xref: /openbmc/linux/kernel/sched/core.c (revision 1491eaf9)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78 
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86 
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90 
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93 
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 
99 void update_rq_clock(struct rq *rq)
100 {
101 	s64 delta;
102 
103 	lockdep_assert_held(&rq->lock);
104 
105 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 		return;
107 
108 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 	if (delta < 0)
110 		return;
111 	rq->clock += delta;
112 	update_rq_clock_task(rq, delta);
113 }
114 
115 /*
116  * Debugging: various feature bits
117  */
118 
119 #define SCHED_FEAT(name, enabled)	\
120 	(1UL << __SCHED_FEAT_##name) * enabled |
121 
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 	0;
125 
126 #undef SCHED_FEAT
127 
128 /*
129  * Number of tasks to iterate in a single balance run.
130  * Limited because this is done with IRQs disabled.
131  */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133 
134 /*
135  * period over which we average the RT time consumption, measured
136  * in ms.
137  *
138  * default: 1s
139  */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141 
142 /*
143  * period over which we measure -rt task cpu usage in us.
144  * default: 1s
145  */
146 unsigned int sysctl_sched_rt_period = 1000000;
147 
148 __read_mostly int scheduler_running;
149 
150 /*
151  * part of the period that we allow rt tasks to run in us.
152  * default: 0.95s
153  */
154 int sysctl_sched_rt_runtime = 950000;
155 
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158 
159 /*
160  * this_rq_lock - lock this runqueue and disable interrupts.
161  */
162 static struct rq *this_rq_lock(void)
163 	__acquires(rq->lock)
164 {
165 	struct rq *rq;
166 
167 	local_irq_disable();
168 	rq = this_rq();
169 	raw_spin_lock(&rq->lock);
170 
171 	return rq;
172 }
173 
174 /*
175  * __task_rq_lock - lock the rq @p resides on.
176  */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 	__acquires(rq->lock)
179 {
180 	struct rq *rq;
181 
182 	lockdep_assert_held(&p->pi_lock);
183 
184 	for (;;) {
185 		rq = task_rq(p);
186 		raw_spin_lock(&rq->lock);
187 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 			rf->cookie = lockdep_pin_lock(&rq->lock);
189 			return rq;
190 		}
191 		raw_spin_unlock(&rq->lock);
192 
193 		while (unlikely(task_on_rq_migrating(p)))
194 			cpu_relax();
195 	}
196 }
197 
198 /*
199  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200  */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 	__acquires(p->pi_lock)
203 	__acquires(rq->lock)
204 {
205 	struct rq *rq;
206 
207 	for (;;) {
208 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 		rq = task_rq(p);
210 		raw_spin_lock(&rq->lock);
211 		/*
212 		 *	move_queued_task()		task_rq_lock()
213 		 *
214 		 *	ACQUIRE (rq->lock)
215 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
216 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
217 		 *	[S] ->cpu = new_cpu		[L] task_rq()
218 		 *					[L] ->on_rq
219 		 *	RELEASE (rq->lock)
220 		 *
221 		 * If we observe the old cpu in task_rq_lock, the acquire of
222 		 * the old rq->lock will fully serialize against the stores.
223 		 *
224 		 * If we observe the new cpu in task_rq_lock, the acquire will
225 		 * pair with the WMB to ensure we must then also see migrating.
226 		 */
227 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 			rf->cookie = lockdep_pin_lock(&rq->lock);
229 			return rq;
230 		}
231 		raw_spin_unlock(&rq->lock);
232 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233 
234 		while (unlikely(task_on_rq_migrating(p)))
235 			cpu_relax();
236 	}
237 }
238 
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241  * Use HR-timers to deliver accurate preemption points.
242  */
243 
244 static void hrtick_clear(struct rq *rq)
245 {
246 	if (hrtimer_active(&rq->hrtick_timer))
247 		hrtimer_cancel(&rq->hrtick_timer);
248 }
249 
250 /*
251  * High-resolution timer tick.
252  * Runs from hardirq context with interrupts disabled.
253  */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257 
258 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259 
260 	raw_spin_lock(&rq->lock);
261 	update_rq_clock(rq);
262 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 	raw_spin_unlock(&rq->lock);
264 
265 	return HRTIMER_NORESTART;
266 }
267 
268 #ifdef CONFIG_SMP
269 
270 static void __hrtick_restart(struct rq *rq)
271 {
272 	struct hrtimer *timer = &rq->hrtick_timer;
273 
274 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276 
277 /*
278  * called from hardirq (IPI) context
279  */
280 static void __hrtick_start(void *arg)
281 {
282 	struct rq *rq = arg;
283 
284 	raw_spin_lock(&rq->lock);
285 	__hrtick_restart(rq);
286 	rq->hrtick_csd_pending = 0;
287 	raw_spin_unlock(&rq->lock);
288 }
289 
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 	struct hrtimer *timer = &rq->hrtick_timer;
298 	ktime_t time;
299 	s64 delta;
300 
301 	/*
302 	 * Don't schedule slices shorter than 10000ns, that just
303 	 * doesn't make sense and can cause timer DoS.
304 	 */
305 	delta = max_t(s64, delay, 10000LL);
306 	time = ktime_add_ns(timer->base->get_time(), delta);
307 
308 	hrtimer_set_expires(timer, time);
309 
310 	if (rq == this_rq()) {
311 		__hrtick_restart(rq);
312 	} else if (!rq->hrtick_csd_pending) {
313 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 		rq->hrtick_csd_pending = 1;
315 	}
316 }
317 
318 #else
319 /*
320  * Called to set the hrtick timer state.
321  *
322  * called with rq->lock held and irqs disabled
323  */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 	/*
327 	 * Don't schedule slices shorter than 10000ns, that just
328 	 * doesn't make sense. Rely on vruntime for fairness.
329 	 */
330 	delay = max_t(u64, delay, 10000LL);
331 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 		      HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335 
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 	rq->hrtick_csd_pending = 0;
340 
341 	rq->hrtick_csd.flags = 0;
342 	rq->hrtick_csd.func = __hrtick_start;
343 	rq->hrtick_csd.info = rq;
344 #endif
345 
346 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 	rq->hrtick_timer.function = hrtick;
348 }
349 #else	/* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353 
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif	/* CONFIG_SCHED_HRTICK */
358 
359 /*
360  * cmpxchg based fetch_or, macro so it works for different integer types
361  */
362 #define fetch_or(ptr, mask)						\
363 	({								\
364 		typeof(ptr) _ptr = (ptr);				\
365 		typeof(mask) _mask = (mask);				\
366 		typeof(*_ptr) _old, _val = *_ptr;			\
367 									\
368 		for (;;) {						\
369 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
370 			if (_old == _val)				\
371 				break;					\
372 			_val = _old;					\
373 		}							\
374 	_old;								\
375 })
376 
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380  * this avoids any races wrt polling state changes and thereby avoids
381  * spurious IPIs.
382  */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388 
389 /*
390  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391  *
392  * If this returns true, then the idle task promises to call
393  * sched_ttwu_pending() and reschedule soon.
394  */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 	struct thread_info *ti = task_thread_info(p);
398 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 
400 	for (;;) {
401 		if (!(val & _TIF_POLLING_NRFLAG))
402 			return false;
403 		if (val & _TIF_NEED_RESCHED)
404 			return true;
405 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 		if (old == val)
407 			break;
408 		val = old;
409 	}
410 	return true;
411 }
412 
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 	set_tsk_need_resched(p);
417 	return true;
418 }
419 
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 	return false;
424 }
425 #endif
426 #endif
427 
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 	struct wake_q_node *node = &task->wake_q;
431 
432 	/*
433 	 * Atomically grab the task, if ->wake_q is !nil already it means
434 	 * its already queued (either by us or someone else) and will get the
435 	 * wakeup due to that.
436 	 *
437 	 * This cmpxchg() implies a full barrier, which pairs with the write
438 	 * barrier implied by the wakeup in wake_up_q().
439 	 */
440 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 		return;
442 
443 	get_task_struct(task);
444 
445 	/*
446 	 * The head is context local, there can be no concurrency.
447 	 */
448 	*head->lastp = node;
449 	head->lastp = &node->next;
450 }
451 
452 void wake_up_q(struct wake_q_head *head)
453 {
454 	struct wake_q_node *node = head->first;
455 
456 	while (node != WAKE_Q_TAIL) {
457 		struct task_struct *task;
458 
459 		task = container_of(node, struct task_struct, wake_q);
460 		BUG_ON(!task);
461 		/* task can safely be re-inserted now */
462 		node = node->next;
463 		task->wake_q.next = NULL;
464 
465 		/*
466 		 * wake_up_process() implies a wmb() to pair with the queueing
467 		 * in wake_q_add() so as not to miss wakeups.
468 		 */
469 		wake_up_process(task);
470 		put_task_struct(task);
471 	}
472 }
473 
474 /*
475  * resched_curr - mark rq's current task 'to be rescheduled now'.
476  *
477  * On UP this means the setting of the need_resched flag, on SMP it
478  * might also involve a cross-CPU call to trigger the scheduler on
479  * the target CPU.
480  */
481 void resched_curr(struct rq *rq)
482 {
483 	struct task_struct *curr = rq->curr;
484 	int cpu;
485 
486 	lockdep_assert_held(&rq->lock);
487 
488 	if (test_tsk_need_resched(curr))
489 		return;
490 
491 	cpu = cpu_of(rq);
492 
493 	if (cpu == smp_processor_id()) {
494 		set_tsk_need_resched(curr);
495 		set_preempt_need_resched();
496 		return;
497 	}
498 
499 	if (set_nr_and_not_polling(curr))
500 		smp_send_reschedule(cpu);
501 	else
502 		trace_sched_wake_idle_without_ipi(cpu);
503 }
504 
505 void resched_cpu(int cpu)
506 {
507 	struct rq *rq = cpu_rq(cpu);
508 	unsigned long flags;
509 
510 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 		return;
512 	resched_curr(rq);
513 	raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515 
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519  * In the semi idle case, use the nearest busy cpu for migrating timers
520  * from an idle cpu.  This is good for power-savings.
521  *
522  * We don't do similar optimization for completely idle system, as
523  * selecting an idle cpu will add more delays to the timers than intended
524  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525  */
526 int get_nohz_timer_target(void)
527 {
528 	int i, cpu = smp_processor_id();
529 	struct sched_domain *sd;
530 
531 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 		return cpu;
533 
534 	rcu_read_lock();
535 	for_each_domain(cpu, sd) {
536 		for_each_cpu(i, sched_domain_span(sd)) {
537 			if (cpu == i)
538 				continue;
539 
540 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 				cpu = i;
542 				goto unlock;
543 			}
544 		}
545 	}
546 
547 	if (!is_housekeeping_cpu(cpu))
548 		cpu = housekeeping_any_cpu();
549 unlock:
550 	rcu_read_unlock();
551 	return cpu;
552 }
553 /*
554  * When add_timer_on() enqueues a timer into the timer wheel of an
555  * idle CPU then this timer might expire before the next timer event
556  * which is scheduled to wake up that CPU. In case of a completely
557  * idle system the next event might even be infinite time into the
558  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559  * leaves the inner idle loop so the newly added timer is taken into
560  * account when the CPU goes back to idle and evaluates the timer
561  * wheel for the next timer event.
562  */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 	struct rq *rq = cpu_rq(cpu);
566 
567 	if (cpu == smp_processor_id())
568 		return;
569 
570 	if (set_nr_and_not_polling(rq->idle))
571 		smp_send_reschedule(cpu);
572 	else
573 		trace_sched_wake_idle_without_ipi(cpu);
574 }
575 
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 	/*
579 	 * We just need the target to call irq_exit() and re-evaluate
580 	 * the next tick. The nohz full kick at least implies that.
581 	 * If needed we can still optimize that later with an
582 	 * empty IRQ.
583 	 */
584 	if (tick_nohz_full_cpu(cpu)) {
585 		if (cpu != smp_processor_id() ||
586 		    tick_nohz_tick_stopped())
587 			tick_nohz_full_kick_cpu(cpu);
588 		return true;
589 	}
590 
591 	return false;
592 }
593 
594 void wake_up_nohz_cpu(int cpu)
595 {
596 	if (!wake_up_full_nohz_cpu(cpu))
597 		wake_up_idle_cpu(cpu);
598 }
599 
600 static inline bool got_nohz_idle_kick(void)
601 {
602 	int cpu = smp_processor_id();
603 
604 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 		return false;
606 
607 	if (idle_cpu(cpu) && !need_resched())
608 		return true;
609 
610 	/*
611 	 * We can't run Idle Load Balance on this CPU for this time so we
612 	 * cancel it and clear NOHZ_BALANCE_KICK
613 	 */
614 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 	return false;
616 }
617 
618 #else /* CONFIG_NO_HZ_COMMON */
619 
620 static inline bool got_nohz_idle_kick(void)
621 {
622 	return false;
623 }
624 
625 #endif /* CONFIG_NO_HZ_COMMON */
626 
627 #ifdef CONFIG_NO_HZ_FULL
628 bool sched_can_stop_tick(struct rq *rq)
629 {
630 	int fifo_nr_running;
631 
632 	/* Deadline tasks, even if single, need the tick */
633 	if (rq->dl.dl_nr_running)
634 		return false;
635 
636 	/*
637 	 * If there are more than one RR tasks, we need the tick to effect the
638 	 * actual RR behaviour.
639 	 */
640 	if (rq->rt.rr_nr_running) {
641 		if (rq->rt.rr_nr_running == 1)
642 			return true;
643 		else
644 			return false;
645 	}
646 
647 	/*
648 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 	 * forced preemption between FIFO tasks.
650 	 */
651 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 	if (fifo_nr_running)
653 		return true;
654 
655 	/*
656 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 	 * if there's more than one we need the tick for involuntary
658 	 * preemption.
659 	 */
660 	if (rq->nr_running > 1)
661 		return false;
662 
663 	return true;
664 }
665 #endif /* CONFIG_NO_HZ_FULL */
666 
667 void sched_avg_update(struct rq *rq)
668 {
669 	s64 period = sched_avg_period();
670 
671 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
672 		/*
673 		 * Inline assembly required to prevent the compiler
674 		 * optimising this loop into a divmod call.
675 		 * See __iter_div_u64_rem() for another example of this.
676 		 */
677 		asm("" : "+rm" (rq->age_stamp));
678 		rq->age_stamp += period;
679 		rq->rt_avg /= 2;
680 	}
681 }
682 
683 #endif /* CONFIG_SMP */
684 
685 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
687 /*
688  * Iterate task_group tree rooted at *from, calling @down when first entering a
689  * node and @up when leaving it for the final time.
690  *
691  * Caller must hold rcu_lock or sufficient equivalent.
692  */
693 int walk_tg_tree_from(struct task_group *from,
694 			     tg_visitor down, tg_visitor up, void *data)
695 {
696 	struct task_group *parent, *child;
697 	int ret;
698 
699 	parent = from;
700 
701 down:
702 	ret = (*down)(parent, data);
703 	if (ret)
704 		goto out;
705 	list_for_each_entry_rcu(child, &parent->children, siblings) {
706 		parent = child;
707 		goto down;
708 
709 up:
710 		continue;
711 	}
712 	ret = (*up)(parent, data);
713 	if (ret || parent == from)
714 		goto out;
715 
716 	child = parent;
717 	parent = parent->parent;
718 	if (parent)
719 		goto up;
720 out:
721 	return ret;
722 }
723 
724 int tg_nop(struct task_group *tg, void *data)
725 {
726 	return 0;
727 }
728 #endif
729 
730 static void set_load_weight(struct task_struct *p)
731 {
732 	int prio = p->static_prio - MAX_RT_PRIO;
733 	struct load_weight *load = &p->se.load;
734 
735 	/*
736 	 * SCHED_IDLE tasks get minimal weight:
737 	 */
738 	if (idle_policy(p->policy)) {
739 		load->weight = scale_load(WEIGHT_IDLEPRIO);
740 		load->inv_weight = WMULT_IDLEPRIO;
741 		return;
742 	}
743 
744 	load->weight = scale_load(sched_prio_to_weight[prio]);
745 	load->inv_weight = sched_prio_to_wmult[prio];
746 }
747 
748 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
749 {
750 	update_rq_clock(rq);
751 	if (!(flags & ENQUEUE_RESTORE))
752 		sched_info_queued(rq, p);
753 	p->sched_class->enqueue_task(rq, p, flags);
754 }
755 
756 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
757 {
758 	update_rq_clock(rq);
759 	if (!(flags & DEQUEUE_SAVE))
760 		sched_info_dequeued(rq, p);
761 	p->sched_class->dequeue_task(rq, p, flags);
762 }
763 
764 void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 	if (task_contributes_to_load(p))
767 		rq->nr_uninterruptible--;
768 
769 	enqueue_task(rq, p, flags);
770 }
771 
772 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 	if (task_contributes_to_load(p))
775 		rq->nr_uninterruptible++;
776 
777 	dequeue_task(rq, p, flags);
778 }
779 
780 static void update_rq_clock_task(struct rq *rq, s64 delta)
781 {
782 /*
783  * In theory, the compile should just see 0 here, and optimize out the call
784  * to sched_rt_avg_update. But I don't trust it...
785  */
786 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 	s64 steal = 0, irq_delta = 0;
788 #endif
789 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
790 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
791 
792 	/*
793 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 	 * this case when a previous update_rq_clock() happened inside a
795 	 * {soft,}irq region.
796 	 *
797 	 * When this happens, we stop ->clock_task and only update the
798 	 * prev_irq_time stamp to account for the part that fit, so that a next
799 	 * update will consume the rest. This ensures ->clock_task is
800 	 * monotonic.
801 	 *
802 	 * It does however cause some slight miss-attribution of {soft,}irq
803 	 * time, a more accurate solution would be to update the irq_time using
804 	 * the current rq->clock timestamp, except that would require using
805 	 * atomic ops.
806 	 */
807 	if (irq_delta > delta)
808 		irq_delta = delta;
809 
810 	rq->prev_irq_time += irq_delta;
811 	delta -= irq_delta;
812 #endif
813 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814 	if (static_key_false((&paravirt_steal_rq_enabled))) {
815 		steal = paravirt_steal_clock(cpu_of(rq));
816 		steal -= rq->prev_steal_time_rq;
817 
818 		if (unlikely(steal > delta))
819 			steal = delta;
820 
821 		rq->prev_steal_time_rq += steal;
822 		delta -= steal;
823 	}
824 #endif
825 
826 	rq->clock_task += delta;
827 
828 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
829 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
830 		sched_rt_avg_update(rq, irq_delta + steal);
831 #endif
832 }
833 
834 void sched_set_stop_task(int cpu, struct task_struct *stop)
835 {
836 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
838 
839 	if (stop) {
840 		/*
841 		 * Make it appear like a SCHED_FIFO task, its something
842 		 * userspace knows about and won't get confused about.
843 		 *
844 		 * Also, it will make PI more or less work without too
845 		 * much confusion -- but then, stop work should not
846 		 * rely on PI working anyway.
847 		 */
848 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849 
850 		stop->sched_class = &stop_sched_class;
851 	}
852 
853 	cpu_rq(cpu)->stop = stop;
854 
855 	if (old_stop) {
856 		/*
857 		 * Reset it back to a normal scheduling class so that
858 		 * it can die in pieces.
859 		 */
860 		old_stop->sched_class = &rt_sched_class;
861 	}
862 }
863 
864 /*
865  * __normal_prio - return the priority that is based on the static prio
866  */
867 static inline int __normal_prio(struct task_struct *p)
868 {
869 	return p->static_prio;
870 }
871 
872 /*
873  * Calculate the expected normal priority: i.e. priority
874  * without taking RT-inheritance into account. Might be
875  * boosted by interactivity modifiers. Changes upon fork,
876  * setprio syscalls, and whenever the interactivity
877  * estimator recalculates.
878  */
879 static inline int normal_prio(struct task_struct *p)
880 {
881 	int prio;
882 
883 	if (task_has_dl_policy(p))
884 		prio = MAX_DL_PRIO-1;
885 	else if (task_has_rt_policy(p))
886 		prio = MAX_RT_PRIO-1 - p->rt_priority;
887 	else
888 		prio = __normal_prio(p);
889 	return prio;
890 }
891 
892 /*
893  * Calculate the current priority, i.e. the priority
894  * taken into account by the scheduler. This value might
895  * be boosted by RT tasks, or might be boosted by
896  * interactivity modifiers. Will be RT if the task got
897  * RT-boosted. If not then it returns p->normal_prio.
898  */
899 static int effective_prio(struct task_struct *p)
900 {
901 	p->normal_prio = normal_prio(p);
902 	/*
903 	 * If we are RT tasks or we were boosted to RT priority,
904 	 * keep the priority unchanged. Otherwise, update priority
905 	 * to the normal priority:
906 	 */
907 	if (!rt_prio(p->prio))
908 		return p->normal_prio;
909 	return p->prio;
910 }
911 
912 /**
913  * task_curr - is this task currently executing on a CPU?
914  * @p: the task in question.
915  *
916  * Return: 1 if the task is currently executing. 0 otherwise.
917  */
918 inline int task_curr(const struct task_struct *p)
919 {
920 	return cpu_curr(task_cpu(p)) == p;
921 }
922 
923 /*
924  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925  * use the balance_callback list if you want balancing.
926  *
927  * this means any call to check_class_changed() must be followed by a call to
928  * balance_callback().
929  */
930 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 				       const struct sched_class *prev_class,
932 				       int oldprio)
933 {
934 	if (prev_class != p->sched_class) {
935 		if (prev_class->switched_from)
936 			prev_class->switched_from(rq, p);
937 
938 		p->sched_class->switched_to(rq, p);
939 	} else if (oldprio != p->prio || dl_task(p))
940 		p->sched_class->prio_changed(rq, p, oldprio);
941 }
942 
943 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
944 {
945 	const struct sched_class *class;
946 
947 	if (p->sched_class == rq->curr->sched_class) {
948 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 	} else {
950 		for_each_class(class) {
951 			if (class == rq->curr->sched_class)
952 				break;
953 			if (class == p->sched_class) {
954 				resched_curr(rq);
955 				break;
956 			}
957 		}
958 	}
959 
960 	/*
961 	 * A queue event has occurred, and we're going to schedule.  In
962 	 * this case, we can save a useless back to back clock update.
963 	 */
964 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
965 		rq_clock_skip_update(rq, true);
966 }
967 
968 #ifdef CONFIG_SMP
969 /*
970  * This is how migration works:
971  *
972  * 1) we invoke migration_cpu_stop() on the target CPU using
973  *    stop_one_cpu().
974  * 2) stopper starts to run (implicitly forcing the migrated thread
975  *    off the CPU)
976  * 3) it checks whether the migrated task is still in the wrong runqueue.
977  * 4) if it's in the wrong runqueue then the migration thread removes
978  *    it and puts it into the right queue.
979  * 5) stopper completes and stop_one_cpu() returns and the migration
980  *    is done.
981  */
982 
983 /*
984  * move_queued_task - move a queued task to new rq.
985  *
986  * Returns (locked) new rq. Old rq's lock is released.
987  */
988 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
989 {
990 	lockdep_assert_held(&rq->lock);
991 
992 	p->on_rq = TASK_ON_RQ_MIGRATING;
993 	dequeue_task(rq, p, 0);
994 	set_task_cpu(p, new_cpu);
995 	raw_spin_unlock(&rq->lock);
996 
997 	rq = cpu_rq(new_cpu);
998 
999 	raw_spin_lock(&rq->lock);
1000 	BUG_ON(task_cpu(p) != new_cpu);
1001 	enqueue_task(rq, p, 0);
1002 	p->on_rq = TASK_ON_RQ_QUEUED;
1003 	check_preempt_curr(rq, p, 0);
1004 
1005 	return rq;
1006 }
1007 
1008 struct migration_arg {
1009 	struct task_struct *task;
1010 	int dest_cpu;
1011 };
1012 
1013 /*
1014  * Move (not current) task off this cpu, onto dest cpu. We're doing
1015  * this because either it can't run here any more (set_cpus_allowed()
1016  * away from this CPU, or CPU going down), or because we're
1017  * attempting to rebalance this task on exec (sched_exec).
1018  *
1019  * So we race with normal scheduler movements, but that's OK, as long
1020  * as the task is no longer on this CPU.
1021  */
1022 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1023 {
1024 	if (unlikely(!cpu_active(dest_cpu)))
1025 		return rq;
1026 
1027 	/* Affinity changed (again). */
1028 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1029 		return rq;
1030 
1031 	rq = move_queued_task(rq, p, dest_cpu);
1032 
1033 	return rq;
1034 }
1035 
1036 /*
1037  * migration_cpu_stop - this will be executed by a highprio stopper thread
1038  * and performs thread migration by bumping thread off CPU then
1039  * 'pushing' onto another runqueue.
1040  */
1041 static int migration_cpu_stop(void *data)
1042 {
1043 	struct migration_arg *arg = data;
1044 	struct task_struct *p = arg->task;
1045 	struct rq *rq = this_rq();
1046 
1047 	/*
1048 	 * The original target cpu might have gone down and we might
1049 	 * be on another cpu but it doesn't matter.
1050 	 */
1051 	local_irq_disable();
1052 	/*
1053 	 * We need to explicitly wake pending tasks before running
1054 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 	 */
1057 	sched_ttwu_pending();
1058 
1059 	raw_spin_lock(&p->pi_lock);
1060 	raw_spin_lock(&rq->lock);
1061 	/*
1062 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 	 * we're holding p->pi_lock.
1065 	 */
1066 	if (task_rq(p) == rq && task_on_rq_queued(p))
1067 		rq = __migrate_task(rq, p, arg->dest_cpu);
1068 	raw_spin_unlock(&rq->lock);
1069 	raw_spin_unlock(&p->pi_lock);
1070 
1071 	local_irq_enable();
1072 	return 0;
1073 }
1074 
1075 /*
1076  * sched_class::set_cpus_allowed must do the below, but is not required to
1077  * actually call this function.
1078  */
1079 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1080 {
1081 	cpumask_copy(&p->cpus_allowed, new_mask);
1082 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1083 }
1084 
1085 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086 {
1087 	struct rq *rq = task_rq(p);
1088 	bool queued, running;
1089 
1090 	lockdep_assert_held(&p->pi_lock);
1091 
1092 	queued = task_on_rq_queued(p);
1093 	running = task_current(rq, p);
1094 
1095 	if (queued) {
1096 		/*
1097 		 * Because __kthread_bind() calls this on blocked tasks without
1098 		 * holding rq->lock.
1099 		 */
1100 		lockdep_assert_held(&rq->lock);
1101 		dequeue_task(rq, p, DEQUEUE_SAVE);
1102 	}
1103 	if (running)
1104 		put_prev_task(rq, p);
1105 
1106 	p->sched_class->set_cpus_allowed(p, new_mask);
1107 
1108 	if (running)
1109 		p->sched_class->set_curr_task(rq);
1110 	if (queued)
1111 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1112 }
1113 
1114 /*
1115  * Change a given task's CPU affinity. Migrate the thread to a
1116  * proper CPU and schedule it away if the CPU it's executing on
1117  * is removed from the allowed bitmask.
1118  *
1119  * NOTE: the caller must have a valid reference to the task, the
1120  * task must not exit() & deallocate itself prematurely. The
1121  * call is not atomic; no spinlocks may be held.
1122  */
1123 static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 				  const struct cpumask *new_mask, bool check)
1125 {
1126 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1127 	unsigned int dest_cpu;
1128 	struct rq_flags rf;
1129 	struct rq *rq;
1130 	int ret = 0;
1131 
1132 	rq = task_rq_lock(p, &rf);
1133 
1134 	if (p->flags & PF_KTHREAD) {
1135 		/*
1136 		 * Kernel threads are allowed on online && !active CPUs
1137 		 */
1138 		cpu_valid_mask = cpu_online_mask;
1139 	}
1140 
1141 	/*
1142 	 * Must re-check here, to close a race against __kthread_bind(),
1143 	 * sched_setaffinity() is not guaranteed to observe the flag.
1144 	 */
1145 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 		ret = -EINVAL;
1147 		goto out;
1148 	}
1149 
1150 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 		goto out;
1152 
1153 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1154 		ret = -EINVAL;
1155 		goto out;
1156 	}
1157 
1158 	do_set_cpus_allowed(p, new_mask);
1159 
1160 	if (p->flags & PF_KTHREAD) {
1161 		/*
1162 		 * For kernel threads that do indeed end up on online &&
1163 		 * !active we want to ensure they are strict per-cpu threads.
1164 		 */
1165 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1167 			p->nr_cpus_allowed != 1);
1168 	}
1169 
1170 	/* Can the task run on the task's current CPU? If so, we're done */
1171 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 		goto out;
1173 
1174 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1175 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 		struct migration_arg arg = { p, dest_cpu };
1177 		/* Need help from migration thread: drop lock and wait. */
1178 		task_rq_unlock(rq, p, &rf);
1179 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 		tlb_migrate_finish(p->mm);
1181 		return 0;
1182 	} else if (task_on_rq_queued(p)) {
1183 		/*
1184 		 * OK, since we're going to drop the lock immediately
1185 		 * afterwards anyway.
1186 		 */
1187 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1188 		rq = move_queued_task(rq, p, dest_cpu);
1189 		lockdep_repin_lock(&rq->lock, rf.cookie);
1190 	}
1191 out:
1192 	task_rq_unlock(rq, p, &rf);
1193 
1194 	return ret;
1195 }
1196 
1197 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198 {
1199 	return __set_cpus_allowed_ptr(p, new_mask, false);
1200 }
1201 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202 
1203 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1204 {
1205 #ifdef CONFIG_SCHED_DEBUG
1206 	/*
1207 	 * We should never call set_task_cpu() on a blocked task,
1208 	 * ttwu() will sort out the placement.
1209 	 */
1210 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1211 			!p->on_rq);
1212 
1213 	/*
1214 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 	 * time relying on p->on_rq.
1217 	 */
1218 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 		     p->sched_class == &fair_sched_class &&
1220 		     (p->on_rq && !task_on_rq_migrating(p)));
1221 
1222 #ifdef CONFIG_LOCKDEP
1223 	/*
1224 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 	 *
1227 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1228 	 * see task_group().
1229 	 *
1230 	 * Furthermore, all task_rq users should acquire both locks, see
1231 	 * task_rq_lock().
1232 	 */
1233 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 				      lockdep_is_held(&task_rq(p)->lock)));
1235 #endif
1236 #endif
1237 
1238 	trace_sched_migrate_task(p, new_cpu);
1239 
1240 	if (task_cpu(p) != new_cpu) {
1241 		if (p->sched_class->migrate_task_rq)
1242 			p->sched_class->migrate_task_rq(p);
1243 		p->se.nr_migrations++;
1244 		perf_event_task_migrate(p);
1245 	}
1246 
1247 	__set_task_cpu(p, new_cpu);
1248 }
1249 
1250 static void __migrate_swap_task(struct task_struct *p, int cpu)
1251 {
1252 	if (task_on_rq_queued(p)) {
1253 		struct rq *src_rq, *dst_rq;
1254 
1255 		src_rq = task_rq(p);
1256 		dst_rq = cpu_rq(cpu);
1257 
1258 		p->on_rq = TASK_ON_RQ_MIGRATING;
1259 		deactivate_task(src_rq, p, 0);
1260 		set_task_cpu(p, cpu);
1261 		activate_task(dst_rq, p, 0);
1262 		p->on_rq = TASK_ON_RQ_QUEUED;
1263 		check_preempt_curr(dst_rq, p, 0);
1264 	} else {
1265 		/*
1266 		 * Task isn't running anymore; make it appear like we migrated
1267 		 * it before it went to sleep. This means on wakeup we make the
1268 		 * previous cpu our targer instead of where it really is.
1269 		 */
1270 		p->wake_cpu = cpu;
1271 	}
1272 }
1273 
1274 struct migration_swap_arg {
1275 	struct task_struct *src_task, *dst_task;
1276 	int src_cpu, dst_cpu;
1277 };
1278 
1279 static int migrate_swap_stop(void *data)
1280 {
1281 	struct migration_swap_arg *arg = data;
1282 	struct rq *src_rq, *dst_rq;
1283 	int ret = -EAGAIN;
1284 
1285 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 		return -EAGAIN;
1287 
1288 	src_rq = cpu_rq(arg->src_cpu);
1289 	dst_rq = cpu_rq(arg->dst_cpu);
1290 
1291 	double_raw_lock(&arg->src_task->pi_lock,
1292 			&arg->dst_task->pi_lock);
1293 	double_rq_lock(src_rq, dst_rq);
1294 
1295 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 		goto unlock;
1297 
1298 	if (task_cpu(arg->src_task) != arg->src_cpu)
1299 		goto unlock;
1300 
1301 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 		goto unlock;
1303 
1304 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 		goto unlock;
1306 
1307 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1309 
1310 	ret = 0;
1311 
1312 unlock:
1313 	double_rq_unlock(src_rq, dst_rq);
1314 	raw_spin_unlock(&arg->dst_task->pi_lock);
1315 	raw_spin_unlock(&arg->src_task->pi_lock);
1316 
1317 	return ret;
1318 }
1319 
1320 /*
1321  * Cross migrate two tasks
1322  */
1323 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324 {
1325 	struct migration_swap_arg arg;
1326 	int ret = -EINVAL;
1327 
1328 	arg = (struct migration_swap_arg){
1329 		.src_task = cur,
1330 		.src_cpu = task_cpu(cur),
1331 		.dst_task = p,
1332 		.dst_cpu = task_cpu(p),
1333 	};
1334 
1335 	if (arg.src_cpu == arg.dst_cpu)
1336 		goto out;
1337 
1338 	/*
1339 	 * These three tests are all lockless; this is OK since all of them
1340 	 * will be re-checked with proper locks held further down the line.
1341 	 */
1342 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 		goto out;
1344 
1345 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 		goto out;
1347 
1348 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 		goto out;
1350 
1351 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1352 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353 
1354 out:
1355 	return ret;
1356 }
1357 
1358 /*
1359  * wait_task_inactive - wait for a thread to unschedule.
1360  *
1361  * If @match_state is nonzero, it's the @p->state value just checked and
1362  * not expected to change.  If it changes, i.e. @p might have woken up,
1363  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1364  * we return a positive number (its total switch count).  If a second call
1365  * a short while later returns the same number, the caller can be sure that
1366  * @p has remained unscheduled the whole time.
1367  *
1368  * The caller must ensure that the task *will* unschedule sometime soon,
1369  * else this function might spin for a *long* time. This function can't
1370  * be called with interrupts off, or it may introduce deadlock with
1371  * smp_call_function() if an IPI is sent by the same process we are
1372  * waiting to become inactive.
1373  */
1374 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1375 {
1376 	int running, queued;
1377 	struct rq_flags rf;
1378 	unsigned long ncsw;
1379 	struct rq *rq;
1380 
1381 	for (;;) {
1382 		/*
1383 		 * We do the initial early heuristics without holding
1384 		 * any task-queue locks at all. We'll only try to get
1385 		 * the runqueue lock when things look like they will
1386 		 * work out!
1387 		 */
1388 		rq = task_rq(p);
1389 
1390 		/*
1391 		 * If the task is actively running on another CPU
1392 		 * still, just relax and busy-wait without holding
1393 		 * any locks.
1394 		 *
1395 		 * NOTE! Since we don't hold any locks, it's not
1396 		 * even sure that "rq" stays as the right runqueue!
1397 		 * But we don't care, since "task_running()" will
1398 		 * return false if the runqueue has changed and p
1399 		 * is actually now running somewhere else!
1400 		 */
1401 		while (task_running(rq, p)) {
1402 			if (match_state && unlikely(p->state != match_state))
1403 				return 0;
1404 			cpu_relax();
1405 		}
1406 
1407 		/*
1408 		 * Ok, time to look more closely! We need the rq
1409 		 * lock now, to be *sure*. If we're wrong, we'll
1410 		 * just go back and repeat.
1411 		 */
1412 		rq = task_rq_lock(p, &rf);
1413 		trace_sched_wait_task(p);
1414 		running = task_running(rq, p);
1415 		queued = task_on_rq_queued(p);
1416 		ncsw = 0;
1417 		if (!match_state || p->state == match_state)
1418 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1419 		task_rq_unlock(rq, p, &rf);
1420 
1421 		/*
1422 		 * If it changed from the expected state, bail out now.
1423 		 */
1424 		if (unlikely(!ncsw))
1425 			break;
1426 
1427 		/*
1428 		 * Was it really running after all now that we
1429 		 * checked with the proper locks actually held?
1430 		 *
1431 		 * Oops. Go back and try again..
1432 		 */
1433 		if (unlikely(running)) {
1434 			cpu_relax();
1435 			continue;
1436 		}
1437 
1438 		/*
1439 		 * It's not enough that it's not actively running,
1440 		 * it must be off the runqueue _entirely_, and not
1441 		 * preempted!
1442 		 *
1443 		 * So if it was still runnable (but just not actively
1444 		 * running right now), it's preempted, and we should
1445 		 * yield - it could be a while.
1446 		 */
1447 		if (unlikely(queued)) {
1448 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449 
1450 			set_current_state(TASK_UNINTERRUPTIBLE);
1451 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1452 			continue;
1453 		}
1454 
1455 		/*
1456 		 * Ahh, all good. It wasn't running, and it wasn't
1457 		 * runnable, which means that it will never become
1458 		 * running in the future either. We're all done!
1459 		 */
1460 		break;
1461 	}
1462 
1463 	return ncsw;
1464 }
1465 
1466 /***
1467  * kick_process - kick a running thread to enter/exit the kernel
1468  * @p: the to-be-kicked thread
1469  *
1470  * Cause a process which is running on another CPU to enter
1471  * kernel-mode, without any delay. (to get signals handled.)
1472  *
1473  * NOTE: this function doesn't have to take the runqueue lock,
1474  * because all it wants to ensure is that the remote task enters
1475  * the kernel. If the IPI races and the task has been migrated
1476  * to another CPU then no harm is done and the purpose has been
1477  * achieved as well.
1478  */
1479 void kick_process(struct task_struct *p)
1480 {
1481 	int cpu;
1482 
1483 	preempt_disable();
1484 	cpu = task_cpu(p);
1485 	if ((cpu != smp_processor_id()) && task_curr(p))
1486 		smp_send_reschedule(cpu);
1487 	preempt_enable();
1488 }
1489 EXPORT_SYMBOL_GPL(kick_process);
1490 
1491 /*
1492  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1493  *
1494  * A few notes on cpu_active vs cpu_online:
1495  *
1496  *  - cpu_active must be a subset of cpu_online
1497  *
1498  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499  *    see __set_cpus_allowed_ptr(). At this point the newly online
1500  *    cpu isn't yet part of the sched domains, and balancing will not
1501  *    see it.
1502  *
1503  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1504  *    avoid the load balancer to place new tasks on the to be removed
1505  *    cpu. Existing tasks will remain running there and will be taken
1506  *    off.
1507  *
1508  * This means that fallback selection must not select !active CPUs.
1509  * And can assume that any active CPU must be online. Conversely
1510  * select_task_rq() below may allow selection of !active CPUs in order
1511  * to satisfy the above rules.
1512  */
1513 static int select_fallback_rq(int cpu, struct task_struct *p)
1514 {
1515 	int nid = cpu_to_node(cpu);
1516 	const struct cpumask *nodemask = NULL;
1517 	enum { cpuset, possible, fail } state = cpuset;
1518 	int dest_cpu;
1519 
1520 	/*
1521 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 	 * will return -1. There is no cpu on the node, and we should
1523 	 * select the cpu on the other node.
1524 	 */
1525 	if (nid != -1) {
1526 		nodemask = cpumask_of_node(nid);
1527 
1528 		/* Look for allowed, online CPU in same node. */
1529 		for_each_cpu(dest_cpu, nodemask) {
1530 			if (!cpu_active(dest_cpu))
1531 				continue;
1532 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 				return dest_cpu;
1534 		}
1535 	}
1536 
1537 	for (;;) {
1538 		/* Any allowed, online CPU? */
1539 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1540 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 				continue;
1542 			if (!cpu_online(dest_cpu))
1543 				continue;
1544 			goto out;
1545 		}
1546 
1547 		/* No more Mr. Nice Guy. */
1548 		switch (state) {
1549 		case cpuset:
1550 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 				cpuset_cpus_allowed_fallback(p);
1552 				state = possible;
1553 				break;
1554 			}
1555 			/* fall-through */
1556 		case possible:
1557 			do_set_cpus_allowed(p, cpu_possible_mask);
1558 			state = fail;
1559 			break;
1560 
1561 		case fail:
1562 			BUG();
1563 			break;
1564 		}
1565 	}
1566 
1567 out:
1568 	if (state != cpuset) {
1569 		/*
1570 		 * Don't tell them about moving exiting tasks or
1571 		 * kernel threads (both mm NULL), since they never
1572 		 * leave kernel.
1573 		 */
1574 		if (p->mm && printk_ratelimit()) {
1575 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1576 					task_pid_nr(p), p->comm, cpu);
1577 		}
1578 	}
1579 
1580 	return dest_cpu;
1581 }
1582 
1583 /*
1584  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1585  */
1586 static inline
1587 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1588 {
1589 	lockdep_assert_held(&p->pi_lock);
1590 
1591 	if (tsk_nr_cpus_allowed(p) > 1)
1592 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1593 	else
1594 		cpu = cpumask_any(tsk_cpus_allowed(p));
1595 
1596 	/*
1597 	 * In order not to call set_task_cpu() on a blocking task we need
1598 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 	 * cpu.
1600 	 *
1601 	 * Since this is common to all placement strategies, this lives here.
1602 	 *
1603 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 	 *   not worry about this generic constraint ]
1605 	 */
1606 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1607 		     !cpu_online(cpu)))
1608 		cpu = select_fallback_rq(task_cpu(p), p);
1609 
1610 	return cpu;
1611 }
1612 
1613 static void update_avg(u64 *avg, u64 sample)
1614 {
1615 	s64 diff = sample - *avg;
1616 	*avg += diff >> 3;
1617 }
1618 
1619 #else
1620 
1621 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 					 const struct cpumask *new_mask, bool check)
1623 {
1624 	return set_cpus_allowed_ptr(p, new_mask);
1625 }
1626 
1627 #endif /* CONFIG_SMP */
1628 
1629 static void
1630 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1631 {
1632 #ifdef CONFIG_SCHEDSTATS
1633 	struct rq *rq = this_rq();
1634 
1635 #ifdef CONFIG_SMP
1636 	int this_cpu = smp_processor_id();
1637 
1638 	if (cpu == this_cpu) {
1639 		schedstat_inc(rq, ttwu_local);
1640 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 	} else {
1642 		struct sched_domain *sd;
1643 
1644 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1645 		rcu_read_lock();
1646 		for_each_domain(this_cpu, sd) {
1647 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 				schedstat_inc(sd, ttwu_wake_remote);
1649 				break;
1650 			}
1651 		}
1652 		rcu_read_unlock();
1653 	}
1654 
1655 	if (wake_flags & WF_MIGRATED)
1656 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657 
1658 #endif /* CONFIG_SMP */
1659 
1660 	schedstat_inc(rq, ttwu_count);
1661 	schedstat_inc(p, se.statistics.nr_wakeups);
1662 
1663 	if (wake_flags & WF_SYNC)
1664 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1665 
1666 #endif /* CONFIG_SCHEDSTATS */
1667 }
1668 
1669 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1670 {
1671 	activate_task(rq, p, en_flags);
1672 	p->on_rq = TASK_ON_RQ_QUEUED;
1673 
1674 	/* if a worker is waking up, notify workqueue */
1675 	if (p->flags & PF_WQ_WORKER)
1676 		wq_worker_waking_up(p, cpu_of(rq));
1677 }
1678 
1679 /*
1680  * Mark the task runnable and perform wakeup-preemption.
1681  */
1682 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 			   struct pin_cookie cookie)
1684 {
1685 	check_preempt_curr(rq, p, wake_flags);
1686 	p->state = TASK_RUNNING;
1687 	trace_sched_wakeup(p);
1688 
1689 #ifdef CONFIG_SMP
1690 	if (p->sched_class->task_woken) {
1691 		/*
1692 		 * Our task @p is fully woken up and running; so its safe to
1693 		 * drop the rq->lock, hereafter rq is only used for statistics.
1694 		 */
1695 		lockdep_unpin_lock(&rq->lock, cookie);
1696 		p->sched_class->task_woken(rq, p);
1697 		lockdep_repin_lock(&rq->lock, cookie);
1698 	}
1699 
1700 	if (rq->idle_stamp) {
1701 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1702 		u64 max = 2*rq->max_idle_balance_cost;
1703 
1704 		update_avg(&rq->avg_idle, delta);
1705 
1706 		if (rq->avg_idle > max)
1707 			rq->avg_idle = max;
1708 
1709 		rq->idle_stamp = 0;
1710 	}
1711 #endif
1712 }
1713 
1714 static void
1715 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 		 struct pin_cookie cookie)
1717 {
1718 	int en_flags = ENQUEUE_WAKEUP;
1719 
1720 	lockdep_assert_held(&rq->lock);
1721 
1722 #ifdef CONFIG_SMP
1723 	if (p->sched_contributes_to_load)
1724 		rq->nr_uninterruptible--;
1725 
1726 	if (wake_flags & WF_MIGRATED)
1727 		en_flags |= ENQUEUE_MIGRATED;
1728 #endif
1729 
1730 	ttwu_activate(rq, p, en_flags);
1731 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1732 }
1733 
1734 /*
1735  * Called in case the task @p isn't fully descheduled from its runqueue,
1736  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737  * since all we need to do is flip p->state to TASK_RUNNING, since
1738  * the task is still ->on_rq.
1739  */
1740 static int ttwu_remote(struct task_struct *p, int wake_flags)
1741 {
1742 	struct rq_flags rf;
1743 	struct rq *rq;
1744 	int ret = 0;
1745 
1746 	rq = __task_rq_lock(p, &rf);
1747 	if (task_on_rq_queued(p)) {
1748 		/* check_preempt_curr() may use rq clock */
1749 		update_rq_clock(rq);
1750 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1751 		ret = 1;
1752 	}
1753 	__task_rq_unlock(rq, &rf);
1754 
1755 	return ret;
1756 }
1757 
1758 #ifdef CONFIG_SMP
1759 void sched_ttwu_pending(void)
1760 {
1761 	struct rq *rq = this_rq();
1762 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1763 	struct pin_cookie cookie;
1764 	struct task_struct *p;
1765 	unsigned long flags;
1766 
1767 	if (!llist)
1768 		return;
1769 
1770 	raw_spin_lock_irqsave(&rq->lock, flags);
1771 	cookie = lockdep_pin_lock(&rq->lock);
1772 
1773 	while (llist) {
1774 		int wake_flags = 0;
1775 
1776 		p = llist_entry(llist, struct task_struct, wake_entry);
1777 		llist = llist_next(llist);
1778 
1779 		if (p->sched_remote_wakeup)
1780 			wake_flags = WF_MIGRATED;
1781 
1782 		ttwu_do_activate(rq, p, wake_flags, cookie);
1783 	}
1784 
1785 	lockdep_unpin_lock(&rq->lock, cookie);
1786 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1787 }
1788 
1789 void scheduler_ipi(void)
1790 {
1791 	/*
1792 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 	 * this IPI.
1795 	 */
1796 	preempt_fold_need_resched();
1797 
1798 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1799 		return;
1800 
1801 	/*
1802 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 	 * traditionally all their work was done from the interrupt return
1804 	 * path. Now that we actually do some work, we need to make sure
1805 	 * we do call them.
1806 	 *
1807 	 * Some archs already do call them, luckily irq_enter/exit nest
1808 	 * properly.
1809 	 *
1810 	 * Arguably we should visit all archs and update all handlers,
1811 	 * however a fair share of IPIs are still resched only so this would
1812 	 * somewhat pessimize the simple resched case.
1813 	 */
1814 	irq_enter();
1815 	sched_ttwu_pending();
1816 
1817 	/*
1818 	 * Check if someone kicked us for doing the nohz idle load balance.
1819 	 */
1820 	if (unlikely(got_nohz_idle_kick())) {
1821 		this_rq()->idle_balance = 1;
1822 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1823 	}
1824 	irq_exit();
1825 }
1826 
1827 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1828 {
1829 	struct rq *rq = cpu_rq(cpu);
1830 
1831 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832 
1833 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 		if (!set_nr_if_polling(rq->idle))
1835 			smp_send_reschedule(cpu);
1836 		else
1837 			trace_sched_wake_idle_without_ipi(cpu);
1838 	}
1839 }
1840 
1841 void wake_up_if_idle(int cpu)
1842 {
1843 	struct rq *rq = cpu_rq(cpu);
1844 	unsigned long flags;
1845 
1846 	rcu_read_lock();
1847 
1848 	if (!is_idle_task(rcu_dereference(rq->curr)))
1849 		goto out;
1850 
1851 	if (set_nr_if_polling(rq->idle)) {
1852 		trace_sched_wake_idle_without_ipi(cpu);
1853 	} else {
1854 		raw_spin_lock_irqsave(&rq->lock, flags);
1855 		if (is_idle_task(rq->curr))
1856 			smp_send_reschedule(cpu);
1857 		/* Else cpu is not in idle, do nothing here */
1858 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 	}
1860 
1861 out:
1862 	rcu_read_unlock();
1863 }
1864 
1865 bool cpus_share_cache(int this_cpu, int that_cpu)
1866 {
1867 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868 }
1869 #endif /* CONFIG_SMP */
1870 
1871 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1872 {
1873 	struct rq *rq = cpu_rq(cpu);
1874 	struct pin_cookie cookie;
1875 
1876 #if defined(CONFIG_SMP)
1877 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1878 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1879 		ttwu_queue_remote(p, cpu, wake_flags);
1880 		return;
1881 	}
1882 #endif
1883 
1884 	raw_spin_lock(&rq->lock);
1885 	cookie = lockdep_pin_lock(&rq->lock);
1886 	ttwu_do_activate(rq, p, wake_flags, cookie);
1887 	lockdep_unpin_lock(&rq->lock, cookie);
1888 	raw_spin_unlock(&rq->lock);
1889 }
1890 
1891 /*
1892  * Notes on Program-Order guarantees on SMP systems.
1893  *
1894  *  MIGRATION
1895  *
1896  * The basic program-order guarantee on SMP systems is that when a task [t]
1897  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898  * execution on its new cpu [c1].
1899  *
1900  * For migration (of runnable tasks) this is provided by the following means:
1901  *
1902  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1903  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1904  *     rq(c1)->lock (if not at the same time, then in that order).
1905  *  C) LOCK of the rq(c1)->lock scheduling in task
1906  *
1907  * Transitivity guarantees that B happens after A and C after B.
1908  * Note: we only require RCpc transitivity.
1909  * Note: the cpu doing B need not be c0 or c1
1910  *
1911  * Example:
1912  *
1913  *   CPU0            CPU1            CPU2
1914  *
1915  *   LOCK rq(0)->lock
1916  *   sched-out X
1917  *   sched-in Y
1918  *   UNLOCK rq(0)->lock
1919  *
1920  *                                   LOCK rq(0)->lock // orders against CPU0
1921  *                                   dequeue X
1922  *                                   UNLOCK rq(0)->lock
1923  *
1924  *                                   LOCK rq(1)->lock
1925  *                                   enqueue X
1926  *                                   UNLOCK rq(1)->lock
1927  *
1928  *                   LOCK rq(1)->lock // orders against CPU2
1929  *                   sched-out Z
1930  *                   sched-in X
1931  *                   UNLOCK rq(1)->lock
1932  *
1933  *
1934  *  BLOCKING -- aka. SLEEP + WAKEUP
1935  *
1936  * For blocking we (obviously) need to provide the same guarantee as for
1937  * migration. However the means are completely different as there is no lock
1938  * chain to provide order. Instead we do:
1939  *
1940  *   1) smp_store_release(X->on_cpu, 0)
1941  *   2) smp_cond_load_acquire(!X->on_cpu)
1942  *
1943  * Example:
1944  *
1945  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1946  *
1947  *   LOCK rq(0)->lock LOCK X->pi_lock
1948  *   dequeue X
1949  *   sched-out X
1950  *   smp_store_release(X->on_cpu, 0);
1951  *
1952  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1953  *                    X->state = WAKING
1954  *                    set_task_cpu(X,2)
1955  *
1956  *                    LOCK rq(2)->lock
1957  *                    enqueue X
1958  *                    X->state = RUNNING
1959  *                    UNLOCK rq(2)->lock
1960  *
1961  *                                          LOCK rq(2)->lock // orders against CPU1
1962  *                                          sched-out Z
1963  *                                          sched-in X
1964  *                                          UNLOCK rq(2)->lock
1965  *
1966  *                    UNLOCK X->pi_lock
1967  *   UNLOCK rq(0)->lock
1968  *
1969  *
1970  * However; for wakeups there is a second guarantee we must provide, namely we
1971  * must observe the state that lead to our wakeup. That is, not only must our
1972  * task observe its own prior state, it must also observe the stores prior to
1973  * its wakeup.
1974  *
1975  * This means that any means of doing remote wakeups must order the CPU doing
1976  * the wakeup against the CPU the task is going to end up running on. This,
1977  * however, is already required for the regular Program-Order guarantee above,
1978  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979  *
1980  */
1981 
1982 /**
1983  * try_to_wake_up - wake up a thread
1984  * @p: the thread to be awakened
1985  * @state: the mask of task states that can be woken
1986  * @wake_flags: wake modifier flags (WF_*)
1987  *
1988  * Put it on the run-queue if it's not already there. The "current"
1989  * thread is always on the run-queue (except when the actual
1990  * re-schedule is in progress), and as such you're allowed to do
1991  * the simpler "current->state = TASK_RUNNING" to mark yourself
1992  * runnable without the overhead of this.
1993  *
1994  * Return: %true if @p was woken up, %false if it was already running.
1995  * or @state didn't match @p's state.
1996  */
1997 static int
1998 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1999 {
2000 	unsigned long flags;
2001 	int cpu, success = 0;
2002 
2003 	/*
2004 	 * If we are going to wake up a thread waiting for CONDITION we
2005 	 * need to ensure that CONDITION=1 done by the caller can not be
2006 	 * reordered with p->state check below. This pairs with mb() in
2007 	 * set_current_state() the waiting thread does.
2008 	 */
2009 	smp_mb__before_spinlock();
2010 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2011 	if (!(p->state & state))
2012 		goto out;
2013 
2014 	trace_sched_waking(p);
2015 
2016 	success = 1; /* we're going to change ->state */
2017 	cpu = task_cpu(p);
2018 
2019 	/*
2020 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2021 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2022 	 * in smp_cond_load_acquire() below.
2023 	 *
2024 	 * sched_ttwu_pending()                 try_to_wake_up()
2025 	 *   [S] p->on_rq = 1;                  [L] P->state
2026 	 *       UNLOCK rq->lock  -----.
2027 	 *                              \
2028 	 *				 +---   RMB
2029 	 * schedule()                   /
2030 	 *       LOCK rq->lock    -----'
2031 	 *       UNLOCK rq->lock
2032 	 *
2033 	 * [task p]
2034 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2035 	 *
2036 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2037 	 * last wakeup of our task and the schedule that got our task
2038 	 * current.
2039 	 */
2040 	smp_rmb();
2041 	if (p->on_rq && ttwu_remote(p, wake_flags))
2042 		goto stat;
2043 
2044 #ifdef CONFIG_SMP
2045 	/*
2046 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2047 	 * possible to, falsely, observe p->on_cpu == 0.
2048 	 *
2049 	 * One must be running (->on_cpu == 1) in order to remove oneself
2050 	 * from the runqueue.
2051 	 *
2052 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2053 	 *      UNLOCK rq->lock
2054 	 *			RMB
2055 	 *      LOCK   rq->lock
2056 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2057 	 *
2058 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2059 	 * from the consecutive calls to schedule(); the first switching to our
2060 	 * task, the second putting it to sleep.
2061 	 */
2062 	smp_rmb();
2063 
2064 	/*
2065 	 * If the owning (remote) cpu is still in the middle of schedule() with
2066 	 * this task as prev, wait until its done referencing the task.
2067 	 *
2068 	 * Pairs with the smp_store_release() in finish_lock_switch().
2069 	 *
2070 	 * This ensures that tasks getting woken will be fully ordered against
2071 	 * their previous state and preserve Program Order.
2072 	 */
2073 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2074 
2075 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2076 	p->state = TASK_WAKING;
2077 
2078 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2079 	if (task_cpu(p) != cpu) {
2080 		wake_flags |= WF_MIGRATED;
2081 		set_task_cpu(p, cpu);
2082 	}
2083 #endif /* CONFIG_SMP */
2084 
2085 	ttwu_queue(p, cpu, wake_flags);
2086 stat:
2087 	if (schedstat_enabled())
2088 		ttwu_stat(p, cpu, wake_flags);
2089 out:
2090 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2091 
2092 	return success;
2093 }
2094 
2095 /**
2096  * try_to_wake_up_local - try to wake up a local task with rq lock held
2097  * @p: the thread to be awakened
2098  *
2099  * Put @p on the run-queue if it's not already there. The caller must
2100  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2101  * the current task.
2102  */
2103 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2104 {
2105 	struct rq *rq = task_rq(p);
2106 
2107 	if (WARN_ON_ONCE(rq != this_rq()) ||
2108 	    WARN_ON_ONCE(p == current))
2109 		return;
2110 
2111 	lockdep_assert_held(&rq->lock);
2112 
2113 	if (!raw_spin_trylock(&p->pi_lock)) {
2114 		/*
2115 		 * This is OK, because current is on_cpu, which avoids it being
2116 		 * picked for load-balance and preemption/IRQs are still
2117 		 * disabled avoiding further scheduler activity on it and we've
2118 		 * not yet picked a replacement task.
2119 		 */
2120 		lockdep_unpin_lock(&rq->lock, cookie);
2121 		raw_spin_unlock(&rq->lock);
2122 		raw_spin_lock(&p->pi_lock);
2123 		raw_spin_lock(&rq->lock);
2124 		lockdep_repin_lock(&rq->lock, cookie);
2125 	}
2126 
2127 	if (!(p->state & TASK_NORMAL))
2128 		goto out;
2129 
2130 	trace_sched_waking(p);
2131 
2132 	if (!task_on_rq_queued(p))
2133 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2134 
2135 	ttwu_do_wakeup(rq, p, 0, cookie);
2136 	if (schedstat_enabled())
2137 		ttwu_stat(p, smp_processor_id(), 0);
2138 out:
2139 	raw_spin_unlock(&p->pi_lock);
2140 }
2141 
2142 /**
2143  * wake_up_process - Wake up a specific process
2144  * @p: The process to be woken up.
2145  *
2146  * Attempt to wake up the nominated process and move it to the set of runnable
2147  * processes.
2148  *
2149  * Return: 1 if the process was woken up, 0 if it was already running.
2150  *
2151  * It may be assumed that this function implies a write memory barrier before
2152  * changing the task state if and only if any tasks are woken up.
2153  */
2154 int wake_up_process(struct task_struct *p)
2155 {
2156 	return try_to_wake_up(p, TASK_NORMAL, 0);
2157 }
2158 EXPORT_SYMBOL(wake_up_process);
2159 
2160 int wake_up_state(struct task_struct *p, unsigned int state)
2161 {
2162 	return try_to_wake_up(p, state, 0);
2163 }
2164 
2165 /*
2166  * This function clears the sched_dl_entity static params.
2167  */
2168 void __dl_clear_params(struct task_struct *p)
2169 {
2170 	struct sched_dl_entity *dl_se = &p->dl;
2171 
2172 	dl_se->dl_runtime = 0;
2173 	dl_se->dl_deadline = 0;
2174 	dl_se->dl_period = 0;
2175 	dl_se->flags = 0;
2176 	dl_se->dl_bw = 0;
2177 
2178 	dl_se->dl_throttled = 0;
2179 	dl_se->dl_yielded = 0;
2180 }
2181 
2182 /*
2183  * Perform scheduler related setup for a newly forked process p.
2184  * p is forked by current.
2185  *
2186  * __sched_fork() is basic setup used by init_idle() too:
2187  */
2188 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2189 {
2190 	p->on_rq			= 0;
2191 
2192 	p->se.on_rq			= 0;
2193 	p->se.exec_start		= 0;
2194 	p->se.sum_exec_runtime		= 0;
2195 	p->se.prev_sum_exec_runtime	= 0;
2196 	p->se.nr_migrations		= 0;
2197 	p->se.vruntime			= 0;
2198 	INIT_LIST_HEAD(&p->se.group_node);
2199 
2200 #ifdef CONFIG_FAIR_GROUP_SCHED
2201 	p->se.cfs_rq			= NULL;
2202 #endif
2203 
2204 #ifdef CONFIG_SCHEDSTATS
2205 	/* Even if schedstat is disabled, there should not be garbage */
2206 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2207 #endif
2208 
2209 	RB_CLEAR_NODE(&p->dl.rb_node);
2210 	init_dl_task_timer(&p->dl);
2211 	__dl_clear_params(p);
2212 
2213 	INIT_LIST_HEAD(&p->rt.run_list);
2214 	p->rt.timeout		= 0;
2215 	p->rt.time_slice	= sched_rr_timeslice;
2216 	p->rt.on_rq		= 0;
2217 	p->rt.on_list		= 0;
2218 
2219 #ifdef CONFIG_PREEMPT_NOTIFIERS
2220 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2221 #endif
2222 
2223 #ifdef CONFIG_NUMA_BALANCING
2224 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2225 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2226 		p->mm->numa_scan_seq = 0;
2227 	}
2228 
2229 	if (clone_flags & CLONE_VM)
2230 		p->numa_preferred_nid = current->numa_preferred_nid;
2231 	else
2232 		p->numa_preferred_nid = -1;
2233 
2234 	p->node_stamp = 0ULL;
2235 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2236 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2237 	p->numa_work.next = &p->numa_work;
2238 	p->numa_faults = NULL;
2239 	p->last_task_numa_placement = 0;
2240 	p->last_sum_exec_runtime = 0;
2241 
2242 	p->numa_group = NULL;
2243 #endif /* CONFIG_NUMA_BALANCING */
2244 }
2245 
2246 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2247 
2248 #ifdef CONFIG_NUMA_BALANCING
2249 
2250 void set_numabalancing_state(bool enabled)
2251 {
2252 	if (enabled)
2253 		static_branch_enable(&sched_numa_balancing);
2254 	else
2255 		static_branch_disable(&sched_numa_balancing);
2256 }
2257 
2258 #ifdef CONFIG_PROC_SYSCTL
2259 int sysctl_numa_balancing(struct ctl_table *table, int write,
2260 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2261 {
2262 	struct ctl_table t;
2263 	int err;
2264 	int state = static_branch_likely(&sched_numa_balancing);
2265 
2266 	if (write && !capable(CAP_SYS_ADMIN))
2267 		return -EPERM;
2268 
2269 	t = *table;
2270 	t.data = &state;
2271 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2272 	if (err < 0)
2273 		return err;
2274 	if (write)
2275 		set_numabalancing_state(state);
2276 	return err;
2277 }
2278 #endif
2279 #endif
2280 
2281 #ifdef CONFIG_SCHEDSTATS
2282 
2283 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2284 static bool __initdata __sched_schedstats = false;
2285 
2286 static void set_schedstats(bool enabled)
2287 {
2288 	if (enabled)
2289 		static_branch_enable(&sched_schedstats);
2290 	else
2291 		static_branch_disable(&sched_schedstats);
2292 }
2293 
2294 void force_schedstat_enabled(void)
2295 {
2296 	if (!schedstat_enabled()) {
2297 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2298 		static_branch_enable(&sched_schedstats);
2299 	}
2300 }
2301 
2302 static int __init setup_schedstats(char *str)
2303 {
2304 	int ret = 0;
2305 	if (!str)
2306 		goto out;
2307 
2308 	/*
2309 	 * This code is called before jump labels have been set up, so we can't
2310 	 * change the static branch directly just yet.  Instead set a temporary
2311 	 * variable so init_schedstats() can do it later.
2312 	 */
2313 	if (!strcmp(str, "enable")) {
2314 		__sched_schedstats = true;
2315 		ret = 1;
2316 	} else if (!strcmp(str, "disable")) {
2317 		__sched_schedstats = false;
2318 		ret = 1;
2319 	}
2320 out:
2321 	if (!ret)
2322 		pr_warn("Unable to parse schedstats=\n");
2323 
2324 	return ret;
2325 }
2326 __setup("schedstats=", setup_schedstats);
2327 
2328 static void __init init_schedstats(void)
2329 {
2330 	set_schedstats(__sched_schedstats);
2331 }
2332 
2333 #ifdef CONFIG_PROC_SYSCTL
2334 int sysctl_schedstats(struct ctl_table *table, int write,
2335 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2336 {
2337 	struct ctl_table t;
2338 	int err;
2339 	int state = static_branch_likely(&sched_schedstats);
2340 
2341 	if (write && !capable(CAP_SYS_ADMIN))
2342 		return -EPERM;
2343 
2344 	t = *table;
2345 	t.data = &state;
2346 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2347 	if (err < 0)
2348 		return err;
2349 	if (write)
2350 		set_schedstats(state);
2351 	return err;
2352 }
2353 #endif /* CONFIG_PROC_SYSCTL */
2354 #else  /* !CONFIG_SCHEDSTATS */
2355 static inline void init_schedstats(void) {}
2356 #endif /* CONFIG_SCHEDSTATS */
2357 
2358 /*
2359  * fork()/clone()-time setup:
2360  */
2361 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2362 {
2363 	unsigned long flags;
2364 	int cpu = get_cpu();
2365 
2366 	__sched_fork(clone_flags, p);
2367 	/*
2368 	 * We mark the process as NEW here. This guarantees that
2369 	 * nobody will actually run it, and a signal or other external
2370 	 * event cannot wake it up and insert it on the runqueue either.
2371 	 */
2372 	p->state = TASK_NEW;
2373 
2374 	/*
2375 	 * Make sure we do not leak PI boosting priority to the child.
2376 	 */
2377 	p->prio = current->normal_prio;
2378 
2379 	/*
2380 	 * Revert to default priority/policy on fork if requested.
2381 	 */
2382 	if (unlikely(p->sched_reset_on_fork)) {
2383 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2384 			p->policy = SCHED_NORMAL;
2385 			p->static_prio = NICE_TO_PRIO(0);
2386 			p->rt_priority = 0;
2387 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2388 			p->static_prio = NICE_TO_PRIO(0);
2389 
2390 		p->prio = p->normal_prio = __normal_prio(p);
2391 		set_load_weight(p);
2392 
2393 		/*
2394 		 * We don't need the reset flag anymore after the fork. It has
2395 		 * fulfilled its duty:
2396 		 */
2397 		p->sched_reset_on_fork = 0;
2398 	}
2399 
2400 	if (dl_prio(p->prio)) {
2401 		put_cpu();
2402 		return -EAGAIN;
2403 	} else if (rt_prio(p->prio)) {
2404 		p->sched_class = &rt_sched_class;
2405 	} else {
2406 		p->sched_class = &fair_sched_class;
2407 	}
2408 
2409 	init_entity_runnable_average(&p->se);
2410 
2411 	/*
2412 	 * The child is not yet in the pid-hash so no cgroup attach races,
2413 	 * and the cgroup is pinned to this child due to cgroup_fork()
2414 	 * is ran before sched_fork().
2415 	 *
2416 	 * Silence PROVE_RCU.
2417 	 */
2418 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2419 	/*
2420 	 * We're setting the cpu for the first time, we don't migrate,
2421 	 * so use __set_task_cpu().
2422 	 */
2423 	__set_task_cpu(p, cpu);
2424 	if (p->sched_class->task_fork)
2425 		p->sched_class->task_fork(p);
2426 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2427 
2428 #ifdef CONFIG_SCHED_INFO
2429 	if (likely(sched_info_on()))
2430 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2431 #endif
2432 #if defined(CONFIG_SMP)
2433 	p->on_cpu = 0;
2434 #endif
2435 	init_task_preempt_count(p);
2436 #ifdef CONFIG_SMP
2437 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2438 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2439 #endif
2440 
2441 	put_cpu();
2442 	return 0;
2443 }
2444 
2445 unsigned long to_ratio(u64 period, u64 runtime)
2446 {
2447 	if (runtime == RUNTIME_INF)
2448 		return 1ULL << 20;
2449 
2450 	/*
2451 	 * Doing this here saves a lot of checks in all
2452 	 * the calling paths, and returning zero seems
2453 	 * safe for them anyway.
2454 	 */
2455 	if (period == 0)
2456 		return 0;
2457 
2458 	return div64_u64(runtime << 20, period);
2459 }
2460 
2461 #ifdef CONFIG_SMP
2462 inline struct dl_bw *dl_bw_of(int i)
2463 {
2464 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2465 			 "sched RCU must be held");
2466 	return &cpu_rq(i)->rd->dl_bw;
2467 }
2468 
2469 static inline int dl_bw_cpus(int i)
2470 {
2471 	struct root_domain *rd = cpu_rq(i)->rd;
2472 	int cpus = 0;
2473 
2474 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 			 "sched RCU must be held");
2476 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2477 		cpus++;
2478 
2479 	return cpus;
2480 }
2481 #else
2482 inline struct dl_bw *dl_bw_of(int i)
2483 {
2484 	return &cpu_rq(i)->dl.dl_bw;
2485 }
2486 
2487 static inline int dl_bw_cpus(int i)
2488 {
2489 	return 1;
2490 }
2491 #endif
2492 
2493 /*
2494  * We must be sure that accepting a new task (or allowing changing the
2495  * parameters of an existing one) is consistent with the bandwidth
2496  * constraints. If yes, this function also accordingly updates the currently
2497  * allocated bandwidth to reflect the new situation.
2498  *
2499  * This function is called while holding p's rq->lock.
2500  *
2501  * XXX we should delay bw change until the task's 0-lag point, see
2502  * __setparam_dl().
2503  */
2504 static int dl_overflow(struct task_struct *p, int policy,
2505 		       const struct sched_attr *attr)
2506 {
2507 
2508 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2509 	u64 period = attr->sched_period ?: attr->sched_deadline;
2510 	u64 runtime = attr->sched_runtime;
2511 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2512 	int cpus, err = -1;
2513 
2514 	/* !deadline task may carry old deadline bandwidth */
2515 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2516 		return 0;
2517 
2518 	/*
2519 	 * Either if a task, enters, leave, or stays -deadline but changes
2520 	 * its parameters, we may need to update accordingly the total
2521 	 * allocated bandwidth of the container.
2522 	 */
2523 	raw_spin_lock(&dl_b->lock);
2524 	cpus = dl_bw_cpus(task_cpu(p));
2525 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2526 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2527 		__dl_add(dl_b, new_bw);
2528 		err = 0;
2529 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2530 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2531 		__dl_clear(dl_b, p->dl.dl_bw);
2532 		__dl_add(dl_b, new_bw);
2533 		err = 0;
2534 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2535 		__dl_clear(dl_b, p->dl.dl_bw);
2536 		err = 0;
2537 	}
2538 	raw_spin_unlock(&dl_b->lock);
2539 
2540 	return err;
2541 }
2542 
2543 extern void init_dl_bw(struct dl_bw *dl_b);
2544 
2545 /*
2546  * wake_up_new_task - wake up a newly created task for the first time.
2547  *
2548  * This function will do some initial scheduler statistics housekeeping
2549  * that must be done for every newly created context, then puts the task
2550  * on the runqueue and wakes it.
2551  */
2552 void wake_up_new_task(struct task_struct *p)
2553 {
2554 	struct rq_flags rf;
2555 	struct rq *rq;
2556 
2557 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2558 	p->state = TASK_RUNNING;
2559 #ifdef CONFIG_SMP
2560 	/*
2561 	 * Fork balancing, do it here and not earlier because:
2562 	 *  - cpus_allowed can change in the fork path
2563 	 *  - any previously selected cpu might disappear through hotplug
2564 	 *
2565 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2566 	 * as we're not fully set-up yet.
2567 	 */
2568 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2569 #endif
2570 	rq = __task_rq_lock(p, &rf);
2571 	post_init_entity_util_avg(&p->se);
2572 
2573 	activate_task(rq, p, 0);
2574 	p->on_rq = TASK_ON_RQ_QUEUED;
2575 	trace_sched_wakeup_new(p);
2576 	check_preempt_curr(rq, p, WF_FORK);
2577 #ifdef CONFIG_SMP
2578 	if (p->sched_class->task_woken) {
2579 		/*
2580 		 * Nothing relies on rq->lock after this, so its fine to
2581 		 * drop it.
2582 		 */
2583 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2584 		p->sched_class->task_woken(rq, p);
2585 		lockdep_repin_lock(&rq->lock, rf.cookie);
2586 	}
2587 #endif
2588 	task_rq_unlock(rq, p, &rf);
2589 }
2590 
2591 #ifdef CONFIG_PREEMPT_NOTIFIERS
2592 
2593 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2594 
2595 void preempt_notifier_inc(void)
2596 {
2597 	static_key_slow_inc(&preempt_notifier_key);
2598 }
2599 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2600 
2601 void preempt_notifier_dec(void)
2602 {
2603 	static_key_slow_dec(&preempt_notifier_key);
2604 }
2605 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2606 
2607 /**
2608  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2609  * @notifier: notifier struct to register
2610  */
2611 void preempt_notifier_register(struct preempt_notifier *notifier)
2612 {
2613 	if (!static_key_false(&preempt_notifier_key))
2614 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2615 
2616 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2617 }
2618 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2619 
2620 /**
2621  * preempt_notifier_unregister - no longer interested in preemption notifications
2622  * @notifier: notifier struct to unregister
2623  *
2624  * This is *not* safe to call from within a preemption notifier.
2625  */
2626 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2627 {
2628 	hlist_del(&notifier->link);
2629 }
2630 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2631 
2632 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633 {
2634 	struct preempt_notifier *notifier;
2635 
2636 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2637 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2638 }
2639 
2640 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2641 {
2642 	if (static_key_false(&preempt_notifier_key))
2643 		__fire_sched_in_preempt_notifiers(curr);
2644 }
2645 
2646 static void
2647 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2648 				   struct task_struct *next)
2649 {
2650 	struct preempt_notifier *notifier;
2651 
2652 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2653 		notifier->ops->sched_out(notifier, next);
2654 }
2655 
2656 static __always_inline void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 				 struct task_struct *next)
2659 {
2660 	if (static_key_false(&preempt_notifier_key))
2661 		__fire_sched_out_preempt_notifiers(curr, next);
2662 }
2663 
2664 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2665 
2666 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2667 {
2668 }
2669 
2670 static inline void
2671 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 				 struct task_struct *next)
2673 {
2674 }
2675 
2676 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2677 
2678 /**
2679  * prepare_task_switch - prepare to switch tasks
2680  * @rq: the runqueue preparing to switch
2681  * @prev: the current task that is being switched out
2682  * @next: the task we are going to switch to.
2683  *
2684  * This is called with the rq lock held and interrupts off. It must
2685  * be paired with a subsequent finish_task_switch after the context
2686  * switch.
2687  *
2688  * prepare_task_switch sets up locking and calls architecture specific
2689  * hooks.
2690  */
2691 static inline void
2692 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2693 		    struct task_struct *next)
2694 {
2695 	sched_info_switch(rq, prev, next);
2696 	perf_event_task_sched_out(prev, next);
2697 	fire_sched_out_preempt_notifiers(prev, next);
2698 	prepare_lock_switch(rq, next);
2699 	prepare_arch_switch(next);
2700 }
2701 
2702 /**
2703  * finish_task_switch - clean up after a task-switch
2704  * @prev: the thread we just switched away from.
2705  *
2706  * finish_task_switch must be called after the context switch, paired
2707  * with a prepare_task_switch call before the context switch.
2708  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2709  * and do any other architecture-specific cleanup actions.
2710  *
2711  * Note that we may have delayed dropping an mm in context_switch(). If
2712  * so, we finish that here outside of the runqueue lock. (Doing it
2713  * with the lock held can cause deadlocks; see schedule() for
2714  * details.)
2715  *
2716  * The context switch have flipped the stack from under us and restored the
2717  * local variables which were saved when this task called schedule() in the
2718  * past. prev == current is still correct but we need to recalculate this_rq
2719  * because prev may have moved to another CPU.
2720  */
2721 static struct rq *finish_task_switch(struct task_struct *prev)
2722 	__releases(rq->lock)
2723 {
2724 	struct rq *rq = this_rq();
2725 	struct mm_struct *mm = rq->prev_mm;
2726 	long prev_state;
2727 
2728 	/*
2729 	 * The previous task will have left us with a preempt_count of 2
2730 	 * because it left us after:
2731 	 *
2732 	 *	schedule()
2733 	 *	  preempt_disable();			// 1
2734 	 *	  __schedule()
2735 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2736 	 *
2737 	 * Also, see FORK_PREEMPT_COUNT.
2738 	 */
2739 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2740 		      "corrupted preempt_count: %s/%d/0x%x\n",
2741 		      current->comm, current->pid, preempt_count()))
2742 		preempt_count_set(FORK_PREEMPT_COUNT);
2743 
2744 	rq->prev_mm = NULL;
2745 
2746 	/*
2747 	 * A task struct has one reference for the use as "current".
2748 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2749 	 * schedule one last time. The schedule call will never return, and
2750 	 * the scheduled task must drop that reference.
2751 	 *
2752 	 * We must observe prev->state before clearing prev->on_cpu (in
2753 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2754 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2755 	 * transition, resulting in a double drop.
2756 	 */
2757 	prev_state = prev->state;
2758 	vtime_task_switch(prev);
2759 	perf_event_task_sched_in(prev, current);
2760 	finish_lock_switch(rq, prev);
2761 	finish_arch_post_lock_switch();
2762 
2763 	fire_sched_in_preempt_notifiers(current);
2764 	if (mm)
2765 		mmdrop(mm);
2766 	if (unlikely(prev_state == TASK_DEAD)) {
2767 		if (prev->sched_class->task_dead)
2768 			prev->sched_class->task_dead(prev);
2769 
2770 		/*
2771 		 * Remove function-return probe instances associated with this
2772 		 * task and put them back on the free list.
2773 		 */
2774 		kprobe_flush_task(prev);
2775 		put_task_struct(prev);
2776 	}
2777 
2778 	tick_nohz_task_switch();
2779 	return rq;
2780 }
2781 
2782 #ifdef CONFIG_SMP
2783 
2784 /* rq->lock is NOT held, but preemption is disabled */
2785 static void __balance_callback(struct rq *rq)
2786 {
2787 	struct callback_head *head, *next;
2788 	void (*func)(struct rq *rq);
2789 	unsigned long flags;
2790 
2791 	raw_spin_lock_irqsave(&rq->lock, flags);
2792 	head = rq->balance_callback;
2793 	rq->balance_callback = NULL;
2794 	while (head) {
2795 		func = (void (*)(struct rq *))head->func;
2796 		next = head->next;
2797 		head->next = NULL;
2798 		head = next;
2799 
2800 		func(rq);
2801 	}
2802 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2803 }
2804 
2805 static inline void balance_callback(struct rq *rq)
2806 {
2807 	if (unlikely(rq->balance_callback))
2808 		__balance_callback(rq);
2809 }
2810 
2811 #else
2812 
2813 static inline void balance_callback(struct rq *rq)
2814 {
2815 }
2816 
2817 #endif
2818 
2819 /**
2820  * schedule_tail - first thing a freshly forked thread must call.
2821  * @prev: the thread we just switched away from.
2822  */
2823 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2824 	__releases(rq->lock)
2825 {
2826 	struct rq *rq;
2827 
2828 	/*
2829 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2830 	 * finish_task_switch() for details.
2831 	 *
2832 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2833 	 * and the preempt_enable() will end up enabling preemption (on
2834 	 * PREEMPT_COUNT kernels).
2835 	 */
2836 
2837 	rq = finish_task_switch(prev);
2838 	balance_callback(rq);
2839 	preempt_enable();
2840 
2841 	if (current->set_child_tid)
2842 		put_user(task_pid_vnr(current), current->set_child_tid);
2843 }
2844 
2845 /*
2846  * context_switch - switch to the new MM and the new thread's register state.
2847  */
2848 static __always_inline struct rq *
2849 context_switch(struct rq *rq, struct task_struct *prev,
2850 	       struct task_struct *next, struct pin_cookie cookie)
2851 {
2852 	struct mm_struct *mm, *oldmm;
2853 
2854 	prepare_task_switch(rq, prev, next);
2855 
2856 	mm = next->mm;
2857 	oldmm = prev->active_mm;
2858 	/*
2859 	 * For paravirt, this is coupled with an exit in switch_to to
2860 	 * combine the page table reload and the switch backend into
2861 	 * one hypercall.
2862 	 */
2863 	arch_start_context_switch(prev);
2864 
2865 	if (!mm) {
2866 		next->active_mm = oldmm;
2867 		atomic_inc(&oldmm->mm_count);
2868 		enter_lazy_tlb(oldmm, next);
2869 	} else
2870 		switch_mm_irqs_off(oldmm, mm, next);
2871 
2872 	if (!prev->mm) {
2873 		prev->active_mm = NULL;
2874 		rq->prev_mm = oldmm;
2875 	}
2876 	/*
2877 	 * Since the runqueue lock will be released by the next
2878 	 * task (which is an invalid locking op but in the case
2879 	 * of the scheduler it's an obvious special-case), so we
2880 	 * do an early lockdep release here:
2881 	 */
2882 	lockdep_unpin_lock(&rq->lock, cookie);
2883 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2884 
2885 	/* Here we just switch the register state and the stack. */
2886 	switch_to(prev, next, prev);
2887 	barrier();
2888 
2889 	return finish_task_switch(prev);
2890 }
2891 
2892 /*
2893  * nr_running and nr_context_switches:
2894  *
2895  * externally visible scheduler statistics: current number of runnable
2896  * threads, total number of context switches performed since bootup.
2897  */
2898 unsigned long nr_running(void)
2899 {
2900 	unsigned long i, sum = 0;
2901 
2902 	for_each_online_cpu(i)
2903 		sum += cpu_rq(i)->nr_running;
2904 
2905 	return sum;
2906 }
2907 
2908 /*
2909  * Check if only the current task is running on the cpu.
2910  *
2911  * Caution: this function does not check that the caller has disabled
2912  * preemption, thus the result might have a time-of-check-to-time-of-use
2913  * race.  The caller is responsible to use it correctly, for example:
2914  *
2915  * - from a non-preemptable section (of course)
2916  *
2917  * - from a thread that is bound to a single CPU
2918  *
2919  * - in a loop with very short iterations (e.g. a polling loop)
2920  */
2921 bool single_task_running(void)
2922 {
2923 	return raw_rq()->nr_running == 1;
2924 }
2925 EXPORT_SYMBOL(single_task_running);
2926 
2927 unsigned long long nr_context_switches(void)
2928 {
2929 	int i;
2930 	unsigned long long sum = 0;
2931 
2932 	for_each_possible_cpu(i)
2933 		sum += cpu_rq(i)->nr_switches;
2934 
2935 	return sum;
2936 }
2937 
2938 unsigned long nr_iowait(void)
2939 {
2940 	unsigned long i, sum = 0;
2941 
2942 	for_each_possible_cpu(i)
2943 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2944 
2945 	return sum;
2946 }
2947 
2948 unsigned long nr_iowait_cpu(int cpu)
2949 {
2950 	struct rq *this = cpu_rq(cpu);
2951 	return atomic_read(&this->nr_iowait);
2952 }
2953 
2954 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2955 {
2956 	struct rq *rq = this_rq();
2957 	*nr_waiters = atomic_read(&rq->nr_iowait);
2958 	*load = rq->load.weight;
2959 }
2960 
2961 #ifdef CONFIG_SMP
2962 
2963 /*
2964  * sched_exec - execve() is a valuable balancing opportunity, because at
2965  * this point the task has the smallest effective memory and cache footprint.
2966  */
2967 void sched_exec(void)
2968 {
2969 	struct task_struct *p = current;
2970 	unsigned long flags;
2971 	int dest_cpu;
2972 
2973 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2974 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2975 	if (dest_cpu == smp_processor_id())
2976 		goto unlock;
2977 
2978 	if (likely(cpu_active(dest_cpu))) {
2979 		struct migration_arg arg = { p, dest_cpu };
2980 
2981 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2982 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2983 		return;
2984 	}
2985 unlock:
2986 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2987 }
2988 
2989 #endif
2990 
2991 DEFINE_PER_CPU(struct kernel_stat, kstat);
2992 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2993 
2994 EXPORT_PER_CPU_SYMBOL(kstat);
2995 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2996 
2997 /*
2998  * The function fair_sched_class.update_curr accesses the struct curr
2999  * and its field curr->exec_start; when called from task_sched_runtime(),
3000  * we observe a high rate of cache misses in practice.
3001  * Prefetching this data results in improved performance.
3002  */
3003 static inline void prefetch_curr_exec_start(struct task_struct *p)
3004 {
3005 #ifdef CONFIG_FAIR_GROUP_SCHED
3006 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3007 #else
3008 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3009 #endif
3010 	prefetch(curr);
3011 	prefetch(&curr->exec_start);
3012 }
3013 
3014 /*
3015  * Return accounted runtime for the task.
3016  * In case the task is currently running, return the runtime plus current's
3017  * pending runtime that have not been accounted yet.
3018  */
3019 unsigned long long task_sched_runtime(struct task_struct *p)
3020 {
3021 	struct rq_flags rf;
3022 	struct rq *rq;
3023 	u64 ns;
3024 
3025 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3026 	/*
3027 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3028 	 * So we have a optimization chance when the task's delta_exec is 0.
3029 	 * Reading ->on_cpu is racy, but this is ok.
3030 	 *
3031 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3032 	 * If we race with it entering cpu, unaccounted time is 0. This is
3033 	 * indistinguishable from the read occurring a few cycles earlier.
3034 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3035 	 * been accounted, so we're correct here as well.
3036 	 */
3037 	if (!p->on_cpu || !task_on_rq_queued(p))
3038 		return p->se.sum_exec_runtime;
3039 #endif
3040 
3041 	rq = task_rq_lock(p, &rf);
3042 	/*
3043 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3044 	 * project cycles that may never be accounted to this
3045 	 * thread, breaking clock_gettime().
3046 	 */
3047 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3048 		prefetch_curr_exec_start(p);
3049 		update_rq_clock(rq);
3050 		p->sched_class->update_curr(rq);
3051 	}
3052 	ns = p->se.sum_exec_runtime;
3053 	task_rq_unlock(rq, p, &rf);
3054 
3055 	return ns;
3056 }
3057 
3058 /*
3059  * This function gets called by the timer code, with HZ frequency.
3060  * We call it with interrupts disabled.
3061  */
3062 void scheduler_tick(void)
3063 {
3064 	int cpu = smp_processor_id();
3065 	struct rq *rq = cpu_rq(cpu);
3066 	struct task_struct *curr = rq->curr;
3067 
3068 	sched_clock_tick();
3069 
3070 	raw_spin_lock(&rq->lock);
3071 	update_rq_clock(rq);
3072 	curr->sched_class->task_tick(rq, curr, 0);
3073 	cpu_load_update_active(rq);
3074 	calc_global_load_tick(rq);
3075 	raw_spin_unlock(&rq->lock);
3076 
3077 	perf_event_task_tick();
3078 
3079 #ifdef CONFIG_SMP
3080 	rq->idle_balance = idle_cpu(cpu);
3081 	trigger_load_balance(rq);
3082 #endif
3083 	rq_last_tick_reset(rq);
3084 }
3085 
3086 #ifdef CONFIG_NO_HZ_FULL
3087 /**
3088  * scheduler_tick_max_deferment
3089  *
3090  * Keep at least one tick per second when a single
3091  * active task is running because the scheduler doesn't
3092  * yet completely support full dynticks environment.
3093  *
3094  * This makes sure that uptime, CFS vruntime, load
3095  * balancing, etc... continue to move forward, even
3096  * with a very low granularity.
3097  *
3098  * Return: Maximum deferment in nanoseconds.
3099  */
3100 u64 scheduler_tick_max_deferment(void)
3101 {
3102 	struct rq *rq = this_rq();
3103 	unsigned long next, now = READ_ONCE(jiffies);
3104 
3105 	next = rq->last_sched_tick + HZ;
3106 
3107 	if (time_before_eq(next, now))
3108 		return 0;
3109 
3110 	return jiffies_to_nsecs(next - now);
3111 }
3112 #endif
3113 
3114 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3115 				defined(CONFIG_PREEMPT_TRACER))
3116 /*
3117  * If the value passed in is equal to the current preempt count
3118  * then we just disabled preemption. Start timing the latency.
3119  */
3120 static inline void preempt_latency_start(int val)
3121 {
3122 	if (preempt_count() == val) {
3123 		unsigned long ip = get_lock_parent_ip();
3124 #ifdef CONFIG_DEBUG_PREEMPT
3125 		current->preempt_disable_ip = ip;
3126 #endif
3127 		trace_preempt_off(CALLER_ADDR0, ip);
3128 	}
3129 }
3130 
3131 void preempt_count_add(int val)
3132 {
3133 #ifdef CONFIG_DEBUG_PREEMPT
3134 	/*
3135 	 * Underflow?
3136 	 */
3137 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3138 		return;
3139 #endif
3140 	__preempt_count_add(val);
3141 #ifdef CONFIG_DEBUG_PREEMPT
3142 	/*
3143 	 * Spinlock count overflowing soon?
3144 	 */
3145 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3146 				PREEMPT_MASK - 10);
3147 #endif
3148 	preempt_latency_start(val);
3149 }
3150 EXPORT_SYMBOL(preempt_count_add);
3151 NOKPROBE_SYMBOL(preempt_count_add);
3152 
3153 /*
3154  * If the value passed in equals to the current preempt count
3155  * then we just enabled preemption. Stop timing the latency.
3156  */
3157 static inline void preempt_latency_stop(int val)
3158 {
3159 	if (preempt_count() == val)
3160 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3161 }
3162 
3163 void preempt_count_sub(int val)
3164 {
3165 #ifdef CONFIG_DEBUG_PREEMPT
3166 	/*
3167 	 * Underflow?
3168 	 */
3169 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3170 		return;
3171 	/*
3172 	 * Is the spinlock portion underflowing?
3173 	 */
3174 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3175 			!(preempt_count() & PREEMPT_MASK)))
3176 		return;
3177 #endif
3178 
3179 	preempt_latency_stop(val);
3180 	__preempt_count_sub(val);
3181 }
3182 EXPORT_SYMBOL(preempt_count_sub);
3183 NOKPROBE_SYMBOL(preempt_count_sub);
3184 
3185 #else
3186 static inline void preempt_latency_start(int val) { }
3187 static inline void preempt_latency_stop(int val) { }
3188 #endif
3189 
3190 /*
3191  * Print scheduling while atomic bug:
3192  */
3193 static noinline void __schedule_bug(struct task_struct *prev)
3194 {
3195 	if (oops_in_progress)
3196 		return;
3197 
3198 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3199 		prev->comm, prev->pid, preempt_count());
3200 
3201 	debug_show_held_locks(prev);
3202 	print_modules();
3203 	if (irqs_disabled())
3204 		print_irqtrace_events(prev);
3205 #ifdef CONFIG_DEBUG_PREEMPT
3206 	if (in_atomic_preempt_off()) {
3207 		pr_err("Preemption disabled at:");
3208 		print_ip_sym(current->preempt_disable_ip);
3209 		pr_cont("\n");
3210 	}
3211 #endif
3212 	if (panic_on_warn)
3213 		panic("scheduling while atomic\n");
3214 
3215 	dump_stack();
3216 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3217 }
3218 
3219 /*
3220  * Various schedule()-time debugging checks and statistics:
3221  */
3222 static inline void schedule_debug(struct task_struct *prev)
3223 {
3224 #ifdef CONFIG_SCHED_STACK_END_CHECK
3225 	if (task_stack_end_corrupted(prev))
3226 		panic("corrupted stack end detected inside scheduler\n");
3227 #endif
3228 
3229 	if (unlikely(in_atomic_preempt_off())) {
3230 		__schedule_bug(prev);
3231 		preempt_count_set(PREEMPT_DISABLED);
3232 	}
3233 	rcu_sleep_check();
3234 
3235 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3236 
3237 	schedstat_inc(this_rq(), sched_count);
3238 }
3239 
3240 /*
3241  * Pick up the highest-prio task:
3242  */
3243 static inline struct task_struct *
3244 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3245 {
3246 	const struct sched_class *class = &fair_sched_class;
3247 	struct task_struct *p;
3248 
3249 	/*
3250 	 * Optimization: we know that if all tasks are in
3251 	 * the fair class we can call that function directly:
3252 	 */
3253 	if (likely(prev->sched_class == class &&
3254 		   rq->nr_running == rq->cfs.h_nr_running)) {
3255 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3256 		if (unlikely(p == RETRY_TASK))
3257 			goto again;
3258 
3259 		/* assumes fair_sched_class->next == idle_sched_class */
3260 		if (unlikely(!p))
3261 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3262 
3263 		return p;
3264 	}
3265 
3266 again:
3267 	for_each_class(class) {
3268 		p = class->pick_next_task(rq, prev, cookie);
3269 		if (p) {
3270 			if (unlikely(p == RETRY_TASK))
3271 				goto again;
3272 			return p;
3273 		}
3274 	}
3275 
3276 	BUG(); /* the idle class will always have a runnable task */
3277 }
3278 
3279 /*
3280  * __schedule() is the main scheduler function.
3281  *
3282  * The main means of driving the scheduler and thus entering this function are:
3283  *
3284  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3285  *
3286  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3287  *      paths. For example, see arch/x86/entry_64.S.
3288  *
3289  *      To drive preemption between tasks, the scheduler sets the flag in timer
3290  *      interrupt handler scheduler_tick().
3291  *
3292  *   3. Wakeups don't really cause entry into schedule(). They add a
3293  *      task to the run-queue and that's it.
3294  *
3295  *      Now, if the new task added to the run-queue preempts the current
3296  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3297  *      called on the nearest possible occasion:
3298  *
3299  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3300  *
3301  *         - in syscall or exception context, at the next outmost
3302  *           preempt_enable(). (this might be as soon as the wake_up()'s
3303  *           spin_unlock()!)
3304  *
3305  *         - in IRQ context, return from interrupt-handler to
3306  *           preemptible context
3307  *
3308  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3309  *         then at the next:
3310  *
3311  *          - cond_resched() call
3312  *          - explicit schedule() call
3313  *          - return from syscall or exception to user-space
3314  *          - return from interrupt-handler to user-space
3315  *
3316  * WARNING: must be called with preemption disabled!
3317  */
3318 static void __sched notrace __schedule(bool preempt)
3319 {
3320 	struct task_struct *prev, *next;
3321 	unsigned long *switch_count;
3322 	struct pin_cookie cookie;
3323 	struct rq *rq;
3324 	int cpu;
3325 
3326 	cpu = smp_processor_id();
3327 	rq = cpu_rq(cpu);
3328 	prev = rq->curr;
3329 
3330 	/*
3331 	 * do_exit() calls schedule() with preemption disabled as an exception;
3332 	 * however we must fix that up, otherwise the next task will see an
3333 	 * inconsistent (higher) preempt count.
3334 	 *
3335 	 * It also avoids the below schedule_debug() test from complaining
3336 	 * about this.
3337 	 */
3338 	if (unlikely(prev->state == TASK_DEAD))
3339 		preempt_enable_no_resched_notrace();
3340 
3341 	schedule_debug(prev);
3342 
3343 	if (sched_feat(HRTICK))
3344 		hrtick_clear(rq);
3345 
3346 	local_irq_disable();
3347 	rcu_note_context_switch();
3348 
3349 	/*
3350 	 * Make sure that signal_pending_state()->signal_pending() below
3351 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3352 	 * done by the caller to avoid the race with signal_wake_up().
3353 	 */
3354 	smp_mb__before_spinlock();
3355 	raw_spin_lock(&rq->lock);
3356 	cookie = lockdep_pin_lock(&rq->lock);
3357 
3358 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3359 
3360 	switch_count = &prev->nivcsw;
3361 	if (!preempt && prev->state) {
3362 		if (unlikely(signal_pending_state(prev->state, prev))) {
3363 			prev->state = TASK_RUNNING;
3364 		} else {
3365 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3366 			prev->on_rq = 0;
3367 
3368 			/*
3369 			 * If a worker went to sleep, notify and ask workqueue
3370 			 * whether it wants to wake up a task to maintain
3371 			 * concurrency.
3372 			 */
3373 			if (prev->flags & PF_WQ_WORKER) {
3374 				struct task_struct *to_wakeup;
3375 
3376 				to_wakeup = wq_worker_sleeping(prev);
3377 				if (to_wakeup)
3378 					try_to_wake_up_local(to_wakeup, cookie);
3379 			}
3380 		}
3381 		switch_count = &prev->nvcsw;
3382 	}
3383 
3384 	if (task_on_rq_queued(prev))
3385 		update_rq_clock(rq);
3386 
3387 	next = pick_next_task(rq, prev, cookie);
3388 	clear_tsk_need_resched(prev);
3389 	clear_preempt_need_resched();
3390 	rq->clock_skip_update = 0;
3391 
3392 	if (likely(prev != next)) {
3393 		rq->nr_switches++;
3394 		rq->curr = next;
3395 		++*switch_count;
3396 
3397 		trace_sched_switch(preempt, prev, next);
3398 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3399 	} else {
3400 		lockdep_unpin_lock(&rq->lock, cookie);
3401 		raw_spin_unlock_irq(&rq->lock);
3402 	}
3403 
3404 	balance_callback(rq);
3405 }
3406 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3407 
3408 static inline void sched_submit_work(struct task_struct *tsk)
3409 {
3410 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3411 		return;
3412 	/*
3413 	 * If we are going to sleep and we have plugged IO queued,
3414 	 * make sure to submit it to avoid deadlocks.
3415 	 */
3416 	if (blk_needs_flush_plug(tsk))
3417 		blk_schedule_flush_plug(tsk);
3418 }
3419 
3420 asmlinkage __visible void __sched schedule(void)
3421 {
3422 	struct task_struct *tsk = current;
3423 
3424 	sched_submit_work(tsk);
3425 	do {
3426 		preempt_disable();
3427 		__schedule(false);
3428 		sched_preempt_enable_no_resched();
3429 	} while (need_resched());
3430 }
3431 EXPORT_SYMBOL(schedule);
3432 
3433 #ifdef CONFIG_CONTEXT_TRACKING
3434 asmlinkage __visible void __sched schedule_user(void)
3435 {
3436 	/*
3437 	 * If we come here after a random call to set_need_resched(),
3438 	 * or we have been woken up remotely but the IPI has not yet arrived,
3439 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3440 	 * we find a better solution.
3441 	 *
3442 	 * NB: There are buggy callers of this function.  Ideally we
3443 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3444 	 * too frequently to make sense yet.
3445 	 */
3446 	enum ctx_state prev_state = exception_enter();
3447 	schedule();
3448 	exception_exit(prev_state);
3449 }
3450 #endif
3451 
3452 /**
3453  * schedule_preempt_disabled - called with preemption disabled
3454  *
3455  * Returns with preemption disabled. Note: preempt_count must be 1
3456  */
3457 void __sched schedule_preempt_disabled(void)
3458 {
3459 	sched_preempt_enable_no_resched();
3460 	schedule();
3461 	preempt_disable();
3462 }
3463 
3464 static void __sched notrace preempt_schedule_common(void)
3465 {
3466 	do {
3467 		/*
3468 		 * Because the function tracer can trace preempt_count_sub()
3469 		 * and it also uses preempt_enable/disable_notrace(), if
3470 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3471 		 * by the function tracer will call this function again and
3472 		 * cause infinite recursion.
3473 		 *
3474 		 * Preemption must be disabled here before the function
3475 		 * tracer can trace. Break up preempt_disable() into two
3476 		 * calls. One to disable preemption without fear of being
3477 		 * traced. The other to still record the preemption latency,
3478 		 * which can also be traced by the function tracer.
3479 		 */
3480 		preempt_disable_notrace();
3481 		preempt_latency_start(1);
3482 		__schedule(true);
3483 		preempt_latency_stop(1);
3484 		preempt_enable_no_resched_notrace();
3485 
3486 		/*
3487 		 * Check again in case we missed a preemption opportunity
3488 		 * between schedule and now.
3489 		 */
3490 	} while (need_resched());
3491 }
3492 
3493 #ifdef CONFIG_PREEMPT
3494 /*
3495  * this is the entry point to schedule() from in-kernel preemption
3496  * off of preempt_enable. Kernel preemptions off return from interrupt
3497  * occur there and call schedule directly.
3498  */
3499 asmlinkage __visible void __sched notrace preempt_schedule(void)
3500 {
3501 	/*
3502 	 * If there is a non-zero preempt_count or interrupts are disabled,
3503 	 * we do not want to preempt the current task. Just return..
3504 	 */
3505 	if (likely(!preemptible()))
3506 		return;
3507 
3508 	preempt_schedule_common();
3509 }
3510 NOKPROBE_SYMBOL(preempt_schedule);
3511 EXPORT_SYMBOL(preempt_schedule);
3512 
3513 /**
3514  * preempt_schedule_notrace - preempt_schedule called by tracing
3515  *
3516  * The tracing infrastructure uses preempt_enable_notrace to prevent
3517  * recursion and tracing preempt enabling caused by the tracing
3518  * infrastructure itself. But as tracing can happen in areas coming
3519  * from userspace or just about to enter userspace, a preempt enable
3520  * can occur before user_exit() is called. This will cause the scheduler
3521  * to be called when the system is still in usermode.
3522  *
3523  * To prevent this, the preempt_enable_notrace will use this function
3524  * instead of preempt_schedule() to exit user context if needed before
3525  * calling the scheduler.
3526  */
3527 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3528 {
3529 	enum ctx_state prev_ctx;
3530 
3531 	if (likely(!preemptible()))
3532 		return;
3533 
3534 	do {
3535 		/*
3536 		 * Because the function tracer can trace preempt_count_sub()
3537 		 * and it also uses preempt_enable/disable_notrace(), if
3538 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3539 		 * by the function tracer will call this function again and
3540 		 * cause infinite recursion.
3541 		 *
3542 		 * Preemption must be disabled here before the function
3543 		 * tracer can trace. Break up preempt_disable() into two
3544 		 * calls. One to disable preemption without fear of being
3545 		 * traced. The other to still record the preemption latency,
3546 		 * which can also be traced by the function tracer.
3547 		 */
3548 		preempt_disable_notrace();
3549 		preempt_latency_start(1);
3550 		/*
3551 		 * Needs preempt disabled in case user_exit() is traced
3552 		 * and the tracer calls preempt_enable_notrace() causing
3553 		 * an infinite recursion.
3554 		 */
3555 		prev_ctx = exception_enter();
3556 		__schedule(true);
3557 		exception_exit(prev_ctx);
3558 
3559 		preempt_latency_stop(1);
3560 		preempt_enable_no_resched_notrace();
3561 	} while (need_resched());
3562 }
3563 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3564 
3565 #endif /* CONFIG_PREEMPT */
3566 
3567 /*
3568  * this is the entry point to schedule() from kernel preemption
3569  * off of irq context.
3570  * Note, that this is called and return with irqs disabled. This will
3571  * protect us against recursive calling from irq.
3572  */
3573 asmlinkage __visible void __sched preempt_schedule_irq(void)
3574 {
3575 	enum ctx_state prev_state;
3576 
3577 	/* Catch callers which need to be fixed */
3578 	BUG_ON(preempt_count() || !irqs_disabled());
3579 
3580 	prev_state = exception_enter();
3581 
3582 	do {
3583 		preempt_disable();
3584 		local_irq_enable();
3585 		__schedule(true);
3586 		local_irq_disable();
3587 		sched_preempt_enable_no_resched();
3588 	} while (need_resched());
3589 
3590 	exception_exit(prev_state);
3591 }
3592 
3593 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3594 			  void *key)
3595 {
3596 	return try_to_wake_up(curr->private, mode, wake_flags);
3597 }
3598 EXPORT_SYMBOL(default_wake_function);
3599 
3600 #ifdef CONFIG_RT_MUTEXES
3601 
3602 /*
3603  * rt_mutex_setprio - set the current priority of a task
3604  * @p: task
3605  * @prio: prio value (kernel-internal form)
3606  *
3607  * This function changes the 'effective' priority of a task. It does
3608  * not touch ->normal_prio like __setscheduler().
3609  *
3610  * Used by the rt_mutex code to implement priority inheritance
3611  * logic. Call site only calls if the priority of the task changed.
3612  */
3613 void rt_mutex_setprio(struct task_struct *p, int prio)
3614 {
3615 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3616 	const struct sched_class *prev_class;
3617 	struct rq_flags rf;
3618 	struct rq *rq;
3619 
3620 	BUG_ON(prio > MAX_PRIO);
3621 
3622 	rq = __task_rq_lock(p, &rf);
3623 
3624 	/*
3625 	 * Idle task boosting is a nono in general. There is one
3626 	 * exception, when PREEMPT_RT and NOHZ is active:
3627 	 *
3628 	 * The idle task calls get_next_timer_interrupt() and holds
3629 	 * the timer wheel base->lock on the CPU and another CPU wants
3630 	 * to access the timer (probably to cancel it). We can safely
3631 	 * ignore the boosting request, as the idle CPU runs this code
3632 	 * with interrupts disabled and will complete the lock
3633 	 * protected section without being interrupted. So there is no
3634 	 * real need to boost.
3635 	 */
3636 	if (unlikely(p == rq->idle)) {
3637 		WARN_ON(p != rq->curr);
3638 		WARN_ON(p->pi_blocked_on);
3639 		goto out_unlock;
3640 	}
3641 
3642 	trace_sched_pi_setprio(p, prio);
3643 	oldprio = p->prio;
3644 
3645 	if (oldprio == prio)
3646 		queue_flag &= ~DEQUEUE_MOVE;
3647 
3648 	prev_class = p->sched_class;
3649 	queued = task_on_rq_queued(p);
3650 	running = task_current(rq, p);
3651 	if (queued)
3652 		dequeue_task(rq, p, queue_flag);
3653 	if (running)
3654 		put_prev_task(rq, p);
3655 
3656 	/*
3657 	 * Boosting condition are:
3658 	 * 1. -rt task is running and holds mutex A
3659 	 *      --> -dl task blocks on mutex A
3660 	 *
3661 	 * 2. -dl task is running and holds mutex A
3662 	 *      --> -dl task blocks on mutex A and could preempt the
3663 	 *          running task
3664 	 */
3665 	if (dl_prio(prio)) {
3666 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3667 		if (!dl_prio(p->normal_prio) ||
3668 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3669 			p->dl.dl_boosted = 1;
3670 			queue_flag |= ENQUEUE_REPLENISH;
3671 		} else
3672 			p->dl.dl_boosted = 0;
3673 		p->sched_class = &dl_sched_class;
3674 	} else if (rt_prio(prio)) {
3675 		if (dl_prio(oldprio))
3676 			p->dl.dl_boosted = 0;
3677 		if (oldprio < prio)
3678 			queue_flag |= ENQUEUE_HEAD;
3679 		p->sched_class = &rt_sched_class;
3680 	} else {
3681 		if (dl_prio(oldprio))
3682 			p->dl.dl_boosted = 0;
3683 		if (rt_prio(oldprio))
3684 			p->rt.timeout = 0;
3685 		p->sched_class = &fair_sched_class;
3686 	}
3687 
3688 	p->prio = prio;
3689 
3690 	if (running)
3691 		p->sched_class->set_curr_task(rq);
3692 	if (queued)
3693 		enqueue_task(rq, p, queue_flag);
3694 
3695 	check_class_changed(rq, p, prev_class, oldprio);
3696 out_unlock:
3697 	preempt_disable(); /* avoid rq from going away on us */
3698 	__task_rq_unlock(rq, &rf);
3699 
3700 	balance_callback(rq);
3701 	preempt_enable();
3702 }
3703 #endif
3704 
3705 void set_user_nice(struct task_struct *p, long nice)
3706 {
3707 	int old_prio, delta, queued;
3708 	struct rq_flags rf;
3709 	struct rq *rq;
3710 
3711 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3712 		return;
3713 	/*
3714 	 * We have to be careful, if called from sys_setpriority(),
3715 	 * the task might be in the middle of scheduling on another CPU.
3716 	 */
3717 	rq = task_rq_lock(p, &rf);
3718 	/*
3719 	 * The RT priorities are set via sched_setscheduler(), but we still
3720 	 * allow the 'normal' nice value to be set - but as expected
3721 	 * it wont have any effect on scheduling until the task is
3722 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3723 	 */
3724 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3725 		p->static_prio = NICE_TO_PRIO(nice);
3726 		goto out_unlock;
3727 	}
3728 	queued = task_on_rq_queued(p);
3729 	if (queued)
3730 		dequeue_task(rq, p, DEQUEUE_SAVE);
3731 
3732 	p->static_prio = NICE_TO_PRIO(nice);
3733 	set_load_weight(p);
3734 	old_prio = p->prio;
3735 	p->prio = effective_prio(p);
3736 	delta = p->prio - old_prio;
3737 
3738 	if (queued) {
3739 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3740 		/*
3741 		 * If the task increased its priority or is running and
3742 		 * lowered its priority, then reschedule its CPU:
3743 		 */
3744 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3745 			resched_curr(rq);
3746 	}
3747 out_unlock:
3748 	task_rq_unlock(rq, p, &rf);
3749 }
3750 EXPORT_SYMBOL(set_user_nice);
3751 
3752 /*
3753  * can_nice - check if a task can reduce its nice value
3754  * @p: task
3755  * @nice: nice value
3756  */
3757 int can_nice(const struct task_struct *p, const int nice)
3758 {
3759 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3760 	int nice_rlim = nice_to_rlimit(nice);
3761 
3762 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3763 		capable(CAP_SYS_NICE));
3764 }
3765 
3766 #ifdef __ARCH_WANT_SYS_NICE
3767 
3768 /*
3769  * sys_nice - change the priority of the current process.
3770  * @increment: priority increment
3771  *
3772  * sys_setpriority is a more generic, but much slower function that
3773  * does similar things.
3774  */
3775 SYSCALL_DEFINE1(nice, int, increment)
3776 {
3777 	long nice, retval;
3778 
3779 	/*
3780 	 * Setpriority might change our priority at the same moment.
3781 	 * We don't have to worry. Conceptually one call occurs first
3782 	 * and we have a single winner.
3783 	 */
3784 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3785 	nice = task_nice(current) + increment;
3786 
3787 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3788 	if (increment < 0 && !can_nice(current, nice))
3789 		return -EPERM;
3790 
3791 	retval = security_task_setnice(current, nice);
3792 	if (retval)
3793 		return retval;
3794 
3795 	set_user_nice(current, nice);
3796 	return 0;
3797 }
3798 
3799 #endif
3800 
3801 /**
3802  * task_prio - return the priority value of a given task.
3803  * @p: the task in question.
3804  *
3805  * Return: The priority value as seen by users in /proc.
3806  * RT tasks are offset by -200. Normal tasks are centered
3807  * around 0, value goes from -16 to +15.
3808  */
3809 int task_prio(const struct task_struct *p)
3810 {
3811 	return p->prio - MAX_RT_PRIO;
3812 }
3813 
3814 /**
3815  * idle_cpu - is a given cpu idle currently?
3816  * @cpu: the processor in question.
3817  *
3818  * Return: 1 if the CPU is currently idle. 0 otherwise.
3819  */
3820 int idle_cpu(int cpu)
3821 {
3822 	struct rq *rq = cpu_rq(cpu);
3823 
3824 	if (rq->curr != rq->idle)
3825 		return 0;
3826 
3827 	if (rq->nr_running)
3828 		return 0;
3829 
3830 #ifdef CONFIG_SMP
3831 	if (!llist_empty(&rq->wake_list))
3832 		return 0;
3833 #endif
3834 
3835 	return 1;
3836 }
3837 
3838 /**
3839  * idle_task - return the idle task for a given cpu.
3840  * @cpu: the processor in question.
3841  *
3842  * Return: The idle task for the cpu @cpu.
3843  */
3844 struct task_struct *idle_task(int cpu)
3845 {
3846 	return cpu_rq(cpu)->idle;
3847 }
3848 
3849 /**
3850  * find_process_by_pid - find a process with a matching PID value.
3851  * @pid: the pid in question.
3852  *
3853  * The task of @pid, if found. %NULL otherwise.
3854  */
3855 static struct task_struct *find_process_by_pid(pid_t pid)
3856 {
3857 	return pid ? find_task_by_vpid(pid) : current;
3858 }
3859 
3860 /*
3861  * This function initializes the sched_dl_entity of a newly becoming
3862  * SCHED_DEADLINE task.
3863  *
3864  * Only the static values are considered here, the actual runtime and the
3865  * absolute deadline will be properly calculated when the task is enqueued
3866  * for the first time with its new policy.
3867  */
3868 static void
3869 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3870 {
3871 	struct sched_dl_entity *dl_se = &p->dl;
3872 
3873 	dl_se->dl_runtime = attr->sched_runtime;
3874 	dl_se->dl_deadline = attr->sched_deadline;
3875 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3876 	dl_se->flags = attr->sched_flags;
3877 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3878 
3879 	/*
3880 	 * Changing the parameters of a task is 'tricky' and we're not doing
3881 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3882 	 *
3883 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3884 	 * point. This would include retaining the task_struct until that time
3885 	 * and change dl_overflow() to not immediately decrement the current
3886 	 * amount.
3887 	 *
3888 	 * Instead we retain the current runtime/deadline and let the new
3889 	 * parameters take effect after the current reservation period lapses.
3890 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3891 	 * before the current scheduling deadline.
3892 	 *
3893 	 * We can still have temporary overloads because we do not delay the
3894 	 * change in bandwidth until that time; so admission control is
3895 	 * not on the safe side. It does however guarantee tasks will never
3896 	 * consume more than promised.
3897 	 */
3898 }
3899 
3900 /*
3901  * sched_setparam() passes in -1 for its policy, to let the functions
3902  * it calls know not to change it.
3903  */
3904 #define SETPARAM_POLICY	-1
3905 
3906 static void __setscheduler_params(struct task_struct *p,
3907 		const struct sched_attr *attr)
3908 {
3909 	int policy = attr->sched_policy;
3910 
3911 	if (policy == SETPARAM_POLICY)
3912 		policy = p->policy;
3913 
3914 	p->policy = policy;
3915 
3916 	if (dl_policy(policy))
3917 		__setparam_dl(p, attr);
3918 	else if (fair_policy(policy))
3919 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3920 
3921 	/*
3922 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3923 	 * !rt_policy. Always setting this ensures that things like
3924 	 * getparam()/getattr() don't report silly values for !rt tasks.
3925 	 */
3926 	p->rt_priority = attr->sched_priority;
3927 	p->normal_prio = normal_prio(p);
3928 	set_load_weight(p);
3929 }
3930 
3931 /* Actually do priority change: must hold pi & rq lock. */
3932 static void __setscheduler(struct rq *rq, struct task_struct *p,
3933 			   const struct sched_attr *attr, bool keep_boost)
3934 {
3935 	__setscheduler_params(p, attr);
3936 
3937 	/*
3938 	 * Keep a potential priority boosting if called from
3939 	 * sched_setscheduler().
3940 	 */
3941 	if (keep_boost)
3942 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3943 	else
3944 		p->prio = normal_prio(p);
3945 
3946 	if (dl_prio(p->prio))
3947 		p->sched_class = &dl_sched_class;
3948 	else if (rt_prio(p->prio))
3949 		p->sched_class = &rt_sched_class;
3950 	else
3951 		p->sched_class = &fair_sched_class;
3952 }
3953 
3954 static void
3955 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3956 {
3957 	struct sched_dl_entity *dl_se = &p->dl;
3958 
3959 	attr->sched_priority = p->rt_priority;
3960 	attr->sched_runtime = dl_se->dl_runtime;
3961 	attr->sched_deadline = dl_se->dl_deadline;
3962 	attr->sched_period = dl_se->dl_period;
3963 	attr->sched_flags = dl_se->flags;
3964 }
3965 
3966 /*
3967  * This function validates the new parameters of a -deadline task.
3968  * We ask for the deadline not being zero, and greater or equal
3969  * than the runtime, as well as the period of being zero or
3970  * greater than deadline. Furthermore, we have to be sure that
3971  * user parameters are above the internal resolution of 1us (we
3972  * check sched_runtime only since it is always the smaller one) and
3973  * below 2^63 ns (we have to check both sched_deadline and
3974  * sched_period, as the latter can be zero).
3975  */
3976 static bool
3977 __checkparam_dl(const struct sched_attr *attr)
3978 {
3979 	/* deadline != 0 */
3980 	if (attr->sched_deadline == 0)
3981 		return false;
3982 
3983 	/*
3984 	 * Since we truncate DL_SCALE bits, make sure we're at least
3985 	 * that big.
3986 	 */
3987 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3988 		return false;
3989 
3990 	/*
3991 	 * Since we use the MSB for wrap-around and sign issues, make
3992 	 * sure it's not set (mind that period can be equal to zero).
3993 	 */
3994 	if (attr->sched_deadline & (1ULL << 63) ||
3995 	    attr->sched_period & (1ULL << 63))
3996 		return false;
3997 
3998 	/* runtime <= deadline <= period (if period != 0) */
3999 	if ((attr->sched_period != 0 &&
4000 	     attr->sched_period < attr->sched_deadline) ||
4001 	    attr->sched_deadline < attr->sched_runtime)
4002 		return false;
4003 
4004 	return true;
4005 }
4006 
4007 /*
4008  * check the target process has a UID that matches the current process's
4009  */
4010 static bool check_same_owner(struct task_struct *p)
4011 {
4012 	const struct cred *cred = current_cred(), *pcred;
4013 	bool match;
4014 
4015 	rcu_read_lock();
4016 	pcred = __task_cred(p);
4017 	match = (uid_eq(cred->euid, pcred->euid) ||
4018 		 uid_eq(cred->euid, pcred->uid));
4019 	rcu_read_unlock();
4020 	return match;
4021 }
4022 
4023 static bool dl_param_changed(struct task_struct *p,
4024 		const struct sched_attr *attr)
4025 {
4026 	struct sched_dl_entity *dl_se = &p->dl;
4027 
4028 	if (dl_se->dl_runtime != attr->sched_runtime ||
4029 		dl_se->dl_deadline != attr->sched_deadline ||
4030 		dl_se->dl_period != attr->sched_period ||
4031 		dl_se->flags != attr->sched_flags)
4032 		return true;
4033 
4034 	return false;
4035 }
4036 
4037 static int __sched_setscheduler(struct task_struct *p,
4038 				const struct sched_attr *attr,
4039 				bool user, bool pi)
4040 {
4041 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4042 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4043 	int retval, oldprio, oldpolicy = -1, queued, running;
4044 	int new_effective_prio, policy = attr->sched_policy;
4045 	const struct sched_class *prev_class;
4046 	struct rq_flags rf;
4047 	int reset_on_fork;
4048 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4049 	struct rq *rq;
4050 
4051 	/* may grab non-irq protected spin_locks */
4052 	BUG_ON(in_interrupt());
4053 recheck:
4054 	/* double check policy once rq lock held */
4055 	if (policy < 0) {
4056 		reset_on_fork = p->sched_reset_on_fork;
4057 		policy = oldpolicy = p->policy;
4058 	} else {
4059 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4060 
4061 		if (!valid_policy(policy))
4062 			return -EINVAL;
4063 	}
4064 
4065 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4066 		return -EINVAL;
4067 
4068 	/*
4069 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4070 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4071 	 * SCHED_BATCH and SCHED_IDLE is 0.
4072 	 */
4073 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4074 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4075 		return -EINVAL;
4076 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4077 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4078 		return -EINVAL;
4079 
4080 	/*
4081 	 * Allow unprivileged RT tasks to decrease priority:
4082 	 */
4083 	if (user && !capable(CAP_SYS_NICE)) {
4084 		if (fair_policy(policy)) {
4085 			if (attr->sched_nice < task_nice(p) &&
4086 			    !can_nice(p, attr->sched_nice))
4087 				return -EPERM;
4088 		}
4089 
4090 		if (rt_policy(policy)) {
4091 			unsigned long rlim_rtprio =
4092 					task_rlimit(p, RLIMIT_RTPRIO);
4093 
4094 			/* can't set/change the rt policy */
4095 			if (policy != p->policy && !rlim_rtprio)
4096 				return -EPERM;
4097 
4098 			/* can't increase priority */
4099 			if (attr->sched_priority > p->rt_priority &&
4100 			    attr->sched_priority > rlim_rtprio)
4101 				return -EPERM;
4102 		}
4103 
4104 		 /*
4105 		  * Can't set/change SCHED_DEADLINE policy at all for now
4106 		  * (safest behavior); in the future we would like to allow
4107 		  * unprivileged DL tasks to increase their relative deadline
4108 		  * or reduce their runtime (both ways reducing utilization)
4109 		  */
4110 		if (dl_policy(policy))
4111 			return -EPERM;
4112 
4113 		/*
4114 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4115 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4116 		 */
4117 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4118 			if (!can_nice(p, task_nice(p)))
4119 				return -EPERM;
4120 		}
4121 
4122 		/* can't change other user's priorities */
4123 		if (!check_same_owner(p))
4124 			return -EPERM;
4125 
4126 		/* Normal users shall not reset the sched_reset_on_fork flag */
4127 		if (p->sched_reset_on_fork && !reset_on_fork)
4128 			return -EPERM;
4129 	}
4130 
4131 	if (user) {
4132 		retval = security_task_setscheduler(p);
4133 		if (retval)
4134 			return retval;
4135 	}
4136 
4137 	/*
4138 	 * make sure no PI-waiters arrive (or leave) while we are
4139 	 * changing the priority of the task:
4140 	 *
4141 	 * To be able to change p->policy safely, the appropriate
4142 	 * runqueue lock must be held.
4143 	 */
4144 	rq = task_rq_lock(p, &rf);
4145 
4146 	/*
4147 	 * Changing the policy of the stop threads its a very bad idea
4148 	 */
4149 	if (p == rq->stop) {
4150 		task_rq_unlock(rq, p, &rf);
4151 		return -EINVAL;
4152 	}
4153 
4154 	/*
4155 	 * If not changing anything there's no need to proceed further,
4156 	 * but store a possible modification of reset_on_fork.
4157 	 */
4158 	if (unlikely(policy == p->policy)) {
4159 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4160 			goto change;
4161 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4162 			goto change;
4163 		if (dl_policy(policy) && dl_param_changed(p, attr))
4164 			goto change;
4165 
4166 		p->sched_reset_on_fork = reset_on_fork;
4167 		task_rq_unlock(rq, p, &rf);
4168 		return 0;
4169 	}
4170 change:
4171 
4172 	if (user) {
4173 #ifdef CONFIG_RT_GROUP_SCHED
4174 		/*
4175 		 * Do not allow realtime tasks into groups that have no runtime
4176 		 * assigned.
4177 		 */
4178 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4179 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4180 				!task_group_is_autogroup(task_group(p))) {
4181 			task_rq_unlock(rq, p, &rf);
4182 			return -EPERM;
4183 		}
4184 #endif
4185 #ifdef CONFIG_SMP
4186 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4187 			cpumask_t *span = rq->rd->span;
4188 
4189 			/*
4190 			 * Don't allow tasks with an affinity mask smaller than
4191 			 * the entire root_domain to become SCHED_DEADLINE. We
4192 			 * will also fail if there's no bandwidth available.
4193 			 */
4194 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4195 			    rq->rd->dl_bw.bw == 0) {
4196 				task_rq_unlock(rq, p, &rf);
4197 				return -EPERM;
4198 			}
4199 		}
4200 #endif
4201 	}
4202 
4203 	/* recheck policy now with rq lock held */
4204 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4205 		policy = oldpolicy = -1;
4206 		task_rq_unlock(rq, p, &rf);
4207 		goto recheck;
4208 	}
4209 
4210 	/*
4211 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4212 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4213 	 * is available.
4214 	 */
4215 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4216 		task_rq_unlock(rq, p, &rf);
4217 		return -EBUSY;
4218 	}
4219 
4220 	p->sched_reset_on_fork = reset_on_fork;
4221 	oldprio = p->prio;
4222 
4223 	if (pi) {
4224 		/*
4225 		 * Take priority boosted tasks into account. If the new
4226 		 * effective priority is unchanged, we just store the new
4227 		 * normal parameters and do not touch the scheduler class and
4228 		 * the runqueue. This will be done when the task deboost
4229 		 * itself.
4230 		 */
4231 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4232 		if (new_effective_prio == oldprio)
4233 			queue_flags &= ~DEQUEUE_MOVE;
4234 	}
4235 
4236 	queued = task_on_rq_queued(p);
4237 	running = task_current(rq, p);
4238 	if (queued)
4239 		dequeue_task(rq, p, queue_flags);
4240 	if (running)
4241 		put_prev_task(rq, p);
4242 
4243 	prev_class = p->sched_class;
4244 	__setscheduler(rq, p, attr, pi);
4245 
4246 	if (running)
4247 		p->sched_class->set_curr_task(rq);
4248 	if (queued) {
4249 		/*
4250 		 * We enqueue to tail when the priority of a task is
4251 		 * increased (user space view).
4252 		 */
4253 		if (oldprio < p->prio)
4254 			queue_flags |= ENQUEUE_HEAD;
4255 
4256 		enqueue_task(rq, p, queue_flags);
4257 	}
4258 
4259 	check_class_changed(rq, p, prev_class, oldprio);
4260 	preempt_disable(); /* avoid rq from going away on us */
4261 	task_rq_unlock(rq, p, &rf);
4262 
4263 	if (pi)
4264 		rt_mutex_adjust_pi(p);
4265 
4266 	/*
4267 	 * Run balance callbacks after we've adjusted the PI chain.
4268 	 */
4269 	balance_callback(rq);
4270 	preempt_enable();
4271 
4272 	return 0;
4273 }
4274 
4275 static int _sched_setscheduler(struct task_struct *p, int policy,
4276 			       const struct sched_param *param, bool check)
4277 {
4278 	struct sched_attr attr = {
4279 		.sched_policy   = policy,
4280 		.sched_priority = param->sched_priority,
4281 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4282 	};
4283 
4284 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4285 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4286 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4287 		policy &= ~SCHED_RESET_ON_FORK;
4288 		attr.sched_policy = policy;
4289 	}
4290 
4291 	return __sched_setscheduler(p, &attr, check, true);
4292 }
4293 /**
4294  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4295  * @p: the task in question.
4296  * @policy: new policy.
4297  * @param: structure containing the new RT priority.
4298  *
4299  * Return: 0 on success. An error code otherwise.
4300  *
4301  * NOTE that the task may be already dead.
4302  */
4303 int sched_setscheduler(struct task_struct *p, int policy,
4304 		       const struct sched_param *param)
4305 {
4306 	return _sched_setscheduler(p, policy, param, true);
4307 }
4308 EXPORT_SYMBOL_GPL(sched_setscheduler);
4309 
4310 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4311 {
4312 	return __sched_setscheduler(p, attr, true, true);
4313 }
4314 EXPORT_SYMBOL_GPL(sched_setattr);
4315 
4316 /**
4317  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4318  * @p: the task in question.
4319  * @policy: new policy.
4320  * @param: structure containing the new RT priority.
4321  *
4322  * Just like sched_setscheduler, only don't bother checking if the
4323  * current context has permission.  For example, this is needed in
4324  * stop_machine(): we create temporary high priority worker threads,
4325  * but our caller might not have that capability.
4326  *
4327  * Return: 0 on success. An error code otherwise.
4328  */
4329 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4330 			       const struct sched_param *param)
4331 {
4332 	return _sched_setscheduler(p, policy, param, false);
4333 }
4334 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4335 
4336 static int
4337 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4338 {
4339 	struct sched_param lparam;
4340 	struct task_struct *p;
4341 	int retval;
4342 
4343 	if (!param || pid < 0)
4344 		return -EINVAL;
4345 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4346 		return -EFAULT;
4347 
4348 	rcu_read_lock();
4349 	retval = -ESRCH;
4350 	p = find_process_by_pid(pid);
4351 	if (p != NULL)
4352 		retval = sched_setscheduler(p, policy, &lparam);
4353 	rcu_read_unlock();
4354 
4355 	return retval;
4356 }
4357 
4358 /*
4359  * Mimics kernel/events/core.c perf_copy_attr().
4360  */
4361 static int sched_copy_attr(struct sched_attr __user *uattr,
4362 			   struct sched_attr *attr)
4363 {
4364 	u32 size;
4365 	int ret;
4366 
4367 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4368 		return -EFAULT;
4369 
4370 	/*
4371 	 * zero the full structure, so that a short copy will be nice.
4372 	 */
4373 	memset(attr, 0, sizeof(*attr));
4374 
4375 	ret = get_user(size, &uattr->size);
4376 	if (ret)
4377 		return ret;
4378 
4379 	if (size > PAGE_SIZE)	/* silly large */
4380 		goto err_size;
4381 
4382 	if (!size)		/* abi compat */
4383 		size = SCHED_ATTR_SIZE_VER0;
4384 
4385 	if (size < SCHED_ATTR_SIZE_VER0)
4386 		goto err_size;
4387 
4388 	/*
4389 	 * If we're handed a bigger struct than we know of,
4390 	 * ensure all the unknown bits are 0 - i.e. new
4391 	 * user-space does not rely on any kernel feature
4392 	 * extensions we dont know about yet.
4393 	 */
4394 	if (size > sizeof(*attr)) {
4395 		unsigned char __user *addr;
4396 		unsigned char __user *end;
4397 		unsigned char val;
4398 
4399 		addr = (void __user *)uattr + sizeof(*attr);
4400 		end  = (void __user *)uattr + size;
4401 
4402 		for (; addr < end; addr++) {
4403 			ret = get_user(val, addr);
4404 			if (ret)
4405 				return ret;
4406 			if (val)
4407 				goto err_size;
4408 		}
4409 		size = sizeof(*attr);
4410 	}
4411 
4412 	ret = copy_from_user(attr, uattr, size);
4413 	if (ret)
4414 		return -EFAULT;
4415 
4416 	/*
4417 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4418 	 * to be strict and return an error on out-of-bounds values?
4419 	 */
4420 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4421 
4422 	return 0;
4423 
4424 err_size:
4425 	put_user(sizeof(*attr), &uattr->size);
4426 	return -E2BIG;
4427 }
4428 
4429 /**
4430  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4431  * @pid: the pid in question.
4432  * @policy: new policy.
4433  * @param: structure containing the new RT priority.
4434  *
4435  * Return: 0 on success. An error code otherwise.
4436  */
4437 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4438 		struct sched_param __user *, param)
4439 {
4440 	/* negative values for policy are not valid */
4441 	if (policy < 0)
4442 		return -EINVAL;
4443 
4444 	return do_sched_setscheduler(pid, policy, param);
4445 }
4446 
4447 /**
4448  * sys_sched_setparam - set/change the RT priority of a thread
4449  * @pid: the pid in question.
4450  * @param: structure containing the new RT priority.
4451  *
4452  * Return: 0 on success. An error code otherwise.
4453  */
4454 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4455 {
4456 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4457 }
4458 
4459 /**
4460  * sys_sched_setattr - same as above, but with extended sched_attr
4461  * @pid: the pid in question.
4462  * @uattr: structure containing the extended parameters.
4463  * @flags: for future extension.
4464  */
4465 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4466 			       unsigned int, flags)
4467 {
4468 	struct sched_attr attr;
4469 	struct task_struct *p;
4470 	int retval;
4471 
4472 	if (!uattr || pid < 0 || flags)
4473 		return -EINVAL;
4474 
4475 	retval = sched_copy_attr(uattr, &attr);
4476 	if (retval)
4477 		return retval;
4478 
4479 	if ((int)attr.sched_policy < 0)
4480 		return -EINVAL;
4481 
4482 	rcu_read_lock();
4483 	retval = -ESRCH;
4484 	p = find_process_by_pid(pid);
4485 	if (p != NULL)
4486 		retval = sched_setattr(p, &attr);
4487 	rcu_read_unlock();
4488 
4489 	return retval;
4490 }
4491 
4492 /**
4493  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4494  * @pid: the pid in question.
4495  *
4496  * Return: On success, the policy of the thread. Otherwise, a negative error
4497  * code.
4498  */
4499 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4500 {
4501 	struct task_struct *p;
4502 	int retval;
4503 
4504 	if (pid < 0)
4505 		return -EINVAL;
4506 
4507 	retval = -ESRCH;
4508 	rcu_read_lock();
4509 	p = find_process_by_pid(pid);
4510 	if (p) {
4511 		retval = security_task_getscheduler(p);
4512 		if (!retval)
4513 			retval = p->policy
4514 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4515 	}
4516 	rcu_read_unlock();
4517 	return retval;
4518 }
4519 
4520 /**
4521  * sys_sched_getparam - get the RT priority of a thread
4522  * @pid: the pid in question.
4523  * @param: structure containing the RT priority.
4524  *
4525  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4526  * code.
4527  */
4528 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4529 {
4530 	struct sched_param lp = { .sched_priority = 0 };
4531 	struct task_struct *p;
4532 	int retval;
4533 
4534 	if (!param || pid < 0)
4535 		return -EINVAL;
4536 
4537 	rcu_read_lock();
4538 	p = find_process_by_pid(pid);
4539 	retval = -ESRCH;
4540 	if (!p)
4541 		goto out_unlock;
4542 
4543 	retval = security_task_getscheduler(p);
4544 	if (retval)
4545 		goto out_unlock;
4546 
4547 	if (task_has_rt_policy(p))
4548 		lp.sched_priority = p->rt_priority;
4549 	rcu_read_unlock();
4550 
4551 	/*
4552 	 * This one might sleep, we cannot do it with a spinlock held ...
4553 	 */
4554 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4555 
4556 	return retval;
4557 
4558 out_unlock:
4559 	rcu_read_unlock();
4560 	return retval;
4561 }
4562 
4563 static int sched_read_attr(struct sched_attr __user *uattr,
4564 			   struct sched_attr *attr,
4565 			   unsigned int usize)
4566 {
4567 	int ret;
4568 
4569 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4570 		return -EFAULT;
4571 
4572 	/*
4573 	 * If we're handed a smaller struct than we know of,
4574 	 * ensure all the unknown bits are 0 - i.e. old
4575 	 * user-space does not get uncomplete information.
4576 	 */
4577 	if (usize < sizeof(*attr)) {
4578 		unsigned char *addr;
4579 		unsigned char *end;
4580 
4581 		addr = (void *)attr + usize;
4582 		end  = (void *)attr + sizeof(*attr);
4583 
4584 		for (; addr < end; addr++) {
4585 			if (*addr)
4586 				return -EFBIG;
4587 		}
4588 
4589 		attr->size = usize;
4590 	}
4591 
4592 	ret = copy_to_user(uattr, attr, attr->size);
4593 	if (ret)
4594 		return -EFAULT;
4595 
4596 	return 0;
4597 }
4598 
4599 /**
4600  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4601  * @pid: the pid in question.
4602  * @uattr: structure containing the extended parameters.
4603  * @size: sizeof(attr) for fwd/bwd comp.
4604  * @flags: for future extension.
4605  */
4606 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4607 		unsigned int, size, unsigned int, flags)
4608 {
4609 	struct sched_attr attr = {
4610 		.size = sizeof(struct sched_attr),
4611 	};
4612 	struct task_struct *p;
4613 	int retval;
4614 
4615 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4616 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4617 		return -EINVAL;
4618 
4619 	rcu_read_lock();
4620 	p = find_process_by_pid(pid);
4621 	retval = -ESRCH;
4622 	if (!p)
4623 		goto out_unlock;
4624 
4625 	retval = security_task_getscheduler(p);
4626 	if (retval)
4627 		goto out_unlock;
4628 
4629 	attr.sched_policy = p->policy;
4630 	if (p->sched_reset_on_fork)
4631 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4632 	if (task_has_dl_policy(p))
4633 		__getparam_dl(p, &attr);
4634 	else if (task_has_rt_policy(p))
4635 		attr.sched_priority = p->rt_priority;
4636 	else
4637 		attr.sched_nice = task_nice(p);
4638 
4639 	rcu_read_unlock();
4640 
4641 	retval = sched_read_attr(uattr, &attr, size);
4642 	return retval;
4643 
4644 out_unlock:
4645 	rcu_read_unlock();
4646 	return retval;
4647 }
4648 
4649 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4650 {
4651 	cpumask_var_t cpus_allowed, new_mask;
4652 	struct task_struct *p;
4653 	int retval;
4654 
4655 	rcu_read_lock();
4656 
4657 	p = find_process_by_pid(pid);
4658 	if (!p) {
4659 		rcu_read_unlock();
4660 		return -ESRCH;
4661 	}
4662 
4663 	/* Prevent p going away */
4664 	get_task_struct(p);
4665 	rcu_read_unlock();
4666 
4667 	if (p->flags & PF_NO_SETAFFINITY) {
4668 		retval = -EINVAL;
4669 		goto out_put_task;
4670 	}
4671 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4672 		retval = -ENOMEM;
4673 		goto out_put_task;
4674 	}
4675 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4676 		retval = -ENOMEM;
4677 		goto out_free_cpus_allowed;
4678 	}
4679 	retval = -EPERM;
4680 	if (!check_same_owner(p)) {
4681 		rcu_read_lock();
4682 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4683 			rcu_read_unlock();
4684 			goto out_free_new_mask;
4685 		}
4686 		rcu_read_unlock();
4687 	}
4688 
4689 	retval = security_task_setscheduler(p);
4690 	if (retval)
4691 		goto out_free_new_mask;
4692 
4693 
4694 	cpuset_cpus_allowed(p, cpus_allowed);
4695 	cpumask_and(new_mask, in_mask, cpus_allowed);
4696 
4697 	/*
4698 	 * Since bandwidth control happens on root_domain basis,
4699 	 * if admission test is enabled, we only admit -deadline
4700 	 * tasks allowed to run on all the CPUs in the task's
4701 	 * root_domain.
4702 	 */
4703 #ifdef CONFIG_SMP
4704 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4705 		rcu_read_lock();
4706 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4707 			retval = -EBUSY;
4708 			rcu_read_unlock();
4709 			goto out_free_new_mask;
4710 		}
4711 		rcu_read_unlock();
4712 	}
4713 #endif
4714 again:
4715 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4716 
4717 	if (!retval) {
4718 		cpuset_cpus_allowed(p, cpus_allowed);
4719 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4720 			/*
4721 			 * We must have raced with a concurrent cpuset
4722 			 * update. Just reset the cpus_allowed to the
4723 			 * cpuset's cpus_allowed
4724 			 */
4725 			cpumask_copy(new_mask, cpus_allowed);
4726 			goto again;
4727 		}
4728 	}
4729 out_free_new_mask:
4730 	free_cpumask_var(new_mask);
4731 out_free_cpus_allowed:
4732 	free_cpumask_var(cpus_allowed);
4733 out_put_task:
4734 	put_task_struct(p);
4735 	return retval;
4736 }
4737 
4738 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4739 			     struct cpumask *new_mask)
4740 {
4741 	if (len < cpumask_size())
4742 		cpumask_clear(new_mask);
4743 	else if (len > cpumask_size())
4744 		len = cpumask_size();
4745 
4746 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4747 }
4748 
4749 /**
4750  * sys_sched_setaffinity - set the cpu affinity of a process
4751  * @pid: pid of the process
4752  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753  * @user_mask_ptr: user-space pointer to the new cpu mask
4754  *
4755  * Return: 0 on success. An error code otherwise.
4756  */
4757 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4758 		unsigned long __user *, user_mask_ptr)
4759 {
4760 	cpumask_var_t new_mask;
4761 	int retval;
4762 
4763 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4764 		return -ENOMEM;
4765 
4766 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4767 	if (retval == 0)
4768 		retval = sched_setaffinity(pid, new_mask);
4769 	free_cpumask_var(new_mask);
4770 	return retval;
4771 }
4772 
4773 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4774 {
4775 	struct task_struct *p;
4776 	unsigned long flags;
4777 	int retval;
4778 
4779 	rcu_read_lock();
4780 
4781 	retval = -ESRCH;
4782 	p = find_process_by_pid(pid);
4783 	if (!p)
4784 		goto out_unlock;
4785 
4786 	retval = security_task_getscheduler(p);
4787 	if (retval)
4788 		goto out_unlock;
4789 
4790 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4791 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4792 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4793 
4794 out_unlock:
4795 	rcu_read_unlock();
4796 
4797 	return retval;
4798 }
4799 
4800 /**
4801  * sys_sched_getaffinity - get the cpu affinity of a process
4802  * @pid: pid of the process
4803  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4804  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4805  *
4806  * Return: size of CPU mask copied to user_mask_ptr on success. An
4807  * error code otherwise.
4808  */
4809 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4810 		unsigned long __user *, user_mask_ptr)
4811 {
4812 	int ret;
4813 	cpumask_var_t mask;
4814 
4815 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4816 		return -EINVAL;
4817 	if (len & (sizeof(unsigned long)-1))
4818 		return -EINVAL;
4819 
4820 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4821 		return -ENOMEM;
4822 
4823 	ret = sched_getaffinity(pid, mask);
4824 	if (ret == 0) {
4825 		size_t retlen = min_t(size_t, len, cpumask_size());
4826 
4827 		if (copy_to_user(user_mask_ptr, mask, retlen))
4828 			ret = -EFAULT;
4829 		else
4830 			ret = retlen;
4831 	}
4832 	free_cpumask_var(mask);
4833 
4834 	return ret;
4835 }
4836 
4837 /**
4838  * sys_sched_yield - yield the current processor to other threads.
4839  *
4840  * This function yields the current CPU to other tasks. If there are no
4841  * other threads running on this CPU then this function will return.
4842  *
4843  * Return: 0.
4844  */
4845 SYSCALL_DEFINE0(sched_yield)
4846 {
4847 	struct rq *rq = this_rq_lock();
4848 
4849 	schedstat_inc(rq, yld_count);
4850 	current->sched_class->yield_task(rq);
4851 
4852 	/*
4853 	 * Since we are going to call schedule() anyway, there's
4854 	 * no need to preempt or enable interrupts:
4855 	 */
4856 	__release(rq->lock);
4857 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4858 	do_raw_spin_unlock(&rq->lock);
4859 	sched_preempt_enable_no_resched();
4860 
4861 	schedule();
4862 
4863 	return 0;
4864 }
4865 
4866 int __sched _cond_resched(void)
4867 {
4868 	if (should_resched(0)) {
4869 		preempt_schedule_common();
4870 		return 1;
4871 	}
4872 	return 0;
4873 }
4874 EXPORT_SYMBOL(_cond_resched);
4875 
4876 /*
4877  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4878  * call schedule, and on return reacquire the lock.
4879  *
4880  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4881  * operations here to prevent schedule() from being called twice (once via
4882  * spin_unlock(), once by hand).
4883  */
4884 int __cond_resched_lock(spinlock_t *lock)
4885 {
4886 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4887 	int ret = 0;
4888 
4889 	lockdep_assert_held(lock);
4890 
4891 	if (spin_needbreak(lock) || resched) {
4892 		spin_unlock(lock);
4893 		if (resched)
4894 			preempt_schedule_common();
4895 		else
4896 			cpu_relax();
4897 		ret = 1;
4898 		spin_lock(lock);
4899 	}
4900 	return ret;
4901 }
4902 EXPORT_SYMBOL(__cond_resched_lock);
4903 
4904 int __sched __cond_resched_softirq(void)
4905 {
4906 	BUG_ON(!in_softirq());
4907 
4908 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4909 		local_bh_enable();
4910 		preempt_schedule_common();
4911 		local_bh_disable();
4912 		return 1;
4913 	}
4914 	return 0;
4915 }
4916 EXPORT_SYMBOL(__cond_resched_softirq);
4917 
4918 /**
4919  * yield - yield the current processor to other threads.
4920  *
4921  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4922  *
4923  * The scheduler is at all times free to pick the calling task as the most
4924  * eligible task to run, if removing the yield() call from your code breaks
4925  * it, its already broken.
4926  *
4927  * Typical broken usage is:
4928  *
4929  * while (!event)
4930  * 	yield();
4931  *
4932  * where one assumes that yield() will let 'the other' process run that will
4933  * make event true. If the current task is a SCHED_FIFO task that will never
4934  * happen. Never use yield() as a progress guarantee!!
4935  *
4936  * If you want to use yield() to wait for something, use wait_event().
4937  * If you want to use yield() to be 'nice' for others, use cond_resched().
4938  * If you still want to use yield(), do not!
4939  */
4940 void __sched yield(void)
4941 {
4942 	set_current_state(TASK_RUNNING);
4943 	sys_sched_yield();
4944 }
4945 EXPORT_SYMBOL(yield);
4946 
4947 /**
4948  * yield_to - yield the current processor to another thread in
4949  * your thread group, or accelerate that thread toward the
4950  * processor it's on.
4951  * @p: target task
4952  * @preempt: whether task preemption is allowed or not
4953  *
4954  * It's the caller's job to ensure that the target task struct
4955  * can't go away on us before we can do any checks.
4956  *
4957  * Return:
4958  *	true (>0) if we indeed boosted the target task.
4959  *	false (0) if we failed to boost the target.
4960  *	-ESRCH if there's no task to yield to.
4961  */
4962 int __sched yield_to(struct task_struct *p, bool preempt)
4963 {
4964 	struct task_struct *curr = current;
4965 	struct rq *rq, *p_rq;
4966 	unsigned long flags;
4967 	int yielded = 0;
4968 
4969 	local_irq_save(flags);
4970 	rq = this_rq();
4971 
4972 again:
4973 	p_rq = task_rq(p);
4974 	/*
4975 	 * If we're the only runnable task on the rq and target rq also
4976 	 * has only one task, there's absolutely no point in yielding.
4977 	 */
4978 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4979 		yielded = -ESRCH;
4980 		goto out_irq;
4981 	}
4982 
4983 	double_rq_lock(rq, p_rq);
4984 	if (task_rq(p) != p_rq) {
4985 		double_rq_unlock(rq, p_rq);
4986 		goto again;
4987 	}
4988 
4989 	if (!curr->sched_class->yield_to_task)
4990 		goto out_unlock;
4991 
4992 	if (curr->sched_class != p->sched_class)
4993 		goto out_unlock;
4994 
4995 	if (task_running(p_rq, p) || p->state)
4996 		goto out_unlock;
4997 
4998 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4999 	if (yielded) {
5000 		schedstat_inc(rq, yld_count);
5001 		/*
5002 		 * Make p's CPU reschedule; pick_next_entity takes care of
5003 		 * fairness.
5004 		 */
5005 		if (preempt && rq != p_rq)
5006 			resched_curr(p_rq);
5007 	}
5008 
5009 out_unlock:
5010 	double_rq_unlock(rq, p_rq);
5011 out_irq:
5012 	local_irq_restore(flags);
5013 
5014 	if (yielded > 0)
5015 		schedule();
5016 
5017 	return yielded;
5018 }
5019 EXPORT_SYMBOL_GPL(yield_to);
5020 
5021 /*
5022  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5023  * that process accounting knows that this is a task in IO wait state.
5024  */
5025 long __sched io_schedule_timeout(long timeout)
5026 {
5027 	int old_iowait = current->in_iowait;
5028 	struct rq *rq;
5029 	long ret;
5030 
5031 	current->in_iowait = 1;
5032 	blk_schedule_flush_plug(current);
5033 
5034 	delayacct_blkio_start();
5035 	rq = raw_rq();
5036 	atomic_inc(&rq->nr_iowait);
5037 	ret = schedule_timeout(timeout);
5038 	current->in_iowait = old_iowait;
5039 	atomic_dec(&rq->nr_iowait);
5040 	delayacct_blkio_end();
5041 
5042 	return ret;
5043 }
5044 EXPORT_SYMBOL(io_schedule_timeout);
5045 
5046 /**
5047  * sys_sched_get_priority_max - return maximum RT priority.
5048  * @policy: scheduling class.
5049  *
5050  * Return: On success, this syscall returns the maximum
5051  * rt_priority that can be used by a given scheduling class.
5052  * On failure, a negative error code is returned.
5053  */
5054 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5055 {
5056 	int ret = -EINVAL;
5057 
5058 	switch (policy) {
5059 	case SCHED_FIFO:
5060 	case SCHED_RR:
5061 		ret = MAX_USER_RT_PRIO-1;
5062 		break;
5063 	case SCHED_DEADLINE:
5064 	case SCHED_NORMAL:
5065 	case SCHED_BATCH:
5066 	case SCHED_IDLE:
5067 		ret = 0;
5068 		break;
5069 	}
5070 	return ret;
5071 }
5072 
5073 /**
5074  * sys_sched_get_priority_min - return minimum RT priority.
5075  * @policy: scheduling class.
5076  *
5077  * Return: On success, this syscall returns the minimum
5078  * rt_priority that can be used by a given scheduling class.
5079  * On failure, a negative error code is returned.
5080  */
5081 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5082 {
5083 	int ret = -EINVAL;
5084 
5085 	switch (policy) {
5086 	case SCHED_FIFO:
5087 	case SCHED_RR:
5088 		ret = 1;
5089 		break;
5090 	case SCHED_DEADLINE:
5091 	case SCHED_NORMAL:
5092 	case SCHED_BATCH:
5093 	case SCHED_IDLE:
5094 		ret = 0;
5095 	}
5096 	return ret;
5097 }
5098 
5099 /**
5100  * sys_sched_rr_get_interval - return the default timeslice of a process.
5101  * @pid: pid of the process.
5102  * @interval: userspace pointer to the timeslice value.
5103  *
5104  * this syscall writes the default timeslice value of a given process
5105  * into the user-space timespec buffer. A value of '0' means infinity.
5106  *
5107  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5108  * an error code.
5109  */
5110 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5111 		struct timespec __user *, interval)
5112 {
5113 	struct task_struct *p;
5114 	unsigned int time_slice;
5115 	struct rq_flags rf;
5116 	struct timespec t;
5117 	struct rq *rq;
5118 	int retval;
5119 
5120 	if (pid < 0)
5121 		return -EINVAL;
5122 
5123 	retval = -ESRCH;
5124 	rcu_read_lock();
5125 	p = find_process_by_pid(pid);
5126 	if (!p)
5127 		goto out_unlock;
5128 
5129 	retval = security_task_getscheduler(p);
5130 	if (retval)
5131 		goto out_unlock;
5132 
5133 	rq = task_rq_lock(p, &rf);
5134 	time_slice = 0;
5135 	if (p->sched_class->get_rr_interval)
5136 		time_slice = p->sched_class->get_rr_interval(rq, p);
5137 	task_rq_unlock(rq, p, &rf);
5138 
5139 	rcu_read_unlock();
5140 	jiffies_to_timespec(time_slice, &t);
5141 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5142 	return retval;
5143 
5144 out_unlock:
5145 	rcu_read_unlock();
5146 	return retval;
5147 }
5148 
5149 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5150 
5151 void sched_show_task(struct task_struct *p)
5152 {
5153 	unsigned long free = 0;
5154 	int ppid;
5155 	unsigned long state = p->state;
5156 
5157 	if (state)
5158 		state = __ffs(state) + 1;
5159 	printk(KERN_INFO "%-15.15s %c", p->comm,
5160 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5161 #if BITS_PER_LONG == 32
5162 	if (state == TASK_RUNNING)
5163 		printk(KERN_CONT " running  ");
5164 	else
5165 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5166 #else
5167 	if (state == TASK_RUNNING)
5168 		printk(KERN_CONT "  running task    ");
5169 	else
5170 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5171 #endif
5172 #ifdef CONFIG_DEBUG_STACK_USAGE
5173 	free = stack_not_used(p);
5174 #endif
5175 	ppid = 0;
5176 	rcu_read_lock();
5177 	if (pid_alive(p))
5178 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5179 	rcu_read_unlock();
5180 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5181 		task_pid_nr(p), ppid,
5182 		(unsigned long)task_thread_info(p)->flags);
5183 
5184 	print_worker_info(KERN_INFO, p);
5185 	show_stack(p, NULL);
5186 }
5187 
5188 void show_state_filter(unsigned long state_filter)
5189 {
5190 	struct task_struct *g, *p;
5191 
5192 #if BITS_PER_LONG == 32
5193 	printk(KERN_INFO
5194 		"  task                PC stack   pid father\n");
5195 #else
5196 	printk(KERN_INFO
5197 		"  task                        PC stack   pid father\n");
5198 #endif
5199 	rcu_read_lock();
5200 	for_each_process_thread(g, p) {
5201 		/*
5202 		 * reset the NMI-timeout, listing all files on a slow
5203 		 * console might take a lot of time:
5204 		 * Also, reset softlockup watchdogs on all CPUs, because
5205 		 * another CPU might be blocked waiting for us to process
5206 		 * an IPI.
5207 		 */
5208 		touch_nmi_watchdog();
5209 		touch_all_softlockup_watchdogs();
5210 		if (!state_filter || (p->state & state_filter))
5211 			sched_show_task(p);
5212 	}
5213 
5214 #ifdef CONFIG_SCHED_DEBUG
5215 	if (!state_filter)
5216 		sysrq_sched_debug_show();
5217 #endif
5218 	rcu_read_unlock();
5219 	/*
5220 	 * Only show locks if all tasks are dumped:
5221 	 */
5222 	if (!state_filter)
5223 		debug_show_all_locks();
5224 }
5225 
5226 void init_idle_bootup_task(struct task_struct *idle)
5227 {
5228 	idle->sched_class = &idle_sched_class;
5229 }
5230 
5231 /**
5232  * init_idle - set up an idle thread for a given CPU
5233  * @idle: task in question
5234  * @cpu: cpu the idle task belongs to
5235  *
5236  * NOTE: this function does not set the idle thread's NEED_RESCHED
5237  * flag, to make booting more robust.
5238  */
5239 void init_idle(struct task_struct *idle, int cpu)
5240 {
5241 	struct rq *rq = cpu_rq(cpu);
5242 	unsigned long flags;
5243 
5244 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5245 	raw_spin_lock(&rq->lock);
5246 
5247 	__sched_fork(0, idle);
5248 	idle->state = TASK_RUNNING;
5249 	idle->se.exec_start = sched_clock();
5250 
5251 	kasan_unpoison_task_stack(idle);
5252 
5253 #ifdef CONFIG_SMP
5254 	/*
5255 	 * Its possible that init_idle() gets called multiple times on a task,
5256 	 * in that case do_set_cpus_allowed() will not do the right thing.
5257 	 *
5258 	 * And since this is boot we can forgo the serialization.
5259 	 */
5260 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5261 #endif
5262 	/*
5263 	 * We're having a chicken and egg problem, even though we are
5264 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5265 	 * lockdep check in task_group() will fail.
5266 	 *
5267 	 * Similar case to sched_fork(). / Alternatively we could
5268 	 * use task_rq_lock() here and obtain the other rq->lock.
5269 	 *
5270 	 * Silence PROVE_RCU
5271 	 */
5272 	rcu_read_lock();
5273 	__set_task_cpu(idle, cpu);
5274 	rcu_read_unlock();
5275 
5276 	rq->curr = rq->idle = idle;
5277 	idle->on_rq = TASK_ON_RQ_QUEUED;
5278 #ifdef CONFIG_SMP
5279 	idle->on_cpu = 1;
5280 #endif
5281 	raw_spin_unlock(&rq->lock);
5282 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5283 
5284 	/* Set the preempt count _outside_ the spinlocks! */
5285 	init_idle_preempt_count(idle, cpu);
5286 
5287 	/*
5288 	 * The idle tasks have their own, simple scheduling class:
5289 	 */
5290 	idle->sched_class = &idle_sched_class;
5291 	ftrace_graph_init_idle_task(idle, cpu);
5292 	vtime_init_idle(idle, cpu);
5293 #ifdef CONFIG_SMP
5294 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5295 #endif
5296 }
5297 
5298 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5299 			      const struct cpumask *trial)
5300 {
5301 	int ret = 1, trial_cpus;
5302 	struct dl_bw *cur_dl_b;
5303 	unsigned long flags;
5304 
5305 	if (!cpumask_weight(cur))
5306 		return ret;
5307 
5308 	rcu_read_lock_sched();
5309 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5310 	trial_cpus = cpumask_weight(trial);
5311 
5312 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5313 	if (cur_dl_b->bw != -1 &&
5314 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5315 		ret = 0;
5316 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5317 	rcu_read_unlock_sched();
5318 
5319 	return ret;
5320 }
5321 
5322 int task_can_attach(struct task_struct *p,
5323 		    const struct cpumask *cs_cpus_allowed)
5324 {
5325 	int ret = 0;
5326 
5327 	/*
5328 	 * Kthreads which disallow setaffinity shouldn't be moved
5329 	 * to a new cpuset; we don't want to change their cpu
5330 	 * affinity and isolating such threads by their set of
5331 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5332 	 * applicable for such threads.  This prevents checking for
5333 	 * success of set_cpus_allowed_ptr() on all attached tasks
5334 	 * before cpus_allowed may be changed.
5335 	 */
5336 	if (p->flags & PF_NO_SETAFFINITY) {
5337 		ret = -EINVAL;
5338 		goto out;
5339 	}
5340 
5341 #ifdef CONFIG_SMP
5342 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5343 					      cs_cpus_allowed)) {
5344 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5345 							cs_cpus_allowed);
5346 		struct dl_bw *dl_b;
5347 		bool overflow;
5348 		int cpus;
5349 		unsigned long flags;
5350 
5351 		rcu_read_lock_sched();
5352 		dl_b = dl_bw_of(dest_cpu);
5353 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5354 		cpus = dl_bw_cpus(dest_cpu);
5355 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5356 		if (overflow)
5357 			ret = -EBUSY;
5358 		else {
5359 			/*
5360 			 * We reserve space for this task in the destination
5361 			 * root_domain, as we can't fail after this point.
5362 			 * We will free resources in the source root_domain
5363 			 * later on (see set_cpus_allowed_dl()).
5364 			 */
5365 			__dl_add(dl_b, p->dl.dl_bw);
5366 		}
5367 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5368 		rcu_read_unlock_sched();
5369 
5370 	}
5371 #endif
5372 out:
5373 	return ret;
5374 }
5375 
5376 #ifdef CONFIG_SMP
5377 
5378 static bool sched_smp_initialized __read_mostly;
5379 
5380 #ifdef CONFIG_NUMA_BALANCING
5381 /* Migrate current task p to target_cpu */
5382 int migrate_task_to(struct task_struct *p, int target_cpu)
5383 {
5384 	struct migration_arg arg = { p, target_cpu };
5385 	int curr_cpu = task_cpu(p);
5386 
5387 	if (curr_cpu == target_cpu)
5388 		return 0;
5389 
5390 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5391 		return -EINVAL;
5392 
5393 	/* TODO: This is not properly updating schedstats */
5394 
5395 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5396 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5397 }
5398 
5399 /*
5400  * Requeue a task on a given node and accurately track the number of NUMA
5401  * tasks on the runqueues
5402  */
5403 void sched_setnuma(struct task_struct *p, int nid)
5404 {
5405 	bool queued, running;
5406 	struct rq_flags rf;
5407 	struct rq *rq;
5408 
5409 	rq = task_rq_lock(p, &rf);
5410 	queued = task_on_rq_queued(p);
5411 	running = task_current(rq, p);
5412 
5413 	if (queued)
5414 		dequeue_task(rq, p, DEQUEUE_SAVE);
5415 	if (running)
5416 		put_prev_task(rq, p);
5417 
5418 	p->numa_preferred_nid = nid;
5419 
5420 	if (running)
5421 		p->sched_class->set_curr_task(rq);
5422 	if (queued)
5423 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5424 	task_rq_unlock(rq, p, &rf);
5425 }
5426 #endif /* CONFIG_NUMA_BALANCING */
5427 
5428 #ifdef CONFIG_HOTPLUG_CPU
5429 /*
5430  * Ensures that the idle task is using init_mm right before its cpu goes
5431  * offline.
5432  */
5433 void idle_task_exit(void)
5434 {
5435 	struct mm_struct *mm = current->active_mm;
5436 
5437 	BUG_ON(cpu_online(smp_processor_id()));
5438 
5439 	if (mm != &init_mm) {
5440 		switch_mm_irqs_off(mm, &init_mm, current);
5441 		finish_arch_post_lock_switch();
5442 	}
5443 	mmdrop(mm);
5444 }
5445 
5446 /*
5447  * Since this CPU is going 'away' for a while, fold any nr_active delta
5448  * we might have. Assumes we're called after migrate_tasks() so that the
5449  * nr_active count is stable. We need to take the teardown thread which
5450  * is calling this into account, so we hand in adjust = 1 to the load
5451  * calculation.
5452  *
5453  * Also see the comment "Global load-average calculations".
5454  */
5455 static void calc_load_migrate(struct rq *rq)
5456 {
5457 	long delta = calc_load_fold_active(rq, 1);
5458 	if (delta)
5459 		atomic_long_add(delta, &calc_load_tasks);
5460 }
5461 
5462 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5463 {
5464 }
5465 
5466 static const struct sched_class fake_sched_class = {
5467 	.put_prev_task = put_prev_task_fake,
5468 };
5469 
5470 static struct task_struct fake_task = {
5471 	/*
5472 	 * Avoid pull_{rt,dl}_task()
5473 	 */
5474 	.prio = MAX_PRIO + 1,
5475 	.sched_class = &fake_sched_class,
5476 };
5477 
5478 /*
5479  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5480  * try_to_wake_up()->select_task_rq().
5481  *
5482  * Called with rq->lock held even though we'er in stop_machine() and
5483  * there's no concurrency possible, we hold the required locks anyway
5484  * because of lock validation efforts.
5485  */
5486 static void migrate_tasks(struct rq *dead_rq)
5487 {
5488 	struct rq *rq = dead_rq;
5489 	struct task_struct *next, *stop = rq->stop;
5490 	struct pin_cookie cookie;
5491 	int dest_cpu;
5492 
5493 	/*
5494 	 * Fudge the rq selection such that the below task selection loop
5495 	 * doesn't get stuck on the currently eligible stop task.
5496 	 *
5497 	 * We're currently inside stop_machine() and the rq is either stuck
5498 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5499 	 * either way we should never end up calling schedule() until we're
5500 	 * done here.
5501 	 */
5502 	rq->stop = NULL;
5503 
5504 	/*
5505 	 * put_prev_task() and pick_next_task() sched
5506 	 * class method both need to have an up-to-date
5507 	 * value of rq->clock[_task]
5508 	 */
5509 	update_rq_clock(rq);
5510 
5511 	for (;;) {
5512 		/*
5513 		 * There's this thread running, bail when that's the only
5514 		 * remaining thread.
5515 		 */
5516 		if (rq->nr_running == 1)
5517 			break;
5518 
5519 		/*
5520 		 * pick_next_task assumes pinned rq->lock.
5521 		 */
5522 		cookie = lockdep_pin_lock(&rq->lock);
5523 		next = pick_next_task(rq, &fake_task, cookie);
5524 		BUG_ON(!next);
5525 		next->sched_class->put_prev_task(rq, next);
5526 
5527 		/*
5528 		 * Rules for changing task_struct::cpus_allowed are holding
5529 		 * both pi_lock and rq->lock, such that holding either
5530 		 * stabilizes the mask.
5531 		 *
5532 		 * Drop rq->lock is not quite as disastrous as it usually is
5533 		 * because !cpu_active at this point, which means load-balance
5534 		 * will not interfere. Also, stop-machine.
5535 		 */
5536 		lockdep_unpin_lock(&rq->lock, cookie);
5537 		raw_spin_unlock(&rq->lock);
5538 		raw_spin_lock(&next->pi_lock);
5539 		raw_spin_lock(&rq->lock);
5540 
5541 		/*
5542 		 * Since we're inside stop-machine, _nothing_ should have
5543 		 * changed the task, WARN if weird stuff happened, because in
5544 		 * that case the above rq->lock drop is a fail too.
5545 		 */
5546 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5547 			raw_spin_unlock(&next->pi_lock);
5548 			continue;
5549 		}
5550 
5551 		/* Find suitable destination for @next, with force if needed. */
5552 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5553 
5554 		rq = __migrate_task(rq, next, dest_cpu);
5555 		if (rq != dead_rq) {
5556 			raw_spin_unlock(&rq->lock);
5557 			rq = dead_rq;
5558 			raw_spin_lock(&rq->lock);
5559 		}
5560 		raw_spin_unlock(&next->pi_lock);
5561 	}
5562 
5563 	rq->stop = stop;
5564 }
5565 #endif /* CONFIG_HOTPLUG_CPU */
5566 
5567 static void set_rq_online(struct rq *rq)
5568 {
5569 	if (!rq->online) {
5570 		const struct sched_class *class;
5571 
5572 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5573 		rq->online = 1;
5574 
5575 		for_each_class(class) {
5576 			if (class->rq_online)
5577 				class->rq_online(rq);
5578 		}
5579 	}
5580 }
5581 
5582 static void set_rq_offline(struct rq *rq)
5583 {
5584 	if (rq->online) {
5585 		const struct sched_class *class;
5586 
5587 		for_each_class(class) {
5588 			if (class->rq_offline)
5589 				class->rq_offline(rq);
5590 		}
5591 
5592 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5593 		rq->online = 0;
5594 	}
5595 }
5596 
5597 static void set_cpu_rq_start_time(unsigned int cpu)
5598 {
5599 	struct rq *rq = cpu_rq(cpu);
5600 
5601 	rq->age_stamp = sched_clock_cpu(cpu);
5602 }
5603 
5604 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5605 
5606 #ifdef CONFIG_SCHED_DEBUG
5607 
5608 static __read_mostly int sched_debug_enabled;
5609 
5610 static int __init sched_debug_setup(char *str)
5611 {
5612 	sched_debug_enabled = 1;
5613 
5614 	return 0;
5615 }
5616 early_param("sched_debug", sched_debug_setup);
5617 
5618 static inline bool sched_debug(void)
5619 {
5620 	return sched_debug_enabled;
5621 }
5622 
5623 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5624 				  struct cpumask *groupmask)
5625 {
5626 	struct sched_group *group = sd->groups;
5627 
5628 	cpumask_clear(groupmask);
5629 
5630 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5631 
5632 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5633 		printk("does not load-balance\n");
5634 		if (sd->parent)
5635 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5636 					" has parent");
5637 		return -1;
5638 	}
5639 
5640 	printk(KERN_CONT "span %*pbl level %s\n",
5641 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5642 
5643 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5644 		printk(KERN_ERR "ERROR: domain->span does not contain "
5645 				"CPU%d\n", cpu);
5646 	}
5647 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5648 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5649 				" CPU%d\n", cpu);
5650 	}
5651 
5652 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5653 	do {
5654 		if (!group) {
5655 			printk("\n");
5656 			printk(KERN_ERR "ERROR: group is NULL\n");
5657 			break;
5658 		}
5659 
5660 		if (!cpumask_weight(sched_group_cpus(group))) {
5661 			printk(KERN_CONT "\n");
5662 			printk(KERN_ERR "ERROR: empty group\n");
5663 			break;
5664 		}
5665 
5666 		if (!(sd->flags & SD_OVERLAP) &&
5667 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5668 			printk(KERN_CONT "\n");
5669 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5670 			break;
5671 		}
5672 
5673 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5674 
5675 		printk(KERN_CONT " %*pbl",
5676 		       cpumask_pr_args(sched_group_cpus(group)));
5677 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5678 			printk(KERN_CONT " (cpu_capacity = %d)",
5679 				group->sgc->capacity);
5680 		}
5681 
5682 		group = group->next;
5683 	} while (group != sd->groups);
5684 	printk(KERN_CONT "\n");
5685 
5686 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5687 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5688 
5689 	if (sd->parent &&
5690 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5691 		printk(KERN_ERR "ERROR: parent span is not a superset "
5692 			"of domain->span\n");
5693 	return 0;
5694 }
5695 
5696 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5697 {
5698 	int level = 0;
5699 
5700 	if (!sched_debug_enabled)
5701 		return;
5702 
5703 	if (!sd) {
5704 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5705 		return;
5706 	}
5707 
5708 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5709 
5710 	for (;;) {
5711 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5712 			break;
5713 		level++;
5714 		sd = sd->parent;
5715 		if (!sd)
5716 			break;
5717 	}
5718 }
5719 #else /* !CONFIG_SCHED_DEBUG */
5720 # define sched_domain_debug(sd, cpu) do { } while (0)
5721 static inline bool sched_debug(void)
5722 {
5723 	return false;
5724 }
5725 #endif /* CONFIG_SCHED_DEBUG */
5726 
5727 static int sd_degenerate(struct sched_domain *sd)
5728 {
5729 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5730 		return 1;
5731 
5732 	/* Following flags need at least 2 groups */
5733 	if (sd->flags & (SD_LOAD_BALANCE |
5734 			 SD_BALANCE_NEWIDLE |
5735 			 SD_BALANCE_FORK |
5736 			 SD_BALANCE_EXEC |
5737 			 SD_SHARE_CPUCAPACITY |
5738 			 SD_SHARE_PKG_RESOURCES |
5739 			 SD_SHARE_POWERDOMAIN)) {
5740 		if (sd->groups != sd->groups->next)
5741 			return 0;
5742 	}
5743 
5744 	/* Following flags don't use groups */
5745 	if (sd->flags & (SD_WAKE_AFFINE))
5746 		return 0;
5747 
5748 	return 1;
5749 }
5750 
5751 static int
5752 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5753 {
5754 	unsigned long cflags = sd->flags, pflags = parent->flags;
5755 
5756 	if (sd_degenerate(parent))
5757 		return 1;
5758 
5759 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5760 		return 0;
5761 
5762 	/* Flags needing groups don't count if only 1 group in parent */
5763 	if (parent->groups == parent->groups->next) {
5764 		pflags &= ~(SD_LOAD_BALANCE |
5765 				SD_BALANCE_NEWIDLE |
5766 				SD_BALANCE_FORK |
5767 				SD_BALANCE_EXEC |
5768 				SD_SHARE_CPUCAPACITY |
5769 				SD_SHARE_PKG_RESOURCES |
5770 				SD_PREFER_SIBLING |
5771 				SD_SHARE_POWERDOMAIN);
5772 		if (nr_node_ids == 1)
5773 			pflags &= ~SD_SERIALIZE;
5774 	}
5775 	if (~cflags & pflags)
5776 		return 0;
5777 
5778 	return 1;
5779 }
5780 
5781 static void free_rootdomain(struct rcu_head *rcu)
5782 {
5783 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5784 
5785 	cpupri_cleanup(&rd->cpupri);
5786 	cpudl_cleanup(&rd->cpudl);
5787 	free_cpumask_var(rd->dlo_mask);
5788 	free_cpumask_var(rd->rto_mask);
5789 	free_cpumask_var(rd->online);
5790 	free_cpumask_var(rd->span);
5791 	kfree(rd);
5792 }
5793 
5794 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5795 {
5796 	struct root_domain *old_rd = NULL;
5797 	unsigned long flags;
5798 
5799 	raw_spin_lock_irqsave(&rq->lock, flags);
5800 
5801 	if (rq->rd) {
5802 		old_rd = rq->rd;
5803 
5804 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5805 			set_rq_offline(rq);
5806 
5807 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5808 
5809 		/*
5810 		 * If we dont want to free the old_rd yet then
5811 		 * set old_rd to NULL to skip the freeing later
5812 		 * in this function:
5813 		 */
5814 		if (!atomic_dec_and_test(&old_rd->refcount))
5815 			old_rd = NULL;
5816 	}
5817 
5818 	atomic_inc(&rd->refcount);
5819 	rq->rd = rd;
5820 
5821 	cpumask_set_cpu(rq->cpu, rd->span);
5822 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5823 		set_rq_online(rq);
5824 
5825 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5826 
5827 	if (old_rd)
5828 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5829 }
5830 
5831 static int init_rootdomain(struct root_domain *rd)
5832 {
5833 	memset(rd, 0, sizeof(*rd));
5834 
5835 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5836 		goto out;
5837 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5838 		goto free_span;
5839 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5840 		goto free_online;
5841 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5842 		goto free_dlo_mask;
5843 
5844 	init_dl_bw(&rd->dl_bw);
5845 	if (cpudl_init(&rd->cpudl) != 0)
5846 		goto free_dlo_mask;
5847 
5848 	if (cpupri_init(&rd->cpupri) != 0)
5849 		goto free_rto_mask;
5850 	return 0;
5851 
5852 free_rto_mask:
5853 	free_cpumask_var(rd->rto_mask);
5854 free_dlo_mask:
5855 	free_cpumask_var(rd->dlo_mask);
5856 free_online:
5857 	free_cpumask_var(rd->online);
5858 free_span:
5859 	free_cpumask_var(rd->span);
5860 out:
5861 	return -ENOMEM;
5862 }
5863 
5864 /*
5865  * By default the system creates a single root-domain with all cpus as
5866  * members (mimicking the global state we have today).
5867  */
5868 struct root_domain def_root_domain;
5869 
5870 static void init_defrootdomain(void)
5871 {
5872 	init_rootdomain(&def_root_domain);
5873 
5874 	atomic_set(&def_root_domain.refcount, 1);
5875 }
5876 
5877 static struct root_domain *alloc_rootdomain(void)
5878 {
5879 	struct root_domain *rd;
5880 
5881 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5882 	if (!rd)
5883 		return NULL;
5884 
5885 	if (init_rootdomain(rd) != 0) {
5886 		kfree(rd);
5887 		return NULL;
5888 	}
5889 
5890 	return rd;
5891 }
5892 
5893 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5894 {
5895 	struct sched_group *tmp, *first;
5896 
5897 	if (!sg)
5898 		return;
5899 
5900 	first = sg;
5901 	do {
5902 		tmp = sg->next;
5903 
5904 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5905 			kfree(sg->sgc);
5906 
5907 		kfree(sg);
5908 		sg = tmp;
5909 	} while (sg != first);
5910 }
5911 
5912 static void free_sched_domain(struct rcu_head *rcu)
5913 {
5914 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5915 
5916 	/*
5917 	 * If its an overlapping domain it has private groups, iterate and
5918 	 * nuke them all.
5919 	 */
5920 	if (sd->flags & SD_OVERLAP) {
5921 		free_sched_groups(sd->groups, 1);
5922 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5923 		kfree(sd->groups->sgc);
5924 		kfree(sd->groups);
5925 	}
5926 	kfree(sd);
5927 }
5928 
5929 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5930 {
5931 	call_rcu(&sd->rcu, free_sched_domain);
5932 }
5933 
5934 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5935 {
5936 	for (; sd; sd = sd->parent)
5937 		destroy_sched_domain(sd, cpu);
5938 }
5939 
5940 /*
5941  * Keep a special pointer to the highest sched_domain that has
5942  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5943  * allows us to avoid some pointer chasing select_idle_sibling().
5944  *
5945  * Also keep a unique ID per domain (we use the first cpu number in
5946  * the cpumask of the domain), this allows us to quickly tell if
5947  * two cpus are in the same cache domain, see cpus_share_cache().
5948  */
5949 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5950 DEFINE_PER_CPU(int, sd_llc_size);
5951 DEFINE_PER_CPU(int, sd_llc_id);
5952 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5953 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5954 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5955 
5956 static void update_top_cache_domain(int cpu)
5957 {
5958 	struct sched_domain *sd;
5959 	struct sched_domain *busy_sd = NULL;
5960 	int id = cpu;
5961 	int size = 1;
5962 
5963 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5964 	if (sd) {
5965 		id = cpumask_first(sched_domain_span(sd));
5966 		size = cpumask_weight(sched_domain_span(sd));
5967 		busy_sd = sd->parent; /* sd_busy */
5968 	}
5969 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5970 
5971 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5972 	per_cpu(sd_llc_size, cpu) = size;
5973 	per_cpu(sd_llc_id, cpu) = id;
5974 
5975 	sd = lowest_flag_domain(cpu, SD_NUMA);
5976 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5977 
5978 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5979 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5980 }
5981 
5982 /*
5983  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5984  * hold the hotplug lock.
5985  */
5986 static void
5987 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5988 {
5989 	struct rq *rq = cpu_rq(cpu);
5990 	struct sched_domain *tmp;
5991 
5992 	/* Remove the sched domains which do not contribute to scheduling. */
5993 	for (tmp = sd; tmp; ) {
5994 		struct sched_domain *parent = tmp->parent;
5995 		if (!parent)
5996 			break;
5997 
5998 		if (sd_parent_degenerate(tmp, parent)) {
5999 			tmp->parent = parent->parent;
6000 			if (parent->parent)
6001 				parent->parent->child = tmp;
6002 			/*
6003 			 * Transfer SD_PREFER_SIBLING down in case of a
6004 			 * degenerate parent; the spans match for this
6005 			 * so the property transfers.
6006 			 */
6007 			if (parent->flags & SD_PREFER_SIBLING)
6008 				tmp->flags |= SD_PREFER_SIBLING;
6009 			destroy_sched_domain(parent, cpu);
6010 		} else
6011 			tmp = tmp->parent;
6012 	}
6013 
6014 	if (sd && sd_degenerate(sd)) {
6015 		tmp = sd;
6016 		sd = sd->parent;
6017 		destroy_sched_domain(tmp, cpu);
6018 		if (sd)
6019 			sd->child = NULL;
6020 	}
6021 
6022 	sched_domain_debug(sd, cpu);
6023 
6024 	rq_attach_root(rq, rd);
6025 	tmp = rq->sd;
6026 	rcu_assign_pointer(rq->sd, sd);
6027 	destroy_sched_domains(tmp, cpu);
6028 
6029 	update_top_cache_domain(cpu);
6030 }
6031 
6032 /* Setup the mask of cpus configured for isolated domains */
6033 static int __init isolated_cpu_setup(char *str)
6034 {
6035 	int ret;
6036 
6037 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6038 	ret = cpulist_parse(str, cpu_isolated_map);
6039 	if (ret) {
6040 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6041 		return 0;
6042 	}
6043 	return 1;
6044 }
6045 __setup("isolcpus=", isolated_cpu_setup);
6046 
6047 struct s_data {
6048 	struct sched_domain ** __percpu sd;
6049 	struct root_domain	*rd;
6050 };
6051 
6052 enum s_alloc {
6053 	sa_rootdomain,
6054 	sa_sd,
6055 	sa_sd_storage,
6056 	sa_none,
6057 };
6058 
6059 /*
6060  * Build an iteration mask that can exclude certain CPUs from the upwards
6061  * domain traversal.
6062  *
6063  * Asymmetric node setups can result in situations where the domain tree is of
6064  * unequal depth, make sure to skip domains that already cover the entire
6065  * range.
6066  *
6067  * In that case build_sched_domains() will have terminated the iteration early
6068  * and our sibling sd spans will be empty. Domains should always include the
6069  * cpu they're built on, so check that.
6070  *
6071  */
6072 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6073 {
6074 	const struct cpumask *span = sched_domain_span(sd);
6075 	struct sd_data *sdd = sd->private;
6076 	struct sched_domain *sibling;
6077 	int i;
6078 
6079 	for_each_cpu(i, span) {
6080 		sibling = *per_cpu_ptr(sdd->sd, i);
6081 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6082 			continue;
6083 
6084 		cpumask_set_cpu(i, sched_group_mask(sg));
6085 	}
6086 }
6087 
6088 /*
6089  * Return the canonical balance cpu for this group, this is the first cpu
6090  * of this group that's also in the iteration mask.
6091  */
6092 int group_balance_cpu(struct sched_group *sg)
6093 {
6094 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6095 }
6096 
6097 static int
6098 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6099 {
6100 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6101 	const struct cpumask *span = sched_domain_span(sd);
6102 	struct cpumask *covered = sched_domains_tmpmask;
6103 	struct sd_data *sdd = sd->private;
6104 	struct sched_domain *sibling;
6105 	int i;
6106 
6107 	cpumask_clear(covered);
6108 
6109 	for_each_cpu(i, span) {
6110 		struct cpumask *sg_span;
6111 
6112 		if (cpumask_test_cpu(i, covered))
6113 			continue;
6114 
6115 		sibling = *per_cpu_ptr(sdd->sd, i);
6116 
6117 		/* See the comment near build_group_mask(). */
6118 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6119 			continue;
6120 
6121 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6122 				GFP_KERNEL, cpu_to_node(cpu));
6123 
6124 		if (!sg)
6125 			goto fail;
6126 
6127 		sg_span = sched_group_cpus(sg);
6128 		if (sibling->child)
6129 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6130 		else
6131 			cpumask_set_cpu(i, sg_span);
6132 
6133 		cpumask_or(covered, covered, sg_span);
6134 
6135 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6136 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6137 			build_group_mask(sd, sg);
6138 
6139 		/*
6140 		 * Initialize sgc->capacity such that even if we mess up the
6141 		 * domains and no possible iteration will get us here, we won't
6142 		 * die on a /0 trap.
6143 		 */
6144 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6145 
6146 		/*
6147 		 * Make sure the first group of this domain contains the
6148 		 * canonical balance cpu. Otherwise the sched_domain iteration
6149 		 * breaks. See update_sg_lb_stats().
6150 		 */
6151 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6152 		    group_balance_cpu(sg) == cpu)
6153 			groups = sg;
6154 
6155 		if (!first)
6156 			first = sg;
6157 		if (last)
6158 			last->next = sg;
6159 		last = sg;
6160 		last->next = first;
6161 	}
6162 	sd->groups = groups;
6163 
6164 	return 0;
6165 
6166 fail:
6167 	free_sched_groups(first, 0);
6168 
6169 	return -ENOMEM;
6170 }
6171 
6172 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6173 {
6174 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6175 	struct sched_domain *child = sd->child;
6176 
6177 	if (child)
6178 		cpu = cpumask_first(sched_domain_span(child));
6179 
6180 	if (sg) {
6181 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6182 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6183 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6184 	}
6185 
6186 	return cpu;
6187 }
6188 
6189 /*
6190  * build_sched_groups will build a circular linked list of the groups
6191  * covered by the given span, and will set each group's ->cpumask correctly,
6192  * and ->cpu_capacity to 0.
6193  *
6194  * Assumes the sched_domain tree is fully constructed
6195  */
6196 static int
6197 build_sched_groups(struct sched_domain *sd, int cpu)
6198 {
6199 	struct sched_group *first = NULL, *last = NULL;
6200 	struct sd_data *sdd = sd->private;
6201 	const struct cpumask *span = sched_domain_span(sd);
6202 	struct cpumask *covered;
6203 	int i;
6204 
6205 	get_group(cpu, sdd, &sd->groups);
6206 	atomic_inc(&sd->groups->ref);
6207 
6208 	if (cpu != cpumask_first(span))
6209 		return 0;
6210 
6211 	lockdep_assert_held(&sched_domains_mutex);
6212 	covered = sched_domains_tmpmask;
6213 
6214 	cpumask_clear(covered);
6215 
6216 	for_each_cpu(i, span) {
6217 		struct sched_group *sg;
6218 		int group, j;
6219 
6220 		if (cpumask_test_cpu(i, covered))
6221 			continue;
6222 
6223 		group = get_group(i, sdd, &sg);
6224 		cpumask_setall(sched_group_mask(sg));
6225 
6226 		for_each_cpu(j, span) {
6227 			if (get_group(j, sdd, NULL) != group)
6228 				continue;
6229 
6230 			cpumask_set_cpu(j, covered);
6231 			cpumask_set_cpu(j, sched_group_cpus(sg));
6232 		}
6233 
6234 		if (!first)
6235 			first = sg;
6236 		if (last)
6237 			last->next = sg;
6238 		last = sg;
6239 	}
6240 	last->next = first;
6241 
6242 	return 0;
6243 }
6244 
6245 /*
6246  * Initialize sched groups cpu_capacity.
6247  *
6248  * cpu_capacity indicates the capacity of sched group, which is used while
6249  * distributing the load between different sched groups in a sched domain.
6250  * Typically cpu_capacity for all the groups in a sched domain will be same
6251  * unless there are asymmetries in the topology. If there are asymmetries,
6252  * group having more cpu_capacity will pickup more load compared to the
6253  * group having less cpu_capacity.
6254  */
6255 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6256 {
6257 	struct sched_group *sg = sd->groups;
6258 
6259 	WARN_ON(!sg);
6260 
6261 	do {
6262 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6263 		sg = sg->next;
6264 	} while (sg != sd->groups);
6265 
6266 	if (cpu != group_balance_cpu(sg))
6267 		return;
6268 
6269 	update_group_capacity(sd, cpu);
6270 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6271 }
6272 
6273 /*
6274  * Initializers for schedule domains
6275  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6276  */
6277 
6278 static int default_relax_domain_level = -1;
6279 int sched_domain_level_max;
6280 
6281 static int __init setup_relax_domain_level(char *str)
6282 {
6283 	if (kstrtoint(str, 0, &default_relax_domain_level))
6284 		pr_warn("Unable to set relax_domain_level\n");
6285 
6286 	return 1;
6287 }
6288 __setup("relax_domain_level=", setup_relax_domain_level);
6289 
6290 static void set_domain_attribute(struct sched_domain *sd,
6291 				 struct sched_domain_attr *attr)
6292 {
6293 	int request;
6294 
6295 	if (!attr || attr->relax_domain_level < 0) {
6296 		if (default_relax_domain_level < 0)
6297 			return;
6298 		else
6299 			request = default_relax_domain_level;
6300 	} else
6301 		request = attr->relax_domain_level;
6302 	if (request < sd->level) {
6303 		/* turn off idle balance on this domain */
6304 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6305 	} else {
6306 		/* turn on idle balance on this domain */
6307 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6308 	}
6309 }
6310 
6311 static void __sdt_free(const struct cpumask *cpu_map);
6312 static int __sdt_alloc(const struct cpumask *cpu_map);
6313 
6314 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6315 				 const struct cpumask *cpu_map)
6316 {
6317 	switch (what) {
6318 	case sa_rootdomain:
6319 		if (!atomic_read(&d->rd->refcount))
6320 			free_rootdomain(&d->rd->rcu); /* fall through */
6321 	case sa_sd:
6322 		free_percpu(d->sd); /* fall through */
6323 	case sa_sd_storage:
6324 		__sdt_free(cpu_map); /* fall through */
6325 	case sa_none:
6326 		break;
6327 	}
6328 }
6329 
6330 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6331 						   const struct cpumask *cpu_map)
6332 {
6333 	memset(d, 0, sizeof(*d));
6334 
6335 	if (__sdt_alloc(cpu_map))
6336 		return sa_sd_storage;
6337 	d->sd = alloc_percpu(struct sched_domain *);
6338 	if (!d->sd)
6339 		return sa_sd_storage;
6340 	d->rd = alloc_rootdomain();
6341 	if (!d->rd)
6342 		return sa_sd;
6343 	return sa_rootdomain;
6344 }
6345 
6346 /*
6347  * NULL the sd_data elements we've used to build the sched_domain and
6348  * sched_group structure so that the subsequent __free_domain_allocs()
6349  * will not free the data we're using.
6350  */
6351 static void claim_allocations(int cpu, struct sched_domain *sd)
6352 {
6353 	struct sd_data *sdd = sd->private;
6354 
6355 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6356 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6357 
6358 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6359 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6360 
6361 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6362 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6363 }
6364 
6365 #ifdef CONFIG_NUMA
6366 static int sched_domains_numa_levels;
6367 enum numa_topology_type sched_numa_topology_type;
6368 static int *sched_domains_numa_distance;
6369 int sched_max_numa_distance;
6370 static struct cpumask ***sched_domains_numa_masks;
6371 static int sched_domains_curr_level;
6372 #endif
6373 
6374 /*
6375  * SD_flags allowed in topology descriptions.
6376  *
6377  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6378  * SD_SHARE_PKG_RESOURCES - describes shared caches
6379  * SD_NUMA                - describes NUMA topologies
6380  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6381  *
6382  * Odd one out:
6383  * SD_ASYM_PACKING        - describes SMT quirks
6384  */
6385 #define TOPOLOGY_SD_FLAGS		\
6386 	(SD_SHARE_CPUCAPACITY |		\
6387 	 SD_SHARE_PKG_RESOURCES |	\
6388 	 SD_NUMA |			\
6389 	 SD_ASYM_PACKING |		\
6390 	 SD_SHARE_POWERDOMAIN)
6391 
6392 static struct sched_domain *
6393 sd_init(struct sched_domain_topology_level *tl, int cpu)
6394 {
6395 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6396 	int sd_weight, sd_flags = 0;
6397 
6398 #ifdef CONFIG_NUMA
6399 	/*
6400 	 * Ugly hack to pass state to sd_numa_mask()...
6401 	 */
6402 	sched_domains_curr_level = tl->numa_level;
6403 #endif
6404 
6405 	sd_weight = cpumask_weight(tl->mask(cpu));
6406 
6407 	if (tl->sd_flags)
6408 		sd_flags = (*tl->sd_flags)();
6409 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6410 			"wrong sd_flags in topology description\n"))
6411 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6412 
6413 	*sd = (struct sched_domain){
6414 		.min_interval		= sd_weight,
6415 		.max_interval		= 2*sd_weight,
6416 		.busy_factor		= 32,
6417 		.imbalance_pct		= 125,
6418 
6419 		.cache_nice_tries	= 0,
6420 		.busy_idx		= 0,
6421 		.idle_idx		= 0,
6422 		.newidle_idx		= 0,
6423 		.wake_idx		= 0,
6424 		.forkexec_idx		= 0,
6425 
6426 		.flags			= 1*SD_LOAD_BALANCE
6427 					| 1*SD_BALANCE_NEWIDLE
6428 					| 1*SD_BALANCE_EXEC
6429 					| 1*SD_BALANCE_FORK
6430 					| 0*SD_BALANCE_WAKE
6431 					| 1*SD_WAKE_AFFINE
6432 					| 0*SD_SHARE_CPUCAPACITY
6433 					| 0*SD_SHARE_PKG_RESOURCES
6434 					| 0*SD_SERIALIZE
6435 					| 0*SD_PREFER_SIBLING
6436 					| 0*SD_NUMA
6437 					| sd_flags
6438 					,
6439 
6440 		.last_balance		= jiffies,
6441 		.balance_interval	= sd_weight,
6442 		.smt_gain		= 0,
6443 		.max_newidle_lb_cost	= 0,
6444 		.next_decay_max_lb_cost	= jiffies,
6445 #ifdef CONFIG_SCHED_DEBUG
6446 		.name			= tl->name,
6447 #endif
6448 	};
6449 
6450 	/*
6451 	 * Convert topological properties into behaviour.
6452 	 */
6453 
6454 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6455 		sd->flags |= SD_PREFER_SIBLING;
6456 		sd->imbalance_pct = 110;
6457 		sd->smt_gain = 1178; /* ~15% */
6458 
6459 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6460 		sd->imbalance_pct = 117;
6461 		sd->cache_nice_tries = 1;
6462 		sd->busy_idx = 2;
6463 
6464 #ifdef CONFIG_NUMA
6465 	} else if (sd->flags & SD_NUMA) {
6466 		sd->cache_nice_tries = 2;
6467 		sd->busy_idx = 3;
6468 		sd->idle_idx = 2;
6469 
6470 		sd->flags |= SD_SERIALIZE;
6471 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6472 			sd->flags &= ~(SD_BALANCE_EXEC |
6473 				       SD_BALANCE_FORK |
6474 				       SD_WAKE_AFFINE);
6475 		}
6476 
6477 #endif
6478 	} else {
6479 		sd->flags |= SD_PREFER_SIBLING;
6480 		sd->cache_nice_tries = 1;
6481 		sd->busy_idx = 2;
6482 		sd->idle_idx = 1;
6483 	}
6484 
6485 	sd->private = &tl->data;
6486 
6487 	return sd;
6488 }
6489 
6490 /*
6491  * Topology list, bottom-up.
6492  */
6493 static struct sched_domain_topology_level default_topology[] = {
6494 #ifdef CONFIG_SCHED_SMT
6495 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6496 #endif
6497 #ifdef CONFIG_SCHED_MC
6498 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6499 #endif
6500 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6501 	{ NULL, },
6502 };
6503 
6504 static struct sched_domain_topology_level *sched_domain_topology =
6505 	default_topology;
6506 
6507 #define for_each_sd_topology(tl)			\
6508 	for (tl = sched_domain_topology; tl->mask; tl++)
6509 
6510 void set_sched_topology(struct sched_domain_topology_level *tl)
6511 {
6512 	sched_domain_topology = tl;
6513 }
6514 
6515 #ifdef CONFIG_NUMA
6516 
6517 static const struct cpumask *sd_numa_mask(int cpu)
6518 {
6519 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6520 }
6521 
6522 static void sched_numa_warn(const char *str)
6523 {
6524 	static int done = false;
6525 	int i,j;
6526 
6527 	if (done)
6528 		return;
6529 
6530 	done = true;
6531 
6532 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6533 
6534 	for (i = 0; i < nr_node_ids; i++) {
6535 		printk(KERN_WARNING "  ");
6536 		for (j = 0; j < nr_node_ids; j++)
6537 			printk(KERN_CONT "%02d ", node_distance(i,j));
6538 		printk(KERN_CONT "\n");
6539 	}
6540 	printk(KERN_WARNING "\n");
6541 }
6542 
6543 bool find_numa_distance(int distance)
6544 {
6545 	int i;
6546 
6547 	if (distance == node_distance(0, 0))
6548 		return true;
6549 
6550 	for (i = 0; i < sched_domains_numa_levels; i++) {
6551 		if (sched_domains_numa_distance[i] == distance)
6552 			return true;
6553 	}
6554 
6555 	return false;
6556 }
6557 
6558 /*
6559  * A system can have three types of NUMA topology:
6560  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6561  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6562  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6563  *
6564  * The difference between a glueless mesh topology and a backplane
6565  * topology lies in whether communication between not directly
6566  * connected nodes goes through intermediary nodes (where programs
6567  * could run), or through backplane controllers. This affects
6568  * placement of programs.
6569  *
6570  * The type of topology can be discerned with the following tests:
6571  * - If the maximum distance between any nodes is 1 hop, the system
6572  *   is directly connected.
6573  * - If for two nodes A and B, located N > 1 hops away from each other,
6574  *   there is an intermediary node C, which is < N hops away from both
6575  *   nodes A and B, the system is a glueless mesh.
6576  */
6577 static void init_numa_topology_type(void)
6578 {
6579 	int a, b, c, n;
6580 
6581 	n = sched_max_numa_distance;
6582 
6583 	if (sched_domains_numa_levels <= 1) {
6584 		sched_numa_topology_type = NUMA_DIRECT;
6585 		return;
6586 	}
6587 
6588 	for_each_online_node(a) {
6589 		for_each_online_node(b) {
6590 			/* Find two nodes furthest removed from each other. */
6591 			if (node_distance(a, b) < n)
6592 				continue;
6593 
6594 			/* Is there an intermediary node between a and b? */
6595 			for_each_online_node(c) {
6596 				if (node_distance(a, c) < n &&
6597 				    node_distance(b, c) < n) {
6598 					sched_numa_topology_type =
6599 							NUMA_GLUELESS_MESH;
6600 					return;
6601 				}
6602 			}
6603 
6604 			sched_numa_topology_type = NUMA_BACKPLANE;
6605 			return;
6606 		}
6607 	}
6608 }
6609 
6610 static void sched_init_numa(void)
6611 {
6612 	int next_distance, curr_distance = node_distance(0, 0);
6613 	struct sched_domain_topology_level *tl;
6614 	int level = 0;
6615 	int i, j, k;
6616 
6617 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6618 	if (!sched_domains_numa_distance)
6619 		return;
6620 
6621 	/*
6622 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6623 	 * unique distances in the node_distance() table.
6624 	 *
6625 	 * Assumes node_distance(0,j) includes all distances in
6626 	 * node_distance(i,j) in order to avoid cubic time.
6627 	 */
6628 	next_distance = curr_distance;
6629 	for (i = 0; i < nr_node_ids; i++) {
6630 		for (j = 0; j < nr_node_ids; j++) {
6631 			for (k = 0; k < nr_node_ids; k++) {
6632 				int distance = node_distance(i, k);
6633 
6634 				if (distance > curr_distance &&
6635 				    (distance < next_distance ||
6636 				     next_distance == curr_distance))
6637 					next_distance = distance;
6638 
6639 				/*
6640 				 * While not a strong assumption it would be nice to know
6641 				 * about cases where if node A is connected to B, B is not
6642 				 * equally connected to A.
6643 				 */
6644 				if (sched_debug() && node_distance(k, i) != distance)
6645 					sched_numa_warn("Node-distance not symmetric");
6646 
6647 				if (sched_debug() && i && !find_numa_distance(distance))
6648 					sched_numa_warn("Node-0 not representative");
6649 			}
6650 			if (next_distance != curr_distance) {
6651 				sched_domains_numa_distance[level++] = next_distance;
6652 				sched_domains_numa_levels = level;
6653 				curr_distance = next_distance;
6654 			} else break;
6655 		}
6656 
6657 		/*
6658 		 * In case of sched_debug() we verify the above assumption.
6659 		 */
6660 		if (!sched_debug())
6661 			break;
6662 	}
6663 
6664 	if (!level)
6665 		return;
6666 
6667 	/*
6668 	 * 'level' contains the number of unique distances, excluding the
6669 	 * identity distance node_distance(i,i).
6670 	 *
6671 	 * The sched_domains_numa_distance[] array includes the actual distance
6672 	 * numbers.
6673 	 */
6674 
6675 	/*
6676 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6677 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6678 	 * the array will contain less then 'level' members. This could be
6679 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6680 	 * in other functions.
6681 	 *
6682 	 * We reset it to 'level' at the end of this function.
6683 	 */
6684 	sched_domains_numa_levels = 0;
6685 
6686 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6687 	if (!sched_domains_numa_masks)
6688 		return;
6689 
6690 	/*
6691 	 * Now for each level, construct a mask per node which contains all
6692 	 * cpus of nodes that are that many hops away from us.
6693 	 */
6694 	for (i = 0; i < level; i++) {
6695 		sched_domains_numa_masks[i] =
6696 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6697 		if (!sched_domains_numa_masks[i])
6698 			return;
6699 
6700 		for (j = 0; j < nr_node_ids; j++) {
6701 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6702 			if (!mask)
6703 				return;
6704 
6705 			sched_domains_numa_masks[i][j] = mask;
6706 
6707 			for_each_node(k) {
6708 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6709 					continue;
6710 
6711 				cpumask_or(mask, mask, cpumask_of_node(k));
6712 			}
6713 		}
6714 	}
6715 
6716 	/* Compute default topology size */
6717 	for (i = 0; sched_domain_topology[i].mask; i++);
6718 
6719 	tl = kzalloc((i + level + 1) *
6720 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6721 	if (!tl)
6722 		return;
6723 
6724 	/*
6725 	 * Copy the default topology bits..
6726 	 */
6727 	for (i = 0; sched_domain_topology[i].mask; i++)
6728 		tl[i] = sched_domain_topology[i];
6729 
6730 	/*
6731 	 * .. and append 'j' levels of NUMA goodness.
6732 	 */
6733 	for (j = 0; j < level; i++, j++) {
6734 		tl[i] = (struct sched_domain_topology_level){
6735 			.mask = sd_numa_mask,
6736 			.sd_flags = cpu_numa_flags,
6737 			.flags = SDTL_OVERLAP,
6738 			.numa_level = j,
6739 			SD_INIT_NAME(NUMA)
6740 		};
6741 	}
6742 
6743 	sched_domain_topology = tl;
6744 
6745 	sched_domains_numa_levels = level;
6746 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6747 
6748 	init_numa_topology_type();
6749 }
6750 
6751 static void sched_domains_numa_masks_set(unsigned int cpu)
6752 {
6753 	int node = cpu_to_node(cpu);
6754 	int i, j;
6755 
6756 	for (i = 0; i < sched_domains_numa_levels; i++) {
6757 		for (j = 0; j < nr_node_ids; j++) {
6758 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6759 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6760 		}
6761 	}
6762 }
6763 
6764 static void sched_domains_numa_masks_clear(unsigned int cpu)
6765 {
6766 	int i, j;
6767 
6768 	for (i = 0; i < sched_domains_numa_levels; i++) {
6769 		for (j = 0; j < nr_node_ids; j++)
6770 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6771 	}
6772 }
6773 
6774 #else
6775 static inline void sched_init_numa(void) { }
6776 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6777 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6778 #endif /* CONFIG_NUMA */
6779 
6780 static int __sdt_alloc(const struct cpumask *cpu_map)
6781 {
6782 	struct sched_domain_topology_level *tl;
6783 	int j;
6784 
6785 	for_each_sd_topology(tl) {
6786 		struct sd_data *sdd = &tl->data;
6787 
6788 		sdd->sd = alloc_percpu(struct sched_domain *);
6789 		if (!sdd->sd)
6790 			return -ENOMEM;
6791 
6792 		sdd->sg = alloc_percpu(struct sched_group *);
6793 		if (!sdd->sg)
6794 			return -ENOMEM;
6795 
6796 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6797 		if (!sdd->sgc)
6798 			return -ENOMEM;
6799 
6800 		for_each_cpu(j, cpu_map) {
6801 			struct sched_domain *sd;
6802 			struct sched_group *sg;
6803 			struct sched_group_capacity *sgc;
6804 
6805 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6806 					GFP_KERNEL, cpu_to_node(j));
6807 			if (!sd)
6808 				return -ENOMEM;
6809 
6810 			*per_cpu_ptr(sdd->sd, j) = sd;
6811 
6812 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6813 					GFP_KERNEL, cpu_to_node(j));
6814 			if (!sg)
6815 				return -ENOMEM;
6816 
6817 			sg->next = sg;
6818 
6819 			*per_cpu_ptr(sdd->sg, j) = sg;
6820 
6821 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6822 					GFP_KERNEL, cpu_to_node(j));
6823 			if (!sgc)
6824 				return -ENOMEM;
6825 
6826 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6827 		}
6828 	}
6829 
6830 	return 0;
6831 }
6832 
6833 static void __sdt_free(const struct cpumask *cpu_map)
6834 {
6835 	struct sched_domain_topology_level *tl;
6836 	int j;
6837 
6838 	for_each_sd_topology(tl) {
6839 		struct sd_data *sdd = &tl->data;
6840 
6841 		for_each_cpu(j, cpu_map) {
6842 			struct sched_domain *sd;
6843 
6844 			if (sdd->sd) {
6845 				sd = *per_cpu_ptr(sdd->sd, j);
6846 				if (sd && (sd->flags & SD_OVERLAP))
6847 					free_sched_groups(sd->groups, 0);
6848 				kfree(*per_cpu_ptr(sdd->sd, j));
6849 			}
6850 
6851 			if (sdd->sg)
6852 				kfree(*per_cpu_ptr(sdd->sg, j));
6853 			if (sdd->sgc)
6854 				kfree(*per_cpu_ptr(sdd->sgc, j));
6855 		}
6856 		free_percpu(sdd->sd);
6857 		sdd->sd = NULL;
6858 		free_percpu(sdd->sg);
6859 		sdd->sg = NULL;
6860 		free_percpu(sdd->sgc);
6861 		sdd->sgc = NULL;
6862 	}
6863 }
6864 
6865 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6866 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6867 		struct sched_domain *child, int cpu)
6868 {
6869 	struct sched_domain *sd = sd_init(tl, cpu);
6870 	if (!sd)
6871 		return child;
6872 
6873 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6874 	if (child) {
6875 		sd->level = child->level + 1;
6876 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6877 		child->parent = sd;
6878 		sd->child = child;
6879 
6880 		if (!cpumask_subset(sched_domain_span(child),
6881 				    sched_domain_span(sd))) {
6882 			pr_err("BUG: arch topology borken\n");
6883 #ifdef CONFIG_SCHED_DEBUG
6884 			pr_err("     the %s domain not a subset of the %s domain\n",
6885 					child->name, sd->name);
6886 #endif
6887 			/* Fixup, ensure @sd has at least @child cpus. */
6888 			cpumask_or(sched_domain_span(sd),
6889 				   sched_domain_span(sd),
6890 				   sched_domain_span(child));
6891 		}
6892 
6893 	}
6894 	set_domain_attribute(sd, attr);
6895 
6896 	return sd;
6897 }
6898 
6899 /*
6900  * Build sched domains for a given set of cpus and attach the sched domains
6901  * to the individual cpus
6902  */
6903 static int build_sched_domains(const struct cpumask *cpu_map,
6904 			       struct sched_domain_attr *attr)
6905 {
6906 	enum s_alloc alloc_state;
6907 	struct sched_domain *sd;
6908 	struct s_data d;
6909 	int i, ret = -ENOMEM;
6910 
6911 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6912 	if (alloc_state != sa_rootdomain)
6913 		goto error;
6914 
6915 	/* Set up domains for cpus specified by the cpu_map. */
6916 	for_each_cpu(i, cpu_map) {
6917 		struct sched_domain_topology_level *tl;
6918 
6919 		sd = NULL;
6920 		for_each_sd_topology(tl) {
6921 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6922 			if (tl == sched_domain_topology)
6923 				*per_cpu_ptr(d.sd, i) = sd;
6924 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6925 				sd->flags |= SD_OVERLAP;
6926 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6927 				break;
6928 		}
6929 	}
6930 
6931 	/* Build the groups for the domains */
6932 	for_each_cpu(i, cpu_map) {
6933 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6934 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6935 			if (sd->flags & SD_OVERLAP) {
6936 				if (build_overlap_sched_groups(sd, i))
6937 					goto error;
6938 			} else {
6939 				if (build_sched_groups(sd, i))
6940 					goto error;
6941 			}
6942 		}
6943 	}
6944 
6945 	/* Calculate CPU capacity for physical packages and nodes */
6946 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6947 		if (!cpumask_test_cpu(i, cpu_map))
6948 			continue;
6949 
6950 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6951 			claim_allocations(i, sd);
6952 			init_sched_groups_capacity(i, sd);
6953 		}
6954 	}
6955 
6956 	/* Attach the domains */
6957 	rcu_read_lock();
6958 	for_each_cpu(i, cpu_map) {
6959 		sd = *per_cpu_ptr(d.sd, i);
6960 		cpu_attach_domain(sd, d.rd, i);
6961 	}
6962 	rcu_read_unlock();
6963 
6964 	ret = 0;
6965 error:
6966 	__free_domain_allocs(&d, alloc_state, cpu_map);
6967 	return ret;
6968 }
6969 
6970 static cpumask_var_t *doms_cur;	/* current sched domains */
6971 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6972 static struct sched_domain_attr *dattr_cur;
6973 				/* attribues of custom domains in 'doms_cur' */
6974 
6975 /*
6976  * Special case: If a kmalloc of a doms_cur partition (array of
6977  * cpumask) fails, then fallback to a single sched domain,
6978  * as determined by the single cpumask fallback_doms.
6979  */
6980 static cpumask_var_t fallback_doms;
6981 
6982 /*
6983  * arch_update_cpu_topology lets virtualized architectures update the
6984  * cpu core maps. It is supposed to return 1 if the topology changed
6985  * or 0 if it stayed the same.
6986  */
6987 int __weak arch_update_cpu_topology(void)
6988 {
6989 	return 0;
6990 }
6991 
6992 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6993 {
6994 	int i;
6995 	cpumask_var_t *doms;
6996 
6997 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6998 	if (!doms)
6999 		return NULL;
7000 	for (i = 0; i < ndoms; i++) {
7001 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7002 			free_sched_domains(doms, i);
7003 			return NULL;
7004 		}
7005 	}
7006 	return doms;
7007 }
7008 
7009 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7010 {
7011 	unsigned int i;
7012 	for (i = 0; i < ndoms; i++)
7013 		free_cpumask_var(doms[i]);
7014 	kfree(doms);
7015 }
7016 
7017 /*
7018  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7019  * For now this just excludes isolated cpus, but could be used to
7020  * exclude other special cases in the future.
7021  */
7022 static int init_sched_domains(const struct cpumask *cpu_map)
7023 {
7024 	int err;
7025 
7026 	arch_update_cpu_topology();
7027 	ndoms_cur = 1;
7028 	doms_cur = alloc_sched_domains(ndoms_cur);
7029 	if (!doms_cur)
7030 		doms_cur = &fallback_doms;
7031 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7032 	err = build_sched_domains(doms_cur[0], NULL);
7033 	register_sched_domain_sysctl();
7034 
7035 	return err;
7036 }
7037 
7038 /*
7039  * Detach sched domains from a group of cpus specified in cpu_map
7040  * These cpus will now be attached to the NULL domain
7041  */
7042 static void detach_destroy_domains(const struct cpumask *cpu_map)
7043 {
7044 	int i;
7045 
7046 	rcu_read_lock();
7047 	for_each_cpu(i, cpu_map)
7048 		cpu_attach_domain(NULL, &def_root_domain, i);
7049 	rcu_read_unlock();
7050 }
7051 
7052 /* handle null as "default" */
7053 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7054 			struct sched_domain_attr *new, int idx_new)
7055 {
7056 	struct sched_domain_attr tmp;
7057 
7058 	/* fast path */
7059 	if (!new && !cur)
7060 		return 1;
7061 
7062 	tmp = SD_ATTR_INIT;
7063 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7064 			new ? (new + idx_new) : &tmp,
7065 			sizeof(struct sched_domain_attr));
7066 }
7067 
7068 /*
7069  * Partition sched domains as specified by the 'ndoms_new'
7070  * cpumasks in the array doms_new[] of cpumasks. This compares
7071  * doms_new[] to the current sched domain partitioning, doms_cur[].
7072  * It destroys each deleted domain and builds each new domain.
7073  *
7074  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7075  * The masks don't intersect (don't overlap.) We should setup one
7076  * sched domain for each mask. CPUs not in any of the cpumasks will
7077  * not be load balanced. If the same cpumask appears both in the
7078  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7079  * it as it is.
7080  *
7081  * The passed in 'doms_new' should be allocated using
7082  * alloc_sched_domains.  This routine takes ownership of it and will
7083  * free_sched_domains it when done with it. If the caller failed the
7084  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7085  * and partition_sched_domains() will fallback to the single partition
7086  * 'fallback_doms', it also forces the domains to be rebuilt.
7087  *
7088  * If doms_new == NULL it will be replaced with cpu_online_mask.
7089  * ndoms_new == 0 is a special case for destroying existing domains,
7090  * and it will not create the default domain.
7091  *
7092  * Call with hotplug lock held
7093  */
7094 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7095 			     struct sched_domain_attr *dattr_new)
7096 {
7097 	int i, j, n;
7098 	int new_topology;
7099 
7100 	mutex_lock(&sched_domains_mutex);
7101 
7102 	/* always unregister in case we don't destroy any domains */
7103 	unregister_sched_domain_sysctl();
7104 
7105 	/* Let architecture update cpu core mappings. */
7106 	new_topology = arch_update_cpu_topology();
7107 
7108 	n = doms_new ? ndoms_new : 0;
7109 
7110 	/* Destroy deleted domains */
7111 	for (i = 0; i < ndoms_cur; i++) {
7112 		for (j = 0; j < n && !new_topology; j++) {
7113 			if (cpumask_equal(doms_cur[i], doms_new[j])
7114 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7115 				goto match1;
7116 		}
7117 		/* no match - a current sched domain not in new doms_new[] */
7118 		detach_destroy_domains(doms_cur[i]);
7119 match1:
7120 		;
7121 	}
7122 
7123 	n = ndoms_cur;
7124 	if (doms_new == NULL) {
7125 		n = 0;
7126 		doms_new = &fallback_doms;
7127 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7128 		WARN_ON_ONCE(dattr_new);
7129 	}
7130 
7131 	/* Build new domains */
7132 	for (i = 0; i < ndoms_new; i++) {
7133 		for (j = 0; j < n && !new_topology; j++) {
7134 			if (cpumask_equal(doms_new[i], doms_cur[j])
7135 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7136 				goto match2;
7137 		}
7138 		/* no match - add a new doms_new */
7139 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7140 match2:
7141 		;
7142 	}
7143 
7144 	/* Remember the new sched domains */
7145 	if (doms_cur != &fallback_doms)
7146 		free_sched_domains(doms_cur, ndoms_cur);
7147 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7148 	doms_cur = doms_new;
7149 	dattr_cur = dattr_new;
7150 	ndoms_cur = ndoms_new;
7151 
7152 	register_sched_domain_sysctl();
7153 
7154 	mutex_unlock(&sched_domains_mutex);
7155 }
7156 
7157 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7158 
7159 /*
7160  * Update cpusets according to cpu_active mask.  If cpusets are
7161  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7162  * around partition_sched_domains().
7163  *
7164  * If we come here as part of a suspend/resume, don't touch cpusets because we
7165  * want to restore it back to its original state upon resume anyway.
7166  */
7167 static void cpuset_cpu_active(void)
7168 {
7169 	if (cpuhp_tasks_frozen) {
7170 		/*
7171 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7172 		 * resume sequence. As long as this is not the last online
7173 		 * operation in the resume sequence, just build a single sched
7174 		 * domain, ignoring cpusets.
7175 		 */
7176 		num_cpus_frozen--;
7177 		if (likely(num_cpus_frozen)) {
7178 			partition_sched_domains(1, NULL, NULL);
7179 			return;
7180 		}
7181 		/*
7182 		 * This is the last CPU online operation. So fall through and
7183 		 * restore the original sched domains by considering the
7184 		 * cpuset configurations.
7185 		 */
7186 	}
7187 	cpuset_update_active_cpus(true);
7188 }
7189 
7190 static int cpuset_cpu_inactive(unsigned int cpu)
7191 {
7192 	unsigned long flags;
7193 	struct dl_bw *dl_b;
7194 	bool overflow;
7195 	int cpus;
7196 
7197 	if (!cpuhp_tasks_frozen) {
7198 		rcu_read_lock_sched();
7199 		dl_b = dl_bw_of(cpu);
7200 
7201 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7202 		cpus = dl_bw_cpus(cpu);
7203 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7204 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7205 
7206 		rcu_read_unlock_sched();
7207 
7208 		if (overflow)
7209 			return -EBUSY;
7210 		cpuset_update_active_cpus(false);
7211 	} else {
7212 		num_cpus_frozen++;
7213 		partition_sched_domains(1, NULL, NULL);
7214 	}
7215 	return 0;
7216 }
7217 
7218 int sched_cpu_activate(unsigned int cpu)
7219 {
7220 	struct rq *rq = cpu_rq(cpu);
7221 	unsigned long flags;
7222 
7223 	set_cpu_active(cpu, true);
7224 
7225 	if (sched_smp_initialized) {
7226 		sched_domains_numa_masks_set(cpu);
7227 		cpuset_cpu_active();
7228 	}
7229 
7230 	/*
7231 	 * Put the rq online, if not already. This happens:
7232 	 *
7233 	 * 1) In the early boot process, because we build the real domains
7234 	 *    after all cpus have been brought up.
7235 	 *
7236 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7237 	 *    domains.
7238 	 */
7239 	raw_spin_lock_irqsave(&rq->lock, flags);
7240 	if (rq->rd) {
7241 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7242 		set_rq_online(rq);
7243 	}
7244 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7245 
7246 	update_max_interval();
7247 
7248 	return 0;
7249 }
7250 
7251 int sched_cpu_deactivate(unsigned int cpu)
7252 {
7253 	int ret;
7254 
7255 	set_cpu_active(cpu, false);
7256 	/*
7257 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7258 	 * users of this state to go away such that all new such users will
7259 	 * observe it.
7260 	 *
7261 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7262 	 * not imply sync_sched(), so wait for both.
7263 	 *
7264 	 * Do sync before park smpboot threads to take care the rcu boost case.
7265 	 */
7266 	if (IS_ENABLED(CONFIG_PREEMPT))
7267 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7268 	else
7269 		synchronize_rcu();
7270 
7271 	if (!sched_smp_initialized)
7272 		return 0;
7273 
7274 	ret = cpuset_cpu_inactive(cpu);
7275 	if (ret) {
7276 		set_cpu_active(cpu, true);
7277 		return ret;
7278 	}
7279 	sched_domains_numa_masks_clear(cpu);
7280 	return 0;
7281 }
7282 
7283 static void sched_rq_cpu_starting(unsigned int cpu)
7284 {
7285 	struct rq *rq = cpu_rq(cpu);
7286 
7287 	rq->calc_load_update = calc_load_update;
7288 	update_max_interval();
7289 }
7290 
7291 int sched_cpu_starting(unsigned int cpu)
7292 {
7293 	set_cpu_rq_start_time(cpu);
7294 	sched_rq_cpu_starting(cpu);
7295 	return 0;
7296 }
7297 
7298 #ifdef CONFIG_HOTPLUG_CPU
7299 int sched_cpu_dying(unsigned int cpu)
7300 {
7301 	struct rq *rq = cpu_rq(cpu);
7302 	unsigned long flags;
7303 
7304 	/* Handle pending wakeups and then migrate everything off */
7305 	sched_ttwu_pending();
7306 	raw_spin_lock_irqsave(&rq->lock, flags);
7307 	if (rq->rd) {
7308 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7309 		set_rq_offline(rq);
7310 	}
7311 	migrate_tasks(rq);
7312 	BUG_ON(rq->nr_running != 1);
7313 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7314 	calc_load_migrate(rq);
7315 	update_max_interval();
7316 	nohz_balance_exit_idle(cpu);
7317 	hrtick_clear(rq);
7318 	return 0;
7319 }
7320 #endif
7321 
7322 void __init sched_init_smp(void)
7323 {
7324 	cpumask_var_t non_isolated_cpus;
7325 
7326 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7327 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7328 
7329 	sched_init_numa();
7330 
7331 	/*
7332 	 * There's no userspace yet to cause hotplug operations; hence all the
7333 	 * cpu masks are stable and all blatant races in the below code cannot
7334 	 * happen.
7335 	 */
7336 	mutex_lock(&sched_domains_mutex);
7337 	init_sched_domains(cpu_active_mask);
7338 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7339 	if (cpumask_empty(non_isolated_cpus))
7340 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7341 	mutex_unlock(&sched_domains_mutex);
7342 
7343 	/* Move init over to a non-isolated CPU */
7344 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7345 		BUG();
7346 	sched_init_granularity();
7347 	free_cpumask_var(non_isolated_cpus);
7348 
7349 	init_sched_rt_class();
7350 	init_sched_dl_class();
7351 	sched_smp_initialized = true;
7352 }
7353 
7354 static int __init migration_init(void)
7355 {
7356 	sched_rq_cpu_starting(smp_processor_id());
7357 	return 0;
7358 }
7359 early_initcall(migration_init);
7360 
7361 #else
7362 void __init sched_init_smp(void)
7363 {
7364 	sched_init_granularity();
7365 }
7366 #endif /* CONFIG_SMP */
7367 
7368 int in_sched_functions(unsigned long addr)
7369 {
7370 	return in_lock_functions(addr) ||
7371 		(addr >= (unsigned long)__sched_text_start
7372 		&& addr < (unsigned long)__sched_text_end);
7373 }
7374 
7375 #ifdef CONFIG_CGROUP_SCHED
7376 /*
7377  * Default task group.
7378  * Every task in system belongs to this group at bootup.
7379  */
7380 struct task_group root_task_group;
7381 LIST_HEAD(task_groups);
7382 
7383 /* Cacheline aligned slab cache for task_group */
7384 static struct kmem_cache *task_group_cache __read_mostly;
7385 #endif
7386 
7387 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7388 
7389 void __init sched_init(void)
7390 {
7391 	int i, j;
7392 	unsigned long alloc_size = 0, ptr;
7393 
7394 #ifdef CONFIG_FAIR_GROUP_SCHED
7395 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7396 #endif
7397 #ifdef CONFIG_RT_GROUP_SCHED
7398 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7399 #endif
7400 	if (alloc_size) {
7401 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7402 
7403 #ifdef CONFIG_FAIR_GROUP_SCHED
7404 		root_task_group.se = (struct sched_entity **)ptr;
7405 		ptr += nr_cpu_ids * sizeof(void **);
7406 
7407 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7408 		ptr += nr_cpu_ids * sizeof(void **);
7409 
7410 #endif /* CONFIG_FAIR_GROUP_SCHED */
7411 #ifdef CONFIG_RT_GROUP_SCHED
7412 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7413 		ptr += nr_cpu_ids * sizeof(void **);
7414 
7415 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7416 		ptr += nr_cpu_ids * sizeof(void **);
7417 
7418 #endif /* CONFIG_RT_GROUP_SCHED */
7419 	}
7420 #ifdef CONFIG_CPUMASK_OFFSTACK
7421 	for_each_possible_cpu(i) {
7422 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7423 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7424 	}
7425 #endif /* CONFIG_CPUMASK_OFFSTACK */
7426 
7427 	init_rt_bandwidth(&def_rt_bandwidth,
7428 			global_rt_period(), global_rt_runtime());
7429 	init_dl_bandwidth(&def_dl_bandwidth,
7430 			global_rt_period(), global_rt_runtime());
7431 
7432 #ifdef CONFIG_SMP
7433 	init_defrootdomain();
7434 #endif
7435 
7436 #ifdef CONFIG_RT_GROUP_SCHED
7437 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7438 			global_rt_period(), global_rt_runtime());
7439 #endif /* CONFIG_RT_GROUP_SCHED */
7440 
7441 #ifdef CONFIG_CGROUP_SCHED
7442 	task_group_cache = KMEM_CACHE(task_group, 0);
7443 
7444 	list_add(&root_task_group.list, &task_groups);
7445 	INIT_LIST_HEAD(&root_task_group.children);
7446 	INIT_LIST_HEAD(&root_task_group.siblings);
7447 	autogroup_init(&init_task);
7448 #endif /* CONFIG_CGROUP_SCHED */
7449 
7450 	for_each_possible_cpu(i) {
7451 		struct rq *rq;
7452 
7453 		rq = cpu_rq(i);
7454 		raw_spin_lock_init(&rq->lock);
7455 		rq->nr_running = 0;
7456 		rq->calc_load_active = 0;
7457 		rq->calc_load_update = jiffies + LOAD_FREQ;
7458 		init_cfs_rq(&rq->cfs);
7459 		init_rt_rq(&rq->rt);
7460 		init_dl_rq(&rq->dl);
7461 #ifdef CONFIG_FAIR_GROUP_SCHED
7462 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7463 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7464 		/*
7465 		 * How much cpu bandwidth does root_task_group get?
7466 		 *
7467 		 * In case of task-groups formed thr' the cgroup filesystem, it
7468 		 * gets 100% of the cpu resources in the system. This overall
7469 		 * system cpu resource is divided among the tasks of
7470 		 * root_task_group and its child task-groups in a fair manner,
7471 		 * based on each entity's (task or task-group's) weight
7472 		 * (se->load.weight).
7473 		 *
7474 		 * In other words, if root_task_group has 10 tasks of weight
7475 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7476 		 * then A0's share of the cpu resource is:
7477 		 *
7478 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7479 		 *
7480 		 * We achieve this by letting root_task_group's tasks sit
7481 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7482 		 */
7483 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7484 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7485 #endif /* CONFIG_FAIR_GROUP_SCHED */
7486 
7487 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7488 #ifdef CONFIG_RT_GROUP_SCHED
7489 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7490 #endif
7491 
7492 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7493 			rq->cpu_load[j] = 0;
7494 
7495 #ifdef CONFIG_SMP
7496 		rq->sd = NULL;
7497 		rq->rd = NULL;
7498 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7499 		rq->balance_callback = NULL;
7500 		rq->active_balance = 0;
7501 		rq->next_balance = jiffies;
7502 		rq->push_cpu = 0;
7503 		rq->cpu = i;
7504 		rq->online = 0;
7505 		rq->idle_stamp = 0;
7506 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7507 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7508 
7509 		INIT_LIST_HEAD(&rq->cfs_tasks);
7510 
7511 		rq_attach_root(rq, &def_root_domain);
7512 #ifdef CONFIG_NO_HZ_COMMON
7513 		rq->last_load_update_tick = jiffies;
7514 		rq->nohz_flags = 0;
7515 #endif
7516 #ifdef CONFIG_NO_HZ_FULL
7517 		rq->last_sched_tick = 0;
7518 #endif
7519 #endif /* CONFIG_SMP */
7520 		init_rq_hrtick(rq);
7521 		atomic_set(&rq->nr_iowait, 0);
7522 	}
7523 
7524 	set_load_weight(&init_task);
7525 
7526 #ifdef CONFIG_PREEMPT_NOTIFIERS
7527 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7528 #endif
7529 
7530 	/*
7531 	 * The boot idle thread does lazy MMU switching as well:
7532 	 */
7533 	atomic_inc(&init_mm.mm_count);
7534 	enter_lazy_tlb(&init_mm, current);
7535 
7536 	/*
7537 	 * During early bootup we pretend to be a normal task:
7538 	 */
7539 	current->sched_class = &fair_sched_class;
7540 
7541 	/*
7542 	 * Make us the idle thread. Technically, schedule() should not be
7543 	 * called from this thread, however somewhere below it might be,
7544 	 * but because we are the idle thread, we just pick up running again
7545 	 * when this runqueue becomes "idle".
7546 	 */
7547 	init_idle(current, smp_processor_id());
7548 
7549 	calc_load_update = jiffies + LOAD_FREQ;
7550 
7551 #ifdef CONFIG_SMP
7552 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7553 	/* May be allocated at isolcpus cmdline parse time */
7554 	if (cpu_isolated_map == NULL)
7555 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7556 	idle_thread_set_boot_cpu();
7557 	set_cpu_rq_start_time(smp_processor_id());
7558 #endif
7559 	init_sched_fair_class();
7560 
7561 	init_schedstats();
7562 
7563 	scheduler_running = 1;
7564 }
7565 
7566 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7567 static inline int preempt_count_equals(int preempt_offset)
7568 {
7569 	int nested = preempt_count() + rcu_preempt_depth();
7570 
7571 	return (nested == preempt_offset);
7572 }
7573 
7574 void __might_sleep(const char *file, int line, int preempt_offset)
7575 {
7576 	/*
7577 	 * Blocking primitives will set (and therefore destroy) current->state,
7578 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7579 	 * otherwise we will destroy state.
7580 	 */
7581 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7582 			"do not call blocking ops when !TASK_RUNNING; "
7583 			"state=%lx set at [<%p>] %pS\n",
7584 			current->state,
7585 			(void *)current->task_state_change,
7586 			(void *)current->task_state_change);
7587 
7588 	___might_sleep(file, line, preempt_offset);
7589 }
7590 EXPORT_SYMBOL(__might_sleep);
7591 
7592 void ___might_sleep(const char *file, int line, int preempt_offset)
7593 {
7594 	static unsigned long prev_jiffy;	/* ratelimiting */
7595 
7596 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7597 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7598 	     !is_idle_task(current)) ||
7599 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7600 		return;
7601 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7602 		return;
7603 	prev_jiffy = jiffies;
7604 
7605 	printk(KERN_ERR
7606 		"BUG: sleeping function called from invalid context at %s:%d\n",
7607 			file, line);
7608 	printk(KERN_ERR
7609 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7610 			in_atomic(), irqs_disabled(),
7611 			current->pid, current->comm);
7612 
7613 	if (task_stack_end_corrupted(current))
7614 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7615 
7616 	debug_show_held_locks(current);
7617 	if (irqs_disabled())
7618 		print_irqtrace_events(current);
7619 #ifdef CONFIG_DEBUG_PREEMPT
7620 	if (!preempt_count_equals(preempt_offset)) {
7621 		pr_err("Preemption disabled at:");
7622 		print_ip_sym(current->preempt_disable_ip);
7623 		pr_cont("\n");
7624 	}
7625 #endif
7626 	dump_stack();
7627 }
7628 EXPORT_SYMBOL(___might_sleep);
7629 #endif
7630 
7631 #ifdef CONFIG_MAGIC_SYSRQ
7632 void normalize_rt_tasks(void)
7633 {
7634 	struct task_struct *g, *p;
7635 	struct sched_attr attr = {
7636 		.sched_policy = SCHED_NORMAL,
7637 	};
7638 
7639 	read_lock(&tasklist_lock);
7640 	for_each_process_thread(g, p) {
7641 		/*
7642 		 * Only normalize user tasks:
7643 		 */
7644 		if (p->flags & PF_KTHREAD)
7645 			continue;
7646 
7647 		p->se.exec_start		= 0;
7648 #ifdef CONFIG_SCHEDSTATS
7649 		p->se.statistics.wait_start	= 0;
7650 		p->se.statistics.sleep_start	= 0;
7651 		p->se.statistics.block_start	= 0;
7652 #endif
7653 
7654 		if (!dl_task(p) && !rt_task(p)) {
7655 			/*
7656 			 * Renice negative nice level userspace
7657 			 * tasks back to 0:
7658 			 */
7659 			if (task_nice(p) < 0)
7660 				set_user_nice(p, 0);
7661 			continue;
7662 		}
7663 
7664 		__sched_setscheduler(p, &attr, false, false);
7665 	}
7666 	read_unlock(&tasklist_lock);
7667 }
7668 
7669 #endif /* CONFIG_MAGIC_SYSRQ */
7670 
7671 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7672 /*
7673  * These functions are only useful for the IA64 MCA handling, or kdb.
7674  *
7675  * They can only be called when the whole system has been
7676  * stopped - every CPU needs to be quiescent, and no scheduling
7677  * activity can take place. Using them for anything else would
7678  * be a serious bug, and as a result, they aren't even visible
7679  * under any other configuration.
7680  */
7681 
7682 /**
7683  * curr_task - return the current task for a given cpu.
7684  * @cpu: the processor in question.
7685  *
7686  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7687  *
7688  * Return: The current task for @cpu.
7689  */
7690 struct task_struct *curr_task(int cpu)
7691 {
7692 	return cpu_curr(cpu);
7693 }
7694 
7695 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7696 
7697 #ifdef CONFIG_IA64
7698 /**
7699  * set_curr_task - set the current task for a given cpu.
7700  * @cpu: the processor in question.
7701  * @p: the task pointer to set.
7702  *
7703  * Description: This function must only be used when non-maskable interrupts
7704  * are serviced on a separate stack. It allows the architecture to switch the
7705  * notion of the current task on a cpu in a non-blocking manner. This function
7706  * must be called with all CPU's synchronized, and interrupts disabled, the
7707  * and caller must save the original value of the current task (see
7708  * curr_task() above) and restore that value before reenabling interrupts and
7709  * re-starting the system.
7710  *
7711  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7712  */
7713 void set_curr_task(int cpu, struct task_struct *p)
7714 {
7715 	cpu_curr(cpu) = p;
7716 }
7717 
7718 #endif
7719 
7720 #ifdef CONFIG_CGROUP_SCHED
7721 /* task_group_lock serializes the addition/removal of task groups */
7722 static DEFINE_SPINLOCK(task_group_lock);
7723 
7724 static void sched_free_group(struct task_group *tg)
7725 {
7726 	free_fair_sched_group(tg);
7727 	free_rt_sched_group(tg);
7728 	autogroup_free(tg);
7729 	kmem_cache_free(task_group_cache, tg);
7730 }
7731 
7732 /* allocate runqueue etc for a new task group */
7733 struct task_group *sched_create_group(struct task_group *parent)
7734 {
7735 	struct task_group *tg;
7736 
7737 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7738 	if (!tg)
7739 		return ERR_PTR(-ENOMEM);
7740 
7741 	if (!alloc_fair_sched_group(tg, parent))
7742 		goto err;
7743 
7744 	if (!alloc_rt_sched_group(tg, parent))
7745 		goto err;
7746 
7747 	return tg;
7748 
7749 err:
7750 	sched_free_group(tg);
7751 	return ERR_PTR(-ENOMEM);
7752 }
7753 
7754 void sched_online_group(struct task_group *tg, struct task_group *parent)
7755 {
7756 	unsigned long flags;
7757 
7758 	spin_lock_irqsave(&task_group_lock, flags);
7759 	list_add_rcu(&tg->list, &task_groups);
7760 
7761 	WARN_ON(!parent); /* root should already exist */
7762 
7763 	tg->parent = parent;
7764 	INIT_LIST_HEAD(&tg->children);
7765 	list_add_rcu(&tg->siblings, &parent->children);
7766 	spin_unlock_irqrestore(&task_group_lock, flags);
7767 
7768 	online_fair_sched_group(tg);
7769 }
7770 
7771 /* rcu callback to free various structures associated with a task group */
7772 static void sched_free_group_rcu(struct rcu_head *rhp)
7773 {
7774 	/* now it should be safe to free those cfs_rqs */
7775 	sched_free_group(container_of(rhp, struct task_group, rcu));
7776 }
7777 
7778 void sched_destroy_group(struct task_group *tg)
7779 {
7780 	/* wait for possible concurrent references to cfs_rqs complete */
7781 	call_rcu(&tg->rcu, sched_free_group_rcu);
7782 }
7783 
7784 void sched_offline_group(struct task_group *tg)
7785 {
7786 	unsigned long flags;
7787 
7788 	/* end participation in shares distribution */
7789 	unregister_fair_sched_group(tg);
7790 
7791 	spin_lock_irqsave(&task_group_lock, flags);
7792 	list_del_rcu(&tg->list);
7793 	list_del_rcu(&tg->siblings);
7794 	spin_unlock_irqrestore(&task_group_lock, flags);
7795 }
7796 
7797 static void sched_change_group(struct task_struct *tsk, int type)
7798 {
7799 	struct task_group *tg;
7800 
7801 	/*
7802 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7803 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7804 	 * to prevent lockdep warnings.
7805 	 */
7806 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7807 			  struct task_group, css);
7808 	tg = autogroup_task_group(tsk, tg);
7809 	tsk->sched_task_group = tg;
7810 
7811 #ifdef CONFIG_FAIR_GROUP_SCHED
7812 	if (tsk->sched_class->task_change_group)
7813 		tsk->sched_class->task_change_group(tsk, type);
7814 	else
7815 #endif
7816 		set_task_rq(tsk, task_cpu(tsk));
7817 }
7818 
7819 /*
7820  * Change task's runqueue when it moves between groups.
7821  *
7822  * The caller of this function should have put the task in its new group by
7823  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7824  * its new group.
7825  */
7826 void sched_move_task(struct task_struct *tsk)
7827 {
7828 	int queued, running;
7829 	struct rq_flags rf;
7830 	struct rq *rq;
7831 
7832 	rq = task_rq_lock(tsk, &rf);
7833 
7834 	running = task_current(rq, tsk);
7835 	queued = task_on_rq_queued(tsk);
7836 
7837 	if (queued)
7838 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7839 	if (unlikely(running))
7840 		put_prev_task(rq, tsk);
7841 
7842 	sched_change_group(tsk, TASK_MOVE_GROUP);
7843 
7844 	if (unlikely(running))
7845 		tsk->sched_class->set_curr_task(rq);
7846 	if (queued)
7847 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7848 
7849 	task_rq_unlock(rq, tsk, &rf);
7850 }
7851 #endif /* CONFIG_CGROUP_SCHED */
7852 
7853 #ifdef CONFIG_RT_GROUP_SCHED
7854 /*
7855  * Ensure that the real time constraints are schedulable.
7856  */
7857 static DEFINE_MUTEX(rt_constraints_mutex);
7858 
7859 /* Must be called with tasklist_lock held */
7860 static inline int tg_has_rt_tasks(struct task_group *tg)
7861 {
7862 	struct task_struct *g, *p;
7863 
7864 	/*
7865 	 * Autogroups do not have RT tasks; see autogroup_create().
7866 	 */
7867 	if (task_group_is_autogroup(tg))
7868 		return 0;
7869 
7870 	for_each_process_thread(g, p) {
7871 		if (rt_task(p) && task_group(p) == tg)
7872 			return 1;
7873 	}
7874 
7875 	return 0;
7876 }
7877 
7878 struct rt_schedulable_data {
7879 	struct task_group *tg;
7880 	u64 rt_period;
7881 	u64 rt_runtime;
7882 };
7883 
7884 static int tg_rt_schedulable(struct task_group *tg, void *data)
7885 {
7886 	struct rt_schedulable_data *d = data;
7887 	struct task_group *child;
7888 	unsigned long total, sum = 0;
7889 	u64 period, runtime;
7890 
7891 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7892 	runtime = tg->rt_bandwidth.rt_runtime;
7893 
7894 	if (tg == d->tg) {
7895 		period = d->rt_period;
7896 		runtime = d->rt_runtime;
7897 	}
7898 
7899 	/*
7900 	 * Cannot have more runtime than the period.
7901 	 */
7902 	if (runtime > period && runtime != RUNTIME_INF)
7903 		return -EINVAL;
7904 
7905 	/*
7906 	 * Ensure we don't starve existing RT tasks.
7907 	 */
7908 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7909 		return -EBUSY;
7910 
7911 	total = to_ratio(period, runtime);
7912 
7913 	/*
7914 	 * Nobody can have more than the global setting allows.
7915 	 */
7916 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7917 		return -EINVAL;
7918 
7919 	/*
7920 	 * The sum of our children's runtime should not exceed our own.
7921 	 */
7922 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7923 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7924 		runtime = child->rt_bandwidth.rt_runtime;
7925 
7926 		if (child == d->tg) {
7927 			period = d->rt_period;
7928 			runtime = d->rt_runtime;
7929 		}
7930 
7931 		sum += to_ratio(period, runtime);
7932 	}
7933 
7934 	if (sum > total)
7935 		return -EINVAL;
7936 
7937 	return 0;
7938 }
7939 
7940 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7941 {
7942 	int ret;
7943 
7944 	struct rt_schedulable_data data = {
7945 		.tg = tg,
7946 		.rt_period = period,
7947 		.rt_runtime = runtime,
7948 	};
7949 
7950 	rcu_read_lock();
7951 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7952 	rcu_read_unlock();
7953 
7954 	return ret;
7955 }
7956 
7957 static int tg_set_rt_bandwidth(struct task_group *tg,
7958 		u64 rt_period, u64 rt_runtime)
7959 {
7960 	int i, err = 0;
7961 
7962 	/*
7963 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7964 	 * kernel creating (and or operating) RT threads.
7965 	 */
7966 	if (tg == &root_task_group && rt_runtime == 0)
7967 		return -EINVAL;
7968 
7969 	/* No period doesn't make any sense. */
7970 	if (rt_period == 0)
7971 		return -EINVAL;
7972 
7973 	mutex_lock(&rt_constraints_mutex);
7974 	read_lock(&tasklist_lock);
7975 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7976 	if (err)
7977 		goto unlock;
7978 
7979 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7980 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7981 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7982 
7983 	for_each_possible_cpu(i) {
7984 		struct rt_rq *rt_rq = tg->rt_rq[i];
7985 
7986 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7987 		rt_rq->rt_runtime = rt_runtime;
7988 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7989 	}
7990 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7991 unlock:
7992 	read_unlock(&tasklist_lock);
7993 	mutex_unlock(&rt_constraints_mutex);
7994 
7995 	return err;
7996 }
7997 
7998 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7999 {
8000 	u64 rt_runtime, rt_period;
8001 
8002 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8003 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8004 	if (rt_runtime_us < 0)
8005 		rt_runtime = RUNTIME_INF;
8006 
8007 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8008 }
8009 
8010 static long sched_group_rt_runtime(struct task_group *tg)
8011 {
8012 	u64 rt_runtime_us;
8013 
8014 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8015 		return -1;
8016 
8017 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8018 	do_div(rt_runtime_us, NSEC_PER_USEC);
8019 	return rt_runtime_us;
8020 }
8021 
8022 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8023 {
8024 	u64 rt_runtime, rt_period;
8025 
8026 	rt_period = rt_period_us * NSEC_PER_USEC;
8027 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8028 
8029 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8030 }
8031 
8032 static long sched_group_rt_period(struct task_group *tg)
8033 {
8034 	u64 rt_period_us;
8035 
8036 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8037 	do_div(rt_period_us, NSEC_PER_USEC);
8038 	return rt_period_us;
8039 }
8040 #endif /* CONFIG_RT_GROUP_SCHED */
8041 
8042 #ifdef CONFIG_RT_GROUP_SCHED
8043 static int sched_rt_global_constraints(void)
8044 {
8045 	int ret = 0;
8046 
8047 	mutex_lock(&rt_constraints_mutex);
8048 	read_lock(&tasklist_lock);
8049 	ret = __rt_schedulable(NULL, 0, 0);
8050 	read_unlock(&tasklist_lock);
8051 	mutex_unlock(&rt_constraints_mutex);
8052 
8053 	return ret;
8054 }
8055 
8056 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8057 {
8058 	/* Don't accept realtime tasks when there is no way for them to run */
8059 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8060 		return 0;
8061 
8062 	return 1;
8063 }
8064 
8065 #else /* !CONFIG_RT_GROUP_SCHED */
8066 static int sched_rt_global_constraints(void)
8067 {
8068 	unsigned long flags;
8069 	int i;
8070 
8071 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8072 	for_each_possible_cpu(i) {
8073 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8074 
8075 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8076 		rt_rq->rt_runtime = global_rt_runtime();
8077 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8078 	}
8079 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8080 
8081 	return 0;
8082 }
8083 #endif /* CONFIG_RT_GROUP_SCHED */
8084 
8085 static int sched_dl_global_validate(void)
8086 {
8087 	u64 runtime = global_rt_runtime();
8088 	u64 period = global_rt_period();
8089 	u64 new_bw = to_ratio(period, runtime);
8090 	struct dl_bw *dl_b;
8091 	int cpu, ret = 0;
8092 	unsigned long flags;
8093 
8094 	/*
8095 	 * Here we want to check the bandwidth not being set to some
8096 	 * value smaller than the currently allocated bandwidth in
8097 	 * any of the root_domains.
8098 	 *
8099 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8100 	 * cycling on root_domains... Discussion on different/better
8101 	 * solutions is welcome!
8102 	 */
8103 	for_each_possible_cpu(cpu) {
8104 		rcu_read_lock_sched();
8105 		dl_b = dl_bw_of(cpu);
8106 
8107 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8108 		if (new_bw < dl_b->total_bw)
8109 			ret = -EBUSY;
8110 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8111 
8112 		rcu_read_unlock_sched();
8113 
8114 		if (ret)
8115 			break;
8116 	}
8117 
8118 	return ret;
8119 }
8120 
8121 static void sched_dl_do_global(void)
8122 {
8123 	u64 new_bw = -1;
8124 	struct dl_bw *dl_b;
8125 	int cpu;
8126 	unsigned long flags;
8127 
8128 	def_dl_bandwidth.dl_period = global_rt_period();
8129 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8130 
8131 	if (global_rt_runtime() != RUNTIME_INF)
8132 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8133 
8134 	/*
8135 	 * FIXME: As above...
8136 	 */
8137 	for_each_possible_cpu(cpu) {
8138 		rcu_read_lock_sched();
8139 		dl_b = dl_bw_of(cpu);
8140 
8141 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8142 		dl_b->bw = new_bw;
8143 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8144 
8145 		rcu_read_unlock_sched();
8146 	}
8147 }
8148 
8149 static int sched_rt_global_validate(void)
8150 {
8151 	if (sysctl_sched_rt_period <= 0)
8152 		return -EINVAL;
8153 
8154 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8155 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8156 		return -EINVAL;
8157 
8158 	return 0;
8159 }
8160 
8161 static void sched_rt_do_global(void)
8162 {
8163 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8164 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8165 }
8166 
8167 int sched_rt_handler(struct ctl_table *table, int write,
8168 		void __user *buffer, size_t *lenp,
8169 		loff_t *ppos)
8170 {
8171 	int old_period, old_runtime;
8172 	static DEFINE_MUTEX(mutex);
8173 	int ret;
8174 
8175 	mutex_lock(&mutex);
8176 	old_period = sysctl_sched_rt_period;
8177 	old_runtime = sysctl_sched_rt_runtime;
8178 
8179 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8180 
8181 	if (!ret && write) {
8182 		ret = sched_rt_global_validate();
8183 		if (ret)
8184 			goto undo;
8185 
8186 		ret = sched_dl_global_validate();
8187 		if (ret)
8188 			goto undo;
8189 
8190 		ret = sched_rt_global_constraints();
8191 		if (ret)
8192 			goto undo;
8193 
8194 		sched_rt_do_global();
8195 		sched_dl_do_global();
8196 	}
8197 	if (0) {
8198 undo:
8199 		sysctl_sched_rt_period = old_period;
8200 		sysctl_sched_rt_runtime = old_runtime;
8201 	}
8202 	mutex_unlock(&mutex);
8203 
8204 	return ret;
8205 }
8206 
8207 int sched_rr_handler(struct ctl_table *table, int write,
8208 		void __user *buffer, size_t *lenp,
8209 		loff_t *ppos)
8210 {
8211 	int ret;
8212 	static DEFINE_MUTEX(mutex);
8213 
8214 	mutex_lock(&mutex);
8215 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8216 	/* make sure that internally we keep jiffies */
8217 	/* also, writing zero resets timeslice to default */
8218 	if (!ret && write) {
8219 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8220 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8221 	}
8222 	mutex_unlock(&mutex);
8223 	return ret;
8224 }
8225 
8226 #ifdef CONFIG_CGROUP_SCHED
8227 
8228 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8229 {
8230 	return css ? container_of(css, struct task_group, css) : NULL;
8231 }
8232 
8233 static struct cgroup_subsys_state *
8234 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8235 {
8236 	struct task_group *parent = css_tg(parent_css);
8237 	struct task_group *tg;
8238 
8239 	if (!parent) {
8240 		/* This is early initialization for the top cgroup */
8241 		return &root_task_group.css;
8242 	}
8243 
8244 	tg = sched_create_group(parent);
8245 	if (IS_ERR(tg))
8246 		return ERR_PTR(-ENOMEM);
8247 
8248 	sched_online_group(tg, parent);
8249 
8250 	return &tg->css;
8251 }
8252 
8253 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8254 {
8255 	struct task_group *tg = css_tg(css);
8256 
8257 	sched_offline_group(tg);
8258 }
8259 
8260 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8261 {
8262 	struct task_group *tg = css_tg(css);
8263 
8264 	/*
8265 	 * Relies on the RCU grace period between css_released() and this.
8266 	 */
8267 	sched_free_group(tg);
8268 }
8269 
8270 /*
8271  * This is called before wake_up_new_task(), therefore we really only
8272  * have to set its group bits, all the other stuff does not apply.
8273  */
8274 static void cpu_cgroup_fork(struct task_struct *task)
8275 {
8276 	struct rq_flags rf;
8277 	struct rq *rq;
8278 
8279 	rq = task_rq_lock(task, &rf);
8280 
8281 	sched_change_group(task, TASK_SET_GROUP);
8282 
8283 	task_rq_unlock(rq, task, &rf);
8284 }
8285 
8286 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8287 {
8288 	struct task_struct *task;
8289 	struct cgroup_subsys_state *css;
8290 	int ret = 0;
8291 
8292 	cgroup_taskset_for_each(task, css, tset) {
8293 #ifdef CONFIG_RT_GROUP_SCHED
8294 		if (!sched_rt_can_attach(css_tg(css), task))
8295 			return -EINVAL;
8296 #else
8297 		/* We don't support RT-tasks being in separate groups */
8298 		if (task->sched_class != &fair_sched_class)
8299 			return -EINVAL;
8300 #endif
8301 		/*
8302 		 * Serialize against wake_up_new_task() such that if its
8303 		 * running, we're sure to observe its full state.
8304 		 */
8305 		raw_spin_lock_irq(&task->pi_lock);
8306 		/*
8307 		 * Avoid calling sched_move_task() before wake_up_new_task()
8308 		 * has happened. This would lead to problems with PELT, due to
8309 		 * move wanting to detach+attach while we're not attached yet.
8310 		 */
8311 		if (task->state == TASK_NEW)
8312 			ret = -EINVAL;
8313 		raw_spin_unlock_irq(&task->pi_lock);
8314 
8315 		if (ret)
8316 			break;
8317 	}
8318 	return ret;
8319 }
8320 
8321 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8322 {
8323 	struct task_struct *task;
8324 	struct cgroup_subsys_state *css;
8325 
8326 	cgroup_taskset_for_each(task, css, tset)
8327 		sched_move_task(task);
8328 }
8329 
8330 #ifdef CONFIG_FAIR_GROUP_SCHED
8331 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8332 				struct cftype *cftype, u64 shareval)
8333 {
8334 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8335 }
8336 
8337 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8338 			       struct cftype *cft)
8339 {
8340 	struct task_group *tg = css_tg(css);
8341 
8342 	return (u64) scale_load_down(tg->shares);
8343 }
8344 
8345 #ifdef CONFIG_CFS_BANDWIDTH
8346 static DEFINE_MUTEX(cfs_constraints_mutex);
8347 
8348 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8349 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8350 
8351 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8352 
8353 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8354 {
8355 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8356 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8357 
8358 	if (tg == &root_task_group)
8359 		return -EINVAL;
8360 
8361 	/*
8362 	 * Ensure we have at some amount of bandwidth every period.  This is
8363 	 * to prevent reaching a state of large arrears when throttled via
8364 	 * entity_tick() resulting in prolonged exit starvation.
8365 	 */
8366 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8367 		return -EINVAL;
8368 
8369 	/*
8370 	 * Likewise, bound things on the otherside by preventing insane quota
8371 	 * periods.  This also allows us to normalize in computing quota
8372 	 * feasibility.
8373 	 */
8374 	if (period > max_cfs_quota_period)
8375 		return -EINVAL;
8376 
8377 	/*
8378 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8379 	 * unthrottle_offline_cfs_rqs().
8380 	 */
8381 	get_online_cpus();
8382 	mutex_lock(&cfs_constraints_mutex);
8383 	ret = __cfs_schedulable(tg, period, quota);
8384 	if (ret)
8385 		goto out_unlock;
8386 
8387 	runtime_enabled = quota != RUNTIME_INF;
8388 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8389 	/*
8390 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8391 	 * before making related changes, and on->off must occur afterwards
8392 	 */
8393 	if (runtime_enabled && !runtime_was_enabled)
8394 		cfs_bandwidth_usage_inc();
8395 	raw_spin_lock_irq(&cfs_b->lock);
8396 	cfs_b->period = ns_to_ktime(period);
8397 	cfs_b->quota = quota;
8398 
8399 	__refill_cfs_bandwidth_runtime(cfs_b);
8400 	/* restart the period timer (if active) to handle new period expiry */
8401 	if (runtime_enabled)
8402 		start_cfs_bandwidth(cfs_b);
8403 	raw_spin_unlock_irq(&cfs_b->lock);
8404 
8405 	for_each_online_cpu(i) {
8406 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8407 		struct rq *rq = cfs_rq->rq;
8408 
8409 		raw_spin_lock_irq(&rq->lock);
8410 		cfs_rq->runtime_enabled = runtime_enabled;
8411 		cfs_rq->runtime_remaining = 0;
8412 
8413 		if (cfs_rq->throttled)
8414 			unthrottle_cfs_rq(cfs_rq);
8415 		raw_spin_unlock_irq(&rq->lock);
8416 	}
8417 	if (runtime_was_enabled && !runtime_enabled)
8418 		cfs_bandwidth_usage_dec();
8419 out_unlock:
8420 	mutex_unlock(&cfs_constraints_mutex);
8421 	put_online_cpus();
8422 
8423 	return ret;
8424 }
8425 
8426 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8427 {
8428 	u64 quota, period;
8429 
8430 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8431 	if (cfs_quota_us < 0)
8432 		quota = RUNTIME_INF;
8433 	else
8434 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8435 
8436 	return tg_set_cfs_bandwidth(tg, period, quota);
8437 }
8438 
8439 long tg_get_cfs_quota(struct task_group *tg)
8440 {
8441 	u64 quota_us;
8442 
8443 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8444 		return -1;
8445 
8446 	quota_us = tg->cfs_bandwidth.quota;
8447 	do_div(quota_us, NSEC_PER_USEC);
8448 
8449 	return quota_us;
8450 }
8451 
8452 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8453 {
8454 	u64 quota, period;
8455 
8456 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8457 	quota = tg->cfs_bandwidth.quota;
8458 
8459 	return tg_set_cfs_bandwidth(tg, period, quota);
8460 }
8461 
8462 long tg_get_cfs_period(struct task_group *tg)
8463 {
8464 	u64 cfs_period_us;
8465 
8466 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8467 	do_div(cfs_period_us, NSEC_PER_USEC);
8468 
8469 	return cfs_period_us;
8470 }
8471 
8472 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8473 				  struct cftype *cft)
8474 {
8475 	return tg_get_cfs_quota(css_tg(css));
8476 }
8477 
8478 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8479 				   struct cftype *cftype, s64 cfs_quota_us)
8480 {
8481 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8482 }
8483 
8484 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8485 				   struct cftype *cft)
8486 {
8487 	return tg_get_cfs_period(css_tg(css));
8488 }
8489 
8490 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8491 				    struct cftype *cftype, u64 cfs_period_us)
8492 {
8493 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8494 }
8495 
8496 struct cfs_schedulable_data {
8497 	struct task_group *tg;
8498 	u64 period, quota;
8499 };
8500 
8501 /*
8502  * normalize group quota/period to be quota/max_period
8503  * note: units are usecs
8504  */
8505 static u64 normalize_cfs_quota(struct task_group *tg,
8506 			       struct cfs_schedulable_data *d)
8507 {
8508 	u64 quota, period;
8509 
8510 	if (tg == d->tg) {
8511 		period = d->period;
8512 		quota = d->quota;
8513 	} else {
8514 		period = tg_get_cfs_period(tg);
8515 		quota = tg_get_cfs_quota(tg);
8516 	}
8517 
8518 	/* note: these should typically be equivalent */
8519 	if (quota == RUNTIME_INF || quota == -1)
8520 		return RUNTIME_INF;
8521 
8522 	return to_ratio(period, quota);
8523 }
8524 
8525 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8526 {
8527 	struct cfs_schedulable_data *d = data;
8528 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8529 	s64 quota = 0, parent_quota = -1;
8530 
8531 	if (!tg->parent) {
8532 		quota = RUNTIME_INF;
8533 	} else {
8534 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8535 
8536 		quota = normalize_cfs_quota(tg, d);
8537 		parent_quota = parent_b->hierarchical_quota;
8538 
8539 		/*
8540 		 * ensure max(child_quota) <= parent_quota, inherit when no
8541 		 * limit is set
8542 		 */
8543 		if (quota == RUNTIME_INF)
8544 			quota = parent_quota;
8545 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8546 			return -EINVAL;
8547 	}
8548 	cfs_b->hierarchical_quota = quota;
8549 
8550 	return 0;
8551 }
8552 
8553 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8554 {
8555 	int ret;
8556 	struct cfs_schedulable_data data = {
8557 		.tg = tg,
8558 		.period = period,
8559 		.quota = quota,
8560 	};
8561 
8562 	if (quota != RUNTIME_INF) {
8563 		do_div(data.period, NSEC_PER_USEC);
8564 		do_div(data.quota, NSEC_PER_USEC);
8565 	}
8566 
8567 	rcu_read_lock();
8568 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8569 	rcu_read_unlock();
8570 
8571 	return ret;
8572 }
8573 
8574 static int cpu_stats_show(struct seq_file *sf, void *v)
8575 {
8576 	struct task_group *tg = css_tg(seq_css(sf));
8577 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8578 
8579 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8580 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8581 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8582 
8583 	return 0;
8584 }
8585 #endif /* CONFIG_CFS_BANDWIDTH */
8586 #endif /* CONFIG_FAIR_GROUP_SCHED */
8587 
8588 #ifdef CONFIG_RT_GROUP_SCHED
8589 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8590 				struct cftype *cft, s64 val)
8591 {
8592 	return sched_group_set_rt_runtime(css_tg(css), val);
8593 }
8594 
8595 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8596 			       struct cftype *cft)
8597 {
8598 	return sched_group_rt_runtime(css_tg(css));
8599 }
8600 
8601 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8602 				    struct cftype *cftype, u64 rt_period_us)
8603 {
8604 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8605 }
8606 
8607 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8608 				   struct cftype *cft)
8609 {
8610 	return sched_group_rt_period(css_tg(css));
8611 }
8612 #endif /* CONFIG_RT_GROUP_SCHED */
8613 
8614 static struct cftype cpu_files[] = {
8615 #ifdef CONFIG_FAIR_GROUP_SCHED
8616 	{
8617 		.name = "shares",
8618 		.read_u64 = cpu_shares_read_u64,
8619 		.write_u64 = cpu_shares_write_u64,
8620 	},
8621 #endif
8622 #ifdef CONFIG_CFS_BANDWIDTH
8623 	{
8624 		.name = "cfs_quota_us",
8625 		.read_s64 = cpu_cfs_quota_read_s64,
8626 		.write_s64 = cpu_cfs_quota_write_s64,
8627 	},
8628 	{
8629 		.name = "cfs_period_us",
8630 		.read_u64 = cpu_cfs_period_read_u64,
8631 		.write_u64 = cpu_cfs_period_write_u64,
8632 	},
8633 	{
8634 		.name = "stat",
8635 		.seq_show = cpu_stats_show,
8636 	},
8637 #endif
8638 #ifdef CONFIG_RT_GROUP_SCHED
8639 	{
8640 		.name = "rt_runtime_us",
8641 		.read_s64 = cpu_rt_runtime_read,
8642 		.write_s64 = cpu_rt_runtime_write,
8643 	},
8644 	{
8645 		.name = "rt_period_us",
8646 		.read_u64 = cpu_rt_period_read_uint,
8647 		.write_u64 = cpu_rt_period_write_uint,
8648 	},
8649 #endif
8650 	{ }	/* terminate */
8651 };
8652 
8653 struct cgroup_subsys cpu_cgrp_subsys = {
8654 	.css_alloc	= cpu_cgroup_css_alloc,
8655 	.css_released	= cpu_cgroup_css_released,
8656 	.css_free	= cpu_cgroup_css_free,
8657 	.fork		= cpu_cgroup_fork,
8658 	.can_attach	= cpu_cgroup_can_attach,
8659 	.attach		= cpu_cgroup_attach,
8660 	.legacy_cftypes	= cpu_files,
8661 	.early_init	= true,
8662 };
8663 
8664 #endif	/* CONFIG_CGROUP_SCHED */
8665 
8666 void dump_cpu_task(int cpu)
8667 {
8668 	pr_info("Task dump for CPU %d:\n", cpu);
8669 	sched_show_task(cpu_curr(cpu));
8670 }
8671 
8672 /*
8673  * Nice levels are multiplicative, with a gentle 10% change for every
8674  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8675  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8676  * that remained on nice 0.
8677  *
8678  * The "10% effect" is relative and cumulative: from _any_ nice level,
8679  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8680  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8681  * If a task goes up by ~10% and another task goes down by ~10% then
8682  * the relative distance between them is ~25%.)
8683  */
8684 const int sched_prio_to_weight[40] = {
8685  /* -20 */     88761,     71755,     56483,     46273,     36291,
8686  /* -15 */     29154,     23254,     18705,     14949,     11916,
8687  /* -10 */      9548,      7620,      6100,      4904,      3906,
8688  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8689  /*   0 */      1024,       820,       655,       526,       423,
8690  /*   5 */       335,       272,       215,       172,       137,
8691  /*  10 */       110,        87,        70,        56,        45,
8692  /*  15 */        36,        29,        23,        18,        15,
8693 };
8694 
8695 /*
8696  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8697  *
8698  * In cases where the weight does not change often, we can use the
8699  * precalculated inverse to speed up arithmetics by turning divisions
8700  * into multiplications:
8701  */
8702 const u32 sched_prio_to_wmult[40] = {
8703  /* -20 */     48388,     59856,     76040,     92818,    118348,
8704  /* -15 */    147320,    184698,    229616,    287308,    360437,
8705  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8706  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8707  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8708  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8709  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8710  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8711 };
8712