1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <uapi/linux/sched/types.h> 11 #include <linux/sched/loadavg.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/wait_bit.h> 14 #include <linux/cpuset.h> 15 #include <linux/delayacct.h> 16 #include <linux/init_task.h> 17 #include <linux/context_tracking.h> 18 #include <linux/rcupdate_wait.h> 19 #include <linux/compat.h> 20 21 #include <linux/blkdev.h> 22 #include <linux/kprobes.h> 23 #include <linux/mmu_context.h> 24 #include <linux/module.h> 25 #include <linux/nmi.h> 26 #include <linux/prefetch.h> 27 #include <linux/profile.h> 28 #include <linux/security.h> 29 #include <linux/syscalls.h> 30 #include <linux/sched/isolation.h> 31 32 #include <asm/switch_to.h> 33 #include <asm/tlb.h> 34 #ifdef CONFIG_PARAVIRT 35 #include <asm/paravirt.h> 36 #endif 37 38 #include "sched.h" 39 #include "../workqueue_internal.h" 40 #include "../smpboot.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/sched.h> 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we average the RT time consumption, measured 71 * in ms. 72 * 73 * default: 1s 74 */ 75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 76 77 /* 78 * period over which we measure -rt task CPU usage in us. 79 * default: 1s 80 */ 81 unsigned int sysctl_sched_rt_period = 1000000; 82 83 __read_mostly int scheduler_running; 84 85 /* 86 * part of the period that we allow rt tasks to run in us. 87 * default: 0.95s 88 */ 89 int sysctl_sched_rt_runtime = 950000; 90 91 /* 92 * __task_rq_lock - lock the rq @p resides on. 93 */ 94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 95 __acquires(rq->lock) 96 { 97 struct rq *rq; 98 99 lockdep_assert_held(&p->pi_lock); 100 101 for (;;) { 102 rq = task_rq(p); 103 raw_spin_lock(&rq->lock); 104 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 105 rq_pin_lock(rq, rf); 106 return rq; 107 } 108 raw_spin_unlock(&rq->lock); 109 110 while (unlikely(task_on_rq_migrating(p))) 111 cpu_relax(); 112 } 113 } 114 115 /* 116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 117 */ 118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 119 __acquires(p->pi_lock) 120 __acquires(rq->lock) 121 { 122 struct rq *rq; 123 124 for (;;) { 125 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 126 rq = task_rq(p); 127 raw_spin_lock(&rq->lock); 128 /* 129 * move_queued_task() task_rq_lock() 130 * 131 * ACQUIRE (rq->lock) 132 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 134 * [S] ->cpu = new_cpu [L] task_rq() 135 * [L] ->on_rq 136 * RELEASE (rq->lock) 137 * 138 * If we observe the old cpu in task_rq_lock, the acquire of 139 * the old rq->lock will fully serialize against the stores. 140 * 141 * If we observe the new CPU in task_rq_lock, the acquire will 142 * pair with the WMB to ensure we must then also see migrating. 143 */ 144 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 145 rq_pin_lock(rq, rf); 146 return rq; 147 } 148 raw_spin_unlock(&rq->lock); 149 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 150 151 while (unlikely(task_on_rq_migrating(p))) 152 cpu_relax(); 153 } 154 } 155 156 /* 157 * RQ-clock updating methods: 158 */ 159 160 static void update_rq_clock_task(struct rq *rq, s64 delta) 161 { 162 /* 163 * In theory, the compile should just see 0 here, and optimize out the call 164 * to sched_rt_avg_update. But I don't trust it... 165 */ 166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 167 s64 steal = 0, irq_delta = 0; 168 #endif 169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 170 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 171 172 /* 173 * Since irq_time is only updated on {soft,}irq_exit, we might run into 174 * this case when a previous update_rq_clock() happened inside a 175 * {soft,}irq region. 176 * 177 * When this happens, we stop ->clock_task and only update the 178 * prev_irq_time stamp to account for the part that fit, so that a next 179 * update will consume the rest. This ensures ->clock_task is 180 * monotonic. 181 * 182 * It does however cause some slight miss-attribution of {soft,}irq 183 * time, a more accurate solution would be to update the irq_time using 184 * the current rq->clock timestamp, except that would require using 185 * atomic ops. 186 */ 187 if (irq_delta > delta) 188 irq_delta = delta; 189 190 rq->prev_irq_time += irq_delta; 191 delta -= irq_delta; 192 #endif 193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 194 if (static_key_false((¶virt_steal_rq_enabled))) { 195 steal = paravirt_steal_clock(cpu_of(rq)); 196 steal -= rq->prev_steal_time_rq; 197 198 if (unlikely(steal > delta)) 199 steal = delta; 200 201 rq->prev_steal_time_rq += steal; 202 delta -= steal; 203 } 204 #endif 205 206 rq->clock_task += delta; 207 208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 209 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 210 sched_rt_avg_update(rq, irq_delta + steal); 211 #endif 212 } 213 214 void update_rq_clock(struct rq *rq) 215 { 216 s64 delta; 217 218 lockdep_assert_held(&rq->lock); 219 220 if (rq->clock_update_flags & RQCF_ACT_SKIP) 221 return; 222 223 #ifdef CONFIG_SCHED_DEBUG 224 if (sched_feat(WARN_DOUBLE_CLOCK)) 225 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 226 rq->clock_update_flags |= RQCF_UPDATED; 227 #endif 228 229 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 230 if (delta < 0) 231 return; 232 rq->clock += delta; 233 update_rq_clock_task(rq, delta); 234 } 235 236 237 #ifdef CONFIG_SCHED_HRTICK 238 /* 239 * Use HR-timers to deliver accurate preemption points. 240 */ 241 242 static void hrtick_clear(struct rq *rq) 243 { 244 if (hrtimer_active(&rq->hrtick_timer)) 245 hrtimer_cancel(&rq->hrtick_timer); 246 } 247 248 /* 249 * High-resolution timer tick. 250 * Runs from hardirq context with interrupts disabled. 251 */ 252 static enum hrtimer_restart hrtick(struct hrtimer *timer) 253 { 254 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 255 struct rq_flags rf; 256 257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 258 259 rq_lock(rq, &rf); 260 update_rq_clock(rq); 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 262 rq_unlock(rq, &rf); 263 264 return HRTIMER_NORESTART; 265 } 266 267 #ifdef CONFIG_SMP 268 269 static void __hrtick_restart(struct rq *rq) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 274 } 275 276 /* 277 * called from hardirq (IPI) context 278 */ 279 static void __hrtick_start(void *arg) 280 { 281 struct rq *rq = arg; 282 struct rq_flags rf; 283 284 rq_lock(rq, &rf); 285 __hrtick_restart(rq); 286 rq->hrtick_csd_pending = 0; 287 rq_unlock(rq, &rf); 288 } 289 290 /* 291 * Called to set the hrtick timer state. 292 * 293 * called with rq->lock held and irqs disabled 294 */ 295 void hrtick_start(struct rq *rq, u64 delay) 296 { 297 struct hrtimer *timer = &rq->hrtick_timer; 298 ktime_t time; 299 s64 delta; 300 301 /* 302 * Don't schedule slices shorter than 10000ns, that just 303 * doesn't make sense and can cause timer DoS. 304 */ 305 delta = max_t(s64, delay, 10000LL); 306 time = ktime_add_ns(timer->base->get_time(), delta); 307 308 hrtimer_set_expires(timer, time); 309 310 if (rq == this_rq()) { 311 __hrtick_restart(rq); 312 } else if (!rq->hrtick_csd_pending) { 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 314 rq->hrtick_csd_pending = 1; 315 } 316 } 317 318 #else 319 /* 320 * Called to set the hrtick timer state. 321 * 322 * called with rq->lock held and irqs disabled 323 */ 324 void hrtick_start(struct rq *rq, u64 delay) 325 { 326 /* 327 * Don't schedule slices shorter than 10000ns, that just 328 * doesn't make sense. Rely on vruntime for fairness. 329 */ 330 delay = max_t(u64, delay, 10000LL); 331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 332 HRTIMER_MODE_REL_PINNED); 333 } 334 #endif /* CONFIG_SMP */ 335 336 static void init_rq_hrtick(struct rq *rq) 337 { 338 #ifdef CONFIG_SMP 339 rq->hrtick_csd_pending = 0; 340 341 rq->hrtick_csd.flags = 0; 342 rq->hrtick_csd.func = __hrtick_start; 343 rq->hrtick_csd.info = rq; 344 #endif 345 346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 347 rq->hrtick_timer.function = hrtick; 348 } 349 #else /* CONFIG_SCHED_HRTICK */ 350 static inline void hrtick_clear(struct rq *rq) 351 { 352 } 353 354 static inline void init_rq_hrtick(struct rq *rq) 355 { 356 } 357 #endif /* CONFIG_SCHED_HRTICK */ 358 359 /* 360 * cmpxchg based fetch_or, macro so it works for different integer types 361 */ 362 #define fetch_or(ptr, mask) \ 363 ({ \ 364 typeof(ptr) _ptr = (ptr); \ 365 typeof(mask) _mask = (mask); \ 366 typeof(*_ptr) _old, _val = *_ptr; \ 367 \ 368 for (;;) { \ 369 _old = cmpxchg(_ptr, _val, _val | _mask); \ 370 if (_old == _val) \ 371 break; \ 372 _val = _old; \ 373 } \ 374 _old; \ 375 }) 376 377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 378 /* 379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 380 * this avoids any races wrt polling state changes and thereby avoids 381 * spurious IPIs. 382 */ 383 static bool set_nr_and_not_polling(struct task_struct *p) 384 { 385 struct thread_info *ti = task_thread_info(p); 386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 387 } 388 389 /* 390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 391 * 392 * If this returns true, then the idle task promises to call 393 * sched_ttwu_pending() and reschedule soon. 394 */ 395 static bool set_nr_if_polling(struct task_struct *p) 396 { 397 struct thread_info *ti = task_thread_info(p); 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 399 400 for (;;) { 401 if (!(val & _TIF_POLLING_NRFLAG)) 402 return false; 403 if (val & _TIF_NEED_RESCHED) 404 return true; 405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 406 if (old == val) 407 break; 408 val = old; 409 } 410 return true; 411 } 412 413 #else 414 static bool set_nr_and_not_polling(struct task_struct *p) 415 { 416 set_tsk_need_resched(p); 417 return true; 418 } 419 420 #ifdef CONFIG_SMP 421 static bool set_nr_if_polling(struct task_struct *p) 422 { 423 return false; 424 } 425 #endif 426 #endif 427 428 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 429 { 430 struct wake_q_node *node = &task->wake_q; 431 432 /* 433 * Atomically grab the task, if ->wake_q is !nil already it means 434 * its already queued (either by us or someone else) and will get the 435 * wakeup due to that. 436 * 437 * This cmpxchg() implies a full barrier, which pairs with the write 438 * barrier implied by the wakeup in wake_up_q(). 439 */ 440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 441 return; 442 443 get_task_struct(task); 444 445 /* 446 * The head is context local, there can be no concurrency. 447 */ 448 *head->lastp = node; 449 head->lastp = &node->next; 450 } 451 452 void wake_up_q(struct wake_q_head *head) 453 { 454 struct wake_q_node *node = head->first; 455 456 while (node != WAKE_Q_TAIL) { 457 struct task_struct *task; 458 459 task = container_of(node, struct task_struct, wake_q); 460 BUG_ON(!task); 461 /* Task can safely be re-inserted now: */ 462 node = node->next; 463 task->wake_q.next = NULL; 464 465 /* 466 * wake_up_process() implies a wmb() to pair with the queueing 467 * in wake_q_add() so as not to miss wakeups. 468 */ 469 wake_up_process(task); 470 put_task_struct(task); 471 } 472 } 473 474 /* 475 * resched_curr - mark rq's current task 'to be rescheduled now'. 476 * 477 * On UP this means the setting of the need_resched flag, on SMP it 478 * might also involve a cross-CPU call to trigger the scheduler on 479 * the target CPU. 480 */ 481 void resched_curr(struct rq *rq) 482 { 483 struct task_struct *curr = rq->curr; 484 int cpu; 485 486 lockdep_assert_held(&rq->lock); 487 488 if (test_tsk_need_resched(curr)) 489 return; 490 491 cpu = cpu_of(rq); 492 493 if (cpu == smp_processor_id()) { 494 set_tsk_need_resched(curr); 495 set_preempt_need_resched(); 496 return; 497 } 498 499 if (set_nr_and_not_polling(curr)) 500 smp_send_reschedule(cpu); 501 else 502 trace_sched_wake_idle_without_ipi(cpu); 503 } 504 505 void resched_cpu(int cpu) 506 { 507 struct rq *rq = cpu_rq(cpu); 508 unsigned long flags; 509 510 raw_spin_lock_irqsave(&rq->lock, flags); 511 if (cpu_online(cpu) || cpu == smp_processor_id()) 512 resched_curr(rq); 513 raw_spin_unlock_irqrestore(&rq->lock, flags); 514 } 515 516 #ifdef CONFIG_SMP 517 #ifdef CONFIG_NO_HZ_COMMON 518 /* 519 * In the semi idle case, use the nearest busy CPU for migrating timers 520 * from an idle CPU. This is good for power-savings. 521 * 522 * We don't do similar optimization for completely idle system, as 523 * selecting an idle CPU will add more delays to the timers than intended 524 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 525 */ 526 int get_nohz_timer_target(void) 527 { 528 int i, cpu = smp_processor_id(); 529 struct sched_domain *sd; 530 531 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 532 return cpu; 533 534 rcu_read_lock(); 535 for_each_domain(cpu, sd) { 536 for_each_cpu(i, sched_domain_span(sd)) { 537 if (cpu == i) 538 continue; 539 540 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 541 cpu = i; 542 goto unlock; 543 } 544 } 545 } 546 547 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 548 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 549 unlock: 550 rcu_read_unlock(); 551 return cpu; 552 } 553 554 /* 555 * When add_timer_on() enqueues a timer into the timer wheel of an 556 * idle CPU then this timer might expire before the next timer event 557 * which is scheduled to wake up that CPU. In case of a completely 558 * idle system the next event might even be infinite time into the 559 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 560 * leaves the inner idle loop so the newly added timer is taken into 561 * account when the CPU goes back to idle and evaluates the timer 562 * wheel for the next timer event. 563 */ 564 static void wake_up_idle_cpu(int cpu) 565 { 566 struct rq *rq = cpu_rq(cpu); 567 568 if (cpu == smp_processor_id()) 569 return; 570 571 if (set_nr_and_not_polling(rq->idle)) 572 smp_send_reschedule(cpu); 573 else 574 trace_sched_wake_idle_without_ipi(cpu); 575 } 576 577 static bool wake_up_full_nohz_cpu(int cpu) 578 { 579 /* 580 * We just need the target to call irq_exit() and re-evaluate 581 * the next tick. The nohz full kick at least implies that. 582 * If needed we can still optimize that later with an 583 * empty IRQ. 584 */ 585 if (cpu_is_offline(cpu)) 586 return true; /* Don't try to wake offline CPUs. */ 587 if (tick_nohz_full_cpu(cpu)) { 588 if (cpu != smp_processor_id() || 589 tick_nohz_tick_stopped()) 590 tick_nohz_full_kick_cpu(cpu); 591 return true; 592 } 593 594 return false; 595 } 596 597 /* 598 * Wake up the specified CPU. If the CPU is going offline, it is the 599 * caller's responsibility to deal with the lost wakeup, for example, 600 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 601 */ 602 void wake_up_nohz_cpu(int cpu) 603 { 604 if (!wake_up_full_nohz_cpu(cpu)) 605 wake_up_idle_cpu(cpu); 606 } 607 608 static inline bool got_nohz_idle_kick(void) 609 { 610 int cpu = smp_processor_id(); 611 612 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 613 return false; 614 615 if (idle_cpu(cpu) && !need_resched()) 616 return true; 617 618 /* 619 * We can't run Idle Load Balance on this CPU for this time so we 620 * cancel it and clear NOHZ_BALANCE_KICK 621 */ 622 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 623 return false; 624 } 625 626 #else /* CONFIG_NO_HZ_COMMON */ 627 628 static inline bool got_nohz_idle_kick(void) 629 { 630 return false; 631 } 632 633 #endif /* CONFIG_NO_HZ_COMMON */ 634 635 #ifdef CONFIG_NO_HZ_FULL 636 bool sched_can_stop_tick(struct rq *rq) 637 { 638 int fifo_nr_running; 639 640 /* Deadline tasks, even if single, need the tick */ 641 if (rq->dl.dl_nr_running) 642 return false; 643 644 /* 645 * If there are more than one RR tasks, we need the tick to effect the 646 * actual RR behaviour. 647 */ 648 if (rq->rt.rr_nr_running) { 649 if (rq->rt.rr_nr_running == 1) 650 return true; 651 else 652 return false; 653 } 654 655 /* 656 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 657 * forced preemption between FIFO tasks. 658 */ 659 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 660 if (fifo_nr_running) 661 return true; 662 663 /* 664 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 665 * if there's more than one we need the tick for involuntary 666 * preemption. 667 */ 668 if (rq->nr_running > 1) 669 return false; 670 671 return true; 672 } 673 #endif /* CONFIG_NO_HZ_FULL */ 674 675 void sched_avg_update(struct rq *rq) 676 { 677 s64 period = sched_avg_period(); 678 679 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 680 /* 681 * Inline assembly required to prevent the compiler 682 * optimising this loop into a divmod call. 683 * See __iter_div_u64_rem() for another example of this. 684 */ 685 asm("" : "+rm" (rq->age_stamp)); 686 rq->age_stamp += period; 687 rq->rt_avg /= 2; 688 } 689 } 690 691 #endif /* CONFIG_SMP */ 692 693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 694 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 695 /* 696 * Iterate task_group tree rooted at *from, calling @down when first entering a 697 * node and @up when leaving it for the final time. 698 * 699 * Caller must hold rcu_lock or sufficient equivalent. 700 */ 701 int walk_tg_tree_from(struct task_group *from, 702 tg_visitor down, tg_visitor up, void *data) 703 { 704 struct task_group *parent, *child; 705 int ret; 706 707 parent = from; 708 709 down: 710 ret = (*down)(parent, data); 711 if (ret) 712 goto out; 713 list_for_each_entry_rcu(child, &parent->children, siblings) { 714 parent = child; 715 goto down; 716 717 up: 718 continue; 719 } 720 ret = (*up)(parent, data); 721 if (ret || parent == from) 722 goto out; 723 724 child = parent; 725 parent = parent->parent; 726 if (parent) 727 goto up; 728 out: 729 return ret; 730 } 731 732 int tg_nop(struct task_group *tg, void *data) 733 { 734 return 0; 735 } 736 #endif 737 738 static void set_load_weight(struct task_struct *p, bool update_load) 739 { 740 int prio = p->static_prio - MAX_RT_PRIO; 741 struct load_weight *load = &p->se.load; 742 743 /* 744 * SCHED_IDLE tasks get minimal weight: 745 */ 746 if (idle_policy(p->policy)) { 747 load->weight = scale_load(WEIGHT_IDLEPRIO); 748 load->inv_weight = WMULT_IDLEPRIO; 749 return; 750 } 751 752 /* 753 * SCHED_OTHER tasks have to update their load when changing their 754 * weight 755 */ 756 if (update_load && p->sched_class == &fair_sched_class) { 757 reweight_task(p, prio); 758 } else { 759 load->weight = scale_load(sched_prio_to_weight[prio]); 760 load->inv_weight = sched_prio_to_wmult[prio]; 761 } 762 } 763 764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 765 { 766 if (!(flags & ENQUEUE_NOCLOCK)) 767 update_rq_clock(rq); 768 769 if (!(flags & ENQUEUE_RESTORE)) 770 sched_info_queued(rq, p); 771 772 p->sched_class->enqueue_task(rq, p, flags); 773 } 774 775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 776 { 777 if (!(flags & DEQUEUE_NOCLOCK)) 778 update_rq_clock(rq); 779 780 if (!(flags & DEQUEUE_SAVE)) 781 sched_info_dequeued(rq, p); 782 783 p->sched_class->dequeue_task(rq, p, flags); 784 } 785 786 void activate_task(struct rq *rq, struct task_struct *p, int flags) 787 { 788 if (task_contributes_to_load(p)) 789 rq->nr_uninterruptible--; 790 791 enqueue_task(rq, p, flags); 792 } 793 794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 795 { 796 if (task_contributes_to_load(p)) 797 rq->nr_uninterruptible++; 798 799 dequeue_task(rq, p, flags); 800 } 801 802 /* 803 * __normal_prio - return the priority that is based on the static prio 804 */ 805 static inline int __normal_prio(struct task_struct *p) 806 { 807 return p->static_prio; 808 } 809 810 /* 811 * Calculate the expected normal priority: i.e. priority 812 * without taking RT-inheritance into account. Might be 813 * boosted by interactivity modifiers. Changes upon fork, 814 * setprio syscalls, and whenever the interactivity 815 * estimator recalculates. 816 */ 817 static inline int normal_prio(struct task_struct *p) 818 { 819 int prio; 820 821 if (task_has_dl_policy(p)) 822 prio = MAX_DL_PRIO-1; 823 else if (task_has_rt_policy(p)) 824 prio = MAX_RT_PRIO-1 - p->rt_priority; 825 else 826 prio = __normal_prio(p); 827 return prio; 828 } 829 830 /* 831 * Calculate the current priority, i.e. the priority 832 * taken into account by the scheduler. This value might 833 * be boosted by RT tasks, or might be boosted by 834 * interactivity modifiers. Will be RT if the task got 835 * RT-boosted. If not then it returns p->normal_prio. 836 */ 837 static int effective_prio(struct task_struct *p) 838 { 839 p->normal_prio = normal_prio(p); 840 /* 841 * If we are RT tasks or we were boosted to RT priority, 842 * keep the priority unchanged. Otherwise, update priority 843 * to the normal priority: 844 */ 845 if (!rt_prio(p->prio)) 846 return p->normal_prio; 847 return p->prio; 848 } 849 850 /** 851 * task_curr - is this task currently executing on a CPU? 852 * @p: the task in question. 853 * 854 * Return: 1 if the task is currently executing. 0 otherwise. 855 */ 856 inline int task_curr(const struct task_struct *p) 857 { 858 return cpu_curr(task_cpu(p)) == p; 859 } 860 861 /* 862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 863 * use the balance_callback list if you want balancing. 864 * 865 * this means any call to check_class_changed() must be followed by a call to 866 * balance_callback(). 867 */ 868 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 869 const struct sched_class *prev_class, 870 int oldprio) 871 { 872 if (prev_class != p->sched_class) { 873 if (prev_class->switched_from) 874 prev_class->switched_from(rq, p); 875 876 p->sched_class->switched_to(rq, p); 877 } else if (oldprio != p->prio || dl_task(p)) 878 p->sched_class->prio_changed(rq, p, oldprio); 879 } 880 881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 882 { 883 const struct sched_class *class; 884 885 if (p->sched_class == rq->curr->sched_class) { 886 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 887 } else { 888 for_each_class(class) { 889 if (class == rq->curr->sched_class) 890 break; 891 if (class == p->sched_class) { 892 resched_curr(rq); 893 break; 894 } 895 } 896 } 897 898 /* 899 * A queue event has occurred, and we're going to schedule. In 900 * this case, we can save a useless back to back clock update. 901 */ 902 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 903 rq_clock_skip_update(rq, true); 904 } 905 906 #ifdef CONFIG_SMP 907 /* 908 * This is how migration works: 909 * 910 * 1) we invoke migration_cpu_stop() on the target CPU using 911 * stop_one_cpu(). 912 * 2) stopper starts to run (implicitly forcing the migrated thread 913 * off the CPU) 914 * 3) it checks whether the migrated task is still in the wrong runqueue. 915 * 4) if it's in the wrong runqueue then the migration thread removes 916 * it and puts it into the right queue. 917 * 5) stopper completes and stop_one_cpu() returns and the migration 918 * is done. 919 */ 920 921 /* 922 * move_queued_task - move a queued task to new rq. 923 * 924 * Returns (locked) new rq. Old rq's lock is released. 925 */ 926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 927 struct task_struct *p, int new_cpu) 928 { 929 lockdep_assert_held(&rq->lock); 930 931 p->on_rq = TASK_ON_RQ_MIGRATING; 932 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 933 set_task_cpu(p, new_cpu); 934 rq_unlock(rq, rf); 935 936 rq = cpu_rq(new_cpu); 937 938 rq_lock(rq, rf); 939 BUG_ON(task_cpu(p) != new_cpu); 940 enqueue_task(rq, p, 0); 941 p->on_rq = TASK_ON_RQ_QUEUED; 942 check_preempt_curr(rq, p, 0); 943 944 return rq; 945 } 946 947 struct migration_arg { 948 struct task_struct *task; 949 int dest_cpu; 950 }; 951 952 /* 953 * Move (not current) task off this CPU, onto the destination CPU. We're doing 954 * this because either it can't run here any more (set_cpus_allowed() 955 * away from this CPU, or CPU going down), or because we're 956 * attempting to rebalance this task on exec (sched_exec). 957 * 958 * So we race with normal scheduler movements, but that's OK, as long 959 * as the task is no longer on this CPU. 960 */ 961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 962 struct task_struct *p, int dest_cpu) 963 { 964 if (p->flags & PF_KTHREAD) { 965 if (unlikely(!cpu_online(dest_cpu))) 966 return rq; 967 } else { 968 if (unlikely(!cpu_active(dest_cpu))) 969 return rq; 970 } 971 972 /* Affinity changed (again). */ 973 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 974 return rq; 975 976 update_rq_clock(rq); 977 rq = move_queued_task(rq, rf, p, dest_cpu); 978 979 return rq; 980 } 981 982 /* 983 * migration_cpu_stop - this will be executed by a highprio stopper thread 984 * and performs thread migration by bumping thread off CPU then 985 * 'pushing' onto another runqueue. 986 */ 987 static int migration_cpu_stop(void *data) 988 { 989 struct migration_arg *arg = data; 990 struct task_struct *p = arg->task; 991 struct rq *rq = this_rq(); 992 struct rq_flags rf; 993 994 /* 995 * The original target CPU might have gone down and we might 996 * be on another CPU but it doesn't matter. 997 */ 998 local_irq_disable(); 999 /* 1000 * We need to explicitly wake pending tasks before running 1001 * __migrate_task() such that we will not miss enforcing cpus_allowed 1002 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1003 */ 1004 sched_ttwu_pending(); 1005 1006 raw_spin_lock(&p->pi_lock); 1007 rq_lock(rq, &rf); 1008 /* 1009 * If task_rq(p) != rq, it cannot be migrated here, because we're 1010 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1011 * we're holding p->pi_lock. 1012 */ 1013 if (task_rq(p) == rq) { 1014 if (task_on_rq_queued(p)) 1015 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1016 else 1017 p->wake_cpu = arg->dest_cpu; 1018 } 1019 rq_unlock(rq, &rf); 1020 raw_spin_unlock(&p->pi_lock); 1021 1022 local_irq_enable(); 1023 return 0; 1024 } 1025 1026 /* 1027 * sched_class::set_cpus_allowed must do the below, but is not required to 1028 * actually call this function. 1029 */ 1030 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1031 { 1032 cpumask_copy(&p->cpus_allowed, new_mask); 1033 p->nr_cpus_allowed = cpumask_weight(new_mask); 1034 } 1035 1036 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1037 { 1038 struct rq *rq = task_rq(p); 1039 bool queued, running; 1040 1041 lockdep_assert_held(&p->pi_lock); 1042 1043 queued = task_on_rq_queued(p); 1044 running = task_current(rq, p); 1045 1046 if (queued) { 1047 /* 1048 * Because __kthread_bind() calls this on blocked tasks without 1049 * holding rq->lock. 1050 */ 1051 lockdep_assert_held(&rq->lock); 1052 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1053 } 1054 if (running) 1055 put_prev_task(rq, p); 1056 1057 p->sched_class->set_cpus_allowed(p, new_mask); 1058 1059 if (queued) 1060 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1061 if (running) 1062 set_curr_task(rq, p); 1063 } 1064 1065 /* 1066 * Change a given task's CPU affinity. Migrate the thread to a 1067 * proper CPU and schedule it away if the CPU it's executing on 1068 * is removed from the allowed bitmask. 1069 * 1070 * NOTE: the caller must have a valid reference to the task, the 1071 * task must not exit() & deallocate itself prematurely. The 1072 * call is not atomic; no spinlocks may be held. 1073 */ 1074 static int __set_cpus_allowed_ptr(struct task_struct *p, 1075 const struct cpumask *new_mask, bool check) 1076 { 1077 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1078 unsigned int dest_cpu; 1079 struct rq_flags rf; 1080 struct rq *rq; 1081 int ret = 0; 1082 1083 rq = task_rq_lock(p, &rf); 1084 update_rq_clock(rq); 1085 1086 if (p->flags & PF_KTHREAD) { 1087 /* 1088 * Kernel threads are allowed on online && !active CPUs 1089 */ 1090 cpu_valid_mask = cpu_online_mask; 1091 } 1092 1093 /* 1094 * Must re-check here, to close a race against __kthread_bind(), 1095 * sched_setaffinity() is not guaranteed to observe the flag. 1096 */ 1097 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1098 ret = -EINVAL; 1099 goto out; 1100 } 1101 1102 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1103 goto out; 1104 1105 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1106 ret = -EINVAL; 1107 goto out; 1108 } 1109 1110 do_set_cpus_allowed(p, new_mask); 1111 1112 if (p->flags & PF_KTHREAD) { 1113 /* 1114 * For kernel threads that do indeed end up on online && 1115 * !active we want to ensure they are strict per-CPU threads. 1116 */ 1117 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1118 !cpumask_intersects(new_mask, cpu_active_mask) && 1119 p->nr_cpus_allowed != 1); 1120 } 1121 1122 /* Can the task run on the task's current CPU? If so, we're done */ 1123 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1124 goto out; 1125 1126 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1127 if (task_running(rq, p) || p->state == TASK_WAKING) { 1128 struct migration_arg arg = { p, dest_cpu }; 1129 /* Need help from migration thread: drop lock and wait. */ 1130 task_rq_unlock(rq, p, &rf); 1131 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1132 tlb_migrate_finish(p->mm); 1133 return 0; 1134 } else if (task_on_rq_queued(p)) { 1135 /* 1136 * OK, since we're going to drop the lock immediately 1137 * afterwards anyway. 1138 */ 1139 rq = move_queued_task(rq, &rf, p, dest_cpu); 1140 } 1141 out: 1142 task_rq_unlock(rq, p, &rf); 1143 1144 return ret; 1145 } 1146 1147 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1148 { 1149 return __set_cpus_allowed_ptr(p, new_mask, false); 1150 } 1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1152 1153 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1154 { 1155 #ifdef CONFIG_SCHED_DEBUG 1156 /* 1157 * We should never call set_task_cpu() on a blocked task, 1158 * ttwu() will sort out the placement. 1159 */ 1160 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1161 !p->on_rq); 1162 1163 /* 1164 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1165 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1166 * time relying on p->on_rq. 1167 */ 1168 WARN_ON_ONCE(p->state == TASK_RUNNING && 1169 p->sched_class == &fair_sched_class && 1170 (p->on_rq && !task_on_rq_migrating(p))); 1171 1172 #ifdef CONFIG_LOCKDEP 1173 /* 1174 * The caller should hold either p->pi_lock or rq->lock, when changing 1175 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1176 * 1177 * sched_move_task() holds both and thus holding either pins the cgroup, 1178 * see task_group(). 1179 * 1180 * Furthermore, all task_rq users should acquire both locks, see 1181 * task_rq_lock(). 1182 */ 1183 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1184 lockdep_is_held(&task_rq(p)->lock))); 1185 #endif 1186 /* 1187 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1188 */ 1189 WARN_ON_ONCE(!cpu_online(new_cpu)); 1190 #endif 1191 1192 trace_sched_migrate_task(p, new_cpu); 1193 1194 if (task_cpu(p) != new_cpu) { 1195 if (p->sched_class->migrate_task_rq) 1196 p->sched_class->migrate_task_rq(p); 1197 p->se.nr_migrations++; 1198 perf_event_task_migrate(p); 1199 } 1200 1201 __set_task_cpu(p, new_cpu); 1202 } 1203 1204 static void __migrate_swap_task(struct task_struct *p, int cpu) 1205 { 1206 if (task_on_rq_queued(p)) { 1207 struct rq *src_rq, *dst_rq; 1208 struct rq_flags srf, drf; 1209 1210 src_rq = task_rq(p); 1211 dst_rq = cpu_rq(cpu); 1212 1213 rq_pin_lock(src_rq, &srf); 1214 rq_pin_lock(dst_rq, &drf); 1215 1216 p->on_rq = TASK_ON_RQ_MIGRATING; 1217 deactivate_task(src_rq, p, 0); 1218 set_task_cpu(p, cpu); 1219 activate_task(dst_rq, p, 0); 1220 p->on_rq = TASK_ON_RQ_QUEUED; 1221 check_preempt_curr(dst_rq, p, 0); 1222 1223 rq_unpin_lock(dst_rq, &drf); 1224 rq_unpin_lock(src_rq, &srf); 1225 1226 } else { 1227 /* 1228 * Task isn't running anymore; make it appear like we migrated 1229 * it before it went to sleep. This means on wakeup we make the 1230 * previous CPU our target instead of where it really is. 1231 */ 1232 p->wake_cpu = cpu; 1233 } 1234 } 1235 1236 struct migration_swap_arg { 1237 struct task_struct *src_task, *dst_task; 1238 int src_cpu, dst_cpu; 1239 }; 1240 1241 static int migrate_swap_stop(void *data) 1242 { 1243 struct migration_swap_arg *arg = data; 1244 struct rq *src_rq, *dst_rq; 1245 int ret = -EAGAIN; 1246 1247 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1248 return -EAGAIN; 1249 1250 src_rq = cpu_rq(arg->src_cpu); 1251 dst_rq = cpu_rq(arg->dst_cpu); 1252 1253 double_raw_lock(&arg->src_task->pi_lock, 1254 &arg->dst_task->pi_lock); 1255 double_rq_lock(src_rq, dst_rq); 1256 1257 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1258 goto unlock; 1259 1260 if (task_cpu(arg->src_task) != arg->src_cpu) 1261 goto unlock; 1262 1263 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1264 goto unlock; 1265 1266 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1267 goto unlock; 1268 1269 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1270 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1271 1272 ret = 0; 1273 1274 unlock: 1275 double_rq_unlock(src_rq, dst_rq); 1276 raw_spin_unlock(&arg->dst_task->pi_lock); 1277 raw_spin_unlock(&arg->src_task->pi_lock); 1278 1279 return ret; 1280 } 1281 1282 /* 1283 * Cross migrate two tasks 1284 */ 1285 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1286 { 1287 struct migration_swap_arg arg; 1288 int ret = -EINVAL; 1289 1290 arg = (struct migration_swap_arg){ 1291 .src_task = cur, 1292 .src_cpu = task_cpu(cur), 1293 .dst_task = p, 1294 .dst_cpu = task_cpu(p), 1295 }; 1296 1297 if (arg.src_cpu == arg.dst_cpu) 1298 goto out; 1299 1300 /* 1301 * These three tests are all lockless; this is OK since all of them 1302 * will be re-checked with proper locks held further down the line. 1303 */ 1304 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1305 goto out; 1306 1307 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1308 goto out; 1309 1310 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1311 goto out; 1312 1313 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1314 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1315 1316 out: 1317 return ret; 1318 } 1319 1320 /* 1321 * wait_task_inactive - wait for a thread to unschedule. 1322 * 1323 * If @match_state is nonzero, it's the @p->state value just checked and 1324 * not expected to change. If it changes, i.e. @p might have woken up, 1325 * then return zero. When we succeed in waiting for @p to be off its CPU, 1326 * we return a positive number (its total switch count). If a second call 1327 * a short while later returns the same number, the caller can be sure that 1328 * @p has remained unscheduled the whole time. 1329 * 1330 * The caller must ensure that the task *will* unschedule sometime soon, 1331 * else this function might spin for a *long* time. This function can't 1332 * be called with interrupts off, or it may introduce deadlock with 1333 * smp_call_function() if an IPI is sent by the same process we are 1334 * waiting to become inactive. 1335 */ 1336 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1337 { 1338 int running, queued; 1339 struct rq_flags rf; 1340 unsigned long ncsw; 1341 struct rq *rq; 1342 1343 for (;;) { 1344 /* 1345 * We do the initial early heuristics without holding 1346 * any task-queue locks at all. We'll only try to get 1347 * the runqueue lock when things look like they will 1348 * work out! 1349 */ 1350 rq = task_rq(p); 1351 1352 /* 1353 * If the task is actively running on another CPU 1354 * still, just relax and busy-wait without holding 1355 * any locks. 1356 * 1357 * NOTE! Since we don't hold any locks, it's not 1358 * even sure that "rq" stays as the right runqueue! 1359 * But we don't care, since "task_running()" will 1360 * return false if the runqueue has changed and p 1361 * is actually now running somewhere else! 1362 */ 1363 while (task_running(rq, p)) { 1364 if (match_state && unlikely(p->state != match_state)) 1365 return 0; 1366 cpu_relax(); 1367 } 1368 1369 /* 1370 * Ok, time to look more closely! We need the rq 1371 * lock now, to be *sure*. If we're wrong, we'll 1372 * just go back and repeat. 1373 */ 1374 rq = task_rq_lock(p, &rf); 1375 trace_sched_wait_task(p); 1376 running = task_running(rq, p); 1377 queued = task_on_rq_queued(p); 1378 ncsw = 0; 1379 if (!match_state || p->state == match_state) 1380 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1381 task_rq_unlock(rq, p, &rf); 1382 1383 /* 1384 * If it changed from the expected state, bail out now. 1385 */ 1386 if (unlikely(!ncsw)) 1387 break; 1388 1389 /* 1390 * Was it really running after all now that we 1391 * checked with the proper locks actually held? 1392 * 1393 * Oops. Go back and try again.. 1394 */ 1395 if (unlikely(running)) { 1396 cpu_relax(); 1397 continue; 1398 } 1399 1400 /* 1401 * It's not enough that it's not actively running, 1402 * it must be off the runqueue _entirely_, and not 1403 * preempted! 1404 * 1405 * So if it was still runnable (but just not actively 1406 * running right now), it's preempted, and we should 1407 * yield - it could be a while. 1408 */ 1409 if (unlikely(queued)) { 1410 ktime_t to = NSEC_PER_SEC / HZ; 1411 1412 set_current_state(TASK_UNINTERRUPTIBLE); 1413 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1414 continue; 1415 } 1416 1417 /* 1418 * Ahh, all good. It wasn't running, and it wasn't 1419 * runnable, which means that it will never become 1420 * running in the future either. We're all done! 1421 */ 1422 break; 1423 } 1424 1425 return ncsw; 1426 } 1427 1428 /*** 1429 * kick_process - kick a running thread to enter/exit the kernel 1430 * @p: the to-be-kicked thread 1431 * 1432 * Cause a process which is running on another CPU to enter 1433 * kernel-mode, without any delay. (to get signals handled.) 1434 * 1435 * NOTE: this function doesn't have to take the runqueue lock, 1436 * because all it wants to ensure is that the remote task enters 1437 * the kernel. If the IPI races and the task has been migrated 1438 * to another CPU then no harm is done and the purpose has been 1439 * achieved as well. 1440 */ 1441 void kick_process(struct task_struct *p) 1442 { 1443 int cpu; 1444 1445 preempt_disable(); 1446 cpu = task_cpu(p); 1447 if ((cpu != smp_processor_id()) && task_curr(p)) 1448 smp_send_reschedule(cpu); 1449 preempt_enable(); 1450 } 1451 EXPORT_SYMBOL_GPL(kick_process); 1452 1453 /* 1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1455 * 1456 * A few notes on cpu_active vs cpu_online: 1457 * 1458 * - cpu_active must be a subset of cpu_online 1459 * 1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1461 * see __set_cpus_allowed_ptr(). At this point the newly online 1462 * CPU isn't yet part of the sched domains, and balancing will not 1463 * see it. 1464 * 1465 * - on CPU-down we clear cpu_active() to mask the sched domains and 1466 * avoid the load balancer to place new tasks on the to be removed 1467 * CPU. Existing tasks will remain running there and will be taken 1468 * off. 1469 * 1470 * This means that fallback selection must not select !active CPUs. 1471 * And can assume that any active CPU must be online. Conversely 1472 * select_task_rq() below may allow selection of !active CPUs in order 1473 * to satisfy the above rules. 1474 */ 1475 static int select_fallback_rq(int cpu, struct task_struct *p) 1476 { 1477 int nid = cpu_to_node(cpu); 1478 const struct cpumask *nodemask = NULL; 1479 enum { cpuset, possible, fail } state = cpuset; 1480 int dest_cpu; 1481 1482 /* 1483 * If the node that the CPU is on has been offlined, cpu_to_node() 1484 * will return -1. There is no CPU on the node, and we should 1485 * select the CPU on the other node. 1486 */ 1487 if (nid != -1) { 1488 nodemask = cpumask_of_node(nid); 1489 1490 /* Look for allowed, online CPU in same node. */ 1491 for_each_cpu(dest_cpu, nodemask) { 1492 if (!cpu_active(dest_cpu)) 1493 continue; 1494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1495 return dest_cpu; 1496 } 1497 } 1498 1499 for (;;) { 1500 /* Any allowed, online CPU? */ 1501 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1502 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1503 continue; 1504 if (!cpu_online(dest_cpu)) 1505 continue; 1506 goto out; 1507 } 1508 1509 /* No more Mr. Nice Guy. */ 1510 switch (state) { 1511 case cpuset: 1512 if (IS_ENABLED(CONFIG_CPUSETS)) { 1513 cpuset_cpus_allowed_fallback(p); 1514 state = possible; 1515 break; 1516 } 1517 /* Fall-through */ 1518 case possible: 1519 do_set_cpus_allowed(p, cpu_possible_mask); 1520 state = fail; 1521 break; 1522 1523 case fail: 1524 BUG(); 1525 break; 1526 } 1527 } 1528 1529 out: 1530 if (state != cpuset) { 1531 /* 1532 * Don't tell them about moving exiting tasks or 1533 * kernel threads (both mm NULL), since they never 1534 * leave kernel. 1535 */ 1536 if (p->mm && printk_ratelimit()) { 1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1538 task_pid_nr(p), p->comm, cpu); 1539 } 1540 } 1541 1542 return dest_cpu; 1543 } 1544 1545 /* 1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1547 */ 1548 static inline 1549 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1550 { 1551 lockdep_assert_held(&p->pi_lock); 1552 1553 if (p->nr_cpus_allowed > 1) 1554 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1555 else 1556 cpu = cpumask_any(&p->cpus_allowed); 1557 1558 /* 1559 * In order not to call set_task_cpu() on a blocking task we need 1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1561 * CPU. 1562 * 1563 * Since this is common to all placement strategies, this lives here. 1564 * 1565 * [ this allows ->select_task() to simply return task_cpu(p) and 1566 * not worry about this generic constraint ] 1567 */ 1568 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1569 !cpu_online(cpu))) 1570 cpu = select_fallback_rq(task_cpu(p), p); 1571 1572 return cpu; 1573 } 1574 1575 static void update_avg(u64 *avg, u64 sample) 1576 { 1577 s64 diff = sample - *avg; 1578 *avg += diff >> 3; 1579 } 1580 1581 void sched_set_stop_task(int cpu, struct task_struct *stop) 1582 { 1583 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1584 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1585 1586 if (stop) { 1587 /* 1588 * Make it appear like a SCHED_FIFO task, its something 1589 * userspace knows about and won't get confused about. 1590 * 1591 * Also, it will make PI more or less work without too 1592 * much confusion -- but then, stop work should not 1593 * rely on PI working anyway. 1594 */ 1595 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1596 1597 stop->sched_class = &stop_sched_class; 1598 } 1599 1600 cpu_rq(cpu)->stop = stop; 1601 1602 if (old_stop) { 1603 /* 1604 * Reset it back to a normal scheduling class so that 1605 * it can die in pieces. 1606 */ 1607 old_stop->sched_class = &rt_sched_class; 1608 } 1609 } 1610 1611 #else 1612 1613 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1614 const struct cpumask *new_mask, bool check) 1615 { 1616 return set_cpus_allowed_ptr(p, new_mask); 1617 } 1618 1619 #endif /* CONFIG_SMP */ 1620 1621 static void 1622 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1623 { 1624 struct rq *rq; 1625 1626 if (!schedstat_enabled()) 1627 return; 1628 1629 rq = this_rq(); 1630 1631 #ifdef CONFIG_SMP 1632 if (cpu == rq->cpu) { 1633 __schedstat_inc(rq->ttwu_local); 1634 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1635 } else { 1636 struct sched_domain *sd; 1637 1638 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1639 rcu_read_lock(); 1640 for_each_domain(rq->cpu, sd) { 1641 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1642 __schedstat_inc(sd->ttwu_wake_remote); 1643 break; 1644 } 1645 } 1646 rcu_read_unlock(); 1647 } 1648 1649 if (wake_flags & WF_MIGRATED) 1650 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1651 #endif /* CONFIG_SMP */ 1652 1653 __schedstat_inc(rq->ttwu_count); 1654 __schedstat_inc(p->se.statistics.nr_wakeups); 1655 1656 if (wake_flags & WF_SYNC) 1657 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1658 } 1659 1660 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1661 { 1662 activate_task(rq, p, en_flags); 1663 p->on_rq = TASK_ON_RQ_QUEUED; 1664 1665 /* If a worker is waking up, notify the workqueue: */ 1666 if (p->flags & PF_WQ_WORKER) 1667 wq_worker_waking_up(p, cpu_of(rq)); 1668 } 1669 1670 /* 1671 * Mark the task runnable and perform wakeup-preemption. 1672 */ 1673 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1674 struct rq_flags *rf) 1675 { 1676 check_preempt_curr(rq, p, wake_flags); 1677 p->state = TASK_RUNNING; 1678 trace_sched_wakeup(p); 1679 1680 #ifdef CONFIG_SMP 1681 if (p->sched_class->task_woken) { 1682 /* 1683 * Our task @p is fully woken up and running; so its safe to 1684 * drop the rq->lock, hereafter rq is only used for statistics. 1685 */ 1686 rq_unpin_lock(rq, rf); 1687 p->sched_class->task_woken(rq, p); 1688 rq_repin_lock(rq, rf); 1689 } 1690 1691 if (rq->idle_stamp) { 1692 u64 delta = rq_clock(rq) - rq->idle_stamp; 1693 u64 max = 2*rq->max_idle_balance_cost; 1694 1695 update_avg(&rq->avg_idle, delta); 1696 1697 if (rq->avg_idle > max) 1698 rq->avg_idle = max; 1699 1700 rq->idle_stamp = 0; 1701 } 1702 #endif 1703 } 1704 1705 static void 1706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1707 struct rq_flags *rf) 1708 { 1709 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1710 1711 lockdep_assert_held(&rq->lock); 1712 1713 #ifdef CONFIG_SMP 1714 if (p->sched_contributes_to_load) 1715 rq->nr_uninterruptible--; 1716 1717 if (wake_flags & WF_MIGRATED) 1718 en_flags |= ENQUEUE_MIGRATED; 1719 #endif 1720 1721 ttwu_activate(rq, p, en_flags); 1722 ttwu_do_wakeup(rq, p, wake_flags, rf); 1723 } 1724 1725 /* 1726 * Called in case the task @p isn't fully descheduled from its runqueue, 1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1728 * since all we need to do is flip p->state to TASK_RUNNING, since 1729 * the task is still ->on_rq. 1730 */ 1731 static int ttwu_remote(struct task_struct *p, int wake_flags) 1732 { 1733 struct rq_flags rf; 1734 struct rq *rq; 1735 int ret = 0; 1736 1737 rq = __task_rq_lock(p, &rf); 1738 if (task_on_rq_queued(p)) { 1739 /* check_preempt_curr() may use rq clock */ 1740 update_rq_clock(rq); 1741 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1742 ret = 1; 1743 } 1744 __task_rq_unlock(rq, &rf); 1745 1746 return ret; 1747 } 1748 1749 #ifdef CONFIG_SMP 1750 void sched_ttwu_pending(void) 1751 { 1752 struct rq *rq = this_rq(); 1753 struct llist_node *llist = llist_del_all(&rq->wake_list); 1754 struct task_struct *p, *t; 1755 struct rq_flags rf; 1756 1757 if (!llist) 1758 return; 1759 1760 rq_lock_irqsave(rq, &rf); 1761 update_rq_clock(rq); 1762 1763 llist_for_each_entry_safe(p, t, llist, wake_entry) 1764 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1765 1766 rq_unlock_irqrestore(rq, &rf); 1767 } 1768 1769 void scheduler_ipi(void) 1770 { 1771 /* 1772 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1773 * TIF_NEED_RESCHED remotely (for the first time) will also send 1774 * this IPI. 1775 */ 1776 preempt_fold_need_resched(); 1777 1778 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1779 return; 1780 1781 /* 1782 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1783 * traditionally all their work was done from the interrupt return 1784 * path. Now that we actually do some work, we need to make sure 1785 * we do call them. 1786 * 1787 * Some archs already do call them, luckily irq_enter/exit nest 1788 * properly. 1789 * 1790 * Arguably we should visit all archs and update all handlers, 1791 * however a fair share of IPIs are still resched only so this would 1792 * somewhat pessimize the simple resched case. 1793 */ 1794 irq_enter(); 1795 sched_ttwu_pending(); 1796 1797 /* 1798 * Check if someone kicked us for doing the nohz idle load balance. 1799 */ 1800 if (unlikely(got_nohz_idle_kick())) { 1801 this_rq()->idle_balance = 1; 1802 raise_softirq_irqoff(SCHED_SOFTIRQ); 1803 } 1804 irq_exit(); 1805 } 1806 1807 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1808 { 1809 struct rq *rq = cpu_rq(cpu); 1810 1811 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1812 1813 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1814 if (!set_nr_if_polling(rq->idle)) 1815 smp_send_reschedule(cpu); 1816 else 1817 trace_sched_wake_idle_without_ipi(cpu); 1818 } 1819 } 1820 1821 void wake_up_if_idle(int cpu) 1822 { 1823 struct rq *rq = cpu_rq(cpu); 1824 struct rq_flags rf; 1825 1826 rcu_read_lock(); 1827 1828 if (!is_idle_task(rcu_dereference(rq->curr))) 1829 goto out; 1830 1831 if (set_nr_if_polling(rq->idle)) { 1832 trace_sched_wake_idle_without_ipi(cpu); 1833 } else { 1834 rq_lock_irqsave(rq, &rf); 1835 if (is_idle_task(rq->curr)) 1836 smp_send_reschedule(cpu); 1837 /* Else CPU is not idle, do nothing here: */ 1838 rq_unlock_irqrestore(rq, &rf); 1839 } 1840 1841 out: 1842 rcu_read_unlock(); 1843 } 1844 1845 bool cpus_share_cache(int this_cpu, int that_cpu) 1846 { 1847 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1848 } 1849 #endif /* CONFIG_SMP */ 1850 1851 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1852 { 1853 struct rq *rq = cpu_rq(cpu); 1854 struct rq_flags rf; 1855 1856 #if defined(CONFIG_SMP) 1857 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1858 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1859 ttwu_queue_remote(p, cpu, wake_flags); 1860 return; 1861 } 1862 #endif 1863 1864 rq_lock(rq, &rf); 1865 update_rq_clock(rq); 1866 ttwu_do_activate(rq, p, wake_flags, &rf); 1867 rq_unlock(rq, &rf); 1868 } 1869 1870 /* 1871 * Notes on Program-Order guarantees on SMP systems. 1872 * 1873 * MIGRATION 1874 * 1875 * The basic program-order guarantee on SMP systems is that when a task [t] 1876 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1877 * execution on its new CPU [c1]. 1878 * 1879 * For migration (of runnable tasks) this is provided by the following means: 1880 * 1881 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1882 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1883 * rq(c1)->lock (if not at the same time, then in that order). 1884 * C) LOCK of the rq(c1)->lock scheduling in task 1885 * 1886 * Transitivity guarantees that B happens after A and C after B. 1887 * Note: we only require RCpc transitivity. 1888 * Note: the CPU doing B need not be c0 or c1 1889 * 1890 * Example: 1891 * 1892 * CPU0 CPU1 CPU2 1893 * 1894 * LOCK rq(0)->lock 1895 * sched-out X 1896 * sched-in Y 1897 * UNLOCK rq(0)->lock 1898 * 1899 * LOCK rq(0)->lock // orders against CPU0 1900 * dequeue X 1901 * UNLOCK rq(0)->lock 1902 * 1903 * LOCK rq(1)->lock 1904 * enqueue X 1905 * UNLOCK rq(1)->lock 1906 * 1907 * LOCK rq(1)->lock // orders against CPU2 1908 * sched-out Z 1909 * sched-in X 1910 * UNLOCK rq(1)->lock 1911 * 1912 * 1913 * BLOCKING -- aka. SLEEP + WAKEUP 1914 * 1915 * For blocking we (obviously) need to provide the same guarantee as for 1916 * migration. However the means are completely different as there is no lock 1917 * chain to provide order. Instead we do: 1918 * 1919 * 1) smp_store_release(X->on_cpu, 0) 1920 * 2) smp_cond_load_acquire(!X->on_cpu) 1921 * 1922 * Example: 1923 * 1924 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1925 * 1926 * LOCK rq(0)->lock LOCK X->pi_lock 1927 * dequeue X 1928 * sched-out X 1929 * smp_store_release(X->on_cpu, 0); 1930 * 1931 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1932 * X->state = WAKING 1933 * set_task_cpu(X,2) 1934 * 1935 * LOCK rq(2)->lock 1936 * enqueue X 1937 * X->state = RUNNING 1938 * UNLOCK rq(2)->lock 1939 * 1940 * LOCK rq(2)->lock // orders against CPU1 1941 * sched-out Z 1942 * sched-in X 1943 * UNLOCK rq(2)->lock 1944 * 1945 * UNLOCK X->pi_lock 1946 * UNLOCK rq(0)->lock 1947 * 1948 * 1949 * However; for wakeups there is a second guarantee we must provide, namely we 1950 * must observe the state that lead to our wakeup. That is, not only must our 1951 * task observe its own prior state, it must also observe the stores prior to 1952 * its wakeup. 1953 * 1954 * This means that any means of doing remote wakeups must order the CPU doing 1955 * the wakeup against the CPU the task is going to end up running on. This, 1956 * however, is already required for the regular Program-Order guarantee above, 1957 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1958 * 1959 */ 1960 1961 /** 1962 * try_to_wake_up - wake up a thread 1963 * @p: the thread to be awakened 1964 * @state: the mask of task states that can be woken 1965 * @wake_flags: wake modifier flags (WF_*) 1966 * 1967 * If (@state & @p->state) @p->state = TASK_RUNNING. 1968 * 1969 * If the task was not queued/runnable, also place it back on a runqueue. 1970 * 1971 * Atomic against schedule() which would dequeue a task, also see 1972 * set_current_state(). 1973 * 1974 * Return: %true if @p->state changes (an actual wakeup was done), 1975 * %false otherwise. 1976 */ 1977 static int 1978 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1979 { 1980 unsigned long flags; 1981 int cpu, success = 0; 1982 1983 /* 1984 * If we are going to wake up a thread waiting for CONDITION we 1985 * need to ensure that CONDITION=1 done by the caller can not be 1986 * reordered with p->state check below. This pairs with mb() in 1987 * set_current_state() the waiting thread does. 1988 */ 1989 raw_spin_lock_irqsave(&p->pi_lock, flags); 1990 smp_mb__after_spinlock(); 1991 if (!(p->state & state)) 1992 goto out; 1993 1994 trace_sched_waking(p); 1995 1996 /* We're going to change ->state: */ 1997 success = 1; 1998 cpu = task_cpu(p); 1999 2000 /* 2001 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2002 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2003 * in smp_cond_load_acquire() below. 2004 * 2005 * sched_ttwu_pending() try_to_wake_up() 2006 * [S] p->on_rq = 1; [L] P->state 2007 * UNLOCK rq->lock -----. 2008 * \ 2009 * +--- RMB 2010 * schedule() / 2011 * LOCK rq->lock -----' 2012 * UNLOCK rq->lock 2013 * 2014 * [task p] 2015 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2016 * 2017 * Pairs with the UNLOCK+LOCK on rq->lock from the 2018 * last wakeup of our task and the schedule that got our task 2019 * current. 2020 */ 2021 smp_rmb(); 2022 if (p->on_rq && ttwu_remote(p, wake_flags)) 2023 goto stat; 2024 2025 #ifdef CONFIG_SMP 2026 /* 2027 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2028 * possible to, falsely, observe p->on_cpu == 0. 2029 * 2030 * One must be running (->on_cpu == 1) in order to remove oneself 2031 * from the runqueue. 2032 * 2033 * [S] ->on_cpu = 1; [L] ->on_rq 2034 * UNLOCK rq->lock 2035 * RMB 2036 * LOCK rq->lock 2037 * [S] ->on_rq = 0; [L] ->on_cpu 2038 * 2039 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2040 * from the consecutive calls to schedule(); the first switching to our 2041 * task, the second putting it to sleep. 2042 */ 2043 smp_rmb(); 2044 2045 /* 2046 * If the owning (remote) CPU is still in the middle of schedule() with 2047 * this task as prev, wait until its done referencing the task. 2048 * 2049 * Pairs with the smp_store_release() in finish_task(). 2050 * 2051 * This ensures that tasks getting woken will be fully ordered against 2052 * their previous state and preserve Program Order. 2053 */ 2054 smp_cond_load_acquire(&p->on_cpu, !VAL); 2055 2056 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2057 p->state = TASK_WAKING; 2058 2059 if (p->in_iowait) { 2060 delayacct_blkio_end(p); 2061 atomic_dec(&task_rq(p)->nr_iowait); 2062 } 2063 2064 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2065 if (task_cpu(p) != cpu) { 2066 wake_flags |= WF_MIGRATED; 2067 set_task_cpu(p, cpu); 2068 } 2069 2070 #else /* CONFIG_SMP */ 2071 2072 if (p->in_iowait) { 2073 delayacct_blkio_end(p); 2074 atomic_dec(&task_rq(p)->nr_iowait); 2075 } 2076 2077 #endif /* CONFIG_SMP */ 2078 2079 ttwu_queue(p, cpu, wake_flags); 2080 stat: 2081 ttwu_stat(p, cpu, wake_flags); 2082 out: 2083 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2084 2085 return success; 2086 } 2087 2088 /** 2089 * try_to_wake_up_local - try to wake up a local task with rq lock held 2090 * @p: the thread to be awakened 2091 * @rf: request-queue flags for pinning 2092 * 2093 * Put @p on the run-queue if it's not already there. The caller must 2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2095 * the current task. 2096 */ 2097 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2098 { 2099 struct rq *rq = task_rq(p); 2100 2101 if (WARN_ON_ONCE(rq != this_rq()) || 2102 WARN_ON_ONCE(p == current)) 2103 return; 2104 2105 lockdep_assert_held(&rq->lock); 2106 2107 if (!raw_spin_trylock(&p->pi_lock)) { 2108 /* 2109 * This is OK, because current is on_cpu, which avoids it being 2110 * picked for load-balance and preemption/IRQs are still 2111 * disabled avoiding further scheduler activity on it and we've 2112 * not yet picked a replacement task. 2113 */ 2114 rq_unlock(rq, rf); 2115 raw_spin_lock(&p->pi_lock); 2116 rq_relock(rq, rf); 2117 } 2118 2119 if (!(p->state & TASK_NORMAL)) 2120 goto out; 2121 2122 trace_sched_waking(p); 2123 2124 if (!task_on_rq_queued(p)) { 2125 if (p->in_iowait) { 2126 delayacct_blkio_end(p); 2127 atomic_dec(&rq->nr_iowait); 2128 } 2129 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2130 } 2131 2132 ttwu_do_wakeup(rq, p, 0, rf); 2133 ttwu_stat(p, smp_processor_id(), 0); 2134 out: 2135 raw_spin_unlock(&p->pi_lock); 2136 } 2137 2138 /** 2139 * wake_up_process - Wake up a specific process 2140 * @p: The process to be woken up. 2141 * 2142 * Attempt to wake up the nominated process and move it to the set of runnable 2143 * processes. 2144 * 2145 * Return: 1 if the process was woken up, 0 if it was already running. 2146 * 2147 * It may be assumed that this function implies a write memory barrier before 2148 * changing the task state if and only if any tasks are woken up. 2149 */ 2150 int wake_up_process(struct task_struct *p) 2151 { 2152 return try_to_wake_up(p, TASK_NORMAL, 0); 2153 } 2154 EXPORT_SYMBOL(wake_up_process); 2155 2156 int wake_up_state(struct task_struct *p, unsigned int state) 2157 { 2158 return try_to_wake_up(p, state, 0); 2159 } 2160 2161 /* 2162 * Perform scheduler related setup for a newly forked process p. 2163 * p is forked by current. 2164 * 2165 * __sched_fork() is basic setup used by init_idle() too: 2166 */ 2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2168 { 2169 p->on_rq = 0; 2170 2171 p->se.on_rq = 0; 2172 p->se.exec_start = 0; 2173 p->se.sum_exec_runtime = 0; 2174 p->se.prev_sum_exec_runtime = 0; 2175 p->se.nr_migrations = 0; 2176 p->se.vruntime = 0; 2177 INIT_LIST_HEAD(&p->se.group_node); 2178 2179 #ifdef CONFIG_FAIR_GROUP_SCHED 2180 p->se.cfs_rq = NULL; 2181 #endif 2182 2183 #ifdef CONFIG_SCHEDSTATS 2184 /* Even if schedstat is disabled, there should not be garbage */ 2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2186 #endif 2187 2188 RB_CLEAR_NODE(&p->dl.rb_node); 2189 init_dl_task_timer(&p->dl); 2190 init_dl_inactive_task_timer(&p->dl); 2191 __dl_clear_params(p); 2192 2193 INIT_LIST_HEAD(&p->rt.run_list); 2194 p->rt.timeout = 0; 2195 p->rt.time_slice = sched_rr_timeslice; 2196 p->rt.on_rq = 0; 2197 p->rt.on_list = 0; 2198 2199 #ifdef CONFIG_PREEMPT_NOTIFIERS 2200 INIT_HLIST_HEAD(&p->preempt_notifiers); 2201 #endif 2202 2203 #ifdef CONFIG_NUMA_BALANCING 2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2206 p->mm->numa_scan_seq = 0; 2207 } 2208 2209 if (clone_flags & CLONE_VM) 2210 p->numa_preferred_nid = current->numa_preferred_nid; 2211 else 2212 p->numa_preferred_nid = -1; 2213 2214 p->node_stamp = 0ULL; 2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2217 p->numa_work.next = &p->numa_work; 2218 p->numa_faults = NULL; 2219 p->last_task_numa_placement = 0; 2220 p->last_sum_exec_runtime = 0; 2221 2222 p->numa_group = NULL; 2223 #endif /* CONFIG_NUMA_BALANCING */ 2224 } 2225 2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2227 2228 #ifdef CONFIG_NUMA_BALANCING 2229 2230 void set_numabalancing_state(bool enabled) 2231 { 2232 if (enabled) 2233 static_branch_enable(&sched_numa_balancing); 2234 else 2235 static_branch_disable(&sched_numa_balancing); 2236 } 2237 2238 #ifdef CONFIG_PROC_SYSCTL 2239 int sysctl_numa_balancing(struct ctl_table *table, int write, 2240 void __user *buffer, size_t *lenp, loff_t *ppos) 2241 { 2242 struct ctl_table t; 2243 int err; 2244 int state = static_branch_likely(&sched_numa_balancing); 2245 2246 if (write && !capable(CAP_SYS_ADMIN)) 2247 return -EPERM; 2248 2249 t = *table; 2250 t.data = &state; 2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2252 if (err < 0) 2253 return err; 2254 if (write) 2255 set_numabalancing_state(state); 2256 return err; 2257 } 2258 #endif 2259 #endif 2260 2261 #ifdef CONFIG_SCHEDSTATS 2262 2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2264 static bool __initdata __sched_schedstats = false; 2265 2266 static void set_schedstats(bool enabled) 2267 { 2268 if (enabled) 2269 static_branch_enable(&sched_schedstats); 2270 else 2271 static_branch_disable(&sched_schedstats); 2272 } 2273 2274 void force_schedstat_enabled(void) 2275 { 2276 if (!schedstat_enabled()) { 2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2278 static_branch_enable(&sched_schedstats); 2279 } 2280 } 2281 2282 static int __init setup_schedstats(char *str) 2283 { 2284 int ret = 0; 2285 if (!str) 2286 goto out; 2287 2288 /* 2289 * This code is called before jump labels have been set up, so we can't 2290 * change the static branch directly just yet. Instead set a temporary 2291 * variable so init_schedstats() can do it later. 2292 */ 2293 if (!strcmp(str, "enable")) { 2294 __sched_schedstats = true; 2295 ret = 1; 2296 } else if (!strcmp(str, "disable")) { 2297 __sched_schedstats = false; 2298 ret = 1; 2299 } 2300 out: 2301 if (!ret) 2302 pr_warn("Unable to parse schedstats=\n"); 2303 2304 return ret; 2305 } 2306 __setup("schedstats=", setup_schedstats); 2307 2308 static void __init init_schedstats(void) 2309 { 2310 set_schedstats(__sched_schedstats); 2311 } 2312 2313 #ifdef CONFIG_PROC_SYSCTL 2314 int sysctl_schedstats(struct ctl_table *table, int write, 2315 void __user *buffer, size_t *lenp, loff_t *ppos) 2316 { 2317 struct ctl_table t; 2318 int err; 2319 int state = static_branch_likely(&sched_schedstats); 2320 2321 if (write && !capable(CAP_SYS_ADMIN)) 2322 return -EPERM; 2323 2324 t = *table; 2325 t.data = &state; 2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2327 if (err < 0) 2328 return err; 2329 if (write) 2330 set_schedstats(state); 2331 return err; 2332 } 2333 #endif /* CONFIG_PROC_SYSCTL */ 2334 #else /* !CONFIG_SCHEDSTATS */ 2335 static inline void init_schedstats(void) {} 2336 #endif /* CONFIG_SCHEDSTATS */ 2337 2338 /* 2339 * fork()/clone()-time setup: 2340 */ 2341 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2342 { 2343 unsigned long flags; 2344 int cpu = get_cpu(); 2345 2346 __sched_fork(clone_flags, p); 2347 /* 2348 * We mark the process as NEW here. This guarantees that 2349 * nobody will actually run it, and a signal or other external 2350 * event cannot wake it up and insert it on the runqueue either. 2351 */ 2352 p->state = TASK_NEW; 2353 2354 /* 2355 * Make sure we do not leak PI boosting priority to the child. 2356 */ 2357 p->prio = current->normal_prio; 2358 2359 /* 2360 * Revert to default priority/policy on fork if requested. 2361 */ 2362 if (unlikely(p->sched_reset_on_fork)) { 2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2364 p->policy = SCHED_NORMAL; 2365 p->static_prio = NICE_TO_PRIO(0); 2366 p->rt_priority = 0; 2367 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2368 p->static_prio = NICE_TO_PRIO(0); 2369 2370 p->prio = p->normal_prio = __normal_prio(p); 2371 set_load_weight(p, false); 2372 2373 /* 2374 * We don't need the reset flag anymore after the fork. It has 2375 * fulfilled its duty: 2376 */ 2377 p->sched_reset_on_fork = 0; 2378 } 2379 2380 if (dl_prio(p->prio)) { 2381 put_cpu(); 2382 return -EAGAIN; 2383 } else if (rt_prio(p->prio)) { 2384 p->sched_class = &rt_sched_class; 2385 } else { 2386 p->sched_class = &fair_sched_class; 2387 } 2388 2389 init_entity_runnable_average(&p->se); 2390 2391 /* 2392 * The child is not yet in the pid-hash so no cgroup attach races, 2393 * and the cgroup is pinned to this child due to cgroup_fork() 2394 * is ran before sched_fork(). 2395 * 2396 * Silence PROVE_RCU. 2397 */ 2398 raw_spin_lock_irqsave(&p->pi_lock, flags); 2399 /* 2400 * We're setting the CPU for the first time, we don't migrate, 2401 * so use __set_task_cpu(). 2402 */ 2403 __set_task_cpu(p, cpu); 2404 if (p->sched_class->task_fork) 2405 p->sched_class->task_fork(p); 2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2407 2408 #ifdef CONFIG_SCHED_INFO 2409 if (likely(sched_info_on())) 2410 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2411 #endif 2412 #if defined(CONFIG_SMP) 2413 p->on_cpu = 0; 2414 #endif 2415 init_task_preempt_count(p); 2416 #ifdef CONFIG_SMP 2417 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2418 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2419 #endif 2420 2421 put_cpu(); 2422 return 0; 2423 } 2424 2425 unsigned long to_ratio(u64 period, u64 runtime) 2426 { 2427 if (runtime == RUNTIME_INF) 2428 return BW_UNIT; 2429 2430 /* 2431 * Doing this here saves a lot of checks in all 2432 * the calling paths, and returning zero seems 2433 * safe for them anyway. 2434 */ 2435 if (period == 0) 2436 return 0; 2437 2438 return div64_u64(runtime << BW_SHIFT, period); 2439 } 2440 2441 /* 2442 * wake_up_new_task - wake up a newly created task for the first time. 2443 * 2444 * This function will do some initial scheduler statistics housekeeping 2445 * that must be done for every newly created context, then puts the task 2446 * on the runqueue and wakes it. 2447 */ 2448 void wake_up_new_task(struct task_struct *p) 2449 { 2450 struct rq_flags rf; 2451 struct rq *rq; 2452 2453 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2454 p->state = TASK_RUNNING; 2455 #ifdef CONFIG_SMP 2456 /* 2457 * Fork balancing, do it here and not earlier because: 2458 * - cpus_allowed can change in the fork path 2459 * - any previously selected CPU might disappear through hotplug 2460 * 2461 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2462 * as we're not fully set-up yet. 2463 */ 2464 p->recent_used_cpu = task_cpu(p); 2465 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2466 #endif 2467 rq = __task_rq_lock(p, &rf); 2468 update_rq_clock(rq); 2469 post_init_entity_util_avg(&p->se); 2470 2471 activate_task(rq, p, ENQUEUE_NOCLOCK); 2472 p->on_rq = TASK_ON_RQ_QUEUED; 2473 trace_sched_wakeup_new(p); 2474 check_preempt_curr(rq, p, WF_FORK); 2475 #ifdef CONFIG_SMP 2476 if (p->sched_class->task_woken) { 2477 /* 2478 * Nothing relies on rq->lock after this, so its fine to 2479 * drop it. 2480 */ 2481 rq_unpin_lock(rq, &rf); 2482 p->sched_class->task_woken(rq, p); 2483 rq_repin_lock(rq, &rf); 2484 } 2485 #endif 2486 task_rq_unlock(rq, p, &rf); 2487 } 2488 2489 #ifdef CONFIG_PREEMPT_NOTIFIERS 2490 2491 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2492 2493 void preempt_notifier_inc(void) 2494 { 2495 static_key_slow_inc(&preempt_notifier_key); 2496 } 2497 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2498 2499 void preempt_notifier_dec(void) 2500 { 2501 static_key_slow_dec(&preempt_notifier_key); 2502 } 2503 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2504 2505 /** 2506 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2507 * @notifier: notifier struct to register 2508 */ 2509 void preempt_notifier_register(struct preempt_notifier *notifier) 2510 { 2511 if (!static_key_false(&preempt_notifier_key)) 2512 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2513 2514 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2515 } 2516 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2517 2518 /** 2519 * preempt_notifier_unregister - no longer interested in preemption notifications 2520 * @notifier: notifier struct to unregister 2521 * 2522 * This is *not* safe to call from within a preemption notifier. 2523 */ 2524 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2525 { 2526 hlist_del(¬ifier->link); 2527 } 2528 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2529 2530 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2531 { 2532 struct preempt_notifier *notifier; 2533 2534 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2535 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2536 } 2537 2538 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2539 { 2540 if (static_key_false(&preempt_notifier_key)) 2541 __fire_sched_in_preempt_notifiers(curr); 2542 } 2543 2544 static void 2545 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2546 struct task_struct *next) 2547 { 2548 struct preempt_notifier *notifier; 2549 2550 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2551 notifier->ops->sched_out(notifier, next); 2552 } 2553 2554 static __always_inline void 2555 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2556 struct task_struct *next) 2557 { 2558 if (static_key_false(&preempt_notifier_key)) 2559 __fire_sched_out_preempt_notifiers(curr, next); 2560 } 2561 2562 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2563 2564 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2565 { 2566 } 2567 2568 static inline void 2569 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2570 struct task_struct *next) 2571 { 2572 } 2573 2574 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2575 2576 static inline void prepare_task(struct task_struct *next) 2577 { 2578 #ifdef CONFIG_SMP 2579 /* 2580 * Claim the task as running, we do this before switching to it 2581 * such that any running task will have this set. 2582 */ 2583 next->on_cpu = 1; 2584 #endif 2585 } 2586 2587 static inline void finish_task(struct task_struct *prev) 2588 { 2589 #ifdef CONFIG_SMP 2590 /* 2591 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2592 * We must ensure this doesn't happen until the switch is completely 2593 * finished. 2594 * 2595 * In particular, the load of prev->state in finish_task_switch() must 2596 * happen before this. 2597 * 2598 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2599 */ 2600 smp_store_release(&prev->on_cpu, 0); 2601 #endif 2602 } 2603 2604 static inline void finish_lock_switch(struct rq *rq) 2605 { 2606 #ifdef CONFIG_DEBUG_SPINLOCK 2607 /* this is a valid case when another task releases the spinlock */ 2608 rq->lock.owner = current; 2609 #endif 2610 /* 2611 * If we are tracking spinlock dependencies then we have to 2612 * fix up the runqueue lock - which gets 'carried over' from 2613 * prev into current: 2614 */ 2615 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2616 2617 raw_spin_unlock_irq(&rq->lock); 2618 } 2619 2620 /** 2621 * prepare_task_switch - prepare to switch tasks 2622 * @rq: the runqueue preparing to switch 2623 * @prev: the current task that is being switched out 2624 * @next: the task we are going to switch to. 2625 * 2626 * This is called with the rq lock held and interrupts off. It must 2627 * be paired with a subsequent finish_task_switch after the context 2628 * switch. 2629 * 2630 * prepare_task_switch sets up locking and calls architecture specific 2631 * hooks. 2632 */ 2633 static inline void 2634 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2635 struct task_struct *next) 2636 { 2637 sched_info_switch(rq, prev, next); 2638 perf_event_task_sched_out(prev, next); 2639 fire_sched_out_preempt_notifiers(prev, next); 2640 prepare_task(next); 2641 prepare_arch_switch(next); 2642 } 2643 2644 /** 2645 * finish_task_switch - clean up after a task-switch 2646 * @prev: the thread we just switched away from. 2647 * 2648 * finish_task_switch must be called after the context switch, paired 2649 * with a prepare_task_switch call before the context switch. 2650 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2651 * and do any other architecture-specific cleanup actions. 2652 * 2653 * Note that we may have delayed dropping an mm in context_switch(). If 2654 * so, we finish that here outside of the runqueue lock. (Doing it 2655 * with the lock held can cause deadlocks; see schedule() for 2656 * details.) 2657 * 2658 * The context switch have flipped the stack from under us and restored the 2659 * local variables which were saved when this task called schedule() in the 2660 * past. prev == current is still correct but we need to recalculate this_rq 2661 * because prev may have moved to another CPU. 2662 */ 2663 static struct rq *finish_task_switch(struct task_struct *prev) 2664 __releases(rq->lock) 2665 { 2666 struct rq *rq = this_rq(); 2667 struct mm_struct *mm = rq->prev_mm; 2668 long prev_state; 2669 2670 /* 2671 * The previous task will have left us with a preempt_count of 2 2672 * because it left us after: 2673 * 2674 * schedule() 2675 * preempt_disable(); // 1 2676 * __schedule() 2677 * raw_spin_lock_irq(&rq->lock) // 2 2678 * 2679 * Also, see FORK_PREEMPT_COUNT. 2680 */ 2681 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2682 "corrupted preempt_count: %s/%d/0x%x\n", 2683 current->comm, current->pid, preempt_count())) 2684 preempt_count_set(FORK_PREEMPT_COUNT); 2685 2686 rq->prev_mm = NULL; 2687 2688 /* 2689 * A task struct has one reference for the use as "current". 2690 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2691 * schedule one last time. The schedule call will never return, and 2692 * the scheduled task must drop that reference. 2693 * 2694 * We must observe prev->state before clearing prev->on_cpu (in 2695 * finish_task), otherwise a concurrent wakeup can get prev 2696 * running on another CPU and we could rave with its RUNNING -> DEAD 2697 * transition, resulting in a double drop. 2698 */ 2699 prev_state = prev->state; 2700 vtime_task_switch(prev); 2701 perf_event_task_sched_in(prev, current); 2702 finish_task(prev); 2703 finish_lock_switch(rq); 2704 finish_arch_post_lock_switch(); 2705 2706 fire_sched_in_preempt_notifiers(current); 2707 /* 2708 * When switching through a kernel thread, the loop in 2709 * membarrier_{private,global}_expedited() may have observed that 2710 * kernel thread and not issued an IPI. It is therefore possible to 2711 * schedule between user->kernel->user threads without passing though 2712 * switch_mm(). Membarrier requires a barrier after storing to 2713 * rq->curr, before returning to userspace, so provide them here: 2714 * 2715 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2716 * provided by mmdrop(), 2717 * - a sync_core for SYNC_CORE. 2718 */ 2719 if (mm) { 2720 membarrier_mm_sync_core_before_usermode(mm); 2721 mmdrop(mm); 2722 } 2723 if (unlikely(prev_state == TASK_DEAD)) { 2724 if (prev->sched_class->task_dead) 2725 prev->sched_class->task_dead(prev); 2726 2727 /* 2728 * Remove function-return probe instances associated with this 2729 * task and put them back on the free list. 2730 */ 2731 kprobe_flush_task(prev); 2732 2733 /* Task is done with its stack. */ 2734 put_task_stack(prev); 2735 2736 put_task_struct(prev); 2737 } 2738 2739 tick_nohz_task_switch(); 2740 return rq; 2741 } 2742 2743 #ifdef CONFIG_SMP 2744 2745 /* rq->lock is NOT held, but preemption is disabled */ 2746 static void __balance_callback(struct rq *rq) 2747 { 2748 struct callback_head *head, *next; 2749 void (*func)(struct rq *rq); 2750 unsigned long flags; 2751 2752 raw_spin_lock_irqsave(&rq->lock, flags); 2753 head = rq->balance_callback; 2754 rq->balance_callback = NULL; 2755 while (head) { 2756 func = (void (*)(struct rq *))head->func; 2757 next = head->next; 2758 head->next = NULL; 2759 head = next; 2760 2761 func(rq); 2762 } 2763 raw_spin_unlock_irqrestore(&rq->lock, flags); 2764 } 2765 2766 static inline void balance_callback(struct rq *rq) 2767 { 2768 if (unlikely(rq->balance_callback)) 2769 __balance_callback(rq); 2770 } 2771 2772 #else 2773 2774 static inline void balance_callback(struct rq *rq) 2775 { 2776 } 2777 2778 #endif 2779 2780 /** 2781 * schedule_tail - first thing a freshly forked thread must call. 2782 * @prev: the thread we just switched away from. 2783 */ 2784 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2785 __releases(rq->lock) 2786 { 2787 struct rq *rq; 2788 2789 /* 2790 * New tasks start with FORK_PREEMPT_COUNT, see there and 2791 * finish_task_switch() for details. 2792 * 2793 * finish_task_switch() will drop rq->lock() and lower preempt_count 2794 * and the preempt_enable() will end up enabling preemption (on 2795 * PREEMPT_COUNT kernels). 2796 */ 2797 2798 rq = finish_task_switch(prev); 2799 balance_callback(rq); 2800 preempt_enable(); 2801 2802 if (current->set_child_tid) 2803 put_user(task_pid_vnr(current), current->set_child_tid); 2804 } 2805 2806 /* 2807 * context_switch - switch to the new MM and the new thread's register state. 2808 */ 2809 static __always_inline struct rq * 2810 context_switch(struct rq *rq, struct task_struct *prev, 2811 struct task_struct *next, struct rq_flags *rf) 2812 { 2813 struct mm_struct *mm, *oldmm; 2814 2815 prepare_task_switch(rq, prev, next); 2816 2817 mm = next->mm; 2818 oldmm = prev->active_mm; 2819 /* 2820 * For paravirt, this is coupled with an exit in switch_to to 2821 * combine the page table reload and the switch backend into 2822 * one hypercall. 2823 */ 2824 arch_start_context_switch(prev); 2825 2826 /* 2827 * If mm is non-NULL, we pass through switch_mm(). If mm is 2828 * NULL, we will pass through mmdrop() in finish_task_switch(). 2829 * Both of these contain the full memory barrier required by 2830 * membarrier after storing to rq->curr, before returning to 2831 * user-space. 2832 */ 2833 if (!mm) { 2834 next->active_mm = oldmm; 2835 mmgrab(oldmm); 2836 enter_lazy_tlb(oldmm, next); 2837 } else 2838 switch_mm_irqs_off(oldmm, mm, next); 2839 2840 if (!prev->mm) { 2841 prev->active_mm = NULL; 2842 rq->prev_mm = oldmm; 2843 } 2844 2845 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2846 2847 /* 2848 * Since the runqueue lock will be released by the next 2849 * task (which is an invalid locking op but in the case 2850 * of the scheduler it's an obvious special-case), so we 2851 * do an early lockdep release here: 2852 */ 2853 rq_unpin_lock(rq, rf); 2854 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2855 2856 /* Here we just switch the register state and the stack. */ 2857 switch_to(prev, next, prev); 2858 barrier(); 2859 2860 return finish_task_switch(prev); 2861 } 2862 2863 /* 2864 * nr_running and nr_context_switches: 2865 * 2866 * externally visible scheduler statistics: current number of runnable 2867 * threads, total number of context switches performed since bootup. 2868 */ 2869 unsigned long nr_running(void) 2870 { 2871 unsigned long i, sum = 0; 2872 2873 for_each_online_cpu(i) 2874 sum += cpu_rq(i)->nr_running; 2875 2876 return sum; 2877 } 2878 2879 /* 2880 * Check if only the current task is running on the CPU. 2881 * 2882 * Caution: this function does not check that the caller has disabled 2883 * preemption, thus the result might have a time-of-check-to-time-of-use 2884 * race. The caller is responsible to use it correctly, for example: 2885 * 2886 * - from a non-preemptable section (of course) 2887 * 2888 * - from a thread that is bound to a single CPU 2889 * 2890 * - in a loop with very short iterations (e.g. a polling loop) 2891 */ 2892 bool single_task_running(void) 2893 { 2894 return raw_rq()->nr_running == 1; 2895 } 2896 EXPORT_SYMBOL(single_task_running); 2897 2898 unsigned long long nr_context_switches(void) 2899 { 2900 int i; 2901 unsigned long long sum = 0; 2902 2903 for_each_possible_cpu(i) 2904 sum += cpu_rq(i)->nr_switches; 2905 2906 return sum; 2907 } 2908 2909 /* 2910 * IO-wait accounting, and how its mostly bollocks (on SMP). 2911 * 2912 * The idea behind IO-wait account is to account the idle time that we could 2913 * have spend running if it were not for IO. That is, if we were to improve the 2914 * storage performance, we'd have a proportional reduction in IO-wait time. 2915 * 2916 * This all works nicely on UP, where, when a task blocks on IO, we account 2917 * idle time as IO-wait, because if the storage were faster, it could've been 2918 * running and we'd not be idle. 2919 * 2920 * This has been extended to SMP, by doing the same for each CPU. This however 2921 * is broken. 2922 * 2923 * Imagine for instance the case where two tasks block on one CPU, only the one 2924 * CPU will have IO-wait accounted, while the other has regular idle. Even 2925 * though, if the storage were faster, both could've ran at the same time, 2926 * utilising both CPUs. 2927 * 2928 * This means, that when looking globally, the current IO-wait accounting on 2929 * SMP is a lower bound, by reason of under accounting. 2930 * 2931 * Worse, since the numbers are provided per CPU, they are sometimes 2932 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2933 * associated with any one particular CPU, it can wake to another CPU than it 2934 * blocked on. This means the per CPU IO-wait number is meaningless. 2935 * 2936 * Task CPU affinities can make all that even more 'interesting'. 2937 */ 2938 2939 unsigned long nr_iowait(void) 2940 { 2941 unsigned long i, sum = 0; 2942 2943 for_each_possible_cpu(i) 2944 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2945 2946 return sum; 2947 } 2948 2949 /* 2950 * Consumers of these two interfaces, like for example the cpufreq menu 2951 * governor are using nonsensical data. Boosting frequency for a CPU that has 2952 * IO-wait which might not even end up running the task when it does become 2953 * runnable. 2954 */ 2955 2956 unsigned long nr_iowait_cpu(int cpu) 2957 { 2958 struct rq *this = cpu_rq(cpu); 2959 return atomic_read(&this->nr_iowait); 2960 } 2961 2962 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2963 { 2964 struct rq *rq = this_rq(); 2965 *nr_waiters = atomic_read(&rq->nr_iowait); 2966 *load = rq->load.weight; 2967 } 2968 2969 #ifdef CONFIG_SMP 2970 2971 /* 2972 * sched_exec - execve() is a valuable balancing opportunity, because at 2973 * this point the task has the smallest effective memory and cache footprint. 2974 */ 2975 void sched_exec(void) 2976 { 2977 struct task_struct *p = current; 2978 unsigned long flags; 2979 int dest_cpu; 2980 2981 raw_spin_lock_irqsave(&p->pi_lock, flags); 2982 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2983 if (dest_cpu == smp_processor_id()) 2984 goto unlock; 2985 2986 if (likely(cpu_active(dest_cpu))) { 2987 struct migration_arg arg = { p, dest_cpu }; 2988 2989 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2990 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2991 return; 2992 } 2993 unlock: 2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2995 } 2996 2997 #endif 2998 2999 DEFINE_PER_CPU(struct kernel_stat, kstat); 3000 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3001 3002 EXPORT_PER_CPU_SYMBOL(kstat); 3003 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3004 3005 /* 3006 * The function fair_sched_class.update_curr accesses the struct curr 3007 * and its field curr->exec_start; when called from task_sched_runtime(), 3008 * we observe a high rate of cache misses in practice. 3009 * Prefetching this data results in improved performance. 3010 */ 3011 static inline void prefetch_curr_exec_start(struct task_struct *p) 3012 { 3013 #ifdef CONFIG_FAIR_GROUP_SCHED 3014 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3015 #else 3016 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3017 #endif 3018 prefetch(curr); 3019 prefetch(&curr->exec_start); 3020 } 3021 3022 /* 3023 * Return accounted runtime for the task. 3024 * In case the task is currently running, return the runtime plus current's 3025 * pending runtime that have not been accounted yet. 3026 */ 3027 unsigned long long task_sched_runtime(struct task_struct *p) 3028 { 3029 struct rq_flags rf; 3030 struct rq *rq; 3031 u64 ns; 3032 3033 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3034 /* 3035 * 64-bit doesn't need locks to atomically read a 64bit value. 3036 * So we have a optimization chance when the task's delta_exec is 0. 3037 * Reading ->on_cpu is racy, but this is ok. 3038 * 3039 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3040 * If we race with it entering CPU, unaccounted time is 0. This is 3041 * indistinguishable from the read occurring a few cycles earlier. 3042 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3043 * been accounted, so we're correct here as well. 3044 */ 3045 if (!p->on_cpu || !task_on_rq_queued(p)) 3046 return p->se.sum_exec_runtime; 3047 #endif 3048 3049 rq = task_rq_lock(p, &rf); 3050 /* 3051 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3052 * project cycles that may never be accounted to this 3053 * thread, breaking clock_gettime(). 3054 */ 3055 if (task_current(rq, p) && task_on_rq_queued(p)) { 3056 prefetch_curr_exec_start(p); 3057 update_rq_clock(rq); 3058 p->sched_class->update_curr(rq); 3059 } 3060 ns = p->se.sum_exec_runtime; 3061 task_rq_unlock(rq, p, &rf); 3062 3063 return ns; 3064 } 3065 3066 /* 3067 * This function gets called by the timer code, with HZ frequency. 3068 * We call it with interrupts disabled. 3069 */ 3070 void scheduler_tick(void) 3071 { 3072 int cpu = smp_processor_id(); 3073 struct rq *rq = cpu_rq(cpu); 3074 struct task_struct *curr = rq->curr; 3075 struct rq_flags rf; 3076 3077 sched_clock_tick(); 3078 3079 rq_lock(rq, &rf); 3080 3081 update_rq_clock(rq); 3082 curr->sched_class->task_tick(rq, curr, 0); 3083 cpu_load_update_active(rq); 3084 calc_global_load_tick(rq); 3085 3086 rq_unlock(rq, &rf); 3087 3088 perf_event_task_tick(); 3089 3090 #ifdef CONFIG_SMP 3091 rq->idle_balance = idle_cpu(cpu); 3092 trigger_load_balance(rq); 3093 #endif 3094 rq_last_tick_reset(rq); 3095 } 3096 3097 #ifdef CONFIG_NO_HZ_FULL 3098 /** 3099 * scheduler_tick_max_deferment 3100 * 3101 * Keep at least one tick per second when a single 3102 * active task is running because the scheduler doesn't 3103 * yet completely support full dynticks environment. 3104 * 3105 * This makes sure that uptime, CFS vruntime, load 3106 * balancing, etc... continue to move forward, even 3107 * with a very low granularity. 3108 * 3109 * Return: Maximum deferment in nanoseconds. 3110 */ 3111 u64 scheduler_tick_max_deferment(void) 3112 { 3113 struct rq *rq = this_rq(); 3114 unsigned long next, now = READ_ONCE(jiffies); 3115 3116 next = rq->last_sched_tick + HZ; 3117 3118 if (time_before_eq(next, now)) 3119 return 0; 3120 3121 return jiffies_to_nsecs(next - now); 3122 } 3123 #endif 3124 3125 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3126 defined(CONFIG_PREEMPT_TRACER)) 3127 /* 3128 * If the value passed in is equal to the current preempt count 3129 * then we just disabled preemption. Start timing the latency. 3130 */ 3131 static inline void preempt_latency_start(int val) 3132 { 3133 if (preempt_count() == val) { 3134 unsigned long ip = get_lock_parent_ip(); 3135 #ifdef CONFIG_DEBUG_PREEMPT 3136 current->preempt_disable_ip = ip; 3137 #endif 3138 trace_preempt_off(CALLER_ADDR0, ip); 3139 } 3140 } 3141 3142 void preempt_count_add(int val) 3143 { 3144 #ifdef CONFIG_DEBUG_PREEMPT 3145 /* 3146 * Underflow? 3147 */ 3148 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3149 return; 3150 #endif 3151 __preempt_count_add(val); 3152 #ifdef CONFIG_DEBUG_PREEMPT 3153 /* 3154 * Spinlock count overflowing soon? 3155 */ 3156 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3157 PREEMPT_MASK - 10); 3158 #endif 3159 preempt_latency_start(val); 3160 } 3161 EXPORT_SYMBOL(preempt_count_add); 3162 NOKPROBE_SYMBOL(preempt_count_add); 3163 3164 /* 3165 * If the value passed in equals to the current preempt count 3166 * then we just enabled preemption. Stop timing the latency. 3167 */ 3168 static inline void preempt_latency_stop(int val) 3169 { 3170 if (preempt_count() == val) 3171 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3172 } 3173 3174 void preempt_count_sub(int val) 3175 { 3176 #ifdef CONFIG_DEBUG_PREEMPT 3177 /* 3178 * Underflow? 3179 */ 3180 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3181 return; 3182 /* 3183 * Is the spinlock portion underflowing? 3184 */ 3185 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3186 !(preempt_count() & PREEMPT_MASK))) 3187 return; 3188 #endif 3189 3190 preempt_latency_stop(val); 3191 __preempt_count_sub(val); 3192 } 3193 EXPORT_SYMBOL(preempt_count_sub); 3194 NOKPROBE_SYMBOL(preempt_count_sub); 3195 3196 #else 3197 static inline void preempt_latency_start(int val) { } 3198 static inline void preempt_latency_stop(int val) { } 3199 #endif 3200 3201 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3202 { 3203 #ifdef CONFIG_DEBUG_PREEMPT 3204 return p->preempt_disable_ip; 3205 #else 3206 return 0; 3207 #endif 3208 } 3209 3210 /* 3211 * Print scheduling while atomic bug: 3212 */ 3213 static noinline void __schedule_bug(struct task_struct *prev) 3214 { 3215 /* Save this before calling printk(), since that will clobber it */ 3216 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3217 3218 if (oops_in_progress) 3219 return; 3220 3221 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3222 prev->comm, prev->pid, preempt_count()); 3223 3224 debug_show_held_locks(prev); 3225 print_modules(); 3226 if (irqs_disabled()) 3227 print_irqtrace_events(prev); 3228 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3229 && in_atomic_preempt_off()) { 3230 pr_err("Preemption disabled at:"); 3231 print_ip_sym(preempt_disable_ip); 3232 pr_cont("\n"); 3233 } 3234 if (panic_on_warn) 3235 panic("scheduling while atomic\n"); 3236 3237 dump_stack(); 3238 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3239 } 3240 3241 /* 3242 * Various schedule()-time debugging checks and statistics: 3243 */ 3244 static inline void schedule_debug(struct task_struct *prev) 3245 { 3246 #ifdef CONFIG_SCHED_STACK_END_CHECK 3247 if (task_stack_end_corrupted(prev)) 3248 panic("corrupted stack end detected inside scheduler\n"); 3249 #endif 3250 3251 if (unlikely(in_atomic_preempt_off())) { 3252 __schedule_bug(prev); 3253 preempt_count_set(PREEMPT_DISABLED); 3254 } 3255 rcu_sleep_check(); 3256 3257 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3258 3259 schedstat_inc(this_rq()->sched_count); 3260 } 3261 3262 /* 3263 * Pick up the highest-prio task: 3264 */ 3265 static inline struct task_struct * 3266 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3267 { 3268 const struct sched_class *class; 3269 struct task_struct *p; 3270 3271 /* 3272 * Optimization: we know that if all tasks are in the fair class we can 3273 * call that function directly, but only if the @prev task wasn't of a 3274 * higher scheduling class, because otherwise those loose the 3275 * opportunity to pull in more work from other CPUs. 3276 */ 3277 if (likely((prev->sched_class == &idle_sched_class || 3278 prev->sched_class == &fair_sched_class) && 3279 rq->nr_running == rq->cfs.h_nr_running)) { 3280 3281 p = fair_sched_class.pick_next_task(rq, prev, rf); 3282 if (unlikely(p == RETRY_TASK)) 3283 goto again; 3284 3285 /* Assumes fair_sched_class->next == idle_sched_class */ 3286 if (unlikely(!p)) 3287 p = idle_sched_class.pick_next_task(rq, prev, rf); 3288 3289 return p; 3290 } 3291 3292 again: 3293 for_each_class(class) { 3294 p = class->pick_next_task(rq, prev, rf); 3295 if (p) { 3296 if (unlikely(p == RETRY_TASK)) 3297 goto again; 3298 return p; 3299 } 3300 } 3301 3302 /* The idle class should always have a runnable task: */ 3303 BUG(); 3304 } 3305 3306 /* 3307 * __schedule() is the main scheduler function. 3308 * 3309 * The main means of driving the scheduler and thus entering this function are: 3310 * 3311 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3312 * 3313 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3314 * paths. For example, see arch/x86/entry_64.S. 3315 * 3316 * To drive preemption between tasks, the scheduler sets the flag in timer 3317 * interrupt handler scheduler_tick(). 3318 * 3319 * 3. Wakeups don't really cause entry into schedule(). They add a 3320 * task to the run-queue and that's it. 3321 * 3322 * Now, if the new task added to the run-queue preempts the current 3323 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3324 * called on the nearest possible occasion: 3325 * 3326 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3327 * 3328 * - in syscall or exception context, at the next outmost 3329 * preempt_enable(). (this might be as soon as the wake_up()'s 3330 * spin_unlock()!) 3331 * 3332 * - in IRQ context, return from interrupt-handler to 3333 * preemptible context 3334 * 3335 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3336 * then at the next: 3337 * 3338 * - cond_resched() call 3339 * - explicit schedule() call 3340 * - return from syscall or exception to user-space 3341 * - return from interrupt-handler to user-space 3342 * 3343 * WARNING: must be called with preemption disabled! 3344 */ 3345 static void __sched notrace __schedule(bool preempt) 3346 { 3347 struct task_struct *prev, *next; 3348 unsigned long *switch_count; 3349 struct rq_flags rf; 3350 struct rq *rq; 3351 int cpu; 3352 3353 cpu = smp_processor_id(); 3354 rq = cpu_rq(cpu); 3355 prev = rq->curr; 3356 3357 schedule_debug(prev); 3358 3359 if (sched_feat(HRTICK)) 3360 hrtick_clear(rq); 3361 3362 local_irq_disable(); 3363 rcu_note_context_switch(preempt); 3364 3365 /* 3366 * Make sure that signal_pending_state()->signal_pending() below 3367 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3368 * done by the caller to avoid the race with signal_wake_up(). 3369 * 3370 * The membarrier system call requires a full memory barrier 3371 * after coming from user-space, before storing to rq->curr. 3372 */ 3373 rq_lock(rq, &rf); 3374 smp_mb__after_spinlock(); 3375 3376 /* Promote REQ to ACT */ 3377 rq->clock_update_flags <<= 1; 3378 update_rq_clock(rq); 3379 3380 switch_count = &prev->nivcsw; 3381 if (!preempt && prev->state) { 3382 if (unlikely(signal_pending_state(prev->state, prev))) { 3383 prev->state = TASK_RUNNING; 3384 } else { 3385 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3386 prev->on_rq = 0; 3387 3388 if (prev->in_iowait) { 3389 atomic_inc(&rq->nr_iowait); 3390 delayacct_blkio_start(); 3391 } 3392 3393 /* 3394 * If a worker went to sleep, notify and ask workqueue 3395 * whether it wants to wake up a task to maintain 3396 * concurrency. 3397 */ 3398 if (prev->flags & PF_WQ_WORKER) { 3399 struct task_struct *to_wakeup; 3400 3401 to_wakeup = wq_worker_sleeping(prev); 3402 if (to_wakeup) 3403 try_to_wake_up_local(to_wakeup, &rf); 3404 } 3405 } 3406 switch_count = &prev->nvcsw; 3407 } 3408 3409 next = pick_next_task(rq, prev, &rf); 3410 clear_tsk_need_resched(prev); 3411 clear_preempt_need_resched(); 3412 3413 if (likely(prev != next)) { 3414 rq->nr_switches++; 3415 rq->curr = next; 3416 /* 3417 * The membarrier system call requires each architecture 3418 * to have a full memory barrier after updating 3419 * rq->curr, before returning to user-space. 3420 * 3421 * Here are the schemes providing that barrier on the 3422 * various architectures: 3423 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3424 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3425 * - finish_lock_switch() for weakly-ordered 3426 * architectures where spin_unlock is a full barrier, 3427 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3428 * is a RELEASE barrier), 3429 */ 3430 ++*switch_count; 3431 3432 trace_sched_switch(preempt, prev, next); 3433 3434 /* Also unlocks the rq: */ 3435 rq = context_switch(rq, prev, next, &rf); 3436 } else { 3437 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3438 rq_unlock_irq(rq, &rf); 3439 } 3440 3441 balance_callback(rq); 3442 } 3443 3444 void __noreturn do_task_dead(void) 3445 { 3446 /* 3447 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3448 * when the following two conditions become true. 3449 * - There is race condition of mmap_sem (It is acquired by 3450 * exit_mm()), and 3451 * - SMI occurs before setting TASK_RUNINNG. 3452 * (or hypervisor of virtual machine switches to other guest) 3453 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3454 * 3455 * To avoid it, we have to wait for releasing tsk->pi_lock which 3456 * is held by try_to_wake_up() 3457 */ 3458 raw_spin_lock_irq(¤t->pi_lock); 3459 raw_spin_unlock_irq(¤t->pi_lock); 3460 3461 /* Causes final put_task_struct in finish_task_switch(): */ 3462 __set_current_state(TASK_DEAD); 3463 3464 /* Tell freezer to ignore us: */ 3465 current->flags |= PF_NOFREEZE; 3466 3467 __schedule(false); 3468 BUG(); 3469 3470 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3471 for (;;) 3472 cpu_relax(); 3473 } 3474 3475 static inline void sched_submit_work(struct task_struct *tsk) 3476 { 3477 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3478 return; 3479 /* 3480 * If we are going to sleep and we have plugged IO queued, 3481 * make sure to submit it to avoid deadlocks. 3482 */ 3483 if (blk_needs_flush_plug(tsk)) 3484 blk_schedule_flush_plug(tsk); 3485 } 3486 3487 asmlinkage __visible void __sched schedule(void) 3488 { 3489 struct task_struct *tsk = current; 3490 3491 sched_submit_work(tsk); 3492 do { 3493 preempt_disable(); 3494 __schedule(false); 3495 sched_preempt_enable_no_resched(); 3496 } while (need_resched()); 3497 } 3498 EXPORT_SYMBOL(schedule); 3499 3500 /* 3501 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3502 * state (have scheduled out non-voluntarily) by making sure that all 3503 * tasks have either left the run queue or have gone into user space. 3504 * As idle tasks do not do either, they must not ever be preempted 3505 * (schedule out non-voluntarily). 3506 * 3507 * schedule_idle() is similar to schedule_preempt_disable() except that it 3508 * never enables preemption because it does not call sched_submit_work(). 3509 */ 3510 void __sched schedule_idle(void) 3511 { 3512 /* 3513 * As this skips calling sched_submit_work(), which the idle task does 3514 * regardless because that function is a nop when the task is in a 3515 * TASK_RUNNING state, make sure this isn't used someplace that the 3516 * current task can be in any other state. Note, idle is always in the 3517 * TASK_RUNNING state. 3518 */ 3519 WARN_ON_ONCE(current->state); 3520 do { 3521 __schedule(false); 3522 } while (need_resched()); 3523 } 3524 3525 #ifdef CONFIG_CONTEXT_TRACKING 3526 asmlinkage __visible void __sched schedule_user(void) 3527 { 3528 /* 3529 * If we come here after a random call to set_need_resched(), 3530 * or we have been woken up remotely but the IPI has not yet arrived, 3531 * we haven't yet exited the RCU idle mode. Do it here manually until 3532 * we find a better solution. 3533 * 3534 * NB: There are buggy callers of this function. Ideally we 3535 * should warn if prev_state != CONTEXT_USER, but that will trigger 3536 * too frequently to make sense yet. 3537 */ 3538 enum ctx_state prev_state = exception_enter(); 3539 schedule(); 3540 exception_exit(prev_state); 3541 } 3542 #endif 3543 3544 /** 3545 * schedule_preempt_disabled - called with preemption disabled 3546 * 3547 * Returns with preemption disabled. Note: preempt_count must be 1 3548 */ 3549 void __sched schedule_preempt_disabled(void) 3550 { 3551 sched_preempt_enable_no_resched(); 3552 schedule(); 3553 preempt_disable(); 3554 } 3555 3556 static void __sched notrace preempt_schedule_common(void) 3557 { 3558 do { 3559 /* 3560 * Because the function tracer can trace preempt_count_sub() 3561 * and it also uses preempt_enable/disable_notrace(), if 3562 * NEED_RESCHED is set, the preempt_enable_notrace() called 3563 * by the function tracer will call this function again and 3564 * cause infinite recursion. 3565 * 3566 * Preemption must be disabled here before the function 3567 * tracer can trace. Break up preempt_disable() into two 3568 * calls. One to disable preemption without fear of being 3569 * traced. The other to still record the preemption latency, 3570 * which can also be traced by the function tracer. 3571 */ 3572 preempt_disable_notrace(); 3573 preempt_latency_start(1); 3574 __schedule(true); 3575 preempt_latency_stop(1); 3576 preempt_enable_no_resched_notrace(); 3577 3578 /* 3579 * Check again in case we missed a preemption opportunity 3580 * between schedule and now. 3581 */ 3582 } while (need_resched()); 3583 } 3584 3585 #ifdef CONFIG_PREEMPT 3586 /* 3587 * this is the entry point to schedule() from in-kernel preemption 3588 * off of preempt_enable. Kernel preemptions off return from interrupt 3589 * occur there and call schedule directly. 3590 */ 3591 asmlinkage __visible void __sched notrace preempt_schedule(void) 3592 { 3593 /* 3594 * If there is a non-zero preempt_count or interrupts are disabled, 3595 * we do not want to preempt the current task. Just return.. 3596 */ 3597 if (likely(!preemptible())) 3598 return; 3599 3600 preempt_schedule_common(); 3601 } 3602 NOKPROBE_SYMBOL(preempt_schedule); 3603 EXPORT_SYMBOL(preempt_schedule); 3604 3605 /** 3606 * preempt_schedule_notrace - preempt_schedule called by tracing 3607 * 3608 * The tracing infrastructure uses preempt_enable_notrace to prevent 3609 * recursion and tracing preempt enabling caused by the tracing 3610 * infrastructure itself. But as tracing can happen in areas coming 3611 * from userspace or just about to enter userspace, a preempt enable 3612 * can occur before user_exit() is called. This will cause the scheduler 3613 * to be called when the system is still in usermode. 3614 * 3615 * To prevent this, the preempt_enable_notrace will use this function 3616 * instead of preempt_schedule() to exit user context if needed before 3617 * calling the scheduler. 3618 */ 3619 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3620 { 3621 enum ctx_state prev_ctx; 3622 3623 if (likely(!preemptible())) 3624 return; 3625 3626 do { 3627 /* 3628 * Because the function tracer can trace preempt_count_sub() 3629 * and it also uses preempt_enable/disable_notrace(), if 3630 * NEED_RESCHED is set, the preempt_enable_notrace() called 3631 * by the function tracer will call this function again and 3632 * cause infinite recursion. 3633 * 3634 * Preemption must be disabled here before the function 3635 * tracer can trace. Break up preempt_disable() into two 3636 * calls. One to disable preemption without fear of being 3637 * traced. The other to still record the preemption latency, 3638 * which can also be traced by the function tracer. 3639 */ 3640 preempt_disable_notrace(); 3641 preempt_latency_start(1); 3642 /* 3643 * Needs preempt disabled in case user_exit() is traced 3644 * and the tracer calls preempt_enable_notrace() causing 3645 * an infinite recursion. 3646 */ 3647 prev_ctx = exception_enter(); 3648 __schedule(true); 3649 exception_exit(prev_ctx); 3650 3651 preempt_latency_stop(1); 3652 preempt_enable_no_resched_notrace(); 3653 } while (need_resched()); 3654 } 3655 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3656 3657 #endif /* CONFIG_PREEMPT */ 3658 3659 /* 3660 * this is the entry point to schedule() from kernel preemption 3661 * off of irq context. 3662 * Note, that this is called and return with irqs disabled. This will 3663 * protect us against recursive calling from irq. 3664 */ 3665 asmlinkage __visible void __sched preempt_schedule_irq(void) 3666 { 3667 enum ctx_state prev_state; 3668 3669 /* Catch callers which need to be fixed */ 3670 BUG_ON(preempt_count() || !irqs_disabled()); 3671 3672 prev_state = exception_enter(); 3673 3674 do { 3675 preempt_disable(); 3676 local_irq_enable(); 3677 __schedule(true); 3678 local_irq_disable(); 3679 sched_preempt_enable_no_resched(); 3680 } while (need_resched()); 3681 3682 exception_exit(prev_state); 3683 } 3684 3685 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3686 void *key) 3687 { 3688 return try_to_wake_up(curr->private, mode, wake_flags); 3689 } 3690 EXPORT_SYMBOL(default_wake_function); 3691 3692 #ifdef CONFIG_RT_MUTEXES 3693 3694 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3695 { 3696 if (pi_task) 3697 prio = min(prio, pi_task->prio); 3698 3699 return prio; 3700 } 3701 3702 static inline int rt_effective_prio(struct task_struct *p, int prio) 3703 { 3704 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3705 3706 return __rt_effective_prio(pi_task, prio); 3707 } 3708 3709 /* 3710 * rt_mutex_setprio - set the current priority of a task 3711 * @p: task to boost 3712 * @pi_task: donor task 3713 * 3714 * This function changes the 'effective' priority of a task. It does 3715 * not touch ->normal_prio like __setscheduler(). 3716 * 3717 * Used by the rt_mutex code to implement priority inheritance 3718 * logic. Call site only calls if the priority of the task changed. 3719 */ 3720 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3721 { 3722 int prio, oldprio, queued, running, queue_flag = 3723 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3724 const struct sched_class *prev_class; 3725 struct rq_flags rf; 3726 struct rq *rq; 3727 3728 /* XXX used to be waiter->prio, not waiter->task->prio */ 3729 prio = __rt_effective_prio(pi_task, p->normal_prio); 3730 3731 /* 3732 * If nothing changed; bail early. 3733 */ 3734 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3735 return; 3736 3737 rq = __task_rq_lock(p, &rf); 3738 update_rq_clock(rq); 3739 /* 3740 * Set under pi_lock && rq->lock, such that the value can be used under 3741 * either lock. 3742 * 3743 * Note that there is loads of tricky to make this pointer cache work 3744 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3745 * ensure a task is de-boosted (pi_task is set to NULL) before the 3746 * task is allowed to run again (and can exit). This ensures the pointer 3747 * points to a blocked task -- which guaratees the task is present. 3748 */ 3749 p->pi_top_task = pi_task; 3750 3751 /* 3752 * For FIFO/RR we only need to set prio, if that matches we're done. 3753 */ 3754 if (prio == p->prio && !dl_prio(prio)) 3755 goto out_unlock; 3756 3757 /* 3758 * Idle task boosting is a nono in general. There is one 3759 * exception, when PREEMPT_RT and NOHZ is active: 3760 * 3761 * The idle task calls get_next_timer_interrupt() and holds 3762 * the timer wheel base->lock on the CPU and another CPU wants 3763 * to access the timer (probably to cancel it). We can safely 3764 * ignore the boosting request, as the idle CPU runs this code 3765 * with interrupts disabled and will complete the lock 3766 * protected section without being interrupted. So there is no 3767 * real need to boost. 3768 */ 3769 if (unlikely(p == rq->idle)) { 3770 WARN_ON(p != rq->curr); 3771 WARN_ON(p->pi_blocked_on); 3772 goto out_unlock; 3773 } 3774 3775 trace_sched_pi_setprio(p, pi_task); 3776 oldprio = p->prio; 3777 3778 if (oldprio == prio) 3779 queue_flag &= ~DEQUEUE_MOVE; 3780 3781 prev_class = p->sched_class; 3782 queued = task_on_rq_queued(p); 3783 running = task_current(rq, p); 3784 if (queued) 3785 dequeue_task(rq, p, queue_flag); 3786 if (running) 3787 put_prev_task(rq, p); 3788 3789 /* 3790 * Boosting condition are: 3791 * 1. -rt task is running and holds mutex A 3792 * --> -dl task blocks on mutex A 3793 * 3794 * 2. -dl task is running and holds mutex A 3795 * --> -dl task blocks on mutex A and could preempt the 3796 * running task 3797 */ 3798 if (dl_prio(prio)) { 3799 if (!dl_prio(p->normal_prio) || 3800 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3801 p->dl.dl_boosted = 1; 3802 queue_flag |= ENQUEUE_REPLENISH; 3803 } else 3804 p->dl.dl_boosted = 0; 3805 p->sched_class = &dl_sched_class; 3806 } else if (rt_prio(prio)) { 3807 if (dl_prio(oldprio)) 3808 p->dl.dl_boosted = 0; 3809 if (oldprio < prio) 3810 queue_flag |= ENQUEUE_HEAD; 3811 p->sched_class = &rt_sched_class; 3812 } else { 3813 if (dl_prio(oldprio)) 3814 p->dl.dl_boosted = 0; 3815 if (rt_prio(oldprio)) 3816 p->rt.timeout = 0; 3817 p->sched_class = &fair_sched_class; 3818 } 3819 3820 p->prio = prio; 3821 3822 if (queued) 3823 enqueue_task(rq, p, queue_flag); 3824 if (running) 3825 set_curr_task(rq, p); 3826 3827 check_class_changed(rq, p, prev_class, oldprio); 3828 out_unlock: 3829 /* Avoid rq from going away on us: */ 3830 preempt_disable(); 3831 __task_rq_unlock(rq, &rf); 3832 3833 balance_callback(rq); 3834 preempt_enable(); 3835 } 3836 #else 3837 static inline int rt_effective_prio(struct task_struct *p, int prio) 3838 { 3839 return prio; 3840 } 3841 #endif 3842 3843 void set_user_nice(struct task_struct *p, long nice) 3844 { 3845 bool queued, running; 3846 int old_prio, delta; 3847 struct rq_flags rf; 3848 struct rq *rq; 3849 3850 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3851 return; 3852 /* 3853 * We have to be careful, if called from sys_setpriority(), 3854 * the task might be in the middle of scheduling on another CPU. 3855 */ 3856 rq = task_rq_lock(p, &rf); 3857 update_rq_clock(rq); 3858 3859 /* 3860 * The RT priorities are set via sched_setscheduler(), but we still 3861 * allow the 'normal' nice value to be set - but as expected 3862 * it wont have any effect on scheduling until the task is 3863 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3864 */ 3865 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3866 p->static_prio = NICE_TO_PRIO(nice); 3867 goto out_unlock; 3868 } 3869 queued = task_on_rq_queued(p); 3870 running = task_current(rq, p); 3871 if (queued) 3872 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3873 if (running) 3874 put_prev_task(rq, p); 3875 3876 p->static_prio = NICE_TO_PRIO(nice); 3877 set_load_weight(p, true); 3878 old_prio = p->prio; 3879 p->prio = effective_prio(p); 3880 delta = p->prio - old_prio; 3881 3882 if (queued) { 3883 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3884 /* 3885 * If the task increased its priority or is running and 3886 * lowered its priority, then reschedule its CPU: 3887 */ 3888 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3889 resched_curr(rq); 3890 } 3891 if (running) 3892 set_curr_task(rq, p); 3893 out_unlock: 3894 task_rq_unlock(rq, p, &rf); 3895 } 3896 EXPORT_SYMBOL(set_user_nice); 3897 3898 /* 3899 * can_nice - check if a task can reduce its nice value 3900 * @p: task 3901 * @nice: nice value 3902 */ 3903 int can_nice(const struct task_struct *p, const int nice) 3904 { 3905 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3906 int nice_rlim = nice_to_rlimit(nice); 3907 3908 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3909 capable(CAP_SYS_NICE)); 3910 } 3911 3912 #ifdef __ARCH_WANT_SYS_NICE 3913 3914 /* 3915 * sys_nice - change the priority of the current process. 3916 * @increment: priority increment 3917 * 3918 * sys_setpriority is a more generic, but much slower function that 3919 * does similar things. 3920 */ 3921 SYSCALL_DEFINE1(nice, int, increment) 3922 { 3923 long nice, retval; 3924 3925 /* 3926 * Setpriority might change our priority at the same moment. 3927 * We don't have to worry. Conceptually one call occurs first 3928 * and we have a single winner. 3929 */ 3930 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3931 nice = task_nice(current) + increment; 3932 3933 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3934 if (increment < 0 && !can_nice(current, nice)) 3935 return -EPERM; 3936 3937 retval = security_task_setnice(current, nice); 3938 if (retval) 3939 return retval; 3940 3941 set_user_nice(current, nice); 3942 return 0; 3943 } 3944 3945 #endif 3946 3947 /** 3948 * task_prio - return the priority value of a given task. 3949 * @p: the task in question. 3950 * 3951 * Return: The priority value as seen by users in /proc. 3952 * RT tasks are offset by -200. Normal tasks are centered 3953 * around 0, value goes from -16 to +15. 3954 */ 3955 int task_prio(const struct task_struct *p) 3956 { 3957 return p->prio - MAX_RT_PRIO; 3958 } 3959 3960 /** 3961 * idle_cpu - is a given CPU idle currently? 3962 * @cpu: the processor in question. 3963 * 3964 * Return: 1 if the CPU is currently idle. 0 otherwise. 3965 */ 3966 int idle_cpu(int cpu) 3967 { 3968 struct rq *rq = cpu_rq(cpu); 3969 3970 if (rq->curr != rq->idle) 3971 return 0; 3972 3973 if (rq->nr_running) 3974 return 0; 3975 3976 #ifdef CONFIG_SMP 3977 if (!llist_empty(&rq->wake_list)) 3978 return 0; 3979 #endif 3980 3981 return 1; 3982 } 3983 3984 /** 3985 * idle_task - return the idle task for a given CPU. 3986 * @cpu: the processor in question. 3987 * 3988 * Return: The idle task for the CPU @cpu. 3989 */ 3990 struct task_struct *idle_task(int cpu) 3991 { 3992 return cpu_rq(cpu)->idle; 3993 } 3994 3995 /** 3996 * find_process_by_pid - find a process with a matching PID value. 3997 * @pid: the pid in question. 3998 * 3999 * The task of @pid, if found. %NULL otherwise. 4000 */ 4001 static struct task_struct *find_process_by_pid(pid_t pid) 4002 { 4003 return pid ? find_task_by_vpid(pid) : current; 4004 } 4005 4006 /* 4007 * sched_setparam() passes in -1 for its policy, to let the functions 4008 * it calls know not to change it. 4009 */ 4010 #define SETPARAM_POLICY -1 4011 4012 static void __setscheduler_params(struct task_struct *p, 4013 const struct sched_attr *attr) 4014 { 4015 int policy = attr->sched_policy; 4016 4017 if (policy == SETPARAM_POLICY) 4018 policy = p->policy; 4019 4020 p->policy = policy; 4021 4022 if (dl_policy(policy)) 4023 __setparam_dl(p, attr); 4024 else if (fair_policy(policy)) 4025 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4026 4027 /* 4028 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4029 * !rt_policy. Always setting this ensures that things like 4030 * getparam()/getattr() don't report silly values for !rt tasks. 4031 */ 4032 p->rt_priority = attr->sched_priority; 4033 p->normal_prio = normal_prio(p); 4034 set_load_weight(p, true); 4035 } 4036 4037 /* Actually do priority change: must hold pi & rq lock. */ 4038 static void __setscheduler(struct rq *rq, struct task_struct *p, 4039 const struct sched_attr *attr, bool keep_boost) 4040 { 4041 __setscheduler_params(p, attr); 4042 4043 /* 4044 * Keep a potential priority boosting if called from 4045 * sched_setscheduler(). 4046 */ 4047 p->prio = normal_prio(p); 4048 if (keep_boost) 4049 p->prio = rt_effective_prio(p, p->prio); 4050 4051 if (dl_prio(p->prio)) 4052 p->sched_class = &dl_sched_class; 4053 else if (rt_prio(p->prio)) 4054 p->sched_class = &rt_sched_class; 4055 else 4056 p->sched_class = &fair_sched_class; 4057 } 4058 4059 /* 4060 * Check the target process has a UID that matches the current process's: 4061 */ 4062 static bool check_same_owner(struct task_struct *p) 4063 { 4064 const struct cred *cred = current_cred(), *pcred; 4065 bool match; 4066 4067 rcu_read_lock(); 4068 pcred = __task_cred(p); 4069 match = (uid_eq(cred->euid, pcred->euid) || 4070 uid_eq(cred->euid, pcred->uid)); 4071 rcu_read_unlock(); 4072 return match; 4073 } 4074 4075 static int __sched_setscheduler(struct task_struct *p, 4076 const struct sched_attr *attr, 4077 bool user, bool pi) 4078 { 4079 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4080 MAX_RT_PRIO - 1 - attr->sched_priority; 4081 int retval, oldprio, oldpolicy = -1, queued, running; 4082 int new_effective_prio, policy = attr->sched_policy; 4083 const struct sched_class *prev_class; 4084 struct rq_flags rf; 4085 int reset_on_fork; 4086 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4087 struct rq *rq; 4088 4089 /* The pi code expects interrupts enabled */ 4090 BUG_ON(pi && in_interrupt()); 4091 recheck: 4092 /* Double check policy once rq lock held: */ 4093 if (policy < 0) { 4094 reset_on_fork = p->sched_reset_on_fork; 4095 policy = oldpolicy = p->policy; 4096 } else { 4097 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4098 4099 if (!valid_policy(policy)) 4100 return -EINVAL; 4101 } 4102 4103 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4104 return -EINVAL; 4105 4106 /* 4107 * Valid priorities for SCHED_FIFO and SCHED_RR are 4108 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4109 * SCHED_BATCH and SCHED_IDLE is 0. 4110 */ 4111 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4112 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4113 return -EINVAL; 4114 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4115 (rt_policy(policy) != (attr->sched_priority != 0))) 4116 return -EINVAL; 4117 4118 /* 4119 * Allow unprivileged RT tasks to decrease priority: 4120 */ 4121 if (user && !capable(CAP_SYS_NICE)) { 4122 if (fair_policy(policy)) { 4123 if (attr->sched_nice < task_nice(p) && 4124 !can_nice(p, attr->sched_nice)) 4125 return -EPERM; 4126 } 4127 4128 if (rt_policy(policy)) { 4129 unsigned long rlim_rtprio = 4130 task_rlimit(p, RLIMIT_RTPRIO); 4131 4132 /* Can't set/change the rt policy: */ 4133 if (policy != p->policy && !rlim_rtprio) 4134 return -EPERM; 4135 4136 /* Can't increase priority: */ 4137 if (attr->sched_priority > p->rt_priority && 4138 attr->sched_priority > rlim_rtprio) 4139 return -EPERM; 4140 } 4141 4142 /* 4143 * Can't set/change SCHED_DEADLINE policy at all for now 4144 * (safest behavior); in the future we would like to allow 4145 * unprivileged DL tasks to increase their relative deadline 4146 * or reduce their runtime (both ways reducing utilization) 4147 */ 4148 if (dl_policy(policy)) 4149 return -EPERM; 4150 4151 /* 4152 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4153 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4154 */ 4155 if (idle_policy(p->policy) && !idle_policy(policy)) { 4156 if (!can_nice(p, task_nice(p))) 4157 return -EPERM; 4158 } 4159 4160 /* Can't change other user's priorities: */ 4161 if (!check_same_owner(p)) 4162 return -EPERM; 4163 4164 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4165 if (p->sched_reset_on_fork && !reset_on_fork) 4166 return -EPERM; 4167 } 4168 4169 if (user) { 4170 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4171 return -EINVAL; 4172 4173 retval = security_task_setscheduler(p); 4174 if (retval) 4175 return retval; 4176 } 4177 4178 /* 4179 * Make sure no PI-waiters arrive (or leave) while we are 4180 * changing the priority of the task: 4181 * 4182 * To be able to change p->policy safely, the appropriate 4183 * runqueue lock must be held. 4184 */ 4185 rq = task_rq_lock(p, &rf); 4186 update_rq_clock(rq); 4187 4188 /* 4189 * Changing the policy of the stop threads its a very bad idea: 4190 */ 4191 if (p == rq->stop) { 4192 task_rq_unlock(rq, p, &rf); 4193 return -EINVAL; 4194 } 4195 4196 /* 4197 * If not changing anything there's no need to proceed further, 4198 * but store a possible modification of reset_on_fork. 4199 */ 4200 if (unlikely(policy == p->policy)) { 4201 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4202 goto change; 4203 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4204 goto change; 4205 if (dl_policy(policy) && dl_param_changed(p, attr)) 4206 goto change; 4207 4208 p->sched_reset_on_fork = reset_on_fork; 4209 task_rq_unlock(rq, p, &rf); 4210 return 0; 4211 } 4212 change: 4213 4214 if (user) { 4215 #ifdef CONFIG_RT_GROUP_SCHED 4216 /* 4217 * Do not allow realtime tasks into groups that have no runtime 4218 * assigned. 4219 */ 4220 if (rt_bandwidth_enabled() && rt_policy(policy) && 4221 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4222 !task_group_is_autogroup(task_group(p))) { 4223 task_rq_unlock(rq, p, &rf); 4224 return -EPERM; 4225 } 4226 #endif 4227 #ifdef CONFIG_SMP 4228 if (dl_bandwidth_enabled() && dl_policy(policy) && 4229 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4230 cpumask_t *span = rq->rd->span; 4231 4232 /* 4233 * Don't allow tasks with an affinity mask smaller than 4234 * the entire root_domain to become SCHED_DEADLINE. We 4235 * will also fail if there's no bandwidth available. 4236 */ 4237 if (!cpumask_subset(span, &p->cpus_allowed) || 4238 rq->rd->dl_bw.bw == 0) { 4239 task_rq_unlock(rq, p, &rf); 4240 return -EPERM; 4241 } 4242 } 4243 #endif 4244 } 4245 4246 /* Re-check policy now with rq lock held: */ 4247 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4248 policy = oldpolicy = -1; 4249 task_rq_unlock(rq, p, &rf); 4250 goto recheck; 4251 } 4252 4253 /* 4254 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4255 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4256 * is available. 4257 */ 4258 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4259 task_rq_unlock(rq, p, &rf); 4260 return -EBUSY; 4261 } 4262 4263 p->sched_reset_on_fork = reset_on_fork; 4264 oldprio = p->prio; 4265 4266 if (pi) { 4267 /* 4268 * Take priority boosted tasks into account. If the new 4269 * effective priority is unchanged, we just store the new 4270 * normal parameters and do not touch the scheduler class and 4271 * the runqueue. This will be done when the task deboost 4272 * itself. 4273 */ 4274 new_effective_prio = rt_effective_prio(p, newprio); 4275 if (new_effective_prio == oldprio) 4276 queue_flags &= ~DEQUEUE_MOVE; 4277 } 4278 4279 queued = task_on_rq_queued(p); 4280 running = task_current(rq, p); 4281 if (queued) 4282 dequeue_task(rq, p, queue_flags); 4283 if (running) 4284 put_prev_task(rq, p); 4285 4286 prev_class = p->sched_class; 4287 __setscheduler(rq, p, attr, pi); 4288 4289 if (queued) { 4290 /* 4291 * We enqueue to tail when the priority of a task is 4292 * increased (user space view). 4293 */ 4294 if (oldprio < p->prio) 4295 queue_flags |= ENQUEUE_HEAD; 4296 4297 enqueue_task(rq, p, queue_flags); 4298 } 4299 if (running) 4300 set_curr_task(rq, p); 4301 4302 check_class_changed(rq, p, prev_class, oldprio); 4303 4304 /* Avoid rq from going away on us: */ 4305 preempt_disable(); 4306 task_rq_unlock(rq, p, &rf); 4307 4308 if (pi) 4309 rt_mutex_adjust_pi(p); 4310 4311 /* Run balance callbacks after we've adjusted the PI chain: */ 4312 balance_callback(rq); 4313 preempt_enable(); 4314 4315 return 0; 4316 } 4317 4318 static int _sched_setscheduler(struct task_struct *p, int policy, 4319 const struct sched_param *param, bool check) 4320 { 4321 struct sched_attr attr = { 4322 .sched_policy = policy, 4323 .sched_priority = param->sched_priority, 4324 .sched_nice = PRIO_TO_NICE(p->static_prio), 4325 }; 4326 4327 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4328 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4329 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4330 policy &= ~SCHED_RESET_ON_FORK; 4331 attr.sched_policy = policy; 4332 } 4333 4334 return __sched_setscheduler(p, &attr, check, true); 4335 } 4336 /** 4337 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4338 * @p: the task in question. 4339 * @policy: new policy. 4340 * @param: structure containing the new RT priority. 4341 * 4342 * Return: 0 on success. An error code otherwise. 4343 * 4344 * NOTE that the task may be already dead. 4345 */ 4346 int sched_setscheduler(struct task_struct *p, int policy, 4347 const struct sched_param *param) 4348 { 4349 return _sched_setscheduler(p, policy, param, true); 4350 } 4351 EXPORT_SYMBOL_GPL(sched_setscheduler); 4352 4353 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4354 { 4355 return __sched_setscheduler(p, attr, true, true); 4356 } 4357 EXPORT_SYMBOL_GPL(sched_setattr); 4358 4359 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4360 { 4361 return __sched_setscheduler(p, attr, false, true); 4362 } 4363 4364 /** 4365 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4366 * @p: the task in question. 4367 * @policy: new policy. 4368 * @param: structure containing the new RT priority. 4369 * 4370 * Just like sched_setscheduler, only don't bother checking if the 4371 * current context has permission. For example, this is needed in 4372 * stop_machine(): we create temporary high priority worker threads, 4373 * but our caller might not have that capability. 4374 * 4375 * Return: 0 on success. An error code otherwise. 4376 */ 4377 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4378 const struct sched_param *param) 4379 { 4380 return _sched_setscheduler(p, policy, param, false); 4381 } 4382 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4383 4384 static int 4385 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4386 { 4387 struct sched_param lparam; 4388 struct task_struct *p; 4389 int retval; 4390 4391 if (!param || pid < 0) 4392 return -EINVAL; 4393 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4394 return -EFAULT; 4395 4396 rcu_read_lock(); 4397 retval = -ESRCH; 4398 p = find_process_by_pid(pid); 4399 if (p != NULL) 4400 retval = sched_setscheduler(p, policy, &lparam); 4401 rcu_read_unlock(); 4402 4403 return retval; 4404 } 4405 4406 /* 4407 * Mimics kernel/events/core.c perf_copy_attr(). 4408 */ 4409 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4410 { 4411 u32 size; 4412 int ret; 4413 4414 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4415 return -EFAULT; 4416 4417 /* Zero the full structure, so that a short copy will be nice: */ 4418 memset(attr, 0, sizeof(*attr)); 4419 4420 ret = get_user(size, &uattr->size); 4421 if (ret) 4422 return ret; 4423 4424 /* Bail out on silly large: */ 4425 if (size > PAGE_SIZE) 4426 goto err_size; 4427 4428 /* ABI compatibility quirk: */ 4429 if (!size) 4430 size = SCHED_ATTR_SIZE_VER0; 4431 4432 if (size < SCHED_ATTR_SIZE_VER0) 4433 goto err_size; 4434 4435 /* 4436 * If we're handed a bigger struct than we know of, 4437 * ensure all the unknown bits are 0 - i.e. new 4438 * user-space does not rely on any kernel feature 4439 * extensions we dont know about yet. 4440 */ 4441 if (size > sizeof(*attr)) { 4442 unsigned char __user *addr; 4443 unsigned char __user *end; 4444 unsigned char val; 4445 4446 addr = (void __user *)uattr + sizeof(*attr); 4447 end = (void __user *)uattr + size; 4448 4449 for (; addr < end; addr++) { 4450 ret = get_user(val, addr); 4451 if (ret) 4452 return ret; 4453 if (val) 4454 goto err_size; 4455 } 4456 size = sizeof(*attr); 4457 } 4458 4459 ret = copy_from_user(attr, uattr, size); 4460 if (ret) 4461 return -EFAULT; 4462 4463 /* 4464 * XXX: Do we want to be lenient like existing syscalls; or do we want 4465 * to be strict and return an error on out-of-bounds values? 4466 */ 4467 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4468 4469 return 0; 4470 4471 err_size: 4472 put_user(sizeof(*attr), &uattr->size); 4473 return -E2BIG; 4474 } 4475 4476 /** 4477 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4478 * @pid: the pid in question. 4479 * @policy: new policy. 4480 * @param: structure containing the new RT priority. 4481 * 4482 * Return: 0 on success. An error code otherwise. 4483 */ 4484 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4485 { 4486 if (policy < 0) 4487 return -EINVAL; 4488 4489 return do_sched_setscheduler(pid, policy, param); 4490 } 4491 4492 /** 4493 * sys_sched_setparam - set/change the RT priority of a thread 4494 * @pid: the pid in question. 4495 * @param: structure containing the new RT priority. 4496 * 4497 * Return: 0 on success. An error code otherwise. 4498 */ 4499 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4500 { 4501 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4502 } 4503 4504 /** 4505 * sys_sched_setattr - same as above, but with extended sched_attr 4506 * @pid: the pid in question. 4507 * @uattr: structure containing the extended parameters. 4508 * @flags: for future extension. 4509 */ 4510 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4511 unsigned int, flags) 4512 { 4513 struct sched_attr attr; 4514 struct task_struct *p; 4515 int retval; 4516 4517 if (!uattr || pid < 0 || flags) 4518 return -EINVAL; 4519 4520 retval = sched_copy_attr(uattr, &attr); 4521 if (retval) 4522 return retval; 4523 4524 if ((int)attr.sched_policy < 0) 4525 return -EINVAL; 4526 4527 rcu_read_lock(); 4528 retval = -ESRCH; 4529 p = find_process_by_pid(pid); 4530 if (p != NULL) 4531 retval = sched_setattr(p, &attr); 4532 rcu_read_unlock(); 4533 4534 return retval; 4535 } 4536 4537 /** 4538 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4539 * @pid: the pid in question. 4540 * 4541 * Return: On success, the policy of the thread. Otherwise, a negative error 4542 * code. 4543 */ 4544 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4545 { 4546 struct task_struct *p; 4547 int retval; 4548 4549 if (pid < 0) 4550 return -EINVAL; 4551 4552 retval = -ESRCH; 4553 rcu_read_lock(); 4554 p = find_process_by_pid(pid); 4555 if (p) { 4556 retval = security_task_getscheduler(p); 4557 if (!retval) 4558 retval = p->policy 4559 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4560 } 4561 rcu_read_unlock(); 4562 return retval; 4563 } 4564 4565 /** 4566 * sys_sched_getparam - get the RT priority of a thread 4567 * @pid: the pid in question. 4568 * @param: structure containing the RT priority. 4569 * 4570 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4571 * code. 4572 */ 4573 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4574 { 4575 struct sched_param lp = { .sched_priority = 0 }; 4576 struct task_struct *p; 4577 int retval; 4578 4579 if (!param || pid < 0) 4580 return -EINVAL; 4581 4582 rcu_read_lock(); 4583 p = find_process_by_pid(pid); 4584 retval = -ESRCH; 4585 if (!p) 4586 goto out_unlock; 4587 4588 retval = security_task_getscheduler(p); 4589 if (retval) 4590 goto out_unlock; 4591 4592 if (task_has_rt_policy(p)) 4593 lp.sched_priority = p->rt_priority; 4594 rcu_read_unlock(); 4595 4596 /* 4597 * This one might sleep, we cannot do it with a spinlock held ... 4598 */ 4599 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4600 4601 return retval; 4602 4603 out_unlock: 4604 rcu_read_unlock(); 4605 return retval; 4606 } 4607 4608 static int sched_read_attr(struct sched_attr __user *uattr, 4609 struct sched_attr *attr, 4610 unsigned int usize) 4611 { 4612 int ret; 4613 4614 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4615 return -EFAULT; 4616 4617 /* 4618 * If we're handed a smaller struct than we know of, 4619 * ensure all the unknown bits are 0 - i.e. old 4620 * user-space does not get uncomplete information. 4621 */ 4622 if (usize < sizeof(*attr)) { 4623 unsigned char *addr; 4624 unsigned char *end; 4625 4626 addr = (void *)attr + usize; 4627 end = (void *)attr + sizeof(*attr); 4628 4629 for (; addr < end; addr++) { 4630 if (*addr) 4631 return -EFBIG; 4632 } 4633 4634 attr->size = usize; 4635 } 4636 4637 ret = copy_to_user(uattr, attr, attr->size); 4638 if (ret) 4639 return -EFAULT; 4640 4641 return 0; 4642 } 4643 4644 /** 4645 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4646 * @pid: the pid in question. 4647 * @uattr: structure containing the extended parameters. 4648 * @size: sizeof(attr) for fwd/bwd comp. 4649 * @flags: for future extension. 4650 */ 4651 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4652 unsigned int, size, unsigned int, flags) 4653 { 4654 struct sched_attr attr = { 4655 .size = sizeof(struct sched_attr), 4656 }; 4657 struct task_struct *p; 4658 int retval; 4659 4660 if (!uattr || pid < 0 || size > PAGE_SIZE || 4661 size < SCHED_ATTR_SIZE_VER0 || flags) 4662 return -EINVAL; 4663 4664 rcu_read_lock(); 4665 p = find_process_by_pid(pid); 4666 retval = -ESRCH; 4667 if (!p) 4668 goto out_unlock; 4669 4670 retval = security_task_getscheduler(p); 4671 if (retval) 4672 goto out_unlock; 4673 4674 attr.sched_policy = p->policy; 4675 if (p->sched_reset_on_fork) 4676 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4677 if (task_has_dl_policy(p)) 4678 __getparam_dl(p, &attr); 4679 else if (task_has_rt_policy(p)) 4680 attr.sched_priority = p->rt_priority; 4681 else 4682 attr.sched_nice = task_nice(p); 4683 4684 rcu_read_unlock(); 4685 4686 retval = sched_read_attr(uattr, &attr, size); 4687 return retval; 4688 4689 out_unlock: 4690 rcu_read_unlock(); 4691 return retval; 4692 } 4693 4694 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4695 { 4696 cpumask_var_t cpus_allowed, new_mask; 4697 struct task_struct *p; 4698 int retval; 4699 4700 rcu_read_lock(); 4701 4702 p = find_process_by_pid(pid); 4703 if (!p) { 4704 rcu_read_unlock(); 4705 return -ESRCH; 4706 } 4707 4708 /* Prevent p going away */ 4709 get_task_struct(p); 4710 rcu_read_unlock(); 4711 4712 if (p->flags & PF_NO_SETAFFINITY) { 4713 retval = -EINVAL; 4714 goto out_put_task; 4715 } 4716 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4717 retval = -ENOMEM; 4718 goto out_put_task; 4719 } 4720 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4721 retval = -ENOMEM; 4722 goto out_free_cpus_allowed; 4723 } 4724 retval = -EPERM; 4725 if (!check_same_owner(p)) { 4726 rcu_read_lock(); 4727 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4728 rcu_read_unlock(); 4729 goto out_free_new_mask; 4730 } 4731 rcu_read_unlock(); 4732 } 4733 4734 retval = security_task_setscheduler(p); 4735 if (retval) 4736 goto out_free_new_mask; 4737 4738 4739 cpuset_cpus_allowed(p, cpus_allowed); 4740 cpumask_and(new_mask, in_mask, cpus_allowed); 4741 4742 /* 4743 * Since bandwidth control happens on root_domain basis, 4744 * if admission test is enabled, we only admit -deadline 4745 * tasks allowed to run on all the CPUs in the task's 4746 * root_domain. 4747 */ 4748 #ifdef CONFIG_SMP 4749 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4750 rcu_read_lock(); 4751 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4752 retval = -EBUSY; 4753 rcu_read_unlock(); 4754 goto out_free_new_mask; 4755 } 4756 rcu_read_unlock(); 4757 } 4758 #endif 4759 again: 4760 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4761 4762 if (!retval) { 4763 cpuset_cpus_allowed(p, cpus_allowed); 4764 if (!cpumask_subset(new_mask, cpus_allowed)) { 4765 /* 4766 * We must have raced with a concurrent cpuset 4767 * update. Just reset the cpus_allowed to the 4768 * cpuset's cpus_allowed 4769 */ 4770 cpumask_copy(new_mask, cpus_allowed); 4771 goto again; 4772 } 4773 } 4774 out_free_new_mask: 4775 free_cpumask_var(new_mask); 4776 out_free_cpus_allowed: 4777 free_cpumask_var(cpus_allowed); 4778 out_put_task: 4779 put_task_struct(p); 4780 return retval; 4781 } 4782 4783 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4784 struct cpumask *new_mask) 4785 { 4786 if (len < cpumask_size()) 4787 cpumask_clear(new_mask); 4788 else if (len > cpumask_size()) 4789 len = cpumask_size(); 4790 4791 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4792 } 4793 4794 /** 4795 * sys_sched_setaffinity - set the CPU affinity of a process 4796 * @pid: pid of the process 4797 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4798 * @user_mask_ptr: user-space pointer to the new CPU mask 4799 * 4800 * Return: 0 on success. An error code otherwise. 4801 */ 4802 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4803 unsigned long __user *, user_mask_ptr) 4804 { 4805 cpumask_var_t new_mask; 4806 int retval; 4807 4808 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4809 return -ENOMEM; 4810 4811 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4812 if (retval == 0) 4813 retval = sched_setaffinity(pid, new_mask); 4814 free_cpumask_var(new_mask); 4815 return retval; 4816 } 4817 4818 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4819 { 4820 struct task_struct *p; 4821 unsigned long flags; 4822 int retval; 4823 4824 rcu_read_lock(); 4825 4826 retval = -ESRCH; 4827 p = find_process_by_pid(pid); 4828 if (!p) 4829 goto out_unlock; 4830 4831 retval = security_task_getscheduler(p); 4832 if (retval) 4833 goto out_unlock; 4834 4835 raw_spin_lock_irqsave(&p->pi_lock, flags); 4836 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4837 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4838 4839 out_unlock: 4840 rcu_read_unlock(); 4841 4842 return retval; 4843 } 4844 4845 /** 4846 * sys_sched_getaffinity - get the CPU affinity of a process 4847 * @pid: pid of the process 4848 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4849 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4850 * 4851 * Return: size of CPU mask copied to user_mask_ptr on success. An 4852 * error code otherwise. 4853 */ 4854 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4855 unsigned long __user *, user_mask_ptr) 4856 { 4857 int ret; 4858 cpumask_var_t mask; 4859 4860 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4861 return -EINVAL; 4862 if (len & (sizeof(unsigned long)-1)) 4863 return -EINVAL; 4864 4865 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4866 return -ENOMEM; 4867 4868 ret = sched_getaffinity(pid, mask); 4869 if (ret == 0) { 4870 unsigned int retlen = min(len, cpumask_size()); 4871 4872 if (copy_to_user(user_mask_ptr, mask, retlen)) 4873 ret = -EFAULT; 4874 else 4875 ret = retlen; 4876 } 4877 free_cpumask_var(mask); 4878 4879 return ret; 4880 } 4881 4882 /** 4883 * sys_sched_yield - yield the current processor to other threads. 4884 * 4885 * This function yields the current CPU to other tasks. If there are no 4886 * other threads running on this CPU then this function will return. 4887 * 4888 * Return: 0. 4889 */ 4890 SYSCALL_DEFINE0(sched_yield) 4891 { 4892 struct rq_flags rf; 4893 struct rq *rq; 4894 4895 local_irq_disable(); 4896 rq = this_rq(); 4897 rq_lock(rq, &rf); 4898 4899 schedstat_inc(rq->yld_count); 4900 current->sched_class->yield_task(rq); 4901 4902 /* 4903 * Since we are going to call schedule() anyway, there's 4904 * no need to preempt or enable interrupts: 4905 */ 4906 preempt_disable(); 4907 rq_unlock(rq, &rf); 4908 sched_preempt_enable_no_resched(); 4909 4910 schedule(); 4911 4912 return 0; 4913 } 4914 4915 #ifndef CONFIG_PREEMPT 4916 int __sched _cond_resched(void) 4917 { 4918 if (should_resched(0)) { 4919 preempt_schedule_common(); 4920 return 1; 4921 } 4922 rcu_all_qs(); 4923 return 0; 4924 } 4925 EXPORT_SYMBOL(_cond_resched); 4926 #endif 4927 4928 /* 4929 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4930 * call schedule, and on return reacquire the lock. 4931 * 4932 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4933 * operations here to prevent schedule() from being called twice (once via 4934 * spin_unlock(), once by hand). 4935 */ 4936 int __cond_resched_lock(spinlock_t *lock) 4937 { 4938 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4939 int ret = 0; 4940 4941 lockdep_assert_held(lock); 4942 4943 if (spin_needbreak(lock) || resched) { 4944 spin_unlock(lock); 4945 if (resched) 4946 preempt_schedule_common(); 4947 else 4948 cpu_relax(); 4949 ret = 1; 4950 spin_lock(lock); 4951 } 4952 return ret; 4953 } 4954 EXPORT_SYMBOL(__cond_resched_lock); 4955 4956 int __sched __cond_resched_softirq(void) 4957 { 4958 BUG_ON(!in_softirq()); 4959 4960 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4961 local_bh_enable(); 4962 preempt_schedule_common(); 4963 local_bh_disable(); 4964 return 1; 4965 } 4966 return 0; 4967 } 4968 EXPORT_SYMBOL(__cond_resched_softirq); 4969 4970 /** 4971 * yield - yield the current processor to other threads. 4972 * 4973 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4974 * 4975 * The scheduler is at all times free to pick the calling task as the most 4976 * eligible task to run, if removing the yield() call from your code breaks 4977 * it, its already broken. 4978 * 4979 * Typical broken usage is: 4980 * 4981 * while (!event) 4982 * yield(); 4983 * 4984 * where one assumes that yield() will let 'the other' process run that will 4985 * make event true. If the current task is a SCHED_FIFO task that will never 4986 * happen. Never use yield() as a progress guarantee!! 4987 * 4988 * If you want to use yield() to wait for something, use wait_event(). 4989 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4990 * If you still want to use yield(), do not! 4991 */ 4992 void __sched yield(void) 4993 { 4994 set_current_state(TASK_RUNNING); 4995 sys_sched_yield(); 4996 } 4997 EXPORT_SYMBOL(yield); 4998 4999 /** 5000 * yield_to - yield the current processor to another thread in 5001 * your thread group, or accelerate that thread toward the 5002 * processor it's on. 5003 * @p: target task 5004 * @preempt: whether task preemption is allowed or not 5005 * 5006 * It's the caller's job to ensure that the target task struct 5007 * can't go away on us before we can do any checks. 5008 * 5009 * Return: 5010 * true (>0) if we indeed boosted the target task. 5011 * false (0) if we failed to boost the target. 5012 * -ESRCH if there's no task to yield to. 5013 */ 5014 int __sched yield_to(struct task_struct *p, bool preempt) 5015 { 5016 struct task_struct *curr = current; 5017 struct rq *rq, *p_rq; 5018 unsigned long flags; 5019 int yielded = 0; 5020 5021 local_irq_save(flags); 5022 rq = this_rq(); 5023 5024 again: 5025 p_rq = task_rq(p); 5026 /* 5027 * If we're the only runnable task on the rq and target rq also 5028 * has only one task, there's absolutely no point in yielding. 5029 */ 5030 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5031 yielded = -ESRCH; 5032 goto out_irq; 5033 } 5034 5035 double_rq_lock(rq, p_rq); 5036 if (task_rq(p) != p_rq) { 5037 double_rq_unlock(rq, p_rq); 5038 goto again; 5039 } 5040 5041 if (!curr->sched_class->yield_to_task) 5042 goto out_unlock; 5043 5044 if (curr->sched_class != p->sched_class) 5045 goto out_unlock; 5046 5047 if (task_running(p_rq, p) || p->state) 5048 goto out_unlock; 5049 5050 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5051 if (yielded) { 5052 schedstat_inc(rq->yld_count); 5053 /* 5054 * Make p's CPU reschedule; pick_next_entity takes care of 5055 * fairness. 5056 */ 5057 if (preempt && rq != p_rq) 5058 resched_curr(p_rq); 5059 } 5060 5061 out_unlock: 5062 double_rq_unlock(rq, p_rq); 5063 out_irq: 5064 local_irq_restore(flags); 5065 5066 if (yielded > 0) 5067 schedule(); 5068 5069 return yielded; 5070 } 5071 EXPORT_SYMBOL_GPL(yield_to); 5072 5073 int io_schedule_prepare(void) 5074 { 5075 int old_iowait = current->in_iowait; 5076 5077 current->in_iowait = 1; 5078 blk_schedule_flush_plug(current); 5079 5080 return old_iowait; 5081 } 5082 5083 void io_schedule_finish(int token) 5084 { 5085 current->in_iowait = token; 5086 } 5087 5088 /* 5089 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5090 * that process accounting knows that this is a task in IO wait state. 5091 */ 5092 long __sched io_schedule_timeout(long timeout) 5093 { 5094 int token; 5095 long ret; 5096 5097 token = io_schedule_prepare(); 5098 ret = schedule_timeout(timeout); 5099 io_schedule_finish(token); 5100 5101 return ret; 5102 } 5103 EXPORT_SYMBOL(io_schedule_timeout); 5104 5105 void io_schedule(void) 5106 { 5107 int token; 5108 5109 token = io_schedule_prepare(); 5110 schedule(); 5111 io_schedule_finish(token); 5112 } 5113 EXPORT_SYMBOL(io_schedule); 5114 5115 /** 5116 * sys_sched_get_priority_max - return maximum RT priority. 5117 * @policy: scheduling class. 5118 * 5119 * Return: On success, this syscall returns the maximum 5120 * rt_priority that can be used by a given scheduling class. 5121 * On failure, a negative error code is returned. 5122 */ 5123 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5124 { 5125 int ret = -EINVAL; 5126 5127 switch (policy) { 5128 case SCHED_FIFO: 5129 case SCHED_RR: 5130 ret = MAX_USER_RT_PRIO-1; 5131 break; 5132 case SCHED_DEADLINE: 5133 case SCHED_NORMAL: 5134 case SCHED_BATCH: 5135 case SCHED_IDLE: 5136 ret = 0; 5137 break; 5138 } 5139 return ret; 5140 } 5141 5142 /** 5143 * sys_sched_get_priority_min - return minimum RT priority. 5144 * @policy: scheduling class. 5145 * 5146 * Return: On success, this syscall returns the minimum 5147 * rt_priority that can be used by a given scheduling class. 5148 * On failure, a negative error code is returned. 5149 */ 5150 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5151 { 5152 int ret = -EINVAL; 5153 5154 switch (policy) { 5155 case SCHED_FIFO: 5156 case SCHED_RR: 5157 ret = 1; 5158 break; 5159 case SCHED_DEADLINE: 5160 case SCHED_NORMAL: 5161 case SCHED_BATCH: 5162 case SCHED_IDLE: 5163 ret = 0; 5164 } 5165 return ret; 5166 } 5167 5168 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5169 { 5170 struct task_struct *p; 5171 unsigned int time_slice; 5172 struct rq_flags rf; 5173 struct rq *rq; 5174 int retval; 5175 5176 if (pid < 0) 5177 return -EINVAL; 5178 5179 retval = -ESRCH; 5180 rcu_read_lock(); 5181 p = find_process_by_pid(pid); 5182 if (!p) 5183 goto out_unlock; 5184 5185 retval = security_task_getscheduler(p); 5186 if (retval) 5187 goto out_unlock; 5188 5189 rq = task_rq_lock(p, &rf); 5190 time_slice = 0; 5191 if (p->sched_class->get_rr_interval) 5192 time_slice = p->sched_class->get_rr_interval(rq, p); 5193 task_rq_unlock(rq, p, &rf); 5194 5195 rcu_read_unlock(); 5196 jiffies_to_timespec64(time_slice, t); 5197 return 0; 5198 5199 out_unlock: 5200 rcu_read_unlock(); 5201 return retval; 5202 } 5203 5204 /** 5205 * sys_sched_rr_get_interval - return the default timeslice of a process. 5206 * @pid: pid of the process. 5207 * @interval: userspace pointer to the timeslice value. 5208 * 5209 * this syscall writes the default timeslice value of a given process 5210 * into the user-space timespec buffer. A value of '0' means infinity. 5211 * 5212 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5213 * an error code. 5214 */ 5215 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5216 struct timespec __user *, interval) 5217 { 5218 struct timespec64 t; 5219 int retval = sched_rr_get_interval(pid, &t); 5220 5221 if (retval == 0) 5222 retval = put_timespec64(&t, interval); 5223 5224 return retval; 5225 } 5226 5227 #ifdef CONFIG_COMPAT 5228 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5229 compat_pid_t, pid, 5230 struct compat_timespec __user *, interval) 5231 { 5232 struct timespec64 t; 5233 int retval = sched_rr_get_interval(pid, &t); 5234 5235 if (retval == 0) 5236 retval = compat_put_timespec64(&t, interval); 5237 return retval; 5238 } 5239 #endif 5240 5241 void sched_show_task(struct task_struct *p) 5242 { 5243 unsigned long free = 0; 5244 int ppid; 5245 5246 if (!try_get_task_stack(p)) 5247 return; 5248 5249 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5250 5251 if (p->state == TASK_RUNNING) 5252 printk(KERN_CONT " running task "); 5253 #ifdef CONFIG_DEBUG_STACK_USAGE 5254 free = stack_not_used(p); 5255 #endif 5256 ppid = 0; 5257 rcu_read_lock(); 5258 if (pid_alive(p)) 5259 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5260 rcu_read_unlock(); 5261 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5262 task_pid_nr(p), ppid, 5263 (unsigned long)task_thread_info(p)->flags); 5264 5265 print_worker_info(KERN_INFO, p); 5266 show_stack(p, NULL); 5267 put_task_stack(p); 5268 } 5269 EXPORT_SYMBOL_GPL(sched_show_task); 5270 5271 static inline bool 5272 state_filter_match(unsigned long state_filter, struct task_struct *p) 5273 { 5274 /* no filter, everything matches */ 5275 if (!state_filter) 5276 return true; 5277 5278 /* filter, but doesn't match */ 5279 if (!(p->state & state_filter)) 5280 return false; 5281 5282 /* 5283 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5284 * TASK_KILLABLE). 5285 */ 5286 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5287 return false; 5288 5289 return true; 5290 } 5291 5292 5293 void show_state_filter(unsigned long state_filter) 5294 { 5295 struct task_struct *g, *p; 5296 5297 #if BITS_PER_LONG == 32 5298 printk(KERN_INFO 5299 " task PC stack pid father\n"); 5300 #else 5301 printk(KERN_INFO 5302 " task PC stack pid father\n"); 5303 #endif 5304 rcu_read_lock(); 5305 for_each_process_thread(g, p) { 5306 /* 5307 * reset the NMI-timeout, listing all files on a slow 5308 * console might take a lot of time: 5309 * Also, reset softlockup watchdogs on all CPUs, because 5310 * another CPU might be blocked waiting for us to process 5311 * an IPI. 5312 */ 5313 touch_nmi_watchdog(); 5314 touch_all_softlockup_watchdogs(); 5315 if (state_filter_match(state_filter, p)) 5316 sched_show_task(p); 5317 } 5318 5319 #ifdef CONFIG_SCHED_DEBUG 5320 if (!state_filter) 5321 sysrq_sched_debug_show(); 5322 #endif 5323 rcu_read_unlock(); 5324 /* 5325 * Only show locks if all tasks are dumped: 5326 */ 5327 if (!state_filter) 5328 debug_show_all_locks(); 5329 } 5330 5331 /** 5332 * init_idle - set up an idle thread for a given CPU 5333 * @idle: task in question 5334 * @cpu: CPU the idle task belongs to 5335 * 5336 * NOTE: this function does not set the idle thread's NEED_RESCHED 5337 * flag, to make booting more robust. 5338 */ 5339 void init_idle(struct task_struct *idle, int cpu) 5340 { 5341 struct rq *rq = cpu_rq(cpu); 5342 unsigned long flags; 5343 5344 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5345 raw_spin_lock(&rq->lock); 5346 5347 __sched_fork(0, idle); 5348 idle->state = TASK_RUNNING; 5349 idle->se.exec_start = sched_clock(); 5350 idle->flags |= PF_IDLE; 5351 5352 kasan_unpoison_task_stack(idle); 5353 5354 #ifdef CONFIG_SMP 5355 /* 5356 * Its possible that init_idle() gets called multiple times on a task, 5357 * in that case do_set_cpus_allowed() will not do the right thing. 5358 * 5359 * And since this is boot we can forgo the serialization. 5360 */ 5361 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5362 #endif 5363 /* 5364 * We're having a chicken and egg problem, even though we are 5365 * holding rq->lock, the CPU isn't yet set to this CPU so the 5366 * lockdep check in task_group() will fail. 5367 * 5368 * Similar case to sched_fork(). / Alternatively we could 5369 * use task_rq_lock() here and obtain the other rq->lock. 5370 * 5371 * Silence PROVE_RCU 5372 */ 5373 rcu_read_lock(); 5374 __set_task_cpu(idle, cpu); 5375 rcu_read_unlock(); 5376 5377 rq->curr = rq->idle = idle; 5378 idle->on_rq = TASK_ON_RQ_QUEUED; 5379 #ifdef CONFIG_SMP 5380 idle->on_cpu = 1; 5381 #endif 5382 raw_spin_unlock(&rq->lock); 5383 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5384 5385 /* Set the preempt count _outside_ the spinlocks! */ 5386 init_idle_preempt_count(idle, cpu); 5387 5388 /* 5389 * The idle tasks have their own, simple scheduling class: 5390 */ 5391 idle->sched_class = &idle_sched_class; 5392 ftrace_graph_init_idle_task(idle, cpu); 5393 vtime_init_idle(idle, cpu); 5394 #ifdef CONFIG_SMP 5395 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5396 #endif 5397 } 5398 5399 #ifdef CONFIG_SMP 5400 5401 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5402 const struct cpumask *trial) 5403 { 5404 int ret = 1; 5405 5406 if (!cpumask_weight(cur)) 5407 return ret; 5408 5409 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5410 5411 return ret; 5412 } 5413 5414 int task_can_attach(struct task_struct *p, 5415 const struct cpumask *cs_cpus_allowed) 5416 { 5417 int ret = 0; 5418 5419 /* 5420 * Kthreads which disallow setaffinity shouldn't be moved 5421 * to a new cpuset; we don't want to change their CPU 5422 * affinity and isolating such threads by their set of 5423 * allowed nodes is unnecessary. Thus, cpusets are not 5424 * applicable for such threads. This prevents checking for 5425 * success of set_cpus_allowed_ptr() on all attached tasks 5426 * before cpus_allowed may be changed. 5427 */ 5428 if (p->flags & PF_NO_SETAFFINITY) { 5429 ret = -EINVAL; 5430 goto out; 5431 } 5432 5433 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5434 cs_cpus_allowed)) 5435 ret = dl_task_can_attach(p, cs_cpus_allowed); 5436 5437 out: 5438 return ret; 5439 } 5440 5441 bool sched_smp_initialized __read_mostly; 5442 5443 #ifdef CONFIG_NUMA_BALANCING 5444 /* Migrate current task p to target_cpu */ 5445 int migrate_task_to(struct task_struct *p, int target_cpu) 5446 { 5447 struct migration_arg arg = { p, target_cpu }; 5448 int curr_cpu = task_cpu(p); 5449 5450 if (curr_cpu == target_cpu) 5451 return 0; 5452 5453 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5454 return -EINVAL; 5455 5456 /* TODO: This is not properly updating schedstats */ 5457 5458 trace_sched_move_numa(p, curr_cpu, target_cpu); 5459 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5460 } 5461 5462 /* 5463 * Requeue a task on a given node and accurately track the number of NUMA 5464 * tasks on the runqueues 5465 */ 5466 void sched_setnuma(struct task_struct *p, int nid) 5467 { 5468 bool queued, running; 5469 struct rq_flags rf; 5470 struct rq *rq; 5471 5472 rq = task_rq_lock(p, &rf); 5473 queued = task_on_rq_queued(p); 5474 running = task_current(rq, p); 5475 5476 if (queued) 5477 dequeue_task(rq, p, DEQUEUE_SAVE); 5478 if (running) 5479 put_prev_task(rq, p); 5480 5481 p->numa_preferred_nid = nid; 5482 5483 if (queued) 5484 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5485 if (running) 5486 set_curr_task(rq, p); 5487 task_rq_unlock(rq, p, &rf); 5488 } 5489 #endif /* CONFIG_NUMA_BALANCING */ 5490 5491 #ifdef CONFIG_HOTPLUG_CPU 5492 /* 5493 * Ensure that the idle task is using init_mm right before its CPU goes 5494 * offline. 5495 */ 5496 void idle_task_exit(void) 5497 { 5498 struct mm_struct *mm = current->active_mm; 5499 5500 BUG_ON(cpu_online(smp_processor_id())); 5501 5502 if (mm != &init_mm) { 5503 switch_mm(mm, &init_mm, current); 5504 finish_arch_post_lock_switch(); 5505 } 5506 mmdrop(mm); 5507 } 5508 5509 /* 5510 * Since this CPU is going 'away' for a while, fold any nr_active delta 5511 * we might have. Assumes we're called after migrate_tasks() so that the 5512 * nr_active count is stable. We need to take the teardown thread which 5513 * is calling this into account, so we hand in adjust = 1 to the load 5514 * calculation. 5515 * 5516 * Also see the comment "Global load-average calculations". 5517 */ 5518 static void calc_load_migrate(struct rq *rq) 5519 { 5520 long delta = calc_load_fold_active(rq, 1); 5521 if (delta) 5522 atomic_long_add(delta, &calc_load_tasks); 5523 } 5524 5525 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5526 { 5527 } 5528 5529 static const struct sched_class fake_sched_class = { 5530 .put_prev_task = put_prev_task_fake, 5531 }; 5532 5533 static struct task_struct fake_task = { 5534 /* 5535 * Avoid pull_{rt,dl}_task() 5536 */ 5537 .prio = MAX_PRIO + 1, 5538 .sched_class = &fake_sched_class, 5539 }; 5540 5541 /* 5542 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5543 * try_to_wake_up()->select_task_rq(). 5544 * 5545 * Called with rq->lock held even though we'er in stop_machine() and 5546 * there's no concurrency possible, we hold the required locks anyway 5547 * because of lock validation efforts. 5548 */ 5549 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5550 { 5551 struct rq *rq = dead_rq; 5552 struct task_struct *next, *stop = rq->stop; 5553 struct rq_flags orf = *rf; 5554 int dest_cpu; 5555 5556 /* 5557 * Fudge the rq selection such that the below task selection loop 5558 * doesn't get stuck on the currently eligible stop task. 5559 * 5560 * We're currently inside stop_machine() and the rq is either stuck 5561 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5562 * either way we should never end up calling schedule() until we're 5563 * done here. 5564 */ 5565 rq->stop = NULL; 5566 5567 /* 5568 * put_prev_task() and pick_next_task() sched 5569 * class method both need to have an up-to-date 5570 * value of rq->clock[_task] 5571 */ 5572 update_rq_clock(rq); 5573 5574 for (;;) { 5575 /* 5576 * There's this thread running, bail when that's the only 5577 * remaining thread: 5578 */ 5579 if (rq->nr_running == 1) 5580 break; 5581 5582 /* 5583 * pick_next_task() assumes pinned rq->lock: 5584 */ 5585 next = pick_next_task(rq, &fake_task, rf); 5586 BUG_ON(!next); 5587 put_prev_task(rq, next); 5588 5589 /* 5590 * Rules for changing task_struct::cpus_allowed are holding 5591 * both pi_lock and rq->lock, such that holding either 5592 * stabilizes the mask. 5593 * 5594 * Drop rq->lock is not quite as disastrous as it usually is 5595 * because !cpu_active at this point, which means load-balance 5596 * will not interfere. Also, stop-machine. 5597 */ 5598 rq_unlock(rq, rf); 5599 raw_spin_lock(&next->pi_lock); 5600 rq_relock(rq, rf); 5601 5602 /* 5603 * Since we're inside stop-machine, _nothing_ should have 5604 * changed the task, WARN if weird stuff happened, because in 5605 * that case the above rq->lock drop is a fail too. 5606 */ 5607 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5608 raw_spin_unlock(&next->pi_lock); 5609 continue; 5610 } 5611 5612 /* Find suitable destination for @next, with force if needed. */ 5613 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5614 rq = __migrate_task(rq, rf, next, dest_cpu); 5615 if (rq != dead_rq) { 5616 rq_unlock(rq, rf); 5617 rq = dead_rq; 5618 *rf = orf; 5619 rq_relock(rq, rf); 5620 } 5621 raw_spin_unlock(&next->pi_lock); 5622 } 5623 5624 rq->stop = stop; 5625 } 5626 #endif /* CONFIG_HOTPLUG_CPU */ 5627 5628 void set_rq_online(struct rq *rq) 5629 { 5630 if (!rq->online) { 5631 const struct sched_class *class; 5632 5633 cpumask_set_cpu(rq->cpu, rq->rd->online); 5634 rq->online = 1; 5635 5636 for_each_class(class) { 5637 if (class->rq_online) 5638 class->rq_online(rq); 5639 } 5640 } 5641 } 5642 5643 void set_rq_offline(struct rq *rq) 5644 { 5645 if (rq->online) { 5646 const struct sched_class *class; 5647 5648 for_each_class(class) { 5649 if (class->rq_offline) 5650 class->rq_offline(rq); 5651 } 5652 5653 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5654 rq->online = 0; 5655 } 5656 } 5657 5658 static void set_cpu_rq_start_time(unsigned int cpu) 5659 { 5660 struct rq *rq = cpu_rq(cpu); 5661 5662 rq->age_stamp = sched_clock_cpu(cpu); 5663 } 5664 5665 /* 5666 * used to mark begin/end of suspend/resume: 5667 */ 5668 static int num_cpus_frozen; 5669 5670 /* 5671 * Update cpusets according to cpu_active mask. If cpusets are 5672 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5673 * around partition_sched_domains(). 5674 * 5675 * If we come here as part of a suspend/resume, don't touch cpusets because we 5676 * want to restore it back to its original state upon resume anyway. 5677 */ 5678 static void cpuset_cpu_active(void) 5679 { 5680 if (cpuhp_tasks_frozen) { 5681 /* 5682 * num_cpus_frozen tracks how many CPUs are involved in suspend 5683 * resume sequence. As long as this is not the last online 5684 * operation in the resume sequence, just build a single sched 5685 * domain, ignoring cpusets. 5686 */ 5687 partition_sched_domains(1, NULL, NULL); 5688 if (--num_cpus_frozen) 5689 return; 5690 /* 5691 * This is the last CPU online operation. So fall through and 5692 * restore the original sched domains by considering the 5693 * cpuset configurations. 5694 */ 5695 cpuset_force_rebuild(); 5696 } 5697 cpuset_update_active_cpus(); 5698 } 5699 5700 static int cpuset_cpu_inactive(unsigned int cpu) 5701 { 5702 if (!cpuhp_tasks_frozen) { 5703 if (dl_cpu_busy(cpu)) 5704 return -EBUSY; 5705 cpuset_update_active_cpus(); 5706 } else { 5707 num_cpus_frozen++; 5708 partition_sched_domains(1, NULL, NULL); 5709 } 5710 return 0; 5711 } 5712 5713 int sched_cpu_activate(unsigned int cpu) 5714 { 5715 struct rq *rq = cpu_rq(cpu); 5716 struct rq_flags rf; 5717 5718 set_cpu_active(cpu, true); 5719 5720 if (sched_smp_initialized) { 5721 sched_domains_numa_masks_set(cpu); 5722 cpuset_cpu_active(); 5723 } 5724 5725 /* 5726 * Put the rq online, if not already. This happens: 5727 * 5728 * 1) In the early boot process, because we build the real domains 5729 * after all CPUs have been brought up. 5730 * 5731 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5732 * domains. 5733 */ 5734 rq_lock_irqsave(rq, &rf); 5735 if (rq->rd) { 5736 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5737 set_rq_online(rq); 5738 } 5739 rq_unlock_irqrestore(rq, &rf); 5740 5741 update_max_interval(); 5742 5743 return 0; 5744 } 5745 5746 int sched_cpu_deactivate(unsigned int cpu) 5747 { 5748 int ret; 5749 5750 set_cpu_active(cpu, false); 5751 /* 5752 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5753 * users of this state to go away such that all new such users will 5754 * observe it. 5755 * 5756 * Do sync before park smpboot threads to take care the rcu boost case. 5757 */ 5758 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5759 5760 if (!sched_smp_initialized) 5761 return 0; 5762 5763 ret = cpuset_cpu_inactive(cpu); 5764 if (ret) { 5765 set_cpu_active(cpu, true); 5766 return ret; 5767 } 5768 sched_domains_numa_masks_clear(cpu); 5769 return 0; 5770 } 5771 5772 static void sched_rq_cpu_starting(unsigned int cpu) 5773 { 5774 struct rq *rq = cpu_rq(cpu); 5775 5776 rq->calc_load_update = calc_load_update; 5777 update_max_interval(); 5778 } 5779 5780 int sched_cpu_starting(unsigned int cpu) 5781 { 5782 set_cpu_rq_start_time(cpu); 5783 sched_rq_cpu_starting(cpu); 5784 return 0; 5785 } 5786 5787 #ifdef CONFIG_HOTPLUG_CPU 5788 int sched_cpu_dying(unsigned int cpu) 5789 { 5790 struct rq *rq = cpu_rq(cpu); 5791 struct rq_flags rf; 5792 5793 /* Handle pending wakeups and then migrate everything off */ 5794 sched_ttwu_pending(); 5795 5796 rq_lock_irqsave(rq, &rf); 5797 if (rq->rd) { 5798 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5799 set_rq_offline(rq); 5800 } 5801 migrate_tasks(rq, &rf); 5802 BUG_ON(rq->nr_running != 1); 5803 rq_unlock_irqrestore(rq, &rf); 5804 5805 calc_load_migrate(rq); 5806 update_max_interval(); 5807 nohz_balance_exit_idle(cpu); 5808 hrtick_clear(rq); 5809 return 0; 5810 } 5811 #endif 5812 5813 #ifdef CONFIG_SCHED_SMT 5814 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5815 5816 static void sched_init_smt(void) 5817 { 5818 /* 5819 * We've enumerated all CPUs and will assume that if any CPU 5820 * has SMT siblings, CPU0 will too. 5821 */ 5822 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5823 static_branch_enable(&sched_smt_present); 5824 } 5825 #else 5826 static inline void sched_init_smt(void) { } 5827 #endif 5828 5829 void __init sched_init_smp(void) 5830 { 5831 sched_init_numa(); 5832 5833 /* 5834 * There's no userspace yet to cause hotplug operations; hence all the 5835 * CPU masks are stable and all blatant races in the below code cannot 5836 * happen. 5837 */ 5838 mutex_lock(&sched_domains_mutex); 5839 sched_init_domains(cpu_active_mask); 5840 mutex_unlock(&sched_domains_mutex); 5841 5842 /* Move init over to a non-isolated CPU */ 5843 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5844 BUG(); 5845 sched_init_granularity(); 5846 5847 init_sched_rt_class(); 5848 init_sched_dl_class(); 5849 5850 sched_init_smt(); 5851 5852 sched_smp_initialized = true; 5853 } 5854 5855 static int __init migration_init(void) 5856 { 5857 sched_rq_cpu_starting(smp_processor_id()); 5858 return 0; 5859 } 5860 early_initcall(migration_init); 5861 5862 #else 5863 void __init sched_init_smp(void) 5864 { 5865 sched_init_granularity(); 5866 } 5867 #endif /* CONFIG_SMP */ 5868 5869 int in_sched_functions(unsigned long addr) 5870 { 5871 return in_lock_functions(addr) || 5872 (addr >= (unsigned long)__sched_text_start 5873 && addr < (unsigned long)__sched_text_end); 5874 } 5875 5876 #ifdef CONFIG_CGROUP_SCHED 5877 /* 5878 * Default task group. 5879 * Every task in system belongs to this group at bootup. 5880 */ 5881 struct task_group root_task_group; 5882 LIST_HEAD(task_groups); 5883 5884 /* Cacheline aligned slab cache for task_group */ 5885 static struct kmem_cache *task_group_cache __read_mostly; 5886 #endif 5887 5888 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5889 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5890 5891 void __init sched_init(void) 5892 { 5893 int i, j; 5894 unsigned long alloc_size = 0, ptr; 5895 5896 sched_clock_init(); 5897 wait_bit_init(); 5898 5899 #ifdef CONFIG_FAIR_GROUP_SCHED 5900 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5901 #endif 5902 #ifdef CONFIG_RT_GROUP_SCHED 5903 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5904 #endif 5905 if (alloc_size) { 5906 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5907 5908 #ifdef CONFIG_FAIR_GROUP_SCHED 5909 root_task_group.se = (struct sched_entity **)ptr; 5910 ptr += nr_cpu_ids * sizeof(void **); 5911 5912 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5913 ptr += nr_cpu_ids * sizeof(void **); 5914 5915 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5916 #ifdef CONFIG_RT_GROUP_SCHED 5917 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5918 ptr += nr_cpu_ids * sizeof(void **); 5919 5920 root_task_group.rt_rq = (struct rt_rq **)ptr; 5921 ptr += nr_cpu_ids * sizeof(void **); 5922 5923 #endif /* CONFIG_RT_GROUP_SCHED */ 5924 } 5925 #ifdef CONFIG_CPUMASK_OFFSTACK 5926 for_each_possible_cpu(i) { 5927 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5928 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5929 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5930 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5931 } 5932 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5933 5934 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5935 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5936 5937 #ifdef CONFIG_SMP 5938 init_defrootdomain(); 5939 #endif 5940 5941 #ifdef CONFIG_RT_GROUP_SCHED 5942 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5943 global_rt_period(), global_rt_runtime()); 5944 #endif /* CONFIG_RT_GROUP_SCHED */ 5945 5946 #ifdef CONFIG_CGROUP_SCHED 5947 task_group_cache = KMEM_CACHE(task_group, 0); 5948 5949 list_add(&root_task_group.list, &task_groups); 5950 INIT_LIST_HEAD(&root_task_group.children); 5951 INIT_LIST_HEAD(&root_task_group.siblings); 5952 autogroup_init(&init_task); 5953 #endif /* CONFIG_CGROUP_SCHED */ 5954 5955 for_each_possible_cpu(i) { 5956 struct rq *rq; 5957 5958 rq = cpu_rq(i); 5959 raw_spin_lock_init(&rq->lock); 5960 rq->nr_running = 0; 5961 rq->calc_load_active = 0; 5962 rq->calc_load_update = jiffies + LOAD_FREQ; 5963 init_cfs_rq(&rq->cfs); 5964 init_rt_rq(&rq->rt); 5965 init_dl_rq(&rq->dl); 5966 #ifdef CONFIG_FAIR_GROUP_SCHED 5967 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5968 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5969 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5970 /* 5971 * How much CPU bandwidth does root_task_group get? 5972 * 5973 * In case of task-groups formed thr' the cgroup filesystem, it 5974 * gets 100% of the CPU resources in the system. This overall 5975 * system CPU resource is divided among the tasks of 5976 * root_task_group and its child task-groups in a fair manner, 5977 * based on each entity's (task or task-group's) weight 5978 * (se->load.weight). 5979 * 5980 * In other words, if root_task_group has 10 tasks of weight 5981 * 1024) and two child groups A0 and A1 (of weight 1024 each), 5982 * then A0's share of the CPU resource is: 5983 * 5984 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 5985 * 5986 * We achieve this by letting root_task_group's tasks sit 5987 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 5988 */ 5989 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 5990 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 5991 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5992 5993 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 5994 #ifdef CONFIG_RT_GROUP_SCHED 5995 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 5996 #endif 5997 5998 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 5999 rq->cpu_load[j] = 0; 6000 6001 #ifdef CONFIG_SMP 6002 rq->sd = NULL; 6003 rq->rd = NULL; 6004 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6005 rq->balance_callback = NULL; 6006 rq->active_balance = 0; 6007 rq->next_balance = jiffies; 6008 rq->push_cpu = 0; 6009 rq->cpu = i; 6010 rq->online = 0; 6011 rq->idle_stamp = 0; 6012 rq->avg_idle = 2*sysctl_sched_migration_cost; 6013 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6014 6015 INIT_LIST_HEAD(&rq->cfs_tasks); 6016 6017 rq_attach_root(rq, &def_root_domain); 6018 #ifdef CONFIG_NO_HZ_COMMON 6019 rq->last_load_update_tick = jiffies; 6020 rq->nohz_flags = 0; 6021 #endif 6022 #ifdef CONFIG_NO_HZ_FULL 6023 rq->last_sched_tick = 0; 6024 #endif 6025 #endif /* CONFIG_SMP */ 6026 init_rq_hrtick(rq); 6027 atomic_set(&rq->nr_iowait, 0); 6028 } 6029 6030 set_load_weight(&init_task, false); 6031 6032 /* 6033 * The boot idle thread does lazy MMU switching as well: 6034 */ 6035 mmgrab(&init_mm); 6036 enter_lazy_tlb(&init_mm, current); 6037 6038 /* 6039 * Make us the idle thread. Technically, schedule() should not be 6040 * called from this thread, however somewhere below it might be, 6041 * but because we are the idle thread, we just pick up running again 6042 * when this runqueue becomes "idle". 6043 */ 6044 init_idle(current, smp_processor_id()); 6045 6046 calc_load_update = jiffies + LOAD_FREQ; 6047 6048 #ifdef CONFIG_SMP 6049 idle_thread_set_boot_cpu(); 6050 set_cpu_rq_start_time(smp_processor_id()); 6051 #endif 6052 init_sched_fair_class(); 6053 6054 init_schedstats(); 6055 6056 scheduler_running = 1; 6057 } 6058 6059 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6060 static inline int preempt_count_equals(int preempt_offset) 6061 { 6062 int nested = preempt_count() + rcu_preempt_depth(); 6063 6064 return (nested == preempt_offset); 6065 } 6066 6067 void __might_sleep(const char *file, int line, int preempt_offset) 6068 { 6069 /* 6070 * Blocking primitives will set (and therefore destroy) current->state, 6071 * since we will exit with TASK_RUNNING make sure we enter with it, 6072 * otherwise we will destroy state. 6073 */ 6074 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6075 "do not call blocking ops when !TASK_RUNNING; " 6076 "state=%lx set at [<%p>] %pS\n", 6077 current->state, 6078 (void *)current->task_state_change, 6079 (void *)current->task_state_change); 6080 6081 ___might_sleep(file, line, preempt_offset); 6082 } 6083 EXPORT_SYMBOL(__might_sleep); 6084 6085 void ___might_sleep(const char *file, int line, int preempt_offset) 6086 { 6087 /* Ratelimiting timestamp: */ 6088 static unsigned long prev_jiffy; 6089 6090 unsigned long preempt_disable_ip; 6091 6092 /* WARN_ON_ONCE() by default, no rate limit required: */ 6093 rcu_sleep_check(); 6094 6095 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6096 !is_idle_task(current)) || 6097 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6098 oops_in_progress) 6099 return; 6100 6101 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6102 return; 6103 prev_jiffy = jiffies; 6104 6105 /* Save this before calling printk(), since that will clobber it: */ 6106 preempt_disable_ip = get_preempt_disable_ip(current); 6107 6108 printk(KERN_ERR 6109 "BUG: sleeping function called from invalid context at %s:%d\n", 6110 file, line); 6111 printk(KERN_ERR 6112 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6113 in_atomic(), irqs_disabled(), 6114 current->pid, current->comm); 6115 6116 if (task_stack_end_corrupted(current)) 6117 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6118 6119 debug_show_held_locks(current); 6120 if (irqs_disabled()) 6121 print_irqtrace_events(current); 6122 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6123 && !preempt_count_equals(preempt_offset)) { 6124 pr_err("Preemption disabled at:"); 6125 print_ip_sym(preempt_disable_ip); 6126 pr_cont("\n"); 6127 } 6128 dump_stack(); 6129 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6130 } 6131 EXPORT_SYMBOL(___might_sleep); 6132 #endif 6133 6134 #ifdef CONFIG_MAGIC_SYSRQ 6135 void normalize_rt_tasks(void) 6136 { 6137 struct task_struct *g, *p; 6138 struct sched_attr attr = { 6139 .sched_policy = SCHED_NORMAL, 6140 }; 6141 6142 read_lock(&tasklist_lock); 6143 for_each_process_thread(g, p) { 6144 /* 6145 * Only normalize user tasks: 6146 */ 6147 if (p->flags & PF_KTHREAD) 6148 continue; 6149 6150 p->se.exec_start = 0; 6151 schedstat_set(p->se.statistics.wait_start, 0); 6152 schedstat_set(p->se.statistics.sleep_start, 0); 6153 schedstat_set(p->se.statistics.block_start, 0); 6154 6155 if (!dl_task(p) && !rt_task(p)) { 6156 /* 6157 * Renice negative nice level userspace 6158 * tasks back to 0: 6159 */ 6160 if (task_nice(p) < 0) 6161 set_user_nice(p, 0); 6162 continue; 6163 } 6164 6165 __sched_setscheduler(p, &attr, false, false); 6166 } 6167 read_unlock(&tasklist_lock); 6168 } 6169 6170 #endif /* CONFIG_MAGIC_SYSRQ */ 6171 6172 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6173 /* 6174 * These functions are only useful for the IA64 MCA handling, or kdb. 6175 * 6176 * They can only be called when the whole system has been 6177 * stopped - every CPU needs to be quiescent, and no scheduling 6178 * activity can take place. Using them for anything else would 6179 * be a serious bug, and as a result, they aren't even visible 6180 * under any other configuration. 6181 */ 6182 6183 /** 6184 * curr_task - return the current task for a given CPU. 6185 * @cpu: the processor in question. 6186 * 6187 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6188 * 6189 * Return: The current task for @cpu. 6190 */ 6191 struct task_struct *curr_task(int cpu) 6192 { 6193 return cpu_curr(cpu); 6194 } 6195 6196 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6197 6198 #ifdef CONFIG_IA64 6199 /** 6200 * set_curr_task - set the current task for a given CPU. 6201 * @cpu: the processor in question. 6202 * @p: the task pointer to set. 6203 * 6204 * Description: This function must only be used when non-maskable interrupts 6205 * are serviced on a separate stack. It allows the architecture to switch the 6206 * notion of the current task on a CPU in a non-blocking manner. This function 6207 * must be called with all CPU's synchronized, and interrupts disabled, the 6208 * and caller must save the original value of the current task (see 6209 * curr_task() above) and restore that value before reenabling interrupts and 6210 * re-starting the system. 6211 * 6212 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6213 */ 6214 void ia64_set_curr_task(int cpu, struct task_struct *p) 6215 { 6216 cpu_curr(cpu) = p; 6217 } 6218 6219 #endif 6220 6221 #ifdef CONFIG_CGROUP_SCHED 6222 /* task_group_lock serializes the addition/removal of task groups */ 6223 static DEFINE_SPINLOCK(task_group_lock); 6224 6225 static void sched_free_group(struct task_group *tg) 6226 { 6227 free_fair_sched_group(tg); 6228 free_rt_sched_group(tg); 6229 autogroup_free(tg); 6230 kmem_cache_free(task_group_cache, tg); 6231 } 6232 6233 /* allocate runqueue etc for a new task group */ 6234 struct task_group *sched_create_group(struct task_group *parent) 6235 { 6236 struct task_group *tg; 6237 6238 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6239 if (!tg) 6240 return ERR_PTR(-ENOMEM); 6241 6242 if (!alloc_fair_sched_group(tg, parent)) 6243 goto err; 6244 6245 if (!alloc_rt_sched_group(tg, parent)) 6246 goto err; 6247 6248 return tg; 6249 6250 err: 6251 sched_free_group(tg); 6252 return ERR_PTR(-ENOMEM); 6253 } 6254 6255 void sched_online_group(struct task_group *tg, struct task_group *parent) 6256 { 6257 unsigned long flags; 6258 6259 spin_lock_irqsave(&task_group_lock, flags); 6260 list_add_rcu(&tg->list, &task_groups); 6261 6262 /* Root should already exist: */ 6263 WARN_ON(!parent); 6264 6265 tg->parent = parent; 6266 INIT_LIST_HEAD(&tg->children); 6267 list_add_rcu(&tg->siblings, &parent->children); 6268 spin_unlock_irqrestore(&task_group_lock, flags); 6269 6270 online_fair_sched_group(tg); 6271 } 6272 6273 /* rcu callback to free various structures associated with a task group */ 6274 static void sched_free_group_rcu(struct rcu_head *rhp) 6275 { 6276 /* Now it should be safe to free those cfs_rqs: */ 6277 sched_free_group(container_of(rhp, struct task_group, rcu)); 6278 } 6279 6280 void sched_destroy_group(struct task_group *tg) 6281 { 6282 /* Wait for possible concurrent references to cfs_rqs complete: */ 6283 call_rcu(&tg->rcu, sched_free_group_rcu); 6284 } 6285 6286 void sched_offline_group(struct task_group *tg) 6287 { 6288 unsigned long flags; 6289 6290 /* End participation in shares distribution: */ 6291 unregister_fair_sched_group(tg); 6292 6293 spin_lock_irqsave(&task_group_lock, flags); 6294 list_del_rcu(&tg->list); 6295 list_del_rcu(&tg->siblings); 6296 spin_unlock_irqrestore(&task_group_lock, flags); 6297 } 6298 6299 static void sched_change_group(struct task_struct *tsk, int type) 6300 { 6301 struct task_group *tg; 6302 6303 /* 6304 * All callers are synchronized by task_rq_lock(); we do not use RCU 6305 * which is pointless here. Thus, we pass "true" to task_css_check() 6306 * to prevent lockdep warnings. 6307 */ 6308 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6309 struct task_group, css); 6310 tg = autogroup_task_group(tsk, tg); 6311 tsk->sched_task_group = tg; 6312 6313 #ifdef CONFIG_FAIR_GROUP_SCHED 6314 if (tsk->sched_class->task_change_group) 6315 tsk->sched_class->task_change_group(tsk, type); 6316 else 6317 #endif 6318 set_task_rq(tsk, task_cpu(tsk)); 6319 } 6320 6321 /* 6322 * Change task's runqueue when it moves between groups. 6323 * 6324 * The caller of this function should have put the task in its new group by 6325 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6326 * its new group. 6327 */ 6328 void sched_move_task(struct task_struct *tsk) 6329 { 6330 int queued, running, queue_flags = 6331 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6332 struct rq_flags rf; 6333 struct rq *rq; 6334 6335 rq = task_rq_lock(tsk, &rf); 6336 update_rq_clock(rq); 6337 6338 running = task_current(rq, tsk); 6339 queued = task_on_rq_queued(tsk); 6340 6341 if (queued) 6342 dequeue_task(rq, tsk, queue_flags); 6343 if (running) 6344 put_prev_task(rq, tsk); 6345 6346 sched_change_group(tsk, TASK_MOVE_GROUP); 6347 6348 if (queued) 6349 enqueue_task(rq, tsk, queue_flags); 6350 if (running) 6351 set_curr_task(rq, tsk); 6352 6353 task_rq_unlock(rq, tsk, &rf); 6354 } 6355 6356 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6357 { 6358 return css ? container_of(css, struct task_group, css) : NULL; 6359 } 6360 6361 static struct cgroup_subsys_state * 6362 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6363 { 6364 struct task_group *parent = css_tg(parent_css); 6365 struct task_group *tg; 6366 6367 if (!parent) { 6368 /* This is early initialization for the top cgroup */ 6369 return &root_task_group.css; 6370 } 6371 6372 tg = sched_create_group(parent); 6373 if (IS_ERR(tg)) 6374 return ERR_PTR(-ENOMEM); 6375 6376 return &tg->css; 6377 } 6378 6379 /* Expose task group only after completing cgroup initialization */ 6380 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6381 { 6382 struct task_group *tg = css_tg(css); 6383 struct task_group *parent = css_tg(css->parent); 6384 6385 if (parent) 6386 sched_online_group(tg, parent); 6387 return 0; 6388 } 6389 6390 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6391 { 6392 struct task_group *tg = css_tg(css); 6393 6394 sched_offline_group(tg); 6395 } 6396 6397 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6398 { 6399 struct task_group *tg = css_tg(css); 6400 6401 /* 6402 * Relies on the RCU grace period between css_released() and this. 6403 */ 6404 sched_free_group(tg); 6405 } 6406 6407 /* 6408 * This is called before wake_up_new_task(), therefore we really only 6409 * have to set its group bits, all the other stuff does not apply. 6410 */ 6411 static void cpu_cgroup_fork(struct task_struct *task) 6412 { 6413 struct rq_flags rf; 6414 struct rq *rq; 6415 6416 rq = task_rq_lock(task, &rf); 6417 6418 update_rq_clock(rq); 6419 sched_change_group(task, TASK_SET_GROUP); 6420 6421 task_rq_unlock(rq, task, &rf); 6422 } 6423 6424 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6425 { 6426 struct task_struct *task; 6427 struct cgroup_subsys_state *css; 6428 int ret = 0; 6429 6430 cgroup_taskset_for_each(task, css, tset) { 6431 #ifdef CONFIG_RT_GROUP_SCHED 6432 if (!sched_rt_can_attach(css_tg(css), task)) 6433 return -EINVAL; 6434 #else 6435 /* We don't support RT-tasks being in separate groups */ 6436 if (task->sched_class != &fair_sched_class) 6437 return -EINVAL; 6438 #endif 6439 /* 6440 * Serialize against wake_up_new_task() such that if its 6441 * running, we're sure to observe its full state. 6442 */ 6443 raw_spin_lock_irq(&task->pi_lock); 6444 /* 6445 * Avoid calling sched_move_task() before wake_up_new_task() 6446 * has happened. This would lead to problems with PELT, due to 6447 * move wanting to detach+attach while we're not attached yet. 6448 */ 6449 if (task->state == TASK_NEW) 6450 ret = -EINVAL; 6451 raw_spin_unlock_irq(&task->pi_lock); 6452 6453 if (ret) 6454 break; 6455 } 6456 return ret; 6457 } 6458 6459 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6460 { 6461 struct task_struct *task; 6462 struct cgroup_subsys_state *css; 6463 6464 cgroup_taskset_for_each(task, css, tset) 6465 sched_move_task(task); 6466 } 6467 6468 #ifdef CONFIG_FAIR_GROUP_SCHED 6469 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6470 struct cftype *cftype, u64 shareval) 6471 { 6472 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6473 } 6474 6475 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6476 struct cftype *cft) 6477 { 6478 struct task_group *tg = css_tg(css); 6479 6480 return (u64) scale_load_down(tg->shares); 6481 } 6482 6483 #ifdef CONFIG_CFS_BANDWIDTH 6484 static DEFINE_MUTEX(cfs_constraints_mutex); 6485 6486 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6487 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6488 6489 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6490 6491 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6492 { 6493 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6494 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6495 6496 if (tg == &root_task_group) 6497 return -EINVAL; 6498 6499 /* 6500 * Ensure we have at some amount of bandwidth every period. This is 6501 * to prevent reaching a state of large arrears when throttled via 6502 * entity_tick() resulting in prolonged exit starvation. 6503 */ 6504 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6505 return -EINVAL; 6506 6507 /* 6508 * Likewise, bound things on the otherside by preventing insane quota 6509 * periods. This also allows us to normalize in computing quota 6510 * feasibility. 6511 */ 6512 if (period > max_cfs_quota_period) 6513 return -EINVAL; 6514 6515 /* 6516 * Prevent race between setting of cfs_rq->runtime_enabled and 6517 * unthrottle_offline_cfs_rqs(). 6518 */ 6519 get_online_cpus(); 6520 mutex_lock(&cfs_constraints_mutex); 6521 ret = __cfs_schedulable(tg, period, quota); 6522 if (ret) 6523 goto out_unlock; 6524 6525 runtime_enabled = quota != RUNTIME_INF; 6526 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6527 /* 6528 * If we need to toggle cfs_bandwidth_used, off->on must occur 6529 * before making related changes, and on->off must occur afterwards 6530 */ 6531 if (runtime_enabled && !runtime_was_enabled) 6532 cfs_bandwidth_usage_inc(); 6533 raw_spin_lock_irq(&cfs_b->lock); 6534 cfs_b->period = ns_to_ktime(period); 6535 cfs_b->quota = quota; 6536 6537 __refill_cfs_bandwidth_runtime(cfs_b); 6538 6539 /* Restart the period timer (if active) to handle new period expiry: */ 6540 if (runtime_enabled) 6541 start_cfs_bandwidth(cfs_b); 6542 6543 raw_spin_unlock_irq(&cfs_b->lock); 6544 6545 for_each_online_cpu(i) { 6546 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6547 struct rq *rq = cfs_rq->rq; 6548 struct rq_flags rf; 6549 6550 rq_lock_irq(rq, &rf); 6551 cfs_rq->runtime_enabled = runtime_enabled; 6552 cfs_rq->runtime_remaining = 0; 6553 6554 if (cfs_rq->throttled) 6555 unthrottle_cfs_rq(cfs_rq); 6556 rq_unlock_irq(rq, &rf); 6557 } 6558 if (runtime_was_enabled && !runtime_enabled) 6559 cfs_bandwidth_usage_dec(); 6560 out_unlock: 6561 mutex_unlock(&cfs_constraints_mutex); 6562 put_online_cpus(); 6563 6564 return ret; 6565 } 6566 6567 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6568 { 6569 u64 quota, period; 6570 6571 period = ktime_to_ns(tg->cfs_bandwidth.period); 6572 if (cfs_quota_us < 0) 6573 quota = RUNTIME_INF; 6574 else 6575 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6576 6577 return tg_set_cfs_bandwidth(tg, period, quota); 6578 } 6579 6580 long tg_get_cfs_quota(struct task_group *tg) 6581 { 6582 u64 quota_us; 6583 6584 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6585 return -1; 6586 6587 quota_us = tg->cfs_bandwidth.quota; 6588 do_div(quota_us, NSEC_PER_USEC); 6589 6590 return quota_us; 6591 } 6592 6593 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6594 { 6595 u64 quota, period; 6596 6597 period = (u64)cfs_period_us * NSEC_PER_USEC; 6598 quota = tg->cfs_bandwidth.quota; 6599 6600 return tg_set_cfs_bandwidth(tg, period, quota); 6601 } 6602 6603 long tg_get_cfs_period(struct task_group *tg) 6604 { 6605 u64 cfs_period_us; 6606 6607 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6608 do_div(cfs_period_us, NSEC_PER_USEC); 6609 6610 return cfs_period_us; 6611 } 6612 6613 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6614 struct cftype *cft) 6615 { 6616 return tg_get_cfs_quota(css_tg(css)); 6617 } 6618 6619 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6620 struct cftype *cftype, s64 cfs_quota_us) 6621 { 6622 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6623 } 6624 6625 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6626 struct cftype *cft) 6627 { 6628 return tg_get_cfs_period(css_tg(css)); 6629 } 6630 6631 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6632 struct cftype *cftype, u64 cfs_period_us) 6633 { 6634 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6635 } 6636 6637 struct cfs_schedulable_data { 6638 struct task_group *tg; 6639 u64 period, quota; 6640 }; 6641 6642 /* 6643 * normalize group quota/period to be quota/max_period 6644 * note: units are usecs 6645 */ 6646 static u64 normalize_cfs_quota(struct task_group *tg, 6647 struct cfs_schedulable_data *d) 6648 { 6649 u64 quota, period; 6650 6651 if (tg == d->tg) { 6652 period = d->period; 6653 quota = d->quota; 6654 } else { 6655 period = tg_get_cfs_period(tg); 6656 quota = tg_get_cfs_quota(tg); 6657 } 6658 6659 /* note: these should typically be equivalent */ 6660 if (quota == RUNTIME_INF || quota == -1) 6661 return RUNTIME_INF; 6662 6663 return to_ratio(period, quota); 6664 } 6665 6666 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6667 { 6668 struct cfs_schedulable_data *d = data; 6669 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6670 s64 quota = 0, parent_quota = -1; 6671 6672 if (!tg->parent) { 6673 quota = RUNTIME_INF; 6674 } else { 6675 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6676 6677 quota = normalize_cfs_quota(tg, d); 6678 parent_quota = parent_b->hierarchical_quota; 6679 6680 /* 6681 * Ensure max(child_quota) <= parent_quota, inherit when no 6682 * limit is set: 6683 */ 6684 if (quota == RUNTIME_INF) 6685 quota = parent_quota; 6686 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6687 return -EINVAL; 6688 } 6689 cfs_b->hierarchical_quota = quota; 6690 6691 return 0; 6692 } 6693 6694 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6695 { 6696 int ret; 6697 struct cfs_schedulable_data data = { 6698 .tg = tg, 6699 .period = period, 6700 .quota = quota, 6701 }; 6702 6703 if (quota != RUNTIME_INF) { 6704 do_div(data.period, NSEC_PER_USEC); 6705 do_div(data.quota, NSEC_PER_USEC); 6706 } 6707 6708 rcu_read_lock(); 6709 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6710 rcu_read_unlock(); 6711 6712 return ret; 6713 } 6714 6715 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6716 { 6717 struct task_group *tg = css_tg(seq_css(sf)); 6718 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6719 6720 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6721 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6722 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6723 6724 return 0; 6725 } 6726 #endif /* CONFIG_CFS_BANDWIDTH */ 6727 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6728 6729 #ifdef CONFIG_RT_GROUP_SCHED 6730 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6731 struct cftype *cft, s64 val) 6732 { 6733 return sched_group_set_rt_runtime(css_tg(css), val); 6734 } 6735 6736 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6737 struct cftype *cft) 6738 { 6739 return sched_group_rt_runtime(css_tg(css)); 6740 } 6741 6742 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6743 struct cftype *cftype, u64 rt_period_us) 6744 { 6745 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6746 } 6747 6748 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6749 struct cftype *cft) 6750 { 6751 return sched_group_rt_period(css_tg(css)); 6752 } 6753 #endif /* CONFIG_RT_GROUP_SCHED */ 6754 6755 static struct cftype cpu_legacy_files[] = { 6756 #ifdef CONFIG_FAIR_GROUP_SCHED 6757 { 6758 .name = "shares", 6759 .read_u64 = cpu_shares_read_u64, 6760 .write_u64 = cpu_shares_write_u64, 6761 }, 6762 #endif 6763 #ifdef CONFIG_CFS_BANDWIDTH 6764 { 6765 .name = "cfs_quota_us", 6766 .read_s64 = cpu_cfs_quota_read_s64, 6767 .write_s64 = cpu_cfs_quota_write_s64, 6768 }, 6769 { 6770 .name = "cfs_period_us", 6771 .read_u64 = cpu_cfs_period_read_u64, 6772 .write_u64 = cpu_cfs_period_write_u64, 6773 }, 6774 { 6775 .name = "stat", 6776 .seq_show = cpu_cfs_stat_show, 6777 }, 6778 #endif 6779 #ifdef CONFIG_RT_GROUP_SCHED 6780 { 6781 .name = "rt_runtime_us", 6782 .read_s64 = cpu_rt_runtime_read, 6783 .write_s64 = cpu_rt_runtime_write, 6784 }, 6785 { 6786 .name = "rt_period_us", 6787 .read_u64 = cpu_rt_period_read_uint, 6788 .write_u64 = cpu_rt_period_write_uint, 6789 }, 6790 #endif 6791 { } /* Terminate */ 6792 }; 6793 6794 static int cpu_extra_stat_show(struct seq_file *sf, 6795 struct cgroup_subsys_state *css) 6796 { 6797 #ifdef CONFIG_CFS_BANDWIDTH 6798 { 6799 struct task_group *tg = css_tg(css); 6800 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6801 u64 throttled_usec; 6802 6803 throttled_usec = cfs_b->throttled_time; 6804 do_div(throttled_usec, NSEC_PER_USEC); 6805 6806 seq_printf(sf, "nr_periods %d\n" 6807 "nr_throttled %d\n" 6808 "throttled_usec %llu\n", 6809 cfs_b->nr_periods, cfs_b->nr_throttled, 6810 throttled_usec); 6811 } 6812 #endif 6813 return 0; 6814 } 6815 6816 #ifdef CONFIG_FAIR_GROUP_SCHED 6817 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6818 struct cftype *cft) 6819 { 6820 struct task_group *tg = css_tg(css); 6821 u64 weight = scale_load_down(tg->shares); 6822 6823 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6824 } 6825 6826 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6827 struct cftype *cft, u64 weight) 6828 { 6829 /* 6830 * cgroup weight knobs should use the common MIN, DFL and MAX 6831 * values which are 1, 100 and 10000 respectively. While it loses 6832 * a bit of range on both ends, it maps pretty well onto the shares 6833 * value used by scheduler and the round-trip conversions preserve 6834 * the original value over the entire range. 6835 */ 6836 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6837 return -ERANGE; 6838 6839 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6840 6841 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6842 } 6843 6844 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6845 struct cftype *cft) 6846 { 6847 unsigned long weight = scale_load_down(css_tg(css)->shares); 6848 int last_delta = INT_MAX; 6849 int prio, delta; 6850 6851 /* find the closest nice value to the current weight */ 6852 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6853 delta = abs(sched_prio_to_weight[prio] - weight); 6854 if (delta >= last_delta) 6855 break; 6856 last_delta = delta; 6857 } 6858 6859 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6860 } 6861 6862 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6863 struct cftype *cft, s64 nice) 6864 { 6865 unsigned long weight; 6866 6867 if (nice < MIN_NICE || nice > MAX_NICE) 6868 return -ERANGE; 6869 6870 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO]; 6871 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6872 } 6873 #endif 6874 6875 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6876 long period, long quota) 6877 { 6878 if (quota < 0) 6879 seq_puts(sf, "max"); 6880 else 6881 seq_printf(sf, "%ld", quota); 6882 6883 seq_printf(sf, " %ld\n", period); 6884 } 6885 6886 /* caller should put the current value in *@periodp before calling */ 6887 static int __maybe_unused cpu_period_quota_parse(char *buf, 6888 u64 *periodp, u64 *quotap) 6889 { 6890 char tok[21]; /* U64_MAX */ 6891 6892 if (!sscanf(buf, "%s %llu", tok, periodp)) 6893 return -EINVAL; 6894 6895 *periodp *= NSEC_PER_USEC; 6896 6897 if (sscanf(tok, "%llu", quotap)) 6898 *quotap *= NSEC_PER_USEC; 6899 else if (!strcmp(tok, "max")) 6900 *quotap = RUNTIME_INF; 6901 else 6902 return -EINVAL; 6903 6904 return 0; 6905 } 6906 6907 #ifdef CONFIG_CFS_BANDWIDTH 6908 static int cpu_max_show(struct seq_file *sf, void *v) 6909 { 6910 struct task_group *tg = css_tg(seq_css(sf)); 6911 6912 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6913 return 0; 6914 } 6915 6916 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6917 char *buf, size_t nbytes, loff_t off) 6918 { 6919 struct task_group *tg = css_tg(of_css(of)); 6920 u64 period = tg_get_cfs_period(tg); 6921 u64 quota; 6922 int ret; 6923 6924 ret = cpu_period_quota_parse(buf, &period, "a); 6925 if (!ret) 6926 ret = tg_set_cfs_bandwidth(tg, period, quota); 6927 return ret ?: nbytes; 6928 } 6929 #endif 6930 6931 static struct cftype cpu_files[] = { 6932 #ifdef CONFIG_FAIR_GROUP_SCHED 6933 { 6934 .name = "weight", 6935 .flags = CFTYPE_NOT_ON_ROOT, 6936 .read_u64 = cpu_weight_read_u64, 6937 .write_u64 = cpu_weight_write_u64, 6938 }, 6939 { 6940 .name = "weight.nice", 6941 .flags = CFTYPE_NOT_ON_ROOT, 6942 .read_s64 = cpu_weight_nice_read_s64, 6943 .write_s64 = cpu_weight_nice_write_s64, 6944 }, 6945 #endif 6946 #ifdef CONFIG_CFS_BANDWIDTH 6947 { 6948 .name = "max", 6949 .flags = CFTYPE_NOT_ON_ROOT, 6950 .seq_show = cpu_max_show, 6951 .write = cpu_max_write, 6952 }, 6953 #endif 6954 { } /* terminate */ 6955 }; 6956 6957 struct cgroup_subsys cpu_cgrp_subsys = { 6958 .css_alloc = cpu_cgroup_css_alloc, 6959 .css_online = cpu_cgroup_css_online, 6960 .css_released = cpu_cgroup_css_released, 6961 .css_free = cpu_cgroup_css_free, 6962 .css_extra_stat_show = cpu_extra_stat_show, 6963 .fork = cpu_cgroup_fork, 6964 .can_attach = cpu_cgroup_can_attach, 6965 .attach = cpu_cgroup_attach, 6966 .legacy_cftypes = cpu_legacy_files, 6967 .dfl_cftypes = cpu_files, 6968 .early_init = true, 6969 .threaded = true, 6970 }; 6971 6972 #endif /* CONFIG_CGROUP_SCHED */ 6973 6974 void dump_cpu_task(int cpu) 6975 { 6976 pr_info("Task dump for CPU %d:\n", cpu); 6977 sched_show_task(cpu_curr(cpu)); 6978 } 6979 6980 /* 6981 * Nice levels are multiplicative, with a gentle 10% change for every 6982 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 6983 * nice 1, it will get ~10% less CPU time than another CPU-bound task 6984 * that remained on nice 0. 6985 * 6986 * The "10% effect" is relative and cumulative: from _any_ nice level, 6987 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 6988 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 6989 * If a task goes up by ~10% and another task goes down by ~10% then 6990 * the relative distance between them is ~25%.) 6991 */ 6992 const int sched_prio_to_weight[40] = { 6993 /* -20 */ 88761, 71755, 56483, 46273, 36291, 6994 /* -15 */ 29154, 23254, 18705, 14949, 11916, 6995 /* -10 */ 9548, 7620, 6100, 4904, 3906, 6996 /* -5 */ 3121, 2501, 1991, 1586, 1277, 6997 /* 0 */ 1024, 820, 655, 526, 423, 6998 /* 5 */ 335, 272, 215, 172, 137, 6999 /* 10 */ 110, 87, 70, 56, 45, 7000 /* 15 */ 36, 29, 23, 18, 15, 7001 }; 7002 7003 /* 7004 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7005 * 7006 * In cases where the weight does not change often, we can use the 7007 * precalculated inverse to speed up arithmetics by turning divisions 7008 * into multiplications: 7009 */ 7010 const u32 sched_prio_to_wmult[40] = { 7011 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7012 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7013 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7014 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7015 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7016 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7017 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7018 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7019 }; 7020