xref: /openbmc/linux/kernel/sched/core.c (revision 149ed3d404c9bd00f0fadc35215a9e7a54c5cfd0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21 
22 #include "pelt.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26 
27 /*
28  * Export tracepoints that act as a bare tracehook (ie: have no trace event
29  * associated with them) to allow external modules to probe them.
30  */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37 
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39 
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42  * Debugging: various feature bits
43  *
44  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45  * sysctl_sched_features, defined in sched.h, to allow constants propagation
46  * at compile time and compiler optimization based on features default.
47  */
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 	0;
53 #undef SCHED_FEAT
54 #endif
55 
56 /*
57  * Number of tasks to iterate in a single balance run.
58  * Limited because this is done with IRQs disabled.
59  */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61 
62 /*
63  * period over which we measure -rt task CPU usage in us.
64  * default: 1s
65  */
66 unsigned int sysctl_sched_rt_period = 1000000;
67 
68 __read_mostly int scheduler_running;
69 
70 /*
71  * part of the period that we allow rt tasks to run in us.
72  * default: 0.95s
73  */
74 int sysctl_sched_rt_runtime = 950000;
75 
76 /*
77  * __task_rq_lock - lock the rq @p resides on.
78  */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 	__acquires(rq->lock)
81 {
82 	struct rq *rq;
83 
84 	lockdep_assert_held(&p->pi_lock);
85 
86 	for (;;) {
87 		rq = task_rq(p);
88 		raw_spin_lock(&rq->lock);
89 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 			rq_pin_lock(rq, rf);
91 			return rq;
92 		}
93 		raw_spin_unlock(&rq->lock);
94 
95 		while (unlikely(task_on_rq_migrating(p)))
96 			cpu_relax();
97 	}
98 }
99 
100 /*
101  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102  */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 	__acquires(p->pi_lock)
105 	__acquires(rq->lock)
106 {
107 	struct rq *rq;
108 
109 	for (;;) {
110 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 		rq = task_rq(p);
112 		raw_spin_lock(&rq->lock);
113 		/*
114 		 *	move_queued_task()		task_rq_lock()
115 		 *
116 		 *	ACQUIRE (rq->lock)
117 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
118 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
119 		 *	[S] ->cpu = new_cpu		[L] task_rq()
120 		 *					[L] ->on_rq
121 		 *	RELEASE (rq->lock)
122 		 *
123 		 * If we observe the old CPU in task_rq_lock(), the acquire of
124 		 * the old rq->lock will fully serialize against the stores.
125 		 *
126 		 * If we observe the new CPU in task_rq_lock(), the address
127 		 * dependency headed by '[L] rq = task_rq()' and the acquire
128 		 * will pair with the WMB to ensure we then also see migrating.
129 		 */
130 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 			rq_pin_lock(rq, rf);
132 			return rq;
133 		}
134 		raw_spin_unlock(&rq->lock);
135 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136 
137 		while (unlikely(task_on_rq_migrating(p)))
138 			cpu_relax();
139 	}
140 }
141 
142 /*
143  * RQ-clock updating methods:
144  */
145 
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149  * In theory, the compile should just see 0 here, and optimize out the call
150  * to sched_rt_avg_update. But I don't trust it...
151  */
152 	s64 __maybe_unused steal = 0, irq_delta = 0;
153 
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156 
157 	/*
158 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 	 * this case when a previous update_rq_clock() happened inside a
160 	 * {soft,}irq region.
161 	 *
162 	 * When this happens, we stop ->clock_task and only update the
163 	 * prev_irq_time stamp to account for the part that fit, so that a next
164 	 * update will consume the rest. This ensures ->clock_task is
165 	 * monotonic.
166 	 *
167 	 * It does however cause some slight miss-attribution of {soft,}irq
168 	 * time, a more accurate solution would be to update the irq_time using
169 	 * the current rq->clock timestamp, except that would require using
170 	 * atomic ops.
171 	 */
172 	if (irq_delta > delta)
173 		irq_delta = delta;
174 
175 	rq->prev_irq_time += irq_delta;
176 	delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 	if (static_key_false((&paravirt_steal_rq_enabled))) {
180 		steal = paravirt_steal_clock(cpu_of(rq));
181 		steal -= rq->prev_steal_time_rq;
182 
183 		if (unlikely(steal > delta))
184 			steal = delta;
185 
186 		rq->prev_steal_time_rq += steal;
187 		delta -= steal;
188 	}
189 #endif
190 
191 	rq->clock_task += delta;
192 
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 		update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 	update_rq_clock_pelt(rq, delta);
198 }
199 
200 void update_rq_clock(struct rq *rq)
201 {
202 	s64 delta;
203 
204 	lockdep_assert_held(&rq->lock);
205 
206 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 		return;
208 
209 #ifdef CONFIG_SCHED_DEBUG
210 	if (sched_feat(WARN_DOUBLE_CLOCK))
211 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 	rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214 
215 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 	if (delta < 0)
217 		return;
218 	rq->clock += delta;
219 	update_rq_clock_task(rq, delta);
220 }
221 
222 
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225  * Use HR-timers to deliver accurate preemption points.
226  */
227 
228 static void hrtick_clear(struct rq *rq)
229 {
230 	if (hrtimer_active(&rq->hrtick_timer))
231 		hrtimer_cancel(&rq->hrtick_timer);
232 }
233 
234 /*
235  * High-resolution timer tick.
236  * Runs from hardirq context with interrupts disabled.
237  */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 	struct rq_flags rf;
242 
243 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244 
245 	rq_lock(rq, &rf);
246 	update_rq_clock(rq);
247 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 	rq_unlock(rq, &rf);
249 
250 	return HRTIMER_NORESTART;
251 }
252 
253 #ifdef CONFIG_SMP
254 
255 static void __hrtick_restart(struct rq *rq)
256 {
257 	struct hrtimer *timer = &rq->hrtick_timer;
258 
259 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261 
262 /*
263  * called from hardirq (IPI) context
264  */
265 static void __hrtick_start(void *arg)
266 {
267 	struct rq *rq = arg;
268 	struct rq_flags rf;
269 
270 	rq_lock(rq, &rf);
271 	__hrtick_restart(rq);
272 	rq_unlock(rq, &rf);
273 }
274 
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	struct hrtimer *timer = &rq->hrtick_timer;
283 	ktime_t time;
284 	s64 delta;
285 
286 	/*
287 	 * Don't schedule slices shorter than 10000ns, that just
288 	 * doesn't make sense and can cause timer DoS.
289 	 */
290 	delta = max_t(s64, delay, 10000LL);
291 	time = ktime_add_ns(timer->base->get_time(), delta);
292 
293 	hrtimer_set_expires(timer, time);
294 
295 	if (rq == this_rq())
296 		__hrtick_restart(rq);
297 	else
298 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 }
300 
301 #else
302 /*
303  * Called to set the hrtick timer state.
304  *
305  * called with rq->lock held and irqs disabled
306  */
307 void hrtick_start(struct rq *rq, u64 delay)
308 {
309 	/*
310 	 * Don't schedule slices shorter than 10000ns, that just
311 	 * doesn't make sense. Rely on vruntime for fairness.
312 	 */
313 	delay = max_t(u64, delay, 10000LL);
314 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
315 		      HRTIMER_MODE_REL_PINNED_HARD);
316 }
317 #endif /* CONFIG_SMP */
318 
319 static void hrtick_rq_init(struct rq *rq)
320 {
321 #ifdef CONFIG_SMP
322 	rq->hrtick_csd.flags = 0;
323 	rq->hrtick_csd.func = __hrtick_start;
324 	rq->hrtick_csd.info = rq;
325 #endif
326 
327 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
328 	rq->hrtick_timer.function = hrtick;
329 }
330 #else	/* CONFIG_SCHED_HRTICK */
331 static inline void hrtick_clear(struct rq *rq)
332 {
333 }
334 
335 static inline void hrtick_rq_init(struct rq *rq)
336 {
337 }
338 #endif	/* CONFIG_SCHED_HRTICK */
339 
340 /*
341  * cmpxchg based fetch_or, macro so it works for different integer types
342  */
343 #define fetch_or(ptr, mask)						\
344 	({								\
345 		typeof(ptr) _ptr = (ptr);				\
346 		typeof(mask) _mask = (mask);				\
347 		typeof(*_ptr) _old, _val = *_ptr;			\
348 									\
349 		for (;;) {						\
350 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
351 			if (_old == _val)				\
352 				break;					\
353 			_val = _old;					\
354 		}							\
355 	_old;								\
356 })
357 
358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
359 /*
360  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
361  * this avoids any races wrt polling state changes and thereby avoids
362  * spurious IPIs.
363  */
364 static bool set_nr_and_not_polling(struct task_struct *p)
365 {
366 	struct thread_info *ti = task_thread_info(p);
367 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
368 }
369 
370 /*
371  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
372  *
373  * If this returns true, then the idle task promises to call
374  * sched_ttwu_pending() and reschedule soon.
375  */
376 static bool set_nr_if_polling(struct task_struct *p)
377 {
378 	struct thread_info *ti = task_thread_info(p);
379 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
380 
381 	for (;;) {
382 		if (!(val & _TIF_POLLING_NRFLAG))
383 			return false;
384 		if (val & _TIF_NEED_RESCHED)
385 			return true;
386 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 		if (old == val)
388 			break;
389 		val = old;
390 	}
391 	return true;
392 }
393 
394 #else
395 static bool set_nr_and_not_polling(struct task_struct *p)
396 {
397 	set_tsk_need_resched(p);
398 	return true;
399 }
400 
401 #ifdef CONFIG_SMP
402 static bool set_nr_if_polling(struct task_struct *p)
403 {
404 	return false;
405 }
406 #endif
407 #endif
408 
409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
410 {
411 	struct wake_q_node *node = &task->wake_q;
412 
413 	/*
414 	 * Atomically grab the task, if ->wake_q is !nil already it means
415 	 * its already queued (either by us or someone else) and will get the
416 	 * wakeup due to that.
417 	 *
418 	 * In order to ensure that a pending wakeup will observe our pending
419 	 * state, even in the failed case, an explicit smp_mb() must be used.
420 	 */
421 	smp_mb__before_atomic();
422 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
423 		return false;
424 
425 	/*
426 	 * The head is context local, there can be no concurrency.
427 	 */
428 	*head->lastp = node;
429 	head->lastp = &node->next;
430 	return true;
431 }
432 
433 /**
434  * wake_q_add() - queue a wakeup for 'later' waking.
435  * @head: the wake_q_head to add @task to
436  * @task: the task to queue for 'later' wakeup
437  *
438  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
439  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
440  * instantly.
441  *
442  * This function must be used as-if it were wake_up_process(); IOW the task
443  * must be ready to be woken at this location.
444  */
445 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
446 {
447 	if (__wake_q_add(head, task))
448 		get_task_struct(task);
449 }
450 
451 /**
452  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
453  * @head: the wake_q_head to add @task to
454  * @task: the task to queue for 'later' wakeup
455  *
456  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
457  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
458  * instantly.
459  *
460  * This function must be used as-if it were wake_up_process(); IOW the task
461  * must be ready to be woken at this location.
462  *
463  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
464  * that already hold reference to @task can call the 'safe' version and trust
465  * wake_q to do the right thing depending whether or not the @task is already
466  * queued for wakeup.
467  */
468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
469 {
470 	if (!__wake_q_add(head, task))
471 		put_task_struct(task);
472 }
473 
474 void wake_up_q(struct wake_q_head *head)
475 {
476 	struct wake_q_node *node = head->first;
477 
478 	while (node != WAKE_Q_TAIL) {
479 		struct task_struct *task;
480 
481 		task = container_of(node, struct task_struct, wake_q);
482 		BUG_ON(!task);
483 		/* Task can safely be re-inserted now: */
484 		node = node->next;
485 		task->wake_q.next = NULL;
486 
487 		/*
488 		 * wake_up_process() executes a full barrier, which pairs with
489 		 * the queueing in wake_q_add() so as not to miss wakeups.
490 		 */
491 		wake_up_process(task);
492 		put_task_struct(task);
493 	}
494 }
495 
496 /*
497  * resched_curr - mark rq's current task 'to be rescheduled now'.
498  *
499  * On UP this means the setting of the need_resched flag, on SMP it
500  * might also involve a cross-CPU call to trigger the scheduler on
501  * the target CPU.
502  */
503 void resched_curr(struct rq *rq)
504 {
505 	struct task_struct *curr = rq->curr;
506 	int cpu;
507 
508 	lockdep_assert_held(&rq->lock);
509 
510 	if (test_tsk_need_resched(curr))
511 		return;
512 
513 	cpu = cpu_of(rq);
514 
515 	if (cpu == smp_processor_id()) {
516 		set_tsk_need_resched(curr);
517 		set_preempt_need_resched();
518 		return;
519 	}
520 
521 	if (set_nr_and_not_polling(curr))
522 		smp_send_reschedule(cpu);
523 	else
524 		trace_sched_wake_idle_without_ipi(cpu);
525 }
526 
527 void resched_cpu(int cpu)
528 {
529 	struct rq *rq = cpu_rq(cpu);
530 	unsigned long flags;
531 
532 	raw_spin_lock_irqsave(&rq->lock, flags);
533 	if (cpu_online(cpu) || cpu == smp_processor_id())
534 		resched_curr(rq);
535 	raw_spin_unlock_irqrestore(&rq->lock, flags);
536 }
537 
538 #ifdef CONFIG_SMP
539 #ifdef CONFIG_NO_HZ_COMMON
540 /*
541  * In the semi idle case, use the nearest busy CPU for migrating timers
542  * from an idle CPU.  This is good for power-savings.
543  *
544  * We don't do similar optimization for completely idle system, as
545  * selecting an idle CPU will add more delays to the timers than intended
546  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
547  */
548 int get_nohz_timer_target(void)
549 {
550 	int i, cpu = smp_processor_id(), default_cpu = -1;
551 	struct sched_domain *sd;
552 
553 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
554 		if (!idle_cpu(cpu))
555 			return cpu;
556 		default_cpu = cpu;
557 	}
558 
559 	rcu_read_lock();
560 	for_each_domain(cpu, sd) {
561 		for_each_cpu_and(i, sched_domain_span(sd),
562 			housekeeping_cpumask(HK_FLAG_TIMER)) {
563 			if (cpu == i)
564 				continue;
565 
566 			if (!idle_cpu(i)) {
567 				cpu = i;
568 				goto unlock;
569 			}
570 		}
571 	}
572 
573 	if (default_cpu == -1)
574 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 	cpu = default_cpu;
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 
581 /*
582  * When add_timer_on() enqueues a timer into the timer wheel of an
583  * idle CPU then this timer might expire before the next timer event
584  * which is scheduled to wake up that CPU. In case of a completely
585  * idle system the next event might even be infinite time into the
586  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587  * leaves the inner idle loop so the newly added timer is taken into
588  * account when the CPU goes back to idle and evaluates the timer
589  * wheel for the next timer event.
590  */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 	struct rq *rq = cpu_rq(cpu);
594 
595 	if (cpu == smp_processor_id())
596 		return;
597 
598 	if (set_nr_and_not_polling(rq->idle))
599 		smp_send_reschedule(cpu);
600 	else
601 		trace_sched_wake_idle_without_ipi(cpu);
602 }
603 
604 static bool wake_up_full_nohz_cpu(int cpu)
605 {
606 	/*
607 	 * We just need the target to call irq_exit() and re-evaluate
608 	 * the next tick. The nohz full kick at least implies that.
609 	 * If needed we can still optimize that later with an
610 	 * empty IRQ.
611 	 */
612 	if (cpu_is_offline(cpu))
613 		return true;  /* Don't try to wake offline CPUs. */
614 	if (tick_nohz_full_cpu(cpu)) {
615 		if (cpu != smp_processor_id() ||
616 		    tick_nohz_tick_stopped())
617 			tick_nohz_full_kick_cpu(cpu);
618 		return true;
619 	}
620 
621 	return false;
622 }
623 
624 /*
625  * Wake up the specified CPU.  If the CPU is going offline, it is the
626  * caller's responsibility to deal with the lost wakeup, for example,
627  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628  */
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(struct rq *rq)
664 {
665 	int fifo_nr_running;
666 
667 	/* Deadline tasks, even if single, need the tick */
668 	if (rq->dl.dl_nr_running)
669 		return false;
670 
671 	/*
672 	 * If there are more than one RR tasks, we need the tick to effect the
673 	 * actual RR behaviour.
674 	 */
675 	if (rq->rt.rr_nr_running) {
676 		if (rq->rt.rr_nr_running == 1)
677 			return true;
678 		else
679 			return false;
680 	}
681 
682 	/*
683 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 	 * forced preemption between FIFO tasks.
685 	 */
686 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 	if (fifo_nr_running)
688 		return true;
689 
690 	/*
691 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 	 * if there's more than one we need the tick for involuntary
693 	 * preemption.
694 	 */
695 	if (rq->nr_running > 1)
696 		return false;
697 
698 	return true;
699 }
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
702 
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 /*
706  * Iterate task_group tree rooted at *from, calling @down when first entering a
707  * node and @up when leaving it for the final time.
708  *
709  * Caller must hold rcu_lock or sufficient equivalent.
710  */
711 int walk_tg_tree_from(struct task_group *from,
712 			     tg_visitor down, tg_visitor up, void *data)
713 {
714 	struct task_group *parent, *child;
715 	int ret;
716 
717 	parent = from;
718 
719 down:
720 	ret = (*down)(parent, data);
721 	if (ret)
722 		goto out;
723 	list_for_each_entry_rcu(child, &parent->children, siblings) {
724 		parent = child;
725 		goto down;
726 
727 up:
728 		continue;
729 	}
730 	ret = (*up)(parent, data);
731 	if (ret || parent == from)
732 		goto out;
733 
734 	child = parent;
735 	parent = parent->parent;
736 	if (parent)
737 		goto up;
738 out:
739 	return ret;
740 }
741 
742 int tg_nop(struct task_group *tg, void *data)
743 {
744 	return 0;
745 }
746 #endif
747 
748 static void set_load_weight(struct task_struct *p, bool update_load)
749 {
750 	int prio = p->static_prio - MAX_RT_PRIO;
751 	struct load_weight *load = &p->se.load;
752 
753 	/*
754 	 * SCHED_IDLE tasks get minimal weight:
755 	 */
756 	if (task_has_idle_policy(p)) {
757 		load->weight = scale_load(WEIGHT_IDLEPRIO);
758 		load->inv_weight = WMULT_IDLEPRIO;
759 		return;
760 	}
761 
762 	/*
763 	 * SCHED_OTHER tasks have to update their load when changing their
764 	 * weight
765 	 */
766 	if (update_load && p->sched_class == &fair_sched_class) {
767 		reweight_task(p, prio);
768 	} else {
769 		load->weight = scale_load(sched_prio_to_weight[prio]);
770 		load->inv_weight = sched_prio_to_wmult[prio];
771 	}
772 }
773 
774 #ifdef CONFIG_UCLAMP_TASK
775 /*
776  * Serializes updates of utilization clamp values
777  *
778  * The (slow-path) user-space triggers utilization clamp value updates which
779  * can require updates on (fast-path) scheduler's data structures used to
780  * support enqueue/dequeue operations.
781  * While the per-CPU rq lock protects fast-path update operations, user-space
782  * requests are serialized using a mutex to reduce the risk of conflicting
783  * updates or API abuses.
784  */
785 static DEFINE_MUTEX(uclamp_mutex);
786 
787 /* Max allowed minimum utilization */
788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
789 
790 /* Max allowed maximum utilization */
791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
792 
793 /* All clamps are required to be less or equal than these values */
794 static struct uclamp_se uclamp_default[UCLAMP_CNT];
795 
796 /* Integer rounded range for each bucket */
797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
798 
799 #define for_each_clamp_id(clamp_id) \
800 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
801 
802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
803 {
804 	return clamp_value / UCLAMP_BUCKET_DELTA;
805 }
806 
807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
808 {
809 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
810 }
811 
812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
813 {
814 	if (clamp_id == UCLAMP_MIN)
815 		return 0;
816 	return SCHED_CAPACITY_SCALE;
817 }
818 
819 static inline void uclamp_se_set(struct uclamp_se *uc_se,
820 				 unsigned int value, bool user_defined)
821 {
822 	uc_se->value = value;
823 	uc_se->bucket_id = uclamp_bucket_id(value);
824 	uc_se->user_defined = user_defined;
825 }
826 
827 static inline unsigned int
828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
829 		  unsigned int clamp_value)
830 {
831 	/*
832 	 * Avoid blocked utilization pushing up the frequency when we go
833 	 * idle (which drops the max-clamp) by retaining the last known
834 	 * max-clamp.
835 	 */
836 	if (clamp_id == UCLAMP_MAX) {
837 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
838 		return clamp_value;
839 	}
840 
841 	return uclamp_none(UCLAMP_MIN);
842 }
843 
844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
845 				     unsigned int clamp_value)
846 {
847 	/* Reset max-clamp retention only on idle exit */
848 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
849 		return;
850 
851 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
852 }
853 
854 static inline
855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
856 				   unsigned int clamp_value)
857 {
858 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
859 	int bucket_id = UCLAMP_BUCKETS - 1;
860 
861 	/*
862 	 * Since both min and max clamps are max aggregated, find the
863 	 * top most bucket with tasks in.
864 	 */
865 	for ( ; bucket_id >= 0; bucket_id--) {
866 		if (!bucket[bucket_id].tasks)
867 			continue;
868 		return bucket[bucket_id].value;
869 	}
870 
871 	/* No tasks -- default clamp values */
872 	return uclamp_idle_value(rq, clamp_id, clamp_value);
873 }
874 
875 static inline struct uclamp_se
876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
877 {
878 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
879 #ifdef CONFIG_UCLAMP_TASK_GROUP
880 	struct uclamp_se uc_max;
881 
882 	/*
883 	 * Tasks in autogroups or root task group will be
884 	 * restricted by system defaults.
885 	 */
886 	if (task_group_is_autogroup(task_group(p)))
887 		return uc_req;
888 	if (task_group(p) == &root_task_group)
889 		return uc_req;
890 
891 	uc_max = task_group(p)->uclamp[clamp_id];
892 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
893 		return uc_max;
894 #endif
895 
896 	return uc_req;
897 }
898 
899 /*
900  * The effective clamp bucket index of a task depends on, by increasing
901  * priority:
902  * - the task specific clamp value, when explicitly requested from userspace
903  * - the task group effective clamp value, for tasks not either in the root
904  *   group or in an autogroup
905  * - the system default clamp value, defined by the sysadmin
906  */
907 static inline struct uclamp_se
908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
909 {
910 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
911 	struct uclamp_se uc_max = uclamp_default[clamp_id];
912 
913 	/* System default restrictions always apply */
914 	if (unlikely(uc_req.value > uc_max.value))
915 		return uc_max;
916 
917 	return uc_req;
918 }
919 
920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
921 {
922 	struct uclamp_se uc_eff;
923 
924 	/* Task currently refcounted: use back-annotated (effective) value */
925 	if (p->uclamp[clamp_id].active)
926 		return (unsigned long)p->uclamp[clamp_id].value;
927 
928 	uc_eff = uclamp_eff_get(p, clamp_id);
929 
930 	return (unsigned long)uc_eff.value;
931 }
932 
933 /*
934  * When a task is enqueued on a rq, the clamp bucket currently defined by the
935  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
936  * updates the rq's clamp value if required.
937  *
938  * Tasks can have a task-specific value requested from user-space, track
939  * within each bucket the maximum value for tasks refcounted in it.
940  * This "local max aggregation" allows to track the exact "requested" value
941  * for each bucket when all its RUNNABLE tasks require the same clamp.
942  */
943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
944 				    enum uclamp_id clamp_id)
945 {
946 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
947 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
948 	struct uclamp_bucket *bucket;
949 
950 	lockdep_assert_held(&rq->lock);
951 
952 	/* Update task effective clamp */
953 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
954 
955 	bucket = &uc_rq->bucket[uc_se->bucket_id];
956 	bucket->tasks++;
957 	uc_se->active = true;
958 
959 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
960 
961 	/*
962 	 * Local max aggregation: rq buckets always track the max
963 	 * "requested" clamp value of its RUNNABLE tasks.
964 	 */
965 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
966 		bucket->value = uc_se->value;
967 
968 	if (uc_se->value > READ_ONCE(uc_rq->value))
969 		WRITE_ONCE(uc_rq->value, uc_se->value);
970 }
971 
972 /*
973  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
974  * is released. If this is the last task reference counting the rq's max
975  * active clamp value, then the rq's clamp value is updated.
976  *
977  * Both refcounted tasks and rq's cached clamp values are expected to be
978  * always valid. If it's detected they are not, as defensive programming,
979  * enforce the expected state and warn.
980  */
981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
982 				    enum uclamp_id clamp_id)
983 {
984 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
985 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
986 	struct uclamp_bucket *bucket;
987 	unsigned int bkt_clamp;
988 	unsigned int rq_clamp;
989 
990 	lockdep_assert_held(&rq->lock);
991 
992 	bucket = &uc_rq->bucket[uc_se->bucket_id];
993 	SCHED_WARN_ON(!bucket->tasks);
994 	if (likely(bucket->tasks))
995 		bucket->tasks--;
996 	uc_se->active = false;
997 
998 	/*
999 	 * Keep "local max aggregation" simple and accept to (possibly)
1000 	 * overboost some RUNNABLE tasks in the same bucket.
1001 	 * The rq clamp bucket value is reset to its base value whenever
1002 	 * there are no more RUNNABLE tasks refcounting it.
1003 	 */
1004 	if (likely(bucket->tasks))
1005 		return;
1006 
1007 	rq_clamp = READ_ONCE(uc_rq->value);
1008 	/*
1009 	 * Defensive programming: this should never happen. If it happens,
1010 	 * e.g. due to future modification, warn and fixup the expected value.
1011 	 */
1012 	SCHED_WARN_ON(bucket->value > rq_clamp);
1013 	if (bucket->value >= rq_clamp) {
1014 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1015 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1016 	}
1017 }
1018 
1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1020 {
1021 	enum uclamp_id clamp_id;
1022 
1023 	if (unlikely(!p->sched_class->uclamp_enabled))
1024 		return;
1025 
1026 	for_each_clamp_id(clamp_id)
1027 		uclamp_rq_inc_id(rq, p, clamp_id);
1028 
1029 	/* Reset clamp idle holding when there is one RUNNABLE task */
1030 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1031 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1032 }
1033 
1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1035 {
1036 	enum uclamp_id clamp_id;
1037 
1038 	if (unlikely(!p->sched_class->uclamp_enabled))
1039 		return;
1040 
1041 	for_each_clamp_id(clamp_id)
1042 		uclamp_rq_dec_id(rq, p, clamp_id);
1043 }
1044 
1045 static inline void
1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1047 {
1048 	struct rq_flags rf;
1049 	struct rq *rq;
1050 
1051 	/*
1052 	 * Lock the task and the rq where the task is (or was) queued.
1053 	 *
1054 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1055 	 * price to pay to safely serialize util_{min,max} updates with
1056 	 * enqueues, dequeues and migration operations.
1057 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1058 	 */
1059 	rq = task_rq_lock(p, &rf);
1060 
1061 	/*
1062 	 * Setting the clamp bucket is serialized by task_rq_lock().
1063 	 * If the task is not yet RUNNABLE and its task_struct is not
1064 	 * affecting a valid clamp bucket, the next time it's enqueued,
1065 	 * it will already see the updated clamp bucket value.
1066 	 */
1067 	if (p->uclamp[clamp_id].active) {
1068 		uclamp_rq_dec_id(rq, p, clamp_id);
1069 		uclamp_rq_inc_id(rq, p, clamp_id);
1070 	}
1071 
1072 	task_rq_unlock(rq, p, &rf);
1073 }
1074 
1075 #ifdef CONFIG_UCLAMP_TASK_GROUP
1076 static inline void
1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 			   unsigned int clamps)
1079 {
1080 	enum uclamp_id clamp_id;
1081 	struct css_task_iter it;
1082 	struct task_struct *p;
1083 
1084 	css_task_iter_start(css, 0, &it);
1085 	while ((p = css_task_iter_next(&it))) {
1086 		for_each_clamp_id(clamp_id) {
1087 			if ((0x1 << clamp_id) & clamps)
1088 				uclamp_update_active(p, clamp_id);
1089 		}
1090 	}
1091 	css_task_iter_end(&it);
1092 }
1093 
1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1095 static void uclamp_update_root_tg(void)
1096 {
1097 	struct task_group *tg = &root_task_group;
1098 
1099 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1100 		      sysctl_sched_uclamp_util_min, false);
1101 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1102 		      sysctl_sched_uclamp_util_max, false);
1103 
1104 	rcu_read_lock();
1105 	cpu_util_update_eff(&root_task_group.css);
1106 	rcu_read_unlock();
1107 }
1108 #else
1109 static void uclamp_update_root_tg(void) { }
1110 #endif
1111 
1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1113 				void __user *buffer, size_t *lenp,
1114 				loff_t *ppos)
1115 {
1116 	bool update_root_tg = false;
1117 	int old_min, old_max;
1118 	int result;
1119 
1120 	mutex_lock(&uclamp_mutex);
1121 	old_min = sysctl_sched_uclamp_util_min;
1122 	old_max = sysctl_sched_uclamp_util_max;
1123 
1124 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 	if (result)
1126 		goto undo;
1127 	if (!write)
1128 		goto done;
1129 
1130 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 		result = -EINVAL;
1133 		goto undo;
1134 	}
1135 
1136 	if (old_min != sysctl_sched_uclamp_util_min) {
1137 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 			      sysctl_sched_uclamp_util_min, false);
1139 		update_root_tg = true;
1140 	}
1141 	if (old_max != sysctl_sched_uclamp_util_max) {
1142 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 			      sysctl_sched_uclamp_util_max, false);
1144 		update_root_tg = true;
1145 	}
1146 
1147 	if (update_root_tg)
1148 		uclamp_update_root_tg();
1149 
1150 	/*
1151 	 * We update all RUNNABLE tasks only when task groups are in use.
1152 	 * Otherwise, keep it simple and do just a lazy update at each next
1153 	 * task enqueue time.
1154 	 */
1155 
1156 	goto done;
1157 
1158 undo:
1159 	sysctl_sched_uclamp_util_min = old_min;
1160 	sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 	mutex_unlock(&uclamp_mutex);
1163 
1164 	return result;
1165 }
1166 
1167 static int uclamp_validate(struct task_struct *p,
1168 			   const struct sched_attr *attr)
1169 {
1170 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172 
1173 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 		lower_bound = attr->sched_util_min;
1175 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 		upper_bound = attr->sched_util_max;
1177 
1178 	if (lower_bound > upper_bound)
1179 		return -EINVAL;
1180 	if (upper_bound > SCHED_CAPACITY_SCALE)
1181 		return -EINVAL;
1182 
1183 	return 0;
1184 }
1185 
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 				  const struct sched_attr *attr)
1188 {
1189 	enum uclamp_id clamp_id;
1190 
1191 	/*
1192 	 * On scheduling class change, reset to default clamps for tasks
1193 	 * without a task-specific value.
1194 	 */
1195 	for_each_clamp_id(clamp_id) {
1196 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 		unsigned int clamp_value = uclamp_none(clamp_id);
1198 
1199 		/* Keep using defined clamps across class changes */
1200 		if (uc_se->user_defined)
1201 			continue;
1202 
1203 		/* By default, RT tasks always get 100% boost */
1204 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 			clamp_value = uclamp_none(UCLAMP_MAX);
1206 
1207 		uclamp_se_set(uc_se, clamp_value, false);
1208 	}
1209 
1210 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 		return;
1212 
1213 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 			      attr->sched_util_min, true);
1216 	}
1217 
1218 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 			      attr->sched_util_max, true);
1221 	}
1222 }
1223 
1224 static void uclamp_fork(struct task_struct *p)
1225 {
1226 	enum uclamp_id clamp_id;
1227 
1228 	for_each_clamp_id(clamp_id)
1229 		p->uclamp[clamp_id].active = false;
1230 
1231 	if (likely(!p->sched_reset_on_fork))
1232 		return;
1233 
1234 	for_each_clamp_id(clamp_id) {
1235 		unsigned int clamp_value = uclamp_none(clamp_id);
1236 
1237 		/* By default, RT tasks always get 100% boost */
1238 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1239 			clamp_value = uclamp_none(UCLAMP_MAX);
1240 
1241 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1242 	}
1243 }
1244 
1245 static void __init init_uclamp(void)
1246 {
1247 	struct uclamp_se uc_max = {};
1248 	enum uclamp_id clamp_id;
1249 	int cpu;
1250 
1251 	mutex_init(&uclamp_mutex);
1252 
1253 	for_each_possible_cpu(cpu) {
1254 		memset(&cpu_rq(cpu)->uclamp, 0,
1255 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1256 		cpu_rq(cpu)->uclamp_flags = 0;
1257 	}
1258 
1259 	for_each_clamp_id(clamp_id) {
1260 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1261 			      uclamp_none(clamp_id), false);
1262 	}
1263 
1264 	/* System defaults allow max clamp values for both indexes */
1265 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1266 	for_each_clamp_id(clamp_id) {
1267 		uclamp_default[clamp_id] = uc_max;
1268 #ifdef CONFIG_UCLAMP_TASK_GROUP
1269 		root_task_group.uclamp_req[clamp_id] = uc_max;
1270 		root_task_group.uclamp[clamp_id] = uc_max;
1271 #endif
1272 	}
1273 }
1274 
1275 #else /* CONFIG_UCLAMP_TASK */
1276 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1277 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1278 static inline int uclamp_validate(struct task_struct *p,
1279 				  const struct sched_attr *attr)
1280 {
1281 	return -EOPNOTSUPP;
1282 }
1283 static void __setscheduler_uclamp(struct task_struct *p,
1284 				  const struct sched_attr *attr) { }
1285 static inline void uclamp_fork(struct task_struct *p) { }
1286 static inline void init_uclamp(void) { }
1287 #endif /* CONFIG_UCLAMP_TASK */
1288 
1289 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1290 {
1291 	if (!(flags & ENQUEUE_NOCLOCK))
1292 		update_rq_clock(rq);
1293 
1294 	if (!(flags & ENQUEUE_RESTORE)) {
1295 		sched_info_queued(rq, p);
1296 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1297 	}
1298 
1299 	uclamp_rq_inc(rq, p);
1300 	p->sched_class->enqueue_task(rq, p, flags);
1301 }
1302 
1303 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1304 {
1305 	if (!(flags & DEQUEUE_NOCLOCK))
1306 		update_rq_clock(rq);
1307 
1308 	if (!(flags & DEQUEUE_SAVE)) {
1309 		sched_info_dequeued(rq, p);
1310 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1311 	}
1312 
1313 	uclamp_rq_dec(rq, p);
1314 	p->sched_class->dequeue_task(rq, p, flags);
1315 }
1316 
1317 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1318 {
1319 	if (task_contributes_to_load(p))
1320 		rq->nr_uninterruptible--;
1321 
1322 	enqueue_task(rq, p, flags);
1323 
1324 	p->on_rq = TASK_ON_RQ_QUEUED;
1325 }
1326 
1327 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1328 {
1329 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1330 
1331 	if (task_contributes_to_load(p))
1332 		rq->nr_uninterruptible++;
1333 
1334 	dequeue_task(rq, p, flags);
1335 }
1336 
1337 /*
1338  * __normal_prio - return the priority that is based on the static prio
1339  */
1340 static inline int __normal_prio(struct task_struct *p)
1341 {
1342 	return p->static_prio;
1343 }
1344 
1345 /*
1346  * Calculate the expected normal priority: i.e. priority
1347  * without taking RT-inheritance into account. Might be
1348  * boosted by interactivity modifiers. Changes upon fork,
1349  * setprio syscalls, and whenever the interactivity
1350  * estimator recalculates.
1351  */
1352 static inline int normal_prio(struct task_struct *p)
1353 {
1354 	int prio;
1355 
1356 	if (task_has_dl_policy(p))
1357 		prio = MAX_DL_PRIO-1;
1358 	else if (task_has_rt_policy(p))
1359 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1360 	else
1361 		prio = __normal_prio(p);
1362 	return prio;
1363 }
1364 
1365 /*
1366  * Calculate the current priority, i.e. the priority
1367  * taken into account by the scheduler. This value might
1368  * be boosted by RT tasks, or might be boosted by
1369  * interactivity modifiers. Will be RT if the task got
1370  * RT-boosted. If not then it returns p->normal_prio.
1371  */
1372 static int effective_prio(struct task_struct *p)
1373 {
1374 	p->normal_prio = normal_prio(p);
1375 	/*
1376 	 * If we are RT tasks or we were boosted to RT priority,
1377 	 * keep the priority unchanged. Otherwise, update priority
1378 	 * to the normal priority:
1379 	 */
1380 	if (!rt_prio(p->prio))
1381 		return p->normal_prio;
1382 	return p->prio;
1383 }
1384 
1385 /**
1386  * task_curr - is this task currently executing on a CPU?
1387  * @p: the task in question.
1388  *
1389  * Return: 1 if the task is currently executing. 0 otherwise.
1390  */
1391 inline int task_curr(const struct task_struct *p)
1392 {
1393 	return cpu_curr(task_cpu(p)) == p;
1394 }
1395 
1396 /*
1397  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1398  * use the balance_callback list if you want balancing.
1399  *
1400  * this means any call to check_class_changed() must be followed by a call to
1401  * balance_callback().
1402  */
1403 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1404 				       const struct sched_class *prev_class,
1405 				       int oldprio)
1406 {
1407 	if (prev_class != p->sched_class) {
1408 		if (prev_class->switched_from)
1409 			prev_class->switched_from(rq, p);
1410 
1411 		p->sched_class->switched_to(rq, p);
1412 	} else if (oldprio != p->prio || dl_task(p))
1413 		p->sched_class->prio_changed(rq, p, oldprio);
1414 }
1415 
1416 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1417 {
1418 	const struct sched_class *class;
1419 
1420 	if (p->sched_class == rq->curr->sched_class) {
1421 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1422 	} else {
1423 		for_each_class(class) {
1424 			if (class == rq->curr->sched_class)
1425 				break;
1426 			if (class == p->sched_class) {
1427 				resched_curr(rq);
1428 				break;
1429 			}
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * A queue event has occurred, and we're going to schedule.  In
1435 	 * this case, we can save a useless back to back clock update.
1436 	 */
1437 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1438 		rq_clock_skip_update(rq);
1439 }
1440 
1441 #ifdef CONFIG_SMP
1442 
1443 /*
1444  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1445  * __set_cpus_allowed_ptr() and select_fallback_rq().
1446  */
1447 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1448 {
1449 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1450 		return false;
1451 
1452 	if (is_per_cpu_kthread(p))
1453 		return cpu_online(cpu);
1454 
1455 	return cpu_active(cpu);
1456 }
1457 
1458 /*
1459  * This is how migration works:
1460  *
1461  * 1) we invoke migration_cpu_stop() on the target CPU using
1462  *    stop_one_cpu().
1463  * 2) stopper starts to run (implicitly forcing the migrated thread
1464  *    off the CPU)
1465  * 3) it checks whether the migrated task is still in the wrong runqueue.
1466  * 4) if it's in the wrong runqueue then the migration thread removes
1467  *    it and puts it into the right queue.
1468  * 5) stopper completes and stop_one_cpu() returns and the migration
1469  *    is done.
1470  */
1471 
1472 /*
1473  * move_queued_task - move a queued task to new rq.
1474  *
1475  * Returns (locked) new rq. Old rq's lock is released.
1476  */
1477 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1478 				   struct task_struct *p, int new_cpu)
1479 {
1480 	lockdep_assert_held(&rq->lock);
1481 
1482 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1483 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1484 	set_task_cpu(p, new_cpu);
1485 	rq_unlock(rq, rf);
1486 
1487 	rq = cpu_rq(new_cpu);
1488 
1489 	rq_lock(rq, rf);
1490 	BUG_ON(task_cpu(p) != new_cpu);
1491 	enqueue_task(rq, p, 0);
1492 	p->on_rq = TASK_ON_RQ_QUEUED;
1493 	check_preempt_curr(rq, p, 0);
1494 
1495 	return rq;
1496 }
1497 
1498 struct migration_arg {
1499 	struct task_struct *task;
1500 	int dest_cpu;
1501 };
1502 
1503 /*
1504  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1505  * this because either it can't run here any more (set_cpus_allowed()
1506  * away from this CPU, or CPU going down), or because we're
1507  * attempting to rebalance this task on exec (sched_exec).
1508  *
1509  * So we race with normal scheduler movements, but that's OK, as long
1510  * as the task is no longer on this CPU.
1511  */
1512 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1513 				 struct task_struct *p, int dest_cpu)
1514 {
1515 	/* Affinity changed (again). */
1516 	if (!is_cpu_allowed(p, dest_cpu))
1517 		return rq;
1518 
1519 	update_rq_clock(rq);
1520 	rq = move_queued_task(rq, rf, p, dest_cpu);
1521 
1522 	return rq;
1523 }
1524 
1525 /*
1526  * migration_cpu_stop - this will be executed by a highprio stopper thread
1527  * and performs thread migration by bumping thread off CPU then
1528  * 'pushing' onto another runqueue.
1529  */
1530 static int migration_cpu_stop(void *data)
1531 {
1532 	struct migration_arg *arg = data;
1533 	struct task_struct *p = arg->task;
1534 	struct rq *rq = this_rq();
1535 	struct rq_flags rf;
1536 
1537 	/*
1538 	 * The original target CPU might have gone down and we might
1539 	 * be on another CPU but it doesn't matter.
1540 	 */
1541 	local_irq_disable();
1542 	/*
1543 	 * We need to explicitly wake pending tasks before running
1544 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1545 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1546 	 */
1547 	sched_ttwu_pending();
1548 
1549 	raw_spin_lock(&p->pi_lock);
1550 	rq_lock(rq, &rf);
1551 	/*
1552 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1553 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1554 	 * we're holding p->pi_lock.
1555 	 */
1556 	if (task_rq(p) == rq) {
1557 		if (task_on_rq_queued(p))
1558 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1559 		else
1560 			p->wake_cpu = arg->dest_cpu;
1561 	}
1562 	rq_unlock(rq, &rf);
1563 	raw_spin_unlock(&p->pi_lock);
1564 
1565 	local_irq_enable();
1566 	return 0;
1567 }
1568 
1569 /*
1570  * sched_class::set_cpus_allowed must do the below, but is not required to
1571  * actually call this function.
1572  */
1573 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1574 {
1575 	cpumask_copy(&p->cpus_mask, new_mask);
1576 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1577 }
1578 
1579 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1580 {
1581 	struct rq *rq = task_rq(p);
1582 	bool queued, running;
1583 
1584 	lockdep_assert_held(&p->pi_lock);
1585 
1586 	queued = task_on_rq_queued(p);
1587 	running = task_current(rq, p);
1588 
1589 	if (queued) {
1590 		/*
1591 		 * Because __kthread_bind() calls this on blocked tasks without
1592 		 * holding rq->lock.
1593 		 */
1594 		lockdep_assert_held(&rq->lock);
1595 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1596 	}
1597 	if (running)
1598 		put_prev_task(rq, p);
1599 
1600 	p->sched_class->set_cpus_allowed(p, new_mask);
1601 
1602 	if (queued)
1603 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1604 	if (running)
1605 		set_next_task(rq, p);
1606 }
1607 
1608 /*
1609  * Change a given task's CPU affinity. Migrate the thread to a
1610  * proper CPU and schedule it away if the CPU it's executing on
1611  * is removed from the allowed bitmask.
1612  *
1613  * NOTE: the caller must have a valid reference to the task, the
1614  * task must not exit() & deallocate itself prematurely. The
1615  * call is not atomic; no spinlocks may be held.
1616  */
1617 static int __set_cpus_allowed_ptr(struct task_struct *p,
1618 				  const struct cpumask *new_mask, bool check)
1619 {
1620 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1621 	unsigned int dest_cpu;
1622 	struct rq_flags rf;
1623 	struct rq *rq;
1624 	int ret = 0;
1625 
1626 	rq = task_rq_lock(p, &rf);
1627 	update_rq_clock(rq);
1628 
1629 	if (p->flags & PF_KTHREAD) {
1630 		/*
1631 		 * Kernel threads are allowed on online && !active CPUs
1632 		 */
1633 		cpu_valid_mask = cpu_online_mask;
1634 	}
1635 
1636 	/*
1637 	 * Must re-check here, to close a race against __kthread_bind(),
1638 	 * sched_setaffinity() is not guaranteed to observe the flag.
1639 	 */
1640 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1641 		ret = -EINVAL;
1642 		goto out;
1643 	}
1644 
1645 	if (cpumask_equal(p->cpus_ptr, new_mask))
1646 		goto out;
1647 
1648 	/*
1649 	 * Picking a ~random cpu helps in cases where we are changing affinity
1650 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1651 	 * immediately required to distribute the tasks within their new mask.
1652 	 */
1653 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1654 	if (dest_cpu >= nr_cpu_ids) {
1655 		ret = -EINVAL;
1656 		goto out;
1657 	}
1658 
1659 	do_set_cpus_allowed(p, new_mask);
1660 
1661 	if (p->flags & PF_KTHREAD) {
1662 		/*
1663 		 * For kernel threads that do indeed end up on online &&
1664 		 * !active we want to ensure they are strict per-CPU threads.
1665 		 */
1666 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1667 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1668 			p->nr_cpus_allowed != 1);
1669 	}
1670 
1671 	/* Can the task run on the task's current CPU? If so, we're done */
1672 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1673 		goto out;
1674 
1675 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1676 		struct migration_arg arg = { p, dest_cpu };
1677 		/* Need help from migration thread: drop lock and wait. */
1678 		task_rq_unlock(rq, p, &rf);
1679 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1680 		return 0;
1681 	} else if (task_on_rq_queued(p)) {
1682 		/*
1683 		 * OK, since we're going to drop the lock immediately
1684 		 * afterwards anyway.
1685 		 */
1686 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1687 	}
1688 out:
1689 	task_rq_unlock(rq, p, &rf);
1690 
1691 	return ret;
1692 }
1693 
1694 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1695 {
1696 	return __set_cpus_allowed_ptr(p, new_mask, false);
1697 }
1698 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1699 
1700 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1701 {
1702 #ifdef CONFIG_SCHED_DEBUG
1703 	/*
1704 	 * We should never call set_task_cpu() on a blocked task,
1705 	 * ttwu() will sort out the placement.
1706 	 */
1707 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1708 			!p->on_rq);
1709 
1710 	/*
1711 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1712 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1713 	 * time relying on p->on_rq.
1714 	 */
1715 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1716 		     p->sched_class == &fair_sched_class &&
1717 		     (p->on_rq && !task_on_rq_migrating(p)));
1718 
1719 #ifdef CONFIG_LOCKDEP
1720 	/*
1721 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1722 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1723 	 *
1724 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1725 	 * see task_group().
1726 	 *
1727 	 * Furthermore, all task_rq users should acquire both locks, see
1728 	 * task_rq_lock().
1729 	 */
1730 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1731 				      lockdep_is_held(&task_rq(p)->lock)));
1732 #endif
1733 	/*
1734 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1735 	 */
1736 	WARN_ON_ONCE(!cpu_online(new_cpu));
1737 #endif
1738 
1739 	trace_sched_migrate_task(p, new_cpu);
1740 
1741 	if (task_cpu(p) != new_cpu) {
1742 		if (p->sched_class->migrate_task_rq)
1743 			p->sched_class->migrate_task_rq(p, new_cpu);
1744 		p->se.nr_migrations++;
1745 		rseq_migrate(p);
1746 		perf_event_task_migrate(p);
1747 	}
1748 
1749 	__set_task_cpu(p, new_cpu);
1750 }
1751 
1752 #ifdef CONFIG_NUMA_BALANCING
1753 static void __migrate_swap_task(struct task_struct *p, int cpu)
1754 {
1755 	if (task_on_rq_queued(p)) {
1756 		struct rq *src_rq, *dst_rq;
1757 		struct rq_flags srf, drf;
1758 
1759 		src_rq = task_rq(p);
1760 		dst_rq = cpu_rq(cpu);
1761 
1762 		rq_pin_lock(src_rq, &srf);
1763 		rq_pin_lock(dst_rq, &drf);
1764 
1765 		deactivate_task(src_rq, p, 0);
1766 		set_task_cpu(p, cpu);
1767 		activate_task(dst_rq, p, 0);
1768 		check_preempt_curr(dst_rq, p, 0);
1769 
1770 		rq_unpin_lock(dst_rq, &drf);
1771 		rq_unpin_lock(src_rq, &srf);
1772 
1773 	} else {
1774 		/*
1775 		 * Task isn't running anymore; make it appear like we migrated
1776 		 * it before it went to sleep. This means on wakeup we make the
1777 		 * previous CPU our target instead of where it really is.
1778 		 */
1779 		p->wake_cpu = cpu;
1780 	}
1781 }
1782 
1783 struct migration_swap_arg {
1784 	struct task_struct *src_task, *dst_task;
1785 	int src_cpu, dst_cpu;
1786 };
1787 
1788 static int migrate_swap_stop(void *data)
1789 {
1790 	struct migration_swap_arg *arg = data;
1791 	struct rq *src_rq, *dst_rq;
1792 	int ret = -EAGAIN;
1793 
1794 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1795 		return -EAGAIN;
1796 
1797 	src_rq = cpu_rq(arg->src_cpu);
1798 	dst_rq = cpu_rq(arg->dst_cpu);
1799 
1800 	double_raw_lock(&arg->src_task->pi_lock,
1801 			&arg->dst_task->pi_lock);
1802 	double_rq_lock(src_rq, dst_rq);
1803 
1804 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1805 		goto unlock;
1806 
1807 	if (task_cpu(arg->src_task) != arg->src_cpu)
1808 		goto unlock;
1809 
1810 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1811 		goto unlock;
1812 
1813 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1814 		goto unlock;
1815 
1816 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1817 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1818 
1819 	ret = 0;
1820 
1821 unlock:
1822 	double_rq_unlock(src_rq, dst_rq);
1823 	raw_spin_unlock(&arg->dst_task->pi_lock);
1824 	raw_spin_unlock(&arg->src_task->pi_lock);
1825 
1826 	return ret;
1827 }
1828 
1829 /*
1830  * Cross migrate two tasks
1831  */
1832 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1833 		int target_cpu, int curr_cpu)
1834 {
1835 	struct migration_swap_arg arg;
1836 	int ret = -EINVAL;
1837 
1838 	arg = (struct migration_swap_arg){
1839 		.src_task = cur,
1840 		.src_cpu = curr_cpu,
1841 		.dst_task = p,
1842 		.dst_cpu = target_cpu,
1843 	};
1844 
1845 	if (arg.src_cpu == arg.dst_cpu)
1846 		goto out;
1847 
1848 	/*
1849 	 * These three tests are all lockless; this is OK since all of them
1850 	 * will be re-checked with proper locks held further down the line.
1851 	 */
1852 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1853 		goto out;
1854 
1855 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1856 		goto out;
1857 
1858 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1859 		goto out;
1860 
1861 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1862 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1863 
1864 out:
1865 	return ret;
1866 }
1867 #endif /* CONFIG_NUMA_BALANCING */
1868 
1869 /*
1870  * wait_task_inactive - wait for a thread to unschedule.
1871  *
1872  * If @match_state is nonzero, it's the @p->state value just checked and
1873  * not expected to change.  If it changes, i.e. @p might have woken up,
1874  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1875  * we return a positive number (its total switch count).  If a second call
1876  * a short while later returns the same number, the caller can be sure that
1877  * @p has remained unscheduled the whole time.
1878  *
1879  * The caller must ensure that the task *will* unschedule sometime soon,
1880  * else this function might spin for a *long* time. This function can't
1881  * be called with interrupts off, or it may introduce deadlock with
1882  * smp_call_function() if an IPI is sent by the same process we are
1883  * waiting to become inactive.
1884  */
1885 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1886 {
1887 	int running, queued;
1888 	struct rq_flags rf;
1889 	unsigned long ncsw;
1890 	struct rq *rq;
1891 
1892 	for (;;) {
1893 		/*
1894 		 * We do the initial early heuristics without holding
1895 		 * any task-queue locks at all. We'll only try to get
1896 		 * the runqueue lock when things look like they will
1897 		 * work out!
1898 		 */
1899 		rq = task_rq(p);
1900 
1901 		/*
1902 		 * If the task is actively running on another CPU
1903 		 * still, just relax and busy-wait without holding
1904 		 * any locks.
1905 		 *
1906 		 * NOTE! Since we don't hold any locks, it's not
1907 		 * even sure that "rq" stays as the right runqueue!
1908 		 * But we don't care, since "task_running()" will
1909 		 * return false if the runqueue has changed and p
1910 		 * is actually now running somewhere else!
1911 		 */
1912 		while (task_running(rq, p)) {
1913 			if (match_state && unlikely(p->state != match_state))
1914 				return 0;
1915 			cpu_relax();
1916 		}
1917 
1918 		/*
1919 		 * Ok, time to look more closely! We need the rq
1920 		 * lock now, to be *sure*. If we're wrong, we'll
1921 		 * just go back and repeat.
1922 		 */
1923 		rq = task_rq_lock(p, &rf);
1924 		trace_sched_wait_task(p);
1925 		running = task_running(rq, p);
1926 		queued = task_on_rq_queued(p);
1927 		ncsw = 0;
1928 		if (!match_state || p->state == match_state)
1929 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1930 		task_rq_unlock(rq, p, &rf);
1931 
1932 		/*
1933 		 * If it changed from the expected state, bail out now.
1934 		 */
1935 		if (unlikely(!ncsw))
1936 			break;
1937 
1938 		/*
1939 		 * Was it really running after all now that we
1940 		 * checked with the proper locks actually held?
1941 		 *
1942 		 * Oops. Go back and try again..
1943 		 */
1944 		if (unlikely(running)) {
1945 			cpu_relax();
1946 			continue;
1947 		}
1948 
1949 		/*
1950 		 * It's not enough that it's not actively running,
1951 		 * it must be off the runqueue _entirely_, and not
1952 		 * preempted!
1953 		 *
1954 		 * So if it was still runnable (but just not actively
1955 		 * running right now), it's preempted, and we should
1956 		 * yield - it could be a while.
1957 		 */
1958 		if (unlikely(queued)) {
1959 			ktime_t to = NSEC_PER_SEC / HZ;
1960 
1961 			set_current_state(TASK_UNINTERRUPTIBLE);
1962 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1963 			continue;
1964 		}
1965 
1966 		/*
1967 		 * Ahh, all good. It wasn't running, and it wasn't
1968 		 * runnable, which means that it will never become
1969 		 * running in the future either. We're all done!
1970 		 */
1971 		break;
1972 	}
1973 
1974 	return ncsw;
1975 }
1976 
1977 /***
1978  * kick_process - kick a running thread to enter/exit the kernel
1979  * @p: the to-be-kicked thread
1980  *
1981  * Cause a process which is running on another CPU to enter
1982  * kernel-mode, without any delay. (to get signals handled.)
1983  *
1984  * NOTE: this function doesn't have to take the runqueue lock,
1985  * because all it wants to ensure is that the remote task enters
1986  * the kernel. If the IPI races and the task has been migrated
1987  * to another CPU then no harm is done and the purpose has been
1988  * achieved as well.
1989  */
1990 void kick_process(struct task_struct *p)
1991 {
1992 	int cpu;
1993 
1994 	preempt_disable();
1995 	cpu = task_cpu(p);
1996 	if ((cpu != smp_processor_id()) && task_curr(p))
1997 		smp_send_reschedule(cpu);
1998 	preempt_enable();
1999 }
2000 EXPORT_SYMBOL_GPL(kick_process);
2001 
2002 /*
2003  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2004  *
2005  * A few notes on cpu_active vs cpu_online:
2006  *
2007  *  - cpu_active must be a subset of cpu_online
2008  *
2009  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2010  *    see __set_cpus_allowed_ptr(). At this point the newly online
2011  *    CPU isn't yet part of the sched domains, and balancing will not
2012  *    see it.
2013  *
2014  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2015  *    avoid the load balancer to place new tasks on the to be removed
2016  *    CPU. Existing tasks will remain running there and will be taken
2017  *    off.
2018  *
2019  * This means that fallback selection must not select !active CPUs.
2020  * And can assume that any active CPU must be online. Conversely
2021  * select_task_rq() below may allow selection of !active CPUs in order
2022  * to satisfy the above rules.
2023  */
2024 static int select_fallback_rq(int cpu, struct task_struct *p)
2025 {
2026 	int nid = cpu_to_node(cpu);
2027 	const struct cpumask *nodemask = NULL;
2028 	enum { cpuset, possible, fail } state = cpuset;
2029 	int dest_cpu;
2030 
2031 	/*
2032 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2033 	 * will return -1. There is no CPU on the node, and we should
2034 	 * select the CPU on the other node.
2035 	 */
2036 	if (nid != -1) {
2037 		nodemask = cpumask_of_node(nid);
2038 
2039 		/* Look for allowed, online CPU in same node. */
2040 		for_each_cpu(dest_cpu, nodemask) {
2041 			if (!cpu_active(dest_cpu))
2042 				continue;
2043 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2044 				return dest_cpu;
2045 		}
2046 	}
2047 
2048 	for (;;) {
2049 		/* Any allowed, online CPU? */
2050 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2051 			if (!is_cpu_allowed(p, dest_cpu))
2052 				continue;
2053 
2054 			goto out;
2055 		}
2056 
2057 		/* No more Mr. Nice Guy. */
2058 		switch (state) {
2059 		case cpuset:
2060 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2061 				cpuset_cpus_allowed_fallback(p);
2062 				state = possible;
2063 				break;
2064 			}
2065 			/* Fall-through */
2066 		case possible:
2067 			do_set_cpus_allowed(p, cpu_possible_mask);
2068 			state = fail;
2069 			break;
2070 
2071 		case fail:
2072 			BUG();
2073 			break;
2074 		}
2075 	}
2076 
2077 out:
2078 	if (state != cpuset) {
2079 		/*
2080 		 * Don't tell them about moving exiting tasks or
2081 		 * kernel threads (both mm NULL), since they never
2082 		 * leave kernel.
2083 		 */
2084 		if (p->mm && printk_ratelimit()) {
2085 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2086 					task_pid_nr(p), p->comm, cpu);
2087 		}
2088 	}
2089 
2090 	return dest_cpu;
2091 }
2092 
2093 /*
2094  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2095  */
2096 static inline
2097 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2098 {
2099 	lockdep_assert_held(&p->pi_lock);
2100 
2101 	if (p->nr_cpus_allowed > 1)
2102 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2103 	else
2104 		cpu = cpumask_any(p->cpus_ptr);
2105 
2106 	/*
2107 	 * In order not to call set_task_cpu() on a blocking task we need
2108 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2109 	 * CPU.
2110 	 *
2111 	 * Since this is common to all placement strategies, this lives here.
2112 	 *
2113 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2114 	 *   not worry about this generic constraint ]
2115 	 */
2116 	if (unlikely(!is_cpu_allowed(p, cpu)))
2117 		cpu = select_fallback_rq(task_cpu(p), p);
2118 
2119 	return cpu;
2120 }
2121 
2122 static void update_avg(u64 *avg, u64 sample)
2123 {
2124 	s64 diff = sample - *avg;
2125 	*avg += diff >> 3;
2126 }
2127 
2128 void sched_set_stop_task(int cpu, struct task_struct *stop)
2129 {
2130 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2131 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2132 
2133 	if (stop) {
2134 		/*
2135 		 * Make it appear like a SCHED_FIFO task, its something
2136 		 * userspace knows about and won't get confused about.
2137 		 *
2138 		 * Also, it will make PI more or less work without too
2139 		 * much confusion -- but then, stop work should not
2140 		 * rely on PI working anyway.
2141 		 */
2142 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2143 
2144 		stop->sched_class = &stop_sched_class;
2145 	}
2146 
2147 	cpu_rq(cpu)->stop = stop;
2148 
2149 	if (old_stop) {
2150 		/*
2151 		 * Reset it back to a normal scheduling class so that
2152 		 * it can die in pieces.
2153 		 */
2154 		old_stop->sched_class = &rt_sched_class;
2155 	}
2156 }
2157 
2158 #else
2159 
2160 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2161 					 const struct cpumask *new_mask, bool check)
2162 {
2163 	return set_cpus_allowed_ptr(p, new_mask);
2164 }
2165 
2166 #endif /* CONFIG_SMP */
2167 
2168 static void
2169 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2170 {
2171 	struct rq *rq;
2172 
2173 	if (!schedstat_enabled())
2174 		return;
2175 
2176 	rq = this_rq();
2177 
2178 #ifdef CONFIG_SMP
2179 	if (cpu == rq->cpu) {
2180 		__schedstat_inc(rq->ttwu_local);
2181 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2182 	} else {
2183 		struct sched_domain *sd;
2184 
2185 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2186 		rcu_read_lock();
2187 		for_each_domain(rq->cpu, sd) {
2188 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2189 				__schedstat_inc(sd->ttwu_wake_remote);
2190 				break;
2191 			}
2192 		}
2193 		rcu_read_unlock();
2194 	}
2195 
2196 	if (wake_flags & WF_MIGRATED)
2197 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2198 #endif /* CONFIG_SMP */
2199 
2200 	__schedstat_inc(rq->ttwu_count);
2201 	__schedstat_inc(p->se.statistics.nr_wakeups);
2202 
2203 	if (wake_flags & WF_SYNC)
2204 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2205 }
2206 
2207 /*
2208  * Mark the task runnable and perform wakeup-preemption.
2209  */
2210 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2211 			   struct rq_flags *rf)
2212 {
2213 	check_preempt_curr(rq, p, wake_flags);
2214 	p->state = TASK_RUNNING;
2215 	trace_sched_wakeup(p);
2216 
2217 #ifdef CONFIG_SMP
2218 	if (p->sched_class->task_woken) {
2219 		/*
2220 		 * Our task @p is fully woken up and running; so its safe to
2221 		 * drop the rq->lock, hereafter rq is only used for statistics.
2222 		 */
2223 		rq_unpin_lock(rq, rf);
2224 		p->sched_class->task_woken(rq, p);
2225 		rq_repin_lock(rq, rf);
2226 	}
2227 
2228 	if (rq->idle_stamp) {
2229 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2230 		u64 max = 2*rq->max_idle_balance_cost;
2231 
2232 		update_avg(&rq->avg_idle, delta);
2233 
2234 		if (rq->avg_idle > max)
2235 			rq->avg_idle = max;
2236 
2237 		rq->idle_stamp = 0;
2238 	}
2239 #endif
2240 }
2241 
2242 static void
2243 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2244 		 struct rq_flags *rf)
2245 {
2246 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2247 
2248 	lockdep_assert_held(&rq->lock);
2249 
2250 #ifdef CONFIG_SMP
2251 	if (p->sched_contributes_to_load)
2252 		rq->nr_uninterruptible--;
2253 
2254 	if (wake_flags & WF_MIGRATED)
2255 		en_flags |= ENQUEUE_MIGRATED;
2256 #endif
2257 
2258 	activate_task(rq, p, en_flags);
2259 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2260 }
2261 
2262 /*
2263  * Called in case the task @p isn't fully descheduled from its runqueue,
2264  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2265  * since all we need to do is flip p->state to TASK_RUNNING, since
2266  * the task is still ->on_rq.
2267  */
2268 static int ttwu_remote(struct task_struct *p, int wake_flags)
2269 {
2270 	struct rq_flags rf;
2271 	struct rq *rq;
2272 	int ret = 0;
2273 
2274 	rq = __task_rq_lock(p, &rf);
2275 	if (task_on_rq_queued(p)) {
2276 		/* check_preempt_curr() may use rq clock */
2277 		update_rq_clock(rq);
2278 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2279 		ret = 1;
2280 	}
2281 	__task_rq_unlock(rq, &rf);
2282 
2283 	return ret;
2284 }
2285 
2286 #ifdef CONFIG_SMP
2287 void sched_ttwu_pending(void)
2288 {
2289 	struct rq *rq = this_rq();
2290 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2291 	struct task_struct *p, *t;
2292 	struct rq_flags rf;
2293 
2294 	if (!llist)
2295 		return;
2296 
2297 	rq_lock_irqsave(rq, &rf);
2298 	update_rq_clock(rq);
2299 
2300 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2301 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2302 
2303 	rq_unlock_irqrestore(rq, &rf);
2304 }
2305 
2306 void scheduler_ipi(void)
2307 {
2308 	/*
2309 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2310 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2311 	 * this IPI.
2312 	 */
2313 	preempt_fold_need_resched();
2314 
2315 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2316 		return;
2317 
2318 	/*
2319 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2320 	 * traditionally all their work was done from the interrupt return
2321 	 * path. Now that we actually do some work, we need to make sure
2322 	 * we do call them.
2323 	 *
2324 	 * Some archs already do call them, luckily irq_enter/exit nest
2325 	 * properly.
2326 	 *
2327 	 * Arguably we should visit all archs and update all handlers,
2328 	 * however a fair share of IPIs are still resched only so this would
2329 	 * somewhat pessimize the simple resched case.
2330 	 */
2331 	irq_enter();
2332 	sched_ttwu_pending();
2333 
2334 	/*
2335 	 * Check if someone kicked us for doing the nohz idle load balance.
2336 	 */
2337 	if (unlikely(got_nohz_idle_kick())) {
2338 		this_rq()->idle_balance = 1;
2339 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2340 	}
2341 	irq_exit();
2342 }
2343 
2344 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2345 {
2346 	struct rq *rq = cpu_rq(cpu);
2347 
2348 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2349 
2350 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2351 		if (!set_nr_if_polling(rq->idle))
2352 			smp_send_reschedule(cpu);
2353 		else
2354 			trace_sched_wake_idle_without_ipi(cpu);
2355 	}
2356 }
2357 
2358 void wake_up_if_idle(int cpu)
2359 {
2360 	struct rq *rq = cpu_rq(cpu);
2361 	struct rq_flags rf;
2362 
2363 	rcu_read_lock();
2364 
2365 	if (!is_idle_task(rcu_dereference(rq->curr)))
2366 		goto out;
2367 
2368 	if (set_nr_if_polling(rq->idle)) {
2369 		trace_sched_wake_idle_without_ipi(cpu);
2370 	} else {
2371 		rq_lock_irqsave(rq, &rf);
2372 		if (is_idle_task(rq->curr))
2373 			smp_send_reschedule(cpu);
2374 		/* Else CPU is not idle, do nothing here: */
2375 		rq_unlock_irqrestore(rq, &rf);
2376 	}
2377 
2378 out:
2379 	rcu_read_unlock();
2380 }
2381 
2382 bool cpus_share_cache(int this_cpu, int that_cpu)
2383 {
2384 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2385 }
2386 #endif /* CONFIG_SMP */
2387 
2388 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2389 {
2390 	struct rq *rq = cpu_rq(cpu);
2391 	struct rq_flags rf;
2392 
2393 #if defined(CONFIG_SMP)
2394 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2395 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2396 		ttwu_queue_remote(p, cpu, wake_flags);
2397 		return;
2398 	}
2399 #endif
2400 
2401 	rq_lock(rq, &rf);
2402 	update_rq_clock(rq);
2403 	ttwu_do_activate(rq, p, wake_flags, &rf);
2404 	rq_unlock(rq, &rf);
2405 }
2406 
2407 /*
2408  * Notes on Program-Order guarantees on SMP systems.
2409  *
2410  *  MIGRATION
2411  *
2412  * The basic program-order guarantee on SMP systems is that when a task [t]
2413  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2414  * execution on its new CPU [c1].
2415  *
2416  * For migration (of runnable tasks) this is provided by the following means:
2417  *
2418  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2419  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2420  *     rq(c1)->lock (if not at the same time, then in that order).
2421  *  C) LOCK of the rq(c1)->lock scheduling in task
2422  *
2423  * Release/acquire chaining guarantees that B happens after A and C after B.
2424  * Note: the CPU doing B need not be c0 or c1
2425  *
2426  * Example:
2427  *
2428  *   CPU0            CPU1            CPU2
2429  *
2430  *   LOCK rq(0)->lock
2431  *   sched-out X
2432  *   sched-in Y
2433  *   UNLOCK rq(0)->lock
2434  *
2435  *                                   LOCK rq(0)->lock // orders against CPU0
2436  *                                   dequeue X
2437  *                                   UNLOCK rq(0)->lock
2438  *
2439  *                                   LOCK rq(1)->lock
2440  *                                   enqueue X
2441  *                                   UNLOCK rq(1)->lock
2442  *
2443  *                   LOCK rq(1)->lock // orders against CPU2
2444  *                   sched-out Z
2445  *                   sched-in X
2446  *                   UNLOCK rq(1)->lock
2447  *
2448  *
2449  *  BLOCKING -- aka. SLEEP + WAKEUP
2450  *
2451  * For blocking we (obviously) need to provide the same guarantee as for
2452  * migration. However the means are completely different as there is no lock
2453  * chain to provide order. Instead we do:
2454  *
2455  *   1) smp_store_release(X->on_cpu, 0)
2456  *   2) smp_cond_load_acquire(!X->on_cpu)
2457  *
2458  * Example:
2459  *
2460  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2461  *
2462  *   LOCK rq(0)->lock LOCK X->pi_lock
2463  *   dequeue X
2464  *   sched-out X
2465  *   smp_store_release(X->on_cpu, 0);
2466  *
2467  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2468  *                    X->state = WAKING
2469  *                    set_task_cpu(X,2)
2470  *
2471  *                    LOCK rq(2)->lock
2472  *                    enqueue X
2473  *                    X->state = RUNNING
2474  *                    UNLOCK rq(2)->lock
2475  *
2476  *                                          LOCK rq(2)->lock // orders against CPU1
2477  *                                          sched-out Z
2478  *                                          sched-in X
2479  *                                          UNLOCK rq(2)->lock
2480  *
2481  *                    UNLOCK X->pi_lock
2482  *   UNLOCK rq(0)->lock
2483  *
2484  *
2485  * However, for wakeups there is a second guarantee we must provide, namely we
2486  * must ensure that CONDITION=1 done by the caller can not be reordered with
2487  * accesses to the task state; see try_to_wake_up() and set_current_state().
2488  */
2489 
2490 /**
2491  * try_to_wake_up - wake up a thread
2492  * @p: the thread to be awakened
2493  * @state: the mask of task states that can be woken
2494  * @wake_flags: wake modifier flags (WF_*)
2495  *
2496  * If (@state & @p->state) @p->state = TASK_RUNNING.
2497  *
2498  * If the task was not queued/runnable, also place it back on a runqueue.
2499  *
2500  * Atomic against schedule() which would dequeue a task, also see
2501  * set_current_state().
2502  *
2503  * This function executes a full memory barrier before accessing the task
2504  * state; see set_current_state().
2505  *
2506  * Return: %true if @p->state changes (an actual wakeup was done),
2507  *	   %false otherwise.
2508  */
2509 static int
2510 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2511 {
2512 	unsigned long flags;
2513 	int cpu, success = 0;
2514 
2515 	preempt_disable();
2516 	if (p == current) {
2517 		/*
2518 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2519 		 * == smp_processor_id()'. Together this means we can special
2520 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2521 		 * without taking any locks.
2522 		 *
2523 		 * In particular:
2524 		 *  - we rely on Program-Order guarantees for all the ordering,
2525 		 *  - we're serialized against set_special_state() by virtue of
2526 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2527 		 */
2528 		if (!(p->state & state))
2529 			goto out;
2530 
2531 		success = 1;
2532 		cpu = task_cpu(p);
2533 		trace_sched_waking(p);
2534 		p->state = TASK_RUNNING;
2535 		trace_sched_wakeup(p);
2536 		goto out;
2537 	}
2538 
2539 	/*
2540 	 * If we are going to wake up a thread waiting for CONDITION we
2541 	 * need to ensure that CONDITION=1 done by the caller can not be
2542 	 * reordered with p->state check below. This pairs with mb() in
2543 	 * set_current_state() the waiting thread does.
2544 	 */
2545 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2546 	smp_mb__after_spinlock();
2547 	if (!(p->state & state))
2548 		goto unlock;
2549 
2550 	trace_sched_waking(p);
2551 
2552 	/* We're going to change ->state: */
2553 	success = 1;
2554 	cpu = task_cpu(p);
2555 
2556 	/*
2557 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2558 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2559 	 * in smp_cond_load_acquire() below.
2560 	 *
2561 	 * sched_ttwu_pending()			try_to_wake_up()
2562 	 *   STORE p->on_rq = 1			  LOAD p->state
2563 	 *   UNLOCK rq->lock
2564 	 *
2565 	 * __schedule() (switch to task 'p')
2566 	 *   LOCK rq->lock			  smp_rmb();
2567 	 *   smp_mb__after_spinlock();
2568 	 *   UNLOCK rq->lock
2569 	 *
2570 	 * [task p]
2571 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2572 	 *
2573 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2574 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2575 	 */
2576 	smp_rmb();
2577 	if (p->on_rq && ttwu_remote(p, wake_flags))
2578 		goto unlock;
2579 
2580 #ifdef CONFIG_SMP
2581 	/*
2582 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2583 	 * possible to, falsely, observe p->on_cpu == 0.
2584 	 *
2585 	 * One must be running (->on_cpu == 1) in order to remove oneself
2586 	 * from the runqueue.
2587 	 *
2588 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2589 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2590 	 *   UNLOCK rq->lock
2591 	 *
2592 	 * __schedule() (put 'p' to sleep)
2593 	 *   LOCK rq->lock			  smp_rmb();
2594 	 *   smp_mb__after_spinlock();
2595 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2596 	 *
2597 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2598 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2599 	 */
2600 	smp_rmb();
2601 
2602 	/*
2603 	 * If the owning (remote) CPU is still in the middle of schedule() with
2604 	 * this task as prev, wait until its done referencing the task.
2605 	 *
2606 	 * Pairs with the smp_store_release() in finish_task().
2607 	 *
2608 	 * This ensures that tasks getting woken will be fully ordered against
2609 	 * their previous state and preserve Program Order.
2610 	 */
2611 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2612 
2613 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2614 	p->state = TASK_WAKING;
2615 
2616 	if (p->in_iowait) {
2617 		delayacct_blkio_end(p);
2618 		atomic_dec(&task_rq(p)->nr_iowait);
2619 	}
2620 
2621 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2622 	if (task_cpu(p) != cpu) {
2623 		wake_flags |= WF_MIGRATED;
2624 		psi_ttwu_dequeue(p);
2625 		set_task_cpu(p, cpu);
2626 	}
2627 
2628 #else /* CONFIG_SMP */
2629 
2630 	if (p->in_iowait) {
2631 		delayacct_blkio_end(p);
2632 		atomic_dec(&task_rq(p)->nr_iowait);
2633 	}
2634 
2635 #endif /* CONFIG_SMP */
2636 
2637 	ttwu_queue(p, cpu, wake_flags);
2638 unlock:
2639 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2640 out:
2641 	if (success)
2642 		ttwu_stat(p, cpu, wake_flags);
2643 	preempt_enable();
2644 
2645 	return success;
2646 }
2647 
2648 /**
2649  * wake_up_process - Wake up a specific process
2650  * @p: The process to be woken up.
2651  *
2652  * Attempt to wake up the nominated process and move it to the set of runnable
2653  * processes.
2654  *
2655  * Return: 1 if the process was woken up, 0 if it was already running.
2656  *
2657  * This function executes a full memory barrier before accessing the task state.
2658  */
2659 int wake_up_process(struct task_struct *p)
2660 {
2661 	return try_to_wake_up(p, TASK_NORMAL, 0);
2662 }
2663 EXPORT_SYMBOL(wake_up_process);
2664 
2665 int wake_up_state(struct task_struct *p, unsigned int state)
2666 {
2667 	return try_to_wake_up(p, state, 0);
2668 }
2669 
2670 /*
2671  * Perform scheduler related setup for a newly forked process p.
2672  * p is forked by current.
2673  *
2674  * __sched_fork() is basic setup used by init_idle() too:
2675  */
2676 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2677 {
2678 	p->on_rq			= 0;
2679 
2680 	p->se.on_rq			= 0;
2681 	p->se.exec_start		= 0;
2682 	p->se.sum_exec_runtime		= 0;
2683 	p->se.prev_sum_exec_runtime	= 0;
2684 	p->se.nr_migrations		= 0;
2685 	p->se.vruntime			= 0;
2686 	INIT_LIST_HEAD(&p->se.group_node);
2687 
2688 #ifdef CONFIG_FAIR_GROUP_SCHED
2689 	p->se.cfs_rq			= NULL;
2690 #endif
2691 
2692 #ifdef CONFIG_SCHEDSTATS
2693 	/* Even if schedstat is disabled, there should not be garbage */
2694 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2695 #endif
2696 
2697 	RB_CLEAR_NODE(&p->dl.rb_node);
2698 	init_dl_task_timer(&p->dl);
2699 	init_dl_inactive_task_timer(&p->dl);
2700 	__dl_clear_params(p);
2701 
2702 	INIT_LIST_HEAD(&p->rt.run_list);
2703 	p->rt.timeout		= 0;
2704 	p->rt.time_slice	= sched_rr_timeslice;
2705 	p->rt.on_rq		= 0;
2706 	p->rt.on_list		= 0;
2707 
2708 #ifdef CONFIG_PREEMPT_NOTIFIERS
2709 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2710 #endif
2711 
2712 #ifdef CONFIG_COMPACTION
2713 	p->capture_control = NULL;
2714 #endif
2715 	init_numa_balancing(clone_flags, p);
2716 }
2717 
2718 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2719 
2720 #ifdef CONFIG_NUMA_BALANCING
2721 
2722 void set_numabalancing_state(bool enabled)
2723 {
2724 	if (enabled)
2725 		static_branch_enable(&sched_numa_balancing);
2726 	else
2727 		static_branch_disable(&sched_numa_balancing);
2728 }
2729 
2730 #ifdef CONFIG_PROC_SYSCTL
2731 int sysctl_numa_balancing(struct ctl_table *table, int write,
2732 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2733 {
2734 	struct ctl_table t;
2735 	int err;
2736 	int state = static_branch_likely(&sched_numa_balancing);
2737 
2738 	if (write && !capable(CAP_SYS_ADMIN))
2739 		return -EPERM;
2740 
2741 	t = *table;
2742 	t.data = &state;
2743 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2744 	if (err < 0)
2745 		return err;
2746 	if (write)
2747 		set_numabalancing_state(state);
2748 	return err;
2749 }
2750 #endif
2751 #endif
2752 
2753 #ifdef CONFIG_SCHEDSTATS
2754 
2755 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2756 static bool __initdata __sched_schedstats = false;
2757 
2758 static void set_schedstats(bool enabled)
2759 {
2760 	if (enabled)
2761 		static_branch_enable(&sched_schedstats);
2762 	else
2763 		static_branch_disable(&sched_schedstats);
2764 }
2765 
2766 void force_schedstat_enabled(void)
2767 {
2768 	if (!schedstat_enabled()) {
2769 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2770 		static_branch_enable(&sched_schedstats);
2771 	}
2772 }
2773 
2774 static int __init setup_schedstats(char *str)
2775 {
2776 	int ret = 0;
2777 	if (!str)
2778 		goto out;
2779 
2780 	/*
2781 	 * This code is called before jump labels have been set up, so we can't
2782 	 * change the static branch directly just yet.  Instead set a temporary
2783 	 * variable so init_schedstats() can do it later.
2784 	 */
2785 	if (!strcmp(str, "enable")) {
2786 		__sched_schedstats = true;
2787 		ret = 1;
2788 	} else if (!strcmp(str, "disable")) {
2789 		__sched_schedstats = false;
2790 		ret = 1;
2791 	}
2792 out:
2793 	if (!ret)
2794 		pr_warn("Unable to parse schedstats=\n");
2795 
2796 	return ret;
2797 }
2798 __setup("schedstats=", setup_schedstats);
2799 
2800 static void __init init_schedstats(void)
2801 {
2802 	set_schedstats(__sched_schedstats);
2803 }
2804 
2805 #ifdef CONFIG_PROC_SYSCTL
2806 int sysctl_schedstats(struct ctl_table *table, int write,
2807 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2808 {
2809 	struct ctl_table t;
2810 	int err;
2811 	int state = static_branch_likely(&sched_schedstats);
2812 
2813 	if (write && !capable(CAP_SYS_ADMIN))
2814 		return -EPERM;
2815 
2816 	t = *table;
2817 	t.data = &state;
2818 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2819 	if (err < 0)
2820 		return err;
2821 	if (write)
2822 		set_schedstats(state);
2823 	return err;
2824 }
2825 #endif /* CONFIG_PROC_SYSCTL */
2826 #else  /* !CONFIG_SCHEDSTATS */
2827 static inline void init_schedstats(void) {}
2828 #endif /* CONFIG_SCHEDSTATS */
2829 
2830 /*
2831  * fork()/clone()-time setup:
2832  */
2833 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2834 {
2835 	unsigned long flags;
2836 
2837 	__sched_fork(clone_flags, p);
2838 	/*
2839 	 * We mark the process as NEW here. This guarantees that
2840 	 * nobody will actually run it, and a signal or other external
2841 	 * event cannot wake it up and insert it on the runqueue either.
2842 	 */
2843 	p->state = TASK_NEW;
2844 
2845 	/*
2846 	 * Make sure we do not leak PI boosting priority to the child.
2847 	 */
2848 	p->prio = current->normal_prio;
2849 
2850 	uclamp_fork(p);
2851 
2852 	/*
2853 	 * Revert to default priority/policy on fork if requested.
2854 	 */
2855 	if (unlikely(p->sched_reset_on_fork)) {
2856 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2857 			p->policy = SCHED_NORMAL;
2858 			p->static_prio = NICE_TO_PRIO(0);
2859 			p->rt_priority = 0;
2860 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2861 			p->static_prio = NICE_TO_PRIO(0);
2862 
2863 		p->prio = p->normal_prio = __normal_prio(p);
2864 		set_load_weight(p, false);
2865 
2866 		/*
2867 		 * We don't need the reset flag anymore after the fork. It has
2868 		 * fulfilled its duty:
2869 		 */
2870 		p->sched_reset_on_fork = 0;
2871 	}
2872 
2873 	if (dl_prio(p->prio))
2874 		return -EAGAIN;
2875 	else if (rt_prio(p->prio))
2876 		p->sched_class = &rt_sched_class;
2877 	else
2878 		p->sched_class = &fair_sched_class;
2879 
2880 	init_entity_runnable_average(&p->se);
2881 
2882 	/*
2883 	 * The child is not yet in the pid-hash so no cgroup attach races,
2884 	 * and the cgroup is pinned to this child due to cgroup_fork()
2885 	 * is ran before sched_fork().
2886 	 *
2887 	 * Silence PROVE_RCU.
2888 	 */
2889 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2890 	/*
2891 	 * We're setting the CPU for the first time, we don't migrate,
2892 	 * so use __set_task_cpu().
2893 	 */
2894 	__set_task_cpu(p, smp_processor_id());
2895 	if (p->sched_class->task_fork)
2896 		p->sched_class->task_fork(p);
2897 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2898 
2899 #ifdef CONFIG_SCHED_INFO
2900 	if (likely(sched_info_on()))
2901 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2902 #endif
2903 #if defined(CONFIG_SMP)
2904 	p->on_cpu = 0;
2905 #endif
2906 	init_task_preempt_count(p);
2907 #ifdef CONFIG_SMP
2908 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2909 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2910 #endif
2911 	return 0;
2912 }
2913 
2914 unsigned long to_ratio(u64 period, u64 runtime)
2915 {
2916 	if (runtime == RUNTIME_INF)
2917 		return BW_UNIT;
2918 
2919 	/*
2920 	 * Doing this here saves a lot of checks in all
2921 	 * the calling paths, and returning zero seems
2922 	 * safe for them anyway.
2923 	 */
2924 	if (period == 0)
2925 		return 0;
2926 
2927 	return div64_u64(runtime << BW_SHIFT, period);
2928 }
2929 
2930 /*
2931  * wake_up_new_task - wake up a newly created task for the first time.
2932  *
2933  * This function will do some initial scheduler statistics housekeeping
2934  * that must be done for every newly created context, then puts the task
2935  * on the runqueue and wakes it.
2936  */
2937 void wake_up_new_task(struct task_struct *p)
2938 {
2939 	struct rq_flags rf;
2940 	struct rq *rq;
2941 
2942 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2943 	p->state = TASK_RUNNING;
2944 #ifdef CONFIG_SMP
2945 	/*
2946 	 * Fork balancing, do it here and not earlier because:
2947 	 *  - cpus_ptr can change in the fork path
2948 	 *  - any previously selected CPU might disappear through hotplug
2949 	 *
2950 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2951 	 * as we're not fully set-up yet.
2952 	 */
2953 	p->recent_used_cpu = task_cpu(p);
2954 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2955 #endif
2956 	rq = __task_rq_lock(p, &rf);
2957 	update_rq_clock(rq);
2958 	post_init_entity_util_avg(p);
2959 
2960 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2961 	trace_sched_wakeup_new(p);
2962 	check_preempt_curr(rq, p, WF_FORK);
2963 #ifdef CONFIG_SMP
2964 	if (p->sched_class->task_woken) {
2965 		/*
2966 		 * Nothing relies on rq->lock after this, so its fine to
2967 		 * drop it.
2968 		 */
2969 		rq_unpin_lock(rq, &rf);
2970 		p->sched_class->task_woken(rq, p);
2971 		rq_repin_lock(rq, &rf);
2972 	}
2973 #endif
2974 	task_rq_unlock(rq, p, &rf);
2975 }
2976 
2977 #ifdef CONFIG_PREEMPT_NOTIFIERS
2978 
2979 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2980 
2981 void preempt_notifier_inc(void)
2982 {
2983 	static_branch_inc(&preempt_notifier_key);
2984 }
2985 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2986 
2987 void preempt_notifier_dec(void)
2988 {
2989 	static_branch_dec(&preempt_notifier_key);
2990 }
2991 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2992 
2993 /**
2994  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2995  * @notifier: notifier struct to register
2996  */
2997 void preempt_notifier_register(struct preempt_notifier *notifier)
2998 {
2999 	if (!static_branch_unlikely(&preempt_notifier_key))
3000 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3001 
3002 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3003 }
3004 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3005 
3006 /**
3007  * preempt_notifier_unregister - no longer interested in preemption notifications
3008  * @notifier: notifier struct to unregister
3009  *
3010  * This is *not* safe to call from within a preemption notifier.
3011  */
3012 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3013 {
3014 	hlist_del(&notifier->link);
3015 }
3016 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3017 
3018 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3019 {
3020 	struct preempt_notifier *notifier;
3021 
3022 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3023 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3024 }
3025 
3026 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3027 {
3028 	if (static_branch_unlikely(&preempt_notifier_key))
3029 		__fire_sched_in_preempt_notifiers(curr);
3030 }
3031 
3032 static void
3033 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3034 				   struct task_struct *next)
3035 {
3036 	struct preempt_notifier *notifier;
3037 
3038 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3039 		notifier->ops->sched_out(notifier, next);
3040 }
3041 
3042 static __always_inline void
3043 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3044 				 struct task_struct *next)
3045 {
3046 	if (static_branch_unlikely(&preempt_notifier_key))
3047 		__fire_sched_out_preempt_notifiers(curr, next);
3048 }
3049 
3050 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3051 
3052 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3053 {
3054 }
3055 
3056 static inline void
3057 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3058 				 struct task_struct *next)
3059 {
3060 }
3061 
3062 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3063 
3064 static inline void prepare_task(struct task_struct *next)
3065 {
3066 #ifdef CONFIG_SMP
3067 	/*
3068 	 * Claim the task as running, we do this before switching to it
3069 	 * such that any running task will have this set.
3070 	 */
3071 	next->on_cpu = 1;
3072 #endif
3073 }
3074 
3075 static inline void finish_task(struct task_struct *prev)
3076 {
3077 #ifdef CONFIG_SMP
3078 	/*
3079 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3080 	 * We must ensure this doesn't happen until the switch is completely
3081 	 * finished.
3082 	 *
3083 	 * In particular, the load of prev->state in finish_task_switch() must
3084 	 * happen before this.
3085 	 *
3086 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3087 	 */
3088 	smp_store_release(&prev->on_cpu, 0);
3089 #endif
3090 }
3091 
3092 static inline void
3093 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3094 {
3095 	/*
3096 	 * Since the runqueue lock will be released by the next
3097 	 * task (which is an invalid locking op but in the case
3098 	 * of the scheduler it's an obvious special-case), so we
3099 	 * do an early lockdep release here:
3100 	 */
3101 	rq_unpin_lock(rq, rf);
3102 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3103 #ifdef CONFIG_DEBUG_SPINLOCK
3104 	/* this is a valid case when another task releases the spinlock */
3105 	rq->lock.owner = next;
3106 #endif
3107 }
3108 
3109 static inline void finish_lock_switch(struct rq *rq)
3110 {
3111 	/*
3112 	 * If we are tracking spinlock dependencies then we have to
3113 	 * fix up the runqueue lock - which gets 'carried over' from
3114 	 * prev into current:
3115 	 */
3116 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3117 	raw_spin_unlock_irq(&rq->lock);
3118 }
3119 
3120 /*
3121  * NOP if the arch has not defined these:
3122  */
3123 
3124 #ifndef prepare_arch_switch
3125 # define prepare_arch_switch(next)	do { } while (0)
3126 #endif
3127 
3128 #ifndef finish_arch_post_lock_switch
3129 # define finish_arch_post_lock_switch()	do { } while (0)
3130 #endif
3131 
3132 /**
3133  * prepare_task_switch - prepare to switch tasks
3134  * @rq: the runqueue preparing to switch
3135  * @prev: the current task that is being switched out
3136  * @next: the task we are going to switch to.
3137  *
3138  * This is called with the rq lock held and interrupts off. It must
3139  * be paired with a subsequent finish_task_switch after the context
3140  * switch.
3141  *
3142  * prepare_task_switch sets up locking and calls architecture specific
3143  * hooks.
3144  */
3145 static inline void
3146 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3147 		    struct task_struct *next)
3148 {
3149 	kcov_prepare_switch(prev);
3150 	sched_info_switch(rq, prev, next);
3151 	perf_event_task_sched_out(prev, next);
3152 	rseq_preempt(prev);
3153 	fire_sched_out_preempt_notifiers(prev, next);
3154 	prepare_task(next);
3155 	prepare_arch_switch(next);
3156 }
3157 
3158 /**
3159  * finish_task_switch - clean up after a task-switch
3160  * @prev: the thread we just switched away from.
3161  *
3162  * finish_task_switch must be called after the context switch, paired
3163  * with a prepare_task_switch call before the context switch.
3164  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3165  * and do any other architecture-specific cleanup actions.
3166  *
3167  * Note that we may have delayed dropping an mm in context_switch(). If
3168  * so, we finish that here outside of the runqueue lock. (Doing it
3169  * with the lock held can cause deadlocks; see schedule() for
3170  * details.)
3171  *
3172  * The context switch have flipped the stack from under us and restored the
3173  * local variables which were saved when this task called schedule() in the
3174  * past. prev == current is still correct but we need to recalculate this_rq
3175  * because prev may have moved to another CPU.
3176  */
3177 static struct rq *finish_task_switch(struct task_struct *prev)
3178 	__releases(rq->lock)
3179 {
3180 	struct rq *rq = this_rq();
3181 	struct mm_struct *mm = rq->prev_mm;
3182 	long prev_state;
3183 
3184 	/*
3185 	 * The previous task will have left us with a preempt_count of 2
3186 	 * because it left us after:
3187 	 *
3188 	 *	schedule()
3189 	 *	  preempt_disable();			// 1
3190 	 *	  __schedule()
3191 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3192 	 *
3193 	 * Also, see FORK_PREEMPT_COUNT.
3194 	 */
3195 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3196 		      "corrupted preempt_count: %s/%d/0x%x\n",
3197 		      current->comm, current->pid, preempt_count()))
3198 		preempt_count_set(FORK_PREEMPT_COUNT);
3199 
3200 	rq->prev_mm = NULL;
3201 
3202 	/*
3203 	 * A task struct has one reference for the use as "current".
3204 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3205 	 * schedule one last time. The schedule call will never return, and
3206 	 * the scheduled task must drop that reference.
3207 	 *
3208 	 * We must observe prev->state before clearing prev->on_cpu (in
3209 	 * finish_task), otherwise a concurrent wakeup can get prev
3210 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3211 	 * transition, resulting in a double drop.
3212 	 */
3213 	prev_state = prev->state;
3214 	vtime_task_switch(prev);
3215 	perf_event_task_sched_in(prev, current);
3216 	finish_task(prev);
3217 	finish_lock_switch(rq);
3218 	finish_arch_post_lock_switch();
3219 	kcov_finish_switch(current);
3220 
3221 	fire_sched_in_preempt_notifiers(current);
3222 	/*
3223 	 * When switching through a kernel thread, the loop in
3224 	 * membarrier_{private,global}_expedited() may have observed that
3225 	 * kernel thread and not issued an IPI. It is therefore possible to
3226 	 * schedule between user->kernel->user threads without passing though
3227 	 * switch_mm(). Membarrier requires a barrier after storing to
3228 	 * rq->curr, before returning to userspace, so provide them here:
3229 	 *
3230 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3231 	 *   provided by mmdrop(),
3232 	 * - a sync_core for SYNC_CORE.
3233 	 */
3234 	if (mm) {
3235 		membarrier_mm_sync_core_before_usermode(mm);
3236 		mmdrop(mm);
3237 	}
3238 	if (unlikely(prev_state == TASK_DEAD)) {
3239 		if (prev->sched_class->task_dead)
3240 			prev->sched_class->task_dead(prev);
3241 
3242 		/*
3243 		 * Remove function-return probe instances associated with this
3244 		 * task and put them back on the free list.
3245 		 */
3246 		kprobe_flush_task(prev);
3247 
3248 		/* Task is done with its stack. */
3249 		put_task_stack(prev);
3250 
3251 		put_task_struct_rcu_user(prev);
3252 	}
3253 
3254 	tick_nohz_task_switch();
3255 	return rq;
3256 }
3257 
3258 #ifdef CONFIG_SMP
3259 
3260 /* rq->lock is NOT held, but preemption is disabled */
3261 static void __balance_callback(struct rq *rq)
3262 {
3263 	struct callback_head *head, *next;
3264 	void (*func)(struct rq *rq);
3265 	unsigned long flags;
3266 
3267 	raw_spin_lock_irqsave(&rq->lock, flags);
3268 	head = rq->balance_callback;
3269 	rq->balance_callback = NULL;
3270 	while (head) {
3271 		func = (void (*)(struct rq *))head->func;
3272 		next = head->next;
3273 		head->next = NULL;
3274 		head = next;
3275 
3276 		func(rq);
3277 	}
3278 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3279 }
3280 
3281 static inline void balance_callback(struct rq *rq)
3282 {
3283 	if (unlikely(rq->balance_callback))
3284 		__balance_callback(rq);
3285 }
3286 
3287 #else
3288 
3289 static inline void balance_callback(struct rq *rq)
3290 {
3291 }
3292 
3293 #endif
3294 
3295 /**
3296  * schedule_tail - first thing a freshly forked thread must call.
3297  * @prev: the thread we just switched away from.
3298  */
3299 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3300 	__releases(rq->lock)
3301 {
3302 	struct rq *rq;
3303 
3304 	/*
3305 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3306 	 * finish_task_switch() for details.
3307 	 *
3308 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3309 	 * and the preempt_enable() will end up enabling preemption (on
3310 	 * PREEMPT_COUNT kernels).
3311 	 */
3312 
3313 	rq = finish_task_switch(prev);
3314 	balance_callback(rq);
3315 	preempt_enable();
3316 
3317 	if (current->set_child_tid)
3318 		put_user(task_pid_vnr(current), current->set_child_tid);
3319 
3320 	calculate_sigpending();
3321 }
3322 
3323 /*
3324  * context_switch - switch to the new MM and the new thread's register state.
3325  */
3326 static __always_inline struct rq *
3327 context_switch(struct rq *rq, struct task_struct *prev,
3328 	       struct task_struct *next, struct rq_flags *rf)
3329 {
3330 	prepare_task_switch(rq, prev, next);
3331 
3332 	/*
3333 	 * For paravirt, this is coupled with an exit in switch_to to
3334 	 * combine the page table reload and the switch backend into
3335 	 * one hypercall.
3336 	 */
3337 	arch_start_context_switch(prev);
3338 
3339 	/*
3340 	 * kernel -> kernel   lazy + transfer active
3341 	 *   user -> kernel   lazy + mmgrab() active
3342 	 *
3343 	 * kernel ->   user   switch + mmdrop() active
3344 	 *   user ->   user   switch
3345 	 */
3346 	if (!next->mm) {                                // to kernel
3347 		enter_lazy_tlb(prev->active_mm, next);
3348 
3349 		next->active_mm = prev->active_mm;
3350 		if (prev->mm)                           // from user
3351 			mmgrab(prev->active_mm);
3352 		else
3353 			prev->active_mm = NULL;
3354 	} else {                                        // to user
3355 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3356 		/*
3357 		 * sys_membarrier() requires an smp_mb() between setting
3358 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3359 		 *
3360 		 * The below provides this either through switch_mm(), or in
3361 		 * case 'prev->active_mm == next->mm' through
3362 		 * finish_task_switch()'s mmdrop().
3363 		 */
3364 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3365 
3366 		if (!prev->mm) {                        // from kernel
3367 			/* will mmdrop() in finish_task_switch(). */
3368 			rq->prev_mm = prev->active_mm;
3369 			prev->active_mm = NULL;
3370 		}
3371 	}
3372 
3373 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3374 
3375 	prepare_lock_switch(rq, next, rf);
3376 
3377 	/* Here we just switch the register state and the stack. */
3378 	switch_to(prev, next, prev);
3379 	barrier();
3380 
3381 	return finish_task_switch(prev);
3382 }
3383 
3384 /*
3385  * nr_running and nr_context_switches:
3386  *
3387  * externally visible scheduler statistics: current number of runnable
3388  * threads, total number of context switches performed since bootup.
3389  */
3390 unsigned long nr_running(void)
3391 {
3392 	unsigned long i, sum = 0;
3393 
3394 	for_each_online_cpu(i)
3395 		sum += cpu_rq(i)->nr_running;
3396 
3397 	return sum;
3398 }
3399 
3400 /*
3401  * Check if only the current task is running on the CPU.
3402  *
3403  * Caution: this function does not check that the caller has disabled
3404  * preemption, thus the result might have a time-of-check-to-time-of-use
3405  * race.  The caller is responsible to use it correctly, for example:
3406  *
3407  * - from a non-preemptible section (of course)
3408  *
3409  * - from a thread that is bound to a single CPU
3410  *
3411  * - in a loop with very short iterations (e.g. a polling loop)
3412  */
3413 bool single_task_running(void)
3414 {
3415 	return raw_rq()->nr_running == 1;
3416 }
3417 EXPORT_SYMBOL(single_task_running);
3418 
3419 unsigned long long nr_context_switches(void)
3420 {
3421 	int i;
3422 	unsigned long long sum = 0;
3423 
3424 	for_each_possible_cpu(i)
3425 		sum += cpu_rq(i)->nr_switches;
3426 
3427 	return sum;
3428 }
3429 
3430 /*
3431  * Consumers of these two interfaces, like for example the cpuidle menu
3432  * governor, are using nonsensical data. Preferring shallow idle state selection
3433  * for a CPU that has IO-wait which might not even end up running the task when
3434  * it does become runnable.
3435  */
3436 
3437 unsigned long nr_iowait_cpu(int cpu)
3438 {
3439 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3440 }
3441 
3442 /*
3443  * IO-wait accounting, and how its mostly bollocks (on SMP).
3444  *
3445  * The idea behind IO-wait account is to account the idle time that we could
3446  * have spend running if it were not for IO. That is, if we were to improve the
3447  * storage performance, we'd have a proportional reduction in IO-wait time.
3448  *
3449  * This all works nicely on UP, where, when a task blocks on IO, we account
3450  * idle time as IO-wait, because if the storage were faster, it could've been
3451  * running and we'd not be idle.
3452  *
3453  * This has been extended to SMP, by doing the same for each CPU. This however
3454  * is broken.
3455  *
3456  * Imagine for instance the case where two tasks block on one CPU, only the one
3457  * CPU will have IO-wait accounted, while the other has regular idle. Even
3458  * though, if the storage were faster, both could've ran at the same time,
3459  * utilising both CPUs.
3460  *
3461  * This means, that when looking globally, the current IO-wait accounting on
3462  * SMP is a lower bound, by reason of under accounting.
3463  *
3464  * Worse, since the numbers are provided per CPU, they are sometimes
3465  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3466  * associated with any one particular CPU, it can wake to another CPU than it
3467  * blocked on. This means the per CPU IO-wait number is meaningless.
3468  *
3469  * Task CPU affinities can make all that even more 'interesting'.
3470  */
3471 
3472 unsigned long nr_iowait(void)
3473 {
3474 	unsigned long i, sum = 0;
3475 
3476 	for_each_possible_cpu(i)
3477 		sum += nr_iowait_cpu(i);
3478 
3479 	return sum;
3480 }
3481 
3482 #ifdef CONFIG_SMP
3483 
3484 /*
3485  * sched_exec - execve() is a valuable balancing opportunity, because at
3486  * this point the task has the smallest effective memory and cache footprint.
3487  */
3488 void sched_exec(void)
3489 {
3490 	struct task_struct *p = current;
3491 	unsigned long flags;
3492 	int dest_cpu;
3493 
3494 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3495 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3496 	if (dest_cpu == smp_processor_id())
3497 		goto unlock;
3498 
3499 	if (likely(cpu_active(dest_cpu))) {
3500 		struct migration_arg arg = { p, dest_cpu };
3501 
3502 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3503 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3504 		return;
3505 	}
3506 unlock:
3507 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3508 }
3509 
3510 #endif
3511 
3512 DEFINE_PER_CPU(struct kernel_stat, kstat);
3513 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3514 
3515 EXPORT_PER_CPU_SYMBOL(kstat);
3516 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3517 
3518 /*
3519  * The function fair_sched_class.update_curr accesses the struct curr
3520  * and its field curr->exec_start; when called from task_sched_runtime(),
3521  * we observe a high rate of cache misses in practice.
3522  * Prefetching this data results in improved performance.
3523  */
3524 static inline void prefetch_curr_exec_start(struct task_struct *p)
3525 {
3526 #ifdef CONFIG_FAIR_GROUP_SCHED
3527 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3528 #else
3529 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3530 #endif
3531 	prefetch(curr);
3532 	prefetch(&curr->exec_start);
3533 }
3534 
3535 /*
3536  * Return accounted runtime for the task.
3537  * In case the task is currently running, return the runtime plus current's
3538  * pending runtime that have not been accounted yet.
3539  */
3540 unsigned long long task_sched_runtime(struct task_struct *p)
3541 {
3542 	struct rq_flags rf;
3543 	struct rq *rq;
3544 	u64 ns;
3545 
3546 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3547 	/*
3548 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3549 	 * So we have a optimization chance when the task's delta_exec is 0.
3550 	 * Reading ->on_cpu is racy, but this is ok.
3551 	 *
3552 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3553 	 * If we race with it entering CPU, unaccounted time is 0. This is
3554 	 * indistinguishable from the read occurring a few cycles earlier.
3555 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3556 	 * been accounted, so we're correct here as well.
3557 	 */
3558 	if (!p->on_cpu || !task_on_rq_queued(p))
3559 		return p->se.sum_exec_runtime;
3560 #endif
3561 
3562 	rq = task_rq_lock(p, &rf);
3563 	/*
3564 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3565 	 * project cycles that may never be accounted to this
3566 	 * thread, breaking clock_gettime().
3567 	 */
3568 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3569 		prefetch_curr_exec_start(p);
3570 		update_rq_clock(rq);
3571 		p->sched_class->update_curr(rq);
3572 	}
3573 	ns = p->se.sum_exec_runtime;
3574 	task_rq_unlock(rq, p, &rf);
3575 
3576 	return ns;
3577 }
3578 
3579 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3580 
3581 void arch_set_thermal_pressure(struct cpumask *cpus,
3582 			       unsigned long th_pressure)
3583 {
3584 	int cpu;
3585 
3586 	for_each_cpu(cpu, cpus)
3587 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3588 }
3589 
3590 /*
3591  * This function gets called by the timer code, with HZ frequency.
3592  * We call it with interrupts disabled.
3593  */
3594 void scheduler_tick(void)
3595 {
3596 	int cpu = smp_processor_id();
3597 	struct rq *rq = cpu_rq(cpu);
3598 	struct task_struct *curr = rq->curr;
3599 	struct rq_flags rf;
3600 	unsigned long thermal_pressure;
3601 
3602 	arch_scale_freq_tick();
3603 	sched_clock_tick();
3604 
3605 	rq_lock(rq, &rf);
3606 
3607 	update_rq_clock(rq);
3608 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3609 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3610 	curr->sched_class->task_tick(rq, curr, 0);
3611 	calc_global_load_tick(rq);
3612 	psi_task_tick(rq);
3613 
3614 	rq_unlock(rq, &rf);
3615 
3616 	perf_event_task_tick();
3617 
3618 #ifdef CONFIG_SMP
3619 	rq->idle_balance = idle_cpu(cpu);
3620 	trigger_load_balance(rq);
3621 #endif
3622 }
3623 
3624 #ifdef CONFIG_NO_HZ_FULL
3625 
3626 struct tick_work {
3627 	int			cpu;
3628 	atomic_t		state;
3629 	struct delayed_work	work;
3630 };
3631 /* Values for ->state, see diagram below. */
3632 #define TICK_SCHED_REMOTE_OFFLINE	0
3633 #define TICK_SCHED_REMOTE_OFFLINING	1
3634 #define TICK_SCHED_REMOTE_RUNNING	2
3635 
3636 /*
3637  * State diagram for ->state:
3638  *
3639  *
3640  *          TICK_SCHED_REMOTE_OFFLINE
3641  *                    |   ^
3642  *                    |   |
3643  *                    |   | sched_tick_remote()
3644  *                    |   |
3645  *                    |   |
3646  *                    +--TICK_SCHED_REMOTE_OFFLINING
3647  *                    |   ^
3648  *                    |   |
3649  * sched_tick_start() |   | sched_tick_stop()
3650  *                    |   |
3651  *                    V   |
3652  *          TICK_SCHED_REMOTE_RUNNING
3653  *
3654  *
3655  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3656  * and sched_tick_start() are happy to leave the state in RUNNING.
3657  */
3658 
3659 static struct tick_work __percpu *tick_work_cpu;
3660 
3661 static void sched_tick_remote(struct work_struct *work)
3662 {
3663 	struct delayed_work *dwork = to_delayed_work(work);
3664 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3665 	int cpu = twork->cpu;
3666 	struct rq *rq = cpu_rq(cpu);
3667 	struct task_struct *curr;
3668 	struct rq_flags rf;
3669 	u64 delta;
3670 	int os;
3671 
3672 	/*
3673 	 * Handle the tick only if it appears the remote CPU is running in full
3674 	 * dynticks mode. The check is racy by nature, but missing a tick or
3675 	 * having one too much is no big deal because the scheduler tick updates
3676 	 * statistics and checks timeslices in a time-independent way, regardless
3677 	 * of when exactly it is running.
3678 	 */
3679 	if (!tick_nohz_tick_stopped_cpu(cpu))
3680 		goto out_requeue;
3681 
3682 	rq_lock_irq(rq, &rf);
3683 	curr = rq->curr;
3684 	if (cpu_is_offline(cpu))
3685 		goto out_unlock;
3686 
3687 	update_rq_clock(rq);
3688 
3689 	if (!is_idle_task(curr)) {
3690 		/*
3691 		 * Make sure the next tick runs within a reasonable
3692 		 * amount of time.
3693 		 */
3694 		delta = rq_clock_task(rq) - curr->se.exec_start;
3695 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3696 	}
3697 	curr->sched_class->task_tick(rq, curr, 0);
3698 
3699 	calc_load_nohz_remote(rq);
3700 out_unlock:
3701 	rq_unlock_irq(rq, &rf);
3702 out_requeue:
3703 
3704 	/*
3705 	 * Run the remote tick once per second (1Hz). This arbitrary
3706 	 * frequency is large enough to avoid overload but short enough
3707 	 * to keep scheduler internal stats reasonably up to date.  But
3708 	 * first update state to reflect hotplug activity if required.
3709 	 */
3710 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3711 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3712 	if (os == TICK_SCHED_REMOTE_RUNNING)
3713 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3714 }
3715 
3716 static void sched_tick_start(int cpu)
3717 {
3718 	int os;
3719 	struct tick_work *twork;
3720 
3721 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3722 		return;
3723 
3724 	WARN_ON_ONCE(!tick_work_cpu);
3725 
3726 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3727 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3728 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3729 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3730 		twork->cpu = cpu;
3731 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3732 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3733 	}
3734 }
3735 
3736 #ifdef CONFIG_HOTPLUG_CPU
3737 static void sched_tick_stop(int cpu)
3738 {
3739 	struct tick_work *twork;
3740 	int os;
3741 
3742 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3743 		return;
3744 
3745 	WARN_ON_ONCE(!tick_work_cpu);
3746 
3747 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3748 	/* There cannot be competing actions, but don't rely on stop-machine. */
3749 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3750 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3751 	/* Don't cancel, as this would mess up the state machine. */
3752 }
3753 #endif /* CONFIG_HOTPLUG_CPU */
3754 
3755 int __init sched_tick_offload_init(void)
3756 {
3757 	tick_work_cpu = alloc_percpu(struct tick_work);
3758 	BUG_ON(!tick_work_cpu);
3759 	return 0;
3760 }
3761 
3762 #else /* !CONFIG_NO_HZ_FULL */
3763 static inline void sched_tick_start(int cpu) { }
3764 static inline void sched_tick_stop(int cpu) { }
3765 #endif
3766 
3767 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3768 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3769 /*
3770  * If the value passed in is equal to the current preempt count
3771  * then we just disabled preemption. Start timing the latency.
3772  */
3773 static inline void preempt_latency_start(int val)
3774 {
3775 	if (preempt_count() == val) {
3776 		unsigned long ip = get_lock_parent_ip();
3777 #ifdef CONFIG_DEBUG_PREEMPT
3778 		current->preempt_disable_ip = ip;
3779 #endif
3780 		trace_preempt_off(CALLER_ADDR0, ip);
3781 	}
3782 }
3783 
3784 void preempt_count_add(int val)
3785 {
3786 #ifdef CONFIG_DEBUG_PREEMPT
3787 	/*
3788 	 * Underflow?
3789 	 */
3790 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3791 		return;
3792 #endif
3793 	__preempt_count_add(val);
3794 #ifdef CONFIG_DEBUG_PREEMPT
3795 	/*
3796 	 * Spinlock count overflowing soon?
3797 	 */
3798 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3799 				PREEMPT_MASK - 10);
3800 #endif
3801 	preempt_latency_start(val);
3802 }
3803 EXPORT_SYMBOL(preempt_count_add);
3804 NOKPROBE_SYMBOL(preempt_count_add);
3805 
3806 /*
3807  * If the value passed in equals to the current preempt count
3808  * then we just enabled preemption. Stop timing the latency.
3809  */
3810 static inline void preempt_latency_stop(int val)
3811 {
3812 	if (preempt_count() == val)
3813 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3814 }
3815 
3816 void preempt_count_sub(int val)
3817 {
3818 #ifdef CONFIG_DEBUG_PREEMPT
3819 	/*
3820 	 * Underflow?
3821 	 */
3822 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3823 		return;
3824 	/*
3825 	 * Is the spinlock portion underflowing?
3826 	 */
3827 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3828 			!(preempt_count() & PREEMPT_MASK)))
3829 		return;
3830 #endif
3831 
3832 	preempt_latency_stop(val);
3833 	__preempt_count_sub(val);
3834 }
3835 EXPORT_SYMBOL(preempt_count_sub);
3836 NOKPROBE_SYMBOL(preempt_count_sub);
3837 
3838 #else
3839 static inline void preempt_latency_start(int val) { }
3840 static inline void preempt_latency_stop(int val) { }
3841 #endif
3842 
3843 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3844 {
3845 #ifdef CONFIG_DEBUG_PREEMPT
3846 	return p->preempt_disable_ip;
3847 #else
3848 	return 0;
3849 #endif
3850 }
3851 
3852 /*
3853  * Print scheduling while atomic bug:
3854  */
3855 static noinline void __schedule_bug(struct task_struct *prev)
3856 {
3857 	/* Save this before calling printk(), since that will clobber it */
3858 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3859 
3860 	if (oops_in_progress)
3861 		return;
3862 
3863 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3864 		prev->comm, prev->pid, preempt_count());
3865 
3866 	debug_show_held_locks(prev);
3867 	print_modules();
3868 	if (irqs_disabled())
3869 		print_irqtrace_events(prev);
3870 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3871 	    && in_atomic_preempt_off()) {
3872 		pr_err("Preemption disabled at:");
3873 		print_ip_sym(preempt_disable_ip);
3874 		pr_cont("\n");
3875 	}
3876 	if (panic_on_warn)
3877 		panic("scheduling while atomic\n");
3878 
3879 	dump_stack();
3880 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3881 }
3882 
3883 /*
3884  * Various schedule()-time debugging checks and statistics:
3885  */
3886 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3887 {
3888 #ifdef CONFIG_SCHED_STACK_END_CHECK
3889 	if (task_stack_end_corrupted(prev))
3890 		panic("corrupted stack end detected inside scheduler\n");
3891 #endif
3892 
3893 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3894 	if (!preempt && prev->state && prev->non_block_count) {
3895 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3896 			prev->comm, prev->pid, prev->non_block_count);
3897 		dump_stack();
3898 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3899 	}
3900 #endif
3901 
3902 	if (unlikely(in_atomic_preempt_off())) {
3903 		__schedule_bug(prev);
3904 		preempt_count_set(PREEMPT_DISABLED);
3905 	}
3906 	rcu_sleep_check();
3907 
3908 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3909 
3910 	schedstat_inc(this_rq()->sched_count);
3911 }
3912 
3913 /*
3914  * Pick up the highest-prio task:
3915  */
3916 static inline struct task_struct *
3917 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3918 {
3919 	const struct sched_class *class;
3920 	struct task_struct *p;
3921 
3922 	/*
3923 	 * Optimization: we know that if all tasks are in the fair class we can
3924 	 * call that function directly, but only if the @prev task wasn't of a
3925 	 * higher scheduling class, because otherwise those loose the
3926 	 * opportunity to pull in more work from other CPUs.
3927 	 */
3928 	if (likely((prev->sched_class == &idle_sched_class ||
3929 		    prev->sched_class == &fair_sched_class) &&
3930 		   rq->nr_running == rq->cfs.h_nr_running)) {
3931 
3932 		p = pick_next_task_fair(rq, prev, rf);
3933 		if (unlikely(p == RETRY_TASK))
3934 			goto restart;
3935 
3936 		/* Assumes fair_sched_class->next == idle_sched_class */
3937 		if (!p) {
3938 			put_prev_task(rq, prev);
3939 			p = pick_next_task_idle(rq);
3940 		}
3941 
3942 		return p;
3943 	}
3944 
3945 restart:
3946 #ifdef CONFIG_SMP
3947 	/*
3948 	 * We must do the balancing pass before put_next_task(), such
3949 	 * that when we release the rq->lock the task is in the same
3950 	 * state as before we took rq->lock.
3951 	 *
3952 	 * We can terminate the balance pass as soon as we know there is
3953 	 * a runnable task of @class priority or higher.
3954 	 */
3955 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3956 		if (class->balance(rq, prev, rf))
3957 			break;
3958 	}
3959 #endif
3960 
3961 	put_prev_task(rq, prev);
3962 
3963 	for_each_class(class) {
3964 		p = class->pick_next_task(rq);
3965 		if (p)
3966 			return p;
3967 	}
3968 
3969 	/* The idle class should always have a runnable task: */
3970 	BUG();
3971 }
3972 
3973 /*
3974  * __schedule() is the main scheduler function.
3975  *
3976  * The main means of driving the scheduler and thus entering this function are:
3977  *
3978  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3979  *
3980  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3981  *      paths. For example, see arch/x86/entry_64.S.
3982  *
3983  *      To drive preemption between tasks, the scheduler sets the flag in timer
3984  *      interrupt handler scheduler_tick().
3985  *
3986  *   3. Wakeups don't really cause entry into schedule(). They add a
3987  *      task to the run-queue and that's it.
3988  *
3989  *      Now, if the new task added to the run-queue preempts the current
3990  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3991  *      called on the nearest possible occasion:
3992  *
3993  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3994  *
3995  *         - in syscall or exception context, at the next outmost
3996  *           preempt_enable(). (this might be as soon as the wake_up()'s
3997  *           spin_unlock()!)
3998  *
3999  *         - in IRQ context, return from interrupt-handler to
4000  *           preemptible context
4001  *
4002  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4003  *         then at the next:
4004  *
4005  *          - cond_resched() call
4006  *          - explicit schedule() call
4007  *          - return from syscall or exception to user-space
4008  *          - return from interrupt-handler to user-space
4009  *
4010  * WARNING: must be called with preemption disabled!
4011  */
4012 static void __sched notrace __schedule(bool preempt)
4013 {
4014 	struct task_struct *prev, *next;
4015 	unsigned long *switch_count;
4016 	struct rq_flags rf;
4017 	struct rq *rq;
4018 	int cpu;
4019 
4020 	cpu = smp_processor_id();
4021 	rq = cpu_rq(cpu);
4022 	prev = rq->curr;
4023 
4024 	schedule_debug(prev, preempt);
4025 
4026 	if (sched_feat(HRTICK))
4027 		hrtick_clear(rq);
4028 
4029 	local_irq_disable();
4030 	rcu_note_context_switch(preempt);
4031 
4032 	/*
4033 	 * Make sure that signal_pending_state()->signal_pending() below
4034 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4035 	 * done by the caller to avoid the race with signal_wake_up().
4036 	 *
4037 	 * The membarrier system call requires a full memory barrier
4038 	 * after coming from user-space, before storing to rq->curr.
4039 	 */
4040 	rq_lock(rq, &rf);
4041 	smp_mb__after_spinlock();
4042 
4043 	/* Promote REQ to ACT */
4044 	rq->clock_update_flags <<= 1;
4045 	update_rq_clock(rq);
4046 
4047 	switch_count = &prev->nivcsw;
4048 	if (!preempt && prev->state) {
4049 		if (signal_pending_state(prev->state, prev)) {
4050 			prev->state = TASK_RUNNING;
4051 		} else {
4052 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4053 
4054 			if (prev->in_iowait) {
4055 				atomic_inc(&rq->nr_iowait);
4056 				delayacct_blkio_start();
4057 			}
4058 		}
4059 		switch_count = &prev->nvcsw;
4060 	}
4061 
4062 	next = pick_next_task(rq, prev, &rf);
4063 	clear_tsk_need_resched(prev);
4064 	clear_preempt_need_resched();
4065 
4066 	if (likely(prev != next)) {
4067 		rq->nr_switches++;
4068 		/*
4069 		 * RCU users of rcu_dereference(rq->curr) may not see
4070 		 * changes to task_struct made by pick_next_task().
4071 		 */
4072 		RCU_INIT_POINTER(rq->curr, next);
4073 		/*
4074 		 * The membarrier system call requires each architecture
4075 		 * to have a full memory barrier after updating
4076 		 * rq->curr, before returning to user-space.
4077 		 *
4078 		 * Here are the schemes providing that barrier on the
4079 		 * various architectures:
4080 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4081 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4082 		 * - finish_lock_switch() for weakly-ordered
4083 		 *   architectures where spin_unlock is a full barrier,
4084 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4085 		 *   is a RELEASE barrier),
4086 		 */
4087 		++*switch_count;
4088 
4089 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4090 
4091 		trace_sched_switch(preempt, prev, next);
4092 
4093 		/* Also unlocks the rq: */
4094 		rq = context_switch(rq, prev, next, &rf);
4095 	} else {
4096 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4097 		rq_unlock_irq(rq, &rf);
4098 	}
4099 
4100 	balance_callback(rq);
4101 }
4102 
4103 void __noreturn do_task_dead(void)
4104 {
4105 	/* Causes final put_task_struct in finish_task_switch(): */
4106 	set_special_state(TASK_DEAD);
4107 
4108 	/* Tell freezer to ignore us: */
4109 	current->flags |= PF_NOFREEZE;
4110 
4111 	__schedule(false);
4112 	BUG();
4113 
4114 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4115 	for (;;)
4116 		cpu_relax();
4117 }
4118 
4119 static inline void sched_submit_work(struct task_struct *tsk)
4120 {
4121 	if (!tsk->state)
4122 		return;
4123 
4124 	/*
4125 	 * If a worker went to sleep, notify and ask workqueue whether
4126 	 * it wants to wake up a task to maintain concurrency.
4127 	 * As this function is called inside the schedule() context,
4128 	 * we disable preemption to avoid it calling schedule() again
4129 	 * in the possible wakeup of a kworker.
4130 	 */
4131 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4132 		preempt_disable();
4133 		if (tsk->flags & PF_WQ_WORKER)
4134 			wq_worker_sleeping(tsk);
4135 		else
4136 			io_wq_worker_sleeping(tsk);
4137 		preempt_enable_no_resched();
4138 	}
4139 
4140 	if (tsk_is_pi_blocked(tsk))
4141 		return;
4142 
4143 	/*
4144 	 * If we are going to sleep and we have plugged IO queued,
4145 	 * make sure to submit it to avoid deadlocks.
4146 	 */
4147 	if (blk_needs_flush_plug(tsk))
4148 		blk_schedule_flush_plug(tsk);
4149 }
4150 
4151 static void sched_update_worker(struct task_struct *tsk)
4152 {
4153 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4154 		if (tsk->flags & PF_WQ_WORKER)
4155 			wq_worker_running(tsk);
4156 		else
4157 			io_wq_worker_running(tsk);
4158 	}
4159 }
4160 
4161 asmlinkage __visible void __sched schedule(void)
4162 {
4163 	struct task_struct *tsk = current;
4164 
4165 	sched_submit_work(tsk);
4166 	do {
4167 		preempt_disable();
4168 		__schedule(false);
4169 		sched_preempt_enable_no_resched();
4170 	} while (need_resched());
4171 	sched_update_worker(tsk);
4172 }
4173 EXPORT_SYMBOL(schedule);
4174 
4175 /*
4176  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4177  * state (have scheduled out non-voluntarily) by making sure that all
4178  * tasks have either left the run queue or have gone into user space.
4179  * As idle tasks do not do either, they must not ever be preempted
4180  * (schedule out non-voluntarily).
4181  *
4182  * schedule_idle() is similar to schedule_preempt_disable() except that it
4183  * never enables preemption because it does not call sched_submit_work().
4184  */
4185 void __sched schedule_idle(void)
4186 {
4187 	/*
4188 	 * As this skips calling sched_submit_work(), which the idle task does
4189 	 * regardless because that function is a nop when the task is in a
4190 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4191 	 * current task can be in any other state. Note, idle is always in the
4192 	 * TASK_RUNNING state.
4193 	 */
4194 	WARN_ON_ONCE(current->state);
4195 	do {
4196 		__schedule(false);
4197 	} while (need_resched());
4198 }
4199 
4200 #ifdef CONFIG_CONTEXT_TRACKING
4201 asmlinkage __visible void __sched schedule_user(void)
4202 {
4203 	/*
4204 	 * If we come here after a random call to set_need_resched(),
4205 	 * or we have been woken up remotely but the IPI has not yet arrived,
4206 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4207 	 * we find a better solution.
4208 	 *
4209 	 * NB: There are buggy callers of this function.  Ideally we
4210 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4211 	 * too frequently to make sense yet.
4212 	 */
4213 	enum ctx_state prev_state = exception_enter();
4214 	schedule();
4215 	exception_exit(prev_state);
4216 }
4217 #endif
4218 
4219 /**
4220  * schedule_preempt_disabled - called with preemption disabled
4221  *
4222  * Returns with preemption disabled. Note: preempt_count must be 1
4223  */
4224 void __sched schedule_preempt_disabled(void)
4225 {
4226 	sched_preempt_enable_no_resched();
4227 	schedule();
4228 	preempt_disable();
4229 }
4230 
4231 static void __sched notrace preempt_schedule_common(void)
4232 {
4233 	do {
4234 		/*
4235 		 * Because the function tracer can trace preempt_count_sub()
4236 		 * and it also uses preempt_enable/disable_notrace(), if
4237 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4238 		 * by the function tracer will call this function again and
4239 		 * cause infinite recursion.
4240 		 *
4241 		 * Preemption must be disabled here before the function
4242 		 * tracer can trace. Break up preempt_disable() into two
4243 		 * calls. One to disable preemption without fear of being
4244 		 * traced. The other to still record the preemption latency,
4245 		 * which can also be traced by the function tracer.
4246 		 */
4247 		preempt_disable_notrace();
4248 		preempt_latency_start(1);
4249 		__schedule(true);
4250 		preempt_latency_stop(1);
4251 		preempt_enable_no_resched_notrace();
4252 
4253 		/*
4254 		 * Check again in case we missed a preemption opportunity
4255 		 * between schedule and now.
4256 		 */
4257 	} while (need_resched());
4258 }
4259 
4260 #ifdef CONFIG_PREEMPTION
4261 /*
4262  * This is the entry point to schedule() from in-kernel preemption
4263  * off of preempt_enable.
4264  */
4265 asmlinkage __visible void __sched notrace preempt_schedule(void)
4266 {
4267 	/*
4268 	 * If there is a non-zero preempt_count or interrupts are disabled,
4269 	 * we do not want to preempt the current task. Just return..
4270 	 */
4271 	if (likely(!preemptible()))
4272 		return;
4273 
4274 	preempt_schedule_common();
4275 }
4276 NOKPROBE_SYMBOL(preempt_schedule);
4277 EXPORT_SYMBOL(preempt_schedule);
4278 
4279 /**
4280  * preempt_schedule_notrace - preempt_schedule called by tracing
4281  *
4282  * The tracing infrastructure uses preempt_enable_notrace to prevent
4283  * recursion and tracing preempt enabling caused by the tracing
4284  * infrastructure itself. But as tracing can happen in areas coming
4285  * from userspace or just about to enter userspace, a preempt enable
4286  * can occur before user_exit() is called. This will cause the scheduler
4287  * to be called when the system is still in usermode.
4288  *
4289  * To prevent this, the preempt_enable_notrace will use this function
4290  * instead of preempt_schedule() to exit user context if needed before
4291  * calling the scheduler.
4292  */
4293 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4294 {
4295 	enum ctx_state prev_ctx;
4296 
4297 	if (likely(!preemptible()))
4298 		return;
4299 
4300 	do {
4301 		/*
4302 		 * Because the function tracer can trace preempt_count_sub()
4303 		 * and it also uses preempt_enable/disable_notrace(), if
4304 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4305 		 * by the function tracer will call this function again and
4306 		 * cause infinite recursion.
4307 		 *
4308 		 * Preemption must be disabled here before the function
4309 		 * tracer can trace. Break up preempt_disable() into two
4310 		 * calls. One to disable preemption without fear of being
4311 		 * traced. The other to still record the preemption latency,
4312 		 * which can also be traced by the function tracer.
4313 		 */
4314 		preempt_disable_notrace();
4315 		preempt_latency_start(1);
4316 		/*
4317 		 * Needs preempt disabled in case user_exit() is traced
4318 		 * and the tracer calls preempt_enable_notrace() causing
4319 		 * an infinite recursion.
4320 		 */
4321 		prev_ctx = exception_enter();
4322 		__schedule(true);
4323 		exception_exit(prev_ctx);
4324 
4325 		preempt_latency_stop(1);
4326 		preempt_enable_no_resched_notrace();
4327 	} while (need_resched());
4328 }
4329 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4330 
4331 #endif /* CONFIG_PREEMPTION */
4332 
4333 /*
4334  * This is the entry point to schedule() from kernel preemption
4335  * off of irq context.
4336  * Note, that this is called and return with irqs disabled. This will
4337  * protect us against recursive calling from irq.
4338  */
4339 asmlinkage __visible void __sched preempt_schedule_irq(void)
4340 {
4341 	enum ctx_state prev_state;
4342 
4343 	/* Catch callers which need to be fixed */
4344 	BUG_ON(preempt_count() || !irqs_disabled());
4345 
4346 	prev_state = exception_enter();
4347 
4348 	do {
4349 		preempt_disable();
4350 		local_irq_enable();
4351 		__schedule(true);
4352 		local_irq_disable();
4353 		sched_preempt_enable_no_resched();
4354 	} while (need_resched());
4355 
4356 	exception_exit(prev_state);
4357 }
4358 
4359 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4360 			  void *key)
4361 {
4362 	return try_to_wake_up(curr->private, mode, wake_flags);
4363 }
4364 EXPORT_SYMBOL(default_wake_function);
4365 
4366 #ifdef CONFIG_RT_MUTEXES
4367 
4368 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4369 {
4370 	if (pi_task)
4371 		prio = min(prio, pi_task->prio);
4372 
4373 	return prio;
4374 }
4375 
4376 static inline int rt_effective_prio(struct task_struct *p, int prio)
4377 {
4378 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4379 
4380 	return __rt_effective_prio(pi_task, prio);
4381 }
4382 
4383 /*
4384  * rt_mutex_setprio - set the current priority of a task
4385  * @p: task to boost
4386  * @pi_task: donor task
4387  *
4388  * This function changes the 'effective' priority of a task. It does
4389  * not touch ->normal_prio like __setscheduler().
4390  *
4391  * Used by the rt_mutex code to implement priority inheritance
4392  * logic. Call site only calls if the priority of the task changed.
4393  */
4394 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4395 {
4396 	int prio, oldprio, queued, running, queue_flag =
4397 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4398 	const struct sched_class *prev_class;
4399 	struct rq_flags rf;
4400 	struct rq *rq;
4401 
4402 	/* XXX used to be waiter->prio, not waiter->task->prio */
4403 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4404 
4405 	/*
4406 	 * If nothing changed; bail early.
4407 	 */
4408 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4409 		return;
4410 
4411 	rq = __task_rq_lock(p, &rf);
4412 	update_rq_clock(rq);
4413 	/*
4414 	 * Set under pi_lock && rq->lock, such that the value can be used under
4415 	 * either lock.
4416 	 *
4417 	 * Note that there is loads of tricky to make this pointer cache work
4418 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4419 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4420 	 * task is allowed to run again (and can exit). This ensures the pointer
4421 	 * points to a blocked task -- which guaratees the task is present.
4422 	 */
4423 	p->pi_top_task = pi_task;
4424 
4425 	/*
4426 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4427 	 */
4428 	if (prio == p->prio && !dl_prio(prio))
4429 		goto out_unlock;
4430 
4431 	/*
4432 	 * Idle task boosting is a nono in general. There is one
4433 	 * exception, when PREEMPT_RT and NOHZ is active:
4434 	 *
4435 	 * The idle task calls get_next_timer_interrupt() and holds
4436 	 * the timer wheel base->lock on the CPU and another CPU wants
4437 	 * to access the timer (probably to cancel it). We can safely
4438 	 * ignore the boosting request, as the idle CPU runs this code
4439 	 * with interrupts disabled and will complete the lock
4440 	 * protected section without being interrupted. So there is no
4441 	 * real need to boost.
4442 	 */
4443 	if (unlikely(p == rq->idle)) {
4444 		WARN_ON(p != rq->curr);
4445 		WARN_ON(p->pi_blocked_on);
4446 		goto out_unlock;
4447 	}
4448 
4449 	trace_sched_pi_setprio(p, pi_task);
4450 	oldprio = p->prio;
4451 
4452 	if (oldprio == prio)
4453 		queue_flag &= ~DEQUEUE_MOVE;
4454 
4455 	prev_class = p->sched_class;
4456 	queued = task_on_rq_queued(p);
4457 	running = task_current(rq, p);
4458 	if (queued)
4459 		dequeue_task(rq, p, queue_flag);
4460 	if (running)
4461 		put_prev_task(rq, p);
4462 
4463 	/*
4464 	 * Boosting condition are:
4465 	 * 1. -rt task is running and holds mutex A
4466 	 *      --> -dl task blocks on mutex A
4467 	 *
4468 	 * 2. -dl task is running and holds mutex A
4469 	 *      --> -dl task blocks on mutex A and could preempt the
4470 	 *          running task
4471 	 */
4472 	if (dl_prio(prio)) {
4473 		if (!dl_prio(p->normal_prio) ||
4474 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4475 			p->dl.dl_boosted = 1;
4476 			queue_flag |= ENQUEUE_REPLENISH;
4477 		} else
4478 			p->dl.dl_boosted = 0;
4479 		p->sched_class = &dl_sched_class;
4480 	} else if (rt_prio(prio)) {
4481 		if (dl_prio(oldprio))
4482 			p->dl.dl_boosted = 0;
4483 		if (oldprio < prio)
4484 			queue_flag |= ENQUEUE_HEAD;
4485 		p->sched_class = &rt_sched_class;
4486 	} else {
4487 		if (dl_prio(oldprio))
4488 			p->dl.dl_boosted = 0;
4489 		if (rt_prio(oldprio))
4490 			p->rt.timeout = 0;
4491 		p->sched_class = &fair_sched_class;
4492 	}
4493 
4494 	p->prio = prio;
4495 
4496 	if (queued)
4497 		enqueue_task(rq, p, queue_flag);
4498 	if (running)
4499 		set_next_task(rq, p);
4500 
4501 	check_class_changed(rq, p, prev_class, oldprio);
4502 out_unlock:
4503 	/* Avoid rq from going away on us: */
4504 	preempt_disable();
4505 	__task_rq_unlock(rq, &rf);
4506 
4507 	balance_callback(rq);
4508 	preempt_enable();
4509 }
4510 #else
4511 static inline int rt_effective_prio(struct task_struct *p, int prio)
4512 {
4513 	return prio;
4514 }
4515 #endif
4516 
4517 void set_user_nice(struct task_struct *p, long nice)
4518 {
4519 	bool queued, running;
4520 	int old_prio;
4521 	struct rq_flags rf;
4522 	struct rq *rq;
4523 
4524 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4525 		return;
4526 	/*
4527 	 * We have to be careful, if called from sys_setpriority(),
4528 	 * the task might be in the middle of scheduling on another CPU.
4529 	 */
4530 	rq = task_rq_lock(p, &rf);
4531 	update_rq_clock(rq);
4532 
4533 	/*
4534 	 * The RT priorities are set via sched_setscheduler(), but we still
4535 	 * allow the 'normal' nice value to be set - but as expected
4536 	 * it wont have any effect on scheduling until the task is
4537 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4538 	 */
4539 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4540 		p->static_prio = NICE_TO_PRIO(nice);
4541 		goto out_unlock;
4542 	}
4543 	queued = task_on_rq_queued(p);
4544 	running = task_current(rq, p);
4545 	if (queued)
4546 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4547 	if (running)
4548 		put_prev_task(rq, p);
4549 
4550 	p->static_prio = NICE_TO_PRIO(nice);
4551 	set_load_weight(p, true);
4552 	old_prio = p->prio;
4553 	p->prio = effective_prio(p);
4554 
4555 	if (queued)
4556 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4557 	if (running)
4558 		set_next_task(rq, p);
4559 
4560 	/*
4561 	 * If the task increased its priority or is running and
4562 	 * lowered its priority, then reschedule its CPU:
4563 	 */
4564 	p->sched_class->prio_changed(rq, p, old_prio);
4565 
4566 out_unlock:
4567 	task_rq_unlock(rq, p, &rf);
4568 }
4569 EXPORT_SYMBOL(set_user_nice);
4570 
4571 /*
4572  * can_nice - check if a task can reduce its nice value
4573  * @p: task
4574  * @nice: nice value
4575  */
4576 int can_nice(const struct task_struct *p, const int nice)
4577 {
4578 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4579 	int nice_rlim = nice_to_rlimit(nice);
4580 
4581 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4582 		capable(CAP_SYS_NICE));
4583 }
4584 
4585 #ifdef __ARCH_WANT_SYS_NICE
4586 
4587 /*
4588  * sys_nice - change the priority of the current process.
4589  * @increment: priority increment
4590  *
4591  * sys_setpriority is a more generic, but much slower function that
4592  * does similar things.
4593  */
4594 SYSCALL_DEFINE1(nice, int, increment)
4595 {
4596 	long nice, retval;
4597 
4598 	/*
4599 	 * Setpriority might change our priority at the same moment.
4600 	 * We don't have to worry. Conceptually one call occurs first
4601 	 * and we have a single winner.
4602 	 */
4603 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4604 	nice = task_nice(current) + increment;
4605 
4606 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4607 	if (increment < 0 && !can_nice(current, nice))
4608 		return -EPERM;
4609 
4610 	retval = security_task_setnice(current, nice);
4611 	if (retval)
4612 		return retval;
4613 
4614 	set_user_nice(current, nice);
4615 	return 0;
4616 }
4617 
4618 #endif
4619 
4620 /**
4621  * task_prio - return the priority value of a given task.
4622  * @p: the task in question.
4623  *
4624  * Return: The priority value as seen by users in /proc.
4625  * RT tasks are offset by -200. Normal tasks are centered
4626  * around 0, value goes from -16 to +15.
4627  */
4628 int task_prio(const struct task_struct *p)
4629 {
4630 	return p->prio - MAX_RT_PRIO;
4631 }
4632 
4633 /**
4634  * idle_cpu - is a given CPU idle currently?
4635  * @cpu: the processor in question.
4636  *
4637  * Return: 1 if the CPU is currently idle. 0 otherwise.
4638  */
4639 int idle_cpu(int cpu)
4640 {
4641 	struct rq *rq = cpu_rq(cpu);
4642 
4643 	if (rq->curr != rq->idle)
4644 		return 0;
4645 
4646 	if (rq->nr_running)
4647 		return 0;
4648 
4649 #ifdef CONFIG_SMP
4650 	if (!llist_empty(&rq->wake_list))
4651 		return 0;
4652 #endif
4653 
4654 	return 1;
4655 }
4656 
4657 /**
4658  * available_idle_cpu - is a given CPU idle for enqueuing work.
4659  * @cpu: the CPU in question.
4660  *
4661  * Return: 1 if the CPU is currently idle. 0 otherwise.
4662  */
4663 int available_idle_cpu(int cpu)
4664 {
4665 	if (!idle_cpu(cpu))
4666 		return 0;
4667 
4668 	if (vcpu_is_preempted(cpu))
4669 		return 0;
4670 
4671 	return 1;
4672 }
4673 
4674 /**
4675  * idle_task - return the idle task for a given CPU.
4676  * @cpu: the processor in question.
4677  *
4678  * Return: The idle task for the CPU @cpu.
4679  */
4680 struct task_struct *idle_task(int cpu)
4681 {
4682 	return cpu_rq(cpu)->idle;
4683 }
4684 
4685 /**
4686  * find_process_by_pid - find a process with a matching PID value.
4687  * @pid: the pid in question.
4688  *
4689  * The task of @pid, if found. %NULL otherwise.
4690  */
4691 static struct task_struct *find_process_by_pid(pid_t pid)
4692 {
4693 	return pid ? find_task_by_vpid(pid) : current;
4694 }
4695 
4696 /*
4697  * sched_setparam() passes in -1 for its policy, to let the functions
4698  * it calls know not to change it.
4699  */
4700 #define SETPARAM_POLICY	-1
4701 
4702 static void __setscheduler_params(struct task_struct *p,
4703 		const struct sched_attr *attr)
4704 {
4705 	int policy = attr->sched_policy;
4706 
4707 	if (policy == SETPARAM_POLICY)
4708 		policy = p->policy;
4709 
4710 	p->policy = policy;
4711 
4712 	if (dl_policy(policy))
4713 		__setparam_dl(p, attr);
4714 	else if (fair_policy(policy))
4715 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4716 
4717 	/*
4718 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4719 	 * !rt_policy. Always setting this ensures that things like
4720 	 * getparam()/getattr() don't report silly values for !rt tasks.
4721 	 */
4722 	p->rt_priority = attr->sched_priority;
4723 	p->normal_prio = normal_prio(p);
4724 	set_load_weight(p, true);
4725 }
4726 
4727 /* Actually do priority change: must hold pi & rq lock. */
4728 static void __setscheduler(struct rq *rq, struct task_struct *p,
4729 			   const struct sched_attr *attr, bool keep_boost)
4730 {
4731 	/*
4732 	 * If params can't change scheduling class changes aren't allowed
4733 	 * either.
4734 	 */
4735 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4736 		return;
4737 
4738 	__setscheduler_params(p, attr);
4739 
4740 	/*
4741 	 * Keep a potential priority boosting if called from
4742 	 * sched_setscheduler().
4743 	 */
4744 	p->prio = normal_prio(p);
4745 	if (keep_boost)
4746 		p->prio = rt_effective_prio(p, p->prio);
4747 
4748 	if (dl_prio(p->prio))
4749 		p->sched_class = &dl_sched_class;
4750 	else if (rt_prio(p->prio))
4751 		p->sched_class = &rt_sched_class;
4752 	else
4753 		p->sched_class = &fair_sched_class;
4754 }
4755 
4756 /*
4757  * Check the target process has a UID that matches the current process's:
4758  */
4759 static bool check_same_owner(struct task_struct *p)
4760 {
4761 	const struct cred *cred = current_cred(), *pcred;
4762 	bool match;
4763 
4764 	rcu_read_lock();
4765 	pcred = __task_cred(p);
4766 	match = (uid_eq(cred->euid, pcred->euid) ||
4767 		 uid_eq(cred->euid, pcred->uid));
4768 	rcu_read_unlock();
4769 	return match;
4770 }
4771 
4772 static int __sched_setscheduler(struct task_struct *p,
4773 				const struct sched_attr *attr,
4774 				bool user, bool pi)
4775 {
4776 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4777 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4778 	int retval, oldprio, oldpolicy = -1, queued, running;
4779 	int new_effective_prio, policy = attr->sched_policy;
4780 	const struct sched_class *prev_class;
4781 	struct rq_flags rf;
4782 	int reset_on_fork;
4783 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4784 	struct rq *rq;
4785 
4786 	/* The pi code expects interrupts enabled */
4787 	BUG_ON(pi && in_interrupt());
4788 recheck:
4789 	/* Double check policy once rq lock held: */
4790 	if (policy < 0) {
4791 		reset_on_fork = p->sched_reset_on_fork;
4792 		policy = oldpolicy = p->policy;
4793 	} else {
4794 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4795 
4796 		if (!valid_policy(policy))
4797 			return -EINVAL;
4798 	}
4799 
4800 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4801 		return -EINVAL;
4802 
4803 	/*
4804 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4805 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4806 	 * SCHED_BATCH and SCHED_IDLE is 0.
4807 	 */
4808 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4809 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4810 		return -EINVAL;
4811 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4812 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4813 		return -EINVAL;
4814 
4815 	/*
4816 	 * Allow unprivileged RT tasks to decrease priority:
4817 	 */
4818 	if (user && !capable(CAP_SYS_NICE)) {
4819 		if (fair_policy(policy)) {
4820 			if (attr->sched_nice < task_nice(p) &&
4821 			    !can_nice(p, attr->sched_nice))
4822 				return -EPERM;
4823 		}
4824 
4825 		if (rt_policy(policy)) {
4826 			unsigned long rlim_rtprio =
4827 					task_rlimit(p, RLIMIT_RTPRIO);
4828 
4829 			/* Can't set/change the rt policy: */
4830 			if (policy != p->policy && !rlim_rtprio)
4831 				return -EPERM;
4832 
4833 			/* Can't increase priority: */
4834 			if (attr->sched_priority > p->rt_priority &&
4835 			    attr->sched_priority > rlim_rtprio)
4836 				return -EPERM;
4837 		}
4838 
4839 		 /*
4840 		  * Can't set/change SCHED_DEADLINE policy at all for now
4841 		  * (safest behavior); in the future we would like to allow
4842 		  * unprivileged DL tasks to increase their relative deadline
4843 		  * or reduce their runtime (both ways reducing utilization)
4844 		  */
4845 		if (dl_policy(policy))
4846 			return -EPERM;
4847 
4848 		/*
4849 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4850 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4851 		 */
4852 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4853 			if (!can_nice(p, task_nice(p)))
4854 				return -EPERM;
4855 		}
4856 
4857 		/* Can't change other user's priorities: */
4858 		if (!check_same_owner(p))
4859 			return -EPERM;
4860 
4861 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4862 		if (p->sched_reset_on_fork && !reset_on_fork)
4863 			return -EPERM;
4864 	}
4865 
4866 	if (user) {
4867 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4868 			return -EINVAL;
4869 
4870 		retval = security_task_setscheduler(p);
4871 		if (retval)
4872 			return retval;
4873 	}
4874 
4875 	/* Update task specific "requested" clamps */
4876 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4877 		retval = uclamp_validate(p, attr);
4878 		if (retval)
4879 			return retval;
4880 	}
4881 
4882 	if (pi)
4883 		cpuset_read_lock();
4884 
4885 	/*
4886 	 * Make sure no PI-waiters arrive (or leave) while we are
4887 	 * changing the priority of the task:
4888 	 *
4889 	 * To be able to change p->policy safely, the appropriate
4890 	 * runqueue lock must be held.
4891 	 */
4892 	rq = task_rq_lock(p, &rf);
4893 	update_rq_clock(rq);
4894 
4895 	/*
4896 	 * Changing the policy of the stop threads its a very bad idea:
4897 	 */
4898 	if (p == rq->stop) {
4899 		retval = -EINVAL;
4900 		goto unlock;
4901 	}
4902 
4903 	/*
4904 	 * If not changing anything there's no need to proceed further,
4905 	 * but store a possible modification of reset_on_fork.
4906 	 */
4907 	if (unlikely(policy == p->policy)) {
4908 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4909 			goto change;
4910 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4911 			goto change;
4912 		if (dl_policy(policy) && dl_param_changed(p, attr))
4913 			goto change;
4914 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4915 			goto change;
4916 
4917 		p->sched_reset_on_fork = reset_on_fork;
4918 		retval = 0;
4919 		goto unlock;
4920 	}
4921 change:
4922 
4923 	if (user) {
4924 #ifdef CONFIG_RT_GROUP_SCHED
4925 		/*
4926 		 * Do not allow realtime tasks into groups that have no runtime
4927 		 * assigned.
4928 		 */
4929 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4930 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4931 				!task_group_is_autogroup(task_group(p))) {
4932 			retval = -EPERM;
4933 			goto unlock;
4934 		}
4935 #endif
4936 #ifdef CONFIG_SMP
4937 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4938 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4939 			cpumask_t *span = rq->rd->span;
4940 
4941 			/*
4942 			 * Don't allow tasks with an affinity mask smaller than
4943 			 * the entire root_domain to become SCHED_DEADLINE. We
4944 			 * will also fail if there's no bandwidth available.
4945 			 */
4946 			if (!cpumask_subset(span, p->cpus_ptr) ||
4947 			    rq->rd->dl_bw.bw == 0) {
4948 				retval = -EPERM;
4949 				goto unlock;
4950 			}
4951 		}
4952 #endif
4953 	}
4954 
4955 	/* Re-check policy now with rq lock held: */
4956 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4957 		policy = oldpolicy = -1;
4958 		task_rq_unlock(rq, p, &rf);
4959 		if (pi)
4960 			cpuset_read_unlock();
4961 		goto recheck;
4962 	}
4963 
4964 	/*
4965 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4966 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4967 	 * is available.
4968 	 */
4969 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4970 		retval = -EBUSY;
4971 		goto unlock;
4972 	}
4973 
4974 	p->sched_reset_on_fork = reset_on_fork;
4975 	oldprio = p->prio;
4976 
4977 	if (pi) {
4978 		/*
4979 		 * Take priority boosted tasks into account. If the new
4980 		 * effective priority is unchanged, we just store the new
4981 		 * normal parameters and do not touch the scheduler class and
4982 		 * the runqueue. This will be done when the task deboost
4983 		 * itself.
4984 		 */
4985 		new_effective_prio = rt_effective_prio(p, newprio);
4986 		if (new_effective_prio == oldprio)
4987 			queue_flags &= ~DEQUEUE_MOVE;
4988 	}
4989 
4990 	queued = task_on_rq_queued(p);
4991 	running = task_current(rq, p);
4992 	if (queued)
4993 		dequeue_task(rq, p, queue_flags);
4994 	if (running)
4995 		put_prev_task(rq, p);
4996 
4997 	prev_class = p->sched_class;
4998 
4999 	__setscheduler(rq, p, attr, pi);
5000 	__setscheduler_uclamp(p, attr);
5001 
5002 	if (queued) {
5003 		/*
5004 		 * We enqueue to tail when the priority of a task is
5005 		 * increased (user space view).
5006 		 */
5007 		if (oldprio < p->prio)
5008 			queue_flags |= ENQUEUE_HEAD;
5009 
5010 		enqueue_task(rq, p, queue_flags);
5011 	}
5012 	if (running)
5013 		set_next_task(rq, p);
5014 
5015 	check_class_changed(rq, p, prev_class, oldprio);
5016 
5017 	/* Avoid rq from going away on us: */
5018 	preempt_disable();
5019 	task_rq_unlock(rq, p, &rf);
5020 
5021 	if (pi) {
5022 		cpuset_read_unlock();
5023 		rt_mutex_adjust_pi(p);
5024 	}
5025 
5026 	/* Run balance callbacks after we've adjusted the PI chain: */
5027 	balance_callback(rq);
5028 	preempt_enable();
5029 
5030 	return 0;
5031 
5032 unlock:
5033 	task_rq_unlock(rq, p, &rf);
5034 	if (pi)
5035 		cpuset_read_unlock();
5036 	return retval;
5037 }
5038 
5039 static int _sched_setscheduler(struct task_struct *p, int policy,
5040 			       const struct sched_param *param, bool check)
5041 {
5042 	struct sched_attr attr = {
5043 		.sched_policy   = policy,
5044 		.sched_priority = param->sched_priority,
5045 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5046 	};
5047 
5048 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5049 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5050 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5051 		policy &= ~SCHED_RESET_ON_FORK;
5052 		attr.sched_policy = policy;
5053 	}
5054 
5055 	return __sched_setscheduler(p, &attr, check, true);
5056 }
5057 /**
5058  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5059  * @p: the task in question.
5060  * @policy: new policy.
5061  * @param: structure containing the new RT priority.
5062  *
5063  * Return: 0 on success. An error code otherwise.
5064  *
5065  * NOTE that the task may be already dead.
5066  */
5067 int sched_setscheduler(struct task_struct *p, int policy,
5068 		       const struct sched_param *param)
5069 {
5070 	return _sched_setscheduler(p, policy, param, true);
5071 }
5072 EXPORT_SYMBOL_GPL(sched_setscheduler);
5073 
5074 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5075 {
5076 	return __sched_setscheduler(p, attr, true, true);
5077 }
5078 EXPORT_SYMBOL_GPL(sched_setattr);
5079 
5080 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5081 {
5082 	return __sched_setscheduler(p, attr, false, true);
5083 }
5084 
5085 /**
5086  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5087  * @p: the task in question.
5088  * @policy: new policy.
5089  * @param: structure containing the new RT priority.
5090  *
5091  * Just like sched_setscheduler, only don't bother checking if the
5092  * current context has permission.  For example, this is needed in
5093  * stop_machine(): we create temporary high priority worker threads,
5094  * but our caller might not have that capability.
5095  *
5096  * Return: 0 on success. An error code otherwise.
5097  */
5098 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5099 			       const struct sched_param *param)
5100 {
5101 	return _sched_setscheduler(p, policy, param, false);
5102 }
5103 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5104 
5105 static int
5106 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5107 {
5108 	struct sched_param lparam;
5109 	struct task_struct *p;
5110 	int retval;
5111 
5112 	if (!param || pid < 0)
5113 		return -EINVAL;
5114 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5115 		return -EFAULT;
5116 
5117 	rcu_read_lock();
5118 	retval = -ESRCH;
5119 	p = find_process_by_pid(pid);
5120 	if (likely(p))
5121 		get_task_struct(p);
5122 	rcu_read_unlock();
5123 
5124 	if (likely(p)) {
5125 		retval = sched_setscheduler(p, policy, &lparam);
5126 		put_task_struct(p);
5127 	}
5128 
5129 	return retval;
5130 }
5131 
5132 /*
5133  * Mimics kernel/events/core.c perf_copy_attr().
5134  */
5135 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5136 {
5137 	u32 size;
5138 	int ret;
5139 
5140 	/* Zero the full structure, so that a short copy will be nice: */
5141 	memset(attr, 0, sizeof(*attr));
5142 
5143 	ret = get_user(size, &uattr->size);
5144 	if (ret)
5145 		return ret;
5146 
5147 	/* ABI compatibility quirk: */
5148 	if (!size)
5149 		size = SCHED_ATTR_SIZE_VER0;
5150 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5151 		goto err_size;
5152 
5153 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5154 	if (ret) {
5155 		if (ret == -E2BIG)
5156 			goto err_size;
5157 		return ret;
5158 	}
5159 
5160 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5161 	    size < SCHED_ATTR_SIZE_VER1)
5162 		return -EINVAL;
5163 
5164 	/*
5165 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5166 	 * to be strict and return an error on out-of-bounds values?
5167 	 */
5168 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5169 
5170 	return 0;
5171 
5172 err_size:
5173 	put_user(sizeof(*attr), &uattr->size);
5174 	return -E2BIG;
5175 }
5176 
5177 /**
5178  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5179  * @pid: the pid in question.
5180  * @policy: new policy.
5181  * @param: structure containing the new RT priority.
5182  *
5183  * Return: 0 on success. An error code otherwise.
5184  */
5185 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5186 {
5187 	if (policy < 0)
5188 		return -EINVAL;
5189 
5190 	return do_sched_setscheduler(pid, policy, param);
5191 }
5192 
5193 /**
5194  * sys_sched_setparam - set/change the RT priority of a thread
5195  * @pid: the pid in question.
5196  * @param: structure containing the new RT priority.
5197  *
5198  * Return: 0 on success. An error code otherwise.
5199  */
5200 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5201 {
5202 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5203 }
5204 
5205 /**
5206  * sys_sched_setattr - same as above, but with extended sched_attr
5207  * @pid: the pid in question.
5208  * @uattr: structure containing the extended parameters.
5209  * @flags: for future extension.
5210  */
5211 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5212 			       unsigned int, flags)
5213 {
5214 	struct sched_attr attr;
5215 	struct task_struct *p;
5216 	int retval;
5217 
5218 	if (!uattr || pid < 0 || flags)
5219 		return -EINVAL;
5220 
5221 	retval = sched_copy_attr(uattr, &attr);
5222 	if (retval)
5223 		return retval;
5224 
5225 	if ((int)attr.sched_policy < 0)
5226 		return -EINVAL;
5227 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5228 		attr.sched_policy = SETPARAM_POLICY;
5229 
5230 	rcu_read_lock();
5231 	retval = -ESRCH;
5232 	p = find_process_by_pid(pid);
5233 	if (likely(p))
5234 		get_task_struct(p);
5235 	rcu_read_unlock();
5236 
5237 	if (likely(p)) {
5238 		retval = sched_setattr(p, &attr);
5239 		put_task_struct(p);
5240 	}
5241 
5242 	return retval;
5243 }
5244 
5245 /**
5246  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5247  * @pid: the pid in question.
5248  *
5249  * Return: On success, the policy of the thread. Otherwise, a negative error
5250  * code.
5251  */
5252 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5253 {
5254 	struct task_struct *p;
5255 	int retval;
5256 
5257 	if (pid < 0)
5258 		return -EINVAL;
5259 
5260 	retval = -ESRCH;
5261 	rcu_read_lock();
5262 	p = find_process_by_pid(pid);
5263 	if (p) {
5264 		retval = security_task_getscheduler(p);
5265 		if (!retval)
5266 			retval = p->policy
5267 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5268 	}
5269 	rcu_read_unlock();
5270 	return retval;
5271 }
5272 
5273 /**
5274  * sys_sched_getparam - get the RT priority of a thread
5275  * @pid: the pid in question.
5276  * @param: structure containing the RT priority.
5277  *
5278  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5279  * code.
5280  */
5281 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5282 {
5283 	struct sched_param lp = { .sched_priority = 0 };
5284 	struct task_struct *p;
5285 	int retval;
5286 
5287 	if (!param || pid < 0)
5288 		return -EINVAL;
5289 
5290 	rcu_read_lock();
5291 	p = find_process_by_pid(pid);
5292 	retval = -ESRCH;
5293 	if (!p)
5294 		goto out_unlock;
5295 
5296 	retval = security_task_getscheduler(p);
5297 	if (retval)
5298 		goto out_unlock;
5299 
5300 	if (task_has_rt_policy(p))
5301 		lp.sched_priority = p->rt_priority;
5302 	rcu_read_unlock();
5303 
5304 	/*
5305 	 * This one might sleep, we cannot do it with a spinlock held ...
5306 	 */
5307 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5308 
5309 	return retval;
5310 
5311 out_unlock:
5312 	rcu_read_unlock();
5313 	return retval;
5314 }
5315 
5316 /*
5317  * Copy the kernel size attribute structure (which might be larger
5318  * than what user-space knows about) to user-space.
5319  *
5320  * Note that all cases are valid: user-space buffer can be larger or
5321  * smaller than the kernel-space buffer. The usual case is that both
5322  * have the same size.
5323  */
5324 static int
5325 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5326 			struct sched_attr *kattr,
5327 			unsigned int usize)
5328 {
5329 	unsigned int ksize = sizeof(*kattr);
5330 
5331 	if (!access_ok(uattr, usize))
5332 		return -EFAULT;
5333 
5334 	/*
5335 	 * sched_getattr() ABI forwards and backwards compatibility:
5336 	 *
5337 	 * If usize == ksize then we just copy everything to user-space and all is good.
5338 	 *
5339 	 * If usize < ksize then we only copy as much as user-space has space for,
5340 	 * this keeps ABI compatibility as well. We skip the rest.
5341 	 *
5342 	 * If usize > ksize then user-space is using a newer version of the ABI,
5343 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5344 	 * detect the kernel's knowledge of attributes from the attr->size value
5345 	 * which is set to ksize in this case.
5346 	 */
5347 	kattr->size = min(usize, ksize);
5348 
5349 	if (copy_to_user(uattr, kattr, kattr->size))
5350 		return -EFAULT;
5351 
5352 	return 0;
5353 }
5354 
5355 /**
5356  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5357  * @pid: the pid in question.
5358  * @uattr: structure containing the extended parameters.
5359  * @usize: sizeof(attr) for fwd/bwd comp.
5360  * @flags: for future extension.
5361  */
5362 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5363 		unsigned int, usize, unsigned int, flags)
5364 {
5365 	struct sched_attr kattr = { };
5366 	struct task_struct *p;
5367 	int retval;
5368 
5369 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5370 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5371 		return -EINVAL;
5372 
5373 	rcu_read_lock();
5374 	p = find_process_by_pid(pid);
5375 	retval = -ESRCH;
5376 	if (!p)
5377 		goto out_unlock;
5378 
5379 	retval = security_task_getscheduler(p);
5380 	if (retval)
5381 		goto out_unlock;
5382 
5383 	kattr.sched_policy = p->policy;
5384 	if (p->sched_reset_on_fork)
5385 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5386 	if (task_has_dl_policy(p))
5387 		__getparam_dl(p, &kattr);
5388 	else if (task_has_rt_policy(p))
5389 		kattr.sched_priority = p->rt_priority;
5390 	else
5391 		kattr.sched_nice = task_nice(p);
5392 
5393 #ifdef CONFIG_UCLAMP_TASK
5394 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5395 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5396 #endif
5397 
5398 	rcu_read_unlock();
5399 
5400 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5401 
5402 out_unlock:
5403 	rcu_read_unlock();
5404 	return retval;
5405 }
5406 
5407 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5408 {
5409 	cpumask_var_t cpus_allowed, new_mask;
5410 	struct task_struct *p;
5411 	int retval;
5412 
5413 	rcu_read_lock();
5414 
5415 	p = find_process_by_pid(pid);
5416 	if (!p) {
5417 		rcu_read_unlock();
5418 		return -ESRCH;
5419 	}
5420 
5421 	/* Prevent p going away */
5422 	get_task_struct(p);
5423 	rcu_read_unlock();
5424 
5425 	if (p->flags & PF_NO_SETAFFINITY) {
5426 		retval = -EINVAL;
5427 		goto out_put_task;
5428 	}
5429 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5430 		retval = -ENOMEM;
5431 		goto out_put_task;
5432 	}
5433 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5434 		retval = -ENOMEM;
5435 		goto out_free_cpus_allowed;
5436 	}
5437 	retval = -EPERM;
5438 	if (!check_same_owner(p)) {
5439 		rcu_read_lock();
5440 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5441 			rcu_read_unlock();
5442 			goto out_free_new_mask;
5443 		}
5444 		rcu_read_unlock();
5445 	}
5446 
5447 	retval = security_task_setscheduler(p);
5448 	if (retval)
5449 		goto out_free_new_mask;
5450 
5451 
5452 	cpuset_cpus_allowed(p, cpus_allowed);
5453 	cpumask_and(new_mask, in_mask, cpus_allowed);
5454 
5455 	/*
5456 	 * Since bandwidth control happens on root_domain basis,
5457 	 * if admission test is enabled, we only admit -deadline
5458 	 * tasks allowed to run on all the CPUs in the task's
5459 	 * root_domain.
5460 	 */
5461 #ifdef CONFIG_SMP
5462 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5463 		rcu_read_lock();
5464 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5465 			retval = -EBUSY;
5466 			rcu_read_unlock();
5467 			goto out_free_new_mask;
5468 		}
5469 		rcu_read_unlock();
5470 	}
5471 #endif
5472 again:
5473 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5474 
5475 	if (!retval) {
5476 		cpuset_cpus_allowed(p, cpus_allowed);
5477 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5478 			/*
5479 			 * We must have raced with a concurrent cpuset
5480 			 * update. Just reset the cpus_allowed to the
5481 			 * cpuset's cpus_allowed
5482 			 */
5483 			cpumask_copy(new_mask, cpus_allowed);
5484 			goto again;
5485 		}
5486 	}
5487 out_free_new_mask:
5488 	free_cpumask_var(new_mask);
5489 out_free_cpus_allowed:
5490 	free_cpumask_var(cpus_allowed);
5491 out_put_task:
5492 	put_task_struct(p);
5493 	return retval;
5494 }
5495 
5496 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5497 			     struct cpumask *new_mask)
5498 {
5499 	if (len < cpumask_size())
5500 		cpumask_clear(new_mask);
5501 	else if (len > cpumask_size())
5502 		len = cpumask_size();
5503 
5504 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5505 }
5506 
5507 /**
5508  * sys_sched_setaffinity - set the CPU affinity of a process
5509  * @pid: pid of the process
5510  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5511  * @user_mask_ptr: user-space pointer to the new CPU mask
5512  *
5513  * Return: 0 on success. An error code otherwise.
5514  */
5515 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5516 		unsigned long __user *, user_mask_ptr)
5517 {
5518 	cpumask_var_t new_mask;
5519 	int retval;
5520 
5521 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5522 		return -ENOMEM;
5523 
5524 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5525 	if (retval == 0)
5526 		retval = sched_setaffinity(pid, new_mask);
5527 	free_cpumask_var(new_mask);
5528 	return retval;
5529 }
5530 
5531 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5532 {
5533 	struct task_struct *p;
5534 	unsigned long flags;
5535 	int retval;
5536 
5537 	rcu_read_lock();
5538 
5539 	retval = -ESRCH;
5540 	p = find_process_by_pid(pid);
5541 	if (!p)
5542 		goto out_unlock;
5543 
5544 	retval = security_task_getscheduler(p);
5545 	if (retval)
5546 		goto out_unlock;
5547 
5548 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5549 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5550 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5551 
5552 out_unlock:
5553 	rcu_read_unlock();
5554 
5555 	return retval;
5556 }
5557 
5558 /**
5559  * sys_sched_getaffinity - get the CPU affinity of a process
5560  * @pid: pid of the process
5561  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5562  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5563  *
5564  * Return: size of CPU mask copied to user_mask_ptr on success. An
5565  * error code otherwise.
5566  */
5567 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5568 		unsigned long __user *, user_mask_ptr)
5569 {
5570 	int ret;
5571 	cpumask_var_t mask;
5572 
5573 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5574 		return -EINVAL;
5575 	if (len & (sizeof(unsigned long)-1))
5576 		return -EINVAL;
5577 
5578 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5579 		return -ENOMEM;
5580 
5581 	ret = sched_getaffinity(pid, mask);
5582 	if (ret == 0) {
5583 		unsigned int retlen = min(len, cpumask_size());
5584 
5585 		if (copy_to_user(user_mask_ptr, mask, retlen))
5586 			ret = -EFAULT;
5587 		else
5588 			ret = retlen;
5589 	}
5590 	free_cpumask_var(mask);
5591 
5592 	return ret;
5593 }
5594 
5595 /**
5596  * sys_sched_yield - yield the current processor to other threads.
5597  *
5598  * This function yields the current CPU to other tasks. If there are no
5599  * other threads running on this CPU then this function will return.
5600  *
5601  * Return: 0.
5602  */
5603 static void do_sched_yield(void)
5604 {
5605 	struct rq_flags rf;
5606 	struct rq *rq;
5607 
5608 	rq = this_rq_lock_irq(&rf);
5609 
5610 	schedstat_inc(rq->yld_count);
5611 	current->sched_class->yield_task(rq);
5612 
5613 	/*
5614 	 * Since we are going to call schedule() anyway, there's
5615 	 * no need to preempt or enable interrupts:
5616 	 */
5617 	preempt_disable();
5618 	rq_unlock(rq, &rf);
5619 	sched_preempt_enable_no_resched();
5620 
5621 	schedule();
5622 }
5623 
5624 SYSCALL_DEFINE0(sched_yield)
5625 {
5626 	do_sched_yield();
5627 	return 0;
5628 }
5629 
5630 #ifndef CONFIG_PREEMPTION
5631 int __sched _cond_resched(void)
5632 {
5633 	if (should_resched(0)) {
5634 		preempt_schedule_common();
5635 		return 1;
5636 	}
5637 	rcu_all_qs();
5638 	return 0;
5639 }
5640 EXPORT_SYMBOL(_cond_resched);
5641 #endif
5642 
5643 /*
5644  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5645  * call schedule, and on return reacquire the lock.
5646  *
5647  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5648  * operations here to prevent schedule() from being called twice (once via
5649  * spin_unlock(), once by hand).
5650  */
5651 int __cond_resched_lock(spinlock_t *lock)
5652 {
5653 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5654 	int ret = 0;
5655 
5656 	lockdep_assert_held(lock);
5657 
5658 	if (spin_needbreak(lock) || resched) {
5659 		spin_unlock(lock);
5660 		if (resched)
5661 			preempt_schedule_common();
5662 		else
5663 			cpu_relax();
5664 		ret = 1;
5665 		spin_lock(lock);
5666 	}
5667 	return ret;
5668 }
5669 EXPORT_SYMBOL(__cond_resched_lock);
5670 
5671 /**
5672  * yield - yield the current processor to other threads.
5673  *
5674  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5675  *
5676  * The scheduler is at all times free to pick the calling task as the most
5677  * eligible task to run, if removing the yield() call from your code breaks
5678  * it, its already broken.
5679  *
5680  * Typical broken usage is:
5681  *
5682  * while (!event)
5683  *	yield();
5684  *
5685  * where one assumes that yield() will let 'the other' process run that will
5686  * make event true. If the current task is a SCHED_FIFO task that will never
5687  * happen. Never use yield() as a progress guarantee!!
5688  *
5689  * If you want to use yield() to wait for something, use wait_event().
5690  * If you want to use yield() to be 'nice' for others, use cond_resched().
5691  * If you still want to use yield(), do not!
5692  */
5693 void __sched yield(void)
5694 {
5695 	set_current_state(TASK_RUNNING);
5696 	do_sched_yield();
5697 }
5698 EXPORT_SYMBOL(yield);
5699 
5700 /**
5701  * yield_to - yield the current processor to another thread in
5702  * your thread group, or accelerate that thread toward the
5703  * processor it's on.
5704  * @p: target task
5705  * @preempt: whether task preemption is allowed or not
5706  *
5707  * It's the caller's job to ensure that the target task struct
5708  * can't go away on us before we can do any checks.
5709  *
5710  * Return:
5711  *	true (>0) if we indeed boosted the target task.
5712  *	false (0) if we failed to boost the target.
5713  *	-ESRCH if there's no task to yield to.
5714  */
5715 int __sched yield_to(struct task_struct *p, bool preempt)
5716 {
5717 	struct task_struct *curr = current;
5718 	struct rq *rq, *p_rq;
5719 	unsigned long flags;
5720 	int yielded = 0;
5721 
5722 	local_irq_save(flags);
5723 	rq = this_rq();
5724 
5725 again:
5726 	p_rq = task_rq(p);
5727 	/*
5728 	 * If we're the only runnable task on the rq and target rq also
5729 	 * has only one task, there's absolutely no point in yielding.
5730 	 */
5731 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5732 		yielded = -ESRCH;
5733 		goto out_irq;
5734 	}
5735 
5736 	double_rq_lock(rq, p_rq);
5737 	if (task_rq(p) != p_rq) {
5738 		double_rq_unlock(rq, p_rq);
5739 		goto again;
5740 	}
5741 
5742 	if (!curr->sched_class->yield_to_task)
5743 		goto out_unlock;
5744 
5745 	if (curr->sched_class != p->sched_class)
5746 		goto out_unlock;
5747 
5748 	if (task_running(p_rq, p) || p->state)
5749 		goto out_unlock;
5750 
5751 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5752 	if (yielded) {
5753 		schedstat_inc(rq->yld_count);
5754 		/*
5755 		 * Make p's CPU reschedule; pick_next_entity takes care of
5756 		 * fairness.
5757 		 */
5758 		if (preempt && rq != p_rq)
5759 			resched_curr(p_rq);
5760 	}
5761 
5762 out_unlock:
5763 	double_rq_unlock(rq, p_rq);
5764 out_irq:
5765 	local_irq_restore(flags);
5766 
5767 	if (yielded > 0)
5768 		schedule();
5769 
5770 	return yielded;
5771 }
5772 EXPORT_SYMBOL_GPL(yield_to);
5773 
5774 int io_schedule_prepare(void)
5775 {
5776 	int old_iowait = current->in_iowait;
5777 
5778 	current->in_iowait = 1;
5779 	blk_schedule_flush_plug(current);
5780 
5781 	return old_iowait;
5782 }
5783 
5784 void io_schedule_finish(int token)
5785 {
5786 	current->in_iowait = token;
5787 }
5788 
5789 /*
5790  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5791  * that process accounting knows that this is a task in IO wait state.
5792  */
5793 long __sched io_schedule_timeout(long timeout)
5794 {
5795 	int token;
5796 	long ret;
5797 
5798 	token = io_schedule_prepare();
5799 	ret = schedule_timeout(timeout);
5800 	io_schedule_finish(token);
5801 
5802 	return ret;
5803 }
5804 EXPORT_SYMBOL(io_schedule_timeout);
5805 
5806 void __sched io_schedule(void)
5807 {
5808 	int token;
5809 
5810 	token = io_schedule_prepare();
5811 	schedule();
5812 	io_schedule_finish(token);
5813 }
5814 EXPORT_SYMBOL(io_schedule);
5815 
5816 /**
5817  * sys_sched_get_priority_max - return maximum RT priority.
5818  * @policy: scheduling class.
5819  *
5820  * Return: On success, this syscall returns the maximum
5821  * rt_priority that can be used by a given scheduling class.
5822  * On failure, a negative error code is returned.
5823  */
5824 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5825 {
5826 	int ret = -EINVAL;
5827 
5828 	switch (policy) {
5829 	case SCHED_FIFO:
5830 	case SCHED_RR:
5831 		ret = MAX_USER_RT_PRIO-1;
5832 		break;
5833 	case SCHED_DEADLINE:
5834 	case SCHED_NORMAL:
5835 	case SCHED_BATCH:
5836 	case SCHED_IDLE:
5837 		ret = 0;
5838 		break;
5839 	}
5840 	return ret;
5841 }
5842 
5843 /**
5844  * sys_sched_get_priority_min - return minimum RT priority.
5845  * @policy: scheduling class.
5846  *
5847  * Return: On success, this syscall returns the minimum
5848  * rt_priority that can be used by a given scheduling class.
5849  * On failure, a negative error code is returned.
5850  */
5851 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5852 {
5853 	int ret = -EINVAL;
5854 
5855 	switch (policy) {
5856 	case SCHED_FIFO:
5857 	case SCHED_RR:
5858 		ret = 1;
5859 		break;
5860 	case SCHED_DEADLINE:
5861 	case SCHED_NORMAL:
5862 	case SCHED_BATCH:
5863 	case SCHED_IDLE:
5864 		ret = 0;
5865 	}
5866 	return ret;
5867 }
5868 
5869 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5870 {
5871 	struct task_struct *p;
5872 	unsigned int time_slice;
5873 	struct rq_flags rf;
5874 	struct rq *rq;
5875 	int retval;
5876 
5877 	if (pid < 0)
5878 		return -EINVAL;
5879 
5880 	retval = -ESRCH;
5881 	rcu_read_lock();
5882 	p = find_process_by_pid(pid);
5883 	if (!p)
5884 		goto out_unlock;
5885 
5886 	retval = security_task_getscheduler(p);
5887 	if (retval)
5888 		goto out_unlock;
5889 
5890 	rq = task_rq_lock(p, &rf);
5891 	time_slice = 0;
5892 	if (p->sched_class->get_rr_interval)
5893 		time_slice = p->sched_class->get_rr_interval(rq, p);
5894 	task_rq_unlock(rq, p, &rf);
5895 
5896 	rcu_read_unlock();
5897 	jiffies_to_timespec64(time_slice, t);
5898 	return 0;
5899 
5900 out_unlock:
5901 	rcu_read_unlock();
5902 	return retval;
5903 }
5904 
5905 /**
5906  * sys_sched_rr_get_interval - return the default timeslice of a process.
5907  * @pid: pid of the process.
5908  * @interval: userspace pointer to the timeslice value.
5909  *
5910  * this syscall writes the default timeslice value of a given process
5911  * into the user-space timespec buffer. A value of '0' means infinity.
5912  *
5913  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5914  * an error code.
5915  */
5916 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5917 		struct __kernel_timespec __user *, interval)
5918 {
5919 	struct timespec64 t;
5920 	int retval = sched_rr_get_interval(pid, &t);
5921 
5922 	if (retval == 0)
5923 		retval = put_timespec64(&t, interval);
5924 
5925 	return retval;
5926 }
5927 
5928 #ifdef CONFIG_COMPAT_32BIT_TIME
5929 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5930 		struct old_timespec32 __user *, interval)
5931 {
5932 	struct timespec64 t;
5933 	int retval = sched_rr_get_interval(pid, &t);
5934 
5935 	if (retval == 0)
5936 		retval = put_old_timespec32(&t, interval);
5937 	return retval;
5938 }
5939 #endif
5940 
5941 void sched_show_task(struct task_struct *p)
5942 {
5943 	unsigned long free = 0;
5944 	int ppid;
5945 
5946 	if (!try_get_task_stack(p))
5947 		return;
5948 
5949 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5950 
5951 	if (p->state == TASK_RUNNING)
5952 		printk(KERN_CONT "  running task    ");
5953 #ifdef CONFIG_DEBUG_STACK_USAGE
5954 	free = stack_not_used(p);
5955 #endif
5956 	ppid = 0;
5957 	rcu_read_lock();
5958 	if (pid_alive(p))
5959 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5960 	rcu_read_unlock();
5961 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5962 		task_pid_nr(p), ppid,
5963 		(unsigned long)task_thread_info(p)->flags);
5964 
5965 	print_worker_info(KERN_INFO, p);
5966 	show_stack(p, NULL);
5967 	put_task_stack(p);
5968 }
5969 EXPORT_SYMBOL_GPL(sched_show_task);
5970 
5971 static inline bool
5972 state_filter_match(unsigned long state_filter, struct task_struct *p)
5973 {
5974 	/* no filter, everything matches */
5975 	if (!state_filter)
5976 		return true;
5977 
5978 	/* filter, but doesn't match */
5979 	if (!(p->state & state_filter))
5980 		return false;
5981 
5982 	/*
5983 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5984 	 * TASK_KILLABLE).
5985 	 */
5986 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5987 		return false;
5988 
5989 	return true;
5990 }
5991 
5992 
5993 void show_state_filter(unsigned long state_filter)
5994 {
5995 	struct task_struct *g, *p;
5996 
5997 #if BITS_PER_LONG == 32
5998 	printk(KERN_INFO
5999 		"  task                PC stack   pid father\n");
6000 #else
6001 	printk(KERN_INFO
6002 		"  task                        PC stack   pid father\n");
6003 #endif
6004 	rcu_read_lock();
6005 	for_each_process_thread(g, p) {
6006 		/*
6007 		 * reset the NMI-timeout, listing all files on a slow
6008 		 * console might take a lot of time:
6009 		 * Also, reset softlockup watchdogs on all CPUs, because
6010 		 * another CPU might be blocked waiting for us to process
6011 		 * an IPI.
6012 		 */
6013 		touch_nmi_watchdog();
6014 		touch_all_softlockup_watchdogs();
6015 		if (state_filter_match(state_filter, p))
6016 			sched_show_task(p);
6017 	}
6018 
6019 #ifdef CONFIG_SCHED_DEBUG
6020 	if (!state_filter)
6021 		sysrq_sched_debug_show();
6022 #endif
6023 	rcu_read_unlock();
6024 	/*
6025 	 * Only show locks if all tasks are dumped:
6026 	 */
6027 	if (!state_filter)
6028 		debug_show_all_locks();
6029 }
6030 
6031 /**
6032  * init_idle - set up an idle thread for a given CPU
6033  * @idle: task in question
6034  * @cpu: CPU the idle task belongs to
6035  *
6036  * NOTE: this function does not set the idle thread's NEED_RESCHED
6037  * flag, to make booting more robust.
6038  */
6039 void init_idle(struct task_struct *idle, int cpu)
6040 {
6041 	struct rq *rq = cpu_rq(cpu);
6042 	unsigned long flags;
6043 
6044 	__sched_fork(0, idle);
6045 
6046 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6047 	raw_spin_lock(&rq->lock);
6048 
6049 	idle->state = TASK_RUNNING;
6050 	idle->se.exec_start = sched_clock();
6051 	idle->flags |= PF_IDLE;
6052 
6053 	kasan_unpoison_task_stack(idle);
6054 
6055 #ifdef CONFIG_SMP
6056 	/*
6057 	 * Its possible that init_idle() gets called multiple times on a task,
6058 	 * in that case do_set_cpus_allowed() will not do the right thing.
6059 	 *
6060 	 * And since this is boot we can forgo the serialization.
6061 	 */
6062 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6063 #endif
6064 	/*
6065 	 * We're having a chicken and egg problem, even though we are
6066 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6067 	 * lockdep check in task_group() will fail.
6068 	 *
6069 	 * Similar case to sched_fork(). / Alternatively we could
6070 	 * use task_rq_lock() here and obtain the other rq->lock.
6071 	 *
6072 	 * Silence PROVE_RCU
6073 	 */
6074 	rcu_read_lock();
6075 	__set_task_cpu(idle, cpu);
6076 	rcu_read_unlock();
6077 
6078 	rq->idle = idle;
6079 	rcu_assign_pointer(rq->curr, idle);
6080 	idle->on_rq = TASK_ON_RQ_QUEUED;
6081 #ifdef CONFIG_SMP
6082 	idle->on_cpu = 1;
6083 #endif
6084 	raw_spin_unlock(&rq->lock);
6085 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6086 
6087 	/* Set the preempt count _outside_ the spinlocks! */
6088 	init_idle_preempt_count(idle, cpu);
6089 
6090 	/*
6091 	 * The idle tasks have their own, simple scheduling class:
6092 	 */
6093 	idle->sched_class = &idle_sched_class;
6094 	ftrace_graph_init_idle_task(idle, cpu);
6095 	vtime_init_idle(idle, cpu);
6096 #ifdef CONFIG_SMP
6097 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6098 #endif
6099 }
6100 
6101 #ifdef CONFIG_SMP
6102 
6103 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6104 			      const struct cpumask *trial)
6105 {
6106 	int ret = 1;
6107 
6108 	if (!cpumask_weight(cur))
6109 		return ret;
6110 
6111 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6112 
6113 	return ret;
6114 }
6115 
6116 int task_can_attach(struct task_struct *p,
6117 		    const struct cpumask *cs_cpus_allowed)
6118 {
6119 	int ret = 0;
6120 
6121 	/*
6122 	 * Kthreads which disallow setaffinity shouldn't be moved
6123 	 * to a new cpuset; we don't want to change their CPU
6124 	 * affinity and isolating such threads by their set of
6125 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6126 	 * applicable for such threads.  This prevents checking for
6127 	 * success of set_cpus_allowed_ptr() on all attached tasks
6128 	 * before cpus_mask may be changed.
6129 	 */
6130 	if (p->flags & PF_NO_SETAFFINITY) {
6131 		ret = -EINVAL;
6132 		goto out;
6133 	}
6134 
6135 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6136 					      cs_cpus_allowed))
6137 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6138 
6139 out:
6140 	return ret;
6141 }
6142 
6143 bool sched_smp_initialized __read_mostly;
6144 
6145 #ifdef CONFIG_NUMA_BALANCING
6146 /* Migrate current task p to target_cpu */
6147 int migrate_task_to(struct task_struct *p, int target_cpu)
6148 {
6149 	struct migration_arg arg = { p, target_cpu };
6150 	int curr_cpu = task_cpu(p);
6151 
6152 	if (curr_cpu == target_cpu)
6153 		return 0;
6154 
6155 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6156 		return -EINVAL;
6157 
6158 	/* TODO: This is not properly updating schedstats */
6159 
6160 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6161 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6162 }
6163 
6164 /*
6165  * Requeue a task on a given node and accurately track the number of NUMA
6166  * tasks on the runqueues
6167  */
6168 void sched_setnuma(struct task_struct *p, int nid)
6169 {
6170 	bool queued, running;
6171 	struct rq_flags rf;
6172 	struct rq *rq;
6173 
6174 	rq = task_rq_lock(p, &rf);
6175 	queued = task_on_rq_queued(p);
6176 	running = task_current(rq, p);
6177 
6178 	if (queued)
6179 		dequeue_task(rq, p, DEQUEUE_SAVE);
6180 	if (running)
6181 		put_prev_task(rq, p);
6182 
6183 	p->numa_preferred_nid = nid;
6184 
6185 	if (queued)
6186 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6187 	if (running)
6188 		set_next_task(rq, p);
6189 	task_rq_unlock(rq, p, &rf);
6190 }
6191 #endif /* CONFIG_NUMA_BALANCING */
6192 
6193 #ifdef CONFIG_HOTPLUG_CPU
6194 /*
6195  * Ensure that the idle task is using init_mm right before its CPU goes
6196  * offline.
6197  */
6198 void idle_task_exit(void)
6199 {
6200 	struct mm_struct *mm = current->active_mm;
6201 
6202 	BUG_ON(cpu_online(smp_processor_id()));
6203 
6204 	if (mm != &init_mm) {
6205 		switch_mm(mm, &init_mm, current);
6206 		current->active_mm = &init_mm;
6207 		finish_arch_post_lock_switch();
6208 	}
6209 	mmdrop(mm);
6210 }
6211 
6212 /*
6213  * Since this CPU is going 'away' for a while, fold any nr_active delta
6214  * we might have. Assumes we're called after migrate_tasks() so that the
6215  * nr_active count is stable. We need to take the teardown thread which
6216  * is calling this into account, so we hand in adjust = 1 to the load
6217  * calculation.
6218  *
6219  * Also see the comment "Global load-average calculations".
6220  */
6221 static void calc_load_migrate(struct rq *rq)
6222 {
6223 	long delta = calc_load_fold_active(rq, 1);
6224 	if (delta)
6225 		atomic_long_add(delta, &calc_load_tasks);
6226 }
6227 
6228 static struct task_struct *__pick_migrate_task(struct rq *rq)
6229 {
6230 	const struct sched_class *class;
6231 	struct task_struct *next;
6232 
6233 	for_each_class(class) {
6234 		next = class->pick_next_task(rq);
6235 		if (next) {
6236 			next->sched_class->put_prev_task(rq, next);
6237 			return next;
6238 		}
6239 	}
6240 
6241 	/* The idle class should always have a runnable task */
6242 	BUG();
6243 }
6244 
6245 /*
6246  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6247  * try_to_wake_up()->select_task_rq().
6248  *
6249  * Called with rq->lock held even though we'er in stop_machine() and
6250  * there's no concurrency possible, we hold the required locks anyway
6251  * because of lock validation efforts.
6252  */
6253 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6254 {
6255 	struct rq *rq = dead_rq;
6256 	struct task_struct *next, *stop = rq->stop;
6257 	struct rq_flags orf = *rf;
6258 	int dest_cpu;
6259 
6260 	/*
6261 	 * Fudge the rq selection such that the below task selection loop
6262 	 * doesn't get stuck on the currently eligible stop task.
6263 	 *
6264 	 * We're currently inside stop_machine() and the rq is either stuck
6265 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6266 	 * either way we should never end up calling schedule() until we're
6267 	 * done here.
6268 	 */
6269 	rq->stop = NULL;
6270 
6271 	/*
6272 	 * put_prev_task() and pick_next_task() sched
6273 	 * class method both need to have an up-to-date
6274 	 * value of rq->clock[_task]
6275 	 */
6276 	update_rq_clock(rq);
6277 
6278 	for (;;) {
6279 		/*
6280 		 * There's this thread running, bail when that's the only
6281 		 * remaining thread:
6282 		 */
6283 		if (rq->nr_running == 1)
6284 			break;
6285 
6286 		next = __pick_migrate_task(rq);
6287 
6288 		/*
6289 		 * Rules for changing task_struct::cpus_mask are holding
6290 		 * both pi_lock and rq->lock, such that holding either
6291 		 * stabilizes the mask.
6292 		 *
6293 		 * Drop rq->lock is not quite as disastrous as it usually is
6294 		 * because !cpu_active at this point, which means load-balance
6295 		 * will not interfere. Also, stop-machine.
6296 		 */
6297 		rq_unlock(rq, rf);
6298 		raw_spin_lock(&next->pi_lock);
6299 		rq_relock(rq, rf);
6300 
6301 		/*
6302 		 * Since we're inside stop-machine, _nothing_ should have
6303 		 * changed the task, WARN if weird stuff happened, because in
6304 		 * that case the above rq->lock drop is a fail too.
6305 		 */
6306 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6307 			raw_spin_unlock(&next->pi_lock);
6308 			continue;
6309 		}
6310 
6311 		/* Find suitable destination for @next, with force if needed. */
6312 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6313 		rq = __migrate_task(rq, rf, next, dest_cpu);
6314 		if (rq != dead_rq) {
6315 			rq_unlock(rq, rf);
6316 			rq = dead_rq;
6317 			*rf = orf;
6318 			rq_relock(rq, rf);
6319 		}
6320 		raw_spin_unlock(&next->pi_lock);
6321 	}
6322 
6323 	rq->stop = stop;
6324 }
6325 #endif /* CONFIG_HOTPLUG_CPU */
6326 
6327 void set_rq_online(struct rq *rq)
6328 {
6329 	if (!rq->online) {
6330 		const struct sched_class *class;
6331 
6332 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6333 		rq->online = 1;
6334 
6335 		for_each_class(class) {
6336 			if (class->rq_online)
6337 				class->rq_online(rq);
6338 		}
6339 	}
6340 }
6341 
6342 void set_rq_offline(struct rq *rq)
6343 {
6344 	if (rq->online) {
6345 		const struct sched_class *class;
6346 
6347 		for_each_class(class) {
6348 			if (class->rq_offline)
6349 				class->rq_offline(rq);
6350 		}
6351 
6352 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6353 		rq->online = 0;
6354 	}
6355 }
6356 
6357 /*
6358  * used to mark begin/end of suspend/resume:
6359  */
6360 static int num_cpus_frozen;
6361 
6362 /*
6363  * Update cpusets according to cpu_active mask.  If cpusets are
6364  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6365  * around partition_sched_domains().
6366  *
6367  * If we come here as part of a suspend/resume, don't touch cpusets because we
6368  * want to restore it back to its original state upon resume anyway.
6369  */
6370 static void cpuset_cpu_active(void)
6371 {
6372 	if (cpuhp_tasks_frozen) {
6373 		/*
6374 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6375 		 * resume sequence. As long as this is not the last online
6376 		 * operation in the resume sequence, just build a single sched
6377 		 * domain, ignoring cpusets.
6378 		 */
6379 		partition_sched_domains(1, NULL, NULL);
6380 		if (--num_cpus_frozen)
6381 			return;
6382 		/*
6383 		 * This is the last CPU online operation. So fall through and
6384 		 * restore the original sched domains by considering the
6385 		 * cpuset configurations.
6386 		 */
6387 		cpuset_force_rebuild();
6388 	}
6389 	cpuset_update_active_cpus();
6390 }
6391 
6392 static int cpuset_cpu_inactive(unsigned int cpu)
6393 {
6394 	if (!cpuhp_tasks_frozen) {
6395 		if (dl_cpu_busy(cpu))
6396 			return -EBUSY;
6397 		cpuset_update_active_cpus();
6398 	} else {
6399 		num_cpus_frozen++;
6400 		partition_sched_domains(1, NULL, NULL);
6401 	}
6402 	return 0;
6403 }
6404 
6405 int sched_cpu_activate(unsigned int cpu)
6406 {
6407 	struct rq *rq = cpu_rq(cpu);
6408 	struct rq_flags rf;
6409 
6410 #ifdef CONFIG_SCHED_SMT
6411 	/*
6412 	 * When going up, increment the number of cores with SMT present.
6413 	 */
6414 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6415 		static_branch_inc_cpuslocked(&sched_smt_present);
6416 #endif
6417 	set_cpu_active(cpu, true);
6418 
6419 	if (sched_smp_initialized) {
6420 		sched_domains_numa_masks_set(cpu);
6421 		cpuset_cpu_active();
6422 	}
6423 
6424 	/*
6425 	 * Put the rq online, if not already. This happens:
6426 	 *
6427 	 * 1) In the early boot process, because we build the real domains
6428 	 *    after all CPUs have been brought up.
6429 	 *
6430 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6431 	 *    domains.
6432 	 */
6433 	rq_lock_irqsave(rq, &rf);
6434 	if (rq->rd) {
6435 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6436 		set_rq_online(rq);
6437 	}
6438 	rq_unlock_irqrestore(rq, &rf);
6439 
6440 	return 0;
6441 }
6442 
6443 int sched_cpu_deactivate(unsigned int cpu)
6444 {
6445 	int ret;
6446 
6447 	set_cpu_active(cpu, false);
6448 	/*
6449 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6450 	 * users of this state to go away such that all new such users will
6451 	 * observe it.
6452 	 *
6453 	 * Do sync before park smpboot threads to take care the rcu boost case.
6454 	 */
6455 	synchronize_rcu();
6456 
6457 #ifdef CONFIG_SCHED_SMT
6458 	/*
6459 	 * When going down, decrement the number of cores with SMT present.
6460 	 */
6461 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6462 		static_branch_dec_cpuslocked(&sched_smt_present);
6463 #endif
6464 
6465 	if (!sched_smp_initialized)
6466 		return 0;
6467 
6468 	ret = cpuset_cpu_inactive(cpu);
6469 	if (ret) {
6470 		set_cpu_active(cpu, true);
6471 		return ret;
6472 	}
6473 	sched_domains_numa_masks_clear(cpu);
6474 	return 0;
6475 }
6476 
6477 static void sched_rq_cpu_starting(unsigned int cpu)
6478 {
6479 	struct rq *rq = cpu_rq(cpu);
6480 
6481 	rq->calc_load_update = calc_load_update;
6482 	update_max_interval();
6483 }
6484 
6485 int sched_cpu_starting(unsigned int cpu)
6486 {
6487 	sched_rq_cpu_starting(cpu);
6488 	sched_tick_start(cpu);
6489 	return 0;
6490 }
6491 
6492 #ifdef CONFIG_HOTPLUG_CPU
6493 int sched_cpu_dying(unsigned int cpu)
6494 {
6495 	struct rq *rq = cpu_rq(cpu);
6496 	struct rq_flags rf;
6497 
6498 	/* Handle pending wakeups and then migrate everything off */
6499 	sched_ttwu_pending();
6500 	sched_tick_stop(cpu);
6501 
6502 	rq_lock_irqsave(rq, &rf);
6503 	if (rq->rd) {
6504 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6505 		set_rq_offline(rq);
6506 	}
6507 	migrate_tasks(rq, &rf);
6508 	BUG_ON(rq->nr_running != 1);
6509 	rq_unlock_irqrestore(rq, &rf);
6510 
6511 	calc_load_migrate(rq);
6512 	update_max_interval();
6513 	nohz_balance_exit_idle(rq);
6514 	hrtick_clear(rq);
6515 	return 0;
6516 }
6517 #endif
6518 
6519 void __init sched_init_smp(void)
6520 {
6521 	sched_init_numa();
6522 
6523 	/*
6524 	 * There's no userspace yet to cause hotplug operations; hence all the
6525 	 * CPU masks are stable and all blatant races in the below code cannot
6526 	 * happen.
6527 	 */
6528 	mutex_lock(&sched_domains_mutex);
6529 	sched_init_domains(cpu_active_mask);
6530 	mutex_unlock(&sched_domains_mutex);
6531 
6532 	/* Move init over to a non-isolated CPU */
6533 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6534 		BUG();
6535 	sched_init_granularity();
6536 
6537 	init_sched_rt_class();
6538 	init_sched_dl_class();
6539 
6540 	sched_smp_initialized = true;
6541 }
6542 
6543 static int __init migration_init(void)
6544 {
6545 	sched_cpu_starting(smp_processor_id());
6546 	return 0;
6547 }
6548 early_initcall(migration_init);
6549 
6550 #else
6551 void __init sched_init_smp(void)
6552 {
6553 	sched_init_granularity();
6554 }
6555 #endif /* CONFIG_SMP */
6556 
6557 int in_sched_functions(unsigned long addr)
6558 {
6559 	return in_lock_functions(addr) ||
6560 		(addr >= (unsigned long)__sched_text_start
6561 		&& addr < (unsigned long)__sched_text_end);
6562 }
6563 
6564 #ifdef CONFIG_CGROUP_SCHED
6565 /*
6566  * Default task group.
6567  * Every task in system belongs to this group at bootup.
6568  */
6569 struct task_group root_task_group;
6570 LIST_HEAD(task_groups);
6571 
6572 /* Cacheline aligned slab cache for task_group */
6573 static struct kmem_cache *task_group_cache __read_mostly;
6574 #endif
6575 
6576 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6577 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6578 
6579 void __init sched_init(void)
6580 {
6581 	unsigned long ptr = 0;
6582 	int i;
6583 
6584 	wait_bit_init();
6585 
6586 #ifdef CONFIG_FAIR_GROUP_SCHED
6587 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6588 #endif
6589 #ifdef CONFIG_RT_GROUP_SCHED
6590 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6591 #endif
6592 	if (ptr) {
6593 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6594 
6595 #ifdef CONFIG_FAIR_GROUP_SCHED
6596 		root_task_group.se = (struct sched_entity **)ptr;
6597 		ptr += nr_cpu_ids * sizeof(void **);
6598 
6599 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6600 		ptr += nr_cpu_ids * sizeof(void **);
6601 
6602 #endif /* CONFIG_FAIR_GROUP_SCHED */
6603 #ifdef CONFIG_RT_GROUP_SCHED
6604 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6605 		ptr += nr_cpu_ids * sizeof(void **);
6606 
6607 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6608 		ptr += nr_cpu_ids * sizeof(void **);
6609 
6610 #endif /* CONFIG_RT_GROUP_SCHED */
6611 	}
6612 #ifdef CONFIG_CPUMASK_OFFSTACK
6613 	for_each_possible_cpu(i) {
6614 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6615 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6616 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6617 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6618 	}
6619 #endif /* CONFIG_CPUMASK_OFFSTACK */
6620 
6621 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6622 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6623 
6624 #ifdef CONFIG_SMP
6625 	init_defrootdomain();
6626 #endif
6627 
6628 #ifdef CONFIG_RT_GROUP_SCHED
6629 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6630 			global_rt_period(), global_rt_runtime());
6631 #endif /* CONFIG_RT_GROUP_SCHED */
6632 
6633 #ifdef CONFIG_CGROUP_SCHED
6634 	task_group_cache = KMEM_CACHE(task_group, 0);
6635 
6636 	list_add(&root_task_group.list, &task_groups);
6637 	INIT_LIST_HEAD(&root_task_group.children);
6638 	INIT_LIST_HEAD(&root_task_group.siblings);
6639 	autogroup_init(&init_task);
6640 #endif /* CONFIG_CGROUP_SCHED */
6641 
6642 	for_each_possible_cpu(i) {
6643 		struct rq *rq;
6644 
6645 		rq = cpu_rq(i);
6646 		raw_spin_lock_init(&rq->lock);
6647 		rq->nr_running = 0;
6648 		rq->calc_load_active = 0;
6649 		rq->calc_load_update = jiffies + LOAD_FREQ;
6650 		init_cfs_rq(&rq->cfs);
6651 		init_rt_rq(&rq->rt);
6652 		init_dl_rq(&rq->dl);
6653 #ifdef CONFIG_FAIR_GROUP_SCHED
6654 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6655 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6656 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6657 		/*
6658 		 * How much CPU bandwidth does root_task_group get?
6659 		 *
6660 		 * In case of task-groups formed thr' the cgroup filesystem, it
6661 		 * gets 100% of the CPU resources in the system. This overall
6662 		 * system CPU resource is divided among the tasks of
6663 		 * root_task_group and its child task-groups in a fair manner,
6664 		 * based on each entity's (task or task-group's) weight
6665 		 * (se->load.weight).
6666 		 *
6667 		 * In other words, if root_task_group has 10 tasks of weight
6668 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6669 		 * then A0's share of the CPU resource is:
6670 		 *
6671 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6672 		 *
6673 		 * We achieve this by letting root_task_group's tasks sit
6674 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6675 		 */
6676 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6677 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6678 #endif /* CONFIG_FAIR_GROUP_SCHED */
6679 
6680 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6681 #ifdef CONFIG_RT_GROUP_SCHED
6682 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6683 #endif
6684 #ifdef CONFIG_SMP
6685 		rq->sd = NULL;
6686 		rq->rd = NULL;
6687 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6688 		rq->balance_callback = NULL;
6689 		rq->active_balance = 0;
6690 		rq->next_balance = jiffies;
6691 		rq->push_cpu = 0;
6692 		rq->cpu = i;
6693 		rq->online = 0;
6694 		rq->idle_stamp = 0;
6695 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6696 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6697 
6698 		INIT_LIST_HEAD(&rq->cfs_tasks);
6699 
6700 		rq_attach_root(rq, &def_root_domain);
6701 #ifdef CONFIG_NO_HZ_COMMON
6702 		rq->last_load_update_tick = jiffies;
6703 		rq->last_blocked_load_update_tick = jiffies;
6704 		atomic_set(&rq->nohz_flags, 0);
6705 #endif
6706 #endif /* CONFIG_SMP */
6707 		hrtick_rq_init(rq);
6708 		atomic_set(&rq->nr_iowait, 0);
6709 	}
6710 
6711 	set_load_weight(&init_task, false);
6712 
6713 	/*
6714 	 * The boot idle thread does lazy MMU switching as well:
6715 	 */
6716 	mmgrab(&init_mm);
6717 	enter_lazy_tlb(&init_mm, current);
6718 
6719 	/*
6720 	 * Make us the idle thread. Technically, schedule() should not be
6721 	 * called from this thread, however somewhere below it might be,
6722 	 * but because we are the idle thread, we just pick up running again
6723 	 * when this runqueue becomes "idle".
6724 	 */
6725 	init_idle(current, smp_processor_id());
6726 
6727 	calc_load_update = jiffies + LOAD_FREQ;
6728 
6729 #ifdef CONFIG_SMP
6730 	idle_thread_set_boot_cpu();
6731 #endif
6732 	init_sched_fair_class();
6733 
6734 	init_schedstats();
6735 
6736 	psi_init();
6737 
6738 	init_uclamp();
6739 
6740 	scheduler_running = 1;
6741 }
6742 
6743 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6744 static inline int preempt_count_equals(int preempt_offset)
6745 {
6746 	int nested = preempt_count() + rcu_preempt_depth();
6747 
6748 	return (nested == preempt_offset);
6749 }
6750 
6751 void __might_sleep(const char *file, int line, int preempt_offset)
6752 {
6753 	/*
6754 	 * Blocking primitives will set (and therefore destroy) current->state,
6755 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6756 	 * otherwise we will destroy state.
6757 	 */
6758 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6759 			"do not call blocking ops when !TASK_RUNNING; "
6760 			"state=%lx set at [<%p>] %pS\n",
6761 			current->state,
6762 			(void *)current->task_state_change,
6763 			(void *)current->task_state_change);
6764 
6765 	___might_sleep(file, line, preempt_offset);
6766 }
6767 EXPORT_SYMBOL(__might_sleep);
6768 
6769 void ___might_sleep(const char *file, int line, int preempt_offset)
6770 {
6771 	/* Ratelimiting timestamp: */
6772 	static unsigned long prev_jiffy;
6773 
6774 	unsigned long preempt_disable_ip;
6775 
6776 	/* WARN_ON_ONCE() by default, no rate limit required: */
6777 	rcu_sleep_check();
6778 
6779 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6780 	     !is_idle_task(current) && !current->non_block_count) ||
6781 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6782 	    oops_in_progress)
6783 		return;
6784 
6785 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6786 		return;
6787 	prev_jiffy = jiffies;
6788 
6789 	/* Save this before calling printk(), since that will clobber it: */
6790 	preempt_disable_ip = get_preempt_disable_ip(current);
6791 
6792 	printk(KERN_ERR
6793 		"BUG: sleeping function called from invalid context at %s:%d\n",
6794 			file, line);
6795 	printk(KERN_ERR
6796 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6797 			in_atomic(), irqs_disabled(), current->non_block_count,
6798 			current->pid, current->comm);
6799 
6800 	if (task_stack_end_corrupted(current))
6801 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6802 
6803 	debug_show_held_locks(current);
6804 	if (irqs_disabled())
6805 		print_irqtrace_events(current);
6806 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6807 	    && !preempt_count_equals(preempt_offset)) {
6808 		pr_err("Preemption disabled at:");
6809 		print_ip_sym(preempt_disable_ip);
6810 		pr_cont("\n");
6811 	}
6812 	dump_stack();
6813 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6814 }
6815 EXPORT_SYMBOL(___might_sleep);
6816 
6817 void __cant_sleep(const char *file, int line, int preempt_offset)
6818 {
6819 	static unsigned long prev_jiffy;
6820 
6821 	if (irqs_disabled())
6822 		return;
6823 
6824 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6825 		return;
6826 
6827 	if (preempt_count() > preempt_offset)
6828 		return;
6829 
6830 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6831 		return;
6832 	prev_jiffy = jiffies;
6833 
6834 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6835 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6836 			in_atomic(), irqs_disabled(),
6837 			current->pid, current->comm);
6838 
6839 	debug_show_held_locks(current);
6840 	dump_stack();
6841 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6842 }
6843 EXPORT_SYMBOL_GPL(__cant_sleep);
6844 #endif
6845 
6846 #ifdef CONFIG_MAGIC_SYSRQ
6847 void normalize_rt_tasks(void)
6848 {
6849 	struct task_struct *g, *p;
6850 	struct sched_attr attr = {
6851 		.sched_policy = SCHED_NORMAL,
6852 	};
6853 
6854 	read_lock(&tasklist_lock);
6855 	for_each_process_thread(g, p) {
6856 		/*
6857 		 * Only normalize user tasks:
6858 		 */
6859 		if (p->flags & PF_KTHREAD)
6860 			continue;
6861 
6862 		p->se.exec_start = 0;
6863 		schedstat_set(p->se.statistics.wait_start,  0);
6864 		schedstat_set(p->se.statistics.sleep_start, 0);
6865 		schedstat_set(p->se.statistics.block_start, 0);
6866 
6867 		if (!dl_task(p) && !rt_task(p)) {
6868 			/*
6869 			 * Renice negative nice level userspace
6870 			 * tasks back to 0:
6871 			 */
6872 			if (task_nice(p) < 0)
6873 				set_user_nice(p, 0);
6874 			continue;
6875 		}
6876 
6877 		__sched_setscheduler(p, &attr, false, false);
6878 	}
6879 	read_unlock(&tasklist_lock);
6880 }
6881 
6882 #endif /* CONFIG_MAGIC_SYSRQ */
6883 
6884 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6885 /*
6886  * These functions are only useful for the IA64 MCA handling, or kdb.
6887  *
6888  * They can only be called when the whole system has been
6889  * stopped - every CPU needs to be quiescent, and no scheduling
6890  * activity can take place. Using them for anything else would
6891  * be a serious bug, and as a result, they aren't even visible
6892  * under any other configuration.
6893  */
6894 
6895 /**
6896  * curr_task - return the current task for a given CPU.
6897  * @cpu: the processor in question.
6898  *
6899  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6900  *
6901  * Return: The current task for @cpu.
6902  */
6903 struct task_struct *curr_task(int cpu)
6904 {
6905 	return cpu_curr(cpu);
6906 }
6907 
6908 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6909 
6910 #ifdef CONFIG_IA64
6911 /**
6912  * ia64_set_curr_task - set the current task for a given CPU.
6913  * @cpu: the processor in question.
6914  * @p: the task pointer to set.
6915  *
6916  * Description: This function must only be used when non-maskable interrupts
6917  * are serviced on a separate stack. It allows the architecture to switch the
6918  * notion of the current task on a CPU in a non-blocking manner. This function
6919  * must be called with all CPU's synchronized, and interrupts disabled, the
6920  * and caller must save the original value of the current task (see
6921  * curr_task() above) and restore that value before reenabling interrupts and
6922  * re-starting the system.
6923  *
6924  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6925  */
6926 void ia64_set_curr_task(int cpu, struct task_struct *p)
6927 {
6928 	cpu_curr(cpu) = p;
6929 }
6930 
6931 #endif
6932 
6933 #ifdef CONFIG_CGROUP_SCHED
6934 /* task_group_lock serializes the addition/removal of task groups */
6935 static DEFINE_SPINLOCK(task_group_lock);
6936 
6937 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6938 					    struct task_group *parent)
6939 {
6940 #ifdef CONFIG_UCLAMP_TASK_GROUP
6941 	enum uclamp_id clamp_id;
6942 
6943 	for_each_clamp_id(clamp_id) {
6944 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6945 			      uclamp_none(clamp_id), false);
6946 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6947 	}
6948 #endif
6949 }
6950 
6951 static void sched_free_group(struct task_group *tg)
6952 {
6953 	free_fair_sched_group(tg);
6954 	free_rt_sched_group(tg);
6955 	autogroup_free(tg);
6956 	kmem_cache_free(task_group_cache, tg);
6957 }
6958 
6959 /* allocate runqueue etc for a new task group */
6960 struct task_group *sched_create_group(struct task_group *parent)
6961 {
6962 	struct task_group *tg;
6963 
6964 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6965 	if (!tg)
6966 		return ERR_PTR(-ENOMEM);
6967 
6968 	if (!alloc_fair_sched_group(tg, parent))
6969 		goto err;
6970 
6971 	if (!alloc_rt_sched_group(tg, parent))
6972 		goto err;
6973 
6974 	alloc_uclamp_sched_group(tg, parent);
6975 
6976 	return tg;
6977 
6978 err:
6979 	sched_free_group(tg);
6980 	return ERR_PTR(-ENOMEM);
6981 }
6982 
6983 void sched_online_group(struct task_group *tg, struct task_group *parent)
6984 {
6985 	unsigned long flags;
6986 
6987 	spin_lock_irqsave(&task_group_lock, flags);
6988 	list_add_rcu(&tg->list, &task_groups);
6989 
6990 	/* Root should already exist: */
6991 	WARN_ON(!parent);
6992 
6993 	tg->parent = parent;
6994 	INIT_LIST_HEAD(&tg->children);
6995 	list_add_rcu(&tg->siblings, &parent->children);
6996 	spin_unlock_irqrestore(&task_group_lock, flags);
6997 
6998 	online_fair_sched_group(tg);
6999 }
7000 
7001 /* rcu callback to free various structures associated with a task group */
7002 static void sched_free_group_rcu(struct rcu_head *rhp)
7003 {
7004 	/* Now it should be safe to free those cfs_rqs: */
7005 	sched_free_group(container_of(rhp, struct task_group, rcu));
7006 }
7007 
7008 void sched_destroy_group(struct task_group *tg)
7009 {
7010 	/* Wait for possible concurrent references to cfs_rqs complete: */
7011 	call_rcu(&tg->rcu, sched_free_group_rcu);
7012 }
7013 
7014 void sched_offline_group(struct task_group *tg)
7015 {
7016 	unsigned long flags;
7017 
7018 	/* End participation in shares distribution: */
7019 	unregister_fair_sched_group(tg);
7020 
7021 	spin_lock_irqsave(&task_group_lock, flags);
7022 	list_del_rcu(&tg->list);
7023 	list_del_rcu(&tg->siblings);
7024 	spin_unlock_irqrestore(&task_group_lock, flags);
7025 }
7026 
7027 static void sched_change_group(struct task_struct *tsk, int type)
7028 {
7029 	struct task_group *tg;
7030 
7031 	/*
7032 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7033 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7034 	 * to prevent lockdep warnings.
7035 	 */
7036 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7037 			  struct task_group, css);
7038 	tg = autogroup_task_group(tsk, tg);
7039 	tsk->sched_task_group = tg;
7040 
7041 #ifdef CONFIG_FAIR_GROUP_SCHED
7042 	if (tsk->sched_class->task_change_group)
7043 		tsk->sched_class->task_change_group(tsk, type);
7044 	else
7045 #endif
7046 		set_task_rq(tsk, task_cpu(tsk));
7047 }
7048 
7049 /*
7050  * Change task's runqueue when it moves between groups.
7051  *
7052  * The caller of this function should have put the task in its new group by
7053  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7054  * its new group.
7055  */
7056 void sched_move_task(struct task_struct *tsk)
7057 {
7058 	int queued, running, queue_flags =
7059 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7060 	struct rq_flags rf;
7061 	struct rq *rq;
7062 
7063 	rq = task_rq_lock(tsk, &rf);
7064 	update_rq_clock(rq);
7065 
7066 	running = task_current(rq, tsk);
7067 	queued = task_on_rq_queued(tsk);
7068 
7069 	if (queued)
7070 		dequeue_task(rq, tsk, queue_flags);
7071 	if (running)
7072 		put_prev_task(rq, tsk);
7073 
7074 	sched_change_group(tsk, TASK_MOVE_GROUP);
7075 
7076 	if (queued)
7077 		enqueue_task(rq, tsk, queue_flags);
7078 	if (running) {
7079 		set_next_task(rq, tsk);
7080 		/*
7081 		 * After changing group, the running task may have joined a
7082 		 * throttled one but it's still the running task. Trigger a
7083 		 * resched to make sure that task can still run.
7084 		 */
7085 		resched_curr(rq);
7086 	}
7087 
7088 	task_rq_unlock(rq, tsk, &rf);
7089 }
7090 
7091 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7092 {
7093 	return css ? container_of(css, struct task_group, css) : NULL;
7094 }
7095 
7096 static struct cgroup_subsys_state *
7097 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7098 {
7099 	struct task_group *parent = css_tg(parent_css);
7100 	struct task_group *tg;
7101 
7102 	if (!parent) {
7103 		/* This is early initialization for the top cgroup */
7104 		return &root_task_group.css;
7105 	}
7106 
7107 	tg = sched_create_group(parent);
7108 	if (IS_ERR(tg))
7109 		return ERR_PTR(-ENOMEM);
7110 
7111 	return &tg->css;
7112 }
7113 
7114 /* Expose task group only after completing cgroup initialization */
7115 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7116 {
7117 	struct task_group *tg = css_tg(css);
7118 	struct task_group *parent = css_tg(css->parent);
7119 
7120 	if (parent)
7121 		sched_online_group(tg, parent);
7122 
7123 #ifdef CONFIG_UCLAMP_TASK_GROUP
7124 	/* Propagate the effective uclamp value for the new group */
7125 	cpu_util_update_eff(css);
7126 #endif
7127 
7128 	return 0;
7129 }
7130 
7131 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7132 {
7133 	struct task_group *tg = css_tg(css);
7134 
7135 	sched_offline_group(tg);
7136 }
7137 
7138 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7139 {
7140 	struct task_group *tg = css_tg(css);
7141 
7142 	/*
7143 	 * Relies on the RCU grace period between css_released() and this.
7144 	 */
7145 	sched_free_group(tg);
7146 }
7147 
7148 /*
7149  * This is called before wake_up_new_task(), therefore we really only
7150  * have to set its group bits, all the other stuff does not apply.
7151  */
7152 static void cpu_cgroup_fork(struct task_struct *task)
7153 {
7154 	struct rq_flags rf;
7155 	struct rq *rq;
7156 
7157 	rq = task_rq_lock(task, &rf);
7158 
7159 	update_rq_clock(rq);
7160 	sched_change_group(task, TASK_SET_GROUP);
7161 
7162 	task_rq_unlock(rq, task, &rf);
7163 }
7164 
7165 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7166 {
7167 	struct task_struct *task;
7168 	struct cgroup_subsys_state *css;
7169 	int ret = 0;
7170 
7171 	cgroup_taskset_for_each(task, css, tset) {
7172 #ifdef CONFIG_RT_GROUP_SCHED
7173 		if (!sched_rt_can_attach(css_tg(css), task))
7174 			return -EINVAL;
7175 #endif
7176 		/*
7177 		 * Serialize against wake_up_new_task() such that if its
7178 		 * running, we're sure to observe its full state.
7179 		 */
7180 		raw_spin_lock_irq(&task->pi_lock);
7181 		/*
7182 		 * Avoid calling sched_move_task() before wake_up_new_task()
7183 		 * has happened. This would lead to problems with PELT, due to
7184 		 * move wanting to detach+attach while we're not attached yet.
7185 		 */
7186 		if (task->state == TASK_NEW)
7187 			ret = -EINVAL;
7188 		raw_spin_unlock_irq(&task->pi_lock);
7189 
7190 		if (ret)
7191 			break;
7192 	}
7193 	return ret;
7194 }
7195 
7196 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7197 {
7198 	struct task_struct *task;
7199 	struct cgroup_subsys_state *css;
7200 
7201 	cgroup_taskset_for_each(task, css, tset)
7202 		sched_move_task(task);
7203 }
7204 
7205 #ifdef CONFIG_UCLAMP_TASK_GROUP
7206 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7207 {
7208 	struct cgroup_subsys_state *top_css = css;
7209 	struct uclamp_se *uc_parent = NULL;
7210 	struct uclamp_se *uc_se = NULL;
7211 	unsigned int eff[UCLAMP_CNT];
7212 	enum uclamp_id clamp_id;
7213 	unsigned int clamps;
7214 
7215 	css_for_each_descendant_pre(css, top_css) {
7216 		uc_parent = css_tg(css)->parent
7217 			? css_tg(css)->parent->uclamp : NULL;
7218 
7219 		for_each_clamp_id(clamp_id) {
7220 			/* Assume effective clamps matches requested clamps */
7221 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7222 			/* Cap effective clamps with parent's effective clamps */
7223 			if (uc_parent &&
7224 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7225 				eff[clamp_id] = uc_parent[clamp_id].value;
7226 			}
7227 		}
7228 		/* Ensure protection is always capped by limit */
7229 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7230 
7231 		/* Propagate most restrictive effective clamps */
7232 		clamps = 0x0;
7233 		uc_se = css_tg(css)->uclamp;
7234 		for_each_clamp_id(clamp_id) {
7235 			if (eff[clamp_id] == uc_se[clamp_id].value)
7236 				continue;
7237 			uc_se[clamp_id].value = eff[clamp_id];
7238 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7239 			clamps |= (0x1 << clamp_id);
7240 		}
7241 		if (!clamps) {
7242 			css = css_rightmost_descendant(css);
7243 			continue;
7244 		}
7245 
7246 		/* Immediately update descendants RUNNABLE tasks */
7247 		uclamp_update_active_tasks(css, clamps);
7248 	}
7249 }
7250 
7251 /*
7252  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7253  * C expression. Since there is no way to convert a macro argument (N) into a
7254  * character constant, use two levels of macros.
7255  */
7256 #define _POW10(exp) ((unsigned int)1e##exp)
7257 #define POW10(exp) _POW10(exp)
7258 
7259 struct uclamp_request {
7260 #define UCLAMP_PERCENT_SHIFT	2
7261 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7262 	s64 percent;
7263 	u64 util;
7264 	int ret;
7265 };
7266 
7267 static inline struct uclamp_request
7268 capacity_from_percent(char *buf)
7269 {
7270 	struct uclamp_request req = {
7271 		.percent = UCLAMP_PERCENT_SCALE,
7272 		.util = SCHED_CAPACITY_SCALE,
7273 		.ret = 0,
7274 	};
7275 
7276 	buf = strim(buf);
7277 	if (strcmp(buf, "max")) {
7278 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7279 					     &req.percent);
7280 		if (req.ret)
7281 			return req;
7282 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7283 			req.ret = -ERANGE;
7284 			return req;
7285 		}
7286 
7287 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7288 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7289 	}
7290 
7291 	return req;
7292 }
7293 
7294 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7295 				size_t nbytes, loff_t off,
7296 				enum uclamp_id clamp_id)
7297 {
7298 	struct uclamp_request req;
7299 	struct task_group *tg;
7300 
7301 	req = capacity_from_percent(buf);
7302 	if (req.ret)
7303 		return req.ret;
7304 
7305 	mutex_lock(&uclamp_mutex);
7306 	rcu_read_lock();
7307 
7308 	tg = css_tg(of_css(of));
7309 	if (tg->uclamp_req[clamp_id].value != req.util)
7310 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7311 
7312 	/*
7313 	 * Because of not recoverable conversion rounding we keep track of the
7314 	 * exact requested value
7315 	 */
7316 	tg->uclamp_pct[clamp_id] = req.percent;
7317 
7318 	/* Update effective clamps to track the most restrictive value */
7319 	cpu_util_update_eff(of_css(of));
7320 
7321 	rcu_read_unlock();
7322 	mutex_unlock(&uclamp_mutex);
7323 
7324 	return nbytes;
7325 }
7326 
7327 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7328 				    char *buf, size_t nbytes,
7329 				    loff_t off)
7330 {
7331 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7332 }
7333 
7334 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7335 				    char *buf, size_t nbytes,
7336 				    loff_t off)
7337 {
7338 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7339 }
7340 
7341 static inline void cpu_uclamp_print(struct seq_file *sf,
7342 				    enum uclamp_id clamp_id)
7343 {
7344 	struct task_group *tg;
7345 	u64 util_clamp;
7346 	u64 percent;
7347 	u32 rem;
7348 
7349 	rcu_read_lock();
7350 	tg = css_tg(seq_css(sf));
7351 	util_clamp = tg->uclamp_req[clamp_id].value;
7352 	rcu_read_unlock();
7353 
7354 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7355 		seq_puts(sf, "max\n");
7356 		return;
7357 	}
7358 
7359 	percent = tg->uclamp_pct[clamp_id];
7360 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7361 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7362 }
7363 
7364 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7365 {
7366 	cpu_uclamp_print(sf, UCLAMP_MIN);
7367 	return 0;
7368 }
7369 
7370 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7371 {
7372 	cpu_uclamp_print(sf, UCLAMP_MAX);
7373 	return 0;
7374 }
7375 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7376 
7377 #ifdef CONFIG_FAIR_GROUP_SCHED
7378 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7379 				struct cftype *cftype, u64 shareval)
7380 {
7381 	if (shareval > scale_load_down(ULONG_MAX))
7382 		shareval = MAX_SHARES;
7383 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7384 }
7385 
7386 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7387 			       struct cftype *cft)
7388 {
7389 	struct task_group *tg = css_tg(css);
7390 
7391 	return (u64) scale_load_down(tg->shares);
7392 }
7393 
7394 #ifdef CONFIG_CFS_BANDWIDTH
7395 static DEFINE_MUTEX(cfs_constraints_mutex);
7396 
7397 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7398 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7399 
7400 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7401 
7402 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7403 {
7404 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7405 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7406 
7407 	if (tg == &root_task_group)
7408 		return -EINVAL;
7409 
7410 	/*
7411 	 * Ensure we have at some amount of bandwidth every period.  This is
7412 	 * to prevent reaching a state of large arrears when throttled via
7413 	 * entity_tick() resulting in prolonged exit starvation.
7414 	 */
7415 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7416 		return -EINVAL;
7417 
7418 	/*
7419 	 * Likewise, bound things on the otherside by preventing insane quota
7420 	 * periods.  This also allows us to normalize in computing quota
7421 	 * feasibility.
7422 	 */
7423 	if (period > max_cfs_quota_period)
7424 		return -EINVAL;
7425 
7426 	/*
7427 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7428 	 * unthrottle_offline_cfs_rqs().
7429 	 */
7430 	get_online_cpus();
7431 	mutex_lock(&cfs_constraints_mutex);
7432 	ret = __cfs_schedulable(tg, period, quota);
7433 	if (ret)
7434 		goto out_unlock;
7435 
7436 	runtime_enabled = quota != RUNTIME_INF;
7437 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7438 	/*
7439 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7440 	 * before making related changes, and on->off must occur afterwards
7441 	 */
7442 	if (runtime_enabled && !runtime_was_enabled)
7443 		cfs_bandwidth_usage_inc();
7444 	raw_spin_lock_irq(&cfs_b->lock);
7445 	cfs_b->period = ns_to_ktime(period);
7446 	cfs_b->quota = quota;
7447 
7448 	__refill_cfs_bandwidth_runtime(cfs_b);
7449 
7450 	/* Restart the period timer (if active) to handle new period expiry: */
7451 	if (runtime_enabled)
7452 		start_cfs_bandwidth(cfs_b);
7453 
7454 	raw_spin_unlock_irq(&cfs_b->lock);
7455 
7456 	for_each_online_cpu(i) {
7457 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7458 		struct rq *rq = cfs_rq->rq;
7459 		struct rq_flags rf;
7460 
7461 		rq_lock_irq(rq, &rf);
7462 		cfs_rq->runtime_enabled = runtime_enabled;
7463 		cfs_rq->runtime_remaining = 0;
7464 
7465 		if (cfs_rq->throttled)
7466 			unthrottle_cfs_rq(cfs_rq);
7467 		rq_unlock_irq(rq, &rf);
7468 	}
7469 	if (runtime_was_enabled && !runtime_enabled)
7470 		cfs_bandwidth_usage_dec();
7471 out_unlock:
7472 	mutex_unlock(&cfs_constraints_mutex);
7473 	put_online_cpus();
7474 
7475 	return ret;
7476 }
7477 
7478 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7479 {
7480 	u64 quota, period;
7481 
7482 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7483 	if (cfs_quota_us < 0)
7484 		quota = RUNTIME_INF;
7485 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7486 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7487 	else
7488 		return -EINVAL;
7489 
7490 	return tg_set_cfs_bandwidth(tg, period, quota);
7491 }
7492 
7493 static long tg_get_cfs_quota(struct task_group *tg)
7494 {
7495 	u64 quota_us;
7496 
7497 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7498 		return -1;
7499 
7500 	quota_us = tg->cfs_bandwidth.quota;
7501 	do_div(quota_us, NSEC_PER_USEC);
7502 
7503 	return quota_us;
7504 }
7505 
7506 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7507 {
7508 	u64 quota, period;
7509 
7510 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7511 		return -EINVAL;
7512 
7513 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7514 	quota = tg->cfs_bandwidth.quota;
7515 
7516 	return tg_set_cfs_bandwidth(tg, period, quota);
7517 }
7518 
7519 static long tg_get_cfs_period(struct task_group *tg)
7520 {
7521 	u64 cfs_period_us;
7522 
7523 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7524 	do_div(cfs_period_us, NSEC_PER_USEC);
7525 
7526 	return cfs_period_us;
7527 }
7528 
7529 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7530 				  struct cftype *cft)
7531 {
7532 	return tg_get_cfs_quota(css_tg(css));
7533 }
7534 
7535 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7536 				   struct cftype *cftype, s64 cfs_quota_us)
7537 {
7538 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7539 }
7540 
7541 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7542 				   struct cftype *cft)
7543 {
7544 	return tg_get_cfs_period(css_tg(css));
7545 }
7546 
7547 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7548 				    struct cftype *cftype, u64 cfs_period_us)
7549 {
7550 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7551 }
7552 
7553 struct cfs_schedulable_data {
7554 	struct task_group *tg;
7555 	u64 period, quota;
7556 };
7557 
7558 /*
7559  * normalize group quota/period to be quota/max_period
7560  * note: units are usecs
7561  */
7562 static u64 normalize_cfs_quota(struct task_group *tg,
7563 			       struct cfs_schedulable_data *d)
7564 {
7565 	u64 quota, period;
7566 
7567 	if (tg == d->tg) {
7568 		period = d->period;
7569 		quota = d->quota;
7570 	} else {
7571 		period = tg_get_cfs_period(tg);
7572 		quota = tg_get_cfs_quota(tg);
7573 	}
7574 
7575 	/* note: these should typically be equivalent */
7576 	if (quota == RUNTIME_INF || quota == -1)
7577 		return RUNTIME_INF;
7578 
7579 	return to_ratio(period, quota);
7580 }
7581 
7582 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7583 {
7584 	struct cfs_schedulable_data *d = data;
7585 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7586 	s64 quota = 0, parent_quota = -1;
7587 
7588 	if (!tg->parent) {
7589 		quota = RUNTIME_INF;
7590 	} else {
7591 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7592 
7593 		quota = normalize_cfs_quota(tg, d);
7594 		parent_quota = parent_b->hierarchical_quota;
7595 
7596 		/*
7597 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7598 		 * always take the min.  On cgroup1, only inherit when no
7599 		 * limit is set:
7600 		 */
7601 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7602 			quota = min(quota, parent_quota);
7603 		} else {
7604 			if (quota == RUNTIME_INF)
7605 				quota = parent_quota;
7606 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7607 				return -EINVAL;
7608 		}
7609 	}
7610 	cfs_b->hierarchical_quota = quota;
7611 
7612 	return 0;
7613 }
7614 
7615 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7616 {
7617 	int ret;
7618 	struct cfs_schedulable_data data = {
7619 		.tg = tg,
7620 		.period = period,
7621 		.quota = quota,
7622 	};
7623 
7624 	if (quota != RUNTIME_INF) {
7625 		do_div(data.period, NSEC_PER_USEC);
7626 		do_div(data.quota, NSEC_PER_USEC);
7627 	}
7628 
7629 	rcu_read_lock();
7630 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7631 	rcu_read_unlock();
7632 
7633 	return ret;
7634 }
7635 
7636 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7637 {
7638 	struct task_group *tg = css_tg(seq_css(sf));
7639 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7640 
7641 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7642 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7643 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7644 
7645 	if (schedstat_enabled() && tg != &root_task_group) {
7646 		u64 ws = 0;
7647 		int i;
7648 
7649 		for_each_possible_cpu(i)
7650 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7651 
7652 		seq_printf(sf, "wait_sum %llu\n", ws);
7653 	}
7654 
7655 	return 0;
7656 }
7657 #endif /* CONFIG_CFS_BANDWIDTH */
7658 #endif /* CONFIG_FAIR_GROUP_SCHED */
7659 
7660 #ifdef CONFIG_RT_GROUP_SCHED
7661 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7662 				struct cftype *cft, s64 val)
7663 {
7664 	return sched_group_set_rt_runtime(css_tg(css), val);
7665 }
7666 
7667 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7668 			       struct cftype *cft)
7669 {
7670 	return sched_group_rt_runtime(css_tg(css));
7671 }
7672 
7673 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7674 				    struct cftype *cftype, u64 rt_period_us)
7675 {
7676 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7677 }
7678 
7679 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7680 				   struct cftype *cft)
7681 {
7682 	return sched_group_rt_period(css_tg(css));
7683 }
7684 #endif /* CONFIG_RT_GROUP_SCHED */
7685 
7686 static struct cftype cpu_legacy_files[] = {
7687 #ifdef CONFIG_FAIR_GROUP_SCHED
7688 	{
7689 		.name = "shares",
7690 		.read_u64 = cpu_shares_read_u64,
7691 		.write_u64 = cpu_shares_write_u64,
7692 	},
7693 #endif
7694 #ifdef CONFIG_CFS_BANDWIDTH
7695 	{
7696 		.name = "cfs_quota_us",
7697 		.read_s64 = cpu_cfs_quota_read_s64,
7698 		.write_s64 = cpu_cfs_quota_write_s64,
7699 	},
7700 	{
7701 		.name = "cfs_period_us",
7702 		.read_u64 = cpu_cfs_period_read_u64,
7703 		.write_u64 = cpu_cfs_period_write_u64,
7704 	},
7705 	{
7706 		.name = "stat",
7707 		.seq_show = cpu_cfs_stat_show,
7708 	},
7709 #endif
7710 #ifdef CONFIG_RT_GROUP_SCHED
7711 	{
7712 		.name = "rt_runtime_us",
7713 		.read_s64 = cpu_rt_runtime_read,
7714 		.write_s64 = cpu_rt_runtime_write,
7715 	},
7716 	{
7717 		.name = "rt_period_us",
7718 		.read_u64 = cpu_rt_period_read_uint,
7719 		.write_u64 = cpu_rt_period_write_uint,
7720 	},
7721 #endif
7722 #ifdef CONFIG_UCLAMP_TASK_GROUP
7723 	{
7724 		.name = "uclamp.min",
7725 		.flags = CFTYPE_NOT_ON_ROOT,
7726 		.seq_show = cpu_uclamp_min_show,
7727 		.write = cpu_uclamp_min_write,
7728 	},
7729 	{
7730 		.name = "uclamp.max",
7731 		.flags = CFTYPE_NOT_ON_ROOT,
7732 		.seq_show = cpu_uclamp_max_show,
7733 		.write = cpu_uclamp_max_write,
7734 	},
7735 #endif
7736 	{ }	/* Terminate */
7737 };
7738 
7739 static int cpu_extra_stat_show(struct seq_file *sf,
7740 			       struct cgroup_subsys_state *css)
7741 {
7742 #ifdef CONFIG_CFS_BANDWIDTH
7743 	{
7744 		struct task_group *tg = css_tg(css);
7745 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7746 		u64 throttled_usec;
7747 
7748 		throttled_usec = cfs_b->throttled_time;
7749 		do_div(throttled_usec, NSEC_PER_USEC);
7750 
7751 		seq_printf(sf, "nr_periods %d\n"
7752 			   "nr_throttled %d\n"
7753 			   "throttled_usec %llu\n",
7754 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7755 			   throttled_usec);
7756 	}
7757 #endif
7758 	return 0;
7759 }
7760 
7761 #ifdef CONFIG_FAIR_GROUP_SCHED
7762 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7763 			       struct cftype *cft)
7764 {
7765 	struct task_group *tg = css_tg(css);
7766 	u64 weight = scale_load_down(tg->shares);
7767 
7768 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7769 }
7770 
7771 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7772 				struct cftype *cft, u64 weight)
7773 {
7774 	/*
7775 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7776 	 * values which are 1, 100 and 10000 respectively.  While it loses
7777 	 * a bit of range on both ends, it maps pretty well onto the shares
7778 	 * value used by scheduler and the round-trip conversions preserve
7779 	 * the original value over the entire range.
7780 	 */
7781 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7782 		return -ERANGE;
7783 
7784 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7785 
7786 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7787 }
7788 
7789 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7790 				    struct cftype *cft)
7791 {
7792 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7793 	int last_delta = INT_MAX;
7794 	int prio, delta;
7795 
7796 	/* find the closest nice value to the current weight */
7797 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7798 		delta = abs(sched_prio_to_weight[prio] - weight);
7799 		if (delta >= last_delta)
7800 			break;
7801 		last_delta = delta;
7802 	}
7803 
7804 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7805 }
7806 
7807 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7808 				     struct cftype *cft, s64 nice)
7809 {
7810 	unsigned long weight;
7811 	int idx;
7812 
7813 	if (nice < MIN_NICE || nice > MAX_NICE)
7814 		return -ERANGE;
7815 
7816 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7817 	idx = array_index_nospec(idx, 40);
7818 	weight = sched_prio_to_weight[idx];
7819 
7820 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7821 }
7822 #endif
7823 
7824 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7825 						  long period, long quota)
7826 {
7827 	if (quota < 0)
7828 		seq_puts(sf, "max");
7829 	else
7830 		seq_printf(sf, "%ld", quota);
7831 
7832 	seq_printf(sf, " %ld\n", period);
7833 }
7834 
7835 /* caller should put the current value in *@periodp before calling */
7836 static int __maybe_unused cpu_period_quota_parse(char *buf,
7837 						 u64 *periodp, u64 *quotap)
7838 {
7839 	char tok[21];	/* U64_MAX */
7840 
7841 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7842 		return -EINVAL;
7843 
7844 	*periodp *= NSEC_PER_USEC;
7845 
7846 	if (sscanf(tok, "%llu", quotap))
7847 		*quotap *= NSEC_PER_USEC;
7848 	else if (!strcmp(tok, "max"))
7849 		*quotap = RUNTIME_INF;
7850 	else
7851 		return -EINVAL;
7852 
7853 	return 0;
7854 }
7855 
7856 #ifdef CONFIG_CFS_BANDWIDTH
7857 static int cpu_max_show(struct seq_file *sf, void *v)
7858 {
7859 	struct task_group *tg = css_tg(seq_css(sf));
7860 
7861 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7862 	return 0;
7863 }
7864 
7865 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7866 			     char *buf, size_t nbytes, loff_t off)
7867 {
7868 	struct task_group *tg = css_tg(of_css(of));
7869 	u64 period = tg_get_cfs_period(tg);
7870 	u64 quota;
7871 	int ret;
7872 
7873 	ret = cpu_period_quota_parse(buf, &period, &quota);
7874 	if (!ret)
7875 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7876 	return ret ?: nbytes;
7877 }
7878 #endif
7879 
7880 static struct cftype cpu_files[] = {
7881 #ifdef CONFIG_FAIR_GROUP_SCHED
7882 	{
7883 		.name = "weight",
7884 		.flags = CFTYPE_NOT_ON_ROOT,
7885 		.read_u64 = cpu_weight_read_u64,
7886 		.write_u64 = cpu_weight_write_u64,
7887 	},
7888 	{
7889 		.name = "weight.nice",
7890 		.flags = CFTYPE_NOT_ON_ROOT,
7891 		.read_s64 = cpu_weight_nice_read_s64,
7892 		.write_s64 = cpu_weight_nice_write_s64,
7893 	},
7894 #endif
7895 #ifdef CONFIG_CFS_BANDWIDTH
7896 	{
7897 		.name = "max",
7898 		.flags = CFTYPE_NOT_ON_ROOT,
7899 		.seq_show = cpu_max_show,
7900 		.write = cpu_max_write,
7901 	},
7902 #endif
7903 #ifdef CONFIG_UCLAMP_TASK_GROUP
7904 	{
7905 		.name = "uclamp.min",
7906 		.flags = CFTYPE_NOT_ON_ROOT,
7907 		.seq_show = cpu_uclamp_min_show,
7908 		.write = cpu_uclamp_min_write,
7909 	},
7910 	{
7911 		.name = "uclamp.max",
7912 		.flags = CFTYPE_NOT_ON_ROOT,
7913 		.seq_show = cpu_uclamp_max_show,
7914 		.write = cpu_uclamp_max_write,
7915 	},
7916 #endif
7917 	{ }	/* terminate */
7918 };
7919 
7920 struct cgroup_subsys cpu_cgrp_subsys = {
7921 	.css_alloc	= cpu_cgroup_css_alloc,
7922 	.css_online	= cpu_cgroup_css_online,
7923 	.css_released	= cpu_cgroup_css_released,
7924 	.css_free	= cpu_cgroup_css_free,
7925 	.css_extra_stat_show = cpu_extra_stat_show,
7926 	.fork		= cpu_cgroup_fork,
7927 	.can_attach	= cpu_cgroup_can_attach,
7928 	.attach		= cpu_cgroup_attach,
7929 	.legacy_cftypes	= cpu_legacy_files,
7930 	.dfl_cftypes	= cpu_files,
7931 	.early_init	= true,
7932 	.threaded	= true,
7933 };
7934 
7935 #endif	/* CONFIG_CGROUP_SCHED */
7936 
7937 void dump_cpu_task(int cpu)
7938 {
7939 	pr_info("Task dump for CPU %d:\n", cpu);
7940 	sched_show_task(cpu_curr(cpu));
7941 }
7942 
7943 /*
7944  * Nice levels are multiplicative, with a gentle 10% change for every
7945  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7946  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7947  * that remained on nice 0.
7948  *
7949  * The "10% effect" is relative and cumulative: from _any_ nice level,
7950  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7951  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7952  * If a task goes up by ~10% and another task goes down by ~10% then
7953  * the relative distance between them is ~25%.)
7954  */
7955 const int sched_prio_to_weight[40] = {
7956  /* -20 */     88761,     71755,     56483,     46273,     36291,
7957  /* -15 */     29154,     23254,     18705,     14949,     11916,
7958  /* -10 */      9548,      7620,      6100,      4904,      3906,
7959  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7960  /*   0 */      1024,       820,       655,       526,       423,
7961  /*   5 */       335,       272,       215,       172,       137,
7962  /*  10 */       110,        87,        70,        56,        45,
7963  /*  15 */        36,        29,        23,        18,        15,
7964 };
7965 
7966 /*
7967  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7968  *
7969  * In cases where the weight does not change often, we can use the
7970  * precalculated inverse to speed up arithmetics by turning divisions
7971  * into multiplications:
7972  */
7973 const u32 sched_prio_to_wmult[40] = {
7974  /* -20 */     48388,     59856,     76040,     92818,    118348,
7975  /* -15 */    147320,    184698,    229616,    287308,    360437,
7976  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7977  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7978  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7979  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7980  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7981  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7982 };
7983 
7984 #undef CREATE_TRACE_POINTS
7985