_task, *dst_task; 1785 int src_cpu, dst_cpu; 1786 }; 1787 1788 static int migrate_swap_stop(void *data) 1789 { 1790 struct migration_swap_arg *arg = data; 1791 struct rq *src_rq, *dst_rq; 1792 int ret = -EAGAIN; 1793 1794 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1795 return -EAGAIN; 1796 1797 src_rq = cpu_rq(arg->src_cpu); 1798 dst_rq = cpu_rq(arg->dst_cpu); 1799 1800 double_raw_lock(&arg->src_task->pi_lock, 1801 &arg->dst_task->pi_lock); 1802 double_rq_lock(src_rq, dst_rq); 1803 1804 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1805 goto unlock; 1806 1807 if (task_cpu(arg->src_task) != arg->src_cpu) 1808 goto unlock; 1809 1810 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1811 goto unlock; 1812 1813 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1814 goto unlock; 1815 1816 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1817 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1818 1819 ret = 0; 1820 1821 unlock: 1822 double_rq_unlock(src_rq, dst_rq); 1823 raw_spin_unlock(&arg->dst_task->pi_lock); 1824 raw_spin_unlock(&arg->src_task->pi_lock); 1825 1826 return ret; 1827 } 1828 1829 /* 1830 * Cross migrate two tasks 1831 */ 1832 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1833 int target_cpu, int curr_cpu) 1834 { 1835 struct migration_swap_arg arg; 1836 int ret = -EINVAL; 1837 1838 arg = (struct migration_swap_arg){ 1839 .src_task = cur, 1840 .src_cpu = curr_cpu, 1841 .dst_task = p, 1842 .dst_cpu = target_cpu, 1843 }; 1844 1845 if (arg.src_cpu == arg.dst_cpu) 1846 goto out; 1847 1848 /* 1849 * These three tests are all lockless; this is OK since all of them 1850 * will be re-checked with proper locks held further down the line. 1851 */ 1852 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1853 goto out; 1854 1855 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1856 goto out; 1857 1858 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1859 goto out; 1860 1861 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1862 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1863 1864 out: 1865 return ret; 1866 } 1867 #endif /* CONFIG_NUMA_BALANCING */ 1868 1869 /* 1870 * wait_task_inactive - wait for a thread to unschedule. 1871 * 1872 * If @match_state is nonzero, it's the @p->state value just checked and 1873 * not expected to change. If it changes, i.e. @p might have woken up, 1874 * then return zero. When we succeed in waiting for @p to be off its CPU, 1875 * we return a positive number (its total switch count). If a second call 1876 * a short while later returns the same number, the caller can be sure that 1877 * @p has remained unscheduled the whole time. 1878 * 1879 * The caller must ensure that the task *will* unschedule sometime soon, 1880 * else this function might spin for a *long* time. This function can't 1881 * be called with interrupts off, or it may introduce deadlock with 1882 * smp_call_function() if an IPI is sent by the same process we are 1883 * waiting to become inactive. 1884 */ 1885 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1886 { 1887 int running, queued; 1888 struct rq_flags rf; 1889 unsigned long ncsw; 1890 struct rq *rq; 1891 1892 for (;;) { 1893 /* 1894 * We do the initial early heuristics without holding 1895 * any task-queue locks at all. We'll only try to get 1896 * the runqueue lock when things look like they will 1897 * work out! 1898 */ 1899 rq = task_rq(p); 1900 1901 /* 1902 * If the task is actively running on another CPU 1903 * still, just relax and busy-wait without holding 1904 * any locks. 1905 * 1906 * NOTE! Since we don't hold any locks, it's not 1907 * even sure that "rq" stays as the right runqueue! 1908 * But we don't care, since "task_running()" will 1909 * return false if the runqueue has changed and p 1910 * is actually now running somewhere else! 1911 */ 1912 while (task_running(rq, p)) { 1913 if (match_state && unlikely(p->state != match_state)) 1914 return 0; 1915 cpu_relax(); 1916 } 1917 1918 /* 1919 * Ok, time to look more closely! We need the rq 1920 * lock now, to be *sure*. If we're wrong, we'll 1921 * just go back and repeat. 1922 */ 1923 rq = task_rq_lock(p, &rf); 1924 trace_sched_wait_task(p); 1925 running = task_running(rq, p); 1926 queued = task_on_rq_queued(p); 1927 ncsw = 0; 1928 if (!match_state || p->state == match_state) 1929 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1930 task_rq_unlock(rq, p, &rf); 1931 1932 /* 1933 * If it changed from the expected state, bail out now. 1934 */ 1935 if (unlikely(!ncsw)) 1936 break; 1937 1938 /* 1939 * Was it really running after all now that we 1940 * checked with the proper locks actually held? 1941 * 1942 * Oops. Go back and try again.. 1943 */ 1944 if (unlikely(running)) { 1945 cpu_relax(); 1946 continue; 1947 } 1948 1949 /* 1950 * It's not enough that it's not actively running, 1951 * it must be off the runqueue _entirely_, and not 1952 * preempted! 1953 * 1954 * So if it was still runnable (but just not actively 1955 * running right now), it's preempted, and we should 1956 * yield - it could be a while. 1957 */ 1958 if (unlikely(queued)) { 1959 ktime_t to = NSEC_PER_SEC / HZ; 1960 1961 set_current_state(TASK_UNINTERRUPTIBLE); 1962 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1963 continue; 1964 } 1965 1966 /* 1967 * Ahh, all good. It wasn't running, and it wasn't 1968 * runnable, which means that it will never become 1969 * running in the future either. We're all done! 1970 */ 1971 break; 1972 } 1973 1974 return ncsw; 1975 } 1976 1977 /*** 1978 * kick_process - kick a running thread to enter/exit the kernel 1979 * @p: the to-be-kicked thread 1980 * 1981 * Cause a process which is running on another CPU to enter 1982 * kernel-mode, without any delay. (to get signals handled.) 1983 * 1984 * NOTE: this function doesn't have to take the runqueue lock, 1985 * because all it wants to ensure is that the remote task enters 1986 * the kernel. If the IPI races and the task has been migrated 1987 * to another CPU then no harm is done and the purpose has been 1988 * achieved as well. 1989 */ 1990 void kick_process(struct task_struct *p) 1991 { 1992 int cpu; 1993 1994 preempt_disable(); 1995 cpu = task_cpu(p); 1996 if ((cpu != smp_processor_id()) && task_curr(p)) 1997 smp_send_reschedule(cpu); 1998 preempt_enable(); 1999 } 2000 EXPORT_SYMBOL_GPL(kick_process); 2001 2002 /* 2003 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2004 * 2005 * A few notes on cpu_active vs cpu_online: 2006 * 2007 * - cpu_active must be a subset of cpu_online 2008 * 2009 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2010 * see __set_cpus_allowed_ptr(). At this point the newly online 2011 * CPU isn't yet part of the sched domains, and balancing will not 2012 * see it. 2013 * 2014 * - on CPU-down we clear cpu_active() to mask the sched domains and 2015 * avoid the load balancer to place new tasks on the to be removed 2016 * CPU. Existing tasks will remain running there and will be taken 2017 * off. 2018 * 2019 * This means that fallback selection must not select !active CPUs. 2020 * And can assume that any active CPU must be online. Conversely 2021 * select_task_rq() below may allow selection of !active CPUs in order 2022 * to satisfy the above rules. 2023 */ 2024 static int select_fallback_rq(int cpu, struct task_struct *p) 2025 { 2026 int nid = cpu_to_node(cpu); 2027 const struct cpumask *nodemask = NULL; 2028 enum { cpuset, possible, fail } state = cpuset; 2029 int dest_cpu; 2030 2031 /* 2032 * If the node that the CPU is on has been offlined, cpu_to_node() 2033 * will return -1. There is no CPU on the node, and we should 2034 * select the CPU on the other node. 2035 */ 2036 if (nid != -1) { 2037 nodemask = cpumask_of_node(nid); 2038 2039 /* Look for allowed, online CPU in same node. */ 2040 for_each_cpu(dest_cpu, nodemask) { 2041 if (!cpu_active(dest_cpu)) 2042 continue; 2043 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2044 return dest_cpu; 2045 } 2046 } 2047 2048 for (;;) { 2049 /* Any allowed, online CPU? */ 2050 for_each_cpu(dest_cpu, p->cpus_ptr) { 2051 if (!is_cpu_allowed(p, dest_cpu)) 2052 continue; 2053 2054 goto out; 2055 } 2056 2057 /* No more Mr. Nice Guy. */ 2058 switch (state) { 2059 case cpuset: 2060 if (IS_ENABLED(CONFIG_CPUSETS)) { 2061 cpuset_cpus_allowed_fallback(p); 2062 state = possible; 2063 break; 2064 } 2065 /* Fall-through */ 2066 case possible: 2067 do_set_cpus_allowed(p, cpu_possible_mask); 2068 state = fail; 2069 break; 2070 2071 case fail: 2072 BUG(); 2073 break; 2074 } 2075 } 2076 2077 out: 2078 if (state != cpuset) { 2079 /* 2080 * Don't tell them about moving exiting tasks or 2081 * kernel threads (both mm NULL), since they never 2082 * leave kernel. 2083 */ 2084 if (p->mm && printk_ratelimit()) { 2085 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2086 task_pid_nr(p), p->comm, cpu); 2087 } 2088 } 2089 2090 return dest_cpu; 2091 } 2092 2093 /* 2094 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2095 */ 2096 static inline 2097 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2098 { 2099 lockdep_assert_held(&p->pi_lock); 2100 2101 if (p->nr_cpus_allowed > 1) 2102 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2103 else 2104 cpu = cpumask_any(p->cpus_ptr); 2105 2106 /* 2107 * In order not to call set_task_cpu() on a blocking task we need 2108 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2109 * CPU. 2110 * 2111 * Since this is common to all placement strategies, this lives here. 2112 * 2113 * [ this allows ->select_task() to simply return task_cpu(p) and 2114 * not worry about this generic constraint ] 2115 */ 2116 if (unlikely(!is_cpu_allowed(p, cpu))) 2117 cpu = select_fallback_rq(task_cpu(p), p); 2118 2119 return cpu; 2120 } 2121 2122 static void update_avg(u64 *avg, u64 sample) 2123 { 2124 s64 diff = sample - *avg; 2125 *avg += diff >> 3; 2126 } 2127 2128 void sched_set_stop_task(int cpu, struct task_struct *stop) 2129 { 2130 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2131 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2132 2133 if (stop) { 2134 /* 2135 * Make it appear like a SCHED_FIFO task, its something 2136 * userspace knows about and won't get confused about. 2137 * 2138 * Also, it will make PI more or less work without too 2139 * much confusion -- but then, stop work should not 2140 * rely on PI working anyway. 2141 */ 2142 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2143 2144 stop->sched_class = &stop_sched_class; 2145 } 2146 2147 cpu_rq(cpu)->stop = stop; 2148 2149 if (old_stop) { 2150 /* 2151 * Reset it back to a normal scheduling class so that 2152 * it can die in pieces. 2153 */ 2154 old_stop->sched_class = &rt_sched_class; 2155 } 2156 } 2157 2158 #else 2159 2160 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2161 const struct cpumask *new_mask, bool check) 2162 { 2163 return set_cpus_allowed_ptr(p, new_mask); 2164 } 2165 2166 #endif /* CONFIG_SMP */ 2167 2168 static void 2169 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2170 { 2171 struct rq *rq; 2172 2173 if (!schedstat_enabled()) 2174 return; 2175 2176 rq = this_rq(); 2177 2178 #ifdef CONFIG_SMP 2179 if (cpu == rq->cpu) { 2180 __schedstat_inc(rq->ttwu_local); 2181 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2182 } else { 2183 struct sched_domain *sd; 2184 2185 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2186 rcu_read_lock(); 2187 for_each_domain(rq->cpu, sd) { 2188 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2189 __schedstat_inc(sd->ttwu_wake_remote); 2190 break; 2191 } 2192 } 2193 rcu_read_unlock(); 2194 } 2195 2196 if (wake_flags & WF_MIGRATED) 2197 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2198 #endif /* CONFIG_SMP */ 2199 2200 __schedstat_inc(rq->ttwu_count); 2201 __schedstat_inc(p->se.statistics.nr_wakeups); 2202 2203 if (wake_flags & WF_SYNC) 2204 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2205 } 2206 2207 /* 2208 * Mark the task runnable and perform wakeup-preemption. 2209 */ 2210 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2211 struct rq_flags *rf) 2212 { 2213 check_preempt_curr(rq, p, wake_flags); 2214 p->state = TASK_RUNNING; 2215 trace_sched_wakeup(p); 2216 2217 #ifdef CONFIG_SMP 2218 if (p->sched_class->task_woken) { 2219 /* 2220 * Our task @p is fully woken up and running; so its safe to 2221 * drop the rq->lock, hereafter rq is only used for statistics. 2222 */ 2223 rq_unpin_lock(rq, rf); 2224 p->sched_class->task_woken(rq, p); 2225 rq_repin_lock(rq, rf); 2226 } 2227 2228 if (rq->idle_stamp) { 2229 u64 delta = rq_clock(rq) - rq->idle_stamp; 2230 u64 max = 2*rq->max_idle_balance_cost; 2231 2232 update_avg(&rq->avg_idle, delta); 2233 2234 if (rq->avg_idle > max) 2235 rq->avg_idle = max; 2236 2237 rq->idle_stamp = 0; 2238 } 2239 #endif 2240 } 2241 2242 static void 2243 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2244 struct rq_flags *rf) 2245 { 2246 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2247 2248 lockdep_assert_held(&rq->lock); 2249 2250 #ifdef CONFIG_SMP 2251 if (p->sched_contributes_to_load) 2252 rq->nr_uninterruptible--; 2253 2254 if (wake_flags & WF_MIGRATED) 2255 en_flags |= ENQUEUE_MIGRATED; 2256 #endif 2257 2258 activate_task(rq, p, en_flags); 2259 ttwu_do_wakeup(rq, p, wake_flags, rf); 2260 } 2261 2262 /* 2263 * Called in case the task @p isn't fully descheduled from its runqueue, 2264 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2265 * since all we need to do is flip p->state to TASK_RUNNING, since 2266 * the task is still ->on_rq. 2267 */ 2268 static int ttwu_remote(struct task_struct *p, int wake_flags) 2269 { 2270 struct rq_flags rf; 2271 struct rq *rq; 2272 int ret = 0; 2273 2274 rq = __task_rq_lock(p, &rf); 2275 if (task_on_rq_queued(p)) { 2276 /* check_preempt_curr() may use rq clock */ 2277 update_rq_clock(rq); 2278 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2279 ret = 1; 2280 } 2281 __task_rq_unlock(rq, &rf); 2282 2283 return ret; 2284 } 2285 2286 #ifdef CONFIG_SMP 2287 void sched_ttwu_pending(void) 2288 { 2289 struct rq *rq = this_rq(); 2290 struct llist_node *llist = llist_del_all(&rq->wake_list); 2291 struct task_struct *p, *t; 2292 struct rq_flags rf; 2293 2294 if (!llist) 2295 return; 2296 2297 rq_lock_irqsave(rq, &rf); 2298 update_rq_clock(rq); 2299 2300 llist_for_each_entry_safe(p, t, llist, wake_entry) 2301 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2302 2303 rq_unlock_irqrestore(rq, &rf); 2304 } 2305 2306 void scheduler_ipi(void) 2307 { 2308 /* 2309 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 2310 * TIF_NEED_RESCHED remotely (for the first time) will also send 2311 * this IPI. 2312 */ 2313 preempt_fold_need_resched(); 2314 2315 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 2316 return; 2317 2318 /* 2319 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 2320 * traditionally all their work was done from the interrupt return 2321 * path. Now that we actually do some work, we need to make sure 2322 * we do call them. 2323 * 2324 * Some archs already do call them, luckily irq_enter/exit nest 2325 * properly. 2326 * 2327 * Arguably we should visit all archs and update all handlers, 2328 * however a fair share of IPIs are still resched only so this would 2329 * somewhat pessimize the simple resched case. 2330 */ 2331 irq_enter(); 2332 sched_ttwu_pending(); 2333 2334 /* 2335 * Check if someone kicked us for doing the nohz idle load balance. 2336 */ 2337 if (unlikely(got_nohz_idle_kick())) { 2338 this_rq()->idle_balance = 1; 2339 raise_softirq_irqoff(SCHED_SOFTIRQ); 2340 } 2341 irq_exit(); 2342 } 2343 2344 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 2345 { 2346 struct rq *rq = cpu_rq(cpu); 2347 2348 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2349 2350 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 2351 if (!set_nr_if_polling(rq->idle)) 2352 smp_send_reschedule(cpu); 2353 else 2354 trace_sched_wake_idle_without_ipi(cpu); 2355 } 2356 } 2357 2358 void wake_up_if_idle(int cpu) 2359 { 2360 struct rq *rq = cpu_rq(cpu); 2361 struct rq_flags rf; 2362 2363 rcu_read_lock(); 2364 2365 if (!is_idle_task(rcu_dereference(rq->curr))) 2366 goto out; 2367 2368 if (set_nr_if_polling(rq->idle)) { 2369 trace_sched_wake_idle_without_ipi(cpu); 2370 } else { 2371 rq_lock_irqsave(rq, &rf); 2372 if (is_idle_task(rq->curr)) 2373 smp_send_reschedule(cpu); 2374 /* Else CPU is not idle, do nothing here: */ 2375 rq_unlock_irqrestore(rq, &rf); 2376 } 2377 2378 out: 2379 rcu_read_unlock(); 2380 } 2381 2382 bool cpus_share_cache(int this_cpu, int that_cpu) 2383 { 2384 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2385 } 2386 #endif /* CONFIG_SMP */ 2387 2388 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2389 { 2390 struct rq *rq = cpu_rq(cpu); 2391 struct rq_flags rf; 2392 2393 #if defined(CONFIG_SMP) 2394 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 2395 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2396 ttwu_queue_remote(p, cpu, wake_flags); 2397 return; 2398 } 2399 #endif 2400 2401 rq_lock(rq, &rf); 2402 update_rq_clock(rq); 2403 ttwu_do_activate(rq, p, wake_flags, &rf); 2404 rq_unlock(rq, &rf); 2405 } 2406 2407 /* 2408 * Notes on Program-Order guarantees on SMP systems. 2409 * 2410 * MIGRATION 2411 * 2412 * The basic program-order guarantee on SMP systems is that when a task [t] 2413 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2414 * execution on its new CPU [c1]. 2415 * 2416 * For migration (of runnable tasks) this is provided by the following means: 2417 * 2418 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2419 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2420 * rq(c1)->lock (if not at the same time, then in that order). 2421 * C) LOCK of the rq(c1)->lock scheduling in task 2422 * 2423 * Release/acquire chaining guarantees that B happens after A and C after B. 2424 * Note: the CPU doing B need not be c0 or c1 2425 * 2426 * Example: 2427 * 2428 * CPU0 CPU1 CPU2 2429 * 2430 * LOCK rq(0)->lock 2431 * sched-out X 2432 * sched-in Y 2433 * UNLOCK rq(0)->lock 2434 * 2435 * LOCK rq(0)->lock // orders against CPU0 2436 * dequeue X 2437 * UNLOCK rq(0)->lock 2438 * 2439 * LOCK rq(1)->lock 2440 * enqueue X 2441 * UNLOCK rq(1)->lock 2442 * 2443 * LOCK rq(1)->lock // orders against CPU2 2444 * sched-out Z 2445 * sched-in X 2446 * UNLOCK rq(1)->lock 2447 * 2448 * 2449 * BLOCKING -- aka. SLEEP + WAKEUP 2450 * 2451 * For blocking we (obviously) need to provide the same guarantee as for 2452 * migration. However the means are completely different as there is no lock 2453 * chain to provide order. Instead we do: 2454 * 2455 * 1) smp_store_release(X->on_cpu, 0) 2456 * 2) smp_cond_load_acquire(!X->on_cpu) 2457 * 2458 * Example: 2459 * 2460 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2461 * 2462 * LOCK rq(0)->lock LOCK X->pi_lock 2463 * dequeue X 2464 * sched-out X 2465 * smp_store_release(X->on_cpu, 0); 2466 * 2467 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2468 * X->state = WAKING 2469 * set_task_cpu(X,2) 2470 * 2471 * LOCK rq(2)->lock 2472 * enqueue X 2473 * X->state = RUNNING 2474 * UNLOCK rq(2)->lock 2475 * 2476 * LOCK rq(2)->lock // orders against CPU1 2477 * sched-out Z 2478 * sched-in X 2479 * UNLOCK rq(2)->lock 2480 * 2481 * UNLOCK X->pi_lock 2482 * UNLOCK rq(0)->lock 2483 * 2484 * 2485 * However, for wakeups there is a second guarantee we must provide, namely we 2486 * must ensure that CONDITION=1 done by the caller can not be reordered with 2487 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2488 */ 2489 2490 /** 2491 * try_to_wake_up - wake up a thread 2492 * @p: the thread to be awakened 2493 * @state: the mask of task states that can be woken 2494 * @wake_flags: wake modifier flags (WF_*) 2495 * 2496 * If (@state & @p->state) @p->state = TASK_RUNNING. 2497 * 2498 * If the task was not queued/runnable, also place it back on a runqueue. 2499 * 2500 * Atomic against schedule() which would dequeue a task, also see 2501 * set_current_state(). 2502 * 2503 * This function executes a full memory barrier before accessing the task 2504 * state; see set_current_state(). 2505 * 2506 * Return: %true if @p->state changes (an actual wakeup was done), 2507 * %false otherwise. 2508 */ 2509 static int 2510 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2511 { 2512 unsigned long flags; 2513 int cpu, success = 0; 2514 2515 preempt_disable(); 2516 if (p == current) { 2517 /* 2518 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2519 * == smp_processor_id()'. Together this means we can special 2520 * case the whole 'p->on_rq && ttwu_remote()' case below 2521 * without taking any locks. 2522 * 2523 * In particular: 2524 * - we rely on Program-Order guarantees for all the ordering, 2525 * - we're serialized against set_special_state() by virtue of 2526 * it disabling IRQs (this allows not taking ->pi_lock). 2527 */ 2528 if (!(p->state & state)) 2529 goto out; 2530 2531 success = 1; 2532 cpu = task_cpu(p); 2533 trace_sched_waking(p); 2534 p->state = TASK_RUNNING; 2535 trace_sched_wakeup(p); 2536 goto out; 2537 } 2538 2539 /* 2540 * If we are going to wake up a thread waiting for CONDITION we 2541 * need to ensure that CONDITION=1 done by the caller can not be 2542 * reordered with p->state check below. This pairs with mb() in 2543 * set_current_state() the waiting thread does. 2544 */ 2545 raw_spin_lock_irqsave(&p->pi_lock, flags); 2546 smp_mb__after_spinlock(); 2547 if (!(p->state & state)) 2548 goto unlock; 2549 2550 trace_sched_waking(p); 2551 2552 /* We're going to change ->state: */ 2553 success = 1; 2554 cpu = task_cpu(p); 2555 2556 /* 2557 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2558 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2559 * in smp_cond_load_acquire() below. 2560 * 2561 * sched_ttwu_pending() try_to_wake_up() 2562 * STORE p->on_rq = 1 LOAD p->state 2563 * UNLOCK rq->lock 2564 * 2565 * __schedule() (switch to task 'p') 2566 * LOCK rq->lock smp_rmb(); 2567 * smp_mb__after_spinlock(); 2568 * UNLOCK rq->lock 2569 * 2570 * [task p] 2571 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2572 * 2573 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2574 * __schedule(). See the comment for smp_mb__after_spinlock(). 2575 */ 2576 smp_rmb(); 2577 if (p->on_rq && ttwu_remote(p, wake_flags)) 2578 goto unlock; 2579 2580 #ifdef CONFIG_SMP 2581 /* 2582 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2583 * possible to, falsely, observe p->on_cpu == 0. 2584 * 2585 * One must be running (->on_cpu == 1) in order to remove oneself 2586 * from the runqueue. 2587 * 2588 * __schedule() (switch to task 'p') try_to_wake_up() 2589 * STORE p->on_cpu = 1 LOAD p->on_rq 2590 * UNLOCK rq->lock 2591 * 2592 * __schedule() (put 'p' to sleep) 2593 * LOCK rq->lock smp_rmb(); 2594 * smp_mb__after_spinlock(); 2595 * STORE p->on_rq = 0 LOAD p->on_cpu 2596 * 2597 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2598 * __schedule(). See the comment for smp_mb__after_spinlock(). 2599 */ 2600 smp_rmb(); 2601 2602 /* 2603 * If the owning (remote) CPU is still in the middle of schedule() with 2604 * this task as prev, wait until its done referencing the task. 2605 * 2606 * Pairs with the smp_store_release() in finish_task(). 2607 * 2608 * This ensures that tasks getting woken will be fully ordered against 2609 * their previous state and preserve Program Order. 2610 */ 2611 smp_cond_load_acquire(&p->on_cpu, !VAL); 2612 2613 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2614 p->state = TASK_WAKING; 2615 2616 if (p->in_iowait) { 2617 delayacct_blkio_end(p); 2618 atomic_dec(&task_rq(p)->nr_iowait); 2619 } 2620 2621 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2622 if (task_cpu(p) != cpu) { 2623 wake_flags |= WF_MIGRATED; 2624 psi_ttwu_dequeue(p); 2625 set_task_cpu(p, cpu); 2626 } 2627 2628 #else /* CONFIG_SMP */ 2629 2630 if (p->in_iowait) { 2631 delayacct_blkio_end(p); 2632 atomic_dec(&task_rq(p)->nr_iowait); 2633 } 2634 2635 #endif /* CONFIG_SMP */ 2636 2637 ttwu_queue(p, cpu, wake_flags); 2638 unlock: 2639 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2640 out: 2641 if (success) 2642 ttwu_stat(p, cpu, wake_flags); 2643 preempt_enable(); 2644 2645 return success; 2646 } 2647 2648 /** 2649 * wake_up_process - Wake up a specific process 2650 * @p: The process to be woken up. 2651 * 2652 * Attempt to wake up the nominated process and move it to the set of runnable 2653 * processes. 2654 * 2655 * Return: 1 if the process was woken up, 0 if it was already running. 2656 * 2657 * This function executes a full memory barrier before accessing the task state. 2658 */ 2659 int wake_up_process(struct task_struct *p) 2660 { 2661 return try_to_wake_up(p, TASK_NORMAL, 0); 2662 } 2663 EXPORT_SYMBOL(wake_up_process); 2664 2665 int wake_up_state(struct task_struct *p, unsigned int state) 2666 { 2667 return try_to_wake_up(p, state, 0); 2668 } 2669 2670 /* 2671 * Perform scheduler related setup for a newly forked process p. 2672 * p is forked by current. 2673 * 2674 * __sched_fork() is basic setup used by init_idle() too: 2675 */ 2676 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2677 { 2678 p->on_rq = 0; 2679 2680 p->se.on_rq = 0; 2681 p->se.exec_start = 0; 2682 p->se.sum_exec_runtime = 0; 2683 p->se.prev_sum_exec_runtime = 0; 2684 p->se.nr_migrations = 0; 2685 p->se.vruntime = 0; 2686 INIT_LIST_HEAD(&p->se.group_node); 2687 2688 #ifdef CONFIG_FAIR_GROUP_SCHED 2689 p->se.cfs_rq = NULL; 2690 #endif 2691 2692 #ifdef CONFIG_SCHEDSTATS 2693 /* Even if schedstat is disabled, there should not be garbage */ 2694 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2695 #endif 2696 2697 RB_CLEAR_NODE(&p->dl.rb_node); 2698 init_dl_task_timer(&p->dl); 2699 init_dl_inactive_task_timer(&p->dl); 2700 __dl_clear_params(p); 2701 2702 INIT_LIST_HEAD(&p->rt.run_list); 2703 p->rt.timeout = 0; 2704 p->rt.time_slice = sched_rr_timeslice; 2705 p->rt.on_rq = 0; 2706 p->rt.on_list = 0; 2707 2708 #ifdef CONFIG_PREEMPT_NOTIFIERS 2709 INIT_HLIST_HEAD(&p->preempt_notifiers); 2710 #endif 2711 2712 #ifdef CONFIG_COMPACTION 2713 p->capture_control = NULL; 2714 #endif 2715 init_numa_balancing(clone_flags, p); 2716 } 2717 2718 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2719 2720 #ifdef CONFIG_NUMA_BALANCING 2721 2722 void set_numabalancing_state(bool enabled) 2723 { 2724 if (enabled) 2725 static_branch_enable(&sched_numa_balancing); 2726 else 2727 static_branch_disable(&sched_numa_balancing); 2728 } 2729 2730 #ifdef CONFIG_PROC_SYSCTL 2731 int sysctl_numa_balancing(struct ctl_table *table, int write, 2732 void __user *buffer, size_t *lenp, loff_t *ppos) 2733 { 2734 struct ctl_table t; 2735 int err; 2736 int state = static_branch_likely(&sched_numa_balancing); 2737 2738 if (write && !capable(CAP_SYS_ADMIN)) 2739 return -EPERM; 2740 2741 t = *table; 2742 t.data = &state; 2743 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2744 if (err < 0) 2745 return err; 2746 if (write) 2747 set_numabalancing_state(state); 2748 return err; 2749 } 2750 #endif 2751 #endif 2752 2753 #ifdef CONFIG_SCHEDSTATS 2754 2755 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2756 static bool __initdata __sched_schedstats = false; 2757 2758 static void set_schedstats(bool enabled) 2759 { 2760 if (enabled) 2761 static_branch_enable(&sched_schedstats); 2762 else 2763 static_branch_disable(&sched_schedstats); 2764 } 2765 2766 void force_schedstat_enabled(void) 2767 { 2768 if (!schedstat_enabled()) { 2769 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2770 static_branch_enable(&sched_schedstats); 2771 } 2772 } 2773 2774 static int __init setup_schedstats(char *str) 2775 { 2776 int ret = 0; 2777 if (!str) 2778 goto out; 2779 2780 /* 2781 * This code is called before jump labels have been set up, so we can't 2782 * change the static branch directly just yet. Instead set a temporary 2783 * variable so init_schedstats() can do it later. 2784 */ 2785 if (!strcmp(str, "enable")) { 2786 __sched_schedstats = true; 2787 ret = 1; 2788 } else if (!strcmp(str, "disable")) { 2789 __sched_schedstats = false; 2790 ret = 1; 2791 } 2792 out: 2793 if (!ret) 2794 pr_warn("Unable to parse schedstats=\n"); 2795 2796 return ret; 2797 } 2798 __setup("schedstats=", setup_schedstats); 2799 2800 static void __init init_schedstats(void) 2801 { 2802 set_schedstats(__sched_schedstats); 2803 } 2804 2805 #ifdef CONFIG_PROC_SYSCTL 2806 int sysctl_schedstats(struct ctl_table *table, int write, 2807 void __user *buffer, size_t *lenp, loff_t *ppos) 2808 { 2809 struct ctl_table t; 2810 int err; 2811 int state = static_branch_likely(&sched_schedstats); 2812 2813 if (write && !capable(CAP_SYS_ADMIN)) 2814 return -EPERM; 2815 2816 t = *table; 2817 t.data = &state; 2818 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2819 if (err < 0) 2820 return err; 2821 if (write) 2822 set_schedstats(state); 2823 return err; 2824 } 2825 #endif /* CONFIG_PROC_SYSCTL */ 2826 #else /* !CONFIG_SCHEDSTATS */ 2827 static inline void init_schedstats(void) {} 2828 #endif /* CONFIG_SCHEDSTATS */ 2829 2830 /* 2831 * fork()/clone()-time setup: 2832 */ 2833 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2834 { 2835 unsigned long flags; 2836 2837 __sched_fork(clone_flags, p); 2838 /* 2839 * We mark the process as NEW here. This guarantees that 2840 * nobody will actually run it, and a signal or other external 2841 * event cannot wake it up and insert it on the runqueue either. 2842 */ 2843 p->state = TASK_NEW; 2844 2845 /* 2846 * Make sure we do not leak PI boosting priority to the child. 2847 */ 2848 p->prio = current->normal_prio; 2849 2850 uclamp_fork(p); 2851 2852 /* 2853 * Revert to default priority/policy on fork if requested. 2854 */ 2855 if (unlikely(p->sched_reset_on_fork)) { 2856 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2857 p->policy = SCHED_NORMAL; 2858 p->static_prio = NICE_TO_PRIO(0); 2859 p->rt_priority = 0; 2860 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2861 p->static_prio = NICE_TO_PRIO(0); 2862 2863 p->prio = p->normal_prio = __normal_prio(p); 2864 set_load_weight(p, false); 2865 2866 /* 2867 * We don't need the reset flag anymore after the fork. It has 2868 * fulfilled its duty: 2869 */ 2870 p->sched_reset_on_fork = 0; 2871 } 2872 2873 if (dl_prio(p->prio)) 2874 return -EAGAIN; 2875 else if (rt_prio(p->prio)) 2876 p->sched_class = &rt_sched_class; 2877 else 2878 p->sched_class = &fair_sched_class; 2879 2880 init_entity_runnable_average(&p->se); 2881 2882 /* 2883 * The child is not yet in the pid-hash so no cgroup attach races, 2884 * and the cgroup is pinned to this child due to cgroup_fork() 2885 * is ran before sched_fork(). 2886 * 2887 * Silence PROVE_RCU. 2888 */ 2889 raw_spin_lock_irqsave(&p->pi_lock, flags); 2890 /* 2891 * We're setting the CPU for the first time, we don't migrate, 2892 * so use __set_task_cpu(). 2893 */ 2894 __set_task_cpu(p, smp_processor_id()); 2895 if (p->sched_class->task_fork) 2896 p->sched_class->task_fork(p); 2897 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2898 2899 #ifdef CONFIG_SCHED_INFO 2900 if (likely(sched_info_on())) 2901 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2902 #endif 2903 #if defined(CONFIG_SMP) 2904 p->on_cpu = 0; 2905 #endif 2906 init_task_preempt_count(p); 2907 #ifdef CONFIG_SMP 2908 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2909 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2910 #endif 2911 return 0; 2912 } 2913 2914 unsigned long to_ratio(u64 period, u64 runtime) 2915 { 2916 if (runtime == RUNTIME_INF) 2917 return BW_UNIT; 2918 2919 /* 2920 * Doing this here saves a lot of checks in all 2921 * the calling paths, and returning zero seems 2922 * safe for them anyway. 2923 */ 2924 if (period == 0) 2925 return 0; 2926 2927 return div64_u64(runtime << BW_SHIFT, period); 2928 } 2929 2930 /* 2931 * wake_up_new_task - wake up a newly created task for the first time. 2932 * 2933 * This function will do some initial scheduler statistics housekeeping 2934 * that must be done for every newly created context, then puts the task 2935 * on the runqueue and wakes it. 2936 */ 2937 void wake_up_new_task(struct task_struct *p) 2938 { 2939 struct rq_flags rf; 2940 struct rq *rq; 2941 2942 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2943 p->state = TASK_RUNNING; 2944 #ifdef CONFIG_SMP 2945 /* 2946 * Fork balancing, do it here and not earlier because: 2947 * - cpus_ptr can change in the fork path 2948 * - any previously selected CPU might disappear through hotplug 2949 * 2950 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2951 * as we're not fully set-up yet. 2952 */ 2953 p->recent_used_cpu = task_cpu(p); 2954 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2955 #endif 2956 rq = __task_rq_lock(p, &rf); 2957 update_rq_clock(rq); 2958 post_init_entity_util_avg(p); 2959 2960 activate_task(rq, p, ENQUEUE_NOCLOCK); 2961 trace_sched_wakeup_new(p); 2962 check_preempt_curr(rq, p, WF_FORK); 2963 #ifdef CONFIG_SMP 2964 if (p->sched_class->task_woken) { 2965 /* 2966 * Nothing relies on rq->lock after this, so its fine to 2967 * drop it. 2968 */ 2969 rq_unpin_lock(rq, &rf); 2970 p->sched_class->task_woken(rq, p); 2971 rq_repin_lock(rq, &rf); 2972 } 2973 #endif 2974 task_rq_unlock(rq, p, &rf); 2975 } 2976 2977 #ifdef CONFIG_PREEMPT_NOTIFIERS 2978 2979 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2980 2981 void preempt_notifier_inc(void) 2982 { 2983 static_branch_inc(&preempt_notifier_key); 2984 } 2985 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2986 2987 void preempt_notifier_dec(void) 2988 { 2989 static_branch_dec(&preempt_notifier_key); 2990 } 2991 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2992 2993 /** 2994 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2995 * @notifier: notifier struct to register 2996 */ 2997 void preempt_notifier_register(struct preempt_notifier *notifier) 2998 { 2999 if (!static_branch_unlikely(&preempt_notifier_key)) 3000 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3001 3002 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3003 } 3004 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3005 3006 /** 3007 * preempt_notifier_unregister - no longer interested in preemption notifications 3008 * @notifier: notifier struct to unregister 3009 * 3010 * This is *not* safe to call from within a preemption notifier. 3011 */ 3012 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3013 { 3014 hlist_del(¬ifier->link); 3015 } 3016 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3017 3018 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3019 { 3020 struct preempt_notifier *notifier; 3021 3022 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3023 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3024 } 3025 3026 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3027 { 3028 if (static_branch_unlikely(&preempt_notifier_key)) 3029 __fire_sched_in_preempt_notifiers(curr); 3030 } 3031 3032 static void 3033 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3034 struct task_struct *next) 3035 { 3036 struct preempt_notifier *notifier; 3037 3038 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3039 notifier->ops->sched_out(notifier, next); 3040 } 3041 3042 static __always_inline void 3043 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3044 struct task_struct *next) 3045 { 3046 if (static_branch_unlikely(&preempt_notifier_key)) 3047 __fire_sched_out_preempt_notifiers(curr, next); 3048 } 3049 3050 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3051 3052 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3053 { 3054 } 3055 3056 static inline void 3057 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3058 struct task_struct *next) 3059 { 3060 } 3061 3062 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3063 3064 static inline void prepare_task(struct task_struct *next) 3065 { 3066 #ifdef CONFIG_SMP 3067 /* 3068 * Claim the task as running, we do this before switching to it 3069 * such that any running task will have this set. 3070 */ 3071 next->on_cpu = 1; 3072 #endif 3073 } 3074 3075 static inline void finish_task(struct task_struct *prev) 3076 { 3077 #ifdef CONFIG_SMP 3078 /* 3079 * After ->on_cpu is cleared, the task can be moved to a different CPU. 3080 * We must ensure this doesn't happen until the switch is completely 3081 * finished. 3082 * 3083 * In particular, the load of prev->state in finish_task_switch() must 3084 * happen before this. 3085 * 3086 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3087 */ 3088 smp_store_release(&prev->on_cpu, 0); 3089 #endif 3090 } 3091 3092 static inline void 3093 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3094 { 3095 /* 3096 * Since the runqueue lock will be released by the next 3097 * task (which is an invalid locking op but in the case 3098 * of the scheduler it's an obvious special-case), so we 3099 * do an early lockdep release here: 3100 */ 3101 rq_unpin_lock(rq, rf); 3102 spin_release(&rq->lock.dep_map, _THIS_IP_); 3103 #ifdef CONFIG_DEBUG_SPINLOCK 3104 /* this is a valid case when another task releases the spinlock */ 3105 rq->lock.owner = next; 3106 #endif 3107 } 3108 3109 static inline void finish_lock_switch(struct rq *rq) 3110 { 3111 /* 3112 * If we are tracking spinlock dependencies then we have to 3113 * fix up the runqueue lock - which gets 'carried over' from 3114 * prev into current: 3115 */ 3116 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3117 raw_spin_unlock_irq(&rq->lock); 3118 } 3119 3120 /* 3121 * NOP if the arch has not defined these: 3122 */ 3123 3124 #ifndef prepare_arch_switch 3125 # define prepare_arch_switch(next) do { } while (0) 3126 #endif 3127 3128 #ifndef finish_arch_post_lock_switch 3129 # define finish_arch_post_lock_switch() do { } while (0) 3130 #endif 3131 3132 /** 3133 * prepare_task_switch - prepare to switch tasks 3134 * @rq: the runqueue preparing to switch 3135 * @prev: the current task that is being switched out 3136 * @next: the task we are going to switch to. 3137 * 3138 * This is called with the rq lock held and interrupts off. It must 3139 * be paired with a subsequent finish_task_switch after the context 3140 * switch. 3141 * 3142 * prepare_task_switch sets up locking and calls architecture specific 3143 * hooks. 3144 */ 3145 static inline void 3146 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3147 struct task_struct *next) 3148 { 3149 kcov_prepare_switch(prev); 3150 sched_info_switch(rq, prev, next); 3151 perf_event_task_sched_out(prev, next); 3152 rseq_preempt(prev); 3153 fire_sched_out_preempt_notifiers(prev, next); 3154 prepare_task(next); 3155 prepare_arch_switch(next); 3156 } 3157 3158 /** 3159 * finish_task_switch - clean up after a task-switch 3160 * @prev: the thread we just switched away from. 3161 * 3162 * finish_task_switch must be called after the context switch, paired 3163 * with a prepare_task_switch call before the context switch. 3164 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3165 * and do any other architecture-specific cleanup actions. 3166 * 3167 * Note that we may have delayed dropping an mm in context_switch(). If 3168 * so, we finish that here outside of the runqueue lock. (Doing it 3169 * with the lock held can cause deadlocks; see schedule() for 3170 * details.) 3171 * 3172 * The context switch have flipped the stack from under us and restored the 3173 * local variables which were saved when this task called schedule() in the 3174 * past. prev == current is still correct but we need to recalculate this_rq 3175 * because prev may have moved to another CPU. 3176 */ 3177 static struct rq *finish_task_switch(struct task_struct *prev) 3178 __releases(rq->lock) 3179 { 3180 struct rq *rq = this_rq(); 3181 struct mm_struct *mm = rq->prev_mm; 3182 long prev_state; 3183 3184 /* 3185 * The previous task will have left us with a preempt_count of 2 3186 * because it left us after: 3187 * 3188 * schedule() 3189 * preempt_disable(); // 1 3190 * __schedule() 3191 * raw_spin_lock_irq(&rq->lock) // 2 3192 * 3193 * Also, see FORK_PREEMPT_COUNT. 3194 */ 3195 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3196 "corrupted preempt_count: %s/%d/0x%x\n", 3197 current->comm, current->pid, preempt_count())) 3198 preempt_count_set(FORK_PREEMPT_COUNT); 3199 3200 rq->prev_mm = NULL; 3201 3202 /* 3203 * A task struct has one reference for the use as "current". 3204 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3205 * schedule one last time. The schedule call will never return, and 3206 * the scheduled task must drop that reference. 3207 * 3208 * We must observe prev->state before clearing prev->on_cpu (in 3209 * finish_task), otherwise a concurrent wakeup can get prev 3210 * running on another CPU and we could rave with its RUNNING -> DEAD 3211 * transition, resulting in a double drop. 3212 */ 3213 prev_state = prev->state; 3214 vtime_task_switch(prev); 3215 perf_event_task_sched_in(prev, current); 3216 finish_task(prev); 3217 finish_lock_switch(rq); 3218 finish_arch_post_lock_switch(); 3219 kcov_finish_switch(current); 3220 3221 fire_sched_in_preempt_notifiers(current); 3222 /* 3223 * When switching through a kernel thread, the loop in 3224 * membarrier_{private,global}_expedited() may have observed that 3225 * kernel thread and not issued an IPI. It is therefore possible to 3226 * schedule between user->kernel->user threads without passing though 3227 * switch_mm(). Membarrier requires a barrier after storing to 3228 * rq->curr, before returning to userspace, so provide them here: 3229 * 3230 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3231 * provided by mmdrop(), 3232 * - a sync_core for SYNC_CORE. 3233 */ 3234 if (mm) { 3235 membarrier_mm_sync_core_before_usermode(mm); 3236 mmdrop(mm); 3237 } 3238 if (unlikely(prev_state == TASK_DEAD)) { 3239 if (prev->sched_class->task_dead) 3240 prev->sched_class->task_dead(prev); 3241 3242 /* 3243 * Remove function-return probe instances associated with this 3244 * task and put them back on the free list. 3245 */ 3246 kprobe_flush_task(prev); 3247 3248 /* Task is done with its stack. */ 3249 put_task_stack(prev); 3250 3251 put_task_struct_rcu_user(prev); 3252 } 3253 3254 tick_nohz_task_switch(); 3255 return rq; 3256 } 3257 3258 #ifdef CONFIG_SMP 3259 3260 /* rq->lock is NOT held, but preemption is disabled */ 3261 static void __balance_callback(struct rq *rq) 3262 { 3263 struct callback_head *head, *next; 3264 void (*func)(struct rq *rq); 3265 unsigned long flags; 3266 3267 raw_spin_lock_irqsave(&rq->lock, flags); 3268 head = rq->balance_callback; 3269 rq->balance_callback = NULL; 3270 while (head) { 3271 func = (void (*)(struct rq *))head->func; 3272 next = head->next; 3273 head->next = NULL; 3274 head = next; 3275 3276 func(rq); 3277 } 3278 raw_spin_unlock_irqrestore(&rq->lock, flags); 3279 } 3280 3281 static inline void balance_callback(struct rq *rq) 3282 { 3283 if (unlikely(rq->balance_callback)) 3284 __balance_callback(rq); 3285 } 3286 3287 #else 3288 3289 static inline void balance_callback(struct rq *rq) 3290 { 3291 } 3292 3293 #endif 3294 3295 /** 3296 * schedule_tail - first thing a freshly forked thread must call. 3297 * @prev: the thread we just switched away from. 3298 */ 3299 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3300 __releases(rq->lock) 3301 { 3302 struct rq *rq; 3303 3304 /* 3305 * New tasks start with FORK_PREEMPT_COUNT, see there and 3306 * finish_task_switch() for details. 3307 * 3308 * finish_task_switch() will drop rq->lock() and lower preempt_count 3309 * and the preempt_enable() will end up enabling preemption (on 3310 * PREEMPT_COUNT kernels). 3311 */ 3312 3313 rq = finish_task_switch(prev); 3314 balance_callback(rq); 3315 preempt_enable(); 3316 3317 if (current->set_child_tid) 3318 put_user(task_pid_vnr(current), current->set_child_tid); 3319 3320 calculate_sigpending(); 3321 } 3322 3323 /* 3324 * context_switch - switch to the new MM and the new thread's register state. 3325 */ 3326 static __always_inline struct rq * 3327 context_switch(struct rq *rq, struct task_struct *prev, 3328 struct task_struct *next, struct rq_flags *rf) 3329 { 3330 prepare_task_switch(rq, prev, next); 3331 3332 /* 3333 * For paravirt, this is coupled with an exit in switch_to to 3334 * combine the page table reload and the switch backend into 3335 * one hypercall. 3336 */ 3337 arch_start_context_switch(prev); 3338 3339 /* 3340 * kernel -> kernel lazy + transfer active 3341 * user -> kernel lazy + mmgrab() active 3342 * 3343 * kernel -> user switch + mmdrop() active 3344 * user -> user switch 3345 */ 3346 if (!next->mm) { // to kernel 3347 enter_lazy_tlb(prev->active_mm, next); 3348 3349 next->active_mm = prev->active_mm; 3350 if (prev->mm) // from user 3351 mmgrab(prev->active_mm); 3352 else 3353 prev->active_mm = NULL; 3354 } else { // to user 3355 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3356 /* 3357 * sys_membarrier() requires an smp_mb() between setting 3358 * rq->curr / membarrier_switch_mm() and returning to userspace. 3359 * 3360 * The below provides this either through switch_mm(), or in 3361 * case 'prev->active_mm == next->mm' through 3362 * finish_task_switch()'s mmdrop(). 3363 */ 3364 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3365 3366 if (!prev->mm) { // from kernel 3367 /* will mmdrop() in finish_task_switch(). */ 3368 rq->prev_mm = prev->active_mm; 3369 prev->active_mm = NULL; 3370 } 3371 } 3372 3373 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3374 3375 prepare_lock_switch(rq, next, rf); 3376 3377 /* Here we just switch the register state and the stack. */ 3378 switch_to(prev, next, prev); 3379 barrier(); 3380 3381 return finish_task_switch(prev); 3382 } 3383 3384 /* 3385 * nr_running and nr_context_switches: 3386 * 3387 * externally visible scheduler statistics: current number of runnable 3388 * threads, total number of context switches performed since bootup. 3389 */ 3390 unsigned long nr_running(void) 3391 { 3392 unsigned long i, sum = 0; 3393 3394 for_each_online_cpu(i) 3395 sum += cpu_rq(i)->nr_running; 3396 3397 return sum; 3398 } 3399 3400 /* 3401 * Check if only the current task is running on the CPU. 3402 * 3403 * Caution: this function does not check that the caller has disabled 3404 * preemption, thus the result might have a time-of-check-to-time-of-use 3405 * race. The caller is responsible to use it correctly, for example: 3406 * 3407 * - from a non-preemptible section (of course) 3408 * 3409 * - from a thread that is bound to a single CPU 3410 * 3411 * - in a loop with very short iterations (e.g. a polling loop) 3412 */ 3413 bool single_task_running(void) 3414 { 3415 return raw_rq()->nr_running == 1; 3416 } 3417 EXPORT_SYMBOL(single_task_running); 3418 3419 unsigned long long nr_context_switches(void) 3420 { 3421 int i; 3422 unsigned long long sum = 0; 3423 3424 for_each_possible_cpu(i) 3425 sum += cpu_rq(i)->nr_switches; 3426 3427 return sum; 3428 } 3429 3430 /* 3431 * Consumers of these two interfaces, like for example the cpuidle menu 3432 * governor, are using nonsensical data. Preferring shallow idle state selection 3433 * for a CPU that has IO-wait which might not even end up running the task when 3434 * it does become runnable. 3435 */ 3436 3437 unsigned long nr_iowait_cpu(int cpu) 3438 { 3439 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3440 } 3441 3442 /* 3443 * IO-wait accounting, and how its mostly bollocks (on SMP). 3444 * 3445 * The idea behind IO-wait account is to account the idle time that we could 3446 * have spend running if it were not for IO. That is, if we were to improve the 3447 * storage performance, we'd have a proportional reduction in IO-wait time. 3448 * 3449 * This all works nicely on UP, where, when a task blocks on IO, we account 3450 * idle time as IO-wait, because if the storage were faster, it could've been 3451 * running and we'd not be idle. 3452 * 3453 * This has been extended to SMP, by doing the same for each CPU. This however 3454 * is broken. 3455 * 3456 * Imagine for instance the case where two tasks block on one CPU, only the one 3457 * CPU will have IO-wait accounted, while the other has regular idle. Even 3458 * though, if the storage were faster, both could've ran at the same time, 3459 * utilising both CPUs. 3460 * 3461 * This means, that when looking globally, the current IO-wait accounting on 3462 * SMP is a lower bound, by reason of under accounting. 3463 * 3464 * Worse, since the numbers are provided per CPU, they are sometimes 3465 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3466 * associated with any one particular CPU, it can wake to another CPU than it 3467 * blocked on. This means the per CPU IO-wait number is meaningless. 3468 * 3469 * Task CPU affinities can make all that even more 'interesting'. 3470 */ 3471 3472 unsigned long nr_iowait(void) 3473 { 3474 unsigned long i, sum = 0; 3475 3476 for_each_possible_cpu(i) 3477 sum += nr_iowait_cpu(i); 3478 3479 return sum; 3480 } 3481 3482 #ifdef CONFIG_SMP 3483 3484 /* 3485 * sched_exec - execve() is a valuable balancing opportunity, because at 3486 * this point the task has the smallest effective memory and cache footprint. 3487 */ 3488 void sched_exec(void) 3489 { 3490 struct task_struct *p = current; 3491 unsigned long flags; 3492 int dest_cpu; 3493 3494 raw_spin_lock_irqsave(&p->pi_lock, flags); 3495 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3496 if (dest_cpu == smp_processor_id()) 3497 goto unlock; 3498 3499 if (likely(cpu_active(dest_cpu))) { 3500 struct migration_arg arg = { p, dest_cpu }; 3501 3502 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3503 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3504 return; 3505 } 3506 unlock: 3507 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3508 } 3509 3510 #endif 3511 3512 DEFINE_PER_CPU(struct kernel_stat, kstat); 3513 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3514 3515 EXPORT_PER_CPU_SYMBOL(kstat); 3516 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3517 3518 /* 3519 * The function fair_sched_class.update_curr accesses the struct curr 3520 * and its field curr->exec_start; when called from task_sched_runtime(), 3521 * we observe a high rate of cache misses in practice. 3522 * Prefetching this data results in improved performance. 3523 */ 3524 static inline void prefetch_curr_exec_start(struct task_struct *p) 3525 { 3526 #ifdef CONFIG_FAIR_GROUP_SCHED 3527 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3528 #else 3529 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3530 #endif 3531 prefetch(curr); 3532 prefetch(&curr->exec_start); 3533 } 3534 3535 /* 3536 * Return accounted runtime for the task. 3537 * In case the task is currently running, return the runtime plus current's 3538 * pending runtime that have not been accounted yet. 3539 */ 3540 unsigned long long task_sched_runtime(struct task_struct *p) 3541 { 3542 struct rq_flags rf; 3543 struct rq *rq; 3544 u64 ns; 3545 3546 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3547 /* 3548 * 64-bit doesn't need locks to atomically read a 64-bit value. 3549 * So we have a optimization chance when the task's delta_exec is 0. 3550 * Reading ->on_cpu is racy, but this is ok. 3551 * 3552 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3553 * If we race with it entering CPU, unaccounted time is 0. This is 3554 * indistinguishable from the read occurring a few cycles earlier. 3555 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3556 * been accounted, so we're correct here as well. 3557 */ 3558 if (!p->on_cpu || !task_on_rq_queued(p)) 3559 return p->se.sum_exec_runtime; 3560 #endif 3561 3562 rq = task_rq_lock(p, &rf); 3563 /* 3564 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3565 * project cycles that may never be accounted to this 3566 * thread, breaking clock_gettime(). 3567 */ 3568 if (task_current(rq, p) && task_on_rq_queued(p)) { 3569 prefetch_curr_exec_start(p); 3570 update_rq_clock(rq); 3571 p->sched_class->update_curr(rq); 3572 } 3573 ns = p->se.sum_exec_runtime; 3574 task_rq_unlock(rq, p, &rf); 3575 3576 return ns; 3577 } 3578 3579 DEFINE_PER_CPU(unsigned long, thermal_pressure); 3580 3581 void arch_set_thermal_pressure(struct cpumask *cpus, 3582 unsigned long th_pressure) 3583 { 3584 int cpu; 3585 3586 for_each_cpu(cpu, cpus) 3587 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 3588 } 3589 3590 /* 3591 * This function gets called by the timer code, with HZ frequency. 3592 * We call it with interrupts disabled. 3593 */ 3594 void scheduler_tick(void) 3595 { 3596 int cpu = smp_processor_id(); 3597 struct rq *rq = cpu_rq(cpu); 3598 struct task_struct *curr = rq->curr; 3599 struct rq_flags rf; 3600 unsigned long thermal_pressure; 3601 3602 arch_scale_freq_tick(); 3603 sched_clock_tick(); 3604 3605 rq_lock(rq, &rf); 3606 3607 update_rq_clock(rq); 3608 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 3609 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 3610 curr->sched_class->task_tick(rq, curr, 0); 3611 calc_global_load_tick(rq); 3612 psi_task_tick(rq); 3613 3614 rq_unlock(rq, &rf); 3615 3616 perf_event_task_tick(); 3617 3618 #ifdef CONFIG_SMP 3619 rq->idle_balance = idle_cpu(cpu); 3620 trigger_load_balance(rq); 3621 #endif 3622 } 3623 3624 #ifdef CONFIG_NO_HZ_FULL 3625 3626 struct tick_work { 3627 int cpu; 3628 atomic_t state; 3629 struct delayed_work work; 3630 }; 3631 /* Values for ->state, see diagram below. */ 3632 #define TICK_SCHED_REMOTE_OFFLINE 0 3633 #define TICK_SCHED_REMOTE_OFFLINING 1 3634 #define TICK_SCHED_REMOTE_RUNNING 2 3635 3636 /* 3637 * State diagram for ->state: 3638 * 3639 * 3640 * TICK_SCHED_REMOTE_OFFLINE 3641 * | ^ 3642 * | | 3643 * | | sched_tick_remote() 3644 * | | 3645 * | | 3646 * +--TICK_SCHED_REMOTE_OFFLINING 3647 * | ^ 3648 * | | 3649 * sched_tick_start() | | sched_tick_stop() 3650 * | | 3651 * V | 3652 * TICK_SCHED_REMOTE_RUNNING 3653 * 3654 * 3655 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 3656 * and sched_tick_start() are happy to leave the state in RUNNING. 3657 */ 3658 3659 static struct tick_work __percpu *tick_work_cpu; 3660 3661 static void sched_tick_remote(struct work_struct *work) 3662 { 3663 struct delayed_work *dwork = to_delayed_work(work); 3664 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3665 int cpu = twork->cpu; 3666 struct rq *rq = cpu_rq(cpu); 3667 struct task_struct *curr; 3668 struct rq_flags rf; 3669 u64 delta; 3670 int os; 3671 3672 /* 3673 * Handle the tick only if it appears the remote CPU is running in full 3674 * dynticks mode. The check is racy by nature, but missing a tick or 3675 * having one too much is no big deal because the scheduler tick updates 3676 * statistics and checks timeslices in a time-independent way, regardless 3677 * of when exactly it is running. 3678 */ 3679 if (!tick_nohz_tick_stopped_cpu(cpu)) 3680 goto out_requeue; 3681 3682 rq_lock_irq(rq, &rf); 3683 curr = rq->curr; 3684 if (cpu_is_offline(cpu)) 3685 goto out_unlock; 3686 3687 update_rq_clock(rq); 3688 3689 if (!is_idle_task(curr)) { 3690 /* 3691 * Make sure the next tick runs within a reasonable 3692 * amount of time. 3693 */ 3694 delta = rq_clock_task(rq) - curr->se.exec_start; 3695 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3696 } 3697 curr->sched_class->task_tick(rq, curr, 0); 3698 3699 calc_load_nohz_remote(rq); 3700 out_unlock: 3701 rq_unlock_irq(rq, &rf); 3702 out_requeue: 3703 3704 /* 3705 * Run the remote tick once per second (1Hz). This arbitrary 3706 * frequency is large enough to avoid overload but short enough 3707 * to keep scheduler internal stats reasonably up to date. But 3708 * first update state to reflect hotplug activity if required. 3709 */ 3710 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 3711 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 3712 if (os == TICK_SCHED_REMOTE_RUNNING) 3713 queue_delayed_work(system_unbound_wq, dwork, HZ); 3714 } 3715 3716 static void sched_tick_start(int cpu) 3717 { 3718 int os; 3719 struct tick_work *twork; 3720 3721 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3722 return; 3723 3724 WARN_ON_ONCE(!tick_work_cpu); 3725 3726 twork = per_cpu_ptr(tick_work_cpu, cpu); 3727 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 3728 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 3729 if (os == TICK_SCHED_REMOTE_OFFLINE) { 3730 twork->cpu = cpu; 3731 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3732 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3733 } 3734 } 3735 3736 #ifdef CONFIG_HOTPLUG_CPU 3737 static void sched_tick_stop(int cpu) 3738 { 3739 struct tick_work *twork; 3740 int os; 3741 3742 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3743 return; 3744 3745 WARN_ON_ONCE(!tick_work_cpu); 3746 3747 twork = per_cpu_ptr(tick_work_cpu, cpu); 3748 /* There cannot be competing actions, but don't rely on stop-machine. */ 3749 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 3750 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 3751 /* Don't cancel, as this would mess up the state machine. */ 3752 } 3753 #endif /* CONFIG_HOTPLUG_CPU */ 3754 3755 int __init sched_tick_offload_init(void) 3756 { 3757 tick_work_cpu = alloc_percpu(struct tick_work); 3758 BUG_ON(!tick_work_cpu); 3759 return 0; 3760 } 3761 3762 #else /* !CONFIG_NO_HZ_FULL */ 3763 static inline void sched_tick_start(int cpu) { } 3764 static inline void sched_tick_stop(int cpu) { } 3765 #endif 3766 3767 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3768 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3769 /* 3770 * If the value passed in is equal to the current preempt count 3771 * then we just disabled preemption. Start timing the latency. 3772 */ 3773 static inline void preempt_latency_start(int val) 3774 { 3775 if (preempt_count() == val) { 3776 unsigned long ip = get_lock_parent_ip(); 3777 #ifdef CONFIG_DEBUG_PREEMPT 3778 current->preempt_disable_ip = ip; 3779 #endif 3780 trace_preempt_off(CALLER_ADDR0, ip); 3781 } 3782 } 3783 3784 void preempt_count_add(int val) 3785 { 3786 #ifdef CONFIG_DEBUG_PREEMPT 3787 /* 3788 * Underflow? 3789 */ 3790 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3791 return; 3792 #endif 3793 __preempt_count_add(val); 3794 #ifdef CONFIG_DEBUG_PREEMPT 3795 /* 3796 * Spinlock count overflowing soon? 3797 */ 3798 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3799 PREEMPT_MASK - 10); 3800 #endif 3801 preempt_latency_start(val); 3802 } 3803 EXPORT_SYMBOL(preempt_count_add); 3804 NOKPROBE_SYMBOL(preempt_count_add); 3805 3806 /* 3807 * If the value passed in equals to the current preempt count 3808 * then we just enabled preemption. Stop timing the latency. 3809 */ 3810 static inline void preempt_latency_stop(int val) 3811 { 3812 if (preempt_count() == val) 3813 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3814 } 3815 3816 void preempt_count_sub(int val) 3817 { 3818 #ifdef CONFIG_DEBUG_PREEMPT 3819 /* 3820 * Underflow? 3821 */ 3822 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3823 return; 3824 /* 3825 * Is the spinlock portion underflowing? 3826 */ 3827 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3828 !(preempt_count() & PREEMPT_MASK))) 3829 return; 3830 #endif 3831 3832 preempt_latency_stop(val); 3833 __preempt_count_sub(val); 3834 } 3835 EXPORT_SYMBOL(preempt_count_sub); 3836 NOKPROBE_SYMBOL(preempt_count_sub); 3837 3838 #else 3839 static inline void preempt_latency_start(int val) { } 3840 static inline void preempt_latency_stop(int val) { } 3841 #endif 3842 3843 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3844 { 3845 #ifdef CONFIG_DEBUG_PREEMPT 3846 return p->preempt_disable_ip; 3847 #else 3848 return 0; 3849 #endif 3850 } 3851 3852 /* 3853 * Print scheduling while atomic bug: 3854 */ 3855 static noinline void __schedule_bug(struct task_struct *prev) 3856 { 3857 /* Save this before calling printk(), since that will clobber it */ 3858 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3859 3860 if (oops_in_progress) 3861 return; 3862 3863 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3864 prev->comm, prev->pid, preempt_count()); 3865 3866 debug_show_held_locks(prev); 3867 print_modules(); 3868 if (irqs_disabled()) 3869 print_irqtrace_events(prev); 3870 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3871 && in_atomic_preempt_off()) { 3872 pr_err("Preemption disabled at:"); 3873 print_ip_sym(preempt_disable_ip); 3874 pr_cont("\n"); 3875 } 3876 if (panic_on_warn) 3877 panic("scheduling while atomic\n"); 3878 3879 dump_stack(); 3880 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3881 } 3882 3883 /* 3884 * Various schedule()-time debugging checks and statistics: 3885 */ 3886 static inline void schedule_debug(struct task_struct *prev, bool preempt) 3887 { 3888 #ifdef CONFIG_SCHED_STACK_END_CHECK 3889 if (task_stack_end_corrupted(prev)) 3890 panic("corrupted stack end detected inside scheduler\n"); 3891 #endif 3892 3893 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 3894 if (!preempt && prev->state && prev->non_block_count) { 3895 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 3896 prev->comm, prev->pid, prev->non_block_count); 3897 dump_stack(); 3898 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3899 } 3900 #endif 3901 3902 if (unlikely(in_atomic_preempt_off())) { 3903 __schedule_bug(prev); 3904 preempt_count_set(PREEMPT_DISABLED); 3905 } 3906 rcu_sleep_check(); 3907 3908 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3909 3910 schedstat_inc(this_rq()->sched_count); 3911 } 3912 3913 /* 3914 * Pick up the highest-prio task: 3915 */ 3916 static inline struct task_struct * 3917 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3918 { 3919 const struct sched_class *class; 3920 struct task_struct *p; 3921 3922 /* 3923 * Optimization: we know that if all tasks are in the fair class we can 3924 * call that function directly, but only if the @prev task wasn't of a 3925 * higher scheduling class, because otherwise those loose the 3926 * opportunity to pull in more work from other CPUs. 3927 */ 3928 if (likely((prev->sched_class == &idle_sched_class || 3929 prev->sched_class == &fair_sched_class) && 3930 rq->nr_running == rq->cfs.h_nr_running)) { 3931 3932 p = pick_next_task_fair(rq, prev, rf); 3933 if (unlikely(p == RETRY_TASK)) 3934 goto restart; 3935 3936 /* Assumes fair_sched_class->next == idle_sched_class */ 3937 if (!p) { 3938 put_prev_task(rq, prev); 3939 p = pick_next_task_idle(rq); 3940 } 3941 3942 return p; 3943 } 3944 3945 restart: 3946 #ifdef CONFIG_SMP 3947 /* 3948 * We must do the balancing pass before put_next_task(), such 3949 * that when we release the rq->lock the task is in the same 3950 * state as before we took rq->lock. 3951 * 3952 * We can terminate the balance pass as soon as we know there is 3953 * a runnable task of @class priority or higher. 3954 */ 3955 for_class_range(class, prev->sched_class, &idle_sched_class) { 3956 if (class->balance(rq, prev, rf)) 3957 break; 3958 } 3959 #endif 3960 3961 put_prev_task(rq, prev); 3962 3963 for_each_class(class) { 3964 p = class->pick_next_task(rq); 3965 if (p) 3966 return p; 3967 } 3968 3969 /* The idle class should always have a runnable task: */ 3970 BUG(); 3971 } 3972 3973 /* 3974 * __schedule() is the main scheduler function. 3975 * 3976 * The main means of driving the scheduler and thus entering this function are: 3977 * 3978 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3979 * 3980 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3981 * paths. For example, see arch/x86/entry_64.S. 3982 * 3983 * To drive preemption between tasks, the scheduler sets the flag in timer 3984 * interrupt handler scheduler_tick(). 3985 * 3986 * 3. Wakeups don't really cause entry into schedule(). They add a 3987 * task to the run-queue and that's it. 3988 * 3989 * Now, if the new task added to the run-queue preempts the current 3990 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3991 * called on the nearest possible occasion: 3992 * 3993 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 3994 * 3995 * - in syscall or exception context, at the next outmost 3996 * preempt_enable(). (this might be as soon as the wake_up()'s 3997 * spin_unlock()!) 3998 * 3999 * - in IRQ context, return from interrupt-handler to 4000 * preemptible context 4001 * 4002 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4003 * then at the next: 4004 * 4005 * - cond_resched() call 4006 * - explicit schedule() call 4007 * - return from syscall or exception to user-space 4008 * - return from interrupt-handler to user-space 4009 * 4010 * WARNING: must be called with preemption disabled! 4011 */ 4012 static void __sched notrace __schedule(bool preempt) 4013 { 4014 struct task_struct *prev, *next; 4015 unsigned long *switch_count; 4016 struct rq_flags rf; 4017 struct rq *rq; 4018 int cpu; 4019 4020 cpu = smp_processor_id(); 4021 rq = cpu_rq(cpu); 4022 prev = rq->curr; 4023 4024 schedule_debug(prev, preempt); 4025 4026 if (sched_feat(HRTICK)) 4027 hrtick_clear(rq); 4028 4029 local_irq_disable(); 4030 rcu_note_context_switch(preempt); 4031 4032 /* 4033 * Make sure that signal_pending_state()->signal_pending() below 4034 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4035 * done by the caller to avoid the race with signal_wake_up(). 4036 * 4037 * The membarrier system call requires a full memory barrier 4038 * after coming from user-space, before storing to rq->curr. 4039 */ 4040 rq_lock(rq, &rf); 4041 smp_mb__after_spinlock(); 4042 4043 /* Promote REQ to ACT */ 4044 rq->clock_update_flags <<= 1; 4045 update_rq_clock(rq); 4046 4047 switch_count = &prev->nivcsw; 4048 if (!preempt && prev->state) { 4049 if (signal_pending_state(prev->state, prev)) { 4050 prev->state = TASK_RUNNING; 4051 } else { 4052 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4053 4054 if (prev->in_iowait) { 4055 atomic_inc(&rq->nr_iowait); 4056 delayacct_blkio_start(); 4057 } 4058 } 4059 switch_count = &prev->nvcsw; 4060 } 4061 4062 next = pick_next_task(rq, prev, &rf); 4063 clear_tsk_need_resched(prev); 4064 clear_preempt_need_resched(); 4065 4066 if (likely(prev != next)) { 4067 rq->nr_switches++; 4068 /* 4069 * RCU users of rcu_dereference(rq->curr) may not see 4070 * changes to task_struct made by pick_next_task(). 4071 */ 4072 RCU_INIT_POINTER(rq->curr, next); 4073 /* 4074 * The membarrier system call requires each architecture 4075 * to have a full memory barrier after updating 4076 * rq->curr, before returning to user-space. 4077 * 4078 * Here are the schemes providing that barrier on the 4079 * various architectures: 4080 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4081 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4082 * - finish_lock_switch() for weakly-ordered 4083 * architectures where spin_unlock is a full barrier, 4084 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4085 * is a RELEASE barrier), 4086 */ 4087 ++*switch_count; 4088 4089 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 4090 4091 trace_sched_switch(preempt, prev, next); 4092 4093 /* Also unlocks the rq: */ 4094 rq = context_switch(rq, prev, next, &rf); 4095 } else { 4096 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4097 rq_unlock_irq(rq, &rf); 4098 } 4099 4100 balance_callback(rq); 4101 } 4102 4103 void __noreturn do_task_dead(void) 4104 { 4105 /* Causes final put_task_struct in finish_task_switch(): */ 4106 set_special_state(TASK_DEAD); 4107 4108 /* Tell freezer to ignore us: */ 4109 current->flags |= PF_NOFREEZE; 4110 4111 __schedule(false); 4112 BUG(); 4113 4114 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4115 for (;;) 4116 cpu_relax(); 4117 } 4118 4119 static inline void sched_submit_work(struct task_struct *tsk) 4120 { 4121 if (!tsk->state) 4122 return; 4123 4124 /* 4125 * If a worker went to sleep, notify and ask workqueue whether 4126 * it wants to wake up a task to maintain concurrency. 4127 * As this function is called inside the schedule() context, 4128 * we disable preemption to avoid it calling schedule() again 4129 * in the possible wakeup of a kworker. 4130 */ 4131 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4132 preempt_disable(); 4133 if (tsk->flags & PF_WQ_WORKER) 4134 wq_worker_sleeping(tsk); 4135 else 4136 io_wq_worker_sleeping(tsk); 4137 preempt_enable_no_resched(); 4138 } 4139 4140 if (tsk_is_pi_blocked(tsk)) 4141 return; 4142 4143 /* 4144 * If we are going to sleep and we have plugged IO queued, 4145 * make sure to submit it to avoid deadlocks. 4146 */ 4147 if (blk_needs_flush_plug(tsk)) 4148 blk_schedule_flush_plug(tsk); 4149 } 4150 4151 static void sched_update_worker(struct task_struct *tsk) 4152 { 4153 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4154 if (tsk->flags & PF_WQ_WORKER) 4155 wq_worker_running(tsk); 4156 else 4157 io_wq_worker_running(tsk); 4158 } 4159 } 4160 4161 asmlinkage __visible void __sched schedule(void) 4162 { 4163 struct task_struct *tsk = current; 4164 4165 sched_submit_work(tsk); 4166 do { 4167 preempt_disable(); 4168 __schedule(false); 4169 sched_preempt_enable_no_resched(); 4170 } while (need_resched()); 4171 sched_update_worker(tsk); 4172 } 4173 EXPORT_SYMBOL(schedule); 4174 4175 /* 4176 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4177 * state (have scheduled out non-voluntarily) by making sure that all 4178 * tasks have either left the run queue or have gone into user space. 4179 * As idle tasks do not do either, they must not ever be preempted 4180 * (schedule out non-voluntarily). 4181 * 4182 * schedule_idle() is similar to schedule_preempt_disable() except that it 4183 * never enables preemption because it does not call sched_submit_work(). 4184 */ 4185 void __sched schedule_idle(void) 4186 { 4187 /* 4188 * As this skips calling sched_submit_work(), which the idle task does 4189 * regardless because that function is a nop when the task is in a 4190 * TASK_RUNNING state, make sure this isn't used someplace that the 4191 * current task can be in any other state. Note, idle is always in the 4192 * TASK_RUNNING state. 4193 */ 4194 WARN_ON_ONCE(current->state); 4195 do { 4196 __schedule(false); 4197 } while (need_resched()); 4198 } 4199 4200 #ifdef CONFIG_CONTEXT_TRACKING 4201 asmlinkage __visible void __sched schedule_user(void) 4202 { 4203 /* 4204 * If we come here after a random call to set_need_resched(), 4205 * or we have been woken up remotely but the IPI has not yet arrived, 4206 * we haven't yet exited the RCU idle mode. Do it here manually until 4207 * we find a better solution. 4208 * 4209 * NB: There are buggy callers of this function. Ideally we 4210 * should warn if prev_state != CONTEXT_USER, but that will trigger 4211 * too frequently to make sense yet. 4212 */ 4213 enum ctx_state prev_state = exception_enter(); 4214 schedule(); 4215 exception_exit(prev_state); 4216 } 4217 #endif 4218 4219 /** 4220 * schedule_preempt_disabled - called with preemption disabled 4221 * 4222 * Returns with preemption disabled. Note: preempt_count must be 1 4223 */ 4224 void __sched schedule_preempt_disabled(void) 4225 { 4226 sched_preempt_enable_no_resched(); 4227 schedule(); 4228 preempt_disable(); 4229 } 4230 4231 static void __sched notrace preempt_schedule_common(void) 4232 { 4233 do { 4234 /* 4235 * Because the function tracer can trace preempt_count_sub() 4236 * and it also uses preempt_enable/disable_notrace(), if 4237 * NEED_RESCHED is set, the preempt_enable_notrace() called 4238 * by the function tracer will call this function again and 4239 * cause infinite recursion. 4240 * 4241 * Preemption must be disabled here before the function 4242 * tracer can trace. Break up preempt_disable() into two 4243 * calls. One to disable preemption without fear of being 4244 * traced. The other to still record the preemption latency, 4245 * which can also be traced by the function tracer. 4246 */ 4247 preempt_disable_notrace(); 4248 preempt_latency_start(1); 4249 __schedule(true); 4250 preempt_latency_stop(1); 4251 preempt_enable_no_resched_notrace(); 4252 4253 /* 4254 * Check again in case we missed a preemption opportunity 4255 * between schedule and now. 4256 */ 4257 } while (need_resched()); 4258 } 4259 4260 #ifdef CONFIG_PREEMPTION 4261 /* 4262 * This is the entry point to schedule() from in-kernel preemption 4263 * off of preempt_enable. 4264 */ 4265 asmlinkage __visible void __sched notrace preempt_schedule(void) 4266 { 4267 /* 4268 * If there is a non-zero preempt_count or interrupts are disabled, 4269 * we do not want to preempt the current task. Just return.. 4270 */ 4271 if (likely(!preemptible())) 4272 return; 4273 4274 preempt_schedule_common(); 4275 } 4276 NOKPROBE_SYMBOL(preempt_schedule); 4277 EXPORT_SYMBOL(preempt_schedule); 4278 4279 /** 4280 * preempt_schedule_notrace - preempt_schedule called by tracing 4281 * 4282 * The tracing infrastructure uses preempt_enable_notrace to prevent 4283 * recursion and tracing preempt enabling caused by the tracing 4284 * infrastructure itself. But as tracing can happen in areas coming 4285 * from userspace or just about to enter userspace, a preempt enable 4286 * can occur before user_exit() is called. This will cause the scheduler 4287 * to be called when the system is still in usermode. 4288 * 4289 * To prevent this, the preempt_enable_notrace will use this function 4290 * instead of preempt_schedule() to exit user context if needed before 4291 * calling the scheduler. 4292 */ 4293 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4294 { 4295 enum ctx_state prev_ctx; 4296 4297 if (likely(!preemptible())) 4298 return; 4299 4300 do { 4301 /* 4302 * Because the function tracer can trace preempt_count_sub() 4303 * and it also uses preempt_enable/disable_notrace(), if 4304 * NEED_RESCHED is set, the preempt_enable_notrace() called 4305 * by the function tracer will call this function again and 4306 * cause infinite recursion. 4307 * 4308 * Preemption must be disabled here before the function 4309 * tracer can trace. Break up preempt_disable() into two 4310 * calls. One to disable preemption without fear of being 4311 * traced. The other to still record the preemption latency, 4312 * which can also be traced by the function tracer. 4313 */ 4314 preempt_disable_notrace(); 4315 preempt_latency_start(1); 4316 /* 4317 * Needs preempt disabled in case user_exit() is traced 4318 * and the tracer calls preempt_enable_notrace() causing 4319 * an infinite recursion. 4320 */ 4321 prev_ctx = exception_enter(); 4322 __schedule(true); 4323 exception_exit(prev_ctx); 4324 4325 preempt_latency_stop(1); 4326 preempt_enable_no_resched_notrace(); 4327 } while (need_resched()); 4328 } 4329 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4330 4331 #endif /* CONFIG_PREEMPTION */ 4332 4333 /* 4334 * This is the entry point to schedule() from kernel preemption 4335 * off of irq context. 4336 * Note, that this is called and return with irqs disabled. This will 4337 * protect us against recursive calling from irq. 4338 */ 4339 asmlinkage __visible void __sched preempt_schedule_irq(void) 4340 { 4341 enum ctx_state prev_state; 4342 4343 /* Catch callers which need to be fixed */ 4344 BUG_ON(preempt_count() || !irqs_disabled()); 4345 4346 prev_state = exception_enter(); 4347 4348 do { 4349 preempt_disable(); 4350 local_irq_enable(); 4351 __schedule(true); 4352 local_irq_disable(); 4353 sched_preempt_enable_no_resched(); 4354 } while (need_resched()); 4355 4356 exception_exit(prev_state); 4357 } 4358 4359 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4360 void *key) 4361 { 4362 return try_to_wake_up(curr->private, mode, wake_flags); 4363 } 4364 EXPORT_SYMBOL(default_wake_function); 4365 4366 #ifdef CONFIG_RT_MUTEXES 4367 4368 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4369 { 4370 if (pi_task) 4371 prio = min(prio, pi_task->prio); 4372 4373 return prio; 4374 } 4375 4376 static inline int rt_effective_prio(struct task_struct *p, int prio) 4377 { 4378 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4379 4380 return __rt_effective_prio(pi_task, prio); 4381 } 4382 4383 /* 4384 * rt_mutex_setprio - set the current priority of a task 4385 * @p: task to boost 4386 * @pi_task: donor task 4387 * 4388 * This function changes the 'effective' priority of a task. It does 4389 * not touch ->normal_prio like __setscheduler(). 4390 * 4391 * Used by the rt_mutex code to implement priority inheritance 4392 * logic. Call site only calls if the priority of the task changed. 4393 */ 4394 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4395 { 4396 int prio, oldprio, queued, running, queue_flag = 4397 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4398 const struct sched_class *prev_class; 4399 struct rq_flags rf; 4400 struct rq *rq; 4401 4402 /* XXX used to be waiter->prio, not waiter->task->prio */ 4403 prio = __rt_effective_prio(pi_task, p->normal_prio); 4404 4405 /* 4406 * If nothing changed; bail early. 4407 */ 4408 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4409 return; 4410 4411 rq = __task_rq_lock(p, &rf); 4412 update_rq_clock(rq); 4413 /* 4414 * Set under pi_lock && rq->lock, such that the value can be used under 4415 * either lock. 4416 * 4417 * Note that there is loads of tricky to make this pointer cache work 4418 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4419 * ensure a task is de-boosted (pi_task is set to NULL) before the 4420 * task is allowed to run again (and can exit). This ensures the pointer 4421 * points to a blocked task -- which guaratees the task is present. 4422 */ 4423 p->pi_top_task = pi_task; 4424 4425 /* 4426 * For FIFO/RR we only need to set prio, if that matches we're done. 4427 */ 4428 if (prio == p->prio && !dl_prio(prio)) 4429 goto out_unlock; 4430 4431 /* 4432 * Idle task boosting is a nono in general. There is one 4433 * exception, when PREEMPT_RT and NOHZ is active: 4434 * 4435 * The idle task calls get_next_timer_interrupt() and holds 4436 * the timer wheel base->lock on the CPU and another CPU wants 4437 * to access the timer (probably to cancel it). We can safely 4438 * ignore the boosting request, as the idle CPU runs this code 4439 * with interrupts disabled and will complete the lock 4440 * protected section without being interrupted. So there is no 4441 * real need to boost. 4442 */ 4443 if (unlikely(p == rq->idle)) { 4444 WARN_ON(p != rq->curr); 4445 WARN_ON(p->pi_blocked_on); 4446 goto out_unlock; 4447 } 4448 4449 trace_sched_pi_setprio(p, pi_task); 4450 oldprio = p->prio; 4451 4452 if (oldprio == prio) 4453 queue_flag &= ~DEQUEUE_MOVE; 4454 4455 prev_class = p->sched_class; 4456 queued = task_on_rq_queued(p); 4457 running = task_current(rq, p); 4458 if (queued) 4459 dequeue_task(rq, p, queue_flag); 4460 if (running) 4461 put_prev_task(rq, p); 4462 4463 /* 4464 * Boosting condition are: 4465 * 1. -rt task is running and holds mutex A 4466 * --> -dl task blocks on mutex A 4467 * 4468 * 2. -dl task is running and holds mutex A 4469 * --> -dl task blocks on mutex A and could preempt the 4470 * running task 4471 */ 4472 if (dl_prio(prio)) { 4473 if (!dl_prio(p->normal_prio) || 4474 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 4475 p->dl.dl_boosted = 1; 4476 queue_flag |= ENQUEUE_REPLENISH; 4477 } else 4478 p->dl.dl_boosted = 0; 4479 p->sched_class = &dl_sched_class; 4480 } else if (rt_prio(prio)) { 4481 if (dl_prio(oldprio)) 4482 p->dl.dl_boosted = 0; 4483 if (oldprio < prio) 4484 queue_flag |= ENQUEUE_HEAD; 4485 p->sched_class = &rt_sched_class; 4486 } else { 4487 if (dl_prio(oldprio)) 4488 p->dl.dl_boosted = 0; 4489 if (rt_prio(oldprio)) 4490 p->rt.timeout = 0; 4491 p->sched_class = &fair_sched_class; 4492 } 4493 4494 p->prio = prio; 4495 4496 if (queued) 4497 enqueue_task(rq, p, queue_flag); 4498 if (running) 4499 set_next_task(rq, p); 4500 4501 check_class_changed(rq, p, prev_class, oldprio); 4502 out_unlock: 4503 /* Avoid rq from going away on us: */ 4504 preempt_disable(); 4505 __task_rq_unlock(rq, &rf); 4506 4507 balance_callback(rq); 4508 preempt_enable(); 4509 } 4510 #else 4511 static inline int rt_effective_prio(struct task_struct *p, int prio) 4512 { 4513 return prio; 4514 } 4515 #endif 4516 4517 void set_user_nice(struct task_struct *p, long nice) 4518 { 4519 bool queued, running; 4520 int old_prio; 4521 struct rq_flags rf; 4522 struct rq *rq; 4523 4524 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4525 return; 4526 /* 4527 * We have to be careful, if called from sys_setpriority(), 4528 * the task might be in the middle of scheduling on another CPU. 4529 */ 4530 rq = task_rq_lock(p, &rf); 4531 update_rq_clock(rq); 4532 4533 /* 4534 * The RT priorities are set via sched_setscheduler(), but we still 4535 * allow the 'normal' nice value to be set - but as expected 4536 * it wont have any effect on scheduling until the task is 4537 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4538 */ 4539 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4540 p->static_prio = NICE_TO_PRIO(nice); 4541 goto out_unlock; 4542 } 4543 queued = task_on_rq_queued(p); 4544 running = task_current(rq, p); 4545 if (queued) 4546 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4547 if (running) 4548 put_prev_task(rq, p); 4549 4550 p->static_prio = NICE_TO_PRIO(nice); 4551 set_load_weight(p, true); 4552 old_prio = p->prio; 4553 p->prio = effective_prio(p); 4554 4555 if (queued) 4556 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4557 if (running) 4558 set_next_task(rq, p); 4559 4560 /* 4561 * If the task increased its priority or is running and 4562 * lowered its priority, then reschedule its CPU: 4563 */ 4564 p->sched_class->prio_changed(rq, p, old_prio); 4565 4566 out_unlock: 4567 task_rq_unlock(rq, p, &rf); 4568 } 4569 EXPORT_SYMBOL(set_user_nice); 4570 4571 /* 4572 * can_nice - check if a task can reduce its nice value 4573 * @p: task 4574 * @nice: nice value 4575 */ 4576 int can_nice(const struct task_struct *p, const int nice) 4577 { 4578 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4579 int nice_rlim = nice_to_rlimit(nice); 4580 4581 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4582 capable(CAP_SYS_NICE)); 4583 } 4584 4585 #ifdef __ARCH_WANT_SYS_NICE 4586 4587 /* 4588 * sys_nice - change the priority of the current process. 4589 * @increment: priority increment 4590 * 4591 * sys_setpriority is a more generic, but much slower function that 4592 * does similar things. 4593 */ 4594 SYSCALL_DEFINE1(nice, int, increment) 4595 { 4596 long nice, retval; 4597 4598 /* 4599 * Setpriority might change our priority at the same moment. 4600 * We don't have to worry. Conceptually one call occurs first 4601 * and we have a single winner. 4602 */ 4603 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4604 nice = task_nice(current) + increment; 4605 4606 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4607 if (increment < 0 && !can_nice(current, nice)) 4608 return -EPERM; 4609 4610 retval = security_task_setnice(current, nice); 4611 if (retval) 4612 return retval; 4613 4614 set_user_nice(current, nice); 4615 return 0; 4616 } 4617 4618 #endif 4619 4620 /** 4621 * task_prio - return the priority value of a given task. 4622 * @p: the task in question. 4623 * 4624 * Return: The priority value as seen by users in /proc. 4625 * RT tasks are offset by -200. Normal tasks are centered 4626 * around 0, value goes from -16 to +15. 4627 */ 4628 int task_prio(const struct task_struct *p) 4629 { 4630 return p->prio - MAX_RT_PRIO; 4631 } 4632 4633 /** 4634 * idle_cpu - is a given CPU idle currently? 4635 * @cpu: the processor in question. 4636 * 4637 * Return: 1 if the CPU is currently idle. 0 otherwise. 4638 */ 4639 int idle_cpu(int cpu) 4640 { 4641 struct rq *rq = cpu_rq(cpu); 4642 4643 if (rq->curr != rq->idle) 4644 return 0; 4645 4646 if (rq->nr_running) 4647 return 0; 4648 4649 #ifdef CONFIG_SMP 4650 if (!llist_empty(&rq->wake_list)) 4651 return 0; 4652 #endif 4653 4654 return 1; 4655 } 4656 4657 /** 4658 * available_idle_cpu - is a given CPU idle for enqueuing work. 4659 * @cpu: the CPU in question. 4660 * 4661 * Return: 1 if the CPU is currently idle. 0 otherwise. 4662 */ 4663 int available_idle_cpu(int cpu) 4664 { 4665 if (!idle_cpu(cpu)) 4666 return 0; 4667 4668 if (vcpu_is_preempted(cpu)) 4669 return 0; 4670 4671 return 1; 4672 } 4673 4674 /** 4675 * idle_task - return the idle task for a given CPU. 4676 * @cpu: the processor in question. 4677 * 4678 * Return: The idle task for the CPU @cpu. 4679 */ 4680 struct task_struct *idle_task(int cpu) 4681 { 4682 return cpu_rq(cpu)->idle; 4683 } 4684 4685 /** 4686 * find_process_by_pid - find a process with a matching PID value. 4687 * @pid: the pid in question. 4688 * 4689 * The task of @pid, if found. %NULL otherwise. 4690 */ 4691 static struct task_struct *find_process_by_pid(pid_t pid) 4692 { 4693 return pid ? find_task_by_vpid(pid) : current; 4694 } 4695 4696 /* 4697 * sched_setparam() passes in -1 for its policy, to let the functions 4698 * it calls know not to change it. 4699 */ 4700 #define SETPARAM_POLICY -1 4701 4702 static void __setscheduler_params(struct task_struct *p, 4703 const struct sched_attr *attr) 4704 { 4705 int policy = attr->sched_policy; 4706 4707 if (policy == SETPARAM_POLICY) 4708 policy = p->policy; 4709 4710 p->policy = policy; 4711 4712 if (dl_policy(policy)) 4713 __setparam_dl(p, attr); 4714 else if (fair_policy(policy)) 4715 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4716 4717 /* 4718 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4719 * !rt_policy. Always setting this ensures that things like 4720 * getparam()/getattr() don't report silly values for !rt tasks. 4721 */ 4722 p->rt_priority = attr->sched_priority; 4723 p->normal_prio = normal_prio(p); 4724 set_load_weight(p, true); 4725 } 4726 4727 /* Actually do priority change: must hold pi & rq lock. */ 4728 static void __setscheduler(struct rq *rq, struct task_struct *p, 4729 const struct sched_attr *attr, bool keep_boost) 4730 { 4731 /* 4732 * If params can't change scheduling class changes aren't allowed 4733 * either. 4734 */ 4735 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4736 return; 4737 4738 __setscheduler_params(p, attr); 4739 4740 /* 4741 * Keep a potential priority boosting if called from 4742 * sched_setscheduler(). 4743 */ 4744 p->prio = normal_prio(p); 4745 if (keep_boost) 4746 p->prio = rt_effective_prio(p, p->prio); 4747 4748 if (dl_prio(p->prio)) 4749 p->sched_class = &dl_sched_class; 4750 else if (rt_prio(p->prio)) 4751 p->sched_class = &rt_sched_class; 4752 else 4753 p->sched_class = &fair_sched_class; 4754 } 4755 4756 /* 4757 * Check the target process has a UID that matches the current process's: 4758 */ 4759 static bool check_same_owner(struct task_struct *p) 4760 { 4761 const struct cred *cred = current_cred(), *pcred; 4762 bool match; 4763 4764 rcu_read_lock(); 4765 pcred = __task_cred(p); 4766 match = (uid_eq(cred->euid, pcred->euid) || 4767 uid_eq(cred->euid, pcred->uid)); 4768 rcu_read_unlock(); 4769 return match; 4770 } 4771 4772 static int __sched_setscheduler(struct task_struct *p, 4773 const struct sched_attr *attr, 4774 bool user, bool pi) 4775 { 4776 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4777 MAX_RT_PRIO - 1 - attr->sched_priority; 4778 int retval, oldprio, oldpolicy = -1, queued, running; 4779 int new_effective_prio, policy = attr->sched_policy; 4780 const struct sched_class *prev_class; 4781 struct rq_flags rf; 4782 int reset_on_fork; 4783 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4784 struct rq *rq; 4785 4786 /* The pi code expects interrupts enabled */ 4787 BUG_ON(pi && in_interrupt()); 4788 recheck: 4789 /* Double check policy once rq lock held: */ 4790 if (policy < 0) { 4791 reset_on_fork = p->sched_reset_on_fork; 4792 policy = oldpolicy = p->policy; 4793 } else { 4794 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4795 4796 if (!valid_policy(policy)) 4797 return -EINVAL; 4798 } 4799 4800 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4801 return -EINVAL; 4802 4803 /* 4804 * Valid priorities for SCHED_FIFO and SCHED_RR are 4805 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4806 * SCHED_BATCH and SCHED_IDLE is 0. 4807 */ 4808 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4809 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4810 return -EINVAL; 4811 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4812 (rt_policy(policy) != (attr->sched_priority != 0))) 4813 return -EINVAL; 4814 4815 /* 4816 * Allow unprivileged RT tasks to decrease priority: 4817 */ 4818 if (user && !capable(CAP_SYS_NICE)) { 4819 if (fair_policy(policy)) { 4820 if (attr->sched_nice < task_nice(p) && 4821 !can_nice(p, attr->sched_nice)) 4822 return -EPERM; 4823 } 4824 4825 if (rt_policy(policy)) { 4826 unsigned long rlim_rtprio = 4827 task_rlimit(p, RLIMIT_RTPRIO); 4828 4829 /* Can't set/change the rt policy: */ 4830 if (policy != p->policy && !rlim_rtprio) 4831 return -EPERM; 4832 4833 /* Can't increase priority: */ 4834 if (attr->sched_priority > p->rt_priority && 4835 attr->sched_priority > rlim_rtprio) 4836 return -EPERM; 4837 } 4838 4839 /* 4840 * Can't set/change SCHED_DEADLINE policy at all for now 4841 * (safest behavior); in the future we would like to allow 4842 * unprivileged DL tasks to increase their relative deadline 4843 * or reduce their runtime (both ways reducing utilization) 4844 */ 4845 if (dl_policy(policy)) 4846 return -EPERM; 4847 4848 /* 4849 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4850 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4851 */ 4852 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4853 if (!can_nice(p, task_nice(p))) 4854 return -EPERM; 4855 } 4856 4857 /* Can't change other user's priorities: */ 4858 if (!check_same_owner(p)) 4859 return -EPERM; 4860 4861 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4862 if (p->sched_reset_on_fork && !reset_on_fork) 4863 return -EPERM; 4864 } 4865 4866 if (user) { 4867 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4868 return -EINVAL; 4869 4870 retval = security_task_setscheduler(p); 4871 if (retval) 4872 return retval; 4873 } 4874 4875 /* Update task specific "requested" clamps */ 4876 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 4877 retval = uclamp_validate(p, attr); 4878 if (retval) 4879 return retval; 4880 } 4881 4882 if (pi) 4883 cpuset_read_lock(); 4884 4885 /* 4886 * Make sure no PI-waiters arrive (or leave) while we are 4887 * changing the priority of the task: 4888 * 4889 * To be able to change p->policy safely, the appropriate 4890 * runqueue lock must be held. 4891 */ 4892 rq = task_rq_lock(p, &rf); 4893 update_rq_clock(rq); 4894 4895 /* 4896 * Changing the policy of the stop threads its a very bad idea: 4897 */ 4898 if (p == rq->stop) { 4899 retval = -EINVAL; 4900 goto unlock; 4901 } 4902 4903 /* 4904 * If not changing anything there's no need to proceed further, 4905 * but store a possible modification of reset_on_fork. 4906 */ 4907 if (unlikely(policy == p->policy)) { 4908 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4909 goto change; 4910 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4911 goto change; 4912 if (dl_policy(policy) && dl_param_changed(p, attr)) 4913 goto change; 4914 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 4915 goto change; 4916 4917 p->sched_reset_on_fork = reset_on_fork; 4918 retval = 0; 4919 goto unlock; 4920 } 4921 change: 4922 4923 if (user) { 4924 #ifdef CONFIG_RT_GROUP_SCHED 4925 /* 4926 * Do not allow realtime tasks into groups that have no runtime 4927 * assigned. 4928 */ 4929 if (rt_bandwidth_enabled() && rt_policy(policy) && 4930 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4931 !task_group_is_autogroup(task_group(p))) { 4932 retval = -EPERM; 4933 goto unlock; 4934 } 4935 #endif 4936 #ifdef CONFIG_SMP 4937 if (dl_bandwidth_enabled() && dl_policy(policy) && 4938 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4939 cpumask_t *span = rq->rd->span; 4940 4941 /* 4942 * Don't allow tasks with an affinity mask smaller than 4943 * the entire root_domain to become SCHED_DEADLINE. We 4944 * will also fail if there's no bandwidth available. 4945 */ 4946 if (!cpumask_subset(span, p->cpus_ptr) || 4947 rq->rd->dl_bw.bw == 0) { 4948 retval = -EPERM; 4949 goto unlock; 4950 } 4951 } 4952 #endif 4953 } 4954 4955 /* Re-check policy now with rq lock held: */ 4956 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4957 policy = oldpolicy = -1; 4958 task_rq_unlock(rq, p, &rf); 4959 if (pi) 4960 cpuset_read_unlock(); 4961 goto recheck; 4962 } 4963 4964 /* 4965 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4966 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4967 * is available. 4968 */ 4969 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4970 retval = -EBUSY; 4971 goto unlock; 4972 } 4973 4974 p->sched_reset_on_fork = reset_on_fork; 4975 oldprio = p->prio; 4976 4977 if (pi) { 4978 /* 4979 * Take priority boosted tasks into account. If the new 4980 * effective priority is unchanged, we just store the new 4981 * normal parameters and do not touch the scheduler class and 4982 * the runqueue. This will be done when the task deboost 4983 * itself. 4984 */ 4985 new_effective_prio = rt_effective_prio(p, newprio); 4986 if (new_effective_prio == oldprio) 4987 queue_flags &= ~DEQUEUE_MOVE; 4988 } 4989 4990 queued = task_on_rq_queued(p); 4991 running = task_current(rq, p); 4992 if (queued) 4993 dequeue_task(rq, p, queue_flags); 4994 if (running) 4995 put_prev_task(rq, p); 4996 4997 prev_class = p->sched_class; 4998 4999 __setscheduler(rq, p, attr, pi); 5000 __setscheduler_uclamp(p, attr); 5001 5002 if (queued) { 5003 /* 5004 * We enqueue to tail when the priority of a task is 5005 * increased (user space view). 5006 */ 5007 if (oldprio < p->prio) 5008 queue_flags |= ENQUEUE_HEAD; 5009 5010 enqueue_task(rq, p, queue_flags); 5011 } 5012 if (running) 5013 set_next_task(rq, p); 5014 5015 check_class_changed(rq, p, prev_class, oldprio); 5016 5017 /* Avoid rq from going away on us: */ 5018 preempt_disable(); 5019 task_rq_unlock(rq, p, &rf); 5020 5021 if (pi) { 5022 cpuset_read_unlock(); 5023 rt_mutex_adjust_pi(p); 5024 } 5025 5026 /* Run balance callbacks after we've adjusted the PI chain: */ 5027 balance_callback(rq); 5028 preempt_enable(); 5029 5030 return 0; 5031 5032 unlock: 5033 task_rq_unlock(rq, p, &rf); 5034 if (pi) 5035 cpuset_read_unlock(); 5036 return retval; 5037 } 5038 5039 static int _sched_setscheduler(struct task_struct *p, int policy, 5040 const struct sched_param *param, bool check) 5041 { 5042 struct sched_attr attr = { 5043 .sched_policy = policy, 5044 .sched_priority = param->sched_priority, 5045 .sched_nice = PRIO_TO_NICE(p->static_prio), 5046 }; 5047 5048 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5049 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5050 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5051 policy &= ~SCHED_RESET_ON_FORK; 5052 attr.sched_policy = policy; 5053 } 5054 5055 return __sched_setscheduler(p, &attr, check, true); 5056 } 5057 /** 5058 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5059 * @p: the task in question. 5060 * @policy: new policy. 5061 * @param: structure containing the new RT priority. 5062 * 5063 * Return: 0 on success. An error code otherwise. 5064 * 5065 * NOTE that the task may be already dead. 5066 */ 5067 int sched_setscheduler(struct task_struct *p, int policy, 5068 const struct sched_param *param) 5069 { 5070 return _sched_setscheduler(p, policy, param, true); 5071 } 5072 EXPORT_SYMBOL_GPL(sched_setscheduler); 5073 5074 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5075 { 5076 return __sched_setscheduler(p, attr, true, true); 5077 } 5078 EXPORT_SYMBOL_GPL(sched_setattr); 5079 5080 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5081 { 5082 return __sched_setscheduler(p, attr, false, true); 5083 } 5084 5085 /** 5086 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5087 * @p: the task in question. 5088 * @policy: new policy. 5089 * @param: structure containing the new RT priority. 5090 * 5091 * Just like sched_setscheduler, only don't bother checking if the 5092 * current context has permission. For example, this is needed in 5093 * stop_machine(): we create temporary high priority worker threads, 5094 * but our caller might not have that capability. 5095 * 5096 * Return: 0 on success. An error code otherwise. 5097 */ 5098 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5099 const struct sched_param *param) 5100 { 5101 return _sched_setscheduler(p, policy, param, false); 5102 } 5103 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5104 5105 static int 5106 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5107 { 5108 struct sched_param lparam; 5109 struct task_struct *p; 5110 int retval; 5111 5112 if (!param || pid < 0) 5113 return -EINVAL; 5114 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5115 return -EFAULT; 5116 5117 rcu_read_lock(); 5118 retval = -ESRCH; 5119 p = find_process_by_pid(pid); 5120 if (likely(p)) 5121 get_task_struct(p); 5122 rcu_read_unlock(); 5123 5124 if (likely(p)) { 5125 retval = sched_setscheduler(p, policy, &lparam); 5126 put_task_struct(p); 5127 } 5128 5129 return retval; 5130 } 5131 5132 /* 5133 * Mimics kernel/events/core.c perf_copy_attr(). 5134 */ 5135 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5136 { 5137 u32 size; 5138 int ret; 5139 5140 /* Zero the full structure, so that a short copy will be nice: */ 5141 memset(attr, 0, sizeof(*attr)); 5142 5143 ret = get_user(size, &uattr->size); 5144 if (ret) 5145 return ret; 5146 5147 /* ABI compatibility quirk: */ 5148 if (!size) 5149 size = SCHED_ATTR_SIZE_VER0; 5150 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5151 goto err_size; 5152 5153 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5154 if (ret) { 5155 if (ret == -E2BIG) 5156 goto err_size; 5157 return ret; 5158 } 5159 5160 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5161 size < SCHED_ATTR_SIZE_VER1) 5162 return -EINVAL; 5163 5164 /* 5165 * XXX: Do we want to be lenient like existing syscalls; or do we want 5166 * to be strict and return an error on out-of-bounds values? 5167 */ 5168 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5169 5170 return 0; 5171 5172 err_size: 5173 put_user(sizeof(*attr), &uattr->size); 5174 return -E2BIG; 5175 } 5176 5177 /** 5178 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5179 * @pid: the pid in question. 5180 * @policy: new policy. 5181 * @param: structure containing the new RT priority. 5182 * 5183 * Return: 0 on success. An error code otherwise. 5184 */ 5185 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5186 { 5187 if (policy < 0) 5188 return -EINVAL; 5189 5190 return do_sched_setscheduler(pid, policy, param); 5191 } 5192 5193 /** 5194 * sys_sched_setparam - set/change the RT priority of a thread 5195 * @pid: the pid in question. 5196 * @param: structure containing the new RT priority. 5197 * 5198 * Return: 0 on success. An error code otherwise. 5199 */ 5200 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5201 { 5202 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5203 } 5204 5205 /** 5206 * sys_sched_setattr - same as above, but with extended sched_attr 5207 * @pid: the pid in question. 5208 * @uattr: structure containing the extended parameters. 5209 * @flags: for future extension. 5210 */ 5211 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5212 unsigned int, flags) 5213 { 5214 struct sched_attr attr; 5215 struct task_struct *p; 5216 int retval; 5217 5218 if (!uattr || pid < 0 || flags) 5219 return -EINVAL; 5220 5221 retval = sched_copy_attr(uattr, &attr); 5222 if (retval) 5223 return retval; 5224 5225 if ((int)attr.sched_policy < 0) 5226 return -EINVAL; 5227 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5228 attr.sched_policy = SETPARAM_POLICY; 5229 5230 rcu_read_lock(); 5231 retval = -ESRCH; 5232 p = find_process_by_pid(pid); 5233 if (likely(p)) 5234 get_task_struct(p); 5235 rcu_read_unlock(); 5236 5237 if (likely(p)) { 5238 retval = sched_setattr(p, &attr); 5239 put_task_struct(p); 5240 } 5241 5242 return retval; 5243 } 5244 5245 /** 5246 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5247 * @pid: the pid in question. 5248 * 5249 * Return: On success, the policy of the thread. Otherwise, a negative error 5250 * code. 5251 */ 5252 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5253 { 5254 struct task_struct *p; 5255 int retval; 5256 5257 if (pid < 0) 5258 return -EINVAL; 5259 5260 retval = -ESRCH; 5261 rcu_read_lock(); 5262 p = find_process_by_pid(pid); 5263 if (p) { 5264 retval = security_task_getscheduler(p); 5265 if (!retval) 5266 retval = p->policy 5267 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5268 } 5269 rcu_read_unlock(); 5270 return retval; 5271 } 5272 5273 /** 5274 * sys_sched_getparam - get the RT priority of a thread 5275 * @pid: the pid in question. 5276 * @param: structure containing the RT priority. 5277 * 5278 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5279 * code. 5280 */ 5281 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5282 { 5283 struct sched_param lp = { .sched_priority = 0 }; 5284 struct task_struct *p; 5285 int retval; 5286 5287 if (!param || pid < 0) 5288 return -EINVAL; 5289 5290 rcu_read_lock(); 5291 p = find_process_by_pid(pid); 5292 retval = -ESRCH; 5293 if (!p) 5294 goto out_unlock; 5295 5296 retval = security_task_getscheduler(p); 5297 if (retval) 5298 goto out_unlock; 5299 5300 if (task_has_rt_policy(p)) 5301 lp.sched_priority = p->rt_priority; 5302 rcu_read_unlock(); 5303 5304 /* 5305 * This one might sleep, we cannot do it with a spinlock held ... 5306 */ 5307 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5308 5309 return retval; 5310 5311 out_unlock: 5312 rcu_read_unlock(); 5313 return retval; 5314 } 5315 5316 /* 5317 * Copy the kernel size attribute structure (which might be larger 5318 * than what user-space knows about) to user-space. 5319 * 5320 * Note that all cases are valid: user-space buffer can be larger or 5321 * smaller than the kernel-space buffer. The usual case is that both 5322 * have the same size. 5323 */ 5324 static int 5325 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5326 struct sched_attr *kattr, 5327 unsigned int usize) 5328 { 5329 unsigned int ksize = sizeof(*kattr); 5330 5331 if (!access_ok(uattr, usize)) 5332 return -EFAULT; 5333 5334 /* 5335 * sched_getattr() ABI forwards and backwards compatibility: 5336 * 5337 * If usize == ksize then we just copy everything to user-space and all is good. 5338 * 5339 * If usize < ksize then we only copy as much as user-space has space for, 5340 * this keeps ABI compatibility as well. We skip the rest. 5341 * 5342 * If usize > ksize then user-space is using a newer version of the ABI, 5343 * which part the kernel doesn't know about. Just ignore it - tooling can 5344 * detect the kernel's knowledge of attributes from the attr->size value 5345 * which is set to ksize in this case. 5346 */ 5347 kattr->size = min(usize, ksize); 5348 5349 if (copy_to_user(uattr, kattr, kattr->size)) 5350 return -EFAULT; 5351 5352 return 0; 5353 } 5354 5355 /** 5356 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5357 * @pid: the pid in question. 5358 * @uattr: structure containing the extended parameters. 5359 * @usize: sizeof(attr) for fwd/bwd comp. 5360 * @flags: for future extension. 5361 */ 5362 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5363 unsigned int, usize, unsigned int, flags) 5364 { 5365 struct sched_attr kattr = { }; 5366 struct task_struct *p; 5367 int retval; 5368 5369 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5370 usize < SCHED_ATTR_SIZE_VER0 || flags) 5371 return -EINVAL; 5372 5373 rcu_read_lock(); 5374 p = find_process_by_pid(pid); 5375 retval = -ESRCH; 5376 if (!p) 5377 goto out_unlock; 5378 5379 retval = security_task_getscheduler(p); 5380 if (retval) 5381 goto out_unlock; 5382 5383 kattr.sched_policy = p->policy; 5384 if (p->sched_reset_on_fork) 5385 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5386 if (task_has_dl_policy(p)) 5387 __getparam_dl(p, &kattr); 5388 else if (task_has_rt_policy(p)) 5389 kattr.sched_priority = p->rt_priority; 5390 else 5391 kattr.sched_nice = task_nice(p); 5392 5393 #ifdef CONFIG_UCLAMP_TASK 5394 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5395 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5396 #endif 5397 5398 rcu_read_unlock(); 5399 5400 return sched_attr_copy_to_user(uattr, &kattr, usize); 5401 5402 out_unlock: 5403 rcu_read_unlock(); 5404 return retval; 5405 } 5406 5407 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5408 { 5409 cpumask_var_t cpus_allowed, new_mask; 5410 struct task_struct *p; 5411 int retval; 5412 5413 rcu_read_lock(); 5414 5415 p = find_process_by_pid(pid); 5416 if (!p) { 5417 rcu_read_unlock(); 5418 return -ESRCH; 5419 } 5420 5421 /* Prevent p going away */ 5422 get_task_struct(p); 5423 rcu_read_unlock(); 5424 5425 if (p->flags & PF_NO_SETAFFINITY) { 5426 retval = -EINVAL; 5427 goto out_put_task; 5428 } 5429 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5430 retval = -ENOMEM; 5431 goto out_put_task; 5432 } 5433 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5434 retval = -ENOMEM; 5435 goto out_free_cpus_allowed; 5436 } 5437 retval = -EPERM; 5438 if (!check_same_owner(p)) { 5439 rcu_read_lock(); 5440 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5441 rcu_read_unlock(); 5442 goto out_free_new_mask; 5443 } 5444 rcu_read_unlock(); 5445 } 5446 5447 retval = security_task_setscheduler(p); 5448 if (retval) 5449 goto out_free_new_mask; 5450 5451 5452 cpuset_cpus_allowed(p, cpus_allowed); 5453 cpumask_and(new_mask, in_mask, cpus_allowed); 5454 5455 /* 5456 * Since bandwidth control happens on root_domain basis, 5457 * if admission test is enabled, we only admit -deadline 5458 * tasks allowed to run on all the CPUs in the task's 5459 * root_domain. 5460 */ 5461 #ifdef CONFIG_SMP 5462 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5463 rcu_read_lock(); 5464 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5465 retval = -EBUSY; 5466 rcu_read_unlock(); 5467 goto out_free_new_mask; 5468 } 5469 rcu_read_unlock(); 5470 } 5471 #endif 5472 again: 5473 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5474 5475 if (!retval) { 5476 cpuset_cpus_allowed(p, cpus_allowed); 5477 if (!cpumask_subset(new_mask, cpus_allowed)) { 5478 /* 5479 * We must have raced with a concurrent cpuset 5480 * update. Just reset the cpus_allowed to the 5481 * cpuset's cpus_allowed 5482 */ 5483 cpumask_copy(new_mask, cpus_allowed); 5484 goto again; 5485 } 5486 } 5487 out_free_new_mask: 5488 free_cpumask_var(new_mask); 5489 out_free_cpus_allowed: 5490 free_cpumask_var(cpus_allowed); 5491 out_put_task: 5492 put_task_struct(p); 5493 return retval; 5494 } 5495 5496 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5497 struct cpumask *new_mask) 5498 { 5499 if (len < cpumask_size()) 5500 cpumask_clear(new_mask); 5501 else if (len > cpumask_size()) 5502 len = cpumask_size(); 5503 5504 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5505 } 5506 5507 /** 5508 * sys_sched_setaffinity - set the CPU affinity of a process 5509 * @pid: pid of the process 5510 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5511 * @user_mask_ptr: user-space pointer to the new CPU mask 5512 * 5513 * Return: 0 on success. An error code otherwise. 5514 */ 5515 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5516 unsigned long __user *, user_mask_ptr) 5517 { 5518 cpumask_var_t new_mask; 5519 int retval; 5520 5521 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5522 return -ENOMEM; 5523 5524 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5525 if (retval == 0) 5526 retval = sched_setaffinity(pid, new_mask); 5527 free_cpumask_var(new_mask); 5528 return retval; 5529 } 5530 5531 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5532 { 5533 struct task_struct *p; 5534 unsigned long flags; 5535 int retval; 5536 5537 rcu_read_lock(); 5538 5539 retval = -ESRCH; 5540 p = find_process_by_pid(pid); 5541 if (!p) 5542 goto out_unlock; 5543 5544 retval = security_task_getscheduler(p); 5545 if (retval) 5546 goto out_unlock; 5547 5548 raw_spin_lock_irqsave(&p->pi_lock, flags); 5549 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5550 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5551 5552 out_unlock: 5553 rcu_read_unlock(); 5554 5555 return retval; 5556 } 5557 5558 /** 5559 * sys_sched_getaffinity - get the CPU affinity of a process 5560 * @pid: pid of the process 5561 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5562 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5563 * 5564 * Return: size of CPU mask copied to user_mask_ptr on success. An 5565 * error code otherwise. 5566 */ 5567 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5568 unsigned long __user *, user_mask_ptr) 5569 { 5570 int ret; 5571 cpumask_var_t mask; 5572 5573 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5574 return -EINVAL; 5575 if (len & (sizeof(unsigned long)-1)) 5576 return -EINVAL; 5577 5578 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5579 return -ENOMEM; 5580 5581 ret = sched_getaffinity(pid, mask); 5582 if (ret == 0) { 5583 unsigned int retlen = min(len, cpumask_size()); 5584 5585 if (copy_to_user(user_mask_ptr, mask, retlen)) 5586 ret = -EFAULT; 5587 else 5588 ret = retlen; 5589 } 5590 free_cpumask_var(mask); 5591 5592 return ret; 5593 } 5594 5595 /** 5596 * sys_sched_yield - yield the current processor to other threads. 5597 * 5598 * This function yields the current CPU to other tasks. If there are no 5599 * other threads running on this CPU then this function will return. 5600 * 5601 * Return: 0. 5602 */ 5603 static void do_sched_yield(void) 5604 { 5605 struct rq_flags rf; 5606 struct rq *rq; 5607 5608 rq = this_rq_lock_irq(&rf); 5609 5610 schedstat_inc(rq->yld_count); 5611 current->sched_class->yield_task(rq); 5612 5613 /* 5614 * Since we are going to call schedule() anyway, there's 5615 * no need to preempt or enable interrupts: 5616 */ 5617 preempt_disable(); 5618 rq_unlock(rq, &rf); 5619 sched_preempt_enable_no_resched(); 5620 5621 schedule(); 5622 } 5623 5624 SYSCALL_DEFINE0(sched_yield) 5625 { 5626 do_sched_yield(); 5627 return 0; 5628 } 5629 5630 #ifndef CONFIG_PREEMPTION 5631 int __sched _cond_resched(void) 5632 { 5633 if (should_resched(0)) { 5634 preempt_schedule_common(); 5635 return 1; 5636 } 5637 rcu_all_qs(); 5638 return 0; 5639 } 5640 EXPORT_SYMBOL(_cond_resched); 5641 #endif 5642 5643 /* 5644 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5645 * call schedule, and on return reacquire the lock. 5646 * 5647 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 5648 * operations here to prevent schedule() from being called twice (once via 5649 * spin_unlock(), once by hand). 5650 */ 5651 int __cond_resched_lock(spinlock_t *lock) 5652 { 5653 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5654 int ret = 0; 5655 5656 lockdep_assert_held(lock); 5657 5658 if (spin_needbreak(lock) || resched) { 5659 spin_unlock(lock); 5660 if (resched) 5661 preempt_schedule_common(); 5662 else 5663 cpu_relax(); 5664 ret = 1; 5665 spin_lock(lock); 5666 } 5667 return ret; 5668 } 5669 EXPORT_SYMBOL(__cond_resched_lock); 5670 5671 /** 5672 * yield - yield the current processor to other threads. 5673 * 5674 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5675 * 5676 * The scheduler is at all times free to pick the calling task as the most 5677 * eligible task to run, if removing the yield() call from your code breaks 5678 * it, its already broken. 5679 * 5680 * Typical broken usage is: 5681 * 5682 * while (!event) 5683 * yield(); 5684 * 5685 * where one assumes that yield() will let 'the other' process run that will 5686 * make event true. If the current task is a SCHED_FIFO task that will never 5687 * happen. Never use yield() as a progress guarantee!! 5688 * 5689 * If you want to use yield() to wait for something, use wait_event(). 5690 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5691 * If you still want to use yield(), do not! 5692 */ 5693 void __sched yield(void) 5694 { 5695 set_current_state(TASK_RUNNING); 5696 do_sched_yield(); 5697 } 5698 EXPORT_SYMBOL(yield); 5699 5700 /** 5701 * yield_to - yield the current processor to another thread in 5702 * your thread group, or accelerate that thread toward the 5703 * processor it's on. 5704 * @p: target task 5705 * @preempt: whether task preemption is allowed or not 5706 * 5707 * It's the caller's job to ensure that the target task struct 5708 * can't go away on us before we can do any checks. 5709 * 5710 * Return: 5711 * true (>0) if we indeed boosted the target task. 5712 * false (0) if we failed to boost the target. 5713 * -ESRCH if there's no task to yield to. 5714 */ 5715 int __sched yield_to(struct task_struct *p, bool preempt) 5716 { 5717 struct task_struct *curr = current; 5718 struct rq *rq, *p_rq; 5719 unsigned long flags; 5720 int yielded = 0; 5721 5722 local_irq_save(flags); 5723 rq = this_rq(); 5724 5725 again: 5726 p_rq = task_rq(p); 5727 /* 5728 * If we're the only runnable task on the rq and target rq also 5729 * has only one task, there's absolutely no point in yielding. 5730 */ 5731 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5732 yielded = -ESRCH; 5733 goto out_irq; 5734 } 5735 5736 double_rq_lock(rq, p_rq); 5737 if (task_rq(p) != p_rq) { 5738 double_rq_unlock(rq, p_rq); 5739 goto again; 5740 } 5741 5742 if (!curr->sched_class->yield_to_task) 5743 goto out_unlock; 5744 5745 if (curr->sched_class != p->sched_class) 5746 goto out_unlock; 5747 5748 if (task_running(p_rq, p) || p->state) 5749 goto out_unlock; 5750 5751 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5752 if (yielded) { 5753 schedstat_inc(rq->yld_count); 5754 /* 5755 * Make p's CPU reschedule; pick_next_entity takes care of 5756 * fairness. 5757 */ 5758 if (preempt && rq != p_rq) 5759 resched_curr(p_rq); 5760 } 5761 5762 out_unlock: 5763 double_rq_unlock(rq, p_rq); 5764 out_irq: 5765 local_irq_restore(flags); 5766 5767 if (yielded > 0) 5768 schedule(); 5769 5770 return yielded; 5771 } 5772 EXPORT_SYMBOL_GPL(yield_to); 5773 5774 int io_schedule_prepare(void) 5775 { 5776 int old_iowait = current->in_iowait; 5777 5778 current->in_iowait = 1; 5779 blk_schedule_flush_plug(current); 5780 5781 return old_iowait; 5782 } 5783 5784 void io_schedule_finish(int token) 5785 { 5786 current->in_iowait = token; 5787 } 5788 5789 /* 5790 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5791 * that process accounting knows that this is a task in IO wait state. 5792 */ 5793 long __sched io_schedule_timeout(long timeout) 5794 { 5795 int token; 5796 long ret; 5797 5798 token = io_schedule_prepare(); 5799 ret = schedule_timeout(timeout); 5800 io_schedule_finish(token); 5801 5802 return ret; 5803 } 5804 EXPORT_SYMBOL(io_schedule_timeout); 5805 5806 void __sched io_schedule(void) 5807 { 5808 int token; 5809 5810 token = io_schedule_prepare(); 5811 schedule(); 5812 io_schedule_finish(token); 5813 } 5814 EXPORT_SYMBOL(io_schedule); 5815 5816 /** 5817 * sys_sched_get_priority_max - return maximum RT priority. 5818 * @policy: scheduling class. 5819 * 5820 * Return: On success, this syscall returns the maximum 5821 * rt_priority that can be used by a given scheduling class. 5822 * On failure, a negative error code is returned. 5823 */ 5824 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5825 { 5826 int ret = -EINVAL; 5827 5828 switch (policy) { 5829 case SCHED_FIFO: 5830 case SCHED_RR: 5831 ret = MAX_USER_RT_PRIO-1; 5832 break; 5833 case SCHED_DEADLINE: 5834 case SCHED_NORMAL: 5835 case SCHED_BATCH: 5836 case SCHED_IDLE: 5837 ret = 0; 5838 break; 5839 } 5840 return ret; 5841 } 5842 5843 /** 5844 * sys_sched_get_priority_min - return minimum RT priority. 5845 * @policy: scheduling class. 5846 * 5847 * Return: On success, this syscall returns the minimum 5848 * rt_priority that can be used by a given scheduling class. 5849 * On failure, a negative error code is returned. 5850 */ 5851 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5852 { 5853 int ret = -EINVAL; 5854 5855 switch (policy) { 5856 case SCHED_FIFO: 5857 case SCHED_RR: 5858 ret = 1; 5859 break; 5860 case SCHED_DEADLINE: 5861 case SCHED_NORMAL: 5862 case SCHED_BATCH: 5863 case SCHED_IDLE: 5864 ret = 0; 5865 } 5866 return ret; 5867 } 5868 5869 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5870 { 5871 struct task_struct *p; 5872 unsigned int time_slice; 5873 struct rq_flags rf; 5874 struct rq *rq; 5875 int retval; 5876 5877 if (pid < 0) 5878 return -EINVAL; 5879 5880 retval = -ESRCH; 5881 rcu_read_lock(); 5882 p = find_process_by_pid(pid); 5883 if (!p) 5884 goto out_unlock; 5885 5886 retval = security_task_getscheduler(p); 5887 if (retval) 5888 goto out_unlock; 5889 5890 rq = task_rq_lock(p, &rf); 5891 time_slice = 0; 5892 if (p->sched_class->get_rr_interval) 5893 time_slice = p->sched_class->get_rr_interval(rq, p); 5894 task_rq_unlock(rq, p, &rf); 5895 5896 rcu_read_unlock(); 5897 jiffies_to_timespec64(time_slice, t); 5898 return 0; 5899 5900 out_unlock: 5901 rcu_read_unlock(); 5902 return retval; 5903 } 5904 5905 /** 5906 * sys_sched_rr_get_interval - return the default timeslice of a process. 5907 * @pid: pid of the process. 5908 * @interval: userspace pointer to the timeslice value. 5909 * 5910 * this syscall writes the default timeslice value of a given process 5911 * into the user-space timespec buffer. A value of '0' means infinity. 5912 * 5913 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5914 * an error code. 5915 */ 5916 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5917 struct __kernel_timespec __user *, interval) 5918 { 5919 struct timespec64 t; 5920 int retval = sched_rr_get_interval(pid, &t); 5921 5922 if (retval == 0) 5923 retval = put_timespec64(&t, interval); 5924 5925 return retval; 5926 } 5927 5928 #ifdef CONFIG_COMPAT_32BIT_TIME 5929 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5930 struct old_timespec32 __user *, interval) 5931 { 5932 struct timespec64 t; 5933 int retval = sched_rr_get_interval(pid, &t); 5934 5935 if (retval == 0) 5936 retval = put_old_timespec32(&t, interval); 5937 return retval; 5938 } 5939 #endif 5940 5941 void sched_show_task(struct task_struct *p) 5942 { 5943 unsigned long free = 0; 5944 int ppid; 5945 5946 if (!try_get_task_stack(p)) 5947 return; 5948 5949 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5950 5951 if (p->state == TASK_RUNNING) 5952 printk(KERN_CONT " running task "); 5953 #ifdef CONFIG_DEBUG_STACK_USAGE 5954 free = stack_not_used(p); 5955 #endif 5956 ppid = 0; 5957 rcu_read_lock(); 5958 if (pid_alive(p)) 5959 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5960 rcu_read_unlock(); 5961 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5962 task_pid_nr(p), ppid, 5963 (unsigned long)task_thread_info(p)->flags); 5964 5965 print_worker_info(KERN_INFO, p); 5966 show_stack(p, NULL); 5967 put_task_stack(p); 5968 } 5969 EXPORT_SYMBOL_GPL(sched_show_task); 5970 5971 static inline bool 5972 state_filter_match(unsigned long state_filter, struct task_struct *p) 5973 { 5974 /* no filter, everything matches */ 5975 if (!state_filter) 5976 return true; 5977 5978 /* filter, but doesn't match */ 5979 if (!(p->state & state_filter)) 5980 return false; 5981 5982 /* 5983 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5984 * TASK_KILLABLE). 5985 */ 5986 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5987 return false; 5988 5989 return true; 5990 } 5991 5992 5993 void show_state_filter(unsigned long state_filter) 5994 { 5995 struct task_struct *g, *p; 5996 5997 #if BITS_PER_LONG == 32 5998 printk(KERN_INFO 5999 " task PC stack pid father\n"); 6000 #else 6001 printk(KERN_INFO 6002 " task PC stack pid father\n"); 6003 #endif 6004 rcu_read_lock(); 6005 for_each_process_thread(g, p) { 6006 /* 6007 * reset the NMI-timeout, listing all files on a slow 6008 * console might take a lot of time: 6009 * Also, reset softlockup watchdogs on all CPUs, because 6010 * another CPU might be blocked waiting for us to process 6011 * an IPI. 6012 */ 6013 touch_nmi_watchdog(); 6014 touch_all_softlockup_watchdogs(); 6015 if (state_filter_match(state_filter, p)) 6016 sched_show_task(p); 6017 } 6018 6019 #ifdef CONFIG_SCHED_DEBUG 6020 if (!state_filter) 6021 sysrq_sched_debug_show(); 6022 #endif 6023 rcu_read_unlock(); 6024 /* 6025 * Only show locks if all tasks are dumped: 6026 */ 6027 if (!state_filter) 6028 debug_show_all_locks(); 6029 } 6030 6031 /** 6032 * init_idle - set up an idle thread for a given CPU 6033 * @idle: task in question 6034 * @cpu: CPU the idle task belongs to 6035 * 6036 * NOTE: this function does not set the idle thread's NEED_RESCHED 6037 * flag, to make booting more robust. 6038 */ 6039 void init_idle(struct task_struct *idle, int cpu) 6040 { 6041 struct rq *rq = cpu_rq(cpu); 6042 unsigned long flags; 6043 6044 __sched_fork(0, idle); 6045 6046 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6047 raw_spin_lock(&rq->lock); 6048 6049 idle->state = TASK_RUNNING; 6050 idle->se.exec_start = sched_clock(); 6051 idle->flags |= PF_IDLE; 6052 6053 kasan_unpoison_task_stack(idle); 6054 6055 #ifdef CONFIG_SMP 6056 /* 6057 * Its possible that init_idle() gets called multiple times on a task, 6058 * in that case do_set_cpus_allowed() will not do the right thing. 6059 * 6060 * And since this is boot we can forgo the serialization. 6061 */ 6062 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6063 #endif 6064 /* 6065 * We're having a chicken and egg problem, even though we are 6066 * holding rq->lock, the CPU isn't yet set to this CPU so the 6067 * lockdep check in task_group() will fail. 6068 * 6069 * Similar case to sched_fork(). / Alternatively we could 6070 * use task_rq_lock() here and obtain the other rq->lock. 6071 * 6072 * Silence PROVE_RCU 6073 */ 6074 rcu_read_lock(); 6075 __set_task_cpu(idle, cpu); 6076 rcu_read_unlock(); 6077 6078 rq->idle = idle; 6079 rcu_assign_pointer(rq->curr, idle); 6080 idle->on_rq = TASK_ON_RQ_QUEUED; 6081 #ifdef CONFIG_SMP 6082 idle->on_cpu = 1; 6083 #endif 6084 raw_spin_unlock(&rq->lock); 6085 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6086 6087 /* Set the preempt count _outside_ the spinlocks! */ 6088 init_idle_preempt_count(idle, cpu); 6089 6090 /* 6091 * The idle tasks have their own, simple scheduling class: 6092 */ 6093 idle->sched_class = &idle_sched_class; 6094 ftrace_graph_init_idle_task(idle, cpu); 6095 vtime_init_idle(idle, cpu); 6096 #ifdef CONFIG_SMP 6097 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6098 #endif 6099 } 6100 6101 #ifdef CONFIG_SMP 6102 6103 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6104 const struct cpumask *trial) 6105 { 6106 int ret = 1; 6107 6108 if (!cpumask_weight(cur)) 6109 return ret; 6110 6111 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6112 6113 return ret; 6114 } 6115 6116 int task_can_attach(struct task_struct *p, 6117 const struct cpumask *cs_cpus_allowed) 6118 { 6119 int ret = 0; 6120 6121 /* 6122 * Kthreads which disallow setaffinity shouldn't be moved 6123 * to a new cpuset; we don't want to change their CPU 6124 * affinity and isolating such threads by their set of 6125 * allowed nodes is unnecessary. Thus, cpusets are not 6126 * applicable for such threads. This prevents checking for 6127 * success of set_cpus_allowed_ptr() on all attached tasks 6128 * before cpus_mask may be changed. 6129 */ 6130 if (p->flags & PF_NO_SETAFFINITY) { 6131 ret = -EINVAL; 6132 goto out; 6133 } 6134 6135 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6136 cs_cpus_allowed)) 6137 ret = dl_task_can_attach(p, cs_cpus_allowed); 6138 6139 out: 6140 return ret; 6141 } 6142 6143 bool sched_smp_initialized __read_mostly; 6144 6145 #ifdef CONFIG_NUMA_BALANCING 6146 /* Migrate current task p to target_cpu */ 6147 int migrate_task_to(struct task_struct *p, int target_cpu) 6148 { 6149 struct migration_arg arg = { p, target_cpu }; 6150 int curr_cpu = task_cpu(p); 6151 6152 if (curr_cpu == target_cpu) 6153 return 0; 6154 6155 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6156 return -EINVAL; 6157 6158 /* TODO: This is not properly updating schedstats */ 6159 6160 trace_sched_move_numa(p, curr_cpu, target_cpu); 6161 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6162 } 6163 6164 /* 6165 * Requeue a task on a given node and accurately track the number of NUMA 6166 * tasks on the runqueues 6167 */ 6168 void sched_setnuma(struct task_struct *p, int nid) 6169 { 6170 bool queued, running; 6171 struct rq_flags rf; 6172 struct rq *rq; 6173 6174 rq = task_rq_lock(p, &rf); 6175 queued = task_on_rq_queued(p); 6176 running = task_current(rq, p); 6177 6178 if (queued) 6179 dequeue_task(rq, p, DEQUEUE_SAVE); 6180 if (running) 6181 put_prev_task(rq, p); 6182 6183 p->numa_preferred_nid = nid; 6184 6185 if (queued) 6186 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6187 if (running) 6188 set_next_task(rq, p); 6189 task_rq_unlock(rq, p, &rf); 6190 } 6191 #endif /* CONFIG_NUMA_BALANCING */ 6192 6193 #ifdef CONFIG_HOTPLUG_CPU 6194 /* 6195 * Ensure that the idle task is using init_mm right before its CPU goes 6196 * offline. 6197 */ 6198 void idle_task_exit(void) 6199 { 6200 struct mm_struct *mm = current->active_mm; 6201 6202 BUG_ON(cpu_online(smp_processor_id())); 6203 6204 if (mm != &init_mm) { 6205 switch_mm(mm, &init_mm, current); 6206 current->active_mm = &init_mm; 6207 finish_arch_post_lock_switch(); 6208 } 6209 mmdrop(mm); 6210 } 6211 6212 /* 6213 * Since this CPU is going 'away' for a while, fold any nr_active delta 6214 * we might have. Assumes we're called after migrate_tasks() so that the 6215 * nr_active count is stable. We need to take the teardown thread which 6216 * is calling this into account, so we hand in adjust = 1 to the load 6217 * calculation. 6218 * 6219 * Also see the comment "Global load-average calculations". 6220 */ 6221 static void calc_load_migrate(struct rq *rq) 6222 { 6223 long delta = calc_load_fold_active(rq, 1); 6224 if (delta) 6225 atomic_long_add(delta, &calc_load_tasks); 6226 } 6227 6228 static struct task_struct *__pick_migrate_task(struct rq *rq) 6229 { 6230 const struct sched_class *class; 6231 struct task_struct *next; 6232 6233 for_each_class(class) { 6234 next = class->pick_next_task(rq); 6235 if (next) { 6236 next->sched_class->put_prev_task(rq, next); 6237 return next; 6238 } 6239 } 6240 6241 /* The idle class should always have a runnable task */ 6242 BUG(); 6243 } 6244 6245 /* 6246 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6247 * try_to_wake_up()->select_task_rq(). 6248 * 6249 * Called with rq->lock held even though we'er in stop_machine() and 6250 * there's no concurrency possible, we hold the required locks anyway 6251 * because of lock validation efforts. 6252 */ 6253 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6254 { 6255 struct rq *rq = dead_rq; 6256 struct task_struct *next, *stop = rq->stop; 6257 struct rq_flags orf = *rf; 6258 int dest_cpu; 6259 6260 /* 6261 * Fudge the rq selection such that the below task selection loop 6262 * doesn't get stuck on the currently eligible stop task. 6263 * 6264 * We're currently inside stop_machine() and the rq is either stuck 6265 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6266 * either way we should never end up calling schedule() until we're 6267 * done here. 6268 */ 6269 rq->stop = NULL; 6270 6271 /* 6272 * put_prev_task() and pick_next_task() sched 6273 * class method both need to have an up-to-date 6274 * value of rq->clock[_task] 6275 */ 6276 update_rq_clock(rq); 6277 6278 for (;;) { 6279 /* 6280 * There's this thread running, bail when that's the only 6281 * remaining thread: 6282 */ 6283 if (rq->nr_running == 1) 6284 break; 6285 6286 next = __pick_migrate_task(rq); 6287 6288 /* 6289 * Rules for changing task_struct::cpus_mask are holding 6290 * both pi_lock and rq->lock, such that holding either 6291 * stabilizes the mask. 6292 * 6293 * Drop rq->lock is not quite as disastrous as it usually is 6294 * because !cpu_active at this point, which means load-balance 6295 * will not interfere. Also, stop-machine. 6296 */ 6297 rq_unlock(rq, rf); 6298 raw_spin_lock(&next->pi_lock); 6299 rq_relock(rq, rf); 6300 6301 /* 6302 * Since we're inside stop-machine, _nothing_ should have 6303 * changed the task, WARN if weird stuff happened, because in 6304 * that case the above rq->lock drop is a fail too. 6305 */ 6306 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6307 raw_spin_unlock(&next->pi_lock); 6308 continue; 6309 } 6310 6311 /* Find suitable destination for @next, with force if needed. */ 6312 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6313 rq = __migrate_task(rq, rf, next, dest_cpu); 6314 if (rq != dead_rq) { 6315 rq_unlock(rq, rf); 6316 rq = dead_rq; 6317 *rf = orf; 6318 rq_relock(rq, rf); 6319 } 6320 raw_spin_unlock(&next->pi_lock); 6321 } 6322 6323 rq->stop = stop; 6324 } 6325 #endif /* CONFIG_HOTPLUG_CPU */ 6326 6327 void set_rq_online(struct rq *rq) 6328 { 6329 if (!rq->online) { 6330 const struct sched_class *class; 6331 6332 cpumask_set_cpu(rq->cpu, rq->rd->online); 6333 rq->online = 1; 6334 6335 for_each_class(class) { 6336 if (class->rq_online) 6337 class->rq_online(rq); 6338 } 6339 } 6340 } 6341 6342 void set_rq_offline(struct rq *rq) 6343 { 6344 if (rq->online) { 6345 const struct sched_class *class; 6346 6347 for_each_class(class) { 6348 if (class->rq_offline) 6349 class->rq_offline(rq); 6350 } 6351 6352 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6353 rq->online = 0; 6354 } 6355 } 6356 6357 /* 6358 * used to mark begin/end of suspend/resume: 6359 */ 6360 static int num_cpus_frozen; 6361 6362 /* 6363 * Update cpusets according to cpu_active mask. If cpusets are 6364 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6365 * around partition_sched_domains(). 6366 * 6367 * If we come here as part of a suspend/resume, don't touch cpusets because we 6368 * want to restore it back to its original state upon resume anyway. 6369 */ 6370 static void cpuset_cpu_active(void) 6371 { 6372 if (cpuhp_tasks_frozen) { 6373 /* 6374 * num_cpus_frozen tracks how many CPUs are involved in suspend 6375 * resume sequence. As long as this is not the last online 6376 * operation in the resume sequence, just build a single sched 6377 * domain, ignoring cpusets. 6378 */ 6379 partition_sched_domains(1, NULL, NULL); 6380 if (--num_cpus_frozen) 6381 return; 6382 /* 6383 * This is the last CPU online operation. So fall through and 6384 * restore the original sched domains by considering the 6385 * cpuset configurations. 6386 */ 6387 cpuset_force_rebuild(); 6388 } 6389 cpuset_update_active_cpus(); 6390 } 6391 6392 static int cpuset_cpu_inactive(unsigned int cpu) 6393 { 6394 if (!cpuhp_tasks_frozen) { 6395 if (dl_cpu_busy(cpu)) 6396 return -EBUSY; 6397 cpuset_update_active_cpus(); 6398 } else { 6399 num_cpus_frozen++; 6400 partition_sched_domains(1, NULL, NULL); 6401 } 6402 return 0; 6403 } 6404 6405 int sched_cpu_activate(unsigned int cpu) 6406 { 6407 struct rq *rq = cpu_rq(cpu); 6408 struct rq_flags rf; 6409 6410 #ifdef CONFIG_SCHED_SMT 6411 /* 6412 * When going up, increment the number of cores with SMT present. 6413 */ 6414 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6415 static_branch_inc_cpuslocked(&sched_smt_present); 6416 #endif 6417 set_cpu_active(cpu, true); 6418 6419 if (sched_smp_initialized) { 6420 sched_domains_numa_masks_set(cpu); 6421 cpuset_cpu_active(); 6422 } 6423 6424 /* 6425 * Put the rq online, if not already. This happens: 6426 * 6427 * 1) In the early boot process, because we build the real domains 6428 * after all CPUs have been brought up. 6429 * 6430 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6431 * domains. 6432 */ 6433 rq_lock_irqsave(rq, &rf); 6434 if (rq->rd) { 6435 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6436 set_rq_online(rq); 6437 } 6438 rq_unlock_irqrestore(rq, &rf); 6439 6440 return 0; 6441 } 6442 6443 int sched_cpu_deactivate(unsigned int cpu) 6444 { 6445 int ret; 6446 6447 set_cpu_active(cpu, false); 6448 /* 6449 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6450 * users of this state to go away such that all new such users will 6451 * observe it. 6452 * 6453 * Do sync before park smpboot threads to take care the rcu boost case. 6454 */ 6455 synchronize_rcu(); 6456 6457 #ifdef CONFIG_SCHED_SMT 6458 /* 6459 * When going down, decrement the number of cores with SMT present. 6460 */ 6461 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6462 static_branch_dec_cpuslocked(&sched_smt_present); 6463 #endif 6464 6465 if (!sched_smp_initialized) 6466 return 0; 6467 6468 ret = cpuset_cpu_inactive(cpu); 6469 if (ret) { 6470 set_cpu_active(cpu, true); 6471 return ret; 6472 } 6473 sched_domains_numa_masks_clear(cpu); 6474 return 0; 6475 } 6476 6477 static void sched_rq_cpu_starting(unsigned int cpu) 6478 { 6479 struct rq *rq = cpu_rq(cpu); 6480 6481 rq->calc_load_update = calc_load_update; 6482 update_max_interval(); 6483 } 6484 6485 int sched_cpu_starting(unsigned int cpu) 6486 { 6487 sched_rq_cpu_starting(cpu); 6488 sched_tick_start(cpu); 6489 return 0; 6490 } 6491 6492 #ifdef CONFIG_HOTPLUG_CPU 6493 int sched_cpu_dying(unsigned int cpu) 6494 { 6495 struct rq *rq = cpu_rq(cpu); 6496 struct rq_flags rf; 6497 6498 /* Handle pending wakeups and then migrate everything off */ 6499 sched_ttwu_pending(); 6500 sched_tick_stop(cpu); 6501 6502 rq_lock_irqsave(rq, &rf); 6503 if (rq->rd) { 6504 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6505 set_rq_offline(rq); 6506 } 6507 migrate_tasks(rq, &rf); 6508 BUG_ON(rq->nr_running != 1); 6509 rq_unlock_irqrestore(rq, &rf); 6510 6511 calc_load_migrate(rq); 6512 update_max_interval(); 6513 nohz_balance_exit_idle(rq); 6514 hrtick_clear(rq); 6515 return 0; 6516 } 6517 #endif 6518 6519 void __init sched_init_smp(void) 6520 { 6521 sched_init_numa(); 6522 6523 /* 6524 * There's no userspace yet to cause hotplug operations; hence all the 6525 * CPU masks are stable and all blatant races in the below code cannot 6526 * happen. 6527 */ 6528 mutex_lock(&sched_domains_mutex); 6529 sched_init_domains(cpu_active_mask); 6530 mutex_unlock(&sched_domains_mutex); 6531 6532 /* Move init over to a non-isolated CPU */ 6533 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6534 BUG(); 6535 sched_init_granularity(); 6536 6537 init_sched_rt_class(); 6538 init_sched_dl_class(); 6539 6540 sched_smp_initialized = true; 6541 } 6542 6543 static int __init migration_init(void) 6544 { 6545 sched_cpu_starting(smp_processor_id()); 6546 return 0; 6547 } 6548 early_initcall(migration_init); 6549 6550 #else 6551 void __init sched_init_smp(void) 6552 { 6553 sched_init_granularity(); 6554 } 6555 #endif /* CONFIG_SMP */ 6556 6557 int in_sched_functions(unsigned long addr) 6558 { 6559 return in_lock_functions(addr) || 6560 (addr >= (unsigned long)__sched_text_start 6561 && addr < (unsigned long)__sched_text_end); 6562 } 6563 6564 #ifdef CONFIG_CGROUP_SCHED 6565 /* 6566 * Default task group. 6567 * Every task in system belongs to this group at bootup. 6568 */ 6569 struct task_group root_task_group; 6570 LIST_HEAD(task_groups); 6571 6572 /* Cacheline aligned slab cache for task_group */ 6573 static struct kmem_cache *task_group_cache __read_mostly; 6574 #endif 6575 6576 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6577 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6578 6579 void __init sched_init(void) 6580 { 6581 unsigned long ptr = 0; 6582 int i; 6583 6584 wait_bit_init(); 6585 6586 #ifdef CONFIG_FAIR_GROUP_SCHED 6587 ptr += 2 * nr_cpu_ids * sizeof(void **); 6588 #endif 6589 #ifdef CONFIG_RT_GROUP_SCHED 6590 ptr += 2 * nr_cpu_ids * sizeof(void **); 6591 #endif 6592 if (ptr) { 6593 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 6594 6595 #ifdef CONFIG_FAIR_GROUP_SCHED 6596 root_task_group.se = (struct sched_entity **)ptr; 6597 ptr += nr_cpu_ids * sizeof(void **); 6598 6599 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6600 ptr += nr_cpu_ids * sizeof(void **); 6601 6602 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6603 #ifdef CONFIG_RT_GROUP_SCHED 6604 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6605 ptr += nr_cpu_ids * sizeof(void **); 6606 6607 root_task_group.rt_rq = (struct rt_rq **)ptr; 6608 ptr += nr_cpu_ids * sizeof(void **); 6609 6610 #endif /* CONFIG_RT_GROUP_SCHED */ 6611 } 6612 #ifdef CONFIG_CPUMASK_OFFSTACK 6613 for_each_possible_cpu(i) { 6614 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6615 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6616 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6617 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6618 } 6619 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6620 6621 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6622 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6623 6624 #ifdef CONFIG_SMP 6625 init_defrootdomain(); 6626 #endif 6627 6628 #ifdef CONFIG_RT_GROUP_SCHED 6629 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6630 global_rt_period(), global_rt_runtime()); 6631 #endif /* CONFIG_RT_GROUP_SCHED */ 6632 6633 #ifdef CONFIG_CGROUP_SCHED 6634 task_group_cache = KMEM_CACHE(task_group, 0); 6635 6636 list_add(&root_task_group.list, &task_groups); 6637 INIT_LIST_HEAD(&root_task_group.children); 6638 INIT_LIST_HEAD(&root_task_group.siblings); 6639 autogroup_init(&init_task); 6640 #endif /* CONFIG_CGROUP_SCHED */ 6641 6642 for_each_possible_cpu(i) { 6643 struct rq *rq; 6644 6645 rq = cpu_rq(i); 6646 raw_spin_lock_init(&rq->lock); 6647 rq->nr_running = 0; 6648 rq->calc_load_active = 0; 6649 rq->calc_load_update = jiffies + LOAD_FREQ; 6650 init_cfs_rq(&rq->cfs); 6651 init_rt_rq(&rq->rt); 6652 init_dl_rq(&rq->dl); 6653 #ifdef CONFIG_FAIR_GROUP_SCHED 6654 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6655 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6656 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6657 /* 6658 * How much CPU bandwidth does root_task_group get? 6659 * 6660 * In case of task-groups formed thr' the cgroup filesystem, it 6661 * gets 100% of the CPU resources in the system. This overall 6662 * system CPU resource is divided among the tasks of 6663 * root_task_group and its child task-groups in a fair manner, 6664 * based on each entity's (task or task-group's) weight 6665 * (se->load.weight). 6666 * 6667 * In other words, if root_task_group has 10 tasks of weight 6668 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6669 * then A0's share of the CPU resource is: 6670 * 6671 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6672 * 6673 * We achieve this by letting root_task_group's tasks sit 6674 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6675 */ 6676 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6677 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6678 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6679 6680 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6681 #ifdef CONFIG_RT_GROUP_SCHED 6682 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6683 #endif 6684 #ifdef CONFIG_SMP 6685 rq->sd = NULL; 6686 rq->rd = NULL; 6687 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6688 rq->balance_callback = NULL; 6689 rq->active_balance = 0; 6690 rq->next_balance = jiffies; 6691 rq->push_cpu = 0; 6692 rq->cpu = i; 6693 rq->online = 0; 6694 rq->idle_stamp = 0; 6695 rq->avg_idle = 2*sysctl_sched_migration_cost; 6696 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6697 6698 INIT_LIST_HEAD(&rq->cfs_tasks); 6699 6700 rq_attach_root(rq, &def_root_domain); 6701 #ifdef CONFIG_NO_HZ_COMMON 6702 rq->last_load_update_tick = jiffies; 6703 rq->last_blocked_load_update_tick = jiffies; 6704 atomic_set(&rq->nohz_flags, 0); 6705 #endif 6706 #endif /* CONFIG_SMP */ 6707 hrtick_rq_init(rq); 6708 atomic_set(&rq->nr_iowait, 0); 6709 } 6710 6711 set_load_weight(&init_task, false); 6712 6713 /* 6714 * The boot idle thread does lazy MMU switching as well: 6715 */ 6716 mmgrab(&init_mm); 6717 enter_lazy_tlb(&init_mm, current); 6718 6719 /* 6720 * Make us the idle thread. Technically, schedule() should not be 6721 * called from this thread, however somewhere below it might be, 6722 * but because we are the idle thread, we just pick up running again 6723 * when this runqueue becomes "idle". 6724 */ 6725 init_idle(current, smp_processor_id()); 6726 6727 calc_load_update = jiffies + LOAD_FREQ; 6728 6729 #ifdef CONFIG_SMP 6730 idle_thread_set_boot_cpu(); 6731 #endif 6732 init_sched_fair_class(); 6733 6734 init_schedstats(); 6735 6736 psi_init(); 6737 6738 init_uclamp(); 6739 6740 scheduler_running = 1; 6741 } 6742 6743 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6744 static inline int preempt_count_equals(int preempt_offset) 6745 { 6746 int nested = preempt_count() + rcu_preempt_depth(); 6747 6748 return (nested == preempt_offset); 6749 } 6750 6751 void __might_sleep(const char *file, int line, int preempt_offset) 6752 { 6753 /* 6754 * Blocking primitives will set (and therefore destroy) current->state, 6755 * since we will exit with TASK_RUNNING make sure we enter with it, 6756 * otherwise we will destroy state. 6757 */ 6758 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6759 "do not call blocking ops when !TASK_RUNNING; " 6760 "state=%lx set at [<%p>] %pS\n", 6761 current->state, 6762 (void *)current->task_state_change, 6763 (void *)current->task_state_change); 6764 6765 ___might_sleep(file, line, preempt_offset); 6766 } 6767 EXPORT_SYMBOL(__might_sleep); 6768 6769 void ___might_sleep(const char *file, int line, int preempt_offset) 6770 { 6771 /* Ratelimiting timestamp: */ 6772 static unsigned long prev_jiffy; 6773 6774 unsigned long preempt_disable_ip; 6775 6776 /* WARN_ON_ONCE() by default, no rate limit required: */ 6777 rcu_sleep_check(); 6778 6779 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6780 !is_idle_task(current) && !current->non_block_count) || 6781 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6782 oops_in_progress) 6783 return; 6784 6785 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6786 return; 6787 prev_jiffy = jiffies; 6788 6789 /* Save this before calling printk(), since that will clobber it: */ 6790 preempt_disable_ip = get_preempt_disable_ip(current); 6791 6792 printk(KERN_ERR 6793 "BUG: sleeping function called from invalid context at %s:%d\n", 6794 file, line); 6795 printk(KERN_ERR 6796 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 6797 in_atomic(), irqs_disabled(), current->non_block_count, 6798 current->pid, current->comm); 6799 6800 if (task_stack_end_corrupted(current)) 6801 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6802 6803 debug_show_held_locks(current); 6804 if (irqs_disabled()) 6805 print_irqtrace_events(current); 6806 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6807 && !preempt_count_equals(preempt_offset)) { 6808 pr_err("Preemption disabled at:"); 6809 print_ip_sym(preempt_disable_ip); 6810 pr_cont("\n"); 6811 } 6812 dump_stack(); 6813 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6814 } 6815 EXPORT_SYMBOL(___might_sleep); 6816 6817 void __cant_sleep(const char *file, int line, int preempt_offset) 6818 { 6819 static unsigned long prev_jiffy; 6820 6821 if (irqs_disabled()) 6822 return; 6823 6824 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6825 return; 6826 6827 if (preempt_count() > preempt_offset) 6828 return; 6829 6830 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6831 return; 6832 prev_jiffy = jiffies; 6833 6834 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6835 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6836 in_atomic(), irqs_disabled(), 6837 current->pid, current->comm); 6838 6839 debug_show_held_locks(current); 6840 dump_stack(); 6841 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6842 } 6843 EXPORT_SYMBOL_GPL(__cant_sleep); 6844 #endif 6845 6846 #ifdef CONFIG_MAGIC_SYSRQ 6847 void normalize_rt_tasks(void) 6848 { 6849 struct task_struct *g, *p; 6850 struct sched_attr attr = { 6851 .sched_policy = SCHED_NORMAL, 6852 }; 6853 6854 read_lock(&tasklist_lock); 6855 for_each_process_thread(g, p) { 6856 /* 6857 * Only normalize user tasks: 6858 */ 6859 if (p->flags & PF_KTHREAD) 6860 continue; 6861 6862 p->se.exec_start = 0; 6863 schedstat_set(p->se.statistics.wait_start, 0); 6864 schedstat_set(p->se.statistics.sleep_start, 0); 6865 schedstat_set(p->se.statistics.block_start, 0); 6866 6867 if (!dl_task(p) && !rt_task(p)) { 6868 /* 6869 * Renice negative nice level userspace 6870 * tasks back to 0: 6871 */ 6872 if (task_nice(p) < 0) 6873 set_user_nice(p, 0); 6874 continue; 6875 } 6876 6877 __sched_setscheduler(p, &attr, false, false); 6878 } 6879 read_unlock(&tasklist_lock); 6880 } 6881 6882 #endif /* CONFIG_MAGIC_SYSRQ */ 6883 6884 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6885 /* 6886 * These functions are only useful for the IA64 MCA handling, or kdb. 6887 * 6888 * They can only be called when the whole system has been 6889 * stopped - every CPU needs to be quiescent, and no scheduling 6890 * activity can take place. Using them for anything else would 6891 * be a serious bug, and as a result, they aren't even visible 6892 * under any other configuration. 6893 */ 6894 6895 /** 6896 * curr_task - return the current task for a given CPU. 6897 * @cpu: the processor in question. 6898 * 6899 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6900 * 6901 * Return: The current task for @cpu. 6902 */ 6903 struct task_struct *curr_task(int cpu) 6904 { 6905 return cpu_curr(cpu); 6906 } 6907 6908 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6909 6910 #ifdef CONFIG_IA64 6911 /** 6912 * ia64_set_curr_task - set the current task for a given CPU. 6913 * @cpu: the processor in question. 6914 * @p: the task pointer to set. 6915 * 6916 * Description: This function must only be used when non-maskable interrupts 6917 * are serviced on a separate stack. It allows the architecture to switch the 6918 * notion of the current task on a CPU in a non-blocking manner. This function 6919 * must be called with all CPU's synchronized, and interrupts disabled, the 6920 * and caller must save the original value of the current task (see 6921 * curr_task() above) and restore that value before reenabling interrupts and 6922 * re-starting the system. 6923 * 6924 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6925 */ 6926 void ia64_set_curr_task(int cpu, struct task_struct *p) 6927 { 6928 cpu_curr(cpu) = p; 6929 } 6930 6931 #endif 6932 6933 #ifdef CONFIG_CGROUP_SCHED 6934 /* task_group_lock serializes the addition/removal of task groups */ 6935 static DEFINE_SPINLOCK(task_group_lock); 6936 6937 static inline void alloc_uclamp_sched_group(struct task_group *tg, 6938 struct task_group *parent) 6939 { 6940 #ifdef CONFIG_UCLAMP_TASK_GROUP 6941 enum uclamp_id clamp_id; 6942 6943 for_each_clamp_id(clamp_id) { 6944 uclamp_se_set(&tg->uclamp_req[clamp_id], 6945 uclamp_none(clamp_id), false); 6946 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 6947 } 6948 #endif 6949 } 6950 6951 static void sched_free_group(struct task_group *tg) 6952 { 6953 free_fair_sched_group(tg); 6954 free_rt_sched_group(tg); 6955 autogroup_free(tg); 6956 kmem_cache_free(task_group_cache, tg); 6957 } 6958 6959 /* allocate runqueue etc for a new task group */ 6960 struct task_group *sched_create_group(struct task_group *parent) 6961 { 6962 struct task_group *tg; 6963 6964 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6965 if (!tg) 6966 return ERR_PTR(-ENOMEM); 6967 6968 if (!alloc_fair_sched_group(tg, parent)) 6969 goto err; 6970 6971 if (!alloc_rt_sched_group(tg, parent)) 6972 goto err; 6973 6974 alloc_uclamp_sched_group(tg, parent); 6975 6976 return tg; 6977 6978 err: 6979 sched_free_group(tg); 6980 return ERR_PTR(-ENOMEM); 6981 } 6982 6983 void sched_online_group(struct task_group *tg, struct task_group *parent) 6984 { 6985 unsigned long flags; 6986 6987 spin_lock_irqsave(&task_group_lock, flags); 6988 list_add_rcu(&tg->list, &task_groups); 6989 6990 /* Root should already exist: */ 6991 WARN_ON(!parent); 6992 6993 tg->parent = parent; 6994 INIT_LIST_HEAD(&tg->children); 6995 list_add_rcu(&tg->siblings, &parent->children); 6996 spin_unlock_irqrestore(&task_group_lock, flags); 6997 6998 online_fair_sched_group(tg); 6999 } 7000 7001 /* rcu callback to free various structures associated with a task group */ 7002 static void sched_free_group_rcu(struct rcu_head *rhp) 7003 { 7004 /* Now it should be safe to free those cfs_rqs: */ 7005 sched_free_group(container_of(rhp, struct task_group, rcu)); 7006 } 7007 7008 void sched_destroy_group(struct task_group *tg) 7009 { 7010 /* Wait for possible concurrent references to cfs_rqs complete: */ 7011 call_rcu(&tg->rcu, sched_free_group_rcu); 7012 } 7013 7014 void sched_offline_group(struct task_group *tg) 7015 { 7016 unsigned long flags; 7017 7018 /* End participation in shares distribution: */ 7019 unregister_fair_sched_group(tg); 7020 7021 spin_lock_irqsave(&task_group_lock, flags); 7022 list_del_rcu(&tg->list); 7023 list_del_rcu(&tg->siblings); 7024 spin_unlock_irqrestore(&task_group_lock, flags); 7025 } 7026 7027 static void sched_change_group(struct task_struct *tsk, int type) 7028 { 7029 struct task_group *tg; 7030 7031 /* 7032 * All callers are synchronized by task_rq_lock(); we do not use RCU 7033 * which is pointless here. Thus, we pass "true" to task_css_check() 7034 * to prevent lockdep warnings. 7035 */ 7036 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7037 struct task_group, css); 7038 tg = autogroup_task_group(tsk, tg); 7039 tsk->sched_task_group = tg; 7040 7041 #ifdef CONFIG_FAIR_GROUP_SCHED 7042 if (tsk->sched_class->task_change_group) 7043 tsk->sched_class->task_change_group(tsk, type); 7044 else 7045 #endif 7046 set_task_rq(tsk, task_cpu(tsk)); 7047 } 7048 7049 /* 7050 * Change task's runqueue when it moves between groups. 7051 * 7052 * The caller of this function should have put the task in its new group by 7053 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7054 * its new group. 7055 */ 7056 void sched_move_task(struct task_struct *tsk) 7057 { 7058 int queued, running, queue_flags = 7059 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7060 struct rq_flags rf; 7061 struct rq *rq; 7062 7063 rq = task_rq_lock(tsk, &rf); 7064 update_rq_clock(rq); 7065 7066 running = task_current(rq, tsk); 7067 queued = task_on_rq_queued(tsk); 7068 7069 if (queued) 7070 dequeue_task(rq, tsk, queue_flags); 7071 if (running) 7072 put_prev_task(rq, tsk); 7073 7074 sched_change_group(tsk, TASK_MOVE_GROUP); 7075 7076 if (queued) 7077 enqueue_task(rq, tsk, queue_flags); 7078 if (running) { 7079 set_next_task(rq, tsk); 7080 /* 7081 * After changing group, the running task may have joined a 7082 * throttled one but it's still the running task. Trigger a 7083 * resched to make sure that task can still run. 7084 */ 7085 resched_curr(rq); 7086 } 7087 7088 task_rq_unlock(rq, tsk, &rf); 7089 } 7090 7091 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7092 { 7093 return css ? container_of(css, struct task_group, css) : NULL; 7094 } 7095 7096 static struct cgroup_subsys_state * 7097 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7098 { 7099 struct task_group *parent = css_tg(parent_css); 7100 struct task_group *tg; 7101 7102 if (!parent) { 7103 /* This is early initialization for the top cgroup */ 7104 return &root_task_group.css; 7105 } 7106 7107 tg = sched_create_group(parent); 7108 if (IS_ERR(tg)) 7109 return ERR_PTR(-ENOMEM); 7110 7111 return &tg->css; 7112 } 7113 7114 /* Expose task group only after completing cgroup initialization */ 7115 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7116 { 7117 struct task_group *tg = css_tg(css); 7118 struct task_group *parent = css_tg(css->parent); 7119 7120 if (parent) 7121 sched_online_group(tg, parent); 7122 7123 #ifdef CONFIG_UCLAMP_TASK_GROUP 7124 /* Propagate the effective uclamp value for the new group */ 7125 cpu_util_update_eff(css); 7126 #endif 7127 7128 return 0; 7129 } 7130 7131 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7132 { 7133 struct task_group *tg = css_tg(css); 7134 7135 sched_offline_group(tg); 7136 } 7137 7138 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7139 { 7140 struct task_group *tg = css_tg(css); 7141 7142 /* 7143 * Relies on the RCU grace period between css_released() and this. 7144 */ 7145 sched_free_group(tg); 7146 } 7147 7148 /* 7149 * This is called before wake_up_new_task(), therefore we really only 7150 * have to set its group bits, all the other stuff does not apply. 7151 */ 7152 static void cpu_cgroup_fork(struct task_struct *task) 7153 { 7154 struct rq_flags rf; 7155 struct rq *rq; 7156 7157 rq = task_rq_lock(task, &rf); 7158 7159 update_rq_clock(rq); 7160 sched_change_group(task, TASK_SET_GROUP); 7161 7162 task_rq_unlock(rq, task, &rf); 7163 } 7164 7165 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7166 { 7167 struct task_struct *task; 7168 struct cgroup_subsys_state *css; 7169 int ret = 0; 7170 7171 cgroup_taskset_for_each(task, css, tset) { 7172 #ifdef CONFIG_RT_GROUP_SCHED 7173 if (!sched_rt_can_attach(css_tg(css), task)) 7174 return -EINVAL; 7175 #endif 7176 /* 7177 * Serialize against wake_up_new_task() such that if its 7178 * running, we're sure to observe its full state. 7179 */ 7180 raw_spin_lock_irq(&task->pi_lock); 7181 /* 7182 * Avoid calling sched_move_task() before wake_up_new_task() 7183 * has happened. This would lead to problems with PELT, due to 7184 * move wanting to detach+attach while we're not attached yet. 7185 */ 7186 if (task->state == TASK_NEW) 7187 ret = -EINVAL; 7188 raw_spin_unlock_irq(&task->pi_lock); 7189 7190 if (ret) 7191 break; 7192 } 7193 return ret; 7194 } 7195 7196 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7197 { 7198 struct task_struct *task; 7199 struct cgroup_subsys_state *css; 7200 7201 cgroup_taskset_for_each(task, css, tset) 7202 sched_move_task(task); 7203 } 7204 7205 #ifdef CONFIG_UCLAMP_TASK_GROUP 7206 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7207 { 7208 struct cgroup_subsys_state *top_css = css; 7209 struct uclamp_se *uc_parent = NULL; 7210 struct uclamp_se *uc_se = NULL; 7211 unsigned int eff[UCLAMP_CNT]; 7212 enum uclamp_id clamp_id; 7213 unsigned int clamps; 7214 7215 css_for_each_descendant_pre(css, top_css) { 7216 uc_parent = css_tg(css)->parent 7217 ? css_tg(css)->parent->uclamp : NULL; 7218 7219 for_each_clamp_id(clamp_id) { 7220 /* Assume effective clamps matches requested clamps */ 7221 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7222 /* Cap effective clamps with parent's effective clamps */ 7223 if (uc_parent && 7224 eff[clamp_id] > uc_parent[clamp_id].value) { 7225 eff[clamp_id] = uc_parent[clamp_id].value; 7226 } 7227 } 7228 /* Ensure protection is always capped by limit */ 7229 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7230 7231 /* Propagate most restrictive effective clamps */ 7232 clamps = 0x0; 7233 uc_se = css_tg(css)->uclamp; 7234 for_each_clamp_id(clamp_id) { 7235 if (eff[clamp_id] == uc_se[clamp_id].value) 7236 continue; 7237 uc_se[clamp_id].value = eff[clamp_id]; 7238 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7239 clamps |= (0x1 << clamp_id); 7240 } 7241 if (!clamps) { 7242 css = css_rightmost_descendant(css); 7243 continue; 7244 } 7245 7246 /* Immediately update descendants RUNNABLE tasks */ 7247 uclamp_update_active_tasks(css, clamps); 7248 } 7249 } 7250 7251 /* 7252 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7253 * C expression. Since there is no way to convert a macro argument (N) into a 7254 * character constant, use two levels of macros. 7255 */ 7256 #define _POW10(exp) ((unsigned int)1e##exp) 7257 #define POW10(exp) _POW10(exp) 7258 7259 struct uclamp_request { 7260 #define UCLAMP_PERCENT_SHIFT 2 7261 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7262 s64 percent; 7263 u64 util; 7264 int ret; 7265 }; 7266 7267 static inline struct uclamp_request 7268 capacity_from_percent(char *buf) 7269 { 7270 struct uclamp_request req = { 7271 .percent = UCLAMP_PERCENT_SCALE, 7272 .util = SCHED_CAPACITY_SCALE, 7273 .ret = 0, 7274 }; 7275 7276 buf = strim(buf); 7277 if (strcmp(buf, "max")) { 7278 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7279 &req.percent); 7280 if (req.ret) 7281 return req; 7282 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 7283 req.ret = -ERANGE; 7284 return req; 7285 } 7286 7287 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7288 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7289 } 7290 7291 return req; 7292 } 7293 7294 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7295 size_t nbytes, loff_t off, 7296 enum uclamp_id clamp_id) 7297 { 7298 struct uclamp_request req; 7299 struct task_group *tg; 7300 7301 req = capacity_from_percent(buf); 7302 if (req.ret) 7303 return req.ret; 7304 7305 mutex_lock(&uclamp_mutex); 7306 rcu_read_lock(); 7307 7308 tg = css_tg(of_css(of)); 7309 if (tg->uclamp_req[clamp_id].value != req.util) 7310 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7311 7312 /* 7313 * Because of not recoverable conversion rounding we keep track of the 7314 * exact requested value 7315 */ 7316 tg->uclamp_pct[clamp_id] = req.percent; 7317 7318 /* Update effective clamps to track the most restrictive value */ 7319 cpu_util_update_eff(of_css(of)); 7320 7321 rcu_read_unlock(); 7322 mutex_unlock(&uclamp_mutex); 7323 7324 return nbytes; 7325 } 7326 7327 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7328 char *buf, size_t nbytes, 7329 loff_t off) 7330 { 7331 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7332 } 7333 7334 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7335 char *buf, size_t nbytes, 7336 loff_t off) 7337 { 7338 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7339 } 7340 7341 static inline void cpu_uclamp_print(struct seq_file *sf, 7342 enum uclamp_id clamp_id) 7343 { 7344 struct task_group *tg; 7345 u64 util_clamp; 7346 u64 percent; 7347 u32 rem; 7348 7349 rcu_read_lock(); 7350 tg = css_tg(seq_css(sf)); 7351 util_clamp = tg->uclamp_req[clamp_id].value; 7352 rcu_read_unlock(); 7353 7354 if (util_clamp == SCHED_CAPACITY_SCALE) { 7355 seq_puts(sf, "max\n"); 7356 return; 7357 } 7358 7359 percent = tg->uclamp_pct[clamp_id]; 7360 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7361 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7362 } 7363 7364 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7365 { 7366 cpu_uclamp_print(sf, UCLAMP_MIN); 7367 return 0; 7368 } 7369 7370 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7371 { 7372 cpu_uclamp_print(sf, UCLAMP_MAX); 7373 return 0; 7374 } 7375 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7376 7377 #ifdef CONFIG_FAIR_GROUP_SCHED 7378 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7379 struct cftype *cftype, u64 shareval) 7380 { 7381 if (shareval > scale_load_down(ULONG_MAX)) 7382 shareval = MAX_SHARES; 7383 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7384 } 7385 7386 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7387 struct cftype *cft) 7388 { 7389 struct task_group *tg = css_tg(css); 7390 7391 return (u64) scale_load_down(tg->shares); 7392 } 7393 7394 #ifdef CONFIG_CFS_BANDWIDTH 7395 static DEFINE_MUTEX(cfs_constraints_mutex); 7396 7397 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7398 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7399 7400 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7401 7402 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7403 { 7404 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7405 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7406 7407 if (tg == &root_task_group) 7408 return -EINVAL; 7409 7410 /* 7411 * Ensure we have at some amount of bandwidth every period. This is 7412 * to prevent reaching a state of large arrears when throttled via 7413 * entity_tick() resulting in prolonged exit starvation. 7414 */ 7415 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7416 return -EINVAL; 7417 7418 /* 7419 * Likewise, bound things on the otherside by preventing insane quota 7420 * periods. This also allows us to normalize in computing quota 7421 * feasibility. 7422 */ 7423 if (period > max_cfs_quota_period) 7424 return -EINVAL; 7425 7426 /* 7427 * Prevent race between setting of cfs_rq->runtime_enabled and 7428 * unthrottle_offline_cfs_rqs(). 7429 */ 7430 get_online_cpus(); 7431 mutex_lock(&cfs_constraints_mutex); 7432 ret = __cfs_schedulable(tg, period, quota); 7433 if (ret) 7434 goto out_unlock; 7435 7436 runtime_enabled = quota != RUNTIME_INF; 7437 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7438 /* 7439 * If we need to toggle cfs_bandwidth_used, off->on must occur 7440 * before making related changes, and on->off must occur afterwards 7441 */ 7442 if (runtime_enabled && !runtime_was_enabled) 7443 cfs_bandwidth_usage_inc(); 7444 raw_spin_lock_irq(&cfs_b->lock); 7445 cfs_b->period = ns_to_ktime(period); 7446 cfs_b->quota = quota; 7447 7448 __refill_cfs_bandwidth_runtime(cfs_b); 7449 7450 /* Restart the period timer (if active) to handle new period expiry: */ 7451 if (runtime_enabled) 7452 start_cfs_bandwidth(cfs_b); 7453 7454 raw_spin_unlock_irq(&cfs_b->lock); 7455 7456 for_each_online_cpu(i) { 7457 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7458 struct rq *rq = cfs_rq->rq; 7459 struct rq_flags rf; 7460 7461 rq_lock_irq(rq, &rf); 7462 cfs_rq->runtime_enabled = runtime_enabled; 7463 cfs_rq->runtime_remaining = 0; 7464 7465 if (cfs_rq->throttled) 7466 unthrottle_cfs_rq(cfs_rq); 7467 rq_unlock_irq(rq, &rf); 7468 } 7469 if (runtime_was_enabled && !runtime_enabled) 7470 cfs_bandwidth_usage_dec(); 7471 out_unlock: 7472 mutex_unlock(&cfs_constraints_mutex); 7473 put_online_cpus(); 7474 7475 return ret; 7476 } 7477 7478 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7479 { 7480 u64 quota, period; 7481 7482 period = ktime_to_ns(tg->cfs_bandwidth.period); 7483 if (cfs_quota_us < 0) 7484 quota = RUNTIME_INF; 7485 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7486 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7487 else 7488 return -EINVAL; 7489 7490 return tg_set_cfs_bandwidth(tg, period, quota); 7491 } 7492 7493 static long tg_get_cfs_quota(struct task_group *tg) 7494 { 7495 u64 quota_us; 7496 7497 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7498 return -1; 7499 7500 quota_us = tg->cfs_bandwidth.quota; 7501 do_div(quota_us, NSEC_PER_USEC); 7502 7503 return quota_us; 7504 } 7505 7506 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7507 { 7508 u64 quota, period; 7509 7510 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7511 return -EINVAL; 7512 7513 period = (u64)cfs_period_us * NSEC_PER_USEC; 7514 quota = tg->cfs_bandwidth.quota; 7515 7516 return tg_set_cfs_bandwidth(tg, period, quota); 7517 } 7518 7519 static long tg_get_cfs_period(struct task_group *tg) 7520 { 7521 u64 cfs_period_us; 7522 7523 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7524 do_div(cfs_period_us, NSEC_PER_USEC); 7525 7526 return cfs_period_us; 7527 } 7528 7529 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7530 struct cftype *cft) 7531 { 7532 return tg_get_cfs_quota(css_tg(css)); 7533 } 7534 7535 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7536 struct cftype *cftype, s64 cfs_quota_us) 7537 { 7538 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7539 } 7540 7541 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7542 struct cftype *cft) 7543 { 7544 return tg_get_cfs_period(css_tg(css)); 7545 } 7546 7547 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7548 struct cftype *cftype, u64 cfs_period_us) 7549 { 7550 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7551 } 7552 7553 struct cfs_schedulable_data { 7554 struct task_group *tg; 7555 u64 period, quota; 7556 }; 7557 7558 /* 7559 * normalize group quota/period to be quota/max_period 7560 * note: units are usecs 7561 */ 7562 static u64 normalize_cfs_quota(struct task_group *tg, 7563 struct cfs_schedulable_data *d) 7564 { 7565 u64 quota, period; 7566 7567 if (tg == d->tg) { 7568 period = d->period; 7569 quota = d->quota; 7570 } else { 7571 period = tg_get_cfs_period(tg); 7572 quota = tg_get_cfs_quota(tg); 7573 } 7574 7575 /* note: these should typically be equivalent */ 7576 if (quota == RUNTIME_INF || quota == -1) 7577 return RUNTIME_INF; 7578 7579 return to_ratio(period, quota); 7580 } 7581 7582 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7583 { 7584 struct cfs_schedulable_data *d = data; 7585 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7586 s64 quota = 0, parent_quota = -1; 7587 7588 if (!tg->parent) { 7589 quota = RUNTIME_INF; 7590 } else { 7591 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7592 7593 quota = normalize_cfs_quota(tg, d); 7594 parent_quota = parent_b->hierarchical_quota; 7595 7596 /* 7597 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7598 * always take the min. On cgroup1, only inherit when no 7599 * limit is set: 7600 */ 7601 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7602 quota = min(quota, parent_quota); 7603 } else { 7604 if (quota == RUNTIME_INF) 7605 quota = parent_quota; 7606 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7607 return -EINVAL; 7608 } 7609 } 7610 cfs_b->hierarchical_quota = quota; 7611 7612 return 0; 7613 } 7614 7615 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7616 { 7617 int ret; 7618 struct cfs_schedulable_data data = { 7619 .tg = tg, 7620 .period = period, 7621 .quota = quota, 7622 }; 7623 7624 if (quota != RUNTIME_INF) { 7625 do_div(data.period, NSEC_PER_USEC); 7626 do_div(data.quota, NSEC_PER_USEC); 7627 } 7628 7629 rcu_read_lock(); 7630 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7631 rcu_read_unlock(); 7632 7633 return ret; 7634 } 7635 7636 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7637 { 7638 struct task_group *tg = css_tg(seq_css(sf)); 7639 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7640 7641 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7642 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7643 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7644 7645 if (schedstat_enabled() && tg != &root_task_group) { 7646 u64 ws = 0; 7647 int i; 7648 7649 for_each_possible_cpu(i) 7650 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7651 7652 seq_printf(sf, "wait_sum %llu\n", ws); 7653 } 7654 7655 return 0; 7656 } 7657 #endif /* CONFIG_CFS_BANDWIDTH */ 7658 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7659 7660 #ifdef CONFIG_RT_GROUP_SCHED 7661 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7662 struct cftype *cft, s64 val) 7663 { 7664 return sched_group_set_rt_runtime(css_tg(css), val); 7665 } 7666 7667 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7668 struct cftype *cft) 7669 { 7670 return sched_group_rt_runtime(css_tg(css)); 7671 } 7672 7673 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7674 struct cftype *cftype, u64 rt_period_us) 7675 { 7676 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7677 } 7678 7679 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7680 struct cftype *cft) 7681 { 7682 return sched_group_rt_period(css_tg(css)); 7683 } 7684 #endif /* CONFIG_RT_GROUP_SCHED */ 7685 7686 static struct cftype cpu_legacy_files[] = { 7687 #ifdef CONFIG_FAIR_GROUP_SCHED 7688 { 7689 .name = "shares", 7690 .read_u64 = cpu_shares_read_u64, 7691 .write_u64 = cpu_shares_write_u64, 7692 }, 7693 #endif 7694 #ifdef CONFIG_CFS_BANDWIDTH 7695 { 7696 .name = "cfs_quota_us", 7697 .read_s64 = cpu_cfs_quota_read_s64, 7698 .write_s64 = cpu_cfs_quota_write_s64, 7699 }, 7700 { 7701 .name = "cfs_period_us", 7702 .read_u64 = cpu_cfs_period_read_u64, 7703 .write_u64 = cpu_cfs_period_write_u64, 7704 }, 7705 { 7706 .name = "stat", 7707 .seq_show = cpu_cfs_stat_show, 7708 }, 7709 #endif 7710 #ifdef CONFIG_RT_GROUP_SCHED 7711 { 7712 .name = "rt_runtime_us", 7713 .read_s64 = cpu_rt_runtime_read, 7714 .write_s64 = cpu_rt_runtime_write, 7715 }, 7716 { 7717 .name = "rt_period_us", 7718 .read_u64 = cpu_rt_period_read_uint, 7719 .write_u64 = cpu_rt_period_write_uint, 7720 }, 7721 #endif 7722 #ifdef CONFIG_UCLAMP_TASK_GROUP 7723 { 7724 .name = "uclamp.min", 7725 .flags = CFTYPE_NOT_ON_ROOT, 7726 .seq_show = cpu_uclamp_min_show, 7727 .write = cpu_uclamp_min_write, 7728 }, 7729 { 7730 .name = "uclamp.max", 7731 .flags = CFTYPE_NOT_ON_ROOT, 7732 .seq_show = cpu_uclamp_max_show, 7733 .write = cpu_uclamp_max_write, 7734 }, 7735 #endif 7736 { } /* Terminate */ 7737 }; 7738 7739 static int cpu_extra_stat_show(struct seq_file *sf, 7740 struct cgroup_subsys_state *css) 7741 { 7742 #ifdef CONFIG_CFS_BANDWIDTH 7743 { 7744 struct task_group *tg = css_tg(css); 7745 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7746 u64 throttled_usec; 7747 7748 throttled_usec = cfs_b->throttled_time; 7749 do_div(throttled_usec, NSEC_PER_USEC); 7750 7751 seq_printf(sf, "nr_periods %d\n" 7752 "nr_throttled %d\n" 7753 "throttled_usec %llu\n", 7754 cfs_b->nr_periods, cfs_b->nr_throttled, 7755 throttled_usec); 7756 } 7757 #endif 7758 return 0; 7759 } 7760 7761 #ifdef CONFIG_FAIR_GROUP_SCHED 7762 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7763 struct cftype *cft) 7764 { 7765 struct task_group *tg = css_tg(css); 7766 u64 weight = scale_load_down(tg->shares); 7767 7768 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7769 } 7770 7771 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7772 struct cftype *cft, u64 weight) 7773 { 7774 /* 7775 * cgroup weight knobs should use the common MIN, DFL and MAX 7776 * values which are 1, 100 and 10000 respectively. While it loses 7777 * a bit of range on both ends, it maps pretty well onto the shares 7778 * value used by scheduler and the round-trip conversions preserve 7779 * the original value over the entire range. 7780 */ 7781 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7782 return -ERANGE; 7783 7784 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7785 7786 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7787 } 7788 7789 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7790 struct cftype *cft) 7791 { 7792 unsigned long weight = scale_load_down(css_tg(css)->shares); 7793 int last_delta = INT_MAX; 7794 int prio, delta; 7795 7796 /* find the closest nice value to the current weight */ 7797 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7798 delta = abs(sched_prio_to_weight[prio] - weight); 7799 if (delta >= last_delta) 7800 break; 7801 last_delta = delta; 7802 } 7803 7804 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7805 } 7806 7807 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7808 struct cftype *cft, s64 nice) 7809 { 7810 unsigned long weight; 7811 int idx; 7812 7813 if (nice < MIN_NICE || nice > MAX_NICE) 7814 return -ERANGE; 7815 7816 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7817 idx = array_index_nospec(idx, 40); 7818 weight = sched_prio_to_weight[idx]; 7819 7820 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7821 } 7822 #endif 7823 7824 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7825 long period, long quota) 7826 { 7827 if (quota < 0) 7828 seq_puts(sf, "max"); 7829 else 7830 seq_printf(sf, "%ld", quota); 7831 7832 seq_printf(sf, " %ld\n", period); 7833 } 7834 7835 /* caller should put the current value in *@periodp before calling */ 7836 static int __maybe_unused cpu_period_quota_parse(char *buf, 7837 u64 *periodp, u64 *quotap) 7838 { 7839 char tok[21]; /* U64_MAX */ 7840 7841 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7842 return -EINVAL; 7843 7844 *periodp *= NSEC_PER_USEC; 7845 7846 if (sscanf(tok, "%llu", quotap)) 7847 *quotap *= NSEC_PER_USEC; 7848 else if (!strcmp(tok, "max")) 7849 *quotap = RUNTIME_INF; 7850 else 7851 return -EINVAL; 7852 7853 return 0; 7854 } 7855 7856 #ifdef CONFIG_CFS_BANDWIDTH 7857 static int cpu_max_show(struct seq_file *sf, void *v) 7858 { 7859 struct task_group *tg = css_tg(seq_css(sf)); 7860 7861 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7862 return 0; 7863 } 7864 7865 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7866 char *buf, size_t nbytes, loff_t off) 7867 { 7868 struct task_group *tg = css_tg(of_css(of)); 7869 u64 period = tg_get_cfs_period(tg); 7870 u64 quota; 7871 int ret; 7872 7873 ret = cpu_period_quota_parse(buf, &period, "a); 7874 if (!ret) 7875 ret = tg_set_cfs_bandwidth(tg, period, quota); 7876 return ret ?: nbytes; 7877 } 7878 #endif 7879 7880 static struct cftype cpu_files[] = { 7881 #ifdef CONFIG_FAIR_GROUP_SCHED 7882 { 7883 .name = "weight", 7884 .flags = CFTYPE_NOT_ON_ROOT, 7885 .read_u64 = cpu_weight_read_u64, 7886 .write_u64 = cpu_weight_write_u64, 7887 }, 7888 { 7889 .name = "weight.nice", 7890 .flags = CFTYPE_NOT_ON_ROOT, 7891 .read_s64 = cpu_weight_nice_read_s64, 7892 .write_s64 = cpu_weight_nice_write_s64, 7893 }, 7894 #endif 7895 #ifdef CONFIG_CFS_BANDWIDTH 7896 { 7897 .name = "max", 7898 .flags = CFTYPE_NOT_ON_ROOT, 7899 .seq_show = cpu_max_show, 7900 .write = cpu_max_write, 7901 }, 7902 #endif 7903 #ifdef CONFIG_UCLAMP_TASK_GROUP 7904 { 7905 .name = "uclamp.min", 7906 .flags = CFTYPE_NOT_ON_ROOT, 7907 .seq_show = cpu_uclamp_min_show, 7908 .write = cpu_uclamp_min_write, 7909 }, 7910 { 7911 .name = "uclamp.max", 7912 .flags = CFTYPE_NOT_ON_ROOT, 7913 .seq_show = cpu_uclamp_max_show, 7914 .write = cpu_uclamp_max_write, 7915 }, 7916 #endif 7917 { } /* terminate */ 7918 }; 7919 7920 struct cgroup_subsys cpu_cgrp_subsys = { 7921 .css_alloc = cpu_cgroup_css_alloc, 7922 .css_online = cpu_cgroup_css_online, 7923 .css_released = cpu_cgroup_css_released, 7924 .css_free = cpu_cgroup_css_free, 7925 .css_extra_stat_show = cpu_extra_stat_show, 7926 .fork = cpu_cgroup_fork, 7927 .can_attach = cpu_cgroup_can_attach, 7928 .attach = cpu_cgroup_attach, 7929 .legacy_cftypes = cpu_legacy_files, 7930 .dfl_cftypes = cpu_files, 7931 .early_init = true, 7932 .threaded = true, 7933 }; 7934 7935 #endif /* CONFIG_CGROUP_SCHED */ 7936 7937 void dump_cpu_task(int cpu) 7938 { 7939 pr_info("Task dump for CPU %d:\n", cpu); 7940 sched_show_task(cpu_curr(cpu)); 7941 } 7942 7943 /* 7944 * Nice levels are multiplicative, with a gentle 10% change for every 7945 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7946 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7947 * that remained on nice 0. 7948 * 7949 * The "10% effect" is relative and cumulative: from _any_ nice level, 7950 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7951 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7952 * If a task goes up by ~10% and another task goes down by ~10% then 7953 * the relative distance between them is ~25%.) 7954 */ 7955 const int sched_prio_to_weight[40] = { 7956 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7957 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7958 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7959 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7960 /* 0 */ 1024, 820, 655, 526, 423, 7961 /* 5 */ 335, 272, 215, 172, 137, 7962 /* 10 */ 110, 87, 70, 56, 45, 7963 /* 15 */ 36, 29, 23, 18, 15, 7964 }; 7965 7966 /* 7967 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7968 * 7969 * In cases where the weight does not change often, we can use the 7970 * precalculated inverse to speed up arithmetics by turning divisions 7971 * into multiplications: 7972 */ 7973 const u32 sched_prio_to_wmult[40] = { 7974 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7975 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7976 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7977 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7978 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7979 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7980 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7981 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7982 }; 7983 7984 #undef CREATE_TRACE_POINTS 7985